Periodic Review Report

FORMER BUFFALO SERVICE CENTER, BURA WEST & 4 NEW SEVENTH STREET SITES (BCP SITE NOS. C915194, C915195, & C915203)

BUFFALO, NEW YORK

June 2017

0235-017-001

Prepared By:

2558 Hamburg Turnpike, Suite 300, Buffalo New York | P: (716) 856-0599 | F: (716) 856-0583

PERIODIC REVIEW REPORT for the

FORMER BUFFALO SERVICE CENTER, BURA WEST PROPERTY & 4 NEW SEVENTH STREET SITES (BCP SITE NOS. C915194, C915195 & C915203)

BUFFALO, NEW YORK

June 2017

0235-017-001

Prepared for:

257 W. GENESEE, LLC

Prepared By:

Benchmark Environmental Engineering & Science, PLLC 2558 Hamburg Turnpike, Suite 300 Buffalo, NY 14218 (716)856-0599

PERIODIC REVIEW REPORT 257 W. Genesee, LLC Sites Table of Contents

1.0	INTRODUCTION	1							
	1.1 Background	1							
2.0	SITE OVERVIEW								
	2.1 Former Buffalo Service Center & BURA West Properties	2							
	2.2 New Seventh Street Property	2							
3.0	Site Management Plan								
	3.1 Groundwater Monitoring Plan	4							
	3.2 Soil/Fill Management Plan	6							
	3.3 Institutional Control Requirements and Compliance	6							
4.0	CONCLUSIONS AND RECOMMENDATIONS								
5.0	Declaration/Limitation9								
6.0	REFERENCES10								

TABLES

Table 1	Summary of Groundwater Analytical Results November 2016
Table 2	Summary of Historical Groundwater Analytical Results
Table 3	Summary of Soil Analytical Results: Imported Topsoil (May 2017)

FIGURES

Figure 1 Site Location and Vicinity Map

Figure 2 Site Plan

PERIODIC REVIEW REPORT 257 W. Genesee, LLC Sites Table of Contents

APPENDICES

- Appendix A Historic Groundwater Analytical Results: MW-03 and MW-09/MW-09R
- Appendix B Laboratory Analytical Report: MW-03 & MW-09R Groundwater Nov. 2016
- Appendix C Laboratory Analytical Report: Imported Topsoil May 2017
- Appendix D IC/EC Certification Forms
- Appendix E Site Photographic Log

1.0 INTRODUCTION

Benchmark Environmental Engineering & Science, PLLC (Benchmark) has prepared this Periodic Review Report (PRR) on behalf of 257 W. Genesee, LLC to summarize the post-remedial status of New York State Department of Environmental Conservation (NYSDEC) Brownfield Cleanup Program (BCP) Site Nos. C915194, C915195, and C915203.

This PRR has been prepared in accordance with NYSDEC's DER-10 *Technical Guidance for Site Investigation and Remediation* (Ref. 1), whereby one PRR is prepared when multiple parcels comprise the redeveloped Site. The NYSDEC's Institutional and Engineering Controls Certification Forms have been prepared for each individual Site (see Appendix C). This PRR and the associated inspections forms have been completed for the June 15, 2017 reporting period.

1.1 Background

The 257 W. Genesee, LLC property (Site) encompasses three adjoining BCP Sites. The three parcels include: (1) the Former Buffalo Service Center Site (C915194); (2) the Buffalo Urban Renewal Agency (BURA) West Site (C915195); and (3) the 4 New Seventh Street Site (C915203) (see Figures 1 and 2).

The Former Buffalo Service Center (C915194) and the BURA West (C915195) parcels were the former location of the Buffalo Gas Light Company's (predecessor to National Fuel Gas) Manufactured Gas Plant (MGP), which operated from approximately 1848 to 1948. Site investigations revealed that the century of industrial use on these parcels resulted in contamination of the soil/fill and groundwater with certain petroleum organics and cyanide. The 4 New Seventh Street (C915203) parcel was the location of a former coal storage yard until approximately 1900; a gasoline service station from 1927-1966; and various commercial/industrial operations. Impacts at this parcel were primarily related to former petroleum storage and distribution operations.

The three parcels were remediated concurrently under the NYSDEC BCP for redevelopment as an office building complex (HealthNow). Additional details relative to the history and remedial activities conducted at each of the parcels are discussed in Section 2.0.

2.0 SITE OVERVIEW

The Site is comprised of three former industrial/commercial properties located in the City of Buffalo, New York (see Figure 1). The Site is bordered by Fourth Street to the west, West Genessee Street to the south, and Seventh Street to the east; the Waterfront School borders the Site to the north (see Figure 2). A brief description of the three parcels is presented below.

2.1 Former Buffalo Service Center & BURA West Properties

The former Buffalo Service Center (BSC) property (BCP Site No. C915194) is an approximately 4.9-acre parcel located at the corner of West Genesee and Seventh Streets. The BURA West property (BCP Site No. C915195) is an approximately 1.7-acre parcel located west of the BSC property along Fourth Street. The BSC and BURA West properties were the location of the former Buffalo Gas Light Company MGP that operated from approximately 1848 to 1948.

Previous environmental site investigations revealed the presence of: volatile organic compounds (VOCs), specifically benzene, toluene, ethylbenzene, and xylene (BTEX); semi-volatile organic compounds (SVOCs), primarily polycyclic aromatic hydrocarbons (PAHs); and cyanide in on-site soil and groundwater.

In June 2005, remedial efforts under the BCP began with the excavation and off-site disposal of approximately 153,000 tons of contaminated soil/fill followed by backfilling the excavation with clean material. Remedial activities at the former BSC and BURA West properties were completed in September 2006. All impacted soil/fill above cleanup levels was removed, and in 2006 the NYSDEC determined that the Site "no longer poses a significant threat to the environment." Certificates of Completion (COCs) were issued for the two properties in November 2006.

2.2 New Seventh Street Property

The 4 New Seventh Street property (BCP Site No. C915203) is comprised of an approximate 1.7-acre parcel located east of the BSC property along Seventh Street. The New Seventh Street parcel was formerly a coal shed and storage yard until approximately 1900.

From 1927-1966, this parcel housed gasoline service stations. Various other commercial/industrial operations have also been located on the property. Environmental site investigations conducted on-site revealed the presence of petroleum-based VOCs and SVOCs in soil/fill and groundwater.

Remedial activities under the BCP began in May 2006 with excavation and off-site disposal of approximately 6,600 tons of contaminated soil/fill followed by backfilling the excavation with clean material. All impacted soil/fill within the property boundaries was removed to meet cleanup levels. A COC was issued for the Site in December 2006.

3.0 SITE MANAGEMENT PLAN

A combined Site Management Plan (SMP) was prepared by ESC Engineering of New York, P.C., for the Buffalo Service Center and BURA West properties and approved by the NYSDEC in October 2006. A separate SMP was prepared by Lender Consulting Services (LCS) for the 4 New Seventh Street Site in December 2006. The SMPs include a Groundwater Monitoring Plan, a Soil/Fill Management Plan, and a copy of the Environmental Easements. A brief description of the components of the SMP is presented below.

3.1 Groundwater Monitoring Plan

As a component of the NYSDEC-approved SMPs, post-remedial groundwater monitoring was required for the Site on a quarterly basis for two years following completion of the remedial activites. A total of 10 montioring wells on and outside of the Site were sampled and analyzed for petroleum-based organic compounds per the SMP requirements, with quarterly groundwater monitoring results forwarded to the NYSDEC following each event. Groundwater monitoring began in August 2007, and the eighth quarterly groundwater monitoring event was completed by WSP Enginering (WSP) in May 2009. Wells MW-03 and MW-09 were slated for sampling under both the ESC SMP for the former BSC and BURA West parcels as well as the LCS SMP for the 4 New Seventh Street parcel; therefore, they were sampled under both programs. As such, duplicate samples were collected from these well locations each quarter. MW-04 exhibited a thin layer of light non-aqueous phase liquid (LNAPL) during the initial monitoring event and was therefore excluded from subsequent sampling due to the likelihood for positive bias from this layer. The LNAPL is believed to be attributable to residual off-site impact west of the property boundary which was addressed through offsite remedial excavation work by other responsible parties.

The Eighth Quarterly Groundwater Monitoring Report (prepared by WSP) presented trend analyses for wells MW-01, MW-03, BCP-MW-04, BCP-MW-05, and MW-09. Excluding MW-04, the remaining locations exhibited non-detectable or sufficiently low concentrations to preclude the need for trend evaluation. In general, concentrations dropped over the 2-year period at most locations, with notable exception at off-site well MW-09 where the concentration trend analysis showed an increase in the benzene concentration.

Based on the MW-09 results, a Pre-Design Investigation Report and Chemical Oxidation Enhanced Bioremediated Work Plan (July 2009) was prepared by WSP. The Work Plan proposed the injection of Klozer CR[®] in the vicinity of MW-09. NYSDEC approved the subsequent Work Plan, and the injection was performed in August 2009. Post-injection groundwater monitoring was initiated as part of the Work Plan, including quarterly monitoring for one year at MW-09 and semi-annual monitoring for one year at MW-01 and MW-03. WSP conducted the first round of groundwater monitoring was performed in August 2010. A performance monitoring report was prepared by WSP in October 2010. Based on the monitoring data, WSP recommended two additional quarters of data from MW-09, and no further action from monitoring wells MW-01 and MW-03.

Concurrently, BCP-MW-02 was decommissioned with NYSDEC approval in January 2010. Monitoring wells BCP-MW-05 and PZ-10 were decommissioned with NYSDEC approval in June 2010. Due to the results of the quarterly groundwater monitoring previously conducted and ongoing remediation at MW-09, the NYSDEC requested additional sampling of BCP-MW-04. Monitoring well BCP-MW-04 was sampled in May 2011. Since all concentrations were non-detect during the May 2011 monitoring event, the NYSDEC approved termination of monitoring at BCP-MW-04.

Sampling at off-site well MW-09 was performed by WSP in June, September, and November 2011. The November 2011 sampling event followed redevelopment of the well, as reduced yield and inconsistent results in September indicated that the well screen was partially clogged. Redevelopment was unsuccessful and in December 2011 well MW-09 was replaced with a well MW-09R. Well MW-09R was sampled by WSP in February 2012, however concentrations did not improve.

In November of 2012 WSP transmitted correspondence to the NYSDEC which proposed an additional two years of annual groundwater monitoring at wells MW-09R and MW-03 for petroleum-based volatile organics. The samples were collected in February 2013 and February 2014. Results are summarized in Appendix A with prior historic data for those monitoring locations. In general, the data indicate fairly consistent concentrations remaining above the groundwater quality standards, most notably for benzene in MW-09R.

In June of 2015 Benchmark was notified by the NYSDEC that annual groundwater monitoring would need to continue at wells MW-09R and MW-03. Following discussions with the remedial parties and 257 W. Genesee, LLC, it was agreed that Duke Realty (the original member of 257 W. Genesee, LLC) would assume responsibility for the monitoring. Benchmark was retained to perform the sampling, which was undertaken in November of 2015 and 2016.

Sample results for the November 2016 event are presented on Table 1 (these data were previously transmitted to the Department following receipt last fall). The laboratory analytical report is included as Appendix B. A comparison to prior (2012-2015) results is presented as Table 2. As indicated, 2016 concentrations at MW-09R continued to trend downward, with benzene concentrations reported approximately 17% lower than 2015 results. Conversely, an uptick in concentrations was noted at MW-03, inconsistent with prior trending. Sampling work is scheduled to be repeated in fall of 2017. The data will provide an indication as to whether MW-03 concentrations have returned to levels consistent with prior sampling.

3.2 Soil/Fill Management Plan

A Soil/Fill Management Plan (SFMP) was included in the NYSDEC-approved SMPs for the Site. The SFMP provides guidelines for the management of soil and fill material during any future intrusive actives that disturb soil/fill greater than 12 inches below surface-grade. A passive vapor barrier was installed into the foundation slab of the office buildings during construction.

No intrusive activities requiring management of on-site soil or fill material occurred during the monitoring period, however minor placement of backfill materials occurred as further discussed in Section 3.3 below.

3.3 Institutional Control Requirements and Compliance

As detailed in the Environmental Easements filed with the Erie County, New York, several Institutional Controls (ICs) need to be maintained as a requirement of the BCAs for the Site. All three properties encompassing the Site are subject to the same ICs:

- Land-Use Restriction: The controlled property may be used for commercial and/or industrial use;
- Implementation of the SMP including the Groundwater Monitoring Plan, Soil/Fill Management Plan, and Monitoring Plan; and
- Groundwater-Use Restriction: The use of groundwater for potable and non-potable purposes is prohibited.

Benchmark conducted a Site Inspection of the exterior of the property on May 22, 2017. At the time of the Site Inspection the property was being used as a large office building complex with an elevated parking ramp, surface parking, paved walkways, and landscaped grassy areas consistent with prior use. The office complex is on municipal water supply, and no observable use of groundwater was noted during the Site Inspection. In addition no observable indication of ground-intrusive activities below the topsoil was noted during the Site Inspection, however landscaping was undergoing maintenance and the facility grounds manager informed Benchmark that a small quantity (less than 5 cubic yards) of topsoil had been recently imported to the site to re-dress some eroded areas. The material reportedly originated from CJ Krantz, a commercial topsoil provider in Clarence, NY. Benchmark contact the NYSDEC Project manager and it was agreed that a representative sample of the topsoil would be obtained from the re-dressed areas (which had not yet germinated and were visibly evident) for analysis of full EPA Target Compound List/Target Analyte List (TCL/TAL) parameters. Benchmark collected the soil samples at the time of the walkover and arranged for third party analysis through TestAmerica Laboratories, Inc. a third party NYSDOH-approved facility. The sample data are summarized on Table 2; the full lab report is included as Appendix C. As indicated all detected parameter concentrations fall below the import criteria for restricted commercial use sites per DER-10 Appendix 5.

Appendix D includes completed Institutional and Engineering Controls Certification Forms for the Site. Appendix E presents a photographic log of the Sites as of the 2017 Site Inspection.

4.0 CONCLUSIONS AND RECOMMENDATIONS

Benchmark has made the following conclusions and recommendations for the reporting period June 15, 2016 to June 15, 2017:

• At the time of the Site Inspection (May 22, 2017), the Site was in compliance with both SMPs.

5.0 DECLARATION/LIMITATION

Benchmark Environmental Engineering & Science, PLLC personnel conducted the annual site inspections for BCP Site Nos. C915194, C915195, and C915203 in Buffalo, New York in accordance with generally accepted practices. This report complies with the scope of work provided to 257 W. Genesee, LLC by Benchmark Environmental Engineering and Science, PLLC.

This report has been prepared for the exclusive use of 257 W. Genesee, LLC. The contents of this report are limited to information available at the time of the Site Inspection. The findings herein may be relied upon only at the discretion of 257 W. Genesee, LLC. Use of or reliance upon this report or its findings by any other person or entity is prohibited without written permission of Benchmark Environmental Engineering and Science, PLLC.

6.0 **R**EFERENCES

- 1. New York State Department of Environmental Conservation. DER-10; Technical Guidance for Site Investigation and Remediation. May 2010.
- 2. Pre-Design Investigation Report, Buffalo Service Center, Buffalo, NY, dated February 2004, prepared by The RETEC Group, Inc.
- 3. Limited and Focused Subsurface Investigation, Seventh Street Site and Fourth Street Site, Buffalo, New York, dated February 2005, prepared by LCS, Inc.
- 4. Limited and Focused Subsurface Investigation, Seventh Street Site and Fourth Street Site, Buffalo, New York, dated April 2005, prepared by LCS, Inc.
- 5. Remedial Investigation Work Plan for 4 New Seventh Street, Buffalo, New York, prepared by LCS, Inc. and Benchmark Environmental Engineering & Science, PLLC, January 2006.
- 6. Interim Remedial Measures Work Plan for Brownfield Cleanup Program 4 New Seventh Street, Buffalo, New York, prepared by LCS, Inc. and Benchmark Environmental Engineering & Science, PLLC, February 2006.
- 7. Final Engineering Report for Interim Remedial Measures 4 New Seventh Street, Buffalo, New York, prepared by LCS, Inc. and Benchmark Environmental Engineering & Science, PLLC, August 2006
- 8. Final Remedial Action Report Brownfield Cleanup Program Former Buffalo Service Center Site (C915194), Buffalo Urban Renewal Agency West Site (C915195) Buffalo, New York, prepared by ESC Engineering of New York, P.C., October 2006
- 9. Final Site Management Plan Former Buffalo Service Center Site (C915194), Buffalo Urban Renewal Agency West Site (C915195), Fourth and West Genesee Streets, Buffalo, New York, prepared by ESC Engineering of New York, P.C., October 2006
- 10. Site Management Plan 4 New Seventh Street, Buffalo, New York, prepared by LCS, Inc. and Benchmark Environmental Engineering & Science, PLLC, December 2006.

FIGURES

FIGURE 1

DATE: MARCH 2016 DRAFTED BY:NTM/KRR

		DB NO.: 0235-014-001
 PARCEL BOUNDARY PROPERTY BOUNDARY FORMER GROUNDWATER MONITORING LOCATION 	SITE PLAN	PERIODIC REVIEW REPORT FORMER BUFFALO SERVICE CENTER, BURA WEST AND NEW SEVENTH STREET SITES BUFFALO, NEW YORK PREPARED FOR 257 W. GENESEE STREET, LLC
100' 200'		
IN FEET ximate)		FIGURE 2

TABLES

TABLE 1

SUMMARY OF GROUNDWATER ANALYTICAL RESULTS 11-Nov-16

257 West Genesse, LLC New Seventh St. Buffalo, New York

	N	Ionitoring Wel			
Parameter ¹	MW-03	MW-09R	Trip Blank	GWQS	
NYSDEC STARS LIST VOCs (ug/L)					
Acetone					
Benzene	840	1900	ND	1	
sec-Butylbenzene	ND	ND	ND	5	
p-Cymene				5	
Ethylbenzene	360	ND	ND	5	
Isopropylbenzene	40 J	ND	ND	5	
n-Propylbenzene	ND	ND	ND	5	
Toluene	18 J	ND	ND	5	
1,2,4-Trimethylbenzene	160	ND	ND	5	
1,3,5-Trimethylbenzene	ND	ND	ND	5	
o-Xylene	65	ND	ND	5	
m/p- Xylene	20 J	ND	ND	5	
Field Parameters					
Temperature (°C)	14.5	11	-	-	
Specific Conductance (uS)	4449	2612	-	-	
Dissolved Oxygen (mg/L)	1.36	2.88	-	-	
pH (s.u.)	7.25	7.33	-	-	
ORP (mV)	-228	-175	-	-	
Turbidity (NTUs)	154	121	-	-	
Purge volume (gal)	6	6.75	-	-	

Notes:

1. Only those parameters detected at a minimum of one sample location are presented in this table; all other compounds were reported as non-detect.

Definitions:

D03 = Dilution required due to excess foaming.

ND = Not Detected

TABLE 2

SUMMARY OF HISTORICAL RESULTS 2/8/2012 TO 11/11/2016

257 West Genesse, LLC New Seventh St. Buffalo, New York

					M	onitoring Well						
Parameter ¹	MW-03 2/14/2013	MW-03 2/14/2013	MW-03 2/19/2014	MW-03 2/19/2014	MW-03 11/27/2015	MW-03 11/11/2016	MW-09R 2/8/2012	MW-09R 2/8/2012	MW-09R 2/14/2013	MW-09R 2/14/2013	MW-09R 11/27/2015	MW-09R 11/11/2016
NYSDEC STARS LIST VOCs (ug/L)		•			•				•	•	•	
Acetone	50 U	10 U	-	-	-	-	250 U	250 U	800 U	-	-	-
Benzene	260	250	330	310	170	840	6,100	5,000	6,800	4,000	2,300	1900
2-Butanone	50 U	10 UF	-	-	-	-	250 U	250 U	800 UF	-	-	-
Ethylbenzene	40	36	45	43	20	360	110	72	150	80 U	18 U	28 U
Isopropylbenzene	-	-	-	-	3 J	40 J	-	-	-	-	-	-
Toluene	5 U	1 U	5 U	2.4 J	10 U	18 J	25 U	25 U	80 U	80 U	18 U	28 U
1,2,4-Trimethylbenzene					5 U	160						
o-Xylene					5 U	65						
m/p- Xylene					5 U	20 J						
Field Parameters											_	
Temperature (°C)	11.47	-	10.01	-	14.7	14.5	5.4	-	4.98	7.03	13.1	11
Specific Conductance (umho/cm)	2.61	-	2.46	-	3028	4449	3.25	-	3.79	3.31	3061	2612
Dissolved Oxygen (mg/L)	7.91	-	8.38	-	2.27	1.36	1.05	-	13.78	9.32	2.55	2.88
pH (s.u.)	6.84	-	7.39	-	7.02	7.25	7.07	-	6.92	7.47	7.09	7.33
ORP (mV)	-82	-	-116	-	-103	-228	36	-	-81	-86	-81	-175
Turbidity (NTUs)	55.4	-	-	-	31.3	154	49.2	-	105	-	71000	121
Purge volume (gal)	5.28	-	6.96	-	6	6	1.2	-	6.54	8.84	6.75	6.75

Notes:

1. Only those parameters detected at a minimum of one sample location are presented in this table;

all other compounds were reported as non-detect.

Definitions:

J = Analyte detected at less than the Reporting Limit (RL) and greater than or equal to the Method Detection Limt (MDL).

ND = Not Detected

U= constituent not detected at reported detection limit

"-" indicates standard not developed or constituent not analyzed

Highlighted, bolded implies Class GA exceedances

TABLE 2

SUMMARY OF SOIL ANALYTICAL RESULTS

IMPORTED TOPSOIL (CJ KRANTZ) MAY 2017

257 WEST GENESEE SITE

BUFFALO, NEW YORK

Parameter ¹	Restricted Commercial Use Import Criteria ²	CJ KRANTZ NURSERY IMPORTED TOPSOIL
Valatila Organia Compoundo (VOCa) ma/Ka ³		03/22/17
Ethylbenzene	1	0.0011
	0.7	0.0011 J
Total Xylene	16	0.0081 1
Semi-Volatile Organic Compounds (SVOCs) - mg/Kg ³	1.0	0.00010
Benzo(a)anthracene	1	0.17.J
Benzo(b)fluoranthene	1.7	0.27 J
Fluoranthene	500	0.32.1
Pyrene	500	0.28.1
Metals - ma/Ka		
Aluminum		19900
Antimony		2.1 J
Arsenic	16	3.9
Barium	400	96.6
Beryllium	47	0.58
Cadmium	7.5	0.41
Calcium		10800 B
Chromium	1500	23.1
Cobalt		5.4
Copper	270	18.3
Iron		17300
Lead	450	24.7
Magnesium		4370
Manganese	2000	207 B
Mercury	0.73	0.075
Nickel	130	15.3
Potassium		5010
Selenium	4	1.7 J
Sodium		161 J
Vanadium	-	32.4
Zinc	2480	93.9
Pesticides- mg/Kg ³		
4.4'-DDE	17	0.013 J

Notes:

1. Only those parameters detected at a minimum of one sample location are presented in this table; all other compounds were reported as non-detect.

2. Values per NYSDEC DER-10 Appendix 5: Allowable Constituent Levels for Imported Soil or Fill

3. Sample results were reported by the laboratory in ug/kg and converted to mg/kg for comparison to SCOs.

Definitions:

ND = Parameter not detected above laboratory detection limit.

"--" = Sample not analyzed for parameter or no SCO available for the parameter.

J = Estimated value; result is less than the sample quantitation limit but greater than zero.

B = Indicates a value greater than or equal to the instrument detection limit, but less than the quantitation limit.

APPENDIX A

HISTORICAL GROUNDWATER SAMPLE RESULTS: MW-03 & MW-09/MW-09R

Summary of MW-09 and MW-09R Results QLT Buffalo Buffalo, New York (a)

	Well I.D.:).:MW-09											
	Event:	Quarterly Monitoring											
	Sample Date:	<u>08/20/07 (e)</u>	<u>08/21/07</u>	<u>11/27/07</u>	03/03/08	05/27/08	08/25/08	<u>11/20/08</u>	<u>12/18/2008 (f)</u>	02/24/09	<u>05/19/09</u>		
Parameters	NSYDEC Standards (c)												
Volatile Organic Compounds (µg/I)													
Acetone	50	-	-	-	-					-			
Benzene	1	4,000 D (d)	980	1,700	3,300	12,000	7,600	3,600	670	13,000	10,000		
2-Butanone	50	-	-	-	-	-	-	-	-	-	-		
Ethylbenzene	5	6	1.3	10 U	20 U	40 U	100 U	50 U	0.73 J	12 J	8.2 J		
Toluene	5	2	0.74 J	10 U	20 U	40 U	100 U	50 U	1 U	4.7 J	20 U		
Total Xylenes	5	120 U	300 U	150 U	12 J	40 U	30 U	60 U	3 U	120 U	96 J		
Field Parameters													
Temperature (°C)	-	-	-	-	-	-	-	-	-	-	-		
Specific Conductance (mS/cm)	-	-	-	-	-	-	-	-	-	-	-		
Dissolved Oxygen (mg/l)	-	-	-	-	-	-	-	-	-	-	-		
pH (s.u.)	-	-	-	-	-	-	-	-	-	-	-		
ORP (mV)	-	-	-	-	-	-	-	-	-	-	-		
Turbidity (NTUs)	-	-	-	-	-	-	-	-	-	-	-		
Purge Volume (gal)	-	-	-	-	-	-	-	-	-	-	-		

Boxed value greater than the NYSDEC standards

Summary of MW-09 and MW-09R Results QLT Buffalo Buffalo, New York

		MM	V-09								
	_					Per	formance Monitor	ing			
	Event:	Baseline					(Post-Injection)				
	Sample Date:	06/26/09	<u>11/24/09 (b)</u>	<u>11/24/09 (b)</u>	<u>02/18/10 (b)</u>	<u>02/18/10 (b)</u>	<u>05/19/10 (b)</u>	<u>05/19/10 (b)</u>	<u>08/17/10 (b)</u>	<u>08/17/10 (b)</u>	<u>06/03/11 (b)</u>
Parameters	NSYDEC Standards (c)										
Volatile Organic Compounds (µg/)										
Acetone	50	-	-	-	63	62	35	35	31	33	14
Benzene	1	-	2,200 D	2,000 D	1,500	1,800	2,400 D08	2,000 D08	730 D08	720 D08	420
2-Butanone	50	-	-	-	7.8	7.6	5.4	5	5 J	5.6 J	1.7 J
Ethylbenzene	5	-	4.2 D	3.9 JD	3.8	4	4.9	3.6	3.1	2.7	0.77 J
Toluene	5	-	4 U	4 U	0.92 J	0.98 J	0.6 J	0.57 J	1 U	1 U	1 U
Total Xylenes	5	-	3.7 JD	3.2 JD	6.1	6.2	2.7	1.4 J	3	2.3	2 U
Field Parameters											
Temperature (°C)	-	22.04	11.75	-	3.94	-	17.24	-	17.7	-	15.95
Specific Conductance (mS/cm)	-	1.74	11.7	-	9.31	-	5.64	-	5.98	-	4.63
Dissolved Oxygen (mg/l)	-	0.28	9.39	-	37.43	-	38.17	-	23.99	-	26.32
pH (s.u.)	-	6.89	13.40	-	13.67	-	12.96	-	12.67	-	10.54
ORP (mV)	-	-96	-25	-	-24	-	-58	-	30	-	64
Turbidity (NTUs)	-	9.6	69 (c)	-	136	-	18.2	-	87.1	-	39.2
Purge Volume (gal)	-	2	1	-	1	-	0.8	-	1	-	0.6

Boxed value greater than the NYSDEC standards

Summary of MW-09 and MW-09R Results QLT Buffalo Buffalo, New York

	Well I.D.:			MW-09			MW-09R				
			Performance Monitoring				Performance Monitoring				
	Event:			(Post-Injectio	1)		(Post-Injection)				
	Sample Date:	<u>06/03/11 (b)</u>	<u>09/06/11 (b)</u>	<u>09/06/11 (b)</u>	<u>11/06/11 (b)</u>	<u>11/06/11 (b)</u>	<u>2/8/2012 (b)</u>	<u>2/8/2012 (b)</u>	<u>2/14/2013 (g)</u>	<u>2/19/2014 (g)</u>	
Parameters	NSYDEC										
	Standards (c)										
Volatile Organic Compounds (µg/I)											
Acetone	50	13	25	28			250 U	250 U	800 U	-	
Benzene	1	430	1,400	970	2,100	2,100	6,100	5,000	6,800	4,000	
2-Butanone	50	1.7 J	3.5 J	3.9 J	-	-	250 U	250 U	800 UF	-	
Ethylbenzene	5	0.79 J	1.4	1.4	2.1	2.2	110	72	150	80 U	
Toluene	5	1 U	1 U	1 U	1 U	1 U	25 U	25 U	80 U	80 U	
Total Xylenes	5	2 U	2 U	2 U	0.88 J	0.95 J	37 J	31 J	160 U	160 U	
Field Parameters											
Temperature (°C)	-	-	15.46	-	8.32	-	5.4	-	4.98	7.03	
Specific Conductance (mS/cm)	-	-	4.38	-	4.35	-	3.25	-	3.79	3.31	
Dissolved Oxygen (mg/l)	-	-	35.27	-	25.34	-	1.05	-	13.78	9.32	
pH (s.u.)	-	-	10.06	-	11.79	-	7.07	-	6.92	7.47	
ORP (mV)	-	-	32	-	103	-	36	-	-81	-86	
Turbidity (NTUs)	-	-	18.9	-	15.2	-	49.2	-	105	-	
Purge Volume (gal)	-	-	0.2	-	0.1	-	1.2	-	6.54	8.84	

Boxed value greater than the NYSDEC standards

a/ I.D. = identification; NYSDEC = New York State Department of Environmental Conservation;

 $\mu g/I = micrograms$ per liter; mg/I = milligrams per liter; $^{\circ}C =$ degrees Celcius;

mS/cm = microSiemens per centimeter; s.u. = standard units; mV = millivolts;

NTU = nephlometric turbidity units; gal = gallons; °/_{oo} = part per thousand;

 δ^{13} C = delta carbon-13; ND = not detected; '-' = standard not developed or constituent not analyzed.

b/ Sample and duplicate.

c/ NYSDEC Ambient Water Quality Standards and Guidance Values. Technical and Operational Guidance Series (1.1.1). June 1998 and as updated.

d/ Data Qualifiers:

U = constituent not detected at reported detection limit

J = estimated concentration

B = analyte detected in associated method blank

D, D08 = result from diluted aliquot

H = sample was analyzed after hold time

F = matrix spike or matrix spike duplicate exceeds control limits

e/ Results from sample collected by the NYSDEC.

f/ Supplemental Investigation

g/ Samples collected with a bailer.

Summary of MW-03 Historical Results QLT Buffalo Buffalo, New York (a)

	Well I.D.:	MW-03											
	Event:		Quarterly Monitoring										
	Sample Date:	08/21/07	<u>11/28/07 (b)</u>	<u>11/28/07 (b)</u>	<u>03/03/08 (b)</u>	<u>03/03/08 (b)</u>	<u>05/27/08 (b)</u>	<u>05/27/08 (b)</u>	<u>08/25/08 (b)</u>	<u>08/25/08 (b)</u>	<u>11/20/08</u>		
Parameters	NSYDEC Values (c)												
Volatile Organic Compounds (µg/I)													
Acetone	50	-	-	-	-	-	-	-	-	-			
Benzene	1	21	1,800	1,800 J	520	490	48	42	1,600	1,800	1,500		
2-Butanone	50	-	-	-		-	-		-	-	-		
Ethylbenzene	5	13	960	980 J	250	230	26	22	920	1,000	870		
Toluene	5	0.67 J	100	110	20	19 J	1 U	1 U	72	73	53		
Total Xylenes	5	8.5	850	870	190	170	7.7	6.9	650	710	530		
Field Parameters													
Temperature (°C)	-	-	-	-	-	-	-	-	-	-	-		
Specific Conductance (mS/cm)	-	-	-	-	-	-	-	-	-	-	-		
Dissolved Oxygen (mg/l)	-	-	-	-	-	-	-	-	-	-	-		
pH (s.u.)	-	-	-	-	-	-	-	-	-	-	-		
ORP (mV)	-	-	-	-	-	-	-	-	-	-	-		
Turbidity (NTUs)	-	-	-	-	-	-	-	-	-	-	-		
Purge Volume (gal)	-	-	-	-	-	-	-	-	-	-	-		

Boxed value greater than the NYSDEC values

Summary of MW-03 Historical Results QLT Buffalo Buffalo, New York

	Well I.D.:													
			Supplemental				Performance Monitoring							
	Event:	Invest	tigation	Quarterly	Quarterly Monitoring		(Post-Injection)							
	Sample Date:	<u>12/17/08 (b)</u> 1	12/17/08 (b)	02/24/09	<u>05/19/09</u>	<u>11/24/09</u>	<u>05/19/10</u>	<u>2/14/2013 (b,g)</u>	<u>2/14/2013 (b,g)</u>	<u>2/19/2014 (b,g)</u> 2	<u>/19/2014 (b,g)</u>			
Parameters	NSYDEC													
	Values (c)													
Volatile Organic Compounds (µg/l)														
Acetone	50			-	-	-	-	50 U	10 U					
Benzene	1	610	600	420	220	1,300 D	26	260	250	330	310			
2-Butanone	50	-	-	-	-	-	-	50 U	10 UF	-				
Ethylbenzene	5	340	330	240	44	620 D	1.2	40	36	45	43			
Toluene	5	22	22	1.6	1.9	35 D	1 U	5 U	1 U	5 U	2.4 J			
Total Xylenes	5	200 J	190	17	5.5	370 D	2 U	10 U	2.5	3.8 J	3.2 J			
Field Parameters														
Temperature (°C)	-	-	-	-	-	13.61	18.41	11.47	-	10.01	-			
Specific Conductance (mS/cm)	-	-	-	-	-	3.61	2.32	2.61	-	2.46	-			
Dissolved Oxygen (mg/l)	-	-	-	-	-	2.64	0	7.91	-	8.38	-			
pH (s.u.)	-	-	-	-	-	6.90	7.22	6.84	-	7.39	-			
ORP (mV)	-	-	-	-	-	-21	-134	-82	-	-116	-			
Turbidity (NTUs)	-	-	-	-	-	5.9	5.21	55.4	-	-	-			
Purge Volume (gal)	-	-	-	-	-	2	0.6	5.28	-	6.96	-			

Boxed value greater than the NYSDEC values

a/ I.D. = identification; NYSDEC = New York State Department of Environmental Conservation;

µg/l = micrograms per liter; ND = not detected; '-' indicates standard not developed or constituent not analyzed.

b/ Sample and duplicate.

c/ NYSDEC Ambient Water Quality Standards and Guidance Values. Technical and Operational Guidance Series (1.1.1). June 1998 and as updated.

d/ Data Qualifiers:

- U = constituent not detected at reported detection limit
- J = estimated concentration
- B = analyte detected in associated method blank
- D, D08 = result from diluted aliquot

F = matrix spike or matrix spike duplicate exceeds control limits

- e/ Results from sample collected by the NYSDEC.
- f/ Samples collected during the February 14, 2013 sampling event were collected with a bailer.

g/ Samples collected with a bailer.

APPENDIX B

LABORATORY ANALYTICAL REPORT: MW-03 & MW-09R

NOVEMBER 2016

ANALYTICAL REPORT

Lab Number:	L1636774
Client:	Benchmark & Turnkey Companies 2558 Hamburg Turnpike Suite 300 Buffalo, NY 14218
ATTN: Phone:	Tom Forbes (716) 856-0599
Project Name: Project Number: Report Date:	DUKE REALITY 0235-015-001 11/18/16

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NY (11148), CT (PH-0574), NH (2003), NJ NELAP (MA935), RI (LAO00065), ME (MA00086), PA (68-03671), VA (460195), MD (348), IL (200077), NC (666), TX (T104704476), DOD (L2217), USDA (Permit #P-330-11-00240).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Serial_No:11181611:51

Project Name:	DUKE REALITY
Project Number:	0235-015-001

 Lab Number:
 L1636774

 Report Date:
 11/18/16

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1636774-01	MW-03	WATER	BUFFALO, NY	11/11/16 12:05	11/11/16
L1636774-02	MW-9R	WATER	BUFFALO, NY	11/11/16 13:06	11/11/16
L1636774-03	TRIP BLANK	WATER	BUFFALO, NY	11/11/16 00:00	11/11/16

Project Name: DUKE REALITY Project Number: 0235-015-001

Lab Number: L1636774 Report Date: 11/18/16

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.

Project Name:DUKE REALITYProject Number:0235-015-001

 Lab Number:
 L1636774

 Report Date:
 11/18/16

Case Narrative (continued)

Report Submission

The project number and requested analyses were provided by the client.

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Curten Walker Cristin Walker

Title: Technical Director/Representative

Date: 11/18/16

ORGANICS

VOLATILES

			Serial_No:11181611:51			
Project Name:	DUKE REALITY			Lab Number:	L1636774	
Project Number:	0235-015-001			Report Date:	11/18/16	
			SAMPLE RESULTS			
Lab ID: Client ID: Sample Location: Matrix: Analytical Method: Analytical Date: Analyst:	L1636774-01 MW-03 BUFFALO, NY Water 1,8260C 11/15/16 18:44 KD	D		Date Collected: Date Received: Field Prep:	11/11/16 12:05 11/11/16 Not Specified	

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westb	orough Lab					
Benzene	840		ug/l	10	3.2	20
Toluene	18	J	ug/l	50	14.	20
Ethylbenzene	360		ug/l	50	14.	20
Methyl tert butyl ether	ND		ug/l	50	14.	20
p/m-Xylene	20	J	ug/l	50	14.	20
o-Xylene	65		ug/l	50	14.	20
n-Butylbenzene	ND		ug/l	50	14.	20
sec-Butylbenzene	ND		ug/l	50	14.	20
tert-Butylbenzene	ND		ug/l	50	14.	20
Isopropylbenzene	40	J	ug/l	50	14.	20
p-IsopropyItoluene	ND		ug/l	50	14.	20
n-Propylbenzene	ND		ug/l	50	14.	20
1,3,5-Trimethylbenzene	ND		ug/l	50	14.	20
1,2,4-Trimethylbenzene	160		ug/l	50	14.	20

			Acceptance	
Surrogate	% Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	120		70-130	
Toluene-d8	101		70-130	
4-Bromofluorobenzene	102		70-130	
Dibromofluoromethane	102		70-130	

				Serial_N	o:11181611:51
Project Name:	DUKE REALITY			Lab Number:	L1636774
Project Number:	0235-015-001			Report Date:	11/18/16
			SAMPLE RESULTS		
Lab ID:	L1636774-02	D		Date Collected:	11/11/16 13:06
Client ID:	MW-9R			Date Received:	11/11/16
Sample Location:	BUFFALO, NY			Field Prep:	Not Specified
Matrix:	Water				
Analytical Method:	1,8260C				
Analytical Date:	11/15/16 19:12				

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westh	orough Lab					
Benzene	1900		ug/l	20	6.4	40
Toluene	ND		ug/l	100	28.	40
Ethylbenzene	ND		ug/l	100	28.	40
Methyl tert butyl ether	ND		ug/l	100	28.	40
p/m-Xylene	ND		ug/l	100	28.	40
o-Xylene	ND		ug/l	100	28.	40
n-Butylbenzene	ND		ug/l	100	28.	40
sec-Butylbenzene	ND		ug/l	100	28.	40
tert-Butylbenzene	ND		ug/l	100	28.	40
Isopropylbenzene	ND		ug/l	100	28.	40
p-Isopropyltoluene	ND		ug/l	100	28.	40
n-Propylbenzene	ND		ug/l	100	28.	40
1,3,5-Trimethylbenzene	ND		ug/l	100	28.	40
1,2,4-Trimethylbenzene	ND		ug/l	100	28.	40

			Acceptance	
Surrogate	% Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	122		70-130	
Toluene-d8	104		70-130	
4-Bromofluorobenzene	105		70-130	
Dibromofluoromethane	101		70-130	

Analyst:

KD
		Serial_N	o:11181611:51
DUKE REALITY		Lab Number:	L1636774
0235-015-001		Report Date:	11/18/16
	SAMPLE RESULTS		
L1636774-03		Date Collected:	11/11/16 00:00
TRIP BLANK		Date Received:	11/11/16
BUFFALO, NY		Field Prep:	Not Specified
Water			
1,8260C			
11/15/16 18:16			
KD			
	DUKE REALITY 0235-015-001 L1636774-03 TRIP BLANK BUFFALO, NY Water 1,8260C 11/15/16 18:16 KD	DUKE REALITY 0235-015-001 L1636774-03 TRIP BLANK BUFFALO, NY Water 1,8260C 11/15/16 18:16 KD	Serial_N DUKE REALITY Lab Number: 0235-015-001 Report Date: SAMPLE RESULTS L1636774-03 Date Collected: TRIP BLANK Date Received: BUFFALO, NY Field Prep: Water 1,8260C 11/15/16 18:16 KD

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - W	estborough Lab					
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
n-Propylbenzene	ND		ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1

			Acceptance	
Surrogate	% Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	122		70-130	
Toluene-d8	103		70-130	
4-Bromofluorobenzene	104		70-130	
Dibromofluoromethane	100		70-130	

Project Name:	DUKE REALITY	Lab Number:	L1636774
Project Number:	0235-015-001	Report Date:	11/18/16

Method Blank Analysis Batch Quality Control

Analytical Method:	1,8260C
Analytical Date:	11/15/16 09:51
Analyst:	PD

Parameter	Result	Qualifier Unit	s	RL	MDL
Volatile Organics by GC/MS - We	stborough La	ab for sample(s):	01-03	Batch:	WG952498-5
Benzene	ND	ug	/I	0.50	0.16
Toluene	ND	ug	/I	2.5	0.70
Ethylbenzene	ND	ug	/I	2.5	0.70
Methyl tert butyl ether	ND	ug	/I	2.5	0.70
p/m-Xylene	ND	ug	/I	2.5	0.70
o-Xylene	ND	ug	/I	2.5	0.70
n-Butylbenzene	ND	ug	/I	2.5	0.70
sec-Butylbenzene	ND	ug	/I	2.5	0.70
tert-Butylbenzene	ND	ug	/I	2.5	0.70
Isopropylbenzene	ND	ug	/I	2.5	0.70
p-Isopropyltoluene	ND	ug	/I	2.5	0.70
n-Propylbenzene	ND	ug	/I	2.5	0.70
1,3,5-Trimethylbenzene	ND	ug	/I	2.5	0.70
1,2,4-Trimethylbenzene	ND	ug	/I	2.5	0.70

			Acceptance	
Surrogate	%Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	128		70-130	
Toluene-d8	102		70-130	
4-Bromofluorobenzene	102		70-130	
Dibromofluoromethane	105		70-130	

Project Name: DUKE REALITY Project Number: 0235-015-001

Parameter	LCS %Recovery Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
Volatile Organics by GC/MS - Westbo	prough Lab Associated sample(s):	01-03 Batch:	WG952498-3	WG952498-4			
Methylene chloride	94	96		70-130	2	20	
1,1-Dichloroethane	100	100		70-130	0	20	
Chloroform	97	96		70-130	1	20	
2-Chloroethylvinyl ether	98	85		70-130	14	20	
Carbon tetrachloride	97	95		63-132	2	20	
1,2-Dichloropropane	100	99		70-130	1	20	
Dibromochloromethane	98	94		63-130	4	20	
1,1,2-Trichloroethane	94	95		70-130	1	20	
Tetrachloroethene	96	94		70-130	2	20	
Chlorobenzene	89	89		75-130	0	20	
Trichlorofluoromethane	110	110		62-150	0	20	
1,2-Dichloroethane	110	110		70-130	0	20	
1,1,1-Trichloroethane	94	95		67-130	1	20	
Bromodichloromethane	97	98		67-130	1	20	
trans-1,3-Dichloropropene	92	92		70-130	0	20	
cis-1,3-Dichloropropene	94	91		70-130	3	20	
1,1-Dichloropropene	94	94		70-130	0	20	
Bromoform	92	94		54-136	2	20	
1,1,2,2-Tetrachloroethane	90	91		67-130	1	20	
Benzene	85	85		70-130	0	20	
Toluene	87	86		70-130	1	20	

Project Name: DUKE REALITY Project Number: 0235-015-001

Parameter	LCS %Recovery	Qual	L %Re	.CSD ecovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westborough L	ab Associated s	ample(s):	01-03	Batch:	WG952498-3	WG952498-4				
Ethylbenzene	86			87		70-130	1		20	
Chloromethane	110			110		64-130	0		20	
Bromomethane	110			100		39-139	10		20	
Vinyl chloride	110			100		55-140	10		20	
Chloroethane	110			110		55-138	0		20	
1,1-Dichloroethene	87			88		61-145	1		20	
trans-1,2-Dichloroethene	86			86		70-130	0		20	
Trichloroethene	88			87		70-130	1		20	
1,2-Dichlorobenzene	82			83		70-130	1		20	
1,3-Dichlorobenzene	83			82		70-130	1		20	
1,4-Dichlorobenzene	84			81		70-130	4		20	
Methyl tert butyl ether	96			96		63-130	0		20	
p/m-Xylene	85			85		70-130	0		20	
o-Xylene	80			80		70-130	0		20	
cis-1,2-Dichloroethene	90			86		70-130	5		20	
Dibromomethane	98			99		70-130	1		20	
1,2,3-Trichloropropane	92			88		64-130	4		20	
Acrylonitrile	100			99		70-130	1		20	
Isopropyl Ether	120			120		70-130	0		20	
tert-Butyl Alcohol	108			120		70-130	11		20	
Styrene	80			80		70-130	0		20	

Parameter	LCS %Recovery	Qual	%R	LCSD Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	01-03	Batch:	WG952498-3	WG952498-4				
Dichlorodifluoromethane	120			120		36-147	0		20	
Acetone	130			110		58-148	17		20	
Carbon disulfide	79			76		51-130	4		20	
2-Butanone	120			120		63-138	0		20	
Vinyl acetate	110			110		70-130	0		20	
4-Methyl-2-pentanone	96			88		59-130	9		20	
2-Hexanone	100			100		57-130	0		20	
Acrolein	110			100		40-160	10		20	
Bromochloromethane	96			96		70-130	0		20	
2,2-Dichloropropane	99			98		63-133	1		20	
1,2-Dibromoethane	92			90		70-130	2		20	
1,3-Dichloropropane	95			94		70-130	1		20	
1,1,1,2-Tetrachloroethane	91			93		64-130	2		20	
Bromobenzene	96			96		70-130	0		20	
n-Butylbenzene	88			85		53-136	3		20	
sec-Butylbenzene	85			84		70-130	1		20	
tert-Butylbenzene	85			83		70-130	2		20	
o-Chlorotoluene	85			84		70-130	1		20	
p-Chlorotoluene	86			85		70-130	1		20	
1,2-Dibromo-3-chloropropane	87			82		41-144	6		20	
Hexachlorobutadiene	110			120		63-130	9		20	

Project Name: DUKE REALITY Project Number: 0235-015-001

Parameter	LCS %Recovery Qual	LCSD %Recovery	%Re Qual Li	ecovery imits RPD	RPD Qual Limits	
Volatile Organics by GC/MS - Westborough	Lab Associated sample(s)	: 01-03 Batch:	WG952498-3 WG9	952498-4		
Isopropylbenzene	88	87	70)-130 1	20	
p-lsopropyltoluene	84	82	70)-130 2	20	
Naphthalene	80	82	70	0-130 2	20	
n-Propylbenzene	86	86	69	Э-130 О	20	
1,2,3-Trichlorobenzene	90	98	70	D-130 9	20	
1,2,4-Trichlorobenzene	95	96	70)-130 1	20	
1,3,5-Trimethylbenzene	85	84	64	4-130 1	20	
1,2,4-Trimethylbenzene	88	86	70)-130 2	20	
Methyl Acetate	110	110	70	0-130	20	
Ethyl Acetate	110	100	70	D-130 10	20	
Cyclohexane	100	100	70	0-130 0	20	
Ethyl-Tert-Butyl-Ether	110	110	70	0-130	20	
Tertiary-Amyl Methyl Ether	97	95	66	5-130 2	20	
1,4-Dioxane	86	112	56	3-162 26	Q 20	
1,1,2-Trichloro-1,2,2-Trifluoroethane	100	100	70	0-130	20	
p-Diethylbenzene	94	91	70)-130 3	20	
p-Ethyltoluene	91	91	70	0-130	20	
1,2,4,5-Tetramethylbenzene	86	86	70	0-130	20	
Tetrahydrofuran	130	120	58	3-130 8	20	
Ethyl ether	95	95	59	Э-134 О	20	
trans-1,4-Dichloro-2-butene	110	100	70)-130 10	20	

Project Name:DUKE REALITYProject Number:0235-015-001

 Lab Number:
 L1636774

 Report Date:
 11/18/16

LCSD LCS %Recovery RPD %Recovery %Recovery Limits Parameter Qual Qual Limits RPD Qual Volatile Organics by GC/MS - Westborough Lab Associated sample(s): 01-03 Batch: WG952498-3 WG952498-4 20 Q 68 Q lodomethane 68 70-130 0 Methyl cyclohexane 96 70-130 20 94 2

	LCS		LCSD		Acceptance	
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	
1,2-Dichloroethane-d4	130		123		70-130	
Toluene-d8	100		102		70-130	
4-Bromofluorobenzene	103		104		70-130	
Dibromofluoromethane	108		109		70-130	

Serial_No:11181611:51

Lab Number: L1636774 Report Date: 11/18/16

Project Name: DUKE REALITY Project Number: 0235-015-001

Sample Receipt and Container Information

YES

Were project specific reporting limits specified?

Cooler Information Custody Seal

Cooler

А

Absent

Container Info	rmation		Temp					
Container ID	Container Type	Cooler	рН	deg C	Pres	Seal	Analysis(*)	
L1636774-01A	Vial HCI preserved	А	N/A	3.3	Y	Absent	NYCP51-8260-G(14)	
L1636774-01B	Vial HCI preserved	А	N/A	3.3	Y	Absent	NYCP51-8260-G(14)	
L1636774-01C	Vial HCI preserved	А	N/A	3.3	Y	Absent	NYCP51-8260-G(14)	
L1636774-02A	Vial HCI preserved	А	N/A	3.3	Y	Absent	NYCP51-8260-G(14)	
L1636774-02B	Vial HCI preserved	А	N/A	3.3	Y	Absent	NYCP51-8260-G(14)	
L1636774-02C	Vial HCI preserved	А	N/A	3.3	Y	Absent	NYCP51-8260-G(14)	
L1636774-03A	Vial HCI preserved	А	N/A	3.3	Y	Absent	NYCP51-8260-G(14)	

Project Name: DUKE REALITY

Project Number: 0235-015-001

Lab Number: L1636774

Report Date: 11/18/16

GLOSSARY

Acronyms

EDL	- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).
EPA	- Environmental Protection Agency.
LCS	- Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LCSD	- Laboratory Control Sample Duplicate: Refer to LCS.
LFB	- Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
MDL	- Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
MS	- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available.
MSD	- Matrix Spike Sample Duplicate: Refer to MS.
NA	- Not Applicable.
NC	- Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
NDPA/DPA	
	- N-Nitrosodiphenylamine/Diphenylamine.
NI	- N-Nitrosodiphenylamine/Diphenylamine. - Not Ignitable.
NI NP	 N-Nitrosodiphenylamine/Diphenylamine. Not Ignitable. Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.
NI NP RL	 N-Nitrosodiphenylamine/Diphenylamine. Not Ignitable. Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil. Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
NI NP RL RPD	 N-Nitrosodiphenylamine/Diphenylamine. Not Ignitable. Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil. Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable. Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.
NI NP RL RPD SRM	 N-Nitrosodiphenylamine/Diphenylamine. Not Ignitable. Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil. Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable. Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report. Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- B The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For NDD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte able to explore the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the

Report Format: DU Report with 'J' Qualifiers

Serial_No:11181611:51

Project Name: DUKE REALITY

Project Number: 0235-015-001

Lab Number: L1636774

Report Date: 11/18/16

Data Qualifiers

reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).

- C Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- **D** Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- RE Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- J Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.

Project Name: DUKE REALITY
Project Number: 0235-015-001

 Lab Number:
 L1636774

 Report Date:
 11/18/16

REFERENCES

1 Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624: m/p-xylene, o-xylene EPA 8260C: <u>NPW</u>: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; <u>SCM</u>: lodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene. EPA 8270D: <u>NPW</u>: Dimethylnaphthalene,1,4-Diphenylhydrazine; <u>SCM</u>: Dimethylnaphthalene,1,4-Diphenylhydrazine. EPA 300: <u>DW</u>: Bromide EPA 6860: <u>NPW and SCM</u>: Perchlorate EPA 9010: <u>NPW and SCM</u>: Amenable Cyanide Distillation EPA 9012B: <u>NPW</u>: Total Cyanide EPA 9050A: <u>NPW</u>: Specific Conductance SM3500: <u>NPW</u>: Ferrous Iron SM4500: <u>NPW</u>: Amenable Cyanide, Dissolved Oxygen; <u>SCM</u>: Total Phosphorus, TKN, NO2, NO3. SM5310C: <u>DW</u>: Dissolved Organic Carbon

Mansfield Facility SM 2540D: TSS EPA 3005A <u>NPW</u> EPA 8082A: <u>NPW</u>: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187. EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene. Biological Tissue Matrix: *EPA 3050B*

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water EPA 300.0: Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP. Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, SM4500NO3-F, EPA 353.2: Nitrate-N, EPA 351.1, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D. EPA 624: Volatile Halocarbons & Aromatics, EPA 628: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil. Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9222D-MF.

Mansfield Facility:

Drinking Water EPA 200.7: Ba, Be, Cd, Cr, Cu, Ni, Na, Ca. EPA 200.8: Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Ni, Se, TL. EPA 245.1 Hg.

Non-Potable Water EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn. EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Serial_No:11181611:51

Westborough, MA 01581 8 Walkup Dr. TEL: 508-898-9220 FAX: 508-898-9193 Client Information Client: Bacching Address: 2555 Address: 2555 Fax: Fax: Email: 6 Email: 6 Email: 6 These samples have b	NEW YORK CHAIN OF CUSTODY Mansfield, MA 02048 320 Forbes Blvd TEL: 508-822-9300 FAX: 508-822-9300 FAX: 508-822-3288	Service Centers Mahwah, NJ 07430: 35 Whitney Rd, Suite 5 Albany, NY 12205: 14 Walker Way Tonawanda, NY 14150: 275 Cooper Ave, Suite Project Information Project Name: Project Location: Project Location: Project 4 (Use Project name as Project 4) Project Manager: ALPHAQuote 4 Curn-Around Time Standard Rush (only if pre approved) ed by Alpha	Due Date: # of Days:	Pag	e f	Delive	Date Re in Lat erables ASP-A EQuIS (1 Other atory Re AWQ Star NY Restric NY Unrest NY Unrest	c'd File) quireme dards cted Use ricted Use		ASP-E EQUIS NY Par NY CP- Other	3 5 (4 File) t 375 51	ALPHA Job # JG3G7774 Billing Information Same as Client Info PO # Disposal Site Information Please identify below location of applicable disposal facilities. Disposal Facility: NJ NY Other: Sample Filtration	
Other project specific Please specify Metals ALPHA Lab ID (Lab Use Only) 36774-01 02 03	or TAL. Sa Maw-03 Mw-9R Trip Shak	mple ID	lection Time 1205 1366	Sample Matrix	Sampler's Initials	ww cp-67 1000						Done Lab to do Preservation Lab to do (Please Specify below) Sample Specific Comments	р а 3 2 2
Preservative Code: A = None B = HCl C = HNO ₃ D = H ₂ SO ₄ E = NaOH F = MeOH G = NaHSO ₄ H = Na ₂ S ₂ O ₃ K/E = Zn Ac/NaOH O = Other Form No: 01-25 HC (rev. 30	Container Code P = Plastic A = Amber Glass V = Vial G = Glass B = Bacteria Cup C = Cube O = Other E = Encore D = BOD Bottle	Westboro: Certification No: MA935 Mansfield: Certification No: MA015		Cont P Time	tainer Type	V &	d By:		11-1 11-1 11/1	Date/Ti 	ime /600	Please print clearly, legibly and completely. Samples can not be logged in and turnaround time clock will not start until any ambiguities are resolved. BY EXECUTING THIS COC, THE CLIENT HAS READ AND AGREES TO BE BOUND BY ALPHA'S TERMS & CONDITIONS. (See reverse side.)	

APPENDIX C

LABORATORY ANALYTICAL REPORT: IMPORTED TOPSOIL

MAY 2017

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

TestAmerica Job ID: 480-118401-1

Client Project/Site: Benchmark - 256 W. Genesee site

For:

Benchmark Env. Eng. & Science, PLLC 2558 Hamburg Turnpike Suite 300 Lackawanna, New York 14218

Attn: Mr. Tom Forbes

Authorized for release by: 5/31/2017 3:56:00 PM

Brian Fischer, Manager of Project Management (716)504-9835 brian.fischer@testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
Surrogate Summary	11
QC Sample Results	13
QC Association Summary	24
Lab Chronicle	27
Certification Summary	28
Method Summary	29
Sample Summary	30
Chain of Custody	31
Receipt Checklists	32

Client: Benchmark Env. Eng. & Science, PLLC Project/Site: Benchmark - 256 W. Genesee site

3

GC/MS VOA

Qualifier	Qualifier Description	
vs	Reported analyte concentrations are below 200 ug/kg and may be biased low due to the sample not being collected according to 5035A-L	- 5
	low-level specifications.	J
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	
GC/MS Semi	VOA	
Qualifier	Qualifier Description	
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	- 1
GC Semi VO	Α	8
Qualifier	Qualifier Description	
F2	MS/MSD RPD exceeds control limits	- 9
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	
Metals		
Qualifier	Qualifier Description	
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	- 11
В	Compound was found in the blank and sample.	
٨	ICV,CCV,ICB,CCB, ISA, ISB, CRI, CRA, DLCK or MRL standard: Instrument related QC is outside acceptance limits.	
Glossary		13
Abbreviation	These commonly used abbreviations may or may not be present in this report.	
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
<u>n</u>	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RER	Relative Error Ratio (Radiochemistry)
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)

Job ID: 480-118401-1

Laboratory: TestAmerica Buffalo

Narrative

Job Narrative 480-118401-1

Case Narrative

Comments

No additional comments.

Receipt

The sample was received on 5/23/2017 5:10 PM; the sample arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 2.4° C.

GC/MS VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

GC/MS Semi VOA

Method(s) 8270D: The following sample was diluted due to appearance and viscosity: TOPSOIL COMP (480-118401-1). Elevated reporting limits (RL) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC Semi VOA

Method(s) 8081B: The following sample was diluted due to the nature of the sample matrix: TOPSOIL COMP (480-118401-1). As such, surrogate recoveries are below the calibration range, estimated and not representative. Elevated reporting limits (RLs) are provided.

Method(s) 8082A: The matrix spike duplicate (MSD) recoveries for preparation batch 480-358826 and analytical batch 480-358923 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Metals

Method(s) 6010C: The continuing calibration blank (CCB 480-359164/31) for analytical batch 480-359164 contained Total Iron above the reporting limit (RL). All reported samples associated with this CCB were either ND for this analyte or contained this analyte at a concentration greater than 10X the value found in the CCB; therefore, re-analysis of samples TOPSOIL COMP (480-118401-1), (LCSSRM 480-358953/2-), and (MB 480-358953/1-A) was not performed.

Method(s) 6010C: The Low Level Continuing Calibration Verification, (CCVL 480-359164/32) associated with batch 480-359164, contained Total Iron and Manganese above the upper quality control limit. The associated sample was either below the reporting limit (RL) for the affected analytes or contained these analytes at concentrations greater than 10X the values found in the CCVL; therefore, re-analysis of samples TOPSOIL COMP (480-118401-1), (LCSSRM 480-358953/2-) and (MB 480-358953/1-A) was not performed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Organic Prep

Method(s) 3550C: The following sample required a Florisil clean-up, via 3620C, to reduce matrix interferences: TOPSOIL COMP (480-118401-1).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Client Sample ID: TOPSOIL COMP

Analyte	Recult	Qualifier	RI	мрі	Unit	Dil Fac	п	Method	Pren Type
	<u></u>		8.2	0.57			<u>☆</u>	82600	
	1.1	lve	8.2	0.62	ug/Kg	1	÷	8260C	Total/NA
(vlenes Total	8.1	lvs	16	1 4	ug/Kg	1	÷	8260C	Total/NA
Renzo[a]anthracene	170		1400	140	ug/Kg		- -	8270D	Total/NA
Senzo[b]fluoranthene	270	J	1400	220	ug/Kg	5	₽	8270D	Total/NA
	320	J	1400	150	ug/Kg	5	₽	8270D	Total/NA
Pyrene	280	J	1400	170	ug/Ka	5	÷.	8270D	Total/NA
.4'-DDE	13	J	28	5.8	ua/Ka	10	₽	8081B	Total/NA
Numinum	19900		15.9	7.0	ma/Ka	1	₽	6010C	Total/NA
ntimony	2.1	J	23.8	0.63	mg/Kg		φ	6010C	Total/NA
vrsenic	3.9		3.2	0.63	mg/Kg	1	₽	6010C	Total/NA
arium	96.6		0.79	0.17	mg/Kg	1	₽	6010C	Total/NA
eryllium	0.58		0.32	0.044	mg/Kg	1	φ	6010C	Total/NA
Cadmium	0.41		0.32	0.048	mg/Kg	1	₽	6010C	Total/NA
alcium	10800	В	79.3	5.2	mg/Kg	1	₽	6010C	Total/NA
hromium	23.1		0.79	0.32	mg/Kg	1	φ	6010C	Total/NA
Cobalt	5.4		0.79	0.079	mg/Kg	1	₽	6010C	Total/NA
Copper	18.3		1.6	0.33	mg/Kg	1	₽	6010C	Total/NA
on	17300	^	15.9	5.5	mg/Kg	1	¢	6010C	Total/NA
ead	24.7		1.6	0.38	mg/Kg	1	₽	6010C	Total/NA
lagnesium	4370		31.7	1.5	mg/Kg	1	₽	6010C	Total/NA
langanese	207	В	0.32	0.051	mg/Kg	1	\$	6010C	Total/NA
lickel	15.3		7.9	0.36	mg/Kg	1	₽	6010C	Total/NA
Potassium	5010		47.6	31.7	mg/Kg	1	₽	6010C	Total/NA
elenium	1.7	J	6.3	0.63	mg/Kg	1	¢.	6010C	Total/NA
odium	161	J	222	20.6	mg/Kg	1	₽	6010C	Total/NA
/anadium	32.4		0.79	0.17	mg/Kg	1	₽	6010C	Total/NA
linc	93.9		3.2	1.0	mg/Kg	1	φ.	6010C	Total/NA
<i>N</i> ercury	0.075		0.033	0.013	mg/Kg	1	¢	7471B	Total/NA

Client Sample ID: TOPSOIL COMP

Date Collected: 05/22/17 14:00

Date Received: 05/23/17 17:10

Lab Sample ID: 480-118401-1 Matrix: Solid

Percent Solids: 59.5

Dil Fac

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

6

Method: 8260C - Volatile Organic Compounds by GC/MS Analyte **Result Qualifier** RL MDL Unit D Prepared Analyzed ☆ 1,1,1-Trichloroethane ND vs 8.2 0.60 ug/Kg 05/31/17 09:26 05/31/17 13:21 1.1.2.2-Tetrachloroethane ND vs 8.2 1.3 ug/Kg 05/31/17 09:26 05/31/17 13:21 1.1.2-Trichloroethane ND vs 8.2 1.1 ug/Kg ₫ 05/31/17 09:26 05/31/17 13:21 1,1,2-Trichloro-1,2,2-trifluoroethane ND vs 8.2 1.9 ug/Kg 05/31/17 09:26 05/31/17 13:21 Ö 1.1-Dichloroethane ND vs 8.2 1.0 ug/Kg 05/31/17 09:26 05/31/17 13:21 05/31/17 09:26 05/31/17 13.21 1.1-Dichloroethene ND 82 VS 1.0 ug/Kg 1,2,4-Trichlorobenzene 8.2 05/31/17 09:26 05/31/17 13:21 ND vs 0.50 ug/Kg 1,2-Dibromo-3-Chloropropane 8.2 æ 05/31/17 09:26 05/31/17 13:21 ND ug/Kg vs 4.1 ¢ 1,2-Dichlorobenzene ND vs 8.2 0.64 ug/Kg 05/31/17 09:26 05/31/17 13:21 ₽ 1.2-Dichloroethane ND 8.2 0.41 ug/Kg 05/31/17 09:26 05/31/17 13:21 vs 1,2-Dichloropropane ND vs 8.2 4.1 ug/Kg 05/31/17 09:26 05/31/17 13:21 ¢ 1,3-Dichlorobenzene ND 8.2 0.42 ug/Kg 05/31/17 09:26 05/31/17 13:21 vs ò 1,4-Dichlorobenzene ND 8.2 1.2 ug/Kg 05/31/17 09:26 05/31/17 13:21 vs 2-Butanone (MEK) ND 41 3.0 05/31/17 09:26 05/31/17 13:21 ug/Kg VS ¢ 41 05/31/17 09:26 05/31/17 13:21 2-Hexanone ND vs 4.1 ug/Kg ġ 4-Methyl-2-pentanone (MIBK) ND vs 41 2.7 ug/Kg 05/31/17 09:26 05/31/17 13:21 æ Acetone 41 6.9 05/31/17 09:26 05/31/17 13:21 ND VS ug/Kg Benzene ND 8.2 05/31/17 09:26 05/31/17 13:21 vs 0.40 ug/Kg ¢ Bromodichloromethane ND 82 1.1 ug/Kg 05/31/17 09:26 05/31/17 13:21 VS 8.2 05/31/17 09:26 05/31/17 13:21 Bromoform ND vs 4.1 ug/Kg æ 05/31/17 09:26 05/31/17 13:21 Bromomethane ND 8.2 0.74 ug/Kg VS à ug/Kg Carbon disulfide ND 8.2 05/31/17 09:26 05/31/17 13:21 VS 4.1 8.2 05/31/17 09:26 Carbon tetrachloride ND 0.80 ua/Ka 05/31/17 13:21 vs æ Chlorobenzene ND 8.2 ug/Kg 05/31/17 09:26 05/31/17 13:21 vs 1.1 Dibromochloromethane ND 8.2 05/31/17 09:26 05/31/17 13:21 vs 1.1 ua/Ka ₽ Chloroethane ND vs 8.2 1.9 ug/Kg 05/31/17 09:26 05/31/17 13:21 Chloroform ND 8.2 0.51 ug/Kg 05/31/17 09:26 05/31/17 13:21 vs Chloromethane ND vs 8.2 0.50 ug/Kg 05/31/17 09:26 05/31/17 13:21 Ö cis-1,2-Dichloroethene ND 8.2 ug/Kg 05/31/17 09:26 05/31/17 13:21 vs 1.1 æ cis-1,3-Dichloropropene ND vs 8.2 1.2 ug/Kg 05/31/17 09:26 05/31/17 13:21 Cyclohexane ND vs 8.2 1.2 ug/Kg 05/31/17 09:26 05/31/17 13:21 Dichlorodifluoromethane ND 82 0 68 05/31/17 09.26 05/31/17 13.21 VS ug/Kg Ö Ethylbenzene 8.2 0.57 ug/Kg 05/31/17 09:26 05/31/17 13:21 1.1 J vs φ 1,2-Dibromoethane 8.2 05/31/17 09:26 05/31/17 13:21 ND 1.1 ug/Kg VS ä Isopropylbenzene ND 8.2 1.2 ug/Kg 05/31/17 09:26 05/31/17 13:21 VS ₽ 41 05/31/17 09:26 Methyl acetate ND 5.0 ua/Ka 05/31/17 13:21 vs Methyl tert-butyl ether ND vs 8.2 0.81 ug/Kg 05/31/17 09:26 05/31/17 13:21 Methylcyclohexane æ ND 8.2 1.3 ug/Kg 05/31/17 09:26 05/31/17 13:21 vs ¢ Methylene Chloride ND vs 8.2 3.8 ug/Kg 05/31/17 09:26 05/31/17 13:21 ò Styrene ND vs 8.2 0.41 ug/Kg 05/31/17 09:26 05/31/17 13:21 ġ 05/31/17 09:26 Tetrachloroethene ND vs 8.2 1.1 ug/Kg 05/31/17 13:21 Ö 05/31/17 09:26 8.2 0.62 ug/Kg 05/31/17 13:21 Toluene J vs 1.1 à 82 0.85 05/31/17 09:26 05/31/17 13:21 trans-1,2-Dichloroethene ND ug/Kg VS Å 05/31/17 09:26 trans-1,3-Dichloropropene ND vs 8.2 3.6 ug/Kg 05/31/17 13:21 æ 05/31/17 09:26 Trichloroethene ND 82 1.8 ug/Kg 05/31/17 13:21 VS ġ Trichlorofluoromethane ND 8.2 0.78 ug/Kg 05/31/17 09:26 05/31/17 13:21 vs Vinyl chloride æ ND vs 8.2 1.0 ug/Kg 05/31/17 09:26 05/31/17 13:21 **Xylenes**, Total 16 05/31/17 09:26 05/31/17 13:21

TestAmerica Buffalo

1.4 ug/Kg

8.1 J vs

Client Sample ID: TOPSOIL COMP

Date Collected: 05/22/17 14:00

Date Received: 05/23/17 17:10

Carbazole

Chrysene

Lab Sample ID: 480-118401-1

Matrix: Solid

Percent Solids: 59.5

2 3 4 5 6 7 8 9

14

Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	114		71 _ 125				05/31/17 09:26	05/31/17 13:21	1
1,2-Dichloroethane-d4 (Surr)	103		64 - 126				05/31/17 09:26	05/31/17 13:21	1
4-Bromofluorobenzene (Surr)	85		72 - 126				05/31/17 09:26	05/31/17 13:21	1
Dibromofluoromethane (Surr)	103		60 _ 140				05/31/17 09:26	05/31/17 13:21	1
Method: 8270D - Semivolatile Org	anic Compou	nds (GC/MS)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Biphenyl	ND		1400	210	ug/Kg	¢	05/24/17 10:03	05/25/17 11:51	5
bis (2-chloroisopropyl) ether	ND		1400	280	ug/Kg	¢	05/24/17 10:03	05/25/17 11:51	5
2,4,5-Trichlorophenol	ND		1400	380	ug/Kg	¢	05/24/17 10:03	05/25/17 11:51	5
2,4,6-Trichlorophenol	ND		1400	280	ug/Kg	¢	05/24/17 10:03	05/25/17 11:51	5
2,4-Dichlorophenol	ND		1400	150	ug/Kg	¢	05/24/17 10:03	05/25/17 11:51	5
2,4-Dimethylphenol	ND		1400	340	ug/Kg	¢	05/24/17 10:03	05/25/17 11:51	5
2,4-Dinitrophenol	ND		14000	6500	ug/Kg	\$	05/24/17 10:03	05/25/17 11:51	5
2,4-Dinitrotoluene	ND		1400	290	ug/Kg	¢	05/24/17 10:03	05/25/17 11:51	5
2,6-Dinitrotoluene	ND		1400	170	ug/Kg	¢	05/24/17 10:03	05/25/17 11:51	5
2-Chloronaphthalene	ND		1400	230	ug/Kg	¢	05/24/17 10:03	05/25/17 11:51	5
2-Chlorophenol	ND		1400	260	ug/Kg	¢	05/24/17 10:03	05/25/17 11:51	5
2-Methylnaphthalene	ND		1400	280	ug/Kg	¢	05/24/17 10:03	05/25/17 11:51	5
2-Methylphenol	ND		1400	170	ug/Kg	¢	05/24/17 10:03	05/25/17 11:51	5
2-Nitroaniline	ND		2700	210	ug/Kg	₽	05/24/17 10:03	05/25/17 11:51	5
2-Nitrophenol	ND		1400	400	ug/Kg	¢	05/24/17 10:03	05/25/17 11:51	5
3,3'-Dichlorobenzidine	ND		2700	1700	ug/Kg	¢	05/24/17 10:03	05/25/17 11:51	5
3-Nitroaniline	ND		2700	390	ug/Kg	¢	05/24/17 10:03	05/25/17 11:51	5
4,6-Dinitro-2-methylphenol	ND		2700	1400	ug/Kg	¢	05/24/17 10:03	05/25/17 11:51	5
4-Bromophenyl phenyl ether	ND		1400	200	ug/Kg	¢	05/24/17 10:03	05/25/17 11:51	5
4-Chloro-3-methylphenol	ND		1400	350	ua/Ka	¢	05/24/17 10:03	05/25/17 11:51	5
4-Chloroaniline	ND		1400	350	ua/Ka	₽	05/24/17 10:03	05/25/17 11:51	5
4-Chlorophenyl phenyl ether	ND		1400	170	ug/Kg	¢.	05/24/17 10:03	05/25/17 11:51	5
4-Methylphenol	ND		2700	170	ua/Ka	¢	05/24/17 10:03	05/25/17 11:51	5
4-Nitroaniline	ND		2700	740	ug/Kg	¢	05/24/17 10:03	05/25/17 11:51	5
4-Nitrophenol	ND		2700	990	ua/Ka	¢.	05/24/17 10:03	05/25/17 11:51	5
Acenaphthene	ND		1400	210	ua/Ka	¢	05/24/17 10:03	05/25/17 11:51	5
Acenaphthylene	ND		1400	180	ua/Ka	¢	05/24/17 10:03	05/25/17 11:51	5
Acetophenone	ND		1400	190	ua/Ka	¢.	05/24/17 10:03	05/25/17 11:51	5
Anthracene	ND		1400	350	ua/Ka	¢	05/24/17 10:03	05/25/17 11:51	5
Atrazine	ND		1400	490	ua/Ka	¢	05/24/17 10:03	05/25/17 11:51	5
Benzaldehvde	ND		1400	1100	ua/Ka		05/24/17 10:03	05/25/17 11:51	
Benzolalanthracene	170	a l	1400	140	ua/Ka	¢	05/24/17 10:03	05/25/17 11.51	5
Benzolalovrene		•	1400	210	ua/Ka	¢	05/24/17 10:03	05/25/17 11:51	5
Benzolhlfluoranthene	270		1400	220	ua/Ka		05/24/17 10:03	05/25/17 11:51	5
Benzola h ilpervlene		•	1400	150	ua/Ka	¢	05/24/17 10:03	05/25/17 11:51	5
Benzo[k]fluoranthene	ND		1400	180	ug/Kg	¢	05/24/17 10:03	05/25/17 11:51	5
Bis/2-chloroethoxy)methane	ND		1400	300	ug/Kg		05/24/17 10:03	05/25/17 11:51	5
Bis(2-chloroethyl)ether	חוא		1400	180	ug/Kg	¢	05/24/17 10:03	05/25/17 11:51	5
Bis(2-ethylbexyl) nhthalate	חוא		1400	100	ug/Kg	¢	05/24/17 10:03	05/25/17 11:51	5
Butyl benzyl phthalate	םוא סאי		1400	220 220	ug/Kg	÷.	05/24/17 10:03	05/25/17 11:51	
Caprolactam	םוא סויו		1400	120	ug/Kg	÷	05/24/17 10:03	05/25/17 11:51	5
ouprolucium	ND		1400	720			55/2-11 10.05	30/20/11 11.JT	5

TestAmerica Buffalo

05/25/17 11:51

05/25/17 11:51

5

5

÷

₽

05/24/17 10:03

05/24/17 10:03

170 ug/Kg

310 ug/Kg

1400

1400

ND

ND

Client: Benchmark Env. Eng. & Science, PLLC Project/Site: Benchmark - 256 W. Genesee site

Client Sample ID: TOPSOIL COMP Date Collected: 05/22/17 14:00 Date Received: 05/23/17 17:10

Lab Sample ID: 480-118401-1 Matrix: Solid

Percent Solids: 59.5

5

6

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Di-n-butyl phthalate	ND		1400	240	ug/Kg	<u> </u>	05/24/17 10:03	05/25/17 11:51	5
Di-n-octyl phthalate	ND		1400	170	ug/Kg	¢	05/24/17 10:03	05/25/17 11:51	5
Dibenz(a,h)anthracene	ND		1400	250	ug/Kg	¢	05/24/17 10:03	05/25/17 11:51	5
Dibenzofuran	ND		1400	170	ug/Kg	¢	05/24/17 10:03	05/25/17 11:51	5
Diethyl phthalate	ND		1400	180	ug/Kg	¢	05/24/17 10:03	05/25/17 11:51	5
Dimethyl phthalate	ND		1400	170	ug/Kg	¢	05/24/17 10:03	05/25/17 11:51	5
Fluoranthene	320	J	1400	150	ug/Kg	¢	05/24/17 10:03	05/25/17 11:51	5
Fluorene	ND		1400	170	ug/Kg	¢	05/24/17 10:03	05/25/17 11:51	5
Hexachlorobenzene	ND		1400	190	ug/Kg	¢	05/24/17 10:03	05/25/17 11:51	5
Hexachlorobutadiene	ND		1400	210	ug/Kg	¢	05/24/17 10:03	05/25/17 11:51	5
Hexachlorocyclopentadiene	ND		1400	190	ug/Kg	¢	05/24/17 10:03	05/25/17 11:51	5
Hexachloroethane	ND		1400	180	ug/Kg	¢.	05/24/17 10:03	05/25/17 11:51	5
Indeno[1,2,3-cd]pyrene	ND		1400	170	ug/Kg	¢	05/24/17 10:03	05/25/17 11:51	5
Isophorone	ND		1400	300	ug/Kg	¢	05/24/17 10:03	05/25/17 11:51	5
N-Nitrosodi-n-propylamine	ND		1400	240	ug/Kg	¢	05/24/17 10:03	05/25/17 11:51	5
N-Nitrosodiphenylamine	ND		1400	1100	ug/Kg	¢	05/24/17 10:03	05/25/17 11:51	5
Naphthalene	ND		1400	180	ug/Kg	¢	05/24/17 10:03	05/25/17 11:51	5
Nitrobenzene	ND		1400	160	ug/Kg	¢	05/24/17 10:03	05/25/17 11:51	5
Pentachlorophenol	ND		2700	1400	ug/Kg	¢	05/24/17 10:03	05/25/17 11:51	5
Phenanthrene	ND		1400	210	ug/Kg	¢	05/24/17 10:03	05/25/17 11:51	5
Phenol	ND		1400	220	ug/Kg	¢	05/24/17 10:03	05/25/17 11:51	5
Pyrene	280	J	1400	170	ug/Kg	₽	05/24/17 10:03	05/25/17 11:51	5
Summa mata	0/ D	0	1				D	A	D# 5

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol	93		54 - 120	05/24/17 10:03	05/25/17 11:51	5
2-Fluorobiphenyl	81		60 - 120	05/24/17 10:03	05/25/17 11:51	5
2-Fluorophenol	74		52 - 120	05/24/17 10:03	05/25/17 11:51	5
Nitrobenzene-d5	75		53 - 120	05/24/17 10:03	05/25/17 11:51	5
p-Terphenyl-d14	88		65 _ 121	05/24/17 10:03	05/25/17 11:51	5
Phenol-d5	79		54 - 120	05/24/17 10:03	05/25/17 11:51	5

Method: 8081B - Organochlor	ine Pesticides (G	C)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4,4'-DDD	ND		28	5.4	ug/Kg	<u> </u>	05/25/17 06:43	05/25/17 16:48	10
4,4'-DDE	13	J	28	5.8	ug/Kg	¢	05/25/17 06:43	05/25/17 16:48	10
4,4'-DDT	ND		28	6.4	ug/Kg	⇔	05/25/17 06:43	05/25/17 16:48	10
Aldrin	ND		28	6.8	ug/Kg	¢	05/25/17 06:43	05/25/17 16:48	10
alpha-BHC	ND		28	5.0	ug/Kg	⇔	05/25/17 06:43	05/25/17 16:48	10
alpha-Chlordane	ND		28	14	ug/Kg	¢	05/25/17 06:43	05/25/17 16:48	10
beta-BHC	ND		28	5.0	ug/Kg	\$	05/25/17 06:43	05/25/17 16:48	10
delta-BHC	ND		28	5.1	ug/Kg	¢	05/25/17 06:43	05/25/17 16:48	10
Dieldrin	ND		28	6.6	ug/Kg	¢	05/25/17 06:43	05/25/17 16:48	10
Endosulfan I	ND		28	5.3	ug/Kg	¢	05/25/17 06:43	05/25/17 16:48	10
Endosulfan II	ND		28	5.0	ug/Kg	⇔	05/25/17 06:43	05/25/17 16:48	10
Endosulfan sulfate	ND		28	5.1	ug/Kg	₽	05/25/17 06:43	05/25/17 16:48	10
Endrin	ND		28	5.5	ug/Kg	¢	05/25/17 06:43	05/25/17 16:48	10
Endrin aldehyde	ND		28	7.0	ug/Kg	¢	05/25/17 06:43	05/25/17 16:48	10
Endrin ketone	ND		28	6.8	ug/Kg	⇔	05/25/17 06:43	05/25/17 16:48	10
gamma-BHC (Lindane)	ND		28	5.1	ug/Kg	¢	05/25/17 06:43	05/25/17 16:48	10
gamma-Chlordane	ND		28	8.8	ug/Kg	¢	05/25/17 06:43	05/25/17 16:48	10

RL

28

28

28

280

Limits

45 _ 120

30 - 124

MDL Unit

7.1 ug/Kg

5.6 ug/Kg

160 ug/Kg

6.0 ug/Kg

D

Ä

₽

₽

₽

Prepared

05/25/17 06:43

05/25/17 06:43

05/25/17 06:43

05/25/17 06:43

Prepared

05/25/17 06:43

05/25/17 06:43

05/24/17 07:54

Method: 8081B - Organochlorine Pesticides (GC) (Continued)

Client Sample ID: TOPSOIL COMP

Date Collected: 05/22/17 14:00

Date Received: 05/23/17 17:10

Analyte

Heptachlor

Methoxychlor

Toxaphene

Surrogate

Heptachlor epoxide

DCB Decachlorobiphenyl

Tetrachloro-m-xylene

Lab Sample ID: 480-118401-1

Analyzed

05/25/17 16:48

05/25/17 16:48

05/25/17 16:48

05/25/17 16:48

Analyzed

05/25/17 16:48

05/25/17 16:48

05/24/17 15:57

Matrix: Solid

Dil Fac

10

10

10

10

10

10

Dil Fac

Percent Solids: 59.5

6
8
9

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography Analyte Result Qualifier RL

Result Qualifier

ND

ND

ND

ND

%Recovery Qualifier

98

83

89

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
PCB-1016	ND	F2	0.29	0.056	mg/Kg		05/24/17 07:54	05/24/17 15:57	1	
PCB-1221	ND		0.29	0.056	mg/Kg	¢	05/24/17 07:54	05/24/17 15:57	1	
PCB-1232	ND		0.29	0.056	mg/Kg	¢	05/24/17 07:54	05/24/17 15:57	1	
PCB-1242	ND		0.29	0.056	mg/Kg	¢	05/24/17 07:54	05/24/17 15:57	1	
PCB-1248	ND		0.29	0.056	mg/Kg	¢	05/24/17 07:54	05/24/17 15:57	1	
PCB-1254	ND		0.29	0.13	mg/Kg	¢	05/24/17 07:54	05/24/17 15:57	1	
PCB-1260	ND	F2	0.29	0.13	mg/Kg	¢.	05/24/17 07:54	05/24/17 15:57	1	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac	
Tetrachloro-m-xylene	101		60 - 154				05/24/17 07:54	05/24/17 15:57	1	

65 - 174

Method: 6010C - Metals (ICP)

DCB Decachlorobiphenyl

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	19900		15.9	7.0	mg/Kg	<u> </u>	05/24/17 15:56	05/25/17 12:54	1
Antimony	2.1	J	23.8	0.63	mg/Kg	¢	05/24/17 15:56	05/25/17 12:54	1
Arsenic	3.9		3.2	0.63	mg/Kg	¢	05/24/17 15:56	05/25/17 12:54	1
Barium	96.6		0.79	0.17	mg/Kg	¢	05/24/17 15:56	05/25/17 12:54	1
Beryllium	0.58		0.32	0.044	mg/Kg	⇔	05/24/17 15:56	05/25/17 12:54	1
Cadmium	0.41		0.32	0.048	mg/Kg	⇔	05/24/17 15:56	05/25/17 12:54	1
Calcium	10800	В	79.3	5.2	mg/Kg	¢	05/24/17 15:56	05/25/17 12:54	1
Chromium	23.1		0.79	0.32	mg/Kg	₽	05/24/17 15:56	05/25/17 12:54	1
Cobalt	5.4		0.79	0.079	mg/Kg	₽	05/24/17 15:56	05/25/17 12:54	1
Copper	18.3		1.6	0.33	mg/Kg	¢	05/24/17 15:56	05/25/17 12:54	1
Iron	17300	^	15.9	5.5	mg/Kg	¢	05/24/17 15:56	05/25/17 12:54	1
Lead	24.7		1.6	0.38	mg/Kg	¢	05/24/17 15:56	05/25/17 12:54	1
Magnesium	4370		31.7	1.5	mg/Kg	¢	05/24/17 15:56	05/25/17 12:54	1
Manganese	207	В	0.32	0.051	mg/Kg	¢	05/24/17 15:56	05/25/17 12:54	1
Nickel	15.3		7.9	0.36	mg/Kg	¢	05/24/17 15:56	05/25/17 12:54	1
Potassium	5010		47.6	31.7	mg/Kg	¢	05/24/17 15:56	05/25/17 12:54	1
Selenium	1.7	J	6.3	0.63	mg/Kg	¢	05/24/17 15:56	05/25/17 12:54	1
Silver	ND		0.95	0.32	mg/Kg	¢	05/24/17 15:56	05/25/17 12:54	1
Sodium	161	J	222	20.6	mg/Kg	¢.	05/24/17 15:56	05/25/17 12:54	1
Thallium	ND		9.5	0.48	mg/Kg	¢	05/24/17 15:56	05/25/17 12:54	1
Vanadium	32.4		0.79	0.17	mg/Kg	¢	05/24/17 15:56	05/25/17 12:54	1
Zinc	93.9		3.2	1.0	mg/Kg	\$	05/24/17 15:56	05/25/17 12:54	1
- Method: 7471B - Mercury (CVAA)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.075		0.033	0.013	mg/Kg	\	05/24/17 10:15	05/24/17 14:15	1

Client Sample Results

TestAmerica Job ID: 480-118401-1

Client: Benchmark Env. Eng. & Science, PLLC Project/Site: Benchmark - 256 W. Genesee site

General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cyanide, Total	ND		1.7	0.81	mg/Kg	\\\\	05/25/17 11:40	05/25/17 15:14	1

Method: 8260C - Volatile Organic Compounds by GC/MS

Ма	atrix:	So	lid

Prep	Type:	Total/NA

-				Percent Su	rrogate Reco
		TOL	12DCE	BFB	DBFM
Lab Sample ID	Client Sample ID	(71-125)	(64-126)	(72-126)	(60-140)
480-118401-1	TOPSOIL COMP	114	103	85	103
LCS 480-359750/1-A	Lab Control Sample	105	104	110	108
MB 480-359750/2-A	Method Blank	102	103	105	104
Surrogate Legend					
TOL = Toluene-d8 (Sur	r)				
12DCE = 1,2-Dichloroe	thane-d4 (Surr)				
BFB = 4-Bromofluorobe	enzene (Surr)				
DBFM = Dibromofluoro	methane (Surr)				

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

							Prep Type: Total/NA
				rrogate Reco	very (Accept	ance Limits))
	ТВР	FBP	2FP	NBZ	TPH	PHL	
Client Sample ID	(54-120)	(60-120)	(52-120)	(53-120)	(65-121)	(54-120)	
TOPSOIL COMP	93	81	74	75	88	79	· ·
Lab Control Sample	91	85	78	77	93	82	
Method Blank	83	78	77	72	90	80	
	Client Sample ID TOPSOIL COMP Lab Control Sample Method Blank	Client Sample IDTBPTOPSOIL COMP93Lab Control Sample91Method Blank83	Client Sample IDTBPFBPTOPSOIL COMP9381Lab Control Sample9185Method Blank8378	Client Sample ID (54-120) (60-120) (52-120) TOPSOIL COMP 93 81 74 Lab Control Sample 91 85 78 Method Blank 83 78 77	Client Sample ID (54-120) (60-120) (52-120) (53-120) TOPSOIL COMP 93 81 74 75 Lab Control Sample 91 85 78 77 Method Blank 83 78 77 72	Client Sample ID (54-120) (60-120) (52-120) (53-120) (65-121) TOPSOIL COMP 93 81 74 75 88 Lab Control Sample 91 85 78 77 93 Method Blank 83 78 77 72 90	Client Sample ID (54-120) (60-120) (52-120) (53-120) (65-121) (54-120) TOPSOIL COMP 93 81 74 75 88 79 Lab Control Sample 91 85 78 77 93 82 Method Blank 83 78 77 72 90 80

TBP = 2,4,6-Tribromophenol FBP = 2-Fluorobiphenyl 2FP = 2-Fluorophenol NBZ = Nitrobenzene-d5 TPH = p-Terphenyl-d14

PHL = Phenol-d5

Method: 8081B - Organochlorine Pesticides (GC) Matrix: Solid

_				Percent Surrogate Recovery (Acceptance Limits)
		DCB2	TCX2	
Lab Sample ID	Client Sample ID	(45-120)	(30-124)	
480-118401-1	TOPSOIL COMP	98	83	
LCS 480-359031/2-A	Lab Control Sample	85	59	
MB 480-359031/1-A	Method Blank	81	59	
Surrogate Legend				

DCB = DCB Decachlorobiphenyl

TCX = Tetrachloro-m-xylene

Matrix: Solid

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

				Percent Surrogate Recovery (Acceptance Limits)
		TCX1	DCB1	
Lab Sample ID	Client Sample ID	(60-154)	(65-174)	
480-118401-1	TOPSOIL COMP	101	89	
480-118401-1 MS	TOPSOIL COMP	143	127	

Prep Type: Total/NA

Prep Type: Total/NA

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography (Continued) Matrix: Solid

Matrix: Solid				Prep Type: Total/NA
				Percent Surrogate Recovery (Acceptance Limits)
		TCX1	DCB1	
Lab Sample ID	Client Sample ID	(60-154)	(65-174)	
480-118401-1 MSD	TOPSOIL COMP	106	100	
LCS 480-358826/2-A	Lab Control Sample	147	144	
MB 480-358826/1-A	Method Blank	119	115	
Surrogate Legend				

TCX = Tetrachloro-m-xylene

DCB = DCB Decachlorobiphenyl

Lab Sample ID: MB 480-359750/2-A

Matrix: Solid

Analysis Batch: 359727

Method: 8260C - Volatile Organic Compounds by GC/MS

Client Sample ID: Method Blank

	otal/NA	Pron Type: T
5	359750	Prep Batch:
	Dil Fac	Analyzed
	1	05/31/17 12:46
	1	05/31/17 12:46
	1)5/31/17 12:46
	1	05/31/17 12:46
8	1	05/31/17 12:46
	1)5/31/17 12:46

	MB	МВ							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		5.0	0.36	ug/Kg		05/31/17 09:26	05/31/17 12:46	1
1,1,2,2-Tetrachloroethane	ND		5.0	0.81	ug/Kg		05/31/17 09:26	05/31/17 12:46	1
1,1,2-Trichloroethane	ND		5.0	0.65	ug/Kg		05/31/17 09:26	05/31/17 12:46	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		5.0	1.1	ug/Kg		05/31/17 09:26	05/31/17 12:46	1
1,1-Dichloroethane	ND		5.0	0.61	ug/Kg		05/31/17 09:26	05/31/17 12:46	1
1,1-Dichloroethene	ND		5.0	0.61	ug/Kg		05/31/17 09:26	05/31/17 12:46	1
1,2,4-Trichlorobenzene	ND		5.0	0.30	ug/Kg		05/31/17 09:26	05/31/17 12:46	1
1,2-Dibromo-3-Chloropropane	ND		5.0	2.5	ug/Kg		05/31/17 09:26	05/31/17 12:46	1
1,2-Dichlorobenzene	ND		5.0	0.39	ug/Kg		05/31/17 09:26	05/31/17 12:46	1
1,2-Dichloroethane	ND		5.0	0.25	ug/Kg		05/31/17 09:26	05/31/17 12:46	1
1,2-Dichloropropane	ND		5.0	2.5	ug/Kg		05/31/17 09:26	05/31/17 12:46	1
1,3-Dichlorobenzene	ND		5.0	0.26	ug/Kg		05/31/17 09:26	05/31/17 12:46	1
1,4-Dichlorobenzene	ND		5.0	0.70	ug/Kg		05/31/17 09:26	05/31/17 12:46	1
2-Butanone (MEK)	ND		25	1.8	ug/Kg		05/31/17 09:26	05/31/17 12:46	1
2-Hexanone	ND		25	2.5	ug/Kg		05/31/17 09:26	05/31/17 12:46	1
4-Methyl-2-pentanone (MIBK)	ND		25	1.6	ug/Kg		05/31/17 09:26	05/31/17 12:46	1
Acetone	ND		25	4.2	ua/Ka		05/31/17 09:26	05/31/17 12:46	1
Benzene	ND		5.0	0.25	ua/Ka		05/31/17 09:26	05/31/17 12:46	1
Bromodichloromethane	ND		5.0	0.67	ua/Ka		05/31/17 09:26	05/31/17 12:46	
Bromoform	ND		5.0	2.5	ua/Ka		05/31/17 09:26	05/31/17 12.46	1
Bromomethane	ND		5.0	0.45	ua/Ka		05/31/17 09:26	05/31/17 12:46	1
Carbon disulfide	ND		5.0	25	ug/Ka		05/31/17 09:26	05/31/17 12:46	
	ND		5.0	0.48	ug/Kg		05/31/17 09:26	05/31/17 12:46	1
Chlorobenzene	ND		5.0	0.40	ug/Kg		05/31/17 09:26	05/31/17 12:46	1
Dibromochloromethane	ND		5.0	0.00	ug/Kg		05/31/17 09:26	05/31/17 12:46	
Chloroethane			5.0	1 1	ug/Kg		05/31/17 09:20	05/31/17 12:40	1
Chloroform			5.0	0.31	ug/Kg		05/31/17 09:20	05/31/17 12:40	1
Chloromothana			5.0	0.01	ug/Kg		05/31/17 09:20	05/31/17 12:40	
	ND		5.0	0.50	ug/Kg		05/31/17 09.20	05/31/17 12:40	1
	ND		5.0	0.04	ug/Kg		05/31/17 09.20	05/31/17 12:40	1
Cis-1,3-Dichloroproperie			5.0	0.72	ug/Kg		05/31/17 09:20	05/31/17 12:40	۱ ۱
Dishlaradifluoromethene	ND		5.0	0.70	ug/Kg		05/31/17 09.20	05/31/17 12:40	1
	ND		5.0	0.41	ug/Kg		05/31/17 09:26	05/31/17 12:46	1
	ND		5.0	0.35	ug/Kg		05/31/17 09.26	05/31/17 12.40	
	ND		5.0	0.04	ug/Kg		05/31/17 09.20	05/31/17 12.40	1
Isopropyibenzene	ND		5.0	0.75	ug/Kg		05/31/17 09:26	05/31/17 12:46	1
	ND		25	3.0	ug/Kg		05/31/17 09:26	05/31/17 12:46	
Methyl tert-butyl ether	ND		5.0	0.49	ug/Kg		05/31/17 09:26	05/31/17 12:46	1
Methylcyclohexane	ND		5.0	0.76	ug/Kg		05/31/17 09:26	05/31/17 12:46	1
Methylene Chloride	ND		5.0	2.3	ug/Kg		05/31/17 09:26	05/31/17 12:46	1
Styrene	ND		5.0	0.25	ug/Kg		05/31/17 09:26	05/31/17 12:46	1
Tetrachloroethene	ND		5.0	0.67	ug/Kg		05/31/17 09:26	05/31/17 12:46	1
Toluene	ND		5.0	0.38	ug/Kg		05/31/17 09:26	05/31/17 12:46	1
trans-1,2-Dichloroethene	ND		5.0	0.52	ug/Kg		05/31/17 09:26	05/31/17 12:46	1
trans-1,3-Dichloropropene	ND		5.0	2.2	ug/Kg		05/31/17 09:26	05/31/17 12:46	1
Trichloroethene	ND		5.0	1.1	ug/Kg		05/31/17 09:26	05/31/17 12:46	1
Trichlorofluoromethane	ND		5.0	0.47	ug/Kg		05/31/17 09:26	05/31/17 12:46	1
Vinyl chloride	ND		5.0	0.61	ug/Kg		05/31/17 09:26	05/31/17 12:46	1
Xylenes, Total	ND		10	0.84	ug/Kg		05/31/17 09:26	05/31/17 12:46	1

QC Sample Results

Client: Benchmark Env. Eng. & Science, PLLC Project/Site: Benchmark - 256 W. Genesee site

	MB	МВ				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	102		71 - 125	05/31/17 09:26	05/31/17 12:46	1
1,2-Dichloroethane-d4 (Surr)	103		64 - 126	05/31/17 09:26	05/31/17 12:46	1
4-Bromofluorobenzene (Surr)	105		72 - 126	05/31/17 09:26	05/31/17 12:46	1
Dibromofluoromethane (Surr)	104		60 - 140	05/31/17 09:26	05/31/17 12:46	1

Lab Sample ID: LCS 480-359750/1-A

Matrix: Solid

Client Sample ID: Lab Control Sample Prep Type: Total/NA

5

Analysis Batch: 359727							Prep Batch: 359750
	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
1,1,1-Trichloroethane	50.0	46.2		ug/Kg		92	77 _ 121
1,1,2,2-Tetrachloroethane	50.0	48.2		ug/Kg		96	80 - 120
1,1,2-Trichloroethane	50.0	49.1		ug/Kg		98	78 - 122
1,1,2-Trichloro-1,2,2-trifluoroetha	50.0	42.9		ug/Kg		86	60 - 140
ne							
1,1-Dichloroethane	50.0	45.8		ug/Kg		92	73 - 126
1,1-Dichloroethene	50.0	44.5		ug/Kg		89	59 - 125
1,2,4-Trichlorobenzene	50.0	46.3		ug/Kg		93	64 - 120
1,2-Dibromo-3-Chloropropane	50.0	52.3		ug/Kg		105	63 - 124
1,2-Dichlorobenzene	50.0	46.8		ug/Kg		94	75 - 120
1,2-Dichloroethane	50.0	46.9		ug/Kg		94	77 - 122
1,2-Dichloropropane	50.0	47.0		ug/Kg		94	75 - 124
1,3-Dichlorobenzene	50.0	45.9		ug/Kg		92	74 - 120
1,4-Dichlorobenzene	50.0	46.1		ug/Kg		92	73 - 120
2-Butanone (MEK)	250	255		ug/Kg		102	70 - 134
2-Hexanone	250	258		ug/Kg		103	59 - 130
4-Methyl-2-pentanone (MIBK)	250	256		ug/Kg		102	65 - 133
Acetone	250	248		ug/Kg		99	61 - 137
Benzene	50.0	46.2		ug/Kg		92	79 - 127
Bromodichloromethane	50.0	49.9		ug/Kg		100	80 - 122
Bromoform	50.0	53.9		ug/Kg		108	68 - 126
Bromomethane	50.0	50.9		ug/Kg		102	37 - 149
Carbon disulfide	50.0	45.0		ug/Kg		90	64 - 131
Carbon tetrachloride	50.0	49.1		ug/Kg		98	75 - 135
Chlorobenzene	50.0	48.2		ug/Kg		96	76 - 124
Dibromochloromethane	50.0	54.9		ug/Kg		110	76 - 125
Chloroethane	50.0	47.8		ug/Kg		96	69 - 135
Chloroform	50.0	45.5		ug/Kg		91	80 - 120
Chloromethane	50.0	46.3		ug/Kg		93	63 - 127
cis-1,2-Dichloroethene	50.0	47.4		ug/Kg		95	81 - 120
cis-1,3-Dichloropropene	50.0	51.8		ug/Kg		104	80 - 120
Cyclohexane	50.0	41.7		ug/Kg		83	65 - 120
Dichlorodifluoromethane	50.0	48.5		ug/Kg		97	57 _ 142
Ethylbenzene	50.0	46.7		ug/Kg		93	80 - 120
1,2-Dibromoethane	50.0	50.7		ug/Kg		101	78 - 120
Isopropylbenzene	50.0	44.9		ug/Kg		90	72 - 120
Methyl acetate	250	248		ug/Kg		99	55 - 136
Methyl tert-butyl ether	50.0	51.0		ug/Kg		102	63 - 125
Methylcyclohexane	50.0	41.6		ug/Kg		83	60 - 140
Methylene Chloride	50.0	47.6		ug/Kg		95	61 - 127
Styrene	50.0	47.5		ug/Kg		95	80 - 120
Tetrachloroethene	50.0	46.8		ug/Kg		94	74 - 122
Toluene	50.0	45.8		ug/Kg		92	74 ₋ 128
trans-1 2-Dichloroethene	50.0	45.8		ua/Ka		92	78 - 126

Client Sample ID: Method Blank

Prep Type: Total/NA Prep Batch: 358878

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 480-359 Matrix: Solid Analysis Batch: 359727	750/1-A						Client	Sample	ID: Lab Cor Prep Tyj Prep Ba	trol Sample be: Total/NA ttch: 359750
			Spike	LCS	LCS				%Rec.	
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	
trans-1,3-Dichloropropene			50.0	52.2		ug/Kg		104	73 - 123	
Trichloroethene			50.0	45.1		ug/Kg		90	77 _ 129	
Trichlorofluoromethane			50.0	49.0		ug/Kg		98	65 - 146	
Vinyl chloride			50.0	47.1		ug/Kg		94	61 - 133	
	LCS	LCS								
Surrogate	%Recovery	Qualifier	Limits							
Toluene-d8 (Surr)	105		71 - 125							
1,2-Dichloroethane-d4 (Surr)	104		64 - 126							
4-Bromofluorobenzene (Surr)	110		72 - 126							
Dibromofluoromethane (Surr)	108		60 - 140							

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Lab Sample ID: MB 480-358878/1-A Matrix: Solid Analysis Batch: 359053

-	МВ	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Biphenyl	ND		170	25	ug/Kg		05/24/17 10:03	05/25/17 09:38	1
bis (2-chloroisopropyl) ether	ND		170	34	ug/Kg		05/24/17 10:03	05/25/17 09:38	1
2,4,5-Trichlorophenol	ND		170	46	ug/Kg		05/24/17 10:03	05/25/17 09:38	1
2,4,6-Trichlorophenol	ND		170	34	ug/Kg		05/24/17 10:03	05/25/17 09:38	1
2,4-Dichlorophenol	ND		170	18	ug/Kg		05/24/17 10:03	05/25/17 09:38	1
2,4-Dimethylphenol	ND		170	41	ug/Kg		05/24/17 10:03	05/25/17 09:38	1
2,4-Dinitrophenol	ND		1700	780	ug/Kg		05/24/17 10:03	05/25/17 09:38	1
2,4-Dinitrotoluene	ND		170	35	ug/Kg		05/24/17 10:03	05/25/17 09:38	1
2,6-Dinitrotoluene	ND		170	20	ug/Kg		05/24/17 10:03	05/25/17 09:38	1
2-Chloronaphthalene	ND		170	28	ug/Kg		05/24/17 10:03	05/25/17 09:38	1
2-Chlorophenol	ND		170	31	ug/Kg		05/24/17 10:03	05/25/17 09:38	1
2-Methylnaphthalene	ND		170	34	ug/Kg		05/24/17 10:03	05/25/17 09:38	1
2-Methylphenol	ND		170	20	ug/Kg		05/24/17 10:03	05/25/17 09:38	1
2-Nitroaniline	ND		330	25	ug/Kg		05/24/17 10:03	05/25/17 09:38	1
2-Nitrophenol	ND		170	48	ug/Kg		05/24/17 10:03	05/25/17 09:38	1
3,3'-Dichlorobenzidine	ND		330	200	ug/Kg		05/24/17 10:03	05/25/17 09:38	1
3-Nitroaniline	ND		330	47	ug/Kg		05/24/17 10:03	05/25/17 09:38	1
4,6-Dinitro-2-methylphenol	ND		330	170	ug/Kg		05/24/17 10:03	05/25/17 09:38	1
4-Bromophenyl phenyl ether	ND		170	24	ug/Kg		05/24/17 10:03	05/25/17 09:38	1
4-Chloro-3-methylphenol	ND		170	42	ug/Kg		05/24/17 10:03	05/25/17 09:38	1
4-Chloroaniline	ND		170	42	ug/Kg		05/24/17 10:03	05/25/17 09:38	1
4-Chlorophenyl phenyl ether	ND		170	21	ug/Kg		05/24/17 10:03	05/25/17 09:38	1
4-Methylphenol	ND		330	20	ug/Kg		05/24/17 10:03	05/25/17 09:38	1
4-Nitroaniline	ND		330	88	ug/Kg		05/24/17 10:03	05/25/17 09:38	1
4-Nitrophenol	ND		330	120	ug/Kg		05/24/17 10:03	05/25/17 09:38	1
Acenaphthene	ND		170	25	ug/Kg		05/24/17 10:03	05/25/17 09:38	1
Acenaphthylene	ND		170	22	ug/Kg		05/24/17 10:03	05/25/17 09:38	1
Acetophenone	ND		170	23	ug/Kg		05/24/17 10:03	05/25/17 09:38	1
Anthracene	ND		170	42	ug/Kg		05/24/17 10:03	05/25/17 09:38	1
Atrazine	ND		170	59	ug/Kg		05/24/17 10:03	05/25/17 09:38	1

Lab Sample ID: MB 480-358878/1-A

Matrix: Solid

p-Terphenyl-d14

Phenol-d5

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Client Sample ID: Method Blank

Prep Type: Total/NA

5

Analysis Batch: 359053								Prep Batch:	358878
	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzaldehyde	ND		170	130	ug/Kg		05/24/17 10:03	05/25/17 09:38	1
Benzo[a]anthracene	ND		170	17	ug/Kg		05/24/17 10:03	05/25/17 09:38	1
Benzo[a]pyrene	ND		170	25	ug/Kg		05/24/17 10:03	05/25/17 09:38	1
Benzo[b]fluoranthene	ND		170	27	ug/Kg		05/24/17 10:03	05/25/17 09:38	1
Benzo[g,h,i]perylene	ND		170	18	ug/Kg		05/24/17 10:03	05/25/17 09:38	1
Benzo[k]fluoranthene	ND		170	22	ug/Kg		05/24/17 10:03	05/25/17 09:38	1
Bis(2-chloroethoxy)methane	ND		170	36	ug/Kg		05/24/17 10:03	05/25/17 09:38	1
Bis(2-chloroethyl)ether	ND		170	22	ug/Kg		05/24/17 10:03	05/25/17 09:38	1
Bis(2-ethylhexyl) phthalate	ND		170	58	ug/Kg		05/24/17 10:03	05/25/17 09:38	1
Butyl benzyl phthalate	ND		170	28	ug/Kg		05/24/17 10:03	05/25/17 09:38	1
Caprolactam	ND		170	51	ug/Kg		05/24/17 10:03	05/25/17 09:38	1
Carbazole	ND		170	20	ug/Kg		05/24/17 10:03	05/25/17 09:38	1
Chrysene	ND		170	38	ug/Kg		05/24/17 10:03	05/25/17 09:38	1
Di-n-butyl phthalate	ND		170	29	ug/Kg		05/24/17 10:03	05/25/17 09:38	1
Di-n-octyl phthalate	ND		170	20	ug/Kg		05/24/17 10:03	05/25/17 09:38	1
Dibenz(a,h)anthracene	ND		170	30	ug/Kg		05/24/17 10:03	05/25/17 09:38	1
Dibenzofuran	ND		170	20	ug/Kg		05/24/17 10:03	05/25/17 09:38	1
Diethyl phthalate	ND		170	22	ug/Kg		05/24/17 10:03	05/25/17 09:38	1
Dimethyl phthalate	ND		170	20	ug/Kg		05/24/17 10:03	05/25/17 09:38	1
Fluoranthene	ND		170	18	ug/Kg		05/24/17 10:03	05/25/17 09:38	1
Fluorene	ND		170	20	ug/Kg		05/24/17 10:03	05/25/17 09:38	1
Hexachlorobenzene	ND		170	23	ug/Kg		05/24/17 10:03	05/25/17 09:38	1
Hexachlorobutadiene	ND		170	25	ug/Kg		05/24/17 10:03	05/25/17 09:38	1
Hexachlorocyclopentadiene	ND		170	23	ug/Kg		05/24/17 10:03	05/25/17 09:38	1
Hexachloroethane	ND		170	22	ug/Kg		05/24/17 10:03	05/25/17 09:38	1
Indeno[1,2,3-cd]pyrene	ND		170	21	ug/Kg		05/24/17 10:03	05/25/17 09:38	1
Isophorone	ND		170	36	ug/Kg		05/24/17 10:03	05/25/17 09:38	1
N-Nitrosodi-n-propylamine	ND		170	29	ug/Kg		05/24/17 10:03	05/25/17 09:38	1
N-Nitrosodiphenylamine	ND		170	140	ug/Kg		05/24/17 10:03	05/25/17 09:38	1
Naphthalene	ND		170	22	ug/Kg		05/24/17 10:03	05/25/17 09:38	1
Nitrobenzene	ND		170	19	ug/Kg		05/24/17 10:03	05/25/17 09:38	1
Pentachlorophenol	ND		330	170	ug/Kg		05/24/17 10:03	05/25/17 09:38	1
Phenanthrene	ND		170	25	ug/Kg		05/24/17 10:03	05/25/17 09:38	1
Phenol	ND		170	26	ug/Kg		05/24/17 10:03	05/25/17 09:38	1
Pyrene	ND		170	20	ug/Kg		05/24/17 10:03	05/25/17 09:38	1
					-				
•	MB	MB					_ .		- <i>u</i> -
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol	83		54 - 120				05/24/17 10:03	05/25/17 09:38	1
2-Fluorobiphenyl	78		60 - 120				05/24/17 10:03	05/25/17 09:38	1
2-Fluorophenol	77		52 - 120				05/24/17 10:03	05/25/17 09:38	1
Nitrobenzene-d5	72		53 - 120				05/24/17 10:03	05/25/17 09:38	1

1

1

05/24/17 10:03 05/25/17 09:38

05/24/17 10:03 05/25/17 09:38

65 - 121

54 - 120

90

80

5

8 9

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 480-358878/2-A					Clien	t Sample	e ID: Lab Control Sample
Matrix: Solid							Prep Type: Total/NA
Analysis Batch: 359053							Prep Batch: 358878
-	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Biphenyl	1660	1450		ug/Kg		87	59 - 120
bis (2-chloroisopropyl) ether	1660	1480		ug/Kg		89	44 - 120
2,4,5-Trichlorophenol	1660	1470		ug/Kg		88	59 - 126
2,4,6-Trichlorophenol	1660	1450		ug/Kg		87	59 - 123
2,4-Dichlorophenol	1660	1430		ug/Kg		86	61 - 120
2,4-Dimethylphenol	1660	1440		ug/Kg		87	59 - 120
2,4-Dinitrophenol	3320	2820		ug/Kg		85	41 - 146
2,4-Dinitrotoluene	1660	1470		ug/Kg		88	63 - 120
2,6-Dinitrotoluene	1660	1470		ug/Kg		89	66 - 120
2-Chloronaphthalene	1660	1470		ug/Kg		88	57 - 120
2-Chlorophenol	1660	1320		ug/Kg		79	53 _ 120
2-Methylnaphthalene	1660	1420		ug/Kg		86	59 _ 120
2-Methylphenol	1660	1370		ug/Kg		82	54 ₋ 120
2-Nitroaniline	1660	1490		ug/Kg		90	61 - 120
2-Nitrophenol	1660	1340		ug/Kg		81	56 - 120
3,3'-Dichlorobenzidine	3320	2770		ug/Kg		83	54 - 120
3-Nitroaniline	1660	1280		ug/Kg		77	48 - 120
4,6-Dinitro-2-methylphenol	3320	2760		ug/Kg		83	49 - 122
4-Bromophenyl phenyl ether	1660	1500		ug/Kg		90	58 - 120
4-Chloro-3-methylphenol	1660	1410		ua/Ka		85	61 - 120
4-Chloroaniline	1660	1180		ua/Ka		71	38 - 120
4-Chlorophenyl phenyl ether	1660	1510		ua/Ka		91	63 - 124
4-Methylphenol	1660	1410		ua/Ka		85	55 - 120
4-Nitroaniline	1660	1410		ua/Ka		85	56 - 120
4-Nitrophenol	3320	2950		ug/Ka		89	43 147
Acenaphthene	1660	1520		ug/Kg		92	62 120
Acenaphthylene	1660	1490		ug/Kg		90	58 121
Acetonhenone	1660	1320		ug/Kg		79	54 120
Anthracene	1660	1580		ug/Kg		95	62 120
	3320	3040		ug/Kg		92	60 127
Renzaldehude	3320	2780		ug/Kg		92 84	10 150
Benzelelenthreene	1660	1590		ug/Kg		04	65 120
Benzolajantinacene Benzolajantinacene	1000	1000		ug/Kg		95	64 120
Banzo[h]fluoronthono	1000	1650		ug/Kg		97	64 120
	1660	1470		ug/Kg		99	45 145
Benzo[k]fluoronthono	1000	1470		ug/Kg		09	45 - 145
Benzo(k)inuorantnene	1000	1030		ug/Kg		90	05 - 120
Bis(2-chloroethoxy)methane	1660	1400		ug/Kg		00 77	55 - 120
Bis(2-chioroethy) ether	1660	1270		ug/Kg		05	45 - 120
Bis(2-ethylinexyl) philialate	1000	1000		ug/Kg		95	01 - 100
Butyl benzyl phthalate	1660	1600		ug/Kg		96	61 - 129
Caprolactam	3320	2870		ug/Kg		86	47 - 120
	1660	1580		ug/Kg		95	00 - 120
Unrysene	1660	1590		ug/Kg		95	04 - 120 50 - 120
Di-n-butyl phthalate	1660	1580		ug/Kg		95	58 - 130
Di-n-octyl phthalate	1660	1540		ug/Kg		93	57 - 133
Dibenz(a,h)anthracene	1660	1510		ug/Kg		91	54 - 132
Dibenzoturan	1660	1490		ug/Kg		90	63 - 120
Diethyl phthalate	1660	1510		ug/Kg		91	66 - 120

4 5 6

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 480-35	8878/2-A						Client	Sample	ID: Lab Control Sample
Matrix: Solid									Prep Type: Total/NA
Analysis Batch: 359053									Prep Batch: 358878
			Spike	LCS	LCS				%Rec.
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits
Dimethyl phthalate			1660	1530		ug/Kg		92	65 - 124
Fluoranthene			1660	1530		ug/Kg		92	62 - 120
Fluorene			1660	1510		ug/Kg		91	63 - 120
Hexachlorobenzene			1660	1590		ug/Kg		96	60 - 120
Hexachlorobutadiene			1660	1290		ug/Kg		77	45 - 120
Hexachlorocyclopentadiene			1660	1410		ug/Kg		85	47 - 120
Hexachloroethane			1660	1200		ug/Kg		72	41 - 120
Indeno[1,2,3-cd]pyrene			1660	1530		ug/Kg		92	56 - 134
Isophorone			1660	1440		ug/Kg		86	56 - 120
N-Nitrosodi-n-propylamine			1660	1360		ug/Kg		82	52 - 120
Naphthalene			1660	1320		ug/Kg		80	55 - 120
Nitrobenzene			1660	1330		ug/Kg		80	54 - 120
Pentachlorophenol			3320	2860		ug/Kg		86	51 - 120
Phenanthrene			1660	1600		ug/Kg		97	60 - 120
Phenol			1660	1340		ug/Kg		81	53 - 120
Pyrene			1660	1630		ug/Kg		98	61 - 133
	LCS	LCS							
Surrogate	%Recovery	Qualifier	Limits						
2,4,6-Tribromophenol	91		54 - 120						
2-Fluorobiphenyl	85		60 - 120						
2-Fluorophenol	78		52 - 120						
Nitrobenzene-d5	77		53 - 120						

65 - 121

54 - 120

Method: 8081B - Organochlorine Pesticides (GC)

93

82

Lab Sample ID: MB 480-359031/1-A Matrix: Solid Analysis Batch: 359070

p-Terphenyl-d14

Phenol-d5

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4,4'-DDD	ND		1.6	0.32	ug/Kg		05/25/17 06:43	05/25/17 15:10	1
4,4'-DDE	ND		1.6	0.34	ug/Kg		05/25/17 06:43	05/25/17 15:10	1
4,4'-DDT	ND		1.6	0.38	ug/Kg		05/25/17 06:43	05/25/17 15:10	1
Aldrin	ND		1.6	0.40	ug/Kg		05/25/17 06:43	05/25/17 15:10	1
alpha-BHC	ND		1.6	0.29	ug/Kg		05/25/17 06:43	05/25/17 15:10	1
alpha-Chlordane	ND		1.6	0.81	ug/Kg		05/25/17 06:43	05/25/17 15:10	1
beta-BHC	ND		1.6	0.29	ug/Kg		05/25/17 06:43	05/25/17 15:10	1
delta-BHC	ND		1.6	0.30	ug/Kg		05/25/17 06:43	05/25/17 15:10	1
Dieldrin	ND		1.6	0.39	ug/Kg		05/25/17 06:43	05/25/17 15:10	1
Endosulfan I	ND		1.6	0.31	ug/Kg		05/25/17 06:43	05/25/17 15:10	1
Endosulfan II	ND		1.6	0.29	ug/Kg		05/25/17 06:43	05/25/17 15:10	1
Endosulfan sulfate	ND		1.6	0.30	ug/Kg		05/25/17 06:43	05/25/17 15:10	1
Endrin	ND		1.6	0.32	ug/Kg		05/25/17 06:43	05/25/17 15:10	1
Endrin aldehyde	ND		1.6	0.42	ug/Kg		05/25/17 06:43	05/25/17 15:10	1
Endrin ketone	ND		1.6	0.40	ug/Kg		05/25/17 06:43	05/25/17 15:10	1
gamma-BHC (Lindane)	ND		1.6	0.30	ug/Kg		05/25/17 06:43	05/25/17 15:10	1

TestAmerica Buffalo

Client Sample ID: Method Blank

Prep Type: Total/NA Prep Batch: 359031

Client Sample ID: Method Blank 5

Lab Sample ID: MB 480-359031/1-A							Client Sa	mple ID: Metho	d Blank
Matrix: Solid								Prep Type: T	otal/NA
Analysis Batch: 359070								Prep Batch:	359031
-	MB	MB						-	
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
gamma-Chlordane	ND		1.6	0.52	ug/Kg		05/25/17 06:43	05/25/17 15:10	1
Heptachlor	ND		1.6	0.35	ug/Kg		05/25/17 06:43	05/25/17 15:10	1
Heptachlor epoxide	ND		1.6	0.42	ug/Kg		05/25/17 06:43	05/25/17 15:10	1
Methoxychlor	ND		1.6	0.33	ug/Kg		05/25/17 06:43	05/25/17 15:10	1
Toxaphene	ND		16	9.5	ug/Kg		05/25/17 06:43	05/25/17 15:10	1
	МВ	МВ							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	81		45 _ 120				05/25/17 06:43	05/25/17 15:10	1
Tetrachloro-m-xylene	59		30 - 124				05/25/17 06:43	05/25/17 15:10	1

Lab Sample ID: LCS 480-359031/2-A Matrix: Solid

Analysis Batch: 359070

Client	Sample	ID:	Lab	Control	Sample

Prep Type: Total/NA Prep Batch: 359031

8

-	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
4,4'-DDD	16.4	12.9		ug/Kg		79	56 - 120
4,4'-DDE	16.4	11.7		ug/Kg		71	44 - 120
4,4'-DDT	16.4	12.5		ug/Kg		76	38 - 120
Aldrin	16.4	8.36		ug/Kg		51	38 - 120
alpha-BHC	16.4	9.89		ug/Kg		60	39 - 120
alpha-Chlordane	16.4	11.1		ug/Kg		68	47 - 120
beta-BHC	16.4	10.5		ug/Kg		64	40 - 120
delta-BHC	16.4	11.4		ug/Kg		69	45 - 120
Dieldrin	16.4	12.1		ug/Kg		74	58 - 120
Endosulfan I	16.4	10.6		ug/Kg		65	49 - 120
Endosulfan II	16.4	11.7		ug/Kg		71	55 - 120
Endosulfan sulfate	16.4	12.8		ug/Kg		78	49 - 124
Endrin	16.4	12.4		ug/Kg		76	58 - 120
Endrin aldehyde	16.4	12.0		ug/Kg		73	37 _ 121
Endrin ketone	16.4	12.1		ug/Kg		73	46 - 123
gamma-BHC (Lindane)	16.4	10.7		ug/Kg		65	50 _ 120
gamma-Chlordane	16.4	11.1		ug/Kg		68	48 - 120
Heptachlor	16.4	11.5		ug/Kg		70	50 - 120
Heptachlor epoxide	16.4	11.8		ug/Kg		72	50 ₋ 120
Methoxychlor	16.4	13.9		ug/Kg		85	58 - 133
	LCS LCS						

Surrogate	%Recovery	Qualifier	Limits
DCB Decachlorobiphenyl	85		45 - 120
Tetrachloro-m-xylene	59		30 - 124

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

115

Lab Sample ID: MB 480-358826/1-A Matrix: Solid Analysis Batch: 358923							Client Sa	mple ID: Metho Prep Type: T Prep Batch:	d Blank otal/NA 358826
Analysis	MB	MB	DI DI	MDI	11		Drenered	Analyzad	
	Result	Qualifier	RL	MDL	Unit	U	Prepared	Analyzed	DIFac
PCB-1016	ND		0.24	0.047	mg/Kg		05/24/17 07:54	05/24/17 14:54	1
PCB-1221	ND		0.24	0.047	mg/Kg		05/24/17 07:54	05/24/17 14:54	1
PCB-1232	ND		0.24	0.047	mg/Kg		05/24/17 07:54	05/24/17 14:54	1
PCB-1242	ND		0.24	0.047	mg/Kg		05/24/17 07:54	05/24/17 14:54	1
PCB-1248	ND		0.24	0.047	mg/Kg		05/24/17 07:54	05/24/17 14:54	1
PCB-1254	ND		0.24	0.11	mg/Kg		05/24/17 07:54	05/24/17 14:54	1
PCB-1260	ND		0.24	0.11	mg/Kg		05/24/17 07:54	05/24/17 14:54	1
	МВ	МВ							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	119		60 - 154				05/24/17 07:54	05/24/17 14:54	1

Lab Sample ID: LCS 480-358826/2-A Matrix: Solid Analysis Batch: 358923

DCB Decachlorobiphenyl

Analysis Batch: 358923							Prep	Batch: 358826
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
PCB-1016	2.40	3.45		mg/Kg		143	51 _ 185	
PCB-1260	2.40	3.20		mg/Kg		133	61 - 184	

65 - 174

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
Tetrachloro-m-xylene	147		60 - 154
DCB Decachlorobiphenyl	144		65 - 174

127

106

100

Lab Sample ID: 480-118401-1 MS Matrix: Solid

DCB Decachlorobiphenyl

Tetrachloro-m-xylene DCB Decachlorobiphenyl

Matrix: Solid									Prepiy	pe: Total/NA
Analysis Batch: 358923									Prep B	atch: 358826
	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
PCB-1016	ND	F2	3.80	4.12		mg/Kg	¢	108	50 _ 177	
PCB-1260	ND	F2	3.80	3.32		mg/Kg	¢	87	33 - 200	
	MS	MS								
Surrogate	%Recovery	Qualifier	Limits							
Tetrachloro-m-xylene	143		60 _ 154							

65 - 174

60 - 154

65 _ 174

- Lab Sample ID: 480-118401-1 MS	D						C	ient Sar	nple ID: TC	PSOIL (COMP
Matrix: Solid	_								Prep T	ype: To	tal/NA
Analysis Batch: 358923									Prep I	Batch: 3	58826
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
PCB-1016	ND	F2	3.20	2.10	F2	mg/Kg	\ ↓	66	50 _ 177	65	50
PCB-1260	ND	F2	3.20	1.74	F2	mg/Kg	¢	54	33 - 200	63	50
	MSD	MSD									
Surrogate	%Recovery	Qualifier	Limits								

TestAmerica	Buffalo
restAmenta	Dullaiu

5 **8** 9

1

Client Sample ID: TOPSOIL COMP D.... Tetel/NIA

05/24/17 07:54 05/24/17 14:54

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

5

Client Sample ID: Method Blank Prep Type: Total/NA Prep Batch: 358953

Lab Sample ID: MB 480-358953/1-A Matrix: Solid Analysis Batch: 359164

Method: 6010C - Metals (ICP)

	MB	MB							
Analyte R	esult	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	ND		10	4.4	mg/Kg		05/24/17 15:56	05/25/17 11:14	1
Antimony	ND		14.9	0.40	mg/Kg		05/24/17 15:56	05/25/17 11:14	1
Arsenic	ND		2.0	0.40	mg/Kg		05/24/17 15:56	05/25/17 11:14	1
Barium	ND		0.50	0.11	mg/Kg		05/24/17 15:56	05/25/17 11:14	1
Beryllium	ND		0.20	0.028	mg/Kg		05/24/17 15:56	05/25/17 11:14	1
Cadmium	ND		0.20	0.030	mg/Kg		05/24/17 15:56	05/25/17 11:14	1
Calcium	3.95	J	49.8	3.3	mg/Kg		05/24/17 15:56	05/25/17 11:14	1
Chromium	ND		0.50	0.20	mg/Kg		05/24/17 15:56	05/25/17 11:14	1
Cobalt	ND		0.50	0.050	mg/Kg		05/24/17 15:56	05/25/17 11:14	1
Copper	ND		1.0	0.21	mg/Kg		05/24/17 15:56	05/25/17 11:14	1
Iron	ND	^	10	3.5	mg/Kg		05/24/17 15:56	05/25/17 11:14	1
Lead	ND		1.0	0.24	mg/Kg		05/24/17 15:56	05/25/17 11:14	1
Magnesium	ND		19.9	0.92	mg/Kg		05/24/17 15:56	05/25/17 11:14	1
Manganese 0	0547	J ^	0.20	0.032	mg/Kg		05/24/17 15:56	05/25/17 11:14	1
Nickel	ND		5.0	0.23	mg/Kg		05/24/17 15:56	05/25/17 11:14	1
Potassium	ND		29.9	19.9	mg/Kg		05/24/17 15:56	05/25/17 11:14	1
Selenium	ND		4.0	0.40	mg/Kg		05/24/17 15:56	05/25/17 11:14	1
Silver	ND		0.60	0.20	mg/Kg		05/24/17 15:56	05/25/17 11:14	1
Sodium	ND		139	12.9	mg/Kg		05/24/17 15:56	05/25/17 11:14	1
Thallium	ND		6.0	0.30	mg/Kg		05/24/17 15:56	05/25/17 11:14	1
Vanadium	ND		0.50	0.11	mg/Kg		05/24/17 15:56	05/25/17 11:14	1
Zinc	ND		2.0	0.64	mg/Kg		05/24/17 15:56	05/25/17 11:14	1

Lab Sample ID: LCSSRM 480-358953/2-A Matrix: Solid Analysis Batch: 359164

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 358953

·····,···	Spike	LCSSRM	LCSSRM				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Aluminum	8080	8936		mg/Kg		110.6	39.6 - 160.	
							9	
Antimony	123	77.79		mg/Kg		63.2	19.9 - 252.	
							0	
Arsenic	145	121.1		mg/Kg		83.5	70.3 - 136.	
							6	
Barium	209	173.8		mg/Kg		83.2	73.7 - 126.	
						~~ -	8	
Beryllium	97.3	81.24		mg/Kg		83.5	/4.5 - 125.	
On designed	07.0	co 7 0				70.4	4	
Cadmium	07.0	00.72		mg/kg		/0.4	73.3 - 126.	
Calcium	5690	4752		ma/Ka		83.5	7 73 5 - 126	
Calolan	0000	1102		mgritg		00.0	5	
Chromium	143	118.3		mg/Kg		82.7	69.9 - 129.	
							4	
Cobalt	154	145.6		mg/Kg		94.5	74.0 - 125.	
							3	
Copper	173	143.2		mg/Kg		82.8	75.1 - 124.	
							3	
Iron	15000	15300	۸	mg/Kg		102.0	37.1 - 163.	
							3	

Method: 6010C - Metals (ICP) (Continued)

Lab Sample ID: LCSSRM 480-358953/2-A					Client	Sample	e ID: Lab Control Sample
Matrix: Solid							Prep Type: Total/NA
Analysis Batch: 359164	Spiko	I CSSDM	ICSSDM				Prep Batch: 358953
Analista	Spike	Desult	Owellfier	11		0/ D	
	Added	Result	Qualifier	Unit	D	%Rec	
Lead	146	137.2		mg/Kg		94.0	73.3 - 126.
						: :	7
Magnesium	2640	2326		mg/Kg		88.1	64.4 - 136.
							0
Manganese	309	260.1	Λ	mg/Kg		84.2	74.8 - 125.
							2
Nickel	129	122.3		mg/Kg		94.8	73.0 - 127.
							1
Potassium	2400	2420		mg/Kg		100.8	60.4 - 140.
	470	115.0				04 5	0
Selenium	178	145.0		mg/Kg		81.5	68.0 - 131.
	01.0	o 4 - 4				70.0	5
Silver	31.3	24.74		mg/Kg		79.0	65.2 - 134.
O e altimet	000	740.4				00.4	5
Sodium	869	/16.4		mg/Kg		82.4	58.0 - 141.
Thellium	1 4 1	105 1		malka		05.0	5
manium	141	135.1		mg/kg		95.6	00.4 - 121.
Vanadium	115	102.1		malka		00 0	3
vanaulum	115	102.1		mg/Kg		00.0	07.5 - 122.
Zina	104	156.2		malka		90 G	0 60.6 440
	194	100.3		mg/Kg		0.00	0.0 - 118.
							U

Method: 7471B - Mercury (CVAA)

Lab Sample ID: MB 480-358875/ Matrix: Solid Analysis Batch: 358977	1-A	MB MB							C	Client S	ample ID: M Prep Ty Prep B	Nethod Blank /pe: Total/NA atch: 358875
Analyte	Re	esult Qualifie	er	RL	MDL	Unit		D	Pre	epared	Analyze	d Dil Fac
Mercury		ND		0.020 0	.0080	mg/Kg		0	5/24	/17 10:15	05/24/17 1	4:12 1
Lab Sample ID: LCSSRM 480-35 Matrix: Solid Analysis Batch: 358977 Analyte Mercury	8875/2-A ^·	10	Spike Added 12.6	LCSSRM Result 14.15	LCS Qual	SRM lifier	Unit mg/Kg	Clie	ent :	Sample %Rec 112.3	ID: Lab Co Prep Ty Prep B %Rec. Limits 44.4 - 128. 6	ntrol Sample ype: Total/NA atch: 358875
Lab Sample ID: 480-118401-1 M Matrix: Solid Analysis Batch: 358977	S								Cli	ent Sam	ple ID: TO Prep Ty Prep B	PSOIL COMP /pe: Total/NA atch: 358875
-	Sample	Sample	Spike	MS	MS						%Rec.	
Analyte	Result	Qualifier	Added	Result	Qual	ifier	Unit		D	%Rec	Limits	
Mercury	0.075		0.519	0.580			mg/Kg	-	¤	97	80 - 120	
Method: 7471B - Mercury (CVAA) (Continued)

Lab Sample ID: 480-118401-1 M Matrix: Solid	SD						CI	ient Sar	nple ID: TO Prep T	PSOIL (ype: To	COMP tal/NA
Analysis Batch: 358977									Prep I	Batch: 3	58875
-	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Mercury	0.075		0.567	0.674		mg/Kg	₩ ₩	106	80 - 120	15	20

Method: 9012B - Cyanide, Total andor Amenable

Lab Sample ID: MB 480-359150/1-A Matrix: Solid Analysis Batch: 359205											Client S	Sample ID: Prep Prep	Metho Type: T Batch:	d Blank otal/NA 359150
Analyte	MB Result	MB Qualifier		RI		мпі	Unit		п	Pi	renared	Δnaly	zed	Dil Fac
Cyanide, Total	ND	quamor		0.95		0.46	mg/Kg			05/2	5/17 11:40	05/25/17	15:06	1
Lab Sample ID: LCSSRM 480-359150/2-A									CI	ient	Sample) ID: Lab C	ontrol	Sample
Matrix: Solid												Prep	Туре: Т	otal/NA
Analysis Batch: 359205												Prep	Batch:	359150
			Spike	L	CSSRM	LCS	SRM					%Rec.		
Analyte			Added		Result	Qual	ifier	Unit		D	%Rec	Limits		
Cyanide, Total			39.6		47.86			mg/Kg		_	120.9	33.3 - 195.		
												2		

GC/MS VOA

Analysis Batch: 359727

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
480-118401-1	TOPSOIL COMP	Total/NA	Solid	8260C	359750
MB 480-359750/2-A	Method Blank	Total/NA	Solid	8260C	359750
LCS 480-359750/1-A	Lab Control Sample	Total/NA	Solid	8260C	359750
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
Lab Sample ID	Client Sample ID	Bron Tuno	Matrix	Mothod	Bron Batch
480-118401-1	TOPSOIL COMP	Total/NA	Solid	5035A_L	
MB 480-359750/2-A	Method Blank	Total/NA	Solid	5035A_L	
LCS 480-359750/1-A	Lab Control Sample	Total/NA	Solid	5035A_L	

GC/MS Semi VOA

Prep Batch: 358878

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-118401-1	TOPSOIL COMP	Total/NA	Solid	3550C	
MB 480-358878/1-A	Method Blank	Total/NA	Solid	3550C	
LCS 480-358878/2-A	Lab Control Sample	Total/NA	Solid	3550C	
_					
Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
Lab Sample ID 480-118401-1	Client Sample ID TOPSOIL COMP	Prep Type Total/NA	Matrix Solid	Method 8270D	Prep Batch 358878
Lab Sample ID 480-118401-1 MB 480-358878/1-A	Client Sample ID TOPSOIL COMP Method Blank	Prep Type Total/NA Total/NA	Matrix Solid Solid	Method 8270D 8270D	Prep Batch 358878 358878

GC Semi VOA

Prep Batch: 358826

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
480-118401-1	TOPSOIL COMP	Total/NA	Solid	3550C	
MB 480-358826/1-A	Method Blank	Total/NA	Solid	3550C	
LCS 480-358826/2-A	Lab Control Sample	Total/NA	Solid	3550C	
480-118401-1 MS	TOPSOIL COMP	Total/NA	Solid	3550C	
480-118401-1 MSD	TOPSOIL COMP	Total/NA	Solid	3550C	

Analysis Batch: 358923

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
480-118401-1	TOPSOIL COMP	Total/NA	Solid	8082A	358826
MB 480-358826/1-A	Method Blank	Total/NA	Solid	8082A	358826
LCS 480-358826/2-A	Lab Control Sample	Total/NA	Solid	8082A	358826
480-118401-1 MS	TOPSOIL COMP	Total/NA	Solid	8082A	358826
480-118401-1 MSD	TOPSOIL COMP	Total/NA	Solid	8082A	358826

Prep Batch: 359031

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-118401-1	TOPSOIL COMP	Total/NA	Solid	3550C	
MB 480-359031/1-A	Method Blank	Total/NA	Solid	3550C	
LCS 480-359031/2-A	Lab Control Sample	Total/NA	Solid	3550C	

Prep Type

Total/NA

Total/NA

Total/NA

Prep Type

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Matrix

Solid

Solid

Solid

Matrix

Solid

Solid

Solid

Solid

Solid

Client Sample ID

TOPSOIL COMP

Lab Control Sample

Client Sample ID

TOPSOIL COMP

Lab Control Sample

TOPSOIL COMP

TOPSOIL COMP

Method Blank

Method Blank

GC Semi VOA (Continued)

Analysis Batch: 359070

Lab Sample ID

480-118401-1

Metals

MB 480-359031/1-A

LCS 480-359031/2-A

Prep Batch: 358875

MB 480-358875/1-A

480-118401-1 MS

480-118401-1 MSD

LCSSRM 480-358875/2-A ^10

480-118401-1

Method

8081B

8081B

8081B

Method

7471B

7471B

7471B

7471B

7471B

Prep Batch

359031

359031

359031

Prep Batch

9 10 11

12 13 14

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-118401-1	TOPSOIL COMP	Total/NA	Solid	3050B	
MB 480-358953/1-A	Method Blank	Total/NA	Solid	3050B	
LCSSRM 480-358953/2-A	Lab Control Sample	Total/NA	Solid	3050B	
nalysis Batch: 358977					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-118401-1	TOPSOIL COMP	Total/NA	Solid	7471B	358875
MB 480-358875/1-A	Method Blank	Total/NA	Solid	7471B	358875
LCSSRM 480-358875/2-A ^10	Lab Control Sample	Total/NA	Solid	7471B	358875
480-118401-1 MS	TOPSOIL COMP	Total/NA	Solid	7471B	358875
480-118401-1 MSD	TOPSOIL COMP	Total/NA	Solid	7471B	358875
Analysis Batch: 359164					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-118401-1	TOPSOIL COMP	Total/NA	Solid	6010C	358953
MB 480-358953/1-A	Method Blank	Total/NA	Solid	6010C	358953
LCSSRM 480-358953/2-A	Lab Control Sample	Total/NA	Solid	6010C	358953

General Chemistry

Analysis Batch: 358989

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-118401-1	TOPSOIL COMP	Total/NA	Solid	Moisture	
Prep Batch: 359150					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-118401-1	TOPSOIL COMP	Total/NA	Solid	9012B	
MB 480-359150/1-A	Method Blank	Total/NA	Solid	9012B	
LCSSRM 480-359150/2-A	Lab Control Sample	Total/NA	Solid	9012B	
Analysis Batch: 359205					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-118401-1	TOPSOIL COMP	Total/NA	Solid	9012B	359150
MB 480-359150/1-A	Method Blank	Total/NA	Solid	9012B	359150

QC Association Summary

Client: Benchmark Env. Eng. & Science, PLLC Project/Site: Benchmark - 256 W. Genesee site

5

8 9

General Chemistry (Continued)

Analysis Batch: 359205 ((Continued)				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCSSRM 480-359150/2-A	Lab Control Sample	Total/NA	Solid	9012B	359150

Client Sample ID: TOPSOIL COMP Lab Sample ID: 480-118401-1 Date Collected: 05/22/17 14:00 Matrix: Solid Date Received: 05/23/17 17:10 Batch Dilution Batch Batch Prepared Method Prep Type Туре Run Factor Number or Analyzed Analyst Lab Total/NA Analysis Moisture 358989 05/24/17 15:58 CMK TAL BUF 1 **Client Sample ID: TOPSOIL COMP** Lab Sample ID: 480-118401-1 Date Collected: 05/22/17 14:00 Matrix: Solid Date Received: 05/23/17 17:10 Percent Solids: 59.5

		•						
_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035A_L			359750	05/31/17 09:26	JAS	TAL BUF
Total/NA	Analysis	8260C		1	359727	05/31/17 13:21	JAS	TAL BUF
Total/NA	Prep	3550C			358878	05/24/17 10:03	RJS	TAL BUF
Total/NA	Analysis	8270D		5	359053	05/25/17 11:51	LMW	TAL BUF
Total/NA	Prep	3550C			359031	05/25/17 06:43	RJS	TAL BUF
Total/NA	Analysis	8081B		10	359070	05/25/17 16:48	MAN	TAL BUF
Total/NA	Prep	3550C			358826	05/24/17 07:54	NMC	TAL BUF
Total/NA	Analysis	8082A		1	358923	05/24/17 15:57	JMO	TAL BUF
Total/NA	Prep	3050B			358953	05/24/17 15:56	MJW	TAL BUF
Total/NA	Analysis	6010C		1	359164	05/25/17 12:54	AMH	TAL BUF
Total/NA	Prep	7471B			358875	05/24/17 10:15	JRK	TAL BUF
Total/NA	Analysis	7471B		1	358977	05/24/17 14:15	JRK	TAL BUF
Total/NA	Prep	9012B			359150	05/25/17 11:40	LAW	TAL BUF
Total/NA	Analysis	9012B		1	359205	05/25/17 15:14	KRT	TAL BUF

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

Laboratory: TestAmerica Buffalo

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Program		EPA Region	Identification Number	Expiration Date
New York	NELAP		2	10026	03-31-18
The fallessing an all date	ويتما المستحد مناطلا منا احتمام والمتعاد المتعا		tions in most offered at last the	a second and a sufficient to a	
The following analytes	are included in this report, bu	it accreditation/certifica	tion is not offered by th	ne governing authority:	
The following analytes Analysis Method	are included in this report, bu Prep Method	it accreditation/certifica Matrix	tion is not offered by th Analyt	ne governing authority: te	
The following analytes Analysis Method Moisture	are included in this report, bu	it accreditation/certifica <u>Matrix</u> Solid	tion is not offered by the transferred by the trans	ne governing authority: te nt Moisture	

Method Summary

Client: Benchmark Env. Eng. & Science, PLLC Project/Site: Benchmark - 256 W. Genesee site

Method Description

Laboratory

TAL BUF

TAL BUF

TAL BUF

TAL BUF

TAL BUF

TAL BUF

Protocol

SW846

SW846

SW846

SW846

SW846

SW846

SW846

EPA

5
8
9

00100	
7471B	Mercury (CVAA)
9012B	Cyanide, Total andor Amenable
Moisture	Percent Moisture

Organochlorine Pesticides (GC)

Volatile Organic Compounds by GC/MS

Semivolatile Organic Compounds (GC/MS)

Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Protocol References:

Method

8260C

8270D

8081B

8082A

60100

EPA = US Environmental Protection Agency

Motole (ICD)

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

Sample Summary

Client: Benchmark Env. Eng. & Science, PLLC Project/Site: Benchmark - 256 W. Genesee site

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
480-118401-1	TOPSOIL COMP	Solid	05/22/17 14:00	05/23/17 17:10

ŀ

5/31/2017

Client: Benchmark Env. Eng. & Science, PLLC

Login Number: 118401 List Number: 1

Creator: Janish, Carl M

Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time (Excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	bmtk
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	N/A	
Chlorine Residual checked.	N/A	

List Source: TestAmerica Buffalo

APPENDIX D

INSTITUTIONAL & ENGINEERING CONTROL (IC/EC) CERTIFICATION FORMS

Enclosure 2 NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form

Sit	e No. C915194	Box 1	
Sit	e Name Former Buffalo Service Station		
Site City Co Site	e Address: 249 West Genesee Street Zip Code: 14202 y/Town: Buffalo unty: Erie e Acreage: 4.9		
Re	porting Period: June 15, 2016 to June 15, 2017		
		YES	NO
1.	Is the information above correct?	X	
	If NO, include handwritten above or on a separate sheet.		
2.	Has some or all of the site property been sold, subdivided, merged, or undergone a tax map amendment during this Reporting Period?		×
3.	Has there been any change of use at the site during this Reporting Period (see 6NYCRR 375-1.11(d))?		۶¢
4.	Have any federal, state, and/or local permits (e.g., building, discharge) been issued for or at the property during this Reporting Period?		X
	If you answered YES to questions 2 thru 4, include documentation or evidence that documentation has been previously submitted with this certification form.		
5.	Is the site currently undergoing development?		×
		Box 2	
		Box 2 YES	NO
6.	Is the current site use consistent with the use(s) listed below? Commercial and Industrial	Box 2 YES	NO
6. 7.	Is the current site use consistent with the use(s) listed below? Commercial and Industrial Are all ICs/ECs in place and functioning as designed?	Box 2 YES Ø	NO □
6. 7.	Is the current site use consistent with the use(s) listed below? Commercial and Industrial Are all ICs/ECs in place and functioning as designed? IF THE ANSWER TO EITHER QUESTION 6 OR 7 IS NO, sign and date below an DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.	Box 2 YES Ø	NO
6. 7. A C	Is the current site use consistent with the use(s) listed below? Commercial and Industrial Are all ICs/ECs in place and functioning as designed? IF THE ANSWER TO EITHER QUESTION 6 OR 7 IS NO, sign and date below an DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.	Box 2 YES Ø	NO □
6. 7. A C Sigr	Is the current site use consistent with the use(s) listed below? Commercial and Industrial Are all ICs/ECs in place and functioning as designed? IF THE ANSWER TO EITHER QUESTION 6 OR 7 IS NO, sign and date below an DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.	Box 2 YES Ø	NO

				Box 2	Α
8	Has any new informa	ation revealed that assumption	s made in the Qualitative Exposure	YES	NO
	Assessment regardin	ng offsite contamination are no	longer valid?		×
	If you answered YEs that documentation	S to question 8, include doc has been previously submit	umentation or evidence Ited with this certification form.		
9.	Are the assumptions (The Qualitative Expo	in the Qualitative Exposure As osure Assessment must be ce	ssessment still valid? rtified every five years)	X	
	If you answered NO updated Qualitative	to question 9, the Periodic Exposure Assessment base	Review Report must include an ed on the new assumptions.		
SIT	E NO. C915194			Box	c 3
	Description of Institu	tional Controls			
Parce	<u>el</u>	Owner	Institutional Control		
110.6	0-2-2.1	257 W. Genesee, LLC	Ground Water Use Restri	otion	
			Soil Management Plan	CIUN	
			O&M Plan		
			Landuse Restriction		
	o of aroundwator for p	atable and non-notable nurnes	Site Management Plan		
ii) Im iii) ur	plementation of Opera prestricted or residentia	tion, Monitoring, and Maintena al use is prohibited.	ince Plan and Soil/Fill Management F	lan.	
				Box	4
	Description of Engine	eering Controls			
		-			
l No	ne Required				
No	one Required				

		Box 5
Periodic Review Report (PRR) Certification Statements		
1. I certify by checking "YES" below that:		
 a) the Periodic Review report and all attachments were prepared under the dire reviewed by, the party making the certification; 	ection of,	and
b) to the best of my knowledge and belief, the work and conclusions described are in accordance with the requirements of the site remedial program, and gene orginaering practices; and the information presented is accurate and competence.	in this ce erally acc	ertification epted
eligneering practices, and the information presented is accurate and compete.	YES	NO
	X	
 If this site has an IC/EC Plan (or equivalent as required in the Decision Document), for or Engineering control listed in Boxes 3 and/or 4, I certify by checking "YES" below that following statements are true: 	r each In at all of tl	istitutional he
(a) the Institutional Control and/or Engineering Control(s) employed at this site the date that the Control was put in-place, or was last approved by the Departm	is uncha ent;	nged since
(b) nothing has occurred that would impair the ability of such Control, to protect the environment;	: public h	ealth and
(c) access to the site will continue to be provided to the Department, to evaluate including access to evaluate the continued maintenance of this Control;	e the ren	nedy,
(d) nothing has occurred that would constitute a violation or failure to comply wi Management Plan for this Control; and	ith the Si	te
(e) if a financial assurance mechanism is required by the oversight document for mechanism remains valid and sufficient for its intended purpose established in t	or the site he docur	ə, the ment.
	YES	NO
	X	
IF THE ANSWER TO QUESTION 2 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.		
A Corrective Measures Work Plan must be submitted along with this form to address t	hese iss	ues.
Signature of Owner, Remedial Party or Designated Representative Date	3	

IC CERTIFICATIONS SITE NO. C915194

Box 6

SITE OWNER OR DESIGNATED REPRESENTATIVE SIGNATURE

I certify that all information and statements in Boxes 1,2, and 3 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

AWLOY at 2325 F. Comelback Rd. 1100 Photo print business address Az am certifying as Authonozen Officen (Owner or Remedial Party) for the Site named in the Site Details Section of this form. 6-15-17 Signature of Owner, Remedial Party, or Designated Representative Date **Rendering Certification**

AuthoRIZED AGENT OF COLE REIT ADVISORS TITUC Manager COLE AN Buffalo NY, LLC SOLE MEMBER OF 257 W. Genesee, LLC

IC/EC CERTIFICATIONS	
Signature	Box 7
I certify that all information in Boxes 4 and 5 are true. I understand that a false state punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal L	ement made herein is aw.
1 Thoms H. Forbes, P.E. at Benchmark Environmenter print name print business address	Engineering & science 1610 NY 14218
am certifying as a for the <u>Owner</u> (Owner or Remed Dente OF NEW OF NEW	ial Party) <u>6 - 14-1</u> 7
Signature of, for the Owner or Remedial Party, Rendering Certification (Required for PE)	Date

 \overline{V}

Enclosure 2 NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form

	Sit	Site Details	Box 1	
	C it	a Name, Ruffele Ushan Renewal Ageney West Brenerty		
	Site Cit Co Site	e Address: 257 West Genesee Street Zip Code: 14202 y/Town: Buffalo unty: Erie e Acreage: 1.7		
	Re	porting Period: June 15, 2016 to June 15, 2017		
			YES	NO
	1.	Is the information above correct?	×	
		If NO, include handwritten above or on a separate sheet.		
	2.	Has some or all of the site property been sold, subdivided, merged, or undergone a tax map amendment during this Reporting Period?		X
	3.	Has there been any change of use at the site during this Reporting Period (see 6NYCRR 375-1.11(d))?		X
	4.	Have any federal, state, and/or local permits (e.g., building, discharge) been issued for or at the property during this Reporting Period?		×
		If you answered YES to questions 2 thru 4, include documentation or evidence that documentation has been previously submitted with this certification form.		
	5.	Is the site currently undergoing development?		x
			Box 2	
			YES	NO
	6.	Is the current site use consistent with the use(s) listed below? Commercial and Industrial	×	
	7.	Are all ICs/ECs in place and functioning as designed?	X	
		IF THE ANSWER TO EITHER QUESTION 6 OR 7 IS NO, sign and date below a DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.	nd	
	AC	corrective Measures Work Plan must be submitted along with this form to address th	ese issu	les.
3	Sigr	nature of Owner, Remedial Party or Designated Representative Date	S	

SITE NO. C915195		Box 3		
Description of Ins	titutional Controls			
Parcel 110.60-2-2.1	<u>Owner</u> 257 W. Genesee, LLC	Institutional Control		
		Site Management Plan O&M Plan Landuse Restriction		
Soil Management Plan i)Use of groundwater for potable and non-potable purposes is prohibited. ii)Implementation of Operation, Monitoring, and Maintenance Plan and Soil/Fill Management Plan. iii) Property shall remain as commercial/industrial use only				
		Box 4		
Description of Eng	gineering Controls			
None Required				
Not Applicable/No EC	's			

			BOX 2
	Periodic Review Report (PRR) Certification Statements		
1.	I certify by checking "YES" below that:		
	 a) the Periodic Review report and all attachments were prepared under the direct reviewed by, the party making the certification; 	tion of,	and
	b) to the best of my knowledge and belief, the work and conclusions described in are in accordance with the requirements of the site remedial program, and general engineering practices; and the information presented is accurate and competence.	this ce ally acc	ertification epted
	engineering practices, and the information presented is accurate and compete.	YES	NO
		X	
2.	If this site has an IC/EC Plan (or equivalent as required in the Decision Document), for e or Engineering control listed in Boxes 3 and/or 4, I certify by checking "YES" below that following statements are true:	each In: all of th	stitutional le
	(a) the Institutional Control and/or Engineering Control(s) employed at this site is the date that the Control was put in-place, or was last approved by the Departmer	unchar nt;	nged since
	(b) nothing has occurred that would impair the ability of such Control, to protect p the environment;	ublic he	ealth and
	 (c) access to the site will continue to be provided to the Department, to evaluate t including access to evaluate the continued maintenance of this Control; 	the rem	edy,
	(d) nothing has occurred that would constitute a violation or failure to comply with Management Plan for this Control; and	the Sit	e
	(e) if a financial assurance mechanism is required by the oversight document for mechanism remains valid and sufficient for its intended purpose established in the	the site docun	e, the nent.
		YES	NO
	!	X	
	IF THE ANSWER TO QUESTION 2 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.		
Å	A Corrective Measures Work Plan must be submitted along with this form to address the	ese issu	les.
5	Signature of Owner, Remedial Party or Designated Representative Date		
	a.		

IC CERTIFICATIONS SITE NO. C915195

Box 6

SITE OWNER OR DESIGNATED REPRESENTATIVE SIGNATURE

I certify that all information and statements in Boxes 1,2, and 3 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

at <u>2325 E Cornel back for #100</u> print business address A DIFICHL (Owner or Re SHIRLEY (Owner or Remedial Party) am certifying as

for the Site named in the Site Details Section of this form.

4-15-17 Date

Signature of Owner, Remedial Party, or Designated Representative Rendering Certification

Authonized Abent of COLE REIT Advisors TTT LLC Manager COLE HN Buffalo NY, LLC SOLE Member & Z57 W. GENESEE, LLC

IC/EC CERTIFICATIONS	
Signature	Box 7
I certify that all information in Boxes 4 and 5 are true. I understand that a false statem punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law Benchark Environment Envit Environment Environment Envit Envit Envit Envit Environme	nent made herein is
am certifying as a for the Owner or Remediai (Owner or Remediai	Party)
Signature of , for the Owner or Remedial Party, Rendering Certification (Required for PE)	Date

Enclosure 2 NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form

Sit	e No.	C915203	:	Site D	Details			Box 1		
Sit	e Name	4 New Seventh	Street Site							
Site Cit Co Site	e Address y/Town : unty: Erie e Acreage	s: 4 New Seventl Buffalo e: 1.7	n Street Site	:	Zip Code: 14202	2				
Re	porting Po	eriod: June 15, 2	016 to June 1	15, 201	7					
								YES	NO	
1.	Is the inf	formation above of	correct?					¥		
	If NO, in	clude handwritter	above or on a	a sepa	arate sheet.					
2.	Has son tax map	ne or all of the site amendment duri	e property bee ng this Reporti	en sold ting Pe	l, subdivided, m eriod?	erged, or under	rgone a		×	
3.	Has ther (see 6N	e been any chan YCRR 375-1.11(c	ge of use at th l))?	he site	during this Rep	orting Period			-	×
4.	Have an for or at	y federal, state, a the property durir	nd/or local per ng this Reporti	ermits (ting Pe	(e.g., building, d riod?	ischarge) been	issued		X	
	lf you ar that doc	nswered YES to sumentation has	questions 2 t been previou	thru 4, usly s	, include docur ubmitted with f	nentation or e his certificatio	vidence on form.			
5.	Is the sit	e currently under	going develop	oment?	>					×
								Box 2		
								YES	NO	
6.	Is the cur Commer	rrent site use con cial and Industria	sistent with the	ne use	(s) listed below?)		×	i	
7.	Are all IC	s/ECs in place a	nd functioning	g as de	esigned?			A	/	
	IF	THE ANSWER TO DO NOT COM	D EITHER QUE PLETE THE RI	ESTIO REST O	N 6 OR 7 IS NO OF THIS FORM.	, sign and date Otherwise con	below a tinue.	nd		
A Corrective Measures Work Plan must be submitted along with this form to address these issues.										
Sigr	nature of C	Dwner, Remedial F	Party or Design	nated F	Representative	:	Date			

			Box 2	Α
8.	Has any new information revealed that assumptions made in the Qualitative Exc	osure	YES	NO
	Assessment regarding offsite contamination are no longer valid?			X
	If you answered YES to question 8, include documentation or evidence that documentation has been previously submitted with this certification fe	orm.		
9.	Are the assumptions in the Qualitative Exposure Assessment still valid? (The Qualitative Exposure Assessment must be certified every five years)		X	
	If you answered NO to question 9, the Periodic Review Report must include updated Qualitative Exposure Assessment based on the new assumptions	e an		
SITE	E NO. C915203		Вох	c 3
	Description of Institutional Controls			
<u>Parce</u> 110.6	Description of institutional Controls Parcel Owner Institutional Control 110.60-2-2.1 257 W. Genesee, LLC Ground Water Use Restrict Soil Management Plan Landuse Restriction Site Management Plan i) Operation, Monitoring, and Maintenance Plan and Soil/Fill Management Plan Site Management Plan			
ii) Us iii) un	se of groundwater for potable and non-potable purposes is prohibited. nrestricted or residential use is prohibited.			
			Box	4
1	Description of Engineering Controls			
No	one Required			
Not	ot Applicable/No EC's			

			Box 5
	Periodic Review Report (PRR) Certification Statements		
1.	I certify by checking "YES" below that:		
	 a) the Periodic Review report and all attachments were prepared under the dire- reviewed by, the party making the certification; 	ction of,	and
	b) to the best of my knowledge and belief, the work and conclusions described in t are in accordance with the requirements of the site remedial program, and general angineering practices; and the information presented is accurate and compare		ertification cepted
	chymochny praeties, and the mormation presented is destrate and compete.	YES	NO
		×	
2.	If this site has an IC/EC Plan (or equivalent as required in the Decision Document), for or Engineering control listed in Boxes 3 and/or 4, I certify by checking "YES" below tha following statements are true:	each In It all of th	istitutional he
	(a) the Institutional Control and/or Engineering Control(s) employed at this site is the date that the Control was put in-place, or was last approved by the Departme	s uncha ent;	nged since
	(b) nothing has occurred that would impair the ability of such Control, to protect the environment;	public h	ealth and
	 (c) access to the site will continue to be provided to the Department, to evaluate including access to evaluate the continued maintenance of this Control; 	the rem	nedy,
	(d) nothing has occurred that would constitute a violation or failure to comply wit Management Plan for this Control; and	h the Si	te
	(e) if a financial assurance mechanism is required by the oversight document for mechanism remains valid and sufficient for its intended purpose established in the	r the site	e, the ment.
		YES	NO
		×	
	IF THE ANSWER TO QUESTION 2 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.		
,	A Corrective Measures Work Plan must be submitted along with this form to address th	iese iss	ues.
Ę	Signature of Owner, Remedial Party or Designated Representative Date		

Box 6
NATURE nderstand that a false It to Section 210.45 of the
ld # 1100 Phoening
_(Owner or Remedial Party)

for the Site named in the Site Details Section of this form.

6-15117 Date

5015

Signature of Owner, Remedial Party, or Designated Representative **Rendering Certification**

Authouses Agent of Cole REIT Advisors TILLO Manager COLE AN Buffalo NY LLO SOLE MEMBER of 257 W. Genesee, LLC

IC/EC CERTIFICATIONS	
	Boy 7
Signature	
I certify that all information in Boxes 4 and 5 are true. I understand that a false statement mad punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.	e herein is
I Momas H. Forbes, P.E. at 2558 Handy Tok, Buffalo, NY print name print business address	2 Science 142,8
am certifying as a for the Owner or Remedial Party)	
Signature of , for the Owner or Remedial Party, Rendering Certification	14-17

APPENDIX E

SITE PHOTO LOG

Prepared By:

THF

BENCHMARK Environmental Engineering 8 Science, PLLC		РНОТС	OGRAPHIC LOG
Client Name	:	Site Location:	Project No.:
257 W. Genese	e, LLC	257 W Genesee Street, LLC Site Buffalo, NY	
Photo No.	Date	ASSESSMENT STREET	
3	05/22/17		
Direction Photo North	o Taken:		
North Description: Visitor Parking Area (looking North)			

Prepared By: _____ THF

BENCHI ENVIRONM ENGINEERI SCIENCE, F	MARK IENTAL ING 8 PLLC	РНОТС	DGRAPHIC LOG
Client Name	:	Site Location:	Project No.:
257 W. Genese	e, LLC	257 W Genesee Street, LLC Site Buffalo, NY	
Photo No.	Date		
5	05/22/17		11 2 35
Direction Photo	o Taken:		
west			
Description:		and and a second s	
Drive between C Building Comple	Garage and ex, Looking West		STOP
			10 martin
		and the second second	
			State and .

Photo No.	Date	
6	05/22/17	
Direction Photo South	o Taken:	
Description: Berm area on 4 south	th Street; looking	

Prepared By: _____ THF_____

BENCHN ENVIRONM ENGINEERI SCIENCE, F	MARK Nental Ng 8	РНОТС	OGRAPHIC LOG
Client Name	:	Site Location:	Project No.:
257 W. Genese	e, LLC	257 W Genesee Street, LLC Site Buffalo, NY	
Photo No.	Date		
7	05/22/17		
Direction Photo East Description: Site Conditions- looking east alor	• Taken: • Building façade ng W. Genesee St		

Prepared By: _____ THF

BENCHN Environm Engineeri Science, F	AARK ental Ng 8 PLLC	РНОТС	OGRAPHIC LOG
Client Name	:	Site Location:	Project No.:
257 W. Genese	e, LLC	257 W Genesee Street, LLC Site Buffalo, NY	
Photo No.	Date		
9	05/22/17		
Direction Photo North-Northeast Description: Site Conditions Area Looking N- of Replaced Top	- Detention Pond NE (Note Areas osoil)		

Г

Photo No.	Date	
10	05/22/17	
Direction Phote	o Taken:	
South		
Description:		
Site Conditions	- Courtyard area	
on New 7th Stre	et Looking South	

Prepared By: _____ THF