

National Fuel Gas Distribution Corporation

Site Characterization Report

Former Buffalo Service Station – Off-Site Site # C915194A Buffalo, New York

May 2013; Revised November 2013 and December 2015

Scott A. Powlin Sr. Geologist

Site Characterization Report

Former Buffalo Service Station – Off-Site Site # C915194A Buffalo, New York

Prepared for:

National Fuel Gas Distribution Corporation

Prepared by: ARCADIS 6723 Towpath Road PO Box 66 Syracuse New York 13214-0066 Tel 315 446 9120 Fax 315 446 8053

Our Ref.: B0023310

Date:

May 2013; Revised November 2013 and December 2015

Table of Contents

Acronyms and Abbreviations			i	
Executive Summary		1		
1.	Introdu	ction		6
	1.1	SC Object	ives	7
	1.2	Report Org	ganization	7
	1.3	Site Descr	iption and History	8
		1.3.1 Si	te Description	8
		1.3.2 Si	te History	8
	1.4	Summary	of Previous Investigation and Remediation Activities	10
2.	Site Ch	aracteriza	tion Activities	13
	2.1	Backgrour	d Investigation	14
	2.2	Undergrou	nd Utility Clearance	15
	2.3	Soil Invest	igation	15
		2.3.1 Sc	oil Borings	16
		2.3.2 La	boratory Analysis of Subsurface Soil Samples	17
	2.4	Groundwa	ter Investigation	18
		2.4.1 M	onitoring Well Installation	18
		2.4.2 G	roundwater Sampling	19
		2.4.3 W	ater-Level Measurement	20
		2.4.4 Sp	pecific-Capacity Tests	20
	2.5	Sewer Ass	sessment	20
	2.6	Site Survey		21
	2.7	Equipment Decontamination		21
	2.8	IDW Dispo	sal	21
	2.9	Data Usab	ility Summary Reports	22

Table of Contents

3.	Site Ch	Characterization Findings		
	3.1	Site Geology	23	
	3.2	Groundwater Flow and Hydrogeologic Characterization	24	
	3.3	Soil Quality	25	
		3.3.1 Field Observations of Potential Impacts	25	
		3.3.2 Soil Analytical Results	25	
	3.4	Groundwater Quality	26	
	3.5	Sewer Assessment	27	
4.	Summ	ary and Conclusions	30	
	4.1	Summary of SC Activities	30	
	4.2	Summary of SC Findings	31	
		4.2.1 Site Setting and History	32	
		4.2.2 Geologic and Hydrogeologic Conditions	32	
		4.2.3 Field Observations of Potential Impacts	33	
		4.2.4 Soil Analytical Results	33	
		4.2.5 Groundwater Analytical Results	34	
	4.3	Sewer Assessment	35	
	4.4	Conclusion	36	
5.	Refere	nces	38	

Tables

l able 1	Sample Summary
Table 2	Well Construction Details
Table 3	Groundwater Elevations
Table 4	Soil Analytical Results
Table 5	Groundwater Analytical Result

Table of Contents

Figures

Figure 1 Site Location Map

Figure 2 Site Map

Figure 4 Cross-Section A-A'

Cross-Section B-B'

Figure 5 Groundwater Elevation Contours – February 18, 2013

Figure 6 Soil Analytcal Results – BTEX, PAHs, Cyanide

Figure 7 Groundwater Analytical Results – BTEX, PAHs, Cyanide

Appendices

A Soil Boring and Monitoring Well Construction Logs

B Data Usability Summary Reports (on CD)

C Results of Geophysical Study

D Groundwater Sampling Logs

E Design Drawings for the Buffalo Sewer Authority South Interceptor

Former Buffalo Service Station – Off-Site Buffalo, New York

Acronyms and Abbreviations

ASP Analytical Services Protocol

ASTM American Society for Testing and Materials

BSA Buffalo Sewer Authority

BTEXT benzene, toluene, ethylbenzene, and xylenes

CSCOs Restricted-Use Commercial Soil Cleanup Objectives

DNAPL Dense Nonaqueous Phase Liquid

DUSRs Data Usability Summary Reports

ft bgs feet below ground surface

GPR ground-penetrating radar

HSA hollow stem auger

IDW Investigation-derived waste

ISCOs Restricted-Use Industrial

LNAPL Liquid Nonaqueous Phase Liquid

mg/kg milligrams per kilogram

MGP Manufactured Gas Plant

NAPL nonaqueous phase liquid

National Fuel Gas Distribution Corporation

NYCRR New York City Rules and Regulations

NYS New York State

Former Buffalo Service Station – Off-Site Buffalo, New York

NYSDEC New York State Department of Environmental Conservation

NYSTA New York State Thruway Authority

PAHs polycyclic aromatic hydrocarbons

PID photo ionization detector

ppm parts per million

QA/QC Quality Assurance/Quality Control

RI Remedial Investigation

RSCOs Restricted-Use Residential Soil Cleanup Objectives

SC Site Characterization

SC Report Site Characterization Report

Site Former Wilkeson Slip/Canal Area

SI South Interceptor

SVOCs semi-volatile organic compounds

TAL Target Analyte List

TCL Target Compound List

ug/L micrograms per liter

USEPA United States Environmental Protection Agency

VOCs volatile organic compounds called

WPA Work Progress Administration

WSP WSP Engineering of New York, P.C.

Executive Summary

This Site Characterization Report (SC Report) summarizes work performed and results obtained for the Site Characterization (SC) field activities at the Former Buffalo Service Station – Off-Site site ("Site") located in Buffalo, Erie County, New York (Figure 1). The Site has also been referred to as the Wilkeson Slip/Canal Area Site. The SC work was conducted by ARCADIS, on behalf of National Fuel, in accordance with the Administrative Consent Order (Index # B9-0695-05-06A) between National Fuel and the New York State Department of Environmental Conservation (NYSDEC). The SC was designed to investigate the potential presence of MGP-related impacts associated with the former Buffalo Service Station (BSS) site that is located adjacent to the eastern edge of the Site. The SC investigation was conducted between January 2012 and August 2013.

The Site is located at the historical confluence of the former Wilkeson Slip and the former Erie Canal, and beneath Fourth Street (Figure 2). The former Erie Canal was filled in the 1930's and the former Wilkeson Slip was filled between 1895 and 1915. The Site is approximately 120 feet by 180 feet and extends from the eastern edge of Fourth Street, under and to the west edge of the New York State (NYS) Interstate I-190 overpass. The portion of the Site that lies beneath Fourth Street is owned by the City of Buffalo, while the portion beneath the I-190 overpass is owned by the New York State Thruway Authority (NYSTA) and/or the State of New York. An approximate 11-foot diameter combined sewer runs parallel with and beneath the northbound lane of the I-190 overpass. A 23-kilovolt electrical line (encased in a concrete duct bank) roughly bisects the Site in the east-west direction. The western boundary of the Site is denoted by a chain-link fence that runs between the Site and the railroad.

The Site is located adjacent to and west of the former BSS site. As shown on Figure 2, Wilkeson Slip was located northwest and adjacent to the former BSS site. Previous investigations and remedial actions at the former BSS site indicated that MGP-related impacts (primarily coal tar) were observed within the limits of the former Wilkeson Slip. These impacts were observed to extend in the direction of the Site and potentially beneath the eastern and western edges of Fourth Street. An excavation (i.e., Fourth Street Utility Corridor Excavation), completed by WSP Engineering of New York, P.C. (WSP) on behalf of QLT Buffalo LLC between June and September 2012, removed the coal tar within the utility corridor (within the former slip) extending to the eastern edge of the Site (i.e., edge of Fourth Street). The limits of the excavation are shown as Cell's A and B on Figure 2. Coal tar was also observed in a soil boring (RB-37) on the western edge of Fourth Street completed during the investigation of the former BSS site in 2003.

The chief chemical constituents typically found in coal tar are the volatile organic compounds (VOCs) benzene, toluene, ethylbenzene, and xylenes (BTEX) and a class of semi-volatile organic compounds (SVOCs) called polycyclic aromatic hydrocarbons (PAHs). Purifier waste is also typically found at former manufactured gas plants sites and this waste often contains elevated levels of cyanide. The overall objective of the SC was to determine whether MGP-related impacts, such as coal tar, purifier waste, and associated chemical constituents, are present in soil and/or groundwater at the Site, and if present, evaluate whether additional investigations are warranted to determine the nature and extent of the impacts.

The SC work consisted of:

- · drilling ten soil borings.
- converting four of the soil borings into monitoring wells.
- measuring four rounds of water-level measurements at the new and existing monitoring wells.
- collecting 21 soil samples, up to three from each soil boring, for chemical analysis.
- collecting two rounds of groundwater samples from each new monitoring well for chemical analyses.
- evaluating potential Site-related impacts to the combined sewer beneath Fourth Street.

The key findings of the SC investigations are presented below.

Geology/Hydrogeology

- Two principal overburden geologic units exist beneath the Site: fill and native
 alluvium. The fill is approximately 6 to 21 feet in thickness, and consists of silt, clay,
 fine to coarse sand, fine to coarse gravel, slag, and bricks. The alluvium deposit
 consisting of clay, silt, fine sand, and gravel is approximately 7 to 18 feet thick.
 Bedrock was encountered at a depth of 21 to 25 feet below ground surface (ft bgs).
- The water table is encountered at approximately 6 to 10 feet below grade.
 Groundwater flow is generally to the southwest across the Site; however, a groundwater mound with radial flow is observed near northern corner of the Site.

Former Buffalo Service Station – Off-Site Buffalo, New York

Soil Quality

- The only visual indication of potential impacts observed during the SC was black staining observed in one- to-two foot soil intervals at two soil borings and a trace amount of sheen observed in one other boring. The highest photo ionization detector (PID) reading recorded during the investigation was 14.1 parts per million (ppm). Coal tar was likely observed in a boring (RB-37) completed in 2003 along the western edge of Fourth Street prior to the SC.
- None of the 21 SC soil samples contained VOC concentrations above applicable NYSDEC criteria.
- Only 4 of 21 soil samples collected during the SC contained low levels of PAHs slightly above applicable NYSDEC criteria. The PAHs detected in these samples is attributed to abundant fill resulting from the filling of the former Erie Canal. One sample collected from boring RB-37 (during a previous investigation conducted in 2003) contained elevated levels of PAHs that are likely related to the potential presence of coal tar observed in the sample.
- Metals were detected in all SC soil samples, but only three samples contained concentrations above applicable NYSDEC criteria. The presence of metals in soil is also likely related to the abundant fill resulting from the filling of the former Erie Canal.
- Cyanide was not detected in SC soil samples at concentrations above applicable NYSDEC criteria.

Groundwater Quality

- Three VOCs (benzene, ethylbenzene, and/or xylenes) were detected in groundwater samples from two monitoring wells at concentrations above applicable NYSDEC criteria. These samples were collected from monitoring wells located within or near the approximate eastern half of the Site and within the western limits of the former Wilkeson Slip where coal tar was previously observed. VOCs were not detected above NYSDEC criteria in samples collected from downgradient monitoring wells.
- Acenaphthene, benzo(a)anthracene, and/or naphthalene (all PAH compounds)
 were detected at concentrations above NYSDEC criteria in groundwater samples
 from the same two wells that contained VOCs exceedances. Groundwater from the

downgradient wells did not contain concentrations of PAHs above NYSDEC criteria.

- Metals were detected in all collected SC groundwater samples above applicable NYSDEC criteria. The elevated metals concentrations in groundwater are attributed to the presence of abundant fill at the site and/or natural background concentrations.
- No cyanide was detected in groundwater at concentrations above NYSDEC criteria.

Sewer Assessment

The sewer assessment determined that an 11.5-foot diameter combined sewer is located beneath the northbound lane of the I-190 overpass. The sewer was apparently constructed on or near the bedrock surface. Information obtained during the SC suggests that tar is not likely in contact with the sewer, and given the robust construction of the sewer, tar and/or potentially impacted groundwater would not be expected to enter the sewer. Even if tar/impacted groundwater were to enter the sewer, any potential impacts would be negligible because of the large volume of sewage flowing in the sewer and because the sewer does not have a surface water overflow component.

Conclusion

Concentrations of PAHs and metals were detected in certain SC soil samples at levels above applicable NYSDEC criteria. This is not surprising since PAHs are formed during the incomplete combustion of fossil fuels, garbage, or any other organic matter; consequently, PAHs are ubiquitous, especially in urban environments like the City of Buffalo. The presence of PAHs, combined with the absence of visual impacts and elevated non-MGP related metal concentrations, is expected due to the abundant fill resulting from the filling of the former Erie Canal in the Site area. Although the low-level PAHs detected in SC soil samples do not appear to be related to the former MGP, one sample collected from boring RB-37 (during an investigation completed in 2003) contained elevated levels of PAHs that are likely due to the potential presence of coal tar in the sample.

Some BTEX and PAH compounds were detected above applicable NYSDEC criteria in groundwater from two SC monitoring wells located within and near the former Wilkeson Slip. These detections are possibly associated with the dissolution of MGP-related

Former Buffalo Service Station – Off-Site Buffalo, New York

impacts (principally coal tar) observed beneath the eastern edge of Fourth Street (observed during the Fourth Street Utility Corridor Excavation) and at a soil boring (RB-37) installed at the western edge of Fourth Street during a 2003 investigation. The elevated levels of BTEX and PAHs in groundwater appears to be constrained to the eastern portion of the Site as groundwater sampled in wells downgradient (west) from this area does not contain elevated BTEX or PAH concentrations.

Given the information presented in this SC Report, a small region of residual coal tar from the former BSS site likely remains within the limits of the former slip beneath Fourth Street. Although coal tar may be present beneath Fourth Street, the results of the SC indicate that the tar (and related dissolved-phase impacts from the tar) is not present in the portion of the Site west of Fourth Street (underneath the I-190 overpass). The potential tar may extend from beneath the eastern edge of Fourth Street (from the west side of the Fourth Street Utility Corridor Excavation sheeting) to the western edge of Fourth Street (in the area of soil boring RB-37, drilled in 2003). The tar is not likely to be in contact with an 11.5–foot diameter sewer located beneath the northbound lane of the I-190 overpass and tar and/or impacted groundwater is not likely entering the sewer.

ARCADIS concludes that any potential exposure of humans or wildlife to potential impacts beneath Fourth Street is minimal because any residual coal tar observed within the Site is located approximately 15 to 19 feet below grade. Any such residual is below the reach of normal utility and road maintenance or replacement activities. Furthermore, potable water within the City limits is provided by a public source.

Given the limited extent of MGP-related impacts to soil and groundwater beneath the Site and the lack of potential human or wildlife exposure to these impacts, ARCADIS concludes that a Remedial Investigation (RI) is not warranted for the Site.

Former Buffalo Service Station – Off-Site Buffalo, New York

1. Introduction

This SC Report summarizes work performed and results obtained for the SC field activities at the Former Buffalo Service Station – Off-Site site ("Site") located in Buffalo, Erie County, New York (Site # C915194A). The Site location is shown on Figure 1. The Site has also been previously referred to as the Wilkeson Slip/Canal Area site. The SC work was conducted by ARCADIS, on behalf of National Fuel, in accordance with the Order on Consent (Index # B9-0695-05-06A) between National Fuel and the NYSDEC. The SC was designed to investigate the potential presence of MGP-related impacts associated with the former Buffalo Service Station (BSS) site that is located adjacent to the eastern edge of the Site.

The SC investigation was conducted between January 2012 and August 2013. The SC activities were implemented in accordance with the following:

- NYSDEC-approved SC Work Plan (ARCADIS, 2011) and the following supporting appendices:
 - Appendix A Field Sampling Plan (FSP)
 - Appendix B Quality Assurance Sampling and Analysis Project Plan (QASAPP)
 - Appendix C Health and Safety Plan (HASP)
 - Appendix D Dense Nonaqueous Phase Liquid (DNAPL) Contingency Plan (DCP)
 - Appendix E Community Air Monitoring Plan (CAMP)
- June 18, 2012 Work Plan Addendum (ARCADIS, 2012)
- NYSDEC's June 24, 2013 comments on the May 2013 Draft SC Report
- ARCADIS' July 9, 2013 responses to the NYSDEC June 24, 2013 comments on the Draft SC Report

Note that this SC Report supersedes the Draft SC Report submitted to the NYSDEC in May 2013 and revised SC Report submitted to the NYSDEC in November 2013.

Former Buffalo Service Station – Off-Site Buffalo, New York

1.1 SC Objectives

The overall objectives of the SC were to:

- Assess whether MGP-related residual materials (primarily coal tar) are present on Site that are related to operation of the former BSS Site that is located adjacent to the eastern edge of the Site.
- Determine whether MGP-related residual materials, if present at the Site, have a
 potential to pose a significant threat to public health or the environment.
- Determine whether a Remedial Investigation (RI) of the Site is appropriate.

The balance of this section presents the report organization and describes the characteristics of the Site and its history and the previous investigations performed in the Site area.

1.2 Report Organization

The SC Report has been organized into the following sections:

Section	Purpose
Section 1 – Introduction	Provides background information relevant to the development of the SC Report and objectives of the SC investigation.
Section 2 – Site Characterization Activities	Describes the field activities related to the investigation of soil and groundwater.
Section 3 – Site Characterization Findings	Describes the field observations and laboratory results of the SC investigation.
Section 4 – Conclusion	Presents the conclusion and recommendations based on the SC investigation results.
Section 5 – References	Presents a list of the references cited in the SC Report.

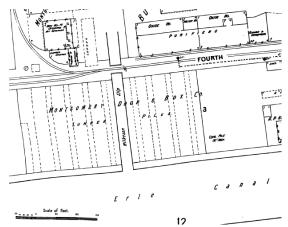
1.3 Site Description and History

1.3.1 Site Description

As shown on Figure 2, the Site is approximately 120 feet by 180 feet and extends from the eastern edge of Fourth Street, under and to the west edge of the NYS Interstate I-190 overpass in Buffalo, New York. The portion of the site that lies beneath Fourth Street is owned by the City of Buffalo, while the portion beneath the I-190 overpass is owned by the NYSTA. An approximate 11.5-foot diameter sewer runs parallel with and beneath the northbound

Site, looking toward Lake Erie. Fourth Street in foreground and I-190 in background.

lane of the I-190 overpass, bisecting the Site. An approximate 15-inch diameter reinforced concrete storm sewer pipe, situated approximately 1.5 ft bgs, runs parallel with and beneath the northbound lane of Fourth Street in the eastern portion of the Site. A 23-kilovolt electrical line (encased in a concrete duct bank) roughly bisects the site in the east-west direction. The western boundary of the Site is denoted by a chain-link fence that runs between the site and the railroad. Groundwater in the site area is not used as a drinking water supply within the City of Buffalo (Groundwater Technology, 1996).


1.3.2 Site History

Historical use of the Site was determined primarily through a review of available Sanborn Fire Insurance maps and atlas' of the Buffalo, New York area. Based on a review of this information, the Site was historically the location of the confluence between the former Wilkeson Slip and the former Erie Canal. The historical locations of the former Wilkeson Slip and the former Erie Canal are shown on Figure 2. A summary of the information gleaned from the Sanborn maps and the Buffalo, New York atlas' relative to these two features is provided below:

- 1845 Buffalo Atlas. The former Wilkeson Slip is shown extending east to Jackson Street. The atlas does not show buildings (only streets and waterways).
- 1888 Sanborn Map. The former Wilkeson Slip is present, but the site is not shown on the map.
- 1891 Buffalo Atlas. The former Wilkeson Slip and the former Erie Canal are present, and a small portion of the Site (adjacent to the slip and canal) is shown as owned by Buffalo Gas Company; no structures are shown in the site area.
- 1895 Buffalo Atlas. No change from the 1891 Buffalo Atlas, except that no property owner is shown.
- 1899 Sanborn Map. The former Wilkeson Slip and the former Erie Canal are present, and a small portion of the Site (adjacent to the slip and canal) is shown as lumber storage and owned by Montgomery Door and Box Company.
- 1915 Buffalo Atlas. The former Wilkeson Slip has been filled in, but the former Erie Canal is present.

1899 Sanborn Map; Notice former location of Fourth Street north of present-day Fourth Street.

- 1925 Sanborn Map. The former Erie Canal is present, and a small portion of the Site (adjacent to the slip and canal) is shown as lumber storage and owned by Montgomery Door and Box Company.
- 1951 Sanborn Map. No structures or ownership information is shown.

The former Erie Canal bed and related canal beds have been the subject of extensive historical waste disposal and filling activity. Based on historical research, activities to fill in the former Erie Canal were undertaken as a Work Progress Administration (WPA) project in the 1930s. The WPA project in the Buffalo area was funded and coordinated by the federal government with involvement from New York

State and the City of Buffalo. The WPA project has been described as filling in and narrowing the channel of the Old Erie Canal¹. During 1937, the WPA filled the canal bed with "everything they [could] find," including slag, excess dirt from the high canal banks, and cinders of "riverfront industrial plants."

1.4 Summary of Previous Investigation and Remediation Activities

Numerous investigations and/or remedial projects have been completed on the former BSS site since 1989. Observations made during the pre-design investigation completed in 2003, Brownfield Cleanup Program completed in 2005 and 2006, and Fourth Street Utility Corridor Excavation completed in 2012 provided information suggesting that MGP-related residuals could be present in the Site area. The salient findings of these three activities as they relate to the Site are summarized below.

Pre-Design Investigation (2003)

In August 2003, as part of the pre-design investigation completed by RETEC (RETEC 2004), soil borings RB-36, RB-37, and RB-38 were drilled along the west side of Fourth Street on the Site. The locations of RB-36, RB-37, and RB-38 are shown on Figure 2. No visual impacts were observed in the soil samples collected during the drilling of RB-36 and RB-38, and VOCs were not detected with the PID. During the drilling of RB-37, "hydrocarbon-like odor and sheen" were observed at depths of 12 to 16 ft bgs, and the PID reading was 93.8 ppm for the interval; and at depths of 18 to 19 ft bgs, "visible NAPL blebs, hydrocarbon-like sheen and odor" were observed, and the PID reading was 38.6 ppm for the interval. No visual impact or PID readings were measured from 19 to 21 ft bgs. The boring was terminated at 21 ft bgs.

One soil sample was collected from each of the three soil borings (RB-36, RB-37, and RB-38) for analysis of BTEX, PAHs, and several metals. The sample locations and analytical results for are shown on Figure 6. In the soil sample collected from 15 to 16 ft bgs at RB-36, total BTEX and PAHs were detected at concentrations of 0.046 and 472.1 milligrams per kilogram (mg/kg), respectively. In the sample collected from

_

Works Progress Administration, <u>Statement of Allotment Detail for Work Project</u>, undated; Works Progress Administration, <u>Statement of Allotment Detail for Work Project</u>, dated March 1, 1936; Work Progress Administration, <u>Project Proposal</u>, dated August 23, 1935; Works Progress Administration, <u>Project Application</u>, dated August 26, 1935; Works Progress Administration, <u>Statement of Project Estimate Detail</u>, dated July 7, 1936; Works Progress Administration, <u>Statement of Project Estimate Detail</u>, dated December 17, 1936.

² Courier Express, Forlorn Gutter at City's Door Being Removed, January 10, 1937, section 7, p. 3.

³ ld.

17.5 to 19.5 ft bgs in RB-37, total BTEX and total PAHs were detected at concentrations of 58.91 and 11,185 mg/kg, respectively. Total BTEX and total PAHs were not detected in the soil sample collected from 13.4 to 15.4 ft bgs in RB-38 (RETEC 2004).

Brownfield Cleanup Program (2005 and 2006)

In 2005 and 2006, a remedial action was completed at the former BSS site under Order on Consent B9-0577-00-05(A). The remedial action included excavation of fill material from the portion of the former Wilkeson Slip located east of the Site (ESC, 2006). The excavation extended from the Waterfront School in a westerly direction to approximately 30 feet from the Site. A sheet-pile wall installed at the western end of the excavation demarcates the western extent of the excavation in the former Wilkeson Slip area at this time.

During the first quarterly groundwater monitoring event in August 2007, nonaqueous phase liquid (NAPL) was measured in a monitoring well installed to the east of the sheet-pile wall (MW-04). The presence of NAPL at MW-04 was evaluated during subsequent quarterly sampling events from August 2007 to May 2009, and NAPL thicknesses of less than 0.01 foot have been measured (WSP 2009b).

Fourth Street Utility Corridor Excavation (2012)

WSP implemented an excavation project (i.e., Fourth Street Utility Corridor Excavation) on behalf of QLT Buffalo LLC in an area located adjacent to the east

side of the Site. The project was reportedly completed in general conformance to WSP's Final Supplemental Work Plan – Fourth Street Utility Corridor Excavation, dated May 31, 2012. The excavation project was initiated on June 28, 2012, and was substantially completed on September 4, 2012. The excavation project consisted of installation of sheet piling and support structures to allow excavation of soil beneath live, high voltage electrical conduits. The

Looking southeast. Coal tar entering excavation from beneath Fourth Street (on the right).

Former Buffalo Service Station – Off-Site Buffalo, New York

excavation was split into two "cells", cells A and B (Figure 2), where the eastern wall of each cell consisted of the sheet pile was that was left in place during the 2005 and 2006 Brownfield Cleanup Program. After removing approximately 6 feet of clean overburden material, the excavation within the sheet piles was advanced down to approximately 18 to 20 ft bgs, where WSP encountered a clay layer. A test pit was excavated through the clay and revealed that the clay was approximately 3 to 5 feet thick and situated on top of bedrock.

At the base of the excavation (i.e. on top of the clay layer), at a gap in the sheet piling beneath the electrical conduit (where no sheet piling could be installed), a material resembling coal tar accompanied by a heavy sheen was observed entering the excavation from beneath Fourth Street. Some investigation by WSP revealed that there was no evidence of the coal tar-like material extending into the clay. With NYSDEC approval, WSP removed approximately 1-foot of clay across the bottom of the excavation area (total excavation depth of 19 to 21' bgs), then sampled the clay material to document that the remaining clay was not impacted. When the sample results showed that the clay layer was not impacted, WSP filled the excavation from the top of the clay layer up to approximately elevation 576' (approximately 6' bgs) with flowable fill material. The remainder of the excavation area was backfilled with clean overburden material that had been staged onsite.

A total of 70 loads (approximately 1,600 tons) of soil were removed from the Cells A and B for off-site disposal.

Former Buffalo Service Station – Off-Site Buffalo, New York

2. Site Characterization Activities

This section summarizes SC field activities that were implemented by ARCADIS between January 2012 and August 2013. The schedule of the SC activities was longer than anticipated due to permitting and access constraints posed by the property owners (the NYSTA, and others, and City of Buffalo), and due to the construction activities associated with Fourth Street Utility Corridor Excavation. The SC field activities consisted of the following general activities:

- Conducted utility mark-out using DigSafelyNY and surveyed the locations of the marked utilities.
- Conducted a geophysical survey to locate sub-grade structures, possible unknown utilities, and the location of the former Wilkeson Slip and former Erie Canal. The geophysical survey was performed using electromagnetic (EM-31) and ground-penetrating radar (GPR) surveys in accessible areas of the Site.
- Surveyed utility locations and structures identified during the geophysical survey.
- Drilled ten soil borings and converted four soil borings to monitoring wells, seven borings on the NYSTA property and three on the City of Buffalo property.
- Collected 21 subsurface soil samples from soil borings for chemical analysis.
- Collected two rounds of groundwater samples from the four new monitoring wells for chemical analysis and measured hydraulic conductivity data during sampling.
- Measured four rounds of groundwater levels from the four new monitoring wells and two existing monitoring wells associated with the former BSS site.
- Surveyed SC investigation locations relative to a common datum.
- Completed an assessment of the 11.5-foot diameter South Interceptor (SI) combined sewer that runs beneath the northbound lane of the I-190 overpass.

An analytical sample summary, which identifies soil and groundwater samples collected as part of the SC, is included in Table 1. A summary of construction details for the monitoring wells installed as part of the SC is included in Table 2. Groundwater level measurements at monitoring wells are presented in Table 3.

Comprehensive soil and groundwater analytical results for samples collected as part of the SC field activities are presented in Tables 4 and 5.

Three subcontractors provided various services during implementation of the SC field activities, as presented in the following table:

Subcontractor	Office Location	Services Provided
Parratt-Wolff, Inc.	East Syracuse, NY	Drilling
TestAmerica Laboratories	Amherst, NY	Analytical services
McIntosh & McIntosh, P.C	Lockport, NY	Surveying

A description of the above-listed SC field activities is presented below.

2.1 Background Investigation

Several soil borings and monitoring wells completed during the SC were located near utilities and beneath I-190. As such, a background investigation was conducted to evaluate the presence of sub-grade structures prior to drilling the soil borings. In addition, information from the background investigation was used to further evaluate the location of the former Wilkeson Slip and former Erie Canal. The background investigation consisted of the following components:

- Obtaining as-built drawings for I-190 and the utility corridor.
- Conducting a utility mark-out using DigSafelyNY, then surveying the locations of the marked utilities.
- Conducting a geophysical survey to locate sub-grade structures, possible unknown utilities, and the location of the former Wilkeson Slip and former Erie Canal. The geophysical survey was performed using electromagnetic (EM-31) and ground penetrating radar (GPR) surveys in accessible areas of the site. The results of the geophysical investigation are shown on Figure 1 of Appendix C Results of Geophysical Study. In addition to buried utilities, the geophysical survey identified numerous areas with indications of small and larger metal debris and unknown structures. The areas of metal debris and possible buried structures are not unexpected given the inherent nature of fill. An area of apparent higher conductivity material was observed on the southern side of the former Erie Canal area, this higher conductivity is likely related to the finer grained fill in this area.

Former Buffalo Service Station – Off-Site Buffalo, New York

- Surveying utility locations and structures identified during the geophysical survey.
- Using subsurface observations made during the Fourth Street Utility Corridor
 Excavation to confirm the location of the former Wilkeson Slip. The location of
 the slip was identified by the obvious presence of wooden wall structures
 (comprised of timbers) located on both sides of the slip. The location of the slip
 on the Site base map has been adjusted based on these observations.

2.2 Underground Utility Clearance

Prior to starting intrusive activities, the DigSafelyNY was contacted to request utility mark-outs. As discussed above, a follow-up geophysical survey was conducted to assess the presence of buried utilities in the vicinity of each proposed soil boring/monitoring well location. As an added precaution for worker safety and to minimize the potential for damage to subsurface utilities, boring locations were cleared by non-mechanical means (e.g., hand digging and vacuum extraction) to a maximum depth of 5 ft bgs. Each boring location was backfilled with soil cuttings after the manual utility clearance was completed.

2.3 Soil Investigation

The objectives of the soil investigation were to:

- determine if MGP-related and/or non-MGP-related chemical constituents are present in Site soil by collecting, visually characterizing, and analyzing soil samples.
- identify the potential presence of MGP-related (e.g., coal tar, purifier waste) and non-MGP-related residuals (e.g., petroleum, solvents) in soil.
- obtain sufficient information to evaluate the necessity for further action.

The SC soil investigation consisted of the following:

- Completing ten soil borings to characterize subsurface conditions and facilitate collection of subsurface soil samples for laboratory analysis.
- Collecting and submitting 21 subsurface soil samples from the soil borings for laboratory analysis.

Former Buffalo Service Station – Off-Site Buffalo, New York

The SC soil investigation activities are described below.

2.3.1 Soil Borings

Soil borings were completed to characterize subsurface conditions at the Site and, in some cases, facilitate groundwater monitoring well installation. A total of ten soil borings (AB-01 through AB-5, and AB-C2) were drilled, and four soil borings were converted to monitoring wells (AW-01 though AW-04). Figure 2 shows the location of the soil borings and monitoring wells. Soil borings were drilled to the depth of refusal, which was encountered at approximately 21 to 25 ft bgs.

Soil borings were completed during two mobilizations: 1) between July 30, 2012 and August 6, 2013; and 2) between November 11 and 12, 2013. All soil borings were drilled using hollow stem auger (HSA) drilling methods. Drilling activities were conducted by Parratt-Wolff, Inc. using an IRA300 drilling rig, under the supervision of an ARCADIS field geologist.

The completion of the soil borings followed a consistent methodology, as follows:

- Soil samples were retrieved continuously from grade to the total boring depth using 2-foot-long split spoons or by a hand auger (during the soil boring utility clearance).
- Soil recovered from each sample interval was visually characterized for color, texture, and moisture content. The presence of visible staining and obvious odors were noted. Soil samples were visually characterized and screened for VOCs using a PID.
- Soil samples were selected for laboratory analyses using the methodology described under Section 2.3.2.
- Following completion, borings were backfilled to grade with cement/bentonite grout using a tremie pipe (except for borings completed to facilitate monitoring well installation).
- Drilling pipes and tooling were decontaminated in between soil borings using a steam pressure cleaner, Alconox[®] detergent, and potable water.
 Decontamination water was pumped from a constructed temporary decontamination pad into 55-gallon steel drums.

Former Buffalo Service Station – Off-Site Buffalo, New York

Soil boring logs that document subsurface conditions encountered at each boring location are provided in Appendix A.

2.3.2 Laboratory Analysis of Subsurface Soil Samples

Two soil samples were collected from each of the nine borings and three samples were collected from one boring (AW-03). Samples were submitted to Test America Laboratories of Amherst, New York, a New York State Department of Health-(NYSDOH-) accredited laboratory certified for the selected analysis. Samples were selected for analysis based on the following:

- One sample was collected from the bottom 2 feet of each borehole.
- A second sample was collected from the depth interval showing the greatest apparent degree of impacts based on visual observations and PID readings. If impacts were not observed, the second sample was collected at the approximate water table.
- Duplicate soil samples were collected at two locations, AW-01(5-7 ft bgs) and AW-04(4-8 ft bgs).

Coal tar and purifier wastes are the primarily waste products observed at MGP sites. The chief chemical constituents typically found in coal tar are the VOCs BTEX and a class of SVOCs called PAHs. Purifier waste is also typically found at MGP sites and this waste often contains elevated levels of cyanide. The overall objective of the SC was to determine whether MGP-related impacts, such as coal tar, purifier waste, and associated chemical constituents, are present in soil and/or groundwater at the Site, and if present, evaluate whether additional investigations are warranted to determine the nature and extent of the impact. As such, the suite of chemical analyses for both soil and groundwater (discussed further below) was chosen to incorporate BTEX, PAHs, and cyanide as well as other chemical compounds that may be associated with non-MGP-related impacts (e.g., chlorinated solvents). To that end, soil samples collected during the SC were analyzed for the following constituents:

- Target Compound List (TCL) VOCs (including BTEX) by United States Environmental Protection Agency (USEPA) Method 8260B
- TCL SVOCs (including PAHs) by USEPA Method 8270C

Former Buffalo Service Station – Off-Site Buffalo, New York

- Target Analyte List (TAL) Metals by USEPA Method 6000/7000
- Total cyanide by USEPA 9012A
- Free cyanide by USEPA extraction Method 9016 and analysis by microdiffusion using American Society for Testing and Materials (ASTM) method D4282-02

Sample analyses followed the NYSDEC Analytical Services Protocol (ASP) (most recent version). Analytical results were reported using NYSDEC ASP Category B data deliverables.

2.4 Groundwater Investigation

The objectives of the groundwater investigation were to:

- characterize the general shape of the water table and develop a preliminary assessment of overburden groundwater flow patterns at the Site.
- assess the hydraulic characteristics of the materials screened by the wells.
- determine the presence/absence of MGP-related constituents dissolved in groundwater and, if present, at what concentrations.

2.4.1 Monitoring Well Installation

Soil borings AW-01 through AW-04 were converted into groundwater monitoring wells (Figure 2). Monitoring well completion logs are provided in Appendix A, and well construction details are summarized in Table 2. The groundwater monitoring wells installed during the SC were constructed as described below:

- At each monitoring well location, a soil boring was completed using HSA drilling methods described above.
- Well screens were positioned to monitor the saturated overburden at the bottom
 of each soil boring (immediately above the bedrock surface), except for AW-03
 which was constructed with a two-foot long sump.
- Wells were constructed using 2-inch inside-diameter, threaded, flush-joint, schedule 40 PVC casing and screen.

Former Buffalo Service Station – Off-Site Buffalo, New York

- Screens were 10 feet long with 10-slot (0.01-inch) openings.
- The annulus around the well screen was backfilled with #0 silica sand to a minimum height of 2 feet above the top of the screen.
- A bentonite pellet seal with a minimum thickness of 2 feet was placed above the sand pack. The bentonite seal (pellets) was allowed to hydrate before tremiegrouting above the seal.
- Each monitoring well was secured at the surface with a sealed cap (J-plug) and a flush-mounted vault. The J-plug keeps surface water from infiltrating into the well during rain events.
- The concrete seal or pad was sloped slightly to direct water away from the well, and
 was deep enough to remain stable during freezing and thawing of the ground. The
 vaults and concrete pads were completed so that they would not pose a trip hazard.

Monitoring wells were developed by ARCADIS on August 7 and December 1, 2012, using pump and surge methods. Prior to development, fluid levels and the total depth for each well were measured to the nearest 0.01 foot using an electronic oil/water interface probe. Neither light non-aqueous phase liquid (LNAPL) nor dense NAPL (DNAPL) was observed in any of the wells during development. For the development of AW-01 and AW-02, dedicated polyethylene tubing and a grundfos submersible pump were used to pump and surge across a short section of the well screen, then lifted to surge sequentially higher sections of the screen until the entire length of the well screen had been developed. AW-03 and AW-04 were developed using a weighted dedicated bailer to surge the well screen and to purge the well. Development continued until a minimum of three well volumes had been evacuated and/or for a maximum of two hours. Purge water was containerized in 55-gallon drums staged at the site for future disposal.

2.4.2 Groundwater Sampling

Monitoring wells AW-01 and AW-02 were sampled on August 22, 2012 and August 27, 2013, and monitoring wells AW-03 and AW-04 were sampled on December 28, 2012 and August 27, 2013. Samples were collected to evaluate the presence/absence of MGP-related constituents dissolved in groundwater. Groundwater samples were collected from monitoring wells using the low-flow sampling techniques described in the FSP. Groundwater sampling logs are provided in Appendix D. Groundwater field parameters measured during purging included

Former Buffalo Service Station – Off-Site Buffalo, New York

conductivity, dissolved oxygen, oxidation-reduction potential, pH, and temperature. Samples were containerized in laboratory-provided glassware and preserved with ice and laboratory-provided preservative (as required). Quality Assurance/Quality Control (QA/QC) samples consisted of duplicate samples (from AW-01 and AW-03), Matrix Spike/Matrix Spike Duplicate samples, and trip blanks. Consistent with the analytical suite selected for the soil samples, groundwater samples were submitted to Test America of Amherst, New York, for analysis of the following constituents:

- TCL VOCs (including BTEX) by USEPA Method 8260B
- TCL SVOCs (including PAHs) by USEPA Method 8270C
- TAL Metals by USEPA Method 6000/7000
- Total cyanide by USEPA Method 9012A
- Free cyanide by USEPA Method 9016 (only the first sampling round)

2.4.3 Water-Level Measurement

Four comprehensive rounds of groundwater levels were measured at newly installed monitoring wells and existing monitoring wells MW-01 and MW-08 on December 28, 2012, February 18, 2013, March 6, 2013, and August 27, 2013. During each gauging event, the field staff measured the depth to water and the total depth of each monitoring well. The measurements were converted to elevations relative to feet above mean sea level. The water-level measurements are summarized in Table 3.

2.4.4 Specific-Capacity Tests

Specific-capacity test data were collected at each monitoring well during groundwater sampling. These data were used to estimate the hydraulic conductivity of the material screened by each well according to the method described by Walton (1962). The results of the specific-capacity testing are discussed in Section 3.

2.5 Sewer Assessment

A sewer assessment was conducted to determine if the 11.5 foot diameter combined sewer located beneath the I-190 overpass could be impacted by MGP- related residuals (principally, coal tar) from the Site, and whether such impacts (if any) could pose a risk for direct discharge to surface water bodies. As part of this effort, information regarding the construction and function of the sewer was obtained and evaluated in relation to data obtained during the SC fieldwork. The sewer extends

Former Buffalo Service Station – Off-Site Buffalo, New York

parallel with and beneath the northbound lane of the I-190 overpass, bisecting the Site. Figure 2 shows the location of the sewer relative to the Site.

2.6 Site Survey

Following the completion of each phase of the investigation, McIntosh & McIntosh, P.C. surveyed the locations of the utilities, soil borings, newly installed monitoring wells, and existing monitoring wells MW-01 and MW-08. The monitoring well survey included the location, ground surface, and measuring-point elevation (as defined as the top of inner casing). Horizontal locations were surveyed relative to New York State Plane - West Zone North American Datum (NAD83) and elevations were surveyed relative to the North American Vertical Datum of 1988 (NAVD88).

2.7 Equipment Decontamination

Equipment was decontaminated in accordance with the procedures presented in the FSP. In general, non-disposable equipment, including drilling tools and equipment, were decontaminated prior to first use on site, between each investigation point, and prior to mobilization. A total of two equipment rinse blanks (one during the August drilling program and one during the November drilling program) were submitted for analysis of TCL VOCs, TCL SVOCs, TAL Metals, and total cyanide to evaluate the integrity of the decontamination procedures, as required in the QASAPP.

2.8 IDW Disposal

Investigation-derived waste (IDW) generated during the SC included:

- Drill cuttings
- Drill water
- Polyethylene sheeting from the temporary decontamination pad
- Development and purge water
- Polyethylene tubing and bailers from well sampling and developing
- Spent personal protective equipment (PPE)

IDW was containerized in Department of Transportation- (DOT-) approved 55-gallon steel drums and staged on wooden pallets in a locked shipping container during field activities. Each drum was secured and labeled with the date, contents, contact information, and other relevant information. A total of 10 drums containing soil cuttings, 2 drums containing PPE and polyethylene wastes, and 10 drums containing liquids

Former Buffalo Service Station – Off-Site Buffalo, New York

were generated during the SC. Waste characterization samples were collected from each waste stream. Based on the results obtained for the analysis of the waste characterization samples, both solid and liquid IDW materials were transported by a National Fuel-approved waste hauler for off-Site disposal as non-hazardous waste.

2.9 Data Usability Summary Reports

ARCADIS prepared Data Usability Summary Reports (DUSRs) of the soil and groundwater analytical data packages following the SC field activities. QA/QC information is contained and examined in the DUSRs. Based on the results of the completed DUSRs, the data collected during the SC is determined generally usable for the purposes of the SC. The analytical summary tables include the data qualifiers identified in the DUSRs. Copies of the DUSRs are provided in Appendix B.

Former Buffalo Service Station – Off-Site Buffalo, New York

3. Site Characterization Findings

This discussion of the Site Characterization findings is divided into the following sections:

- Site Geology (Section 3.1)
- Groundwater flow and hydrogeologic characterization (Section 3.2)
- Soil Quality (Section 3.3)
- Groundwater Quality (Section 3.4)
- Sewer Assessment (Section 3.5)

3.1 Site Geology

The Site is located approximately 1,000 feet northeast of Lake Erie, near the mouth of the Upper Niagara River. Topographic relief at the Site is flat and the land surface elevation is approximately 580 feet above mean sea level. The SC investigation identified two principal overburden geologic units beneath the Site:

- Fill The fill consists of silt, clay, fine to coarse sand, fine to coarse gravel, slag, and bricks. The fill is up to approximately 6 to 21 feet in thickness and consists of silt, clay, fine to coarse sand, fine to coarse gravel, slag, and bricks. The fill thickness is greatest in the area of the 11.5 foot diameter sewer beneath I-190 overpass. Native soils would have been excavated to allow for construction of the sewer on the bedrock surface.
- Alluvium A native alluvial deposit of clay, silt, fine sand, and gravel is observed beneath the fill. The alluvial deposit was observed in every boring completed during the SC, suggesting that the deposit is continuous across the site. As observed during the Fourth Street Utility Corridor Excavation, some areas of this deposit are primarily comprised of clay. The clay-rich areas of the alluvium are expected to be confining with respect to downward DNAPL movement. The thickness of the alluvium ranges from 7 to 18 feet.

Bedrock was encountered at a depth of 21 to 25 ft bgs. Based on a review of geologic mapping, the bedrock beneath the Site area is the Ordovician-aged Onondaga limestone (Rickard, L. V. and Fisher, D. W., 1970.).

The cross-sections on Figures 3 and 4 show the vertical distribution of these units in the Site area. The locations of the cross-sections are shown on Figure 2.

3.2 Groundwater Flow and Hydrogeologic Characterization

The hydrogeology at the Site has been characterized based on information obtained from the four monitoring wells installed as part of the SC. Monitoring wells AW-01, AW-02 and AW-04 were screened in native alluvium and AW-03 was screened partially in fill and native alluvium. Well construction details are summarized in Table 2. As shown in the table below, the hydraulic conductivity measured at the SC monitoring wells varies by two orders of magnitude. This is expected due to the highly variable grains size observed in the fill and underlying alluvium. The hydraulic conductivity measured at monitoring wells AW-01 and AW-02 is approximately two orders of magnitude lower than that of monitoring well AW-03. The hydraulic conductivity measured at these wells is directly proportional to the amount of finer grained material observed in the well screen interval: silt and clay was observed throughout the majority of the well screen at AW-01 and AW-02 and coarse gravel was observed throughout upper 5 feet of the well screen at AW-03. Groundwater movement will favor the more permeable sand and gravel deposits.

Well ID	Screened Interval (ft bgs)	Estimated Hydraulic Conductivity (ft/day)
AW-01	13.5 – 23.5	2.0
AW-02	11 - 21	2.4
AW-03	9 - 19	125
AW-04	12.5 – 22.5	**

Notes:

Hydraulic conductivity values based on specific capacity test data measured on August 22, 2012 and December 28, 2012.

ft bgs = feet below ground surface.

Water levels were measured at the four new monitoring wells (AW-01 to AW-04) and two existing monitoring wells (MW-01 and MW-08) on December 28, 2012, February 18, 2013, March 6, 2013, and August 27, 2013 (Table 3). As shown in Table 3, the water table beneath the Site is encountered at approximately 6 to 10 ft bgs, within the fill materials. The water levels measured on February 18, 2013 were converted to elevations and used to prepare the groundwater contours presented on Figure 5. As shown on Figure 5, there is a pronounced groundwater mound near AW-03 and MW-08. The water level at these two wells is approximately 4 feet higher than levels measured at the four other monitoring wells. The same trend was observed during all three measurement rounds, suggesting that the mounding is relatively continuous. The source of the mounding was not identified during this investigation but could be

^{**} A hydraulic conductivity value could not be calculated at AW-04 due to an erroneous data set.

Former Buffalo Service Station – Off-Site Buffalo, New York

associated with a leaking water line located adjacent to Fourth Street. As further shown on Figure 5, the water level measured at monitoring well AW-02 (southwest corner of the site) was the lowest during each event. This suggests that overall groundwater flow direction is to the west-southwest. This is not surprising because the nearest surface water body, Niagara River/Lake Erie confluence, is to the west of the Site.

3.3 Soil Quality

3.3.1 Field Observations of Potential Impacts

MGP-related wastes were not observed at any soil boring or monitoring well location installed as part of the SC. The only visual indications of potential impacts (black staining) in the subsurface were observed in soil borings AW-04 at 20 to 21 ft bgs and AB-04 at 10 to 12 ft bgs, on the east side of the Site. A trace sheen was also observed on a soil sample collected from 12.3 to 12.5 ft bgs at soil boring AB-04. The highest PID reading recorded during the investigation was 14.1 ppm at soil boring AW-02 from 18 to 19 ft bgs.

3.3.2 Soil Analytical Results

Up to three soil samples were collected for laboratory analysis from each of the ten soil borings (21 total samples) during the SC. As previously mentioned, the samples were analyzed for TCL VOCs, TCL SVOCs, TAL metals, total cyanide, and free cyanide. The results of these chemical analyses are presented in Table 4 and on Figure 6 in comparison to the NYSDEC Part 375 Restricted-Use Residential Soil Cleanup Objectives (RSCOs) and Restricted-Use Commercial Soil Cleanup Objectives (CSCOs).

As shown in Table 4 and on Figure 6, only four of the 21 soil samples contained concentrations of potential MGP-related constituents (PAHs) exceeding the RSCOs or CSCOs. These four samples were collected from soil borings AB-01 (20-22 ft bgs), AW-02 (18-21 ft bgs), AB-03 (8 -10 ft bgs), and AW-04 (4-8 ft bgs). As further shown in Table 4 and on Figure 6, only concentrations of a few PAH compounds exceeded these SCOs. Total PAH concentrations for these samples ranged from 18 mg/kg at AW-04 (4-8 ft bgs) to 110 mg/kg at AW-02 (18-21 ft bgs).

BTEX and cyanide were not detected at levels exceeding the SCOs. BTEX compounds were detected in 11 of the 21 samples at total BTEX concentrations ranging from 0.0017 mg/kg at AW-01 (5-7 ft bgs) to 0.067 mg/kg at AW-02 (18 -21 ft

Former Buffalo Service Station – Off-Site Buffalo, New York

bgs). Total cyanide was detected in 8 of the 21 samples at concentrations ranging from 0.62 mg/kg at AB-01 (8-14 ft bgs) to 3.8 mg/kg at AW-04 (4-8 ft bgs).

As shown in Table 4, three of the 21 samples contained arsenic and/or mercury at levels exceeding the RSCOs and CSCOs. These samples were collected from AB-01 (20-22 ft bgs), AW-02 (8-10 ft bgs), and AW-02 (18-21 ft bgs).

3.4 Groundwater Quality

Two rounds of groundwater samples were collected from each of the four new SC monitoring wells. AW-01 and AW-02 were sampled on August 22, 2012 and August 27, 2013, and AW-03 and AW-04 were sampled on December 28, 2012 and August 27, 2013. All samples were analyzed for TCL VOCs, TCL SVOCs, TAL metals, and total cyanide. The samples collected in 2012 were also analyzed for free cyanide. The groundwater sampling results in comparison to NYSDEC TOGS 1.1.1 Class GA Ambient Water Quality Standards and Guidance Values (Class GA Standards and Guidance Values) are presented in Table 5. The groundwater analytical results for common MGP-related constituents (BTEX, PAHs, and cyanide), are show in plan view on Figure 7.

As shown in Table 5, benzene (a VOC) was detected above its Class GA Standard in groundwater sampled from AW-03 during both sampling rounds. Three VOCs (benzene, ethylbenzene, and xylenes) were detected at concentrations above Class GA Standards in samples collected from monitoring well AW--04. AW-04 is located just outside the Fourth Street Utility Corridor Excavation and southeast of the former slip, and AW-03 is located in the approximate terminus of former slip, within the eastern half of the Site. Groundwater sampled from AW-01 and AW-02, which are downgradient from AW-03 and AW-04, did not contain VOCs at concentrations above Class GA Groundwater Standards. The only other VOC detected in groundwater was methylene chloride, which was detected below Class GA Standard in AW-03 during the 2012 sampling round.

Trace concentrations of SVOCs (which include PAHs) were detected in groundwater from each well during both sampling events. Acenaphthene and/or benzo(a)anthracene (both PAHs) were detected in AW-03 during at least one of the sampling rounds at concentrations above the Class GA Guidance Value for these compounds. Naphthalene and phenol were also detected above the Class GA Guidance Values in the groundwater sample collected from AW-04 during the August

Former Buffalo Service Station – Off-Site Buffalo, New York

27, 2013 round. Groundwater from AW-01 and AW-02 did not contain concentrations of SVOCs above Class GA Standards during either sampling event.

Metals were detected above Class GA Standards in groundwater from each well during both sampling events. Groundwater samples from one or more monitoring wells contained concentrations of barium, iron, magnesium, manganese, and sodium above the Class GA Standards.

Trace levels of total cyanide were detected in AW-01, AW-03, and AW-04, but at concentrations below the Class GA Standard of 200 ug/L. Free cyanide was detected in the duplicate sample collected from AW-03, but at a concentration well below the Class GA Standard.

3.5 Sewer Assessment

An evaluation was conducted to determine if the 11.5 foot diameter combined sewer located beneath the I-190 overpass could be impacted by MGP- related residuals (principally, coal tar) from the Site, and whether such impacts (if any) could pose a risk for direct discharge to surface water bodies. As part of this effort, information regarding the construction and function of the sewer was obtained and evaluated. The results of the sewer assessment were previously presented in a September 25, 2013 letter to the NYSDEC and have since been updated based on new information provided by the City of Buffalo in February 2015. A summary of the information reviewed is presented below.

Much of the information regarding the sewer was gleaned from:

- Drawings obtained from the Buffalo Sewer Authority (BSA) for the South Interceptor (SI), titled Buffalo Sewer Authority Intercepting Sewer, Division H, Canal Section, dated April 1936.
- Drawings from the City of Buffalo titled *Waterfront Redevelopment Project No. N.Y. R-35, Utility Replacement Contract, 1975.*

A copy of the drawings is included as Appendix E. It should be noted that the documents obtained from the BSA and City and reviewed for this assessment are assumed to represent as-built conditions. Additional information that supplements the design drawings is also provided based on ARCADIS' institutional knowledge of the BSA's combined sewer system. ARCADIS provides engineering consulting services to

Former Buffalo Service Station – Off-Site Buffalo, New York

the BSA including hydraulic modeling associated with the development of the BSA's long term control plan (LTCP) for combined sewer overflows (CSOs). In addition to the sewer information, knowledge obtained during the subsurface SC activities and soil excavation activities completed during the Fourth Street Utility Corridor Excavation was also considered.

The following bullets summarize the relevant information from these sources.

- The sewer that runs beneath the northbound lane of the I-190 overpass and through the Site is named the South Interceptor (SI). The SI collects sanitary and storm water runoff (i.e., combined sewer) from the southwest portion of the City of Buffalo. The SI was constructed in the late 1930s within the eastern edge of the Former Erie Canal.
- The SI begins at Charles Street, flows northward, and terminates at Breckenridge Street, where it joins the North Interceptor. From this junction, the sewer runs west beneath the Black Rock Canal to Bird Island (a.k.a., Squaw Island), where is terminates at the BSA Sewage Treatment Plant. The total length of the SI is approximately 6 miles with roughly 2.5 miles of the interceptor downstream from the Site.
- The SI is not constructed with outfalls to surface water bodies (i.e., Niagara River/Lake Erie/Black Rock Canal) because the SI does not have an overflow component. All flow within the SI reaches the BSA Sewage Treatment Plant on Bird Island.
- The Site area is located near Station 70 on Sheet No. 8 of the design drawings (Appendix E).
- The SI is approximately 11.5 feet in diameter and the invert of the sewer in the Site
 area is approximately 19 feet below grade. The design drawings show that the SI
 was likely constructed with a top section and bottom section that are 18-inches in
 thickness. The joints between the sections consist of 10-gauge copper plates with
 an asphalt coating. The bottom of the SI is constructed on or near the bedrock
 surface.
- The design drawings indicate that in the area of the Site, the bottom of the pipe is approximately 3 feet lower than the original bedrock surface, suggesting that a portion of the bedrock was removed during installation of the SI.

Former Buffalo Service Station – Off-Site Buffalo, New York

- As further shown on the design drawings, the sections of the SI that are incised in
 the bedrock were designed and presumably constructed with an under-drain
 system that ties into drain sumps. The BSA and ARCADIS could not determine the
 purpose of the under-drain system, but ARCADIS suspects that the drains may
 have been used to dewater the open excavations during sewer installation. The
 BSA could not confirm whether the drain sumps still exist.
- Comparing the water surface elevation in the SI during average flow conditions (as
 obtained from system modeling associated with the LTCP) with the groundwater
 elevation at the Site obtained during the SC fieldwork, the sewage in the SI is
 approximately 6 feet below the water table during average sewer flow conditions.
- Based on communications with the BSA, the BSA has never visually inspected the section of the SI in the Site area.

Former Buffalo Service Station – Off-Site Buffalo, New York

4. Summary and Conclusions

This section presents conclusions that are supported by the SC investigation results discussed in Section 3. As summarized in Section 1, the objectives of the SC investigation include:

- Assess whether MGP-related residual materials are present at the Site that are related to operation of the former BSS site.
- Determine whether MGP-related residual materials, if present at the Site, have a
 potential to pose a significant threat to public health or the environment.
- Determine whether a Remedial Investigation of the Site is appropriate.

The results of the SC investigation activities described in this report satisfy these objectives as discussed further below.

4.1 Summary of SC Activities

The SC field investigations consisted of:

- Conducting a background investigation consisting of a utility mark-out, reviewing as-built drawings, and a geophysical survey.
- Drilling ten soil borings: seven on the NYSTA property and three on the City of Buffalo property.
- Converting four soil borings to monitoring wells AW-01 through AW-04.
- Collecting up to three soil samples from each soil boring (total of 21 soil samples and 2 duplicate samples) for analysis of TCL VOCs, TCL SVOCs, TAL Metals, total cyanide, and free cyanide.
- Collecting two rounds of groundwater samples from each of the four new monitoring wells for analysis of TCL VOCs, TCL SVOCs, TAL Metals, total cyanide, and free cyanide.

Former Buffalo Service Station – Off-Site Buffalo, New York

- Measuring water levels at monitoring wells AW-01 through AW-04, MW-01, and MW-08 on December 28, 2012, February 18, 2013, March 3, 2013, and August 27, 2013.
- Conducting an assessment of the 11.5-foot diameter sewer beneath the northbound lane of the I-190 overpass to evaluate the potential for Site-related impacts to the sewer.
- Surveying all SC investigation locations relative to a common datum.

Soil borings were drilled to bedrock refusal at approximately 21 to 25 feet below grade, depending on location. Each of the four monitoring wells was installed using schedule 40 PVC and 10-foot long, 0.01-inch slotted well screens. The bottoms of the well screens were positioned above the bedrock surface. The locations of the soil borings and monitoring wells are shown on Figure 2. Soil boring and monitoring well construction logs are provided in Appendix A.

Collected soil and groundwater samples were analyzed for:

- VOCs by USEPA Method 8260B
- SVOCs by USEPA Method 8270C
- TAL Metals by USEPA Method 6000/7000
- total cyanide by USEPA Method 9012A
- free cyanide by USEPA extraction Method 9016 and analysis by microdiffusion using ASTM method D4282-02

4.2 Summary of SC Findings

The relevant findings of the SC investigation are summarized below, including a summary discussion of the Site setting and history, geologic and hydrogeologic conditions, soil sampling results, and groundwater sampling results.

Former Buffalo Service Station – Off-Site Buffalo, New York

4.2.1 Site Setting and History

The Site was historically the confluence of the former Wilkeson Slip and the former Erie Canal and Fourth Street. The former Erie Canal was filled in in the 1930's by the WPA, and the former Wilkeson Slip was filled in between 1895 and 1915. The Site is approximately 120 feet by 180 feet and extends from the eastern edge of Fourth Street, under and to the southwest edge of the NYS Interstate I-190 overpass in Buffalo, New York. The portion of the Site that lies beneath Fourth Street is owned by the City of Buffalo, while the portion beneath the I-190 overpass is owned by the NYSTA. An approximate 11.5-foot diameter sewer runs parallel with and beneath the northbound lane of the I-190 overpass, bisecting the Site. An approximate 15-inch diameter reinforced concrete storm sewer pipe, situated approximately 1.5 ft bgs, runs parallel with and beneath the northbound lane of Fourth Street in the eastern portion of the Site. A 23-kilovolt electrical line (encased in a concrete duct bank) roughly bisects the site in the east-west direction. The western boundary of the Site is denoted by a chain-link fence that runs between the site and the railroad.

The Site is located adjacent to the western edge of the former BSS site. As shown on Figure 2, Wilkeson Slip is located northwest and adjacent to the former BSS site. Previous investigations and remedial actions at the former BSS site indicated that MGP-related impacts (primarily coal tar) were observed within the limits of the former Wilkeson Slip. These impacts were observed to extend in the direction of the Site and potentially beneath the eastern edge of Fourth Street (i.e., beneath the Site). An excavation (i.e., Fourth Street Utility Corridor Excavation) completed by WSP on behalf of QLT Buffalo LLC between June and September 2012 removed the coal tar within the slip extending to the edge of the Site (i.e., edge of Fourth Street). The limits of the excavation are shown as Cell's A and B on Figure 2.

4.2.2 Geologic and Hydrogeologic Conditions

The SC identified two principal geologic units beneath the Site: a fill unit underlain by an alluvial deposit. The fill unit is up to approximately 6 to 21 feet in thickness, and consists of silt, clay, fine to coarse sand, fine to coarse gravel, slag, and bricks. The native alluvial deposit consisting of clay, silt, fine sand, and gravel is approximately 7 to 18 feet thick. Bedrock was encountered at a depth of 21 to 25 ft bgs.

The water table is encountered at approximately 6 to 10 ft bgs. Groundwater flow is generally to the southwest across the Site in the direction of the Niagara River/Lake

Former Buffalo Service Station – Off-Site Buffalo, New York

Erie confluence. A groundwater mound with somewhat radial flow is observed near MW-08 and AW-03, suggesting a possible water line leak in the area.

4.2.3 Field Observations of Potential Impacts

The only visual indications of potential impacts to the subsurface observed during the SC was black staining in soil boring AW-04 at 20 to 21 ft bgs and soil boring AB-04 at 10 to 12 ft bgs grade and trace sheen at AB-04 from 12.3 to 12.5 ft bgs, at the eastern edge of the Site. Although obvious MGP-related impacts (i.e., coal tar, MGP-like odors, purifier waste) were not observed during the SC activities, MGP-related impacts were observed during previous investigations/ remedial activities completed at/near the Site, as follows:

- Observations made during the 2012 Fourth Street Utility Corridor Excavation (excavation limits shown on Figure 2 as Cells A and B) suggest that coal tar is located beneath Fourth Street (and within the limits of the slip). Coal tar was observed to enter the excavation at approximately 18 ft bgs from beneath the eastern edge of Fourth Street. Coal tar was not observed outside the west and east edges of the slip during the excavation. In addition, coal tar was observed within the excavation at approximately 15 to 18 ft bgs above an approximately 3 to 5 foot thick clay unit (assumed to be the native alluvium). The clay unit lies directly on the bedrock surface. Coal tar was not observed below the clay surface.
- Observations at one boring (RB-37; Figure 2) completed in 2003 in connection with the investigation of the Former BSS site indicate that coal tar is potentially located in an isolated region along the western edge of Fourth Street. During the drilling of RB-37, "hydrocarbon-like odor and sheen" was observed at depths of 12 to 16 ft bgs and "visible NAPL blebs" were observed from 18 to 19 ft bgs. In addition, as shown on Figure 6, elevated levels of PAHs were detected in an analytical sample collected from the soil interval containing these impacts.

4.2.4 Soil Analytical Results

Soil sampling analytical results are presented in Table 4 in comparison to the RSCOs and CSCOs. The soil analytical results for the typical MGP-related constituents (BTEX, PAHs, and cyanide) are shown in plan view on Figure 6. A summary of the soil sampling results is provided below.

Former Buffalo Service Station – Off-Site Buffalo, New York

- None of the soil samples contained VOC concentrations above the SCOs.
- Four soil samples collected from soil borings AB-01, AW-02, AB-03, and AW-04 contained trace concentrations of PAHs slightly above applicable SCOs. The highest levels of PAHs were detected in the interval above the bedrock in the two westernmost (farthest from the former slip) soil borings. The other two samples were collected from within the fill material.
- Metals were detected in all soil samples, but only three samples contained concentrations above SCOs. These soil samples were also collected from the westernmost soil borings.
- Total or free cyanide were not detected in soil samples at concentrations above SCOs.

4.2.5 Groundwater Analytical Results

The groundwater sampling results in comparison to NYSDEC Class GA Standards and Guidance Values are presented in Table 5. The groundwater analytical results for the typical MGP-related constituents (BTEX, PAHs, and cyanide) are show in plan view on Figure 7. A summary of the groundwater sampling results is provided below.

- One VOC (benzene) was detected at a concentration above Class GA Standards in samples collected from monitoring well AW-03. Three VOCs (benzene, ethylbenzene, and xylenes) were detected at concentrations above Class GA Standards in samples collected from monitoring well AW--04. AW-04 is located just outside the Fourth Street Utility Corridor Excavation and southeast of the former slip, and AW-03 is located in the approximate terminus of former slip, within the eastern half of the Site. Groundwater sampled from AW-01 and AW-2, which are downgradient from AW-03 and AW-04, did not contain VOCs above Class GA Groundwater Standards.
- Acenaphthene and benzo(a)anthracene were detected in groundwater from AW-03 at concentrations above the Class GA Guidance Values. Naphthalene and phenol were detected in groundwater from AW-04 at concentrations above the Class GA Guidance Values. PAHs were not detected at concentrations above Class GA Standards or Guidance Values in groundwater samples collected from wells AW-01 and AW-02.

Former Buffalo Service Station – Off-Site Buffalo, New York

- Metals were detected in all groundwater samples above Class GA Standards.

 The metals detected include: barium, iron, magnesium, manganese, and sodium.
- Total and/or free cyanide was detected in groundwater from AW-01, AW-03, and AW-04, but at concentrations well below the NYSDEC Class GA Standard.

4.3 Sewer Assessment

The following conclusions are made based on the information reviewed and assumptions made during the assessment of the 11.5- foot diameter SI:

- The SI is Relatively "Water Tight": The SI is a semi-elliptical structure formed with a top and bottom section that are constructed with 18-inches of reinforced concrete, and the joints between the sections are sealed with a 10-gauge copper plate and asphalt coating. This construction is substantial compared to a brick-and-mortar structure that is often associated with sewers of this age. The SI is likely relatively "water-tight" compared to typical brick-and-mortar type structures. A review of the groundwater contours presented on Figure 7 indicates that the Site groundwater table is not depressed in the area of the SI. This indicates that, if the SI was collecting groundwater, it is not having a significant effect on the groundwater level. This further implies that the amount of groundwater collected by the SI in the Site area (if any) is likely negligible.
- Coal Tar should not be in Contact with the Sewer. Since the sewer is located in an
 area of the Site where coal tar has not been observed, it is not likely that coal tar is
 in contact with the sewer. In the unlikely event that coal tar or impacted
 groundwater were to enter the SI, the volume of sewage flowing through the SI
 especially during wet weather would overwhelm any potential influence the coal tar
 may have on the quality of water in the sewer (which is likely already impacted by
 general sewage waste).
- Site Impacts Would Not Be Discharged to a Surface Water Without Treatment.
 Since the SI does not have a CSO between the Site and the BSA Sewage
 Treatment Plant on Bird Island, any potential coal tar entering the SI would not be discharged to a surface water body (i.e., Black Rock Canal) but rather would receive some form of treatment at the BSA's treatment plant.

Former Buffalo Service Station – Off-Site Buffalo, New York

4.4 Conclusion

Concentrations of PAHs and metals were detected in 4 of 21 SC soil samples at levels above applicable NYSDEC criteria. This is not surprising since PAHs are formed during the incomplete combustion of fossil fuels, garbage, or any other organic matter; consequently, PAHs are ubiquitous, especially in urban environments like the City of Buffalo. The presence of PAHs, combined with the absence of visual impacts and elevated non-MGP related metal concentrations, is expected due to the abundant fill resulting from the filling of the former Erie Canal in the Site area. Although the low-level PAHs detected in SC soil samples do not appear to be related to the former MGP, one sample collected from boring RB-37 (during an investigation completed in 2003) contained elevated levels of PAHs that are likely due to the potential presence of coal tar observed in the sample.

Some BTEX and/or PAH compounds were detected above Class GA Standards in groundwater from two SC monitoring wells located within and near the former Wilkeson Slip (i.e., AW-03 and AW-04, east portion of the Site). These detections are possibly associated with the dissolution of MGP-related impacts (principally coal tar) observed beneath the eastern edge of Fourth Street (observed during the Fourth Street Utility Corridor Excavation) and at soil boring RB-37 (installed at the western edge of Fourth Street during a 2003 investigation). The elevated levels of BTEX and PAHs in groundwater appears to be constrained to the eastern portion of the Site as groundwater sampled in wells downgradient (west) from this area does not contain elevated BTEX or PAH concentrations.

Given the information presented in this SC Report, it is possible that a small region of residual coal tar remains within the limits of the former slip beneath Fourth Street. Although coal tar may be present beneath Fourth Street, the results of the SC indicate that the tar (and related dissolved-phase impacts from the tar) is not present in the portion of the Site west of Fourth Street (underneath the I-190 overpass). The potential tar may extend from beneath the eastern edge of Fourth Street (from the west side of the Fourth Street Utility Corridor Excavation sheeting) to the western edge of Fourth Street (area around RB-37). Information obtained during the SC suggests that tar should not be in contact with the 11.5—foot diameter SI sewer located beneath the northbound lane of the I-190 overpass because tar has not been observed in the area below the overpass. Design drawings and information obtained from the BSA suggest that if tar or impacted groundwater were to enter the sewer (which is not likely), any impacts would be negligible due to the volume of sewage

Former Buffalo Service Station – Off-Site Buffalo, New York

flowing through the sewer and because the sewer does not have a surface water overflow component.

ARCADIS concludes that any potential exposure of humans or wildlife to potential impacts beneath Fourth Street is minimal because any residual coal tar located within the former slip is located approximately 15 to 19 feet beneath a heavily traveled street, which adjoins the underpass to the NYSTA 190 North. Any such residual is below the reach of normal utility and road maintenance or replacement activities. Furthermore, potable water within the City limits is provided by a public source.

Given the limited extent of MGP-related impacts to soil and groundwater beneath the Site and the lack of potential human or wildlife exposure to these impacts, ARCADIS concludes that a Remedial Investigation (RI) is not warranted for the Site.

Former Buffalo Service Station – Off-Site Buffalo, New York

5. References

http://www.buffaloah.com/h/1928.html#1924.

ESC Engineering of New York, P.C. (ESC). 2006. Final Remedial Action Report, Brownfield Cleanup Program, Former Buffalo Service Center (C915194), Buffalo Urban Renewal Agency West Site (C915195), Buffalo, New York, October 2, 2006.

Groundwater Technology, 1996. Sensitive Receptor Survey Report National Fuel Gas Distribution Corporation Buffalo Service Center, Buffalo, New York, April 5, 1996.

New York State Department of Environmental Conservation (NYSDEC). 1998. Division of Water Technical and Operational Guidance Series (TOGS) 1.1.1., Ambient Water Quality Standards and Guidance Values, June 1998.

NYSDEC. 2002. Division of Environmental Remediation, Draft DER-10, Technical Guidance for Site Investigation and Remediation, December 25, 2002.

NYSDEC. 2006. 6 NYCRR Subpart 375-6, Remedial Program Soil Cleanup Objectives. December 14, 2006.

New York City Planning Commission Zoning Map, June 13, 2006.

RETEC. 2004. Pre-Design Investigation Results Report, Buffalo Service Center, Buffalo, NY, February 5, 2004.

Rickard, L. V. and Fisher, D. W., 1970. Geologic Map of New York – Niagara Sheet. New York State Museum and Science Service.

Walton, W.C. 1962. Selected analytical Methods for Well and Aquifer Evaluation. Illinois State Water Survey Bulletin, No. 49; 81 pp.

WSP Engineering of New York, P.C. (WSP). 2009a. Supplemental Groundwater Investigation Report – MW-04, Former Buffalo Service Center and Related Sites, Buffalo, New York, March 20, 2009.

WSP. 2009b. Eighth Quarterly Groundwater Monitoring Report, Brownfield Cleanup Program Nos.: C915194, C915195, and C915203, Former Buffalo Service Center Site, July 28, 2009.

Tables

Table 1 Sample Summary

Site Characterization National Fuel Gas Distribution Corporation Former Buffalo Service Station - Off-Site Buffalo, NY

Matrix	Location ID	Depth Range (feet)	Date Collected	TCL VOCs	TCL SVOCs	TAL Metals	Free Cyanide	Total Cyanide
Groundwater	AW-01	13.5-23.5	8/22/2012	X	Х	X	Х	Х
	AW-01 (DUP)	13.5-23.5	8/22/2012	X	Х	X	Х	Х
	AW-01	13.5-23.5	8/27/2013	X	Х	X	NA	Х
	AW-02	11-21	8/22/2012	X	Х	X	Х	Х
	AW-02	11-21	8/27/2013	X	Х	X	NA	Х
	AW-03	9-19	12/28/2012	X	Х	X	Х	Х
	AW-03 (DUP)	9-19	12/28/2012	Х	Х	Х	Х	Х
	AW-03	9-19	8/27/2013	X	Х	Х	NA	Х
	AW-03(DUP)	9-19	8/27/2013	X	Х	Х	NA	Х
	AW-04	12.5-22.5	12/28/2012	Х	Х	Х	NA	Х
	AW-04	12.5-22.5	8/27/2013	Х	Х	Х	Х	Х
Subsurface Soil	AB-01	8-14	8/2/2012	Х	Х	Х	Х	Х
	AB-01	20-22	8/2/2012	Х	Х	Х	Х	Х
	AB-02	8-10	8/3/2012	Х	Х	Х	Х	Х
	AB-02	20-22	8/3/2012	Х	Х	Х	Х	Х
	AB-03	8-10	8/6/2012	Х	Х	Х	Х	Х
	AB-03	20-22.5	8/6/2012	Х	Х	Х	Х	Х
	AB-04	10-12	8/3/2012	Х	Х	Х	Х	Х
	AB-04	18-21	8/3/2012	Х	Х	Х	Х	Х
	AB-05	9.5-10.8	8/1/2012	Х	Х	Х	Х	Х
	AB-05	22-25	8/1/2012	Х	Х	Х	Х	Х
	AB-C2	8-11	8/6/2012	Х	Х	Х	Х	Х
	AB-C2	22-24	8/6/2012	Х	Х	Х	Х	Х
	AW-01	5-7	8/2/2012	Х	Х	Х	Х	Х
	AW-01 (DUP)	5-7	8/2/2012	Х	Х	Х	Х	Х
	AW-01	20-22.5	8/2/2012	Х	Х	Х	Х	Х
	AW-02	8-10	8/2/2012	Х	Х	Х	Х	Х
	AW-02	18-21	8/2/2012	Х	Х	Х	Х	Х
	AW-03	4-8	11/11/2012	Х	Х	Х	Х	Х
	AW-03	18-20	11/11/2012	Х	Х	Х	Х	Х
	AW-03	20-22	11/11/2012	Х	Х	Х	Х	Х
	AW-04	22-22.5	11/11/2012	Х	Х	Х	Х	Х
	AW-04	4-8	11/11/2012	Х	Х	Х	Х	Х
	AW-04 (DUP)	4-8	11/11/2012	Х	Х	Х	Х	Х

Notes:

Depth range is feet below ground surface.

Depth range for groundwater samples is equivalent to the monitoring well screened interval

DUP: Duplicate sample collected at this location.

SVOCs: Semi-Volatile Organic Compounds.

TAL: Target Analyte List.
TCL: Target Compound List.

VOCs: Volatile Organic Compounds.

NA: Not Analyzed.

Table 2 Monitoring Well Construction Details

Site Characterization National Fuel Gas Distribution Corporation Former Buffalo Service Station - Off-Site Buffalo, NY

		Well Diameter	Casing / Screen	Screen Slot Size	Screen Length	Screened (ft. I	d Interval ogs)
Location ID	Date Completed	(in.)	Туре	(in.)	(ft.)	Тор	Bottom
AW-01	8/2/2012	2	PVC	0.01	10.0	13.5	23.5
AW-02	8/3/2012	2	PVC	0.01	10.0	11.0	21.0
AW-03	11/11/2012	2	PVC	0.01	10.0	9.0	19.0
AW-04	11/12/2012	2	PVC	0.01	10.0	12.5	22.5

Notes:

Depths of screened interval are feet below ground surface (ft. bgs).

ft.: feet. in.: inches.

PVC: polyvinyl chloride.

Table 3 Groundwater Elevations

Site Characterization National Fuel Gas Distribution Corporation Former Buffalo Service Station - Off-Site Buffalo, NY

	Measuring Point	measuring point)		Depth to Water (ft. below measuring point)	Groundwater Elevation	Depth to Water (ft. below measuring point)		measuring point)	
Well ID	Elevation	12/28/2	012	2/18/20	013	3/6/20	13	8/27/20	013
AW-01	580.21	9.40	570.81	9.14	571.07	9.34	570.87	8.38	571.83
AW-02	580.22	9.45	570.77	9.38	570.84	9.41	570.81	8.90	571.32
AW-03	581.44	6.79	574.65	6.54	574.90	6.49	574.95	6.55	574.89
AW-04	581.95	10.71	571.24	10.12	571.83	10.56	571.39	9.57	572.38
MW-01	581.04	10.50	570.54	9.80	571.24	9.96	571.08	8.98	572.06
MW-08	583.44	8.32	575.12	7.65	575.79	7.70	575.74	9.00	574.44

Notes:

Elevations are referenced to NAVD 88.

Table 4 Summary of Soil Sample Analytical Results

Location ID:		Restricted	Restricted	AB-01	AB-01	AB-02	AB-02	AB-03	AB-03-	AB-04	AB-04	AB-05	AB-05	AB-C2
Sample Depth(Feet):		Use SCOs	Use SCOs	8 - 14	20 - 22	8 - 10	20 - 22	8 - 10	20 - 22.5	10 - 12	18 - 21	9.5 - 10.8	22 - 25	8 - 11
Date Collected:	Units	Residential	Commercial	08/02/12	08/02/12	08/03/12	08/03/12	08/06/12	08/06/12	08/03/12	08/03/12	08/01/12	08/01/12	08/06/12
Volatile Organics														
1,1,1-Trichloroethane	mg/kg	100	500	0.0057 U	0.06 U	0.0059 U	0.0063 U	0.0052 U	0.0061 U	0.053 U	0.0058 U	0.0062 U	0.0059 U	0.0063 U
1,1,2,2-Tetrachloroethane	mg/kg			0.0057 U	0.06 U	0.0059 U	0.0063 U	0.0052 U	0.0061 U	0.053 U	0.0058 U	0.0062 U	0.0059 U	0.0063 U
1,1,2-trichloro-1,2,2-trifluoroethane	mg/kg			0.0057 U	0.06 U	0.0059 U	0.0063 U	0.0052 U	0.0061 U	0.053 U	0.0058 U	0.0062 U	0.0059 U	0.0063 U
1,1,2-Trichloroethane	mg/kg			0.0057 U	0.06 U	0.0059 U	0.0063 U	0.0052 U	0.0061 U	0.053 U	0.0058 U	0.0062 U	0.0059 U	0.0063 U
1,1-Dichloroethane	mg/kg	26	240	0.0057 U	0.06 U	0.0059 U	0.0063 U	0.0052 U	0.0061 U	0.053 U	0.0058 U	0.0062 U	0.0059 U	0.0063 U
1,1-Dichloroethene	mg/kg	100	500	0.0057 U	0.06 U	0.0059 U	0.0063 U	0.0052 U	0.0061 U	0.053 U	0.0058 U	0.0062 U	0.0059 U	0.0063 U
1,2,4-Trichlorobenzene	mg/kg			0.0057 U	0.06 U	0.0059 U	0.0063 U	0.0022 J	0.0061 U	0.053 U	0.0058 U	0.0062 U	0.0059 U	0.0063 U
1,2-Dibromo-3-chloropropane	mg/kg			0.0057 U	0.06 U	0.0059 U	0.0063 U	0.0052 U	0.0061 U	0.053 U	0.0058 U	0.0062 U	0.0059 U	0.0063 U
1,2-Dibromoethane	mg/kg			0.0057 U	0.06 U	0.0059 U	0.0063 U	0.0052 U	0.0061 U	0.053 U	0.0058 U	0.0062 U	0.0059 U	0.0063 U
1,2-Dichlorobenzene	mg/kg	100	500	0.0057 U	0.06 U	0.0059 U	0.0063 U	0.0052 U	0.0061 U	0.053 U	0.0058 U	0.0062 U	0.0059 U	0.0063 U
1,2-Dichloroethane	mg/kg	3.1	30	0.0057 U	0.06 U	0.0059 U	0.0063 U	0.0052 U	0.0061 U	0.053 U	0.0058 U	0.0062 U	0.0059 U	0.0063 U
1,2-Dichloropropane	mg/kg			0.0057 U	0.06 U	0.0059 U	0.0063 U	0.0052 U	0.0061 U	0.053 U	0.0058 U	0.0062 U	0.0059 U	0.0063 U
1,3-Dichlorobenzene	mg/kg	49	280	0.0057 U	0.06 U	0.0059 U	0.0063 U	0.0052 U	0.0061 U	0.053 U	0.0058 U	0.0062 U	0.0059 U	0.0063 U
1,4-Dichlorobenzene	mg/kg	13	130	0.0057 U	0.06 U	0.0059 U	0.0063 U	0.0015 J	0.0061 U	0.053 U	0.0058 U	0.0062 U	0.0059 U	0.0063 U
2-Butanone	mg/kg	100	500	0.029 U	0.13 J	0.03 U	0.031 U	0.026 U	0.023 J	0.26 U	0.029 U	0.0069 J	0.15	0.016 J
2-Hexanone	mg/kg			0.029 U	0.3 U	0.03 U	0.031 U	0.026 U	0.031 U	0.26 U	0.029 U	0.031 U	0.03 U	0.031 U
4-Methyl-2-pentanone	mg/kg			0.029 U	0.3 U	0.03 U	0.031 U	0.0026 J	0.031 U	0.26 U	0.029 U	0.031 U	0.03 U	0.031 U
Acetone	mg/kg	100	500	0.029 UB	0.39	0.011 J	0.019 J	0.011 J	0.015 J	0.093 J	0.0095 J	0.04 UB	0.03 UB	0.039
Benzene	mg/kg	4.8	44	0.0057 U	0.06 U	0.0059 U	0.0063 U	0.0052 U	0.0061 U	0.053 U	0.0011 J	0.0062 U	0.0059 U	0.0063 U
Bromodichloromethane	mg/kg			0.0057 U	0.06 U	0.0059 U	0.0063 U	0.0052 U	0.0061 U	0.053 U	0.0058 U	0.0062 U	0.0059 U	0.0063 U
Bromoform	mg/kg			0.0057 U	0.06 U	0.0059 U	0.0063 U	0.0052 U	0.0061 U	0.053 U	0.0058 U	0.0062 U	0.0059 U	0.0063 U
Bromomethane	mg/kg			0.0057 U	0.06 U	0.0059 U	0.0063 U	0.0052 UJ	0.0061 UJ	0.053 U	0.0058 U	0.0062 U	0.0059 U	0.0063 UJ
Carbon Disulfide	mg/kg			0.0057 U	0.06 U	0.0059 U	0.0063 U	0.0052 U	0.0061 U	0.053 U	0.0058 U	0.0062 U	0.0059 U	0.0063 U
Carbon Tetrachloride	mg/kg	2.4	22	0.0057 U	0.06 U	0.0059 U	0.0063 U	0.0052 U	0.0061 U	0.053 U	0.0058 U	0.0062 U	0.0059 U	0.0063 U
Chlorobenzene	mg/kg	100	500	0.0057 U	0.06 U	0.0059 U	0.0063 U	0.0052 U	0.0061 U	0.053 U	0.0058 U	0.0062 U	0.0059 U	0.0063 U
Chloroethane	mg/kg			0.0057 U	0.06 U	0.0059 U	0.0063 U	0.0052 UJ	0.0061 UJ	0.053 U	0.0058 U	0.0062 U	0.0059 U	0.0063 UJ
Chloroform	mg/kg	49	350	0.0057 U	0.06 U	0.0059 U	0.0063 U	0.0052 U	0.0061 U	0.053 U	0.0058 U	0.0062 U	0.0059 U	0.0063 U
Chloromethane	mg/kg			0.0057 U	0.06 U	0.0059 U	0.0063 U	0.0052 U	0.0061 U	0.053 U	0.0058 U	0.0062 U	0.0059 U	0.0063 U
cis-1,2-Dichloroethene	mg/kg	100	500	0.0057 U	0.06 U	0.0059 U	0.0063 U	0.0052 U	0.0061 U	0.053 U	0.0058 U	0.0062 U	0.0059 U	0.0063 U
cis-1,3-Dichloropropene	mg/kg			0.0057 U	0.06 U	0.0059 U	0.0063 U	0.0052 U	0.0061 U	0.053 U	0.0058 U	0.0062 U	0.0059 U	0.0063 U
Cyclohexane	mg/kg			0.011	0.023 J	0.001 J	0.0063 U	0.0052 U	0.0061 U	0.053 U	0.0058 U	0.0062 U	0.0059 U	0.0063 U
Dibromochloromethane	mg/kg			0.0057 U	0.06 U	0.0059 U	0.0063 U	0.0052 U	0.0061 U	0.053 U	0.0058 U	0.0062 U	0.0059 U	0.0063 U
Dichlorodifluoromethane	mg/kg			0.0057 U	0.06 U	0.0059 U	0.0063 U	0.0052 UJ	0.0061 UJ	0.053 U	0.0058 U	0.0062 U	0.0059 U	0.0063 UJ
Ethylbenzene	mg/kg	41	390	0.0057 U	0.06 U	0.0059 U	0.0063 U	0.0015 J	0.0061 U	0.053 U	0.0058 U	0.0062 U	0.0059 U	0.0063 U
Isopropylbenzene	mg/kg			0.0057 U	0.053 J	0.0059 U	0.0063 U	0.0052 U	0.0061 U	0.053 U	0.0058 U	0.0062 U	0.0059 U	0.0063 U
Methyl acetate	mg/kg			0.0057 U	0.06 U	0.0059 U	0.0063 U	0.0052 U	0.0049 J	0.053 U	0.0058 U	0.0062 U	0.0059 U	0.0063 U
Methyl tert-butyl ether	mg/kg	100	500	0.0057 U	0.06 U	0.0059 U	0.0063 U	0.0052 U	0.0061 U	0.053 U	0.0058 U	0.0062 U	0.0059 U	0.0063 U
Methylcyclohexane	mg/kg			0.013	0.056 J	0.002 J	0.0063 U	0.0052 U	0.0061 U	0.053 U	0.0058 U	0.0062 U	0.0059 U	0.0063 U
Methylene Chloride	mg/kg	100	500	0.0057 U	0.06 U	0.0059 U	0.0063 U	0.0052 U	0.0061 U	0.053 U	0.0058 U	0.0062 U	0.0059 U	0.0063 U

Table 4
Summary of Soil Sample Analytical Results

Location ID:		Restricted	Restricted	AB-01	AB-01	AB-02	AB-02	AB-03	AB-03-	AB-04	AB-04	AB-05	AB-05	AB-C2
Sample Depth(Feet):		Use SCOs	Use SCOs	8 - 14	20 - 22	8 - 10	20 - 22	8 - 10	20 - 22.5	10 - 12	18 - 21	9.5 - 10.8	22 - 25	8 - 11
Date Collected:	Units	Residential	Commercial	08/02/12	08/02/12	08/03/12	08/03/12	08/06/12	08/06/12	08/03/12	08/03/12	08/01/12	08/01/12	08/06/12
Volatile Organics (Cont.)														
Styrene	mg/kg			0.0057 U	0.06 U	0.0059 U	0.0063 U	0.0052 U	0.0061 U	0.053 U	0.0058 U	0.0062 U	0.0059 U	0.0063 U
Tetrachloroethene	mg/kg	19	150	0.0057 U	0.06 U	0.0059 U	0.0063 U	0.00072 J	0.0061 U	0.053 U	0.0058 U	0.0062 U	0.0059 U	0.0063 U
Toluene	mg/kg	100	500	0.0017 J	0.06 U	0.0059 U	0.0062 J	0.0012 J	0.0061 U	0.053 U	0.0036 J	0.0062 U	0.0059 U	0.0063 U
trans-1,2-Dichloroethene	mg/kg	100	500	0.0057 U	0.06 U	0.0059 U	0.0063 U	0.0052 U	0.0061 U	0.053 U	0.0058 U	0.0062 U	0.0059 U	0.0063 U
trans-1,3-Dichloropropene	mg/kg			0.0057 U	0.06 U	0.0059 U	0.0063 U	0.0052 U	0.0061 U	0.053 U	0.0058 U	0.0062 U	0.0059 U	0.0063 U
Trichloroethene	mg/kg	21	200	0.0057 U	0.06 U	0.0059 U	0.0063 U	0.0052 U	0.0061 U	0.053 U	0.0058 U	0.0062 U	0.0059 U	0.0063 U
Trichlorofluoromethane	mg/kg			0.0057 U	0.06 U	0.0059 U	0.0063 U	0.0052 UJ	0.0061 UJ	0.053 U	0.0058 U	0.0062 U	0.0059 U	0.0063 UJ
Vinyl Chloride	mg/kg	0.9	13	0.0057 U	0.06 U	0.0059 U	0.0063 U	0.0052 U	0.0061 U	0.053 U	0.0058 U	0.0062 U	0.0059 U	0.0063 U
Xylenes (total)	mg/kg	100	500	0.0012 J	0.12 UB	0.012 U	0.013 U	0.0083 J	0.012 UB	0.11 U	0.012 U	0.012 U	0.012 U	0.013 UB
Total BTEX	mg/kg			0.0029 J	ND	ND	0.0062 J	0.011 J	ND	ND	0.0047 J	ND	ND	ND
Total VOCs	mg/kg			0.0269 J	0.652 J	0.014 J	0.0252 J	0.02902 J	0.0429 J	0.093 J	0.0142 J	0.0069 J	0.15	0.055 J
Semivolatile Organics						•	•		•		•	•		
1,1'-Biphenyl	mg/kg			1.9 U	2.5 U	2 U	0.22 U	3.6 U	0.2 U	0.031 J	0.2 U	0.21 U	0.2 U	1.1 U
2,2'-Oxybis(1-Chloropropane)	mg/kg			1.9 U	2.5 U	2 U	0.22 U	3.6 U	0.2 U	0.21 U	0.2 U	0.21 U	0.2 U	1.1 U
2,4,5-Trichlorophenol	mg/kg			1.9 U	2.5 U	2 U	0.22 U	3.6 U	0.2 U	0.21 U	0.2 U	0.21 U	0.2 U	1.1 U
2,4,6-Trichlorophenol	mg/kg			1.9 U	2.5 U	2 U	0.22 U	3.6 U	0.2 U	0.21 U	0.2 U	0.21 U	0.2 U	1.1 U
2,4-Dichlorophenol	mg/kg			1.9 U	2.5 U	2 U	0.22 U	3.6 U	0.2 U	0.21 U	0.2 U	0.21 U	0.2 U	1.1 U
2,4-Dimethylphenol	mg/kg			1.9 U	2.5 U	2 U	0.22 U	3.6 U	0.2 U	0.21 U	0.2 U	0.21 U	0.2 U	1.1 U
2,4-Dinitrophenol	mg/kg			3.8 U	4.8 U	3.9 U	0.42 U	7 U	0.4 U	0.41 U	0.39 U	0.41 U	0.39 U	2.1 U
2,4-Dinitrotoluene	mg/kg			1.9 U	2.5 U	2 U	0.22 U	3.6 U	0.2 U	0.21 U	0.2 U	0.21 U	0.2 U	1.1 U
2,6-Dinitrotoluene	mg/kg			1.9 U	2.5 U	2 U	0.22 U	3.6 U	0.2 U	0.21 U	0.2 U	0.21 U	0.2 U	1.1 U
2-Chloronaphthalene	mg/kg			1.9 U	2.5 U	2 U	0.22 U	3.6 U	0.2 U	0.21 U	0.2 U	0.21 U	0.2 U	1.1 U
2-Chlorophenol	mg/kg			1.9 U	2.5 U	2 U	0.22 U	3.6 U	0.2 U	0.21 U	0.2 U	0.21 U	0.2 U	1.1 U
2-Methylnaphthalene	mg/kg			1.9 U	0.46 J	2 U	0.22 U	3.6 U	0.2 U	0.037 J	0.2 U	0.21 U	0.2 U	1.1 U
2-Methylphenol	mg/kg	100	500	1.9 U	2.5 U	2 U	0.22 U	3.6 U	0.2 U	0.21 U	0.2 U	0.21 U	0.2 U	1.1 U
2-Nitroaniline	mg/kg			3.8 U	4.8 U	3.9 U	0.42 U	7 U	0.4 U	0.41 U	0.39 U	0.41 U	0.39 U	2.1 U
2-Nitrophenol	mg/kg			1.9 U	2.5 U	2 U	0.22 U	3.6 U	0.2 U	0.21 U	0.2 U	0.21 U	0.2 U	1.1 U
3,3'-Dichlorobenzidine	mg/kg			1.9 U	2.5 U	2 U	0.22 U	3.6 U	0.2 U	0.21 U	0.2 U	0.21 U	0.2 U	1.1 U
3-Nitroaniline	mg/kg			3.8 U	4.8 U	3.9 U	0.42 U	7 U	0.4 U	0.41 U	0.39 U	0.41 U	0.39 U	2.1 U
4,6-Dinitro-2-methylphenol	mg/kg			3.8 U	4.8 U	3.9 U	0.42 U	7 U	0.4 U	0.41 U	0.39 U	0.41 U	0.39 U	2.1 U
4-Bromophenyl-phenylether	mg/kg			1.9 U	2.5 U	2 U	0.22 U	3.6 U	0.2 U	0.21 U	0.2 U	0.21 U	0.2 U	1.1 U
4-Chloro-3-Methylphenol	mg/kg			1.9 U	2.5 U	2 U	0.22 U	3.6 U	0.2 U	0.21 U	0.2 U	0.21 U	0.2 U	1.1 U
4-Chloroaniline	mg/kg			1.9 U	2.5 U	2 U	0.22 U	3.6 U	0.2 U	0.21 U	0.2 U	0.21 U	0.2 U	1.1 U
4-Chlorophenyl-phenylether	mg/kg			1.9 U	2.5 U	2 U	0.22 U	3.6 U	0.2 U	0.21 U	0.2 U	0.21 U	0.2 U	1.1 U
4-Methylphenol	mg/kg	100	500	3.8 U	4.8 U	3.9 U	0.42 U	7 U	0.4 U	0.41 U	0.39 U	0.41 U	0.39 U	2.1 U
4-Nitroaniline	mg/kg			3.8 U	4.8 U	3.9 U	0.42 U	7 U	0.4 U	0.41 U	0.39 U	0.41 U	0.39 U	2.1 U
4-Nitrophenol	mg/kg			3.8 U	4.8 U	3.9 U	0.42 U	7 U	0.4 U	0.41 U	0.39 U	0.41 U	0.39 U	2.1 U
Acenaphthene	mg/kg	100	500	1.9 U	1.1 J	2 U	0.22 U	3.6 U	0.014 J	3.9	0.2 U	0.21 U	0.2 U	1.1 U
Acenaphthylene	mg/kg	100	500	1.9 U	0.22 J	2 U	0.22 U	3.6 U	0.2 U	0.21 U	0.2 U	0.21 U	0.2 U	1.1 U
Acetophenone	mg/kg			1.9 U	2.5 U	2 U	0.22 U	3.6 U	0.2 U	0.21 U	0.2 U	0.21 U	0.2 U	1.1 U
Anthracene	mg/kg	100	500	1.9 U	1.3 J	2 U	0.22 U	0.28 J	0.2 U	2.7	0.2 U	0.21 U	0.2 U	1.1 U

See Notes on Page 9.

Table 4
Summary of Soil Sample Analytical Results

Location ID: Sample Depth(Feet):		Restricted Use SCOs	Restricted Use SCOs	AB-01 8 - 14	AB-01 20 - 22	AB-02 8 - 10	AB-02 20 - 22	AB-03 8 - 10	AB-03- 20 - 22.5	AB-04 10 - 12	AB-04 18 - 21	AB-05 9.5 - 10.8	AB-05 22 - 25	AB-C2 8 - 11
Date Collected:			Commercial	08/02/12	08/02/12	08/03/12	08/03/12	08/06/12	08/06/12	08/03/12	08/03/12	08/01/12	08/01/12	08/06/12
Semivolatile Organics (Cont.)		•												
Atrazine	mg/kg			1.9 U	2.5 U	2 U	0.22 U	3.6 U	0.2 U	0.21 U	0.2 U	0.21 U	0.2 U	1.1 U
Benzaldehyde	mg/kg			1.9 U	2.5 U	2 U	0.22 U	3.6 U	0.2 U	0.21 U	0.2 U	0.21 U	0.2 U	1.1 U
Benzo(a)anthracene	mg/kg	1	5.6	0.29 J	3.4	2 U	0.22 U	1.1 J	0.2 U	1.2	0.2 U	0.21 U	0.028 J	1.1 U
Benzo(a)pyrene	mg/kg	1	1	0.27 J	3.1	2 U	0.015 J	1.1 J	0.025 J	0.65	0.2 U	0.022 J	0.026 J	1.1 U
Benzo(b)fluoranthene	mg/kg	1	5.6	0.45 J	4.6	2 U	0.018 J	1.4 J	0.025 J	0.98	0.2 U	0.035 J	0.039 J	0.062 J
Benzo(g,h,i)perylene	mg/kg	100	500	1.9 U	1 J	2 U	0.22 U	0.56 J	0.2 U	0.17 J	0.2 U	0.21 U	0.2 U	1.1 U
Benzo(k)fluoranthene	mg/kg	3.9	56	0.18 J	1.8 J	2 U	0.011 J	0.48 J	0.017 J	0.41	0.2 U	0.016 J	0.016 J	1.1 U
bis(2-Chloroethoxy)methane	mg/kg			1.9 U	2.5 U	2 U	0.22 U	3.6 U	0.2 U	0.21 U	0.2 U	0.21 U	0.2 U	1.1 U
bis(2-Chloroethyl)ether	mg/kg			1.9 U	2.5 U	2 U	0.22 U	3.6 U	0.2 U	0.21 U	0.2 U	0.21 U	0.2 U	1.1 U
bis(2-Ethylhexyl)phthalate	mg/kg			1.9 U	2.5 U	2 U	0.22 U	1.8 J	0.094 J	0.1 J	0.2 U	0.21 U	0.29	1.1 U
Butylbenzylphthalate	mg/kg			1.9 U	2.5 U	2 U	0.22 U	3.6 U	0.2 U	0.21 U	0.2 U	0.21 U	0.2 U	1.1 U
Caprolactam	mg/kg			1.9 U	2.5 U	2 U	0.22 U	3.6 U	0.2 U	0.21 U	0.2 U	0.21 U	0.2 U	1.1 U
Carbazole	mg/kg			1.9 U	0.47 J	2 U	0.22 U	3.6 U	0.2 U	0.31	0.2 U	0.21 U	0.2 U	1.1 U
Chrysene	mg/kg	3.9	56	0.29 J	3.3	0.13 J	0.017 J	1.2 J	0.025 J	0.91	0.2 U	0.026 J	0.03 J	1.1 U
Dibenzo(a,h)anthracene	mg/kg	0.33	0.56	1.9 U	0.43 J	2 U	0.22 U	0.21 J	0.2 U	0.069 J	0.2 U	0.21 U	0.2 U	1.1 U
Dibenzofuran	mg/kg	59	350	1.9 U	0.7 J	2 U	0.22 U	3.6 U	0.2 U	2.7	0.2 U	0.21 U	0.2 U	1.1 U
Diethylphthalate	mg/kg			1.9 U	2.5 U	2 U	0.22 U	3.6 U	0.2 U	0.21 U	0.2 U	0.21 U	0.2 U	1.1 U
Dimethylphthalate	mg/kg			1.9 U	2.5 U	2 U	0.22 U	3.6 U	0.2 U	0.21 U	0.2 U	0.21 U	0.2 U	1.1 U
Di-n-Butylphthalate	mg/kg			1.9 U	2.5 U	2 U	0.22 U	3.6 U	0.2 U	0.21 U	0.2 U	0.21 U	0.2 U	1.1 U
Di-n-Octylphthalate	mg/kg			1.9 U	2.5 U	2 U	0.22 U	3.6 U	0.2 U	0.0077 J	0.2 U	0.21 U	0.2 U	1.1 U
Fluoranthene	mg/kg	100	500	0.52 J	7.2	0.16 J	0.031 J	2.2 J	0.031 J	5.3	0.2 U	0.039 J	0.044 J	1.1 U
Fluorene	mg/kg	100	500	1.9 U	1.2 J	2 U	0.22 U	3.6 U	0.2 U	4	0.2 U	0.21 U	0.2 U	1.1 U
Hexachlorobenzene	mg/kg	1.2	6	1.9 U	2.5 U	2 U	0.22 U	3.6 U	0.2 U	0.21 U	0.2 U	0.21 U	0.2 U	1.1 U
Hexachlorobutadiene	mg/kg			1.9 U	2.5 U	2 U	0.22 U	3.6 U	0.2 U	0.21 U	0.2 U	0.21 U	0.2 U	1.1 U
Hexachlorocyclopentadiene	mg/kg			1.9 U	2.5 U	2 U	0.22 U	3.6 U	0.2 U	0.21 U	0.2 U	0.21 U	0.2 U	1.1 U
Hexachloroethane	mg/kg			1.9 U	2.5 U	2 U	0.22 U	3.6 U	0.2 U	0.21 U	0.2 U	0.21 U	0.2 U	1.1 U
Indeno(1,2,3-cd)pyrene	mg/kg	0.5	5.6	1.9 U	0.98 J	2 U	0.22 U	0.49 J	0.2 U	0.17 J	0.2 U	0.21 U	0.012 J	1.1 U
Isophorone	mg/kg			1.9 U	2.5 U	2 U	0.22 U	3.6 U	0.2 U	0.21 U	0.2 U	0.21 U	0.2 U	1.1 U
Naphthalene	mg/kg	100	500	1.9 U	2.1 J	2 U	0.22 U	3.6 U	0.2 U	0.057 J	0.2 U	0.21 U	0.2 U	1.1 U
Nitrobenzene	mg/kg			1.9 U	2.5 U	2 U	0.22 U	3.6 U	0.2 U	0.21 U	0.2 U	0.21 U	0.2 U	1.1 U
N-Nitroso-di-n-propylamine	mg/kg			1.9 U	2.5 U	2 U	0.22 U	3.6 U	0.2 U	0.21 U	0.2 U	0.21 U	0.2 U	1.1 U
N-Nitrosodiphenylamine	mg/kg			1.9 U	2.5 U	2 U*	0.22 U	3.6 U	0.2 U	0.21 U	0.2 U	0.21 U	0.2 U	1.1 U
Pentachlorophenol	mg/kg	6.7	6.7	3.8 U	4.8 U	3.9 U	0.42 U	7 U	0.4 U	0.41 U	0.39 U	0.41 U	0.39 U	2.1 U
Phenanthrene	mg/kg	100	500	0.41 J	5.6	2 U	0.015 J	1.6 J	0.2 U	1.1	0.2 U	0.025 J	0.03 J	1.1 U
Phenol	mg/kg	100	500	1.9 U	2.5 U	2 U	0.22 U	3.6 U	0.2 U	0.21 U	0.2 U	0.21 U	0.2 U	1.1 U
Pyrene	mg/kg	100	500	0.39 J	5.6	2 U	0.028 J	1.8 J	0.03 J	3.3	0.2 U	0.03 J	0.035 J	1.1 U
Total PAHs	mg/kg			2.8 J	43.39 J	0.29 J	0.135 J	12.42 J	0.167 J	24.953 J	ND	0.193 J	0.26 J	0.062 J
Total SVOCs	mg/kg			2.8 J	44.56 J	0.29 J	0.135 J	14.22 J	0.261 J	28.1017 J	ND	0.193 J	0.55 J	0.062 J

Table 4
Summary of Soil Sample Analytical Results

Location IE Sample Depth(Feet):	Restricted Use SCOs	Restricted Use SCOs	AB-01 8 - 14	AB-01 20 - 22	AB-02 8 - 10	AB-02 20 - 22	AB-03 8 - 10	AB-03- 20 - 22.5	AB-04 10 - 12	AB-04 18 - 21	AB-05 9.5 - 10.8	AB-05 22 - 25	AB-C2 8 - 11
Date Collected	l: Units	Residential	Commercial	08/02/12	08/02/12	08/03/12	08/03/12	08/06/12	08/06/12	08/03/12	08/03/12	08/01/12	08/01/12	08/06/12
Inorganics														
Aluminum	mg/kg			7,390 J	8,690 J	6,500 J	11,600 J	3,300 J	11,700 J	7,550 J	6,450 J	5,230 J	3,210 J	8,520 J
Antimony	mg/kg			15.9 U	2.1 J	18.5 U	20 U	0.72 J	17.7 U	19.2 U	17.7 U	18.7 U	19.7 U	20.7 U
Arsenic	mg/kg	16	16	5.9	25.8	4.9	6	4.7	4.7	4.7	2.1 J	2.8	1.9 J	3.1
Barium	mg/kg	400	400	61.8 J	230 J	57.6 J	70.9 J	45.9 J	99.3 J	56 J	75.2 J	35 J	31.8 J	53.1 J
Beryllium	mg/kg	72	590	0.42	0.59	0.36	0.55	0.26	0.61	0.61	0.32	0.34	0.19 J	0.54
Cadmium	mg/kg	4.3	9.3	0.26	3.3	0.3	0.27	0.27	0.22 J	0.35	0.24	0.21 J	0.21 J	0.34
Calcium	mg/kg			65,000 J	35,200 J	107,000 J	69,400 J	152,000 J	48,900 J	11,200 J	60,000 J	2,300 J	86,800 J	3,670 J
Chromium	mg/kg			18.9 J	54.3 J	14.8 J	16.1 J	10.6 J	17.2 J	13.4 J	10.5 J	11.8 J	9.1 J	13.4 J
Cobalt	mg/kg			7.5	8.6	6.3	10.1	3.3	9.6	7.7	5.6	8.6	3.4	9.4
Copper	mg/kg	270	270	18.7	154	18.2	18.5	26.9	18.7	25.4	13	15.1	7.3	23.3
Iron	mg/kg			15,400 J	19,500 J	21,400 J	18,200 J	13,500 J	18,000 J	14,800 J	11,000 J	9,890 J	7,060 J	21,800 J
Lead	mg/kg	400	1,000	83 J	932 J	54.2 J	23.7 J	148 J	22.7 J	43.3 J	13.4 J	25.5 J	8.4 J	14.5 J
Magnesium	mg/kg			13,200	11,600	49,300	25,900	23,400	18,200	4,710	26,700	2,450	29,100	3,640
Manganese	mg/kg	2,000	10,000	317	309	443	534	250	407	203	420	96.5	232	243
Mercury	mg/kg	0.81	2.8	0.2	4.4	0.16	0.015 J	0.21	0.046	0.034	0.022 U	0.013 J	0.014 J	0.031
Nickel	mg/kg	310	310	19.3	37.9	17.3	23.8	11.2	22.5	23.3	12.8	19.9	8	25.6
Potassium	mg/kg			1,360 J	1,120 J	1,730 J	2,690 J	764 J	2,440 J	606 J	1,310 J	688	892 J	976 J
Selenium	mg/kg	180	1,500	4.2 U	1.8 J	4.9 U	5.3 U	4.6 U	4.7 U	5.1 U	4.7 U	5 U	5.2 U	5.5 U
Silver	mg/kg	180	1,500	0.53 U	5.6	0.62 U	0.67 U	0.58 U	0.59 U	0.64 U	0.59 U	0.62 U	0.66 U	0.69 U
Sodium	mg/kg			996	2,330	1,400	649	1,090	1,220	546	403	108 J	376	343
Thallium	mg/kg			6.4 U	0.52 J	7.4 U	8 U	0.4 J	0.35 J	7.7 U	7.1 U	7.5 U	7.9 U	8.3 U
Vanadium	mg/kg			16.2 J	19.5 J	14.7 J	22.5 J	8.4 J	23.6 J	19.5 J	15.2 J	13.4 J	10.3 J	17.3 J
Zinc	mg/kg	10,000	10,000	94.6 J	865 J	165 J	64.6 J	137 J	63.6 J	73.7 J	49.9 J	59.2 J	40 J	71.5 J
Miscellaneous														
Cyanide	mg/kg	27	27	0.62 J	1.6	1.1 U	1.1 U	1 U	1.2 U	1.1 U	1.2 U	1.1 U	1.1 U	1.2 U
Cyanide, Free	mg/kg			0.12 J	0.24 J	0.13 J	0.87	0.53 UB	0.62 UB	0.71	0.56 U	0.46 J	0.55 U	0.93 UB
Percent Moisture	%			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Percent Solids	%			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

Table 4 Summary of Soil Sample Analytical Results

Location ID:		Restricted	Restricted	AB-C2	AW-01	AW-01	AW-02	AW-02	AW-03	AW-03	AW-03	AW-04	AW-04
Sample Depth(Feet):		Use SCOs	Use SCOs	22 - 24	5 - 7	20 - 22.5	8 - 10	18 - 21	4 - 8	18 - 20	20 - 22	4 - 8	22 - 22.5
Date Collected:	Units	Residential	Commercial	08/06/12	08/02/12	08/02/12	08/02/12	08/02/12	11/11/12	11/11/12	11/11/12	11/12/12	11/12/12
Volatile Organics													
1,1,1-Trichloroethane	mg/kg	100	500	0.0055 U	0.0056 U [0.0054 U]	0.0065 U	0.0062 U	0.062 UJ	0.0059 U	0.0053 U	0.0057 U	0.0062 U [0.0055 U]	0.0057 U
1,1,2,2-Tetrachloroethane	mg/kg			0.0055 U	0.0056 U [0.0054 U]	0.0065 U	0.0062 U	0.062 UJ	0.0059 U	0.0053 U	0.0057 U	0.0062 U [0.0055 U]	0.0057 U
1,1,2-trichloro-1,2,2-trifluoroethane	mg/kg			0.0055 U	0.0056 U [0.0054 U]	0.0065 U	0.0062 U	0.062 UJ	0.0059 U	0.0053 U	0.0057 U	0.0062 U [0.0055 U]	0.0057 U
1,1,2-Trichloroethane	mg/kg			0.0055 U	0.0056 U [0.0054 U]	0.0065 U	0.0062 U	0.062 UJ	0.0059 U	0.0053 U	0.0057 U	0.0062 U [0.0055 U]	0.0057 U
1,1-Dichloroethane	mg/kg	26	240	0.0055 U	0.0056 U [0.0054 U]	0.0065 U	0.0062 U	0.062 UJ	0.0059 U	0.0053 U	0.0057 U	0.0062 U [0.0055 U]	0.0057 U
1,1-Dichloroethene	mg/kg	100	500	0.0055 U	0.0056 U [0.0054 U]	0.0065 U	0.0062 U	0.062 UJ	0.0059 U	0.0053 U	0.0057 U	0.0062 U [0.0055 UJ]	0.0057 U
1,2,4-Trichlorobenzene	mg/kg			0.0055 U	0.0056 U [0.0054 U]	0.0065 U	0.0062 U	0.062 UJ	0.0059 U	0.0053 U	0.0057 U	0.0062 U [0.0055 U]	0.0057 U
1,2-Dibromo-3-chloropropane	mg/kg			0.0055 U	0.0056 U [0.0054 U]	0.0065 U	0.0062 U	0.062 UJ	0.0059 U	0.0053 U	0.0057 U	0.0062 U [0.0055 U]	0.0057 U
1,2-Dibromoethane	mg/kg			0.0055 U	0.0056 U [0.0054 U]	0.0065 U	0.0062 U	0.062 UJ	0.0059 U	0.0053 U	0.0057 U	0.0062 U [0.0055 U]	0.0057 U
1,2-Dichlorobenzene	mg/kg	100	500	0.0055 U	0.0056 U [0.0054 U]	0.0065 U	0.0062 U	0.062 UJ	0.0059 U	0.0053 U	0.0057 U	0.0062 U [0.0055 UJ]	0.0057 U
1,2-Dichloroethane	mg/kg	3.1	30	0.0055 U	0.0056 U [0.0054 U]	0.0065 U	0.0062 U	0.062 UJ	0.0059 U	0.0053 U	0.0057 U	0.0062 U [0.0055 U]	0.0057 U
1,2-Dichloropropane	mg/kg			0.0055 U	0.0056 U [0.0054 U]	0.0065 U	0.0062 U	0.062 UJ	0.0059 U	0.0053 U	0.0057 U	0.0062 U [0.0055 U]	0.0057 U
1,3-Dichlorobenzene	mg/kg	49	280	0.0055 U	0.0056 U [0.0054 U]	0.0065 U	0.0062 U	0.062 UJ	0.0059 U	0.0053 U	0.0057 U	0.0062 U [0.0055 U]	0.0057 U
1,4-Dichlorobenzene	mg/kg	13	130	0.0055 U	0.0056 U [0.0054 U]	0.0065 U	0.0062 U	0.062 UJ	0.0059 U	0.0053 U	0.0057 U	0.0062 U [0.0055 U]	0.0057 U
2-Butanone	mg/kg	100	500	0.2	0.028 U [0.027 U]	0.0084 J	0.031 U	0.061 J	0.029 U	0.027 U	0.028 U	0.031 U [0.027 U]	0.028 U
2-Hexanone	mg/kg			0.027 U	0.028 U [0.027 U]	0.033 U	0.031 U	0.31 UJ	0.029 U	0.027 U	0.028 U	0.031 U [0.027 U]	0.028 U
4-Methyl-2-pentanone	mg/kg			0.027 U	0.028 U [0.027 U]	0.033 U	0.031 U	0.31 UJ	0.029 U	0.027 U	0.028 U	0.031 U [0.027 U]	0.028 U
Acetone	mg/kg	100	500	0.027 U	0.013 J [0.014 J]	0.033	0.02 J	0.23 J	0.03	0.027 U	0.0066 J	0.031 U [0.027 U]	0.028 U
Benzene	mg/kg	4.8	44	0.0055 U	0.0056 U [0.0054 U]	0.002 J	0.0062 U	0.062 UJ	0.0059 U	0.0053 U	0.0029 J	0.0069 [0.0055 UJ]	0.0073
Bromodichloromethane	mg/kg			0.0055 U	0.0056 U [0.0054 U]	0.0065 U	0.0062 U	0.062 UJ	0.0059 U	0.0053 U	0.0057 U	0.0062 U [0.0055 U]	0.0057 U
Bromoform	mg/kg			0.0055 U	0.0056 U [0.0054 U]	0.0065 U	0.0062 U	0.062 UJ	0.0059 U	0.0053 U	0.0057 U	0.0062 U [0.0055 U]	0.0057 U
Bromomethane	mg/kg			0.0055 UJ	0.0056 U [0.0054 U]	0.0065 U	0.0062 U	0.062 UJ	0.0059 U	0.0053 U	0.0057 U	0.0062 U [0.0055 U]	0.0057 U
Carbon Disulfide	mg/kg			0.0055 U	0.0056 U [0.0054 U]	0.0065 U	0.0062 U	0.062 UJ	0.0059 U	0.0053 U	0.0057 U	0.0062 U [0.0055 U]	0.0057 U
Carbon Tetrachloride	mg/kg	2.4	22	0.0055 U	0.0056 U [0.0054 U]	0.0065 U	0.0062 U	0.062 UJ	0.0059 U	0.0053 U	0.0057 U	0.0062 U [0.0055 U]	0.0057 U
Chlorobenzene	mg/kg	100	500	0.0055 U	0.0056 U [0.0054 U]	0.0065 U	0.0062 U	0.062 UJ	0.0059 U	0.0053 U	0.0057 U	0.0062 U [0.0055 UJ]	0.0057 U
Chloroethane	mg/kg			0.0055 UJ	0.0056 U [0.0054 U]	0.0065 U	0.0062 U	0.062 UJ	0.0059 U	0.0053 U	0.0057 U	0.0062 U [0.0055 U]	0.0057 U
Chloroform	mg/kg	49	350	0.0055 U	0.0056 U [0.0054 U]	0.0065 U	0.0062 U	0.062 UJ	0.0059 U	0.0053 U	0.0057 U	0.0062 U [0.0055 U]	0.0057 U
Chloromethane	mg/kg			0.0055 U	0.0056 U [0.0054 U]	0.0065 U	0.0062 U	0.062 UJ	0.0059 U	0.0053 U	0.0057 U	0.0062 U [0.0055 U]	0.0057 U
cis-1,2-Dichloroethene	mg/kg	100	500	0.0055 U	0.0056 U [0.0054 U]	0.0065 U	0.0062 U	0.062 UJ	0.0059 U	0.0053 U	0.0057 U	0.0062 U [0.0055 UJ]	0.0057 U
cis-1,3-Dichloropropene	mg/kg			0.0055 U	0.0056 U [0.0054 U]	0.0065 U	0.0062 U	0.062 UJ	0.0059 U	0.0053 U	0.0057 U	0.0062 U [0.0055 U]	0.0057 U
Cyclohexane	mg/kg			0.0055 U	0.0021 J [0.0018 J]	0.00093 J	0.0062 U	0.062 UJ	0.0059 U	0.0053 U	0.0057 U	0.0062 U [0.0055 U]	0.0057 U
Dibromochloromethane	mg/kg			0.0055 U	0.0056 U [0.0054 U]	0.0065 U	0.0062 U	0.062 UJ	0.0059 U	0.0053 U	0.0057 U	0.0062 U [0.0055 U]	0.0057 U
Dichlorodifluoromethane	mg/kg			0.0055 UJ	0.0056 U [0.0054 U]	0.0065 U	0.0062 U	0.062 UJ	0.0059 U	0.0053 U	0.0057 U	0.0062 U [0.0055 U]	0.0057 U
Ethylbenzene	mg/kg	41	390	0.0055 U	0.0056 U [0.0054 U]	0.0065 U	0.0062 U	0.062 UJ	0.0059 U	0.027	0.034	0.029 J [0.002 J]	0.0059
Isopropylbenzene	mg/kg			0.0055 U	0.0056 U [0.0054 U]	0.0065 U	0.0062 U	0.024 J	0.0059 U	0.0099	0.017	0.0013 J [0.0055 U]	0.0016 J
Methyl acetate	mg/kg			0.0055 U	0.0056 U [0.0054 U]	0.0065 U	0.0062 U	0.062 UJ	0.0059 U	0.0053 U	0.0057 U	0.0062 U [0.0055 U]	0.0057 U
Methyl tert-butyl ether	mg/kg	100	500	0.0055 U	0.0056 U [0.0054 U]	0.0065 U	0.0062 U	0.062 UJ	0.0059 U	0.0053 U	0.0057 U	0.0062 U [0.0055 U]	0.0057 U
Methylcyclohexane	mg/kg			0.0055 U	0.0027 J [0.002 J]	0.0065 U	0.0062 U	0.016 J	0.0059 UJ	0.0053 UJ	0.0057 UJ	0.0062 UJ [0.0055 UJ]	0.0057 UJ
Methylene Chloride	mg/kg	100	500	0.0055 U	0.0056 U [0.0054 U]	0.0065 U	0.0062 U	0.062 UJ	0.0031 J	0.0027 J	0.0057 U	0.0062 U [0.0037 J]	0.0057 U

Table 4
Summary of Soil Sample Analytical Results

Location ID:		Restricted	Restricted	AB-C2	AW-01	AW-01	AW-02	AW-02	AW-03	AW-03	AW-03	AW-04	AW-04
Sample Depth(Feet):		Use SCOs	Use SCOs	22 - 24	5 - 7	20 - 22.5	8 - 10	18 - 21	4 - 8	18 - 20	20 - 22	4 - 8	22 - 22.5
Date Collected:	Units	Residential	Commercial	08/06/12	08/02/12	08/02/12	08/02/12	08/02/12	11/11/12	11/11/12	11/11/12	11/12/12	11/12/12
Volatile Organics (Cont.)													
Styrene	mg/kg			0.0055 U	0.0056 U [0.0054 U]	0.0065 U	0.0062 U	0.062 UJ	0.0059 U	0.0053 U	0.0057 U	0.0062 U [0.0055 U]	0.0057 U
Tetrachloroethene	mg/kg	19	150	0.0055 U	0.0056 U [0.0054 U]	0.0065 U	0.00089 J	0.062 UJ	0.0059 U	0.0053 U	0.0057 U	0.0062 U [0.0055 UJ]	0.0057 U
Toluene	mg/kg	100	500	0.0055 U	0.0017 J [0.0022 J]	0.00068 J	0.0062 U	0.062 UJ	0.0011 J	0.0036 J	0.0065	0.0049 J [0.0055 UJ]	0.0057 U
trans-1,2-Dichloroethene	mg/kg	100	500	0.0055 U	0.0056 U [0.0054 U]	0.0065 U	0.0062 U	0.062 UJ	0.0059 U	0.0053 U	0.0057 U	0.0062 U [0.0055 UJ]	0.0057 U
trans-1,3-Dichloropropene	mg/kg			0.0055 U	0.0056 U [0.0054 U]	0.0065 U	0.0062 U	0.062 UJ	0.0059 U	0.0053 U	0.0057 U	0.0062 U [0.0055 U]	0.0057 U
Trichloroethene	mg/kg	21	200	0.0055 U	0.0056 U [0.0054 U]	0.0065 U	0.0062 U	0.062 UJ	0.0059 U	0.0053 U	0.0057 U	0.0062 U [0.0055 UJ]	0.0057 U
Trichlorofluoromethane	mg/kg			0.0055 UJ	0.0056 U [0.0054 U]	0.0065 U	0.0062 U	0.062 UJ	0.0059 U	0.0053 U	0.0057 U	0.0062 U [0.0055 U]	0.0057 U
Vinyl Chloride	mg/kg	0.9	13	0.0055 U	0.0056 U [0.0054 U]	0.0065 U	0.0062 U	0.062 UJ	0.0059 U	0.0053 U	0.0057 U	0.0062 U [0.0055 U]	0.0057 U
Xylenes (total)	mg/kg	100	500	0.011 UB	0.011 UB [0.011 UB]	0.013 U	0.012 U	0.067 J	0.012 U	0.011 U	0.011 U	0.0011 J [0.011 U]	0.0054 J
Total BTEX	mg/kg			ND	0.0017 J [0.0022 J]	0.00268 J	ND	0.067 J	0.0011 J	0.0306 J	0.0434 J	0.0419 J [0.002 J]	0.0186 J
Total VOCs	mg/kg			0.2	0.0195 J [0.02 J]	0.04501 J	0.02089 J	0.398 J	0.0342 J	0.0432 J	0.067 J	0.0432 J [0.0057 J]	0.0202 J
Semivolatile Organics			•										
1,1'-Biphenyl	mg/kg			0.19 U	1.9 U [3.7 U]	0.22 U	1 U	0.32 J	0.028 J	0.012 J	0.2 U	1 U [0.077 J]	0.2 U
2,2'-Oxybis(1-Chloropropane)	mg/kg			0.19 U	1.9 U [3.7 U]	0.22 U	1 U	2.7 U	0.2 U	0.2 U	0.2 U	1 U [0.95 U]	0.2 U
2,4,5-Trichlorophenol	mg/kg			0.19 U	1.9 U [3.7 U]	0.22 U	1 U	2.7 U	0.2 U	0.2 U	0.2 U	1 U [0.95 U]	0.2 U
2,4,6-Trichlorophenol	mg/kg			0.19 U	1.9 U [3.7 U]	0.22 U	1 U	2.7 U	0.2 U	0.2 U	0.2 U	1 U [0.95 U]	0.2 U
2,4-Dichlorophenol	mg/kg			0.19 U	1.9 U [3.7 U]	0.22 U	1 U	2.7 U	0.2 U	0.2 U	0.2 U	1 U [0.95 U]	0.2 U
2,4-Dimethylphenol	mg/kg			0.19 U	1.9 U [3.7 U]	0.22 U	1 U	2.7 U	0.2 U	0.2 U	0.2 U	1 U [0.95 U]	0.099 J
2,4-Dinitrophenol	mg/kg			0.36 U	3.7 U [7.2 U]	0.43 U	2 U	5.2 U	0.4 U	0.38 U	0.39 U	2 U [1.8 UJ]	0.38 U
2,4-Dinitrotoluene	mg/kg			0.19 U	1.9 U [3.7 U]	0.22 U	1 U	2.7 U	0.2 U	0.2 U	0.2 U	1 U [0.95 U]	0.2 U
2,6-Dinitrotoluene	mg/kg			0.19 U	1.9 U [3.7 U]	0.22 U	1 U	2.7 U	0.2 U	0.2 U	0.2 U	1 U [0.95 U]	0.2 U
2-Chloronaphthalene	mg/kg			0.19 U	1.9 U [3.7 U]	0.22 U	1 U	2.7 U	0.2 U	0.2 U	0.2 U	1 U [0.95 U]	0.2 U
2-Chlorophenol	mg/kg			0.19 U	1.9 U [3.7 U]	0.22 U	1 U	2.7 U	0.2 U	0.2 U	0.2 U	1 U [0.95 U]	0.2 U
2-Methylnaphthalene	mg/kg			0.19 U	0.1 J [3.7 U]	0.22 U	1 U	2.9	0.098 J	0.0071 J	0.2 U	0.066 J [0.28 J]	0.2 U
2-Methylphenol	mg/kg	100	500	0.19 U	1.9 U [3.7 U]	0.22 U	1 U	2.7 U	0.2 U	0.2 U	0.2 U	1 U [0.95 U]	0.2 U
2-Nitroaniline	mg/kg			0.36 U	3.7 U [7.2 U]	0.43 U	2 U	5.2 U	0.4 U	0.38 U	0.39 U	2 U [1.8 U]	0.38 U
2-Nitrophenol	mg/kg			0.19 U	1.9 U [3.7 U]	0.22 U	1 U	2.7 U	0.2 U	0.2 U	0.2 U	1 U [0.95 U]	0.2 U
3,3'-Dichlorobenzidine	mg/kg			0.19 U	1.9 U [3.7 U]	0.22 U	1 U	2.7 U	0.2 U	0.2 U	0.2 U	1 U [0.95 U]	0.2 U
3-Nitroaniline	mg/kg			0.36 U	3.7 U [7.2 U]	0.43 U	2 U	5.2 U	0.4 U	0.38 U	0.39 U	2 U [1.8 U]	0.38 U
4,6-Dinitro-2-methylphenol	mg/kg			0.36 U	3.7 U [7.2 U]	0.43 U	2 U	5.2 U	0.4 U	0.38 U	0.39 U	2 U [1.8 U]	0.38 U
4-Bromophenyl-phenylether	mg/kg			0.19 U	1.9 U [3.7 U]	0.22 U	1 U	2.7 U	0.2 U	0.2 U	0.2 U	1 U [0.95 U]	0.2 U
4-Chloro-3-Methylphenol	mg/kg			0.19 U	1.9 U [3.7 U]	0.22 U	1 U	2.7 U	0.2 U	0.2 U	0.2 U	1 U [0.95 U]	0.2 U
4-Chloroaniline	mg/kg			0.19 U	1.9 U [3.7 U]	0.22 U	1 U	2.7 U	0.2 U	0.2 U	0.2 U	1 U [0.95 U]	0.2 U
4-Chlorophenyl-phenylether	mg/kg			0.19 U	1.9 U [3.7 U]	0.22 U	1 U	2.7 U	0.2 U	0.2 U	0.2 U	1 U [0.95 U]	0.2 U
4-Methylphenol	mg/kg	100	500	0.36 U	3.7 U [7.2 U]	0.43 U	2 U	5.2 U	0.4 U	0.38 U	0.39 U	2 U [1.8 U]	0.38 U
4-Nitroaniline	mg/kg			0.36 U	3.7 U [7.2 U]	0.43 U	2 U	5.2 U	0.4 U	0.38 U	0.39 U	2 U [1.8 U]	0.38 U
4-Nitrophenol	mg/kg			0.36 U	3.7 U [7.2 U]	0.43 U	2 U	5.2 U	0.4 U	0.38 U	0.39 U	2 U [1.8 U]	0.38 U
Acenaphthene	mg/kg	100	500	0.19 U	0.087 J [3.7 U]	0.017 J	1 U	2.9	0.14 J	0.41	0.12 J	0.18 J [0.97]	0.013 J
Acenaphthylene	mg/kg	100	500	0.19 U	1.9 U [3.7 U]	0.22 U	1 U	0.89 J	0.04 J	0.0062 J	0.2 U	0.16 J [0.2 J]	0.2 U
Acetophenone	mg/kg			0.19 U	1.9 U [3.7 U]	0.22 U	1 U	2.7 U	0.2 U	0.2 U	0.2 U	1 U [0.95 U]	0.2 U
Anthracene	mg/kg	100	500	0.19 U	0.2 J [3.7 U]	0.027 J	1 U	3.5	0.26	0.075 J	0.011 J	0.69 J [2]	0.2 U

See Notes on Page 9.

Table 4
Summary of Soil Sample Analytical Results

Location ID:		Restricted	Restricted	AB-C2	AW-01	AW-01	AW-02	AW-02	AW-03	AW-03	AW-03	AW-04	AW-04
Sample Depth(Feet):		Use SCOs	Use SCOs	22 - 24	5 - 7	20 - 22.5	8 - 10	18 - 21	4 - 8	18 - 20	20 - 22	4 - 8	22 - 22.5
Date Collected:			Commercial	08/06/12	08/02/12	08/02/12	08/02/12	08/02/12	11/11/12	11/11/12	11/11/12	11/12/12	11/12/12
Semivolatile Organics (Cont.)	Omio	Residential	Commercial	00/00/12	00/02/12	00/02/12	00/02/12	00/02/12	,,	,, .2	,,	11/12/12	,.2,.2
Atrazine	mg/kg			0.19 U	1.9 U [3.7 U]	0.22 U	1 U	2.7 U	0.2 U	0.2 U	0.2 U	1 U [0.95 U]	0.2 U
Benzaldehyde	mg/kg			0.19 U	1.9 U [3.7 U]	0.22 U	1 U	2.7 U	0.2 U	0.2 U	0.2 U	1 U [0.95 U]	0.2 U
Benzo(a)anthracene	mg/kg	1	5.6	0.19 U	0.58 J [3.7 U]	0.11 J	1 U	9	0.86	0.2 C	0.2 U	1.4 [3.7]	0.013 J
Benzo(a)pyrene	mg/kg	1	1	0.0094 J	0.69 J [0.71 J]	0.11 J	1 U	8.8	1	0.16 J	0.096 J	1.6 [3.7]	0.2 U
Benzo(b)fluoranthene	mg/kg	1	5.6	0.014 J	1 J [0.84 J]	0.11 J	0.065 J	13	1.3	0.10 0	0.030 U	1.9 [4.5]	0.12 J
Benzo(g,h,i)perylene	mg/kg	100	500	0.19 U	0.28 J [0.47 J]	0.058 J	1 U	2.8	0.36 J	0.025 J	0.2 U	0.34 J [1.3]	0.2 U
Benzo(k)fluoranthene	mg/kg	3.9	56	0.0088 J	0.38 J [0.36 J]	0.057 J	1 U	4.6	0.57	0.047 J	0.0073 J	1.1 [2.3]	0.0033 J
bis(2-Chloroethoxy)methane	mg/kg			0.19 U	1.9 U [3.7 U]	0.22 U	1 U	2.7 U	0.2 U	0.2 U	0.2 U	1 U [0.95 U]	0.2 U
bis(2-Chloroethyl)ether	mg/kg			0.19 U	1.9 U [3.7 U]	0.22 U	1 U	2.7 U	0.2 U	0.2 U	0.2 U	1 U [0.95 U]	0.2 U
bis(2-Ethylhexyl)phthalate	mg/kg			0.43	1.9 U [3.7 U]	0.14 J	1 U	2.7 U	0.65	0.13 J	0.16 J	1 U [0.95 U]	1.4
Butylbenzylphthalate	mg/kg			0.19 U	1.9 U [3.7 U]	0.22 U	1 U	2.7 U	0.2 U	0.2 U	0.2 U	1 U [0.95 U]	0.2 U
Caprolactam	mg/kg			0.19 U	1.9 U [3.7 U]	0.22 U	1 U	2.7 U	0.2 U	0.2 U	0.2 U	1 U [0.95 U]	0.2 U
Carbazole	mg/kg			0.19 U	1.9 U [3.7 U]	0.22 U	1 U	0.69 J	0.098 J	0.17 J	0.097 J	0.11 J [0.62 J]	0.2 U
Chrysene	mg/kg	3.9	56	0.015 J	0.55 J [0.6 J]	0.088 J	1 U	8	0.75	0.072 J	0.014 J	1.4 [3.3]	0.0052 J
Dibenzo(a,h)anthracene	mg/kg	0.33	0.56	0.19 U	1.9 U [3.7 U]	0.028 J	1 U	0.63 J	0.23	0.2 U	0.2 U	0.8 J [0.94 J]	0.2 U
Dibenzofuran	mg/kg	59	350	0.19 U	1.9 U [3.7 U]	0.22 U	1 U	1.3 J	0.084 J	0.22	0.043 J	0.13 J [0.65 J]	0.008 J
Diethylphthalate	mg/kg			0.19 U	1.9 U [3.7 U]	0.22 U	1 U	2.7 U	0.2 U	0.2 U	0.2 U	1 U [0.95 U]	0.2 U
Dimethylphthalate	mg/kg			0.19 U	1.9 U [3.7 U]	0.22 U	1 U	2.7 U	0.2 U	0.2 U	0.2 U	1 U [0.95 U]	0.2 U
Di-n-Butylphthalate	mg/kg			0.19 U	1.9 U [3.7 U]	0.22 U	1 U	2.7 U	0.2 U	0.2 U	0.2 U	1 U [0.95 U]	0.2 U
Di-n-Octylphthalate	mg/kg			0.19 U	1.9 U [3.7 U]	0.22 U	1 U	2.7 U	0.15 J	0.2 U	0.2 U	1 U [0.95 U]	0.2 U
Fluoranthene	mg/kg	100	500	0.19 U	1.1 J [1.2 J]	0.15 J	1 U	17	1.4	0.15 J	0.021 J	2.6 J [8.1 J]	0.0039 J
Fluorene	mg/kg	100	500	0.19 U	1.9 U [3.7 U]	0.22 U	1 U	2.3 J	0.13 J	0.19 J	0.027 J	0.27 J [1.1 J]	0.0083 J
Hexachlorobenzene	mg/kg	1.2	6	0.19 U	1.9 U [3.7 U]	0.22 U	1 U	2.7 U	0.2 U	0.2 U	0.2 U	1 U [0.95 U]	0.2 U
Hexachlorobutadiene	mg/kg			0.19 U	1.9 U [3.7 U]	0.22 U	1 U	2.7 U	0.2 U	0.2 U	0.2 U	1 U [0.95 U]	0.2 U
Hexachlorocyclopentadiene	mg/kg			0.19 U	1.9 U [3.7 U]	0.22 U	1 U	2.7 U	0.2 U	0.2 U	0.2 U	1 U [0.95 U]	0.2 U
Hexachloroethane	mg/kg			0.19 U	1.9 U [3.7 U]	0.22 U	1 U	2.7 U	0.2 U	0.2 U	0.2 U	1 U [0.95 U]	0.2 U
Indeno(1,2,3-cd)pyrene	mg/kg	0.5	5.6	0.19 U	0.26 J [0.4 J]	0.058 J	1 U	2.4 J	0.38	0.14 J	0.2 U	0.89 J [1.6]	0.2 U
Isophorone	mg/kg			0.19 U	1.9 U [3.7 U]	0.22 U	1 U	2.7 U	0.2 U	0.2 U	0.2 U	1 U [0.95 U]	0.2 U
Naphthalene	mg/kg	100	500	0.19 U	1.9 U [3.7 U]	0.22 U	1 U	6.6	0.83	0.067 J	0.042 J	0.16 J [0.36 J]	1.2
Nitrobenzene	mg/kg			0.19 U	1.9 U [3.7 U]	0.22 U	1 U	2.7 U	0.2 U	0.2 U	0.2 U	1 U [0.95 U]	0.2 U
N-Nitroso-di-n-propylamine	mg/kg			0.19 U	1.9 U [3.7 U]	0.22 U	1 U	2.7 U	0.2 U	0.2 U	0.2 U	1 U [0.95 U]	0.2 U
N-Nitrosodiphenylamine	mg/kg	-		0.19 U	1.9 U [3.7 U]	0.22 U	1 U	2.7 U	0.2 U	0.2 U	0.2 U	1 U [0.95 U]	0.2 U
Pentachlorophenol	mg/kg	6.7	6.7	0.36 U	3.7 U [7.2 U]	0.43 U	2 U	5.2 U	0.4 U	0.38 U	0.39 U	2 U [1.8 U]	0.38 U
Phenanthrene	mg/kg	100	500	0.19 U	0.81 J [0.8 J]	0.053 J	1 U	12	0.87	0.22	0.032 J	1.6 J [6.8 J]	0.011 J
Phenol	mg/kg	100	500	0.19 U	1.9 U [3.7 U]	0.22 U	1 U	2.7 U	0.2 U	0.2 U	0.2 U	1 U [0.95 U]	0.2 U
Pyrene	mg/kg	100	500	0.19 U	0.84 J [1 J]	0.15 J	1 U	13 J	1.1	0.1 J	0.019 J	1.9 J [7.1 J]	0.2 U
Total PAHs	mg/kg			0.0472 J	6.877 J [6.38 J]	1.016 J	0.065 J	110.32 J	10.318 J	1.9473 J	0.5193 J	17.056 J [48.25 J]	1.3777 J
Total SVOCs	mg/kg			0.4772 J	6.877 J [6.38 J]	1.156 J	0.065 J	112.63 J	11.328 J	2.4793 J	0.8193 J	17.296 J [49.597 J]	2.8847 J

Table 4
Summary of Soil Sample Analytical Results

	Location ID:		Restricted	Restricted	AB-C2	AW-01	AW-01	AW-02	AW-02	AW-03	AW-03	AW-03	AW-04	AW-04
Samı	ole Depth(Feet):		Use SCOs	Use SCOs	22 - 24	5 - 7	20 - 22.5	8 - 10	18 - 21	4 - 8	18 - 20	20 - 22	4 - 8	22 - 22.5
•	Date Collected:	Units	Residential	Commercial	08/06/12	08/02/12	08/02/12	08/02/12	08/02/12	11/11/12	11/11/12	11/11/12	11/12/12	11/12/12
Inorganics														
Aluminum		mg/kg			2,290 J	5,740 J [5,200 J]	9,960 J	11,600 J	8,780 J	10,100	4,190	6,220	6,000 J [10,500 J]	9,160
Antimony		mg/kg			16.8 U	16.9 U [16.4 U]	18.6 U	16.8 U	4.3 J	97 J	16.1 UJ	19.4 UJ	17.2 UJ [16.7 UJ]	18.8 UJ
Arsenic		mg/kg	16	16	2.7	5.5 [4.8]	4.9	4.9	34	15.4	2.8	3.2	6.2 [5.4]	4.2
Barium		mg/kg	400	400	23.5 J	48.2 J [47.2 J]	77.2 J	78.6 J	357 J	81 J	48.9 J	64.6 J	55.8 J [143 J]	91 J
Beryllium		mg/kg	72	590	0.13 J	0.4 [0.51]	0.5	0.58	0.59	0.59	0.2 J	0.3	0.47 [1.9]	0.47
Cadmium		mg/kg	4.3	9.3	0.27	0.64 [0.35]	0.22 J	0.24	2.6	0.45	0.25	0.22 J	0.38 [0.4]	0.27
Calcium		mg/kg			106,000 J	75,700 J [75,100 J]	37,900 J	22,900 J	18,600 J	28,900	53,300	61,400	103,000 [90,500 J]	83,900
Chromium		mg/kg			5.1 J	13.1 J [10.7 J]	15.3 J	17.8 J	74.9 J	21	6.7	9.9	8.8 [7.9]	14
Cobalt		mg/kg			2.4	5.8 [4.6]	8.8	11	9.9	5.3	3.7	5.3	4.9 [4.9]	7.5
Copper		mg/kg	270	270	5.6	18.4 [18.7]	16.1	18.4	213	25.6	8.4	11.7	17.8 [19.6]	16.7
Iron		mg/kg			5,740 J	16,000 J [12,700 J]	16,000 J	18,000 J	22,100 J	12,100	8,100	11,200	12,000 [12,600 J]	16,900
Lead		mg/kg	400	1,000	4.7 J	124 J [93 J]	27.2 J	19.3 J	2,640 J	949	9.8	11.3	45.5 [47.1]	15.9
Magnesium		mg/kg			26,300	28,100 [30,700]	11,800	11,900	8,760	10,500	25,100	26,500	38,600 J [17,900 J]	36,300
Manganese		mg/kg	2,000	10,000	187	496 [341]	302	374	297	323	325	386	525 J [950 J]	555
Mercury		mg/kg	0.81	2.8	0.018 J	0.055 [0.074]	0.096	4.5	6.4	0.092 J	0.024 UJ	0.023 UJ	0.035 J [0.062 J]	0.024 UJ
Nickel		mg/kg	310	310	5.8	14.6 [14.8]	19.9	25.7	46.8	13	7.9	11.3	13.4 [14.9]	16.4
Potassium		mg/kg			724 J	1,000 J [848 J]	1,500 J	1,590 J	1,010 J	1,410 J	1,160 J	1,740 J	1,060 J [1,110 J]	2,550 J
Selenium		mg/kg	180	1,500	4.5 U	4.5 U [1.2 J]	5 U	4.5 U	2.1 J	5.1 U	4.3 U	5.2 U	4.6 U [1.1 J]	5 U
Silver		mg/kg	180	1,500	0.56 U	0.56 U [0.55 U]	0.62 U	0.56 U	4.1	0.64 U	0.54 U	0.65 U	0.57 U [0.56 U]	0.63 U
Sodium		mg/kg			248	359 [305]	451	447	670	487	328	394	252 [423]	288
Thallium		mg/kg			6.7 U	6.8 U [6.5 U]	0.42 J	6.7 U	9.4 U	7.7 U	6.4 U	7.8 U	6.9 U [6.7 U]	7.5 U
Vanadium		mg/kg			7.8 J	17.8 J [11.4 J]	20.7 J	23.1 J	19.6 J	28.5	11.6	16.2	12 [11.1]	19.5
Zinc		mg/kg	10,000	10,000	68.1 J	168 J [84.2 J]	59.7 J	77.4 J	1,730 J	171 J	58.6 J	53.3 J	70.7 J [74.7 J]	60.2 J
Miscellaneous														
Cyanide		mg/kg	27	27	1 U	1.2 [0.63 J]	1.2 U	1.2 U	1.5	0.98 J	0.82 J	0.87 J	3.8 [2.4]	0.81 J
Cyanide, Free		mg/kg			0.69 UB	0.42 J [0.49 U]	0.34 J	1.3	1.7	0.52 J	2.5 U	0.27 J	0.13 J [0.18 J]	0.14 J
Percent Moisture	_	%			NA	NA	NA	NA	NA	18	15	16	18 [11]	16
Percent Solids		%			NA	NA	NA	NA	NA	82	85	84	82 [89]	84

Table 4 Summary of Soil Sample Analytical Results

Site Characterization
National Fuel Gas Distribution Corporation
Former Buffalo Service Station - Off-Site
Buffalo, NY

Notes:

Restricted Use SCO Residential: NYSDEC 6 NYCRR Part 375 Restricted Use Soil Cleanup Objectives for Protection of Residential Use.

Bold font and shading indicates that the sample result exceeds the NYSDEC 6 NYCRR Part 375 Restricted Use Soil Cleanup Objectives for Protection of Commercial Use.

Results reported in milligrams per kilogram (mg/kg); also expressed as parts per million (ppm).

- [] Bracketed results represent a duplicate sample.
- B: Analyte was also detected in the associated method blank.
- J: Indicates an estimated value.
- ND: None detected.
- U: The compound was analyzed for but not detected. The associated value is the compound quantitation limit.

Site Characterization National Fuel Gas Distribution Corporation Former Buffalo Service Station - Off-Site Buffalo, NY

	NYSDEC									
	TOGS 1.1.1									
Location ID:	Standards and		AW-01	AW-01	AW-02	AW-02	AW-03	AW-03	AW-04	AW-04
Date Collected:	Guidance Values	Units	08/22/12	08/27/13	08/22/12	08/27/13	12/28/12	08/27/13	12/28/12	08/27/13
Volatile Organics										
1,1,1-Trichloroethane	5	ug/L	1 U [1 U]	3.3 U	1 U	3.3 U	5 U [5 U]	3.3 U [3.3 U]	5 U	8.2 U
1,1,2,2-Tetrachloroethane	5	ug/L	1 U [1 U]	0.84 U	1 U	0.84 U	5 U [5 U]	0.84 U [0.84 U]	5 U	2.1 U
1,1,2-trichloro-1,2,2-trifluoroethane	5	ug/L	1 U [1 U]	1.2 U	1 U	1.2 U	5 U [5 U]	1.2 U [1.2 U]	5 U	3.1 U
1,1,2-Trichloroethane	1	ug/L	1 U [1 U]	0.92 U	1 U	0.92 U	5 U [5 U]	0.92 U [0.92 U]	5 U	2.3 U
1,1-Dichloroethane	5	ug/L	1 U [1 U]	1.5 U	1 U	1.5 U	5 U [5 U]	1.5 U [1.5 U]	5 U	3.8 U
1,1-Dichloroethene	5	ug/L	1 U [1 U]	1.2 U	1 U	1.2 U	5 U [5 U]	1.2 U [1.2 U]	5 U	2.9 U
1,2,4-Trichlorobenzene	5	ug/L	1 U [1 U]	1.6 U	1 U	1.6 U	5 U [5 U]	1.6 U [1.6 U]	5 U	4.1 U
1,2-Dibromo-3-chloropropane	0.04	ug/L	1 U [1 U]	1.6 UJ	1 U	1.6 UJ	5 U [5 U]	1.6 UJ [1.6 UJ]	5 U	3.9 UJ
1,2-Dibromoethane	0.0006	ug/L	1 U [1 U]	2.9 U	1 U	2.9 U	5 U [5 U]	2.9 U [2.9 U]	5 U	7.3 U
1,2-Dichlorobenzene	3	ug/L	1 U [1 U]	3.2 U	1 U	3.2 U	5 U [5 U]	3.2 U [3.2 U]	5 U	7.9 U
1,2-Dichloroethane	0.6	ug/L	1 U [1 U]	0.84 U	1 U	0.84 U	5 U [5 U]	0.84 U [0.84 U]	5 U	2.1 U
1,2-Dichloropropane	1	ug/L	1 U [1 U]	2.9 U	1 U	2.9 U	5 U [5 U]	2.9 U [2.9 U]	5 U	7.2 U
1,3-Dichlorobenzene	3	ug/L	1 U [1 U]	3.1 U	1 U	3.1 U	5 U [5 U]	3.1 U [3.1 U]	5 U	7.8 U
1,4-Dichlorobenzene	3	ug/L	1 U [1 U]	3.4 U	1 U	3.4 U	5 U [5 U]	3.4 U [3.4 U]	5 U	8.4 U
2-Butanone	50	ug/L	10 U [10 U]	5.3 U	10 U	5.3 U	50 U [50 U]	5.3 U [5.3 U]	50 U	13 U
2-Hexanone	50	ug/L	5 U [5 U]	5 U	5 U	5 U	25 U [25 U]	5 U [5 U]	25 U	12 U
4-Methyl-2-pentanone		ug/L	5 U [5 U]	8.4 U	5 U	8.4 U	25 U [25 U]	8.4 U [8.4 U]	25 U	21 U
Acetone	50	ug/L	10 U [10 U]	12 U	10 U	12 U	50 U [50 U]	12 U [12 U]	50 U	30 U
Benzene	1	ug/L	0.58 J [0.55 J]	1.6 U	1 U	1.6 U	12 [12]	4.8 [4.9]	170	310
Bromodichloromethane	50	ug/L	1 U [1 U]	1.6 UJ	1 U	1.6 U	5 U [5 U]	1.6 U [1.6 U]	5 U	3.9 U
Bromoform	50	ug/L	1 U [1 U]	1 UJ	1 U	1 UJ	5 U [5 U]	1 UJ [1 UJ]	5 U	2.6 UJ
Bromomethane	5	ug/L	1 U [1 UJ]	2.8 UJ	1 U	2.8 U	5 U [5 U]	2.8 U [2.8 U]	5 U	6.9 U
Carbon Disulfide	60	ug/L	1 U [1 U]	0.76 UJ	1 U	0.76 UJ	5 U [5 U]	0.76 UJ [0.76 UJ]	5 U	1.9 UJ
Carbon Tetrachloride	5	ug/L	1 U [1 U]	1.1 U	1 U	1.1 U	5 U [5 U]	1.1 U [1.1 U]	5 U	2.7 U
Chlorobenzene	5	ug/L	1 U [1 U]	3 U	1 U	3 U	5 U [5 U]	3 U [3 U]	5 U	7.5 U
Chloroethane	5	ug/L	1 U [1 U]	1.3 UJ	1 U	1.3 U	5 U [5 U]	1.3 U [1.3 U]	5 U	3.2 U
Chloroform	7	ug/L	1 U [1 U]	1.4 U	1 U	1.4 U	5 U [5 U]	1.4 U [1.4 U]	5 U	3.4 U
Chloromethane	5	ug/L	1 U [1 U]	1.4 UJ	1 U	1.4 U	5 U [5 U]	1.4 U [1.4 U]	5 U	3.5 U
cis-1,2-Dichloroethene	5	ug/L	1 U [1 U]	3.2 U	1 U	3.2 U	5 U [5 U]	3.2 U [3.2 U]	5 U	8.1 U
cis-1,3-Dichloropropene	0.4	ug/L	1 U [1 U]	1.4 U	1 U	1.4 U	5 U [5 U]	1.4 U [1.4 U]	5 U	3.6 U
Cyclohexane		ug/L	1 U [1 U]	0.72 UJ	1 U	0.72 UJ	5 U [5 U]	0.72 UJ [0.72 UJ]	5 U	1.8 UJ
Dibromochloromethane	50	ug/L	1 U [1 U]	1.3 UJ	1 U	1.3 U	5 U [5 U]	1.3 U [1.3 U]	5 U	3.2 U
Dichlorodifluoromethane	5	ug/L	1 U [1 U]	2.7 U	1 U	2.7 U	5 U [5 U]	2.7 U [2.7 U]	5 U	6.8 U
Ethylbenzene	5	ug/L	1 U [1 U]	3 U	1 U	3 U	5 U [5 U]	3 U [3 U]	4 J	36
Isopropylbenzene	5	ug/L	1 U [1 U]	3.2 U	1 U	3.2 U	5 U [5 U]	3.2 U [3.2 U]	5 U	7.9 U
Methyl acetate		ug/L	1 U [1 U]	2 U	1 U	2 U	5 U [5 U]	2 U [2 U]	5 U	5 U
Methyl tert-butyl ether	10	ug/L	1 U [1 U]	0.64 U	1 U	0.64 U	5 U [5 U]	0.64 U [0.64 U]	5 U	1.6 U
Methylcyclohexane		ug/L	1 U [1 U]	0.64 U	1 U	0.64 U	5 U [5 U]	0.64 U [0.64 U]	5 U	1.6 U
Methylene Chloride	5	ug/L	1 U [1 U]	1.8 U	1 U	1.8 U	4.3 J [3 J]	1.8 U [1.8 U]	5 U	4.4 U
Styrene	5	ug/L	1 U [1 U]	2.9 U	1 U	2.9 U	5 U [5 U]	2.9 U [2.9 U]	5 U	7.3 U

See Notes on Page 4.

Site Characterization National Fuel Gas Distribution Corporation Former Buffalo Service Station - Off-Site Buffalo, NY

Location ID: Date Collected:	NYSDEC TOGS 1.1.1 Standards and Guidance Values	Units	AW-01 08/22/12	AW-01 08/27/13	AW-02 08/22/12	AW-02 08/27/13	AW-03 12/28/12	AW-03 08/27/13	AW-04 12/28/12	AW-04 08/27/13		
Volatile Organics (Cont.)												
Tetrachloroethene	5	ua/L	1 U [1 U]	1.4 U	1 U	1.4 U	5 U [5 U]	1.4 U [1.4 U]	5 U	3.6 U		
Toluene	5	ug/L	1 U [1 U]	2 U	1 U	2 U	5 U [5 U]	2 U [2 U]	5 U	5.1 U		
trans-1,2-Dichloroethene	5	ug/L	1 U [1 U]	3.6 U	1 U	3.6 U	5 U [5 U]	3.6 U [3.6 U]	5 U	9 U		
trans-1,3-Dichloropropene	0.4	ug/L	1 U [1 U]	1.5 U	1 U	1.5 U	5 U [5 U]	1.5 U [1.5 U]	5 U	3.7 U		
Trichloroethene	5	ug/L	1 U [1 U]	1.8 U	1 U	1.8 U	5 U [5 U]	1.8 U [1.8 U]	5 U	4.6 U		
Trichlorofluoromethane	5	ug/L	1 U [1 U]	3.5 U	1 U	3.5 U	5 U [5 U]	3.5 U [3.5 U]	5 U	8.8 U		
Vinyl Chloride	2	ug/L	1 U [1 U]	3.6 U	1 U	3.6 U	5 U [5 U]	3.6 U [3.6 U]	5 U	9 U		
Xylenes (total)	5	ug/L	2 U [2 U]	2.6 U	2 U	2.6 U	10 U [10 U]	2.6 U [2.6 U]	10 U	8.9 J		
Total BTEX		ug/L	0.58 J [0.55 J]	ND	ND	ND	12 [12]	4.8 [4.9]	174 J	354.9 J		
Total VOCs		ug/L	0.58 J [0.55 J]	ND	ND	ND	16.3 J [15 J]	4.8 [4.9]	174 J	354.9 J		
Semivolatile Organics							-		•			
1,1'-Biphenyl	5	ug/L	4.7 U [4.7 U]	0.62 U	4.8 U	0.6 U	4.5 J [4.4 J]	1.2 J [1.1 J]	4.7 U	0.62 U		
2,2'-Oxybis(1-Chloropropane)	5	ug/L	4.7 U [4.7 U]	0.49 U	4.8 U	0.48 U	5 U [5 U]	0.49 U [0.5 U]	4.7 U	0.49 U		
2,4,5-Trichlorophenol		ug/L	4.7 U [4.7 U]	0.45 U	4.8 U	0.44 U	5 U [5 U]	0.45 U [0.46 U]	4.7 U	0.45 U		
2,4,6-Trichlorophenol		ug/L	4.7 U [4.7 U]	0.58 U	4.8 U	0.57 U	5 U [5 U]	0.57 U [0.59 U]	4.7 U	0.58 U		
2,4-Dichlorophenol	5	ug/L	4.7 U [4.7 U]	0.48 U	4.8 U	0.47 U	5 U [5 U]	0.48 U [0.49 U]	4.7 U	0.48 U		
2,4-Dimethylphenol	50	ug/L	4.7 U [4.7 U]	0.47 U	4.8 U	0.46 U	5 U [5 U]	0.47 U [0.48 U]	11 J	14		
2,4-Dinitrophenol	10	ug/L	9.4 U [9.4 U]	2.1 U	9.6 U	2.1 U	9.9 U [9.9 U]	2.1 U [2.1 U]	9.5 U	2.1 U		
2,4-Dinitrotoluene	5	ug/L	4.7 U [4.7 U]	0.42 U	4.8 U	0.41 U	5 U [5 U]	0.42 U [0.43 U]	4.7 U	0.42 U		
2,6-Dinitrotoluene	5	ug/L	4.7 U [4.7 U]	0.38 UJ	4.8 U	0.37 UJ	5 U [5 U]	0.38 UJ [0.39 UJ]	4.7 U	0.38 UJ		
2-Chloronaphthalene	10	ug/L	4.7 U [4.7 U]	0.43 U	4.8 U	0.43 U	5 U [5 U]	0.43 U [0.44 U]	4.7 U	0.43 U		
2-Chlorophenol		ug/L	4.7 U [4.7 U]	0.5 U	4.8 U	0.49 U	5 U [5 U]	0.5 U [0.51 U]	4.7 U	0.5 U		
2-Methylnaphthalene		ug/L	4.7 U [4.7 U]	0.57 U	4.8 U	0.56 U	39 [41]	0.56 U [0.58 U]	1.6 J	0.57 U		
2-Methylphenol		ug/L	4.7 U [4.7 U]	0.38 U	4.8 U	0.37 U	5 U [5 U]	0.38 U [0.39 U]	4.7 UJ	0.38 U		
2-Nitroaniline	5	ug/L	9.4 U [9.4 U]	0.4 U	9.6 U	0.39 U	9.9 U [9.9 U]	0.4 U [0.41 U]	9.5 U	0.4 U		
2-Nitrophenol		ug/L	4.7 U [4.7 U]	0.45 U	4.8 U	0.44 U	5 U [5 U]	0.45 U [0.46 U]	4.7 U	0.45 U		
3,3'-Dichlorobenzidine	5	ug/L	4.7 U [4.7 U]	0.38 U	4.8 U	0.37 U	5 U [5 U]	0.38 U [0.39 U]	4.7 U	0.38 U		
3-Nitroaniline	5	ug/L	9.4 U [9.4 U]	0.45 UJ	9.6 U	0.44 UJ	9.9 U [9.9 U]	0.45 UJ [0.46 UJ]	9.5 U	0.45 UJ		
4,6-Dinitro-2-methylphenol		ug/L	9.4 U [9.4 U]	2.1 U	9.6 U	2 U	9.9 U [9.9 U]	2.1 U [2.1 U]	9.5 U	2.1 U		
4-Bromophenyl-phenylether		ug/L	4.7 U [4.7 U]	0.43 UJ	4.8 U	0.42 UJ	5 U [5 U]	0.42 UJ [0.44 UJ]	4.7 U	0.43 UJ		
4-Chloro-3-Methylphenol		ug/L	4.7 U [4.7 U]	0.43 U	4.8 U	0.42 U	5 U [5 U]	0.42 U [0.44 U]	4.7 U	0.43 U		
4-Chloroaniline	5	ug/L	4.7 U [4.7 U]	0.56 UJ	4.8 U	0.55 UJ	5 U [5 U]	0.55 UJ [0.57 UJ]	4.7 U	0.56 UJ		
4-Chlorophenyl-phenylether		ug/L	4.7 U [4.7 U]	0.33 U	4.8 U	0.32 U	5 U [5 U]	0.33 U [0.34 U]	4.7 U	0.33 U		
4-Methylphenol		ug/L	9.4 U [9.4 U]	0.34 U	9.6 U	0.33 U	9.9 U [9.9 U]	0.34 U [0.35 U]	9.5 U	0.34 U		
4-Nitroaniline	5	ug/L	9.4 U [9.4 U]	0.24 UJ	9.6 U	0.23 UJ	9.9 U [9.9 U]	0.24 UJ [0.24 UJ]	9.5 U	0.24 UJ		
4-Nitrophenol		ug/L	9.4 U [9.4 U]	1.4 U	9.6 U	1.4 U	9.9 U [9.9 U]	1.4 U [1.5 U]	9.5 U	1.4 U		
Acenaphthene	20	ug/L	2.2 J [2 J]	2.7 J	1.1 J	3.3 J	81 [80]	43 [41]	1.9 J	1.8 J		
Acenaphthylene		ug/L	4.7 U [4.7 U]	0.36 U	4.8 U	0.35 U	0.78 J [0.75 J]	0.39 J [0.4 J]	4.7 U	0.36 U		
Acetophenone		ug/L	4.7 U [4.7 U]	0.51 U	4.8 U	0.5 U	5 U [0.96 J]	4.7 UB [0.52 U]	4.7 U	4.7 UB		
Anthracene	50	ug/L	4.7 U [4.7 U]	0.26 U	4.8 U	0.32 J	7.9 [8.3]	5.4 [5]	4.7 U	0.26 U		

See Notes on Page 4.

Site Characterization National Fuel Gas Distribution Corporation Former Buffalo Service Station - Off-Site Buffalo, NY

	NYSDEC									
	TOGS 1.1.1									
Location ID:	Standards and		AW-01	AW-01	AW-02	AW-02	AW-03	AW-03	AW-04	AW-04
Date Collected:	Guidance Values	Units	08/22/12	08/27/13	08/22/12	08/27/13	12/28/12	08/27/13	12/28/12	08/27/13
Semivolatile Organics (Cont.)				•			•			
Atrazine	7.5	ug/L	4.7 U [4.7 U]	0.43 U	4.8 U	0.43 U	5 U [5 U]	0.43 U [0.44 U]	4.7 U	0.43 U
Benzaldehyde		ug/L	4.7 U [4.7 U]	0.43 J	4.8 U	0.31 J	5 U [5 U]	0.44 J [0.41 J]	4.7 U	0.42 J
Benzo(a)anthracene	0.002	ug/L	4.7 U [4.7 U]	0.34 U	4.8 U	0.33 U	5 U [5 U]	0.35 J [0.36 J]	4.7 U	0.34 U
Benzo(a)pyrene		ug/L	4.7 U [4.7 U]	0.44 U	4.8 U	0.44 U	5 U [5 U]	0.44 U [0.45 U]	4.7 U	0.44 U
Benzo(b)fluoranthene	0.002	ug/L	4.7 U [4.7 U]	0.32 U	4.8 U	0.31 U	5 U [5 U]	0.32 U [0.33 U]	4.7 U	0.32 U
Benzo(g,h,i)perylene		ug/L	4.7 U [4.7 U]	0.33 UJ	4.8 U	0.32 U	5 U [5 U]	0.33 U [0.34 U]	4.7 U	0.33 U
Benzo(k)fluoranthene	0.002	ug/L	4.7 U [4.7 U]	0.69 U	4.8 U	0.68 U	5 U [5 U]	0.69 U [0.71 U]	4.7 U	0.69 U
bis(2-Chloroethoxy)methane	5	ug/L	4.7 U [4.7 U]	0.33 U	4.8 U	0.32 U	5 U [5 U]	0.33 U [0.34 U]	4.7 U	0.33 U
bis(2-Chloroethyl)ether		ug/L	4.7 U [4.7 U]	0.38 U	4.8 U	0.37 U	5 U [5 U]	0.38 U [0.39 U]	4.7 U	0.38 U
bis(2-Ethylhexyl)phthalate	5	ug/L	4.7 U [4.7 U]	1.7 U	4.8 U	1.7 U	5 U [5 U]	4.7 UB [1.7 U]	4.7 U	1.7 U
Butylbenzylphthalate	50	ug/L	4.7 U [4.7 U]	0.4 U	4.8 U	0.39 U	5 U [5 U]	0.4 U [0.41 U]	4.7 U	0.4 U
Caprolactam		ug/L	4.7 U [4.7 U]	2.1 U	4.8 U	2 U	5 UJ [5 UJ]	2.1 U [2.1 U]	4.7 UJ	2.1 U
Carbazole		ug/L	4.7 U [4.7 U]	0.28 U	4.8 U	0.71 J	10 [11]	4.7 [4.8]	4.7 U	0.28 U
Chrysene	0.002	ug/L	4.7 U [4.7 U]	0.31 U	4.8 U	0.31 U	5 U [5 Ū]	0.31 U [0.32 U]	4.7 U	0.31 U
Dibenzo(a,h)anthracene		ug/L	4.7 U [4.7 U]	0.4 UJ	4.8 U	0.39 U	5 U [5 U]	0.4 U [0.41 U]	4.7 U	0.4 U
Dibenzofuran		ug/L	9.4 U [9.4 U]	0.48 U	9.6 U	0.79 J	41 [40]	17 [16]	9.5 U	0.48 U
Diethylphthalate	50	ug/L	4.7 U [4.7 U]	0.21 U	4.8 U	0.2 U	5 U [5 U]	0.21 U [0.21 U]	4.7 U	0.21 U
Dimethylphthalate	50	ug/L	4.7 U [4.7 U]	0.34 U	4.8 U	0.33 U	5 U [5 U]	0.34 U [0.35 U]	4.7 U	0.34 U
Di-n-Butylphthalate	50	ug/L	4.7 U [4.7 U]	0.4 J	4.8 U	0.48 J	5 U [5 U]	0.51 J [0.66 J]	4.7 U	0.57 J
Di-n-Octylphthalate	50	ug/L	1.9 J [4.7 U]	0.44 U	4.8 U	0.44 U	5 U [5 U]	0.44 U [0.45 U]	4.7 U	0.44 U
Fluoranthene	50	ug/L	4.7 U [4.7 U]	0.38 U	4.8 U	1.6 J	6.7 [6.6]	6.2 [5.9]	4.7 U	0.38 U
Fluorene	50	ug/L	4.7 U [4.7 U]	0.34 U	4.8 U	0.9 J	47 [45]	23 [23]	4.7 U	0.34 U
Hexachlorobenzene	0.04	ug/L	4.7 U [4.7 U]	0.48 U	4.8 U	0.47 U	5 U [5 Ū]	0.48 U [0.49 U]	4.7 U	0.48 U
Hexachlorobutadiene	0.5	ug/L	4.7 U [4.7 U]	0.64 U	4.8 U	0.63 U	5 U [5 U]	0.64 U [0.66 U]	4.7 U	0.64 U
Hexachlorocyclopentadiene	5	ug/L	4.7 U [4.7 U]	0.56 U	4.8 U	0.55 U	5 U [5 U]	0.55 U [0.57 U]	4.7 U	0.56 U
Hexachloroethane	5	ug/L	4.7 U [4.7 U]	0.56 U	4.8 U	0.55 U	5 U [5 U]	0.55 U [0.57 U]	4.7 U	0.56 U
Indeno(1,2,3-cd)pyrene	0.002	ug/L	4.7 U [4.7 U]	0.44 UJ	4.8 U	0.44 U	5 U [5 U]	0.44 U [0.45 U]	4.7 U	0.44 U
Isophorone	50	ug/L	4.7 U [4.7 U]	0.41 U	4.8 U	0.4 U	5 U [5 U]	0.4 U [0.42 U]	4.7 U	0.41 U
Naphthalene	10	ug/L	4.7 U [4.7 U]	0.72 U	1.4 J	0.7 U	4.9 J [4.6 J]	0.71 U [0.73 U]	3.6 J	12
Nitrobenzene	0.4	ug/L	4.7 U [4.7 U]	0.27 U	4.8 U	0.27 U	5 U [5 U]	0.27 U [0.28 U]	4.7 U	0.27 U
N-Nitroso-di-n-propylamine		ug/L	4.7 U [4.7 U]	0.51 U	4.8 U	0.5 U	5 U [5 U]	0.51 U [0.52 U]	4.7 U	0.51 U
N-Nitrosodiphenylamine	50	ug/L	4.7 U [4.7 U]	0.48 U	4.8 U	0.47 U	5 U [5 U]	0.48 U [0.49 U]	4.7 U	0.48 U
Pentachlorophenol	1	ug/L	9.4 U [9.4 U]	2.1 U	9.6 U	2 U	9.9 U [9.9 U]	2.1 U [2.1 U]	9.5 U	2.1 U
Phenanthrene	50	ug/L	4.7 U [4.7 U]	4.7 UB	4.8 U	4.6 UB	45 [46]	23 [23]	4.7 U	0.42 U
Phenol	1	ug/L	4.7 U [4.7 U]	0.37 U	4.8 U	0.36 U	5 U [5 U]	0.37 U [0.38 U]	4.7 U	4.1 J
Pyrene	50	ug/L	4.7 U [4.7 U]	0.32 U	0.59 J	0.74 J	3.7 J [3.6 J]	2.4 J [2.6 J]	4.7 U	0.32 U
Total PAHs		ug/L	2.2 J [2 J]	2.7 J	3.09 J	6.86 J	235.98 J [235.85 J]	103.74 J [101.26 J]	7.1 J	17.9 J
Total SVOCs		ug/L	4.1 J [6.7 J]	3.53 J	3.09 J	9.15 J	291.48 J [292.21 J]	127.59 J [124.23 J]	18.1 J	32.89 J

See Notes on Page 4.

Site Characterization National Fuel Gas Distribution Corporation Former Buffalo Service Station - Off-Site Buffalo, NY

Location ID: Date Collected:		Units	AW-01 08/22/12	AW-01 08/27/13	AW-02 08/22/12	AW-02 08/27/13	AW-03 12/28/12	AW-03 08/27/13	AW-04 12/28/12	AW-04 08/27/13
Inorganics										
Aluminum		mg/L	0.071 J [0.086 J]	0.06 U	0.3	0.11 J	0.2 U [0.2 U]	0.06 U [0.06 U]	2.2	0.064 J
Antimony	0.003	mg/L	0.02 U [0.02 U]	0.0068 U	0.02 U	0.0068 U	0.02 U [0.02 U] 0.0068 U [0.0068 U]		0.02 U	0.0068 U
Arsenic	0.025	mg/L	0.01 U [0.01 U]	0.0056 U	0.01 U	0.0056 U	0.0085 J [0.0058 J]	0.0076 J [0.0056 U]	0.01 U	0.0056 U
Barium	1	mg/L	0.052 [0.052]	0.051	1.8	0.53	0.094 [0.094]	0.063 [0.063]	1.1	0.7
Beryllium	0.003	mg/L	0.002 U [0.002 U]	0.0003 U	0.002 U	0.0003 U	0.002 U [0.002 U]	0.0003 U [0.0003 U]	0.002 U	0.0003 U
Cadmium	0.005	mg/L	0.001 U [0.00053 J]	0.0005 U	0.001 U	0.0005 U	0.001 U [0.001 U]	0.0005 U [0.0005 U]	0.001 U	0.0005 U
Calcium		mg/L	294 [301]	344	376	183	373 [372]	245 [243]	453	374
Chromium	0.05	mg/L	0.004 U [0.004 U]	0.0018 J	0.0019 J	0.0015 J	0.0025 J [0.0028 J]	0.0021 J [0.0022 J]	0.0046	0.0023 J
Cobalt		mg/L	0.004 U [0.00071 J]	0.00071 J	0.0039 J	0.00063 U	0.00068 J [0.004 U]	0.00063 U [0.00063 U]	0.00094 J	0.00063 U
Copper	0.2	mg/L	0.01 U [0.0022 J]	0.002 J	0.0031 J	0.002 J	0.0024 J [0.01 U]	0.0016 U [0.0017 J]	0.0037 J	0.0024 J
Iron	0.3	mg/L	15.1 [15.3]	11.9	7.6	0.32 UB	15.5 [15.4]	16.3 [16.1]	15.9	14.1
Lead	0.025	mg/L	0.005 U [0.005 U]	0.003 U	0.0095	0.003 U	0.005 U [0.005 U]	0.003 U [0.003 U]	0.005 U	0.003 U
Magnesium	35	mg/L	19.6 [19.7]	19.9	68.2	32	23 [22.8]	13.8 [13.6]	83.2	64.4
Manganese	0.3	mg/L	0.77 [0.78]	0.8	0.71	0.38	1.4 [1.4]	0.76 [0.75]	0.83	0.75
Mercury	0.0007	mg/L	0.0002 U [0.0002 U]	0.00012 U	0.0002 U	0.00012 U	0.0002 U [0.0002 U]	0.00012 U [0.00012 U]	0.0002 U	0.00012 U
Nickel	0.1	mg/L	0.01 U [0.01 U]	0.0013 U	0.01 U	0.0013 U	0.01 U [0.01 U]	0.0013 U [0.0013 U]	0.0026 J	0.0013 U
Potassium		mg/L	9.7 [9.7]	11.4	19.5	16.3	11.4 [11.2]	10.1 [10]	49.8	46.8
Selenium	0.01	mg/L	0.015 U [0.015 U]	0.0087 U	0.015 U	0.0087 U	0.015 U [0.015 U]	0.0087 U [0.0087 U]	0.015 U	0.0087 U
Silver	0.05	mg/L	0.003 U [0.003 U]	0.0017 U	0.003 U	0.0017 U	0.003 U [0.003 U]	0.0017 U [0.0017 U]	0.003 U	0.0017 U
Sodium	20	mg/L	498 [504]	521	8,090	764	352 [351]	341 [337]	649	631
Thallium	0.0005	mg/L	0.02 U [0.02 U]	0.01 U	0.02 U	0.01 U	0.02 U [0.02 U]	0.01 U [0.01 U]	0.02 U	0.01 U
Vanadium		mg/L	0.0041 J [0.0047 J]	0.0025 J	0.0042 J	0.0015 U	0.0036 J [0.0037 J]	0.0029 J [0.0028 J]	0.0091	0.0057
Zinc	2	mg/L	0.0034 J [0.0026 J]	0.0015 U	0.014	0.01 UB	0.0024 J [0.0024 J]	0.01 UB [0.01 UB]	0.011	0.01 UB
Miscellaneous										
Cyanide	0.2	mg/L	0.088 J [0.063 J]	0.087	0.02 UBJ	0.005 U	0.11 [0.093 J]	0.11 [0.1]	0.011 J	0.064
Cyanide, Free		mg/L	0.002 UB [0.002 UB]	NA	0.002 U	NA	0.005 U [0.0016 J]	NA	0.005 U	NA

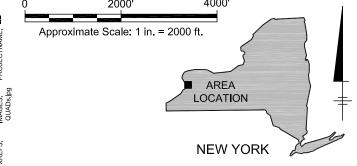
Notes:

NYSDEC TOGS 1.1.1 Water Standards and Guidance Value exceedances are shaded.

ug/L - micrograms per liter; mg/L = milligrams per liter.

Bolded values are detected.

- [] Bracketed results represent a duplicate sample.
- B: Analyte was also detected in the associated method blank.
- J: Indicates an estimated value.


ND: None detected.

U: The compound was analyzed for but not detected. The associated value is the compound quantitation limit.

NA: Not Available/Not Applicable.

Figures

BY: ALLEN, ROYCE

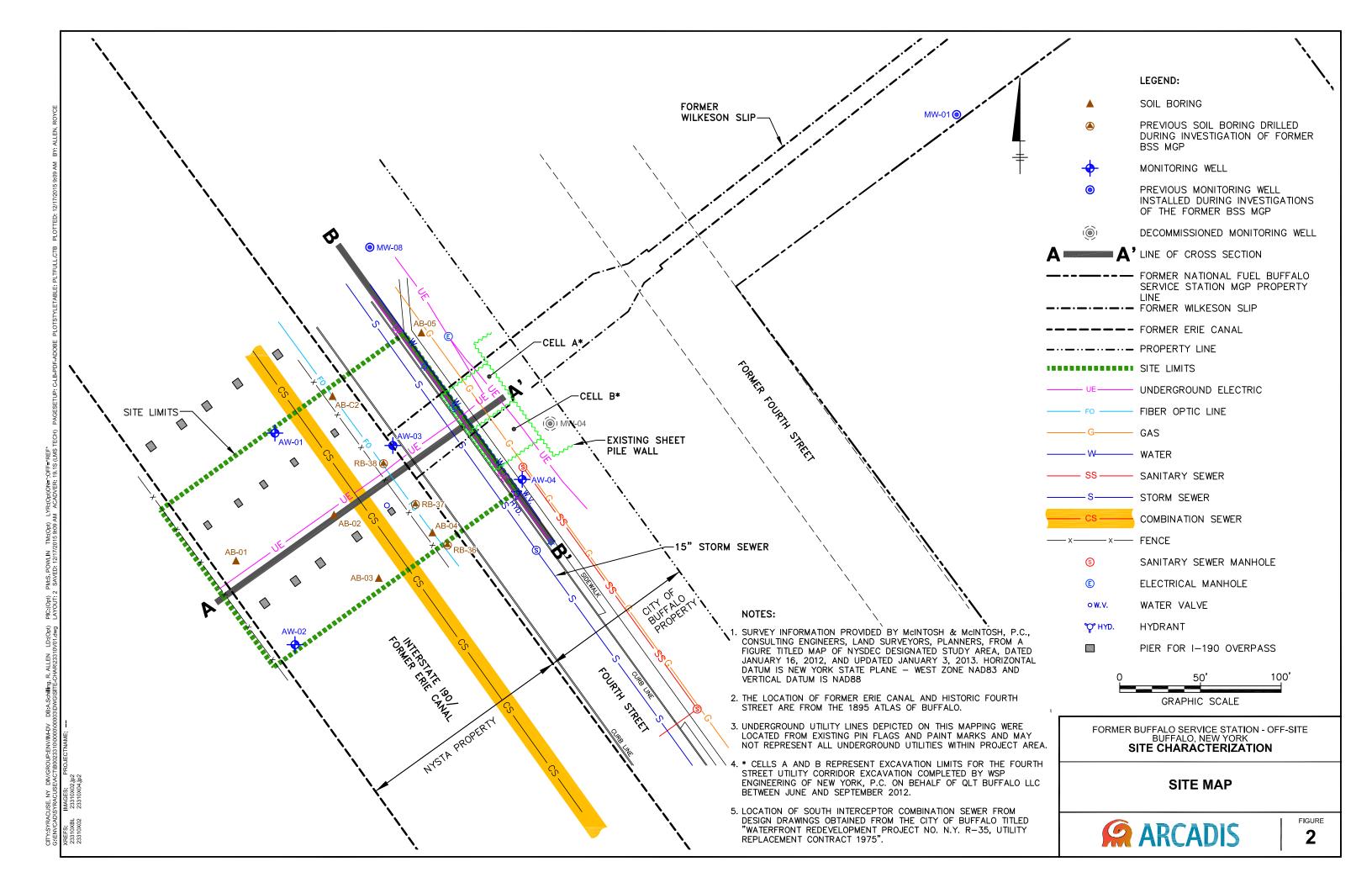
PLOTTED: 12/17/2015 9:06 AM

PAGESETUP: -- PLOTSTYLETABLE: PLTFULL.CTB

PM:S. POWLIN TM:(Opt) LYR:(Opt)ON=*;OFF=*REF* SAVED: 12/17/2015 9:05 AM ACADVER: 19:1S (LMS TECH)

PIC:(Opt) LAYOUT: 1

, NY DIV/GROUP:ENV/IM-DV DB:D. HOWES , R. ALLEN LD:(Opt) ACUSE/ACT/B0023310\0000003\DWG\SITE-CHAR\23310\0014\u00f99


FORMER BUFFALO SERVICE STATION - OFF-SITE BUFFALO, NEW YORK SITE CHARACTERIZATION

SITE LOCATION MAP

FIGURE

1

WELL OR BORING ID

GROUND SURFACE

GROUNDWATER ELEVATION (2/18/13)

LITHOLOGIC CONTACT (DASHED WHERE INFERRED)

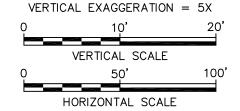
FILL AND NATIVE SOIL CONTACT

SCREEN

BOTTOM OF BORING

COAL TAR

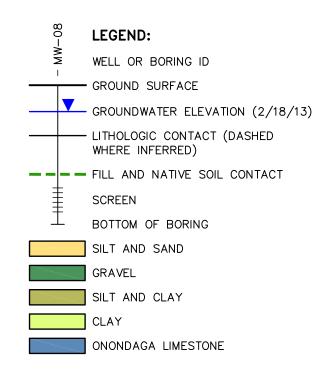
FINE TO COARSE SAND AND GRAVEL


SILT AND SAND

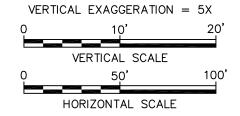
SILT AND CLAY

ONONDAGA LIMESTONE

NOTE:

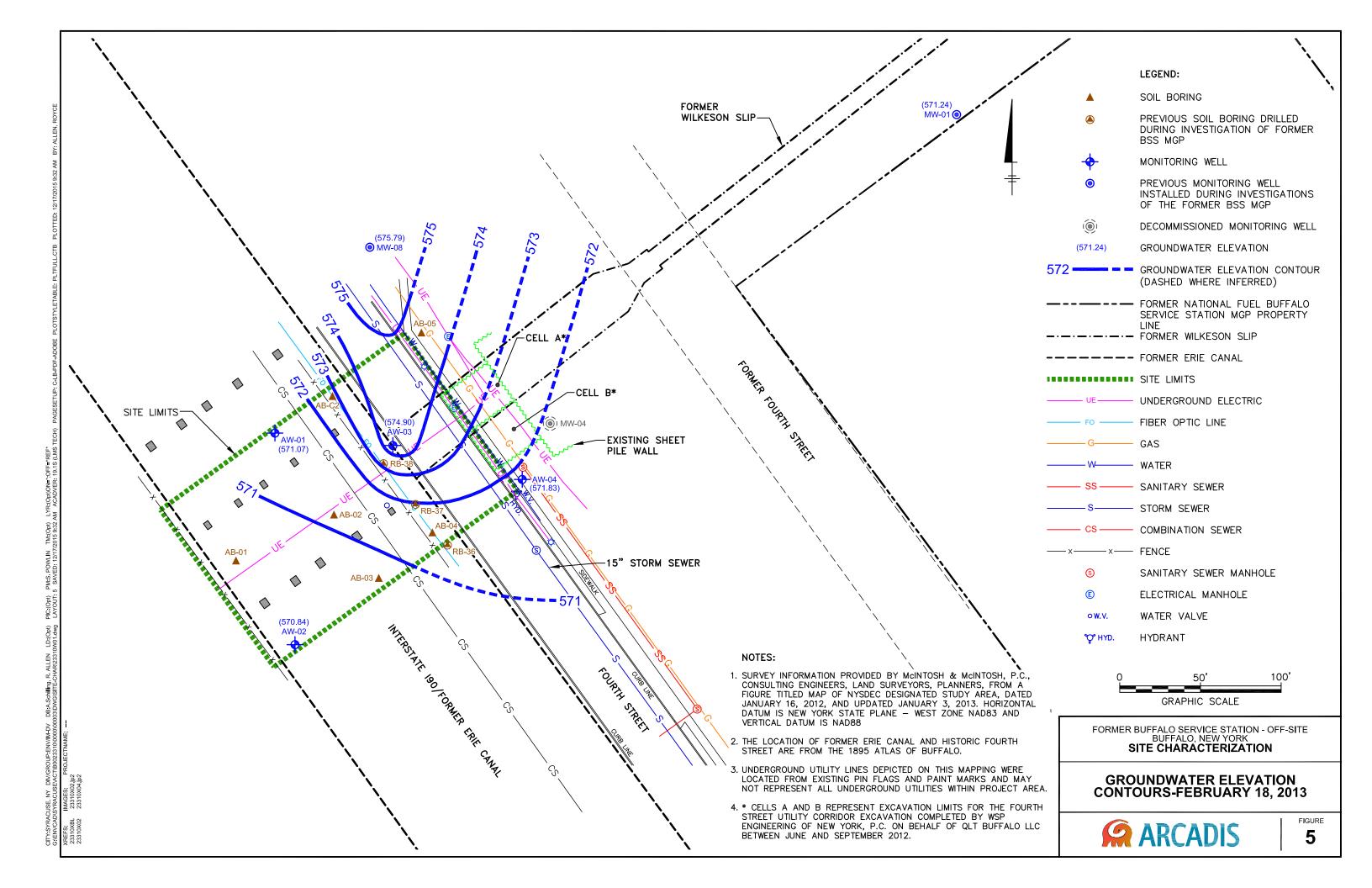

- * CELL A REPRESENTS EXCAVATION LIMITS FOR THE FOURTH STREET UTILITY CORRIDOR EXCAVATION COMPLETED BY WSP ENGINEERING OF NEW YORK, P.C. ON BEHALF OF QLT BUFFALO LLC BETWEEN JUNE AND SEPTEMBER 2012.
- 2. SURVEY INFORMATION PROVIDED BY McINTOSH & McINTOSH, P.C., CONSULTING ENGINEERS, LAND SURVEYORS, PLANNERS, FROM A FIGURE TITLED MAP OF NYSDEC DESIGNATED STUDY AREA, DATED JANUARY 16, 2012, AND UPDATED JANUARY 3, 2013. HORIZONTAL DATUM IS NEW YORK STATE PLANE WEST ZONE NAD83 AND VERTICAL DATUM IS NAD88.
- 3. LOCATION OF SOUTH INTERCEPTOR COMBINATION SEWER FROM DESIGN DRAWINGS OBTAINED FROM THE CITY OF BUFFALO TITLED "WATERFRONT REDEVELOPMENT PROJECT NO. N.Y. R-35, UTILITY REPLACEMENT CONTRACT 1975".

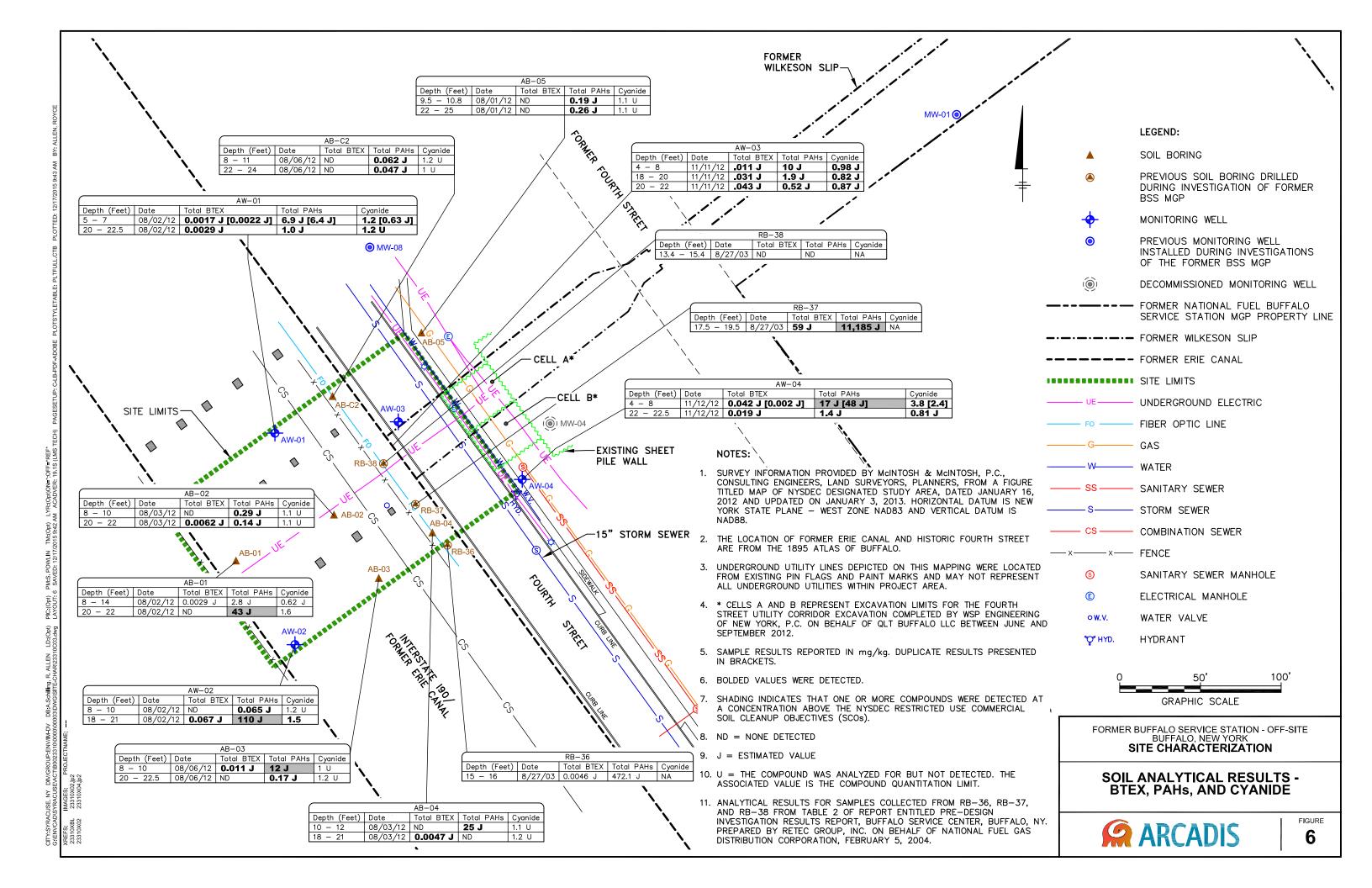
FORMER BUFFALO SERVICE STATION - OFF-SITE BUFFALO, NEW YORK
SITE CHARACTERIZATION

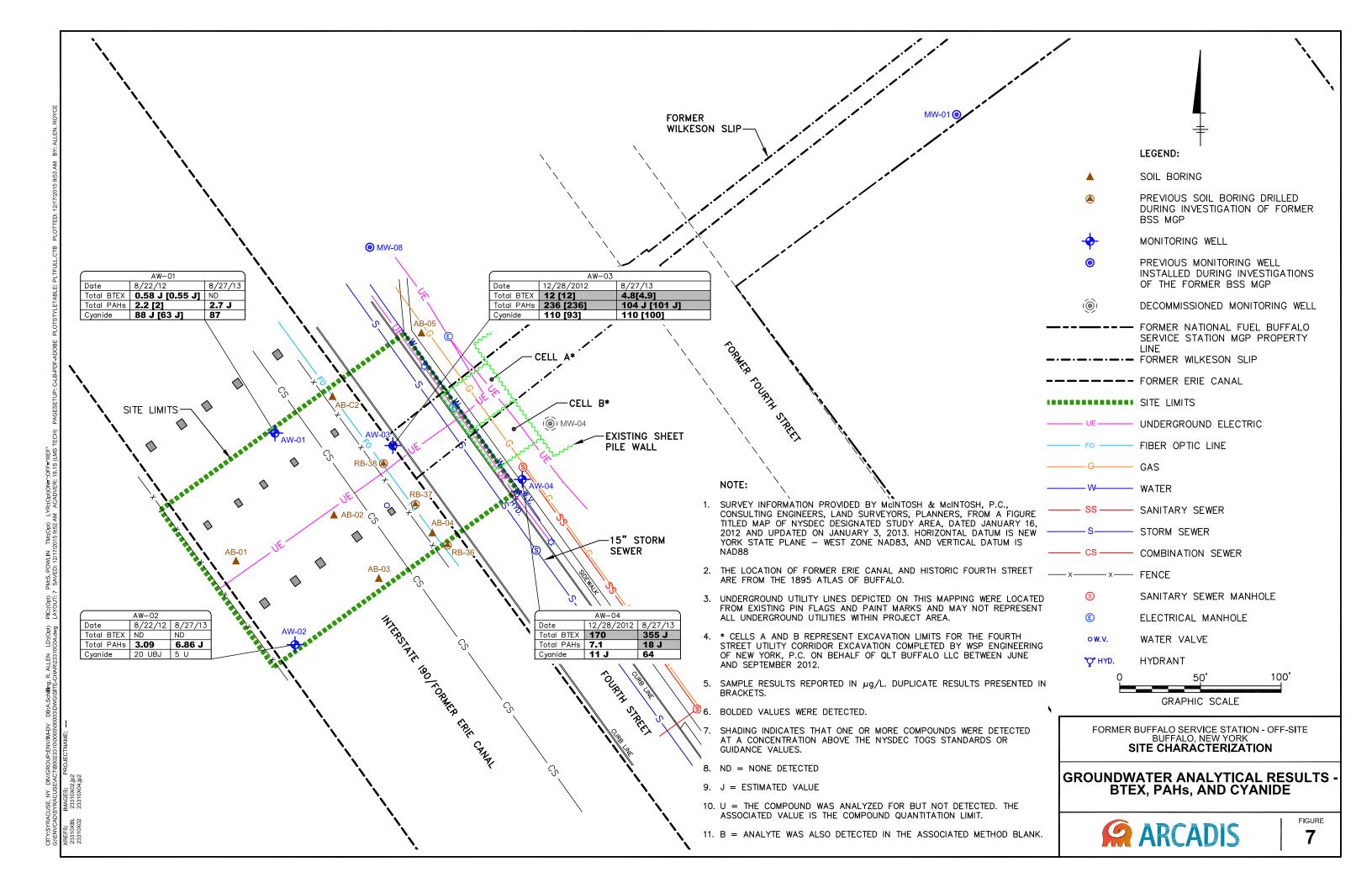

CROSS SECTION A-A'

NOTE:

- 1. * CELLS A AND B REPRESENT EXCAVATION LIMITS FOR THE FOURTH STREET UTILITY CORRIDOR EXCAVATION COMPLETED BY WSP ENGINEERING OF NEW YORK, P.C. ON BEHALF OF QLT BUFFALO LLC BETWEEN JUNE AND SEPTEMBER 2012.
- 2. SURVEY INFORMATION PROVIDED BY McINTOSH & McINTOSH, P.C., CONSULTING ENGINEERS, LAND SURVEYORS, PLANNERS, FROM A FIGURE TITLED MAP OF NYSDEC DESIGNATED STUDY AREA, DATED JANUARY 16, 2012, AND UPDATED JANUARY 3, 2013. HORIZONTAL DATUM IS NEW YORK STATE PLANE - WEST ZONE NAD83 AND VERTICAL DATUM IS NAD88




FORMER BUFFALO SERVICE STATION - OFF-SITE BUFFALO, NEW YORK
SITE CHARACTERIZATION


CROSS SECTION B-B'

4

Appendix A

Soil Boring and Monitoring Well Construction Logs

Date Start/Finish: 7/31-8/2/2012 Drilling Company: Parratt Wolff, Inc. Driller's Name: Layne Pech Drilling Method: Hollow Stem Auger Sampling Method: 2" / 3" x 2' Split Spoon
Rig Type: Truck Mounted IRA300/Percussion Hamme

Northing: 1051493.38 Easting: 1067397.49 Casing Elevation: NA

Borehole Depth: 22' bgs

Surface Elevation: 579.88' AMSL

Descriptions By: Nicholas (Klaus) Beyrle

Well/Boring ID: AB-01

Client: National Fuel

Location: Former Wilkson Slip/Canal Area

Buffalo, NY

DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Analytical Sample	Geologic Column	Stratigraphic Description	Well/Boring Construction		
-	- - 580 -										
-	_	NA	0-2	NA	0.0			Dark gray to black fine to coarse SAND and very fine to medium subrounded to subangular GRAVEL, little Silt, little-trace Boulders. [FILL]			
-	_	NA	2-4	NA	0.0	-		Trace Brick fragments at 2-4' bgs.			
	575 -	NA	4-5	NA	NA						
	_	NA	5-6	0.1	NA			NO RECOVERY. ROCK in spoon tip.			
_	_	1	6-8	0.0	NA						
_ 10	- 570 -	2	8-10	0.4	0.0			Brown CLAY, some Silt, little fine to medium Gravel, wet. Water table at 8' bgs. [FILL]			Borehole tremie- grouted to grade with cement/bentonite grout.
-	_	3	10-12	0.3	0.0			Gray broken ROCK fragments, wet. [FILL]			
-	_	4	12-14	0.8	0.0			Brown CLAY and fine to coarse GRAVEL, soft, wet. [FILL]			
- 15	565 - -	5	14-16	0.3	1.3			Very coarse angular GRAVEL covered in brown Silty CLAY. Black/dark gray Clayey SILT in tip of shoe, slight odor. Remarks: bgs = below ground surface; NA = Not Applicable.			

Remarks: Level

Samples collected from 8-14' bgs as AB-01 (8-14) and from 20-21' bgs as AB-01 (20-21) for analysis of TCL VOC, TCL SVOC, Cyanide, Free Cyanide, Mercury, TAL Metals.

Soil boring was hand-cleared to 5' bgs prior to drilling.

Client: National Fuel Well/Boring ID: AB-01

Site Location:

Former Wilkson Slip/Canal Area Buffalo, NY

Borehole Depth: 22' bgs

DEРТН	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Analytical Sample	Geologic Column	Stratigraphic Description	Well/Boring Construction
_	-	6	16-18	0.6	0.0			Black to dark gray Clayey SILT and medium to very coarse angular GRAVEL, trace Fiber, soft, slight odor, moist.	
_ 20	- 560 -	7	18-20	1.0	0.0			Black/dark gray/gray Clayey SILT, trace Rootlets and Fiber, soft, low plasticity, moist.	Borehole tremie- grouted to grade with cement/bentonite
-	_	8	20-22	0.8	1.6	X		Broken pieces of ROCK (Bedrock), spoon abandonment was at 20.5' bgs (top of weathered rock) and the tone of hammer changed at 21.6' bgs (competent bedrock).	grout.
- 25 30	_							End of boring at 22' bgs.	
— 35	545 -							Demontos, bas = below around surface: NA = Not Applicable	/Available: AMSI = Above Mean Sea
								Remarks: bgs = below ground surface; NA = Not Applicable/ Level	

Infrastructure, environment, buildings

Samples collected from 8-14' bgs as AB-01 (8-14) and from 20-21' bgs as AB-01 (20-21) for analysis of TCL VOC, TCL SVOC, Cyanide, Free Cyanide, Mercury, TAL Metals.

Date Start/Finish: 7/31-8/3/2012 Drilling Company: Parratt Wolff, Inc. Driller's Name: Layne Pech Drilling Method: Hollow Stem Auger Sampling Method: 2" / 3" x 2' Split Spoon
Rig Type: Truck Mounted IRA300/Percussion Hamme

Northing: 1051521.84 Easting: 1067458.21 Casing Elevation: NA

Borehole Depth: 22.2' bgs Surface Elevation: 580.33' AMSL

Descriptions By: Nicholas (Klaus) Beyrle

Well/Boring ID: AB-02

Client: National Fuel

Location: Former Wilkson Slip/Canal Area

Buffalo, NY

DEРТН	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Analytical Sample	Geologic Column	Stratigraphic Description			Well/Boring Construction
-	_										
-	580 -	NA	0-2	NA	0.0			Dark brown SILT and very fine SAND, little Clay and fine to medium angular Gravel, trace medium to very coarse Gravel, moist to dry. [FILL]			
	_	NA	2-4	NA	0.0			Trace red Brick fragments at 2-4' bgs.			
-5	_	NA	4-5	NA	0.0						
	575 —	NA	5-6	0.0	NA		A	NO RECOVERY. Rock in spoon tip.			
-	_	1	6-8	0.4	0.0			Broken ROCK fragments, wet. Water table at 8' bgs. [FILL]			
	_	2	8-10	0.8	0.0			Brown broken ROCK fragments covered in brown SILT, some Clay and very fine to medium angular Gravel, wet. [FILL]			Borehole tremie- grouted to grade with cement/bentonite grout.
- 10	570 –	3	10-12	0.8	0.0			Brown CLAY, little Silt, trace very fine to fine Sand, soft, moist to wet.			
	- -	4	12-14	1.4	0.0						
1!	5 565 –	5	14-16	0.7	0.0			Stiff, Sand is absent at 14-16' bgs. Remarks: bgs = below ground surface; NA = Not Applicable.	(Available:	Δ N 4	ISI - Aboyo Moon Soc

Remarks: Level

Samples collected from 8-10' bgs as AB-02 (8-10) and from 20-22' bgs as AB-02 (20-22) for analysis of TCL VOC, TCL SVOC, Cyanide, Free Cyanide, Mercury, TAL Metals.

Client: National Fuel Well/Boring ID: AB-02

Site Location:

Former Wilkson Slip/Canal Area Buffalo, NY

Borehole Depth: 22.2' bgs

рертн	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Analytical Sample	Geologic Column	Stratigraphic Description	Well/Boring Construction
_	-	6	16-18	0.6	0.0			Brown SILT, trace Clay, very fine Sand and very coarse angular Gravel, fine to medium angular Gravel in tip of shoe.	
	-	7	18-20	1.4	0.0			Brown SILT, trace Clay, very fine Sand and very coarse angular Gravel.	Borehole tremie- grouted to grade with cement/bentonite
_ 20	560 -	8	20-22	0.7	0.0			Dark gray broken ROCK fragments.	grout.
	_	9	22-22.2	0.2	0.0		7.4	BEDROCK. Spoon refusal at 22.2' bgs. End of boring at 22.2' bgs.	
- - - 25	- 555 -								
-	-								

Remarks: bgs = below ground surface; NA = Not Applicable/Available; AMSL = Above Mean Sea Level

Samples collected from 8-10' bgs as AB-02 (8-10) and from 20-22' bgs as AB-02 (20-22) for analysis of TCL VOC, TCL SVOC, Cyanide, Free Cyanide, Mercury, TAL Metals.

Soil boring was hand-cleared to 5' bgs prior to drilling.

Page: 2 of 2

- 35

Date Start/Finish: 7/31-8/6/2012 Drilling Company: Parratt Wolff, Inc. Driller's Name: Layne Pech Drilling Method: Hollow Stem Auger Sampling Method: 2" / 3" x 2' Split Spoon Rig Type: Truck Mounted IRA300/Percussion Hamme

Northing: 1051482.58 Easting: 1067485.96 Casing Elevation: NA

Borehole Depth: 22.5' bgs Surface Elevation: 580.35' AMSL

Descriptions By: Nicholas (Klaus) Beyrle

Well/Boring ID: AB-03

Client: National Fuel

Location: Former Wilkson Slip/Canal Area

Buffalo, NY

DEРТН	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Analytical Sample	Geologic Column	Stratigraphic Description	Well/Boring Construction
-	_								
	580 -	NA	0-2	NA	NA			Fine to very coarse angular GRAVEL. [FILL]	
	-	NA	2-4	NA	NA			Very little matrix amid all the rocks.	
— 5	-	NA	4-5	NA	NA		90 08 08 08 08		
	575 -	NA	5-6	NA	0.0			Brown/black medium to fine SAND and SILT, some very fine to medium subangular Gravel, trace very coarse Gravel, Rock in tip of shoe. [FILL]	
	-	1	6-8	0.9	1.6			ROCK in spoon tip.	Borehole tremie-
- 10	-	2	8-10	0.8	0.0			Brown SILT, trace Clay, wet. Water at 8' bgs. [FILL]	grouted to grade with cement/bentonite grout.
_	570 -	3	10-12	0.5	0.0			Dark brown Clayey SILT, little to trace very fine to medium subrounded to subangular Gravel, low plasticity, soft, moist. [FILL]	
	-	4	12-14	0.7	0.0			COAL. [FILL] Black FRAGMENTS. [FILL]	
_ 15	- 565 -	5	14-16	0.4	0.0			Brown CLAY, high plasticity, stiff, moist.	
	6	Λ	DC	'A1	nic			Remarks: bgs = below ground surface; NA = Not Applicable/ Level Samples collected from 8-10' bgs as AB-03 (8-10)	

22.5) for analysis of TCL VOC, TCL SVOC, Cyanide, Free Cyanide, Mercury, TAL

Client: National Fuel Well/Boring ID: AB-03

Site Location:

Former Wilkson Slip/Canal Area Buffalo, NY

Borehole Depth: 22.5' bgs

DEРТН	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Analytical Sample	Geologic Column	Stratigraphic Description	Well/Boring Construction
		6	16-18	1.1	0.0			Brown CLAY, high plasticity, stiff, moist. Stiff at 16-16.3' bgs and 16.5-16.6' bgs, otherwise medium stiff at 16-18' bgs.	
_ 20	_	7	18-20	0.7	0.0			Stff between 18-20' bgs.	Borehole tremie- grouted to grade with
	560 -	8	20-22	1.4	0.0			Brown CLAY, high plasticity, stiff, moist. Color of CLAY is brown to black at 20.3-21' bgs, white at 21-21.1' bgs and brown at 21.1-21.5' bgs.	cement/bentonite grout.
- - - 25	- - 555 -	9	22-22.5	0.5	0.0	/ \	/ \	Piece of broken rock (BEDROCK). Spoon refusal at 22.5' bgs. End of boring at 22.5' bgs.	
-	_								
- 30	550 -								
- 35	- 545 -								
		Λ	DC	`A1	nic			Remarks: bgs = below ground surface; NA = Not Applicable. Level Samples collected from 8-10' bgs as AB-03 (8-10)) and from 20-22.5' bgs as AB-03 (20-

22.5) for analysis of TCL VOC, TCL SVOC, Cyanide, Free Cyanide, Mercury, TAL Metals.

Date Start/Finish: 8/1-8/3/2012 Drilling Company: Parratt Wolff, Inc. Driller's Name: Layne Pech Drilling Method: Hollow Stem Auger Sampling Method: 2" / 3" x 2' Split Spoon
Rig Type: Truck Mounted IRA300/Percussion Hamme

Northing: 1051510.80 Easting: 1067519.16 Casing Elevation: NA

Borehole Depth: 21' bgs

Surface Elevation: 581.79' AMSL

Descriptions By: Nicholas (Klaus) Beyrle

Well/Boring ID: AB-04

Client: National Fuel

Location: Former Wilkson Slip/Canal Area

Buffalo, NY

ОЕРТН	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Analytical Sample	Geologic Column	Stratigraphic Description	Well/Boring Construction
-	_								
	580 -	NA	0-2	NA	NA			Dark brown fine to coarse SAND, SILT and very fine to medium angular GRAVEL. [FILL]	
-	-	NA	2-4	NA	NA				
- 5	_	NA	4-5	NA	NA				
-	_	NA	5-6	0.5	0.0			Brown fine to coarse SAND and stiff very fine to medium subrounded to subangular GRAVEL, some Silt, moist to dry. [FILL]	
-	575 -	1	6-8	0.5	0.0			Brown/gray SILT, trace Clay and Gravel, soft, moist.	Borehole tremie-
- 10	_	2	8-10	2.0	0.0			Dark brown SILT, some Organic material, trace Wood pieces. Gray/black-gray SILT, medium soft, vein of stained material (2.3 mm wide and 0.2' long), odor at 9.8-10' bgs.	grouted to grade with cement/bentonite grout.
-	- 570 -	3	10-12	1.6	0.0			Gray/black-gray SILT, medium soft, trace areas of black staining with odor, some stains connect to form "veins" ranging from 2-4 mm wide, longest one is 0.2', moist. Gray Silt, little trace Clay, no staining, moist at 11.4-11.6' bgs.	
-	_	4	12-14	0.9	0.0			Trace sheen on water at 12.3-12.45' bgs.	
- 15	-	5	14-16	1.0	0.0			Dark brown Clayey SILT, trace Rootlets and very fine Sand, soft, moist. Gray very fine SAND and SILT.	
			1		1			Remarks: bgs = below ground surface; NA = Not Applicable/	Available; AMSL = Above Mean Sea

Samples collected from 10-12' bgs as AB-04 (10-12) and from 18-21' bgs as AB-04 (18-21) for analysis of TCL VOC, TCL SVOC, Cyanide, Free Cyanide, Mercury, TAL Metals.

Client: National Fuel Well/Boring ID: AB-04

Site Location:

Former Wilkson Slip/Canal Area Buffalo, NY

Borehole Depth: 21' bgs

						-		
DEPTH FI EVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Analytical Sample	Geologic Column	Stratigraphic Description	Well/Boring Construction
565	6	16-18	0.6	0.0			Brown/pink to brown Clayey SILT and very fine SAND, trace very fine to medium subangular Gravel, medium soft, moist.	
	7	18-20	1.2	0.0			Brown/pink-brown SILT, some Clay, little very fine Sand, firm, low plasticity, moist.	Borehole tremie- grouted to grade with cement/bentonite grout.
- 20	8	20-21	0.7	0.0	$]/\setminus$		Brown and gray mottled alternating layers of Silty CLAY and SILT. Silty CLAY layers are approximately 0.02' thick. Brown Clayey SILT, Rock fragments in the tip of shoe, moist at 20.5-20.7' bgs.	
-	_						Spoon refusal at 21' bgs, bedrock at 21' bgs is confirmed by sending auger down the borehole. End of boring at 21' bgs.	
<u>-</u> 25	_							
- 555	: - -							
- 30	-							
_								
-								
— 35	- -							
	a A					dings	Remarks: bgs = below ground surface; NA = Not Applicable/Level Samples collected from 10-12' bgs as AB-04 (10-121) for analysis of TCL VOC, TCL SVOC, Cyanide Soil boring was hand-cleared to 5' bgs prior to drill	2) and from 18-21' bgs as AB-04 (18- e, Free Cyanide, Mercury, TAL Metals.

Date Start/Finish: 7/31-8/1/2012 Drilling Company: Parratt Wolff, Inc. Driller's Name: Layne Pech Drilling Method: Hollow Stem Auger Sampling Method: 2" / 3" x 2' Split Spoon
Rig Type: Truck Mounted IRA300/Percussion Hamme

Northing: 1051634.58 Easting: 1067512.36 Casing Elevation: NA

Borehole Depth: 25' bgs

Surface Elevation: 580.88' AMSL

Descriptions By: Nicholas (Klaus) Beyrle

Well/Boring ID: AB-05

Client: National Fuel

Location: Former Wilkson Slip/Canal Area

Buffalo, NY

DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Analytical Sample	Geologic Column	Stratigraphic Description	Well/E Const	Boring ruction
-	- -									
-	580 —	1	0-2	NA	NA			Coarse GRAVEL and ROAD base on top of geotech fabric. [FILL] CONCRETE. [FILL]		
-	- - -	2	2-4	NA	NA			Dark gray SILT, little Clay, trace very fine to fine Gravel, hard, dense, moist to dry. [FILL]		
— 5	-	3	4-5 5-6	NA NA	NA NA	-		No descriptions recorded.		
-	575 -	5	6-8	0.0	NA NA			No Recovery.		
	-	6	8-10	0.1	0.0	\		Dark gray medium to coarse SAND and Clayey SILT, trace fine to medium rounded Gravel, moist.		Borehole tremie- grouted to grade with cement/bentonite grout.
- 10 -	570 -	7	10-12	1.6	0.0	X		Dark gray SILT, trace Clay, wet at 10-10.8' bgs, saturated at 10.8-11.6' bgs. Water at 10.8' bgs.		
	-	8	12-14	2.0	0.0			Loose between 12-12.8' bgs. Black SILT and ORGANIC material, trace Rootlets. Gray very fine to fine SAND, wet.		
— 15	- 565 -	9	14-16	2.0	0.0			Gray fine SAND, saturated. Brown with gray mottled CLAY, semi-soft, moist.		
	9	A	RC	A	DIS	5		Remarks: bgs = below ground surface; NA = Not Applicable/ Level Samples collected from 9.5-10.8' bgs as AB-05 (9 (22-25) for analysis of TCL VOC, TCL SVOC, Cya Metals.	.5-10.8) and from 22	2-25' bgs as AB-05

Infrastructure, environment, buildings

Client: National Fuel Well/Boring ID: AB-05

Site Location:

Borehole Depth: 25' bgs

Former Wilkson Slip/Canal Are	,
Buffalo, NY	

DEРТН	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Analytical Sample	Geologic Column	Stratigraphic Description	Well/Boring Construction
_	1	10	16-18	2.0	0.0			Gray very fine to fine SAND and SILT, dilatent, saturated.	
_ 20	-	11	18-20	0.6	0.0			Gray fine to very fine SAND and SILT, dilatent, saturated.	
	560 -	12	20-22	2.0	0.0			Brown CLAY, trace Silt, medium stiff. Light gray fine to medium SAND and SILT, little to trace very fine to medium rounded Gravel, soft, moist.	Borehole tremie- grouted to grade with cement/bentonite grout.
	-	13	22-24	0.8	0.0	$\left \right\rangle$			
_ 25	_	14	24-25	0.0	0.0	$\left \right $	\wedge	ROCK fragments, gray fine to medium SAND and SILT. Refusal at 25' bgs. BEDROCK at 25' bgs.	
-	555 -							End of boring at 25' bgs.	
- 30	- 550 -								
-	-								
- 35	- 545 -							Remarks: bgs = below ground surface; NA = Not Applicable/	Available: AMSL = Above Mean See

Remarks: bgs = below ground surface; NA = Not Applicable/Available; AMSL = Above Mean Sea Level

Samples collected from 9.5-10.8' bgs as AB-05 (9.5-10.8) and from 22-25' bgs as AB-05 (22-25) for analysis of TCL VOC, TCL SVOC, Cyanide, Free Cyanide, Mercury, TAL Metals.

Date Start/Finish: 8/1-8/6/2012 Drilling Company: Parratt Wolff, Inc. Driller's Name: Layne Pech Drilling Method: Hollow Stem Auger Sampling Method: 2" / 3" x 2' Split Spoon
Rig Type: Truck Mounted IRA300/Percussion Hamme

Northing: 1051595.26 Easting: 1067457.28 Casing Elevation: NA

Borehole Depth: 24.2' bgs Surface Elevation: 581.63' AMSL

Descriptions By: Nicholas (Klaus) Beyrle

Well/Boring ID: AB-C2

Client: National Fuel

Location: Former Wilkson Slip/Canal Area

Buffalo, NY

ОЕРТН	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Analytical Sample	Geologic Column	Stratigraphic Description	Well/Boring Construction
-	-								
_	580 -	NA	0-2	NA	0.0			TOPSOIL. [FILL] Coarse ASPHALT and ROCK debris. [FILL] CONCRETE. [FILL] Brown Clayey SILT, little to trace fine to medium angular Gravel, trace Boulders,	
-	-	NA	2-4	NA	0.0			moist to dense. [FILL]	
— 5	-	NA NA	4-5 5-6	NA 0.9	0.0	_		Brown fine to coarse SAND and fine to medium subangular GRAVEL, little Silt, dry.	
-	575 -	1	6-8	2.0	0.0			[FILL] Gray SILT, little to trace Clay, trace orange mottling, stiff, moist. Medium stiff at 6.78' bgs. At 7.3, 0.5" wide layer of black Organic material (rootlets).	
-	-	2	8-10	0.2	0.0	V			Borehole tremie- grouted to grade with cement/bentonite grout.
-10	- 570 -	3	10-12	1.7	0.0			Gray SILT, trace Clay, soft, low plasticity, moist. Wet at 11.4-11.7' bgs. Water at 11' bgs.	
	-	4	12-14	1.7	0.0			Little to trace very fine SAND, trace Rootlets, moist to wet at 12-14' bgs.	
— 15	-	5	14-16	1.8	1.3				
	G	A	RC	A	DIS	5		Remarks: bgs = below ground surface; NA = Not Applicable/ Level Samples collected from 8-11' bgs as AB-C2 (8-11 24) for analysis of TCL VOC, TCL SVOC, Cyanide) and from 22-24' bgs as AB-C2 (22-

Soil boring was hand-cleared to 5' bgs prior to drilling.

Infrastructure, environment, buildings

Client: National Fuel Well/Boring ID: AB-C2

Site Location:

Former Wilkson Slip/Canal Area Buffalo, NY

Borehole Depth: 24.2' bgs

DEРТН	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Analytical Sample	Geologic Column	Stratigraphic Description	Well/Boring Construction
-	565 -	6	16-18	1.4	0.0			Gray SILT, trace Clay, soft, low plasticity, moist. Brown SILT, wet.	
	=	7	18-20	1.1	0.0			Red, brown and gray mottled Silty CLAY, stiff, low plasticity.	
_ 20	- 560 -	8	20-22	2.0	0.0			Brown/gray to brown very fine to medium SAND and medium to very coarse rounded GRAVEL, moist.	Borehole tremie- grouted to grade with cement/bentonite grout.
	-	9	22-24	1.8	0.0			ROCK fractured. Spoon refusal at 24.2' bgs.	
— 25	-	10	24-24.2	0.2	NA		/ \	End of boring at 24.2' bgs.	
_	555 –								
-	-								
- 30	- 550 -								
-	-								
- 35	-								
	G	A	RC	A	DIS	5		Remarks: bgs = below ground surface; NA = Not Applicable Level Samples collected from 8-11' bgs as AB-C2 (8-11 24) for analysis of TCL VOC, TCL SVOC, Cyanide) and from 22-24' bgs as AB-C2 (22-

Soil boring was hand-cleared to 5' bgs prior to drilling.

Infrastructure, environment, buildings

Date Start/Finish: 8/1-8/2/2012 Drilling Company: Parratt Wolff, Inc. Driller's Name: Layne Pech Drilling Method: Hollow Stem Auger
Sampling Method: 2" / 3" x 2' Split Spoon
Rig Type: Truck Mounted IRA300/Percussion Hamme

Northing: 1051573.06 Easting: 1067421.63

Casing Elevation: 580.21' AMSL

Borehole Depth: 23.5' bgs Surface Elevation: 580.57' AMSL

Descriptions By: Nicholas (Klaus) Beyrle

Well/Boring ID: AW-01

Client: National Fuel

Location: Former Wilkson Slip/Canal Area

Buffalo, NY

DEРТН	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Analytical Sample	Geologic Column	Stratigraphic Description	Well/B Constr	-
-	1 1									Steel flushmount cover Locking J-Plug
_	580 -	NA	0-2	NA	0.0			Coarse GRAVEL/ASPHALT. [FILL] COBBLES (Limestone). [FILL]		Concrete Pad (0- 0.5' bgs) — Sand Drain (0.5- 1.5' bgs)
	-	NA	2-4	NA	NA			Mainly large COBBLES and BRICK, very little matrix of dark gray/brown fine to coarse Sand and Silt and very fine to medium gravel, moist to dry. [FILL]		
-5	-	NA	4-5	NA	NA	\ /		Gray very fine to coarse angular GRAVEL and medium to coarse SAND, trace fine		N 10
-	575 - -	NA	5-7	2.0	0.0			Sand and Silt, dry. [FILL] Brown very fine to medium SAND, trace fine to medium rounded Gravel, dry to moist. [FILL]		Neat Cement Grout (1.5-9.5' bgs)
-	_	1	7-8	0.0	NA			Brown/tan brown CLAY, trace Silt and very fine Gravel, plasticity, medium stiff, moist. [FILL] NO RECOVERY.		—— 2" Sch 40 PVC Riser (0.5-13.5' bgs)
_	-	2	8-10	0.0	NA			NO RECOVERY. Rock in tip of shoe. [FILL]		
<u> </u>	570 - -	3	10-12	0.05	0.0			Brown very fine to medium GRAVEL and fine to coarse SAND, dry. Water on rods at about 10' bgs. [FILL]	<u> </u>	Bentonite Pellets (9.5-11.5' bgs)
_	-	4	12-14	0.3	0.0			Brown very fine to medium GRAVEL and fine to coarse SAND, some Silt, little to trace Clay, brittle, dry. Spoons are pushing material out of way easily. [FILL]		—— #0 Silica Sand
- 15	- 565 -	5	14-16	0.3	0.0			Brown CLAY, some Silt, trace very fine Sand and fine to medium Gravel, moist.		Pack (11.5-23.5' bgs) — 2" Sch 40 PVC 0.010" Slot Screen (13.5- 23.5' bgs)
			RC				dings	Remarks: bgs = below ground surface; NA = Not Applicable/Level Samples collected from 5-7' bgs as AW-01 (5-7) a 22.5) for analysis of TCL VOC, TCL SVOC, Cyani Metals.	nd from 20-22.5' bgs	s as AW-01 (20-

Client: National Fuel Well/Boring ID: AW-01

Site Location:

ea

Borehole Depth: 23.5' bgs

Former Wilkson Slip/Canal	Are
Buffalo, NY	

DЕРТН	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Analytical Sample	Geologic Column	Stratigraphic Description	Well/Boring Construction
		6	16-18	1.3	0.0			Brown CLAY, some Silt, trace very fine Sand and fine to medium Gravel, moist. Brown/Black varved SILT, trace very fine Sand and Clay, medium stiff, moist.	#0 Silica Sand Pack (11.5-23.5' bgs)
	-	7	18-20	1.4	0.0			Brown/gray CLAY, trace Silt and fine to medium rounded Gravel, soft, moist.	2" Sch 40 PVC 0.010" Slot Screen (13.5-
<u>-</u> 20	560 - -	8	20-22	0.4	0.0	Image: Control of the			23.5' bgs)
	-	9	22-23.5	0.6	0.0]/\	 	Broken ROCK fragments. Spoon refusal at 22.5' bgs. Augers sent down to 23.5' bgs, BEDROCK at 23.5' bgs.	
_ 25 _	- 555 -							End of boring at 23.5' bgs.	
- 30	550 —								
- - - 35	- - 545 -							Demonto, bas = below ground surface: NA = Not Applicable	

Remarks: bgs = below ground surface; NA = Not Applicable/Available; AMSL = Above Mean Sea Level

Samples collected from 5-7' bgs as AW-01 (5-7) and from 20-22.5' bgs as AW-01 (20-22.5) for analysis of TCL VOC, TCL SVOC, Cyanide, Free Cyanide, Mercury, TAL

Date Start/Finish: 7/31-8/2/2012 Drilling Company: Parratt Wolff, Inc. Driller's Name: Layne Pech Drilling Method: Hollow Stem Auger Sampling Method: 2" / 3" x 2' Split Spoon
Rig Type: Truck Mounted IRA300/Percussion Hamme

Northing: 1051442.05 Easting: 1067434.05

Casing Elevation: 580.22' AMSL

Borehole Depth: 21' bgs Surface Elevation: 580.50' AMSL

Descriptions By: Nicholas (Klaus) Beyrle

Well/Boring ID: AW-02

Client: National Fuel

Location: Former Wilkson Slip/Canal Area

Buffalo, NY

ОЕРТН	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Analytical Sample	Geologic Column	Stratigraphic Description	Well/Bori Construct	-
-	- - -									- Steel flushmount cover - Locking J-Plug
-	580 -	NA	0-2	NA	0.0			Dark brown to black CLAY and SILT, some fine to coarse angular Gravel, trace Boulders. Coarse GRAVEL and ASPHALT between 0-1' bgs. [FILL]		Concrete Pad (0- 0.5' bgs)Sand Drain (0.5- 1' bgs)
-	-	NA	2-4	NA	0.0	-	00000	Dark brown to black fine to coarse SAND and fine to very coarse GRAVEL, trace Silt, dry to moist. [FILL]		Neat Cement
5	- 575 -	NA NA	4-5 5-6	NA 0.25	0.0			ROCK fragments in tip of shoe, dry. [FILL]		Grout (1-7' bgs) - 2" Sch 40 PVC
	-	1	6-8	0.2	0.0	=				Riser (0.5-11' bgs)
_	-	2	8-10	1.1	0.0			Black Silty CLAY, trace medium to fine angular Gravel, soft, medium plasticity, moist. [FILL]	0000	- Bentonite Pellets (7-9' bgs)
<u>-</u> 10	570 -	3	10-12	0.2	0.0			Brown CLAY, fine to coarse angular Gravel, wet. Water table at 10' bgs.		
_	-	4	12-14	1.6	0.0	-		Brown CLAY, some Silt, little to trace fine to medium angular Gravel, trace medium sand between 12.5-12.9' bgs, soft.		 #0 Silica Sand Pack (9-21' bgs) 2" Sch 40 PVC 0.010" Slot
_ 15	- 565 -	5	14-16	2.0	6.4	-		Brown between14-14.3' bgs and black between 14.3-16' bgs Clayey SILT, trace very fine Sand and tiny Fibers throughout, soft, slight odor, moist.		Screen (11-21' bgs)
	G	A	RC	A	DIS	5		Remarks: bgs = below ground surface; NA = Not Applicable/ Level Samples collected from 8-10' bgs as AW-02 (8-10 21) for analysis of TCL VOC, TCL SVOC, Cyanide) and from 18-21' bgs a	s AW-02 (18-

Soil boring was hand-cleared to 5' bgs prior to drilling.

Infrastructure, environment, buildings

Client: National Fuel Well/Boring ID: AW-02

Site Location:

Former Wilkson Slip/Canal Area

Buffalo, NY

Borehole Depth: 21' bgs

ОЕРТН	ELEVATION	ELEVATION Sample Run Number Sample/Int/Type Recovery (feet) PID Headspace (ppm) Analytical Sample Geologic Column				Analytical Sample	Geologic Column	Stratigraphic Description	Well/Boring Construction
	-	6	16-18	1.4	4.8			Brown at 14-14.3' bgs and black at 14.3-16' bgs Clayey SILT, trace very fine Sand and tiny Fibers throughout, soft, slight odor, moist. Piece of wood in shoe, smells like Pine at 16-17.1' bgs.	#0 Silica Sand Pack (9-21' bgs)
	-	7	18-20	1.0	14.1	V		No wood, trace fine fibers still present at 18-20' bgs.	2" Sch 40 PVC 0.010" Slot Screen (11-21'
- 20 -	560 –	8	20-21	0.4	9.6			Some of the fibers are little longer and appear to be wood. Spoon refusal at 21' bgs. End of boring at 21' bgs.	bgs)
	_								
	-								
<u>-</u> 25	555 –								
	-								
	-								
- 30	550 -								
	_								
	-								
- 35	545 -							Remarks: bgs = below ground surface; NA = Not Applicable	Available; AMSL = Above Mean Sea

Remarks: bgs = Level

Samples collected from 8-10' bgs as AW-02 (8-10) and from 18-21' bgs as AW-02 (18-21) for analysis of TCL VOC, TCL SVOC, Cyanide, Free Cyanide, Mercury, TAL Metals.

Date Start/Finish: 11/11/12 Drilling Company: Parrott Wolff Driller's Name: Shawn Bodah Drilling Method: Direct Push

Drilling Method: Direct Push
Sampling Method: 2" / 3" x 2' Split Spoon
Rig Type: Truck Mounted Geoprobe

Northing: 1051565.39 Easting: 1067494.69

Casing Elevation: 581.44' AMSL

Borehole Depth: 23.5' bgs **Surface Elevation:** 581.96' AMSL

Descriptions By: Jeff Brayer

Well/Boring ID: AW-03

Client: National Fuel

Location: Former Wilkson Slip/Canal Area

Buffalo, NY

рертн	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Analytical Sample	Geologic Column	Stratigraphic Description	Well/Boring Construction
-	1 1								Steel Flush Mount Curb Box
-	- 580 -							Brown crushed CONCRETE, SLAG-like material and SAND, some Silt and Organics, moist. [FILL] Brown crushed CONCRETE, SLAG-like material and SAND, some Silt and Cobble,	Locking J-Plug Sand Drain
-	-	1	NA	NA	0.0	7	×0100000000000000000000000000000000000	moist. [FILL] Hard digging. Dark brown coarse GRAVEL, some medium Sand and Slag-like material, trace Silt, moist. [FILL]	Cement/ Bentonite Grout (1-4' bgs)
—5 - -	- 575 -	2	6-8	0.3	0.0		000000	Coarse angular GRAVEL and coarse SAND, Shale rock fragments, wet at 6.2' bgs. [FILL]	Riser (0.5-9' bgs) Bentonite (4-7' bgs)
	-	3	8-10	1.2	0.0			Fine to coarse GRAVEL, some Slag-like material and medium Shale rock fragments, wet. [FILL]	
_ 10	570 —	4	10-12	0.7	0.0	-		Red to brown fine to coarse GRAVEL, angular SLAG-like material (pitted and brittle), fine SAND and angular SHALE rock fragments. [FILL]	
-	-	5	12-14	0.3	0.0	_		Clavey SILT and black PLASTIC some Organia (along matter) and Wood trace fine	#0 Silica Sand Pack (7-19' bgs)
15	-	6	14-16	0.9	0.0			Clayey SILT and black PLASTIC, some Organic (plant matter) and Wood, trace fine Sand. Remarks: bgs = below ground surface; NA = Not Applicable.	0.01" Slot Screen (9-19' bgs)

Analytical samples were collected: AW-03 (4-8), AW-03 (18-20) and AW-03 (20-22) for analysis of TCL VOC, TCL SVOC, Cyanide, Free Cyanide, Mercury, TAL Metals.

Client: National Fuel Well/Boring ID: AW-03

Site Location:

Former Wilkson Slip/Canal Area Buffalo, NY

Borehole Depth: 23.5' bgs

DEРТН	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Analytical Sample	Geologic Column	Stratigraphic Description	Well/Boring Construction
-	565 —	7	16-18	0.2	0.0		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	SHALE (rock fragments) and ORGANIC, Rock stuck in split spoon.	#0 Silica Sand Pack (7-19' bgs)
_	-	8	18-20	1.9	3.2			Brown Silty CLAY, low plasticity, solvent-like smell. Red-brown Silty CLAY and medium SAND, laminated with Sand lense from 19.5' - 20.0' bgs, solvent-like smell.	2" Sch 40 PVC 0.01" Slot Screen (9-19' bgs)
_ 20	- 560 -	9	20-22	2.0	0.4			Brown Silty CLAY, trace Gravel at 22.0' bgs, petroleum-like odor. Brown CLAY, lamination of medium Sand, trace Gravel at 22' bgs, stiff, Shale rock stuck in split spoon shoe.	2" Sch 40 PVC Sump (19-21' bgs)
	-	10	22-24	1.0	0.2				Grout (19-23.5' bgs)
- 25 - -	555 -							Refusal at 23.5' bgs	
- 30 -	- 550 -								
- 35	-							Remarks: bgs = below ground surface; NA = Not Applicable/	/Available; AMSL = Above Mean Sea
								Level	

Analytical samples were collected: AW-03 (4-8), AW-03 (18-20) and AW-03 (20-22) for analysis of TCL VOC, TCL SVOC, Cyanide, Free Cyanide, Mercury, TAL Metals.

Date Start/Finish: 11/12/12 Drilling Company: Parrott Wolff Driller's Name: Shawn Bodah Drilling Method: Direct Push

Drilling Method: Direct Push
Sampling Method: 2" / 3" x 2' Split Spoon
Rig Type: Truck Mounted Geoprobe

Northing: 1051544.36 Easting: 1067574.83

Casing Elevation: 581.95' AMSL

Borehole Depth: 22.5' bgs **Surface Elevation:** 582.19' AMSL

Descriptions By: Jeff Brayer

Well/Boring ID: AW-04

Client: National Fuel

Location: Former Wilkson Slip/Canal Area

Buffalo, NY

DЕРТН	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Analytical Sample	Geologic Column	Stratigraphic Description	Well/Boring Construction
	585 -	٠,				È	_		
_	-								Steel Flush Mount Curb Box
-	- 580 -	1	NA	NA	0.0		× × × × × × × × × × × × × × × × × × ×	SILT and coarse SAND, red Brick (pieces), Clay pipe fragments and Organic material, moist. [FILL] Coarse Gravel/Slag-like material.	Locking J-Plug Sand Drain
- 5	-						× × × × × × × × ×	Dark brown coarse GRAVEL, some medium Sand and Slag like-material, trace Silt, moist. [FILL]	Cement/Bentonite Grout (2-7' bgs)
	- 575 -	2	6-8	2.0	0.0	$\left\ \left(\cdot \right) \right\ $	H.H.H.H.	SILT, black Organic layer, trace Clay, wet. Brown to yellow fine Silty SAND.	2" Sch 40 PVC Riser (0.5-12.5' bgs)
	-	3	8-10	0.5	0.0		0000	Medium to coarse GRAVEL, some fine to coarse Sand, trace Silt.	Bentonite (7- 10.5' bgs)
- 10	-	4	10-12	2.0	0.0		0000	Grey to red-brown fine to coarse GRAVEL, fine to medium Sand, trace Wood fibers, wet.	#0 Silica Sand Pack (10.5-22.5' bgs)
	570 -	5	12-14	2.0	0.0		T T	Brown fine Silty SAND and ORGANIC (wood and straw). Black SILT, trace fine Sand and Organic (plant fibers and immature peat).	
- 15	-	6	14-16	1.6	0.0			Black SILT and CLAY, trace brown to red fine Sand and Silt, medium plasticity, wet.	2" Sch 40 PVC 0.01" Slot Screen (12.5-22.5' bgs)
	-					•		Remarks: bgs = below ground surface; NA = Not Applicable/	/Available; AMSL = Above Mean Sea

Remarks: bgs = below ground surface; NA = Not Applicable/Available; AMSL = Above Mean Sea Level

Analytical samples were collected: AW-04 (4-8) and AW-04 (22-22.5) for analysis of TCL VOC, TCL SVOC, Cyanide, Free Cyanide, Mercury, TAL Metals.

Client: National Fuel Well/Boring ID: AW-04

Site Location:

ea

Borehole Depth: 22.5' bgs

Former Wilkson Slip/Canal Are	ĉ
Buffalo, NY	

DEРТН	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Analytical Sample	Geologic Column	Stratigraphic Description	Well/Boring Construction
-	- 565 -	7	16-18	2.0	0.0			Black to brown SAND and SILT, laminated medium to fine Sand, Silt, and Organic (fibers).	#0 Silica Sand Pack (10.5-22.5' bgs)
-	-	8	18-20	2.0	0.0	-		Brown SAND and SILT, wet.	
_ 20	-	9	20-22	2.0	0.0			Brown SAND and SILT, vertical seams of black Sand, discoloration, wet. Brown SILT, trace fine Sand. Red-brown CLAY, laminated Silt, Bedrock in tip of sampler, stiff, gasoline/fuel oil-like	2" Sch 40 PVC 0.01" Slot Screen (12.5-22.5' bgs)
- - - 25	560 -	10	22-24	0.5	8.5	X		odor. Refusal at 22.5' bgs	
-	- 555 - -								
_ 30 _	-								
-	550 -								
- 35	-							Ramarks: bgs = below ground surface; NA = Not Applicable/	(Available: AMSL = Above Mean Sea

Remarks: bgs = below ground surface; NA = Not Applicable/Available; AMSL = Above Mean Sea Level

Analytical samples were collected: AW-04 (4-8) and AW-04 (22-22.5) for analysis of TCL VOC, TCL SVOC, Cyanide, Free Cyanide, Mercury, TAL Metals.

Appendix B

Data Usability Summary Reports

National Fuel

Data Usability Summary Report (DUSR)

BUFFALO, NEW YORK

Volatile, Semivolatile, Metals, and Miscellaneous Analyses

SDG #480-23453

Analyses Performed By: TestAmerica Laboratories Buffalo, New York

Report #17412R Review Level: Tier III

Project: B0023310.0000.00002

SUMMARY

This data quality assessment summarizes the review of Sample Delivery Group (SDG) #480-23453 for samples collected in association with the National Fuel Wilkenson Site. The review was conducted as a Tier III evaluation and included review of data package completeness. Only analytical data associated with constituents of concern were reviewed for this validation. Field documentation was not included in this review. Included with this assessment are the validation annotated sample result sheets, and chain of custody. Analyses were performed on the following samples:

			Sample	Parent		Α	nalysis	3	
Sample ID	Lab ID	Matrix	Collection Date	Sample	voc	svoc	РСВ	MET	MISC
AB-05 (9.5- 10.8)	480-23453-1	Soil	8/1/2012		Х	Х		Х	Х
AB-05 (22-25)	480-23453-2	Soil	8/1/2012		Х	Х		Х	Х
AB-01 (8-14)	480-23453-3	Soil	8/2/2012		Х	Х		Х	Х
AB-01 (20-22)	480-23453-4	Soil	8/2/2012		Х	Х		Х	Х
AW-02 (8-10)	480-23453-5	Soil	8/2/2012		Х	Х		Х	Х
AW-02 (18-21)	480-23453-6	Soil	8/2/2012		Х	Х		Х	Х
AW-01 (5-7)	480-23453-7	Soil	8/2/2012		Х	Х		Х	Х
AW-01 (20- 22.5)	480-23453-8	Soil	8/2/2012		Х	Х		Х	Х
RB-080212	480-23453-9	Water	8/2/2012		Х	Х		Х	Х
AB-04 (10-12)	480-23453- 10	Soil	8/3/2012		Х	Х		Х	Х
TRIP BLANK	480-23453- 11	Water	8/3/2012		Х				
DUP-080212	480-23453- 12	Soil	8/2/2012	AW-01 (5-7)	Х	Х		Х	Х
AB-04 (18-21)	480-23453- 13	Soil	8/3/2012		Х	Х		Х	Х
AB-02 (8-10)	480-23453- 14	Soil	8/3/2012		Х	Х		Х	Х
AB-02 (20-22)	480-23453- 15	Soil	8/3/2012		Х	Х		Х	Х
AB-03 (8-10)	480-23564-1	Soil	8/6/2012		Х	Х		Х	Х
AB-03- (20- 22.5)	480-23564-2	Soil	8/6/2012		Х	Х		Х	Х
AB-C2 (8-11)	480-23564-3	Soil	8/6/2012		Х	Х		Х	Х
AB-C2 (22-24)	480-23564-4	Soil	8/6/2012		Х	Х		Х	Х

Note:

- 1. Matrix spike/matrix spike duplicate (MS/MSD) analysis was performed on sample location AW-02 (18-21).
- 2. Miscellaneous parameters include total and free cyanide.

ANALYTICAL DATA PACKAGE DOCUMENTATION

The table below is the evaluation of the data package completeness.

		Rep	orted		mance ptable	Not
	Items Reviewed	No	Yes	No	Yes	Required
1.	Sample receipt condition		Х		Χ	
2.	Requested analyses and sample results		Х		Х	
3.	Master tracking list		Х		Х	
4.	Methods of analysis		Х		Х	
5.	Reporting limits		Х		Х	
6.	Sample collection date		Х		Х	
7.	Laboratory sample received date		Х		Х	
8.	Sample preservation verification (as applicable)		Х		Х	
9.	Sample preparation/extraction/analysis dates		Х		Х	
10.	Fully executed Chain-of-Custody (COC) form		Х		Х	
11.	Narrative summary of QA or sample problems provided		Х		Х	
12.	Data Package Completeness and Compliance		Х		Х	

QA - Quality Assurance

ORGANIC ANALYSIS INTRODUCTION

Analyses were performed according to United States Environmental Protection Agency (USEPA) SW-846 8260B and 8270C as referenced in NYSDEC-ASP. Data were reviewed in accordance with USEPA Region II SOP HW-24 - Validating Volatile Organic Compounds by SW-846 Method 8260B of October 2006 and New York State ASP 2005.

The data review process is an evaluation of data on a technical basis rather than a determination of contract compliance. As such, the standards against which the data are being weighed may differ from those specified in the analytical method. It is assumed that the data package represents the best efforts of the laboratory and had already been subjected to adequate and sufficient quality review prior to submission.

During the review process, laboratory qualified and unqualified data are verified against the supporting documentation. Based on this evaluation, qualifier codes may be added, deleted, or modified by the data reviewer. Results are qualified with the following codes in accordance with USEPA National Functional Guidelines:

- Concentration (C) Qualifiers
 - U The compound was analyzed for but not detected. The associated value is the compound quantitation limit.
 - B The compound has been found in the sample as well as its associated blank, its presence in the sample may be suspect.
- Quantitation (Q) Qualifiers
 - E The compound was quantitated above the calibration range.
 - D Concentration is based on a diluted sample analysis.
- Validation Qualifiers
 - J The compound was positively identified; however, the associated numerical value is an estimated concentration only.
 - UJ The compound was not detected above the reported sample quantitation limit. However, the reported limit is approximate and may or may not represent the actual limit of quantitation.
 - JN The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification. The associated numerical value is an estimated concentration only.
 - UB Compound considered non-detect at the listed value due to associated blank contamination.
 - N The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification.
 - R The sample results are rejected.

Two facts should be noted by all data users. First, the "R" flag means that the associated value is unusable. In other words, due to significant quality control (QC) problems, the analysis is invalid and provides no information as to whether the compound is present or not. "R" values should not appear on data tables because they cannot be relied upon, even as a last resort. The second fact to keep in mind is that no compound concentration, even if it has passed all QC tests, is guaranteed to be accurate. Strict QC serves to increase confidence in data but any value potentially contains error.

VOLATILE ORGANIC COMPOUND (VOC) ANALYSES

1. Holding Times

The specified holding times for the following methods are presented in the following table.

Method	Matrix	Holding Time	Preservation
SW-846 8260B	Water (7 days if unpreserved) preserved to a pl		Cool to 4°C±2°C; preserved to a pH of less than 2 s.u.
SW-846 8260B	Soil	14 days from collection to analysis	Cool to 4°C±2°C.

s.u. Standard units

All samples were analyzed within the specified holding time criteria.

2. Blank Contamination

Quality assurance (QA) blanks (i.e., method and rinse blanks) are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Rinse blanks measure contamination of samples during field operations.

A blank action level (BAL) of five times the concentration of a detected compound in an associated blank (common laboratory contaminant compounds are calculated at ten times) is calculated for QA blanks containing concentrations greater than the method detection limit (MDL). The BAL is compared to the associated sample results to determine the appropriate qualification of the sample results, if needed.

All compounds associated with the QA blanks exhibited a concentration less than the MDL, with the exception of the compounds listed in the following table. Sample results associated with QA blank contamination that were greater than the BAL resulted in the removal of the laboratory qualifier (B) of data. Sample results less than the BAL associated with the following sample locations were qualified as listed in the following table.

Sample Locations	Analytes	Sample Result	Qualification
AB-05 (9.5-10.8) AB-01 (8-14)	Acetone	Detected sample results <rl <bal<="" and="" td=""><td>"UB" at the RL</td></rl>	"UB" at the RL
AB-05 (22-25)	Acetone		
AB-01 (20-22) AW-01 (5-7) DUP-080212 AB-03- (20-22.5) AB-C2 (8-11) AB-C2 (22-24)	Xylenes, total	Detected sample results >RL and <bal< td=""><td>"UB" at detected sample concentration</td></bal<>	"UB" at detected sample concentration

RL Reporting limit

3. Mass Spectrometer Tuning

Mass spectrometer performance was acceptable and all analyses were performed within a 12-hour tune clock.

System performance and column resolution were acceptable.

4. Calibration

Satisfactory instrument calibration is established to insure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument daily performance is satisfactory.

4.1 Initial Calibration

The method specifies percent relative standard deviation (%RSD) and relative response factor (RRF) limits for select compounds only. A technical review of the data applies limits to all compounds with no exceptions.

All target compounds associated with the initial calibration standards must exhibit a %RSD less than the control limit (15%) or a correlation coefficient greater than 0.99 and an RRF value greater than control limit (0.05).

4.2 Continuing Calibration

All target compounds associated with the continuing calibration standard must exhibit a percent difference (%D) less than the control limit (20%) and RRF value greater than control limit (0.05).

All compounds associated with the calibrations were within the specified control limits, with the exception of the compounds presented in the following table.

Sample Locations	Initial/Continuing	Compound	Criteria
	CCV %D	Dichlorodifluoromethane	-20.3%
AB-03 (8-10) AB-03- (20-22.5)		Bromomethane	-28.1%
AB-C2 (8-11) AB-C2 (22-24)		Chloroethane	-22.1%
		Trichlorofluoromethane	-20.6%
RB-080212 TRIP BLANK	CCV %D	Dichlorodifluoromethane	-27.8%
		Bromomethane	-40.7%
		Chloroethane	-24.4%
		Trichlorofluoromethane	-21.3%

The criteria used to evaluate the initial and continuing calibration are presented in the following table. In the case of a calibration deviation, the sample results are qualified.

Initial/Continuing	Criteria	Sample Result	Qualification
	RRF <0.05	Non-detect	R
Initial and Continuing Calibration	KKF <0.05	Detect	J
	RRF <0.01 ¹	Non-detect	R
	KKF <0.01	Detect	J

Initial/Continuing	Criteria	Sample Result	Qualification	
	RRF >0.05 or RRF >0.01 ¹	Non-detect	No Action	
	KKF	Detect		
	%RSD > 15% or a correlation	Non-detect	UJ	
Initial Calibration	coefficient <0.99	Detect	J	
	%RSD >90%	Non-detect	R	
	///NGD >90 //	Detect	J	
	%D >20% (increase in sensitivity)	Non-detect	No Action	
	//bD /20 /// (Ifficiease III serisitivity)	Detect	J	
Continuing Calibration	%D >20% (decrease in sensitivity)	Non-detect	UJ	
Continuing Calibration	%D >20% (decrease in sensitivity)	Detect	J	
	%D >90% (increase/decrease in	Non-detect	R	
	sensitivity)	Detect	J	

RRF of 0.01 only applies to compounds which are typically poor responding compounds

5. Surrogates/System Monitoring Compounds

All samples to be analyzed for organic compounds are spiked with surrogate compounds prior to sample preparation to evaluate overall laboratory performance and efficiency of the analytical technique. VOC analysis requires that all surrogates associated with the analysis exhibit recoveries within the laboratory-established acceptance limits.

All surrogate recoveries were within control limits.

6. Internal Standard Performance

Internal standard performance criteria insure that the GC/MS sensitivity and response are stable during every sample analysis. The criteria requires the internal standard compounds associated with the VOC exhibit area counts that are not greater than two times (+100%) or less than one-half (-50%) of the area counts of the associated continuing calibration standard.

All internal standard responses were within control limits.

7. Matrix Spike/Matrix Spike Duplicate (MS/MSD) Analysis

MS/MSD data are used to assess the precision and accuracy of the analytical method. The compounds used to perform the MS/MSD analysis must exhibit a percent recovery within the laboratory-established acceptance limits. The relative percent difference (RPD) between the MS/MSD recoveries must exhibit an RPD within the laboratory-established acceptance limits.

Note: The MS/MSD recovery control limits do not apply for MS/MSD performed on sample locations where the compound concentration detected in the parent sample exceeds the MS/MSD concentration by a factor of four or greater.

Sample locations associated with MS/MSD recoveries exhibiting an RPD greater than of the control limit presented in the following table.

Sample Locations	Compound
AW-02 (18-21)	All compounds

The criteria used to evaluate the RPD between the MS/MSD recoveries are presented in the following table. In the case of an RPD deviation, the sample results are qualified as documented in the table below.

Control Limit	Sample Result	Qualification
> UL	Non-detect	UJ
OL	Detect	J

8. Laboratory Control Sample (LCS) Analysis

The LCS analysis is used to assess the precision and accuracy of the analytical method independent of matrix interferences. The compounds associated with the LCS analysis must exhibit a percent recovery within the laboratory-established acceptance limits.

Sample locations associated with LCS analysis exhibiting recoveries outside of the control limits presented in the following table.

Sample Locations	Compound	LCS Recovery
AB-05 (9.5-10.8) AB-05 (22-25) AB-01 (8-14) AB-01 (20-22) AW-02 (8-10) AW-02 (18-21) AW-01 (5-7) AW-01 (20-22.5) AB-04 (10-12) DUP-080212 AB-04 (18-21) AB-02 (8-10) AB-02 (20-22)	Methyl acetate	>UL

The criteria used to evaluate the LCS/LCSD recoveries are presented in the following table. In the case of an LCS/LCSD deviation, the sample results are qualified as documented in the table below.

Control Limit	Sample Result	Qualification
> the upper control limit (UL)	Non-detect	No Action
- the upper control limit (OL)	Detect	J
< the lower control limit (LL) but > 10%	Non-detect	UJ
< the lower control limit (LL) but > 10%	Detect	J
< 10%	Non-detect	R
< 10%	Detect	J

9. Field Duplicate Analysis

Field duplicate analysis is used to assess the overall precision of the field sampling procedures and analytical method. A control limit of 30% for water matrices and 50% for soil matrices is applied to the RPD between the parent sample and the field duplicate. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of two times the RL is applied for water matrices or three times the RL is applied for soil matrices.

Results for duplicate samples are summarized in the following table.

Sample ID/Duplicate ID	Compound	Sample Result	Duplicate Result	RPD
AW-01 (5-7)/ DUP-080212	Acetone	13 J	14 J	AC
	Cyclohexane	2.1 J	1.8 J	AC
	Methylcyclohexane	2.7 J	2 J	AC
	Toluene	1.7 J	2.2 J	AC

AC - Acceptable

The calculated RPDs between the parent sample and field duplicate were acceptable.

10. Compound Identification

Compounds are identified on the GC/MS by using the analytes relative retention time and ion spectra.

All identified compounds met the specified criteria.

11. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

DATA VALIDATION CHECKLIST FOR VOCs

VOCs: SW-846 8260B	Reported			mance ptable	Not Required
	No	Yes	No	Yes	Required
GAS CHROMATOGRAPHY/MASS SPECTROME	TRY (GC	/MS)			
Tier II Validation	_		_	_	_
Holding times		X		X	
Reporting limits (units)		X		X	
Blanks					
A. Method blanks		Х	Х		
B. Equipment blanks		Х		Х	
C. Trip blanks		Х		Х	
Laboratory Control Sample (LCS)		Х	Х		
Laboratory Control Sample Duplicate(LCSD)					Х
LCS/LCSD Precision (RPD)					Х
Matrix Spike (MS)		Х		Х	
Matrix Spike Duplicate(MSD)		Х		Х	
MS/MSD Precision (RPD)		Х	Х		
Field/Lab Duplicate (RPD)		Х		Х	
Surrogate Spike Recoveries		Х		Х	
Dilution Factor		Х		Х	
Moisture Content		Х		Х	
Tier III Validation					
System performance and column resolution		Х		Х	
Initial calibration %RSDs		Х		Х	
Continuing calibration RRFs		Х		Х	
Continuing calibration %Ds		Х	Х		
Instrument tune and performance check		Х		Х	
Ion abundance criteria for each instrument used		Х		Х	
Internal standard		Х		Х	
Compound identification and quantitation		•	•	•	•
A.Reconstructed ion chromatograms		Х		Х	
B.Quantitation Reports		Х		Х	
C.RT of sample compounds within the established RT windows		Х		Х	
D.Transcription/calculation errors present				Х	

VOCs: SW-846 8260B	Reported		Performance Acceptable		Not Required
	No	Yes	No	Yes	Roquirou
GAS CHROMATOGRAPHY/MASS SPECTROMETRY (GC/MS)					
E.Reporting limits adjusted to reflect sample dilutions		Х		Х	

%RSD Relative standard deviation

%R RPD %D Percent recovery
Relative percent difference
Percent difference

SEMIVOLATILE ORGANIC COMPOUND (SVOC) ANALYSES

1. Holding Times

The specified holding times for the following methods are presented in the following table.

Method	Matrix	Holding Time	Preservation
SW-846 8270C	Water	7 days from collection to extraction and 40 days from extraction to analysis	Cooled @ 4°C ± 2°C
	Soil	14 days from collection to extraction and 40 days from extraction to analysis	Cooled @ 4°C ± 2°C

All samples were analyzed within the specified holding time criteria.

2. Blank Contamination

Quality assurance (QA) blanks (i.e., method and rinse blanks) are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Rinse blanks measure contamination of samples during field operations.

A blank action level (BAL) of five times the concentration of a detected compound in an associated blank (common laboratory contaminant compounds are calculated at ten times) is calculated for QA blanks containing concentrations greater than the method detection limit (MDL). The BAL is compared to the associated sample results to determine the appropriate qualification of the sample results, if needed.

Compounds were not detected above the MDL in the associated blanks; therefore detected sample results were not associated with blank contamination.

3. Mass Spectrometer Tuning

Mass spectrometer performance was acceptable and all analyses were performed within a 12-hour tune clock.

System performance and column resolution were acceptable.

4. Calibration

Satisfactory instrument calibration is established to insure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument daily performance is satisfactory.

4.1 Initial Calibration

The method specifies percent relative standard deviation (%RSD) and relative response factor (RRF) limits for select compounds only. A technical review of the data applies limits to all compounds with no exceptions.

All target compounds associated with the initial calibration standards must exhibit a %RSD less than the control limit (15%) or a correlation coefficient greater than 0.99 and an RRF value greater than control limit (0.05).

4.2 Continuing Calibration

All target compounds associated with the continuing calibration standard must exhibit a percent difference (%D) less than the control limit (20%) and RRF value greater than control limit (0.05).

All compounds associated with the calibrations were within the specified control limits, with the exception of the compounds presented in the following table.

Sample Locations	Initial/ Continuing	Compound	Criteria
DD 000242	CCV %D	2-Nitroaniline	22.2%
RB-080212		4-Nitrophenol	25.8%

The criteria used to evaluate the initial and continuing calibration are presented in the following table. In the case of a calibration deviation, the sample results are qualified.

Initial/Continuing	Criteria	Sample Result	Qualification
	RRF <0.05	Non-detect	R
	KKF <0.05	Detect	J
Initial and Continuing	RRF <0.01 ¹	Non-detect	R
Calibration	KKF \0.01	Detect	J
	RRF >0.05 or RRF >0.01 ¹	Non-detect	No Action
	KKF	Detect	
	%RSD > 15% or a correlation coefficient <0.99	Non-detect	UJ
Initial Calibration		Detect	J
Initial Calibration	%RSD >90%	Non-detect	R
	///NGD >90 //	Detect	J
Continuing Calibration	0/D > 200/ (increase in consitiuity)	Non-detect	No Action
	%D >20% (increase in sensitivity)	Detect	J
	0/D > 200/ (decrease in consistinity)	Non-detect	UJ
	%D >20% (decrease in sensitivity)	Detect	J
	%D >90% (increase/decrease in	Non-detect	R
	sensitivity)	Detect	J

RRF of 0.01 only applies to compounds which are typically poor responding compounds (i.e., ketones, 1,4-dioxane, etc.)

5. Surrogates/System Monitoring Compounds

All samples to be analyzed for organic compounds are spiked with surrogate compounds prior to sample preparation to evaluate overall laboratory performance and efficiency of the analytical technique. SVOC analysis requires that two of the three SVOC surrogate compounds within each fraction exhibit recoveries within the laboratory-established acceptance limits.

Sample locations associated with surrogates exhibiting recoveries outside of the control limits presented in the following table.

Sample Locations	Surrogate	Recovery
	2,4,6-Tribromophenol	AC
	2-Fluorobiphenyl	AC
AW-02 (8-10)	2-Fluorophenol	AC
AB-04 (10-12)	Nitrobenzene-d5	AC
	p-Terphenyl-d14	<ll but="">10%</ll>
	Phenol-d5	AC
	2,4,6-Tribromophenol	<ll but="">10%</ll>
	2-Fluorobiphenyl	AC
AP 02 (9 10)	2-Fluorophenol	AC
AB-02 (8-10)	Nitrobenzene-d5	AC
	p-Terphenyl-d14	AC
	Phenol-d5	AC

UL Upper control limit

AC Acceptable

The criteria used to evaluate the surrogate recoveries are presented in the following table. In the case of a surrogate deviation, the sample results associated with the deviant fraction are qualified as documented in the table below.

Control Limit	Sample Result	Qualification
> UL	Non-detect	No Action
- OL	Detect	J
< LL but > 10%	Non-detect	UJ
CLL but > 10%	Detect	J
< 10%	Non-detect	R
< 1076	Detect	J
Surrogates diluted below the calibration curve due to the	Non-detect	₁ 1
high concentration of a target compounds	Detect]

A more concentrated analysis was not performed with surrogate compounds within the calibration range; therefore, no determination of extraction efficiency could be made.

6. Internal Standard Performance

Internal standard performance criteria insure that the GC/MS sensitivity and response are stable during every sample analysis. The criteria requires the internal standard compounds associated with the SVOC exhibit area counts that are not greater than two times (+100%) or less than one-half (-50%) of the area counts of the associated continuing calibration standard.

All internal standard responses were within control limits.

7. Matrix Spike/Matrix Spike Duplicate (MS/MSD) Analysis

MS/MSD data are used to assess the precision and accuracy of the analytical method. The compounds used to perform the MS/MSD analysis must exhibit a percent recovery within the laboratory-established acceptance limits. The relative percent difference (RPD) between the MS/MSD recoveries must exhibit an RPD within the laboratory-established acceptance limits.

Note: The MS/MSD recovery control limits do not apply for MS/MSD performed on sample locations where the compound concentration detected in the parent sample exceeds the MS/MSD concentration by a factor of four or greater.

Sample locations associated with the MS/MSD exhibiting recoveries outside of the control limits are presented in the following table.

Sample Locations	Compound	MS Recovery	MSD Recovery
AW-02 (18-21)	Pyrene	<10%	<10%
	4-Nitrophenol	AC	>UL

AC Acceptable

The criteria used to evaluate the MS/MSD recoveries are presented in the following table. In the case of an MS/MSD deviation, the sample results are qualified as documented in the table below.

Control Limit	Sample Result	Qualification
> the upper control limit (UL)	Non-detect	No Action
> the apper control limit (OL)	Detect	J
< the lower central limit (LL) but > 100/	Non-detect	UJ
< the lower control limit (LL) but > 10%	Detect	J
< 10%	Non-detect	R
< 10%	Detect	J
Parent sample concentration > four times the MS/MSD	Detect	No Action
spiking solution concentration.	Non-detect	

8. Laboratory Control Sample (LCS/) Analysis

The LCS analysis is used to assess the precision and accuracy of the analytical method independent of matrix interferences. The compounds associated with the LCS analysis must exhibit a percent recovery within the laboratory-established acceptance limits.

Sample locations associated with LCS analysis exhibiting recoveries outside of the control limits presented in the following table.

Sample Locations	Compound	LCS Recovery
AB-05 (9.5-10.8) AB-05 (22-25) AB-01 (8-14) AB-01 (20-22) AW-02 (8-10) AW-02 (18-21) AW-01 (5-7) AW-01 (20-22.5) AB-04 (10-12) DUP-080212 AB-04 (18-21) AB-02 (8-10) AB-02 (20-22) AB-03 (8-10) AB-03- (20-22.5) AB-C2 (8-11) AB-C2 (22-24)	N-Nitrosodiphenylamine	^C

The criteria used to evaluate the LCS/LCSD recoveries are presented in the following table. In the case of an LCS/LCSD deviation, the sample results are qualified as documented in the table below.

Control Limit	Sample Result	Qualification
> the upper control limit (UL)	Non-detect	No Action
> tile upper control innit (OL)	Detect	J
< the lower central limit (LL) but > 109/	Non-detect	UJ
< the lower control limit (LL) but > 10%	Detect	J
< 10%	Non-detect	R
< 1076	Detect	J

9. Field Duplicate Analysis

Field duplicate analysis is used to assess the overall precision of the field sampling procedures and analytical method. A control limit of 50% for water matrices and 100% for soil matrices is applied to the RPD between the parent sample and the field duplicate. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of two times the RL is applied for water matrices or three times the RL is applied for soil matrices.

Results for duplicate samples are summarized in the following table.

Sample ID/Duplicate ID	Compound	Sample Result	Duplicate Result	RPD
	2-Methylnaphthalene	100 J	3700 U	AC
AW-01 (5-7)/ DUP-080212	Acenaphthene	87 J	3700 U	AC
	Anthracene	200 J	3700 U	AC

Sample ID/Duplicate ID	Compound	Sample Result	Duplicate Result	RPD
	Benzo(a)anthracene	580 J	3700 U	AC
	Benzo(a)pyrene	690 J	710 J	AC
	Benzo(b)fluoranthene	1000 J	840 J	AC
	Benzo(g,h,i)perylene	280 J	470 J	AC
AW-01 (5-7)/	Benzo(k)fluoranthene	380 J	360 J	AC
DUP-080212	Chrysene	550 J	600 J	AC
	Fluoranthene	1100 J	1200 J	AC
	Indeno(1,2,3-cd)pyrene	260 J	400 J	AC
	Phenanthrene	810 J	800 J	AC
	Pyrene	840 J	1000 J	AC

AC - Acceptable

The calculated RPDs between the parent sample and field duplicate were acceptable.

10. Compound Identification

Compounds are identified on the GC/MS by using the analytes relative retention time and ion spectra.

All identified compounds met the specified criteria.

11. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

DATA VALIDATION CHECKLIST FOR SVOCs

SVOCs: SW-846 8270C	Repo	orted		mance ptable	Not
	No	Yes	No	Yes	Required
GAS CHROMATOGRAPHY/MASS SPECTROMET	TRY (GC/N	MS)			
Tier II Validation					
Holding times		Х	Х		
Reporting limits (units)		Х		Х	
Blanks					
D. Method blanks		Х		Х	
E. Equipment blanks					Х
Laboratory Control Sample (LCS) %R		Х	Х		
Laboratory Control Sample Duplicate(LCSD) %R					Х
LCS/LCSD Precision (RPD)					Х
Matrix Spike (MS) %R		Х	Х		
Matrix Spike Duplicate(MSD) %R		Х	Х		
MS/MSD Precision (RPD)		Х	Х		
Field/Lab Duplicate (RPD)		Х		Х	
Surrogate Spike Recoveries		Х	Х		
Dilution Factor		Х		Х	
Moisture Content					Х
Tier III Validation					
System performance and column resolution		Х		Х	
Initial calibration %RSDs		Х		Х	
Continuing calibration RRFs		Х		Х	
Continuing calibration %Ds		Х	Х		
Instrument tune and performance check		Х		Х	
Ion abundance criteria for each instrument used		Х		Х	
Internal standard		Х		Х	
Compound identification and quantitation		•	•	•	
F. Reconstructed ion chromatograms		Х		Х	
G. Quantitation Reports		Х		Х	
H.RT of sample compounds within the established RT windows		Х		Х	
Transcription/calculation errors present				Х	
J. Reporting limits adjusted to reflect sample dilutions %RSD Relative standard deviation		Х		Х	

%RSD Relative standard deviation

%R RPD %D

Percent recovery
Relative percent difference
Percent difference

INORGANIC ANALYSIS INTRODUCTION

Analyses were performed according to United States Environmental Protection Agency (USEPA) SW-846 Methods 6000/7000 and 9012A/9016. Data were reviewed in accordance with USEPA National Functional Guidelines of July 2002.

The data review process is an evaluation of data on a technical basis rather than a determination of contract compliance. As such, the standards against which the data are being weighed may differ from those specified in the analytical method. It is assumed that the data package represents the best efforts of the laboratory and that it was already subjected to adequate and sufficient quality review prior to submission.

During the review process, laboratory qualified and unqualified data are verified against the supporting documentation. Based on this evaluation, qualifier codes may be added, deleted, or modified by the data reviewer. Results are qualified with the following codes in accordance with the USEPA National Functional Guidelines:

- Concentration (C) Qualifiers
 - U The analyte was analyzed for but not detected. The associated value is the analyte instrument detection limit.
 - B The reported value was obtained from a reading less than the contract-required detection limit (CRDL), but greater than or equal to the instrument detection limit (IDL).
- Quantitation (Q) Qualifiers
 - E The reported value is estimated due to the presence of interference.
 - N Spiked sample recovery is not within control limits.
 - * Duplicate analysis is not within control limits.
- Validation Qualifiers
 - J The analyte was positively identified; however, the associated numerical value is an estimated concentration only.
 - UJ The analyte was not detected above the reported sample detection limit. However, the reported limit is approximate and may or may not represent the actual limit of detection.
 - UB Analyte considered non-detect at the listed value due to associated blank contamination.
 - R The sample results are rejected.

Two facts should be noted by all data users. First, the "R" flag means that the associated value is unusable. In other words, due to significant quality control (QC) problems, the analysis is invalid and provides no information as to whether the compound is present or not. "R" values should not appear on data tables because they cannot be relied upon, even as a last resort. The second fact to keep in mind is that no compound concentration, even if it has passed all QC tests, is guaranteed to be accurate. Strict QC serves to increase confidence in data but any value potentially contains error.

METALS ANALYSES

1. Holding Times

The specified holding times for the following methods are presented in the following table.

Method	Matrix	Holding Time	Preservation
SW-846 6010B	Water	180 days from collection to analysis	Cool to 4°C±2°C; preserved to a pH of less than 2.
So So		180 days from collection to analysis	Cool to 4°C±2°C.
SW-846 7470	Water	28 days from collection to analysis	Cool to 4°C±2°C; preserved to a pH of less than 2.
SW-846 7471	Soil	28 days from collection to analysis	Cool to 4°C <u>+</u> 2°C.

All samples were analyzed within the specified holding times.

2. Blank Contamination

Quality assurance (QA) blanks (i.e., method and rinse blanks) are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Rinse blanks measure contamination of samples during field operations.

A blank action level (BAL) of five times the concentration of a detected compound in an associated blank (common laboratory contaminant compounds are calculated at ten times) is calculated for QA blanks containing concentrations greater than the method detection limit (MDL). The BAL is compared to the associated sample results to determine the appropriate qualification of the sample results, if needed.

Analytes were detected in the associated QA blanks; however, the associated sample results were greater than the BAL and/or were non-detect. Therefore, sample results greater than the BAL resulted in the removal of the laboratory qualifier (B). No other qualification of the sample results was required.

3. Calibration

Satisfactory instrument calibration is established to provide that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument's continuing performance is satisfactory.

3.1 Initial Calibration and Continuing Calibration

The correct number and type of standards were analyzed. The correlation coefficient of the initial calibration was greater than 0.995 for all non-ICP analytes and all initial calibration verification standard recoveries were within control limits.

All continuing calibration verification standard recoveries were within the control limit.

3.2 CRDL Check Standard

The CRDL check standard serves to verify the linearity of calibration of the analysis at the CRDL. The CRDL standard is not required for the analysis of aluminum (Al), barium (Ba), calcium (Ca), iron (Fe), magnesium (Mg), sodium (Na), and potassium (K). The criteria used to evaluate the CRDL standard analysis are presented below in the CRDL standards evaluation table (if applicable).

All CRDL standard recoveries were within control limits.

3.3 ICP Interference Control Sample (ICS)

The ICS verifies the laboratories interelement and background correction factors.

All ICS exhibited recoveries within the control limits.

4. Matrix Spike/Matrix Spike Duplicate (MS/MSD)/Laboratory Duplicate Analysis

MS/MSD and laboratory duplicate data are used to assess the precision and accuracy of the analytical method.

4.1 MS/MSD Analysis

All metal analytes must exhibit a percent recovery within the established acceptance limits of 75% to 125%. The MS/MSD recovery control limits do not apply for MS/MSD performed on sample locations where the analyte's concentration detected in the parent sample exceeds the MS concentration by a factor of four or greater. In instance where this is true, the data will not be qualified even if the percent recovery does not meet the control limits.

All analytes associated with MS/MSD recoveries were within control limits with the exception of the following analyte present in the table below.

Sample Location	Analyte	MS Recovery	MSD Recovery
AW-02 (8-10)	Aluminum	215%	195%
AB-03 (8-10)	Aluminum	211%	247%
	Lead	AC	70%
	Potassium	134%	136%
	Zinc	185%	137%

The criteria used to evaluate MS/MSD recoveries are presented in the following table. In the case of an MS/MSD deviation, the sample results are qualified. The qualifications are applied to all sample results associated with this SDG.

Control limit	Sample Result	Qualification
MS/MSD percent recovery 200/ to 740/	Non-detect	UJ
MS/MSD percent recovery 30% to 74%	Detect	J
MS/MSD percent recovery <30%	Non-detect	R
MS/MSD percent recovery <50%	Detect	J

Control limit	Sample Result	Qualification
MC/MCD percent recovery > 1250/	Non-detect	No Action
MS/MSD percent recovery >125%	Detect	J

4.2 Laboratory Duplicate Analysis

The laboratory duplicate relative percent difference (RPD) criterion is applied when parent and duplicate sample concentrations are greater than or equal to 5 times the CRDL. A control limit of 20% for water matrices and 35% for soil matrices is applied when the criteria above is true. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the CRDL, a control limit of one times the CRDL is applied for water matrices and two times the CRDL for soil matrices.

MS/MSD analysis was performed in replacement of the laboratory duplicate analysis. The MS/MSD recoveries exhibited acceptable RPD.

5. Field Duplicate Analysis

Field duplicate analysis is used to assess the overall precision of the field sampling procedures and analytical method. A control limit of 50% for soil matrices is applied to the RPD between the parent sample and the field duplicate. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of three times the RL is applied for soil matrices.

Results for duplicate samples are summarized in the following table.

Sample ID/Duplicate ID	Analyte	Sample Result	Duplicate Result	RPD
	Aluminum	5740	5200	9.8 %
	Arsenic	5.5	4.8	13.5 %
	Barium	48.2	47.2	2.0 %
	Beryllium	0.4	0.51	24.1 %
	Cadmium	0.64	0.35	58.5 %
	Calcium	75700	75100	0.7 %
	Chromium	13.1	10.7	20.1 %
AW-01 (5-7)/ DUP-080212	Cobalt	5.8	4.6	23.0 %
	Copper	18.4	18.7	1.6 %
	Iron	16000	12700	22.9 %
	Lead	124	93	28.5 %
	Magnesium	28100	30700	8.8 %
	Manganese	496	341	37.0 %
	Nickel	14.6	14.8	1.3 %
	Potassium	1000	848	16.4 %

Sample ID/Duplicate ID	Analyte	Sample Result	Duplicate Result	RPD
AW-01 (5-7)/ DUP-080212	Selenium	4.5 U	1.2 J	AC
	Sodium	359	305	16.2 %
	Vanadium	17.8	11.4	43.8 %
	Zinc	168	84.2	66.4 %
	Mercury	0.055	0.074	29.4 %

AC = Acceptable

The analyte zinc associated with samples locations AW-01 (5-7) and DUP-080212 exhibited a field duplicate RPD greater than the control limit. The associated sample results from sample locations for the listed analyte were qualified as estimated.

6. Laboratory Control Sample (LCS) Analysis

The LCS analysis is used to assess the precision and accuracy of the analytical method independent of matrix interferences. The analytes associated with the LCS analysis must exhibit a percent recovery between the control limits of 80% and 120%.

The LCS analysis exhibited recoveries within the control limits.

7. Serial Dilution

The serial dilution analysis is used to assess if a significant physical or chemical interference exists due to sample matrix. Analytes exhibiting concentrations greater than 50 times the MDL in the undiluted sample are evaluated to determine if matrix interference exists. These analytes are required to have less than a 10% difference (%D) between sample results from the undiluted (parent) sample and results associated with the same sample analyzed with a five-fold dilution.

All serial dilutions were within control limits, with the exception of the analytes presented in the following table. The sample locations associated with the deviant %D are also presented in the following table.

Sample Locations	Analytes	Serial Dilution (%D)
	Aluminum	15%
	Barium	15%
	Calcium	17%
	Chromium	12%
AW-02 (18-21)	Iron	20%
	Potassium	16%
	Sodium	16%
	Vanadium	11%
	Zinc	14%

The criteria used to evaluate the serial dilution are presented in the following table. In the case of a serial dilution deviation, the sample results are qualified as documented in the table below.

Control Limit	Sample Result	Qualification
> UL	Non-detect	UJ
> OL	Detect	J

8. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

DATA VALIDATION CHECKLIST FOR METAL

METALS; SW-846 6000/7000	Repo	orted		rmance ptable	Not
	No	Yes	No	Yes	Required
Inductively Coupled Plasma-Atomic Emission Spec	trometry	(ICP)			
Atomic Absorption – Manual Cold Vapor (CV)					
Tier II Validation					
Holding Times		Х		Х	
Reporting limits (units)		Х		Х	
Blanks					
A. Instrument Blanks		X		X	
B. Method Blanks		X	X		
C. Equipment/Field Blanks		X	X		
Laboratory Control Sample (LCS)		X		X	
Matrix Spike (MS) %R		X	Х		
Matrix Spike Duplicate (MSD) %R		X	Х		
MS/MSD Precision (RPD)		X		X	
Field/Lab Duplicate (RPD)		X	X		
ICP Serial Dilution		X	X		
Reporting Limit Verification		X		X	
Raw Data		X		X	
Tier III Validation					
Initial Calibration Verification		Х		Х	
Continuing Calibration Verification		Х		Х	
CRDL Standard		Х		Х	
ICP Interference Check		Х		Х	
Transcription/calculation errors present		Х		Х	
Reporting limits adjusted to reflect sample dilutions		Х		Х	

%R Percent recovery
RPD Relative percent difference

GENERAL CHEMISTRY ANALYSES

1. Holding Times

The specified holding times for the following methods are presented in the following table.

Method	Matrix	Holding Time	Preservation
Total/Free Cyanide by SW-	Water	14 days from collection	Cooled @ 4°C ± 2; preserved to a pH of greater than 12.
846 9012A/9016	Soil	to analysis	Cooled @ 4°C ± 2.

All samples were analyzed within the specified holding time criteria.

2. Blank Contamination

Quality assurance (QA) blanks (i.e., method and rinse blanks) are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Rinse blanks measure contamination of samples during field operations.

A blank action level (BAL) of five times the concentration of a detected compound in an associated blank (common laboratory contaminant compounds are calculated at ten times) is calculated for QA blanks containing concentrations greater than the method detection limit (MDL). The BAL is compared to the associated sample results to determine the appropriate qualification of the sample results, if needed.

All analytes associated with the QA blanks exhibited a concentration less than the MDL, with the exception of the analytes listed in the following table. Sample results associated with QA blank contamination that were greater than the BAL resulted in the removal of the laboratory qualifier (J) of data. Sample results less than the BAL associated with the following sample locations were qualified as listed in the following table.

Sample Locations	Analyte	Sample Result	Qualification
AB-03 (8-10) AB-03- (20-22.5) AB-C2 (8-11) AB-C2 (22-24)	Free cyanide	Detected sample results >RL and <bal< td=""><td>"UB" at detected sample concentration</td></bal<>	"UB" at detected sample concentration

RL = reporting limit

3. Calibration

Satisfactory instrument calibration is established to insure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument daily performance is satisfactory.

The correct number and type of standards were analyzed. The correlation coefficient of the initial calibration was greater than 0.995 and all initial calibration verification standard recoveries were within control limits.

All calibration standard recoveries were within the control limit.

4. Matrix Spike/Matrix Spike Duplicate (MS/MSD)/Laboratory Duplicate Analysis

MS/MSD and laboratory duplicate data are used to assess the precision and accuracy of the analytical method.

4.1 MS/MSD Analysis

All analytes must exhibit a percent recovery within the established acceptance limits of 75% to 125%. The MS/MSD recovery control limits do not apply for MS/MSD performed on sample locations where the analyte's concentration detected in the parent sample exceeds the MS/MSD concentration by a factor of four or greater. In instance where this is true, the data will not be qualified even if the percent recovery does not meet the control limits and the laboratory flag will be removed.

The MS/MSD analysis exhibited recoveries within the control limit.

4.2 Laboratory Duplicate Analysis

The laboratory duplicate relative percent difference (RPD) criterion is applied when parent and duplicate sample concentrations are greater than or equal to 5 times the CRDL. A control limit of 20% for water matrices and 35% for soil matrices is applied when the criteria above is true. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the CRDL, a control limit of one times the CRDL is applied for water matrices and two times the CRDL for soil matrices.

MS/MSD analysis was performed in replacement of the laboratory duplicate analysis. The MS/MSD recoveries exhibited acceptable RPD.

5. Field Duplicate Analysis

Field duplicate analysis is used to assess the overall precision of the field sampling procedures and analytical method. A control limit of 50% for water matrices and 100% for soil matrices is applied to the RPD between the parent sample and the field duplicate. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of two times the RL is applied for water matrices or three times the RL is applied for soil matrices.

Results for duplicate samples are summarized in the following table.

Sample ID/Duplicate ID	Compound	Sample Result	Duplicate Result	RPD
AW-01 (5-7)/	Cyanide, Total	1.2	0.63 J	AC
DUP-080212	Cyanide, Free	0.42 J	0.49 U	AC

AC = Acceptable

The calculated RPDs between the parent sample and field duplicate were acceptable.

6. Laboratory Control Sample (LCS) Analysis

The LCS analysis is used to assess the precision and accuracy of the analytical method independent of matrix interferences. The analytes associated with the LCS analysis must exhibit a percent recovery between the control limits of 80% and 120%.

All LCS recoveries were within control limits.

7. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

DATA VALIDATION CHECKLIST FOR GENERAL CHEMISTRY

General Chemistry: SW-846 9012A and 9016	Rep	orted		mance otable	Not
	No	Yes	No	Yes	Required
Miscellaneous Instrumentation					
Tier II Validation					
Holding times		Х		Х	
Reporting limits (units)		Х		Х	
Blanks					
A. Method blanks		Х	Х		
B. Equipment blanks					Х
Laboratory Control Sample (LCS) %R		Х		Х	
Laboratory Control Sample Duplicate(LCSD) %R					Х
LCS/LCSD Precision (RPD)					Х
Matrix Spike (MS) %R		Х		Х	
Matrix Spike Duplicate(MSD) %R		Х		Х	
MS/MSD Precision (RPD)		Х		Х	
Field/Lab Duplicate (RPD)		Х		Х	
Dilution Factor					Х
Moisture Content		Х		Х	
Tier III Validation					
Initial calibration %RSD or correlation coefficient		Х		Х	
Continuing calibration %R		Х		Х	
Raw Data		Х		Х	
Transcription/calculation errors present				Х	
Reporting limits adjusted to reflect sample dilutions		Х		Х	

[%]RSD – relative standard deviation, %R - percent recovery, RPD - relative percent difference, %D – difference

²⁹

SAMPLE COMPLIANCE REPORT

Sample						Co	mplian	cy ¹		Noncompliance
Delivery Group (SDG)	Sampling Date	Protocol	Sample ID	Matrix	voc	svoc	РСВ	MET	MISC	Noncompliance
	8/1/2012	SW846	AB-05 (9.5-10.8)	Soil	No	yes		No	yes	VOC – Method Blank MET – MS/MSD %R, Ser Dil., Field dup.
	8/1/2012	SW846	AB-05 (22-25)	Soil	No	yes		No	yes	VOC – Method Blank MET – MS/MSD %R, Ser Dil., Field dup.
	8/2/2012	SW846	AB-01 (8-14)	Soil	No	yes		No	yes	VOC – Method Blank MET – MS/MSD %R, Ser Dil., Field dup.
	8/2/2012	SW846	AB-01 (20-22)	Soil	No	yes		No	yes	VOC – Method Blank MET – MS/MSD %R, Ser Dil., Field dup.
	8/2/2012	SW846	AW-02 (8-10)	Soil	yes	yes		No	yes	MET – MS/MSD %R, Ser Dil., Field dup.
	8/2/2012	SW846	AW-02 (18-21)	Soil	No	No		No	yes	VOC – MS/MSD RPD SVOC – MS/MSD %R MET – MS/MSD %R, Ser Dil., Field dup.
	8/2/2012	SW846	AW-01 (5-7)	Soil	No	yes		No	yes	VOC – Method Blank MET – MS/MSD %R, Ser Dil., Field dup.
480-23453	8/2/2012	SW846	AW-01 (20-22.5)	Soil	yes	yes		No	yes	MET – MS/MSD %R, Ser Dil., Field dup.
	8/2/2012	SW846	RB-080212	Water	No	yes		No	yes	VOC – CCAL %D MET – MS/MSD %R, Ser Dil., Field dup.
	8/3/2012	SW846	AB-04 (10-12)	Soil	yes	yes		No	yes	MET – MS/MSD %R, Ser Dil., Field dup.
	8/3/2012	SW846	TRIP BLANK	Water	No					VOC – CCAL %D
	8/2/2012	SW846	DUP-080212	Soil	No	yes		No	yes	VOC – Method Blank MET – MS/MSD %R, Ser Dil., Field dup.
	8/3/2012	SW846	AB-04 (18-21)	Soil	No	yes		No	yes	MET – MS/MSD %R, Ser Dil., Field dup.
	8/3/2012	SW846	AB-02 (8-10)	Soil	No	yes		No	yes	MET – MS/MSD %R, Ser Dil., Field dup.
	8/3/2012	SW846	AB-02 (20-22)	Soil	No	yes		No	yes	MET – MS/MSD %R, Ser Dil., Field dup.
	8/6/2012	SW846	AB-03 (8-10)	Soil	No	yes		No	yes	VOC – CCAL %D MET – MS/MSD %R, Ser Dil., Field dup. MISC – Method Blank

Sample						Co	mplian	cy ¹		Noncompliance
Delivery Group (SDG)	Sampling Date	Protocol	Sample ID	Matrix	voc	svoc	РСВ	MET	MISC	Noncompliance
	8/6/2012	SW846	AB-03- (20-22.5)	Soil	No	yes		No	yes	VOC – CCAL %D, Method Blank MET – MS/MSD %R, Ser Dil., Field dup. MISC – Method Blank
	8/6/2012	SW846	AB-C2 (8-11)	Soil	No	yes		No	yes	VOC – CCAL %D, Method Blank MET – MS/MSD %R, Ser Dil., Field dup. MISC – Method Blank
	8/6/2012	SW846	AB-C2 (22-24)	Soil	No	yes		No	yes	VOC – CCAL %D, Method Blank MET – MS/MSD %R, Ser Dil., Field dup. MISC – Method Blank

¹ Samples which are compliant with no added validation qualifiers are listed as "yes". Samples which are non-compliant or which have added qualifiers are listed as "no". A "no" designation does not necessarily indicate that the data have been rejected or are otherwise unusable.

VALIDATION PERFORMED BY: Andrew Korycinski

SIGNATURE:

DATE: October 3, 2012

PEER REVIEW: Dennis Capria

DATE: October 5, 2012

CHAIN OF CUSTODY/ CORRECTED SAMPLE ANALYSIS DATA SHEETS

Chain of Custody Record

Temperature on Receipt ____

THE LEADER IN ENVIRONMENTAL TESTING **TestAmerica**

TAL-4124 (1007)		Drinkin	Drinking Waler? Yes□		W □ TF	1E LEADER IN ENV	THE LEADER IN ENVIRONMENTAL TESTING	1 ()	
ARMOIS/ Notion Fini		Project Manager	tanager Scott	Scott Powling	Ķ		Date 8/3/12	Chain of Custody Number	
2,46	The state of the s	Telephor 3/	Telephone Number (Area Code) Fax Number 315-6 H-9 454	· Code)Fax 45L,	Number		Lab Number	Page ((~6
State State	AYSO HYSO	X Se Con	Site Contact Klaus Bout	Cab	Lab Contact (publ. Fox		Analysis (Attach list if more space is needed)		
Project Name and Location (State) Wilktson Slip , Backello , NY		CarrierA	raybiil Number			(7)0 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	(240g)		,
Contract Purchase Order Chore No. 1 \$ 66 1 33 (0	•		Matrix		Containers & Preservatives	(101) (101)) spyn VIŁ h f	Special Instructions/ Conditions of Receipt	ons/ ceipt
Sample I.D. No. and Description (Containers for each sample may be combined on one line)	Dale	Time	suceuph bes hos	saudury	HOBA ZUYC HOBA HOI HOS HSSON	T	HA C	444	•
. As-as (9.5-108)	لا. ۱. ا	941	*		1	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	, <u>x</u>		
2.44 -05 (72-45)	8.1.13	RSP (· &-	5		XXXX	, <u>x</u>		
(h-8) (a-14)	<i>τl/τ/</i> 8	04.80	مر	Ω.		X X X X	××		
(Tr-or) 10-54-24	11/ds	0%	٨	5		XXXX	×××		
	r)/e/s	वर्।}	W	S		X X X X	÷ ×		
# Aw-& (18-24)	T1/0/2	द्।	<u>></u>	2		XXXX	**************************************	MS/MSN	
(t-5) 10-My 246	Tiles	1530	X			ヤ ス ス ス ス	ヤキャ		1
Aw-01 (20-11.5)	11/r/s	0KS1	×	,		مد طر	メメン		
RB-0012	T//els	04.91	×	~1	131	メメ	×		
(51-01) ha- SH.	7//5/8	BS		S		XXXX	<i>XXXX</i>		
TRIP BLANK	١	١	×	9	٦	×		(C) M 160	
	-1/h//8	\	Jo			ななななななななななななない。	מל	7.4	
zard köentification apd 🗀 Fafranable 🔲 Skin Imiani	□ Poison B	V Unknown	Sample Disposal Return To Client	le /usix	Call before disposal		Months	(A fee may be assessed if samples are relained (worst than 1 month)	
Tum Around Time Required 24 Hours		l	Striband	-	OC Requirements (Specify)	ecify)	1		1
Wisdowskie ;		1/5/80	300		" Hotel By	7 8	M. H.lo	Sale Time	
0 2. Nelinquisted By		Date	Time	C	2. Received By			Date Time	
D. 3. Relinquished By		Date	Time		. Received By			Date Time	
Call Scott Powlin before alsousing of sounds	1500514	الح الح الح الح الح الح الح الح الح الح	1 57 W				2786		
DISTRIBUTION: WHITE - Relumed to Client with Report; C.	ANARY - Stays	th the Sample	PINK - FING	(do		+			

Custody Record Chain of

Temperature on Receipt ...

TestAmerica

Special Instructions/ Conditions of Receipt (A fee may be assessed if samples are retained known than t month) Chain of Custody Number 232365 Page Date THE LEADER IN ENVIRONMENTAL TESTING Date 8/3/12 24 5.2' 8.1 (903) (1) Analysis (Attach list if Lab Number Months メダメア Osposal Bras Brans For בנד OC Requirements (Specify) HOBN ſξ Containers & Preservatives HOW Project Manager

Scott Postive
Teleptrone Number (Area Code) Fax Number

3/5-674-9456
Site Contact

Lac Contact

Lac Contact Received By HCI EONH Drinking Water? Yes□ No□ HOSZH seudun S 5 Section | Return To Client 250 2000 Sample Disposal 12 Other Standard K 50 Sile Contact
Klus Beyr Time Matrix Time pes TIK Bara 40 S S Time Date 140 🗌 21 Days 4/1/5 1/6/3 ☐ Paison B ☐ 14 Days Wilkeson Slip Buffel, NY Contragit Purchase order Contragit Purchase order Couche No. Sample I.D. No. and Description (Containers for each sample may be combined on one tine) Skin Imlani ARCHOTS/ALTION FUL My Woodclift Dive 7 Days 🗆 Non-Hazard 📗 🗆 Flammable City FAIMSH Project (State) 40023310 (01-8) CO-84. Be (16-61) · A3 -04 (14-21) ☐ 48 Hours Possible Hazard Identification e Required O 2. Relinquished By o 3. Relinquished By TAL-4124 (1007) Turn Around T 24 Hours

Chain of Custody Record

Temperature on Receipt

<u>Test</u>America

TAL-4124 (1007)	Drinking Water? Yes□	<i>№</i>	THE LEADER IN ENVIRONMENTAL TESTING	
ARCADES/National Fail	Project Manager	0.1 Lo	1 + 1 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Chain of Custody Number
Address 245 Woold. FF Dr.ve	Telephone Number (Area Code)Fax Numbe	el/Fax Number	Lab Number	Page { of /
City State Zip Code	Sile Contact	Lab Contact	Analysis (Attach list if more space is needed)	
Bufalo 1	Carrier/Waybill Number		(gopog) (4) (9) (4) (7)	3
ContractPurchase Order/Quote No. l / $S \supset U \supset S \not> D$	Main's	Containers & Preservatives		Special Instructions/ Conditions of Receipt
Sample 1.D. No. and Description (Containers for each sample may be combined on one line)	Time Aurous Sed bes Sed	NaOH HZSOA HYSOA	לנו היים היים היים היים היים היים היים היי	
AB -03 (8-10) 8/6/11	1050	<u> </u>	X X X X X X X X X X X X X X X X X X X	
# AS -03 (20-21,5) (5/6/1)	× <0)	2	人 ス ス ス ス ス ス ス ス ス ス ス ス ス	
1/9/8 (11-8) (3-8/9/1)	H\$6 X	\(\sigma\)	XXXXXX	
4/0/1x (72-24) 8/6/1x	X 94,4	<u> </u>	ベスメメ	
of				
24				
62				
Possible Hazard Idenlincation Non-Hazard	Sample Disposal Sample Disposal	Cour before	d.>pexxt !!	(4 fee may be assessed if samples are retained
9 Required 7 Days 14 D	Davs Colher			thing.
10 /KAP	-	1. Reçerved By	7 .00	. Data Time
· Chland the	8/7/12 330		* Their	8/7/2/13:20
8 2: Helinquished By /	Date	2 Peceived By		Date Time
3. Relinquished By	Date Time	3 Явсегчед Ву		Dale Time
Commens Call Scott Poully Refine Disposing	Proposition of Sonoter		2.9HZ	
DISTRIBUTION: WHILE - HELUMEGIO CIIBAI WIIN HEPORI; CAIVANT - SIE	ays with the Symple, PINK - Field Copy		<u> </u>	

Client: ARCADIS U.S. Inc Job Number: 480-23453-1

Client Sample ID:

AB-05 (9.5-10.8)

Lab Sample ID:

480-23453-1

Client Matrix:

Solid

% Moisture:

20.4

Date Sampled: 08/01/2012 1440 Date Received: 08/03/2012 1500

8260B Volatile Organic Compounds (GC/MS)

Analysis Method:

8260B

Analysis Batch:

480-75363

Instrument ID:

HP5973P

Prep Method: Dilution: 5035

Prep Batch:

480-75186

Lab File ID: Initial Weight/Volume: P2790.D

Analysis Date:

1.0

08/07/2012 0246

00/05/00/4

Final Weight/Volume:

5.04 g 5 mL

Prep Date:

08/05/2012 2325

Analyte	DryWt Corrected: Y	Result (ug/Kg)	Qualifier	MDL	RL
1,1,1-Trichloroethane	- and and determined the second of the second and and and and a second	ND		0.45	6,2
1,1,2,2-Tetrachloroethane		ND		1.0	6.2
1,1,2-Trichloroethane		ND		0.81	6.2
1,1,2-Trichloro-1,2,2-trifluoroeth	nane	ND		1.4	6.2
1,1-Dichloroethane		ND		0.76	6.2
1,1-Dichloroethene		ND		0.76	6.2
1,2,4-Trichlorobenzene		ND		0.38	6.2
1,2-Dibromo-3-Chloropropane		ND		3.1	6.2
1,2-Dibromoethane		ND		0.80	6.2
1,2-Dichlorobenzene		ND		0.49	6.2
1,2-Dichloroethane		ND		0.31	6.2
1,2-Dichloropropane		ND		3.1	6.2
1,3-Dichlorobenzene		ND		0.32	6.2
1,4-Dichlorobenzene		ND		0.87	6.2
2-Hexanone		ND		3.1	31
2-Butanone (MEK)		6.9	j	2.3	31
4-Methyl-2-pentanone (MIBK)		ND		2.0	31
Acetone		40	U B	5.2	31
Benzene		ND	•	0.31	6.2
Bromodichloromethane		ND		0.84	6.2
Bromoform		ND		3.1	6.2
Bromomethane		ND		0.56	6.2
Carbon disulfide		ND		3.1	6.2
Carbon tetrachloride		ND		0.60	6.2
Chlorobenzene		ND	*	0.82	6.2
Dibromochloromethane		ND	1.5	0.80	6.2
Chloroethane		ND		1.4	6.2
Chloroform		ND		0.39	6.2
Chloromethane		ND		0.38	6.2
cis-1,2-Dichloroethene		ND		0.80	6.2
cis-1,3-Dichloropropene		ND		0.90	6.2
Cyclohexane		ND		0.87	6.2
Dichlorodifluoromethane		ND		0.51	6.2
Ethylbenzene		ND		0.43	6.2
sopropylbenzene		ND		0.94	6.2
Methyl acetate		ND	1	1.2	6.2
Methyl tert-butyl ether		ND	,	0.61	6.2
Methylcyclohexane		ND		0.95	6.2
Methylene Chloride		ND		2.9	6.2
Styrene		ND		0,31	6.2
Tetrachloroethene		ND		0.84	6.2
Foluene		ND		0.47	6.2
rans-1,2-Dichloroethene		ND		0.64	6.2
rans-1,3-Dichloropropene		ND		2.7	6.2
Frichloroethene		ND		1.4	6.2
	· ·				

Client: ARCADIS U.S. Inc

Job Number: 480-23453-1

Client Sample ID:

AB-05 (9.5-10.8)

Lab Sample ID:

480-23453-1

Client Matrix:

Solid

% Moisture:

20.4

Date Sampled: 08/01/2012 1440

Date Received: 08/03/2012 1500

8260B Volatile Organic Compounds (GC/MS)

Analysis Method:

8260B

Analysis Batch:

480-75363

Instrument ID:

HP5973P

Prep Method:

5035

Prep Batch:

480-75186

Lab File ID:

P2790.D

Dilution:

Analysis Date:

1.0

Initial Weight/Volume:

5.04 g

08/07/2012 0246

Final Weight/Volume:

Prep Date:

08/05/2012 2325

5 mL

Analyte

DryWt Corrected: Y

Result (ug/Kg) ND

Qualifier

RL 6.2

Vinyl chloride Xylenes, Total

ND

%Rec

1.0 Qualifier Acceptance Limits

MDL

0.76

12

Surrogate 1,2-Dichloroethane-d4 (Surr) Toluene-d8 (Surr) 4-Bromofluorobenzene (Surr)

91 105 102

64 - 126 71 - 125 72 - 126

Client: ARCADIS U.S. Inc Job Number: 480-23453-1

Client Sample ID:

AB-05 (22-25)

Lab Sample ID:

480-23453-2

Client Matrix:

Solid

% Moisture:

17.0

Date Sampled: 08/01/2012 1450

Date Received: 08/03/2012 1500

8260B Volatile Organic Compounds (GC/MS)

Analysis Method:

8260B

Analysis Batch:

480-75363

Instrument ID:

HP5973P

Prep Method: Dilution:

5035

Prep Batch:

480-75186

Lab File ID: Initial Weight/Volume: P2791.D

Analysis Date:

1.0

08/07/2012 0311

Final Weight/Volume:

5.07 g 5 mL

Prep Date:

08/05/2012 2325

Analyte	DryWt Corrected: Y	Result (ug/Kg)	Qualifier	MDL	RL
1,1,1-Trichloroethane		ND	gogo gogo gogo gogo guan gaga jaga padanilan na tamayan bidan na bada kata bada bada bada bada bada bada bada b	0.43	5.9
1,1,2,2-Tetrachloroethane		ND		0.96	5.9
1,1,2-Trichloroethane		ND		0.77	5.9
1,1,2-Trichloro-1,2,2-trifluoroe	ethane	ND		1.4	5.9
1,1-Dichloroethane		ND		0.72	5.9
1,1-Dichloroethene		ND		0.73	5.9
1,2,4-Trichlorobenzene		ND		0.36	5.9
1,2-Dibromo-3-Chloropropane	е	ND		3.0	5.9
1,2-Dibromoethane		ND		0.76	5.9
1,2-Dichlorobenzene		ND		0.46	5.9
1,2-Dichloroethane		ND		0.30	5.9
1,2-Dichloropropane		ND		3.0	5.9
1,3-Dichlorobenzene		ND		0.31	5.9
1,4-Dichlorobenzene		ND		0.83	5.9
2-Hexanone		ND		3.0	30
2-Butanone (MEK)		150		2.2	30
4-Methyl-2-pentanone (MIBK)		ND "	2	1.9	30
Acetone		12 30 UB	1-B	5.0	
Benzene		ND	J-D	0.29	30
Bromodichloromethane		ND		0.29	5.9
Bromoform		ND			5.9
Bromomethane		ND		3.0	5.9
Carbon disulfide		ND		0.53	5.9
Carbon distillide Carbon tetrachloride				3.0	5.9
Chlorobenzene		ND		0.58	5.9
Dibromochloromethane		ND		0.78	5.9
•		ND		0.76	5.9
Chloroethane		ND		1.3	5.9
Chloroform		ND		0.37	5.9
Chloromethane		ND		0.36	5.9
cis-1,2-Dichloroethene		ND		0.76	5.9
cis-1,3-Dichloropropene		ND		0.86	5.9
Cyclohexane		ND		0.83	5.9
Dichlorodifluoromethane		ND		0.49	5.9
Ethylbenzene		ND		0.41	5.9
Isopropylbenzene		ND		0.90	5.9
Methyl acetate		ND	1	1.1	5.9
Methyl tert-butyl ether		ND		0.58	5.9
Methylcyclohexane		ND		0.90	5.9
Methylene Chloride		ND		2.7	5.9
Styrene		ND		0.30	5.9
Tetrachloroethene		ND		0.80	5.9
Toluene		ND .		0.45	5.9
rans-1,2-Dichloroethene		ND		0.61	5.9
rans-1,3-Dichloropropene		ND		2.6	5.9
Trichloroethene		ND		1.3	5.9

Client: ARCADIS U.S. Inc.

Job Number: 480-23453-1

Client Sample ID:

AB-05 (22-25)

Lab Sample ID:

480-23453-2

Client Matrix:

Solid

% Moisture:

17.0

Date Sampled: 08/01/2012 1450

Date Received: 08/03/2012 1500

8260B Volatile Organic Compounds (GC/MS)

Analysis Method:

8260B

Analysis Batch:

480-75363

Instrument ID:

HP5973P

Prep Method:

5035

Prep Batch:

Lab File ID:

Dilution:

1.0

480-75186

P2791.D

Analysis Date:

Initial Weight/Volume:

08/07/2012 0311

Qualifier

Final Weight/Volume:

5.07 g 5 mL

Prep Date:

08/05/2012 2325

Qualifier MDL 0.72

RL

Analyte Vinyl chloride Xylenes, Total DryWt Corrected: Y Result (ug/Kg)

ND ND

%Rec

1.0

5.9 12

Surrogate 1,2-Dichloroethane-d4 (Surr)

4-Bromofluorobenzene (Surr)

Toluene-d8 (Surr)

94 103 101

64 - 126 71 - 125 72 - 126

Acceptance Limits

Client: ARCADIS U.S. Inc

Job Number: 480-23453-1

Client Sample ID:

AB-01 (8-14)

Lab Sample ID:

480-23453-3

Client Matrix:

Solid

% Moisture:

12.7

Date Sampled: 08/02/2012 0840 Date Received: 08/03/2012 1500

8260B Volatile Organic Compounds (GC/MS)

Analysis Method:

8260B

Analysis Batch:

480-75363

Instrument ID:

HP5973P

Prep Method: Dilution:

5035

Prep Batch:

480-75186

Lab File ID:

P2792.D

1.0

Initial Weight/Volume:

Analysis Date:

5.01 g

08/07/2012 0336

Final Weight/Volume:

5 mL

5.7

5.7

5.7

5.7

2.5

1.3

0.54

Prep Date:

1.1.1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane

trans-1,3-Dichloropropene

Trichlorofluoromethane

Trichloroethene

Analyte

08/05/2012 2325

DryWt Corrected: Y	Result (ug/Kg)	Qualifier	MDL	RL
	ND	Comment of the commen	0.41	5.7
9	ND		0.93	5.7
	ND		0.74	5.7

ND

ND

ND

Client: ARCADIS U.S. Inc Job Number: 480-23453-1

Client Sample ID:

AB-01 (8-14)

Lab Sample ID: Client Matrix:

480-23453-3

Solid

% Moisture: 12.7

Prep Batch:

Date Sampled: 08/02/2012 0840

Date Received: 08/03/2012 1500

8260B Volatile Organic Compounds (GC/MS)

480-75186

Analysis Method: Prep Method:

8260B

5035

1.0

Analysis Date: Prep Date:

Dilution:

08/07/2012 0336

08/05/2012 2325

Analysis Batch: 480-75363 Instrument ID:

Lab File ID:

HP5973P P2792.D

Initial Weight/Volume:

5.01 g

Final Weight/Volume:

5 mL

Analyte	DryWt Corrected: Y	Result (ug/Kg)	Qualifier	MDL	RL
Vinyl chloride		ND	and the second s	0.70	5.7
Xylenes, Total		1.2	J	0.96	11

Surrogate	%Rec	Qualifier	Acceptance Limits
1,2-Dichloroethane-d4 (Surr)	98	Township on the Control of the Contr	64 - 126
Toluene-d8 (Surr)	106		71 - 125
4-Bromofluorobenzene (Surr)	105		72 - 126

Client: ARCADIS U.S. Inc Job Number: 480-23453-1

Client Sample ID:

AB-01 (20-22)

Lab Sample ID:

480-23453-4

Client Matrix:

Solid

% Moisture:

32.9

Date Sampled: 08/02/2012 0900 Date Received: 08/03/2012 1500

8260B Volatile Organic Compounds (GC/MS)

Analysis Method:

8260B

Analysis Batch:

480-75464

Instrument ID:

HP5973P

Prep Method: Dilution:

5035

Prep Batch:

480-75186

Lab File ID: Initial Weight/Volume: P2802.D

Analysis Date:

1.0

0.62 g

08/07/2012 1306

Final Weight/Volume:

5 mL

Prep Date:

08/05/2012 2325

Analyte	DryWt Corrected: Y	Result (ug/Kg)	Qualifier	MDL	RL
1,1,1-Trichloroethane	Conference of the properties of the second s	ND	and the second s	4.4	60
1,1,2,2-Tetrachloroethane		ND		9.7	60
1,1,2-Trichloroethane		ND		7.8	60
1,1,2-Trichloro-1,2,2-trifluoro	ethane	ND		14	60
1,1-Dichloroethane		ND		7.3	60
1,1-Dichloroethene		ND		7.4	60
1,2,4-Trichlorobenzene		ND		3.7	60
1,2-Dibromo-3-Chloropropar	e	ND		30	60
1,2-Dibromoethane		ND		7.7	60
1,2-Dichlorobenzene		ND		4.7	60
1,2-Dichloroethane		ND		3.0	60
1,2-Dichloropropane		ND		30	60
1,3-Dichlorobenzene		ND		3.1	60
1,4-Dichlorobenzene		ND		8.4	60
2-Hexanone		ND		30	300
2-Butanone (MEK)		130	J	22	300
4-Methyl-2-pentanone (MIBK)	ND	v	20	300
Acetone	,	390	* * *	51	
Benzene		ND .		2.9	300
Bromodichloromethane		ND		8.1	60
Bromoform		ND		30	60
Bromomethane		ND			60
Carbon disulfide		ND		5.4	60
Carbon distillide Carbon tetrachloride		ND ND		30	60
Chlorobenzene				5.8	60
		ND		7.9 	60
Dibromochloromethane		ND		7.7	60
Chloroethane		ND		14	60
Chloroform		ND		3.7	60
Chloromethane		ND		3.6	60
cis-1,2-Dichloroethene		ND		7.7	60
cis-1,3-Dichloropropene		ND		8.7	60
Cyclohexane		23	J	8.4	60
Dichlorodifluoromethane		ND		5.0	60
Ethylbenzene		ND		4.1	60
Isopropylbenzene		53	J	9.1	60
Methyl acetate		ND	*	11	60
Methyl tert-butyl ether		ND		5.9	60
Methylcyclohexane		56	J	9.1	60
Methylene Chloride		ND		28	60
Styrene		ND		3.0	60
Tetrachloroethene		ND		8.1	60
Toluene		ND		4.5	60
trans-1,2-Dichloroethene		ND		6.2	60
trans-1,3-Dichloropropene		ND		26	60
Trichloroethene		ND ·		13	60

Client: ARCADIS U.S. Inc

Job Number: 480-23453-1

Client Sample ID:

AB-01 (20-22)

Lab Sample ID:

480-23453-4

Client Matrix:

Solid

% Moisture:

32.9

Date Sampled: 08/02/2012 0900

Date Received: 08/03/2012 1500

8260B Volatile Organic Compounds (GC/MS)

Analysis Method:

8260B

Analysis Batch:

480-75464

Instrument ID:

HP5973P

Prep Method:

5035

Lab File ID:

Dilution:

1.0

Prep Batch:

480-75186

P2802.D

Initial Weight/Volume:

0.62 g

Analysis Date:

08/07/2012 1306

Final Weight/Volume:

MDL.

7.3

10

5 mL

120

Prep Date:

08/05/2012 2325

Result (ug/Kg) ND

Qualifier

RL 60

Analyte Vinyl chloride Xylenes, Total

Surrogate

DryWt Corrected: Y

45 120 UB

JВ

Qualifier

Acceptance Limits

64 - 126

1,2-Dichloroethane-d4 (Surr) Toluene-d8 (Surr) 4-Bromofluorobenzene (Surr)

91 104 99

%Rec

71 - 125 72 - 126

Client: ARCADIS U.S. Inc Job Number: 480-23453-1

Client Sample ID:

AW-02 (8-10)

Lab Sample ID:

480-23453-5

Client Matrix:

Solid

% Moisture:

18.8

Date Sampled: 08/02/2012 1120 Date Received: 08/03/2012 1500

8260B Volatile Organic Compounds (GC/MS)

Analysis Method:

8260B

Analysis Batch:

480-75464

Instrument ID:

HP5973P

Prep Method:

5035

Prep Batch:

480-75186

Lab File ID: Initial Weight/Volume: P2803.D

Dilution: Analysis Date: 1.0

08/07/2012 1332

Final Weight/Volume:

4.99 g 5 mL

Prep Date:

08/05/2012 2325

Analyte	DryWt Corrected: Y	Result (ug/Kg)	Qualifier	MDL	RL
1,1,1-Trichloroethane	and a second and a second transfer and second second second second of the second secon	ND	COMMUNICATION OF THE CONTRACT	0.45	6.2
1,1,2,2-Tetrachloroethane		ND		1.0	6.2
1,1,2-Trichloroethane		ND		0.80	6.2
1,1,2-Trichloro-1,2,2-trifluoro	ethane	ND		1.4	6.2
1,1-Dichloroethane		ND		0.75	6.2
1,1-Dichloroethene		ND		0.75	6.2
1,2,4-Trichlorobenzene		ND		0.37	6.2
1,2-Dibromo-3-Chloropropan	e	ND		3.1	6.2
1,2-Dibromoethane		ND		0.79	6.2
1,2-Dichlorobenzene		ND		0.48	6.2
1,2-Dichloroethane		ND		0.31	6.2
1,2-Dichloropropane		ND		3.1	6.2
1,3-Dichlorobenzene		ND		0.32	6.2
1,4-Dichlorobenzene		ND		0.86	6.2
2-Hexanone		ND		3.1	31
2-Butanone (MEK)		ND		2.3	31
4-Methyl-2-pentanone (MIBK)	ND		2.0	31
Acetone	,	20	J	5.2	31
Benzene		ND	J	0.30	
Bromodichloromethane		ND		0.83	6.2
Bromoform		ND		0.63 3.1	6.2
Bromomethane		ND			6.2
Carbon disulfide		ND		0.55	6.2
Carbon distillide Carbon tetrachloride		ND ND		3.1	6.2
Chlorobenzene		ND ND		0.60	6.2
Dibromochloromethane		_		0.81	6.2
Chloroethane		ND ND		0.79	6.2
Chloroform		ND ND		1.4	6.2
Chloromethane				0.38	6.2
cis-1,2-Dichloroethene		ND		0.37	6.2
•		ND		0.79	6.2
cis-1,3-Dichloropropene		ND		0.89	6.2
Cyclohexane		ND		0.86	6.2
Dichlorodifluoromethane		ND		0.51	6.2
Ethylbenzene 		ND		0.43	6.2
Isopropylbenzene		ND	,	0.93	6.2
Methyl acetate		ND		1.1	6.2
Methyl tert-butyl ether		ND		0.61	6.2
Methylcyclohexane		ND		0.94	6.2
Methylene Chloride		ND		2.8	6.2
Styrene		ND		0.31	6.2
Tetrachloroethene		0.89	J	0.83	6.2
Toluene		ND		0.47	6.2
trans-1,2-Dichloroethene		ND		0.64	6.2
rans-1,3-Dichloropropene		ND		2.7	6.2
Trichloroethene		ND		1.4	6.2
Trichlorofluoromethane		ND			

Client: ARCADIS U.S. Inc Job Number: 480-23453-1

Client Sample ID:

AW-02 (8-10)

Lab Sample ID:

480-23453-5

Client Matrix: Solid % Moisture:

18.8

Date Sampled: 08/02/2012 1120

Date Received: 08/03/2012 1500

8260B Volatile Organic Compounds (GC/MS)

Analysis Method:

8260B

5035

Analysis Batch:

480-75464

Instrument ID:

HP5973P

Prep Method:

1.0

Prep Batch:

Lab File ID:

P2803.D

Dilution:

Analysis Date:

480-75186

Initial Weight/Volume:

4.99 g

Prep Date:

08/07/2012 1332 08/05/2012 2325

Final Weight/Volume:

5 mL

Analyte
Vinyl chloride
Vidence Tetal

DryWt Corrected: Y Result (ug/Kg) ND

Qualifier MDL 0.75 1.0

RL 6.2

Xylenes, Total

Surrogate

ND %Rec

Qualifier Acceptance Limits

Ü

12

1,2-Dichloroethane-d4 (Surr) Toluene-d8 (Surr)

4-Bromofluorobenzene (Surr)

99 113 106

64 - 126 71 - 125 72 - 126

Client: ARCADIS U.S. Inc

Job Number: 480-23453-1

Client Sample ID:

AW-02 (18-21)

Lab Sample ID:

480-23453-6

Client Matrix:

Solid

d .

% Moisture: 38

38.4

Date Sampled: 08/02/2012 1130

Date Received: 08/03/2012 1500

8260B Volatile Organic Compounds (GC/MS)

Analysis Method:

8260B

Analysis Batch:

480-75464

Instrument ID:

HP5973P

Prep Method: Dilution: 5035

Prep Batch:

480-75186

Lab File ID: Initial Weight/Volume: P2804.D

Analysis Date:

1.0

08/07/2012 1357

Final Weight/Volume:

0.65 g 5 mL

Prep Date:

08/05/2012 2325

ıaı	vveigniv voidine.	J	ı

Analyte	DryWt Corrected: Y	Result (ug/Kg)	Qualifier	MDL	RL
1,1,1-Trichloroethane		ND	J	4.5	62
1,1,2,2-Tetrachloroethane		ND	ı	10	62
1,1,2-Trichloroethane		ND		8.1	62
1,1,2-Trichloro-1,2,2-trifluoro	pethane	ND		14	62
1,1-Dichloroethane		ND	f	7.6	62
1,1-Dichloroethene		ND	1	7.6	62
1,2,4-Trichlorobenzene		ND		3.8	62
1,2-Dibromo-3-Chloropropa	ne	ND		31	62
1,2-Dibromoethane		ND		8.0	62
1,2-Dichlorobenzene		ND		4.9	62
1,2-Dichloroethane		ND	Negation and the second	3.1	62
1,2-Dichloropropane		ND		31	62
1,3-Dichlorobenzene		ND		3.2	62
1,4-Dichlorobenzene		ND		8.7	62
2-Hexanone		ND	7	31	310
2-Butanone (MEK)		61	j	23	310
4-Methyl-2-pentanone (MIBI	O	ND	J	20	310
Acetone	,	230	Ĵ	53	310
Benzene		ND		3.1	62
Bromodichloromethane		ND	ブ	8.4	62
Bromoform		ND	1	31	62
Bromomethane		ND	· ·	5.6	62
Carbon disulfide		ND		31	62
Carbon tetrachloride		ND		6.0	62
Chlorobenzene		ND		8.2	62
Dibromochloromethane		ND		8.0	62
Chloroethane		ND		14	62
Chloroform		ND		3.9	62
Chloromethane		ND		3.8	62
cis-1,2-Dichloroethene		ND		8.0	62
cis-1,3-Dichloropropene		ND		9.0	62
Cyclohexane		ND		8.7	62
Dichlorodifluoromethane		ND		5.2	62
Ethylbenzene		ND		4.3	62
Isopropylbenzene		24	.1	9.4	62
Methyl acetate		ND	~ J	12	62
Methyl tert-butyl ether		ND	T	6.1	62
Methylcyclohexane		16	J	9.5	62
Methylene Chloride		ND	Ť	29	62
Styrene		ND		3.1	62 62
Tetrachloroethene		ND		8.4	62 62
Toluene		ND		4.7	62 62
trans-1,2-Dichloroethene		ND	U.S.	6.4	62
trans-1,3-Dichloropropene		ND	1	27	62 62
Trichloroethene		ND	1	14	62 62
Trichlorofluoromethane		ND	1.	5.9	
THO HOLDING OTHER IN IC		NU	A.	5. 8	62

Client: ARCADIS U.S. Inc Job Number: 480-23453-1

Client Sample ID: AW-02 (18-21)

Lab Sample ID: 480-23453-6

Date Sampled: 08/02/2012 1130 Client Matrix: Solid % Moisture: Date Received: 08/03/2012 1500 38.4

8260B Volatile Organic Compounds (GC/MS)

Analysis Method: 8260B Prep Method: 5035 Dilution:

Analysis Date:

Prep Date:

1.0

08/07/2012 1357 08/05/2012 2325 Analysis Batch: Prep Batch:

480-75464 480-75186 Instrument ID:

HP5973P Lab File ID: P2804.D

Initial Weight/Volume:

0.65 g

Final Weight/Volume:

5 mL

Analyte DryWt Corrected: Y Result (ug/Kg) Qualifier MDL RL Vinyl chloride ND 7.6 62 Xylenes, Total 67 JØ 10 120

Surrogate %Rec Qualifier Acceptance Limits 1,2-Dichloroethane-d4 (Surr) 88 64 - 126 Toluene-d8 (Surr) 103 71 - 125 4-Bromofluorobenzene (Surr) 98 72 - 126

Job Number: 480-23453-1 Client: ARCADIS U.S. Inc

Client Sample ID:

AW-01 (5-7)

Lab Sample ID:

480-23453-7

Client Matrix: Solid % Moisture:

12.8

Date Sampled: 08/02/2012 1530

Date Received: 08/03/2012 1500

8260B Volatile Organic Compounds (GC/MS)

Analysis Method:

8260B

Analysis Batch:

480-75464

Instrument ID:

HP5973P

Prep Method:

5035

Prep Batch:

480-75186

Lab File ID:

P2807.D

Dilution:

1.0

08/07/2012 1513

Initial Weight/Volume: Final Weight/Volume:

5.09 g 5 mL

Analysis Date: Prep Date:

08/05/2012 2325

Analyte	DryWt Corrected: Y	Result (ug/Kg)	Qualifier	MDL	RL	
1,1,1-Trichloroethane	and the second s	ND	en e	0.41	5.6	or or the property of the property of
1,1,2,2-Tetrachloroethane		ND		0.91	5.6	
1,1,2-Trichloroethane		ND		0.73	5.6	
1,1,2-Trichloro-1,2,2-trifluoroe	thane	ND		1.3	5.6	
1,1-Dichloroethane		ND		0.69	5.6	
1,1-Dichloroethene		ND		0.69	5.6	
1,2,4-Trichlorobenzene		ND		0.34	5.6	
1,2-Dibromo-3-Chloropropane	e	ND		2.8	5.6	
1,2-Dibromoethane		ND		0.72	5.6	
1,2-Dichlorobenzene		ND		0.44	5.6	
1,2-Dichloroethane		ND	σ,	0.28	5.6	
1,2-Dichloropropane		ND		2.8	5.6	
1,3-Dichlorobenzene		ND		0.29	5.6	
1,4-Dichlorobenzene		ND		0.79	5.6	
2-Hexanone		ND		2.8	28	
2-Butanone (MEK)		ND		2.1	28	
4-Methyl-2-pentanone (MIBK)		ND		1.8	28	
Acetone		13	J	4.7	28	
Benzene		ND		0.28	5.6	
Bromodichloromethane		ND		0.75	5.6	
Bromoform		ND		2.8	5.6	
Bromomethane		ND		0.51	5.6	
Carbon disulfide		ND		2.8	5.6	
Carbon tetrachloride		ND		0.55	5.6	
Chlorobenzene		ND		0.74	5.6	
Dibromochloromethane		ND		0.72	5.6	
Chloroethane		ND		1.3	5.6	
Chloroform		ND		0.35	5.6	
Chloromethane		ND		0.34	5.6	
cis-1,2-Dichloroethene		ND		0.72	5.6	
cis-1,3-Dichloropropene		ND		0.81	5.6	
Cyclohexane		2.1	J	0.79	5.6	
Dichlorodifluoromethane		ND		0.47	5.6	
Ethylbenzene		ND		0.39	5.6	
Isopropylbenzene		ND	4	0.85	5.6	
Methyl acetate		ND		1.0	5.6	
Methyl tert-butyl ether		ND		0.55	5.6	
Methylcyclohexane		2.7	J	0.86	5.6	
Methylene Chloride		ND		2.6	5.6	
Styrene		ND		0.28	5.6	
Tetrachloroethene		ND		0.76	5.6	
Toluene		1.7	J	0.43	5.6	
trans-1,2-Dichloroethene		ND		0.58	5.6	
trans-1,3-Dichloropropene		ND		2.5	5.6	
Trichloroethene		ND		1.2	5.6	
Trichlorofluoromethane		ND		0.53	5.6	

Client: ARCADIS U.S. Inc

Job Number: 480-23453-1

Client Sample ID:

AW-01 (5-7)

Lab Sample ID:

480-23453-7

Client Matrix:

Solid

% Moisture:

12.8

Date Sampled: 08/02/2012 1530 Date Received: 08/03/2012 1500

8260B Volatile Organic Compounds (GC/MS)

Analysis Method: Prep Method:

8260B 5035

Analysis Batch:

480-75464

Instrument ID:

HP5973P

Prep Batch:

Dilution:

1.0

Lab File ID:

P2807.D

480-75186

Initial Weight/Volume:

5.09 g

Analysis Date:

08/07/2012 1513

Final Weight/Volume:

5 mL

Prep Date:

08/05/2012 2325

Result (ug/Kg)

Qualifier MDL 0.69

RL

Analyte Vinyl chloride Xylenes, Total DryWt Corrected: Y

ND 3.3-11 UB

J B -

Qualifier

0.95

5.6 11

Surrogate 1,2-Dichloroethane-d4 (Surr) Toluene-d8 (Surr)

4-Bromofluorobenzene (Surr)

%Rec 90 101 97

64 - 126 71 - 125 72 - 126

Acceptance Limits

Client: ARCADIS U.S. Inc Job Number: 480-23453-1

Client Sample ID: AW-01 (20-22.5)

Lab Sample ID: 480-23453-8 Date Sampled: 08/02/2012 1540

Client Matrix: Solid % Moisture: 23.6 Date Received: 08/03/2012 1500

8260B Volatile Organic Compounds (GC/MS)

 Analysis Method:
 8260B
 Analysis Batch:
 480-75464
 Instrument ID:
 HP5973P

 Prep Method:
 5035
 Prep Batch:
 480-75186
 Lab File ID:
 P2808.D

 Dilution:
 1.0
 Initial Weight/Volume:
 5.03 g

 Dilution:
 1.0
 Initial Weight/Volume:
 5.03 g

 Analysis Date:
 08/07/2012 1539
 Final Weight/Volume:
 5 mL

Prep Date: 08/05/2012 2325

Analyte	DryWt Corrected: Y	Result (ug/Kg)	Qualifier	MDL	RL
1,1,1-Trichloroethan	е — — — — — — — — — — — — — — — — — — —	ND	Control of the second s	0.47	6.5
1,1,2,2-Tetrachloroet	thane	ND		1.1	6.5
1,1,2-Trichloroethane	e	ND		0.85	6.5
1,1,2-Trichloro-1,2,2-	-trifluoroethane	ND		1.5	6.5
1,1-Dichloroethane		ND		0.79	6.5
1,1-Dichloroethene		ND		0.80	6.5
1,2,4-Trichlorobenze	ene	ND		0.40	6.5
1,2-Dibromo-3-Chlor	ropropane	ND		3.3	6.5
1,2-Dibromoethane		ND		0.84	6.5
1,2-Dichlorobenzene	•	ND		0.51	6.5
1,2-Dichloroethane		ND		0.33	6.5
1,2-Dichloropropane	•	ND		3.3	6.5
1,3-Dichlorobenzene	•	ND		0.33	6.5
1,4-Dichlorobenzene		ND		0.91	6.5
2-Hexanone		ND		3.3	33
2-Butanone (MEK)		8.4	J	2.4	33
4-Methyl-2-pentanon	ne (MIBK)	ND		2.1	33
Acetone	,	33		5.5	33
Benzene		2.0	J	0.32	6.5
Bromodichlorometha	ane	ND		0.87	6.5
Bromoform		ND		3.3	6.5
Bromomethane		ND		0.59	6.5
Carbon disulfide		ND		3.3	6.5
Carbon tetrachloride		ND		0.63	6.5
Chlorobenzene		ND		0.86	6.5
Dibromochlorometha	ane	ND	4.0	0.83	6.5
Chloroethane		ND		1.5	6.5
Chloroform		ND		0.40	6.5
Chloromethane		ND		0.39	6.5
cis-1,2-Dichloroether	ne	ND		0.83	6.5
cis-1,3-Dichloroprope		ND		0.94	6.5
Cyclohexane		0.93	J	0.91	6.5
Dichlorodifluorometh	ane	ND	Ü	0.54	6.5
Ethylbenzene		ND		0.45	6.5
Isopropylbenzene		ND		0.98	6.5
Methyl acetate		ND	/	1.2	6.5
Methyl tert-butyl ethe	er er	ND	•	0.64	6.5
Methylcyclohexane	•	ND		0.99	6.5
Methylene Chloride		ND		3.0	6.5
Styrene		ND		0.33	
Tetrachloroethene		ND		0.87	6.5 6.5
Toluene		0.68	J	0.49	6.5
trans-1,2-Dichloroeth	nene	ND	J	0.49	
trans-1,3-Dichloropro		ND ND		2.9	6.5
Trichloroethene	урепе	ND		2.9 1.4	6.5
Trichlorofluorometha	ne	ND ND			6.5
methal	ne -	טא		0.62	6.5

Client: ARCADIS U.S. Inc

Job Number: 480-23453-1

Client Sample ID:

AW-01 (20-22.5)

Lab Sample ID:

480-23453-8

Client Matrix:

Solid

% Moisture:

23.6

Date Sampled: 08/02/2012 1540

Date Received: 08/03/2012 1500

8260B Volatile Organic Compounds (GC/MS)

Analysis Method:

8260B

Analysis Batch:

480-75464

Instrument ID:

HP5973P

Prep Method:

5035

Prep Batch:

Lab File ID:

P2808.D

Dilution:

1.0

480-75186

Analysis Date:

Initial Weight/Volume:

08/07/2012 1539

Final Weight/Volume:

5.03 g

Prep Date:

5 mL

Analyte

08/05/2012 2325

DryWt Corrected: Y Result (ug/Kg) Qualifier

Qualifier

MDL 0.79

RL

Vinyl chloride Xylenes, Total ND ND

1.1

6.5 13

Surrogate 1,2-Dichloroethane-d4 (Surr) Toluene-d8 (Surr)

4-Bromofluorobenzene (Surr)

64 - 126 71 - 125 72 - 126

Acceptance Limits

Client: ARCADIS U.S. Inc. Job Number: 480-23453-1

Client Sample ID:

RB-080212

Lab Sample ID:

480-23453-9

Client Matrix:

Water

Date Sampled: 08/02/2012 1640 Date Received: 08/03/2012 1500

8260B Volatile Organic Compounds (GC/MS)

Analysis Method:

8260B

Analysis Batch:

480-76450

Instrument ID:

HP5973P

Prep Method:

5030B

Prep Batch:

Lab File ID:

P2975.D

Dilution:

1.0

N/A

Initial Weight/Volume:

5 mL

Analysis Date:

08/14/2012 1434

Final Weight/Volume:

5 mL

•	юр	Date.	
Α	naiy	/te	

ep Date:	08/14/2012	1434

Analyte	Result (ug/L)	Qualifier	MDL	RL
1,1,1-Trichloroethane	ND	and and the Control of Control of the State of Control of the State of Control of Contro	0.82	1.0
1,1,2,2-Tetrachloroethane	ND		0.21	1.0
1,1,2-Trichloroethane	ND		0.23	1.0
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.31	1.0
1,1-Dichloroethane	ND		0.38	1.0
1,1-Dichloroethene	ND		0.29	1.0
1,2,4-Trichlorobenzene	ND		0.41	1.0
1,2-Dibromo-3-Chloropropane	ND		0.39	1.0
1,2-Dibromoethane	ND		0.73	1.0
1,2-Dichlorobenzene	ND		0.79	1.0
1,2-Dichloroethane	ND		0.21	1.0
1,2-Dichloropropane	ND		0.72	1.0
1,3-Dichlorobenzene	ND		0.78	1,0
1,4-Dichlorobenzene	ND		0.84	1.0
2-Hexanone	ND		1.2	5.0
2-Butanone (MEK)	ND		1.3	10
4-Methyl-2-pentanone (MIBK)	ND		2.1	5.0
Acetone	ND		3.0	10
Benzene	ND		0.41	1.0
Bromodichloromethane	ND		0.39	1.0
Bromoform	ND		0.26	1.0
Bromomethane	ND 3		0.69	1.0
Carbon disulfide	ND		0.19	1.0
Carbon tetrachloride	ND		0.27	1.0
Chlorobenzene	ND		0.75	1.0
Dibromochloromethane	ND		0.32	1.0
Chloroethane	ND J		0.32	1.0
Chloroform	ND		0.34	1.0
Chloromethane	ND		0.35	1.0
cis-1,2-Dichloroethene	ND		0.81	1.0
cis-1,3-Dichloropropene	ND		0.36	1.0
Cyclohexane	ND		0.18	1.0
Dichlorodifluoromethane	ND 3		0.68	1.0
Ethylbenzene	ND		0.74	1.0
Isopropylbenzene	ND		0.79	1.0
Methyl acetate	ND		0.50	1.0
Methyl tert-butyl ether	ND		0.16	1.0
Methylcyclohexane	ND		0.16	1.0
Methylene Chloride	ND		0.44	1.0
Styrene	ND		0.73	1.0
Tetrachloroethene	ND		0.36	1.0
Toluene	ND		0.51	1.0
trans-1,2-Dichloroethene	ND		0.90	1.0
trans-1,3-Dichloropropene	ND		0.37	1.0
Trichloroethene	ND		0.46	1.0
Trichlorofluoromethane	ND J		0.88	1.0
		*	•	

Client: ARCADIS U.S. Inc

Job Number: 480-23453-1

Client Sample ID:

RB-080212

Lab Sample ID:

480-23453-9

Client Matrix:

Water

Date Sampled: 08/02/2012 1640

Date Received: 08/03/2012 1500

8260B Volatile Organic Compounds (GC/MS)

Analysis Method:

8260B

Analysis Batch:

480-76450

Instrument ID:

HP5973P

Prep Method:

5030B

Prep Batch:

Dilution:

1.0

N/A

Lab File ID:

P2975.D

Qualifier

Initial Weight/Volume:

5 mL

Analysis Date:

08/14/2012 1434

Final Weight/Volume:

MDL

0.90

0.66

5 mL

Prep Date:

08/14/2012 1434

Analyte
Vinyl chloride
Xvlenes, Total

Result (ug/L) ND ND

Qualifier

RL 1.0 2.0

Surrogate
1,2-Dichloroethane-d4 (Surr)
Toluene-d8 (Surr)

79 95

%Rec

66 - 137 71 - 126

Acceptance Limits

4-Bromofluorobenzene (Surr)

99

Client: ARCADIS U.S. Inc

Job Number: 480-23453-1

Client Sample ID:

AB-04 (10-12)

Lab Sample ID:

480-23453-10

Client Matrix:

Solid

% Moisture:

20.0

Date Sampled: 08/03/2012 0920 Date Received: 08/03/2012 1500

8260B Volatile Organic Compounds (GC/MS)

Analysis Method:

8260B

Analysis Batch:

480-75464

Instrument ID:

HP5973P

Prep Method: Dilution:

5035

Prep Batch:

480-75186

Lab File ID: Initial Weight/Volume: P2809.D

Analysis Date:

1.0

08/07/2012 1604

Final Weight/Volume:

0.59 g 5 mL

Prep Date:

08/05/2012 2325

Analyte	DryWt Corrected: Y	Result (ug/Kg)	Qualifier	MDL	RL
1,1,1-Trichloroethane	and the second s	ND	ian inagendan han bera passasain an en en en in in in indiana en en in in in indiana en en in in in in in in i	3.8	ronn oleh delentriak terbesta en alaman perinangan kerangan perinangan perinangan perinangan perinangan perina 53
1,1,2,2-Tetrachloroethane		ND		8.6	53
1,1,2-Trichloroethane		ND		6.9	53
1,1,2-Trichloro-1,2,2-trifluoroe	thane	ND		12	53
1,1-Dichloroethane		ND		6.5	53
1,1-Dichloroethene		ND		6.5	53
1,2,4-Trichlorobenzene		ND		3.2	53
1,2-Dibromo-3-Chloropropane		ND		26	53
1,2-Dibromoethane		ND		6.8	53
1,2-Dichlorobenzene		ND		4.1	53
1,2-Dichloroethane		ND		2.7	53
1,2-Dichloropropane		ND		26	53
1,3-Dichlorobenzene		ND		2.7	53
1,4-Dichlorobenzene		ND		7.4	53
2-Hexanone		ND		26	260
2-Butanone (MEK)		ND		19	260
4-Methyl-2-pentanone (MIBK)		ND		17	260
Acetone		93	J	45	260
Benzene		ND	U	2.6	
Bromodichloromethane		ND		7.1	53
Bromoform		ND		7.1 26	53
Bromomethane		ND			53
Carbon disulfide		ND		4.8	53
Carbon tetrachloride		ND		26	53
Chlorobenzene		ND		5.1	53
Dibromochloromethane		ND		7.0	53
Chioroethane		ND		6.8	53
Chloroform		ND ND		12	53
Chloromethane				3.3	53
		ND		3.2	53
cis-1,2-Dichloroethene		ND		6.8	53
cis-1,3-Dichloropropene		ND		7.6	53
Cyclohexane		ND		7.4	53
Dichlorodifluoromethane		ND		4.4	53
Ethylbenzene		ND		3.7	53
Isopropylbenzene		ND		8.0	53
Methyl acetate		ND	*	9.8	53
Methyl tert-butyl ether		ND		5.2	53
Methylcyclohexane		ND		8.0	53
Methylene Chloride		ND		24	53
Styrene		ND		2.6	53
Tetrachloroethene		ND		7.1	53
Toluene		ND		4.0	53
trans-1,2-Dichloroethene		ND		5.5	53
Arena 4 0 Diablerances		NID.		22	50
trans-1,3-Dichloropropene		ND		23	53
trans-1,3-bichioropropene Trichloroethene Trichlorofluoromethane		ND ND		23 12	53 53

Client: ARCADIS U.S. Inc Job Number: 480-23453-1

Client Sample ID: AB-04 (10-12)

Lab Sample ID: 480-23453-10 Date Sampled: 08/03/2012 0920

Client Matrix: Solid % Moisture: 20.0 Date Received: 08/03/2012 1500

8260B Volatile Organic Compounds (GC/MS)

Analysis Method: 8260B Prep Method: 5035

Analysis Batch:

480-75464

Instrument ID:

HP5973P

Dilution:

1.0

Prep Batch:

480-75186

Lab File ID: Initial Weight/Volume: P2809.D

Analysis Date:

0.59 g

Prep Date:

08/07/2012 1604

Final Weight/Volume:

5 mL

08/05/2012 2325

Analyte	DryWt Corrected: Y	Result (ug/Kg)	Qualifier	MDL	RL
Vinyl chloride	and the second s	ND	eggiggen ikk kita kita kanan kanan kita kita kita kita kita kita kita kita	6.5	53
Xylenes, Total		ND		8.9	110

Surrogate	%Rec	Qualifier	Acceptance Limits
1,2-Dichloroethane-d4 (Surr)	91		64 - 126
Toluene-d8 (Surr)	106		71 - 125
4-Bromofluorobenzene (Surr)	100		72 - 126

Client: ARCADIS U.S. Inc Job Number: 480-23453-1

Client Sample ID:

TRIP BLANK

Lab Sample ID:

480-23453-11

Client Matrix:

Water

Date Sampled: 08/03/2012 0000 Date Received: 08/03/2012 1500

8260B Volatile Organic Compounds (GC/MS)

Analysis Method: Prep Method:

8260B

5030B 1.0

Dilution: Analysis Date:

08/14/2012 1459

Prep Batch:

Analysis Batch:

480-76450

N/A

Instrument ID: Lab File ID:

HP5973P

Initial Weight/Volume:

P2976.D 5 mL

Final Weight/Volume:

5 mL

Prep Date:	08/14/2012	1459

Analyte	Result (ug/L)	Qualifier	MDL	RL
1,1,1-Trichloroethane	ND	о том с тако духа. (д) разрада на тако на пред на фолозова боление на сего образова на пред на градина на сего	0.82	1.0
1,1,2,2-Tetrachloroethane	ND		0.21	1.0
1,1,2-Trichloroethane	ND		0.23	1.0
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.31	1.0
1,1-Dichloroethane	ND		0.38	1.0
1,1-Dichloroethene	ND		0.29	1.0
1,2,4-Trichlorobenzene	ND		0.41	1.0
1,2-Dibromo-3-Chloropropane	ND		0.39	1.0
1,2-Dibromoethane	ND		0.73	1.0
1,2-Dichlorobenzene	ND		0.79	1.0
1,2-Dichloroethane	ND		0.21	1.0
1,2-Dichloropropane	ND		0.72	1.0
1,3-Dichlorobenzene	ND		0.78	1.0
1,4-Dichlorobenzene	ND		0.84	1.0
2-Hexanone	ND		1.2	5.0
2-Butanone (MEK)	ND		1.3	10
4-Methyl-2-pentanone (MIBK)	ND		2.1	5.0
Acetone	ND	•	3.0	10
Benzene	ND ·		0.41	1.0
Bromodichloromethane	ND		0.39	1.0
Bromoform	ND		0.26	1.0
Bromomethane	ND J		0.69	1.0
Carbon disulfide	ND		0.19	1.0
Carbon tetrachloride	ND		0.27	1.0
Chlorobenzene	ND		0.75	1.0
Dibromochloromethane	ND 🚏		0.32	1,0
Chloroethane	ND J		0.32	1.0
Chloroform	ND		0.34	1.0
Chloromethane	ND		0.35	1.0
cis-1,2-Dichloroethene	ND		0.81	1.0
cis-1,3-Dichloropropene	ND		0.36	1.0
Cyclohexane	ND		0.18	1.0
Dichlorodifluoromethane	ND J		0.68	1.0
Ethylbenzene	ND		0.74	1.0
Isopropylbenzene	ND		0.79	1.0
Methyl acetate	ND		0.50	1.0
Methyl tert-butyl ether	ND		0.16	1.0
Methylcyclohexane	ND		0.16	1.0
Methylene Chloride	ND		0.44	1.0
Styrene	ND		0.73	1.0
Tetrachloroethene	ND		0.36	1.0
Toluene	ND		0.51	1.0
trans-1,2-Dichloroethene	ND		0.90	1.0
trans-1,3-Dichloropropene	ND		0.37	1.0
Trichloroethene	ND		0.46	1.0
Trichlorofluoromethane	ND J		0.88	1.0
	· ·= 😽		0.00	1.0

Client: ARCADIS U.S. Inc

Job Number: 480-23453-1

Client Sample ID:

TRIP BLANK

Lab Sample ID:

480-23453-11

Client Matrix:

Water

Date Sampled: 08/03/2012 0000 Date Received: 08/03/2012 1500

Analysis Method:

8260B

Analysis Batch:

480-76450

Instrument ID:

HP5973P

Prep Method:

5030B

Prep Batch:

Lab File ID:

Dilution:

P2976.D

1.0

N/A

Initial Weight/Volume:

5 mL

Analysis Date:

08/14/2012 1459

Final Weight/Volume:

5 mL

Prep Date:

08/14/2012 1459

Analyte
Vinyl chloride
Xylenes, Total

Result (ug/L) ND ND

Qualifier MDL 0.90 0.66

Qualifier

RL 1.0 2.0

Surrog	gate	
~000,000 to 000 to 000		76
- 1.2∗Di	chloroethane-d4 (Surr)	

%Rec 81 95

Acceptance Limits 66 - 137 71 - 126

Toluene-d8 (Surr) 4-Bromofluorobenzene (Surr)

100

73 - 120

Client: ARCADIS U.S. Inc Job Number: 480-23453-1

Client Sample ID: DUP-080212

Lab Sample ID: 480-23453-12 Date Sampled: 08/02/2012 0000 Solid Client Matrix: % Moisture: 8.1 Date Received: 08/03/2012 1500

8260B Volatile Organic Compounds (GC/MS)

Analysis Method: 8260B Prep Method: 5035 Dilution:

1.0

Analysis Date:

Prep Date:

Trichloroethene

Trichlorofluoromethane

08/07/2012 1630 08/05/2012 2325 Analysis Batch: 480-75464 Prep Batch:

480-75186

Instrument ID: Lab File ID:

HP5973P P2810.D

Initial Weight/Volume:

1.2

0.51

5.4

5.4

5.02 g

Final Weight/Volume:

5 mL

Analyte	DryWt Corrected: Y	Result (ug/Kg)	Qualifier	MDL	RL	
1,1,1-Trichloroethane	•	ND	ern necessagnes og eggere ett förstagna, om engena er till år vedliger till stör de helle er till den erner vi	0.39	5.4	aga a contractivo primer moné
1,1,2,2-Tetrachloroet	hane	ND		0.88	5.4	
1,1,2-Trichloroethane	e	ND		0.70	5.4	
1,1,2-Trichloro-1,2,2-	trifluoroethane	ND		1.2	5.4	
1,1-Dichloroethane		ND		0.66	5.4	
1,1-Dichloroethene		ND		0.66	5.4	
1,2,4-Trichlorobenze	ne	ND		0.33	5.4	
1,2-Dibromo-3-Chlore	opropane	ND		2.7	5.4	
1,2-Dibromoethane		ND		0.70	5.4	
1,2-Dichlorobenzene		ND		0.42	5.4	
1,2-Dichloroethane		ND		0.27	5.4	
1,2-Dichloropropane		ND		2.7	5.4	
1,3-Dichlorobenzene		ND		0.28	5.4	
1,4-Dichlorobenzene		ND		0.76	5.4	
2-Hexanone		ND		2.7	27	
2-Butanone (MEK)		ND		2.0	27	
4-Methyl-2-pentanon	e (MIBK)	ND		1.8	27	
Acetone		14	J	4.6	27	
Benzene		ND		0.27	5.4	
Bromodichlorometha	ne	ND		0.73	5.4	
Bromoform		ND		2.7	5.4	
Bromomethane		ND		0.49	5.4	
Carbon disulfide		ND		2.7	5.4	
Carbon tetrachloride		ND		0.52	5.4	
Chlorobenzene		ND		0.71	5.4	
Dibromochlorometha	ne	ND		0.69	5.4	
Chloroethane		ND		1.2	5.4	
Chloroform		ND		0.33	5.4	
Chloromethane		ND		0.33	5.4	
cis-1,2-Dichloroethen	e	ND		0.69	5.4	
cis-1,3-Dichloroprope	ene	ND		0.78	5.4	
Cyclohexane		1.8	J	0.76	5.4	
Dichlorodifluorometha	ane	ND		0.45	5.4	
Ethylbenzene		ND		0.37	5.4	
Isopropylbenzene		ND		0.82	5.4	
Methyl acetate		ND		1.0	5.4	
Methyl tert-butyl ether	r	ND		0.53	5.4	
Methylcyclohexane		2.0	J	0.82	5.4	
Methylene Chloride		ND	J	2.5	5.4 5.4	
Styrene		ND		0.27	5.4	
Tetrachloroethene		ND		0.73	5.4	
Toluene		2.2	J	0.41	5.4	
trans-1,2-Dichloroeth	ene	ND	ŭ	0.56	5.4	
trans-1,3-Dichloropro		ND		2.4	5.4 5.4	
Tri-blassethers	F-00	ND		۷.٦	J. 4	

ND

ND

Client: ARCADIS U.S. Inc

Job Number: 480-23453-1

Client Sample ID:

DUP-080212

Lab Sample ID:

480-23453-12

Client Matrix:

Solid

% Moisture: 8.1

Date Sampled: 08/02/2012 0000

Date Received: 08/03/2012 1500

8260B Volatile Organic Compounds (GC/MS)

Analysis Method: Prep Method:

8260B 5035

Analysis Batch:

480-75464

Instrument ID:

HP5973P

Dilution:

1.0

Prep Batch:

480-75186

Lab File ID:

P2810.D

Analysis Date:

Initial Weight/Volume:

5.02 g

Prep Date:

08/07/2012 1630

Final Weight/Volume:

5 mL

Analyte Vinyl chloride 08/05/2012 2325

DryWt Corrected: Y

Result (ug/Kg) ND -2.6 || US

J-B-

Qualifier

Qualifier

MDL 0.66 0.91

RL 5.4 11

Xylenes, Total Surrogate

%Rec 1,2-Dichloroethane-d4 (Surr) 95 Toluene-d8 (Surr) 106 4-Bromofluorobenzene (Surr) 102

64 - 126 71 - 125 72 - 126

Acceptance Limits

Client: ARCADIS U.S. Inc Job Number: 480-23453-1

Client Sample ID:

AB-04 (18-21)

Lab Sample ID:

480-23453-13

Client Matrix:

Solid

% Moisture:

16.0

Date Sampled: 08/03/2012 0930 Date Received: 08/03/2012 1500

8260B Volatile Organic Compounds (GC/MS)

Analysis Method:

8260B

Analysis Batch:

480-75464

Instrument ID:

HP5973P

Prep Method:

5035

Prep Batch:

480-75186

Lab File ID: Initial Weight/Volume: P2811.D

Dilution:

1.0

08/07/2012 1655

Final Weight/Volume:

5.1 g 5 mL

Analysis Date: Prep Date:

08/05/2012 2325

Analyte	DryWt Corrected: Y	Result (ug/Kg)	Qualifier	MDL	RL	
1,1,1-Trichloroethane	and a series of the desire of the series of	ND	anning to the constrainment of tenth libratical constrainment for Metall Silver Administrator American	0.42	5.8	Valid Rada Alaki:
1,1,2,2-Tetrachloroethar	ne	ND		0.95	5.8	
1,1,2-Trichloroethane		ND		0.76	5.8	
1,1,2-Trichloro-1,2,2-trifl	uoroethane	ND		1.3	5.8	
1,1-Dichloroethane		ND		0.71	5.8	
1,1-Dichloroethene		ND		0.71	5.8	
1,2,4-Trichlorobenzene		ND		0.35	5.8	
1,2-Dibromo-3-Chloropr	opane	ND		2.9	5.8	
1,2-Dibromoethane		ND		0.75	5.8	
1,2-Dichlorobenzene		ND		0.46	5.8	
1,2-Dichloroethane		ND		0.29	5.8	
1,2-Dichloropropane		ND		2.9	5.8	
1,3-Dichlorobenzene		ND		0.30	5.8	
1,4-Dichlorobenzene		ND		0.82	5.8	
2-Hexanone		ND		2.9	29	
2-Butanone (MEK)		ND		2.1	29	
4-Methyl-2-pentanone (I	MIBK)	ND		1.9	29	
Acetone		9.5	J	4.9	29	
Benzene		1.1	J	0.29	5.8	
Bromodichloromethane		ND		0.78	5.8	
Bromoform		ND		2.9	5.8	
Bromomethane		ND		0.53	5.8	
Carbon disulfide		ND		2.9	5.8	
Carbon tetrachloride		ND		0.56	5.8	
Chlorobenzene		ND		0.77	5.8	
Dibromochloromethane		ND		0.75	5.8	
Chloroethane		ND		1.3	5.8	
Chloroform		ND		0.36	5.8	
Chloromethane		ND		0.35	5.8	
cis-1,2-Dichloroethene		ND		0.75	5.8	
cis-1,3-Dichloropropene		ND		0.84	5.8	
Cyclohexane		ND		0.82	5.8	
Dichlorodifluoromethane	•	ND		0.48	5.8	
Ethylbenzene		ND		0.40	5.8	
Isopropylbenzene		ND		0.88	5.8	
Methyl acetate		ND		1.1	5.8	
Methyl tert-butyl ether		ND		0.57	5.8	
Methylcyclohexane		ND		0.89	5.8	
Methylene Chloride		ND		2.7	5.8	
Styrene		ND		0.29	5.8	
Tetrachloroethene		ND		0.78	5.8	
Toluene		3.6	J	0.44	5.8	
trans-1,2-Dichloroethene	e	ND		0.60	5.8	
trans-1,3-Dichloroproper	ne	ND		2.6	5.8	
Trichloroethene		ND		1.3	5.8	
Trichlorofluoromethane		ND .		0.55	5.8	

Client: ARCADIS U.S. Inc Job Number: 480-23453-1

Client Sample ID:

AB-04 (18-21)

Lab Sample ID:

480-23453-13

Client Matrix: Solid % Moisture:

16.0

Date Sampled: 08/03/2012 0930

Date Received: 08/03/2012 1500

8260B Volatile Organic Compounds (GC/MS)

Analysis Method:

8260B

Analysis Batch:

480-75464

Instrument ID:

HP5973P

Prep Method:

5035

Prep Batch:

98

480-75186

Lab File ID:

P2811.D

Dilution:

Analysis Date:

1.0

Initial Weight/Volume:

5.1 g

08/07/2012 1655

Final Weight/Volume:

5 mL

Prep Date:

08/05/2012 2325

Analyte	
Vinyl chloride	
Xvlenes Total	

DryWt Corrected: Y

Result (ug/Kg) ND ND

Qualifier MDL 0.71 0.98

Qualifier

RL 5.8 12

Xylenes, Total

Surrogate %Rec 1,2-Dichloroethane-d4 (Surr) 89 Toluene-d8 (Surr) 103 4-Bromofluorobenzene (Surr)

64 - 126 71 - 125 72 - 126

Acceptance Limits

Client: ARCADIS U.S. Inc Job Number: 480-23453-1

Client Sample ID:

AB-02 (8-10)

Lab Sample ID:

480-23453-14

Client Matrix:

Solid

% Moisture:

17.4

Date Sampled: 08/03/2012 1200 Date Received: 08/03/2012 1500

8260B Volatile Organic Compounds (GC/MS)

Analysis Method:

8260B

Analysis Batch:

480-75464

Instrument ID:

HP5973P

Prep Method: Dilution:

5035

Prep Batch:

480-75186

Lab File ID: Initial Weight/Volume: P2812.D

1.0

5.12 g

Analysis Date:

08/07/2012 1721

Final Weight/Volume:

5 mL

Prep Date:

08/05/2012 2325

Analyte	DryWt Corrected: Y	Result (ug/Kg)	Qualifier	MDL.	RL
1,1,1-Trichloroethane		ND		0.43	5.9
1,1,2,2-Tetrachloroetha	ne	ND		0.96	5.9
1,1,2-Trichloroethane		ND		0.77	5.9
1,1,2-Trichloro-1,2,2-trif	uoroethane	ND		1.3	5.9
1,1-Dichloroethane		ND		0.72	5.9
1,1-Dichloroethene		ND		0.72	5.9
1,2,4-Trichlorobenzene		ND		0.36	5.9
1,2-Dibromo-3-Chloropr	opane	ND		3.0	5.9
1,2-Dibromoethane		ND		0.76	5.9
1,2-Dichlorobenzene		ND		0.46	5.9
1,2-Dichloroethane		ND		0.30	5.9
1,2-Dichloropropane		ND		3.0	5.9
1,3-Dichlorobenzene		ND		0.30	5.9
1,4-Dichlorobenzene		ND		0.83	5.9
2-Hexanone		ND		3.0	30
2-Butanone (MEK)		ND		2.2	30
4-Methyl-2-pentanone (I	MIBK)	ND		1.9	30
Acetone		11	J	5.0	30
Benzene		ND		0.29	5.9
Bromodichloromethane		ND		0.79	5.9
Bromoform		ND		3.0	5.9
3romomethane		ND		0.53	5.9
Carbon disulfide		ND		3.0	5.9
Carbon tetrachloride		ND		0.57	5.9
Chlorobenzene		ND		0.78	5.9
Dibromochloromethane		ND		0.76	5.9
Chloroethane		ND		1.3	5.9
Chloroform		ND		0.37	5.9
Chloromethane		ND		0.36	5.9
cis-1,2-Dichloroethene		ND		0.76	5.9
cis-1,3-Dichloropropene		ND		0.85	5.9
Cyclohexane		1.0	J	0.83	5.9 5.9
Dichlorodifluoromethane	•	ND	•	0.49	5.9 5.9
Ethylbenzene		ND		0.41	5.9
sopropylbenzene		ND		0.89	5.9 5.9
Methyl acetate		ND		1.1	
Methyl tert-butyl ether		ND	Ť	0.58	5.9 5.9
Methylcyclohexane		2.0	J	0.58	
Methylene Chloride		ND	J	0.90 2.7	5.9
Styrene		ND		0.30	5.9
etrachloroethene		ND		0.79	5.9
Foluene		ND		0.79 0.45	5.9
rans-1,2-Dichloroethene	.	ND			5.9
rans-1,3-Dichloroproper		ND		0.61	5.9
rans-1,3-Dichloroproper Frichloroethene		ND		2.6	5.9
richlorofluoromethane		ND		1.3	5.9
nonoronaoronemane		ND		0.56	5.9

Client: ARCADIS U.S. Inc

Job Number: 480-23453-1

Client Sample ID:

AB-02 (8-10)

Lab Sample ID:

480-23453-14

Client Matrix:

Solid

% Moisture:

17.4

Date Sampled: 08/03/2012 1200

Date Received: 08/03/2012 1500

8260B Volatile Organic Compounds (GC/MS)

Analysis Method:

5035

8260B

Analysis Batch:

480-75464

Instrument ID:

HP5973P

Prep Method:

1.0

Prep Batch:

Lab File ID:

Dilution:

480-75186

P2812.D

Analysis Date:

Initial Weight/Volume:

Result (ug/Kg)

5.12 g

Prep Date:

08/07/2012 1721 08/05/2012 2325

Final Weight/Volume:

5 mL

Analyte
OPPORTUNISHMAN PROPERTY CONTRACTOR PROPERTY CONTRACTOR
Vinyl chloride

DryWt Corrected: Y

Qualifier

Qualifier

MDL 0.72

RL

Xylenes, Total

ND ND

%Rec

0.99

5.9 12

Surrogate 1,2-Dichloroethane-d4 (Surr) Toluene-d8 (Surr)

4-Bromofluorobenzene (Surr)

93 113 106 64 - 126 71 - 125 72 - 126

Acceptance Limits

Page 69 of 2462

TestAmerica Buffalo

08/30/2012

Client: ARCADIS U.S. Inc

Job Number: 480-23453-1

Client Sample ID:

AB-02 (20-22)

Lab Sample ID:

480-23453-15

Client Matrix:

Solid

% Moisture:

22.2

Date Sampled: 08/03/2012 1210 Date Received: 08/03/2012 1500

8260B Volatile Organic Compounds (GC/MS)

Analysis Method:

8260B

Analysis Batch:

480-75464

Instrument ID:

HP5973P

Prep Method:

5035

Prep Batch:

480-75186

Lab File ID:

P2813.D

Dilution:

1.0

Initial Weight/Volume:

5.13 g

Analysis Date:

08/07/2012 1747

Final Weight/Volume:

5 mL

Prep Date:

08/05/2012 2325

Analyte	DryWt Corrected: Y	Result (ug/Kg)	Qualifier	MDL	RL
1,1,1-Trichloroethane		ND	n en	0.45	6.3
1,1,2,2-Tetrachloroethane		ND		1.0	6.3
1,1,2-Trichloroethane		ND		0.81	6.3
1,1,2-Trichloro-1,2,2-trifluo	roethane	ND		1.4	6.3
1,1-Dichloroethane		ND		0.76	6.3
1,1-Dichloroethene		ND		0.77	6.3
1,2,4-Trichlorobenzene		ND		0.38	6.3
1,2-Dibromo-3-Chloropropa	ane	ND		3.1	6.3
1,2-Dibromoethane		ND		0.80	6.3
1,2-Dichlorobenzene		ND		0.49	6.3
1,2-Dichloroethane		ND		0.31	6.3
1,2-Dichloropropane		ND		3.1	6.3
1,3-Dichlorobenzene		ND		0.32	6.3
1,4-Dichlorobenzene		ND		0.88	6.3
2-Hexanone		ND		3.1	31
2-Butanone (MEK)		ND		2.3	31
4-Methyl-2-pentanone (MIE	BK)	ND		2.1	31
Acetone		19	J	5.3	31
Benzene		ND		0.31	6.3
Bromodichloromethane		ND		0.84	6.3
Bromoform		ND		3.1	6.3
Bromomethane		ND		0.56	6.3
Carbon disulfide		ND		3.1	6.3
Carbon tetrachloride		ND		0.61	6.3
Chlorobenzene		ND		0.83	6.3
Dibromochloromethane		ND		0.80	6.3
Chloroethane		ND		1.4	6.3
Chloroform		ND		0.39	6.3
Chloromethane		ND		0.38	6.3
cis-1,2-Dichloroethene		ND		0.80	6.3
cis-1,3-Dichloropropene		ND		0.90	6.3
Cyclohexane		ND		0.88	6.3
Dichlorodifluoromethane		ND		0.52	6,3
Ethylbenzene		ND		0.43	6.3
sopropylbenzene		ND		0.95	6.3
Methyl acetate		ND	/	1.2	6.3
Methyl tert-butyl ether		ND		0.62	6.3
Methylcyclohexane		ND		0.95	6.3
Methylene Chloride		ND		2.9	6.3
Styrene		ND		0.31	6.3
Tetrachloroethene		ND		0.84	6.3
Toluene		6.2	J	0.47	6.3
rans-1,2-Dichloroethene		ND		0.65	6.3
rans-1,3-Dichloropropene		ND		2.8	6.3
Trichloroethene		ND		1.4	6.3
Trichlorofluoromethane		ND		0.59	6.3

Client: ARCADIS U.S. Inc

Job Number: 480-23453-1

Client Sample ID:

AB-02 (20-22)

Lab Sample ID:

480-23453-15

Client Matrix:

Solid

% Moisture:

22.2

Date Sampled: 08/03/2012 1210

Date Received: 08/03/2012 1500

8260B Volatile Organic Compounds (GC/MS)

Analysis Method:

8260B

Analysis Batch:

480-75464

Instrument ID:

HP5973P

Prep Method: Dilution:

5035

Prep Batch:

480-75186

Lab File ID:

1.0

Initial Weight/Volume:

P2813.D

Analysis Date:

Final Weight/Volume:

5.13 g 5 mL

Prep Date:

08/07/2012 1747 08/05/2012 2325

Qualifier

Qualifier

MDL

RL

Analyte Vinyl chloride Xylenes, Total DryWt Corrected: Y

ND ND

Result (ug/Kg)

0.76 1.1

6.3 13

Surrogate 1,2-Dichloroethane-d4 (Surr) Toluene-d8 (Surr)

%Rec 91 104

64 - 126 71 - 125

Acceptance Limits

4-Bromofluorobenzene (Surr)

99

72 - 126

Client: ARCADIS U.S. Inc

Job Number: 480-23453-1

Client Sample ID:

AB-03 (8-10)

Lab Sample ID:

480-23564-1

Client Matrix:

Solid

% Moisture:

6.8

Date Sampled: 08/06/2012 1050

Date Received: 08/07/2012 1330

8260B Volatile Organic Compounds (GC/MS)

Analysis Method:

8260B

Analysis Batch:

480-75796

Instrument ID:

HP5973P

Prep Method: Dilution:

5035

Prep Batch:

480-75790

Lab File ID: Initial Weight/Volume: P2874.D

Analysis Date:

1.0

08/09/2012 0330

Final Weight/Volume:

5.12 g 5 mL

Prep Date:

08/08/2012 2229

Analyte	DryWt Corrected: Y	Result (ug/Kg)	Qualifier	MDL	RL
1,1,1-Trichloroethane	The second secon	ND		0.38	5.2
1,1,2,2-Tetrachloroethane		ND		0.85	5.2
1,1,2-Trichloro-1,2,2-trifluoro	ethane	ND		1.2	5.2
1,1,2-Trichloroethane		ND		0.68	5.2
1,1-Dichloroethane		ND		0.64	5.2
1,1-Dichloroethene		ND		0.64	5.2
1,2,4-Trichlorobenzene		2.2	J	0.32	5.2
1,2-Dibromo-3-Chloropropan	e	ND		2.6	5.2
1,2-Dibromoethane		ND		0.67	5.2
1,2-Dichlorobenzene		ND		0.41	5.2
1,2-Dichloroethane		ND		0.26	5.2
1,2-Dichloropropane		ND		2.6	5.2
1,3-Dichlorobenzene		ND		0.27	5.2
1,4-Dichlorobenzene		1.5	J	0.73	5.2
2-Butanone (MEK)		ND		1.9	26
2-Hexanone		ND		2.6	26
4-Methyl-2-pentanone (MIBK)	2.6	J	1.7	26
Acetone		11	J	4.4	26
Benzene		ND		0.26	5.2
Bromodichloromethane		ND		0.70	5.2
Bromoform		ND		2.6	5.2
Bromomethane		ND 3		0.47	5.2
Carbon disulfide		ND		2.6	5.2
Carbon tetrachloride		ND		0.51	5.2
Chlorobenzene		ND		0.69	5.2
Chloroethane		ND J		1.2	5.2
Chloroform		ND		0.32	5.2
Chloromethane		ND		0.32	5.2
cis-1,2-Dichloroethene		ND		0.67	5.2
cis-1,3-Dichloropropene		ND		0.75	5.2
Cyclohexane		ND		0.73	5.2
Dibromochloromethane		ND		0.67	5.2
Dichlorodifluoromethane		ND J		0.43	5.2
Ethylbenzene		1.5	J	0.36	5.2
Isopropylbenzene		ND		0.79	5.2
Methyl acetate		ND		0.97	5.2
Methyl tert-butyl ether		ND		0.51	5.2
Methylcyclohexane		ND		0.80	5.2
Methylene Chloride		ND		2.4	5.2
Styrene		ND		0.26	5.2
Tetrachloroethene		0.72	J	0.70	5.2
Toluene		1.2	J	0.40	5.2
trans-1,2-Dichloroethene		ND		0.54	5.2
trans-1,3-Dichloropropene		ND		2.3	5.2
Trichloroethene		ND		1.2	5.2
Trichlorofluoromethane		ND 57		0.50	5.2

Client: ARCADIS U.S. Inc

Job Number: 480-23453-1

Client Sample ID:

AB-03 (8-10)

Lab Sample ID:

480-23564-1

Client Matrix:

Solid

% Moisture:

6.8

Date Sampled: 08/06/2012 1050

Date Received: 08/07/2012 1330

8260B Volatile Organic Compounds (GC/MS)

Analysis Method:

8260B

Analysis Batch:

480-75796

Instrument ID:

HP5973P

Prep Method:

5035

Prep Batch:

Lab File ID:

Dilution:

1.0

480-75790

P2874.D

Analysis Date:

Initial Weight/Volume:

08/09/2012 0330

Final Weight/Volume:

5.12 g 5 mL

Prep Date:

08/08/2012 2229

Qualifier

Qualifier

MDL

Acceptance Limits

RL

Analyte Vinyl chloride Xylenes, Total DryWt Corrected: Y Result (ug/Kg) ND 8.3

JÆ

0.64 0.88 5.2 10

Surrogate 1,2-Dichloroethane-d4 (Surr) 4-Bromofluorobenzene (Surr)

Toluene-d8 (Surr)

64 - 126 72 - 126 71 - 125

Page 73 of 2462 TestAmerica Buffalo

08/30/2012

Client: ARCADIS U.S. Inc. Job Number: 480-23453-1

Client Sample ID:

AB-03- (20-22.5)

Lab Sample ID:

480-23564-2

Client Matrix:

Solid

% Moisture:

18.9

Date Sampled: 08/06/2012 1100 Date Received: 08/07/2012 1330

8260B Volatile Organic Compounds (GC/MS)

Analysis Method:

8260B

Analysis Batch:

480-75796

Instrument ID:

HP5973P

Prep Method: Dilution:

5035

Prep Batch:

480-75790

Lab File ID: Initial Weight/Volume: P2875.D

Analysis Date:

1.0

08/09/2012 0355

Final Weight/Volume:

5.03 g 5 mL

Prep Date:

08/08/2012 2229

1,1.1-Trichforethane ND 0,444 6,1 1,1.2-Trichforo-1,2.2-Influoroethane ND 1,1.2-Trichforo-1,2.2-Influoroethane ND 1,1.2-Trichforo-1,2.2-Influoroethane ND 0,899 6,1 1.1-Dichloroethane ND 0,75 6,1 1,1-Dichloroethane ND 0,75 6,1 1,1-Dichloroethane ND 0,75 6,1 1,1-Dichloroethane ND 0,75 6,1 1,1-Dichloroethane ND 0,37 6,1 1,2-Dibromo-3-Chioropropane ND 0,31 6,1 1,2-Dibromo-3-Chioropropane ND 0,79 6,1 1,2-Dibromo-3-Chioropropane ND 0,79 6,1 1,2-Dichloroethane ND 0,79 6,1 1,2-Dichloroethane ND 0,31	#SOTO PROPERTY AND ADDRESS OF THE CONTROL OF THE CO	DryWt Corrected: Y	Result (ug/Kg)	Qualifier	MDL	RL
1,1,2,2-Tectachloroethane ND			ND	CONTACTOR OF CONTRACTOR OF THE PROPERTY OF THE	0.44	6.1
1,12-Trichloro-1,22-Influoroethane ND 0,00 0,00 0,1 1,1-Dichloroethane ND 0,075 0,1 1,1-Dichloroethane ND 0,75 0,1 1,1-Dichloroethane ND 0,75 0,1 1,1-Dichloroethane ND 0,75 0,1 1,1-Dichloroethane ND 0,37 0,1 1,2-Dibromo-3-Chloropropane ND 0,79 0,1 1,2-Dichloroethane ND 0,79 0,1 1,2-Dichloroethane ND 0,31 0,1 1,3-Dichloroethane ND 0,30 0,31 0,1 1,3-Dichloroethane ND 0,30 0,30 0,31 0,31 0,31 0,31 0,31 0,31	1,1,2,2-Tetrachloroethane		ND		0.99	
1,12-Trichloroethane ND 0,75 6,1 1,1-Dichloroethane ND 0,75 6,1 1,1-Dichloroethane ND 0,75 6,1 1,1-Dichloroethane ND 0,75 6,1 1,2-Dichloroethane ND 0,37 6,1 1,2-Dichloroethane ND 0,79 6,1 1,2-Dichloroethane ND 0,79 6,1 1,2-Dichloroethane ND 0,48 6,1 1,2-Dichloroethane ND 0,31 6,1 1,3-Dichloroethane ND 0,86 6,1 1,3-Dichloroethane ND 0,30 6,1 1,3-Dichloroethane ND 0,31 6,1 1,3-Dichloroethane ND 0,37 6,1 1,4-Dichloroethane ND 0,38 6,1 1,4-Dichloroethane ND 0,38 6,1 1,4-Dichloroethane ND 0,38 6,1 1,4-Dichloroethane ND 0,38 6,1 1,4-Dichloroethane ND 0,42 6,	1,1,2-Trichloro-1,2,2-trifluoroeth	ane	ND		1.4	
1,1-Dichloroethane ND 0,75 6,1 1,1-Dichloroethene ND 0,75 6,1 1,2-Dichloroethene ND 0,37 6,1 1,2-Dichloropenzene ND 0,37 6,1 1,2-Dichloroethane ND 0,37 6,1 1,2-Dichloroethane ND 0,31 6,1 1,2-Dichloropenzene ND 0,31 6,1 1,2-Dichloroethane ND 0,36 6,1 1,2-Dichloroethane ND 0,36 6,1 1,2-Dichloroethane ND 0,31 1,31 1,31 1,31 1,31 1,31 1,31 1,31	1,1,2-Trichloroethane		ND			
1,1-Dichloroethene	1,1-Dichloroethane		ND			
1,2,4-Trichlorobenzene ND 0,37 6,1 1,2-Dibromoesthane ND 0,79 6,1 1,2-Dibromoethane ND 0,48 6,1 1,2-Dichloroperzene ND 0,31 6,1 1,2-Dichloropropane ND 0,31 6,1 1,2-Dichloropropane ND 3,1 6,1 1,2-Dichloropropane ND 3,1 6,1 1,2-Dichloropropane ND 3,1 6,1 1,2-Dichloropropane ND 3,1 6,1 1,2-Dichloropropane ND 0,31 6,1 1,2-Dichloropropane ND 0,31 6,1 1,2-Dichloropropane ND 0,31 6,1 1,4-Dichloropropane ND 0,31 6,1 1,4-Dichloropropane ND 3,1 3,1 3,1 2-Buanone (MEK) 23 J 2,2 31 3,1 4,1 4,4 4,1 4,4 4,1 4,4 4,1 4,4 4,1 4,4 <	1,1-Dichloroethene		ND			
1,2-Dibromo-3-Chloropropane	1,2,4-Trichlorobenzene		ND			
1,2-Dichromethane ND 1,2-Dichrobenzene ND 1,2-Dichrobenzene ND 1,2-Dichrobenzene ND 1,2-Dichrobenzene ND 1,2-Dichrobenzene ND 1,2-Dichrobenzene ND 1,3-Dichrobenzene ND 1,3-Dichr	1,2-Dibromo-3-Chloropropane		ND			=::
1,2-Dichlorobenzene ND 1,2-Dichloropropane ND 1,2-Dichloropropane ND 3,1 3,1 3,1 3,1 3,1 3,1 3,1 3,1 4,1 4,1 4,1 4,1 4,1 4,1 4,1 4,1 4,1 4	1,2-Dibromoethane		ND			
1,2-Dichloroethane 1,2-Dichloroperopane 1,2-Dichloropenyane 1,3-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,5-Dichloropenzene 1,5-Di	1,2-Dichlorobenzene		ND		· -	
1,2-Dichloropropane ND 1,3-Dichloropropane ND 1,3-Dichlorobenzene ND 0,36 6,1 2-Butanone (MEK) 23 J 2,2 31 2-Hexanone ND 3,1 3-Dichlorobenzene ND 3,1 3,1 3,1 3,1 3,1 3,1 3,1 3,1 3,1 3,1	1,2-Dichloroethane		ND		-	
1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,5-Dichlorobenzene 1,5-Di	1,2-Dichloropropane		ND			
1.4-Dichlorobenzene ND 0.86 6.1 2-Butanone (MEK) 23 J 2.2 31 2-Hexanone ND 3.1 31 4-Methyl-2-pentanone (MIBK) ND 2.0 31 Acetone 15 J 5.2 31 Benzene ND 0.30 6.1 Bromodichloromethane ND 0.82 6.1 Bromodichloromethane ND 3.1 6.1 Bromodichloromethane ND 3.1 6.1 Bromodichloromethane ND 3.1 6.1 Carbon disulfide ND 0.55 6.1 Carbon disulfide ND 0.59 6.1 Carbon tetrachloride ND 0.59 6.1 Chloroptane ND 0.81 6.1 Chloroptane ND 0.81 6.1 Chloroptane ND 0.38 6.1 Chloroptane ND 0.78 6.1 Cis-1,2-Dichloroptopene ND 0.88 6.1 Cyclohexane ND 0.86 </td <td>1,3-Dichlorobenzene</td> <td></td> <td>ND</td> <td></td> <td></td> <td></td>	1,3-Dichlorobenzene		ND			
2-Butanone (MEK) 23 J 2.2 31 2-Hexanone ND 3.1 31 4-Methyl-2-pentanone (MiBK) ND 2.0 31 Acetone 15 J 5.2 31 Benzene ND 0.30 6.1 Bromodichloromethane ND 0.82 6.1 Bromoform ND 3.1 6.1 Bromodichloromethane ND 3.1 6.1 Bromoform ND 3.1 6.1 Bromodichloromethane ND 3.1 6.1 Carbon disulfide ND 0.55 6.1 Carbon disulfide ND 0.59 6.1 Chlorobenzene ND 0.81 6.1 Chlorobenzene ND 0.81 6.1 Chloromethane ND 0.38 6.1 Chloromethane ND 0.78 6.1 cis-1,3-Dichloropropene ND 0.86 6.1 Cyclohexane ND	1,4-Dichlorobenzene		ND			
2-Hexanone 4-Methyl-2-pentanone (MiBK) ND 2.0 3.1 4-Methyl-2-pentanone (MiBK) ND 2.0 3.1 4-Methyl-2-pentanone (MiBK) ND 2.0 3.1 5.2 3.1 Benzene ND 0.30 6.1 Bromodichloromethane ND 0.82 6.1 Bromoform ND 3.1 6.1 6.1 Bromomethane ND 0.55 6.1 Carbon disulfide ND 0.59 6.1 Carbon disulfide ND 0.59 6.1 Chlorobenzene ND 0.81 6.1 Chloroethane ND 0.81 6.1 Chloroethane ND 0.37 6.1 Chloroethane ND 0.37 6.1 Cis-1,2-Dichloroethene ND 0.88 6.1 Cis-1,3-Dichloroptopene ND 0.88 6.1 Dibromochloromethane ND 0.88 6.1 Dibromochloromethane ND 0.78 6.1 Dibromochloromethane ND 0.78 6.1 Dishorodifluoromethane ND 0.78 6.1 Signopylbenzene ND 0.92 6.1 Methyl acetate ND 0.92 6.1 Methyl acetate ND 0.93 6.1 Methyl coloride ND 0.93 6.1 Methylene Chloride ND 0.93 6.1 Tichloroethene ND 0.82 6.1 Tichloroethene ND 0.82 6.1 Tichloroethene ND 0.63 6.1 Tichloroethene ND 0.64 6.1 Tichloroethene ND 0.65 6.1 Tichloroethene ND 0.67 6.1 Tichlo	2-Butanone (MEK)			.t		
4-Methyl-2-pentanone (MIBK) ND 2.0 31 Acetone 15 J 5.2 31 Benzene ND 0.30 6.1 Bromodichloromethane ND 0.82 6.1 Bromoform ND 3.1 6.1 Bromomethane ND 3.1 6.1 Carbon disulfide ND 3.1 6.1 Carbon disulfide ND 0.59 6.1 Carbon disulfide ND 0.59 6.1 Chlorobenzene ND 0.81 6.1 Chlorotentane ND 0.81 6.1 Chloroform ND 0.38 6.1 Chloromethane ND 0.37 6.1 Chloromethane ND 0.78 6.1 Cis-1,2-Dichloropropene ND 0.88 6.1 Cyclohexane ND 0.86 6.1 Dibromochloromethane ND 0.78 6.1 Eithylbenzene ND 0.92	, ,			· ·		
Acetone	4-Methyl-2-pentanone (MIBK)					
Benzene				.1		
Bromodichloromethane ND 0.82 6.1 Bromoform ND 3.1 6.1 Bromomethane ND 0.55 6.1 Carbon disulfide ND 3.1 6.1 Carbon disulfide ND 0.59 6.1 Chlorobenzene ND 0.81 6.1 Chlorobenzene ND 0.81 6.1 Chloroform ND 0.38 6.1 Chloroform ND 0.38 6.1 Chloromethane ND 0.37 6.1 Cis-1,3-Dichloropropene ND 0.78 6.1 cis-1,3-Dichloropropene ND 0.88 6.1 Cyclohexane ND 0.86 6.1 Dibromochloromethane ND 0.78 6.1 Dibromochloromethane ND 0.78 6.1 Ethylbenzene ND 0.51 6.1 Isopropylbenzene ND 0.92 6.1 Methyl gert-butyl ether ND 0.60 <td>Benzene</td> <td></td> <td></td> <td>· ·</td> <td></td> <td></td>	Benzene			· ·		
Bromoform	Bromodichloromethane					
Bromomethane	Bromoform					
Carbon disulfide ND 3.1 6.1 Carbon tetrachloride ND 0.59 6.1 Chlorobenzene ND 0.81 6.1 Chlorobenzene ND 1.4 6.1 Chloroethane ND 0.38 6.1 Chloromethane ND 0.37 6.1 Cis-1,2-Dichloroethene ND 0.78 6.1 cis-1,3-Dichloropropene ND 0.86 6.1 Cyclohexane ND 0.86 6.1 Dibromochloromethane ND 0.78 6.1 Dichlorodifluoromethane ND 0.78 6.1 Ethylbenzene ND 0.51 6.1 Isopropylbenzene ND 0.42 6.1 Methyl acetate 4.9 J 1.1 6.1 Methyl tetr-butyl ether ND 0.60 6.1 Methylcyclohexane ND 0.93 6.1 Methylcyclohexane ND 0.31 6.1 Styrene	Bromomethane					
Carbon tetrachloride ND 0.59 6.1 Chlorobenzene ND 0.81 6.1 Chloroethane ND 1.4 6.1 Chloroform ND 0.38 6.1 Chloromethane ND 0.78 6.1 cis-1,2-Dichloroethene ND 0.78 6.1 cis-1,3-Dichloropropene ND 0.88 6.1 Cyclohexane ND 0.86 6.1 Dibromochloromethane ND 0.78 6.1 Dibromochloromethane ND 0.78 6.1 Dichlorodifluoromethane ND 0.51 6.1 Ethylbenzene ND 0.42 6.1 Isopropylbenzene ND 0.92 6.1 Methyl acetate 4.9 J 1.1 6.1 Methyl tert-butyl ether ND 0.93 6.1 Methylectohexane ND 0.93 6.1 Methylene Chloride ND 0.31 6.1 Styrene	Carbon disulfide					
Chlorobenzene	Carbon tetrachloride					
Chloroethane ND J 1.4 6.1 Chloroform ND 0.38 6.1 Chloromethane ND 0.37 6.1 cis-1,2-Dichloroethene ND 0.78 6.1 cis-1,3-Dichloropropene ND 0.88 6.1 Cyclohexane ND 0.86 6.1 Dibromochloromethane ND 0.78 6.1 Dichlorodifluoromethane ND 0.51 6.1 Ethylbenzene ND 0.42 6.1 Isopropylbenzene ND 0.92 6.1 Methyl acetate 4.9 J 1.1 6.1 Methyl tert-butyl ether ND 0.60 6.1 Methylcyclohexane ND 0.93 6.1 Methylene Chloride ND 0.31 6.1 Styrene ND 0.31 6.1 Tetrachloroethene ND 0.82 6.1 Toluene ND 0.63 6.1 trans-1,2-Dichloropro						
Chloroform ND 0,38 6.1 Chloromethane ND 0,37 6.1 cis-1,2-Dichloroethene ND 0,78 6.1 cis-1,3-Dichloropropene ND 0,88 6.1 Cyclohexane ND 0,86 6.1 Dibromochloromethane ND 0,78 6.1 Dibromochloromethane ND 0,78 6.1 Dichlorodifluoromethane ND 0,51 6.1 Ethylbenzene ND 0,42 6.1 Isopropylbenzene ND 0,92 6.1 Methyl acetate 4,9 J 1,1 6.1 Methyl tert-butyl ether ND 0,60 6.1 Methylcyclohexane ND 0,93 6.1 Methylene Chloride ND 0,31 6.1 Styrene ND 0,31 6.1 Tetrachloroethene ND 0,82 6.1 Tolluene ND 0,63 6.1 trans-1,3-Dichloropropene	Chloroethane					
Chloromethane ND 0.37 6.1 cis-1,2-Dichloroethene ND 0.78 6.1 cis-1,3-Dichloropropene ND 0.88 6.1 Cyclohexane ND 0.86 6.1 Dibromochloromethane ND 0.78 6.1 Dichlorodifluoromethane ND 0.51 6.1 Ethylbenzene ND 0.51 6.1 Ethylbenzene ND 0.92 6.1 Methyl acetate 4.9 J 1.1 6.1 Methyl tert-butyl ether ND 0.60 6.1 Methyletyclohexane ND 0.93 6.1 Methylene Chloride ND 0.31 6.1 Styrene ND 0.31 6.1 Tetrachloroethene ND 0.46 6.1 Toluene ND 0.63 6.1 trans-1,3-Dichloropropene ND 2.7 6.1 Trichloroethene ND 1.3 6.1			_			
cis-1,2-Dichloroethene ND 0.78 6.1 cis-1,3-Dichloropropene ND 0.88 6.1 Cyclohexane ND 0.86 6.1 Dibromochloromethane ND 0.78 6.1 Dichlorodifluoromethane ND 0.51 6.1 Ethylbenzene ND 0.42 6.1 Isopropylbenzene ND 0.92 6.1 Methyl acetate 4.9 J 1.1 6.1 Methyl tert-butyl ether ND 0.60 6.1 Methylcyclohexane ND 0.93 6.1 Methylchene Chloride ND 0.93 6.1 Styrene ND 0.31 6.1 Tetrachloroethene ND 0.82 6.1 Tolluene ND 0.46 6.1 trans-1,2-Dichloropropene ND 0.63 6.1 Trichloroethene ND 2.7 6.1 Trichloroethene ND 2.7 6.1 Trichloroethene <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
cis-1,3-Dichloropropene ND 0.88 6.1 Cyclohexane ND 0.86 6.1 Dibromochloromethane ND 0.78 6.1 Dichlorodifluoromethane ND 0.51 6.1 Ethylbenzene ND 0.42 6.1 Isopropylbenzene ND 0.92 6.1 Methyl acetate 4.9 J 1.1 6.1 Methyl tert-butyl ether ND 0.60 6.1 Methylcyclohexane ND 0.93 6.1 Methylene Chloride ND 0.31 6.1 Styrene ND 0.31 6.1 Tetrachloroethene ND 0.46 6.1 Toluene ND 0.63 6.1 trans-1,2-Dichloropropene ND 2.7 6.1 Trichloroethene ND 1.3 6.1						
Cyclohexane ND 0.86 6.1 Dibromochloromethane ND 0.78 6.1 Dichlorodifluoromethane ND 0.51 6.1 Ethylbenzene ND 0.42 6.1 Isopropylbenzene ND 0.92 6.1 Methyl acetate 4.9 J 1.1 6.1 Methyl tert-butyl ether ND 0.60 6.1 Methylcyclohexane ND 0.93 6.1 Methylene Chloride ND 2.8 6.1 Styrene ND 0.31 6.1 Tetrachloroethene ND 0.82 6.1 Toluene ND 0.46 6.1 trans-1,2-Dichloroethene ND 0.63 6.1 Trichloroethene ND 2.7 6.1 Trichloroethene ND 1.3 6.1					-	
Dibromochloromethane ND 0.78 6.1 Dichlorodifluoromethane ND 0.51 6.1 Ethylbenzene ND 0.42 6.1 Isopropylbenzene ND 0.92 6.1 Methyl acetate 4.9 J 1.1 6.1 Methyl tert-butyl ether ND 0.60 6.1 Methylcyclohexane ND 0.93 6.1 Methylene Chloride ND 2.8 6.1 Styrene ND 0.31 6.1 Tetrachloroethene ND 0.82 6.1 Toluene ND 0.46 6.1 trans-1,2-Dichloroethene ND 0.63 6.1 trans-1,3-Dichloropropene ND 2.7 6.1 Trichloroethene ND 1.3 6.1	• •					
Dichlorodifluoromethane ND 0.78 6.1 Ethylbenzene ND 0.42 6.1 Isopropylbenzene ND 0.92 6.1 Methyl acetate 4.9 J 1.1 6.1 Methyl tert-butyl ether ND 0.60 6.1 Methylcyclohexane ND 0.93 6.1 Methylene Chloride ND 2.8 6.1 Styrene ND 0.31 6.1 Tetrachloroethene ND 0.82 6.1 Toluene ND 0.46 6.1 trans-1,2-Dichloroethene ND 0.63 6.1 Trichloroethene ND 2.7 6.1 Trichloroethene ND 1.3 6.1						
Ethylbenzene						
Sopropylbenzene			-			
Methyl acetate 4.9 J 1.1 6.1 Methyl tert-butyl ether ND 0.60 6.1 Methylcyclohexane ND 0.93 6.1 Methylene Chloride ND 2.8 6.1 Styrene ND 0.31 6.1 Tetrachloroethene ND 0.82 6.1 Toluene ND 0.46 6.1 trans-1,2-Dichloroethene ND 0.63 6.1 trans-1,3-Dichloropropene ND 2.7 6.1 Trichloroethene ND 1.3 6.1	•					
Methyl tert-butyl ether ND 0.60 6.1 Methylcyclohexane ND 0.93 6.1 Methylene Chloride ND 2.8 6.1 Styrene ND 0.31 6.1 Tetrachloroethene ND 0.82 6.1 Toluene ND 0.46 6.1 trans-1,2-Dichloroethene ND 0.63 6.1 trans-1,3-Dichloropropene ND 2.7 6.1 Trichloroethene ND 1.3 6.1			_			
Methylcyclohexane ND 0.93 6.1 Methylene Chloride ND 2.8 6.1 Styrene ND 0.31 6.1 Tetrachloroethene ND 0.82 6.1 Toluene ND 0.46 6.1 trans-1,2-Dichloroethene ND 0.63 6.1 trans-1,3-Dichloropropene ND 2.7 6.1 Trichloroethene ND 1.3 6.1				J		
Methylene Chloride ND 2.8 6.1 Styrene ND 0.31 6.1 Tetrachloroethene ND 0.82 6.1 Toluene ND 0.46 6.1 trans-1,2-Dichloroethene ND 0.63 6.1 trans-1,3-Dichloropropene ND 2.7 6.1 Trichloroethene ND 1.3 6.1	•					
Styrene ND 0.31 6.1 Tetrachloroethene ND 0.82 6.1 Toluene ND 0.46 6.1 trans-1,2-Dichloroethene ND 0.63 6.1 trans-1,3-Dichloropropene ND 2.7 6.1 Trichloroethene ND 1.3 6.1						
Tetrachloroethene ND 0.82 6.1 Toluene ND 0.46 6.1 trans-1,2-Dichloroethene ND 0.63 6.1 trans-1,3-Dichloropropene ND 2.7 6.1 Trichloroethene ND 1.3 6.1	•					
Toluene ND 0.46 6.1 trans-1,2-Dichloroethene ND 0.63 6.1 trans-1,3-Dichloropropene ND 2.7 6.1 Trichloroethene ND 1.3 6.1	-					
trans-1,2-Dichloroethene ND 0.63 6.1 trans-1,3-Dichloropropene ND 2.7 6.1 Trichloroethene ND 1.3 6.1						
trans-1,3-Dichloropropene ND 2.7 6.1 Trichloroethene ND 1.3 6.1						
Trichloroethene ND 1.3 6.1	•					
Trichler of the company of the compa	• •					
110111010110110110110110110110110110110						
	monoronethane		ND 7		0.58	6.1

Client: ARCADIS U.S. Inc

Job Number: 480-23453-1

Client Sample ID:

AB-03- (20-22.5)

Lab Sample ID:

480-23564-2

Client Matrix:

Solid

% Moisture:

18.9

Date Sampled: 08/06/2012 1100

Date Received: 08/07/2012 1330

8260B Volatile Organic Compounds (GC/MS)

Analysis Method:

8260B

Analysis Batch:

480-75796

Instrument ID:

HP5973P

Prep Method:

5035

Prep Batch:

480-75790

Lab File ID:

Dilution:

1.0

P2875.D

Analysis Date:

Initial Weight/Volume:

MDL

0.75

1.0

5.03 g

08/09/2012 0355

Final Weight/Volume:

5 mL

Prep Date:

08/08/2012 2229

Analyte	
Vinyl chloride	COSSESSES.
Xylenes, Total	

DryWt Corrected: Y

Result (ug/Kg) ND 2.3-12 UB

Qualifier 1B-

RL 6.1

Surrogate

%Rec

Qualifier Acceptance Limits 64 - 126

12

1,2-Dichloroethane-d4 (Surr) 4-Bromofluorobenzene (Surr) Toluene-d8 (Surr)

84 107 104

72 - 126 71 - 125

Client: ARCADIS U.S. Inc Job Number: 480-23453-1

Client Sample ID:

AB-C2 (8-11)

Lab Sample ID:

480-23564-3

Client Matrix:

Solid

% Moisture:

21.8

Date Sampled: 08/06/2012 1430 Date Received: 08/07/2012 1330

8260B Volatile Organic Compounds (GC/MS)

Analysis Method:

8260B

Analysis Batch:

480-75796

Instrument ID:

HP5973P

Prep Method:

5035

Lab File ID:

P2876.D

Dilution:

1.0

Prep Batch:

480-75790

Initial Weight/Volume:

5.08 g

Analysis Date:

08/09/2012 0421

Fina

mL

Prep Date:

08/08/2012 2229

al	Weight/Volume:	5
----	----------------	---

Analyte	DryWt Corrected: Y	Result (ug/Kg)	Qualifier	MDL	RL
1,1,1-Trichloroethane	Contract con	ND	an an annual annual timente est teleporte teleporte teleporte est est teleporte est est est est est est est est	0.46	6.3
1,1,2,2-Tetrachloroeth		ND		1.0	6.3
1,1,2-Trichloro-1,2,2-tr	ifluoroethane	ND		1.4	6.3
1,1,2-Trichloroethane		ND		0.82	6.3
1,1-Dichloroethane		ND		0.77	6.3
1,1-Dichloroethene		ND		0.77	6.3
1,2,4-Trichlorobenzene		ND		0.38	6.3
1,2-Dibromo-3-Chlorop	propane	ND		3.1	6.3
1,2-Dibromoethane		ND		0.81	6.3
1,2-Dichlorobenzene		ND		0.49	6.3
1,2-Dichloroethane		ND		0.32	6.3
1,2-Dichloropropane		ND		3.1	6.3
1,3-Dichlorobenzene		ND		0.32	6.3
1,4-Dichlorobenzene		ND		0.88	6.3
2-Butanone (MEK)		16	J	2.3	31
2-Hexanone		ND		3.1	31
4-Methyl-2-pentanone	(MIBK)	ND		2.1	31
Acetone		39		5.3	31
Benzene		ND		0.31	6.3
Bromodichloromethane	•	ND		0.84	6.3
Bromoform		ND		3.1	6,3
Bromomethane		ND J		0.57	6.3
Carbon disulfide		ND		3,1	6.3
Carbon tetrachloride		ND		0.61	6.3
Chlorobenzene		ND		0.83	6.3
Chloroethane		ND J		1.4	6.3
Chloroform		ND		0.39	6.3
Chloromethane		ND		0.38	6.3
cis-1,2-Dichloroethene		ND		0.81	6.3
cis-1,3-Dichloropropend	е	ND		0.91	6.3
Cyclohexane		ND		0.88	6.3
Dibromochloromethane		ND		0.81	6.3
Dichlorodifluoromethan	e	ND 2		0.52	6.3
Ethylbenzene		ND		0.43	6.3
sopropylbenzene		ND		0.95	6.3
Methyl acetate		ND		1.2	6.3
Methyl tert-butyl ether		ND		0.62	6.3
Methylcyclohexane		ND		0.96	6.3
Methylene Chloride		ND		2.9	6.3
Styrene		ND		0.31	6.3
Tetrachloroethene		ND		0.85	6.3
Toluene		ND		0.48	6.3
rans-1,2-Dichloroethen	e	ND		0.65	6.3
rans-1,3-Dichloroprope	ene	ND		2.8	6.3
Trichloroethene		ND		1.4	6.3
Frichlorofluoromethane		ND 3		0.60	6.3

Client: ARCADIS U.S. Inc.

Job Number: 480-23453-1

Client Sample ID:

AB-C2 (8-11)

Lab Sample ID:

480-23564-3

Client Matrix:

Solid

% Moisture:

21.8

Date Sampled: 08/06/2012 1430 Date Received: 08/07/2012 1330

8260B Volatile Organic Compounds (GC/MS)

Analysis Method:

8260B

Analysis Batch:

480-75796

Instrument ID:

HP5973P

Prep Method: Dilution:

5035

Prep Batch:

480-75790

Lab File ID:

P2876.D

1.0

Initial Weight/Volume:

Analysis Date:

08/09/2012 0421

Final Weight/Volume:

5.08 g

Prep Date:

5 mL

Analyte

08/08/2012 2229

Result (ug/Kg)

Qualifier

Qualifier

MDL 0.77

RL6.3

Vinyl chloride Xylenes, Total DryWt Corrected: Y

ND 1.3- 13 UB

48-

1.1

13

Surrogate 1,2-Dichloroethane-d4 (Surr)

Toluene-d8 (Surr)

4-Bromofluorobenzene (Surr)

%Rec 85 106

100

64 - 126 72 - 126 71 - 125

Acceptance Limits

Client: ARCADIS U.S. Inc

Job Number: 480-23453-1

Client Sample ID:

AB-C2 (22-24)

Lab Sample ID:

480-23564-4

Client Matrix:

Solid

% Moisture:

9.1

Date Sampled: 08/06/2012 1440 Date Received: 08/07/2012 1330

8260B Volatile Organic Compounds (GC/MS)

Result (ug/Kg)

Analysis Method:

8260B

Analysis Batch:

480-75796

Instrument ID:

HP5973P

Prep Method:

5035

Prep Batch:

480-75790

Lab File ID:

P2877.D

Dilution:

1.0

Initial Weight/Volume:

Analysis Date:

DryWt Corrected: Y

Qualifier

5.01 g

RL

08/09/2012 0447

Final Weight/Volume:

MDL

1.2

0.52

5 mL

Prep Date:

Analyte

08/08/2012 2229

	Diyvvi Collected. 1	Result (ug/Kg)	Qualmer	MDL	RL	
1,1,1-Trichloroethane		ND	in company in a property of the manuscripture of the control to the control of th	0.40	5.5	100100700000000000000000000000000000000
1,1,2,2-Tetrachloroethane		ND		0.89	5.5	
1,1,2-Trichloro-1,2,2-trifluoroe	ethane	ND		1.3	5.5	
1,1,2-Trichloroethane		ND		0.71	5.5	
1,1-Dichloroethane		ND		0.67	5.5	
1,1-Dichloroethene		ND		0.67	5.5	
1,2,4-Trichlorobenzene		ND		0.33	5.5	
1,2-Dibromo-3-Chloropropan	e	ND		2.7	5.5	
1,2-Dibromoethane		ND		0.71	5.5	
1,2-Dichlorobenzene		ND		0.43	5.5	
1,2-Dichloroethane		ND		0.28	5.5	
1,2-Dichloropropane		ND		2.7	5.5	
1,3-Dichlorobenzene		ND		0.28	5.5	
1,4-Dichlorobenzene		ND		0.77	5.5	
2-Butanone (MEK)		200		2.0	27	
2-Hexanone		ND		2.7	27	
4-Methyl-2-pentanone (MIBK))	ND		1.8	27	
Acetone		ND		4.6	27	
Benzene		ND		0.27	5.5	
Bromodichloromethane		ND		0.74	5.5	
Bromoform		ND		2.7	5. 5	
Bromomethane		ND 3		0.49	5.5	
Carbon disulfide		ND		2.7	5.5	
Carbon tetrachloride		ND		0.53	5.5	
Chlorobenzene		ND		0.73	5.5	
Chloroethane		ND 3		1.2	5.5	
Chloroform		ND		0.34	5.5	
Chloromethane		ND		0.33	5.5 5.5	
cis-1,2-Dichloroethene		ND		0.70	5.5 5.5	
cis-1,3-Dichloropropene		ND		0.79	5.5	
Cyclohexane		ND		0.77	5.5 5.5	
Dibromochloromethane		ND		0.70	5.5	
Dichlorodifluoromethane		ND J		0.45	5.5	
Ethylbenzene		ND		0.38	5.5	
Isopropylbenzene		ND		0.83	5.5 5.5	
Methyl acetate		ND		1.0	5.5	
Methyl tert-butyl ether		ND		0.54	5.5 5.5	
Methylcyclohexane		ND		0.83	5.5	
Methylene Chloride		ND		2.5	5.5 5.5	
Styrene		ND		0.27	5.5	
Tetrachloroethene		ND		0.74	5.5 5.5	
Toluene		ND		0.42	5.5 5.5	
trans-1,2-Dichloroethene		ND		0.57	5.5 5.5	
trans-1,3-Dichloropropene		ND		2.4	5.5 5.5	
T				4.7	5.5	

Trichloroethene

ND

ND J

5.5

5.5

Client: ARCADIS U.S. Inc Job Number: 480-23453-1

Client Sample ID:

AB-C2 (22-24)

Lab Sample ID:

480-23564-4

Client Matrix:

Solid

% Moisture:

9.1

Date Sampled: 08/06/2012 1440

Date Received: 08/07/2012 1330

8260B Volatile Organic Compounds (GC/MS)

Analysis Method:

8260B

Analysis Batch:

480-75796

Instrument ID:

HP5973P

Prep Method:

5035

Prep Batch:

Lab File ID:

Dilution:

480-75790

P2877.D

1.0

Initial Weight/Volume:

Analysis Date:

5.01 g

08/09/2012 0447

Final Weight/Volume:

0.92

5 mL

Prep Date:

08/08/2012 2229

Result (ug/Kg)

Qualifier MDL 0.67

RL

5.5

Analyte Vinyl chloride Xylenes, Total

Toluene-d8 (Surr)

ND 1.0- 11 UB

DryWt Corrected: Y

J D

Qualifier

11

Acceptance Limits

Surrogate 1,2-Dichloroethane-d4 (Surr) 4-Bromofluorobenzene (Surr)

82 110 106

%Rec

64 - 126 72 - 126 71 - 125

Client: ARCADIS U.S. Inc Job Number: 480-23453-1

Client Sample ID:

AB-05 (9.5-10.8)

Lab Sample ID:

480-23453-1

Client Matrix:

Solid

% Moisture:

Date Sampled: 08/01/2012 1440

Date Received: 08/03/2012 1500

8270C Semivolatile Organic Compounds (GC/MS)

Analysis Method:

8270C

Analysis Batch:

480-75230

Instrument ID:

HP5973V

Prep Method:

3550B

Prep Batch:

480-75163

20.4

Lab File ID:

V3727.D

Dilution:

1.0

Initial Weight/Volume:

+30.26 g

Analysis Date:

08/06/2012 1551

Final Weight/Volume:

1 mL

Prep Date:

08/04/2012 0838

Injection Volume:

1 uL

Analyte	DryWt Corrected: Y	Result (ug/Kg)	Qualifier	MDL	RL
Biphenyl		ND	en e	13	210
bis (2-chloroisopropyl) ether		ND		22	210
2,4,5-Trichlorophenol		ND		46	210
2,4,6-Trichlorophenol		ND		14	210
2,4-Dichlorophenol		ND		11	210
2,4-Dimethylphenol		ND		57	210
2,4-Dinitrophenol		ND		74	410
2,4-Dinitrotoluene		ND		33	210
2,6-Dinitrotoluene		ND		51	210
2-Chloronaphthalene		ND		14	210
2-Chlorophenol		ND		11	210
2-Methylnaphthalene		ND		2.5	210
2-Methylphenol		ND		6.5	210
2-Nitroaniline		ND		67	410
2-Nitrophenol		ND		9.6	210
3,3'-Dichlorobenzidine		ND		180	210
3-Nitroaniline		ND		48	410
4,6-Dinitro-2-methylphenol		ND		73	410
4-Bromophenyl phenyl ether		ND . ·		67	210
4-Chloro-3-methylphenol		ND		8.7	210
4-Chloroaniline		ND		62	210
4-Chlorophenyl phenyl ether		ND		4.5	210
4-Methylphenol		ND		12	410
4-Nitroaniline		ND		23	410
4-Nitrophenol		ND		51	410
Acenaphthene		ND		2.5	210
Acenaphthylene		ND		1.7	210
Acetophenone		ND		11	210
Anthracene		ND		5.4	210
Atrazine		ND		9.4	210
Benzaldehyde		ND		23	210
Benzo(a)anthracene		ND		3.6	210
Benzo(a)pyrene		22	J	5.1	210
Benzo(b)fluoranthene		35	J	4.1	210
Benzo(g,h,i)perylene		ND		2.5	210
Benzo(k)fluoranthene		16	J	2.3	210
Bis(2-chloroethoxy)methane		ND		11	210
Bis(2-chloroethyl)ether		ND		18	210
Bis(2-ethylhexyl) phthalate		ND		68	210
Butyl benzyl phthalate		ND		56	210
Caprolactam		ND		91	210
Carbazole		ND		2.4	210
Chrysene		26	J	2.1	210
Di-n-butyl phthalate		ND	-	73	210
Di-n-octyl phthalate		ND		4.9	210

Client: ARCADIS U.S. Inc

Job Number: 480-23453-1

Client Sample ID:

AB-05 (9.5-10.8)

Lab Sample ID:

480-23453-1

Client Matrix:

Solid

% Moisture:

20.4

Date Sampled: 08/01/2012 1440

Date Received: 08/03/2012 1500

8270C Semivolatile Organic Compounds (GC/MS)

Analysis Method:

8270C

Analysis Batch:

480-75230

Instrument ID:

HP5973V

Prep Method: Dilution:

3550B

Prep Batch:

480-75163

Lab File ID: Initial Weight/Volume: V3727.D

Analysis Date:

1.0

Final Weight/Volume:

+30.26 g 1 mL

Prep Date:

08/06/2012 1551 08/04/2012 0838

Injection Volume: 1 uL

Analyte	DryWt Corrected: Y	Result (ug/Kg)	Qualifier	MDL	RL
Dibenzofuran	and the second sections of the second second second second section and the second selection of the second section of the second section second section section section second section	ND	on publishings-a may ay gu	2.2	210
Diethyl phthalate		ND		6.4	210
Dimethyl phthalate		ND		5.5	210
Fluoranthene		39	J	3.0	210
fluorene		ND		4.8	210
Hexachlorobenzene		ND		10	210
Hexachlorobutadiene		ND		11	210
Hexachlorocyclopentadiene		ND		64	210
Hexachloroethane		ND		16	210
ndeno(1,2,3-cd)pyrene		ND		5.8	210
sophorone		ND		11	210
N-Nitrosodi-n-propylamine		ND		17	210
I-Nitrosodiphenylamine		ND	<i>F</i>	11	210
laphthalene		ND		3.5	210
litrobenzene		ND		9.3	210
Pentachlorophenol		ND		72	410
henanthrene		25	J	4.4	210
henol		ND		22	210
Pyrene		30	J	1.4	210

Surrogate	%Rec	Qualifier	Acceptance Limits	
2,4,6-Tribromophenol	82 onesamen en el cion timo altan interpresa timolatera en el totolo con incluente al prima propria de manera interpresa en increso de tentra incluente interpresa en increso de tentra incluente interpresa en increso de tentra in	engliste er en proposition grangen programment de conferment de conferment de conferment de conferment de tent	39 - 146	MENTALMOSTAL
2-Fluorobiphenyl	74		37 - 120	
2-Fluorophenol	60		18 - 120	
Nitrobenzene-d5	70		34 - 132	
p-Terphenyl-d14	95	*	65 - 153	
Phenol-d5	69		11 - 120	

Client: ARCADIS U.S. Inc

Job Number: 480-23453-1

Client Sample ID:

AB-05 (22-25)

Lab Sample ID: Client Matrix:

480-23453-2

Solid

% Moisture:

17.0

Date Sampled: 08/01/2012 1450

Date Received: 08/03/2012 1500

8270C Semivolatile Organic Compounds (GC/MS)

Analysis Method:

8270C

Analysis Batch:

480-75230

Instrument ID: Lab File ID:

HP5973V

Prep Method: Dilution:

3550B

Prep Batch:

480-75163

Initial Weight/Volume:

V3728.D +30.57 g

Analysis Date:

1.0

08/06/2012 1615

Final Weight/Volume: Injection Volume:

1 mL 1 uL

Prep Date:

08/04/2012 0838

Analyte	DryWt Corrected: Y	Result (ug/Kg)	Qualifier	MDL	RL
Biphenyl	en deut steut en seu vertreund vertreund vertreund vertreund vertreund vertreund vertreund vertreund vertreund	ND	and the second s	12	200
bis (2-chloroisopropyl) ether		ND		21	200
2,4,5-Trichlorophenol		ND		44	200
2,4,6-Trichlorophenol		ND		13	200
2,4-Dichlorophenol		ND		10	200
2,4-Dimethylphenol		ND		54	200
2,4-Dinitrophenol		ND		70	390
2,4-Dinitrotoluene		ND		31	200
2,6-Dinitrotoluene		ND		49	200
2-Chloronaphthalene		ND		13	200
2-Chlorophenol		ND		10	200
2-Methylnaphthalene		ND		2.4	200
2-Methylphenol		ND		6.1	200
2-Nitroaniline		ND		64	390
2-Nitrophenol		ND		9.1	200
3,3'-Dichlorobenzidine		ND		180	200
3-Nitroaniline		ND		46	390
4,6-Dinitro-2-methylphenol		ND		69	
4-Bromophenyl phenyl ether		ND		64	390
4-Chloro-3-methylphenol		ND			200
4-Chloroaniline		ND		8.2	200
4-Chlorophenyl phenyl ether		ND		59	200
4-Methylphenol		ND ND		4.3	200
4-Nitroaniline		ND ND		11	390
				22	390
4-Nitrophenol		ND		48	390
Acenaphthene		ND		2.3	200
Acenaphthylene		ND		1.6	200
Acetophenone		ND		10	200
Anthracene		ND		5.1	200
Atrazine		ND		8.9	200
Benzaldehyde		ND		22	200
Benzo(a)anthracene		28	J	3.4	200
Benzo(a)pyrene		26	J	4.8	200
Benzo(b)fluoranthene		39	J	3.9	200
Benzo(g,h,i)perylene		ND		2.4	200
Benzo(k)fluoranthene		16	J	2.2	200
Bis(2-chloroethoxy)methane		ND		11	200
Bis(2-chloroethyl)ether		ND		17	200
Bis(2-ethylhexyl) phthalate		290		64	200
Butyl benzyl phthalate		ND		54	200
Caprolactam		ND		86	200
Carbazole		ND		2.3	200
Chrysene		30	J	2.0	200
Director to the bull of the state.					
Di-n-butyl phthalate		ND		69	200
Di-n-butyl phthalate Di-n-octyl phthalate		ND ND ND		69 4.7	200 200

Client: ARCADIS U.S. Inc Job Number: 480-23453-1

Client Sample ID:

AB-05 (22-25)

Lab Sample ID:

480-23453-2

Client Matrix:

Solid

% Moisture:

17.0

Date Sampled: 08/01/2012 1450

Date Received: 08/03/2012 1500

8270C Semivolatile Organic Compounds (GC/MS)

Analysis Method:

8270C 3550B

Analysis Batch:

480-75230

Instrument ID:

HP5973V

Prep Method:

Prep Batch:

480-75163

Lab File ID:

V3728.D

Dilution:

1.0

Initial Weight/Volume:

Analysis Date:

Final Weight/Volume:

+30.57 g 1 mL

p-Terphenyl-d14

Phenol-d5

08/06/2012 1615

65 - 153

11 - 120

Prep Date: 08/04/2012 0838			Injection Volume: 1 uL			
Analyte	DryWt Corrected: Y	Result (ug/Kg)	Qualifier	MDL	RL	
Dibenzofuran	in the state of th	ND	eti et erite et julioristiks koolikas oo is sa julioritys sa joo is kalentaljisti gameen groon apagapaas	2.1	200	TO STATE STREET, STATE STATE STREET, STATE STREET, STATE STATE STREET, STATE STREET, STATE STREET, STATE STA
Diethyl phthalate		ND		6.0	200	
Dimethyl phthalate		ND		5.2	200	
Fluoranthene		44	J	2.9	200	
Fluorene		ND		4.6	200	
Hexachlorobenzene		ND		9.9	200	
Hexachlorobutadien	е	ND		10	200	
Hexachlorocyclopen	tadiene	ND		60	200	
Hexachloroethane		ND		15	200	
Indeno(1,2,3-cd)pyre	ene	12	J	5.5	200	
Isophorone		ND		10	200	
N-Nitrosodi-n-propyla	amine	ND		16	200	
N-Nitrosodiphenylam	nine	ND		11	200	
Naphthalene		ND		3.3	200	
Nitrobenzene		ND		8.8	200	
Pentachiorophenol		ND		68	390	
Phenanthrene		30	J	4.2	200	
Phenol		ND		21	200	
Pyrene		35	J	1.3	200	
Surrogate		%Rec	Qualifier	Accepta	ance Limits	
2,4,6-Tribromopheno	To the control of the	80	and the control of the second control of the	39 - 146	The second secon	ethetoryeoporpuse,
2-Fluorobiphenyl		63		37 - 120	=	
2-Fluorophenol		48		18 - 120	=	
Nitrobenzene-d5	C	55		34 - 132		

81

56

Client: ARCADIS U.S. Inc

Job Number: 480-23453-1

Client Sample ID:

AB-01 (8-14)

Lab Sample ID:

480-23453-3

Client Matrix:

Solid

% Moisture:

12.7

Date Sampled: 08/02/2012 0840 Date Received: 08/03/2012 1500

8270C Semivolatile Organic Compounds (GC/MS)

Analysis Method:

8270C

Analysis Batch:

480-75230

Instrument ID:

HP5973V

Prep Method:

Lab File ID:

V3729.D

Dilution:

3550B

Prep Batch:

480-75163

Initial Weight/Volume:

Final Weight/Volume:

+30.22 g

08/06/2012 1639

Injection Volume:

1 mL 1 uL

Analysis Date:	08/06/
Prep Date:	08/04/

08/04/2012	0838
------------	------

Analyte	DryWt Corrected: Y	Result (ug/Kg)	Qualifier	MDL	RL
Biphenyl		ND	олоти в на пито на се съдвите в настига на пред Вистипа де со Пред на при в на в	120	1900
bis (2-chloroisopropyl) ether		ND		200	1900
2,4,5-Trichlorophenol		ND		420	1900
2,4,6-Trichlorophenol		ND		130	1900
2,4-Dichlorophenol		ND		100	1900
2,4-Dimethylphenol		ND		520	1900
2,4-Dinitrophenol		ND		670	3800
2,4-Dinitrotoluene		ND		300	1900
2,6-Dinitrotoluene		ND		4 70	1900
2-Chloronaphthalene		ND		130	1900
2-Chlorophenol		ND		98	1900
2-Methylnaphthalene		ND		23	1900
2-Methylphenol		ND		59	
2-Nitroaniline		ND		620	1900 3800
2-Nitrophenol		ND		88	
3,3'-Dichlorobenzidine		ND		1700	1900
3-Nitroaniline		ND		440	1900
4,6-Dinitro-2-methylphenol		ND		440 660	3800
4-Bromophenyl phenyl ether		ND			3800
4-Chioro-3-methylphenol		ND		610	1900
4-Chloroaniline		ND ND		7 9	1900
4-Chlorophenyl phenyl ether		ND ND		560	1900
4-Methylphenol				41	1900
4-Nitroaniline		ND ND		110	3800
4-Nitrophenol		ND ND		210	3800
•		ND		470	3800
Acenaphthene		ND		23	1900
Acenaphthylene		ND		16	1900
Acetophenone		ND		98	1900
Anthracene		ND		49	1900
Atrazine		ND		85	1900
Benzaldehyde		ND		210	1900
Benzo(a)anthracene		290	J	33	1900
Benzo(a)pyrene		270	J	46	1900
Benzo(b)fluoranthene		450	J	37	1900
Benzo(g,h,i)perylene		ND		23	1900
Benzo(k)fluoranthene		180	J	21	1900
Bis(2-chloroethoxy)methane		ND		100	1900
Bis(2-chloroethyl)ether		ND		170	1900
Bis(2-ethylhexyl) phthalate		ND		620	1900
Butyl benzyl phthalate		ND		520	1900
Caprolactam		ND		830	1900
Carbazole		ND		22	1900
Chrysene		290	J	19	1900
Di-n-butyl phthalate		ND		660	1900
Di-n-octyl phthalate		ND		45	1900

Client: ARCADIS U.S. Inc

Job Number: 480-23453-1

Client Sample ID:

AB-01 (8-14)

Lab Sample ID:

480-23453-3

Client Matrix: Solid

% Moisture:

12.7

Date Sampled: 08/02/2012 0840 Date Received: 08/03/2012 1500

8270C Semivolatile Organic Compounds (GC/MS)

Analysis Method:

8270C

Analysis Batch:

480-75230

Instrument ID:

HP5973V

Prep Method:

3550B

Lab File ID:

V3729.D

Dilution:

Prep Batch:

480-75163

Initial Weight/Volume:

10

+30.22 g

Final Weight/Volume:

1 mL

Analysis Date: Prep Date:

08/06/2012 1639 08/04/2012 0838

Injection Volume:

65 - 153

11 - 120

1 uL

Analyte	DryWt Corrected: Y	Result (ug/Kg)	Qualifier	MDL	RL
Dibenzofuran	A CONTRACTOR OF THE PROPERTY O	ND	entron en en la primera por esta esta esta esta en esta esta esta en entron en la primera de la primera de la p	20	1900
Diethyl phthalate		ND		58	1900
Dimethyl phthalate		ND		50	1900
Fluoranthene		520	j	28	1900
Fluorene		ND		44	1900
Hexachlorobenzene		ND		95	1900
Hexachlorobutadiene		ND		98	1900
Hexachlorocyclopentadiene		ND		580	1900
Hexachloroethane		ND		150	1900
Indeno(1,2,3-cd)pyrene		ND		53	1900
sophorone		ND		96	1900
N-Nitrosodi-n-propylamine		ND		150	1900
N-Nitrosodiphenylamine		ND	/	100	1900
Naphthalene		ND		32	1900
Vitrobenzene		ND		85	1900
Pentachlorophenol		ND		660	3800
Phenanthrene		410	J	40	1900
Phenol		ND		200	1900
Pyrene		390	J	12	1900
Surrogate		%Rec	Qualifier	Acceptance Limits	
2,4,6-Tribromophenol	k day ka anah ka	72	والمستعدد والمستوان والمرابع وووان والمرابع والمرابع والمرابع والمرابع والمرابع والمستعدد التحاليات المتحدد والمرابع والم	39 - 146	THEORY OF THE PROPERTY OF THE
2-Fluorobiphenyl		95		37 - 120	
2-Fluorophenol		68		18 - 120	
Nitrobenzene-d5		83		34 - 132	
Tamband 144				04 - 102	

110

p-Terphenyl-d14

Phenol-d5

Client: ARCADIS U.S. Inc Job Number: 480-23453-1

Client Sample ID:

AB-01 (20-22)

Lab Sample ID:

480-23453-4

Client Matrix:

Solid

% Moisture: 33

32.9

Date Sampled: 08/02/2012 0900 Date Received: 08/03/2012 1500

8270C Semivolatile Organic Compounds (GC/MS)

Analysis Method:

8270C

Analysis Batch:

Batch: 480-75230

Instrument ID:

HP5973V

Prep Method: Dilution: 3550B

Prep Batch:

480-75163

Lab File ID: Initial Weight/Volume: V3730.D +30.48 g

Analysis Date: Prep Date:

10

08/06/2012 1703 08/04/2012 0838

Final Weight/Volume: 1 mL Injection Volume: 1 uL

Analyte	DryWt Corrected: Y	Result (ug/Kg)	Qualifier	MDL	RL
Biphenyl	The second secon	ND	nnervon i nervo osanikki esikipinilik inilari (mesepinini kahini kahini esiki kahini esiki kalikasi epikasi es	150	2500
bis (2-chloroisopropyl) ether		ND		260	2500
2,4,5-Trichlorophenol		ND		540	2500
2,4,6-Trichlorophenol		ND		160	2500
2,4-Dichlorophenol		ND		130	2500
2,4-Dimethylphenol		ND		670	2500
2,4-Dinitrophenol		ND		870	4800
2,4-Dinitrotoluene		ND		380	2500
2,6-Dinitrotoluene		ND		610	2500
2-Chloronaphthalene		ND		170	2500
2-Chlorophenol		ND		130	2500
2-Methylnaphthalene		460	J	30	2500
2-Methylphenol		ND		76	2500
2-Nitroaniline		ND		790	4800
2-Nitrophenol		ND		110	2500
3,3'-Dichlorobenzidine		ND		2200	2500
3-Nitroaniline		ND		570	4800
4,6-Dinitro-2-methylphenol		ND		850	4800
4-Bromophenyl phenyl ether		ND		790	2500
4-Chloro-3-methylphenol		ND		100	2500
4-Chloroaniline		ND		730	2500
4-Chlorophenyl phenyl ether		ND		53	2500
4-Methylphenol		ND		140	4800
4-Nitroaniline		ND		280	4800
4-Nitrophenol		ND		600	4800
Acenaphthene		1100	J	29	2500
Acenaphthylene		220	J	20	2500
Acetophenone		ND		130	2500
Anthracene		1300	J	63	2500
Atrazine		ND		110	2500
Benzaldehyde	,	ND		270	2500
Benzo(a)anthracene		3400		43	2500
Benzo(a)pyrene		3100		60	2500
Benzo(b)fluoranthene		4600		48	2500
Benzo(g,h,i)perylene		1000	J	30	2500
Benzo(k)fluoranthene		1800	J	27	2500
Bis(2-chloroethoxy)methane		ND		130	2500
Bis(2-chloroethyl)ether		ND		210	2500
Bis(2-ethylhexyl) phthalate		ND		800	2500
Butyl benzyl phthalate		ND		660	2500
Caprolactam		ND		1100	2500
Carbazole		470	J	29	2500
Chrysene		3300		25	2500
Di-n-butyl phthalate		ND		860	2500
Di-n-octyl phthalate		ND		58	2500
Dibenz(a,h)anthracene		430	J	29	2500

Client: ARCADIS U.S. Inc Job Number: 480-23453-1

Client Sample ID:

AB-01 (20-22)

Lab Sample ID:

480-23453-4

Client Matrix:

Solid

% Moisture:

32.9

Date Sampled: 08/02/2012 0900 Date Received: 08/03/2012 1500

8270C Semivolatile	Organic Compounds	(GC/MS)

Analysis Method:

8270C

Analysis Batch:

480-75230

Instrument ID:

HP5973V

Prep Method:

3550B

Prep Batch:

Lab File ID:

V3730.D

Dilution:

10

480-75163

Initial Weight/Volume:

+30.48 g

Analysis Date: 08/06/2012 17	703	Final Weight/Volume: 1 mL				
Prep Date: 08/04/2012 08	838			on Volume:	1 uL	
Analyte DryV	Nt Corrected: Y	Result (ug/Kg)	Qualifier	MDL	RL	
Dibenzofuran	economical control control description control control of the species of the control of the species of principles with the control of the con	700	J	26	2500	
Diethyl phthalate		ND		75	2500	
Dimethyl phthalate		ND		65	2500	
Fluoranthene		7200		36	2500	
Fluorene		1200	J	57	2500	
Hexachlorobenzene		ND		120	2500	
Hexachlorobutadiene		ND		130	2500	
Hexachlorocyclopentadiene		ND		750	2500	
Hexachloroethane		ND		190	2500	
Indeno(1,2,3-cd)pyrene		980	J	68	2500	
Isophorone		ND		120	2500	
N-Nitrosodi-n-propylamine		ND		200	2500	
N-Nitrosodiphenylamine		ND	1	140	2500	
Naphthalene		2100	J	41	2500	
Nitrobenzene		ND		110	2500	
Pentachlorophenol		ND		850	4800	
Phenanthrene		5600		52	2500	
Phenol		ND		260	2500	
Pyrene		5600		16	2500	
Surrogate		%Rec	Qualifier	Acceptan	ce Limits	
2,4,6-Tribromophenol	electric de la company de activat en communicación de communicación de company de la company	76	paratara paratara mayasina manana mayasina sa	39 - 146	emico algori nonlico qui copia in momenta da cola solvani como dan e a sucemenen en concoundo indirecto colo non de	
2-Fluorobiphenyl		94		37 - 120		
2-Fluorophenol		66		18 - 120		
Nitrobenzene-d5		85		34 - 132		
p-Terphenyl-d14		106		65 - 153		
Phenol-d5		78		11 - 120		

Client: ARCADIS U.S. Inc Job Number: 480-23453-1

Client Sample ID:

AW-02 (8-10)

Lab Sample ID:

480-23453-5

Client Matrix:

Solid

% Moisture:

18.8

Date Sampled: 08/02/2012 1120 Date Received: 08/03/2012 1500

8270C Semivolatile Organic Compounds (GC/MS)

Analysis Method:

8270C

Analysis Batch:

480-75230

Instrument ID:

HP5973V

Prep Method:

3550B

Prep Batch:

Lab File ID:

V3731.D

Dilution:

5.0

480-75163

Initial Weight/Volume:

+30.46 g

Analysis Date:

08/06/2012 1727

Einal Weight/Volume

Prep Date:

08/04/2012 0838

Final weight volume:	
Injection Volume:	

-1	mL
1	uL

Analyte	DryWt Corrected: Y	Result (ug/Kg)	Qualifier	MDL	RL
Biphenyi		ND		64	1000
bis (2-chloroisopropyl) ether		ND		110	1000
2,4,5-Trichlorophenol		ND		220	1000
2,4,6-Trichlorophenol		ND		67	1000
2,4-Dichlorophenol		ND		54	1000
2,4-Dimethylphenol		ND		280	1000
2,4-Dinitrophenol		ND		360	2000
2,4-Dinitrotoluene		ND		160	1000
2,6-Dinitrotoluene		ND		250	1000
2-Chloronaphthalene		ND		69	1000
2-Chlorophenol		ND		52	1000
2-Methylnaphthalene		ND		12	1000
2-Methyiphenol		ND		31	1000
2-Nitroaniline		ND		330	2000
2-Nitrophenol		ND		47	1000
3,3'-Dichlorobenzidine		ND		900	1000
3-Nitroaniline		ND		240	2000
4,6-Dinitro-2-methylphenol		ND		350	2000
4-Bromophenyl phenyl ether		ND		330	1000
1-Chloro-3-methylphenol		ND		42	1000
1-Chloroaniline		ND		300	1000
I-Chlorophenyl phenyl ether		ND		22	1000
I-Methylphenol		ND		57	2000
I-Nitroaniline		ND		110	2000
I-Nitrophenol		ND		250	2000
Acenaphthene		ND	7	12	1000
Acenaphthylene		ND		8.4	1000
Acetophenone		ND		53	1000
Anthracene		ND		26	1000
Atrazine		ND		46	1000
Benzaldehyde		ND		110	1000
Benzo(a)anthracene		ND		18	1000
Benzo(a)pyrene		ND		25	1000
Benzo(b)fluoranthene		65	J	20	1000
Benzo(g,h,i)perylene		ND	Ü	12	1000
Benzo(k)fluoranthene		ND		11	1000
Bis(2-chloroethoxy)methane		ND		56	1000
Bis(2-chloroethyl)ether		ND		88	
Bis(2-ethylhexyl) phthalate		ND		330	1000 1000
Butyl benzyl phthalate		ND		270	
Caprolactam		ND		440	1000
Carbazole		ND		12	1000
Chrysene		ND		10	1000
i-n-butyl phthalate		ND		350	1000
i-n-octyl phthalate		ND		350 24	1000
pibenz(a,h)anthracene		ND			1000
		ND		12	1000

Client: ARCADIS U.S. Inc

Job Number: 480-23453-1

Client Sample ID:

AW-02 (8-10)

Lab Sample ID:

480-23453-5

Client Matrix:

Solid

% Moisture:

18.8

Date Sampled: 08/02/2012 1120

Date Received: 08/03/2012 1500

8270C Semivolatile Organic Compounds (G

Analysis Method:

8270C

Analysis Batch:

480-75230

Instrument ID:

HP5973V

Prep Method: Dilution:

3550B

Prep Batch:

480-75163

Lab File ID:

V3731.D

5.0

Initial Weight/Volume: Final Weight/Volume:

+30.46 g

Analysis Date: Prep Date:

08/06/2012 1727 08/04/2012 0838

Injection Volume:

1 mL 1 uL

Analyte	DryWt Corrected: Y	Result (ug/Kg)	Qualifier	MDL	RL
Dibenzofuran	- a market 2000 and a market and make it is the improvement of a propagatory place and appearable, on present of information of information of the improvement of the	ND	eriteri interiorente eta eta eta eta eta eta eta eta eta e	11	1000
Diethyl phthalate		ND		31	1000
Dimethyl phthalate		ND		27	1000
Fluoranthene		ND		15	1000
Fluorene		ND		24	1000
Hexachlorobenzene		ND		51	1000
Hexachlorobutadiene		ND		52	1000
Hexachlorocyclopentadiene		ND		310	1000
Hexachloroethane		ND		79	1000
Indeno(1,2,3-cd)pyrene		ND		28	1000
Isophorone		ND		51	1000
N-Nitrosodi-n-propylamine		ND	_	81	1000
N-Nitrosodiphenylamine		ND		56	1000
Naphthalene		ND		17	1000
Nitrobenzene		ND		45	1000
Pentachlorophenol		ND		350	2000
Phenanthrene		ND		21	1000
Phenol		ND		110	1000
Pyrene		ND		6.6	1000

Surrogate	%Rec	Qualifier	Acceptance Limits
2,4,6-Tribromophenol	39	nger i kanisan (anga mga 1904) ng mbahipan mbakan man cakin kanakan kanakan kanakan kanakan kanakan sana man m	39 - 146
2-Fluorobiphenyl	45		37 - 120
2-Fluorophenol	38		18 - 120
Nitrobenzene-d5	39		34 - 132
p-Terphenyl-d14	57	Χ	65 - 153
Phenol-d5	44		11 - 120

Client: ARCADIS U.S. Inc Job Number: 480-23453-1

Client Sample ID:

AW-02 (18-21)

Lab Sample ID:

480-23453-6

Client Matrix:

Solid

% Moisture:

38.4

Date Sampled: 08/02/2012 1130 Date Received: 08/03/2012 1500

8270C Semivolatile Organic Compounds (GC/MS)

Analysis Method:

8270C

Analysis Batch:

480-75230

Instrument ID:

HP5973V

Prep Method:

3550B

Prep Batch:

480-75163

Lab File ID:

V3732.D

Dilution:

10

Initial Weight/Volume:

+30.81 g

Analysis Date:

Final Weight/Volume:

1 mL

Prep Date:

08/06/2012 1751 08/04/2012 0838

Injection Volume: 1 uL

Analyte	DryWt Corrected: Y	Result (ug/Kg)	Qualifier	MDL	RL
Biphenyl	and the fact of the continues to the three desired in the content of the three	320	J Goaline	170	600,000,000,000,000,000,000,000,000,000
bis (2-chloroisopropyl) ether		ND	J	280	2700
2,4,5-Trichlorophenol		ND		580	2700
2,4,6-Trichlorophenol		ND		180	2700
2,4-Dichlorophenol		ND		140	2700
2,4-Dimethylphenol		ND		720	2700
2,4-Dinitrophenol		ND		930	5200
2,4-Dinitrotoluene		ND		410	2700
2,6-Dinitrotoluene		ND		650	2700
2-Chloronaphthalene		ND		180	2700
2-Chlorophenol		ND		140	
2-Methylnaphthalene		2900		32	2700
2-Methylphenol		ND ND		82	2700
2-Nitroaniline		ND		860	2700
2-Nitrophenol		ND		120	5200
3,3'-Dichlorobenzidine		ND		2300	2700
3-Nitroaniline		ND			2700
4,6-Dinitro-2-methylphenol		ND		610	5200
4-Bromophenyl phenyl ether		ND		920 850	5200
4-Chloro-3-methylphenol		ND		110	2700
4-Chloroaniline		ND		780	2700
4-Chlorophenyl phenyl ether		ND			2700
4-Methylphenol		ND		57 150	2700
4-Nitroaniline		ND		150	5200
4-Nitrophenol		ND		300	5200
Acenaphthene		2900		650	5200
Acenaphthylene		890		31	2700
Acetophenone		ND	J	22	2700
Anthracene		3500		140	2700
Atrazine		ND		68	2700
Benzaidehyde		ND		120	2700
Benzo(a)anthracene		9000		290	2700
Benzo(a)pyrene		9000 8800		46	2700
Benzo(b)fluoranthene		13000		64	2700
• •		2800		52	2700
Benzo(g,h,i)perylene Benzo(k)fluoranthene		4600		32	2700
` '				29	2700
Bis(2-chloroethoxy)methane Bis(2-chloroethyl)ether		ND ND		150	2700
		ND		230	2700
Bis(2-ethylhexyl) phthalate		ND ND		860	2700
Butyl benzyl phthalate		ND ND		720	2700
Caprolactam Carbazole		ND 600		1200	2700
		690	J	31	2700
Chrysene Di n butul phthalata		8000		27	2700
Di-n-butyl phthalate		ND		920	2700
Di-n-octyl phthalate		ND 630	•	62	2700
Dibenz(a,h)anthracene		630	J	31	2700

Client: ARCADIS U.S. Inc Job Number: 480-23453-1

Client Sample ID:

AW-02 (18-21)

Lab Sample ID:

480-23453-6

Client Matrix:

Solid

% Moisture:

38.4

Date Sampled: 08/02/2012 1130

Date Received: 08/03/2012 1500

8270C Semivolatile Organic Compounds (GC/MS)

Analysis Method:

8270C

3550B

Analysis Batch:

480-75230

Instrument ID:

Prep Method: Dilution:

Prep Date:

Prep Batch:

480-75163

Lab File ID:

HP5973V V3732.D

Analysis Date:

10

Initial Weight/Volume:

+30.81 g

08/06/2012 1751 08/04/2012 0838

Final Weight/Volume: Injection Volume:

1 mL 1 uL

Analyte	DryWt Corrected: Y	Result (ug/Kg)	Qualifier	MDL	RL
Dibenzofuran	ule a remain mit en la coloni de coloni de de servicio de 1720 en 18 april mayor e pendro de 14 april 14 de 1	1300	Annest concessions reconstruction of the principles of the state of th	28	2700
Diethyl phthalate		ND		81	2700
Dimethyl phthalate		ND		70	2700
Fluoranthene		17000		39	2700
Fluorene		2300	J	62	2700
Hexachlorobenzene		ND		130	2700
Hexachlorobutadiene		ND		140	2700
Hexachlorocyclopentadiene		ND		810	2700
Hexachloroethane		ND		210	2700
Indeno(1,2,3-cd)pyrene		2400	J	74	2700
Isophorone		ND		130	2700
N-Nitrosodi-n-propylamine		ND		210	2700
N-Nitrosodiphenylamine		ND		150	2700
Naphthalene		6600		44	2700
Nitrobenzene		ND		120	2700
Pentachiorophenoi		ND		920	5200
Phenanthrene		12000		56	2700
Phenol		ND		280	2700
Pyrene		13000 了		17	2700

Surrogate	%Rec	Qualifier	Acceptance Limits	
2,4,6-Tribromophenol	70	and disklicent colds of 1 months of the many of the second	39 - 146	
2-Fluorobiphenyl	93		37 - 120	
2-Fluorophenol	61		18 - 120	
Nitrobenzene-d5	91		34 - 132	
p-Terphenyl-d14	103		65 - 153	
Phenol-d5	78		11 - 120	

Client: ARCADIS U.S. Inc Job Number: 480-23453-1

Client Sample ID:

AW-01 (5-7)

Lab Sample ID:

480-23453-7

Client Matrix:

Solid

% Moisture:

12.8

Date Sampled: 08/02/2012 1530 Date Received: 08/03/2012 1500

8270C Semivolatile Organic Compounds (GC/MS)

Analysis Method:

8270C

Analysis Batch:

480-75230

Instrument ID: Lab File ID:

HP5973V

Prep Method: Dilution:

3550B

Prep Batch:

480-75163

Initial Weight/Volume:

V3733.D

Analysis Date:

10

08/06/2012 1815

Final Weight/Volume:

+30.30 g 1 mL

Prep Date:

08/04/2012 0838

Injection Volume:

1 uL

Analyte	DryWt Corrected: Y	Result (ug/Kg)	Qualifier	MDL	RL
Biphenyl		ND		120	1900
bis (2-chloroisopropyl) ether		ND		200	1900
2,4,5-Trichlorophenol		ND		420	1900
2,4,6-Trichlorophenol		ND		130	1900
2,4-Dichlorophenol		ND		100	1900
2,4-Dimethylphenol		ND		520	1900
2,4-Dinitrophenol		ND		670	3700
2,4-Dinitrotoluene		ND		300	1900
2,6-Dinitrotoluene		ND		470	1900
2-Chloronaphthalene		ND		130	1900
2-Chlorophenol		ND		98	1900
2-Methylnaphthalene		100	J	23	1900
2-Methylphenol		ND		59	1900
2-Nitroaniline		ND		610	3700
2-Nitrophenol		ND		88	1900
3,3'-Dichlorobenzidine		ND		1700	1900
3-Nitroaniline		ND		440	3700
4,6-Dinitro-2-methylphenol		ND		660	3700
4-Bromophenyl phenyl ether		ND		610	1900
4-Chloro-3-methylphenol		ND		79	1900
4-Chloroaniline		ND		560	1900
4-Chlorophenyl phenyl ether		ND		41	1900
4-Methylphenol		ND		110	3700
4-Nitroaniline		ND		210	3700
4-Nitrophenol		ND		460	3700
Acenaphthene		87	J	23	1900
Acenaphthylene		ND		16	1900
Acetophenone		ND		98	1900
Anthracene		200	J	49	1900
Atrazine		ND		85	1900
Benzaldehyde		ND		210	1900
Benzo(a)anthracene		580	J	33	1900
Benzo(a)pyrene		690	J	46	1900
Benzo(b)fluoranthene		1000	J	37	1900
Benzo(g,h,i)perylene		280	J	23	1900
Benzo(k)fluoranthene		380	J	21	1900
Bis(2-chloroethoxy)methane		ND		100	1900
Bis(2-chloroethyl)ether		ND		170	1900
Bis(2-ethylhexyl) phthalate		ND		620	1900
Butyl benzyl phthalate		ND		510	1900
Caprolactam		ND		830	1900
Carbazole		ND		22	1900
Chrysene		550	J	19	1900
Di-n-butyl phthalate		ND		660	1900
Di-n-octyl phthalate		ND		45	1900
Dibenz(a,h)anthracene		ND		23	1900

Client: ARCADIS U.S. Inc Job Number: 480-23453-1

Client Sample ID:

AW-01 (5-7)

Lab Sample ID:

480-23453-7

Client Matrix:

Solid

% Moisture:

Date Sampled: 08/02/2012 1530 Date Received: 08/03/2012 1500

8270C Semivolatile Organic Compounds (GC/MS)

Analysis Method:

8270C 3550B Analysis Batch:

480-75230

Instrument ID:

HP5973V

Prep Method: Dilution:

Prep Batch:

480-75163

12.8

Lab File ID: Initial Weight/Volume: V3733.D

Analysis Date:

10

Final Weight/Volume:

+30.30 g

Prep Date:

08/06/2012 1815 08/04/2012 0838

Injection Volume:

1 mL 1 uL

Analyte	DryWt Corrected: Y	Result (ug/Kg)	Qualifier	MDL	RL
Dibenzofuran	kanakan mengengan pengengan pangan panga Kanakan mengengan pangan p	MD sibility many improvement many continues and continues to the continues of the continues	er O New Melline (new American) land or annie er de en de annie en de en d	20	1900
Diethyl phthalate		ND		58	1900
Dimethyl phthalate		ND		50	1900
Fluoranthene		1100	J	28	1900
Fluorene		ND		44	1900
Hexachlorobenzene		ND		95	1900
Hexachlorobutadiene		ND		98	1900
Hexachlorocyclopentadiene		ND		580	1900
Hexachloroethane		ND		150	1900
Indeno(1,2,3-cd)pyrene		260	J	53	1900
Isophorone		ND		96	1900
N-Nitrosodi-n-propylamine		ND		150	1900
N-Nitrosodiphenylamine		ND		100	1900
Naphthalene		ND		32	1900
Nitrobenzene		ND		85	1900
Pentachlorophenol		ND		660	3700
Phenanthrene		810	J	40	1900
Phenol		ND		200	1900
Pyrene		840	J	12	1900

Surrogate	%Rec	Qualifier	Acceptance Limits
2,4,6-Tribromophenol	65	England season extensive relatives and an inchination and part of comparison of the relative following in the re-	39 - 146
2-Fluorobiphenyl	91		37 - 120
2-Fluorophenol	63		18 - 120
Nitrobenzene-d5	81		34 - 132
p-Terphenyl-d14	106		65 - 153
Phenol-d5	80		11 - 120

Client: ARCADIS U.S. Inc Job Number: 480-23453-1

Client Sample ID: AW-01 (20-22.5)

Lab Sample ID: 480-23453-8 Date Sampled: 08/02/2012 1540

Client Matrix: Solid % Moisture: 23.6 Date Received: 08/03/2012 1500

8270C Semivolatile Organic Compounds (GC/MS)

Analysis Method: 8270C Analysis Batch: 480-75444 Instrument ID: HP5973V Prep Method: 3550B Prep Batch: 480-75163 Lab File ID: V3787.D Dilution: 1.0 Initial Weight/Volume: +30.27 g 08/07/2012 1039

Analysis Date: 08/07/2012 1039 Final Weight/Volume: 1 mL
Prep Date: 08/04/2012 0838 Injection Volume: 1 uL

Analyte	DryWt Corrected: Y	Result (ug/Kg)	Qualifier	MDL	RL
Biphenyl		ND	ing ing ng pang-ana ang mga mga mga mga mga mga mga mga mga mg	14	220
bis (2-chloroisopropyl) ether		ND		23	220
2,4,5-Trichlorophenol		ND		48	220
2,4,6-Trichlorophenol		ND		14	220
2,4-Dichlorophenol		ND		11	220
2,4-Dimethylphenol		ND		59	220
2,4-Dinitrophenol		ND		77	430
2,4-Dinitrotoluene		ND		34	220
2,6-Dinitrotoluene		ND		54	220
2-Chloronaphthalene		ND		15	220
2-Chlorophenol		ND		11	220
2-Methylnaphthalene		ND		2.7	220
2-Methylphenol		ND		6.7	220
2-Nitroaniline		ND		70	430
2-Nitrophenol		ND		10	220
3,3'-Dichlorobenzidine		ND		190	220
3-Nitroaniline		ND	· Wa	50	430
4,6-Dinitro-2-methylphenol		ND		76	430
4-Bromophenyl phenyl ether		ND		70 70	220
4-Chloro-3-methylphenol		ND		9.0	220
4-Chloroaniline		ND		9.0 64	
		ND			220
4-Chlorophenyl phenyl ether		ND		4.7 12	220
4-Methylphenol					430
4-Nitroaniline		ND		24	430
4-Nitrophenol		ND		53	430
Acenaphthene		17	J	2.6	220
Acenaphthylene		ND		1.8	220
Acetophenone		ND		11	220
Anthracene		27	J	5.6	220
Atrazine		ND		9.7	220
Benzaldehyde		ND		24	220
Benzo(a)anthracene		110	J	3.8	220
Benzo(a)pyrene		110	J	5.3	220
Benzo(b)fluoranthene		110	J	4.2	220
Benzo(g,h,i)perylene		58	J	2.6	220
Benzo(k)fluoranthene		57	J	2.4	220
Bis(2-chloroethoxy)methane		ND		12	220
Bis(2-chloroethyl)ether		ND		19	220
Bis(2-ethylhexyl) phthalate		140	J	71	220
Butyl benzyl phthalate		ND		59	220
Caprolactam		ND		95	220
Carbazole		ND	di.	2.5	220
Chrysene		88	J .	2.2	220
Di-n-butyl phthalate		ND		76	220
Di-n-octyl phthalate		ND		5.1	220
Dibenz(a,h)anthracene		28	J	2.6	220

Client: ARCADIS U.S. Inc Job Number: 480-23453-1

Client Sample ID:

AW-01 (20-22.5)

Lab Sample ID:

480-23453-8

Client Matrix:

Solid

08/04/2012 0838

% Moisture:

23.6

Date Sampled: 08/02/2012 1540

Date Received: 08/03/2012 1500

8270C Semivolatile Organic Compounds (GC/MS)

Analysis Method: Prep Method:

8270C 3550B Analysis Batch:

480-75444

Instrument ID:

HP5973V V3787.D

Dilution: Analysis Date:

Prep Date:

1.0 08/07/2012 1039 Prep Batch: 480-75163

Lab File ID: Initial Weight/Volume: +30.27 g Final Weight/Volume:

1 mL Injection Volume: 1 uL

Analyte	DryWt Corrected: Y	Result (ug/Kg)	Qualifier	MDL	RL
Dibenzofuran	and and the second second section of the second	ND	gramman on the first of the fifth of the first of the fir	2.3	220
Diethyl phthalate		ND		6.6	220
Dimethyl phthalate		ND		5.7	220
Fluoranthene		150	J	3.2	220
Fluorene		ND		5.0	220
Hexachlorobenzene		ND		11	220
Hexachlorobutadiene		ND		11	220
Hexachlorocyclopentadiene		ND		66	220
Hexachloroethane		ND		17	220
Indeno(1,2,3-cd)pyrene		58	J	6.1	
Isophorone		ND	Ū	11	220
N-Nitrosodi-n-propylamine		ND		17	220
N-Nitrosodiphenylamine		ND	1	12	220
Naphthalene		ND	,	3.6	220
Nitrobenzene		ND			220
Pentachiorophenol		ND		9.7	220
Phenanthrene		53	1	75	430
Phenol		ND	J	4.6	220
Pyrene		150		23	220
. <i>y. c</i> c		130	J	1.4	220
Surrogate		%Rec	Qualifier	Accenta	ince Limite

Surrogate	%Rec	Qualifier	Acceptance Limits
2,4,6-Tribromophenol	61	(60000-62000-62000-6200-62000-62000-62000-62000-62000-62000-6200	39 - 146
2-Fluorobiphenyl	49		37 - 120
2-Fluorophenol	38		18 - 120
Nitrobenzene-d5	42		34 - 132
p-Terphenyl-d14	78		- · · · -
Phenol-d5	43		65 - 153
	40		11 - 120

Client: ARCADIS U.S. Inc Job Number: 480-23453-1

Client Sample ID:

RB-080212

Lab Sample ID:

480-23453-9

Client Matrix:

Water

Date Sampled: 08/02/2012 1640 Date Received: 08/03/2012 1500

8270C Semivolatile Organic Compounds (GC/MS)

Analysis Method: Prep Method:

8270C

Analysis Batch:

480-75666

Instrument ID: Lab File ID:

HP5973X X8808.D

Dilution:

3510C 1.0

Prep Batch:

480-75443

Initial Weight/Volume:

1050 mL

Analysis Date:

08/08/2012 1509

Final Weight/Volume: Injection Volume:

1 mL 1 uL

Prep Da	te:
Analyte	

08/	07/2	2012	09	14

Analyte	Result (ug/L)	Qualifier	MDL	RL	
Biphenyl	ND	And the second of the second s	0.62	4.8	Απουτούσειβοιούδ
bis (2-chloroisopropyl) ether	ND		0.50	4.8	
2,4,5-Trichlorophenol	ND		0.46	4.8	
2,4,6-Trichlorophenol	ND		0.58	4.8	
2,4-Dichlorophenol	ND		0.49	4.8	
2,4-Dimethylphenol	ND		0.48	4.8	
2,4-Dinitrophenol	ND		2.1	9.5	
2,4-Dinitrotoluene	ND		0.43	4.8	
2,6-Dinitrotoluene	ND		0.38	4.8	
2-Chloronaphthalene	ND		0.44	4.8	
2-Chlorophenol	ND		0.50	4.8	
2-Methylnaphthalene	ND		0.57	4.8	
2-Methylphenol	ND		0.38	4.8	
2-Nitroaniline	ND		0.40	9.5	
2-Nitrophenol	ND		0.46	4.8	
3,3'-Dichlorobenzidine	ND		0.38	4.8	
3-Nitroaniline	ND		0.46	9.5	
4,6-Dinitro-2-methylphenol	ND		2.1	9.5	
4-Bromophenyl phenyl ether	ND		0.43	4.8	
4-Chloro-3-methylphenol	ND		0.43	4.8	
4-Chloroaniline	ND		0.56	4.8	
4-Chlorophenyl phenyl ether	ND		0.33	4.8	
4-Methylphenol	ND		0.34	9.5	
4-Nitroaniline	ND		0.24	9.5	
4-Nitrophenol	ND		1.4	9.5	
Acenaphthene	ND		0.39	4.8	
Acenaphthylene	ND		0.36	4.8	
Acetophenone	ND		0.51	4.8	
Anthracene	ND		0.27	4.8	
Atrazine	ND		0.44	4.8	
Benzaldehyde	ND		0.25	4.8	
Benzo(a)anthracene	ND		0.34	4.8	
Benzo(a)pyrene	ND	•	0.45	4.8	
Benzo(b)fluoranthene	ND		0.32	4.8	
Benzo(g,h,i)perylene	ND		0.33	4.8	
Benzo(k)fluoranthene	ND		0.70	4.8	
Bis(2-chloroethoxy)methane	ND		0.33	4.8	
Bis(2-chloroethyl)ether	ND		0.38	4.8	
Bis(2-ethylhexyl) phthalate	ND		1.7	4.8	
Butyl benzyl phthalate	ND	•	0.40	4.8	
Caprolactam	ND		2.1	4.8	
Carbazole	ND		0.29	4.8	
Chrysene	ND		0.31	4.8	
Di-n-butyl phthalate	ND		0.30	4.8	
Di-n-octyl phthalate	ND		0.45	4.8	
Dibenz(a,h)anthracene	ND		0.40	4.8	

Client: ARCADIS U.S. Inc

Job Number: 480-23453-1

Client Sample ID:

RB-080212

Lab Sample ID:

480-23453-9

Client Matrix:

Water

Date Sampled: 08/02/2012 1640 Date Received: 08/03/2012 1500

	para proper					
		8270C Semivolatile Or	ganic Compo	unds (GC/M	S)	
Analysis Method:	8270C	Analysis Batch:	480-75666	in	strument ID:	HP5973X
Prep Method:	3510C	Prep Batch:	480-75443	La	ab File ID:	X8808.D
Dilution:	1.0				itial Weight/Volume:	1050 mL
Analysis Date:	08/08/2012 1509				nal Weight/Volume:	1 mL
Prep Date:	08/07/2012 0914				jection Volume:	1 uL
				•	,	·
Analyte		Result (u	g/L)	Qualifier	MDL	RL
Dibenzofuran		ND		1997 ta l'est vide de l'est d	0.49	9.5
Diethyl phthalate		ND			0.21	4.8
Dimethyl phthalate		ND			0.34	4.8
luoranthene		ND			0.38	4.8
luorene		ND			0.34	4.8
lexachlorobenzene		ND			0.49	4.8
lexachlorobutadien	· -	ND			0.65	4.8
lexachlorocycloper	itadiene	ND			0.56	4.8
Hexachloroethane		ND			0.56	4.8
ndeno(1,2,3-cd)pyr	ene	ND			0.45	4.8
sophorone		ND			0.41	4.8
I-Nitrosodi-n-propyl		ND			0.51	4.8
I-Nitrosodiphenylar	nine	ND			0.49	4.8
laphthalene		ND			0.72	4.8
itrobenzene		ND			0.28	4.8
entachlorophenol		ND			2.1	9.5
henanthrene		ND			0.42	4.8
henol		ND			0.37	4.8
yrene		ND			0.32	4.8
Surrogate		%Rec		Qualifier	Accepta	nce Limits
,4,6-Tribromopheno	D numeronicum as consequente in agricultum appropriate appropriate and appropriate appro	104	en i land kanadan (gan kanalayan papatan di sasaran (makan	ONSYSTEMATINE CONTRACTOR STREET, STREE	52 - 132	$\frac{1}{2}\sqrt{1+\alpha}1$
-Fluorobiphenyl		81			4 8 - 120	
-Fluorophenol		39			20 - 120	
itrobenzene-d5		90			4 6 - 120	
-Terphenyl-d14		113			67 - 150	
henol-d5		27			16 - 120	

Client: ARCADIS U.S. Inc Job Number: 480-23453-1

Client Sample ID:

AB-04 (10-12)

Lab Sample ID:

480-23453-10

Client Matrix:

Solid

% Moisture:

20.0

Date Sampled: 08/03/2012 0920 Date Received: 08/03/2012 1500

8270C Semivolatile Organic Compounds (GC/MS)

Analysis Method:

8270C

Analysis Batch:

480-75230

Instrument ID: Lab File ID:

HP5973V V3735.D

Prep Method: Dilution:

3550B

Prep Batch:

480-75163

Initial Weight/Volume:

Analysis Date:

1.0

08/06/2012 1903

Final Weight/Volume:

+30.08 g

Prep Date:

08/04/2012 0838

Injection Volume:

1 mL 1 uL

Analyte	DryWt Corrected: Y	Result (ug/Kg)	Qualifier	MDL	RL
Biphenyl	and the second	31	A source of the second	13	210
bis (2-chloroisopropyl) ether		ND		22	210
2,4,5-Trichlorophenol		ND		46	210
2,4,6-Trichlorophenol		ND		14	210
2,4-Dichlorophenol		ND		11	210
2,4-Dimethylphenol		ND		57	210
2,4-Dinitrophenol		ND		74	410
2,4-Dinitrotoluene		ND		33	210
2,6-Dinitrotoluene		ND		51	210
2-Chloronaphthalene		ND		14	210
2-Chlorophenol		ND		11	210
2-Methylnaphthalene		37	J	2.5	210
2-Methylphenol		ND		6.5	210
2-Nitroaniline		ND		67	410
2-Nitrophenol		ND		9.6	210
3,3'-Dichlorobenzidine		ND		180	210
3-Nitroaniline		ND		48	410
4,6-Dinitro-2-methylphenol		ND		73	410
4-Bromophenyl phenyl ether		ND		67	210
4-Chloro-3-methylphenol		ND		8.7	210
4-Chloroaniline		ND		62	210
4-Chiorophenyl phenyl ether		ND		4.5	210
4-Methylphenol		ND		12	410
4-Nitroaniline		ND		23	410
4-Nitrophenol		ND		51	410
Acenaphthene		3900		2.5	210
Acenaphthylene		ND		1.7	210
Acetophenone		ND		11	210
Anthracene		2700		5.4	210
Atrazine		ND		9.4	210
Benzaldehyde		ND		23	210
Benzo(a)anthracene		1200		3.6	210
Benzo(a)pyrene		650		5.1	210
Benzo(b)fluoranthene		980		4.1	210
Benzo(g,h,i)perylene		170	J	2.5	210
Benzo(k)fluoranthene		410		2.3	210
Bis(2-chloroethoxy)methane		ND		11	210
Bis(2-chloroethyl)ether		ND		18	210
Bis(2-ethylhexyl) phthalate		100	J	68	210
Butyl benzyl phthalate		ND		56	210
Caprolactam		ND		91	210
Carbazole		310		2.4	210
Chrysene		910		2.1	210
Di-n-butyl phthalate		ND		73	210
Di-n-octyl phthalate		7.7	J	4.9	210
Dibenz(a,h)anthracene		69	. J	2.5	210

Client: ARCADIS U.S. Inc

Job Number: 480-23453-1

Client Sample ID:

AB-04 (10-12)

Lab Sample ID:

480-23453-10

Client Matrix:

Solid

% Moisture:

20.0

Date Sampled: 08/03/2012 0920 Date Received: 08/03/2012 1500

8270C Semivolatile Organic Compounds (GC/MS)

Analysis Method:

8270C

Analysis Batch:

480-75230

Instrument ID:

HP5973V

Prep Method: Dilution:

3550B

Prep Batch:

480-75163

Lab File ID: Initial Weight/Volume: V3735.D

1.0

Final Weight/Volume:

+30.08 g 1 mL

Analysis Date:

08/06/2012 1903 08/04/2012 0838

18 - 120

34 - 132

65 - 153

11 - 120

Prep Date: 08/04/2	2012 0838		Injection Volume: 1 uL		
Analyte	DryWt Corrected: Y	Result (ug/Kg)	Qualifier	MDL	RL
Dibenzofuran	annumental menterioris transcondension consideration of the contract of which the production of the contract of	2700	and control executive points (Mexical State School and the Seculopey Seculopey Seculopey Seculopes (Seculopes A	2.2	210
Diethyl phthalate		ND .		6.4	210
Dimethyl phthalate		ND		5.5	210
Fluoranthene		5300		3.0	210
Fluorene		4000		4.8	210
Hexachlorobenzene		ND		10	210
Hexachlorobutadiene		ND		11	210
Hexachlorocyclopentadiene		ND		64	210
Hexachloroethane		ND		16	210
Indeno(1,2,3-cd)pyrene		170	J	5.8	210
Isophorone		ND		11	210
N-Nitrosodi-n-propylamine		ND		17	210
N-Nitrosodiphenylamine		ND		12	210
Naphthalene		57	J	3.5	210
Nitrobenzene		ND		9.3	210
Pentachlorophenol		ND		72	410
Phenanthrene		1100		4.4	210
Phenol		ND		22	210
Pyrene		3300		1.4	210
Surrogate		%Rec	Qualifier	Accept	ance Limits
2,4,6-Tribromophenol	mamorom tourn sciencias hundraudeas describil sina a and significa et rapidation et albeite and describe described (1970 revisit (1976)	55	elini-como pilo e eminimizaren itariando estambolo estambolo estambolo estambolo estambolo estambolo.	39 - 14	elipetroper referencement announcement announcement announcement announcement announcement announcement announcement
2-Fluorobiphenyl		50		37 - 12	=

Х

39

46

63

44

2-Fluorophenol

Nitrobenzene-d5

p-Terphenyl-d14

Phenol-d5

Client: ARCADIS U.S. Inc

Job Number: 480-23453-1

Client Sample ID:

DUP-080212

Lab Sample ID:

480-23453-12

Client Matrix:

Solid

% Moisture:

8.1

Date Sampled: 08/02/2012 0000

Date Received: 08/03/2012 1500

8270C Semivolatile Organic Compounds (GC/MS)

Analysis Method:

8270C

Analysis Batch:

480-75444

Instrument ID:

HP5973V

Prep Method: Dilution:

3550B

480-75163

Lab File ID:

V3788.D

20

Prep Batch:

Initial Weight/Volume: Final Weight/Volume:

+30.09 g

Analysis Date:

08/07/2012 1103

1 mL

Prep Date:

08/04/2012 0838

Injection Volume:

1 uL

Siphery ND	Analyte	DryWt Corrected: Y	Result (ug/Kg)	Qualifier	MDL	RL
bis (2-chloroisporpoyl) ether ND 380 3700 2.4.5-Trichlorophenol ND 800 3700 2.4.5-Trichlorophenol ND 240 3700 2.4-Dinethylphenol ND 190 3700 2.4-Dinitrophenol ND 1300 7200 2.4-Dinitrofolune ND 570 3700 2.4-Dinitrofolune ND 570 3700 2.6-Dinitrofolune ND 900 3700 2.6-Dinitrofolune ND 250 3700 2.6-Dinitrofolune ND 190 3700 2.Chlorophenol ND 44 3700 2.Methylaphthalene ND 190 3700 2.Methylaphthalene ND 110 3700 2.Mitophenol ND 110 3700 2.Mitophenol ND 170 3700 2.Nitrophenol ND 170 3700 3.3-Dichlorobenzidine ND 1300 7200 4.Borinitro-2-methylphe	Biphenyl	$L_{i} = \max_{i \in \mathcal{A}_{i}} \max_{i \in \mathcal{A}_{$	ND	en e	230	PROTECTION OF THE PROT
2,4,5-Trichlorophenol ND 240 3700 2,4-B-Trichlorophenol ND 240 3700 2,4-Dinitrophenol ND 190 3700 2,4-Dinitrophenol ND 190 3700 2,4-Dinitroblene ND 570 3700 2,4-Dinitrobluene ND 900 3700 2,4-Dinitrobluene ND 900 3700 2,6-Dinitrobluene ND 900 3700 2,6-Dinitrobluene ND 190 3700 2,Chlorophenol ND 190 3700 2,Chlorophenol ND 190 3700 2,Methylphenol ND 110 3700 2,Mitrophinol ND 110 3700 2,Nitrophenol ND 170 3700 3,3-Dichloroberzidine ND 1300 7200 4,-Brintophenol ND 1300 7200 4,-Bromophenyl phenyl ether ND 150 3700 4,-Brintophenol <	bis (2-chloroisopropyl) ether		ND		380	
2.4.6-Trichlorophenol ND 190 3700 2.4-Dinlethylphenol ND 190 3700 2.4-Dinlitrophenol ND 190 3700 2.4-Dinlitrobluene ND 570 3700 2.6-Dinlitrobluene ND 900 3700 2.6-Dinlitrobluene ND 250 3700 2.6-Dinlitrobluene ND 250 3700 2.Chlorophenol ND 190 3700 2-Chlorophenol ND 44 3700 2-Methylphenol ND 110 3700 2-Mitrophenol ND 1200 7200 2-Nitrophenol ND 1200 7200 3.3-Uniforo-2-methylphenol ND 1300 7200 4.5-Dinlitro-2-methylphenol ND 1300 7200 4.5-Dinlitro-2-methylphenol ND 150 3700 4-Chloro-3-methylphenol ND 150 3700 4-Chloro-3-methylphenol ND 150 3700	2,4,5-Trichlorophenol		ND		800	
2.4-Dindrophenol ND 190 3700 2.4-Dinitrophenol ND 990 3700 2.4-Dinitrophenol ND 1300 7200 2.4-Dinitrophenol ND 570 3700 2.4-Dinitrophenol ND 900 3700 2Chlorophenol ND 190 3700 2-Methylphaphtalene ND 44 3700 2-Methylphenol ND 110 3700 2-Nitroaniline ND 170 3700 2-Nitrophenol ND 170 3700 3-Nitroaniline ND 170 3700 3-Nitroaniline ND 320 3700 3-Nitroaniline ND 1300 7200 4-Bromophenyl phenyl ether ND 1300 7200 4-Bromophenyl phenyl ether ND 150 3700 4-Chlorophenyl phenyl ether ND 150 3700 4-Methylphenol ND 40 10 7200 4-Nitrop	2,4,6-Trichlorophenol		ND		240	
2.4-Dinitrophenol ND 990 3700 2.4-Dinitrophenol ND 570 3700 2.6-Dinitrofoluene ND 900 3700 2.6-Dinitrofoluene ND 250 3700 2.6-Dinitrofoluene ND 250 3700 2.Chlorophenol ND 190 3700 2.Methylaphalene ND 110 3700 2.Methylphenol ND 110 3700 2.Nitropanline ND 170 3700 2.Nitropanline ND 170 3700 2.Nitrophenol ND 170 3700 3.3-Dichloroberzidine ND 3200 3700 3.Nitroanline ND 1300 7200 4.6-Dinitro-2-methylphenol ND 1300 3700 4.Bromophenyl phenyl ether ND 150 3700 4.Chloropanline ND 150 3700 4.Chlorophenyl phenyl ether ND 30 3700 4.Chlorophenyl pheny	2,4-Dichlorophenol		ND		190	
2.4-Dinitroblened ND 570 3700 2.4-Dinitrotoluene ND 570 3700 2.6-Dinitrotoluene ND 900 3700 2.6-Dinitrotoluene ND 250 3700 2.C-Chiorophenol ND 190 3700 2.Methylphenol ND 44 3700 2.Methylphenol ND 110 3700 2.Nitroaniline ND 170 3700 2.Nitroaniline ND 170 3700 3.3-Dichorobenzidine ND 3200 3700 3.Nitroaniline ND 480 7200 4.6-Dinitro-2-methylphenol ND 1300 7200 4.6-Dinitro-3-methylphenol ND 150 3700 4.Chloro-3-methylphenol ND 150 3700 4-Chloro-3-methylphenol ND 150 3700 4-Chloro-3-methylphenol ND 78 3700 4-Chloro-3-methylphenol ND 150 3700 4-	2,4-Dimethylphenol		ND		990	
2.4-Dinitrotoluene ND 570 3700 2.6-Dinitrotoluene ND 900 3700 2.Chloronphenol ND 190 3700 2.Chlorophenol ND 190 3700 2.Methylaphthalene ND 110 3700 2.Methylaphthalene ND 110 3700 2.Mitrophenol ND 1200 7200 2.Nitrophenol ND 3200 3700 3.Nitrophenol ND 3200 3700 3.Nitrophenol ND 3200 3700 4.E-Initro-2-methylphenol ND 1300 7200 4.E-Bromphenyl phenyl ether ND 150 3700 4.Chloro-3-methylphenol ND 150 3700 4.Chlorophenyl phenyl ether ND 100 3700 4.Chlorophenyl phenyl ether ND 100 7200 4.Nitrophenol ND 400 7200 4.Nitrophenol ND 43 3700 Acenaphthen	2,4-Dinitrophenol		ND		1300	
2.6-Dinitrololuene ND 900 3700 2-Chlorophenol ND 250 3700 2-Chlorophenol ND 44 3700 2-Methylphenol ND 44 3700 2-Methylphenol ND 110 3700 2-Nitrophenol ND 1200 7200 2-Nitrophenol ND 170 3700 3-Nitrophenol ND 30200 3700 3-Nitrophenol ND 840 7200 4-Bromophenyl phenyl ether ND 1300 7200 4-Bromophenyl phenyl ether ND 150 3700 4-Chlorophenyl phenyl ether ND 150 3700 4-Chlorophenyl phenyl ether ND 78 3700 4-Chlorophenyl phenyl ether ND 78 3700 4-Chlorophenyl phenyl ether ND 78 3700 4-Nitrophenol ND 890 7200 4-Nitrophenol ND 890 7200 A-cenaphthyl	2,4-Dinitrotoluene		ND		570	
2-Chloronaphthalene ND 250 3700 2-Chlorophenol ND 190 3700 2-Methyliphenol ND 110 3700 2-Methyliphenol ND 110 3700 2-Mitrophenol ND 170 3700 3,3-Dichlorobenzidine ND 170 3700 3,3-Dichlorobenzidine ND 484 7200 4,6-Dinlitro-2-methylphenol ND 1300 7200 4,6-Dinlitro-2-methylphenol ND 1200 3700 4-Bromophenyl phenyl ether ND 1200 3700 4-Chloros-methylphenol ND 1100 3700 4-Chlorophenyl phenyl ether ND 1100 3700 4-Chlorophenyl phenyl ether ND 78 3700 4-Chlorophenyl phenyl ether ND 78 3700 4-Methylphenol ND 78 3700 4-Nitrophenol ND 49 3700 A-Nitrophenol ND 49 3700	2,6-Dinitrotoluene		ND		900	
2-Chlorophenol ND 44 3700 2-Methylphenol ND 44 3700 2-Methylphenol ND 110 3700 2-Nitrophenol ND 1200 7200 2-Nitrophenol ND 3200 3700 3.3-Dichlorobenzidine ND 840 7200 3-Nitroaniline ND 840 7200 4-Bromophenyl phenyl ether ND 1200 3700 4-Chloro-3-methylphenol ND 150 3700 4-Chloro-3-methylphenol ND 150 3700 4-Chlorophenyl phenyl ether ND 78 3700 4-Chlorophenyl phenyl ether ND 78 3700 4-Chlorophenyl phenyl ether ND 78 3700 4-Methylphenol ND 78 3700 4-Methylphenol ND 410 7200 4-Nitrophenol ND 410 7200 4-Nitrophenol ND 99 7200 Acenaphthylene <td>2-Chloronaphthalene</td> <td></td> <td>ND</td> <td></td> <td>250</td> <td></td>	2-Chloronaphthalene		ND		250	
2-Methylphenol ND 110 3700 2-Nitropariline ND 1200 7200 2-Nitrophenol ND 170 3700 3.3-'Dichlorobenzidine ND 3200 3700 3-Nitroaniline ND 840 7200 4-Bromophenyl phenyl ether ND 1300 7200 4-Bromophenyl phenyl ether ND 150 3700 4-Chloro-3-methylphenol ND 150 3700 4-Chloro-3-methylphenol ND 150 3700 4-Chlorophenyl phenyl ether ND 78 3700 4-Chlorophenyl phenyl ether ND 78 3700 4-Methylphenol ND 78 3700 4-Mitrophenol ND 410 7200 A-Nitrophenol ND 890 7200 Acenaphthene ND 30 3700 Acenaphthylene ND 94 3700 Acenaphtylene ND 99 3700 Actracine	2-Chlorophenol		ND		190	
2-Nitroaniline ND 1200 7200 2-Nitrophenol ND 170 3700 3-Nichiphenol ND 3200 3700 3-Nitroaniline ND 840 7200 4-6-Dinitro-2-methylphenol ND 1300 7200 4-Bromophenyl phenyl ether ND 1200 3700 4-Chloro-3-methylphenol ND 150 3700 4-Chlorophenyl phenyl ether ND 78 3700 4-Chlorophenyl phenyl ether ND 78 3700 4-Chlorophenyl phenyl ether ND 78 3700 4-Mitrophenol ND 78 3700 4-Mitrophenol ND 890 7200 4-Nitrophenol ND 890 7200 4-Nitrophenol ND 890 7200 Acenaphthylene ND 43 3700 Acetophenone ND 190 3700 Attrazine ND 94 3700 Benzaldehyde <t< td=""><td>2-Methylnaphthalene</td><td></td><td>ND</td><td></td><td>44</td><td>3700</td></t<>	2-Methylnaphthalene		ND		44	3700
2-Nitrophenol ND 1200 7200 2-Nitrophenol ND 170 3700 3,3-Dichlorobenzidine ND 3200 3700 3-Nitroarilline ND 840 7200 4-Bromophenyl phenyl ether ND 1300 7200 4-Bromophenyl phenyl ether ND 150 3700 4-Chloro-3-methylphenol ND 150 3700 4-Chlorophenyl phenyl ether ND 78 3700 4-Chlorophenyl phenyl ether ND 78 3700 4-Methylphenol ND 410 7200 4-Mitrophenol ND 890 7200 4-Nitrophenol ND 890 7200 4-Nitrophenol ND 890 7200 4-Neaphithylene ND 30 3700 Acenaphithylene ND 94 3700 Acenaphithylene ND 94 3700 Altrazine ND 94 3700 Altrazine N	2-Methylphenol		ND		110	
2-Nitrophenol ND 170 3700 3,3"-Dichlorobenzidine ND 3200 3700 3-Nitroaniline ND 840 7200 4,6-Dinilfro-2-methylphenol ND 1300 7200 4-Bromophenyl phenyl ether ND 150 3700 4-Chloro-3-methylphenol ND 150 3700 4-Chloro-3-methylphenol ND 1100 3700 4-Chlorophenyl ether ND 200 7200 4-Chlorophenyl phenyl ether ND 200 7200 4-Methylphenol ND 410 7200 4-Nitrophenol ND 410 7200 4-Nitrophenol ND 490 3700 Acenaphthene ND 43 3700 Acenaphthylene ND 43 3700 Acetophenone ND 190 3700 Actacliphene ND 40 3700 Arbazine ND 40 3700 Benzo(a)phracene <	2-Nitroaniline		ND		1200	
3,3*Dichlorobenzidine ND 3200 3700 3-Nitroaniline ND 840 7200 4,6*Dinitro-2-methylphenol ND 1300 7200 4-Bromophenyl phenyl ether ND 1200 3700 4-Chloro-3-methylphenol ND 150 3700 4-Chlorophenyl phenyl ether ND 78 3700 4-Chlorophenyl phenyl ether ND 78 3700 4-Mitrophenol ND 4110 7200 4-Mitrophenol ND 490 7200 4-Nitrophenol ND 43 3700 Acenaphthene ND 43 3700 Acenaphthylene ND 43 3700 Acetophenone ND 190 3700 Antrazine ND 94 3700 Altrazine ND 63 3700 Benza(a) pryene 710 J 88 3700 Benzo(a) pryene 710 J 44 3700 <td< td=""><td>2-Nitrophenol</td><td></td><td>ND</td><td></td><td>170</td><td></td></td<>	2-Nitrophenol		ND		170	
3-Nitroaniline ND 840 7200 4,6-Dinitro-2-methylphenol ND 1300 7200 4-Bromophenyl phenyl ether ND 1200 3700 4-Chloro-3-methylphenol ND 150 3700 4-Chloroalline ND 78 3700 4-Chlorophenyl phenyl ether ND 200 7200 4-Methylphenol ND 410 7200 4-Nitrophenyl ND 890 7200 4-Nitrophenol ND 890 7200 Acenaphthylene ND 890 7200 Acenaphthylene ND 890 7200 Acenaphthylene ND 890 7200 Acenaphthylene ND 91 3700 Acenaphthylene ND 94 3700 Acetophenone ND 94 3700 Atrazine ND 94 3700 Benzaclehyle ND 63 3700 Benzo(b)fluoranthene 840	3,3'-Dichlorobenzidine		ND		3200	
4,6-Dinitro-2-methylphenol ND 1300 7200 4-Bromophenyl phenyl ether ND 1200 3700 4-Chloro-3-methylphenol ND 150 3700 4-Chloropenyl phenyl ether ND 78 3700 4-Chlorophenyl phenyl ether ND 200 7200 4-Methylphenol ND 410 7200 4-Nitrophenol ND 43 3700 Acenaphthene ND 43 3700 Acenaphthylene ND 43 3700 Acetophenone ND 43 3700 Acetophenone ND 190 3700 Actrazine ND 94 3700 Actrazine ND 60 3700 Benza(a)anthracene ND 63 3700 Benzo(a)anthracene ND 400 3700 Benzo(b)fluoranthene 840 J 71 3700 Benzo(c)k)fluoranthene 360 J 40 3700	3-Nitroaniline		ND		840	
A-Bromophenyl phenyl ether ND 1200 3700	4,6-Dinitro-2-methylphenol		ND		1300	
4-Chloro-a-methylphenol ND 150 3700 4-Chloroaniline ND 1100 3700 4-Chlorophenyl phenyl ether ND 200 7200 4-Methylphenol ND 410 7200 4-Nitrophenol ND 410 7200 A-Nitrophenol ND 43 3700 Acenaphthene ND 43 3700 Acenaphthylene ND 30 3700 Acetophenone ND 190 3700 Antracene ND 190 3700 Atrazine ND 160 3700 Benza(a)anthracene ND 63 3700 Benzo(a)anthracene ND 400 3700 Benzo(a)pyrene 710 J 88 3700 Benzo(b)fluoranthene 840 J 71 370 Benzo(k)fluoranthene 840 J 44 3700 Benzo(k)fluoranthene ND 200 3700	4-Bromophenyl phenyl ether		ND		1200	
4-Chloroaniline ND 78 3700 4-Chlorophenyl phenyl ether ND 78 3700 4-Methylphenol ND 200 7200 4-Nitrophenol ND 410 7200 4-Nitrophenol ND 890 7200 Acenaphthylene ND 43 3700 Acenaphthylene ND 30 3700 Acetophenone ND 190 3700 Anthracene ND 190 3700 Anthracene ND 160 3700 Benzaldehyde ND 400 3700 Benzo(a)anthracene ND 400 3700 Benzo(a)pyrene 710 J 88 3700 Benzo(b)fluoranthene 840 J 71 3700 Benzo(b)fluoranthene 360 J 40 3700 Bis(2-chloroethoxy)methane ND 200 3700 Bis(2-chloroethyylether ND 1200 3700	4-Chloro-3-methylphenol		ND		150	
4-Chlorophenyl phenyl ether ND 78 3700 4-Methylphenol ND 200 7200 4-Nitroaniline ND 410 7200 4-Nitroaniline ND 890 7200 Acenaphthene ND 43 3700 Acenaphthylene ND 30 3700 Acetophenone ND 190 3700 Anthracene ND 94 3700 Atrazine ND 160 3700 Benzaldehyde ND 400 3700 Benza(a)anthracene ND 400 3700 Benzo(a)apyrene 710 J 88 3700 Benzo(b)fluoranthene 840 J 71 3700 Benzo(g,h,i)perylene 470 J 44 3700 Benzo(k)fluoranthene 360 J 40 3700 Benzo(k)fluoranthene ND 200 3700 Bis(2-chloroethy)yether ND 320 3700 Bis(2-chloroethy)lether ND 1200 3700 <t< td=""><td>4-Chloroaniline</td><td></td><td>ND</td><td></td><td>1100</td><td></td></t<>	4-Chloroaniline		ND		1100	
4-Methylphenol ND 200 7200 4-Nitroaniline ND 410 7200 4-Nitrophenol ND 890 7200 Acenaphthene ND 43 3700 Acenaphthylene ND 30 3700 Acetophenone ND 190 3700 Anthracene ND 94 3700 Antrazine ND 400 3700 Benzaldehyde ND 400 3700 Benza(a)anthracene ND 400 3700 Benzo(a)pyrene 710 J 88 3700 Benzo(b)fluoranthene 840 J 71 3700 Benzo(k)fluoranthene 470 J 44 3700 Benzo(k)fluoranthene ND 200 3700 Bis(2-chloroethyx)methane ND 320 3700 Bis(2-chloroethyk)ether ND 1200 3700 Bis(2-chloroethyx)phthalate ND 1600 3700 Butyl benzyl phthalate ND 1600 3700 Carbazole	4-Chlorophenyl phenyl ether		ND		78	
4-Nitroaniline ND 410 7200 4-Nitrophenol ND 890 7200 Acenaphthene ND 43 3700 Acenaphthylene ND 30 3700 Acetophenone ND 190 3700 Anthracene ND 94 3700 Antrazine ND 160 3700 Benzaldehyde ND 400 3700 Benzo(a)anthracene ND 63 3700 Benzo(a)pyrene 710 J 88 3700 Benzo(b)fluoranthene 840 J 71 3700 Benzo(k)fluoranthene 360 J 44 3700 Benzo(k)fluoranthene 360 J 40 3700 Benzo(k)fluoranthene ND 200 3700 Bis(2-chloroethoxy)methane ND 320 3700 Bis(2-chloroethoxy)methane ND 320 3700 Bis(2-ethylhexyl) phthalate ND 980 3700 Butyl benzyl phthalate ND 42 3700 <t< td=""><td>4-Methylphenol</td><td></td><td>ND</td><td></td><td>200</td><td></td></t<>	4-Methylphenol		ND		200	
4-Nitrophenol ND 890 7200 Acenaphthene ND 43 3700 Acenaphthylene ND 30 3700 Acetophenone ND 190 3700 Anthracene ND 94 3700 Antrazine ND 160 3700 Benzaldehyde ND 400 3700 Benzo(a)anthracene ND 63 3700 Benzo(a)pyrene 710 J 88 3700 Benzo(b)fluoranthene 840 J 71 3700 Benzo(g,h,i)perylene 470 J 44 3700 Benzo(k)fluoranthene 360 J 40 3700 Bis(2-chloroethoxy)methane ND 200 3700 Bis(2-chloroethyl)bether ND 200 3700 Bis(2-ethylhexyl) phthalate ND	4-Nitroaniline		ND		410	
Acenaphthene ND 43 3700 Acenaphthylene ND 30 3700 Acetophenone ND 190 3700 Anthracene ND 94 3700 Attrazine ND 160 3700 Benzaldehyde ND 400 3700 Benzo(a) anthracene ND 63 3700 Benzo(a) pyrene 710 J 88 3700 Benzo(b) fluoranthene 840 J 71 3700 Benzo(s), fluoranthene 360 J 44 3700 Benzo(s), fluoranthene 360 J 40 3700 Benzo(s), fluoranthene 360 J 40 3700 Bis(2-chloroethoxy)methane ND 200 3700 Bis(2-chloroethyl) ether ND 320 3700 Bis(2-ethylhexyl) phthalate ND 1200 3700 Caprolactam ND 980 3700 Carbazole ND 42 3700 Chrysene 600 J 37 3700<	4-Nitrophenol		ND		890	
Acenaphthylene ND 30 3700 Acetophenone ND 190 3700 Anthracene ND 94 3700 Atrazine ND 160 3700 Benzaldehyde ND 400 3700 Benzo(a)anthracene ND 63 3700 Benzo(a)pyrene 710 J 88 3700 Benzo(b)fluoranthene 840 J 71 3700 Benzo(g,h,i)perylene 470 J 44 3700 Benzo(k)fluoranthene 360 J 40 3700 Bis(2-chloroethoxy)methane ND 200 3700 Bis(2-chloroethyl)ether ND 320 3700 Bis(2-chlylexyl) phthalate ND 980 3700 Biytly benzyl phthalate ND 980 3700 Caprolactam ND 42 3700 Chrysene 600 J 37 3700 Chrysene 600 J 37 3700 Di-n-butyl phthalate ND 86 3700 <td>Acenaphthene</td> <td></td> <td>ND</td> <td></td> <td>43</td> <td></td>	Acenaphthene		ND		43	
Acetophenone ND 190 3700 Anthracene ND 94 3700 Atrazine ND 160 3700 Benzaldehyde ND 400 3700 Benzo(a)anthracene ND 63 3700 Benzo(a)pyrene 710 J 88 3700 Benzo(b)fluoranthene 840 J 71 3700 Benzo(g,h,i)perylene 470 J 44 3700 Benzo(k)fluoranthene 360 J 40 3700 Bis(2-chloroethoxy)methane ND 200 3700 Bis(2-chloroethoxy)methane ND 320 3700 Bis(2-chloroethyl)ether ND 320 3700 Bis(2-ethylhexyl) phthalate ND 1200 3700 Butyl benzyl phthalate ND 980 3700 Caprolactam ND 42 3700 Carbazole ND 42 3700 Chrysene 600 J 37 3700 Di-n-butyl phthalate ND 1300 3700	Acenaphthylene		ND		30	
Atrazine	Acetophenone		ND		190	3700
Benzaldehyde ND 400 3700 Benzo(a)anthracene ND 63 3700 Benzo(a)pyrene 710 J 88 3700 Benzo(b)fluoranthene 840 J 71 3700 Benzo(g,h,i)perylene 470 J 44 3700 Benzo(k)fluoranthene 360 J 40 3700 Bis(2-chloroethoxy)methane ND 200 3700 Bis(2-chloroethyl)ether ND 320 3700 Bis(2-ethylhexyl) phthalate ND 1200 3700 Butyl benzyl phthalate ND 980 3700 Caprolactam ND 1600 3700 Carbazole ND 42 3700 Chrysene 600 J 37 3700 Di-n-butyl phthalate ND 1300 3700 Di-n-octyl phthalate ND 86 3700	Anthracene		ND		94	3700
Benzaldehyde ND 400 3700 Benzo(a)anthracene ND 63 3700 Benzo(a)pyrene 710 J 88 3700 Benzo(b)fluoranthene 840 J 71 3700 Benzo(g,h,i)perylene 470 J 44 3700 Benzo(k)fluoranthene 360 J 40 3700 Bis(2-chloroethoxy)methane ND 200 3700 Bis(2-chloroethyl)ether ND 320 3700 Bis(2-ethylhexyl) phthalate ND 1200 3700 Butyl benzyl phthalate ND 980 3700 Caprolactam ND 1600 3700 Carbazole ND 42 3700 Chrysene 600 J 37 3700 Di-n-butyl phthalate ND 1300 3700 Di-n-octyl phthalate ND 86 3700	Atrazine		ND		160	
Benzo(a)pyrene 710 J 88 3700 Benzo(b)fluoranthene 840 J 71 3700 Benzo(g,h,i)perylene 470 J 44 3700 Benzo(k)fluoranthene 360 J 40 3700 Bis(2-chloroethoxy)methane ND 200 3700 Bis(2-chloroethyl)ether ND 320 3700 Bis(2-ethylhexyl) phthalate ND 1200 3700 Butyl benzyl phthalate ND 980 3700 Caprolactam ND 1600 3700 Carbazole ND 42 3700 Chrysene 600 J 37 3700 Di-n-butyl phthalate ND 1300 3700 Di-n-octyl phthalate ND 86 3700	Benzaldehyde		ND		400	3700
Benzo(a) pyrene 710 J 88 3700 Benzo(b) fluoranthene 840 J 71 3700 Benzo(g,h,i) perylene 470 J 44 3700 Benzo(k) fluoranthene 360 J 40 3700 Bis(2-chloroethoxy) methane ND 200 3700 Bis(2-chloroethyl) ether ND 320 3700 Bis(2-ethylhexyl) phthalate ND 1200 3700 Butyl benzyl phthalate ND 980 3700 Carpolactam ND 1600 3700 Carbazole ND 42 3700 Chrysene 600 J 37 3700 Di-n-butyl phthalate ND 1300 3700 Di-n-octyl phthalate ND 86 3700	Benzo(a)anthracene		ND		63	3700
Benzo(g,h,i)perylene 470 J 44 3700 Benzo(k)fluoranthene 360 J 40 3700 Bis(2-chloroethoxy)methane ND 200 3700 Bis(2-chloroethyl)ether ND 320 3700 Bis(2-ethylhexyl) phthalate ND 1200 3700 Butyl benzyl phthalate ND 980 3700 Caprolactam ND 1600 3700 Carbazole ND 42 3700 Chrysene 600 J 37 3700 Di-n-butyl phthalate ND 1300 3700 Di-n-octyl phthalate ND 86 3700	Benzo(a)pyrene		710	J	88	
Benzo(k)fluoranthene 360 J 40 3700 Bis(2-chloroethoxy)methane ND 200 3700 Bis(2-chloroethyl)ether ND 320 3700 Bis(2-ethylhexyl) phthalate ND 1200 3700 Butyl benzyl phthalate ND 980 3700 Caprolactam ND 1600 3700 Carbazole ND 42 3700 Chrysene 600 J 37 3700 Di-n-butyl phthalate ND 1300 3700 Di-n-octyl phthalate ND 86 3700	Benzo(b)fluoranthene		840	J	71	3700
Bis(2-chloroethoxy)methane ND 200 3700 Bis(2-chloroethyl)ether ND 320 3700 Bis(2-ethylhexyl) phthalate ND 1200 3700 Butyl benzyl phthalate ND 980 3700 Caprolactam ND 1600 3700 Carbazole ND 42 3700 Chrysene 600 J 37 3700 Di-n-butyl phthalate ND 1300 3700 Di-n-octyl phthalate ND 86 3700	Benzo(g,h,i)perylene		470	J	44	3700
Bis(2-chloroethyl)ether ND 320 3700 Bis(2-ethylhexyl) phthalate ND 1200 3700 Butyl benzyl phthalate ND 980 3700 Caprolactam ND 1600 3700 Carbazole ND 42 3700 Chrysene 600 J 37 3700 Di-n-butyl phthalate ND 1300 3700 Di-n-octyl phthalate ND 86 3700	Benzo(k)fluoranthene		360	J	40	3700
Bis(2-chloroethyl)ether ND 320 3700 Bis(2-ethylhexyl) phthalate ND 1200 3700 Butyl benzyl phthalate ND 980 3700 Caprolactam ND 1600 3700 Carbazole ND 42 3700 Chrysene 600 J 37 3700 Di-n-butyl phthalate ND 1300 3700 Di-n-octyl phthalate ND 86 3700	Bis(2-chloroethoxy)methane		ND		200	3700
Butyl benzyl phthalate ND 980 3700 Caprolactam ND 1600 3700 Carbazole ND 42 3700 Chrysene 600 J 37 3700 Di-n-butyl phthalate ND 1300 3700 Di-n-octyl phthalate ND 86 3700	Bis(2-chloroethyl)ether		ND		320	
Caprolactam ND 1600 3700 Carbazole ND 42 3700 Chrysene 600 J 37 3700 Di-n-butyl phthalate ND 1300 3700 Di-n-octyl phthalate ND 86 3700	Bis(2-ethylhexyl) phthalate		ND		1200	3700
Caprolactam ND 1600 3700 Carbazole ND 42 3700 Chrysene 600 J 37 3700 Di-n-butyl phthalate ND 1300 3700 Di-n-octyl phthalate ND 86 3700	Butyl benzyl phthalate		ND		980	3700
Carbazole ND 42 3700 Chrysene 600 J 37 3700 Di-n-butyl phthalate ND 1300 3700 Di-n-octyl phthalate ND 86 3700	Caprolactam		ND		1600	
Chrysene 600 J 37 3700 Di-n-butyl phthalate ND 1300 3700 Di-n-octyl phthalate ND 86 3700	Carbazole		ND		42	
Di-n-butyl phthalate ND 1300 3700 Di-n-octyl phthalate ND 86 3700	Chrysene		600	J	37	
Di-n-octyl phthalate ND 86 3700	Di-n-butyl phthalate		ND		1300	
Dibenz(a,h)anthracene ND 43 3700	Di-n-octyl phthalate		ND		86	
	Dibenz(a,h)anthracene		ND		43	3700

Client: ARCADIS U.S. Inc Job Number: 480-23453-1

Client Sample ID:

DUP-080212

Lab Sample ID:

480-23453-12

Client Matrix:

Solid

% Moisture:

8.1

Date Sampled: 08/02/2012 0000 Date Received: 08/03/2012 1500

HP5973V

8270C Semivolatile Organic Compounds (GC/MS)

Analysis Method: Prep Method:

8270C 3550B

20

Analysis Batch: Prep Batch:

480-75444

Instrument ID: 480-75163

Lab File ID: Initial Weight/Volume:

Injection Volume:

V3788.D +30.09 g

Final Weight/Volume: 1 mL 1 uL

Analysis Date: Prep Date:

Dilution:

08/07/2012 1103 08/04/2012 0838

Analyte	DryWt Corrected: Y	Result (ug/Kg)	Qualifier	MDL	RL
Dibenzofuran	and and the state of the state	ND	r Alle Period of Meletina and a second and an estimated for the Period (Alle China) dynamic of Alle	38	3700
Diethyl phthalate		ND		110	3700
Dimethyl phthalate		ND		96	3700
Fluoranthene		1200	J	53	3700
Fluorene		ND		84	3700
Hexachlorobenzene		ND		180	3700
Hexachlorobutadiene		ND		190	3700
Hexachlorocyclopentadiene		ND		1100	3700
Hexachloroethane		ND		280	3700
Indeno(1,2,3-cd)pyrene		400	J	100	3700
Isophorone		ND		180	3700
N-Nitrosodi-n-propylamine		ND		290	3700
N-Nitrosodiphenylamine		ND	A. C.	200	3700
Naphthalene		ND		61	3700
Nitrobenzene		ND		160	3700
Pentachlorophenol		ND		1300	7200
Phenanthrene		800	J	77	3700
Phenol		ND		390	3700
Pyrene		1000	J	24	3700

Surrogate	%Rec	Qualifier	Acceptance Limits
2,4,6-Tribromophenol	48	and to a committee common with transfer and an exercise construction in case of operation in the factor of the conditional for an extensive of the conditional for a condition	39 - 146
2-Fluorobiphenyl	84		37 - 120
2-Fluorophenol	61		18 - 120
Nitrobenzene-d5	68		34 - 132
p-Terphenyl-d14	114		65 - 153
Phenol-d5	70		11 - 120

Client: ARCADIS U.S. Inc Job Number: 480-23453-1

Client Sample ID:

AB-04 (18-21)

Lab Sample ID:

480-23453-13

Client Matrix:

Solid

% Moisture:

16.0

Date Sampled: 08/03/2012 0930 Date Received: 08/03/2012 1500

8270C Semivolatile Organic Compounds (GC/MS)

Analysis Method:

8270C

Analysis Batch:

480-75444

Instrument ID:

HP5973V

Prep Method: Dilution:

3550B

Prep Batch:

480-75163

Lab File ID: Initial Weight/Volume: V3789.D

1.0

Final Weight/Volume:

+30.20 g 1 mL

Analysis Date: Prep Date:

08/07/2012 1127 08/04/2012 0838

Injection Volume:

1 uL

Analyte	DryWt Corrected: Y	Result (ug/Kg)	Qualifier	MDL	RL
Biphenyl		ND	entromologicamon a mologonia mangania por 1925 ann a moladador y se como directo p	12	200
bis (2-chloroisopropyl) ether		ND		21	200
2,4,5-Trichlorophenol		ND		44	200
2,4,6-Trichlorophenol		ND		13	200
2,4-Dichlorophenol		ND		10	200
2,4-Dimethylphenol		ND		54	200
2,4-Dinitrophenol		ND		70	390
2,4-Dinitrotoluene		ND		31	200
2,6-Dinitrotoluene		ND		49	200
2-Chloronaphthalene		ND		13	200
2-Chlorophenol		ND		10	200
2-Methylnaphthalene		ND		2.4	200
2-Methylphenol		ND		6.1	200
2-Nitroaniline		ND		64	390
2-Nitrophenol		ND		9.1	200
3,3'-Dichlorobenzidine		ND		180	200
3-Nitroaniline		ND		46	390
4,6-Dinitro-2-methylphenol		ND		69	390
4-Bromophenyl phenyl ether		ND		64	200
4-Chloro-3-methylphenol		ND		8.2	200
4-Chloroaniline		ND		59	200
4-Chlorophenyl phenyl ether		ND		4.3	200
4-Methylphenol		ND		11	390
4-Nitroaniline		ND		22	390
4-Nitrophenol		ND		48	390
Acenaphthene		ND		2.3	200
Acenaphthylene		ND		1.6	200
Acetophenone		ND		10	200
Anthracene		ND		5.1	200
Atrazine		ND		8.9	200
Benzaldehyde		ND		22	200
Benzo(a)anthracene		ND		3.4	200
Benzo(a)pyrene		ND		4.8	200
Benzo(b)fluoranthene		ND		3.9	200
Benzo(g,h,i)perylene		ND		2.4	200
Benzo(k)fluoranthene		ND		2.2	200
Bis(2-chloroethoxy)methane		ND		11	200
Bis(2-chloroethyl)ether		ND		17	200
Bis(2-ethylhexyl) phthalate		ND		64	200
Butyl benzyl phthalate		ND		54	200
Caprolactam		ND		86	200
Carbazole		ND		2.3	200
Chrysene		ND		2.0	200
Di-n-butyl phthalate		ND		69	200
Di-n-octyl phthalate		ND		4.7	200
Dibenz(a,h)anthracene		ND		2.3	200

Client: ARCADIS U.S. Inc

Job Number: 480-23453-1

Client Sample ID:

AB-04 (18-21)

Lab Sample ID:

480-23453-13

Client Matrix:

Solid

% Moisture:

16.0

Date Sampled: 08/03/2012 0930

Date Received: 08/03/2012 1500

8270C Semivolatile Organic Compounds (GC/MS)

Analysis Method:

8270C

Analysis Batch:

480-75444

Instrument ID:

HP5973V

Prep Method: Dilution:

3550B

Prep Batch:

480-75163

Lab File ID:

V3789.D

Analysis Date:

1.0

Initial Weight/Volume: Final Weight/Volume:

+30.20 g

Prep Date:

08/07/2012 1127 08/04/2012 0838

Injection Volume:

1 mL 1 uL

Analyte	DryWt Corrected: Y	Result (ug/Kg)	Qualifier	MDL	RL
Dibenzofuran	uservicenskiven historialistische Arion engegespologique oppaan er soldanfalzefallender Hegistorie mit Historianssiste	ND	ter vertrichte eine der der die gleiche von Anders und ender vertreite vertreite der vertreite der vertreite	2.1	200
Diethyl phthalate		ND		6.0	200
Dimethyl phthalate		ND		5.2	200
Fluoranthene		ND		2.9	200
Fluorene		ND		4.6	200
Hexachlorobenzene		ND		9.9	200
Hexachlorobutadiene		ND		10	200
Hexachlorocyclopentadiene		ND		60	200
Hexachloroethane		ND		15	200
Indeno(1,2,3-cd)pyrene		ND		5.5	200
Isophorone		ND		10	200
N-Nitrosodi-n-propylamine		ND		16	200
N-Nitrosodiphenylamine		ND	1	11	200
Naphthalene		ND		3.3	200
Nitrobenzene		ND		8.8	200
Pentachlorophenol		ND		68	390
Phenanthrene		ND		4.2	200
Phenol		ND		21	200
Pyrene		ND		1.3	200

Surrogate	%Rec	Qualifier	Acceptance Limits
2,4,6-Tribromophenol	49	1900 sering mengangkan olon bengangkan penggan dan pelakaranan akterior rembahan perangkan bengah perangkan ben	39 - 146
2-Fluorobiphenyl	45		37 - 120
2-Fluorophenol	45		18 - 120
Nitrobenzene-d5	50		34 - 132
p-Terphenyl-d14	69		65 - 153
Phenol-d5	48		11 - 120

Client: ARCADIS U.S. Inc Job Number: 480-23453-1

Client Sample ID:

AB-02 (8-10)

Lab Sample ID:

480-23453-14

Client Matrix:

Solid

% Moisture:

17.4

Date Sampled: 08/03/2012 1200 Date Received: 08/03/2012 1500

8270C Semivolatile Organic Compounds (GC/MS)

Analysis Method:

8270C

Analysis Batch:

480-75444

Instrument ID: Lab File ID:

HP5973V

Prep Method: Dilution:

3550B 10

Prep Batch:

480-75163

Initial Weight/Volume:

V3790.D +30.55 g

Analysis Date: Prep Date:

08/07/2012 1151 08/04/2012 0838

Final Weight/Volume: Injection Volume:

1 mL 1 uL

Analyte	DryWt Corrected: Y	Result (ug/Kg)	Qualifier	MDL	RL
Biphenyl	The second secon	ND	t en nomen en e	120	2000
bis (2-chloroisopropyl) ether		ND		210	2000
2,4,5-Trichlorophenol		ND		440	2000
2,4,6-Trichlorophenol		ND		130	2000
2,4-Dichlorophenol		ND		110	2000
2,4-Dimethylphenol		ND		540	2000
2,4-Dinitrophenol		ND		700	3900
2,4-Dinitrotoluene		ND		310	2000
2,6-Dinitrotoluene		ND		490	2000
2-Chloronaphthalene		ND		130	2000
2-Chlorophenol		ND		100	2000
2-Methylnaphthalene		ND		24	2000
2-Methylphenol		ND		62	2000
2-Nitroaniline		ND		640	3900
2-Nitrophenol		ND		92	2000
3,3'-Dichlorobenzidine		ND		1800	2000
3-Nitroaniline		ND		460	3900
4,6-Dinitro-2-methylphenol		ND		690	3900
4-Bromophenyl phenyl ether		ND		640	2000
4-Chloro-3-methylphenol		ND		83	2000
4-Chloroaniline		ND		590	2000
4-Chlorophenyl phenyl ether		ND		43	2000
4-Methylphenol		ND		110	3900
4-Nitroaniline		ND		220	3900
4-Nitrophenol		ND		490	3900
Acenaphthene		ND		24	2000
Acenaphthylene		ND		16	2000
Acetophenone		ND		100	2000
Anthracene		ND		51	2000
Atrazine		ND		89	2000
Benzaldehyde		ND		220	2000
Benzo(a)anthracene		ND		35	2000
Benzo(a)pyrene		ND		48	2000
Benzo(b)fluoranthene		ND		39	2000
Benzo(g,h,i)perylene		ND		24	2000
Benzo(k)fluoranthene		ND		22	2000
Bis(2-chloroethoxy)methane		ND		110	2000
Bis(2-chloroethyl)ether		ND		170	2000
Bis(2-ethylhexyl) phthalate		ND		650	2000
Butyl benzyl phthalate		ND		540	2000
Caprolactam		ND		870	2000
Carbazole		ND		23	2000
Chrysene		130	J	20	2000
Di-n-butyl phthalate		ND		690	2000
Di-n-octyl phthalate		ND		47	2000
Dibenz(a,h)anthracene		ND		24	2000

Client: ARCADIS U.S. Inc Job Number: 480-23453-1

Client Sample ID: AB-02 (8-10)

Lab Sample ID: 480-23453-14

Date Sampled: 08/03/2012 1200 Client Matrix: Solid % Moisture: 17.4 Date Received: 08/03/2012 1500

8270C Semivolatile Organic Compounds (GC/MS)

Analysis Method: Prep Method:

8270C 3550B

Analysis Batch:

480-75444

Instrument ID: Lab File ID:

HP5973V

Dilution:

10

Prep Batch:

480-75163

Initial Weight/Volume:

V3790.D +30.55 g

Analysis Date:

Final Weight/Volume: Injection Volume:

1 mL 1 uL

08/07/2012 1151 Prep Date: 08/04/2012 0838

Analyte	DryWt Corrected: Y	Result (ug/Kg)	Qualifier	MDL	RL
Dibenzofuran	A CONTRACTOR OF THE PROPERTY O	ND	encommon reproductiva de la productiva de la productiva de la constante de constante a constante constante de	21	2000
Diethyl phthalate		ND		61	2000
imethyl phthalate		ND		52	2000
luoranthene		160	J	29	2000
luorene		ND		46	2000
exachlorobenzene		ND		100	2000
exachlorobutadiene		ND		100	2000
exachlorocyclopentadiene		ND		610	2000
exachloroethane		ND		160	2000
deno(1,2,3-cd)pyrene		ND		55	2000
ophorone		ND		100	2000
-Nitrosodi-n-propylamine		ND		160	2000
-Nitrosodiphenylamine		ND		110	2000
aphthalene		ND		33	2000
itrobenzene		ND		89	2000
entachiorophenol		ND		690	3900
henanthrene		ND		42	2000
nenol		ND		210	2000
yrene		ND		13	2000
urrogate		%P00	Ovellena		

Surrogate	%Rec	Qualifier	Acceptance Limits
2,4,6-Tribromophenol	30	X 	39 - 146
2-Fluorobiphenyl	60		37 - 120
2-Fluorophenol	57		18 - 120
Nitrobenzene-d5	56		34 - 132
p-Terphenyl-d14	75		65 - 153
Phenol-d5	58		
	00		11 - 120

Client: ARCADIS U.S. Inc.

Job Number: 480-23453-1

Client Sample ID:

AB-02 (20-22)

Lab Sample ID:

480-23453-15

Client Matrix:

Solid

% Moisture:

22.2

Date Sampled: 08/03/2012 1210 Date Received: 08/03/2012 1500

8270C Semivolatile Organic Compounds (GC/MS)

Analysis Method:

8270C

Analysis Batch:

480-75444

Instrument ID:

HP5973V

Prep Method: Dilution:

3550B

Prep Batch:

Lab File ID:

V3791.D

1.0

480-75163

Initial Weight/Volume:

+30.37 g

Analysis Date:

08/07/2012 1215

Final Weight/Volume:

1 mL

Prep Date:

08/04/2012 0838

Injection Volume:

1 uL

Analyte	DryWt Corrected: Y	Result (ug/Kg)	Qualifier	MDL	RL
Biphenyl	and the second state of the second	ND		13	220
bis (2-chloroisopropyl) ether		ND		22	220
2,4,5-Trichlorophenol		ND		47	220
2,4,6-Trichlorophenol		ND		14	220
2,4-Dichlorophenol		ND		11	220
2,4-Dimethylphenol		ND		58	220
2,4-Dinitrophenol		ND		75	420
2,4-Dinitrotoluene		ND		33	220
2,6-Dinitrotoluene		ND		52	220
2-Chloronaphthalene		ND		14	220
2-Chlorophenol		ND		11	220
2-Methylnaphthalene		ND		2.6	220
2-Methylphenol		ND		6.6	220
2-Nitroaniline		ND		69	420
2-Nitrophenol		ND		9.8	220
3,3'-Dichlorobenzidine		ND		190	220
3-Nitroaniline		ND		49	420
4,6-Dinitro-2-methylphenol		ND		74	420
4-Bromophenyl phenyl ether		ND		68	220
4-Chloro-3-methylphenol		ND		8.8	220
4-Chloroaniline		ND		63	220
4-Chlorophenyl phenyl ether		ND		4.6	220
4-Methylphenol		ND		12	420
4-Nitroaniline		ND		24	420
4-Nitrophenol		ND		52	420
Acenaphthene		ND		2.5	220
Acenaphthylene		ND		1.8	220
Acetophenone		ND		11	220
Anthracene		ND		5.5	220
Atrazine		ND		9.5	220
Benzaldehyde		ND		24	220
Benzo(a)anthracene		ND		3.7	220
Benzo(a)pyrene		15	j	5.2	220
Benzo(b)fluoranthene		18	j	4.2	220
Benzo(g,h,i)perylene		ND		2.6	220
Benzo(k)fluoranthene		11	j	2.4	220
Bis(2-chloroethoxy)methane		ND		12	220
Bis(2-chloroethyl)ether	-	ND		19	220
Bis(2-ethylhexyl) phthalate		ND		69	220
Butyl benzyl phthalate		ND		58	220
Caprolactam		ND		93	220
Carbazole		ND		2.5	220
Chrysene		17	j	2.1	220
Di-n-butyl phthalate		ND		74	220
Di-n-octyl phthalate		ND		5.0	220
Dibenz(a,h)anthracene		ND		2.5	220

Client: ARCADIS U.S. Inc Job Number: 480-23453-1

Client Sample ID:

AB-02 (20-22)

Lab Sample ID:

480-23453-15

Client Matrix:

Solid

% Moisture:

22.2

Date Sampled: 08/03/2012 1210 Date Received: 08/03/2012 1500

Analysis Method:

8270C

Analysis Batch:

480-75444

Instrument ID: Lab File ID:

HP5973V V3791.D

Prep Method: Dilution:

3550B 1.0

Prep Batch:

480-75163

Initial Weight/Volume:

+30.37 g

Analysis Date: Prep Date:

08/07/2012 1215 08/04/2012 0838

Final Weight/Volume: Injection Volume:

1 mL 1 uL

Analyte	DryWt Corrected: Y	Result (ug/Kg)	Qualifier	MDL	RL
Dibenzofuran	and a consistent than a selection is accommodate in a Table of Addition consistent maintaining an animal behind that	ND	and of the same and excludence is market or the design of eight a filler gave an end of motive	2.2	220
Diethyl phthalate		ND		6.5	220
Dimethyl phthalate		ND		5.6	220
Fluoranthene		31	J	3.1	220
Fluorene		ND		4.9	220
Hexachlorobenzene		ND		11	220
Hexachlorobutadiene		ND		11	220
Hexachlorocyclopentadiene		ND		65	220
Hexachloroethane		ND		17	220
Indeno(1,2,3-cd)pyrene		ND		5.9	220
Isophorone		ND		11	220
N-Nitrosodi-n-propylamine		ND		17	220
N-Nitrosodiphenylamine		ND	/	12	220
Naphthalene		ND		3.6	220
Nitrobenzene		ND		9.5	220
Pentachlorophenol		ND		74	420
Phenanthrene		15	J	4.5	220
Phenol		ND		23	220
Pyrene		28	J	1.4	220

Surrogate	%Rec	Qualifier	Acceptance Limits
2,4,6-Tribromophenol	68	militaristi kanala k	39 - 146
2-Fluorobiphenyl	62		37 - 120
2-Fluorophenol	56		18 - 120
Nitrobenzene-d5	61		34 - 132
p-Terphenyl-d14	84		65 - 153
Phenol-d5	62		11 - 120

Client: ARCADIS U.S. Inc

Job Number: 480-23453-1

Client Sample ID:

AB-03 (8-10)

Lab Sample ID:

480-23564-1

Client Matrix:

Solid

% Moisture:

Date Sampled: 08/06/2012 1050 Date Received: 08/07/2012 1330

8270C Semivolatile Organic Compounds (GC/MS)

Analysis Method:

8270C

Analysis Batch:

480-76451

Instrument ID:

HP5973V

Prep Method:

3550B

Lab File ID:

V4044.D

Dilution:

Prep Batch:

480-75643

Initial Weight/Volume:

Analysis Date:

Final Weight/Volume:

+30.40 g

08/14/2012 1242

Inje

1 mL

•	
Prep Date:	

08/08/2012 0836

iai vicigili volulle.		IIIL
ection Volume:	1	uL

2,4,6-Trichlorophenol ND 240 3600 2,4-Dichlorophenol ND 190 3600 2,4-Dimethylphenol ND 970 3600 2,4-Dinitrophenol ND 1300 7000 2,4-Dinitrotoluene ND 550 3600 2,6-Dinitrotoluene ND 870 3600 2-Chloroaphthalene ND 240 3600 2-Chlorophenol ND 180 3600 2-Methylnaphthalene ND 43 3600 2-Methylphenol ND 110 3600 2-Mitrophenol ND 110 3600 2-Nitroaniline ND 1100 7000 2-Nitrophenol ND 3100 3600 3-Nitroaniline ND 3100 3600 3-Nitroaniline ND 820 7000 4,6-Dinitro-2-methylphenol ND 1200 7000 4-Bromophenyl phenyl ether ND 150 3600	Analyte	DryWt Corrected: Y	Result (ug/Kg)	Qualifier	MDL	RL
2.4-Dicklorophenol	2,4,5-Trichlorophenol		ND	and the state of t	780	3600
2.4-Dinitrophenol ND 970 3600 2.4-Dinitrophenol ND 550 3600 2.4-Dinitrololuene ND 550 3600 2.4-Dinitrololuene ND 550 3600 2.4-Dinitrololuene ND 550 3600 2.4-Dinitrololuene ND 1870 3600 2.4-Dinitrololuene ND 1870 3600 2.4-Dinitrololuene ND 180 3600 2.4-Dinitrophenol ND 180 3600 2.4-Dinitrophenol ND 110 3600 2.4-Dinitrophenol ND 110 3600 2.4-Dinitrophenol ND 160 3600 3.3-Dichlorobenzidine ND 160 3600 3.3-Dichlorobenzidine ND 1820 7000 3.3-Dichlorobenzidine ND 1820 7000 3.3-Dichlorobenzidine ND 1820 7000 4.6-Dinitro-2-methylphenol ND 1820 7000 4.6-Dinitro-2-methylphenol ND 180 3600 4.6-Chloroshire ND 150 3600 4.6-Chloroshire ND 150 3600 4.6-Chloroshire ND 150 3600 4.C-Chloroshire ND 150 3600 4.C-Chloroshire ND 76 3600 4.C-Chloroshire ND 76 3600 4.C-Chloroshire ND 190 400 7000 4Nitrophenol ND 400 3600 4Renaphthylene ND 42 3600 4Renaphthylene ND 42 3600 4Renaphthylene ND 180 3600 4Renaphthylene ND 390 3600 4Renaphthylene ND 3	2,4,6-Trichlorophenol		ND		240	3600
2.4-Dinitrophenol ND 1300 7000 2.4-Dinitrofuluene ND 550 3600 2.5-Dinitrofuluene ND 870 3600 2.6-Dinitrofuluene ND 240 3600 2-Chloropaphthalene ND 180 3600 2-Methylphaphthalene ND 43 3600 2-Methylphanol ND 110 3600 2-Methylphanol ND 110 3600 2-Methylphanol ND 110 3600 2-Nitrophenol ND 160 3600 2-Nitrophenol ND 3100 3600 3-Nitroaniline ND 1200 7000 4-Bromophenyl phenyl ether ND 1200 7000 4-Bromophenyl phenyl ether ND 1000 3600 4-Chloro-3-methylphenol ND 150 3600 4-Chloro-3-methylphenol ND 150 3600 4-Chloro-3-methylphenol ND 150 3600 4-Chlo	2,4-Dichlorophenol		ND		190	3600
2.4-Dinitrotoluene 2.4-Dinitrotoluene ND 550 3600 2.2-C.Dinoraphthalene ND 2.4-Dinoraphthalene ND 2.4-Dinoraphthalene ND 2.4-Dinoraphthalene ND 3600 2.C-Dinoraphthalene ND 3600 2.C-Dinoraphthalene ND 3600 2.C-Dinoraphthalene ND 3600 2.C-Methylaphthalene ND 3600 2.Methylaphthalene ND 3600 2.Methylaphthalene ND 3100 3600 2.Methylaphthalene ND 3100 3600 3.3-Dichloroberzidine ND 3100 3600 3.3-Dichloroberzidine ND 3100 3600 3.3-Dichloroberzidine ND 3100 3600 3.3-Dichloroberzidine ND 3100 3600 3.5-Dichloroberzidine ND 3100 3600 3.5-Dichloroberzidine ND 3100 3600 3.5-Dichloroberzidine ND 3100 3600 3.5-Dichloroberzidine ND 3100 3600 3600 3600 3600 3600 3600 3600	2,4-Dimethylphenol		ND		970	3600
2.6-Dinitrotoluene ND 870 3800 2.2-Chlorosphthalene ND 240 3600 2Chlorophenol ND 180 3600 2Methylphaphthalene ND 43 3600 2Methylphaphol ND 110 3600 2Nitrophinol ND 1100 7000 2Nitrophanol ND 3100 3600 2Nitrophanol ND 3100 3600 3Nichlorobenzidine ND 3100 3600 3Nitrophanol ND 320 7000 4Britora-Zemethylphenol ND 1100 3600 4Chloro-3-methylphenol ND 150 3600 4Chloro-3-methylphenol ND 150 3600 4Chloro-3-methylphenol ND 150 3600 4Chlorophenyl phenyl ether ND 150 3600 4Chlorophenyl phenyl ether ND 400 7000 4Mitrophenol ND 400 7000 <tr< td=""><td>2,4-Dinitrophenol</td><td></td><td>ND</td><td></td><td>1300</td><td>7000</td></tr<>	2,4-Dinitrophenol		ND		1300	7000
2-Chloronaphthalene	2,4-Dinitrotoluene		ND		550	3600
2-Chlorophenol 2-Chlorophenol ND 180 3600 2-Methylnaphthalene ND 110 3600 2-Methylphenol ND 110 3600 2-Mitroaniline ND 110 3600 3-Nitroaniline ND 160 3800 3-S-Dichlorobenzidine ND 160 3800 3-S-Dichlorobenzidine ND 160 3800 3-S-Dichlorobenzidine ND 180 3-Dichlorobenzidine ND 180 3600 3-Nitroaniline ND 180 3600 3-Nitroaniline ND 180 3600 4-Chloro-Temethylphenol ND 180 3600 4-Chloro-Temethylphenol ND 150 3600 4-Chloro-Temethylphenol ND 150 3600 4-Chlorophenyl phenyl ether ND 150 3600 4-Chlorophenyl phenyl ether ND 160 3600 4-Chlorophenyl phenyl ether ND 76 3600 4-Chlorophenyl phenyl ether ND 76 3600 4-Chlorophenyl phenyl ether ND 76 3600 4-Nethylphenol ND 700 1-Nitroaniline ND	2,6-Dinitrotoluene		ND		870	3600
2-Methyliphenol ND 43 3600 2-Methyliphenol ND 110 3600 2-Mitrophenol ND 110 3600 2-Nitrophenol ND 110 3600 2-Nitrophenol ND 160 3600 3-Nitrophenol ND 3100 3600 3-Nitrophenol ND 3100 3600 3-Nitrophenol ND 3100 3600 3-Nitrophenol ND 1200 7000 4-Bromophenyl phenyl ether ND 1100 3600 4-Chloro-3-methylphenol ND 150 3600 4-Chloro-3-methylphenol ND 150 3600 4-Chloro-3-methylphenol ND 150 3600 4-Chloro-1-methylphenol ND 1000 3600 4-Chloro-1-methylphenol ND 1000 3600 4-Chloropaniline ND 1000 3600 4-Chloropaniline ND 1000 3600 4-Chloropaniline ND 1000 3600 4-Methylphenol ND 200 7000 4-Methylphenol ND 200 7000 4-Methylphenol ND 300 3600 4-Methyl	2-Chloronaphthalene		ND		240	3600
2-Methylphenol ND 110 3600 2-Nitroaniline ND 1100 7000 2-Nitroaniline ND 160 3600 33-Dichlorobenzidine ND 3100 3600 33-Dichlorobenzidine ND 3100 3600 33-Dichlorobenzidine ND 3100 3600 33-Dichlorobenzidine ND 1200 7000 4-Bromophenyl phenyl ether ND 1200 7000 4-Bromophenyl phenyl ether ND 150 3600 4-Chloro-3-methylphenol ND 150 3600 4-Chloro-3-methylphenol ND 150 3600 4-Chlorophenyl phenyl ether ND 150 3600 4-Nitroaniline ND 1500 3600 4-Nitr	2-Chlorophenol		ND		180	3600
2-Nitroaniline	2-Methylnaphthalene		ND		43	3600
2-Nitrophenol ND	2-Methylphenol		ND		110	
2-Nitrophenol ND 3600	2-Nitroaniline		ND			
3.3-Dichlorobenzidine ND 3100 3600	2-Nitrophenol		ND		160	
Action ND	3,3'-Dichlorobenzidine		ND			
A D- Dinitro-2-methylphenol	3-Nitroaniline		ND			
#Bromophenyl phenyl ether	4,6-Dinitro-2-methylphenol					
A-Chloro-3-methylphenol	4-Bromophenyl phenyl ether					
### A-Chloroaniline	4-Chloro-3-methylphenol		ND			
A-Chlorophenyl phenyl ether	4-Chloroaniline					
Methylphenol						
#-Nitrophenol ND 400 7000 #-Nitrophenol ND 870 7000 #-Nitrophenol ND 42 3600 #-Acenaphthylene ND 29 3600 #-Acenaphthylene ND 180 3500 #-Acenaphthylene ND 180 3600 #-Acenaphthylene ND 390 3600 #-Acenaphthylene ND 390 3600 #-Acenaphthylene ND 390 3600 #-Acenaphthylene ND J 62 3600 #-Acenaphthylene ND J 62 3600 #-Acenaphthylene ND J 66 3600 #-Acenaphthylene ND J 66 3600 #-Acenaphthylene ND J 67 370 3600 #-Acenaphthylene ND 190 3600 #-Acenaphathylene ND 190 3600 #-Acen						
Acetaphthene ND 870 7000	• •					
Acenaphthene ND 42 3600 Acenaphthylene ND 29 3600 Acenaphthylene ND 180 3600 Acetophenone ND 180 3600 3600 Acetophenone ND 390 3600 3600 3600 3600 3600 3600 3600						
Acetaphthylene ND 29 3600 Acetaphenone ND 180 3600 Acetaphenone ND 180 3600 Acetaphenone ND 180 3600 Acetaphenone ND 160 3600 Acetaphenone ND 390 3600 Acetaphenone ND 390 3600 Acetaphenone ND 390 3600 Acetaphenone ND 390 3600 Acetaphenone ND J 62 3600 Acetaphenone ND J 62 3600 Acetaphenone ND J 62 3600 Acetaphenone ND J 69 3600 Acetaphenone ND J 70 3600	•					
Acetopherone ND 180 3600 Anthracene 280 J 92 3600 Anthracene ND 160 3600 Anthracene ND 160 3600 Anthracene ND 160 3600 Benzaldehyde ND 390 3600 Benzo(a)anthracene 1100 J 62 3600 Benzo(a)pyrene 1100 J 86 3600 Benzo(b)fluoranthene 1400 J 69 3600 Benzo(b)fluoranthene 1400 J 69 3600 Benzo(b)fluoranthene 1400 J 69 3600 Benzo(b)fluoranthene 1400 J 39 3600 Benzo(b)fluoranthene 1400 J 370 3600 Benzo(b)fluoranthene 1400 J 370 3600 Benzo(b)fluoranthene ND 310 3600 Benzo(b)fluoranthene ND J 1200 3600 Benzo(b)fluoranthene ND J 1200 3600 Benzo(b)fluoranthene ND J 1500 3600 Benzo(b)fluoranthene 1200 J 36 3600 Benzo(b)fluoranthene 1200 J 42 3600 Ben	•					
Anthracene 280 J 92 3600 Atrazine ND 160 3600 3600 3600 3600 3600 3600 3600	• •					
Atrazine ND 160 3600 Benzaldehyde ND 390 3600 Benzo(a)anthracene 1100 J 62 3600 Benzo(a)pyrene 1100 J 86 3600 Benzo(b)fluoranthene 1400 J 69 3600 Benzo(k)fluoranthene 560 J 43 39 3600 Benzo(k)fluoranthene 480 J 39 3600 Benzo(k)fluoranthene ND 220 3600 Bisphenyl ND 220 3600 Bis(2-chloroisopropyl) ether ND 370 3600 Bis(2-chlorothyl)ether ND 310 3600 Bis(2-chlorothyl)ether ND 3600 Bi	•					
Senzolar				J		
Senzo (a) anthracene						
Senzo (a) pyrene	•					
Senzo (b) fluoranthene	` '					
Senzo(g,h,i)perylene						
Senzo (k)fluoranthene	• •					
ND 220 3600						
Sist (2-chloroisopropyl) ether ND 370 3600 Sist (2-chloroethoxy)methane ND 190 3600 Sist (2-chloroethoxy)methane ND 310 3600 Sist (2-chloroethyl)ether ND 960 3600 Sist (2-chloroeth				J		
Sis(2-chloroethoxy)methane						
Sis(2-chloroethyl)ether	, , , , ,					
Bis(2-ethylhexyl) phthalate 1800 J 1200 3600 Butyl benzyl phthalate ND 960 3600 Caprolactam ND 1500 3600 Carbazole ND 41 3600 Chrysene 1200 J 36 3600 Dibenz(a,h)anthracene 210 J 42 3600 Dibenzofuran ND 37 3600	` -,					
Butyl benzyl phthalate ND 960 3600 Caprolactam ND 1500 3600 Carbazole ND 41 3600 Chrysene 1200 J 36 3600 Dibenz(a,h)anthracene 210 J 42 3600 Dibenzofuran ND 37 3600	, ,					
Caprolactam ND 1500 3600 Carbazole ND 41 3600 Chrysene 1200 J 36 3600 Dibenz(a,h)anthracene 210 J 42 3600 Dibenzofuran ND 37 3600				J	=	
Carbazole ND 41 3600 Chrysene 1200 J 36 3600 Dibenz(a,h)anthracene 210 J 42 3600 Dibenzofuran ND 37 3600						
Chrysene 1200 J 36 3600 Dibenz(a,h)anthracene 210 J 42 3600 Dibenzofuran ND 37 3600	·					
Dibenz(a,h)anthracene 210 J 42 3600 Dibenzofuran ND 37 3600						
Dibenzofuran ND 37 3600	*					
	• • •			J		
netnyi pritnalate ND 110 3600						
	Dietnyl phthalate		ND		110	3600

Client: ARCADIS U.S. Inc Job Number: 480-23453-1

Client Sample ID:

AB-03 (8-10)

Lab Sample ID:

480-23564-1

Client Matrix:

Solid

% Moisture:

6.8

Date Sampled: 08/06/2012 1050 Date Received: 08/07/2012 1330

8270C Semivolatile Organic Compounds (GC/MS)

Analysis Method:

8270C

Analysis Batch:

480-76451

Instrument ID:

HP5973V

Prep Method:

3550B

Prep Batch:

480-75643

Lab File ID: Initial Weight/Volume: V4044.D

Dilution: Analysis Date: 20

Final Weight/Volume:

+30.40 g 1 mL

Prep Date:

08/14/2012 1242 08/08/2012 0836

Injection Volume:

1 uL

Analyte	DryWt Corrected: Y	Result (ug/Kg)	Qualifier	MDL	RL
Dimethyl phthalate	controlled and a modern and a branch for more a back bound and all all of the Controlled States of the Controlled States of the	ND	Europa Europe (nadas terme publicate color control en en de ten de Transcondente (1970 en 1970)	93	3600
Di-n-butyl phthalate		ND		1200	3600
Di-n-octyl phthalate		ND		84	3600
Fluoranthene		2200	J	52	3600
Fluorene		ND		82	3600
Hexachlorobenzene		ND		180	3600
Hexachlorobutadiene		ND		180	3600
Hexachlorocyclopentadiene		ND		1100	3600
Hexachloroethane		ND		280	3600
Indeno(1,2,3-cd)pyrene		490	J	99	3600
isophorone		ND		180	3600
Naphthalene		ND		60	3600
Nitrobenzene		ND		160	3600
N-Nitrosodi-n-propylamine		ND		280	3600
N-Nitrosodiphenylamine		ND	A STATE OF THE STA	200	3600
Pentachlorophenol		ND		1200	7000
Phenanthrene		1600	J	75	3600
Phenol		ND		380	3600
Pyrene		1800	J	23	3600
Surrogate		%Rec	Qualifier	Accepta	nce Limits

Client: ARCADIS U.S. Inc Job Number: 480-23453-1

Client Sample ID:

AB-03- (20-22.5)

Lab Sample ID:

480-23564-2

Client Matrix:

Solid

% Moisture:

18.9

Date Sampled: 08/06/2012 1100 Date Received: 08/07/2012 1330

8270C Semivolatile Organic Compounds (GC/MS)

Analysis Method:

8270C

Analysis Batch:

480-76451

Instrument ID:

HP5973V

Prep Method:

3550B

Lab File ID:

V4045.D

Dilution:

Prep Batch:

480-75643

Initial Weight/Volume:

Analysis Date:

1.0

Final Weight/Volume:

+30.79 g 1 mL

Prep Date:

08/14/2012 1306

08/08/2012 0836

Injection Volume:

1 uL

Analyte	DryWt Corrected: Y	Result (ug/Kg)	Qualifier	MDL	RL
2,4,5-Trichlorophenol		ND	der in der eine Gerander der der der Stellen der der eine Gerande der Stellen der der der der der der der der	44	500
2,4,6-Trichlorophenol		ND		13	200
2,4-Dichlorophenol		ND		11	200
2,4-Dimethylphenol		ND		55	200
2,4-Dinitrophenol		ND		71	400
2,4-Dinitrotoluene		ND		31	200
2,6-Dinitrotoluene		ND		50	200
2-Chloronaphthalene		ND		14	200
2-Chlorophenol		ND		10	200
2-Methylnaphthalene		ND		2.5	200
2-Methylphenol		ND		6.2	200
2-Nitroaniline		ND		65	400
2-Nitrophenol		ND		9.3	200
3,3'-Dichlorobenzidine		ND		180	200
3-Nitroaniline		ND		47	400
4,6-Dinitro-2-methylphenol		ND		70	400
4-Bromophenyl phenyl ether		ND	` ¬ Чи	65	200
4-Chloro-3-methylphenol		ND		8.3	200
4-Chloroaniline		ND		60	
4-Chlorophenyl phenyl ether		ND		4.3	200
4-Methylphenol		ND			200
4-Nitroaniline		ND		11	400
4-Nitrophenol		ND		23	400
Acenaphthene		14		49	400
Acenaphthylene		ND	J	2.4	200
Acetophenone		ND		1.7	200
Anthracene		ND ND		10	200
Atrazine		ND		5.2	200
Benzaldehyde		ND		9.0	200
Benzo(a)anthracene		ND		22	200
Benzo(a)pyrene				3.5	200
		25	J	4.9	200
Benzo(b)fluoranthene		25 ND	J	3.9	200
Benzo(g,h,i)perylene		ND		2.4	200
Benzo(k)fluoranthene		17	J	2.2	200
Biphenyl		ND		13	200
bis (2-chloroisopropyl) ether		ND		21	200
Bis(2-chloroethoxy)methane		ND		11	200
Bis(2-chloroethyl)ether		ND		18	200
Bis(2-ethylhexyl) phthalate		94	J	65	200
Butyl benzyl phthalate		ND		54	200
Caprolactam		ND		88	200
Carbazole		ND		2.3	200
Chrysene		25	J	2.0	200
Dibenz(a,h)anthracene		ND		2.4	200
Dibenzofuran		ND		2.1	200
Diethyl phthalate		ND		6.1	200

Client: ARCADIS U.S. Inc Job Number: 480-23453-1

Client Sample ID:

AB-03- (20-22.5)

Lab Sample ID:

480-23564-2

Client Matrix: Solid

% Moisture:

18.9

Date Sampled: 08/06/2012 1100

Date Received: 08/07/2012 1330

8270C Semivolatile	Organic Com	pounds (GC/MS)
--------------------	-------------	----------	--------

Analysis Method:

8270C

Analysis Batch:

480-76451

Instrument ID:

HP5973V

Prep Method:

3550B

Lab File ID:

V4045.D

Dilution:

1.0

Prep Batch:

480-75643

Initial Weight/Volume:

Analysis Date:

+30.79 g

08/14/2012 1306

Final Weight/Volume:

1 mL

Prep Date:	08/08/2012 0836		Injec	tion Volume:	1 uL	
Analyte	DryWt Corrected: Y	Result (ug/Kg)	Qualifier	MDL	RL	
Dimethyl phthalate		ND	ancountries of the control of the production of the control of the section of the control of the	5.3	200	Application of the Control of the Co
Di-n-butyl phthalate		ND		70	200	
Di-n-octyl phthalate		ND		4.7	200	
Fluoranthene		31	J	2.9	200	
Fluorene		ND		4.7	200	
Hexachlorobenzene		ND		10	200	
Hexachlorobutadiene		ND		10	200	
Hexachlorocyclopenta	diene	ND		61	200	
Hexachloroethane		ND		16	200	
Indeno(1,2,3-cd)pyren	e	ND		5.6	200	
Isophorone		ND		10	200	
Naphthalene		ND		3.4	200	
Nitrobenzene		ND		9.0	200	
N-Nitrosodi-n-propylan	nine	ND		16	200	
N-Nitrosodiphenylamir	ne	ND	/	11	200	
Pentachlorophenol		ND		70	400	
Phenanthrene		ND		4.3	200	
Phenol		ND		21	200	
Pyrene		30	J	1.3	200	
Surrogate		%Rec	Qualifier	Accept	ance Limits	
2,4,6-Tribromophenol	$a_{a_{a_{a_{a_{a_{a_{a_{a_{a_{a_{a_{a_{a$	114	suppose the contract of the	39 - 146		CONTROL OF THE PROPERTY OF THE
2-Fluorobiphenyl		94		37 - 12		
2-Fluorophenol		80		18 - 12	=	
Nitrobenzene-d5		96		34 - 13		
p-Terphenyl-d14		119	*	65 - 15		
Phenol-d5		89		11 - 120	-	

Client: ARCADIS U.S. Inc

Job Number: 480-23453-1

Client Sample ID:

AB-C2 (8-11)

Lab Sample ID:

480-23564-3

Client Matrix:

Solid

% Moisture:

21.8

Date Sampled: 08/06/2012 1430 Date Received: 08/07/2012 1330

8270C Semivolatile Organic Compounds (GC/MS)

Analysis Method:

8270C

Analysis Batch:

480-76451

Instrument ID:

HP5973V

Prep Method:

3550B

Prep Batch:

480-75643

Lab File ID:

V4057.D

Dilution:

Initial Weight/Volume:

5.0

Final Weight/Volume:

+30.56 g 1 mL

Analysis Date: Prep Date:

08/14/2012 1419 08/08/2012 0836

Injection Volume:

1 uL

Analyte	DryWt Corrected: Y	Result (ug/Kg)	Qualifier	MDL	RL
2,4,5-Trichlorophenol	and a market out of an analysis of the second of the secon	ND	paga mga agan a sagan sa ing mga likat ng lamba agamba. Ta ta hang man Cartar si bankan a bankan da maka kemin	230	1100
2,4,6-Trichlorophenol		ND		70	1100
2,4-Dichlorophenol		ND		56	1100
2,4-Dimethylphenol		ND		290	1100
2,4-Dinitrophenol		ND		370	2100
2,4-Dinitrotoluene		ND		160	1100
2,6-Dinitrotoluene		ND		260	1100
2-Chloronaphthalene		ND		71	1100
2-Chlorophenol		ND	4	54	1100
2-Methylnaphthalene		ND	*	13	1100
2-Methylphenol		ND		33	1100
2-Nitroaniline		ND		340	2100
2-Nitrophenol		ND		48	1100
3,3'-Dichlorobenzidine		ND		930	1100
3-Nitroaniline		ND		240	
4,6-Dinitro-2-methylphenol		ND		370	2100
4-Bromophenyl phenyl ether		ND		340	2100
4-Chloro-3-methylphenol		ND		44	1100
4-Chloroaniline		ND		44 310	1100
4-Chlorophenyl phenyl ether		ND		23	1100
4-Methylphenol		ND			1100
4-Nitroaniline		ND		59	2100
4-Nitrophenol		ND		120	2100
Acenaphthene		ND		260	2100
Acenaphthylene		ND		12	1100
Acetophenone		ND		8.7	1100
Anthracene		ND		54 27	1100
Atrazine		ND		27	1100
Benzaldehyde		ND		47	1100
Benzo(a)anthracene		ND		120	1100
Benzo(a)pyrene		ND		18	1100
Benzo(b)fluoranthene		62	1	26	1100
Benzo(g,h,i)perylene		ND	J	21	1100
Benzo(k)fluoranthene		ND		13	1100
Biphenyl		ND	4	12	1100
bis (2-chloroisopropyl) ether		ND		66	1100
Bis(2-chloroethoxy)methane				110	1100
Bis(2-chloroethyl)ether		ND		58	1100
• • •		ND ND		92	1100
Bis(2-ethylhexyl) phthalate		ND ND		340	1100
Butyl benzyl phthalate Caprolactam		ND ND		280	1100
Carbazole				460	1100
Chrysene		ND ND		12	1100
•		ND ND		11	1100
Dibenz(a,h)anthracene Dibenzofuran		ND		12	1100
Diethyl phthalate		ND		11	1100
Dietriyi pritrialate		ND		32	1100

Client: ARCADIS U.S. Inc Job Number: 480-23453-1

Client Sample ID:

AB-C2 (8-11)

Lab Sample ID:

480-23564-3

Client Matrix:

Solid

% Moisture:

21.8

Date Sampled: 08/06/2012 1430 Date Received: 08/07/2012 1330

8270C Semivolatile Organic Compounds (GC/MS)

Analysis Method:

8270C

Analysis Batch:

480-76451

Instrument ID:

HP5973V

Prep Method:

3550B

Prep Batch:

Lab File ID:

V4057.D

Dilution:

5.0

480-75643

Initial Weight/Volume: Final Weight/Volume:

+30.56 g

Analysis Date:

08/14/2012 1419

1 mL

Prep Date:

08/08/2012 0836

Injection Volume:

1 uL

Analyte	DryWt Corrected: Y	Result (ug/Kg)	Qualifier	MDL	RL
Dimethyl phthalate	ann an an da an an 1936, an	ND	A SANGE CONTRACTOR OF THE PROPERTY OF THE PROPERTY OF THE CONTRACTOR OF THE CONTRACT	28	1100
Di-n-butyl phthalate		ND		370	1100
Di-n-octyl phthalate		ND		2 5	1100
Fluoranthene		ND		15	1100
Fluorene		ND		24	1100
Hexachlorobenzene		ND		53	1100
Hexachlorobutadiene		ND		54	1100
Hexachlorocyclopentadiene		ND		320	1100
Hexachloroethane		ND		82	1100
Indeno(1,2,3-cd)pyrene		ND		29	1100
Isophorone		ND		53	1100
Naphthalene		ND		18	1100
Nitrobenzene		ND		47	1100
N-Nitrosodi-n-propylamine		ND		84	1100
N-Nitrosodiphenylamine		ND		58	1100
Pentachlorophenol		ND		360	2100
Phenanthrene		ND		22	1100
Phenol		ND	* (110	1100
Pyrene		ND		6.9	1100

Surrogate	%Rec	Qualifier	Acceptance Limits
2,4,6-Tribromophenol	86	да в в пред пред пред до гр. и по под под пред на 2000 на под пред пред пред пред пред пред пред пре	39 - 146
2-Fluorobiphenyl	81		37 - 120
2-Fluorophenol	72		18 - 120
Nitrobenzene-d5	73		34 - 132
p-Terphenyl-d14	106		65 - 153
Phenoi-d5	77		11 - 120

Client: ARCADIS U.S. Inc Job Number: 480-23453-1

Client Sample ID:

AB-C2 (22-24)

Lab Sample ID:

480-23564-4

Client Matrix:

Solid

% Moisture:

9.1

Date Sampled: 08/06/2012 1440 Date Received: 08/07/2012 1330

8270C Semivolatile Organic Compounds (GC/MS)

Analysis Method: Prep Method:

8270C

Analysis Batch:

480-75846

Instrument ID:

HP5973V

Dilution:

3550B

Prep Batch:

480-75643

Lab File ID: Initial Weight/Volume:

V3877.D

Analysis Date:

1.0

Final Weight/Volume:

+30.26 g

Prep Date:

08/09/2012 1739 08/08/2012 0836

1 mL Injection Volume: 1 uL

Analyte	DryWt Corrected: Y	Result (ug/Kg)	Qualifier	MDL	RL
2,4,5-Trichlorophenol		ND	ano-inge, kung ana republikan pang republik banda nom nombak pelahelah	40	190
2,4,6-Trichlorophenol		ND		12	190
2,4-Dichlorophenol		ND		9.7	190
2,4-Dimethylphenol		ND		50	190
2,4-Dinitrophenol		ND		64	360
2,4-Dinitrotoluene		ND		29	190
2,6-Dinitrotoluene		ND		45	190
2-Chloronaphthalene		ND		12	190
2-Chlorophenol		ND		9.4	190
2-Methylnaphthalene		ND		2.2	190
2-Methylphenol		ND		5.7	190
2-Nitroaniline		ND		59	360
2-Nitrophenol		ND		8.4	190
3,3'-Dichlorobenzidine		ND		160	190
3-Nitroaniline		ND		42	360
4,6-Dinitro-2-methylphenol		ND		64	360
4-Bromophenyl phenyl ether		ND		59	190
4-Chloro-3-methylphenol		ND		7.6	190
4-Chloroaniline		ND		54	190
4-Chlorophenyl phenyl ether		ND		3.9	190
4-Methylphenol		ND		10	360
4-Nitroaniline		ND		21	360
4-Nitrophenol		ND		45	360
Acenaphthene		ND		2.2	190
Acenaphthylene		ND		1.5	190
Acetophenone		ND		9.5	190
Anthracene		ND		4.7	190
Atrazine		ND		8.2	190
Benzaldehyde		ND		20	190
Benzo(a)anthracene		ND		3.2	190
Benzo(a)pyrene		9.4	J	4.4	190
Benzo(b)fluoranthene		14	J	3.6	190
Benzo(g,h,i)perylene		ND		2.2	190
Benzo(k)fluoranthene		8.8	J	2.0	190
Biphenyl		ND		11	190
bis (2-chloroisopropyl) ether		ND		19	190
Bis(2-chloroethoxy)methane		ND		10	190
Bis(2-chloroethyl)ether		ND		16	190
Bis(2-ethylhexyl) phthalate		430		59	190
Butyl benzyl phthalate Caprolactam		ND		49	190
•		ND		80	190
Carbazole		ND		2.1	190
Chrysene		15 ND	J	1.8	190
Dibenz(a,h)anthracene Dibenzofuran		ND		2.2	190
		ND		1.9	190
Diethyl phthalate		ND		5.6	190

Client: ARCADIS U.S. Inc Job Number: 480-23453-1

Client Sample ID:

AB-C2 (22-24)

Lab Sample ID:

480-23564-4

Client Matrix:

Solid

% Moisture: 9.1 Date Sampled: 08/06/2012 1440 Date Received: 08/07/2012 1330

8270C Semivolatile	Organic Compounds (GC/MS)
OLI VO SCIIII VIALIE	Organic Compounds (GC/MS)

Analysis Method: Prep Method:

8270C 3550B Analysis Batch:

480-75846

Instrument ID:

HP5973V V3877.D

Dilution:

Prep Batch:

480-75643

Lab File ID: Initial Weight/Volume:

1.0

Final Weight/Volume:

+30.26 g 1 mL

Analysis Date:

08/09/2012 1739

Injection Volume: 1 uL

Prep Date:

08/08/2012 0836

Analyte	DryWt Corrected: Y	Result (ug/Kg)	Qualifier	MDL	RL
Dimethyl phthalate	and fact many of a manifestable many of proposition debugged and an analysis of the debugged for the proposition of the second o	ND	nature e a companyaga gaga com a elebanal les consiliado e impresa esta primapliste a las Vilanda	4.8	190
Di-n-butyl phthalate		ND		64	190
Di-n-octyl phthalate		ND		4.3	190
Fluoranthene		ND		2.7	190
Fluorene		ND		4.2	190
Hexachlorobenzene		ND		9.2	190
Hexachlorobutadiene		ND		9.4	190
Hexachlorocyclopentadiene		ND		56	190
Hexachloroethane		ND		14	190
Indeno(1,2,3-cd)pyrene		ND		5.1	190
Isophorone		ND		9.2	190
Naphthalene		ND		3.1	190
Nitrobenzene		ND		8.2	190
N-Nitrosodi-n-propylamine		ND		15	190
N-Nitrosodiphenylamine		ND	Marie Contraction of the Contrac	10	190
Pentachlorophenol		ND	•	63	360
Phenanthrene		ND		3.9	190
Phenol		ND		19	190
Pyrene		ND		1.2	190

Surrogate	%Rec	Qualifier	Acceptance Limits
2,4,6-Tribromophenol	96	na prama, mangangan na mara mangan na mangan mangan mangan mangan kanda mandan na kanda da kanda da mandan da m	39 - 146
2-Fluorobiphenyl	85		37 - 120
2-Fluorophenol	76		18 - 120
Nitrobenzene-d5	88		34 - 132
p-Terphenyl-d14	103		65 - 153
Phenol-d5	83		11 - 120

Client: ARCADIS U.S. Inc Job Number: 480-23453-1

Client Sample ID:

AB-05 (9.5-10.8)

Lab Sample ID:

480-23453-1

Client Matrix:

Solid

% Moisture:

20.4

Date Sampled: 08/01/2012 1440

Date Received: 08/03/2012 1500

6010B Metals (ICP)

Analysis Method:

6010B

Analysis Batch:

480-75658

Instrument ID:

ICAP1

Prep Method: Dilution:

3050B

Prep Batch:

480-75316

Lab File ID:

11080712A-2.asc

Analysis Date:

1.0

Initial Weight/Volume: Final Weight/Volume:

+0.5046 g 50 mL

Prep Date:

08/07/2012 1417 08/06/2012 1820

Analyte	DryWt Corrected: Y	Result (mg/Kg)	Qualifier	MDL	RL
Aluminum		5230	The second secon	5.5	12,5
Antimony		ND		0.67	18.7
Arsenic		2.8		0.50	2.5
Barium		35.0	T	0.14	0.62
Beryllium		0.34		0.035	0.25
Cadmium		0.21	J	0.037	0.25
Calcium		2300	J B	4.1	62.3
Chromium		11.8	ブ	0.25	0.62
Cobalt		8.6		0.062	0.62
Copper		15.1		0.26	1.2
Iron		9890	JB	1.4	12.5
Lead		25.5	T	0.30	1.2
Magnesium		2450	,B′	1.2	24.9
Manganese		96.5	,	0.040	0.25
Nickel		19.9		0.29	6.2
Potassium		688	丁	24.9	37.4
Selenium		ND		0.71	5.0
Silver		ND		0.25	0.62
Sodium		108	j	16.2	174
Thallium		ND		0.37	7.5
√anadium		13.4	て	0.14	0.62
Zinc		59.2	JB	0.19	2.5

7471A Mercury (CVAA)

Analysis Method: Prep Method:

7471A

7471A

1.0

Analysis Date:

08/06/2012 1504

Analysis Batch: Prep Batch:

480-75362

480-75233

Instrument ID: Lab File ID:

LEEMAN3 J08062S2.PRN

Initial Weight/Volume: Final Weight/Volume:

.5993 g 50 mL

08/06/2012 1035 Prep Date:

Analyte Mercury

Dilution:

DryWt Corrected: Y

Result (mg/Kg) 0.013

Qualifier J

MDL 0.010

Client: ARCADIS U.S. Inc Job Number: 480-23453-1

Client Sample ID:

AB-05 (22-25)

Lab Sample ID:

480-23453-2

Client Matrix:

Solid

% Moisture:

17.0

Date Sampled: 08/01/2012 1450

Date Received: 08/03/2012 1500

6010B Metals (ICP)

Analysis Method:

6010B

Analysis Batch:

480-76551

Instrument ID:

ICAP2

Prep Method:

3050B

Prep Batch:

480-75316

Lab File ID: Initial Weight/Volume: I2081412A-2.asc

Dilution: Analysis Date: 1.0

08/14/2012 1614

Final Weight/Volume:

+0.4599 g 50 mL

Prep Date:

08/06/2012 1820

Analyte	DryWt Corrected: Y	Result (mg/Kg)	Qualifier	MDL	RL	
Aluminum	ann ann an taoine agus ann ann an taoine an taoine agus ann an taoine an taoine an taoine ann an taoine an taoine	3210	Andrea proportion and the second seco	5.8	13.1	nal-minimización.
Antimony		ND		0.71	19.7	
Arsenic		1.9	J	0.52	2.6	
Barium		31.8	J	0.14	0.66	
Beryllium		0.19	J	0.037	0.26	
Cadmium		0.21	J	0.039	0.26	
Calcium		86800	2 28	4.3	65.5	
Chromium		9.1	ブ	0.26	0.66	
Cobalt		3.4		0.066	0.66	
Copper		7.3		0.28	1.3	
Iron		7060	TB	1.4	13.1	
Lead		8.4	7	0.31	1.3	
Magnesium		29100	æ	1.2	26.2	
Manganese		232		0.042	0.26	
Nickel		8.0		0.30	6.6	
Potassium		892	7	26.2	39.3	
Selenium		ND		0.75	5.2	
Silver		ND		0.26	0.66	
Sodium		376		17.0	183	
Thallium		ND		0.39	7.9	
Vanadium		10.3	5	0.14	0.66	
Zinc		40.0	子ダ	0.20	2.6	

7471A Mercury (CVAA)

Analysis Method:

7471A

Prep Method: 7471A Dilution:

Analysis Date:

1.0

Prep Date:

08/06/2012 1505 08/06/2012 1035 Analysis Batch: Prep Batch:

480-75362

480-75233

Instrument ID: Lab File ID:

LEEMAN3 J08062S2.PRN

Initial Weight/Volume:

.6095 g

Final Weight/Volume:

50 mL

rich Date.	00/00/2012	1000

Analyte	DryWt Corrected: Y	Result (mg/Kg)	Qualifier	MDL	RL
Mercury	ави, не	0.014	T and an one provider or talger or recovered a standard programmer and programmer definition and break and an analysis of the standard definition and break and an analysis of the standard definition and the standard definition	0.0096	0.024

Client: ARCADIS U.S. Inc Job Number: 480-23453-1

Client Sample ID:

AB-01 (8-14)

Lab Sample ID:

480-23453-3

Client Matrix:

Solid

% Moisture:

12.7

Date Sampled: 08/02/2012 0840 Date Received: 08/03/2012 1500

6010B Metals (ICP)

Analysis Method:

6010B

Analysis Batch:

480-75658

Instrument ID:

ICAP1

Prep Method:

3050B

Prep Batch:

480-75316

Lab File ID: Initial Weight/Volume: I1080712A-2.asc +0.5397 g

Dilution: Analysis Date: 1.0

08/07/2012 1422

Prep Date:

08/06/2012 1820

Final Weight/Volume:

50 mL

DryWt Corrected: Y	Result (mg/Kg)	Qualifier	MDL	RL	
	7390		4.7	10.6	N/V4×Spc(Site)symbologic
	ND		0.57	15.9	
	5.9		0.42	2.1	
	61.8	J	0.12	0.53	
	0.42		0.030	0.21	
	0.26		0.032		
	65000	J B	3.5		
	18.9	J'	0.21		
	7.5		0.053		
	18.7		0.22		
	15400	J B	1.2		
	83.0		0.25		
	13200	Ĕ	0.98	21.2	
	317		0.034	0.21	
	19.3		0.24		
	1360	5	21.2		
	ND		0.60		
	ND		0.21		
	996				
	ND				
	16.2	allen.			
	94.6	<u>2</u> - R			
	Diywi Corrected. 1	7390 ND 5.9 61.8 0.42 0.26 65000 18.9 7.5 18.7 15400 83.0 13200 317 19.3 1360 ND ND ND 996 ND 16.2	7390 ND S.9 61.8 0.42 0.26 65000 18.9 7.5 18.7 15400 317 19.3 1360 ND ND ND 996 ND	7390 3 4.7 ND 0.57 5.9 0.42 61.8 0.12 0.42 0.030 0.26 0.032 65000 J B 3.5 18.9 0.21 7.5 0.053 18.7 0.22 15400 J B 1.2 83.0 0.25 13200 B 0.98 317 0.034 19.3 0.24 1360 J 0.24 1360 J 0.21 ND 0.60 ND 0.60 ND 0.21 996 13.8 ND 0.32 16.2 0.12	7390

7471A Mercury (CVAA)

Analysis Method: Prep Method:

7471A 7471A

Dilution:

1.0

Analysis Date: Prep Date:

08/06/2012 1507 08/06/2012 1035 Analysis Batch: Prep Batch:

480-75362 480-75233 Instrument ID: Lab File ID:

LEEMAN3 J08062S2.PRN

Initial Weight/Volume:

.6286 g

Final Weight/Volume:

50 mL

Analyte

Mercury

DryWt Corrected: Y

Result (mg/Kg) 0.20

Qualifier

MDL 0.0089 RL 0.022

TestAmerica Buffalo

Client: ARCADIS U.S. Inc Job Number: 480-23453-1

Client Sample ID:

AB-01 (20-22)

Lab Sample ID:

480-23453-4

Client Matrix:

Solid

% Moisture:

32.9

Date Sampled: 08/02/2012 0900

Date Received: 08/03/2012 1500

6010B Metals (ICP)

Analysis Method:

6010B

Analysis Batch:

480-75658

Instrument ID:

ICAP1

Prep Method: Dilution:

3050B 1.0

Prep Batch:

480-75316

Lab File ID: Initial Weight/Volume: I1080712A-2.asc +0.5190 g

Analysis Date: Prep Date:

08/07/2012 1425

08/06/2012 1820

Final Weight/Volume:

50 mL

Analyte	DryWt Corrected: Y	Result (mg/Kg)	Qualifier	MDL	RL
Aluminum	commission of the control cont	8690	A contract of the contract of	6.3	14.4
Antimony		2.1	J	0.78	21.5
Arsenic		25.8		0.57	2.9
Barium		230	5	0.16	0.72
Beryllium		0.59		0.040	0.29
Cadmium		3.3		0.043	0.29
Calcium		35200	l la	4.7	71.8
Chromium		54.3	J	0.29	0.72
Cobalt		8.6		0.072	0.72
Copper		154		0.30	1.4
Iron		19500	ゴダ	1.6	14.4
Lead		932	Ť	0.34	1,4
Magnesium		11600	ø	1.3	28.7
Manganese		309		0.046	0.29
Nickel		37.9		0.33	7.2
Potassium		1120	7	28.7	43.1
Selenium		1.8	J	0.82	5.7
Silver		5.6		0.29	0.72
Sodium		2330	. 4	18.7	201
Thallium		0.52	J	0.43	8.6
Vanadium		19.5	5	0.16	0.72
Zinc		865	JB	0.22	2.9

7471A Mercury (CVAA)

Analysis Method: Prep Method:

7471A 7471A

10

Analysis Date:

Dilution:

08/06/2012 1544

Analysis Batch: Prep Batch:

480-75362 480-75233

Instrument ID: Lab File ID:

LEEMAN3 J08062S2.PRN

Initial Weight/Volume: Final Weight/Volume:

.6317 g 50 mL

Prep Date: 08/06/2012 1035

Analyte DryWt Corrected: Y Mercury

Result (mg/Kg) 4.4

Qualifier

MDL 0.11

Client: ARCADIS U.S. Inc

Job Number: 480-23453-1

Client Sample ID:

AW-02 (8-10)

Lab Sample ID:

480-23453-5

Client Matrix:

Solid

% Moisture:

18.8

Date Sampled: 08/02/2012 1120

Date Received: 08/03/2012 1500

6010B Metals (ICP)

Analysis Method:

6010B

Analysis Batch:

480-75658

Instrument ID:

ICAP1

Prep Method:

3050B

Prep Batch:

480-75316

Lab File ID:

I1080712A-2.asc

Dilution: Analysis Date: 1.0

08/07/2012 1427

Prep Date:

08/06/2012 1820

Initial Weight/Volume: Final Weight/Volume:

+0.5492 g 50 mL

Analyte	DryWt Corrected: Y	Result (mg/Kg)	Qualifier	MDL	RL
Aluminum	Издежнить меть и помент	11600	T. Marie Constitution of the Constitution of t	4.9	11.2
Antimony		ND		0.61	16.8
Arsenic		4.9		0.45	2.2
Barium		78.6	5	0.12	0.56
Beryllium		0.58		0.031	0.22
Cadmium		0.24		0.034	0.22
Calcium		22900	J B	3.7	56.0
Chromium		17.8	3	0.22	0.56
Cobalt		11.0		0.056	0.56
Copper		18.4		0.24	1.1
Iron		18000	5 ₈	1.2	11.2
Lead		19.3	5	0.27	1.1
Magnesium		11900	B'	1.0	22.4
Manganese		374		0.036	0.22
Nickel		25.7		0.26	5.6
Potassium		1590	7	22.4	33.6
Selenium		ND		0.64	4.5
Silver		ND		0.22	0.56
Sodium		447		14.6	157
Thallium		ND		0.34	6.7
Vanadium		23.1	7	0.12	0.56
Zinc		77.4	28 1	0.17	2.2

7471A Mercury (CVAA)

Analysis Method: Prep Method:

7471A

7471A 10

Analysis Batch: Prep Batch:

480-75362 480-75233

Instrument ID: Lab File ID:

LEEMAN3 J08062S2.PRN

Dilution: Analysis Date:

08/06/2012 1546 08/06/2012 1035

Initial Weight/Volume: Final Weight/Volume:

.5856 g 50 mL

Prep Date: Analyte

Mercury

DryWt Corrected: Y

Result (mg/Kg) 4.5

Qualifier

MDL 0.10

Client: ARCADIS U.S. Inc Job Number: 480-23453-1

Client Sample ID:

AW-02 (18-21)

Lab Sample ID:

480-23453-6

Client Matrix:

Solid

% Moisture:

38.4

Date Sampled: 08/02/2012 1130

Date Received: 08/03/2012 1500

6010B Metals (ICP)

Analysis Method:

6010B

Analysis Batch:

480-75658

Instrument ID:

ICAP1

50 mL

Prep Method:

3050B

Prep Batch:

Lab File ID:

I1080712A-2.asc

Dilution:

1.0

480-75316

Initial Weight/Volume: Final Weight/Volume:

+0.5165 g

Analysis Date: Prep Date:

08/07/2012 1430

08/06/2012 1820

Analyte	DryWt Corrected: Y	Result (mg/Kg)	Qualifier	MDL	RL	
Aluminum		8780	acinia resultativa dependenti interpretario del per activa del producto del del circo de del como de del construcción de contracto de c	6.9	15.7	юютрурномици
Antimony		4.3	j	0.85	23.6	
Arsenic		34.0		0.63	3.1	
Barium		357	7	0.17	0.79	
Beryllium		0.59		0.044	0.31	
Cadmium		2.6		0.047	0.31	
Calcium		18600	2 k	5.2	78.6	
Chromium		74.9	7	0.31	0.79	
Cobalt		9.9		0.079	0.79	
Copper		213		0.33	1.6	
Iron		22100	JB	1.7	15.7	
Lead		2640	5	0.38	1.6	
Magnesium		8760	ø	1.5	31.5	
Manganese		297	~	0.050	0.31	
Nickel		46.8		0.36	7.9	
Potassium		1010	2	31.5	47.2	
Selenium		2.1	j	0.90	6.3	
Silver		4.1	Ü	0.31		
Sodium		670		20.4	0.79	
Thallium		ND		0.47	220	
Vanadium		19.6	-5°	0.47	9.4	
Zinc		1730	7 B	0.17	0.79 3.1	

7471A Mercury (CVAA)

Analysis Batch:

Prep Batch:

Analysis Method: Prep Method:

7471A 7471A

480-75362 480-75233 Instrument ID: Lab File ID:

LEEMAN3 J08062S2.PRN

3.1

Dilution: Analysis Date: 10

08/06/2012 1548

Prep Date:

08/06/2012 1035

Initial Weight/Volume: Final Weight/Volume:

.5901 g 50 mL

Analyte Mercury

DryWt Corrected: Y

Result (mg/Kg) 6.4

Qualifier

JB

MDL 0.13

Client: ARCADIS U.S. Inc Job Number: 480-23453-1

Client Sample ID:

AW-01 (5-7)

Lab Sample ID:

480-23453-7

Client Matrix:

Solid

% Moisture:

12.8

Date Sampled: 08/02/2012 1530

Date Received: 08/03/2012 1500

6010B Metals (ICP)

Analysis Method:

6010B

3050B

Prep Method: Dilution: 1.0

Analysis Date: Prep Date:

08/07/2012 1446 08/06/2012 1820 Analysis Batch: 480-75658 Prep Batch:

480-75316

Instrument ID:

ICAP1

Lab File ID: Initial Weight/Volume: 11080712A-2.asc

+0.5086 g Final Weight/Volume: 50 mL

Analyte	DryWt Corrected: Y	Result (mg/Kg)	Qualifier	MDL	RL
Aluminum	$-c_{1}c_{2}c_{3}c_{4}c_{4}c_{5}c_{5}c_{5}c_{5}c_{5}c_{5}c_{5}c_{5$	5740	L andanianianianianianianianianianianianiania	5.0	11,3
Antimony		ND		0.61	16.9
Arsenic		5.5		0.45	2.3
Barium		48.2	J	0.12	0.56
Beryllium		0.40		0.032	0.23
Cadmium		0.64		0.034	0.23
Calcium		75700	<u> 2</u> 8	3.7	56.4
Chromium		13.1	ナ	0.23	0.56
Cobalt		5.8		0.056	0.56
Copper		18.4		0.24	1.1
Iron		16000	Tø	1.2	11.3
Lead		124	T	0.27	1,1
Magnesium		28100	₽°	1.0	22.6
Manganese		496	•	0.036	0.23
Nickel		14.6		0.26	5.6
Potassium		1000	J	22.6	33.8
Selenium		ND		0.64	4.5
Silver		ND		0.23	0.56
Sodium		359		14.7	158
Thallium		ND		0.34	6.8
Vanadium		17.8	5	0.12	0.56
Zinc		168	TB	0.17	2.3

7471A Mercury (CVAA)

Analysis Method: Prep Method:

7471A 7471A

Dilution:

1.0

Analysis Date: Prep Date:

08/06/2012 1523 08/06/2012 1035 Analysis Batch: Prep Batch:

480-75362 480-75233

Instrument ID: Lab File ID:

J08062S2.PRN Initial Weight/Volume:

Final Weight/Volume:

.6138 g 50 mL

LEEMAN3

Analyte DryWt Corrected: Y Result (mg/Kg) Qualifier MDL RL Mercury 0.055 0.0091 0.022

Client: ARCADIS U.S. Inc

Job Number: 480-23453-1

Client Sample ID:

AW-01 (20-22.5)

Lab Sample ID:

480-23453-8

Client Matrix:

Solid

% Moisture:

Date Sampled: 08/02/2012 1540

Date Received: 08/03/2012 1500

6010B Metals (ICP)

Analysis Method:

6010B

Analysis Batch:

480-75658

Instrument ID:

ICAP1

Prep Method:

3050B

23.6

Lab File ID:

Dilution:

Prep Batch:

480-75316

I1080712A-2.asc

Analysis Date:

1.0

08/07/2012 1448

Initial Weight/Volume: Final Weight/Volume:

+0.5276 g 50 mL

Prep Date:

08/06/2012 1820

Analyte	DryWt Corrected: Y	Result (mg/Kg)	Qualifier	MDL	RL	
Aluminum		9960	The contraction of the contracti	5.5	12.4	stockerskeinerske
Antimony		ND		0.67	18.6	
Arsenic		4.9		0.50	2.5	
Barium		77.2	2	0.14	0.62	
Beryllium		0.50		0.035	0.25	
Cadmium		0.22	J	0.037	0.25	
Calcium		37900	I s	4.1	62.0	
Chromium		15.3	7	0.25	0.62	
Cobalt		8.8		0.062	0.62	
Copper		16.1		0.26	1.2	
Iron		16000	TB	1.4	12.4	
Lead		27.2	7	0.30	1.2	
Magnesium		11800	æ	1.2	24.8	
Manganese		302		0.040	0.25	
Nickel		19.9		0.29	6.2	
Potassium		1500	7	24.8	37.2	
Selenium		ND		0.71	5.0	
Silver		ND		0.25	0.62	
Sodium		451		16.1	174	
Thallium		0.42	J	0.37	7.4	
Vanadium		20.7	2	0.14	0.62	
Zinc		59.7	2 ×	0.19	2.5	

7471A Mercury (CVAA)

Analysis Method: Prep Method:

7471A 7471A

1.0

Analysis Date: Prep Date:

08/06/2012 1525 08/06/2012 1035 Analysis Batch:

Prep Batch:

480-75362 480-75233

Instrument ID: Lab File ID:

LEEMAN3 J08062S2.PRN

Initial Weight/Volume: Final Weight/Volume:

.6610 g 50 mL

Analyte

Mercury

Dilution:

DryWt Corrected: Y

Result (mg/Kg) 0.096

Qualifier

MDL 0.0096

Client: ARCADIS U.S. Inc Job Number: 480-23453-1

Client Sample ID:

RB-080212

Lab Sample ID:

480-23453-9

Client Matrix:

Water

Date Sampled: 08/02/2012 1640 Date Received: 08/03/2012 1500

6010B	Metals	(ICP)
-------	--------	-------

Analysis Method: Prep Method:

6010B

3005A

Dilution: Analysis Date: 1.0

Prep Date:

08/07/2012 1827 08/07/2012 0830 Prep Batch:

Analysis Batch:

480-75663 480-75339

Instrument ID:

Lab File ID:

ICAP1

Initial Weight/Volume:

11080712A-6.asc

Final Weight/Volume:

50 mL 50 mL

Prep Date:	08/07/2012 0830					
Analyte		Result (r	ng/L)	Qualifie	er MDL	RL
Aluminum	esi construentente et i de esta de matematente de monde de manue com applica e form y chemit als de métrodes de horr	ND	en e	egi son alaktori ordunan marajuda kikin alikulinin jeleb	0.060	0.20
Antimony		ND			0.0068	0.020
Arsenic		ND			0.0056	0.010
Barium		ND			0.00070	0.0020
Cadmium		ND			0.00050	0.0010
Calcium		0.23		J	0.10	0.50
Chromium		ND			0.0010	0.0040
Cobalt		ND			0.00063	0.0040
Copper		ND			0.0016	0.010
Iron		0.12		В	0.019	0.050
Lead		ND			0.0030	0.0050
Magnesium		0.053		J	0.043	0.20
Manganese		0.0016		JΒ	0.00040	0.0030
Nickel		ND			0.0013	0.010
Potassium		ND			0.10	0.50
Selenium		ND			0.0087	0.015
Silver		ND			0.0017	0.0030
Sodium		ND			0.32	1.0
Thallium		ND			0.010	0.020
Vanadium		ND			0.0015	0.0050
Zinc		ND			0.0015	0.010
Analysis Method:	6010B	Analysis Batch:	480-75827		Instrument ID:	ICAP2
Prep Method:	3005A	Prep Batch;	480-75339		Lab File ID:	12080812A-8.asc
Dilution:	1.0	•			Initial Weight/Volume:	50 mL
						OU THE

Analysis Date: Prep Date:

08/08/2012 1919

08/07/2012 0830

Final Weight/Volume:

50 mL

Analyte

Beryllium

Result (mg/L)

Qualifier

MDL 0.00030

RL

0.0020

7470A Mercury (CVAA)

Analysis Method: Prep Method:

74**7**0A 7470A

Dilution:

Analysis Date: Prep Date: 08/08/2012 0910

1.0 08/08/2012 1241 Analysis Batch: Prep Batch:

ND

480-75731 480-75645

Instrument ID: Lab File ID:

LEEMAN2 H08082W1.PRN

Initial Weight/Volume:

30 mL

Final Weight/Volume:

50 mL

Analyte

Result (mg/L)

Qualifier

MDL 0.00012 RL

0.00020

Mercury

Page 124 of 2462

Client: ARCADIS U.S. Inc Job Number: 480-23453-1

Client Sample ID:

AB-04 (10-12)

Lab Sample ID:

480-23453-10

Client Matrix:

Solid

% Moisture:

20.0

Date Sampled: 08/03/2012 0920 Date Received: 08/03/2012 1500

6010B Metals (ICP)

Analysis Method:

6010B

Analysis Batch:

480-75658

Instrument ID:

ICAP1

Prep Method: Dilution:

3050B

Prep Batch:

480-75316

Lab File ID: Initial Weight/Volume: I1080712A-2.asc

Analysis Date:

1.0

Final Weight/Volume:

+0.4874 g 50 mL

Prep Date:

08/07/2012 1451 08/06/2012 1820

Analyte	DryWt Corrected: Y	Result (mg/Kg)	Qualifier	MDL	RL
Aluminum	an den kursten kursten in sterfall in Sterfall den kursten kan den kursten in den kursten in den kursten kurst Den kursten in den kursten in	7550	median error vandringsparver of PATA Antibility i result pleasant by cutt after debt depth (ab	5.6	12,8
Antimony		ND		0.69	19.2
Arsenic		4.7		0.51	2.6
Barium		56.0	7	0.14	0.64
Beryllium		0.61		0.036	0.26
Cadmium		0.35		0.038	0.26
Calcium		11200	J &	4.2	64.1
Chromium		13.4	J	0.26	0.64
Cobalt		7.7		0.064	0.64
Copper		25.4		0.27	1.3
Iron		14800	2 B	1.4	12.8
Lead		43.3	J	0.31	1.3
Magnesium		4710	ø'	1.2	25.6
Manganese		203		0.041	0.26
Nickel		23.3		0.29	6.4
Potassium		606	7	25.6	38.5
Selenium		ND		0.73	5.1
Silver		ND		0.26	0.64
Sodium		546		16.7	179
Thallium		ND		0.38	7.7
Vanadium		19.5	3	0.14	0.64
Zinc		73.7	7 7 8	0.20	2.6

7471A Mercury (CVAA)

Analysis Method: Prep Method:

7471A 7471A

1.0

08/06/2012 1526

Analysis Batch: Prep Batch:

480-75362 480-75233

Instrument ID: Lab File ID:

LEEMAN3 J08062S2.PRN

Initial Weight/Volume: Final Weight/Volume:

.6228 g 50 mL

Analysis Date: Prep Date:

08/06/2012 1035

Analyte Mercury

Dilution:

DryWt Corrected: Y

Result (mg/Kg) 0.034

Qualifier

MDL 0.0098

Client: ARCADIS U.S. Inc Job Number: 480-23453-1

Client Sample ID: DUP-080212 480-23453-12

Lab Sample ID: Date Sampled: 08/02/2012 0000 Client Matrix:

Solid % Moisture: 8.1 Date Received: 08/03/2012 1500

6010B Metals (ICP)

Analysis Method: 6010B Analysis Batch: 480-75658 Instrument ID: ICAP1

Prep Method: 3050B Prep Batch: 480-75316 Lab File ID: I1080712A-2.asc

Dilution: 1.0 Initial Weight/Volume: +0.4985 g Analysis Date: 08/07/2012 1453 50 mL

Final Weight/Volume: Prep Date: 08/06/2012 1820

Analyte	DryWt Corrected: Y	Result (mg/Kg)	Qualifier	MDL	RL
Aluminum	and the second s	5200	And a series of the series of	4.8	10.9
Antimony		ND		0.59	16.4
Arsenic		4.8		0.44	2.2
Barium		47.2	5	0.12	0.55
Beryllium		0.51		0.031	0.22
Cadmium		0.35		0.033	0.22
Calcium		75100	工具	3.6	54.5
Chromium		10.7	5	0.22	0.55
Cobalt		4.6	-	0.055	0.55
Copper		18.7		0.23	1.1
ron		12700	2 2.8	1.2	10.9
.ead		93.0	ず	0.26	1.1
/langanese		341		0.035	0.22
Nickel		14.8		0.25	5.5
otassium		848	T	21.8	32.7
Selenium		1.2	J	0.62	4.4
Silver		ND		0.22	0.55
Sodium		305		14.2	153
hallium		ND		0.33	6.5
anadium/		11.4	5	0.12	0.55
linc		84.2	TB	0.17	2.2

Analysis Method: 6010B Analysis Batch: 480-76551 Instrument ID: ICAP2 Prep Method: 3050B Prep Batch: 480-75316 Lab File ID: 12081412A-2.asc

Dilution: 1.0 Initial Weight/Volume: +0.4985 g Analysis Date: 08/14/2012 1616

Final Weight/Volume: 50 mL 08/06/2012 1820 Prep Date:

Analyte DryWt Corrected: Y Result (mg/Kg) Qualifier MDL RL Magnesium 30700 B 1.0 21.8

7471A Mercury (CVAA)

Analysis Method: 7471A Analysis Batch: 480-75362 Instrument ID: LEEMAN3 Prep Method: 7471A Prep Batch: 480-75233 Lab File ID: J08062S2.PRN Dilution: 1.0

Initial Weight/Volume: .5960 g 08/06/2012 1528 Analysis Date: Final Weight/Volume: 50 mL

08/06/2012 1035 Prep Date:

Analyte DryWt Corrected: Y Result (mg/Kg) Qualifier MDL RL Mercury 0.074 0.0089 0.022

Client: ARCADIS U.S. Inc. Job Number: 480-23453-1

Client Sample ID:

AB-04 (18-21)

Lab Sample ID:

480-23453-13

Client Matrix: Solid

% Moisture:

16.0

Date Sampled: 08/03/2012 0930

Date Received: 08/03/2012 1500

6010B Metals (ICP)

Analysis Method:

6010B

Analysis Batch:

480-75658

Instrument ID:

ICAP1

Prep Method: Dilution:

3050B

Prep Batch:

480-75316

Lab File ID: Initial Weight/Volume: I1080712A-2.asc +0.5036 g

Analysis Date:

1.0

08/07/2012 1456

Final Weight/Volume:

50 mL

Prep Date:

08/06/2012 1820

Analyte	DryWt Corrected: Y	Result (mg/Kg)	Qualifier	MDL	RL
Aluminum		6450	2 miles com a primario de la companio del la companio de la companio del la companio de la compa	5.2	11.8
Antimony		ND		0.64	17.7
Arsenic		2.1	J	0.47	2.4
Barium		75.2	5	0.13	0.59
Beryllium		0.32		0.033	0.24
Cadmium		0.24		0.035	0.24
Calcium		60000	J.	3.9	59.1
Chromium		10.5	J	0.24	0.59
Cobalt		5.6		0.059	0.59
Copper		13.0		0.25	1.2
Iron		11000	2 b	1.3	11.8
Lead		13.4	2 28	0.28	1.2
Magnesium		26700	*	1.1	23.6
Manganese		420	•	0.038	0.24
Nickel		12.8		0.27	5.9
Potassium		1310	T	23.6	35.5
Selenium		ND		0.67	4.7
Silver		ND		0.24	0.59
Sodium		403		15.4	165
Thallium		ND		0.35	7.1
Vanadium		15.2	7	0.13	0.59
Zinc		49.9	<u>1</u> 8	0.18	2.4

7471A Mercury (CVAA)

Analysis Method: Prep Method:

7471A 7471A

Analysis Batch: Prep Batch:

480-75362 480-75233 Instrument ID: Lab File ID:

LEEMAN3 J08062S2.PRN

Dilution: Analysis Date:

08/06/2012 1530

Initial Weight/Volume: Final Weight/Volume:

.6604 g 50 mL

Prep Date:

Analyte

Mercury

08/06/2012 1035

DryWt Corrected: Y

Result (mg/Kg) ND

Qualifier

MDL 0.0088

Client: ARCADIS U.S. Inc Job Number: 480-23453-1

Client Sample ID:

AB-02 (8-10)

Lab Sample ID:

480-23453-14

Client Matrix:

Solid

% Moisture:

17.4

Date Sampled: 08/03/2012 1200

Date Received: 08/03/2012 1500

6010B Metals (ICP)

Analysis Method:

6010B 3050B

Analysis Batch:

480-75658

Instrument ID:

ICAP1

Prep Method: Dilution:

Prep Batch:

480-75316

Lab File ID: Initial Weight/Volume: I1080712A-2.asc +0.4913 g

Analysis Date:

1,0

08/07/2012 1458

Final Weight/Volume:

50 mL

Prep Date:

08/06/2012 1820

Analyte	DryWt Corrected: Y	Result (mg/Kg)	Qualifier	MDL	RL
Aluminum	and the second s	6500		5.4	12.3
Antimony		ND		0.66	18.5
Arsenic		4.9		0.49	2.5
Barium		57.6	2	0.14	0.62
Beryllium		0.36		0.034	0.25
Cadmium		0.30		0.037	0.25
Calcium		107000	Tø	4.1	61.6
Chromium		14.8	Ť	0.25	0.62
Cobalt		6.3		0.062	0.62
Copper		18.2		0.26	1.2
Iron		21400	JB.	1.4	12.3
Lead		54.2	7	0.30	1.2
Manganese		443		0.039	0.25
Nickel		17.3		0.28	6.2
Potassium		1730	T	24.6	36.9
Selenium		ND		0.70	4.9
Silver		ND		0.25	0.62
Sodium		1400		16.0	172
Thallium		ND		0.37	7.4
Vanadium		14.7	5	0.14	0.62
Zinc		165	JB	0.19	2.5

Analysis Method: Prep Method:

Dilution:

6010B 3050B

1.0

Analysis Date: Prep Date:

08/14/2012 1618

08/06/2012 1820

Analysis Batch: Prep Batch:

480-76551 480-75316 Instrument ID: Lab File ID:

12081412A-2.asc +0.4913 g

Initial Weight/Volume:

MDL

1.1

Final Weight/Volume: 50 mL

Analyte Magnesium DryWt Corrected: Y

Result (mg/Kg) 49300

Qualifier

R

ICAP2

RL 24.6

7471A Mercury (CVAA)

Analysis Method: Prep Method:

7471A 7471A

1.0

Analysis Batch: Prep Batch:

480-75362 480-75233 Instrument ID: Lab File ID:

LEEMAN3 J08062S2.PRN

Initial Weight/Volume: Final Weight/Volume:

.6625 g 50 mL

Analysis Date: Prep Date:

08/06/2012 1531 08/06/2012 1035

Result (mg/Kg)

Qualifier

MDL

RL

Analyte Mercury

Dilution:

DryWt Corrected: Y

0.16

0.0089

0.022

Client: ARCADIS U.S. Inc Job Number: 480-23453-1

Client Sample ID:

AB-02 (20-22)

Lab Sample ID:

480-23453-15

Client Matrix:

Solid

% Moisture:

22.2

Date Sampled: 08/03/2012 1210

Date Received: 08/03/2012 1500

6010B Metals (ICP)

Analysis Method:

6010B

Analysis Batch:

480-75658

Instrument ID:

ICAP1

Prep Method:

3050B

Prep Batch:

480-75316

Lab File ID:

I1080712A-2.asc

Dilution:

1.0

Initial Weight/Volume:

+0.4825 g

Analysis Date:

08/07/2012 1505

Final Weight/Volume:

50 mL

Prep	Date:

08/06/2012 1820

Analyte	DryWt Corrected: Y	Result (mg/Kg)	Qualifier	MDL	RL
Aluminum		11600		5.9	13.3
Antimony		ND		0.72	20.0
Arsenic		6.0		0.53	2.7
Barium		70.9	ブ	0.15	0.67
Beryllium		0.55		0.037	0.27
Cadmium		0.27		0.040	0.27
Calcium		69400	2 k	4.4	66.6
Chromium		16.1	J.	0.27	0.67
Cobalt		10.1		0.067	0.67
Copper		18.5		0.28	1.3
Iron		18200	2 b	1.5	13.3
Lead		23.7	ゔ	0.32	1.3
Magnesium		25900	_`≱′	1.2	26.7
Manganese		534	•	0.043	0.27
Nickel		23.8		0.31	6.7
Potassium		2690	7	26.7	40.0
Selenium		ND		0.76	5.3
Silver		ND		0.27	0.67
Sodium		649		17.3	187
Thallium		ND		0.40	8.0
Vanadium		22.5	J .	0.15	0.67
Zinc		64.6	J 8	0.20	2.7

7471A Mercury (CVAA)

Analysis Method: Prep Method:

7471A 7471A

Analysis Batch: Prep Batch:

480-75362 480-75233 Instrument ID: Lab File ID:

LEEMAN3 J08062S2.PRN

Dilution:

1.0

Analysis Date: Prep Date:

08/06/2012 1533 08/06/2012 1035

Initial Weight/Volume: Final Weight/Volume:

.5906 g 50 mL

Analyte	DryWt Corrected: Y	Result (mg/Kg)	Qualifier	MDL	RL
Mercury	Link to an 1820 - miller of the market and the demonstrate in Equation for the second contract of the company of the complete in the Company of the Company	0.015	T maning to companies the transfer and transfer and the transfer and t	0.011	0.026

Client: ARCADIS U.S. Inc Job Number: 480-23453-1

Client Sample ID:

AB-03 (8-10)

Lab Sample ID:

480-23564-1

Client Matrix:

Solid

% Moisture:

6.8

Date Sampled: 08/06/2012 1050

Date Received: 08/07/2012 1330

6010B Metals (ICP)

Analysis Method:

6010B 3050B Analysis Batch:

480-75842

Instrument ID:

ICAP1

Prep Method: Dilution:

Prep Batch:

480-75650

Lab File ID: Initial Weight/Volume: I1080812A-4.asc +0.4654 g

Analysis Date: Prep Date:

1.0

08/08/2012 1852 08/08/2012 1100

Final Weight/Volume:

50 mL

Analyte	DryWt Corrected: Y	Result (mg/Kg)	Qualifier	MDL	RL
Aluminum	н элем может на солочно на начина на състоя на състоя на предости и постоя на постоя на постоя на постоя на на На предости на постоя на	3300		5.1	11.5
Antimony		0.72	J	0.62	17.3
Arsenic		4.7		0.46	2.3
Barium		45.9	7	0.13	0.58
Beryllium		0.26		0.032	0.23
Cadmium		0.27		0.035	0.23
Chromium		10.6	5	0.23	0.58
Cobalt		3.3		0.058	0.58
Copper		26.9		0.24	1.2
Iron		13500	3	1.3	11.5
Lead		148	I	0.28	1.2
Magnesium		23400		1.1	23.1
Manganese		250	Æ	0.037	0.23
Nickel		11.2		0.27	5.8
Potassium		764	J	23.1	34.6
Selenium		ND		0.66	4.6
Silver		ND		0.23	0.58
Sodium		1090	, ≇	15.0	161
Thallium		0.40	J	0.35	6.9
Vanadium		8.4	5	0.13	0.58
Zinc		137	JB	0.18	2.3

Analysis Method: Prep Method:

6010B 3050B Analysis Batch: Prep Batch:

480-76024

Instrument ID: Lab File ID:

ICAP2

Dilution: Analysis Date: 5.0 08/09/2012 2035

480-75650

Initial Weight/Volume:

I2080912A-7.asc +0.4654 g

Final Weight/Volume:

50 mL

Prep Date:

Analyte

Calcium

08/08/2012 1100

Result (mg/Kg) 152000

MDL

19.0

RL

288

7471A Mercury (CVAA)

DryWt Corrected: Y

Analysis Method: Prep Method:

7471A 7471A 1.0

Analysis Batch: Prep Batch:

480-75725 480-75636 Instrument ID: Lab File ID:

Initial Weight/Volume:

Final Weight/Volume:

LEEMAN3 J08082S1.PRN +0.6164 g

Dilution: 08/08/2012 1229 Analysis Date:

Prep Date:

08/08/2012 0830

Qualifier

J B

50 mL

Analyte DryWt Corrected: Y Result (mg/Kg) Qualifier MDL RL 0.21 Mercury 0.0085 0.021

Client: ARCADIS U.S. Inc Job Number: 480-23453-1

Client Sample ID:

AB-03- (20-22.5)

Lab Sample ID:

480-23564-2

Client Matrix:

Solid

% Moisture:

18.9

1.2

Qualifier

3

Æ′≗

T

J

Date Sampled: 08/06/2012 1100

Date Received: 08/07/2012 1330

6010B Metals (ICP)

Result (mg/Kg)

11700

9.6

18.7

22.7

407

22.5

2440

ND

ND

1220

18000

18200

Analysis Method:

6010B

Analysis Batch:

480-75842

Instrument ID:

ICAP1

Prep Method: Dilution:

3050B

Prep Batch:

480-75650

Lab File ID: Initial Weight/Volume:

I1080812A-4.asc

Nickel

1.0

+0.5235 g

RL

11.8

17.7

2.4

0.59

0.24

0.24

58.9

0.59

0.59

1.2

11.8

1.2

23.5

0.24

5.9

35.3

4.7

0.59

165

7.1

0.59

2.4

Analysis Date: Prep Date:

08/08/2012 1904 08/08/2012 1100 Final Weight/Volume:

MDL

5.2

0.64

0.47

0.13

0.033

0.035

3.9

0.24

0.059

0.25

1.3

0.28

1.1

0.038

0.27

23.5

0.67

0.24

15.3

0.35

0.13

0.18

50 mL

Analyte	DryWt Corrected: Y
Aluminum	2000年200日,1900年2月,1900年2月,1900年2月,1900年2月,1900年2月,1900年2月,1900年2月,1900年2月,1900年2月,1900年2月,1900年2月,1900年2月,1900年
Antimony	
Arsenic	
Barium	
Beryllium	
Cadmium	
Calcium	

ND 4.7 99.3 0.61 0.22 48900 Calcium 17.2

Chromium Cobalt Copper Iron Lead Magnesium Manganese

Potassium Selenium Silver Sodium Thallium Vanadium Zinc

7471A

7471A

1.0

0.35 23.6 63.6

7471A Mercury (CVAA)

Analysis Batch: Prep Batch:

480-75725 480-75636 Instrument ID: Lab File ID:

LEEMAN3 J08082S1.PRN

Initial Weight/Volume:

+0.6121 g

Final Weight/Volume:

50 mL

Analysis Date:
Prep Date:

Analysis Method:

Prep Method:

Dilution:

Mercury

08/08/2012 1231 08/08/2012 0830

Analyte

DryWt Corrected: Y

Result (mg/Kg) 0.046

Qualifier

MDL 0.0098 RL 0.024

Client: ARCADIS U.S. Inc. Job Number: 480-23453-1

Client Sample ID:

AB-C2 (8-11)

Lab Sample ID:

480-23564-3

Client Matrix:

Solid

% Moisture:

21.8

Date Sampled: 08/06/2012 1430

Date Received: 08/07/2012 1330

6010B Metals (ICP)

Analysis Method:

6010B

Analysis Batch:

480-75842

Instrument ID:

ICAP1

Prep Method: Dilution:

3050B

Prep Batch:

480-75650

Lab File ID: Initial Weight/Volume: I1080812A-4.asc +0.4641 g

Analysis Date:

1.0

08/08/2012 1907

Prep Date:

08/08/2012 1100

Final Weight/Volume:

50 mL

Analyte	DryWt Corrected: Y	Result (mg/Kg)	Qualifier	MDL	RL
Aluminum		8520	T and the second and	6.1	13.8
Antimony		ND		0.74	20.7
Arsenic		3.1		0.55	2.8
Barium		53.1	2	0.15	0.69
Beryllium		0.54		0.039	0.28
Cadmium		0.34		0.041	0.28
Calcium		3670	Te	4.5	68.9
Chromium		13.4	l Le	0.28	0.69
Cobalt		9.4	•	0.069	0.69
Copper		23.3		0.29	1.4
Iron		21800	J.,	1.5	13.8
Lead		14.5	3	0.33	1.4
Magnesium		3640		1.3	27.6
Manganese		243	Æ	0.044	0.28
Nickel		25.6		0.32	6.9
Potassium		976	2,	27.6	41.4
Selenium		ND		0.79	5.5
Silver		ND		0.28	0.69
Sodium		343	ø	17.9	193
Thallium		ND	€	0.41	8.3
Vanadium		17.3	~	0.15	0.69
Zinc		71.5	2 B	0.21	2.8

7471A Mercury (CVAA)

Analysis Method:

7471A 7471A

Prep Method:

Dilution: 1.0

Analysis Date: Prep Date:

08/08/2012 1233 08/08/2012 0830 Analysis Batch: Prep Batch:

480-75725 480-75636

Instrument ID: Lab File ID:

LEEMAN3 J08082S1.PRN

Initial Weight/Volume:

+0.6183 g

Final Weight/Volume:

50 mL

Analyte

Mercury

DryWt Corrected: Y

Result (mg/Kg) 0.031

Qualifier

MDL 0.010 RL 0.025

Client: ARCADIS U.S. Inc Job Number: 480-23453-1

Client Sample ID:

AB-C2 (22-24)

Lab Sample ID:

480-23564-4

Client Matrix:

Solid

% Moisture: 9.1

Result (mg/Kg)

2290

ND

2.7

23.5

0.13

0.27

5.1

2.4

5.6

4.7

187

5.8

724

ND

ND

248

ND

7.8

68.1

Analysis Batch:

Prep Batch:

5740

Qualifier

J

3

5

J

480-76123

480-75650

ď

J

Date Sampled: 08/06/2012 1440

Date Received: 08/07/2012 1330

6010B Metals (ICP)

Analysis Method:

6010B

Analysis Batch:

480-75842

Instrument ID:

ICAP1

Prep Method:

3050B

Prep Batch:

Lab File ID:

11080812A-4.asc

Dilution:

1.0

480-75650

Initial Weight/Volume:

+0.4918 g

RL

11.2

16.8

2.2

0.56

0.22

0.22

0.56

0.56

1.1

11,2

1.1

0.22

5.6

33.6

4.5

0.56

157

6.7

0.56

2.2

12081012A-2.asc

Analysis Date: Prep Date:

08/08/2012 1909 08/08/2012 1100

Final Weight/Volume:

MDL

4.9

0.60

0.45

0.12

0.031

0.034

0.22

0.24

1.2

0.27

0.036

0.26

22.4

0.64

0.22

14.5

0.34

0.12

0.17

0.056

50 mL

Analyte
Aluminum
Antimony
Arsenic
Barium
Beryllium
Cadmium
Chromium
Cobalt
Copper
Iron

Vanadium

Analyte

Calcium

Dilution:

Analyte

Mercury

Magnesium

DryWt Corrected: Y

Lead Manganese Nickel Potassium Selenium Silver Sodium Thallium

Zinc 6010B Analysis Method: 3050B Prep Method: Dilution: 1.0

08/10/2012 1223 Analysis Date: 08/08/2012 1100 Prep Date:

DryWt Corrected: Y Result (mg/Kg) 106000

26300

Qualifier J B

Final Weight/Volume:

MDL

3.7

1.0

Initial Weight/Volume:

Instrument ID:

Lab File ID:

+0.4918 g 50 mL

RL

56.0

22.4

ICAP2

7471A Mercury (CVAA)

480-75725

480-75636

Analysis Method: Prep Method:

7471A 7471A 1.0

Analysis Date:

Prep Date:

08/08/2012 1235 08/08/2012 0830

DryWt Corrected: Y

Result (mg/Kg) 0.018

Analysis Batch:

Prep Batch:

Qualifier J

MDL

Instrument ID:

Initial Weight/Volume:

Final Weight/Volume:

0.0090

Lab File ID:

50 mL

LEEMAN3

+0.5958 g

J08082S1.PRN

RL

0.022

General Chemistry							
Client Sample ID:	AB-05 (9.5-10.8)						
Lab Sample ID:	480-23453-1					Date Sample	ed: 08/01/2012 1440
Client Matrix:	Solid	% Moist	ure: 20	.4		•	ed: 08/03/2012 1500
Analyte	Result	Qual	Units	, MDL	RL	Dil	Method
Cyanide	ND Analysis Batch: 480-75433 Prep Batch: 480-75389	Analysis Date: Prep Date: 08/0			1.1	1.0	9012A DryWt Corrected: Y
Cyanide, Free	0.46 Analysis Batch: 460-123275 Prep Batch: 460-123264	J ps' Analysis Date: Prep Date: 08/0	mg/Kg 08/08/2012	0.13 1200	0.59	1.0	9016 DryWt Corrected: Y
Analyte	Result	Qual	Units	RL	RL	Dil	Method
Percent Moisture	20 Analysis Batch: 480-75317	Analysis Date:	% 08/06/2012	0.10 1351	0.10	1.0	Moisture DryWt Corrected: N
Percent Solids	80 Analysis Batch: 480-75317	Analysis Date:	%	0.10	0.10	1.0	Moisture DryWt Corrected: N

	General Chemistry						
Client Sample ID:	AB-05 (22-25)						
Lab Sample ID:	480-23453-2				1	Date Sample	d: 08/01/2012 1450
Client Matrix:	Solid	% Moisture: 17.0 Date Received: 0					ed: 08/03/2012 1500
Analyte	Result	Qual	Units	MDL	RL	Dil	Method
Cyanide	ND states with the second that the second se	k kilongi ar kandin ang mangkang maganang manang manang man kang ng pilong pigang pagang ang paga	mg/Kg	0.53	1.1	1.0	9012A
	Analysis Batch: 480-75433	Analysis Date:	08/07/2012	0819			DryWt Corrected: Y
	Prep Batch: 480-75389	Prep Date: 08/	06/2012 202	:0			
Cyanide, Free	ND		mg/Kg	0.12	0.55	1.0	9016
•	Analysis Batch: 460-123275	Analysis Date:	08/08/2012	1200		DryWt Corrected: Y	
	Prep Batch: 460-123264	Prep Date: 08/	08/2012 060	00 *			·
Analyte	Result	Qual	Units	RL	RL	Dil	Method
Percent Moisture	17	$h_{0}(x,y)=h_{0}(x,y$	%	0.10	0.10	1,0	Moisture
	Analysis Batch: 480-75317	Analysis Date:	08/06/2012	1351			DryWt Corrected: N
Percent Solids	83		%	0.10	0.10	1,0	Moisture
	Analysis Batch: 480-75317	The state of the s				DryWt Corrected: N	

General Chemistry						
Client Sample ID:	AB-01 (8-14)					
Lab Sample ID:	480-23453-3			!	Date Sample	ed: 08/02/2012 0840
Client Matrix:	Solid	% Moisture: 12	2.7		Date Receiv	ed: 08/03/2012 1500
Analyte	Result	Qual Units	MDL	RL	Dil	Method
Cyanide	0.62	J mg/Kg	0.55	1.1	1.0	9012A
	Analysis Batch: 480-75433	Analysis Date: 08/07/201	Analysis Date: 08/07/2012 0819			DryWt Corrected: Y
	Prep Batch: 480-75389	Prep Date: 08/06/2012 20	020			
Cyanide, Free	0.12	JÆr mg/Kg	0.12	0.53	1.0	9016
	Analysis Batch: 460-123275	Analysis Date: 08/08/201	2 1200	DryWt Correcte		
	Prep Batch: 460-123264	Prep Date: 08/08/2012 06	600			
Analyte	Result	Qual Units	RL	RL	Dil	Method
Percent Moisture	13	**************************************	0.10	0.10	1.0	Moisture
	Analysis Batch: 480-75317	Analysis Date: 08/06/201	2 1351			DryWt Corrected: N
Percent Solids	87	%	0.10	0.10	1.0	Moisture
	Analysis Batch: 480-75317	Analysis Date: 08/06/201	2 1351			DryWt Corrected: N

	General Chemistry							
Client Sample ID:	AB-01 (20-22)							
Lab Sample ID:	480-23453-4				i	Date Sample	d: 08/02/2012 0900	
Client Matrix:	Solid	% Moist	% Moisture: 32.9				ed: 08/03/2012 1500	
Analyte	Result	Qual	Units	MDL.	RL.	Dil	Method	
Cyanide	1.6	mos (wyson amerikana westinio watani tayin oo ayaani magaaliya wa	mg/Kg	0.62	1.3	1.0	9012A	
	Analysis Batch: 480-75433	Analysis Date:	08/07/2012	0820			DryWt Corrected: Y	
	Prep Batch: 480-75389	Prep Date: 08/	06/2012 202	0				
Cyanide, Free	0.24	JÆ	mg/Kg	0.16	0.69	1.0	9016	
	Analysis Batch: 460-123275	Analysis Date:	08/08/2012	1200	DryWt Correct			
	Prep Batch: 460-123264	Prep Date: 08/	08/2012 060	0			•	
Analyte	Result	Qual	Units	RL	RL	Dil	Method	
Percent Moisture	33	ille and reality and representation of the reality of the properties of the reality of the reality of the real	%	0.10	0.10	1.0	Moisture	
	Analysis Batch: 480-75317	Analysis Date:	08/06/2012	1351			DryWt Corrected: N	
Percent Solids	67		%	0.10	0.10	1.0	Moisture	
	Analysis Batch: 480-75317	5317 Analysis Date: 08/06/2012 1351					DryWt Corrected: N	

Client: ARCADIS U.S. Inc

Job Number: 480-23453-1

1 1,000, 00000		Gen	eral Chemis	stry			
Client Sample ID:	AW-02 (8-10)						
Lab Sample ID:	480-23453-5					Date Sampl	ed: 08/02/2012 1120
Client Matrix:	Solid	% Moist	ure: 18.	8		Date Receiv	red: 08/03/2012 1500
Analyte	Result	Qual	Units	MDL	RL	Dil	Method
Cyanide	ND Analysis Batch: 480-75433	Analysis Date:	mg/Kg	0.56	1.2	1.0	9012A
	Prep Batch: 480-75389	Prep Date: 08/					DryWt Corrected: Y
Cyanide, Free	1.3 Analysis Batch: 460-123275 Prep Batch: 460-123264	Analysis Date: Prep Date: 08/			0.58	1.0	9016 DryWt Corrected: Y
Analyte	Result	Qual	Units	RL	RL	Dil	Method
Percent Moisture	19 Analysis Batch: 480-75317	Analysis Date:	% 08/06/2012	0.10 1351	0.10	1.0	Moisture DryWt Corrected: N
Percent Solids	81 Analysis Batch: 480-75317	Analysis Date:	% 08/06/2012	0.10 1351	0.10	1.0	Moisture DryWt Corrected: N

		Gen	eral Chemis	stry			
Client Sample ID:	AW-02 (18-21)						
Lab Sample ID:	480-23453-6					Date Sample	ed: 08/02/2012 1130
Client Matrix:	Solid	% Moist	ture: 38.	4		Date Receiv	ed: 08/03/2012 1500
Analyte	Result	Qual	Units	MDL	RL	Dil	Method
Cyanide	1.5	economique estatoro con consequente de la final de	mg/Kg	0.70	1.5	1.0	9012A
	Analysis Batch; 480-75433	Analysis Date:	08/07/2012	0822			DryWt Corrected: Y
	Prep Batch: 480-75389	Prep Date: 08/	06/2012 202	.0			
Cyanide, Free	1.7	B'	mg/Kg	0.18	0.77	1.0	9016
	Analysis Batch: 460-123275	Analysis Date:	08/08/2012	1200			DryWt Corrected: Y
	Prep Batch: 460-123264	Prep Date: 08/	08/2012 060	0			·
Analyte	Result	Qual	Units	RL	RL	Dil	Method
Percent Moisture	38	Contractive and the contractive and the property of the contractive and the contractiv	%	0.10	0.10	1.0	Moisture
	Analysis Batch: 480-75317	Analysis Date:	08/06/2012	1351			DryWt Corrected: N
Percent Solids	62		%	0.10	0.10	1.0	Moisture
	Analysis Batch: 480-75317	Analysis Date:	08/06/2012	1351			DryWt Corrected: N

		Gen	eral Chemis	try			
Client Sample ID:	AW-01 (5-7)						
Lab Sample ID:	480-23453-7				1	Date Sample	ed: 08/02/2012 1530
Client Matrix:	Solid	% Moist	ure: 12.	8		Date Receiv	ed: 08/03/2012 1500
Analyte	Result	Qual	Units	MDL	RL	Dil	Method
Cyanide	1.2	echtelet in deren eine entechte in dem betreen eine enter eine erteile eine eine erteile eine eine eine eine e	mg/Kg	0.53	1.1	1.0	9012A
	Analysis Batch: 480-75433	Analysis Date:	08/07/2012	0825			DryWt Corrected: Y
	Prep Batch: 480-75389	Prep Date: 08/	06/2012 202	0			
Cyanide, Free	0.42	J J	mg/Kg	0.12	0.53	1.0	9016
	Analysis Batch: 460-123275	Analysis Date:	08/08/2012	1200			DryWt Corrected: Y
	Prep Batch: 460-123264	Prep Date: 08/	08/2012 060	0			-
Analyte	Result	Qual	Units	RL	RL	Dil	Method
Percent Moisture	13	e regisser e a se ser e reserve e recentado de de Tibros e se e redissor e e rese	%	0.10	0,10	1.0	Moisture
	Analysis Batch: 480-75317	Analysis Date:	08/06/2012	1351			DryWt Corrected: N
Percent Solids	87		%	0.10	0.10	1.0	Moisture
	Analysis Batch: 480-75317	Analysis Date:	08/06/2012	1351			DryWt Corrected: N

		Gen	eral Chemis	stry			
Client Sample ID:	AW-01 (20-22.5)						
Lab Sample ID:	480-23453-8					Date Sample	ed: 08/02/2012 1540
Client Matrix:	Solid	% Moist	ture: 23.	6		Date Receive	ed: 08/03/2012 1500
Analyte	Result	Qual	Units	MDL	RL	Dil	Method
Cyanide	ND	s construction of the security of the second section of the second security of the second section of the section of the second section of the section of th	mg/Kg	0.60	1,2	1.0	9012A
	Analysis Batch: 480-75433	Analysis Date:	08/07/2012	0826			DryWt Corrected: Y
	Prep Batch: 480-75389	Prep Date: 08/	06/2012 202	20			-
Cyanide, Free	0.34	J⊠	mg/Kg	0.14	0.60	1.0	9016
	Analysis Batch: 460-123275	Analysis Date:	08/08/2012	1200			DryWt Corrected: Y
	Prep Batch: 460-123264	Prep Date: 08/	08/2012 060	00			-1,7
Analyte	Result	Qual	Units	RL	RL	Dil	Method
Percent Moisture	24		%	0.10	0.10	1.0	Moisture
	Analysis Batch: 480-75317	Analysis Date:	08/06/2012	1351			DryWt Corrected: N
Percent Solids	76		%	0.10	0.10	1.0	Moisture
	Analysis Batch: 480-75317	Analysis Date:	08/06/2012	1351			DryWt Corrected: N

Client: ARCADIS U.S. Inc Job Number: 480-23453-1

General Chemistry

Client Sample ID:

RB-080212

Lab Sample ID:

480-23453-9

Client Matrix:

Water

Date Sampled: 08/02/2012 1640

Date Received: 08/03/2012 1500

Analyte	Result	Qual	Units	MDL	RL	Dil	Method
Cyanide, Total	ND	-49.0000, -17-1704-994000000000000000000000000000000000	mg/L	0.0050	0.020	1.0	9012A
	Analysis Batch: 480-75433	Analysis Date:	08/07/2012	0849			
	Prep Batch: 480-75393	Prep Date: 08/0	07/2012 022	22			
Cyanide, Free	ND		ug/L	0.54	5.0	1.0	9016
-	Analysis Batch: 460-123275	Analysis Date: 08/08/2012 1200					
	Prep Batch: 460-123268	Prep Date: 08/0	08/2012 060	00			

		Gen	eral Chemis	stry			
Client Sample ID:	AB-04 (10-12)						
Lab Sample ID:	480-23453-10					Date Sample	d: 08/03/2012 0920
Client Matrix:	Solid	% Moist	ture: 20.	0		Date Receive	ed: 08/03/2012 1500
Analyte	Result	Qual	Units	MDL	RL	Dil	Method
Cyanide	ND mode in the control of the contro	масоопольные межно-остью сольного шоли от учарадовично	mg/Kg	0.51	1.1	1.0	9012A
	Analysis Batch: 480-75433	Analysis Date:	08/07/2012	0827			DryWt Corrected: Y
	Prep Batch: 480-75389	Prep Date: 08/	06/2012 202	20			
Cyanide, Free	0.71	Æ	mg/Kg	0.13	0.57	1.0	9016
•	Analysis Batch: 460-123275	Analysis Date:	08/08/2012	1200			DryWt Corrected: Y
	Prep Batch: 460-123264	Prep Date: 08/	08/2012 060	00			•
Analyte	Result	Qual	Units	RL	RL	Dil	Method
Percent Moisture	20	en er en	%	0.10	0.10	1.0	Moisture
	Analysis Batch: 480-75317	Analysis Date:	08/06/2012	1351			DryWt Corrected: N
Percent Solids	80		%	0.10	0.10	1.0	Moisture
	Analysis Batch: 480-75317	Analysis Date:	08/06/2012	1351			DryWt Corrected: N

Client: ARCADIS U.S. Inc Job Number: 480-23453-1

General Chemistry Client Sample ID: DUP-080212 Lab Sample ID: 480-23453-12 Date Sampled: 08/02/2012 0000 Client Matrix: Solid % Moisture: 8.1 Date Received: 08/03/2012 1500 Analyte Result Qual Units MDL RL Dil Method Cyanide 0.63 J mg/Kg 0.45 0.92 1.0 9012A Analysis Batch: 480-75433 Analysis Date: 08/07/2012 0828 DryWt Corrected: Y Prep Batch: 480-75389 Prep Date: 08/06/2012 2020 Cyanide, Free ND mg/Kg 0.11 0.49 1.0 9016 Analysis Batch: 460-123275 Analysis Date: 08/08/2012 1200 DryWt Corrected: Y Prep Batch: 460-123264 Prep Date: 08/08/2012 0600 Analyte Result Qual Units RL RL Dil Method Percent Moisture 8.1 0.10 0.10 1.0 Moisture Analysis Batch: 480-75317 Analysis Date: 08/06/2012 1351 DryWt Corrected: N Percent Solids 92 0.10 0.10 1.0 Moisture Analysis Batch: 480-75317 Analysis Date: 08/06/2012 1351 DryWt Corrected: N

		Gen	eral Chemis	try			
Client Sample ID:	AB-04 (18-21)						
Lab Sample ID:	480-23453-13					Date Sample	ed: 08/03/2012 0930
Client Matrix:	Solid	% Moist	ture: 16.0	ס		Date Receiv	ed: 08/03/2012 1500
Analyte	Result	Qual	Units	MDL	RL	Dil	Method
Cyanide	ND	n Christian (Christian Christian Chr	mg/Kg	0.56	1.2	1.0	9012A
	Analysis Batch: 480-75433	Analysis Date:	08/07/2012	0829			DryWt Corrected: Y
	Prep Batch: 480-75389	Prep Date: 08/	06/2012 202	0			•
Cyanide, Free	ND		mg/Kg	0.13	0.56	1.0	9016
-	Analysis Batch: 460-123275	Analysis Date:	08/08/2012	1200			DryWt Corrected: Y
	Prep Batch: 460-123264	Prep Date: 08/	08/2012 060	0			.,
Analyte	Result	Qual	Units	RL	RL	Dil	Method
Percent Moisture	16	na ratinana manamantan di silipat melimpaman kahananan mempungsayaya 1999 sa 1999 s	%	0.10	0.10	1.0	Moisture
	Analysis Batch: 480-75317	Analysis Date:	08/06/2012	1351			DryWt Corrected: N
Percent Solids	84		%	0.10	0.10	1.0	Moisture
	Analysis Batch: 480-75317	Analysis Date:	08/06/2012	1351			DryWt Corrected: N

Client: ARCADIS U.S. Inc Job Number: 480-23453-1

General Chemistry Client Sample ID: AB-02 (8-10) Lab Sample ID: 480-23453-14 Date Sampled: 08/03/2012 1200 Client Matrix: Solid % Moisture: 17.4 Date Received: 08/03/2012 1500 Analyte Result Qual Units MDL RL Dil Method Cyanide ND mg/Kg 0.52 1.1 1.0 9012A Analysis Batch: 480-75433 Analysis Date: 08/07/2012 0830 DryWt Corrected: Y Prep Batch: 480-75389 Prep Date: 08/06/2012 2020 Cyanide, Free 0.13 IJ₽ mg/Kg 0.13 9016 0.56 1.0 Analysis Batch: 460-123275 Analysis Date: 08/08/2012 1200 DryWt Corrected: Y Prep Batch: 460-123264 Prep Date: 08/08/2012 0600 Analyte Result Qual RL Units RL Dil Method Percent Moisture 17 % 0.10 0.10 1.0 Moisture Analysis Batch: 480-75317 Analysis Date: 08/06/2012 1351 DryWt Corrected: N

Analysis Date: 08/06/2012 1351

0.10

0.10

1.0

Moisture

DryWt Corrected: N

83

Analysis Batch: 480-75317

Percent Solids

		Gen	eral Chemis	try			
Client Sample ID:	AB-02 (20-22)						
Lab Sample ID:	480-23453-15				ı	Date Sample	ed: 08/03/2012 1210
Client Matrix:	Solid	% Moist	ture: 22.2	2	[Date Receiv	ed: 08/03/2012 1500
Analyte	Result	Qual	Units	MDL	RL	Dil	Method
Cyanide	ND	en el la companya por la companya en manga por la companya de la c	mg/Kg	0.54	1,1	1.0	9012A
	Analysis Batch: 480-75433	Analysis Date:	08/07/2012	0831			DryWt Corrected: Y
	Prep Batch: 480-75389	Prep Date: 08/	06/2012 202	0			-
Cyanide, Free	0.87	ø	mg/Kg	0.14	0.60	1.0	9016
•	Analysis Batch: 460-123275	Analysis Date:	08/08/2012	1200			DryWt Corrected: Y
	Prep Batch: 460-123264	Prep Date: 08/	08/2012 060	0			•
Analyte	Result	Qual	Units	RL	RL	Dil	Method
Percent Moisture	22	haminer and the desired and the contract of th	%	0.10	0.10	1.0	Moisture
	Analysis Batch: 480-75317	Analysis Date:	08/06/2012	1351			DryWt Corrected: N
Percent Solids	78		%	0.10	0.10	1.0	Moisture
	Analysis Batch: 480-75317	Analysis Date:	08/06/2012	1351			DryWt Corrected: N

DryWt Corrected: N

DryWt Corrected: N

Moisture

1.0

Client: ARCADIS U.S. Inc

Percent Solids

Analysis Batch: 480-75878

Analysis Batch: 480-75878

Job Number: 480-23453-1

		Ger	neral Chemis	stry			
Client Sample ID:	AB-03 (8-10)						
Lab Sample ID:	480-23564-1				1	Date Sample	d: 08/06/2012 1050
Client Matrix:	Solid	% Mois	ture: 6.8			Date Receive	d: 08/07/2012 1330
Analyte	Result	Qual	Units	MDL	RL	Dil	Method
Cyanide	ND NOT THE THE THE THE THE THE THE THE THE TH	nga pangang Astronominan indikang tan menjungkan menjang pandang MAM menjunkan ketima 1947 m	mg/Kg	0.49	1.0	1.0	9012A
	Analysis Batch: 480-75997	Analysis Date:	08/10/2012	0314			DryWt Corrected: Y
	Prep Batch: 480-75977	Prep Date: 08/	09/2012 152	20			•
Cyanide, Free	0.53	₩В	mg/Kg	0.11	0.45	1.0	9016
	Analysis Batch: 460-124138	Analysis Date:	08/14/2012	1430			DryWt Corrected: Y
	Prep Batch: 460-124135	Prep Date: 08/	14/2012 083	30			,
Analyte	Result	Qual	Units	RL	RL	Dil	Method
Percent Moisture	6.8	99/30-4-2-4-3-3-3-4-4-4	%	0.10	0.10	1.0	Moisture

Analysis Date: 08/09/2012 1037

Analysis Date: 08/09/2012 1037

%

0.10

0.10

		Gen	eral Chemi	stry			
Client Sample ID:	AB-03- (20-22.5)						
Lab Sample ID:	480-23564-2					Date Sample	ed: 08/06/2012 1100
Client Matrix:	Solid	% Moist	ture: 18	.9		Date Receiv	red: 08/07/2012 1330
Analyte	Result	Qual	Units	MDL	RL	Dil	Method
Cyanide	ND	g (konstruence) pulanti, unmanana mandi semila bulance) bili (19600 1990) 1990) 1990)	mg/Kg	0.58	1,2	1.0	9012A
	Analysis Batch: 480-75997	Analysis Date:	08/10/2012	0315			DryWt Corrected: Y
	Prep Batch: 480-75977	Prep Date: 08/	09/2012 15	20			
Cyanide, Free	0.62	∨ B	mg/Kg	0.13	0.53	1.0	9016
	Analysis Batch: 460-124138	Analysis Date:	08/14/2012	1430			DryWt Corrected: Y
	Prep Batch: 460-124135	Prep Date: 08/	14/2012 08:	30			·
Analyte	Result	Qual	Units	RL	RL	Dil	Method
Percent Moisture	19	emospoci mino i uni fino di este di este mil monormitti no petrologisti necessary personyan	%	0.10	0.10	1.0	Moisture
	Analysis Batch: 480-75878	Analysis Date:	08/09/2012	1037			DryWt Corrected: N
Percent Solids	81		%	0.10	0.10	1.0	Moisture
	Analysis Batch: 480-75878	Analysis Date:	08/09/2012	1037			DryWt Corrected: N

		Gen	eral Chemis	try			
Client Sample ID:	AB-C2 (8-11)						
Lab Sample ID:	480-23564-3					Date Sample	ed: 08/06/2012 1430
Client Matrix:	Solid	% Moist	ture: 21.8	3		Date Receiv	ed: 08/07/2012 1330
Analyte	Result	Qual	Units	MDL	RL	Dil	Method
Cyanide	ND	expolica-commonwell consistantistic production of consistantistics on provide in the Medical service	mg/Kg	0.57	1.2	1.0	9012A
	Analysis Batch: 480-75997	Analysis Date:	08/10/2012	0316			DryWt Corrected: Y
	Prep Batch: 480-75977	Prep Date: 08/	09/2012 152	0			·
Cyanide, Free	0.93	⊌ B	mg/Kg	0.13	0.54	1.0	9016
	Analysis Batch: 460-124138	Analysis Date:	08/14/2012	1430			DryWt Corrected: Y
	Prep Batch: 460-124135	Prep Date: 08/	14/2012 083	0			•
Analyte	Result	Qual	Units	RL	RL	Dil	Method
Percent Moisture	22		%	0.10	0.10	1.0	Moisture
	Analysis Batch: 480-75878	Analysis Date:	08/09/2012	1037			DryWt Corrected: N
Percent Solids	78		%	0.10	0.10	1.0	Moisture
	Analysis Batch: 480-75878	Analysis Date:	08/09/2012	1037			DryWt Corrected: N

		Gen	eral Chemis	try			
Client Sample ID:	AB-C2 (22-24)						
Lab Sample ID:	480-23564-4]	Date Sample	ed: 08/06/2012 1440
Client Matrix:	Solid	% Moist	ture: 9.1		I	Date Receive	ed: 08/07/2012 1330
Analyte	Result	Qual	Units	MDL	RL	Dil	Method
Cyanide	MD with makes and the mention of the fall in associated the statistical statistical dense of the above of the above of the above and the above	остольный в в приня в п	mg/Kg	0.49	1.0	1.0	9012A
	Analysis Batch: 480-75997	Analysis Date:	08/10/2012	0316			DryWt Corrected: Y
	Prep Batch: 480-75977	Prep Date: 08/	09/2012 152	0			
Cyanide, Free	0.69	Ų B	mg/Kg	0.12	0.48	1.0	9016
•	Analysis Batch: 460-124138	Analysis Date:	08/14/2012	1430			DryWt Corrected: Y
	Prep Batch: 460-124135	Prep Date: 08/	14/2012 083	0			•
Analyte	Result	Qual	Units	RL	RL	Dil	Method
Percent Moisture	9,1		%	0.10	0.10	1.0	Moisture
	Analysis Batch: 480-75878	Analysis Date:	08/09/2012	1037			DryWt Corrected: N
Percent Solids	91		%	0.10	0.10	1.0	Moisture
	Analysis Batch: 480-75878	Analysis Date:	08/09/2012	1037			DryWt Corrected: N

National Fuel

Data Usability Summary Report (DUSR)

BUFFALO, NEW YORK

Volatile, Semivolatile, Metals, and Miscellaneous Analyses

SDG #480-30911-1

Analyses Performed By: TestAmerica Laboratories Buffalo, New York

Report #18847R Review Level: Tier III

Project: B0023310.0000.00001

SUMMARY

This data quality assessment summarizes the review of Sample Delivery Group (SDG) #480-30911-1 for samples collected in association with the National Fuel Wilkenson Site. The review was conducted as a Tier III evaluation and included review of data package completeness. Only analytical data associated with constituents of concern were reviewed for this validation. Field documentation was not included in this review. Included with this assessment are the validation annotated sample result sheets, and chain of custody. Analyses were performed on the following samples:

			Sample	Parent	Analysis				
Sample ID	Lab ID	Matrix	Collection Date	Sample	VOC	svoc	РСВ	MET	MISC
AW-04	309111	Water	12/28/2012		Х	Х		Х	Х
AW-03	309112	Water	12/28/2012		Х	Х		Х	Х
DUP	309113	Water	12/28/2012	AW-03	Х	Х		Х	Х
TRIP BLANK	309114	Water	12/28/2012		Х				

Note:

1. Matrix spike/matrix spike duplicate (MS/MSD) analysis was performed on sample location AW-04.

ANALYTICAL DATA PACKAGE DOCUMENTATION

The table below is the evaluation of the data package completeness.

	Reported		Performance Acceptable		Not
Items Reviewed	No	Yes	No	Yes	Required
Sample receipt condition		Х		Х	
Requested analyses and sample results		X		X	
Master tracking list		X		Х	
4. Methods of analysis		Х		Х	
5. Reporting limits		Х		Х	
6. Sample collection date		Х		Х	
7. Laboratory sample received date		Х		Х	
8. Sample preservation verification (as applicable)		Х		Х	
Sample preparation/extraction/analysis dates		Х		Х	
10. Fully executed Chain-of-Custody (COC) form		Х		Х	
11. Narrative summary of QA or sample problems provided		Х		Х	
12. Data Package Completeness and Compliance		Χ		Х	

QA - Quality Assurance

ORGANIC ANALYSIS INTRODUCTION

Analyses were performed according to United States Environmental Protection Agency (USEPA) SW-846 8260B and 8270C as referenced in NYSDEC-ASP. Data were reviewed in accordance with USEPA Region II SOP HW-24 - Validating Volatile Organic Compounds by SW-846 Method 8260B of October 2006 and New York State ASP 2005.

The data review process is an evaluation of data on a technical basis rather than a determination of contract compliance. As such, the standards against which the data are being weighed may differ from those specified in the analytical method. It is assumed that the data package represents the best efforts of the laboratory and had already been subjected to adequate and sufficient quality review prior to submission.

During the review process, laboratory qualified and unqualified data are verified against the supporting documentation. Based on this evaluation, qualifier codes may be added, deleted, or modified by the data reviewer. Results are qualified with the following codes in accordance with USEPA National Functional Guidelines:

- Concentration (C) Qualifiers
 - U The compound was analyzed for but not detected. The associated value is the compound quantitation limit.
 - B The compound has been found in the sample as well as its associated blank, its presence in the sample may be suspect.
- Quantitation (Q) Qualifiers
 - E The compound was quantitated above the calibration range.
 - D Concentration is based on a diluted sample analysis.
- Validation Qualifiers
 - J The compound was positively identified; however, the associated numerical value is an estimated concentration only.
 - UJ The compound was not detected above the reported sample quantitation limit. However, the reported limit is approximate and may or may not represent the actual limit of quantitation.
 - JN The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification. The associated numerical value is an estimated concentration only.
 - UB Compound considered non-detect at the listed value due to associated blank contamination.
 - N The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification.
 - R The sample results are rejected.

Two facts should be noted by all data users. First, the "R" flag means that the associated value is unusable. In other words, due to significant quality control (QC) problems, the analysis is invalid and provides no information as to whether the compound is present or not. "R" values should not appear on data tables because they cannot be relied upon, even as a last resort. The second fact to keep in mind is that no compound concentration, even if it has passed all QC tests, is guaranteed to be accurate. Strict QC serves to increase confidence in data but any value potentially contains error.

VOLATILE ORGANIC COMPOUND (VOC) ANALYSES

1. Holding Times

The specified holding times for the following methods are presented in the following table.

Method	Matrix	Holding Time	Preservation
SW-846 8260	Water	14 days from collection to analysis	Cool to 4°C±2°C; preserved to a pH of less than 2 s.u.
377-840 8200	Soil	48 hours from collection to extraction and 14 days from extraction to analysis	Cool to 4°C±2°C.

s.u. Standard units

All samples were analyzed within the specified holding time criteria.

2. Blank Contamination

Quality assurance (QA) blanks (i.e., method and rinse blanks) are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Rinse blanks measure contamination of samples during field operations.

A blank action level (BAL) of five times the concentration of a detected compound in an associated blank (common laboratory contaminant compounds are calculated at ten times) is calculated for QA blanks containing concentrations greater than the method detection limit (MDL). The BAL is compared to the associated sample results to determine the appropriate qualification of the sample results, if needed.

Compounds were not detected above the MDL in the associated blanks; therefore detected sample results were not associated with blank contamination.

3. Mass Spectrometer Tuning

Mass spectrometer performance was acceptable and all analyses were performed within a 12-hour tune clock.

System performance and column resolution were acceptable.

4. Calibration

Satisfactory instrument calibration is established to insure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument daily performance is satisfactory.

4.1 Initial Calibration

The method specifies percent relative standard deviation (%RSD) and relative response factor (RRF) limits for select compounds only. A technical review of the data applies limits to all compounds with no exceptions.

All target compounds associated with the initial calibration standards must exhibit a %RSD less than the control limit (15%) or a correlation coefficient greater than 0.99 and an RRF value greater than control limit (0.05).

4.2 Continuing Calibration

All target compounds associated with the continuing calibration standard must exhibit a percent difference (%D) less than the control limit (20%) and RRF value greater than control limit (0.05).

All compounds associated with the calibrations were within the specified control limits, with the exception of the compounds presented in the following table.

Sample Locations	Initial/Continuing	Compound	Criteria
AW-04 AW-03 DUP TRIP BLANK	CCV %D	Cyclohexane	+39.4%

The criteria used to evaluate the initial and continuing calibration are presented in the following table. In the case of a calibration deviation, the sample results are qualified.

Initial/Continuing	Criteria	Sample Result	Qualification
	RRF <0.05	Non-detect	R
	KKF \0.05	Detect	J
Initial and Continuing Calibration	RRF <0.01 ¹	Non-detect	R
	KKF \0.01	Detect	J
	RRF >0.05 or RRF >0.01 ¹	Non-detect	No Action
	RRF	Detect	NO ACTION
	%RSD > 15% or a correlation	Non-detect	UJ
Initial Calibration	coefficient <0.99	Detect	J
Illitial Calibration	%RSD >90%	Non-detect	R
	70R3D 29070	Detect	J
	%D >20% (increase in sensitivity)	Non-detect	No Action
	//0D /20 // (Increase in sensitivity)	Detect	J
Continuing Calibration	%D >20% (decrease in sensitivity)	Non-detect	UJ
	%D >20% (decrease in sensitivity)	Detect	J
	%D >90% (increase/decrease in	Non-detect	R
	sensitivity)	Detect	J

RRF of 0.01 only applies to compounds which are typically poor responding compounds (i.e., ketones, 1,4-dioxane, etc.)

5. Surrogates/System Monitoring Compounds

All samples to be analyzed for organic compounds are spiked with surrogate compounds prior to sample preparation to evaluate overall laboratory performance and efficiency of the analytical technique. VOC

analysis requires that all surrogates associated with the analysis exhibit recoveries within the laboratory-established acceptance limits.

All surrogate recoveries were within control limits.

6. Internal Standard Performance

Internal standard performance criteria insure that the GC/MS sensitivity and response are stable during every sample analysis. The criteria requires the internal standard compounds associated with the VOC exhibit area counts that are not greater than two times (+100%) or less than one-half (-50%) of the area counts of the associated continuing calibration standard.

All internal standard responses were within control limits.

7. Matrix Spike/Matrix Spike Duplicate (MS/MSD) Analysis

MS/MSD data are used to assess the precision and accuracy of the analytical method. The compounds used to perform the MS/MSD analysis must exhibit a percent recovery within the laboratory-established acceptance limits. The relative percent difference (RPD) between the MS/MSD recoveries must exhibit an RPD within the laboratory-established acceptance limits.

Note: The MS/MSD recovery control limits do not apply for MS/MSD performed on sample locations where the compound concentration detected in the parent sample exceeds the MS/MSD concentration by a factor of four or greater.

The MS/MSD exhibited acceptable recoveries and RPD between the MS/MSD recoveries.

8. Laboratory Control Sample/Laboratory Control Sample Duplicate (LCS/LCSD) Analysis

The LCS/LCSD analysis is used to assess the precision and accuracy of the analytical method independent of matrix interferences. The compounds associated with the LCS/LCSD analysis must exhibit a percent recovery within the laboratory-established acceptance limits.

All compounds associated with the LCS/LCSD analysis exhibited recoveries within the control limits.

9. Field Duplicate Analysis

Field duplicate analysis is used to assess the overall precision of the field sampling procedures and analytical method. A control limit of 50% for water matrices and 100% for soil matrices is applied to the RPD between the parent sample and the field duplicate. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of two times the RL is applied for water matrices or three times the RL is applied for soil matrices.

Results for duplicate samples are summarized in the following table.

Sample ID/Duplicate ID	Compound	Sample Result	Duplicate Result	RPD
AW-03/	Benzene	12	12	0.0 %
DUP	Methylene Chloride	4.3 J	3 J	AC

AC Acceptable

The calculated RPDs between the parent sample and field duplicate were acceptable.

10. Compound Identification

Compounds are identified on the GC/MS by using the analytes relative retention time and ion spectra.

All identified compounds met the specified criteria.

11. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

DATA VALIDATION CHECKLIST FOR VOCs

VOCs: SW-846 8260	Rep	orted		mance ptable	Not Required
	No	Yes	No	Yes	Nequireu
GAS CHROMATOGRAPHY/MASS SPECTROME	TRY (GC/	MS)			
Tier II Validation					ı
Holding times		X		X	
Reporting limits (units)		X		X	
Blanks					
A. Method blanks		X		X	
B. Equipment blanks					X
C. Trip blanks		Х		X	
Laboratory Control Sample (LCS)		Х		Х	
Laboratory Control Sample Duplicate(LCSD)		Х		Х	
LCS/LCSD Precision (RPD)		Х		Х	
Matrix Spike (MS)		Х		Х	
Matrix Spike Duplicate(MSD)		Х		Х	
MS/MSD Precision (RPD)		Х		Х	
Field/Lab Duplicate (RPD)		Х		Х	
Surrogate Spike Recoveries		Х		Х	
Dilution Factor		Х		Х	
Moisture Content					Х
Tier III Validation		•		•	
System performance and column resolution		Х		Х	
Initial calibration %RSDs		Х		Х	
Continuing calibration RRFs		Х		Х	
Continuing calibration %Ds		Х	Х		
Instrument tune and performance check		Х		Х	
Ion abundance criteria for each instrument used		Х		Х	
Internal standard		Х		Х	
Compound identification and quantitation		•		•	
A. Reconstructed ion chromatograms		Х		Х	
B. Quantitation Reports		Х		Х	
C. RT of sample compounds within the established RT windows		Х		Х	
D. Transcription/calculation errors present		Х		X	

VOCs: SW-846 8260	Repo	orted	Performance Acceptable		Not Required	
	No	Yes	No	Yes	rtoquirou	
GAS CHROMATOGRAPHY/MASS SPECTROMETRY (GC/MS)						
Reporting limits adjusted to reflect sample dilutions		Х		Х		

%RSD Relative standard deviation

%R RPD %D

Percent recovery
Relative percent difference
Percent difference

SEMIVOLATILE ORGANIC COMPOUND (SVOC) ANALYSES

1. Holding Times

The specified holding times for the following methods are presented in the following table.

Method	Matrix	Holding Time	Preservation
Water		7 days from collection to extraction and 40 days from extraction to analysis	Cooled @ 4°C ± 2°C
SW-846 8270	Soil	14 days from collection to extraction and 40 days from extraction to analysis	Cooled @ 4°C ± 2°C

All samples were analyzed within the specified holding time criteria.

2. Blank Contamination

Quality assurance (QA) blanks (i.e., method and rinse blanks) are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Rinse blanks measure contamination of samples during field operations.

A blank action level (BAL) of five times the concentration of a detected compound in an associated blank (common laboratory contaminant compounds are calculated at ten times) is calculated for QA blanks containing concentrations greater than the method detection limit (MDL). The BAL is compared to the associated sample results to determine the appropriate qualification of the sample results, if needed.

Compounds were not detected above the MDL in the associated blanks; therefore detected sample results were not associated with blank contamination.

3. Mass Spectrometer Tuning

Mass spectrometer performance was acceptable and all analyses were performed within a 12-hour tune clock.

System performance and column resolution were acceptable.

4. Calibration

Satisfactory instrument calibration is established to insure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument daily performance is satisfactory.

4.3 Initial Calibration

The method specifies percent relative standard deviation (%RSD) and relative response factor (RRF) limits for select compounds only. A technical review of the data applies limits to all compounds with no exceptions.

All target compounds associated with the initial calibration standards must exhibit a %RSD less than the control limit (15%) or a correlation coefficient greater than 0.99 and an RRF value greater than control limit (0.05).

4.4 Continuing Calibration

All target compounds associated with the continuing calibration standard must exhibit a percent difference (%D) less than the control limit (20%) and RRF value greater than control limit (0.05).

All compounds associated with the calibrations were within the specified control limits, with the exception of the compounds presented in the following table.

Sample Locations	Initial/Continuing	Compound	Criteria
AW 04	CCV %D	2-Methylphenol	-21.5%
AW-04	CCV 76D	4-Nitrophenol 46.	46.2%

The criteria used to evaluate the initial and continuing calibration are presented in the following table. In the case of a calibration deviation, the sample results are qualified.

Initial/Continuing	Criteria	Sample Result	Qualification
	RRF <0.05	Non-detect	R
Initial and Continuing Calibration	RRF <0.05	Detect	J
	RRF <0.01 ¹	Non-detect	R
	RRF \0.01	Detect	J
	RRF >0.05 or RRF >0.01 ¹	Non-detect	No Action
	RRF >0.05 0 RRF >0.01	Detect	NO ACTION
	%RSD > 15% or a correlation	Non-detect	UJ
Initial Calibration	coefficient <0.99	Detect	J
Initial Calibration	%RSD >90%	Non-detect	R
	%RSD >90%	Detect	J
	0/D > 200/ (increase in consitiuity)	Non-detect	No Action
	%D >20% (increase in sensitivity)	Detect	J
Continuing Calibration	0/D > 200/ (degrees in consitivity)	Non-detect	UJ
	%D >20% (decrease in sensitivity)	Detect	J
	%D >90% (increase/decrease in	Non-detect	R
	sensitivity)	Detect	J

RRF of 0.01 only applies to compounds which are typically poor responding compounds (i.e., ketones, 1,4-dioxane, etc.)

5. Surrogates/System Monitoring Compounds

All samples to be analyzed for organic compounds are spiked with surrogate compounds prior to sample preparation to evaluate overall laboratory performance and efficiency of the analytical technique. SVOC

analysis requires that two of the three SVOC surrogate compounds within each fraction exhibit recoveries within the laboratory-established acceptance limits.

All surrogate recoveries were within control limits.

6. Internal Standard Performance

Internal standard performance criteria insure that the GC/MS sensitivity and response are stable during every sample analysis. The criteria requires the internal standard compounds associated with the SVOC exhibit area counts that are not greater than two times (+100%) or less than one-half (-50%) of the area counts of the associated continuing calibration standard.

All internal standard responses were within control limits.

7. Matrix Spike/Matrix Spike Duplicate (MS/MSD) Analysis

MS/MSD data are used to assess the precision and accuracy of the analytical method. The compounds used to perform the MS/MSD analysis must exhibit a percent recovery within the laboratory-established acceptance limits. The relative percent difference (RPD) between the MS/MSD recoveries must exhibit an RPD within the laboratory-established acceptance limits.

Note: The MS/MSD recovery control limits do not apply for MS/MSD performed on sample locations where the compound concentration detected in the parent sample exceeds the MS/MSD concentration by a factor of four or greater.

Sample locations associated with the MS/MSD exhibiting recoveries outside of the control limits are presented in the following table.

Sample Locations	Compound	MS Recovery	MSD Recovery
	2,4-Dimethylphenol	>UL	>UL
AW-04	2-Nitroaniline	>UL	>UL
	Caprolactam	<ll but="">10%</ll>	<ll but="">10%</ll>

The criteria used to evaluate the MS/MSD recoveries are presented in the following table. In the case of an MS/MSD deviation, the sample results are qualified as documented in the table below.

Control Limit	Sample Result	Qualification
> the upper control limit (UL)	Non-detect	No Action
> tile upper control limit (OL)	Detect	J
< the lower control limit (LL) but > 10%	Non-detect	UJ
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Detect	J
< 10%	Non-detect	R
< 10%	Detect	J
Parent sample concentration > four times the MS/MSD	Detect	No Action
spiking solution concentration.	Non-detect	No Action

8. Laboratory Control Sample/Laboratory Control Sample Duplicate (LCS) Analysis

The LCS analysis is used to assess the precision and accuracy of the analytical method independent of matrix interferences. The compounds associated with the LCS analysis must exhibit a percent recovery within the laboratory-established acceptance limits.

Sample locations associated with LCS analysis exhibiting recoveries outside of the control limits presented in the following table.

Sample Locations	Compound	LCS Recovery
	2-Nitroaniline	> UL
AW-04	4-Chloro-3-methylphenol	> UL
AW-03 DUP	Acetophenone	> UL
	Caprolactam	< LL but > 10%

The criteria used to evaluate the LCS recoveries are presented in the following table. In the case of an LCS deviation, the sample results are qualified as documented in the table below.

Control Limit	Sample Result	Qualification
> the upper central limit (III.)	Non-detect	No Action
> the upper control limit (UL)	Detect	J
the lower central limit (LL) but > 100/	Non-detect	UJ
< the lower control limit (LL) but > 10%	Detect	J
< 10%	Non-detect	R
1070	Detect	J

9. Field Duplicate Analysis

Field duplicate analysis is used to assess the overall precision of the field sampling procedures and analytical method. A control limit of 50% for water matrices and 100% for soil matrices is applied to the RPD between the parent sample and the field duplicate. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of two times the RL is applied for water matrices or three times the RL is applied for soil matrices.

Results for duplicate samples are summarized in the following table.

Sample ID/Duplicate ID	Compound	Sample Result	Duplicate Result	RPD
	2-Methylnaphthalene	39	41	5.0 %
	Acenaphthene	81	80	1.2 %
AW-03/ DUP	Acenaphthylene	0.78 J	0.75 J	AC
	Acetophenone	5 U	0.96 J	AC
	Anthracene	7.9	8.3	AC

Sample ID/Duplicate ID	Compound	Sample Result	Duplicate Result	RPD
	Biphenyl	4.5 J	4.4 J	AC
	Carbazole 10	10	11	AC
	Dibenzofuran	41	40	2.4%
	Fluoranthene	6.7	6.6	AC
	Fluorene	47	45	4.3%
	Naphthalene	4.9 J	4.6 J	AC
	Phenanthrene	45	46	2.1%
	Pyrene	3.7 J	3.6 J	AC

AC Acceptable

The calculated RPDs between the parent sample and field duplicate were acceptable.

10. Compound Identification

Compounds are identified on the GC/MS by using the analytes relative retention time and ion spectra.

All identified compounds met the specified criteria.

11. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

DATA VALIDATION CHECKLIST FOR SVOCs

SVOCs: SW-846 8270	Reported		Performance Acceptable		Not	
		Yes	No	Yes	Required	
GAS CHROMATOGRAPHY/MASS SPECTROME	TRY (GC	/MS)				
Tier II Validation						
Holding times		Х		Х		
Reporting limits (units)		Х		Х		
Blanks						
A. Method blanks		Х		Х		
B. Equipment blanks		Х		Х		
Laboratory Control Sample (LCS) %R		Х	Х			
Laboratory Control Sample Duplicate(LCSD) %R		Х		Х		
LCS/LCSD Precision (RPD)		Х		Х		
Matrix Spike (MS) %R		Х	Х			
Matrix Spike Duplicate(MSD) %R		Х	Х			
MS/MSD Precision (RPD)		Х		Х		
Field/Lab Duplicate (RPD)		Х		Х		
Surrogate Spike Recoveries		Х		Х		
Dilution Factor		Х		Х		
Moisture Content		Х		Х		
Tier III Validation						
System performance and column resolution		Х		Х		
Initial calibration %RSDs		Х		Х		
Continuing calibration RRFs		Х		Х		
Continuing calibration %Ds		Х	Х			
Instrument tune and performance check		Х		Х		
Ion abundance criteria for each instrument used		Х		Х		
Internal standard		Х		Х		
Compound identification and quantitation		•	•	•	1	
A. Reconstructed ion chromatograms		Х		Х		
B. Quantitation Reports		Х		Х		
C. RT of sample compounds within the established RT windows		Х		Х		
D. Quantitation transcriptions/calculations		Х		Х		
E. Reporting limits adjusted to reflect sample dilutions %RSD Relative standard deviation		Х		Х		

%RSD Relative standard deviation %R Percent recovery RPD Relative percent difference

%D Percent difference

INORGANIC ANALYSIS INTRODUCTION

Analyses were performed according to United States Environmental Protection Agency (USEPA) SW-846 Methods 6000/7000 and 9012A/9016. Data were reviewed in accordance with USEPA National Functional Guidelines of July 2002.

The data review process is an evaluation of data on a technical basis rather than a determination of contract compliance. As such, the standards against which the data are being weighed may differ from those specified in the analytical method. It is assumed that the data package represents the best efforts of the laboratory and that it was already subjected to adequate and sufficient quality review prior to submission.

During the review process, laboratory qualified and unqualified data are verified against the supporting documentation. Based on this evaluation, qualifier codes may be added, deleted, or modified by the data reviewer. Results are qualified with the following codes in accordance with the USEPA National Functional Guidelines:

Concentration (C) Qualifiers

- U The analyte was analyzed for but not detected. The associated value is the analyte instrument detection limit.
- B The reported value was obtained from a reading less than the contract-required detection limit (CRDL), but greater than or equal to the instrument detection limit (IDL).

Quantitation (Q) Qualifiers

- E The reported value is estimated due to the presence of interference.
- N Spiked sample recovery is not within control limits.
- * Duplicate analysis is not within control limits.

Validation Qualifiers

- J The analyte was positively identified; however, the associated numerical value is an estimated concentration only.
- UJ The analyte was not detected above the reported sample detection limit. However, the reported limit is approximate and may or may not represent the actual limit of detection.
- UB Analyte considered non-detect at the listed value due to associated blank contamination.
- R The sample results are rejected.

Two facts should be noted by all data users. First, the "R" flag means that the associated value is unusable. In other words, due to significant quality control (QC) problems, the analysis is invalid and provides no information as to whether the compound is present or not. "R" values should not appear on data tables because they cannot be relied upon, even as a last resort. The second fact to keep in mind is that no compound concentration, even if it has passed all QC tests, is guaranteed to be accurate. Strict QC serves to increase confidence in data but any value potentially contains error.

1. Holding Times

The specified holding times for the following methods are presented in the following table.

Method	Matrix	Holding Time	Preservation
SW-846 6010B		180 days from collection to analysis	Cool to 4°C±2°C; preserved to a pH of less than 2.
		180 days from collection to analysis	Cool to 4°C <u>+</u> 2°C.
SW-846 7470	Water	28 days from collection to analysis	Cool to 4°C±2°C; preserved to a pH of less than 2.
SW-846 7471	Soil	28 days from collection to analysis	Cool to 4°C <u>+</u> 2°C.

All samples were analyzed within the specified holding times.

2. Blank Contamination

Quality assurance (QA) blanks (i.e., method and rinse blanks) are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Rinse blanks measure contamination of samples during field operations.

A blank action level (BAL) of five times the concentration of a detected compound in an associated blank (common laboratory contaminant compounds are calculated at ten times) is calculated for QA blanks containing concentrations greater than the method detection limit (MDL). The BAL is compared to the associated sample results to determine the appropriate qualification of the sample results, if needed.

Analytes were detected in the associated QA blanks; however, the associated sample results were greater than the BAL and/or were non-detect. Therefore, sample results greater than the BAL resulted in the removal of the laboratory qualifier (B). No other qualification of the sample results was required.

3. Calibration

Satisfactory instrument calibration is established to provide that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument's continuing performance is satisfactory.

3.1 Initial Calibration and Continuing Calibration

The correct number and type of standards were analyzed. The correlation coefficient of the initial calibration was greater than 0.995 for all non-ICP analytes and all initial calibration verification standard recoveries were within control limits.

All continuing calibration verification standard recoveries were within the control limit.

3.2 CRDL Check Standard

The CRDL check standard serves to verify the linearity of calibration of the analysis at the CRDL. The CRDL standard is not required for the analysis of aluminum (Al), barium (Ba), calcium (Ca), iron (Fe), magnesium (Mg), sodium (Na), and potassium (K). The criteria used to evaluate the CRDL standard analysis are presented below in the CRDL standards evaluation table (if applicable).

All CRDL standard recoveries were within control limits.

3.3 ICP Interference Control Sample (ICS)

The ICS verifies the laboratories interelement and background correction factors.

All ICS exhibited recoveries within the control limits.

4. Matrix Spike/Matrix Spike Duplicate (MS/MSD)/Laboratory Duplicate Analysis

MS/MSD and laboratory duplicate data are used to assess the precision and accuracy of the analytical method.

4.1 MS/MSD Analysis

All metal analytes must exhibit a percent recovery within the established acceptance limits of 75% to 125%. The MS recovery control limits do not apply for MS performed on sample locations where the analyte's concentration detected in the parent sample exceeds the MS concentration by a factor of four or greater. In instance where this is true, the data will not be qualified even if the percent recovery does not meet the control limits and the laboratory flag will be removed.

The MS/MSD analysis exhibited recoveries within the control limits.

4.2 Laboratory Duplicate Analysis

The laboratory duplicate relative percent difference (RPD) criterion is applied when parent and duplicate sample concentrations are greater than or equal to 5 times the CRDL. A control limit of 20% for water matrices and 35% for soil matrices is applied when the criteria above is true. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the CRDL, a control limit of one times the CRDL is applied for water matrices and two times the CRDL for soil matrices.

MS/MSD analysis was performed in replacement of the laboratory duplicate analysis. The MS/MSD recoveries exhibited acceptable RPD.

5. Field Duplicate Analysis

Field duplicate analysis is used to assess the overall precision of the field sampling procedures and analytical method. A control limit of 50% for water matrices and 100% for soil matrices is applied to the RPD between the parent sample and the field duplicate. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of two times the RL is applied for water matrices or three times the RL is applied for soil matrices.

Results for duplicate samples are summarized in the following table.

Sample ID/Duplicate ID	Analyte	Sample Result	Duplicate Result	RPD
	Arsenic	0.0085 J	0.0058 J	AC
	Barium	0.094	0.094	0.0%
	Calcium	373	372	0.2%
	Chromium	0.0025 J	0.0028 J	AC
	Cobalt	0.00068 J	0.004 U	AC
AW-03/ DUP	Copper	0.0024 J	0.01 U	AC
	Iron	15.5	15.4	0.6%
	Magnesium	23	22.8	0.8%
	Manganese	1.4	1.4	0.0%
	Potassium	11.4	11.2	1.7%
	Sodium	352	351	0.2%
	Vanadium	0.0036 J	0.0037 J	AC
	Zinc	0.0024 J	0.0024 J	AC

AC = Acceptable

The calculated RPDs between the parent sample and field duplicate were acceptable.

6. Laboratory Control Sample (LCS) Analysis

The LCS analysis is used to assess the precision and accuracy of the analytical method independent of matrix interferences. The analytes associated with the LCS analysis must exhibit a percent recovery between the control limits of 80% and 120%.

The LCS analysis exhibited recoveries within the control limits.

7. Serial Dilution

The serial dilution analysis is used to assess if a significant physical or chemical interference exists due to sample matrix. Analytes exhibiting concentrations greater than 50 times the MDL in the undiluted sample are evaluated to determine if matrix interference exists. These analytes are required to have less than a 10% difference (%D) between sample results from the undiluted (parent) sample and results associated with the same sample analyzed with a five-fold dilution.

The serial dilution exhibited %D within the control limit.

8.

8. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in

this review, the overall data quality is within the guidelines specified in the method.

DATA VALIDATION CHECKLIST FOR METAL

METALS; SW-846 6000/7000	Rep	orted		rmance ptable	Not	
	No	Yes	No	Yes	Required	
Inductively Coupled Plasma-Atomic Emission Spec Atomic Absorption – Manual Cold Vapor (CV)	ctrometry	(ICP)				
Tier II Validation						
Holding Times		Х		Х		
Reporting limits (units)		Х		Х		
Blanks						
A. Instrument Blanks		Х	Х			
B. Method Blanks		Х		X		
C. Equipment/Field Blanks					Х	
Laboratory Control Sample (LCS)		Х		Х		
Matrix Spike (MS) %R		Х		Х		
Matrix Spike Duplicate (MSD) %R		Х		Х		
MS/MSD Precision (RPD)		Х		Х		
Field/Lab Duplicate (RPD)		Х		Х		
ICP Serial Dilution		Х		Х		
Reporting Limit Verification		Х		Х		
Raw Data		Х		Х		
Tier III Validation						
Initial Calibration Verification		Х		Х		
Continuing Calibration Verification		Х		Х		
CRDL Standard		Х		Х		
ICP Interference Check		Х		Х		
Transcription/calculation errors present		Х		Х		
Reporting limits adjusted to reflect sample dilutions		Х		Х		

%R Percent recovery
RPD Relative percent difference

GENERAL CHEMISTRY ANALYSES

1. Holding Times

The specified holding times for the following methods are presented in the following table.

Method	Matrix	Holding Time	Preservation
Cyanide by SW-846 9012/9016	Water	14 days from collection to	Cool to 4°C±2°C; preserved to a pH of greater than 12.
	Soil	analysis	Cool to 4°C <u>+</u> 2°C.

All samples were analyzed within the specified holding times.

2. Blank Contamination

Quality assurance (QA) blanks (i.e., method and rinse blanks) are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Rinse blanks measure contamination of samples during field operations.

A blank action level (BAL) of five times the concentration of a detected compound in an associated blank (common laboratory contaminant compounds are calculated at ten times) is calculated for QA blanks containing concentrations greater than the method detection limit (MDL). The BAL is compared to the associated sample results to determine the appropriate qualification of the sample results, if needed.

Analytes were not detected above the MDL in the associated blanks; therefore detected sample results were not associated with blank contamination.

3. Calibration

Satisfactory instrument calibration is established to insure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument daily performance is satisfactory.

The correct number and type of standards were analyzed. The correlation coefficient of the initial calibration was greater than 0.995 and all initial calibration verification standard recoveries were within control limits.

All calibration standard recoveries were within the control limit.

4. Matrix Spike/Matrix Spike Duplicate (MS/MSD)/Laboratory Duplicate Analysis

MS/MSD and laboratory duplicate data are used to assess the precision and accuracy of the analytical method.

4.3 MS/MSD Analysis

All analytes must exhibit a percent recovery within the established acceptance limits of 75% to 125%. The MS/MSD recovery control limits do not apply for MS/MSD performed on sample locations where the

analyte's concentration detected in the parent sample exceeds the MS/MSD concentration by a factor of four or greater. In instance where this is true, the data will not be qualified even if the percent recovery does not meet the control limits and the laboratory flag will be removed.

All analytes associated with MS/MSD recoveries were within control limits with the exception of the following analyte present in the table below.

Sample Location	Analyte	MS Recovery	MSD Recovery
AW-04	Cyanide, Total	> 125	> 125

UL = Upper control limit

The criteria used to evaluate MS/MSD recoveries are presented in the following table. In the case of an MS/MSD deviation, the sample results are qualified. The qualifications are applied to the parent sample result associated with this SDG.

Control limit	Sample Result	Qualification
MS/MSD percent recovery 30% to 74%	Non-detect	UJ
MS/MSD percent recovery 30% to 74%	Detect	J
MS/MSD paraent recovery <200/	Non-detect	R
MS/MSD percent recovery <30%	Detect	C
MC/MCD percent recovery >1250/	Non-detect	No Action
MS/MSD percent recovery >125%	Detect	J

4.4 Laboratory Duplicate Analysis

The laboratory duplicate relative percent difference (RPD) criterion is applied when parent and duplicate sample concentrations are greater than or equal to 5 times the CRDL. A control limit of 20% for water matrices and 35% for soil matrices is applied when the criteria above is true. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the CRDL, a control limit of one times the CRDL is applied for water matrices and two times the CRDL for soil matrices.

MS/MSD analysis was performed in replacement of the laboratory duplicate analysis. The MS/MSD recoveries exhibited acceptable RPD.

6. Field Duplicate Analysis

Field duplicate analysis is used to assess the overall precision of the field sampling procedures and analytical method. A control limit of 50% for water matrices and 100% for soil matrices is applied to the RPD between the parent sample and the field duplicate. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of two times the RL is applied for water matrices or three times the RL is applied for soil matrices.

Results for duplicate samples are summarized in the following table.

Sample ID/Duplicate ID	Analyte	Sample Result	Duplicate Result	RPD
AW-03/	Cyanide, Total -9012A	0.11	0.093	16.7%
DUP	Cyanide, Free	5 U	1.6 J	AC

AC = Acceptable

The calculated RPDs between the parent sample and field duplicate were acceptable.

6. Laboratory Control Sample (LCS) Analysis

The LCS analysis is used to assess the precision and accuracy of the analytical method independent of matrix interferences. The analytes associated with the LCS analysis must exhibit a percent recovery between the control limits of 80% and 120%.

The LCS analysis exhibited recoveries within the control limits.

7. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

DATA VALIDATION CHECKLIST FOR GENERAL CHEMISTRY

General Chemistry: EPA XXXX	Rep	orted		mance ptable	Not Required
	No	Yes	No	Yes	Required
Miscellaneous Instrumentation					
Tier II Validation					
Holding times		Х		Х	
Reporting limits (units)		Х		Х	
Blanks					
F. Method blanks		Х		Х	
G. Equipment blanks					Х
Laboratory Control Sample (LCS) %R		Х		Х	
Laboratory Control Sample Duplicate(LCSD) %R		Х		Х	
LCS/LCSD Precision (RPD)		Х		Х	
Matrix Spike (MS) %R		Х	Х		
Matrix Spike Duplicate(MSD) %R		Х	Х		
MS/MSD Precision (RPD)		Х		Х	
Field/Lab Duplicate (RPD)		Х		Х	
Dilution Factor		Х		Х	
Moisture Content					Х
Tier III Validation					
Initial calibration %RSD or correlation coefficient		Х		Х	
Continuing calibration %R		Х		Х	
Raw Data					
Transcription/calculation errors present		Х		Х	
Reporting limits adjusted to reflect sample dilutions %PSDrelative standard deviation_%Pnercent		Х		Х	

[%]RSD – relative standard deviation, %R - percent recovery, RPD - relative percent difference, %D – difference

SAMPLE COMPLIANCE REPORT

Sample						Co	mplian	cy ¹		Noncompliance
Delivery Group (SDG)	Sampling Date	Protocol	Sample ID	Matrix	voc	svoc	РСВ	MET	MISC	
	12/28/2012	SW846	AW-04	Water	Yes	No	1	Yes	No	SVOC-CCAL %D, LCS %R, MS/MSD %R Misc. – MS/MSD %R
480-30911-1	12/28/2012	SW846	AW-03	Water	Yes	No		Yes	Yes	SVOC-LCS %R
100 00011 1	12/28/2012	SW846	DUP	Water	Yes	No		Yes	Yes	SVOC-LCS %R
	12/28/2012	SW846	TRIP BLANK	Water	Yes					

Samples which are compliant with no added validation qualifiers are listed as "yes". Samples which are non-compliant or which have added qualifiers are listed as "no". A "no" designation does not necessarily indicate that the data have been rejected or are otherwise unusable.

VALIDATION PERFORMED BY: Todd Church

SIGNATURE:

DATE: March 26, 2013

PEER REVIEW: Dennis Capria

DATE: April 1, 2013

CHAIN OF CUSTODY/ CORRECTED SAMPLE ANALYSIS DATA SHEETS

Chain of		Temperature on Receipt	ture o	n Rec	eipt -		1	_	TestAmerica	SS	7	7	\vdash	Θ	ĬŽ.	O	Ö				
Custody Record		Drinking Water?	Wate	20	 	NON	D		뿓	THE LEADER IN ENVIRONMENTAL TESTING	ER 1	N E	VIRO	NAE	NTA	TES	NIE	- ~			
Cherry ALADIS		Project Manager	8 5	18/2	1		1							Date 12/1	Jate 12/12/12	4	1		Chain of Custody Number	Day Number	
		Telephone Number (Area Code)/Fax Number	Numbe	(Area	800	FarM	mber						1	Lab Number	mber				2		۱ ـ
PEDUNTALL MARA SUITE GOS		DPO-FOND ONF	160	260		716-	1		1					1			.	\exists	Page	Ø	
State	sode 20 -	Site Contact	k			Lab Contact	_	(` "	Analy.	sis (A	Analysis (Attach list il nore soace is needed	list if 90e0)				-	
_	1460	Camia/Waybill Number				MELISSA	- 1	D6 10				7	2		-						
NATIONAL FOR TOWER ST. TOWNERS AND	~	DEL	V=24	_						201		2 / 1	304 015	<i>'-</i>					S.	cial Inetructio)e(
1		 	1	Matrix			Containers & Preservatives	iners a	J &	 		12.L-	101-1		- تورم				38	Conditions of Receipt	6
Sample I.D. No. and Description (Containers for each sample may be combined on one line)	Date	Time	snoenby	pes		HOSZH Sexdun	SONH	HCI	HOPN	-9/06	20109	<u>३</u> ०१२ प्र	#210k								
_	11/22/11	15/0	+	+	2	-	1 3	2 2		-	—	37			\vdash		上				1
AU-04 MS	11/28/17	1510	×		(7	-	3 2		-	-	3 2	-		_			-			
7.kO		1510	×		, ,	7		3 2		<u> </u>	=	3 2	-								
	12/24/11	1945	×			7	-	3 2		-	_	3 2	_								
	ולמלו	1445	×		,-	7	-	3 2		_	_	37	_								
								<u> </u>										_			
															_						
										-						_				,	
										-											
			_										L								
Possible Hazard Identification	Brisma	Sample Disposal	Sample	Dispos	76	E	M Discovered By J. oh	3		Ambian Ex	9	,		Months	i	1600 m	ed year	ASSES	ed If sample	(A fee may be assessed if samples are retained	
Required X 7 Days 140	2,0		1			s	OC Requirements (Specify)	ement.	13			ָן ו	ll .					nom			
dBv	-	- 1	$\ \cdot \ $	Time			A Property	JAB		k		1	1	6	Ł			\	Data	Time	1
Mon That		2/92/21	21/2	1625	5		M			4	1		T	183	7	٥			21/12		.
2. Relinquished By		Date		Time	~	5	2. Recklared By	d By											Date	-F#110	
3. Relinquished By		Date		Time		8	8. Received By	d By	l	1		}	1		1	1			Date	Time	
Comments		-				-				1				٦	;	1	-	7			
DISTRIBUTION: WHITE - Returned to Client with Report; CANARY - Stays with the Sample;	ANARY - Stays n	ith the Sample;	1	PINK - Field Copy	λοο			1						*	746.16.5	2	7				

Client: ARCADIS U.S. Inc Job Number: 480-30911-1

Client Sample ID: AW-04

 Lab Sample ID:
 480-30911-1
 Date Sampled: 12/28/2012 1510

 Client Matrix:
 Water
 Date Received: 12/28/2012 1625

8260B Volatile Organic Compounds (GC/MS)

Analysis Method: 8260B Analysis Batch: 480-98011 Instrument ID: HP5973C Prep Method: 5030B Prep Batch: N/A Lab File ID: C25891.D Dilution: Initial Weight/Volume: 5.0 5 mL Final Weight/Volume: 5 mL

Analysis Date: 01/02/2013 2001 Prep Date: 01/02/2013 2001

Analyte	Result (ug/L)	Qualifier	MDL	RL
1,1,1-Trichloroethane	ND		4.1	5.0
1,1,2,2-Tetrachloroethane	ND		1.1	5.0
1,1,2-Trichloroethane	ND		1.2	5.0
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		1.6	5.0
1,1-Dichloroethane	ND		1.9	5.0
1,1-Dichloroethene	ND		1.5	5.0
1,2,4-Trichlorobenzene	ND		2.1	5.0
1,2-Dibromo-3-Chloropropane	ND		2.0	5.0
1,2-Dibromoethane	ND		3.7	5.0
1,2-Dichlorobenzene	ND		4.0	5.0
1,2-Dichloroethane	ND		1.1	5.0
1,2-Dichloropropane	ND		3.6	5.0
1,3-Dichlorobenzene	ND		3.9	5.0
1,4-Dichlorobenzene	ND		4.2	5.0
2-Hexanone	ND		6.2	25
2-Butanone (MEK)	ND		6.6	50
4-Methyl-2-pentanone (MIBK)	ND		11	25
Acetone	ND		15	50
Benzene	170		2.1	5.0
Bromodichloromethane	ND		2.0	5.0
Bromoform	ND		1.3	5.0
Bromomethane	ND		3.5	5.0
Carbon disulfide	ND		0.95	5.0
Carbon tetrachloride	ND		1.4	5.0
Chlorobenzene	ND		3.8	5.0
Dibromochloromethane	ND		1.6	5.0
Chloroethane	ND		1.6	5.0
Chloroform	ND		1.7	5.0
Chloromethane	ND		1.8	5.0
cis-1,2-Dichloroethene	ND		4.1	5.0
cis-1,3-Dichloropropene	ND		1.8	5.0
Cyclohexane	ND		0.90	5.0
Dichlorodifluoromethane	ND		3.4	5.0
Ethylbenzene	4.0	J	3.7	5.0
sopropylbenzene	ND		4.0	5.0
Methyl acetate	ND		2.5	5.0
Methyl tert-butyl ether	ND		0.80	5.0
Methylcyclohexane	ND		0.80	5.0
Methylene Chloride	ND		2.2	5.0
Styrene	ND		3.7	5.0
Tetrachloroethene	ND		1.8	5.0
Toluene	ND		2.6	5.0
trans-1,2-Dichloroethene	ND		4.5	5.0
trans-1,3-Dichloropropene	ND		1.9	5.0
Trichloroethene	ND		2.3	5.0
Trichlorofluoromethane	ND		4.4	5.0

Client: ARCADIS U.S. Inc Job Number: 480-30911-1

Client Sample ID: AW-04

Lab Sample ID: 480-30911-1 Date Sampled: 12/28/2012 1510

Client Matrix: Water Date Received: 12/28/2012 1625

8260B Volatile Organic Compounds (GC/MS)

Analysis Method: Analysis Batch: 480-98011 Instrument ID: HP5973C 8260B Prep Method: 5030B Prep Batch: N/A Lab File ID: C25891.D Dilution: 5.0 Initial Weight/Volume: 5 mL

Analysis Date: 01/02/2013 2001 Final Weight/Volume: 5 mL

Prep Date: 01/02/2013 2001

 Analyte
 Result (ug/L)
 Qualifier
 MDL
 RL

 Vinyl chloride
 ND
 4.5
 5.0

 Xylenes, Total
 ND
 3.3
 10

Surrogate%RecQualifierAcceptance Limits1,2-Dichloroethane-d4 (Surr)7866 - 137Toluene-d8 (Surr)7971 - 1264-Bromofluorobenzene (Surr)8273 - 120

RL

Client: ARCADIS U.S. Inc Job Number: 480-30911-1

Client Sample ID: AW-03

 Lab Sample ID:
 480-30911-2
 Date Sampled: 12/28/2012 1445

 Client Matrix:
 Water
 Date Received: 12/28/2012 1625

8260B Volatile Organic Compounds (GC/MS)

480-98011 Analysis Method: 8260B Analysis Batch: Instrument ID: HP5973C C25894.D Prep Method: 5030B Prep Batch: N/A Lab File ID: Dilution: 5.0 Initial Weight/Volume: 5 mL 01/02/2013 2117 Final Weight/Volume: 5 mL

Result (ug/L)

Qualifier

MDL

3.7

1.8

2.6

4.5

1.9

2.3

4.4

5.0

5.0

5.0

5.0 5.0

5.0

5.0

Analysis Date: 01/02/2013 2117 Prep Date: 01/02/2013 2117

Analyte

Styrene

Toluene

Tetrachloroethene

Trichloroethene Trichlorofluoromethane

trans-1,2-Dichloroethene

trans-1,3-Dichloropropene

5.0 1,1,1-Trichloroethane ND 4.1 ND 5.0 1,1,2,2-Tetrachloroethane 1.1 1,1,2-Trichloroethane ND 1.2 5.0 1.1.2-Trichloro-1.2.2-trifluoroethane ND 1.6 5.0 1,1-Dichloroethane ND 1.9 5.0 1,1-Dichloroethene ND 5.0 1.5 ND 2.1 5.0 1,2,4-Trichlorobenzene 1,2-Dibromo-3-Chloropropane ND 2.0 5.0 1,2-Dibromoethane ND 3.7 5.0 1.2-Dichlorobenzene ND 4.0 5.0 ND 5.0 1.2-Dichloroethane 1.1 ND 1,2-Dichloropropane 3.6 5.0 1,3-Dichlorobenzene ND 3.9 5.0 1,4-Dichlorobenzene ND 4.2 5.0 2-Hexanone ND 6.2 25 2-Butanone (MEK) ND 6.6 50 4-Methyl-2-pentanone (MIBK) ND 11 25 Acetone ND 15 50 Benzene 12 2.1 5.0 Bromodichloromethane ND 2.0 5.0 Bromoform ND 1.3 5.0 ND 5.0 Bromomethane 3.5 Carbon disulfide ND 0.95 5.0 Carbon tetrachloride ND 1.4 5.0 Chlorobenzene ND 3.8 5.0 Dibromochloromethane ND 1.6 5.0 Chloroethane ND 1.6 5.0 5.0 Chloroform ND 1.7 Chloromethane ND 1.8 5.0 cis-1,2-Dichloroethene ND 4.1 5.0 ND cis-1,3-Dichloropropene 1.8 5.0 Cyclohexane ND 0.90 5.0 Dichlorodifluoromethane ND 34 5.0 Ethylbenzene ND 3.7 5.0 Isopropylbenzene ND 4.0 5.0 Methyl acetate ND 2.5 5.0 Methyl tert-butyl ether ND 0.80 5.0 Methylcyclohexane ND 0.80 5.0 Methylene Chloride J 2.2 5.0 4.3

ND

ND

ND

ND

ND

ND

ND

Client: ARCADIS U.S. Inc Job Number: 480-30911-1

Client Sample ID: AW-03

Lab Sample ID: 480-30911-2 Date Sampled: 12/28/2012 1445

Client Matrix: Water Date Received: 12/28/2012 1625

Analysis Method: 8260B Analysis Batch: 480-98011 Instrument ID: HP5973C Prep Method: 5030B Prep Batch: N/A Lab File ID: C25894.D Dilution: Initial Weight/Volume: 5.0 5 mL

Dilution: 5.0 Initial Weight/Volume: 5 mL

Analysis Date: 01/02/2013 2117 Final Weight/Volume: 5 mL

Prep Date: 01/02/2013 2117

 Analyte
 Result (ug/L)
 Qualifier
 MDL
 RL

 Vinyl chloride
 ND
 4.5
 5.0

 Xylenes, Total
 ND
 3.3
 10

 Surrogate
 %Rec
 Qualifier
 Acceptance Limits

 1,2-Dichloroethane-d4 (Surr)
 78
 66 - 137

 Toluene-d8 (Surr)
 79
 71 - 126

 4-Bromofluorobenzene (Surr)
 82
 73 - 120

Client: ARCADIS U.S. Inc Job Number: 480-30911-1

Client Sample ID: DUP

 Lab Sample ID:
 480-30911-3
 Date Sampled: 12/28/2012 1445

 Client Matrix:
 Water
 Date Received: 12/28/2012 1625

8260B Volatile Organic Compounds (GC/MS)

480-98011 Analysis Method: 8260B Analysis Batch: Instrument ID: HP5973C C25895.D Prep Method: 5030B Prep Batch: N/A Lab File ID: Dilution: 5.0 Initial Weight/Volume: 5 mL 01/02/2013 2142 Final Weight/Volume: 5 mL

Analysis Date: 01/02/2013 2142 Prep Date: 01/02/2013 2142

Analyte Result (ug/L) Qualifier MDL RL 5.0 1,1,1-Trichloroethane ND 4.1 ND 5.0 1,1,2,2-Tetrachloroethane 1.1 1,1,2-Trichloroethane ND 1.2 5.0 1.1.2-Trichloro-1.2.2-trifluoroethane ND 1.6 5.0 1,1-Dichloroethane ND 1.9 5.0 1,1-Dichloroethene ND 5.0 1.5 ND 2.1 5.0 1,2,4-Trichlorobenzene 1,2-Dibromo-3-Chloropropane ND 2.0 5.0 1,2-Dibromoethane ND 3.7 5.0 1.2-Dichlorobenzene ND 4.0 5.0 ND 5.0 1.2-Dichloroethane 1.1 ND 1,2-Dichloropropane 3.6 5.0 1,3-Dichlorobenzene ND 3.9 5.0 1,4-Dichlorobenzene ND 4.2 5.0 2-Hexanone ND 6.2 25 2-Butanone (MEK) ND 6.6 50 4-Methyl-2-pentanone (MIBK) ND 11 25 Acetone ND 15 50 Benzene 12 2.1 5.0 Bromodichloromethane ND 2.0 5.0 Bromoform ND 1.3 5.0 ND 5.0 Bromomethane 3.5 Carbon disulfide ND 0.95 5.0 Carbon tetrachloride ND 1.4 5.0 Chlorobenzene ND 3.8 5.0 Dibromochloromethane ND 1.6 5.0 Chloroethane ND 1.6 5.0 5.0 Chloroform ND 1.7 Chloromethane ND 1.8 5.0 cis-1,2-Dichloroethene ND 4.1 5.0 ND cis-1,3-Dichloropropene 1.8 5.0 Cyclohexane ND 0.90 5.0 Dichlorodifluoromethane ND 34 5.0 Ethylbenzene ND 3.7 5.0 Isopropylbenzene ND 4.0 5.0 Methyl acetate ND 2.5 5.0 Methyl tert-butyl ether ND 0.80 5.0 Methylcyclohexane ND 0.80 5.0 Methylene Chloride J 2.2 5.0 3.0 Styrene ND 3.7 5.0 Tetrachloroethene ND 1.8 5.0 Toluene ND 2.6 5.0 trans-1,2-Dichloroethene ND 4.5 5.0 5.0 trans-1,3-Dichloropropene ND 1.9 ND 2.3 5.0 Trichloroethene Trichlorofluoromethane ND 4.4 5.0

Client: ARCADIS U.S. Inc Job Number: 480-30911-1

Client Sample ID: DUP

Lab Sample ID: 480-30911-3 Date Sampled: 12/28/2012 1445 Client Matrix:

Water Date Received: 12/28/2012 1625

8260B Volatile Organic Compounds (GC/MS)

Analysis Method: Analysis Batch: 480-98011 Instrument ID: HP5973C 8260B Prep Method: 5030B Prep Batch: N/A Lab File ID: C25895.D Dilution: 5.0 Initial Weight/Volume: 5 mL

5 mL Analysis Date: 01/02/2013 2142 Final Weight/Volume:

01/02/2013 2142 Prep Date:

Analyte Result (ug/L) Qualifier MDL RL Vinyl chloride ND 5.0 4.5 Xylenes, Total ND 3.3 10

%Rec Qualifier Surrogate Acceptance Limits 1,2-Dichloroethane-d4 (Surr) 76 66 - 137 Toluene-d8 (Surr) 78 71 - 126 4-Bromofluorobenzene (Surr) 81 73 - 120

Client: ARCADIS U.S. Inc Job Number: 480-30911-1

Client Sample ID: TRIP BLANK

Trichlorofluoromethane

Lab Sample ID: 480-30911-4 Date Sampled: 12/28/2012 0000

Client Matrix: Water Date Received: 12/28/2012 1625

8260B Volatile Organic Compounds (GC/MS)

Analysis Method: Analysis Batch: 480-98011 Instrument ID: HP5973C 8260B Prep Method: 5030B Prep Batch: N/A Lab File ID: C25896.D Dilution: Initial Weight/Volume: 1.0 5 mL Final Weight/Volume: 5 mL

Analysis Date: 01/02/2013 2207
Prep Date: 01/02/2013 2207

Analyte	Result (ug/L)	Qualifier	MDL	RL
1,1,1-Trichloroethane	ND		0.82	1.0
1,1,2,2-Tetrachloroethane	ND		0.21	1.0
1,1,2-Trichloroethane	ND		0.23	1.0
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.31	1.0
1,1-Dichloroethane	ND		0.38	1.0
1,1-Dichloroethene	ND		0.29	1.0
1,2,4-Trichlorobenzene	ND		0.41	1.0
1,2-Dibromo-3-Chloropropane	ND		0.39	1.0
1,2-Dibromoethane	ND		0.73	1.0
1,2-Dichlorobenzene	ND		0.79	1.0
1,2-Dichloroethane	ND		0.21	1.0
1,2-Dichloropropane	ND		0.72	1.0
1,3-Dichlorobenzene	ND		0.78	1.0
1,4-Dichlorobenzene	ND		0.84	1.0
2-Hexanone	ND		1.2	5.0
2-Butanone (MEK)	ND		1.3	10
4-Methyl-2-pentanone (MIBK)	ND		2.1	5.0
Acetone	ND		3.0	10
Benzene	ND		0.41	1.0
Bromodichloromethane	ND		0.39	1.0
Bromoform	ND		0.26	1.0
Bromomethane	ND		0.69	1.0
Carbon disulfide	ND		0.19	1.0
Carbon tetrachloride	ND		0.27	1.0
Chlorobenzene	ND		0.75	1.0
Dibromochloromethane	ND		0.32	1.0
Chloroethane	ND		0.32	1.0
Chloroform	ND		0.34	1.0
Chloromethane	ND		0.35	1.0
cis-1,2-Dichloroethene	ND		0.81	1.0
cis-1,3-Dichloropropene	ND		0.36	1.0
Cyclohexane	ND		0.18	1.0
Dichlorodifluoromethane	ND		0.68	1.0
Ethylbenzene	ND		0.74	1.0
Isopropylbenzene	ND		0.79	1.0
Methyl acetate	ND		0.50	1.0
Methyl tert-butyl ether	ND		0.16	1.0
Methylcyclohexane	ND		0.16	1.0
Methylene Chloride	ND		0.44	1.0
Styrene	ND		0.73	1.0
Tetrachloroethene	ND		0.36	1.0
Toluene	ND		0.51	1.0
trans-1,2-Dichloroethene	ND		0.90	1.0
trans-1,3-Dichloropropene	ND		0.37	1.0
Trichloroethene	ND ND		0.46	1.0
T' LL G U	ND		0.70	1.0

0.88

1.0

ND

Client: ARCADIS U.S. Inc Job Number: 480-30911-1

Client Sample ID: TRIP BLANK

Lab Sample ID: 480-30911-4 Date Sampled: 12/28/2012 0000

Client Matrix: Water Date Received: 12/28/2012 1625

8260B Volatile Organic Compounds (GC/MS)

Analysis Method: Analysis Batch: 480-98011 Instrument ID: HP5973C 8260B Prep Method: 5030B Prep Batch: N/A Lab File ID: C25896.D Dilution: 1.0 Initial Weight/Volume: 5 mL

Analysis Date: 01/02/2013 2207 Final Weight/Volume: 5 mL

Prep Date: 01/02/2013 2207

 Analyte
 Result (ug/L)
 Qualifier
 MDL
 RL

 Vinyl chloride
 ND
 0.90
 1.0

 Xylenes, Total
 ND
 0.66
 2.0

Surrogate%RecQualifierAcceptance Limits1,2-Dichloroethane-d4 (Surr)7866 - 137Toluene-d8 (Surr)7971 - 1264-Bromofluorobenzene (Surr)8273 - 120

Client: ARCADIS U.S. Inc Job Number: 480-30911-1

Client Sample ID: AW-04

 Lab Sample ID:
 480-30911-1
 Date Sampled: 12/28/2012 1510

 Client Matrix:
 Water
 Date Received: 12/28/2012 1625

8270C Semivolatile Organic Compounds (GC/MS)

Analysis Method: 8270C Analysis Batch: 480-97886 Instrument ID: HP5973X Prep Method: 3510C Prep Batch: 480-97788 Lab File ID: X3444.D Dilution: 1.0 Initial Weight/Volume: 1055 mL

Analysis Date: 12/31/2012 2304 Final Weight/Volume: 1 mL

Prep Date: 12/29/2012 0728 Injection Volume: 1 uL

Analyte	Result (ug/L)	Qualifier	MDL	RL
Biphenyl	ND		0.62	4.7
bis (2-chloroisopropyl) ether	ND		0.49	4.7
2,4,5-Trichlorophenol	ND		0.45	4.7
2,4,6-Trichlorophenol	ND		0.58	4.7
2,4-Dichlorophenol	ND		0.48	4.7
2,4-Dimethylphenol	11 J		0.47	4.7
2,4-Dinitrophenol	ND		2.1	9.5
2,4-Dinitrotoluene	ND		0.42	4.7
2,6-Dinitrotoluene	ND		0.38	4.7
2-Chloronaphthalene	ND		0.44	4.7
2-Chlorophenol	ND		0.50	4.7
2-Methylnaphthalene	1.6	J	0.57	4.7
2-Methylphenol	ND <mark>UJ</mark>		0.38	4.7
2-Nitroaniline	ND	*	0.40	9.5
2-Nitrophenol	ND		0.45	4.7
3,3'-Dichlorobenzidine	ND		0.38	4.7
3-Nitroaniline	ND		0.45	9.5
4,6-Dinitro-2-methylphenol	ND		2.1	9.5
4-Bromophenyl phenyl ether	ND		0.43	4.7
4-Chloro-3-methylphenol	ND	_	0.43	4.7
4-Chloroaniline	ND		0.56	4.7
4-Chlorophenyl phenyl ether	ND		0.33	4.7
4-Methylphenol	ND		0.34	9.5
4-Nitroaniline	ND		0.24	9.5
4-Nitrophenol	ND		1.4	9.5
Acenaphthene	1.9	J	0.39	4.7
Acenaphthylene	ND		0.36	4.7
Acetophenone	ND	-	0.51	4.7
Anthracene	ND		0.27	4.7
Atrazine	ND		0.44	4.7
Benzaldehyde	ND		0.25	4.7
Benzo(a)anthracene	ND		0.34	4.7
Benzo(a)pyrene	ND		0.45	4.7
Benzo(b)fluoranthene	ND		0.32	4.7
Benzo(g,h,i)perylene	ND		0.33	4.7
Benzo(k)fluoranthene	ND		0.69	4.7
Bis(2-chloroethoxy)methane	ND		0.33	4.7
Bis(2-chloroethyl)ether	ND		0.38	4.7
Bis(2-ethylhexyl) phthalate	ND		1.7	4.7
Butyl benzyl phthalate	ND		0.40	4.7
Caprolactam	ND UJ	*	2.1	4.7
Carbazole	ND		0.28	4.7
Chrysene	ND		0.31	4.7
Di-n-butyl phthalate	ND		0.29	4.7
Di-n-octyl phthalate	ND		0.45	4.7
Dibenz(a,h)anthracene	ND		0.40	4.7

16 - 120

Client: ARCADIS U.S. Inc Job Number: 480-30911-1

Client Sample ID: AW-04

Phenol-d5

 Lab Sample ID:
 480-30911-1
 Date Sampled: 12/28/2012 1510

 Client Matrix:
 Water
 Date Received: 12/28/2012 1625

8270C Semivolatile Organic Compounds (GC/MS) 480-97886 Analysis Method: 8270C Analysis Batch: Instrument ID: HP5973X Prep Batch: Prep Method: 3510C 480-97788 Lab File ID: X3444.D Dilution: Initial Weight/Volume: 1055 mL 1.0 12/31/2012 2304 Analysis Date: Final Weight/Volume: 1 mL Prep Date: 12/29/2012 0728 Injection Volume: 1 uL Qualifier RL Analyte Result (ug/L) MDL Dibenzofuran ND 0.48 9.5 Diethyl phthalate ND 0.21 4.7 Dimethyl phthalate ND 0.34 4.7 Fluoranthene ND 0.38 4.7 ND 4.7 Fluorene 0.34 Hexachlorobenzene ND 0.48 4.7 4.7 Hexachlorobutadiene ND 0.64 Hexachlorocyclopentadiene ND 0.56 4.7 Hexachloroethane ND 0.56 4.7 Indeno(1,2,3-cd)pyrene ND 0.45 4.7 Isophorone ND 0.41 4.7 N-Nitrosodi-n-propylamine ND 4.7 0.51 N-Nitrosodiphenylamine ND 0.48 4.7 Naphthalene 3.6 J 0.72 4.7 Nitrobenzene ND 0.27 4.7 ND Pentachlorophenol 2.1 9.5 Phenanthrene ND 0.42 4.7 0.37 Phenol ND 4.7 Pyrene ND 0.32 4.7 Qualifier Surrogate %Rec Acceptance Limits 2,4,6-Tribromophenol 110 52 - 132 2-Fluorobiphenyl 87 48 - 120 20 - 120 2-Fluorophenol 41 46 - 120 Nitrobenzene-d5 93 p-Terphenyl-d14 86 67 - 150

29

Client: ARCADIS U.S. Inc Job Number: 480-30911-1

Client Sample ID: AW-03

 Lab Sample ID:
 480-30911-2
 Date Sampled: 12/28/2012 1445

 Client Matrix:
 Water
 Date Received: 12/28/2012 1625

8270C Semivolatile Organic Compounds (GC/MS)

Analysis Method: 8270C Analysis Batch: 480-98514 Instrument ID: HP5973X Prep Method: 3510C Prep Batch: 480-97788 Lab File ID: X3481.D Dilution: Initial Weight/Volume: 1.0 1010 mL

 Analysis Date:
 01/07/2013 1235
 Final Weight/Volume:
 1 mL

 Prep Date:
 12/29/2012 0728
 Injection Volume:
 1 uL

Analyte	Result (ug/L)	Qualifier	MDL	RL
Biphenyl	4.5	J	0.65	5.0
bis (2-chloroisopropyl) ether	ND		0.51	5.0
2,4,5-Trichlorophenol	ND		0.48	5.0
2,4,6-Trichlorophenol	ND		0.60	5.0
2,4-Dichlorophenol	ND		0.50	5.0
2,4-Dimethylphenol	ND		0.50	5.0
2,4-Dinitrophenol	ND		2.2	9.9
2,4-Dinitrotoluene	ND		0.44	5.0
2,6-Dinitrotoluene	ND		0.40	5.0
2-Chloronaphthalene	ND		0.46	5.0
2-Chlorophenol	ND		0.52	5.0
2-Methylnaphthalene	39		0.59	5.0
2-Methylphenol	ND		0.40	5.0
2-Nitroaniline	ND	~	0.42	9.9
2-Nitrophenol	ND		0.48	5.0
3,3'-Dichlorobenzidine	ND		0.40	5.0
3-Nitroaniline	ND		0.48	9.9
4,6-Dinitro-2-methylphenol	ND		2.2	9.9
4-Bromophenyl phenyl ether	ND		0.45	5.0
4-Chloro-3-methylphenol	ND		0.45	5.0
4-Chloroaniline	ND		0.58	5.0
4-Chlorophenyl phenyl ether	ND		0.35	5.0
4-Methylphenol	ND		0.36	9.9
4-Nitroaniline	ND		0.25	9.9
4-Nitrophenol	ND		1.5	9.9
Acenaphthene	81		0.41	5.0
Acenaphthylene	0.78	J	0.38	5.0
Acetophenone	ND -	-	0.53	5.0
Anthracene	7.9		0.28	5.0
Atrazine	ND		0.46	5.0
Benzaldehyde	ND		0.26	5.0
Benzo(a)anthracene	ND		0.36	5.0
Benzo(a)pyrene	ND		0.47	5.0
Benzo(b)fluoranthene	ND		0.34	5.0
Benzo(g,h,i)perylene	ND		0.35	5.0
Benzo(k)fluoranthene	ND		0.72	5.0
Bis(2-chloroethoxy)methane	ND		0.72	5.0
Bis(2-chloroethyl)ether	ND		0.40	5.0
Bis(2-ethylhexyl) phthalate	ND		1.8	5.0
Butyl benzyl phthalate	ND ND <mark>UJ -</mark>		0.42 2.2	5.0 5.0
Caprolactam Carbazole	10		0.30	5.0
	ND		0.33	
Chrysene				5.0
Di-n-butyl phthalate	ND		0.31	5.0
Di-n-octyl phthalate	ND		0.47	5.0
Dibenz(a,h)anthracene	ND		0.42	5.0

16 - 120

Client: ARCADIS U.S. Inc Job Number: 480-30911-1

Client Sample ID: AW-03

Phenol-d5

 Lab Sample ID:
 480-30911-2
 Date Sampled: 12/28/2012 1445

 Client Matrix:
 Water
 Date Received: 12/28/2012 1625

8270C Semivolatile Organic Compounds (GC/MS) 480-98514 Analysis Method: 8270C Analysis Batch: Instrument ID: HP5973X Prep Batch: Prep Method: 3510C 480-97788 Lab File ID: X3481.D Dilution: Initial Weight/Volume: 1010 mL 1.0 01/07/2013 1235 Analysis Date: Final Weight/Volume: 1 mL Prep Date: 12/29/2012 0728 Injection Volume: 1 uL Qualifier Analyte Result (ug/L) MDL RL Dibenzofuran 0.50 9.9 41 Diethyl phthalate ND 0.22 5.0 Dimethyl phthalate ND 0.36 5.0 Fluoranthene 6.7 0.40 5.0 0.36 5.0 Fluorene 47 Hexachlorobenzene ND 5.0 0.50 5.0 Hexachlorobutadiene ND 0.67 Hexachlorocyclopentadiene ND 0.58 5.0 Hexachloroethane ND 0.58 5.0 Indeno(1,2,3-cd)pyrene ND 0.47 5.0 Isophorone ND 0.43 5.0 N-Nitrosodi-n-propylamine ND 5.0 0.53 N-Nitrosodiphenylamine ND 0.50 5.0 Naphthalene 4.9 J 0.75 5.0 Nitrobenzene ND 0.29 5.0 ND Pentachlorophenol 2.2 9.9 Phenanthrene 0.44 45 5.0 Phenol ND 0.39 5.0 Pyrene 3.7 J 0.34 5.0 Qualifier Surrogate %Rec Acceptance Limits 2,4,6-Tribromophenol 109 52 - 132 2-Fluorobiphenyl 92 48 - 120 2-Fluorophenol 42 20 - 120 97 46 - 120 Nitrobenzene-d5 p-Terphenyl-d14 88 67 - 150

30

Client: ARCADIS U.S. Inc Job Number: 480-30911-1

Client Sample ID: DUP

Lab Sample ID: 480-30911-3 Date Sampled: 12/28/2012 1445 Client Matrix: Date Received: 12/28/2012 1625 Water

8270C Semivolatile Organic Compounds (GC/MS)

Analysis Method:	8270C	Analysis Batch:	480-98514	Instrument ID:	HP5973X
Prep Method:	3510C	Prep Batch:	480-97788	Lab File ID:	X3482.D
Dilution:	1.0			Initial Weight/Volume:	1010 mL
Analysis Date:	01/07/2013 1258			Final Weight/Volume:	1 mL

12/29/2012 0728 Injection Volume: Prep Date: 1 uL

Analyte	Result (ug/L)	Qualifier	MDL	RL
Biphenyl	4.4	J	0.65	5.0
bis (2-chloroisopropyl) ether	ND		0.51	5.0
2,4,5-Trichlorophenol	ND		0.48	5.0
2,4,6-Trichlorophenol	ND		0.60	5.0
2,4-Dichlorophenol	ND		0.50	5.0
2,4-Dimethylphenol	ND		0.50	5.0
2,4-Dinitrophenol	ND		2.2	9.9
2,4-Dinitrotoluene	ND		0.44	5.0
2,6-Dinitrotoluene	ND		0.40	5.0
2-Chloronaphthalene	ND		0.46	5.0
2-Chlorophenol	ND		0.52	5.0
2-Methylnaphthalene	41		0.59	5.0
2-Methylphenol	ND		0.40	5.0
2-Nitroaniline	ND		0.42	9.9
2-Nitrophenol	ND		0.48	5.0
3,3'-Dichlorobenzidine	ND		0.40	5.0
3-Nitroaniline	ND		0.48	9.9
4,6-Dinitro-2-methylphenol	ND		2.2	9.9
4-Bromophenyl phenyl ether	ND		0.45	5.0
4-Chloro-3-methylphenol	ND	<u>بر</u>	0.45	5.0
4-Chloroaniline	ND		0.58	5.0
4-Chlorophenyl phenyl ether	ND		0.35	5.0
4-Methylphenol	ND		0.36	9.9
4-Nitroaniline	ND		0.25	9.9
4-Nitrophenol	ND		1.5	9.9
Acenaphthene	80		0.41	5.0
Acenaphthylene	0.75	.l	0.38	5.0
Acetophenone	0.96	J	0.53	5.0
Anthracene	8.3	0 1	0.28	5.0
Atrazine	ND		0.46	5.0
Benzaldehyde	ND		0.26	5.0
Benzo(a)anthracene	ND		0.36	5.0
Benzo(a)pyrene	ND		0.47	5.0
	ND		0.34	5.0
Benzo(b)fluoranthene	ND		0.35	5.0
Benzo(g,h,i)perylene				
Benzo(k)fluoranthene	ND		0.72	5.0
Bis(2-chloroethoxy)methane	ND		0.35	5.0
Bis(2-chloroethyl)ether	ND		0.40	5.0
Bis(2-ethylhexyl) phthalate	ND		1.8	5.0
Butyl benzyl phthalate	ND III	6	0.42	5.0
Caprolactam	ND UJ	/"	2.2	5.0
Carbazole	11		0.30	5.0
Chrysene	ND		0.33	5.0
Di-n-butyl phthalate	ND		0.31	5.0
Di-n-octyl phthalate	ND		0.47	5.0
Dibenz(a,h)anthracene	ND		0.42	5.0

16 - 120

Client: ARCADIS U.S. Inc Job Number: 480-30911-1

Client Sample ID: DUP

Phenol-d5

 Lab Sample ID:
 480-30911-3
 Date Sampled: 12/28/2012 1445

 Client Matrix:
 Water
 Date Received: 12/28/2012 1625

8270C Semivolatile Organic Compounds (GC/MS) 480-98514 Analysis Method: 8270C Analysis Batch: Instrument ID: HP5973X Prep Batch: Prep Method: 3510C 480-97788 Lab File ID: X3482.D Dilution: Initial Weight/Volume: 1010 mL 1.0 01/07/2013 1258 Analysis Date: Final Weight/Volume: 1 mL Prep Date: 12/29/2012 0728 Injection Volume: 1 uL Qualifier Analyte Result (ug/L) MDL RL Dibenzofuran 40 0.50 9.9 Diethyl phthalate ND 0.22 5.0 Dimethyl phthalate ND 0.36 5.0 Fluoranthene 6.6 0.40 5.0 0.36 5.0 Fluorene 45 Hexachlorobenzene ND 5.0 0.50 5.0 Hexachlorobutadiene ND 0.67 Hexachlorocyclopentadiene ND 0.58 5.0 Hexachloroethane ND 0.58 5.0 Indeno(1,2,3-cd)pyrene ND 0.47 5.0 Isophorone ND 0.43 5.0 N-Nitrosodi-n-propylamine ND 5.0 0.53 N-Nitrosodiphenylamine ND 0.50 5.0 Naphthalene 4.6 J 0.75 5.0 Nitrobenzene ND 0.29 5.0 ND Pentachlorophenol 2.2 9.9 Phenanthrene 46 0.44 5.0 ND 0.39 Phenol 5.0 Pyrene 3.6 J 0.34 5.0 Qualifier Surrogate %Rec Acceptance Limits 2,4,6-Tribromophenol 116 52 - 132 2-Fluorobiphenyl 93 48 - 120 2-Fluorophenol 43 20 - 120 46 - 120 Nitrobenzene-d5 101 p-Terphenyl-d14 87 67 - 150

30

0.00020

0.00012

Client: ARCADIS U.S. Inc Job Number: 480-30911-1

Client Sample ID: AW-04

 Lab Sample ID:
 480-30911-1
 Date Sampled: 12/28/2012 1510

 Client Matrix:
 Water
 Date Received: 12/28/2012 1625

6010B Metals (ICP)

Analysis Method: 6010B Analysis Batch: 480-98123 Instrument ID: ICAP1

Prep Method: 3005A Prep Batch: 480-97911 Lab File ID: I1010213A-2.asc

Dilution: 1.0 Initial Weight/Volume: 50 mL Analysis Date: 01/02/2013 1731 Final Weight/Volume: 50 mL

Prep Date: 01/02/2013 0800

Mercury

Analyte	Result (mg/L)	Qualifier	MDL	RL
Aluminum	2.2		0.060	0.20
Antimony	ND		0.0068	0.020
Arsenic	ND		0.0056	0.010
Barium	1.1		0.00070	0.0020
Beryllium	ND		0.00030	0.0020
Cadmium	ND		0.00050	0.0010
Calcium	453		0.10	0.50
Chromium	0.0046		0.0010	0.0040
Cobalt	0.00094	J	0.00063	0.0040
Copper	0.0037	J	0.0016	0.010
Iron	15.9		0.019	0.050
Lead	ND		0.0030	0.0050
Magnesium	83.2		0.043	0.20
Manganese	0.83		0.00040	0.0030
Nickel	0.0026	J	0.0013	0.010
Potassium	49.8		0.10	0.50
Selenium	ND		0.0087	0.015
Silver	ND		0.0017	0.0030
Sodium	649		0.32	1.0
Thallium	ND		0.010	0.020
Vanadium	0.0091		0.0015	0.0050
Zinc	0.011		0.0015	0.010

7470A Mercury (CVAA)

Analysis Method: 7470A Analysis Batch: 480-98030 Instrument ID: LEEMAN2

Prep Method: 7470A Prep Batch: 480-97966 Lab File ID: H01023W1.PRN

Dilution: 1.0 Initial Weight/Volume: 30 mL

Analysis Date: 01/02/2013 1043 Final Weight/Volume: 50 mL
Prep Date: 01/02/2013 0745

Analyte Result (mg/L) Qualifier MDL RL

ND

Job Number: 480-30911-1 Client: ARCADIS U.S. Inc

Client Sample ID: AW-03

Lab Sample ID: 480-30911-2 Date Sampled: 12/28/2012 1445 Client Matrix: Water Date Received: 12/28/2012 1625

6010B Metals (ICP)

Analysis Method: 6010B Analysis Batch: 480-98123 Instrument ID: ICAP1

Prep Method: 3005A Prep Batch: 480-97911 Lab File ID: I1010213A-2.asc

Dilution: 1.0 Initial Weight/Volume: 50 mL 01/02/2013 1744 Analysis Date: Final Weight/Volume: 50 mL

01/02/2013 0800 Prep Date:

Mercury

RL Analyte Result (mg/L) Qualifier MDL ND 0.060 0.20 Aluminum Antimony ND 0.0068 0.020 0.0085 J 0.0056 0.010 Arsenic Barium 0.094 0.00070 0.0020 Beryllium ND 0.00030 0.0020 ND 0.0010 Cadmium 0.00050 373 0.50 Calcium 0.10 0.0025 0.0010 0.0040 Chromium J Cobalt 0.00068 J 0.00063 0.0040 Copper 0.0024 J 0.0016 0.010 Iron 15.5 0.019 0.050 Lead ND 0.0030 0.0050 Magnesium 23.0 0.043 0.20 Manganese 1.4 0.00040 0.0030 Nickel ND 0.0013 0.010 Potassium 11.4 0.10 0.50 ND Selenium 0.0087 0.015 ND 0.0017 0.0030 Silver Sodium 352 0.32 1.0 Thallium ND 0.010 0.020 Vanadium 0.0036 J 0.0015 0.0050 Zinc 0.0024 J 0.0015 0.010

7470A Mercury (CVAA)

Analysis Method: 7470A Analysis Batch: 480-97908 Instrument ID: LEEMAN2 Prep Method: 7470A Prep Batch: 480-97853 Lab File ID: H12312W1.PRN

Dilution: 1.0 Initial Weight/Volume: 30 mL

12/31/2012 1144 Analysis Date: Final Weight/Volume: 50 mL 12/31/2012 0815 Prep Date:

Analyte Result (mg/L) Qualifier MDL RL 0.00012 0.00020

ND

Client: ARCADIS U.S. Inc Job Number: 480-30911-1

Client Sample ID: DUP

 Lab Sample ID:
 480-30911-3
 Date Sampled: 12/28/2012 1445

 Client Matrix:
 Water
 Date Received: 12/28/2012 1625

6010B Metals (ICP)

Analysis Method: 6010B Analysis Batch: 480-98123 Instrument ID: ICAP1

Prep Method: 3005A Prep Batch: 480-97911 Lab File ID: I1010213A-2.asc

Dilution: 1.0 Initial Weight/Volume: 50 mL Analysis Date: 01/02/2013 1751 Final Weight/Volume: 50 mL

Prep Date: 01/02/2013 0800

Analyte	Result (mg/L)	Qualifier	MDL	RL
Aluminum	ND		0.060	0.20
Antimony	ND		0.0068	0.020
Arsenic	0.0058	J	0.0056	0.010
Barium	0.094		0.00070	0.0020
Beryllium	ND		0.00030	0.0020
Cadmium	ND		0.00050	0.0010
Calcium	372		0.10	0.50
Chromium	0.0028	J	0.0010	0.0040
Cobalt	ND		0.00063	0.0040
Copper	ND		0.0016	0.010
Iron	15.4		0.019	0.050
Lead	ND		0.0030	0.0050
Magnesium	22.8		0.043	0.20
Manganese	1.4		0.00040	0.0030
Nickel	ND		0.0013	0.010
Potassium	11.2		0.10	0.50
Selenium	ND		0.0087	0.015
Silver	ND		0.0017	0.0030
Sodium	351		0.32	1.0
Thallium	ND		0.010	0.020
Vanadium	0.0037	J	0.0015	0.0050
Zinc	0.0024	J	0.0015	0.010

7470A Mercury (CVAA)

Analysis Method: 7470A Analysis Batch: 480-97908 Instrument ID: LEEMAN2

Prep Method: 7470A Prep Batch: 480-97853 Lab File ID: H12312W1.PRN

Dilution: 1.0 Initial Weight/Volume: 30 mL

Analysis Date: 12/31/2012 1154 Final Weight/Volume: 50 mL

Prep Date: 12/31/2012 0815

 Analyte
 Result (mg/L)
 Qualifier
 MDL
 RL

 Mercury
 ND
 0.00012
 0.00020

Client: ARCADIS U.S. Inc Job Number: 480-30911-1

General Chemistry

Client Sample ID: AW-04

Lab Sample ID: 480-30911-1 Date Sampled: 12/28/2012 1510 Client Matrix: Water

Date Received: 12/28/2012 1625

Analyte	Result	Qual	Units	MDL	RL	Dil	Method
Cyanide, Total	0.011	J	mg/L	0.0050	0.020	1.0	9012A
	Analysis Batch: 480-98115	Analysis Date: 01/03/2013 0042					
	Prep Batch: 480-98009	Prep Date: 01/02/2013 0945					
Cyanide, Free	ND		ug/L	0.54	5.0	1.0	9016
	Analysis Batch: 460-141611	Analysis Date: 12/31/2012 1300					
	Prep Batch: 460-141569	Prep Date: 12/	31/2012 070	00			

Analytical Data

Client: ARCADIS U.S. Inc Job Number: 480-30911-1

General Chemistry

Client Sample ID: AW-03

Lab Sample ID: 480-30911-2 Date Sampled: 12/28/2012 1445 Client Matrix: Water

Date Received: 12/28/2012 1625

Analyte	Result	Qual	Units	MDL	RL	Dil	Method
Cyanide, Total	0.11	Quai	ma/L	0.0050	0.020	1.0	9012A
Cyaniac, rotai	Analysis Batch: 480-98115	Analysis Date:	3		0.020	1.0	00127
	Prep Batch: 480-98009	Prep Date: 01/	02/2013 094	45			
Cyanide, Free	ND		ug/L	0.54	5.0	1.0	9016
	Analysis Batch: 460-141611	Analysis Date:	12/31/2012	1300			
	Prep Batch: 460-141569	Prep Date: 12/	31/2012 070	00			

Analytical Data

Client: ARCADIS U.S. Inc Job Number: 480-30911-1

General Chemistry

Client Sample ID: DUP

Prep Batch: 460-141569

Lab Sample ID: 480-30911-3 Date Sampled: 12/28/2012 1445

Client Matrix: Water Date Received: 12/28/2012 1625

RL Analyte MDL Dil Result Qual Units Method Cyanide, Total 0.093 mg/L 0.0050 0.020 1.0 9012A Analysis Batch: 480-98115 Analysis Date: 01/03/2013 0046 Prep Batch: 480-98009 Prep Date: 01/02/2013 0945 Cyanide, Free 1.6 J ug/L 0.54 5.0 1.0 9016 Analysis Batch: 460-141611 Analysis Date: 12/31/2012 1300

Prep Date: 12/31/2012 0700

National Fuel

Data Usability Summary Report (DUSR)

BUFFALO, NEW YORK

Volatile, Semivolatile, Metals, and Miscellaneous Analyses

SDG #480-28494

Analyses Performed By: TestAmerica Laboratories Buffalo, New York

Report #18090R Review Level: Tier III

Project: B0023310.0000.00001

SUMMARY

This data quality assessment summarizes the review of Sample Delivery Group (SDG) #480-28494 for samples collected in association with the National Fuel Wilkenson Site. The review was conducted as a Tier III evaluation and included review of data package completeness. Only analytical data associated with constituents of concern were reviewed for this validation. Field documentation was not included in this review. Included with this assessment are the validation annotated sample result sheets, and chain of custody. Analyses were performed on the following samples:

		Sample	Parent		Analysis				
Sample ID	Lab ID	Matrix	Collection Date	Sample	voc	svoc	РСВ	MET	MISC
AW-03 (4-8 COMPOSITE)	284941	soil	11/11/2012		Х	Х		Χ	Х
AW-03 (18-20)	284942	soil	11/11/2012		Х	Х		Χ	Х
AW-03 (20-22)	284943	soil	11/11/2012		Х	Х		Χ	Х
AW-04 (4-8 COMPOSITE)	284944	soil	11/12/2012		Х	Х		Χ	Х
AW-04 (22-22.5)	284945	soil	11/12/2012		Х	Х		Χ	Х
FD01111212	284946	soil	11/12/2012	AW-04 (4-8 COMPOSITE)	Х	Х		Х	Х
RB111212	284947	water	11/12/2012		Х	Х		Х	Х
TB111412	284948	water	11/14/2012		Х				

Note:

- 1. Matrix spike/matrix spike duplicate (MS/MSD) analysis was performed on sample location FD01111212 for volatile and semi-volatile analyses.
- 2. Matrix spike/matrix spike duplicate (MS/MSD) analysis was performed on sample locations FD01111212 and AW-04 (4-8 COMPOSITE) for metal analyses.
- 3. Matrix spike/matrix spike duplicate (MS/MSD) analysis was performed on sample locations FD01111212 and RB111212 for cyanide analyses.
- 4. Miscellaneous parameters include total and free cyanide.

ANALYTICAL DATA PACKAGE DOCUMENTATION

The table below is the evaluation of the data package completeness.

		Repo	orted		mance ptable	Not
	Items Reviewed	No	Yes	No	Yes	Required
1.	Sample receipt condition		Х		Χ	
2.	Requested analyses and sample results		Х		X	
3.	Master tracking list		Х		Х	
4.	Methods of analysis		X		X	
5.	Reporting limits		Х		X	
6.	Sample collection date		Х		Х	
7.	Laboratory sample received date		Х		Х	
8.	Sample preservation verification (as applicable)		Х		Х	
9.	Sample preparation/extraction/analysis dates		Х		Х	
10.	Fully executed Chain-of-Custody (COC) form		Х		Х	
11.	Narrative summary of QA or sample problems provided		Х		Х	
12.	Data Package Completeness and Compliance		Х		Х	

QA - Quality Assurance

ORGANIC ANALYSIS INTRODUCTION

Analyses were performed according to United States Environmental Protection Agency (USEPA) SW-846 8260B and 8270C as referenced in NYSDEC-ASP. Data were reviewed in accordance with USEPA Region II SOP HW-24 - Validating Volatile Organic Compounds by SW-846 Method 8260B of October 2006 and New York State ASP 2005.

The data review process is an evaluation of data on a technical basis rather than a determination of contract compliance. As such, the standards against which the data are being weighed may differ from those specified in the analytical method. It is assumed that the data package represents the best efforts of the laboratory and had already been subjected to adequate and sufficient quality review prior to submission.

During the review process, laboratory qualified and unqualified data are verified against the supporting documentation. Based on this evaluation, qualifier codes may be added, deleted, or modified by the data reviewer. Results are qualified with the following codes in accordance with USEPA National Functional Guidelines:

- Concentration (C) Qualifiers
 - U The compound was analyzed for but not detected. The associated value is the compound quantitation limit.
 - B The compound has been found in the sample as well as its associated blank, its presence in the sample may be suspect.
- Quantitation (Q) Qualifiers
 - E The compound was quantitated above the calibration range.
 - D Concentration is based on a diluted sample analysis.
- Validation Qualifiers
 - J The compound was positively identified; however, the associated numerical value is an estimated concentration only.
 - UJ The compound was not detected above the reported sample quantitation limit. However, the reported limit is approximate and may or may not represent the actual limit of quantitation.
 - JN The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification. The associated numerical value is an estimated concentration only.
 - UB Compound considered non-detect at the listed value due to associated blank contamination.
 - N The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification.
 - R The sample results are rejected.

Two facts should be noted by all data users. First, the "R" flag means that the associated value is unusable. In other words, due to significant quality control (QC) problems, the analysis is invalid and provides no information as to whether the compound is present or not. "R" values should not appear on data tables because they cannot be relied upon, even as a last resort. The second fact to keep in mind is that no compound concentration, even if it has passed all QC tests, is guaranteed to be accurate. Strict QC serves to increase confidence in data but any value potentially contains error.

VOLATILE ORGANIC COMPOUND (VOC) ANALYSES

1. Holding Times

The specified holding times for the following methods are presented in the following table.

Method	Matrix Holding Time		Preservation
SW-846 8260B	Water	14 days from collection to analysis (7 days if unpreserved)	Cool to 4°C±2°C; preserved to a pH of less than 2 s.u.
011 013 02000	Soil	14 days from collection to analysis	Cool to 4°C±2°C.

s.u. Standard units

All samples were analyzed within the specified holding time criteria.

2. Blank Contamination

Quality assurance (QA) blanks (i.e., method and rinse blanks) are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Rinse blanks measure contamination of samples during field operations.

A blank action level (BAL) of five times the concentration of a detected compound in an associated blank (common laboratory contaminant compounds are calculated at ten times) is calculated for QA blanks containing concentrations greater than the method detection limit (MDL). The BAL is compared to the associated sample results to determine the appropriate qualification of the sample results, if needed.

Compounds were not detected above the MDL in the associated blanks; therefore detected sample results were not associated with blank contamination.

3. Mass Spectrometer Tuning

Mass spectrometer performance was acceptable and all analyses were performed within a 12-hour tune clock.

System performance and column resolution were acceptable.

4. Calibration

Satisfactory instrument calibration is established to insure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument daily performance is satisfactory.

4.1 Initial Calibration

The method specifies percent relative standard deviation (%RSD) and relative response factor (RRF) limits for select compounds only. A technical review of the data applies limits to all compounds with no exceptions.

All target compounds associated with the initial calibration standards must exhibit a %RSD less than the control limit (15%) or a correlation coefficient greater than 0.99 and an RRF value greater than control limit (0.05).

4.2 Continuing Calibration

All target compounds associated with the continuing calibration standard must exhibit a percent difference (%D) less than the control limit (20%) and RRF value greater than control limit (0.05).

All compounds associated with the calibrations were within the specified control limits, with the exception of the compounds presented in the following table.

Sample Locations	Initial/Continuing	Compound	Criteria
AW-03 (4-8 COMPOSITE) AW-03 (18-20)		Bromomethane	21.2%
AW-03 (20-22) AW-04 (4-8 COMPOSITE)		1,2-Dichloroethane	24.2%
AW-04 (22-22.5) FD01111212		Methylcyclohexane	-21.5%
		Chloromethane	-20.7%
RB111212 TB111412	CCV %D	Carbon tetrachloride	30.2%
		1,2,4-Trichlorobenzene	-20.8%

The criteria used to evaluate the initial and continuing calibration are presented in the following table. In the case of a calibration deviation, the sample results are qualified.

Initial/Continuing	Criteria	Sample Result	Qualification	
	RRF <0.05	Non-detect	R	
Initial and Continuing Calibration	KKF <0.05	Detect	J	
	RRF <0.01 ¹	Non-detect	R	
	KKF \0.01	Detect	J	
	RRF >0.05 or RRF >0.01 ¹	Non-detect	No Action	
	KKF 20.03 01 KKF 20.01	Detect	NO ACTION	
	%RSD > 15% or a correlation	Non-detect	UJ	
Initial Calibration	coefficient <0.99	Detect	J	
	%RSD >90%	Non-detect	R	
	/0K3D >90 /0	Detect	J	
	%D >20% (increase in sensitivity)	Non-detect	No Action	
	%D >20% (increase in sensitivity)	Detect	J	
Continuing Calibration	9/D >209/ (degreese in consitiuity)	Non-detect	UJ	
Continuing Calibration	%D >20% (decrease in sensitivity)	Detect	J	
	%D >90% (increase/decrease in	Non-detect	R	
	sensitivity)	Detect	J	

RRF of 0.01 only applies to compounds which are typically poor responding compounds

5. Surrogates/System Monitoring Compounds

All samples to be analyzed for organic compounds are spiked with surrogate compounds prior to sample preparation to evaluate overall laboratory performance and efficiency of the analytical technique. VOC analysis requires that all surrogates associated with the analysis exhibit recoveries within the laboratory-established acceptance limits.

All surrogate recoveries were within control limits.

6. Internal Standard Performance

Internal standard performance criteria insure that the GC/MS sensitivity and response are stable during every sample analysis. The criteria requires the internal standard compounds associated with the VOC exhibit area counts that are not greater than two times (+100%) or less than one-half (-50%) of the area counts of the associated continuing calibration standard.

All internal standard responses were within control limits.

7. Matrix Spike/Matrix Spike Duplicate (MS/MSD) Analysis

MS/MSD data are used to assess the precision and accuracy of the analytical method. The compounds used to perform the MS/MSD analysis must exhibit a percent recovery within the laboratory-established acceptance limits. The relative percent difference (RPD) between the MS/MSD recoveries must exhibit an RPD within the laboratory-established acceptance limits.

Note: The MS/MSD recovery control limits do not apply for MS/MSD performed on sample locations where the compound concentration detected in the parent sample exceeds the MS/MSD concentration by a factor of four or greater.

Sample locations associated with the MS/MSD exhibiting recoveries outside of the control limits are presented in the following table.

Sample Locations	Compound	MS Recovery	MSD Recovery
	1,1-Dichloroethene	<ll but="">10%</ll>	<ll but="">10%</ll>
	1,2-Dichlorobenzene	<ll but="">10%</ll>	<ll but="">10%</ll>
	Benzene	<ll but="">10%</ll>	<ll but="">10%</ll>
	Chlorobenzene	<ll but="">10%</ll>	<ll but="">10%</ll>
	cis-1,2-Dichloroethene	<ll but="">10%</ll>	<ll but="">10%</ll>
FD01111212	Ethylbenzene	<ll but="">10%</ll>	<ll but="">10%</ll>
	Tetrachloroethene	<ll but="">10%</ll>	<ll but="">10%</ll>
	Toluene	<ll but="">10%</ll>	<ll but="">10%</ll>
	trans-1,2-Dichloroethene	<ll but="">10%</ll>	<ll but="">10%</ll>
	Trichloroethene	<ll but="">10%</ll>	<ll but="">10%</ll>

LL Lower Limit

The criteria used to evaluate the MS/MSD recoveries are presented in the following table. In the case of an MS/MSD deviation, the sample results are qualified as documented in the table below.

Control Limit	Sample Result	Qualification
> the upper control limit (UL)	Non-detect	No Action
> the upper control limit (OL)	Detect	J
< the lower central limit (LL) but > 10%	Non-detect	UJ
< the lower control limit (LL) but > 10%	Detect	J
< 10%	Non-detect	R
< 1076	Detect	J
Parent sample concentration > four times the MS/MSD	Detect	No Action
spiking solution concentration.	Non-detect	NO ACTION

8. Laboratory Control Sample (LCS) Analysis

The LCS analysis is used to assess the precision and accuracy of the analytical method independent of matrix interferences. The compounds associated with the LCS analysis must exhibit a percent recovery within the laboratory-established acceptance limits.

Sample locations associated with LCS analysis exhibiting recoveries outside of the control limits presented in the following table.

Sample Locations	Compound	LCS Recovery
AW-03 (4-8 COMPOSITE) AW-03 (18-20) AW-03 (20-22) AW-04 (4-8 COMPOSITE) AW-04 (22-22.5) FD01111212	1,2-Dichloroethane	> UL

The criteria used to evaluate the LCS/LCSD recoveries are presented in the following table. In the case of an LCS/LCSD deviation, the sample results are qualified as documented in the table below.

Control Limit	Sample Result	Qualification
> the upper central limit (LIL)	Non-detect	No Action
> the upper control limit (UL)	Detect	J
s the lower central limit (LL) but > 100/	Non-detect	UJ
< the lower control limit (LL) but > 10%	Detect	J
< 10%	Non-detect	R
1070	Detect	J

9. Field Duplicate Analysis

Field duplicate analysis is used to assess the overall precision of the field sampling procedures and analytical method. A control limit of 30% for water matrices and 50% for soil matrices is applied to the

RPD between the parent sample and the field duplicate. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of two times the RL is applied for water matrices or three times the RL is applied for soil matrices.

Results for duplicate samples are summarized in the following table.

Sample ID/Duplicate ID	Compound	Sample Result	Duplicate Result	RPD
AW-04 (4-8 COMPOSITE)/ FD01111212	Benzene	6.9	5.5 U	AC
	Ethylbenzene	29	2 J	NC
	Isopropylbenzene	1.3 J	5.5 U	AC
	Methylene Chloride	6.2 U	3.7 J	AC
	Toluene	4.9 J	5.5 U	AC
	Xylenes, Total	1.1 J	11 U	AC

AC Acceptable NC Not compliant

The compound ethylbenzene associated with sample locations AW-04 (4-8 COMPOSITE) and FD01111212 exhibited a field duplicate RPD greater than the control limit. The associated sample results from sample locations for the listed analyte were qualified as estimated.

10. Compound Identification

Compounds are identified on the GC/MS by using the analytes relative retention time and ion spectra.

All identified compounds met the specified criteria.

11. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

DATA VALIDATION CHECKLIST FOR VOCs

VOCs: SW-846 8260B		orted		mance ptable	Not Required	
	No	Yes	No	Yes	Nequired	
GAS CHROMATOGRAPHY/MASS SPECTROME	TRY (GC	/MS)				
Tier II Validation			ı		Ī	
Holding times		Х		X		
Reporting limits (units)		X		X		
Blanks						
A. Method blanks		X		X		
B. Equipment blanks		Х		X		
C. Trip blanks		X		X		
Laboratory Control Sample (LCS)		X	X			
Laboratory Control Sample Duplicate(LCSD)					Х	
LCS/LCSD Precision (RPD)					Х	
Matrix Spike (MS)		Х	Х			
Matrix Spike Duplicate(MSD)		Х	Х			
MS/MSD Precision (RPD)		Х		Х		
Field/Lab Duplicate (RPD)		Х	Х			
Surrogate Spike Recoveries		Х		Х		
Dilution Factor		Х		Х		
Moisture Content		Х		Х		
Tier III Validation						
System performance and column resolution		Х		Х		
Initial calibration %RSDs		Х		Х		
Continuing calibration RRFs		Х		Х		
Continuing calibration %Ds		Х	Х			
Instrument tune and performance check		Х		Х		
Ion abundance criteria for each instrument used		Х		Х		
Internal standard		Х		Х		
Compound identification and quantitation			1	<u> </u>	L	
A. Reconstructed ion chromatograms		Х		Х		
B. Quantitation Reports		Х		Х		
 C. RT of sample compounds within the established RT windows 		Х		Х		
D. Transcription/calculation errors present				X		

VOCs: SW-846 8260B	Reported		Performance Acceptable		Not Required	
	No	Yes	No	Yes	rtoquirou	
GAS CHROMATOGRAPHY/MASS SPECTROMETRY (GC/MS)						
Reporting limits adjusted to reflect sample dilutions		Х		Х		

%RSD Relative standard deviation

%R RPD %D

Percent recovery
Relative percent difference
Percent difference

SEMIVOLATILE ORGANIC COMPOUND (SVOC) ANALYSES

1. Holding Times

The specified holding times for the following methods are presented in the following table.

Method	Matrix	Holding Time	Preservation
SW-846 8270C Water Soil		7 days from collection to extraction and 40 days from extraction to analysis	Cooled @ 4°C ± 2°C
		14 days from collection to extraction and 40 days from extraction to analysis	Cooled @ 4°C ± 2°C

All samples were analyzed within the specified holding time criteria.

2. Blank Contamination

Quality assurance (QA) blanks (i.e., method and rinse blanks) are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Rinse blanks measure contamination of samples during field operations.

A blank action level (BAL) of five times the concentration of a detected compound in an associated blank (common laboratory contaminant compounds are calculated at ten times) is calculated for QA blanks containing concentrations greater than the method detection limit (MDL). The BAL is compared to the associated sample results to determine the appropriate qualification of the sample results, if needed.

Compounds were detected in the associated QA blanks; however, the associated sample results were greater than the BAL and/or were non-detect. No qualifications of the sample results were required.

3. Mass Spectrometer Tuning

Mass spectrometer performance was acceptable and all analyses were performed within a 12-hour tune clock.

System performance and column resolution were acceptable.

4. Calibration

Satisfactory instrument calibration is established to insure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument daily performance is satisfactory.

4.1 Initial Calibration

The method specifies percent relative standard deviation (%RSD) and relative response factor (RRF) limits for select compounds only. A technical review of the data applies limits to all compounds with no exceptions.

All target compounds associated with the initial calibration standards must exhibit a %RSD less than the control limit (15%) or a correlation coefficient greater than 0.99 and an RRF value greater than control limit (0.05).

4.2 Continuing Calibration

All target compounds associated with the continuing calibration standard must exhibit a percent difference (%D) less than the control limit (20%) and RRF value greater than control limit (0.05).

All compounds associated with the calibrations were within the specified control limits, with the exception of the compounds presented in the following table.

Sample Locations	Initial/ Continuing	Compound	Criteria
FD01111212	CCV %D	2,4-Dinitrophenol	-22.5%
AW-03 (4-8 COMPOSITE) AW-03 (18-20) AW-04 (4-8 COMPOSITE) AW-04 (22-22.5)	CCV %D	Benzo(g,h,i)perylene	26.7%

The criteria used to evaluate the initial and continuing calibration are presented in the following table. In the case of a calibration deviation, the sample results are qualified.

Initial/Continuing	Criteria	Sample Result	Qualification
	RRF <0.05	Non-detect	R
	KKF <0.05	Detect	J
Initial and Continuing	RRF <0.01 ¹	Non-detect	R
Calibration	KKF <0.01	Detect	J
	RRF >0.05 or RRF >0.01 ¹	Non-detect	No Action
	KKF	Detect	NO ACTION
	%RSD > 15% or a correlation	Non-detect	UJ
Initial Calibration	coefficient <0.99	Detect	J
Illitial Calibration	%RSD >90%	Non-detect	R
	%K3D ~90%	Detect	J
	%D >20% (increase in sensitivity)	Non-detect	No Action
	%D >20% (increase in sensitivity)	Detect	J
Continuing Colibration	%D >20% (decrease in sensitivity)	Non-detect	UJ
Continuing Calibration	%D >20% (decrease in sensitivity)	Detect	J
	%D >90% (increase/decrease in	Non-detect	R
	sensitivity)	Detect	J

RRF of 0.01 only applies to compounds which are typically poor responding compounds (i.e., ketones, 1,4-dioxane, etc.)

5. Surrogates/System Monitoring Compounds

All samples to be analyzed for organic compounds are spiked with surrogate compounds prior to sample preparation to evaluate overall laboratory performance and efficiency of the analytical technique. SVOC analysis requires that two of the three SVOC surrogate compounds within each fraction exhibit recoveries within the laboratory-established acceptance limits.

All surrogate recoveries were within control limits.

6. Internal Standard Performance

Internal standard performance criteria insure that the GC/MS sensitivity and response are stable during every sample analysis. The criteria requires the internal standard compounds associated with the SVOC exhibit area counts that are not greater than two times (+100%) or less than one-half (-50%) of the area counts of the associated continuing calibration standard.

All internal standard responses were within control limits.

7. Matrix Spike/Matrix Spike Duplicate (MS/MSD) Analysis

MS/MSD data are used to assess the precision and accuracy of the analytical method. The compounds used to perform the MS/MSD analysis must exhibit a percent recovery within the laboratory-established acceptance limits. The relative percent difference (RPD) between the MS/MSD recoveries must exhibit an RPD within the laboratory-established acceptance limits.

Note: The MS/MSD recovery control limits do not apply for MS/MSD performed on sample locations where the compound concentration detected in the parent sample exceeds the MS/MSD concentration by a factor of four or greater.

Sample locations associated with the MS/MSD exhibiting recoveries outside of the control limits are presented in the following table.

Sample Locations	Compound	MS Recovery	MSD Recovery
FD01111212	Bis(2-ethylhexyl) phthalate	AC	>UL
FD01111212	Pyrene	<10%	<ll but="">10%</ll>

AC Acceptable
UL Upper Limit
LL Lower Limit

The criteria used to evaluate the MS/MSD recoveries are presented in the following table. In the case of an MS/MSD deviation, the sample results are qualified as documented in the table below.

Control Limit	Sample Result	Qualification
> the upper central limit (III.)	Non-detect	No Action
> the upper control limit (UL)	Detect	J
< the lower control limit (LL) but > 10%	Non-detect	UJ

Control Limit	Sample Result	Qualification	
	Detect	J	
- 100/	Non-detect	R	
< 10%	Detect	J	
Parent sample concentration > four times the MS/MSD spiking solution concentration.	Detect	No Action	

Sample locations associated with MS/MSD recoveries exhibiting an RPD greater than of the control limit presented in the following table.

Sample Locations	Compound
FD01111212	Fluorene

The criteria used to evaluate the RPD between the MS/MSD recoveries are presented in the following table. In the case of an RPD deviation, the sample results are qualified as documented in the table below.

Control Limit	Sample Result	Qualification
S 1 II	Non-detect	UJ
> UL	Detect	J

8. Laboratory Control Sample (LCS/) Analysis

The LCS analysis is used to assess the precision and accuracy of the analytical method independent of matrix interferences. The compounds associated with the LCS analysis must exhibit a percent recovery within the laboratory-established acceptance limits.

All compounds associated with the LCS analysis exhibited recoveries within the control limits.

9. Field Duplicate Analysis

Field duplicate analysis is used to assess the overall precision of the field sampling procedures and analytical method. A control limit of 50% for soil matrices is applied to the RPD between the parent sample and the field duplicate. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of three times the RL is applied for soil matrices.

Results for duplicate samples are summarized in the following table.

Sample ID/Duplicate ID	Compound	Sample Result	Duplicate Result	RPD
	2-Methylnaphthalene	66 J	280 J	AC
AW-04 (4-8 COMPOSITE)/	Acenaphthene	180 J	970	AC
FD01111212	Acenaphthylene	160 J	200 J	AC
	Anthracene	690 J	2000	AC

Sample ID/Duplicate ID	Compound	Sample Result	Duplicate Result	RPD
	Benzo(a)anthracene	1400	3700	AC
	Benzo(a)pyrene	1600	3700	AC
	Benzo(b)fluoranthene	1900	4500	AC
	Benzo(g,h,i)perylene	340 J	1300	AC
	Benzo(k)fluoranthene	1100	2300	AC
	Biphenyl	1000 U	77 J	AC
	Carbazole	110 J	620 J	AC
	Chrysene	1400	3300	AC
	Dibenz(a,h)anthracene	800 J	940 J	AC
	Dibenzofuran	130 J	650 J	AC
	Fluoranthene	2600	8100	NC
	Fluorene	270 J	1100	AC
	Indeno(1,2,3-cd)pyrene	890 J	1600	AC
	Naphthalene	160 J	360 J	AC
	Phenanthrene	1600	6800	NC
AC Acceptable	Pyrene	1900	7100	NC

AC Acceptable
NC Not compliant

The compounds fluoranthene, phenanthrene and pyrene associated with sample locations AW-04 (4-8 COMPOSITE) and FD01111212 exhibited a field duplicate RPD greater than the control limit. The associated sample results from sample locations for the listed analyte were qualified as estimated.

10. Compound Identification

Compounds are identified on the GC/MS by using the analytes relative retention time and ion spectra.

All identified compounds met the specified criteria.

11. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

DATA VALIDATION CHECKLIST FOR SVOCs

SVOCs: SW-846 8270C	Rep	Reported		mance otable	Not	
	No	Yes	No	Yes	Required	
GAS CHROMATOGRAPHY/MASS SPECTROME	TRY (GC	/MS)				
Tier II Validation						
Holding times		Х		Х		
Reporting limits (units)		Х		Х		
Blanks						
D. Method blanks		Х		Х		
E. Equipment blanks		Х	Х			
Laboratory Control Sample (LCS) %R		Х		Х		
Laboratory Control Sample Duplicate(LCSD) %R					х	
LCS/LCSD Precision (RPD)					Х	
Matrix Spike (MS) %R		Х	Х			
Matrix Spike Duplicate(MSD) %R		Х	Х			
MS/MSD Precision (RPD)		Х	Х			
Field/Lab Duplicate (RPD)		Х	Х			
Surrogate Spike Recoveries		Х		Х		
Dilution Factor		Х		Х		
Moisture Content		Х		Х		
Tier III Validation						
System performance and column resolution		Х		Х		
Initial calibration %RSDs		Х		Х		
Continuing calibration RRFs		Х		Х		
Continuing calibration %Ds		Х	Х			
Instrument tune and performance check		Х		Х		
Ion abundance criteria for each instrument used		Х		Х		
Internal standard		Х		Х		
Compound identification and quantitation						
F. Reconstructed ion chromatograms		Х		Х		
G. Quantitation Reports		Х		Х		
RT of sample compounds within the established RT windows		Х		Х		
I. Transcription/calculation errors present				Х		
J. Reporting limits adjusted to reflect sample dilutions %RSD Relative standard deviation		Х		Х		

%RSD Relative standard deviation

%R RPD

Percent recovery
Relative percent difference
Percent difference

%D

INORGANIC ANALYSIS INTRODUCTION

Analyses were performed according to United States Environmental Protection Agency (USEPA) SW-846 Methods 6000/7000 and 9012A/9016. Data were reviewed in accordance with USEPA National Functional Guidelines of July 2002.

The data review process is an evaluation of data on a technical basis rather than a determination of contract compliance. As such, the standards against which the data are being weighed may differ from those specified in the analytical method. It is assumed that the data package represents the best efforts of the laboratory and that it was already subjected to adequate and sufficient quality review prior to submission.

During the review process, laboratory qualified and unqualified data are verified against the supporting documentation. Based on this evaluation, qualifier codes may be added, deleted, or modified by the data reviewer. Results are qualified with the following codes in accordance with the USEPA National Functional Guidelines:

Concentration (C) Qualifiers

- U The analyte was analyzed for but not detected. The associated value is the analyte instrument detection limit.
- B The reported value was obtained from a reading less than the contract-required detection limit (CRDL), but greater than or equal to the instrument detection limit (IDL).

· Quantitation (Q) Qualifiers

- E The reported value is estimated due to the presence of interference.
- N Spiked sample recovery is not within control limits.
- Duplicate analysis is not within control limits.

Validation Qualifiers

- J The analyte was positively identified; however, the associated numerical value is an estimated concentration only.
- UJ The analyte was not detected above the reported sample detection limit. However, the reported limit is approximate and may or may not represent the actual limit of detection.
- UB Analyte considered non-detect at the listed value due to associated blank contamination.
- R The sample results are rejected.

Two facts should be noted by all data users. First, the "R" flag means that the associated value is unusable. In other words, due to significant quality control (QC) problems, the analysis is invalid and provides no information as to whether the compound is present or not. "R" values should not appear on data tables because they cannot be relied upon, even as a last resort. The second fact to keep in mind is that no compound concentration, even if it has passed all QC tests, is guaranteed to be accurate. Strict QC serves to increase confidence in data but any value potentially contains error.

METALS ANALYSES

1. Holding Times

The specified holding times for the following methods are presented in the following table.

Method	Matrix	Holding Time	Preservation
SW-846 6010B	Water	180 days from collection to analysis	Cool to 4°C±2°C; preserved to a pH of less than 2.
Soil	180 days from collection to analysis	Cool to 4°C±2°C.	
SW-846 7470	Water	28 days from collection to analysis	Cool to 4°C±2°C; preserved to a pH of less than 2.
SW-846 7471	Soil	28 days from collection to analysis	Cool to 4°C <u>+</u> 2°C.

All samples were analyzed within the specified holding times.

2. Blank Contamination

Quality assurance (QA) blanks (i.e., method and rinse blanks) are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Rinse blanks measure contamination of samples during field operations.

A blank action level (BAL) of five times the concentration of a detected compound in an associated blank (common laboratory contaminant compounds are calculated at ten times) is calculated for QA blanks containing concentrations greater than the method detection limit (MDL). The BAL is compared to the associated sample results to determine the appropriate qualification of the sample results, if needed.

Analytes were detected in the associated QA blanks; however, the associated sample results were greater than the BAL and/or were non-detect. Therefore, sample results greater than the BAL resulted in the removal of the laboratory qualifier (B). No other qualification of the sample results was required.

3. Calibration

Satisfactory instrument calibration is established to provide that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument's continuing performance is satisfactory.

3.1 Initial Calibration and Continuing Calibration

The correct number and type of standards were analyzed. The correlation coefficient of the initial calibration was greater than 0.995 for all non-ICP analytes and all initial calibration verification standard recoveries were within control limits.

All continuing calibration verification standard recoveries were within the control limit.

3.2 CRDL Check Standard

The CRDL check standard serves to verify the linearity of calibration of the analysis at the CRDL. The CRDL standard is not required for the analysis of aluminum (Al), barium (Ba), calcium (Ca), iron (Fe), magnesium (Mg), sodium (Na), and potassium (K). The criteria used to evaluate the CRDL standard analysis are presented below in the CRDL standards evaluation table (if applicable).

All analytes associated with CRDL standard recoveries were within control limits with the exception of the analytes presented in the following table.

Sample Locations	Analytes	CRDL Recovery
DD444040	Arsenic	137%
RB111212	Silver	137%

The criteria applied to evaluate the CRDL Standard criteria are presented below. In the case of a calibration deviation, the sample results are qualified.

CRDL Standard Recovery Criteria				
Analytes	Control Limit	Sample Result	Qualification	
	CDDI 9/ D ~509/	Sample results ≥ MDL but <2x CRDL	R	
	CRDL %R <50% (<30% for Sb, Pb, Tl)	Non-detect sample results	R	
		Detected sample results ≥ 2x CRDL	J	
	CRDL %R 50-69% (30-49% for Sb, Pb, Tl)	Sample results ≥ MDL but <2x CRDL	J	
All analytes, with the exception		Non-detect sample results	UJ	
of Al, Ba, Ca, Fe, Mg, Na, and K		Detected sample results ≥ 2x CRDL	No Action	
	%R >130% but <180%	Sample results ≥ MDL but <2x CRDL	J	
	(>150% but <200% for Sb, Pb, Tl)	Non-detect sample results	No Action	
		Detected sample results ≥ 2x CRDL	No Action	
	CRI %R >180% (>200% for Sb, Pb, TI)	Sample results ≥ MDL	R	

3.3 ICP Interference Control Sample (ICS)

The ICS verifies the laboratories interelement and background correction factors.

All ICS exhibited recoveries within the control limits.

4. Matrix Spike/Matrix Spike Duplicate (MS/MSD)/Laboratory Duplicate Analysis

MS/MSD and laboratory duplicate data are used to assess the precision and accuracy of the analytical method.

4.1 MS/MSD Analysis

All metal analytes must exhibit a percent recovery within the established acceptance limits of 75% to 125%. The MS/MSD recovery control limits do not apply for MS/MSD performed on sample locations where the analyte's concentration detected in the parent sample exceeds the MS concentration by a factor of four or greater. In instance where this is true, the data will not be qualified even if the percent recovery does not meet the control limits.

All analytes associated with MS/MSD recoveries were within control limits with the exception of the following analyte present in the table below.

Sample Location	Analyte	MS Recovery	MSD Recovery
AW-03 (4-8 COMPOSITE)	Antimony	70%	74%
AW-03 (4-8 COMPOSITE) AW-03 (18-20) AW-03 (20-22) AW-04 (4-8 COMPOSITE) AW-04 (22-22.5) FD01111212	Barium	0%	39%
	Potassium	AC	126%
	Zinc	153%	135%
	Mercury	51%	AC

The criteria used to evaluate MS/MSD recoveries are presented in the following table. In the case of an MS/MSD deviation, the sample results are qualified. The qualifications are applied to all sample results associated with this SDG.

Control limit	Sample Result	Qualification
MS/MSD paraent recovery 200/ to 740/	Non-detect	UJ
MS/MSD percent recovery 30% to 74%	Detect	J
MS/MSD percent recovery <30%	Non-detect	R
Wishwish percent recovery <30%	Detect	J
MS/MSD percent recovery >125%	Non-detect	No Action
Mo/Mob percent recovery > 125%	Detect	J

4.2 Laboratory Duplicate Analysis

The laboratory duplicate relative percent difference (RPD) criterion is applied when parent and duplicate sample concentrations are greater than or equal to 5 times the CRDL. A control limit of 20% for water matrices and 35% for soil matrices is applied when the criteria above is true. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the CRDL, a control limit of one times the CRDL is applied for water matrices and two times the CRDL for soil matrices.

The MS/MSD was performed in replace of the laboratory duplicate analysis. Sample locations associated with MS/MSD recoveries exhibiting an RPD greater than of the control limit presented in the following table.

Sample Locations	Analyte
AW-03 (4-8 COMPOSITE) AW-03 (18-20) AW-03 (20-22)	Barium
AW-04 (4-8 CÓMPOSITE) AW-04 (22-22.5) FD01111212	Mercury

The criteria used to evaluate the RPD between the MS/MSD recoveries are presented in the following table. In the case of an RPD deviation, the sample results are qualified as documented in the table below.

Control Limit	Sample Result	Qualification
\$10	Non-detect	UJ
> UL	Detect	J

5. Field Duplicate Analysis

Field duplicate analysis is used to assess the overall precision of the field sampling procedures and analytical method. A control limit of 50% for soil matrices is applied to the RPD between the parent sample and the field duplicate. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of three times the RL is applied for soil matrices.

Results for duplicate samples are summarized in the following table.

Sample ID/Duplicate ID	Compound	Sample Result	Duplicate Result	RPD
	Aluminum	6000	10500	54.5%
	Arsenic	6.2	5.4	AC
	Barium	55.8	143	87.7%
	Beryllium	0.47	1.9	AC
	Cadmium	0.38	0.4	AC
	Calcium	103000	90500	12.9%
AW-04 (4-8 COMPOSITE)/	Chromium	8.8	7.9	10.8%
FD01111212	Cobalt	4.9	4.9	0.0%
	Copper	17.8	19.6	9.6%
	Iron	12000	12600	4.9%
	Lead	45.5	47.1	3.5%
	Magnesium	38600	17900	73.3%
	Manganese	525	950	57.6%
	Nickel	13.4	14.9	AC

Sample ID/Duplicate ID	Compound	Sample Result	Duplicate Result	RPD
	Potassium	1060	1110	4.6%
	Selenium	4.6 U	1.1 J	AC
	Sodium	252	423	AC
	Vanadium	12	11.1	7.8%
	Zinc	70.7	74.7	5.5%
	Mercury	0.035	0.062	AC

AC - Acceptable

The compounds aluminum, barium, magnesium and manganese associated with sample locations AW-04 (4-8 COMPOSITE) and FD01111212 exhibited a field duplicate RPD greater than the control limit. The associated sample results from sample locations for the listed analyte were qualified as estimated.

6. Laboratory Control Sample (LCS) Analysis

The LCS analysis is used to assess the precision and accuracy of the analytical method independent of matrix interferences. The analytes associated with the LCS analysis must exhibit a percent recovery between the control limits of 80% and 120%.

The LCS analysis exhibited recoveries within the control limits.

7. Serial Dilution

The serial dilution analysis is used to assess if a significant physical or chemical interference exists due to sample matrix. Analytes exhibiting concentrations greater than 50 times the MDL in the undiluted sample are evaluated to determine if matrix interference exists. These analytes are required to have less than a 10% difference (%D) between sample results from the undiluted (parent) sample and results associated with the same sample analyzed with a five-fold dilution.

All serial dilutions were within control limits, with the exception of the analytes presented in the following table. The sample locations associated with the deviant %D are also presented in the following table.

Sample Locations	Analytes	Serial Dilution (%D)
	Calcium	15%
FD01111212	Iron	11%
	Manganese	13%
	Zinc	17%

The criteria used to evaluate the serial dilution are presented in the following table. In the case of a serial dilution deviation, the sample results are qualified as documented in the table below.

Control Limit	Sample Result	Qualification
---------------	------------------	---------------

Control Limit	Sample Result	Qualification
> UL	Non-detect	UJ
	Detect	J

8. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

DATA VALIDATION CHECKLIST FOR METAL

METALS; SW-846 6000/7000	Repo	orted		rmance ptable	Not
	No	Yes	No	Yes	Required
Inductively Coupled Plasma-Atomic Emission Spe Atomic Absorption – Manual Cold Vapor (CV)	ctrometry	(ICP)			
Tier II Validation					
Holding Times		Х		Х	
Reporting limits (units)		Х		Х	
Blanks		-			
A. Instrument Blanks		Х	Х		
B. Method Blanks		Х	Х		
C. Equipment/Field Blanks		Х	Х		
Laboratory Control Sample (LCS)		Х		Х	
Matrix Spike (MS) %R		Х	Х		
Matrix Spike Duplicate (MSD) %R		Х	Х		
MS/MSD Precision (RPD)		Х	Х		
Field/Lab Duplicate (RPD)		X	X		
ICP Serial Dilution		Х	Х		
Reporting Limit Verification		Х		X	
Raw Data		Х		Х	
Tier III Validation					
Initial Calibration Verification		Х		Х	
Continuing Calibration Verification		Х		Х	
CRDL Standard		Х		Х	
ICP Interference Check		Х		Х	
Transcription/calculation errors present		Х		Х	
Reporting limits adjusted to reflect sample dilutions		Х		Х	

%R Percent recovery
RPD Relative percent difference

GENERAL CHEMISTRY ANALYSES

1. Holding Times

The specified holding times for the following methods are presented in the following table.

Method	Matrix	Holding Time	Preservation
Total/Free Cyanide by SW- 846 9012A/9016 Water 14 days from collection to analysis	Cooled @ 4°C ± 2; preserved to a pH of greater than 12.		
	Soil	to analysis	Cooled @ 4°C ± 2.

The analyses that exceeded the holding time are presented in the following table.

Sample Locations	Preservation/ Holding Time	Criteria	
RB111212	pH=7 and analyzed in 14 days	preserved to a pH of greater than 12	

Sample results associated with sample locations analyzed by analytical method SW-846 9016 were qualified, as specified in the table below. All other holding times were met.

	Qualification			
Criteria	Detected Analytes	Non-detect Analytes		
Unpreserved	J	UJ		

2. Blank Contamination

Quality assurance (QA) blanks (i.e., method and rinse blanks) are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Rinse blanks measure contamination of samples during field operations.

A blank action level (BAL) of five times the concentration of a detected compound in an associated blank (common laboratory contaminant compounds are calculated at ten times) is calculated for QA blanks containing concentrations greater than the method detection limit (MDL). The BAL is compared to the associated sample results to determine the appropriate qualification of the sample results, if needed.

Analytes were detected in the associated QA blanks; however, the associated sample results were greater than the BAL and/or were non-detect. No other qualification of the sample results was required.

3. Calibration

Satisfactory instrument calibration is established to insure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument daily performance is satisfactory.

The correct number and type of standards were analyzed. The correlation coefficient of the initial calibration was greater than 0.995 and all initial calibration verification standard recoveries were within control limits.

All analytes associated with calibration standard recoveries were within control limits, with the exception of the analytes presented in the following table.

Sample Locations	Sample Locations Initial/Continuing		Standard Recovery	
RB111212	CCV	Cyanide	199%	

The criteria used to evaluate the initial and continuing calibration are presented in the following table. In the case of a calibration deviation, the sample results are qualified.

Analytes	Control Limit	Sample Result	Qualification
	75% to 89%	Non-detect	UJ
Overside	75% 10 89%	Detect	J
	111% to 125%	Non-detect	No Action
	111% to 125%	Detect	J
Cyanide	<75%	Non-detect	R
	<75%	Detect	J
	>125%	Non-detect	No Action
	712370	Detect	J

4. Matrix Spike/Matrix Spike Duplicate (MS/MSD)/Laboratory Duplicate Analysis

MS/MSD and laboratory duplicate data are used to assess the precision and accuracy of the analytical method.

4.1 MS/MSD Analysis

All analytes must exhibit a percent recovery within the established acceptance limits of 75% to 125%. The MS/MSD recovery control limits do not apply for MS/MSD performed on sample locations where the analyte's concentration detected in the parent sample exceeds the MS/MSD concentration by a factor of four or greater. In instance where this is true, the data will not be qualified even if the percent recovery does not meet the control limits and the laboratory flag will be removed.

The MS/MSD analysis performed on sample locations FD01111212 and RB111212 exhibited recoveries within the control limits.

4.2 Laboratory Duplicate Analysis

The laboratory duplicate relative percent difference (RPD) criterion is applied when parent and duplicate sample concentrations are greater than or equal to 5 times the CRDL. A control limit of 20% for water matrices and 35% for soil matrices is applied when the criteria above is true. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the CRDL, a control limit of one times the CRDL is applied for water matrices and two times the CRDL for soil matrices.

MS/MSD analysis was performed in replacement of the laboratory duplicate analysis. The MS/MSD recoveries exhibited acceptable RPD.

5. Field Duplicate Analysis

Field duplicate analysis is used to assess the overall precision of the field sampling procedures and analytical method. A control limit of 50% for water matrices and 100% for soil matrices is applied to the RPD between the parent sample and the field duplicate. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of two times the RL is applied for water matrices or three times the RL is applied for soil matrices.

Results for duplicate samples are summarized in the following table.

Sample ID/Duplicate ID	Compound	Sample Result	Duplicate Result	RPD
AW-04 (4-8 COMPOSITE)/	Cyanide	3.8	2.4	AC
FD01111212	Cyanide, Free	0.13 J	0.18 J	AC

AC - Acceptable

The calculated RPDs between the parent sample and field duplicate were acceptable.

6. Laboratory Control Sample (LCS) Analysis

The LCS analysis is used to assess the precision and accuracy of the analytical method independent of matrix interferences. The analytes associated with the LCS analysis must exhibit a percent recovery between the control limits of 80% and 120%.

All LCS recoveries were within control limits, with the exception of the analytes associated with sample locations, as presented in the following table.

Sample Location	Analytes	LCS Recovery		
RB111212	Cyanide, Total	65%		

The criteria used to evaluate LCS recoveries are presented in the following table. In the case of an LCS deviation, the sample results are qualified.

Control limit	Sample Result	Qualification
LCS (water) percent recovery 50% to 70%	Non-detect	ΟJ
LCS (water) percent recovery 50% to 79%	Detect	J
LCS (water) percent recovery <500/	Non-detect	R
LCS (water) percent recovery <50%	Detect	J
LCS (water) percent recovery >1200/	Non-detect	No Action
LCS (water) percent recovery >120%	Detect	J
LCC (coil) percent receivers a lower limit	Non-detect	ΠΊ
LCS (soil) percent recovery < lower limit	Detect	J
LCS (soil) percent recovery > upper limit	Non-detect	No Action
LCS (soil) percent recovery > upper limit	Detect	J

7. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

DATA VALIDATION CHECKLIST FOR GENERAL CHEMISTRY

General Chemistry: SW-846 9012A and 9016	Rep	orted		mance ptable	Not Required
	No	Yes	No	Yes	Required
Miscellaneous Instrumentation					
Tier II Validation					
Holding times		Х	Х		
Reporting limits (units)		Х		Х	
Blanks					
A. Method blanks		Х		Х	
B. Equipment blanks		Х	Х		
Laboratory Control Sample (LCS) %R		Х	Х		
Laboratory Control Sample Duplicate(LCSD) %R					х
LCS/LCSD Precision (RPD)					Х
Matrix Spike (MS) %R		Х		Х	
Matrix Spike Duplicate(MSD) %R		Х		Х	
MS/MSD Precision (RPD)		Х		Х	
Field/Lab Duplicate (RPD)		Х		Х	
Dilution Factor		Х		Х	
Moisture Content		Х		Х	
Tier III Validation					
Initial calibration %RSD or correlation coefficient		Х		Х	
Continuing calibration %R		Х	Х		
Raw Data		Х		Х	
Transcription/calculation errors present				Х	
Reporting limits adjusted to reflect sample dilutions		Х		Х	

[%]RSD – relative standard deviation, %R - percent recovery, RPD - relative percent difference, %D – difference

SAMPLE COMPLIANCE REPORT

Sample					Compliancy ¹					Noncompliance
Delivery Group (SDG)	Sampling Date	Protocol	Sample ID	Matrix	voc	svoc	PCB	MET	MISC	noncompilatios
	11/11/2012	SW846	AW-03 (4-8 COMPOSITE)	solid	no	no		no	yes	VOC-continuing calibration %D, LCS %Recovery SVOC-continuing calibration %D METALS-MS/MSD, MS/MSD RPD
	11/11/2012	SW846	AW-03 (18-20)	solid	no	no	1	no	yes	VOC- continuing calibration %D, LCS %Recovery SVOC-continuing calibration %D METALS-MS/MSD, MS/MSD RPD
	11/11/2012	SW846	AW-03 (20-22)	solid	no	no		no	yes	VOC- continuing calibration %D, LCS %Recovery METALS-MS/MSD, MS/MSD RPD
480-28494	11/12/2012	SW846	AW-04 (4-8 COMPOSITE)	solid	no	no		no	yes	VOC- continuing calibration %D, LCS %Recovery, field duplicate RPD SVOC-continuing calibration %D, field duplicate RPD METALS-MS/MSD, MS/MSD RPD, field duplicate RPD
	11/12/2012	SW846	AW-04 (22-22.5)	solid	no	no		no	yes	VOC- continuing calibration %D, LCS %Recovery SVOC-continuing calibration %D METALS-MS/MSD, MS/MSD RPD
	11/12/2012	SW846	FD01111212	solid	no	no	1-	no	yes	VOC- continuing calibration %D, LCS %Recovery, MS/MSD %Recovery, field duplicate RPD SVOC-MS/MSD %Recovery, MS/MSD RPD, continuing calibration %D, field duplicate RPD METALS-MS/MSD, MS/MSD RPD, serial dilution %D, field duplicate RPD
	11/12/2012	SW846	RB111212	solid	no	yes		no	no	VOC- continuing calibration %D, LCS %Recovery METAL-CRDL CYANIDE-continuing calibration %D,

Sample					Compliancy ¹					Noncompliance
Delivery Group (SDG)	Sampling Date	Protocol	Sample ID	Matrix	voc	svoc	PCB	MET	MISC	
										laboratory control sample %R, holding time
	11/14/2012	SW846	TB111412	water	no					VOC- continuing calibration %D, LCS %Recovery

¹ Samples which are compliant with no added validation qualifiers are listed as "yes". Samples which are non-compliant or which have added qualifiers are listed as "no". A "no" designation does not necessarily indicate that the data have been rejected or are otherwise unusable.

VALIDATION PERFORMED BY: Julie R Tantalo

SIGNATURE: Julis R. Fanther

DATE: January 16, 2013

PEER REVIEW: Dennis Capria

DATE: _ January 16, 2013

CHAIN OF CUSTODY/ CORRECTED SAMPLE ANALYSIS DATA SHEETS

MS/MSD if Sufficient Special Instructions/ Conditions of Receipt (\)"" (A fee may be assessed if samples are retained kniger than 1 month) Time Page Date THE LEADER IN ENVIRONMENTAL TESTING **TestAmerica** 1/2 more space is needed) Analysis (Attach list in Months VZ/OF 2106 S Disposal By Lab OC Requirements (Specify) Containers & Preservatives HOPN 3. Received By FOWILL IOH EONH Drinkling Water? Yes□ Not POSZH seudu_l7 N Q Тетрегатиге ол Receipt — Unknown | Return To Citient NETRIBITION: WHITE - Returned to Client with Report; CANARY - Stays with the Sample; PINK - Field Copy Sample Disposal Time Matrix P8S centry J. Bax. × X 24 Hours | 48 Hours | 7 Days | 14 Days | 21 Days 14 Other 25.51 7:38 1/12/12 7:45 05:51 2/11/11 12/R 9.15 Тіте Date 4th Sturt Buffate W 11/2/12 1/11/11 Paison B Date (Containers for each sample may be combined on one line) AW-03 (4-B Comparise) X Non-Hazard | Flammable | Skin Imfani 4-B composite Sample I.D. No. and Description So Famtain Plaza 22-22.5 18-20 20-22 Wilkeson Slip **Custody Record** FD0/11/212 Possible Hazard Identification Turn Around Time Required TB111412 BARAL RB111212 AW-03 AW-03 AW-04 3. Relinquished By Chain of AW-0 TAL-4124 (1007)

Client Sample ID: AW-03 (4-8 COMPOSITE)

Lab Sample ID: 480-28494-1 Date Sampled: 11/11/2012 1225

Client Matrix: Solid % Moisture: 18.0 Date Received: 11/14/2012 1200

8260B Volatile Organic Compounds (GC/MS)

Analysis Method: Analysis Batch: 480-91334 Instrument ID: HP5973F 8260B Prep Method: 5035 Prep Batch: 480-91149 Lab File ID: F3649.D Dilution: Initial Weight/Volume: 1.0 5.19 g 11/16/2012 1809 Final Weight/Volume: 5 mL

Analysis Date: 11/16/2012 1809 Prep Date: 11/15/2012 1402

Analyte	DryWt Corrected: Y	Result (ug/Kg)	Qualifier	MDL	RL
1,1,1-Trichloroethane		ND		0.43	5.9
1,1,2,2-Tetrachloroethai	ne	ND		0.95	5.9
1,1,2-Trichloroethane		ND		0.76	5.9
1,1,2-Trichloro-1,2,2-trif	luoroethane	ND		1.3	5.9
1,1-Dichloroethane		ND		0.72	5.9
1,1-Dichloroethene		ND		0.72	5.9
1,2,4-Trichlorobenzene		ND		0.36	5.9
1,2-Dibromo-3-Chloropr	ropane	ND		2.9	5.9
1,2-Dibromoethane		ND		0.75	5.9
1,2-Dichlorobenzene		ND		0.46	5.9
1,2-Dichloroethane		ND	-	0.29	5.9
1,2-Dichloropropane		ND		2.9	5.9
1,3-Dichlorobenzene		ND		0.30	5.9
1,4-Dichlorobenzene		ND		0.82	5.9
2-Hexanone		ND		2.9	29
2-Butanone (MEK)		ND		2.1	29
4-Methyl-2-pentanone (MIBK)	ND		1.9	29
Acetone		30		4.9	29
Benzene		ND		0.29	5.9
Bromodichloromethane		ND		0.79	5.9
Bromoform		ND		2.9	5.9
Bromomethane		ND		0.53	5.9
Carbon disulfide		ND		2.9	5.9
Carbon tetrachloride		ND		0.57	5.9
Chlorobenzene		ND		0.77	5.9
Dibromochloromethane	•	ND		0.75	5.9
Chloroethane		ND		1.3	5.9
Chloroform		ND		0.36	5.9
Chloromethane		ND		0.35	5.9
cis-1,2-Dichloroethene		ND		0.75	5.9
cis-1,3-Dichloropropene	e	ND		0.85	5.9
Cyclohexane		ND		0.82	5.9
Dichlorodifluoromethan	e	ND		0.48	5.9
Ethylbenzene		ND		0.41	5.9
Isopropylbenzene		ND		0.89	5.9
Methyl acetate		ND		1.1	5.9
Methyl tert-butyl ether		ND		0.58	5.9
Methylcyclohexane		ND J		0.89	5.9
Methylene Chloride		3.1	J	2.7	5.9
Styrene		ND		0.29	5.9
Tetrachloroethene		ND		0.79	5.9
Toluene		1.1	J	0.44	5.9
trans-1,2-Dichloroethen	ie	ND		0.61	5.9
trans-1,3-Dichloroprope		ND		2.6	5.9
Trichloroethene		ND		1.3	5.9
Trichlorofluoromethane		ND		0.56	5.9

Client: ARCADIS U.S. Inc Job Number: 480-28494-1

AW-03 (4-8 COMPOSITE) Client Sample ID:

Lab Sample ID: 480-28494-1 Date Sampled: 11/11/2012 1225

Client Matrix: Solid % Moisture: 18.0 Date Received: 11/14/2012 1200

8260B Volatile Organic Compounds (GC/MS)

Analysis Method: 8260B Prep Method: 5035

Dilution: 1.0

Analysis Date: 11/16/2012 1809 Analysis Batch: 480-91334 Prep Batch: 480-91149

Instrument ID: Lab File ID:

F3649.D Initial Weight/Volume: 5.19 g

HP5973F

Final Weight/Volume: 5 mL

11/15/2012 1402 Prep Date:

Analyte DryWt Corrected: Y Result (ug/Kg) Qualifier MDL RLVinyl chloride ND 0.72 5.9 Xylenes, Total ND 0.99 12

Surrogate	%Rec	Qualifier	Acceptance Limits
1,2-Dichloroethane-d4 (Surr)	97		64 - 126
Toluene-d8 (Surr)	85		71 - 125
4-Bromofluorobenzene (Surr)	85		72 - 126

Client Sample ID: AW-03 (18-20)

Lab Sample ID: 480-28494-2 Date Sampled: 11/11/2012 1540

Client Matrix: Solid % Moisture: 15.3 Date Received: 11/14/2012 1200

8260B Volatile Organic Compounds (GC/MS)

Analysis Method: Analysis Batch: 480-91334 Instrument ID: HP5973F 8260B Prep Method: 5035 Prep Batch: 480-91149 Lab File ID: F3650.D Dilution: Initial Weight/Volume: 5.53 g 1.0

Analysis Date: 11/16/2012 1834 Final Weight/Volume: 5 mL

Prep Date: 11/15/2012 1402

Analyte	DryWt Corrected: Y	Result (ug/Kg)	Qualifier	MDL	RL
1,1,1-Trichloroethane		ND		0.39	5.3
1,1,2,2-Tetrachloroethar	ne	ND		0.87	5.3
1,1,2-Trichloroethane		ND		0.69	5.3
1,1,2-Trichloro-1,2,2-trifl	uoroethane	ND		1.2	5.3
1,1-Dichloroethane		ND		0.65	5.3
1,1-Dichloroethene		ND		0.65	5.3
1,2,4-Trichlorobenzene		ND		0.32	5.3
1,2-Dibromo-3-Chloropr	opane	ND		2.7	5.3
1,2-Dibromoethane		ND		0.68	5.3
1,2-Dichlorobenzene		ND		0.42	5.3
1,2-Dichloroethane		ND	y	0.27	5.3
1,2-Dichloropropane		ND		2.7	5.3
1,3-Dichlorobenzene		ND		0.27	5.3
1,4-Dichlorobenzene		ND		0.75	5.3
2-Hexanone		ND		2.7	27
2-Butanone (MEK)		ND		2.0	27
4-Methyl-2-pentanone (I	MIBK)	ND		1.7	27
Acetone		ND		4.5	27
Benzene		ND		0.26	5.3
Bromodichloromethane		ND		0.71	5.3
Bromoform		ND		2.7	5.3
Bromomethane		ND		0.48	5.3
Carbon disulfide		ND		2.7	5.3
Carbon tetrachloride		ND		0.52	5.3
Chlorobenzene		ND		0.70	5.3
Dibromochloromethane		ND		0.68	5.3
Chloroethane		ND		1.2	5.3
Chloroform		ND		0.33	5.3
Chloromethane		ND		0.32	5.3
cis-1,2-Dichloroethene		ND		0.68	5.3
cis-1,3-Dichloropropene		ND		0.77	5.3
Cyclohexane		ND		0.75	5.3
Dichlorodifluoromethane	9	ND		0.44	5.3
Ethylbenzene		27		0.37	5.3
Isopropylbenzene		9.9		0.80	5.3
Methyl acetate		ND		0.99	5.3
Methyl tert-butyl ether		ND		0.52	5.3
Methylcyclohexane		ND <mark>J</mark>		0.81	5.3
Methylene Chloride		2.7	J	2.5	5.3
Styrene		ND		0.27	5.3
Tetrachloroethene		ND		0.72	5.3
Toluene		3.6	J	0.40	5.3
trans-1,2-Dichloroethene	e	ND		0.55	5.3
trans-1,3-Dichloroprope		ND		2.3	5.3
Trichloroethene		ND		1.2	5.3
Trichlorofluoromethane		ND		0.50	5.3

Client: ARCADIS U.S. Inc Job Number: 480-28494-1

Client Sample ID: AW-03 (18-20)

Lab Sample ID: 480-28494-2 Date Sampled: 11/11/2012 1540

Client Matrix: Solid % Moisture: 15.3 Date Received: 11/14/2012 1200

8260B Volatile Organic Compounds (GC/MS)

Analysis Method: 8260B Prep Method: 5035

Dilution: 1.0

Analysis Date: 11/16/2012 1834

480-91334 Analysis Batch: Prep Batch: 480-91149

Instrument ID: Lab File ID:

HP5973F F3650.D

Initial Weight/Volume: 5.53 g Final Weight/Volume: 5 mL

11/15/2012 1402 Prep Date:

Analyte DryWt Corrected: Y Result (ug/Kg) Qualifier MDL RL 5.3 Vinyl chloride ND 0.65 ND Xylenes, Total 0.90 11

%Rec Surrogate Qualifier Acceptance Limits 1,2-Dichloroethane-d4 (Surr) 101 64 - 126 Toluene-d8 (Surr) 86 71 - 125 4-Bromofluorobenzene (Surr) 89 72 - 126

Client: ARCADIS U.S. Inc Job Number: 480-28494-1

Client Sample ID: AW-03 (20-22)

Lab Sample ID: 480-28494-3 Date Sampled: 11/11/2012 1555

Client Matrix: Solid % Moisture: 16.5 Date Received: 11/14/2012 1200

8260B Volatile Organic Compounds (GC/MS)

Analysis Method: Analysis Batch: 480-91334 Instrument ID: HP5973F 8260B Prep Method: 5035 Prep Batch: 480-91149 Lab File ID: F3651.D Dilution: 5.26 g 1.0 Initial Weight/Volume: Final Weight/Volume: 5 mL

Analysis Date: 11/16/2012 1859 Prep Date: 11/15/2012 1402

Analyte	DryWt Corrected: Y	Result (ug/Kg)	Qualifier	MDL	RL
1,1,1-Trichloroethar	ne	ND		0.41	5.7
1,1,2,2-Tetrachloroe	ethane	ND		0.92	5.7
1,1,2-Trichloroethar	ne	ND		0.74	5.7
1,1,2-Trichloro-1,2,2	2-trifluoroethane	ND		1.3	5.7
1,1-Dichloroethane		ND		0.69	5.7
1,1-Dichloroethene		ND		0.70	5.7
1,2,4-Trichlorobenz	ene	ND		0.35	5.7
1,2-Dibromo-3-Chlo	ropropane	ND		2.8	5.7
1,2-Dibromoethane		ND		0.73	5.7
1,2-Dichlorobenzen	e	ND		0.45	5.7
1,2-Dichloroethane		ND	*	0.29	5.7
1,2-Dichloropropane	е	ND		2.8	5.7
1,3-Dichlorobenzen	е	ND		0.29	5.7
1,4-Dichlorobenzen	е	ND		0.80	5.7
2-Hexanone		ND		2.8	28
2-Butanone (MEK)		ND		2.1	28
4-Methyl-2-pentano	ne (MIBK)	ND		1.9	28
Acetone	,	6.6	J	4.8	28
Benzene		2.9	J	0.28	5.7
Bromodichlorometh	ane	ND		0.76	5.7
Bromoform		ND		2.8	5.7
Bromomethane		ND		0.51	5.7
Carbon disulfide		ND		2.8	5.7
Carbon tetrachloride	e.	ND		0.55	5.7
Chlorobenzene		ND		0.75	5.7
Dibromochlorometh	ane	ND		0.73	5.7
Chloroethane		ND		1.3	5.7
Chloroform		ND		0.35	5.7
Chloromethane		ND		0.34	5.7
cis-1,2-Dichloroethe	ane	ND		0.73	5.7
cis-1,3-Dichloroprop		ND		0.82	5.7
Cyclohexane	55115	ND		0.80	5.7
Dichlorodifluoromet	hane	ND		0.47	5.7
Ethylbenzene	nanc	34		0.39	5.7
Isopropylbenzene		17		0.86	5.7
Methyl acetate		ND		1.1	5.7
Methyl tert-butyl eth	ner	ND		0.56	5.7 5.7
Methylcyclohexane		ND J		0.87	5.7 5.7
Methylene Chloride		ND 3		2.6	5.7 5.7
-		ND ND		0.28	5.7 5.7
Styrene				0.26	
Tetrachloroethene Toluene		ND 6.5		0.76	5.7 5.7
	thono				
trans-1,2-Dichloroet		ND ND		0.59	5.7 5.7
trans-1,3-Dichloropi	орепе	ND		2.5	5.7
Trichloroethene		ND		1.3	5.7
Trichlorofluorometh:	ane	ND		0.54	5.7

Client: ARCADIS U.S. Inc Job Number: 480-28494-1

Client Sample ID: AW-03 (20-22)

Lab Sample ID: 480-28494-3 Date Sampled: 11/11/2012 1555

Client Matrix: Solid % Moisture: 16.5 Date Received: 11/14/2012 1200

8260B Volatile Organic Compounds (GC/MS)

Analysis Method: 8260B Prep Method: 5035

Dilution: 1.0

Analysis Date: 11/16/2012 1859

480-91334 Analysis Batch: Instrument ID: HP5973F Prep Batch: 480-91149 Lab File ID: F3651.D

Initial Weight/Volume: 5.26 g Final Weight/Volume: 5 mL

11/15/2012 1402 Prep Date:

Analyte DryWt Corrected: Y Result (ug/Kg) Qualifier MDL RL 5.7 Vinyl chloride ND 0.69 ND Xylenes, Total 0.96 11

%Rec Surrogate Qualifier Acceptance Limits 1,2-Dichloroethane-d4 (Surr) 95 64 - 126 Toluene-d8 (Surr) 84 71 - 125 4-Bromofluorobenzene (Surr) 88 72 - 126

Client: ARCADIS U.S. Inc Job Number: 480-28494-1

Client Sample ID: AW-04 (4-8 COMPOSITE)

Lab Sample ID: 480-28494-4 Date Sampled: 11/12/2012 0738

Client Matrix: Solid % Moisture: 17.8 Date Received: 11/14/2012 1200

8260B Volatile Organic Compounds (GC/MS)

Analysis Method: Analysis Batch: 480-91334 Instrument ID: HP5973F 8260B Prep Method: 5035 Prep Batch: 480-91149 Lab File ID: F3652.D Dilution: Initial Weight/Volume: 1.0 4.89 g 11/16/2012 1925 Analysis Date: Final Weight/Volume: 5 mL

Prep Date: 11/15/2012 1402

Analyte	DryWt Corrected: Y	Result (ug/Kg)	Qualifier	MDL	RL
1,1,1-Trichloroethane		ND		0.45	6.2
1,1,2,2-Tetrachloroethane		ND		1.0	6.2
1,1,2-Trichloroethane		ND		0.81	6.2
1,1,2-Trichloro-1,2,2-triflu	oroethane	ND		1.4	6.2
1,1-Dichloroethane		ND		0.76	6.2
1,1-Dichloroethene		ND		0.76	6.2
1,2,4-Trichlorobenzene		ND		0.38	6.2
1,2-Dibromo-3-Chloropro	pane	ND		3.1	6.2
1,2-Dibromoethane		ND		0.80	6.2
1,2-Dichlorobenzene		ND		0.49	6.2
1,2-Dichloroethane		ND	*	0.31	6.2
1,2-Dichloropropane		ND		3.1	6.2
1,3-Dichlorobenzene		ND		0.32	6.2
1,4-Dichlorobenzene		ND		0.87	6.2
2-Hexanone		ND		3.1	31
2-Butanone (MEK)		ND		2.3	31
4-Methyl-2-pentanone (M	IBK)	ND		2.0	31
Acetone		ND		5.2	31
Benzene		6.9		0.30	6.2
Bromodichloromethane		ND		0.83	6.2
Bromoform		ND		3.1	6.2
Bromomethane		ND		0.56	6.2
Carbon disulfide		ND		3.1	6.2
Carbon tetrachloride		ND		0.60	6.2
Chlorobenzene		ND		0.82	6.2
Dibromochloromethane		ND		0.80	6.2
Chloroethane		ND		1.4	6.2
Chloroform		ND		0.38	6.2
Chloromethane		ND		0.38	6.2
cis-1,2-Dichloroethene		ND		0.80	6.2
cis-1,3-Dichloropropene		ND		0.90	6.2
Cyclohexane		ND		0.87	6.2
Dichlorodifluoromethane		ND		0.51	6.2
Ethylbenzene		29 J		0.43	6.2
Isopropylbenzene		1.3	J	0.94	6.2
Methyl acetate		ND		1.2	6.2
Methyl tert-butyl ether		ND		0.61	6.2
Methylcyclohexane		ND <mark>J</mark>		0.95	6.2
Methylene Chloride		ND		2.9	6.2
Styrene		ND		0.31	6.2
Tetrachloroethene		ND		0.83	6.2
Toluene		4.9	J	0.47	6.2
trans-1,2-Dichloroethene		ND		0.64	6.2
trans-1,3-Dichloropropen	е	ND		2.7	6.2
Trichloroethene		ND		1.4	6.2
Trichlorofluoromethane		ND		0.59	6.2

Client: ARCADIS U.S. Inc Job Number: 480-28494-1

AW-04 (4-8 COMPOSITE) Client Sample ID:

Lab Sample ID: 480-28494-4 Date Sampled: 11/12/2012 0738

Client Matrix: Solid % Moisture: 17.8 Date Received: 11/14/2012 1200

8260B Volatile Organic Compounds (GC/MS)

Analysis Method: 8260B Prep Method: 5035

1.0

Dilution: Analysis Date: 11/16/2012 1925

11/15/2012 1402 Prep Date:

Analysis Batch: 480-91334

Prep Batch:

480-91149

Instrument ID: Lab File ID:

HP5973F F3652.D

Initial Weight/Volume: 4.89 g Final Weight/Volume: 5 mL

Analyte DryWt Corrected: Y Result (ug/Kg) Qualifier MDL RL 6.2 Vinyl chloride ND 0.76 Xylenes, Total 1.1 J 1.0 12

Surrogate %Rec Qualifier Acceptance Limits 1,2-Dichloroethane-d4 (Surr) 97 64 - 126 Toluene-d8 (Surr) 83 71 - 125 4-Bromofluorobenzene (Surr) 86 72 - 126

Client Sample ID: AW-04 (22-22.5)

Lab Sample ID: 480-28494-5 Date Sampled: 11/12/2012 0915

Client Matrix: Solid % Moisture: 16.0 Date Received: 11/14/2012 1200

8260B Volatile Organic Compounds (GC/MS)

Analysis Method: Analysis Batch: 480-91334 Instrument ID: HP5973F 8260B Prep Method: 5035 Prep Batch: 480-91149 Lab File ID: F3653.D Dilution: 5.23 g 1.0 Initial Weight/Volume: 11/16/2012 1951 Final Weight/Volume: 5 mL

Analysis Date: 11/16/2012 1951 Prep Date: 11/15/2012 1402

Analyte	DryWt Corrected: Y	Result (ug/Kg)	Qualifier	MDL	RL
1,1,1-Trichloroethan	e	ND		0.41	5.7
1,1,2,2-Tetrachloroe	thane	ND		0.92	5.7
1,1,2-Trichloroethan	e	ND		0.74	5.7
1,1,2-Trichloro-1,2,2	2-trifluoroethane	ND		1.3	5.7
1,1-Dichloroethane		ND		0.69	5.7
1,1-Dichloroethene		ND		0.70	5.7
1,2,4-Trichlorobenze	ene	ND		0.35	5.7
1,2-Dibromo-3-Chlo	ropropane	ND		2.8	5.7
1,2-Dibromoethane		ND		0.73	5.7
1,2-Dichlorobenzene	e	ND		0.45	5.7
1,2-Dichloroethane		ND	y	0.29	5.7
1,2-Dichloropropane	9	ND		2.8	5.7
1,3-Dichlorobenzene	e	ND		0.29	5.7
1,4-Dichlorobenzen	e	ND		0.80	5.7
2-Hexanone		ND		2.8	28
2-Butanone (MEK)		ND		2.1	28
4-Methyl-2-pentanoi	ne (MIBK)	ND		1.9	28
Acetone		ND		4.8	28
Benzene		7.3		0.28	5.7
Bromodichlorometha	ane	ND		0.76	5.7
Bromoform		ND		2.8	5.7
Bromomethane		ND		0.51	5.7
Carbon disulfide		ND		2.8	5.7
Carbon tetrachloride	9	ND		0.55	5.7
Chlorobenzene		ND		0.75	5.7
Dibromochlorometh	ane	ND		0.73	5.7
Chloroethane		ND		1.3	5.7
Chloroform		ND		0.35	5.7
Chloromethane		ND		0.34	5.7
cis-1,2-Dichloroethe	ene	ND		0.73	5.7
cis-1,3-Dichloroprop	ene	ND		0.82	5.7
Cyclohexane		ND		0.80	5.7
Dichlorodifluorometh	hane	ND		0.47	5.7
Ethylbenzene		5.9		0.39	5.7
Isopropylbenzene		1.6	J	0.86	5.7
Methyl acetate		ND		1.1	5.7
Methyl tert-butyl eth	er	ND		0.56	5.7
Methylcyclohexane		ND J		0.87	5.7
Methylene Chloride		ND		2.6	5.7
Styrene		ND		0.28	5.7
Tetrachloroethene		ND		0.76	5.7
Toluene		ND		0.43	5.7
trans-1,2-Dichloroet	hene	ND		0.59	5.7
trans-1,3-Dichloropr	ropene	ND		2.5	5.7
Trichloroethene		ND		1.3	5.7
Trichlorofluorometha	ane	ND		0.54	5.7

Client: ARCADIS U.S. Inc Job Number: 480-28494-1

Client Sample ID: AW-04 (22-22.5)

Lab Sample ID: 480-28494-5 Date Sampled: 11/12/2012 0915

Client Matrix: Solid % Moisture: 16.0 Date Received: 11/14/2012 1200

8260B Volatile Organic Compounds (GC/MS)

Analysis Method: 8260B Prep Method: 5035 Dilution:

1.0

11/16/2012 1951

Analysis Batch: Prep Batch:

480-91334 480-91149

Instrument ID: HP5973F Lab File ID: F3653.D Initial Weight/Volume:

Final Weight/Volume:

5.23 g 5 mL

Analysis Date: 11/15/2012 1402 Prep Date:

Analyte DryWt Corrected: Y Result (ug/Kg) Qualifier MDL RL 5.7 Vinyl chloride ND 0.69 Xylenes, Total 5.4 J 0.96 11

%Rec Surrogate Qualifier Acceptance Limits 1,2-Dichloroethane-d4 (Surr) 100 64 - 126 Toluene-d8 (Surr) 86 71 - 125 4-Bromofluorobenzene (Surr) 89 72 - 126

Job Number: 480-28494-1 Client: ARCADIS U.S. Inc

Client Sample ID: FD01111212

Lab Sample ID: 480-28494-6 Date Sampled: 11/12/2012 0000

Client Matrix: Solid % Moisture: 11.4 Date Received: 11/14/2012 1200

8260B Volatile Organic Compounds (GC/MS)

Analysis Method: Analysis Batch: 480-91334 Instrument ID: HP5973F 8260B Prep Method: 5035 Prep Batch: 480-91149 Lab File ID: F3654.D Dilution: Initial Weight/Volume: 1.0 5.14 g Final Weight/Volume: 5 mL

11/16/2012 2017 Analysis Date:

11/15/2012 1402 Prep Date:

nalyte	DryWt Corrected: Y	Result (ug/Kg)	Qualifier	MDL	RL
,1,1-Trichloroethane		ND		0.40	5.5
,1,2,2-Tetrachloroethan	е	ND		0.89	5.5
,1,2-Trichloroethane		ND		0.71	5.5
,1,2-Trichloro-1,2,2-triflu	oroethane	ND		1.3	5.5
,1-Dichloroethane		ND		0.67	5.5
,1-Dichloroethene		ND J		0.67	5.5
,2,4-Trichlorobenzene		ND		0.33	5.5
,2-Dibromo-3-Chloropro	pane	ND		2.7	5.5
,2-Dibromoethane		ND		0.71	5.5
,2-Dichlorobenzene		ND J		0.43	5.5
,2-Dichloroethane		ND	N. Carlotte	0.28	5.5
,2-Dichloropropane		ND		2.7	5.5
,3-Dichlorobenzene		ND		0.28	5.5
,4-Dichlorobenzene		ND		0.77	5.5
-Hexanone		ND		2.7	27
-Butanone (MEK)		ND		2.0	27
-Methyl-2-pentanone (M	1IBK)	ND		1.8	27
cetone	,	ND		4.6	27
enzene		ND <mark>J</mark>		0.27	5.5
romodichloromethane		ND		0.74	5.5
romoform		ND		2.7	5.5
romomethane		ND		0.49	5.5
arbon disulfide		ND		2.7	5.5
Carbon tetrachloride		ND		0.53	5.5
Chlorobenzene		ND <mark>J</mark>		0.72	5.5
bibromochloromethane		ND		0.70	5.5
Chloroethane		ND		1.2	5.5
hloroform		ND		0.34	5.5
hloromethane		ND		0.33	5.5
is-1,2-Dichloroethene		ND J		0.70	5.5
is-1,3-Dichloropropene		ND		0.79	5.5
cyclohexane		ND		0.77	5.5
ichlorodifluoromethane		ND		0.45	5.5
thylbenzene		2.0	J	0.38	5.5
sopropylbenzene		ND		0.83	5.5
lethyl acetate		ND		1.0	5.5
lethyl tert-butyl ether		ND		0.54	5.5
lethylcyclohexane		ND <mark>J</mark>		0.83	5.5
lethylene Chloride		3.7	J	2.5	5.5
tyrene		ND		0.27	5.5
etrachloroethene		ND J		0.74	5.5
oluene		ND J		0.42	5.5
ans-1,2-Dichloroethene		ND J		0.57	5.5
ans-1,3-Dichloropropen		ND		2.4	5.5
richloroethene		ND J		1.2	5.5
richlorofluoromethane		ND		0.52	5.5

Client: ARCADIS U.S. Inc Job Number: 480-28494-1

Client Sample ID: FD01111212

Lab Sample ID: 480-28494-6 Date Sampled: 11/12/2012 0000

Client Matrix: Solid % Moisture: 11.4 Date Received: 11/14/2012 1200

8260B Volatile Organic Compounds (GC/MS)

Analysis Method: 8260B Prep Method: 5035

Dilution: 1.0

Analysis Date: 11/16/2012 2017

Analysis Batch: 480-91334 Prep Batch: 480-91149

480-91334 Instrument ID: 480-91149 Lab File ID:

Instrument ID: HP5973F Lab File ID: F3654.D Initial Weight/Volume: 5.14 g

Final Weight/Volume: 5.14 g
Final Weight/Volume: 5 mL

Prep Date: 11/15/2012 1402

 Analyte
 DryWt Corrected: Y
 Result (ug/Kg)
 Qualifier
 MDL
 RL

 Vinyl chloride
 ND
 0.67
 5.5

 Xylenes, Total
 ND
 0.92
 11

Surrogate%RecQualifierAcceptance Limits1,2-Dichloroethane-d4 (Surr)10164 - 126Toluene-d8 (Surr)8571 - 1254-Bromofluorobenzene (Surr)8772 - 126

Client Sample ID: RB111212

 Lab Sample ID:
 480-28494-7
 Date Sampled: 11/12/2012 0745

 Client Matrix:
 Water
 Date Received: 11/14/2012 1200

8260B Volatile Organic Compounds (GC/MS)

Analysis Method: 8260B Analysis Batch: 480-92175 Instrument ID: HP5973G Prep Method: 5030B Prep Batch: N/A Lab File ID: G17157.D Dilution: Initial Weight/Volume: 1.0 5 mL 11/21/2012 1254 Final Weight/Volume: 5 mL

Analysis Date: 11/21/2012 1254
Prep Date: 11/21/2012 1254

Analyte	Result (ug/L)	Qualifier	MDL	RL
1,1,1-Trichloroethane	ND		0.82	1.0
1,1,2,2-Tetrachloroethane	ND		0.21	1.0
1,1,2-Trichloroethane	ND		0.23	1.0
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.31	1.0
1,1-Dichloroethane	ND		0.38	1.0
1,1-Dichloroethene	ND		0.29	1.0
1,2,4-Trichlorobenzene	ND J		0.41	1.0
1,2-Dibromo-3-Chloropropane	ND		0.39	1.0
1,2-Dibromoethane	ND		0.73	1.0
1,2-Dichlorobenzene	ND		0.79	1.0
1,2-Dichloroethane	ND		0.21	1.0
1,2-Dichloropropane	ND		0.72	1.0
1,3-Dichlorobenzene	ND		0.78	1.0
1,4-Dichlorobenzene	ND		0.84	1.0
2-Hexanone	ND		1.2	5.0
2-Butanone (MEK)	ND		1.3	10
4-Methyl-2-pentanone (MIBK)	ND		2.1	5.0
Acetone	ND		3.0	10
Benzene	ND		0.41	1.0
Bromodichloromethane	ND		0.39	1.0
Bromoform	ND		0.26	1.0
Bromomethane	ND		0.69	1.0
Carbon disulfide	ND		0.19	1.0
Carbon tetrachloride	ND		0.27	1.0
Chlorobenzene	ND		0.75	1.0
Dibromochloromethane	ND		0.32	1.0
Chloroethane	ND		0.32	1.0
Chloroform	ND		0.34	1.0
Chloromethane	ND J		0.35	1.0
cis-1,2-Dichloroethene	ND		0.81	1.0
cis-1,3-Dichloropropene	ND		0.36	1.0
Cyclohexane	ND		0.18	1.0
Dichlorodifluoromethane	ND		0.68	1.0
Ethylbenzene	ND		0.74	1.0
Isopropylbenzene	ND		0.79	1.0
Methyl acetate	ND		0.50	1.0
Methyl tert-butyl ether	ND		0.16	1.0
Methylcyclohexane	ND		0.16	1.0
Methylene Chloride	ND ND		0.44	1.0
Styrene	ND ND		0.73	1.0
Tetrachloroethene	ND ND		0.75	1.0
Toluene	ND ND		0.51	1.0
trans-1,2-Dichloroethene	ND ND		0.90	1.0
trans-1,3-Dichloropropene	ND ND		0.90	1.0
			0.37	
Trichloroethene	ND ND			1.0
Trichlorofluoromethane	ND		0.88	1.0

Client: ARCADIS U.S. Inc Job Number: 480-28494-1

Client Sample ID: RB111212

 Lab Sample ID:
 480-28494-7
 Date Sampled: 11/12/2012 0745

 Client Matrix:
 Water
 Date Received: 11/14/2012 1200

8260B Volatile Organic Compounds (GC/MS)

480-92175 Analysis Method: Analysis Batch: Instrument ID: HP5973G 8260B Prep Method: 5030B Prep Batch: N/A Lab File ID: G17157.D Dilution: 1.0 Initial Weight/Volume: 5 mL

Dilution: 1.0 Initial Weight/Volume: 5 mL Analysis Date: 11/21/2012 1254 Final Weight/Volume: 5 mL

Prep Date: 11/21/2012 1254

 Analyte
 Result (ug/L)
 Qualifier
 MDL
 RL

 Vinyl chloride
 ND
 0.90
 1.0

 Xylenes, Total
 ND
 0.66
 2.0

Surrogate%RecQualifierAcceptance Limits1,2-Dichloroethane-d4 (Surr)10866 - 137Toluene-d8 (Surr)11071 - 1264-Bromofluorobenzene (Surr)10473 - 120

Client Sample ID: TB111412

 Lab Sample ID:
 480-28494-8
 Date Sampled: 11/14/2012 0000

 Client Matrix:
 Water
 Date Received: 11/14/2012 1200

8260B Volatile Organic Compounds (GC/MS)

Analysis Method: 8260B Analysis Batch: 480-92175 Instrument ID: HP5973G Prep Method: 5030B Prep Batch: N/A Lab File ID: G17158.D Dilution: Initial Weight/Volume: 1.0 5 mL 11/21/2012 1316 Final Weight/Volume: 5 mL

Analysis Date: 11/21/2012 1316 Prep Date: 11/21/2012 1316

Analyte	Result (ug/L)	Qualifier	MDL	RL
1,1,1-Trichloroethane	ND		0.82	1.0
1,1,2,2-Tetrachloroethane	ND		0.21	1.0
1,1,2-Trichloroethane	ND		0.23	1.0
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.31	1.0
1,1-Dichloroethane	ND		0.38	1.0
1,1-Dichloroethene	ND		0.29	1.0
1,2,4-Trichlorobenzene	ND J		0.41	1.0
1,2-Dibromo-3-Chloropropane	ND		0.39	1.0
1,2-Dibromoethane	ND		0.73	1.0
1,2-Dichlorobenzene	ND		0.79	1.0
1,2-Dichloroethane	ND		0.21	1.0
1,2-Dichloropropane	ND		0.72	1.0
1,3-Dichlorobenzene	ND		0.78	1.0
1,4-Dichlorobenzene	ND		0.84	1.0
2-Hexanone	ND		1.2	5.0
2-Butanone (MEK)	ND		1.3	10
4-Methyl-2-pentanone (MIBK)	ND		2.1	5.0
Acetone	ND		3.0	10
Benzene	ND		0.41	1.0
Bromodichloromethane	ND		0.39	1.0
Bromoform	ND		0.26	1.0
Bromomethane	ND		0.69	1.0
Carbon disulfide	ND		0.19	1.0
Carbon tetrachloride	ND		0.27	1.0
Chlorobenzene	ND		0.75	1.0
Dibromochloromethane	ND		0.32	1.0
Chloroethane	ND		0.32	1.0
Chloroform	ND		0.34	1.0
Chloromethane	ND J		0.35	1.0
cis-1,2-Dichloroethene	ND		0.81	1.0
cis-1,3-Dichloropropene	ND		0.36	1.0
Cyclohexane	ND		0.18	1.0
Dichlorodifluoromethane	ND		0.68	1.0
Ethylbenzene	ND		0.74	1.0
Isopropylbenzene	ND		0.79	1.0
Methyl acetate	ND		0.50	1.0
Methyl tert-butyl ether	ND		0.16	1.0
Methylcyclohexane	ND		0.16	1.0
Methylene Chloride	ND		0.44	1.0
Styrene	ND		0.73	1.0
Tetrachloroethene	ND		0.36	1.0
Toluene	ND		0.51	1.0
trans-1,2-Dichloroethene	ND		0.90	1.0
trans-1,3-Dichloropropene	ND		0.37	1.0
Trichloroethene	ND		0.46	1.0
Trichlorofluoromethane	ND		0.88	1.0

Client: ARCADIS U.S. Inc Job Number: 480-28494-1

Client Sample ID: TB111412

 Lab Sample ID:
 480-28494-8
 Date Sampled: 11/14/2012 0000

 Client Matrix:
 Water
 Date Received: 11/14/2012 1200

8260B Volatile Organic Compounds (GC/MS)

480-92175 Analysis Method: Analysis Batch: Instrument ID: HP5973G 8260B Prep Method: 5030B Prep Batch: N/A Lab File ID: G17158.D Dilution: 1.0 Initial Weight/Volume: 5 mL

Dilution: 1.0 Initial Weight/Volume: 5 mL

Analysis Date: 11/21/2012 1316 Final Weight/Volume: 5 mL

Prep Date: 11/21/2012 1316

 Analyte
 Result (ug/L)
 Qualifier
 MDL
 RL

 Vinyl chloride
 ND
 0.90
 1.0

 Xylenes, Total
 ND
 0.66
 2.0

 Surrogate
 %Rec
 Qualifier
 Acceptance Limits

 1,2-Dichloroethane-d4 (Surr)
 109
 66 - 137

 Toluene-d8 (Surr)
 113
 71 - 126

 4-Bromofluorobenzene (Surr)
 106
 73 - 120

Client Sample ID: AW-03 (4-8 COMPOSITE)

Lab Sample ID: 480-28494-1 Date Sampled: 11/11/2012 1225

Client Matrix: Solid % Moisture: 18.0 Date Received: 11/14/2012 1200

8270C Semivolatile Organic Compounds (GC/MS)

480-92433 Analysis Method: 8270C Analysis Batch: Instrument ID: HP5973V Prep Method: 3550B Prep Batch: 480-91320 Lab File ID: V6953.D Dilution: 1.0 Initial Weight/Volume: +30.48 g 11/23/2012 2011 Analysis Date: Final Weight/Volume: 1 mL Prep Date: 11/16/2012 0828 Injection Volume: 1 uL

Analyte DryWt Corrected: Y Result (ug/Kg) Qualifier MDL RL 200 Biphenyl 28 13 ND 21 200 bis (2-chloroisopropyl) ether 2,4,5-Trichlorophenol ND 44 200 ND 13 200 2.4.6-Trichlorophenol 2,4-Dichlorophenol ND 11 200 2,4-Dimethylphenol ND 55 200 71 2,4-Dinitrophenol ND 400 2,4-Dinitrotoluene ND 31 200 2,6-Dinitrotoluene ND 50 200 2-Chloronaphthalene ND 14 200 ND 10 200 2-Chlorophenol J 2.5 200 2-Methylnaphthalene 98 2-Methylphenol ND 6.2 200 2-Nitroaniline ND 65 400 2-Nitrophenol ND 9.3 200 3,3'-Dichlorobenzidine ND 180 200 3-Nitroaniline ND 47 400 70 4,6-Dinitro-2-methylphenol ND 400 4-Bromophenyl phenyl ether ND 64 200 4-Chloro-3-methylphenol ND 8.3 200 4-Chloroaniline ND 59 200 ND 4.3 200 4-Chlorophenyl phenyl ether 4-Methylphenol ND 11 400 4-Nitroaniline ND 23 400 4-Nitrophenol ND 49 400 Acenaphthene 140 J 2.4 200 40 J 1.7 200 Acenaphthylene ND 10 200 Acetophenone Anthracene 260 5.2 200 Atrazine ND 9.0 200 Benzaldehyde ND 22 200 Benzo(a)anthracene 860 3.5 200 Benzo(a)pyrene 1000 4.9 200 Benzo(b)fluoranthene 1300 3.9 200 Benzo(g,h,i)perylene 360 J 2.4 200 Benzo(k)fluoranthene 570 2.2 200 Bis(2-chloroethoxy)methane ND 11 200 Bis(2-chloroethyl)ether ND 17 200 Bis(2-ethylhexyl) phthalate 650 65 200 Butyl benzyl phthalate ND 54 200 Caprolactam ND 88 200 Carbazole 98 J 2.3 200 Chrysene 750 2.0 200 ND 70 200 Di-n-butyl phthalate 4.7 200 Di-n-octyl phthalate 150 J Dibenz(a,h)anthracene 230 2.4 200

Client: ARCADIS U.S. Inc Job Number: 480-28494-1

Client Sample ID: AW-03 (4-8 COMPOSITE)

Lab Sample ID: 480-28494-1 Date Sampled: 11/11/2012 1225

Client Matrix: Solid % Moisture: 18.0 Date Received: 11/14/2012 1200

8270C Semivolatile Organic Compounds (GC/MS)

480-92433 Analysis Method: 8270C Analysis Batch: Instrument ID: HP5973V Prep Method: 3550B Prep Batch: 480-91320 Lab File ID: V6953.D Dilution: 1.0 Initial Weight/Volume: +30.48 g 11/23/2012 2011 Analysis Date: Final Weight/Volume: 1 mL 11/16/2012 0828 Prep Date: Injection Volume: 1 uL

Qualifier RL Analyte DryWt Corrected: Y Result (ug/Kg) MDL Dibenzofuran 84 2.1 200 ND Diethyl phthalate 6.1 200 Dimethyl phthalate 200 ND 5.3 Fluoranthene 1400 2.9 200 130 J 4.7 200 Fluorene Hexachlorobenzene ND 200 10 ND 200 Hexachlorobutadiene 10 200 Hexachlorocyclopentadiene ND 61 Hexachloroethane ND 16 200 380 200 Indeno(1,2,3-cd)pyrene 5.6 Isophorone ND 10 200 N-Nitrosodi-n-propylamine ND 16 200 N-Nitrosodiphenylamine ND 200 11 Naphthalene 830 3.4 200 Nitrobenzene ND 9.0 200 Pentachlorophenol ND 400 69 Phenanthrene 870 200 4.2 21 Phenol ND 200 200 Pyrene 1100 1.3

Surrogate	%Rec	Qualifier	Acceptance Limits
2,4,6-Tribromophenol	104		39 - 146
2-Fluorobiphenyl	92		37 - 120
2-Fluorophenol	82		18 - 120
Nitrobenzene-d5	91		34 - 132
p-Terphenyl-d14	85		65 - 153
Phenol-d5	93		11 - 120

Client Sample ID: AW-03 (18-20)

Lab Sample ID: 480-28494-2 Date Sampled: 11/11/2012 1540

Client Matrix: Solid % Moisture: 15.3 Date Received: 11/14/2012 1200

8270C Semivolatile Organic Compounds (GC/MS)

Analysis Method: Analysis Batch: 480-92433 Instrument ID: 8270C HP5973V Prep Method: 3550B Prep Batch: 480-91320 Lab File ID: V6954.D Dilution: 1.0 Initial Weight/Volume: +30.55 g

Analysis Date: 11/23/2012 2035 Final Weight/Volume: 1 mL
Prep Date: 11/16/2012 0828 Injection Volume: 1 uL

Analyte	DryWt Corrected: Y	Result (ug/Kg)	Qualifier	MDL	RL
Biphenyl		12	J	12	200
bis (2-chloroisopropyl) ether		ND		20	200
2,4,5-Trichlorophenol		ND		43	200
2,4,6-Trichlorophenol		ND		13	200
2,4-Dichlorophenol		ND		10	200
2,4-Dimethylphenol		ND		53	200
2,4-Dinitrophenol		ND		68	380
2,4-Dinitrotoluene		ND		30	200
2,6-Dinitrotoluene		ND		48	200
2-Chloronaphthalene		ND		13	200
2-Chlorophenol		ND		10	200
2-Methylnaphthalene		7.1	J	2.4	200
2-Methylphenol		ND		6.0	200
2-Nitroaniline		ND		63	380
2-Nitrophenol		ND		8.9	200
3,3'-Dichlorobenzidine		ND		170	200
3-Nitroaniline		ND		45	380
4,6-Dinitro-2-methylphenol		ND		68	380
4-Bromophenyl phenyl ether		ND		62	200
4-Chloro-3-methylphenol		ND		8.0	200
4-Chloroaniline		ND		57	200
4-Chlorophenyl phenyl ether		ND		4.2	200
4-Methylphenol		ND		11	380
4-Nitroaniline		ND		22	380
4-Nitrophenol		ND		47	380
Acenaphthene		410		2.3	200
Acenaphthylene		6.2	J	1.6	200
Acetophenone		ND		10	200
Anthracene		75	J	5.0	200
Atrazine		ND		8.7	200
Benzaldehyde		ND		21	200
Benzo(a)anthracene		78	J	3.4	200
Benzo(a)pyrene		160	J	4.7	200
Benzo(b)fluoranthene		200		3.8	200
Benzo(g,h,i)perylene		25	J	2.3	200
Benzo(k)fluoranthene		47	J	2.2	200
Bis(2-chloroethoxy)methane		ND		11	200
Bis(2-chloroethyl)ether		ND		17	200
Bis(2-ethylhexyl) phthalate		130	J	63	200
Butyl benzyl phthalate		ND		53	200
Caprolactam		ND		85	200
Carbazole		170	J	2.3	200
Chrysene		72	J	2.0	200
Di-n-butyl phthalate		ND		68	200
Di-n-octyl phthalate		ND		4.6	200
Dibenz(a,h)anthracene		ND		2.3	200

Job Number: 480-28494-1 Client: ARCADIS U.S. Inc

Client Sample ID: AW-03 (18-20)

Lab Sample ID: 480-28494-2 Date Sampled: 11/11/2012 1540

Client Matrix: Solid % Moisture: 15.3 Date Received: 11/14/2012 1200

8270C Semivolatile Organic Compounds (GC/MS)

Analysis Method: 8270C Analysis Batch: 480-92433 Instrument ID: HP5973V Prep Method: 3550B Prep Batch: 480-91320 Lab File ID: V6954.D Dilution: Initial Weight/Volume: +30.55 g Analysis Date: 11/23/2012 2035 Final Weight/Volume: 1 mL

Prep Date: 11/16/2	012 0828		Injection Volume: 1 uL			
Analyte	DryWt Corrected: Y	Result (ug/Kg)	Qualifier	MDL	RL	
Dibenzofuran		220		2.0	200	
Diethyl phthalate		ND		5.9	200	
Dimethyl phthalate		ND		5.1	200	
Fluoranthene		150	J	2.8	200	
Fluorene		190	J	4.5	200	
Hexachlorobenzene		ND		9.7	200	
Hexachlorobutadiene		ND		10	200	
Hexachlorocyclopentadiene		ND		59	200	
Hexachloroethane		ND		15	200	
Indeno(1,2,3-cd)pyrene		140	J	5.4	200	
Isophorone		ND		9.8	200	
N-Nitrosodi-n-propylamine		ND		15	200	
N-Nitrosodiphenylamine		ND		11	200	
Naphthalene		67	J	3.3	200	
Nitrobenzene		ND		8.7	200	
Pentachlorophenol		ND		67	380	
Phenanthrene		220		4.1	200	
Phenol		ND		21	200	
Pyrene		100	J	1.3	200	
Surrogate		%Rec	Qualifier	Accepta	nce Limits	
2,4,6-Tribromophenol		98		39 - 146	3	
2-Fluorobiphenyl		85		37 - 120)	
2-Fluorophenol		74		18 - 120)	
Nitrobenzene-d5		82		34 - 132	2	
p-Terphenyl-d14		82		65 - 153	3	
Dhanal dE		0.5		11 120	•	

Surrogate	%Rec	Qualifier	Acceptance Limits
2,4,6-Tribromophenol	98		39 - 146
2-Fluorobiphenyl	85		37 - 120
2-Fluorophenol	74		18 - 120
Nitrobenzene-d5	82		34 - 132
p-Terphenyl-d14	82		65 - 153
Phenol-d5	85		11 - 120

Job Number: 480-28494-1 Client: ARCADIS U.S. Inc

Client Sample ID: AW-03 (20-22)

Lab Sample ID: 480-28494-3 Date Sampled: 11/11/2012 1555

Client Matrix: Solid % Moisture: 16.5 Date Received: 11/14/2012 1200

8270C Semivolatile Organic Compounds (GC/MS)

Analysis Method: 8270C Analysis Batch: 480-92564 Instrument ID: HP5973V Prep Method: 3550B Prep Batch: 480-91320 Lab File ID: V6968.D Dilution: Initial Weight/Volume: 1.0 +30.29 g 11/24/2012 1620 Analysis Date: Final Weight/Volume: 1 mL

11/16/2012 0828 Prep Date: Injection Volume: 1 uL

Analyte	DryWt Corrected: Y	Result (ug/Kg)	Qualifier	MDL	RL
Biphenyl		ND		12	200
bis (2-chloroisopropyl) ether		ND		21	200
2,4,5-Trichlorophenol		ND		44	200
2,4,6-Trichlorophenol		ND		13	200
2,4-Dichlorophenol		ND		10	200
2,4-Dimethylphenol		ND		54	200
2,4-Dinitrophenol		ND		70	390
2,4-Dinitrotoluene		ND		31	200
2,6-Dinitrotoluene		ND		49	200
2-Chloronaphthalene		ND		13	200
2-Chlorophenol		ND		10	200
2-Methylnaphthalene		ND		2.4	200
2-Methylphenol		ND		6.2	200
2-Nitroaniline		ND		64	390
2-Nitrophenol		ND		9.2	200
3,3'-Dichlorobenzidine		ND		180	200
3-Nitroaniline		ND		46	390
4,6-Dinitro-2-methylphenol		ND		69	390
4-Bromophenyl phenyl ether		ND		64	200
4-Chloro-3-methylphenol		ND		8.2	200
4-Chloroaniline		ND		59	200
4-Chlorophenyl phenyl ether		ND		4.3	200
4-Methylphenol		ND		11	390
4-Nitroaniline		ND		22	390
4-Nitrophenol		ND		49	390
Acenaphthene		120	J	2.4	200
Acenaphthylene		ND		1.6	200
Acetophenone		ND		10	200
Anthracene		11	J	5.1	200
Atrazine		ND		8.9	200
Benzaldehyde		ND		22	200
Benzo(a)anthracene		ND		3.5	200
Benzo(a)pyrene		96	J	4.8	200
Benzo(b)fluoranthene		130	J	3.9	200
Benzo(g,h,i)perylene		ND		2.4	200
Benzo(k)fluoranthene		7.3	J	2.2	200
Bis(2-chloroethoxy)methane		ND		11	200
Bis(2-chloroethyl)ether		ND		17	200
Bis(2-ethylhexyl) phthalate		160	J	64	200
Butyl benzyl phthalate		ND		54	200
Caprolactam		ND		87	200
Carbazole		97	J	2.3	200
Chrysene		14	J	2.0	200
Di-n-butyl phthalate		ND		69	200
Di-n-octyl phthalate		ND		4.7	200
Di ii ootyi piitiiaiate		IND		7.1	200

Job Number: 480-28494-1 Client: ARCADIS U.S. Inc

Client Sample ID: AW-03 (20-22)

Lab Sample ID: 480-28494-3 Date Sampled: 11/11/2012 1555

Client Matrix: Date Received: 11/14/2012 1200 Solid % Moisture: 16.5

8270C Semivolatile Organic Compounds (GC/MS)

Analysis Method: 8270C Analysis Batch: 480-92564 Instrument ID: HP5973V Prep Method: 3550B Prep Batch: 480-91320 Lab File ID: V6968.D Dilution: Initial Weight/Volume: 1.0 +30.29 g 11/24/2012 1620 Analysis Date: Final Weight/Volume: 1 mL

Allalysis Date. 1124/2012 1020			Tillal Weight Volume. Till			
Prep Date: 11/16/2012 0828			Injec	tion Volume:	1 uL	
Analyte	DryWt Corrected: Y	Result (ug/Kg)	Qualifier	MDL	RL	
Dibenzofuran		43	J	2.1	200	
Diethyl phthalate		ND		6.0	200	
Dimethyl phthalate		ND		5.2	200	
Fluoranthene		21	J	2.9	200	
Fluorene		27	J	4.6	200	
Hexachlorobenzene		ND		9.9	200	
Hexachlorobutadiene		ND		10	200	
Hexachlorocyclopentadiene	е	ND		61	200	
Hexachloroethane		ND		15	200	
Indeno(1,2,3-cd)pyrene		ND		5.5	200	
Isophorone		ND		10	200	
N-Nitrosodi-n-propylamine		ND		16	200	
N-Nitrosodiphenylamine		ND		11	200	
Naphthalene		42	J	3.3	200	
Nitrobenzene		ND		8.9	200	
Pentachlorophenol		ND		69	390	
Phenanthrene		32	J	4.2	200	
Phenol		ND		21	200	
Pyrene		19	J	1.3	200	
Surrogate		%Rec	Qualifier	Accepta	ance Limits	
2,4,6-Tribromophenol		103		39 - 146	3	
2-Fluorobiphenyl		84		37 - 120)	
2-Fluorophenol		72		18 - 120)	
Nitrobenzene-d5		80		34 - 132	<u> </u>	
p-Terphenyl-d14		99		65 - 153		
Phenol-d5		82		11 - 120)	

Client Sample ID: AW-04 (4-8 COMPOSITE)

Lab Sample ID: 480-28494-4 Date Sampled: 11/12/2012 0738

Client Matrix: Solid % Moisture: 17.8 Date Received: 11/14/2012 1200

8270C Semivolatile Organic Compounds (GC/MS)

480-92433 Analysis Method: 8270C Analysis Batch: Instrument ID: HP5973V Prep Method: 3550B Prep Batch: 480-91320 Lab File ID: V6955.D Dilution: 5.0 Initial Weight/Volume: +30.71 g 11/23/2012 2059 Analysis Date: Final Weight/Volume: 1 mL Prep Date: 11/16/2012 0828 Injection Volume: 1 uL

Analyte DryWt Corrected: Y Result (ug/Kg) Qualifier MDL RL 62 Biphenyl ND 1000 ND bis (2-chloroisopropyl) ether 100 1000 2,4,5-Trichlorophenol ND 220 1000 ND 66 1000 2.4.6-Trichlorophenol 2,4-Dichlorophenol ND 53 1000 2,4-Dimethylphenol ND 270 1000 2,4-Dinitrophenol ND 350 2000 2,4-Dinitrotoluene ND 160 1000 2,6-Dinitrotoluene ND 250 1000 2-Chloronaphthalene ND 67 1000 ND 51 1000 2-Chlorophenol J 1000 2-Methylnaphthalene 66 12 2-Methylphenol ND 31 1000 2-Nitroaniline ND 320 2000 2-Nitrophenol ND 46 1000 3,3'-Dichlorobenzidine ND 880 1000 3-Nitroaniline ND 230 2000 4,6-Dinitro-2-methylphenol ND 350 2000 4-Bromophenyl phenyl ether ND 320 1000 4-Chloro-3-methylphenol ND 41 1000 4-Chloroaniline ND 290 1000 ND 1000 4-Chlorophenyl phenyl ether 21 4-Methylphenol ND 56 2000 4-Nitroaniline ND 110 2000 4-Nitrophenol ND 240 2000 Acenaphthene 180 J 12 1000 160 J 8.2 1000 Acenaphthylene ND 51 Acetophenone 1000 Anthracene 690 J 26 1000 Atrazine ND 45 1000 Benzaldehyde ND 110 1000 Benzo(a)anthracene 1400 17 1000 Benzo(a)pyrene 1600 24 1000 Benzo(b)fluoranthene 1900 19 1000 Benzo(g,h,i)perylene 340 J 12 1000 Benzo(k)fluoranthene 1100 11 1000 Bis(2-chloroethoxy)methane ND 55 1000 Bis(2-chloroethyl)ether ND 87 1000 Bis(2-ethylhexyl) phthalate ND 320 1000 Butyl benzyl phthalate ND 270 1000 Caprolactam ND 430 1000 Carbazole 110 J 12 1000 Chrysene 1400 10 1000 ND 350 1000 Di-n-butyl phthalate 23 1000 Di-n-octyl phthalate ND Dibenz(a,h)anthracene 800 J 12 1000

11 - 120

Client: ARCADIS U.S. Inc Job Number: 480-28494-1

Client Sample ID: AW-04 (4-8 COMPOSITE)

Phenol-d5

Lab Sample ID: 480-28494-4 Date Sampled: 11/12/2012 0738

Client Matrix: Solid % Moisture: 17.8 Date Received: 11/14/2012 1200

8270C Semivolatile Organic Compounds (GC/MS)

Analysis Method: 8270C Analysis Batch: 480-92433 Instrument ID: HP5973V Prep Method: 3550B Prep Batch: 480-91320 Lab File ID: V6955.D Dilution: 5.0 Initial Weight/Volume: +30.71 g Analysis Date: 11/23/2012 2059 Final Weight/Volume: 1 mL

Prep Date: 11/1	6/2012 0828	Injec	Injection Volume: 1 uL			
Analyte	DryWt Corrected: Y	Result (ug/Kg)	Qualifier	MDL	RL	
Dibenzofuran		130	J	10	1000	
Diethyl phthalate		ND		30	1000	
Dimethyl phthalate		ND		26	1000	
Fluoranthene		2600 J		15	1000	
Fluorene		270	J	23	1000	
Hexachlorobenzene		ND		50	1000	
Hexachlorobutadiene		ND		51	1000	
Hexachlorocyclopentadier	ne	ND		300	1000	
Hexachloroethane		ND		78	1000	
Indeno(1,2,3-cd)pyrene		890	J	28	1000	
Isophorone		ND		50	1000	
N-Nitrosodi-n-propylamine	е	ND		79	1000	
N-Nitrosodiphenylamine		ND		55	1000	
Naphthalene		160	J	17	1000	
Nitrobenzene		ND		44	1000	
Pentachlorophenol		ND		340	2000	
Phenanthrene		1600 J		21	1000	
Phenol		ND		110	1000	
Pyrene		1900 J		6.5	1000	
Surrogate		%Rec	Qualifier	Accepta	ance Limits	
2,4,6-Tribromophenol		81		39 - 146	3	
2-Fluorobiphenyl		85		37 - 120)	
2-Fluorophenol		71		18 - 120)	
Nitrobenzene-d5		77		34 - 132	2	
p-Terphenyl-d14		78		65 - 153	3	

80

Client Sample ID: AW-04 (22-22.5)

Lab Sample ID: 480-28494-5 Date Sampled: 11/12/2012 0915

Client Matrix: Solid % Moisture: 16.0 Date Received: 11/14/2012 1200

8270C Semivolatile Organic Compounds (GC/MS)

Analysis Method: 8270C Analysis Batch: 480-92433 Instrument ID: HP5973V Prep Method: 3550B Prep Batch: 480-91320 Lab File ID: V6956.D Dilution: Initial Weight/Volume: 1.0 +30.90 g Analysis Date: 11/23/2012 2124 Final Weight/Volume: 1 mL

 Analysis Date:
 11/23/2012
 2124
 Final Weight/Volume:
 1 mL

 Prep Date:
 11/16/2012
 0828
 Injection Volume:
 1 uL

bis (2-bloriosispropy) ether	Analyte	DryWt Corrected: Y	Result (ug/Kg)	Qualifier	MDL	RL
2.4.5-Trichlorophenol	Biphenyl		ND			200
2.4 B-Trichlorophenol ND 13 200 2.4-Dinethylphenol 99 J 53 200 2.4-Dinitrophenol ND 68 380 2.4-Dinitrophenol ND 30 200 2.6-Dinitrotoluene ND 30 200 2.6-Dinitrotoluene ND 48 200 2.6-Dinitrotoluene ND 48 200 2.Chiorophenol ND 48 200 2-Chiorophenol ND 9.9 200 2-Methylphaphthalene ND 6.0 200 2-Methylphaphthalene ND 6.0 200 2-Methylphaphthalene ND 6.0 200 2-Mitrophanol ND 6.0 200 2-Nitropalmine ND 63 380 2-Nitropalmine ND 45 380 4-Bromophenyl phenyl ether ND 67 380 4-Bromophenyl phenyl ether ND 67 380 4-Bromophenyl phenyl ethe	bis (2-chloroisopropyl) ether		ND		20	200
2.4-Dichlorophenol 99 J 53 200 2.4-Dinitrophenol 99 J 53 200 2.4-Dinitrophenol ND 68 380 2.4-Dinitrophenol ND 68 380 2.4-Dinitrophenol ND 30 200 2.5-Dinitrotoluene ND 48 200 2.5-Dinitrotoluene ND 48 200 2.5-Dinitrotoluene ND 48 200 2.5-Dinitrophenol ND 13 200 2.5-Dinitrophenol ND 13 200 2.5-Dinitrophenol ND 13 200 2.5-Dinitrophenol ND 2.4 200 2.5-Dinitrophenol ND 2.4 200 2.5-Dinitrophenol ND 2.4 200 2.5-Dinitrophenol ND 6.0 200 2.5-Dinitrophenol ND 66 380 4.6-Dinitro-2-methylphenol ND 46 380 4.6-Dinitro-2-methylphenol ND 67 380 4.6-Dinitro-2-methylphenol ND 67 380 4.6-Dinitro-2-methylphenol ND 67 380 4-Chiorophenyl phenyl ether ND 62 200 4-Chiorophenyl phenyl ether ND 62 200 4-Chiorophenyl phenyl ether ND 4.2 200 4-Chiorophenyl Phenyl ether ND 4.2 200 4-Methylphenol ND 4.2 200 4-Methylphenol ND 4.7 380 4-Nitrophenol ND 4.7 380 4-Nitrophenol ND 4.7 380 4-Nitrophenol ND 4.7 380 4-Renaphithene ND 11 200 4-Renaphithene ND 10 200 4-Retaphenone ND 11 200 4-Retapheno	2,4,5-Trichlorophenol		ND		43	200
2.4-Dinitrophenol 99 J 53 200 2.4-Dinitrophenol ND 68 380 2.4-Dinitrotoluene ND 30 200 2.6-Dinitrotoluene ND 30 200 2.6-Dinitrotoluene ND 13 200 2.6-Dinitrotoluene ND 13 200 2.6-Dinitrotoluene ND 13 200 2.6-Dinophenol ND 13 200 2.5-Dinophenol ND 13 200 2.5-Dinophenol ND 9.9 200 2.5-Dinophenol ND 9.9 200 2.5-Methylpaphthalene ND 9.9 200 2.5-Methylpaphthalene ND 6.0 200 2.5-Mitrophenol ND 6.0 200 2.5-Nitrophenol ND 6.0 200 3.3-Dichlorobenzidine ND 63 380 3.80 3.3-Dichlorobenzidine ND 170 200 3.3-Dichlorobenzidine ND 170 200 3.3-Dichlorobenzidine ND 67 380 4.6-Dinitro-2-methylphenol ND 62 200 4.6-Rioroaniline ND 62 200 4.6-Rioroaniline ND 8.0 200 4.6-Rioroaniline ND 8.0 200 4.6-Rioroaniline ND 8.0 200 4.6-Rioroaniline ND 111 380 4.6-Nitrophenyl phenyl ether ND 111 380 4.6-Nitrophenyl phenyl ether ND 111 380 4.6-Nitrophenol ND 10 200 4.6-Rioroaniline ND 16 200 4.6-Rioroaniline ND 17 200 4.6	2,4,6-Trichlorophenol		ND			200
2.4-Dinitrophenol ND 68 380 2.4-Dinitrotoluene ND 30 200 2.6-Dinitrotoluene ND 48 200 2-Chioronaphthalene ND 13 200 2-Chiorophenol ND 9.9 200 2-Methylphenol ND 6.0 200 2-Methylphenol ND 6.3 380 2-Nitrophenol ND 6.3 380 2-Nitrophenol ND 8.9 200 3-Nitrophenol ND 8.9 200 3-Nitrophenol ND 170 200 3-Nitrophenol ND 45 380 4-B-Tomophenyl phenyl ether ND 67 380 4-Bromophenyl phenyl ether ND 62 200 4-Chlorophenyl phenyl ether ND 57 200 4-Chlorophenyl phenyl ether ND 57 200 4-Chlorophenyl phenyl ether ND 42 200 4-Mitrophenol ND 11 380 4-Nitrophenol ND 47 <	2,4-Dichlorophenol		ND		10	200
2,4-Dinitrotoluene ND 30 200 2,6-Dinitrotoluene ND 48 200 2,6-Dinitrotoluene ND 13 200 2-Chlorophenol ND 9,9 200 2-Methylaphthalene ND 2,4 200 2-Methylaphthalene ND 6,0 200 2-Mitrophenol ND 63 380 2-Nitrophenol ND 8,9 200 3,3-Dichlorobenzidine ND 170 200 3-Nitroaniline ND 45 380 4-Bornophenyl phenyl ether ND 67 380 4-Bromophenyl phenyl ether ND 8,0 200 4-Chloros-methylphenol ND 8,0 200 4-Chloroshenyl phenyl ether ND 8,0 200 4-Chlorophenyl phenyl ether ND 4,2 200 4-Chlorophenyl phenyl ether ND 4,2 200 4-Chlorophenyl phenyl ether ND 4,2 200 4-Methylphenol ND 4,2 200 4-Methylphenol	2,4-Dimethylphenol		99	J	53	200
2,6-Dinitrotoluene ND 48 200 2-Chloronaphthalene ND 13 200 2-Chlorophenol ND 9,9 200 2-Methylphaphthalene ND 2,4 200 2-Methylphenol ND 6,0 200 2-Nitroaniline ND 6,3 380 2-Nitrophenol ND 8,9 200 3-Nitroaniline ND 45 380 4-B-Dinitro-2-methylphenol ND 67 380 4-B-Tomophenyl phenyl ether ND 67 380 4-B-Tomophenyl phenyl ether ND 62 200 4-Chloroaniline ND 57 200 4-Chloroaniline ND 57 200 4-Chlorophenyl phenyl ether ND 42 200 4-Chlorophenyl phenyl ether ND 42 200 4-Mitrophenol ND 47 380 4-Nitrophenol ND 47 380 4-Nitrophenol ND 47 380 Acenaphthene ND 50 <	2,4-Dinitrophenol		ND		68	380
2-Chlorophthalene 2-Chlorophenol ND 2-Chlorophenol ND 9.9 2-Oo 2-Methylphenol ND 2-4 2-4 200 2-Methylphenol ND 6.0 2-2 2-Methylphenol ND 6.0 2-Methylphenol ND 6.0 2-Nitrophiline ND 6.0 2-Nitrophiline ND 6.0 3-3-Dichlorobenzidine ND 3-3-Dichlorobenzidine ND 170 200 3-3-Dichlorobenzidine ND 170 200 3-3-Dichlorobenzidine ND 170 200 3-Nitrophiline ND 67 380 4-6-Dinitro-2-methylphenol ND 67 380 4-Bromophenyl phenyl ether ND 67 200 4-Bromophenyl phenyl ether ND 67 200 4-Chlorophenyl phenyl ether ND 4-Chlorophenyl phenyl ether ND 4-Chlorophenyl phenyl ether ND 4-Chlorophenyl ether ND 4-Rethylphenol ND 4-Rethylph	2,4-Dinitrotoluene		ND			
2-Chloroppenol ND 9.9 200 2-Methylnaphthalene ND 2.4 200 2-Methylnaphthalene ND 6.0 200 2-Mitrophenol ND 6.3 380 2-Nitrophenol ND 8.9 200 3-Nitrophenol ND 170 200 3-Nitrophenol ND 45 380 4-Bromophenyl phenol ND 67 380 4-Bromophenyl phenyl ether ND 62 200 4-Chloro-3-methylphenol ND 57 200 4-Chlorophenyl phenyl ether ND 57 200 4-Chlorophenyl phenyl ether ND 4.2 200 4-Chlorophenyl phenyl ether ND 4.2 200 4-Methylphenol ND 4.2 200 4-Mitrophenol ND 47 380 4-Nitrophenol ND 47 380 4-Nethylphenol ND 16 20 Acenaphthene 13	2,6-Dinitrotoluene		ND		48	200
2-Methyliphenol ND 2.4 200 2-Methyliphenol ND 6.0 200 2-Nitrophenol ND 63 380 2-Nitrophenol ND 170 200 3.3-Dichlorobenzidine ND 170 200 3-Nitroanline ND 45 380 4.6-Dinitro-2-methylphenol ND 67 380 4-Bromophenyl phenyl ether ND 62 200 4-Bromophenyl phenyl ether ND 8.0 200 4-Chloro-aniline ND 57 200 4-Chlorophenyl phenyl ether ND 4.2 200 4-Chlorophenyl phenyl ether ND 4.7 380 4-Nitrophenol ND 4.7 380 4-Nitrophenol ND 1.6 200 Acenaphthy	2-Chloronaphthalene		ND			200
2-Methylphenol ND 6.0 200 2-Nitropaline ND 63 380 2-Nitrophenol ND 8.9 200 3,3'-Dichlorobenzidine ND 170 200 3-Nitropaline ND 45 380 4-B-Dirito-2-methylphenol ND 67 380 4-Bromophenyl phenyl ether ND 8.0 200 4-Chloro-3-methylphenol ND 8.0 200 4-Chlorophenyl phenyl ether ND 57 200 4-Chlorophenyl phenyl ether ND 11 380 4-Nitrophenol ND 11 380 4-Nitrophenyl phenyl ether ND 11 380 4-Nitrophenol ND 42 200 4-Methylphenol ND 47 380 4-Nitrophenol ND 47 380 Acenaphthene 13 J 2.3 200 Acenaphthylene ND 16 200 Acetaphthylene ND 5.0 200 Antracene ND 8.7 <td>2-Chlorophenol</td> <td></td> <td>ND</td> <td></td> <td>9.9</td> <td>200</td>	2-Chlorophenol		ND		9.9	200
2-Nitrophenol ND 8.9 200 2-Nitrophenol ND 8.9 200 3-Nitrophenol ND 170 200 3-Nitroniline ND 170 200 3-Nitroniline ND 45 380 4.6-Dinitro-2-methylphenol ND 45 380 4.6-Dinitro-2-methylphenol ND 67 380 4-Bromophenyl phenyl ether ND 62 200 4-Chloro-3-methylphenol ND 8.0 200 4-Chloro-3-methylphenol ND 8.0 200 4-Chloro-3-methylphenol ND 57 200 4-Chlorophenyl phenyl ether ND 57 200 4-Chlorophenyl phenyl ether ND 11 380 4-Nitrophenol ND 11 380 Acenaphthene 13 J 2.3 200 Acenaphthylene ND 16 20 30 Acenaphthylene ND 16 200 Actophenone ND 16 200 Actophenone ND 16 200 Actophenone ND 5.0 200 Altrazine ND 5.0 200 Benza(a)anthracene ND 5.0 200 Benza(a)anthracene ND 5.0 200 Benza(a)pyrene ND 21 200 Benza(a)pyrene ND 21 200 Benza(a)pyrene ND 23 300 Benza(a)pyrene ND 23 300 Benza(a)pyrene ND 23 200 Benza(b)fluoranthene 120 J 3.8 200 Benza(a)pyrene ND 23 200 Benza(b)fluoranthene ND 11 200 Benza(b)fluoranthene N	2-Methylnaphthalene		ND		2.4	200
2-Nitrophenol ND	2-Methylphenol		ND			200
3,3'-Dichlorobenzidine ND 170 200 3-Nitroaniline ND 45 380 4,6-Dinitro-2-methylphenol ND 67 380 4-Bromophenyl phenyl ether ND 62 200 4-Chloro-3-methylphenol ND 8.0 200 4-Chlorophenyl phenyl ether ND 4.2 200 4-Chlorophenyl phenyl ether ND 4.2 200 4-Methylphenol ND 11 380 4-Nitrophenol ND 22 380 4-Nitrophenol ND 47 380 Acenaphthene 13 J 2.3 200 Acenaphthylene ND 47 380 Acenaphthylene ND 1.6 200 Acetophenone ND 1.6 200 Acetophenone ND 10 20 Altracine ND 5.0 20 Benzaldehyde ND 8.7 200 Benzaldehyde ND 21 20 Benzo(a)pyrene ND 4.7 20<	2-Nitroaniline		ND			380
3-Nitroanilline ND 45 380 4.6-Dinitro-2-methylphenol ND 67 380 4-Bromophenyl phenyl ether ND 62 200 4-Chloro-3-methylphenol ND 8.0 200 4-Chlorophenyl phenyl ether ND 57 200 4-Chlorophenyl phenyl ether ND 11 380 4-Methylphenol ND 11 380 4-Nitrophenol ND 11 380 4-Nitrophenol ND 47 380 4-Nitrophenol ND 47 380 Acenaphthene 13 J 23 200 Acenaphthylene ND 1.6 200 Acenaphthylene ND 1.6 200 Acetophenone ND 1.6 200 Artrazine ND 8.7 200 Benzaldehyde ND 8.7 200 Benzaldehyde ND 4.7 200 Benzo(a)anthracene 13	2-Nitrophenol		ND			200
4.6-Dinitro-2-methylphenol ND 67 380 4-Bromophenyl phenyl ether ND 62 200 4-Chloro-3-methylphenol ND 8.0 200 4-Chlorophenyl phenyl ether ND 57 200 4-Chlorophenyl phenyl ether ND 4.2 200 4-Methylphenol ND 11 380 4-Nitrophenol ND 22 380 4-Nitrophenol ND 47 380 4-Nitrophenol ND 47 380 Acenaphthene 13 J 2.3 200 Acenaphthylene ND 1.6 200 Acetophenone ND 1.6 200 Acetophenone ND 1.6 200 Anthracene ND 1.6 200 Aretazine ND 8.7 200 Benza(a)thracene ND 8.7 200 Benza(a)pyrene ND 4.7 200 Benzo(b)fluoranthene 120 J 3.8 200 Benzo(c)fluoranthene 3.3	3,3'-Dichlorobenzidine		ND		170	200
4-Bromophenyl phenyl ether	3-Nitroaniline		ND		45	380
4-Chloro-3-methylphenol ND 8.0 200 4-Chlorophenyl phenyl ether ND 57 200 4-Methylphenol ND 4.2 200 4-Methylphenol ND 11 380 4-Nitroaniline ND 22 380 4-Nitrophenol ND 47 380 Acenaphthene 13 J 2.3 200 Acenaphthylene ND 16 200 Acenaphthylene ND 10 200 Acetophenone ND 10 200 Antracene ND 5.0 200 Atrazine ND 8.7 200 Benzaldehyde ND 21 200 Benzo(a)anthracene 13 J 3.4 200 Benzo(b)fluoranthene 120 J 3.8 200 Benzo(b)fluoranthene 120 J 3.8 200 Benzo(b)fluoranthene 3.3 J 2.1 20 Benzo(b)fluoranthene 3.3 J 2.1 20 <	4,6-Dinitro-2-methylphenol		ND		67	380
4-Chloropanyl phenyl ether ND 57 200 4-Chlorophenyl phenyl ether ND 4.2 200 4-Methylphenol ND 11 380 4-Nitrophenol ND 22 380 4-Nitrophenol ND 47 380 Acenaphthene 13 J 2.3 200 Acenaphthylene ND 1.6 200 Acetophenone ND 10 200 Anthracene ND 5.0 200 Artazine ND 8.7 200 Benzoldehyde ND 21 200 Benzo(a)pytene ND 21 200 Benzo(a)pytene ND 4.7 200 Benzo(b)fluoranthene 120 J 3.8 200 Benzo(c)f,hiperylene ND 2.3 200 Benzo(s)thilogranthene 3.3 J 2.1 200 Bis(2-chloroethoxy)methane ND 11 200 Bis(2-chloroethy)ghther ND 17 200 Bis(2-chloroethy)pther	4-Bromophenyl phenyl ether		ND		62	200
4-Chlorophenyl phenyl ether ND 4.2 200 4-Methylphenol ND 11 380 4-Nitrophenol ND 22 380 4-Nitrophenol ND 47 380 Acenaphthene 13 J 2.3 200 Acenaphthylene ND 1.6 200 Acetophenone ND 10 200 Anthracene ND 5.0 200 Atrazine ND 8.7 200 Benzaldehyde ND 8.7 200 Benzo(a)anthracene 13 J 3.4 200 Benzo(b)fluoranthene 13 J 3.4 200 Benzo(a)pyrene ND 4.7 200 Benzo(b)fluoranthene 120 J 3.8 200 Benzo(b)fluoranthene 3.3 J 2.1 200 Bis(2-chloroethoxy)methane ND 11 200 Bis(2-chloroethoxy)methane ND 17 200 Bis(2-chloroethoxy)methane ND 52 200	4-Chloro-3-methylphenol		ND			200
4-Methylphenol ND 11 380 4-Nitrophenol ND 22 380 4-Nitrophenol ND 47 380 Acenaphthene 13 J 2.3 200 Acenaphthylene ND 1.6 200 Acetophenone ND 10 200 Anthracene ND 5.0 200 Atrazine ND 8.7 200 Benzaldehyde ND 21 200 Benzaldehyde ND 21 200 Benzo(a)anthracene 13 J 3.4 200 Benzo(a)pyrene ND 4.7 200 Benzo(b)fluoranthene 120 J 3.8 200 Benzo(b)fluoranthene 3.3 J 2.1 200 Benzo(k)fluoranthene 3.3 J 2.1 200 Benzo(k)fluoranthene 3.3 J 2.1 200 Benzo(k)fluoranthene ND 11 200 Bis(2-ethylhexyl) phthalate ND 17 200	4-Chloroaniline		ND		57	200
4-Nitrophenol ND 22 380 4-Nitrophenol ND 47 380 Acenaphthene 13 J 2.3 200 Acenaphthylene ND 1.6 200 Acetophenone ND 10 200 Anthracene ND 5.0 200 Anthracene ND 8.7 200 Benzaldehyde ND 21 200 Benzo(a)anthracene 13 J 3.4 200 Benzo(a)pyrene ND 4.7 200 Benzo(a)pyrene ND 4.7 200 Benzo(b)fluoranthene 120 J 3.8 200 Benzo(g,h,i)perylene ND 2.3 200 Benzo(k)fluoranthene 3.3 J 2.1 200 Benzo(k)fluoranthene ND 11 200 Benzo(k)fluoranthene ND 17 200 Bis(2-chloroethyl)ether ND 17 200 Bis(2-chloroethyl)ether ND 17 200 Bis(2-chloroethyl)ether <td>4-Chlorophenyl phenyl ether</td> <td></td> <td>ND</td> <td></td> <td>4.2</td> <td>200</td>	4-Chlorophenyl phenyl ether		ND		4.2	200
4-Nitrophenol ND 47 380 Acenaphthene 13 J 2.3 200 Acetaphthylene ND 1.6 200 Acetophenone ND 10 200 Anthracene ND 5.0 200 Antrazine ND 8.7 200 Benzaldehyde ND 21 200 Benzo(a)anthracene 13 J 3.4 200 Benzo(a)pyrene ND 4.7 200 Benzo(b)fluoranthene 120 J 3.8 200 Benzo(k)fluoranthene 3.3 J 2.1 200 Bis(2-chloroethoxy)methane ND 11 200 Bis(2-chloroethyl)ether ND 17 200 Bis(2-chloroethyl)ether ND 17 200 Bis(2-ethylhexyl) phthalate ND 52 200 Carbazole ND 84 200 Carbazole ND 2.3 200 Carbazole ND 2.3 200 Chrysene 5.2	4-Methylphenol		ND		11	380
Acenaphthene 13 J 2.3 200 Acenaphthylene ND 1.6 200 Acetophenone ND 10 200 Anthracene ND 5.0 200 Atrazine ND 8.7 200 Benzaldehyde ND 21 200 Benzo(a)anthracene 13 J 3.4 200 Benzo(a)pyrene ND 4.7 200 Benzo(b)fluoranthene 120 J 3.8 200 Benzo(g,h,i)perylene ND 2.3 200 Benzo(k)fluoranthene 3.3 J 2.1 200 Bis(2-chloroethoxy)methane ND 11 200 Bis(2-chloroethoxy)methane ND 17 200 Bis(2-chloroethyl)ether ND 17 200 Bis(2-ethylhexyl) phthalate 1400 63 200 Butyl benzyl phthalate ND 52 200 Carbazole ND 84 200 Carbazole ND 2.3 200 Chrysene <td>4-Nitroaniline</td> <td></td> <td>ND</td> <td></td> <td>22</td> <td>380</td>	4-Nitroaniline		ND		22	380
Acenaphthylene ND 1.6 200 Acetophenone ND 10 200 Anthracene ND 5.0 200 Atrazine ND 8.7 200 Benzaldehyde ND 21 200 Benzo(a)anthracene 13 J 3.4 200 Benzo(a)pyrene ND 4.7 200 Benzo(b)fluoranthene 120 J 3.8 200 Benzo(k)fluoranthene ND 2.3 200 Benzo(k)fluoranthene 3.3 J 2.1 200 Bis(2-chloroethoxy)methane ND 11 200 Bis(2-chloroethyl)ether ND 17 200 Bis(2-chloroethyl)phthalate 1400 63 200 Butyl benzyl phthalate ND 52 200 Carbazole ND 2.3 200 Chrysene 5.2 J 2.0 200 Chrysene 5.2 J 2.0 200 Di-n-butyl phthalate ND 67 200 Di	4-Nitrophenol		ND		47	380
Acetophenone ND 10 200 Anthracene ND 5.0 200 Atrazine ND 8.7 200 Benzaldehyde ND 21 200 Benzo(a)anthracene 13 J 3.4 200 Benzo(b)fluoranthene 120 J 3.8 200 Benzo(g,h,i)perylene ND 2.3 200 Benzo(k)fluoranthene 3.3 J 2.1 200 Bis(2-chloroethoxy)methane ND 11 200 Bis(2-chloroethyl)ether ND 17 200 Bis(2-ethylhexyl) phthalate 1400 63 200 Butyl benzyl phthalate ND 52 200 Caprolactam ND 84 200 Carbazole ND 2.3 200 Chrysene 5.2 J 2.0 200 Di-n-butyl phthalate ND 67 200 Di-n-cotyl phthalate ND 4.6 200	Acenaphthene		13	J		200
Anthracene ND 5.0 200 Atrazine ND 8.7 200 Benzaldehyde ND 21 200 Benzo(a)anthracene 13 J 3.4 200 Benzo(b)fluoranthene ND 4.7 200 Benzo(b)fluoranthene 120 J 3.8 200 Benzo(k)fluoranthene ND 2.3 200 Benzo(k)fluoranthene 3.3 J 2.1 200 Bis(2-chloroethoxy)methane ND 11 200 Bis(2-chloroethyl)ether ND 17 200 Bis(2-chloroethyl)ether ND 17 200 Bis(2-ethylhexyl) phthalate 1400 63 200 Butyl benzyl phthalate ND 52 200 Caprolactam ND 84 200 Carbazole ND 2.3 200 Chrysene 5.2 J 2.0 200 Di-n-butyl phthalate ND 67 200 Di-n-octyl phthalate ND 4.6 200 <td>Acenaphthylene</td> <td></td> <td>ND</td> <td></td> <td>1.6</td> <td>200</td>	Acenaphthylene		ND		1.6	200
Atrazine ND 8.7 200 Benzaldehyde ND 21 200 Benzo(a)anthracene 13 J 3.4 200 Benzo(b)fluoranthene ND 4.7 200 Benzo(b)fluoranthene 120 J 3.8 200 Benzo(g,h,i)perylene ND 2.3 200 Benzo(k)fluoranthene 3.3 J 2.1 200 Bis(2-chloroethoxy)methane ND 11 200 Bis(2-chloroethyl)ether ND 17 200 Bis(2-ethylhexyl) phthalate 1400 63 200 Butyl benzyl phthalate ND 52 200 Caprolactam ND 84 200 Carbazole ND 2.3 200 Chrysene 5.2 J 2.0 20 Di-n-butyl phthalate ND 67 200 Di-n-octyl phthalate ND 4.6 200	Acetophenone		ND			200
Benzaldehyde ND 21 200 Benzo(a)anthracene 13 J 3.4 200 Benzo(a)pyrene ND 4.7 200 Benzo(b)fluoranthene 120 J 3.8 200 Benzo(g,h,i)perylene ND 2.3 200 Benzo(k)fluoranthene 3.3 J 2.1 200 Bis(2-chloroethoxy)methane ND 11 200 Bis(2-chloroethyl)ether ND 17 200 Bis(2-ethylhexyl) phthalate 1400 63 200 Butyl benzyl phthalate ND 52 200 Caprolactam ND 84 200 Carbazole ND 2.3 200 Chrysene 5.2 J 2.0 200 Di-n-butyl phthalate ND 67 200 Di-n-octyl phthalate ND 4.6 200	Anthracene		ND		5.0	200
Benzo(a)anthracene 13 J 3.4 200 Benzo(a)pyrene ND 4.7 200 Benzo(b)fluoranthene 120 J 3.8 200 Benzo(g,h,i)perylene ND 2.3 200 Benzo(k)fluoranthene 3.3 J 2.1 200 Bis(2-chloroethoxy)methane ND 11 200 Bis(2-chloroethyl)ether ND 17 200 Bis(2-ethylhexyl) phthalate 1400 63 200 Butyl benzyl phthalate ND 52 200 Caprolactam ND 84 200 Carbazole ND 2.3 200 Chrysene 5.2 J 2.0 200 Di-n-butyl phthalate ND 67 200 Di-n-cotyl phthalate ND 4.6 200	Atrazine		ND			200
Benzo(a)pyrene ND 4.7 200 Benzo(b)fluoranthene 120 J 3.8 200 Benzo(g,h,i)perylene ND 2.3 200 Benzo(k)fluoranthene 3.3 J 2.1 200 Bis(2-chloroethoxy)methane ND 11 200 Bis(2-chloroethyl)ether ND 17 200 Bis(2-ethylhexyl) phthalate 1400 63 200 Butyl benzyl phthalate ND 52 200 Caprolactam ND 84 200 Carbazole ND 2.3 200 Chrysene 5.2 J 2.0 200 Di-n-butyl phthalate ND 67 200 Di-n-octyl phthalate ND 4.6 200	Benzaldehyde		ND		21	200
Benzo(b)fluoranthene 120 J 3.8 200 Benzo(g,h,i)perylene ND 2.3 200 Benzo(k)fluoranthene 3.3 J 2.1 200 Bis(2-chloroethoxy)methane ND 11 200 Bis(2-chloroethyl)ether ND 17 200 Bis(2-ethylhexyl) phthalate 1400 63 200 Butyl benzyl phthalate ND 52 200 Caprolactam ND 84 200 Carbazole ND 2.3 200 Chrysene 5.2 J 2.0 200 Di-n-butyl phthalate ND 67 200 Di-n-octyl phthalate ND 4.6 200	Benzo(a)anthracene		13	J		200
Benzo(g,h,i)perylene ND 2.3 200 Benzo(k)fluoranthene 3.3 J 2.1 200 Bis(2-chloroethoxy)methane ND 11 200 Bis(2-chloroethyl)ether ND 17 200 Bis(2-ethylhexyl) phthalate 1400 63 200 Butyl benzyl phthalate ND 52 200 Caprolactam ND 84 200 Carbazole ND 2.3 200 Chrysene 5.2 J 2.0 200 Di-n-butyl phthalate ND 67 200 Di-n-octyl phthalate ND 4.6 200	Benzo(a)pyrene		ND			
Benzo(k)fluoranthene 3.3 J 2.1 200 Bis(2-chloroethoxy)methane ND 11 200 Bis(2-chloroethyl)ether ND 17 200 Bis(2-ethylhexyl) phthalate 1400 63 200 Butyl benzyl phthalate ND 52 200 Caprolactam ND 84 200 Carbazole ND 2.3 200 Chrysene 5.2 J 2.0 200 Di-n-butyl phthalate ND 67 200 Di-n-octyl phthalate ND 4.6 200	Benzo(b)fluoranthene		120	J		200
Bis(2-chloroethoxy)methane ND 11 200 Bis(2-chloroethyl)ether ND 17 200 Bis(2-ethylhexyl) phthalate 1400 63 200 Butyl benzyl phthalate ND 52 200 Caprolactam ND 84 200 Carbazole ND 2.3 200 Chrysene 5.2 J 2.0 200 Di-n-butyl phthalate ND 67 200 Di-n-octyl phthalate ND 4.6 200	Benzo(g,h,i)perylene		ND			200
Bis(2-chloroethyl)ether ND 17 200 Bis(2-ethylhexyl) phthalate 1400 63 200 Butyl benzyl phthalate ND 52 200 Caprolactam ND 84 200 Carbazole ND 2.3 200 Chrysene 5.2 J 2.0 200 Di-n-butyl phthalate ND 67 200 Di-n-octyl phthalate ND 4.6 200	Benzo(k)fluoranthene			J		
Bis(2-ethylhexyl) phthalate 1400 63 200 Butyl benzyl phthalate ND 52 200 Caprolactam ND 84 200 Carbazole ND 2.3 200 Chrysene 5.2 J 2.0 200 Di-n-butyl phthalate ND 67 200 Di-n-octyl phthalate ND 4.6 200	Bis(2-chloroethoxy)methane		ND			200
Butyl benzyl phthalate ND 52 200 Caprolactam ND 84 200 Carbazole ND 2.3 200 Chrysene 5.2 J 2.0 200 Di-n-butyl phthalate ND 67 200 Di-n-octyl phthalate ND 4.6 200	Bis(2-chloroethyl)ether					
Caprolactam ND 84 200 Carbazole ND 2.3 200 Chrysene 5.2 J 2.0 200 Di-n-butyl phthalate ND 67 200 Di-n-octyl phthalate ND 4.6 200	Bis(2-ethylhexyl) phthalate		1400			200
Carbazole ND 2.3 200 Chrysene 5.2 J 2.0 200 Di-n-butyl phthalate ND 67 200 Di-n-octyl phthalate ND 4.6 200	Butyl benzyl phthalate		ND			
Chrysene 5.2 J 2.0 200 Di-n-butyl phthalate ND 67 200 Di-n-octyl phthalate ND 4.6 200	Caprolactam		ND			200
Di-n-butyl phthalate ND 67 200 Di-n-octyl phthalate ND 4.6 200	Carbazole					200
Di-n-octyl phthalate ND 4.6 200	Chrysene		5.2	J	2.0	200
	Di-n-butyl phthalate		ND		67	200
Dibenz(a,h)anthracene ND 2.3 200	Di-n-octyl phthalate		ND		4.6	200
	Dibenz(a,h)anthracene		ND		2.3	200

Client: ARCADIS U.S. Inc Job Number: 480-28494-1

Client Sample ID: AW-04 (22-22.5)

Lab Sample ID: 480-28494-5 Date Sampled: 11/12/2012 0915

Client Matrix: Solid % Moisture: 16.0 Date Received: 11/14/2012 1200

8270C Semivolatile Organic Compounds (GC/MS)

Analysis Method: 8270C Analysis Batch: 480-92433 Instrument ID: HP5973V Prep Method: 3550B Prep Batch: 480-91320 Lab File ID: V6956.D Dilution: 1.0 Initial Weight/Volume: +30.90 g Analysis Date: 11/23/2012 2124 Final Weight/Volume: 1 mL

Prep Date: 11/16/2	012 0828		Injec	Injection Volume: 1 uL		
Analyte	DryWt Corrected: Y	Result (ug/Kg)	Qualifier	MDL	RL	
Dibenzofuran		8.0	J	2.0	200	
Diethyl phthalate		ND		5.9	200	
Dimethyl phthalate		ND		5.1	200	
Fluoranthene		3.9	J	2.8	200	
Fluorene		8.3	J	4.5	200	
Hexachlorobenzene		ND		9.7	200	
Hexachlorobutadiene		ND		10	200	
Hexachlorocyclopentadiene		ND		59	200	
Hexachloroethane		ND		15	200	
Indeno(1,2,3-cd)pyrene		ND		5.4	200	
Isophorone		ND		9.8	200	
N-Nitrosodi-n-propylamine		ND		15	200	
N-Nitrosodiphenylamine		ND		11	200	
Naphthalene		1200		3.2	200	
Nitrobenzene		ND		8.7	200	
Pentachlorophenol		ND		67	380	
Phenanthrene		11	J	4.1	200	
Phenol		ND		21	200	
Pyrene		ND		1.3	200	
Surrogate		%Rec	Qualifier	Accept	ance Limits	
2,4,6-Tribromophenol		99		39 - 14	6	
2-Fluorobiphenyl		83		37 - 12	0	
2-Fluorophenol		68		18 - 12	0	
Nitrobenzene-d5		77		34 - 13	2	
p-Terphenyl-d14		81		65 - 15	3	
Discount of		70		44 40	•	

Job Number: 480-28494-1 Client: ARCADIS U.S. Inc

Client Sample ID: FD01111212

Lab Sample ID: 480-28494-6 Date Sampled: 11/12/2012 0000

Client Matrix: Solid % Moisture: 11.4 Date Received: 11/14/2012 1200

8270C Semivolatile Organic Compounds (GC/MS)

Analysis Method: 8270C Analysis Batch: 480-92194 Instrument ID: HP5973V Prep Method: 3550B Prep Batch: 480-91320 Lab File ID: V6913.D Dilution: Initial Weight/Volume: 5.0 +30.46 g Analysis Date: 11/21/2012 2039 Final Weight/Volume: 1 mL

11/16/2012 0828 Prep Date: Injection Volume: 1 uL

Analyte	DryWt Corrected: Y	Result (ug/Kg)	Qualifier	MDL	RL
Biphenyl		77	J	58	950
bis (2-chloroisopropyl) ether		ND		98	950
2,4,5-Trichlorophenol		ND		200	950
2,4,6-Trichlorophenol		ND		62	950
2,4-Dichlorophenol		ND		49	950
2,4-Dimethylphenol		ND		250	950
2,4-Dinitrophenol		ND J		330	1800
2,4-Dinitrotoluene		ND		150	950
2,6-Dinitrotoluene		ND		230	950
2-Chloronaphthalene		ND		63	950
		ND		48	950
2-Chlorophenol					
2-Methylnaphthalene		280 ND	J	11	950
2-Methylphenol		ND		29	950
2-Nitroaniline		ND		300	1800
2-Nitrophenol		ND		43	950
3,3'-Dichlorobenzidine		ND		820	950
3-Nitroaniline		ND		220	1800
4,6-Dinitro-2-methylphenol		ND		320	1800
4-Bromophenyl phenyl ether		ND		300	950
4-Chloro-3-methylphenol		ND		39	950
4-Chloroaniline		ND		280	950
4-Chlorophenyl phenyl ether		ND		20	950
4-Methylphenol		ND		52	1800
4-Nitroaniline		ND		100	1800
4-Nitrophenol		ND		230	1800
Acenaphthene		970		11	950
Acenaphthylene		200	J	7.7	950
Acetophenone		ND		48	950
Anthracene		2000		24	950
Atrazine		ND		42	950
Benzaldehyde		ND		100	950
Benzo(a)anthracene		3700		16	950
Benzo(a)pyrene		3700		23	950
Benzo(b)fluoranthene		4500		18	950
Benzo(g,h,i)perylene		1300		11	950
Benzo(k)fluoranthene		2300 ND		10	950
Bis(2-chloroethoxy)methane		ND		51	950
Bis(2-chloroethyl)ether		ND		81	950
Bis(2-ethylhexyl) phthalate		ND		300	950
Butyl benzyl phthalate		ND		250	950
Caprolactam		ND		410	950
Carbazole		620	J	11	950
Chrysene		3300		9.4	950
Di-n-butyl phthalate		ND		320	950
Di-n-octyl phthalate		ND		22	950
Dibenz(a,h)anthracene		940	J	11	950

Job Number: 480-28494-1 Client: ARCADIS U.S. Inc

Client Sample ID: FD01111212

Lab Sample ID: 480-28494-6 Date Sampled: 11/12/2012 0000

Client Matrix: Solid % Moisture: 11.4 Date Received: 11/14/2012 1200

8270C Semivolatile Organic Compounds (GC/MS)

Analysis Method: 8270C Analysis Batch: 480-92194 Instrument ID: HP5973V Prep Method: 3550B Prep Batch: 480-91320 Lab File ID: V6913.D Dilution: Initial Weight/Volume: 5.0 +30.46 g Analysis Date: 11/21/2012 2039

Final Weight/Volume: 1 mL

Prep Date: 1	1/16/2012 0828		Injec	1 uL	
Analyte	DryWt Corrected: Y	Result (ug/Kg)	Qualifier	MDL	RL
Dibenzofuran		650	J	9.8	950
Diethyl phthalate		ND		28	950
Dimethyl phthalate		ND		24	950
Fluoranthene		8100 J		14	950
Fluorene		1100 J		22	950
Hexachlorobenzene		ND		47	950
Hexachlorobutadiene		ND		48	950
Hexachlorocyclopentac	diene	ND		280	950
Hexachloroethane		ND		73	950
Indeno(1,2,3-cd)pyrene	е	1600		26	950
Isophorone		ND		47	950
N-Nitrosodi-n-propylam	nine	ND		74	950
N-Nitrosodiphenylamin	e	ND		51	950
Naphthalene		360	J	16	950
Nitrobenzene		ND		42	950
Pentachlorophenol		ND		320	1800
Phenanthrene		6800 J		20	950
Phenol		ND		99	950
Pyrene		7100 J		6.1	950
Surrogate		%Rec	Qualifier	Accepta	nce Limits
2,4,6-Tribromophenol		117		39 - 146	
2-Fluorobiphenyl		116		37 - 120	
2-Fluorophenol		100		18 - 120	
Nitrobenzene-d5		109		34 - 132	
p-Terphenyl-d14		150		65 - 153	
Phenol-d5		118		11 - 120	

Job Number: 480-28494-1 Client: ARCADIS U.S. Inc

Client Sample ID: RB111212

Lab Sample ID: 480-28494-7 Date Sampled: 11/12/2012 0745 Client Matrix: Water Date Received: 11/14/2012 1200

8270C Semivolatile Organic Compounds (GC/MS)

Analysis Method: 8270C Analysis Batch: 480-92462 Instrument ID: HP5973X Prep Method: 3510C Prep Batch: 480-91439 Lab File ID: X2352.D Dilution: Initial Weight/Volume: 1.0 1000 mL 11/23/2012 2011 Analysis Date:

Final Weight/Volume: 1 mL 11/16/2012 1428 Prep Date: Injection Volume: 1 uL

Bipheny	Analyte	Result (ug/L)	Qualifier	MDL	RL
2.4.5-Trichlorophenol ND 0.48 5.0 2.4-Dichlorophenol ND 0.61 5.0 2.4-Dichlorophenol ND 0.51 5.0 2.4-Dimitrophenol ND 0.50 5.0 2.4-Dinitrolouene ND 0.45 5.0 2.6-Dinitrolouene ND 0.45 5.0 2.6-Dinitrolouene ND 0.46 5.0 2.Chiorophenol ND 0.48 5.0 2.Methylaphthalene ND 0.40 5.0 2.Methylaphthalene ND 0.40 5.0 2.Mitrophitrol ND 0.40 5.0 2.Mitrophenol ND 0.48 5.0 3.Nitroaniline ND 0.48 10 4.B-Dinitro-Z-methylphenol ND	Biphenyl	ND		0.65	5.0
2.4.5 Trichlorophenol ND 0.61 5.0 2.4-Dinchlorophenol ND 0.50 5.0 2.4-Dinitrophenol ND 0.50 5.0 2.4-Dinitrophenol ND 0.45 5.0 2.4-Dinitrophenol ND 0.46 5.0 2.6-Dinitrophenol ND 0.40 5.0 2.6-Dinitrophenol ND 0.40 5.0 2Chlorophenol ND 0.60 5.0 2Methylphaphthalene ND 0.60 5.0 2Methylphaphthalene ND 0.40 5.0 2Methylphaphthalene ND 0.40 5.0 2Methylphaphthalene ND 0.42 10 2Methylphaphthalene ND 0.42 10 2Nitrophaniline ND 0.43 5.0 3.3-Dichlorobenzidine ND 0.48 10 3Birtophylphenol ND 0.48 10 4-Bornophenylphenylphenyl ether ND 0.45 5.0	bis (2-chloroisopropyl) ether	ND		0.52	
2.4-Dichlorophenol ND 0.51 5.0 2.4-Dinitryhphenol ND 0.50 5.0 2.4-Dinitryhphenol ND 0.45 5.0 2.4-Dinitryhphenol ND 0.45 5.0 2.6-Dinitrolluene ND 0.46 5.0 2-Chioropaphthalene ND 0.53 5.0 2-Methylnaphthalene ND 0.50 5.0 2-Methylphenol ND 0.40 5.0 2-Methylphenol ND 0.40 5.0 2-Methylphenol ND 0.42 10 2-Nitroaniline ND 0.42 10 2-Nitroaniline ND 0.48 5.0 3-Nitroaniline ND 0.48 5.0 3-Nitroaniline ND 0.48 10 4-Bromophenyl phenyl ether ND 0.45 5.0 4-Chioro-3-methylphenol ND 0.45 5.0 4-Chioro-3-methylphenol ND 0.45 5.0 4-Chioro-3-methylphenol	2,4,5-Trichlorophenol	ND		0.48	5.0
2.4-Dinitrophenol ND 2.5 5.0 2.4-Dinitrobluene ND 0.45 5.0 2.6-Dinitrobluene ND 0.40 5.0 2.6-Dinitrobluene ND 0.40 5.0 2-Chloronphthalene ND 0.46 5.0 2-Chlorophenol ND 0.53 5.0 2-Methylnaphthalene ND 0.40 5.0 2-Methylnaphthalene ND 0.40 5.0 2-Methylnaphthalene ND 0.40 5.0 2-Methylnaphthalene ND 0.40 5.0 2-Methylnaphthalene ND 0.42 10 2-Methylnaphthalene ND 0.42 10 2-Methylnaphthalene ND 0.42 10 2-Mitophinol ND 0.42 10 2-Nitrophenol ND 0.48 10 4-Bromophenyl plenyl ether ND 0.45 5.0 4-Chlorosalline ND 0.59 5.0 4-Chlorosalline <	2,4,6-Trichlorophenol	ND		0.61	5.0
2.4-Dinitrophenol ND 2.2 10 2.4-Dinitrotoluene ND 0.45 5.0 2.6-Dinitrotoluene ND 0.40 5.0 2-Chloronaphthalene ND 0.46 5.0 2-Chlorophenol ND 0.53 5.0 2-Methylinaphthalene ND 0.60 5.0 2-Methylinaphthalene ND 0.40 5.0 2-Methylinaphthalene ND 0.40 5.0 2-Methylinaphthalene ND 0.40 5.0 2-Methylinaphthalene ND 0.42 10 2-Mitroaniline ND 0.42 10 2-Nitroaniline ND 0.40 5.0 3-Nitroaniline ND 0.48 10 4-B-Tomphyliphenol ND 0.45 5.0 4-Chloro-3-methylphenol ND 0.45 5.0 4-Chloro-3-methylphenol ND 0.45 5.0 4-Chloro-3-methylphenyl ether ND 0.35 5.0 4-Nitro	2,4-Dichlorophenol	ND		0.51	5.0
2.4-Dinitrotoluene ND 0.45 5.0 2.6-Dinitrotoluene ND 0.40 5.0 2.6-Dinitrophenol ND 0.46 5.0 2-Chlorophenol ND 0.53 5.0 2-Methylaphthalene ND 0.60 5.0 2-Methylphenol ND 0.40 5.0 2-Mitrophenol ND 0.42 10 2-Nitrophenol ND 0.48 5.0 3,3'-Dichlorobenzidine ND 0.48 5.0 3-Nitroaniline ND 0.48 10 4-Bromophenyl phenyl ether ND 0.48 10 4-Bromophenyl phenyl ether ND 0.45 5.0 4-Chloro-Smethylphenol ND 0.45 5.0 4-Chlorophenyl phenyl ether ND 0.59 5.0 4-Chlorophenyl phenyl ether ND 0.59 5.0 4-Mitrophenol ND 0.55 10 4-Nitrophenol ND 0.55 10 Acenaphthylen	2,4-Dimethylphenol	ND		0.50	5.0
2.6-Dinitrotoluene ND 0.40 5.0 2-Chloronaphthalene ND 0.46 5.0 2-Chlorophenol ND 0.53 5.0 2-Methylphaphthalene ND 0.60 5.0 2-Methylphaphthalene ND 0.40 5.0 2-Methylphenol ND 0.42 10 2-Nitrophenol ND 0.48 5.0 3.3-Dichlorobenzidine ND 0.48 5.0 3-Nitroaniline ND 0.48 10 4-6-Dintro-2-methylphenol ND 0.48 10 4-B-Dintro-2-methylphenol ND 0.45 5.0 4-Bromophenyl phenyl ether ND 0.45 5.0 4-Chloro-3-methylphenol ND 0.45 5.0 4-Chlorophenyl phenyl ether ND 0.45 5.0 4-Chlorophenyl phenyl ether ND 0.35 5.0 4-Mitrophenol ND 0.35 5.0 4-Methylphenol ND 0.35 5.0	2,4-Dinitrophenol	ND		2.2	10
2-Chiorophenol ND 0.46 5.0 2-Chiorophenol ND 0.53 5.0 2-Methyliphenol ND 0.60 5.0 2-Methyliphenol ND 0.40 5.0 2-Nitropiline ND 0.42 10 2-Nitropiline ND 0.48 5.0 3.3'-Dichlorobenzidine ND 0.48 5.0 3.3'-Dichlorobenzidine ND 0.48 5.0 3-Nitroaniline ND 0.48 10 4-Bornophenyl phenyl ether ND 0.45 5.0 4-Bromophenyl phenyl ether ND 0.45 5.0 4-Chloro-3-methylphenol ND 0.45 5.0 4-Chloropanline ND 0.45 5.0 4-Bromophenyl phenyl ether ND 0.45 5.0 4-Chloropanline ND 0.36 10 4-Methylphenol ND 0.36 10 4-Nitrophenol ND 0.36 10 4-Nitrophenol <	2,4-Dinitrotoluene	ND		0.45	5.0
2-Chlorophenol ND 0.53 5.0 2-Methylphaphthalene ND 0.60 5.0 2-Methylphaphtol ND 0.40 5.0 2-Nitroaniline ND 0.42 10 2-Nitrophenol ND 0.48 5.0 3,3-Dichlorobenzidine ND 0.40 5.0 3-Nitroaniline ND 0.48 10 4,6-Dinitro-2-methylphenol ND 0.48 10 4,6-Dinitro-2-methylphenol ND 0.45 5.0 4-Chloroaniline ND 0.45 5.0 4-Chlorophenyl phenyl ether ND 0.45 5.0 4-Chlorophenyl phenyl ether ND 0.59 5.0 4-Chlorophenyl phenyl ether ND 0.36 10 4-Nitroaniline ND 0.36 10 4-Nitroaniline ND 0.36 10 4-Nitroaniline ND 0.36 10 4-Nitroaniline ND 0.36 5.0 4-Responthylpe	2,6-Dinitrotoluene	ND		0.40	5.0
2-Chlethylnaphtalene ND 0.63 5.0 2-Methylphaphalene ND 0.60 5.0 2-Methylphaphalene ND 0.40 5.0 2-Nitroaniline ND 0.42 10 2-Nitrophenol ND 0.48 5.0 3.Nitroaniline ND 0.40 5.0 3-Nitroaniline ND 0.48 10 4.6-Dinitro-2-methylphanol ND 0.48 10 4-Bromophenyl phenyl ether ND 0.45 5.0 4-Chloroanilline ND 0.45 5.0 4-Chlorophenyl phenyl ether ND 0.45 5.0 4-Chlorophenyl phenyl ether ND 0.35 5.0 4-Chlorophenyl phenyl ether ND 0.36 10 4-Nitroaniline ND 0.35 5.0 4-Methylphenol ND 0.36 10 4-Nitroaniline ND 0.25 10 4-Nitrophenol ND 0.41 5.0 Aceaphthylene<	2-Chloronaphthalene	ND		0.46	5.0
2-Methylnaphthalene ND 0.60 5.0 2-Methyliphenol ND 0.40 5.0 2-Nitrophenol ND 0.42 10 2-Nitrophenol ND 0.48 5.0 3,3-Dichlorobenzidine ND 0.48 5.0 3-Nitroaniline ND 0.48 10 4,6-Dinitro-2-methylphenol ND 0.48 10 4-Bromophenyl phenyl ether ND 0.45 5.0 4-Chloro-3-methylphenol ND 0.45 5.0 4-Chloropaniline ND 0.59 5.0 4-Chlorophyl phenyl ether ND 0.35 5.0 4-Methylphenol ND 0.35 5.0 4-Methylphenol ND 0.36 10 4-Nitrophenol ND 0.25 10 4-Nitrophenol ND 0.25 10 Acenaphthene ND 0.41 5.0 Acenaphthylene ND 0.36 5.0 Acenaphthylene ND <td></td> <td>ND</td> <td></td> <td>0.53</td> <td></td>		ND		0.53	
2-Methylphenol ND 0.40 5.0 2-Nitropalline ND 0.42 10 2-Nitrophenol ND 0.48 5.0 3,3'-Dichlorobenzidine ND 0.40 5.0 3-Nitroaniline ND 0.48 10 4-6-Dintro-2-methylphenol ND 2.2 10 4-Bromophenyl phenyl ether ND 0.45 5.0 4-Chloro-3-methylphenol ND 0.45 5.0 4-Chlorophenyl phenyl ether ND 0.59 5.0 4-Chlorophenyl phenyl ether ND 0.35 5.0 4-Methylphenol ND 0.36 10 4-Methylphenol ND 0.35 5.0 4-Methylphenol ND 0.25 10 4-Nitroanline ND 0.25 10 4-Nitrophenol ND 0.36 5.0 4-Nethylphenol ND 0.35 5.0 Acetaphthylene ND 0.38 5.0 Acetaphtylene <t< td=""><td></td><td></td><td></td><td></td><td></td></t<>					
2-Nitrophenol ND 0.42 10 2-Nitrophenol ND 0.48 5.0 3.3-Dichlorobenzidine ND 0.40 5.0 3-Nitroaniline ND 0.48 10 4,6-Dinitro-2-methylphenol ND 0.45 5.0 4-Bromophenyl phenyl ether ND 0.45 5.0 4-Chloro-3-methylphenol ND 0.45 5.0 4-Chlorophenyl phenyl ether ND 0.59 5.0 4-Chlorophenyl phenyl ether ND 0.35 5.0 4-Methylphenol ND 0.36 10 4-Methylphenol ND 0.36 10 4-Nitrophenol ND 0.25 10 4-Nitrophenol ND 0.25 10 4-Nitrophenol ND 0.25 10 4-Nitrophenol ND 0.36 5.0 Acenaphthylene ND 0.38 5.0 Acetaphenol ND 0.38 5.0 Attrazine ND		ND			
2-Nitrophenol ND 0.48 5.0 3.3'-Dichlorobenzidine ND 0.48 10 3.3'-Dichlorobenzidine ND 0.48 10 4.6-Dinitro-2-methylphenol ND 0.45 5.0 4-Bromophenyl phenyl ether ND 0.45 5.0 4-Chloro-amethylphenol ND 0.59 5.0 4-Chlorophenyl phenyl ether ND 0.35 5.0 4-Chlorophenyl phenol ND 0.35 5.0 4-Methylphenol ND 0.35 5.0 4-Nitroaniline ND 0.35 5.0 4-Nitrophenol ND 0.35 5.0 4-Nitrophenol ND 0.25 10 4-Nitrophenol ND 0.25 10 4-Nitrophenol ND 0.54 5.0 Aceapaphthylene ND 0.54 5.0 Acetophenone ND 0.54 5.0 Antrazine ND 0.26 5.0 Benzacidehyde N					
3.3'-Dichlorobenzidine ND 0.40 5.0 3-Nitroaniline ND 0.48 10 4.6-Dnitro-2-methylphenol ND 0.45 5.0 4-Bromophenyl phenyl ether ND 0.45 5.0 4-Chloro-3-methylphenol ND 0.45 5.0 4-Chlorophenyl phenyl ether ND 0.35 5.0 4-Methylphenol ND 0.36 10 4-Nitrophenol ND 0.36 10 4-Nitrophenol ND 0.25 10 4-Nitrophenol ND 0.55 5.0 4-Nitrophenol ND 0.5 5.0 4-Nitrophenol ND 0.25 10 4-Nitrophenol ND 0.41 5.0 Acenaphthylene ND 0.54 5.0 Acenaphthylene ND 0.54 5.0 Acenaphthylene ND 0.54 5.0 Areache ND 0.54 5.0 Atrazine ND 0.46<					
3-Nitroaniline ND 0.48 10 4,6-Dinitro-2-methylphenol ND 2.2 10 4-Bromophenyl phenyl ether ND 0.45 5.0 4-Chloro3-methylphenol ND 0.45 5.0 4-Chlorophenyl phenyl ether ND 0.59 5.0 4-Methylphenol ND 0.36 10 4-Nitroaniline ND 0.25 10 4-Nitrophenol ND 0.25 10 Acenaphthene ND 0.34 5.0 Acenaphthylene ND 0.54 5.0 Acetophenone ND 0.54 5.0 Attrazine ND 0.28 5.0 Benzo(a)anthracene ND 0.27					
4,6-Dinitro-2-methylphenol ND 2.2 10 4-Bromophenyl phenyl ether ND 0.45 5.0 4-Chloro-3-methylphenol ND 0.59 5.0 4-Chlorophenyl phenyl ether ND 0.35 5.0 4-Methylphenol ND 0.36 10 4-Nitrophenol ND 0.25 10 4-Nitrophenol ND 0.25 10 4-Neenaphthene ND 0.41 5.0 Acenaphthylene ND 0.38 5.0 Acenaphthylene ND 0.34 5.0 Acetophenone ND 0.54 5.0 Actazine ND 0.54 5.0 Attrazine ND 0.28 5.0 Attrazine ND 0.28 5.0 Benzo(a)anthracene ND 0.27 5.0 Benzo(a)pyrene ND 0.36 5.0 Benzo(a)pyrene ND 0.36 5.0 Benzo(c)filorathene ND 0.35 5.0 Bis(2-chloroethy)ether ND 0.35 5					
4-Bromophenyl phenyl ether ND 0.45 5.0 4-Chloro-3-methylphenol ND 0.45 5.0 4-Chlorophenyl phenyl ether ND 0.59 5.0 4-Chlorophenyl phenyl ether ND 0.35 5.0 4-Methylphenol ND 0.36 10 4-Nitrophenol ND 0.25 10 4-Nitrophenol ND 0.25 10 Acenaphthene ND 0.41 5.0 Acenaphthene ND 0.41 5.0 Acetophenone ND 0.38 5.0 Acetophenone ND 0.54 5.0 Artrazine ND 0.54 5.0 Artrazine ND 0.28 5.0 Benzo(a)anthracene ND 0.27 5.0 Benzo(a)aphriacene ND 0.36 5.0 Benzo(b)fluoranthene ND 0.36 5.0 Benzo(k)fluoranthene ND 0.35 5.0 Benzo(k)fluoranthene ND<					
4-Chloro-3-methylphenol ND 0.45 5.0 4-Chloropaniline ND 0.59 5.0 4-Chlorophenyl phenyl ether ND 0.35 5.0 4-Methylphenol ND 0.36 10 4-Nitropaniline ND 0.25 10 4-Nitrophenol ND 1.5 10 Acenaphthene ND 0.41 5.0 Acenaphthene ND 0.38 5.0 Acetophenone ND 0.38 5.0 Actophanone ND 0.54 5.0 Antracene ND 0.28 5.0 Artazine ND 0.28 5.0 Benza(a)anthracene ND 0.46 5.0 Benzo(a)apyrene ND 0.36 5.0 Benzo(a)pyrene ND 0.34 5.0 Benzo(b)fluoranthene ND 0.35 5.0 Benzo(g), h)perylene ND 0.35 5.0 Benzo(c), h)perylene ND 0.35					
4-Chlorophenyl phenyl ether ND 0.59 5.0 4-Chlorophenyl phenyl ether ND 0.35 5.0 4-Methylphenol ND 0.36 10 4-Nitrophenol ND 0.25 10 4-Nitrophenol ND 1.5 10 Acenaphthene ND 0.41 5.0 Acenaphthylene ND 0.38 5.0 Acetophenone ND 0.54 5.0 Anthracene ND 0.28 5.0 Antrazine ND 0.28 5.0 Benzaldehyde ND 0.27 5.0 Benzo(a)pytrene ND 0.36 5.0 Benzo(a)pyrene ND 0.34 5.0 Benzo(b)fluoranthene ND 0.34 5.0 Benzo(b)fluoranthene ND 0.35 5.0 Benzo(b)fluoranthene ND 0.35 5.0 Bis(2-chloroethoxy)methane ND 0.35 5.0 Bis(2-chloroethy)bther ND					
4-Chlorophenyl phenyl ether ND 0.35 5.0 4-Methylphenol ND 0.36 10 4-Nitrophilenol ND 0.25 10 4-Nitrophenol ND 1.5 10 Acenaphthene ND 0.41 5.0 Acenaphthylene ND 0.38 5.0 Acetophenone ND 0.54 5.0 Anthracene ND 0.28 5.0 Attrazine ND 0.28 5.0 Attrazine ND 0.28 5.0 Benzo(a)anthracene ND 0.27 5.0 Benzo(a)anthracene ND 0.36 5.0 Benzo(b)fluoranthene ND 0.47 5.0 Benzo(b)fluoranthene ND 0.34 5.0 Benzo(k)fluoranthene ND 0.35 5.0 Benzo(k)fluoranthene ND 0.35 5.0 Bis(2-chloroethoxy)methane ND 0.40 5.0 Bis(2-chloroethyl)ether ND					
4-Methylphenol ND 0.36 10 4-Nitrophilme ND 0.25 10 4-Nitrophenol ND 1.5 10 Acenaphthene ND 0.41 5.0 Acenaphthylene ND 0.38 5.0 Acetophenone ND 0.54 5.0 Anthracene ND 0.28 5.0 Antrazine ND 0.28 5.0 Benzaldehyde ND 0.46 5.0 Benzaldehyde ND 0.27 5.0 Benzo(a)anthracene ND 0.36 5.0 Benzo(a)pyrene ND 0.36 5.0 Benzo(b)fluoranthene ND 0.34 5.0 Benzo(b)fluoranthene ND 0.35 5.0 Benzo(k)fluoranthene ND 0.35 5.0 Bis(2-chloroethoxy)methane ND 0.35 5.0 Bis(2-chloroethyl)ether ND 0.40 5.0 Butyl benzyl phthalate A.4 J <td></td> <td></td> <td></td> <td></td> <td></td>					
4-Nitrophenol ND 0.25 10 4-Nitrophenol ND 1.5 10 Acenaphthene ND 0.41 5.0 Acenaphthylene ND 0.38 5.0 Acetophenone ND 0.54 5.0 Anthracene ND 0.28 5.0 Antrazine ND 0.46 5.0 Benzaldehyde ND 0.46 5.0 Benzo(a)antracene ND 0.36 5.0 Benzo(a)pyrene ND 0.36 5.0 Benzo(a)pyrene ND 0.34 5.0 Benzo(g,h,i)perylene ND 0.34 5.0 Benzo(g,h,i)perylene ND 0.35 5.0 Benzo(k)fluoranthene ND 0.73 5.0 Benzo(k)fluoranthene ND 0.35 5.0 Beis(2-chloroethoxy)methane ND 0.35 5.0 Bis(2-chloroethyl)ether ND 0.40 5.0 Bis(2-chloroethyl)phthalate 4.4 J 1.8 5.0 Carbazole ND 0.42<					
4-Nitrophenol ND 1.5 10 Acenaphthene ND 0.41 5.0 Acetaphthylene ND 0.38 5.0 Acetophenone ND 0.54 5.0 Anthracene ND 0.28 5.0 Antrazine ND 0.46 5.0 Benzaldehyde ND 0.27 5.0 Benzo(a)anthracene ND 0.36 5.0 Benzo(a)pyrene ND 0.47 5.0 Benzo(b)fluoranthene ND 0.34 5.0 Benzo(b)fluoranthene ND 0.35 5.0 Benzo(k)fluoranthene ND 0.35 5.0 Bis(2-chloroethoxy)methane ND 0.35 5.0 Bis(2-chloroethoxy)methane ND 0.35 5.0 Bis(2-chloroethyl)ether ND 0.40 5.0 Bis(2-chloroethyl)phthalate 4.4 J 1.8 5.0 Butyl benzyl phthalate ND 0.42 5.0 Carbazole ND 0.30 5.0 Chrysene ND	• •				
Acenaphthene ND 0.41 5.0 Acenaphthylene ND 0.38 5.0 Acetophenone ND 0.54 5.0 Anthracene ND 0.28 5.0 Atrazine ND 0.46 5.0 Benzaldehyde ND 0.27 5.0 Benzo(a)anthracene ND 0.36 5.0 Benzo(a)pyrene ND 0.47 5.0 Benzo(b)fluoranthene ND 0.34 5.0 Benzo(g,h,i)perylene ND 0.34 5.0 Benzo(k)fluoranthene ND 0.73 5.0 Bis(2-chloroethoxy)methane ND 0.35 5.0 Bis(2-chloroethoxy)methane ND 0.35 5.0 Bis(2-chloroethyl)ether ND 0.40 5.0 Bis(2-ethylhexyl) phthalate 4.4 J 1.8 5.0 Butyl benzyl phthalate ND 0.42 5.0 Carbazole ND 0.30 5.0 Chrysene <td></td> <td></td> <td></td> <td></td> <td></td>					
Acenaphthylene ND 0.38 5.0 Acetophenone ND 0.54 5.0 Anthracene ND 0.28 5.0 Atrazine ND 0.46 5.0 Benzaldehyde ND 0.27 5.0 Benzo(a)anthracene ND 0.36 5.0 Benzo(a)pyrene ND 0.47 5.0 Benzo(b)fluoranthene ND 0.34 5.0 Benzo(g,h,i)perylene ND 0.35 5.0 Benzo(k)fluoranthene ND 0.73 5.0 Bis(2-chloroethoxy)methane ND 0.35 5.0 Bis(2-chloroethyl)ether ND 0.40 5.0 Bis(2-chloroethyl)phthalate 4.4 J 1.8 5.0 Butyl benzyl phthalate ND 0.42 5.0 Caprolactam ND 0.42 5.0 Carbazole ND 0.33 5.0 Chrysene ND 0.33 5.0 Di-n-butyl phthalate					
Acetophenone ND 0.54 5.0 Anthracene ND 0.28 5.0 Atrazine ND 0.46 5.0 Benzaldehyde ND 0.27 5.0 Benzo(a)anthracene ND 0.36 5.0 Benzo(b)fluoranthene ND 0.47 5.0 Benzo(b)fluoranthene ND 0.34 5.0 Benzo(k)fluoranthene ND 0.35 5.0 Benzo(k)fluoranthene ND 0.73 5.0 Bis(2-chloroethoxy)methane ND 0.35 5.0 Bis(2-chloroethyl)ether ND 0.40 5.0 Bis(2-ethylnexyl) phthalate 4.4 J 1.8 5.0 Butyl benzyl phthalate ND 0.42 5.0 Caprolactam ND 0.42 5.0 Carbazole ND 0.30 5.0 Chrysene ND 0.33 5.0 Di-n-butyl phthalate ND 0.31 5.0 Di-n-cotyl phthala					
Anthracene ND 0.28 5.0 Atrazine ND 0.46 5.0 Benzaldehyde ND 0.27 5.0 Benzo(a)anthracene ND 0.36 5.0 Benzo(a)pyrene ND 0.47 5.0 Benzo(b)fluoranthene ND 0.34 5.0 Benzo(g,h,i)perylene ND 0.35 5.0 Benzo(k)fluoranthene ND 0.73 5.0 Bis(2-chloroethoxy)methane ND 0.35 5.0 Bis(2-chloroethyl)ether ND 0.40 5.0 Bis(2-chlylhexyl) phthalate 4.4 J 1.8 5.0 Bis(2-ethylhexyl) phthalate 4.4 J 1.8 5.0 Bis(2-ethylhexyl) phthalate ND 0.42 5.0 Caprolactam ND 0.42 5.0 Caprolactam ND 0.30 5.0 Chrysene ND 0.33 5.0 Di-n-butyl phthalate ND 0.31 5.0					
Atrazine ND 0.46 5.0 Benzaldehyde ND 0.27 5.0 Benzo(a)anthracene ND 0.36 5.0 Benzo(a)pyrene ND 0.47 5.0 Benzo(b)fluoranthene ND 0.34 5.0 Benzo(g, h, i)perylene ND 0.35 5.0 Benzo(k)fluoranthene ND 0.73 5.0 Bis(2-chloroethoxy)methane ND 0.35 5.0 Bis(2-chloroethyl)ether ND 0.40 5.0 Bis(2-ethylhexyl) phthalate 4.4 J 1.8 5.0 Butyl benzyl phthalate ND 0.42 5.0 Caprolactam ND 0.42 5.0 Carbazole ND 0.30 5.0 Chrysene ND 0.33 5.0 Di-n-butyl phthalate ND 0.31 5.0 Di-n-cotyl phthalate ND 0.31 5.0 Di-n-cotyl phthalate ND 0.47 5.0					
Benzaldehyde ND 0.27 5.0 Benzo(a)anthracene ND 0.36 5.0 Benzo(a)pyrene ND 0.47 5.0 Benzo(b)fluoranthene ND 0.34 5.0 Benzo(g,h,i)perylene ND 0.35 5.0 Benzo(k)fluoranthene ND 0.73 5.0 Bis(2-chloroethoxy)methane ND 0.35 5.0 Bis(2-chloroethyl)ether ND 0.40 5.0 Bis(2-ethylhexyl) phthalate 4.4 J 1.8 5.0 Butyl benzyl phthalate ND 0.42 5.0 Caprolactam ND 0.42 5.0 Carbazole ND 0.30 5.0 Chrysene ND 0.33 5.0 Di-n-butyl phthalate ND 0.31 5.0 Di-n-octyl phthalate ND 0.47 5.0					
Benzo(a)anthracene ND 0.36 5.0 Benzo(a)pyrene ND 0.47 5.0 Benzo(b)fluoranthene ND 0.34 5.0 Benzo(g,h,i)perylene ND 0.35 5.0 Benzo(k)fluoranthene ND 0.73 5.0 Bis(2-chloroethoxy)methane ND 0.35 5.0 Bis(2-chloroethyl)ether ND 0.40 5.0 Bis(2-ethylhexyl) phthalate 4.4 J 1.8 5.0 Butyl benzyl phthalate ND 0.42 5.0 Caprolactam ND 0.30 5.0 Carbazole ND 0.30 5.0 Chrysene ND 0.33 5.0 Di-n-butyl phthalate ND 0.31 5.0 Di-n-octyl phthalate ND 0.47 5.0					
Benzo(a)pyrene ND 0.47 5.0 Benzo(b)fluoranthene ND 0.34 5.0 Benzo(g,h,i)perylene ND 0.35 5.0 Benzo(k)fluoranthene ND 0.73 5.0 Bis(2-chloroethoxy)methane ND 0.35 5.0 Bis(2-chloroethyl)ether ND 0.40 5.0 Bis(2-ethylhexyl) phthalate 4.4 J 1.8 5.0 Butyl benzyl phthalate ND 0.42 5.0 Caprolactam ND 2.2 5.0 Carbazole ND 0.30 5.0 Chrysene ND 0.33 5.0 Di-n-butyl phthalate ND 0.31 5.0 Di-n-octyl phthalate ND 0.47 5.0	-				
Benzo(b)fluoranthene ND 0.34 5.0 Benzo(g,h,i)perylene ND 0.35 5.0 Benzo(k)fluoranthene ND 0.73 5.0 Bis(2-chloroethoxy)methane ND 0.35 5.0 Bis(2-chloroethyl)ether ND 0.40 5.0 Bis(2-ethylhexyl) phthalate 4.4 J 1.8 5.0 Butyl benzyl phthalate ND 0.42 5.0 Caprolactam ND 2.2 5.0 Carbazole ND 0.30 5.0 Chrysene ND 0.33 5.0 Di-n-butyl phthalate ND 0.31 5.0 Di-n-octyl phthalate ND 0.47 5.0					
Benzo(g,h,i)perylene ND 0.35 5.0 Benzo(k)fluoranthene ND 0.73 5.0 Bis(2-chloroethoxy)methane ND 0.35 5.0 Bis(2-chloroethyl)ether ND 0.40 5.0 Bis(2-ethylhexyl) phthalate 4.4 J 1.8 5.0 Butyl benzyl phthalate ND 0.42 5.0 Caprolactam ND 2.2 5.0 Carbazole ND 0.30 5.0 Chrysene ND 0.33 5.0 Di-n-butyl phthalate ND 0.31 5.0 Di-n-octyl phthalate ND 0.47 5.0					
Benzo(k)fluoranthene ND 0.73 5.0 Bis(2-chloroethoxy)methane ND 0.35 5.0 Bis(2-chloroethyl)ether ND 0.40 5.0 Bis(2-ethylhexyl) phthalate 4.4 J 1.8 5.0 Butyl benzyl phthalate ND 0.42 5.0 Caprolactam ND 2.2 5.0 Carbazole ND 0.30 5.0 Chrysene ND 0.33 5.0 Di-n-butyl phthalate ND 0.31 5.0 Di-n-octyl phthalate ND 0.47 5.0					
Bis(2-chloroethoxy)methane ND 0.35 5.0 Bis(2-chloroethyl)ether ND 0.40 5.0 Bis(2-ethylhexyl) phthalate 4.4 J 1.8 5.0 Butyl benzyl phthalate ND 0.42 5.0 Caprolactam ND 2.2 5.0 Carbazole ND 0.30 5.0 Chrysene ND 0.33 5.0 Di-n-butyl phthalate ND 0.31 5.0 Di-n-octyl phthalate ND 0.47 5.0					
Bis(2-chloroethyl)ether ND 0.40 5.0 Bis(2-ethylhexyl) phthalate 4.4 J 1.8 5.0 Butyl benzyl phthalate ND 0.42 5.0 Caprolactam ND 2.2 5.0 Carbazole ND 0.30 5.0 Chrysene ND 0.33 5.0 Di-n-butyl phthalate ND 0.31 5.0 Di-n-octyl phthalate ND 0.47 5.0					
Bis(2-ethylhexyl) phthalate 4.4 J 1.8 5.0 Butyl benzyl phthalate ND 0.42 5.0 Caprolactam ND 2.2 5.0 Carbazole ND 0.30 5.0 Chrysene ND 0.33 5.0 Di-n-butyl phthalate ND 0.31 5.0 Di-n-octyl phthalate ND 0.47 5.0					
Butyl benzyl phthalate ND 0.42 5.0 Caprolactam ND 2.2 5.0 Carbazole ND 0.30 5.0 Chrysene ND 0.33 5.0 Di-n-butyl phthalate ND 0.31 5.0 Di-n-octyl phthalate ND 0.47 5.0	• •				
Caprolactam ND 2.2 5.0 Carbazole ND 0.30 5.0 Chrysene ND 0.33 5.0 Di-n-butyl phthalate ND 0.31 5.0 Di-n-octyl phthalate ND 0.47 5.0			J		
Carbazole ND 0.30 5.0 Chrysene ND 0.33 5.0 Di-n-butyl phthalate ND 0.31 5.0 Di-n-octyl phthalate ND 0.47 5.0					
Chrysene ND 0.33 5.0 Di-n-butyl phthalate ND 0.31 5.0 Di-n-octyl phthalate ND 0.47 5.0					
Di-n-butyl phthalateND0.315.0Di-n-octyl phthalateND0.475.0					
Di-n-octyl phthalate ND 0.47 5.0					
, ,					
Dibenz(a,h)anthracene ND 0.42 5.0					
	Dibenz(a,h)anthracene	ND		0.42	5.0

16 - 120

Client: ARCADIS U.S. Inc Job Number: 480-28494-1

Client Sample ID: RB111212

Phenol-d5

 Lab Sample ID:
 480-28494-7
 Date Sampled: 11/12/2012 0745

 Client Matrix:
 Water
 Date Received: 11/14/2012 1200

8270C Semivolatile Organic Compounds (GC/MS) 480-92462 Analysis Method: 8270C Analysis Batch: Instrument ID: HP5973X Prep Batch: Prep Method: 3510C 480-91439 Lab File ID: X2352.D Dilution: Initial Weight/Volume: 1000 mL 1.0 11/23/2012 2011 Analysis Date: Final Weight/Volume: 1 mL Prep Date: 11/16/2012 1428 Injection Volume: 1 uL Qualifier Analyte Result (ug/L) MDL RL Dibenzofuran ND 0.51 10 Diethyl phthalate ND 0.22 5.0 Dimethyl phthalate ND 0.36 5.0 Fluoranthene ND 0.40 5.0 ND 0.36 5.0 Fluorene Hexachlorobenzene 5.0 ND 0.51 5.0 Hexachlorobutadiene ND 0.68 Hexachlorocyclopentadiene ND 0.59 5.0 Hexachloroethane ND 0.59 5.0 Indeno(1,2,3-cd)pyrene ND 0.47 5.0 Isophorone ND 0.43 5.0 N-Nitrosodi-n-propylamine ND 5.0 0.54 N-Nitrosodiphenylamine ND 0.51 5.0 Naphthalene ND 0.76 5.0 Nitrobenzene ND 0.29 5.0 ND Pentachlorophenol 2.2 10 Phenanthrene ND 0.44 5.0 0.39 5.0 Phenol ND Pyrene ND 0.34 5.0 Qualifier Surrogate %Rec Acceptance Limits 2,4,6-Tribromophenol 112 52 - 132 2-Fluorobiphenyl 94 48 - 120 2-Fluorophenol 45 20 - 120 46 - 120 Nitrobenzene-d5 91 p-Terphenyl-d14 86 67 - 150

33

50 mL

Client: ARCADIS U.S. Inc Job Number: 480-28494-1

Client Sample ID: AW-03 (4-8 COMPOSITE)

Lab Sample ID: 480-28494-1 Date Sampled: 11/11/2012 1225

Client Matrix: Solid % Moisture: 18.0 Date Received: 11/14/2012 1200

6010B Metals (ICP)

Final Weight/Volume:

Analysis Method: 6010B Analysis Batch: 480-91963 Instrument ID: ICAP2

 Prep Method:
 3050B
 Prep Batch:
 480-91171
 Lab File ID:
 I2111712A-9.asc

 Dilution:
 1.0
 Initial Weight/Volume:
 +0.4734
 g

Analysis Date: 11/18/2012 0010 Prep Date: 11/16/2012 1030

Analyte	DryWt Corrected: Y	Result (mg/Kg)	Qualifier	MDL	RL
Aluminum		10100		5.7	12.9
Antimony		97.0 J		0.51	19.3
Arsenic		15.4		0.51	2.6
Barium		81.0 J		0.14	0.64
Beryllium		0.59		0.036	0.26
Cadmium		0.45		0.039	0.26
Calcium		28900	B	4.2	64.4
Chromium		21.0		0.26	0.64
Cobalt		5.3		0.064	0.64
Copper		25.6		0.27	1.3
Iron		12100	B	1.4	12.9
Lead		949		0.31	1.3
Magnesium		10500		1.2	25.7
Manganese		323	₿	0.041	0.26
Nickel		13.0		0.30	6.4
Potassium		1410 <mark>J</mark>		25.7	38.6
Selenium		ND		0.51	5.1
Silver		ND		0.26	0.64
Sodium		487		16.7	180
Thallium		ND		0.39	7.7
Vanadium		28.5		0.14	0.64
Zinc		171 J		0.20	2.6

7471A Mercury (CVAA)

Analysis Method: 7471A Analysis Batch: 480-91178 Instrument ID: LEEMAN3
Prep Method: 7471A Prep Batch: 480-91098 Lab File ID: J11152S1.PRN

Dilution: 1.0 Initial Weight/Volume: +0.5888 g

Analysis Date: 11/15/2012 1520 Final Weight/Volume: 50 mL

Prep Date: 11/15/2012 1215

Analyte DryWt Corrected: Y Result (mg/Kg) Qualifier MDL RL
Mercury 0.092 J 0.010 0.025

Client: ARCADIS U.S. Inc Job Number: 480-28494-1

Client Sample ID: AW-03 (18-20)

Lab Sample ID: 480-28494-2 Date Sampled: 11/11/2012 1540

Client Matrix: Solid % Moisture: 15.3 Date Received: 11/14/2012 1200

6010B Metals (ICP)

Analysis Method: 6010B Analysis Batch: 480-91963 Instrument ID: ICAP2

Prep Method: 3050B Prep Batch: 480-91171 Lab File ID: I2111712A-9.asc

 Dilution:
 1.0
 Initial Weight/Volume:
 +0.5491 g

 Analysis Date:
 11/18/2012 0012
 Final Weight/Volume:
 50 mL

Prep Date: 11/16/2012 1030

11/15/2012 1215

Prep Date:

Analyte	DryWt Corrected: Y	Result (mg/Kg)	Qualifier	MDL	RL
Aluminum		4190		4.7	10.7
Antimony		ND J		0.43	16.1
Arsenic		2.8		0.43	2.1
Barium		48.9 J		0.12	0.54
Beryllium		0.20	J	0.030	0.21
Cadmium		0.25		0.032	0.21
Calcium		53300	Æ	3.5	53.7
Chromium		6.7		0.21	0.54
Cobalt		3.7		0.054	0.54
Copper		8.4		0.23	1.1
Iron		8100	B	1.2	10.7
Lead		9.8		0.26	1.1
Magnesium		25100		1.0	21.5
Manganese		325	B	0.034	0.21
Nickel		7.9		0.25	5.4
Potassium		1160 J		21.5	32.2
Selenium		ND		0.43	4.3
Silver		ND		0.21	0.54
Sodium		328		14.0	150
Thallium		ND		0.32	6.4
Vanadium		11.6		0.12	0.54
Zinc		58.6 J		0.16	2.1

7471A Mercury (CVAA)

Analysis Method: 7471A Analysis Batch: 480-91178 Instrument ID: LEEMAN3

Prep Method: 7471A Prep Batch: 480-91098 Lab File ID: J11152S1.PRN

Dilution: 1.0 Initial Weight/Volume: +0.6017 g

Analysis Date: 11/15/2012 1521 Final Weight/Volume: 50 mL

Analyte DryWt Corrected: Y Result (mg/Kg) Qualifier MDL RL

Mercury ND J 0.0095 0.024

Client: ARCADIS U.S. Inc Job Number: 480-28494-1

Client Sample ID: AW-03 (20-22)

Lab Sample ID: 480-28494-3 Date Sampled: 11/11/2012 1555

Client Matrix: Solid % Moisture: 16.5 Date Received: 11/14/2012 1200

6010B Metals (ICP)

Analysis Method: 6010B Analysis Batch: 480-91963 Instrument ID: ICAP2

Prep Method: 3050B Prep Batch: 480-91171 Lab File ID: I2111712A-9.asc Dilution: 1.0 Initial Weight/Volume: +0.4630 g

Analysis Date: 11/18/2012 0015 Final Weight/Volume: 50 mL

Prep Date: 11/16/2012 1030

Analyte	DryWt Corrected: Y	Result (mg/Kg)	Qualifier	MDL	RL
Aluminum		6220		5.7	12.9
Antimony		NDJ		0.52	19.4
Arsenic		3.2		0.52	2.6
Barium		64.6 <mark>J</mark>		0.14	0.65
Beryllium		0.30		0.036	0.26
Cadmium		0.22	J	0.039	0.26
Calcium		61400	B	4.3	64.7
Chromium		9.9		0.26	0.65
Cobalt		5.3		0.065	0.65
Copper		11.7		0.27	1.3
Iron		11200	⊠	1.4	12.9
Lead		11.3		0.31	1.3
Magnesium		26500		1.2	25.9
Manganese		386	Æ	0.041	0.26
Nickel		11.3		0.30	6.5
Potassium		1740 J		25.9	38.8
Selenium		ND		0.52	5.2
Silver		ND		0.26	0.65
Sodium		394		16.8	181
Thallium		ND		0.39	7.8
Vanadium		16.2		0.14	0.65
Zinc		53.3 J		0.20	2.6

7471A Mercury (CVAA)

Analysis Method: 7471A Analysis Batch: 480-91178 Instrument ID: LEEMAN3

Prep Method: 7471A Prep Batch: 480-91098 Lab File ID: J11152S1.PRN

Dilution: 1.0 Initial Weight/Volume: +0.6278 g

Analysis Date: 11/15/2012 1523 Final Weight/Volume: 50 mL

Prep Date: 11/15/2012 1215

 Analyte
 DryWt Corrected: Y
 Result (mg/Kg)
 Qualifier
 MDL
 RL

 Mercury
 ND J
 0.0093
 0.023

Client: ARCADIS U.S. Inc Job Number: 480-28494-1

Client Sample ID: AW-04 (4-8 COMPOSITE)

Lab Sample ID: 480-28494-4 Date Sampled: 11/12/2012 0738

Client Matrix: Solid % Moisture: 17.8 Date Received: 11/14/2012 1200

6010B Metals (ICP)

Analysis Method: 6010B Analysis Batch: 480-91963 Instrument ID: ICAP2

Prep Method: 3050B Prep Batch: 480-91171 Lab File ID: I2111712A-9.asc Dilution: 1.0 Initial Weight/Volume: +0.5312 g

 Dilution:
 1.0
 Initial Weight/Volume:
 +0.5312 g

 Analysis Date:
 11/18/2012 0017
 Final Weight/Volume:
 50 mL

Prep Date: 11/16/2012 1030

Analyte	DryWt Corrected: Y	Result (mg/Kg)	Qualifier	MDL	RL
Aluminum		6000 J		5.0	11.5
Antimony		ND J		0.46	17.2
Arsenic		6.2		0.46	2.3
Barium		55.8 <mark>J</mark>		0.13	0.57
Beryllium		0.47		0.032	0.23
Cadmium		0.38		0.034	0.23
Calcium		103000	В	3.8	57.3
Chromium		8.8		0.23	0.57
Cobalt		4.9		0.057	0.57
Copper		17.8		0.24	1.1
Iron		12000	B	1.3	11.5
Lead		45.5		0.27	1.1
Magnesium		38600 J		1.1	22.9
Manganese		525 <mark>J</mark>	e	0.037	0.23
Nickel		13.4		0.26	5.7
Potassium		1060 <mark>J</mark>		22.9	34.4
Selenium		ND		0.46	4.6
Silver		ND		0.23	0.57
Sodium		252		14.9	160
Thallium		ND		0.34	6.9
Vanadium		12.0		0.13	0.57
Zinc		70.7 J		0.18	2.3

7471A Mercury (CVAA)

Analysis Method: 7471A Analysis Batch: 480-91178 Instrument ID: LEEMAN3

Prep Method: 7471A Prep Batch: 480-91098 Lab File ID: J11152S1.PRN

Dilution: 1.0 Initial Weight/Volume: +0.6548 g

Analysis Date: 11/15/2012 1459 Final Weight/Volume: 50 mL

Prep Date: 11/15/2012 1215

 Analyte
 DryWt Corrected: Y
 Result (mg/Kg)
 Qualifier
 MDL
 RL

 Mercury
 0.035 J
 0.0090
 0.022

Client: ARCADIS U.S. Inc Job Number: 480-28494-1

Client Sample ID: AW-04 (22-22.5)

Lab Sample ID: 480-28494-5 Date Sampled: 11/12/2012 0915

Client Matrix: Solid % Moisture: 16.0 Date Received: 11/14/2012 1200

6010B Metals (ICP)

Analysis Method: 6010B Analysis Batch: 480-91941 Instrument ID: ICAP2

 Prep Method:
 3050B
 Prep Batch:
 480-91171
 Lab File ID:
 I2111912B-9.asc

 Dilution:
 1.0
 Initial Weight/Volume:
 +0.4742 g

 Dilution:
 1.0
 Initial Weight/Volume:
 +0.4742 g

 Analysis Date:
 11/19/2012 2239
 Final Weight/Volume:
 50 mL

Prep Date: 11/16/2012 1030

11/15/2012 1215

Prep Date:

Analyte	DryWt Corrected: Y	Result (mg/Kg)	Qualifier	MDL	RL
Aluminum		9160		5.5	12.6
Antimony		ND <mark>J</mark>		0.50	18.8
Arsenic		4.2		0.50	2.5
Barium		91.0 J		0.14	0.63
Beryllium		0.47		0.035	0.25
Cadmium		0.27		0.038	0.25
Calcium		83900	B	4.1	62.8
Chromium		14.0		0.25	0.63
Cobalt		7.5		0.063	0.63
Copper		16.7		0.26	1.3
Iron		16900	ජ	1.4	12.6
Lead		15.9		0.30	1.3
Magnesium		36300		1.2	25.1
Manganese		555	B	0.040	0.25
Nickel		16.4		0.29	6.3
Potassium		2550 <mark>J</mark>		25.1	37.7
Selenium		ND		0.50	5.0
Silver		ND		0.25	0.63
Sodium		288		16.3	176
Thallium		ND		0.38	7.5
Vanadium		19.5		0.14	0.63
Zinc		60.2 <mark>J</mark>		0.19	2.5

7471A Mercury (CVAA)

Analysis Method: 7471A Analysis Batch: 480-91178 Instrument ID: LEEMAN3

Prep Method: 7471A Prep Batch: 480-91098 Lab File ID: J11152S1.PRN

Dilution: 1.0 Initial Weight/Volume: +0.6055 g

Analysis Date: 11/15/2012 1506 Final Weight/Volume: 50 mL

Analyte DryWt Corrected: Y Result (mg/Kg) Qualifier MDL RL

Mercury ND J 0.0096 0.024

50 mL

Client: ARCADIS U.S. Inc Job Number: 480-28494-1

Client Sample ID: FD01111212

Lab Sample ID: 480-28494-6 Date Sampled: 11/12/2012 0000

Client Matrix: Solid % Moisture: 11.4 Date Received: 11/14/2012 1200

6010B Metals (ICP)

Analysis Method: 6010B Analysis Batch: 480-91963 Instrument ID: ICAP2

3050B Prep Method: Prep Batch: 480-91171 Lab File ID: I2111712A-9.asc 1.0 Dilution: Initial Weight/Volume: +0.5079 g

11/18/2012 0022 Analysis Date: Final Weight/Volume:

11/16/2012 1030 Prep Date:

Analyte	DryWt Correcte	ed: Y Resu	lt (mg/Kg)	Qualifie	r MDL	RL
Aluminum		1050) J		4.9	11.1
Antimony		ND J			0.44	16.7
Arsenic		5.4			0.44	2.2
Barium		143 J			0.12	0.56
Beryllium		1.9			0.031	0.22
Cadmium		0.40			0.033	0.22
Calcium		9050) <mark>J</mark>	B	3.7	55.6
Chromium		7.9			0.22	0.56
Cobalt		4.9			0.056	0.56
Copper		19.6			0.23	1.1
Lead		47.1			0.27	1.1
Magnesium		1790) <mark>J</mark>		1.0	22.2
Manganese		950	J	ø	0.036	0.22
Nickel		14.9			0.26	5.6
Potassium		1110	J		22.2	33.3
Selenium		1.1		J	0.44	4.4
Silver		ND			0.22	0.56
Sodium		423			14.4	156
Thallium		ND			0.33	6.7
Vanadium		11.1			0.12	0.56
Zinc		74.7	J		0.17	2.2
Analysis Method:	6010B	Analysis Batc	h: 480-91941		Instrument ID:	ICAP2
Prep Method:	3050B	Prep Batch:	480-91171		Lab File ID:	I2111912B-9.asc
Dilution:	1.0				Initial Weight/Volume:	+0.5079 g
Analysis Date:	11/19/2012 2246				Final Weight/Volume:	50 mL
Pren Date:	11/16/2012 1030				i iiai vvoigili voidillo.	OU IIIL

Prep Date: 11/16/2012 1030

Analyte DryWt Corrected: Y Result (mg/Kg) Qualifier MDL RL Iron 12600 J B 1.2 11.1

7471A Mercury (CVAA)

Analysis Method: 7471A Analysis Batch: 480-91434 Instrument ID: LEEMAN3 Prep Method: 7471A Prep Batch: 480-91308 Lab File ID: J11162S1.PRN

Dilution: 1.0 Initial Weight/Volume: +0.6059 g 11/16/2012 1143 Analysis Date: Final Weight/Volume: 50 mL

Prep Date: 11/16/2012 0845

Qualifier MDL RL Analyte DryWt Corrected: Y Result (mg/Kg) 0.062 J 0.0091 0.022 Mercury

Client: ARCADIS U.S. Inc Job Number: 480-28494-1

Client Sample ID: RB111212

 Lab Sample ID:
 480-28494-7
 Date Sampled: 11/12/2012 0745

 Client Matrix:
 Water
 Date Received: 11/14/2012 1200

6010B Metals (ICP)

Analysis Method: 6010B Analysis Batch: 480-91749 Instrument ID: ICAP2

Prep Method: 3005A Prep Batch: 480-91096 Lab File ID: I2111612B-5.asc

Dilution: 1.0 Initial Weight/Volume: 50 mL Analysis Date: 11/16/2012 2217 Final Weight/Volume: 50 mL

Prep Date: 11/15/2012 1200

Analyte		Result (m	ng/L)	Qualifie	r MDL	RL
Aluminum		0.18		J	0.060	0.20
Antimony		ND			0.0068	0.020
Arsenic		ND			0.0056	0.010
Beryllium		ND			0.00030	0.0020
Cadmium		ND			0.00050	0.0010
Calcium		1.2			0.10	0.50
Chromium		ND			0.0010	0.0040
Cobalt		ND			0.00063	0.0040
opper		ND			0.0016	0.010
ron		0.51			0.019	0.050
ead		ND			0.0030	0.0050
/lagnesium		0.45			0.043	0.20
/langanese		0.0074		В	0.00040	0.0030
lickel		ND			0.0013	0.010
otassium		0.15		J	0.10	0.50
Selenium		ND			0.0087	0.015
Silver		ND			0.0017	0.0030
odium		1.7			0.32	1.0
hallium		ND			0.010	0.020
'anadium		ND			0.0015	0.0050
linc		0.0039		J	0.0015	0.010
nalysis Method:	6010B	Analysis Batch:	480-92843		Instrument ID:	ICAP2
rep Method:	3005A	Prep Batch:	480-91096		Lab File ID:	I2112612B-16.asc
ilution:	1.0	•			Initial Weight/Volume:	50 mL
nalysis Date:	11/27/2012 0043				Final Weight/Volume:	50 mL
rep Date:	11/15/2012 1200				a. Worghi Volume.	OU THE
nalyte		Result (m	ng/L)	Qualifie	r MDL	RL
Barium		0.0028			0.00070	0.0020

7470A Mercury (CVAA)

Initial Weight/Volume:

30 mL

Analysis Method: 7470A Analysis Batch: 480-91151 Instrument ID: LEEMAN2
Prep Method: 7470A Prep Batch: 480-91040 Lab File ID: H11152W2.PRN

Dilution: 1.0

Analysis Date: 11/15/2012 1234 Final Weight/Volume: 50 mL Prep Date: 11/15/2012 0800

 Analyte
 Result (mg/L)
 Qualifier
 MDL
 RL

 Mercury
 ND
 0.00012
 0.00020

Client: ARCADIS U.S. Inc Job Number: 480-28494-1

		Gen	eral Chemis	stry			
Client Sample ID:	AW-03 (4-8 COMPOSITE)						
Lab Sample ID:	480-28494-1				I	Date Sample	ed: 11/11/2012 1225
Client Matrix:	Solid	% Moist	ure: 18.	0	I	Date Receiv	ed: 11/14/2012 1200
Analyte	Result	Qual	Units	MDL	RL	Dil	Method
Cyanide	0.98	J	mg/Kg	0.59	1.2	1.0	9012A
	Analysis Batch: 480-92626	Analysis Date:	11/25/2012	2337			DryWt Corrected: Y
	Prep Batch: 480-92597	Prep Date: 11/2	24/2012 133	80			
Cyanide, Free	0.52	J	mg/Kg	0.13	2.5	1.0	9016
	Analysis Batch: 460-136556	Analysis Date:	11/21/2012	1230			DryWt Corrected: Y
	Prep Batch: 460-136505	Prep Date: 11/2	21/2012 063	80			
Analyte	Result	Qual	Units	RL	RL	Dil	Method
Percent Moisture	18		%	0.10	0.10	1.0	Moisture
	Analysis Batch: 480-91231	Analysis Date:	11/15/2012	1722			DryWt Corrected: N
Percent Solids	82		%	0.10	0.10	1.0	Moisture
	Analysis Batch: 480-91231	Analysis Date:	11/15/2012	1722			DryWt Corrected: N

Client: ARCADIS U.S. Inc Job Number: 480-28494-1

General Chemistry Client Sample ID: AW-03 (18-20) Lab Sample ID: 480-28494-2 Date Sampled: 11/11/2012 1540 Client Matrix: Solid % Moisture: 15.3 Date Received: 11/14/2012 1200 Analyte RLDil Result Qual Units MDL Method Cyanide 0.82 J 0.54 1.1 1.0 9012A mg/Kg Analysis Batch: 480-92626 Analysis Date: 11/25/2012 2338 DryWt Corrected: Y Prep Batch: 480-92597 Prep Date: 11/24/2012 1330 Cyanide, Free ND mg/Kg 2.5 1.0 9016 0.12 Analysis Batch: 460-136556 Analysis Date: 11/21/2012 1230 DryWt Corrected: Y Prep Batch: 460-136505 Prep Date: 11/21/2012 0630 RL RL Dil Method Analyte Result Qual Units 0.10 Percent Moisture 15 % 0.10 1.0 Moisture Analysis Batch: 480-91231 Analysis Date: 11/15/2012 1722 DryWt Corrected: N Percent Solids 85 0.10 0.10 1.0 Moisture Analysis Batch: 480-91231 Analysis Date: 11/15/2012 1722 DryWt Corrected: N

Client: ARCADIS U.S. Inc Job Number: 480-28494-1

General Chemistry Client Sample ID: AW-03 (20-22) Lab Sample ID: 480-28494-3 Date Sampled: 11/11/2012 1555 Client Matrix: Solid % Moisture: 16.5 Date Received: 11/14/2012 1200 Analyte RLDil Result Qual Units MDL Method Cyanide 0.87 J 0.55 1.1 1.0 9012A mg/Kg Analysis Batch: 480-92626 Analysis Date: 11/25/2012 2339 DryWt Corrected: Y Prep Batch: 480-92597 Prep Date: 11/24/2012 1330 Cyanide, Free 0.27 J mg/Kg 2.6 1.0 9016 0.13 Analysis Date: 11/21/2012 1230 DryWt Corrected: Y Analysis Batch: 460-136556 Prep Batch: 460-136505 Prep Date: 11/21/2012 0630 RL RL Dil Method Analyte Result Qual Units 0.10 Percent Moisture 16 % 0.10 1.0 Moisture Analysis Batch: 480-91231 Analysis Date: 11/15/2012 1722 DryWt Corrected: N Percent Solids 0.10 0.10 1.0 Moisture Analysis Batch: 480-91231 Analysis Date: 11/15/2012 1722 DryWt Corrected: N

Client: ARCADIS U.S. Inc Job Number: 480-28494-1

General Chemistry Client Sample ID: AW-04 (4-8 COMPOSITE) Lab Sample ID: 480-28494-4 Date Sampled: 11/12/2012 0738 Client Matrix: Solid % Moisture: 17.8 Date Received: 11/14/2012 1200 Analyte RLDil Result Qual Units MDL Method Cyanide 3.8 0.56 1.2 1.0 9012A mg/Kg Analysis Batch: 480-92626 Analysis Date: 11/25/2012 2344 DryWt Corrected: Y Prep Batch: 480-92597 Prep Date: 11/24/2012 1330 Cyanide, Free 0.13 J mg/Kg 2.6 1.0 9016 0.13 Analysis Batch: 460-136556 Analysis Date: 11/21/2012 1230 DryWt Corrected: Y Prep Batch: 460-136505 Prep Date: 11/21/2012 0630 RL RL Dil Method Analyte Result Qual Units Percent Moisture 18 % 0.10 0.10 1.0 Moisture Analysis Batch: 480-91231 Analysis Date: 11/15/2012 1722 DryWt Corrected: N Percent Solids 82 0.10 0.10 1.0 Moisture Analysis Batch: 480-91231 Analysis Date: 11/15/2012 1722 DryWt Corrected: N

Client: ARCADIS U.S. Inc Job Number: 480-28494-1

General Chemistry Client Sample ID: AW-04 (22-22.5) Lab Sample ID: 480-28494-5 Date Sampled: 11/12/2012 0915 Client Matrix: Solid % Moisture: 16.0 Date Received: 11/14/2012 1200 Analyte RLDil Result Qual Units MDL Method Cyanide 0.81 J 0.56 1.2 1.0 9012A mg/Kg Analysis Batch: 480-92626 Analysis Date: 11/25/2012 2339 DryWt Corrected: Y Prep Batch: 480-92597 Prep Date: 11/24/2012 1330 Cyanide, Free 0.14 J mg/Kg 2.6 1.0 9016 0.13 Analysis Batch: 460-136556 Analysis Date: 11/21/2012 1230 DryWt Corrected: Y Prep Batch: 460-136505 Prep Date: 11/21/2012 0630 RL RL Dil Method Analyte Result Qual Units 0.10 Percent Moisture 16 % 0.10 1.0 Moisture Analysis Batch: 480-91231 Analysis Date: 11/15/2012 1722 DryWt Corrected: N Percent Solids 0.10 0.10 1.0 Moisture Analysis Batch: 480-91231 Analysis Date: 11/15/2012 1722 DryWt Corrected: N

Client: ARCADIS U.S. Inc Job Number: 480-28494-1

		Gen	eral Chemis	stry			
Client Sample ID:	FD01111212						
Lab Sample ID:	480-28494-6				I	Date Sample	ed: 11/12/2012 0000
Client Matrix:	Solid	% Moist	ture: 11.	4	1	Date Receiv	ed: 11/14/2012 1200
Analyte	Result	Qual	Units	MDL	RL	Dil	Method
Cyanide	2.4		mg/Kg	0.52	1.1	1.0	9012A
	Analysis Batch: 480-92778	Analysis Date:	11/26/2012	1859			DryWt Corrected: Y
	Prep Batch: 480-92761	Prep Date: 11/2	26/2012 154	0			
Cyanide, Free	0.18	J	mg/Kg	0.12	2.4	1.0	9016
	Analysis Batch: 460-136556	Analysis Date:	11/21/2012	1230			DryWt Corrected: Y
	Prep Batch: 460-136505	Prep Date: 11/2	21/2012 063	80			
Analyte	Result	Qual	Units	RL	RL	Dil	Method
Percent Moisture	11		%	0.10	0.10	1.0	Moisture
	Analysis Batch: 480-91231	Analysis Date:	11/15/2012	1722			DryWt Corrected: N
Percent Solids	89		%	0.10	0.10	1.0	Moisture
	Analysis Batch: 480-91231	Analysis Date:	11/15/2012	1722			DryWt Corrected: N

Client: ARCADIS U.S. Inc Job Number: 480-28494-1

General Chemistry Client Sample ID: RB111212 Lab Sample ID: 480-28494-7 Date Sampled: 11/12/2012 0745 Client Matrix: Water Date Received: 11/14/2012 1200 Analyte RLDil Result Qual Units MDL Method Cyanide, Total ND mg/L 0.0050 0.020 1.0 9012A Analysis Date: 11/26/2012 0215 Analysis Batch: 480-92629 Prep Batch: 480-92374 Prep Date: 11/22/2012 0334 Cyanide, Total ND H mg/L 0.0050 0.020 9012A Run Type: RA Analysis Batch: 480-93171 Analysis Date: 11/28/2012 1309 Prep Batch: 480-93046 Prep Date: 11/28/2012 0155 5.0 Cyanide, Free 0.56 0.54 1.0 9016 ug/L Analysis Batch: 460-136556 Analysis Date: 11/21/2012 1230 Prep Batch: 460-136509 Prep Date: 11/21/2012 0630

National Fuel

Data Usability Summary Report (DUSR)

BUFFALO, NEW YORK

Volatile, Semivolatile, Metals, and Miscellaneous Analyses

SDG #480-24234

Analyses Performed By: TestAmerica Laboratories Buffalo, New York

Report #17413R Review Level: Tier III

Project: B0023310.0000.00002

SUMMARY

This data quality assessment summarizes the review of Sample Delivery Group (SDG) #480-24234 for samples collected in association with the National Fuel Wilkenson Site. The review was conducted as a Tier III evaluation and included review of data package completeness. Only analytical data associated with constituents of concern were reviewed for this validation. Field documentation was not included in this review. Included with this assessment are the validation annotated sample result sheets, and chain of custody. Analyses were performed on the following samples:

			Sample	Parent		А	nalysis	5	
Sample ID	Lab ID	Matrix	Collection Date	Sample	VOC	svoc	РСВ	MET	MISC
AW-02	480-24234-1	Ground water	8/22/2012		Х	Х		Х	Х
AW-01	480-24234-2	Ground water	8/22/2012		Х	Х		Х	Х
DUP-082212	480-24234-3	Ground water	8/22/2012	AW-01	Х	Х		Х	Х
TRIP BLANK	480-24234-4	Water	8/22/2012		Х	Х		Χ	Х

Note:

- 1. Matrix spike/matrix spike duplicate (MS/MSD) analysis was performed on sample location AW-02.
- 2. Miscellaneous parameters include total and free cyanide.

ANALYTICAL DATA PACKAGE DOCUMENTATION

The table below is the evaluation of the data package completeness.

			Reported		mance ptable	Not
	Items Reviewed	No	Yes	No	Yes	Required
1.	Sample receipt condition		Х		Х	
2.	Requested analyses and sample results		Х		Х	
3.	Master tracking list		Х		Х	
4.	Methods of analysis		Х		Х	
5.	Reporting limits		Х		Х	
6.	Sample collection date		Х		Х	
7.	Laboratory sample received date		Х		Х	
8.	Sample preservation verification (as applicable)		Х		Х	
9.	Sample preparation/extraction/analysis dates		Х		Х	
10.	Fully executed Chain-of-Custody (COC) form		Х		Х	
11.	Narrative summary of QA or sample problems provided		Х		Х	
12.	Data Package Completeness and Compliance		Х		Х	

QA - Quality Assurance

ORGANIC ANALYSIS INTRODUCTION

Analyses were performed according to United States Environmental Protection Agency (USEPA) SW-846 8260B and 8270C as referenced in NYSDEC-ASP. Data were reviewed in accordance with USEPA Region II SOP HW-24 - Validating Volatile Organic Compounds by SW-846 Method 8260B of October 2006 and New York State ASP 2005.

The data review process is an evaluation of data on a technical basis rather than a determination of contract compliance. As such, the standards against which the data are being weighed may differ from those specified in the analytical method. It is assumed that the data package represents the best efforts of the laboratory and had already been subjected to adequate and sufficient quality review prior to submission.

During the review process, laboratory qualified and unqualified data are verified against the supporting documentation. Based on this evaluation, qualifier codes may be added, deleted, or modified by the data reviewer. Results are qualified with the following codes in accordance with USEPA National Functional Guidelines:

- Concentration (C) Qualifiers
 - U The compound was analyzed for but not detected. The associated value is the compound quantitation limit.
 - B The compound has been found in the sample as well as its associated blank, its presence in the sample may be suspect.
- Quantitation (Q) Qualifiers
 - E The compound was quantitated above the calibration range.
 - D Concentration is based on a diluted sample analysis.
- Validation Qualifiers
 - J The compound was positively identified; however, the associated numerical value is an estimated concentration only.
 - UJ The compound was not detected above the reported sample quantitation limit. However, the reported limit is approximate and may or may not represent the actual limit of quantitation.
 - JN The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification. The associated numerical value is an estimated concentration only.
 - UB Compound considered non-detect at the listed value due to associated blank contamination.
 - N The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification.
 - R The sample results are rejected.

Two facts should be noted by all data users. First, the "R" flag means that the associated value is unusable. In other words, due to significant quality control (QC) problems, the analysis is invalid and provides no information as to whether the compound is present or not. "R" values should not appear on data tables because they cannot be relied upon, even as a last resort. The second fact to keep in mind is that no compound concentration, even if it has passed all QC tests, is guaranteed to be accurate. Strict QC serves to increase confidence in data but any value potentially contains error.

VOLATILE ORGANIC COMPOUND (VOC) ANALYSES

1. Holding Times

The specified holding times for the following methods are presented in the following table.

Method	Matrix	Holding Time	Preservation
SW-846 8260B	Water	14 days from collection to analysis (7 days if unpreserved)	Cool to 4°C±2°C; preserved to a pH of less than 2 s.u.
010 02002	Soil	14 days from collection to analysis	Cool to 4°C±2°C.

s.u. Standard units

All samples were analyzed within the specified holding time criteria.

2. Blank Contamination

Quality assurance (QA) blanks (i.e., method and rinse blanks) are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Rinse blanks measure contamination of samples during field operations.

A blank action level (BAL) of five times the concentration of a detected compound in an associated blank (common laboratory contaminant compounds are calculated at ten times) is calculated for QA blanks containing concentrations greater than the method detection limit (MDL). The BAL is compared to the associated sample results to determine the appropriate qualification of the sample results, if needed.

Compounds were not detected above the MDL in the associated blanks; therefore detected sample results were not associated with blank contamination.

3. Mass Spectrometer Tuning

Mass spectrometer performance was acceptable and all analyses were performed within a 12-hour tune clock.

System performance and column resolution were acceptable.

4. Calibration

Satisfactory instrument calibration is established to insure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument daily performance is satisfactory.

4.1 Initial Calibration

The method specifies percent relative standard deviation (%RSD) and relative response factor (RRF) limits for select compounds only. A technical review of the data applies limits to all compounds with no exceptions.

All target compounds associated with the initial calibration standards must exhibit a %RSD less than the control limit (15%) or a correlation coefficient greater than 0.99 and an RRF value greater than control limit (0.05).

4.2 Continuing Calibration

All target compounds associated with the continuing calibration standard must exhibit a percent difference (%D) less than the control limit (20%) and RRF value greater than control limit (0.05).

All compounds associated with the calibrations were within the specified control limits, with the exception of the compounds presented in the following table.

Sample Locations	Initial/Continuing	Compound	Criteria
DUP-082212	CCV %D	Bromomethane	-36.2%

The criteria used to evaluate the initial and continuing calibration are presented in the following table. In the case of a calibration deviation, the sample results are qualified.

Initial/Continuing	Criteria	Sample Result	Qualification
	RRF <0.05	Non-detect	R
	KKF <0.03	Detect	J
Initial and Continuing	RRF <0.01 ¹	Non-detect	R
Calibration	KKF <0.01	Detect	J
	RRF >0.05 or RRF >0.01 ¹	Non-detect	No Action
	KKF	Detect	NO ACTION
	%RSD > 15% or a correlation	Non-detect	UJ
Initial Calibration	coefficient <0.99	Detect	J
	%RSD >90%	Non-detect	R
	%K3D ~90%	Detect	J
	9/D >209/ (increase in consitivity)	Non-detect	No Action
	%D >20% (increase in sensitivity)	Detect	J
Continuing Colibration	9/D >209/ (degrees in consitiuity)	Non-detect	UJ
Continuing Calibration	%D >20% (decrease in sensitivity)	Detect	J
	%D >90% (increase/decrease in	Non-detect	R
	sensitivity)	Detect	J

RRF of 0.01 only applies to compounds which are typically poor responding compounds

5. Surrogates/System Monitoring Compounds

All samples to be analyzed for organic compounds are spiked with surrogate compounds prior to sample preparation to evaluate overall laboratory performance and efficiency of the analytical technique. VOC analysis requires that all surrogates associated with the analysis exhibit recoveries within the laboratory-established acceptance limits.

All surrogate recoveries were within control limits.

6. Internal Standard Performance

Internal standard performance criteria insure that the GC/MS sensitivity and response are stable during every sample analysis. The criteria requires the internal standard compounds associated with the VOC exhibit area counts that are not greater than two times (+100%) or less than one-half (-50%) of the area counts of the associated continuing calibration standard.

All internal standard responses were within control limits.

7. Matrix Spike/Matrix Spike Duplicate (MS/MSD) Analysis

MS/MSD data are used to assess the precision and accuracy of the analytical method. The compounds used to perform the MS/MSD analysis must exhibit a percent recovery within the laboratory-established acceptance limits. The relative percent difference (RPD) between the MS/MSD recoveries must exhibit an RPD within the laboratory-established acceptance limits.

Note: The MS/MSD recovery control limits do not apply for MS/MSD performed on sample locations where the compound concentration detected in the parent sample exceeds the MS/MSD concentration by a factor of four or greater.

The MS/MSD exhibited acceptable recoveries and RPD between the MS/MSD recoveries.

8. Laboratory Control Sample (LCS) Analysis

The LCS analysis is used to assess the precision and accuracy of the analytical method independent of matrix interferences. The compounds associated with the LCS analysis must exhibit a percent recovery within the laboratory-established acceptance limits.

All compounds associated with the LCS analysis exhibited recoveries within the control limits.

9. Field Duplicate Analysis

Field duplicate analysis is used to assess the overall precision of the field sampling procedures and analytical method. A control limit of 30% for water matrices and 50% for soil matrices is applied to the RPD between the parent sample and the field duplicate. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of two times the RL is applied for water matrices or three times the RL is applied for soil matrices.

Results for duplicate samples are summarized in the following table.

Sample ID/Duplicate ID	Compound	Sample Result	Duplicate Result	RPD
AW-01/DUP-082212	Benzene	0.58 J	0.55 J	AC

AC - Acceptable

The calculated RPDs between the parent sample and field duplicate were acceptable.

10. Compound Identification

Compounds are identified on the GC/MS by using the analytes relative retention time and ion spectra.

All identified compounds met the specified criteria.

11. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

DATA VALIDATION CHECKLIST FOR VOCs

VOCs: SW-846 8260B	Rep	orted		mance ptable	Not Required	
	No	Yes	No	Yes	Required	
GAS CHROMATOGRAPHY/MASS SPECTROME	TRY (GC/	/MS)				
Tier II Validation	_	_				
Holding times		Х		X		
Reporting limits (units)		Х		X		
Blanks						
A. Method blanks		Х		Х		
B. Equipment blanks		Х		Х		
C. Trip blanks		Х		Х		
Laboratory Control Sample (LCS)		Х		Х		
Laboratory Control Sample Duplicate(LCSD)					Х	
LCS/LCSD Precision (RPD)					Х	
Matrix Spike (MS)		Х		Х		
Matrix Spike Duplicate(MSD)		Х		Х		
MS/MSD Precision (RPD)		Х		Х		
Field/Lab Duplicate (RPD)		Х		Х		
Surrogate Spike Recoveries		Х		Х		
Dilution Factor		Х		Х		
Moisture Content		Х		Х		
Tier III Validation			ı		I	
System performance and column resolution		Х		Х		
Initial calibration %RSDs		Х		Х		
Continuing calibration RRFs		Х		Х		
Continuing calibration %Ds		Х	Х			
Instrument tune and performance check		Х		Х		
Ion abundance criteria for each instrument used		Х		Х		
Internal standard		Х		Х		
Compound identification and quantitation			1		<u>I</u>	
A.Reconstructed ion chromatograms		Х		Х		
B.Quantitation Reports		Х		Х		
C.RT of sample compounds within the established RT windows		Х		Х		
D.Transcription/calculation errors present				Х		

VOCs: SW-846 8260B	Repo	Reported		mance stable	Not Required	
	No	Yes	No	Yes	Roquirou	
GAS CHROMATOGRAPHY/MASS SPECTROMETRY (GC/MS)						
E.Reporting limits adjusted to reflect sample dilutions		Х		Х		

%RSD Relative standard deviation

%R RPD %D Percent recovery
Relative percent difference
Percent difference

SEMIVOLATILE ORGANIC COMPOUND (SVOC) ANALYSES

1. Holding Times

The specified holding times for the following methods are presented in the following table.

Method	Matrix	Holding Time	Preservation
SW 946 92700	Water	7 days from collection to extraction and 40 days from extraction to analysis	Cooled @ 4°C ± 2°C
SW-846 8270C	Soil	14 days from collection to extraction and 40 days from extraction to analysis	Cooled @ 4°C ± 2°C

All samples were analyzed within the specified holding time criteria.

2. Blank Contamination

Quality assurance (QA) blanks (i.e., method and rinse blanks) are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Rinse blanks measure contamination of samples during field operations.

A blank action level (BAL) of five times the concentration of a detected compound in an associated blank (common laboratory contaminant compounds are calculated at ten times) is calculated for QA blanks containing concentrations greater than the method detection limit (MDL). The BAL is compared to the associated sample results to determine the appropriate qualification of the sample results, if needed.

Compounds were not detected above the MDL in the associated blanks; therefore detected sample results were not associated with blank contamination.

3. Mass Spectrometer Tuning

Mass spectrometer performance was acceptable and all analyses were performed within a 12-hour tune clock.

System performance and column resolution were acceptable.

4. Calibration

Satisfactory instrument calibration is established to insure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument daily performance is satisfactory.

4.1 Initial Calibration

The method specifies percent relative standard deviation (%RSD) and relative response factor (RRF) limits for select compounds only. A technical review of the data applies limits to all compounds with no exceptions.

All target compounds associated with the initial calibration standards must exhibit a %RSD less than the control limit (15%) or a correlation coefficient greater than 0.99 and an RRF value greater than control limit (0.05).

4.2 Continuing Calibration

All target compounds associated with the continuing calibration standard must exhibit a percent difference (%D) less than the control limit (20%) and RRF value greater than control limit (0.05).

All compounds associated with the calibrations were within the specified control limits, with the exception of the compounds presented in the following table.

Sample Locations	Initial/ Continuing	Compound	Criteria
AW-02			
AW-01	CCV %D	2,4-Dinitrophenol	22.2%
DUP-082212		·	

The criteria used to evaluate the initial and continuing calibration are presented in the following table. In the case of a calibration deviation, the sample results are qualified.

Initial/Continuing	Criteria	Sample Result	Qualification
	RRF <0.05	Non-detect	R
	KKF <0.05	Detect	J
Initial and Continuing	RRF <0.01 ¹	Non-detect	R
Calibration	KKF \0.01	Detect	J
	RRF >0.05 or RRF >0.01 ¹	Non-detect	No Action
	KKF 20.03 01 KKF 20.01	Detect	NO ACTION
	%RSD > 15% or a correlation	Non-detect	UJ
Initial Calibration	coefficient <0.99	Detect	J
	%RSD >90%	Non-detect	R
	%R3D >90%	Detect	J
	%D >20% (increase in sensitivity)	Non-detect	No Action
	//OD /20 // (Increase in sensitivity)	Detect	J
Continuing Colibration	0/D >200/ (degrees in consitiuity)	Non-detect	ΠΊ
Continuing Calibration	%D >20% (decrease in sensitivity)	Detect	J
	%D >90% (increase/decrease in	Non-detect	R
	sensitivity)	Detect	J

RRF of 0.01 only applies to compounds which are typically poor responding compounds (i.e., ketones, 1,4-dioxane, etc.)

5. Surrogates/System Monitoring Compounds

All samples to be analyzed for organic compounds are spiked with surrogate compounds prior to sample preparation to evaluate overall laboratory performance and efficiency of the analytical technique. SVOC analysis requires that two of the three SVOC surrogate compounds within each fraction exhibit recoveries within the laboratory-established acceptance limits.

Sample locations associated with surrogates exhibiting recoveries outside of the control limits presented in the following table.

Sample Locations	Surrogate Recov	
	2,4,6-Tribromophenol	AC
AW-02	2-Fluorobiphenyl	AC
	2-Fluorophenol	AC
AW-01 DUP-082212	Nitrobenzene-d5	AC
	p-Terphenyl-d14	<ll but="">10%</ll>
	Phenol-d5	AC

LL Lower control limit

AC Acceptable

The criteria used to evaluate the surrogate recoveries are presented in the following table. In the case of a surrogate deviation, the sample results associated with the deviant fraction are qualified as documented in the table below.

Control Limit	Sample Result	Qualification
> UL	Non-detect	No Action
- OL	Detect	J
< LL but > 10%	Non-detect	UJ
CE but > 10 %	Detect	J
< 10%	Non-detect	R
1076	Detect	J
Surrogates diluted below the calibration curve due to the	Non-detect	1
high concentration of a target compounds	Detect	J

A more concentrated analysis was not performed with surrogate compounds within the calibration range; therefore, no determination of extraction efficiency could be made.

6. Internal Standard Performance

Internal standard performance criteria insure that the GC/MS sensitivity and response are stable during every sample analysis. The criteria requires the internal standard compounds associated with the SVOC exhibit area counts that are not greater than two times (+100%) or less than one-half (-50%) of the area counts of the associated continuing calibration standard.

All internal standard responses were within control limits.

7. Matrix Spike/Matrix Spike Duplicate (MS/MSD) Analysis

MS/MSD data are used to assess the precision and accuracy of the analytical method. The compounds used to perform the MS/MSD analysis must exhibit a percent recovery within the laboratory-established acceptance limits. The relative percent difference (RPD) between the MS/MSD recoveries must exhibit an RPD within the laboratory-established acceptance limits.

Note: The MS/MSD recovery control limits do not apply for MS/MSD performed on sample locations where the compound concentration detected in the parent sample exceeds the MS/MSD concentration by a factor of four or greater.

The MS/MSD exhibited acceptable recoveries and RPD between the MS/MSD recoveries.

8. Laboratory Control Sample (LCS/) Analysis

The LCS analysis is used to assess the precision and accuracy of the analytical method independent of matrix interferences. The compounds associated with the LCS analysis must exhibit a percent recovery within the laboratory-established acceptance limits.

All compounds associated with the LCS analysis exhibited recoveries within the control limits.

9. Field Duplicate Analysis

Field duplicate analysis is used to assess the overall precision of the field sampling procedures and analytical method. A control limit of 50% for soil matrices is applied to the RPD between the parent sample and the field duplicate. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of three times the RL is applied for soil matrices.

Results for duplicate samples are summarized in the following table.

Sample ID/Duplicate ID	Compound	Sample Result	Duplicate Result	RPD
AW-01/DUP-082212	Acenaphthene	2.2 J	2 J	AC
AVV-01/DUP-062212	Di-n-octyl phthalate	1.9 J	4.7 U	AC

AC - Acceptable

The calculated RPDs between the parent sample and field duplicate were acceptable.

10. Compound Identification

Compounds are identified on the GC/MS by using the analytes relative retention time and ion spectra.

All identified compounds met the specified criteria.

11. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

DATA VALIDATION CHECKLIST FOR SVOCs

SVOCs: SW-846 8270C	Repo	rted		mance ptable	Not
	No	Yes	No	Yes	Required
GAS CHROMATOGRAPHY/MASS SPECTROMET	ΓRY (GC/M	1S)			
Tier II Validation					
Holding times		Х		Х	
Reporting limits (units)		Х		Х	
Blanks					
D. Method blanks		Х		Х	
E. Equipment blanks					Х
Laboratory Control Sample (LCS) %R		Х		Х	
Laboratory Control Sample Duplicate(LCSD) %R					Х
LCS/LCSD Precision (RPD)					Х
Matrix Spike (MS) %R		Χ		Х	
Matrix Spike Duplicate(MSD) %R		Х		Х	
MS/MSD Precision (RPD)		Х		Х	
Field/Lab Duplicate (RPD)		Х		Х	
Surrogate Spike Recoveries		Х	Х		
Dilution Factor		Х		Х	
Moisture Content					Х
Tier III Validation					
System performance and column resolution		Х		Х	
Initial calibration %RSDs		Х		Х	
Continuing calibration RRFs		Х		Х	
Continuing calibration %Ds		Х	Х		
Instrument tune and performance check		Х		Х	
Ion abundance criteria for each instrument used		Х		Х	
Internal standard		Х		Х	
Compound identification and quantitation			•	•	
F. Reconstructed ion chromatograms		Χ		Х	
G. Quantitation Reports		Х		Х	
H.RT of sample compounds within the established RT windows		Х		Х	
Transcription/calculation errors present				Х	
J. Reporting limits adjusted to reflect sample dilutions %RSD Relative standard deviation		Х		Х	

%RSD Relative standard deviation

%R RPD %D

Percent recovery
Relative percent difference
Percent difference

INORGANIC ANALYSIS INTRODUCTION

Analyses were performed according to United States Environmental Protection Agency (USEPA) SW-846 Methods 6000/7000 and 9012A/9016. Data were reviewed in accordance with USEPA National Functional Guidelines of July 2002.

The data review process is an evaluation of data on a technical basis rather than a determination of contract compliance. As such, the standards against which the data are being weighed may differ from those specified in the analytical method. It is assumed that the data package represents the best efforts of the laboratory and that it was already subjected to adequate and sufficient quality review prior to submission.

During the review process, laboratory qualified and unqualified data are verified against the supporting documentation. Based on this evaluation, qualifier codes may be added, deleted, or modified by the data reviewer. Results are qualified with the following codes in accordance with the USEPA National Functional Guidelines:

- Concentration (C) Qualifiers
 - U The analyte was analyzed for but not detected. The associated value is the analyte instrument detection limit.
 - B The reported value was obtained from a reading less than the contract-required detection limit (CRDL), but greater than or equal to the instrument detection limit (IDL).
- Quantitation (Q) Qualifiers
 - E The reported value is estimated due to the presence of interference.
 - N Spiked sample recovery is not within control limits.
 - * Duplicate analysis is not within control limits.
- Validation Qualifiers
 - J The analyte was positively identified; however, the associated numerical value is an estimated concentration only.
 - UJ The analyte was not detected above the reported sample detection limit. However, the reported limit is approximate and may or may not represent the actual limit of detection.
 - UB Analyte considered non-detect at the listed value due to associated blank contamination.
 - R The sample results are rejected.

Two facts should be noted by all data users. First, the "R" flag means that the associated value is unusable. In other words, due to significant quality control (QC) problems, the analysis is invalid and provides no information as to whether the compound is present or not. "R" values should not appear on data tables because they cannot be relied upon, even as a last resort. The second fact to keep in mind is that no compound concentration, even if it has passed all QC tests, is guaranteed to be accurate. Strict QC serves to increase confidence in data but any value potentially contains error.

METALS ANALYSES

1. Holding Times

The specified holding times for the following methods are presented in the following table.

Method	Matrix	Holding Time	Preservation
SW-846 6010B	Water	180 days from collection to analysis	Cool to 4°C±2°C; preserved to a pH of less than 2.
GW 616 6616B	Soil	180 days from collection to analysis	Cool to 4°C±2°C.
SW-846 7470	Water	28 days from collection to analysis	Cool to 4°C±2°C; preserved to a pH of less than 2.
SW-846 7471	Soil	28 days from collection to analysis	Cool to 4°C <u>+</u> 2°C.

All samples were analyzed within the specified holding times.

2. Blank Contamination

Quality assurance (QA) blanks (i.e., method and rinse blanks) are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Rinse blanks measure contamination of samples during field operations.

A blank action level (BAL) of five times the concentration of a detected compound in an associated blank (common laboratory contaminant compounds are calculated at ten times) is calculated for QA blanks containing concentrations greater than the method detection limit (MDL). The BAL is compared to the associated sample results to determine the appropriate qualification of the sample results, if needed.

Analytes were detected in the associated QA blanks; however, the associated sample results were greater than the BAL and/or were non-detect. Therefore, sample results greater than the BAL resulted in the removal of the laboratory qualifier (B). No other qualification of the sample results was required.

3. Calibration

Satisfactory instrument calibration is established to provide that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument's continuing performance is satisfactory.

3.1 Initial Calibration and Continuing Calibration

The correct number and type of standards were analyzed. The correlation coefficient of the initial calibration was greater than 0.995 for all non-ICP analytes and all initial calibration verification standard recoveries were within control limits.

All continuing calibration verification standard recoveries were within the control limit.

3.2 CRDL Check Standard

The CRDL check standard serves to verify the linearity of calibration of the analysis at the CRDL. The CRDL standard is not required for the analysis of aluminum (Al), barium (Ba), calcium (Ca), iron (Fe), magnesium (Mg), sodium (Na), and potassium (K). The criteria used to evaluate the CRDL standard analysis are presented below in the CRDL standards evaluation table (if applicable).

All CRDL standard recoveries were within control limits.

3.3 ICP Interference Control Sample (ICS)

The ICS verifies the laboratories interelement and background correction factors.

All ICS exhibited recoveries within the control limits.

4. Matrix Spike/Matrix Spike Duplicate (MS/MSD)/Laboratory Duplicate Analysis

MS/MSD and laboratory duplicate data are used to assess the precision and accuracy of the analytical method.

4.1 MS/MSD Analysis

All metal analytes must exhibit a percent recovery within the established acceptance limits of 75% to 125%. The MS/MSD recovery control limits do not apply for MS/MSD performed on sample locations where the analyte's concentration detected in the parent sample exceeds the MS concentration by a factor of four or greater. In instance where this is true, the data will not be qualified even if the percent recovery does not meet the control limits.

All analytes associated with MS/MSD recoveries were within control limits with the exception of the following analyte present in the table below.

Sample Location	Analyte	MS Recovery	MSD Recovery
AW-02	Silver	126%	128%

The criteria used to evaluate MS/MSD recoveries are presented in the following table. In the case of an MS/MSD deviation, the sample results are qualified. The qualifications are applied to all sample results associated with this SDG.

Control limit	Sample Result	Qualification
MS/MSD percent receivery 200/, to 740/	Non-detect	UJ
MS/MSD percent recovery 30% to 74%	Detect	J
MC/MCD percent recovery 2200/	Non-detect	R
MS/MSD percent recovery <30%	Detect	J
MS/MSD percent recovery >125%	Non-detect	No Action
ivis/ivisib percent recovery >125%	Detect	J

4.2 Laboratory Duplicate Analysis

The laboratory duplicate relative percent difference (RPD) criterion is applied when parent and duplicate sample concentrations are greater than or equal to 5 times the CRDL. A control limit of 20% for water matrices and 35% for soil matrices is applied when the criteria above is true. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the CRDL, a control limit of one times the CRDL is applied for water matrices and two times the CRDL for soil matrices.

MS/MSD analysis was performed in replacement of the laboratory duplicate analysis. The MS/MSD recoveries exhibited acceptable RPD.

5. Field Duplicate Analysis

Field duplicate analysis is used to assess the overall precision of the field sampling procedures and analytical method. A control limit of 50% for soil matrices is applied to the RPD between the parent sample and the field duplicate. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of three times the RL is applied for soil matrices.

Results for duplicate samples are summarized in the following table.

Sample ID/Duplicate ID	Analyte	Sample Result	Duplicate Result	RPD
	Aluminum	0.071 J	0.086 J	AC
	Barium	0.052	0.052	0.0 %
	Cadmium	0.001 U	0.00053 J	AC
	Calcium	294	301	2.3 %
	Cobalt	0.004 U	0.00071 J	AC
	Copper	0.01 U	0.0022 J	AC
AW-01/DUP-082212	Iron	15.1	15.3	1.3 %
	Magnesium	19.6	19.7	0.5 %
	Manganese	0.77	0.78	1.2 %
	Potassium	9.7	9.7	0.0 %
	Sodium	498	504	1.1 %
	Vanadium	0.0041 J	0.0047 J	AC
	Zinc	0.0034 J	0.0026 J	AC

AC = Acceptable

The calculated RPDs between the parent sample and field duplicate were acceptable.

6. Laboratory Control Sample (LCS) Analysis

The LCS analysis is used to assess the precision and accuracy of the analytical method independent of matrix interferences. The analytes associated with the LCS analysis must exhibit a percent recovery between the control limits of 80% and 120%.

The LCS analysis exhibited recoveries within the control limits.

7. Serial Dilution

The serial dilution analysis is used to assess if a significant physical or chemical interference exists due to sample matrix. Analytes exhibiting concentrations greater than 50 times the MDL in the undiluted sample are evaluated to determine if matrix interference exists. These analytes are required to have less than a 10% difference (%D) between sample results from the undiluted (parent) sample and results associated with the same sample analyzed with a five-fold dilution.

All serial dilutions were within control limits.

8. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

DATA VALIDATION CHECKLIST FOR METAL

METALS; SW-846 6000/7000		Reported		rmance ptable	Not
		Yes	No	Yes	Required
Inductively Coupled Plasma-Atomic Emission Spec	trometry	(ICP)			
Atomic Absorption – Manual Cold Vapor (CV)					
Tier II Validation					
Holding Times		Х		Х	
Reporting limits (units)		Х		Х	
Blanks					
A. Instrument Blanks		Х	Х		
B. Method Blanks		Х		Х	
C. Equipment/Field Blanks		Х		Х	
Laboratory Control Sample (LCS)		Х		Х	
Matrix Spike (MS) %R		Х	Х		
Matrix Spike Duplicate (MSD) %R		Х	Х		
MS/MSD Precision (RPD)		Х		Х	
Field/Lab Duplicate (RPD)		Х		Х	
ICP Serial Dilution		Х		Х	
Reporting Limit Verification		X		X	
Raw Data		X		X	
Tier III Validation					
Initial Calibration Verification		Х		Х	
Continuing Calibration Verification		Х		Х	
CRDL Standard		Х		Х	
ICP Interference Check		Х		Х	
Transcription/calculation errors present		Х		Х	
Reporting limits adjusted to reflect sample dilutions		Х		Х	

%R Percent recovery
RPD Relative percent difference

GENERAL CHEMISTRY ANALYSES

1. Holding Times

The specified holding times for the following methods are presented in the following table.

Method	Matrix	Holding Time	Preservation
Total/Free Cyanide by SW-	Water	14 days from collection	Cooled @ 4°C ± 2; preserved to a pH of greater than 12.
846 9012A/9016	Soil	to analysis	Cooled @ 4°C ± 2.

All samples were analyzed within the specified holding time criteria.

2. Blank Contamination

Quality assurance (QA) blanks (i.e., method and rinse blanks) are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Rinse blanks measure contamination of samples during field operations.

A blank action level (BAL) of five times the concentration of a detected compound in an associated blank (common laboratory contaminant compounds are calculated at ten times) is calculated for QA blanks containing concentrations greater than the method detection limit (MDL). The BAL is compared to the associated sample results to determine the appropriate qualification of the sample results, if needed.

All analytes associated with the QA blanks exhibited a concentration less than the MDL, with the exception of the analytes listed in the following table. Sample results associated with QA blank contamination that were greater than the BAL resulted in the removal of the laboratory qualifier (J) of data. Sample results less than the BAL associated with the following sample locations were qualified as listed in the following table.

Sample Locations	Analyte	Sample Result	Qualification	
AW-02	Total Cyanide	Detected sample results <rl <bal<="" and="" td=""><td>"UB" at the RL</td></rl>	"UB" at the RL	
AW-01 DUP-082212	Free Cyanide	Detected sample results >RL and <bal< td=""><td>"UB" at detected sample concentration</td></bal<>	"UB" at detected sample concentration	

RL = reporting limit

3. Calibration

Satisfactory instrument calibration is established to insure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument daily performance is satisfactory.

The correct number and type of standards were analyzed. The correlation coefficient of the initial calibration was greater than 0.995 and all initial calibration verification standard recoveries were within control limits.

All calibration standard recoveries were within the control limit.

4. Matrix Spike/Matrix Spike Duplicate (MS/MSD)/Laboratory Duplicate Analysis

MS/MSD and laboratory duplicate data are used to assess the precision and accuracy of the analytical method.

4.1 MS/MSD Analysis

All analytes must exhibit a percent recovery within the established acceptance limits of 75% to 125%. The MS/MSD recovery control limits do not apply for MS/MSD performed on sample locations where the analyte's concentration detected in the parent sample exceeds the MS/MSD concentration by a factor of four or greater. In instance where this is true, the data will not be qualified even if the percent recovery does not meet the control limits and the laboratory flag will be removed.

All analytes associated with MS/MSD recoveries were within control limits with the exception of the following analyte present in the table below.

Sample Location	Analyte	MS Recovery	MSD Recovery	
AW-02	Total Cyanide	49%	AC	

The criteria used to evaluate MS/MSD recoveries are presented in the following table. In the case of an MS/MSD deviation, the sample results are qualified. The qualifications are applied to all sample results associated with this SDG.

Control limit	Sample Result	Qualification	
MS/MSD percent recovery 30% to 74%	Non-detect	UJ	
MS/MSD percent recovery 30% to 74%	Detect	J	
MC/MCD percent recovery 2200/	Non-detect	R	
MS/MSD percent recovery <30%	Detect	J	
MS/MSD percent recovery >1259/	Non-detect	No Action	
MS/MSD percent recovery >125%	Detect	J	

4.2 Laboratory Duplicate Analysis

The laboratory duplicate relative percent difference (RPD) criterion is applied when parent and duplicate sample concentrations are greater than or equal to 5 times the CRDL. A control limit of 20% for water matrices and 35% for soil matrices is applied when the criteria above is true. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the CRDL, a control limit of one times the CRDL is applied for water matrices and two times the CRDL for soil matrices.

MS/MSD analysis was performed in replacement of the laboratory duplicate analysis. The MS/MSD recoveries exhibited acceptable RPD.

5. Field Duplicate Analysis

Field duplicate analysis is used to assess the overall precision of the field sampling procedures and analytical method. A control limit of 50% for water matrices and 100% for soil matrices is applied to the RPD between the parent sample and the field duplicate. In the instance when the parent and/or duplicate

sample concentrations are less than or equal to 5 times the RL, a control limit of two times the RL is applied for water matrices or three times the RL is applied for soil matrices.

Results for duplicate samples are summarized in the following table.

Sample ID/Duplicate ID	Compound	Sample Result	Duplicate Result	RPD
AW-01/DUP-082212	Cyanide, Total	0.088	0.063	AC

AC = Acceptable

The calculated RPDs between the parent sample and field duplicate were acceptable.

6. Laboratory Control Sample (LCS) Analysis

The LCS analysis is used to assess the precision and accuracy of the analytical method independent of matrix interferences. The analytes associated with the LCS analysis must exhibit a percent recovery between the control limits of 80% and 120%.

All LCS recoveries were within control limits.

7. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

DATA VALIDATION CHECKLIST FOR GENERAL CHEMISTRY

General Chemistry: SW-846 9012A and 9016	Reported		Performance Acceptable		Not
	No	Yes	No	Yes	Required
Miscellaneous Instrumentation					
Tier II Validation					
Holding times		Х		Х	
Reporting limits (units)		Х		Х	
Blanks					
A. Method blanks		Х	Х		
B. Equipment blanks					Х
Laboratory Control Sample (LCS) %R		Х		Х	
Laboratory Control Sample Duplicate(LCSD) %R					Х
LCS/LCSD Precision (RPD)					Х
Matrix Spike (MS) %R		Х	Х		
Matrix Spike Duplicate(MSD) %R		Х		Х	
MS/MSD Precision (RPD)		Х		Х	
Field/Lab Duplicate (RPD)		Х		Х	
Dilution Factor					Х
Moisture Content		Х		Х	
Tier III Validation					
Initial calibration %RSD or correlation coefficient		Х		Х	
Continuing calibration %R		Х		Х	
Raw Data		Х		Х	
Transcription/calculation errors present				Х	
Reporting limits adjusted to reflect sample dilutions		X		X	

[%]RSD – relative standard deviation, %R - percent recovery, RPD - relative percent difference, %D – difference

SAMPLE COMPLIANCE REPORT

Sample						Co	mplian	cy ¹		Noncompliance
Delivery Group (SDG)	Sampling Date	Protocol	Sample ID	Matrix	VOC	svoc	РСВ	MET	MISC	Noncompliance
	8/22/2012	SW846	AW-02	Water	yes	yes		yes	No	MISC – Method Blank, MS %R
	8/22/2012	SW846	AW-01	Water	yes	yes		yes	No	MISC – Method Blank, MS %R
480-23453	8/22/2012	SW846	DUP-082212	Water	No	yes		yes	No	VOC – CCAL %D MISC – Method Blank, MS %R
	8/22/2012	SW846	TRIP BLANK	Water	yes					MET – MS/MSD %R, Ser Dil., Field dup.

¹ Samples which are compliant with no added validation qualifiers are listed as "yes". Samples which are non-compliant or which have added qualifiers are listed as "no". A "no" designation does not necessarily indicate that the data have been rejected or are otherwise unusable.

VALIDATION PERFORMED BY: Andrew Korycinski

SIGNATURE:

DATE: October 3, 2012

PEER REVIEW: Dennis Capria

DATE: October 5, 2012

CHAIN OF CUSTODY/ CORRECTED SAMPLE ANALYSIS DATA SHEETS

Special Instructions/ Conditions of Receipt Sw/swax (A fee may be assessed if samples are retained Months kniger than 1 month) Terre Derte THE LEADER IN ENVIRONMENTAL TESTING **TestAmerica** 3.0te くとし Analysis (Attach list if more space is needed) Date | 12/1/1. | (40 Number Olisposal By Lab Archive For OC Requirements (Specify) HORN DAY OF MANNEY MANN Containers & Preservatives Sie Conieci Rey . Lab Conpact Klows (Sey . Lab Conpact Connectivity in Number 3. Received By Project Memoger
Scott (A.S.).
Response Number (Mes Colos) Fast Number
SCOTS (S-6 H-945). SONH M \$ POSZH saudun 301A Temperature on Receipt ... Drinking Water? Yes□ ■ Unknown | □ Return To Client 11ms 1535 DISTRIBUTION: WHITE-Returned to Client with Report, CANARY-Stays with the Samole; PINK-Fleed Copy pos Sample Disposa Metrix to marshedans pes N noenby 1/17/3 2/77/17 # 7 23 8 1) ☐ 21 DBys State | Zp Code 1/10/s ☐ Paison B Oate } 14 Days Sample I.D. No. and Description (Containers for each sample may be continued on one line) ARAPIS/NOTION Fuel Skin Imiteral 70005 CAN ENDON-H Proposition (State)
Higher Stp. P. Arlb. N. Contract Proposition (State)
(120) 233/10,0000 295 Woodeliff Duk ☐ Mon-Hazard ☐ Flammable **Custody Record** - 4 Hous Possible Hazard Identification JECT DIAZE Tum Around Time Required DW-08710 3. Relanquished By Chain of \$ 0 なる 1. Regiment Comments

Client: ARCADIS U.S. Inc

Job Number: 480-24234-1

Client Sample ID:

AW-02

Lab Sample ID:

480-24234-1

Client Matrix:

Water

Date Sampled: 08/22/2012 1100 Date Received: 08/22/2012 1530

8260B Volatile Organic Compounds (GC/MS)

Result (ug/L)

ND

Analysis Method:

8260B

Analysis Batch:

480-78272

Instrument ID:

HP5973Q

Prep Method:

5030B

Lab File ID:

Q2467.D

Dilution:

Prep Batch:

N/A

Analysis Date:

1.0

Qualifier

Initial Weight/Volume:

MDL

0.82

0.36

0.51

0.90

0.37

0.46

0.88

5 mL

1,1,1-Trichloroethane

08/27/2012 1724

Final Weight/Volume:

5 mL

RL

1.0

Prep Date:

Analyte

08/27/2012 1724

• • • • • · · · · · · · · · · · · · · ·			0.02	1.0	
1,1,2,2-Tetrachloroethane	ND		0.21	1.0	
1,1,2-Trichloroethane	ND		0.23	1.0	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.31	1.0	
1,1-Dichloroethane	ND		0.38	1.0	
1,1-Dichloroethene	ND		0.29	1.0	
1,2,4-Trichlorobenzene	ND		0.41	1.0	
1,2-Dibromo-3-Chloropropane	ND		0.39	1.0	
1,2-Dibromoethane	ND		0.73	1.0	
1,2-Dichlorobenzene	ND		0.79	1.0	
1,2-Dichloroethane	ND		0.21	1.0	
1,2-Dichloropropane	ND		0.72	1,0	
1,3-Dichlorobenzene	ND	\$ 1	0.78	1.0	
1,4-Dichlorobenzene	ND	ŝ-	0.84	1.0	
2-Hexanone	ND		1.2	5.0	
2-Butanone (MEK)	ND		1.3	10	
4-Methyl-2-pentanone (MIBK)	ND		2.1	5.0	
Acetone	ND		3.0	10	
Benzene	ND		0.41	1.0	
Bromodichloromethane	ND		0.39	1.0	
Bromoform	ND		0.26	1.0	
Bromomethane	ND		0.69	1.0	
Carbon disulfide	ND		0.19	1.0	
Carbon tetrachloride	ND		0.27	1.0	
Chlorobenzene	ND		0.75	1.0	
Dibromochloromethane	ND		0.32	1.0	
Chloroethane	ND		0.32	1.0	
Chloroform	ND		0.34	1.0	
Chloromethane	ND		0.35	1.0	
cis-1,2-Dichloroethene	ND		0.81	1.0	
cis-1,3-Dichloropropene	ND		0.36	1.0	
Cyclohexane	ND		0.18	1.0	
Dichlorodifluoromethane	ND		0.68	1.0	
Ethylbenzene	ND		0.74	1.0	
isopropylbenzene	ND		0.79	1.0	
Methyl acetate	ND		0.50	1.0	
Methyl tert-butyl ether	ND		0.16	1.0	
Methylcyclohexane	ND		0.16	1.0	
Methylene Chloride	ND	4	0.44	1.0	
Styrene	ND	\$	0.73	1.0	
Tetrachloroethene	NID		0.00	1.0	

Trichlorofluoromethane

Tetrachloroethene

Trichloroethene

trans-1,2-Dichloroethene

trans-1,3-Dichloropropene

Toluene

ND

ND

ND

ND

ND

ND

1.0

1.0

1.0

1.0

1.0

Client: ARCADIS U.S. Inc. Job Number: 480-24234-1

Client Sample ID:

AW-02

Lab Sample ID:

480-24234-1

Client Matrix:

Water

Date Sampled: 08/22/2012 1100

Date Received: 08/22/2012 1530

8260B Volatile Organic Compounds (GC/MS)

Analysis Method:

8260B

Analysis Batch:

480-78272

Instrument ID:

HP5973Q

Prep Method:

5030B

Qualifier

Qualifier

Dilution:

1.0

Prep Batch:

Lab File ID:

N/A

Initial Weight/Volume:

Q2467.D 5 mL

Analysis Date: Prep Date:

08/27/2012 1724 08/27/2012 1724

Final Weight/Volume:

5 mL

Analyte Vinyl chloride Xylenes, Total Result (ug/L) ND ND

MDL 0.90 0.66

RL 1.0 2.0

Surrogate 1,2-Dichloroethane-d4 (Surr) Toluene-d8 (Surr)

4-Bromofluorobenzene (Surr)

66 - 137 71 - 126 73 - 120

Acceptance Limits

Client: ARCADIS U.S. Inc Job Number: 480-24234-1

Client Sample ID:

AW-01

Lab Sample ID:

480-24234-2

Client Matrix:

Water

Date Sampled: 08/22/2012 1250

Date Received: 08/22/2012 1530

8260B Volatile Organic Compounds (GC/MS)

Analysis Method: Prep Method:

8260B 5030B Analysis Batch:

480-78272

Instrument ID:

HP5973Q

Dilution:

Prep Batch:

N/A

Lab File ID:

Q2470.D

Analysis Date:

1.0

Initial Weight/Volume:

5 mL

Prep Date:

08/27/2012 1848

08/27/2012 1848

Final Weight/Volume:

5 mL

Analyte	Result (ug/L)	Qualifier	MDL	RL
1,1,1-Trichloroethane	ND .	The control that the manufacture and the control to	0.82	1.0
1,1,2,2-Tetrachloroethane	ND		0.21	1.0
1,1,2-Trichloroethane	ND		0.23	1.0
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.31	1.0
1,1-Dichloroethane	ND		0.38	1.0
1,1-Dichloroethene	ND		0.29	1.0
1,2,4-Trichlorobenzene	ND		0.41	1.0
1,2-Dibromo-3-Chloropropane	ND		0.39	1.0
1,2-Dibromoethane	ND		0.73	1.0
1,2-Dichlorobenzene	ND		0.79	1.0
1,2-Dichloroethane	ND		0.21	1.0
1,2-Dichloropropane	ND		0.72	1.0
1,3-Dichlorobenzene	ND		0.78	1.0
1,4-Dichlorobenzene	ND		0.84	1.0
2-Hexanone	ND		1,2	5.0
2-Butanone (MEK)	ND		1.3	10
4-Methyl-2-pentanone (MIBK)	ND		2.1	5.0
Acetone	ND		3.0	10
Benzene	0.58	J	0.41	1.0
Bromodichloromethane	ND	-	0.39	1.0
Bromoform	ND		0.26	1.0
Bromomethane	ND		0.69	1.0
Carbon disulfide	ND		0.19	1.0
Carbon tetrachloride	ND		0.27	1.0
Chlorobenzene	ND		0.75	1.0
Dibromochloromethane	ND		0.32	1.0
Chloroethane	ND	7	0.32	1.0
Chloroform	ND		0.34	1.0
Chloromethane	ND		0.35	1.0
cis-1,2-Dichloroethene	ND		0.81	1.0
cis-1,3-Dichloropropene	ND		0.36	1.0
Cyclohexane	ND		0.18	1.0
Dichlorodifluoromethane	ND		0.68	1.0
Ethylbenzene	ND		0.74	1.0
Isopropylbenzene	ND		0.79	1.0
Methyl acetate	ND		0.50	1.0
Methyl tert-butyl ether	ND		0.16	1.0
Methylcyclohexane	ND		0.16	1.0
Methylene Chloride	ND		0.44	1.0
Styrene	ND		0.73	1.0
Tetrachloroethene	ND		0.36	1.0
Toluene	ND		0.51	1.0
trans-1,2-Dichloroethene	ND		0.90	1,0
trans-1,3-Dichloropropene	ND		0.37	1.0
Trichloroethene	ND		0.46	1.0
Trichlorofluoromethane	ND		0.88	1.0
				· · =

Client: ARCADIS U.S. Inc

Job Number: 480-24234-1

Client Sample ID:

AW-01

Lab Sample ID:

480-24234-2

Client Matrix:

Water

Date Sampled: 08/22/2012 1250

Date Received: 08/22/2012 1530

8260B Volatile Organic Compounds (GC/MS)

Analysis Method: Prep Method:

8260B

Analysis Batch:

480-78272

Instrument ID:

HP5973Q

Dilution:

5030B

Prep Batch:

N/A

Lab File ID:

1.0

Q2470.D

Analysis Date:

Initial Weight/Volume:

Qualifier

Qualifier

5 mL

Prep Date:

08/27/2012 1848 08/27/2012 1848

Final Weight/Volume:

5 mL

Analyte Vinyl chloride Xylenes, Total

Toluene-d8 (Surr)

Result (ug/L) ND ND

MDL 0.90 0.66

RL 1.0 2.0

Surrogate 1,2-Dichloroethane-d4 (Surr)

4-Bromofluorobenzene (Surr)

%Rec 85 102

97

Acceptance Limits 66 - 137 71 - 126 73 - 120

Client: ARCADIS U.S. Inc Job Number: 480-24234-1

Client Sample ID:

DUP-082212

Lab Sample ID:

480-24234-3

Client Matrix:

Water

Date Sampled: 08/22/2012 0000 Date Received: 08/22/2012 1530

8260B Volatile Organic Compounds (GC/MS)

Analysis Method:

8260B

Analysis Batch:

480-78428

Instrument ID:

HP5973Q

Prep Method:

5030B

Prep Batch:

Lab File ID:

Q2483.D

Dilution:

1.0

N/A

Initial Weight/Volume:

5 mL

Analysis Date: Prep Date:

08/28/2012 1241 08/28/2012 1241

Final Weight/Volume:

5 mL

•	icp	Date.	
,	nah	40	
F	naly	πе	

Analyte	Result (ug/L)	Qualifier	MDL	RL
1,1,1-Trichloroethane	ND		0.82	1.0
1,1,2,2-Tetrachloroethane	ND		0.21	1.0
1,1,2-Trichloroethane	ND		0.23	1.0
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.31	1.0
1,1-Dichloroethane	ND		0.38	1.0
1,1-Dichloroethene	ND		0.29	1.0
1,2,4-Trichlorobenzene	ND		0.41	1.0
1,2-Dibromo-3-Chloropropane	ND		0.39	1.0
1,2-Dibromoethane	ND		0.73	1.0
1,2-Dichlorobenzene	ND		0.79	1.0
1,2-Dichloroethane	ND		0.21	1.0
1,2-Dichloropropane	ND		0.72	1.0
1,3-Dichlorobenzene	ND		0.78	1.0
1,4-Dichlorobenzene	ND		0.84	1.0
2-Hexanone	ND		1.2	5.0
2-Butanone (MEK)	ND		1.3	10
4-Methyl-2-pentanone (MIBK)	ND		2.1	5.0
Acetone	ND		3.0	10
Benzene	0.55	J	0.41	1.0
Bromodichloromethane	ND		0.39	1.0
Bromoform	ND		0.26	1.0
Bromomethane	ND J		0.69	1.0
Carbon disulfide	ND		0.19	1.0
Carbon tetrachloride	ND		0.27	1.0
Chlorobenzene	ND		0.75	1.0
Dibromochloromethane	ND		0.32	1.0
Chloroethane	ND		0.32	1.0
Chloroform	ND		0.34	1.0
Chloromethane	ND		0.35	1.0
cis-1,2-Dichloroethene	ND		0.81	1.0
cis-1,3-Dichloropropene	ND		0.36	1.0
Cyclohexane	ND		0.18	1.0
Dichlorodifluoromethane	ND		0.68	1.0
Ethylbenzene	ND		0.74	1.0
Isopropylbenzene	ND		0.79	1.0
Methyl acetate	ND		0.50	1.0
Methyl tert-butyl ether	ND		0.16	1.0
Methylcyclohexane	ND		0.16	1.0
Methylene Chloride	ND		0.44	1.0
Styrene	ND		0.73	1.0
Tetrachloroethene	ND		0.36	1.0
Toluene	ND		0.51	1.0
trans-1,2-Dichloroethene	ND		0.90	1.0
trans-1,3-Dichloropropene	ND		0.37	1.0
Trichloroethene	ND		0.46	1.0
Trichlorofluoromethane	ND		0.88	1.0
				· · -

Client: ARCADIS U.S. Inc

Job Number: 480-24234-1

Client Sample ID:

DUP-082212

Lab Sample ID:

480-24234-3

Client Matrix:

Water

Date Sampled: 08/22/2012 0000

Date Received: 08/22/2012 1530

Analysis Method: Prep Method:

8260B 5030B

Analysis Batch:

480-78428

Qualifier

Qualifier

Instrument ID:

HP5973Q

Dilution:

1.0

Prep Batch:

Lab File ID:

Q2483.D

N/A

Initial Weight/Volume:

5 mL

Analysis Date:

Prep Date:

08/28/2012 1241 08/28/2012 1241

Final Weight/Volume:

5 mL

Analyte Vinyl chloride Xylenes, Total Result (ug/L) ND ND

MDL 0.90 0.66

RL 1.0 2.0

Surrogate 1,2-Dichloroethane-d4 (Surr) Toluene-d8 (Surr) 4-Bromofluorobenzene (Surr)

%Rec 92 101 96

66 - 137 71 - 126 73 - 120

Acceptance Limits

Client: ARCADIS U.S. Inc Job Number: 480-24234-1

Client Sample ID:

TRIP BLANK

Lab Sample ID:

480-24234-4

Client Matrix:

Water

Date Sampled: 08/22/2012 0000 Date Received: 08/22/2012 1530

8260B Volatile Organic Compounds (GC/MS)

Analysis Method:

8260B

Analysis Batch:

480-78272

Instrument ID:

HP5973Q

Prep Method:

5030B

Lab File ID:

Q2471.D

Dilution:

1.0

Prep Batch:

N/A

Initial Weight/Volume:

0.46

0.88

5 mL

Analysis Date:

08/27/2012 1916

Final Weight/Volume:

5 mL

riep Date.	Ргер	Date:
------------	------	-------

Trichloroethene

Trichlorofluoromethane

08/27/2012 1916

Analyte	Result (ug/L)	Qualifier	MDL	RL
1,1,1-Trichloroethane	ND	er-vision links in green in transmission and the state and the control of the con	0.82	1.0
1,1,2,2-Tetrachloroethane	ND		0.21	1.0
1,1,2-Trichloroethane	ND		0.23	1.0
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.31	1.0
1,1-Dichloroethane	ND		0.38	1.0
1,1-Dichloroethene	ND		0.29	1,0
1,2,4-Trichlorobenzene	ND		0.41	1.0
1,2-Dibromo-3-Chloropropane	ND		0.39	1.0
1,2-Dibromoethane	ND		0.73	1.0
1,2-Dichlorobenzene	ND		0.79	1.0
1,2-Dichloroethane	ND		0.21	1.0
1,2-Dichloropropane	ND		0.72	1.0
1,3-Dichlorobenzene	ND		0.78	1.0
1,4-Dichlorobenzene	ND		0.84	1.0
2-Hexanone	ND		1.2	5.0
2-Butanone (MEK)	ND		1.3	10
4-Methyl-2-pentanone (MIBK)	ND		2.1	5.0
Acetone	ND		3.0	10
Benzene	ND		0.41	1.0
Bromodichloromethane	ND		0.39	1.0
Bromoform	ND		0.26	1.0
Bromomethane	ND		0.69	1.0
Carbon disulfide	ND		0.19	1.0
Carbon tetrachloride	ND		0.27	1.0
Chlorobenzene	ND		0.75	1.0
Dibromochloromethane	ND	3	0.32	1.0
Chloroethane	ND		0.32	1.0
Chloroform	ND		0.34	1.0
Chloromethane	ND		0.35	1.0
cis-1,2-Dichloroethene	ND		0.81	1.0
cis-1,3-Dichloropropene	ND		0.36	1.0
Cyclohexane	ND		0.18	1.0
Dichlorodifluoromethane	ND		0.68	1.0
Ethylbenzene	ND		0.74	1.0
Isopropylbenzene	ND		0.79	1.0
Methyl acetate	ND		0.50	
Methyl tert-butyl ether	ND		0.30	1.0
Methylcyclohexane	ND		0.16	1.0
Methylene Chloride	ND		0.44	1.0
Styrene	ND		0.44	1.0
Tetrachloroethene	ND		0.73	1.0
Toluene	ND			1.0
trans-1,2-Dichloroethene	ND ND		0.51	1.0
trans-1,3-Dichloropropene	ND		0.90	1.0
a ana- 1,0-Dichioloproperie	NU.		0.37	1.0

ND

ND

1.0

Client: ARCADIS U.S. Inc

Job Number: 480-24234-1

Client Sample ID:

TRIP BLANK

Lab Sample ID:

480-24234-4

Client Matrix:

Water

Date Sampled: 08/22/2012 0000 Date Received: 08/22/2012 1530

8260B Volatile Organic Compounds (GC/MS	8260B Volatile	Organic Com	pounds (GC/MS
---	----------------	-------------	---------------

Analysis Method:

8260B

Analysis Batch:

480-78272

Instrument ID:

HP5973Q

Prep Method:

5030B

Dilution:

Prep Batch:

N/A

Lab File ID:

Q2471.D

1.0

Analysis Date:

Initial Weight/Volume:

5 mL

08/27/2012 1916

Final Weight/Volume:

5 mL

Prep Date:

08/27/2012 1916

Qualifier

Qualifier

Analyte Vinyl chloride Result (ug/L) ND ND

MDL 0.90 0.66

RL 1.0 2.0

Xylenes, Total

Surrogate

%Rec 89

Acceptance Limits 66 - 137

1,2-Dichloroethane-d4 (Surr) Toluene-d8 (Surr) 4-Bromofluorobenzene (Surr)

100 98

71 - 126 73 - 120

Client: ARCADIS U.S. Inc Job Number: 480-24234-1

Client Sample ID:

AW-02

Lab Sample ID:

480-24234-1

Client Matrix:

Water

Date Sampled: 08/22/2012 1100
Date Received: 08/22/2012 1530

8270C Semivolatile Organic Compounds (GC/MS)

Analysis Method: Prep Method: 8270C 3510C Analysis Batch:

480-78669

Instrument ID: Lab File ID: HP5973X X9595.D

Dilution:

1.0

Prep Batch: 480-**7**7914

Initial Weight/Volume:

X9595.D 1045 mL

Analysis Date: Prep Date: 08/30/2012 2201

08/23/2012 1342

Final Weight/Volume: Injection Volume:

1 mL 1 uL

Analyte	Result (ug/L)	Qualifier	MDL	RL
Biphenyl	ND	ngalagan menungangan pada batasa dan dan ganggap pada pagaman bata kenanggaban	0.62	4.8
bis (2-chloroisopropyl) ether	ND		0.50	4.8
2,4,5-Trichlorophenol	ND		0.46	4.8
2,4,6-Trichlorophenol	ND		0.58	4.8
2,4-Dichlorophenol	ND		0.49	4.8
2,4-Dimethylphenol	ND		0.48	4.8
2,4-Dinitrophenol	ND		2.1	9.6
2,4-Dinitrotoluene	ND		0.43	4.8
2,6-Dinitrotoluene	ND		0.38	4.8
2-Chloronaphthalene	ND		0.44	4.8
2-Chlorophenol	ND		0.51	4.8
2-Methylnaphthalene	ND		0.57	4.8
2-Methylphenol	ND		0.38	4.8
2-Nitroaniline	ND		0.40	9.6
2-Nitrophenol	ND		0.46	4.8
3,3'-Dichlorobenzidine	ND		0.38	4.8
3-Nitroaniline	ND		0.46	9.6
4,6-Dinitro-2-methylphenol	ND		2.1	9.6
4-Bromophenyl phenyl ether	ND		0.43	4.8
4-Chloro-3-methylphenol	ND		0.43	4.8
4-Chloroaniline	ND		0.56	
4-Chlorophenyl phenyl ether	ND		0.33	4.8
4-Methylphenol	ND		0.34	4.8
4-Nitroaniline	ND		0.24	9.6
4-Nitrophenol	ND		1.5	9.6
Acenaphthene	1.1	J	0.39	9.6
Acenaphthylene	ND	v	0.36	4.8
Acetophenone	ND		0.52	4.8
Anthracene	ND		0.27	4.8
Atrazine	ND		0.44	4.8
Benzaldehyde	ND		0.26	4.8
Benzo(a)anthracene	ND		0.34	4.8
Benzo(a)pyrene	ND		0.45	4.8
Benzo(b)fluoranthene	ND		0.45	4.8
Benzo(g,h,i)perylene	ND			4.8
Benzo(k)fluoranthene	ND ND		0.33	4.8
Bis(2-chloroethoxy)methane	ND ND		0.70	4.8
Bis(2-chloroethyl)ether	ND ND		0.33	4.8
Bis(2-ethylhexyl) phthalate	ND ND		0.38	4.8
Butyl benzyl phthalate	ND ND		1.7	4.8
Caprolactam	ND ND		0.40	4.8
Carbazole	ND ND		2.1	4.8
Chrysene	ND ND		0.29	4.8
Di-n-butyl phthalate	ND ND		0.32	4.8
Di-n-octyl phthalate	ND ND		0.30	4.8
Dibenz(a,h)anthracene	ND		0.45	4.8
- John Land and Color	INU		0.40	4.8

Client: ARCADIS U.S. Inc

Job Number: 480-24234-1

Client Sample ID:

AW-02

Lab Sample ID:

480-24234-1

Client Matrix:

Water

Date Sampled: 08/22/2012 1100 Date Received: 08/22/2012 1530

		8270C Semivolatile Or	ganic Compou	ınds (GC/N	IS)	
Analysis Method:	8270C	Analysis Batch:	480-78669	Ir	nstrument ID:	HP5973X
Prep Method:	3510C	Prep Batch:	480-77914		ab File ID:	X9595.D
Dilution:	1.0	•			nitial Weight/Volume;	1045 mL
Analysis Date:	08/30/2012 2201				inal Weight/Volume:	1 mL
Prep Date:	08/23/2012 1342				njection Volume:	
				ŧı	ijection volume.	1 uL
Analyte		Result (u	g/L)	Qualifier	MDL	RL
Dibenzofuran		ND	overland to a side in the section in the section of the section in	MC255Thrioty in (MANA (CHANA) (Chana a marchide agus se	0,49	9.6
Diethyl phthalate		ND			0.21	4.8
Dimethyl phthalate		ND			0.34	4.8
Fluoranthene		ND			0,38	4.8
Fluorene		ND			0.34	4.8
Hexachlorobenzene		ND			0.49	4.8
Hexachlorobutadien		ND			0.65	4.8
Hexachlorocyclopen	tadiene	ND			0.56	4.8
Hexachloroethane		ND			0.56	4.8
Indeno(1,2,3-cd)pyre	ene	ND			0.45	4.8
sophorone		ND			0.41	4.8
N-Nitrosodi-n-propyl		ND			0.52	4.8
N-Nitrosodiphenylan	nine	ND			0.49	4.8
Naphthalene		1.4		J	0.73	4.8
Vitrobenzene		ND			0.28	4.8
Pentachlorophenol		ND		-all	2.1	9.6
Phenanthrene		ND		76	0.42	4.8
Phenol		ND			0.37	4.8
Pyrene		0.59		J	0.33	4.8
Surrogate		%Rec		Qualifier	Acceptan	ce Limits
2,4,6-Tribromopheno		106	enclateres in function of part manifester and service	FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF	52 - 132	ingernative citics and statement of the relicity in an annual statement of the relicity of the
2-Fluorobiphenyl		74			48 - 120	
2-Fluorophenol		43			20 - 120	
Nitrobenzene-d5		77			46 - 120	
o-Terphenyl-d14		35		Х	67 <i>-</i> 150	
Phenol-d5		33			16 - 120	

Client: ARCADIS U.S. Inc Job Number: 480-24234-1

Client Sample ID:

AW-01

Lab Sample ID:

480-24234-2

Client Matrix:

Water

Date Sampled: 08/22/2012 1250 Date Received: 08/22/2012 1530

8270C Semivolatile Organic Compounds (GC/MS)

Analysis Method:

8270C

Analysis Batch:

480-78669

Instrument ID:

HP5973X

Prep Method:

3510C

Prep Batch:

480-77914

Lab File ID: Initial Weight/Volume: X9596.D

Dilution:

1.0

Final Weight/Volume:

1060 mL

Analysis Date:

08/30/2012 2225

1 mL

Prep Date:

08/23/2012 1342

Injection Volume:

1 uL

Analyte	Result (ug/L)	Qualifier	MDL	RL
Biphenyl	no construente commencia a construente com esta com esta com esta construente com esta construente com esta com	o je izana entara je izanja kom samo svijeno povo Svojeka en Povo (kom Povo) pom samo svijeno samo svijeno sam	0.62	
bis (2-chloroisopropyl) ether	ND		0.49	4.7
2,4,5-Trichlorophenol	ND		0.45	
2,4,6-Trichlorophenol	ND		0.58	4.7 4.7
2,4-Dichlorophenol	ND		0.38	
2,4-Dimethylphenol	ND		0.47	4.7
2,4-Dinitrophenol	ND		2.1	4.7
2,4-Dinitrotoluene	ND		0.42	9.4
2,6-Dinitrotoluene	ND		0.38	4.7
2-Chloronaphthalene	ND		0.43	4.7
2-Chlorophenol	ND		0.50	4.7
2-Methylnaphthalene	ND		0.57	4.7
2-Methylphenol	ND		0.38	4.7
2-Nitroaniline	ND		0.36	4.7
2-Nitrophenol	ND		0.40	9.4
3,3'-Dichlorobenzidine	ND		0.45	4.7
3-Nitroaniline	ND		0.45	4.7
4,6-Dinitro-2-methylphenol	ND			9.4
4-Bromophenyl phenyl ether	ND		2.1 0.42	9.4
4-Chloro-3-methylphenol	ND ND			4.7
4-Chloroaniline	ND		0.42	4.7
4-Chlorophenyl phenyl ether	ND		0.56	4.7
4-Methylphenol	ND		0.33	4.7
4-Nitroaniline	ND		0.34	9.4
4-Nitrophenol	ND		0.24	9.4
Acenaphthene	2.2	j	1.4	9.4
Acenaphthylene	ND	J	0.39	4.7
Acetophenone	ND		0.36	4.7
Anthracene	ND		0.51	4.7
Atrazine	ND		0.26	4.7
Benzaldehyde	ND ND		0.43	4.7
Benzo(a)anthracene	ND		0.25	4.7
Benzo(a)pyrene	ND		0.34	4.7
Benzo(b)fluoranthene	ND ND		0.44	4.7
Benzo(g,h,i)perylene	ND		0.32	4.7
Benzo(k)fluoranthene	ND ND		0.33	4.7
Bis(2-chloroethoxy)methane	ND		0.69	4.7
Bis(2-chloroethyl)ether	ND		0.33	4.7
Bis(2-ethylhexyl) phthalate	ND		0.38	4.7
Butyl benzyl phthalate	ND		1.7	4.7
Caprolactam	ND ND		0.40	4.7
Carbazole	ND ND		2.1	4.7
Chrysene	ND ND		0.28	4.7
Di-n-butyl phthalate	ND ND		0.31	4.7
Di-n-octyl phthalate	1.9	,	0.29	4.7
• •		J	0.44	4.7
Dibenz(a,h)anthracene	ND		0.40	4.7

Client: ARCADIS U.S. Inc

Job Number: 480-24234-1

Client Sample ID:

AW-01

Lab Sample ID:

480-24234-2

Client Matrix:

700-24204-2

Water

Date Sampled: 08/22/2012 1250 Date Received: 08/22/2012 1530

Maria and a second			egy to the last of the		Dute	
		8270C Semivolatile Or	ganic Compo	unds (GC/M	S)	
Analysis Method:	8270C	Analysis Batch:	480-78669	In	strument ID:	HP5973X
Prep Method:	3510C	Prep Batch:	480-77914	La	ab File ID:	X9596.D
Dilution:	1.0			Ini	itial Weight/Volume:	1060 mL
Analysis Date:	08/30/2012 2225				nal Weight/Volume:	1 mL
Prep Date:	08/23/2012 1342				jection Volume:	1 uL
Analyte		Result (u	g/L)	Qualifier	MDL	RL
Dibenzofuran	neconstruction of process and process of the proces	ND	ell Armon con-prince (elli-concultura concultura conquira conquira quantum quantum quantum quantum quantum qua	Terrende en	0.48	9.4
Diethyl phthalate		ND	•		0.21	4.7
Dimethyl phthalate		ND			0.34	4.7
Fluoranthene		ND			0.38	4.7
Fluorene		ND			0.34	4.7
Hexachlorobenzene	;	ND			0.48	4.7
Hexachlorobutadien	ne	ND			0.64	4.7
Hexachlorocycloper	ntadiene	ND			0.56	4.7
-lexachloroethane		ND			0.56	4.7
ndeno(1,2,3-cd)pyr	ene	ND			0.44	4.7
sophorone		ND			0.41	4.7
N-Nitrosodi-n-propy	lamine	ND			0.51	4.7
N-Nitrosodiphenylar	nine	ND			0.48	4.7
Naphthalene		ND			0.72	4.7
Nitrobenzene		ND			0.27	4.7
Pentachlorophenol		ND			2.1	9.4
Phenanthrene		ND			0.42	4.7
Phenol		ND			0.37	4.7
Pyrene		ND			0.32	4.7
Surrogate		%Rec		Qualifier	Acceptan	ice Limits
2,4,6-Tribromophen	oj	106	MOREO (1904-1904 - 1904 - 1904 - 1904 - 1904 - 1904 - 1904 - 1904 - 1904 - 1904 - 1904 - 1904 - 1904 - 1904 - 1	consecutive confidential and consequent and consequent of the state of	52 - 132	Odgish (1) 200 dalam mendigilan yang sampas omata dalam ing sampa dalam a menggalan melang samban samban samba Sampa
?-Fluorobiphenyl		77			48 - 120	
2-Fluorophenol		41			20 - 120	
Nitrobenzene-d5		79			46 - 120	
o-Terphenyl-d14		32		Χ	67 - 150	
Phenol-d5		31			16 - 120	

Client: ARCADIS U.S. Inc

Job Number: 480-24234-1

Client Sample ID:

DUP-082212

Lab Sample ID:

480-24234-3

Client Matrix:

Water

Date Sampled: 08/22/2012 0000 Date Received: 08/22/2012 1530

8270C Semivolatile Organic Compounds (GC/MS)

Analysis Method:

8270C

Analysis Batch:

480-78669

Instrument ID:

HP5973X

Prep Method:

3510C

Prep Batch:

480-77914

Lab File ID:

X9597.D

Dilution:

1.0

Initial Weight/Volume:

1060 mL 1 mL

08/30/2012 2249

Final Weight/Volume: Injection Volume:

Analysis Date:	
Prep Date:	

08/23/2012 1342

1 uL

Analyte	Result (ug/L)	Qualifier	MDL	RL
Biphenyl	ND	y - dy _a ngay samin an m anda i daya rinakanin maminin manan an	0.62	4.7
bis (2-chloroisopropyl) ether	ND		0.49	4.7
2,4,5-Trichlorophenol	ND		0.45	4.7
2,4,6-Trichlorophenol	ND		0.58	4.7
2,4-Dichlorophenol	ND		0.48	4,7
2,4-Dimethylphenol	ND		0.47	4.7
2,4-Dinitrophenol	ND		2.1	9.4
2,4-Dinitrotoluene	ND		0.42	4.7
2,6-Dinitrotoluene	ND		0.38	4.7
2-Chloronaphthalene	ND		0.43	4.7
2-Chlorophenol	ND		0.50	4.7
2-Methylnaphthalene	ND		0.57	4.7
2-Methylphenol	ND		0.38	4.7
2-Nitroaniline	ND		0.40	9.4
2-Nitrophenol	ND		0.45	4.7
3,3'-Dichlorobenzidine	ND		0.38	4.7
3-Nitroaniline	ND		0.45	9.4
4,6-Dinitro-2-methylphenol	ND		2.1	9.4
4-Bromophenyl phenyl ether	ND		0.42	4.7
4-Chloro-3-methylphenol	ND		0.42	4.7
4-Chloroaniline	ND		0.56	4.7
4-Chlorophenyl phenyl ether	ND		0.33	4.7
4-Methylphenol	ND		0.34	9.4
4-Nitroaniline	ND		0.24	9.4
4-Nitrophenol	ND		1.4	9.4
Acenaphthene	2.0	J	0.39	4.7
Acenaphthylene	ND		0.36	4.7
Acetophenone	ND		0.51	4.7
Anthracene	ND		0.26	4.7
Atrazine	ND		0.43	4.7
Benzaldehyde	ND		0.25	4.7
Benzo(a)anthracene	ND		0.34	4.7
Benzo(a)pyrene	ND		0.44	4.7
Benzo(b)fluoranthene	ND		0.32	4.7
Benzo(g,h,i)perylene	ND		0.33	4.7
Benzo(k)fluoranthene	ND		0.69	4.7
Bis(2-chloroethoxy)methane	ND		0.33	4.7
Bis(2-chloroethyl)ether	ND		0.38	4.7
Bis(2-ethylhexyl) phthalate	ND		1.7	4.7
Butyl benzyl phthalate	ND		0.40	4.7
Caprolactam	ND		2.1	4.7
Carbazole	ND		0.28	4.7
Chrysene	ND		0.31	4.7
Di-n-butyl phthalate	ND		0.29	4.7
Di-n-octyl phthalate	ND		0.44	4.7
Dibenz(a,h)anthracene	ND		0.40	4.7

Client: ARCADIS U.S. Inc

Job Number: 480-24234-1

Client Sample ID:

DUP-082212

Lab Sample ID:

480-24234-3

Client Matrix:

Water

Date Sampled: 08/22/2012 0000 Date Received: 08/22/2012 1530

					Date	e Received: 08/22/2012 1530
		8270C Semivolatile Or	ganic Compo	unds (GC/I	WIS)	
Analysis Method:	8270C	Analysis Batch:	480-78669		nstrument ID:	HP5973X
Prep Method:	3510C	Prep Batch:	480-77914		_ab File ID:	X9597.D
Dilution:	1.0	•			nitial Weight/Volume:	1060 mL
Analysis Date:	08/30/2012 2249				Final Weight/Volume:	1 mL
Prep Date:	08/23/2012 1342				njection Volume:	
					njection volume.	1 uL
Analyte		Result (u	g/L)	Qualifier	MDL	RL
Dibenzofuran	ann an ann an ann ann ann ann ann ann a	ND	nekkerings in directly gibbigherik min co'n gibbighering mengagan yang ya Longdan	тинический делектический подверений подверении подверений подверении подверении подверении подверении подверении подверении подверен	0.48	9.4
Diethyl phthalate		ND			0.21	4.7
Dimethyl phthalate		ND			0.34	4.7
Fluoranthene		ND			0.38	4.7
Fluorene		ND			0.34	4.7
Hexachlorobenzene)	ND			0.48	4.7
Hexachlorobutadien	e	ND			0.64	4.7
Hexachlorocycloper	ntadiene	ND			0.56	4.7
Hexachloroethane		ND			0.56	4.7
Indeno(1,2,3-cd)pyro	ene	ND			0.44	4.7
Isophorone		ND			0.41	4.7
N-Nitrosodi-n-propyl	lamine	ND			0.51	4.7
N-Nitrosodiphenylar	nine	ND			0.48	4.7
Naphthalene		ND			0.72	4.7
Nitrobenzene		ND			0.27	4.7
Pentachiorophenol		ND			2.1	9.4
Phenanthrene		ND			0.42	4.7
Phenol		ND			0.37	4,7
Pyrene		ND			0.32	4.7
Surrogate		%Rec		Qualifier	Acceptar	nce Limits
2,4,6-Tribromopheno	DI	94	Secretary of the Part of the Company	dicontamento de la companio della co	52 - 132	
2-Fluorobiphenyl		71			48 - 120	
2-Fluorophenol		38			20 - 120	
Nitrobenzene-d5		71			46 - 120	
p-Terphenyl-d14		51		Х	67 - 150	
Phenol-d5		27			16 - 120	

Client: ARCADIS U.S. Inc Job Number: 480-24234-1

Client Sample ID:

AW-02

Lab Sample ID:

480-24234-1

Client Matrix:

Water

Date Sampled: 08/22/2012 1100 Date Received: 08/22/2012 1530

5010B	Metals	(ICP)

Analysis Method: Prep Method:

6010B

3005A

Dilution:

Analysis Date: Prep Date:

1.0

08/24/2012 1910 08/24/2012 0820

Analysis Batch: Prep Batch:

480-78288

480-77943

Instrument ID:

Lab File ID:

ICAP2

Initial Weight/Volume:

12082412B-4.asc 50 mL

Final Weight/Volume:

50 mL

Analyte		Result (n	ng/L)	Qualifie	er MDL	RL
Aluminum	ta a para a para a mana mana mangana a mangana a mana a	0.30	algoly-samples (A) (A) suppose that A section and an advantage of the A	ugher/yapassaraisaishidrastrie	0.060	0.20
Antimony		ND			0.0068	0.020
Arsenic		ND			0.0056	0.010
Barium		1.8			0.00070	0.0020
Beryllium		ND			0.00030	0.0020
Cadmium		ND			0.00050	0.0010
Calcium		376			0.10	0.50
Chromium		0.0019		J	0.0010	0.0040
Cobalt		0.0039		J	0.00063	0.0040
Copper		0.0031		J	0.0016	0.010
Iron		7.6			0.019	0.050
Lead		0.0095			0.0030	0.0050
Magnesium		68.2			0.043	0.20
Manganese		0.71			0.00040	0.0030
Nickel		ND			0.0013	0.010
Potassium		19.5			0.10	0.50
Selenium		ND	,		0.0087	0.015
Silver		ND			0.0017	0.0030
Thallium		ND			0.010	0.020
Vanadium		0.0042		J	0.0015	0.0050
Zinc		0.014			0.0015	0.010
Analysis Method:	6010B	Analysis Batch:	480-78555		Instrument ID:	ICAP2
Prep Method:	3005A	Prep Batch:	480-77943		Lab File ID:	12082812A-6.asc
Dilution:	5.0	•			Initial Weight/Volume:	50 mL
Analysis Date:	08/28/2012 1928				Final Weight/Volume:	
Prep Date:	08/24/2012 0820				i mai vveignii voiume;	50 mL

7470A Mercury (CVAA)

Result (mg/L)

Result (mg/L)

ND

8090

Analysis Method:

7470A 7470A 1.0

Analysis Date:

Prep Method:

Prep Date:

08/23/2012 1248 08/23/2012 0830 Analysis Batch: Prep Batch:

480-77925 480-77832

Instrument ID: Lab File ID:

LEEMAN2 H08232W1.PRN

RL

5.0

Initial Weight/Volume: Final Weight/Volume:

MDL

1.6

30 mL

50 mL

Analyte Mercury

Dilution:

Analyte

Sodium

Qualifier

Qualifier

MDL 0.00012 RL

Client: ARCADIS U.S. Inc Job Number: 480-24234-1

Client Sample ID:

AW-01

Lab Sample ID:

480-24234-2

Client Matrix:

Water

Date Sampled: 08/22/2012 1250 Date Received: 08/22/2012 1530

6010B Metals (ICP)

Analysis Method:

6010B 3005A Analysis Batch:

480-78288

Instrument ID:

ICAP2

Prep Method:

Prep Batch:

Lab File ID:

12082412B-4.asc

Dilution:

1.0

480-77943

Initial Weight/Volume:

50 mL

Analysis Date:

08/24/2012 1926

Final Weight/Volume:

50 mL

Prep Date:

08/24/2012 0820

Analyte	Result (mg/L)	Qualifier	MDL	RL
Aluminum	0.071	7	0.060	0.20
Antimony	ND		0.0068	0.020
Arsenic	ND		0.0056	0.010
Barium	0.052		0.00070	0.0020
Beryllium	ND		0.00030	0.0020
Cadmium	ND		0.00050	0.0010
Calcium	294		0.10	0.50
Chromium	ND		0.0010	0.0040
Cobalt	ND		0.00063	0.0040
Copper	ND		0.0016	0.010
Iron	15.1		0.019	0.050
Lead	ND		0.0030	0.0050
Magnesium	19.6		0.043	0.20
Manganese	0.77		0.00040	0.0030
Nickel	ND		0.0013	0.010
Potassium	9.7		0.10	0.50
Selenium	ND		0.0087	0.015
Silver	ND		0.0017	0.0030
Sodium	498		0.32	1.0
Thallium	ND		0.010	0.020
Vanadium	0.0041	J	0.0015	
Zinc	0.0034	J	0.0015	0.0050 0.010

7470A Mercury (CVAA)

Analysis Method: Prep Method:

7470A 7470A

1.0

Analysis Batch: Prep Batch:

480-77925 480-77832 Instrument ID: Lab File ID:

LEEMAN2 H08232W1.PRN

Initial Weight/Volume: Final Weight/Volume:

30 mL 50 mL

Analysis Date: Prep Date:

Dilution:

08/23/2012 1402 08/23/2012 0830

Result (mg/L)

Qualifier

MDL 0.00012

RL

Analyte Mercury

ND

Client: ARCADIS U.S. Inc

Job Number: 480-24234-1

Client Sample ID:

DUP-082212

Lab Sample ID:

480-24234-3

Client Matrix:

Water

Date Sampled: 08/22/2012 0000 Date Received: 08/22/2012 1530

6010B Metals (ICP)

Analysis Method:

6010B 3005A Analysis Batch: Prep Batch:

480-78288 480-77943 Instrument ID:

ICAP2

Prep Method: Dilution:

Prep Date:

1.0

Analysis Date:

08/24/2012 1929

08/24/2012 0820

Lab File ID: Initial Weight/Volume: I2082412B-4.asc

Final Weight/Volume:

50 mL 50 mL

Analyte	Result (mg/L)	Qualifier	MDL	RL
Aluminum	0.086	1	0.060	0.20
Antimony	ND	•	0.0068	0.020
Arsenic	ND		0.0056	0.010
Barium	0.052		0.00070	0.0020
Beryllium	ND		0.00030	0.0020
Cadmium	0.00053	J	0.00050	0.0010
Calcium	301		0.10	0.50
Chromium	ND		0.0010	0.0040
Cobalt	0.00071	J	0.00063	0.0040
Copper	0.0022	J	0.0016	0.010
Iron	15.3		0.019	0.050
Lead	ND		0.0030	0.0050
Magnesium	19.7		0.043	0.20
Manganese	0.78		0.00040	0.0030
Nickel	ND		0.0013	0.000
Potassium	9.7		0.10	0.50
Selenium	ND		0.0087	0.015
Silver	ND		0.0017	0.0030
Sodium	504		0.32	1.0
Thallium	ND		0.010	0.020
Vanadium	0.0047	J	0.0015	0.020
Zinc	0.0026	J	0.0015	0.0050

7470A Mercury (CVAA)

Analysis Method:

7470A 7470A

Prep Method: Dilution:

1.0

08/23/2012 1258

Analysis Date: Prep Date:

08/23/2012 0830

Analysis Batch: Prep Batch:

480-77925 480-77832

Instrument ID:

Lab File ID:

LEEMAN2 H08232W1.PRN

Initial Weight/Volume: Final Weight/Volume:

30 mL 50 mL

Analyte

Mercury

Result (mg/L)

ND

Qualifier

MDL 0.00012

RL

Job Number: 480-24234-1

Client: ARCADIS U.S. Inc

General Chemistry

Client Sample ID:

AW-02

Lab Sample ID: Client Matrix:

480-24234-1

Water

Date Sampled: 08/22/2012 1100

Date Received: 08/22/2012 1530

Analyte	Result	Qual	Units	MDL	RL	Dil	Method
Cyanide, Total	O.030 0.012 Analysis Batch: 480-78679 Prep Batch: 480-78480	OBJB Analysis Date: Prep Date: 08/				1.0	9012A
Cyanide, Free	ND Analysis Batch: 460-125820 Prep Batch: 460-125818	Analysis Date: Prep Date: 08/			2.0	1.0	9016

Client: ARCADIS U.S. Inc Job Number: 480-24234-1

General Chemistry

Client Sample ID:

AW-01

Lab Sample ID:

480-24234-2

Client Matrix:

Water

Date Sampled: 08/22/2012 1250

Date Received: 08/22/2012 1530

Analyte	Result		Qual	Units	MDL	RL	Dil	Method
Cyanide, Total	0.088 Analysis Batch: 480-78679	ر Analy	ֱ≱ ∕sis Date:	mg/L 08/29/2012	0.0050 1558	0.020	1.0	9012A
Cyanide, Free	Prep Batch: 480-78480 2.0 0:98 Analysis Batch: 460-125820 Prep Batch: 460-125818	Analy	³ J B ∕sis Date:	28/2012 111 ug/L 08/27/2012 27/2012 090	0.54 1500	2.0	1.0	9016

Client: ARCADIS U.S. Inc Job Number: 480-24234-1

General Chemistry

Client Sample ID:

DUP-082212

Lab Sample ID:

480-24234-3

Client Matrix:

Water

Date Sampled: 08/22/2012 0000

Date Received: 08/22/2012 1530

Analyte	Result		Qual	Units	MDL	RL	Dil	Method
Cyanide, Total	0.063 Analysis Batch: 480-78679	J Analy	ار ysis Date:	mg/L 08/29/2012	0.0050 ! 1559	0.020	1.0	9012A
Cyanide, Free	Prep Batch: 480-78480	U	∌ J-B ∙	28/2012 111 ug/L	0.54	2.0	1.0	9016
	Analysis Batch: 460-125820 Prep Batch: 460-125818			08/27/2012 27/2012 09				

National Fuel

Data Usability Summary Report (DUSR)

BUFFALO, NEW YORK

Volatile, Semivolatile, Metals, and Miscellaneous Analyses

SDG #480-44645-1

Analyses Performed By: TestAmerica Laboratories Buffalo, New York

Report #20226R Review Level: Tier III

Project: B0023310.0000.00005

SUMMARY

This data quality assessment summarizes the review of Sample Delivery Group (SDG) #480-44645-1 for samples collected in association with the National Fuel Wilkenson Site. The review was conducted as a Tier III evaluation and included review of data package completeness. Only analytical data associated with constituents of concern were reviewed for this validation. Field documentation was not included in this review. Included with this assessment are the validation annotated sample result sheets, and chain of custody. Analyses were performed on the following samples:

	Sample Parent		Parent	Analysis					
Sample ID	Lab ID	Matrix	Collection Date	Sample	VOC	svoc	РСВ	MET	MISC
AW-01	480-44645-1	Water	8/27/2013		Х	Х		Χ	Х
AW-02	480-44645-2	Water	8/27/2013		Х	Х		Χ	Х
AW-03	480-44645-3	Water	8/27/2013		Х	Х		Χ	Х
AW-04	480-44645-4	Water	8/27/2013		Х	Х		Χ	Х
FD-01-082713	480-44645-5	Water	8/27/2013	AW-03	Х	Х		Х	Х
TRIP BLANK	480-44645-6	Water	8/27/2013		Х				

Note:

1. Matrix spike/matrix spike duplicate (MS/MSD) analysis was performed on sample location AW-01.

ANALYTICAL DATA PACKAGE DOCUMENTATION

The table below is the evaluation of the data package completeness.

	Reported		Performance Acceptable		Not
Items Reviewed	No	Yes	No	Yes	Required
Sample receipt condition		Х		Х	
Requested analyses and sample results		Х		Χ	
Master tracking list		X		Χ	
4. Methods of analysis		Х		Χ	
5. Reporting limits		Х		Χ	
6. Sample collection date		Х		Χ	
7. Laboratory sample received date		Х		Χ	
8. Sample preservation verification (as applicable)		Х		Х	
Sample preparation/extraction/analysis dates		Х		Χ	
10. Fully executed Chain-of-Custody (COC) form		Х		Χ	
11. Narrative summary of QA or sample problems provided		Х		Х	
12. Data Package Completeness and Compliance		Χ		Х	

QA - Quality Assurance

ORGANIC ANALYSIS INTRODUCTION

Analyses were performed according to United States Environmental Protection Agency (USEPA) SW-846 8260B and 8270C as referenced in NYSDEC-ASP. Data were reviewed in accordance with USEPA Region II SOP HW-24 - Validating Volatile Organic Compounds by SW-846 Method 8260B of October 2006 and New York State ASP 2005.

The data review process is an evaluation of data on a technical basis rather than a determination of contract compliance. As such, the standards against which the data are being weighed may differ from those specified in the analytical method. It is assumed that the data package represents the best efforts of the laboratory and had already been subjected to adequate and sufficient quality review prior to submission.

During the review process, laboratory qualified and unqualified data are verified against the supporting documentation. Based on this evaluation, qualifier codes may be added, deleted, or modified by the data reviewer. Results are qualified with the following codes in accordance with USEPA National Functional Guidelines:

- Concentration (C) Qualifiers
 - U The compound was analyzed for but not detected. The associated value is the compound quantitation limit.
 - B The compound has been found in the sample as well as its associated blank, its presence in the sample may be suspect.
- Quantitation (Q) Qualifiers
 - E The compound was quantitated above the calibration range.
 - D Concentration is based on a diluted sample analysis.
- Validation Qualifiers
 - J The compound was positively identified; however, the associated numerical value is an estimated concentration only.
 - UJ The compound was not detected above the reported sample quantitation limit. However, the reported limit is approximate and may or may not represent the actual limit of quantitation.
 - JN The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification. The associated numerical value is an estimated concentration only.
 - UB Compound considered non-detect at the listed value due to associated blank contamination.
 - N The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification.
 - R The sample results are rejected.

Two facts should be noted by all data users. First, the "R" flag means that the associated value is unusable. In other words, due to significant quality control (QC) problems, the analysis is invalid and provides no information as to whether the compound is present or not. "R" values should not appear on data tables because they cannot be relied upon, even as a last resort. The second fact to keep in mind is that no compound concentration, even if it has passed all QC tests, is guaranteed to be accurate. Strict QC serves to increase confidence in data but any value potentially contains error.

VOLATILE ORGANIC COMPOUND (VOC) ANALYSES

1. Holding Times

The specified holding times for the following methods are presented in the following table.

Method	Matrix	Holding Time	Preservation
SW-846 8260	Water	14 days from collection to analysis	Cool to < 6°C; preserved to a pH of less than 2 s.u.
300-040 6200	Soil	48 hours from collection to extraction and 14 days from extraction to analysis	Cool to < 6°C.

s.u. Standard units

All samples were analyzed within the specified holding time criteria.

2. Blank Contamination

Quality assurance (QA) blanks (i.e., method and rinse blanks) are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Rinse blanks measure contamination of samples during field operations.

A blank action level (BAL) of five times the concentration of a detected compound in an associated blank (common laboratory contaminant compounds are calculated at ten times) is calculated for QA blanks containing concentrations greater than the method detection limit (MDL). The BAL is compared to the associated sample results to determine the appropriate qualification of the sample results, if needed.

Compounds were not detected above the MDL in the associated blanks; therefore detected sample results were not associated with blank contamination.

3. Mass Spectrometer Tuning

Mass spectrometer performance was acceptable and all analyses were performed within a 12-hour tune clock.

System performance and column resolution were acceptable.

4. Calibration

Satisfactory instrument calibration is established to insure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument daily performance is satisfactory.

4.1 Initial Calibration

The method specifies percent relative standard deviation (%RSD) and relative response factor (RRF) limits for select compounds only. A technical review of the data applies limits to all compounds with no exceptions.

All target compounds associated with the initial calibration standards must exhibit a %RSD less than the control limit (15%) or a correlation coefficient greater than 0.99 and an RRF value greater than control limit (0.05).

4.2 Continuing Calibration

All target compounds associated with the continuing calibration standard must exhibit a percent difference (%D) less than the control limit (20%) and RRF value greater than control limit (0.05).

All compounds associated with the calibrations were within the specified control limits, with the exception of the compounds presented in the following table.

Sample Locations	Initial/ Continuing	Compound	Criteria
AW-01		1,2-Dibromo-3-Chloropropane	-29.0%
AW-02 AW-03 CCV %D		Bromoform	-28.2%
AW-04 FD-01-082713	CCV %D	Carbon disulfide	-26.7%
TRIP BLANK		Cyclohexane	-22.3%

The criteria used to evaluate the initial and continuing calibration are presented in the following table. In the case of a calibration deviation, the sample results are qualified.

Initial/Continuing	Criteria	Sample Result	Qualification
	RRF <0.05	Non-detect	R
	RRF <0.05	Detect	J
Initial and Continuing	RRF <0.01 ¹	Non-detect	R
Calibration	RRF \0.01	Detect	J
	RRF >0.05 or RRF >0.01 ¹	Non-detect	No Action
	RRF	Detect	NO ACTION
	%RSD > 15% or a correlation	Non-detect	UJ
Initial Calibration	coefficient <0.99	Detect	J
	%RSD >90%	Non-detect	R
	76R3D 29076	Detect	J
	0/D > 200/ (increase in consitiuity)	Non-detect	No Action
	%D >20% (increase in sensitivity)	Detect	J
Continuing Calibration	0/D > 200/ (degrees in consitiuity)	Non-detect	UJ
	%D >20% (decrease in sensitivity)	Detect	J
	%D >90% (increase/decrease in	Non-detect	R
	sensitivity)	Detect	J

RRF of 0.01 only applies to compounds which are typically poor responding compounds (i.e., ketones, 1,4-dioxane, etc.)

5. Surrogates/System Monitoring Compounds

All samples to be analyzed for organic compounds are spiked with surrogate compounds prior to sample preparation to evaluate overall laboratory performance and efficiency of the analytical technique. VOC analysis requires that all surrogates associated with the analysis exhibit recoveries within the laboratory-established acceptance limits.

All surrogate recoveries were within control limits.

6. Internal Standard Performance

Internal standard performance criteria insure that the GC/MS sensitivity and response are stable during every sample analysis. The criteria requires the internal standard compounds associated with the VOC exhibit area counts that are not greater than two times (+100%) or less than one-half (-50%) of the area counts of the associated continuing calibration standard.

All internal standard responses were within control limits.

7. Matrix Spike/Matrix Spike Duplicate (MS/MSD) Analysis

MS/MSD data are used to assess the precision and accuracy of the analytical method. The compounds used to perform the MS/MSD analysis must exhibit a percent recovery within the laboratory-established acceptance limits. The relative percent difference (RPD) between the MS/MSD recoveries must exhibit an RPD within the laboratory-established acceptance limits.

Note: The MS/MSD recovery control limits do not apply for MS/MSD performed on sample locations where the compound concentration detected in the parent sample exceeds the MS/MSD concentration by a factor of four or greater.

Sample locations associated with the MS/MSD exhibiting recoveries outside of the control limits are presented in the following table.

Sample Locations	Compound	MS Recovery	MSD Recovery		
AW-01	Bromodichloromethane				
	Bromoform	-1.1 but > 100/	41.1 5.4 5.400/		
	Dibromochloromethane	<ll but="">10%</ll>	<ll but="">10%</ll>		
	Chloromethane				

The criteria used to evaluate the MS/MSD recoveries are presented in the following table. In the case of an MS/MSD deviation, the sample results are qualified as documented in the table below.

Control Limit	Sample Result	Qualification
> the upper central limit (UL)	Non-detect	No Action
> the upper control limit (UL)	Detect	J
the lower central limit (LL) but > 100/	Non-detect	UJ
< the lower control limit (LL) but > 10%	Detect	J

Control Limit	Sample Result	Qualification
< 10%	Non-detect	R
< 1078	Detect	J
Parent sample concentration > four times the MS/MSD	Detect	No Action
spiking solution concentration.	Non-detect	NO ACTOR

Sample locations associated with MS/MSD recoveries exhibiting an RPD greater than of the control limit presented in the following table.

Sample Locations	Compound	
AW-01	Bromomethane	
AVV-01	Chloroethane	

The criteria used to evaluate the RPD between the MS/MSD recoveries are presented in the following table. In the case of an RPD deviation, the sample results are qualified as documented in the table below.

Control Limit	Sample Result	Qualification
> UL	Non-detect	UJ
> OL	Detect	J

8. Laboratory Control Sample (LCS) Analysis

The LCS analysis is used to assess the precision and accuracy of the analytical method independent of matrix interferences. The compounds associated with the LCS analysis must exhibit a percent recovery within the laboratory-established acceptance limits.

All compounds associated with the LCS analysis exhibited recoveries within the control limits.

9. Field Duplicate Analysis

Field duplicate analysis is used to assess the overall precision of the field sampling procedures and analytical method. A control limit of 35% for water matrices and 75% for soil matrices is applied to the RPD between the parent sample and the field duplicate. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of two times the RL is applied for water matrices or three times the RL is applied for soil matrices.

Results for duplicate samples are summarized in the following table.

Sample ID/Duplicate ID	Compound	Sample Result	Duplicate Result	RPD
AW-03/ FD-01-082713	Benzene	4.8	4.9	AC

AC Acceptable

The calculated RPDs between the parent sample and field duplicate were acceptable.

10. Compound Identification

Compounds are identified on the GC/MS by using the analytes relative retention time and ion spectra.

All identified compounds met the specified criteria.

11. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

DATA VALIDATION CHECKLIST FOR VOCs

VOCs: SW-846 8260	Rep	orted		mance ptable	Not Required
	No	Yes	No	Yes	Required
GAS CHROMATOGRAPHY/MASS SPECTROME	TRY (GC/	MS)			
Tier II Validation			_		
Holding times		X		Х	
Reporting limits (units)		X		X	
Blanks					
A. Method blanks		X		X	
B. Equipment blanks					X
C. Trip blanks		Х		Х	
Laboratory Control Sample (LCS)		Х		X	
Laboratory Control Sample Duplicate(LCSD)		Х		Х	
LCS/LCSD Precision (RPD)		Х		Х	
Matrix Spike (MS)		Х	Х		
Matrix Spike Duplicate(MSD)		Х	Х		
MS/MSD Precision (RPD)		Х	Х		
Field/Lab Duplicate (RPD)		Х		Х	
Surrogate Spike Recoveries		Х		Х	
Dilution Factor		Х		Х	
Moisture Content					Х
Tier III Validation		•	•	1	
System performance and column resolution		Х		Х	
Initial calibration %RSDs		Х		Х	
Continuing calibration RRFs		Х		Х	
Continuing calibration %Ds		Х	Х		
Instrument tune and performance check		Х		Х	
Ion abundance criteria for each instrument used		Х		Х	
Internal standard		Х		Х	
Compound identification and quantitation		•	ı	•	
A. Reconstructed ion chromatograms		Х		Х	
B. Quantitation Reports		Х		Х	
RT of sample compounds within the established RT windows		Х		Х	
D. Transcription/calculation errors present		Х		Х	

VOCs: SW-846 8260	Reported		Performance Acceptable		Not Required
	No	Yes	No	Yes	rtoquirou
GAS CHROMATOGRAPHY/MASS SPECTROMETRY (GC/MS)					
Reporting limits adjusted to reflect sample dilutions		Х		Х	

%RSD Relative standard deviation

%R

Percent recovery
Relative percent difference
Percent difference RPD %D

SEMIVOLATILE ORGANIC COMPOUND (SVOC) ANALYSES

1. Holding Times

The specified holding times for the following methods are presented in the following table.

Method	Matrix	Holding Time	Preservation	
SW-846 8270	Water	7 days from collection to extraction and 40 days from extraction to analysis	Cool to < 6°C	
300-040 0270	Soil	14 days from collection to extraction and 40 days from extraction to analysis	Cool to < 6°C	

All samples were analyzed within the specified holding time criteria.

2. Blank Contamination

Quality assurance (QA) blanks (i.e., method and rinse blanks) are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Rinse blanks measure contamination of samples during field operations.

A blank action level (BAL) of five times the concentration of a detected compound in an associated blank (common laboratory contaminant compounds are calculated at ten times) is calculated for QA blanks containing concentrations greater than the method detection limit (MDL). The BAL is compared to the associated sample results to determine the appropriate qualification of the sample results, if needed.

All compounds associated with the QA blanks exhibited a concentration less than the MDL, with the exception of the compounds listed in the following table. Sample results associated with QA blank contamination that were greater than the BAL resulted in the removal of the laboratory qualifier (B) of data. Sample results less than the BAL associated with the following sample locations were qualified as listed in the following table.

Sample Locations	Analytes	Sample Result	Qualification
AW-03 AW-04	Acetophenone	Data ata di a anciela na sulta	
AW-01 AW-02 AW-03	Phenanthrene	Detected sample results <rl <bal<="" and="" td=""><td>"UB" at the RL</td></rl>	"UB" at the RL
AW-03	Bis(2-ethylhexyl)phthalate	Detected sample results >RL and <bal< td=""><td>"UB" at detected sample concentration</td></bal<>	"UB" at detected sample concentration

RL Reporting limit

3. Mass Spectrometer Tuning

Mass spectrometer performance was acceptable and all analyses were performed within a 12-hour tune clock.

System performance and column resolution were acceptable.

4. Calibration

Satisfactory instrument calibration is established to insure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument daily performance is satisfactory.

4.3 Initial Calibration

The method specifies percent relative standard deviation (%RSD) and relative response factor (RRF) limits for select compounds only. A technical review of the data applies limits to all compounds with no exceptions.

All target compounds associated with the initial calibration standards must exhibit a %RSD less than the control limit (15%) or a correlation coefficient greater than 0.99 and an RRF value greater than control limit (0.05).

4.4 Continuing Calibration

All target compounds associated with the continuing calibration standard must exhibit a percent difference (%D) less than the control limit (20%) and RRF value greater than control limit (0.05).

All compounds associated with the calibrations were within the specified control limits.

5. Surrogates/System Monitoring Compounds

All samples to be analyzed for organic compounds are spiked with surrogate compounds prior to sample preparation to evaluate overall laboratory performance and efficiency of the analytical technique. SVOC analysis requires that two of the three SVOC surrogate compounds within each fraction exhibit recoveries within the laboratory-established acceptance limits.

All surrogate recoveries were within control limits.

6. Internal Standard Performance

Internal standard performance criteria insure that the GC/MS sensitivity and response are stable during every sample analysis. The criteria requires the internal standard compounds associated with the SVOC exhibit area counts that are not greater than two times (+100%) or less than one-half (-50%) of the area counts of the associated continuing calibration standard.

All internal standard responses were within control limits.

7. Matrix Spike/Matrix Spike Duplicate (MS/MSD) Analysis

MS/MSD data are used to assess the precision and accuracy of the analytical method. The compounds used to perform the MS/MSD analysis must exhibit a percent recovery within the laboratory-established acceptance limits. The relative percent difference (RPD) between the MS/MSD recoveries must exhibit an RPD within the laboratory-established acceptance limits.

Note: The MS/MSD recovery control limits do not apply for MS/MSD performed on sample locations where the compound concentration detected in the parent sample exceeds the MS/MSD concentration by a factor of four or greater.

Sample locations associated with the MS/MSD exhibiting recoveries outside of the control limits are presented in the following table.

Sample Locations	Compound	MS Recovery	MSD Recovery
	3-Nitroaniline	<ll but="">10%</ll>	<ll but="">10%</ll>
	4-Chloroaniline	<ll but="">10%</ll>	<ll but="">10%</ll>
AVA/ 04	4-Nitroaniline	<ll but="">10%</ll>	AC
AW-01	Benzaldehyde	<ll but="">10%</ll>	AC
	Benzo[g,h,i]perylene	AC	<ll but="">10%</ll>
	Indeno[1,2,3-cd]pyrene	AC	<ll but="">10%</ll>

The criteria used to evaluate the MS/MSD recoveries are presented in the following table. In the case of an MS/MSD deviation, the sample results are qualified as documented in the table below.

Control Limit	Sample Result	Qualification
> the upper control limit (UL)	Non-detect	No Action
> the apper control limit (OL)	Detect	J
< the lower control limit (LL) but > 10%	Non-detect	UJ
the lower control limit (EE) but > 10 %	Detect	J
< 10%	Non-detect	R
< 1076	Detect	J
Parent sample concentration > four times the MS/MSD	Detect	No Action
spiking solution concentration.	Non-detect	NO ACTION

Sample locations associated with MS/MSD recoveries exhibiting an RPD greater than of the control limit presented in the following table.

Sample Locations	Compound
	Benzaldehyde
AVA/ 04	Benzo[g,h,i]perylene
AW-01	Dibenz(a,h)anthracene
	Indeno[1,2,3-cd]pyrene

The criteria used to evaluate the RPD between the MS/MSD recoveries are presented in the following table. In the case of an RPD deviation, the sample results are qualified as documented in the table below.

Control Limit	Sample Result	Qualification
> UL	Non-detect	UJ
- OL	Detect	J

8. Laboratory Control Sample (LCS) Analysis

The LCS analysis is used to assess the precision and accuracy of the analytical method independent of matrix interferences. The compounds associated with the LCS analysis must exhibit a percent recovery within the laboratory-established acceptance limits.

Sample locations associated with LCS analysis exhibiting recoveries outside of the control limits presented in the following table.

Sample Locations	Compound	LCS Recovery
	2,6-Dinitrotoluene	
AW-01 AW-02	3-Nitroaniline	
AW-03	4-Bromophenyl phenyl ether	< LL but > 10%
AW-04 FD-01-082713	4-Chloroaniline	
	4-Nitroaniline	

The criteria used to evaluate the LCS recoveries are presented in the following table. In the case of an LCS deviation, the sample results are qualified as documented in the table below.

Control Limit	Sample Result	Qualification
> the upper central limit (LIL)	Non-detect	No Action
> the upper control limit (UL)	Detect	J
the lower central limit (LL) but > 100/	Non-detect	ΠΊ
< the lower control limit (LL) but > 10%	Detect	J
< 10%	Non-detect	R
1070	Detect	J

9. Field Duplicate Analysis

Field duplicate analysis is used to assess the overall precision of the field sampling procedures and analytical method. A control limit of 35% for water matrices and 75% for soil matrices is applied to the RPD between the parent sample and the field duplicate. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of two times the RL is applied for water matrices or three times the RL is applied for soil matrices.

Results for duplicate samples are summarized in the following table.

Sample ID/Duplicate ID	Compound	Sample Result	Duplicate Result	RPD
	Acenaphthene	43	41	4.7 %
AW-03/ FD-01-082713	Acenaphthylene	0.39 J	0.4 J	AC
	Anthracene	5.4	5	AC

Sample ID/Duplicate ID	Compound	Sample Result	Duplicate Result	RPD
	Benzaldehyde	0.44 J	0.41 J	
	Benzo[a]anthracene	0.35 J	0.36 J	
	Biphenyl	1.2 J	1.1 J	
	Carbazole	4.7	4.8	
	Dibenzofuran	17	16	
	Di-n-butyl phthalate	0.51 J	0.66 J	
	Fluoranthene	6.2	5.9	
	Fluorene	23	23	
	Pyrene	2.4 J	2.6 J	

AC Acceptable

The calculated RPDs between the parent sample and field duplicate were acceptable.

10. Compound Identification

Compounds are identified on the GC/MS by using the analytes relative retention time and ion spectra.

All identified compounds met the specified criteria.

11. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

DATA VALIDATION CHECKLIST FOR SVOCs

SVOCs: SW-846 8270	Repo	orted		mance ptable	Not
	No	Yes	No	Yes	Required
GAS CHROMATOGRAPHY/MASS SPECTROME	TRY (GC/	MS)			
Tier II Validation					
Holding times		Х		Х	
Reporting limits (units)		Х		Х	
Blanks					
A. Method blanks		Х	Х		
B. Equipment blanks					Х
Laboratory Control Sample (LCS) %R		Х	Х		
Laboratory Control Sample Duplicate(LCSD) %R					Х
LCS/LCSD Precision (RPD)					Х
Matrix Spike (MS) %R		Х	Х		
Matrix Spike Duplicate(MSD) %R		Х	Х		
MS/MSD Precision (RPD)		Х	Х		
Field/Lab Duplicate (RPD)		Х		Х	
Surrogate Spike Recoveries		Х		Х	
Dilution Factor		Х		Х	
Moisture Content					Х
Tier III Validation					
System performance and column resolution		Х		Х	
Initial calibration %RSDs		Х		Х	
Continuing calibration RRFs		Х		Х	
Continuing calibration %Ds		Х		Х	
Instrument tune and performance check		Х		Х	
Ion abundance criteria for each instrument used		Х		Х	
Internal standard		Х		Х	
Compound identification and quantitation				•	•
A. Reconstructed ion chromatograms		Х		Х	
B. Quantitation Reports		Х		Х	
C. RT of sample compounds within the established RT windows		Х		Х	
D. Quantitation transcriptions/calculations		Х		Х	
E. Reporting limits adjusted to reflect sample dilutions %RSD Relative standard deviation		Х		Х	

%RSD Relative standard deviation

%R RPD

Percent recovery
Relative percent difference

%D Percent difference

INORGANIC ANALYSIS INTRODUCTION

Analyses were performed according to United States Environmental Protection Agency (USEPA) SW-846 Methods 6000/7000 and 9012A/9016. Data were reviewed in accordance with USEPA National Functional Guidelines of July 2002.

The data review process is an evaluation of data on a technical basis rather than a determination of contract compliance. As such, the standards against which the data are being weighed may differ from those specified in the analytical method. It is assumed that the data package represents the best efforts of the laboratory and that it was already subjected to adequate and sufficient quality review prior to submission.

During the review process, laboratory qualified and unqualified data are verified against the supporting documentation. Based on this evaluation, qualifier codes may be added, deleted, or modified by the data reviewer. Results are qualified with the following codes in accordance with the USEPA National Functional Guidelines:

Concentration (C) Qualifiers

- U The analyte was analyzed for but not detected. The associated value is the analyte instrument detection limit.
- B The reported value was obtained from a reading less than the contract-required detection limit (CRDL), but greater than or equal to the instrument detection limit (IDL).

Quantitation (Q) Qualifiers

- E The reported value is estimated due to the presence of interference.
- N Spiked sample recovery is not within control limits.
- * Duplicate analysis is not within control limits.

Validation Qualifiers

- J The analyte was positively identified; however, the associated numerical value is an estimated concentration only.
- UJ The analyte was not detected above the reported sample detection limit. However, the reported limit is approximate and may or may not represent the actual limit of detection.
- UB Analyte considered non-detect at the listed value due to associated blank contamination.
- R The sample results are rejected.

Two facts should be noted by all data users. First, the "R" flag means that the associated value is unusable. In other words, due to significant quality control (QC) problems, the analysis is invalid and provides no information as to whether the compound is present or not. "R" values should not appear on data tables because they cannot be relied upon, even as a last resort. The second fact to keep in mind is that no compound concentration, even if it has passed all QC tests, is guaranteed to be accurate. Strict QC serves to increase confidence in data but any value potentially contains error.

1. Holding Times

The specified holding times for the following methods are presented in the following table.

Method	Matrix	Holding Time	Preservation
SW-846 6010B	Water	180 days from collection to analysis	Cool to < 6°C; preserved to a pH of less than 2.
	Soil	180 days from collection to analysis	Cool to < 6°C.
		Cool to < 6°C preserved to a pH of less than 2.	
SW-846 7471 Soil 28 da		28 days from collection to analysis	Cool to < 6°C

All samples were analyzed within the specified holding times.

2. Blank Contamination

Quality assurance (QA) blanks (i.e., method and rinse blanks) are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Rinse blanks measure contamination of samples during field operations.

A blank action level (BAL) of five times the concentration of a detected compound in an associated blank is calculated for QA blanks containing concentrations greater than the method detection limit (MDL). The BAL is compared to the associated sample results to determine the appropriate qualification of the sample results, if needed.

All analytes associated with the QA blanks exhibited a concentration less than the MDL, with the exception of the analytes listed in the following table. Sample results associated with QA blank contamination that were greater than the BAL resulted in the removal of the laboratory qualifier (B) of data. Sample results less than the BAL associated with the following sample locations were qualified as listed in the following table.

Sample Locations	Analytes	Sample Result	Qualification
AW-02 AW-03 AW-04 FD-01-082713	Zinc	Detected sample results <rl <bal<="" and="" td=""><td>"UB" at the RL</td></rl>	"UB" at the RL
AW-02	Iron	Detected sample results >RL and <bal< td=""><td>"UB" at detected sample concentration</td></bal<>	"UB" at detected sample concentration

RL = reporting limit

3. Calibration

Satisfactory instrument calibration is established to provide that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument's continuing performance is satisfactory.

3.1 Initial Calibration and Continuing Calibration

The correct number and type of standards were analyzed. The correlation coefficient of the initial calibration was greater than 0.995 for all non-ICP analytes and all initial calibration verification standard recoveries were within control limits.

All continuing calibration verification standard recoveries were within the control limit.

3.2 CRDL Check Standard

The CRDL check standard serves to verify the linearity of calibration of the analysis at the CRDL. The CRDL standard is not required for the analysis of aluminum (Al), barium (Ba), calcium (Ca), iron (Fe), magnesium (Mg), sodium (Na), and potassium (K). The criteria used to evaluate the CRDL standard analysis are presented below in the CRDL standards evaluation table (if applicable).

All CRDL standard recoveries were within control limits.

3.3 ICP Interference Control Sample (ICS)

The ICS verifies the laboratories interelement and background correction factors.

All ICS exhibited recoveries within the control limits.

4. Matrix Spike/Matrix Spike Duplicate (MS/MSD)/Laboratory Duplicate Analysis

MS/MSD and laboratory duplicate data are used to assess the precision and accuracy of the analytical method.

4.1 MS/MSD Analysis

All metal analytes must exhibit a percent recovery within the established acceptance limits of 75% to 125%. The MS recovery control limits do not apply for MS performed on sample locations where the analyte's concentration detected in the parent sample exceeds the MS concentration by a factor of four or greater. In instance where this is true, the data will not be qualified even if the percent recovery does not meet the control limits and the laboratory flag will be removed.

The MS/MSD analysis exhibited recoveries within the control limits.

4.2 Laboratory Duplicate Analysis

The laboratory duplicate relative percent difference (RPD) criterion is applied when parent and duplicate sample concentrations are greater than or equal to 5 times the CRDL. A control limit of 20% for water matrices and 35% for soil matrices is applied when the criteria above is true. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the CRDL, a control limit of one times the CRDL is applied for water matrices and two times the CRDL for soil matrices.

MS/MSD analysis was performed in replacement of the laboratory duplicate analysis. The MS/MSD recoveries exhibited acceptable RPD.

5. Field Duplicate Analysis

Field duplicate analysis is used to assess the overall precision of the field sampling procedures and analytical method. A control limit of 35% for water matrices and 75% for soil matrices is applied to the RPD between the parent sample and the field duplicate. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of two times the RL is applied for water matrices or three times the RL is applied for soil matrices.

Results for duplicate samples are summarized in the following table.

Sample ID/Duplicate ID	Analyte	Sample Result	Duplicate Result	RPD
AW-03/ FD-01-082713	Arsenic	0.0076 J	0.0056 U	AC
	Barium	0.063	0.063	0.0 %
	Calcium	245	243	0.8 %
	Chromium	0.0021 J	0.0022 J	AC
	Copper	0.0016 U	0.0017 J	AC
	Iron	16.3	16.1	1.2 %
	Magnesium	13.8	13.6	1.4 %
	Manganese	0.76	0.75	1.3 %
	Potassium	10.1	10	0.9 %
	Sodium	341	337	1.1 %
	Vanadium	0.0029 J	0.0028 J	AC

AC = Acceptable

The calculated RPDs between the parent sample and field duplicate were acceptable.

6. Laboratory Control Sample (LCS) Analysis

The LCS analysis is used to assess the precision and accuracy of the analytical method independent of matrix interferences. The analytes associated with the LCS analysis must exhibit a percent recovery between the control limits of 80% and 120%.

The LCS analysis exhibited recoveries within the control limits.

7. Serial Dilution

The serial dilution analysis is used to assess if a significant physical or chemical interference exists due to sample matrix. Analytes exhibiting concentrations greater than 50 times the MDL in the undiluted sample are evaluated to determine if matrix interference exists. These analytes are required to have less than a 10% difference (%D) between sample results from the undiluted (parent) sample and results associated

with the same sample analyzed with a five-fold dilution.

The serial dilution exhibited %D within the control limit.

8. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

DATA VALIDATION CHECKLIST FOR METAL

METALS; SW-846 6000/7000	Rep	orted		rmance ptable	Not	
	No	Yes	No	Yes	Required	
Inductively Coupled Plasma-Atomic Emission Spe Atomic Absorption – Manual Cold Vapor (CV)	ectrometry	(ICP)				
Tier II Validation						
Holding Times		Х		Х		
Reporting limits (units)		Х		Х		
Blanks						
A. Instrument Blanks		Х		Х		
B. Method Blanks		Х	Х			
C. Equipment/Field Blanks					Х	
Laboratory Control Sample (LCS)		Х		Х		
Matrix Spike (MS) %R		Х		Х		
Matrix Spike Duplicate (MSD) %R		Х		Х		
MS/MSD Precision (RPD)		Х		Х		
Field/Lab Duplicate (RPD)		Х		Х		
ICP Serial Dilution		Х		Х		
Reporting Limit Verification		Х		Х		
Raw Data		Х		Х		
Tier III Validation						
Initial Calibration Verification		Х		Х		
Continuing Calibration Verification		Х		Х		
CRDL Standard		Х		Х		
ICP Interference Check		Х		Х		
Transcription/calculation errors present		Х		Х		
Reporting limits adjusted to reflect sample dilutions		Х		Х		

%R Percent recovery
RPD Relative percent difference

GENERAL CHEMISTRY ANALYSES

1. Holding Times

The specified holding times for the following methods are presented in the following table.

Method	Matrix	Holding Time	Preservation
Cyanide by SW-846 9012/9016	Water	14 days from collection to	Cool to < 6°C; preserved to a pH of greater than 12.
	Soil	analysis	Cool to < 6°C.

All samples were analyzed within the specified holding times.

2. Blank Contamination

Quality assurance (QA) blanks (i.e., method and rinse blanks) are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Rinse blanks measure contamination of samples during field operations.

A blank action level (BAL) of five times the concentration of a detected compound in an associated blank (common laboratory contaminant compounds are calculated at ten times) is calculated for QA blanks containing concentrations greater than the method detection limit (MDL). The BAL is compared to the associated sample results to determine the appropriate qualification of the sample results, if needed.

Analytes were not detected above the MDL in the associated blanks; therefore detected sample results were not associated with blank contamination.

3. Calibration

Satisfactory instrument calibration is established to insure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument daily performance is satisfactory.

The correct number and type of standards were analyzed. The correlation coefficient of the initial calibration was greater than 0.995 and all initial calibration verification standard recoveries were within control limits.

All calibration standard recoveries were within the control limit.

4. Matrix Spike/Matrix Spike Duplicate (MS/MSD)/Laboratory Duplicate Analysis

MS/MSD and laboratory duplicate data are used to assess the precision and accuracy of the analytical method.

4.3 MS/MSD Analysis

All analytes must exhibit a percent recovery within the established acceptance limits of 75% to 125%. The MS/MSD recovery control limits do not apply for MS/MSD performed on sample locations where the

analyte's concentration detected in the parent sample exceeds the MS/MSD concentration by a factor of four or greater. In instance where this is true, the data will not be qualified even if the percent recovery does not meet the control limits and the laboratory flag will be removed.

The MS/MSD analysis exhibited recoveries within the control limits.

4.4 Laboratory Duplicate Analysis

The laboratory duplicate relative percent difference (RPD) criterion is applied when parent and duplicate sample concentrations are greater than or equal to 5 times the CRDL. A control limit of 20% for water matrices and 35% for soil matrices is applied when the criteria above is true. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the CRDL, a control limit of one times the CRDL is applied for water matrices and two times the CRDL for soil matrices.

MS/MSD analysis was performed in replacement of the laboratory duplicate analysis. The MS/MSD recoveries exhibited acceptable RPD.

6. Field Duplicate Analysis

Field duplicate analysis is used to assess the overall precision of the field sampling procedures and analytical method. A control limit of 35% for water matrices and 75% for soil matrices is applied to the RPD between the parent sample and the field duplicate. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of two times the RL is applied for water matrices or three times the RL is applied for soil matrices.

Results for duplicate samples are summarized in the following table.

Sample ID/Duplicate ID	Analyte	Sample Result	Duplicate Result	RPD
AW-03/ FD-01-082713	Cyanide, Total	0.11	0.1	9.5%

The calculated RPDs between the parent sample and field duplicate were acceptable.

6. Laboratory Control Sample (LCS) Analysis

The LCS analysis is used to assess the precision and accuracy of the analytical method independent of matrix interferences. The analytes associated with the LCS analysis must exhibit a percent recovery between the control limits of 80% and 120%.

The LCS analysis exhibited recoveries within the control limits.

7. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

DATA VALIDATION CHECKLIST FOR GENERAL CHEMISTRY

General Chemistry: SW-846 9012/9016	Rep	orted	Performance Acceptable		Not Required	
	No	Yes	No	Yes	Required	
Miscellaneous Instrumentation						
Tier II Validation						
Holding times		Х		Х		
Reporting limits (units)		Х		Х		
Blanks						
F. Method blanks		Х		Х		
G. Equipment blanks					Х	
Laboratory Control Sample (LCS) %R		Х		Х		
Laboratory Control Sample Duplicate(LCSD) %R		Х		х		
LCS/LCSD Precision (RPD)		Х		Х		
Matrix Spike (MS) %R		Х		Х		
Matrix Spike Duplicate(MSD) %R		Х		Х		
MS/MSD Precision (RPD)		Х		Х		
Field/Lab Duplicate (RPD)		Х		Х		
Dilution Factor		Х		Х		
Moisture Content					Х	
Tier III Validation						
Initial calibration %RSD or correlation coefficient		Х		Х		
Continuing calibration %R		Х		Х		
Raw Data						
Transcription/calculation errors present		Х		Х		
Reporting limits adjusted to reflect sample dilutions %PSDrelative standard deviation_%Pnercent		Х		Х		

[%]RSD – relative standard deviation, %R - percent recovery, RPD - relative percent difference, %D – difference

SAMPLE COMPLIANCE REPORT

Sample						Compliancy ¹				Noncompliance
Delivery Group (SDG)	Sampling Date	Protocol	Sample ID	Matrix	voc	SVOC	РСВ	MET	MISC	
	8/27/2013	SW846	AW-01	Water	No	No		Yes	Yes	VOC - CCAL %D SVOC – Blank contamination, LCS %R, MS/MSD %R, MS/MSD RPD
	8/27/2013	SW846	AW-02	Water	No	No		No	Yes	VOC - CCAL %D SVOC – Blank contamination, LCS %R Metals – Blank contamination
480-44645	8/27/2013	SW846	AW-03	Water	No	No		No	Yes	VOC - CCAL %D SVOC – Blank contamination, LCS %R Metals – Blank contamination
	8/27/2013	SW846	AW-04	Water	No	No		No	Yes	VOC - CCAL %D SVOC – Blank contamination, LCS %R Metals – Blank contamination
	8/27/2013	SW846	FD-01-082713	Water	No	Yes		No	Yes	VOC - CCAL %D SVOC – LCS %R Metals – Blank contamination
	8/27/2013	SW846	TRIP BLANK	Water	No					VOC - CCAL %D

¹ Samples which are compliant with no added validation qualifiers are listed as "yes". Samples which are non-compliant or which have added qualifiers are listed as "no". A "no" designation does not necessarily indicate that the data have been rejected or are otherwise unusable.

VALIDATION PERFORMED BY: Todd Church

SIGNATURE:

DATE: September 20, 2013

PEER REVIEW: Dennis Capria

DATE: October 2, 2013

CHAIN OF CUSTODY/ CORRECTED SAMPLE ANALYSIS DATA SHEETS

Definitions/Glossary

Client: ARCADIS U.S. Inc

Project/Site: National Fuel - 4th Street Buffalo

TestAmerica Job ID: 480-44645-1

Qualifiers

GC/MS VOA

A Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

GC/MS Semi VOA

Qualifier	Qualifier Description
*	LCS or LCSD exceeds the control limits
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
В	Compound was found in the blank and sample.

Metals

Qualifier	Qualifier Description
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
B7	Target analyte detected in method blank at or above method reporting limit. Concentration found in the sample was 10 times above the concentration found in the blank.
В	Compound was found in the blank and sample.
4	MS, MSD: The analyte present in the original sample is 4 times greater than the matrix spike concentration; therefore, control limits are not applicable.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CNF	Contains no Free Liquid
DER	Duplicate error ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision level concentration
MDA	Minimum detectable activity
EDL	Estimated Detection Limit
MDC	Minimum detectable concentration

MDL Method Detection Limit
ML Minimum Level (Dioxin)
NC Not Calculated

ND Not detected at the reporting limit (or MDL or EDL if shown)

PQL Practical Quantitation Limit

QC Quality Control
RER Relative error ratio

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TestAmerica Buffalo

9/10/2013

Page 3 of 46

Client: ARCADIS U.S. Inc

Project/Site: National Fuel - 4th Street Buffalo

TestAmerica Job ID: 480-44645-1

Lab Sample ID: 480-44645-1

Matrix: Water

Client Sample ID: AW-01
Date Collected: 08/27/13 13:40
Date Received: 08/27/13 18:20

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	ND		4.0	3.3	ug/L			09/05/13 18:28	-
1,1,2,2-Tetrachloroethane	ND		4.0	0.84	ug/L			09/05/13 18:28	
1,1,2-Trichloroethane	ND		4.0	0.92	ug/L			09/05/13 18:28	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		4.0	1.2	ug/L			09/05/13 18:28	
1,1-Dichloroethane	ND		4.0	1.5	ug/L			09/05/13 18:28	
1,1-Dichloroethene	ND		4.0	1.2	ug/L			09/05/13 18:28	
1,2,4-Trichlorobenzene	ND		4.0		ug/L			09/05/13 18:28	
1,2-Dibromo-3-Chloropropane	ND	UJ	4.0	1.6	ug/L			09/05/13 18:28	
1,2-Dibromoethane	ND		4.0		ug/L			09/05/13 18:28	
1,2-Dichlorobenzene	ND		4.0		ug/L			09/05/13 18:28	
1,2-Dichloroethane	ND		4.0		ug/L			09/05/13 18:28	
1,2-Dichloropropane	ND		4.0		ug/L			09/05/13 18:28	
1,3-Dichlorobenzene	ND		4.0		ug/L			09/05/13 18:28	
1,4-Dichlorobenzene	ND		4.0		ug/L			09/05/13 18:28	
2-Hexanone	ND		20		ug/L			09/05/13 18:28	
2-Butanone (MEK)	ND		40		ug/L ug/L			09/05/13 18:28	
, ,	ND		20		ug/L ug/L			09/05/13 18:28	
4-Methyl-2-pentanone (MIBK) Acetone	ND ND				•				
			40		ug/L			09/05/13 18:28	
Benzene	ND		4.0		ug/L			09/05/13 18:28	
Bromodichloromethane	ND	UJ UJ	4.0		ug/L			09/05/13 18:28	
Bromoform			4.0		ug/L			09/05/13 18:28	
Bromomethane		UJ	4.0		ug/L			09/05/13 18:28	
Carbon disulfide		UJ	4.0		ug/L			09/05/13 18:28	
Carbon tetrachloride	ND		4.0		ug/L			09/05/13 18:28	
Chlorobenzene	ND		4.0	3.0	ug/L			09/05/13 18:28	
Dibromochloromethane	ND		4.0	1.3	ug/L			09/05/13 18:28	
Chloroethane	ND	UJ	4.0	1.3	ug/L			09/05/13 18:28	
Chloroform	ND		4.0	1.4	ug/L			09/05/13 18:28	
Chloromethane	ND	UJ	4.0	1.4	ug/L			09/05/13 18:28	
cis-1,2-Dichloroethene	ND		4.0	3.2	ug/L			09/05/13 18:28	
cis-1,3-Dichloropropene	ND		4.0	1.4	ug/L			09/05/13 18:28	
Cyclohexane	ND	UJ	4.0	0.72	ug/L			09/05/13 18:28	
Dichlorodifluoromethane	ND		4.0	2.7	ug/L			09/05/13 18:28	
Ethylbenzene	ND		4.0	3.0	ug/L			09/05/13 18:28	
Isopropylbenzene	ND		4.0	3.2	ug/L			09/05/13 18:28	
Methyl acetate	ND		4.0	2.0	ug/L			09/05/13 18:28	
Methyl tert-butyl ether	ND		4.0	0.64	ug/L			09/05/13 18:28	
Methylcyclohexane	ND		4.0	0.64	ug/L			09/05/13 18:28	
Methylene Chloride	ND		4.0	1.8	ug/L			09/05/13 18:28	
Styrene	ND		4.0		ug/L			09/05/13 18:28	
Tetrachloroethene	ND		4.0	1.4	ug/L			09/05/13 18:28	
Toluene	ND		4.0		ug/L			09/05/13 18:28	
trans-1,2-Dichloroethene	ND		4.0		ug/L			09/05/13 18:28	
trans-1,3-Dichloropropene	ND		4.0		ug/L			09/05/13 18:28	
Trichloroethene	ND		4.0		ug/L			09/05/13 18:28	
Trichlorofluoromethane	ND		4.0		ug/L ug/L			09/05/13 18:28	
	ND		4.0		ug/L ug/L			09/05/13 18:28	
Vinyl chloride Xylenes, Total	ND		8.0		ug/L ug/L			09/05/13 18:28	

TestAmerica Buffalo

4

6

9

11

13

Client: ARCADIS U.S. Inc

Project/Site: National Fuel - 4th Street Buffalo

TestAmerica Job ID: 480-44645-1

Lab Sample ID: 480-44645-1

Matrix: Water

Client Sample ID: AW-01

Date Collected: 08/27/13 13:40 Date Received: 08/27/13 18:20

	Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
	1,2-Dichloroethane-d4 (Surr)	99		66 - 137		09/05/13 18:28	4
İ	Toluene-d8 (Surr)	110		71 - 126		09/05/13 18:28	4
l	4-Bromofluorobenzene (Surr)	108		73 - 120		09/05/13 18:28	4

4-Bromofluorobenzene (Surr) - -	108	73 - 120					09/05/13 18:28	4
Method: 8270C - Semivolatile O		•			_	_		
Analyte	Result Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Biphenyl	ND	4.7		ug/L		08/28/13 14:50	08/30/13 08:53	1
bis (2-chloroisopropyl) ether	ND	4.7	0.49	•		08/28/13 14:50	08/30/13 08:53	1
2,4,5-Trichlorophenol	ND	4.7	0.45			08/28/13 14:50	08/30/13 08:53	1
2,4,6-Trichlorophenol	ND	4.7	0.58	-		08/28/13 14:50	08/30/13 08:53	1
2,4-Dichlorophenol	ND	4.7	0.48	-		08/28/13 14:50	08/30/13 08:53	1
2,4-Dimethylphenol	ND	4.7	0.47			08/28/13 14:50	08/30/13 08:53	1
2,4-Dinitrophenol	ND	9.5		ug/L		08/28/13 14:50	08/30/13 08:53	1
2,4-Dinitrotoluene	ND \	4.7	0.42			08/28/13 14:50	08/30/13 08:53	1
2,6-Dinitrotoluene	ND 🕇 UJ	4.7	0.38	ug/L		08/28/13 14:50	08/30/13 08:53	1
2-Chloronaphthalene	ND	4.7	0.43	ug/L		08/28/13 14:50	08/30/13 08:53	1
2-Chlorophenol	ND	4.7	0.50	ug/L		08/28/13 14:50	08/30/13 08:53	1
2-Methylnaphthalene	ND	4.7	0.57	ug/L		08/28/13 14:50	08/30/13 08:53	1
2-Methylphenol	ND	4.7	0.38	ug/L		08/28/13 14:50	08/30/13 08:53	1
2-Nitroaniline	ND	9.5	0.40	ug/L		08/28/13 14:50	08/30/13 08:53	1
2-Nitrophenol	ND	4.7	0.45	ug/L		08/28/13 14:50	08/30/13 08:53	1
3,3'-Dichlorobenzidine	ND	4.7	0.38	ug/L		08/28/13 14:50	08/30/13 08:53	1
3-Nitroaniline	ND 🔪 ŪJ	9.5	0.45	ug/L		08/28/13 14:50	08/30/13 08:53	1
4,6-Dinitro-2-methylphenol	ND	9.5		ug/L		08/28/13 14:50	08/30/13 08:53	1
4-Bromophenyl phenyl ether	ND \ UJ	4.7	0.43			08/28/13 14:50	08/30/13 08:53	1
4-Chloro-3-methylphenol	ND	4.7	0.43	-		08/28/13 14:50	08/30/13 08:53	1
4-Chloroaniline	ND \ UJ	4.7	0.56			08/28/13 14:50	08/30/13 08:53	1
4-Chlorophenyl phenyl ether	ND	4.7	0.33			08/28/13 14:50	08/30/13 08:53	1
4-Methylphenol	ND	9.5	0.34	-		08/28/13 14:50	08/30/13 08:53	1
4-Nitroaniline	ND \ UJ	9.5	0.24	_		08/28/13 14:50	08/30/13 08:53	1
4-Nitrophenol	ND	9.5	1.4			08/28/13 14:50	08/30/13 08:53	1
Acenaphthene	2.7 J	4.7		ug/L		08/28/13 14:50	08/30/13 08:53	1
Acenaphthylene	ND	4.7		ug/L		08/28/13 14:50	08/30/13 08:53	1
Acetophenone	ND	4.7	0.51			08/28/13 14:50	08/30/13 08:53	1
•	ND			_			08/30/13 08:53	1
Anthracene		4.7	0.26			08/28/13 14:50		
Atrazine	ND	4.7	0.43			08/28/13 14:50	08/30/13 08:53	1
Benzaldehyde	0.43 J	4.7	0.25			08/28/13 14:50	08/30/13 08:53	1
Benzo[a]anthracene	ND	4.7	0.34	_		08/28/13 14:50	08/30/13 08:53	1
Benzo[a]pyrene	ND	4.7	0.44			08/28/13 14:50	08/30/13 08:53	1
Benzo[b]fluoranthene	ND	4.7	0.32	_		08/28/13 14:50	08/30/13 08:53	1
Benzo[g,h,i]perylene	ND <mark>UJ</mark>	4.7	0.33	-		08/28/13 14:50	08/30/13 08:53	1
Benzo[k]fluoranthene	ND	4.7	0.69	ug/L		08/28/13 14:50	08/30/13 08:53	1
Bis(2-chloroethoxy)methane	ND	4.7	0.33	ug/L		08/28/13 14:50	08/30/13 08:53	1
Bis(2-chloroethyl)ether	ND	4.7	0.38	ug/L		08/28/13 14:50	08/30/13 08:53	1
Bis(2-ethylhexyl) phthalate	ND	4.7	1.7	ug/L		08/28/13 14:50	08/30/13 08:53	1
Butyl benzyl phthalate	ND	4.7	0.40	ug/L		08/28/13 14:50	08/30/13 08:53	1
Caprolactam	ND	4.7	2.1	ug/L		08/28/13 14:50	08/30/13 08:53	1
Carbazole	ND	4.7	0.28	ug/L		08/28/13 14:50	08/30/13 08:53	1
Chrysene	ND	4.7	0.31	ug/L		08/28/13 14:50	08/30/13 08:53	1

TestAmerica Buffalo

Page 9 of 46

9/10/2013

3

+

6

8

10

40

Client: ARCADIS U.S. Inc

Project/Site: National Fuel - 4th Street Buffalo

TestAmerica Job ID: 480-44645-1

Lab Sample ID: 480-44645-1

Matrix: Water

Client Sample ID: AW-01

Date Collected: 08/27/13 13:40 Date Received: 08/27/13 18:20

Analyte	Resul	t Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Di-n-octyl phthalate	NI	<u> </u>	4.7	0.44	ug/L		08/28/13 14:50	08/30/13 08:53	1
Dibenz(a,h)anthracene	NI) UJ	4.7	0.40	ug/L		08/28/13 14:50	08/30/13 08:53	1
Dibenzofuran	NE)	9.5	0.48	ug/L		08/28/13 14:50	08/30/13 08:53	1
Diethyl phthalate	NE)	4.7	0.21	ug/L		08/28/13 14:50	08/30/13 08:53	1
Dimethyl phthalate	NI)	4.7	0.34	ug/L		08/28/13 14:50	08/30/13 08:53	1
Fluoranthene	NE)	4.7	0.38	ug/L		08/28/13 14:50	08/30/13 08:53	1
Fluorene	NI)	4.7	0.34	ug/L		08/28/13 14:50	08/30/13 08:53	1
Hexachlorobenzene	NI)	4.7	0.48	ug/L		08/28/13 14:50	08/30/13 08:53	1
Hexachlorobutadiene	NE)	4.7	0.64	ug/L		08/28/13 14:50	08/30/13 08:53	1
Hexachlorocyclopentadiene	NE)	4.7	0.56	ug/L		08/28/13 14:50	08/30/13 08:53	1
Hexachloroethane	NI)	4.7	0.56	ug/L		08/28/13 14:50	08/30/13 08:53	1
Indeno[1,2,3-cd]pyrene	NE) UJ	4.7	0.44	ug/L		08/28/13 14:50	08/30/13 08:53	1
Isophorone	NI)	4.7	0.41	ug/L		08/28/13 14:50	08/30/13 08:53	1
N-Nitrosodi-n-propylamine	ΝI)	4.7	0.51	ug/L		08/28/13 14:50	08/30/13 08:53	1
N-Nitrosodiphenylamine	NI)	4.7	0.48	ug/L		08/28/13 14:50	08/30/13 08:53	1
Naphthalene	NE)	4.7	0.72	ug/L		08/28/13 14:50	08/30/13 08:53	1
Nitrobenzene	NI)	4.7	0.27	ug/L		08/28/13 14:50	08/30/13 08:53	1
Pentachlorophenol	NE)	9.5	2.1	ug/L		08/28/13 14:50	08/30/13 08:53	1
Phenanthrene	4.7 -0.4	JB T	JB 4.7	0.42	ug/L		08/28/13 14:50	08/30/13 08:53	1
Phenol	NI)	4.7	0.37	ug/L		08/28/13 14:50	08/30/13 08:53	1
Pyrene	NI)	4.7	0.32	ug/L		08/28/13 14:50	08/30/13 08:53	1
Currogoto	9/ D anayar	, Qualifier	Limita				Branarad	Analyzod	Dil Ess

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol	99		39 - 146	08/28/13 14:50	08/30/13 08:53	1
2-Fluorobiphenyl	91		37 - 120	08/28/13 14:50	08/30/13 08:53	1
2-Fluorophenol	69		18 - 120	08/28/13 14:50	08/30/13 08:53	1
Nitrobenzene-d5	93		34 - 132	08/28/13 14:50	08/30/13 08:53	1
p-Terphenyl-d14	98		58 ₋ 147	08/28/13 14:50	08/30/13 08:53	1
Phenol-d5	46		11 - 120	08/28/13 14:50	08/30/13 08:53	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	ND		0.20	0.060	mg/L		08/28/13 08:40	08/28/13 18:09	1
Antimony	ND		0.020	0.0068	mg/L		08/28/13 08:40	08/28/13 18:09	1
Arsenic	ND		0.010	0.0056	mg/L		08/28/13 08:40	08/28/13 18:09	1
Barium	0.051		0.0020	0.00070	mg/L		08/28/13 08:40	08/28/13 18:09	1
Beryllium	ND		0.0020	0.00030	mg/L		08/28/13 08:40	08/28/13 18:09	1
Cadmium	ND		0.0010	0.00050	mg/L		08/28/13 08:40	08/28/13 18:09	1
Calcium	344		0.50	0.10	mg/L		08/28/13 08:40	08/28/13 18:09	1
Chromium	0.0018	J	0.0040	0.0010	mg/L		08/28/13 08:40	08/28/13 18:09	1
Cobalt	0.00071	J	0.0040	0.00063	mg/L		08/28/13 08:40	08/28/13 18:09	1
Copper	0.0020	J	0.010	0.0016	mg/L		08/28/13 08:40	08/28/13 18:09	1
Iron	11.9	BY	0.050	0.019	mg/L		08/28/13 08:40	08/28/13 18:09	1
Lead	ND		0.0050	0.0030	mg/L		08/28/13 08:40	08/28/13 18:09	1
Magnesium	19.9		0.20	0.043	mg/L		08/28/13 08:40	08/28/13 18:09	1
Manganese	0.80	B	0.0030	0.00040	mg/L		08/28/13 08:40	08/28/13 18:09	1
Nickel	ND		0.010	0.0013	mg/L		08/28/13 08:40	08/28/13 18:09	1
Potassium	11.4	В	0.50	0.10	mg/L		08/28/13 08:40	08/28/13 18:09	1
Selenium	ND		0.015	0.0087	mg/L		08/28/13 08:40	08/28/13 18:09	1
Silver	ND		0.0030	0.0017	mg/L		08/28/13 08:40	08/28/13 18:09	1

TestAmerica Buffalo

1

5

7

a

10

12

4 4

4 -

Client: ARCADIS U.S. Inc

Project/Site: National Fuel - 4th Street Buffalo

TestAmerica Job ID: 480-44645-1

Lab Sample ID: 480-44645-1

Matrix: Water

Client Sample ID: AW-01
Date Collected: 08/27/13 13:40

Date Received: 08/27/13 18:20

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Sodium	521		1.0	0.32	mg/L		08/28/13 08:40	08/28/13 18:09	1
Thallium	ND		0.020	0.010	mg/L		08/28/13 08:40	08/28/13 18:09	1
Vanadium	0.0025	J	0.0050	0.0015	mg/L		08/28/13 08:40	08/28/13 18:09	1
Zinc	ND		0.010	0.0015	mg/L		08/28/13 08:40	08/28/13 18:09	1
Method: 7470A - Mercury (CVAA)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.00020	0.00012	mg/L		08/28/13 07:50	08/28/13 12:19	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

Client Sample ID: AW-02

Date Collected: 08/27/13 11:35

Lab Sample ID: 480-44645-2

Matrix: Water

Date Received: 08/27/13 18:20

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		4.0	3.3	ug/L			09/05/13 18:50	
1,1,2,2-Tetrachloroethane	ND		4.0	0.84	ug/L			09/05/13 18:50	4
1,1,2-Trichloroethane	ND		4.0	0.92	ug/L			09/05/13 18:50	4
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		4.0	1.2	ug/L			09/05/13 18:50	
1,1-Dichloroethane	ND		4.0	1.5	ug/L			09/05/13 18:50	4
1,1-Dichloroethene	ND		4.0	1.2	ug/L			09/05/13 18:50	4
1,2,4-Trichlorobenzene	ND		4.0	1.6	ug/L			09/05/13 18:50	4
1,2-Dibromo-3-Chloropropane	ND	UJ	4.0	1.6	ug/L			09/05/13 18:50	2
1,2-Dibromoethane	ND		4.0	2.9	ug/L			09/05/13 18:50	4
1,2-Dichlorobenzene	ND		4.0	3.2	ug/L			09/05/13 18:50	
1,2-Dichloroethane	ND		4.0	0.84	ug/L			09/05/13 18:50	4
1,2-Dichloropropane	ND		4.0	2.9	ug/L			09/05/13 18:50	4
1,3-Dichlorobenzene	ND		4.0	3.1	ug/L			09/05/13 18:50	
1,4-Dichlorobenzene	ND		4.0	3.4	ug/L			09/05/13 18:50	4
2-Hexanone	ND		20	5.0	ug/L			09/05/13 18:50	4
2-Butanone (MEK)	ND		40	5.3	ug/L			09/05/13 18:50	4
4-Methyl-2-pentanone (MIBK)	ND		20	8.4	ug/L			09/05/13 18:50	4
Acetone	ND		40	12	ug/L			09/05/13 18:50	4
Benzene	ND		4.0	1.6	ug/L			09/05/13 18:50	4
Bromodichloromethane	ND		4.0	1.6	ug/L			09/05/13 18:50	4
Bromoform	ND	UJ	4.0	1.0	ug/L			09/05/13 18:50	4
Bromomethane	ND		4.0	2.8	ug/L			09/05/13 18:50	4
Carbon disulfide	ND	UJ	4.0	0.76	ug/L			09/05/13 18:50	4
Carbon tetrachloride	ND		4.0	1.1	ug/L			09/05/13 18:50	4
Chlorobenzene	ND		4.0	3.0	ug/L			09/05/13 18:50	4
Dibromochloromethane	ND		4.0	1.3	ug/L			09/05/13 18:50	4
Chloroethane	ND		4.0	1.3	ug/L			09/05/13 18:50	4
Chloroform	ND		4.0	1.4	ug/L			09/05/13 18:50	
Chloromethane	ND		4.0	1.4	ug/L			09/05/13 18:50	4
cis-1,2-Dichloroethene	ND		4.0	3.2	ug/L			09/05/13 18:50	4
cis-1,3-Dichloropropene	ND		4.0	1.4	ug/L			09/05/13 18:50	

TestAmerica Buffalo

3

4

6

8

9

11

14

1 4

Client: ARCADIS U.S. Inc

Client Sample ID: AW-02

Project/Site: National Fuel - 4th Street Buffalo

TestAmerica Job ID: 480-44645-1

Lab Sample ID: 480-44645-2

Date Collected: 08/27/13 11:35

Date Received: 08/27/13 18:20

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cyclohexane	ND	UJ	4.0	0.72	ug/L			09/05/13 18:50	4
Dichlorodifluoromethane	ND		4.0	2.7	ug/L			09/05/13 18:50	4
Ethylbenzene	ND		4.0	3.0	ug/L			09/05/13 18:50	4
Isopropylbenzene	ND		4.0	3.2	ug/L			09/05/13 18:50	4
Methyl acetate	ND		4.0	2.0	ug/L			09/05/13 18:50	4
Methyl tert-butyl ether	ND		4.0	0.64	ug/L			09/05/13 18:50	4
Methylcyclohexane	ND		4.0	0.64	ug/L			09/05/13 18:50	4
Methylene Chloride	ND		4.0	1.8	ug/L			09/05/13 18:50	4
Styrene	ND		4.0	2.9	ug/L			09/05/13 18:50	4
Tetrachloroethene	ND		4.0	1.4	ug/L			09/05/13 18:50	4
Toluene	ND		4.0	2.0	ug/L			09/05/13 18:50	4
trans-1,2-Dichloroethene	ND		4.0	3.6	ug/L			09/05/13 18:50	4
trans-1,3-Dichloropropene	ND		4.0	1.5	ug/L			09/05/13 18:50	4
Trichloroethene	ND		4.0	1.8	ug/L			09/05/13 18:50	4
Trichlorofluoromethane	ND		4.0	3.5	ug/L			09/05/13 18:50	4
Vinyl chloride	ND		4.0	3.6	ug/L			09/05/13 18:50	4
Xylenes, Total	ND		8.0	2.6	ug/L			09/05/13 18:50	4
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	97		66 - 137			-		09/05/13 18:50	4
Toluene-d8 (Surr)	111		71 - 126					09/05/13 18:50	4
4-Bromofluorobenzene (Surr)	108		73 - 120					09/05/13 18:50	4

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Biphenyl	ND		4.6	0.60	ug/L		08/28/13 14:50	08/30/13 09:21	1
bis (2-chloroisopropyl) ether	ND		4.6	0.48	ug/L		08/28/13 14:50	08/30/13 09:21	1
2,4,5-Trichlorophenol	ND		4.6	0.44	ug/L		08/28/13 14:50	08/30/13 09:21	1
2,4,6-Trichlorophenol	ND		4.6	0.57	ug/L		08/28/13 14:50	08/30/13 09:21	1
2,4-Dichlorophenol	ND		4.6	0.47	ug/L		08/28/13 14:50	08/30/13 09:21	1
2,4-Dimethylphenol	ND		4.6	0.46	ug/L		08/28/13 14:50	08/30/13 09:21	1
2,4-Dinitrophenol	ND		9.3	2.1	ug/L		08/28/13 14:50	08/30/13 09:21	1
2,4-Dinitrotoluene	ND		4.6	0.41	ug/L		08/28/13 14:50	08/30/13 09:21	1
2,6-Dinitrotoluene	ND	עט 🕴	4.6	0.37	ug/L		08/28/13 14:50	08/30/13 09:21	1
2-Chloronaphthalene	ND		4.6	0.43	ug/L		08/28/13 14:50	08/30/13 09:21	1
2-Chlorophenol	ND		4.6	0.49	ug/L		08/28/13 14:50	08/30/13 09:21	1
2-Methylnaphthalene	ND		4.6	0.56	ug/L		08/28/13 14:50	08/30/13 09:21	1
2-Methylphenol	ND		4.6	0.37	ug/L		08/28/13 14:50	08/30/13 09:21	1
2-Nitroaniline	ND		9.3	0.39	ug/L		08/28/13 14:50	08/30/13 09:21	1
2-Nitrophenol	ND		4.6	0.44	ug/L		08/28/13 14:50	08/30/13 09:21	1
3,3'-Dichlorobenzidine	ND		4.6	0.37	ug/L		08/28/13 14:50	08/30/13 09:21	1
3-Nitroaniline	ND	עט 🕴	9.3	0.44	ug/L		08/28/13 14:50	08/30/13 09:21	1
4,6-Dinitro-2-methylphenol	ND	Ċ	9.3	2.0	ug/L		08/28/13 14:50	08/30/13 09:21	1
4-Bromophenyl phenyl ether	ND	√ UJ	4.6	0.42	ug/L		08/28/13 14:50	08/30/13 09:21	1
4-Chloro-3-methylphenol	ND		4.6	0.42	ug/L		08/28/13 14:50	08/30/13 09:21	1
4-Chloroaniline	ND	<u>ν</u> υυ	4.6	0.55	ug/L		08/28/13 14:50	08/30/13 09:21	1
4-Chlorophenyl phenyl ether	ND		4.6	0.32	ug/L		08/28/13 14:50	08/30/13 09:21	1
4-Methylphenol	ND		9.3	0.33	ug/L		08/28/13 14:50	08/30/13 09:21	1
4-Nitroaniline	ND	\ UJ	9.3	0.23	ug/L		08/28/13 14:50	08/30/13 09:21	1
4-Nitrophenol	ND		9.3	1.4	ug/L		08/28/13 14:50	08/30/13 09:21	1

TestAmerica Buffalo

2

_

9

11

12

14

Client: ARCADIS U.S. Inc

2-Fluorophenol

Nitrobenzene-d5

p-Terphenyl-d14

Phenol-d5

Project/Site: National Fuel - 4th Street Buffalo

TestAmerica Job ID: 480-44645-1

Lab Sample ID: 480-44645-2

Matrix: Water

Client Sample ID: AW-02

Date Collected: 08/27/13 11:35 Date Received: 08/27/13 18:20

Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	3.3	J	4.6	0.38	ug/L		08/28/13 14:50	08/30/13 09:21	
Acenaphthylene	ND		4.6	0.35	ug/L		08/28/13 14:50	08/30/13 09:21	
Acetophenone	ND		4.6	0.50	ug/L		08/28/13 14:50	08/30/13 09:21	
Anthracene	0.32	J	4.6	0.26	ug/L		08/28/13 14:50	08/30/13 09:21	
Atrazine	ND		4.6	0.43	ug/L		08/28/13 14:50	08/30/13 09:21	
Benzaldehyde	0.31	J	4.6	0.25	ug/L		08/28/13 14:50	08/30/13 09:21	
Benzo[a]anthracene	ND		4.6	0.33	ug/L		08/28/13 14:50	08/30/13 09:21	
Benzo[a]pyrene	ND		4.6	0.44	ug/L		08/28/13 14:50	08/30/13 09:21	
Benzo[b]fluoranthene	ND		4.6	0.31	ug/L		08/28/13 14:50	08/30/13 09:21	
Benzo[g,h,i]perylene	ND		4.6	0.32	ug/L		08/28/13 14:50	08/30/13 09:21	
Benzo[k]fluoranthene	ND		4.6	0.68	ug/L		08/28/13 14:50	08/30/13 09:21	
Bis(2-chloroethoxy)methane	ND		4.6	0.32	ug/L		08/28/13 14:50	08/30/13 09:21	
Bis(2-chloroethyl)ether	ND		4.6	0.37	ug/L		08/28/13 14:50	08/30/13 09:21	
Bis(2-ethylhexyl) phthalate	ND		4.6	1.7	ug/L		08/28/13 14:50	08/30/13 09:21	
Butyl benzyl phthalate	ND		4.6	0.39	ug/L		08/28/13 14:50	08/30/13 09:21	
Caprolactam	ND		4.6	2.0	ug/L		08/28/13 14:50	08/30/13 09:21	
Carbazole	0.71	J	4.6	0.28	ug/L		08/28/13 14:50	08/30/13 09:21	
Chrysene	ND		4.6	0.31			08/28/13 14:50	08/30/13 09:21	
Di-n-butyl phthalate	0.48	J	4.6	0.29	ug/L		08/28/13 14:50	08/30/13 09:21	
Di-n-octyl phthalate	ND		4.6		ug/L		08/28/13 14:50	08/30/13 09:21	
Dibenz(a,h)anthracene	ND		4.6	0.39			08/28/13 14:50	08/30/13 09:21	
Dibenzofuran	0.79	J	9.3	0.47	•		08/28/13 14:50	08/30/13 09:21	
Diethyl phthalate	ND		4.6	0.20	•		08/28/13 14:50	08/30/13 09:21	
Dimethyl phthalate	ND		4.6				08/28/13 14:50	08/30/13 09:21	· · · · · · · .
Fluoranthene	1.6	J	4.6	0.37			08/28/13 14:50	08/30/13 09:21	
Fluorene	0.90		4.6	0.33			08/28/13 14:50	08/30/13 09:21	
Hexachlorobenzene	ND		4.6		ug/L		08/28/13 14:50	08/30/13 09:21	
Hexachlorobutadiene	ND		4.6		ug/L		08/28/13 14:50	08/30/13 09:21	
Hexachlorocyclopentadiene	ND		4.6		ug/L		08/28/13 14:50	08/30/13 09:21	
Hexachloroethane	ND		4.6		ug/L		08/28/13 14:50	08/30/13 09:21	
Indeno[1,2,3-cd]pyrene	ND		4.6		ug/L		08/28/13 14:50	08/30/13 09:21	
Isophorone	ND		4.6		ug/L		08/28/13 14:50	08/30/13 09:21	
N-Nitrosodi-n-propylamine	ND		4.6		ug/L		08/28/13 14:50	08/30/13 09:21	
N-Nitrosodiphenylamine	ND		4.6		ug/L		08/28/13 14:50	08/30/13 09:21	
Naphthalene	ND		4.6	0.70	ug/L		08/28/13 14:50	08/30/13 09:21	
Nitrobenzene	ND		4.6		ug/L		08/28/13 14:50	08/30/13 09:21	
Pentachlorophenol	ND		9.3		ug/L		08/28/13 14:50	08/30/13 09:21	
Phenanthrene 4.6		JB UB	4.6		ug/L		08/28/13 14:50	08/30/13 09:21	
Phenol	ND	UB UB	4.6		ug/L		08/28/13 14:50	08/30/13 09:21	
Pyrene	0.74	J	4.6		ug/L		08/28/13 14:50	08/30/13 09:21	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
2,4,6-Tribromophenol	102		39 - 146				08/28/13 14:50	08/30/13 09:21	
2-Fluorobiphenyl	94		37 - 120				08/28/13 14:50	08/30/13 09:21	
O. Flyansahanal	70		10 120				00/00/12 14:50	00/20/12 00:21	

TestAmerica Buffalo

08/30/13 09:21

08/30/13 09:21

08/30/13 09:21

08/30/13 09:21

08/28/13 14:50

08/28/13 14:50

08/28/13 14:50

08/28/13 14:50

18 - 120

34 - 132

58 - 147

11 - 120

72

97

104

48

2

4

6

8

9

11

Client: ARCADIS U.S. Inc

Project/Site: National Fuel - 4th Street Buffalo

TestAmerica Job ID: 480-44645-1

Lab Sample ID: 480-44645-2

Matrix: Water

Client Sample ID: AW-02

Date Collected: 08/27/13 11:35 Date Received: 08/27/13 18:20

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	0.11	J	0.20	0.060	mg/L		08/28/13 08:40	08/28/13 18:28	
Antimony	ND		0.020	0.0068	mg/L		08/28/13 08:40	08/28/13 18:28	•
Arsenic	ND		0.010	0.0056	mg/L		08/28/13 08:40	08/28/13 18:28	•
Barium	0.53		0.0020	0.00070	mg/L		08/28/13 08:40	08/28/13 18:28	
Beryllium	ND		0.0020	0.00030	mg/L		08/28/13 08:40	08/28/13 18:28	•
Cadmium	ND		0.0010	0.00050	mg/L		08/28/13 08:40	08/28/13 18:28	•
Calcium	183		0.50	0.10	mg/L		08/28/13 08:40	08/28/13 18:28	
Chromium	0.0015	J	0.0040	0.0010	mg/L		08/28/13 08:40	08/28/13 18:28	•
Cobalt	ND		0.0040	0.00063	mg/L		08/28/13 08:40	08/28/13 18:28	•
Copper	0.0020	J	0.010	0.0016	mg/L		08/28/13 08:40	08/28/13 18:28	•
Iron	0.32	UB	0.050	0.019	mg/L		08/30/13 09:10	08/30/13 23:41	•
Lead	ND		0.0050	0.0030	mg/L		08/28/13 08:40	08/28/13 18:28	
Magnesium	32.0		0.20	0.043	mg/L		08/28/13 08:40	08/28/13 18:28	
Manganese	0.38	B	0.0030	0.00040	mg/L		08/28/13 08:40	08/28/13 18:28	•
Nickel	ND		0.010	0.0013	mg/L		08/28/13 08:40	08/28/13 18:28	
Potassium	16.3	B	0.50	0.10	mg/L		08/28/13 08:40	08/28/13 18:28	
Selenium	ND		0.015	0.0087	mg/L		08/28/13 08:40	08/28/13 18:28	
Silver	ND		0.0030	0.0017	mg/L		08/28/13 08:40	08/28/13 18:28	
Sodium	764		1.0	0.32	mg/L		08/28/13 08:40	08/28/13 18:28	· · · · · · · ·
Thallium	ND		0.020	0.010	mg/L		08/28/13 08:40	08/28/13 18:28	
Vanadium	ND		0.0050	0.0015	mg/L		08/28/13 08:40	08/28/13 18:28	•
Zinc	0.0100.0066	JB	JB 0.010	0.0015	mg/L		08/28/13 08:40	08/28/13 18:28	

Method: 7470A - Mercury (CVAA) Analyte Mercury	Result ND	Qualifier		MDL 0.00012		<u>D</u>	Prepared 08/28/13 07:50	Analyzed 08/28/13 12:25	Dil Fac
General Chemistry Analyte Cyanide, Total		Qualifier	RL 0.010	MDL 0.0050	Unit	<u>D</u>	Prepared 08/29/13 08:58	Analyzed 08/30/13 15:39	Dil Fac

Client Sample ID: AW-03

Date Collected: 08/27/13 15:15

Date Received: 08/27/13 18:20

Method: 8260B - Volatile Organic (Compounds by GC/MS							
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND ND	4.0	3.3	ug/L			09/05/13 19:11	4
1,1,2,2-Tetrachloroethane	ND	4.0	0.84	ug/L			09/05/13 19:11	4
1,1,2-Trichloroethane	ND	4.0	0.92	ug/L			09/05/13 19:11	4
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	4.0	1.2	ug/L			09/05/13 19:11	4
1,1-Dichloroethane	ND	4.0	1.5	ug/L			09/05/13 19:11	4
1,1-Dichloroethene	ND	4.0	1.2	ug/L			09/05/13 19:11	4
1,2,4-Trichlorobenzene	ND	4.0	1.6	ug/L			09/05/13 19:11	4
1,2-Dibromo-3-Chloropropane	ND UJ	4.0	1.6	ug/L			09/05/13 19:11	4
1,2-Dibromoethane	ND	4.0	2.9	ug/L			09/05/13 19:11	4
1,2-Dichlorobenzene	ND	4.0	3.2	ug/L			09/05/13 19:11	4
1,2-Dichloroethane	ND	4.0	0.84	ug/L			09/05/13 19:11	4
1,2-Dichloropropane	ND	4.0	2.9	ug/L			09/05/13 19:11	4
1,3-Dichlorobenzene	ND	4.0	3.1	ug/L			09/05/13 19:11	4

TestAmerica Buffalo

Lab Sample ID: 480-44645-3

Matrix: Water

Page 14 of 46

9/10/2013

Client: ARCADIS U.S. Inc

2,4-Dinitrophenol

Project/Site: National Fuel - 4th Street Buffalo

TestAmerica Job ID: 480-44645-1

Lab Sample ID: 480-44645-3

Matrix: Water

Client Sample ID: AW-03

Date Collected: 08/27/13 15:15 Date Received: 08/27/13 18:20

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dichlorobenzene	ND		4.0	3.4	ug/L			09/05/13 19:11	
2-Hexanone	ND		20	5.0	ug/L			09/05/13 19:11	4
2-Butanone (MEK)	ND		40	5.3	ug/L			09/05/13 19:11	4
4-Methyl-2-pentanone (MIBK)	ND		20	8.4	ug/L			09/05/13 19:11	4
Acetone	ND		40	12	ug/L			09/05/13 19:11	4
Benzene	4.8		4.0	1.6	ug/L			09/05/13 19:11	4
Bromodichloromethane	ND		4.0	1.6	ug/L			09/05/13 19:11	4
Bromoform	ND	UJ	4.0	1.0	ug/L			09/05/13 19:11	4
Bromomethane	ND		4.0	2.8	ug/L			09/05/13 19:11	4
Carbon disulfide	ND	UJ	4.0	0.76	ug/L			09/05/13 19:11	4
Carbon tetrachloride	ND		4.0	1.1	ug/L			09/05/13 19:11	4
Chlorobenzene	ND		4.0	3.0	ug/L			09/05/13 19:11	4
Dibromochloromethane	ND		4.0	1.3	ug/L			09/05/13 19:11	4
Chloroethane	ND		4.0	1.3	ug/L			09/05/13 19:11	4
Chloroform	ND		4.0	1.4	ug/L			09/05/13 19:11	4
Chloromethane	ND		4.0	1.4	ug/L			09/05/13 19:11	4
cis-1,2-Dichloroethene	ND		4.0	3.2	ug/L			09/05/13 19:11	4
cis-1,3-Dichloropropene	ND		4.0	1.4	ug/L			09/05/13 19:11	4
Cyclohexane	ND	UJ	4.0	0.72	ug/L			09/05/13 19:11	4
Dichlorodifluoromethane	ND		4.0	2.7	ug/L			09/05/13 19:11	4
Ethylbenzene	ND		4.0	3.0	ug/L			09/05/13 19:11	4
Isopropylbenzene	ND		4.0	3.2	ug/L			09/05/13 19:11	4
Methyl acetate	ND		4.0	2.0	ug/L			09/05/13 19:11	4
Methyl tert-butyl ether	ND		4.0	0.64	ug/L			09/05/13 19:11	4
Methylcyclohexane	ND		4.0	0.64	ug/L			09/05/13 19:11	4
Methylene Chloride	ND		4.0	1.8	ug/L			09/05/13 19:11	4
Styrene	ND		4.0	2.9	ug/L			09/05/13 19:11	4
Tetrachloroethene	ND		4.0	1.4	ug/L			09/05/13 19:11	4
Toluene	ND		4.0	2.0	ug/L			09/05/13 19:11	4
trans-1,2-Dichloroethene	ND		4.0	3.6	ug/L			09/05/13 19:11	4
trans-1,3-Dichloropropene	ND		4.0	1.5	ug/L			09/05/13 19:11	4
Trichloroethene	ND		4.0	1.8	ug/L			09/05/13 19:11	4
Trichlorofluoromethane	ND		4.0	3.5	ug/L			09/05/13 19:11	4
Vinyl chloride	ND		4.0	3.6	ug/L			09/05/13 19:11	4
Xylenes, Total	ND		8.0	2.6	ug/L			09/05/13 19:11	4
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	97		66 - 137			_		09/05/13 19:11	4
Toluene-d8 (Surr)	109		71 - 126					09/05/13 19:11	4

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	97		66 - 137		09/05/13 19:11	4
Toluene-d8 (Surr)	109		71 - 126		09/05/13 19:11	4
4-Bromofluorobenzene (Surr)	106		73 - 120		09/05/13 19:11	4

Method: 8270C - Semivolatile Org	ganic Compoun	ds (GC/MS)							
Analyte	Result (Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Biphenyl	1.2		4.7	0.61	ug/L		08/28/13 14:50	08/30/13 09:49	1
bis (2-chloroisopropyl) ether	ND		4.7	0.49	ug/L		08/28/13 14:50	08/30/13 09:49	1
2,4,5-Trichlorophenol	ND		4.7	0.45	ug/L		08/28/13 14:50	08/30/13 09:49	1
2,4,6-Trichlorophenol	ND		4.7	0.57	ug/L		08/28/13 14:50	08/30/13 09:49	1
2,4-Dichlorophenol	ND		4.7	0.48	ug/L		08/28/13 14:50	08/30/13 09:49	1
2,4-Dimethylphenol	ND		4.7	0.47	ug/L		08/28/13 14:50	08/30/13 09:49	1
	Analyte Biphenyl bis (2-chloroisopropyl) ether 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol 2,4-Dichlorophenol	Analyte Result Biphenyl 1.2 bis (2-chloroisopropyl) ether ND 2,4,5-Trichlorophenol ND 2,4,6-Trichlorophenol ND 2,4-Dichlorophenol ND	Biphenyl bis (2-chloroisopropyl) ether ND 2,4,5-Trichlorophenol ND 2,4,6-Trichlorophenol ND 2,4-Dichlorophenol ND	Analyte Result Biphenyl Qualifier RL Biphenyl 1.2 J 4.7 bis (2-chloroisopropyl) ether ND 4.7 2,4,5-Trichlorophenol ND 4.7 2,4,6-Trichlorophenol ND 4.7 2,4-Dichlorophenol ND 4.7	Analyte Result Dualifier RL Public P	Analyte Result Biphenyl Qualifier RL VIDER MDL VIDER Unit VIDER bis (2-chloroisopropyl) ether ND 4.7 0.61 ug/L 2,4,5-Trichlorophenol ND 4.7 0.45 ug/L 2,4,6-Trichlorophenol ND 4.7 0.57 ug/L 2,4-Dichlorophenol ND 4.7 0.48 ug/L	Analyte Result Biphenyl Qualifier RL Variable MDL Vinit Variable D bis (2-chloroisopropyl) ether ND 4.7 0.49 ug/L 2,4,5-Trichlorophenol ND 4.7 0.45 ug/L 2,4,6-Trichlorophenol ND 4.7 0.57 ug/L 2,4-Dichlorophenol ND 4.7 0.48 ug/L	Analyte Result gualifier RL NDL Unit D Prepared Biphenyl 1.2 J 4.7 0.61 ug/L 08/28/13 14:50 bis (2-chloroisopropyl) ether ND 4.7 0.49 ug/L 08/28/13 14:50 2,4,5-Trichlorophenol ND 4.7 0.45 ug/L 08/28/13 14:50 2,4,6-Trichlorophenol ND 4.7 0.57 ug/L 08/28/13 14:50 2,4-Dichlorophenol ND 4.7 0.48 ug/L 08/28/13 14:50	Analyte Result Biphenyl Qualifier RL MDL Unit D Prepared Analyzed bis (2-chloroisopropyl) ether 1.2 J 4.7 0.61 ug/L 08/28/13 14:50 08/30/13 09:49 2,4,5-Trichlorophenol ND 4.7 0.45 ug/L 08/28/13 14:50 08/30/13 09:49 2,4,6-Trichlorophenol ND 4.7 0.57 ug/L 08/28/13 14:50 08/30/13 09:49 2,4-Dichlorophenol ND 4.7 0.48 ug/L 08/28/13 14:50 08/30/13 09:49 2,4-Dichlorophenol ND 4.7 0.48 ug/L 08/28/13 14:50 08/30/13 09:49

9.4

2.1 ug/L

ND

TestAmerica Buffalo

08/30/13 09:49

08/28/13 14:50

Page 15 of 46

Client: ARCADIS U.S. Inc

Project/Site: National Fuel - 4th Street Buffalo

Lab Sample ID: 480-44645-3

TestAmerica Job ID: 480-44645-1

Matrix: Water

Client Sample ID: AW-03

Date Collected: 08/27/13 15:15 Date Received: 08/27/13 18:20

Method: 8270C - Semivolatile Organic Compounds (GC/MS) (Continued) Dil Fac Result Qualifier MDL D Analyte Unit Prepared Analyzed ND 4.7 08/28/13 14:50 08/30/13 09:49 2.4-Dinitrotoluene 0.42 ug/L ND 2,6-Dinitrotoluene 47 08/28/13 14:50 08/30/13 09:49 0.38 ug/L UJ 2-Chloronaphthalene ND 4.7 0.43 ug/L 08/28/13 14:50 08/30/13 09:49 2-Chlorophenol ND 4.7 08/28/13 14:50 08/30/13 09:49 0.50 ug/L 2-Methylnaphthalene ND 4.7 0.56 ug/L 08/28/13 14:50 08/30/13 09:49 ND 08/30/13 09:49 2-Methylphenol 47 0.38 ug/L 08/28/13 14:50 2-Nitroaniline ND 9.4 0.40 ug/L 08/28/13 14:50 08/30/13 09:49 2-Nitrophenol ND 4.7 0.45 ug/L 08/28/13 14:50 08/30/13 09:49 ND 3,3'-Dichlorobenzidine 4.7 0.38 ug/L 08/28/13 14:50 08/30/13 09:49 3-Nitroaniline ND 9.4 0.45 ug/L 08/28/13 14:50 08/30/13 09:49 ND 4,6-Dinitro-2-methylphenol 9.4 2.1 ug/L 08/28/13 14:50 08/30/13 09:49 08/28/13 14:50 4-Bromophenyl phenyl ether ND 4.7 0.42 ug/L 08/30/13 09:49 UJ 4-Chloro-3-methylphenol ND 47 0.42 ug/L 08/28/13 14:50 08/30/13 09:49 4-Chloroaniline ND 4.7 0.55 ug/L 08/28/13 14:50 08/30/13 09:49 ND 4-Chlorophenyl phenyl ether 4 7 0.33 ug/L 08/28/13 14:50 08/30/13 09:49 4-Methylphenol ND 9.4 0.34 08/28/13 14:50 08/30/13 09:49 ug/L 4-Nitroaniline ND UJ 9.4 ug/L 0.24 08/28/13 14:50 08/30/13 09:49 4-Nitrophenol ND 9.4 1.4 08/28/13 14:50 08/30/13 09:49 ug/L 4.7 08/28/13 14:50 08/30/13 09:49 0.39 ug/L Acenaphthene 43 Acenaphthylene 0.39 4.7 0.36 ug/L 08/28/13 14:50 08/30/13 09:49 4 7 4.7 0.51 ug/L 08/28/13 14:50 08/30/13 09:49 Acetophenone UB 5.4 4.7 0.26 ug/L 08/28/13 14:50 08/30/13 09:49 **Anthracene** Atrazine ND 4.7 0.43 ug/L 08/28/13 14:50 08/30/13 09:49 Benzaldehyde 0.44 4.7 0.25 ug/L 08/28/13 14:50 08/30/13 09:49 Benzo[a]anthracene 0.35 4.7 0.34 ug/L 08/28/13 14:50 08/30/13 09:49 ND Benzo[a]pyrene 4.7 0.44 08/28/13 14:50 08/30/13 09:49 ug/L Benzo[b]fluoranthene ND 4.7 08/28/13 14:50 08/30/13 09:49 0.32 ug/L Benzo[g,h,i]perylene ND 47 0.33 ug/L 08/28/13 14:50 08/30/13 09:49 Benzo[k]fluoranthene ND 4.7 ug/L 08/28/13 14:50 08/30/13 09:49 0.69 ND 4.7 08/28/13 14:50 08/30/13 09:49 Bis(2-chloroethoxy)methane 0.33 ug/L Bis(2-chloroethyl)ether ND 4.7 0.38 ug/L 08/28/13 14:50 08/30/13 09:49 4.7 1.7 ug/L 08/28/13 14:50 08/30/13 09:49 Bis(2-ethylhexyl) phthalate 2.1 UB Butyl benzyl phthalate ND 4.7 0.40 ug/L 08/28/13 14:50 08/30/13 09:49 Caprolactam ND 4.7 2.1 08/28/13 14:50 08/30/13 09:49 ua/L 08/28/13 14:50 Carbazole 4.7 47 0.28 ug/L 08/30/13 09:49 Chrysene ND 4.7 0.31 ug/L 08/28/13 14:50 08/30/13 09:49 08/28/13 14:50 Di-n-butyl phthalate 0.51 4.7 0.29 ug/L 08/30/13 09:49 Di-n-octyl phthalate ND 4.7 0.44 ug/L 08/28/13 14:50 08/30/13 09:49 Dibenz(a,h)anthracene ND 4 7 0.40 ug/L 08/28/13 14:50 08/30/13 09:49 08/28/13 14:50 Dibenzofuran 17 9.4 0.48 ug/L 08/30/13 09:49 ND Diethyl phthalate 4.7 0.21 ug/L 08/28/13 14:50 08/30/13 09:49 Dimethyl phthalate ND 4.7 0.34 ug/L 08/28/13 14:50 08/30/13 09:49 47 0.38 08/28/13 14:50 08/30/13 09:49 6.2 ug/L **Fluoranthene** 4.7 0.34 ug/L 08/28/13 14:50 08/30/13 09:49 **Fluorene** 23 ND Hexachlorobenzene 4.7 0.48 ug/L 08/28/13 14:50 08/30/13 09:49 Hexachlorobutadiene ND 4.7 0.64 ug/L 08/28/13 14:50 08/30/13 09:49 Hexachlorocyclopentadiene ND 4.7 0.55 ug/L 08/28/13 14:50 08/30/13 09:49 Hexachloroethane ND 4.7 0.55 ug/L 08/28/13 14:50 08/30/13 09:49 Indeno[1,2,3-cd]pyrene ND 4.7 0.44 ug/L 08/28/13 14:50 08/30/13 09:49

TestAmerica Buffalo

5

6

7

9

11

Client: ARCADIS U.S. Inc

Client Sample ID: AW-03

Date Collected: 08/27/13 15:15

Date Received: 08/27/13 18:20

Project/Site: National Fuel - 4th Street Buffalo

TestAmerica Job ID: 480-44645-1

Lab Sample ID: 480-44645-3

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Isophorone	ND		4.7	0.40	ug/L		08/28/13 14:50	08/30/13 09:49	1
N-Nitrosodi-n-propylamine	ND		4.7	0.51	ug/L		08/28/13 14:50	08/30/13 09:49	1
N-Nitrosodiphenylamine	ND		4.7	0.48	ug/L		08/28/13 14:50	08/30/13 09:49	1
Naphthalene	ND		4.7	0.71	ug/L		08/28/13 14:50	08/30/13 09:49	1
Nitrobenzene	ND		4.7	0.27	ug/L		08/28/13 14:50	08/30/13 09:49	1
Pentachlorophenol	ND		9.4	2.1	ug/L		08/28/13 14:50	08/30/13 09:49	1
Phenanthrene	23	В	4.7	0.41	ug/L		08/28/13 14:50	08/30/13 09:49	1
Phenol	ND		4.7	0.37	ug/L		08/28/13 14:50	08/30/13 09:49	1
Pyrene	2.4	J	4.7	0.32	ug/L		08/28/13 14:50	08/30/13 09:49	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol	94		39 - 146				08/28/13 14:50	08/30/13 09:49	1
2-Fluorobiphenyl	85		37 - 120				08/28/13 14:50	08/30/13 09:49	1
2-Fluorophenol	66		18 - 120				08/28/13 14:50	08/30/13 09:49	1
Nitrobenzene-d5	88		34 - 132				08/28/13 14:50	08/30/13 09:49	1
p-Terphenyl-d14	96		58 - 147				08/28/13 14:50	08/30/13 09:49	1
Phenol-d5	43		11 - 120				08/28/13 14:50	08/30/13 09:49	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	ND		0.20	0.060	mg/L		08/28/13 08:40	08/28/13 18:31	1
Antimony	ND		0.020	0.0068	mg/L		08/28/13 08:40	08/28/13 18:31	1
Arsenic	0.0076	J	0.010	0.0056	mg/L		08/28/13 08:40	08/28/13 18:31	1
Barium	0.063		0.0020	0.00070	mg/L		08/28/13 08:40	08/28/13 18:31	1
Beryllium	ND		0.0020	0.00030	mg/L		08/28/13 08:40	08/28/13 18:31	1
Cadmium	ND		0.0010	0.00050	mg/L		08/28/13 08:40	08/28/13 18:31	1
Calcium	245		0.50	0.10	mg/L		08/28/13 08:40	08/28/13 18:31	1
Chromium	0.0021	J	0.0040	0.0010	mg/L		08/28/13 08:40	08/28/13 18:31	1
Cobalt	ND		0.0040	0.00063	mg/L		08/28/13 08:40	08/28/13 18:31	1
Copper	ND		0.010	0.0016	mg/L		08/28/13 08:40	08/28/13 18:31	1
Iron	16.3	B7	0.050	0.019	mg/L		08/28/13 08:40	08/28/13 18:31	1
Lead	ND		0.0050	0.0030	mg/L		08/28/13 08:40	08/28/13 18:31	1
Magnesium	13.8		0.20	0.043	mg/L		08/28/13 08:40	08/28/13 18:31	1
Manganese	0.76	B	0.0030	0.00040	mg/L		08/28/13 08:40	08/28/13 18:31	1
Nickel	ND		0.010	0.0013	mg/L		08/28/13 08:40	08/28/13 18:31	1
Potassium	10.1	B	0.50	0.10	mg/L		08/28/13 08:40	08/28/13 18:31	1
Selenium	ND		0.015	0.0087	mg/L		08/28/13 08:40	08/28/13 18:31	1
Silver	ND		0.0030	0.0017	mg/L		08/28/13 08:40	08/28/13 18:31	1
Sodium	341		1.0	0.32	mg/L		08/28/13 08:40	08/28/13 18:31	1
Thallium	ND		0.020	0.010	mg/L		08/28/13 08:40	08/28/13 18:31	1
Vanadium	0.0029	J	0.0050	0.0015	mg/L		08/28/13 08:40	08/28/13 18:31	1
Zinc	0.0100.0027	JB ℧	B 0.010	0.0015	mg/L		08/28/13 08:40	08/28/13 18:31	1

Method: 7470A - Mercury (CVAA) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.00020	0.00012	mg/L		08/28/13 07:50	08/28/13 12:31	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cyanide, Total	0.11		0.010	0.0050	mg/L		08/29/13 08:58	08/30/13 15:40	1

TestAmerica Buffalo

Page 17 of 46

9/10/2013

Client: ARCADIS U.S. Inc

Project/Site: National Fuel - 4th Street Buffalo

TestAmerica Job ID: 480-44645-1

Lab Sample ID: 480-44645-4

Matrix: Water

Client Sample ID: AW-04

Date Collected: 08/27/13 16:40 Date Received: 08/27/13 18:20

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
,1,1-Trichloroethane	ND		10	8.2	ug/L			09/05/13 19:32	1
,1,2,2-Tetrachloroethane	ND		10	2.1	ug/L			09/05/13 19:32	1
,1,2-Trichloroethane	ND		10	2.3	ug/L			09/05/13 19:32	1
,1,2-Trichloro-1,2,2-trifluoroethane	ND		10	3.1	ug/L			09/05/13 19:32	1
,1-Dichloroethane	ND		10	3.8	ug/L			09/05/13 19:32	1
,1-Dichloroethene	ND		10	2.9	ug/L			09/05/13 19:32	1
,2,4-Trichlorobenzene	ND		10	4.1	ug/L			09/05/13 19:32	1
,2-Dibromo-3-Chloropropane	ND	UJ	10	3.9	ug/L			09/05/13 19:32	1
,2-Dibromoethane	ND		10	7.3	ug/L			09/05/13 19:32	1
,2-Dichlorobenzene	ND		10	7.9	ug/L			09/05/13 19:32	1
,2-Dichloroethane	ND		10	2.1	ug/L			09/05/13 19:32	1
,2-Dichloropropane	ND		10		ug/L			09/05/13 19:32	1
,3-Dichlorobenzene	ND		10		ug/L			09/05/13 19:32	1
,4-Dichlorobenzene	ND		10		ug/L			09/05/13 19:32	
2-Hexanone	ND		50		ug/L			09/05/13 19:32	1
P-Butanone (MEK)	ND		100		ug/L			09/05/13 19:32	;
-Methyl-2-pentanone (MIBK)	ND		50		ug/L			09/05/13 19:32	
Acetone	ND		100		ug/L			09/05/13 19:32	
Benzene	310		10		ug/L			09/05/13 19:32	
Bromodichloromethane	ND.		10		ug/L			09/05/13 19:32	
romodrame	ND	UJ	10		ug/L			09/05/13 19:32	
romomethane	ND		10		ug/L			09/05/13 19:32	
Carbon disulfide		UJ	10		ug/L			09/05/13 19:32	
Carbon tetrachloride	ND	00	10		ug/L			09/05/13 19:32	
Chlorobenzene	ND		10					09/05/13 19:32	
	ND ND		10		ug/L			09/05/13 19:32	
Dibromochloromethane	ND ND				ug/L				
Chloroethane			10		ug/L			09/05/13 19:32	
Chloroform	ND		10		ug/L			09/05/13 19:32	
Chloromethane	ND		10		ug/L			09/05/13 19:32	
is-1,2-Dichloroethene	ND		10		ug/L			09/05/13 19:32	
is-1,3-Dichloropropene	ND	TT T	10		ug/L			09/05/13 19:32	
Cyclohexane		UJ	10		ug/L			09/05/13 19:32	
Dichlorodifluoromethane	ND		10		ug/L			09/05/13 19:32	
thylbenzene	36		10		ug/L			09/05/13 19:32	
sopropylbenzene	ND		10		ug/L			09/05/13 19:32	
Methyl acetate	ND		10		ug/L			09/05/13 19:32	
Methyl tert-butyl ether	ND		10		ug/L			09/05/13 19:32	
Methylcyclohexane	ND		10		ug/L			09/05/13 19:32	
lethylene Chloride	ND		10		ug/L			09/05/13 19:32	
tyrene	ND		10		ug/L			09/05/13 19:32	
etrachloroethene	ND		10		ug/L			09/05/13 19:32	
oluene	ND		10		ug/L			09/05/13 19:32	
rans-1,2-Dichloroethene	ND		10		ug/L			09/05/13 19:32	
ans-1,3-Dichloropropene	ND		10	3.7	ug/L			09/05/13 19:32	
richloroethene	ND		10	4.6	ug/L			09/05/13 19:32	
richlorofluoromethane	ND		10	8.8	ug/L			09/05/13 19:32	
'inyl chloride	ND		10	9.0	ug/L			09/05/13 19:32	

TestAmerica Buffalo

2

5

7

9

11

13

Client: ARCADIS U.S. Inc

Project/Site: National Fuel - 4th Street Buffalo

Lab Sample ID: 480-44645-4

TestAmerica Job ID: 480-44645-1

Matrix: Water

Client Sample ID: AW-04

Date Collected: 08/27/13 16:40 Date Received: 08/27/13 18:20

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	98		66 - 137		09/05/13 19:32	10
Toluene-d8 (Surr)	109		71 - 126		09/05/13 19:32	10
4-Bromofluorobenzene (Surr)	107		73 - 120		09/05/13 19:32	10

4-Bromotiuorobenzene (Surr) - -	107		73 - 120					09/05/13 19:32	10
Method: 8270C - Semivola						_			B.: E
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Biphenyl	ND		4.7	0.62			08/28/13 14:50	08/30/13 10:17	1
bis (2-chloroisopropyl) ether	ND		4.7	0.49	-		08/28/13 14:50	08/30/13 10:17	1
2,4,5-Trichlorophenol	ND		4.7	0.45			08/28/13 14:50	08/30/13 10:17	
2,4,6-Trichlorophenol	ND		4.7	0.58	-		08/28/13 14:50	08/30/13 10:17	1
2,4-Dichlorophenol	ND		4.7		ug/L		08/28/13 14:50	08/30/13 10:17	1
2,4-Dimethylphenol	14		4.7	0.47			08/28/13 14:50	08/30/13 10:17	
2,4-Dinitrophenol	ND		9.4	2.1	ug/L		08/28/13 14:50	08/30/13 10:17	1
2,4-Dinitrotoluene	ND	1	4.7	0.42	J		08/28/13 14:50	08/30/13 10:17	1
2,6-Dinitrotoluene	ND	ל על	4.7	0.38	ug/L		08/28/13 14:50	08/30/13 10:17	1
2-Chloronaphthalene	ND		4.7	0.43	-		08/28/13 14:50	08/30/13 10:17	1
2-Chlorophenol	ND		4.7	0.50	ug/L		08/28/13 14:50	08/30/13 10:17	1
2-Methylnaphthalene	ND		4.7	0.57	ug/L		08/28/13 14:50	08/30/13 10:17	1
2-Methylphenol	ND		4.7	0.38	ug/L		08/28/13 14:50	08/30/13 10:17	1
2-Nitroaniline	ND		9.4	0.40	ug/L		08/28/13 14:50	08/30/13 10:17	1
2-Nitrophenol	ND		4.7	0.45	ug/L		08/28/13 14:50	08/30/13 10:17	1
3,3'-Dichlorobenzidine	ND		4.7	0.38	ug/L		08/28/13 14:50	08/30/13 10:17	1
3-Nitroaniline	ND	עט 🖊	9.4	0.45	ug/L		08/28/13 14:50	08/30/13 10:17	1
4,6-Dinitro-2-methylphenol	ND		9.4	2.1	ug/L		08/28/13 14:50	08/30/13 10:17	1
4-Bromophenyl phenyl ether	ND	ע טַּ	4.7	0.43	ug/L		08/28/13 14:50	08/30/13 10:17	1
4-Chloro-3-methylphenol	ND		4.7	0.43	ug/L		08/28/13 14:50	08/30/13 10:17	1
4-Chloroaniline	ND	t UJ	4.7	0.56	ug/L		08/28/13 14:50	08/30/13 10:17	1
4-Chlorophenyl phenyl ether	ND	. 1	4.7	0.33			08/28/13 14:50	08/30/13 10:17	1
4-Methylphenol	ND		9.4	0.34			08/28/13 14:50	08/30/13 10:17	1
4-Nitroaniline	ND	∤ υσ	9.4	0.24			08/28/13 14:50	08/30/13 10:17	1
4-Nitrophenol	ND		9.4		ug/L		08/28/13 14:50	08/30/13 10:17	1
Acenaphthene	1.8	J	4.7	0.39	-		08/28/13 14:50	08/30/13 10:17	1
Acenaphthylene	ND		4.7	0.36	-		08/28/13 14:50	08/30/13 10:17	1
Acetophenone		JB UB	4.7	0.51			08/28/13 14:50	08/30/13 10:17	1
Anthracene	ND	0.5	4.7	0.26			08/28/13 14:50	08/30/13 10:17	1
Atrazine	ND		4.7	0.43			08/28/13 14:50	08/30/13 10:17	1
Benzaldehyde	0.42		4.7		ug/L		08/28/13 14:50	08/30/13 10:17	
Benzo[a]anthracene	ND	3	4.7		ug/L		08/28/13 14:50	08/30/13 10:17	1
Benzo[a]pyrene	ND		4.7		ug/L		08/28/13 14:50	08/30/13 10:17	1
	ND								' 1
Benzo[b]fluoranthene	ND ND		4.7 4.7	0.32	ug/L		08/28/13 14:50 08/28/13 14:50	08/30/13 10:17	1
Benzo[g,h,i]perylene					•			08/30/13 10:17	
Benzo[k]fluoranthene	ND		4.7	0.69			08/28/13 14:50	08/30/13 10:17	1
Bis(2-chloroethoxy)methane	ND		4.7	0.33			08/28/13 14:50	08/30/13 10:17	1
Bis(2-chloroethyl)ether	ND		4.7	0.38			08/28/13 14:50	08/30/13 10:17	1
Bis(2-ethylhexyl) phthalate	ND		4.7		ug/L		08/28/13 14:50	08/30/13 10:17	1
Butyl benzyl phthalate	ND		4.7	0.40			08/28/13 14:50	08/30/13 10:17	1
Caprolactam	ND		4.7		ug/L		08/28/13 14:50	08/30/13 10:17	1
Carbazole	ND		4.7	0.28			08/28/13 14:50	08/30/13 10:17	1
Chrysene	ND		4.7	0.31	ug/L		08/28/13 14:50	08/30/13 10:17	1
Di-n-butyl phthalate	0.57	J	4.7	0.29	ug/L		08/28/13 14:50	08/30/13 10:17	1

TestAmerica Buffalo

Page 19 of 46

9/10/2013

3

4

6

9

11

1 /

Client: ARCADIS U.S. Inc

Project/Site: National Fuel - 4th Street Buffalo

TestAmerica Job ID: 480-44645-1

Lab Sample ID: 480-44645-4

Matrix: Water

Client Sample ID: AW-04

Date Collected: 08/27/13 16:40 Date Received: 08/27/13 18:20

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Di-n-octyl phthalate	ND		4.7	0.44	ug/L		08/28/13 14:50	08/30/13 10:17	1
Dibenz(a,h)anthracene	ND		4.7	0.40	ug/L		08/28/13 14:50	08/30/13 10:17	1
Dibenzofuran	ND		9.4	0.48	ug/L		08/28/13 14:50	08/30/13 10:17	1
Diethyl phthalate	ND		4.7	0.21	ug/L		08/28/13 14:50	08/30/13 10:17	1
Dimethyl phthalate	ND		4.7	0.34	ug/L		08/28/13 14:50	08/30/13 10:17	1
Fluoranthene	ND		4.7	0.38	ug/L		08/28/13 14:50	08/30/13 10:17	1
Fluorene	ND		4.7	0.34	ug/L		08/28/13 14:50	08/30/13 10:17	1
Hexachlorobenzene	ND		4.7	0.48	ug/L		08/28/13 14:50	08/30/13 10:17	1
Hexachlorobutadiene	ND		4.7	0.64	ug/L		08/28/13 14:50	08/30/13 10:17	1
Hexachlorocyclopentadiene	ND		4.7	0.56	ug/L		08/28/13 14:50	08/30/13 10:17	1
Hexachloroethane	ND		4.7	0.56	ug/L		08/28/13 14:50	08/30/13 10:17	1
Indeno[1,2,3-cd]pyrene	ND		4.7	0.44	ug/L		08/28/13 14:50	08/30/13 10:17	1
Isophorone	ND		4.7	0.41	ug/L		08/28/13 14:50	08/30/13 10:17	1
N-Nitrosodi-n-propylamine	ND		4.7	0.51	ug/L		08/28/13 14:50	08/30/13 10:17	1
N-Nitrosodiphenylamine	ND		4.7	0.48	ug/L		08/28/13 14:50	08/30/13 10:17	1
Naphthalene	12		4.7	0.72	ug/L		08/28/13 14:50	08/30/13 10:17	1
Nitrobenzene	ND		4.7	0.27	ug/L		08/28/13 14:50	08/30/13 10:17	1
Pentachlorophenol	ND		9.4	2.1	ug/L		08/28/13 14:50	08/30/13 10:17	1
Phenanthrene	ND		4.7	0.42	ug/L		08/28/13 14:50	08/30/13 10:17	1
Phenol	4.1	J	4.7	0.37	ug/L		08/28/13 14:50	08/30/13 10:17	1
Pyrene	ND		4.7	0.32	ug/L		08/28/13 14:50	08/30/13 10:17	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol	78		39 - 146				08/28/13 14:50	08/30/13 10:17	1
2-Fluorobiphenyl	69		37 - 120				08/28/13 14:50	08/30/13 10:17	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol	78		39 - 146	08/28/13 14:50	08/30/13 10:17	1
2-Fluorobiphenyl	69		37 - 120	08/28/13 14:50	08/30/13 10:17	1
2-Fluorophenol	53		18 - 120	08/28/13 14:50	08/30/13 10:17	1
Nitrobenzene-d5	68		34 - 132	08/28/13 14:50	08/30/13 10:17	1
p-Terphenyl-d14	82		58 - 147	08/28/13 14:50	08/30/13 10:17	1
Phenol-d5	36		11 - 120	08/28/13 14:50	08/30/13 10:17	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	0.064	J	0.20	0.060	mg/L		08/28/13 08:40	08/28/13 18:34	1
Antimony	ND		0.020	0.0068	mg/L		08/28/13 08:40	08/28/13 18:34	1
Arsenic	ND		0.010	0.0056	mg/L		08/28/13 08:40	08/28/13 18:34	1
Barium	0.70		0.0020	0.00070	mg/L		08/28/13 08:40	08/28/13 18:34	1
Beryllium	ND		0.0020	0.00030	mg/L		08/28/13 08:40	08/28/13 18:34	1
Cadmium	ND		0.0010	0.00050	mg/L		08/28/13 08:40	08/28/13 18:34	1
Calcium	374		0.50	0.10	mg/L		08/28/13 08:40	08/28/13 18:34	1
Chromium	0.0023	J	0.0040	0.0010	mg/L		08/28/13 08:40	08/28/13 18:34	1
Cobalt	ND		0.0040	0.00063	mg/L		08/28/13 08:40	08/28/13 18:34	1
Copper	0.0024	J	0.010	0.0016	mg/L		08/28/13 08:40	08/28/13 18:34	1
Iron	14.1	B7_	0.050	0.019	mg/L		08/28/13 08:40	08/28/13 18:34	1
Lead	ND		0.0050	0.0030	mg/L		08/28/13 08:40	08/28/13 18:34	1
Magnesium	64.4		0.20	0.043	mg/L		08/28/13 08:40	08/28/13 18:34	1
Manganese	0.75	В	0.0030	0.00040	mg/L		08/28/13 08:40	08/28/13 18:34	1
Nickel	ND	•	0.010	0.0013	mg/L		08/28/13 08:40	08/28/13 18:34	1
Potassium	46.8	'8∟	0.50	0.10	mg/L		08/28/13 08:40	08/28/13 18:34	1
Selenium	ND		0.015	0.0087	mg/L		08/28/13 08:40	08/28/13 18:34	1
Silver	ND		0.0030	0.0017	mg/L		08/28/13 08:40	08/28/13 18:34	1

TestAmerica Buffalo

4

6

8

9

11

13

14

Client: ARCADIS U.S. Inc

Project/Site: National Fuel - 4th Street Buffalo

TestAmerica Job ID: 480-44645-1

Lab Sample ID: 480-44645-4

Lab Sample ID: 480-44645-5

Matrix: Water

Matrix: Water

Client Sample ID: AW-04

Date Collected: 08/27/13 16:40 Date Received: 08/27/13 18:20

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Sodium	631		1.0	0.32	mg/L		08/28/13 08:40	08/28/13 18:34	1
Thallium	ND		0.020	0.010	mg/L		08/28/13 08:40	08/28/13 18:34	1
Vanadium	0.0057		0.0050	0.0015	mg/L		08/28/13 08:40	08/28/13 18:34	1
Zinc 0.010	0.0023	JB UB	0.010	0.0015	mg/L		08/28/13 08:40	08/28/13 18:34	1
- Method: 7470A - Mercury (CVAA)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.00020	0.00012	mg/L		08/28/13 07:50	08/28/13 12:32	1
General Chemistry									
	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Analyte	rtoouit								

Client Sample ID: FD-01-082713

Date Collected: 08/27/13 00:00

Method: 8260B - Volatile Organic (Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		4.0	3.3	ug/L		<u> </u>	09/05/13 19:54	
1,1,2,2-Tetrachloroethane	ND		4.0	0.84	ug/L			09/05/13 19:54	4
1,1,2-Trichloroethane	ND		4.0	0.92	ug/L			09/05/13 19:54	4
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		4.0	1.2	ug/L			09/05/13 19:54	
1,1-Dichloroethane	ND		4.0	1.5	ug/L			09/05/13 19:54	4
1,1-Dichloroethene	ND		4.0	1.2	ug/L			09/05/13 19:54	4
1,2,4-Trichlorobenzene	ND		4.0	1.6	ug/L			09/05/13 19:54	
1,2-Dibromo-3-Chloropropane	ND	UJ	4.0	1.6	ug/L			09/05/13 19:54	4
1,2-Dibromoethane	ND		4.0	2.9	ug/L			09/05/13 19:54	4
1,2-Dichlorobenzene	ND		4.0	3.2	ug/L			09/05/13 19:54	
1,2-Dichloroethane	ND		4.0	0.84	ug/L			09/05/13 19:54	4
1,2-Dichloropropane	ND		4.0	2.9	ug/L			09/05/13 19:54	4
1,3-Dichlorobenzene	ND		4.0	3.1	ug/L			09/05/13 19:54	
1,4-Dichlorobenzene	ND		4.0	3.4	ug/L			09/05/13 19:54	4
2-Hexanone	ND		20	5.0	ug/L			09/05/13 19:54	4
2-Butanone (MEK)	ND		40	5.3	ug/L			09/05/13 19:54	
4-Methyl-2-pentanone (MIBK)	ND		20	8.4	ug/L			09/05/13 19:54	4
Acetone	ND		40	12	ug/L			09/05/13 19:54	4
Benzene	4.9		4.0	1.6	ug/L			09/05/13 19:54	
Bromodichloromethane	ND		4.0	1.6	ug/L			09/05/13 19:54	4
Bromoform	ND	UJ	4.0	1.0	ug/L			09/05/13 19:54	4
Bromomethane	ND		4.0	2.8	ug/L			09/05/13 19:54	4
Carbon disulfide	ND	UJ	4.0	0.76	ug/L			09/05/13 19:54	4
Carbon tetrachloride	ND		4.0	1.1	ug/L			09/05/13 19:54	4
Chlorobenzene	ND		4.0	3.0	ug/L			09/05/13 19:54	
Dibromochloromethane	ND		4.0	1.3	ug/L			09/05/13 19:54	4
Chloroethane	ND		4.0	1.3	ug/L			09/05/13 19:54	4
Chloroform	ND		4.0	1.4	ug/L			09/05/13 19:54	
Chloromethane	ND		4.0	1.4	ug/L			09/05/13 19:54	4
cis-1,2-Dichloroethene	ND		4.0	3.2	ug/L			09/05/13 19:54	4
cis-1,3-Dichloropropene	ND		4.0	1.4	ug/L			09/05/13 19:54	

TestAmerica Buffalo

Client: ARCADIS U.S. Inc

Project/Site: National Fuel - 4th Street Buffalo

TestAmerica Job ID: 480-44645-1

Lab Sample ID: 480-44645-5

Matrice Matrice

Matrix: Water

Client Sample ID: FD-01-082713

Date Collected: 08/27/13 00:00 Date Received: 08/27/13 18:20

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cyclohexane	ND	UJ	4.0	0.72	ug/L			09/05/13 19:54	4
Dichlorodifluoromethane	ND		4.0	2.7	ug/L			09/05/13 19:54	4
Ethylbenzene	ND		4.0	3.0	ug/L			09/05/13 19:54	4
Isopropylbenzene	ND		4.0	3.2	ug/L			09/05/13 19:54	4
Methyl acetate	ND		4.0	2.0	ug/L			09/05/13 19:54	4
Methyl tert-butyl ether	ND		4.0	0.64	ug/L			09/05/13 19:54	4
Methylcyclohexane	ND		4.0	0.64	ug/L			09/05/13 19:54	4
Methylene Chloride	ND		4.0	1.8	ug/L			09/05/13 19:54	4
Styrene	ND		4.0	2.9	ug/L			09/05/13 19:54	4
Tetrachloroethene	ND		4.0	1.4	ug/L			09/05/13 19:54	4
Toluene	ND		4.0	2.0	ug/L			09/05/13 19:54	4
trans-1,2-Dichloroethene	ND		4.0	3.6	ug/L			09/05/13 19:54	4
trans-1,3-Dichloropropene	ND		4.0	1.5	ug/L			09/05/13 19:54	4
Trichloroethene	ND		4.0	1.8	ug/L			09/05/13 19:54	4
Trichlorofluoromethane	ND		4.0	3.5	ug/L			09/05/13 19:54	4
Vinyl chloride	ND		4.0	3.6	ug/L			09/05/13 19:54	4
Xylenes, Total	ND		8.0	2.6	ug/L			09/05/13 19:54	4
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	99		66 - 137			-		09/05/13 19:54	4
Toluene-d8 (Surr)	108		71 - 126					09/05/13 19:54	4
4-Bromofluorobenzene (Surr)	106		73 - 120					09/05/13 19:54	4

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Biphenyl	1.1	J	4.8	0.63	ug/L		08/28/13 14:50	08/30/13 10:44	1
bis (2-chloroisopropyl) ether	ND		4.8	0.50	ug/L		08/28/13 14:50	08/30/13 10:44	1
2,4,5-Trichlorophenol	ND		4.8	0.46	ug/L		08/28/13 14:50	08/30/13 10:44	1
2,4,6-Trichlorophenol	ND		4.8	0.59	ug/L		08/28/13 14:50	08/30/13 10:44	1
2,4-Dichlorophenol	ND		4.8	0.49	ug/L		08/28/13 14:50	08/30/13 10:44	1
2,4-Dimethylphenol	ND		4.8	0.48	ug/L		08/28/13 14:50	08/30/13 10:44	1
2,4-Dinitrophenol	ND		9.7	2.1	ug/L		08/28/13 14:50	08/30/13 10:44	1
2,4-Dinitrotoluene	ND		4.8	0.43	ug/L		08/28/13 14:50	08/30/13 10:44	1
2,6-Dinitrotoluene	ND	VU /	4.8	0.39	ug/L		08/28/13 14:50	08/30/13 10:44	1
2-Chloronaphthalene	ND		4.8	0.44	ug/L		08/28/13 14:50	08/30/13 10:44	1
2-Chlorophenol	ND		4.8	0.51	ug/L		08/28/13 14:50	08/30/13 10:44	1
2-Methylnaphthalene	ND		4.8	0.58	ug/L		08/28/13 14:50	08/30/13 10:44	1
2-Methylphenol	ND		4.8	0.39	ug/L		08/28/13 14:50	08/30/13 10:44	1
2-Nitroaniline	ND		9.7	0.41	ug/L		08/28/13 14:50	08/30/13 10:44	1
2-Nitrophenol	ND		4.8	0.46	ug/L		08/28/13 14:50	08/30/13 10:44	1
3,3'-Dichlorobenzidine	ND		4.8	0.39	ug/L		08/28/13 14:50	08/30/13 10:44	1
3-Nitroaniline	ND	עט 🖊	9.7	0.46	ug/L		08/28/13 14:50	08/30/13 10:44	1
4,6-Dinitro-2-methylphenol	ND		9.7	2.1	ug/L		08/28/13 14:50	08/30/13 10:44	1
4-Bromophenyl phenyl ether	ND	ע דע	4.8	0.44	ug/L		08/28/13 14:50	08/30/13 10:44	1
4-Chloro-3-methylphenol	ND		4.8	0.44	ug/L		08/28/13 14:50	08/30/13 10:44	1
4-Chloroaniline	ND	V UJ	4.8	0.57	ug/L		08/28/13 14:50	08/30/13 10:44	1
4-Chlorophenyl phenyl ether	ND		4.8	0.34	ug/L		08/28/13 14:50	08/30/13 10:44	1
4-Methylphenol	ND		9.7	0.35	ug/L		08/28/13 14:50	08/30/13 10:44	1
4-Nitroaniline	ND	עט 🕽	9.7	0.24	ug/L		08/28/13 14:50	08/30/13 10:44	1
4-Nitrophenol	ND		9.7	1.5	ug/L		08/28/13 14:50	08/30/13 10:44	1

TestAmerica Buffalo

3

_

6

8

10

12

Client: ARCADIS U.S. Inc

2-Fluorophenol

Nitrobenzene-d5

p-Terphenyl-d14

Phenol-d5

Project/Site: National Fuel - 4th Street Buffalo

Lab Sample ID: 480-44645-5

TestAmerica Job ID: 480-44645-1

Matrix: Water

Client Sample ID: FD-01-082713

Date Collected: 08/27/13 00:00 Date Received: 08/27/13 18:20

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	41		4.8	0.40	ug/L		08/28/13 14:50	08/30/13 10:44	1
Acenaphthylene	0.40	J	4.8	0.37	ug/L		08/28/13 14:50	08/30/13 10:44	1
Acetophenone	ND		4.8	0.52	ug/L		08/28/13 14:50	08/30/13 10:44	1
Anthracene	5.0		4.8	0.27	ug/L		08/28/13 14:50	08/30/13 10:44	1
Atrazine	ND		4.8	0.44	ug/L		08/28/13 14:50	08/30/13 10:44	1
Benzaldehyde	0.41	J	4.8	0.26	ug/L		08/28/13 14:50	08/30/13 10:44	1
Benzo[a]anthracene	0.36	J	4.8	0.35	ug/L		08/28/13 14:50	08/30/13 10:44	1
Benzo[a]pyrene	ND		4.8	0.45	ug/L		08/28/13 14:50	08/30/13 10:44	1
Benzo[b]fluoranthene	ND		4.8	0.33	ug/L		08/28/13 14:50	08/30/13 10:44	1
Benzo[g,h,i]perylene	ND		4.8	0.34	ug/L		08/28/13 14:50	08/30/13 10:44	1
Benzo[k]fluoranthene	ND		4.8	0.71	ug/L		08/28/13 14:50	08/30/13 10:44	1
Bis(2-chloroethoxy)methane	ND		4.8	0.34	ug/L		08/28/13 14:50	08/30/13 10:44	1
Bis(2-chloroethyl)ether	ND		4.8	0.39	ug/L		08/28/13 14:50	08/30/13 10:44	1
Bis(2-ethylhexyl) phthalate	ND		4.8		ug/L		08/28/13 14:50	08/30/13 10:44	1
Butyl benzyl phthalate	ND		4.8	0.41	ug/L		08/28/13 14:50	08/30/13 10:44	1
Caprolactam	ND		4.8	2.1	ug/L		08/28/13 14:50	08/30/13 10:44	1
Carbazole	4.8		4.8	0.29	ug/L		08/28/13 14:50	08/30/13 10:44	1
Chrysene	ND		4.8	0.32	ug/L		08/28/13 14:50	08/30/13 10:44	1
Di-n-butyl phthalate	0.66	J	4.8	0.30	ug/L		08/28/13 14:50	08/30/13 10:44	1
Di-n-octyl phthalate	ND		4.8	0.45	ug/L		08/28/13 14:50	08/30/13 10:44	1
Dibenz(a,h)anthracene	ND		4.8	0.41	ug/L		08/28/13 14:50	08/30/13 10:44	1
Dibenzofuran	16		9.7	0.49	ug/L		08/28/13 14:50	08/30/13 10:44	1
Diethyl phthalate	ND		4.8	0.21	ug/L		08/28/13 14:50	08/30/13 10:44	1
Dimethyl phthalate	ND		4.8	0.35	ug/L		08/28/13 14:50	08/30/13 10:44	1
Fluoranthene	5.9		4.8	0.39	ug/L		08/28/13 14:50	08/30/13 10:44	1
Fluorene	23		4.8	0.35	ug/L		08/28/13 14:50	08/30/13 10:44	1
Hexachlorobenzene	ND		4.8	0.49	ug/L		08/28/13 14:50	08/30/13 10:44	1
Hexachlorobutadiene	ND		4.8	0.66	ug/L		08/28/13 14:50	08/30/13 10:44	1
Hexachlorocyclopentadiene	ND		4.8	0.57	ug/L		08/28/13 14:50	08/30/13 10:44	1
Hexachloroethane	ND		4.8	0.57	ug/L		08/28/13 14:50	08/30/13 10:44	1
Indeno[1,2,3-cd]pyrene	ND		4.8	0.45	ug/L		08/28/13 14:50	08/30/13 10:44	1
Isophorone	ND		4.8				08/28/13 14:50	08/30/13 10:44	1
N-Nitrosodi-n-propylamine	ND		4.8		ug/L		08/28/13 14:50	08/30/13 10:44	1
N-Nitrosodiphenylamine	ND		4.8	0.49	ug/L		08/28/13 14:50	08/30/13 10:44	1
Naphthalene	ND		4.8	0.73	ug/L		08/28/13 14:50	08/30/13 10:44	1
Nitrobenzene	ND		4.8	0.28	ug/L		08/28/13 14:50	08/30/13 10:44	1
Pentachlorophenol	ND		9.7	2.1	ug/L		08/28/13 14:50	08/30/13 10:44	1
Phenanthrene	23	B	4.8		ug/L		08/28/13 14:50	08/30/13 10:44	1
Phenol	ND		4.8		ug/L		08/28/13 14:50	08/30/13 10:44	1
Pyrene	2.6	J	4.8		ug/L		08/28/13 14:50	08/30/13 10:44	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol	100		39 - 146				08/28/13 14:50	08/30/13 10:44	1
2-Fluorobiphenyl	86		37 - 120				08/28/13 14:50	08/30/13 10:44	1

TestAmerica	Buffalo

08/30/13 10:44

08/30/13 10:44

08/30/13 10:44

08/30/13 10:44

08/28/13 14:50

08/28/13 14:50

08/28/13 14:50

08/28/13 14:50

18 - 120

34 - 132

58 - 147

11 - 120

62

88

97

Client Sample Results

Client: ARCADIS U.S. Inc

Project/Site: National Fuel - 4th Street Buffalo

Lab Sample ID: 480-44645-5

TestAmerica Job ID: 480-44645-1

Client Sample ID: FD-01-082713

Date Collected: 08/27/13 00:00 Date Received: 08/27/13 18:20

Matrix: Water

Method: 6010B - Inductively Coupled Plasma - Atomic Emission Spectrometry Result Qualifier MDL Unit D Prepared Dil Fac Analyte Analyzed Aluminum ND 0.20 0.060 mg/L 08/28/13 08:40 08/28/13 18:37 0.020 Antimony ND 0.0068 mg/L 08/28/13 08:40 08/28/13 18:37 Arsenic ND 0.010 0.0056 mg/L 08/28/13 08:40 08/28/13 18:37 0.00070 mg/L 0.0020 08/28/13 08:40 08/28/13 18:37 **Barium** 0.063 Beryllium ND 0.0020 0.00030 mg/L 08/28/13 08:40 08/28/13 18:37 Cadmium 0.0010 0.00050 mg/L 08/28/13 08:40 08/28/13 18:37 ND Calcium 243 0.50 0.10 mg/L 08/28/13 08:40 08/28/13 18:37 Chromium 0.0022 0.0040 0.0010 mg/L 08/28/13 08:40 08/28/13 18:37 0.0040 0.00063 mg/L Cobalt ND 08/28/13 08:40 08/28/13 18:37 0.0016 mg/L Copper 0.0017 0.010 08/28/13 08:40 08/28/13 18:37 Iron 16.1 B7 0.050 0.019 mg/L 08/28/13 08:40 08/28/13 18:37 0.0050 0.0030 mg/L 08/28/13 08:40 08/28/13 18:37 Lead ND Magnesium 13.6 0.20 0.043 mg/L 08/28/13 08:40 08/28/13 18:37 0.0030 0.00040 mg/L 08/28/13 08:40 08/28/13 18:37 Manganese 0.75 B 0.010 0.0013 mg/L Nickel 08/28/13 08:40 08/28/13 18:37 ND 0.50 0.10 mg/L 08/28/13 08:40 08/28/13 18:37 **Potassium** 10.0 0.015 Selenium ND 0.0087 mg/L 08/28/13 08:40 08/28/13 18:37 Silver ND 0.0030 0.0017 mg/L 08/28/13 08:40 08/28/13 18:37 0.32 mg/L 08/28/13 08:40 08/28/13 18:37 Sodium 1.0 337 Thallium ND 0.020 0.010 mg/L 08/28/13 08:40 08/28/13 18:37 Vanadium 0.0028 J 0.0050 0.0015 mg/L 08/28/13 08:40 08/28/13 18:37 UB 0.010 0.0015 mg/L 08/28/13 08:40 08/28/13 18:37 Zinc 0.010 0.0016

Method: 7470A - Mercury (CVAA) Analyte Mercury	Result ND	Qualifier	RL 0.00020	MDL 0.00012		<u>D</u>	Prepared 08/28/13 07:50	Analyzed 08/28/13 12:34	Dil Fac
General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cyanide, Total	0.10		0.010	0.0050	mg/L		08/29/13 08:58	08/30/13 15:42	1

Client Sample ID: TRIP BLANK

Date Collected: 08/27/13 00:00

Date Received: 08/27/13 18:20

ab	Samp	ole ID:	480-4	4645-	5

Matrix: Water

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND -	1.0	0.82	ug/L			09/05/13 18:07	1
1,1,2,2-Tetrachloroethane	ND	1.0	0.21	ug/L			09/05/13 18:07	1
1,1,2-Trichloroethane	ND	1.0	0.23	ug/L			09/05/13 18:07	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	1.0	0.31	ug/L			09/05/13 18:07	1
1,1-Dichloroethane	ND	1.0	0.38	ug/L			09/05/13 18:07	1
1,1-Dichloroethene	ND	1.0	0.29	ug/L			09/05/13 18:07	1
1,2,4-Trichlorobenzene	ND	1.0	0.41	ug/L			09/05/13 18:07	1
1,2-Dibromo-3-Chloropropane	ND UJ	1.0	0.39	ug/L			09/05/13 18:07	1
1,2-Dibromoethane	ND	1.0	0.73	ug/L			09/05/13 18:07	1
1,2-Dichlorobenzene	ND	1.0	0.79	ug/L			09/05/13 18:07	1
1,2-Dichloroethane	ND	1.0	0.21	ug/L			09/05/13 18:07	1
1,2-Dichloropropane	ND	1.0	0.72	ug/L			09/05/13 18:07	1
1,3-Dichlorobenzene	ND	1.0	0.78	ug/L			09/05/13 18:07	1

TestAmerica Buffalo

6

Client Sample Results

Client: ARCADIS U.S. Inc

Project/Site: National Fuel - 4th Street Buffalo

TestAmerica Job ID: 480-44645-1

Lab Sample ID: 480-44645-6

Matrix: Water

Client Sample ID: TRIP BLANK

Date Collected: 08/27/13 00:00 Date Received: 08/27/13 18:20

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dichlorobenzene	ND		1.0	0.84	ug/L			09/05/13 18:07	
2-Hexanone	ND		5.0	1.2	ug/L			09/05/13 18:07	•
2-Butanone (MEK)	ND		10	1.3	ug/L			09/05/13 18:07	1
4-Methyl-2-pentanone (MIBK)	ND		5.0	2.1	ug/L			09/05/13 18:07	•
Acetone	ND		10	3.0	ug/L			09/05/13 18:07	1
Benzene	ND		1.0	0.41	ug/L			09/05/13 18:07	1
Bromodichloromethane	ND		1.0	0.39	ug/L			09/05/13 18:07	1
Bromoform	ND	UJ	1.0	0.26	ug/L			09/05/13 18:07	1
Bromomethane	ND		1.0	0.69	ug/L			09/05/13 18:07	1
Carbon disulfide	ND	UJ	1.0	0.19	ug/L			09/05/13 18:07	1
Carbon tetrachloride	ND		1.0	0.27	ug/L			09/05/13 18:07	1
Chlorobenzene	ND		1.0	0.75	ug/L			09/05/13 18:07	1
Dibromochloromethane	ND		1.0	0.32	ug/L			09/05/13 18:07	1
Chloroethane	ND		1.0	0.32	ug/L			09/05/13 18:07	1
Chloroform	ND		1.0	0.34	ug/L			09/05/13 18:07	1
Chloromethane	ND		1.0	0.35	ug/L			09/05/13 18:07	1
cis-1,2-Dichloroethene	ND		1.0	0.81	ug/L			09/05/13 18:07	1
cis-1,3-Dichloropropene	ND		1.0	0.36	ug/L			09/05/13 18:07	1
Cyclohexane	ND	UJ	1.0	0.18	ug/L			09/05/13 18:07	1
Dichlorodifluoromethane	ND		1.0	0.68	ug/L			09/05/13 18:07	1
Ethylbenzene	ND		1.0	0.74	ug/L			09/05/13 18:07	1
Isopropylbenzene	ND		1.0	0.79	ug/L			09/05/13 18:07	1
Methyl acetate	ND		1.0	0.50	ug/L			09/05/13 18:07	1
Methyl tert-butyl ether	ND		1.0	0.16	ug/L			09/05/13 18:07	1
Methylcyclohexane	ND		1.0	0.16	ug/L			09/05/13 18:07	1
Methylene Chloride	ND		1.0	0.44	ug/L			09/05/13 18:07	1
Styrene	ND		1.0	0.73	ug/L			09/05/13 18:07	1
Tetrachloroethene	ND		1.0	0.36	ug/L			09/05/13 18:07	1
Toluene	ND		1.0	0.51	ug/L			09/05/13 18:07	1
trans-1,2-Dichloroethene	ND		1.0	0.90	ug/L			09/05/13 18:07	1
trans-1,3-Dichloropropene	ND		1.0	0.37	ug/L			09/05/13 18:07	1
Trichloroethene	ND		1.0	0.46	ug/L			09/05/13 18:07	1
Trichlorofluoromethane	ND		1.0	0.88	ug/L			09/05/13 18:07	1
Vinyl chloride	ND		1.0	0.90	ug/L			09/05/13 18:07	1
Xylenes, Total	ND		2.0	0.66	ug/L			09/05/13 18:07	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	97		66 - 137			_		09/05/13 18:07	1
Toluene-d8 (Surr)	110		71 - 126					09/05/13 18:07	1
4-Bromofluorobenzene (Surr)	106		73 - 120					09/05/13 18:07	1

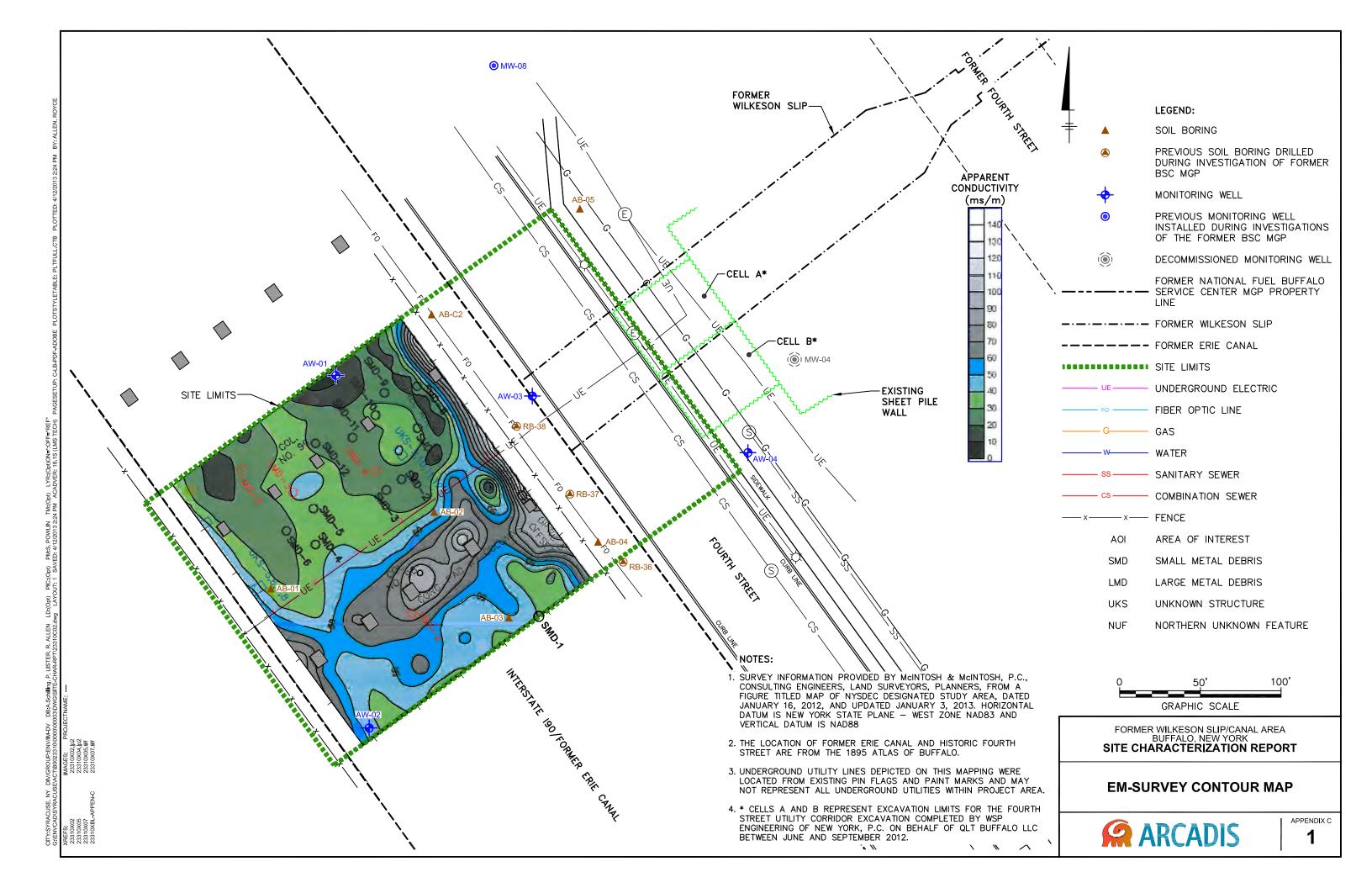
3

4

6

8

10


12

4 4

Appendix C

Results of Geophysical Study

Appendix D

Groundwater Sampling Logs

Site: Wilkeson Slip					Natio	nal Fue	l Buffalo	, NY	Ev	ent: Aug	ust 2012	GW Sa	mpling
Sampling Personnel		holas (Kla					Well ID: A	W-01					
Client / Job Number		Fuel/ B00	23310.00	000				17/1		(32)			
Weather: Sunay	ban						Time In:	1155	Time Out:	1320		_	2
Well Information	_												
Depth to Water:	9		(feet T	IC)		1	Vell Type:	(F	ushmound	Stick-l	In		
Total Depth:		74	(feet T	IC)		1	Vell Material		tainless Steel	(PVS)	Эр		
Length of Water Colu	,	74	(feet)	_		-	Vell Locked:		(Yes		No		
Volume of Water in W Screen Interval:	eli:	414)	(gal)	-		-	Measuring Po	oint Marked			No		
Depth to pump Intake			(feet)	(C)			Vell Diamete		Øds Q̂,	Other:	No		
Purging Information													
	Baile	,	Perist	altic	Bladdor		1250 800			Conver	sion Fact	tors	
Purging Method:			\sim	_	Bladder	7	Other:		gal / ft.	1" ID	2" ID	4" ID	6" ID
Tubing/Bailer Material:	St. St		Polyet	thylene	Teflon		Other:		of water	0.041	0.163	0,653	1.469
Sampling Method: (V * CBaile	5	Perist	altic	Bladder		Other:		1 gal = 3	3.785 L =37	85 ml = 0,	1337 cubic	feet
Duration of Pumping:	75	(mir	1)							Uni	t Stability		
Average Pumping Rate:	200	(ml/mir	1)	Wate	er-Quality M	eter Type:	YSI/Lamo	tte 2020	рН	DO	Cond.	OF	₹P
Total Volume Removed:	32	(ga	1)		Did w	ell go dry:	Yes	(8)	±0.1	± 10%	± 3.0%	6 ± 10	mV
Parameter:	1200	1205	1215	125	1200	1235	1240	1245	1250	10	11	12	
Volume Purged (gal)					11.3			5,0					
Rate (mL/min)	200	200	کھا	200	200	200	200	des	5				
Depth to Water (ft.)	9.38	237	9.37	237	9.37	9.37	9.37	9.37	A				
оН	6.80	676	6.H	6.70	670	6.70	6,70	6.70	M				
Temp. (C)	164	16.6	16.5	16.6	165	165	16,5	16,5	1			-	
Conductivity (mS/cm)	4.20	3.95	3.86	3.87	3.88	389	3.89	3.40	2				
Dissolved Oxygen (mg/l)	0.44	0 16	0-13	010	0.10	6.0	0.09		E				
ORP (mV)	7939	7034	-113.4	-119,2	-121.1	7/11.7	-1237	0.09					
Turbidity (NTU)	4.08	124	125	6.48	324	279	267	259					
Notes:								32					
ampling Information						1 10	Prot	olems / Ob	servations				
Analyses #		oratory		Initial	Purge:	((0					
TCL VOC 3	-	lo-Test Am			r urgo.	Clear,	dalus x	e addr	76				
TCL SVOC 2 TAL Metals 1	-	lo-Test Am lo-Test Am	2/42/4-				5	lant					
Total Cn 1		lo-Test Am		Final	Purge:	Sca.	dolus, s	7					
Free Cn		lo-Test Am				Vina							
Sample ID: AW-OI	7 7 7 7 7	ole Time: \	2000	Notes									
MS/MSD: Yes	(b)		4.7-	Motes	•								
Duplicate: (es	No												1
Duplicate ID DUP-08)	HL Dup.	Time: 11	50										
Chain of Custody Signed By:	100												

Site: Wilkeson Slip					Nation		Buffalo,		10 B _	Event: Aug	gust 2012	GW Sa	mpling
Sampling Personnel:	Nich	olas (Klau	s) Beyrle			v	vell ID: Ac	V-02		,			
Client / Job Number:	Nat I	Fuel/ B002		0			ate:	8/22/	/2				
Weather: Simy	750	i e					ime In: /a	67	Time Out	1845			-
Well Information													
Depth to Water:	9.0	19	(feet TIC			- 10	/ell Type:	-		\	Ya.		
Total Depth:	20.6	13	(feet TIC	C)		-			ushmount	Stick-	.Up		
Length of Water Colum	nn: //	14	(feet)			-	/ell Material:	51	ainless Stee	(V)			
Volume of Water in We	ell: /	.81	(gal)			_	/ell Locked:		©	\	No		
Screen Interval:			(feet)			_ M	easuring Poi	nt Marked:	Yes		No		
Depth to pump Intake:			(feet TIC	()		·	ell Diameter:	1"	<u> </u>	Other	1		
ourging Information													
Purging Method:	Bailer		Perista	ltio	Bladder		Other:		gal /	4# ID	2" ID	4" ID	6" ID
Fubing/Bailer Material:	St. Ste	eel	Polyeth	nylene	Teflon		Other:		of wa		0.163	0.653	1.469
Sampling Method:	Bailer)	Perista	ltic	Bladder		Other:		1 ga	I = 3.785 L =3	3785 ml = 0	.1337 cubi	c feet
Ouration of Pumping:	90	(min)							Un	it Stabilit	y	
Average Pumping Rate:	280	(ml/min))	Water	-Quality Me	eter Type:	YSI/Lamott	te 2020 —	рН		Cond	1	RP
Fatal Values Danson		(P			Box (±0.	1 ± 10%	± 3.0	% ± 1	0 mV
otal Volume Removed:	30	(gal))		Dia W	ell go dry:	Yes	(No)					
	1	2	3	4	5	6	4	8	9	10	11	12	13
Parameter:	1015	1093	193	1030	1038	1040	1645	1050	1055	1100			
olume Purged (gal)	1//2		144	717		716	244	1774	3,6			0 (30-
ate (mL/min)	140	148	16	140	140	140	140	140	140	7	a i may	Rute	=780
epth to Water (ft.)	9,43	9.45	9.45	9,45	4,45	9.46	9,46	9.46	9,47	A			
1	6.47	644	6.41	6.43	6.44	6.45	6.45	6.44	6.46	A			
emp. (C)	14.8	14.8	14.7	146	146	14.5	14.6	14.4	14.6				
onductivity (mS/cm)	37,00	37.05	37.10	7339	3+18	37,21	37.07	37.08	37.09	5 15			
ssolved Oxygen (mg/l)	0.61	2,34	0.19	0.15	0.13	0.11	0.11	0.12	0.1)	11			
RP (mV)	-125.1	-1544	-135.4	-1384	-159,2	-1382	-1184	-127.6	-126.7				
urbidity (NTU) otes:	9,71	161	15.3	11.19	9.75	6.80	6.37	6.12	607				
ampling Informatio	n		1		-		Prob	lems / Ob	servatio	ns			
Analyses #		oratory		2 2 2	5.00	c(
CL VOC 3	Buffa	lo-Test Am	erica	Initial	Purge:	Clear, (dolly i	odor					
CL SVOC 2	Buffa	lo-Test Am	erica				1						
AL Metals 1	Buffa	lo-Test Am	erica	. دادا پیدا									
otal Cn 1	/ Buffa	lo-Test Am	erica	Final	Purge:	Som							
ree Cn	Buffa	lo-Test Am	erica										
ample ID: AW 0	17	ple Time:	100	Notes	:								
Yes	No No												

Duplicate:

Duplicate ID Chain of Custody Signed By: Dup. Time:

Sire				GROUND	WATER S	AMPLING	LOG					Eve
Sampling Personnel:	AOA!	n L	VELLE / STEVE	DICKINSON		Weil	io: AW-	03		ate of		
Client / Job Number:	N	ation	al Fuel/B0023310	.0000		Date:	12/28/					
Weather: 25% C	NER	CAS	T, LIGHT SN	سه		Time	In: 1350	Tîm	e Out:	525	500	American Pro
Well Information							A CONTRACT THE		1.1	- with	0079	Metters.
Depth to Water:		(feet	6.75	(from M	P)	Well Type:	MIRI II	Flusl	hmount	×	Stick-U	р
Total Depth:		(feet	18,23	(from M	P)	Well Materia	d:	Stainless	s Steel		PV	c K
Length of Water Colum	n:	(feet				Well Locked	:		Yes	ĹΧΙ.	No	· 🗆
Volume of Water in We	11:	(gai)	1.8		- 9	Measuring P	oint Marked:	Atr.	Yes	įΣI.	N	。
Intake depth for tubing:		(feet	14.	=- 10	- 6	Well Dlamet	ər:	1"	(2") Othe	ər:	4
Purging Information	n								Convo	solon Foot		
Purging Method:		Baile	er Perist	altic 🗶 N	Monsoon	Other:		gal /ft	1° ID	rsion Fact	4° ID	6" ID
Tubing/Bailer Material:		Stee			Teflon	Other:		gal / ft. of water	0.041	0.163	0.653	1.469
Sampling Method:		Baile			4	Other:		1 gal = 3	3.785 L =3	785 ml = 0.1	1337 cub	ic feet
	12 .	:10	JE WES	IIIC X	wonsoon	Other.						
Pump Start Time:		58			UA - A A - A - T	- 0	1/4 4	30	DO /	t Stability Cond.	_	
Pump Stop Time:		143				Ece PENTAL		рН	Turb	/Temp		RP
Total Volume Removed	l: ८,.	ې (ga	1)		Did well go dry:	Yes 🗌	No 🗷	∀ 0.1	∀ 10%	∀ 3.0%	∀ 1	0 mV
Parameter:	o S	1	2	3	4	5	6	7	_	8	g	
Time	14	100	1405	1410	14.5	1420	1425	1430			h	PLA I
Volume Purged (Gal)		0	0.35	0.85	1.20	1.60	1.95	2.30	£ 1,			
Rate (mL/min)	3	w	300	3.20	320	320	320	320	1474			
Depth to Water (ft.)	6	. 75	6.76	6.	6.76	6.76	6.76	6.76	-	- Firm		
рН	7	50	6-79	6.51	6-81	6.81	6.80	6.79	I-B-		1.00	
Temp. (C)	il	.2	12.3	13 1	13-1	13.2	13.1	13.2				
Conductivity (mS/cm)		3.39	3.50	342	3,41	3.39	3.39	3.38	7			100
Dissolved Oxygen (mg/L)	3	.42	0.69	1.34	0-33	0.25	0.28	0.26			g E W II	
ORP (mV)	-0	2-6	-49.2	-(D.7	-63.60	-65-1	-65.4	-65.2				
Turbidity (NTU)	4	8.8	634AU	11.28	9. 73	9.31	6.52	5.98			180	lin i
Notes:												
Sampling Informati		1		3		Problem	ns / Obser		11.48			
Analyses VOCs-Method 8260B	#	n	Laboratory Accutest Labs - MA					×	16			
VOCS-IVIETIOG 6200B	<u> </u>	+-	Accutest Labs - IVIA					,	980			
10	1		Ball (E)	8				-11	8368			
Color: GRAY												
Odor: SUGHT												
Appearance: Tol	FB: O	- 50	14HT	Se il								
Sample ID: AW-03			imple Time: 1443									
MS/MSD: Yes]	No) X	7 3 9 V								3
Duplicate: Yes		No										
Duplicate ID Dup		Du	p. Time: 1445									

System ON/OFF:

Chain of Custody Signed By:

_	:A	_

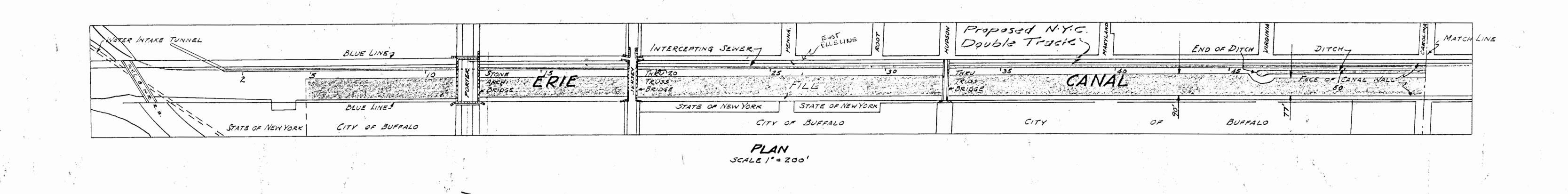
Fven

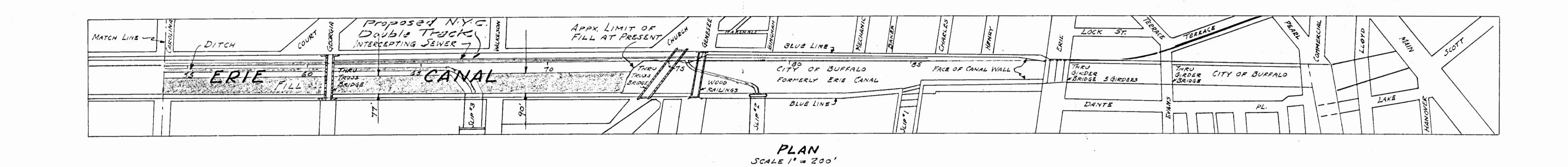
Depth to Water (feet) 2.1. + 10 (free MAP) (fre	a lighter was	A 14.51	-1		JWAIER S	4	79	i I	_ 5.1			
Weal Information												
Weal Information	Weather: 254 6								Out			3 1
Well Information	Wednesday Page 1		TAV = L			7				1530)	
Total Depth: Carety of Water Column: C	The second secon	- V-1-0-1		ers v		Well Type:	1969				- 18	lp 🗆
Well Locked: Ves No No No No No No No N				72 V., 1		Well Materia	al:	Stainless	Steel		PV	c Da
Converted to Variant Country (Institute 1.7.3 Measuring Point Marked: Ves No D				(from	MP)	Well I ocked	l:	Otaliness				
		t ()		3	7	-					- Carried I	
Purging Information								1"				o <u>J2</u> 2
Purpling Method: Baller Peristalite Monsoon Other: Tubing/Baller Material: Steel Polyethylene Teffon Other: Gall/fit 0.160 0.653 1.489 1.480 0.653 1.489 0.041 0.163 0.653 1.489 0.041 0.163 0.653 1.489 0.041 0.163 0.653 1.489 0.041 0.163 0.653 1.489 0.041 0.163 0.653 1.489 0.041 0.163 0.653 1.489 0.041 0.163 0.653 1.489 0.041 0.163 0.053 1.489 0.041 0					_	Well Blattlet			25		V 33	THE STATE OF
Tubing/Baller Material: Steel Polyethylene Tellon Other 1 all 0.183 0.853 1.468 Sampking Method: Baller D VDC Peristablic Monsoon Other 1 gal = 3.785 L = 3795 ml = 0.1337 o.bio feet 1 gal = 3.785 L = 3.785 ml = 0.1337 o.bio feet 1 gal = 3.785 L = 3.785 ml = 0.1337 o.bio feet 1 gal = 3.785 L = 3.785 ml = 0.1337 o.bio feet 1 gal = 3.785 L = 3.785 ml = 0.1337 o.bio feet 1 gal = 3.785 L = 3.785 ml = 0.1337 o.bio feet 1 gal = 3.785 L = 3.785 ml = 0.1337 o.bio feet 1 gal = 3.785 L = 3.785 ml = 0.1337 o.bio feet 1 gal = 3.785 L = 3.785 ml = 0.1337 o.bio feet 1 gal = 3.785 L = 3.785 ml = 0.1337 o.bio feet 1 gal = 3.785 L = 3.785 ml = 0.1337 o.bio feet 1 gal = 3.785 L = 3.785 ml = 0.1337 o.bio feet 1 gal = 3.785 L = 3.785 ml = 0.1337 o.bio feet 1 gal = 3.785 L = 3.785 ml = 0.1337 o.bio feet 1 gal = 3.785 L = 3.785 ml = 0.1337 o.bio feet 1 gal = 3.785 L = 3.785 ml = 0.1337 o.bio feet 1 gal = 3.785 L = 3.785 ml = 0.1337 o.bio feet 1 gal = 3.785 L = 3.785 ml = 0.1337 o.bi	7.0		☐ Peris	taltic 🔀	Monsoon	Other:		gal / ft			+	6" ID
Sampling Method: Baller	Tubing/Bailer Material:	Steel	Delivet	hylene 🟋	Teflon	Other:			0.041	0.163	0.653	1.469
Pump Start Time:	Sampling Method:	Bailer	_	_	Massass	Other:		1 gal = 3.	785 L =3	785 ml = 0	.1337 cub	ic feet
Pump Stop Time: 43.7 Water-Quality Meter Type: Etc Eurnal, YS	Pump Start Time:								Uni	t Stabilin	<u> </u>	ra_1;
Total Volume Barrayact: (gal)				Water-Qu	ality Meter Type:	ECO RENTAL	451	рН	DO/	Cond.		ORP
Parameter:					7.4		111111111111111111111111111111111111111					10 mV
Volume Purged (Gal) Rate (mL/mln) Stort/n			2	3	4	5	6	7		8	7 .	9
Volume Purged (Gal) Rate (mL/min) \$50n / n	Time	1357	1402	1407	1412	1417	1422	1427	14	32		1000
Depth to Water (ft.)	Volume Purged (Gal)								T I			
PH	Rate (mL/min)	250m1/nim						>			i lip	راجادت
Temp. (C)	Depth to Water (ft.)		_	- 3			- 3				3	6
Conductivity (mS/cm)	рН	6.89	6.90	6.88	6.88	6.87	6.86	6.86	611	89		
Dissolved Oxygen (mg/L)	Temp. (C)	13.3	12.9	12.9	13.0	13.1	13.0	12.2	12.	0		105W
Color: Sl-qk+ Bewn Color:		6.53	6.39	6.30	6,23	6.14	6.07	6.12	6.	10		
Turbidity (NTU) 3.83		0.03	0.03	0,03	0.03	0,03	0.03	0.03	0.	03	W	
Notes: Sampling Information	ORP (mV)	85.1	-92.9	-98.2	-111.4	-121.0	-130.0	-132.4	-/3	3.5		147
Sampling Information Analyses # n Laboratory VOCs-Method 8260B 1 3 Asserted Labs - MA TA - BUF Color: Slight Belwn Odor: Slight Odol / Musty - 1/25 Appearance: Sample ID: Avd - Odd Sample Time: 15 16 Ms/MSD: Yes No Mas/MSD Duplicate: Yes No No Ms/MSD Chain of Custody Signed By:	Turbidity (NTU)	3.83	4.06	5.13	5.03	4.25	3.30	2,70	2.	60	1.7	97.5
Analyses # n Laboratory VOCs-Method 8260B 1 3 Asewest Labs - MA					e					****		
Color: Slight Berwin Odor: Slight Odor / musty - 1/25 Appearance: Sample ID: AW-OH Sample Time: 15 10 MS/MSD: Yes No ms/ms/ Duplicate: Yes No ms/ms/ Duplicate ID Dup. Time: Chain of Custody Signed By:			aboratory			Proble	ms / Obser	<u>rations</u>	X ,1	79		
Color: Slight Berwin Odor: Slight Odor / musty - 1/25 Appearance: Sample ID: AW-OH Sample Time: 15 10 MS/MSD: Yes No ms/ms/ Duplicate: Yes No ms/ms/ Duplicate ID Dup. Time: Chain of Custody Signed By:		 		* TA	BUF				647	4		
Odor: Sight odus / musty - 1/25 Appearance: Sample ID: AW-OH Sample Time: 15 10 MS/MSD: Yes D No D MS/MSD Duplicate: Yes D No D Duplicate ID Dup. Time: Chain of Custody Signed By:								-	1726	4		
Appearance: Sample ID: Awl-OH Sample Time: 5 0 MS/MSD: Yes No MS/MSD Duplicate: Yes No No No No No No No N		uw.	N. I									
Sample ID: AW-OH Sample Time: 15 16 MS/MSD: Yes Dr No Dr No Dr Duplicate: Yes D Dup. Time: Chain of Custody Signed By:		odue / m	lusty - 1/2:			2						
MS/MSD: Yes D No D YNG/MSD Duplicate: Yes D No D . Duplicate ID Dup. Time: Chain of Custody Signed By:		11/2/	130 4	6								
Duplicate: Yes No Dup. Time: Chain of Custody Signed By:			e Time: 15	10								
Duplicate ID Dup. Time: Chain of Custody Signed By:	MS/MSD: Yes	₹ No I] ms	/MSD								
Chain of Custody Signed By:	Duplicate: Yes	No	X		4			· .				
		· · · · · · · · · · · · · · · · · · ·	ime:		Y Las							
	Chain of Custody Signed	Ву:	= 4	No.								Sea

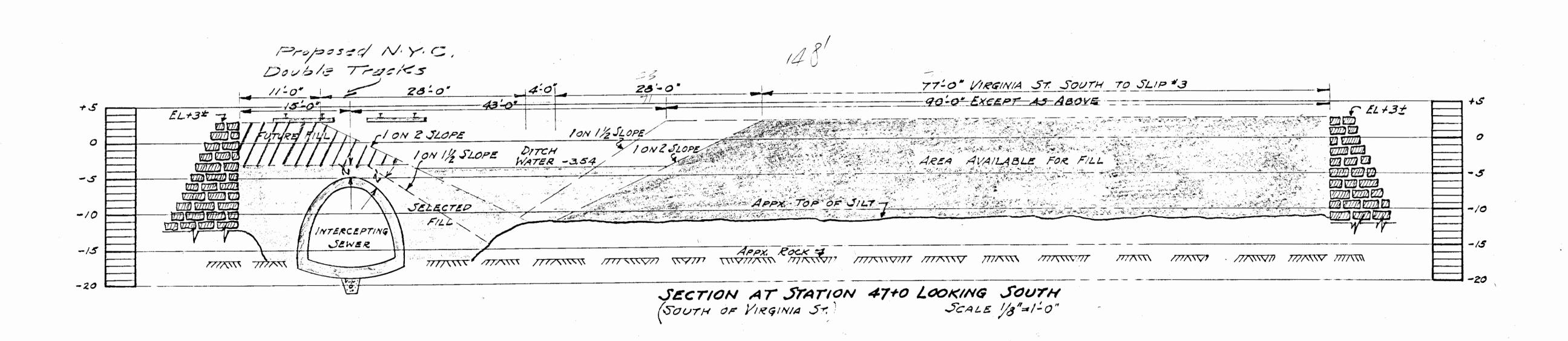
Site: Wilkeson Slip				GROU	NDWAT Nation		AMPL el Buffa		~~~~	ì		vent: Aug	uet 201	3 GW	Samo	lina
·					Nation	iai i u		110,	14 /			vein. Aug	just 2011	3 GW	Samp	uig
Sampling Personnel Client / Job Number:		Brayer, Ar Fuel/ B00	~			********	Well ID:				W-01 27/13					
Weather:		crast.					Date: Time In:	18	119		me Out:	1315	0			
VA/- II I - f At																
Well Information	8.38	•												_		
Depth to Water:	99.4		(feet TIC				Well Type	:	(Flushn	noup	Stick-	Up			
Total Depth: Length of Water Colur			(feet TIC	<u>-)</u>			Well Mate	rial:		Stainle	ss Steel	PVO		_		
Volume of Water in W		3/ 45	(feet) (gal)	······		-	Well Lock	ed:			(Ye)		No	-		
Screen Interval:	10		(feet)	···-			Measuring	Poin	it Marked:	:	(Yes)		No	-		
Depth to pump Intake:			(feet TIC	C)			Well Diam	eter:	1	"	6	Other		-		
Purging Information														•		
	Pailor		Pariata	Itio	Pladdor							Conve	rsion Fa	ctors		
Purging Method:	Bailer		Perista		Bladder	***	Other:			_	gal / ft		2" ID	4" ID	6" 10)
Tubing/Bailer Material:	St. St	eel	Polyeth	ylene	Teflon		Other:				of wate	0.041	0.163	0.653	1.46	9
Sampling Method:	Bailer)	Perista	ltic	Bladder		Other:			_	1 gal =	3.785 L =3	785 ml ≃ 0).1337 c	ubic feet	1
Duration of Pumping:	iod	(min)							_	ſ <u></u>	Uni	it Stabilit			
Average Pumping Rate:	370	(ml/min)	Water	-Quality Met	ter Type	. 60			_	рН	DO	Con	-	ORP	\dashv
Total Volume Removed:			,				(13)rLa	motte			±0.1	± 10%	± 3.0)% ±	= 10 m\	$\overline{}$
Total Volume Removed.	U,3 7W	((gal	, Т <u>з</u>	4	Did we	ll go dry:	: Yes	7	<i></i>	8	9	10	11		12	13
Parameter:		10	1v	3v			Ĭ	•		Ŭ		10			-	10
Volume Purged (gal)	0	2.75	5.00	7.40											+	
Rate (mL/min) 37	+	370	370	370	-					-				ļ	+	
Depth to Water (ft.)	8.39	8.41	8.41	8.41	-					+					+	
pH	6.93	6.63	163	6.63				_							+	
Temp. (C)	15.5	15.0	15.1	15.1			_			+-					+	
Conductivity (mS/cm)	4.37	4.8	4.68	T .											+	
Dissolved Oxygen (mg/l)	,91	+	15	4.06											_	
ORP (mV)		,75		.05												
	-185	-107.1	1	-170.7											_	
Turbidity (NTU) Notes:	170	143	1.13	1.45												
time	12.19	(2:53	174	1:40												
ampling Informatio	n				I		<u>P</u>	roble	ems / C	bser	vations					
Analyses #		oratory		lniti-!	Durac:			_	**	1	-	~ ,		, .		
TCL VOC 3	Buffa	lo-Test Ame	erica	Initial	Purge:		-		am f	//	//	me.	' /.	٠. حک	90	
TCL SVOC 2		lo-Test Ame							,							
TAL Metals 1	Buffai	lo-Test Ame	erica	Fi												
Total Cn 1		lo-Test Ame		Final F	rurge:											
FREE CH TOSTICK 1		lo-Test Ame				_	£									
Sample ID: Awo		le Time: /	3.50	Notes:	M	5/,	451	<u>ک</u>								
MS/MSD:																
Jupilcate.		Timo:			set.	Oku	n 1	ke	On	leve	والمرا	20	سيرينسو م	In.	a fe	
	ъup.	nine:		•	1/2	رسس	/		1		م م ر				, -	-
					100	~ <i>/</i>	- C. J.	CO A	6Ser	heer	,	_	_	_	. س	ندر ا
MS/MSD: Duplicate: Puplicate ID Chain of Custody Signed By:	No		3. 70	-	pet. No Soi	poku. Sh	n In	ke Or	Oo bsen on	ler ins	or lessa	n pr) 19se 0 10s	ln.	z y	le !/

Site: Wilkeson Silp				GROU	TAWDV		AMPLI I Buffa			Ev	anti Aua		2 (14)	3 a a a a 1 i a	
Site. Wilkeson Slip					Nation	ai rue	i bulla	10, 1	I V 7		ent: Aug	ust 201	3 GW S	sampiir	ıg
Sampling Personnel:			drew Flen				Well ID:			AW-02					
Client / Job Number:			23310.000	0			Date:		102	8/27/13	pa	1 1	1:50		
Weather:		reast,	10%				Time In:	10	233	Time Out:	(7	<u> </u>	1/50	_	
Well Information															
Depth to Water:	8.40		(feet TIC	<u>) </u>			Vell Type:			ushmount	Chinte				
Total Depth:	<u> 30,4</u>	3	(feet TIC)			Vell Materi	al:		ainless Steel	Stick-l	др	-		
Length of Water Colum		<u>53 </u>	(feet)			******					evo		-		
Volume of Water in We		88	(gal)	<u> </u>		_	Vell Locked			Yes		No			
Screen Interval:	lo		(feet)				/leasuring	Point	Marked:	Yes		No			
Depth to pump Intake:	_		(feet TIC	:)			Vell Diame	ter:	1"	(2")	Other:	<u> </u>	-		
Purging Information												*			
Purging Method:	Bailer		Peristal	tić	Bladder		Other:				Convei	sion Fa	ctors	6" ID	7
	St. Ste	el	Polyeth	vlene	Teflon					gal / ft. of water	0.041	 	 	 	\dashv
Tubing/Bailer Material:		7%		-			Other:			ļ		0.163	0.653	1.469	-
Sampling Method:	Bailer	ノ	Peristal	tic	Bladder		Other:			1 gal = 3	3.785 L =37	85 ml = (J.1337 cul	oic feet	_
Duration of Pumping: 7) his	(min)									Uni	t Stabilit	.y		7
Average Pumping Rate:	415	(ml/min)		Water	-Quality Met	er Type:	(S) Lam	otto	2020	pН	DO	Con	d.	ORP	1
	2							ione .		±0.1	± 10%	± 3.0)% ±	10 mV]
Total Volume Removed:	8	(gal)			Dia wei	Il go dry:	Yes		%						
Dava-mataw.	intral		36	3v ⁴	4v ⁵	6		7	8	9	10	11	1:	2	13
Parameter: Volume Purged (gal)	0	1.88	3.9					\dashv				*******			
Rate (mL/min)				5.75	7.65			+				········			
	435	435 95L	435	425	425			_							
Depth to Water (ft.)		10.50	957	9.45	9.40			_							
pH	6.71	6.74	6.79	6.31	6.81			_							
Temp. (C)	14.6	12.6	124	17.2	135			_							
Conductivity (mS/cm) 33	1820	373	3.17	3.42	4.86										
Dissolved Oxygen (mg/l)	,61	,10	.31	.08	.08									ļ	
ORP (mV)	-1330	-1813	-1935	-2001	-2047										
Turbidity (NTU)	6.1	15.1	7.15	4.46	2.33										
Notes: Time	Uning	Bring	39min	53~7											
Sampling Information	n		······································				Pro	ble	ms / Ob	servations	L				
Analyses #	Labo	ratory		for the contract	D		سے	6							
TCL VOC 3	Buffalo	o-Test Ame	rica	Initial	Purge:	-	>aniji t	7	ine	11:33	_				
TCL SVOC 2	Buffalo	o-Test Ame	rica												
TAL Metals 1	Buffalo	o-Test Ame	rica												
Total Cn 1	Buffalo	-Test Ame	rica	Final F	urge:										
Free On Total Cn 1		o-Test Ame					,								
Sample ID: AW-02		e Time://	<u>.33</u>	Notes:	(-		(ر د د رسم	10 -		/			
MS/MSD: Yes	NO.				ب	710	n	~	0/5	tur	00	lor	Fi	TO M	,
Duplicate:	(No)		-		F	DUR	30 1	4	care.	Pu	16.	1.	ا مرید	ر ا بر	_
Duplicate ID	Dup. T	ime:				5/		. و		. / /		w	A WEN	- 4	1
Chain of Custody Signed By:					~	rac	K.	ve	75 h	fur pu					

Site: Wilkeson Silp					Nation	al Fuel	Buffalo,	NY		Ev	ent: Aug	just 2013	GW Sa	ampling	
Sampling Personnel:	Jeff I	Brayer, A	ndrew Fler	ming		v	/eli ID:		AW-	-03				•	
Client / Job Number:			23310.000	00		C	ate:		8/27	/13					
Weather:	Ove	TC637 .	703			T	ime In:	<u>.90</u>	Time	e Out:	15:15			_	
Well Information															
Depth to Water:	6.55		(feet TIC	<u> </u>		 W	ell Type:	بسر	lushmo	<u></u>	0.1.1				
Total Depth:	18.30		(feet TIC	<u> </u>			ell Material:		Stainless		Stick-))			
Length of Water Colum		70	(feet)	······			ell Locked:				PVC				
Volume of Water in We		91	(gal)					-1.54. 1. /	~~~~~	<u>(%)</u>		No			
Screen Interval:	10	<u>-</u>	(feet)			*****	easuring Poir					No			
Depth to pump Intake:			(feet TIC))			ell Diameter:	1"		<u>@</u>	Other	· · · · · · · · · · · · · · · · · · ·			
Purging Information									م						
Purging Method:	Bailer		Perista	ltic	Bladder		Other:		-		т	rsion Fac		07. ID	i
Tubing/Bailer Material:	St. Ste	el	Polyeth	vlene	Teflon	***************************************		·······	-	gal / ft. of water	1" ID	2" ID	4* ID	6" ID	
Sampling Method:	Bailer		Perista		Bladder		Other:		-			0.163 785 ml = 0.	0.653 1337 cubi	1.469 c feet	
Duration of Pumping:	60			ブ	Diaduel		Other:		- -						
	Y	(min							- -	-U J		t Stability			, and good
Average Pumping Rate:	450	(ml/min)	Water	r-Quality Met	er Type:	(YS) Lamotte	e 2020	- -	pH ±0.1	DO ± 10%	± 3.09	-	RP 0 mV	
Total Volume Removed:	7.10	(gal)		Did wel	ll go dry:	Yes	(No) _	20.1		1 ± 3.0	/0 <u> </u>	01111	
	1	2	3	4	5	6	7	8	T	9	10	11	12		13
Parameter:		IV	30	3v											
Volume Purged (gal)	0	1.90	4.10	7.10											
Rate (mL/min)	400	450	450	450	ļ										
Depth to Water (ft.)	6.55	6.55	6.55	655										<u> </u>	
oH	696	6.72	6.68	6.68									<u> </u>		······
Temp. (C)	17.3	16.0	16-1	15.9					<u> </u>					100	
Conductivity (mS/cm)	ત્રે.80	275	2.76	276											
Dissolved Oxygen (mg/l)	0.50	.07	.16	.07											
ORP (mV)	-80.3	-118.6	-137.3	-137.3											
Turbidity (NTU)	17.7	7.45	4.72	3.57											
time	9.30	242	3:00	3.16											
ampling Information							Probl	ems / Ot	serva	tions				 	
Analyses #		ratory		Initial	Purge:	<i>- 1</i>	K ord J	1	<u>.</u>						
TCL VOC 3		-Test Ame		muai	rurge:	Soul	k Thre!	15,1	5						
TCL SVOC 2		-Test Ame													
TAL Metals 1 Total Cn 1		Test Ame		Final F	Durge.										
Tee On Tute/Ch 1		-Test Ame 		i iiiai i	arge.										
Sample ID: Aw-o3 MS/MSD: Yes	No	e Time:	5.73	Notes:	Fie	112	: qu	FD	0/	-08.	27/	3			
Duplicate: Yes) No														
Duplicate ID FD-01-08	Dup. Ti	ime: /ś	/5												
Chain of Custody Signed By:															

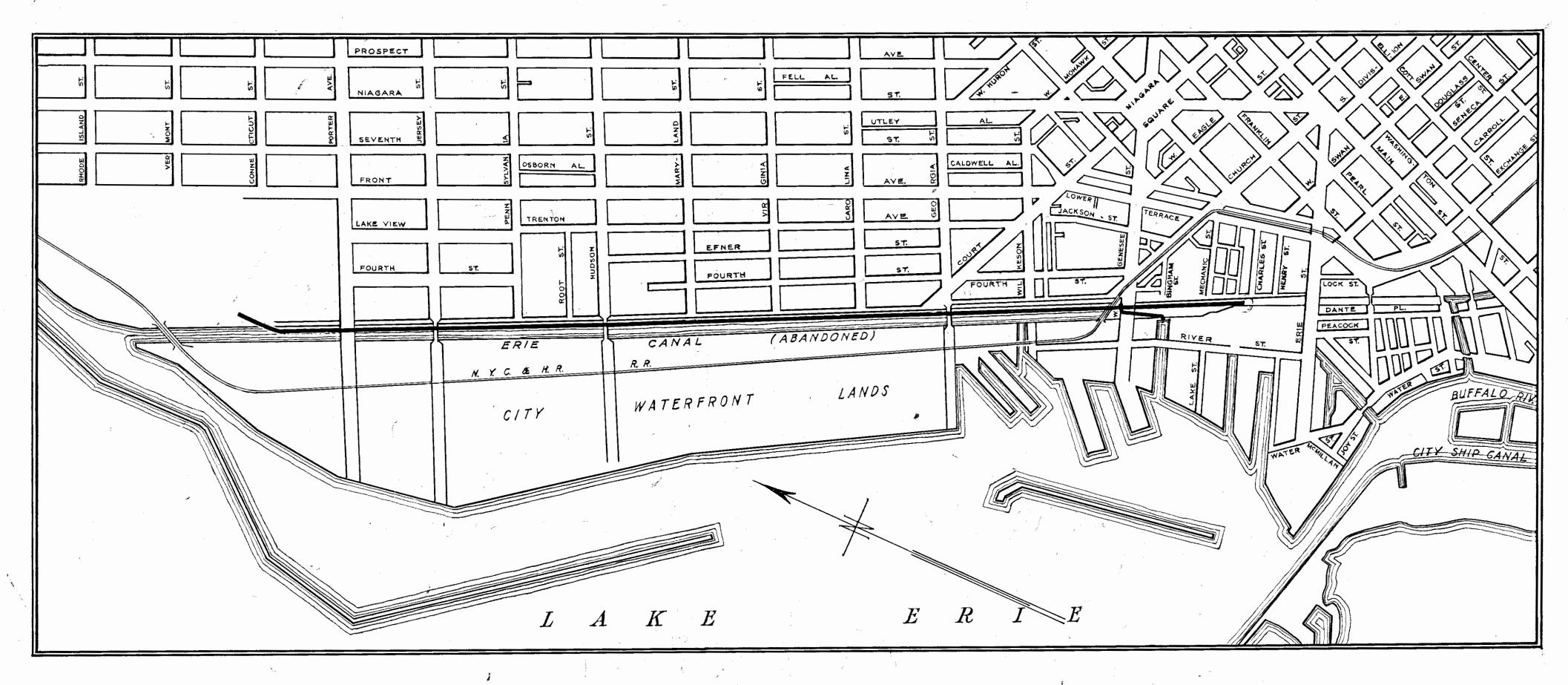

			(GROUN												_
Site: Wilkeson Slip					Nation	al Fue	el Buff	alo,	NY		Eve	ent: Augi	ust 2013	3 GWS	amplin	g
Sampling Personnel:	Jeff E	Brayer, Ar	drew Flen	ning			Well ID:			AW-04						
Client / Job Number:		Nat Fuel/ B002331					Date:		· • ·	8/27/13		11:00				
Weather:	Ov.	ercest,	70'5				Time In:	-!5	50	Tin	ne Out:	16:59	<i>)</i>		***************************************	
Well Information	0 0			*******		_								_		
Depth to Water:	9.57		(feet TIC				Well Type):	F	lushm	ount	Stick-U	Jр	_		
Total Depth:		10 83	(feet TIC (feet)	·)			Well Mate	rial:	Š	tainles	s Steel	(VC))	-		
Length of Water Column Volume of Water in Wel		43	(gal)				Well Lock	ed:			(Ye)		No	_		
Screen Interval:	10		(feet)				Measurin	g Poin	t Marked:		(No	_		
Depth to pump Intake:	-	-	(feet TIC	3)			Well Dian	neter:	1"		(2")	Other:		•		
Purging Information																_
Purging Method:	Bailer		Peristal	tic)	Bladder		Other			-		7	sion Fa	4" ID	6" ID	$\frac{1}{2}$
	St. Ste	el			Teflon		***************************************			-	gal / ft. of water	1" ID	2" ID 0.163	0.653	1.469	1
ubing/Bailer Material:			Polyethylene				Other:			-	<u></u>		ļ	.1337 cubic feet		1
Sampling Method:	Bailer		Peristal	DE .	Bladder		Other	:			. 3					
Ouration of Pumping:	6	(min)							-			t Stabilit			1
Average Pumping Rate:	500	(ml/min)	Water-	Quality Me	ter Type	e: SI)Lamotte 2020				pH	DO	± 3.0		ORP 10 mV	-
Fotal Volume Removed:		(gal)		Did we	ell go dry:	: Yes		(No)		±0.1	± 10%	1 2 3.0)% <u>+</u>	10 1114	ال
Parameter:	1	IV 2	3	3 <i>U</i> 4	5		6	7	8		9	10	11	1:	2	1
olume Purged (gal)	0	1,4	3.8	5.8										Į.		
ate (mL/min) 500	MY	500	500	500												
epth to Water (ft.)	9.57	10.45	11.07	10.65												
1	6.72	1.69	6.70	6.19												
emp. (C)	15.6	15.3	15.1	15.2												
onductivity (mS/cm)	5.70	5.31	5,39	5.24												
ssolved Oxygen (mg/l)	'90	.10	.07	.07												
RP (mV)	-105.7	 	1275	132.1												
urbidity (NTU)	2.50	4.41	3.96	d.85												
otes:	<u> </u>															
ampling Information	n	-					F	Probl	ems / Ol	bser	vations					
Analyses #		oratory			_											
CL VOC 3	Buffal	lo-Test Am	erica	Initial	Purge:	3	imple	k	16:40							
CL SVOC 2	Buffal	lo-Test Am	erica			,	- 77 (P) P	,	-							
AL Metals 1	Buffal	lo-Test Am	erica		_	•	time									
otal Cn 1	Buffal	lo-Test Am	erica	Final F	ourge:											
100 On Take Ca 1		lo-Test Am					,	,				/ -			*	
ample ID: Yes		ole Time:	1W04	Notes:		50/	- 2	kor	ne o oda	m	Int	w fac	e p	rabe		
AS/MSD:						-NE	5	برميس	01	SG.	wod	on	pri	ge	wa	7
uplicate: Yes		4			,	-0.	roan	10	Oda) 	- 11		DU H	re La	m I	/
Ouplicate ID	Dup.	rime:					•			-	100			/	,, <u>,</u>	_
Chain of Custody Signed By:																




Appendix E

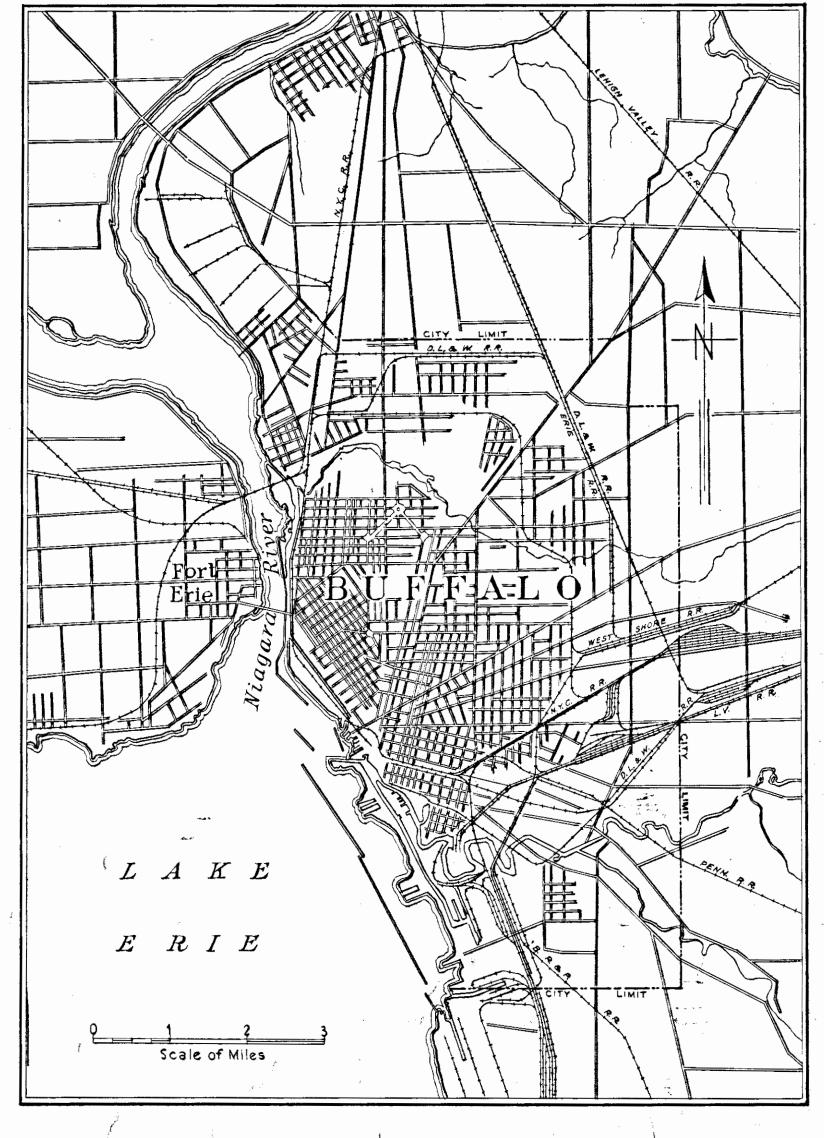
Design Drawings for the Buffalo Sewer Authority South Interceptor

Buffalo Sewer Authority Intercepting Sewer, Division H, Canal Section (April 1936)



BUFFALO SEWER AUTHORITY PLAN OF PROPOSED CITY DUMP IN OLD ERIE CANAL BED FROM FRONT TO GENESEE ST.

GREELEY & HANSEN
SCALE-NOTED


DIVISION H

GENERAL PLAN

INTERCEPTING SEWER DIVISION H ... CANAL SECTION LIST OF PLANS

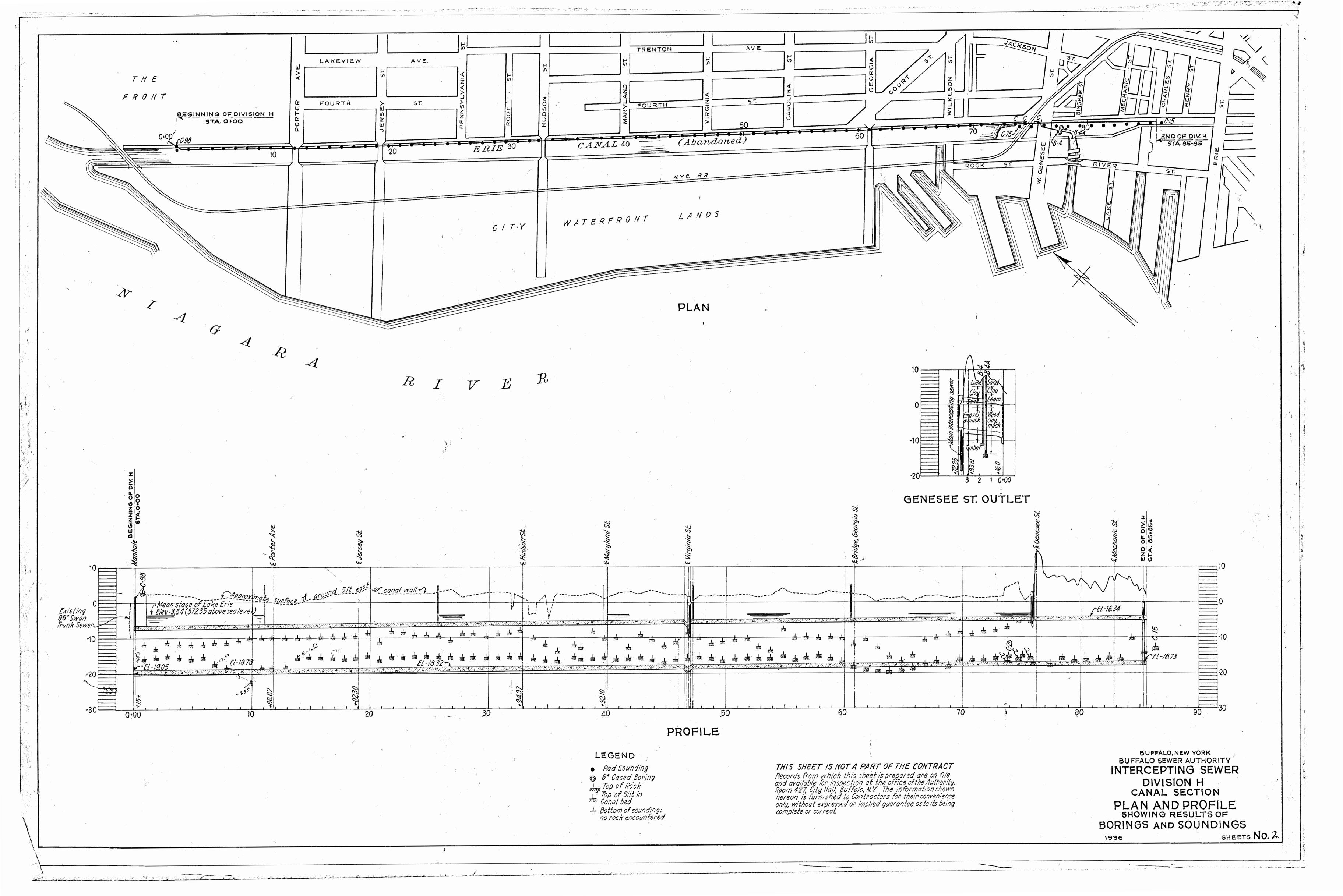
Sheet	Title
1	Location Maps and List of Plans
2	Index Map
3	Plan & Profile-Sta. 0.00 to Porter Avenue
4	" Porter Ave. to Pennsylvania St.
5	" Pennsylvania St. to Maryland St.
6	" Maryland St. to Carolina St.
7	" " Carolina St. to Wilkeson St.
8	" Wilkeson St. to Mechanic St.
9	" Mechanic St. to Charles St. and Miscellaneous Details
10	Sewer Crossings-Virginia St. and Charles St.
11:	Sewer Crossing Genesee St.
12	Storm Drain Outlets-Virginia St. and Charles St.
13	Sewer Sections and Details
14	Manholes and Details

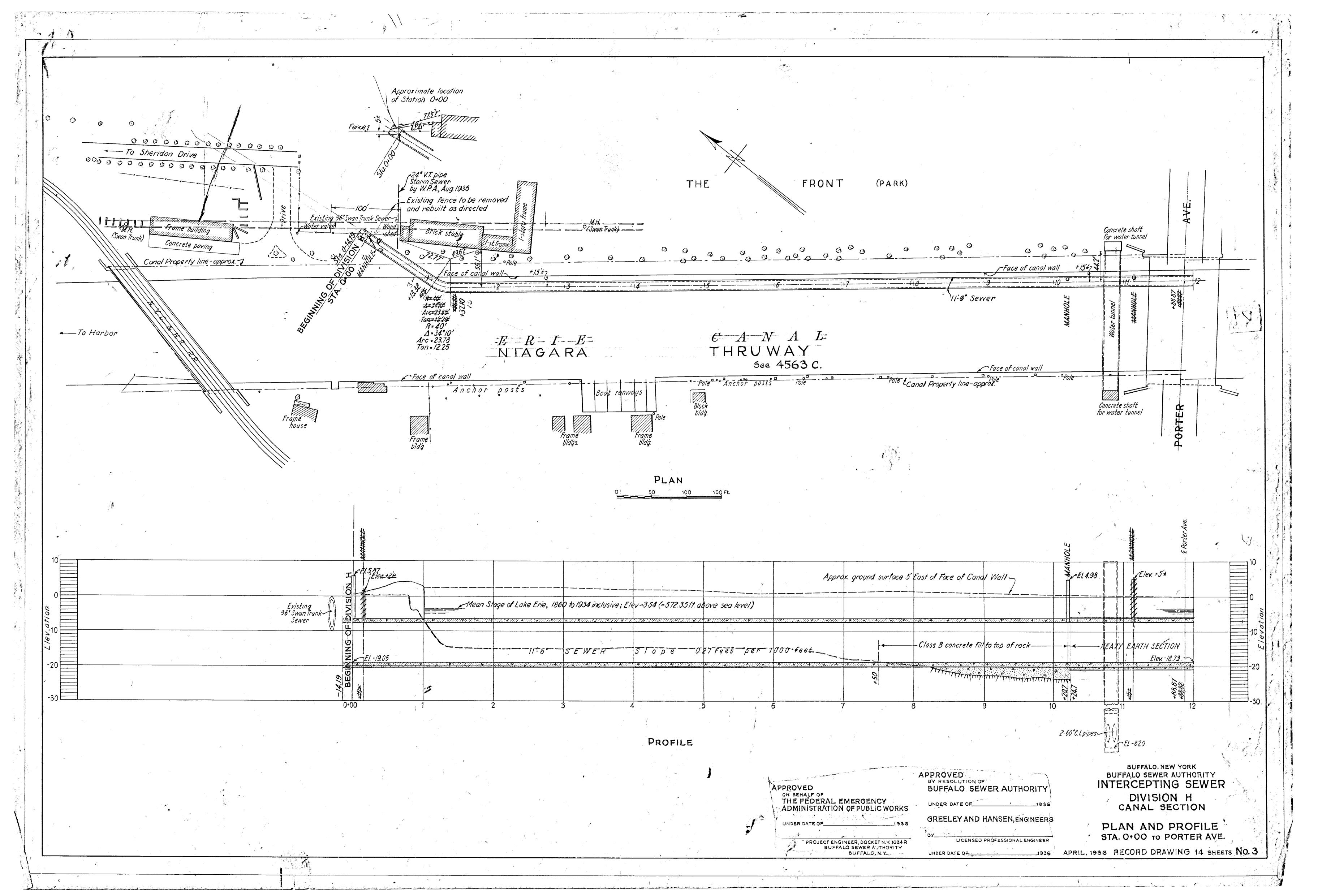
LOCATION MAP

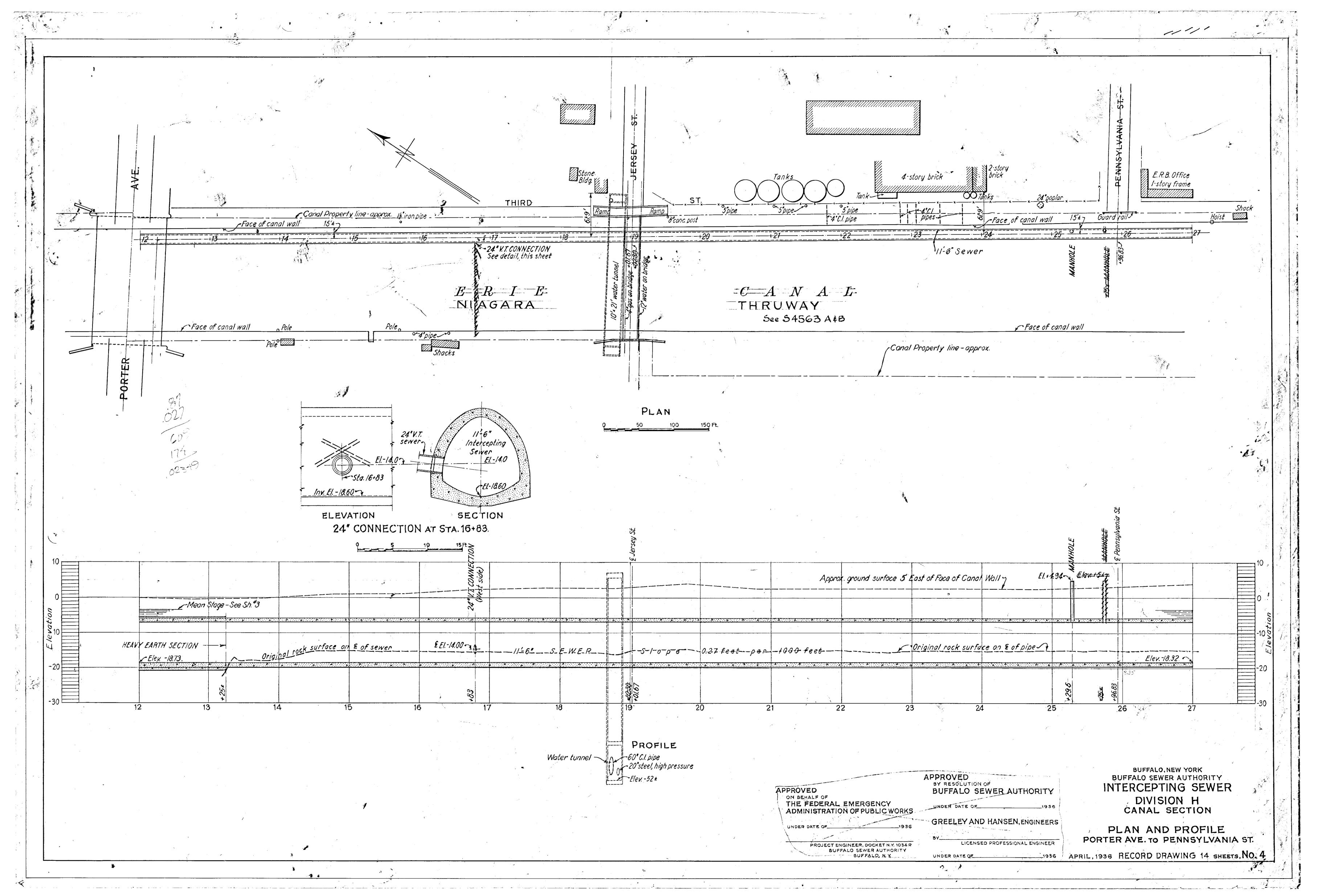
APPROVED

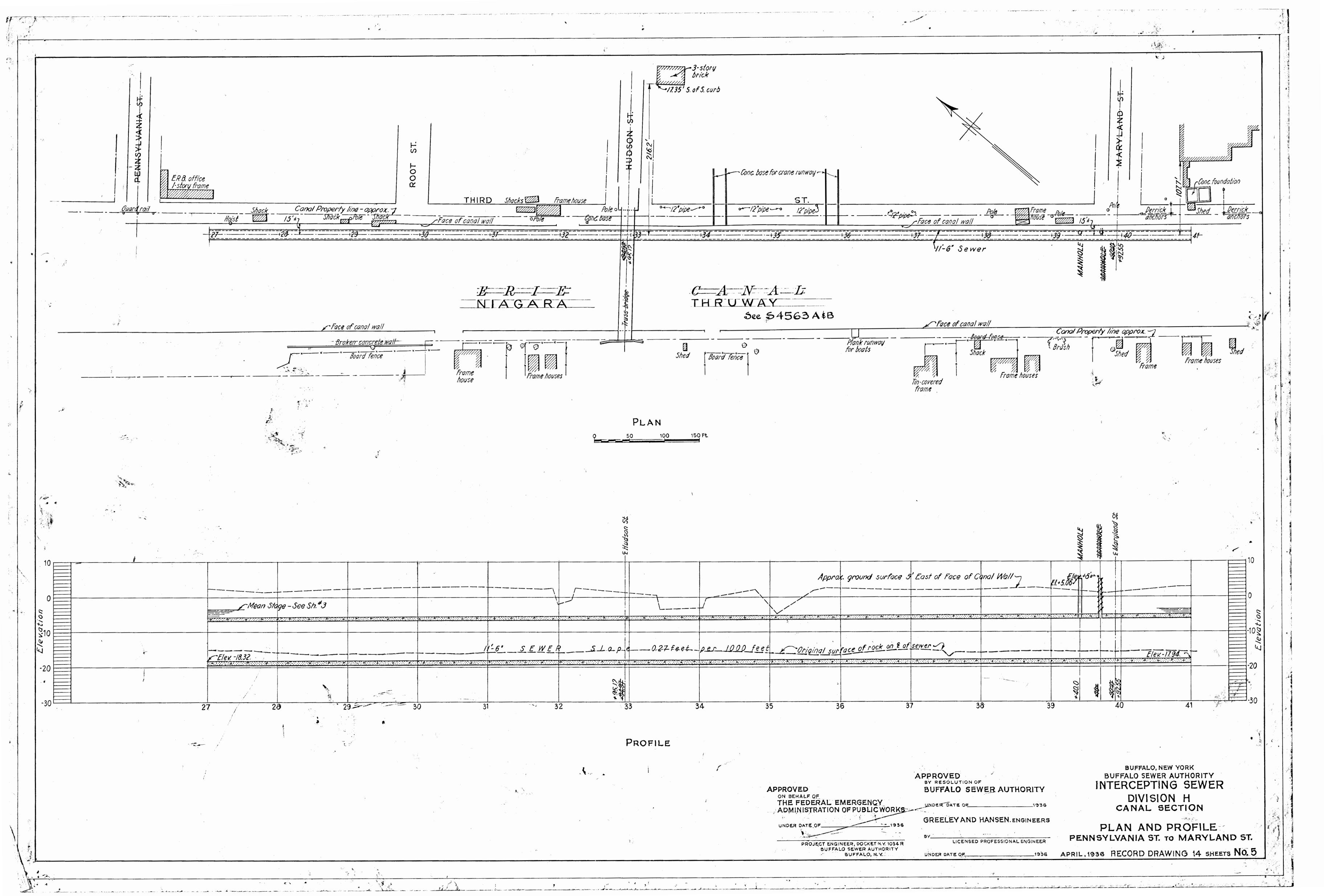
ON BEHALF OF

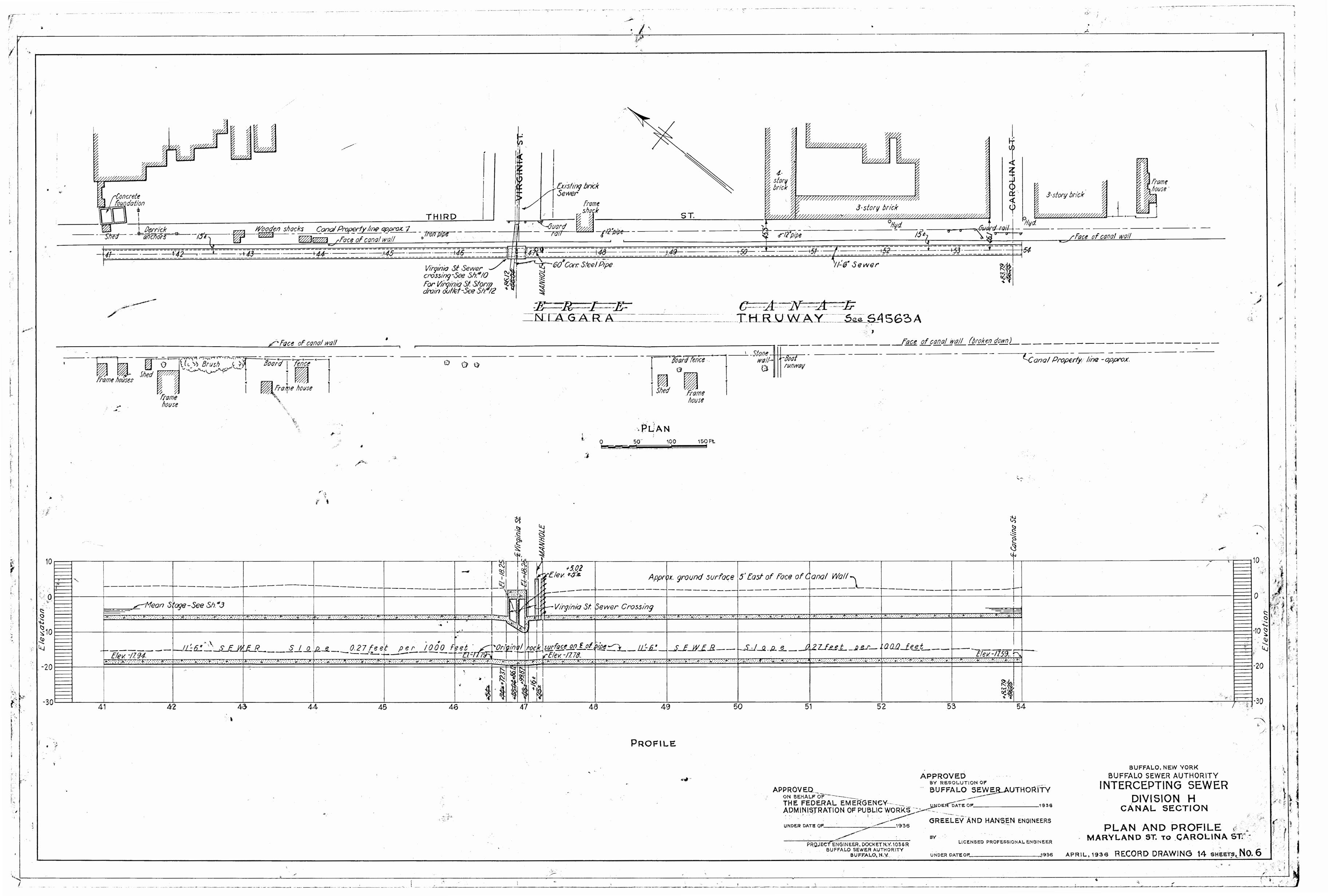
THE FEDERAL EMERGENCY

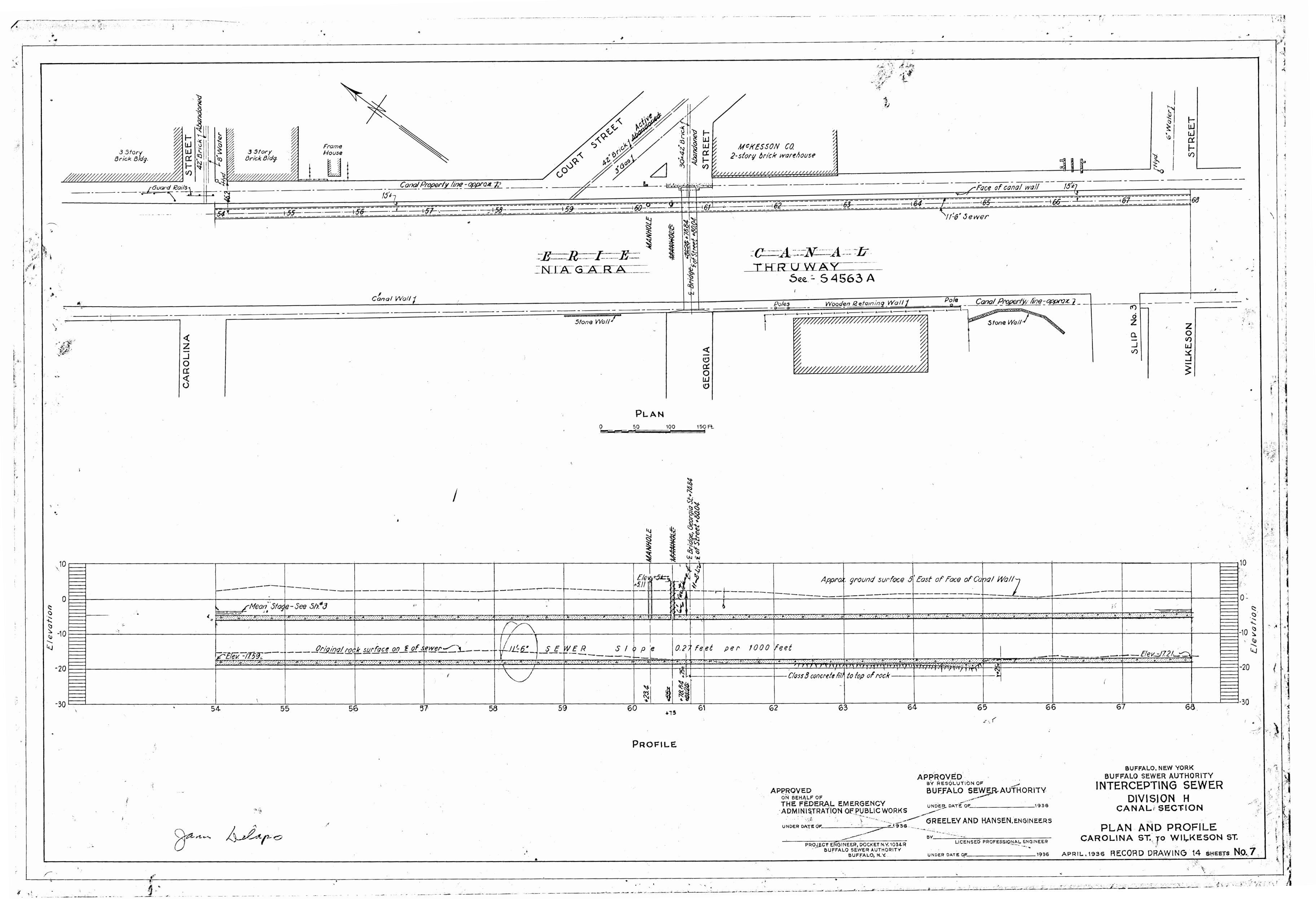

ADMINISTRATION OF PUBLIC WORKS

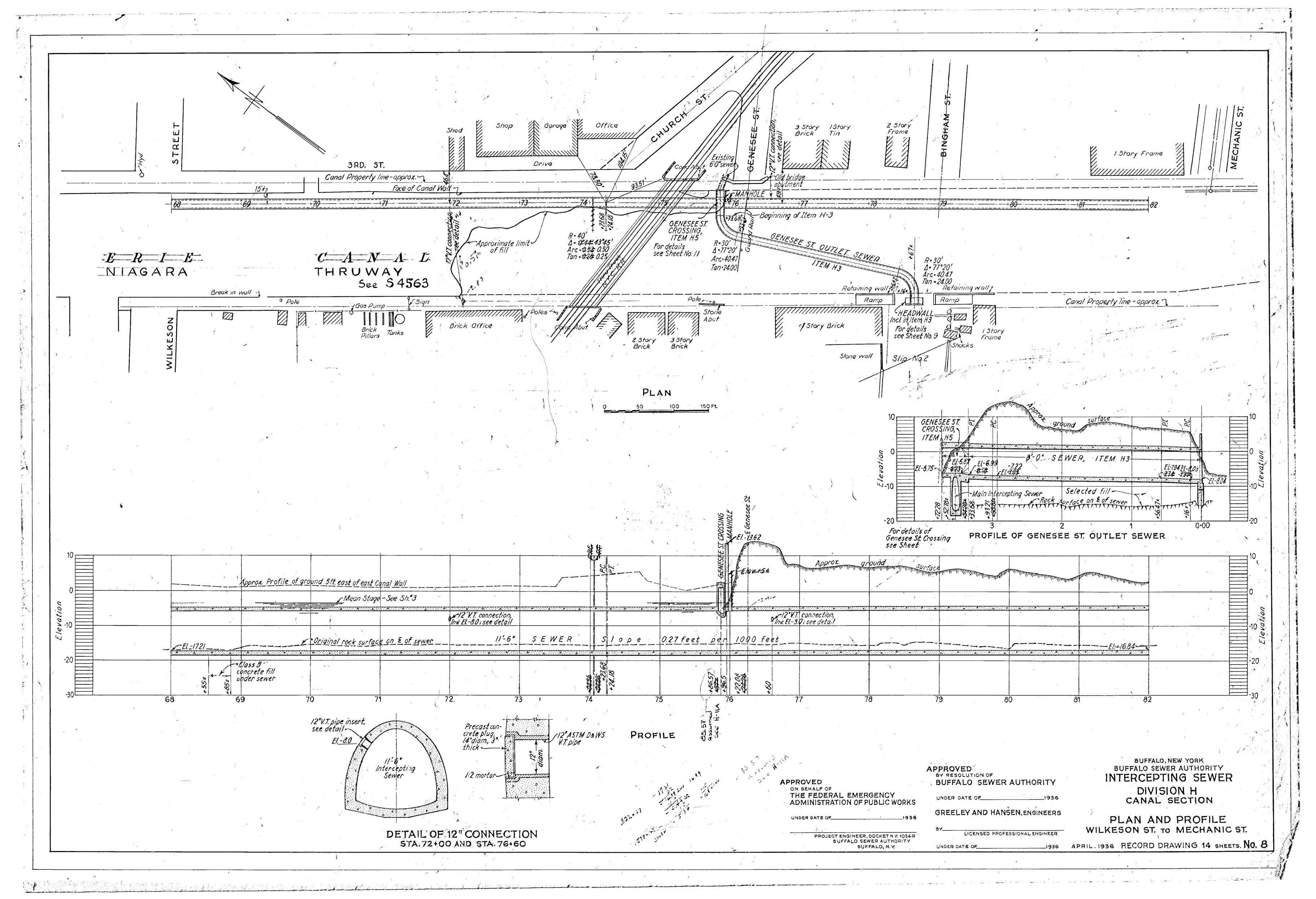

PROJECT ENGINEER, DOCKETNY. 1034R
BUFFALO SEWER AUTHORITY
BUFFALO, N.Y.

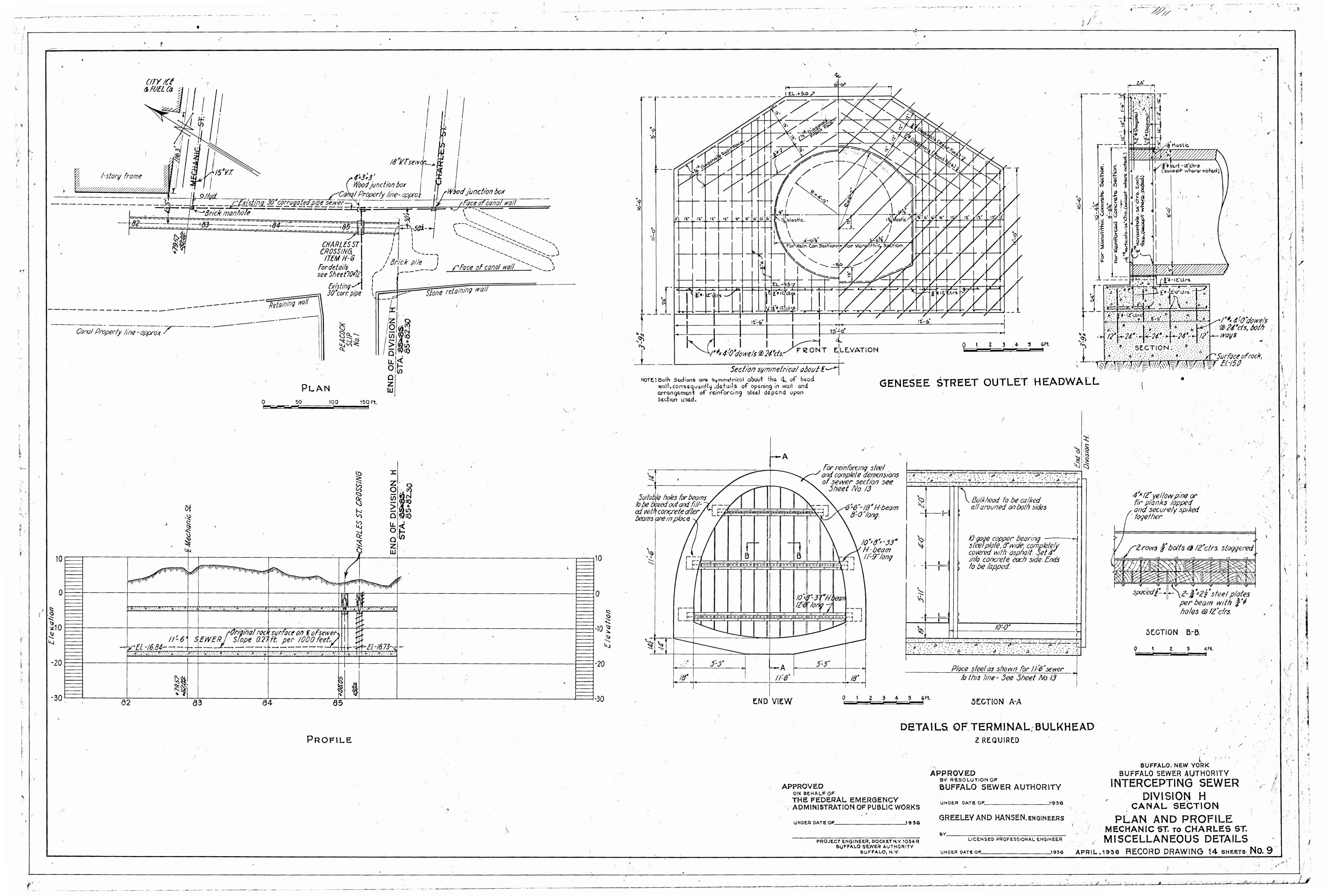

APPROVED
BY RESOLUTION OF
BUFFALO SEWER AUTHORITY UNDER DATE OF April 20th, 1936

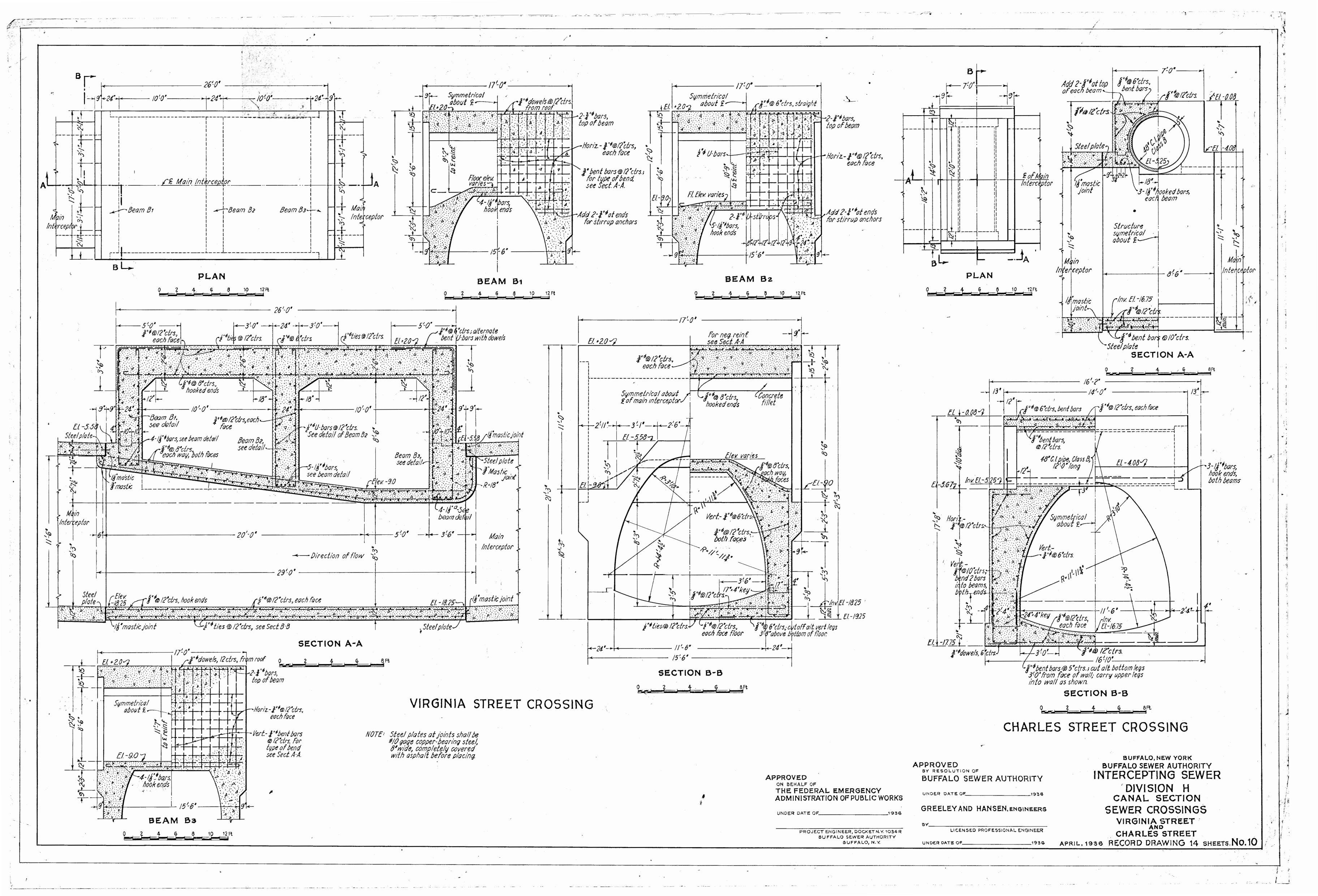

UNDER DATE OF Carrie 20, 1936 APRIL . 1936

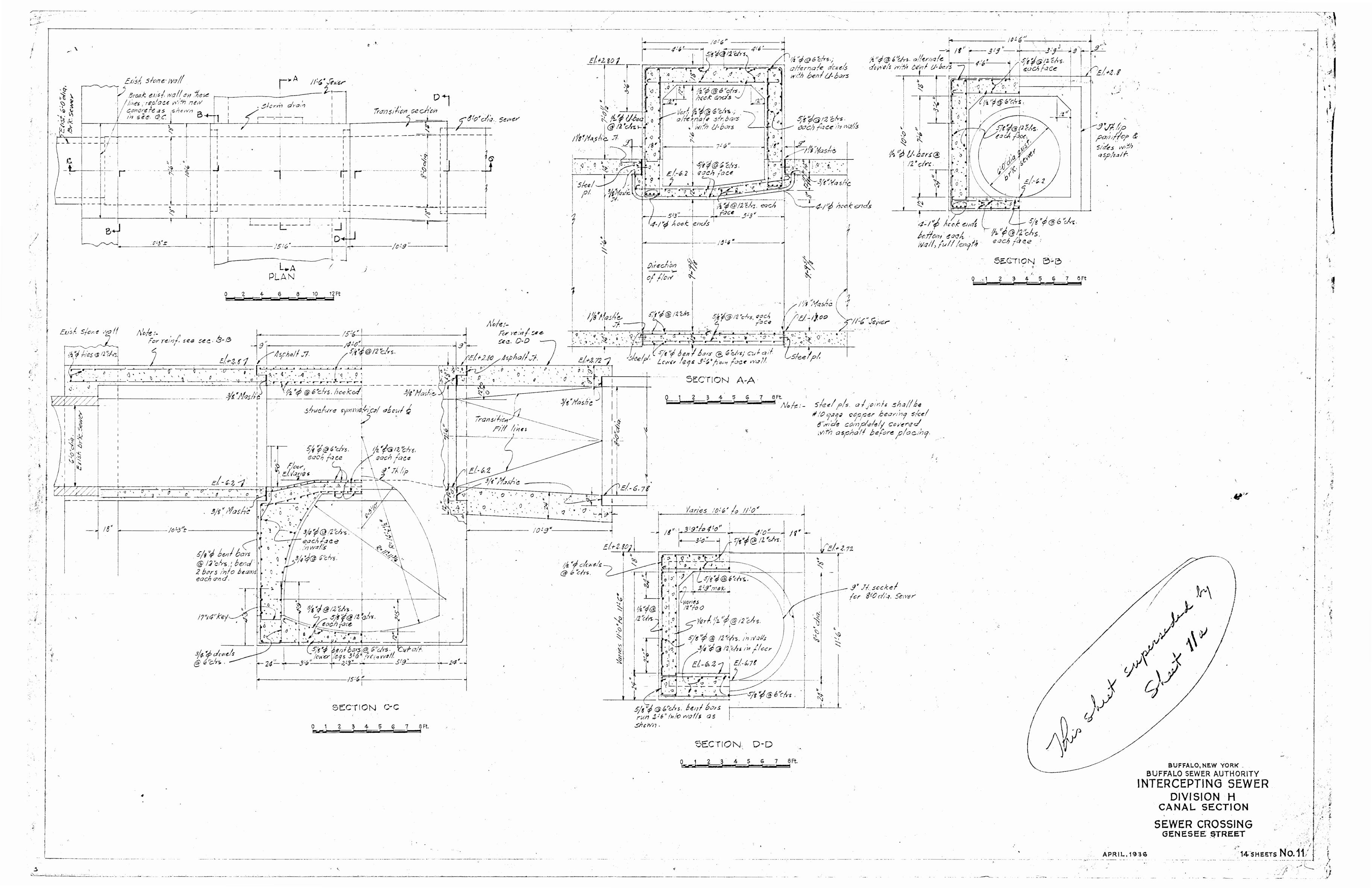

BUFFALO, NEW YORK BUFFALO SEWER AUTHORITY INTERCEPTING SEWER DIVISION H CANAL SECTION LOCATION MAPS AND LIST OF PLANS

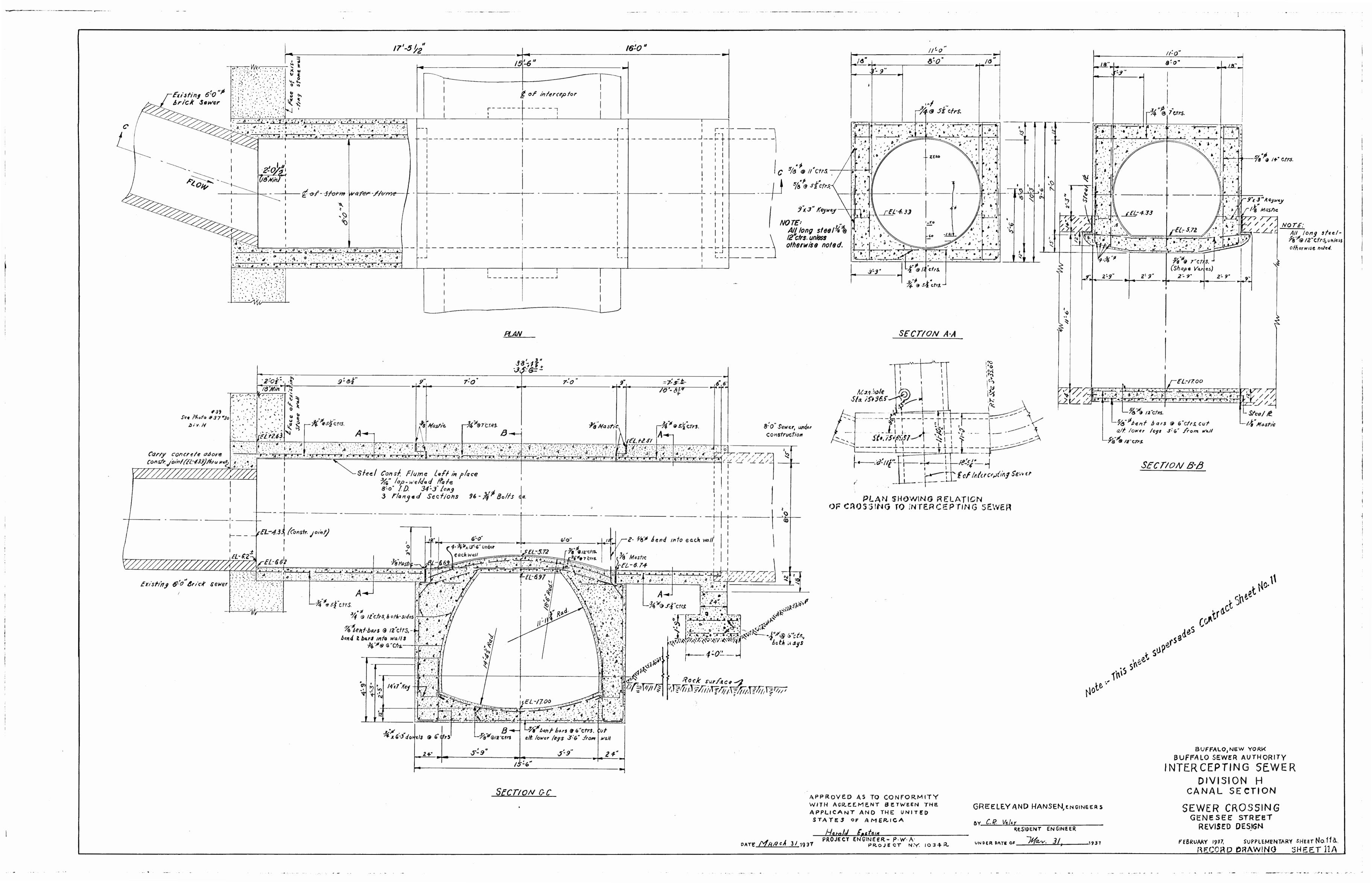


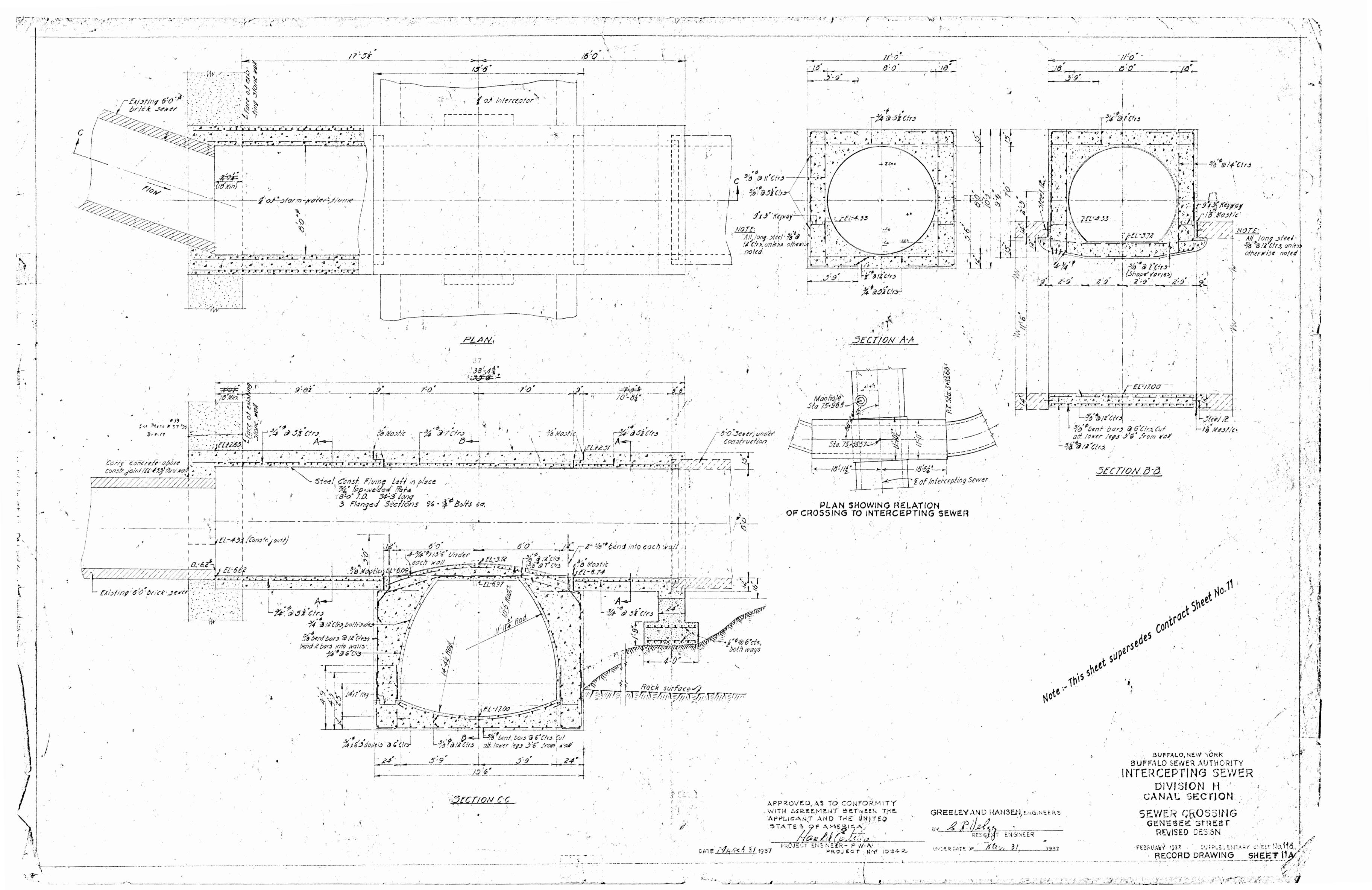


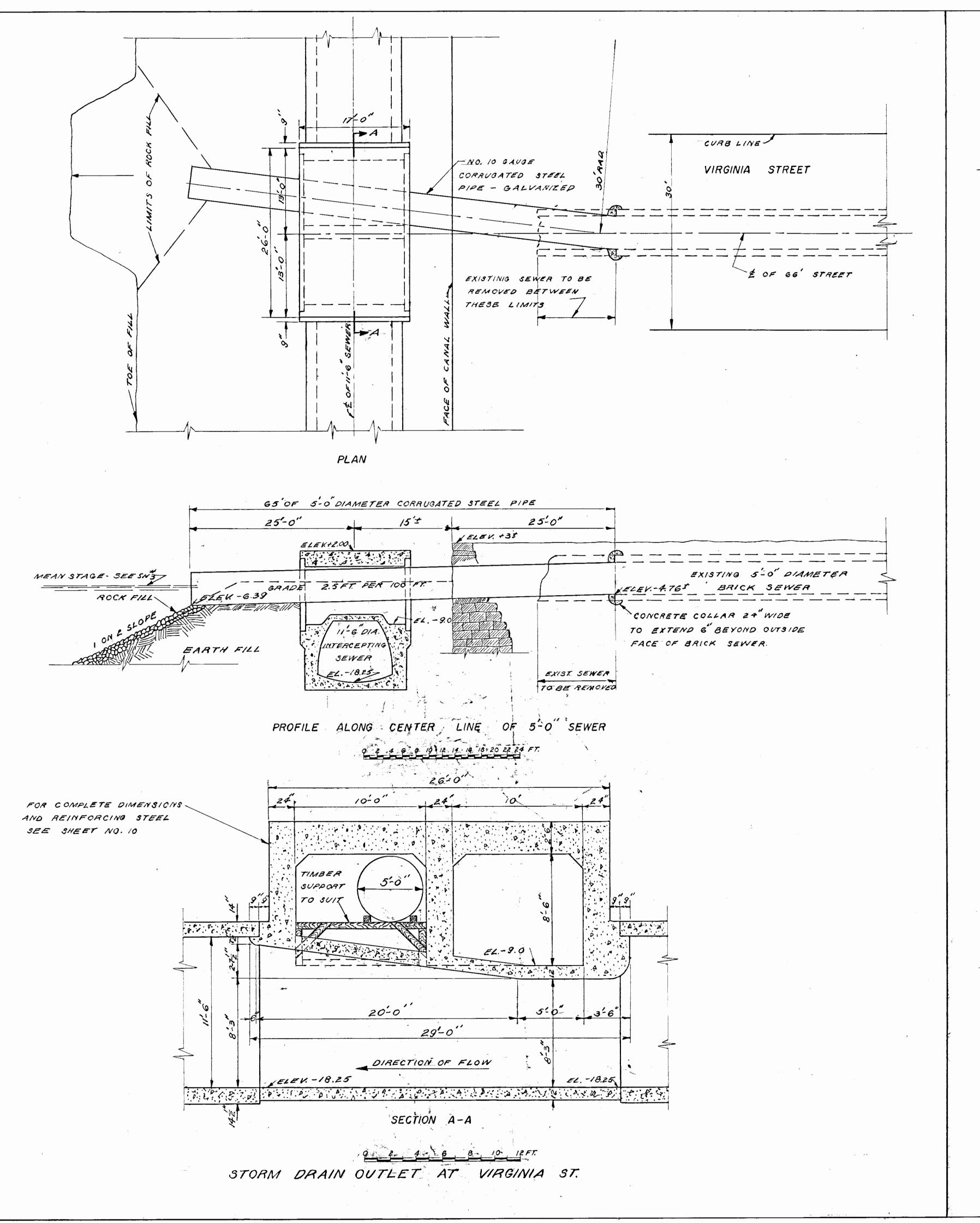


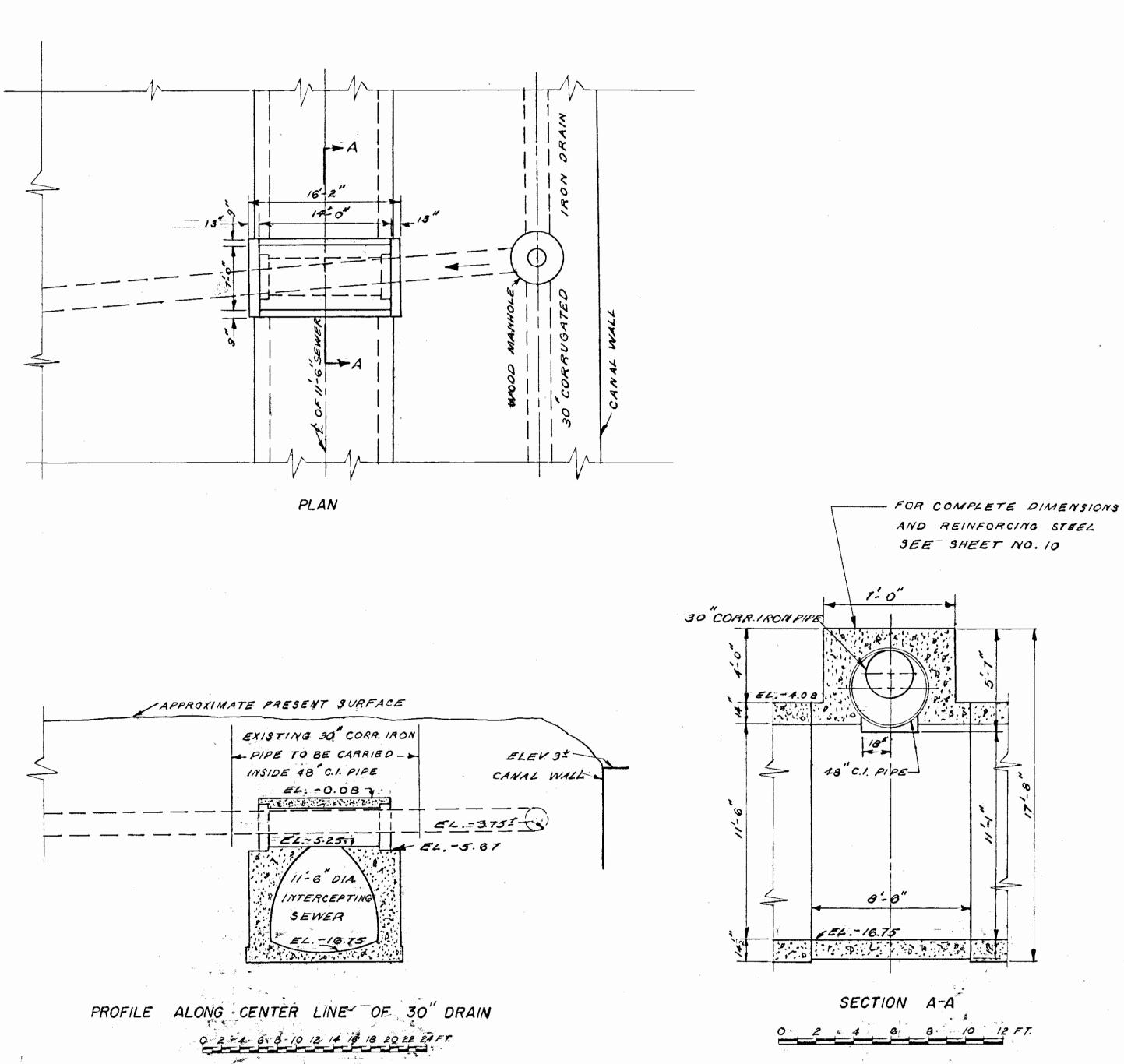


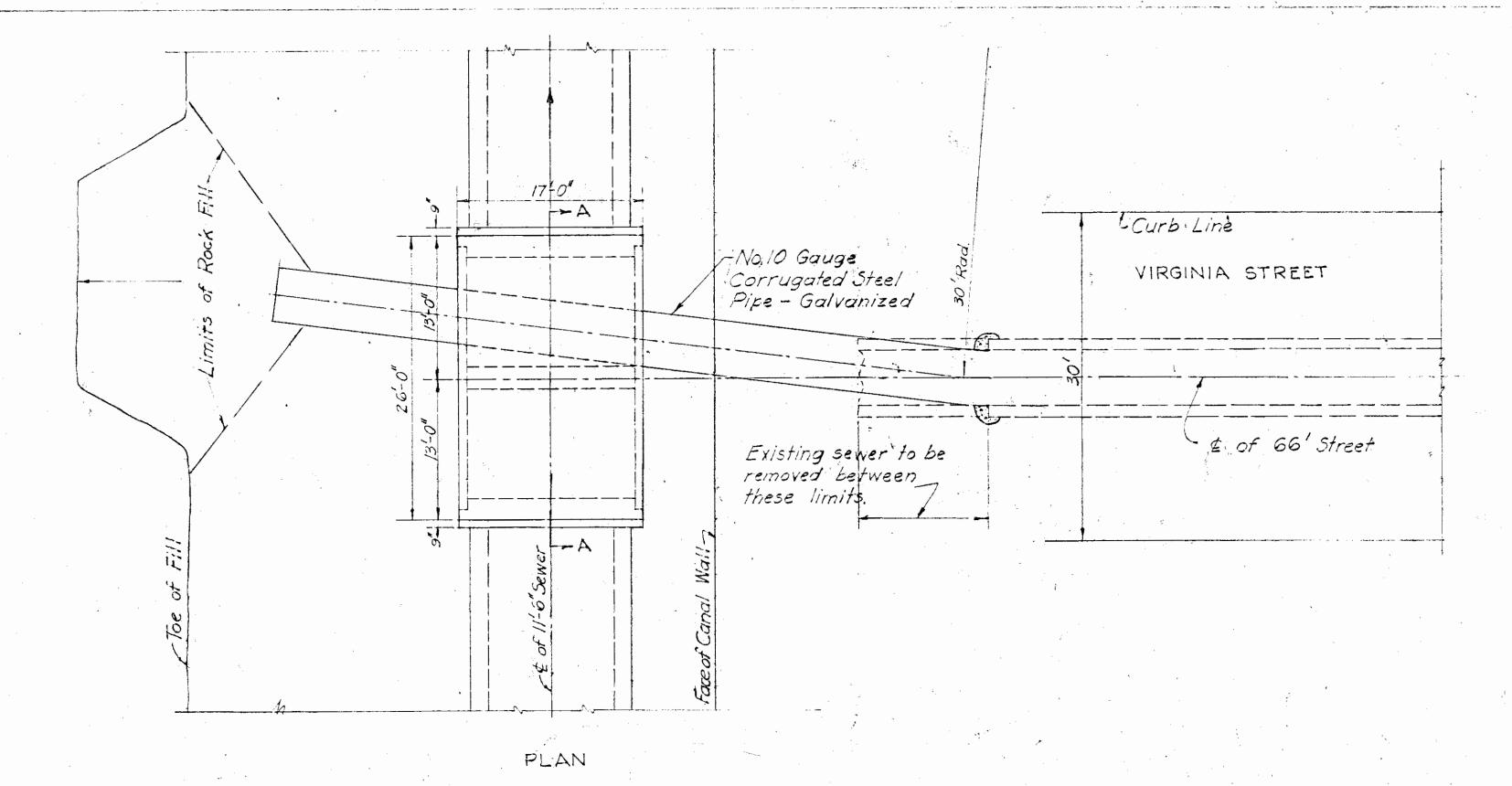


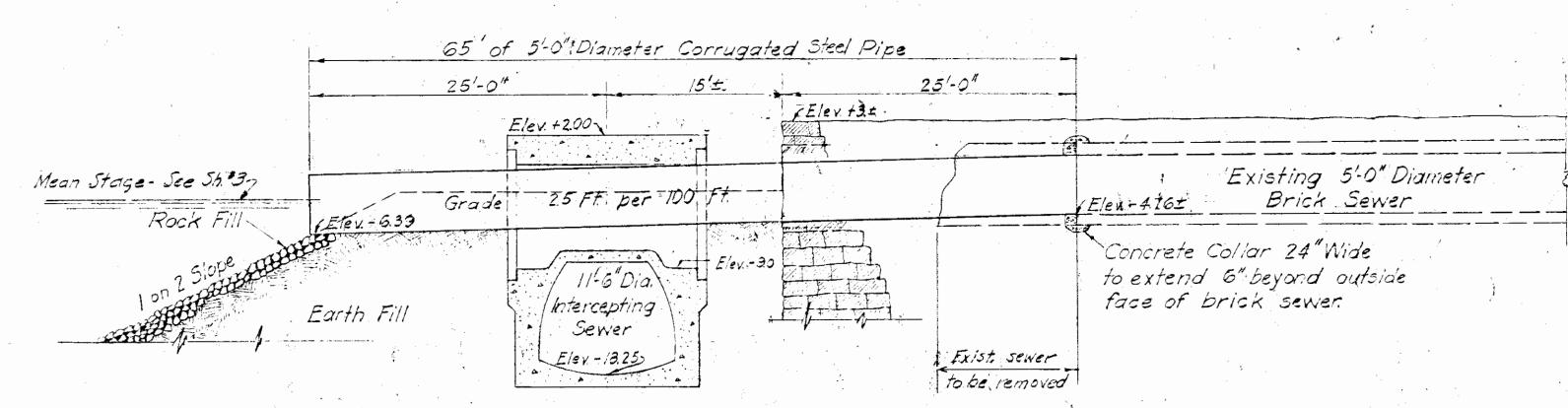






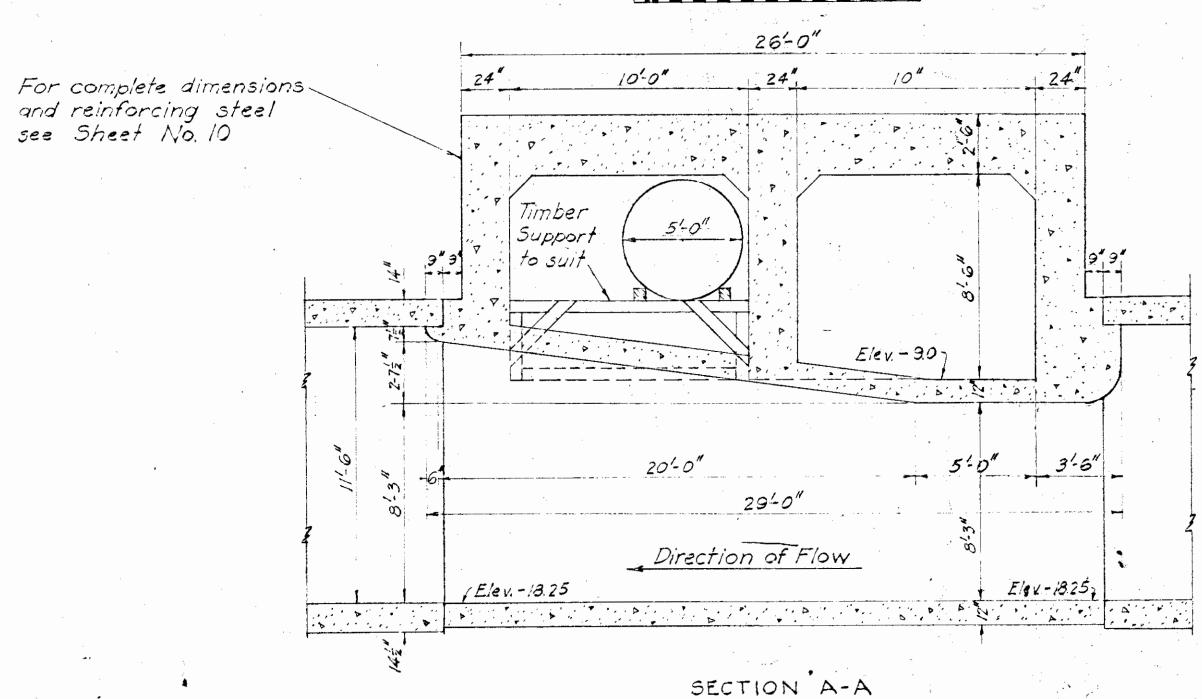


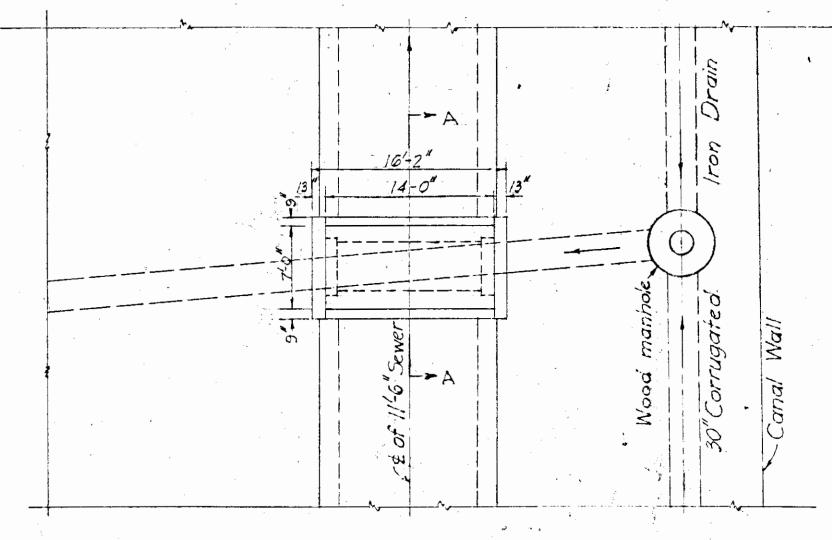



STORM DRAIN CROSSING NEAR CHARLES ST.

BUFFALO NEW YORK
BUFFALO SEWER AUTHORITY
INTERCEPTING SEWER
DIVISION H

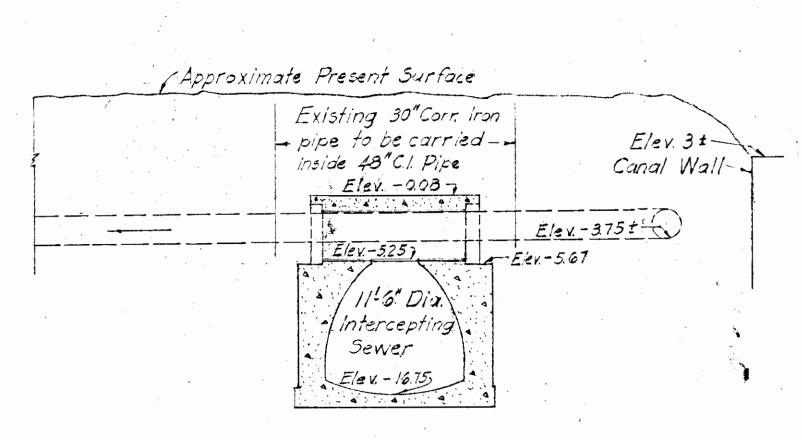
CANAL SECTION
STORM DRAIN OUTLETS
VIRGINIA ST. AND CHARLES ST.


APRIL, 1936 RECORD DRAWING 14 SHEETS NO.12



PROFILE ALONG CENTER LINE OF 5'0" SEWER :

0 2 4 6 8 10 12 14 16 18 20 22 24 Ft


STORM DRAIN OUTLET AT VIRGINIA ST.

PLAN

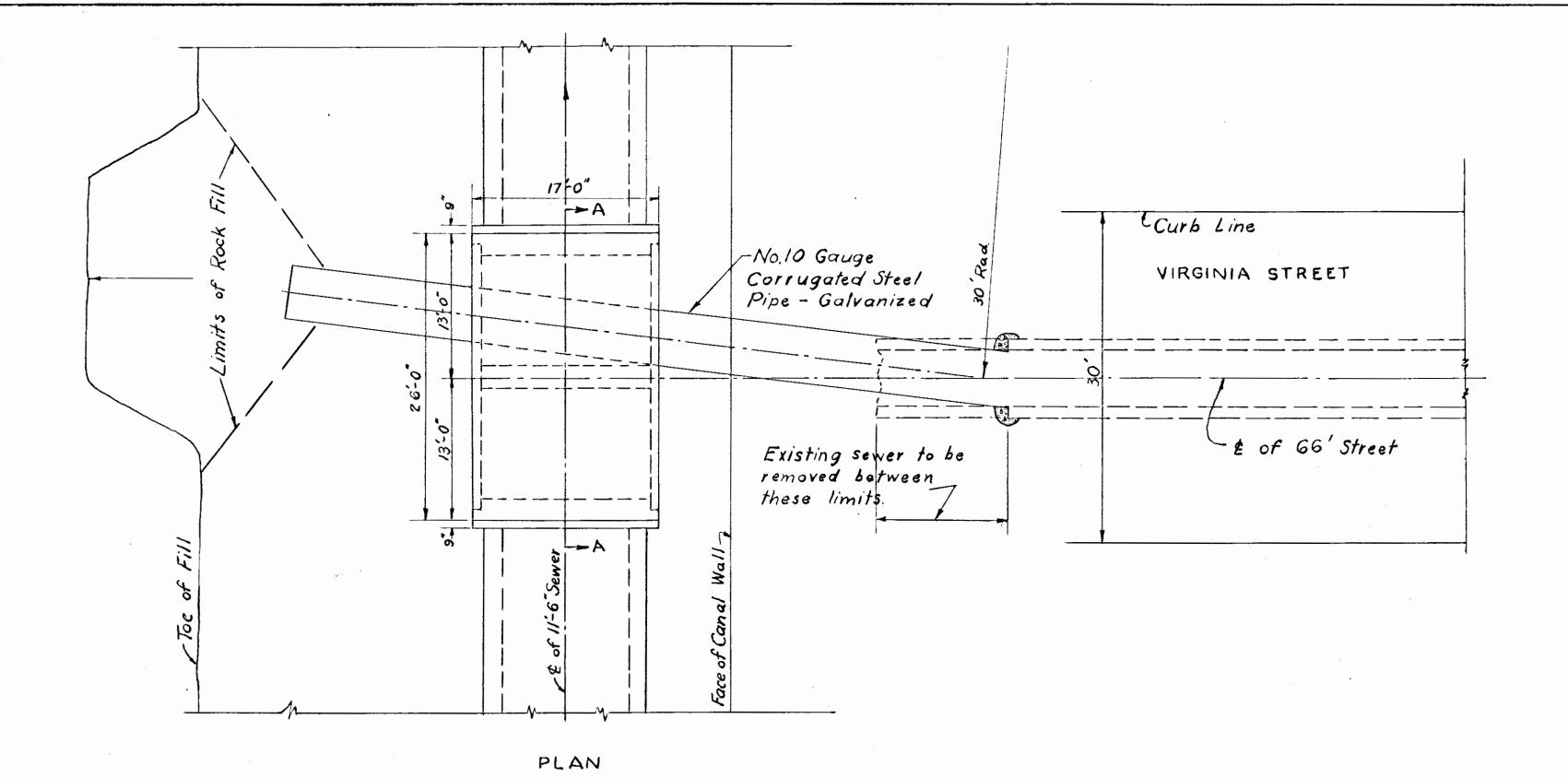
For complete dimensions and reinforcing steel see Sheet No. 10

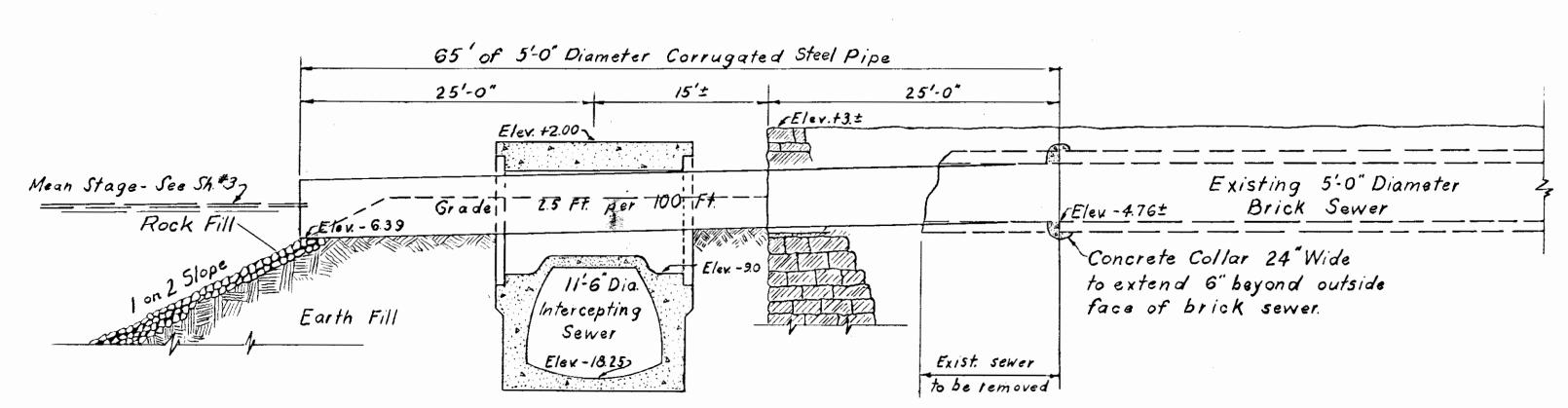
30"Corr. Iron Pipe

PROFILE ALONG CENTER LINE OF 30" DRAIN

0 2 4 6 8 10 12 14 16 18 20 22 24 Ft.

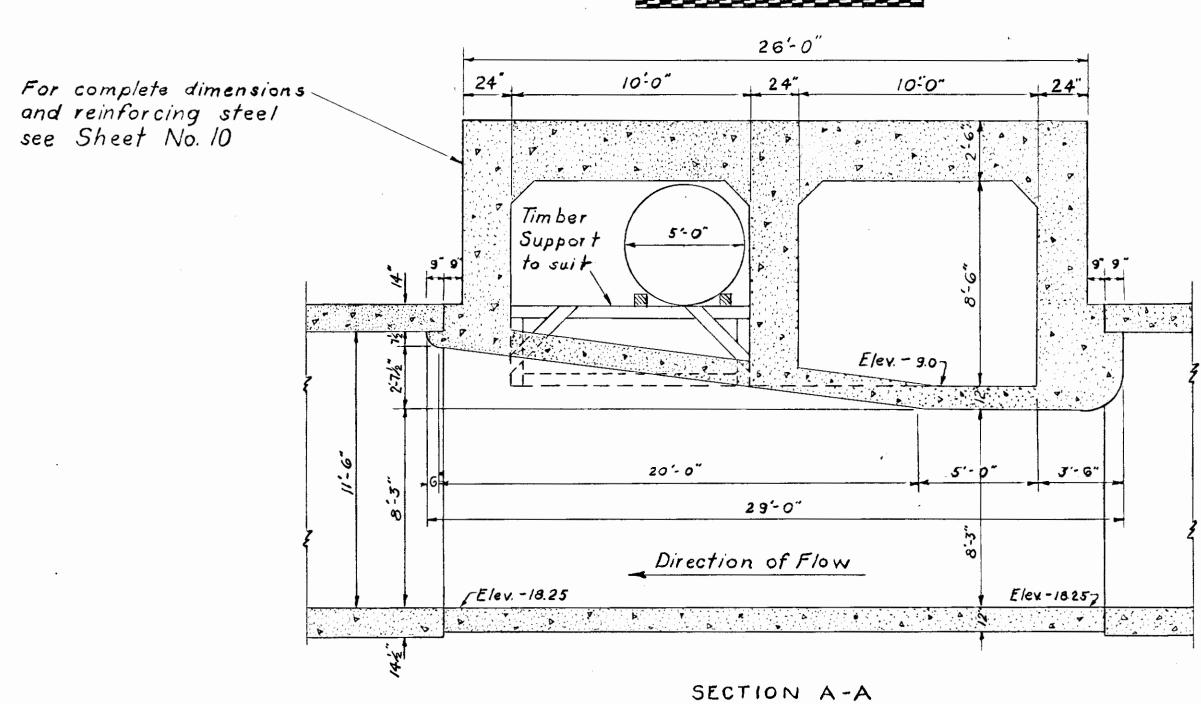
SECTION A-A

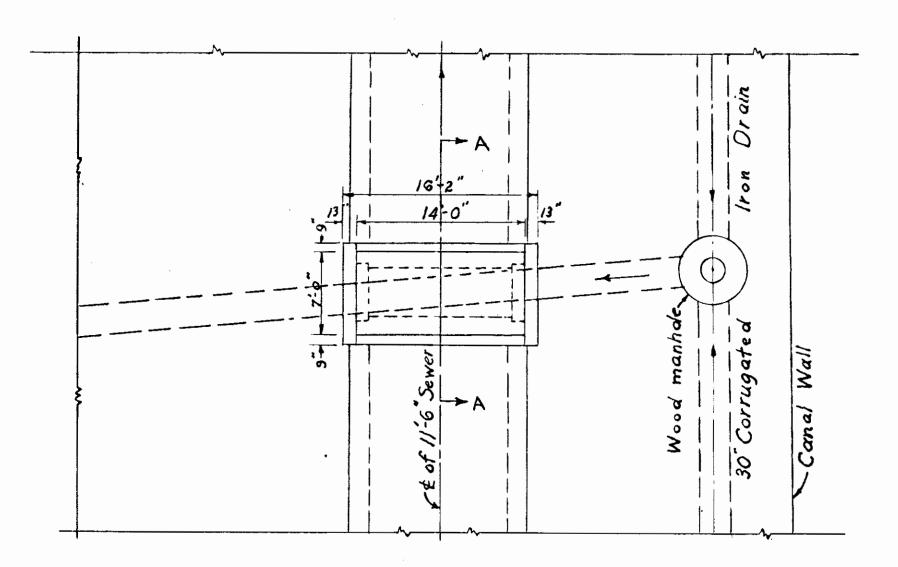

18"C.I. Pipe


F.Elev-16.75

STORM DRAIN CROSSING NEAR CHARLES ST.

BUFFALO SEWER AUTHORITY INTERCEPTING SEWER DIVISION H CANAL SECTION


STORM DRAIN OUTLETS VIRGINIA ST. AND CHARLES ST. RECORD DRAWING 14 SHEETS NO. 12



PROFILE ALONG CENTER LINE OF 5'0" SEWER

0 2 4 6 8 10 12 14 16 18 20 22 24 Ft

0 2 4 G 8 10 12 Ft. STORM DRAIN OUTLET AT VIRGINIA ST.

PLAN

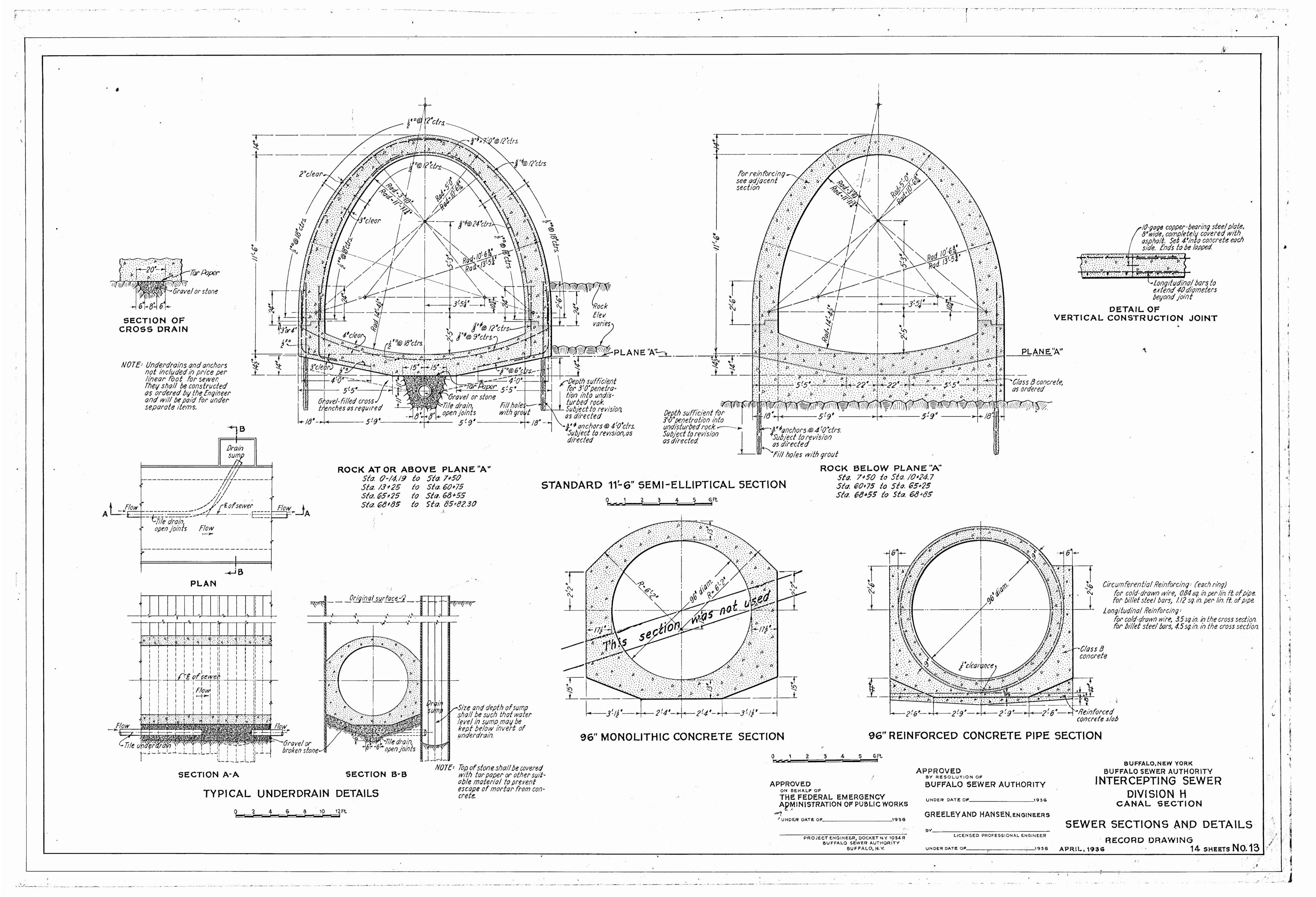
Approximate Present Surface Existing 30" Corr Iron pipe to be carried Elev. 3 =inside 48"C.l. Pipe Canal Wall Elev. -0.087 Elev - 3.75 = 1 Elex - 5.257 Elex - 5.67 /11-6 Dia A Intercepting Sewer Elex - 16.75

PROFILE ALONG CENTER LINE OF 30" DRAIN 0 2 4 6 8 10 12 14 16 18 20 22 24 Ft.

-For complete dimensions

and reinforcing steel see Sheet No 10

SECTION A-A 0 2 4 6 8 10 12 Ft.


STORM DRAIN CROSSING NEAR CHARLES ST.

BUFFALO, NEW YORK BUFFALO SEWER AUTHORITY INTERCEPTING SEWER DIVISION H CANAL SECTION

STORM DRAIN OUTLETS VIRGINIA ST. AND CHARLES ST.

RECORD DRAWING

14 SHEETS NO 12 APRIL . 1936

Station symmetrical about this center line

Station Station Mark 32, and a station of the station of th

HEAVY SECTION IN EARTH Sta. 10+24.7 to Sta. 13+24.7 Notes:

Reinforcing bars which are same as those for rock section are shown with dash lines; additional new bars with solid lines.

Use same steel forms as for rock section without alteration, except that outer form is to be raised 1" and set 2" wider at the springing line.

APPROVED

ON BEHALF OF

THE FEDERAL EMERGENCY

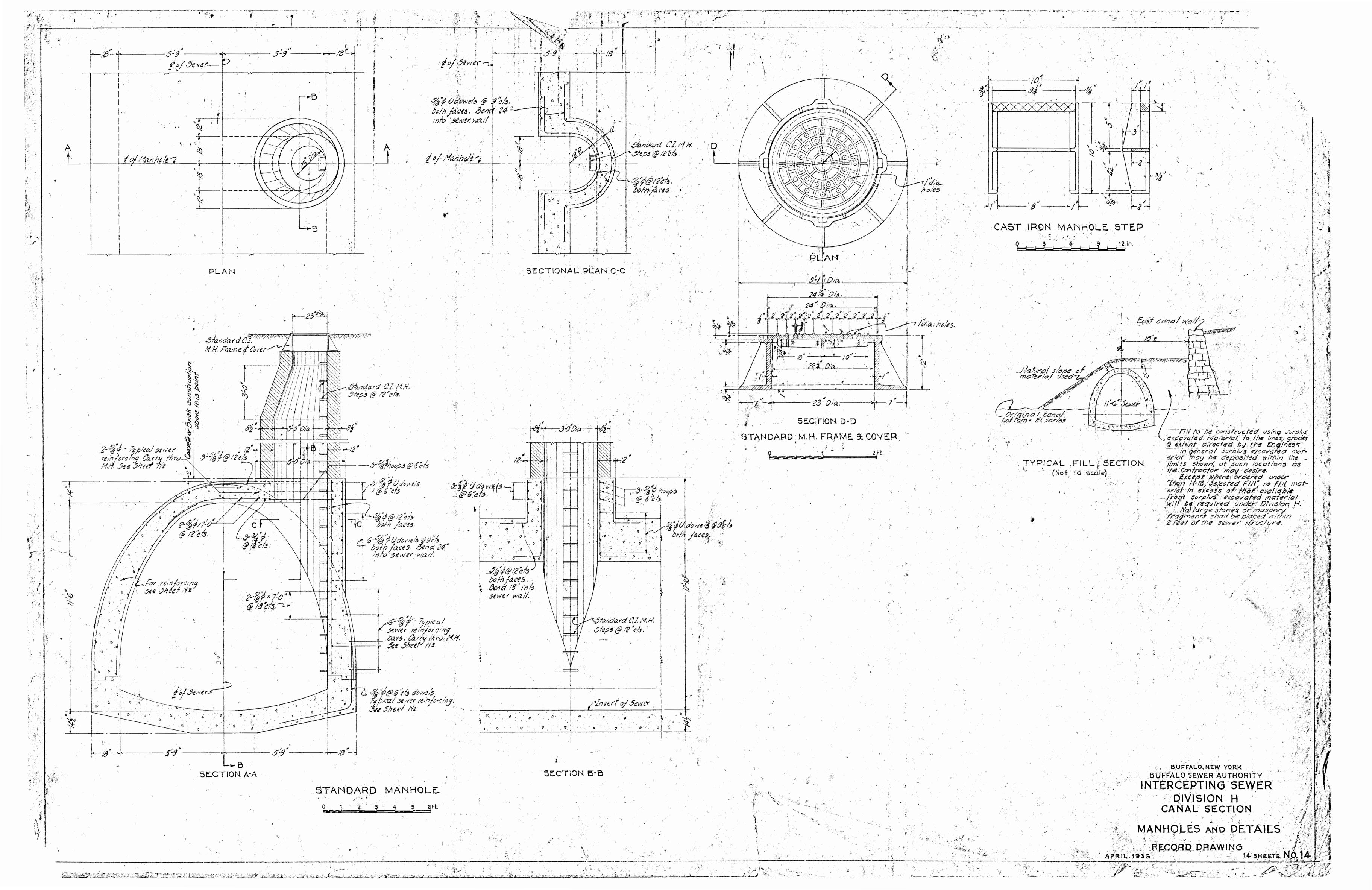
ADMINISTRATION OF PUBLIC WORKS

UNDER DATE OF NOW 12 1936

HORSELD PROJECTENGINEER DOCKET NY 1034 B.

APPROVED

GREELEY & HANSEN

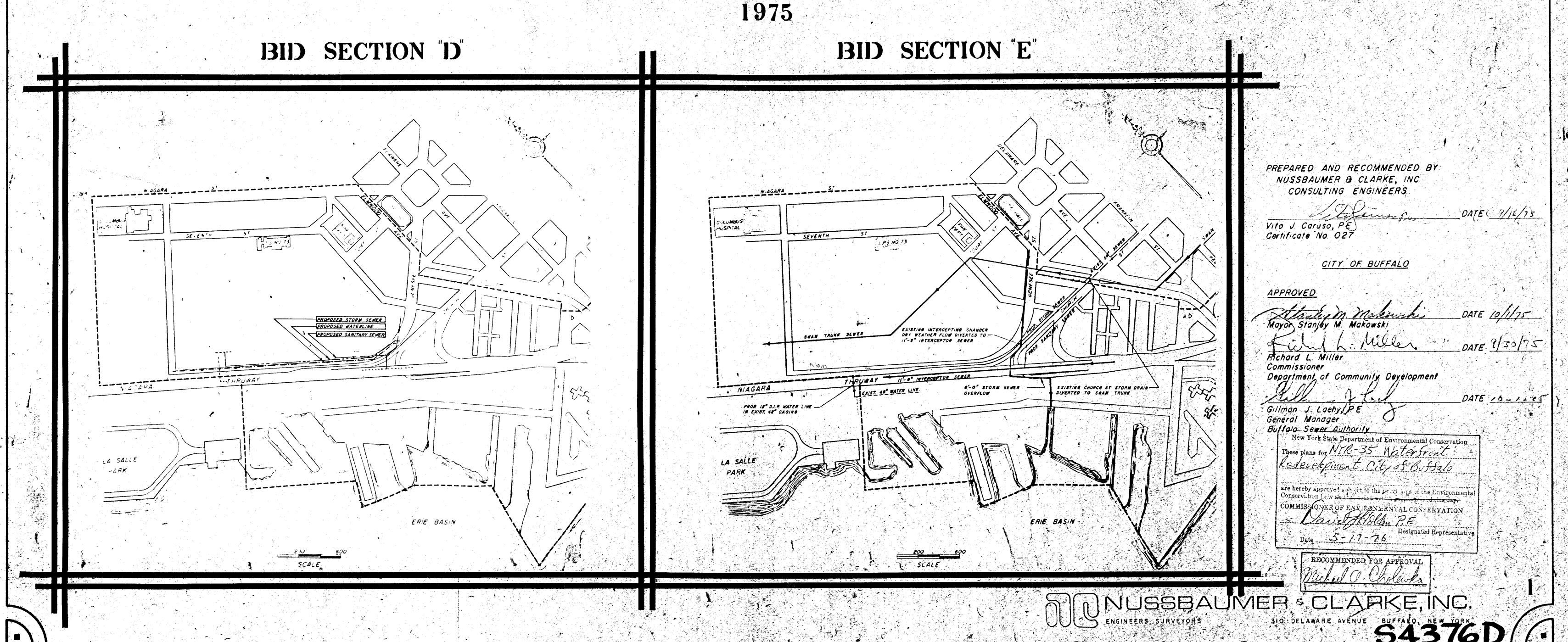

Fresidad y sinour

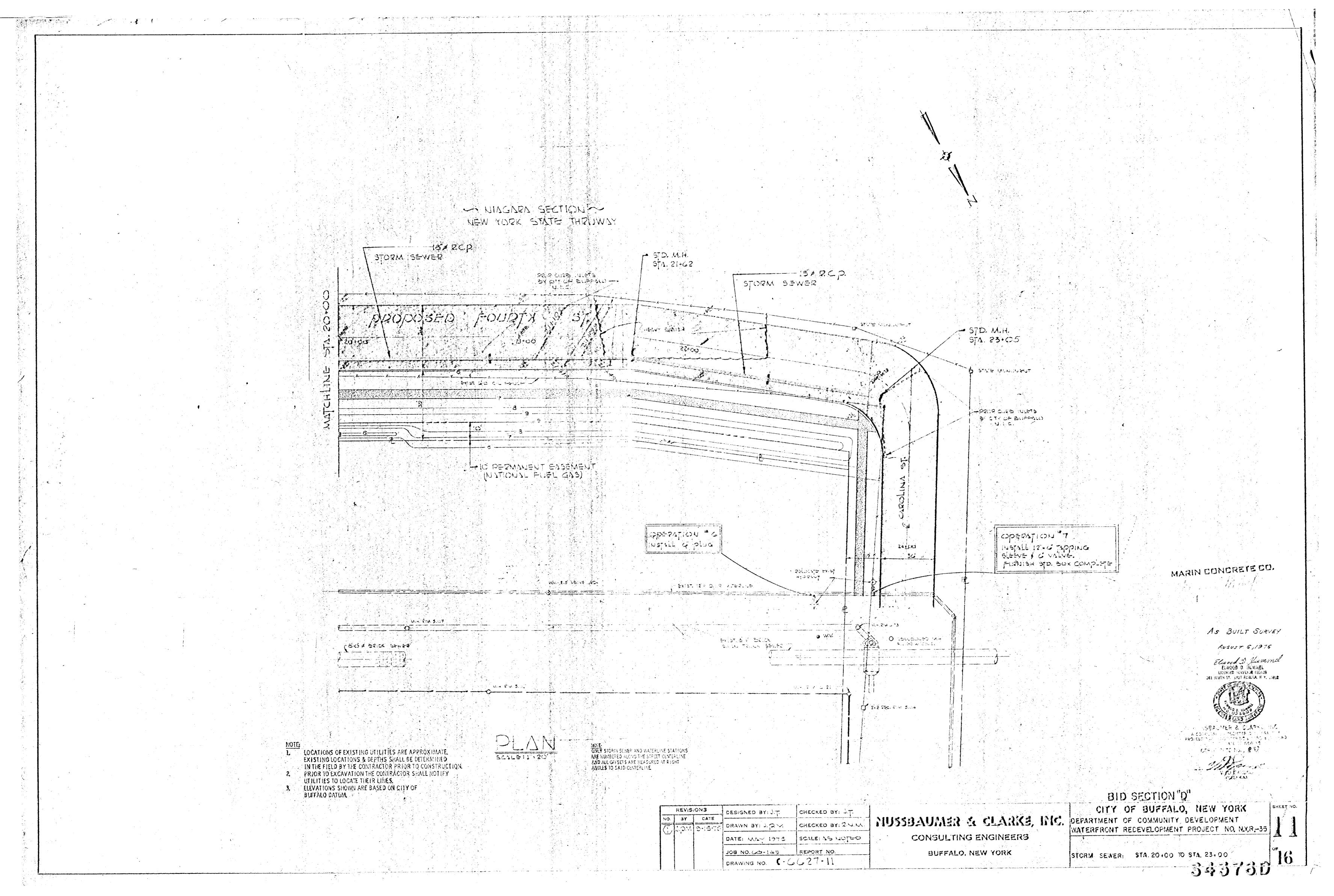
BUFFALO, NEW YORK
BUFFALO SEWER AUTHORITY
INTERCEPTING SEWER

DIVISION H
CANAL SECTION

SEWER SECTION

RECORD DRAWING
NOVEMBER, 1936 SUPPLEMENTARY SHEET NO.

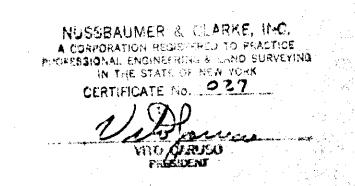

Waterfront Redevelopment Project No. N.Y. R-35, Utility Replacement Contract (1975)


CITY OR BUFRALO

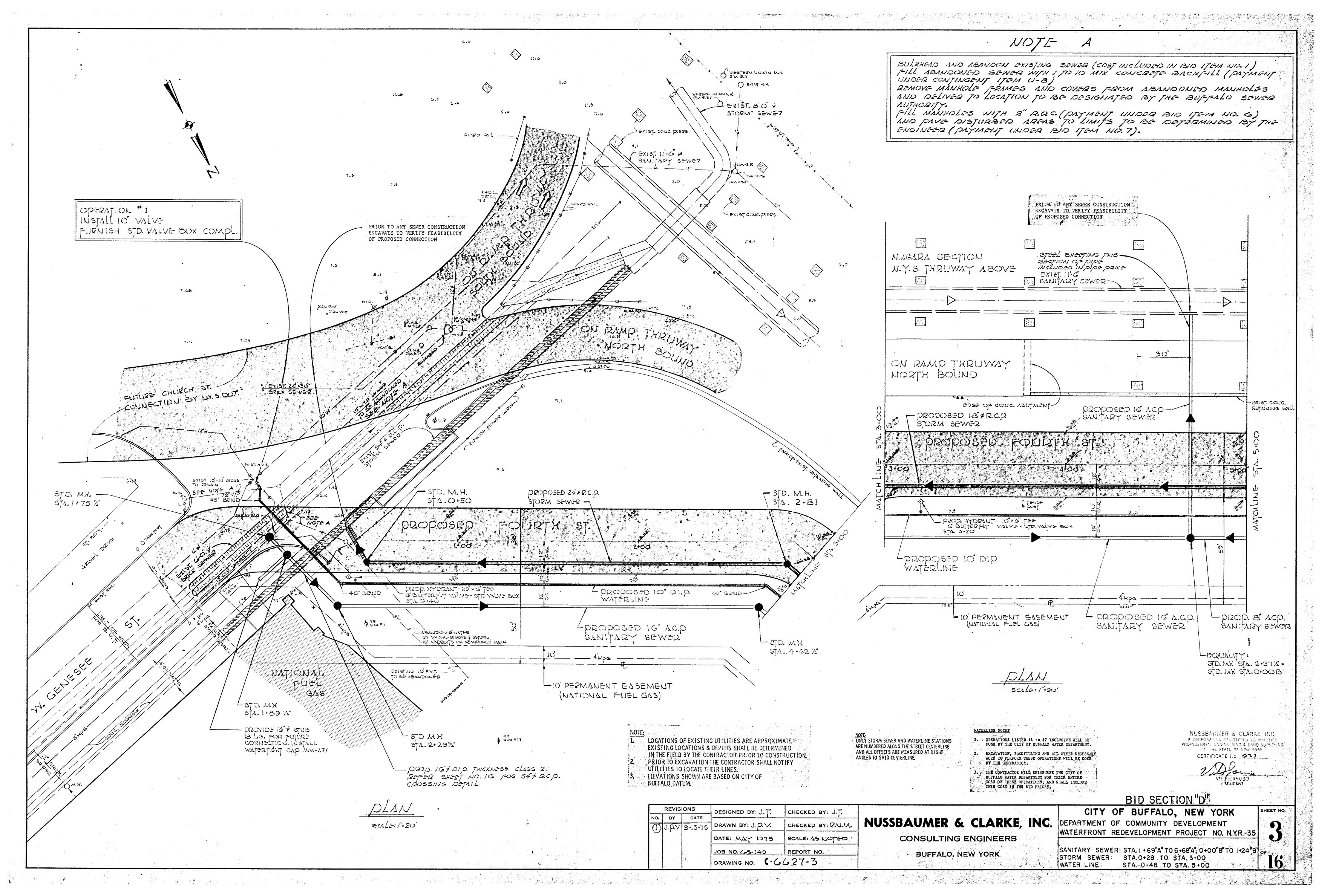
DEPARTMENT OF COMMUNITY DEVELOPMENT

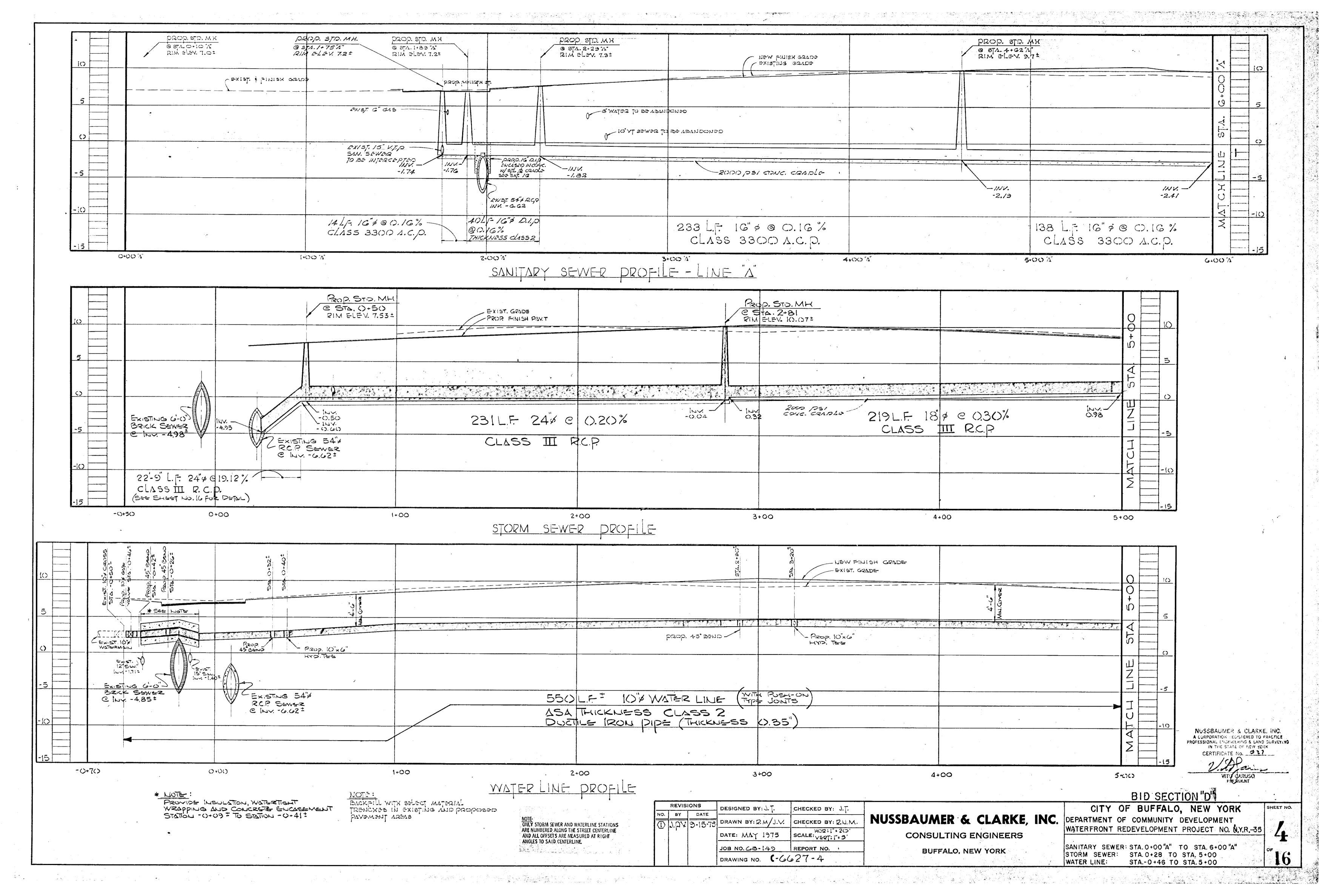
WATERFRONT REDEVELOPMENT PROJECT NO. N.Y. R-35

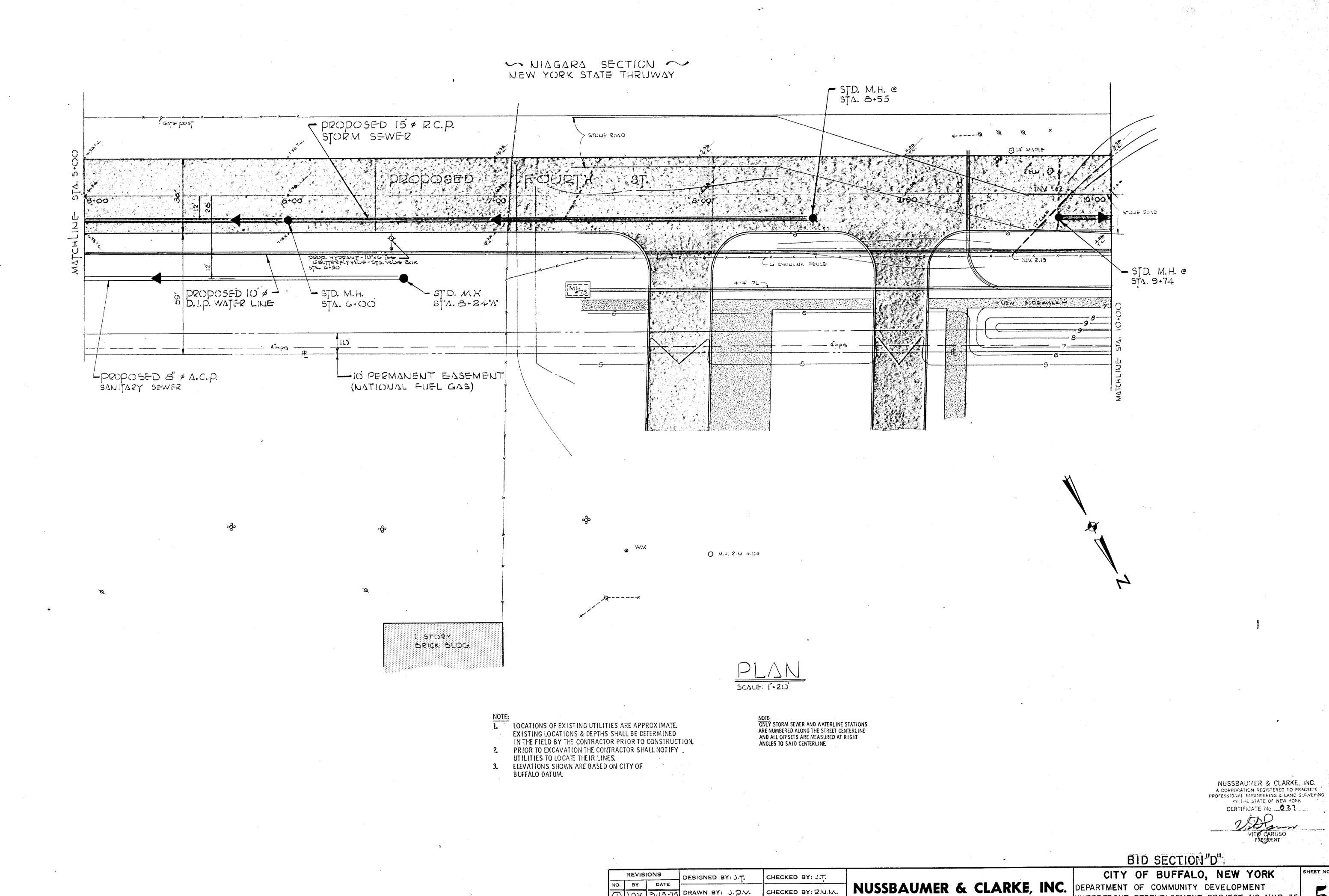
UTILITY REPLACEMENT CONTRACT


LIST OF DRAWINGS

BID SECTION D


DWG. NO.


•
OCK DETAILS FOR WATERLINES
R CONNECTION PIPE
INES
7


DESCRIPTION

	REVIS	IONS	DESIGNED BY: J.T.	CHECKED BY: J.T.
NO.	BY	DATE		-
0	JDV.	9-13-75	DRAWN BY: 1,0.V.	CHECKED BY: R.N.M.
			DATE: MAY 1975	SCALE: NONE
			JOB NO. 68-149	REPORT NO.
			DRAWING NO. C-C	.627-2

1 J.Q.V. 2-15-75 DRAWN BY: J.P.V.

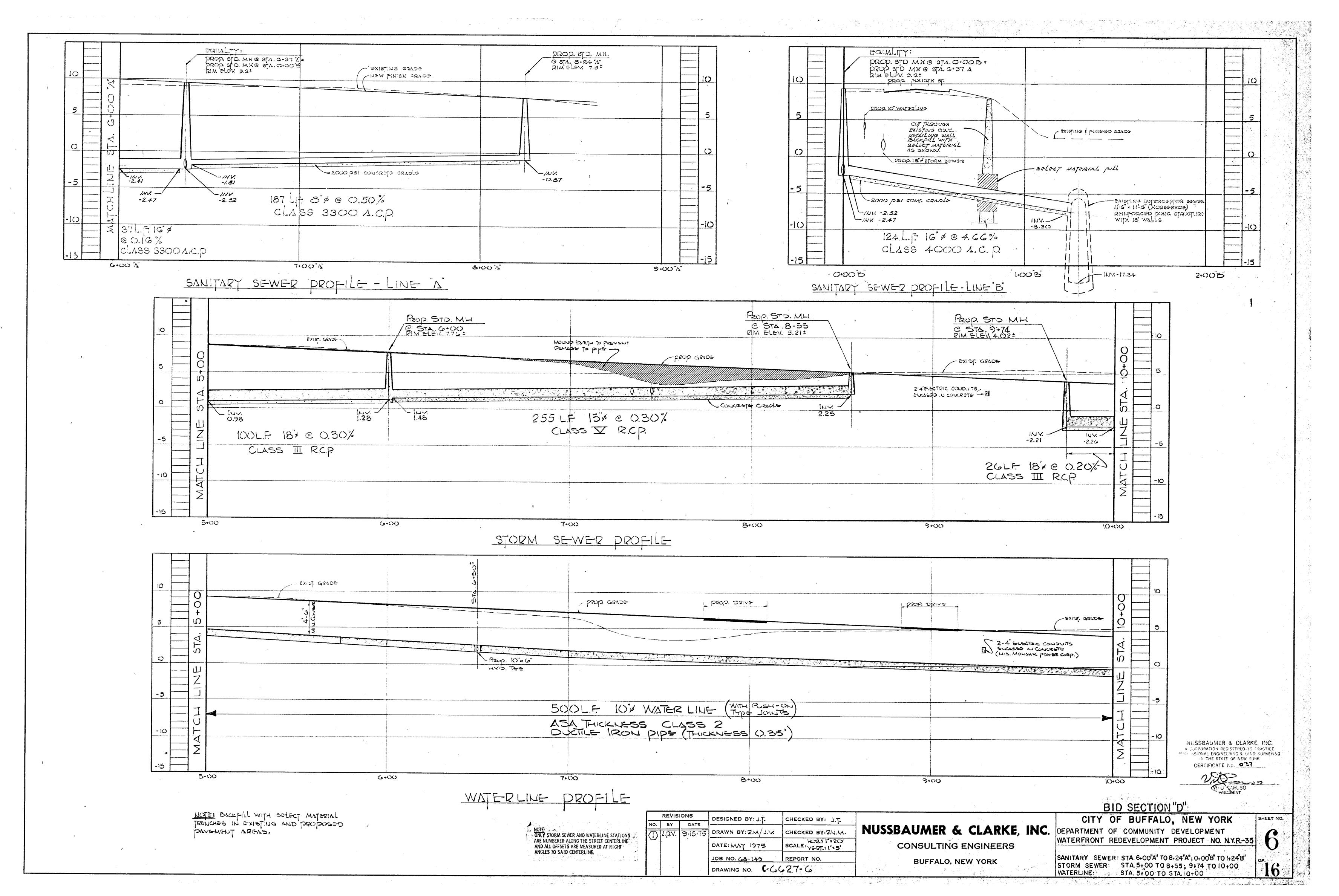
DATE: MAY 1975

JOB NO. 68-149

DRAWING NO. **(-**6627-5

CHECKED BY: Q.N.M.

SCALE: AS. NOTEO


CONSULTING ENGINEERS

BUFFALO, NEW YORK

WATERFRONT REDEVELOPMENT PROJECT NO. N.Y.R.-35 SANITARY SEWER: STA.6 + 68 "A" TO STA. 8+24 "A"

STORM SEWER: STA.5+00 TO 8+55; STA.9+74 TO 10+00

WATER LINE: STA.5+00 TO STA. 10+00

EXIST. 11-6 SANITARY SEWER NEW YORK STATE THRUWAY EX. M.H. PIM 4,49 - STD. M.H.@ STA. 13+23 STONE BOND PROPOSED 18" * R.C.P. PROPOSED 24" & R.C.P. STORM SEWER PROP CURB INLETS
BY CITY OF BUFFALO
N.I.C. 10+00 11+00 12+00 PROP. HYDRANT-10"x6"TEE
6" BUTTERFLY VALVE-STO. VALVE BOX
STA. 10+20 L PROPOSED 10 \$ D.1.P. 4-4" PL. NEW SIDEWALK (NATIONAL FUEL GAS) O M. H. RIM 4.21 O SAU. M. - RIM 3.97 O ST. M.H. REM 4.80 NOTEONLY STORM SEWER AND WATERLINE STATIONS
ARE NUMBERED ALONG THE STREET CENTERLINE
AND ALL OFFSETS ARE MEASURED AT RIGHT
ANGLES TO SAID CENTERLINE EXISTING LOCATIONS & DEPTHS SHALL BE DETERMINED
IN THE FIELD BY THE CONTRACTOR PRIOR TO CONSTRUCTION.
PRIOR TO EXCAVATION THE CONTRACTOR SHALL NOTIFY
UTILITIES TO LOCATE THEIR LINES.
ELEVATIONS SHOWN ARE BASED ON CITY OF
BUFFALO DATUM. O MH.

REVISIONS

DESIGNED BY: J.T.

DATE: MAY 1975

JOB NO. 68-149

DRAWING NO. C.6627.7

J.D.V. 9.15-75 DRAWN BY: J.D.V.

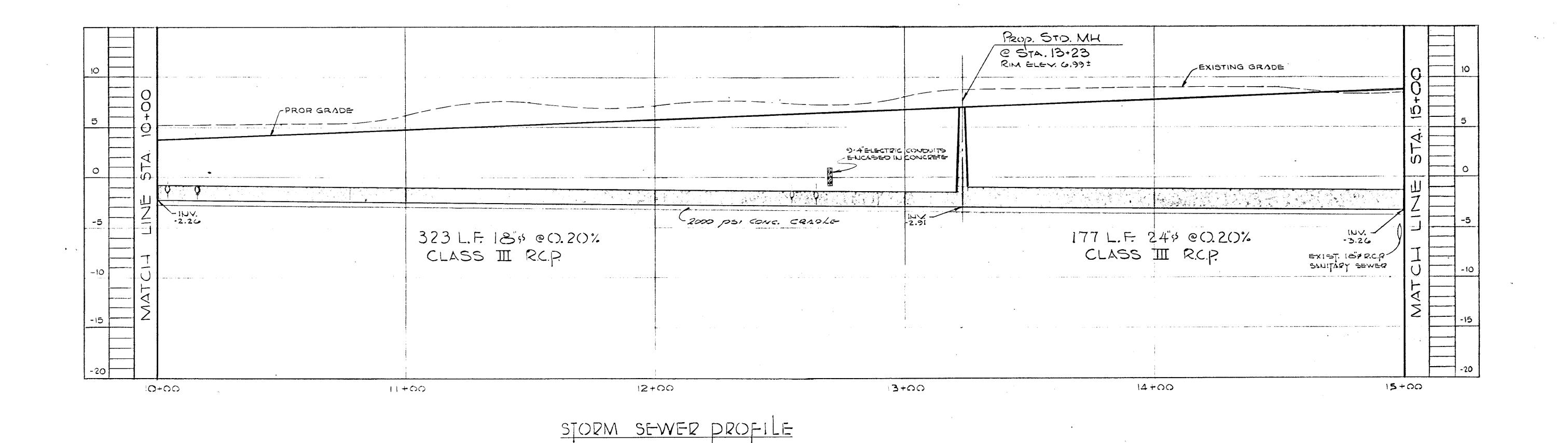
CHECKED BY: J.T.

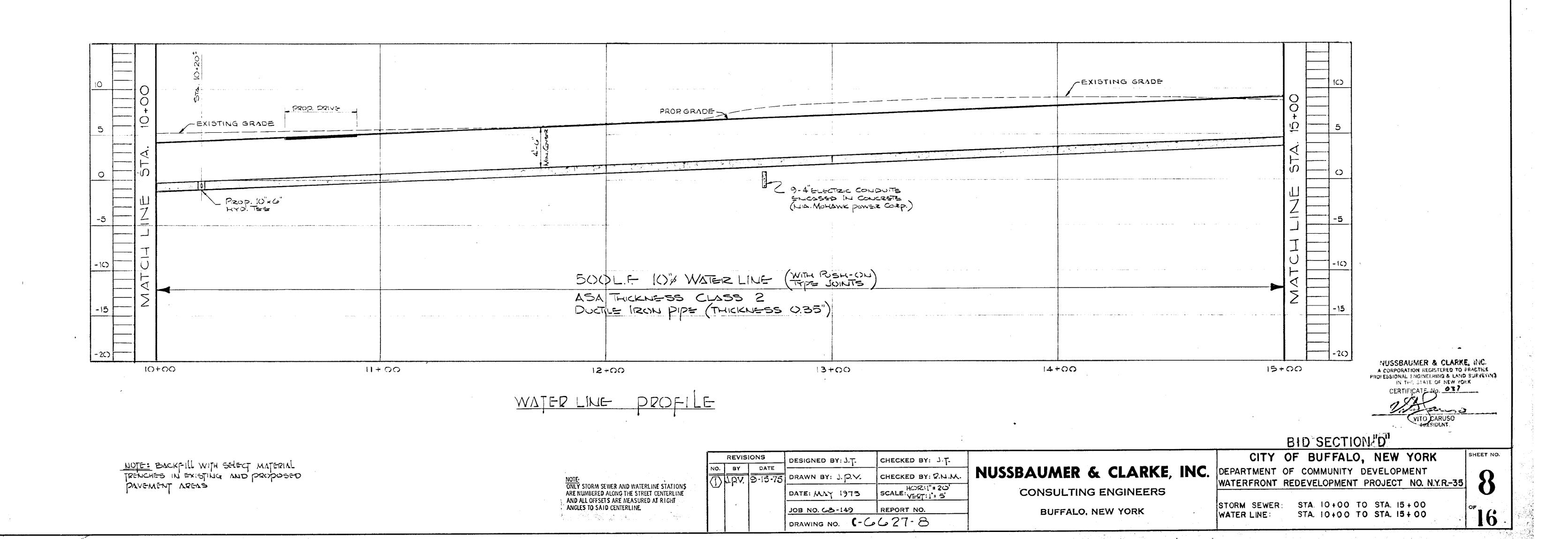
CHECKED BY: Q.N.M.

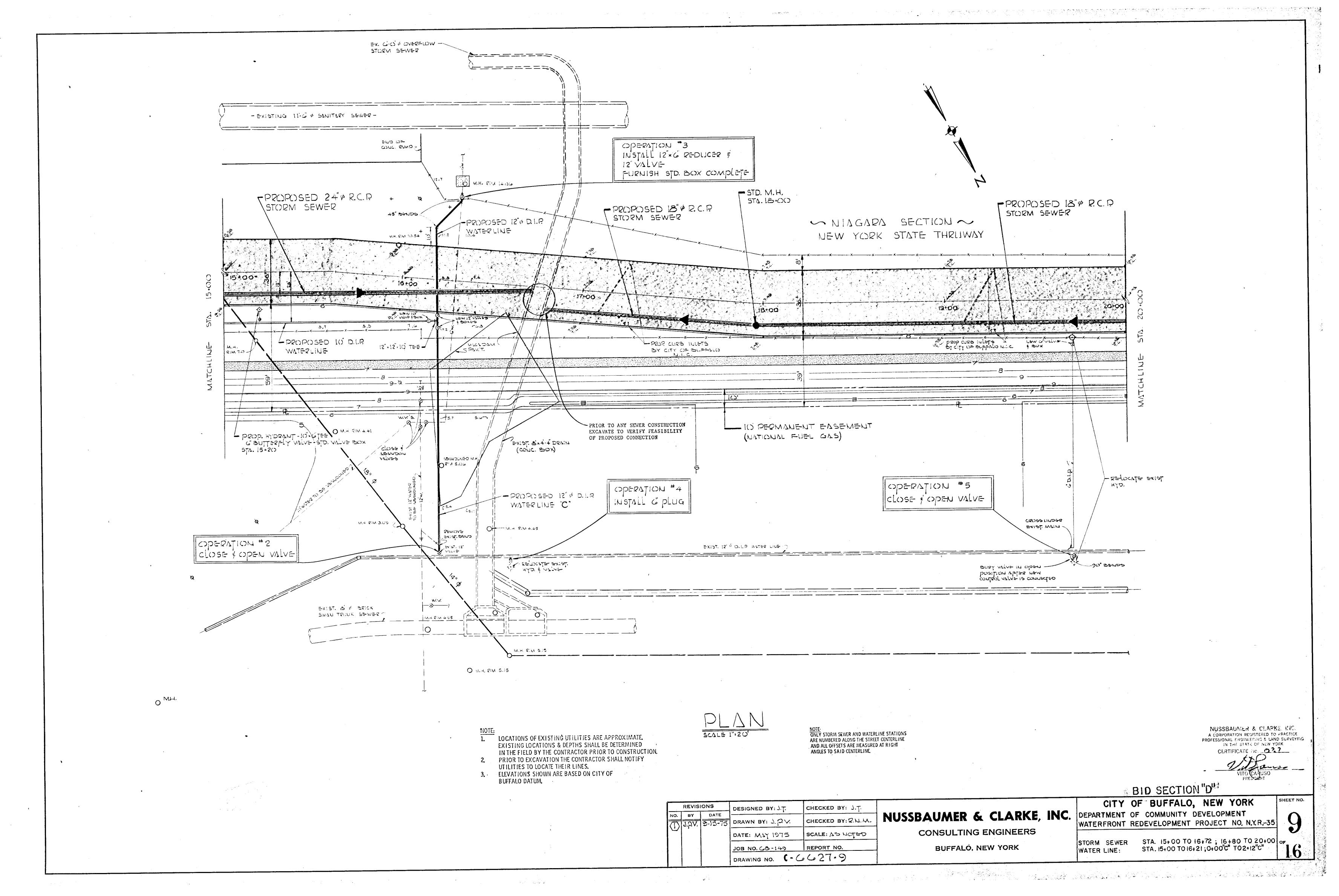
SCALE: AS NOTED

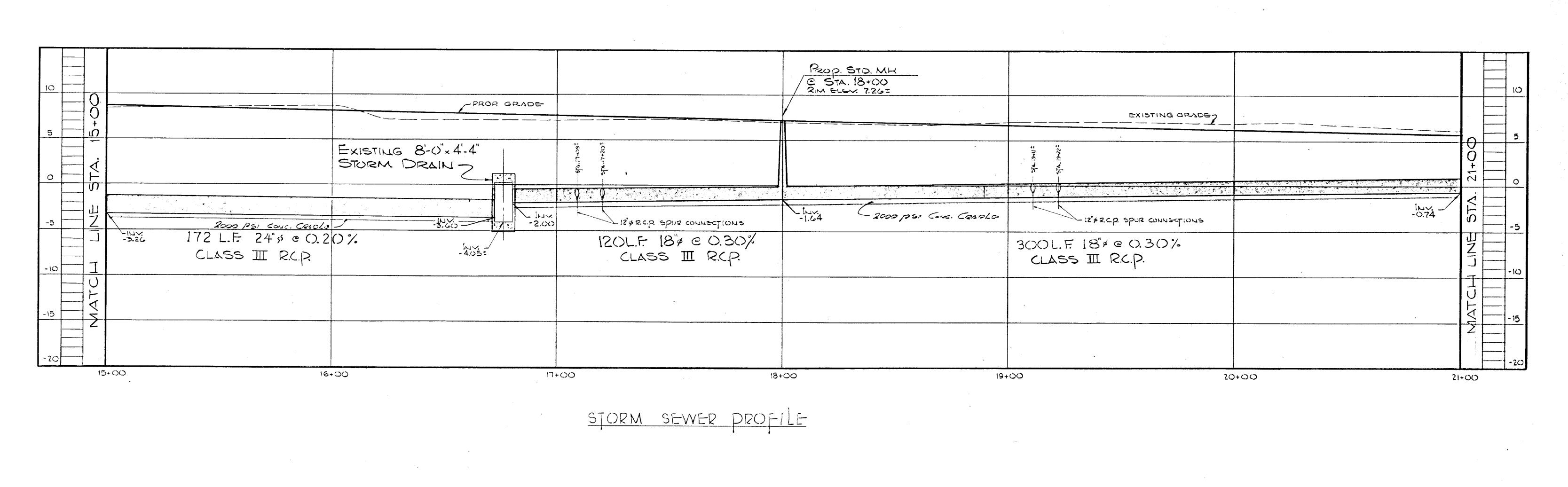
REPORT NO.

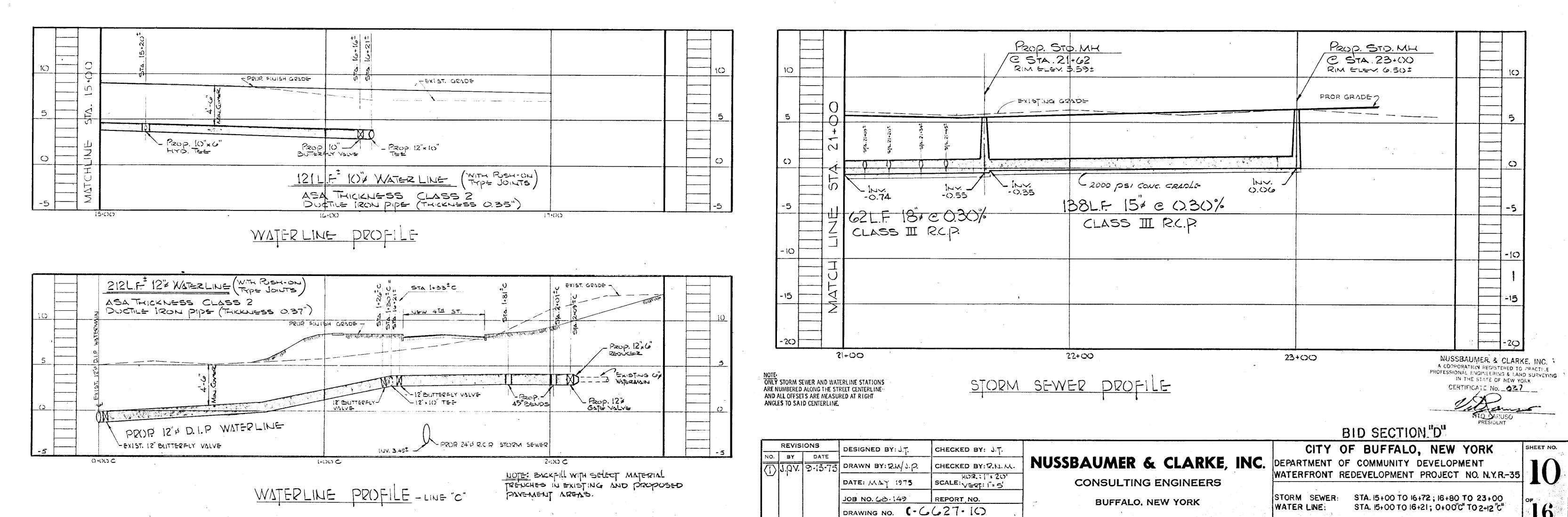
CONSULTING ENGINEERS

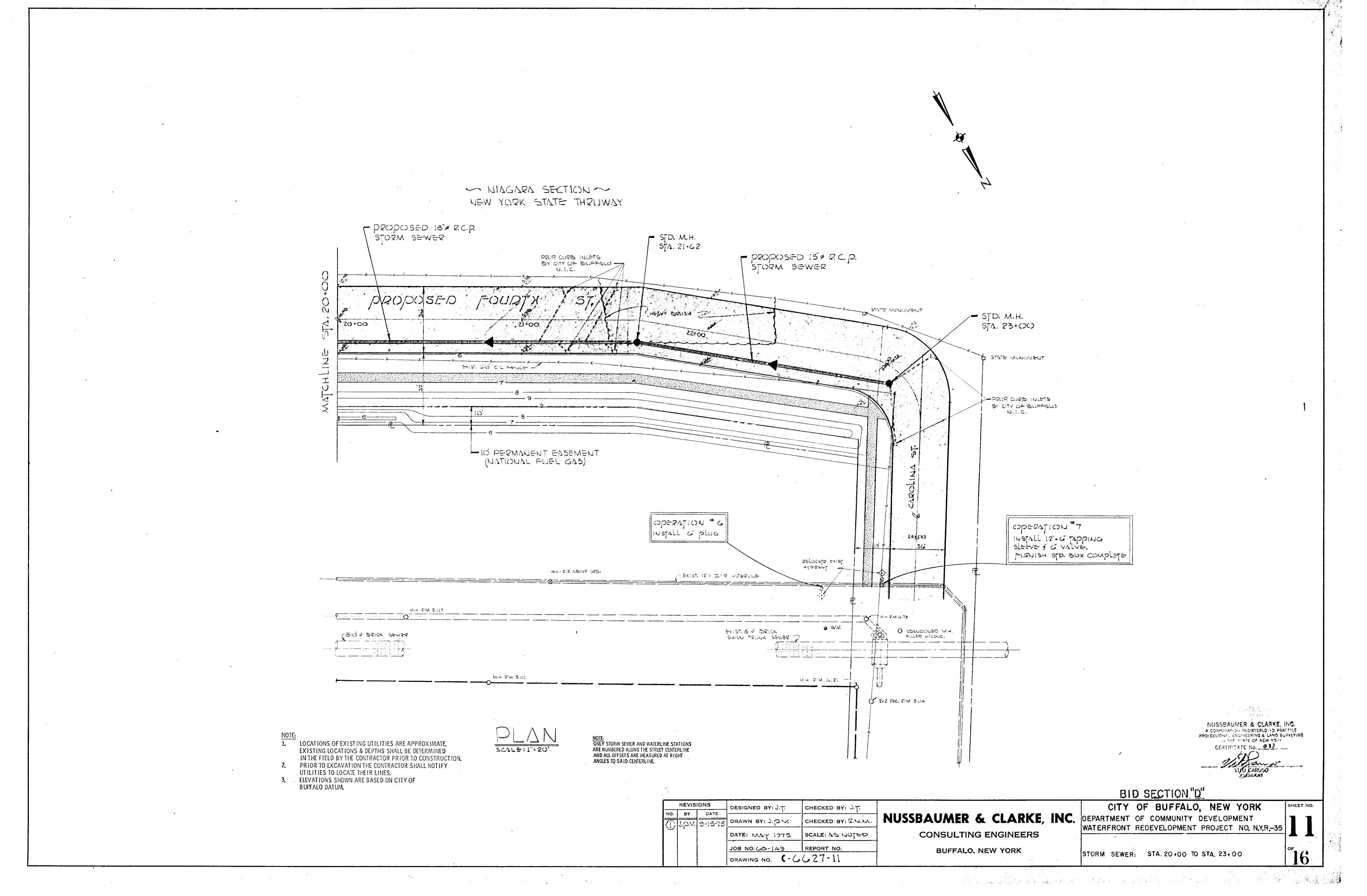

BUFFALO, NEW YORK

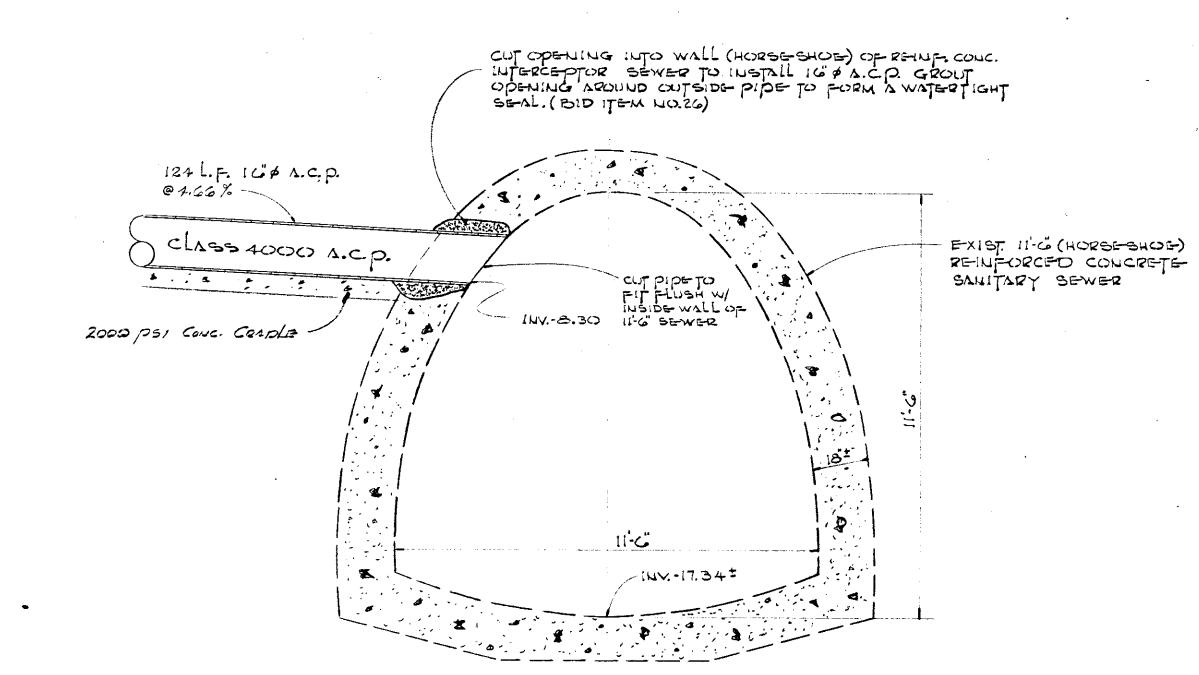

NUSSBAUMER & CLARKE, INC.
A CORPORATION REGISTERED TO PRACTICE
PROFESSIONAL ENGINEERING & LAND SURVEYING
IN THE STATE OF NEW YORK
CERTIFICATE NO.

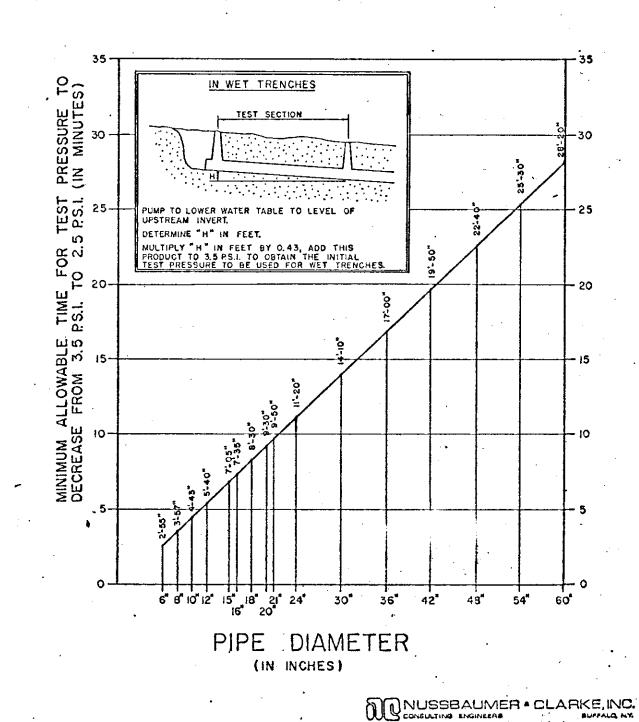

BID SECTION "D"


CITY OF BUFFALO, NEW YORK NUSSBAUMER & CLARKE, INC. DEPARTMENT OF COMMUNITY DEVELOPMENT WATERFRONT REDEVELOPMENT PROJECT NO. N.Y.R.-35


STORM SEWER: STA. 10+00 TO STA. 15+00 WATER LINE: STA. 10+00 TO STA. 15+00







PROPOSED SANITARY SEWER CONNECTION TO EXISTING INTERCEPTOR SEWER @ STA. 1+24 "B" SCALE: 78:1

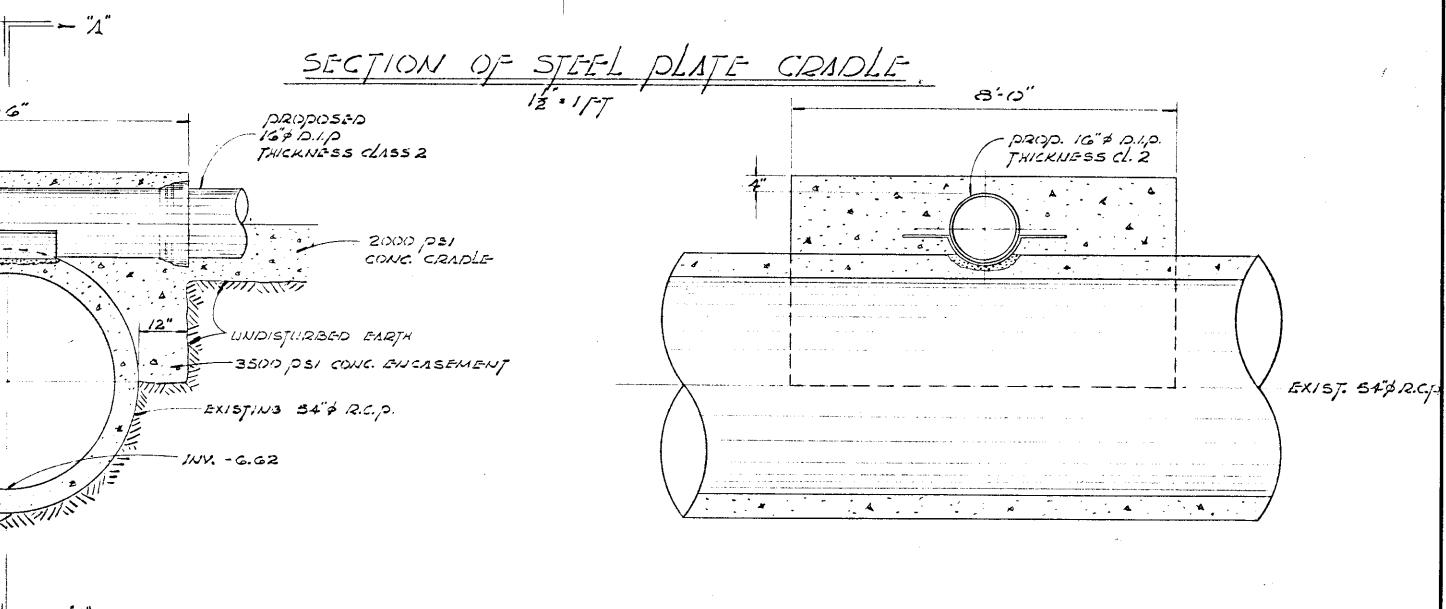
ACCEPTABLE TESTING CURVE (USING 3.5 P.S.I. INITIAL AIR PRESSURE) (DRY TRENCHES)

SEC710

8'0" + SECTION D.1.p. ENCASED IN CONC. —

É STEEL PLATE CRAPLE TO BE GROUTED INTO TOP OF EXIST. 54" P.C.D. ENCASE WITH CONCRETE AS SHOWN EXIST. 54 # RE-INF. CONC.
STORM SEWER

INV. 4.95


INV. 4.95

CLASS TH. R.C.P.

CLAS

PROPOSED STORM SEWER CONNECTION TO EXISTING 54" & STORM SEWER @ STA. 0+28 SCALE: 1/2:1"

SHOP PAINT ALL EXPOSED CRAPLE
SURFACES WITH (1) COAT OF KOPPERS
G54 TOXIC PRIMER SHOP COAT AND
(2) COATS OF KOPPERS BIJUMASTIC
NO. 300-M

SECTIONAL VIEW

CROSSING DETAIL AT STA. 1+98 "A"

BID SECTION "D"

REVISIONS

NO. BY DATE

DRAWN BY: J. P. CHECKED BY: J.T.

DRAWN BY: J. P. CHECKED BY: P.M.M.

DATE: MAY 1975 SCALE: AS NOTED

JOB NO. C8-149 REPORT NO.

DRAWING NO. C-GG27-16

NUSSBAUMER & CLARKE, INC.

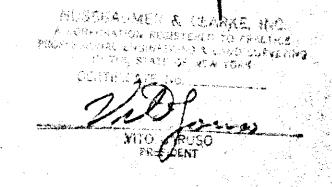
CONSULTING ENGINEERS

BUFFALO, NEW YORK

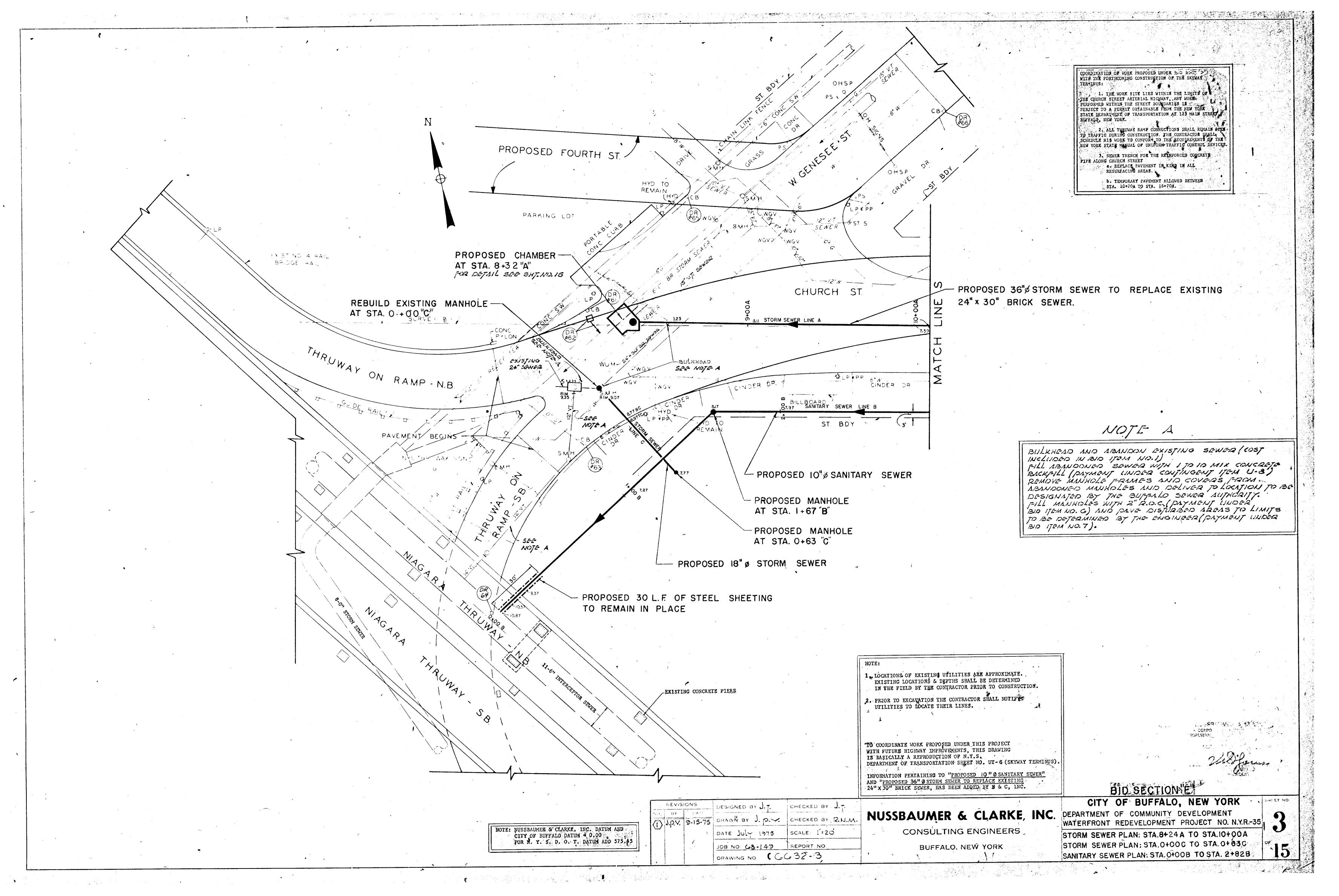
CITY OF BUFFALO, NEW YORK
DEPARTMENT OF COMMUNITY DEVELOPMENT
WATERFRONT REDEVELOPMENT PROJECT NO. N.Y.R.-35

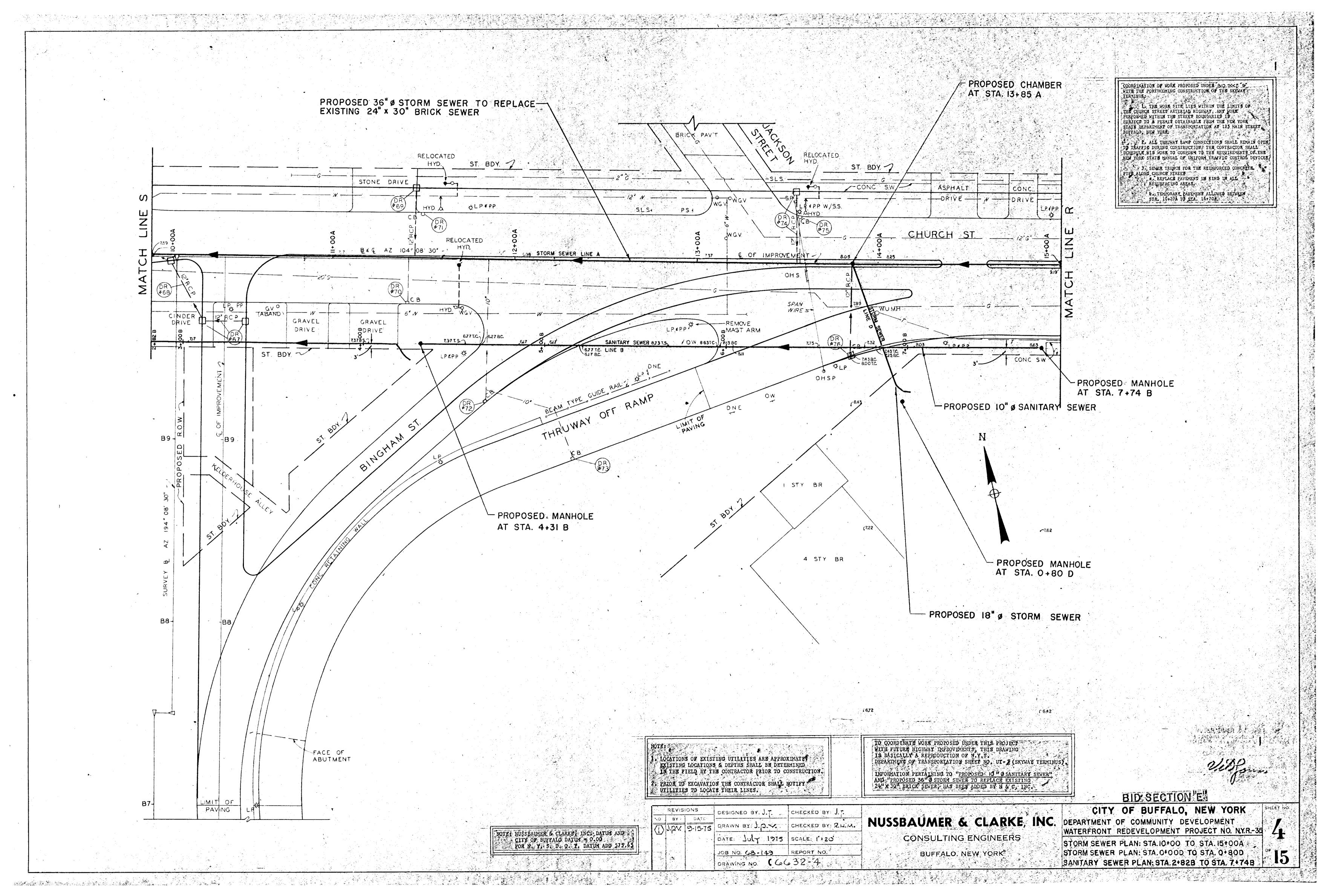
MISCELLANEOUS DETAILS

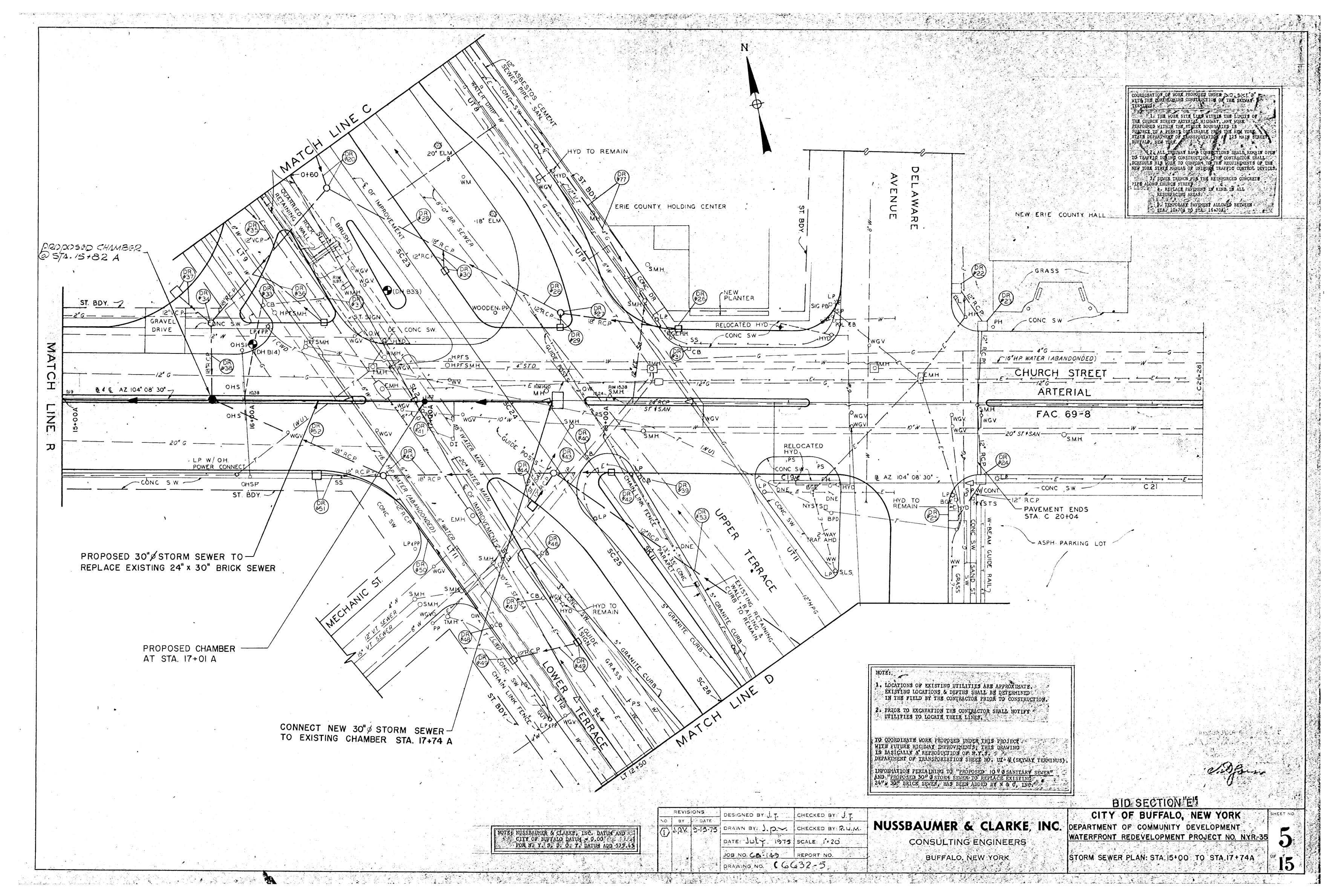
16°16

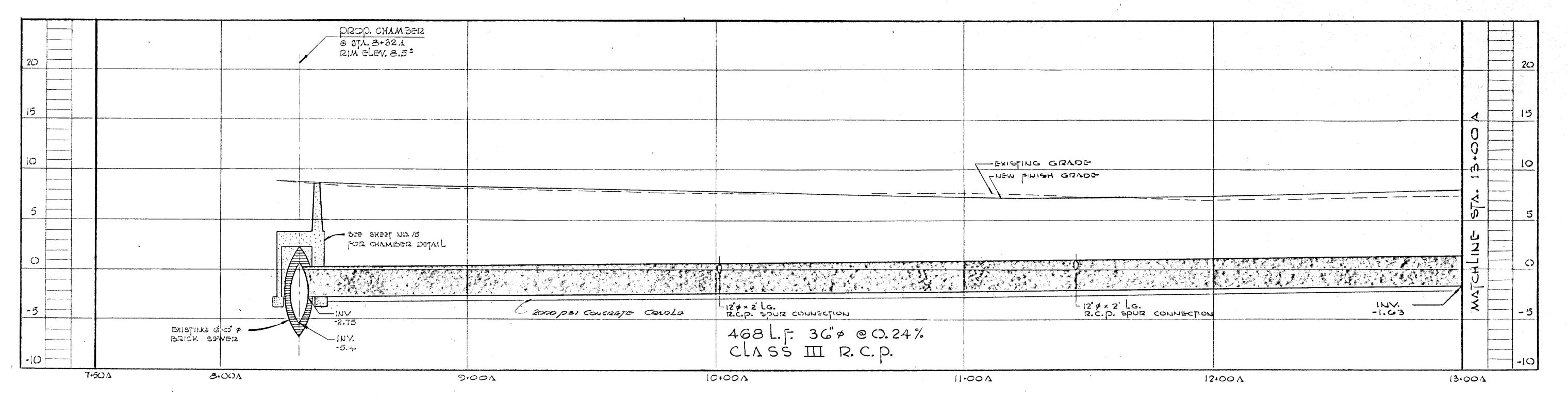

LIST OF DRAWINGS

BID SECTION E

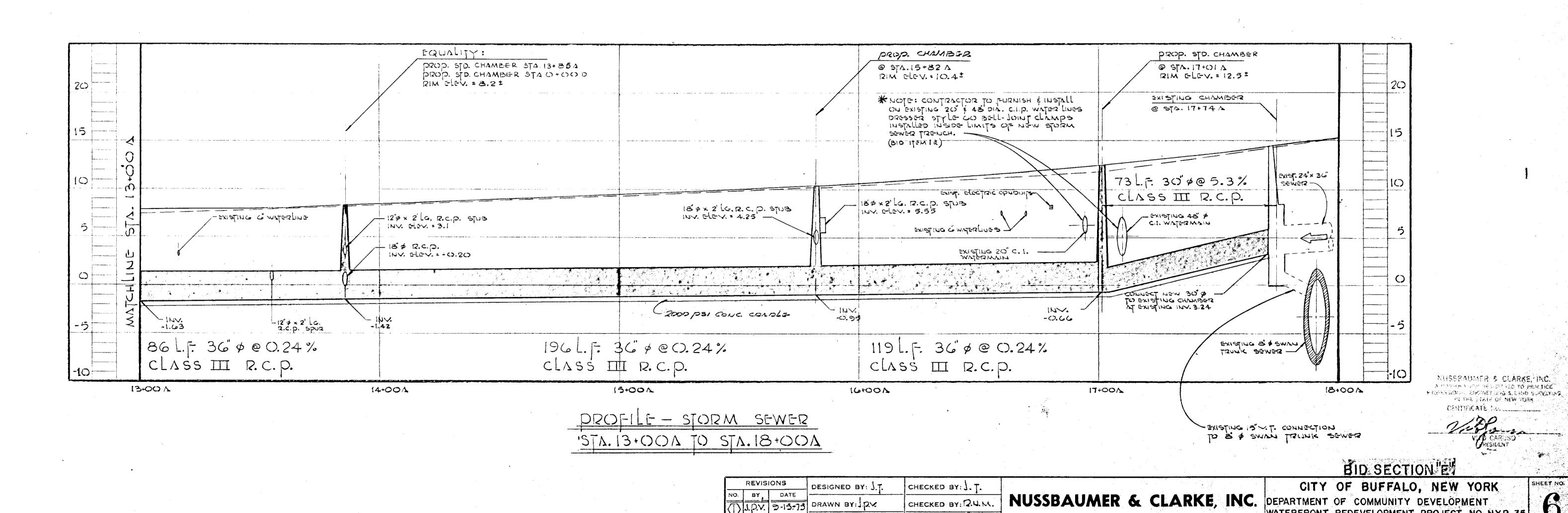

DWG. NO.


DESCRIPTION


/	TITLE SHEET
2	LIST OF DRAWINGS
<i>3</i>	PLAN: STA. 8+32 A TO STA. 10+00A STA. 0+00B TO STA. 2+82B STA. 0+00C TO STA. 0+63C
4	PLAN: STA. 10+00A TO STA. 15+00A STA. 2+82B TO STA. 7+74B STA. 0+00D TO STA. 0+80D
<i>5</i>	PLAN: STA. 15+00A TO STA. 17+74A
6	PROFILE: STA.8+04A TO STA. 17+74A
7	PROFILE: STA. 0+00B TO STA. 7+74B STA. 0+00C TO STA. 0+63C STA. 0+00D TO STA. 0+80D
8	PLAN AND PROFILE WATER LINE: STA. 0+00W TO STA. 3+00W
9	STANDARD PRECAST MANHOLE DETAIL AND SPUR CONNECTION PIPE
10	MANHOLE FRAME AND COVER DETAILS
//	TRENCH DETAILS FOR SEWER AND WATER LINES
12	HYDRANT, VALVE AND TEE DETAILS; THRUST BLOCK DETAILS FOR WATER LINES
<i>13</i>	MISCELLANEOUS DETAILS
14	STORM CHAMBER DETAILS
<i>15</i>	STORM CHAMBER DETAIL AT STA. 8+32 A



REVISIONS		REVISIONS DESIGNED BY: J.T.		CHECKED BY: J.T.	
NO.	вү	DATE			
			DRAWN BY: J. p.V.	CHECKED BY: R.N.M.	
			DATE: July 1975	SCALE: NONE	
		• •	JOB NO. 63 - 149	REPORT NO.	
	;]		province of CCC	30-0	



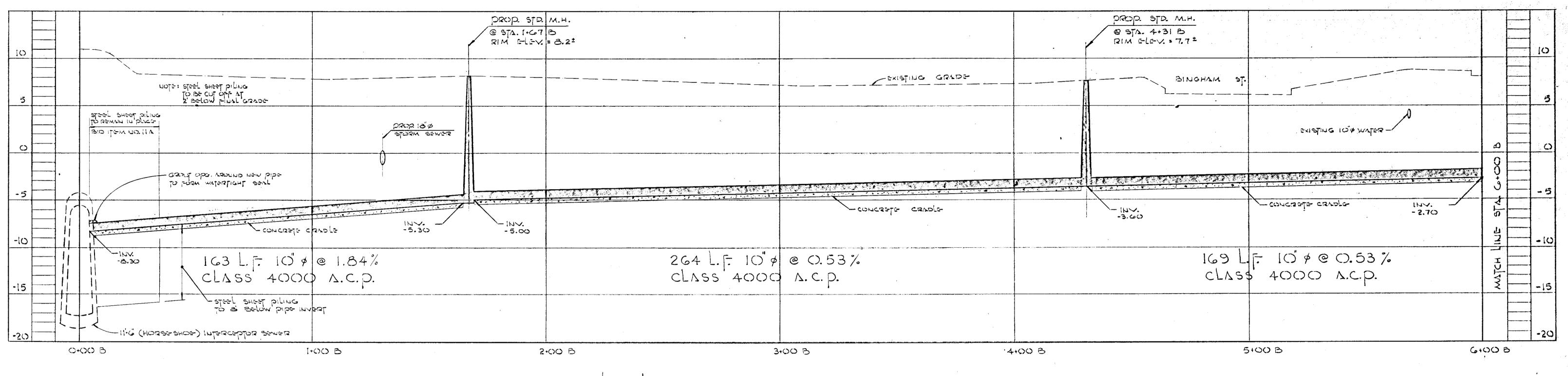
PROFILE - STORM SEWER STA. 7+50A TO STA. 13+00A

CHECKED BY D.N.M.

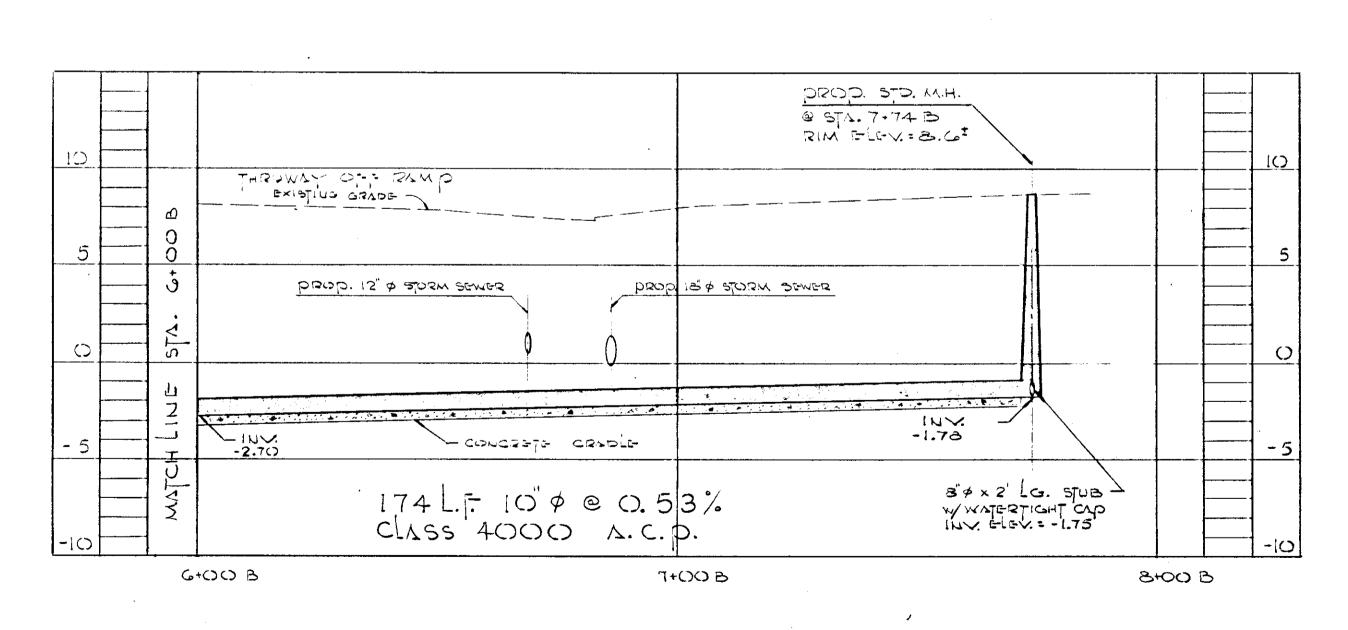
CONSULTING ENGINEERS

SCALE: HUR. 1'20'

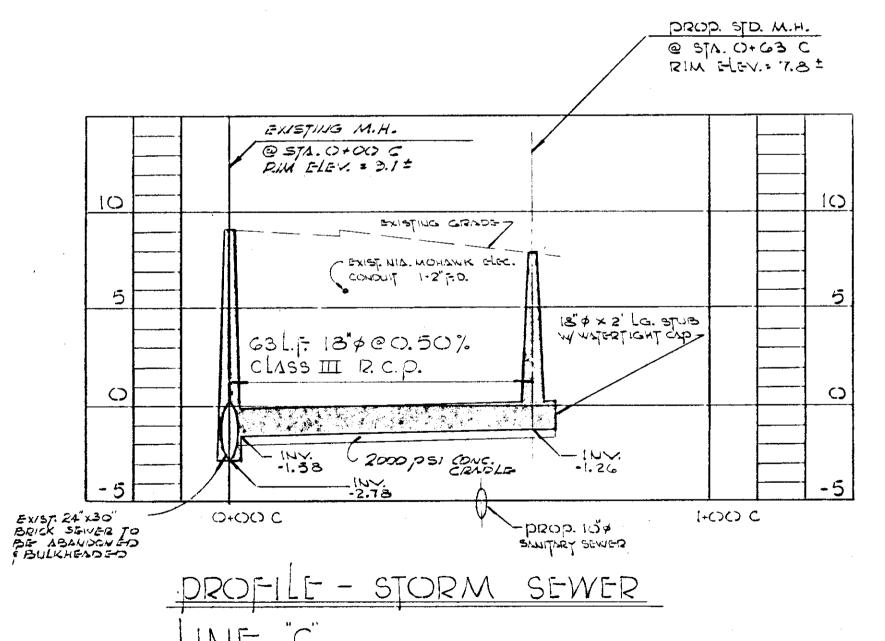
REPORT NO.

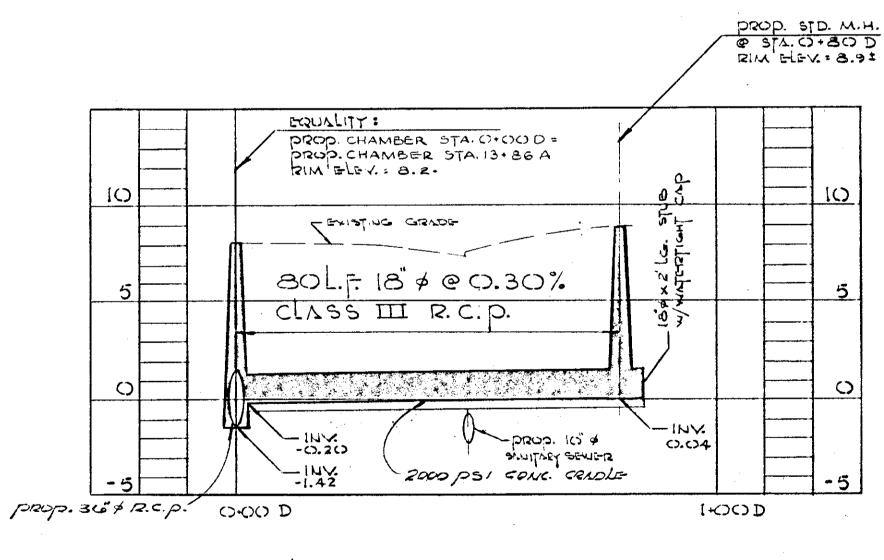

DATE: JULY 1975

JOB NO. 68 - 149


DRAWING NO. (6632-6

WATERFRONT REDEVELOPMENT PROJECT NO. N.Y.R.-35

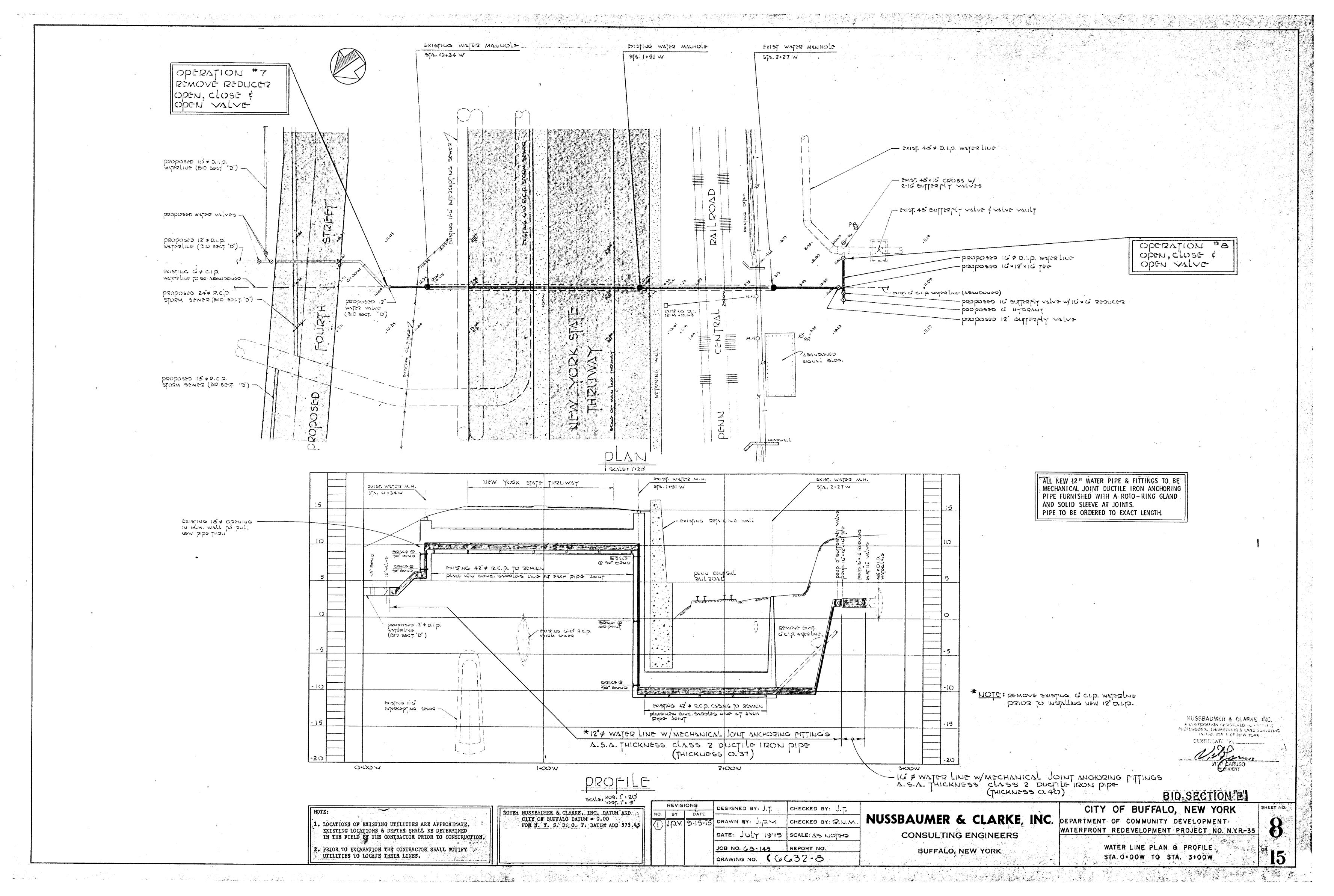

STORM SEWER PROFILE:STA. 8+32 A TO STA. 17+74A 5 15

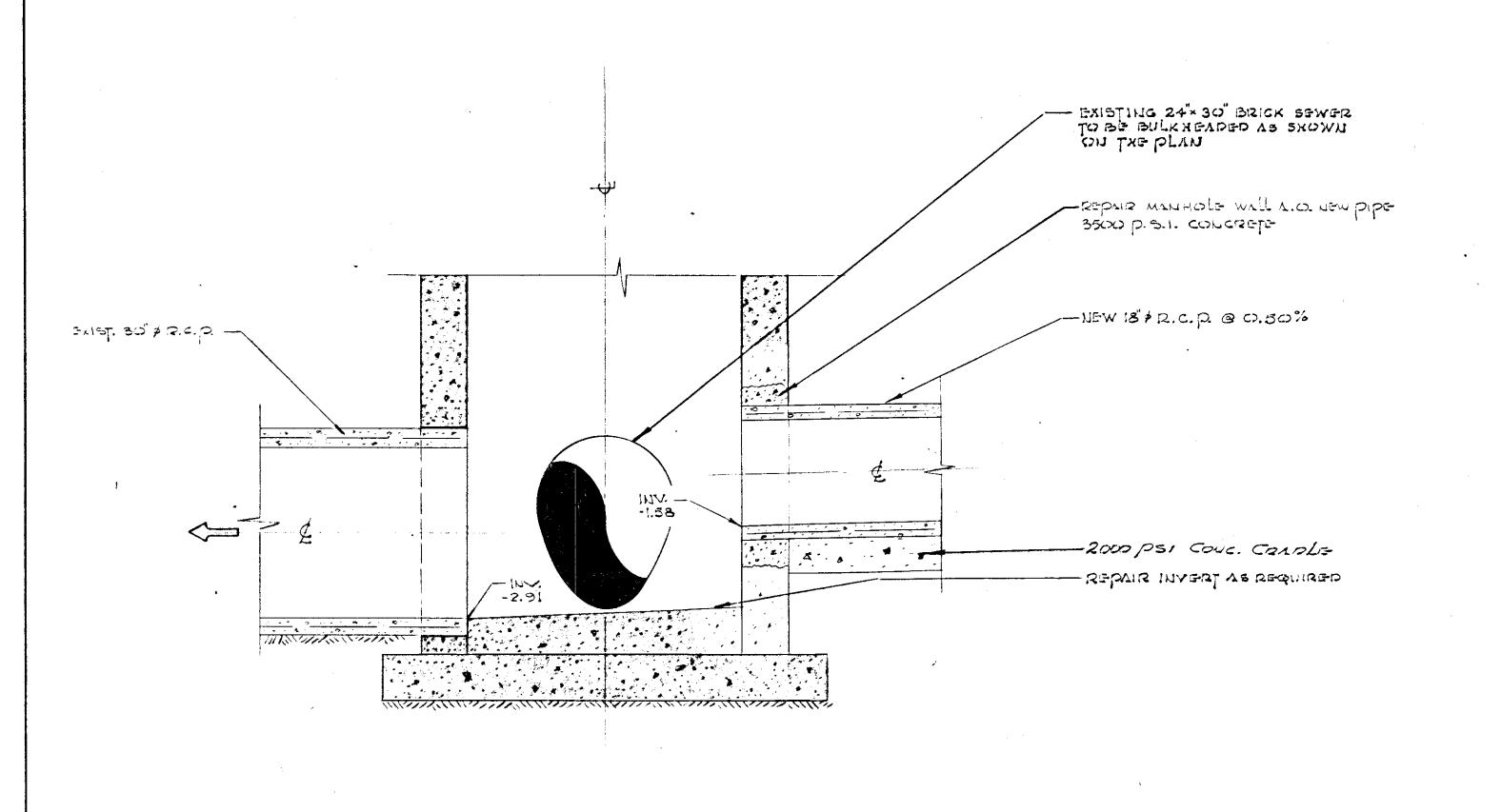


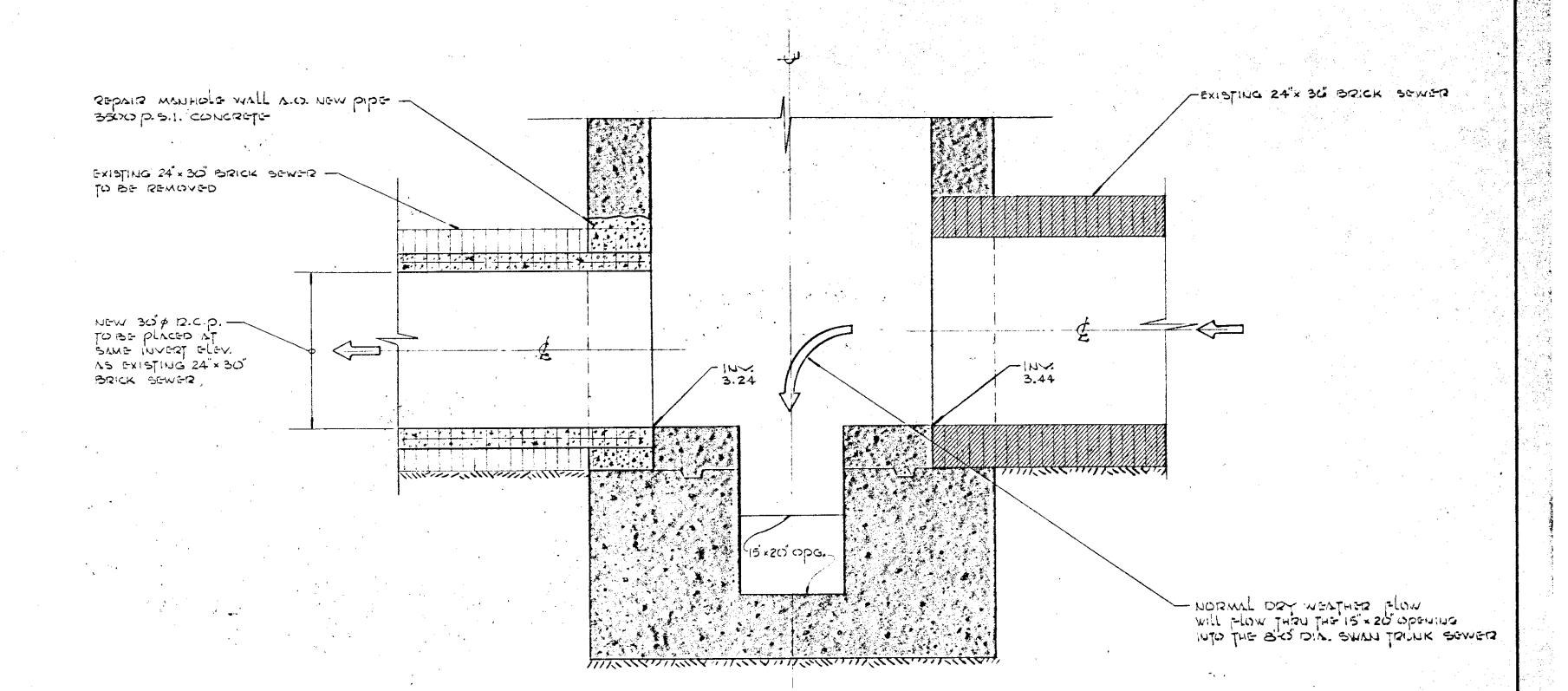
STA. O+OOB TO STA. 6+OOB

STA. 6+00 B TO STA. 8+00 B

DUSSEAUMER, & CLARME BYE CONTRACTOR RECOSTERED TO STRUCK TO CHOIM CHOINCERING & LAND SULLY THE DE THE CLASE OF SIDW YORK

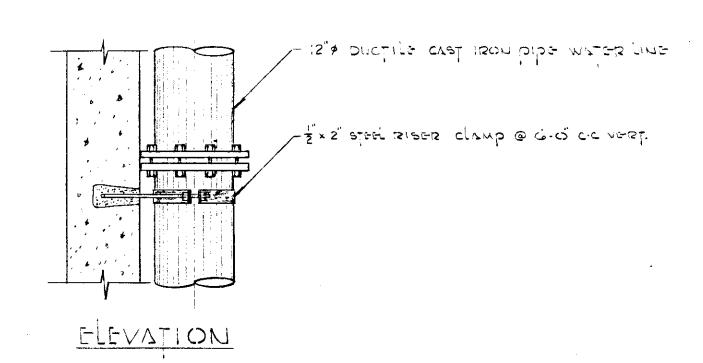

BID SECTION E


CHECKED BY: J.T. SCALE: VERT 1" = 20" DATE: JULY 1975 JOB NO. G8·149 DRAWING NO. 66632-7


NUSSBAUMER & CLARKE, INC. CONSULTING ENGINEERS

BUFFALO, NEW YORK

CITY OF BUFFALO, N.Y. DEPARTMENT OF COMMUNITY DEVELOPMENT WATERFRONT REDEVELOPMENT PROJECT N.Y.R.-35 STORM SEWER PROFILE: STA.0+000 TO STA.0+63C STORM SEWER PROFILE: STA.O+OOD TO STA.O+80D STORM SEWER PROFILE: STA.O+OOD TO STA. 7+74B SANITARY SEWER PROFILE; STA. 0+008 TO STA. 7+748


SOLE: 7:17.

D EXISTING MANHOLE @ STA.O+OO'C" W/MEW 18 & R.C.D. INLET SCALE: 3" = 1 FT.

EXISTING MANHOLE WALL W/ 2 - \$ \$ x 18" BENT AUCHORS

JUSTALL 15" FOLT AROUND PIPE

AT FACH CLAMP.

HORIZONIAL BRACING DETAIL @ WATER MANHOLES exyle: = : [7.

EXISTING CHAMBER @ STA. 17+74A W/NEW 30" & R.C.P. OUTLET -Existing 42" p R.C.p. CASING COMPLETE MY MASHERS & HIH MINTS REMOVE EXISTING G"C.I.P. WATERLINE.

CHIP AWAT EXISTING CONCRETE SADDLE.

GROUF \(\frac{3}{1}\psi \times \text{8"} \) STL. DOWELS INTO WALL

OF EXISTING 42" & R.C.P. USING NON-SHRINK GROUT.

POUR NEW CONCRETE SADDLE, INSTALL NEW 12" D.I.P.

WRAPPED WITH 15" FELT PAPER AT EACH NEW SADDLE.

DESIGNED BY: 1.T.

JOB NO. 68-149

DRAWING NO. (6632-13

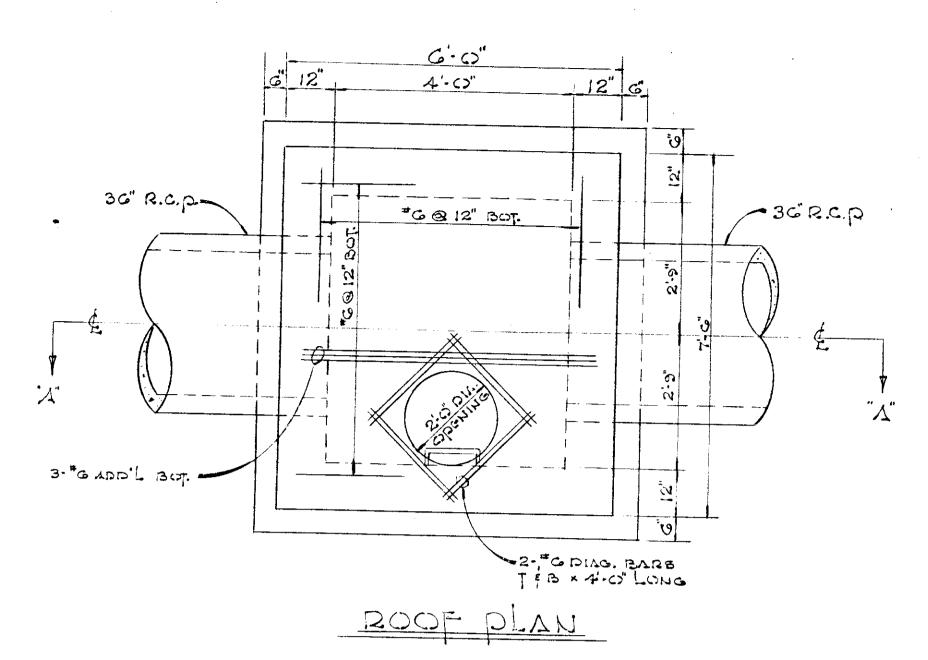
REPORT NO.

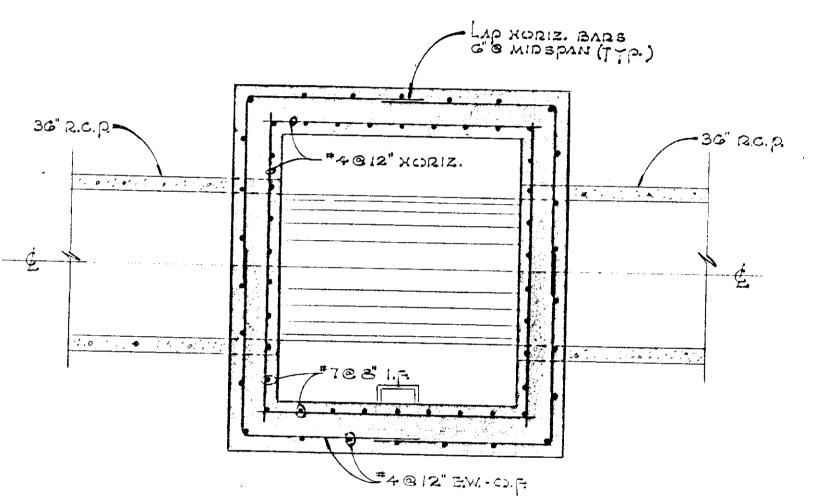
NO. BY DATE DRAWN BY: 10.

BRACING DETAIL FOR NEW 12" & WATER LINE IN EXISTING 42" + R.C.P. CASING scale: 12": 1 FT.

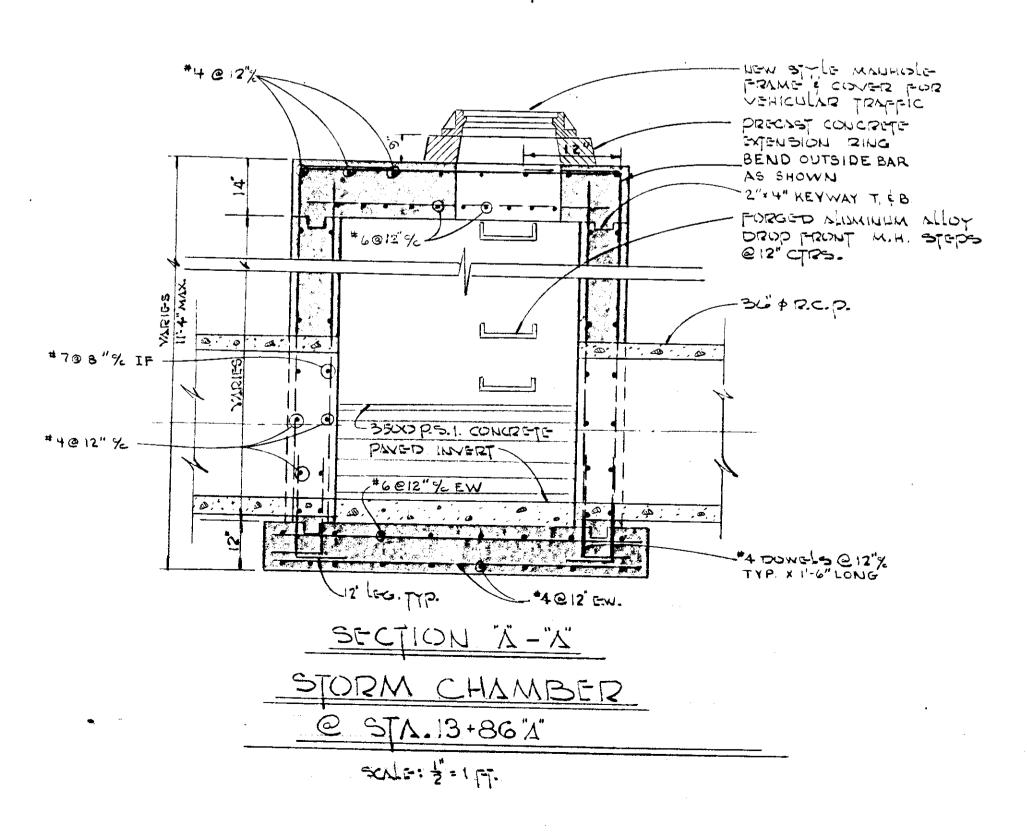
NUSSEAUMER & CLARKE INC.
A CONFIGRATION PSUIGTURED TO PROPERTY OF PROPERTY OF NEW YORK

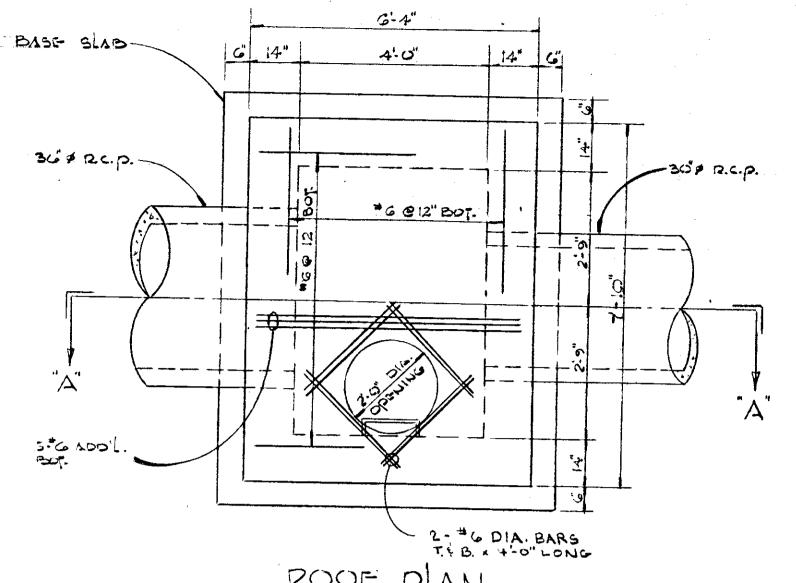
BID SECTION'E

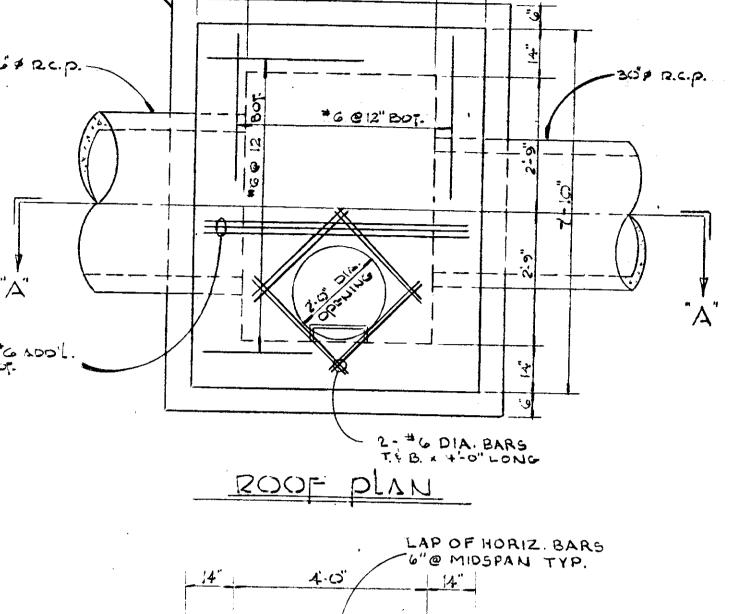

CHECKED BY: J.T. NUSSBAUMER & CLARKE, INC. CHECKED BY: P.N.M. CONSULTING ENGINEERS DATE: JULY 1975 SCALE: AS NOTED

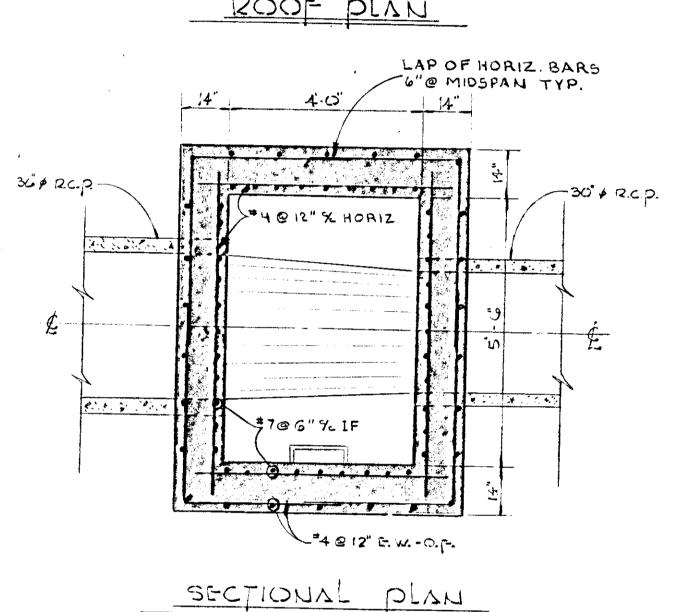

BUFFALO, NEW YORK

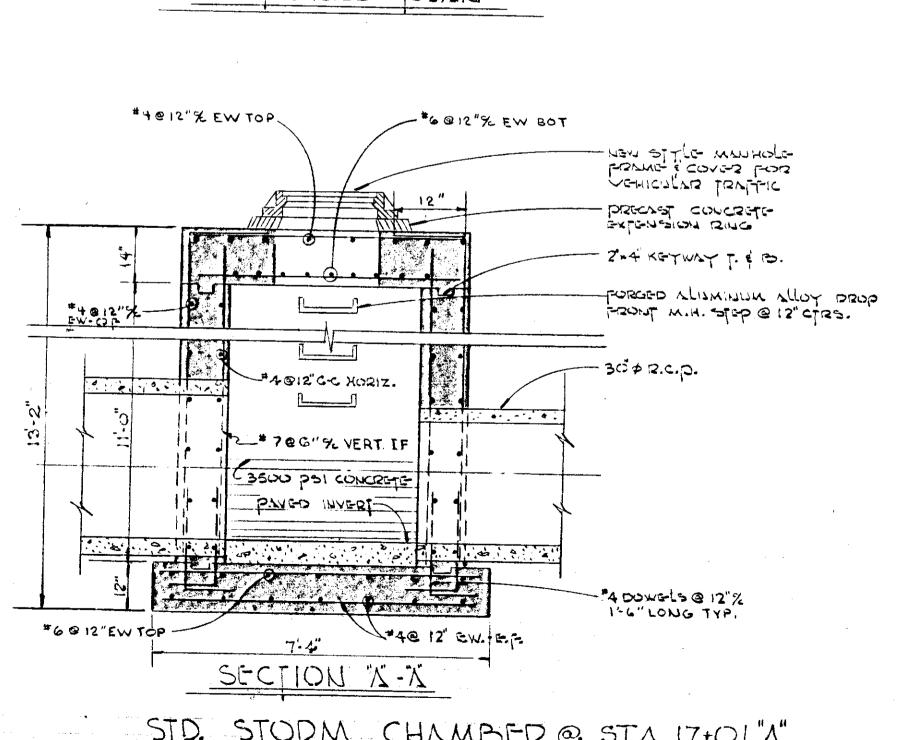
CITY OF BUFFALO, NEW YORK DEPARTMENT OF COMMUNITY DEVELOPMENT WATERFRONT REDEVELOPMENT PROJECT NO. N.Y.R.-35


MISCELLANEOUS DETAILS


15






SECTIONAL PLAN

STD. STORM CHAMBER @ STA. 17+01"". SCALE: 3"=1 PT.

REVISIONS			DESIGNED BY:			
NO.	ВY	DATE		CHECKED BY: J.T.		
	7.57	ව-15-75	DRAWN BY: J.D.V	CHECKED BY: ZUM.	ŀ	
			DATE: JULY 1975	SCALE: AS MOTETO		
			JOB NO. 63-149.			
				632-14		

NUSSBAUMER & CLARKE, INC. DEPARTMENT OF COMMUNITY DEVELOPMENT WATERFRONT REDEVELOPMENT PROJECT NO. N.Y.R. 35

BUFFALO, NEW YORK

NUSSBAUMER & CLARKE, INC.
A CORPORATION REGISTERED TO
PRACTICE PROFESSIONAL ENGINEERING
IN THE STATE OF NEW YORK

BID SECTION "E" CITY OF BUFFALO, NEW YORK

"GER @ 4 SIDES OF OPENING

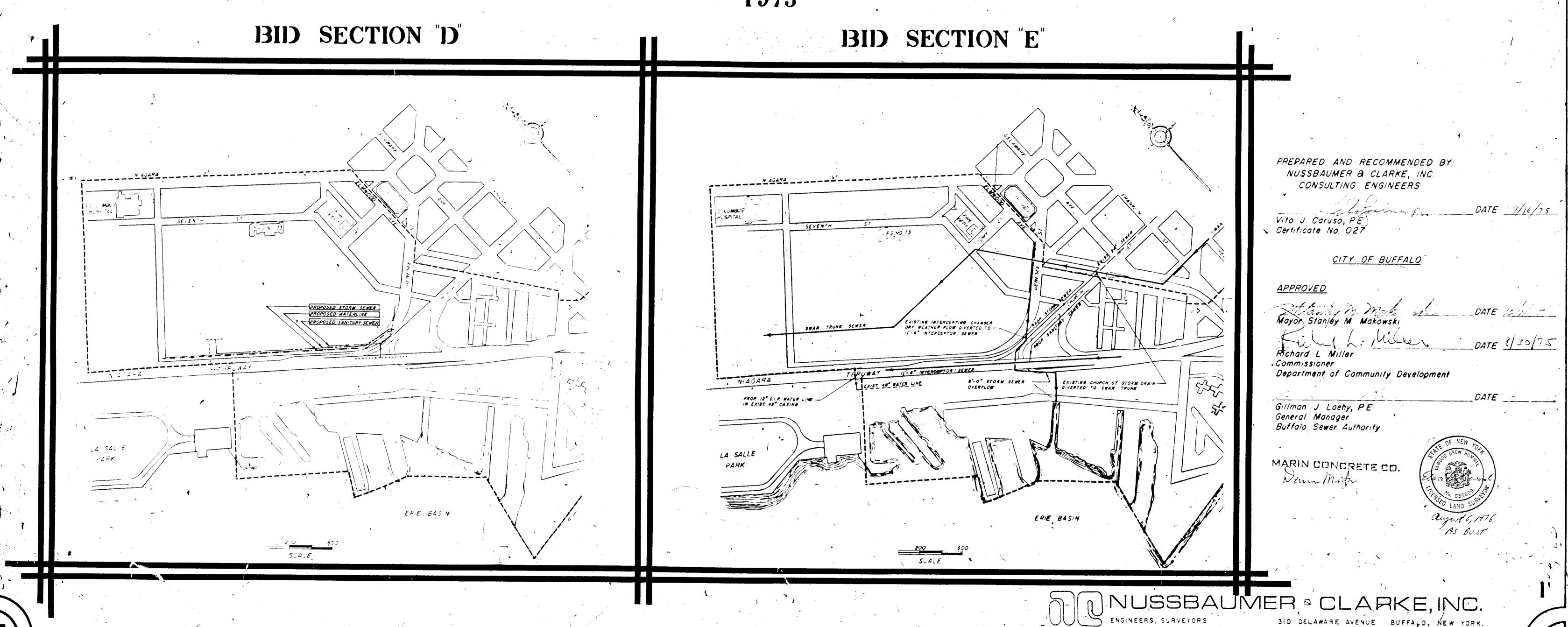
WALL REINFORCEMENT

2" Top of roof slab & base slab 12" Bullon of roof slab 3" rollon of base slab 2" Walls

RE-STEEL COVER

SHEET NO.

STORM CHAMBER DETAILS


CITY OF BUFFALO

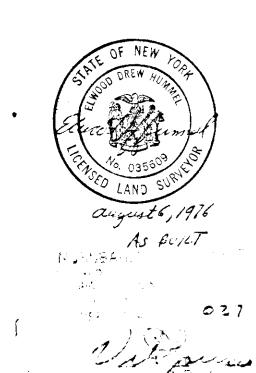
DEPARTMENT OF COMMUNITY DEVELOPMENT

WATERFRONT REDEVELOPMENT PROJECT NO. N.Y. R-35

UTILITY REPLACEMENT CONTRACT

1975

S4376 D


LIST OF DRAWINGS

BID SECTION D

DWG. NO.

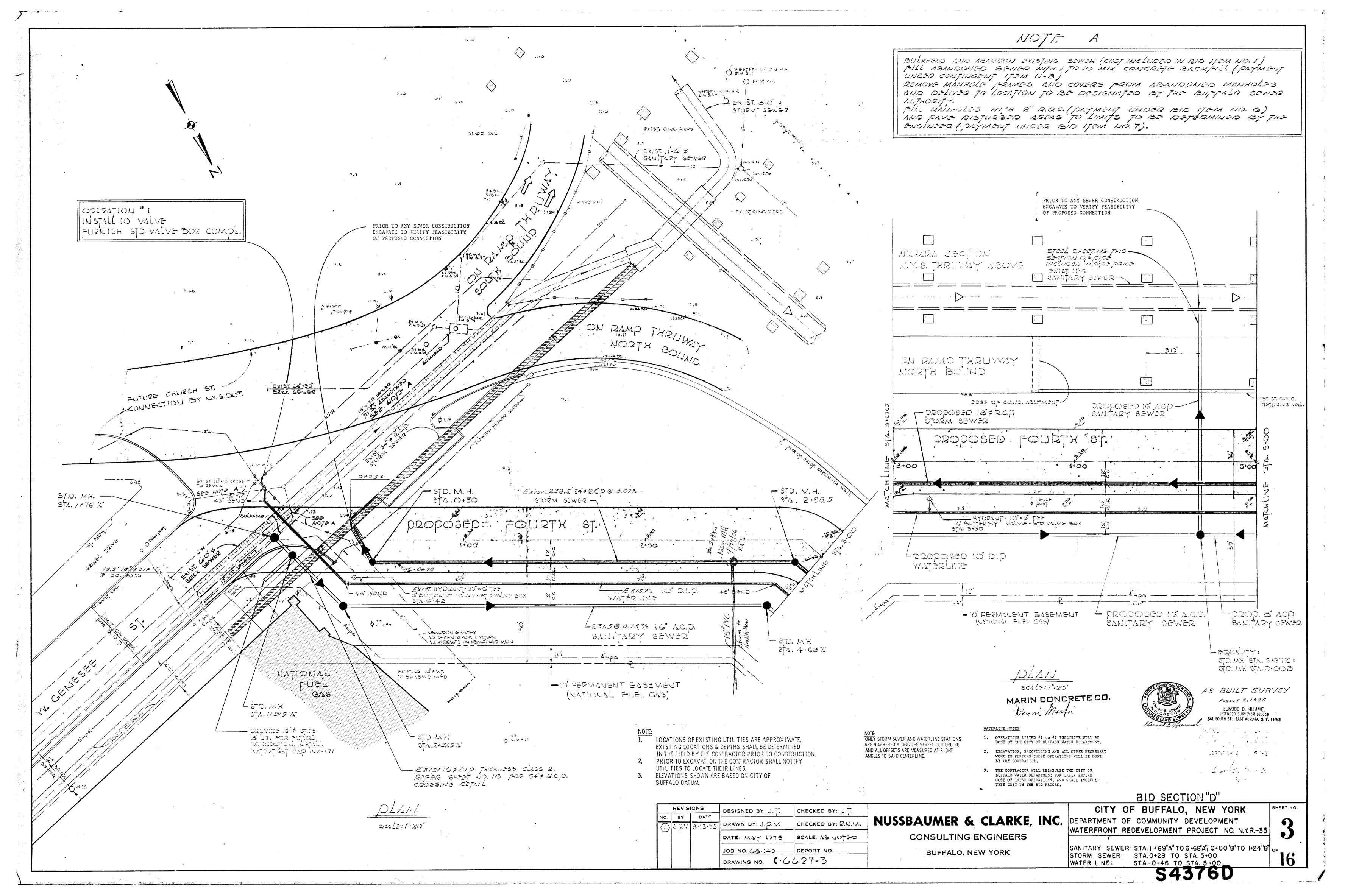
DESCRIPTION

/	TITLE SHEET
2	LIST OF DRAWINGS
3	PLAN: STA0+46 TO STA. 5+00 STA. I+69 "A" TO STA. 6+68 "A" STA. 0+00 "B" TO STA. I+24 "B"
4	PROFILE: STA0+46 TO STA. 5+00 STA. 0+00 "A" TO STA. 6+00 "A"
5	PLAN: STA. 5+00, TO STA. 10+00 STA. 6+68"A" TO STA. 8+24 "A"
6	PROFILE: STA. 5+00 TO STA. 10+00 STA. 6+00 "A" TO STA. 8+24 "A" STA. 0+00 "B" TO STA. 1+24 "B"
7	PLAN: STA. 10+00 TO STA. 15+00
8	PROFILE: STA. 10+00 TO STA. 15+00
9	PLAN: STA.15+00 TO STA. 20+00 STA.0+00 "C" TO STA. 2+12 "C"
10	PROFILE: STA. 15+00 TO STA. 23+00 STA. 0+00 "C" TO STA. 2+12 "C"
//	PLAN: STA. 20+00 TO STA. 23+00
12	HYDRANT, VALVE & TEE DETAILS; THRUST BLOCK DETAILS FOR WATERLINES
13	STANDARD PRECAST MANHOLE DETAIL & SPUR CONNECTION PIPE
14	MANHOLE FRAME & COVER DETAILS
15	TRENCH DETAILS FOR SEWER AND WATER LINES
16	MISCELLANEOUS DETAILS

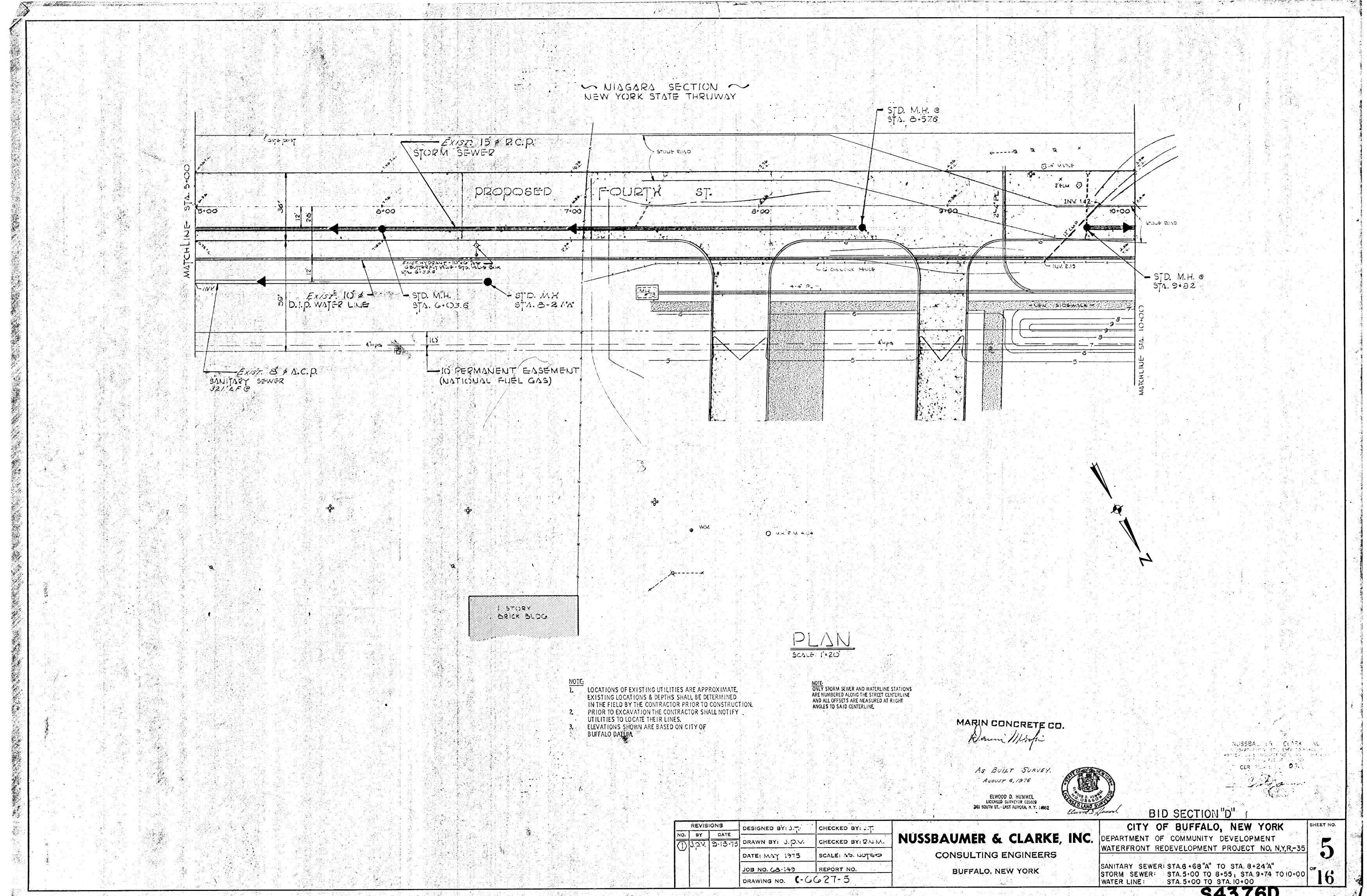
REVISIONS			DESIGNED BY: 1	CHECKED BY: J.T.
NO.	BY	DATE		
而	JOV.	9-13-75	DRAWN BY: 10.V.	CHECKED BY: R.N.M.
	•		DATE: MAY 1975	SCALE: NONE
			JOB NO. 68-149	REPORT NO.
			DRAWING NO. C-C	627.2

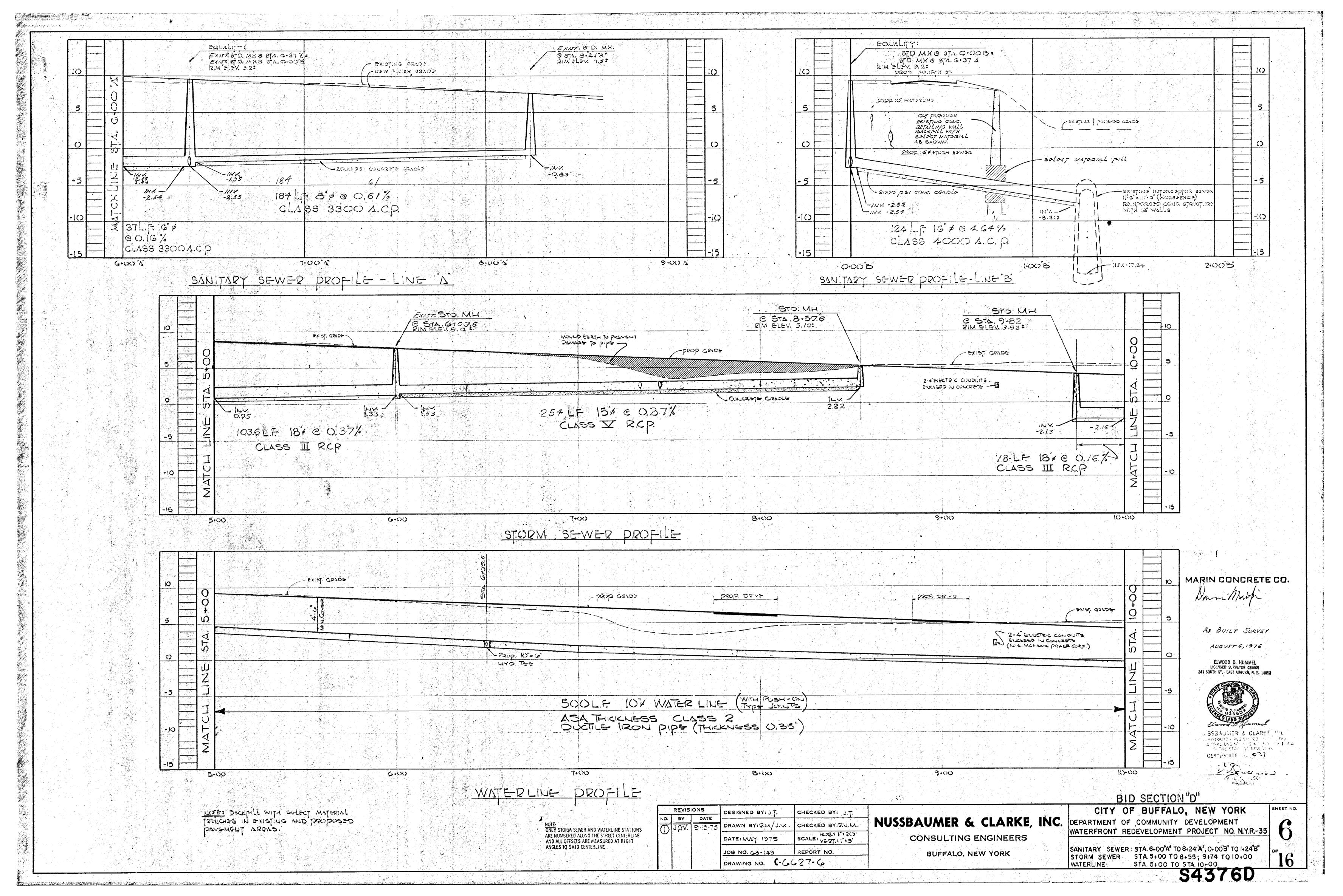
CONSULTING ENGINEERS BUFFALO, NEW YORK

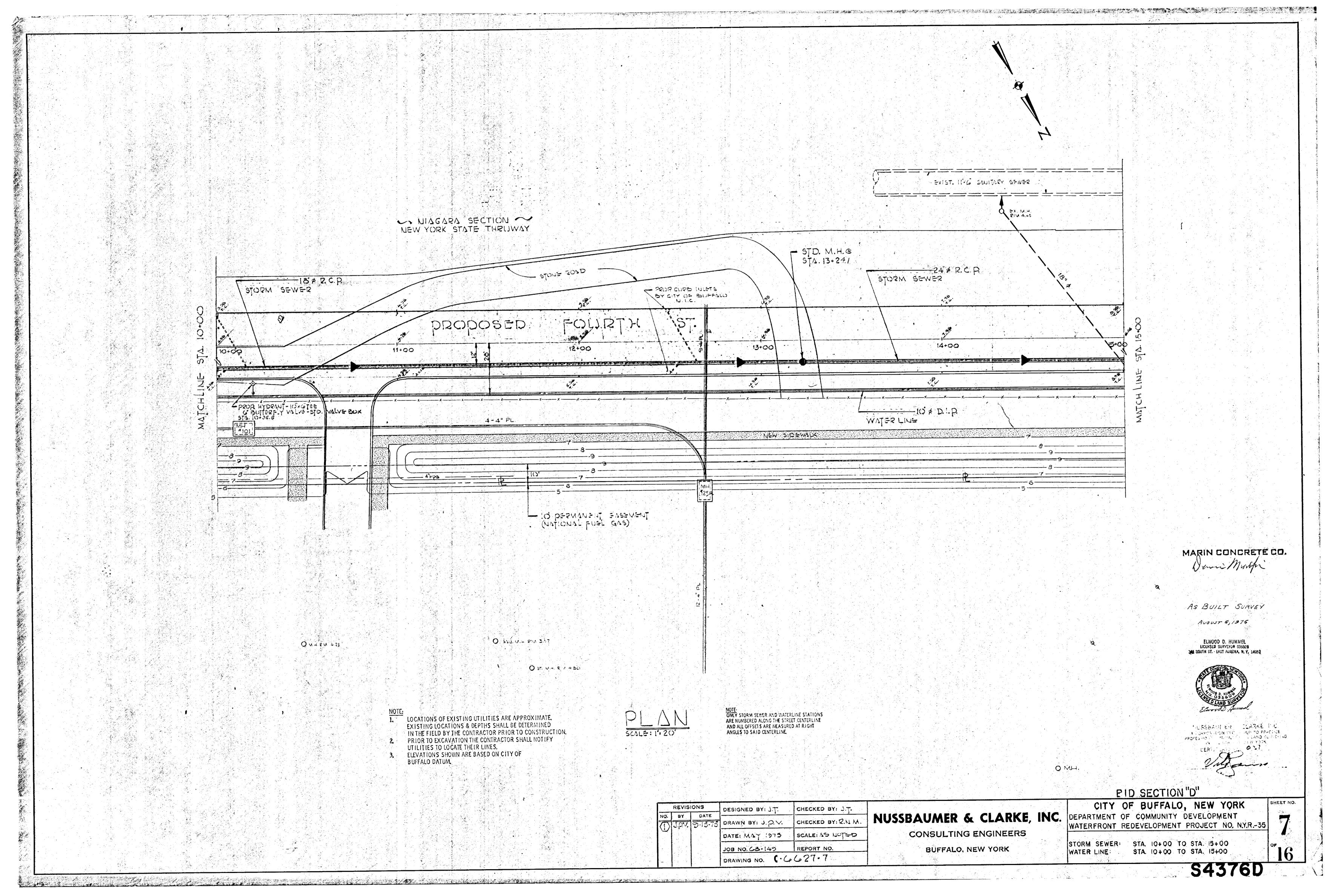
NUSSBAUMER & CLARKE, INC.

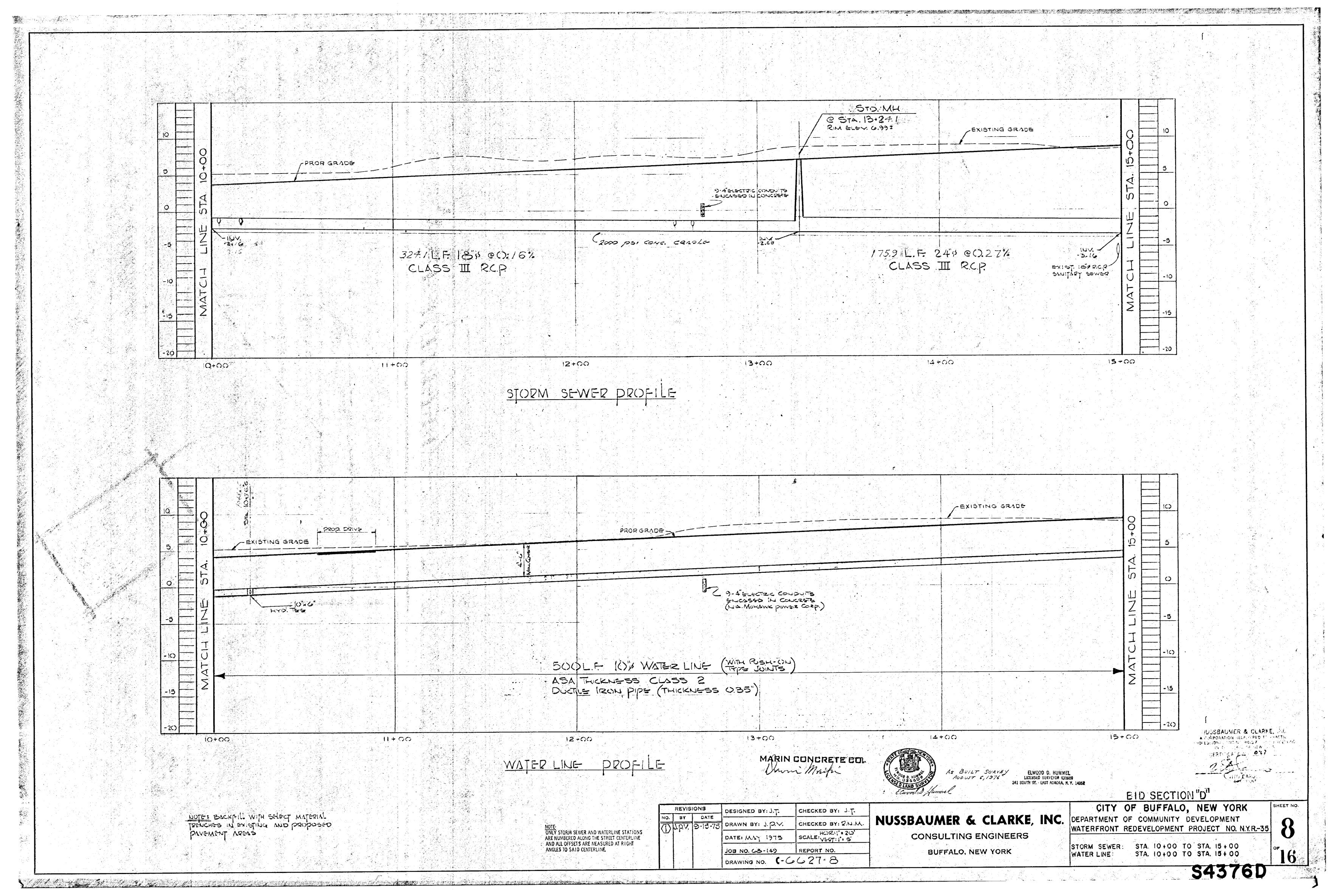

CONSULTING ENGINEERS

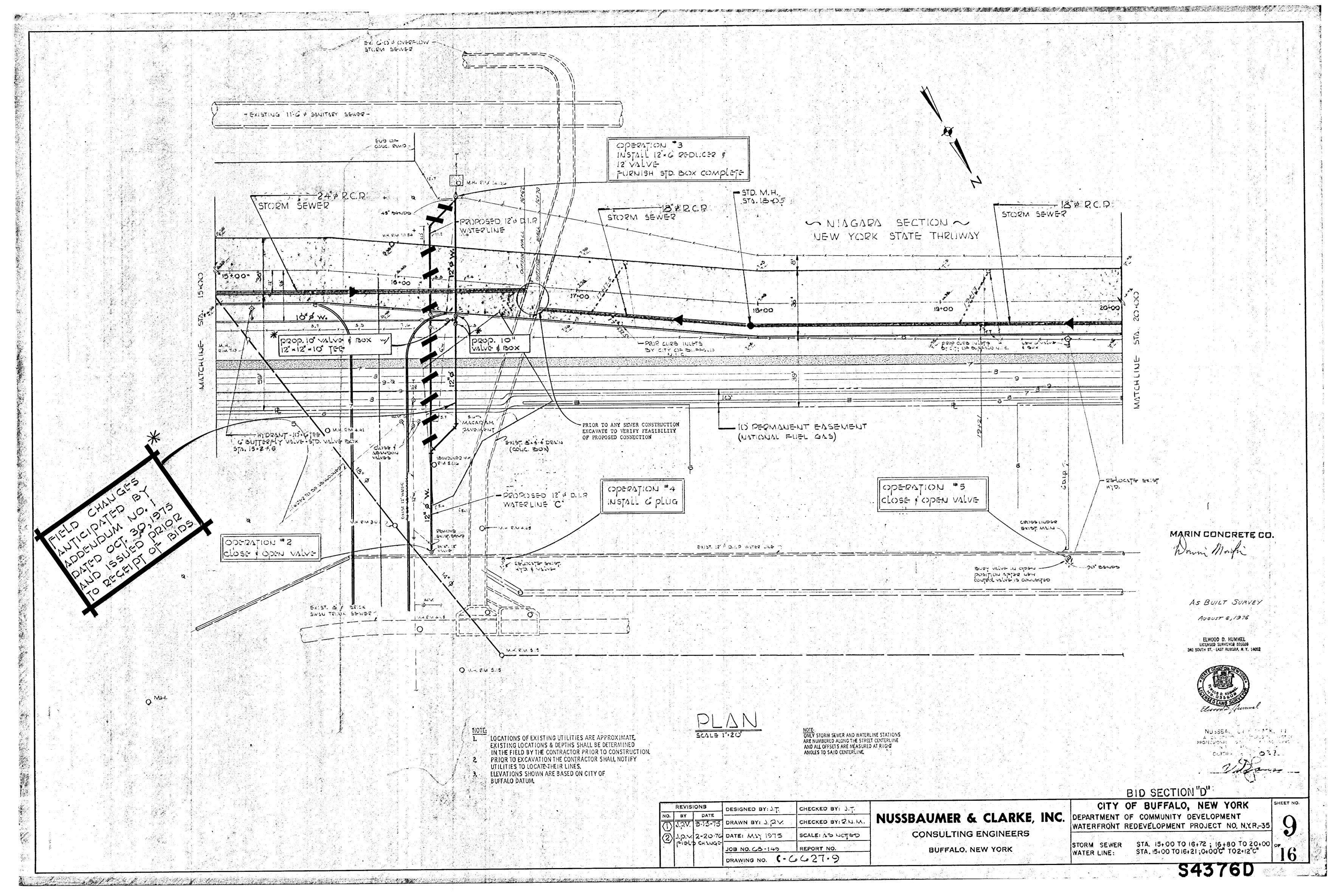
CITY OF BUFFALO, NEW YORK

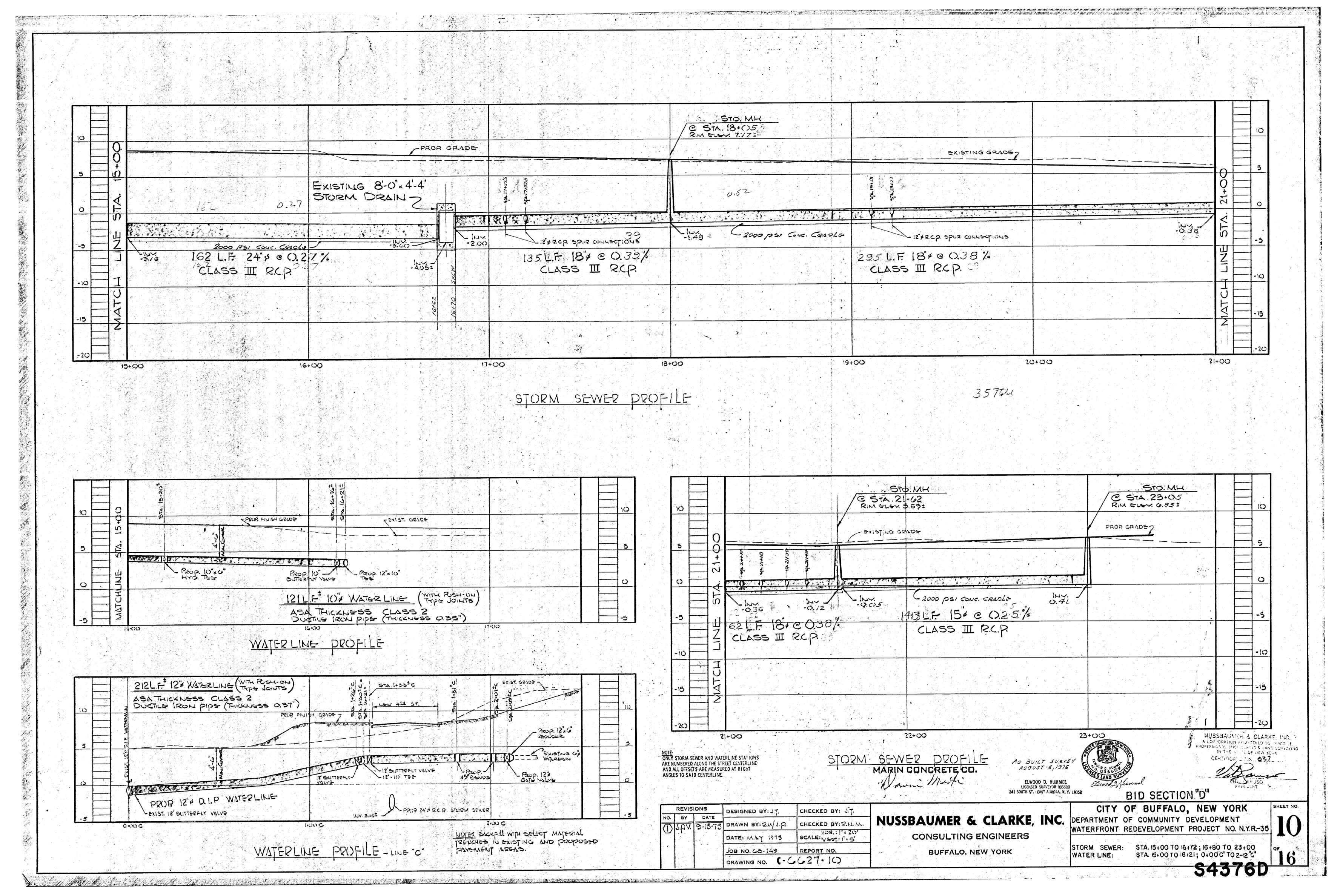

DEPARTMENT OF COMMUNITY DEVELOPMENT

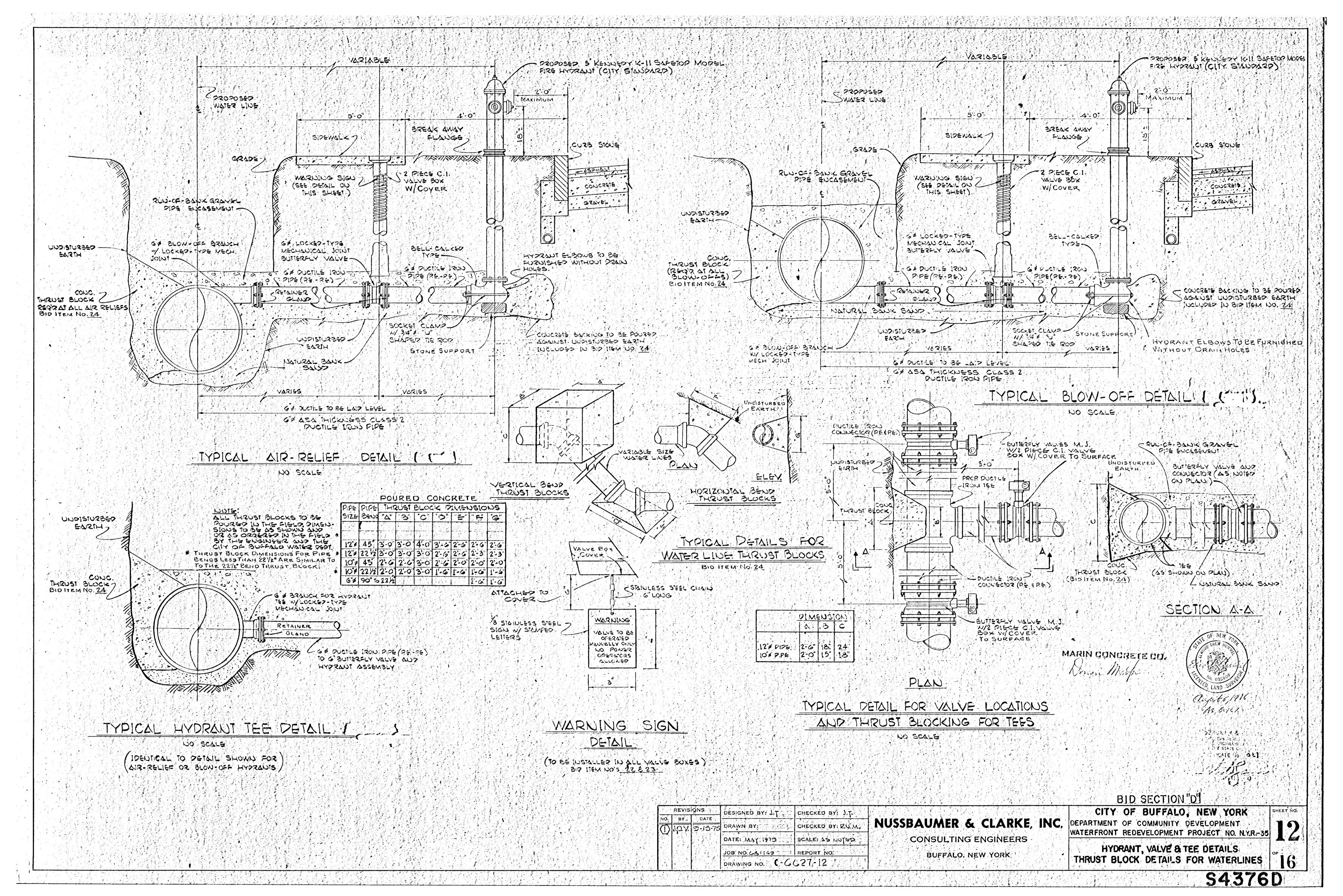

WATERFRONT REDEVELOPMENT PROJECT NO. N.Y.R.-35

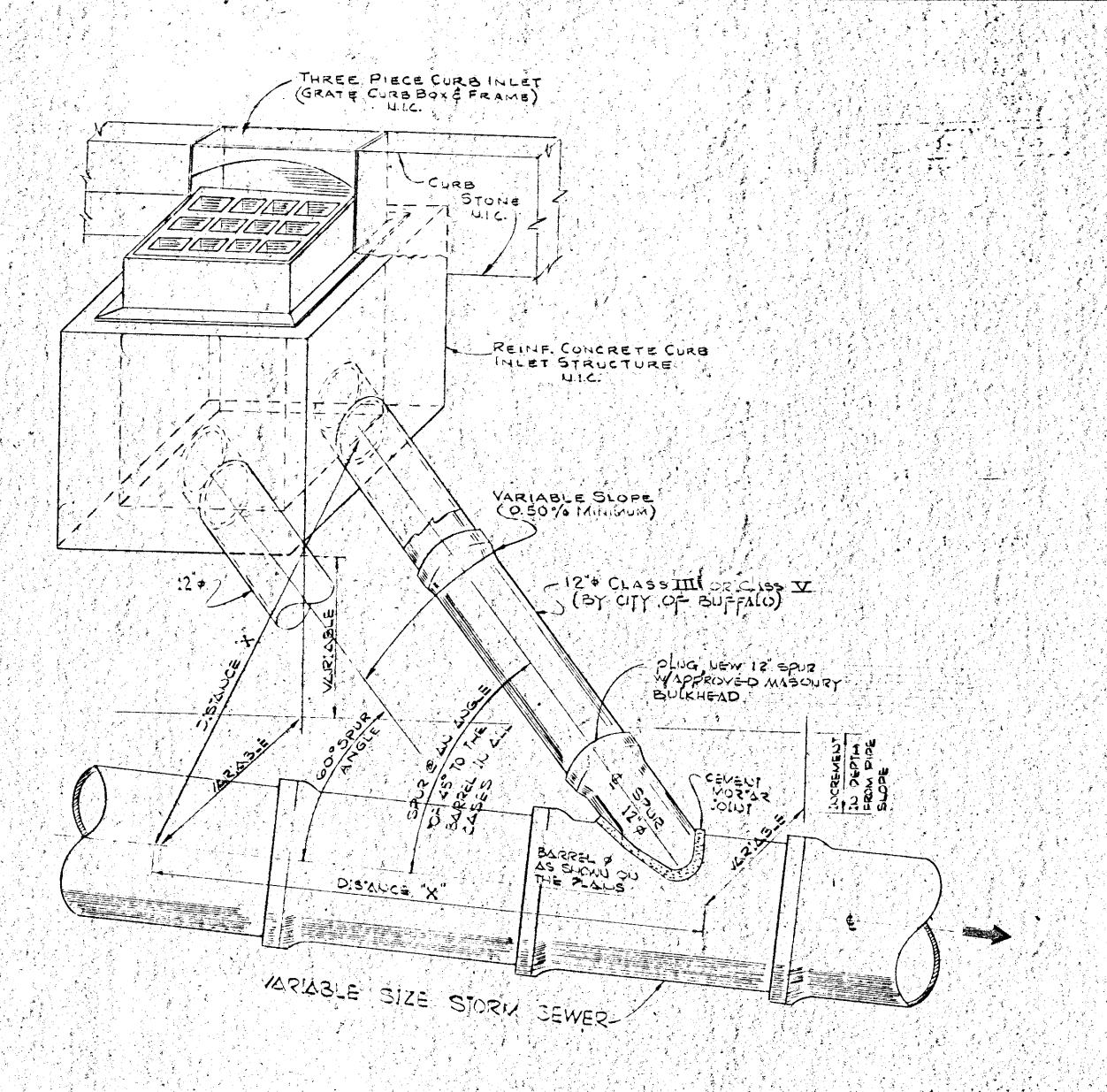

LIST OF DRAWINGS








~ NIAGARA SECTION ~ HEW YORK STATE THRIJWAY 18" × R.C.P. STORM SEWER BY CITY OF BLIFFALO -STA. 23+05 TO STATE MONUVENT -PROR CURB INLETS BY CITY OF BUFFALO NJ. 1. C. (NATIONAL FLIEL GAS) OPERATION # 6
INSTALL O PLUG. OPERATION T INSTALL 12" X TAPPING SLEEVE & C VALVE. FURNISH STD. BOX COMPLETE MARIN CONCRETE CO. HIDSOUL -AS BUILT SURVEY EXIST. & & BRICK SWAN TROOK SEWER O JENNOCHED M.H. AUGUST 6,1976 ELWOOD D. HUMMEL LICENSED SURVEYOR 035609 341 SOUTH ST. EAST AURORA, N. Y. 14482 M. 4. RIM 6.21 -M.H. RIM 5.01 2 2 2 2 2 C. RIM 5.04 NUBSEAUMER & OLAREZ, INC.


A CORRUSATION DESISTERIO IL PRACTICE
PROFESSIONI ENGINEERING & CAND \$ 12. FYING

CERTIFITE NO. 237 NOTEONLY STORM SEWER AND WATERLINE STATIONS
ARE NUMBERED ALONG THE STREET CENTERLINE
AND ALL OFFSETS ARE MEASURED AT RIGHT
ANGLES TO SAID CENTERLINE LOCATIONS OF EXISTING UTILITIES ARE APPROXIMATE.
EXISTING LOCATIONS & DEPTHS SHALL BE DETERMINED
IN THE FIELD BY THE CONTRACTOR PRIOR TO CONSTRUCTION.
PRIOR TO EXCAVATION THE CONTRACTOR SHALL NOTIFY
UTILITIES TO LOCATE THEIR LINES.
ELEVATIONS SHOWN ARE BASED ON CITY OF
BUFFALO DATUM. WIND FARUSAN CHECKANI BID SECTION "D" CITY OF BUFFALO, NEW YORK REVISIONS
DESIGNED BY: J.T.

D. BY DATE
DRAWN BY: J. D. W.

DRAWN BY: J. D. W. CHECKED BY: J.T. NUSSBAUMER & CLARKE, INC. DEPARTMENT OF COMMUNITY DEVELOPMENT CHECKED BY: R.N.M. WATERFRONT REDEVELOPMENT PROJECT NO. N.Y.R.-35 CONSULTING ENGINEERS SCALE: AS NOTED DATE: MAY 1975 REPORT NO. BUFFALO, NEW YORK STORM SEWER: STA. 20+00 TO STA. 23+00 DRAWING NO. C-6627-11

TYPICAL, CURB INLET & SPUR PIPE CONNECTION TO STORM SEWERS

NO SCALE

A MYNHOLE MAIL SHAFT BE BARGOODD MILH VODEONED DELIMINOUS BYING MANHOLE, STEPS SHALL BE OF FORGED ALUMINUM ALLOY AS PER DES GN OF ALUMINUM ALLOY AS PER DES GN OF ALUMINUM CO. OF AMERICA PART 12653A OR EQUAL, WHERE PIPE MANHOLE BARRELS ARE USER STEPS SHALL BE ENGENDED IN NALL WHILE PIPE IS BEING CAST.

> STEP DETAIL NO SCALE

For depths up to twelve (12) feet (measured from ground to lowest invert) monolithic precast bases shall be set on trench bottom carefully shaped and levelled. Any over-excayation shall be backfilled with material as specified for bedding sewer pipe, and shall be tamped.

For depths exceeding twelve (12) feet, monolithic precast bases shall be set on eight (8) inch thick 3500 PS1 concrete slabs poured against undisturbed

-Backfills around pipes at manholes, shall be carefully tamped.

STD. MH. FRAME & COVER EXCEPT WHERE OTHERWISE ORDERED BY THE ENGINEER. RIM ELEVATION SHALL BE 9 TO 12 INCHES ABOVE THE ELEVATION OF ADJACENT GROUND

WIDE WWM

ADJUST TO GRADE WITH APPROVED PRE-CAST CONCRETE EXTENSION RINGS: EXTENSION RING JOINTS TO BE MADE WITH COMPOUND AS SPECIFIED FOR PIPE JOINTS ON THIS DETAIL

ENTIRE OUTSIDE SURFACE FROM CASTING TO

CONE, TO BE "BUTTERED" WITH APPROVED

COMPOUND DEWITT #10, DURALSEAL 3101,

PIONEER 301, OR EQUAL AND WRAPPED WITH A BAND OF "KRAFT" OR EQUAL PAPER ASTM C478 (LATEST DATE) REINFORCED CONCRETES TONGUE: AND GROOVE SECTIONS IN 2', 3' OR 4' LENGTHS, WITH ROUND NEOPRENE GASKETS

> REFER TO REDUCER SECTION PLAN

44 VERT 6- EQUAL SPACES

60° DIA TO 48° DIA REDUCER SECTION

: 242' DIA HOOPS @ 3' C/C HORIZ

* ALL OUTSIDE SURFACES TO BE COATED WITH KOPPER'S BITUMASTIC SUPER SERVICE BLACK METALIFE HBP OR OTHER APPROVED EQUAL COATING HAVING

> "X" - THE DISTANCE BETWEEN SPIGOT SHOULDER AND TOP OR CROWN OF OPENING IN THE PRE-CAST WALL

A MINIMUM TOTAL DRY THICKNESS OF 22 MILS.

RES-SEAL consisting of rubber gasket, cast from compression flange, and Cor-Ten bolt assembly manufactured by the Scales Manufacturing Corporation

of Newburgh, New York LINK-SEAL consisting of solid synthetic rubter links connected to each other with heavy, elongated washers, bolts and nuts, as manufactured by the Thunderline Corporation of Wayne, Michigan, or approved equal. After installation, metal parts of the above assemblies that are accessible from inside the manholes shall be coated with compounding

12' MIN

12' MAX 14 @ 6' EW 12' MAX 14 @ 6' EW 12'-30' . 15 @ 5' EW

as specified for manhole barrel joints;

SEWERS: SEWER'S 18-30' DIA 8-16" DIA MONOLITHIC PRECAST BASE MANHOLES FOR SEWERS 81 THROUGH 301 DIAMETER

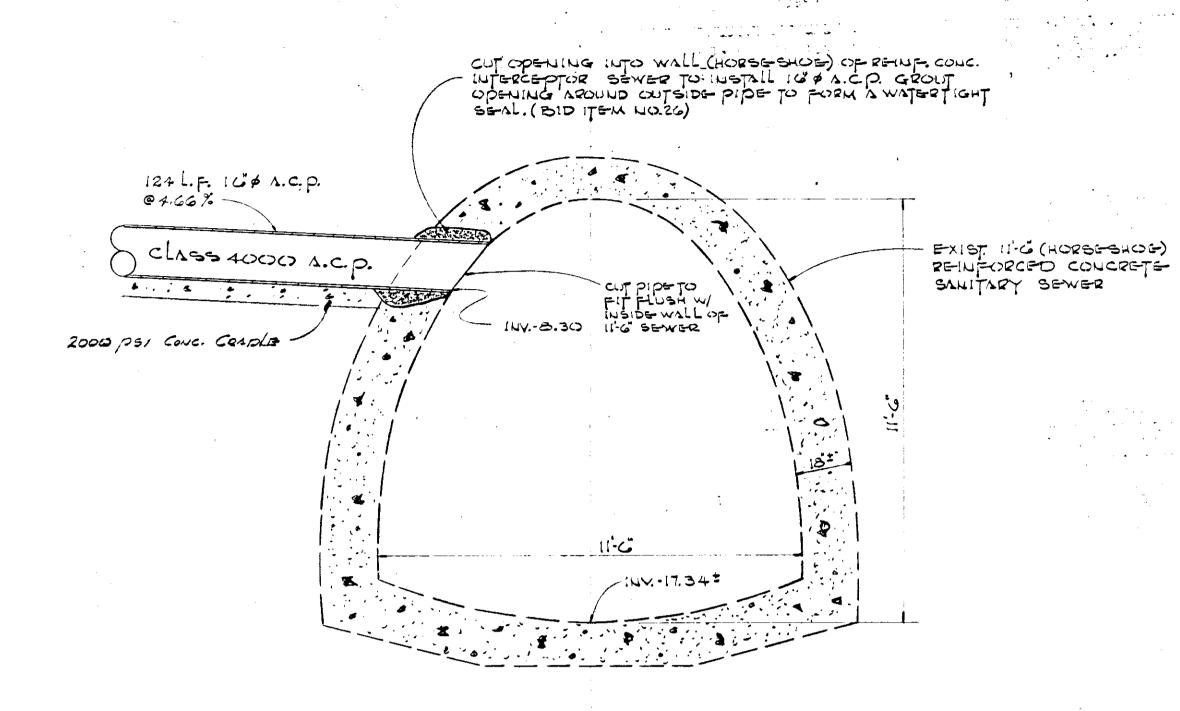
* MOTE:
FOR STORM SEWER MAUHOLES,
COATING FOR OUTSIDE SURFACES
AND JOINT COMPOUND WILL NOT
BE REQUIRED

STD. PRECAST MANHOLE DETAIL FOR SANITARY & STORM SEWERS

NO SCALE

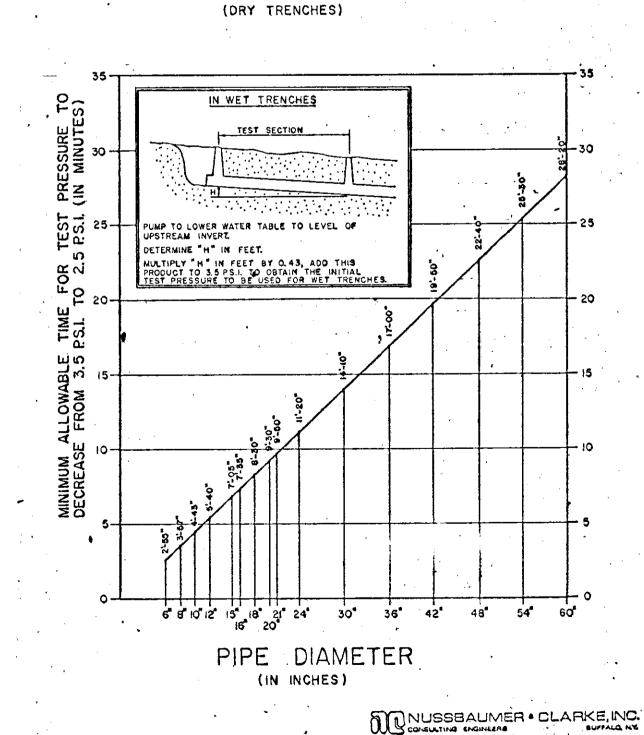
PLAN FOR ADD'L RE STEEL FOR REDUCER SECTION PAY LINES FOR SELECT MATERIAL FOR MANHOLES AND STRUCTURES SHALL BE BETWEEN VERTICAL PLANES ONE FOOT OUTSIDE THE FOOTINGS AS SHOWN ON THE DRAWINGS. FROM THE SURFACE OF THE GROUND TO THE BOTTOM OF THE MASONRY DEDUCTING THE VOLUME OCCUPIED BY THE MANHOLE OR STRUCTURE "O" RING JOINT DETAIL JOINT COMPOUND SHALL BE BUTTERED ON SPICOTS AND BELLS PRIOR TO ASSEMBLING THE MANHOLE SECTIONS. *AFTER THE PIPE SECTIONS ARE ASSEMBLED, BUTTER THE OUTSIDE OF THE JOINTS WITH JOINT COMPOUND AND WRAP WITH A BAND OF "KRAFT" OR EQUAL PAPER JOINT COMPOUND SHALL BE DEWLLT 110. ALUMINUM DROP FRONT MH STEPS @ 12" CTRS.

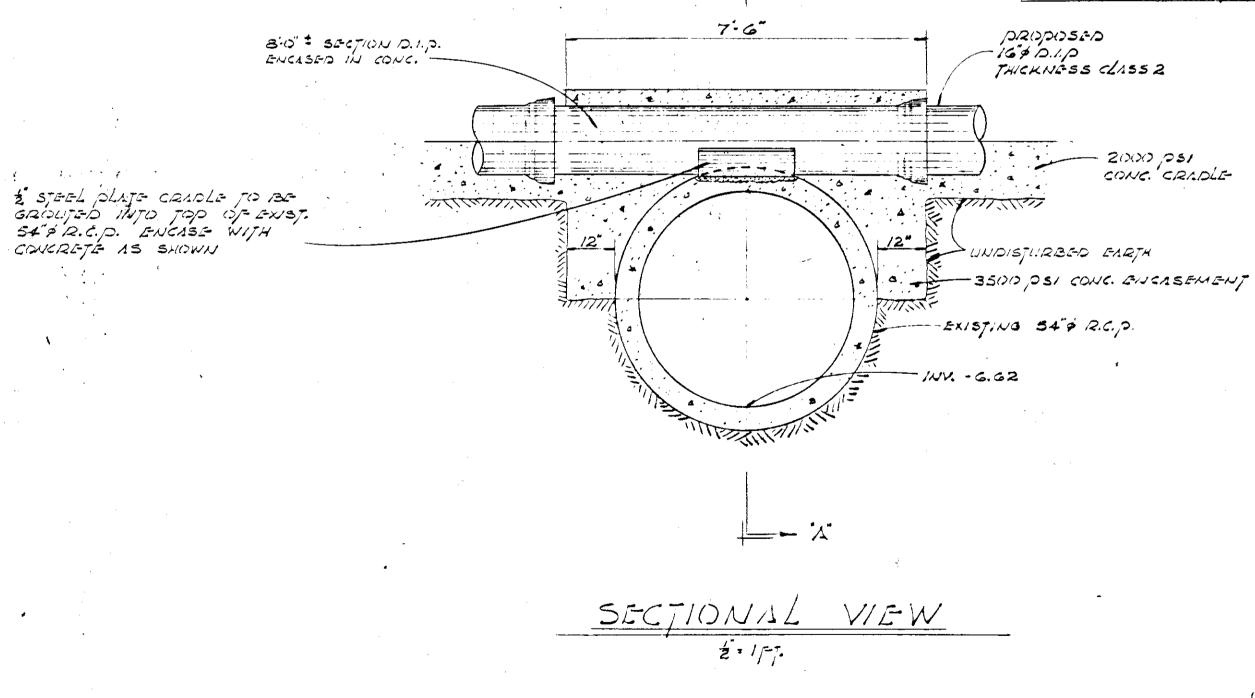
MARIN CONGRETE CO.


BID SECTION D'

CITY OF BUFFALO, NEW YORK DEPARTMENT OF COMMUNITY DEVELOPMENT WATERFRONT REDEVELOPMENT PROJECT NO. N.YR.-35

STD. PRECAST MANHOLE DETAIL a spur connection pipe \$43760


DESIGNED BY BY DATE JOY 9-15-75 DRAWN BY J. D. CHECKED BY R.N.M. DATE MAY 1975 SCALE AS HOTED JOB NO. C3-149 REPORT NO. DRAWING NO. C-6627-13


BUFFALO, NEW YORK

PROPOSED SANITARY SEWER CONNECTION TO EXISTING INTERCEPTOR SEWER @ STA. 1+24 "B" SCALE: 1/8 .1

(USING 3.5 P.S.I. INITIAL AIR PRESSURE)

REVISIONS

NO. BY DATE

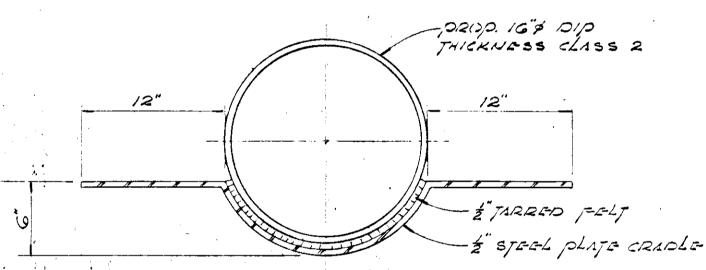
DESIGNED BY: J.T.

DATE: MAY 1975

DRAWING NO. 6-6627-16

1.2V. 3.15.75 DRAWN BY: J. D. V.

CHECKED BY: J.T.


CHECKED BY: R.H.M.

SCALE: AS NOTED

REPORT NO.

HEW 24'S REINF CONC. NV-4.95 2000 psi cone. Carolle a.o. To form material sent INV.-6.62 =

PROPOSED STORM SEWER CONNECTION TO EXISTING 54 & STORM SEWER @ STA. 0+28 scale: 1/2=1'

SHOP PAINT ALL EXPOSED CRAPLE
SURFACES WITH (1) COAT OF KOPPERS
654 TOXIC PRIMER SHOP COAT AND
(2) COATS OF KOPPERS BIJUMASTIC
NO. 300-M

SECTION OF STEEL PLATE CRADLE. ය÷⊘" - paop. 16" \$ D.1.p. EXIST. 54 \$ R.C.

MARIN CONCRETE CO.

SECTION 1-1

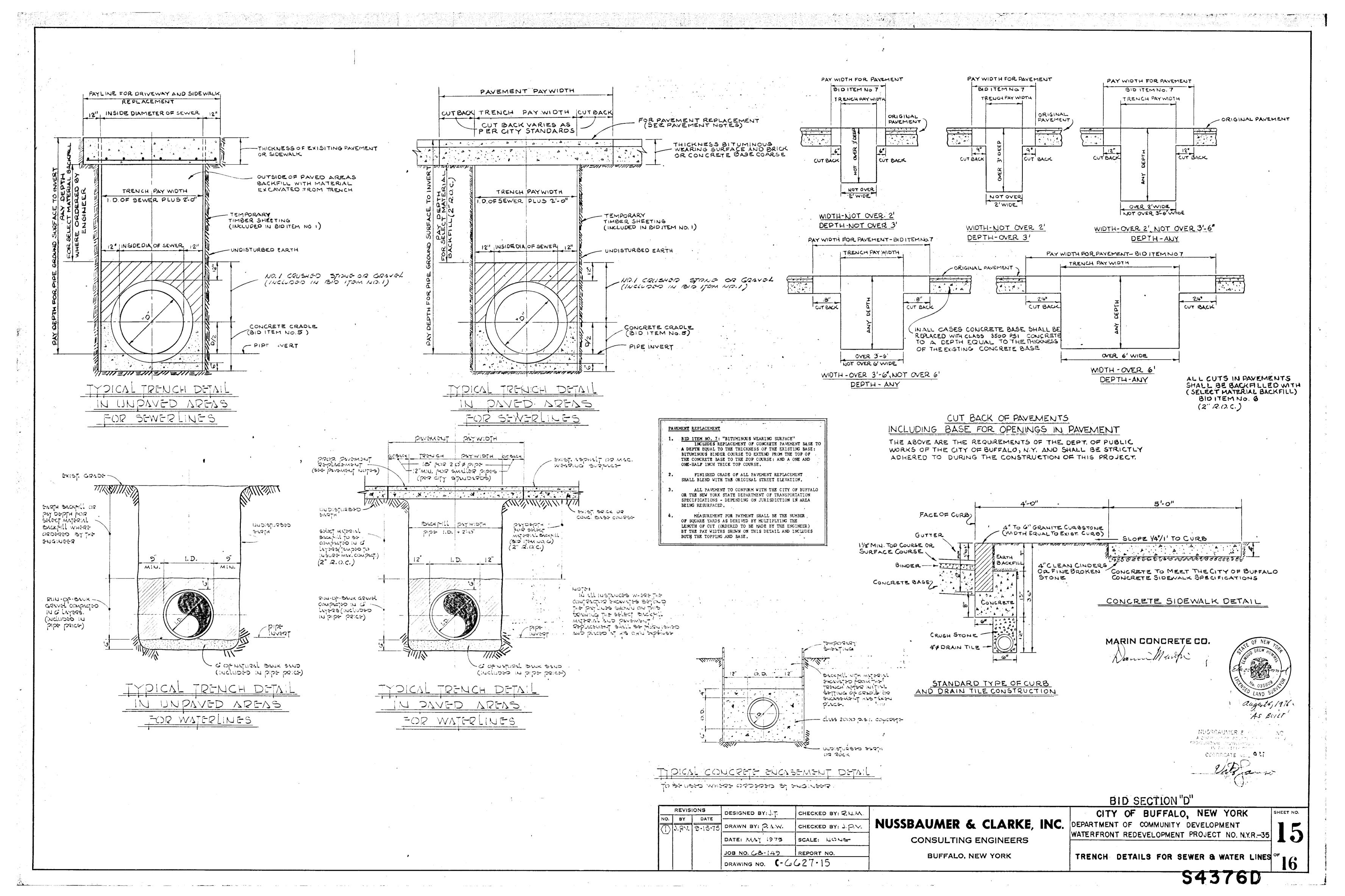
augast 6, 1976
As Built

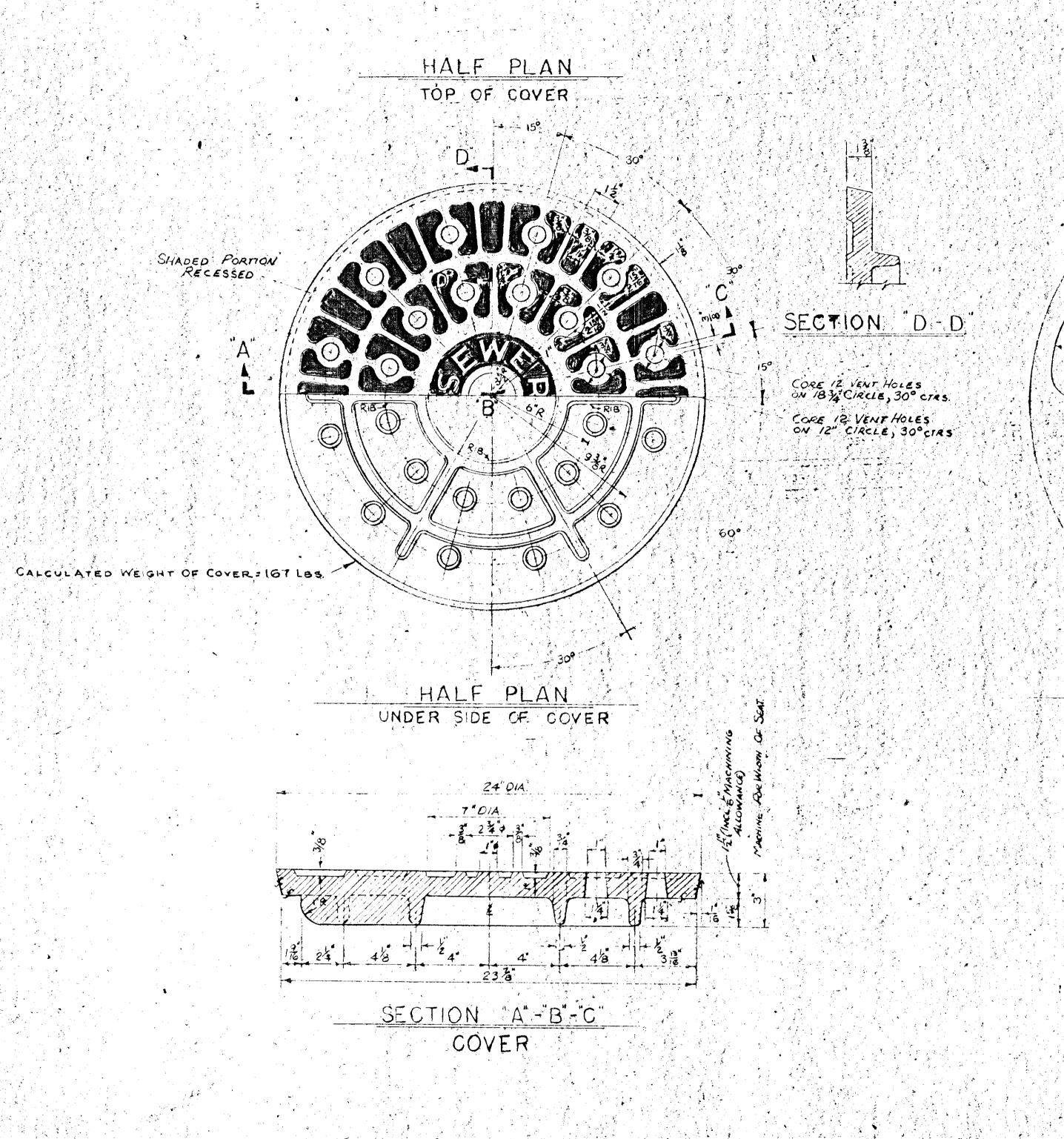
SHEET NO.

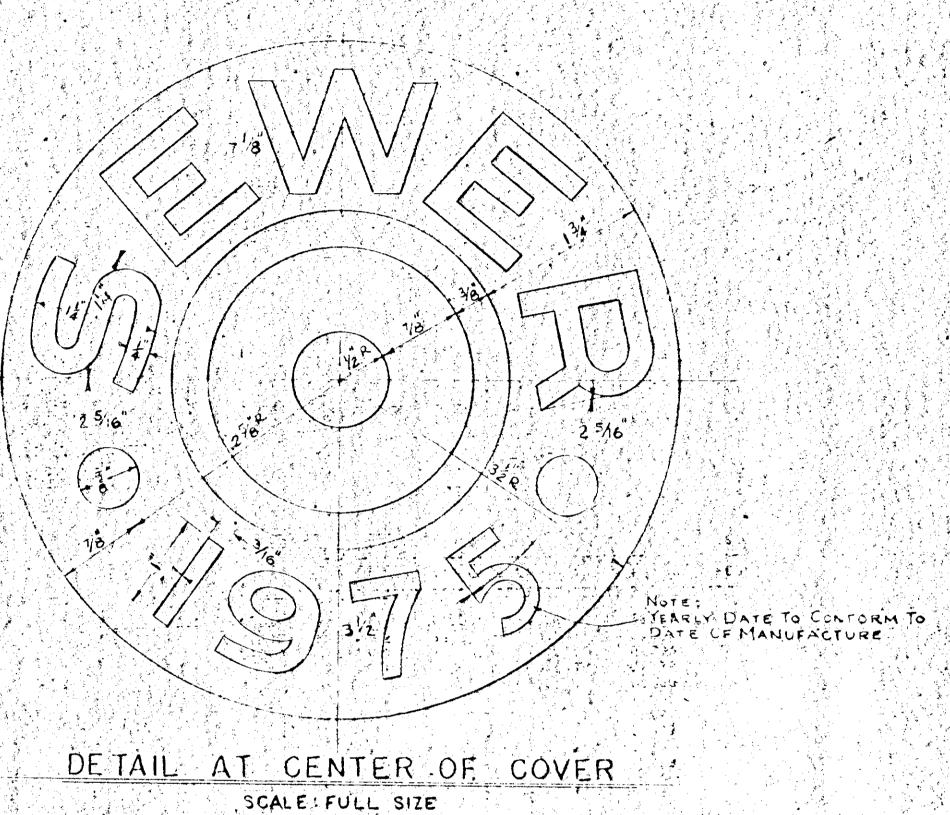
16

STA. 1+98 7 CROSSING

NUSSBAUMER & CLARKE, INC.

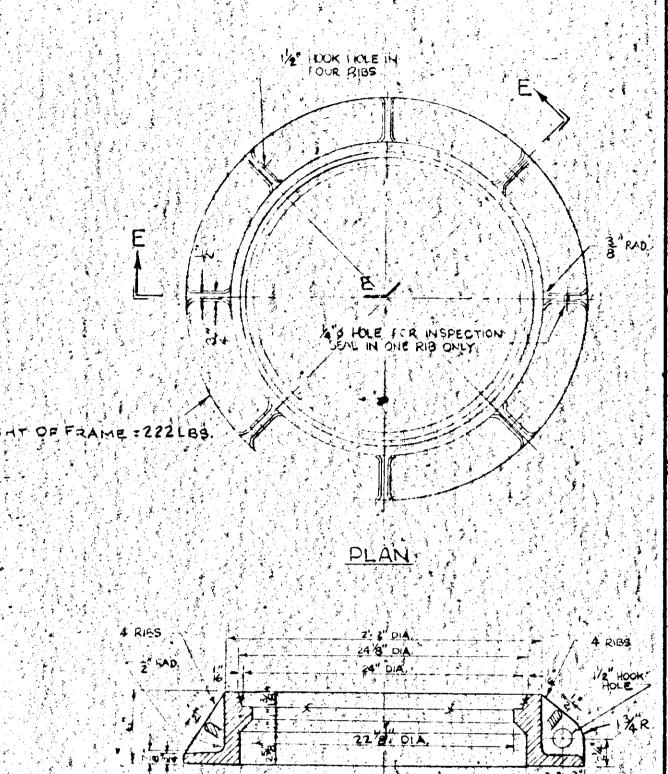

CONSULTING ENGINEERS


BUFFALO, NEW YORK


BID SECTION "D"

CITY OF BUFFALO, NEW YORK DEPARTMENT OF COMMUNITY DEVELOPMENT WATERFRONT REDEVELOPMENT PROJECT NO. NYR.-35

MISCELLANEOUS DETAILS



MATERIAL CLASS 35 B GRAY IRON

NOTE: ALL PARTS TO BE COMPLETELY

INTERCHANGEABLE WITH EACH OTHER.

NEW STYLE ST'D. MANHOLE FRAME & COVER FOR VEHICULAR TRAFFIC

SECTION 'E-E-E"

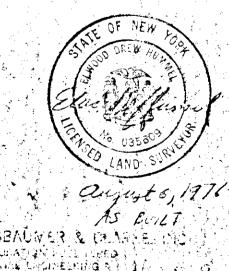
2-9" QA

MANHOLE FRAME,

NOTE

THE CONTRACTOR SHALL PURCHASE FROM THE BUFFALD SEVER AUTHORITY

ALL FRAMES COVERS FOR MANHOLES AND CHAMBERS TO BE BUILT UNDER


THIS PROJECT. SUCH FRAMES AND COVERS SHALL HAVE WEIGHTS AND

DIMENSIONS SHOWN ABOVE AND SPECIFIED ELSEWHERE. THE COST

JF ALL FRAMES AND COVERS REQUIRED FOR THIS PROJECT SHALL BE

INCLUDED IN THE 3ID PRICES FOR BID ITEM NO'S 2, 20 \$ 4

MARIN CONCRETE CO,

NUSSBAUWER & CALARE IN THE STATE OF THE ACCOUNT OF THE STATE OF THE ACCOUNT OF TH

1	REVISIONS		DESIGNED BY: J.T.	CHECKED BY: J.T.	2.7
NQ.	BY	DATE			
	7.57.	9-15-75	DRAWN BY:	CHECKED BY: KINW	
).			DATE MAY 1975	SCALE: AS NOTED	
			JOB NO.68-149	REPORT NO.	
		100	DRAWING NO. C-C	627-14	

NUSSBAUMER & CLARKE, INC.

CONSULTING ENGINEERS

BUFFALO, NEW YORK

CITY OF BUFFALO, NEW YORK
DEPARTMENT OF COMMUNITY DEVELOPMENT
WATERFRONT REDEVELOPMENT PROJECT NO. NYR.-35

MANHOLE FRAME & COVER DETAILS

34376D