PHASE I BUSINESS PARK LACKAWANNA, NEW YORK

October 2006 Revised June 2007 0071-006-202

Prepared for:

Tecumseh Redevelopment, Inc.

Phase I Business Park

Table of Contents

1.0	INT	TRODUCTION	1
	1.1	Background and History	
		1.1.1 Phase I Business Park	
	1.2	Purpose and Scope	2
2.0	SITI	E DESCRIPTION AND PRIOR ASSESSMENTS	3
	2.1	Site Topography, Physiography, and Drainage	
	2.2	Site Structures and Vegetation	
	2.3	Site Geology and Hydrogeology	
	2.4	Utilities	
	2.5	Wetlands and Floodplains	
	2.6	Previous Site Assessments	
	2.0	2.6.1 RCRA Facility Assessment	
		2.6.2 Site Reconnaissance and Limited Test Pit Investigation	
		2.6.3 Phase I Environmental Site Assessment	
3.0	REMEDIAL INVESTIGATION APPROACH & RATIONALE		8
	3.1	General	
	3.2	Constituents of Potential Concern	
	3.3		
	0.0	3.3.1 Sampling Rationale	
		3.3.1.1 Areas of Assessment 1, 4, 5, and 6	
		3.3.1.2 Areas of Assessment 2 and 3	
		3.3.1.3 Areas of Assessment 7 and 8	
		3.3.1.4 Areas of Assessment 9 and 10	
		3.3.2 Surface Soil/Fill Sampling Methodology	11
		3.3.3 Subsurface Soil/Fill Sampling Methodology	11
		3.3.4 Methods of Chemical Analysis	
	3.4	Groundwater	
		3.4.1 Existing Monitoring Well Evaluation	
		3.4.2 Monitoring Well Installation Rationale	
		3.4.3 Temporary Piezometer Installation Methodology	
		3.4.4 Monitoring Well Installation Methodology	
		3.4.5 Monitoring Well Development	
		3.4.6 Groundwater Elevation Measurements	
		3.4.7 Monitoring Well Sampling	
	2 5	3.4.8 Methods of Chemical Analysis	
	3.5	Quality Assurance/Quality Control	
	3.6	Data Usability Summary	15
4.0	RI I	Findings	17
	4.1	Field Observations	17

Phase I Business Park

Table of Contents

	4.2	Chemical Presence in Soil/Fill	19
	4.3	Groundwater	22
		4.3.1 VOCs	
		4.3.2 SVOCs	
		4.3.3 Metals	
		4.3.4 PCBs	
5.0	FAT	TE AND TRANSPORT OF COPCS	2 4
	5.1	Airborne Pathways	
		5.1.1 Fugitive Dust	
		5.1.2 Volatilization	
	5.2	Waterborne Pathways	
		5.2.1 Surface Water Runoff	
		5.2.2 Leaching	
	5.3	Exposure Pathways	
	5.4	Human Health Exposure Assessment	
		5.4.1 Potential Receptors	
		5.4.2 Contaminant Sources	
		5.4.3 Contaminant Release and Transport Mechanisms	
		5.4.4 Point of Exposure	
		5.4.5 Route of Exposure	
		5.4.6 Exposure Assessment Summary	
	5.5	Fish and Wildlife Impact Assessment (FWIA)	
6.0	SUM	MMARY AND CONCLUSIONS	30
7.0	RFF	FERENCES	31
/ • U	ILLI	L LIKLI 10LIO	· · · · · · · · · · · · · · · · · · ·

Phase I Business Park

Table of Contents

LIST OF TABLES

Table 1	Constituents of Potential Concern (COPCs)
Table 2	Expanded Parameter List
Table 3	Analytical Program Summary
Table 4a/b	Soil/Fill Analytical Summary for Area of Assessment 1
Table 5a/b	Soil/Fill Analytical Summary for Area of Assessment 2
Table 6a/b	Soil/Fill Analytical Summary for Area of Assessment 3
Table 7a/b	Soil/Fill Analytical Summary for Area of Assessment 4
Table 8a/b	Soil/Fill Analytical Summary for Area of Assessment 5
Table 9a/b	Soil/Fill Analytical Summary for Area of Assessment 6
Table 10a/b	Soil/Fill Analytical Summary for Area of Assessment 7
Table 11a/b	Soil/Fill Analytical Summary for Area of Assessment 8
Table 12a/b	Soil/Fill Analytical Summary for Area of Assessment 9
Table 13a/b	Soil/Fill Analytical Summary for Area of Assessment 10
Table 14	Summary of Monitoring Well/Temporary Piezometer Construction Details
Table 15	Summary of QA/QC Samples
Table 16	Groundwater Analytical Summary
Table 17	Exposure Assessment Summary

LIST OF FIGURES

Figure 1	Site Location and Vicinity Map
Figure 2	Site Plan
Figure 3	Shallow Groundwater Isopotential Map – March 6, 2006
Figure 4	Shallow Groundwater Isopotential Map – June 1, 2006

Phase I Business Park

Table of Contents

APPENDICES

Appendix A	Boring Logs & Well Completion Details
Appendix B	Test Pit Excavation Logs & Well Sampling Logs
Appendix C	Variance Logs
Appendix D	Data Usability Summary Report (DUSR)
Appendix E	Fish and Wildlife Resource Impact Analysis Checklist

1.0 Introduction

1.1 Background and History

Tecumseh Redevelopment, Inc. (Tecumseh) owns approximately 1,100-acres of land located on the west side of New York State Route 5 (Hamburg Turnpike) in the City of Lackawanna, NY (see Figures 1 and 2). The majority of Tecumseh's property is located in the City of Lackawanna (the City), with portions of the property extending into the Town of Hamburg. Tecumseh's property is bordered by NY State Route 5 on the east, Lake Erie to the west and northwest, and other industrial properties to the south and the northeast.

The property was formerly used for the production of steel, coke, and related products by Bethlehem Steel Corporation (BSC). Steel production on the property was discontinued in 1983 and the coke ovens ceased activity in 2000. Tecumseh acquired its Lackawanna property from BSC's bankruptcy estate in 2003.

A Resource Conservation and Recovery Act (RCRA) Facility Investigation (RFI) of all Solid Waste Management Units (SWMUs) located on the 1,100-acre property was initiated by BSC under an Administrative Order issued by the United States Environmental Protection Agency (USEPA) in 1990. Tecumseh completed the RFI in January 2005. USEPA subsequently determined that the site investigation requirements of the 1990 Administrative Order were satisfied, and Tecumseh's obligations under the 1990 Administrative Order were terminated. Tecumseh is currently negotiating an Order on Consent and Corrective Measures Study (CMS) Work Plan with the New York State Department of Environmental Conservation (NYSDEC).

Tecumseh has developed conceptual redevelopment plans for the entire 1,100-acre site. A portion of those plans incorporates a Business Park area along NYS Route 5. Phase I of the Business Park, herein referred to as the Phase I Business Park or the Site, encompassing approximately 102 acres, will be completed first. It is anticipated that Business Park Phases II and III, encompassing approximately 173 and 128 acres, respectively, will follow.

1.1.1 Phase I Business Park

In 2000, USEPA released the Phase I Business Park property from the 1990 Order, as the twelve SWMUs located within the Phase I Business Park boundaries had received a "No Further Action" determination during the RFI (Ref 1).

In March 2001, BSC performed a Phase I Environmental Site Assessment (ESA) on the Phase I Business Park property (formerly deemed "Parcel B") as part of a due diligence review in conjunction with the then-proposed redevelopment and sale of the property (Ref. 2). A copy of the report was subsequently submitted to the NYSDEC. The Phase I ESA determined that portions of the Phase I Business Park may have been impacted by historical steel manufacturing operations (BSC, 2001). Additional detail concerning the Phase I ESA findings is presented in Section 2.0.

In June of 2005 Tecumseh submitted an application to the NYSDEC requesting acceptance of the Phase I Business Park into the NY State Brownfield Cleanup Program (BCP). The application was accompanied by a Remedial Investigation (RI) Work Plan (Ref. 3) that identified site characterization requirements to be completed pursuant to the BCP and NYSDEC DER-10 guidance. The Site was accepted into the BCP with the execution of the Brownfield Cleanup Agreement in November of 2005. RI field activities were initiated in January 2006 and substantially completed in February 2006.

1.2 Purpose and Scope

This RI Report has been prepared on behalf of Tecumseh to present RI findings and describe environmental conditions within the Site.

This Report contains the following sections.

- Section 2.0 presents a description of the Site and summarizes prior assessments.
- Section 3.0 presents a discussion of the RI sampling and methodology.
- Section 4.0 presents the nature and extent of impact in Site media.
- Section 5.0 describes chemical constituent migration pathways.
- Section 6.0 provides a human health exposure assessment and fish and wildlife resources impact assessment.
- Section 7.0 presents RI summary and conclusions
- Section 8.0 presents cited references.

2.0 SITE DESCRIPTION AND PRIOR ASSESSMENTS

The Phase I Business Park is located west of New York State Route 5 (Hamburg Turnpike), east of the Gateway Metroport Ship Canal, and east and south of land currently owned by Gateway Trade Center (see Figures 1 and 2). The flat lying, approximately 102-acre Site is comprised mostly of vacant land, but includes some active railroad spurs and other structures (See §2.2). A chain-link fence that borders the entire property along Route 5 and a remote-control access gate at the Ridge Road guardhouse restrict access to the property.

The Site was formerly used to house a portion of BSC's integrated steel making operations. Most facility operations ceased in 1983, with a majority of the structures at the facility demolished in subsequent years. Specific processes and steel making facilities located on the Phase I Business Park parcel included:

- Open Hearth furnaces
- Blooming Mill
- Billet Preparation Mills
- Roughing Mills
- Rail Mills
- Foundry
- Water Treatment Plant

2.1 Site Topography, Physiography, and Drainage

The Site is generally flat with no discernable drainage pattern. The United States Geological Survey Buffalo, SW, New York Quadrangle, 7.5-minute topographic map was reviewed to assess physiographic conditions pertaining to the Site. The map, presented as Figure 1, indicates that the Site and surrounding areas slope gently to the west toward the Gateway Metroport Ship Canal and Lake Erie. Topographic contour maps prepared by BSC indicate the Site is situated approximately 585 feet above mean sea level.

2.2 Site Structures and Vegetation

The Site contains structural remnants and other features associated with historic integrated steel-making facilities at the Site. These include:

- Numerous slabs and concrete piers from former buildings and foundations.
 Many of the slabs are constructed of macadam.
- Immediately west of the Site boundary is a man-made drainage channel designated as the North Return Water Trench that begins near the former Pumping Station No. 1 and flows north to the Union Ship Canal (see Figure 2). Historically, the trench collected treated wastewater and non-contact cooling water from SPDES permitted outfalls from BSC operations. Currently, there are no active outfalls into the North Return Water Trench from the Site.
- Further south and immediately west of the Site boundary is another man-made drainage channel designated as the South Return Water Trench that begins near the former Blowing Engine House No. 1 and flows south to Smokes Creek (see Figure 2). Historically and currently, the trench collects and discharges groundwater and stormwater to Smokes Creek under an active SPDES permit (no. NY-0269310). There are no active outfalls into the South Return Water Trench from the Site except for treated groundwater discharge from an on-site groundwater remediation system (i.e., South Linde system), which discharges near the confluence of the South Return Water Trench and Smokes Creek.
- The former plant Fire Department Headquarters building located at the northeast corner of the Site near Gate 1 at Fuhrman Boulevard.
- An active rail spur traverses the eastern boundary of the Site adjacent to Route 5 and Fuhrman Boulevard.

The land surface is generally flat, and heavily vegetated with shrubs, grasses, and trees. The approximate locations of the current and former structures/buildings are shown on Figure 2.

2.3 Site Geology and Hydrogeology

The United States Department of Agriculture Soil Survey of Erie County, New York indicates that the Site is covered by surface soil classified as Urban Land; soil consisting of paved, foreign, or disturbed soils. Drilling logs from monitoring wells constructed on or near the Site indicate that the upper two feet (east side) to eight feet (west side) is typically composed of steel and iron-making slag and/or other fill material. The fill is underlain by

lacustrine clays and silts that are, in turn, underlain by shale or limestone bedrock. Bedrock is about 60 feet below grade near the eastern perimeter of the Site.

Historically, due to the proximity of Lake Erie and municipal supplied water, groundwater in the area has not been developed for industrial, agricultural, or public supply purposes. There is a deed restriction that prohibits the use of groundwater on the property. Consequently, no groundwater supply wells are present on the 1,100-acre Tecumseh property. Measurements taken in several monitoring wells on or near the Site indicate that the water table is 5 to 6 feet below grade within the soil/fill unit. Upgradient monitoring wells MW-8A and MW-8B are located in the northeast corner of the Site. Well MW-8A was installed to 15.15 feet below ground surface (fbgs) and screened within the soil/fill unit from 5.15 to 15.15 fbgs; well MW-8B was installed to 71.30 fbgs and screened within the sand/bedrock unit from 56.30 to 71.30 fbgs (Ref. 4). Boring logs for wells MW-8A and MW-8B are presented in Appendix A. Groundwater elevation contour maps completed during investigation of the 1,100-acre former BSC property indicate that shallow groundwater flows radially west/southwest across the Site towards the Gateway Metroport Ship Canal and Lake Erie as well as northwest toward the Buffalo Outer Harbor (Ref. 4).

2.4 Utilities

The following utilities are present on or near the Site:

- <u>Electric Utility:</u> Overhead electric power lines on wooden utility poles, owned by Niagara Mohawk Power Corporation (NMPC), run north and south adjacent to the Site. The electric utilities are located just east of the North Return Water Trench and former Power House No. 1 (see Figure 2), but are not located within the Site boundary. The former Power House No. 1 is not part of the Site.
- <u>Railroad Tracks</u>: Several active railroad tracks, owned and operated by South Buffalo Railway, are located on the east side of the Site parallel to New York State Route 5 (Hamburg Turnpike). These tracks are used to service tenants within the 1,100-acre Tecumseh property, Gateway Trade Center facilities, and for storage of railroad cars for customers.
- Water: Erie County currently supplies potable water to the site. Lake Erie is not
 accessible from the Site without crossing properties owned by Tecumseh or
 Gateway Trade Center.

• <u>Sanitary Sewers:</u> Active and abandoned sewer lines are located at the approximate locations indicated on Figure 2.

2.5 Wetlands and Floodplains

No state/federal wetlands or floodplains exist on the Site.

2.6 Previous Site Assessments

2.6.1 RCRA Facility Assessment

Twelve SWMUs, designated as P-43 through P-53 and P-64, were identified on the 102-acre Site during the RCRA Facility Assessment (RFA) that preceded the RFI (Ref. 5). BSC performed assessments for all twelve 12 of these SWMUs. Based on the assessment findings, USEPA Region II issued "No Further Assessment" designations for 11 of the 12 SWMUs in December of 1990. A "No Further Assessment" designation was issued for the twelfth SWMU in September 1991. Accordingly, all 12 SWMUs located within the proposed Phase I Business Park Area were excluded from the RFI Order by the USEPA in January 2001 (Ref. 1).

2.6.2 Site Reconnaissance and Limited Test Pit Investigation

From July 11 through 13, 2000, field reconnaissance activities were conducted by URS Consultants, Inc. to observe the conditions on the Site and the immediately adjacent properties. The field reconnaissance consisted of parallel east to west transects, approximately 50 to 75 feet apart. Structures observed in the field, such as pits, sumps, former foundation floors, and storm drains, were not surveyed; therefore, locations identified on Figure 2 and presented in Appendix B of the RI Work Plan are approximate. The description of site features based upon field observations made during the field reconnaissance was summarized in a July 14, 2000 memorandum presented in Appendix B of the RI Work Plan.

Several areas of stressed vegetation, sometimes combined with a viscous oil substance pooled on the ground surface, were observed and noted. Additionally, two large oil-stained areas were reportedly observed on the Rail Finishing concrete foundation on the south end of the Site and the Machine Shop concrete foundation located near the north end of the Site (see Figure 2).

On July 13, 2000, shallow test trenches were excavated at the locations of observed surface staining. These excavations indicated that the oily surface stains were confined to the upper two feet or less of soil/fill. No samples were collected for laboratory analysis; however, four discrete field aliquots of the oily material were collected and screened with a benzene field test kit. Field screening did not detect benzene in any of the four samples screened.

2.6.3 Phase I Environmental Site Assessment

A Phase I Environmental Site Assessment (ESA) was completed for the 102-acre Site by BSC in 2001. The Site was, at that time, designated by BSC as "Parcel B." The Phase I ESA is included as Attachment 5 of the BCP application. The results of the assessment indicated potential environmental conditions based on historic site uses, adjacent site uses, and field observations. These included:

- The potential impact of surface soil/fill by base-neutral semi-volatile organic compounds (SVOCs) associated with the operation of steel mills, foundry, petroleum bulk storage and other historic steel manufacturing operations.
- The potential impact of surface and subsurface soil/fill by metals associated with steel manufacturing operations.
- The potential impact of surface and subsurface soil/fill by PCBs from transformers and rail yards in discrete areas of the parcel.
- Potential soil/fill and groundwater impacts from volatile organic compounds associated with gasoline storage in discrete onsite areas, and historic off-site gasoline releases upgradient of the property.

The results of the assessments described above formed the basis of the site characterization program described in the RI Work Plan.

3.0 REMEDIAL INVESTIGATION APPROACH & RATIONALE

This RI focuses on providing defensible data to identify areas of the Site potentially requiring remediation, define chemical constituent migration pathways, qualitatively assess human health and ecological risks, and allow performance of a remedial alternatives evaluation. This section of the RI report presents a discussion of the rationale for the data collection program of the RI, including the methods employed to collect samples and make field measurements and observations, and the methods used to chemically analyze the environmental samples.

3.1 General

The RI included the following field activities to delineate and characterize on-site soil/fill as well as assess groundwater quality at the Site:

- Visual, olfactory, and PID characterization of surface and subsurface soil/fill via test pit excavation and boring advancement.
- Collection of surface and subsurface soil/fill samples.
- Advancement of on-site borings completed as groundwater monitoring wells.
- Collection and analysis of groundwater samples from existing and newly installed monitoring wells at the site.

RI field activities were conducted by TurnKey Environmental Restoration, LLC (TurnKey) in accordance with the Site Health and Safety Plan (HASP) for Brownfield Cleanup Program Remedial Investigation Activities, Phase I Business Park, Lackawanna, New York (Appendix C of Ref. 3). Environmental sample collection was performed in accordance with TurnKey's Field Operating Procedures (FOPs). USEPA and NYSDEC-approved sample collection and handling techniques were used. Samples for chemical analysis were analyzed in accordance with USEPA SW-846 methodology to meet the definitive-level data requirements. Analytical results were evaluated by a third-party data validation expert in accordance with provisions described in the RI Work Plan. The majority of field activities were conducted under NYSDEC oversight. Each sampling location was surveyed by TurnKey's surveyor and plotted on the site base map shown on Figure 2.

3.2 Constituents of Potential Concern

Constituents of potential concern (COPCs) were identified in the RI Work Plan based on site operational history and Phase I ESA findings (see Table 1). The primary COPCs included base-neutral Target Compound List (TCL) semi-volatile organic compounds (SVOCs) associated with petroleum bulk storage and fossil fuels, and select inorganics (arsenic, cadmium, chromium, lead, mercury and cyanide) typically associated with steel manufacturing. Other COPCs analyzed on a location-by-location basis included polychlorinated biphenyls (PCBs), which were analyzed in select locations housing former transformers and rail yards, and petroleum-based volatile organic compounds (VOCs), analyzed in areas of former gasoline storage. Petroleum-based VOCs are also associated with several off-site properties along New York State Route 5 identified as formerly containing gasoline service stations, and were therefore included in all groundwater samples. In addition, pesticides, herbicides and dioxins were added to the list of COPCs at two surface soil sample locations per NYSDEC's request. It should be noted that TurnKey's review of historical documentation yielded no recorded use of pesticides, herbicides or dioxin at the Site.

In addition to the COPCs, an expanded list of parameters was developed as part of the RI Work Plan (See Table 2). The "expanded" list was employed during the RI at a minimum frequency of 1 per 20 samples per matrix to check for the presence of both COPCs and other constituents less likely to be encountered. Also, photoionization detector (PID) headspace screening for volatile organic compounds was employed at all test pit locations, with expanded list VOCs added to samples exhibiting elevated PID readings.

3.3 Soil/Fill

As shown in Figure 2, the Site was broken into ten Areas of Assessment (AOAs), identified as AOA-1 through AOA-10. The AOAs were developed in the RI Work Plan to focus the soil/fill investigation according to area-specific concerns and facilitate data presentation. Surface and subsurface soil/fill sample information included in this section is discussed as it pertains to each of the ten AOAs.

In general, surface and subsurface soil/fill samples were collected from 82 test pits and 37 surface sample locations (119 total locations) to evaluate the nature of potential impacts within the ten AOAs. A total of 49 surface soil and 35 subsurface soil samples were collected from those sample locations during this RI. The following sections describe the

soil/fill sampling rationale and methodology. Test pit and surface soil/fill locations discussed in this section are shown in Figure 2. Field logs for all test pits excavated at the Site are included in Appendix B. The investigation methods and laboratory analyses performed are summarized in Table 3.

3.3.1 Sampling Rationale

3.3.1.1 Areas of Assessment 1, 4, 5, and 6

AOAs 1, 4, 5, and 6 comprise the former main operational mill area of the Site. Forty-nine test pits, 15 surface soil/fill sample locations, and 3 monitoring well borings were excavated/completed within these AOAs. From those locations, 23 surface soil/fill and 18 subsurface soil/fill samples were collected. The COPCs analyzed included SVOCs and metals, and PCBs in discrete locations.

3.3.1.2 Areas of Assessment 2 and 3

AOAs 2 and 3 consist primarily of support buildings located south of the main mill complex as well as several fuel oil tank locations. Five test pits and 6 surface soil/fill sample locations were excavated/installed within these AOAs. From those locations, 6 surface soil/fill and 2 subsurface soil/fill samples were collected. The COPCs analyzed included SVOCs from former tank locations, SVOCs and PCBs from the former rail yard, metals in areas of former building operations, and PCBs, pesticides and 2,3,7,8-TCDD at one location.

3.3.1.3 Areas of Assessment 7 and 8

AOAs 7 and 8 contain the former Open Hearth, Stripper, Foundry, and Machine Shop buildings. Portions of the Billet Prep No. 2 building are also within this AOA group. Fourteen test pits, 8 surface soil/fill sample locations, and 2 monitoring well borings were excavated/installed within these AOAs. From those locations, 10 surface soil/fill and 5 subsurface soil/fill samples were collected. The COPCs analyzed included SVOCs and metals from former tank locations and building operations as well as PCBs from former transformer locations.

3.3.1.4 Areas of Assessment 9 and 10

AOAs 9 and 10 contain the former rail yard, several support buildings (rigger shop, repair shop) and the fire department headquarters. Fourteen test pit, 8 surface soil/fill

locations, and 1 monitoring well location(s) were excavated/installed within these AOAs. From those locations, 10 surface soil/fill and 10 subsurface soil/fill samples were collected. The COPCs analyzed included SVOCs and metals from former tank locations and building operations, PCBs from former transformer locations and rail yards, VOCs from former gasoline storage and use areas, and PCBs, pesticides and 2,3,7,8-TCDD at one location near Furhman Boulevard.

3.3.2 Surface Soil/Fill Sampling Methodology

Discrete surface soil/fill samples were collected by first scraping away vegetation with an excavator bucket. A dedicated stainless steel spoon was then used to collect a representative aliquot of soil/fill from 0 to 6 inches below ground surface (bgs). Surface soil/fill samples from test pit locations were also collected using a dedicated stainless steel spoon; however, the sample interval included the upper horizon of the test pit sidewall to a maximum depth of 2 fbgs. Composite surface soil/fill samples were transferred to a new stainless steel bowl for compositing and homogenization. Grab and composite samples were transferred to laboratory supplied, pre-cleaned sample containers for analysis of the parameters listed in Table 3 using USEPA SW-846 methodology.

Representative samples were described in the field by qualified TurnKey personnel using the Unified Soil Classification System (USCS), scanned for total volatile organic vapors with a calibrated MiniRae 2000 PID equipped with a 10.6 eV lamp, and characterized for impacts via visual and/or olfactory observations.

3.3.3 Subsurface Soil/Fill Sampling Methodology

All test pit soil/fill subsurface samples were initially retrieved by the excavator bucket. Representative subsurface soil/fill samples from each sample composite group and grab location, as identified in Table 3, were collected from the center of the excavator bucket using a dedicated stainless steel spoon. Composite samples were transferred to a new stainless steel bowl for compositing and homogenization. Grab and composite samples were transferred to laboratory-supplied, pre-cleaned sample containers for analysis of the parameters listed in Table 3 using USEPA SW-846 methodology.

In accordance with Table 3 of the RI Work Plan, a second representative aliquot was collected from 76 test pit locations and transferred to a sealable plastic bag for discrete

headspace determination (HSD). HSD measurements recorded during the investigation are presented in analytical summary Tables 4 through 13. Per the Work Plan, PID scan and/or HSD values greater than 20 parts per million (ppm) required the collection of an additional sample for TCL VOC analysis using USEPA SW-846 methodology. During the investigation, only 5 of the 76 test pits requiring field assessment were analyzed for VOCs; three were selected based on PID scan or HSD exceedances and two by visual and/or olfactory (V/O) evidence of impact. The location and rationale, provided parenthetically, for the five test pit locations included: TP-1-9 (V/O), TP-5-3 (V/O), TP-7-2 (V/O and HSD), TP-10-1 (V/O and HSD), and TP-10-6 (V/O and PID scan). Each VOC subsurface soil/fill sample collected was transferred directly into a laboratory supplied, pre-cleaned sample container for analysis of TCL VOCs.

3.3.4 Methods of Chemical Analysis

Surface and subsurface soil/fill samples were couriered under chain-of-custody command to Severn Trent Laboratories, Inc. (STL), located at 10 Hazelwood Drive, Amherst, New York 14228 for chemical analysis as identified in Tables 1, 2, and 3. STL is an independent, NY State Department of Health (NYSDOH) Environmental Laboratory Approval Program (ELAP)-certified facility approved to perform the analyses prescribed for this RI. STL also has NYSDOH Contract Laboratory Program (CLP) certification while maintaining ASP accreditation. STL employed analytical testing methods described in USEPA Test Methods for Evaluating Solid Wastes contained in SW-846, revised 1991.

3.4 Groundwater

A groundwater monitoring program was conducted at the Site to assess groundwater quality and potential groundwater contaminant migration pathways. The following sections describe the sampling rationale and methodology. Monitoring well locations discussed in this section are shown in Figure 2 and are summarized in Table 14. Monitoring well logs for all wells at the Site are included in Appendix A.

3.4.1 Existing Monitoring Well Evaluation

One shallow groundwater monitoring well, identified as MW-08A was installed on the subject property during prior investigation of the former BSC Site (see Figure 2). On

February 23, 2006, TurnKey located and redeveloped MW-08A to determine the usability of the well for the RI. Based on the condition of the protective casing, access to the well, clarity and yield of development water, and well recovery rate, MW-08A was determined to be in satisfactory condition for use as a groundwater quality monitoring location in the RI.

3.4.2 Monitoring Well Installation Rationale

Following completion of soil/fill portion of the investigation, seven new piezometers and seven new monitoring wells were installed to better determine shallow groundwater flow direction and upgradient/downgradient groundwater quality on the Phase I Business Park Area. Figure 2 presents the groundwater monitoring points used during the RI, including: existing upgradient monitoring well MW-8A; newly installed temporary piezometers P-50S, P-51S, P-52S, P-54S, P-55S, P-56S, and P-57S; and newly installed monitoring wells MW-12A, MW-13A, MW-14A, MW-15A, MW-16A, MW-17A, and MW-18A.

3.4.3 Temporary Piezometer Installation Methodology

Temporary piezometers were installed in each of the seven test pits (see Figure 2) prior to backfilling activities. The following table identifies each piezometer and test pit location, where installed.

Test Pit ID	Temporary Piezometer ID
TP-1-1	P-50S
TP-1-12	P-51S
TP-7-6	P-52S
TP-7-5	P-53S (NOT INSTALLED)
TP-10-4	P-54S
TP-4-5	P-55S
TP-9-1	P-56S
TP-3-1	P-57S

As indicated above, piezometer P-53S was not installed as intended. This was due to insufficient shallow groundwater at the designated test pit location TP-7-5, as well as

surrounding test pit locations within that AOA (i.e., TP-7-2, TP-7-4, TP-7-7, and TP-7-8). In addition, the location of piezometer P-57S was changed in the field from test pit TP-3-2 to test pit TP-3-1 also due to the presence of insufficient shallow groundwater. With these exceptions, all temporary piezometers were installed in accordance with the RI Work Plan.

3.4.4 Monitoring Well Installation Methodology

In addition to existing upgradient monitoring well MW-8A, seven new monitoring wells, identified as MW-12A through MW-18A, were installed to further assess groundwater quality at the Site. The location of the new wells was based on field observations recorded during the soil/fill investigation, as well as the temporary piezometer groundwater elevation and flow direction evaluation. All monitoring wells were installed at the proposed locations without deviation, except well MW-18A. Upon discovery of a former gasoline underground storage tank (UST) immediately west of the former Fire Station (see Figure 2), monitoring well MW-18A was relocated closer to that area in order to better assess groundwater quality in the vicinity of the UST. The discovery of the UST is discussed further in Section 4.1 of this report.

3.4.5 Monitoring Well Development

Groundwater monitoring well development of the newly installed wells MW-12A, MW-13A, MW-14A, MW-15A, MW-16A, MW-17A, and MW-18A and existing monitoring well MW-8A was conducted using a dedicated disposable polyethylene bailer for surging and a peristaltic pump for purging in accordance with NYSDEC and TurnKey protocols, without deviation. Non-aqueous phase liquid (NAPL) was not identified in any on-site monitoring well during this investigation.

3.4.6 Groundwater Elevation Measurements

Groundwater elevations were measured in all existing and newly installed wells/piezometers on March 6, 2006 and June 1, 2006. Groundwater elevation data was used to prepare two isopotential maps presented as Figures 3 and 4. Groundwater elevations were measured using an electric water level meter to the nearest 0.01 feet in accordance with TurnKey's FOPs. Table 14 presents a summary of the groundwater elevations collected on those dates. Review of both isopotential maps indicates that groundwater from the southern

two thirds of the Site primarily flows west-southwest toward the Gateway Metroport Ship Canal, and groundwater from the northern third of the Site flows west-northwest toward the Outer Harbor and Union Ship Canal.

3.4.7 Monitoring Well Sampling

All groundwater monitoring wells were sampled using low flow sampling methodology per the RI Work Plan. Well sampling logs are presented in Appendix B.

3.4.8 Methods of Chemical Analysis

Groundwater samples were couriered under chain-of-custody command to STL for chemical analysis as identified in Tables 1, 2, and 3. STL employed analytical testing methods described in USEPA Test Methods for Evaluating Solid Wastes contained in SW-846, revised 1991.

3.5 Quality Assurance/Quality Control

Field investigation data were collected and processed using the procedures outlined in the RI Work Plan to ensure representative sample collection and to achieve the data quality objectives of the Remedial Investigation. The field activities were recorded in bound project field books supplemented with TurnKey field forms as necessary. Any deviation from the RI Work Plan procedures was recorded in the Variance Logs shown in Appendix C.

TurnKey collected blind duplicates and matrix spike/matrix spike duplicates (MS/MSD) at a frequency of one per 20 samples for each environmental media (i.e., soil/fill and groundwater). A trip blank, analyzed for the most comprehensive VOC list accompanied each cooler of aqueous media to be analyzed for VOCs. Table 15 summarizes the QA/QC sample locations.

3.6 Data Usability Summary

In accordance with the RI Work Plan, the laboratory analytical data from this investigation was independently assessed and, as required, submitted for independent review. Ms. Judy Harry of Data Validation Services located in North Creek, New York performed the data usability summary assessment for the soil/fill and groundwater samples, which

involved a review of the summary form information and sample raw data, and a limited review of associated QC raw data. Specifically, the following items were reviewed:

- Laboratory Narrative Discussion
- Custody Documentation
- Holding Times
- Surrogate and Internal Standard Recoveries
- Matrix Spike Recoveries/Duplicate Recoveries
- Field Duplicate Correlation
- Preparation/Calibration Blanks
- Control Spike/Laboratory Control Samples
- Instrumental IDLs
- Calibration/CRI/CRA Standards
- ICP Interference Check Standards
- ICP Serial Dilution Correlations
- Sample Results Verification

The Data Usability Summary Report (DUSR) was conducted using guidance from the USEPA Region 2 validation Standard Operating Procedures, the USEPA National Functional Guidelines for Data Review, as well as professional judgment. Appendix D includes the DUSR, which was prepared in accordance with Appendix 2B of NYSDEC's draft DER-10 guidance. Those items listed above that demonstrated deficiencies are discussed in detail in the DUSR. Analytical results that were edited or qualified per the DUSR are highlighted in red on Tables 4 through 13 and 16.

4.0 RI FINDINGS

This Section describes pertinent field observations and chemical analytical results in surface soil/fill, subsurface soil/fill, and groundwater.

4.1 Field Observations

The surface of the Phase I BPA was generally covered with vegetation ranging from scrub brush and grasses to medium sized trees (mostly poplars). Small areas lacking vegetation occurred where remnants of historical improvements (i.e., concrete or macadam pads) or sparse surface patches of slag, coal and coke fines existed at grade. Subsurface lithology generally consisted of a soil/fill unit comprised of non-cohesive coal and coke fines, slag, cinders, brick, concrete, metal, railroad ballast etc., which was ubiquitous at the site. The soil/fill unit thinned considerably toward the east where a reworked native sandy clay unit was observed immediately below the soil/fill unit. Groundwater was generally encountered within the soil/fill unit approximately 4.0 fbgs.

Previous site reconnaissance efforts undertaken by others identified surface staining at several locations within the Phase I BPA, all of which are shaded yellow on Figure 2. During this investigation, no surface staining or stressed vegetation was observed at those locations or any other location within the Phase I BPA. Field evidence of subsurface impacts, however, were identified at eleven test pit locations, nine of which were described as petroleum in nature with some staining and/or visible product while the remaining two were described as a former tar-bound macadam road or floor. One of the petroleum impacted test pits also contained an underground storage tank (UST). A description of these eleven test pit locations is presented below:

- Test pit TP-1-6: At approximately 2.0 5.0 fbgs, an oily tar-like material was encountered on the southeast wall of the test pit. Railroad ties were encountered in the upper 2 feet of soil/fill.
- Test Pit TP-1-13: Groundwater within this test pit, which was encountered at a depth of approximately 3.8 feet below grade, exhibited oily blebs and sheen.
- Test pits TP-5-3 and TP-5-7: At approximately 0.5 to 2.0 fbgs, a tar-bound macadam layer was encountered at each test pit. Based upon location of the test pit versus historical structure, the material at TP-5-3 may be a former road adjacent to a previous pitch tank, whereas the material at TP-5-7 appeared to be former building floor (i.e., within the Former Open Hearth No. 1 building). Both

areas appeared similar in composition (i.e., large gravel within a hardened tar matrix intermixed with fines). Historical drawings indicate tar-bound macadam was used ubiquitously at the site.

- <u>Test pit TP-</u>6-6: Groundwater within this test pit, which was encountered at a depth of approximately 5.5 feet below grade, exhibited oily blebs and sheen.
- TP-6-7: Oily product, which was encountered in the southeast corner of this test pit at a depth of 3.6 feet below grade, exhibited oily blebs and sheen.
- Test pit TP-7-2: Petroleum impacted soil/fill and visible product (i.e., thick oily/tar) were observed within concrete secondary containment around two historic above ground tar tanks at this location and determined to extend approximately 20-feet by 4-feet by 5.5-feet deep. A 6-inch steel discharge pipe was also observed emanating from the Former Power House No. 1 Building west of the test pit. This pipe will be investigated further during remedial activities at this location.
- <u>Test pit TP-7-4:</u> A small area of oily staining was noted on the bottom of this test pit at a depth of approximately 3.8 feet below grade.
- <u>Test pit TP-9-3:</u> Petroleum impacted soil/fill, visible sheening, and appurtenant piping was observed at this location and determined to extend approximately 55-feet by 60-feet by 10-feet deep. No USTs were observed during test pitting activities. This location historically contained above ground fuel oil tanks.
- <u>Test pit TP-10-1</u>: Petroleum impacted soil/fill and traces of visible product (i.e., thick oily/tar) were observed within a shallow bowl shaped area at this location and determined to extend approximately 16-feet by 5-feet by 4.5-feet deep. This location historically contained oil tanks.
- Test pit TP-10-6: One UST and suspected gasoline petroleum impacted soil/fill was identified along the west side of the Former Fire Station building (see Figure 2). Petroleum impacts encompass approximately a 30-foot by 40-foot by 10-foot deep area. Historical information indicated additional UST(s) may be located north of the building. Due to the unknown location of suspected underground utilities (i.e., high-pressure natural gas and sewer), further investigation along north side of the building was not performed. The north side of the building will be investigated further during planned UST and impacted soil/fill removal activities at this location.

4.2 Chemical Presence in Soil/Fill

Chemical data for soil/fill samples collected during the RI are discussed in the following sections and are summarized, by AOA, in Tables 4a through 13a and 4b through 13b.

For purpose of comparison, Tables 4a through 13a include "Unrestricted Use" Soil Cleanup Objectives (SCOs) as published in 6NYCRR Part 375-6 "Remedial Program Soil Cleanup Objectives." Unrestricted Use SCOs are deemed protective of human health and groundwater irrespective of end use of the property. Accordingly, the unrestricted use SCOs represent conservative soil/fill cleanup objectives that are often difficult to achieve on former industrial sites in urban areas. Tables 4b through 13b present the data relative to "Restricted Use" Soil Cleanup Objectives (SCOs) Specifically, Tables 4b through 13b compare the data to commercial use SCOs per 6NYCRR Part 375-6. These values are deemed protective of human health, in the absence of other controls, for sites where end use will be limited to commercial or more restrictive (e.g., industrial) uses.

RI Sample locations where reported concentrations exceed respective SCOs are shaded on the data summary tables.

The following sections discuss the analytical findings according to Area of Assessment As indicated on Tables 4a through 13a, several exceedances of the unrestricted use SCOs were noted, particularly for carcinogenic polyaromatic hydrocarbons (i.e., benzo(a)anthracene, benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(a)pyrene, chrysene, dibenzo(a,h)anthracene, and indeno(1,2,3-cd)pyrene), metal COPCs, and to a lesser extent PCBs. Based on the widespread nature of the unrestricted use SCO exceedances, the discussions below are limited to soil/fill quality as indicated by the commercial use SCOs. To the extent commercial use SCOs are exceeded, unrestricted use SCOs would be exceeded as well.

AOA 1 (see Table 4b): No exceedances of the commercial SCOs for VOCs or PCBs occurred at any of the sampled locations within AOA 1. With the exception of sample TP-1-(6,7,8,10), all locations exhibited exceedance of the commercial SCOs for one or more PAHs, although these were generally within an order of magnitude of the SCO. For

inorganics, arsenic exceeded the SCOs at five of the nine locations where samples were collected. Mercury and Cyanide exceeded the SCOs in TP-1-(1-5).

AOA 2 (see Table 5b): No samples were collected for VOC or PCB analysis within AOA 2. All of the samples within AOA 2 exhibited exceedance of one or more PAHs. None of the locations indicated exceedance of inorganic SCOs with the exception of mercury in TP-2 (1-3).

AOA 3 (see Table 6b): No samples were collected for VOC analysis within AOA 3. Samples for PCBs within AOA 3 were limited to one location, SS (19-21), which exhibited levels well below the SCOs. All three samples analyzed for SVOCs exceeded the commercial SCOs for PAHs. One sample, TP-3-(1-2), exceeded the SCO for arsenic. In addition, one sample from AOA 3 (MW-13A, 0.0-1.0) was analyzed for dioxins, herbicides and pesticides. Dioxins and herbicides were reported as non-detectable. One pesticide, 4,4'-DDT, was detected at a concentration well below the commercial SCO.

AOA 4 (see Table 7b): No samples were collected for VOC analysis within AOA 4. Samples for PCB analysis were collected from two locations (SS-04 and SS-05); the samples from SS-04 exceeded the commercial SCO for Aroclor 1248 and Aroclor 1254. Each of the three samples slightly exceeded the commercial SCO for one or more PAH compound. Mercury was detected above the commercial SCO in one sample (SS-26).

AOA 5 (see Table 8b): No exceedances of the commercial SCOs for VOCs or PCBs occurred at any of the sampled locations within AOA 5. With the exception of sample TP-5-11, all locations exhibited exceedance of the commercial SCOs for one or more PAHs. For inorganics, arsenic exceeded the SCOs at two of the nine locations where metals samples were collected, cadmium exceeded the commercial SCOs at four of the nine locations, lead exceeded the commercial SCO at two of the nine locations, and manganese exceeded the commercial SCOs at one location.

AOA 6 (see Table 9b): No samples were collected for VOC analysis within AOA 6. One sample (SS-07) slightly exceeded the commercial SCO for Aroclor 1260. All locations

exhibited exceedance of the commercial SCOs for one or more PAH compounds. For inorganics, arsenic exceeded the SCOs at five of the six locations where metals samples were collected, and lead and mercury exceeded the commercial SCOs at one location, each.

AOA 7 (see Table 10b): No exceedances of the commercial SCOs for VOCs or PCBs were recorded at any of the sampled locations within AOA 7. With the exception of sample TP-7 (1,3/8-4), all locations exhibited exceedance of the commercial SCOs for one or more PAH compounds. For inorganics, arsenic exceeded the SCOs at one of the five locations where metals samples were collected.

AOA 8 (see Table 11b): No samples were collected for VOC analysis within AOA 8. One sample (SS-18) exceeded the commercial SCO for Aroclor 1248. With the exception of sample TP-8 (1,3), all locations exhibited exceedance of the commercial SCOs for one or more PAH compounds, although these were within an order of magnitude of the SCO. For inorganics, arsenic, lead and mercury each exceeded the SCOs at two of the five locations where metals samples were collected.

AOA 9 (see Table 12b): No exceedances of the commercial SCOs for VOCs or PCBs were recorded at any of the sampled locations within AOA 9. Four of the six samples slightly exceeded commercial SCOs for one or more PAHs. For inorganics, arsenic exceeded the SCOs at three of the five locations where metals samples were collected.

AOA 10 (see Table 13b): No exceedances of the commercial SCOs for VOCs or PCBs were recorded at any of the sampled locations within AOA 10. Sample TP-10 (1-3) indicated exceedance of commercial SCOs for PAHs. With the exception of sample TP-10-1, which only slightly exceeded the SCO for benzo(a)pyrene, the remaining samples met SCOs or SVOCs. For inorganics, arsenic exceeded the SCOs at four of the six locations where metals samples were collected.

In addition to the above-described analyses, subsurface soil/fill samples TP-10-6 (0.0-1.0) and TP-10-6 (1.0-5.5), which are near the underground storage tank described in Section 4.1, were analyzed for TCLP VOCs, lead, flashpoint, corrosivity, reactivity, and leachable

pH. Analytical results are summarized below along with their respective hazardous waste characteristic limits per 40 CFR Part 261:

Concentration (ug/L)			
TP-10-6 (0.0-1.0)	TP-10-6 (1.0-5.5)	<u>Limit</u>	
16.7	65.3	5, 000	
>200 F	>200 F	>140 F	
ND	26	200,000	
ND	ND	ND	
ND	ND	ND	
8.39	9.04	2-12	
	TP-10-6 (0.0-1.0) 16.7 >200 F ND ND ND	TP-10-6 (0.0-1.0) TP-10-6 (1.0-5.5) 16.7 65.3 >200 F >200 F ND 26 ND ND ND ND ND	

As indicated, the soil/fill did not exhibit hazardous waste characteristics.

4.3 Groundwater

Groundwater quality data was collected during the RI from the shallow overburden or fill unit at the Site. Monitoring well and piezometer construction details are summarized in Table 14. Groundwater QA/QC samples collected during the RI are summarized in Table 15. The analytical data is summarized in Table 16 and the findings are discussed below. The groundwater quality data was used to compare groundwater chemistry between upgradient and downgradient groundwater, evaluate Site-derived chemical constituents in groundwater (if any), and include parameters that assist in evaluating the fate and transport of chemical constituents in groundwater (if present).

4.3.1 VOCs

In general, only acetone (MW-12A), 1,2,4-trichlorobenzene (MW-12A), and n-butylbenzene (MW-15A) were detected above method detection limits, however at concentrations well below the NYSDEC Class "GA" Groundwater Quality Standards/Guidance Values (per 6NYCRR Part 703) (GWQS/GVs). All other VOCs were reported as non-detect.

4.3.2 SVOCs

All SVOCs analyzed were reported as non-detect for all eight wells monitored.

4.3.3 Metals

Total metals were reported as non-detect or at concentrations well below GWQS/GVs for all but one of the analyzed locations. Specifically, monitoring well MW-12A contained barium (8.7 mg/L), iron (248 mg/L), magnesium (2260 mg/L), manganese (74.3 mg/L), and sodium (44000 mg/L) exceeding their respective GWQSs.

Due to field turbidity measurements greater than TurnKey's field threshold value of 50 nephelometric units (NTUs), a filtered metals sample was collected and analyzed from well MW-15A for site-specific metals arsenic, cadmium, chromium, lead, mercury, and cyanide. All dissolved metals concentrations were reported as non-detect.

4.3.4 PCBs

All PCBs analyzed were reported as non-detect for all eight wells monitored.

5.0 FATE AND TRANSPORT OF COPCS

Soil/fill sample results exceed SCOs for certain COPCs. Accordingly, the soil/fill data were incorporated with the physical characterization of the Site to evaluate the fate and transport of COPCs in Site media. The mechanisms by which the COPCs present above SCOs can migrate to other areas or media are briefly outlined below.

5.1 Airborne Pathways

Potential migration pathways involving airborne transport of soil/fill COPCs include erosion and transport of soil particles and sorbed chemical constituents in fugitive dust emissions, and volatilization from subsurface soil vapor.

5.1.1 Fugitive Dust

Non-volatile chemicals present in soil/fill can be released to ambient air as a result of fugitive dust generation. Since the Site is heavily vegetated with shrubs, grasses, and trees, and because most of the fill consists of large grained slag, suspension due to wind erosion or physical disturbance of surface soil/fill particles is unlikely. Under the planned future commercial/industrial land use, the majority of the Site would be covered by asphalt and structures with only small areas covered by grass and/or ornamental landscaping. Fugitive dust may be generated during excavation activities during or following redevelopment. Therefore, this migration pathway is potentially relevant under the reasonably anticipated future land use scenario.

5.1.2 Volatilization

Volatile chemicals present in soil/fill may be released to ambient air or future building indoor air through volatilization from or through the soil/fill pore space. Volatile chemicals typically have a low organic-carbon partition coefficient (Koc), low molecular weight, and a high Henry's Law constant. VOCs were not detected in Site soil/fill at concentrations above restricted commercialSCOs. However, elevated PID readings were recorded in certain areas exhibiting visible petroleum impact. Therefore, the soil-to-air pathway may be relevant to locations near former petroleum storage tanks and petroleum-impacted soil/fill.

5.2 Waterborne Pathways

5.2.1 Surface Water Runoff

Under the current use scenario, the potential for soil particle transport with surface water runoff is low, as the Site is mostly flat lying and contains a significant amount of vegetative growth. Uncontrolled off-site transport is further limited because the Site is outside the 500-year floodplain. Under the reasonably anticipated future use scenario, the Site will be covered by asphalt and buildings, mitigating transport of subsurface (i.e., covered) soil/fill via storm water runoff. Although stormwater runoff during excavation activities is possible during the future use scenario, erosion controls are typical construction practice and are required under NYSDEC storm water regulations for disturbances at sites greater than 1 acre in size.

5.2.2 Leaching

Due to the relatively insoluble nature of the majority of the COPCs and absence of downgradient overburden groundwater impacts, chemical migration via leaching to groundwater is not likely. Although MW-12A indicated the presence of barium above Class GA groundwater quality standards, nearby soils at TP-5 (1-5) contained barium at an estimated concentration of only 73 mg/kg. This is well below the soil cleanup objective presented in 6NYCRR Part 375-6 for protection of groundwater due to leaching (820 mg/kg). Therefore, waterborne transport via the leaching pathway is not considered significant on this site.

5.3 Exposure Pathways

6.0 BASED ON THE ANALYSIS OF CHEMICAL FATE AND TRANSPORT PROVIDED ABOVE, THE PATHWAYS THROUGH WHICH SITE COPCS COULD POTENTIALLY MIGRATE TO OTHER AREAS OR MEDIA ARE FUGITIVE DUST EMISSIONS VIA PHYSICAL DISTURBANCE OF SOIL PARTICLES AND, TO A LESSER EXTENT, SOIL VAPOR-TO-AIR VOLATILIZATION. HOWEVER, GIVEN THE DISTANCE BETWEEN THE SITE AND OCCUPIED STRUCTURES

AND NYSDEC/NYSDOH REQUIREMENTS FOR DUST CONTROLS DURING EXCAVATION AT REMEDIAL PROGRAM CONSTRUCTION SITES, IT IS UNLIKELY THAT SITE-RELATED COPCS WOULD REACH OFFSITE RECEPTORS AT SIGNIFICANT EXPOSURE POINT CONCENTRATIONS. QUALITATIVE HUMAN HEALTH EXPOSURE AND WILDLIFE IMPACT ASSESSMENT

6.1 Human Health Exposure Assessment

A qualitative exposure assessment consists of characterizing the exposure setting (including the physical environment and potentially exposed human populations), identifying exposure pathways, and evaluating contaminant fate and transport.

An exposure pathway describes the means by which an individual may be exposed to contaminants originating from a site. An exposure pathway has five elements:

- A receptor population.
- A contaminant source
- A contaminant release and transport mechanism
- A point of exposure
- A route of exposure

The receptor population is the people who are or may be exposed to contaminants at a point of exposure. The source of contamination is defined as either the source of contaminant release to the environment (such as a waste disposal area or point of discharge), or the impacted environmental medium (soil, air, biota, water) at the point of exposure. Contaminant release and transport mechanisms carry contaminants from the source to points where people may be exposed. The point of exposure is a location where actual or potential human contact with a contaminated medium may occur. The route of exposure is the manner in which a contaminant actually enters or contacts the body (i.e., ingestion, inhalation, dermal absorption).

An exposure pathway is complete when all five elements of an exposure pathway are documented; a potential exposure pathway exists when any one or more of the five elements comprising an exposure pathway is not documented but could reasonably occur. An exposure pathway may be eliminated from further evaluation when any one of the five

elements comprising an exposure pathway does not exist in the present, and will not exist in the future.

6.1.1 Potential Receptors

The identification of potential human receptors is based on the characteristics of the Site, the surrounding land uses, and the probable future land uses. The Phase I Business Park Site is presently unoccupied, with the exception of active rail lines. Under current Site use conditions, human contact with Site soil/fill can be expected to occur primarily by two types of receptors: trespassers who may traverse the site (although presently mitigated by fencing and security gates); and construction workers that may access the Site to service utilities or perform rail maintenance. Trespassers may be comprised of adolescents, and adults, whereas construction workers would be limited to adults.

In terms of future use, the current Site owner (Tecumseh Redevelopment) has developed a Master Plan for commercial/industrial redevelopment of the Site consistent with surrounding property use and site zoning. Accordingly, the reasonably anticipated future use of the Site is for commercial/industrial purposes, with exposed receptors comprised of indoor workers, outdoor workers (e.g., groundskeepers or maintenance staff) and construction workers who may be employed at or perform work on the property. Site visitors/customers may also be considered receptors; however, their exposure would be similar to that of the indoor worker but at a lesser frequency and duration. Therefore consideration of the indoor worker is conservatively protective of the site visitor.

6.1.2 Contaminant Sources

The COPCs present in unremediated site media at elevated concentrations are discussed in Section 4.0. In general, these are limited to non-volatile COPCs in surface soil/fill and volatile and non-volatile COPCs in subsurface soil/fill. Groundwater contained elevated concentrations of a limited number of metals at only one location.

6.1.3 Contaminant Release and Transport Mechanisms

Contaminant release and transport mechanisms are specific to the type of receptor. For the current use scenario, these include direct contact with surface soil/fill by trespassers

and construction workers, and contact with fugitive dusts, vapors and subsurface soil/fill by construction workers. Contact with soil vapors migrating to outdoor air also poses a potential, albeit less likely, mechanism for trespassers and construction workers.

For the future (unremediated) use scenario, contaminant release and transport mechanisms are listed below by receptor:

- Future indoor worker: indoor air VOCs
- Future outdoor worker: fugitive dusts, outdoor air VOCs, direct contact with soil/fill
- Future construction worker: fugitive dusts, outdoor air VOCs, direct contact with soil/fill

For both the current and future use scenarios, groundwater is not considered to pose a relevant mechanism due to the absence of significant groundwater impacts, the availability of a local municipal potable water source, the depth to groundwater (greater than 4.5 feet; the standard depth of utilities and foundation footers), and the existence of a deed restriction that does not allow the use of Site groundwater.

6.1.4 Point of Exposure

Excluding specific areas of observed impact described in Section 4.0, no discernible operable units, areas of disposal or source areas were identified on the property. The point of exposure is therefore defined as the overall BCP Site.

6.1.5 Route of Exposure

Based on the types of receptors and points of exposure identified above, potential routes of exposure are listed below:

Current Use Scenario

- Trespasser skin contact, incidental ingestion, inhalation
- Construction Worker skin contact, incidental ingestion and inhalation

Future Use Scenario

- Indoor Worker inhalation
- Construction and Outdoor Worker skin contact, inhalation and incidental ingestion

6.1.6 Exposure Assessment Summary

Based on the above assessment, Table 17 summarizes the potential exposure receptors, sources, transport mechanisms, exposure points and routes of exposure. In most instances, these exposures can be readily mitigated during and following redevelopment through proper soil/fill management and placement of asphalt, building and landscape cover.

6.2 Fish and Wildlife Impact Assessment (FWIA)

The Site has been vacant since the former BSC steel plant ceased production in 1983. Emergent vegetative cover has re-colonized the vacant industrial site with scrub-like brush and trees. A mixture of cover types exists on the Site, ranging from asphalt roadways, rail and concrete foundation, to spots of dense scrub-brush vegetation with numerous cottonwood and poplar trees.

The historical use of the Site has eliminated the majority of native species. The Site is mainly populated by low-lying vegetation and small stature early successional trees (e.g., eastern cottonwood and poplar). The majority of fauna found on the Site are avian and small mammal species with the exception of the white-tailed deer. No federally listed or proposed threatened or endangered species are known to exist in the project area (USFWS 1999).

The Phase I Business Park Area is slated for redevelopment as a commercial/industrial area, consistent with surrounding property. Roadways, buildings, parking facilities and maintained ornamental landscaping will substantially limit availability of suitable cover type for reestablishment of biota. As such, based on the Fish and Wildlife Resource Impact Analysis Decision Key included as Appendix E (NYSDEC DER-10 guidelines, Appendix 3C), no fish and wildlife resources impact analysis is warranted.

7.0 SUMMARY AND CONCLUSIONS

The RI findings indicate conditions consistent with the historic use of the Site for steel-making and finishing operations. Soil/fill concentrations, where identified above commercial SCOs, varied according to the type and nature of the constituents. Specifically, elevated concentrations of petroleum VOCs were limited to discrete locations of the Site where visual or olfactory evidence of impact was observed (e.g., underground storage tank and oil-stained areas), or where past operational practices indicate an increased potential for releases of these substances (former transformer areas). Certain COPCs metals and baseneutral semi-volatiles (i.e., PAHs) were detected at several locations above SCOs, including composite sample locations. The detection of these substances in widespread areas is consistent with the observed presence of coal/coke fines and slag within the soil/fill matrix, and macadam cover.

The investigation findings indicate that, as would be expected based on the relatively low solubility of the soil/fill constituents prevalent in the soil/fill matrix, groundwater is not impacted by COPCs. Although MW-12A indicated somewhat elevated concentrations of barium, MW-12A is located near the upgradient side of the site, in an area where soils exhibited barium concentrations much less than the corresponding soil cleanup objective presented in 6NYCRR Part 375-6 for protection of groundwater due to leaching. In addition, barium was not detected above Class GA Groundwater Quality Standards at downgradient well locations. As such, the presence of barium in MW-12A is not indicative of an onsite source of contamination.

Based on the RI Findings, remediation of soil/fill is warranted. An Alternatives Analysis Report (AAR) will be prepared to identify and evaluate candidate remedial alternatives in accordance with 6NYCRR Part 375. Additional pre-design investigation may be necessary to quantify the volume and extent of soil/fill requiring cleanup.

8.0 REFERENCES

- 1. Correspondence from Dale J. Carpenter, USEPA Region 2, to Leo Carcher, Bethlehem Steel Corp. (January 23, 2001).
- 2. Phase I Environmental Site Assessment for Parcel B, prepared for Bethlehem Steel Corporation by URS Consultants, Inc., March 2001.
- 3. Remedial Investigation Work Plan for Phase I Business Park Area, prepared for Tecumseh Redevelopment, Inc. by TurnKey Environmental Restoration, LLC, May 2005 (revised August 2005).
- 4. RCRA Facility Investigation (RFI) Report for the Former Bethlehem Steel Corporation Facility, Lackawanna, New York, Parts I through VII, prepared for Bethlehem Steel Corporation by URS Consultants, Inc., October 2004.
- 5. RCRA Facility Assessment (RFA) Report for the Bethlehem Steel Corporation Facility, Lackawanna, New York. EPA-330/2-88-054. NEIC, Denver, CO. 1988.

CONSTITUENTS OF POTENTIAL CONCERN (COPCs)

OMPOUND	CAS#	COMPOUND	CAS#
olatile Organic Compounds		TCL Semi-Volatile Organic Compound	ds (cont'd)
STARS Method 8021B)		(Method 8270C - base/neutrals only)	,
Benzene	71-43-2	N-Nitroso-Di-n-propylamine	621-64-7
n-Butylbenzene	104-51-8	Phenanthrene	85-01-8
sec-Butylbenzene	135-98-8	Pyrene	129-00-0
,		•	
tert-Butylbenzene	98-06-6	1,2,4-Trichlorobenzene	120-82-1
p-Cymene	99-87-6		
Ethylbenzene	100-41-4	Total Metals (Site-Specific)	
Isopropylbenzene	98-82-8	(Method6010B)	
Methyl tert butyl ether	1634-04-4	Arsenic	7440-38-2
n-Propylbenzene	103-65-1	Cadmium	7440-43-9
Toluene	108-88-3	Chromium	7440-47-3
1,2,4-Trimethylbenzene	95-63-6	Lead	7439-92-1
1,3,5-Trimethylbenzene	108-67-8	Mercury (Method 7470A(water) and	
	95-47-6	Mercury (Method 1410A(Water) and	14117(31400010
m-Xylene		Wat Chamiatus	
o-Xylene	106-42-3	Wet Chemistry	F7 40 F
p-Xylene	108-38-3	Cyanide (Method 9010B)	57-12-5
CL Semi-Volatile Organic Compounds		PCBs	
Method 8270C - base/neutrals only)		Method 8082	
Acenaphthene	83-32-9	Aroclor 1016	12674-11-2
Acenaphthylene	208-96-8	Aroclor 1221	11104-28-2
Anthracene	120-12-7	Aroclor 1232	11141-16-5
Benzo(a)anthracene	56-55-3	Aroclor 1242	53469-21-9
Benzo(b)fluoranthene	205-99-2	Aroclor 1248	12672-29-6
Benzo(k)fluoranthene	207-08-9	Aroclor 1254	11097-69-1
Benzo(g,h,i)perylene	191-24-2	Aroclor 1260	11096-82-5
Benzo(a)pyrene	50-32-8		
Benzyl alcohol	100-51-6	Herbicides (2 Locations)	
Bis(2-chloroethoxy) methane	111-91-1	Method 8151A	04757
Bis(2-chloroethyl) ether	111-44-4	2,4-D	94-75-7
2,2'-Oxybis (1-Chloropropane)	108-60-1	Dalapon	75-99-0
Bis(2-ethylhexyl) phthalate	117-81-7	Dichloroprop	120-36-5
4-Bromophenyl phenyl ether	101-55-3	Dinoseb	88-85-7
Butyl benzyl phthalate	85-68-7	Pentachlorophenol	87-86-5
4-Chloroaniline	106-47-8	Picloram	1918-02-1
2-Chloronaphthalene	91-58-7	2,4,5-T	93-76-5
4-Chlorophenyl phenyl ether	7005-72-3	2,4,5-TP	93-72-1
		2,4,5-17	93-12-1
Chrysene	218-01-9	P. 1 (2)	
Dibenzo(a,h)anthracene	53-70-3	Dioxin (2 locations)	
Dibenzofuran	132-64-9	Method 8280	
Di-n-butyl phthalate	84-74-2	2,3,7,8-TCDD	1746-01-6
1,2-Dichlorobenzene	95-50-1		
1,3-Dichlrobenzene	541-73-1	Pesticides (2 locations)	
1,4-Dichlrobenzene	106-46-7	Method 8081	
3,3'-Dichlorobenzidine	91-94-1	Aldrin	309-00-2
Diethyl phthalate	84-66-2	alpha-BHC	319-84-6
Dimethyl phthalate	131-11-3	beta-BHC	319-85-7
2,4-Dinitrotoluene	121-14-2	gamma-BHC (Lindane)	58-89-9
2,6-Dinitrotoluene	606-20-2	delta-BHC	319-86-9
Di-n-octyl phthalate	117-84-0	Chlordane	<i>57-74-9</i>
Fluoranthene	206-44-0	4,4'-DDD	72-54-8
Fluorene	86-73-7	4,4'-DDE	72-55-9
Hexachlorobenzene	118-74-1	4,4'-DDT	50-29-3
		,	
Hexachlorobutadiene	87-68-3	Dieldrin	60-57-1
Hexachlorocyclopentadiene	77-47-4	Endosulfan I	959-98-8
Hexachloroethane	67-72-1	Endosulfan II	33213-65-9
Indeno(1,2,3-cd)pyrene	193-39-5	Endosulfan Sulfate	1031-07-8
Isophorone	78-59-1	Endrin	72-20-8
2-Methylnaphthalene	91-57-6	Endrin ketone	7421-93-4
Naphthalene	91-20-3		53494-70-5
		Endrin aldehyde	
2-Nitroaniline	88-74-4	Heptachlor	76-44-8
3-Nitroaniline	99-09-2	Heptachlor epoxide	<i>1024-57-</i> 3
4-Nitroaniline	100-01-6	Methoxychlor	72-43-5
Nitrobenzene	95-95-3	Toxaphene	8001-35-2
· - = =::==::=	86-30-6		

EXPANDED PARAMETER LIST

Remedial Investigation Report Phase I Business Park Area - Brownfield Cleanup Program Lackawanna New York

Lackawanna, New York Collected 1 per 20 samples per matrix COMPOUND CAS# COMPOUND CAS# COMPOUND CAS# **TCL Volatile Organic Compounds TCL Semi-Volatile Organic Compounds TAL Metals** (Method 8270C - base-neutrals and acid extractables) (Method 8260B - full list) (Site-Specific Metals) (plus STARS Method 8021 parameters) Acenaphthene 83-32-9 (Method 6010B) Acetone 67-64-1 Acenaphthylene 208-96-8 Antimony 7440-38-2 Benzene 71-43-2 Anthracene 120-12-7 Arsenic 7440-38-2 75-25-2 Benzo(a)anthracene 56-55-3 7440-39-3 **Bromoform** Barium Cadmium 7440-43-9 Bromodichloromethane 75-27-4 Benzo(a)pyrene 50-32-8 Bromomethane (Methyl bromide) 74-83-9 Benzo(b)fluoranthene 205-99-2 Chromium 7440-47-3 2-Butanone (MEK) 78-93-3 Benzo(q,h,i)perylene 191-24-2 7439-92-1 Lead 104-51-8 207-08-9 n-Butvlbenzene Mercury (Method 7470A(water) and 7439-97-6 Benzo(k)fluoranthene 100-51-6 sec-Butylbenzene 135-98-8 Benzyl alcohol 7471A(solid)) tert-Butylbenzene 98-06-6 bis(2-Chloroethoxy)methane 111-91-1 Nickel 7440-02-0 Carbon disulfide 75-15-0 bis(2-Chloroethyl)ether 111-44-4 Potassium 7440-09-7 Carbon tetrachloride 56-23-5 2,2'-oxybis(1-chloropropane); bis(2-108-60-1 Selenium 7782-49-2 Chlorobenzene 108-90-7 chloroisopropyl)ether Silver 7440-22-4 bis(2-Ethylhexyl)phthalate 117-81-7 7440-28-0 75-00-3 Thallium Chloroethane 67-66-3 85-68-7 Chloroform Butvl benzvl phthalate 101-55-3 Chloromethane (Methyl chloride) 74-87-3 4-Bromophenyl phenyl ether Wet Chemistry Cyanide (Method 9010B) Cyclohexane 110-82-7 4-Chloroaniline 106-47-8 57-12-5 p-Cymene (p-isopropyltoluene) 99-87-6 4-Chloro-3-methylphenol 59-50-7 96-12-8 2-Chloronaphthalene 91-58-7 **PCBs** 1,2-Dibromo-3-chloropropane (Method 8082) 1,2-Dibromoethane (EDB) 106-93-4 2-Chloropheno 95-57-8 Dibromochloromethane 124-48-1 4-Chlorophenyl-phenylether 7005-72-3 Aroclor 1016 12674-11-2 75-71-8 218-01-9 Aroclor 1221 11104-28-2 Dichlorodifluoromethane (Freon-12) Chrysene 53-70-3 1,2-Dichlorobenzene 95-50-1 Dibenzo(a,h)anthracene Aroclor 1232 11141-16-5 541-73-1 132-64-9 53469-21-9 1,3-Dichlorobenzene Dibenzofuran Aroclor 1242 1,4-Dichlorobenzene 106-46-7 3,3'-Dichlorobenzidine 91-94-1 Aroclor 1248 12672-29-6 2,4-Dichlorophenol 1,1-Dichloroethane 75-34-3 120-83-2 Aroclor 1254 11097-69-1 107-06-2 1,2-Dichloroethane (EDC) 1,2-Dichlorobenzene 95-50-1 Aroclor 1260 11096-82-5 1,1-Dichloroethylene (1,1-DCE) 75-35-4 1,3-Dichlorobenzene 541-73-1 156-60-5 106-46-7 trans-1,2-Dichloroethylene 1,4-Dichlorobenzene Diethyl phthalate cis-1,2-Dichloroethylene 156-59-2 84-66-2 cis-1,3-Dichloropropene 10061-01-5 2,4-Dimethylphenol 105-67-9 trans-1,3-Dichloropropene 10061-02-6 Dimethyl phthalate 131-11-3 1.2-Dichloropropane 78-87-5 Di-n-butvl phthalate 84-74-2 100-41-4 117-84-0 Ethylbenzene Di-n-octyl phthalate 2-Hexanone 591-78-6 4,6-Dinitro-2-methylphenol 534-52-1 Isopropylbenzene (Cumene) 98-82-8 2.4-Dinitrophenol 51-28-5 79-20-9 2.4-Dinitrotoluene 121-14-2 Methyl acetate 75-09-2 Methylene chloride 2 6-Dinitrotoluene 606-20-2 Methylcyclohexane 108-87-2 Fluoranthene 206-44-0 4-methyl-2-pentanone (MIBK) 108-10-1 Fluorene 86-73-7 Methyl tert butyl ether (MTBE) 1634-04-4 Hexachlorobenzene 118-74-1 103-65-1 n-Propylbenzene Hexachlorobutadiene 87-68-3 Styrene 100-42-5 Hexachlorocyclopentadiene 77-47-4 1.1.1.2-Tetrachloroethane 630-20-6 67-72-1 Hexachloroethane 127-18-4 Tetrachloroethylene (PCE) Indeno(1.2.3-cd)pyrene 193-39-5 Toluene 108-88-3 Isophorone 78-59-1 1,2,4-Trichlorobenzene 120-82-1 2-Methylnaphthalene 91-57-6 1,1,1-Trichloroethane 71-55-6 95-48-7 2-Methylphenol (o-Cresol) 1,1,2-Trichloroethane 79-00-5 4-Methylphenol (p-Cresol) 106-44-5 Trichloroethylene (TCE) 79-01-6 Naphthalene 91-20-3 Trichlorofluoromethane (Freon-11) 88-74-4 75-69-4 2-Nitroaniline 1,1,2-Trichloro-1,2,2-trifluoroethane (Freon-113) 76-13-1 3-Nitroaniline 99-09-2 1,2,4-Trimethylbenzene 95-63-6 4-Nitroaniline 100-01-6 1,3,5-Trimethylbenzene 108-67-8 Nitrobenzene 98-95-3 Vinyl chloride 75-01-4 2-Nitrophenol 88-75-5 95-47-6 100-02-7 m-Xylene 4-Nitrophenol o-Xylenes 106-42-3 N-Nitrosodiphenylamine 86-30-6 108-38-3 621-64-7 p-Xylene N-Nitroso-di-n-propylamine 87-86-5 Pentachlorophenol TCL Semi-Volatile Organic Compounds 85-01-8 Phenanthrene (Method 8270C - base-neutrals and acid extractables) Phenol 108-95-2 83-32-9 Pyrene 129-00-0 Acenaphthene 208-96-8 1,2,4-Trichlorobenzene 120-82-1 Acenaphthylene Anthracene 120-12-7 2,4,5-Trichlorophenol 95-95-4 Benzo(a)anthracene 56-55-3 2,4,6-Trichlorophenol 88-06-2

50-32-8

Benzo(a)pyrene

ANALYTICAL PROGRAM SUMMARY

Area of Assessment	Subarea of Assessment	Investigation Sample I.D. (test pits) (depth, fbgs)	Sample Horizon	Number of Samples	Sample Type	Matrix	TCL +STARS VOCs ¹	STARS VOCs ²	TCL SVOCs ³ (BNAs)	SVOCs (BN only)4	TAL Metals + CN ⁵	SS Metals + CN ⁶	Herbicides	Pesticides	2,3,7,8-TCDD	Hd	TCL PCBs7	TCLP VOCs, TCLP Lead, I/C/R	Investigation Locations	Investigation Method	Rationale		
AREAS	OF ASSE	SSMENT 1, 4, 5, 8	6																				
		TP-1-(1-5) (0.0-2.0)	SS	1	С	soil/fill				1		1							TP-1-1 TP-1-2 TP-1-3	test pit	Areas of observed surface staining		
		TP-1-(1-5) (2.0-5.0)	SUB	1	С	SOII/IIII				1		1							TP-1-4 TP-1-5	test pit	Aleas of observed surface standing		
		TP-1-(6-10) (0.0-2.0)	SS	1	С					1		1							TP-1-6 TP-1-7 TP-1-8		- Fmr. area of observed surface staining in former 32" Rail Finishing Dept Area of observed surface staining, former 32" Rail Finishing Department - Area of observed surface staining, former 21" Finishing Mill		
	B	TP-1-(67810) (2.0-5.0)	SUB	1	С	soil/fill				1		1							TP-1-9 TP-1-10	test pit	Former area of oil storage in former 21" Finishing Mill Former area of oil storage in former 21" Finishing Mill		
		TP-1-9 (1.0-4.8)	SUB	1	G			1		1		1							TP-1-9		Former area of oil storage in former 21" Finishing Mill		
	© -	TP-1-(11-12) (0.0-2.0)	SS	1	С	soil/fill				1		1							TP-1-11	test pit	- Area of surface staining west of 32" Rail Mill		
1	5	TP-1-(11-12) (2.0-4.5)	SUB	1	С	301//111				1		1							TP-1-12	tost pit	- Former area of surface staining west of 32" Rail Mill		
U		TP-1-(13-17) (0.0-2.0)	SS	1	С	soil/fill				1		1							TP-1-13 TP-1-14 TP-1-15	test pit	- Area of observed surface staining, former 21" Rail Mill - Area of former oil tunnel and oil rooms in former 30" Roughing Mill - Area of oil rooms in former 30" Roughing Mill		
		TP-1-(13-17) (2.0-5.0)	SUB	1	С	SOII/IIII				1		1							TP-1-16 TP-1-17	test pit	Area of oil rooms in former 32" Rail Mill Former 32" Rail Mill		
		TP-1-18 (2.0-5.0)	SUB	1	G	soil/fill				1									TP-1-18	test pit	SWMU P-46 sump		
	-	TP-1-19 (2.0-7.0)	SUB	1	G	soil/fill				1									TP-1-19	test pit	Observed pit location		
		TP-1-20 (x.x-x.x)	SUB	0							no sa	a m p l e	colle	ected	~			1	TP-1-20	test pit	SWMU P-52/P-53 Settling Tanks		
	_	TP-1-21 (x.x-x.x)	SUB	0						•	- no sa	a m p l e	colle	ected	~				TP-1-21	test pit	SWMU P-47		
		TP-1-22 (2.0-6.5)	SUB	1	G	soil/fill	1		1										TP-1-22	test pit	Sump in northwest corner of AOA 1		
		SS-06	SS	1	G	soil/fill											1		SS-06	surface soil	face soil Former transformer area, 21" Finishing Mill		
		SS-22	SS	1	G	soil/fill											1		SS-22	surface soil	Area between oil storage and crop pit		

ANALYTICAL PROGRAM SUMMARY

Area of Assessment	Subarea of Assessment	Investigation Sample I.D. (test pits) (depth, fbgs)	Sample Horizon	Number of Samples	Sample Type	Matrix	TCL +STARS	STARS VOCs 2	TCL SVOCs ³ (BNAs)	SVOCs (BN only)4	TAL Metals + CN ⁵	SS Metals + CN ⁶	Herbicides	Pesticides	2,3,7,8-TCDD	Hd	TCL PCBs7	TCLP VOCs, TCLP Lead, I/C/R	Investigation Locations	Investigation Method	Rationale
AREAS	OF ASSES	SSMENT 1, 4, 5, 8	& 6 (cont	inued)																	
	_	TP-4-(1-5) (0.0-1.0)	SS	1	С	- soil/fill				1		1							TP-4-1 TP-4-2 TP-4-3 TP-4-4	test pit	- Former Billet Prep No. 2 - Former 2,000 gallon quench oil tank - Former quench oil tanks area, Billet Prep No. 2 - Former "pickling tanks" area, former Billet Prep No. 1
_		TP-4-(1-5) (1.0-3.0)	SUB	1	С					1		1							TP-4-5		- Former oil storage area, Billet Prep No. 1
4	_	SS-04	SS	1	G	soil/fill											1		SS-04	surface soil	Former area of transformers, Billet Prep No. 2
		SS-05	SS	1	G	soil/fill											1		SS-05	surface soil	Former area of transformers, Billet Prep No. 2
		SS-25	SS	1	G	soil/fill				1		1							SS-25	surface soil	Lab and office area
		SS-26	SS	1	G	soil/fill						1				1			SS-26	surface soil	Adjacent to former acid tanks
		TP-5-(1-5) (0.0-1.0)	SS	1	С					1	1								TP-5-1		- Former area of 2,500 gallon diesel tank
		TP-5-(1245) (1.0-4.5)	SUB	1	С	soil/fill				1		1							TP-5-2 TP-5-3 TP-5-4	test pit	- Former area of oil house - Former area of pitch tank - Area of surface staining, former Welfare Building
		TP-5-3 (1.0-4.5)	SUB	1	G			1		1		1							TP-5-5		- Former area of 2,500 gallon fuel oil tank
		TP-5-(6-10) (0.0-1.0)	SS	1	С	- soil/fill				1		1							TP-5-6 TP-5-7 TP-5-8	test pit	- Former area of Open Hearth No. 1 near oil house - Former area of Open Hearth No. 1 (north end) - Former Oil House area near former Gas Producers and Galleries
		TP-5-(6-10) (1.0-4.0)	SUB	1	С	00.17.111				1		1							TP-5-9 TP-5-10		- Former Gas Producers and Galleries - Former Stripper Building
5		TP-5-11 (0.0-1.0)	SS	1	G	soil/fill				1		1							TP-5-11	test pit	Former "Tar Spraying" area of Covered Mould Yard
		TP-5-11 (1.0-4.0)	SUB	1	G	0011/1111				1		1								1001 p.1	, a sp.a, mg and a solution made tall
		TP-5-12 (1.0-3.5)	SUB	1	G	soil/fill						1							TP-5-12	test pit	Gas Producers and Galleries Bldg. And out-building
		SS-(1-2)	SS	1	С	soil/fill				1		1							SS-01 SS-02	surface soil	- Former area of railroad tracks - Former area of railroad tracks
		SS-03	SS	1	G	soil/fill											1		SS-03	surface soil	Former area of Substation No. 1
		SS-27	SS	1	G	soil/fill				1									SS-27	surface soil	Area between oil house and storage

ANALYTICAL PROGRAM SUMMARY

Area of Assessment	Subarea of Assessment	Investigation Sample I.D. (test pits) (depth, fbgs)	Sample Horizon	Number of Samples	Sample Type	Matrix	TCL +STARS VOCs ¹	STARS VOCs 2	TCL SVOCs ³ (BNAs)	SVOCs (BN only) ⁴	TAL Metals + CN ⁵	SS Metals + CN ⁶	Herbicides	Pesticides	2,3,7,8-TCDD	Hd	TCL PCBs7	TCLP VOCs, TCLP Lead, I/C/R	Investigation Locations	Investigation Method	Rationale
AREAS	OF ASSE	SSMENT 1, 4, 5, 8	& 6 (cont	inued)																	
		TP-6-(1-5) (0.0-2.0) TP-6-(1-5) (2.0-6.0)	SS SUB	1	С	soil/fill				1		1							TP-6-1 TP-6-2 TP-6-3 TP-6-4 TP-6-5	test pit	- Former area of oil cellar, 40" Blooming Mill - Former area of 44" Blooming Mill Pits - Former 36" Roughing Mill and 44" Mill Pit Furnace area - Former sump location east of former 40" Mill Pit Furnace - Area of surface staining near former 36" Roughing Mill
	-	TP-6-6 (2.0-6.0)	SUB	1	G	soil/fill				1		1							TP-6-6	test pit	SWMU P-43 and nearby pit
		TP-6-7 (2.0-4.0)	SUB	1	G	soil/fill						1							TP-6-7	test pit	40" Blooming Mill Gas Mixer area (big one)
		TP-6-8 (x.x - x.x)	SUB	0	G	soil/fill					~ no sa	ample	colle	ected	~				TP-6-8	test pit	SWMUs P-44 and P-49
6		TP-6-9 (x.x - x.x)	SUB	0	G	soil/fill			1	,	~ no sa	ample	colle	ected	~	ı		Ī	TP-6-9	test pit	SWMU P-45
		TP-6-10 (2.0-6.0)	SUB	1	G	soil/fill											1		TP-6-10	test pit	36" Roughing Mill observed pit location
		SS-07	SS	1	G	soil/fill											1		SS-07	surface soil	Former area of substations
		SS-08	SS	1	G	soil/fill											1		SS-08	surface soil	Former area of three transformers
		SS-28	SS	1	G	soil/fill											1		SS-28	surface soil	40" Blooming Mill three transformer area
		SS-29	SS	1	G	soil/fill				1		1							SS-29	surface soil	SWMU P-50 area
		SS-30	SS	1	G	soil/fill						1							SS-30	surface soil	40" Mill Pit furnace gas mixer area (small one)
AREAS	OF ASSE	SSMENT 2 & 3			T		•	Ţ						T	T	T	T	,			
		TP-2-(1-3) (0.0-2.0)	SS	1	С	soil/fill				1		1							TP-2-1 TP-2-2	test pit	- Former area of two 12,000 gallon fuel oil tanks - Former oil pump house and pit in Mill No. 15
9		TP-2-(1-3) (2.0-5.5)	SUB	1	С	30.I/1III				1		1							TP-2-3	toot pit	- Former truck lube area of former Chipper Building
2		SS-23	SS	1	G	soil/fill				1		1							SS-23	surface soil	Outside in between tool repair sheds
		SS-24	SS	1	G	soil/fill				1									SS-24	surface soil	Outside motor storage

ANALYTICAL PROGRAM SUMMARY

Area of Assessment	Subarea of Assessment	Investigation Sample I.D. (test pits) (depth, fbgs)	Sample Horizon	Number of Samples	Sample Type	Matrix	TCL +STARS VOCs ¹	STARS VOCs 2	TCL SVOCs ³ (BNAs)	SVOCs (BN only)4	TAL Metals + CN ⁵	SS Metals + CN ⁶	Herbicides	Pesticides	2,3,7,8-TCDD	Hd	TCL PCBs7	TCLP VOCs, TCLP Lead, I/C/R	Investigation Locations	Investigation Method	Rationale	
AREAS	OF ASSE	SSMENT 2 & 3 (cd	ontinued	()																		
		TP-3-(1-2) (0.0-1.0)	SS	1	С	soil/fill				1		1							TP-3-1	test pit	- Former area of 2,500 gallon diesel oil tank	
3		TP-3-(1-2) (1.0-3.0)	SUB	1	С	00.171.11				1	1								TP-3-2		- Former area of 15,000 gallon pitch tank	
		SS-(19-21)	SS	1	С	soil/fill				1		1					1		SS-19 SS-20 SS-21	surface soil	- Former area of railroad tracks - Former area of railroad tracks - Former area of railroad tracks	
		MW-13A (0.0-1.0)	SS	1	G	soil/fill							1	1	1				MW-13A	surface soil	Open area	
AREAS	OF ASSE	SSMENT 7 & 8																				
		TP-7-(1-3)/8-4 (0.0-2.0)	SS	1	С					1		1							TD 7.4			
7 & 8		TP-7-(1,3)/8-4 (2.0-5.5)	SUB	1	С	soil/fill				1		1							TP-7-1 TP-7-2 TP-7-3 TP-8-4	test pit	 Former area of pitch tank Fmr. area of two 5,000 gallon tar tanks and two 25,000 gallon fuel oil tanks Former area of 2,500 gallon fuel oil tank Former area of 400 gallon fuel oil tank 	
		TP-7-2 (2.0-5.0)	SUB	1	G			1		1		1										
		TP-7-(4-7) (0.0-1.0)	SS	1	С	soil/fill				1		1							TP-7-4 TP-7-5	test pit	- Former area of Foundry - Former area of Open Hearth No. 2	
	را	TP-7-(4-7) (2.0-7.0)	SUB	1	С					1		1							TP-7-6 TP-7-7	,	- Former area of Stripper Building - Former Open Hearth (Hot Mixers)	
		TP-7-8 (x.x - x.x)	SUB	0	G	soil/fill			ı	~	nosa	a m p l e	colle	cted	~	I			TP-7-8	test pit	Foundary Building observed shallow sump area	
7	_	SS-15	SS	1	G	soil/fill											1		SS-15	surface soil	Former area of transformer, Foundry	
		SS-16	SS	1	G	soil/fill											1		SS-16	surface soil	Former area of transformer, Foundry	
	_	SS-17	SS	1	G	soil/fill											1		SS-17	surface soil	Former area of transformer, Foundry	
		SS-31	SS	1	G	soil/fill				1									SS-31	surface soil	Tool Room/Oil House building	

ANALYTICAL PROGRAM SUMMARY

Area of Assessment	Subarea of Assessment	Investigation Sample I.D. (test pits) (depth, fbgs)	Sample Horizon	Number of Samples	Sample Type	Matrix	TCL +STARS VOCs ¹	STARS VOCs 2	TCL SVOCs ³ (BNAs)	SVOCs (BN only)4	TAL Metals + CN ⁵	SS Metals + CN ⁶	Herbicides	Pesticides	2,3,7,8-TCDD	рН	TCL PCBs7	TCLP VOCs, TCLP Lead, I/C/R	Investigation Locations	Investigation Method	Rationale
	B	TP-8-(1-3) (0.0-1.0) TP-8-(1-3) (1.0-7.0)	SS SUB	1	С	soil/fill				1		1							TP-8-1 TP-8-2 TP-8-3	test pit	- Former downgradient area of Machine Shop - Former downgradient area of Forge Shop - Former area of oil house in Billet Prep No. 2
		TP-8-5 (x.x - x.x)	SUB	0	G	soil/fill					no sa	mple	colle	cted	~				TP-8-5	test pit	Machine Shop observed area of shallow machine pits
		TP-8-6 (1.0-3.0)	SUB	1	G	soil/fill						1							TP-8-6	test pit	Babbit Shop
		SS-18	SS	1	G	soil/fill											1		SS-18	surface soil	Former area of three transformers, Billet Prep No. 2
		SS-(32-33)	SS	1	С	soil/fill				1		1							SS-32 SS-33	surface soil	Machine Shop observed area of surface staining Machine Shop observed area of surface staining
	-	SS-34	SS	1	G	soil/fill				1		1							SS-34	surface soil	Office (1944 Millrights Shop) area
AREAS	OF ASSE	SSMENT 9 & 10							1												
		TP-9-(125) (0.0-1.0)	SS	1	С					1		1									
		TP-9-(125) (1.0-7.0)	SUB	1	С				1			1									
	-	TP-9-1 (1.0-3.5)	SUB	1	G	soil/fill	1												TP-9-1 TP-9-2	test pit	- Former area of 2,000 gallon oil tank - Former area of Gasoline Engine House
	-	TP-9-2 (1.0-7.0)	SUB	1	G			1											TP-9-5		- Former area of oil house adjacent to former Thaw Shed
	-	TP-9-5 (1.0-4.5)	SUB	1	G			1													
	-	TP-9-3 (0.0-1.0)	SS	1	G			•		1		1									
	-	TP-9-3 (1.0-4.5)	SUB	1	G	soil/fill		1		1		1							TP-9-3	test pit	Former area of 10,000 gallon, 2,500 gallon, and 3,000 gallon fuel oil tanks
9		TP-9-4 (0.0 - x.x)	SS	0	G																
	-	TP-9-4 (x.x - x.x)	SUB	0	G	soil/fill			~ ref	usal	at gra	de - n	o sam	ple c	ollect	ted ~			TP-9-4	test pit	Former area of 300 gallon fuel oil tank
	-	SS-09	SS	1	G	soil/fill											1		SS-09	surface soil	Former area of transformer
		SS-(10-13)	SS	1	С	soil/fill				1		1					1		SS-10 SS-11 SS-12 SS-13	surface soil	Former area of Rail Yard
		SS-35	SS	1	G	soil/fill							1	1	1				SS-35	surface soil	Area between access road and Furhmann Blvd., near Freight House
		SS-36	SS	1	G	soil/fill				1									SS-36	surface soil	Tool Shed area

ANALYTICAL PROGRAM SUMMARY

Area of Assessment	Subarea of Assessment	Investigation Sample I.D. (test pits) (depth, fbgs)	Sample Horizon	Number of Samples	Sample Type	Matrix	TCL +STARS VOCs ¹	STARS VOCs 2	TCL SVOCs ³ (BNAs)	SVOCs (BN only) ⁴	TAL Metals + CN ⁵	SS Metals + CN ⁶	Herbicides	Pesticides	2,3,7,8-TCDD	Hd	TCL PCBs7	TCLP VOCs, TCLP Lead, I/C/R	Investigation Locations	Investigation Method	Rationale	
		TP-10-(1-3) (0.0-1.0)	SS	1	С					1		1										
10		TP-10-(2,3) (1.0-4.0)	SUB	1	С	soil/fill				1		1							TP-10-1 TP-10-2 TP-10-3	test pit	- Former area of 15,000 gallon oil tank - Former area of oil storage building - Former area of oil house building along north end	
		TP-10-1 (1.0-4.5)	SUB	1	G			1		1		1										
		TP-10-(4-5) (0.0-1.0)	SS	1	С					1		1										
10		TP-10-(4-5) (1.0-2.5)	SUB	1	С	soil/fill				1		1							TP-10-4 TP-10-5	test pit	- Former area of Plate Shop - Former area of Roll Shop	
		TP-10-6 (0.0-1.0)	SS	1	G			1										1				
	-	TP-10-6 (1.0-5.5)	SUB	1	G	soil/fill		1										1	TP-10-6	Former area of 5,000 gallon, 12,000 gallon, 8,022 gallon underground gasolii storage tanks, former Fire Department Headquarters		
ব ⊘		TP-10-7 (1.0-2.5)	SUB	1	G	soil/fill				1									TP-10-7	test pit	Area between Welding Shop and Tool Shop	
10		TP-10-8 (x.x - x.x)	SUB	0	G	soil/fill					~ no sa	ample	colle	ected	~		I		TP-10-8	test pit	Tool Shop building	
		TP-10-9 (x.x - x.x)	SUB	0	G	soil/fill					~ no sa	ample	colle	ected	~				TP-10-9	test pit	Unnamed building north of Plate Shop	
		SS-14	SS	1	G	soil/fill											1		SS-14	surface soil	Former area of three transformers, Structural Repair Shop	
GROUN	DWATER		<u>'</u>																			
1											~ no sa	ample	colle	ected	~				P-50S	piezometer	Determine groundwater flow direction, installed within test pit TP-1-1 upon backfill	
1								~ no sample collected ~											P-51S	piezometer	Determine groundwater flow direction, installed within test pit TP-1-12 upon backfill	
7											~ no sa	ample	colle	ected	~				P-52S	piezometer	Determine groundwater flow direction, installed within test pit TP-7-6 upon backfill	
7		NA	SGW	NA	NA	water 9					~ n	otins	stalle	d ~					P-53S	piezometer	Determine groundwater flow direction, proposed to be installed within test pit TP-7-5 upon backfill	
10		17/1			14/1	walei					~ no sa	ample	colle	ected	~				P-54S	piezometer	Determine groundwater flow direction, installed within test pit TP-10-4 upon backfill	
4											~ no sa	ample	colle	ected	~				P-55S	piezometer	Determine groundwater flow direction, installed within test pit TP-4-5 upon backfill	
9							backfill															
3							~ no sample collected ~ P-57S piezometer Determine groundwater flow backfill									Determine groundwater flow direction, installed within test pit TP-3-1 upon backfill						

ANALYTICAL PROGRAM SUMMARY

Remedial Investigation Report Phase I Business Park Area - Brownfield Cleanup Program Lackawanna, New York

	Subarea of Assessment	Investigation Sample I.D. (test pits) (depth, fbgs)	Sample Horizon	Number of Samples	Sample Type	Matrix	TCL +STARS VOCs ¹	STARS VOCs ²	TCL SVOCs ³ (BNAs)	SVOCs (BN only)4	TAL Metals + CN ⁵	SS Metals + CN ⁶	Herbicides	Pesticides	2,3,7,8-TCDD	Hd	TCL PCBs7	TCLP VOCs, TCLP Lead, I/C/R	Investigation Locations	Investigation Method	Rationale
9		MW-8A					1		1		1					1		MW-8A ⁸	monitoring well	Existing monitoring well; Determine shallow groundwater flow direction & quality	
5		MW-12A					1		1		1						1		MW-12A	monitoring well	Determine shallow groundwater flow direction and quality
3		MW-13A						1		1		1					1		MW-13A	monitoring well	Determine shallow groundwater flow direction and quality
8		MW-14A	SGW		G	9		1		1		1					1		MW-14A	monitoring well	Determine shallow groundwater flow direction and quality
7		MW-15A	SGW	8	6	water		1		1		1					1		MW-15A	monitoring well	Determine shallow groundwater flow direction and quality
6		MW-16A						1		1		1					1		MW-16A	monitoring well	Determine shallow groundwater flow direction and quality
1		MW-17A						1		1		1					1		MW-17A	monitoring well	Determine shallow groundwater flow direction and quality
10		MW-18A						1		1		1					1		MW-18A	monitoring well	Determine shallow groundwater flow direction and quality

TOTALS:

SOII/fill (49 SS and 35 SUB)	84	 	2	9	2	55	2	52	2	2	2	1	17	2
groundwater	8	 	1	7	1	7	1	7	0	0	0	0	8	0

Notes:

- 1. One per 20 samples will be analyzed for the full TCL list of VOCs via Method 8260B, plus the STARS List VOCs via Method 8021 as determined by the QA Officer.
- 2. VOCs include: STARS List VOCs via Method 8021. Additional samples may be collected depending on headspace determination results.
- 3. One per 20 samples will be analyzed for the full TCL list of SVOCs via Method 8270C, including base-neutrals and acid extractables as determined by the QA Officer..
- 4. SVOCs include: TCL SVOCs via Method 8270C, base-neutrals only.
- 5. One per 20 samples will be analyzed for the TAL Metals plus cyanide.
- 6. Site-Specific (SS) Metals include: arsenic (6010B), cadmium (6010B), chromium (6010B), cyanide (9010B), lead (6010B), and mercury (7470A for water and 7471A for soil). Analytical methods are shown parenthetically.
- 7. PCBs include the full TCL list of PCBs via Method 8082.
- 8. Existing monitoring well locations were installed during previous investigations conducted at the site by others.
- 9. All water samples will be measured for field parameters including, at a minimum, pH, temperature, turbidity and specific conductance.
- 10. " " indicates no specific subarea of assessment has been designated; general area of assessment

Abbreviations/Acronyms:

C = composite sample NA = not applicable SGW = shallow groundwater SVOCs = semi-volatile organic compounds TCL = Target Compound List G = grab sample P = piezometer SS = surface soil/fill TAL = target analyte list TP = test pit

MW = monitoring well PCBs = Polychlorinated Biphenyls SUB = subsurfce soil/fill TBD = to be determined VOCs = volatile organic compounds

Color Code:

TP-1-1	= historically identified surface staining was not evident at this location during the investigation, therefore a stained surface soil (355) sample was not collected.
	= PID scan (< 20 ppm), PID headspace (< 20 ppm), and visual/olfactory observations did not indicate environmental impact; therefore no VOC sample was collected from the subsurface at this location.
1	= Sample delivery group (SDG) A06-0652 (soil/fill)
1	= SDG A06-0714 (soil/fill)
1	= SDG A06-0821 (soil/fill)

1 = SDG A06-0824 (soil/fill) 1 = SDG A06-0923 (soil/fill)

= SDG A06-0936 (soil/fill)

= SDG A06-0418 (soil/fill)

= SDGs A06-0953, A06-1077 (soil/fill) = SDGs A06-2431, A06-2432 (groundwater)

TABLE 4A

SOIL ANALYTICAL SUMMARY FOR AREA OF ASSESSMENT 1

Remedial Investigation Report Phase I Business Park Area - Brownfield Cleanup Program Tecumseh Redevelopment, Inc.

		Sa	mple Location	, Depth Interval	(fbgs), and Ty	/pe		
Parameter ¹	TP-1-(1-5)	TP-1-(1-5)	TP-1-(6-10)	TP-1-(67810)	TP-1-9	TP-1-(11-12)	TP-1-(11-12)	Unrestricted SCO
Farameter	0.0 - 2.0	2.0 - 5.0	0.0 - 2.0	2.0 - 5.0	1.0 - 4.8	0.0 - 2.0	2.0 - 4.5	(mg/kg)
Headspace Determination (ppm) - 10.6 (composite	composite	composite	composite	grab	composite	composite	
Total VOCs		5.0 (max)		2.8 (max)	1.4		0.8 (max)	
PID Field Scans (ppm) - 10.6 eV Lamp		o.o (max)		2.0 (max)	1.1		o.o (max)	
Total VOCs	0.0 (max)	1.4 (max)	2.4 (max)	5.7 (max)	0.2	2.1 (max)	4.3 (max)	
STARS Volatile Organic Compounds (V	. , ,		2.4 (IIIax)	3.7 (IIIax)	0.2	Z.1 (IIIdX)	4.5 (IIIax)	
Benzene					0.0013			0.06
Naphthalene					0.076 J			12
Methylene Chloride								0.05
TOTAL VOCs (mg/kg)	0	0	0	0	0.0773	0	0	
Base-Neutral Semi-Volatile Organic Con				Ů	0.0110		U	
Acenaphthene	0.98 J	0.31 J	0.28 J	ND	0.22 J	0.26 J	0.11 J	20
Acenaphthylene	2.2	1.5 J	1.4 J	0.17 J	0.44 J	2.9	1.9	100
Anthracene	2.9	1.7 J	1.4 J	0.096 J	0.44 J	2.9	1.9	100
Benzo(a)anthracene	7.8	5.5	2.9	0.45 J	1.2 J	8.3	5.6	1
Benzo(b)fluoranthene	16 J	8.4 J	4.5 J	0.43 J	1.9 J	11 J	7.7 J	1
Benzo(k)fluoranthene	5 J	2.3 J	1.8 J	0.73 J	0.61 J	3 J	2.4 J	0.8
· · · · · · · · · · · · · · · · · · ·	6.5	2.7	2.5			3.9	2.7	100
Benzo(g,h,i)perylene	8	5.5	3.1	0.28 J 0.47 J	0.42 J	7.7	4.9	1
Benzo(a)pyrene					1.2 J			
Chrysene	8.8	6.1	3.2	0.44 J	1 J	7.5	5.2	1
Dibenzo(a,h)anthracene	1.9	0.8 J	0.55 J	ND	0.2 J	1.1 J	0.79 J	0.33
Dibenzofuran	0.68 J	0.72 J	0.35 J	ND	0.24 J	0.6 J	0.69 J	7
Fluoranthene	19	12	5.9	0.66 J	2.0	17	11	100
Fluorene	1.1 J	0.84 J	0.53 J	ND	ND	1 J	1 J	30
Indeno(1,2,3-cd)pyrene	6.3	2.5	1.8	0.28 J	0.49 J	3.5	2.4	0.5
2-Methylnaphthalene	0.34 J	0.43 J	0.18 J	ND	0.23 J	0.31 J	0.32 J	
Phenanthrene	12	7.7	4.1	0.3 J	1.4 J	8.2	7.3	100
Pyrene	13	7.7	3.9	0.47 J	1.4 J	11	7.3	100
TOTAL SVOCs (mg/kg)	112.5	66.7	38.19	4.596	13.36	89.47	63.21	
Polychlorinated Biphenyls (PCBs) - mg.	/kg		T	T 1				T
Aroclor 1248								0.1
Aroclor 1254							-	0.1
Aroclor 1260				-	-			0.1
Inorganic Compounds - mg/kg								
Arsenic, Total	121	34.6	13.1	10.2	12.1	25.4	21.8	13
Cadmium, Total	ND	ND	ND	ND	ND	ND	ND	2.5
Chromium, Total	123 J	40.3 J	70.1 J	79.9 J	13.2 J	152 J	128 J	30
Lead, Total	257 J	126 J	210 J	108 J	59.2 J	240 J	176 J	63
Mercury, Total	12	0.206	0.075	0.051	0.041	0.131	0.082	0.18
Cyanide, Total	123	14.2	ND	9.2	ND	1.6	ND	27

- Notes:

 1. Only those parameters detected at a minimum of one sample location are presented in this table; all other compounds were reported as non-detect.

 2. Soil/fill sample TP-1-22 (2.0 6.5) was analyzed for TCL VOCs plus STARS, all other samples were analyzed for STARS VOCs, only.

 3. Soil/fill sample TP-1-22 (2.0 6.5) was analyzed for TCL SVOCs (BNAs), all other samples were analyzed for BN SVOCs, only.

 4. J = Estimated value; result is less than the sample quantitation limit but greater than zero.

 5. ND = parameter not detected above laboratory detection limit.

 6. SCO = Soil Cleanup Objective (Protection of Public Health Commercial), per NYSDEC 6NYCRR Part 375-6.8(b), Final December 2006.

 7. "--" = not analyzed for this parameter or no individual SCO

 8. "**" = Field scan was not obtained due to inclement weather conditions.

 9. "RED TEXT" = Data was qualified per the third party Data Usability Summary Report (DUSR).

compound	= TCL VOC
compound	 Polycyclic Aromatic Hydrocarbon (PAH)
BOLD	= Value exceeds Unrestricted SCO.

TABLE 4A (continued)

SOIL ANALYTICAL SUMMARY FOR AREA OF ASSESSMENT 1

Remedial Investigation Report Phase I Business Park Area - Brownfield Cleanup Program Tecumseh Redevelopment, Inc.

Sample Location, Depth Interval (fbgs), and Type								Ununctrioted	
Parameter ¹	TP-1-(13-17)	TP-1-(13-17)	TP-1-18	TP-1-19	TP-1-22 ^{2,3}	SS-06	SS-22	Unrestricted SCO	
	0.0 - 2.0 composite	2.0 - 5.0 composite	2.0 - 5.0 grab	2.0 - 7.0 grab	2.0 - 6.5 grab	0.0 - 1.0 grab	0.0 - 1.0 grab	(mg/kg)	
Headspace Determination (ppm) - 10.6				grab	grub	grub	gras		
Total VOCs		2.3 (max)	0.0	0.0	0.0				
PID Field Scans (ppm) - 10.6 eV Lamp									
Total VOCs	0.0 (max)	0.0 (max)	*	*	0.0				
STARS Volatile Organic Compounds (V	OCs - Method 8	8021) - mg/kg					_		
Benzene					ND			0.06	
Naphthalene					ND			12	
Methylene Chloride					0.012			0.05	
TOTAL VOCs (mg/kg)	0	0	0	0	0.012	0	0		
Base-Neutral Semi-Volatile Organic Col	mpounds (SVO	Cs - Method 82	?70) - mg/kg						
Acenaphthene	0.2 J	ND	ND	0.89 J	ND			20	
Acenaphthylene	0.55 J	1.1 J	0.41 J	5.2	1.6 J			100	
Anthracene	0.8 J	0.66 J	0.44 J	5.3	0.89 J			100	
Benzo(a)anthracene	2.4	2.2	1.6 J	16	5.9 J			1	
Benzo(b)fluoranthene	3.3 J	3.2 J	2.1 J	21 J	7.1 J	-		1	
Benzo(k)fluoranthene	1.3 J	1.1 J	0.65 J	7 J	2.4 J	-		0.8	
Benzo(g,h,i)perylene	1.4 J	1.4 J	0.85 J	6	3.9 J	-		100	
Benzo(a)pyrene	2.5	2.3	1.6 J	14	5.3 J	-		1	
Chrysene	2.3	2.2	1.4 J	15	5.7 J	-		1	
Dibenzo(a,h)anthracene	0.39 J	0.38 J	0.25 J	2.1	1.3 J	-		0.33	
Dibenzofuran	0.21 J	ND	0.1 J	1.2 J	ND	-		7	
Fluoranthene	4.8	3.8	2.3	36 J	9.4			100	
Fluorene	0.27 J	0.2 J	ND	1.7 J	ND			30	
Indeno(1,2,3-cd)pyrene	1.2 J	1.1 J	0.76 J	6.1	3.7 J			0.5	
2-Methylnaphthalene	0.21 J	ND	ND	0.3 J	ND				
Phenanthrene	2.9	1.5 J	1.4 J	24	2.7 J			100	
Pyrene	3.5	2.7	1.8 J	23	9.8			100	
TOTAL SVOCs (mg/kg)	28.23	23.84	15.66	184.8	59.69	0	0		
Polychlorinated Biphenyls (PCBs) - mg	/kg								
Aroclor 1248		-				ND	0.067	0.1	
Aroclor 1254		-	-			0.47	ND	0.1	
Aroclor 1260		-				ND	0.19	0.1	
Inorganic Compounds - mg/kg									
Arsenic, Total	21.2	15.7						13	
Cadmium, Total	1.7 J	ND						2.5	
Chromium, Total	104 J	46.8 J						30	
Lead, Total	437 J	231 J						63	
Mercury, Total	0.146	0.112						0.18	
Cyanide, Total	1.3	1.2						27	

- Notes:

 1. Only those parameters detected at a minimum of one sample location are presented in this table; all other compounds were reported as non-detect.

 2. Soil/fill sample TP-1-22 (2.0 6.5) was analyzed for TCL VOCs plus STARS, all other samples were analyzed for STARS VOCs, only.

 3. Soil/fill sample TP-1-22 (2.0 6.5) was analyzed for TCL SVOCs (BNAs), all other samples were analyzed for BN SVOCs, only.

 4. J = Estimated value; result is less than the sample quantitation limit but greater than zero.

 5. ND = parameter not detected above laboratory detection limit.

 6. SCO = Soil Cleanup Objective (Protection of Public Health Commercial), per NYSDEC 6NYCRR Part 375-6.8(b), Final December 2006.

 7. "--" = not analyzed for this parameter or no individual SCO

 8. "**" = Field scan was not obtained due to inclement weather conditions.

 9. "RED TEXT" = Data was qualified per the third party Data Usability Summary Report (DUSR).

compound	= TCL VOC
compound	 Polycyclic Aromatic Hydrocarbon (PAH)
BOLD	= Value exceeds Unrestricted SCO.

TABLE 4B

SOIL ANALYTICAL SUMMARY FOR AREA OF ASSESSMENT 1

Remedial Investigation Report Phase I Business Park Area - Brownfield Cleanup Program Tecumseh Redevelopment, Inc.

	70 4 4 5	The state of the s	The second secon	, Depth Interval	The state of the s	THE RESERVE THE PERSON NAMED IN COLUMN 2 IS NOT THE OWNER.	TD 4 (44 40)	Restricted- Commercia
Parameter ¹	TP-1-(1-5)	TP-1-(1-5)	TP-1-(6-10)	TP-1-(67810)	TP-1-9 1.0 - 4.8	TP-1-(11-12)	TP-1-(11-12)	SCO
San Carlotte State of the Carlotte State of	composite	composite	composite	composite	grab	composite	composite	(mg/kg)
Headspace Determination (ppm) - 1	0.6 eV Lamp [subs	urface samples	only]		1			
Total VOCs		5.0 (max)	-	2.8 (max)	1.4		0.8 (max)	
PID Field Scans (ppm) - 10.6 eV Lar	пр							
Total VOCs	0.0 (max)	1.4 (max)	2.4 (max)	5.7 (max)	0.2	2.1 (max)	4.3 (max)	-
STARS Volatile Organic Compound	is (VOCs - Method i	8021) - mg/kg			25	A CONTRACTOR		1
Benzene			-	-	0.0013	-	- Control of the Cont	44
Naphthalene				-	0.076 J		-	500
Methylene Chloride	-				_			500
TOTAL VOCs (mg/kg)	0	0	0	0	0.0773	0	0	
Base-Neutral Semi-Volatile Organic	Compounds (SVO	Cs - Method 82	70) - mg/kg					
Acenaphthene	0.98 J	0.31 J	0.28 J	ND	0.22 J	0.26 J	0.11 J	500
Acenaphthylene	2.2	1.5 J	1.4 J	0.17 J	0.44 J	2.9	1.9	500
Anthracene .	2.9	1.7 J	1.2 J	0.096 J	0.41 J	2.2	1.9	500
Benzo(a)anthracene	7.8	5.5	2.9	0.45 J	1.2 J	8.3	5.6	5.6
Benzo(b)fluoranthene	16 J	8.4 J	4.5 J	0.73 J	1.9 J	11 J	7.7 J	5.6
Benzo(k)fluoranthene	5 J	2.3 J	1.8 J	0.25 J	0.61 J	3 J	2.4 J	56
Benzo(g,h,i)perylene	6.5	2.7	2.5	0.28 J	0.42 J	3.9	2.7	500
Benzo(a)pyrene	8	5.5	3,1	0.47 J	1.2 J	7,7	4.9	1
Chrysene	8.8	6.1	3.2	0.44 J	1 J	7.5	5.2	56
Dibenzo(a,h)anthracene	1.9	0.8 J	0.55 J	ND	0.2 J	1.1 J	0.79 J	0.56
Dibenzofuran	0.68 J	0.72 J	0.35 J	ND	0.24 J	0.6 J	0.69 J	350
Fluoranthene	19	12	5.9	0.66 J	2.0	. 17	11	500
Fluorene	1.1 J	0.84 J	0.53 J	ND	ND	1 J	1 J	500
Indeno(1,2,3-cd)pyrene	6.3	2.5	1.8	0.28 J	0.49 J	3.5	2.4	5.6
2-Methylnaphthalene	0.34 J	0.43 J	0.18 J	ND	0.23 J	0.31 J	0.32 J	_
Phenanthrene	12	7.7	4.1	0.3 J	1.4 J	8.2	7.3	500
Pyrene.	13	7.7	3.9	0.47 J	1.4 J	11	7.3	500
TOTAL SVOCs (mg/kg)	112.5	66.7	38.19	4.596	13.36	89.47	63.21	
Polychlorinated Biphenyls (PCBs)				EM EVUITS		16754	ES RET	
Aroclor 1248		-		-	-	T -		1
Aroclor 1254								1
Aroclor 1260			_					1
Inorganic Compounds - mg/kg								
Arsenic, Total	121	34.6	13.1	10.2	12.1	25.4	21.8	16
Cadmium, Total	ND	ND	ND	ND	ND	ND	ND	9.3
Chromium, Total	123 J	40.3 J	70.1 J	79.9 J	13.2 J	152 J	128 J	1,500
Lead, Total	257 J	126 J	210 J	108 J	59.2 J	240 J	176 J	1,000
Mercury, Total	12	0.206	0.075	0.051	0.041	0.131	0.082	2.8
Cyanide, Total	123	14.2	ND	9.2	ND	1.6	ND	27

Notes:

- Notes:

 Only those parameters detected at a minimum of one sample location are presented in this table; all other compounds were reported as non-detect.

 Notifill sample TP-1-22 (2.0 6.5) was analyzed for TCL VOCs plus STARS, all other samples were analyzed for STARS VOCs, only.

 Soliffill sample TP-1-22 (2.0 6.5) was analyzed for TCL SVOCs (BNAs), all other samples were analyzed for BN SVOCs, only.

 Jestimated value; result is less than the sample quantitation limit but greater than zero.

 ND = parameter not detected above laboratory detection limit.

 SCO = Soil Cleanup Objective (Protection of Public Health Commercial), per NYSDEC 6NYCRR Part 375-6.8(b), Final December 2006.

 "--" n n analyzed for this parameter or no individual SSAL

 """ =: Field scan was not obtained due to inclement weather conditions.

 "RED TEXT " = Data was qualified per the third party Data Usability Summary Report (DUSR).

Color	Code:

ı	compound'] = TCL VOC
ı	compound	= Polycyclic Aromatic Hydrocarbon (PAH)
İ	BOLD	= Value exceeds Restricted-Commercial SCO.

TABLE 4B (continued)

SOIL ANALYTICAL SUMMARY FOR AREA OF ASSESSMENT 1

Remedial Investigation Report Phase I Business Park Area - Brownfield Cleanup Program Tecumseh Redevelopment, Inc.

	Sample Location, Depth Interval (fbgs), and						Restricted-	
Parameter ¹	TP-1-(13-17)	TP-1-(13-17)	TP-1-18	TP-1-19	TP-1-22 2,3	SS-06	SS-22	Commercia
	0.0 - 2.0 composite	2.0 - 5.0 composite	2.0 - 5.0 grab	2.0 - 7.0	2.0 - 6.5 grab	0.0 - 1.0 grab	0.0 - 1.0 grab	SCO (mg/kg)
Headspace Determination (ppm) -	CANAL STREET,	AND DESCRIPTION OF THE PERSON	PARTY NAMED IN COLUMN 2 IN COLUMN 2	grab	grad	grab	grad	(9/18)
Total VOCs	T -	2.3 (max)	0.0	0.0	0.0	-	-	-
PID Field Scans (ppm) - 10.6 eV La	тр							
Total VOCs	0.0 (max)	0.0 (max)	*	*	0.0	-	-	-
STARS Volatile Organic Compound	ds (VOCs - Method 8	3021) - mg/kg					THE PERSON	
Benzene	-		-	-	ND		-	44
Naphthalene	_			-	ND			500
Methylene Chloride				_	0.012			500
TOTAL VOCs (mg/kg)	0	0	0	0	0.012	0	0	
Rase-Neutral Semi-Volatile Organic	Compounds (SVO	Cs - Method 82	70) - mg/kg	THE SAID				
Acenaphthene	0.2 J	ND	ND	0.89 J	ND		-	500
Acenaphthylene	0.55 J	1.1 J	0.41 J	5.2	1.6 J			500
Anthracene	0.8 J	0.66 J	0.44 J	5.3	0.89 J	-		500
Benzo(a)anthracene	2.4	2.2	1.6 J	16	5.9 J	-	-	5.6
Benzo(b)fluoranthene	3.3 J	3.2 J	2.1 J	21 J	7.1 J			5.6
Benzo(k)fluoranthene	1.3 J	1.1 J	0.65 J	7 J	2.4 J		-	56
Benzo(g,h,i)perylene	1.4 J	1.4 J	0.85 J	6	3.9 J			500
Benzo(a)pyrene	2.5	2.3	1.6 J	14	5.3 J	_	-	1
Chrysene	2.3	2.2	1.4 J	15	5.7 J			56
Dibenzo(a,h)anthracene	0.39 J	0.38 J	0.25 J	2.1	1,3 J		7/2	0.56
Dibenzofuran	0.21 J	ND	0.1 J	1.2 J	ND			350
Fluoranthene	4.8	3.8	2.3	36 J	9.4		_	500
Fluorene	0.27 J	0.2 J	ND	1.7 J	ND			500
Indeno(1,2,3-cd)pyrene	1.2 J	1.1 J	0.76 J	6,1	3.7 J	-		5.6
2-Methylnaphthalene	0.21 J	ND	ND	0.3 J	ND			
Phenanthrene	2.9	1.5 J	1.4 J	24	2.7 J			500
Pyrene	3.5	2.7	1.8 J	23	9.8			500
TOTAL SVOCs (mg/kg)	28.23	23.84	15.66	184.8	59.69	0	0	-
Polychlorinated Biphenyls (PCBs)	- mg/kg			用型性型的				
Aroclor 1248			-			ND	0.067	1
Aroclor 1254						0.47	ND	1
Aroclor 1260	-	-	-	-		ND	0.19	1
norganic Compounds - mg/kg								
Arsenic, Total	21.2	15.7	-		-			16
Cadmium, Total	1.7 J	ND	-	-		-		9.3
Chromium, Total	104 J	46.8 J						1,500
Lead, Total	437 J	231 J		-				1,000
Mercury, Total	0.146	0.112		-				2.8
Cyanide, Total	1.3	1.2			-			27

Notes:

- Notes:

 1. Only those parameters detected at a minimum of one sample location are presented in this table; all other compounds were reported as non-detect.

 2. Soil/fill sample TP-1-22 (2.0 6.5) was analyzed for TCL VOCs fous STARS, all other samples were analyzed for STARS VOCs, only.

 3. Soil/fill sample TP-1-22 (2.0 6.5) was analyzed for TCL SVOCs (BNAs), all other samples were analyzed for BN SVOCs, only.

 4. J = Estimated value; result is less than the sample quantitation limit but greater than zero.

 5. ND = parameter not detected above laboratory detection limit.

 6. SCO = Soil Cleanup Objective (Protection of Public Health Commerciat), per NYSDEC 6NYCRR Part 375-6.8(b), Final December 2006.

 7. *--* = not analyzed for fusis parameter or no individual SSAL

 8. *** = Field scan was not obtained due to inclement weather conditions.

 9. *RED TEXT *= Data was qualified per the third party Data Usabilay Summary Report (DUSR).

Co	lor	Cod	e

compound

= Polycyclic Aromatic Hydrocarbon (PAH) = Value exceeds Restricted-Commercial SCO.

Page 4 of 6 0071-006-202

TABLE 5A

SOIL ANALYTICAL SUMMARY FOR AREA OF ASSESSMENT 2

Remedial Investigation Report Phase I Business Park Area - Brownfield Cleanup Program Tecumseh Redevelopment, Inc.

Parameter TP-2-(1-3) TP-2-(1-3) SS-23 SS-24 O.0 - 2.0 2.0 - 5.5 O.0 - 1.0 O.0 - 1.0 O.0 + 1.0		Sample Lo	ocation, Depth	Interval (fbgs)	, and Type	Unrestricted					
No. No.	Parameter ¹	TP-2-(1-3)	TP-2-(1-3)	SS-23	SS-24						
Composite Composite Composite Grab Grab	i arameter		2.0 - 5.5	0.0 - 1.0	0.0 - 1.0						
Total VOCs 0.0 (max) PID Field Scans (ppm) - 10.6 eV Lamp Total VOCs * * Base-Neutral Semi-Volatile Organic Compounds (SVOCs - Method 8270) - mg/kg Acenaphthene 0.44 J 0.67 J ND 1.1 J 20 Acenaphthylene 0.59 J 20 ND 0.89 J 100 Anthracene 1 J 17 J 0.4 J 3.9 J 100 Benzo(a)anthracene 6.7 J 50 1.6 J 14 1 Benzo(b)fluoranthene 3.7 J 25 J 0.53 J 6 J 0.8 Benzo(k)fluoranthene 3.3 J 34 1.3 J 7 J 100 Benzo(a)pyrene 6.8 J 62 1.5 J 12 1 Chrysene 8 52 1.5 J 11 1 Dibenzo(a,h)anthracene 1 J 8.6 ND 2.3 J 0.33 Dibenzofu			•			(99)					
PID Field Scans (ppm) - 10.6 eV Lamp	Headspace Determination (ppm) - 10.6 eV Lan		samples only							
Total VOCs * * <	Total VOCs		0.0 (max)								
Base-Neutral Semi-Volatile Organic Compounds (SVOCs - Method 8270) - mg/kg Acenaphthene 0.44 J 0.67 J ND 1.1 J 20 Acenaphthylene 0.59 J 20 ND 0.89 J 100 Anthracene 1 J 17 J 0.4 J 3.9 J 100 Benzo(a)anthracene 6.7 J 50 1.6 J 14 1 1 Benzo(b)fluoranthene 11 J 86 J 2.6 J 15 J 1 1 Benzo(k)fluoranthene 3.7 J 25 J 0.53 J 6 J 0.8 Benzo(g,h,i)perylene 3.3 J 34 1.3 J 7 J 100 Benzo(a)pyrene 6.8 J 62 1.5 J 12 1 1 1 1 1 1 1 1	PID Field Scans (ppm) - 10.6 eV	Lamp									
Acenaphthene 0.44 J 0.67 J ND 1.1 J 20 Acenaphthylene 0.59 J 20 ND 0.89 J 100 Anthracene 1 J 17 J 0.4 J 3.9 J 100 Benzo(a)anthracene 6.7 J 50 1.6 J 14 1 Benzo(b)fluoranthene 3.7 J 25 J 0.53 J 6 J 0.8 Benzo(g)h,i)perylene 3.3 J 34 1.3 J 7 J 100 Benzo(a)pyrene 6.8 J 62 1.5 J 12 1 Chrysene 8 52 1.5 J 11 1 Dibenzo(a,h)anthracene 1 J 8.6 ND 2.3 J 0.33 Dibenzofuran ND 3.8 J ND 1 J 7 Fluorene 14 95 J 3.5 J 28 100 Fluorene 0.38 J 4.2 J ND 1.5 J 30 Indeno(1,2,3-cd)pyrene 3 J 30 1.1 J 6.9 J	Total VOCs	*	*								
Acenaphthylene 0.59 J 20 ND 0.89 J 100 Anthracene 1 J 17 J 0.4 J 3.9 J 100 Benzo(a)anthracene 6.7 J 50 1.6 J 14 1 Benzo(b)fluoranthene 11 J 86 J 2.6 J 15 J 1 Benzo(k)fluoranthene 3.7 J 25 J 0.53 J 6 J 0.8 Benzo(a)pyrene 6.8 J 62 1.5 J 12 1 Chrysene 8 52 1.5 J 11 1 Dibenzo(a,h)anthracene 1 J 8.6 ND 2.3 J 0.33 Dibenzofuran ND 3.8 J ND 1 J 7 Fluoranthene 14 95 J 3.5 J 28 100 Fluorene 0.38 J 4.2 J ND 1.5 J 30 Indeno(1,2,3-cd)pyrene 3 J 30 1.1 J 6.9 J 0.5 2-Methylnaphthalene ND 1.6 J ND ND	Base-Neutral Semi-Volatile Organic Compounds (SVOCs - Method 8270) - mg/kg										
Anthracene 1 J 17 J 0.4 J 3.9 J 100 Benzo(a)anthracene 6.7 J 50 1.6 J 14 1 Benzo(b)fluoranthene 11 J 86 J 2.6 J 15 J 1 Benzo(k)fluoranthene 3.7 J 25 J 0.53 J 6 J 0.8 Benzo(g,h,i)perylene 3.3 J 34 1.3 J 7 J 100 Benzo(a)pyrene 6.8 J 62 1.5 J 12 1 Chrysene 8 52 1.5 J 11 1 Dibenzo(a,h)anthracene 1 J 8.6 ND 2.3 J 0.33 Dibenzofuran ND 3.8 J ND 1 J 7 Fluoranthene 14 95 J 3.5 J 28 100 Fluorene 0.38 J 4.2 J ND 1.5 J 30 Indeno(1,2,3-cd)pyrene 3 J 30 1.1 J 6.9 J 0.5 2-Methylnaphthalene ND 1.6 J ND ND	Acenaphthene	0.44 J	0.67 J	ND	1.1 J	20					
Benzo(a)anthracene 6.7 J 50 1.6 J 14 1 Benzo(b)fluoranthene 11 J 86 J 2.6 J 15 J 1 Benzo(g,h,i)perylene 3.7 J 25 J 0.53 J 6 J 0.8 Benzo(g,h,i)perylene 3.3 J 34 1.3 J 7 J 100 Benzo(a)pyrene 6.8 J 62 1.5 J 12 1 Chrysene 8 52 1.5 J 11 1 Dibenzo(a,h)anthracene 1 J 8.6 ND 2.3 J 0.33 Dibenzofuran ND 3.8 J ND 1 J 7 Fluoranthene 14 95 J 3.5 J 28 100 Fluorene 0.38 J 4.2 J ND 1.5 J 30 Indeno(1,2,3-cd)pyrene 3 J 30 1.1 J 6.9 J 0.5 2-Methylnaphthalene ND 1.6 J ND ND ND 12 Phenanthrene 6.5 J 52 J 1.4 J	Acenaphthylene	0.59 J	20	ND	0.89 J	100					
Benzo(b)fluoranthene 11 J 86 J 2.6 J 15 J 1 Benzo(k)fluoranthene 3.7 J 25 J 0.53 J 6 J 0.8 Benzo(g,h,i)perylene 3.3 J 34 1.3 J 7 J 100 Benzo(a)pyrene 6.8 J 62 1.5 J 12 1 Chrysene 8 52 1.5 J 11 1 Dibenzo(a,h)anthracene 1 J 8.6 ND 2.3 J 0.33 Dibenzofuran ND 3.8 J ND 1 J 7 Fluoranthene 14 95 J 3.5 J 28 100 Fluorene 0.38 J 4.2 J ND 1.5 J 30 Indeno(1,2,3-cd)pyrene 3 J 30 1.1 J 6.9 J 0.5 2-Methylnaphthalene ND 1.6 J ND ND ND Naphthalene ND 4.2 J ND ND 12 Phenanthrene 6.5 J 52 J 1.4 J	Anthracene	1 J	17 J	0.4 J	3.9 J	100					
Benzo(k)fluoranthene 3.7 J 25 J 0.53 J 6 J 0.8 Benzo(g,h,i)perylene 3.3 J 34 1.3 J 7 J 100 Benzo(a)pyrene 6.8 J 62 1.5 J 12 1 Chrysene 8 52 1.5 J 11 1 Dibenzo(a,h)anthracene 1 J 8.6 ND 2.3 J 0.33 Dibenzofuran ND 3.8 J ND 1 J 7 Fluoranthene 14 95 J 3.5 J 28 100 Fluorene 0.38 J 4.2 J ND 1.5 J 30 Indeno(1,2,3-cd)pyrene 3 J 30 1.1 J 6.9 J 0.5 2-Methylnaphthalene ND 1.6 J ND ND ND Naphthalene ND 4.2 J ND ND 12 Phenanthrene 6.5 J 52 J 1.4 J 16 100 Pyrene 11 94 3.3 J 20 <t< td=""><td>Benzo(a)anthracene</td><td>6.7 J</td><td>50</td><td>1.6 J</td><td>14</td><td>1</td></t<>	Benzo(a)anthracene	6.7 J	50	1.6 J	14	1					
Benzo(g,h,i)perylene 3.3 J 34 1.3 J 7 J 100 Benzo(a)pyrene 6.8 J 62 1.5 J 12 1 Chrysene 8 52 1.5 J 11 1 Dibenzo(a,h)anthracene 1 J 8.6 ND 2.3 J 0.33 Dibenzofuran ND 3.8 J ND 1 J 7 Fluoranthene 14 95 J 3.5 J 28 100 Fluorene 0.38 J 4.2 J ND 1.5 J 30 Indeno(1,2,3-cd)pyrene 3 J 30 1.1 J 6.9 J 0.5 2-Methylnaphthalene ND 1.6 J ND ND ND Naphthalene ND 4.2 J ND ND 12 Phenanthrene 6.5 J 52 J 1.4 J 16 100 Pyrene 11 94 3.3 J 20 100 TOTAL SVOCs (mg/kg) 77.41 640.1 18.73 146.6 <	Benzo(b)fluoranthene	11 J	86 J	2.6 J	15 J	1					
Benzo(a)pyrene 6.8 J 62 1.5 J 12 1 Chrysene 8 52 1.5 J 11 1 Dibenzo(a,h)anthracene 1 J 8.6 ND 2.3 J 0.33 Dibenzofuran ND 3.8 J ND 1 J 7 Fluoranthene 14 95 J 3.5 J 28 100 Fluorene 0.38 J 4.2 J ND 1.5 J 30 Indeno(1,2,3-cd)pyrene 3 J 30 1.1 J 6.9 J 0.5 2-Methylnaphthalene ND 1.6 J ND ND ND Naphthalene ND 4.2 J ND ND 12 Phenanthrene 6.5 J 52 J 1.4 J 16 100 Pyrene 11 94 3.3 J 20 100 TOTAL SVOCs (mg/kg) 77.41 640.1 18.73 146.6 Inorganic Compounds - mg/kg Arsenic, Total 10 7.4 <td>Benzo(k)fluoranthene</td> <td>3.7 J</td> <td>25 J</td> <td>0.53 J</td> <td>6 J</td> <td>0.8</td>	Benzo(k)fluoranthene	3.7 J	25 J	0.53 J	6 J	0.8					
Chrysene 8 52 1.5 J 11 1 Dibenzo(a,h)anthracene 1 J 8.6 ND 2.3 J 0.33 Dibenzofuran ND 3.8 J ND 1 J 7 Fluoranthene 14 95 J 3.5 J 28 100 Fluorene 0.38 J 4.2 J ND 1.5 J 30 Indeno(1,2,3-cd)pyrene 3 J 30 1.1 J 6.9 J 0.5 2-Methylnaphthalene ND 1.6 J ND ND ND Naphthalene ND 4.2 J ND ND 12 Phenanthrene 6.5 J 52 J 1.4 J 16 100 Pyrene 11 94 3.3 J 20 100 TOTAL SVOCs (mg/kg) 77.41 640.1 18.73 146.6 Inorganic Compounds - mg/kg Arsenic, Total 10 7.4 7.8 13 Cadmium, Total 2.8 1.4	Benzo(g,h,i)perylene	3.3 J	34	1.3 J	7 J	100					
Dibenzo(a,h)anthracene 1 J 8.6 ND 2.3 J 0.33 Dibenzofuran ND 3.8 J ND 1 J 7 Fluoranthene 14 95 J 3.5 J 28 100 Fluorene 0.38 J 4.2 J ND 1.5 J 30 Indeno(1,2,3-cd)pyrene 3 J 30 1.1 J 6.9 J 0.5 2-Methylnaphthalene ND 1.6 J ND ND ND Naphthalene ND 4.2 J ND ND 12 Phenanthrene 6.5 J 52 J 1.4 J 16 100 Pyrene 11 94 3.3 J 20 100 TOTAL SVOCs (mg/kg) 77.41 640.1 18.73 146.6 Inorganic Compounds - mg/kg Arsenic, Total 10 7.4 7.8 13 Cadmium, Total 2.8 1.4 2.9 2.5 Chromium, Total 136 J <	Benzo(a)pyrene	6.8 J	62	1.5 J	12	1					
Dibenzofuran ND 3.8 J ND 1 J 7 Fluoranthene 14 95 J 3.5 J 28 100 Fluorene 0.38 J 4.2 J ND 1.5 J 30 Indeno(1,2,3-cd)pyrene 3 J 30 1.1 J 6.9 J 0.5 2-Methylnaphthalene ND 1.6 J ND ND ND Naphthalene ND 4.2 J ND ND ND 12 Phenanthrene 6.5 J 52 J 1.4 J 16 100 Pyrene 11 94 3.3 J 20 100 TOTAL SVOCs (mg/kg) 77.41 640.1 18.73 146.6 Inorganic Compounds - mg/kg 77.41 640.1 18.73 146.6 Arsenic, Total 10 7.4 7.8 13 Cadmium, Total 2.8 1.4 2.9 2.5 Chromium, Total 136 J 15.9 J 95.6 <td>Chrysene</td> <td>8</td> <td>52</td> <td>1.5 J</td> <td>11</td> <td>1</td>	Chrysene	8	52	1.5 J	11	1					
Fluoranthene 14 95 J 3.5 J 28 100 Fluorene 0.38 J 4.2 J ND 1.5 J 30 Indeno(1,2,3-cd)pyrene 3 J 30 1.1 J 6.9 J 0.5 2-Methylnaphthalene ND 1.6 J ND ND ND Naphthalene ND 4.2 J ND ND ND 12 Phenanthrene 6.5 J 52 J 1.4 J 16 100 Pyrene 11 94 3.3 J 20 100 TOTAL SVOCs (mg/kg) 77.41 640.1 18.73 146.6 Inorganic Compounds - mg/kg Arsenic, Total 10 7.4 7.8 13 Cadmium, Total 2.8 1.4 2.9 2.5 Chromium, Total 136 J 15.9 J 95.6 30 Lead, Total 267 J 103 J 198 63	Dibenzo(a,h)anthracene	1 J	8.6	ND	2.3 J	0.33					
Fluorene 0.38 J 4.2 J ND 1.5 J 30 Indeno(1,2,3-cd)pyrene 3 J 30 1.1 J 6.9 J 0.5 2-Methylnaphthalene ND 1.6 J ND ND ND Naphthalene ND 4.2 J ND ND ND 12 Phenanthrene 6.5 J 52 J 1.4 J 16 100 Pyrene 11 94 3.3 J 20 100 TOTAL SVOCs (mg/kg) 77.41 640.1 18.73 146.6 Inorganic Compounds - mg/kg 7.4 7.8 13 Cadmium, Total 10 7.4 7.8 13 Cadmium, Total 2.8 1.4 2.9 2.5 Chromium, Total 136 J 15.9 J 95.6 30 Lead, Total 267 J 103 J 198 63	Dibenzofuran	ND	3.8 J	ND	1 J	7					
Indeno(1,2,3-cd)pyrene 3 J 30 1.1 J 6.9 J 0.5 2-Methylnaphthalene ND 1.6 J ND ND Naphthalene ND 4.2 J ND ND ND 12 Phenanthrene 6.5 J 52 J 1.4 J 16 100 Pyrene 11 94 3.3 J 20 100 TOTAL SVOCs (mg/kg) 77.41 640.1 18.73 146.6 Inorganic Compounds - mg/kg Arsenic, Total 10 7.4 7.8 13 Cadmium, Total 2.8 1.4 2.9 2.5 Chromium, Total 136 J 15.9 J 95.6 30 Lead, Total 267 J 103 J 198 63	Fluoranthene	14	95 J	3.5 J	28	100					
2-Methylnaphthalene ND 1.6 J ND ND Naphthalene ND 4.2 J ND ND 12 Phenanthrene 6.5 J 52 J 1.4 J 16 100 Pyrene 11 94 3.3 J 20 100 TOTAL SVOCs (mg/kg) 77.41 640.1 18.73 146.6 Inorganic Compounds - mg/kg Arsenic, Total 10 7.4 7.8 13 Cadmium, Total 2.8 1.4 2.9 2.5 Chromium, Total 136 J 15.9 J 95.6 30 Lead, Total 267 J 103 J 198 63	Fluorene	0.38 J	4.2 J	ND	1.5 J	30					
Naphthalene ND 4.2 J ND ND 12 Phenanthrene 6.5 J 52 J 1.4 J 16 100 Pyrene 11 94 3.3 J 20 100 TOTAL SVOCs (mg/kg) 77.41 640.1 18.73 146.6 Inorganic Compounds - mg/kg Inorganic Compounds - mg/kg 13 13 Cadmium, Total 2.8 1.4 2.9 2.5 Chromium, Total 136 J 15.9 J 95.6 30 Lead, Total 267 J 103 J 198 63	Indeno(1,2,3-cd)pyrene	3 J	30	1.1 J	6.9 J	0.5					
Phenanthrene 6.5 J 52 J 1.4 J 16 100 Pyrene 11 94 3.3 J 20 100 TOTAL SVOCs (mg/kg) 77.41 640.1 18.73 146.6 Inorganic Compounds - mg/kg 13 13 Cadmium, Total 2.8 1.4 2.9 2.5 Chromium, Total 136 J 15.9 J 95.6 30 Lead, Total 267 J 103 J 198 63	2-Methylnaphthalene	ND	1.6 J	ND	ND						
Pyrene 11 94 3.3 J 20 100 TOTAL SVOCs (mg/kg) 77.41 640.1 18.73 146.6 Inorganic Compounds - mg/kg Arsenic, Total 10 7.4 7.8 13 Cadmium, Total 2.8 1.4 2.9 2.5 Chromium, Total 136 J 15.9 J 95.6 30 Lead, Total 267 J 103 J 198 63	Naphthalene	ND	4.2 J	ND	ND	12					
TOTAL SVOCs (mg/kg) 77.41 640.1 18.73 146.6 Inorganic Compounds - mg/kg Arsenic, Total 10 7.4 7.8 13 Cadmium, Total 2.8 1.4 2.9 2.5 Chromium, Total 136 J 15.9 J 95.6 30 Lead, Total 267 J 103 J 198 63	Phenanthrene	6.5 J	52 J	1.4 J	16	100					
Inorganic Compounds - mg/kg Arsenic, Total 10 7.4 7.8 13 Cadmium, Total 2.8 1.4 2.9 2.5 Chromium, Total 136 J 15.9 J 95.6 30 Lead, Total 267 J 103 J 198 63	Pyrene	11	94	3.3 J	20	100					
Arsenic, Total 10 7.4 7.8 13 Cadmium, Total 2.8 1.4 2.9 2.5 Chromium, Total 136 J 15.9 J 95.6 30 Lead, Total 267 J 103 J 198 63	TOTAL SVOCs (mg/kg)	77.41	640.1	18.73	146.6						
Cadmium, Total 2.8 1.4 2.9 2.5 Chromium, Total 136 J 15.9 J 95.6 30 Lead, Total 267 J 103 J 198 63	Inorganic Compounds - mg/kg					•					
Cadmium, Total 2.8 1.4 2.9 2.5 Chromium, Total 136 J 15.9 J 95.6 30 Lead, Total 267 J 103 J 198 63	Arsenic, Total	10	7.4	7.8		13					
Chromium, Total 136 J 15.9 J 95.6 30 Lead, Total 267 J 103 J 198 63	Cadmium, Total	2.8	1.4	2.9		2.5					
	Chromium, Total	136 J	15.9 J	95.6		30					
	Lead, Total	267 J	103 J	198		63					
				1.9		0.18					
Cyanide, Total 11.5 ND 14.7 J 27		11.5	ND	14.7 J		27					

Notes:

- 1. Only those parameters detected at a minimum of one sample location are presented in this table; all other compounds reported
- 2. J = Estimated value; result is less than the sample quantitation limit but greater than zero.
- ND = parameter not detected above laboratory detection limit.
 SCO = Soil Cleanup Objective (Protection of Public Health Commercial), per NYSDEC 6NYCRR Part 375-6.8(b), Final Decem
- 5. " -- " = not analyzed for this parameter or no individual SCO
- The unaryzed for this parameter of the individual cool
 " * " = Field scan was not obtained due to inclement weather conditions.
 "RED TEXT " = Data was qualified per the third party Data Usability Summary Report (DUSR).

compound	= Polycyclic Aromatic Hydrocarbon (PAH)
BOLD	= Value exceeds Restricted-Commercial SCO.

TABLE 5B

SOIL ANALYTICAL SUMMARY FOR AREA OF ASSESSMENT 2

Remedial Investigation Report Phase I Business Park Area - Brownfield Cleanup Program Tecumseh Redevelopment, Inc.

	Sample Lo	ocation, Depth	Interval (fbgs)	and Type	Restricted-
Parameter ¹	TP-2-(1-3)	TP-2-(1-3)	SS-23	SS-24	Commercial
i arameter	0.0 - 2.0	2.0 - 5.5	0.0 - 1.0	0.0 - 1.0	SCO
	composite	composite	grab	grab	(mg/kg)
Headspace Determination (ppm) - 10.6 eV Lan	-	samples only]		
Total VOCs		0.0 (max)			<u></u>
PID Field Scans (ppm) - 10.6 eV	Lamp				
Total VOCs	*	*			
Base-Neutral Semi-Volatile Orga	anic Compoun	ds (SVOCs - M	ethod 8270) - n	ng/kg	
Acenaphthene	0.44 J	0.67 J	ND	1.1 J	500
Acenaphthylene	0.59 J	20	ND	0.89 J	500
Anthracene	1 J	17 J	0.4 J	3.9 J	500
Benzo(a)anthracene	6.7 J	50	1.6 J	14	5.6
Benzo(b)fluoranthene	11 J	86 J	2.6 J	15 J	5.6
Benzo(k)fluoranthene	3.7 J	25 J	0.53 J	6 J	56
Benzo(g,h,i)perylene	3.3 J	34	1.3 J	7 J	500
Benzo(a)pyrene	6.8 J	62	1.5 J	12	1
Chrysene	8	52	1.5 J	11	56
Dibenzo(a,h)anthracene	1 J	8.6	ND	2.3 J	0.56
Dibenzofuran	ND	3.8 J	ND	1 J	350
Fluoranthene	14	95 J	3.5 J	28	500
Fluorene	0.38 J	4.2 J	ND	1.5 J	500
Indeno(1,2,3-cd)pyrene	3 J	30	1.1 J	6.9 J	5.6
2-Methylnaphthalene	ND	1.6 J	ND	ND	
Naphthalene	ND	4.2 J	ND	ND	500
Phenanthrene	6.5 J	52 J	1.4 J	16	500
Pyrene	11	94	3.3 J	20	500
TOTAL SVOCs (mg/kg)	77.41	640.07	18.73	146.59	
Inorganic Compounds - mg/kg					•
Arsenic, Total	10	7.4	7.8		16
Cadmium, Total	2.8	1.4	2.9		9.3
Chromium, Total	136 J	15.9 J	95.6		1,500
Lead, Total	267 J	103 J	198		1,000
Mercury, Total	2.9 J	1.8 J	1.9		2.8
Cyanide, Total	11.5	ND	14.7 J		27

Notes:

- 1. Only those parameters detected at a minimum of one sample location are presented in this table; all other compounds reported
- 2. J = Estimated value; result is less than the sample quantitation limit but greater than zero.
- ND = parameter not detected above laboratory detection limit.
 SCO = Soil Cleanup Objective (Protection of Public Health Commercial), per NYSDEC 6NYCRR Part 375-6.8(b), Final December 1.
- 5. " -- " = not analyzed for this parameter or no individual SCO
 6. " * " = Field scan was not obtained due to inclement weather conditions.
- 7. " RED TEXT " = Data was qualified per the third party Data Usability Summary Report (DUSR).

compound	= Polycyclic Aromatic Hydrocarbon (PAH)
BOLD	= Value exceeds Restricted-Commercial SCO.

TABLE 6A

SOIL ANALYTICAL SUMMARY FOR AREA OF ASSESSMENT 3

Remedial Investigation Report Phase I Business Park Area - Brownfield Cleanup Program Tecumseh Redevelopment, Inc.

Sample Location, Depth Interval (fbgs), and Type								
	TP-3-(1-2)	TP-3-(1-2)	SS-(19-21)	MW-13A	Unrestricted			
Parameter ¹	0.0 - 1.0	1.0 - 3.0	0.0 - 1.0	0.0 - 1.0	SCO			
	composite	composite	composite	grab	(mg/kg)			
Headspace Determination (ppr	n) - 10.6 eV Lamp	[subsurface sa	mples only]					
Total VOCs		0.0 (max)						
PID Field Scans (ppm) - 10.6 e	V Lamp							
Total VOCs	0.0 (max)	0.0 (max)						
Base-Neutral Semi-Volatile Org	ganic Compound	s (SVOCs - Meth	nod 8270) - mg/k	g				
Acenaphthene	ND	0.68 J	2.5 J		20			
Acenaphthylene	3.9 J	4.8 J	3.1 J		100			
Anthracene	1.9 J	4.8 J	9.3		100			
Benzo(a)anthracene	10	23	24		1			
Benzo(b)fluoranthene	15 J	32 J	26 J		1			
Benzo(k)fluoranthene	5.2 J	8.5 J	7.5 J		0.8			
Benzo(g,h,i)perylene	9.2	14	12		100			
Benzo(a)pyrene	12	24	21		1			
Chrysene	10	22	20		1			
Dibenzo(a,h)anthracene	2.5 J	4.4 J	3.7 J		0.33			
Dibenzofuran	ND	0.65 J	3.6 J		7			
Fluoranthene	18	48	50		100			
Fluorene	ND	1.5 J	4.6 J		30			
Indeno(1,2,3-cd)pyrene	8.3	14	11		0.5			
2-Methylnaphthalene	ND	0.4 J	2.6 J					
Naphthalene	ND	0.38 J	6.1 J		12			
Phenanthrene	4 J	19	33		100			
Pyrene	14 J	37	38		100			
TOTAL SVOCs (mg/kg)	114	259	278					
Polychlorinated Biphenyls (PC	Bs) - mg/kg							
Aroclor 1254			0.29		0.1			
Aroclor 1260			0.22 J		0.1			
Inorganic Compounds 2 - mg/l	kg				-			
Aluminum, Total		13800						
Arsenic, Total	11.6 J	36.7 J	11.8		13			
Barium, Total		166 J			350			
Beryllium, Total		2.1			7.2			
Cadmium, Total	1.3	4.1	1.2		2.5			
Calcium, Total		87000 J						
Chromium, Total	175 J	59.1 J	35.8		30			
Cobalt, Total		6.8						
Copper, Total		119 J			50			
Iron, Total		45300 J						
Lead, Total	141 J	280 J	151		63			
Magnesium, Total		19400						
Manganese, Total		3710			1,600			
	•				*			

TABLE 6A

SOIL ANALYTICAL SUMMARY FOR AREA OF ASSESSMENT 3

Remedial Investigation Report Phase I Business Park Area - Brownfield Cleanup Program Tecumseh Redevelopment, Inc.

	Sample I	Location, Depth	Interval (fbgs),	and Type	Unrestricted
Parameter ¹	TP-3-(1-2)	TP-3-(1-2)	P-3-(1-2) SS-(19-21)		SCO
i didiliotoi	0.0 - 1.0	1.0 - 3.0	0.0 - 1.0	0.0 - 1.0	(mg/kg)
	composite	composite	composite	grab	(9,9)
Inorganic Compounds 2 - mg/	′kg				
Mercury, Total	0.161	0.08	0.217		0.18
Nickel, Total		18.6			30
Potassium, Total		1090			
Sodium, Total		633			
Vanadium, Total		33.2			
Zinc, Total		452			109
Cyanide, Total	ND	ND	ND		27
Dioxins - mg/kg					
2,3,7,8-TCDD				ND	
Herbicides - mg/kg					
2,4-D				ND	
Pentachlorophenol				ND	
Pesticides - mg/kg					
4,4'-DDT				0.094	0.0033

Notes:

- 1. Only those parameters detected at a minimum of one sample location are presented in this table; all other compounds were reported as non-detect.
- 2. Sample TP-3-(1-2) (1.0 3.0) analyzed for TAL Metals, all other samples analyzed for arsenic, cadmium, chromium, cyanide, lead, & mercury, only.
- 3. J = Estimated value; result is less than the sample quantitation limit but greater than zero.
- 4. ND = parameter not detected above laboratory detection limit.
- 5. SCO = Soil Cleanup Objective (Protection of Public Health Commercial), per NYSDEC 6NYCRR Part 375-6.8(b), Final December 2006.
- 6. " -- " = not analyzed for this parameter or no individual SCO
 7. " RED TEXT " = Data was qualified per the third party Data Usability Summary Report (DUSR).

compound	= Polycyclic Aromatic Hydrocarbon (PAH)
compound	= TAL Metal
BOLD	= Value exceeds Unrestricted SCO

TABLE 6B

SOIL ANALYTICAL SUMMARY FOR AREA OF ASSESSMENT 3

Remedial Investigation Report Phase I Business Park Area - Brownfield Cleanup Program Tecumseh Redevelopment, Inc.

	Sample I	Sample Location, Depth Interval (fbgs), and Type						
Parameter ¹	TP-3-(1-2)	TP-3-(1-2)	SS-(19-21)	MW-13A	Commercial			
Farameter	0.0 - 1.0	1.0 - 3.0	0.0 - 1.0	0.0 - 1.0	sco			
	composite	composite	composite	grab	(mg/kg)			
Headspace Determination (pp	pm) - 10.6 eV Lam _l		amples only]		1			
Total VOCs		0.0 (max)			<u> </u>			
PID Field Scans (ppm) - 10.6	1	ı	T					
Total VOCs	0.0 (max)	0.0 (max)			<u> </u>			
Base-Neutral Semi-Volatile O		is (SVOCs - Met	hod 8270) - mg/	kg				
Acenaphthene	ND	0.68 J	2.5 J		500			
Acenaphthylene	3.9 J	4.8 J	3.1 J		500			
Anthracene	1.9 J	4.8 J	9.3		500			
Benzo(a)anthracene	10	23	24		5.6			
Benzo(b)fluoranthene	15 J	32 J	26 J		5.6			
Benzo(k)fluoranthene	5.2 J	8.5 J	7.5 J	-	56			
Benzo(g,h,i)perylene	9.2	14	12		500			
Benzo(a)pyrene	12	24	21		1			
Chrysene	10	22	20		56			
Dibenzo(a,h)anthracene	2.5 J	4.4 J	3.7 J		0.56			
Dibenzofuran	ND	0.65 J	3.6 J		350			
Fluoranthene	18	48	50		500			
Fluorene	ND	1.5 J	4.6 J		500			
Indeno(1,2,3-cd)pyrene	8.3	14	11		5.6			
2-Methylnaphthalene	ND	0.4 J	2.6 J					
Naphthalene	ND	0.38 J	6.1 J		500			
Phenanthrene	4 J	19	33		500			
Pyrene	14 J	37	38		500			
TOTAL SVOCs (mg/kg)	114	259	278					
Polychlorinated Biphenyls (F	PCBs) - mg/kg							
Aroclor 1254			0.29		1			
Aroclor 1260			0.22 J		1			
Inorganic Compounds ² - mg	n/ka							
Aluminum, Total		13800						
Arsenic, Total	11.6 J	36.7 J	11.8		16			
Barium, Total		166 J			400			
Beryllium, Total		2.1			590			
Cadmium, Total	1.3	4.1	1.2		9.3			
Calcium, Total		87000 J						
Chromium, Total	175 J	59.1 J	35.8		1,500			
Cobalt, Total		6.8						
Copper, Total		119 J			270			
Iron, Total		45300 J						
Lead, Total	141 J	280 J	151		1,000			
Magnesium, Total	141 J	19400						

TABLE 6B

SOIL ANALYTICAL SUMMARY FOR AREA OF ASSESSMENT 3

Remedial Investigation Report Phase I Business Park Area - Brownfield Cleanup Program Tecumseh Redevelopment, Inc.

	Sample L	Sample Location, Depth Interval (fbgs), and Type						
Parameter ¹	TP-3-(1-2)	TP-3-(1-2)	SS-(19-21)	MW-13A	Commercial			
i didiliotoi	0.0 - 1.0	1.0 - 3.0	0.0 - 1.0	0.0 - 1.0	SCO			
	composite	composite	composite	grab	(mg/kg)			
Manganese, Total		3710			10,000			
Inorganic Compounds 2 - mg/kg	g							
Mercury, Total	0.161	0.08	0.217		2.8			
Nickel, Total		18.6			310			
Potassium, Total		1090						
Sodium, Total		633						
Vanadium, Total		33.2						
Zinc, Total	-	452	1		10,000			
Cyanide, Total	ND	ND	ND		27			
Dioxins - mg/kg								
2,3,7,8-TCDD				ND				
Herbicides - mg/kg								
2,4-D				ND				
Pentachlorophenol				ND				
Pesticides - mg/kg	Pesticides - mg/kg							
4,4'-DDT				0.094	47			

Notes:

- 1. Only those parameters detected at a minimum of one sample location are presented in this table; all other compounds were reported as non-detect.
- 2. Sample TP-3-(1-2) (1.0 3.0) analyzed for TAL Metals, all other samples analyzed for arsenic, cadmium, chromium, cyanide, lead, & mercury, only.
- 3. J = Estimated value; result is less than the sample quantitation limit but greater than zero.
- 4. ND = parameter not detected above laboratory detection limit.
- 5. SCO = Soil Cleanup Objective (Protection of Public Health Commercial), per NYSDEC 6NYCRR Part 375-6.8(b), Final December 2006.
- 6. " -- " = not analyzed for this parameter or no individual SCO
- 7. " RED TEXT " = Data was qualified per the third party Data Usability Summary Report (DUSR).

compound	= Polycyclic Aromatic Hydrocarbon (PAH)
compound	= TAL Metal
BOLD	= Value exceeds Restricted-Commerical SCO

TABLE 7A

SOIL ANALYTICAL SUMMARY FOR AREA OF ASSESSMENT 4

Remedial Investigation Report Phase I Business Park Area - Brownfield Cleanup Program Tecumseh Redevelopment, Inc.

	S	ample Loca	tion, Depth	Interval (fb	gs), and Typ	e	Unrestricte
Parameter ¹	TP-4 (1-5)	TP-4 (1-5)	SS-04	SS-05	SS-25	SS-26	d SCO
Farameter	0.0 - 1.0	1.0 - 3.0	0.0 - 1.0	0.0 - 1.0	0.0 - 1.0	0.0 - 1.0	(mg/kg)
	composite	composite	grab	grab	grab	grab	(ilig/kg)
Headspace Determination (ppm)) - 10.6 eV L	amp [subsu	rface sampl	les only]			
Total VOCs		0.0 (max)					
PID Field Scans (ppm) - 10.6 eV	Lamp						
Total VOCs	*	*	-				
Base-Neutral Semi-Volatile Orga	anic Compo	unds (SVOC	s - Method	8270) - mg/l	kg		
Acenaphthene	ND	ND			0.16 J		20
Acenaphthylene	ND	0.68 J			0.27 J		100
Anthracene	1.2 J	0.61 J			0.78		100
Benzo(a)anthracene	4.4 J	1.9			1.6		1
Benzo(b)fluoranthene	5.5 J	3.1 J			2.2 J		1
Benzo(k)fluoranthene	1.8 J	0.99 J			0.61 J		8.0
Benzo(g,h,i)perylene	2.4 J	1.6 J			0.81		100
Benzo(a)pyrene	4.2 J	2.2			1.6		1
Chrysene	4.4 J	2			1.6		1
Dibenzo(a,h)anthracene	0.72 J	0.5 J			0.23 J		0.33
Dibenzofuran	ND	0.13 J			0.24 J		7
Fluoranthene	9	3.3			4		100
Fluorene	ND	0.2 J			0.42		30
Indeno(1,2,3-cd)pyrene	2.1 J	1.4 J			0.78		0.5
2-Methylnaphthalene	ND	ND			0.068 J		
Naphthalene	ND	0.11 J			0.065 J		12
Phenanthrene	3.3 J	2			3.2		100
Pyrene	8.1 J	2.8			2.8		100
TOTAL SVOCs (mg/kg)	47.1	23.5			21.4		
Polychlorinated Biphenyls (PCE	s) - mg/kg						
Aroclor 1248			1.2	0.54			0.1
Aroclor 1254			3.0	ND			0.1
Aroclor 1260			ND	0.38			0.1
Inorganic Compounds - mg/kg							
Arsenic, Total	9.3 J	7			7.6	12.6	13
Cadmium, Total	3.2 J	2.1			1.4	5.8	2.5
Chromium, Total	114 J	82.3 J			67.8	245	30
Lead, Total	642 J	800 J			166	355	63
Mercury, Total	1.5 J	0.559 J			0.148	3.8	0.18
Cyanide, Total	ND	ND			3.5 J	8.2 J	27
Wet Chemistry - units shown pa	renthentica	lly					
pH (S.U.)						8.40	

- 1. Only those parameters detected at a minimum of one sample location are presented in this table; all other compounds reported as non-detect.
- Only those parameters detected at a minimum of one sample location are presented in this.
 J = Estimated value; result is less than the sample quantitation limit but greater than zero.
 ND = parameter not detected above laboratory detection limit.
- 4. SCO = Soil Cleanup Objective (Protection of Public Health Commercial), per NYSDEC 6NYCRR Part 375-6.8(b), Final December 2006.
- " -- " = not analyzed for this parameter or no individual SCO
- 6. " * " = Field scan was not obtained due to inclement weather conditions.
- 7. "RED TEXT" = Data was qualified per the third party Data Usability Summary Report (DUSR).

Color Code:

= Polycyclic Aromatic Hydrocarbon (PAH) BOLD = Value exceeds Unrestricted SCO

TABLE 7B

SOIL ANALYTICAL SUMMARY FOR AREA OF ASSESSMENT 4

Remedial Investigation Report Phase I Business Park Area - Brownfield Cleanup Program Tecumseh Redevelopment, Inc.

	S	Sample Location, Depth Interval (fbgs), and Type							
Parameter ¹	TP-4 (1-5)		SS-04	SS-05	SS-25	SS-26	Commerical		
Parameter	0.0 - 1.0	1.0 - 3.0	0.0 - 1.0	0.0 - 1.0	0.0 - 1.0	0.0 - 1.0	sco		
Editation in the second	composite	composite	grab	grab	grab	grab	(mg/kg)		
Headspace Determination (p)	om) - 10.6 eV L	amp [subsu	rface samp	les only]	7.4 F. 12 - 12 - 12 - 12 - 12 - 12 - 12 - 12				
Total VOCs		0.0 (max)							
PID Field Scans (ppm) - 10.6	eV Lamp								
Total VOCs	*	*	-						
Base-Neutral Semi-Volatile O	rganic Compo	unds (SVOC	s - Method	8270) - mg/	kg				
Acenaphthene	ND	ND			0.16 J		500		
Acenaphthylene	ND	0.68 J			0.27 J		500		
Anthracene	1.2 J	0.61 J			0.78		500		
Benzo(a)anthracene	4.4 J	1.9			1.6		5.6		
Benzo(b)fluoranthene	5.5 J	3.1 J			2.2 J		5.6		
Benzo(k)fluoranthene	1.8 J	0.99 J			0.61 J		56		
Benzo(g,h,i)perylene	2.4 J	1.6 J			0.81		500		
Benzo(a)pyrene	4.2 J	2.2			1.6		1		
Chrysene	4.4 J	2			1.6		56		
Dibenzo(a,h)anthracene	0.72 J	0.5 J			0.23 J		0.56		
Dibenzofuran	ND	0.13 J			0.24 J		350		
Fluoranthene	9	3.3			4		500		
Fluorene	ND	0.2 J			0.42	2/2	500		
Indeno(1,2,3-cd)pyrene	2.1 J	1.4 J			0.78		5.6		
2-Methylnaphthalene	ND	ND			0.068 J				
Naphthalene	ND	0.11 J			0.065 J		500		
Phenanthrene	<u>3</u> .3 J	2			3.2		500		
Pyrene	8,1 J	2.8			2.8		500		
TOTAL SVOCs (mg/kg)	47.12	23.52	0	0	21.43	0			
Polychlorinated Biphenyls (P	CBs) - mg/kg		MARKET EVE		克尼尼尼亚				
Aroclor 1248			1.2	0.54			1		
Aroclor 1254			3.0	ND			1		
Aroclor 1260			ND	0.38			1		
Inorganic Compounds - mg/k	g								
Arseniç, Total	9.3 J	7			7.6	12.6	16		
Cadmium, Total	3.2 J	2.1			1.4	5.8	9.3		
Chromium, Total	114 J	82.3 J			67.8	245	1,500		
Lead, Total	642 J	800 J			166	355	1,000		
Mercury, Total	1.5 J	0.559 J			<u>0.148</u>	3.8	2.8		
Cyanide, Total	ND	ND			3.5 J	8.2 J	27		
Wet Chemistry - units shown	parenthentica	lly		1000年度以前		A-PANISH	7		
pH (S.U.)					20	8.40			

- 1 Only those parameters detected at a minimum of one sample location are presented in this table; all other compounds reported as non-detect.
- 2. J = Estimated value; result is less than the sample quantitation limit but greater than zero.
- 3. ND = parameter not detected above laboratory detection limit.
- 4. SCO = Soil Cleanup Objective (Protection of Public Health Commercial), per NYSDEC 6NYCRR Part 375-6.8(b), Final December 2006.
- 5. "-" = not analyzed for this parameter or no individual SCO
 6. "*" = Field scan was not obtained due to inclement weather conditions:
- 7 "RED TEXT" = Data was qualified per the third party Data Usability **3uf**nmary Report (DUSR).

Color Code:

compound	
BOLD	

= Polycyclic Aromatic Hydrocarbon (PAH)

= Value exceeds Restricted-Commercial SCO

TABLE 8A

SOIL ANALYTICAL SUMMARY FOR AREA OF ASSESSMENT 5

Remedial Investigation Report Phase I Business Park Area - Brownfield Cleanup Program Tecumseh Redevelopment, Inc.

		Sample Lo	ocation, Depth	Interval (fbgs)	, and Type		Unrestricted
Parameter ¹	TP-5-(1-5)	TP-5-(1245)	TP-5-3	TP-5-(6-10)	TP-5-(6-10)	TP-5-11	SCO
Farameter	0.0 - 1.0	1.0 - 4.5	1.0 - 4.5	0.0 - 1.0	1.0 - 4.0	0.0 - 1.0	(mg/kg)
	composite	composite	grab	composite	composite	grab	(mg/kg)
Headspace Determination (ppm) - 10.6 eV Lan	np [subsurface	samples only]				
Total VOCs		0.0 (max)	0.0		0.0 (max)		
PID Field Scans (ppm) - 10.6 eV							
Total VOCs	0.0 (max)	0.0 (max)	0.0	0.0 (max)	0.0 (max)	0.0	
STARS Volatile Organic Compo	unds (VOCs -			ı			
Naphthalene			1.6				12
TOTAL VOCs (mg/kg)			1.6				
Base-Neutral Semi-Volatile Org					0.40	0.000 1	
Acenaphthene	4.4 J	2.1 J	2.2 J	0.54 J	0.19 J	0.039 J	20
Acenaphthylene	5.6 J	10	6.2 J	0.65 J	0.18 J	0.15 J	100
Anthracene	24	20	15	1.9 J	0.52 J	0.17 J	100
Benzo(a)anthracene	36	41	31	4.6 J	1.3 J	0.68	1
Benzo(b)fluoranthene	40 J	48 J	36 J	6.2 J	2.3 J	1.2 J	1
Benzo(k)fluoranthene	13 J	18 J	9.8 J	2.1 J	0.83 J	0.31 J	0.8
Benzo(g,h,i)perylene	17	22	17	2.7 J	1 J	0.44	100
Benzo(a)pyrene	32	40	29	4.4 J	1.5	0.75	1
Chrysene	33	37	27	4.1 J	1.3 J	0.71	1
Dibenzo(a,h)anthracene	4.8 J	5.8 J	4.4 J	0.86 J	0.31 J	0.12 J	0.33
Dibenzofuran	7.7	6.6 J	4.3 J	ND 10	0.21 J	0.079 J	7
Fluoranthene	100	130 D	94	10	2.5	1.1	100
Fluorene	13	12	9	0.66 J	0.29 J	0.047 J	30
Indeno(1,2,3-cd)pyrene	16	20	16	2.4 J	0.92 J	0.4	0.5
2-Methylnaphthalene	2.8 J	1.4 J	0.99 J	ND	0.16 J	0.087 J	
Naphthalene	18	2.9 J	2.5 J	ND .	0.41 J	0.078 J	12
Phenanthrene	82	92	66	5.5 J	1.9	0.6	100
Pyrene	72	84	68	7.3 J	1.9	0.86	100
TOTAL SVOCs (mg/kg)	521.3	592.8	438.4	53.9	17.7	7.8	
Polychlorinated Biphenyls (PCI			T	I			T
TOTAL PCBs (mg/kg)							
Inorganic Compounds 2 - mg/k		I					1
Aluminum, Total	6630					7.5	
Arsenic, Total	12.8 J	2.8 J	103 J	23.5	12.8		13
Barium, Total	73 J						350
Beryllium, Total	0.99	ND				0.52 J	7.2
Cadmium, Total Calcium, Total	8.2 84300 J	ND 	94.9	16 J	9.3 J 	0.52 J	2.5
Chromium, Total	299 J	3.3 J	161 J	138 J	75.1 J	47.7 J	30
Cobalt, Total	6.9	3.3 J 	161 J	138 J	/5.1 J	47.7 J	30
Copper, Total	126 J						50
Iron, Total	78700 J						
Lead, Total	535 J	6.4 J				50.8 J	63
Magnesium, Total	18600	0.4 J 	10200 J	814 J 	427 J	50.6 J 	
Manganese, Total	14500						1,600
Mercury, Total	1.9	0.591	0.375	2.0	5.9	0.068	0.18
Nickel. Total	27.4	 				0.000	30
Potassium, Total	639 J						
Selenium, Total	4.7						3.9
Sodium, Total	225 J						3.9
Vanadium, Total	211						
Zinc, Total	905						109
Cyanide, Total	ND	ND	ND	ND	ND	ND	27
Oyaniue, rotai	טאו	טאו	עאו	טאו	IND	טאו	

Notes:

- Notes:

 1. Only those parameters detected at a minimum of one sample location are presented in this table; all other compounds were reported as non-detect.

 2. Sample TP-5-(1-5) (0.0 1.0) was analyzed for TAL Metals, all other samples were analyzed for arsenic, cadmium, chromium, cyanide, lead, and mercury, only.

 3. D = Analyzed at the secondary dilution factor.

 4. J = Estimated value; result is less than the sample quantitation limit but greater than zero.

 5. ND = parameter not detected above laboratory detection limit.

 6. SCO = Soil Cleanup Objective (Protection of Public Health Commercial), per NYSDEC 6NYCRR Part 375-6.8(b), Final December 2006.

 7. "--" = not analyzed for this parameter or no individual SCO

 8. " RED TEXT " = Data was qualified per the third party Data Usability Summary Report (DUSR).

compound	= Polycyclic Aromatic Hydrocarbon (PAF
compound	= TAL Metal
BOLD	= Value exceeds Unrestricted SCO

TABLE 8A (continued)

SOIL ANALYTICAL SUMMARY FOR AREA OF ASSESSMENT 5

Remedial Investigation Report Phase I Business Park Area - Brownfield Cleanup Program Tecumseh Redevelopment, Inc.

	Sa	mple Location	, Depth Interva	l (fbgs), and T	уре	Unrestricted
Parameter ¹	TP-5-11	TP-5-12	SS-(1-2)	SS-03	SS-27	SCO
Parameter	1.0 - 4.0	1.0 - 3.5	0.0 - 1.0	0.0 - 1.0	0.0 - 1.0	
	grab	grab	composite	grab	grab	(mg/kg)
Headspace Determination (ppm) - 10.6 eV Lan	p [subsurface	samples only]			
Total VOCs	0.0	0.0				
PID Field Scans (ppm) - 10.6 eV						
Total VOCs	0.0	0.0				-
STARS Volatile Organic Compo	unds (VOCs -			l	ı	
Naphthalene						12
TOTAL VOCs (mg/kg)						
Base-Neutral Semi-Volatile Orga					0.50	
Acenaphthene	0.16 J		ND		0.58 J	20
Acenaphthylene	0.31 J		ND		ND	100
Anthracene	0.54 J		0.35 J		1.4 J	100
Benzo(a)anthracene	1.9		1.6 J		11	1
Benzo(b)fluoranthene	2.4 J		2.4 J		23 J	1
Benzo(k)fluoranthene	0.87 J		0.78 J		25 J	0.8
Benzo(g,h,i)perylene	1.1		0.93 J		8.9	100
Benzo(a)pyrene	1.9		1.7 J		12	1
Chrysene	1.8		1.7 J		12	1
Dibenzo(a,h)anthracene	0.32 J		0.27 J		2.6 J	0.33
Dibenzofuran	0.19 J		ND		ND	7
Fluoranthene	3.3		3 J		24	100
Fluorene	0.22 J		ND		0.55 J	30
Indeno(1,2,3-cd)pyrene	0.98		0.93 J		7.9	0.5
2-Methylnaphthalene	0.17 J		ND		ND	
Naphthalene	0.29 J		ND		ND	12
Phenanthrene	1.6		1 J		11	100
Pyrene	2.8		2.6 J		19	100
TOTAL SVOCs (mg/kg)	20.9	0	17.3	0	158.9	
Polychlorinated Biphenyls (PCI				· · · -	ı	
TOTAL PCBs (mg/kg)				ND		
Inorganic Compounds 2 - mg/k		l e		l e	ı	1
Aluminum, Total						
Arsenic, Total	7.7	43.7	13.2			13
Barium, Total						350
Beryllium, Total						7.2
Cadmium, Total	3 J	45.3 J	11.2			2.5
Calcium, Total						
Chromium, Total	141 J	98.7 J	39.5			30
Cobalt, Total						
Copper, Total						50
Iron, Total	457.1					
Lead, Total	157 J	1340 J	574			63
Magnesium, Total						
Manganese, Total						1,600
Mercury, Total	0.045	0.349	2.5			0.18
Nickel, Total						30
Potassium, Total						
Selenium, Total						3.9
Sodium, Total						-
Vanadium, Total						
Zinc, Total	 ND	 ND				109
Cyanide, Total	ND	ND	ND			27

- Notes:

 1. Only those parameters detected at a minimum of one sample location are presented in this table; all other compounds were reported as non-detec

 2. Sample TP-5-(1-5) (0.0 1.0) was analyzed for TAL Metals, all other samples were analyzed for arsenic, cadmium, chromium, cyanide, lead, and n

 3. D = Analyzed at the secondary dilution factor.

 4. J = Estimated value; result is less than the sample quantitation limit but greater than zero.

 5. ND = parameter not detected above laboratory detection limit.

 6. SCO = Soil Cleanup Objective (Protection of Public Health Commercial), per NYSDEC 6NYCRR Part 375-6.8(b), Final December 2006.

 7. "--" = not analyzed for this parameter or no individual SCO

 8. "PED TEXT" = Data was qualified por the bird party. Data Ulcability Summary Report (DUSP)

- 8. " RED TEXT " = Data was qualified per the third party Data Usability Summary Report (DUSR).

00101 0000.	
compound	= Polycyclic Aromatic Hydrocarbon (PAH
compound	= TAL Metal
BOLD	= Value exceeds Unrestricted SCO

TABLE 8B

SOIL ANALYTICAL SUMMARY FOR AREA OF ASSESSMENT 5

Remedial Investigation Report Phase I Business Park Area - Brownfield Cleanup Program Tecumseh Redevelopment, Inc.

		Sample Lo	ocation, Depth	Interval (fbgs)	, and Type		Restricted-
Parameter ¹	TP-5-(1-5)	TP-5-(1245)	TP-5-3	TP-5-(6-10)	TP-5-(6-10)	TP-5-11	Commercial
Parameter	0.0 - 1.0	1.0 - 4.5	1.0 - 4.5	0.0 - 1.0	1.0 - 4.0	0.0 - 1.0	sco
	composite	composite	grab	composite	composite	grab	(mg/kg)
Headspace Determination (pp	m) - 10.6 eV Lan	np [subsurface	samples only	1			
Total VOCs		0.0 (max)	0.0		0.0 (max)	-	
PID Field Scans (ppm) - 10.6 e	V Lamp						
Total VOCs	0.0 (max)	0.0 (max)	0.0	0.0 (max)	0.0 (max)	0.0	
STARS Volatile Organic Comp	ounds (VOCs -	Method 8021) -	mg/kg				
Naphthalene			1.6				500
TOTAL VOCs (mg/kg)			1.6				
Base-Neutral Semi-Volatile Or	ganic Compoun	ds (SVOCs - M	ethod 8270) - r	ng/kg			
Acenaphthene	4.4 J	2.1 J	2.2 J	0.54 J	0.19 J	0.039 J	500
Acenaphthylene	5.6 J	10	6.2 J	0.65 J	0.18 J	0.15 J	500
Anthracene	24	20	15	1.9 J	0.52 J	0.17 J	500
Benzo(a)anthracene	36	41	31	4.6 J	1.3 J	0.68	5.6
Benzo(b)fluoranthene	40 J	48 J	36 J	6.2 J	2.3 J	1.2 J	5.6
Benzo(k)fluoranthene	13 J	18 J	9.8 J	2.1 J	0.83 J	0.31 J	56
Benzo(g,h,i)perylene	17	22	17	2.7 J	1 J	0.44	500
Benzo(a)pyrene	32	40	29	4.4 J	1.5	0.75	1
Chrysene	33	37	27	4.1 J	1.3 J	0.71	56
Dibenzo(a,h)anthracene	4.8 J	5.8 J	4.4 J	0.86 J	0.31 J	0.12 J	0.56
Dibenzofuran	7.7	6.6 J	4.3 J	ND	0.21 J	0.079 J	350
Fluoranthene	100	130 D	94	10	2.5	1.1	500
Fluorene	13	12	9	0.66 J	0.29 J	0.047 J	500
Indeno(1,2,3-cd)pyrene	16	20	16	2.4 J	0.92 J	0.4	5.6
2-Methylnaphthalene	2.8 J	1.4 J	0.99 J	ND	0.16 J	0.087 J	-
Naphthalene	18	2.9 J	2.5 J	ND	0.41 J	0.078 J	500
Phenanthrene	82	92	66	5.5 J	1.9	0.6	500
Pyrene	72	84	68	7.3 J	1.9	0.86	500
TOTAL SVOCs (mg/kg)	521.3	592.8	438.4	53.9	17.7	7.8	
Polychlorinated Biphenyls (PC	CBs) - mg/kg						
TOTAL PCBs (mg/kg)							
Inorganic Compounds 2 - mg/							
Aluminum, Total	6630						
Arsenic, Total	12.8 J	2.8 J	103 J	23.5	12.8	7.5	16
Barium, Total	73 J						400
Beryllium, Total	0.99						590
Cadmium, Total	8.2	ND	94.9	16 J	9.3 J	0.52 J	9.3
Calcium, Total	84300 J						
Chromium, Total	299 J	3.3 J	161 J	138 J	75.1 J	47.7 J	1,500
Cobalt, Total	6.9						-
Copper, Total	126 J						270
Iron, Total	78700 J						
Lead, Total	535 J	6.4 J	10200 J	814 J	427 J	50.8 J	1,000
Magnesium, Total	18600						
Manganese, Total	14500						10,000
Mercury, Total	1.9	0.591	0.375	2.0	5.9	0.068	2.8
Nickel, Total	27.4						310
Potassium, Total	639 J						
Selenium, Total	4.7						1,500
Sodium, Total	225 J						
Vanadium, Total	211						
Zinc, Total	905						10,000
Cyanide, Total	ND	ND	ND	ND	ND	ND	27

- Notes:

 1. Only those parameters detected at a minimum of one sample location are presented in this table; all other compounds were reported as non-detect.

 2. Sample TP-5-(1-5) (0.0 1.0) was analyzed for TAL Metals, all other samples were analyzed for arsenic, cadmium, chromium, cyanide, lead, and mercury, only.

 3. D = Analyzed at the secondary dilution factor.

 4. J = Estimated value; result is less than the sample quantitation limit but greater than zero.

 5. ND = parameter not detected above laboratory detection limit.

 6. SCO = Soil Cleanup Objective (Protection of Public Health Commercial), per NYSDEC 6NYCRR Part 375-6.8(b), Final December 2006.

 7. " -- " = not analyzed for this parameter or no individual SCO

 8. " RED TEXT " = Data was qualified per the third party Data Usability Summary Report (DUSR).

Color Code:

= Polycyclic Aromatic Hydrocarbon (PAH) = TAL Metal compound BOLD = Value exceeds Restricted-Commercial SCO

TABLE 8B (continued)

SOIL ANALYTICAL SUMMARY FOR AREA OF ASSESSMENT 5

Remedial Investigation Report Phase I Business Park Area - Brownfield Cleanup Program Tecumseh Redevelopment, Inc.

	Sa	mple Location	. Depth Interva	l (fbgs), and T	vpe	Restricted-
a . 1	TP-5-11	TP-5-12	SS-(1-2)	SS-03	SS-27	Commercial
Parameter ¹	1.0 - 4.0	1.0 - 3.5	0.0 - 1.0	0.0 - 1.0	0.0 - 1.0	sco
	grab	grab	composite	grab	grab	(mg/kg)
Headspace Determination (ppn	n) - 10.6 eV Lan	p [subsurface	samples only)			
Total VOCs	0.0	0.0				
PID Field Scans (ppm) - 10.6 eV	/ Lamp					
Total VOCs	0.0	0.0				
STARS Volatile Organic Compo	ounds (VOCs - I		mg/kg			
Naphthalene						500
TOTAL VOCs (mg/kg)	<u> </u>					
Base-Neutral Semi-Volatile Org		ds (SVOCs - IVI			0.50	500
Acenaphthene	0.16 J		ND ND		0.58 J	500 500
Acenaphthylene	0.31 J				ND 1.1.1	
Anthracene	0.54 J		0.35 J		1.4 J	500
Benzo(a)anthracene Benzo(b)fluoranthene	1.9 2.4 J		1.6 J 2.4 J		11 23 J	5.6 5.6
	0.87 J		0.78 J		25 J	
Benzo(k)fluoranthene Benzo(g,h,i)perylene	1.1		0.78 J 0.93 J		8.9	56 500
Benzo(g,n,n)perylene Benzo(a)pyrene	1.9		1.7 J		12	1
Chrysene	1.8		1.7 J		12	56
Dibenzo(a,h)anthracene	0.32 J		0.27 J		2.6 J	0.56
Dibenzofuran	0.32 J		ND		ND	350
Fluoranthene	3.3		3 J		24	500
Fluorene	0.22 J		ND		0.55 J	500
Indeno(1,2,3-cd)pyrene	0.98		0.93 J		7.9	5.6
2-Methylnaphthalene	0.17 J		ND		ND	J.0
Naphthalene	0.17 J		ND ND		ND	500
Phenanthrene	1.6		1 J		11	500
Pyrene	2.8		2.6 J		19	500
TOTAL SVOCs (mg/kg)	20.85	0	17.26	0	158.9	
Polychlorinated Biphenyls (PC		U	17.20	J	100.0	
TOTAL PCBs (mg/kg)				ND		1
Inorganic Compounds 2 - mg/kg				110		
Aluminum, Total						
Arsenic, Total	7.7	43.7	13.2			16
Barium, Total						400
Beryllium, Total						590
Cadmium, Total	3 J	45.3 J	11.2			9.3
Calcium, Total						
Chromium, Total	141 J	98.7 J	39.5			1,500
Cobalt, Total						
Copper, Total				1		270
Iron, Total						
Lead, Total	157 J	1340 J	574	-		1,000
Magnesium, Total						
Manganese, Total				-		15,000
Mercury, Total	0.045	0.349	2.5			2.8
Nickel, Total						310
Potassium, Total						
Selenium, Total						1,500
Sodium, Total						
Vanadium, Total						
Zinc, Total						89,000
Cyanide, Total	ND	ND	ND			27

- Notes:

 1. Only those parameters detected at a minimum of one sample location are presented in this table; all other compounds were reported as non-detect.

 2. Sample TP-5-(1-5) (0.0 1.0) was analyzed for TAL Metals, all other samples were analyzed for As, Cd, Cr, CN, Pb, & Hg, only.

 3. D = Analyzed at the secondary dilution factor.

 4. J = Estimated value; result is less than the sample quantitation limit but greater than zero.

 5. ND = parameter not detected above laboratory detection limit.

 6. SCO = Soil Cleanup Objective (Protection of Public Health Commercial), per NYSDEC 6NYCRR Part 375-6.8(b), Final December 2006.

 7. " -- " = not analyzed for this parameter or no individual SCO

 8. " RED TEXT " = Data was qualified per the third party Data Usability Summary Report (DUSR).

Color Code:

= Polycyclic Aromatic Hydrocarbon (PAH) = TAL Metal compound BOLD = Value exceeds Restricted-Commercial SCO

TABLE 9A

SOIL ANALYTICAL SUMMARY FOR AREA OF ASSESSMENT 6

Remedial Investigation Report Phase I Business Park Area - Brownfield Cleanup Program Tecumseh Redevelopment, Inc.

				Sample Loc	ation, Depth	Interval (fbg	s), and Type				Unrestricted
Parameter ¹	TP-6-(1-5)	TP-6-(1-5)	TP-6-6	TP-6-7	TP-6-10	SS-07	SS-08	SS-28	SS-29	SS-30	SCO
Parameter	0.0 - 2.0	2.0 - 6.0	2.0 - 6.0	2.0 - 4.0	2.0 - 6.0	0.0 - 1.0	0.0 - 1.0	0.0 - 1.0	0.0 - 1.0	0.0 - 1.0	(mg/kg)
	composite	composite	grab	grab	grab	grab	grab	grab	grab	grab	(ilig/kg)
Headspace Determination (ppn	n) - 10.6 eV L	amp [subsur	face sample	s only]					-		
Total VOCs		0.0 (max)	0.0	0.0	0.0						
PID Field Scans (ppm) - 10.6 eV	/ Lamp										
Total VOCs	1.0 (max)	1.1 (max)	0.0	0.0	0.0						
Base-Neutral Semi-Volatile Org				270) - mg/kg							
Acenaphthene	5.4 J	6.8 J	0.84 J						0.31 J		20
Acenaphthylene	ND	ND	2 J						0.23 J		100
Anthracene	14 J	14 J	3.8 J						0.94 J		100
Benzo(a)anthracene	30 J	28 J	17						2.4 J		1
Benzo(b)fluoranthene	36 J	27 J	16 J						3.2 J		1
Benzo(k)fluoranthene	41 J	6.8 J	6 J						1.1 J		0.8
Benzo(g,h,i)perylene	15 J	14 J	9						1.7 J		100
Benzo(a)pyrene	22 J	22 J	14						2.5 J		1
Chrysene	28 J	25 J	17						2.5 J		1
Dibenzo(a,h)anthracene	4.5 J	4.1 J	2.7 J						0.4 J		0.33
Dibenzofuran	3.1 J	3.6 J	0.5 J						0.32 J		7
Fluoranthene	71	65	40						5.6		100
Fluorene	5.8 J	6.4 J	0.95 J						0.45 J		30
Indeno(1,2,3-cd)pyrene	13 J	12 J	8.2						1.4 J		0.5
Naphthalene	ND	2.2 J	0.4 J						0.57 J		12
Phenanthrene	52	51	15	-					4.1		100
Pyrene	55	51	35						4.6		100
TOTAL SVOCs (mg/kg)	395.8	338.9	188.4	0	0	0	0	0	32.32	0	
Polychlorinated Biphenyls (PC	Bs) - mg/kg										
Aroclor 1254					0.58	ND	0.88	ND			0.1
Aroclor 1260					ND	1.6	ND	0.35			0.1
Inorganic Compounds - mg/kg											
Arsenic, Total	14.7 J	22.6 J	152 J	39.2 J					17.7	18.5	13
Cadmium, Total	5.3 J	5.1 J	7.9 J	3 J					8	6.7	2.5
Chromium, Total	123	99.1	242	52.8					171	97.5	30
Lead, Total	454	474	774	1660					440	549	63
Mercury, Total	1.2	1.1	0.429	0.362					0.389	3	0.18
Cyanide, Total	ND	ND	ND	2.0					ND	ND	27

Notes:

- Only those parameters detected at a minimum of one sample location are presented in this table; all other compounds were reported as non-detect.
 J = Estimated value; result is less than the sample quantitation limit but greater than zero.
- 3. ND = parameter not detected above laboratory detection limit.
- 4. SCO = Soil Cleanup Objective (Protection of Public Health Commercial), per NYSDEC 6NYCRR Part 375-6.8(b), Final December 2006.
- 5. " -- " = not analyzed for this parameter or no individual SCO
- 6. " RED TEXT " = Data was qualified per the third party Data Usability Summary Report (DUSR).

Color Code:

compound BOLD

= Polycyclic Aromatic Hydrocarbon (PAH) = Value exceeds Unrestricted SCO

TABLE 9B

SOIL ANALYTICAL SUMMARY FOR AREA OF ASSESSMENT 6

Remedial Investigation Report Phase I Business Park Area - Brownfield Cleanup Program Tecumseh Redevelopment, Inc.

				Sample Loc	ation, Depth	Interval (fbg	s), and Type				Restricted-
Parameter ¹	TP-6-(1-5)	TP-6-(1-5)	TP-6-6	TP-6-7	TP-6-10	SS-07	SS-08	SS-28	SS-29	SS-30	Commercial
Parameter	0.0 - 2.0	2.0 - 6.0	2.0 - 6.0	2.0 - 4.0	2.0 - 6.0	0.0 - 1.0	0.0 - 1.0	0.0 - 1.0	0.0 - 1.0	0.0 - 1.0	SCO
	composite	composite	grab	grab	grab	grab	grab	grab	grab	grab	(mg/kg)
Headspace Determination (ppm) - 10.6 eV La	mp [subsurfa	ace samples	only]							
Total VOCs		0.0 (max)	0.0	0.0	0.0			-			-
PID Field Scans (ppm) - 10.6 eV	Lamp										
Total VOCs	1.0 (max)	1.1 (max)	0.0	0.0	0.0			-			
Base-Neutral Semi-Volatile Orga	anic Compou	inds (SVOCs	- Method 82	70) - mg/kg							
Acenaphthene	5.4 J	6.8 J	0.84 J						0.31 J		500
Acenaphthylene	ND	ND	2 J						0.23 J		500
Anthracene	14 J	14 J	3.8 J					-	0.94 J		500
Benzo(a)anthracene	30 J	28 J	17						2.4 J		5.6
Benzo(b)fluoranthene	36 J	27 J	16 J						3.2 J		5.6
Benzo(k)fluoranthene	41 J	6.8 J	6 J						1.1 J		56
Benzo(g,h,i)perylene	15 J	14 J	9						1.7 J		500
Benzo(a)pyrene	22 J	22 J	14						2.5 J		1
Chrysene	28 J	25 J	17						2.5 J		56
Dibenzo(a,h)anthracene	4.5 J	4.1 J	2.7 J						0.4 J		0.56
Dibenzofuran	3.1 J	3.6 J	0.5 J						0.32 J		350
Fluoranthene	71	65	40						5.6		500
Fluorene	5.8 J	6.4 J	0.95 J						0.45 J		500
Indeno(1,2,3-cd)pyrene	13 J	12 J	8.2						1.4 J		5.6
Naphthalene	ND	2.2 J	0.4 J						0.57 J		500
Phenanthrene	52	51	15						4.1		500
Pyrene	55	51	35						4.6		500
TOTAL SVOCs (mg/kg)	395.8	338.9	188.4	0	0	0	0	0	32.32	0	
Polychlorinated Biphenyls (PCE	Bs) - mg/kg										
Aroclor 1254			-		0.58	ND	0.88	ND			1
Aroclor 1260			-		ND	1.6	ND	0.35			1
Inorganic Compounds - mg/kg											
Arsenic, Total	14.7 J	22.6 J	152 J	39.2 J					17.7	18.5	16
Cadmium, Total	5.3 J	5.1 J	7.9 J	3 J				-	8	6.7	9.3
Chromium, Total	123	99.1	242	52.8					171	97.5	1,500
Lead, Total	454	474	774	1660					440	549	1,000
Mercury, Total	1.2	1.1	0.429	0.362					0.389	3	2.8
Cyanide, Total	ND	ND	ND	2.0				-	ND	ND	27

Notes:

- 1. Only those parameters detected at a minimum of one sample location are presented in this table; all other compounds were reported as non-detect.
- J = Estimated value; result is less than the sample quantitation limit but greater than zero.
- 3. ND = parameter not detected above laboratory detection limit.
- 4. SCO = Soil Cleanup Objective (Protection of Public Health Commercial), per NYSDEC 6NYCRR Part 375-6.8(b), Final December 2006.

 5. "--" = not analyzed for this parameter or no individual SCO
- 6. "RED TEXT" = Data was qualified per the third party Data Usability Summary Report (DUSR).

Color Code:

= Polycyclic Aromatic Hydrocarbon (PAH) compound BOLD = Value exceeds Restricted-Commercial SCO

TABLE 10A

SOIL ANALYTICAL SUMMARY FOR AREA OF ASSESSMENT 7

Remedial Investigation Report Phase I Business Park Area - Brownfield Cleanup Program Tecumseh Redevelopment, Inc.

	Sample Location, Depth Interval (fbgs), and Type									
Parameter ¹	TP-7-(1-3)/8-4	TP-7-(1,3)/8-4	TP-7-2	TP-7-(4-7)	TP-7-(4-7)	SS-15	SS-16	SS-17	SS-31	Unrestricted SCO
raiailletei	0.0 - 2.0	1.5 - 5.5	2.0 - 5.0	0.0 - 1.0	2.0 - 7.0	0.0 - 1.0	0.0 - 1.0	0.0 - 1.0	0.0 - 1.0	(mg/kg)
	composite	composite	grab	composite	composite	grab	grab	grab	grab	(9/1.9/
Headspace Determination (ppr	n) - 10.6 eV Lar			<u>'</u>]						
Total VOCs		0.0 (max)	3123		0.0 (max)					
PID Field Scans (ppm) - 10.6 e	V Lamp									
Total VOCs	0.0 (max)	0.0 (max)	12.8	0.0 (max)	0.0 (max)					
STARS Volatile Organic Comp	ounds (VOCs -	Method 8021) -	mg/kg							
n-Butylbenzene			7.6							12
Ethylbenzene			1.8							1
Isopropylbenzene			0.48							
p-Cymene			1.4							
n-Propylbenzene			1.6							3.9
1,2,4-Trimethylbenzene			26							3.6
m-Xylene			3.1							0.26
Xylenes, Total			3.1							0.26
Naphthalene			120							12
TOTAL VOCs (mg/kg)	0	0	162	0	0	0	0	0	0	
Base-Neutral Semi-Volatile Org	ganic Compour	ds (SVOCs - M	ethod 8270) -	ma/ka						
Acenaphthylene	1.6 J	0.25 J	3.8 J	0.68 J	0.9 J				0.2 J	100
Anthracene	1 J	ND	2.7 J	0.48 J	1.4 J				0.072 J	100
Benzo(a)anthracene	6 J	1 J	9.3	2.2 J	4.3 J				0.33 J	1
Benzo(b)fluoranthene	8.7 J	1.1 J	12 J	2.8 J	5.1 J				0.78 J	1
Benzo(k)fluoranthene	2.2 J	0.46 J	3 J	1 J	1.6 J				0.23 J	0.8
Benzo(g,h,i)perylene	5.8 J	0.65 J	6.8 J	1.1 J	2.7 J				0.62	100
Benzo(a)pyrene	6.4 J	0.87 J	9.7	2 J	3.6 J				0.51	1
Chrysene	6.2 J	0.96 J	10	2.1 J	4.3 J				0.37 J	1
Dibenzo(a,h)anthracene	1.5 J	0.2 J	1.7 J	0.35 J	0.81 J				0.18 J	0.33
Dibenzofuran	ND	ND	1 J	ND	ND				0.04 J	7
Fluoranthene	9.3	1.5 J	16	3.2 J	8.1				0.35 J	100
Fluorene	ND	ND	2.9 J	ND	0.59 J				ND	30
Indeno(1,2,3-cd)pyrene	4.7 J	0.59 J	5.4 J	0.98 J	2.2 J				0.53	0.5
2-Methylnaphthalene	ND	ND	15	ND	ND				0.099 J	
Naphthalene	0.83 J	ND	7.5 J	ND	0.44 J				0.063 J	12
Phenanthrene	4.2 J	0.45 J	13	1.7 J	5.2 J				0.15 J	100
Pyrene	8.5	1.4 J	17	2.8 J	7.1 J				0.35 J	100
TOTAL SVOCs (mg/kg)	66.93	9.43	136.8	21.39	48.34	0	0	0	4.874	
Polychlorinated Biphenyls (PC		0.10	100.0	21.00	10.07	<u> </u>			1.07 -	
Aroclor 1260						ND	0.017 J	0.14		0.1

TABLE 10A

SOIL ANALYTICAL SUMMARY FOR AREA OF ASSESSMENT 7

Remedial Investigation Report Phase I Business Park Area - Brownfield Cleanup Program Tecumseh Redevelopment, Inc.

			Sa	mple Location	, Depth Interva	l (fbgs), and T	уре			Unrestricted
Parameter ¹	TP-7-(1-3)/8-4	TP-7-(1,3)/8-4	TP-7-2	TP-7-(4-7)	TP-7-(4-7)	SS-15	SS-16	SS-17	SS-31	SCO
i di diliotoi	0.0 - 2.0	1.5 - 5.5	2.0 - 5.0	0.0 - 1.0	2.0 - 7.0	0.0 - 1.0	0.0 - 1.0	0.0 - 1.0	0.0 - 1.0	(mg/kg)
	composite	composite	grab	composite	composite	grab	grab	grab	grab	(9/9/
Inorganic Compounds - mg/kg										
Arsenic, Total	116 J	15.8 J	4.2 J	10 J	10.1 J					13
Cadmium, Total	7.6 J	1.4 J	0.75 J	4.4 J	2.7 J					2.5
Chromium, Total	315	124	52.1	118	34.4					30
Lead, Total	728	61.5	171	628	318					63
Mercury, Total	2.1	0.141	0.086	0.637	0.757					0.18
Cyanide, Total	ND	ND	ND	ND	ND					27

Notes:

- 1. Only those parameters detected at a minimum of one sample location are presented in this table; all other compounds were reported as non-detect.
- 2. B = Analyte was detected in the associated blank as well as in the sample.

- J = Estimated value; result is less than the sample quantitation limit but greater than zero.
 ND = parameter not detected above laboratory detection limit.
 SCO = Soil Cleanup Objective (Protection of Public Health Commercial), per NYSDEC 6NYCRR Part 375-6.8(b), Final December 2006.
- 6. " -- " = not analyzed for this parameter or no individual SCO
- 7. "RED TEXT" = Data was qualified per the third party Data Usability Summary Report (DUSR).

Color Code:

compound BOLD

= Polycyclic Aromatic Hydrocarbon (PAH) = Value exceeds Unrestricted SCO

TABLE 10B

SOIL ANALYTICAL SUMMARY FOR AREA OF ASSESSMENT 7

Remedial Investigation Report Phase I Business Park Area - Brownfield Cleanup Program Tecumseh Redevelopment, Inc.

			Sa	mple Location	, Depth Interval	(fbgs), and T	уре			Restricted-
Parameter ¹	TP-7-(1-3)/8-4	TP-7-(1,3)/8-4	TP-7-2	TP-7-(4-7)	TP-7-(4-7)	SS-15	SS-16	SS-17	SS-31	Commercia
raiametei	0.0 - 2.0	1.5 - 5.5	2.0 - 5.0	0.0 - 1.0	2.0 - 7.0	0.0 - 1.0	0.0 - 1.0	0.0 - 1.0	0.0 - 1.0	sco
	composite	composite	grab	composite	composite	grab	grab	grab	grab	(mg/kg)
Headspace Determination (pբ	<u> </u>	i -			1					
Total VOCs		0.0 (max)	3123		0.0 (max)					
PID Field Scans (ppm) - 10.6 e	_			T.	1					_
Total VOCs	0.0 (max)	0.0 (max)	12.8	0.0 (max)	0.0 (max)					
STARS Volatile Organic Com	pounds (VOCs - I	Method 8021) - i	ng/kg							
n-Butylbenzene			7.6							500
Ethylbenzene			1.8							390
Isopropylbenzene			0.48							
p-Cymene			1.4							-
n-Propylbenzene			1.6							500
1,2,4-Trimethylbenzene			26							190
m-Xylene			3.1							500
Xylenes, Total			3.1							500
Naphthalene			120							500
TOTAL VOCs (mg/kg)	0	0	162.0	0	0	0	0	0	0	
Base-Neutral Semi-Volatile O	rganic Compoun	ds (SVOCs - Me	thod 8270) - n	ng/kg						
Acenaphthylene	1.6 J	0.25 J	3.8 J	0.68 J	0.9 J				0.2 J	500
Anthracene	1 J	ND	2.7 J	0.48 J	1.4 J				0.072 J	500
Benzo(a)anthracene	6 J	1 J	9.3	2.2 J	4.3 J				0.33 J	5.6
Benzo(b)fluoranthene	8.7 J	1.1 J	12 J	2.8 J	5.1 J				0.78 J	5.6
Benzo(k)fluoranthene	2.2 J	0.46 J	3 J	1 J	1.6 J				0.23 J	56
Benzo(g,h,i)perylene	5.8 J	0.65 J	6.8 J	1.1 J	2.7 J				0.62	500
Benzo(a)pyrene	6.4 J	0.87 J	9.7	2 J	3.6 J				0.51	1
Chrysene	6.2 J	0.96 J	10	2.1 J	4.3 J				0.37 J	56
Dibenzo(a,h)anthracene	1.5 J	0.2 J	1.7 J	0.35 J	0.81 J				0.18 J	0.56
Dibenzofuran	ND	ND	1 J	ND	ND				0.04 J	350
Fluoranthene	9.3	1.5 J	16	3.2 J	8.1				0.35 J	500
Fluorene	ND	ND ND	2.9 J	ND	0.59 J				ND	500
Indeno(1,2,3-cd)pyrene	4.7 J	0.59 J	5.4 J	0.98 J	2.2 J				0.53	5.6
2-Methylnaphthalene	ND ND	ND	15	ND	ND				0.099 J	
Naphthalene	0.83 J	ND	7.5 J	ND	0.44 J				0.063 J	500
Phenanthrene	4.2 J	0.45 J	13	1.7 J	5.2 J				0.15 J	500
Pyrene	8.5	1.4 J	17	2.8 J	7.1 J				0.35 J	500
TOTAL SVOCs (mg/kg)	66.93	9.43	136.8	21.39	48.34	0	0	0	4.874	
Polychlorinated Biphenyls (P		0.40	100.0	21.00	10.04				1.07	1
Aroclor 1260		I I		T	I I	ND	0.017 J	0.14		1

TABLE 10B

SOIL ANALYTICAL SUMMARY FOR AREA OF ASSESSMENT 7

Remedial Investigation Report Phase I Business Park Area - Brownfield Cleanup Program Tecumseh Redevelopment, Inc.

		Sample Location, Depth Interval (fbgs), and Type								
Parameter ¹	TP-7-(1-3)/8-4	TP-7-(1,3)/8-4	TP-7-2	TP-7-(4-7)	TP-7-(4-7)	SS-15	SS-16	SS-17	SS-31	Commercial
i arameter	0.0 - 2.0	1.5 - 5.5	2.0 - 5.0	0.0 - 1.0	2.0 - 7.0	0.0 - 1.0	0.0 - 1.0	0.0 - 1.0	0.0 - 1.0	sco
	composite	composite	grab	composite	composite	grab	grab	grab	grab	(mg/kg)
Inorganic Compounds - mg/kg										
Arsenic, Total	116 J	15.8 J	4.2 J	10 J	10.1 J					16
Cadmium, Total	7.6 J	1.4 J	0.75 J	4.4 J	2.7 J					9.3
Chromium, Total	315	124	52.1	118	34.4					1,500
Lead, Total	728	61.5	171	628	318					1,000
Mercury, Total	2.1	0.141	0.086	0.637	0.757				-	2.8
Cyanide, Total	ND	ND	ND	ND	ND					27

Notes:

- 1. Only those parameters detected at a minimum of one sample location are presented in this table; all other compounds were reported as non-detect.
- B = Analyte was detected in the associated blank as well as in the sample.
 J = Estimated value; result is less than the sample quantitation limit but greater than zero.
- 4. ND = parameter not detected above laboratory detection limit.
- 5. SCO = Soil Cleanup Objective (Protection of Public Health Commercial), per NYSDEC 6NYCRR Part 375-6.8(b), Final December 2006.
- 6. "-- "= not analyzed for this parameter or no individual SCO

 7. "RED TEXT "= Data was qualified per the third party Data Usability Summary Report (DUSR).

compound	= Polycyclic Aromatic Hydrocarbon (PAH)
BOLD	= Value exceeds Restricted-Commercial SCO

TABLE 11A

SOIL ANALYTICAL SUMMARY FOR AREA OF ASSESSMENT 8

Remedial Investigation Report Phase I Business Park Area - Brownfield Cleanup Program Tecumseh Redevelopment, Inc.

		Sample Loc	ation, Depth	Interval (fbg	s), and Type		Unrestricted
Parameter ¹	TP-8-(1-3)	TP-8-(1-3)	TP-8-6	SS-18	SS-(32-33)	SS-34	SCO
Farameter	0.0 - 1.0	1.0 - 7.0	1.0 - 3.0	0.0 - 1.0	0.0 - 1.0	0.0 - 1.0	(mg/kg)
	composite	composite	grab	grab	composite	grab	(***9***9)
Headspace Determination (ppr					ı		ı
Total VOCs		0.0 (max)	0.0				
PID Field Scans (ppm) - 10.6 e	/ Lamp						
Total VOCs	0.0 (max)	0.0 (max)	0.0				
Base-Neutral Semi-Volatile Org	anic Compou	inds (SVOCs	- Method 827	70) - mg/kg			
Acenaphthene	0.62 J	ND			0.41 J	0.67 J	20
Acenaphthylene	0.36 J	ND			0.22 J	ND	100
Anthracene	1.4 J	ND			0.83 J	1.6 J	100
Benzo(a)anthracene	3.7 J	0.81 J			2.4	6.7 J	1
Benzo(b)fluoranthene	4.2 J	1.4 J			3.2 J	9.2 J	1
Benzo(k)fluoranthene	1.6 J	1.6 J			1.1 J	3.2 J	0.8
Benzo(g,h,i)perylene	2.3 J	0.7 J			1.3 J	4.3 J	100
Benzo(a)pyrene	3.1 J	0.85 J			2.3	7.2 J	1
Chrysene	3.8 J	0.82 J			2.5	6.6 J	1
Dibenzo(a,h)anthracene	0.62 J	ND			0.4 J	1.2 J	0.33
Dibenzofuran	0.31 J	ND			0.27 J	ND	7
Di-n-butyl phthalate	ND	ND			0.18 J	ND	
Fluoranthene	8.6	1.2 J			4.9	13	100
Fluorene	0.49 J	ND			0.35 J	0.48 J	30
Indeno(1,2,3-cd)pyrene	1.9 J	0.55 J			1.2 J	4.1 J	0.5
2-Methylnaphthalene	ND	ND			0.2 J	ND	
Naphthalene	0.27 J	ND			0.24 J	ND	12
Phenanthrene	5.4	0.54 J			3.5	6.2 J	100
Pyrene	7.5	1.1 J			4	10	100
TOTAL SVOCs (mg/kg)	46.2	9.57	0	0	29.5	74.5	
Polychlorinated Biphenyls (PC	Bs) - mg/kg						
Aroclor 1248				3.4			0.1
Inorganic Compounds - mg/kg							
Arsenic, Total	11.5 J	6.3 J	17.3		4.6 J	17.8	13
Cadmium, Total	2.6 J	0.71 J	6.3		2.9 J	4.8	2.5
Chromium, Total	84	101	180 J		71.5 J	95.3	30
Lead, Total	286	57.9	2180 J		1250 J	510	63
Mercury, Total	0.293	0.033	0.473 J		5.7 J	4.2	0.18
Cyanide, Total	2.2	ND	ND		7.7 J	10.5 J	27

- lotes:

 1. Only those parameters detected at a minimum of one sample location are presented in this table; all other compounds were reported as non-detect.

 2. B = Analyte was detected in the associated blank as well as in the sample.

 3. J = Estimated value; result is less than the sample quantitation limit but greater than zero.

 4. ND = parameter not detected above laboratory detection limit.

 5. SCO = Soil Cleanup Objective (Protection of Public Health Commercial), per NYSDEC 6NYCRR Part 375-6.8(b), Final December 2006.

 6. " -- " = not analyzed for this parameter or no individual SCO

- 7. "RED TEXT" = Data was qualified per the third party Data Usability Summary Report (DUSR).

Color Code:

= Polycyclic Aromatic Hydrocarbon (PAH) compound BOLD = Value exceeds unrestricted SCO

TABLE 11B

SOIL ANALYTICAL SUMMARY FOR AREA OF ASSESSMENT 8

Remedial Investigation Report Phase I Business Park Area - Brownfield Cleanup Program Tecumseh Redevelopment, Inc.

		Sample Loc	ation, Depth	Interval (fbg	s), and Type		Restricted-
Parameter ¹	TP-8-(1-3)	TP-8-(1-3)	TP-8-6	SS-18	SS-(32-33)	SS-34	Commercial
r aramotor	0.0 - 1.0	1.0 - 7.0	1.0 - 3.0	0.0 - 1.0	0.0 - 1.0	0.0 - 1.0	SCO
Handanas Datamaination (name	composite	composite	grab	grab	composite	grab	(mg/kg)
Headspace Determination (ppm) - 10.6 eV La	·	-	oniyj 	Π		I
Total VOCs		0.0 (max)	0.0				
PID Field Scans (ppm) - 10.6 eV		0.0 ()	0.0		Ι		ı
Total VOCs	0.0 (max)	0.0 (max)	0.0				
Base-Neutral Semi-Volatile Orga		1			0.44	0.07.1	500
Acenaphthene	0.62 J	ND			0.41 J	0.67 J	500
Acenaphthylene	0.36 J	ND			0.22 J	ND	500
Anthracene	1.4 J	ND			0.83 J	1.6 J	500
Benzo(a)anthracene	3.7 J	0.81 J			2.4	6.7 J	5.6
Benzo(b)fluoranthene	4.2 J	1.4 J			3.2 J	9.2 J	5.6
Benzo(k)fluoranthene	1.6 J	1.6 J			1.1 J	3.2 J	56
Benzo(g,h,i)perylene	2.3 J	0.7 J			1.3 J	4.3 J	500
Benzo(a)pyrene	3.1 J	0.85 J			2.3	7.2 J	1
Chrysene	3.8 J	0.82 J			2.5	6.6 J	56
Dibenzo(a,h)anthracene	0.62 J	ND			0.4 J	1.2 J	0.56
Dibenzofuran	0.31 J	ND			0.27 J	ND	350
Di-n-butyl phthalate	ND	ND			0.18 J	ND	
Fluoranthene	8.6	1.2 J			4.9	13	500
Fluorene	0.49 J	ND	-		0.35 J	0.48 J	500
Indeno(1,2,3-cd)pyrene	1.9 J	0.55 J			1.2 J	4.1 J	5.6
2-Methylnaphthalene	ND	ND	•		0.2 J	ND	
Naphthalene	0.27 J	ND			0.24 J	ND	500
Phenanthrene	5.4	0.54 J			3.5	6.2 J	500
Pyrene	7.5	1.1 J	-		4	10	500
TOTAL SVOCs (mg/kg)	46.2	9.57	0	0	29.5	74.5	
Polychlorinated Biphenyls (PCE	Bs) - mg/kg						
Aroclor 1248				3.4			1
Inorganic Compounds - mg/kg							
Arsenic, Total	11.5 J	6.3 J	17.3		4.6 J	17.8	16
Cadmium, Total	2.6 J	0.71 J	6.3		2.9 J	4.8	9.3
Chromium, Total	84	101	180 J		71.5 J	95.3	1,500
Lead, Total	286	57.9	2180 J		1250 J	510	1,000
Mercury, Total	0.293	0.033	0.473 J		5.7 J	4.2	2.8
Cyanide, Total	2.2	ND	ND		7.7 J	10.5 J	27

Notes:

- Only those parameters detected at a minimum of one sample location are presented in this table; all other compounds were reported as non-detect.
 B = Analyte was detected in the associated blank as well as in the sample.
- 3. J = Estimated value; result is less than the sample quantitation limit but greater than zero.
- ND = parameter not detected above laboratory detection limit.
 SCO = Soil Cleanup Objective (Protection of Public Health Commercial), per NYSDEC 6NYCRR Part 375-6.8(b), Final December 2006.
- 6. " -- " = not analyzed for this parameter or no individual SCO
- 7. " RED TEXT " = Data was qualified per the third party Data Usability Summary Report (DUSR).

compound	= Polycyclic Aromatic Hydrocarbon (PAH)
BOLD	= Value exceeds Restricted-Commercial SCO

TABLE 12A

SOIL ANALYTICAL SUMMARY FOR AREA OF ASSESSMENT 9

Remedial Investigation Report Phase I Business Park Area - Brownfield Cleanup Program Tecumseh Redevelopment, Inc.

	Sample Location, Depth Interval (fbgs), and Type											
Parameter ¹	TP-9-1	TP-9-2	TP-9-3 0.0 - 1.0	TP-9-3 1.0 - 4.5	TP-9-5	TP-9-(125)	TP-9-(125)		SS-(10-13) 0.0 - 1.0	SS-35 0.0 - 1.0	SS-36 0.0 - 1.0	Unrestricted SCO (mg/kg)
	1.0 - 3.5	1.0 - 7.0			1.0 - 4.5	0.0 - 1.0	1.0 - 7.0					
	grab	grab	grab	grab	grab	composite	composite	grab	composite	grab	grab	(3 3)
Headspace Determination (ppr	1	i -				I		I	T T		ı	1
Total VOCs	0.0	0.0	0.0	328	0.0		0.0 (max)					
PID Field Scans (ppm) - 10.6 el			1	T	1		/	T			ı	1
Total VOCs	0.0	0.0	0.0	25.8	0.0	0.0 (max)	0.0 (max)					
STARS Volatile Organic Comp				1	T=	I		I				1
n-Butylbenzene	ND	ND		8.2	ND							12
sec-Butylbenzene	ND	ND		6.0	ND							11
tert-Butylbenzene	ND	ND		2.0	ND							5.9
Isopropylbenzene	ND	ND		0.75	ND							
p-Cymene	ND	ND		2.3	ND							-
n-Propylbenzene	ND	ND		3.4	ND							3.9
Toluene	ND	ND		0.16	ND							0.7
1,2,4-Trimethylbenzene	ND	ND		7.9	ND							3.6
1,3,5-Trimethylbenzene	ND	ND		1.6	ND							8.4
o-Xylene	ND	ND		2.1	ND							0.26
m-Xylene	ND	ND		0.23	ND							0.26
Xylenes, Total	ND	ND		2.3	ND							0.26
Naphthalene	ND	ND		16	ND							12
Methylene Chloride	0.007											0.05
TOTAL VOCs (mg/kg)	0.007	0	0	50.6	0	0	0	0	0	0	0	
Base-Neutral Semi-Volatile Org	anic Compoun	ds (SVOCs - Me	ethod 8270) ³ -	- mg/kg								
Acenaphthene			0.096 J	5.1		ND	ND		0.18 J		ND	20
Acenaphthylene			0.4 J	ND		0.62 J	ND		0.69 J		0.38 J	100
Anthracene			0.57 J	3.2		0.62 J	ND		0.62 J		0.24 J	100
Benzo(a)anthracene			1.3	0.21 J		1.6 J	0.5 J		2.9		1.1 J	1
Benzo(b)fluoranthene			2 J	ND		3.2 J	0.75 J		6.1 J		2.4 J	1
Benzo(k)fluoranthene			0.64 J	ND		1 J	0.2 J		1.7 J		0.87 J	0.8
Benzo(g,h,i)perylene			1.2	ND		1.6 J	0.38 J		4.4		1.3 J	100
Benzo(a)pyrene			1.2	ND		2 J	0.46 J		4.2		1.7 J	1
Chrysene			1.3	0.4 J		1.8 J	0.51 J		3		1.2 J	1
Dibenzo(a,h)anthracene			0.28 J	ND		0.48 J	ND		1.1 J		0.29 J	0.33
Dibenzofuran			0.17 J	1.3 J		0.27 J	ND		0.13 J		ND	7
Fluoranthene			2.4	0.55 J		2.6 J	0.87 J		3.8		1.6 J	100
Fluorene			0.16 J	9		0.2 J	ND		0.1 J		ND	30
Indeno(1,2,3-cd)pyrene			0.89	ND		1.4 J	0.37 J		3.6		1 J	0.5
2-Methylnaphthalene			0.5 J	35		0.29 J	ND		0.17 J		ND	
Naphthalene			0.32 J	ND		0.42 J	ND		0.25 J		ND	12
Phenanthrene			1.9	23		1.4 J	0.75 J		1.5		0.49 J	100
Pyrene			2	2.4		2.4 J	0.79 J		3.5		1.5 J	100
TOTAL SVOCs (mg/kg)	0	0	17.33	80.16	0	21.9	5.58	0	37.94	0	14.07	
Polychlorinated Biphenyls (PC	-	<u> </u>	17.00	33.10			0.00		07.04	J	1 7.07	1
Aroclor 1248			I	l	T			0.088	ND I		<u></u>	0.1
/1100IOI 1270		ļ						0.088	0.033		ļ	0.1

TABLE 12A

SOIL ANALYTICAL SUMMARY FOR AREA OF ASSESSMENT 9

Remedial Investigation Report Phase I Business Park Area - Brownfield Cleanup Program Tecumseh Redevelopment, Inc.

	Sample Location, Depth Interval (fbgs), and Type												
Parameter ¹	TP-9-1	TP-9-2	TP-9-3	TP-9-3	TP-9-5	TP-9-(125)	TP-9-(125)	SS-09	SS-(10-13)	SS-35	SS-36	Unrestricted SCO	
	1.0 - 3.5	1.0 - 7.0	0.0 - 1.0	1.0 - 4.5	1.0 - 4.5	0.0 - 1.0	1.0 - 7.0	0.0 - 1.0	0.0 - 1.0	0.0 - 1.0	0.0 - 1.0	(mg/kg)	
	grab	grab	grab	grab	grab	composite	composite	grab	composite	grab	grab	(99)	
Inorganic Compounds - mg/kg													
Arsenic, Total			26.8	4.8		19.5 J	5.4 J		79.8 J			13	
Cadmium, Total			5.5 J	ND		2.8	0.41		3.5 J	-		2.5	
Chromium, Total			249 J	6.3 J		174 J	23.7 J		90.6 J	-		30	
Lead, Total			620 J	73.7 J		207 J	126 J	-	389 J	1		63	
Mercury, Total			0.144	0.031		0.155 J	0.037 J	-	0.421 J	1		0.18	
Cyanide, Total			ND	ND		1.8 J	1.9 J		3 J	-		27	
Dioxins - mg/kg													
2,3,7,8-TCDD										ND			
Herbicides - mg/kg													
2,4-D										0.083 J		-	
Pentachlorophenol										0.12			
Pesticides - mg/kg													
4,4'-DDT										0.023		0.0033	

- Notes:

 1. Only those parameters detected at a minimum of one sample location are presented in this table; all other compounds were reported as non-detect.

 2. Soil/fill sample TP-9-1 (1.0 3.5) was analyzed for TCL VOCs plus STARS, all other samples were analyzed for STARS VOCs, only.

 3. Soil/fill sample TP-9-(125) (1.0 7.0) was analyzed for TCL SVOCs (BNAs), all other samples were analyzed for BN SVOCs, only.

 4. J = Estimated value; result is less than the sample quantitation limit but greater than zero.

 5. ND = parameter not detected above laboratory detection limit.

 6. SCO = Soil Cleanup Objective (Protection of Public Health Commercial), per NYSDEC 6NYCRR Part 375-6.8(b), Final December 2006.
- 7. " -- " = not analyzed for this parameter or no individual SCO
- 8. "RED TEXT" = Data was qualified per the third party Data Usability Summary Report (DUSR).

Odioi Oddc.	
compound	= TCL VOC
compound	 Polycyclic Aromatic Hydrocarbon (PAH)
BOLD	= Value exceeds Unrestricted SCO

TABLE 12B

SOIL ANALYTICAL SUMMARY FOR AREA OF ASSESSMENT 9

					cumseh Redev	elopinent, inc.						
					ample Location	i		ре				Restricted-
Parameter ¹	TP-9-1	TP-9-2	TP-9-3	TP-9-3	TP-9-5	TP-9-(125)	TP-9-(125)	SS-09	SS-(10-13)	SS-35	SS-36	Commercial
	1.0 - 3.5 grab	1.0 - 7.0 grab	0.0 - 1.0 grab	1.0 - 4.5 grab	1.0 - 4.5 grab	0.0 - 1.0 composite	1.0 - 7.0 composite	0.0 - 1.0 grab	0.0 - 1.0 composite	0.0 - 1.0 grab	0.0 - 1.0 grab	SCO (mg/kg)
Headspace Determination (pp				yrab	y grab	composite	Composite	grab	Composite	grab	y grab	(9/1.9/
Total VOCs	0.0	0.0	0.0	328	0.0	T	0.0 (max)				T	T
PID Field Scans (ppm) - 10.6 c		0.0	0.0	320	0.0		0.0 (IIIax)					
Total VOCs	0.0	0.0	0.0	25.8	0.0	0.0 (max)	0.0 (max)		1			Ι
STARS Volatile Organic Com				25.6	0.0	0.0 (IIIax)	0.0 (IIIax)					-
n-Butylbenzene	ND	ND	- mg/kg 	8.2	ND	1	<u></u>					500
sec-Butylbenzene	ND	ND		6.0	ND							500
tert-Butylbenzene	ND ND	ND		2.0	ND							500
Isopropylbenzene	ND	ND ND		0.75	ND							
, ,,	ND	ND ND		2.3	ND							-
p-Cymene	ND ND	ND			ND							500
n-Propylbenzene Toluene	ND ND	ND ND		3.4 0.16	ND ND							500
	ND ND	ND ND			ND							
1,2,4-Trimethylbenzene	ND ND	ND ND		7.9	ND ND							190 190
1,3,5-Trimethylbenzene				1.6								
o-Xylene	ND	ND		2.1	ND							500
m-Xylene	ND	ND		0.23	ND							500
Xylenes, Total	ND	ND		2.3	ND							500
Naphthalene	ND	ND		16	ND							500
Methylene Chloride	0.007											500
TOTAL VOCs (mg/kg)	0.007	0	0	50.6	0	0	0	0	0	0	0	
Base-Neutral Semi-Volatile O					T T	T	I=				T	T
Acenaphthene			0.096 J	5.1		ND	ND		0.18 J		ND	500
Acenaphthylene			0.4 J	ND		0.62 J	ND		0.69 J		0.38 J	500
Anthracene			0.57 J	3.2		0.62 J	ND		0.62 J		0.24 J	500
Benzo(a)anthracene			1.3	0.21 J		1.6 J	0.5 J		2.9		1.1 J	5.6
Benzo(b)fluoranthene			2 J	ND		3.2 J	0.75 J		6.1 J		2.4 J	5.6
Benzo(k)fluoranthene			0.64 J	ND		1 J	0.2 J		1.7 J		0.87 J	56
Benzo(g,h,i)perylene			1.2	ND		1.6 J	0.38 J		4.4		1.3 J	500
Benzo(a)pyrene			1.2	ND		2 J	0.46 J		4.2		1.7 J	1
Chrysene			1.3	0.4 J		1.8 J	0.51 J		3		1.2 J	56
Dibenzo(a,h)anthracene			0.28 J	ND		0.48 J	ND		1.1 J		0.29 J	0.56
Dibenzofuran			0.17 J	1.3 J		0.27 J	ND		0.13 J		ND	350
Fluoranthene			2.4	0.55 J		2.6 J	0.87 J		3.8		1.6 J	500
Fluorene			0.16 J	9		0.2 J	ND		0.1 J		ND	500
Indeno(1,2,3-cd)pyrene			0.89	ND		1.4 J	0.37 J		3.6		1 J	5.6
2-Methylnaphthalene			0.5 J	35		0.29 J	ND		0.17 J	-	ND	-
Naphthalene			0.32 J	ND		0.42 J	ND		0.25 J		ND	500
Phenanthrene			1.9	23		1.4 J	0.75 J		1.5		0.49 J	500
Pyrene			2	2.4		2.4 J	0.79 J		3.5		1.5 J	500
TOTAL SVOCs (mg/kg)	0	0	17.33	80.16	0	21.9	5.58	0	37.94	0	14.07	

TABLE 12B

SOIL ANALYTICAL SUMMARY FOR AREA OF ASSESSMENT 9

				Sa	ample Location	, Depth Interva	l (fbgs), and Ty	ре				Restricted-
Parameter ¹	TP-9-1	TP-9-2	TP-9-3	TP-9-3	TP-9-5	TP-9-(125)	TP-9-(125)	SS-09	SS-(10-13)	SS-35	SS-36	Commercial
T drameter	1.0 - 3.5	1.0 - 7.0	0.0 - 1.0	1.0 - 4.5	1.0 - 4.5	0.0 - 1.0	1.0 - 7.0	0.0 - 1.0	0.0 - 1.0	0.0 - 1.0	0.0 - 1.0	sco
	grab	grab	grab	grab	grab	composite	composite	grab	composite	grab	grab	(mg/kg)
Polychlorinated Biphenyls (PCL	3s) - mg/kg											
Aroclor 1248								0.088	ND			1
Aroclor 1260								0.78	0.033			1
Inorganic Compounds - mg/kg												
Arsenic, Total			26.8	4.8		19.5 J	5.4 J		79.8 J			16
Cadmium, Total			5.5 J	ND		2.8	0.41		3.5 J			9.3
Chromium, Total			249 J	6.3 J		174 J	23.7 J		90.6 J			1,500
Lead, Total			620 J	73.7 J		207 J	126 J		389 J			1,000
Mercury, Total			0.144	0.031		0.155 J	0.037 J		0.421 J			2.8
Cyanide, Total			ND	ND		1.8 J	1.9 J		3 J			27
Dioxins - mg/kg												
2,3,7,8-TCDD										ND		-
Herbicides - mg/kg												
2,4-D										0.083 J		
Pentachlorophenol										0.12		-
Pesticides - mg/kg	•	•			•	•						
4,4'-DDT										0.023		47

- Notes:

 1. Only those parameters detected at a minimum of one sample location are presented in this table; all other compounds were reported as non-detect.

 2. Soil/fill sample TP-9-1 (1.0 3.5) was analyzed for TCL VOCs plus STARS, all other samples were analyzed for STARS VOCs, only.

 3. Soil/fill sample TP-9-(125) (1.0 7.0) was analyzed for TCL SVOCs (BNAs), all other samples were analyzed for BN SVOCs, only.

 4. J = Estimated value; result is less than the sample quantitation limit but greater than zero.

 5. ND = parameter not detected above laboratory detection limit.

 6. SCO = Soil Cleanup Objective (Protection of Public Health Commercial), per NYSDEC 6NYCRR Part 375-6.8(b), Final December 2006.

- 7. "--" = not analyzed for this parameter or no individual SCO

 8. "RED TEXT" = Data was qualified per the third party Data Usability Summary Report (DUSR).

Color Code.	
compound	= TCL VOC
compound	= Polycyclic Aromatic Hydrocarbon (PAH)
BOLD	= Value exceeds Restricted-Commercial SCO

TABLE 13A

SOIL ANALYTICAL SUMMARY FOR AREA OF ASSESSMENT 10

	Sample Location, Depth Interval (fbgs), and Type													
Parameter ¹	TP-10-1	TP-10-(1-3)	TP-10-(2-3)	TP-10-(4-5)	TP-10-(4-5)	TP-10-6	TP-10-6	TP-10-7	SS-14	Unrestricted SCO				
Faranteter	1.0 - 4.5	0.0 - 1.0	1.0 - 4.0	0.0 - 1.0	1.0 - 2.5	0.0 - 1.0	1.0 - 5.5	1.0 - 2.5	0.0 - 1.0	(mg/kg)				
	grab	composite	composite	composite	composite	grab	grab	grab	grab	(ilig/kg)				
Headspace Determination (p	pm) - 10.6 eV La	mp [subsurface	e samples only	/]										
Total VOCs	216		0.0 (max)		0.0 (max)	0.5	410	0.0						
PID Field Scans (ppm) - 10.6														
Total VOCs	10.2	0.0 (max)	0.0 (max)	0.0 (max)	0.0 (max)	25.3	3002	0.0						
STARS Volatile Organic Com		Method 8021)	- mg/kg											
n-Butylbenzene	ND					ND	19			12				
sec-Butylbenzene	5.5					ND	22			11				
tert-Butylbenzene	ND					ND	16			5.9				
Isopropylbenzene	0.29					ND	ND							
p-Cymene	2.1					ND	16							
n-Propylbenzene	ND					ND	30			3.9				
Toluene	ND					ND	25			0.7				
1,2,4-Trimethylbenzene	ND					ND	77			3.6				
1,3,5-Trimethylbenzene	2.2					ND	13			8.4				
o-Xylene	ND					ND	21			0.26				
m-Xylene	ND					ND	14			0.26				
Xylenes, Total	ND					ND	34			0.26				
Naphthalene	4.7					ND	9.1			12				
Methyl tert butyl ether	ND					ND	0.93			0.93				
TOTAL VOCs (mg/kg)	14.79	0	0	0	0	0	263.0	0	0					
Base-Neutral Semi-Volatile O	rganic Compou	nds (SVOCs - I		mg/kg										
Acenaphthene	2.9 J	1.7 J	0.056 J	ND	ND			ND		20				
Acenaphthylene	0.63 J	ND	ND	0.2 J	ND			ND		100				
Anthracene	0.61 J	3.3 J	0.12 J	0.14 J	ND			ND		100				
Benzo(a)anthracene	1.4 J	7.7	0.3 J	0.72 J	0.077 J			0.042 J		1				
Benzo(b)fluoranthene	1.5 J	9.7 J	0.33 J	1.1 J	0.19 J			0.05 J		1				
Benzo(k)fluoranthene	0.69 J	2.3 J	0.12 J	0.39 J	0.19 J			ND		0.8				
Benzo(g,h,i)perylene	0.89 J	3.6 J	0.12 J	0.59 J	0.099 J			0.034 J		100				
Benzo(a)pyrene	1.1 J	6.4 J	0.25 J	0.81	0.092 J			0.04 J		1				
Chrysene	1 J	7 J	0.26 J	0.72 J	0.08 J			0.034 J		1				
Dibenzo(a,h)anthracene	ND	1.2 J	0.043 J	0.16 J	0.025 J			ND		0.33				
Dibenzofuran	ND	0.71 J	ND	0.047 J	ND			ND		7				
Fluoranthene	4.5 J	15	0.62	1.1	0.14 J			0.056 J		100				
Fluorene	1.2 J	1.4 J	0.042 J	ND	ND			ND		30				
Indeno(1,2,3-cd)pyrene	0.76 J	3 J	0.11 J	0.5 J	0.083 J			0.029 J		0.5				
2-Methylnaphthalene	0.48 J	ND	ND	0.073 J	ND			ND						
Naphthalene	ND	0.41 J	ND	0.068 J	ND			ND		12				
Phenanthrene	0.48 J	11	0.39	0.51 J	0.051 J			0.028 J		100				
Pyrene	3.3 J	12	0.45	0.92	0.12 J			0.057 J		100				
TOTAL SVOCs (mg/kg)	21.44	86.42	3.211	8.048	1.147	0	0	0.37	0					
Polychlorinated Biphenyls (P	PCBs) - mg/kg													
TOTAL PCBs (mg/kg)									ND	0.1				

TABLE 13A

SOIL ANALYTICAL SUMMARY FOR AREA OF ASSESSMENT 10

Remedial Investigation Report Phase I Business Park Area - Brownfield Cleanup Program Tecumseh Redevelopment, Inc.

	Sample Location, Depth Interval (fbgs), and Type													
Parameter ¹	TP-10-1	TP-10-(1-3)	TP-10-(2-3)	TP-10-(4-5)	TP-10-(4-5)	TP-10-6	TP-10-6	TP-10-7	SS-14	Unrestricted SCO				
i didilictei	1.0 - 4.5	0.0 - 1.0	1.0 - 4.0	0.0 - 1.0	1.0 - 2.5	0.0 - 1.0	1.0 - 5.5	1.0 - 2.5	0.0 - 1.0	(mg/kg)				
	grab	composite	composite	composite	composite	grab	grab	grab	grab	(mg/kg)				
Inorganic Compounds - mg/kg														
Arsenic, Total	18 J	29.5 J	2.4 J	18.4 J	2.7 J				-	13				
Cadmium, Total	1.2	3.3	0.38	2.7	ND				-	2.5				
Chromium, Total	28.8 J	167 J	9.8 J	29 J	7.5 J				-	30				
Lead, Total	421 J	234 J	26.2 J	260 J	91.1 J					63				
Mercury, Total	0.113 J	0.092 J	ND	0.356 J	0.043 J				-	0.18				
Cyanide, Total	ND	10.3 J	ND	ND	ND				-	27				
TCLP - (units shown parenthetic	cally)													
2-Butanone (mg/L)			-			ND	0.026 J		-					
Lead, Total (mg/L)			-			0.0167	0.0653		-					
Flashpoint (°F)						> 200	> 200		-					
H ₂ S Released from Waste (mg/kg)			-			ND	ND		-					
HCN Released from Waste (mg/kg)			-			ND	ND		-					
Leachable pH (S.U.)						8.39	9.04							

- 1. Only those parameters detected at a minimum of one sample location are presented in this table; all other compounds were reported as non-detect.
- 2. J = Estimated value; result is less than the sample quantitation limit but greater than zero.
- ND = parameter not detected above laboratory detection limit.
 SCO = Soil Cleanup Objective (Protection of Public Health Commercial), per NYSDEC 6NYCRR Part 375-6.8(b), Final December 2006.
- 5. " -- " = not analyzed for this parameter or no individual SCO
- 6. "RED TEXT" = Data was qualified per the third party Data Usability Summary Report (DUSR).

Color Code:

00:0: 0040:	
compound	= Polycyclic Aromatic Hydrocarbon (PAH)
BOLD	= Value exceeds Unrestricted SCO

TABLE 13B

SOIL ANALYTICAL SUMMARY FOR AREA OF ASSESSMENT 10

	Sample Location, Depth Interval (fbgs), and Type													
Parameter ¹	TP-10-1	TP-10-(1-3)	TP-10-(2-3)	TP-10-(4-5)	TP-10-(4-5)	TP-10-6	TP-10-6	TP-10-7	SS-14	Commercial				
Parameter	1.0 - 4.5	0.0 - 1.0	1.0 - 4.0	0.0 - 1.0	1.0 - 2.5	0.0 - 1.0	1.0 - 5.5	1.0 - 2.5	0.0 - 1.0	sco				
	grab	composite	composite	composite	composite	grab	grab	grab	grab	(mg/kg)				
Headspace Determination (ppr	n) - 10.6 eV Lan	np [subsurface	samples only]											
Total VOCs	216		0.0 (max)		0.0 (max)	0.5	410	0.0						
PID Field Scans (ppm) - 10.6 e	V Lamp													
Total VOCs	10.2	0.0 (max)	0.0 (max)	0.0 (max)	0.0 (max)	25.3	3002	0.0						
STARS Volatile Organic Comp		Method 8021) -	mg/kg											
n-Butylbenzene	ND					ND	19			500				
sec-Butylbenzene	5.5					ND	22			500				
tert-Butylbenzene	ND					ND	16			500				
Isopropylbenzene	0.29					ND	ND							
p-Cymene	2.1					ND	16							
n-Propylbenzene	ND					ND	30			500				
Toluene	ND					ND	25			500				
1,2,4-Trimethylbenzene	ND					ND	77			190				
1,3,5-Trimethylbenzene	2.2					ND	13			190				
o-Xylene	ND					ND	21			500				
m-Xylene	ND					ND	14			500				
Xylenes, Total	ND					ND	34			500				
Naphthalene	4.7					ND	9.1			500				
Methyl tert butyl ether	ND					ND	0.93			500				
TOTAL VOCs (mg/kg)	14.79	0	0	0	0	0	263.0	0	0					
Base-Neutral Semi-Volatile Org		ds (SVOCs - Me												
Acenaphthene	2.9 J	1.7 J	0.056 J	ND	ND			ND		500				
Acenaphthylene	0.63 J	ND	ND	0.2 J	ND			ND		500				
Anthracene	0.61 J	3.3 J	0.12 J	0.14 J	ND			ND		500				
Benzo(a)anthracene	1.4 J	7.7	0.3 J	0.72 J	0.077 J			0.042 J		5.6				
Benzo(b)fluoranthene	1.5 J	9.7 J	0.33 J	1.1 J	0.19 J			0.05 J		5.6				
Benzo(k)fluoranthene	0.69 J	2.3 J	0.12 J	0.39 J	0.19 J			ND		56				
Benzo(g,h,i)perylene	0.89 J	3.6 J	0.12 J	0.59 J	0.099 J			0.034 J		500				
Benzo(a)pyrene	1.1 J	6.4 J	0.25 J	0.81	0.092 J			0.04 J		1				
Chrysene	1 J	7 J	0.26 J	0.72 J	0.08 J			0.034 J		56				
Dibenzo(a,h)anthracene	ND	1.2 J	0.043 J	0.16 J	0.025 J			ND		0.56				
Dibenzofuran	ND	0.71 J	ND	0.047 J	ND			ND		350				
Fluoranthene	4.5 J	15	0.62	1.1	0.14 J			0.056 J		500				
Fluorene	1.2 J	1.4 J	0.042 J	ND	ND			ND		500				
Indeno(1,2,3-cd)pyrene	0.76 J	3 J	0.11 J	0.5 J	0.083 J			0.029 J		5.6				
2-Methylnaphthalene	0.48 J	ND	ND	0.073 J	ND			ND						
Naphthalene	ND	0.41 J	ND	0.068 J	ND			ND		500				
Phenanthrene	0.48 J	11	0.39	0.51 J	0.051 J			0.028 J		500				
Pyrene	3.3 J	12	0.45	0.92	0.12 J			0.057 J		500				
TOTAL SVOCs (mg/kg)	21.44	86.42	3.211	8.048	1.147	0	0	0.37	0					
Polychlorinated Biphenyls (PC	Bs) - mg/kg													
TOTAL PCBs (mg/kg)									ND	1				

TABLE 13B

SOIL ANALYTICAL SUMMARY FOR AREA OF ASSESSMENT 10

Remedial Investigation Report Phase I Business Park Area - Brownfield Cleanup Program Tecumseh Redevelopment, Inc.

	Sample Location, Depth Interval (fbgs), and Type													
Parameter ¹	TP-10-1	TP-10-(1-3)	TP-10-(2-3)	TP-10-(4-5)	TP-10-(4-5)	TP-10-6	TP-10-6	TP-10-7	SS-14	Commercial				
Farameter	1.0 - 4.5	0.0 - 1.0	1.0 - 4.0	0.0 - 1.0	1.0 - 2.5	0.0 - 1.0	1.0 - 5.5	1.0 - 2.5	0.0 - 1.0	sco				
	grab	composite	composite	composite	composite	grab	grab	grab	grab	(mg/kg)				
Inorganic Compounds - mg/kg														
Arsenic, Total	18 J	29.5 J	2.4 J	18.4 J	2.7 J			-		16				
Cadmium, Total	1.2	3.3	0.38	2.7	ND					9.3				
Chromium, Total	28.8 J	167 J	9.8 J	29 J	7.5 J					1,500				
Lead, Total	421 J	234 J	26.2 J	260 J	91.1 J			-		1,000				
Mercury, Total	0.113 J	0.092 J	ND	0.356 J	0.043 J			-		2.8				
Cyanide, Total	ND	10.3 J	ND	ND	ND			-		27				
TCLP - (units shown parenthetic	ally)									·				
2-Butanone (mg/L)						ND	0.026 J	-						
Lead, Total (mg/L)						0.0167	0.0653	-						
Flashpoint (°F)						> 200	> 200	-						
H ₂ S Released from Waste (mg/kg)						ND	ND	-						
HCN Released from Waste (mg/kg)						ND	ND	-						
Leachable pH (S.U.)						8.39	9.04	-						

- Only those parameters detected at a minimum of one sample location are presented in this table; all other compounds were reported as non-detect.
 J = Estimated value; result is less than the sample quantitation limit but greater than zero.

- ND = parameter not detected above laboratory detection limit.
 SCO = Soil Cleanup Objective (Protection of Public Health Commercial), per NYSDEC 6NYCRR Part 375-6.8(b), Final December 2006.
- 5. " -- " = not analyzed for this parameter or no individual SCO
- 6. " RED TEXT " = Data was qualified per the third party Data Usability Summary Report (DUSR).

Color Code:

compound	 Polycyclic Aroma
BOLD	= Value exceeds R

- atic Hydrocarbon (PAH)
- Restricted-Commercial SCO

SUMMARY OF MONITORING WELL / PIEZOMETER CONSTRUCTION DETAILS

Remedial Investigation Report Phase I Business Park Area - Brownfield Cleanup Program Tecumseh Redevelopment, Inc.

Well I.D.	Ground Elevation ¹	TOR Elevation ¹	Stick-up	Construction Date	_	otal pth	Screened Interval	Screen Length	Riser/Screen Diameter	Riser/Screen Material	Screen Slot Size	DTW Measured on 03/06/06	GWE (fmsl)	Stratigraphic Unit Monitored
	(fmsl)	(fmsl)	(leet)	Date	fbgs	fbTOR	(fbTOR)	(feet)	(in.)	Waterial	(in.)	(fbTOR)	(IIIISI)	(per Final RFI)
B-1	581.56	584.08	2.52	02/08/91	15.92	18.44	8.44 - 18.44	10.0	2.5 / 2.0	PVC	0.010	NM	NM	fill
B-2	582.99	584.85	1.86	02/11/91	16.00	17.86	7.86 - 17.86	10.0	2.5 / 2.0	PVC	0.010	8.35	576.50	fill
B-3	583.55	586.02	2.47	02/12/91	15.17	17.64	7.64 - 17.64	10.0	2.5 / 2.0	PVC	0.010	NM	NM	fill
ES1-2	584.16	585.53	1.37	08/10/90	19.00	20.37	10.37 - 20.37	10.0	2.0	PVC	0.010	6.75	578.78	fill
MW-08A	584.78	584.67	-0.11	05/13/80	16.18	16.07	6.07 - 16.07	10.0	4.0	PVC	NA	2.61	582.06	fill
MW-08B	584.74	584.62	-0.12	05/03/80	71.42	71.30	56.30 - 71.30	15.0	4.0	PVC	NA	NM	NM	sand, bedrock
MW-12A	584.43	586.91	2.48	02/01/06	13.59	16.07	6.07 - 16.07	10.0	2.0	PVC	0.010	7.20	579.71	fill
MW-13A	582.72	585.29	2.57	01/31/06	13.66	16.23	6.23 - 16.23	10.0	2.0	PVC	0.010	5.39	579.90	fill
MW-14A	583.82	586.30	2.48	01/31/06	13.81	16.29	6.29 - 16.29	10.0	2.0	PVC	0.010	6.34	579.96	fill
MW-15A	583.71	586.22	2.51	01/29/06	14.39	16.90	6.90 - 16.90	10.0	2.0	PVC	0.010	5.85	580.37	fill
MW-16A	583.42	585.96	2.54	01/29/06	14.24	16.78	6.78 - 16.78	10.0	2.0	PVC	0.010	7.70	578.26	fill
MW-17A	582.48	584.93	2.45	01/29/06	13.92	16.37	6.37 - 16.37	10.0	2.0	PVC	0.010	6.82	578.11	fill
MW-18A	584.00	586.75	2.75	02/01/06	14.11	16.86	6.86 - 16.86	10.0	2.0	PVC	0.010	4.99	581.76	fill
P-44S	584.24	587.20	2.96	01/18/01	11.44	14.40	4.40 - 14.40	10.0	0.75	PVC	0.010	NM	NM	fill, sand
P-45S	583.24	585.56	2.32	01/18/01	10.22	12.54	4.54 - 12.54	8.0	0.75	PVC	0.010	6.99	578.57	fill
P-50S	581.43	584.14	2.71	01/10/06	8.43	11.14	6.14 - 11.14	5.0	1.0	PVC	0.010	7.16	576.98	fill
P-51S	582.39	585.09	2.70	01/11/06	6.86	9.56	4.56 - 9.56	5.0	1.0	PVC	0.010	8.45	576.64	fill
P-52S	583.20	586.36	3.16	01/17/06	8.92	12.08	7.08 - 12.08	5.0	1.0	PVC	0.010	11.38	574.98	fill
P-54S	583.28	586.16	2.88	01/23/06	6.27	9.15	4.15 - 9.15	5.0	1.0	PVC	0.010	7.90	578.26	fill
P-55S	582.95	586.35	3.40	01/18/06	7.52	10.92	5.92 - 10.92	5.0	1.0	PVC	0.010	7.25	579.10	fill
P-56S	583.28	586.55	3.27	01/20/06	11.13	14.40	9.40 - 14.40	5.0	1.0	PVC	0.010	NM	NM	fill
P-57S	581.37	585.40	4.03	01/17/06	5.69	9.72	4.72 - 9.72	5.0	1.0	PVC	0.010	6.40	579.00	fill

Notes:

- 1. Elevations surveyed by TurnKey Environmental Restoration March and May 2006.
- 2. " DTW " = depth to water, fbTOR
- 3. " GWE " = groundwater elevation, fmsl
- 4. "fmsl" = feet above mean sea level.
- 5. " fbgs " = feet below ground surface
- 6. "fbTOR" = feet below Top of Riser
- 7. " NM " = not measured
- 8. " NA " = not applicable

SUMMARY OF QA/QC SAMPLES

Remedial Investigation Report Phase I Business Park Area - Brownfield Cleanup Program Tecumseh Redevelopment, Inc.

QA/QC Sample I.D.	Sample Location	Sample Type	Matrix	TCL + STARS VOCs	STARS VOCs	TCL SVOCs	SVOCs (BN only)	TAL Metals + CN	Metals + CN	PCBs
Matrix Spike / I	Matrix Spike Duplicates									
MS #1	TP-1-22 (2.0-6.5)	G	soil/fill	1		1				
MSD #1	11 1 22 (2.0 0.0)	J	3011/1111	1		1				
MS #2	TP-7-(1-3)/8-4 (0.0-2.0)	С	soil/fill						1	
MSD #2	11 7 (1 3)/0 + (0.0 2.0)	J	3011/1111						1	
MS #3	TP-4-(1-5) (0.0-1.0)	C	soil/fill				1		1	
MSD #3	11-4-(1-3) (0.0-1.0)	C	5011/1111				1		1	
MS #4	TP-4-(1-5) (1.0-3.0)	С	soil/fill				1		1	
MSD #4	17-4-(1-3) (1.0-3.0)	C	5011/1111				1		1	
MS #5	TP-3-(1-2) (1.0-3.0)	С	soil/fill					1		
MSD #5	17-3-(1-2) (1.0-3.0)	· ·	5011/1111					1		
MS #6	SS-(19-21)	С	soil/fill							1
MSD #6	33-(19-21)	C	5011/1111							1
MS #7	MW-12A	G	water	1		1		1		1
MSD #7	IVIVV-12A	G	water	1		1		1		1
Blind Duplicate	es									
BLIND #1	TP-6-7 (2.0-4.0)	G	soil/fill						1	
BLIND #2	TP-2-(1-3) (2.0-5.5)	С	soil/fill				1		1	
BLIND #3	TP-5-(1-5) (0.0-1.0)	С	soil/fill					1		
BLIND #4	TP-5-(6-10) (0.0-1.0)	С	soil/fill						1	
BLIND #5	TP-9-1 (1.0-3.5)	G	soil/fill	1						
BLIND #6	TP-9-(125) (1.0-7.0)	С	soil/fill			1				
BLIND #7	SS-23	G	soil/fill				1			
BLIND #8	SS-03	G	soil/fill							1
BLIND #9	MW-14A	G	water		1		1		1	1

TOTALS: 5 1 5 7 5 10 6

GROUNDWATER ANALYTICAL SUMMARY

Remedial Investigation Report Phase I Business Park Area - Brownfield Cleanup Program Tecumseh Redevelopment, Inc.

							Monito	oring V	Vell Lo	ocation	1						GWQS/
Parameter ¹	MW	/-8A	MW-	12A ²	MW	-13A	MW-	14A ³	MW-	15A ⁴	MW	-16A	MW	-17A	MW	-18A	GV ⁵
Field Measurements (units as i	ndicate	ed)															
pH (units)	7.47	7.73	9.69	9.46	7.07	7.28	7.81	7.80	7.51	7.91	7.14	7.27	7.47	7.72	7.64	7.81	6.5 - 8.5
Temperature (°C)	9.1	7.6	7.7	5.6	8.0	7.1	6.9	6.2	7.2	6.2	6.9	4.7	7.1	6.5	7.4	8.8	-
Specific Conductance (uS)	2447	2410	507	483	843	1037	783	783	1331	1251	794	792	851	846	1129	1209	-
Turbidity	19.2	19.2	15.7	21.4	21.1	13.4	19	12.3	82.1	40.3	12.3	8.3	14.9	4.52	37	58.3	50**
ORP (mV)	85	84	-79	-79	-28	-15	-51	-67	-107	-87	-4	8	-18	14	67	86	-
Volatile Organic Compounds (/OCs)	⁷ - ug/	L								'						
Acetone		-	3	J				-	-			-				-	50*
n-Butylbenzene	N	ID	N	ID	N	ID	Ν	ID	0.	97	N	D	N	ID	N	ID	5
1,2,4-Trichlorobenzene		-	1.9	9 J	-	-	-	· -	-	-		-		-		-	10*
TOTAL VOCs (ug/L)	(0	4	.9	(0	(0	0.	97	0			0		0	00
Base-Neutral Semi-Volatile Org	ase-Neutral Semi-Volatile Organic Comp			svoc	s - Me	thod 8	270) ⁸	- ug/l	<u> </u>								
TOTAL SVOCs (ug/L)	ID	N	ND		ND		ND		ND		ND		ND		lD	00	
Polychlorinated Biphenyls (PC	Bs) - u	g/L															
TOTAL PCBs (ug/L)	N	ID	N	ID	N	ID	N	ID	N	ID	N	ID	R	ID	P]D	0
Total Inorganic Compounds 9	mg/L																
Aluminum, Total		-	30	07				-	-	-		-				-	
Barium, Total		-	8	.7	-		•	-									1
Calcium, Total			57,	200	-	-	-	-	-	-							
Iron, Total		-	2	48	-	-		-	-	-	-	-					0.3
Magnesium, Total		-	2,2	260	-	-	•	· -	-	-	-	-		-			35*
Manganese, Total		-	74	4.3	-	-		-	-	-		-					0.3
Potassium, Total		-	7,3	390	-	-	-	· -	-	· -	-	-		-			-
Sodium, Total		-	44,	000	-		-	· -	-	. -	-	-	-			-	20
Cyanide, Total	N	ID	N	ID	N	ID	N	ID	0.01	13 J	0.02	24 J	0.1	6 J	N	ID	0.2
Dissolved Inorganic Compound	nic Compounds - mg/L																
Arsenic, Dissolved								-	N	ID		-					0.025
Cadmium, Dissolved									N	ID		-					0.005
Chromium, Dissolved									N	ID							0.05
Lead, Dissolved									N	D							0.025
Mercury, Dissolved								-	N	ID		-					0.0007

- Only those parameters detected at a minimum of one sample location are presented in this table; all other compounds were reported as non-detect.
 MS/MSD collected at monitoring well MW-12A.

- Blind Duplicate collected at monitoring well MW-14A.
 Due to turbidity greater than 50 NTU, a filtered sample was submitted for soluble metal analysis at this location.
 NYSDEC Class "GA" Groundwater Quality Standards/Guidance Values (GWQS/GV) as per 6 NYCRR Part 703.
- Groundwater collected from well MW-12A was analyzed for TCL VOCs plus STARS, all other wells were only analyzed for STARS VOCs.

 Groundwater collected from well MW-12A was analyzed for TCL SVOCs (BNAs), all other wells were only analyzed for BN SVOCs.

 Groundwater collected from well MW-12A was analyzed for TAL Metals, all other wells were only analyzed for arsenic, cadmium, chromium, cyanide, lead, and mercury.
- J = Estimated value; result is less than the sample quantitation limit but greater than zero.

- 9. J = Estimated value; result is less than the sample quantitation limit but greater than zero.
 10. ND = parameter not detected above laboratory detection limit.
 11. "--" = not analyzed for this parameter
 12. "*" = Groundwater Quality Guidance Value
 13. "**" = field threshold value; when exceeded, field filtered metals sample is collected (i.e., dissolved metals).
 14. "RED TEXT" = Data was qualified per the third party Data Usability Summary Report (DUSR).

BOLD = value exceeds individual GWQS/GV concentration

SUMMARY OF POTENTIALLY COMPLETE EXPOSURE PATHWAYS

Remedial Investigation Report Phase I Business Park Area - Brownfield Cleanup Program Tecumseh Redevelopment, Inc.

Receptor	Source	Release & Transport Mechanism	Point of Exposure	Route of Exposure
Current Use:				
Trespasser	Surface Soil/Fill	Direct Contact; Fugitive Dusts	On-site	Dermal Contact; Incidental Ingestion; Inhalation
Пезраззен	Subsurface Soil/Fill	Vapors	On-site	Inhalation
Construction Worker	Surface Soil/Fill	Direct Contact; Fugitive Dusts	On-site	Dermal Contact; Incidental Ingestion; Inhalation
Construction worker	Subsurface Soil/Fill	Direct Contact; Fugitive Dusts; Vapors	On-site	Dermal Contact; Incidental Ingestion; Inhalation
Future Use:				
Indoor Worker	Subsurface Soil/Fill	Vapors	On-site	Inhalation
Outdoor Worker	Subsurface Soil/Fill Direct Contact; Fugitive Dusts; Vapors		On-site	Dermal Contact; Incidental Ingestion; Inhalation
Construction Worker	Subsurface Soil/Fill	Direct Contact; Fugitive Dusts; Vapors	On-site	Dermal Contact; Incidental Ingestion; Inhalation

Notes:

1. "Future Use" Scenario reflects potentially complete exposure pathways in the absence of pre-development remedial measures or controls

FIGURES

FIGURE 1

726 EXCHANGE STREET SUITE 624 BUFFALO, NEW YORK 14210 (716) 856-635

PROJECT NO.: 0071-006-100

DATE: MAY 2005

DRAFTED BY: BCH

SITE LOCATION AND VICINITY MAP

BROWNFIELD CLEANUP PROGRAM

PHASE I BUSINESS PARK AREA LACKAWANNA, NEW YORK

PREPARED FOR

TECUMSEH REDEVELOPMENT, INC.

APPENDIX A

BORING LOGS & WELL COMPLETION DETAILS

APPENDIX A

SURVEY SUMMARY

fc:jtd/tb	date:030806	wc:oc-38	sc:gps-wendel
<u>I.D.</u>	<u>Casing</u>	ELEVATION Riser	<u>Grade</u>
B-1	584.03	584.08	581.56
B-2	585.04	584.85	582.99
B-3	585.96	586.02	583.55
ES1-2	585.84	585.53	584.16
MW-08A	585.29	584.67	584.78
MW-08B	585.32	584.62	584.74
MW-12A	587.16	586.91	584.43
MW-13A	585.54	585.29	582.72
MW-14A	586.51	586.30	583.82
MW-15A	586.44	586.22	583.71
MW-16A	586.14	585.96	583.42
MW-17A	585.10	584.93	582.48
MW-18A	587.01	586.75	584.00
P-44S	587.28	587.20	584.24
P-45S	585.81	585.56	583.24
P-50S	na	584.14	581.43
P-51S	na	585.09	582.39
P-52S	na	586.36	583.20
P-54S	na	586.16	583.28
P-55S	na	586.35	582.95
P-56S	na	586.55	583.28
P-57S	na	585.40	581.37

	AR			3-91		_	SOILS	MPIRE INVESTIGATIONS INC. SUBSURFACE LOC	HOLE NO. B-IMW SURF ELEV 581.74	
1				3-91 OF.		_			C. W. DEPTH See Not	es
PRC	JEC	т _	Oxfo	ord	Enei	сду	Cogen	eration Facility LOCATION Hamburg To		_
			(BTA	1-91	-01	L)		Lackawann	a, New York	
DEPTH-F1	SAMPLES	SAMPLE NO	0,6	SAM 6	PLER	N	PID on Sample	SOIL OR ROCK CLASSIFICATION	NOTES	Rec. Au
= 0 =	/	1	6	6		18	BG	Black to gray f-c SAND and Cinders, little Slag, tr. brick, tr. silt, tr. clay, tr. coal (moist, FILL)		50 F
-	$\sqrt{}$	2	6	7		11	BG	CONCRETE (0.4') Brown-black f-c Sand to Gravel sized SLAG, some Cinders, tr. coal,	Note: S-2 looks like "spent" iron-ores	во
5-	1	4	3 4	4		6	BG	tr. gravel, tr. silt (moist, Fill)	and slag. Sample wet at 7.8' (perched)	90 P
-	7	5	2	2			BG.	(moist to wet) Gray to black organic SILT and CLAY, little f-c Sand, tr. wood,	at 7.0 (perched)	50
- 10	1	6	1	2 2 4			BG BG	tr. roots, tr. brick (moist,FILL) Contains little Wood, tr. slag	Change at 11.8' Note: Water	50 F
-	7	7	3	3		6	ВG	some Silt, little Clay, tr. organ-	encountered at 10.0' Poor recovery on	30 H
15-	/	9	2 2	2 2		4	BG	Contains gray Clayey Silt lenses	S-8 possible stone in shoe of sampler	10
-	1/	10	3	2			BG	Brown to black organic SILT and CLAY, little f-m Sand, tr. roots, tr. branches (wet-moist, soft, OL)		60 I
20	1		2	2		3	BG		Free Standing Water recorded at	10
-	1								16.0° at boring completion.	
-	-							tor Well Completion Report for details.		
-									PID-Organic vapors measured with Pho- toionization Detec- tor (PID). Measur-	
-									ements recorded in parts per million (ppm).	
-	1								BG=Background PID measurements=0.0-0.3 ppm , using	
-									10.2 eV probe.	
-									· ,	
N =	No.	blow	s to d	rive_	2	spc	oon12	2 " with 140 lb. pin wt. falling 30 "per blow. CLASS	IFICATION <u>Visual by</u>	
C =	No	blow	s to d	rive		cas	ing	" withlb. weight falling"per blow	Onsite Geologist	
METH	100	O O F	INVE	STIGA	MOIT	AS	TM D-1	586 USING 4-1/4" HOLLOW STEM AUGERS		

MONITOR WELL COMPLETION REPORT	WELL NO B-1MW JOB NO BTA-91-011
	PROJECT Oxford Energy
	Co-generation Facility
EL. 584.32 (2)	I. PROTECTIVE CASING I.D. 4 MCHES.
-581.74	z surface seal treeCement/Bentonite Grout
	3. ESTENCIE BILLETER 8 INCHES.
*DEPTH 3	a. RISER PIPE: a. Type Polyvinyl Chloride b. LD. 2.5 INCLES
	Lugin 8 FEET Lind Type Threaded
9	5. BACKFILL: 6. Type Cement/Bentonite Grout 5. Lacation Tremie
<u>осети 3</u> <u>осети 5</u>	E. The d SELL Bentonite Pellet
	Z SCREEN A Tipe Polyvinyl Chloride A LIZ 2 MOSS C Stat Size 0.010 MC/65
	Length 10 FEET
- ресети 16	B. SCREEN FILTER TYPE #4 0 Rok Sand
*осети 18	9. CAOSFIL TIPE #4 0 Rok Sand

Depth in feel below grade.

	<u>j</u>		
•		B-2HW 573.38 See Note	
	PROJECT Britard Energy - Co-generation LOCATION Hamburg Tump	ike	
	(BTA-91-811)		
11 4	CLASSIFICATION	IOTES	•
1	1 100/16 REF BG Cossing Store (0.3) Pef=spli	1 spoon 100 1 BG	-
<u>-</u>	Gray to black fc SAND, some cinders,	8) 81.55	
3	5 3 mV 16 ZEF 36 tr. slag) tr. brick , tr. coal (moist, FLL) Contains "and" CINDERS, 11+12 * Por 1810 5-3		
_	Story of a cause 1		
_	1 + 1 2	200 structure BG)
7	10 / 3 3 6 8/2 Gray to brown D.C. SILT and CHY	80	
5	5 2 3 Some f. c Sand, little gravel 3 3 6 36 (moist week medium)	70 A.	ے
3	1 16 4 4 Contains shale fragment	13 36	,
	5 723 wood (0.51)		
8	71 1/8/4/4 1 1 900,00 3- chola Decomple /4	- - - 	
14	9 4 4 (wet, loose) Note: bo	777	
-		4- 10 BG	>
	and CLAYS, little f-M Sand, fr. roots, fr. wood (Moist, Medium)		
		.	
	Boiling Complete at 20,04 FEW reco	11 dod at	
. 🚽	Long State	Gorica H	
		<u>і</u> <u>Н</u>	
		H	
1		. []	
	ground wester	.	
(60)	Monetoring well installed	22 Uprobe H	
21	at boing completion	2.39Cm	
	Monitoring well installed PID at boing completion, well with 10 to setal 16.0 ft. Lee monitar 34:0.0-2 well completion heport for deails.	· HI	
, 3	N = No. blows to drive v spoon v with 1711 lb. pin wt. falling v per blow. CLASSIFICATION v	<u> </u>	
	C = No blows to drive casing with lb. weight falling per blow. Mrl dlo	<u> </u>	
- 1	METHOD OF INVESTIGATION: DOTT DID V 1/5/1/9 7/4 MDA		

MONITOR WELL COMPLETION REPORT :	WELL Nº B-2MW JOB Nº BTA-91-011
	PROJECT Oxford Energy
	Co-generation Facility
<u>er.</u> 585.19	1. PROTECTIVE CLSING I.D. 4 MCHES.
<u>ε. 583.20</u>	Z SUSFACE SEAL TYPE Cement/Bentonite Grout
	3. POTENCIE DIAVETER 8 INCHES.
• осети 3	4. RISER PIPE:
	o. Type Polyvinyl Chloride
	s. LD. 2.5 INCLUS
	a Longith 8 FEET
Y/A Y/A \	L sind Type Threaded
/// /// -⊙	
	5. BACKFILL:
	Cement/Bentonite Grout
	b. Autotrion Tremie
-ocrtm 3	<i>b. Pater in</i>
(6)	Pollot
*ocrm 5	6. The of SELL Bentonite Pellet
	T, SCREEN
	Polyvinyl Chloride
	A LQ 2 MOS
	
	a star size 0.010 mares
	1. Longth 10 FEET
16	B. SCREEN FILTER TYPE #4 0 Rok Sand
* <u>ocen</u> 18	9. EACOFUL TIPE #4 Q Rok Sand

*Depth in feet below grade.

	AR			-12-		_	E. soils	MPIRE INVESTIGATIONS INC. SUBSURFACE LOC	HOLE NO. B-3MW SURE FLEV. 583.82		
				-12- _OF.	_	_		SODSORIACE EOC	G. W. DEPTH See Not		
						gy (Cogene	ration Facility LOCATION Hamburg	l Turnpike	_	
		_	BTA-	-91-		<u> </u>	7	Lackawan	na, New York	_	
ODEPTH-FT	SAMPLES	SAMPLE NO	%	SAM	PLER 12	N	PID on Sample	SOIL OR ROCK CLASSIFICATION	NOTES	% Rec	PID TOA
	/	1	13 50⁄	15 0.0		REF	BG	Black to gray f-c Sand to Gravel- sized CINDERS, some Slag, tr. gra- vel, tr. sand, tr. silt (moist, FILL) CONCRETE (3.5')	REF=Refusal of Split-Spoon Sampler Concrete Obstruc- tion at 1.5' to 5.0'	100	BG BG
5 — - -	1		1 100			1 REF	BG BG	Brown to black f-c SAND, some f-c Gravel, little Slag, tr. silt, tr. clay, tr. brick, tr. cinders (moist, FILL)	Difficult drilling due to SLAG from	30 - 100	
- 10 -		5	29 2 WOR	3 1		9	BG 0.3-	Becomes gray to black, contains some Slag, little Gravel, tr. shale fragments (wet)	7.5' to 8.0'. Water noted at 8.0'.	40 100	BG BG
	I	6	100	2 /1		2 REF	0.5	Black SILT and CLAY, little f-m Sand, tr. gravel, tr. slag (wet, FILL) Gray f-c Sand to Gravel-sized SLAG,	S-5 has a distinct petroleum-like sheen & odor.	D I	BG
L 5		7 • 8	2	2 2 2		4	2.0	tr. brick, tr. sand (moist-wet, FILL) Brown to black mottled organic	S-6: No recovery obstructment at 12.1' to 14.0'.	40	BG
	7	9	3	4 3 3		7	BG BG	SILT and CLAY, some f-c Sand, little Wood (moist, medium, OL) Contains tr. gravel		30 50	BG BG
20-								Boring Complete at 20.0' Ground Water Monitoring Well installed at boring completion. Well tip set at 16.0'. See Monitor Well Completion Report for details.	No Free Standing Water recorded at boring completion. PID-Organic vapors measured with Photoionization Detector (PID). Measurements recorded in parts per million		
									(ppm). BG=Background PID measurements=0.0- 0.3 ppm, using 10.2 eV probe.		
								"with 140 lb. pin wt. falling 30 "per blow. CLASSI	FICATION <u>Visual by</u> Onsite Geologis		
									Juliu Geologis		

D. C.

MONITOR WELL COMPLETION REPORT	WELL Nº B-3MW JOB Nº BTA-91-011
	PROJECT Oxford Energy
	Co-generation Facility
	-
2	1. PROTECTIVE CLSING I.D. 4 HICHES.
583.82	z susface sext rree Cement/Bentonite Grout
	3. POREMOLE DILLIETER 8 INCHES.
*DEPTM 3 243	a. Fire Polyvinyl Chloride
	p. 10. 2.5 INCLES
	C Longin 8.5 FEET
	& sond Type Threaded
	5. BACKFILL:
W/ W/-6	Cement/Bentonite Grout
	b. Laterior Tremie
• <u>осети 3</u>	
6	6. The d SELL Bentonite Pellet
**************************************	•
	7. SCREEN
	Polyvinyl Chloride
	ALIA_2 MOVES
	e star stro 0.010 mores
	1. Longth 10 FEET
	B. SCREEN FILTER TYPE #4 0 Rok Sand
- 16 S	•
	9. ELOGILL TYPE #4 Q Rok Sand
*DCFTM 18	

*Depth in foot below grade.

DAT			•	10	00		FI	MPIRE	HOLE NO. ESI-2	
1 .				10-				INVESTIGATIONS INC. SUBSURFACE LOG	1	
FI	NI:	HED	_8-	10-	90_			30B30KIACE LOC		İ
SHE	ΕT		1	OF_	1				G. W. DEPTH See Notes	
						1		Harling To		
PRC	DJE						sociat		•	
			(BTA	<u>-90</u>	-12	<u>l)</u>		Lackawanna	, New York	
-	1	T_	T	81.01	S ON					PII
DEPTHEFT	SAMPLES	S.			PLER		PID	SOIL OR ROCK	NOTES	Tot
i i	N.	SAMPLE	0	16/	12/	1	Sample	CLASSIFICATION	NOTES	of
= 0=	i	%	/ 6	12	18	N				Auge:
T "		1	4	13		23	BG	Black f-c SAND and Silt (cinders),		
1 -	7/		10	5				tr. gravel, tr. brick, tr. coal		BG
-		2	3	4		7	BG	(moist, FILL)		
-	1/		3	5	ļ	 				BG
-	+	3	1	В	-	6	BG		H.	
5-	۱/	3	3	 	 	۴	DG	. •	- 	70
-	γ.		+	[- -		ļ			H	BG
-	4/	4	2	<u>B</u>		5	BG	Brown Clayey SILT, some f-c Sand,		
-	1	1	2	1	<u> </u>	<u>L</u> _		tr. gravel, tr. wood (wet, FILL)	H	<u> </u>
-	1/	5	2	1	<u> </u>	3	*		*No Recovery on	BG
-10	1	_	+=	3					Sample no. 5.	100
1.0	1/	6	5	2		4	BG	Becomes black-brown	Ц	BG
	V		2	2		j	ii		Ref=Sample Spoon	
-	V	7	34	100	.2	Ref	BG	Contains little-some Wood	Refusal	BG
-	14								Relusar	
	11		<u> </u>						Note: Wood at	
15-	1,								approx. 13.0' very	BG
-	1	-	2	2		9	BG	Gray-brown Silty CLAY, little f-c	difficult drilling.	
-	1/	8	7	_	<u> </u>	9	DG	Sand, tr. gravel, occasional gray		5-7
-	1	_	ļ * -	20		0.7		Silt partings (moist, medium)	H	
-	┨/	9_		12		27	BG	Becomes brown	H	İ
20 -	γ.	_	15	21				Contains Clayey SILT, some f-c	No Free Standing	
-	-	<u> </u>						Sand, tr. gravel (moist, HARD) Boring Complete at 20.0	water measured inside	
_	1		<u> </u>					Boring Complete at 20.0	augers below ground	
_									surface at boring	
"	7								surface at boring completion. PID=Organic vapor	
he -	1								measurements taken	1
25—	1							,	with a Photoioniza-	
-	1	<u> </u>	 						tion Detector (PID).	
-	1		 						Measurements record-	
-	1		<u> </u>			\vdash			ed in parts per	
-	1		-					·	million (ppm).	
} -	1		<u> </u>						- 	
-	1		<u> </u>			 			BG=Background PID	
-		L							measurements=0-	
_									2.5 ppm	
_										
-				T						
]									
~	1								П	
-	1								T H	
-									H	
-						-+			H	
L _	<u>. </u>				l	1		l	ا للــ	1
N = N	10	blow	to dr	ive	2	." spo	on12	with 140 lb pin wt falling 30 "per blow. CLASS	IFICATION Visual by	1
C = 5	60	olow.	to de	ı.e		rasi	Uδ	" withib. weight falling"per blow	Geologist	
								-1586 USING 4-1/4" HOLLOW STEM AUGERS		
METH	OD	OF I	NVES	HCAT	ION		בת דוד ח	TOO COING - I'- HORTON SIET WOREVS		1

MONITOR WELL COMPLETION REPORT

	WELL Nº EST- 2 JOB Nº BIA-90-121
576.9	PROJECT Erie Energy Associates
2	Lackawanna, New York
EL 574.9	1. PROTECTIVE CASING I.D. 6 MCHES.
	2 SURFACE SEAL TYPE Type I Portland Cement
*OEFTH 2.5'	3. BORENOLE DIAHETER 8. INCHES.
	4. RISER PIPE:
Y// \ \ Y/\f	a Type 40 Schedule PVC
/// 	D. LO. 2 INCHES
W/ KA	a Longita 10 FEET
V/ \ \ //_3	d Joint Type PTFE (Teflon) Taped Flush Couple Threaded
5 01 Y/A i V/A	5. BACKFILL:
*DEFTH 5.0'	a. 1700 3% Bentonite/Cement Grout
*ocrnu 7.0'	b. bestellerion Pour From Surface
	6. Tros of SEAL Bentonite Pellet
	Z. SCREEN
	a Type 40 Schedule PVC
	A LO. 2 MONES
	c stor size 0.010 MCHES
	d. Longth 10 FEET
18.0'	• .
	8. SCREEN FILTER TYPE #2 Q-Rok Sand
* <u>oceth</u> 20.0'	
	9. BAOSILL TYPE #2 Q-Rok Sand
	S. MICH ME TIFE WE Q-ROK Sallu

*Depth in feet below grade.

Project Name:	Phase 1 BPA	BORING NUMBER:	MW-12A
Project Number:	0071-006-102	Location: Phase I BPA	
Client: Tecum	seh Redevelopment, Inc.	Start Date/Time:	01/31/06 13:30 PM
Drilling Company		End Date/Time:	02/01/06 10:30 PM
Driller: Brian	n Bartran	Logged By: TAB	
Helper: Hard	old	Drilling Method: 4.25 H	SA
Rig Type: CMI	E 85	Weather: overcast, cold, bre	ezey, Low 30's F

Hel _l Rig			Har CM	E 85	Weather: overcast, cold, breezey, Low 30's F						
Elevation (fmsl)	Depth (fbgs)	Sample No.	Blows (per 6")	SPT N-Value	Recovery	SAMPLE DESCRIPTION USCS Classification: Color, Moisture Condition, Percentage of Soil Type, Texture, Plasticity, Fabric, Bedding, Weathering/Fracturing, Odor, Other	USCS Code	PID Scan (ppm)	PID HDSP (ppm)	Soil Unit	Well Construction Details
584.43	0	S1	4 7 100-3	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1.0	SOIL/FILL: Black/Dark Brown, moist, dense, LWD, 90% NPF 10% Fine sand, w/ coal, slag & brick debris	FILL	0.0	0.0	FILL	1
582.43	2	S2	9 9 7 10	16	1.0	Same as S1, wet	FILL	0.0	0.0	FILL	Bentonne Chips 2" Sch. 40 PVC riser
580.43	4	S3	9 42 22 9	64	1.1	SOIL/FILL: Black/Dark Brown, moist, dense, LWD, 80% NPF 20% Fine sand, w/ coal, slag & brick debris	FILL	0.0	0.0	FILL	
578.43	6	S4	10 10 12 9	22	1.4	(0.0 - 0.3) Same as S3 (0.3 - 1.4) SLAG : Medium grey, wet	FILL	0.0	0.0	FILL	
576.43	8	S5	3 11 23 37	34	0.6	SOIL/FILL: Dark Brown to redish brown, wet, dense, LWD, 90% NPF 10% Fine sand, w/concrete debris	FILL	0.0	0.0	FILL	0 thgs]
574.43	10	S6	7 15 14 15	29	1.1	Same as S5	FILL	0.0	2.3	FILL	sand pack - #00N (14.0 - 3.0 fbgs)
572.43	12	S7	3 12 22 22	34	1.1	(0.0 - 0.4) Same as S5 (0.4 - 1.4) SLAG: Bluc, wet	FILL	0.0	0.0	FILL	ped pues
570.43	14	S8	11 19 13 7	32	1.5	Same as S7 (0.4 - 1.4)	FILL	0.0	0.0	FILL	
	16	S9	3 2 2	4	1.5	(0.0 - 0.6) SANDY ORGANIC SOIL: Dark rown, firm, LWD, moist, 60% LPF, 40% Fine sand, w/ wood chips (0.6 - 1.5) SANDY LEAN CLAY: Medium brown, stiff, 30% M-HP, 70% Fine sand, slow dialatencey	OL/OH CL	0.0	0.0	PEAT CLAY	
566.43			6			EOB @ 18.0 fbgs, installed well @ 16.0 fbgs					
ABRI		ATIC	NS:			A C HCA L P	MS = med				-
C = coar CG = coar			al	fbgs = feet below FG = fine gravel	-	nd surface HSA = hollow stem auger LP = low plasticity	NA = not NPF = not				
CS = co		-	-1	fmsl = feet above			SA = sub				
EOB = 0			ring	I'S = fine sand		M = medium	SR = sub-				1
F = fines			_	HP = high plasti	city	MP = medium plasticity	SS = split	spoon			

MW-12A Page 1 of 1

Project Name:	Phase 1 BPA	BORING NUMBER:	MW-13A
Project Number:	0071-006-102	Location: Phase I BPA	
Client: Tecun	nseh Redevelopment, Inc.	Start Date/Time:	01/31/06 09:50 AM
Drilling Company	: Earth Dimensions, Inc.	End Date/Time:	01/31/06 12:20 PM
Driller: Bria	n Bartran	Logged By: TAB	
Helper: Har	old	Drilling Method: 4.25 H	SA
Rig Type: CM	E 85	Weather: overcast, cold, sl. l	oreeze, Low 30's F

Hel Rig			Har CM	old E 85			Drilling Method: 4.2 Weather: overcast, cold,	sl. breeze	, Low	30's	F	
Elevation (fmsl)	Depth (fbgs)	Sample No.	Blows (per 6")		SPT N-Value	Recovery	SAMPLE DESCRIPTION USCS Classification: Color, Moisture Condition, Percentage of Soil Type, Texture, Plasticity, Fabric, Bedding, Weathering/Fracturing, Odor, Other	USCS Code	PID Scan (ppm)	PID HDSP (ppm)	Soil Unit	Well Construction Details
582.72	0	NA	NA	NA	0 50 100		ASPHALT: augered through	NA			ASPHALT	
581.72	1	S1	39	0		0.9	SOIL/FILL: Black/Dark Brown, moist, 90% NPF 10% FS, w/brick & slag	FILL	0.0	0.0	FILL	C riser
580.72	2		56 100-5				debris, dense, LWD					Bentonire Chips Sch. 40 PVC riser
	. 1	S2		100		0.6	FILL: Weathered concrete, medium grey, wet	FILL	0.0	0.0	FILL	2" Scl
578.72	4	S3	3 2 6 7	8		1.3	SANDY LEAN CLAY: Medium grey, wet, 80% MPF, 20% FS w/ peat lenses & wood chips, stiff, slow dialatency	CL OL/OH	0.0	0.3	CLAY PEAT	
576.72	6	S4	2 2	4		1.5	same as S3	CL	0.0	6.6	CLAY	
574.72	8	S5	5 5 6 8	11	•	2.0	(0.0 - 0.4) Same as S4 (0.4 - 1.4) SANDY ORGANIC SOIL: Dark brown, wet, 60% LPF, 40% FS, w/wood chips, loose, dense (1.4 - 2.0) Same as S4	CL OL/OH CL	0.0	0.0	CLAY PEAT CLAY	Ofbes)
572.72 570.72		S6	5 9 5 7	14		1.8	(0.0 - 1.0) SANDY ORGANIC SOIL: Dark brown, moist, 60% LPF, 40% FS, w/rootletts & sandy clay lenses, dense, LWD (1.0 - 1.8) SANDY LEAN CLAY: Medium grey, wet, 70% MPF, 30% FS, soft	OL/OH CL	0.0	0.0	PEAT CLAY	ck - #00N (14.0 - 3.0 fbgs)
1000		S7	8 6 6 7	12		1.2	(0.0 - 0.2) Same as S7 (0.0 - 0.7) <u>SANDY ORGANIC SOIL:</u> Dark brown, wet, 70% LPF same as S6 (0.9 - 2.0), dense, LWD	CL OL/OH CL	0.0	0.0	CLAY PEAT CLAY	sand pack
568.72	14						EOB @ 14.0 fbgs Initial boring advanced to 4.0 fbgs to refusal, moved location \sim 10.0 ft east and continued from 4.0 to 14.0 fbgs					
566.72									-			
564.72 ABR		∆ ′T'T ∕	NIC.					MS = med	fium sa	nd		<u> </u>
C = coa		7110)1 1 2:		fbgs = feet below	grou	nd surface HSA = hollow stem auger	NA = not				
CG = c			el		FG = fine gravel		LP = low plasticity	NPF = no	-		:	
CS = co					fmsl = feet above	mean	sea level LWD = loose when disturbed M = medium	SA = sub- $SR = sub$ -				ļ
EOB = F = fine			ппg		FS = fine sand HP = high plastic	ity	MP = medium plasticity	SS = split		·u		ĺ
							·					

MW-13A Page 1 of 1

MW-14A

Project Name:	Phase 1 BPA	BORING NUMBER:	MW-14A
Project Number:	0071-006-102	Location: Phase I BPA	
Client: Tecum	seh Redevelopment, Inc.	Start Date/Time:	01/31/06 07:40 AM
Drilling Company:	Earth Dimensions, Inc.	End Date/Time:	01/31/06 09:40 AM
Driller: Brian	1 Bartran	Logged By: TAB	
Helper: Haro	old	Drilling Method: 4.25 HS	A
Rig Type: CMI	E 85	Weather: overcast, cold, sl. br	eeze, Low 30's F

Rig	Тур	oe:	CM	E 85		Weather: overcast, cold,	sl. breeze	, Low	30's l	7	
Elevation (fmsl)	Depth (fbgs)	Sample No.	Blows (per 6")	SPT N-Value	Recovery	SAMPLE DESCRIPTION USCS Classification: Color, Moisture Condition, Percentage of Soil Type, Texture, Plasticity, Fabric, Bedding, Weathering/Fracturing, Odor, Other	USCS Code	PID Scan (ppm)	PID HDSP (ppm)	Soil Unit	Well Construction Details
583.82 581.82	0	S1 .	4 9 14 20	23	1.4	SOIL/FILL: Black/Dark Brown, moist, 80% NPF 20% FS, w/ coal & brick debris, dense, LWD	FILL	0.0	0.0	FILL	Retrontie Chips with the Sch. 40 PVC riser
579.82	4	S2	4 6 7 10	13	1.1	(0.0 - 0.5) REWORKED CLAY: Medium grey, moist, 70% MPF, 30% FS, w/ pieces of orange brick, stiff (0.5 - 1.1) Same as S1, wet	FILL	0.0	0.0	FILL	2" Sch. 4(
		S3	7 6 7 12	13	1.4	Same as S1, wet	FILL	0.0	0.0	FILL	
577.82	6	S4	9 11 11 13	22	0.5	Same as S1, wet	FILL	0.0	0.0	FILL	
575.82		S5	5 5 8 14	13	1.0	SANDY LEAN CLAY: Medium grey, wet, 50% MPF, 50% FS, w/ ironstained mottling and gravel, stiff, slow dilatency	CL	0.0	0.0	CLAY	40 PW (
573.82		S6	5 7 10 12	17	0.9	same as S5, w/ brick fragments	CL	0.0	0.0	CLAY	#99N (14.0-
571.82		S7	7 8 7	15	1.1	(0.0 - 0.8) Same as S5 (0.8 - 1.1) SANDY ORGANIC SOIL: Dark brown, moist, 60% LPF, 40% FS, w/rootletts, dense, LWD	CL OL/OH	0.0	0.0	CLAY PEAT	sand pack
569.82						EOB @ 14.0 fbgs					
567.82											
565.82 ABR C = coa CG = co CS = co EOB = F = fine	EVL rse oarse oarse :	grave sand of bor	el .	fbgs = feet be FG = fine gra fmsl = feet ab FS = fine sanc HP = high pla	ivel pove mean d	LP = low plasticity	MS = mec NA = not NPF = no SA = sub- SR = sub- SS = split	applica t plasti angulaa rounde	able c fines		

Project Name:	Phase 1 BPA	BORING NUMBER:	MW-15A
Project Numbe	r: 0071-006-102	Location: Phase I BPA	
Client: Tec	cumseh Redevelopment, Inc.	Start Date/Time:	01/29/06 13:00:00 AM
Drilling Compa		End Date/Time:	01/29/06 14:45:00 PM
Driller: B	rian Bartran	Logged By: TAB	
Helper: F	Iarold	Drilling Method: 4.25 HS	A
Rig Type:	CME 85	Weather: Partly Cloudy, cool,	sl. breeze, Low 40's F

Rig		e:	CM.	E 85			Weather: Partly Cloudy,	cool, sl. b	reeze	, Low	40's F	
Elevation (fmsl)	Depth (fbgs)	Sample No.	Blows (per 6")	S	PT N-Value	Recovery	SAMPLE DESCRIPTION USCS Classification: Color, Moisture Condition, Percentage of Soil Type, Texture, Plasticity, Fabric, Bedding, Weathering/Fracturing, Odor, Other	USCS Code	PID Scan (ppm)	PID HDSP (ppm)	Soil Unit	Well Construction Details
583.71	2	NA	 	0	0 10 20	NA	Augered to 4.0 fbgs (description from soil cuttings) SOIL/FILL: Black/dark brown, moist, NPF, w/ brick fragments	FILL	0.0		FILL	Bestonis Charles Charles 1. 40 PVC riser
581.71	2	NΛ		0		NΛ	Same as above	FILL	0.0		FILL	2" Sch. 46
579.71	4	S1	2 4 4	6		1.0	SANDY LEAN CLAY: Medium grey to dark grey, wet, stiff, 40%MPF, 60% FS, slow dialatency w/ some gravel	FILL	0.0	0.0	FILL	
577.71	6	S2	3 5 5	10		1.3	(0.0 - 0.3) ORGANIC SANDY SOIL: Dark brown, wet, 30% LPF, 70% FS, dense, LWD (0.3 - 1.3) SANDY LEAN CLAY: Medium grey, wet, medium soft, 40% MPF, 50% FS, 10%CG	OL/OH CL	0.0	0.0	PEAT CLAY	
575.71	8	S3	3 3 6 7	9		0.9	(0.0 - 0.5) SANDY ORGANIC SOIL: Dark Brown, wet, 60% FS, 40% LPF, firm, LWD (0.5 - 0.9) SANDY LEAN CLAY: Medium grey with black specks, wet, 60% MPF, 40% FS, stiff, slow dilatency	OL/OH CL	0.0	0.4	PEAT' CLAY	
573.71		S4	2 3 6 7	9		1.7	(0.0 - 0.3) Same as S3 (0.0 - 0.5) (0.3 - 1.7) SANDY LEAN CLAY: Medium grey, wet, 60% MPF, 40% FS, w/ some gravel, stiff, rapid dilatency	OL/OH CL	0.0	0.0	PEAT CLAY	ck - #00N (14.0 - 3.0 fbgs)
571.71		S5	8 6 9	15		1.5	Same as S4 (0.3 - 1.7)	CL	0.0	0.0	CLAY	sand pack
569.71	14						EOB @ 14.0 fbgs					
567.71	16											
565.71			Ш					MC =				
ABR $C = coa$ $CG = co$ $CS = co$	irse oarse oarse	grav	el		fbgs = feet below FG = fine gravel fmsl = feet above	Ü	I.P = low plasticity sca level LWD = loose when disturbed	MS = med $NA = not$ $NPF = no$ $SA = sub-$	applica t plasti angula	able ic fines r		
EOB = F = fine			ring		FS = fine sand HP = high plastic	city	M = medium MP = medium plasticity	SR = sub- SS = split		:u		

Project Name:	Phase 1 BPA	BORING NUMBER:	MW-16A
Project Number:	0071-006-102	Location: Phase I BPA	
Client: Tecum	nseh Redevelopment, Inc.	Start Date/Time: 01/	/29/06 10:30 AM
Drilling Company	: Earth Dimensions, Inc.	End Date/Time: 01/	/29/06 12:15 PM
	n Bartran	Logged By: TAB	
Helper: Har	old	Drilling Method: 4.25 HSA	
Rig Type: CM	E 85	Weather: Partly Cloudy, cool, sl. b	oreeze, Low 40's F

Hel Rig			Har CM	old E 85			Weather: Partly Cloudy,	ool, sl. b	reeze,	, Low	40's F	
Elevation (fmsl)	Depth (fbgs)	Sample No.	Blows (per 6")	S	SPT N-Value	Recovery	SAMPLE DESCRIPTION USCS Classification: Color, Moisture Condition, Percentage of Soil Type, Texture, Plasticity, Fabric, Bedding, Weathering/Fracturing, Odor, Other	USCS Code	PID Scan (ppm)	PID HDSP (ppm)	Soil Unit	Well Construction Details
583.42	0		 	0	0 10	NA	Augered to 4.0 fbgs (description from soil cuttings) SOIL/FILL: Black/Dark Brown, moist, NPF	FILL	0.0		FILL	Retrosite Chais Science Sch. 40 PVC riser
581.42	2			0		NA	Same as above	FILL	0.0		FILL	2" Sch. 40
579.42	4	S1	4 6 10 8	16		1.2	(0.0 - 0.4) SOIL/FILL: Black, wet, 90% NPF, 10% FS, LWD (0.4 - 1.1) yellow refractory brick: wet (1.1 - 1.2) orange brick: wet	FILL	0.0		FILL	
577.42	6	S2	4 7 3	10		0.7	(0.0 - 0.2) Same as S1 (0.0 - 0.4) (0.2 - 0.7) SANDY LEAN CLAY: Medium grey, wet, stiff, 60% MPF, 40% FS, slow dilatency	FILL CL	0.0		FILL CLAY	
575.42	8	S3	3 2 2 4	4		1.2	Same as S2 (0.2 - 0.7) w/ lenses of peat	CL	0.0		CLAY	.o figs)
573.42	10	S4	2 4 6 11	10		1.5	Same as S2 (0.2 - 0.7) w/ lenses of peat & iron-stained mottling	CL	0.0		CLAY	pack - #00N (14.0 - 3.0 fbgs)
571.42	12	S5	2 7 5	12		0.5	Same as S2 (0.2 - 0.7) w/ lenses of peat & iron-stained mottling	CL	0.0		CLAY	sand bac
569.42	14		7				EOB @ 14.0 fbgs				=	
567.42	16											
565.42	18								L			
ABR		ATIC	ONS:					MS = med				
C = coa	rse				fbgs = feet belo	-		$N\Lambda = not$				
CG = c		_	el		FG = fine grave		LP = low plasticity	NPF = nc				
CS = co					fmsl = feet abov	e mear	n sea level LWD = loose when disturbed M = medium	SA = sub- $SR = sub$ -	-			İ
EOB =			ring		FS = fine sand HP = high plast	icity	M = medium MP = medium plasticity	SK = sub- $SS = split$				
F = fine	s or	inic			111 – Ingii piasi	icity	in median plasticity	- crae	1			

Project Name:	Phase 1 BPA	BORING NUMBER:	MW-1	17 A
Project Number:	0071-006-102	Location: Phase I BPA		
Client: Tecum	seh Redevelopment, Inc.	Start Date/Time:	01/29/06	08:00 AM
Drilling Company		End Date/Time:	01/29/06	10:20 AM
Driller: Bria	n Bartran	Logged By: TAB		
Helper: Har	old	Drilling Method: 4.25	HSA	
Rig Type: CM	E 85	Weather: overcast, cool, s	l. breeze, Low 40	's F

Hel Rig			Har CM	old E 85				Drilling Method: 4.2 Weather: overcast, cool,	sl. breeze	, Low	40's I	न	
Elevation (fms1)	Depth (fbgs)	Sample No.	Blows (per 6")	S	PT N-Va	lue	Recovery	SAMPLE DESCRIPTION USCS Classification: Color, Moisture Condition, Percentage of Soil Type, Texture, Plasticity, Fabric, Bedding, Weathering/Fracturing, Odor, Other	USCS Code	PID Scan (ppm)	PID HDSP (ppm)	Soil Unit	Well Construction Details
582.48	0	S1	17 28 29 12	57	50	100	1.0	SOIL/FILL: Black/Dark Brown, moist, 80% NPF, 20% slag, 20% FS, medium dense, LWD	FILL	0.0		FILL	Sch. 40 PVC riser
580.48		S2	100-5	0			1.5	Same as S1 above, wet	FILL	0.0		FILL	2" Sch. 40
578.48	4	S3	7	0			0.4	FILL: Medium grey, wet, 90% Concrete, 10% FS, SA, LWD	FILL	0.0		FILL	
576.48	6	S4	2 2 4	6			1.2	(0.0 - 0.7) SANDY LEAN CLAY: Medium grey, stiff, wet, 60% MPF, 40% Fine Sand, slow dialatency (0.7 - 1.2) ORGANIC SOIL: Dark brown, wet, 60% LPF, 40% FS, LWD, slow dilatencey, w/ rootletts and wood chips	CL OL/OH	0.0		CLAY PEAT	
574.48	8	S5	4 5 5	10			1.3	Same as S4 (0.0 - 0.7) w/ lenses of Peat	CL	0.0		CLAY	40 PWC serven bottoff
572.48	10	S6	4 7 8 8	15			1.5	Same as S4 (0.0 - 0.7); clay is softer from 0.0 - 0.8 w/ rapid dilatencey. Clay stiffens from 0.5 - 1.5	Cl	0.0		CLAY	sand pack - #00N (14:0 : 3:0 fbgs)
570.48	12	S7	3 3	6			2.0	SANDY ORGANIC SOIL: Dark brown to brownish grey, wet, firm, 60% LPF, 40% FS w/ rootlets and wood fibers, LWD	OL/OH	0.0		PEAT	sand bac
568.48	14	S8	7					EOB @ 14.0 fbgs					
566.48	16	S9											
564.48	18	L_											
ABR	EVI	ATIC	NS:						MS = med				7
C = coa	ırse				fbgs = feet		grour	•	NA = not				
CG = c		_	el		FG = fine			LP = low plasticity	NPF = no				
CS = co					fmsl = fee		mean		SA = sub-s $SR = sub$ -s				1
EOB =			rıng		FS = fine s HP = high		it.	M = medium MP = medium plasticity	SR = sub-s SS = split s		u		
F = find	es or	ше			11r – mgn	piasuc	.ity	mi – mediani piasueny	Se spat				

MW-17A Page 1 of 1

Project Name: Phase 1 BPA	BORING NUMBER: MW-18A
Project Number: 0071-006-102	Location: Phase I BPA
Client: Tecumseh Redevelopment, Inc.	Start Date/Time: 02/01/06 11:00 AM
Drilling Company: Earth Dimensions, Inc.	End Date/Time: 02/01/06 12:20 PM
Driller: Brian Bartran	Logged By: TAB
Helper: Harold	Drilling Method: 4.25 HSA
Pic Type: CMF 85	Weather: overcast, cold, sl. breeze, Low 30's F

Hel Rig	7		CM			Weather: overcast, cold,	sl. breeze	e, Low	30's I	7	
Elevation (fmsl)	Depth (fbgs)	Sample No.	Blows (per 6")	SPT N-Value	Recovery	SAMPLE DESCRIPTION USCS Classification: Color, Moisture Condition, Percentage of Soil Type, Texture, Plasticity, Fabric, Bedding, Weathering/Fracturing, Odor, Other	USCS Code	PID Scan (ppm)	PID HDSP (ppm)	Soil Unit	Well Construction Details
584.00 582.00	0	S1	5 9 9	18	1.0	(0.0 - 0.9) SOIL/FILL: Black/Dark Brown, moist, dense, LWD, 90% NPF 10% Fine sand, w/ slag & brick debris (0.9 - 1.2) SANDY LEAN CLAY: Medium brown, stiff, moist, 60% MPF, 40% Fine sand (1.2 - 1.8) Same as S1 (0.0 - 0.9)	FILL CL FILL	0.0	0.0	FILL CLAY FILL	Bentonite Chips Server 2" Sch. 40 PVC riser
382.00	2	S2	3 4 8	12	1.8	SANDY LEAN CLAY: Medium brown, stiff, slow dilatency, moist, 70% MPF, 30% Fine sand w/ gravel	CL	0.0	0.0	CLAY	Benton 2" Sch. 40
580.00	4	S3	11 9 42 22 9	64	1.1	Same as S2, wet	CL	0.0	0.0	CLAY	
578.00	6	S4	9 12 15 16	27	1.1	Same as S2 w/ iron staining	CL	0.0	0.0	CLAY	
576.00	8	S5	8 11 27 15	38	1.3	Same as S2	CL	0.0	0.0	CLAY	
574.00		S6	7 10 15 15	25	1.7	Same as S2 w/ angular gravel form (0.2 - 0.3) & (1.1 - 1.2)	CL	0.0	0.0	CLAY	-#00N (14.0-3
572.00	12	S7	7 18 17 29	35	1.1	SANDY LEAN CLAY: Medium grey, stiff, moist, 70% MPF, 30% Fine sand, slow dialatency, with angular gravel	CL	0.0	0.0	CLAY	sand pack
570.00	14					EOB @ 14.0 fbgs				· · · · · · · · · · · · · · · · · · ·	
568.00	16										
566.00	18										
ABR	EVL	ATIC	NS:	•	· · · · · ·		MS = med	dium sa	ınd		
C = coa				fbgs = feet bel	low grour	nd surface IISA = hollow stem auger	NA = not	applic	able		
CG = c		grav	el	FG = fine grav	-	S C C C C C C C C C C C C C C C C C C C	NPF = nc				
CS = cc				fmsl = feet abo			SA = sub-	-angula	r		
ЕОВ =			ring	FS = fine sand]	M = medium	SR = sub-	rounde	ed		
F = fine	s or	fine		HP = high pla	sticity	MP = medium plasticity	SS = split	spoon			

URS Corporation											TEST BORING LOG			
											BORING NO:	P-44S		
PROJECT: Supplemental SWMU Investigation											SHEET:	1 of 1		
CLIENT: Bethlehem Steel Corp.											JOB NO.:	4200008BSC.15		
BORING CONTRACTOR: SJB Services Inc											BORING LOCATION:	S of Ric	efter C	oncrete
GROUN	DWATER:			GROUND ELEVATION:										
DATE	TIME LEVEL			TY	PE	TYPE		Split spoon			DATE STARTED:	01/18/01		
	,					DIA.		2"	DATE FINISHED:			01/18/01		
						WT.		140#	DRILLER:			D. Mathies		
						FALL	<u> </u>	30"			GEOLOGIST:	J. Doerr		
				<u></u>		* POC	KET PE	NETROMET			REVIEWED BY:	J. Boyd		
			SAME				DESCRIPTIO							
DEPTH		RATA NO. TYPE		BLOWS PER 6"		REC%		CONSIST	DE		MATERIAL	uscs		ARKS
FEET	SIRAIA					ROD%					SCRIPTION		PID	Moist
	x	1	SS	9	50/2	30%	Red/	Medium			rick and concrete,		0.0	Moist
	x			50/0	50/3		Black	Dense Very	•		and, ash and cinder			
	XXXX	2	SS	3070		10%		Dense	2.0-4.0	: Concre	CE F KUUI		0.0	
5	XXXX			1	2		Gray	Very						
	XXXX	3	SS	1/12		20%		Loose				1	0.0	\ ₩
		4	SS	1	2	30%	Blue/	Loose	6.0-15.	6.0-15.0: Medium to coarse SAND, come fine sand, trace fine gravel		SP	0.0	Wet
	2			3	1	. 55 %	Gray		some f				L.,	
	O	5	SS	2	2	60%		Medium	and sill	t		1	0.0	
10	· · · · · ·			9	9		*	Dense				1		1
	o.	6	SS	3 6	8	80%	Blue						0.0	
				5	7									
	<u>.</u>	7	SS	9	7	75%						1	0.0	
15	O		1				-	₩ .					₩	
									End Boring at 15' BGS		 			
										•		1		
								<u>.</u>						
									İ					ļ
20								,	l					
					 			•	1					
													 -	
									l			1		
25								:			•		 -	
													 	l
	İ											1		
														1
30								;						
					ļi							1		l
		l		<u> </u>					l			1	1	1
- 25		\dashv											 	1
35													İ	
	ter Desire				لــــا		550 ··**						<u> </u>	<u></u>
Comments: Boring advanced with ATV mounted CME 550 utilizing 4 1/4-inch HSA for piezometers Sampling accomplished with a 2-inch											PROJECT NO.	420000	JEBSC	.15
	piezometei rel samplei		mbang s	COM	husuet	ı wın a 2	-HICH				BORING NO.	P-44S		
shir ngi	ici sallipiel	•												

1 35 6 50/4 20/6 8 50/4 20/6 5 5 7 30% 11 9 25% 5 5 5 3 4 7 0% 5 50/2 5 50/2 5 50/2 5 50/2 5 50/2 5 50/2 5 50/2 5 5 5 5 5 5 5 5 5					URS	Co	rporat	ion				TEST BORIN	G LO	G	
ADB NO.: 4200008BSC.15												BORING NO:	P-45S		
BORING CONTRACTOR: SJB Services Inc CAS. SAMPLER CORE TUBE GROUND ELEVATION: E of Power House GROUNDWATER: CAS. SAMPLER CORE TUBE GROUND ELEVATION: E of Power House E of Power House GROUND ELEVATION: E of Power House GROUND ELEVATION: E of Power House GROUND ELEVATION: E of Power House GROUND ELEVATION: E of Power House GROUND ELEVATION: E of Power House GROUND ELEVATION: E of Power House GROUND ELEVATION: E of Power House GROUND ELEVATION: E of Power House GROUND ELEVATION: E of Power House GROUND ELEVATION: E of Power House GROUND ELEVATION: E of Power House GROUND ELEVATION: E of Power House GROUND ELEVATION: E of Power House GROUND ELEVATION: E of Power House GROUND ELEVATION: E of Power House GROUND ELEVATION: E of Power House	PROJEC	CT:	Supp	olement	al SW	MU In	vestigati	on				SHEET:	1 of 1		
CAS. SAMPLE CORE TUBE GROUND ELEVATION: SAMPLE TYPE TYPE Split spoon DATE STARTED: 01/18/01 OATE ST	CLIENT	:	Beth	lehem S	Steel C	Согр.						JOB NO.;	4200	008BS	C.15
AGNOLOWIATER: CAS. SAMPLER CORE TUBE GROUND ELEVATION:	BORING	CONTRA	CTO	ર:	SJB	Servic	es inc					BORING LOCATION:	E of Po	wer H	ouse
DAL 2" DATE PINISHED: 01/1901	GROUN	DWATER:	٠.					CAS.	SAMPLER	CORE	TUBE	GROUND ELEVATION			
No. No.	DATE	TIME	LE	VEL	TY	PE	TYPE		Split spoon			DATE STARTED:	01/18	3/01	
FAIL 30" GEOLOGIST: J. Doerr							DIA.		2"			DATE FINISHED:	01/18	3/01	
POCKET PENETROMETER READING REVIEWED BY: J. Boyd				· · · · · · · · · · · · · · · · · · ·			WT.		140#			DRILLER:	D. Mat	nies	
DEPTH STRATA NO. TYPE BLOWS REC% ROD% COLOR HARD DESCRIPTION USCS PID Modern No. TYPE PER 6" ROD% COLOR HARD DESCRIPTION USCS PID Modern No. N					<u> </u>			<u> </u>	 			GEOLOGIST:	J. Doe	т	
DEPTH FEET STRATA NO. TYPE PER 6 ROT% COLOR COLOR HARD DESCRIPTION DESCRIPTI							* POC	KET PE	NETROMET	ER REA	DING	REVIEWED BY:	J. Boyo	t	
FEET STRATA NO. TYPE PER 6" ROD% COLOR HARD DESCRIPTION USCS PID No.				SAME				<u> </u>		DESC	CRIPTIO	М			
1 SS 8 50/4 PBrown Brown Dense				1	ı				4		8	MATERIAL	1 !		
1 SS 8 50/4 20% Brown Dense and silt, some brick, trace gravel. (slag) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	FEET	STRATA	NO.	TYPE		₹ 6"	ROD%	COLOR	HARD				USCS	PID	Moist
2 SS 6 9 20% 5 3 SS 5 7 30% 4 SS 11 9 25% 5 SS 4 7 09% 10 S 5 SS 3 4 7 09% 11 S 5 SS 4 7 30% 12 SS 6 9 10 20% 5 SS 4 7 09% 10 S 5 SS 4 7 09% 10 S 5 SS 1 3 4 09% 11 S 5 SS 1 3 4 09% 12 SS 1 4 7 09% 13 SS 1 5 SS 2 4 7 09% 14 SS 1 5 SS 2 4 7 09% 15 SS 2 4 7 09% 16 SS 2 5 SS 2 4 7 09% 17 SS 2 5 SS 2 4 7 09% 18 SS 2 5 SS 2 4 7 09% 19 SS 2 5 SS 2 4 7 09% 10 SS 2 SS 2 5 SS 2 4 7 09% 10 SS 2 SS 2 SS 2 SS 2 5 SS 2 SS 2 SS 2 S		xxx	1	SS			20%		1					0.0	Moist
2 SS 6 10 20% 3 SS 5 7 30% 4 SS 11 9 25% 5 SS 4 7 0% 5 SS 4 7 0% 6 50/2 End of Boring at 11' BGS, due to auger refusal. End of Boring at 11' BGS, due to auger refusal. 20 20 20 35 Comments: Boring advanced with a fully tracked Nodwell ATV mounted CME 75 PROJECT NO. 4200008BSC.15		XXXX				_		Brown	Dense		, some t	orick, trace gravel.	1		1
3 SS 5 7 30% 0.0 W 4 SS 11 9 25% 0.0 0.0 0.0 10		⋘⋘	2	SS			20%			(slag)				0.0	
3 SS 18 22 30% 4 SS 11 9 25% 5 SS 4 7 0% 5 5 SS 3 4 0 0% 5 50/2 End of Boring at 11' BGS, due to auger refusal. 20 20 20 30 30 30 30 30 30 30 30 30 30 30 30 30		XXXXX		· ·											V
4 SS 11 9 25% 5 SS 4 7 0% 5 5 SS 3 4 0 0.0 0.0 10	 	XXXX	3	SS			30%]]			1		0.0	Wet
4 SS 8 10 25% 5 SS 4 7 0% 5 50/2 End of Boring at 11' BGS, due to auger refusal. 20 21 25 25 25 25 26 27 28 29 20 20 20 20 20 20 20 20 20 20 20 20 20	-	XXXX	\vdash			-									
5 SS 4 7 0% 55/2 End of Boring at 11'BGS, due to auger refusal.		xxx	4	SS			25%	.		,				0.0	
10		*****	_		4	_									1
End of Boring at 11' BGS, due to auger refusal. End of Boring at 11' BGS, due to auger refusal. End of Boring at 11' BGS, due to auger refusal. End of Boring at 11' BGS, due to auger refusal. End of Boring at 11' BGS, due to auger refusal. End of Boring at 11' BGS, due to auger refusal. End of Boring at 11' BGS, due to auger refusal. End of Boring at 11' BGS, due to auger refusal. End of Boring at 11' BGS, due to auger refusal. End of Boring at 11' BGS, due to auger refusal.	10	$\times\!\!\times\!\!\times$	5	55	3	4	0%						1	0.0	
auger refusal. 15 20 20 25 30 30 Comments: Boring advanced with a fully tracked Nodwell ATV mounted CME 75 PROJECT NO. 420008BSC.15		⋘⋘			50/2			+	♦			. ↓		0.0	₩
auger refusal. 15 16 17 20 20 25 30 30 35 Comments: Boring advanced with a fully tracked Nodwell ATV mounted CME 75 PROJECT NO. 420008BSC.15		4 6 4 4								End of	Boring a	t 11' BGS, due to			
20										i e		•			1
20										·			1 .		1
25	15												l i		
25]		
25															
25															1
25	20					-									
30 Somments: Boring advanced with a fully tracked Nodwell ATV mounted CME 75 PROJECT NO. 4200008BSC.15					_]		
30 Somments: Boring advanced with a fully tracked Nodwell ATV mounted CME 75 PROJECT NO. 4200008BSC.15						\vdash									•
30 Somments: Boring advanced with a fully tracked Nodwell ATV mounted CME 75 PROJECT NO. 4200008BSC.15			一												
30 Somments: Boring advanced with a fully tracked Nodwell ATV mounted CME 75 PROJECT NO. 4200008BSC.15			l												
Comments: Boring advanced with a fully tracked Nodwell ATV mounted CME 75 PROJECT NO. 4200008BSC.15	25														1
Comments: Boring advanced with a fully tracked Nodwell ATV mounted CME 75 PROJECT NO. 4200008BSC.15			ļ				l								Ì
Comments: Boring advanced with a fully tracked Nodwell ATV mounted CME 75 PROJECT NO. 4200008BSC.15															
Comments: Boring advanced with a fully tracked Nodwell ATV mounted CME 75 PROJECT NO. 4200008BSC.15															
Comments: Boring advanced with a fully tracked Nodwell ATV mounted CME 75 PROJECT NO. 4200008BSC.15		[4			
Comments: Boring advanced with a fully tracked Nodwell ATV mounted CME 75 PROJECT NO. 4200008BSC.15	30														
Comments: Boring advanced with a fully tracked Nodwell ATV mounted CME 75 PROJECT NO. 4200008BSC.15															
Comments: Boring advanced with a fully tracked Nodwell ATV mounted CME 75 PROJECT NO. 4200008BSC.15		l													
Comments: Boring advanced with a fully tracked Nodwell ATV mounted CME 75 PROJECT NO. 4200008BSC.15															
Comments: Boring advanced with a fully tracked Nodwell ATV mounted CME 75 PROJECT NO. 4200008BSC.15			_												
	35		Ì	- 1			ĺ								
				لــــــــــــــــــــــــــــــــــــــ	لب		لبيب								
using 4-1/4 inch HSA. Sampling accomplished with a 2-inch split BORING NO. P-45S						.15									
barrel sampler. WoH = Weight of Hammer.						·	d with a 2	z-inch sp	ın	····		BORING NO.	P-45S		

Project Name: Phase I Business Park Area WELL NUMBER: P-50S

Client: Tecumseh Redevelopment, Inc. Date Installed: 01/10/06

Boring Location: Phase I BPA Project Number: 0071-006-202

Driller Infor	rmation	
Company:	Earth Dimensions, Inc.	
Driller:	Brian Bartron	
Helper:	Harold	
Permit Numl	ber: NA	
Drill Rig Typ	pe: CME 85	

Well Information		
Land Surface Elevation:	581.43	fmsl (approximate)
Drilling Method: installe	ed within test	pit upon backfill
Soil Sample Collection Met	hod: excavate	or bucket
Drilling Fluid: none		
Fluid Loss During Drilling:	none	gallons (approximate)

Material of W	Material of Well Construction			
Casing:	1-inch Schedule 40 PVC			
Screen:	1-inch Schedule 40 PVC, 0.010-inch slot			
Sump:	none			
Sand Pack:	none			
Annular Seal:	none			

Well Purpose:	
Techneque(s):	
Date Completed:	0
BM/TK Personnel:	
Total Volume Purged:	gallons
Static Water Level:	fbTOR
Pump Depth:	
Pumping Durk	minutes
Yeild:	gpm
Specific Capacity:	gpm/ft

Comments:				
		6 Sm. (7)		
	PREPARED BY:	Man. Man	DATE:	06/05/07

Project Name: Phase I Business Park Area WELL NUMBER: P-51S

Client: Tecumseh Redevelopment, Inc. Date Installed: 01/11/06

Boring Location: Phase I BPA Project Number: 0071-006-202

Driller Info	Driller Information			
Company:	Earth Dimensions, Inc.			
Driller:	Brian Bartron			
Helper:	Harold			
Permit Num	Permit Number: NA			
Drill Rig Typ	pe: CME 85			

Well Information		
Land Surface Elevation:	582.39	fmsl (approximate)
Drilling Method: installe	d within test p	oit upon backfill
Soil Sample Collection Meth	nod: excavato	r bucket
Drilling Fluid: none		
Fluid Loss During Drilling:	none	gallons (approximate)

Material of Well Construction			
Casing:	1-inch Schedule 40 PVC		
Screen:	1-inch Schedule 40 PVC, 0.010-inch slot		
Sump:	none		
Sand Pack: none			
Annular Seal:	none		

Well Purpose:	
Techneque(s):	16
Date Completed:	
BM/TK Personnel:	
Total Volume Purged:	gallons
Static Water Level:	fbTOR
Pump Depth:	
Pumping Duri	minutes
Yeild:	gpm
Specific Capacity:	gpm/ft

Comments:				
		1 Smg (7)		
	PREPARED BY:	Mac. Man	DATE:	06/05/07
		,		

Project Name: Phase I Business Park Area WELL NUMBER: P-52S

Client: Tecumseh Redevelopment, Inc. Date Installed: 01/17/06

Boring Location: Phase I BPA Project Number: 0071-006-202

Driller Infor	Driller Information			
Company:	Earth Dimensions, Inc.			
Driller:	Brian Bartron			
Helper:	Harold			
Permit Numl	ber: NA			
Drill Rig Typ	pe: CME 85			

Well Information		
Land Surface Elevation:	583.20	fmsl (approximate)
Drilling Method: installe	d within test p	it upon backfill
Soil Sample Collection Meth	nod: excavato	r bucket
Drilling Fluid: none		
Fluid Loss During Drilling:	none	gallons (approximate)

Material of W	/ell Construction
Casing:	1-inch Schedule 40 PVC
Screen:	1-inch Schedule 40 PVC, 0.010-inch slot
Sump:	none
Sand Pack:	none
Annular Seal:	none

Well Purpose:	
Techneque(s):	1 6
Date Completed:	
BM/TK Personnel:	
Total Volume Purged:	gallons
Static Water Level:	fbTOR
Pump Depth:	
Pumping Durk 19	minutes
Yeild:	gpm
Specific Capacity:	gpm/ft

Comments:			
		f Sm. (7)	
	PREPARED BY:	I // / bale.	06/05/07

Project Name: Phase I Business Park Area WELL NUMBER: P-54S

Client: Tecumseh Redevelopment, Inc. Date Installed: 01/23/06

Boring Location: Phase I BPA Project Number: 0071-006-202

Driller Infor	rmation_	
Company:	Earth Dimensions, Inc.	
Driller:	Brian Bartron	
Helper:	Harold	
Permit Numi	ber: NA	
Drill Rig Typ	pe: CME 85	

Well Information			
Land Surface Eleva	tion:	583.28	fmsl (approximate)
Drilling Method:	installed	d within test	pit upon backfill
Soil Sample Collect	on Meth	od: excavato	or bucket
Drilling Fluid:	none		
Fluid Loss During D	rilling:	none	gallons (approximate)

Material of W	/ell Construction
Casing:	1-inch Schedule 40 PVC
Screen:	1-inch Schedule 40 PVC, 0.010-inch slot
Sump:	none
Sand Pack:	none
Annular Seal:	none

Well Purpose:	
Techneque(s):	1 2
Date Completed:	.04
3M/TK Personnel:	AD
Total Volume Purged:	gallons
Static Water Level:	fbTOR
Pump Depth:	
Pumping Durk No.	minutes
Yeild:	gpm
Specific Capacity:	gpm/ft

Comments:					
		1 Sm. (7)	_		
	PREPARED BY:	Ma . /a		DATE:	06/05/07

Project Name: Phase I Business Park Area WELL NUMBER: P-55S

Client: Tecumseh Redevelopment, Inc. Date Installed: 01/18/06

Boring Location: Phase I BPA Project Number: 0071-006-202

Driller Infor	mation	
Company:	Earth Dimensions, Inc.	
Driller:	Brian Bartron	
Helper:	Harold	
Permit Num	ber: NA	
Drill Rig Typ	e: CME 85	

Well Information			
Land Surface Elevation	: 58	32.95	fmsl (approximate)
Drilling Method: ins	talled with	nin test	pit upon backfill
Soil Sample Collection	Method: e	xcavat	or bucket
Drilling Fluid: nor	ne		
Fluid Loss During Drillin	ıg: <i>n</i>	one	gallons (approximate)

iaterial of v	<u>/ell Construction</u>
Casing:	1-inch Schedule 40 PVC
Screen:	1-inch Schedule 40 PVC, 0.010-inch slot
Sump:	none
Sand Pack:	none
Annular Seal:	none

Nell Purpose:	
Techneque(s):	
Date Completed:	
BM/TK Personnel:	
Total Volume Purged:	gallons
Static Water Level:	fbTOR
Pump Depth:	
Pumping Duri , 3	minutes
Yeild:	gpm
Specific Capacity:	gpm/ft

Comments:							
			/ ~		/		
		73	Mr.	v 7			
	PREPARED BY:		ma (). [/	7a	DATE:	06/05/07
		1 (/	,		

Project Name: Phase I Business Park Area WELL NUMBER: P-56S

Client: Tecumseh Redevelopment, Inc. Date Installed: 01/20/06

Boring Location: Phase I BPA Project Number: 0071-006-202

Driller Information			
Company:	Earth Dimensions, Inc.		
Driller:	Brian Bartron		
Helper:	Harold		
Permit Numb	ber: NA		
Drill Rig Typ	pe: CME 85		

Well Information				
Land Surface Elevation:	583.28	fmsl (approximate)		
Drilling Method: installed within test pit upon backfill				
Soil Sample Collection Me	thod: excavat	or bucket		
Drilling Fluid: none				
Fluid Loss During Drilling:	none	gallons (approximate)		

Material of W	/ell Construction
Casing:	1-inch Schedule 40 PVC
Screen:	1-inch Schedule 40 PVC, 0.010-inch slot
Sump:	none
Sand Pack:	none
Annular Seal:	none

Well Purpose:	
Techneque(s):	
Date Completed:	0
BM/TK Personnel:	AD
Total Volume Purged:	gallons
Static Water Level:	fbTOR
Pump Depth:	
Pumping Durk 19	minutes
Yeild:	gpm
Specific Capacity:	gpm/ft

Comments:			2				
			/	^	/		
		13	My	/ V ~	1		
	PREPARED BY:		10). <i>j</i>	/a	DATE:	06/05/07
		/	7				

Project Name: Phase I Business Park Area WELL NUMBER: P-57S

Client: Tecumseh Redevelopment, Inc. Date Installed: 01/17/06

Boring Location: Phase I BPA Project Number: 0071-006-202

Driller Infor	rmation
Company:	Earth Dimensions, Inc.
Driller:	Brian Bartron
Helper:	Harold
Permit Numl	ber: NA
Drill Rig Typ	pe: CME 85

Well Information		
Land Surface Elevation:	581.37	fmsl (approximate)
Drilling Method: installe	ed within test	pit upon backfill
Soil Sample Collection Met	thod: excavat	or bucket
Drilling Fluid: none		
Fluid Loss During Drilling:	none	gallons (approximate)

Material of W	/ell Construction
Casing:	1-inch Schedule 40 PVC
Screen:	1-inch Schedule 40 PVC, 0.010-inch slot
Sump:	none
Sand Pack:	none
Annular Seal:	none

Well Purpose:	
echneque(s):	
ate Completed:	0
BM/TK Personnel:	
Total Volume Purged:	gallons
Static Water Level:	fbTOR
Pump Depth:	
Pumping Durk 19	minutes
Yeild:	gpm
Specific Capacity:	gpm/ft

Comments:			<u> </u>				
		7 3	Ma	1			
	PREPARED BY:		Ja C). <i>[</i> /	1a	DATE:	06/05/07
		/					

APPENDIX B

TEST PIT EXCAVATION LOGS & MONITORING WELL SAMPLING LOGS

TEST PIT SUMMARY

Phase I Business Park Area Tecumseh Redevelopment, Inc. Lackawanna, New York

	Lackawaiiia, New Tork						
	Test pit No.	Depth to GW (fbgs)	Total Depth (fbgs)	F	ill	Native?	
	TP-1-1	4.0	9.0	0.0	6.0	yes	
	TP-1-2	5.0	5.0	0.0	5.0	no	
	TP - 1 - 3	5.0	5.0	0.0	5.0	no	
	TP - 1 - 4	5.0	5.5	0.0	5.5	yes	
	TP - 1 - 5	2.5	3.2	0.0	3.2	no	
	TP - 1 - 6	-	5.0	0.0	5.0	yes	
	TP - 1 - 7	4.0	5.0	0.0	4.0	yes	
	TP - 1 - 8	4.8	4.8	0.0	4.8	no	
	TP - 1 - 9	4.8	4.8	0.0	4.8	no	
	TP - 1 - 10	4.0	4.5	0.0	4.5	no	
AREA	TP - 1 - 11	4.0	4.5	0.0	4.5	no	
	TP - 1 - 12	5.0	5.4	0.0	4.2	yes	
"	TP - 1 - 13	3.8	4.2	0.0	4.2	no	
4	TP - 1 - 14	2.8	3.5	0.0	3.5	no	
	TP - 1 - 15	3.9	3.9	0.0	3.9	no	
	TP - 1 - 16	-	5.0	0.0	4.0	yes	
	TP - 1 - 17	4.8	5.0	0.0	4.8	yes	
	TP - 1 - 18	-	5.0	0.0	5.0	no	
	TP - 1 - 19	6.7	7.0	0.0	7.0	no	
	TP - 1 - 20	4.8	5.0	0.0	5.0	no	
	TP - 1 - 21	3.5	4.5	0.0	4.0	yes	
	TP - 1 - 22	-	7.0	0.0	7.0	no	
W W	TP-6-1	3.0	3.0	0.0	3.0	no	
	TP-6-2	6.0	6.5	0.0	6.5	no	
	TP-6-3	5.7	6.0	0.0	6.0	no	
9	TP - 6 - 4	5.0	5.5	0.0	5.5	no	
4	TP-6-5	6.3	6.5	0.0	6.5	no	
REA	TP-6-6	5.5	6.0	0.0	6.0	no	
Α	TP-6-7	3.6	4.0	0.0	4.0	no	
	TP-6-8	3.8	4.0	0.0	4.0	no	
	TP-6-9	4.3	4.5	0.0	4.5	no	
	TP - 6 - 10	5.6	6.0	0.0	6.0	no	
	TP - 7 - 1		7.0	0.0	5.5	yes	
-	TP-7-2	4.5	5.3	0.0	4.0	yes	
α	TP - 7 - 3	5.0	5.5	0.0	5.5	no	
∞ ~	TP-8-4	3.0	5.5	0.0	1.0	yes	
7 4	TP - 7 - 4	3.5	4.5	0.0	3.5	yes	
E/	TP - 7 - 5		6.0	0.0	5.0	yes	
AREA	TP - 7 - 6	6.0	7.0	0.0	7.0	no	
4	TP - 7 - 7	3.5	5.0	0.0	3.0	yes	
	TP - 7 - 8	2.0	2.5	0.0	1.0	yes	

TEST PIT SUMMARY

Phase I Business Park Area Tecumseh Redevelopment, Inc. Lackawanna, New York

		Lackawaiiia, ivew Tork						
	Test pit No.	Depth to GW (fbgs)	to GW Depth		ill	Native?		
	TP-8-1	3.5	7.0	0.0	3.5	yes		
8 1	TP-8-2	6.5	7.0	0.0	1.5	yes		
/ <u>E</u>	TP-8-3	4.0	4.5	0.0	4.5	no		
AREA	TP-8-5	4.5	5.0	0.0	1.0	yes		
	TP-8-6	3.0	3.5	0.0	3.5	no		
	TP - 4 - 1	3.5	3.5	0.0	3.5	no		
14	TP - 4 - 2	3.0	3.0	0.0	3.0	no		
AREA 4	TP-4-3	3.0	3.0	0.0	3.0	no		
AR	TP - 4 - 4	3.0	3.0	0.0	3.0	no		
	TP - 4 - 5	2.0	2.5	0.0	2.5	no		
	TP - 2 - 1	5.5	6.0	0.0	6.0	no		
AREA 2	TP-2-2	4.0	4.5	0.0	4.5	no		
	TP-2-3	4.0	4.5	0.0	4.5	no		
ADEAS	TP-3-1	3.0	3.5	0.0	3.5	no		
AREA 3	TP-3-2	3.0	4.0	0.0	3.0	yes		
	TP - 5 - 1	3.5	3.5	0.0	3.5	no		
	TP-5-2	4.0	4.0	0.0	4.0	no		
	TP-5-3	4.5	4.5	0.0	4.5	no		
	TP - 5 - 4	4.0	4.0	0.0	3.0	yes		
2	TP-5-5	3.5	3.5	0.0	3.5	no		
	TP-5-6	3.0	3.0	0.0	3.0	no		
REA	TP - 5 - 7	2.0	2.0	0.0	2.0	no		
< <	TP-5-8	3.0	3.5	0.0	3.5	no		
	TP - 5 - 9	4.0	4.0	0.0	4.0	no		
	TP - 5 - 10	2.5	3.0	0.0	3.0	no		
	TP - 5 - 11	4.0	4.5	0.0	4.5	no		
	TP - 5 - 12	3.5	4.0	0.0	4.0	no		
	TP - 9 - 1	3.5	3.5	0.0	3.5	no		
	TP-9-2	7.0	7.5	0.0	1.0	yes		
AREA 9	TP - 9 - 3	4.5	6.0	0.0	6.0	no		
	TP - 9 - 4		~ REFUS	4 L ~				
	TP - 9 - 5	4.5	4.5	0.0	1.0	yes		

TEST PIT SUMMARY

Phase I Business Park Area Tecumseh Redevelopment, Inc. Lackawanna, New York

	Test pit No.	Depth to GW (fbgs)	Total Depth (fbgs)	F	ill	Native?
	TP - 10 - 1		9.0	0.0	1.0	yes
	TP - 10 - 2	2.5	4.0	0.0	1.0	yes
	TP - 10 - 3	-	4.0	0.0	1.5	yes
10	TP - 10 - 4	2.5	3.0	0.0	1.0	yes
AREA	TP - 10 - 5	2.0	3.0	0.0	1.0	yes
	TP - 10 - 6	5.5	10.0	0.0	1.0	yes
4	TP - 10 - 7	2.5	3.0	0.0	1.0	yes
	TP - 10 - 8	3.0	4.0	0.0	3.0	yes
	TP - 10 - 9	_	5.5	0.0	1.0	yes

Average:	4.0	4.8
Minimum:	2.0	2.0
Maximum:	7.0	10.0
S.D.	1.2	1.5

3	8.	
1	.0	
7	.0	
1	.7	

	Test pit No.	Headspace scan	Field Scan (ppm)			
	rest pit ito.	(ppm)	Surface	Sub-surface		
	TP-1-1	5.0	0.0	0.0		
	TP-1-2	1.1	0.0	0.5		
	TP-1-3	1.1	0.0	0.0		
	TP-1-4	0.4	0.0	1.4		
	TP-1-5	0.8	0.0	0.0		
	TP-1-6	2.8	0.0	5.7		
	TP - 1 - 7	2.7	1.8	0.0		
	TP-1-8	0.6	0.0	0.0		
_	TP-1-9	1.4	2.4	0.2		
AREA	TP - 1 - 10	2.2	0.0	0.0		
4	TP - 1 - 11	0.5	0.0	0.0		
Щ	TP - 1 - 12	0.8	2.1	4.3		
<u>oc</u>	TP - 1 - 13	2.3	0.0	0.0		
⋖	TP - 1 - 14	2.0	0.0	0.0		
	TP - 1 - 15	0.4	0.0	0.0		
	TP - 1 - 16	0.7	0.0	0.0		
	TP - 1 - 17	0.0	0.0	0.0		
	TP - 1 - 18	0.0				
	TP - 1 - 19	0.0	- 35			
	TP - 1 - 20	0.0	0.0	0.0		
	TP - 1 - 21	0.0	0.0	0.0		
	TP - 1 - 22	0.0	0.0	0.0		
	TP-6-1	0.0	0.0	0.0		
	TP-6-2	0.0	0.0	0.3		
	TP-6-3	0.0	1.0	1.1		
9	TP-6-4	0.0	0.0	0.2		
< <	TP-6-5	0.0	0.0	0.0		
AREA	TP-6-6	0.0	0.0	0.0		
LE .	TP-6-7	0.0	0.0	0.0		
4	TP-6-8	0.0	0.0	0.0		
	TP-6-9	0.0	0.0	0.0		
	TP - 6 - 10	0.0	0.0	0.0		
	TP - 7 - 1	0.0	0.0	0.0		
	TP - 7 - 2	3123	0.0	12.8		
00		0.0		0.0		
ං ජ	TP-7-3		0.0			
7	TP-8-4	0.0	0.0	0.0		
⋖	TP - 7 - 4	0.0	0.0	0.0		
ш	TP - 7 - 5	0.0	0.0	0.0		
AREA	TP-7-6	0.0	0.0	0.0		
⋖	TP - 7 - 7	0.0	0.0	0.0		
	TP-7-8	**	**	**		
~	TP-8-1	0.0	0.0	0.0		
8	TP-8-2	0.0				
7	TP-8-3	0.0				
AREA	TP-8-5	0.0		<u></u>		
4	TP-8-6	0.0	0.0	0.0		

	Test pit No.	Heads	oace scan	Field 9	Scan (ppm)
	rest pit No.	(p	pm)	Surface	Sub-surface
4	TP - 4 - 1		0.0		
<	TP - 4 - 2 0.0				
AREA	TP-4-3		0.0	<u>-</u>	<u>-</u>
	TP - 4 - 4		0.0		
_ 4	TP-4-5	7.55	0.0		
	TP-2-1		0.0		-
AREA 2	TP-2-2		0.0		(a. 5)
	TP-2-3		0.0		-
AREA 3	TP-3-1		0.0	0.0	0.0
AINLA 3	TP-3-2		0.0	0.0	0.0
	TP - 5 - 1		0.0	0.0	0.0
	TP-5-2		0.0	0.0	0.0
	TP-5-3		0.0	0.0	0.0
	TP-5-4	7 () () () () () ()	0.0	0.0	0.0
2	TP-5-5	0.0		0.0	0.0
AREA	TP-5-6	0.0		0.0	0.0
2	TP-5-7	0.0		0.0	0.0
₹	TP-5-8	0.0		0.0	0.0
	TP-5-9	SA STATE	0.0	0.0	0.0
	TP - 5 - 10		0.0	0.0	0.0
	TP - 5 - 11		0.0	0.0	0.0
	TP - 5 - 12		0.0	0.0	0.0
	TP-9-1		0.0	0.0	0.0
	TP-9-2		0.0	0.0	0.0
AREA 9	TP-9-3	surface 0.0	Sub- Surface 328 ppm	0.0	25.8
	TP-9-5		0.0	0.0	0.0
	TP - 10 - 1		216	0.0	10.2
	TP - 10 - 2		0.0	0.0	0.0
0	TP - 10 - 3		0.0	0.0	0.0
_	TP - 10 - 4		0.0	0.0	0.0
≰	TP - 10 - 5		0.0	0.0	0.0
AREA 10	TP - 10 - 6	surface 25.3	Sub- Surface 3002 ppm	0.5	410
1	TP - 10 - 7		0.0	0.0	0.0
	TP - 10 - 8		0.0	0.0	0.0
	TP - 10 - 9		0.0	0.0	0.0

⁻⁻ No Field scans due to weather
** No field scans performed, or headspace taken.

Project:	Phase 1 BPA		TEST PIT I.D.:	TP-1- 1	L	
Project No.:	0071-006-100		Excavation Date:	01/10/06		
Client:	Tecumseh		Excavation Method:	Johndeere	892ELC	
Location:	1951 Hamburg Turnpike		Logged / Checked By:	TAB		
12 inch Diamete Piezometer P-50	FLOOR FOOTE	ų	T'est Pit Cross Section: Grade - 0' 2' 4' 6'	FII		
TIME Start: End:	West Length: 29.0 ft 8:25 Width: 4 ft to 18 9:45 Depth: 9.0 ft	(approx.) ft (approx.) (approx.)	8'-			
Depth (fbgs)	Silv Bepair 70 it	USCS Soil Description		USCS Symbol	Photos Y / N	Samples Collected (fbgs)
0.0 -4.0	Fill: Dark brown/Black, Moist to 80% NPF 10% Fine Sand 10		w/ wood and brick debris	FILL	Y	0.0 -2.0 2.0 5.0
4.0-9.0	SANDY LEAN CLAY: Medium_gray/ wet, stiff, 70% fragments	% MPF 30% Fine	Sand w/ rootlets and wood	CL	Y	
FIELD MEASU	IREMENTS:				<u> </u>	<u> </u>
PID (ppm		ppm SUB - SUR	FACE 2.0 - 5.0fbgs 0.0ppm			
COMMENTS:	COLLECTED COMPOSITE	SOIL SAMPLE I	FROM 0.0 - 2.0 FOR SVOC's AN			
	COLLECTED SOIL SAMPLE	E FROM 2.0 - 5.0	FOR VOC's, COMPOSITE FOR	R SVOC's AND	METALS	
	INSTALLED PIEZOMETER		bgs			
	ATER ENCOUNTERED:	4.0 fbgs	M. M. Marine			
VISUAL IMP		none				
	Y OBSERVATIONS:	none				
	VE FILL ENCOUNTERED:	yes				
	SERVATIONS:	Concrete and	piping, Headspace 5.0ppm			
SAMPLES CO	OLLECTED:	yes				

Project:	Phase 1 BPA		TEST PIT I.D.:	TP-1-2	2	
Project No.:	0071-006-100		Excavation Date:	01/10/26	01/10/26	
Client:	Tecumseh		Excavation Method: Johndeere 892ELC			
Location:	1951 Hamburg Turnpi	ke	Logged / Checked By:	TAB		
		ast 	Test Pit Cross Section: Grade - 0' 2'	FIL	L	
	North	South	6'— 8'—	RE-WOR	KED SAND	
TIME Start: End:	10:00 Width: 4.0	0 ft (approx.) 0 ft (approx.) 1 ft (approx.)	10'			
Depth (fbgs)		USCS Soil Description		USCS Symbol	Photos Y / N	Samples Collected (fbgs)
0.0 -3.5	Fill: Dark brown/Black, Moist NPF 10% Fine Sand 10%		80% With Wood and Brick Fragments	FILL	Y	0.0 -2.0 2.0 5.0
3.5 - 4.0	RE-WORKED SAND: Medium_gray/ moist, stiff debris	, 70% MPF 30% Fin	ne Sand w/ rootletts and wood	RE-WORKED SAND	Y	
4.0 - 5.0	GRAVEL/SLAG: Brown to Black/ wet, 80%	% gravel/slag, 20% F	ine Sand	GRAVEL/ SLAG	Y	2.0 - 5.0
FIELD MEASUI			14 CF1 0.0 . F. C.C			
PID (ppm): COMMENTS:			FACE 2.0 - 5.0fbgs 0.5ppm FROM 0.0 - 2.0 FOR SVOC's AN	METAL C		
COMMEN15:			FOR VOC's, COMPOSITE FOR	71.4.	ETALS	
				_ / O G J III 1D IIII		
GROUNDWA	TER ENCOUNTERED:	5.0 fbgs				
VISUAL IMPA		none	VAV. 4			
	OBSERVATIONS:	none				
	E FILL ENCOUNTERED:	yes				
OTHER OBSE		Headspace 1.	1 ppm			
SAMPLES CO.	LLECTED:	yes				

Project:	Phase 1 BPA		TEST PIT I.D.:	TP-1-	3	
Project No.:	0071-006-100		Excavation Date:	01/10/26		
Client:	Tecumseh		Excavation Method:	Johndeere	892ELC	
Location:	1951 Hamburg Turnpike		Logged / Checked By:	TAB		
TIME	EAST Footer HLOO WEST Length: 31.0 ft	(approx.)	Test Pit Cross Section: Grade - 0'	FI		
Start: End:	10:30 Width: 4.0 ft 10:50 Depth: 5.0 ft	(approx.) (approx.)	10'			
Depth (fbgs)	70.30 Depui. 3.0 II	USCS Soil Description		USCS Symbol	Photos Y / N	Samples Collected (fbgs)
0.0 -5.0	Fill: Dark brown/Black, Moist to v 80% NPF 20% Fine Sand W,		eel	FILL	Y	0.0 -2.0 2.0 5.0
FIELD MEASU						
PID (ppm): COMMENTS:	SURFACE 0.0 - 2.0 fbgs 0.0pj COLLECTED COMPOSITE			AND METALS		
	COLLECTED SOIL SAMPLE	FROM 2.0 - 5.0	FOR VOC's, COMPOSITE F	OR SVOC's AND 1	METALS	
GROUNDW/A	TER ENCOUNTERED:	5.0 fbgs				
VISUAL IMPA		none				1111 Marie A. J.
	OBSERVATIONS:	Musty odor				
	E FILL ENCOUNTERED:	yes			P (801) (701) 1 101	
OTHER OBSE		Headspace 1.1	ppm		. Province (A.)	
SAMPLES CO	LLECTED:	yes			-	

Project:	Phase 1 BPA		TEST PIT I.D.:	TP-1-4	4	
Project No.:	0071-006-100		Excavation Date:	01/10/26		
Client:	Tecumseh		Excavation Method:	Johndeere	892ELC	
Location:	1951 Hamburg Turnpike		Logged / Checked By:	TAB		
	EAST		Test Pit Cross Section:			
	NORTH		Grade - 0'	FI.		
TIME Start: End:	Length: 26.0 ft 11:00 Width: 4.0 ft 11:25 Depth: 5.5 ft	(approx.) (approx.)	10'			
Depth (fbgs)	3.5 H	USCS Soil Description		USCS Symbol	Photos Y / N	Samples Collected (fbgs)
0.0 -5.5	Fill: Dark brown/Black, Moist to 80% NPF 20% Fine Sand W		teel	FILL	Y	0.0 -2.0 2.0 5.0
5.5 - ???	SANDY LEAN CLAY: Medium_gray/ wet, stiff, 70% Undetermined	6 MPF 30% Fine	e Sand, Depth of Layer	CL	Y	
FIELD MEASU	IDEMENTS.					
PID (ppm):	- commercial and a second seco	Doom SUB - SI	URFACE 2.0 - 5.0fbgs 1.4ppm		-	
COMMENTS:			E FROM 0.0 - 2.0 FOR SVOC's A	ND METALS		W 1787-111
			FOR VOC's, COMPOSITE FO		METALS	
GROUNDW	ATER ENCOUNTERED:	5.0 fbgs				-
VISUAL IMP		none				
	Y OBSERVATIONS:	none	April 1 and 1 and 1 and 2 and 2 and 3 and			
	/E FILL ENCOUNTERED:	yes				
OTHER OBS	SERVATIONS:	Headspace 0	.4 ppm			
CAMDIES CO	OLLECTED:	yes				

Project:	Phase 1 BPA		TEST PIT I	D.:	TP-1-5	5	
Project No.:	0071-006-100	and the second second	Excavation I	Date:	01/10/26		
Client:	Tecumseh		Excavation I	Method:	Johndeere	892ELC	
Location:	1951 Hamburg Turnpike		Logged / Cl	ecked By:	TAB		
CEMENT TAN	NK SUPPORT	SE >	Test Pit Cross S	Section:			
NORTH	so	OUTH	2' — 4' — 6' —		FI		
NW			8'—				
TIME Start: End:	Length: 32.0 ft Width: 4.0 ft 11:25 Depth: 3.2 ft	(approx.) (approx.) (approx.)	10'				
Depth (fbgs)		USCS Soil Description			USCS Symbol	Photos Y / N	Samples Collected (fbgs)
0.0 -3.2	Fill: Dark brown/Black, Moist to v 80% NPF 20% Fine Sand W,		ck and Large pieces	of concrete	FILL	Y	0.0 -2.0 2.0 3.0
						-	
FIELD MEAS	UREMENTS:						
PID (ppm):	SURFACE 0.0 - 2.0 fbgs 0.0				AND THE PARTY OF T		
COMMENTS:	COLLECTED COMPOSITE						
	COLLECTED SOIL SAMPLE					METALS	
ODCIDIE.	COMPOSITED TP-1- (1-5) FC		ND SVOC'S SURF	ACE & SUB S	UKFACE		
	ATER ENCOUNTERED:	2.5 fbgs	staining on srface				
VISUAL IMI		Heavy Musty		<u>-</u>			
	Y OBSERVATIONS: VE FILL ENCOUNTERED:		Ouoi				
	VE FILL ENCOUNTERED: SERVATIONS:	yes Headspace 0.	8 ppm				
			- РРШ				<u>:</u>
SAMPLES C	OLLECTED:	yes					

Project:	Phase 1 BPA	TEST PIT I.D.:	TP-1-7	7		
Project No.:	0071-006-100	Excavation Date:	01/10/26	01/10/26		
Client:	Tecumseh	Excavation Metho	od: Johndeere	892ELC		
Location:	1951 Hamburg Turnpike	Logged / Checked	i By: TAB			
CONCRETE TIME Start:	NORTH SOUTH Length: 25.0 ft 14:05: Width: 4.0ft	Test Pit Cross Sectio Grade - 0' 2' 4' 6' 8' (approx.) (approx.)	FII RE-WORK			
End:	13:40: Depth: 5.0 ft	(approx.)				
Depth (fbgs)		USCS Soil Description	USCS Symbol	Photos Y/N	Samples Collected (fbgs)	
0.0 -2.0	Fill: Dark brown/Black, Moist to 80% NPF 20% Fine Sand W		FILL	Y	0.0 -2.0	
2.0 - 4.0	Re - Worked Sand: Med-Brown, Moist, Loose Fine Sand 10% Fine Sand	9	RE - WORKED SAND	Y		
4.0 - 5.0	Re - Worked Sandy Lean C Medium gray/ Moist, stiff, 70 Undetermined	ay: % MPF 30% Fine Sand, Depth of Layer	. a	Y	2.0 - 5.0	
FIELD MEASU		OUT OUTDITACTOR A TAG				
PID (ppm): COMMENTS:		<pre>ppm SUB - SURFACE 2.0 - 5.0fbgs 0 SOIL SAMPLE FROM 0.0 - 2.0 FOR SV</pre>				
COMMUNICATION:		FROM 2.0 - 5.0 FOR VOC's, COMPOS	4-443-00777	ÆTALS		
	ATER ENCOUNTERED:	4.0 fbgs				
VISUAL IMP		none				
	Y OBSERVATIONS:	none				
	ERVATIONS:	yes Headspace 2.7 ppm				
OTTERODS	DLLECTED:	Lampace 2.7 Ppm				

Project:	Phase 1 BPA	TEST PIT I.D.:	TP-1-8	}	
Project No.:	0071-006-100	Excavation Date:	01/10/26		
Client:	Tecumseh	Excavation Method:	Johndeere	892ELC	
Location:	1951 Hamburg Turnpike	Logged / Checked By:	TAB		
	NORTH	Test Pit Cross Section: Grade - 0' 2' 4' 6' 8'	FILL SLAG		
TIME Start: End:	Length: 29.0 ft 14:05: Width: 4.0ft 13:40: Depth: 5.0 ft	(approx.) (approx.) (approx.)			
Depth (fbgs)		USCS Symbol	Photos Y / N	Samples Collected (fbgs)	
0.0 -1.5	Fill: Medium grey coarse grained sl Sand	Medium grey coarse grained slag/gravel 90% Slag/Gravel 10% Fine Grained			0.0 -1.5
1.5 - 3.0	Fill: Dark brown/Black, Moist, Loo NPF 10% Fine Sand 10% Lar	sse 80% ge Gravel w/ wood and brick debris	FILL	Y	15 40
3.0 - 4.8	Fill: Redish brown to Dark brown, 80% NPF 10% Fine Sand 109	Moist to wet, Loose 6 Large Gravel w/ wood and brick debris	FILL	Y	1.5 - 4.8
FIELD MEASU		opm SUB - SURFACE 1.5 - 4.8fbgs 0.0ppm	A. MINTE		
PID (ppm): COMMENTS:		SOIL SAMPLE FROM 0.0 - 1.5 FOR SVOC's			
		FROM 1.5 - 4.8 FOR VOC's, COMPOSITE FO	AARTON TOTAL	METALS	
	ATER ENCOUNTERED:	4.0 fbgs			
VISUAL IMP		none			
	OBSERVATIONS:	none			
	E FILL ENCOUNTERED:	yes			
	ERVATIONS:	Headspace 0.6 ppm	- PARAMETER		

Project:	Phase 1 BPA		TEST PIT I.D.:	TP-1-9)	
Project No.:	0071-006-100		Excavation Date:	01/10/26		
Client:	Tecumseh		Excavation Method:	Johndeere	892ELC	-
Location:	1951 Hamburg Turnpike		Logged / Checked By:	TAB		
	NORTH		Test Pit Cross Section: Grade - 0' 2' - 4' - 6' - 8' - 8' -	FOUND		
TIME Start: End:	Length: 21.0 ft 14:40: Width: 4.0ft 15:20: Depth: 4.8 ft	(approx.) (approx.) (approx.)	10'			
Depth (fbgs)	1	USCS Soil Description		USCS Symbol	Photos Y/N	Samples Collected (fbgs)
0.0 - 1.0	Concrete Foundation:			FILL	Y	0.0 -1.0
1.0 - 4.8	Fill: Dark brown/Black, Moist, Le NPF 10% Fine Sand 10% w		80% Ek debris	FILL	Y	1.0 - 4.8
	·					
FIELD MEASU						
PID (ppm):			URFACE 1.0 - 4.8fbgs 2.4ppm			
COMMENTS:			E FROM 0.0 - 1.0 FOR SVOC's A		c	
	COLLECTED DISCRETE SU	OL SAMPLE PR	ROM 1.0 - 4.8 FOR VOC's, SVOC	's VIAD METAT	<u> </u>	
GROUNDW	ATER ENCOUNTERED:	4.8 fbgs				
VISUAL IMP		none				
	Y OBSERVATIONS:	Slight mothb	all smell.			
	VE FILL ENCOUNTERED:	yes				
	SERVATIONS:	Headspace 1.	.4 ppm			
	OLLECTED:	yes				

Project:	Phase 1 BPA	TEST PIT I.D.:	TP-1- 1	10	
Project No.:	0071-006-100	Excavation Date:	01/10/26		
Client:	Tecumseh	Excavation Method:	Johndeere	892ELC	
Location:	1951 Hamburg Turnpike	Logged / Checked By:	TAB		
	NORTH	Test Pit Cross Section:			
		Grade - 0' ——————————————————————————————————			
		2'—	FII	L	
		4'—			
		6'			
	COLLETT	The same same as a manager of the			
TIME	SOUTH Length: 21.0 ft	(approx.)			
Start:	15:25: Width: 4.0ft	(approx.)			
End:	15:57: Depth: 4.8 ft	(approx.)			Samples
Depth (fbgs)		USCS Soil Description	USCS Symbol	Photos Y / N	Collected (fbgs)
0.0 - 4.5	Fill: Dark Brown/Black, Moist, Lo NPF 20% Fine Sand w/ Mis	ose 80% rellaneous wood, brick and concrete debris	6 FILL	Y	0.0 -2.0 2 - 4.5
FIELD MEASU	JREMENTS:				
PID (ppm):	SURFACE 0.0 - 2.0 fbgs 0.0	ppm SUB - SURFACE 2.0 - 4.5fbgs 0.0pp	m		
COMMENTS:		SOIL SAMPLE FROM 0.0 - 2.0 FOR SVOC'S			
		FROM 2.0 - 4.5 FOR VOC's COMPOSITED			
CROUNDW		ILS TP-1-(6-10) COPOSITED SUBSURFACE	E SOILS TP -(6-8 &	10)	
VISUAL IMP.	ATER ENCOUNTERED:	4.0 fbgs			
	Y OBSERVATIONS:	none			The second secon
	E FILL ENCOUNTERED:	yes			
OTHER OBS	ERVATIONS:	Headspace 2.2 ppm			
SAMPLES CO	DLLECTED:	yes	resources consistent on a low in a city. Never and had as a low-		

Project:	Phase 1 BPA		TEST PIT I.D.:		TP-1-11			
Project No.:	0071-006-100		Excavation	Date:	01/11/26	70000		
Client:	Tecumseh		Excavation	Method:	Johndeere	892ELC		
Location:	1951 Hamburg Turnpike		Logged / C	hecked By:	TAB	-00 s t shows		
	NORTH		Test Pit Cross	Section:				
CONCRETE			Grade - 0' - -	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	· 	· ········	
			_					
			2'—		FII	L		
			4'					<u>::::</u>
			6'_					
			_					
	SOUTH		8'—		TV 4			
TIME	Length: 34.0 ft	(approx.)						
Start:	8:00 Width: 4.0ft	(approx.)	10'—	·			· · · · · · · · · · · · · · · · · · ·	
End:	8:25 Depth: 4.5 ft	(approx.)		J				
Depth		USCS Soil			USCS	Photos	Samples	
(fbgs)		Description		ļ	Symbol	Y/N	Collected	Ŀ
	711				·		(fbgs)	_
0.0 - 4.5	Fill: Redish Brown/Black, Moist, I NPF 10% Fine Sand w/ Miso debris		, brick and concret	90% te and steel	FILL	Y	0.0 -2.0	2.0
					,			
				ļ				
FIELD MEASU							<u> </u>	\dashv
PID (ppm):	SURFACE 0.0 - 2.0 fbgs 0.0					777		
COMMENTS:	COLLECTED SOIL SAMPLE					Ot a 157001-	0	\perp
	COLLECTED SOIL SAMPLE	FROM 2.0 - 4.5	FUR VUC'S CO	MPOSITE SAM	IPLE FOR SVO	s & METAL	<u> </u>	
GROUNDWA	TER ENCOUNTERED:	4.0 fbgs						\dashv
VISUAL IMPA		none	2011-01		7 7 7 V			-
OLFACTORY	OBSERVATIONS:	none			A A VALUE TO A STATE OF THE STA			\dashv
NON-NATIVI	E FILL ENCOUNTERED:	yes		THE PERSON NAMED IN COLUMN TWO IS NOT THE OWNER, THE PERSON NAMED IN COLUMN TWO IS NOT THE OWNER, T				
OTHER OBSE	ERVATIONS:	Headspace 0.5	5 ррт					
SAMPLES CO	LLECTED:	yes						

Project:	Phase 1 BPA		TEST PIT I.D.:	TP-1- 1	12	
Project No.:	0071-006-100		Excavation Date:	01/11/26		
Client:	Tecumseh		Excavation Method:	Johndeere	892ELC	
Location:	1951 Hamburg Turnpike		Logged / Checked By:	TAB		
CONCRETE	NORTH		Test Pit Cross Section:			
			2'— 4'—	2011		
	SOUTH		6'	WORKED SA	NDY LEAN	CAYETE
TIME Start: End:	Length: 31.0 ft 8:35 Width: 4.0ft 9:10 Depth: 5.4 ft	(approx.) (approx.) (approx.)	10'			
Depth (fbgs)		USCS Symbol	Photos Y / N	Samples Collected (fbgs)		
0.0 - 3.2		Dark Brown/Black, Moist, Loose 90% NPF 10% Finc Sand w/ Miscellaneous wood, brick and Large Pieces of				0.0 -2.0 2.0
3.2 - 4.2	Fill: Redish Brown, Moist, Loose 90% NPF 10% Fine Sand w/ Debris	Miscellaneous v	wood, brick, Concrete and Steel	FILL	Y	- 4.5
4.2 - 5.4	Re - Worked Sandy Lean Cl Medium_gray/ Moist, stiff, 70		ne Sand	CL	Y	
FIELD MEASU	w					
PID (ppm):			JRFACE 2.0 - 4.5 fbgs 4.3ppm	NID METALO		
COMMENTS:			FROM 0.0 - 2.0 FOR SVOC's A FOR VOC's COMPOSITE SAM		C'e & METAI	\$
			t. COMPOSITED TP-1-(11-12)			<u> </u>
GROUNDWA	ATER ENCOUNTERED:		nt sheen on GW)			
VISUAL IMPA		none	,			
	Y OBSERVATIONS:	none				
NON-NATIV	E FILL ENCOUNTERED:	yes				
OTHER OBS	ERVATIONS:	Headspace 0.	8 ррт			
SAMPLES CC	DLLECTED:	yes				

Project:	Phase 1 BPA		TEST PIT I.D.:	TP-1-1	13		
Project No.:	0071-006-100		Excavation Date:	01/11/26			
Client:	Tecumseh		Excavation Method:	Johndeere	892ELC		
Location:	1951 Hamburg Turnpike		Logged / Checked By:	TAB	1.95.98		
CONCRETE	NORTH SOUTH		Test Pit Cross Section: Grade - 0' 2' 4' 6' 8'	FII	L		
TIME Start: End:	9:55 Width: 4.0ft 10:35 Depth: 4.2 ft	(approx.) (approx.) (approx.)	10'				
Depth (fbgs)		USCS Soil Description		USCS Symbol	Photos Y/N	Samples Collected (fbgs)	
0.0 - 4.2 Fill: Dark Brown/Black, Moist, Log 90% NPF 10% Fine Sand w/ Concrete and Steel Debris			ood, brick and Large Pieces of	FILL	Y	0.0 -1.5 - 4.2	1.5
FIELD MEASU	JREMENTS:						
PID (ppm):	SURFACE 0.0 - 1.5 fbgs 0.0p						
COMMENTS:	COLLECTED COMPOSITE S						
	COLLECTED SOIL SAMPLE I	FROM 1.5 - 4.2	FOR VOC's COMPOSITE SA	AMPLE FOR SVOC	Js & METALS	<u>S</u>	\dashv
GROUNDW	ATER ENCOUNTERED:	3.8 fbgs					\dashv
VISUAL IMP			sheen observed on groundwate	r within test pit			
	Y OBSERVATIONS:	none	0				
	/E FILL ENCOUNTERED:	yes					
	ERVATIONS:	Headspace 2.	3 ppm				
	OLLECTED:						

Project:	Phase 1 BPA	TEST PIT I.D.:	TP-1-1	.5	
Project No.:	0071-006-100	Excavation Date:	01/11/26		
Client:	Tecumseh	Excavation Method:	Johndeere 8	892ELC	
Location:	1951 Hamburg Turnpike	Logged / Checked By:	TAB		
	WEST	Test Pit Cross Section:			
		Grade - 0' —			
		2'	FIL	L	
		4'—			
		6'	1986 A BA 19 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
	EAST	8'—			***
TIME Start: End:	Length: 31.0 ft 11:00 Width: 4.0ft 11:30 Depth: 3.5 ft	(approx.) (approx.) (approx.)			
Depth (fbgs)		USCS Soil Description	USCS Symbol	Photos Y / N	Samples Collected (fbgs)
0.0 - 3.9	Fill: Black, Moist, Loose 10% Fine Sand w/ Red Brick	90% N Debris Towards The East	PF FILL	Y	0.0 -1.0 1
DIDLE 100 to	LIDEAGEN TEC				
FIELD MEASI PID (ppm):		ppm SUB - SURFACE 1.0 - 3.9fbgs 0.0ppn			
COMMENTS:		SOIL SAMPLE FROM 0.0 - 1.0 FOR SVOC's			(4) - 4)
		FROM 1.0 - 3.9 FOR VOC's COMPOSITE S		's & METAL	<u>s</u>
GROUNDW	VATER ENCOUNTERED:	3.9 fbgs			
VISUAL IMI		none			
OLFACTOR	Y OBSERVATIONS:	none			
	VE FILL ENCOUNTERED:	yes			
	SERVATIONS:	Headspace 0.4 ppm			
SAMPLES C	OLLECTED:	yes			

Project:	Phase 1 BPA		TEST PIT I.D.:	TP-1-1	.6	
Project No.:	0071-006-100		Excavation Date:	01/11/26		
Client:	Tecumseh		Excavation Method:	Johndeere 8	892ELC	
Location:	1951 Hamburg Turnpike		Logged / Checked By	: TAB		
Concrete BRICK WALL W/ AI	WEST EAST 37'	31'	Test Pit Cross Section: Grade - 0' —	FIL		
TIME	Length: 31.0 ft	(approx.)	10'—	-		
Start:	11:20 Width: 4.0ft	(approx.)	10			
End: Depth (fbgs)	15:05: Depth: 3.5 ft	(approx.) USCS Soil Description		USCS Symbol	Photos Y / N	Samples Collected (fbgs)
0.0 - 4.0	Fill: Dark Brown/Black, Moist, Loose 90% NPF 10% Fine Sand w/ Red Brick Debris			FILL	Y	0.0 -2.0 2.0
4.0 - 5.0	Re - Worked Sandy Lean Cl Medium_gray/ Moist, stiff, 70		ne Sand	RE-WORKED CLAY	Y	- 5.0
FIELD MEASU	I REMENTS:					1
PID (ppm): COMMENTS:	SURFACE 0.0 - 2.0 fbgs 0.0 COLLECTED COMPOSITE COLLECTED SOIL SAMPLE	SOIL SAMPLE	FROM 0.0 - 2.0 FOR SVOC	's AND METALS	C's & METAL	S
CDOLDED	ATTED PACOUNTED IN	1	1			
VISUAL IMPA	ATER ENCOUNTERED:	none observed	1			
	OBSERVATIONS:	none				and administration of the State of State of the State of
	E FILL ENCOUNTERED:	yes				
OTHER OBS	ERVATIONS:	Headspace 0.7	ppm ·	1904 - 1194 - 1444 - 1444 - 1444 - 1444 - 1444 - 1444 - 1444 - 1444 - 1444 - 1444 - 1444 - 1444 - 1444 - 1444		
SAMDLES CC	DLLECTED:	yes				

Project:	Phase 1 BPA		TEST PIT I.D.:	TP-1-1	TP-1-17		
Project No.:	0071-006-100		Excavation Date:	01/11/26			
Client:	Tecumseh		Excavation Method:	Johndeere 8	892ELC		
Location:	1951 Hamburg Turnpike		Logged / Checked By:	TAB			
	NORTH		Test Pit Cross Section: Grade - 0'	FII	16		
	SOUTH		8'—	RE-WORKED SAN	NDY LEAN CLA	Y	
TIME Start: End:	Length: 26.0 ft 11:20 Width: 4.0ft 15:05: Depth: 5.0 ft	(approx.) (approx.)	10'				
Depth (fbgs)		USCS Soil Description		USCS Symbol	Photos Y / N	Samples Collected (fbgs)	
0.0 - 4.8	Fill: Dark Brown/Black, Moist, Loose 90% NPF 10% Fine Sand w/ Rail Road Ties			FILL	Y	0.0 -2.0 2.0 - 4.8	
4.8 - 5.0	Re - Worked Sandy Lean C Medium_gray/ Moist, stiff, 70		ne Sand	RE-WORKED CLAY	Y		
					_		
FIELD MEASI		Oppm SIIR SI	URFACE 2.0 - 4.8 fbgs 0.0ppn			*-	
PID (ppm): COMMENTS:			E FROM 0.0 - 2.0 FOR SVOC's A				
			B FOR VOC's COMPOSITE SA		C's & METALS	3	
	COMPOSITED TP-1-(13-17) I	FOR SVOC'S &	METALS				
GROUNDW	ATER ENCOUNTERED:	4.8 fbgs					
VISUAL IMI		none					
	Y OBSERVATIONS:	none					
	VE FILL ENCOUNTERED:	yes					
	SERVATIONS:	Headspace 0.	.0 ppm				
SAMPLES C	OLLECTED:	yes					

Project:	Phase 1 BPA	TEST PIT I.D.:	TP-1- 1	18	
Project No.:	0071-006-100	Excavation Date:	01/11/26		
Client:	Tecumseh	Excavation Method:	Johndeere 892ELC		
Location:	1951 Hamburg Turnpike	Logged / Checked By:	TAB		
	NORTH	Test Pit Cross Section:			
		Grade - 0'			
		2'	FII	L	
		4'—			
		6'			
	SOUTH	8'—		,	
TIME Start: End:	Length: 34.0 ft 14:07: Width: 4.0ft 14:25: Depth: 5.0 ft	(approx.) 10'			
Depth (fbgs)		USCS Soil Description			Samples Collected (fbgs)
0.0 - 3.5	Fill: Redish Brown, Moist, Loose 90% NPF 10% Fine Sand w	FILL	Y	0.0 -2.0 2.0	
3.5 - 5.0	Fill: Black, Moist, Loose NPF 10% Fine Sand w/ Co	90% l Coke Fines	FILL	Y	- 5.0
				<u> </u>	
FIELD MEASU	REMENTS: NO READINGS TAKEN DI	E TO RAIN			
PID (ppm): COMMENTS:		E FROM 2.0 - 5.0 FOR VOC's & SVOC's			104 117 100 1
CPOLINIDWA	ATER ENCOUNTERED:	5.0 fbgs			
VISUAL IMPA		none			
	OBSERVATIONS:	none			A
	E FILL ENCOUNTERED:	yes			
OTHER OBS		Headspace 0.0 ppm			
0.13 (0.7)	DLLECTED:	yes			

Project:	Phase 1 BPA		TEST PIT I.D	.: T	P-1-21			
Project No.:	0071-006-100		Excavation Da	ite: 01/	/12/26		THE RESIDENCE OF THE PERSON OF	
Client:	Tecumseh		Excavation Me	ethod: Joh	ndeere 892E	ELC		
Location:	1951 Hamburg Turnpike		Logged / Chec	cked By: TA	B			
Location:	NORTH SOUTH		Test Pit Cross Sec Grade - 0'	<u> </u>	FILL	iaeanicia		
TIME Start: End:	Length: 32.0 ft 8:30 Width: 4.0ft 8:50 Depth: 4.5 ft	(approx.) (approx.) (approx.)	10'					
Depth (fbgs)	USCS Soil Description			US Sym		Photos Y / N	Samples Collected (fbgs)	
0.0 - 4.0	Fill: Dark Brown/Black, Moist, I 90% NPF 10% Fine Sand G		'est Pit. FII	T	Y	0.0 -2.0 - 4.0	2.0	
4.0 - 4.5	Re - Worked Sandy Lean (Medium gray/ Moist, stiff, 7		ne Sand	C	L	Y		
FIELD MEASU	L REMENTS:			II				_
PID (ppm):	SURFACE 0.0 - 2.0 fbgs 0.	.0ppm SUB - SU	JRFACE 2.0 - 4.0 fb	gs 0.0ppm				
COMMENTS:	COLLECTED SOIL SAMPI	E FROM 2.0 - 4.	.0 FOR VOC's					
CDOLINIDAYA	TER ENCOUNTERED:	3.5 fbgs						
VISUAL IMPA		none						
	OBSERVATIONS:	none						
	E FILL ENCOUNTERED:	yes	_					
OTHER OBSI		Headspace 0.0	0 ppm					

Project:	Phase 1 BPA		TEST PIT I.D.:		TP-1-2	22	
Project No.:	0071-006-100		Excavation	Date:	01/12/26		
Client:	Tecumseh		Excavation	Method:	Johndeere	892ELC	
Location:	1951 Hamburg Turnpike		Logged / Cl	hecked By:	TAB		
CONCRETE	MOTOR ROOM FLC	OOR					
	EAST		Test Pit Cross	Section:			
	MAN WA		Grade - 0' 2' 4' 6' 8'				
	34'						NA. 97
TIME Start: End:	9:05 Length: 34.0 ft Width: 18.0ft 10:07 Depth: 6.5' to 7.0'	(approx.) (approx.) (approx.)	10'—				
Depth (fbgs)		USCS Soil Description			USCS Symbol	Photos Y / N	Samples Collected (fbgs)
0.0 - 6.5	Fill: Dark Brown To Black, Loosly Piping and Steel Debris Loose Possible Sump on West Side of	Brick Debris or	n East Side of Test	: Pit (Rubble),	FILL	Y	0.0 -2.0 2.0 - 6.5
					-		
FIELD MEASU							
PID (ppm):	SURFACE 0.0 - 2.0 fbgs 0.0				ISD TAVEN		
COMMENTS:	COLLECTED SOIL SAMPLI	E FKOM 2.0 - 6	VOC's &	SVUC'S, MS/N	IOD TAKEN		
GROUNDWA	TER ENCOUNTERED:	6.5 fbgs					
VISUAL IMPA		none					
OLFACTORY	OBSERVATIONS:	Oily Odor					
	E FILL ENCOUNTERED:	yes					
OTHER OBSI		Headspace 0.	.0 ppm				
SAMPLES CO	PLLECTED:	yes			<u></u>		

Project:	Phase 1 BPA		TEST PIT I.D.:	TP-2- 1	l	
Project No.:	0071-006-100		Excavation Date:	01/18/06		
Client:	Tecumseh		Excavation Method:	Johndeere	892ELC	
Location:	1951 Hamburg Turnpike		Logged / Checked By:	TAB		
	NORTH	L				
NORTH 2" PIPE VALVE CONCRETE SOUTH			Test Pit Cross Section: Grade - 0' 2' 4' 6' 8'	FI	ш	
TIME Start:	Length: 37.0 ft Width: 4.0ft	(approx.)	10'			
End: Depth (fbgs)	14:10: Depth: 6.0 ft	(approx.) USCS Soil Description		USCS Symbol	Photos Y / N	Samples Collected (fbgs)
0.0 -6.0	Fill: Dark Brown to Black, Loose,	90% NPF, 10% Fin	ne Sand w/ Slag & Brick	FILL	Y	0.0 -2.0 2.0 - 5.5
): NO PID SCANS TAKEN DUI					
COMMENTS:	COLLECTED COMPOSITE S COLLECTED SOIL SAMPLE				IETALS	
GROUNDW	ATER ENCOUNTERED:	5.5 fbgs				
VISUAL IMP		none				
	Y OBSERVATIONS:	none				- ,
	/E FILL ENCOUNTERED:	yes				
	ERVATIONS:	Headspace 0.0pp	pm			
SAMPLES CO	JLLECTED:	yes				

Project:	Phase 1 BPA		TEST PIT I.D.:		TP-2-2	2	
Project No.:	0071-006-100		Excavation Da	te:	01/18/06		
Client:	Tecumseh		Excavation Me	thod:	Johndeere	892ELC	F. Commission and Com
Location:	1951 Hamburg Turnpike		Logged / Chec	ked By:	TAB		
A STATE OF THE PARTY OF THE PAR	NORTH						
			Test Pit Cross Sec	tion:			
			Grade - 0'		FI		
	SOUTH		8'—				NT NO. 2 . 15 100 170
TIME Start: End:	Length: 45.0 ft 14:15: Width: 4.0ft 14:30: Depth: 4.5 ft	(approx.)	10'				
Depth (fbgs)		USCS Soil Description			USCS Symbol	Photos Y / N	Samples Collected (fbgs)
0.0 -4.5	Fill: Dark Brown to Black, Loose	sc, 90% NPF, 10% Fine Sand w/ Slag & Brick			FILL	Y	0.0 -2.0 2.0 -4.0
FIELD MEASU	IREMENTS:				į		
): NO PID SCANS TAKEN DU	JE TO SNOW					
COMMENTS:	COLLECTED COMPOSITE		FROM 0.0 - 2.0 FOR S	VOC's ANI) METALS		
	COLLECTED SOIL SAMPLE	E FROM 2.0 - 4.0	FOR VOC's, COMPO	SITE FOR	SVOC's AND M	ETALS	
GROUNDWA VISUAL IMP	ATER ENCOUNTERED: ACTS:	4.0 fbgs none					
	Y OBSERVATIONS:	none					
	E FILL ENCOUNTERED:	yes	0				
SAMPLES CO	ERVATIONS:	Headspace 0.	vpp m				
SAMPLES CC	ATTECHED:	yes					

Project:	Phase 1 BPA		TEST PIT I.D.:	TP-2-3			
Project No.:	0071-006-100		Excavation Date:	01/18/06	01/18/06		
Client:	Tecumseh		Excavation Method:	Johndeere 892ELC			
Location:	1951 Hamburg Turnpik	e	Logged / Checked By:				
	NORTH						
			Test Pit Cross Section:				
		·	Grade - 0'	FI)	1 L		
TIME	SOUTH Length: 43.0 f	ft (approx.)	8'—				
Start:	14:35: Width: 4.0ft	(approx.)	10'				
End:	15:00: Depth: 4.5 f	t (approx.)				T	
Depth (fbgs)		USCS Soil Description		USCS Symbol	Photos Y / N	Samples Collected (fbgs)	
0.0 -4.5	Fill: Dark Brown to Black, Loose, 90% NPF, 10% Fine Sand w/ Slag & Brick			FILL	Y	0.0 -2.0 2.0	
	i						
FIELD MEASU							
PID (ppm) COMMENTS:		SOIL SAMPLE F	TROM 0.0 - 2.0 FOR SVOC's A FOR VOC's, COMPOSITE FO		IETALS		
GROUNDW/A	ATER ENCOUNTERED:	4.0 fbgs					
VISUAL IMPA		none					
	OBSERVATIONS:	none					
	E FILL ENCOUNTERED:	yes					
OTHER OBSI	ERVATIONS:	Headspace 0.0	0ppm				
SAMDIES CO	DLLECTED:	yes					

Project:	Phase 1 BPA	TEST PIT I.D.:	TP-3-1	
Project No.:	0071-006-100	Excavation Date:	01/19/06	
Client:	Tecumseh	Excavation Method:	Johndeere 892E	LC
Location:	1951 Hamburg Turnpike	Logged / Checked By	у: ТАВ	
	WEST			
		Test Pit Cross Section:		
		Grade - 0'-		
		2'—	FILL	
		4'-		······································
		6'	-	
	EAST	I -		
	LAST	8'		- No - No -
TIME	Length: 51.0 ft	(approx.)		W. W. W.
Start:	7:50 Width: 4.0ft	(approx.)		
End:	8:05 Depth: 3.5 ft	(approx.)		
Depth		USCS Soil		hotos Samples Collected
(fbgs)		Description	Symbol Y	/ N (fbgs)
	Fill:			00.10.10
0.0 -3.5		90% NPF, 10% Fine Sand w/ Slag & Gravel	FILL	Y 0.0 -1.0 1.0 3.0
				İ
				ļ
		•	·	
FIELD MEASU	REMENTS:			
PID (ppm):		pm SUB - SURFACE 1.0 - 3.0fbgs 0.0ppm		
COMMENTS:		OIL SAMPLE FROM 0.0 - 1.0 FOR SVOC'S		
	COLLECTED SOIL SAMPLE	FROM 1.0 - 3.0 FOR VOC's, COMPOSITE	POR SVOUS AND METAL	
GROUNDWA	TER ENCOUNTERED:	3.0 fbgs		
VISUAL IMPA		none		
	OBSERVATIONS:	none		
	E FILL ENCOUNTERED:	yes Headspace 0.0ppm, Installed piezometer P	57. @ 0.0 d	
OTHER OBSE	TRVATICINIS:			

Project:	Phase 1 BPA		TEST PIT	I.D.:	TP-3-2	2	
Project No.:	0071-006-100	*	Excavation	Date:	01/19/06		
Client:	Tecumseh		Excavation	Method:	Johndeere	892ELC	
Location:	1951 Hamburg Turnpike		Logged / C	hecked By:	TAB		
	WEST						
			Test Pit Cross	Section:		·	
	SEW	ER PIPE	Grade - 0' — 		RAH ROAD B FILI		
			4'—		RE-WORKED	CLAY	
			6'		,		
	EAST		8'—				
TIME Start: End:	8:20 Width: 4.0ft 8:40 Depth: 4.0 ft	(approx.) (approx.)	10'—				
Depth (fbgs)		USCS Soil Description			USCS Symbol	Photos Y / N	Samples Collected (fbgs)
0.0 -0.5	Fill: Dark Brown to Black, Loose, 90% NPF, 10% Fine Sand w/ Slag & Gravel				FILL	Y	
0.5 - 1.0	Rail Road Ballist: Dark Brown to Black, loose, 90% Gravel/Slag 10% Fine Slag				FILL	Y	0.0 -1.0 1.0
1.0- 3.0	Fill: Dark Brown to Black, Loose	F <u>ill:</u> Dark Brown to Black, Loose, 90% NPF, 10% Fine Sand w/ Slag & Gravel					
3.0 -4.0	REWORKED SANDY CI Med. Grey, Stiff, 60%MPF,40				CL	Y	
FIELD MEASU	REMENTS:						
PID (ppm):				* *			
COMMENTS:	COLLECTED COMPOSITE					TOTAL O	
	COLLECTED SOIL SAMPLE	2 FKOM 1.0 - 3.0	FOR VOC's, CON	MPOSITE FOR	L SVOC's AND M	IETALS	
GROUNDWA	TER ENCOUNTERED:	3.0 fbgs		·			
VISUAL IMPA		none					
	OBSERVATIONS:	none				The second secon	
NON-NATIVI	E FILL ENCOUNTERED:	yes					
OTHER OBSI	ERVATIONS:	Headspace 0.	0ppm				
SAMPLES CO	LLECTED:	yes	1 10 10 10 10 10 10 10 10 10 10 10 10 10				

Project:	Phase 1 BPA	TEST PIT I.D.:	TP-4 -2	TP-4-2 01/18/06			
Project No.:	0071-006-100	Excavation Date:	01/18/06				
Client:	Tecumseh	Excavation Method:	Johndeere	892ELC			
Location:	1951 Hamburg Turnpike	Logged / Checked By:	TAB				
	NORTH						
		Test Pit Cross Section:					
		Grade - 0'	FIL	L			
		2'					
		4'—					
		-					
		6'			. Wid all plades about the second sec		
	SOUTH				····		
		8'—					
TIME	Length: 43.0 ft	(approx.) 10'—		•			
Start: End:	9:15 Width: 4.0ft 9:30 Depth: 3.0 ft	(approx.)					
	9:30 Depth: 3.0 ft	(approx.)	1		Samples		
Depth		USCS Soil	USCS	Photos	Collected		
(fbgs)		Description	Symbol	Y/N	(fbgs)		
0.0 -3.0	Fill: Dark Brown to Black, Loose, 9	9% Gravel/Slag 30% NPF (Rail Road Ballist)	FILL	Y	0.0 -1.0 1.0 3.0		
				i i			
FIELD MEASU	REMENTS:						
	: NO PID SCANS TAKEN DUE	ΓΟ RAIN					
COMMENTS:		IL SAMPLE FROM 0.0 - 1.0 FOR SVOC's A	AND METALS				
	COLLECTED SOIL SAMPLE	ROM 1.0 - 3.0 FOR VOC's, COMPOSITE FO	OR SVOC's AND M	1ETALS			
CDOLINDWA	ATER ENCOUNTERED:	3.0 fbgs					
VISUAL IMP.		none					
	OBSERVATIONS:	none					
	E FILL ENCOUNTERED:	yes					
	ERVATIONS:	Headspace 0.0ppm					
SAMPLES CO	OLLECTED:	yes					

Project:	Phase 1 BPA		TEST PIT I.D.:		TP-4-3			
Project No.:	0071-006-100		Excavation I	ate:	01/18/06			
Client:	Tecumseh		Excavation N	lethod:	od: Johndeere 892ELC			
Location:	1951 Hamburg Turnpike		Logged / Ch	ecked By:	TAB			
	NORTH							
		Т	est Pit Cross S	ection:				
•			Grade - 0'					
			_		FIL	L		
			2'—					
			4' 🗖					
			6'					
	SOUTH		_		ada : Ata			
	300111		8'—					
TIME	Length: 43.0 ft	(approx.)	10'					
Start:	9:55 Width: 4.0ft	(approx.)						
End:	10:20 Depth: 3.0 ft	(approx.)			W		I C 1	
Depth		USCS Soil			USCS	Photos	Samples Collected	
(fbgs)		Description			Symbol	Y/N	(fbgs)	
0.0 -3.0	Fill: Dark Brown to Black, loose, N 10% Fine Sand	loist to Wet w/ Bric	k and Steel Deb	ris 90%NPF,	FILL	Y	0.0 -1.0 1.0 3.0	
EVELD ME ACL	IDENTEN TO							
FIELD MEASU): NO PID SCANS TAKEN DUE	TORAIN	AL					
COMMENTS:	COLLECTED COMPOSITE S		OM 0.0 - 1.0 FO	R SVOC's AND	METALS			
	COLLECTED SOIL SAMPLE					METALS		
	ATER ENCOUNTERED:	3.0 fbgs						
VISUAL IMP		none						
	Y OBSERVATIONS: VE FILL ENCOUNTERED:	none						
	SERVATIONS:	Headspace 0.0pp	m			14 - 14 - 14 - 14 - 14 - 14 - 14 - 14 -		

Project:	Phase 1 BPA		TEST PIT I.D.:	TP-4-5 01/18/06				
Project No.:	0071-006-100		Excavation Date:					
Client:	Tecumseh		Excavation Method:	Johndeere	Johndeere 892ELC			
Location:	1951 Hamburg Turnpike		Logged / Checked By:	TAB	,			
CONCRETE FLOOR	NORTH		Test Pit Cross Section: Grade - 0' 2' 4' 6'	FILL				
TIME Start: End:	Length: 50.0 ft 10:30 Width: 4.0ft 10:45 Depth: 3.0 ft	(approx.) (approx.)	10'					
Depth (fbgs)		USCS Soil Description		USCS Symbol	Photos Y / N	Samples Collected (fbgs)		
0.0 -2.5	0.0 -2.5 Fill: Dark Brown to Black, loose, 1 10% Fine Sand		Brick and Steel Debris 90%NPF,	FILL	Y	0.0 -1.0 1.0 2.5		
FIELD MEASU PID (ppm): COMMENTS:	: NO PID SCANS TAKEN DUE COMPOSITED SOIL SAMPLI	E FROM 0.0 - 1.		FOR TP-4-(1-5)				
	COLLECTED SOIL SAMPLE							
			0 FOR SVOC's AND METALS	FOR TP-4-(1-5)				
	ATER ENCOUNTERED:	2.5 fbgs						
OLEACTORY	ACTS: OBSERVATIONS:	none	A DOMESTIC AND AN ADMINISTRATION OF THE PROPERTY OF THE PROPER					
	E FILL ENCOUNTERED:	yes						
OTHER OBSI		Headspace 0.			<u> </u>			
	DLLECTED:	yes	• •					

Project:	Phase 1 BPA		TEST PIT I.D.:		TP-5- 1	l	
Project No.:	0071-006-100		Excavation D	ate:	01/19/06		
Client:	Tecumseh		Excavation M	ethod:	Johndeere 892ELC		
Location:	1951 Hamburg Turnpike		Logged / Che	cked By:	TAB		
	NORTH						
			Test Pit Cross Se	ection:			
			Grade - 0' —	. 98 89 P. Y. C			
CONCRETE	<u> </u>		-				
ONCRETE			2'—		FIL	L	
·			4'—	<u> </u>			
			4]				
			6'				
		į					·
	SOUTH		8'——				
TIME	Length: 47.0 ft	(approx.)					
Start:	9:00 Width: 4.0ft	(approx.)	10'				
End:	9:25 Depth: 4.0 ft	(approx.)					
Depth		USCS Soil			USCS	Photos	Samples
(fbgs)		Description			Symbol	Y / N	Collected (fbgs)
							(IDgs)
	Fill:	D 10		0 () ()	FILL	**	0.0 -1.0 1.
0.0 -3.5		Brown to Black w/Red Brown and Orange Lenses, Loose, 90% NPF, Fine Sand w/ Slag & Gravel				Y	3.5
	, 0						
							1
FIELD MEASU							
PID (ppm)					D METAL C		
COMMENTS:	COLLECTED COMPOSITE S COLLECTED SOIL SAMPLE					IETAI S	
±	COLLECTED SOIL SAIMI LE	TROM 1.0 - 3.3	TOR VOCS, COM	OSITETOR	COCOCOL		
GROUNDWA	ATER ENCOUNTERED:	3.5 fbgs	 				
VISUAL IMPA	ACTS:	none					
OLFACTORY	OBSERVATIONS:	none					
	T DILL DALCOLD WEDDED						
NON-NATIV OTHER OBSI	E FILL ENCOUNTERED:	yes Headspace 0.0	0				

Project:	Phase 1 BPA		TEST PIT I.D.:		TP-5-2	2	
Project No.:	0071-006-100		Excavation	Date:	01/19/06		
Client:	Tecumseh		Excavation	Method:	Johndeere	892ELC	
Location:	1951 Hamburg Turnpike		Logged / C	hecked By:	TAB		
	NORTH						
			Test Pit Cross	Section:			
CONCRETE		RICK	Grade - 0' -			7888888	
CONCRETE			—				
			2'—		FIL	بله	
			4'—				
			· —				
			6'				
	SOUTH		_				
	500111		8'—				
TIME	Length: 27.0 ft	(approx.)	10'—				
Start:	11:15 Width: 4.0ft	(approx.)	10 —				
End:	11:45 Depth: 4.0 ft	(approx.)	<u> </u>	····			T c .1
Depth		USCS Soil			USCS	Photos	Samples Collected
(fbgs)		Description			Symbol	Y/N	(fbgs)
					-		
0.0 -4.0	<u>Fill:</u>	Fill: Dark Brown to Black, Loose, 90% NPF, 10% Fine Sand w/ Slag & Gravel				Y	0.0 -1.0 1.
0.0 1.0	Dark Brown to Black, Loose,	90% NPF, 10%	Fine Sand w/ Slag	& Gravel	FILL		4.0
							1
	REWORKED SANDY CL	AY:			OT.	3.7	
4.0	Redish Brown, Firm, 60%MP		ł		CL	Y	
FIELD MEASU	DEMENTS:						
PID (ppm)		opm_SUB - SUR	FACE 1.0 - 4.0fbg	s 0.0ppm			
COMMENTS:	COLLECTED COMPOSITE S				D METALS		
	COLLECTED SOIL SAMPLE	FROM 1.0 - 4.0	FOR VOC's, CO	MPOSITE FOF	R SVOC's AND M	IETALS	
	ATER ENCOUNTERED:	4.0 fbgs					
OLEACTORY	ACTS: Y OBSERVATIONS:	none	· · · · · · · · · · · · · · · · · · ·				
	E FILL ENCOUNTERED:	yes					
	ERVATIONS:	Headspace 0.	.0ppm				
SAMPLES CO	OLLECTED:	yes					

Project:	Phase 1 BPA		TEST PIT I	I.D.:	TP-5-4	4	
Project No.:	0071-006-100		Excavation	Date:	01/19/06		
Client:	Tecumseh		Excavation	Method:	Johndeere	892ELC	
Location:	1951 Hamburg Turnpike		Logged / C	hecked By:	TAB		
	NORTH						
			Test Pit Cross	Section:			
			Grade - 0' —	15 00 100 c		1/4: W.S 1 2 1 1	
			_				
			2'—		FII	$oldsymbol{L}$	
			4'—		RE-WORKED	CLAY	- MAR - MAR
			4 —		THE WORLD		
			6'				
			_	(# W. 197			
	SOUTH		8'—				
TIME	Length: 35.0 ft	(approx.)	_				
Start:	10:45 Width: 4.0ft	(approx.)	10'				
End:	11:05 Depth: 4.5 ft	(approx.)					
Depth		USCS Soil			USCS	Photos	Samples
(fbgs)		Description			Symbol	Y/N	Collected
(0 /		-				<u> </u>	(fbgs)
	Fill:						0.0 -1.0 1.0 -
0.0 -3.0	Black to Dark Brown, Loose, 9	0% NPF 10% I	Fine Sand w/Brick	, Slag and Steel	FILL	Y	3.0
	Debris						<u> </u>
3.0 - 4.0	REWORKED SANDY CLA						
-	Med. Grey, Firm, 60%MPF,40	% Fine Sand					
FIELD MEASU	JREMENTS:					L	<u> </u>
PID (ppm)		m SUB - SURI	FACE 1.0 - 3.0fbg	s 0.0ppm			
COMMENTS:	COLLECTED COMPOSITE SO						
	COLLECTED SOIL SAMPLE I	FROM 1.0 - 3.0	FOR VOC's, CO	MPOSITE FOR	R SVOC's AND N	METALS	w
CDOINIDW	ATED ENICOUNTEDED.	4.0 fbgs					
VISUAL IMP	ATER ENCOUNTERED:	none					
	Y OBSERVATIONS:	none		and the field of t	1 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -		
	/E FILL ENCOUNTERED:	yes					
OTHER OBS	ERVATIONS:	Headspace 0.	.0ppm				
SAMPLES CO	OLLECTED:	yes					

Project:	Phase 1 BPA		TEST PIT I	.D.:	TP-5-5	5	
Project No.:	0071-006-100		Excavation I	Date:	01/19/06		
Client:	Tecumseh		Excavation I	Method:	Johndeere 8	B92ELC	
Location:	1951 Hamburg Turnpike		Logged / Cl	necked By:	TAB		
	NORTH			······································			
			Test Pit Cross	Section:			
			Grade - 0' 			· · · · · · · · · · · · · · · · · · ·	
	CONC	CRETE	2'—		FIL	L	
			_				
			4'—				
			6'—				
	SOUTH						Mark Co.
			8'—				
TIME	<u> </u>	(approx.)	10'—		, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
Start:	13:45: Width: 4.0ft	(approx.)	· ` _				
End:	14:00: Depth: 3.5 ft	(approx.)		<u> </u>			1 0 1
Depth		USCS Soil			USCS	Photos	Samples Collected
(fbgs)		Description			Symbol	Y / N	(fbgs)
							(1080)
	Fill:	T 700/3			DYL I	3 7	0.0 -1.0 1.0
0.0 -3.5	Black to Medium Redish Bro Gravel(Ballist) 10% Fine Sand			³ ∕0	FILL	Y	3.5
	Graver (Damst) 1070 Title Sain	d w/ Ramoad Ties					
FIELD MEASU		OLID OLID	ELCE 40 25 G	0.0			
PID (ppm					EOR TD 5 (1	5)	ALL ALL PROPERTY OF
COMMENTS:	COLLECTED SOIL SAMPLE			IND WEITIES	1 OK 11 - 3 -(1 -		
	COMPOSITED SOIL SAMPL			OR TP - 5 - (1.2	2.4.5)		
GROUNDW	ATER ENCOUNTERED:	3.5 fbgs		- (-)-			·
VISUAL IMI	-	none					
OLFACTOR	Y OBSERVATIONS:	none					
NON-NATI	VE FILL ENCOUNTERED:	yes					
OTHER OB	SERVATIONS:	Headspace 0	.0ррт				
SAMPLES C	OLLECTED:	yes					

Project:	Phase 1 BPA		TEST PIT I.D.:	TP-5-6	6	
Project No.:	0071-006-100		Excavation Date:	01/19/06		
Client:	Tecumseh		Excavation Method:	Johndeere	892ELC	
Location:	1951 Hamburg Turnpike		Logged / Checked By:	TAB		
BRICK WORK	WEST	RETE	Test Pit Cross Section: Grade - 0'	FIL	1	
TIME Start: End:	Length: 57.0 ft 14:10: Width: 4.0ft 14:40: Depth: 3.0 ft	(approx.) (approx.) (approx.)	10'			
Depth (fbgs)		USCS Soil Description		USCS Symbol	Photos Y / N	Samples Collected (fbgs)
0.0 -1.0	Fill: Black to Dark Brown, Loose,	90% NPF 10%	Fine Sand w/Roots	FILL	Y	0.0 -1.0 1.0 -
1.0 - 3.0	BRICK WORK: Refactory Brick Loosly Set In	to Place, at Least	t 10 Layers	FILL	Y	3.0
FIELD MEASU	 JREMENTS:			<u> </u>	l	<u> I</u>
PID (ppm		pm SUB - SUR	FACE 1.0 - 3.5 fbgs 0.0ppm			
COMMENTS:	COLLECTED COMPOSITE S	SOIL SAMPLES	S FROM 0.0 - 1.0 FOR SVOC's A			
	COLLECTED SAMPLE FRO	M 1.0 - 3.0 FOR	VOC's. COMPOSITE FOR SVC	OC's AND META	LS	
CPOUNDW	ATER ENCOUNTERED:	3.0 fbgs				
VISUAL IMP		none				
	Y OBSERVATIONS:	none				
	VE FILL ENCOUNTERED:	yes				
OTHER OBS	SERVATIONS:	Headspace 0	1.0ppm			
SAMPLES CO	OLLECTED:	yes				

Project:	Phase 1 BPA		TEST PIT	I.D.:	TP-5-7	7	
Project No.:	0071-006-100		Excavation	Date:	01/19/06		
Client:	Tecumseh		Excavation	Method:	Johndeere	892ELC	
Location:	1951 Hamburg Turnpike		Logged / C	hecked By:	TAB		
	WEST	W VI THE REAL OF \$4	L				
			Test Pit Cross	Section:			
			Grade - 0' 2' 4'		FII	L .	
			-				
			6'				
	EAST		8'—				
TIME Start: End:	Length: 57.0 ft 14:55:0 Width: 4.0ft 15:15:0 Depth: 3.0 ft	(approx.) (approx.) (approx.)	10'—				
Depth (fbgs)		USCS Soil Description			USCS Symbol	Photos Y / N	Samples Collected (fbgs)
0.0 -1.0	Fill: Black to Dark Brown, Loose, 9	90% NPF 10% F	ine Sand		FILL	Y	0.0 -1.0 1.0
1.0 - 2.0	BALLIST: Stone Bound with Tar Pitch.				FILL	Y	2.0
FIELD MEASU		OLUB 2775	11.00.10.55.5			Processor of the second second second	
PID (ppm) COMMENTS:	: SURFACE 0.0 - 1.0 fbgs 0.0pp COLLECTED COMPOSITE SO COLLECTED SAMPLE FROM	OIL SAMPLES	FROM 0.0 - 1.0 F	OR SVOC's AN		S	THE THE PARTY VALUE OF THE PARTY OF THE PART
						-	
	ATER ENCOUNTERED:	2.0 fbgs				- AND THE STATE OF	
VISUAL IMPA			stone bound with	Tar Pitch possil	oly an old road.		
	OBSERVATIONS:	none					
OTHER OBS	E FILL ENCOUNTERED:	yes Headspace 0.0)nnm				
SAMPLES CC			, , , , ,				
SAMILIUS CC	71.71.3C 1 131.7.	yes					

Project:	Phase 1 BPA		TEST PIT I.	D.:	TP-5-	8	
Project No.:	0071-006-100		Excavation I	Date:	01/20/06		
Client:	Tecumseh		Excavation N	lethod:	Johndeere	892ELC	
Location:	1951 Hamburg Turnpike		Logged / Ch	ecked By:	TAB		
BRICK WORK CONCRETE	BRICK WORK STEEL I-BEAMS			ection:	FII	1.	
TIME Start: End:	Length: 64.0 ft 8:40 Width: 4.0ft 9:20 Depth: 3.5 ft	(approx.) (approx.) (approx.)	10'			17.00	
Depth (fbgs)		USCS Soil Description			USCS Symbol	Photos Y / N	Samples Collected (fbgs)
0.0 -3.0	<u>Fill:</u> Black to Dark Brown, Loose,	, 90% NPF 10% F	Fine Sand		FILL	Y	0.0 -1.0 1.0
1.0 - 3.5	Fill: Honeycomb Of Refactory Br	ick Work			FILL	Y	3.0
FIELD MEASU	I REMENTS:						<u> </u>
PID (ppm): COMMENTS:		SOIL SAMPLES	FROM 0.0 - 1.0 FO	R SVOC's AN		S	777
VISUAL IMPA OLFACTORY	TER ENCOUNTERED: ACTS: OBSERVATIONS: E FILL ENCOUNTERED:	3.0 fbgs none none					
INCIN-INATIV		yes					
OTHER OBSI	EKVATIONS:	Headspace 0.0	Joom				

Project:	Phase 1 BPA		TEST PIT I.D.:	D.:	TP-5-1	1	
Project No.:	0071-006-100		Excavation D	ate:	01/20/06		
Client:	Tecumseh		Excavation M	lethod:	Johndeere	892ELC	
Location:	1951 Hamburg Turnpike		Logged / Che	ecked By:	TAB		
	NORTH						
			Test Pit Cross S	ection:			
	SOUTH		Grade - 0'		FIL	L	
TIME	Length: 64.0 ft	(approx.)	10'				
Start:	11:10 Width: 4.0ft	(approx.)	10'				
End:	11:35 Depth: 4.5 ft	(approx.)					1 0 1
Depth (fbgs)		USCS Soil Description			USCS Symbol	Photos Y / N	Samples Collected (fbgs)
0.0 -4.5	Fill: Black to Dark Brown, Loose, w/Rail Road Ties to the West		Fine Sand w/slag and	l Brick	FILL	Y	0.0 -1.0 1.0 -
FIELD MEASU		ATTE	n. on . o . o . o				
PID (ppm): SURFACE 0.0 - 1.0 fbgs 0.0p COLLECTED SOILSAMPLE				arrows rows — — — — — — — — — — — — — — — — — — —		
COMMENTS:	COLLECTED SOILSAMPLE						
					2.1.1		
GROUNDW	ATER ENCOUNTERED:	4.0 fbgs					
VISUAL IMP	The same of the sa	none					
OLFACTOR'	Y OBSERVATIONS:	none					
NON-NATIV	/E FILL ENCOUNTERED:	yes	.15.				
	SERVATIONS:	Headspace 0.	.0ppm				
SAMPLES CO	OLLECTED:	yes					

Project:	Phase 1 BPA		TEST PIT I	I.D.:	TP-6-3	3	
Project No.:	0071-006-100		Excavation	Date:	01/12/06		
Client:	Tecumseh		Excavation	Method:	Johndeere 8	892ELC	
Location:	1951 Hamburg Turnpike		Logged / C	hecked By:	TAB		
	NORTH						
			Test Pit Cross	Section:			
			Grade - 0' — 2' — 4' — 6' —		FII	L	
	SOUTH		8'—				
TIME Start: End:	Length: 33.0 ft 13:20: Width: 4.0ft 13:35: Depth: 6.0 ft	(approx.) (approx.) (approx.)	10'				
		USCS Soil			USCS	Photos	Samples
Depth (fbgs)		Description			Symbol	Y/N	Collected (fbgs)
0.0 -6.0	Fill: Black/Dark Brown Loose, 80° Piping & Refactory Brick	% NPF 20% Con-	crete Debris w/N	Viscellaneous	FILL	Y	0.0 -2.0 2.0 6.0
FIELD MEAS					11.00.4 5.100.4		
PID (ppm							
COMMENTS:						FITTAT C	
	COLLECTED SOIL SAMPLE	FROM 2.0 - 6.0 r	FOR VOC's, CO.	MPOSITE FOI	R SVOC'S AND IN	1ETALS	
GROUNDW	WATER ENCOUNTERED:	5.7 fbgs					
VISUAL IMI		none					
OLFACTOR	RY OBSERVATIONS:	none					
NON-NATI	IVE FILL ENCOUNTERED:	yes					
OTHER OB	SSERVATIONS:	Headspace 0.0	ppm				
SAMPLES C	COLLECTED:	yes					

Project:	Phase 1 BPA		TEST PIT I.D.:	TP-6-4			
Project No.:	0071-006-100		Excavation Date:	01/12/06			
Client:	Tecumseh		Excavation Method:	Johndeere	892ELC		
Location:	1951 Hamburg Turnpike		Logged / Checked By:	TAB			
	WEST	△	Test Pit Cross Section:				
BRICK WALL		35 ft'	Grade - 0'	FII	L		
	22 ft EAST		8'				
TIME Start: End:	Length: 35.0 ft. 13:52: Width: 22.0ft 14:15: Depth: 5.5 ft	(approx.) (approx.) (approx.)	10'				
Depth (fbgs)		USCS Soil Description		USCS Symbol	Photos Y / N	Samples Collected (fbgs)	
0.0 -5.5	Fill: Black/Dark Brown Loose, 80 Piping & Refactory Brick	% NPF 20% Con	ncrete Debris w/Miscellaneous	FILL	Y	0.0 -2.0 2.0 5.5	
FIELD MEASU	UREMENTS:						
PID (ppm							
COMMENTS:			'ALS FOR VOC's, COMPOSITE FO	R SVOC's AND M	METALS		
on oth thu	ATER ENCOUNTERED:	5.0 fbgs					
		none		.124 9999			
	PACTS:						
VISUAL IMI							
VISUAL IMP	Y OBSERVATIONS:	none					
VISUAL IMI OLFACTOR NON-NATIV			.0ppm				

Project:	Phase 1 BPA		TEST PIT I.	D.:	TP-6-	5	
Project No.:	0071-006-100		Excavation I	Date:	01/12/06		
Client:	Tecumseh		Excavation I	Method:	Johndeere	892ELC	
Location:	1951 Hamburg Turnpike		Logged / Ch	ecked By:	TAB	.,	
	NORTH		Test Pit Cross S Grade - 0'— 2'— 4'— 6'— 8'—	Section:	FII	.1.	
TIME Start:	Length: 31.0 ft. 14:45: Width: 4.0ft	(approx.)	10'				
End: Depth (fbgs)	15:00: Depth: 6.5 ft	(approx.) USCS Soil Description	1		USCS Symbol	Photos Y / N	Samples Collected (fbgs)
0.0 -6.5	<u>Fill:</u> Black/Dark Brown Loose, 80 Miscellaneous Piping & Refac		ne Sand w/ Concrete	e Debris,	FILL	Y	0.0 -2.0 2.0 6.5
FIELD MEASU	I UREMENTS:	7-01-6					
PID (ppm) COMMENTS:		E FROM 0.0 - 2. FROM 2.0 - 6.5	.0 FOR SVOC's AN FOR VOC's	ID METALS F			
GROUNDWA	ATER ENCOUNTERED:	6.3 fbgs					
VISUAL IMP		none					
	Y OBSERVATIONS:	none					
	E FILL ENCOUNTERED:	yes Handanaca 0	Onno				
	SERVATIONS:	Headspace 0.	.vppm				
SAMPLES CO	JIECIED:	yes					

Project No.:			TEST PIT I.D.:	TP-6-2	<i>,</i>			
1 10,000 1 10	0071-006-100		Excavation Date:	01/13/06				
Client:	Tecumseh		Excavation Method:	Johndeere	892ELC			
Location:	1951 Hamburg Turnpike		Logged / Checked By:	TAB				
TIME	19' WEST Length: 19.0 & 18		Test Pit Cross Section: Grade - 0' 2' 4' 6' 8' 10'	FII	L			
Start: End:	8:05 Width: 4.0ft 8:45 Depth: 4.0 ft	(approx.) (approx.)	10					
Depth (fbgs)		USCS Soil Description		USCS Symbol	Photos Y/N	Samples Collected (fbgs)		
0.0 -4.0	Fill: Black/Dark Brown Loose, 80 Miscellaneous Piping & Refa		e Sand w/ Concrete Debris,	FILL	Y	2.0 -4.0		
FIELD MEASU	REMENTS:							
PID (ppm) COMMENTS:			ACE 2.0 - 4.0fbgs 0.0ppm FOR VOC's & METALS. MET	TALS DUP TAKE	N			
VISUAL IMPA OLFACTORY	Y OBSERVATIONS:	none	noticed at southwest end of TP -	6-7				
	TE FILL ENCOUNTERED: ERVATIONS: DLLECTED:	yes Headspace 0.0 yes)ppm					

Project:	Phase 1 BPA		TEST PIT	I.D.:	TP-6-9			
Project No.:	0071-006-100		Excavation	Date:	01/13/06			
Client:	Tecumseh		Excavation	Method:	Johndeere	892ELC		
Location:	1951 Hamburg Turnpike		Logged / C	hecked By:	TAB			
	WEST	:	Test Pit Cross	Section:				
277	BRICK WALL	——CONCRETE	Grade - 0' 2' — 4' — 6' — 8' —		FILE	. L.		
TIME Start: End:	Length: 39.0 & 44 8:40 Width: 4.0ft 10:35 Depth: 4.0 ft	(approx.) (approx.)	10'— —					
Depth (fbgs)	Total Depair no it	USCS Soil Description		-	USCS Symbol	Photos Y / N	Samples Collected (fbgs)	
0.0 -4.5	Fill: Black/Dark Brown Towards Side Has Redish Brown (Mill Concrete & Steel Debris, Ref	Scale) Loose, 80%			FILL	Y	2.0 -4.5	
FIELD MEASU		opm SIIR SIIDI	FACE 20 450~	s () ()ppm				
PID (ppm COMMENTS:	COLLECTED SOIL SAMPLE	*		о оторрии				
a 19 T							an	
0.000	ARIED INTOOTS PRESSES	420		-				
GROUNDW. VISUAL IMP	ATER ENCOUNTERED:	4.3 fbgs Possible Mill	Scale & Fly Ash, G	Orange Tint to (Groundwater	· = ddd MEP, p** · · · · ·		
	Y OBSERVATIONS:	none	ceare of Try Asil,	Jiange Tille to C	Jioungwalet.			
	/E FILL ENCOUNTERED:	yes						
	SERVATIONS:	Headspace 0.	0ppm					
SAMPLES CO	OLLECTED:	yes						

Project:	Phase 1 BPA		TEST PIT I.E).:	TP-6- 1	10		
Project No.:	0071-006-100		Excavation D	ate:	01/13/06			
Client:	Tecumseh		Excavation M	ethod:	Johndeere 892ELC			
Location:	1951 Hamburg Turnpike		Logged / Che	cked By:	TAB			
	WEST		st Pit Cross Se Grade - 0' 2' 4' 6'	ection:	FII	. L.		
TIME Start:	Length: 29.0ft Width: 4.0ft	(approx.) (approx.)	10'					
End: Depth (fbgs)	11:05 Depth: 4.0 ft	(approx.) USCS Soil Description			USCS Symbol	Photos Y / N	Samples Collected (fbgs)	
0.0 -6.0	Fill: Black/Dark Brown Loose, 80% Debris, Refactory Brick	% NPF 20% Fine San	d w/ Concrete	& Steel	FILL	Y	2.0 -6.0	
FIELD MEASU		em CLID CLIDEAC	30 60 fa-	() (Inpos				
PID (ppm COMMENTS:								
	ATER ENCOUNTERED:	5.6 fbgs						
VISUAL IMP		none						
	Y OBSERVATIONS:	none						
NON-NATIV	VE FILL ENCOUNTERED: SERVATIONS:	yes Headspace 0.0ppn						

Project No.: Client: Location:	0071-006-100 Tecumseh		Excavation I	. .	01/12/01		
	Tecumseh		Excavation Date:		01/13/06		
Location:			Excavation N	Method:	Johndeere	892ELC	
	1951 Hamburg Turnpike		Logged / Ch	ecked By:	TAB		
6" DISCHARGE LINE 2.5' FROM GADE	NORTH CONCRETE		Test Pit Cross S Grade - 0' 2' 4' 6'		FII WORKED SA		
t e	3:10: Width: 4.0ft	(approx.) (approx.) (approx.)	10'				
Depth (fbgs)	Ţ	USCS Soil Description			USCS Symbol	Photos Y/N	Samples Collected (fbgs)
0.0 -4.0	Fill: Black, Loose, 80% NPF, 20% Fin	80% NPF, 20% Fine Sand w/Brick Debris				Y	0.0 -2.0 2.0
4.0 - 5.5	REWORKED SANDY CLAY: Med. Grey, Stiff, 20% LPF, 80% I in & Visible Coal Tar	Fine Sand w/	Some Petroleum P	roduct mixed	СL	Y	-5.5
FIELD MEASURE	EMENTS:					L	
	SURFACE 0.0 - 2.0 fbgs 0.0ppm				A-A-MARKETTE III	and the second second	
	COLLECTED COMPOSITE SOIL			10-10-0			
	OLLECTED SOIL SAMPLE FRO				AND METALS		
	ONCRETE ON BOTTOM OF T ER ENCOUNTERED: 4	EST PIT BU 4.5 fbgs	I NOI CONTIN	008			
VISUAL IMPAC			uct on water surface	e oilytar like m	naterial on footer	wall	
		Strong Petrole		c, ony tar-nike n	maria on tootel	11411	
		es ettore					
OTHER OBSER		Headspace 312	23 ppm				
SAMPLES COLL		res					

Phase 1 BPA		TEST PIT I.D.:	TP-7-	5	
0071-006-100		Excavation Date:	01/17/06		
Tecumseh		Excavation Method:	Johndeere	892ELC	
1951 Hamburg Turnpike		Logged / Checked By:	TAB		
	17'	Test Pit Cross Section: Grade - 0' 2' 4'	. W. W. W. W. W. W. W. W. W. W. W. W. W.		
SOUTH 14' Length: 17.0 ft	(approx.)	6'			
9:35 Depth: 5.5ft	(approx.)				
USCS Soil Description			USCS Symbol	Photos Y / N	Samples Collected (fbgs)
Fill: Black, Dark Brown, Loose, Moist, 90% NPF, 10% Fine Sand w/Brick Debris			FILL	Y	0.0 -2.0 2.4
			CL	Y	
IREMENTS:					
	pm SUB - SURI	FACE 2.0 - 5.0fbgs 0.0ppm			
,	•	~ · · · · · · · · · · · · · · · · · · ·	D METALS		
			* ***		
			D METALS		
ATER ENCOUNTERED:	none observe	ed			
ACTS:	none, there a	are 2 fire hydrants ~50 yards to the	e east and the wes	t of test pit	
Y OBSERVATIONS:	none				
/E FILL ENCOUNTERED:	yes				
			account -		
SERVATIONS:	Headspace 0.	0ppm, piezometer P-53s was not i	nstalled due to lac	k of groundwa	iter
)	Tecumseh 1951 Hamburg Turnpike NORTH 6" PH SOUTH 14' Length: 17.0 ft Width: 4.0ft to 14.0 9:35 Depth: 5.5ft Fill: Black, Dark Brown, Loose, Me REWORKED SANDY CLA Med. Grey, Stiff, 60%MPF,40° REWORKED SANDY CLA Med. Grey, Stiff, 60%MPF,40° COLLECTED COMPOSITE S COLLECTED COMPOSITE S COLLECTED COMPOSITE S ATER ENCOUNTERED: ACTS: Y OBSERVATIONS:	Tecumseh 1951 Hamburg Turnpike NORTH 14' Length: 17.0 ft (approx.) Width: 4.0ft to 14.0ft (approx.) Depth: 5.5ft (approx.) USCS Soil Description Fill: Black, Dark Brown, Loose, Moist, 90% NPF, 18 REWORKED SANDY CLAY: Med. Grey, Stiff, 60%MPF,40% Fine Sand REWORKED SANDY CLAY: Med. Grey, Stiff, 60%MPF,40% Fine Sand COLLECTED COMPOSITE SOIL SAMPLE IS COLLECTED COLLECTED COLLECTED COMPOSITE SOIL SAMPLE IS COLLECTED COLLECTE	Tecumseh Tecumseh Tecumseh Tecumseh Tesumseh Tesumseh Tesumseh Tesumseh Tesumseh Tesumseh Tesumseh Tesumseh Tesumseh Test Pit Cross Section: Grade - 0' 2' 4' 8' 8:55 Width: 4.0ft to 14.0ft (approx.) 9:35 Depth: 5.5ft (approx.) USCS Soil Description Fill: Black, Dark Brown, Loose, Moist, 90% NPF, 10% Fine Sand w/Brick Debris REWORKED SANDY CLAY: Med. Grey, Stiff, 60%MPF, 40% Fine Sand REWORKED SOIL SAMPLE FROM 2.0 - 2.0 FOR SVOC'S AN COLLECTED COMPOSITE SOIL SAMPLE FROM 2.0 - 2.0 FOR SVOC'S AN COLLECTED COMPOSITE SOIL SAMPLE FROM 2.0 - 5.0 FOR SVOC'S AN ATTER ENCOUNTERED: none observed ACTS: none observed ACTS: none OSSERVATIONS: none Te FILL ENCOUNTERED: yes	Tecumseh Tecumseh Tecumseh Tecumseh Test Pit Cross Section: Grade - 0' FII A' Bille Black, Dark Brown, Loose, Moist, 90% NPF, 10% Fine Sand w/Brick Debris FIIL REWORKED SANDY CLAY: Med. Grey, Stiff, 60%MPF,40% Fine Sand REMENTS: SURPACE 0.0 - 2.0 fbgs 0.0ppm SUB - SURFACE 2.0 - 5.0fbgs 0.0ppm COLLECTED COMPOSITE SOIL, SAMPLE FROM 0.0 - 2.0 FOR SVOC's AND METALS COLLECTED COMPOSITE SOIL, SAMPLE FROM 2.0 - 5.0 FOR SVOC's AND METALS COLLECTED COMPOSITE SOIL, SAMPLE FROM 2.0 - 5.0 FOR SVOC's AND METALS COLLECTED COMPOSITE SOIL, SAMPLE FROM 2.0 - 5.0 FOR SVOC's AND METALS COLLECTED COMPOSITE SOIL, SAMPLE FROM 2.0 - 5.0 FOR SVOC's AND METALS COLLECTED COMPOSITE SOIL, SAMPLE FROM 2.0 - 5.0 FOR SVOC's AND METALS COLLECTED COMPOSITE SOIL, SAMPLE FROM 2.0 - 5.0 FOR SVOC's AND METALS COLLECTED COMPOSITE SOIL, SAMPLE FROM 2.0 - 5.0 FOR SVOC's AND METALS COLLECTED COMPOSITE SOIL, SAMPLE FROM 2.0 - 5.0 FOR SVOC's AND METALS COLLECTED COMPOSITE SOIL, SAMPLE FROM 2.0 - 5.0 FOR SVOC's AND METALS ACTS: none observed none, there are 2 fire hydrants - 50 yards to the cast and the wes VOSSERVATIONS: none	Tecumseh Tecumseh Tecumseh Tecumseh Tecumseh Test Pit Cross Section: Grade - 0' FILL SOUTH 14' RE-WORKED SANDY CLAY Width: 4.0ft to 14.0ft (approx.) Depth: 5.5ft (approx.) USCS Soil Description USCS Soil Description Width: 4.0ft to 14.0ft (approx.) USCS Soil Description FILL Y REWORKED SANDY CLAY CLay Width: 4.0ft to 14.0ft (approx.) USCS Soil Description FILL Y REWORKED SANDY CLAY CL. Y REWORKED SANDY CLAY CL. Y REWORKED SANDY CLAY CL. Y REWORKED SANDY CLAY CL. Y REWORKED SANDY CLAY FILL SOUTH CL. Y REWORKED SANDY CLAY CL. Y REWORKED SANDY CLAY Med. Grey, Stiff, 60% MPF, 40% Fine Sand CL. Y CL. Y CL. Y CL. Y CL. Y CL. Y CL. Y CL. TENDER STILL AND STILL AND STILL TEST PIT Cross Section: Grade - 0' STILL TEST PIT Cross Section: Grade - 0' STILL TEST PIT Cross Section: Grade - 0' STILL TEST PIT Cross Section: Grade - 0' STILL TEST PIT Cross Section: Grade - 0' STILL TEST PIT Cross Section: Grade - 0' STILL TEST PIT Cross Section: Grade - 0' STILL TEST PIT Cross Section: Grade - 0' STILL TEST PIT Cross Section: Grade - 0' STILL TEST PIT Cross Section: Grade - 0' STILL TEST PIT Cross Section: Grade - 0' STILL TEST PIT Cross Section: Grade - 0' STILL TEST PIT Cross Section: Grade - 0' STILL TEST PIT Cross Section: Grade - 0' STILL TEST PIT Cross Section: Grade - 0' STILL TEST PIT Cross Section: Grade - 0' STILL TEST PIT Cross Section: TEST PIT Cross Section: Grade - 0' STILL TEST PIT Cross Section: TEST PI

Project:	Phase 1 BPA		TEST PIT I.D.:	TP-7-	6	
Project No.:	0071-006-100		Excavation Date:	01/17/06		
Client:	Tecumseh		Excavation Method:	Johndeere	892ELC	
Location:	1951 Hamburg Turnpike		Logged / Checked By:	TAB		
P-52s	NORTH	ΙΈ	Test Pit Cross Section: Grade - 0' 2'- 4'- 6'- 8'-	FII	S.L.	
TIME Start: End:	Length: 39.0 ft 9:45 Width: 4.0ft 10:35 Depth: 7.0ft	(approx.) (approx.) (approx.)	10'			
	10.55 15cpuii: 7.0it	· • • • • • • • • • • • • • • • • • • •		TIECO	Dl	Samples
Depth (fbgs)		USCS Soil Description		USCS Symbol	Photos Y/N	Collected (fbgs)
0.0 -7.0	Fill: Black, Dark Brown, Loose, Me and Slag and Gravel Back fill	oist, 90% NPF, 1	10% Fine Sand w/Brick Debris	FILL	Y	0.0 -2.0 2.0 -7.0
FIELD MEASU	JREMENTS:): SURFACE 0.0 - 2.0 fbgs 0.0pj	om SIIR - SIIDI	FACE 20 - 70fbgs 00ppm	modern \$100 Table 9		
COMMENTS:	COLLECTED COMPOSITE S COLLECTED SOIL SAMPLE	OIL SAMPLE F FROM 2.0 - 7.0	FROM 0.0 - 2.0 FOR SVOC's AN			
GROUNDW	ATER ENCOUNTERED:	6.0 fbgs	10112.0 - 7.0 1 OR 3 V OC 8 AIV	IV IVILITIA		
VISUAL IMP		None				
	Y OBSERVATIONS:	none				
	/E FILL ENCOUNTERED:	yes		11 1		
	SERVATIONS:		Oppm, piezometer P-52s was insta	ulled @ ~10.0 fbgs	· vanaries	
SAMPLES CO	JLLECIED:	yes				

Project:	Phase 1 BPA		TEST PIT I.D.:	TP-7-7	7	
Project No.:	0071-006-100		Excavation Date:	01/17/06		
Client:	Tecumseh		Excavation Method:	Johndeere	892ELC	
Location:	1951 Hamburg Turnpike		Logged / Checked By:	TAB		
TIME Start:	NORTH SOUTH Length: 37.0 ft Width: 4.0ft	(approx.)	Test Pit Cross Section: Grade - 0'	FII RE-WORKED	SANDY CLA	
Start: End:	11:00 Width: 4.0ft 11:35 Depth: 5.0ft	(approx.)	_			
Depth (fbgs)		USCS Soil Description		USCS Symbol	Photos Y / N	Samples Collected (fbgs)
0.0 -3.0	<u>Fill:</u> Black, Dark Brown, Loose, Moist, 90% NPF, 10% Fine Sand			FILL	Y	0.0 -1.0 1.0
3.0 - 5.0	REWORKED SANDY CLA Med. Grey, Stiff, 60%MPF,40			CL		
FIELD MEASU	JREMENTS:			<u> </u>	l.,	I.
PID (ppm	4 44-40 11 1	pm SUB - SURI	FACE 1.0 - 3.0fbgs 0.0ppm			
COMMENTS:		<u> </u>	0 FOR SVOC's AND METALS	FOR TP-7-(4-7)		
	COLLECTED SOIL SAMPLE				12 \ 200	
			0 FOR SVOC's AND METALS	FOR TP-7-(4-7)		
	ATER ENCOUNTERED:	3.5 fbgs				
VISUAL IMP	Y OBSERVATIONS:	none	A CONTRACTOR OF THE CONTRACTOR			- W W W N W N N N N N N N N N N N N N N
	Y OBSERVATIONS: /E FILL ENCOUNTERED:	none				
	ERVATIONS:	yes Headspace 0.	Oppm			
SAMPLES CO		yes	~PF			44.44 . M VE III.
SAIVII LES CC	71AAC11A7.	<i>y</i> co				

Project:	Phase 1 BPA		TEST PIT I.D.:		TP-7-	3	
Project No.:	0071-006-100		Excavation	Date:	01/17/06		
Client:	Tecumseh		Excavation	Method:	Johndeere	892ELC	
Location:	1951 Hamburg Turnpike		Logged / C	hecked By:	TAB		
CONCRETI	NORTH SOUTH Length: 64.0 ft		Test Pit Cross Grade - 0' — 2' — 4' — 6' — 8' —	Section:		LL DECKY TO THE PROPERTY OF TH	
Start:	13:00: Width: 4.0ft	(approx.)				Andrew	B. AA SM ACRESS. PROPERTY
End: Depth (fbgs)	14:00:4 Depth: 5.0ft	4:00: Depth: 5.0ft (approx.) USCS Soil Description			USCS Symbol	Photos Y / N	Samples Collected (fbgs)
0.0 -1.0	Fill: Black, Dark Brown, Loose, Moist, 90% NPF, 10% Fine Sand w/Backfilled Slag or Gravel Between the Two Concrete Footers				FILL	Y	
1.0 - 2.5	REWORKED SANDY CL Med. Grey, Stiff, 60%MPF,40				CL	Y	
FIELD MEASU	UREMENTS:): NO FIELD SCAN TAKEN						
COMMENTS:	NO SAMPLE COLLECTED						
	ATER ENCOUNTERED:	2.0 fbgs				APPART TO BE	
VISUAL IMP		none					
	Y OBSERVATIONS: //E FILL ENCOUNTERED:	none yes					
	ERVATIONS:	no headspace	taken				
	DLLECTED:	no					

Project:	Phase 1 BPA		TEST PIT I.D.:		Ĺ	
Project No.:	0071-006-100		Excavation Date:	01/17/06		
Client:	Tecumseh	. ,	Excavation Method:	Johndeere	892ELC	
Location:	1951 Hamburg Turnpike		Logged / Checked By:	TAB		
TIME	NORTH SOUTH Length: 31' & 32'	12" DIA. PIPE	Test Pit Cross Section: Grade - 0' 2' 4' 6' 8'	FIL		
Start:	14:15: Width: 9.0ft	(approx.)	10'			
End: Depth (fbgs)	14:45: Depth: 7.0 ft	(approx.) USCS Soil Description		USCS Symbol	Photos Y / N	Samples Collected (fbgs)
0.0 -3.5	Fill: Med. Brown to Dark Brown w/ Lenses of Black, Loose, Moist, 80% NPF, 10% Fine Sand, 10% Broken Down Orange Brick w/Some Coke Fines and Iron Staining			FILL	Y	0.0 -2.5 2.5
3.5 - 7.0	REWORKED SANDY CLA Med. Grey, Stiff, 60%MPF,400			CL	Y	7.0
ENDI DA COLOR	IDENTENTED					
FIELD MEASU PID (ppm)		nm SHR - SHRE	FACE 2.5 - 7.0fbos 0.0npm			
COMMENTS:	COLLECTED COMPOSITE S	OIL SAMPLE F	ROM 0.0 - 2.5 FOR SVOC's AND) METALS		
			FOR VOC's, COMPOSITE FOR S		ETALS	
	ATER ENCOUNTERED:	3.5 fbgs				
VISUAL IMP		none				
	Y OBSERVATIONS:	none	ALW V-			
	/E FILL ENCOUNTERED:	yes Headspace 0.0	Onnm			
	SERVATIONS:		ohեսու			
SAMPLES CO	JLECTED:	yes				

Project:	Phase 1 BPA	TEST PIT	' I.D.:	TP-8-4	1	
Project No.:	0071-006-100	71-006-100 Excavation Date:		01/13/06		
Client:	Tecumseh	Excavatio	n Method:	Johndeere	892ELC	
Location:	1951 Hamburg Turnpike	Logged /	Checked By:	TAB		
	NORTH	Test Pit Cros	s Section:			
		Grade - 0'- - 2'-		FIII Sani		
	4" SEWE LINE SOUTH	R 4'-	RE-	WORKED SAN	IDY CLAY	
TIME Start: End:	Length: 49.0 ft 15:00:0 Width: 4.0ft 15:30: Depth: 5.5ft	(approx.) 10'- (approx.)				
Depth (fbgs)		USCS Soil Description		USCS Symbol	Photos Y / N	Samples Collected (fbgs)
0.0 -3.0	Fill: Black, Loose, 80% NPF, 20% Fine Sand w/Brick Debris			FILL	Y	
1.0 - 3.0	SAND: Med. Brown, Loose, Moist 70	SAND: Med. Brown, Loose, Moist 70%Fine Sand, 30% NPF w/with some pebbles			Y	0.0 -1.0 1.0 -5.5
3.0 - 5.5	REWORKED SANDY CL. Med. Grey, Stiff, 60%MPF,40			CL	Y	
FIELD MEASU PID (ppm)		pm SUB - SURFACE 1.0 - 5.5fb	w Onno			
COMMENTS:		E FROM 0.0 - 1.5 FOR SVOC's A		ROM TP-7-(1,2,3	6) & TP-8-4	
	COLLECTED SOIL SAMPLE					
		E FROM 1.5 - 5.5 FOR SVOC's A	AND METALS F	FROM TP-7-(1,2,3) & TP-8-4	
	ATER ENCOUNTERED:	5.0 fbgs				
VISUAL IMP	ACTS: Y OBSERVATIONS:	none				
	E FILL ENCOUNTERED:	yes	A CONTRACTOR OF THE PERSON OF	The state of the s		
	ERVATIONS:	Headspace 0.0ppm				

Project:	Phase 1 BPA	TEST PIT I.D.:	TP-8-5	5	
Project No.:	0071-006-100	Excavation Date:	01/17/06		
Client:	Tecumseh	Excavation Method:	Johndeere	892ELC	
Location:	1951 Hamburg Turnpike	Logged / Checked By:	TAB		
CONCRETE SUMPS	NORTH	Test Pit Cross Section: Grade - 0' 2' 4' 6' 8'			
TIME Start: End:	Length: 39.0 ft 8:00 Width: 4.0ft 8:30 Depth: 7.0 ft	(approx.) 10'			
Depth (fbgs)		USCS Soil Description			Samples Collected (fbgs)
0.0 -0.5	Fill: Dark Brown to Black, Loose, N Slag Debris	FILL	Y	0.0 -1.0	
0.5 - 1.0	Gravel/Slag: Dark Grey, Loose, Moist		FILL	Y	0.0 -1.0
1.0 - 4.5	REWORKED SANDY CLA Med. Grey, Stiff, 60%MPF,40%	<u>:</u> Fine Sand w/ Pipe at Bottom of Test Pit	CL	Y	1.0 - 4.5
FIELD MEASU		O DAIN!			
PID (ppm): COMMENTS:	: NO PID SCAN TAKEN DUE ' COLLECTED SOIL SAMPLE I		 		

	ATER ENCOUNTERED:	4.5 fbgs			
VISUAL IMPA		none			
OLEACTORY					
	OBSERVATIONS:	none			
	E FILL ENCOUNTERED:	yes Headspace 0.0ppm			

Project:	Phase 1 BPA		TEST PIT I	D.:	TP-8-	6	
Project No.:	0071-006-100	*** (18)	Excavation 1	Date:	01/18/06		
Client:	Tecumseh		Excavation 1	Method:	Johndeere	892ELC	
Location:	1951 Hamburg Turnpike		Logged / Cl	ecked By:	TAB		
	NORTH						
			Test Pit Cross	Section:			
	SOUTH	j	Grade - 0'———————————————————————————————————		FILL FILL	L	
TIME	Length: 28.0 ft	()	!				
Start: End:	Length: 28.0 ft Width: 4.0 ft	(approx.) (approx.)	10'				
Depth (fbgs)		USCS Soil Description			USCS Symbol	Photos Y / N	Samples Collected (fbgs)
0.0 -0.5	Fill: Dark Brown to Black, Loose, Moist, 80% NPF, 20% Fine Sand w/ Brick and Slag Debris				FILL	Y	
0.5 - 1.0	Gravel/Slag: Dark Grey, Loose, Moist					Y	0.0 -1.0 1.0 3.0
1.0 - 3.5	Fill: Dark Brown to Black, Loose, I Slag Debris	Moist, 80% NPI	⁷ , 20% Fine Sand w	/ Brick and	FILL	Y	
FIELD MEASU		01.55					
PID (ppm): COMMENTS:	: SURFACE 0.0 - 1.0 fbgs 0.0pp COLLECTED SOIL SAMPLE 1						
GROUNDWA	TER ENCOUNTERED:	3.0 fbgs					
VISUAL IMPA	ACTS:	none	***				
	OBSERVATIONS:	none					
	E FILL ENCOUNTERED:	yes		A/ Par (MAA			
OTHER OBSI		Headspace 0.0	Uppm				
SAMPLES CO	ELECTED:	yes					

Project:	Phase 1 BPA	TEST PIT I.D.:	TP-9-2	
Project No.:	0071-006-100	Excavation Date:	01/20/06	
Client:	Tecumseh	Excavation Method:	Johndeere 892EL	С
Location:	1951 Hamburg Turnpike	Logged / Checked By	y: TAB	
	NORTH	Test Pit Cross Section: Grade - 0' 2' 4' 6' 8'	REWORKED'S CLAY	ANDY
TIME Start: End:	Length: 63.0.0 ft 9:25 Width: 4.0 ft 9:45 Depth: 7.5 ft	(approx.) (approx.) (approx.)		
Depth (fbgs)		USCS Soil Description		otos
0.0 -1.0	FILL: Medium Brown to Redish Brown	vn, Loose, Moist, 90% NPF 10% Fine Slag	FILL	Y 0.0 -1.0
1.0 - 7.5	REWORKED SANDY CLA Medium Grey, Stiff, Moist - W gravel.	<u>Y:</u> et, 70% MPF, 30% Fine Sand w/ Large piece	es of CL	Y 1.0 - 7.0
FIELD MEASU				
		m SUB - SURFACE 1.0 - 7.0 fbgs 0.0ppm		
COMMENTS:		ROM 0.0 - 1.0 FOR SVOC's AND METAL	<u>ئ</u>	
	COMPOSITE SOIL SAMPLE	FROM 1.0 - 4.5 FOR VOC's, FROM 1.0 - 7.0FOR SVOC's & METALS		
GROUNDW	ATER ENCOUNTERED:	7.0 fbgs		
VISUAL IMP		none	/ · · · · · · · · · · · · · · · · · · ·	
	Y OBSERVATIONS:	none		
NON-NATIV	/E FILL ENCOUNTERED:	yes		
OTHER OBS	ERVATIONS:	Headspace 0.0ppm		
CAMDIEC CC	OLLECTED:	yes		

Project:	Phase 1 BPA	Phase 1 BPA TEST PIT I.D.:		5	
Project No.:	0071-006-100	Excavation Date:	01/20/06		
Client:	Tecumseh	Excavation Method:	Johndeere	892ELC	
Location:	1951 Hamburg Turnpike	Logged / Checked By:	TAB		
41'	NORTH SOUTH	Test Pit Cross Section: Grade - 0' 2' 4' 6' 8'	FILI ÉWORKED	SANDY C	555555
TIME Start: End:	8:20 Length: 41.0 ft Width: 23.0 ft 8:50 Depth: 6.0 ft	(approx.) (approx.) (approx.)			
Depth (fbgs)		USCS Soil Description	USCS Symbol	Photos Y / N	Samples Collected (fbgs)
0.0 -1.0	FILL: Medium Brown to Redish Bro	FILL	Y	0.0 -1.0	
1.0 - 4.5		Y: t, 60% MPF, 40% Fine Sand w/ large pieces of t Railroad Ties ~2.5 fbgs to 3.0 fbgs.	CL	Y	1.0 - 4.5
FIELD MEASU					
		om SUB - SURFACE 1.0 - 4.5 fbgs 0.0ppm			
COMMENTS:		E FROM 0.0 - 1.0 FOR SVOC's AND METALS	S FOR TP - 9 - (1,2	,5)	AVE.
	COLLECTED SOIL SAMPLE	FROM 1.0 - 4.5 FOR VOC's, E FROM 1.0 - 7.0 FOR SVOC's & METALS FO)R TD 0 (125)		
CPOLINIOW/	ATER ENCOUNTERED:	4.5 fbgs	JR 11 - 9 - (1,2,3)		
VISUAL IMI		none			
	Y OBSERVATIONS:	none			
	VE FILL ENCOUNTERED:	yes			
	SERVATIONS:	Headspace 0.0ppm			
SAMPLES CO	OLLECTED:	yes			

Project:	Phase 1 BPA		TEST PIT	I.D.:	TP-10	-2		
Project No.:	0071-006-100		Excavation	Date:	01/23/06			
Client:	Tecumseh		Excavation	Method:	Johndeere	892ELC		
Location:	1951 Hamburg Turnpike		Logged / C	Checked By:	TAB			
4.0 ' DEEI	EAST		Test Pit Cross	Section:				
4.0 DEE			Grade - 0' - -		FIL	1/2/2/2		
FOUND	DATION	DATION	2' —	RI	EWORKED			
1////			4'—		<u> </u>			
<u> </u>	3.0' DEEP	2777	6'—					
	WEST		8'—			To sales		
TIME Start: End:	Length: 40.0 ft 11:15 Width: 4.0 ft 11:50 Depth: 7.5 - 9.0	(approx.)	10'—					
Depth (fbgs)		USCS Soil Description			USCS Symbol	Photos Y / N	Samples Collected (fbgs)	
0.0 -1.0	FILL: Dark Brown to Black 80% NPF, 20% Fine Sand w/slag & Gravel			el	FILL	Y	0.0 -1.0	
1.0 - 4.0	REWORKED SANDY CL Medium Brown/Tan, Stiff, M		MPF, 30% Fine Sa	nd	CL	Y	1.0 - 4.0	
							i	
FIELD MEASU							I	
PID (ppm) COMMENTS:	: SURFACE 0.0 - 1.0 fbgs 0.0 _p COMPOSITE SOIL SAMPLE						T. C	
COMMUNICATIO:	COLLECTED SOIL SAMPLE			> MILIALS.	<u>.</u>			
	COMPOSITE SOIL SAMPLE			O METALS.				
GROUNDWA	ATER ENCOUNTERED:	2.5 fbgs						
VISUAL IMPA		none						
	OBSERVATIONS:	none						
	E FILL ENCOUNTERED:	yes						
OTHER OBS		Headspace 0.0)ppm					
SAMPLES CC	DLLECTED:	yes			<u> </u>			

Project:	Phase 1 BPA		TEST PIT I.D.:	TP-10 -	-3	
Project No.:	0071-006-100	Excavation Date:		01/23/06		
Client:	Tecumseh		Excavation Method:	Johndeere	892ELC	
Location:	1951 Hamburg Turnpike		Logged / Checked By	: TAB		
	NORTH		Test Pit Cross Section:			
/// Z			Grade - 0'	FILI		
M. Ĕ			2'			5555555
/// . §				REWORKED	SANDY/C	LAY
FOUNDAT	%		4'	<u>SASSASSASSAS</u>	<u> </u>	<u> </u>
/// "	//		6'			
11/1//			0 =			
	SOUTH		8'—			
TIME	Length: 40.0 ft	(approx.)	_ -		Ahadh : Ir	
Start:	13:05: Width: 4.0 ft	(approx.)	10'		10 (10 to 10	
End:	13:20: Depth: 4.0 ft	(approx.)				
Depth		USCS Soil		USCS	Photos	Samples
(fbgs)		Description		Symbol	Y / N	Collected (fbgs)
						(1080)
0.0 -1.5	FILL: Dark Brown to Black 80% NPF, 20% Fine Sand w/slag, Gravel & Brick Bebris			bris FILL	Y	0.0 -1.5
1.5 - 4.0	REWORKED SANDY CLA Medium Brown/Tan, Stiff, Me		MPF, 30% Fine Sand	CL	Y	1.5 - 4.0
FIELD MEASU		nm Clib Ciibi	FACE 15 40 fb.c. 0.0			Mar Parket Tolking
PID (ppm COMMENTS:	COMPOSITED SOIL SAMPLI			LS FOR TP - 10 - (1-:	3).	
	COLLECTED SOIL SAMPLE					
	COMPOSITED SOIL SAMPLI		· · · · · · · · · · · · · · · · · · ·	LS FOR TP - 10 - (2-	3).	
	ATER ENCOUNTERED:	None observ	ed			
VISUAL IMP	PACTS: Y OBSERVATIONS:	none				
	YE FILL ENCOUNTERED:	yes				
	SERVATIONS:	Headspace 0.	.0ppm			
SAMPLES CO						

Project:	Phase 1 BPA	TEST PIT I.D.	.:	TP-10-	-4			
Project No.:	0071-006-100	Excavation Da	te:	01/23/06 Johndeere 892ELC				
Client:	Tecumseh	Excavation Me	thod:					
Location:	1951 Hamburg Turnpike	Logged / Chec	ked By:	TAB				
P - 54s TIME Start:	SOUTH Length: 49.0 ft 13:30: Width: 4.0 ft			FIL	COCOCOCOCO			
End: Depth (fbgs)	13:20: Depth: 4.0 ft	(approx.) USCS Soil Description		USCS Symbol	Photos Y / N	Samples Collected (fbgs)		
0.0 -1.0	FILL: Dark Brown to Black 80% l	NPF, 20% Fine Sand w/slag, Gravel & E	Brick Bebris	FILL	Y	0.0 -1.0		
1.0 - 3.0	REWORKED SANDY CL Medium Brown/Tan, Stiff, M	AY: Moist - Wet, 70% MPF, 30% Fine Sand		CL	Y	1.0 - 2.5		
FIELD MEASU	I REMENTS:		t			1		
PID (ppm)		ppm SUB - SURFACE 1.5 - 4.0 fbgs 0.	.0ppm					
COMMENTS:	COMPOSITE SOIL SAMPLE	FROM 0.0 - 1.0 FOR SVOC's AND M FROM 1.5 - 4.0 FOR VOC's, SVOC's	IETALS.).				
CDOLINDWA	ATER ENCOUNTERED:	None observed						
VISUAL IMPA		none observed						
	OBSERVATIONS:	none	. 4178		- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
	E FILL ENCOUNTERED:	yes						
		Headspace 0.0ppm. Installed piezor	meter P - 54s					
OTHER OBS	LICVATIONS.	Treate or of print the table of	neter i 3 is.	•				

Project:	Phase 1 BPA	TEST PIT I.D.:	TP-10	-5			
Project No.:	0071-006-100	Excavation Date:	01/23/06				
Client:	Tecumseh	Excavation Method:	Johndeere	892ELC			
Location:	1951 Hamburg Turnpike	Logged / Checked By:	TAB				
	NORTH	Test Pit Cross Section: Grade - 0' 2' 4' 6' 8'	FIL REWORKED S				
TIME Start: End:	Length: 39.0 ft 14:00: Width: 4.0 ft 14:15: Depth: 3.0 ft	(approx.) (approx.) (approx.)					
Depth (fbgs)		USCS Soil Description	USCS Symbol	Photos Y/N	Samples Collected (fbgs)		
0.0 -1.0	FILL: Dark Brown to Black 80% NP	F, 20% Fine Sand	FILL	Y	0.0 -1.0		
1.0 - 3.0	REWORKED SANDY CLAY Medium Brown/Tan, Stiff, Mo Cobbles	7: st - Wet, 70% MPF, 30% Fine Sand w/ Large	CL	Y	1.0 - 2.0		
FIELD MEASU					*******		
PID (ppm)	0 11	m SUB - SURFACE 1.0 - 2.0 fbgs 0.0ppm					
COMMENTS:		FROM 0.0 - 1.0 FOR SVOC's AND METALS	FOR TP - 10 - (4	& 5) ————————————————————————————————————			
	COMPOSITED SOIL SAMPLE F	ROM 1.5 - 4.0 FOR VOC's FROM 1.0 - 2.5 FOR SVOC's & METALS FO	R TD _ 10 // 8.5	<u> </u>	manufacture and Administrative view and a second		
CROLINIDW/	TER ENCOUNTERED:	2.0 fbgs	K IF - 10 - (4 & 5)).			
VISUAL IMPA		none					
		none					
()[]FAUTORY	(OBSERVATIONS:						
	OBSERVATIONS: E FILL ENCOUNTERED:			··			
	E FILL ENCOUNTERED:	yes Headspace 0.0ppm.					

(fbgs) Description Symbol Y/N Collecte (fbgs) 0.0 - 1.0 FILL: Dark Brown to Black 80% NPF, 20% Fine Sand w/Slight Organic Odor REWORKED SANDY CLAY: Medium Growto Black Stiff Moiet. West, 70% MPE 30% Fine Sand w/	Project:	Phase 1 BPA		TEST PIT I.D.:	TP-10	-6	
Location: 1951 Hamburg Tumpike Logged / Checked By: TAB TANK FLANGE ROPE UST TANK FLANGE ROPE UST TANK FLANGE ROPE UST TEST PIX Cross Section: Grade - 0' FILL REWORKED SANDY CLAY 4'- 6' 8'- REWORKED SANDY CLAY 4'- 6' 8'- TIME Length: 40.0 ft (approx.) Start: 15-20 Width: 30.0 ft (approx.) End: 15-355 Depth: 10.0 ft (approx.) Depth (fbgs) Description USCS Soil Description USCS Soil Description FILL: 7' 0.0-1.0 FILL: Dark Brown to Black 80% NPF, 20% Fine Sand w/Slight Organic Odor FILL: Dark Brown to Color, No Visable Evidence but Stong Ofactory and PID COMMENTS: COLLECTED SOIL SAMPLE FROM 0.0-1.0 FOR STAR'S VOC'S, TCLP LEAD, IGNITABILITY & CORROSITIVY. TANK WAS LOCATED -3-5.0 ft TO THE SWOP THE NW CORNER OF FIRE STATION AND -2 of WEST FROM ONGEINAL TEST PIT LOCATION. GROUNDWATER ENCOUNTERED: 55. VISUAL IMPACTS: Chy was blackish in color. UST encountered; est. 5,000 gal. capacity Ambient air PID his from 55ppm-80.1ppm.	Project No.:	0071-006-100		Excavation Date:	01/24/06		
TANK FLANGE ROPE UST Test Pit Cross Section: Grade - 0' FILL REWORKED SANDY CLAY 4' 6' 8" 8" 8" 8" 8" 8" 8" 8" 8" 8" 8" 8" 8"	Client:	Tecumseh		Excavation Method:	Johndeere	892ELC	
Test Pit Cross Section: Grade - O' FILL REWORKED SANDY CLAY 41- 6- 6- 81- 15-203 Width: 30.0 ft (approx.) End: 15-205 Width: 30.0 ft (approx.) End: 15-355 Depth: 10.0 ft (approx.) Depth (fbgs) USCS Soil Description USCS Symbol FILL Y 0.0-1.0 FILL Y 0.0-1.0 REWORKED SANDY CLAY 41- 6- 6- 81- 10- 10- 10- 10- 10- 10- 10- 10- 10- 1	Location:	1951 Hamburg Turnpike		Logged / Checked By:	TAB		
Start: 15:20s Width: 30.0 ft (approx.) End: 15:35s Depth: 10.0 ft (approx.) Depth (fbgs) USCS Soil Description USCS Symbol Symbol Y/N Collecte (fbgs) Description FILL Y O.0-1.0 FILL: Dark Brown to Black 80% NPF, 20% Fine Sand w/Slight Organic Odor REWORKED SANDY CLAY: Medium Grey to Black, Stiff, Moist - Wet, 70% MPF, 30% Fine Sand, w/Strong Organic Odor, No Visable Evidence but Stong Ofactory and PID evidence. FIELD MEASUREMENTS: PID (ppm): SURFACE 0.0-1.0 fbgs 0.5ppm SUB - SURFACE 1.0-5.5 fbgs 410ppm COMMENTS: COLLECTED SOIL SAMPLE FROM 0.0-1.0 FOR STAR'S VOC'S, TCLP VOC'S, TCLP LEAD, IGNITABILTY & CORROSTITVY. TANK WAS LOCATED ~15.0 ft TO THE SW OF THE NW CORNER OF FIRE STATION AND ~2.0 ft WEST FROM ORIGINAL TEST PIT LOCATION. GROUNDWATER ENCOUNTERED: 5.5. Clay was blackish in color. UST encountered; est. 5,000 gal capacity OLFACTORY OBSERVATIONS: Anabient air PID hits from 35ppm-80.1ppm.	TANK FI	APPERTANT PIPING FIRE STATION	NORTH	Test Pit Cross Section: Grade - 0' 2' REV	FIL		Y
Depth (fbgs) USCS Photos Symbol Y/N Collecte (fbgs) 0.0 - 1.0 FILL: Dark Brown to Black 80% NPF, 20% Fine Sand w/Slight Organic Odor REWORKED SANDY CLAY: Medium Grey to Black, Stiff, Moist - Wet, 70% MPF, 30% Fine Sand. w/ Strong Organic Odor, No Visable Evidence but Stong Ofactory and PID evidence. FIELD ME ASUREMENTS: PID (ppm): SURFACE 0.0 - 1.0 fbgs 0.5ppm SUB - SURFACE 1.0 - 5.5 fbgs 410ppm COMMENTS: COLLECTED SOIL SAMPLE FROM 0.0 - 1.0 FOR STAR'S VOCS, TCLP VOCS, TCLP LEAD, IGNITABILTY & CORROSITIVY. TANK WAS LOCATED ~15.0 ft TO THE SW OF THE NW CORNER OF FIRE STATION AND ~2.0 ft WEST FROM ORIGINAL TEST PIT LOCATION. GROUNDWATER ENCOUNTERED: 5.5. VISUAL IMPACTS: Clay was blackish in color. UST encountered; est. 5,000 gal. capacity OLFACTORY OBSERVATIONS: Ambient air PID hits from 35ppm -80.1ppm.	Start:	15:20: Width: 30.0 ft (ap		10'		· · · · · · · · · · · · · · · · · · ·	
Dark Brown to Black 80% NPF, 20% Fine Sand w/Slight Organic Odor REWORKED SANDY CLAY: Medium Grey to Black, Stiff, Moist - Wet, 70% MPF, 30% Fine Sand. w/ Strong Organic Odor, No Visable Evidence but Stong Ofactory and PID evidence. PIELD MEASUREMENTS: PID (ppm): SURFACE 0.0 - 1.0 fbgs 0.5ppm SUB - SURFACE 1.0 - 5.5 fbgs 410ppm COMMENTS: COLLECTED SOIL SAMPLE FROM 0.0 - 1.0 FOR STAR's VOC's, TCLP VOC's, TCLP LEAD, IGNITABILTY & CORROSITIVY. TANK WAS LOCATED ~15.0 ft TO THE SW OF THE NW CORNER OF FIRE STATION AND ~2.0ft WEST FROM ORIGINAL TEST PIT LOCATION. GROUNDWATER ENCOUNTERED: 5.5. VISUAL IMPACTS: Clay was blackish in color. UST encountered; est. 5,000 gal. capacity OLFACTORY OBSERVATIONS: Ambient air PID hits from 35ppm -80.1ppm.	Depth	USG	S Soil		1		Samples Collected (fbgs)
Medium Grey to Black, Stiff, Moist - Wet, 70% MPF, 30% Fine Sand. w/ Strong Organic Odor, No Visable Evidence but Stong Ofactory and PID evidence. FIELD MEASUREMENTS: PID (ppm): SURFACE 0.0 - 1.0 fbgs 0.5ppm SUB - SURFACE 1.0 - 5.5 fbgs 410ppm COMMENTS: COLLECTED SOIL SAMPLE FROM 0.0 - 1.0 FOR STAR'S VOC'S, TCLP VOC'S, TCLP LEAD, IGNITABILTY & CORROSITIVY. TANK WAS LOCATED ~15.0 ft TO THE SW OF THE NW CORNER OF FIRE STATION AND ~2.0ft WEST FROM ORIGINAL TEST PIT LOCATION. GROUNDWATER ENCOUNTERED: 5.5. VISUAL IMPACTS: Clay was blackish in color. UST encountered; est. 5,000 gal. capacity OLFACTORY OBSERVATIONS: Ambient air PID hits from 35ppm -80.1ppm.	0.0 -1.0		6 Fine Sar	nd w/Slight Organic Odor	FILL	Y	0.0 - 1.0
PID (ppm): SURFACE 0.0 - 1.0 fbgs 0.5ppm SUB - SURFACE 1.0 - 5.5 fbgs 410ppm COMMENTS: COLLECTED SOIL SAMPLE FROM 0.0 - 1.0 FOR STAR's VOC's, TCLP VOC's, TCLP LEAD, IGNITABILTY & CORROSITIVY. TANK WAS LOCATED ~15.0 ft TO THE SW OF THE NW CORNER OF FIRE STATION AND ~2.0ft WEST FROM ORIGINAL TEST PIT LOCATION. GROUNDWATER ENCOUNTERED: 5.5. VISUAL IMPACTS: Clay was blackish in color. UST encountered; est. 5,000 gal. capacity OLFACTORY OBSERVATIONS: Ambient air PID hits from 35ppm -80.1ppm.	1.0 - 5.5	Medium Grey to Black, Stiff, Moist - Strong Organic Odor, No Visable Ev.			Œ	Y	1.0 - 5.5
PID (ppm): SURFACE 0.0 - 1.0 fbgs 0.5ppm SUB - SURFACE 1.0 - 5.5 fbgs 410ppm COMMENTS: COLLECTED SOIL SAMPLE FROM 0.0 - 1.0 FOR STAR'S VOC'S, TCLP VOC'S, TCLP LEAD, IGNITABILTY & CORROSITIVY. TANK WAS LOCATED ~15.0 ft TO THE SW OF THE NW CORNER OF FIRE STATION AND ~2.0ft WEST FROM ORIGINAL TEST PIT LOCATION. GROUNDWATER ENCOUNTERED: 5.5. VISUAL IMPACTS: Clay was blackish in color. UST encountered; est. 5,000 gal. capacity OLFACTORY OBSERVATIONS: Ambient air PID hits from 35ppm -80.1ppm.							
COMMENTS: COLLECTED SOIL SAMPLE FROM 0.0 - 1.0 FOR STAR'S VOC'S, TCLP VOC'S, TCLP LEAD, IGNITABILTY & CORROSITIVY. TANK WAS LOCATED ~15.0 ft TO THE SW OF THE NW CORNER OF FIRE STATION AND ~2.0ft WEST FROM ORIGINAL TEST PIT LOCATION. GROUNDWATER ENCOUNTERED: 5.5. VISUAL IMPACTS: Clay was blackish in color. UST encountered; est. 5,000 gal. capacity OLFACTORY OBSERVATIONS: Ambient air PID hits from 35ppm -80.1ppm.							
GROUNDWATER ENCOUNTERED: 5.5. VISUAL IMPACTS: Clay was blackish in color. UST encountered; est. 5,000 gal. capacity OLFACTORY OBSERVATIONS: Ambient air PID hits from 35ppm -80.1ppm.		COLLECTED SOIL SAMPLE FROM & CORROSITIVY. TANK WAS LOC	0.0 - 1.0 l ATED ~	FOR STAR's VOC's, TCLP VOC 15.0 ft TO THE SW OF THE N			Y
VISUAL IMPACTS: Clay was blackish in color. UST encountered; est. 5,000 gal. capacity OLFACTORY OBSERVATIONS: Ambient air PID hits from 35ppm -80.1ppm.	CDOI B TOWA		ORIGIN	IAL TEST PIT LOCATION.			
OLFACTORY OBSERVATIONS: Ambient air PID hits from 35ppm -80.1ppm.			was black	rich in color IST encountered:	set 5,000 gal capa	citar	
					st. 5,000 gai. capa	cny	
				various ppin varippin			
OTHER OBSERVATIONS: Headspace: Surface 0.0 - 1.0ft 25.3ppm, Sub-Surface 1.0 - 5.5ft 3002ppm.			Ispace: Su	urface 0.0 - 1.0ft 25.3ppm, Sub-Su	urface 1.0 - 5.5ft 3	002ppm.	
SAMPLES COLLECTED: yes	1 T 40 1 OF 1 OF 1 OF 1	T T T CHEEN		11 /			

Project:	Phase 1 BPA		TEST PIT I.D.:	TP-10-	-8	
Project No.:	0071-006-100		Excavation Date:	01/23/06		
Client:	Tecumseh		Excavation Method:	Johndeere	892ELC	
Location:	1951 Hamburg Turnpike		Logged / Checked By:	TAB		
CONCRETE	NORTH		Test Pit Cross Section: Grade - 0' 2' R	FIL EWORKEDS		
			6'—			
TIME Start: End:	SOUTH Length: 53.0 ft 14:55:0 Width: 4.0 ft 15:05:0 Depth: 4.0 ft	(approx.) (approx.)	10'			
Depth (fbgs)		USCS Soil Description		USCS Symbol	Photos Y / N	Samples Collected (fbgs)
0.0 -1.0	FILL: Dark Brown to Black 80% N Salg	PF, 20% Fine Sa	and w/Large Pieces of gravel &	FILL	Y	0.0 -1.0 1.0
1.0 - 4.0	REWORKED SANDY CL. Medium Brown/Tan, Stiff, M Sandier to the Northeast.		MPF, 30% Fine Sand. Clay gets	CL	Y	-3.0
FIELD MEASU						
PID (ppm COMMENTS:): SURFACE 0.0 - 1.0 fbgs 0.0 _T COLLECTED SOIL SAMPLE					
CPOLINIDA	ATER ENCOUNTERED:	3.0 fbgs				
VISUAL IMI		none				
	Y OBSERVATIONS:	none	.,			
	VE FILL ENCOUNTERED:	yes	,			
4.77	SERVATIONS:	Headspace 0	.0ppm.			
SAMPLES CO	OLLECTED:	yes				

Project:	Phase 1 BPA		TEST PIT I.D.:	TP-10	-9		
Project No.:	0071 006-100		Excavation Date:	01/23/06	/23/06		
Client:	Tecumseh		Excavation Method:	Johndeere	892ELC		
Location:	1951 Hamburg Turnpike		Logged / Checked B	y: TAB			
	NORTH						
1		<i>77</i> 7	Test Pit Cross Section:				
		///	Grade - 0'	FIL	L		
AD		% I					
DIRT ROAD	 	% I	2'—				
DIR	FOUNDATION	<i>7</i> /2	4'—	REWORKED S	ANDILL		
		% I					
	· //////		6'—				
	SOUTH		8'———				
TIME	Length: 53.0 ft	(approx.)					
Start:	15:20: Width: 4.0 ft	(approx.)	10'				
End:	15:35: Depth: 5.5 ft	(approx.)					
Depth		USCS Soil		USCS	Photos	Samples Collected	
(fbgs)		Description		Symbol	Y/N	(fbgs)	
				-			
0.0 -1.0	FILL: Dark Brown to Black 80% NPI	F. 20% Fine Sand	l w/Large Pieces of gravel	& FILL	Y	0.0 -1.0	
0.0 1.0	Salg	,					
40.55	REWORKED SANDY CLAY Medium Brown/Tan, Stiff, Moi		DE 2004 Eine Sand Clay U	Ias CL	Y	1.0 - 5.5	
1.0 - 5.5	More Brick Debris to the North		rr, 50% rine Sand. Clay 11	las CE	1	1.0 - 3.3	
l							
FIELD MEASU							
PID (ppm):		A STATE OF THE STA		1			
COMMENTS:	COLLECTED SOIL SAMPLE F	ROM 1.0 - 5.5 F	OR VOC's				
GROUNDWA	ATER ENCOUNTERED:	None observed	1 .				
VISUAL IMPA		none					
	OBSERVATIONS:	none			· · · · · · · · · · · · · · · · · · ·		
	E FILL ENCOUNTERED:	yes Headspace 0.0 ₁	nnm				
OTHER OBSI		yes	ррш				
omini bibo oo							

Project Name: Phase 1 BPA

Project Number: 0071-006-102

Sample Matrix: groundwater

Client: Tecumseh

Weather: Partly Carry Volume Calculation

WELL DATA:

DATE: 3///66

TIME: 1/05

Casing Diameter (inches): 4.0"

Casing Material: sch 40 PVC

Screened interval (fbTOR): 15.0 - 5.0 fbgs

Screen Material: sch 40 PVC

Statio Water Level (fbTOR): 1.0 - 5.0 fbgs

Rottom Depth (fbTOR): 1.0 - 5.0 fbg

TIME: 1105	Well	Volume
Casing Material: sch 40 PVC	Diameter	gal/ft
Screen Material sch 40 PVC	1"	0.041
Bottom Depth (fbTOR):	2"	0.163
Ground Surface Elevation (fmsl):	3"	0.367
Stick-up (feet):	4"	0.653
	5"	1.020
in table per well diameter]:	6"	1.469
	Casing Material: sch 40 PVC Screen Material: sch 40 PVC Bottom Depth (fbTOR): 16.67 Ground Surface Elevation (fmsl):	Casing Material: sch 40 PVC Screen Material sch 40 PVC Bottom Depth (fbTOR): \$\int_{67}\$ Ground Surface Elevation (fmsl): 3" Stick-up (feet): 4" 5"

PURGING DATA: Pump Type: peristaltic											
Is equip	ment dedica	ated to loca	tion? yes	ng (ng	Į:	s tubing dec	licated to lo	cation?	yes no		
Depth of	Sample (i.e	e. Level of Intal	(e) (fbTOR):	15.0	7 A	pproximate	Purge Rat	e (gal/min):	~.25		
Time	Water Level (fbTOR)	Accumulated Volume (gallons)	pH (units)	Temperature (degrees C)	Specific Conductance (mS/cm)	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Appearance & Odor		
1(10	Initial	0.0	7.42	8.1	2436	63.2		88	cleir 10 od. i		
1112	3.05	4.25	7.42	8.9	2453	106	1	87	il		
1115	252	1.50	7.44	9.0	2455	65.5	هنپ	88	El .		
116	400	,50	7.44	9-1	2452	33.8		88	К		
1118	4.47	.75	7,45	9.0	2452	25.9	1	85	11		
1120	4.72	1,25	7.45	ર./	2443	21.0	1	85	"		
1121	5.32	1.75	_	9.1	2447	19.2	ð	85	il.		
1134	7.28	7-28	7.73	7.6	2410	19.2		84			
<u> </u>		3:0						,			

316/16 SAMPLING DATA: DATE: (TATE) START TIME: END TIME: 1140 Method: low-flow with dedicated tubing Was well sampled to dryness? yes no) 5.30 7.28 Was well sampled below top of sand pack? yes) Initial Water Level (fbTOR): no Final Water Level (fbTOR): Field Personnel:

PHYSICAL & CHEMICAL DATA: WATER QUALITY MEASUREMENT								
Appearance:	pН	TEMP.	sc	TURB.	DO	ORP		
Color: Clew	(units)	(°C)	(uS)	(NTU)	(ppm)	(mV)		
Odor: 00 0 de	7.47	9-1	2447	19-2	<i></i>	85		
Sediment Present? N₅ ,	1-73	7-6	2410	19-2		84		

D		D	KS	
$\mathbf{\Gamma}$	"	۱Г	NO	•

PREPARED BY:

Project Na	me: Ph	nase 1 BPA			WELL	LOCATION	V: MWG	24			
Project Nu	ımber: 00	71-006-102	2			e Matrix:	groundwa				
Client:	Te	cumseh			Weath	er: Šί	unny n	pper 3	3015 L	wind	0-5
			· · · · · · · · · · · · · · · · · · ·						Volume	Calc	ulation
WELL.	DATA:	D/	ATE 7 3/7/	66 TIME:	1/4	3			Well		olume
Casing I	Diameter (i	nches): 2	:/	Cas	ing Mate	rial: sch 40	PVC		Diamete	er (gal/ft
		fbTOR): /&					PVC .010	" slot	1"		0.041
		(fbTOR):				h (fbTOR):		·	2"		0.163
		ell Riser (fn				ace Elevat			3"		0.367
	.	creen (fmsl)		Stic	k-up (fee	t): 2.4	'7		4"		0.653
	y volume in		1.87	tion in table	nos woll s	liomotovi.			5" 6"		1.020 1.469
[(bottom c	Jepin - Static	water level)	x vol calcula	lion in labie	per weir	nameterj.					.409
PURGI	NG DA	TA:	Pump Type:	peristaltic							
Is equip	ment dedic	ated to loca	tion? yes	(no)		Is tubing	dedicated	to locati	on? y	es >	no
Depth of	Sample (i.	e. Level of Inta	ke) (fbTOR) :	117,8/	,	Approxir	mate Purge	Rate (ga	al/min): ^	Se	<u></u>
Time	Water Level (fbTOR)	Accumulated Volume (gallons)	pH (units)	Temperature (degrees C)	Specifi Conducta (mS/cm	nce lurbid			ORP (mV)	Appear Oc	
144	Initial	0.0	8.49	4.8	509,	1 2/5	- -	- 1			Y 6 20
:150	7.28	.5	9.04	8.8	575.	4 375			93		-
1151	7.30	7.0.75	9.16	8-5	504.	2 298		-	79		
1153	7.30	1.0	9.25	8.2	500.				63	<u>.</u> ♣	-
1155	7.30	2.6	9.95	ぴ. l	442.	4 421	<u> </u>		7	nusi	<u>-</u> -: 1:05
(157	7.37	2.5	9.55	8.0	494.4				33	i	
1159	2.30	30	9.66	7.9	500.	$o \mid_{t \mathcal{F}_{c}}$	4 -		25		
120(7 30	3-5	267	7.7	587.2	2 15.7			79		-
1225	7.30	5.0	4.46	5.6	482.	2 21.4	<u> </u>	47	9		
SAMPL	ING DA	TA: DA	TE: 3/7	l ñ.j.	START	TIME: /	20/	END TI	ME:		
		h dedicated t		7.00	 		to dryness?	Ь		es (Con
Initial Wat	er Level (fb]	TOR): 🎾	39				below top o				no
Final Wate	er Level (fbT				Field F	Personnel:	TAB	INT			
PHYSIC	CAI & C	CHEMIC	AL DAT	Δ.		WA	TER QUAI	ITY ME	ASURFA	/FNTS	· -
Appeara	• • • • • • • • • • • • • • • • • • • •		TL BITT		рН	TEMP.	sc	TURB		- T	ORP
Color:	ile	w			(units)		(uS)	(NTU)	1		(mV)
Odor:		using a	5		9.69	2.2	501,2	15.7		-	79
Sedimen	t Present?		12-		9.46	5.6	412.7	21.4		-7	
REMARK	(S:			MS	IMSP	TAI	CEN				
				PREPAR	RED BY	:-thon	APr				

Project Na	me: Pł	nase 1 BPA			WELL I	OCATION.	, MV	V∯ - 1:	3 A		
Project Nu		71-006-102	2		Sample	Matrix:	groundwa	ater			-
Client:		ecumseh			Weathe	-	F	(/	DU 40	05 0.5	rphs
							/	1		Calculation	- ·
WELL I	DATA:	DA	TE:3/1/0	(TIME:	124.	5		Γ	Well	Volume	7
	Diameter (i	nches): 2	2.0"	Cas	ing Mate	rial: sch 40	PVC		Diamete	r gal/ft	
	d interval (14.0 - 4.0 fb				PVC .010	" slot	1"	0.041	1
Static W	ater Level	(fbTOR):	4.41	Bott	om Depti	n (fbTOR):	16.27	5	2"	0.163	
Elevation	Top of W	ell Riser (fm	1	Gro	und Surfa	ace Elevat	ion (fmsl):		3"	0.367]
Elevatio	n Top of S	creen (fmsl)		Stic	k-up (fee	l): 🤰 🛒	<i>\$</i> 1		4"	0.653	
	volume in	-	1.92			-		L	5"	1.020	1
[(bottom o	lepth - statio	water level)	x vol calcula	tion in table	per well d	iameter]:			6"	1.469	J
PURGI	NG DA	TA:	oump Type:	peristaltic]
Is equipr	nent dedic	ated to loca	tion? yes	s (PTO)		Is tubing	dedicated	l to locatio	n? <i>y</i> ∢	s no	
Depth of	Sample (i.	e. Level of Inta	ke) (fbTOR):	~ 15.2	_3	Approxi	mate Purge	Rate (gal	/min):	.50	
Time	Water Level (fbTOR)	Accumulated Volume (gallons)	pH (units)	Temperature (degrees C)	Specific Conductar (mS/cm	ice furbid	, ,	-	nV)	Appearance & Odor	
1254	Initial	0.0	7.21	8.4	848.	1 16.6		~ 3	37	closer No	ados
1255	7.27	,5	7.18	8.3	836.	7. 11. 7	۷ -	رَ م	35	1]
1256	7.65	4.75	7.17	8.4	833	0 258		-5	25-		
1258	8.07	-75	7.15	8.0	822.	11-0			30]
1259	8.36	600	7.14	7.8	826	6 27:	3 -	-3	0]
130/	8.77	1.25	7.07	8.0	843.	21.1			8]
1313	10.40	2.00	7.28	7.1	1037	- 13.4	/ -	-1	5	4]
											<u> </u>
SAMPL	ING DA	1 <i>TA</i> : DA	TE: 5/6/	So 6	START	TIME: /:	30/	END TIM	1E: /2/	3	1
		h dedicated t		76	 		to dryness		ye		†
	er Level (fb		6.77		ļ		below top				1
						·	•	, , , , , , , , , , , , , , , , , , , 	Y' Ye	9 110 .	1
Final vvate	er Level (fbT	OR): /2	0,40	4	rieid F	ersonnel:	TAB/	NTM]
PHYSIC	CAL & C	CHEMIC	AL DAT	A:		WA	TER QUA	LITY MEA	SUREM	ENTS]
Appearar	nce:				pН	ТЕМР.	sc	TURB.	DO	ORP	
Color:	سمعان				(units)	(°C)	(uS)	(NTU)	(ppm)	(mV)	
Odor:	1No	Oles	BI		7.07	r.0	843.1	21.1		-2x	
Sedimen	t Present?	None	シ		7.28		1037	13.4	-	-15	
REMARK	 (S:										
											-

Phase 1 BPA Groundwater Sample Collection Log - Low Flow.xls: MWN-13A

Project Na	me: Ph	ase 1 BPA			WELL LO	CATION	1	MW	- 14	Α		
Project Nu		71-006-102			Sample I	Matrix:	grou	ndwater				
Client:		cumseh			Weather		Hy	cloud	1/6	ow 40	15,05	mh su
									/ `\	olume C	Calculation	
WELL .	DATA:	DA	TE: 3/6/0	TIME:	1325	3				Well	Volume	
	Diameter (ii		2.0"	Casi	ng Materi		PVC		╗	iameter	gal/ft	1
	d interval (4.0 - 4.0 fb		en Materi				ot	1"	0.041	•
	ater Level		. 33		om Depth					2"	0.163	
		ell Riser (fm			ınd Surfac					3"	0.367	
		creen (fmsl)		Stick	-up (feet)	: 2.55				4"	0.653	
	volume in		1.62	4						5"	1.020	
		water level)		tion in table _l	per well dia	meter]:				6"	1.469	
PHRGI	NG DAT	<i>τ</i> Δ· Γ	oump Type:	peristaltic				-			· · · · · · · · · · · · · · · · · · ·	
		ated to loca				Is tubing	dedi	cated to I	ocation	? ye :	s no	
Depth of	Sample (i.e	e. Level of Intal	ke) (fbTOR) :	15.29		Approxir	nate f	Purge Ra	i te (gai/n	nin): ~	150	
			Γ΄	<u> </u>	Γ		T		1			
Time	Water Level (fbTOR)	Accumulated Volume (gallons)	pH (units)	Temperature (degrees C)	Specific Conductanc (mS/cm)	e Turbidi (NTU	-	DO (mg/L)	OR (m\		ppearance & Odor	
1324	Initial	0.0	7.25	8.1	894.4	71000	,	~	-2) - Bn	a odu	
1326	7.46	.25	7.19	8.5	9210		r ⁱ	^_	1/		6 0ds -	
132Y	7.48	.50	7.17	5.4	917.4	871		_	17		*	
1330	7.48	4.00	7.19	7.8	8762	506		, p	14		"	
1332	7.50	65	7.18	7.6	8750		-		12		(1	
1833	7.50	20	7.18	7.4	845.1	1		<i>,</i> ~	53		4.5	
1334	7.50	25	7.26	7.0	812.1				ن -		11	
1335	7.50	3.0	7.27	6.8	861.5			~	-18		"	
1336	7.50	3.5	7.28	6.8	7940	65,	0		-28		10	
CAMDI	ING D	ATA: DA	TE·		START T	IME.		ĪEN	ND TIMI	= -		
		h dedicated t				ell sampled	to dr		-	yes	no	
	ter Level (fb]					il sampled			nd pack			
	er Level (fbT					ersonnel:		· .				
				· · · · · · · · · · · · · · · · · · ·								
PHYSIC	CAL & C	CHEMIC	AL DAT	A:		WA	TER	QUALIT	Y MEAS	UREME	NTS	
Appeara	nce:				pН	ТЕМР.	s	sc ·	TURB.	DO	ORP	
Color:					(units)	(°C)	(u	JS)	(NTU)	(ppm)	(mV)	
Odor:												
Sedimer	nt Present?											
REMARI	KS:	Contin	nd or	1	ext f	age						
				PREPAR	RED BY:							

1.469

6"

Project Name:	Phase	1 BPA	WELL LOC	CATION:	MW -	14A CO	myt.
Project Number:	0071-0	06-102	Sample Ma	atrix: gr	oundwater		
Client:	Tecum	seh	Weather:				
						Volume C	alculation
WELL DATA	A:	DATE:	TIME:		7	Well	Volume
Casing Diamete	er (inche	s):	Casing Material:	Diameter	gal/ft		
Screened interv	val (fbTO	R):	Screen Material	Screen Material: sch 40 PVC .010" slot			
Static Water Le	vel (fbTC	PR):	Bottom Depth (ft		2"	0.163	
Elevation Top of Well Riser (fm		Ground Surface	(fmsl):	3"	0.367		
Elevation Top of Screen (fmsl)			Stick-up (feet):	4"	0.653		
Standing volum	e in gallo	ons:				5"	1.020

[(bottom depth - static water level) x vol calculation in table per well diameter]:

PURGI	NG DAT	TA:	oump Type	peristaltic						
Is equip	ment dedica	ated to loca	tion? ye	s no		Is tubing dedicated to location? yes no				
Depth o	f Sample (i.e	e. Level of Inta	ke) (fbTOR):		/	Approximate	Purge Ra	te (gal/min):		
Timė	Water Level (fbTOR)	Accumulated Volume (gallons)	pH (units)	Temperature (degrees C)	Specific Conductance (mS/cm)	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Appearance & Odor	
	driffa	0.0								
1339	7.50	4.0	7.28	7.0	792.3	48.8	_	-29		
B40'	7.50	4.5	7.25	7.0	788.0	33.4	_	-36		
1342	2.50	50	7.30	6.9	787.0	55.5	17.000	-4/		
1344	7.50	5.5	7.31	6.9	787.1	26.9	_	-43		
1345	7.50	6-0	7-30	6.8	7877	23.4		-43		
1346	250	6.5	7.30	6.8	781.7	20.4	4	-49		
1348	7.50	7.0	7.31	6-9	783.2	17.0	s -	-51		
1709	7.50	8-0	7.80	6.2	1828	123	_	-67		

	SAMPLING DATA:	ATE: 3/6/06	START TIME: 134 Y EN	ID TIME: 1409
ſ	Method: low-flow with dedicate	d tubing	Was well sampled to dryness?	6
	Initial Water Level (fbTOR):	7.50	Was well sampled below top of sar	nd pack? (yes no
"	Final Water Level (fbTOR):	7.50	Field Personnel:	

PHYSICAL & CHEMICAL DATA:		WATER QUALITY MEASUREMENTS							
Appearance:	pН	TEMP.	sc	TURB.	DO	ORP			
Color: Cleus	(units)	(°C)	(uS)	(NTU)	(ppm)	(mV)			
Odor: None	7.31	12.9	7872	19.0		-51			
Sediment Present? Vo. V	1-50	し入	7828	12:3	-	-67			

REMARKS:	Blind	Bul	ta	la

PREPARED BY: Ment?

Project Na	me: Ph	ase 1 BPA			WELL L	OCATION	MW	% - 1	5A		
Project Nu		71-006-102			Sample	Matrix:	groundwat	ter			
Client:		cumseh			Weathe		<u> </u>		· 5	VE 5-1	10200
							7			Calculation	
WELL I	DATA	DA	TE: 3/7/0	/ TIME:	925				Well	Volum	$\overline{}$
	Diameter (ir		2.0"			ial: sch 40	PVC		Diamete		
	d interval (f		4.0 - 4.0 fb				PVC .010"	slot	1"	0.041	_
	ater Level (<u>-</u>	277				16-90	Olot	2"	0.163	
		ell Riser (fm					ion (fmsl):		3"	0.367	
Elevatio			12.53			4"	0.653				
	volume in		- 1	115		777			5"	1.020	
			x vol calculat	د عار ا tion in table	per well di	ameter]:			6"	1.469	
[(bottom depth - static water level) x vol calculation in table per well diameter]: 6" 1.469											
PURGING DATA: Pump Type: peristaltic											
Is equipr	nent dedica	ated to loca	tion? yes	(no)		Is tubing	dedicated	to locati	on? y	es no	
Depth of	Sample (i.e	. Level of Intal	ke) (fbTOR):	15.90		Approxi	nate Purge	Rate (ga	al/min):	50	\Box
'	<u>`</u>			10010							一
Time	Water Level	Accumulated Volume	pН	Temperature	Specific Conductan	e Turbid	· 1		ORP	Appearance 8	k
70	(fbTOR)	(gallons)	(units)	(degrees C)	(mS/cm)	(NTU) (mg/L)	(mV)	Odor	
130	Initial	0.0	761	6.1	133/	665			16/	no res	/
732	7.31	6.25	7.65	72	1334	4		-	113	<i>\$1</i>	
935	7.60	-25	7.65	7.2	13 30	43.4	2 -		119	11	
437	7 56	.50	7.66	74	1337	57.	λ		<i>l</i> 23	H	\Box
739	8.02	175	7.67	2.7	1339	42.				No rest	一
940	8.25	1.0	7.64	2.2	1332			_	116	11	
	5.40	1.5	7.60	71	1332	7	r -		08	Û	
942	8.61	2.0	7.56	2.1	1335	- 36.5	7 -		101	6.1	
444	5.53	2.5	751	7 1	/33/	Ý2.	j		107	Y	
958	4.84	3-5	7.41	()	1251	40.3	<u> </u>		87		
•	ING DA		TE: 3/7/	0.2		TIME:44		END TI	•	955	
				<u> </u>	 			ч.			-
		n dedicated t	ubing			<u>`</u>	to dryness?		,	es no	_
Initial Wat	er Level (fbT	. 1).	<u>83</u>		Was w	ell sampled	below top of	f sand pa	ck? (v	es) no	
Final Wate	er Level (fbT	OR): §	: 53		Field P	ersonnel:	TAB/1	ITM			
DUVCI	-A1 9 C	LEMIC	AL DAT	· A .		\^/^	TER QUAL	ITV ME	ACLIDE	AENTS	\neg
		HEIVIIC	AL DAT	А							\dashv
Appeara					pH	TEMP.	SC	TURB		. 1	
Color:	rdy_		(units)	(°C)	(uS)	(NTU)	(ppm				
Odor:		2.51	12	13 3/	82,1	/ ^	-107				
Sedimen	t Present?	Yes	•		7.91	6-2	125%	40.3	, _	-37	
REMARK	(C)		44	1 - le	Tak				•		
ILMMIN	\J.		Me.	Lary	1 cyc	<u> </u>					
											—
				PREPAR	RED BY	: 1	10 mis	F Br	14	1	
			_			· · · · · · · · · · · · · · · · · · ·					

Project Na	ame [.] Ph	ase 1 BPA			WELL LC	CATION	MWE	ž _ 1	6 A		
Project Nu		71-006-102			Sample N		roundwate				
Client:		cumseh	-		Weather:	Sunn			2111	T 11) .50	
Olione.		Cambon		· · · · · · · · · · · · · · · · · · ·	vvcaulci.	J. (P) N	y bepore	MIL	. 36 > Volum	テール・ショ e Calculation	
WELL	DATA	[D/	ATE: 2/1/	TIME:	840		\neg	i	Well	Volume	
	Diameter (ir		ATE: <i>3 } 0</i> 2.0"		ng Materia	ıl sch 40 F	PVC		Diamet		
	ed interval (14.0 - 4.0 fb				VC .010" s	lot	1"	0.041	
	ater Level				om Depth (2"	0.163	
	n Top of W				ınd Surfac				3"	0.367	
Elevatio	n Top of So	creen (fmsl))		-up (feet):				4"	0.653	
Standing	yolume in	gallons:	1,50	_					5"	1.020	
[(bottom o	depth - static	water level)	x vol calcula	tion in table	oer well diar	neter]:			6"	1.469	
<u>PURGI</u>	NG DAT	ΓA: I	oump Type:	peristaltic							
ls equipr	ment dedica	ated to loca	ition? yes	ं राज		ls tubing d	ledicated to	location	on? ()	es no	
Depth of	Sample (i.e	e. Level of Inta	ke) (fbTOR):	1578		Approxima	ate Purge R	ate (ga	ıl/min) :	.50	
Time	Water Level (fbTOR)	Accumulated Volume (gallons)	pH (units)	Temperature (degrees C)	Specific Conductance (mS/cm)	Turbidity (NTU)	DO (mg/L)		ORP (mV)	Appearance & Odor	
546	Initial	0.0	6.64	33	7871	1000		9	4 :	Es - sectionly	
874	798	225	656	7.1	792.9	276		4	4	Sto NOT	
\$ 57	7.98	-50	6. 95	7.3	790 8	144	-	2			
353	803	. 75	700	6.9	789.7	59.2	-	3	3 Cigar		
855	8.05	1,25	7.02	7.1	7581	60.1	-	it			
957	¥.57	2.0	7.0k	7.0	772	40.7	-	3	7	4	
859	8.00	2.5	7.09	2.0	7584	18.9			7	11	
541901	Cil	3.6	7.13	6-8	770.8	18.7			2	1/	
904	511	3.5	7.14	69	793.9	12.3	·		4	11	
9/5	7.83	4.0	7.27	4.7	791.5	8.30	-	5		U/	
SAMPL	.ING DA	TA: DA	TE: 3/7/0	6	START TI	ME: 70	54 E	ND TII	ME:	915	
	low-flow with					sampled to	dryness?			es no	
Initial Wat	er Level (fbT	OR): ど	:11	\$	Was well	sampled b	elow top of s	and pad	ck?	es no	
Final Wate	er Level (fbT	OR):			Field Per	sonnel:	AB/V	M			
											
PHYSIC	CAL & C	HEMIC	AL DAT	A:		WAT	ER QUALIT	Y ME	ASUREM	MENTS	
Appeara	nce:				pН	TEMP.	sc	TURB.	DO	ORP	
Color:	1 lew			(units)	(°C)	(uS)	(NTU)	(ppm) (mV)		
Odor:	O'THE -	SC obs		7.14	69	7739	12.3		.4		
Sedimen	t Present?	nove			7.27	4.7.7		5.30		8	
REMARK	 (S:										
				PREPAR	ED BY:	\mathcal{A}_1	î m a.	H	2		

Project Na	me: Ph	ase 1 BPA			WELL LO	CATION	v 1	MW	% - 17	Α	
Project Nu	mber: 00	71-006-102)		Sample M	latrix:	grour	ndwate	er		
Client:	Те	cumseh			Weather:	Jack	hy c	land	4. Lu	v 40'S	, 0-5
							1		/ \	/olume	Calculation
WELL I	DATA:	DA	TE: 3/6/0	i TIME:	1420					Well	Volume
Casing [Diameter (in		2.0"		ing Materia	I: sch 40	PVC			iamete	r gal/ft
Screene	d interval (bTOR): 1	4.0 - 4.0 fb		en Materia			.010" s	lot	1"	0.041
Static W	ater Level	(fbTOR):	6.87	Bott	om Depth (fbTOR):	16.	32		2"	0.163
Elevation	Top of W	ell Riser (fm			und Surfac					3"	0.367
Elevation	n Top of So	Stic	k-up (feet):	2.3	37			4"	0.653		
Standing	volume in	gallons:	1.61		- Value					5"	1.020
[(bottom d	lepth - static	water level)	x vol calcula	tion in table	per well diar	neter]:				6"	1.469
PURGI	NG DAT	Γ Α : Γ	Pump Type:	peristaltic							
		ated to loca		.		s tubing	dedic	ated to	location	? ý ể	no
Depth of	Sample (i.e	e. Level of Intal	(e) (fbTOR) :	~15.3	7	Approxi	nate P	urge F	Rate (gal/n	nin):	,50
Time	Water Level (fbTOR)	Accumulated Volume (gallons)	pH (units)	Temperature (degrees C)	Specific Conductance (mS/cm)	Turbid (NTU		DO (mg/L)	OR (m\		Appearance & Odor
1423	Initial	0.0	7.41	8.2	871.8	2:000) >	20	- 5		our clouds
1425	7.05	.5	2.44	8.6	852.5	93.5	- -		-2		-R
1427	7.05	GO.75	7.45	7.9	8562	28,	6		-1	8	et cles
1429	7.10	6.0	7.45	7.6	854.7	23.5	-	-400-	- 1	7 (clear
1450	7.12	1.5	247	7.4	852.3	13.0		_	~ 7	L	cleir
1432	7.12	20	7.42	71	\$51.0	14.9			-18	· ,	CLENNO
1434	6.90	3.5	7.72	6-5	546,3	4.57	١ .		14		И
,											
						<u> </u>					
SAMPL	ING DA	TA: DA	TE: 3/6/	10b	START TI	ME: / Y	32	Ē	ND TIMI	Ξ: /Ψ	34
Method:	low-flow with	n dedicated to			Was well	sampled	to dryr	ness?		ye	s (no)
Initial Wate	er Level (fbT	OR):	7/2		Was well	sampled	below	top of s	and pack	? ý e	$\overline{}$
Final Wate	er Level (fbT		6.40		Field Per	sonnel:	T	47	1100	M	
PHYSIC	CAL & C	HEMIC	AL DAT	'A:		WA	TER C	QUALIT	TY MEAS	UREM	ENTS
Appearar					pН	ТЕМР.	SC		TURB.	DO	ORP
Color:	Clerk				(units)	(°C)	(uS		(NTU)	(ppm)	(mV)
Odor:	Non				2.47	7.1	851	0	14.9	-	-18
	Present?	None			7.72	6.5	846	, ,	4.52		14

PREPARED BY:

hand fro

Project Na	ame: Pl	nase 1 BPA			WELL L	OCATIO!	v MV	<i>1</i> 26-1	8 A	
Project Nu		71-006-102	2		Sample	Matrix:	groundwa	rter		
Client:		ecumseh			Weathe	r. Parth	cloudy		?n's .	winds 0-
						1.47	- June /		ع د عر Volume	Calculation
WELL	ΠΔΤΔ ·	DA	ATE: 3/1/	a. TIME:	1025	•		Г	Well	Volume
	Diameter (i		2.0"			ial: sch 40) PVC		Diamete	1
	ed interval (14.0 - 4.0 fb				PVC .010	' slot	1"	0.041
	ater Level	·	4.9 x		,		16.86	3101	2"	0.163
		ell Riser (fn					ion (fmsl):		3"	0.367
		creen (fmsl)			k-up (feet	Toronto-	75°		4"	0.653
		gallons:			т ир (1001	<i>y.</i> U (1)	<i>y</i> 0		5"	1.020
		c water level)		tion in table	per well di	ameterl		t	6"	1.469
[(m o ttorii)					p					1
	NG DA		oump Type:	peristaltic						
ls equip	ment dedic	ated to loca	tion? yes	s (no)		Is tubing	dedicated	to location	on? (y	es) no
Depth of	Sample (i	e. Level of Inta	ke) (fbTOR) :	V15.86	,	Approxi	mate Purge	Rate (gal	l/min):	v.50
							T T		· · · · · · · · · · · · · · · · · · ·	
Time	Water Level	Accumulated Volume	pH (unite)	Temperature	Specific Conductan	re furbid			RP	Appearance &
	(fbTOR)	(gallons)	(units)	(degrees C)	(mS/cm)	(NTL	J) (mg/l	_) (1	πV)	Odor
(030	Initial	0.0	8.27	7.5	1169	1000	, , , ,	2		ion clock
1034	6-90	.25	7.87	8.5	1170			43		
1036	7.50	.25	2.25	8.0	466	54.2	5 -	5		No odor
1038	8.10	1.0	7.7/	76	1165	37.1		5	59 (1	
8040	8.65	1.25	7.67	7.5	1149	30.2	2 -	6	1	4
1042	230	1.50	7.64	7.4	1129	33.6	0 -	6	7	U
1055	1288	3.0	281	8.8	1209	3-2-0		86	ت	11
		Ì				28.3				
						<u> </u>				
					I					
SAMPL	ING DA	ATA: DA	TE: 3/6/	106	START	TIME: L'o	43	END TIM	ME: γο	55
		h dedicated t			1		to dryness?	I	ye	
	er Level (fb					<u>-</u>	below top ² o			
			.30				nelow tob-o			s no
Final Wate	er Level (fbT	OR): 12	.88_		Field P	ersonnel:	TO	LB/1	TB	
PHYSIC	CAL & C	CHEMIC	AL DAT	Ά:	<u> </u>	WA	TER QUAL	(_ITY MEA	SUREM	IENTS
Appeara					pН	TEMP.	sc	TURB.	DO	ORP
Color: C	lew				(units)	(°C)	(uS)	(NTU)	(ppm)	
	no ode	(7.64	7.4	1129	37.0	942-	67
	t Present?	NO			7.81	8.8	1205	320		86
					7:0/	10-1	10-01	58.3		100
REMARK	(S:									
				PREPAR	RED BY:	And.		2/	1	
			-			1 MAN	My II	LNE	1	

APPENDIX C

VARIANCE LOGS

Variance No.:

01

Date of Issue:

01/10/06

Page:

of

Project Name: Phas

Phase I Business Park Area

Project Number:

0071-006-202

Project Location: Tecumseh Lackawanna Site

Date:

01/10/06

- Variance Log -
I. Summary of Nonconformance or Change: (completed by field team leader (FTL))
Stained surface soil initially identified at the site was not field confirmed during the RI.
II. Variance Requested: (completed by FTL)
TK field team leader proposed to the on-site NYSDEC rep (Maurice Moore) to eliminate the stained surface soil samples intended for collection in those areas.
III. Justification for Variance: (completed by FTL)
Lack of visual evidence of surface staining.
N/ Applicable Decument (Work Diens (completed by ETL)
IV. Applicable Document / Work Plan: (completed by FTL)
Work Plan (Table 3)

Requested By: Bryan C. Hann (FTL)

Approved By: M. Moore (NYSDEC) - verbal

Project Manager Approval: Tom Forbes

Date: 01/10/06

Quality Assurance Approval: NA Date:

Variance No.:

Date of Issue: 01/12/06

Date:

Date:

01/12/06

Page: 1

of 1

02

Project Name:	Phase I Business Park Area	a		
Project Number:	0071-006-202			
Project Location:	Tecumseh Lackawanna Sit	e Da	ate: 0	1/12/06
	- Varia	ance Log -		
I. Summary of N		ge: (completed by field team	leader (FTL)))
Visual/olfacto	ory evidence of petroleum i	mpact identified within test pit	TP-6-6	
PID scan and	d headspace determination	did not indicate VOC impact.		
		A STATE OF THE STA		
		1.		
II. Variance Rec	quested: (completed by FT	L)		
TK field team	n leader proposed to the or	-site NYSDEC rep (Maurice N	Moore) to col	lect
	sample to be analyzed for			
		.00.007		
III. Justification	for Variance: (completed	by FTL)		
DID scan and	d headspace determination	did not indicate a VOC impa	ct however	
		observed. SVOCs were not i		
	ed for at this location.			
		AW		
IV Applicable F	Oocument / Work Plan: (c	ompleted by FTL)		
IV. Applicable L	Ocument Work Flan. (C	ompleted by 1 12)		
Work Plan (T	able 3)			
	Requested By:	Bryan C. Hann (FTL)	Date:	01/12/06
	Approved By:	M. Moore (NYSDEC) - verba	al Date:	01/12/06

Tom Forbes

NA

Project Manager Approval:

Quality Assurance Approval:

03

Date of Issue:

01/13/06

Page:

1 of

Project Name:

Phase I Business Park Area

Project Number:

0071-006-202

Project Location:

Tecumseh Lackawanna Site

Date:

01/13/06

- Variance Log -
I. Summary of Nonconformance or Change: (completed by field team leader (FTL))
Visual/olfactory evidence of petroleum impact identified within test pit TP-7-2.
II. Variance Requested: (completed by FTL)
TK field team leader proposed to the on-site NYSDEC rep (Maurice Moore) rather
than composite the sample, a discrete grab subsurface soil/fill sample should be
collected and analyzed for STARS VOCs, SVOCs (BN only), and site-specific metals plus cyanide.
II. Justification for Variance: (completed by FTL)
Sample location appeared to impacted and if it were to be composited with other non-
or less impacted samples, the data would not be representative of subsurface soil/fill conditions at that location.
V. Applicable Document / Work Plan: (completed by FTL)
Work Plan (Table 3)

Requested By: Bryan C. Hann (FTL) Date: 01/13/06

Approved By: M. Moore (NYSDEC) - verbal Date: 01/13/06

Project Manager Approval: Tom Forbes Date: 01/13/06

Quality Assurance Approval: NA Date:

04 Date of Issue: 01/17/06

Page:

1 of 1

Project Name: Phase I Business Park Area

Project Number: 0071-006-202

04/47/06

Project Location: Tecumsen Lackawanna Site	Date.	01/17/06
- Variance Log -		
I. Summary of Nonconformance or Change: (completed by field	team leader	(FTL))
lac. #Frient aballous gracuadus et a vithia intended toot pit/pio pop	atar lagation	
Insufficient shallow groundwater within intended test pit/piezom	leter location.	
	2	
W Variance Degreeteds (completed by ETI)		
II. Variance Requested: (completed by FTL)		
TK field team leader proposed to the on-site NYSDEC rep (Mau	urice Moore)	to not
install piezometer P-53S.	THE RESIDENCE OF THE RESIDENCE OF THE PERSON	
III. Justification for Variance: (completed by FTL)		
Due to insufficient shallow groundwater at designated test pit lo		
surrounding test pit locations within that AOA (I.e., TP-7-2, TP-7-2, Sufficient shallow groundwater can still be obtained from monitor		
AOA.	Jing Well het	WOIK IOI IIIAI
IV. Applicable Document / Work Plan: (completed by FTL)		
Work Plan (Table 3)	and the second decision of the second of the	

Requested By: Bryan C. Hann (FTL) Date: 01/17/06 M. Moore (NYSDEC) - verbal Approved By: 01/17/06 Date: Project Manager Approval: Tom Forbes Date: 01/17/06 **Quality Assurance Approval:** NA Date:

05

Date of Issue:

01/19/06

Page:

1 of 1

Project Name: Phase I Business Park Area

Project Number: 00

0071-006-202

Project Location: Tecumseh Lackawanna Site

Date:

01/19/06

	- Variance Log -
. Summary o	f Nonconformance or Change: (completed by field team leader (FTL))
Insufficient	shallow groundwater within intended test pit/piezometer location.
. Variance R	equested: (completed by FTL)
	am leader proposed to the on-site NYSDEC rep (Maurice Moore) to install P-57S within test pit TP-3-1 rather than the intended test pit TP-3-2.
II. Justificatio	on for Variance: (completed by FTL)
relocating t	ifficient shallow groundwater at designated test pit location TP-3-2, he piezometer to nearby test pit TP-3-1 would provide sufficient groundwater ata within that AOA.
V. Applicable	Document / Work Plan: (completed by FTL)
	(Table 3)

Requested By: Bryan C. Hann (FTL) Date: 01/19/06

Approved By: M. Moore (NYSDEC) - verbal Da

Date: 01/19/06

Date:

01/19/06

Tom Forbes

Quality Assurance Approval: NA Date:

Project Manager Approval:

06

Date of Issue:

01/19/06

Page:

of 1

Project Name: Phase I Business Park Area

Project Number: 0071-006-202

Project Location: Tecumseh Lackawanna Site Date: 01/19/06

	- Variance Log -
. Sun	nmary of Nonconformance or Change: (completed by field team leader (FTL))
Vi	sual/olfactory evidence of petroleum impact identified within test pit TP-5-3.
l. Var	iance Requested: (completed by FTL)
	field team leader proposed to the on-site NYSDEC rep (Maurice Moore) rather
СО	an composite the sample, a discrete grab subsurface soil/fill sample should be llected and analyzed for STARS VOCs, SVOCs (BN only), and site-specific metals is cyanide.
II. Ju:	stification for Variance: (completed by FTL)
or	mple location appeared to impacted and if it were to be composited with other non- less impacted samples, the data would not be representative of subsurface soil/fill anditions at that location.
V. Ap	plicable Document / Work Plan: (completed by FTL)
W	ork Plan (Table 3)

Requested By: Bryan C. Hann (FTL) Date: 01/19/06
Approved By: M. Moore (NYSDEC) - verbal Date: 01/19/06
Project Manager Approval: Tom Forbes Date: 01/19/06
Quality Assurance Approval: NA Date:

07

Date of Issue:

01/20/06

Page:

of

Project Name:

Phase I Business Park Area

Project Number:

0071-006-202

Project Location:

Tecumseh Lackawanna Site

Date:

01/20/06

- Variance Log -
I. Summary of Nonconformance or Change: (completed by field team leader (FTL))
Elminate test pit TP-9-4 from the program.
II. Variance Requested: (completed by FTL)
TK field team leader proposed to the on-site NYSDEC rep (Maurice Moore) to eliminate test pit TP-9-4. During the excavation and lateral determination of petroleum impacts of nearby test pit TP-9-3, the area intended to be investigated by TP-9-4 was excavated, eliminating the need for that location.
III. Justification for Variance: (completed by FTL) Test pit location already investigated.
IV. Applicable Document / Work Plan: (completed by FTL)
Work Plan (Table 3)

Requested By: Bryan C. Hann (FTL) Date: 01/20/06

Approved By: M. Moore (NYSDEC) - verbal Date: 01/20/06

Project Manager Approval: Tom Forbes Date: 01/20/06

Quality Assurance Approval: NA

Date:

80

Date of Issue:

01/20/06

Date:

Date:

01/20/06

Page:

1 of 1

Project Name:	Phase I Business Park Area	<u> </u>		
Project Number:	0071-006-202	4 8/4		
Project Location:	Tecumseh Lackawanna Sit	e Date	e: 0°	1/20/06
	- Varia	ance Log -		
I. Summary of N		ge: (completed by field team le	ader (FTL)))
Vicual/olfact	ony avidence of natroleum i	mpact identified within test pit T	P-9-3	
Visualionacio	ny evidence of petroleum	impact identified within teet pit 1		
II. Variance Req	juested: (completed by FT	L)		
TIV Sold to an	looder proposed to the or	aita NVCDEC ron (Maurico Mo	oro) ratho	r
than compos	ite the sample, a discrete of	-site NYSDEC rep (Maurice Mo grab surface and subsurface so	il/fill sampl	<u>. </u>
should be co	llected and analyzed for S	TARS VOCs (subsurface only),	SVOCs (B	N only),
	cific metals plus cyanide.			
		A 1904		
III. Justification	for Variance: (completed	by FTL)	···	
Sample locat	ion appeared to impacted	and if it were to be composited	with other	non-
or less impac	cted samples, the data wou	ld not be represetative of subsu		
conditions at	that location.			
		1110		
V. Applicable D	ocument / Work Plan: (co	ompleted by FTL)		
Work Plan (T	able 3)			
VVOIKTIAIT(I	able 0)			
	Democted D	Page C Hone (ETI)	Doto	01/20/06
	Requested By:	Bryan C. Hann (FTL)	Date:	
	Approved By:	M. Moore (NYSDEC) - verbal	Date:	01/20/06

Tom Forbes

NA

Project Manager Approval:

Quality Assurance Approval:

09

Date of Issue:

01/23/06

Page:

1 of 1

Project Name: Phase I Business Park Area

Project Number:

0071-006-202

Project Location: Tecumseh Lackawanna Site Date: 01/23/06

Variance Log I. Summary of Nonconformance or Change: (completed by field team leader (FTL)) Visual/olfactory evidence of petroleum impact identified within test pit TP-10-1. II. Variance Requested: (completed by FTL) TK field team leader proposed to the on-site NYSDEC rep (Maurice Moore) rather than composite the sample, a discrete grab subsurface soil/fill sample should be collected and analyzed for STARS VOCs, SVOCs (BN only), and site-specific metals plus cyanide. III. Justification for Variance: (completed by FTL) Sample location appeared to impacted and if it were to be composited with other nonor less impacted samples, the data would not be representative of subsurface soil/fill conditions at that location. IV. Applicable Document / Work Plan: (completed by FTL) Work Plan (Table 3)

Requested By: Bryan C. Hann (FTL) Date: 01/23/06

Approved By: M. Moore (NYSDEC) - verbal

01/23/06 Date:

Project Manager Approval:

Tom Forbes

01/23/06 Date:

Quality Assurance Approval:

NA

Date:

10

Date of Issue:

01/24/06

Page:

1 of 1

Project Name:	Phase I Business Park Area		
Project Number:	0071-006-202		
Project Location:	Tecumseh Lackawanna Site	Date:	01/24/06
	- Variance L	oa -	
I. Summary of N	lonconformance or Change: (comple		=TL))
Visual confirm containing ga	ory and PID evidence of petroleum imparation of at least two underground storasoline. NYSDEC Spills (John Otto) was de documented as reported, however cl	age tanks, suspected of as notified. Mr. Otto stated	d that
TK field team a surface and	uested: (completed by FTL) leader proposed to the on-site NYSDE subsurface soil/fill sample for STARS		
Ідппаршцу, пе	eactivity, and Corrosivity.		
II. Justification	for Variance: (completed by FTL)		
	ry, PID scan, and PID headspace deter plus visual confirmation of at least two		ificant
V. Applicable Do	ocument / Work Plan: (completed by l	FTL)	
Work Plan (Ta	able 3)		

Requested By: Bryan C. Hann (FTL) Date: 01/24/06
Approved By: M. Moore (NYSDEC) - verbal Date: 01/24/06
Project Manager Approval: Tom Forbes Date: 01/24/06
Quality Assurance Approval: NA Date:

01

Date of Issue:

01/10/06

Page:

1 of 1

Project Name:	Phase I Business Park Area		
Project Number:	0071-006-202		
Project Location:	Tecumseh Lackawanna Site	Date:	01/10/06
	- Variance L	og -	
l. Summary of N	Nonconformance or Change: (complete		FTL))
Stained surfa	ace soil initially identified at the site was n	not field confirmed durin	g the RI.
I. Variance Req	uested: (completed by FTL)		
TK field team	leader proposed to the on-site NYSDEC	crep (Maurice Moore) to	n eliminate
	urface soil samples intended for collectio		
			v
II. Justification	for Variance: (completed by FTL)		
Lack of vieus	l evidence of surface staining.		
Lack of Visual	revidence of surface staining.		

Requested By:	Bryan C. Hann (FTL)	Date:	01/10/06
Approved By:	M. Moore (NYSDEC) - verbal	Date:	01/10/06
Project Manager Approval:	Tom Forbes	Date:	01/10/06
Quality Assurance Approval:	NA	Date:	

IV. Applicable Document / Work Plan: (completed by FTL)

Work Plan (Table 3)

APPENDIX D

DATA USABILITY SUMMARY REPORT (DUSR)

Data Validation Services

120 Cobble Creek Road P. O. Box 208

North Creek, N. Y. 12853

Phone 518-251-4429

Facsimile 518-251-4428

March 15, 2006

Bryan Hann Benchmark Env. Engineers 726 Exchange St. Suite 624 Buffalo, NY 14210

RE:

Data Usability Summary Report for the Tecumseh Phase I BPA site-soil samples STL-Buffalo SDG No. A06-0418, A06-0652, A06-0714, A06-0821, A06-0824, A06-0923, A06-0936, and A06-0953/1077

Dear Mr. Hann:

Review has been completed for the data package generated by Severn Trent Laboratories that pertains to soil samples collected 1/10/06 and 1/24/06 at the Tecumseh site. Samples were processed for various combinations of analytical fractions of TCL Base/neutrals, 5 metals and cyanide, STARS volatiles, TCL volatiles, TCL PCBs, TCL semivolatiles, and/or TAL metals/CN. Two samples were submitted for STARS volatiles, TCLP volatiles, TCLP lead, ignitability, corrosivity, and reactivity. Two soil samples were processed for TCL pesticides, TCL herbicides, and 2,3,7,8-TCDD. Field duplicates and sample matrix spikes/duplicates were also processed at proper frequency. The laboratory methodologies utilized are those of the USEPA SW846.

The data packages submitted contain full deliverables for validation, but this usability report is generated from review of the summary form information, with review of sample raw data, and limited review of associated QC raw data. Full validation has not been performed. However, the reported summary forms have been reviewed for application of validation qualifiers, using guidance from the USEPA Region 2 validation SOPs, the USEPA National Functional Guidelines for Data Review, the specific laboratory methodologies, and professional judgment, as affects the usability of the data. The following items were reviewed:

- * Laboratory Narrative Discussion
- * Custody Documentation
- * Holding Times
- * Surrogate and Internal Standard Recoveries
- * Matrix Spike Recoveries/Duplicate Correlations
- * Field Duplicate Correlations
- * Preparation/Calibration Blanks
- * Control Spike/Laboratory Control Samples
- * Instrumental Tunes
- * Calibration Standards
- * ICP Serial Dilution
- * CRI/CRA Standards
- * Instrument IDLs

Those items listed above which show deficiencies are discussed within the text of this narrative. All of the other items were determined to be acceptable for the DUSR level review.

In summary, most of the sample analyte values/reporting limits are usable as reported, or usable with minor qualification as estimated ("J" qualifier) due to typical processing or matrix effects. Some sample values have been edited to correct laboratory results. No data are rejected.

Copies of the laboratory case narratives and the sample identification summary forms are attached to this text, and should be reviewed in conjunction with this report. Included with this submission are red-ink edited results forms, reflecting final sample results with edits and qualifications recommended within this report.

The following text discusses quality issues of concern.

General

Blind field duplicate evaluations were performed for various parameters on samples TP-6-7(2.0-4.0), TP-2-(1-3)(2.0-5.5), TP-5(1-5)(0.0-1.0), TP-5(6-10)(0.0-1.0), TP-9-1(1.0-3.5), TP-9-(125)(1.0-7.0), SS-23, and SS-03. Although many variances of about twofold were observed, most correlations were within validation guidelines, with the following exceptions, results for which are qualified as estimated in the parent sample and its duplicate:

- o anthracene, fluoranthene, and phenathrene in TP-2-(1-3)(2.0-5.5)
- o potassium and sodium in TP-5(1-5)(0.0-1.0)

STARS Volatiles by EPA 8021 and TCL Volatiles by EPA 8260B

The STARS volatile analysis of TP-10-6(1.0-5.5) exhibited elevated surrogate standard recovery (141%, >127%). Detected values are already qualified as estimated due to values below the adjusted CRDL. No additional qualification is required.

STARS matrix spikes of TP-5-3(1.0-4.5) show all recoveries and duplicate correlations within recommended ranges.

Matrix spikes for STARS volatiles on TP-1-9(1-4.8) show low recoveries for n-butylbenzene, sec-butylbenzene, and p-cymene (60% to 75%), and for naphthalene (negative recoveries and 148%RPD duplicate correlation). Results for those four compounds in that parent sample are qualified as estimated.

Matrix spikes for TCL volatiles on TP-1-22(2-6.5) shows low recoveries for trichlorobenzene and chlorobenzene (59% to 71%). Results for those two compounds in that parent sample are qualified as estimated.

Results for m-xylene and p-xylene are to be considered as a combined result (i.e. m,p-xylene) due to lack of analytical resolution between the two responses.

Holding times for project samples were met, internal standard responses meet protocol requirements, and blanks show no contamination. Calibrations standards showed acceptable responses.

The confirmation analyses for the EPA 8021 STARS volatile detections were not provided in the data package, although the detections reported in the primary analyses were denoted on those raw data as having been confirmed. Full validation would require review of the confirmation detector data.

STARS Base/Neutrals and TCL Semivolatile Analyses by 8270C

Results for analytes that are initially reported with the "E" qualifier are derived from the dilution analyses of those samples.

TP-5-11(1.0-4.0) shows low recoveries for two internal standards in the initial analysis, but acceptable responses in the dilution analysis. Results for the twenty-two analytes associated with the outlying internal standards utilized from the initial analysis of that sample are qualified as estimated.

Matrix spikes of TP-4-(1-5)(1.0-3.0), TP-3-1-2(0-1.0), TP-4-(1-5)(0-1.0), and TP-10-1-(1.0-4.5) show accuracy and precision within validation guidelines, with the exception of low recoveries for pyrene in the TP-4-(1-5)(0-1.0) and elevated ones in TP-3-1-2(0-1.0). The results for pyrene in those two samples are therefore qualified as estimated.

Matrix spikes of TP-1-22(2-6.5) show accuracy and precision within validation guidelines, although seven of the duplicate correlation values were elevated. No qualification to sample results is indicated.

Due to poor mass spectral quality (interferences), the reported detection of n-nitrosodiphenylamine in TP-9-3(1.0-4.5) is edited to reflect non-detection at the previously reported concentration (resulting in an elevated reporting limit).

Holding times were met. Surrogate and internal standard recoveries, and the instrumental tunes were acceptable. Calibrations standards showed acceptable responses with laboratory requirements and validation guidelines.

The detections of bis(2-ethylhexyl)phthalate in the samples reported in SDGs A06-0418, A06-0652, A06-0821, A06-0824, A06-923, A06-0936, and A06-0953/1077, and the detections of naphthalene in samples reporting in A06-0418 are considered external contamination (due to low level detections in the associated method blanks). Those sample detections are edited to reflect non-detection.

The detected values of benzo(b)fluoranthene and benzo(k)fluoranthene in the samples are qualified as estimated due to lack of resolution in response.

Some of the samples were analyzed at dilution due to high concentrations of target analytes. However, several samples were processed at excessive dilution, resulting in unnecessarily high reporting limits for nondetected compounds.

Preparation logs do not show entries for final sample extract volumes.

pg. 4/6

TCL Pesticides by EPA8081/TCL PCB Analyses by EPA 8082/TCL Herbicides by EPA8151

Three samples exhibit responses that correspond to most of those required for identification as Aroclor 1260. However, because one of the congener peaks was not detected by the instrument software, the detections were not reported as PCBs. It is noted that there are responses corresponding to the "undetected" congeners, but as shoulders on interfering peaks. The laboratory utilizes a very fast oven ramping in the analytical procedure (entire run sequence is less than 6.5'). This has the effect of merging responses, creating shoulders (of probable sample matrix PAH responses), thus prohibiting proper identification and quantitation. For these samples, the reporting limit for Aroclor 1260 has either been raised or qualified as estimated, based on the potential concentration shown in the raw data, in order to reflect the possibility that PCBs may be present at levels greater than the CRDL. The affected samples are SS-14 (qualified existing reporting limit as estimated), SS-03 (raised the reporting limit to 100 ppb), and DUP#8 (raised the reporting limit to 120 ppb). These levels are still well below the project action level for surface soils.

Matrix spikes of Aroclors 1016 and 1260 in SS-10-13 show acceptable accuracy and precision. Matrix spikes of Aroclors 1016 and 1260 in SS-(19-21) show an elevated recovery and duplicate correlation for Aroclor 1260 (165%, 48%RPD), likely due to the presence of Aroclor 1254 in the parent sample. The detected value of that mixture in the parent sample is qualified as estimated.

Matrix spikes of Aroclors 1016 and 1260 in TP-6-10(2-6) show acceptable recoveries in the matrix spike, but about twofold elevated recoveries in the spiked duplicate, and subsequent elevated duplicate correlations. The surrogate recoveries of those spikes do not reflect that variance; a spiking error is suspected.

Detected Aroclor mixtures in SS-(19-21), SS-03, SS-05, SS-06, and SS-22 are qualified as estimated due to elevated surrogate recoveries.

The detection of 2,4-D in SS-35 is qualified as estimated due to elevated recovery in the associated LCS (141%, above 132%).

Results for a-BHC and d-BHC in the samples are qualified as estimated, with a low bias, due to the responses (each at 23%RSD) in the initial calibration standards.

The results for picrolam are qualified as estimated due to slightly low responses (22%D and 21%D) in the continuing calibration standards.

Holding times were met and blanks showed no contamination.

Dioxin by EPA 8290

Holding times were met and blanks showed no contamination.

Surrogate and internal standard responses are within laboratory and validation guidelines. Instrument performance was compliant.

Laboratory duplicate correlation of sample SS-35 is acceptable.

Sample reported results are substantiated by the raw data.

pg. 5/6

Metals/CN and TCLP Lead by EPA6010B, EPA7470, EPA9012

The blind duplicate of T-5(1-5)(0.0-1.0) was reanalyzed at dilution for iron and manganese due to high initial responses above the instrument calibration range. However, the data for that dilution nalysis was entirely inconsistent with those of the initial analysis of the sample. The reason for that variance is not evident. Dilution analyses for other samples in that sequence seem consistent. The dilution analysis of the blind duplicate was not used. The initial analysis values were used, and qualified as estimated due to response above the linear range.

Two results for mercury were reported for TP-4-(1-5)(1.0-3.0). The (very slightly) higher one is utilized.

Matrix spikes were performed on seven project samples. Duplicate correlation evaluation was performed on the spikes rather than the unspiked parent sample. The following elements produced outlying recoveries, and results are qualified as estimated for these listed analytes in the samples reported in the same SDG as the parent sample:

- o Cadmium (70% and 64%) and chromium (46% and 89%) in TP-1(11-12)(0-2), SDG A06-0418
- o Arsenic (71% and -26%) and cadmium (79% and 72%) in TP-7-(1-3)/8-4(0-2), SDG A06-0652
- o Chromium (63% and 0%) and mercury (161% and 83%) in TP-4-(1-5)(1.0-3.0), SDG A06-0714
- o Antimony, arsenic, barium, chromium, copper (41% to 208%) in TP-3-1-2(1.0-3.0), SDG A06-821
- Arsenic, chromium, and mercury (arsenic and mercury with slight outliers at 63% and 73%, chromium with negative recoveries) in TP-9(125)(0.0-1.0), SDG A06-0923
- o Arsenic (negative recoveries), cadmium (57% and 53%), chromium (179% and –43%), mercury (36% and 34%), and cyanide (127% and 125%) in SS-10-13, SDG A06-0936.

The matrix spikes (MS/MSD) of TP-4-(1-5)(0-1.0) show similar detected values for the ICP spikes as for the unspiked sample, indicating either a potentially very strong matrix effect, or lack of spiking of the MS/MSD. Mercury also produced outlying recovery. All metals are affected, and are qualified as estimated in that parent sample.

The post-digest spikes of TP-5(6-10)(0.0-1.0), TP-10-6(0.0-1.0) (for total metals and TCLP lead), and SS-(19-21) show acceptable recoveries.

The ICP serial dilution evaluations of SS(19-21), TP-10-6(0.0-1.0) (TCLP lead only), TP-7-(1-3)/8-4(0-2) and TP-4-(1-5)(1.0-3.0) show acceptable correlations. The following elements produced outlying correlations in the other serial dilutions, and results are qualified as estimated for these listed analytes in the samples reported in the same SDG as the parent sample:

- Lead (11%D) in TP-1(11-12)(0-2), SDG A06-0418
- o Chromium and lead (both 13%D) in TP-4-(1-5)(0-1.0), SDG A06-0714
- Calcium, lead, and iron (11%D and 12%D) in TP-3-1-2(1.0-3.0), SDG A06-0821
- o Cadmium, chromium and lead (11%D to 13%D) in TP-5-(6-10)(0-1.0), SDG A06-0824
- o Chromium and lead (both 16%D) in TP-9-(125)(0-1.0), SDG A06-0923
- o Chromium and lead (28%D and 29%D) in SS-10-13, A06-0936

Detected results for mercury in TP-4-(1-5)(0-1.0) and TP-4-(1-5)(1.0-3.0) are qualified as estimated due to elevated recovery in the associated LCSs (174% and 161%).

Detected results for cyanide in samples reported in SDG A06-0923, A06-0936, and A06-953/1077 are qualified as estimated due to non-compliant elevated recovery in the associated LCSs (123% to 140%, above 118%).

Holding times were met. Blanks associated with sample analyses show no contamination above reporting limit.

Please do not hesitate to contact me if you have comments or questions regarding this report.

Very truly yours,

Judy Harry

VALIDATION QUALIFIER DEFINITIONS

DATA OUALIFIER DEFINITIONS

The following definitions provide brief explanations of the national qualifiers assigned to results in the data review process. If the Regions choose to use additional qualifiers, a complete explanation of those qualifiers should accompany the data review.

- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- J The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- N The analysis indicates the present of an analyte for which there is presumptive evidence to make a "tentative identification."
- NJ The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.
- The analyte was not detected above the reported sample quantitation limit.

 However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.

4

LABORATORY SAMPLE IDs AND CASE NARRATIVES

			SAMPLED		RECEIVED	
LAB SAMPLE ID	CLIENT SAMPLE ID	MATRIX	DATE	TIME	DATE	TIME
A6041819	TP-1-(1-5)(0-2)	SOIL	01/10/2006	12:00	01/12/2006	14:45
A6041820	TP-1-(1-5)(2-5)	SOIL	01/10/2006	12:00	01/12/2006	14:45
A6041803	TP-1-(11-12)(0-2)	SOIL	01/11/2006	09:45	01/12/2006	14:45
A6041804	TP-1-(11-12)(2-4.5)	SOIL	01/11/2006	09:45	01/12/2006	14:45
A6041810	TP-1-(13-17)(0-2)	SOIL	01/11/2006	14:00	01/12/2006	14:45
A6041811	TP-1-(13-17)(2-5)	SOIL	01/11/2006	14:00	01/12/2006	14:45
A6041825	TP-1-(678910)(0-2)	SOIL			01/12/2006	
A6041826	TP-1-(678910)(2-5)	SOIL	01/10/2006	16:15	01/12/2006	14:45
A6041812	TP-1-18(2-5)	SOIL	01/11/2006	14:20	01/12/2006	14:45
A6041813	TP-1-19(2-7)	SOIL	01/11/2006	15:00	01/12/2006	14:45
A6041827	TP-1-9(1-4.8)	SOIL	01/10/2006	15:15	01/12/2006	14:45

			SAMPLED		RECEIVED	
LAB SAMPLE ID	CLIENT SAMPLE ID	MATRIX	DATE	TIME	DATE	TIME
A6065205	BLIND DUPLICATE	SOIL	01/13/2006	12:00	01/18/2006	10:40
A6065209	TP-1-22(2-6.5)	SOIL	01/12/2006	10:00	01/18/2006	10:40
A6065209MS	TP-1-22 (2-6.5)	SOIL			01/18/2006	
A6065209SD	TP-1-22 (2-6.5)	SOIL	01/12/2006	10:00	01/18/2006	10:40
A6065207	TP-6-(1-5)(0-2)	SOIL	01/12/2006	15:00	01/18/2006	10:40
A6065208	TP-6-(1-5)(2-6)	SOIL	01/12/2006	15:00	01/18/2006	10:40
A6065202	TP-6-10(2-6)	SOIL	01/13/2006	11:55	01/18/2006	10:40
A6065210	TP-6-6 (2-6)	SOIL			01/18/2006	
A6065201	TP-6-7(2-4)	SOIL	01/13/2006	08:35	01/18/2006	10:40
A6065203	TP-7-(1-3)/8-4(0-2)	SOII	01/13/2006	16:30	01/18/2006	10:40
A6065203MS	TP-7-(1-3)/8-4(0-2)	SOIL			01/18/2006	
A6065203SD	TP-7-(1-3)/8-4(0-2)	SOIL			01/18/2006	
A6065204	TP-7-(1-3)/8-4(1.5-	SOIL	01/13/2006	16:40	01/18/2006	10:40
A6065211	TP-7-(4-7)(0-1.0)	SOIL			01/18/2006	
A6065212	TP-7-(4-7)(2.0-7.0)	SOIL			01/18/2006	
A6065215	TP-7-2(2-5)	SOIL	• •		01/18/2006	
A6065213	TP-8-(1-3)(0-1.0)	SOIL			01/18/2006	
A6065214	TP-8-(1-3)(1.0-7.0)	SOIL	01/17/2006	17:08	01/18/2006	10:40

			SAMPLED		RECEIVED	
LAB SAMPLE ID	CLIENT SAMPLE ID	MATRIX	DATE	TIME	DATE	TIME
A6071406	BLIND DUPLICATE #2	SOIL	01/18/2006	12:00	01/19/2006	13:00
A6071404	TP-2-(1-3)(0-2.0)	SOIL			01/19/2006	
A6071405	TP-2-(1-3)(2.0-5.5)	SOIL			01/19/2006	
A6071402	TP-4-(1-5)(0-1.0)	SOIL			01/19/2006	
A6071402MS	TP-4-(1-5)(0-1.0)	SOIL			01/19/2006	
A6071402SD	TP-4-(1-5)(0-1.0)	SOIL			01/19/2006	
A6071403	TP-4-(1-5)(1.0-3.0)	SOIL			01/19/2006	
A6071403MS	TP-4-(1-5)(1.0-3.0)	SOIL			01/19/2006	
A6071403SD	TP-4-(1-5)(1.0-3.0)	SOIL			01/19/2006	
A6071401	TP-8-6 (1.0-3.0)	SOIL	01/18/2006	08:52	01/19/2006	13:00

			SAMPLED		RECEIVED	
LAB SAMPLE ID	CLIENT SAMPLE ID	MATRIX	DATE	TIME	DATE	TIME
A6082114	BLIND DUPLICATE#3	SOIL	01/19/2006	12:00	01/23/2006	11:15
A6082103	TP-3-1-2 (0.0-1.0)	SOIL			01/23/2006	
A6082104	TP-3-1-2 (1.0-3.0)	SOIL	01/19/2006	08:35	01/23/2006	11:15
A6082104MS	TP-3-1-2 (1.0-3.0)MS	SOIL	01/19/2006	08:35	01/23/2006	11:15
A6082104SD	TP-3-1-2 (1.0-3.0)SD				01/23/2006	
A6082110	TP-5-(1-5)(0.0-1.0)	SOIL			01/23/2006	
A6082111	TP-5-(1245(1.0-4.5)	SOIL			01/23/2006	
A6082107	TP-5-3 (1.0-4.5)	SOIL	01/19/2006	11:20	01/23/2006	11:15

			SAMPLED		RECEIVED	
LAB SAMPLE ID	CLIENT SAMPLE ID	MATRIX	DATE	TIME	DATE	TIME
A6082412	BLIND DUPLICATE #4	SOIL			01/23/2006	
A6082413	BLIND DUPLICATE #5	SOIL			01/23/2006	
A6082404	TP-5-(6-10)(0.0-1.0)	SOIL	01/20/2006	10:25	01/23/2006	11:15
A6082405	TP-5-(6-10)(1.0-4.0)	SOIL	01/20/2006	10:25	01/23/2006	11:15
A6082406	TP-5-11(0.0-1.0)	SOIL	01/20/2006	11:25	01/23/2006	11:15
A6082407	TP-5-11(1.0-4.0)	SOIL			01/23/2006	
A6082408	TP-5-12(1.0-3.5)	SOIL			01/23/2006	
A6082409	TP-9-1(1.0-3.5)	SOIL			01/23/2006	
A6082410	TP-9-3(0.0-1.0)	SOIL			01/23/2006	
A6082411	TP-9-3(1.0-4.5)	SOIL	01/20/2006	14:40	01/23/2006	11:15

			SAMPI	LED	RECEIVED	
LAB SAMPLE ID	_CLIENT SAMPLE ID	MATRIX	DATE	TIME	DATE	TIME
A6092311	BLIND DUPLICATE #6	SOIL	01/23/2006	12:00	01/25/2006	13:30
A6092305	TP-10-1(1.0-4.5)	SOIL	01/23/2006	10:45	01/25/2006	13:30
A6092306	TP-10-1-3.0.0-1.0	SOIL			01/25/2006	
A6092307	TP-10-2-3.1.0-4.0	SOIL			01/25/2006	
A6092308	TP-10-4-5.0.0-1.0	SOIL			01/25/2006	
A6092309	TP-10-4-5.1.0-2.5	SOIL			01/25/2006	
A6092303	TP-9-(125)0.0-1.j0	SOIL	01/23/2006	10:05	01/25/2006	13:30
A6092304	TP-9-(125)1.0-7.0	SOIL			01/25/2006	
A6092301	TP-9-2(1.0-7.0)	SOIL	01/23/2006	09:40	01/25/2006	13:30
A6092302	TP-9-5(1.0-4.5)	SOIL	01/23/2006	08:45	01/25/2006	13:30
A 6092310	TP-10-7- (1.6-2.5)	50:1	01/23/2006	14:30	01/25/2006	13:30

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

SAMPLE IDENTIFICATION AND ANALYTICAL REQUEST SUMMARY

LAB NAME: SEVERN TRENT LABORATORIES, INC.

CUSTOMER SAMPLE ID	LABORATORY SAMPLE ID	- 1						
		VOA GC/MS	BNA GC/MS	VOA GC	PEST PCB	METALS	TCLP HERB	WATER QUALITY
SS-09	A6093601	-	-	-	SW8463	-	-	-
SS-10-13	A6093602	ı	SW8463	-	SW8463	SW8463	<u>-</u>	SW8463
SS-15	A6093603	-	•	_	SW8463	-	<u>-</u>	
SS-16	A6093604	1	1	-	SW8463	-	-	-
SS-17	A6093605	-	-	-	SW8463	-	_	-
SS-31	A6093606	-	SW8463	-	-	-	-	-
SS-32-33	A6093607	-	SW8463	-	-	SW8463	-	SW8463

NYSDEC-1

			SAMPLED		RECEIVED	
LAB SAMPLE ID	CLIENT SAMPLE ID	MATRIX	DATE	TIME	DATE	TIME
A6095326	BLIND DUPLICATE #7	SOIL	01/24/2006	12:00	01/25/2006	13:30
A6095327	BLIND DUPLICATE #8	SOIL	01/24/2006	12:00	01/25/2006	13:30
· A6095313	MW-13A 0.0-1.0	SOIL	01/24/2006	13:30	01/25/2006	13:30
- A6107702	MW-13A(0.0-1.0)	SOIL	01/24/2006	13:30	01/25/2006	13:30
A6095304	SS-(19-21)	SOIL	01/24/2006	13:00	01/25/2006	13:30
A6095304MS	SS-(19-21)MS	SOIL			01/25/2006	
A6095304SD	SS-(19-21)SD	SOIL			01/25/2006	
A6095314	SS-03	SOIL	01/24/2006	13:40	01/25/2006	13:30
A6095323	SS-04	SOIL	01/24/2006	14:45	01/25/2006	13:30
A6095322	SS-05	SOIL	01/24/2006	14:48	01/25/2006	13:30
A6095306	SS-06	SOIL	01/24/2006	14:55	01/25/2006	13:30
A6095311	SS-07	SOIL			01/25/2006	
A6095309	SS-08	SOIL	01/24/2006	15:10	01/25/2006	13:30
A6095316	SS-1-2	SOIL	01/24/2006	13:45	01/25/2006	13:30
A6095318	SS-14	SOIL			01/25/2006	
A6095319	SS-18	SOIL			01/25/2006	
A6095325	SS-22	SOIL	01/24/2006	14:52	01/25/2006	13:30
A6095305	SS-23	SOIL			01/25/2006	
A6095312	SS-24	SOIL	01/24/2006	13:25	01/25/2006	13:30
A6095324	SS-25	SOIL	01/24/2006	14:50	01/25/2006	13:30
A6095321	SS-26	SOIL			01/25/2006	
A6095315	SS-27	SOIL			01/25/2006	
A6095307	SS-28	SOIL			01/25/2006	
A6095308	SS-29	SOIL			01/25/2006	
A6095310	SS-30	SOIL			01/25/2006	
A6095320	SS-34	SOIL			01/25/2006	
`A6095303	SS-35	SOIL			01/25/2006	
~A6107701	SS-35	SOIL			01/25/2006	
A6095317	SS-36	SOIL	01/24/2006	14:10	01/25/2006	13:30
A6095301	TP-10-6 0.0-1.0	SOIL			01/25/2006	
A6095302	TP-10-6 1.0-5.5	SOIL	01/24/2006	08:20	01/25/2006	13:30

NON-CONFORMANCE SUMMARY

Job#: A06-0418

STL Project#: NY3A9073

Site Name: TURNKEY - TECUMSEH REDEVELOPMENT SITE

General Comments

The enclosed data may or may not have been reported utilizing data qualifiers (Q) as defined on the Data Comment Page.

Soil, sediment and sludge sample results are reported on "dry weight" basis unless otherwise noted in this data package.

According to 40CFR Part 136.3, pH, Chlorine Residual, Dissolved Oxygen, Sulfite, and Temperature analyses are to be performed immediately after aqueous sample collection. When these parameters are not indicated as field (e.g. pH-Field), they were not analyzed immediately, but as soon as possible after laboratory receipt.

Sample dilutions were performed as indicated on the attached Dilution Log. The rationale for dilution is specified by the 3-digit code and definition.

Sample Receipt Comments

A06-0418

Sample Cooler(s) were received at the following temperature(s); $4.0~^{\circ}$ C All samples were received in good condition.

GC Volatile Data

For method 8021, the recoveries of several compounds in sample TP-1-9(1-4.8) Matrix Spike and Matrix Spike Duplicate exceeded QC limits. The Matrix Spike Blank recoveries are compliant.

The relative percent difference between the Matrix Spike and the Matrix Spike Duplicate exceed quality control limits for Naphthalene.

GC/MS Semivolatile Data

Linear regression was used to calibrate analytes that were greater than 15% RSD in the initial calibration A6I0001087.

The analytes Bis(2-ethylhexyl) phthalate and Naphthalate were detected in the Method Blank SBLK90 (A6B1207903) at a level below the project established reporting limit. No corrective action is necessary for any values in Method Blanks that are below the requested reporting limits.

The surrogate recovery for p-Terphenyl-d14 was below the laboratory quality control limits for sample TP-1-(11-12)(0-2). Based on US EPA CLP National Functional Guidelines for Data Review, one surrogate in either fraction (base/neutral or acid fraction) may have a recovery outside of the control limit. All analytes associated with that surrogate should be considered biased low.

Metals Data

The recovery of sample TP-1-(11-12)(0-2) Matrix Spike exhibited a result below the quality control limit for Cadmium. The recoveries of sample TP-1-(11-12)(0-2) Matrix Spike Duplicate exhibited results below the quality control limits for Cadmium and Chromium. Sample matrix is suspect. The RPD of sample TP-1-(11-12)(0-2) Matrix Spike and Matrix Spike Duplicate exceeded quality control limits for Cadmium. However, the LCS was acceptable.

The recoveries of sample TP-1-(11-12)(0-2) Matrix Spike and Matrix Spike Duplicate exhibited results above the quality control limits for Lead. The sample result is more than four times greater than the spike added. The LCS is acceptable.

The recoveries of sample TP-1-(11-12)(0-2) Post Spike exhibited results below the quality control limits for Cadmium and Chromium. However, the LCS is acceptable.

The Serial Dilution of sample TP-1-(11-12)(0-2) exceeded the quality control limit for Lead. However, the LCS is acceptable.

Wet Chemistry Data

No deviations from protocol were encountered during the analytical procedures.

The results presented in this report relate only to the analytical testing and condition of the sample at receipt. This report pertains to only those samples actually tested. All pages of this report are integral parts of the analytical data. Therefore, this report should be reproduced only in its entirety.

NON-CONFORMANCE SUMMARY

Job#: <u>A06-0652</u>

SIL Project#: NY3A9073

Site Name: TURNKEY - TECUMSEH REDEVELOPMENT SITE

General Comments

The enclosed data may or may not have been reported utilizing data qualifiers (Q) as defined on the Data Comment Page.

Soil, sediment and sludge sample results are reported on "dry weight" basis unless otherwise noted in this data package.

According to 40CFR Part 136.3, pH, Chlorine Residual, Dissolved Oxygen, Sulfite, and Temperature analyses are to be performed immediately after aqueous sample collection. When these parameters are not indicated as field (e.g. pH-Field), they were not analyzed immediately, but as soon as possible after laboratory receipt.

Sample dilutions were performed as indicated on the attached Dilution Log. The rationale for dilution is specified by the 3-digit code and definition.

Sample Receipt Comments

A06-0652

Sample Cooler(s) were received at the following temperature(s); $3.0~^{\circ}$ C All samples were received in good condition.

GC/MS Volatile Data

For method 8260, the recoveries of Trichloroethene and Chlorobenzene in sample TP-1-22(2-6.5) Matrix Spike and Matrix Spike Duplicate exceeded QC limits. The Matrix Spike Blank recoveries are compliant.

Initial calibration standard curve A5I0001098-1 exhibited the %RSD of the compounds Bromomethane, Methylene Chloride, Acetone, and n-Butylbenzene as greater than 15%. However, the mean RSD of all compounds is 8.75%.

GC Volatile Data_

For method 8021, sample TP-7-2(2-5) was analyzed using medium level techniques due to high concentrations of target analytes.

GC/MS Semivolatile Data

Samples TP-6-(1-5)(0-2), TP-6-(1-5)(2-6), and TP-7-(4-7)(0-1.0), 8270 soils, had adjusted final volumes during extraction due to extract matrix and viscosity.

Linear regression was used to calibrate all analytes that were greater than 15% RSD in the initial calibration A6I0001075.

The spike recoveries for Acenaphthene and Pyrene were above the laboratory quality control limits in the Matrix Spike Duplicate TP-1-22(2-6.5). Since the Matrix Spike Blank A6B1237001 recoveries were compliant, no corrective action was required.

The relative percent difference between the Matrix Spike TP-1-22(2-6.5) and the Matrix Spike Duplicate TP-1-22(2-6.5) exceeded quality control criteria for most spiking analytes.

The analyte Bis(2-ethylhexyl) phthalate was detected in the Method Blank SBLK90 (A6B1237002) at a level below the project established reporting limit. No corrective action is necessary for any values in Method Blanks that are below the requested reporting limits.

GC Extractable Data

For method 8082, the recoveries and the relative percent difference for sample TP-6-10(2-6) the Matrix Spike duplicate are outside quality control limits for AR1260/1016 though the Matrix Spike Blank recoveries are compliant, no action necessary.

For method 8082, AR1260 exhibited a percent difference greater than 15% from the expected amount in the associated continuing calibrations. The average of all analytes is within 15% and the associated laboratory quality control recoveries are compliant. No corrective action was required.

For method 8082, the associated calibration verifications demonstrated a decreased instrument response, >15% difference, for the surrogate Decachlorobiphenyl. The theoretical consequence of these would be a low bias in the calculated surrogate recoveries. The associated sample surrogate recoveries are well within the quality control limits. In the technical judgement of the laboratory, the sample data has not been impacted and no corrective action is required.

Metals Data

The recovery of sample TP-7-(1-3)/8-4(0-2) Matrix Spike exhibited a result below the quality control limits for Arsenic. The recovery of sample TP-7-(1-3)/8-4(0-2) Matrix Spike Duplicate exhibited results below the quality control limits for Arsenic and Cadmium. The RPD of sample TP-7-(1-3)/8-4(0-2) Matrix Spike and Matrix Spike Duplicate exceeded quality control limits for Arsenic. Sample matrix is suspect. However, the LCS was acceptable.

The recovery of sample TP-7-(1-3)/8-4(0-2) Matrix Spike and Matrix Spike Duplicate exhibited results below the quality control limits for Chromium, Lead and Mercury. The sample result is more than four times greater than the spike added. The RPD of sample TP-7-(1-3)/8-4(0-2) Matrix Spike and Matrix Spike Duplicate exceeded quality control limits for Lead. The LCS was acceptable.

The recoveries of sample TP-7-(1-3)/8-4(0-2) Post Spike exhibited results below the quality control limits for Chromium and Lead. However, the LCS was acceptable.

Wet Chemistry Data

No deviations from protocol were encountered during the analytical procedures.

NON-CONFORMANCE SUMMARY

Job#: A06-0821

STL Project#: NY3A9073

Site Name: TURNKEY - TECUMSEH REDEVELOPMENT SITE

General Comments

The enclosed data may or may not have been reported utilizing data qualifiers (Q) as defined on the Data Comment Page.

Soil, sediment and sludge sample results are reported on "dry weight" basis unless otherwise noted in this data package.

According to 40CFR Part 136.3, pH, Chlorine Residual, Dissolved Oxygen, Sulfite, and Temperature analyses are to be performed immediately after aqueous sample collection. When these parameters are not indicated as field (e.g. pH-Field), they were not analyzed immediately, but as soon as possible after laboratory receipt.

Sample dilutions were performed as indicated on the attached Dilution Log. The rationale for dilution is specified by the 3-digit code and definition.

Sample Receipt Comments

A06-0821

Sample Cooler(s) were received at the following temperature(s); 2.0 °C All samples were received in good condition.

GC Volatile Data

For method 8021, several compounds exhibited a percent difference greater than 15% from the expected amount in the associated continuing calibrations. The average of all analytes is within 15% and the associated laboratory quality control recoveries are compliant. No corrective action was required.

For method 8021, the recoveries and RPDs of Naphthalene in sample TP-5-3 (1.0-4.5) Matrix Spike and Matrix Spike Duplicate exceeded QC limits. The Matrix Spike Blank recoveries are compliant.

GC/MS Semivolatile Data

The analyte Bis(2-ethylhexyl) phthalate was detected in the Method Blank SMBLK02 (A6B1265702) at a level below the project established reporting limit. No corrective action is necessary for any values in Method Blanks that are below the requested reporting limits.

The spike recoveries for 2,4-Dinitrotoluene and N-Nitroso-Di-n-propylamine were below the laboratory quality control limits in the Matrix Spike TP-3-1-2 (0.0-1.0). Since the Matrix Spike Blank A6B1265701 recoveries were compliant, no corrective action was required.

Linear regression was used to calibrate analytes that were greater than 15% RSD in the initial calibration A6I0001087.

The spike recoveries for Pyrene were above the laboratory quality control limits in the Matrix Spike TP-3-1-2 (0.0-1.0) and Matrix Spike Duplicate TP-3-1-2 (0.0-1.0). Since the Matrix Spike Blank A6B1265701 recoveries were compliant, no corrective action was required.

The relative percent difference between the Matrix Spike TP-3-1-2 (0.0-1.0) and the Matrix Spike Duplicate TP-3-1-2 (0.0-1.0) exceeded quality control criteria for 1,2,4-Trichlorobenzene, 1,4-Dichlorobenzene 2,4-Dinitrotoluene, N-Nitroso-Di-n-propylamine and Pyrene. No further action was required.

Metals Data

The recoveries of sample TP-3-1-2 (1.0-3.0) Matrix Spike exhibited results above the quality control limits for Iron and Manganese, and below the quality control limits for Calcium, Magnesium and Zinc. The recoveries of sample TP-3-1-2 (1.0-3.0) Matrix Spike Duplicate exhibited results above the quality control limits for Iron and Manganese, and below the quality control limits for Aluminum, Calcium, Lead, Magnesium, and Zinc. The sample results are more than four times greater than the spike added. The RPD between sample TP-3-1-2 (1.0-3.0) Matrix Spike and Matrix Spike Duplicate exceeded the quality control criteria for Aluminum. The LCS was acceptable.

The recoveries of sample TP-3-1-2 (1.0-3.0) Matrix Spike exhibited results above the quality control limit for Barium, and below the quality control limits for Antimony and Arsenic. The recoveries of sample TP-3-1-2 (1.0-3.0) Matrix Spike Duplicate exhibited results above the quality control limit for Chromium, and below the quality control limit for Antimony and Copper. Sample matrix is suspect. The RPD between sample TP-3-1-2 (1.0-3.0) Matrix Spike and Matrix Spike Duplicate exceeded the quality control criteria for Chromium. The LCS was acceptable.

The recovery of sample TP-3-1-2 (1.0-3.0) Post Spike exhibited results below the quality control limits for Aluminum, Calcium, Chromium, Iron, Lead, Magnesium, Manganese, Silver, and Zinc. However, the LCS was acceptable.

The Serial Dilution of sample TP-3-1-2 (1.0-3.0) exceeded quality control limits for Calcium, Iron, Lead, and Zinc. However, the LCS was acceptable.

Wet Chemistry Data

The relative percent difference between the Matrix Spike and Matrix Spike duplicate exceed quality control limits for Total Cyanide on sample TP-3-1-2 1.0-3.0), though all individual analyte recoveries are compliant.

The results presented in this report relate only to the analytical testing and condition of the sample at receipt. This report pertains to only those samples actually tested. All pages of this report are integral parts of the analytical data. Therefore, this report should be reproduced only in its entirety.

NON-CONFORMANCE SUMMARY

Job#: A06-0824

SIL Project#: NY3A9073

Site Name: TURNKEY - TECUMSEH REDEVELOPMENT SITE

General Comments

The enclosed data may or may not have been reported utilizing data qualifiers (Q) as defined on the Data Comment Page.

Soil, sediment and sludge sample results are reported on "dry weight" basis unless otherwise noted in this data package.

According to 40CFR Part 136.3, pH, Chlorine Residual, Dissolved Oxygen, Sulfite, and Temperature analyses are to be performed immediately after aqueous sample collection. When these parameters are not indicated as field (e.g. pH-Field), they were not analyzed immediately, but as soon as possible after laboratory receipt.

Sample dilutions were performed as indicated on the attached Dilution Log. The rationale for dilution is specified by the 3-digit code and definition.

Sample Receipt Comments

A06-0824

Sample Cooler(s) were received at the following temperature(s); 2.0 °C All samples were received in good condition.

GC/MS Volatile Data

All samples were preserved to a pH less than 2.

Initial calibration standard curve A5I0001098-1 exhibited the %RSD of the compounds Bromomethane, Methylene Chloride, Acetone, and n-Butylbenzene as greater than 15%. However, the mean RSD of all compounds is 8.75%.

GC Volatile Data

For method 8021, several compounds exhibited a percent difference greater than 15% from the expected amount in the associated continuing calibrations. The average of all analytes is within 15% and the associated laboratory quality control recoveries are compliant. No corrective action was required.

GC/MS Semivolatile Data

Linear regression was used to calibrate all analytes that were greater than 15% RSD in the initial calibration A6I0001087.

The internal standard recoveries for 1,4-Dichlorobenzene-D4 and Chrysene-D12 was below the method defined quality control limit in sample TP-5-11(1.0-4.0). The sample was re-analyzed at a higher dilution with compliant results. Both analyses were included in the results. No further corrective action was required.

The analyte Bis(2-ethylhexyl) phthalate was detected in the Method Blank SBLK02 (A6B1265702) at a level below the project established reporting limit. No corrective action is necessary for any values in Method Blanks that are below the requested reporting limits.

Metals Data

The recovery of sample TP-5-(6-10)(0.0-1.0) Post Spike exhibited results below the quality control limits for Lead. However, the LCS was acceptable.

The Serial Dilution of sample TP-5-(6-10)(0.0-1.0) exceeded quality control limits for Cadmium, Chromium, and Lead. However, the LCS was acceptable.

Wet Chemistry Data

No deviations from protocol were encountered during the analytical procedures.

The results presented in this report relate only to the analytical testing and condition of the sample at receipt. This report pertains to only those samples actually tested. All pages of this report are integral parts of the analytical data. Therefore, this report should be reproduced only in its entirety.

NON-CONFORMANCE SUMMARY

Job#: <u>A06-0923</u>

STL Project#: NY3A9073

Site Name: TURNKEY - TECUMSEH REDEVELOPMENT SITE

General Comments

The enclosed data may or may not have been reported utilizing data qualifiers (Q) as defined on the Data Comment Page.

Soil, sediment and sludge sample results are reported on "dry weight" basis unless otherwise noted in this data package.

According to 40CFR Part 136.3, pH, Chlorine Residual, Dissolved Oxygen, Sulfite, and Temperature analyses are to be performed immediately after aqueous sample collection. When these parameters are not indicated as field (e.g. pH-Field), they were not analyzed immediately, but as soon as possible after laboratory receipt.

Sample dilutions were performed as indicated on the attached Dilution Log. The rationale for dilution is specified by the 3-digit code and definition.

Sample Receipt Comments

A06-0923

Sample Cooler(s) were received at the following temperature(s); 2.0 °C All samples were received in good condition.

GC Volatile Data

For method 8021 STARS, the closing continuing calibration verification is elevated and slightly above 15% difference for Napthalene. The associated samples do not show any detections above the CRQL for these compounds, therefore the original data is submitted as run.

GC/MS Semivolatile Data

Linear regression was used to calibrate analytes that were greater than 15% RSD in the initial calibration A6I0001087.

The analyte Bis(2-ethylhexyl) phthalate was detected in the Method Blank SBLK06 (A6B1278302) at a level below the project established reporting limit. No corrective action is necessary for any values in Method Blanks that are below the requested reporting limits.

The spike recovery for Acenaphthene was above the laboratory quality control limits in the Matrix Spike TP-10-1(1.0-4.5). Since the Matrix Spike Blank recoveries were compliant, no corrective action was required.

The spike recovery for N-Nitroso-Di-proplamine was above the laboratory quality control limits in the Matrix Spike Duplicate TP-10-1(1.0-4.5). Since the Matrix Spike Blank recoveries were compliant, no corrective action was required.

The relative percent difference between the Matrix Spike TP-10-1(1.0-4.5) and the Matrix Spike Duplicate TP-10-1(1.0-4.5) exceeded quality control criteria for Acenaphthene and N-Nitroso-Di-n-propylamine. No action required.

Metals Data

The recovery of sample TP-9-(125)0.0-1.0 Matrix Spike and Matrix Spike Duplicate exhibited results below the quality control limits for Arsenic (MS), Chromium (MSD), and Mercury (MSD). Sample matrix is suspect. However, the LCS was acceptable.

The recovery of sample TP-9-(125)0.0-1.0 Matrix Spike exhibited results below the quality control limits for Chromium(MS) and Lead. The sample result is more than four times greater than the spike added. The RPD of sample TP-9-(125)0.0-1.0 Matrix Spike and Matrix Spike Duplicate exceeded quality control limits for Lead. The ICS was acceptable.

The recoveries of sample TP-9-(125) 0.0-1.0 Post Spike exhibited results below the quality control limits for Chromium and Lead. However, the LCS was acceptable.

Wet Chemistry Data

The LCS, ERA Lot D037-541, recovery for Total Cyanide fell outside of the quality control limits, however, the value was within the manufacturer's recommended acceptance limits. No corrective action was taken.

The results presented in this report relate only to the analytical testing and condition of the sample at receipt. This report pertains to only those samples actually tested. All pages of this report are integral parts of the analytical data. Therefore, this report should be reproduced only in its entirety.

NON-CONFORMANCE SUMMARY

Job#: <u>A06-0936</u>

STL Project#: NY3A9073

Site Name: TURNKEY - TECUMSEH REDEVELOPMENT SITE

General Comments

The enclosed data may or may not have been reported utilizing data qualifiers (Q) as defined on the Data Comment Page.

Soil, sediment and sludge sample results are reported on "dry weight" basis unless otherwise noted in this data package.

According to 40CFR Part 136.3, pH, Chlorine Residual, Dissolved Oxygen, Sulfite, and Temperature analyses are to be performed immediately after aqueous sample collection. When these parameters are not indicated as field (e.g. pH-Field), they were not analyzed immediately, but as soon as possible after laboratory receipt.

Sample dilutions were performed as indicated on the attached Dilution Log. The rationale for dilution is specified by the 3-digit code and definition.

Sample Receipt Comments

A06-0936

Sample Cooler(s) were received at the following temperature(s); 2.0 °C All samples were received in good condition.

GC/MS Semivolatile Data

Linear regression was used to calibrate analytes that were greater than 15% RSD in the initial calibration A6I001087.

The analyte Bis(2-ethylhexyl) phthalate was detected in the Method Blank S Blank (A6B1278302) at a level below the project established reporting limit. No corrective action is necessary for any values in Method Blanks that are below the requested reporting limits.

GC Extractable Data

No deviations from protocol were encountered during the analytical procedures.

<u>Metals</u> Data

The recoveries of sample SS-10-13 Matrix Spike and Matrix Spike Duplicate exhibited results above the quality control limits for Chromium(MS) and below the quality control limits for Arsenic, Cadmium, Chromium(MSD), and Mercury. Sample matrix is suspect. The RPD of sample SS-10-13 Matrix Spike and Matrix Spike Duplicate exceeded quality control limits for Chromium. However, the LCS was acceptable.

The recovery of sample SS-10-13 Matrix Spike and Matrix Spike Duplicate exhibited results below the quality control limits for Lead. The sample result is more than four times greater than the spike added. The RPD of sample SS-10-13 Matrix Spike and Matrix Spike Duplicate exceeded quality control limits for Lead. The LCS was acceptable.

The Serial Dilution of sample SS-10-13 exceeded quality control limits for Chromium and Lead. However, the LCS was acceptable.

Wet Chemistry Data

No deviations from protocol were encountered during the analytical procedures.

The results presented in this report relate only to the analytical testing and condition of the sample at receipt. This report pertains to only those samples actually tested. All pages of this report are integral parts of the analytical data. Therefore, this report should be reproduced only in its entirety.

NON-CONFORMANCE SUMMARY

Job#: A06-0953, A06-1077

STL Project#: NY3A9073

SDG#: 0953

Site Name: TURNKEY - TECUMSEH REDEVELOPMENT SITE

General Comments

The enclosed data may or may not have been reported utilizing data qualifiers (Q) as defined on the Data Comment Page.

Soil, sediment and sludge sample results are reported on "dry weight" basis unless otherwise noted in this data package.

According to 40CFR Part 136.3, pH, Chlorine Residual, Dissolved Oxygen, Sulfite, and Temperature analyses are to be performed immediately after aqueous sample collection. When these parameters are not indicated as field (e.g. pH-Field), they were not analyzed immediately, but as soon as possible after laboratory receipt.

Sample dilutions were performed as indicated on the attached Dilution Log. The rationale for dilution is specified by the 3-digit code and definition.

Sample Receipt Comments

A06-0953

Sample Cooler(s) were received at the following temperature(s); 2@2.0 °C All samples were received in good condition.

A06-1077

Sample Cooler(s) were received at the following temperature(s); 2@2.0 °C All samples were received in good condition.

GC/MS Volatile Data

No deviations from protocol were encountered during the analytical procedures.

GC Volatile Data

For method 8021, the recovery of surrogate aaa-Trifluorotoluene was outside quality control limits for sample TP-10-6 1.0-5.5. However, the chromatogram shows clear evidence of matrix interference and all other quality control samples met acceptance criteria. Therefore, no further corrective action was performed and the data is accepted.

For method 8021, Methyl tert-Butyl Ether exhibited a percent difference greater than 15% from the expected amount in the ending continuing calibration. The average of all analytes is within 15% and the associated laboratory quality control recoveries are compliant. No corrective action was required.

GC/MS Semivolatile Data

The surrogate recovery for 2,4,6-Tribromophenol was below the laboratory quality control limits for sample SS-23. Based on US EPA CLP National Functional Guidelines for Data Review, one surrogate in either fraction (base/neutral or acid fraction) may have a recovery outside of the control limit. All analytes associated with that surrogate should be considered biased low.

2,3,7,8,-TCDD was subcontracted to STL Sacramento. The complete subcontract report is included in this report as Appendix A. Comments pertaining to 2,3,7,8,-TCDD may be found within the comment summary of the subcontract report.

GC Extractable Data

For method 8082, the recovery of surrogate Decachlorobiphenyl in several sample is outside of established quality control limits due to the sample matrix. The recovery of surrogate Tetrachloro-m-xylene is within quality control limits; no corrective action is required.

For method 8082, samples SS-18 and SS-04 required dilution prior to analysis due to the high concentration of target analytes. The surrogate and spike recoveries are diluted out of all sample extracts with a dilution factor of 10% or greater.

For method 8082, the recovery and the relative percent difference for sample SS-(19-21) Matrix Spike are outside quality control limits for Aroclor 1260, though the Matrix Spike Blank recoveries are compliant, no corrective action necessary.

All 8081 samples required dilution prior to analysis due to high concentrations of target analytes. The surrogates were diluted out of extracted samples with a dilution of 10% or greater.

For method 8081, several compounds exhibited a percent difference greater than 15% from the expected amount in the associated continuing calibrations. The average of all analytes is within 15% and the associated laboratory quality control recoveries are compliant. No corrective action was required.

For method 8082, several compounds exhibited a percent difference greater than 15% from the expected amount in the associated continuing calibrations. The average of all analytes is within 15% and the associated laboratory quality control recoveries are compliant. No corrective action was required.

For method 8151, the Matrix Spike Blank Duplicate recovery for 2,4-D is slightly above quality control limits. The Matrix Spike Blank recoveries as well as the associated RPDs are compliant, no further corrective action was necessary.

For method 8151, several compounds exhibited a percent difference greater than 15% from the expected amount in the associated continuing calibrations. The average of all analytes is within 15% and the associated laboratory quality control recoveries are compliant. No corrective action was required.

<u>Metals Data</u>

No deviations from protocol were encountered during the analytical procedures.

Wet Chemistry Data

The LCS, ERA D037-541, recovery for Total Cyanide fell outside of the quality control limits, however, the value was within the manufacturer's recommended acceptance limits. No corrective action was taken.

The U.S. EPA has determined the applicability of the Reactive Cyanide and Sulfide tests to be limited in part due to the poor recoveries obtainable with their procedures. The April 1998 memorandum entitled 'Withdrawal of Cyanide and Sulfide Reactivity Guidance' details the justification for this determination. Therefore, in conjunction with these test results, the U.S. EPA recommends the data user apply process or waste knowledge to determine if their waste exhibits the characteristic of reactivity.

The results presented in this report relate only to the analytical testing and condition of the sample at receipt. This report pertains to only those samples actually tested. All pages of this report are integral parts of the analytical data. Therefore, this report should be reproduced only in its entirety.

Date: 02/16/2006 Time: 13:04:42

Dilution Log w/Code Information For Project NY3A9073, SDG 0953

9/1963 Page:

Rept: AN1266R

Client Sample ID	Lab Sample ID	Parameter (Inorganic)/Method (Organic)	Dilution	Code
TP-10-6 0.0-1.0	A6095301	8260	10.00	007
TP-10-6 1.0-5.5	A6095302	8021	40.00	800
TP-10-6 1.0-5.5	A6095302	8260	10.00	007
SS-35	A6095303	8081	10.00	002
SS-(19-21)	A6095304	8270	20.00	800
SS-23	A6095305	8270	20.00	012
ss-23	A6095305	Mercury - Total	5.00	
SS-29	A6095308	8270	10.00	800
SS-08	A6095309	8082	4.00	800
ss-30	A6095310	Mercury - Total	10.00	
SS-07	A6095311	8082	5.00	800
SS-24	A6095312	8270	20.00	800
MW-13A 0.0-1.0	A6095313	8081	50.00	002
SS-27	A6095315	8270	20.00	800
ss-1-2	A6095316	8270	10.00	012
SS-1-2	A6095316	Mercury - Total	5.00	
SS-36	A6095317	8270	5.00	800
SS-18	A6095319	8082	10.00	800
SS-34	A6095320	8270	20.00	800
SS-34	A6095320	Mercury - Total	10.00	
SS-26	A6095321	Mercury - Total	10.00	
SS-04	A6095323	8082	10.00	800
BLIND DUPLICATE #7	A6095326	8270	10.00	012

Dilution Code Definition:

- 002 sample matrix effects
- 003 excessive foaming
- 004 high levels of non-target compounds
- 005 sample matrix resulted in method non-compliance for an Internal Standard
- $006\ \text{-}$ sample matrix resulted in method non-compliance for Surrogate
- 007 nature of the TCLP matrix
- 008 high concentration of target analyte(s)
- 009 sample turbidity
- 010 sample color
- 011 insufficient volume for lower dilution
- 012 sample viscosity
- 013 other

Data Validation Services

120 Cobble Creek Road P. O. Box 208

North Creek, N. Y. 12853

Phone 518-251-4429

Facsimile 518-251-4428

May 24, 2006

Bryan Hann Benchmark Env. Engineers 726 Exchange St. Suite 624 Buffalo, NY 14210

RE:

Data Usability Summary Report for the Tecumseh Phase I BPA site-soil samples STL-Buffalo SDG No. A06-2431 and A06-2432

Dear Mr. Hann:

Review has been completed for the data package generated by Severn Trent Laboratories that pertains to water samples collected 3/06/06 and 3/07/06 at the Tecumseh site. Seven samples and a field duplicate were processed for TCL Base/neutrals by USEPA SW846 method EPA 8270C, TCL PCBs by EPA 8082, 5 metals and cyanide by EPA 6010B/7470/9012, and STARS volatiles by EPA 8021. One of these was also analyzed for dissolved metals. One additional sample was processed for a full list of volatiles (including STARS) by EPA 8260B, TCL semivolatiles by EPA 8270C, TCL PCBs by EPA 8082, and TAL metals/CN by EPA 6010B/7470/9012. Trip blanks were also processed.

The data packages submitted contain full deliverables for validation, but this usability report is generated from review of the summary form information, with review of sample raw data, and limited review of associated QC raw data. Full validation has not been performed. However, the reported summary forms have been reviewed for application of validation qualifiers, using guidance from the USEPA Region 2 validation SOPs, the USEPA National Functional Guidelines for Data Review, the specific laboratory methodologies, and professional judgment, as affects the usability of the data. The following items were reviewed:

- * Laboratory Narrative Discussion
- * Custody Documentation
- * Holding Times
- * Surrogate and Internal Standard Recoveries
- * Matrix Spike Recoveries/Duplicate Correlations
- * Field Duplicate Correlations
- * Preparation/Calibration Blanks
- * Control Spike/Laboratory Control Samples
- * Instrumental Tunes
- Calibration Standards
- * ICP Serial Dilution
- * CRI/CRA Standards
- * Instrument IDLs

Those items listed above which show deficiencies are discussed within the text of this narrative. All of the other items were determined to be acceptable for the DUSR level review.

In summary, sample analyte values/reporting limits are usable as reported, or usable with minor qualification as estimated ("J" qualifier) due to typical processing or matrix effects. No data are rejected.

Copies of the laboratory case narratives and the sample identification summary forms are attached to this text, and should be reviewed in conjunction with this report. Included with this submission are red-ink edited results forms, reflecting final sample results with edits and qualifications recommended within this report.

The following text discusses quality issues of concern.

General

Blind field duplicate evaluations were performed on MW-14A, and show good correlations for all analytes.

Laboratory raw data should include the client ID.

STARS Volatiles by EPA 8021 and TCL Volatiles by EPA 8260B

Matrix spikes for TCL volatiles by EPA 8260B on MWN-12A show acceptable accuracy and precision.

Holding time requirements were met, surrogate and internal standard responses meet protocol requirements, and blanks show no contamination.

Calibrations standards showed acceptable responses, with the exception of that for 1,2-dibromo-3-chloropropane (32%D) in the continuing calibration associated with MWN-12A. The result for that compound in the sample is therefore qualified as estimated, with a possible low bias.

The confirmation analyses for the EPA 8021 STARS volatile detections were not provided in the data package, although the detections reported in the primary analyses were denoted on those raw data as having been confirmed. Full validation would require review of the confirmation detector data.

TCL and B/N Semivolatile Analyses by 8270C

Matrix spikes of TCL analytes on MWN-12A show accuracy and precision within validation guidelines.

Holding times were met. Surrogate and internal standard recoveries, and the instrumental tunes were acceptable. Calibrations standards showed acceptable responses with laboratory requirements and validation guidelines.

One of the method blanks shows a low level of naphthalene. The associated samples show no detection of that compound, and reported results are therefore not affected.

No qualifications to the data are indicated.

TCL PCB Analyses by EPA 8082

Matrix spikes of Aroclors 1016 and 1260 in MWN-12A show acceptable accuracy and precision.

Surrogate standard recoveries are acceptable. Holding times were met and blanks showed no contamination. Calibration standards meet protocol requirements.

No qualifications to the data are indicated.

Metals/CN by EPA6010B, EPA7470, EPA9012

Matrix spikes were performed for the TAL analytes on MWN-12A, and show acceptable recoveries and duplicate correlations, with the exception of those for cyanide (118% and 116%, above 115%). Cyanide also produced elevated recoveries in the matrix spike of Blind Duplicate (123%). Detected results for cyanide in the samples are qualified as estimated, and may have a high bias. Matrix spikes of the 5 metals on MWN-15A show acceptable accuracy and precision.

Arsenic results for the samples processed for 5 elements are qualified as estimated, with a possible low bias, due to low recoveries (77% and 76%) in the low-level CRI standard.

The ICP serial dilution evaluation of MWN-12A shows acceptable correlations.

Holding times were met. Blanks associated with sample analyses show no contamination above the reporting limit.

Please do not hesitate to contact me if you have comments or questions regarding this report.

Very truly yours,

Judy Harry

VALIDATION QUALIFIER DEFINITIONS

DATA QUALIFIER DEFINITIONS

The following definitions provide brief explanations of the national qualifiers assigned to results in the data review process. If the Regions choose to use additional qualifiers, a complete explanation of those qualifiers should accompany the data review.

- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- J The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- N The analysis indicates the present of an analyte for which there is presumptive evidence to make a "tentative identification."
- NJ The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.
- UJ The analyte was not detected above the reported sample quantitation limit.

 However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.

4

LABORATORY SAMPLE IDs AND CASE NARRATIVES

SAMPLE SUMMARY

			SAMPI	ED	RECEIVI	3 D
LAB SAMPLE ID	CLIENT SAMPLE ID	MATRIX	DATE	TIME	DATE	TIME
A6243105	BLIND DUP	WATER			03/07/2006	
A6243102	MW-13A	WATER	03/06/2006	13:01	03/07/2006	11:20
A6243103	MW-14A	WATER	03/06/2006	13:48	03/07/2006	11:20
A6243104	MW-17A	WATER			03/07/2006	
A6243106	MW-18A	WATER			03/07/2006	
A6243101	A8-WM	WATER			03/07/2006	
A6243201	MWN 12A	WATER			03/07/2006	
A6243201MS	MWN 12A	WATER	03/07/2006	12:01	03/07/2006	14:32
A6243201SD	MWN 12A	WATER			03/07/2006	
A6243108	MWN 15A	WATER	03/07/2006	09:44	03/07/2006	11:20
A6243107	MWN 16A	WATER	03/07/2006	09:04	03/07/2006	11:20
A6243109	TRIP BLANK	WATER	03/07/2006		03/07/2006	11:20
A6243202	TRIP BLANK	WATER	03/07/2006	•	03/07/2006	14:32

METHODS SUMMARY

Job#: <u>A06-2431, A06-2432</u>

STL Project#: NY3A9073

SDG#: 2431

Site Name: TURNKEY - TECUMSEH REDEVELOPMENT SITE

·	
	ANALYTICAL
PARAMETER	METHOD
STEELFIELDS - 8260 - TCL VOLATILES + STARS - W	SW8463 8260
BETHLEHEM - 8021 STARS - W	SW8463 8021
METHOD 8270 - TCL BASE NEUTRALS COMPOUNDS	SW8463 8270
METHOD 8270 - TCL SEMI-VOLATILE ORGANICS	SW8463 8270
METHOD 8082 - POLYCHLORINATED BIPHENYLS	SW8463 8082
Aluminum - Total	SW8463 6010
Antimony - Total	SW8463 6010
Arsenic - Soluble	SW8463 6010
Arsenic - Total	SW8463 6010
Barium - Total	SW8463 6010
Beryllium - Total	SW8463 6010
Cadmium - Soluble	SW8463 6010
Cadmium - Total	SW8463 6010
Calcium - Total	SW8463 6010
Chromium - Soluble	SW8463 6010
Chromium - Total	SW8463 6010
Cobalt - Total	SW8463 6010
Copper - Total	SW8463 6010
Iron - Total	SW8463 6010
Lead - Soluble	SW8463 6010
Lead - Total	SW8463 6010
Magnesium - Total	SW8463 6010
Manganese - Total	SW8463 6010
Mercury - Soluble	SW8463 7470
Mercury - Total	SW8463 7470
Nickel - Total	SW8463 6010
Potassium - Total	SW8463 6010
Selenium - Total	SW8463 6010
Silver - Total	SW8463 6010
Sodium - Total	SW8463 6010
Thallium - Total	SW8463 6010
Vanadium - Total	SW8463 6010
Zinc - Total	SW8463 6010
ALTIC - TOTAL	PHO-502 00TO
Cyanide - Total	SW8463 9012

"Test Methods for Evaluating Solid Waste Physical/Chemical Methods (SW846), Third Edition, 9/86; Update I, 7/92; Update IIA, 8/93; Update II, 9/94; Update IIB, 1/95; Update III, 12/96.

SW8463

NON-CONFORMANCE SUMMARY

Job#: <u>A06-2431, A06-2432</u>

STL Project#: NY3A9073

SDG#: 2431

Site Name: TURNKEY - TECUMSEH REDEVELOPMENT SITE

General Comments

The enclosed data may or may not have been reported utilizing data qualifiers (Q) as defined on the Data Comment Page.

Soil, sediment and sludge sample results are reported on "dry weight" basis unless otherwise noted in this data package.

According to 40CFR Part 136.3, pH, Chlorine Residual, Dissolved Oxygen, Sulfite, and Temperature analyses are to be performed immediately after aqueous sample collection. When these parameters are not indicated as field (e.g. pH-Field), they were not analyzed immediately, but as soon as possible after laboratory receipt.

Sample dilutions were performed as indicated on the attached Dilution Log. The rationale for dilution is specified by the 3-digit code and definition.

Sample Receipt Comments

A06-2431

Sample Cooler(s) were received at the following temperature(s); 2 @ 2.0 °C All samples were received in good condition.

A06-2432

Sample Cooler(s) were received at the following temperature(s); 2 @ 2.0 °C. All samples were received in good condition.

GC/MS Volatile Data

All samples were preserved to a PH less than 2.

Initial calibration standard curve A6I0001206-1 exhibited the %RSD of several compounds as greater than 15%. However, the mean RSD of all compounds is 8.22%.

GC_Volatile Data_

No deviations from protocol were encountered during the analytical procedures.

GC/MS Semivolatile Data

Initial calibration standard curve A6I0001186 exhibited the %RSD of the compound 1,1'-Biphenyl as greater than 15%. However, the mean RSD of all compounds is 9.90%.

Linear regression was used to calibrate analytes that were greater than 15% RSD in the initial calibration A6I0001229.

The analyte Naphthalene was detected in Method Blank SBLK58 (A6B1493103) at a level below the project established reporting limit. No corrective action is necessary for any values in Method Blanks that are below the requested reporting limits.

GC Extractable Data

For method 8082, the Method Blank and Matrix Spike Blank extracts were treated with Copper prior to analysis.

Metals Data

The recovery of sample MWN 12A Post Spike exhibited a result below the quality control limits for Silver. However, the LFB was acceptable.

Wet Chemistry Data

The recovery of sample BLIND DUP Matrix Spike exhibited results above the quality control limits for Total Cyanide. However, the LCS was acceptable.

The recoveries of sample MWN 12A Matrix Spike and Matrix Spike Duplicate exhibited results above the quality control limits for Total Cyanide. However, the LCS was acceptable.

The results presented in this report relate only to the analytical testing and condition of the sample at receipt. This report pertains to only those samples actually tested. All pages of this report are integral parts of the analytical data. Therefore, this report should be reproduced only in its entirety.

APPENDIX E

FISH AND WILDLIFE RESOURCE IMPACT ANALYSIS CHECKLIST

APPENDIX 3C

Fish and Wildlife Resources Impact Analysis Decision Key

		If YES Go to:	If NO Go to:
1.	Is the site or area of concern a discharge or spill event?	13.	2.
2.	Is the site or area of concern a point source of contamination to the groundwater which will be prevented from discharging to surface water? Soil contamination is not widespread, or if widespread, is confined under buildings and paved areas.	13.	3
3.	Is the site and all adjacent property a developed area with buildings, paved surfaces and little or no vegetation?	4.	9.
4.	Does the site contain habitat of an endangered, threatened or special concern species?	Section 3.10.1	(5.)
5.	Has the contamination gone off site?	6.	(14.)
6.	Is there any discharge or erosion of contamination to surface water or the potential for discharge or erosion of contamination?	7.	14.
7.	Are the site contaminants PCBs, pesticides or other persistent, bioaccumulable substances?	Section 3.10.1	8.
8.	Does contamination exist at concentrations that could exceed SCGs or be toxic to aquatic life if discharged to surface water?	Section 3.10.1	14.
9.	Does the site or any adjacent or downgradient property contain any of the following resources? a. Any endangered, threatened or special concern species or rare plants or their habitat b. Any NYSDEC designated significant habitats or rare NYS Ecological Communities c. Tidal or freshwater wetlands d. Stream, creek or river e. Pond, lake, lagoon f. Drainage ditch or channel g. Other surface water feature h. Other marine or freshwater habitat i. Forest j. Grassland or grassy field k. Parkland or woodland l. Shrubby area		
	m. Urban wildlife habitat n. Other terrestrial habitat	11.	10.
10.	Is the lack of resources due to the contamination?	Section 3.10.1	14.
11.	Is the contamination a localized source which has not migrated and will not migrate from the source to impact any on-site or off-site resources?	14.	12.
12.	Does the site have widespread soil contamination that is not confined under and around buildings or paved areas?	Section 3.10.1	13.
13.	Does the contamination at the site or area of concern have the potential to migrate to, erode into or otherwise impact any on-site or off-site habitat of endangered, threatened or special concern species or other fish and wildlife resource? (See #9 for list of potential resources. Contact NYSDEC for information regarding endangered species.)	Section 3.10.1	14.
14.	No Fish and Wildlife Resources Impact Analysis needed.		