Remedial Investigation/ Alternatives Analysis Report (RI/AAR)

Phase III Business Park Tecumseh Redevelopment, Inc. Lackawanna, New York

October 2010 Revised September 2011

0071-009-320

Prepared For:

Tecumseh Redevelopment, Inc.

Prepared By:

PHASE III BUSINESS PARK AREA LACKAWANNA, NEW YORK

October 2010
Revised September 2011
0071-009-320

Prepared for:

Tecumseh Redevelopment Inc.

Phase III Business Park Area

Table of Contents

1.0	INTRODUCTION						
	1.1	Background and History					
	1.2	Purpose and Scope					
2.0	Cres	T. Descontrations					
2.0		ITE DESCRIPTION					
	2.1	Site Topography and Drainage					
	2.2	Remaining Site Structures					
		2.2.1 Electrical Department					
		2.2.2 WQCS#3A					
	2.3	Site Geology and Hydrogeology					
	2.4	Utilities					
	2.5	Wetlands and Floodplains					
3.0	REMEDIAL INVESTIGATION APPROACH & RATIONALE						
	3.1	General					
	3.2	Constituents of Potential Concern	10				
	3.3	Soil/Fill					
		3.3.1 Soil/Fill Sampling Methodology					
		3.3.2 Methods of Chemical Analysis					
	3.4	Groundwater	12				
		3.4.1 Monitoring Well Installation	1.				
		3.4.2 Monitoring Well Installation Methodology					
		3.4.3 Monitoring Well Development					
		3.4.4 Groundwater Elevation Measurements					
		3.4.5 Monitoring Well Sampling	1.				
		3.4.6 Methods of Chemical Analysis					
	3.5	Former Soaking Pit Building Foundation Investigation	1				
	3.6	Quality Assurance/Quality Control	1				
	3.7	Data Usability Summary	1				
4.0	RII	FINDINGS	1				
•••	4.1	Field Observations					
	4.2	Soil/Fill					
	1.2	4.2.1 VOCs					
		4.2.2 SVOCs					
		4.2.3 Inorganic Compounds					
		4.2.4 PCBs					
	4.3	Groundwater					
		4.3.1 VOCs					
		4.3.2 SVOCs					
		4.3.3 Inorganic Compounds	2				
		4.3.4 PCBs	2				

Phase III Business Park Area

Table of Contents

	4.4	Soaking Pit Building ACM Sample	21			
5.0	FAT	E AND TRANSPORT OF COPCS	22			
	5.1	Airborne Pathways				
		5.1.1 Fugitive Dust				
		5.1.2 Volatilization				
	5.2	Waterborne Pathways				
		5.2.1 Surface Water Runoff				
		5.2.2 Leaching	2			
	5.3	Exposure Pathways	23			
6.0	-		Імраст			
ASSE		ENT				
	6.1	Human Health Exposure Assessment				
		6.1.1 Potential Receptors				
		6.1.3 Contaminant Release and Transport Mechanisms				
		6.1.4 Point of Exposure				
		6.1.5 Route of Exposure				
		6.1.6 Exposure Assessment Summary				
	6.2	Fish and Wildlife Impact Assessment (FWIA)				
7.0	SUM	IMARY AND CONCLUSIONS	30			
8.0	DEV	VELOPMENT OF REMEDIAL ACTION OBJECTIVES AND GENERAL RE	ESPONSE			
ACT		•••••••••••••••••••••••••••••••				
	8.1	Remedial Action Objectives	32			
	8.2	General Response Actions				
	8.3	Standards, Criteria and Guidance (SCGs)				
		8.3.1 Chemical-Specific SCGs				
		8.3.2 Location-Specific SCGs				
		8.3.3 Action-Specific SCGs				
	8.4	Future Use Evaluation	35			
9.0	VOLUME, NATURE, AND EXTENT OF CONTAMINATION					
	9.1	Comparison to Unrestricted SCOs				
	9.2	Comparison to Restricted-Commercial SCOs				
	9.3	Hotspot Soil/Fill				
	9.4	Asbestos Waste				
10.0	DEV	VELOPMENT AND SCREENING OF REMEDIAL ALTERNATIVES	39			
		Development of Alternatives	39			

Phase III Business Park Area

Table of Contents

	10.2	Evalua	tion of A	lternatives	39
		10.2.1	Soil/Fill .	Alternative 1: No Action	4
		10.2.2	Soil/Fill.	Alternative 2: Excavation of Impacted Soil/Fill to Unrestricted SCOs	42
		10.2.3		Alternative 3: Hotspot Soil/Fill Removal with Placement of Soil Cover Syste	
		Redevelo			
		10.2.4	Soil/Fill	Alternative 4: Hotspot Soil/Fill Removal with Deferred Soil Cover Sys	tem durin
		10.2.5	Asbestos l	Waste Alternative 1: Asbestos Removal with Off-Site Disposal	52
		10.2.6	Asbestos 1	Waste Alternative 2: Restricted Use with No Further Development	54
				Waste Alternative 3: Restricted Use as On-Site Soil/Fill Biotreatment Pad	
	10.3	Propos	sed Reme	dy	57
		10.3.1		Alternatives	
		10.3.2	Asbestos 1	Waste Alternatives	58
11 0	Pos	r_Rfmi	FDIAI R	EQUIREMENTS	50
11.0	11.1			ng Report	
	11.2				
	11.2		0	ring and Institutional Control Plan	
		11.2.2		nitoring Plan	
		11.2.3		on and Maintenance Plan	
		11.2.4		ons, Reporting, and Certifications	
				Inspections	
				Reporting	
				Certification	
				Corrective Measures Plan	
12.0	REF	ERENC	ES		65

Phase III Business Park Area

Table of Contents

LIST OF TABLES

Table 1	Constituents of Potential Concern (COPCs)
Table 2	Expanded Parameter List
Table 3a	Analytical Program Summary for Phase III BPA
Table 3b	Analytical Program Summary for Phase IIIA BPA
Table 4	Groundwater Monitoring Well Construction Details
Table 5	Summary of Groundwater Elevations – January 29, 2010
Table 6a	Summary of Soil Analytical Data, Phase III BPA- Unrestricted Use SCOs
Table 6b	Summary of Soil Analytical Data, Phase III BPA – Commercial Use SCOs
Table 7a	Summary of Soil Analytical Data, Phase IIIA BPA – Unrestricted Use SCOs
Table 7b	Summary of Soil Analytical Data, Phase IIIA BPA- Commercial Use SCOs
Table 8	Summary of Groundwater Analytical Data – Phase III BPA
Table 9	Summary of Groundwater Analytical Data – Phase IIIA BPA
Table 10	Potential Chemical-Specific SCGs
Table 11	Potential Location-Specific SCGs
Table 12	Potential Action-Specific SCGs
Table 13	Soil/Fill Alternative 2: Excavation of Impacted Soil/Fill to Unrestricted SCOs
Table 14	Soil/Fill Alternative 3: Hotspot Soil/Fill Removal with Placement of Soil Cover System Prior to Redevelopment
Table 15	Soil/Fill Alternative 4: Hotspot Soil/Fill Removal with Deferred Soil Cover System During Redevelopment
Table 16	Asbestos Waste Alternative 1: Asbestos Removal with Off-Site Disposal
Table 17	Asbestos Waste Alternative 2: Restricted Use with No Further Development
Table 18	Asbestos Waste Alternative 3: Restricted Use as On-Site Soil/Fill Biotreatment Pad

REMEDIAL INVESTIGATION/ALTERNATIVES ANALYSIS REPORT Phase III Business Park Area

Table of Contents

LIST OF FIGURES

Figure 1	Site Location and Vicinity Map
Figure 2	Tecumseh Site Plan
Figure 3	RI Sample Locations
Figure 4	Fill Unit Isopotential Map – January 29, 2010
Figure 5	Soil/Fill Hotspot Areas to be Excavated
Figure 6	Location of Former Tunnel at Soaking Pit Building

APPENDICES

Appendix A	Test Pit Excavation Logs, Asbestos Landfill Logs, and Well Sampling Logs
Appendix B	Boring Logs and Well Completion Details
Appendix C	Data Usability Summary Reports
Appendix D	Analytical Data Packages (electronic copy)
Appendix E	Sample Results for ALF-02
Appendix F	Fish and Wildlife Resource Impact Analysis Checklist
Appendix G	95% Upper Confidence Limit Calculations
Appendix H	Land Use Evaluation

REMEDIAL INVESTIGATION/ALTERNATIVES ANALYSIS REPORT Phase III Business Park Area

Certification

I, Thomas H. Forbes, certify that I am currently a NYS registered professional engineer as defined in 6 NYCRR Part 375 and that this RI/AA Report was prepared in accordance with all applicable statutes and regulations and in substantial conformance with the DER Technical Guidance for Site Investigation and Remediation (DER-10) and that all activities were performed in full accordance with the DER-approved work plan and any DER-approved modifications.

Signature of Environmental Professional

Seal

1.0 Introduction

1.1 Background and History

Tecumseh Redevelopment Inc. (Tecumseh) owns approximately 1,100-acres of land located on the west side of New York State Route 5 (Hamburg Turnpike) in the City of Lackawanna, NY (see Figures 1 and 2). The majority of Tecumseh's property is located in the City of Lackawanna (the City), with portions of the property extending into the Town of Hamburg. Tecumseh's property is bordered by NY State Route 5 on the east; Lake Erie to the west and northwest; and other industrial properties to the south and the northeast.

The property was formerly used for the production of steel, coke, and related products by Bethlehem Steel Corporation (BSC). Steel production on the property was discontinued in 1983 and the coke ovens ceased activity in 2000. Tecumseh acquired its Lackawanna property from BSC's bankruptcy estate in 2003.

A Resource Conservation and Recovery Act (RCRA) Facility Investigation (RFI) of all Solid Waste Management Units (SWMUs) located on the 1,100-acre property was initiated by BSC under an Administrative Order issued by the United States Environmental Protection Agency (USEPA) in 1990. Tecumseh completed the RFI in January 2005 (Ref. 1). USEPA subsequently determined that the site investigation requirements of the 1990 Administrative Order were satisfied, and Tecumseh's obligations under the 1990 Administrative Order were terminated. Tecumseh has entered into an Order on Consent with the New York State Department of Environmental Conservation (NYSDEC) to undertake corrective measures at certain solid waste management units (SWMUs) primarily on the western slag fill and coke manufacturing portion of the property. As indicated on Figure 2, the CMS area encompasses approximately 500 acres.

Outside of the CMS Area Tecumseh designated five parcels for redevelopment under the New York State Brownfield Cleanup Program (BCP). These include: The Phase I, IA, II and III Business Park Areas, which are at various points of investigation and cleanup under the BCP and are slated for commercial/industrial redevelopment, and the Steel Winds Site, which was remediated under the BCP and redeveloped as a commercial wind farm.

The 149-acre Phase III Business Park Area, which is the subject of this Remedial Investigation and Alternatives Analysis Report (RI/AAR), formerly housed several facilities used in BSC's steel manufacturing processes. As more fully described in Section 2.0, these

included a basic oxygen furnace (BOF) plant; an open hearth and furnace building; a sinter plant; finishing mills; mould warming; rail servicing; and electrical substations.

Fifteen historic SWMUs (i.e., P-17, and P-19 through P-32) are present on the Phase III Business Park Site (see Figure 3). BSC performed assessments for these SWMUs during the RCRA Facility Assessment (RFA; Ref. 2) and subsequent RFI. Based on the findings, USEPA Region II issued "No Further Action" determination for the identified SWMUs within the Business Park III area (Ref. 1).

Remedial Investigation activities on the eastern portion of the Phase III Business Park Area were initiated in August 2008. At that time the western side of the Phase III parcel was slated to be carved out under a separate BCP application and redeveloped as a latter phase of the Steel Winds project. However, the planned developer was unable to fulfill its responsibilities under the Brownfield Cleanup Agreement (BCA) and Tecumseh elected to resume obligations for this portion of the Site under the original Phase III Business Park Area BCA. Supplemental RI activities addressing the western portion of the Site were therefore undertaken in late 2009 through early 2010.

1.2 Purpose and Scope

This RI/AA Report has been prepared on behalf of Tecumseh to present RI findings, describe environmental conditions within the Site, and evaluate and recommend a remedial approach.

This Report contains the following sections.

- Section 2.0 presents a description of the Site and summarizes prior assessments.
- Section 3.0 presents a discussion of the RI sampling and methodology.
- Section 4.0 presents the nature and extent of impact in Site media.
- Section 5.0 discusses RI findings and describes potential chemical constituent migration pathways.
- Section 6.0 provides a human health exposure assessment and fish and wildlife resources impact assessment.
- Section 7.0 presents RI summary and conclusions
- Sections 8.0 through 10.0 present the development and evaluation of remedial alternatives

- Section 11.0 identifies post-remedial requirements that will be followed to assure the efficacy of the remedy
- Section 12.0 presents cited references.

2.0 SITE DESCRIPTION

The Phase III Business Park is located west of the Phase II Business Park Area, east of other Tecumseh property, north of lands owned by South Buffalo Railroad Company, and south of the Gateway Metroport Ship Canal and land currently owned by Gateway Trade Center (see Figures 1 and 2). The Site is transected by Smokes Creek, which is subject to further assessment in the RCRA CMS and is specifically excluded from the BCP Site. West of Smokes Creek, the Site is segregated from the Phase II Business Park Area by the South Return Water Trench, a man-made surface water discharge channel.

The Phase III Business Park Site formerly housed a portion of BSC's steelmaking operations. Buildings and operations historically located on the Site are shown on Figure 3. As indicated, prior facilities within the Phase III Business Park boundaries included:

- A 45"-90" Universal Slabbing Mill and Slabbing Mill Return Water Trench (filled). This facility encompassed oil and grease houses, electrical equipment (including transformers), and a "soaking pit building" that was used for reheating steel ingots prior to milling. SWMUs P-28 through P-32 (including scale and scarfer pits, settling tank and sand filters, all of which received 'No Further Assessment' designation by the USEPA) are associated with the former Slabbing Mill. The former soaking pit building foundation is allegedly filled with asbestos containing materials (ACM).
- An electrical materials storage building and yard.
- A Basic Oxygen Furnace (BOF) Plant. This facility included fuel oil above-ground storage tanks (ASTs), electrical equipment (including transformers), dust collectors, and an oil house.
- Water Quality Control Station (WQCS) #3. This facility included the scalping tanks, primary thickener, north thickener, south thickener, and final thickeners; multiple USTs, and electrical equipment (including transformers). As indicated on Figure 3, WQCS #3 was comprised of two nearby areas, with several of the northern WQCS #3 buildings and thickeners still standing. SWMUs P-17, P-19, and P-21 through P-27, all of which received "No Further Assessment" designation by the USEPA, are associated with the former WQCS #3.
- Open Hearth No.3, which contained among other features: 11 brick-lined furnaces; electrical equipment (including transformers); a tar pump house; stripper building; multiple ASTs and USTs; a stockyard; and precipitators.
- The Sintering Building, which contained two 105' chimneys; a scrubber (SWMU P-20); electrical equipment (transformers); and miscellaneous ASTs and underground storage tanks (USTs).

TURNKEY

ENVIRONMENTAL

RESTORATION, LLC

0071-009-320 4

Miscellaneous office production support buildings, and Welfare buildings.

2.1 Site Topography and Drainage

The Phase III Business Park Area Site is generally characterized as a flat area covered by early succession trees, brush, grasses and other low lying vegetation. Due to the nature of the slag/soil fill there is very little ponded storm water or surface runoff as most of the precipitation seeps into the highly permeable slag/soil fill.

2.2 Remaining Site Structures

The Site contains few structural remnants and other features associated with historic integrated steel-making facilities. These include remaining buildings of the former WQCS No. 3, the Electrical Department building, remnants of former overhead coke gas and active natural gas conveyance lines on the northern side of the property, access roads, electrical power lines, and railroad tracks. As indicated above, immediately east of the Site boundary is a man-made drainage channel designated as the South Return Water Trench that begins near WQCS No. 3 and flows south to Smokes Creek (see Figure 3). Historically and currently, the trench collects and discharges groundwater and storm water to Smokes Creek under active SPDES Permit No. NY-0269310. There are no active outfalls into the South Return Water Trench from the Site.

2.2.1 Electrical Department

Figure 2 shows the location of the Electrical Department building, which an unoccupied, slab-on-grade steel building formerly used to store electrical supplies. The Electrical Department building is currently used for cold storage of some remaining equipment and supplies, but is otherwise vacant. It is serviced by electric power; no other utilities are active. Based on TurnKey's observations, the building floor is competent and the building is well ventilated.

2.2.2 WQCS#3A

WQCS#3A was historically used to neutralize acidic wastewaters and precipitate metals from the Sinter Plant¹ Scrubber, which was operated from 1950 to 1983. Remaining WQS#3A structures on the Phase III Business Park Area include the garage and lab buildings, as well as a former tank, clarifiers and sludge thickener. According to the 1989 SWMU Assessment Report for WQCS #3A (Ref. 6), the thickener (sludge) tank was taken out of service in August 1983 due to plant shutdown. On January 21, 1983, an analysis for EP toxicity metals was performed on the Sinter Plant Scrubber Thickener Sludge and found to be below regulatory action levels (i.e., toxicity characteristic). At the time of the shutdown, the tank was reportedly pumped out and the remaining sludge was removed from the tank. According to the Final RCRA Facility Investigation Report Part V (October 2004), the Assessment Report for WQCS#3A was approved by the agencies on December 7, 1990. The Solid Waste Management Units (SWMUs) associated with WQCS#3A, P-19 (thickener) and P-20 (scrubber sump), also received "No Further Assessment" designation by the USEPA.

Although at the time of the RI the thickener remained placarded with "hazardous waste" signs due to its historic use in storing/processing precipitated metal hydroxide sludge, no sludge remains in this vessel or the other remaining WQS vessels (arrangements have been made to remove hazardous waste signage). Precipitation has accumulated in the opentop thickener and clarifiers; however no evidence of sheen or product was identified in these vessels during the RI. In addition, RI test pits excavated in the vicinity of WQS#3A were consistent with those excavated elsewhere on the Site and did not yield specific indications of hazardous materials disposal/release.

The WQS#3A laboratory building and garage have been cleaned out of any remaining water treatment chemicals. The laboratory building, which is a concrete block building with a competent slab-on-grade foundation, is not occupied or used. Utilities (electric, sewer, water and gas) are available but are shut off. The WQS#3A garage is a metal building with a competent slab-on grade foundation. The garage primarily used for storage

TURNKEY
ENVIRONMENTAL
RESTORATION, LLC

¹ Sintering is a process where iron-rich fine materials wasted from other plant processes, such as mill scale, are fused into clinkers that are used as an iron source, together with ore, in blast furnaces. The process includes mixing the raw materials, ignition, and combustion on a traveling grate in the sinter machine, agglomeration of the sinter, cooling and screening.

of construction equipment, and is only occupied periodically. It is serviced by electric power, no other utilities are active.

2.3 Site Geology and Hydrogeology

The United States Department of Agriculture Soil Survey of Erie County, New York indicates that the Site is covered by surface soil classified as Urban Land; soil consisting of paved, foreign, or disturbed soils. Drilling logs from monitoring wells constructed on or near the Site indicate that the upper two feet (east side) to eight feet (west side) is typically composed of steel and iron-making slag and/or other fill material. The fill is underlain by lacustrine clays and silts that are, in turn, underlain by shale or limestone bedrock. Bedrock is about 60 feet below ground surface (fbgs) near the eastern perimeter of the Site.

Historically, due to the proximity of Lake Erie and municipal supplied water, groundwater in the area has not been developed for industrial, agricultural, or public supply purposes. There is a deed restriction that prohibits the use of groundwater on the property. Consequently, no groundwater supply wells are present on the 1,100-acre Tecumseh property. Measurements taken in several monitoring wells on or near the Site indicate that the water table is 5 to 6 fbgs within the soil/fill unit.

Groundwater elevation contour maps completed during investigation of the 1,100-acre former BSC property indicate that shallow groundwater flows radially west/southwest across the Site towards the Gateway Metroport Ship Canal and Lake Erie as well as northwest toward the Buffalo Outer Harbor.

2.4 Utilities

The following utilities are present on or near the Site:

- <u>Electric Utility:</u> Overhead electric power lines on wooden utility poles, owned by Niagara Mohawk Power Corporation (NMPC), run east and west along the northern portion of the Site. In addition, buried electrical transmission lines from the Steel Winds turbines run underground in the northern portion of the site.
- Natural Gas: Natural Gas (National Fuel) lines run overhead in an east-west direction along the northern boundary of the site.
- Railroad Tracks: Active railroad tracks, owned and operated by South Buffalo Railway, are located on the south side of the Site and the western site boundary.

7

TURNKEY

ENVIRONMENTAL

RESTORATION, LLC

These tracks are primarily used to service tenants within the larger Tecumseh property.

- Water: Erie County currently supplies potable water to the site. Groundwater is not used for any purpose.
- <u>Sanitary Sewers:</u> Active sewer lines are located along the northeast boundary of the property near the former WQCS#3A and along Highway 2.

2.5 Wetlands and Floodplains

The land surrounding Smokes Creek is listed on the National Wetlands Inventory and as a FEMA floodplain. No NYSDEC wetlands exist on the Site.

3.0 REMEDIAL INVESTIGATION APPROACH & RATIONALE

The RI was designed to provide defensible data to identify areas of the Site potentially requiring remediation, define chemical constituent migration pathways, and qualitatively assess human health and ecological risks to allow for performance of a remedial alternatives evaluation. This section of the RI report presents a discussion of the rationale for the data collection program of the RI, including the methods employed to collect samples and make field measurements and observations, and the methods used to chemically analyze the environmental samples.

3.1 General

The RI included the following field activities to delineate and characterize on-site soil/fill and assess groundwater quality at the Site:

- Visual, olfactory, and PID characterization of surface and subsurface soil/fill through test pit excavation.
- Collection of surface and subsurface soil/fill samples.
- Advancement of on-site borings completed as groundwater monitoring wells.
- Collection and analysis of groundwater samples from existing and newly installed monitoring wells at the site.
- Completion of a soil boring and test pit investigation of the Soaking Pit Building foundation to check for the presence of asbestos-containing materials (ACM).

RI field activities were conducted by TurnKey Environmental Restoration, LLC (TurnKey) in accordance with the approved Work Plans (Refs. 3 and 4); herein referred to as the RI Work Plan. Environmental sample collection was performed in accordance with TurnKey's Field Operating Procedures (FOPs). USEPA- and NYSDEC-approved sample collection and handling techniques were used. Samples for chemical analysis were analyzed in accordance with USEPA SW-846 methodology to meet the definitive-level data requirements. Analytical results were evaluated by a third-party data validation expert in accordance with provisions described in the RI Work Plan. The majority of field activities were conducted under NYSDEC oversight. Each sampling location was surveyed via GPS and plotted on the site base map shown on Figure 3.

3.2 Constituents of Potential Concern

Constituents of potential concern (COPCs) were identified in the RI Work Plan based on Site operational history (see Table 1). The primary COPCs included base-neutral Target Compound List (TCL) semi-volatile organic compounds (SVOCs) associated with petroleum bulk storage and fossil fuels, and select inorganic compounds (arsenic, cadmium, chromium, lead, mercury, and cyanide) typically associated with steel manufacturing. Other COPCs analyzed on a location-by-location basis included polychlorinated biphenyls (PCBs), which were analyzed at select locations near former transformers and electrical equipment, and petroleum-based VOCs, analyzed in areas of former petroleum or fuel storage.

In addition to the COPCs, an expanded list of parameters was developed as part of the RI Work Plan (see Table 2). The "expanded" list was employed during the RI at an approximate frequency of 1 per 10 samples per matrix to check for the presence of both COPCs and other constituents less likely to be encountered. Also, photoionization detector (PID) headspace screening for VOCs was employed at all test pit locations, with expanded list VOCs typically added to samples exhibiting elevated PID readings.

3.3 Soil/Fill

Surface and subsurface soil/fill samples were initially collected from the eastern portion of the Phase III Business Park Area in the Fall of 2008 in accordance with the NYSDEC-approved May 2008 RI/AAR Work Plan for the Phase III Business Park Area. Subsequently, soil/fill samples were collected from the western portion of the Phase III Business Park Area in late 2009 through early 2010 per the NYSDEC-approved RI/AAR Work Plan for the Steel Winds II Site (Ref. 4). As discussed in Section 1.0 this latter sampling work was performed on behalf of Tecumseh Redevelopment to supplement to the earlier 2008 Phase III Business Park investigation, as the Steel Winds II development did not materialize. As such, the western portion of the parcel ultimately remained within the Phase III Business Park Area.

The initial Phase III Business Park Area soil/fill investigation involved excavation of 86 test pits (although test pits 72 and 73 could not be excavated due to accessibility issues, 2 supplemental test pits were excavated in the vicinity of test pits 54 and 55). A total of 53 surface soil/fill samples (typically collected from 0-2 feet below grade), 8 subsurface soil samples, and 1 waste characterization sample were collected from those test pit locations during the RI. The subsequent investigation on the western portion of the Site (undertaken

per the RI Work Plan for the "Steel Winds II" Site) involved excavation of 58 test pits, with a total of 28 surface soil/fill samples and 13 subsurface soil/fill samples collected from the western area. For clarification purposes and to avoid numbering overlap with the earlier test pits on the eastern side of the Phase III Business Park parcel the western area of the site was internally designated as "Business Park 3A" and test pits were labeled as "BPA-3A-#."

Tables 3a and 3b identify the test pit numbers, the sampling rationale, and laboratory analyses. Figure 3 shows the test pit locations discussed in this section. Appendix A includes the field logs for all test pits excavated at the Site.

3.3.1 Soil/Fill Sampling Methodology

Following test pit excavation, surface soil/fill samples were collected using a dedicated stainless steel spoon to scrape a representative sample from the test pit sidewall to a maximum depth of 2 fbgs. Subsurface samples were retrieved by scraping the excavator bucket across the depth from 2 fbgs to the bottom of the test pit and were collected from the center of the excavator bucket using a dedicated stainless steel spoon. Samples were transferred to laboratory-supplied, pre-cleaned sample containers for analysis of the parameters listed in Tables 1 and 2 using USEPA SW-846 methodology.

In accordance with the RI Work Plan, a representative aliquot was also collected from the sample interval and transferred to a sealable plastic bag for discrete headspace determination. PID headspace readings are shown on the individual test pit excavation logs included as Appendix A. Per the Work Plan, PID scan values greater than 20 parts per million (ppm) required the collection of an additional sample for TCL VOC analysis using USEPA SW-846 methodology. Each VOC subsurface soil/fill sample collected was transferred directly into a laboratory supplied, pre-cleaned sample container for analysis of TCL VOCs.

3.3.2 Methods of Chemical Analysis

Surface and subsurface soil/fill samples were couriered under chain-of-custody command to TestAmerica, Inc., located at 10 Hazelwood Drive, Amherst, New York 14228 for chemical analysis as identified in Tables 1 and 2. TestAmerica is an independent, NY State Department of Health (NYSDOH) Environmental Laboratory Approval Program (ELAP)-certified facility approved to perform the analyses prescribed for this RI.

TURNKEY
ENVIRONMENTAL RESTORATION, LLC

TestAmerica also has NYSDOH Contract Laboratory Program (CLP) certification while maintaining ASP accreditation. TestAmerica employed analytical testing methods described in USEPA Test Methods for Evaluating Solid Wastes contained in SW-846 (revised 1991).

3.4 Groundwater

A groundwater monitoring program was conducted at the Site to assess groundwater quality and potential groundwater contaminant migration pathways. The following sections describe the groundwater investigation and sampling methodology. Figure 3 shows the monitoring well locations discussed in this section. Appendix B includes the boring and monitoring well construction logs for all wells at the Site.

3.4.1 Monitoring Well Installation

Following completion of the soil/fill portion of the investigation 12 new monitoring wells were installed to better determine groundwater flow direction and upgradient/downgradient groundwater quality on the Phase III Business Park Area. Figure 3 identifies the groundwater monitoring points sampled during the RI, including: existing monitoring wells MWS-04, MWN-10, MWN-19A/19B, and MWN 30A; and newly installed monitoring wells MWS-30A, MWS-31A, MWS-33A, MWS-34A, MWS-35A, MWN 56A through 61A, and MWN-62D.

Monitoring wells were generally installed at the proposed (RI Work Plan) locations, with some minor adjustments made in the field as necessary to avoid underground utilities. In addition, some well locations were renamed from the planned RI Work Plan designations to avoid overlap with well numbers designated on other Tecumseh parcels.

3.4.2 Monitoring Well Installation Methodology

Monitoring well installation methodology followed the RI Work Plan requirements. All new wells were constructed of 2-inch schedule 40 PVC with a lockable J-plug and protected by a vented, 4-inch diameter protective steel casing. Table 4 presents monitoring well construction details; the logs are included in Appendix B. Protective steel casings were installed to a depth of approximately 2 fbgs and anchored in a 2-foot by 2-foot concrete surface pad.

3.4.3 Monitoring Well Development

Both the newly installed and existing wells were developed prior to sampling using a dedicated disposable polyethylene bailer for surging and a peristaltic pump for purging in accordance with NYSDEC and TurnKey protocols. A slight kink in the casing at MWN-30A prevented lowering of a bailer or pump at this location, therefore purging and sampling was performed using dedicated ½" HDPE tubing and a foot valve. Non-aqueous phase liquid (NAPL) was not identified in any on-site monitoring wells during this investigation; however slight sheen and odor were identified in groundwater at MWN-30A.

3.4.4 Groundwater Elevation Measurements

Static depth to groundwater measurements from existing and newly installed wells/piezometers were performed on January 29, 2010 and are summarized in Table 5. An isopotential map, prepared from the January 29, 2010 groundwater elevations, is included as Figure 4. Examination of the isopotential map indicates that shallow groundwater generally flows toward the minor water bodies of the Tecumseh Site (e.g., Smokes Creek and the SRWT) in conjunction with a westerly component (northwest portion of the Phase III BPA Site) toward major water body Lake Erie. The South Return Water Trench is in hydraulic connection with the shallow groundwater at the Site and flows south into Smokes Creek, which then flows westerly ultimately discharging into Lake Erie. In addition, a small groundwater divide is present at the northwest corner of the Site, which has been substantiated by the RFI as well as the off-site Benzol Plant Interim Corrective Measures (ICM) work. This divide has created a southerly groundwater flow component from the Benzol Plant area onto the Site, which is substantiated by groundwater concentrations of Benzol Plant constituents within wells MWN-19A and MWN-30A as discussed later in this report.

3.4.5 Monitoring Well Sampling

With the exception of well MWN-30A, all groundwater monitoring wells were sampled using low-flow sampling methodology per the RI Work Plan. As indicated above, the slightly kinked casing in well MWN-30A required sampling via dedicated poly tubing and a foot valve in lieu of a submersible pump. Appendix A includes the well sampling logs.

TURNKEY
ENVIRONMENTAL RESTORATION, LLC

3.4.6 Methods of Chemical Analysis

Groundwater samples were couriered under chain-of-custody command to TestAmerica for analysis of the parameters identified on Tables 3a and 3b. TestAmerica employed analytical testing methods described in USEPA Test Methods for Evaluating Solid Wastes contained in SW-846, revised 1991.

3.5 Former Soaking Pit Building Foundation Investigation

At the NYSDEC's request, two borings were completed through the former Soaking Pit Building foundation to check for the presence of buried asbestos materials, which were allegedly disposed beneath the soaking pit building foundation. Figure 3 shows the locations of the borings; the logs are included in Appendix B. The borings were completed using the drill rig hollow stem auger to grind through the concrete foundation slab and access underlying material. At boring ALF-01, concrete was encountered at 1.5 fbgs. No evidence field of asbestos-containing material was recorded.

At boring ALF-02, refusal was encountered at approximately 1 fbgs. Augering continued to 1.5 fbgs where steel grating was encountered. A 3-inch spoon was advanced through the grating to a depth of approximately 4.5 fbgs, where refusal was again encountered. A sample was collected between 1.5-4.0 fbgs and transmitted to EMSL Laboratories in Depew, NY for ACM analysis.

Subsequently at the request of the NYSDEC, a limited test pit investigation was performed to substantiate the soil boring findings. The investigation was performed on June 13, 2011 with over-site by NYSDEC personnel.

A mini tracked excavator was used to excavate several test pits along and over the building foundation. Attempts to excavate within the building foot print indicated an impenetrable concrete slab. As directed by NYSDEC personnel, test pits were excavated along the north side of the building foundation. The test pits indicated vaulted openings below the foundation concrete slab. The vaulted area contained groundwater and various electrical conduits. No suspect asbestos containing materials were observed during the investigation.

3.6 Quality Assurance/Quality Control

Field investigation data were collected and processed using the procedures outlined in the RI Work Plan to ensure representative sample collection and to achieve the data quality

0071-009-320 14

objectives of the Remedial Investigation. The field activities were recorded in bound project field books supplemented with TurnKey field forms as necessary. No Variance Logs were completed during the Remedial Investigation as deviations from the RI Work Plan were not substantial and limited to minor test pit location changes and increase in analytical parameters for collected soil/fill samples.

TurnKey collected blind duplicates and matrix spike/matrix spike duplicates (MS/MSD) at a frequency of 1 per 20 samples for each environmental media (i.e., soil/fill and groundwater). A trip blank, analyzed for the most comprehensive VOC list accompanied each cooler of aqueous media to be analyzed for VOCs. Tables 3a and 3b summarize the QA/QC sample locations.

3.7 Data Usability Summary

In accordance with the RI Work Plan, the laboratory analytical data from this investigation was independently assessed and, as required, submitted for independent review. Vali-Data of Western New York, LLC performed the data usability summary assessment for the soil/fill and groundwater samples collected from the eastern portion of the Site in 2008; Judy Harry of Data Validation Services located in North Creek, New York performed the data usability summary assessment for the remaining soil/fill and groundwater samples. The validation involved a review of the summary form information and sample raw data, and a limited review of associated QC raw data. Specifically, the following items were reviewed:

- Laboratory Narrative Discussion
- Custody Documentation
- Holding Times
- Surrogate and Internal Standard Recoveries
- Matrix Spike Recoveries/Duplicate Recoveries
- Field Duplicate Correlation
- Preparation/Calibration Blanks
- Control Spike/Laboratory Control Samples
- Instrumental IDLs
- Calibration/CRI/CRA Standards
- ICP Interference Check Standards
- ICP Serial Dilution Correlations
- Sample Results Verification

The data usability evaluations were conducted using guidance from the USEPA Region 2 validation Standard Operating Procedures, the USEPA National Functional Guidelines for Data Review, as well as professional judgment. Appendix C includes the Data Usability Summary Reports (DUSRs), which were prepared in accordance with Appendix 2B of NYSDEC's draft DER-10 guidance. Those items listed above that demonstrated deficiencies are discussed in detail in the DUSRs. Analytical results that were edited or qualified per the DUSR have been modified appropriately on Tables 6 through 8. Appendix D includes the analytical data packages.

4.0 RI FINDINGS

This Section describes pertinent field observations and chemical analytical results in surface soil/fill, subsurface soil/fill, and groundwater.

4.1 Field Observations

The surface of the Phase III BPA is sparsely vegetated with voluntary indigenous shrubs, grasses, weeds, and emergent trees (mostly poplars). Due to the nature of the slag/soil fill there is very little ponded storm water or surface runoff as most of the precipitation seeps into the highly permeable slag/soil fill. Subsurface lithology generally consisted of a soil/fill unit comprised of non-cohesive coal and coke fines; slag; cindery ash and brick; concrete; gravel; silt; reddish silt (precipitator dust); and sand, all of which are ubiquitous at the Site. Below the soil/fill unit is a native silty clay or clayey silt layer; a peat layer was noted at some test pits immediately below the soil/fill unit. Groundwater was generally encountered within the soil/fill unit approximately 5 to 6 fbgs.

Field evidence of potential significant soil/fill impacts, characterized by moderate to strong odors, unusual discoloration or visible evidence of product layer, and/or PID readings in excess of 50 ppm was identified at certain test pit locations as presented below.

- **BPA-3-TP-2:** At approximately 2-4 fbgs, a PID reading slightly above 50 parts per million (ppm) was detected and a petroleum-like odor was noted.
- **BPA-3-TP-42:** At approximately 0.5-1.5 fbgs, a PID reading of 400 ppm was encountered and suspected red paint was observed. The test pit area was expanded with similar observations recorded across an area approximately 10' x 10' x 1' deep.
- **BPA-3-TP-54:** Saturated soil within this test pit, which was encountered at a depth of approximately 8 fbgs, exhibited moderate odor and groundwater sheen. Saturated soil/fill exhibited a PID reading of approximately 102 ppm.
- **BPA-3-TP-56:** A trace of tar-like material was observed between 0.5 and 3 fbgs in the test pit excavated within the area of the former Linde Plant.
- **BPA-3A-TP-8:** At approximately 7 fbgs, blackish fill exhibiting a PID reading of 82 ppm was recorded. A slight sheen and moderate odor were encountered at the water table (approximately 8.5 fbgs).
- **BPA-3A-TP-25:** At approximately 7 feet below grade (i.e., groundwater interface) saturated soils exhibiting a PID reading of 72.5 and slight odor was recorded.
- **BPA-3A-TP-44:** Petroleum-impacted groundwater with visible sheen and oil/tar impact was identified at the water table (approximately 7 fbgs).

TURNKEY

ENVIRONMENTAL
RESTORATION, LLC

- **BPA-3A-TP-47:** Blue-stained soils were identified at 0-3 fbgs at this location, which is in the vicinity of a former gas holder.
- **BPA-3A-TP-53:** At approximately 5 fbgs, a PID reading of 400 ppm was detected with moderate odor. This test pit was excavated adjacent to the historic off-site underground storage tank area which is part of SWMU P-11 (i.e., benzol yard) currently subject to interim corrective measures under the RCRA Corrective Action Program.
- **BPA-3A-TP-58:** Moderate odor and sheen were identified at the water table (approximately 7 fbgs); a PID reading of 72.5 ppm was recorded at this depth. This test pit was also excavated adjacent to the historic off-site underground storage tank area.

In addition, field evidence of groundwater impact (sheen, odor) was identified during development and sampling of existing well MWN-30A.

4.2 Soil/Fill

Chemical data for soil/fill samples collected during the RI are discussed in the following sections and are summarized in Tables 6 and 7.

For the purpose of comparison, Tables 6a and 7a include "Unrestricted Use" Soil Cleanup Objectives (SCOs) as published in 6NYCRR Part 375-6 "Remedial Program Soil Cleanup Objectives." Unrestricted Use SCOs are deemed protective of human health and groundwater irrespective of end use of the property. Accordingly, the unrestricted use SCOs represent conservative soil/fill cleanup objectives that are often difficult to achieve on former industrial sites in urban areas. Tables 6b and 7b compare the data to restricted-commercial use SCOs per 6NYCRR Part 375-6. These values are deemed protective of human health, in the absence of other controls, for sites where end use will be limited to commercial or more restrictive (e.g., industrial) uses, which are considered the reasonably anticipated future uses for the Phase III Business Park Area per the land use analysis presented in Section 8.4.

RI Sample locations where reported concentrations exceed respective SCOs are shaded on the data summary tables.

As indicated on Tables 6a and 7a, several exceedances of the unrestricted use SCOs were noted, particularly for carcinogenic polyaromatic hydrocarbons; metal COPCs; and, to a lesser extent, PCBs. Based on the widespread nature of the unrestricted use SCO exceedances, the discussions below are limited to soil/fill quality as indicated by the more

TURNKEY ENVIRONMENTAL RESTORATION, LLC

meaningful comparison to restricted-commercial use SCOs. To the extent commercial use SCOs are exceeded, unrestricted use SCOs would be exceeded as well.

4.2.1 VOCs

The commercial SCOs for benzene, xylene, 1,2,4-trimethylbenzene, and 1,3,5-trimethylbenzene were exceeded at test pit sample BPA-3A-TP-53 collected from 5 to 7 fbgs (see Table 7b). As described in Section 4.1, field evidence of impact including a PID reading of 400 ppm was noted at this interval.

No other test pit locations/samples exhibited an exceedance of the commercial SCOs for VOCs.

4.2.2 SVOCs

Several locations exhibited exceedances of the commercial SCOs for one or more PAHs. Specifically, benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene, dibenzo(a,h)anthracene, and indeno(1,2,3-cd)pyrene) were reported above commercial SCOs at several locations, however the exceedances were generally within an order of magnitude of the SCO.

4.2.3 Inorganic Compounds

Arsenic was reported above the commercial SCO at the majority of the sample locations. Other inorganic compounds reported above commercial SCOs included cadmium (3 samples), copper (2 samples), lead (4 samples), manganese (4 samples), mercury (5 samples), and cyanide (4 samples). In all instances the reported exceedances were within an order of magnitude of the SCO with the exception of cyanide and mercury at sample location BPA-3A-SS-49 (i.e., a surface soil/fill sample collected at NYSDEC's request from blue-stained soil near the former gas holder) and mercury in test pit BPA-3A-TP-47.

4.2.4 PCBs

The result for PCB Aroclor 1260 slightly exceeded its commercial SCO at BPA-3A-TP-32 at 0-2 fbgs No other PCBs were not detected above restricted-commercial SCOs.

TURNKEY

ENVIRONMENTAL

RESTORATION, LLC

4.3 Groundwater

Groundwater quality data was collected during the RI from the shallow overburden or fill unit at the Site, with a deep (bedrock) sample collected from MWN-62D. Table 4 summarizes groundwater monitoring well construction details. Tables 8 and 9 summarize the analytical data, including field QC samples, along with Class GA Groundwater Quality Standards and Guidance Values (GWQS/GVs) per NYSDEC TOGS 1.1.1. The findings are discussed below.

4.3.1 VOCs

With limited exception, groundwater samples exhibited non-detectable or trace (estimated) concentrations of VOCs well below the GWQS/GVs. Only three locations (i.e., wells MWN-19A, MWN-30A, and MWN-61A) contained concentrations of VOCs above the GWQS/GVs for one or more parameters. Well MWN-61A exhibited toluene at an estimated concentration of 6 ug/L as compared to the GWQS/GV of 5 ug/L, remaining VOCs at MWN-61A were reported as non-detect or were below the standards. Wells MWN-30A and, to a lesser extent, MWN-19A exhibited exceedances for one or more parameters (see Table 9). Both of these latter monitoring wells are located within the area of visually observed soil/fill impact in BPA-3A-TP-53, as described above, and contain similar parameters.

4.3.2 SVOCs

The majority of the sampled locations exhibited SVOCs at non-detectable concentrations or at low concentration levels below GWQS/GVs As indicated on Tables 8 and 9, wells exhibiting one or more SVOCs above the GWQS/GV include MWS-35A, MWS-04, MWS-31A, MWN-61A, MWN-19A, MWN-19B, and MWN-30A. However, with the exception of MWN-30A, the total (cumulative) SVOC concentrations at each of these locations are less than 1 ppm, which is typically considered, along with other factors, to be the point at which groundwater impact is considered de-minimis or subject to no further remedial measures under NYSDEC's Petroleum Spills program. As discussed in Section 4.3.1, MWN-30A is located within the area of visually observed soil/fill impact in BPA-3A-TP-53.

4.3.3 Inorganic Compounds

Total metals were reported as non-detect or at concentrations well below GWQS/GVs for all of the COPC metals with the exception of well MWS-31A, which exhibited slight exceedance of the standard for total arsenic. However, the sample from MWS-31A yielded field turbidity measurements greater than TurnKey's threshold value of 50 nephelometric units (NTUs). Accordingly, a filtered metals sample was collected and from well MWS-31A and was analyzed for soluble COPC metals. The filtered sample data were reported as non-detect or below GWQS/GVs for all the analyzed inorganic compounds, including arsenic.

Similarly, non-COPC metals were detected below the GWQS/GVs at all locations with the exception of MWS-35A, which exhibited exceedance of the standard for total iron, and MWN-19A, which exceeded the GWQS/GVs for total iron, manganese, and sodium.

4.3.4 PCBs

All PCBs analyzed were reported as non-detect; therefore, PCBs were not reported on Tables 8 and 9.

4.4 Soaking Pit Building ACM Sample

Appendix E includes the sample results from ALF-02 as reported by EMSL. As indicated, no asbestos-containing materials were identified in the sample.

Following the RI, TurnKey located a site drawing (#180946) showing a concrete tunnel beneath what was formerly a narrow gauge track referred to as the "ingot buggy aisle" along the southern portion of the Soaking Pit Building foundation. It is likely that if asbestos material and miscellaneous debris from the demolition of site buildings was disposed within the Soaking Pit Building it would have occurred within a portion of this 15-ft by 16-ft tunnel.

5.0 FATE AND TRANSPORT OF COPCS

Soil/fill sample results exceed SCOs for certain COPCs. In addition, isolated groundwater samples indicated exceedance of Class GA GWQS/GVs for certain parameters as well. Accordingly, the soil/fill data were incorporated with the physical characterization of the Site to evaluate the fate and transport of COPCs in Site media. The mechanisms by which the COPCs present above SCOs can migrate to other areas or media are briefly outlined below.

5.1 Airborne Pathways

Potential migration pathways involving airborne transport of soil/fill COPCs include erosion and transport of soil particles and sorbed chemical constituents in fugitive dust emissions, and volatilization from subsurface soil vapor.

5.1.1 Fugitive Dust

Chemicals present in soil/fill can be released to ambient air as a result of fugitive dust generation. Since the Site is presently unoccupied and is substantially vegetated with shrubs, grasses, and trees, and because most of the fill consists of large grained slag, suspension due to wind erosion or physical disturbance of surface soil/fill particles is unlikely under the current use scenario. Under the planned future commercial/ industrial land use, the majority of the Site would be covered by asphalt and structures with only small areas covered by grass and/or ornamental landscaping. Fugitive dust may be generated during excavation activities either during or following redevelopment. Therefore, this migration pathway is potentially relevant under the reasonably anticipated future land use scenario.

5.1.2 Volatilization

Volatile chemicals, when present in soil/fill at elevated levels, may be released to ambient air or future building indoor air through volatilization from or through the soil/fill pore space. Volatile chemicals typically have a low organic-carbon partition coefficient (Koc), low molecular weight, and a high Henry's Law constant. VOCs were not detected in Site soil/fill at concentrations above restricted commercial SCOs with the exception of the sample collected from test pit BPA-3A-TP-53 collected from 5 to 7 fbgs. Similarly, groundwater samples generally yielded not-detectable or trace levels of VOCs at or near

TURNKEY

ENVIRONMENTAL

RESTORATION, LLC

Class GA GWQS/GVs with the exception of samples from overburden wells MWN-19A and MWN-30A. Therefore, the soil and groundwater-to-air pathways may be relevant near the northwest portion of the Site where these samples were collected.

5.2 Waterborne Pathways

5.2.1 Surface Water Runoff

Under the current use scenario, the potential for soil particle transport with surface water runoff is low, as the Site is mostly flat lying and contains a significant amount of vegetative growth. In addition the well-drained slag/fill matrix precludes surface water ponding. Uncontrolled off-site transport is further limited because the Site is outside the 100-year floodplain. Under the reasonably anticipated future use scenario, the Site will be substantially covered by asphalt, buildings and landscaping, mitigating transport of subsurface (i.e., covered) soil/fill via storm water runoff. Although stormwater runoff during excavation activities is possible during the future use scenario, erosion controls are typical construction practice and would be implemented as a component of the Site Management Plan required for BCP Sites that do not achieve unrestricted use conditions.

5.2.2 Leaching

Localized VOC impacts were identified in groundwater samples collected from MWN-30A and MWN-19A. The relatively insoluble nature of the majority of the COPCs identified at elevated concentration in soil/fill and the general absence of significant overburden groundwater impacts in other on-site groundwater monitoring wells indicates that the chemical migration via leaching pathway is limited to the northwest portion of the Site near MWN-19A and MWN-30A.

5.3 Exposure Pathways

Based on the analysis of chemical fate and transport provided above, the pathways through which Site COPCs could potentially migrate to other areas or media are fugitive dust emissions via physical disturbance of soil particles and, to a lesser extent, soil and groundwater vapor-to-air volatilization and soil leaching. However, given the absence of existing site occupancy; the distance between the Site and occupied structures; the existing

TURNKEY
ENVIRONMENTAL RESTORATION, LLC

RI/AAR Phase III Business Park Area

deed restriction preventing groundwater use anywhere on the Tecumseh property; and NYSDEC/NYSDOH requirements for dust controls during excavation at remedial program construction sites, it is unlikely that site-related COPCs would reach off-site receptors at significant exposure point concentrations.

0071-009-320 24

6.0 QUALITATIVE HUMAN HEALTH EXPOSURE AND WILDLIFE IMPACT ASSESSMENT

6.1 Human Health Exposure Assessment

A qualitative exposure assessment consists of characterizing the exposure setting (including the physical environment and potentially exposed human populations), identifying exposure pathways, and evaluating contaminant fate and transport.

An exposure pathway describes the means by which an individual may be exposed to contaminants originating from a site. An exposure pathway has five elements:

- A receptor population.
- A contaminant source
- A contaminant release and transport mechanism
- A point of exposure
- A route of exposure

The receptor population is the people who are or may be exposed to contaminants at a point of exposure. The source of contamination is defined as either the source of contaminant release to the environment (such as a waste disposal area or point of discharge), or the impacted environmental medium (soil, air, biota, water) at the point of exposure. Contaminant release and transport mechanisms carry contaminants from the source to points where people may be exposed. The point of exposure is a location where actual or potential human contact with a contaminated medium may occur. The route of exposure is the manner in which a contaminant actually enters or contacts the body (i.e., ingestion, inhalation, dermal absorption).

An exposure pathway is complete when all five elements of an exposure pathway are documented; a potential exposure pathway exists when any one or more of the five elements comprising an exposure pathway is not documented but could reasonably occur. An exposure pathway may be eliminated from further evaluation when any one of the five elements comprising an exposure pathway does not exist in the present and will not exist in the future.

0071-009-320 25

6.1.1 Potential Receptors

The identification of potential human receptors is based on the characteristics of the Site, the surrounding land uses, and the probable future land uses. The Phase III Business Park Site is presently unoccupied, with the exception of active rail lines. Under current Site use conditions, receptors would be limited to trespassers who may traverse the Site (although presently mitigated by fencing and security measures); and construction workers that may access the Site to service utilities, perform rail maintenance, or similar duties. Trespassers might be comprised of adolescents and adults, whereas construction workers would be limited to adults.

In terms of future use, the current Site owner (Tecumseh Redevelopment) has developed a Master Plan for commercial/industrial redevelopment of the Site consistent with surrounding property use and site zoning. Future site use is further discussed under Section 8.4, which indicates that the reasonably anticipated future use of the Site is for commercial/industrial purposes. Exposed receptors under the future use scenario may be comprised of indoor workers, outdoor workers (e.g., groundskeepers or maintenance staff), and construction workers who may be employed at or perform work on the property. Site visitors/customers may also be considered receptors; however, their exposure would be similar to that of the indoor worker but at a lesser frequency and duration. Therefore, consideration of the indoor worker is conservatively protective of the site visitor.

6.1.2 Contaminant Sources

Section 4.0 discusses the COPCs present in unremediated Site media at elevated concentrations. In general, these are limited to SVOCs and select inorganic COPCs in surface soil/fill and, to a lesser extent, in subsurface soil/fill. Elevated VOCs and SVOCs were detected in the sample collected from 5 to 7 fbgs at test pit BPA-3A-TP-53. Groundwater contained elevated concentrations of VOCs but only at two locations within the same general petroleum-impacted soil/fill area.

6.1.3 Contaminant Release and Transport Mechanisms

Contaminant release and transport mechanisms are specific to the type of contaminant and site use. For the non-volatile COPCs present in site-wide soil/fill, contaminant release and transport mechanisms will generally be limited to fugitive dust

TURNKEY

ENVIRONMENTAL
RESTORATION, LLC

migration and direct contact during intrusive work (e.g., during construction and grounds keeping activities), as the Site is currently covered by vegetation and will be substantially covered by roads, parking lots, buildings, and landscaping after redevelopment.

For VOCs present in the petroleum-impacted soil/fill and groundwater, the potential exists for exposure through pathways associated with soil gas migration. This would include both the outdoor pathway (primarily to construction workers involved in subsurface activities where VOCs are present at elevated concentration) as well as the indoor vapor intrusion pathway, also referred to as "soil vapor intrusion."

Concerning the indoor air pathway, the NY State Department of Health (NYSDOH) has issued a guidance document for assessing potential impacts to indoor air via soil vapor intrusion (Ref. 7). This document presently provides guidance criteria for seven chlorinated aliphatic VOCs, none of which were detected at elevated concentration in the soil/fill or groundwater samples collected during the Phase III Business Park RI. Rather, the VOCs detected above commercial SCOs are petroleum-based compounds and were limited to benzene, xylene, 1,2,4-trimethylbenzene, and 1,3,5-trimethylbenzene at test pit sample BPA-3A-TP-53. Several petroleum-based VOCs were also detected in overburden groundwater above the Class GA standards/guidance values in this same area of the Site. No soil/fill exhibiting field evidence of gross impacts were identified in the vicinity of the Electrical Department Building or WQS#3A buildings, nor were elevated concentrations of VOCs detected in soil or groundwater in these areas of the site. As such, under the future (unremediated) use scenario the potential exists for soil vapor migration in the area of the Site proximate to BPA-3A-TP-53. For the current use scenario, soil vapor intrusion is not a concern for the existing buildings. Concerning the outdoor air pathway, the potential exists for exposure to VOCs under the current and future use scenarios for construction workers engaged in activities proximate to BPA-3A-TP-53.

6.1.4 Point of Exposure

Based on the widespread exceedance of commercial SCOs for certain ubiquitous parameters (i.e., arsenic and PAHs), the point of exposure is defined as the overall BCP Site. For both the current and future use scenarios, groundwater is not considered to pose a relevant mechanism due to the absence of significant groundwater impacts, the availability of a local municipal potable water source, the depth to groundwater (greater than 4.5 feet; the

standard depth of utilities and foundation footers), and the existence of a deed restriction that does not allow the use of Site groundwater.

6.1.5 Route of Exposure

Based on the types of receptors and points of exposure identified above, potential routes of exposure are listed below:

Current Use Scenario

■ Construction Worker – skin contact, inhalation, and incidental ingestion

Future Use Scenario

- Indoor Worker inhalation
- Construction and Outdoor Worker skin contact, inhalation and incidental ingestion

6.1.6 Exposure Assessment Summary

Based on the above assessment, the potential exposure pathways for the unremediated site condition are listed below.

Current Use Scenario

Construction Worker – direct contact, incidental ingestion and inhalation of non-volatile COPCs present in site-wide soil/fill, and inhalation of volatile COPCs present in petroleum-impacted soil/fill during intrusive activities.

Future Use Scenario

- Indoor Worker inhalation of volatile COPCs present in petroleum-impacted soil/fill via indoor air migration.
- Construction and Outdoor Worker direct contact, incidental ingestion and inhalation of non-volatile COPCs present in site-wide soil/fill, and inhalation of volatile COPCs present in petroleum-impacted soil/fill during intrusive activities

In most instances, these exposures can be readily mitigated during and following redevelopment through proper soil/fill management, and engineering controls including placement of asphalt, building, and landscape cover and construction of vapor barriers or subslab depressurization systems in newly constructed buildings.

TURNKEY

ENVIRONMENTAL
RESTORATION.LLC

0071-009-320 28

6.2 Fish and Wildlife Impact Assessment (FWIA)

The Site has been vacant since the former BSC steel plant ceased production in 1983. The historical use of the Site has eliminated the majority of native species. The Site is mainly populated by low-lying vegetation and small stature early successional trees (e.g., eastern cottonwood and poplar). The majority of fauna found on the Site are avian and small mammal species with the exception of the white-tailed deer. No federally listed or proposed threatened or endangered species are known to exist in the project area (USFWS 1999).

The Phase III Business Park Area is slated for redevelopment as a commercial/industrial area, consistent with surrounding property. Roadways, buildings, parking facilities, and maintained ornamental landscaping will substantially limit availability of suitable cover type for reestablishment of biota. As such, based on the Fish and Wildlife Resource Impact Analysis Decision Key included as Appendix F (NYSDEC DER-10 guidelines, Appendix 3C), no fish and wildlife resources impact analysis is warranted.

7.0 SUMMARY AND CONCLUSIONS

The RI findings indicate conditions consistent with the historic use of the Site for steel-making and finishing operations, and the widespread presence of fill materials containing slag and cindery ash. Key observations and findings from the soil/fill investigation are listed below:

- Base-neutral SVOCs (i.e., PAHs) were detected above the SCOs at several test pit locations across the Site. However, total SVOC concentrations were reported at less than 500 parts per million, which NYSDEC's Draft Soil Cleanup Policy (November 2009) has proposed as an alternative soil cleanup objective (i.e., in lieu of individual SCOs) for soils where end use of the site will be for commercial or industrial purposes and where a cover (1 foot of clean soil, building and/or pavement) and Site Management Plan will be implemented.
- Arsenic was also detected above the commercial SCO of 16 mg/kg at several test pit locations. Arsenic is a ubiquitous metal with urban background soils in New York State frequently containing concentrations in excess of the commercial SCO, particularly at active and former industrial properties characterized by historic slag fill deposition and coal burning, such as that which occurred on the subject property. Accordingly, comparison of the arsenic data to site-specific background or average concentrations is considered appropriate. To determine the site background concentration, all arsenic data for the Phase III Business Park Area was tabulated and the 95% upper confidence limit (95% UCL) on the mean was calculated (see Appendix G). The data were then reviewed relative to the 95% UCL, with 5x the UCL considered representative of a potential hotspot. Review of the data indicates that none of the arsenic concentrations exceed 5x the UCL value.
- Field observation of potential subsurface impact by petroleum was recorded at certain test pit locations as discussed in Section 4.1. However, with the exception of test pit BPA-3A-TP-53, samples from the associated depth intervals yielded VOC concentrations below commercial SCOs and SVOC concentrations at levels consistent with those found across the Site, suggesting that the observations are representative of residual, weathered organics that do not constitute a remaining source area.
- Mercury and cyanide were identified at elevated levels in shallow fill at BPA-3A-TP-47, BPA-3A-TP-49 and BPA-3A-SS-49 (i.e., proximate to the former gas holder). In addition, bluish staining was observed at BPA-3A-TP-47 and BPA-3A-SS-49. These findings suggest potential localized shallow releases from historic gas holder instrumentation and/or purifier box waste.

TURNKEY

ENVIRONMENTAL
RESTORATION, LLC

- The observation of apparent red paint at BPA-3-TP-42 (0.5 to 1 fbgs) is substantiated by the detection of elevated lead in the associated sample.
- The two borings in the soaking pit building did not indicate the presence of asbestos (although refusal was encountered at one of the locations, allowing for collection and laboratory analysis of only one subsurface sample). Notwithstanding the potential for subsurface ACM in this area, the borings indicate a thick concrete layer is present at grade, mitigating potential for exposure. Based on review of historic drawings, it is possible that the historic concrete-lined tunnel beneath the building foundation contains asbestos material.

The groundwater investigation findings indicate that, as would be expected based on the relatively low solubility of the soil/fill constituents prevalent in the soil/fill matrix, groundwater is not impacted by COPCs except for the petroleum-impacted area in the vicinity of BPA-3A-TP-53. Review of the isopotential map presented as Figure 4 indicates that these impacts as well as the impacted soils near the water table (i.e., smear zone) may be the result of shallow groundwater migration/fluctuation from off-site SWMU P-11.

Based on the RI Findings, remedial measures are warranted. The remaining sections constitute an Alternatives Analysis Report (AAR) in accordance with NYSDEC DER-10 guidance.

8.0 DEVELOPMENT OF REMEDIAL ACTION OBJECTIVES AND GENERAL RESPONSE ACTIONS

The development of an appropriate remedial approach begins with definition of site-specific Remedial Action Objectives (RAOs) to address substantial human health and ecological risk or other significant environmental issues identified in the Remedial Investigation (RI). General Response Actions are then developed as potential means to achieve the RAOs.

8.1 Remedial Action Objectives

RAOs for this Site have been developed based on the findings of the RI, which have identified elevated soil/fill concentrations (particularly arsenic and PAHs) across the majority of the Site, and localized "hot spot" areas in discrete portions of the site where field evidence of impact was corroborated by analytical results (i.e., petroleum-impacted subsurface soil/fill near BPA-3A-TP-53; mercury and cyanide-impacted shallow soil/fill near BPA-3A-TP-49 and BPA-3A-SS-49; and lead-impacted soil/fill at BPA-3-TP-42). In addition, one hotspot area (BPA-3A-TP-44) was identified based on visual and olfactory impacts suggesting potential impact by tar materials.

In developing the RAOs, consideration is given to the reasonably anticipated future use of the Site (i.e., commercial and/or industrial reuse – see Section 8.4), and the applicable Standards, Criteria, and Guidance (SCGs), including soil cleanup guidance per 6 NYCRR Part 375 and groundwater quality standards and guidance values per Technical and Operational Guidance Series (TOGS) 1.1.1. Accordingly, the RAOs for the Site are to:

- Remediate hotspot soil/fill as described above.
- Mitigate exposure to soil/fill where contaminant levels exceed restricted-commercial SCOs.
- Mitigate potential for exposure to asbestos, if present, beneath the former soaking pit building foundation.
- Implement and maintain engineering and institutional controls to assure that the Site is not used in a manner inconsistent with the reasonably anticipated future use scenario.

8.2 General Response Actions

General Response Actions are broad classes of actions that may satisfy the RAOs. General response actions form the foundation for the identification and screening of remedial technologies and alternatives. General Response Actions considered for the Site are:

- Excavation and treatment or off-site disposal of impacted soil/fill
- Engineering controls or cover to mitigate contact and contaminant transport.
- Institutional controls (e.g., deed restrictions and other administrative measures) to restrict use of the site and mitigate unacceptable exposure.

8.3 Standards, Criteria and Guidance (SCGs)

This section provides a summary of the standards, criteria, and guidance (SCGs) that are considered applicable or relevant and appropriate to remediation of the Site. SCGs include New York State laws, regulations, guidance as well as more stringent Federal requirements.

Applicable SCGs pertain to cleanup standards, standards of control, and other substantive requirements, criteria, or limitations promulgated under NY State or Federal environmental or facility siting laws that specifically address a hazardous substance, pollutant, contaminant, remedial action, location, or other circumstance at a site. An applicable requirement must directly and fully address the situation at the site.

Relevant and appropriate SCGs pertain to cleanup standards, standards of control, or other substantive requirements, criteria, or limitations promulgated under NY State or Federal environmental or facility siting laws that, while not "applicable" to a hazardous substance, pollutant, contaminant, remedial action, location, or other circumstance at a site, address problems or situations sufficiently similar to those encountered at the site that their use is well suited to the particular site.

SCGs are classified as chemical-, action-, or location-specific. Chemical-specific SCGs are usually health- or risk-based concentrations in environmental media (e.g., air, soil, water), or methodologies that when applied to site-specific conditions, result in the establishment of concentrations of a chemical that may be found in, or discharged to, the ambient environment. Location-specific SCGs generally are restrictions imposed when remedial activities are performed in an environmentally sensitive area or special location. Some

TURNKEY
ENVIRONMENTAL RESTORATION, LLC

examples of special locations include floodplains, wetlands, historic places, and sensitive ecosystems or habitats. Action-specific SCGs are restrictions placed on particular treatment or disposal technologies. Examples of action-specific SCGs are effluent discharge limits and hazardous waste manifest requirements.

Additional discussions concerning the specific chemical, action and location-specific SCGs that may be applicable, relevant or appropriate to remedy selection at the Site are presented below. In each case, the identified SCGs are generally limited to regulations or technical guidance in lieu of the environmental laws from which they are authorized, as the laws are typically less prescriptive in nature and are inherently considered in the regulatory and guidance evaluations.

8.3.1 Chemical-Specific SCGs

The determination of potential chemical-specific SCGs for a site is based on the nature and extent of contamination; potential migration pathways and release mechanisms for site contaminants; the presence of human receptor populations; and the likelihood that exposure to site contaminants will occur. The RI performed for the Phase III Business Park Area provides this information. RI sampling events included the collection and analysis of surface soil, subsurface soil, and groundwater samples. Table 10 presents a list of chemical-specific NY State and Federal SCGs that may be applicable or relevant and appropriate to the Site based on this information.

8.3.2 Location-Specific SCGs

The location of the Site is a fundamental determinant of its impact on human health and the environment. Location-specific SCGs are restrictions placed on the concentration of hazardous substances or the conduct of activities solely because they are in a specific location. Some examples of these unique locations include: floodplains, wetlands, historic places, and sensitive ecosystems or habitats. Table 11 presents the location-specific SCGs that may be applicable or relevant and appropriate to the Site.

8.3.3 Action-Specific SCGs

Table 12 identifies action-specific SCGs that may significantly impact the selection of remedial alternatives for the Phase III Business Park Site. This list of potential action-specific SCGs is based on the candidate remedial alternatives identified in Section 10.

8.4 Future Use Evaluation

In developing and screening remedial alternatives, NYSDEC's Part 375 regulations require that the reasonableness of the anticipated future land use be factored into the evaluation. The regulations identify 16 criteria that must be considered. These criteria and the resultant outcome for the Phase III Business Park Site are presented in Appendix H. As indicated, the evaluation supports commercial and/or industrial redevelopment as the reasonably anticipated future use of the Site, consistent with surrounding Site use, zoning, and the Master Redevelopment Plan endorsed by Tecumseh, Erie County, and the City of Lackawanna. The remedial alternatives identified in Section 10 are evaluated against their consistency with the reasonably anticipated land use as well as other screening criteria.

In addition to the evaluation of alternatives to remediate to the likely end use of the Site, NYSDEC regulation and policy calls for evaluation of an unrestricted use scenario (considered under 6NYCRR Part 375-2.8 to be representative of cleanup to pre-disposal conditions). Per NYSDEC DER-10 Technical Guidance for Site Investigation and Remediation (Ref. 5), evaluation of a "no-action" alternative is also required to provide a baseline for comparison against other alternatives.

9.0 VOLUME, NATURE, AND EXTENT OF CONTAMINATION

Estimation of the volume, nature, and extent of media that may require remediation to satisfy the RAOs or that needs to be quantified to facilitate evaluation of remedial alternatives is presented in this section. The estimates are a function of the cleanup goal: for the unrestricted use scenario, the cleanup goal would involve achieving unrestricted use SCOs; whereas for the reasonably anticipated future use scenario, the cleanup goal would involve achieving the restricted-commercial SCOs. The volume and extent of media requiring cleanup under these scenarios is presented in Sections 9.1 and 9.2. In addition, the volume and extent of "hot spot" material that may need to be addressed to achieve the RAO for remediation of these areas is discussed in Section 9.3. In all instances these volume estimates (and associated cost estimates presented later in this AAR) are projected based on limited data and observations collected during the RI; additional pre-remedial investigation would be required to refine the estimates, particularly for hotspot areas.

9.1 Comparison to Unrestricted SCOs

Exceedance of the unrestricted use SCOs was noted in the majority of soil/fill samples collected, primarily for carcinogenic PAHs; petroleum SVOCs; metal COPCs (i.e., arsenic, cadmium, chromium, lead, and mercury); and to a lesser extent PCBs (Aroclors 1242, 1254, and 1260). Due to the highly ubiquitous nature of the constituents observed in Site soil/fill and the extent to which they exceeded the unrestricted use SCO values, it is likely that the entire 149-acre property defines the impacted soil/fill area. The depth of impact is assumed to extend into native material, with an average depth of approximately 8 fbg. Thus, the volume of impacted soil/fill requiring remediation is approximately 1.9 million cubic yards.

9.2 Comparison to Restricted-Commercial SCOs

The soil/fill data indicated widespread exceedance of the Part 375 restricted-commercial SCOs for several ubiquitous constituents. Specifically, nearly all samples collected exhibited exceedance of the commercial SCOs for one or more of the carcinogenic polyaromatic hydrocarbons, with the majority also exhibiting exceedance of arsenic. Based on the data, it is not possible to quantify with any certainty the areas that do not exceed one or more of the commercial SCO criteria. It is therefore assumed, for the purpose of cost

estimating, that the entire 149-acre Site is also impacted above the restricted-commercial SCOs.

9.3 Hotspot Soil/Fill

As discussed in Section 8.1, certain test pit locations contained visually impacted soil/fill with the impacts corroborated by analytical results. Two groundwater monitoring wells also exhibited elevated concentrations of petroleum VOCs and SVOCs, likely attributable to contaminant migration from the adjacent SWMU P-11. Figure 5 identifies the location of the impacted areas; the estimated dimensions of each area are approximated since the extent has not been fully defined. The estimated areal and vertical extent of impact in these source areas is described below. Refinement of the volumes will be required through supplemental investigation.

- Hotspot "A" Test Pit BPA-3A-TP-42: Red paint was observed across an approximate 10-foot x 10-foot area at a depth of 0.5 to 1.5 fbgs, with an elevated lead concentration identified in the associated sample. Therefore the extent of in-place impact is estimated to cover 100 square-feet x 1.0 feet, for a corresponding in-place volume of approximately 4 cubic yards. Accounting for contingency and excavation inefficiencies, the volume for ex-situ treatment and/or disposal alternatives is estimated to be 20 cubic yards.
- Hotspot "B" Test Pit BPA-3A-TP-47 and BPA-3A-TP-49: Mercury and cyanide were identified at elevated levels in shallow fill at BPA-3A-TP-47, BPA-3A-TP-49, and BPA-3A-SS-49 (i.e., a surface soil sample proximate to test pit BPA-3A-TP-49). In addition, bluish staining was observed at BPA-3A-TP-47 and BPA-3A-SS-49. The extent of the impacts are estimated to span an approximate 22,500 square-foot area to a depth of 2 fbgs, for a corresponding in-place volume of approximately 1,700 cubic yards. Accounting for contingency and excavation inefficiencies the volume for ex-situ treatment and/or disposal alternatives is estimated to be 2,500 cubic yards.
- Hotspot "C" Test Pits BPA-3A-TP-53 and BPA-3A-TP-58: These test pits were excavated adjacent to SWMU P-11, an area where fourteen 35,000-gallon USTs were reportedly removed. At approximately 5 fbgs, a PID reading of 400 ppm was detected with moderate odor in test pit BPA-3A-TP-53. Visual evidence of soil impact (sheen) was observed on the fill and water at a depth of 5 fbgs. In test pit BPA-3A-TP-58, petroleum-impacted groundwater with slight odor was identified at the water table (approximately 7 fbgs); a PID reading of 72.5 ppm was detected at this depth. Surrounding test pits did not indicate similar findings; therefore, the

extent of impact is estimated to cover an approximate 50,000 square-foot area at a depth of 5-7 fbgs (smear zone), for a corresponding in-place volume of approximately 3,700 cubic yards. Accounting for contingency and excavation inefficiencies the volume for ex-situ treatment and/or disposal alternatives is estimated to be 5,000 cubic yards.

■ Hotspot "D" – Test Pit BPA-3A-TP-44: This test pit was excavated to the south of the Tar Pump House. Oil/tar soaked fill with sheen on the fill and water table and moderate odor were noted on the test pit log in Appendix A. It was also noted on the log that the impacts appeared to begin at the water table (7 fbgs). PID readings ranged from 0 to 3.3 ppm. The dimensions of the test pit were 15' long by 5' wide by 8'deep; therefore, the extent of impact is estimated to cover an approximate 75 square-foot area at a depth of 6-8 fbgs (smear zone), for a corresponding in-place volume of approximately 6 cubic yards. Accounting for contingency and excavation inefficiencies the volume for ex-situ treatment and/or disposal alternatives is estimated to be 25 cubic yards.

Based on the estimated and assumed extent of the impacts described above, the total estimated in-place volume of "hotspot" contamination is 5,400 cubic yards. The volume of soil/fill for ex-situ treatment and/or disposal alternatives is estimated to be 7,550 cubic yards.

9.4 Asbestos Waste

As discussed in Section 4.4, TurnKey located site drawings showing a historic 15-ft wide by 16-ft high tunnel with a concrete floor and walls along the southern portion of the Soaking Pit Building foundation (approximately 850 feet in length). Assuming this tunnel may contain asbestos material intermingled with demolition debris, the estimated volume of asbestos-containing debris is 7,500 cubic yards (see Figure 6).

10.0 DEVELOPMENT AND SCREENING OF REMEDIAL ALTERNATIVES

10.1 Development of Alternatives

The following remedial alternatives have been developed in accordance with the General Response Actions and NYSDEC regulation and policy:

Soil/Fill Alternatives:

- Alternative 1: No action.
- Alternative 2: Excavation of soil/fill to achieve unrestricted SCOs.
- Alternative 3: Excavation followed by treatment and/or off-site disposal of hotspot soil/fill, with placement of a cover system prior to site redevelopment.
- Alternative 4: Excavation followed by treatment and/or off-site disposal of hotspot soil/fill, with placement of a cover system during site redevelopment.

Asbestos Waste Alternatives (Soaking Pit Building Foundation):

- Alternative 1: Asbestos Removal with Off-Site Disposal
- Alternative 2: Restricted Use with No Further Development
- Alternative 3: Restricted Use as On-Site Soil/Fill Biotreatment Pad

Institutional controls, though identified in the General Response Actions, were not identified as a stand-alone remedial alternative because a deed restriction prohibiting use of groundwater and limiting land reuse to industrial and similar non-residential settings already exists for the larger Tecumseh property. Accordingly, all of the above alternatives inherently include these institutional controls. In addition, Soil/Fill Alternatives 3 and 4 will require development and enforcement of a Site Management Plan (see Section 11). Other institutional and engineering controls that would be considered applicable for this Site and would be incorporated into the remedial alternatives are described in greater detail in Section 11.

10.2 Evaluation of Alternatives

NYSDEC's Brownfield Cleanup Program calls for remedy evaluation in accordance with DER-10 Technical Guidance for Site Investigation and Remediation (May 2010). In

TURNKEY

ENVIRONMENTAL
RESTORATION, LLC

addition to achieving RAOs, the remedial alternatives are evaluated against the following criteria consistent with 6NYCRR Part 375-1.8(f):

- Overall Protection of Public Health and the Environment. This criterion is an evaluation of the remedy's ability to protect public health and the environment, assessing how risks posed through each existing or potential pathway of exposure are eliminated, reduced, or controlled through removal, treatment, engineering controls, or institutional controls.
- Compliance with Standards, Criteria, and Guidance (SCGs). Compliance with SCGs addresses whether a remedy will meet applicable environmental laws, regulations, standards, and guidance.
- Long-Term Effectiveness and Permanence. This criterion evaluates the long-term effectiveness of the remedy after implementation. If wastes or treated residuals remain on-site after the selected remedy has been implemented, the following items are evaluated: (i) the magnitude of the remaining risks (i.e., will there be any significant threats, exposure pathways, or risks to the community and environment from the remaining wastes or treated residuals), (ii) the adequacy of the engineering and institutional controls intended to limit the risk, (iii) the reliability of these controls, and (iv) the ability of the remedy to continue to meet RAOs in the future.
- Reduction of Toxicity, Mobility or Volume with Treatment. This criterion evaluates the remedy's ability to reduce the toxicity, mobility, or volume of Site contamination. Preference is given to remedies that permanently and significantly reduce the toxicity, mobility, or volume of the wastes at the Site.
- Short-Term Impacts and Effectiveness. Short-term effectiveness is an evaluation of the potential short-term adverse impacts and risks of the remedy upon the community, the workers, and the environment during construction and/or implementation. This includes a discussion of how the identified adverse impacts and health risks to the community or workers at the Site will be controlled, and the effectiveness of the controls. This criterion also includes a discussion of engineering controls that will be used to mitigate short term impacts (i.e., dust control measures), and an estimate of the length of time needed to achieve the remedial objectives.
- Implementability. The implementability criterion evaluates the technical and administrative feasibility of implementing the remedy. Technical feasibility includes the difficulties associated with the construction and the ability to monitor the effectiveness of the remedy. For administrative feasibility, the availability of the necessary personnel and material is evaluated along with potential difficulties in obtaining specific operating approvals, access for construction, etc.
- Cost-Effectiveness. Capital, operation, maintenance, and monitoring costs are estimated for each remedial alternative and presented on a present worth basis.

TURNKEY

ENVIRONMENTAL
RESTORATION, LLC

Detailed cost estimates for each alternative, excluding the no action alternative, are presented on Tables 4 through 6.

- Community Acceptance. This criterion evaluates the public's comments, concerns, and overall perception of the remedy. The Community Acceptance criterion incorporates public concerns into the evaluation of the remedial alternatives. Therefore, Community Acceptance of the remedy will be evaluated after the public comment period required by the BCP.
- Land Use. In addition to the above criteria, 6NYCRR Part 375-1 specifies that the criterion of Land Use (i.e., the current, intended, and reasonably anticipated future land uses of the Site and its surroundings) be considered in the selection of the remedy. The intended future land use was initially submitted to the NYSDEC via the BCP application. The reasonably anticipated future use of the Site in a commercial/industrial capacity (i.e., as a business park) is further discussed in Appendix H.

10.2.1 Soil/Fill Alternative 1: No Action

The no-action alternative is defined as taking no additional actions to address the impacted soil/fill. The Site is presently subject to a deed restriction prohibiting groundwater use and limiting reuse to industrial and similar non-residential settings, and is fenced along NYS Route 5. While these controls would not be removed, the no action alternative assumes that there would be no maintenance, monitoring, or certifications to assure that these controls remain in place and effective. The no-action alternative also provides a baseline for comparison against the other remedial alternatives and justifies the need for any remedial action.

Overall Protection of Public Health and the Environment – This alternative would protect public health under the current use scenario via the existing engineering and institutional controls; however, localized areas of environmental impact associated with hotpot areas would remain. This alternative would not meet the RAOs for the Site.

Compliance with SCGs – This alternative would not address source area materials or mitigate exposure to contaminants in excess of SCOs, and would therefore not comply with SCGs per 6NYCRR Part 375.

Long-Term Effectiveness and Permanence – This alternative provides no long-term maintenance measures and, as such, provides no reliable long-term control against exposure to impacted soil/fill. All current and future risks would remain under this alternative.

Reduction of Toxicity, Mobility, or Volume with Treatment – This alternative provides no reduction in toxicity, mobility, or volume of COPCs in soil/fill.

Short-Term Impacts and Effectiveness – There would be no additional risks posed to the community, Site workers, or the environment associated with implementation of this alternative.

Implementability – No technical implementability issues or action-specific administrative implementability issues are associated with this alternative.

Cost-Effectiveness – There are no capital or operation, maintenance, and monitoring costs associated with this alternative.

Land Use – This alternative is consistent with the reasonably anticipated future use of the Site, but would not promote commercial and industrial redevelopment due to the absence of a release from liability and placement of the responsibility to assure protection of public health following redevelopment on the future buyer or developer.

10.2.2 Soil/Fill Alternative 2: Excavation of Impacted Soil/Fill to Unrestricted SCOs

For unrestricted use scenarios, excavation and off-site treatment or disposal of impacted soil/fill would be performed, obviating the need for engineering and institutional controls. This alternative would necessitate excavation of all soil/fill where COCs exceed unrestricted use SCOs per 6NYCRR Part 375, with transport of the excavated materials to and disposal at a permitted, off-site disposal facility. The estimated total volume of impacted soil/fill that would be removed from the Site and disposed off-site is approximately 1.9 million cubic yards. The same volume of clean soil would be necessary to backfill the

excavation. During the RI, subsurface soil/fill samples from Hotspot A were analyzed for leachable (TCLP) VOCs, SVOCs, and metals, as well as flashpoint, and pH. The analyses indicated that the subsurface soil/fill exhibits leachable lead in excess of TCLP limits, requiring on-site treatment or off-site disposal of these materials in a RCRA-permitted facility. For purposes of cost estimating all other excavated materials are assumed to be non-hazardous and would be transported to a commercial solid waste disposal facility.

Overall Protection of Public Health and the Environment – Excavation and offsite disposal to unrestricted use SCOs would be protective of public health under any reuse scenario. However, this alternative would permanently use and displace 1.9 million cubic yards of valuable landfill airspace, causing ancillary environmental issues due to reduced landfill capacity, and would require removal of 1.9 million cubic yards of clean soil from an off-site borrow source, also contributing to significant detrimental off-site environmental issues.

Compliance with SCGs – Excavation and off-site disposal would need to be performed in accordance with applicable, relevant, and appropriate SCGs. Soil excavation activities would necessitate preparation of and adherence to a community air monitoring plan for particulates in accordance with Appendix 1B of DER-10.

Long-Term Effectiveness and Permanence – This alternative would achieve removal of all impacted soil/fill; therefore, no soil/fill impacts would remain on the Site. To avoid recontamination of the Hotspot "C" area, it would be necessary to install a groundwater collection or cutoff system north of the site where the groundwater divide exists. This could be accomplished by extending the collection well system currently in place as part of the ICM for the adjacent benzol yard SWMU to the boundary of the Phase III Business Park Area. Assuming this measure was implemented, the excavation alternative would provide long-term effectiveness and permanence. Post-remedial monitoring and certifications would not be required.

Reduction of Toxicity, Mobility, or Volume with Treatment – Through removal of all impacted soil/fill, this alternative would permanently and significantly reduce the

toxicity, mobility, and volume of contamination within the Site. However, since this alternative transfers Site soil/fill from one environment to another, an overall reduction of toxicity, mobility, and volume would not occur.

Short-Term Impacts and Effectiveness - The short-term adverse impacts and risks to the community, workers, and environment during implementation of this alternative are significant. Site workers would be required to wear personal protective equipment (PPE) during excavation to prevent direct contact with soil/fill. Dust control methods would be required to limit the release of particulates during placement of the backfill soils. Physical hazards, primarily related to potential accidents from heavy truck traffic on NY State Route 5, would be expected, as the excavation work would require removal of approximately 135,700 truckloads of soil and import of a similar number of clean loads from the borrow source. Substantial disruption of the neighboring community would occur due to material transport and deliveries and noise from heavy equipment used to construct the remedy. This action would result in storm water impacts at the borrow source(s) and on-site; diesel fuel consumption on the order of 678,500 gallons (assuming 20 miles round trip, 8 miles per gallons), with several thousands of gallons also consumed by excavation and grading equipment. The USEPA's estimated CO₂ generation rate for diesel engines is approximately 22.2 lbs per gallon of diesel consumed. Accordingly, this alternative would produce over 15 million lbs of greenhouse gas while at the same time stripping hundreds of acres of CO₂ consuming trees and shrubs from the site.

The Remedial Action Objectives would be achieved once the soil/fill is removed from the Site and backfill soils are in place (est. 2-3 years).

Implementability – Significant technical and administrative implementability issues would be encountered in construction of this unrestricted use alternative. These include, but are not limited to: the need for construction, maintenance, and operation of substantial dewatering facilities; the need to coordinate and secure disposal contracts with numerous permitted off-site landfills, as no single location would be able to accept the volume of soil/fill generated under this alternative; difficulty locating local borrow sources for such a large volume of backfill; traffic coordination for trucks entering and exiting NY State Route 5; and the need to relocate rail lines to allow excavation beneath the existing tracks.

Cost-Effectiveness – Capital costs for implementation of this alternative are estimated at \$179 million. There are no operation and maintenance costs associated with this alternative assuming groundwater collection near Hotspot "C" is undertaken as part of the benzol yard ICM. Table 13 presents a breakdown of these capital costs.

Land Use – This alternative, although inconsistent with the reasonably anticipated future use of the Site, would not preclude commercial and industrial redevelopment.

10.2.3 Soil/Fill Alternative 3: Hotspot Soil/Fill Removal with Placement of Soil Cover System Prior to Redevelopment

This alternative would initially involve removal of the three hotspot areas described in Section 9.3. The lead-impacted soil/fill (Hotspot "A") would require stabilization prior to off-site disposal or off-site stabilization/disposal in a RCRA-permitted treatment storage and disposal facility. Hotspot "B" soil/fill would be excavated and disposed off-site at a permitted NY State sanitary landfill or other permitted solid waste disposal facility. The petroleum-impacted soil/fill (Hotspot "C") would likely be treated via on-site bioremediation (e.g., on a biopad constructed over the Soaking Pit Building foundation) with relocation of the treated soils back into the excavation area. Hotspot "D" would be handled in a similar manner unless tar impacts were found to be extensive, in which case these materials would need to be segregated and disposed off-site.

Following hotspot soil/fill removal, a 12" soil cover would be installed <u>prior</u> to Certificate of Completion issuance and redevelopment. The estimated total volume of clean soil required for the cover system is approximately 240,500 cubic yards. The cover would then be removed, as necessary, to accommodate build-out during the redevelopment period. Standard institutional and engineering controls would also be implemented under this alternative. Specifically, a Site Management Plan (SMP) incorporating an Excavation Plan; an Operation, Maintenance, and Monitoring (OM&M) Plan; and ongoing Engineering and Institutional Control certification requirements would be developed and enforced through an environmental easement. The environmental easement will restrict use of the Phase III Business Park Area to commercial and industrial applications and preclude groundwater use without treatment.

Overall Protection of Public Health and the Environment – This alternative meets NYSDEC requirements for a Track IV cleanup under the BCP regulations and is therefore protective of human health and the environment at the Site. Accordingly, Alternative 3 would achieve the RAOs. However, placement of a 12" soil cover over the Phase III Business Park area would require immediate clearing of the Site and borrow source(s), resulting in rapid loss of 149 acres of greenhouse gas consuming plant life and cover for habitat and foraging on-site and a likely similar acreage off-site, which is inconsistent with NYSDEC's DER-31 green remediation policy. In addition, significant short-term impacts would result from implementation of this alternative as described below.

Compliance with SCGs – Excavation and off-site disposal, as well as on-site biotreatment of petroleum-impacted soil/fill, would need to be performed in accordance with applicable, relevant, and appropriate SCGs. Imported cover material would need to meet backfill quality criteria per 6NYCRR Part 375. Borrow source mining would require a permit and storm water pollution prevention plan (SWPPP) for all disturbed areas greater than 1 acre in size. Vegetative cover stripping and cover placement would be performed under the BCP and would therefore require an equivalent SWPPP to address on-site impacts. Subgrade preparation activities would necessitate preparation of and adherence to a community air monitoring plan for particulates in accordance with Appendix 1B of DER-10. As indicated above, this alternative is inconsistent with NYSDEC's DER-31 green remediation policy due to rapid loss of vegetative cover on the site and off-site, as well as significant air emissions attributable to use of heavy diesel equipment for excavation and transport on-site and at the borrow source.

Long-Term Effectiveness and Permanence – Removal of the hotspot soil/fill areas as well as construction of a cover system prior to redevelopment would prevent direct contact with soil/fill exceeding restricted-commercial SCOs. The efficacy of the cover system will be maintained and monitored via the Site Management Plan. Periodic inspection and maintenance of the cover and possible repair of the soil and vegetative layers would be required to assure long-term cover integrity. The institutional controls outlined in Section 11 would be required for long-term effectiveness. Following soil/fill removal, there is a

potential for re-impact of Hotspot "C" due to on-site contaminant migration from the adjacent parcel. Specifically, groundwater is likely migrating into the Hotspot "C" area from the Benzol Yard (SWMU P-11) north of the Phase II Business Park. In order for this alternative to maintain long-term effectiveness and permanence, the ICM presently in operation at the Benzol Yard would need to extend the groundwater collection system to the Phase III Business Park boundary near Hotspot "C" to mitigate localized groundwater migration to the south-southwest.

Reduction of Toxicity, Mobility, or Volume with Treatment – Removal of hotspot soil/fill would permanently and significantly reduce the toxicity, mobility, and volume of the soil/fill that could potentially be contacted or produce localized areas of environmental impact at the Site. However, since this alternative transfers Site soil/fill from one environment to another, an overall reduction of toxicity and volume would not occur, with the exception of the petroleum-impacted soil/fill bioremediated on-site. Placement of a soil cover over the remaining areas would somewhat reduce the mobility of contaminants from erosion, although the RI concluded that this pathway is not likely significant under the current (undeveloped) scenario. Accordingly the toxicity, mobility, and volume of remaining residual contaminants would not be appreciably reduced under this alternative.

Short-Term Effectiveness and Impacts – Similar to Alternative 2, the short-term adverse impacts and risks to the community, workers, and environment during implementation of this approach are significant. Because the site clearing and soil cover placement would occur in a single construction season as opposed to a gradual progression during build out, excess physical hazards (primarily related to potential accidents from soil deliveries and associated increased truck traffic on NY State Route 5) would be expected. Disruption of the neighboring community would occur due to material transport, deliveries, noise, and air emissions from heavy equipment used to strip the site and construct the cover. Community air monitoring, dust control, and soil erosion measures would be required during subgrade preparation and soil cover placement.

Moreover, under this alternative, the Phase III Business Park Area would require over 240,500 cubic yards of imported cover soil, which would be stripped from an off-site borrow source and then transported to the site in approximately 17,200 truckloads and

graded/raked using heavy, diesel-fueled grading equipment. This action alone would result in storm water impacts at the borrow source(s) and on-site; diesel fuel consumption on the order of 43,000 gallons (assuming 20 miles round trip, 8 miles per gallon); and related traffic, dust and air emissions. These impacts would be compounded when redevelopment is initiated, as much of the soil cover (est. 80%) would need to be removed and hauled off-site to allow for build out. Thus, an additional 34,400 gallons of diesel fuel may be consumed, resulting in total consumption of approximately 77,400 gallons of diesel fuel for transportation, with several thousands of gallons also consumed by excavation and grading equipment. As indicated above, the USEPA's estimated CO₂ generation rate for diesel engines is approximately 22.2 lbs per gallon of diesel consumed. Accordingly, the transportation of soil cover to the Site and subsequent removal and off-site transportation would produce over 1.7 million lbs of greenhouse gas while at the same time stripping hundreds of acres of CO₂ consuming trees and shrubs.

Finally, the existing soil/fill currently allows for good surface water percolation and drainage. If a soil cover were placed over the Phase III Business Park Area ahead of redevelopment, it would be absent the permanent storm water drainage system and Site grading that will be designed and constructed when redevelopment occurs. As a result, ponding, washout, and undesirable drainage patterns can be expected, damaging the cover system if soil cover is placed before final grading and storm water collection and conveyance systems are in place. The RAOs would be achieved upon cover placement.

Implementability – Technical and administrative implementability issues anticipated under this alternative include difficulty locating local borrow sources for such a large volume of cover soil (estimated 240,500 CY); traffic coordination for trucks entering and exiting NY State Route 5; the need to integrate the cover with rail lines traversing the property; and the need to design and provide for significant erosion and storm water controls to mitigate ponding, washout, and undesirable storm water drainage and runoff patterns. A preredevelopment cover system is also certain to be damaged and repaired multiple times by development work and buried infrastructure (sewer, water, gas, electric, telephone, etc.), necessitating multiple inspections by an environmental professional, and documentation/explanation in annual Periodic Review Reports.

No significant administrative implementability issues are associated with this alternative.

Cost-Effectiveness – The estimated capital cost for this alternative is \$9.2 million, which includes: hotspot removal and disposal/treatment; construction of the 12-inch landscape cover over the entire 149 acres; development of a Site Management Plan; and environmental-based redevelopment costs associated with removal of the temporary soil cover system. Annual OM&M costs for groundwater monitoring, cover maintenance, and annual certifications are estimated to be \$36,000, resulting in an estimated present worth cost of \$9.9 million. Table 14 presents a breakdown of these costs.

Land Use – This alternative would be consistent with the reasonably anticipated future use of the Site. However, the placement of soil cover over the Site would significantly impair the ability and cost of redeveloping the Site. Redevelopment would require the removal and displacement of most if not all of the soil cover during infrastructure and building construction, would necessitate deeper excavation to access existing for utilities, and would limit the ability to locate existing foundations and other near-surface structures that may require removal during redevelopment.

10.2.4 Soil/Fill Alternative 4: Hotspot Soil/Fill Removal with Deferred Soil Cover System during Redevelopment

This alternative is similar to Alternative 3 in that it provides for construction of a 12" soil cover over exposed areas of the Site following hotspot soil/fill removal; however, the cover would be placed on a sub-parcel basis during the redevelopment stage (i.e., after COC issuance) to coordinate with and exclude the cover that inherently will be provided by building, road, parking areas and landscaping. While this soil cover would not be in place at the time of COC issuance, it would be mandatory under the Site Management Plan and the environmental easement (see Section 11.0) that the cover be constructed prior to occupancy of any built-out subparcel, with the remainder of the undeveloped Business Park Area segregated from the redeveloped subparcel by fencing and appropriate signage to restrict access to uncovered areas. The size of the subparcels would vary according to the build-out

plan; however, a minimum acreage (e.g., 5 acres) incorporating the proposed redevelopment buildings and structures is envisioned.

Overall Protection of Public Health and the Environment – Based on the removal of hotspot soil/fill and the fact that the Site is isolated, covered by indigenous vegetation, secured with fencing, and patrolled by security during off hours to discourage trespassing, this alternative is protective of human health and the environment under the current (undeveloped) scenario. This alternative would be protective of human health and the environment under the future use scenario, as it provides for implementation of the 12" cover system in areas not otherwise covered by buildings, roads, etc. as well as segregation of developed subparcels from undeveloped areas of the Site. Therefore, Alternative 4 successfully achieves the RAOs for the Site.

Compliance with SCGs – Excavation and off-site disposal, as well as on-site biotreatment of petroleum-impacted soil/fill, would need to be performed in accordance with applicable, relevant, and appropriate SCGs. Imported cover material would need to meet backfill quality criteria per 6NYCRR Part 375. Borrow source mining would require a permit and storm water pollution prevention plan (SWPPP) for all disturbed areas greater than 1 acre in size. Vegetative cover would be placed during the redevelopment period along with building, road and other build-out and as such would be subject to storm water regulations. Soil excavation and cover activities would necessitate preparation of and adherence to a community air monitoring plan for particulates in accordance with Appendix 1B of DER-10.

Long-Term Effectiveness and Permanence – Removal of the hotspot soil/fill areas as well as construction of a cover system on a subparcel basis prior to occupancy would prevent direct contact with soil/fill exceeding restricted-commercial SCOs. The efficacy of the cover system will be maintained and monitored via the Site Management Plan. Periodic inspection and maintenance of the soil cover as well as the "hardscape" cover provided by asphalt roads, concrete, etc. would be required to assure long-term cover integrity. The institutional controls outlined in Section 11 would be required for long-term effectiveness. Following soil/fill removal, there is a potential for re-impact of Hotspot "C"

due to on-site contaminant migration from the adjacent parcel. Specifically, groundwater is likely migrating into the Hotspot "C" area from the Benzol Yard (SWMU P-11) north of the Phase II Business Park. In order for this alternative to maintain long-term effectiveness and permanence, the ICM presently in operation at the Benzol Yard would need to extend the groundwater collection system to the Phase III Business Park boundary near Hotspot "C" to mitigate localized groundwater migration to the south-southwest.

Reduction of Toxicity, Mobility, or Volume with Treatment – Removal of hotspot soil/fill would permanently and significantly reduce the toxicity, mobility, and volume of the soil/fill that could potentially be contacted or produce localized areas of environmental impact at the Site. However, since this alternative transfers Site soil/fill from one environment to another, an overall reduction of toxicity and volume would not occur, with the exception of the petroleum-impacted soil/fill bioremediated on-site. Placement of a soil cover in conjunction with cover provided by build-out over the remaining areas may somewhat reduce the mobility of contaminants from erosion, although the RI concluded that this pathway is not likely significant under the current (undeveloped) scenario. Accordingly the toxicity, mobility and volume of remaining residual contaminants would not be appreciably reduced under this alternative.

Short-Term Impacts and Effectiveness – Because cover will be placed on a gradual basis as development occurs and will exclude hardscape cover inherently provided by buildings, roads, parking areas, etc. (which are anticipated to represent 80-90% of the site acreage), short-term impacts will be minimized. The net volume of soil cover required under this approach would be approximately 48,100 cubic yards, representing approximately 3,400 truck trips from borrow sources over a multi-year period in lieu of a single construction season, negating traffic concerns along Route 5. As the cover soil placement will coordinate with the build-out, no additional removal work will be required. Community air monitoring, dust control, and soil erosion measures would only be required during Site development. The RAOs would be achieved upon cover placement.

Implementability – No significant technical or administrative implementability issues are anticipated under this alternative.

Cost-Effectiveness – The estimated capital cost for this alternative is \$2.4 million which includes: hotspot removal and disposal/treatment; cover system construction during remediation (i.e., areas not covered by building, parking or roads, assumed to be approximately 20% of the Site); development of a Site Management Plan; and environmental-based redevelopment costs associated with air monitoring during intrusive work. Annual OM&M costs for groundwater monitoring, cover maintenance, and annual certifications are estimated to be \$36,000, resulting in an estimated present worth cost of \$3.1 million. Table 15 presents a breakdown of these costs.

Land Use – This alternative is consistent with the reasonably anticipated future use of the Site. Furthermore, this alternative facilitates redevelopment by deferring final soil cover placement until redevelopment, thus avoiding the costs, time delays, and unnecessary disruption of placing, removing, and replacing cover during building, road, and utility construction.

10.2.5 Asbestos Waste Alternative 1: Asbestos Removal with Off-Site Disposal

This alternative involves removal of the asbestos waste (i.e., asbestos containing materials, or ACM, and associated demolition debris) allegedly encapsulated within the Soaking Pit Building tunnel (see Figure 3), with transport of the material to and disposal at a permitted, off-site disposal facility where it would need to be handled as special regulated waste. As described in Section 9.4, the estimated total volume of intermingled asbestos waste and debris that would be removed and disposed off-site is approximately 7,500 cubic yards. The resultant excavation would be backfilled with BUD-approved slag material or other approved import material to match existing grade.

Overall Protection of Public Health and the Environment – Removal and offsite disposal of the asbestos waste would be protective of public health and the environment under the future use scenario. However, this alternative would permanently use and displace 7,500 cubic yards of valuable landfill airspace, and would have potential significant shortterm impacts to human health and the environment as discussed below.

Compliance with SCGs – Removal of asbestos waste and off-site disposal would need to be performed in accordance with applicable, relevant, and appropriate SCGs. Asbestos removal activities would necessitate preparation of and adherence to a community air monitoring plan for particulates in accordance with Appendix 1B of DER-10, as well as baseline, project and post-abatement clearance air monitoring for asbestos by a qualified third party contractor. Variances from New York State DOL regulations governing asbestos removal operations may be required to allow friable material to be disposed without bagging.

Long-Term Effectiveness and Permanence – This alternative would achieve removal of the alleged asbestos waste; therefore no impacts would remain on the Site providing long-term effectiveness and permanence. Specific post-remedial monitoring and certifications relative to the Soaking Pit Building foundation would not be required.

Reduction of Toxicity, Mobility, or Volume with Treatment – Through removal of all asbestos waste, this alternative would permanently and significantly reduce the volume of asbestos containing material within the Site. However, the material is believed to be encapsulated within the concrete tunnel, and as such is not presently mobile nor does it pose a potential toxic effect since it is not in an environment where the inhalation exposure pathway is complete. Because this alternative transfers asbestos containing material from one environment to another, an overall reduction of toxicity, mobility, and volume would not occur.

Short-Term Impacts and Effectiveness – The short-term adverse impacts and risks to the community, workers, and environment during implementation of this alternative are significant. Site workers would be required to wear personal protective equipment (PPE) during asbestos removal to mitigate inhalation of asbestos fibers. Significant control methods (continuous water spray, limits on excavation area) would be required to limit the release of ACM during removal, however strong westerly winds off Lake Erie and the large quantity of materials requiring removal will undoubtedly result in some suspension of friable asbestos fibers, posing a threat to neighboring residents (i.e., Bethlehem Village, located directly downwind of the site) from airborne transport of friable ACM. Physical hazards, primarily related to potential accidents from heavy truck traffic on NY State Route 5, can

also be expected. Because the material is likely bulkier than soil, transport trucks will carry less weight, requiring additional trips. Assuming that each truck would be capable of transporting 10 cubic yards of debris, 750 round trips with dump trailers would be required for disposal. Any accident involving damage or turnover of a transport vehicle would likely have far-reaching detrimental impacts, as wind-blown asbestos fibers would be carried across a wide radius. Disruption of the neighboring community may occur due to material transport and noise from heavy equipment used to construct the remedy. The Remedial Action Objectives would be achieved once the asbestos waste is removed from the Site (est. 6 months).

Implementability – Significant technical issues would be encountered with this implementation of this alternative. These include, but are not limited to: special precautions to safely excavate unknown asbestos waste material from a below-grade tunnel; and site control to prevent asbestos waste from becoming airborne during removal. Administrative implementability issues would include the need to apply for and receive a NYSDOL variance to allow all debris to be handled as bulk demolition wastes in lieu of bagging asbestos-containing materials, and the need to identify a landfill facility capable of handling a large quantity of ACM, as these materials require special subsurface disposal.

Cost-Effectiveness – Capital costs for implementation of this alternative are estimated at \$1.55 Million, as shown on Table 16. No post-remedial operation and maintenance costs are associated with this alternative.

Land Use – This alternative would be consistent with the reasonably anticipated future use of the Site.

10.2.6 Asbestos Waste Alternative 2: Restricted Use with No Further Development

This alternative involves allowing ACM to remain encapsulated within the Soaking Pit Building tunnel, and placing a specific restriction in the site environmental easement to prevent future development over this area of the Phase III Business Park.

Overall Protection of Public Health and the Environment – This alternative is protective of human health and the environment under the current (undeveloped) scenario as the materials are presently encapsulated. This alternative would be protective of human health and the environment under the future use scenario with an environmental easement preventing any future development over the Soaking Pit Building foundation.

Compliance with SCGs – This alternative would comply with applicable SCGs.

Long-Term Effectiveness and Permanence – Allowing the asbestos materials to remain encapsulated in place would prevent direct contact with the waste. Development of a specific use restriction (i.e., no future development) under the site-wide environmental easement would be required for long-term effectiveness.

Reduction of Toxicity, Mobility, or Volume with Treatment – The asbestos containing material is believed to be encapsulated within the concrete tunnel, and as such is not presently mobile nor does it pose a potential toxic effect since it is not in an environment where the inhalation exposure pathway is complete. Under this alternative the ACM would remain contained in place. Accordingly the toxicity, mobility and volume of remaining contaminants would not be reduced under this alternative.

Short-Term Impacts and Effectiveness – There are no short-term impacts with this alternative. The RAOs would be achieved once the environmental easement is executed.

Implementability – No significant technical or administrative implementability issues are anticipated under this alternative.

Cost-Effectiveness – The estimated capital cost for this alternative is \$6,000 for survey of the Soaking Pit Building foundation and development of an area-specific restriction under the site-wide environmental easement. Table 17 presents a breakdown of these costs.

Land Use – This alternative is consistent with the reasonably anticipated future use of the Site. However, no development would be permitted over the foundation in accordance with the environmental easement.

10.2.7 Asbestos Waste Alternative 3: Restricted Use as On-Site Soil/Fill Biotreatment Pad

Under this alternative, the former Soaking Pit Building foundation would be converted to a biotreatment pad for treatment of petroleum-impacted soil/fill excavated from the Tecumseh Business Park Areas during remedial work, as well as any additional petroleum-impacted soil/fill, if encountered during the redevelopment phase of these areas. The environmental easement would stipulate that this area would be used for treatment of Business Park Area soil/fill only and, upon completion of treatment, no additional development would be allowed. The entire area would be enclosed by a 6-ft chain link fence with a locking double-access gate and identification/warning signs, and the foundation would be prepared for biotilling with a layer of sand or wood chip mulch buffer.

Overall Protection of Public Health and the Environment – This alternative is protective of human health and the environment under the current (undeveloped) scenario as the materials are presently encapsulated. This alternative would be protective of human health and the environment under the future use scenario with an environmental easement restricting future use to biotreatment of Business Park Area soil/fill. Following use of the area for soil/fill treatment, the environmental easement would stipulate that no future development be permitted.

Compliance with SCGs – This alternative would comply with applicable SCGs. Any site preparation activities for construction of the biotreatment pad or fence would necessitate preparation of and adherence to a community air monitoring plan for particulates in accordance with Appendix 1B of DER-10.

Long-Term Effectiveness and Permanence – Allowing the asbestos materials to remain encapsulated in place with use of the above-grade slab as a base for a biopad would prevent direct contact with the waste. A specific condition in the environmental easement

TURNKEY
ENVIRONMENTAL RESTORATION, LLC

preventing use of the Soaking Pit Building area, other than as a biopad, would be required for long-term effectiveness.

Reduction of Toxicity, Mobility, or Volume with Treatment – The asbestos the material is believed to be encapsulated within the concrete tunnel, and as such is not presently mobile nor does it pose a potential toxic effect since it is not in an environment where the inhalation exposure pathway is complete. Under this alternative the ACM would remain contained in place. Accordingly the toxicity, mobility and volume of remaining contaminants would not be reduced under this alternative.

Short-Term Impacts and Effectiveness – There are no short-term impacts with this alternative beyond the personal protective equipment and air monitoring required during biotreatment pad construction. The RAOs would be achieved once the environmental easement has been executed.

Implementability – No significant technical or administrative implementability issues are anticipated under this alternative.

Cost-Effectiveness – The estimated capital cost for this alternative is 60,000 which includes survey of the Soaking Pit Building foundation, biotreatment pad preparation, and fence installation. Table 18 presents a breakdown of these costs.

Land Use – This alternative is consistent with the reasonably anticipated future use of the Site. However, no development would be permitted over the foundation in accordance with the environmental easement.

10.3 Proposed Remedy

The previous sections describe the remedial alternatives and evaluate these alternatives against the screening criteria. This final section of the evaluation considers the information and evaluations contained in the previous sections to identify appropriate remedial measures to achieve the RAOs for the Phase III Business Park Area.

10.3.1 Soil/Fill Alternatives

The proposed remedial approach for the impacted soil/fill is Alternative 4 – Hotspot Soil/Fill Removal with Deferred Soil Cover System during Redevelopment because it satisfies the RAOs for the Site, is significantly less disruptive to the community, is consistent with current and future land use, and represents a lower cost than Alternatives 2 or 3. This alternative would involve removal of three hotspot areas described in Section 9.3 followed by off-site disposal of Hotspots "A" and "B" soil/fill and on-site biotreatment of Hotspot "C" and "D" soil/fill (tarry materials, if present in hotspot "D" soil/fill, would need to be segregated and disposed off-site). An estimated 7,520 CY of impacted soil/fill would be excavated (although confirmation of this volume would be required prior to remedy implementation). As a condition of occupancy, Site developers would be required to cover all soil/fill areas that exceed the restricted-commercial SCOs through placement of asphalt, building, or landscape cover. The landscape cover would involve placement of at least 1 foot of clean soil followed by seeding to promote vegetative growth. The clean soil would be required to meet NYSDEC DER-10 standards for commercial sites (i.e., lower of Part 375 human health or groundwater protection values for restricted-commercial sites).

The 30-year present worth cost is estimated to be \$2.5 million with a projected \$1.8 million for capital expenditures and \$36,000 for annual groundwater monitoring, Site maintenance, and environmental easement certification.

10.3.2 Asbestos Waste Alternatives

The proposed remedy for the asbestos waste is Alternative 3 – Restricted Use as On-Site Soil/Fill Biotreatment Pad because it satisfies the RAOs for the Site, minimizes short-term impacts, is cost-feasible, and provides a beneficial use for this area of the Site.

The estimated capital cost for this alternative is \$60,000, which includes survey of the soaking pit building foundation to facilitate development of specific restrictions for this area under the environmental easement, site preparation, biotreatment pad preparation, and fencing.

11.0 POST-REMEDIAL REQUIREMENTS

11.1 Final Engineering Report

Following completion of the remedial measures, a Final Engineering Report (FER) will be submitted to the NYSDEC. The FER will include the following information and documentation, consistent with the NYSDEC regulations contained in 6 NYCRR Part 375-1.6(c):

- Background and Site description.
- Summary of the Site remedy that satisfied the remedial action objectives for the Site.
- Certification by a professional engineer to satisfy the requirements outlined in 6 NYCRR Part 375-1.6(c)(4).
- Description of engineering and institutional controls at the Site.
- Site map showing the areas remediated.
- Documentation of imported materials.
- Documentation of materials disposed off-site.
- Copies of daily inspection reports and, if applicable, problem identification and corrective measure reports.
- Air monitoring data and reports.
- Photo documentation of remedial activities.
- Text describing the remedial activities performed; a description of any deviations from the Work Plan and associated corrective measures taken; and other pertinent information necessary to document that the site activities were carried out in accordance with this Work Plan.
- Analytical data packages and data usability summary reports (DUSRs).

11.2 Site Management Plan

0071-009-320

A Site Management Plan (SMP) covering the entire Phase III Business Park Area will be prepared and submitted concurrent with the FER. The purpose of the Site Management Plan is to assure that proper procedures are in place to provide for long-term protection of human health and the environment after remedial construction is complete. The SMP is comprised of four main components:

59

TURNKE

**Retrieven on Line Retrieven on

- Engineering and Institutional Control Plan
- Site Monitoring Plan
- Operation and Maintenance Plan
- Inspections, Reporting, and Certifications

11.2.1 Engineering and Institutional Control Plan

An institutional control in the form of a new Environmental Easement will be necessary to limit future use of the Site to restricted (commercial or industrial) applications and prevent groundwater use for potable purposes. An existing deed restriction is on file for the Tecumseh Site limiting reuse to commercial/industrial applications. However, industrial uses are loosely defined and allow incidental commercial-type facilities such as offices and laboratories, provided that they do not provide for occupancy by multiple numbers of persons under the age of 18. The deed restriction also prohibits construction or use of groundwater extraction wells (excluding monitoring and remediation wells).

Tecumseh will prepare an Engineering and Institutional Control (EC/IC) Plan that will include a complete description of all institutional and/or engineering controls employed at the Site, including the mechanisms that will be used to continually implement, maintain, monitor, and enforce such controls. The EC/IC Plan will include:

- A description of all EC/ICs on the site.
- The basic implementation and intended role of each EC/IC.
- A description of the key components of the ICs set forth in the Environmental Easement.
- A description of the features to be evaluated during each required inspection and periodic review, including the EC/IC certification, reporting, and Site monitoring.
- A description of plans and procedures to be followed for construction of the 12-inch soil cover as a condition of occupancy.
- Any other provisions necessary to identify or establish methods for implementing the EC/ICs required by the Site remedy, as determined by the NYSDEC.

11.2.2 Site Monitoring Plan

The Site Monitoring Plan will describe the measures for evaluating the performance and effectiveness of the remedy to reduce or mitigate contamination at the Site, including:

- Sampling and analysis of all appropriate media (e.g., groundwater).
- Assessing compliance with applicable NYSDEC standards, criteria and guidance, particularly ambient groundwater standards and Part 375 SCOs for soil.
- Assessing achievement of the remedial performance criteria.
- Evaluating site information periodically to confirm that the remedy continues to be effective in protecting public health and the environment; and
- Preparing the necessary reports for the various monitoring activities.

To adequately address these issues, this Site Monitoring Plan will provide information on:

- Sampling locations, protocol, and frequency.
- Information on all designed monitoring systems (e.g., well logs).
- Analytical sampling program requirements.
- Reporting requirements.
- Quality Assurance/Quality Control (QA/QC) requirements.
- Inspection and maintenance requirements for monitoring wells.
- Monitoring well decommissioning procedures.
- Annual inspection and periodic certification.

Semi-annual groundwater monitoring to assess overall reduction in contamination on-site and off-site will be conducted for the first two years. The frequency thereafter will be discussed with the NYSDEC. Trends in contaminant levels in groundwater in the affected areas will be evaluated to determine if the remedy continues to be effective in achieving remedial goals.

11.2.3 Operation and Maintenance Plan

An Operation & Maintenance (O&M) plan governing maintenance of the cover system will include:

- Include the operation and maintenance activities necessary to allow individuals unfamiliar with the Site to maintain the soil cover system.
- Include an O&M contingency plan.
- Evaluate Site information periodically to confirm that the remedy continues to be effective for the protection of public health and the environment. If necessary,

TURNKEY
ENVIRONMENTAL RESTORATION, LLC

the O&M Plan will be updated to reflect changes in Site conditions or the manner in which the cover system is maintained.

11.2.4 Inspections, Reporting, and Certifications

11.2.4.1 Inspections

Site-wide inspection will be conducted annually or as otherwise approved by the NYSDEC. All applicable inspection forms and other records, including all media sampling data and system maintenance reports, generated for the Site during the reporting period will be provided in electronic format in a Periodic Review Report.

11.2.4.2 Reporting

The Periodic Review Report will be submitted to the NYSDEC annually, or as otherwise approved, beginning 18 months after the Certificate of Completion or equivalent document is issued. The report will be prepared in accordance with NYSDEC DER-10 and submitted within 45 days of the end of each certification period. The Periodic Review Report will include:

- Identification, assessment and certification of all EC/ICs required by the remedy for the Site.
- Results of the required annual Site inspections and severe condition inspections, if applicable.
- All applicable inspection forms and other records generated for the Site during the reporting period in electronic format.
- A summary of any discharge monitoring data and/or information generated during the reporting period with comments and conclusions.
- Data summary tables and graphical representations of contaminants of concern by media (groundwater, soil vapor), which include a listing of all compounds analyzed, along with the applicable standards, with all exceedances highlighted. These will include a presentation of past data as part of an evaluation of contaminant concentration trends.
- Results of all analyses, copies of all laboratory data sheets, and the required laboratory data deliverables for all samples collected during the reporting period will be submitted electronically in a NYSDEC-approved format.
- A Site evaluation that includes the following:

TURNKEY

ENVIRONMENTAL

RESTORATION, LLC

- The compliance of the remedy with the requirements of the site-specific RAWP, ROD, or Decision Document.
- The operation and the effectiveness of all treatment units, etc., including identification of any needed repairs or modifications.
- Any new conclusions or observations regarding site contamination based on inspections or data generated by the Site Monitoring Plan for the media being monitored.
- Recommendations regarding any necessary changes to the remedy and/or Site Monitoring Plan.
- The overall performance and effectiveness of the remedy.

11.2.4.3 Certification

The signed EC/IC Certification will be included in the Periodic Review Report described in Section 4.2.4.2: For each institutional or engineering control identified for the Site, a Professional Engineer licensed to practice in New York State will certify that all of the following statements are true:

- The inspection of the Site to confirm the effectiveness of the institutional and engineering controls required by the remedial program was performed under my direction.
- The engineering and institutional controls employed at this Ste are unchanged from the date the control was put in place, or last approved by the NYSDEC.
- Nothing has occurred that would impair the ability of the control to protect the public health and environment.
- Nothing has occurred that would constitute a violation or failure to comply with any Site Management Plan for this control.
- Access to the Site will continue to be provided to the NYSDEC to evaluate the remedy, including access to evaluate the continued maintenance of this control.
- If a financial assurance mechanism is required under the oversight document for the Site, the mechanism remains valid and sufficient for the intended purpose under the document.
- Use of the Site is compliant with the Environmental Easement.
- The engineering control systems are performing as designed and are effective.
- To the best of my knowledge and belief, the work and conclusions described in this certification are in accordance with the requirements of the Site remedial program and generally accepted engineering practices.

TURNKEY
ENVIRONMENTAL RESTORATION, LLC

• The information presented in this report is accurate and complete.

11.2.4.4 Corrective Measures Plan

If any component of the remedy is found to have failed, or if the periodic certification cannot be provided due to the failure of an institutional or engineering control, a Corrective Measures Plan will be submitted to the NYSDEC for approval. This plan will explain the failure and provide the details and schedule for performing work necessary to correct the failure. Unless an emergency condition exists, no work will be performed pursuant to the Corrective Measures Plan until it is approved by the NYSDEC.

12.0 REFERENCES

- 1. RCRA Facility Investigation (RFI) Report for the Former Bethlehem Steel Corporation Facility, Lackawanna, New York, Parts I through VII, prepared for Bethlehem Steel Corporation by URS Consultants, Inc., January 2005.
- 2. RCRA Facility Assessment (RFA) Report for the Bethlehem Steel Corporation Facility, Lackawanna, New York. EPA-330/2-88-054. NEIC, Denver, CO. 1988.
- 3. Remedial Investigation/Alternatives Analysis Report Work Plan for Phase III Business Park, prepared for ArcelorMittal Tecumseh Redevelopment Inc. by TurnKey Environmental Restoration, LLC, May 2008.
- 4. Remedial Investigation/Alternatives Analysis Report Work Plan for Steel Winds II Site, prepared for BQ Energy, LLC by Benchmark Environmental Engineering & Science, PLLC, May 2008.
- 5. DER-10/Technical Guidance for Site Investigation and Remediation, prepared by New York State Department of Environmental Conservation, May 3, 2010.
- 6. Solid Waste Management Unit (SWMU) Assessment Report for WQCS #3A, prepared by Bethlehem Steel Corporation, 1989.
- 7. Guidance for Evaluating Soil Vapor Intrusion in the State of New York. New York State Department of Health, Center for Environmental Health, Bureau of Environmental Exposure Investigation, October 2006. Revised June 25, 2007.

0071-009-320 65

CONSTITUENTS OF POTENTIAL CONCERN (COPCs)

Remedial Investigation / Alternatives Analysis Report
Phase III Business Park Area
Tecumseh Redevelopment Inc.
Lackawanna, New York

COMPOUND	CAS #	COMPOUND	CAS#
Volatile Organic Compounds		TCL Semi-Volatile Organic Compounds (co	ont'd)
STARS Method 8021B)		(Method 8270C - base/ neutrals only)	
Benzene	71-43-2	Dimethyl phthalate	131-11-3
n-Butylbenzene	104-51-8	2,4-Dinitrotoluene	121-14-2
sec-Butylbenzene	135-98-8	2,6-Dinitrotoluene	606-20-2
tert-Butylbenzene	98-06-6	Di-n-octyl phthalate	117-84-0
p-Cymene	99-87-6	Fluoranthene	206-44-0
Ethylbenzene	100-41-4	Fluorene	86-73-7
Isopropylbenzene	98-82-8	Hexachlorobenzene	118-74-1
Methyl tert butyl ether	1634-04-4	Hexachlorobutadiene	87-68-3
n-Propylbenzene	103-65-1	Hexachlorocyclopentadiene	77-47-4
Toluene	108-88-3	Hexachloroethane	67-72-1
1,2,4-Trimethylbenzene	95-63-6	Indeno(1,2,3-cd)pyrene	193-39-5
1,3,5-Trimethylbenzene	108-67-8	Isophorone	78-59-1
m-Xylene	95-47-6	2-Methylnaphthalene	91-57-6
o-Xylene	106-42-3	Naphthalene	91-20-3
p-Xylene	108-38-3	2-Nitroaniline	88-74-4
		3-Nitroaniline	99-09-2
CL Semi-Volatile Organic Compounds		4-Nitroaniline	100-01-6
Method 8270C - base/ neutrals only)		Nitrobenzene	95-95-3
Acenaphthene	83-32-9	N-Nitrosodiphenylamine	86-30-6
Acenaphthylene	208-96-8	N-Nitroso-Di-n-propylamine	621-64-7
Anthracene	120-12-7	Phenanthrene	85-01-8
Benzo(a)anthracene	56-55-3	Pyrene	129-00-0
Benzo(b)fluoranthene	205-99-2	1,2,4-Trichlorobenzene	120-82-1
Benzo(k)fluoranthene	207-08-9		
Benzo(g,h,i)perylene	191-24-2	Metals	
Benzo(a)pyrene	50-32-8	(Method 6010B)	
Benzyl alcohol	100-51-6	Arsenic	7440-38-2
Bis(2-chloroethoxy) methane	111-91-1	Cadmium	7440-43-9
Bis(2-chloroethyl) ether	111-44-4	Chromium	7440-47-3
2,2'-Oxybis (1-Chloropropane)	108-60-1	Lead	7439-92-1
Bis(2-ethylhexyl) phthalate	117-81-7	Mercury (Method 7470A(water) and 7471A(solid))	7439-97-6
4-Bromophenyl phenyl ether	101-55-3	•	
Butyl benzyl phthalate	85-68-7	Wet Chemistry	
4-Chloroaniline	106-47-8	Cyanide (Method 9010B)	57-12-5
2-Chloronaphthalene	91-58-7		
4-Chlorophenyl phenyl ether	7005-72-3	PCBs	
Chrysene	218-01-9	Method 8082	
Dibenzo(a,h)anthracene	53-70-3	Aroclor 1016	12674-11-
Dibenzofuran	132-64-9	Aroclor 1221	11104-28-
Di-n-butyl phthalate	84-74-2	Aroclor 1232	11141-16-
1,2-Dichlorobenzene	95-50-1	Aroclor 1242	53469-21-
1,3-Dichlrobenzene	541-73-1	Aroclor 1248	12672-29-
1,4-Dichlrobenzene	106-46-7	Aroclor 1254	11097-69-
3,3'-Dichlorobenzidine	91-94-1	Aroclor 1260	11096-82-
Diethyl phthalate	84-66-2		

EXPANDED PARAMETER LIST

Remedial Investigation / Alternatives Analysis Report
Phase III Business Park Area
Tecumseh Redevelopment Inc.
Lackawanna, New York

COMPOUND	CAS#	COMPOUND	CAS#	COMPOUND	CAS#
CL Volatile Organic Compounds		TCL Semi-Volatile Organic Compour		TCL Semi-Volatile Organic Compoun	nde.
Full List TCL VOCs plus STARS, via Method 802	21R)	(Method 8270C - base-neutrals and acid extra		(Method 8270C - base-neutrals and acid extra	
Acetone	67-64-1	Acenaphthene	83-32-9	N-Nitrosodiphenylamine	86-30-6
Benzene	71-43-2	Acenaphthylene	208-96-8	N-Nitroso-di-n-propylamine	621-64-7
Bromoform	75-25-2	Anthracene	120-12-7	Pentachlorophenol	87-86-5
Bromochloromethane	74-97-5	Benzo(a)anthracene	56-55-3	Phenanthrene	85-01-8
Bromodichloromethane	75-27-4	Benzo(a)pyrene	50-32-8	Phenol	108-95-
Bromomethane (Methyl bromide)	74-83-9	Benzo(b)fluoranthene	205-99-2	Pyrene	129-00-
2-Butanone (MEK)	78-93-3	Benzo(g,h,i)perylene	191-24-2	1,2,4-Trichlorobenzene	120-82-
n-Butylbenzene	104-51-8	Benzo(k)fluoranthene	207-08-9	2,4,5-Trichlorophenol	95-95-4
sec-Butylbenzene	135-98-8	Benzyl alcohol	100-51-6	2,4,6-Trichlorophenol	88-06-2
tert-Butylbenzene	98-06-6	bis(2-Chloroethoxy)methane	111-91-1	2,4,0-1 Hemorophenor	00-00-2
Carbon disulfide	75-15-0	*	111-44-4	TAL Metals	
Carbon tetrachloride	56-23-5	bis(2-Chloroethyl)ether		(Method 6010B)	
	108-90-7	2,2'-oxybis(1-chloropropane); bis(2- chloroisopropyl)ether	108-60-1	,	7440-38
Chlangebase			117 01 7	Antimony	
Chlangform	75-00-3	bis(2-Ethylhexyl)phthalate	117-81-7	Arsenic	7440-38
Chloroporthere (Market ablasida)	67-66-3	Butyl benzyl phthalate	85-68-7	Barium	7440-39 7440-39
Chloromethane (Methyl chloride)	74-87-3	4-Bromophenyl phenyl ether	101-55-3	Beryllium	
Cyclohexane	110-82-7	4-Chloroaniline	106-47-8	Cadmium	7440-43
p-Cymene (p-isopropyltoluene)	99-87-6	4-Chloro-3-methylphenol	59-50-7	Calcium	7440-70
1,2-Dibromo-3-chloropropane	96-12-8	2-Chloronaphthalene	91-58-7	Chromium	7440-47
1,2-Dibromoethane (EDB)	106-93-4	2-Chlorophenol	95-57-8	Cobalt	7440-48
Dibromochloromethane	124-48-1	4-Chlorophenyl-phenylether	7005-72-3	Copper	7440-50
Dichlorodifluoromethane (Freon-12)	75-71-8	Chrysene	218-01-9	Iron	7439-89
1,2-Dichlorobenzene	95-50-1	Dibenzo(a,h)anthracene	53-70-3	Lead	7439-92
1,3-Dichlorobenzene	541-73-1	Dibenzofuran	132-64-9	Mercury (Method 7470A(water) and	7439-97
1,4-Dichlorobenzene	106-46-7	3,3'-Dichlorobenzidine	91-94-1	7471A(solid))	
1,1-Dichloroethane	75-34-3	2,4-Dichlorophenol	120-83-2	Magnesium	7439-95
1,2-Dichloroethane (EDC)	107-06-2	1,2-Dichlorobenzene	95-50-1	Manganese	7439-96
1,1-Dichloroethylene (1,1-DCE)	75-35-4	1,3-Dichlorobenzene	541-73-1	Nickel	7440-02
trans-1,2-Dichloroethylene	156-60-5	1,4-Dichlorobenzene	106-46-7	Potassium	7440-09
cis-1,2-Dichloroethylene	156-59-2	Diethyl phthalate	84-66-2	Selenium	7782-49
cis-1,3-Dichloropropene	10061-01-5	2,4-Dimethylphenol	105-67-9	Silver	7440-22
trans-1,3-Dichloropropene	10061-02-6	Dimethyl phthalate	131-11-3	Sodium	7440-23
1,2-Dichloropropane	78-87-5	Di-n-butyl phthalate	84-74-2	Thallium	7440-28
Ethylbenzene	100-41-4	Di-n-octyl phthalate	117-84-0	Vanadium	7440-62
2-Hexanone	591-78-6	4,6-Dinitro-2-methylphenol	534-52-1	Zinc	7440-66
Isopropylbenzene (Cumene)	98-82-8	2,4-Dinitrophenol	51-28-5		
Methyl acetate	79-20-9	2,4-Dinitrotoluene	121-14-2	Wet Chemistry	
Methylene chloride	75-09-2	2,6-Dinitrotoluene	606-20-2	Cyanide (Method 9010B)	57-12-5
Methylcyclohexane	108-87-2	Fluoranthene	206-44-0		
4-methyl-2-pentanone (MIBK)	108-10-1	Fluorene	86-73-7	PCBs	
Methyl tert butyl ether (MTBE)	1634-04-4	Hexachlorobenzene	118-74-1	Method 8082	
n-Propylbenzene	103-65-1	Hexachlorobutadiene	87-68-3	Aroclor 1016	12674-1
Styrene	100-42-5	Hexachlorocyclopentadiene	77-47-4	Aroclor 1221	11104-2
1,1,1,2-Tetrachloroethane	630-20-6	Hexachloroethane	67-72-1	Aroclor 1232	11141-1
Tetrachloroethylene (PCE)	127-18-4	Indeno(1,2,3-cd)pyrene	193-39-5	Aroclor 1242	53469-2
Toluene	108-88-3	Isophorone	78-59-1	Aroclor 1248	12672-2
1,2,3-Trichlorobenzene	87-61-6	2-Methylnaphthalene	91-57-6	Aroclor 1254	11097-6
1,2,4-Trichlorobenzene	120-82-1	2-Methylphenol (o-Cresol)	95-48-7	Aroclor 1260	11096-8
1,1,1-Trichloroethane	71-55-6	4-Methylphenol (p-Cresol)	106-44-5		
1,1,2-Trichloroethane	79-00-5	Naphthalene	91-20-3		
Trichloroethylene (TCE)	79-01-6	2-Nitroaniline	88-74-4		
Trichlorofluoromethane (Freon-11)	75-69-4	3-Nitroaniline	99-09-2		
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon-11		4-Nitroaniline	100-01-6		
1,2,4-Trimethylbenzene	95-63-6	Nitrobenzene	98-95-3		
1,3,5-Trimethylbenzene	108-67-8	2-Nitrophenol	88-75-5		
Vinyl chloride	75-01-4	4-Nitrophenol	100-02-7		
m-Xylene	95-47-6	. Introphenor	100 02-7		
o-Xylenes	106-42-3				
p-Xylene	108-38-3				
Total Xylenes	1330-20-7				

TABLE 3a ANALYTICAL PROGRAM SUMMARY FOR PHASE III BPA

Remedial Investigation/Alternatives Analysis Report Phase III Business Park Area Tecumseh Redevelopment Inc. Lackawanna, New York

									Α	nalysis	S											
Test Pit/Monitoring Well Sample Identifier	Investigation Rationnale	Depth Sampled/ Screened (fbgs)	Date Sampled	rcl + STARS VOCs	STARS VOCs	TCL SVOCs	TCL SVOCs (Base Neutrals Only)	Total Metals	TAL Metals	Arsenic	Cadmium	Chromium	Cyanide	Lead	Mercury	TCL PCBs	Flashpoint	Hd	TCLP VOC	TCLP SVOC	TCLP Metals	Comments
Soil/Fill									<u> </u>			<u> </u>						<u> </u>				
BPA-3-TP-1	General Coverage: No known or	0-2	8/12/2008				х			Х	Х	Х	Х	Х	Х							
BPA-3-TP-2	suspected impact	0-2	8/13/2008		Х		Х		_	Х	Х	Х	Х	Х	Х			_			_	
BPA-3-TP-2	Area of multiple fuel, oil, and	2-4	8/13/2008	Х		-		-	-							Х	Х	-	Х	Х	Х	
BPA-3-TP-3	grease tanks	3-6	8/13/2008	X		Х		-	Х	-	-			-		Х		-				
BPA-3-TP-4		0-2	8/11/2008	-					-	-		-		-	-			-				
BPA-3-TP-5		0-2	8/11/2008		Х	-	Х		-	Х	Х	Х	Х	Х	Х	Х						
BPA-3-TP-6		0-2	8/11/2008	Х		_	X		_	X	X	X	X	Х	Х			_				
BPA-3-TP-6	Former Sinter Building	2-6	8/11/2008	Х				-	-		-	-						-				
BPA-3-TP-7		0-2	8/13/2008		Х		Х	-	-	Х	Х	Х	Х	Х	Х			-				
BPA-3-TP-8		0-2	8/18/2008			-									_							
	Area of existing WQCS #3a	0-2	8/12/2008		Х	_	Х		-	Х	Х	Х	Х	Х	Х		-	-			_	
BPA-3-TP-9	garage (SWMU-19) Former area of SWMU-25 and																					
BPA-3-TP-10	SWMU-26	0-2	8/18/2008			-			-						-			-			-	<u> </u>
BPA-3-TP-11	Former thaw house	0-2	8/15/2008					-			-				-							
BPA-3-TP-12		0-2	8/15/2008		Х		Х		-	Х	Х	Х	Х	Х	Х			-				
BPA-3-TP-13	Former stripper building	0-2	8/14/2008				Х			Х	Х	Х	Х	Х	Х							
BPA-3-TP-14		0-2	8/18/2008																			
BPA-3-TP-15		0-2	8/15/2008					-	-		-	-						-				
BPA-3-TP-16	5 6	0-2	8/15/2008				Х			Х	Х	Х	Х	Х	Х							
BPA-3-TP-17	Portion of former Open Hearth No. 3	0-2	8/20/2008				Х			Х	Х	Х	Х	Х	Х							
BPA-3-TP-18		0-2	8/20/2008			-		-	-		-							-			-	
BPA-3-TP-19		0-2	8/20/2008	-				-			-		-		-	-						
BPA-3-TP-20		0-2	8/20/2008	Х		Х		1	Х	-	1	-	Х	-	1	Х						MS/MSD
BPA-3-TP-21		0-2	8/20/2008												-							
BPA-3-TP-22		0-2	8/19/2008		Х		Х	-		Х	Х	Х	Х	Х	Х							
BPA-3-TP-23	Area of former welfare building & transformers	0-2	8/20/2008		Х		Х			Х	Х	Х	Х	Х	Х	Х					-	
BPA-3-TP-24		0-2	8/19/2008					-	-		-	-						-				
BPA-3-TP-25		3-7	8/20/2008				Х	-		Х	Х	Х	Х	Х	Х							
BPA-3-TP-26		0-1	8/15/2008				Х			Х	Х	Х	Х	Х	Х	Х						
BPA-3-TP-27	Former Open Hearth No. 3 substation	0-2	8/15/2008												-							
BPA-3-TP-28	Substation	0-2	8/15/2008				Х	-		Х	Х	Х	Х	Х	Х	Х						
BPA-3-TP-29		0-2	8/18/2008																			
BPA-3-TP-30		0-2	8/18/2008			-	Х	-	-	Х	Х	Х	Х	Х	Х	-		-			-	
BPA-3-TP-31		0-2	8/19/2008				Х			Х	Х	Х	Х	Х	Х							
BPA-3-TP-32	Area of SWMU-21 through	0-2	8/19/2008		Х		Х	-		Х	Х	Х	Х	Х	Х							Blind
BPA-3-TP-33	SWMU-23	0-2	8/19/2008			-			-									-				
BPA-3-TP-34		0-4	8/19/2008			-	Х	-	-	Х	Х	Х	Х	Х	Х	-		-			-	
BPA-3-TP-35	†	0-2	8/18/2008						-			-			-			-			-	
BPA-3-TP-36		0-2	8/18/2008				Х			Х	Х	Х	Х	Х	Х							MS/MSD
BPA-3-TP-37	General Coverage: No known or		8/15/2008			-	X			X	X	X	X	X	X						_	
BPA-3-TP-38	suspected impact	0-2	8/19/2008		х		X		-	X	X	X	X	X	X			-				
	Area of 2,000 gal oil tank																					
BPA-3-TP-39	Area of molding warming	0-6	8/19/2008							-								-				
BPA-3-TP-40	building	0-2	8/21/2008				Х		-	Х	Х	Х	Х	Х	Х			-				
BPA-3-TP-41	Conoral Covers No line	0-2	8/20/2008																			
BPA-3-TP-42	General Coverage: No known or suspected impact	0-2	8/21/2008	Х			Х	-		Х	Х	Х	Х	Х	Х	-						
BPA-3-TP-42		Waste	8/21/2008			Х		-		-	-		-	1	-	Х	Х		Х		Х	Blind 2
BPA-3-TP-43		0-2	8/21/2008				Х	-	-	Х	Х	Х	Х	Х	Х	-		-				
BPA-3-TP-44		0-2	8/21/2008																			
BPA-3-TP-45		0-2	8/21/2008		-	-	Х	-	-	Х	Х	Х	Х	Х	Х	-	-	-	-	-	-	
BPA-3-TP-46		0-2	8/22/2008												-							
BPA-3-TP-47	Former Basic Oxygen Furnace (BOF) Plant	0-2	8/22/2008			-	х	-	-	Х	Х	Х	Х	Х	Х	-		-			-	
BPA-3-TP-48		0-2	8/22/2008				Х			Х	Х	Х	Х	Х	Х							
BPA-3-TP-49		0-2	8/22/2008	-	Х		Х	-		Х	Х	Х	Х	Х	Х	Х						
BPA-3-TP-50		0-2	8/26/2008	Х		Х			Х	-			-	-	-	Х		-			-	Blind 3
BPA-3-TP-51		0-2	8/26/2008		Х		Х			Х	Х	Х	Х	Х	Х						-	

TABLE 3a ANALYTICAL PROGRAM SUMMARY FOR PHASE III BPA

Remedial Investigation/Alternatives Analysis Report Phase III Business Park Area Tecumseh Redevelopment Inc. Lackawanna. New York

						Lac	kawani	na, Ne	w Yo	rk												
									Α	nalysis	S											
Test Pit/Monitoring Well Sample Identifier	Investigation Rationnale	Depth Sampled/ Screened (fbgs)	Date Sampled	TCL + STARS VOCs	STARS VOCs	TCL SVOCs	TCL SVOCs (Base Neutrals Only)	Total Metals	TAL Metals	Arsenic	Cadmium	Chromium	Cyanide	Lead	Mercury	TCL PCBs	Flashpoint	Hd	TCLP VOC	TCLP SVOC	TCLP Metals	Comments
BPA-3-TP-51		2-9	8/26/2008	-			Х	-			-	-	-	-	-	-						
BPA-3-TP-52		0-2	8/25/2008									-										
BPA-3-TP-53	Former Basic Oxygen Furnace	0-2	8/25/2008			-		-	-	-	-	-		-	-			-			-	
BPA-3-TP-54	(BOF) Plant	0-2	8/26/2008	Х		-	х		-	Х	Х	Х	Х	Х	Х	-		-	-		-	
BPA-3-TP-54			8/26/2008	Х	-	-		1	-		1	1	1	1	1	Х	Х		Х	Х	Х	
BPA-3-TP-55		0-2	8/25/2008	-		-		1	-	1	-	-	-	-	-	-		-		-	-	
BPA-3-TP-56		0-2	8/25/2008				Х			Х	Х	Х	Х	Х	Х							
BPA-3-TP-57	Area of former Linde Plant	0-2	8/25/2008	-				-			-	-	-	-	-	-						
BPA-3-TP-58		0-2	8/25/2008	1	Х	-	Х	1	-	Х	Х	Х	Х	Х	Х	1		-	-	-		
BPA-3-TP-59	General Coverage: No known or suspected impact	0-2	8/26/2008				х			Х	Х	Х	Х	Х	Х							
BPA-3-TP-60	General Coverage: No known or suspected impact	0-2	8/22/2008	-		-	х	-	-	Х	Х	Х	Х	Х	Х	-					-	
BPA-3-TP-61		0-2	8/26/2008			-			-						-						-	
BPA-3-TP-62	Area of 1,000 gal. tank	0-2	8/26/2008		х	-	Х	-	-	Х	Х	Х	Х	Х	Х			-		-	-	
BPA-3-TP-63		0-2	8/26/2008							1	-	-	-	-	-	-					-	
BPA-3-TP-64	Former stripper building	0-2	8/26/2008				Х			Х	Х	Х	Х	Х	Х							MS/MSD
BPA-3-TP-65	General Coverage: No known or	0-2	8/26/2008		-	-	Х	-	-	Х	Х	Х	Х	Х	Х	-						
BPA-3-TP-66	suspected impact	0-2	8/28/2008						-													
BPA-3-TP-67		0-4	8/28/2008				Х		-	Х	Х	Х	Х	Х	Х	Х						
BPA-3-TP-68	Portion of former 45"-90" Universal Slabbing Mill (SWMU	0-2	8/28/2008						-													
BPA-3-TP-69	P-28 through SWMU P-32)	0-2	8/28/2008	Х		Х			Х	-		-	Х		-	Х						
BPA-3-TP-70		0-2	8/29/2008		Х	-	Х	-	-	Х	Х	Х	Х	Х	Х	-		-				
BPA-3-TP-71		0-2	8/29/2008				Х			Х	Х	Х	Х	Х	Х	Х						
BPA-3-TP-72 BPA-3-TP-73	Area of former Universal Slabbing Mill return water trench																					Not completed due to ditch/accessibility issue
BPA-3-TP-74	(filled-in)	0-2	8/29/2008						-			-			_						_	
BPA-2-TP-74		2-8	8/29/2008			-	Х			Х	Х	Х	Х	Х	Х						-	
BPA-3-TP-75	Area of 2,000 gal. and 5,000 gal.	0-2	8/29/2008	Х		Х			Х	-		-	Х			Х		_				
BPA-3-TP-76	USTs	0-2	8/28/2008																			
BPA-3-TP-76		2-7	8/28/2008			_	Х			Х	Х	Х	Х	Х	Х			_	-	_	_	
BPA-3-TP-77	Potential former AST area	0-2	8/28/2008	Х		Х			Х				Х						-			
BPA-3-TP-78		0-2	8/28/2008																			
BPA-3-TP-79		0-2	8/28/2008			-	Х		-	Х	Х	Х	Х	Х	Х	-		-	-	-	-	
BPA-3-TP-80		0-2	8/28/2008				Х		-	Х	Х	Х	Х	Х	Х						-	
BPA-3-TP-80	General Coverage: No known or suspected impact	2-7	8/28/2008				Х			Х	Х	Х	Х	Х	Х							
BPA-3-TP-81		0-2	8/22/2008	1		-	Х	1	-	Х	Х	Х	Х	Х	Х	1		-	-	-		
BPA-3-TP-82		0-2	8/22/2008				Х			Х	Х	Х	Х	Х	Х						-	
BPA-3-TP-83	Area of WQS Clarifiers and	0-2	8/14/2008		Х		Х			Х	Х	Х	Х	Х	Х			Х				
BPA-3-TP-84	Thickners	0-2	8/14/2008		X		X			X	X	X	X	X	X			X			-	
BPA-3-TP-85 BPA-3-TP-86	Area of WQS Tank	0-2	8/14/2008 8/14/2008		X		X			X	X	X	X	X	X			X				
BFA-3-11-00	Alea of WQS Talik	0-2	Totals	12	18	7	53	0	6	52	52	52	56	52	52	15	3	4	3	2	3	
Groundwater																						
MWN-56A			1/14/2009		Х		Х		Х													
MWN-57A			1/14/2009		Х		Х	-	Х	-	-	-	-	-	-	-		-				
MWN-10A			1/14/2009		Х		Х		Х	-	-	-		-	-							
MWN-58A			1/14/2009	-	Х		Х	-	Х	-	-	-	-	-	-	-						
MWN-59A			1/14/2009		Х		Х		Х													
MWN-60A			1/14/2009		Х		Х		Х													
MWS-34A			1/16/2009																<u> </u>			Melmen
MWS-35A MWS-33A			1/16/2009																<u> </u>			MS/MSD
MWS-30A			1/16/2009																			
	ı	Ī	., . 5/2005		l	l	i	i	1		i	i i	i	i	i i	i i	i	i	i	1	1	1

TABLE 3b ANALYTICAL PROGRAM SUMMARY FOR PHASE IIIA BPA

Remedial Investigation/Alternatives Analysis Report Phase IIIA Business Park Area Tecumseh Redevelopment Inc. Lackawanna, New York

							-	Analysi	s					
Test Pit/Monitoring Well Sample Identifier	Investigation Rationnale	Depth Sampled/ Screened (fbgs)	Date Sampled	TCL + STARS VOCs	STARS VOCs	TCL SVOCs	(Base Neutrals	TAL Metals	COPC Metals	Cyanide	Barium	TCL PCBs	Hd	Comments
Soil/Fill	Davis and first of factors of October 9, Oil Haves			ı		l			ı	ı				
BPA-3A-TP-1	Downgradient of former Grease & Oil House and Acetylene Container Storage	0-2	11/18/2009				Х		Х					
BPA-3A-TP-2	Former Air Compressor Station near Soaking Pit Building foundation	0-2	11/18/2009				х		х		-			
BPA-3A-TP-3	Downgradient of former Air Compressor Station near Soaking Pit Building	2-6	11/18/2009				х		х					
BPA-3A-TP-4	Downgradient of Electric Department Building	0-2	11/18/2009		-		Х	-	Х				-	
BPA-3A-TP-5														
BPA-3A-TP-6	No known or suspected impact	0-2	11/18/2009				Х		Х					
BPA-3A-TP-7														
BPA-3A-TP-8		5-8	11/18/2009	Х			Х		Х					
BPA-3A-TP-9														
BPA-3A-TP-10	No known or suspected impact													
BPA-3A-TP-11														
BPA-3A-TP-12	Former area of Track Scale House													
BPA-3A-TP-13														
BPA-3A-TP-14		4-6	11/18/2009	Х			Х		Х					
BPA-3A-TP-15	No known or suspected impact													
BPA-3A-TP-16														
BPA-3A-TP-17	Former Instrument Repair Shop	3-6	11/20/2009	Х		Х		Х		Х		Х		MS/MSD
BPA-3A-TP-18	Former 15,000-gallon diesel oil AST	3-6	11/20/2009		Х		Х		Х					
BPA-3A-TP-19	Former Automotive Service Station	3-6	11/20/2009	Х		Х		Х		Х		Х		
BPA-3A-TP-20														
BPA-3A-TP-21											-			
BPA-3A-TP-22	No known or suspected impact	0-2	11/20/2009				Х		Х					
BPA-3A-TP-23		-												
BPA-3A-TP-24	Downgradient of former Open Hearth No. 3	0-2	11/20/2009				Х		Х					
BPA-3A-TP-25	Building Former 2,000-gallon fuel oil AST	3-5	11/20/2009		Х		X		X					Blind 1
BPA-3A-TP-26	Former Fuel Oil Storage Building (2 ASTs)	0-2	11/23/2009		X		X		X					Billio 1
BPA-3A-TP-27	Former Oil House	0-2	11/23/2009		X		X		X					
BPA-3A-TP-28	Former Transformer Substation 7E	0-2					X		X			Х		
BPA-3A-TP-29	Former Transformer Substation 7E	0-2	11/23/2009				X		X			X		
BPA-3A-TP-30	Former Precipitator Transformers	2-5	11/23/2009				X	-	X			X		
BPA-3A-TP-31	Former Precipitator Transformers	3-5	11/23/2009				X		X			X		
BPA-3A-TP-32	Former Precipitator Transformers	0-2	11/23/2009				X		X			X		
BPA-3A-TP-33	Former 1,500-gallon pitch AST	0-2	11/23/2009				X	-	X					
BPA-3A-TP-34	Former Tar Pump House	0-2	11/23/2009				X		X					
BPA-3A-TP-35	Downgradient of Water Treatment Pump	0-2	11/23/2009				X		X					
	House													
BPA-3A-TP-36			11/24/2000											
BPA-3A-TP-37	No known or suspected impact	0-2	11/24/2009	Х		Х		Х		Х		Х		
BPA-3A-TP-38														
BPA-3A-TP-39			44/04/0000											
BPA-3A-TP-40		0-2	11/24/2009				Х		Х					
BPA-3A-TP-41	No known or suspected impact													
BPA-3A-TP-42														
BPA-3A-TP-43														
BPA-3A-TP-44	Former Tar Pump House	7-8	11/24/2009	Х		Х		Х		Х		Х		

TABLE 3b ANALYTICAL PROGRAM SUMMARY FOR PHASE IIIA BPA

Remedial Investigation/Alternatives Analysis Report Phase IIIA Business Park Area Tecumseh Redevelopment Inc. Lackawanna, New York

							ı	Analysi	s					
Test Pit/Monitoring Well Sample Identifier	Investigation Rationnale	Depth Sampled/ Screened (fbgs)	Date Sampled	TCL + STARS VOCs	STARS VOCs	TCL SVOCs	(Base Neutrals	TAL Metals	COPC Metals	Cyanide	Barium	TCL PCBs	Hd	Comments
BPA-3A-TP-45	Former 1M cubic foot gas holder	0-2	11/30/2009	-		-	Х		Х	Х	Х			MS/MSD
BPA-3A-TP-46	Former 1M cubic foot gas holder	0-2	11/30/2009	-			Х		Х	Х	Х			
BPA-3A-TP-47	Former 1M cubic foot gas holder	0-2	11/30/2009	-			Х	-	Х	Х	Х		-	
BPA-3A-TP-48	Former 1M cubic foot gas holder	0-2	11/30/2009	-			Х	-	Х	Х	Х		-	
BPA-3A-SS-49	Former gas holder pump house		11/30/2009	-			Х	-	Х	Х	Х		-	
BPA-3A-TP-49	Former gas holder pump house	0-2	11/30/2009	-		-	Х	-	Х	Х	Х			Blind 2
BPA-3A-TP-49	Former gas holder pump house	5-7	11/30/2009					Х					Х	
BPA-3A-TP-50	Adjacent to SWMU P-12	0-2	11/30/2009	1	Х		Х	-	Х	-			-	
BPA-3A-TP-51	Adjacent to/downgradient of SWMU P-12	0-2	11/30/2009	Х		Х		Х	-	Х		Х	-	
BPA-3A-TP-52	Adjacent to SWMU P-12	0-2	12/2/2009	1	Х		Х	-	Х	-			-	MS/MSD
BPA-3A-TP-53	Adjacent to SWMU P-12	5-7	12/1/2009	Х		Х		Х	-	Х			-	
BPA-3A-TP-54	Former Open Hearth No. 3 building footprint	0-2	12/2/2009	-	Х		Х		Х					
BPA-3A-TP-55	Former Open Hearth No. 3 building footprint	0-2	12/2/2009	Х		Х		Х		Х		Х		Blind 3
BPA-3A-TP-56	Former Open Hearth No. 3 building footprint	0-2	12/2/2009	-	Х		Х		Х					
BPA-3A-TP-57	No known or suspected impact	0-2	11/24/2009	-	Х		Х	-	Х					
BPA-3A-TP-58	Adjacent to Benzol Loading Dock	5-6	11/30/2009	-	Х		Х	-	Х	-			-	
		•	Totals	9	10	7	34	8	34	13	6	11	1	
Groundwater		ı												
MWS-04	General Site Coverage		1/21/2010		Х		Х		Х					
MWN-19A	General Site Coverage		1/21/2010	Х		Х		Х		Х				MS/MSD, Blind Dup
MWN-19B	General Site Coverage		1/21/2010		Х		Х		Х					
MWN-30A	General Site Coverage		1/21/2010	-	Х	-	Х	-	Х					
MWS-31A	General Site Coverage		1/21/2010	-	Х		Х	-	Х					
MWN-61A	General Site Coverage		1/21/2010		Х		Х		Х					
MWN-62-D	General Site Coverage		1/21/2010	-	Х	-	Х	-	Х	-	-		-	
			Totals	1	6	1	6	1	6	1	0	0	0	

TABLE 4 GROUNDWATER MONITORING WELL CONSTRUCTION DETAILS

Remedial Investigation/Alternatives Analysis Report Phase III Business Park Area Tecumseh Redevelopment Inc. Lackawanna, New York

Well I.D.	Northing	Easting	Ground Elev. (fmsl)	Stick-up (feet)	TOR Elev. (fmsl)	Total Depth (fbTOR)	Screen Length (feet)	(fb	d Interval	Riser / Screen Diam. (in.)	Riser / Screen Material	Screen Slot Size (in.)	Stratigraphic Unit Monitoring
								top	bottom				
MONITORING WE													
MWN-10	1026373.615	1075621.513	583.30	2.17	585.47	18.33	10	6.00	16.00	4	PVC/SS	0.010	F
MWN-19A	1027566.513	1074436.041	583.07	2.22	585.29	18.24	10	6.00	16.00	2	PVC/SS	0.010	F,S,P
MWN-19B	1027555.852	1074440.480	582.77	2.29	585.06	28.81	10	16.00	26.00	2	PVC,SS/SS	0.010	Р
MWN-30A	1027642.623	1074640.826	582.67	2.92	585.59	20.95	15	3.00	18.00	2	SS/SS	0.010	F
MWN-40A	1026195.305	1074615.333	587.86	2.10	589.96	19.00	10	9.00	19.00	2	PVC/SS	0.010	F
MWN-56A	1027217.933	1075838.118	582.16	2.08	584.24	20.28	10	8.00	18.00	2	PVC/PVC	0.010	F
MWN-57A	1027059.679	1075257.817	583.42	2.78	586.20	21.78	10	8.00	18.00	2	PVC/PVC	0.010	F
MWN-58A	1025264.761	1076437.256	584.08	2.85	586.93	19.69	10	8.00	18.00	2	PVC/PVC	0.010	F
MWN-59A	1024786.311	1075925.932	584.40	3.04	587.44	21.32	10	8.00	18.00	2	PVC/PVC	0.010	F
MWN-60A	1024331.051	1076408.328	583.77	2.79	586.56	20.40	10	8.00	18.00	2	PVC/PVC	0.010	F
MWN-61A	1025357.610	1075641.250	584.72	2.19	586.91	18.03	10	6.00	16.00	2	PVC/PVC	0.010	F
MWN-62D	1026206.635	1074783.613	582.34	2.27	584.61	65.96	9	54.00	63.00	2	PVC/PVC	0.010	R
MONITORING WE	LLS SOUTH								•		•		
MWS-03	1024939.229	1075241.079	585.70	1.72	587.42	20.43	10	8.00	18.00	4	PVC/SS	0.010	F
MWS-04	1023844.145	1075429.974	583.61	2.44	586.05	20.43	10	7.00	17.00	4	PVC/SS	0.010	F
MWS-24A	1024237.749	1074911.499	591.77	2.56	594.33	23.00	10	13.00	23.00	2	PVC,SS/SS	0.020	F,S
MWS-24B	1024246.099	1074904.119	591.79	2.59	594.38	39.20	10	26.00	36.00	2	PVC,SS/SS	0.010	S,C
MWS-30A	1023018.759	1076614.467	583.21	2.52	585.73	20.42	10	8.00	18.00	2	PVC/SS	0.010	F
MWS-31A	1023875.581	1075671.716	583.98	2.64	586.62	14.28	7	4.00	11.00	2	PVC/SS	0.010	F
MWS-33A	1023627.520	1076549.551	584.29	2.82	587.11	21.12	10	8.00	18.00	2	PVC/SS	0.010	F
MWS-34A	1024438.871	1075824.708	584.57	2.56	587.13	21.31	10	8.00	18.00	2	PVC/SS	0.010	F
MWS-35A	1023289.235	1075682.948	584.29	2.49	586.78	20.83	10	8.00	18.00	2	PVC/SS	0.010	F
PIEZOMETERS													
P-38S	1024722.409	1076613.560	584.37	1.41	585.78	14.00	10	4.00	14.00	0.75	PVC/PVC	0.010	F.CS
P-39S	1024682.574	1076504.369	584.53	2.03	586.56	14.00	10	4.00	14.00	0.75	PVC/PVC	0.010	F,C
P-46S	1026491.365	1076118.306	582.24	0.00	582.24	13.00	10	3.00	13.00	0.75	PVC/PVC	0.010	F
P-47S	1026503.088	1076149.445	581.09	1.80	582.89	13.00	10	3.00	13.00	0.75	PVC/PVC	0.010	F
P-58S	1025621.176	1075503.741	585.41	1.64	587.05				ruction data no				F F
P-59S	1026211.884	1075300.838	584.28	2.44	586.72				ruction data no				F
P-60S	1026016.893	1075159.269	584.24	1.47	585.71				ruction data no				F

Notes:

1. Monitoring well MWS-24A has an obstruction at approximately 6.35 fbTOR.

Stratigraphic Unit: F = fill unit

Material:

S = Sand unit

PVC = polyvinyl chloride

R = bedrock unit

SS = Stainless Steel

CS = Clayey Silt unit

P = Peat unit

C = Clay unit

SUMMARY OF GROUNDWATER ELEVATIONS

Remedial Investigation / Alternatives Analysis Report Phase III Business Park Area Tecumseh Redevelopment Inc. Lackawanna, New York

Location	Date	Reference Point	Ref. Point Elevation ¹ (fmsl)	Water Depth Below Ref. Pt. (feet)	Water Table Elevation ¹ (fmsl)
Phase Wells III	Monitoring Wells	(23)			
MWN-10	01/29/10	TOR	585.47	7.95	577.52
MWN-19A	01/29/10	TOR	585.29	7.82	577.47
MWN-19B	01/29/10	TOR	585.06	10.27	574.79
MWN-24A	01/29/10	TOR	588.05	11.48	576.57
MWN-24B	01/29/10	TOR	587.88	15.86	572.02
MWN-30A	01/29/10	TOR	585.59	7.92	577.67
MWN-40A	01/29/10	TOR	589.96	13.50	576.46
MWN-56A	01/29/10	TOR	584.24	6.77	577.47
MWN-57A	01/29/10	TOR	586.20	8.43	577.77
MWN-58A	01/29/10	TOR	586.93	9.93	577.00
MWN-59A	01/29/10	TOR	587.44	10.16	577.28
MWN-60A	01/29/10	TOR	586.56	9.50	577.06
MWN-61A	01/29/10	TOR	586.91	9.44	577.47
MWN-62D	01/29/10	TOR	584.61	12.47	572.14
MWS-03	01/29/10	TOR	587.42	13.23	574.19
MWS-04	01/29/10	TOR	586.05	9.38	576.67
MWS-24A	01/29/10	TOR	594.33	Obstruction	at 9.0 fbgs
MWS-24B	01/29/10	TOR	594.38	20.11	574.27
MWS-30A	01/29/10	TOR	585.73	8.71	577.02
MWS-31A	01/29/10	TOR	586.62	10.05	576.57
MWS-33A	01/29/10	TOR	587.11	10.88	576.23
MWS-34A	01/29/10	TOR	587.14	11.32	575.82
MWS-35A	01/29/10	TOR	586.78	9.87	576.91
Phase III Piezom	neters (7)				
P-38S	01/29/10	TOR	585.78	8.79	576.99
P-39S	01/29/10	TOR	586.56	9.61	576.95
P-46S	01/29/10	TOC	Co	uld not remove Bo	lts.
P-47S	01/29/10	TOR	582.89	6.49	576.40
P-58S	01/29/10	TOR	587.05	9.49	577.56
P-59S	01/29/10	TOR	586.72	8.49	578.23
P-60S	01/29/10	TOR	585.71	Frozen	J-plug
Phase III Staff G	uages (5)				
SG-02	01/29/10		582.07	11.31	570.76
SG-03	01/29/10		583.72	12.79	570.93
SG-04	01/29/10		586.12	11.14	574.98
SG-05	01/29/10		582.35	7.08	575.27

Notes:

^{1.} Elevation is measured in feet; distance above mean sea level (fmsl).

TABLE 6a

SUMMARY OF SOIL ANALYTICAL DATA

Remedial Investigation/Alternatives Analysis Report Phase III Business Park Area Tecumseh Redevelopment Inc. Lackawanna, New York

Parameter SCO (ppr	(ppm) (Cost) - mg/kg 3 0.05 0.06 0.06 0.012 1 1 1 1 0.8 11 1		NE	ND	TP-5 (0-2') ND	ND	ND N	TP-7 (0-2') 0.094 ND ND 0.013 J ND		ND		(100-21) T(100-21) (100-21) (100-21)	((BPA-3- TP-20 (0-2') 0.006 J ND	BPA-3- TP-22 (0-2') ND	TP-23 (0-2') ND N	TP-25	TP-26	BPA-3- TP-28			TP-32 T	PA-3- BP# (0-4') (0-4') (0-4')			TP-40	TP-42	TP-42 (waste)	TP-43	TP-45 1	PA-3- BPA P-47 TP-2-(0-2') (0-2		TP-50 (0-2') 0.023 BJ ND ND 0.002 BJ ND ND ND ND ND ND ND ND ND N	TP-51	TP-51 (2-9')	TP-54 (Sat Soil)	TP-54 (0-2') 0.008 B ND
Parameter SCO (ppr	(ppm) (COS 2 (ppm)) (COS 2 (pp	P-1 TP (0	NE	ND ND ND ND ND ND ND ND	TP-5 (0-2') ND	ND N	ND N	TP-7 (0-2') 0.094 ND ND 0.013 J ND		TP-12 (0-2') (0		(100-21) T(100-21) (100-21) (100-21)	((TP-20 (0-2') 0.006 J ND	TP-22 (0-2')	TP-23 (0-2') ND N	TP-25 (3-7')	TP-26 (0-1')	TP-28 (0-2')	TP-30 (0-2')	TP-31 (0-2')	TP-32 1 (0-2') ((TP-38 (0-2') 0.0009 ND	TP-40 (0-2')	ND 0.032 J ND 0.032 J ND 0.012 J ND 0.017 J 0.057 ND 0.021 J 0.021 J	TP-42 (waste)	TP-43 (0-2')	TP-45 1 (0-2') 1		.8 TP-49 (0-2')	TP-50 (0-2') 0.023 BJ ND ND 0.002 BJ ND ND ND ND ND ND ND ND ND N	TP-51 (0-2')	TP-51 (2-9')	TP-54 (Sat Soil) 0.017 BJ ND	TP-54 (0-2') 0.008 B ND
Volatile Organic Compounds (VOCs) - r	s) - mg/kg ³ 0.05 0.06 0.12 1 0.05 0.7 0.26 0.26 0.26 0.26 0.26 0.26 0.26 11 11 15 19 100 11 11 100 11 11 11 11 11 11 11 11 1	N N N N N N N N	NE NE NE NE NE NE NE NE	ND ND ND ND ND ND ND ND	ND	ND N	ND N	0.094 ND 0.013 J ND	ND				(0.006 J ND	ND ND ND ND 0.00029 J ND ND ND ND ND ND ND ND ND							ND ND ND				 J 	0.5 ND 0.032 J ND ND 0.012 J ND 0.017 J 0.057 ND 0.021 J 0.01 J						0.023 BJ ND ND 0.002 BJ ND ND ND ND ND ND ND ND ND			0.017 BJ ND	0.008 B ND ND ND 0.002 v ND
Acetone 0.0 Benzene 0.0 Benzene 0.0 2-Butanone (MEK) 0.1. Carbon disulfide	0.05 0.06 0.06 0.12 1 0.05 0.7 0.26 0.26 0.26 3.9 3.6 8.4 11 5.9 (SVOCs) - mg/ 100 1 1 0.8 1 100 1 1 1 1 1 1		NE	ND N		ND N	ND N	ND 0.013 J ND	ND	ND ND				ND N	 ND ND 0.00029 J ND ND ND ND ND						 0	ND ND 0.0004 J ND ND			0.0009 ND		ND 0.032 J ND ND 0.012 J ND 0.017 J 0.057 ND 0.021 J 0.01 J						ND ND 0.002 BJ ND			ND ND 0.002 J ND	ND
Benzene	0.06 0.12 1 0.05 0.7 0.26 0.26 0.26 0.26 3.9 3.6 8.4 11 5.9 (SVOCs) - mg/ 20 2 1 1 00 1 1 1 1 1 1 1 1		NE	ND N		ND N	ND N	ND 0.013 J ND	ND	ND ND				ND N	 ND ND 0.00029 J ND ND ND ND ND						 0	ND ND 0.0004 J ND ND			0.0009 ND	 	ND 0.032 J ND ND 0.012 J ND 0.017 J 0.057 ND 0.021 J 0.01 J						ND ND 0.002 BJ ND			ND ND 0.002 J ND	ND ND 0.002 ND ND ND ND ND ND ND ND ND ND
2-Butanone (MEK) 0.1. Carbon disulfide — Ethylbenzene 1 Isopropylbenzene (Cumene) — Methyl acetate — Methylcyclohexane — Methylen chloride 0.0. Total Xylene 0.2. O-Xylenes 0.2. m&p-Xylene 0.2. m&p-Xylene 0.2. m-Propylbenzene 3.6. p-Propylbenzene 3.6. 1.3,5-Timethylbenzene 3.6. 1.3,5-Timethylbenzene 1.1,24-Trimethylbenzene 5.6. serbi-Volatile Organic Compounds (SVI Acenaphthylen 100 Acetophenone — Anthracene 100 Benzo(a)anthracene 11 Benzo(b)fluoranthene 1. Benzo(b)fluoranthene 0.8. Benzo(a)prene 1. Benzo(a)prene 1. Biphenyl — Bis(2-Ethylhexyl)pehlalate — 4-Chloroanille — Carbazole — Chrysene 1. Dibenzo(a,ha)nthracene 0.3. Dibenzo(a)nthracene 0.3. Dibenzo(a)nthracene 1. Dibenzo(a)hanthracene 0.3. Dibenzo(a)hanthracene 0.3. Dibenzo(a)hanthracene 0.3. Dibenzo(b)anthracene 0.3. Dibenzo(a)hanthracene 0.3. Dibenzo(b)anthracene 0.3. Dibenzo(b)anthracene 0.3. Dibenzo(a)hanthracene 0.3. Dibenzo(b)anthracene 0.3. Dibenzo(b)a	0.12 0.05 0.7 0.26 0.26 0.26 3.9 3.6 8.4 11 5.9 (SVOCs) - mg/ 100 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		NE	ND N		ND N	ND N	0.013 J ND	ND	ND ND				ND N	 ND ND 0.00029 J ND ND ND ND ND						 0	ND ND 0.0004 J ND ND					0.032 J ND ND 0.012 J ND 0.017 J 0.057 ND 0.021 J 0.01 J		 				ND 0.002 BJ ND ND ND 0.013 BJ ND			ND 0.002 J ND	ND 0.002 ND ND ND ND ND ND ND N
Ethylbenzene	1	N N N N N N N N	NE	ND N	ND	ND N	ND N	ND N	ND	ND ND				ND ND ND ND O.014 ND	ND ND 0.00029 J ND ND ND ND ND ND	ND ND 0.003 J ND ND ND ND ND ND					 0	ND			ND ND ND ND ND		ND 0.012 J ND 0.017 J 0.057 ND 0.021 J 0.01 J		 				ND ND ND ND O.013 BJ ND			ND ND ND O.019 J ND	ND ND ND O.015 I ND
Isopropylbenzene (Cumene)		N N N N N N N N	NE	ND N	ND	ND N	ND N	ND N	ND	ND				ND ND ND O.014 ND	ND 0.00029 J ND	ND 0.003 J ND ND ND ND ND ND ND ND O.009 J			 		 0	ND			ND ND ND ND		0.012 J ND 0.017 J 0.057 ND 0.021 J 0.01 J	 	 	 			ND ND ND O.013 BJ ND		 	ND ND ND O.019 J ND	ND ND ND O.015 I ND
Methyl acetate		N N	NE	ND N	ND	ND N	ND N	ND ND 0.012 ND	ND 0 ND N					ND ND 0.014 ND	 0.00029 J ND ND ND ND ND ND	 0.003 J ND ND ND ND ND ND	 		 		 0	 0.0004 J ND ND			 ND ND ND		ND 0.017 J 0.057 ND 0.021 J 0.01 J	 	 	 			ND ND 0.013 BJ ND			ND ND 0.019 J ND	ND ND O.015 I ND
Methylcyclohexane — Methylene chloride 0.0 Totulene 0.7 Total Xylene 0.2 o-Xylenes 0.2 n-Propylbenzene 3.5 n-Propylbenzene 3.6 1,2,4-Timethylbenzene 8.4 sec-Butylbenzene 11 tert-Butylbenzene 11 tert-Butylbenzene 5.5 secrit Volatile Organic Compounds (SW) Acenaphthylene 10 Acenaphthylene 10 Acetophenone — Anthracene 100 Benzo(a)anthracene 1 Benzo(k)fluoranthene 1 Benzo(k)fluoranthene 1 Benzo(a)pyrene 1 Biphenyl — bis(2-Ethylhexyl)phthalate — 4-Chloroaniline — Chrysene 1 Dibenzofuan — Fluoranthene 10 Fluoranthene 10 Fluorene 30 Indenof (1,2,3-cd)pyrene	0.05 0.7 0.26 0.26 0.26 3.9 3.6 8.4 11 5.9 (SVOCs) - mg/ 100 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	N N N N N N N N N N N N N N N N N 1 N	NE	ND	ND N	ND N	ND	ND 0.012 ND	ND 0 ND N	D.004 J ND				ND 0.014 ND	0.00029 J ND ND ND ND ND ND ND	 0.003 J ND ND ND ND ND ND	 		 		O	 0.0004 J ND ND	 		 ND ND ND		0.017 J 0.057 ND 0.021 J 0.01 J	 	 		 		ND 0.013 BJ ND	 	 	ND 0.019 J ND	ND 0.015 ND
Totuene	0.7 0.26 0.26 0.26 3.9 3.6 8.4 11 5.9 (SVOCs) - mg/ 20 2 100 1 1 00 1 1 1 1 1 1 1	N N N N N N N N	NED NED	ND N	ND N	ND N	0.002 J ND	ND N	ND 0 ND N	ND N				ND	0.00029 J ND ND ND ND ND ND	0.003 J ND ND ND ND ND ND	 		 		O	0.0004 J ND ND			ND ND ND	 	ND 0.021 J 0.01 J	 	 	 	 		ND ND ND ND ND	 	 	ND ND ND ND ND ND ND ND O.006 J ND ND	ND ND ND ND ND ND ND ND
Total Xylene	0.26 0.26 0.26 0.26 0.3.9 3.6 8.4 11 5.9 (SVOCs) - mgy 20 2 100 1 1 1 1 0.8 1 1 1 1	N N N N N N N N	NE	ND ND ND ND ND ND ND ND	ND N	ND N	ND N	ND ND 0.002 J ND	ND N	ND N			 	ND	ND ND ND ND ND ND	ND ND ND ND ND ND	 					ND ND			ND ND		0.021 J 0.01 J						ND ND ND ND		 	ND ND ND ND 0.006 J ND ND	ND ND ND ND ND ND ND
o-Xylenes 0.2 m&p-Xylene 0.2 m&p-Xylene 0.2 m-Propylbenzene 3.5 p-Cynterre type icasesceutshiusea 1,3,5-Trimethylbenzene 8.4 sec-Butylbenzene 11 tert-Butylbenzene 5.5 semi-Volatile Organic Compounds (SVA Acenaphthene 20 Acenaphthene 100 Acenaphthylene 100 Acenaphtylene 1 Benzo(k)fluoranthene 1. Benzo(k)fluoranthene 0.8 Benzo(k)fluoranthene 0.8 Benzo(k)fluoranthene 10 Benzo(a)pyrene 1 Biphenyl bis(2-Ethylhexyl)phthalate 4-Chloroaniline Chrysene 1 Dibenzo(a)hanthracene 0.3 Dibenzo(a)hanthracene 30 Indeno(1,2,3-cd)pyrene 9.5 Indeno(1,2,3-cd)pyrene 9.5 Isophorone <td>0.26 0.26 3.9 3.6 8.4 11 5.9 (SVOCs) - mg/ 100 1 1 1 1 1 1 1 1 1</td> <td> N N N N N N N N N N N N N N N N N N</td> <td> NED</td> <td> ND J 0.002 ND ND ND ND ND ND ND N</td> <td>ND ND N</td> <td>ND ND ND ND ND ND ND ND ND ND 0.082 J 0.6 J ND 0.62 J 2.9</td> <td>ND ND ND ND ND ND ND ND</td> <td>ND 0.002 J ND ND 0.001 J ND ND ND ND</td> <td>ND ND N</td> <td>ND ND ND ND ND ND ND ND ND ND</td> <td></td> <td></td> <td> </td> <td>ND ND ND ND ND ND</td> <td>ND ND ND ND</td> <td>ND ND ND ND 0.009 J</td> <td> </td> <td></td> <td></td> <td></td> <td></td> <td>ND</td> <td></td> <td></td> <td>ND</td> <td></td> <td>0.01 J</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>ND ND ND ND</td> <td></td> <td> </td> <td>ND ND ND 0.006 J ND ND</td> <td>ND ND ND ND ND ND</td>	0.26 0.26 3.9 3.6 8.4 11 5.9 (SVOCs) - mg/ 100 1 1 1 1 1 1 1 1 1	N N N N N N N N N N N N N N N N N N	NED	ND J 0.002 ND ND ND ND ND ND ND N	ND N	ND ND ND ND ND ND ND ND ND ND 0.082 J 0.6 J ND 0.62 J 2.9	ND ND ND ND ND ND ND ND	ND 0.002 J ND ND 0.001 J ND ND ND ND	ND N	ND			 	ND ND ND ND ND ND	ND ND ND ND	ND ND ND ND 0.009 J	 					ND			ND		0.01 J						ND ND ND ND		 	ND ND ND 0.006 J ND ND	ND ND ND ND ND ND
m&p-Xylene 0.2 n-Propylbenzene 3.5 n-Propylbenzene 3.6 1,2,4-Trimethylbenzene 3.6 1,3,5-Trimethylbenzene 8.4 sec-Butylbenzene 11 tert-Butylbenzene 5.5 semi-Volatile Organic Compounds (SV-Acenaphthene 20 Acenaphthene 100 Benzo(a)anthracene 1 Benzo(a)anthracene 1 Benzo(b)fluoranthene 0.8 Benzo(b)fluoranthene 0.8 Benzo(b)fluoranthene 10 Benzo(a)prene 1 Biphenyl bis(2-Ethylhexyl)phthalate 4-Chloroanilne Carbazole Chrysene 1 Dibenzo(a,h)anthracene 0.3 Dibenzoluran Fluoranthene 10 Indeno(1,2,3-cd)pyrene 9.5 Isophorone 2-Methylnaphthalene Naphthalene 12 N-Nitroso-di-n-pro	0.26 3.9 3.6 8.4 11 5.9 (SVOCs) - mg/ 20 2 100 1 1 100 1 1 1 1 1 1 1 1 1	N N N N N N N N	0 0.000 0 NED	J 0.002 ND 12.2 J 12 11 5.1 J 7.6 9.5	ND N	ND ND ND ND ND ND ND ND ND ND O.082 J 0.6 J ND 0.62 J	ND ND ND ND ND ND ND	0.002 J ND ND 0.001 J ND ND ND ND ND	ND N	ND ND ND ND ND ND ND ND			 	ND ND ND ND	ND ND ND	ND ND ND 0.009 J								_		+							ND ND ND		 	ND ND 0.006 J ND ND	ND ND ND ND ND
n-Propylbenzene	3.9 3.6 8.4 11 5.9 (SVOCs) - mg/ 20 20 100 1 1 100 1 1 1 1 1 1	N N N N N N N N	NED NED	ND ND J 0.001, ND ND ND 1.2 J 3.3 J ND 6.5 J 12 11 5.1 J 7.6	ND ND ND ND ND ND ND ND ND ND 25 25 7.9	ND ND ND ND ND ND ND 0.082 J 0.6 J ND 0.62 J 2.9	ND ND ND ND ND ND	ND ND 0.001 J ND	ND N	ND ND ND ND ND ND		 		ND ND ND ND	ND ND ND	ND ND 0.009 J			1						I IND							_	ND ND			ND 0.006 J ND ND	ND ND ND ND
1,2,4-Timethylbenzene	3.6 8.4 11 11 5.9 (SVOCs) - mg/ 20 2 100 1 1 100 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	N N	0 0.000 NE 0 NE 0 NE 0 NE 1	J 0.001 ND ND ND ND 1.2 J 3.3 J ND 6.5 J 12 11 5.1 J 7.6 9.5	ND N	ND ND ND ND 0.082 J 0.6 J ND 0.62 J 2.9	ND ND ND ND	0.001 J ND ND ND 	ND ND ND ND ND	ND ND ND ND				ND ND	ND	0.009 J						ND			ND		0.016 J									ND ND	ND ND ND
1,3,5-Trimethylbenzene 8.4 sec-Butylbenzene 11 tern-Butylbenzene 5.5 Semi-Volatile Organic Compounds (SW-Acenaphthene 20 Acenaphthylene 100 Acenaphthylene 1 Acenaphthylene 1 Benzo(a)anthracene 1 Benzo(b)fluoranthene 0.8 Benzo(g,h.i)perylene 10 Benzo(g,h.i)perylene 1 Bienzo(a)pyrene 1 Biphenyl Carbazole Carbazole Chrysene 1 Dibenzo(a,h)anthracene 0.3 Dibenzo(uranthene 1 Fluoranthene 1 Indeno(1,2,3-cd)pyrene 0.5 Isophorone 2-Methylnaphthalene Naphthalene 12 N-Nitroso-di-n-propylamine	8.4 11 5.9 (SVOCs) - mg/ 20 20 100 1	N N	NED NED	ND ND ND 3.3 J ND 6.5 J 12 11 5.1 J 7.6 9.5	ND ND ND ND 0.93 J 4.4 ND 8.9 25 25 7.9	ND ND ND 0.082 J 0.6 J ND 0.62 J 2.9	ND ND ND	ND ND ND	ND ND ND ND ND	ND ND ND				ND								ND		-	ND		0.094	-								ND	ND ND
Sec-Butylbenzene	11 5.9 (SVOCs) - mgy 20 2 2 100 1 1 100 1 1 1 100 1 1 1 1 1	N N N N N N N N N N N N N N N N N N	NED NED	ND ND 3.3 J ND 6.5 J 12 11 5.1 J 7.6 9.5	ND ND 0.93 J 4.4 ND 8.9 25 25 7.9	0.082 J 0.6 J ND 0.62 J 2.9	ND ND	ND ND	ND ND ND 0.98 J	ND ND					ND	L ND						ND			0.0009	J	0.68					_	ND	1			ND
tert-Butylbenzene 5.5 semi-Volatile Organic Compounds (SWAcenaphthene 20 Acenaphthene 100 Acetophenone Anthracene 100 Benzo(a)anthracene 1 Benzo(b)fluoranthene 0.8 Benzo(k)fluoranthene 0.8 Benzo(k)fluoranthene 1 Benzo(a,h.i)perylene 10 Benzo(a)pyrene 1 Biphenyl bis(2-Ethylhexyl)phthalate 4-Chlorozantine Carbazole Chrysene 1 Dibenzo(a,h)anthracene 0.3 Dibenzo(atran Fluoranthene 10 Indeno(1,2,3-cd)pyrene 0.5 Isophorone 2-Methylnaphthalene Naphthalene N-Nitroso-di-n-propylamine	5.9 (SVOCs) - mg/ 20 2 2 100 1 1 100 1 1 1 1 0.8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	N/kg 3 .8 J N .5 J 0.4 ND N 1 J 0.8 23 3 22 4. 0 J 1.4 4 J 3 18 J 2.7 ND N ND N ND N) NE NE NE NE NE NE NE NE	1.2 J 3.3 J ND 6.5 J 12 11 5.1 J 7.6 9.5	ND 0.93 J 4.4 ND 8.9 25 25 7.9	0.082 J 0.6 J ND 0.62 J 2.9	 		ND ND 0.98 J	ND					ND	ND ND						ND ND			ND ND		0.53					_	ND ND			INI I	
Semi-Volatile Organic Compounds (SVI) Acenaphthene 20 Acenaphthylene 100 Acenaphthylene 100 Acenaphthylene 100 Acetophenone Anthracene 10 Benzo(a)anthracene 1 Benzo(b)fluoranthene 0.8 Benzo(g),fluoranthene 0.8 Benzo(a),fluoranthene 10 Benzo(a)pyrene 1 Bisphenyl Lis(2-Ethylhexyl)phthalate 4-Chloroaniline Carbazole Chrysene 1 Dibenzo(a,h)anthracene 0.3 Dibenzo(arn Fluoranthene 10 Hodeno(1,2,3-cd)pyrene 30 Indeno(1,2,3-cd)pyrene 0.5 Isophorone 2-Methylnaphthalene Naphthalene 12 N-Nitroso-di-n-propylamine	(SVOCs) - mg/ 20 2 100 1 100 1 1 1 1 0 0.8 1 1 100 1 1 100 1 1 100 1 1 100 1	2.8 J N 2.5 J 0.4 ND N 1.1 J 0.8 23 3 22 4. 10 J 1.4 14 J 3 18 J 2.7 ND N ND N ND N ND N) i J J J J J J	1.2 J 3.3 J ND 6.5 J 12 11 5.1 J 7.6 9.5	0.93 J 4.4 ND 8.9 25 25 7.9	0.082 J 0.6 J ND 0.62 J 2.9			ND 0.98 J					ND	ND	ND						ND			ND		0.003 0.014 J						ND			ND	ND
Acenaphthene 20 Acenaphthylene 100 Acenaphthylene 100 Acenaphthylene 100 Acetophenone Anthracene 100 Benzo(a)anthracene 1 Benzo(b)fluoranthene 0.8 Benzo(g,h.i)perylene 100 Benzo(a)pyrene 10 Benzo(a)pyrene 11 Biphenyl Biphenyl Biphenyl Biphenyl Biphenyl Biphenyl Biphenyl Biphenyl Biphenyl Carbazole Chrysene 1 Dibenzo(a,h)anthracene 0.3 Dibenzo(a,h)anthracene 100 Dibenzofuran Fluoranthene 100 Fluorene 30 Indeno(1,2,3-cd)pyrene 0.5 Isophorone 2-Methylnaphthalene Naphthalene 12 N-Nitroso-di-n-propylamine	20 2 100 1 1 100 1 1 1 1 0.8 1 1100 1 1 1 1 1 1	2.8 J N 2.5 J 0.4 ND N 1.1 J 0.8 23 3 22 4. 10 J 1.4 14 J 3 18 J 2.7 ND N ND N ND N ND N	id id id id j j j j j	3.3 J ND 6.5 J 12 11 5.1 J 7.6 9.5	4.4 ND 8.9 25 25 7.9	0.6 J ND 0.62 J 2.9	 		0.98 J	ND N													•								•						
Acetophenone	1 100 1 1 1 1 1 1 1	ND N 1 J 0.8 23 3 22 4. 10 J 1.4 4 J 3 18 J 2.7 ND N ND N) i J J J J J J J	ND 6.5 J 12 11 5.1 J 7.6 9.5	ND 8.9 25 25 7.9	ND 0.62 J 2.9								0.11 J	0.79 J		0.32 J		_	ND			0.099 J NI		ND	ND	ND	ND			.048 J 0.44			ND	ND		ND
Anthracene 100 Benzo(a)anthracene 1 Benzo(b)fluoranthene 1. Benzo(b)fluoranthene 0.8 Benzo(g,h,i)perylene 100 Benzo(a)pyrene 110 Benzo(a)pyrene 1. Biphenyl Carbazole Chrysene 1 Dibenzo(a,h)anthracene 0.3 Dibenzofuran Fluoranthene 100 Fluorene 30 Indeno(1,2,3-cd)pyrene 0.5 Isophorone 2-Methylnaphthalene Naphthalene 12 N-Nitroso-di-n-propylamine	100 1 1 1 0.8 1 100 1 1 1 1 1	1 J 0.8 23 3 22 4. 10 J 1.4 14 J 3 18 J 2.7 ND N ND N	id I I J J J J J	6.5 J 12 11 5.1 J 7.6 9.5	8.9 25 25 7.9	0.62 J 2.9			ND					0.47 J	1.4 J	0.88 J	0.19 J		0.4 J	0.15 J	0.29 J		0.72 J NI		0.16 J	ND	0.26 J		0.057 J).13 J 1.4		0.2 J	ND	0.16 J		ND
Benzo(a)anthracene	1	23 3 22 4. 0 J 1.4 14 J 3 18 J 2.7 ND N ND N	J J J J)	12 11 5.1 J 7.6 9.5	25 25 7.9	2.9			ND 0.72 J (ND .092 J	ND 0.64 J	ND 3.2	ND 1	0.8 J	ND 0.51 J	ND	ND 0.17 J	ND 7.3		ND NI 0.82 J NI		ND 0.15 J	ND ND	ND 0.19 J	2.6 0.11 J	ND 0.047 J		ND ND 0.1 J 1.7		0.3 J	ND 0.16.1	ND 0.17 J		ND ND
Benzo(b)fluoranthene	1 0.8 1 100 1	22 4. 0 J 1.4 4 J 3 8 J 2.7 ND N ND N ND N	J J J O	11 5.1 J 7.6 9.5	25 7.9									1.8	7	4.1	2.1			1.2 J			3.6 0.92		0.15 J			0.11 J	0.047 J		0.13 1.7 0.58 J 9.2				0.17 J	-	0.34 J
Benzo(g,h.i)perylene	100 1 1 1 1 1	4 J 3 8 J 2.7 ND N ND N ND N	J J))	7.6 9.5		4.4							0.69 J	2.8	10	9.2	3.1	1.7 J		_	20		5.9 1.6	_	0.91 J	_	1.7	1.1	0.58 J		0.96 9.6	_	1.4	0.75 J	1.2		0.24 J
Benzo(a)pyrene	1 1 1 1 1	8 J 2.7 ND N ND N ND N	J)	9.5	4-	1.8 J).29 J	1.1	2.4	3.6	0.84 J		0.88 J				1.3 J 0.6		0.36 J		0.69 J			0.57 J (0.31 J	0.56 J	-	0.19 J
Biphenyl	I	ND N ND N ND N)			3.9								0.69 J	1.9	2.9	0.7 J		_	0.96 J			1.7 J 0.8		0.33 J	_		0.36 J		0.92 J (0.48 J			0.28 J
bis(2-Ethylhexyl)phthalate 4-Chloroaniline Carbazole Chrysene 1 Dibenzo(a,h)anthracene 0.3 Dibenzofuran Fluoranthene 100 Fluorene 30 Indeno(1,2,3-cd)pyrene 0.5 Isophorone 2-Methylnaphthalene Naphthalene 12 N-Nitroso-di-n-propylamine	I	ND N ND N)	0.39 J		3.6 ND).44 J ND	1.8 ND	6.5 ND	6.4 0.088 J	2 ND	1.4 J ND	1.8 J ND		0.1		3.9 1.2 ND NI		0.71 J ND	ND	1.1 ND	0.67 J ND	0.34 ND		0.77 J 7.3 ND 0.09		0.91 J ND	0.63 J ND	1 J ND		0.22 J ND
4-Chloroaniline Carbazole Chrysene 1 Dibenzo(a,h)anthracene 0.3 Dibenzofuran Fluoranthene 100 Fluorene 30 Indeno(1,2,3-cd)pyrene 0.5 Isophorone 2-Methylnaphthalene Naphthalene 12 N-Nitroso-di-n-propylamine	I	ND N		ND	0.26 J	ND							ND	ND	ND	ND	1.2	ND	ND		ND		ND NI		ND	ND	ND	ND	ND		ND ND	_	ND	ND	ND		ND
Chrysene)	ND	ND	ND							ND	ND	ND	ND	0.72 J		ND		ND		ND NI		ND	ND	ND	ND	ND		ND ND		ND	ND	ND		ND
Dibenzo(a,h)anthracene 0.3 Dibenzofuran Fluoranthene 100 Fluorene 30 Indeno(1,2,3-cd)pyrene 0.5 Isophorone 2-Methylnaphthalene Naphthalene 12 N-Nitroso-di-n-propylamine	1 2			2.9			-							0.2 J														ND					0.1 J			-	
Dibenzofuran		3 B 3.3	_	10 B		3.1 B								1.9 B	6.5 B	4.1 B	2 B	1.6 BJ	_	1.4 BJ			3.5 B 1.4		0.66 BJ		1.1 B		0.47 BJ		.61 BJ 7.8			0.96 BJ			0.56 B
Fluoranthene 100		.4 J 0.8		2.2 J		0.73 J						12 J 0.0		0.22 J 0.24 J	0.7 J	_	0.22 J 0.22 J		0.46 J ND	_			0.56 J 0.2 0.2 J NI		0.1 J 0.052 J		0.22 J 0.048 J	0.12 J 0.043 J		0.25 J (_	0.25 J I 0.12 J	ND ND	0.2 J 0.11 J	-	ND ND
Fluorene 30 Indeno(1,2,3-cd)pyrene 0.5 Isophorone		i.3 J N i0 B 3.1		2.8 J 27	3 J 66	0.15 J 5.8								3.8	1.1 J 16	0.43 J 9.8	4.4	2.1 J			1.2 (26 D		6.4 1		0.052 J	0.65 J	1.4		0.71 J		ND 0.71 0.84 J 17		2.3	0.87 J	1.5		0.35 J
Isophorone 2-Methylnaphthalene Naphthalene 12 N-Nitroso-di-n-propylamine		4 J N		5.7 J		0.16 J								0.18 J	1.7 J								0.27 J NI		ND	ND	ND	ND				J 0.11 J		ND	0.075 J	-	ND
2-Methylnaphthalene Naphthalene 12 N-Nitroso-di-n-propylamine	0.5 1	2 J 2.3	J	6.7	13	2.9			2.9 (0.75 J 1	1 J	47 0.).24 J	0.72 J	2.1	3	0.7 J	1.1 J	1.4 J	0.92 J	5.1	0.43 J	1.6 J 0.79) J 11	0.35 J	0.56 J	0.73 J	0.35 J	0.22 J	0.76 J ().54 J 4.4	2	0.74 J	0.41 J	0.9 J		0.21 J
Naphthalene 12 N-Nitroso-di-n-propylamine		ND N	_	ND		ND							ND	ND	ND	ND	ND	_	ND	_	ND		ND NI		ND	ND	ND	1.8	ND		ND ND			ND	ND		ND
N-Nitroso-di-n-propylamine		.1 J 0.8 ND 0.2		1.8 J 2.7 J	0.84 J 1.9 J	0.085 J 0.19 J								0.11 J 0.1 J	0.27 J 0.29 J	0.4 J 0.92 J	0.36 J 0.27 J	_	ND ND		0.28 J (0.18 J NI 0.2 J NI	_	0.24 J 0.14 J	ND ND	0.13 J ND	0.17 J 0.16 J	ND 0.036 J		ND 0.33 ND 0.74			ND ND	0.11 J 0.064 J		ND ND
		ND N		ND	ND	ND							ND ND	ND	ND	ND	ND	ND	ND		ND		ND NI		ND	ND	ND	ND	ND		ND ND		ND	ND	0.004 J		ND
1 11011a111111c11c 10'		32 B 0.82		27 B		2.4 B		C	0.69 BJ 0					2.3	12	3.4	3	1.5 BJ		0.6 BJ			3 0.45		0.46 J				0.36 J		0.35 J 9.4				0.58 J		0.41 B.
Pyrene 100	100 3	37 B 6.	3	19	45	5.1			2.2 B	1.2 J 3	3 J	44 C	0.4 J	2.8	11	7.9	3.1	1.8 J	2.4 J	1.2 J	25	1.2	4.9 0.9	7 J 17	0.89 J	0.59 J	1.1	0.66 J	0.45 J	1.9 ().64 J 13	3.5	1.7	0.83 J	1.2		0.43 J
PCBs- mg/kg ³																T		1	1																		
	0.1		0.01		ND ND									ND ND		0.012 J 0.032		ND ND	ND ND									ND ND				0.84	ND 0.12			ND ND	
			NE		ND									ND		ND		0.03	0.046									ND				0.43	0.019			ND	
				0.017														ND																		ND	
norganic Compounds - mg/kg	g																																				
				11400								 705 5		11800 *	 47.0 F	45.05		45.45															12600	40.0			
	13 8 350	8.8 19		45	17.1	12.7	-		27.3	99.2 E 10).9 E 7	7.3 E 5		20.2 E 132 N*	17.2 E	15.6 E	6.6 E	45.4 E	130 E	21.6	44.5 E	27.6 E	64 E 11	1 53 E	32.3 E	ND	22.7		6.5	11.1	10.8 18. 4	11.2	7.2 73.2	48.9		-	4.7
	7.2			1.5										1.4 *				+=						-		+=							1.6	+=			
- / -		1.8 2		1.5		3.1			3.4	2.8	2	0.56 1	1.5 *	4.9 *	1.7 *	0.33 *	1.6 *	1	1.9	0.82	2.4 *	2 *	4 * 1.	6 0.73	2.8 *	0.52	0.59		1.4	1.9	ND 0.3		ND	2.4 E			4.3 E
Calcium	-			52300										3700 EJ*																			250000				
		423 11	_	30.6	124	69.1				61 EN 13				129 N*	109 N*	37.7 N*	28.3 N*	* 95 EN	_	56 EN	122 N*	482 N* 1		EN 96.2 EN	_	731 N	_			536 N	234 243	_		97.9			314
				4.6 80										6.5 * 77.5												+							3.8 43				
				48400										37900 J																		_	116000	+=		-	
		184 23		144		925				287 EN* 259				843 J	156	54.6				* 89 EN				EN 94.3 EN			4550 J*		173 *		262 158			267 N			549 N
			_	7070										9110 *																		_	30500				
	1000			2220										21200 J*																		_	18900				
			_	14.6 1200										19.2 EN 1180 *																		_	21.6 697				
		.303 0.1			0.555					0.057 0.						0.19 N			_				2.5 N 0.0		_		0.072			0.878		6 1.4		0.11		-	0.165
,				ND			-							ND ND																			ND			-	
Sodium				462			-							324 *								-											279				
			_	24.5										84.6 N*						_		-											470			-	
		 ND N		323		 ND								284 EJ			 2.5										 ND				 ND ND		100				
Cyanide 27 General Chemestry	27	ND N)		ND	ND			ND	ND 1	ND	2	ND		ND	םא ו	2.5	ND	טא	ND	ND	ND	ND NI) ND	ND	3.2	ND		∠.3	ND	ND ND	ND		ND			ND
pH PH			-	T		1	1	1	T	1				1				T	T		1	1		-	T	T		1		T					1		
Flashpoint														-				- 0																		>176	

Table 6a

SUMMARY OF SOIL ANALYTICAL DATA

Remedial Investigation/Alternatives Analysis Report Phase III Business Park Area Tecumseh Redevelopment Inc. Lackawanna, New York

														Lacka	wanna, Ne	w York													
															Sample	e Location	n												
Parameter ¹	Unrestricted SCOs ²			BPA-3-			BPA-3-			BPA-3-	BPA-3-	BPA-3-	BPA-3-	BPA-3-	BPA-3-	BPA-3-	BPA-3-		BPA-3-			BPA-3-	BPA-3-		BPA-3-		Direction	Directo	Divid
1 diameter	(ppm)	TP-56 (0-2')	TP-58 (0-2')	TP-59 (0-2')	TP-60 (0-2')	TP-62 (0-2')	TP-64 (0-2')	TP-65 (0-2')	TP-67 (0-4')	TP-69 (0-2')	TP-70 (0-2')	TP-71 (0-2')	TP-74 (2-8')	TP-75 (0-2')	TP-76 (2-7')	TP-77 (0-2')	TP-79 (0-2')	TP-80 (0-2')	TP-80 (2-7')	TP-81 (0-2')	TP-82 (0-2')	TP-83 (0-2')	TP-84 (0-2')	TP-85 (0-2')	TP-86 (0-2')	Blind ⁵	5 Bilna 2	Blind 3	Blind 4
Volatile Organic Compounds	(VOCs) - ma/ka		(- /	(,	(,	(- /	(- /	(- ,	(- /	(- /	(,	(,	(',	(,		(,	(- /	, ,		(- /	(- /	(- /	(,	(- /	(- /				
Acetone	0.05									0.043 J				ND		ND												0.02 BJ	
Benzene	0.06		ND							ND 0.015 L	ND			ND		ND						0.021	ND	ND	ND	ND		ND	
2-Butanone (MEK) Carbon disulfide	0.12							-		0.015 J 0.003 J				ND 0.002 J		ND 0.002 J												ND 0.003 J	
Ethylbenzene	1		ND							ND	ND			ND		ND						ND	ND	ND	0.012	ND		ND	
Isopropylbenzene (Cumene) Methyl acetate			ND 							ND ND	ND 			ND ND		ND ND						ND 	ND 	ND 	ND 	ND 		ND ND	
Methylcyclohexane										ND				ND		ND												ND	
Methylene chloride Toluene	0.05 0.7		 ND							0.015 B ND	 ND			0.01 B		0.005 B ND								 0.005 J	0.012	 0.0005 J		0.012 B ND	
Total Xylene	0.7		ND							ND	ND			ND		ND						0.012 ND	ND ND	0.005 J	0.012	ND		ND	
o-Xylenes	0.26		ND							ND	ND			ND		ND						ND	ND	ND	0.019	ND		ND	
m&p-Xylene n-Propylbenzene	0.26 3.9		ND ND							ND ND	ND ND			ND ND		ND ND						ND ND	ND ND	ND ND	0.074 ¹ ND	ND ND		ND ND	
p-cymene (p-			ND							ND	ND			ND		ND						ND	ND	ND	ND	ND		ND	
1,2,4-Trimethylbenzene	3.6		ND							ND	ND			ND		ND						ND	ND	ND	0.013	ND		ND	
1,3,5-Trimethylbenzene sec-Butylbenzene	8.4 11		ND ND							ND ND	ND ND			ND ND		ND ND						ND ND	ND ND	ND ND	ND ND	ND ND		ND ND	
tert-Butylbenzene	5.9		ND							ND	ND			ND		ND						ND	ND	ND	ND	ND		ND	
Semi-Volatile Organic Compo Acenaphthene	unds (SVOCs) - 20	ND	ND	ND	ND	ND	ND	ND	5.8	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.092 J	0.26 J	ND	ND	ND	ND	0.039 J	0.059 J	ND	ND
Acenaphthylene	100	0.85 J	1.8 J	0.29 J	0.22 J	0.29 J	ND	ND	0.3 J	0.22 J	0.22 J	0.5 J	ND	ND	ND	0.18 J	ND	0.61 J	ND	0.092 3	1.2	0.34 J	ND	0.26 J	0.25 J	0.033 J	0.039 J	0.24 J	0.63 J
Acetophenone		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Anthracene Benzo(a)anthracene	100	0.41 J 1.6 J	1.5 J 5.9	0.17 J	0.2 J 1.2	0.26 J	0.15 J 0.72 J	ND 0.23 J	11 21	0.27 J 1.2 J	0.38 J 1.6 J	0.48 J 2.3 J	ND 0.43 J	0.17 J 0.96 J	0.2 J 1 J	0.43 J 2.1 J	ND 0.11 J	0.7 J 2.8 J	ND 0.7 J	0.61 3.9	1.6 9.2	0.25 J 1.6 J	0.16 J 0.84 J	0.23 J	0.18 J	0.21 J 0.92 J	0.17 J 0.93 J	0.3 J 1.3	0.75 J 4.6
Benzo(b)fluoranthene	1	2.1 J	7.1	1.8 J	2	1.4 J	0.93 J	0.20 J	20	1.2 J	1.9 J	2.7 J	0.42 J	1 J	1.1 J	2.2 J	0.26 J	3.2 J	0.8 J	5.6	11	1.9 J	1.2 J	1.8 J	1.4 J	1.9	1.3	1.4 J	4.6
Benzo(k)fluoranthene	0.8	0.96 J	3.1 J	0.44 J	0.85 J	1 J	0.4 J	ND 0.05 I	5.2	0.59 J	0.86 J	1.2 J	0.24 J	0.52 J	0.43 J	0.96 J	0.077 J	1.1 J	0.39 J	1.6	4.4	0.88 J	0.47 J	0.85 J	0.54 J	0.47 J	0.47 J	0.59 J	2 J
Benzo(g,h,i)perylene Benzo(a)pyrene	100	2 J 1.9 J	5.9 6.4	1.1 J 1.2 J	0.88 J 1.3	1.3 J 1.4 J	0.62 J 0.66 J	0.25 J 0.2 J	7.8 15	1 J 1.2 J	1.8 J 1.6 J	2.1 J 2.3 J	0.38 J 0.34 J	0.79 J 0.86 J	0.6 J 0.89 J	1.5 J 1.9 J	0.11 J 0.055 J	1.8 J 2.8 J	0.47 J 0.67 J	2.2 4.1	5.3 9	1.2 J 1.8 J	0.63 J 0.84 J	0.96 J	1 J 1.2 J	0.51 J	0.73 J 0.95 J	0.85 J 0.97	2.5 J 3.8
Biphenyl		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
bis(2-Ethylhexyl)phthalate 4-Chloroaniline		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbazole		ND 	ND 	ND 	ND 	ND 	ND 	ND 	ND 	ND ND	ND 	ND 	ND 	ND ND	ND 	ND 0.22 J	ND 	ND 	ND 	ND 	ND 	ND 	ND 	ND 	ND 	ND 	ND 	ND 0.13 J	ND
Chrysene	1	2 BJ	5.8 B	1.6 BJ	1.2 B	1.6 BJ	1.2 BJ	0.54 BJ	18 B	1.4 BJ	1.8 BJ	2.6 BJ	0.82 BJ	1.3 BJ	1.1 BJ	2.2 BJ	0.33 BJ	3.1 BJ	1 BJ	3.8 B	8.6	1.8 BJ	1.2 BJ	1.8 BJ	1.3 BJ	0.99 B	1.2 B	1.3 B	4.2 B
Dibenzo(a,h)anthracene Dibenzofuran	0.33	0.46 J ND	1.4 J 0.2 J	0.31 J ND	0.2 J ND	0.35 J ND	0.19 J ND	ND ND	3.1 J 3.3 J	0.32 J ND	0.45 J ND	0.62 J ND	ND ND	0.28 J ND	0.2 J ND	0.5 J ND	ND ND	0.6 J ND	0.16 J ND	0.68 J 0.1 J	1.6 0.16 J	0.36 J ND	ND ND	0.3 J ND	ND ND	0.15 J 0.04 J	0.2 J ND	0.25 J 0.14 J	0.77 J ND
Fluoranthene	100	2.7 J	11	1.5 J	2.9	2.3 J	0.76 J	0.22 J	45	1.8 J	2.6 J	3.8 J	0.58 J	1.3 J	1.6 J	3.1 J	0.22 J	5.1	1.1 J	7.2	16	2.3 J	1.2 J	1.7 J	1.4 J	1.7	1.8 J	2.8	7.8
Fluorene	30	ND	0.35 J	ND	0.04 J	ND	ND	ND	6.2	ND	ND	ND	ND	ND	ND	ND	ND	0.16 J	ND	0.19 J	0.34 J	ND	ND	ND	ND	0.047 J	0.059 J	0.08 J	ND
Indeno(1,2,3-cd)pyrene Isophorone	0.5	1.6 J ND	5.2 ND	1 J ND	0.8 J ND	1.1 J ND	0.51 J ND	0.19 J ND	7.9 ND	0.94 J ND	1.4 J ND	1.8 J ND	0.32 J ND	0.71 J ND	0.65 J ND	1.4 J ND	0.11 J ND	1.9 J ND	0.45 J ND	2.3 ND	5.2 ND	1.2 J ND	0.53 J ND	0.94 J ND	0.92 J ND	0.49 J ND	0.6 J ND	0.78 J ND	2.3 J ND
2-Methylnaphthalene		ND	ND	ND	ND	ND	ND	ND	0.75 J	ND	ND	ND	ND	ND	ND	0.16 J	ND	ND	ND	0.076 J	0.097 J	ND	ND	ND	ND	0.046 J	ND	0.06 J	ND
Naphthalene	12	ND	ND	ND	0.044 J	ND	ND	ND	1.2 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.092 J	0.13 J	ND	ND	ND	ND	ND	0.038 J	0.17 J	ND
N-Nitroso-di-n-propylamine Phenanthrene	100	ND 0.98 J	ND 4.4	ND 0.56 BJ	ND 0.62 J	ND 0.78 BJ	ND 0.31 BJ	ND ND	ND 41	ND 1.2 J	ND 1.4 J	ND 1.6 J	ND 0.38 J	ND 0.58 J	ND 0.6 J	ND 1.8 J	ND 0.089 J	ND 2.5 J	ND 1 J	ND 2.6	ND 5.3	ND 0.76 BJ	ND 0.66 BJ	ND 0.74 BJ	ND 0.62 BJ	ND 0.72 J	0.9 J	ND 2	ND 2.8 J
Pyrene	100	2.5 J	9	1.4 J	2.6	1.9 J	0.74 J	0.24 J	29	1.7 J	2.4 J	3.4 J	0.5 J	1.3 J	1 J	2.6 J	0.11 J	4.1	0.94 J	5.4	13	1.9 J	1.1 J	1.6 J	1.3 J	1.2	1.4	2	6.8
PCBs- mg/kg ³ Aroclor 1248	0.1		ı		Т	ı			ND	ND	T	ND	T	Т	T	ı	Г		T	l	l		Г	ı	ı			ND	l
Aroclor 1254	0.1							-	0.31	0.07 J		ND																0.14	
Aroclor 1260	0.1								0.1	0.11 J		ND																ND	
Aroclor 1262 Inorganic Compounds - I	0.1 na/ka								ND	ND		ND																ND	
Aluminum										7610				8310		8150												12300	
Arsenic	13	34	9.1	19.9	9.7	22.1	6.3	18.9	26 EN*	13 EN*	33.2 EN*	24.8 EN*	14.8 EN*	10 EN*	12.3 EN*	63.2 EN*	21 EN*	25.6 EN*	25.7 EN*	48.5	79	9.7 E	11.7 E	16.8 E	33 E	25.8 E	11.9	9.9	18 EN*
Barium Beryllium	350 7.2									100 0.96				66.2 0.45		109 1.2												75.7 2.1	
Cadmium	2.5	0.94	1.2	2.3 E	0.3	1.2 E	1.7 E	1.2 E	20.8 N*	1.1 N*	3.8 N*	10.8 N*	1 N*	0.71 N*		2.8 N*	1.1 N*	1.7 N*	0.69 N*	0.5	1.6	0.42	0.3	2.2	2.8	1.2 *	3.2	ND	0.95 N*
Calcium	 21			452			270	 E0E	 150 N*	114000	 115 N*	 217 N*	 60.7 N*	43500		54500	 54 6 N*	 125 N*	 1/1 NI*	 52.1	106	 210 EN	 517 EN	 112 EN	 02 EN	 205 NI*	 254 N	237000	65.9 N*
Chromium ⁴ Cobalt	31 	48.4	93.8	453 	96.6	304	270	585	159 N*	685 N* 4.1	115 N*	217 N*	60.7 N*	192 N* 4.7	10.2 N*	144 N* 5.1	54.6 N*	125 N*	141 N*	52.1	106	219 EN	517 EN	113 EN	93 EN	385 N*	254 N 	424 2.8	65.9 N*
Copper	50									302				406		200												29.4	
Iron Lead	 63	39.1	 59.9	1120 N	170	 114 N	 110 N	 49 5 N	 1200 E*	81600 113 E*	 191 E*	862 E*	88.2 E*	50700 78.7 E*	 53.3 E*	56900 302 E *	224 E*	763 E*	80.4 E*	119	201	 58 EN*	165 FN*	 417 FN*	 446 EN*	 81 FN*	960 *	111000 60 N	140 E*
Magnesium								49.5 N		17500				8360		9600		703 E				30 EN		417 EN				28600	
Manganese	1600									28000				6460		4910												15500	
Nickel Potassium	30									25.4 457				18.1 740		22.6 741												10.1 625	
Mercury	0.18	0.031	0.053	0.217	0.209	0.209	0.033	0.029	1.6	0.247	0.339	0.95	0.423	0.159		0.11	4.8	0.284	0.105	0.123	0.131	0.372	0.075	0.053	0.14	0.05	0.801	0.774	0.314
Silver	2									0.61				ND		ND 040												ND	
Sodium Vanadium										251 410				ND 97.1		249 69												367 347	
Zinc	109									98.3				144		357												62.5	
Cyanide	27	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	2.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	3.8	3.3 J	ND	ND	ND		ND
pH Chemestry																						9.52	10.9	10.2	8.82				
Flashpoint																													

- Only those parameters detected at a minimum of one sample location are presented in this table; all other compounds were reported as non
 Values per NYSDEC Part 375 Soil Cleanup Objectives (June 2006)
 Sample results were reported by the laboratory in ug/kg and converted to mg/kg for comparison to SCOs.

- 4. The total Chromium SCO was determined by adding the hexavalent and trivalent Chromium SCOs.
 5. Blind collected from BPA-3-TP-32, Blind 2 collected from BPA-3-TP-42, Blind 3 collected from BPA-3-TP-50, Blind 4 collected from BPA-3-TP-60.

- ND = Parameter not detected above laboratory detection limit.
- NA = Sample not analyzed for parameter.
 "--" = No SCO available.

- The second admission of the sample quantitation limit but greater than zero.

 The sample value; result is less than the sample quantitation limit but greater than zero.

 The sample was detected in the associated blank as well as in the sample. Value is above the action level for consideration as being external conditions as the sample was a value greater than or equal to the instrument detection limit, but less than the quantitation limit.

 The indicates the spike or duplicate analysis is not within the quality control limits.
- D = All compounds were identified in an analysis at the secondary dilution factor.
- N = Indicates spike sample recovery is not within the quality control limits.
 P = Detected concentrations between the two GC columns is greater than 25%; lower value is reported and flagged (for CLP methodology only J = Estimated value; result is less than the sample quantitation limit but greater than zero.

BOLD = result exceeds SCO.

TABLE 6b

SUMMARY OF SOIL ANALYTICAL DATA

Remedial Investigation/Alternatives Analysis Report Phase III Business Park Area Tecumseh Redevelopment Inc. Lackawanna, New York

	Commercial	I BPA-3-	BPA-3	-IBPA-	3-IBP/	1-3-IRE	DΔ_3_II	RPΔ.3.	IRPA-3	-I BPA-3	- IBPA-3	B-I BPA-3	- I BPA-3	B- I BPA-3	- IBPA-3	-l BPA-3-	· I BPA-3	- IBPA-3	-IBPA-3	-I BPA-3-	Saı I BPA-3-	mple Lo	cation IBPA-3-I	BPA-3-	IRPA-3-	BPA-3-	BPA-3-	BPA-3-1	BPA-3-IBF	Δ-3-IRP	1-3-IBPA-	3.IRPA.	3-IBPA-	3-IRPA-	3-IRPA	3-I BDA-3	. IRPA.3.	IBPA-3-I	BPA-3-	BPA-3-
Parameter 1	SCOs ²	TP-1	TP-2	TP-		-3 T	P-5	TP-6	TP-6	TP-7	TP-9						TP-22			TP-26	TP-28		TP-31	TP-32	TP-34	TP-36	TP-37	TP-38		2-42 TP	42 TP-4	3 TP-4	5 TP-4	-	8 TP-4	9 TP-50	TP-51	TP-51	TP-54	TP-54
	(ppm)	(0-2')	(0-2')	(2-4			-	(0-2')	(2-6')	(0-2')	(0-2')	(0-2')	(0-2')		(0-2')	(0-2')	(0-2')			(0-1')	(0-2')	(0-2')	(0-2')	(0-2')	(0-4')	(0-2')	(0-2')	(0-2')		-2') (wa							(0-2')	(2-9')	(Sat Soil)	(0-2')
Volatile Organic Compounds (VC	Ce) - ma/ka ³			1	1					<u> </u>	1		1		1		1		1	1																				
Acetone Acetone	500	T		ND	N	D		ND	ND	0.094	T	T		T	T	0.006 J	T		T		T				I I	1		1).5 -				T	T	0.023 B	J	1	0.017 BJ	0.008 BJ
Benzene	44		ND	ND	_	_	ND	ND	ND	ND	ND	ND				ND	ND	ND						ND				0.0009 J		ND -						ND			ND	ND
2-Butanone (MEK)	500			ND				ND	ND	0.013	J					ND														132 J -						ND			ND 0.000 I	ND
Carbon disulfide Ethylbenzene	390	-	 ND	ND ND	_		 ND	ND ND	ND ND	ND ND	ND	ND				ND ND	ND	 ND						ND				ND		ND -			-			0.002 B	J		0.002 J ND	0.002 J ND
Isopropylbenzene (Cumene)			ND	ND			ND	ND	ND	ND	ND	ND				ND	ND	ND						ND				ND		112 J -						ND			ND	ND
Methylcyclohexane	-			ND				ND	ND	ND						ND		-	-											117 J -							-		ND	ND
Methylene chloride	500			0.002				ND	ND	0.012						0.014														057 -						0.010 D	J		0.019 J	0.015 B
Toluene Total Xylene	500 500		ND ND	ND ND	_	_	ND ND	ND ND	0.002 J ND	ND ND	ND ND	0.004 J ND				ND ND	0.00029 ND	J 0.003 .	J					0.0004 J ND				ND ND		ND - 121 J -						ND ND			ND ND	ND ND
o-Xylenes	500		ND	ND			ND	ND	ND	ND	ND	ND	+			ND	ND	ND	-					ND				ND		01 J -			-			ND			ND	ND
m&p-Xylene	500		ND	0.002			ND	ND	ND	0.002		ND				ND	ND							ND				ND		01 J -									ND	ND
n-Propylbenzene	500		ND	ND			ND	ND	ND	ND	ND	ND			-	ND	ND	ND						ND			-	ND		16 J -						140			ND	ND
p-Cymene (p-isopropyltoluene)			ND	ND	_	_	ND	ND	ND	ND	ND	ND				ND	ND	ND						ND				ND		094 -			-			,,,			0.006 J	ND
1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene	190 190		ND ND	0.001 ND			ND ND	ND ND	ND ND	0.001 ND	ND ND	ND ND				ND ND	ND ND	0.009 ND						ND ND				0.0009 J ND		.68 - .53 -						ND ND			ND ND	ND ND
sec-Butylbenzene	500		ND	ND			ND	ND	ND	ND	ND	ND				ND	ND							ND				ND		085 -									ND	ND
tert-Butylbenzene	500		ND	ND	_	_	ND	ND	ND	ND	ND	ND				ND	ND	ND						ND				ND		14 J -						ND			ND	ND
Semi-Volatile Organic Compound							00 :	0.002												1000				0.00=	10000		0.45	L NE	ND					11 6 11	116.51		1			
Acenaphthene Acenaphthylene	500 500	2.8 J	ND 0.45 L		3.3	_	.93 J	0.082 J 0.6 J			0.98 J	ND I ND	ND 0.30	ND ND	ND n no	0.11 J	0.79 J	_		0.22 J	ND 0.4.1	ND 0.15 J	1.8	0.037 J	0.099 J	ND ND	0.18 J 4.7	ND 0.16 L		ND N 26 J 0.1			J 0.048	_			ND ND	ND 0.16 J		ND ND
Acenaphthylene Acetophenone	 	1.5 J ND	0.45 J ND		3.3 N		4.4 ND	ND			0.98 J	ND ND	0.39 J		0.09 J ND	0.47 J ND	1.4 J ND		0.19 J ND	0.18 J ND	0.4 J ND	0.15 J ND	0.29 J ND	0.15 J ND	0.72 J ND	ND ND	4.7 ND	0.16 J ND		26 J 0.1 ND 2.							ND ND	0.16 J ND		ND ND
Anthracene	500	11 J	0.86 J	<u> </u>	6.5			0.62 J			0.72				0.092		3.2		0.8 J	0.51 J	0.57 J	0.17 J		0.17 J	0.82 J	ND	2.4	0.15 J			1 J 0.047									ND
Benzo(a)anthracene	5.6	23	3 J	-	1:		25	2.9			2.1	0.88 J	1.7 J	37 J	0.36 J	1.8	7	4.1	2.1	1.5 J	1.7 J	1.2 J	18	0.8 J	3.6	0.92 J	12	0.62 J			5 J 0.28		_	_	_			0.91 J		0.34 J
Benzo(b)fluoranthene	5.6	22	4.4		1·		25	4.4			4.2	1 J	2.5 J		0.69 J	2.8	10	9.2	3.1	1.7 J	2.1 J	1.7 J	20	1.4	5.9	1.6 J	17	0.91 J		1.7 1.	. 0.00			_			0.75 J			0.24 J
Benzo(k)fluoranthene Benzo(g,h,i)perylene	56 500	10 J 14 J	1.4 J 3 J		5.1 7.	_	7.9 15	1.8 J 3.9			1.6 J 3.8	0.44 J 0.86 J	0.97 J		0.29 J	1.1 0.69 J	1.9	3.6 2.9	0.84 J 0.7 J	0.64 J 1.3 J	0.88 J 1.7 J	1 J 0.96 J	8.4 4.8	0.58 J 0.44 J	1.3 J 1.7 J	0.65 J 0.85 J	4.9 12	0.36 J 0.33 J		69 J 0.4 81 J 0.3	3 J 0.18	J 0.57 J 0.92		_		_	_	0.56 J 0.92 J		0.19 J 0.28 J
Benzo(a)pyrene	1	18 J	2.7 J		9.		20	3.6			3.2	0.83 J			0.44 J		6.5			1.4 J	1.8 J	1.4 J	15	0.89 J	3.9	1.2 J	13	0.71 J		I.1 0.6	7 J 0.34		_	_						0.22 J
Biphenyl		ND	ND		0.3		.28 J	ND			ND	ND	ND		ND	ND	ND	0.088 、		ND	ND	ND	0.1	ND	ND	ND	ND	ND		ND N							ND	ND		ND
bis(2-Ethylhexyl)phthalate	-	ND	ND		N		ND	ND			ND	ND	ND	ND	ND	ND	ND	ND	1.2	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND N		_	_				ND	ND		ND
4-Chloroaniline Carbazole		ND 	ND 	-	NI 2.		ND 	ND 			ND	ND 	ND 	ND 	ND	0.2 J	ND 	ND	0.72 J	ND	ND	ND 	ND 	ND 	ND	ND 	ND 	ND	ND	ND N	D ND	ND	ND	ND	ND	0.1 J	ND	ND 		ND
Chrysene	56	23 B	3.3 BJ	-	10		21 B	3.1 B			2.8 B	1.2 BJ			0.42 B	J 1.9 B	6.5 B	4.1 B	2 B	1.6 BJ	2 BJ	1.4 BJ	15 B	0.87 BJ	3.5 B	1.4 BJ	10 B	0.66 BJ	0.8 BJ 1	1 B 0.61		3J 1.2 E	3 0.61 E	3J 7.8 E	B 2.8 I		0.96 BJ	0.8 BJ	-	0.56 BJ
Dibenzo(a,h)anthracene	0.56		0.85 J	-	2.2	2J 3	3.8 J	0.73 J			0.94 J	ND	0.35		0.073	0.22 J	0.7 J			ND	0.46 J	ND	1.6	0.12 J	0.56 J	0.27 J	3 J	0.1 J	0.069 J 0.	22 J 0.1	2 J 0.084	J 0.25	J 0.15	J 1.3	0.59	J 0.25 J		0.2 J		ND
Dibenzofuran		3.3 J			2.8			0.15 J			0.1 J		ND	ND	ND	0.24 J	1.1 J			ND	ND	ND	1.2	0.039 J	0.2 J	ND	0.44 J	0.052 J			3J ND		_					0.11 J		ND
Fluoranthene Fluorene	500 500	50 B 4 J	3.1 J ND		5.7		66	5.8 0.16 J			1.9 J 0.083	_	2.9 J ND		0.52 J ND	3.8 0.18 J	16 1.7 J	9.8 0.47 J	4.4 0.3 J	2.1 J 0.17 J	3 J ND	1.5 J ND	26 D 2.1	1.5 0.046 J	6.4 0.27 J	1 J ND	19 0.32 J	1 ND		1.4 0.7 ND N			_				0.87 J ND	1.5 0.075 J		0.35 J ND
Indeno(1,2,3-cd)pyrene	5.6	12 J	2.3 J	-	6.		13	2.9			2.9	0.75 J			0.24 J		2.1	3	0.7 J	1.1 J	1.4 J	0.92 J		0.43 J	1.6 J	0.79 J	11	0.35 J			5 J 0.22					_		0.9 J	-	0.21 J
Isophorone	-	ND	ND	-	N	D I	ND	ND			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 1.	8 ND	ND	ND	ND	ND	ND	ND	ND		ND
2-Methylnaphthalene		1.1 J	0.81 J		1.8			0.085 J			0.16 J	l ND	ND	ND	ND	0.11 J	0.27 J	_	0.36 J	ND	ND	ND	0.28 J	0.044 J	0.18 J	ND	0.53 J	0.24 J	.,,,	13 J 0.1		_	_	0.33	-		ND	0.11 J		ND
Naphthalene N-Nitroso-di-n-propylamine	500	ND ND	0.23 J ND		2.7 NI		.9 J ND	0.19 J ND			0.17 J	I ND ND	ND ND		0.079 ND	0.1 J ND	0.29 J ND		0.27 J ND	ND ND	ND ND	ND ND	0.36 J ND	ND ND	0.2 J ND	ND ND	0.63 J ND	0.14 J ND		ND 0.1		_	_			_	ND ND	0.064 J 0.076 J		ND ND
Phenanthrene	500	32 B	0.82 BJ	J	27			2.4 B			0.69 B		2 BJ				12	3.4		1.5 BJ	1.6 BJ	0.6 BJ		0.64 J	3	0.45 BJ	4.5 B	0.46 J			1 J 0.36		_	_		_	0.45 BJ	0.58 J		0.41 BJ
Pyrene	500	37 B			19		45	5.1			2.2 B	_					11	7.9		1.8 J	2.4 J	1.2 J	_	1.2	4.9	0.97 J	17				6 J 0.45	_	_				0.83 J			0.43 J
PCBs- mg/kg ³			1																. 1																					
Aroclor 1248	1			_	J 0.0	_	ND ND									ND		0.012		ND	ND ND									N					0.84				ND	
Aroclor 1254 Aroclor 1260	1			0.05 ND		_	ND									ND ND		0.032 ND		ND 0.03	0.046									N					0.9	_			ND ND	
Aroclor 1262	1				3 0.01															ND	ND														ND				ND	
Inorganic Compounds - mg	/kg																	_												-										
Aluminum					114			10.7			27.2		10.0.5			11800 *	47.2 5	 15.6.5		4F 4 F	420 =		 44 F E	 27.6 E	 64 E		 	 20.2 E								12000	_			
Arsenic Barium	16 10000	8.8	19.7		14		17.1	12.7			27.3	99.2 E	10.9 E	7.3 E	5.7 E	20.2 E 132 N*	17.2 E	15.6 E	6.6 E	45.4 E	130 E	21.6	44.5 E	27.6 E	64 E	11.1	53 E	32.3 E	ND 2	2.7 -	6.5	11.1	10.8	18.4	11.2	7.2	48.9			4.7
Beryllium	590	-			1.								-			1.4 *																		-		1.6	-			
Cadmium	9.3	1.8	2				0.92	3.1			3.4	2.8	2	0.56		4.9 *	1.7 *	0.33 *	1.6 *	1	1.9	0.82	2.4 *	2 *	4 *	1.6	0.73	2.8 *	0.52	.59 -	1.4	1.9	ND	0.38	3 0.5	_	2.4 E			4.3 E
Calcium	4000	400	440		523						25.0			 1 207 F		########			* 20.0 ***		 246 FN	 F6 EN		400 NI*	 100 N/r			 E2 E N#	704 N 4 4			 N 536 I	 NI 00.1			250000	97.9			
Chromium ⁵ Cobalt	1900	423	110	+ =	30 4.		124	69.1			35.9	60.8 EN	134 EI	N 397 EI	212 N	129 N* 6.5 *	109 N	31.1 N	28.3 N	95.4 EN	216 EN	20 EN	122 N*	40∠ IN*	109 M.	118 EN	96.2 EN	53.5 N*	731 N 14	6 NJ -	- 53/1	N 0361	N 234	243	104	520 3.8	97.9			314
Copper	270	-			80	_							-			77.5																-				43	-			
Iron	-			-	484	100				-						37900 J																				1.0000				
Lead	1000	184	231		_		120	925					* 259 EN	_	_	843 J				156 EN*	178 EN*		_	_		121 EN	94.3 EN*	209	15 * 45	50 J* -	173 *	224	* 262	158	554		267 N			549 N
Magnesium Manganese	10000	 -		-	70								-			9110 * 21200 J	*			 											·	-	+	-		30500 18900				
Nickel	310	+=			14											19.2 EN				+=	-											+ =	+ =	+=		21.6				
Potassium					120											1180 *																-				697				
Mercury	2.8	0.303	0.118		0	_	.555	0.261			0.303			_		0.917 N			_	0.081	0.077		0.14 N					0.093 N	ND 0			0.87	8 1.3	0.24	6 1.4		0.11			0.165
Silver	1500				NI 46											ND																				ND 270				
Sodium Vanadium				+	46 24	_										324 * 84.6 N*		_													·	-				279 470				
Zinc	10000			-	32											284 EJ																-				100				
Cyanide	27	ND	ND				ND	ND			ND	ND	ND	2	ND			ND	2.5	ND	ND	ND	ND	ND	ND	ND	ND	ND	3.2	ND -	- 2.3	ND	ND	ND	ND		ND			ND
General Chemestry																																								
pH		 -			-	-																-								-			-							
Flashpoint				1	1 -	-																								-						-			>176	

SUMMARY OF SOIL ANALYTICAL DATA

Remedial Investigation/Alternatives Analysis Report Phase III Business Park Area Tecumseh Redevelopment Inc. Lackawanna, New York

														Lackay	wanna, Ne	ew TOIK													
															Samı	ple Locati	on												
D 1	Commercia				BPA-3-	BPA-3-	BPA-3	BPA-3-	BPA-3-		BPA-3-	BPA-3-	BPA-3-	BPA-3-		BPA-3-	BPA-3-	BPA-3-	BPA-3-			BPA-3-	BPA-3-	BPA-3-	BPA-3-				
Parameter '	SCOs ²	TP-56	TP-58	TP-59	TP-60	TP-62	TP-64	TP-65	TP-67	TP-69	TP-70	TP-71	TP-74	TP-75	TP-76	TP-77	TP-79	TP-80	TP-80	TP-81	TP-82	TP-83	TP-84	TP-85	TP-86	Blind ⁵	Blind 2	Blind 3	Blind 4
	(ppm)	(0-2')	(0-2')	(0-2')	(0-2')	(0-2')	(0-2')	(0-2')	(0-4')	(0-2')	(0-2')	(0-2')	(2-8')	(0-2')	(2-7')	(0-2')	(0-2')	(0-2')	(2-7')	(0-2')	(0-2')	(0-2')	(0-2')	(0-2')	(0-2')		5	5	5
Volatile Organic Compounds (V	OCs) - mg/kg 3																												
Acetone	500									0.043 J				ND		ND												0.02 BJ	
Benzene 2-Butanone (MEK)	44 500		ND 							ND 0.015 J	ND 			ND ND		ND ND						0.021	ND 	ND 	ND 	ND 		ND ND	
Carbon disulfide		-								0.003 J				0.002 J		0.002 J										-		0.003 J	
Ethylbenzene	390		ND							ND	ND			ND		ND						ND	ND	ND	0.012	ND		ND	
Isopropylbenzene (Cumene)			ND							ND	ND			ND		ND						ND	ND	ND	ND	ND		ND	
Methylcyclohexane Methylene chloride	500									ND 0.015 B				0.01 B		ND 0.005 B												ND 0.012 B	
Toluene	500		ND							ND	ND			ND		ND						0.012	ND	0.0052 J	0.012	0.0005 J		ND	
Total Xylene	500		ND							ND	ND			ND		ND						ND	ND	ND	0.093	ND		ND	
o-Xylenes	500 500		ND							ND ND	ND ND			ND ND		ND ND						ND ND	ND ND	ND	0.019	ND ND		ND ND	
m&p-Xylene n-Propylbenzene	500		ND ND							ND	ND			ND		ND						ND	ND	ND ND	0.074 ¹ ND	ND ND		ND	
p-Cymene (p-isopropyltoluene)			ND							ND	ND			ND		ND						ND	ND	ND	ND	ND		ND	
1,2,4-Trimethylbenzene	190		ND			-				ND	ND			ND		ND	-	-				ND	ND	ND	0.013	ND	-	ND	
1,3,5-Trimethylbenzene	190		ND							ND	ND			ND		ND						ND	ND	ND	ND	ND		ND	
sec-Butylbenzene tert-Butylbenzene	500 500	-	ND ND							ND ND	ND ND			ND ND		ND ND						ND ND	ND ND	ND ND	ND ND	ND ND		ND ND	
Semi-Volatile Organic Compoun																								.,,,,		. 10			
Acenaphthene	500	ND	ND	ND	ND	ND	ND	ND	5.8	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.092 J	0.26 J	ND	ND	ND	ND	0.039 J	0.059 J	ND	ND
Acetophonono	500	0.85 J	1.8 J	0.29 J	0.22 J	0.29 J	ND	ND	0.3 J	0.22 J	0.22 J	0.5 J	ND	ND	ND	0.18 J	ND	0.61 J	ND	0.98	1.2	0.34 J	ND	0.26 J	0.25 J	0.12 J	0.08 J	0.24 J	0.63 J
Acetophenone Anthracene	500	ND 0.41 J	ND 1.5 J	ND 0.17 J	0.2 J	ND 0.26 J	ND 0.15 J	ND ND	ND 11	ND 0.27 J	ND 0.38 J	ND 0.48 J	ND ND	ND 0.17 J	ND 0.2 J	ND 0.43 J	ND ND	ND 0.7 J	ND ND	ND 0.61	ND 1.6	ND 0.25 J	ND 0.16 J	ND 0.23 J	ND 0.18 J	ND 0.21 J	ND 0.17 J	0.3 J	ND 0.75 J
Benzo(a)anthracene	5.6	1.6 J	5.9	1.1 J	1.2	1.2 J	0.72 J	0.23 J	21	1.2 J	1.6 J	2.3 J	0.43 J	0.96 J	1 J	2.1 J	0.11 J	2.8 J	0.7 J	3.9	9.2	1.6 J	0.84 J	1.1 J	1.2 J	0.92 J	0.93 J	1.3	4.6
Benzo(b)fluoranthene	5.6	2.1 J	7.1	1.8 J	2	1.4 J	0.93 J	0.31 J	20	1.2 J	1.9 J	2.7 J	0.42 J	1 J	1.1 J	2.2 J	0.26 J	3.2 J	0.8 J	5.6	11	1.9 J	1.2 J	1.8 J	1.4 J	1.9	1.3	1.4 J	4.6
Benzo(k)fluoranthene	56 500	0.96 J 2 J	3.1 J 5.9	0.44 J	0.85 J 0.88 J	1 J 1.3 J	0.4 J 0.62 J	ND 0.25 J	5.2 7.8	0.59 J 1 J	0.86 J 1.8 J	1.2 J 2.1 J	0.24 J 0.38 J	0.52 J 0.79 J	0.43 J 0.6 J	0.96 J 1.5 J	0.077 J 0.11 J	1.1 J 1.8 J	0.39 J 0.47 J	1.6 2.2	4.4 5.3	0.88 J 1.2 J	0.47 J 0.63 J	0.85 J 0.96 J	0.54 J	0.47 J 0.51 J	0.47 J 0.73 J	0.59 J 0.85 J	2 J 2.5 J
Benzo(g,h,i)perylene Benzo(a)pyrene	1	1.9 J	6.4	1.1 J	1.3	1.4 J	0.62 J	0.25 J	15	1.2 J	1.6 J	2.1 J	0.34 J	0.79 J	0.89 J	1.5 J	0.11 J	2.8 J	0.47 J	4.1	9	1.2 J	0.84 J	1.2 J	1 J 1.2 J	1.1	0.73 J	0.85 3	3.8
Biphenyl		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
bis(2-Ethylhexyl)phthalate		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Chloroaniline Carbazole		ND 	ND 	ND 	ND 	ND 	ND 	ND 	ND 	ND ND	ND 	ND 	ND 	ND ND	ND 	ND 0.22 J	ND 	ND 	ND 	ND 	ND 	ND 	ND 	ND 	ND 	ND 	ND 	ND 0.13 J	ND
Chrysene	56	2 BJ	5.8 B	1.6 BJ	1.2 B	1.6 BJ	1.2 BJ	0.54 BJ	18 B	1.4 BJ	1.8 BJ	2.6 BJ	0.82 BJ	1.3 BJ	1.1 BJ	2.2 BJ	0.33 BJ	3.1 BJ	1 BJ	3.8 B	8.6	1.8 BJ	1.2 BJ	1.8 BJ	1.3 BJ	0.99 B	1.2 B	1.3 B	4.2 B
Dibenzo(a,h)anthracene	0.56	0.46 J	1.4 J	0.31 J		0.35 J	0.19 J	ND	3.1 J	0.32 J	0.45 J	0.62 J	ND	0.28 J	0.2 J	0.5 J	ND	0.6 J	0.16 J	0.68 J	1.6	0.36 J	ND	0.3 J	ND	0.15 J	0.2 J	0.25 J	0.77 J
Dibenzofuran		ND	0.2 J	ND	ND	ND	ND	ND	3.3 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.1 J	0.16 J	ND	ND	ND	ND	0.04 J	ND	0.14 J	ND
Fluoranthene Fluorene	500 500	2.7 J ND	11 0.35 J	1.5 J ND	2.9 0.04 J	2.3 J ND	0.76 J ND	0.22 J ND	45 6.2	1.8 J ND	2.6 J ND	3.8 J ND	0.58 J ND	1.3 J ND	1.6 J ND	3.1 J ND	0.22 J ND	5.1 0.16 J	1.1 J ND	7.2 0.19 J	16 0.34 J	2.3 J ND	1.2 J ND	1.7 J ND	1.4 J ND	1.7 0.047 J	1.8 J 0.059 J	2.8 0.08 J	7.8 ND
Indeno(1,2,3-cd)pyrene	5.6	1.6 J	5.2	1 J	0.8 J	1.1 J	0.51 J	0.19 J	7.9	0.94 J	1.4 J	1.8 J	0.32 J	0.71 J	0.65 J	1.4 J	0.11 J	1.9 J	0.45 J	2.3	5.2	1.2 J	0.53 J	0.94 J	0.92 J	0.49 J	0.6 J	0.78 J	2.3 J
Isophorone		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Methylnaphthalene		ND	ND	ND	ND	ND	ND	ND	0.75 J	ND	ND	ND	ND	ND	ND	0.16 J	ND	ND	ND	0.076 J	0.097 J	ND	ND	ND	ND	0.046 J	ND	0.06 J	ND
Naphthalene N-Nitroso-di-n-propylamine	500	ND ND	ND ND	ND ND	0.044 J ND	ND ND	ND ND	ND ND	1.2 J ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	0.092 J ND	0.13 J ND	ND ND	ND ND	ND ND	ND ND	ND ND	0.038 J ND	0.17 J ND	ND ND
Phenanthrene	500	0.98 J	4.4	0.56 BJ	0.62 J	0.78 BJ	0.31 BJ	ND	41	1.2 J	1.4 J	1.6 J	0.38 J	0.58 J	0.6 J	1.8 J	0.089 J	2.5 J	1 J	2.6	5.3	0.76 BJ	0.66 BJ	0.74 BJ	0.62 BJ	0.72 J	0.9 J	2	2.8 J
Pyrene	500	2.5 J	9	1.4 J	2.6	1.9 J	0.74 J	0.24 J	29	1.7 J	2.4 J	3.4 J	0.5 J	1.3 J	1 J	2.6 J	0.11 J	4.1	0.94 J	5.4	13	1.9 J	1.1 J	1.6 J	1.3 J	1.2	1.4	2	6.8
PCBs- mg/kg 3	1 1		ı	T		Г		1	ND	ND		ND	1	1	1	1	1	ı	1	1	1	ı	ı	1	ı	T	ı	ND	
Aroclor 1248 Aroclor 1254	1								ND 0.31	0.07 J		ND ND								-								0.14	
Aroclor 1260	1								0.1	0.11 J		ND																ND	
Aroclor 1262	1								ND	ND		ND																ND	
Inorganic Compounds - mg Aluminum	g/kg 	T			T			T	l	7610			T	8310		8150	T	l		T	T			Ι	l	T		12300	
Arsenic	16	34	9.1	19.9	9.7	22.1	6.3	18.9	26 EN*	13 EN*	33.2 EN*	24.8 EN*	14.8 EN*	10 EN*	12.3 EN*	63.2 EN*	21 EN*	25.6 EN*	25.7 EN*	48.5	79	9.7 E	11.7 E	16.8 E	33 E	25.8 E	11.9	9.9	18 EN*
Barium	10000									100				66.2		109				-								75.7	
Beryllium	590	 0 94					 175		 20 0 N#	0.96	 2 0 NI*		 1 N*	0.45	 0.51.NI*	1.2	 1 1 NI*	 4 7 NI*	 0.69 N*									2.1	 0.05 N#
Cadmium	9.3	0.94	1.2	2.3 E	0.3	1.2 E	1.7 E	1.2 E	20.8 N*	1.1 N* 114000	3.8 N*	10.8 N*	1 N*	0.71 N* 43500	0.51 N*	2.8 N* 54500	1.1 N*	1.7 N*	0.69 N*	0.5	1.6	0.42	0.3	2.2	2.8	1.2 *	3.2	ND 237000	0.95 N*
Chromium ⁵	1900	48.4	93.8	453	96.6	304	270	585	159 N*	685 N*	115 N*	217 N*	60.7 N*	192 N*		144 N*	54.6 N*		141 N*	52.1	106	219 EN		113 EN	92.9 EN		254 N	424	65.9 N*
Cobalt	-									4.1				4.7		5.1												2.8	
Copper	270									302				406		200												29.4	
Iron Lead	1000	39.1	59.9	1120 N	170	 114 N	110 N	 49.5 N	1200 E*	81600 113 E*	 191 E*	 862 E*	 88.2 E*	50700 78.7 E*	53.3 E*	56900 302 E*	 224 E*	763 E*	80.4 E*	119	201	 58 EN*	 165 EN*	 417 EN*	 446 EN*	 81 EN*	960 *	111000 60 N	 140 E*
Magnesium										17500				8360		9600		703 L										28600	
Manganese	10000			-		-				28000				6460		4910												15500	
Nickel Potassium	310									25.4				18.1		22.6												10.1	
Potassium Mercury	2.8	0.031	0.053	0.217		0.209	0.033	0.029	1.6	457 0.247	0.339	0.95	0.423	740 0.159	0.026	741 0.11	4.8	0.284	0.105	0.123	0.131	0.372	0.075	0.053	0.14	0.05	0.801	625 0.774	0.314
Silver	1500									0.61				ND		ND												ND	
Sodium	-									251				ND		249												367	
Vanadium		-								410				97.1		69												347	
Zinc Cyanide	10000 27	 ND	 ND	ND	 ND	 ND	ND	ND	 ND	98.3 ND	ND	 ND	2.4	144 ND	 ND	357 ND	ND	 ND	 ND	 ND	ND	 ND	3.8	3.3 J	 ND	ND	 ND	62.5	 ND
General Chemestry		יאט	140	140	IND	140	IND	IND	140	140		IND		140	שויו	ואט	140	140	שויו	, ND	140	140	0.0	0.00	140	140	140		140
pH																						9.52	10.9	10.2	8.82				
Flashpoint																													

- Only those parameters detected at a minimum of one sample location are presented in this table; all other compounds were reported as non-detect.
 Values per NYSDEC Part 375 Soil Cleanup Objectives (June 2006)
 Sample results were reported by the laboratory in ug/kg and converted to mg/kg for comparison to SCOs.

- 4. The total Chromium SCO was determined by adding the hexavalent and trivalent Chromium SCOs.

 5. Blind collected from BPA-3-TP-32, Blind 2 collected from BPA-3-TP-42, Blind 3 collected from BPA-3-TP-50, Blind 4 collected from BPA-3-TP-

- ND = Parameter not detected above laboratory detection limit.
- NA = Sample not analyzed for parameter.
 "--" = No SCO available.

- The subsection and the sample quantitation limit but greater than zero.

 b = Analyte was detected in the associated blank as well as in the sample. Value is above the action level for consideration as being external contamination.

 B = Indicates a value greater than or equal to the instrument detection limit, but less than the quantitation limit.

 * = Indicates the spike or duplicate analysis is not within the quality control limits.

- D = All compounds were identified in an analysis at the secondary dilution factor.
- N = Indicates spike sample recovery is not within the quality control limits.
 P = Detected concentrations between the two GC columns is greater than 25%; lower value is reported and flagged (for CLP methodology only).
 J = Estimated value; result is less than the sample quantitation limit but greater than zero.

BOLD = result exceeds SCO.

Table 7a

Summary of Soil Analytical Data

Remedial Investigation/Alternatives Analysis Report Phase IIIA Business Park Area Tecumseh Redevelopment Inc. Lackawanna, New York

															Sample Location	2												
	Unrestricted	DDA OA TD 4	BPA-3A-TP-2	BPA-3A-TP-3	BPA-3A-TP-4	DDA SA TD S	DD4 04 TD 0	DD4 04 TD 44	DD4 04 TD 47	DDA OA TD 4	DD4 04 TD 40	DD4 04 TD 00	DD4 04 TD 04				DDA OA TD OO	DDA OA TD OO	DDA OA TD OO	DD4 04 TD 04	DD4 04 TD 00	DD4 04 TD 00	DDA OA TD OA	DA 04 TD 05	DD4 04 TD 07	DD4 04 TD 40	DD4 04 TD 44 D	DA 24 TD 45
PARAMETER 1	SCOs ² (ppm)	BPA-3A-TP-1 (0-2)	(0-2)	(2-6)	(0-2)	(0-2)	(5-8)	(4-6)	(3-6)	BPA-3A-1P-1	BPA-3A-1P-19	(0-2)	(0-2)	(3-5)	(0-2)	(0-2)	(0-2)	(0-2)	(2-5)	(3-5)	(0-2)	(0-2)	(0-2)	(0-2)	(0-2)	(0-2)	BPA-3A-TP-44 B (7-8)	(0-2)
		(0 2)	(0 2)	(2 0)	(0 2)	(0 2)	(0 0)	()	(0 0)			(0 2)	(0 2)	(0 0)	(0 2)	(0 2)	(0 2)	(0 2)	(2 0)	(0 0)	(0 2)	(0 2)	(0 2)	(0 2)	(0 2)	(0 2)	(. 0)	(0 2)
Volitile Organic Compounds (VO 1,2,4-Trimethylbenzene	OCs) (mg/Kg) ³ 3.6				_		ND	ND	ND	I ND	ND	_	I	ND	ND	ND	I		_		-		T		ND		1.8 D.W1.N1	
1.3.5-Trimethylbenzene	8.4	-	_	-	_	-	ND	ND	ND		ND	_	_					_	_		_	_		-	ND		0.41 D.W1.N1	_
2-Butanone (MEK)	0.12	-	-		-		0.51 W,D,J	ND	ND		ND	-							-		-				ND		ND	-
p-Cymene	-		-		-		ND	ND	ND	ND	ND	-		ND	ND	ND			1		-				ND		0.33 D,W1,N1	
Acetone	0.05	-	-		-		ND	ND	ND		ND	-			 ND			-	-		-				ND		ND	
Benzene Chlorobenzene	0.06	-	-		-		ND ND	ND ND	ND ND	ND	ND ND	-		ND	ND	ND		-	-		-				ND ND		0.93 D,W1,N1 ND	
Cyclohexane		-	-				ND ND	ND	ND		ND		-				-	-			_				ND ND		0.69 D,W1,N1	
Ethylbenzene	1	-	-			-	ND	ND	ND	ND	ND			ND	ND	ND			-		-				ND		0.19 D,W1,N1	_
Isopropylbenzene	-	-	-		-		ND	ND	ND	ND	ND	-		ND	ND	ND		-	-		-				ND		0.31 D,W1,N1	
Methylcyclohexane Methylene chloride	0.05	-	-		-	-	0.061 W,D,J	ND 0.048 B	ND 0.041 B		ND 0.055 B					-		-	-		-				ND ND		1.7 D,W1,N1 ND	
m-Xylene & p-Xylene	0.05	_	_		_	_	ND	0.046 B ND	0.041 B ND	ND	ND		-	ND.	ND.	ND	-	_	_		_				ND ND		0.62 D.W1.N1	
n-Butylbenzene	12	-	_		_		0.12 W,D,J	ND	ND	ND	ND			ND ND	ND	ND		-	-		_				ND		0.87 D,W1,N1	
n-Propylbenzene	3.9	-	-		-		0.063 W,D,J	ND	ND	ND	ND	-		ND	ND	ND		-	-		-				ND		0.46 D,W1,N1	
o-Xylene	0.26	-	-		-		ND	ND	ND	ND	ND	-		ND	ND	ND		-	-		-				ND		0.38 D,W1,N1	
sec-Butylbenzene Toluene	0.7		-				ND ND	ND ND	ND ND	ND ND	ND ND			ND ND	ND ND	ND ND			-		-				ND 0.00066 J		0.27 D,W1,N1 ND	
Total Xylenes	0.7		_				ND ND	ND ND	ND ND	ND ND	ND ND	-	-	ND ND	ND ND	ND ND		-			-				0.00066 J ND		1 D,W1,N1	
Semi-Volatile Organic Compound		3		1	1						, .,,,		1					1	1		•	1					, ,	
2-Methylnaphthalene	-	ND	ND	ND	ND	ND	32 D	ND	ND	ND	ND	0.64 D,J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	65 T,D,J	ND
Acenaphthene	20	ND	ND	ND	ND	ND	ND	ND	2.3 D,J	ND	ND	1.8 D,J	ND	ND	ND 2.1 D.I	ND	ND	ND	ND	0.3 D,J	ND	ND	ND	3.2 D,J	ND	ND	ND	ND
Acenaphthylene Anthracene	100 100	ND 3.3 T.D.J	ND 0.42 D,J	ND 0.37 D.J	ND ND	0.56 D,J 0.81 D.J	ND ND	5.8 D,J 4 D,J	ND 5.4 D	ND ND	ND ND	0.39 D,J 6.4 D	ND ND	ND ND	2.1 DJ 3.4 DJ	ND ND	2.4 D,J ND	1.3 D,J	ND ND	0.36 D,J 0.91 D.J	ND 2 D,J	0.73 D,J 0.85 D,J	ND 3.2 D,J	7.6 D.J	1.2 D,J 0.41 D.J	ND ND	ND ND	0.39 0.74 D,J
Benzo(a)anthracene	1	7.7 T.D.J	1.6 D.J	1.8 D.J	4.1 T.D.J	2.5 D.J	0.4 D.J	29 D	9.9 D	0.018 J	1.2 D.J	10 D	0.8 D.J	0.17 D.J	15 D	0.38 D.J	3.2 D.J	6 D	ND ND	2.8 D	8.2 D.J	5.3 D	11 DJ	27 D	3.7 D.J	0.56 D.J	ND ND	2.8 D
Benzo(a)pyrene	1	6 T,D,J	1.5 D,J	2 D,J	4.4 T,D,J	2.2 D,J	0.29 D,J	29 D	8.1 D	0.018 J	1.4 D,J	8.1 D	0.85 D,J	0.16 D,J	13 D	0.34 D,J	6.2 D,J	6.2 D	ND ND	3.1 D	8.4 D,J	5.8 D	10 DJ	25 D	5.9 D	0.62 D,J	ND ND	2.9 D
Benzo(b)fluoranthene	1	6.6 T,D,J	1.8 D,J	2.5 D,J	5.3 T,D,J	4 D ID4	0.48 D,J	34 D	9.4 D	0.033 J	2.5 D,J	11 D	1.4 D,I4,J	0.22 D,J	14 D	0.43 D,J	6.1 D,J	7.2 D	ND	3.9 D	8.4 D,J	6.9 D	18 D,J,ID4	28 D	7.9 D	1.2 D,J	ND	3.4 D
Benzo(ghi)perylene	100	4.1 T,D,J	1 D,J	1.7 D,J	4.5 T,D,J	1.9 D,J	0.26 D,J	26 D	5.2 D	0.02 J	1.3 D,J	5.6 D	0.7 D,J	0.16 D,J	9.1 DJ	0.26 D,J	5.9 D,J	4.7 D	ND	3.1 D	5.5 D,J	4.3 D	ND	14 D,J	4.3 D	0.55 D,J	ND	2.1 D
Benzo(k)fluoranthene Biphenyl	0.8	3.9 T,D,J ND	0.66 D,J ND	0.84 D,J ND	3.2 T,D,J ND	ND ND	0.21 D,J 3.1 D	14 D ND	3.6 D,J ND	ND ND	0.82 D,J ND	3.9 D,J ND	ND ND	0.065 D,J ND	5.3 DJ ND	0.16 D,J ND	2.2 D,J ND	2.4 D,J ND	ND ND	1.4 D,J ND	5.4 D,J ND	3.9 D ND	ND ND	14 D,J ND	2.5 D,J ND	1.2 D,J ND	ND ND	1.4 D,J ND
Bis(2-ethylhexyl) phthalate	-	ND	ND	ND	ND	ND	0.62 D,J,B	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND ND	ND	ND ND	ND
Carbazole			-						1.6 DJ		ND					-		-	-		-				ND		ND	
Chrysene	1	6.9 T,D,J	1.5 D,J	17 D,J	4.1 T,D,J	2.5 D,J	0.54 D,J	30 D	8.3 D	0.027 J	1.3 D,J	9.9 D	0.96 D,J	0.12 D,J	12 D	0.36 D,J	3.3 D,J	5.4 D	ND	2.9 D	7.8 D,J	5.2 D	12 D,J	24 D	3.8 D,J	0.62 D,J	ND	2.5 D
Dibenzo(a,h)anthracene	0.33	ND ND	0.28 D,J ND	0.44 D,J	ND ND	0.45 D,J ND	0.075 D,J ND	5.9 D,J	1.1 D,J	ND ND	ND ND	1.5 DJ	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	1.2 D,J ND	ND ND	ND ND	ND ND	1.4 D,J	ND ND	ND ND	0.67
Dibenzofuran Fluoranthene	100	15 T.D.J	3.3 D,J	ND 2.6 D,J	6.8 T,D,J	5.2 D	1.1 D	ND 38 D	0.98 D,J 26 D	ND 0.018 J	1.4 D.J	1.9 DJ 23 D	ND 1.2 D,J	0.19 D,J	32 D	0.5 D,J	2.6 D,J	9.4 D	ND ND	6.6 D	18 D	ND 9.5 D	26 D,J	58 D	ND 3.6 D.J.B	0.84 D,J,B	18 T.D.J.B	ND 5.1 D
Fluorene	30	ND	ND	ND	ND	ND	6.6 D	ND	2.1 D,J	ND	ND	2.9 D,J	ND	ND	1.1 DJ	ND	ND	ND	ND	0.23 D,J	ND	ND	ND	3 D,J	ND	ND	ND ND	0.23 D,J
Indeno(1,2,3-cd)pyrene	0.5	3.5 T,D,J	0.93 D,J	1.5 D,J	3.6 T,D,J	1.6 D,J	0.24 D,J	23 D	4.9 D	ND	1.3 D,J	5.8 D	0.66 D,J	0.14 D,J	8.1 DJ	0.21 D,J	4.2 D,J	4.4 D	ND	2.5 D	4.7 D,J	4 D	6.3 D,J	14 D,J	4.1 D	0.47 D,J	ND	1.9 D,J
Naphthalene	12	ND 40 T D I	ND	0.53 D,J	ND	ND	5.4 D 16 D	ND	ND	ND	ND ND	0.63 DJ	ND	ND 0.088.D.J	ND 15 D	ND 00D	ND ND	ND	ND ND	ND 0.5.D	ND 70D	ND 4.7 D	ND 40 D J	ND	0.52 D,J	ND	ND ND	ND
Phenanthrene Pyrene	100 100	13 T,D,J 12 T.D.J	2 D,J 2.8 D.J	1.6 D,J 2.2 D.J	3.3 T,D,J 5.7 T.D.J	2.5 DJ 4.8 D	1.1 D	9.3 D,J ND	21 D 20 D	0.021 J 0.014 J	1.3 D.J	23 D 16 D	0.39 D,J 1 D.J	0.088 D,J 0.17 D.J	26 D	0.2 D,J 0.43 D.J	3.4 D.J	3 D,J 8.1 D	0.089 D.J	3.5 D 5.3 D	7.2 D,J 14 D	4.7 D 7.8 D	16 D,J 20 D.J	31 D 42 D	0.81 D,J,B 3.6 D.J.B	0.25 D,J,B 0.67 D.J.B	98 T,D,J,B 93 T.D.J.B	3 4.1
TCL Polychlorinated Biphenyls (12 1,2,0	2.0 2,0	2.2 5,0	0.7 1,5,0	1.0 5	5	.,,,,	202	0.0110	1.0 2,0	.02	. 2,0	0.17 2,0	202	0.10 5,0	0.12,0	0.1 2	0.000 2,0	0.0 2		7.02	20 5,0	12.0	0.0 2,0,2	0.07 2,0,2	00 1,5,0,5	
Aroclor 1242	0.1		-						ND		ND	-					ND	0.037	ND	ND	0.13 D				ND		ND	-
Aroclor 1248	0.1		-		-				ND		ND	-				-	ND	ND	ND	ND	ND				ND		ND	-
Aroclor 1260	0.1		-						ND		ND						0.028 J	0.25	ND	0.25	1.5 D				ND		ND	
Metals method (mg\Kg) Aluminum, Total			-	T	T		T I		7890 J		7410 J	-					T		-		-	T I			5780 J		5500 J	
Arsenic, Total	13	57.8	31.7	17.6	7.5	123	38.9	25.1	26.7	ND	10	79.3	19.3	10.9	25.5	6.1	21.7	10	5.4	24.5	18.7	132	15.4	20.6	121	38	9.7	45.4 J
Barium, Total	350	-	-		-				109 J	-	93.9 J	_	-	-			-	-	_		-				99.3 J		66.6 J	131 J
Beryllium, Total	7.2	442	1.64	2.02	1.06	1.72	 2 FO		0.708		1.07	 E 00		 ND	4.07			1.06		7 22	7.75		 2.50		1.14		0.722	1.06
Cadmium, Total Calcium, Total	2.5	4.12	1.64	2.03	1.06	1.73	3.59	0.941	1.3 30100 J,B1,B	ND 	0.999 25300 J,B1,B	5.98	2.43	ND 	4.07	0.268	2.14	1.06	0.992	7.32	7.75	14.4	2.59	30.9	1.72 35300 J	1.41	0.474 48400 J	1.86
Chromium, Total ⁴	31	148 J	372 J	234 J	91.2 J	52.8 J	22.6 J	125 J	75.8 J	18.1 J	20.7 J	125 J	29.9 J	30.8 J	34.9 J	56 J	19.7 J	108 J	195 J	33.4 J	125 J	203 J	49.2 J	145 J	17.9 J	590 J	192 J	101 J
Cobalt, Total	-		-		-				7 J		4.27 J	-				-		-	-		-				6.91 J		3.64 J	-
Copper, Total	50				-				72.1 J		39 J	-		-		-		-	-		-				29.6 J	_	36 J	-
Iron, Total									46700 J		20600 J														212000 D,J		47300 J	
Lead, Total Magnesium, Total	63	316	229	232	251	130	176	44.7 J	118 J 3570 J	ND 	75.4 J 3360 J	500 J	201 J	26 J	268	28.2	138	169	101	355	488	823	332	484	59 2090 J	76.3 J	62.6 J 7160 J	104 J
Manganese, Total	1600	-	_		-	-			3740 B1,D,B		1580 B1,B	-				-		-			-				1930		7210 D	
Nickel, Total	30				-				20.3 J		14.5 J	-				-		-	-		_		-		8.78 J		10.9 J	
Potassium, Total	-	-	-		-				1330 J		520 J	-		-		-		-	-		-				591 J		454 J	
Sodium, Total		-	-		-				515 J		241 J	-				-		-	-		-				165 J		ND	
Thallium, Total Vanadium, Total	-	-	-						ND 52.6 J		ND 21.5.I	-						-	-		-				14.1 49.1 J		ND 67.6 J	
Zinc, Total	109				<u> </u>	-			307 J		21.5 J	-	-			-	<u> </u>	-							49.1 J 93.6 J		109 J	
Mercury, Total	0.18	1.31 D	0.0736	1.58 D	0.102	2.07 D	0.0717	0.11	2.78	ND	0.13	0.235	0.0467	0.0269	0.422	ND	0.0905	0.121	0.105	0.102	3.32 D	0.169	0.355	0.403	0.0254	0.0464	0.188	0.264
Cyanide	27		-						2.1 J		ND											-			ND		ND	ND
General Chemestry Parameters Ph. Leachable									1	1					1		1											
FII, Leachable																		-	-		-						-	

Table 7a

Summary of Soil Analytical Data

Remedial Investigation/Alternatives Analysis Report Phase IIIA Business Park Area Tecumseh Redevelopment Inc. Lackawanna, New York

									Lack	awanna, New	TOTA								
	Unrestricted									Sample	Location								
PARAMETER ¹	SCOs ² (ppm)		BPA-3A-TP-47 (0-2)	BPA-3A-TP-48 (0-2)	BPA-3A-SS-49	BPA-3A-TP-49 (0-2)	BPA-3A-TP-49 (5-7)	BPA-3A-TP-50 (0-2)	BPA-3A-TP-51 (0-2)	BPA-3A-TP-52 (0-2)	BPA-3A-TP-53 (5-7)	BPA-3A-TP-54 (0-2)	BPA-3A-TP-55 (0-2)	BPA-3A-TP-56 (0-2)	BPA-3A-TP-57 (0-2)	BPA-3A-TP-58 (5-6)	Blind 1 ⁵	Blind 2 ⁵	Blind 3 ⁵
Volitile Organic Compounds (VOC	s) (m a/Ka) ³		l	1	1				1	l	l		<u> </u>	<u> </u>	1			l	
1,2,4-Trimethylbenzene	3.6							ND	ND	0.0015 J	360 W1	0.0022 J	0.0034 J	0.0018 J	ND	ND	ND		0.0026 J
1,3,5-Trimethylbenzene	8.4					-		-	ND		280 W1	1	0.0094 J		-				0.00065 J
2-Butanone (MEK)	0.12		-			-			ND		ND	-	0.0077 J		-				0.0078 J
p-Cymene				-				ND	ND	ND	0.81 W1	ND	ND	ND	ND	ND	ND		ND
Acetone	0.05		-			-		ND	ND ND	ND	ND 490 W1	ND	0.051 J ND	ND	 ND	ND	ND		0.048 J
Benzene Chlorobenzene	1.1					_			ND	IND	0.09 W1.J	IND	ND ND	IND	ND		ND 		ND ND
Cyclohexane						-			ND	-	0.37 W1	_	ND		-	-			ND
Ethylbenzene	1			-				ND	ND	ND	100	ND	ND	ND	ND	ND	ND		ND
Isopropylbenzene	-					-		ND	ND	ND	4.4 W1	ND	ND	ND	ND	ND	ND		ND
Methylcyclohexane				-					ND		2.2 W1	-	ND		-				ND
Methylene chloride	0.05		-			-			6.3 B		ND		ND	0.000.1	 ND		ND.		ND
m-Xylene & p-Xylene n-Butylbenzene	0.26 12					-		ND ND	ND ND	0.0016 J ND	820 W1 ND	0.0023 J ND	0.0032 J ND	0.002 J ND	ND ND	ND ND	ND ND		0.0026 J ND
n-Propylbenzene	3.9		-			_		ND	ND ND	ND ND	1.6 W1	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND		ND
o-Xylene	0.26		-			-		ND	ND	ND	87 W1	ND	0.00081	ND	ND	ND ND	ND		ND
sec-Butylbenzene	11		-			-		ND	ND	ND	0.82 W1	ND	ND	ND	ND	ND	ND		ND
Toluene	0.7		-			-		ND	ND	ND	47 W1	0.00094 J	ND	0.00085 J	ND	ND	ND		0.00066 J
Total Xylenes	0.26							ND	ND	0.0016 J	910 W1	0.0023 J	0.004 J	0.002 J	ND	ND	ND		0.0026 J
Semi-Volatile Organic Compounds	s (SVOCs) (mg\Kg)	11																	
2-Methylnaphthalene	-	ND	ND	ND	ND	ND		ND	0.8 D,J	ND	73 T,D	ND	ND	ND	ND	ND	ND	ND	ND
Acenaphthene	20	ND	ND	ND 0.05 D. I	ND	0.4 D,J		ND 0.40 D. I	ND	ND	29 T,D	ND	ND	ND	ND .	ND	ND	ND	ND
Acenaphthylene Anthracene	100 100	ND 0.12 D,J	ND ND	0.25 D,J 0.29 D,J	6 T,D,J ND	ND 1.1 D,J		0.46 D,J 0.35 D,J	0.33 D,J 1.9 D.J	0.28 D,J 0.52 D,J	7.9 T,D 6.9 T.D	ND 0.15 D,J	ND 0.016 J	ND ND	1.1 D,J 1.1 D,J	ND 0.026 J	ND ND	ND 1.5 D,J	ND ND
Benzo(a)anthracene	1	1.2 D,J	6.4 D,J	1.5 D,J	8.6 T,D,J	4.5 D		2 D,J	9.6 D	1.4 D,J	7.9 T,D,J	1 D,J	0.29	1.9 D,J	5.1 D	0.065 J	0.14 D,J	4.7 D,J	0.12 J
Benzo(a)pyrene	i	1.1 D,J	4.9 D,J	1.4 D,J	ND	4.2 D,J		2.2 D,J	7.8 D	1.2 D,J	4.2 T,D,J	1.1 D,J	0.45	2.9 D	4.5 D	0.046 J	0.14 D,J	4.3 D,J	0.2 J
Benzo(b)fluoranthene	1	1.4 D,J	7.9 D,J	1.9 D,J	12 T,D,J	6 D		2.6 D,J	10 D	1.4 D,J	5.9 T,D,J	1.6 D,J	0.54	3.4 D	5.8 D	0.049 J	0.22 D,J	5.9 D,J	0.3
Benzo(ghi)perylene	100	0.73 D,J	4.7 D,J	1.1 D,J	5.8 T,D,J	4.5 D		1.8 D,J	5.5 D	0.83 D,J	2.4 T,D,J	0.99 D,J	0.46	2.9 D	3.2 D	0.031 J	0.18 D,J	4.6 D,J	0.22
Benzo(k)fluoranthene	0.8	0.55 D,J	3.5 D,J	0.71 D,J	4.5 T,D,J	2.3 D,J		1.5 D,J	3.2 D,J	0.47 D,J	2.9 T,D,J	0.58 D,J	0.23	1.1 D,J	2 D	0.029 J	0.062 D,J	3.1 D,J	0.058 J
Biphenyl	-	ND	ND	ND	ND	ND		ND	ND	ND	7.5 T,D,J	ND	ND	ND	ND	ND	ND	ND	ND
Bis(2-ethylhexyl) phthalate Carbazole	-	ND	ND	ND	ND	ND		ND	ND 0.54 D.J	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND ND
Chrysene	1	1.1 D,J	7.1 D,J	1.4 D,J	 10 T,D,J	4.1 D,J		2.4 D,J	0.54 D,J 8.9 D	1.3 D,J	6.3 T,D,J	1.3 D,J	0.013 J 0.34	2.1 D	5.1 D	0.074 J	0.15 D,J	4.8 D,J	0.18 J
Dibenzo(a,h)anthracene	0.33	ND	ND	0.29 D.J	ND	1.2 D,J		ND	1.4 D,J	0.25 D,J	ND	ND	0.092 J	0.66 D,J	0.81 D.J	ND	0.13 D,3	ND	0.16 J
Dibenzofuran		ND	ND	ND	ND	ND		ND	0.71 D,J	0.2 D,J	15 T.D.J	ND	ND	ND	ND	ND	ND ND	ND	ND
Fluoranthene	100	1.8 D,J	11 D,J	2.3 D	17 T,D,J	6.7 D		3 D,J	16 D	3.3 D	22	1.3 D,J	0.38	2.1 D	13 D,B	0.11 J	0.18 D,J	7.9 D,J	0.2 J
Fluorene	30	ND	ND	ND	ND	0.49 D,J		ND	ND	0.27 D,J	ND	ND	ND	ND	0.27 D,J	ND	ND	ND	ND
Indeno(1,2,3-cd)pyrene	0.5	0.61 D,J	4 D,J	1 D,J	5.8 T,D,J	3.9 D,J		1.5 D,J	4.6 D	0.72 D,J	ND	0.87 D,J	0.35	2.5 D	2.9	0.026 J	0.14 D,J	3.8 D,J	0.18 J
Naphthalene	12	ND	ND	ND	ND	0.77 D,J		ND	ND	ND	890 T,D,J,E	ND .	ND	ND	0.16 D,J	ND	ND	ND	ND
Phenanthrene Pyrene	100 100	0.66 D,J 1.5 D,J	10 D,J 7.9 D,J	1.2 D,J 1.9 D	12 T,D,J 11 T,D,J	5.1 D 5.8 D		1.6 D,J 2.5 D,J	8.3 D 12 D	1.9 D,J 2.8 D	34 T,D 15 T,D,J	0.56 D,J 1.4 D,J	0.14 J 0.34	0.6 D,J 1.9 D,J	5 D,B 9.7 D,B	0.065 J 0.097 J	ND 0.15 D,J	6.8 D,J 6.9	0.084 J 0.17 J
		1.5 D,J	7.9 D,J	1.9 D	111,0,3	5.6 D		2.5 D,J	12 0	2.0 D	15 1,0,3	1.4 D,J	0.34	1.9 D,J	9.7 D,D	0.097 3	0.15 D,3	0.9	0.17 3
TCL Polychlorinated Biphenyls (P Aroclor 1242	0.1	T							ND				ND	T	_				ND
Aroclor 1248	0.1		_			-			ND	_			0.015 J		-		-		0.015 J
Aroclor 1260	0.1			-					ND			_	0.018 J		-		_		0.018 J
Metals method (mg\Kg)																			
Aluminum, Total							16000 J		4120 J		2690 J		3270 J						3360 J
Arsenic, Total	13	62.9 J	19.8 J	30 J	38.2 J	26.3 J	8.3 J	9.4 J	11.2	31.7 J	39.3	27.2 J	7.4	12.5 J	35.3	2.3 J	13	25 J	4.6
Barium, Total Beryllium, Total	350 7.2	159 J	36.8 J	138 J	84.8 J	118 J	25.4 J 0.994 J		66.9 J 0.569		101 J 0.731	-	19.5 J 0.366		-			70.9	21 J 0.359
Cadmium, Total	2.5	ND	ND	0.557	2.1	4.13	0.994 J ND	ND	0.569 ND	0.491 J	0.731	7.21 J	0.366	6.93 J	ND	ND	ND	5.87	1.32
Calcium, Total				0.337			131000 J		38700 J		1850 J		261000						210000 D.J
Chromium, Total ⁴	31	13.7 J	19.5 J	25.8 J	48.4 J	42.1 J	13.3 J	7.67 J	7.43 J	13.5 J	6.91 J	356 J	178 J	260 J	7.75 J	1.84 J	28.9 J	56.2 J	256 J
Cobalt, Total							3.72 J		3.84 J		6.02 J		4.85 J						4.48 J
Copper, Total	50					-	17.7 J		26.1 J		34.9 J	1	33.6 J		-				48 J
Iron, Total	-		-			-	25800 J		23400 J		43800 J	-	34200 J		-				45700 B1,J
Lead, Total	63	158 J	33.1 J	78.5 J	151 J	289 J	27.8 J	75.1 J	49.8 J	41.7 J	218 J	438 J	101 J	605 J	11.9 J	4.4 J	24.3 J	314 J	101 J
Magnesium, Total	4000	-	-	-		-	271000 D,J	-	8250 J	-	654 J	-	151000 D,J		-		-	-	136000 D,J
Manganese, Total	1600					-	357 J	-	346	-	469	-	6540 D		-				7090 D
Nickel, Total Potassium, Total	30					_	ND 161 J		9.15 J 722 J		14.9 J 500 J		42.5 J 242 J		-				50 J 220 J
Sodium, Total			-			-	ND		ND		222 J		193 J		-				ND
Thallium, Total			-			_	ND ND		ND ND		ND	-	ND		_				ND
Vanadium, Total	_					-	34.3 J		11.7 J		16.3 J		71.3 J		_		-		122
Zinc, Total	109					-	80.2 J		69.5 J	-	158 J	-	218 J		-			-	30 J
Mercury, Total	0.18	0.0721	575 D	0.301	304 D	6.98 D	ND	0.772	0.334	ND	0.0481	1.16 D	0.0817	0.806	ND	ND	0.0325	8.23 D	0.0897 J
Cyanide	27	ND	119 D,J	ND	628 D,J	41			ND		ND	1	1.6 J		-			40.9 J	ND
General Chemestry Parameters		_	1				401157			1	ı		_	_	_			ı	
Ph, Leachable				-			10 HFT		-			-	-		-				

- Notes:

 1. Only those parameters detected at a minimum of one sample location are presented in this table; all other compounds were reported as non-detect.

 2. Values per NYSDEC draft Part 375 Soil Cleanup Objectives (June 2006)

 3. Sample results were reported by the laboratory in ug/kg and converted to mg/kg for comparison to SCOs.

 4. The total Chromium SCOs.

 5. Blind 1 collected from BPA-3A-TP-25, Blind 2 collected from BPA-3A-TP-49, Blind 3 collected from BPA-3A-TP-55

- Definitions:

 ND = Parameter not detected above laboratory detection limit.
 "--" = No SCO available/Sample not analyzed for parameter.

 J = Estimated value; result is less than the sample quantitation limit but greater than zero.

 B = Indicates a value greater than or equal to the instrument detection limit, but less than the quantitation limit.

 D = All compounds were identified in an analyisis at the secondary dilution factor.

 R = The data is unusable.

BOLD = result exceeds SCO.

Table 7b

Summary of Soil Analytical Data

Remedial Investigation/Alternatives Analysis Report Phase IIIA Business Park Area Tecumseh Redevelopment Inc. Lackawanna, New York

	Commercial														Sample Location	on												
PARAMETER 1	SCOs 2	BPA-3A-TP-1	BPA-3A-TP-2		BPA-3A-TP-4					BPA-3A-TP-18	BPA-3A-TP-19																BPA-3A-TP-44	
	(ppm)	(0-2)	(0-2)	(2-6)	(0-2)	(0-2)	(5-8)	(4-6)	(3-6)			(0-2)	(0-2)	(3-5)	(0-2)	(0-2)	(0-2)	(0-2)	(2-5)	(3-5)	(0-2)	(0-2)	(0-2)	(0-2)	(0-2)	(0-2)	(7-8)	(0-2)
Volitile Organic Compounds (VOCs)	(mg/Kg) 3																											
1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene	190 190		-		-		ND ND	ND ND	ND ND	ND	ND ND	-		ND	ND	ND			-		-				ND ND		1.8 D,W1,N1 0.41 D.W1.N1	
2-Butanone (MEK)	500		_		-		0.51 W.D.J	ND ND	ND ND		ND ND	_				-		-			-	-			ND ND		ND ND	
p-Cymene			-		-		ND	ND	ND	ND	ND	-		ND	ND	ND		-	-		-				ND		0.33 D,W1,N1	
Acetone	500		-	-	-	-	ND	ND	ND		ND	-						-	-		-	-	-		ND		ND	
Benzene	44		-		-		ND ND	ND ND	ND ND	ND	ND ND	-		ND	ND	ND			-		-				ND ND		0.93 D,W1,N1 ND	
Chlorobenzene Cyclohexane	500		_		_		ND ND	ND ND	ND ND		ND ND	_				-		-			-				ND ND		0.69 D.W1.N1	
Ethylbenzene	390						ND	ND	ND	ND	ND	-		ND	ND	ND		-							ND		0.19 D,W1,N1	
Isopropylbenzene	-		-		-		ND	ND	ND	ND	ND	-		ND	ND	ND		-	-		-	-	-		ND		0.31 D,W1,N1	
Methylcyclohexane Methylene chloride	500		-			-	0.061 W,D,J	ND 0.048 B	ND 0.041 B		ND 0.055 B	-				-		-	-		-				ND ND		1.7 D,W1,N1 ND	
m-Xylene & p-Xylene	500						0.066 W,D,J	0.046 B	0.041 B	ND	0.055 B			ND	ND	ND.									ND ND		0.62 D.W1.N1	
n-Butylbenzene			-		-		0.12 W,D,J	ND	ND	ND	ND	-		ND	ND	ND			-		-				ND		0.87 D,W1,N1	-
n-Propylbenzene	500		-		-		0.063 W,D,J	ND	ND	ND	ND	-		ND	ND	ND		-	-		-		-		ND		0.46 D,W1,N1	-
o-Xylene	500		-		-		ND	ND	ND	ND	ND	-		ND	ND	ND			-		-				ND		0.38 D,W1,N1	-
sec-Butylbenzene Toluene	500 500		-		-		ND ND	ND ND	ND ND	ND ND	ND ND			ND ND	ND ND	ND ND		-	-		-				ND 0.00066 J		0.27 D,W1,N1 ND	-
Total Xylenes	500		-		-		ND ND	ND	ND ND	ND ND	ND			ND ND	ND	ND		-	-		-				0.00066 J		1 D,W1,N1	-
Semi-Volatile Organic Compounds () 3		·	<u> </u>	<u> </u>							<u> </u>				<u> </u>	<u> </u>				1	·			<u> </u>	. =,,	
2-Methylnaphthalene		ND	ND	ND	ND	ND	32 D	ND	ND	ND	ND	0.64 D,J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	65 T,D,J	ND
Acenaphthene	500	ND ND	ND	ND ND	ND	ND 0.50 D. I	ND	ND	2.3 D,J	ND	ND	1.8 D,J	ND ND	ND	ND 0.4.D.I	ND	ND 0.4 D. I	ND 4 0 D I	ND	0.3 D,J	ND	ND 0.70 D I	ND	3.2 D,J	ND 4 0 D 1	ND	ND	ND 0.00
Acenaphthylene Anthracene	500 100	3.3 T.D.J	ND 0.42 D,J	0.37 D.J	ND ND	0.56 D,J 0.81 D,J	ND ND	5.8 D,J 4 D,J	ND 5.4 D	ND ND	ND ND	0.39 D,J 6.4 D	ND ND	ND ND	2.1 DJ 3.4 DJ	ND ND	2.4 D,J ND	1.3 D,J 1.1 DJ	ND ND	0.36 D,J 0.91 D.J	ND 2 D,J	0.73 D,J 0.85 D,J	ND 3.2 D.J	7.6 D.J	1.2 D,J 0.41 D.J	ND ND	ND ND	0.39 0.74 D,J
Benzo(a)anthracene	5.6	7.7 T.D.J	1.6 D.J	1.8 D.J	4.1 T.D.J	2.5 D.J	0.4 D,J	29 D	9.9 D	0.018 J	1.2 D.J	10 D	0.8 D,J	0.17 D.J	15 D	0.38 D,J	3.2 D.J	6 D	ND ND	2.8 D	8.2 D,J	5.3 D	11 DJ	27 D	3.7 D.J	0.56 D,J	ND	2.8 D
Benzo(a)pyrene	1	6 T,D,J	1.5 D,J	2 D,J	4.4 T,D,J	2.2 D,J	0.29 D,J	29 D	8.1 D	0.018 J	1.4 D,J	8.1 D	0.85 D,J	0.16 D,J	13 D	0.34 D,J	6.2 D,J	6.2 D	ND	3.1 D	8.4 D,J	5.8 D	10 DJ	25 D	5.9 D	0.62 D,J	ND	2.9 D
Benzo(b)fluoranthene	5.6	6.6 T,D,J	1.8 D,J	2.5 D,J	5.3 T,D,J	4 D ID4	0.48 D,J	34 D	9.4 D	0.033 J	2.5 D,J	11 D	1.4 D,I4,J	0.22 D,J	14 D	0.43 D,J	6.1 D,J	7.2 D	ND	3.9 D	8.4 D,J	6.9 D	18 D,J,ID4	28 D	7.9 D	1.2 D,J	ND	3.4 D
Benzo(ghi)perylene	500 56	4.1 T,D,J 3.9 T,D,J	1 D,J 0.66 D.J	1.7 D,J 0.84 D.J	4.5 T,D,J 3.2 T.D.J	1.9 D,J ND	0.26 D,J 0.21 D.J	26 D 14 D	5.2 D 3.6 D.J	0.02 J ND	1.3 D,J 0.82 D,J	5.6 D 3.9 D.J	0.7 D,J ND	0.16 D,J 0.065 D.J	9.1 DJ 5.3 DJ	0.26 D,J 0.16 D.J	5.9 D,J 2.2 D,J	4.7 D 2.4 D,J	ND ND	3.1 D 1.4 D.J	5.5 D,J 5.4 D.J	4.3 D 3.9 D	ND ND	14 D,J 14 D.J	4.3 D 2.5 D.J	0.55 D,J 1.2 D,J	ND ND	2.1 D 1.4 D,J
Benzo(k)fluoranthene Biphenyl		3.9 1,D,J ND	0.66 D,J	0.64 D,3	3.2 1,D,3 ND	ND ND	3.1 D	ND	3.6 D,3 ND	ND ND	0.82 D,J ND	3.9 D,J ND	ND ND	0.065 D,3	ND	0.16 D,J	ND	2.4 D,J ND	ND ND	1.4 D,3 ND	5.4 D,3 ND	ND	ND ND	ND	2.5 D,3 ND	ND	ND ND	1.4 D,3 ND
Bis(2-ethylhexyl) phthalate		ND	ND	ND	ND	ND	0.62 D,J,B	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbazole			-		-				1.6 DJ		ND	-				-		-	-		-				ND		ND	_
Chrysene	56	6.9 T,D,J	1.5 D,J	17 D,J	4.1 T,D,J ND	2.5 D,J	0.54 D,J	30 D	8.3 D	0.027 J	1.3 D,J	9.9 D	0.96 D,J	0.12 D,J	12 D	0.36 D,J	3.3 D,J	5.4 D	ND ND	2.9 D	7.8 D,J 1.2 D.J	5.2 D	12 D,J ND	24 D ND	3.8 D,J	0.62 D,J	ND ND	2.5 D
Dibenzo(a,h)anthracene Dibenzofuran	0.56	ND ND	0.28 D,J ND	0.44 D,J ND	ND ND	0.45 D,J ND	0.075 D,J ND	5.9 D,J ND	1.1 D,J 0.98 D.J	ND ND	ND ND	1.5 DJ 1.9 DJ	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	1.2 D,J ND	ND ND	ND ND	ND ND	1.4 D,J ND	ND ND	ND ND	0.67 ND
Fluoranthene	500	15 T,D,J	3.3 D,J	2.6 D,J	6.8 T,D,J	5.2 D	1.1 D	38 D	26 D	0.018 J	1.4 D,J	23 D	1.2 D,J	0.19 D,J	32 D	0.5 D,J	2.6 D,J	9.4 D	ND	6.6 D	18 D	9.5 D	26 D,J	58 D	3.6 D,J,B	0.84 D,J,B	18 T,D,J,B	5.1 D
Fluorene	500	ND	ND	ND	ND	ND	6.6 D	ND	2.1 D,J	ND	ND	2.9 D,J	ND	ND	1.1 DJ	ND	ND	ND	ND	0.23 D,J	ND	ND	ND	3 D,J	ND	ND	ND	0.23 D,J
Indeno(1,2,3-cd)pyrene	5.6	3.5 T,D,J	0.93 D,J	1.5 D,J	3.6 T,D,J	1.6 D,J	0.24 D,J	23 D	4.9 D	ND	1.3 D,J	5.8 D	0.66 D,J	0.14 D,J	8.1 DJ	0.21 D,J	4.2 D,J	4.4 D	ND	2.5 D	4.7 D,J	4 D	6.3 D,J	14 D,J	4.1 D	0.47 D,J	ND	1.9 D,J
Naphthalene Phenanthrene	500 500	ND 13 T.D.J	ND 2 D.J	0.53 D,J 1.6 D.J	ND 3.3 T.D.J	ND 2.5 DJ	5.4 D 16 D	ND 9.3 D.J	ND 21 D	ND 0.021 J	ND ND	0.63 DJ 23 D	ND 0.39 D.J	ND 0.088 D.J	ND 15 D	ND 0.2 D,J	ND ND	ND 3 D,J	ND ND	ND 3.5 D	ND 7.2 D.J	ND 4.7 D	ND 16 D.J	ND 31 D	0.52 D,J 0.81 D.J.B	ND 0.25 D.J.B	ND 98 T.D.J.B	ND 3
Pyrene	500	12 T.D.J	2.8 D.J	2.2 D.J	5.7 T.D.J	4.8 D	1.1 D	ND	20 D	0.021 J	1.3 D.J	16 D	1 D.J	0.000 D,3	26 D	0.43 D.J	3.4 D.J	8.1 D	0.089 D.J	5.3 D	14 D	7.8 D	20 D.J	42 D	3.6 D.J.B	0.67 D.J.B	93 T.D.J.B	4.1
TCL Polychlorinated Biphenyls (PCE	Bs) (mg\Kg) ³	, , , ,																							1.7	, , , ,	/ /-/	
Aroclor 1242	1		-		-	-			ND		ND	-					ND	0.037	ND	ND	0.13 D	-			ND		ND	
Aroclor 1248	1	-	-		-	-			ND ND		ND ND	-				-	ND	ND 0.05	ND ND	ND 0.05	ND 1.5 D				ND ND		ND	-
Aroclor 1260 Metals method (mg\Kg)	1				-		-		ND		ND						0.028 J	0.25	ND	0.25	1.5 D		-		ND		ND	
Aluminum, Total			-		-	-	- 1		7890 J		7410 J	-				-			-		-	-			5780 J		5500 J	
Arsenic, Total	16	57.8	31.7	17.6	7.5	123	38.9	25.1	26.7	ND	10	79.3	19.3	10.9	25.5	6.1	21.7	10	5.4	24.5	18.7	132	15.4	20.6	121	38	9.7	45.4 J
Barium, Total	400					4.70			109 J		93.9 J									7.00	7.75				99.3 J		66.6 J	131 J
Cadmium, Total Calcium, Total	9.3	4.12	1.64	2.03	1.06	1.73	3.59	0.941	1.3 30100 J.B1.B	ND 	0.999 25300 J.B1.B	5.98	2.43	ND 	4.07	0.268	2.14	1.06	0.992	7.32	7.75	14.4	2.59	30.9	1.72 35300 J	1.41	0.474 48400 J	1.86
Chromium, Total ⁴	1900	148 J	372 J	234 J	91.2 J	52.8 J	22.6 J	125 J	75.8 J	18.1 J	20.7 J	125 J	29.9 J	30.8 J	34.9 J	56 J	19.7 J	108 J	195 J	33.4 J	125 J	203 J	49.2 J	145 J	17.9 J	590 J	192 J	101 J
Cobalt, Total			-						7 J		4.27 J	-						-	-		-				6.91 J		3.64 J	-
Copper, Total	270	-			-	-		-	72.1 J		39 J	-		-				-	-			-			29.6 J		36 J	-
Iron, Total	4000					400	470	44.7.1	46700 J		20600 J						400	400							212000 D,J	70.0.1	47300 J	404.1
Lead, Total Magnesium, Total	1000	316	229	232	251	130	176	44.7 J	118 J 3570 J	ND 	75.4 J 3360 J	500 J	201 J	26 J	268	28.2	138	169	101	355	488	823	332	484	59 2090 J	76.3 J	62.6 J 7160 J	104 J
Manganese, Total	10000	-	-	-		-			3740 B1,D,B		1580 B1,B	_		-	-	-	-	-	-		-	-	_		1930		7210 D	-
Nickel, Total	310		-		-				20.3 J		14.5 J	-							-		-				8.78 J		10.9 J	-
Potassium, Total			-		-		-		1330 J		520 J	-				-		-	-		-				591 J		454 J	-
Sodium, Total Thallium, Total			-		-				515 J		241 J ND	-				-			-		-	-			165 J		ND ND	-
Vanadium, Total		-	-				-		52.6 J		21.5 J					-		-	-	-	-		-		14.1 49.1 J		67.6 J	-
Zinc, Total	10000		-		-	-	-		307 J		185 J	-				-	-	-	-		-				93.6 J		109 J	-
Mercury, Total	2.8	1.31 D	0.0736	1.58 D	0.102	2.07 D	0.0717	0.11	2.78	ND	0.13	0.235	0.0467	0.0269	0.422	ND	0.0905	0.121	0.105	0.102	3.32 D	0.169	0.355	0.403	0.0254	0.0464	0.188	0.264
Cyanide	27								2.1 J		ND							-							ND		ND	ND
Ph. Leachable	1	1		T	1		1		1		T	1	T	1	1	T		T	T	1		T				1	1	
i ii, Leacilable	1					-						-														-		

Table 7b

Summary of Soil Analytical Data

Remedial Investigation/Alternatives Analysis Report Phase IIIA Business Park Area Tecumseh Redevelopment Inc. Lackawanna, New York

	Commercial									Sample	Location								
PARAMETER 1	SCOs ² (ppm)	BPA-3A-TP-46 (0-2)	BPA-3A-TP-47 (0-2)	BPA-3A-TP-48 (0-2)	BPA-3A-SS-49	BPA-3A-TP-49 (0-2)	BPA-3A-TP-49 (5-7)	BPA-3A-TP-50 (0-2)	BPA-3A-TP-51 (0-2)	BPA-3A-TP-52 (0-2)	BPA-3A-TP-53 (5-7)	BPA-3A-TP-54 (0-2)	BPA-3A-TP-55 (0-2)	BPA-3A-TP-56 (0-2)	BPA-3A-TP-57 (0-2)	BPA-3A-TP-58 (5-6)	Blind 1	Blind 2	Blind 3
Volitile Organic Compounds (VOC	s) (m g/Kg) ³			1															
1,2,4-Trimethylbenzene	190			-		-		ND	ND	0.0015 J	360 W1	0.0022 J	0.0034 J	0.0018 J	ND	ND	ND		0.0026 J
1,3,5-Trimethylbenzene	190					-			ND		280 W1		0.0094 J		-				0.00065 J
2-Butanone (MEK)	500		-			-		 ND	ND ND	ND	ND 0.81 W1	ND	0.0077 J ND	ND	 ND	ND	ND	-	0.0078 J ND
p-Cymene Acetone	500		-			-		IND	ND ND	IND	ND	IND	0.051 J	IND	ND		ND 		0.048 J
Benzene	44		-			-		ND	ND	ND	490 W1	ND	ND	ND	ND	ND	ND		ND
Chlorobenzene	500					-			ND		0.09 W1,J		ND						ND
Cyclohexane				-		-			ND		0.37 W1		ND		-				ND
Ethylbenzene	390			-		-		ND	ND	ND	100	ND	ND	ND	ND	ND	ND		ND
Isopropylbenzene Methylcyclohexane	-		-	-		-		ND	ND ND	ND	4.4 W1 2.2 W1	ND	ND ND	ND	ND	ND	ND 		ND ND
Methylene chloride	500		-			-			6.3 B		ND ND	-	ND		-				ND
m-Xylene & p-Xylene	500					-		ND	ND	0.0016 J	820 W1	0.0023 J	0.0032 J	0.002 J	ND	ND	ND		0.0026 J
n-Butylbenzene	-					-		ND	ND		ND								
n-Propylbenzene	500					-		ND	ND	ND	1.6 W1	ND	ND	ND	ND	ND	ND		ND
o-Xylene	500 500		-			-		ND ND	ND ND	ND ND	87 W1 0.82 W1	ND ND	0.00081 ND	ND ND	ND ND	ND ND	ND ND		ND ND
sec-Butylbenzene Toluene	500	1	-	1 -	-	_	-	ND ND	ND ND	ND ND	0.82 W1 47 W1	0.00094 J	ND ND	0.00085 J	ND ND	ND ND	ND ND	-	0.00066 J
Total Xylenes	500		-			-		ND ND	ND ND	0.0016 J	910 W1	0.00094 J	0.004 J	0.00085 J	ND ND	ND ND	ND		0.0006 J
Semi-Volatile Organic Compounds	(SVOCs) (mg\Kq)	1																	
2-Methylnaphthalene		ND	ND	ND	ND	ND		ND	0.8 D,J	ND	73 T,D	ND	ND	ND	ND	ND	ND	ND	ND
Acenaphthene	500	ND	ND	ND	ND	0.4 D,J		ND	ND	ND	29 T,D	ND	ND	ND	ND	ND	ND	ND	ND
Acenaphthylene	500 100	ND 0.12 D. I	ND ND	0.25 D,J 0.29 D,J	6 T,D,J ND	ND 11D		0.46 D,J 0.35 D,J	0.33 D,J 1.9 D,J	0.28 D,J	7.9 T,D 6.9 T.D	ND 0.15 D,J	ND 0.016 J	ND ND	1.1 D,J 1.1 D,J	ND 0.036 I	ND ND	ND 1.5 D,J	ND ND
Anthracene Benzo(a)anthracene	5.6	0.12 D,J 1.2 D,J	6.4 D,J	1.5 D,J	8.6 T,D,J	1.1 D,J 4.5 D		2 D,J	9.6 D	0.52 D,J 1.4 D,J	7.9 T,D,J	0.15 D,J	0.016 J	1.9 D,J	5.1 D	0.026 J 0.065 J	0.14 D,J	4.7 D,J	0.12 J
Benzo(a)pyrene	1	1.1 D,J	4.9 D,J	1.4 D,J	ND	4.2 D,J		2.2 D,J	7.8 D	1.2 D,J	4.2 T,D,J	1.1 D,J	0.45	2.9 D	4.5 D	0.046 J	0.14 D,J	4.7 D,3	0.12 J
Benzo(b)fluoranthene	5.6	1.4 D,J	7.9 D,J	1.9 D,J	12 T,D,J	6 D		2.6 D,J	10 D	1.4 D,J	5.9 T,D,J	1.6 D,J	0.54	3.4 D	5.8 D	0.049 J	0.22 D,J	5.9 D,J	0.3
Benzo(ghi)perylene	500	0.73 D,J	4.7 D,J	1.1 D,J	5.8 T,D,J	4.5 D		1.8 D,J	5.5 D	0.83 D,J	2.4 T,D,J	0.99 D,J	0.46	2.9 D	3.2 D	0.031 J	0.18 D,J	4.6 D,J	0.22
Benzo(k)fluoranthene	56	0.55 D,J	3.5 D,J	0.71 D,J	4.5 T,D,J	2.3 D,J		1.5 D,J	3.2 D,J	0.47 D,J	2.9 T,D,J	0.58 D,J	0.23	1.1 D,J	2 D	0.029 J	0.062 D,J	3.1 D,J	0.058 J
Biphenyl Bis(2-ethylhexyl) phthalate		ND ND	ND ND	ND ND	ND ND	ND ND		ND ND	ND ND	ND ND	7.5 T,D,J ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Carbazole	-								0.54 D,J		ND		0.013 J						ND ND
Chrysene	56	1.1 D,J	7.1 D,J	1.4 D,J	10 T,D,J	4.1 D,J		2.4 D,J	8.9 D	1.3 D,J	6.3 T,D,J	1.3 D,J	0.34	2.1 D	5.1 D	0.074 J	0.15 D,J	4.8 D,J	0.18 J
Dibenzo(a,h)anthracene	0.56	ND	ND	0.29 D,J	ND	1.2 D,J		ND	1.4 D,J	0.25 D,J	ND	ND	0.092 J	0.66 D,J	0.81 D,J	ND	ND	ND	0.061 J
Dibenzofuran	500	ND .	ND	ND	ND 47.T.D. I	ND 0.7.D		ND	0.71 D,J	0.2 D,J	15 T,D,J	ND 4 0 D 1	ND 0.00	ND 0.4.D	ND 40 D D	ND	ND	ND 7 O D I	ND
Fluoranthene Fluorene	500	1.8 D,J ND	11 D,J ND	2.3 D ND	17 T,D,J ND	6.7 D 0.49 D.J		3 D,J ND	16 D ND	3.3 D 0.27 D,J	22 ND	1.3 D,J ND	0.38 ND	2.1 D ND	13 D,B 0.27 D,J	0.11 J ND	0.18 D,J ND	7.9 D,J ND	0.2 J ND
Indeno(1,2,3-cd)pyrene	5.6	0.61 D.J	4 D.J	1 D.J	5.8 T.D.J	3.9 D.J		1.5 D.J	4.6 D	0.72 D.J	ND	0.87 D.J	0.35	2.5 D	2.9	0.026 J	0.14 D.J	3.8 D.J	0.18 J
Naphthalene	500	ND	ND	ND	ND	0.77 D,J		ND	ND	ND	890 T,D,J,E	ND	ND	ND	0.16 D,J	ND	ND	ND	ND
Phenanthrene	500	0.66 D,J	10 D,J	1.2 D,J	12 T,D,J	5.1 D		1.6 D,J	8.3 D	1.9 D,J	34 T,D	0.56 D,J	0.14 J	0.6 D,J	5 D,B	0.065 J	ND	6.8 D,J	0.084 J
Pyrene	500	1.5 D,J	7.9 D,J	1.9 D	11 T,D,J	5.8 D		2.5 D,J	12 D	2.8 D	15 T,D,J	1.4 D,J	0.34	1.9 D,J	9.7 D,B	0.097 J	0.15 D,J	6.9	0.17 J
TCL Polychlorinated Biphenyls (PC Aroclor 1242	CBs) (mg\Kg) ³								ND				ND						ND
Aroclor 1242 Aroclor 1248	1			-		_			ND				0.015 J						0.015 J
Aroclor 1260	1					-			ND				0.018 J		-				0.018 J
Metals method (mg\Kg)																			
Aluminum, Total							16000 J		4120 J		2690 J		3270 J	40.5.1					3360 J
Arsenic, Total Barium, Total	16 400	62.9 J 159 J	19.8 J 36.8 J	30 J 138 J	38.2 J 84.8 J	26.3 J 118 J	8.3 J 25.4 J	9.4 J	11.2 66.9 J	31.7 J	39.3 101 J	27.2 J	7.4 19.5 J	12.5 J	35.3	2.3 J	13	25 J 70.9	4.6 21 J
Cadmium, Total	9.3	ND	36.8 J ND	0.557	2.1	4.13	25.4 J ND	ND	ND	0.491 J	0.44	7.21 J	0.914	6.93 J	ND	ND	ND	5.87	1.32
Calcium, Total	-						131000 J		38700 J		1850 J		261000						210000 D,J
Chromium, Total ⁴	1900	13.7 J	19.5 J	25.8 J	48.4 J	42.1 J	13.3 J	7.67 J	7.43 J	13.5 J	6.91 J	356 J	178 J	260 J	7.75 J	1.84 J	28.9 J	56.2 J	256 J
Cobalt, Total			-			-	3.72 J		3.84 J		6.02 J		4.85 J		-				4.48 J
Copper, Total Iron, Total	270	-	-	-		-	17.7 J 25800 J	-	26.1 J 23400 J		34.9 J 43800 J	-	33.6 J 34200 J	-	-		-		48 J 45700 B1.J
Lead, Total	1000	158 J	33.1 J	78.5 J	151 J	289 J	25800 J 27.8 J	75.1 J	49.8 J	41.7 J	43800 J 218 J	438 J	34200 J 101 J	605 J	11.9 J	4.4 J	24.3 J	314 J	45700 B1,J
Magnesium, Total				76.55		2093	271000 D,J	75.13	8250 J		654 J		151000 D,J		-				136000 D,J
Manganese, Total	10000		-			-	357 J		346		469		6540 D		-		-		7090 D
Nickel, Total	310		-			-	ND	-	9.15 J	-	14.9 J	-	42.5 J		-		-		50 J
Potassium, Total	-	-	-	-		-	161 J	-	722 J	-	500 J	-	242 J	-	-		-	-	220 J
Sodium, Total Thallium, Total			-			-	ND ND		ND ND		222 J ND		193 J ND		-		-		ND ND
Vanadium, Total	-		-				34.3 J		11.7 J		16.3 J		71.3 J						122
Zinc, Total	10000		-			-	80.2 J		69.5 J		158 J	-	218 J		_				30 J
Mercury, Total	2.8	0.0721	575 D	0.301	304 D	6.98 D	ND	0.772	0.334	ND	0.0481	1.16 D	0.0817	0.806	ND	ND	0.0325	8.23 D	0.0897 J
Cyanide	27	ND	119 D,J	ND	628 D,J	41			ND		ND		1.6 J					40.9 J	ND
Ph, Leachable							10 HFT										-		
FII, LEGUIADIE							IUNFI										-		

- Notes:

 1. Only those parameters detected at a minimum of one sample location are presented in this table; all other compounds were reported as non-detect.

 2. Values per NYSDEC draft Part 375 Soil Cleanup Objectives (June 2005)

 3. Sample results were reported by the laboratory in ug/kg and converted to mg/kg for comparison to SCOs.

 4. The total Chromium SCO was determined by adding the hexavalent and trivalent Chromium SCOs.

 5. Blind 1 collected from BPA-3A-TP-25, Blind 2 collected from BPA-3A-TP-49, Blind 3 collected from BPA-3A-TP-55

- Definitions:

 ND = Parameter not detected above laboratory detection limit.

 "-" = No SCO available/Sample not analyzed for parameter.

 J = Estimated value; result is less than the sample quantitation limit but greater than zero.

 B = Indicates a value greater than or equal to the instrument detection limit, but less than the quantitation limit.

 D = All compounds were identified in an analysist at the secondary dilution factor.

 R = The data is unusable.

BOLD = result exceeds SCO.

SUMMARY OF GROUNDWATER ANALYTICAL DATA - PHASE III BPA

Remedial Investigation/Alternatives Analysis Report Phase III Business Park Area Tecumseh Redevelopment Inc. Lackawanna, New York

PARAMETER ¹	GWQS ²	MWI	N-56A	MWN	I-57A	MWI	N-10	MWN	I-58A	MWI	N-59A	MWI	N-60A	MWS	S-34A	MWS	S-33A	MWS	6-30A	MWS	6-35A	BI Dupl	ind icate ⁴	Tr Bla		Equip Bla	
Field Measurements 3:																											
Sample No.		Initial	Final	Initial	Final	Initial	Final	Initial	Final	Initial	Final	Initial	Final	Initial	Final	Initial	Final	Initial	Final	Initial	Final	Initial	Final	NA	NA	NA	NA
pH (units)	6.5 - 8.5	8.14	8.13	7.25	7.31	10.00	10.00	7.71	7.71	7.55	7.60	8.28	8.29	7.07	7.16	6.73	6.28	7.69	7.74	11.30	11.19	11.30	11.19	NA	NA	NA	NA
Temperature (°C)	NA	10.6	10.6	10.3	10.8	10.4	10.6	10.3	9.3	9.1	8.8	9.6	9.6	7.9	8.9	1.9	5.9	7.6	7.3	8.2	7.7	8.2	7.7	NA	NA	NA	NA
Sp. Conductance (uS)	NA	18610	18520	4192	4010	1873	1869	412.4	411.5	704.3	700.8	614.8	619.0	933.6	902.4	1031	947.7	834.7	836.7	544.6	482.4	544.6	482.4	NA	NA	NA	NA
Turbidity (NTU)	NA	11.20	8.08	34.10	22.80	3.44	2.88	31.30	22.60	24.40	11.10	5.57	4.54	25.80	19.50	43.20	38.20	13.00	6.84	37.50	22.70	37.50	22.70	NA	NA	NA	NA
DO (ppm)	NA	1.21	1.10	1.78	1.40	1.35	1.42	1.61	1.91	1.78	1.96	1.33	1.63	1.31	1.09	7.07	3.29	2.09	2.47	1.50	1.39	1.50	1.39	NA	NA	NA	NA
Eh (mV)	NA	-182	-173	-105	-109	-191	-195	-128	-120	-142	-142	-197	-189	-119	-118	-44	0	-36	-61	-169	161	-169	161	NA	NA	NA	NA
Total Inorganic Compounds (mg/l	L):																										
Aluminum - Total				_	-	-	-	-	-									-		1	.5	1.	48	-		N	ID
Arsenic - Total	0.025	١	1D	N	D	N	D	0.0	164	N	1D	١	1D	0.0)168	N	ID	N	ID	0.0)16	0.0	187	-	-	N	ID
Barium - Total	1			-	-	-	-	-	-											0.0	534	0.0	533	-	-	N	ID
Calcium - Total				_	-	-	-	_	-										· -		3.5	84	1.4	-		N	ID
Chromium - Total	0.05	١	1D	N	D	N	D	N	D	N	1D	١	1D	N	ND	N	ID	N	ID	0.0	102	0.0	099	-	-	N	ID
Iron - Total	0.3			-	-	-	-	-	-											2.	49	2.	62	-		N	ID
Lead - Total	0.025	N	ND	0.0	054	N	D	N	D	N	ND	N	1D	N	ND	١	ID	N	ID	0.0	114	0.0	113	-		N	ID
Magnesium - Total	35*			-	-	-	-	_	-										· -	2.	41	2.	49	-	-	N	ID
Manganese - Total	0.3			-	-	-	-	-	-											0.	21	0.1	194	-	-	N	ID
Potassium - Total				-	-	-	-	-	-											15	5.8	15	5.9	-	-	N	ID
Sodium - Total	20			-	-	-	-	-	-											10).6	1(0.6	-	-	N	ID
Vanadium - Total				-	-	-	-	-	-											0.0	079	0.0	082	-	-	N	ID
Zinc - Total	2*			-	-	-	-	-	-											0.0)17	0.0	179	-	-	N	ID
Volatile Organic Compounds (ug	/L):									<u> </u>								<u> </u>		<u> </u>							
Acetone	50*			-	-	-	-	-	-											N	ID	1	1	-	-	N	ID
Benzene	1	0.0	54 J	0.04	45 J	N	D	N	D	N	ND	0.0	34 J	0.0	35 J	١	ID	N	ID	N	ID	N	ID	0.04	41 J	N	ID
Methyl-t-Butyl Ether (MTBE)	10	١	ND	0.1	5 J	N	D	N	D	N	1D	١	ID	١	ND	١	ID	N	ID	N	ID	Ν	ID	N	D	N	ID
m-Xylene & p-Xylene	10	١	1D	N	D	N	D	N	D	N	1D	١	1D	0.0	85 J	N	ID	N	ID	N	ID	N	ID	0.0	9 J	N	ID
Toluene	5	١	1D	N	D	N	D	N	D	N	1D	١	1D	N	ND	N	ID	N	ID	N	ID	N	ID	0.1	6 J	N	ID
Xylenes, total	15	N	1D	N	D	N	D	N	D	N	1D	١	ID	0.0	85 J	N	ID	N	ID	N	ID	Ν	ID	0.0	9 J	N	ID
Semi-Volatile Organic Compound	ls (ug/L):									<u> </u>								<u> </u>		<u> </u>							
4-Nitroaniline		١	ND	N	D	N	D	N	D	N	1D	١	ID	1.	.7 J	N	ID	N	ID	N	ID	١	ID	-		N	ID
Acenaphthene	20	١	ND	1.6	3 J	N	D	N	D	N	1D	١	ID	١	ND	١	ID	N	ID	N	ID	N	ID	-	-	N	ID
Acetophenone		N	1D	N	D	N	D	N	D	N	1D	١	1D	0.9	96 J	N	ID		ID		ID	N	ID	_		N	ID
Benzo(a)anthracene	0.002*	N	1D	N	D	N	D	N	D	N	1D	١	1D	N	ND	N	ID	N	ID	0.2	22 J	N	ID	_		N	ID
Benzo(a)pyrene	0.002*	N	1D	N	D	N	D	N	D	N	ND	١	ID	N	ND	١	ID	N	ID	0.0	32 J	0.2	24 J	-	-	N	ID
Benzo(b)fluoranthene	0.002*	N	1D	N	D	N	D	N	D	N	ND	١	ID .	N	ND	١	ID	N	ID	0.3	32 J	0.2	26 J	-	-	N	ID
Benzo(ghi)perylene			1D	N			D	N		٨	1D		1D		ND ND		ID	N		0.3			29 J	-			ID
Diethyl phthalate	50*		1D	N			D	N			1D		1D		25 J		ID	N		0.2			ID	-	-		ID
Di-n-butyl phthalate	50*		9 BJ	0.4		0.42		N			BJ		1D		53 J		57 J	N		0.2			29 J	-	-		ID
Fluoranthene	50*		ND	0.6			D	N			1D		23 J		29 J		ID	N		0.3			23 J	-	-		ID
Fluorene	50*		ND	N			D	N			1D		ND		.5 J		ID	1	ID		ID .		ID	-	-		ID
Indeno(1,2,3-cd)pyrene	0.002*		1D	N			D	N			1D		1D		ND		ID		ID		24 J		21 J	-			ID
		<u> </u>								<u> </u>		·		·		·		<u> </u>			-		-	l			

SUMMARY OF GROUNDWATER ANALYTICAL DATA - PHASE III BPA

Remedial Investigation/Alternatives Analysis Report Phase III Business Park Area Tecumseh Redevelopment Inc. Lackawanna, New York

PARAMETER ¹	GWQS ²	MWN-56A	MWN-57A	MWN-10	MWN-58A	MWN-59A	MWN-60A	MWS-34A	MWS-33A	MWS-30A	MWS-35A	Blind Duplicate ⁴	Trip Blank	Equipment Blank
Naphthalene	10*	ND	0.36 J	ND	ND	ND	ND	ND	0.21 J	ND	0.22 J	ND		ND
Phenanthrene	50*	ND	0.61 J	ND	ND	ND	0.74 J	0.47 J	ND	ND	0.33 J	0.33 J		ND
Phenol	1**	ND	ND	ND	ND	ND	ND	ND	ND	ND	21	22		ND
Pyrene	50*	ND	0.53 J	ND	ND	ND	0.21 J	ND	ND	ND	0.34 J	0.27 J		ND

Notes:

- 1. Only those compounds detected above the method detection limit at a minimum of one sample location are reported in this table.
- 2. NYSDEC Class "GA" Groundwater Quality Standards/Guldance Values (GWQS/GV) as per 6 NYCRR Part 703.
- 3. Field measurements were collected immediately before and after groundwater sample collection.
- 4. Blind Duplicate sample collected from MWN-35A.

Definitions:

J = Estimated Value; result is less than the sample quantitation limit but greater than zero.

B = Indicates a value greater than or equal to the instrument detection limit, but less than the quantitation limit.

NA = Not available

ND = Indicates parameter was not detected above laboratory reporting limit.

* = The Guidance Value was used where a Standard has not been established.

** = The general standard of 1.0 ug/L for phenolic compounds was used.

BOLD

= Result exceeds the GWQS/GV.

SUMMARY OF GROUNDWATER ANALYTICAL DATA - PHASE IIIA BPA

Remedial Investigation/Alternatives Analysis Report Phase IIIA Business Park Area Tecumseh Redevelopment Inc. Lackawanna, New York

PARAMETER ¹	GWQS ²	MW	S-04	MWS	-31A	MWN	I-61A	MWN	I-62D	MWN	I-19B	MWN	I-19A	MWI	N-30A		ind icate ³		rip ank	Equip Bla	ment ink
Field Measurements 4:																				•	
Sample No.		Initial	Final	Initial	Final	Initial	Final	Initial	Final	Initial	Final	Initial	Final	Initial	Final	Initial	Final	NA	NA	NA	NA
pH (units)	6.5 - 8.5	9.57	9.90	9.37	9.41	7.67	7.65	6.47	6.51	5.89	5.81	6.55	6.49	7.74	7.75	6.55	6.49	NA	NA	NA	NA
Temperature (°C)	NA	10.5	10.1	8.7	9.0	9.5	9.4	10.4	9.2	12.0	11.5	10.8	9.2	10.0	8.7	10.8	9.2	NA	NA	NA	NA
Sp. Conductance (uS)	NA	506.5	537.5	539.2	547	625.9	623.8	1633	1625	1077	1050	1187	1205	1619	1674	1187	1205	NA	NA	NA	NA
Turbidity (NTU)	NA	33.50	25	>1000	361	21	11.20	47.20	13.30	128.00	91.40	14.60	7.91	56.40	83.90	14.60	7.91	NA	NA	NA	NA
Eh (mV)	NA	-121	-149	-64	-63	-145	-136	-85	-92	-51	-0	-98	-100	-269	-258	-98	-100	NA	NA	NA	NA
Total Inorganic Compounds (mg/L)) <u>:</u>	_																		_	
Aluminum - Total			-	-			-		-		-	N	D		-	N	1D	N	IA	N	D
Arsenic - Total	0.025	0.0	225	0.03	334	N	ID	N	ID	0.0	141	N	D	١	1D	N	ND	١	IA	N	D
Barium - Total	1		-	-			-		-		-	0.2	:04		-	0.2	208	١	IA	N	D
Cadmium - Total	0.005	N	D	N	D	N	ID	N	ID	N	ID	N	D	N	1D	N	ND	N	IA	N	D
Calcium - Total			-	-			-		-		-	87	'.1		-	88	8.9	N	IA	N	D
Chromium - Total	0.05	N	D	0.0	147	N	ID	N	ID	N	ID	N	D	0.0	598	N	1D	N	IA	N	D
Iron - Total	0.3		-	-	-		-		-		-	13	3.1		-	1:	3.3	N	IA	N	D
Lead - Total	0.025	N	D	0.02	213	N	ID	N	ID	N	ID	N	D	١	1D	N	ND	١	IA	N	D
Magnesium - Total	35*		-	-	-		-		-		-	24	l.7		-	2	5.1	١	IA	N	D
Manganese - Total	0.3		-	-	-		-		-		-	0.5	23		-	0.9	533	١	IA	N	D
Potassium - Total			-	-			-		-		-	5.9	J		-	6.0)3 J	N	IA	N	D
Sodium - Total	20		-	-			-		-		-	11	17		-	1	20	١	IA	N	D
Vanadium - Total			-	-			-		-		-	N	D		-	N	1D	N	IA	N	D
Zinc - Total	2*		-	-	-		-		-		-	N	D		-	N	1D	N	IA	0.0	116
Mercury - Total	0.0007	N	D	N	D	N	ID	N	ID	N	ID	N	D	١	ND	N	ND	N	IA	N	D
Cyanide - Total	0.2		-	-			-		-		-	0.0	217		-	0.0	278	N	IA	N	D
Soluble Inorganic Compounds (mg	g/L):																				
Arsenic - Total	0.025	N	Α	0.02	208	N	IA	N	IA	N	ID	N	A	_	1D	N	۱A	N	IA	N	A
Volatile Organic Compounds (ug/L	L):																				
1,2,4-Trimethylbenzene	5	0.76	D,J,NJ	N	D	N	ID	0.9	4 NJ	NE	D D	2	2	190	D,NJ	2	23	N	ID	N	D
1,3,5 - Trimethylbenzene	5	N	D	N	D	N	ID	0.3	4 NJ	NE	D D	9.	.5	١	1D	1	10	N	ID	N	D
Benzene	1	ND	UJ	N	D	N	ID	N	ID	NE	D D	99) D	7600	D,NJ	110	00 D	0.5	6 J	N	D
Chlorobenzene	5		-	-			-		-		-	N	D		-	0.4	12 J	N	ID	N	D
Cyclohexane			-	-			-		-		-	0.9	6 J		-	1	.1	N	ID	N	D
Ethylbenzene	5	ND	UJ	N	D	N	ID	0.17	J,NJ	NE	D D	9.	.9	170	D,NJ	1	10	N	ID	N	D
Isopropylbenzene	5	ND	UJ	N	D	N	ID		ID	NE	D D	2	2	N	1D	2	2.3	N	ID	N	D
Methyl-t-Butyl Ether (MTBE)	10	ND	UJ	N	D	N	ID	0.33	J,NJ	NE	D D	0.5	5 J	N	1D	0.5	54 J	N	ID	N	D
Methylcyclohexane			-	-			-		-		-	0.6	1 J		-	0.6	65 J	N	ID	N	D
m-Xylene & p-Xylene	10	1.2 D	,J,NJ	N	D	7 D,	J,NJ	1	NJ	NE	D D	3		220	D,NJ	3	37		ID	N	D
o-Xylene	5		D	N	D	N	ID	0.3	NJ	NE	D D	1	1	200	D,NJ	1	12	N	ID	N	D
Toluene	5	1.1 D	,J,NJ	N	D	6 D,	J,NJ	0.23	3 NJ	NE	D D	2	.3	130	D,NJ	2	2.4	N	ID	N	D
Xylenes, total	15	1.2 D	,J,NJ	N	D	7 D,	J,NJ	0.13	3 NJ	NE	D D	4	7	420	D,NJ	4	48	١	ID	N	D

SUMMARY OF GROUNDWATER ANALYTICAL DATA - PHASE IIIA BPA

Remedial Investigation/Alternatives Analysis Report
Phase IIIA Business Park Area
Tecumseh Redevelopment Inc.
Lackawanna, New York

PARAMETER ¹	GWQS ²	MWS-04	MWS-31A	MWN-61A	MWN-62D	MWN-19B	MWN-19A	MWN-30A	Blind Duplicate ³	Trip Blank	Equipment Blank
Semi-Volatile Organic Compound	ls (ug/L):										
2-Methylnaphthalene		1.8 J	ND	63 D	ND	ND	ND	110 D,J	ND	NA	ND
3-3'-Dichlorobenzidine	5	ND L4 UJ	ND L4	ND L4 UJ							
4-Nitroaniline		ND L4	ND L4 UJ	ND L4 UJ	ND L4 UJ	ND L4 UJ	ND L4	ND L4 UJ	ND L4 UJ	ND L4	ND L4 UJ
Acenaphthene	20	0.58 J	ND	18 D,J	ND	ND	1.5 J	17 D,J	1.5 J	NA	ND
Acenaphthylene		2.3 J	ND	18 D,J	ND	ND	ND	35 D,J	0.41 J	NA	ND
Acetophenone		ND	ND	ND	ND	ND	1.5 J	ND	1.7 J	NA	ND
Anthracene	50	ND	ND	7.2 D,J	ND	ND	ND	ND	ND	NA	ND
Benzo(a)anthracene	0.002*	ND	ND	2 D,J	ND	ND	ND	18 D,J	ND	NA	ND
Biphenyl	5	ND	ND	13 D,J	ND	ND	ND	ND	ND	NA	ND
Bis(2-ethylhexyl) phthalate	5	2.3 J	2.5 J	ND	ND	6.7	ND	ND	1.8 J	NA	ND
Carbazole		9.1	ND	37 D	ND	ND	ND	ND	ND	NA	ND
Chrysene	0.002	ND	0.33 J	ND	ND	ND	ND	16 D,J	ND	NA	ND
Dibenzofuran		1.8 J	ND	39 D,J	ND	ND	ND	42 D,J	ND	NA	ND
Fluoranthene	50*	ND	ND	12 D,J	ND	ND	ND	44 D,J	ND	NA	ND
Fluorene	50*	2.6 J	ND	37 D	ND	ND	ND	ND	ND	NA	ND
Naphthalene	10*	34	ND	290 D	ND	ND	ND	2200 D,J	ND	NA	1.3 J
Phenanthrene	50*	2.6 J	ND	62 D	ND	0.54 J	ND	110 D,J	ND	NA	ND
Phenol	1**	ND	ND	ND	ND	ND	32	ND	33	NA	ND
Pyrene	50*	ND	ND	7.4 D,J	ND	ND	ND	18 D,J	ND	NA	ND
TOTAL SVOCs (p)	pm)	0.057	0.003	0.606	0.000	0.007	0.035	2.6	0.038	NA	

Notes

- 1. Only those compounds detected above the method detection limit at a minimum of one sample location are reported in this table.
- 2. NYSDEC Class "GA" Groundwater Quality Standards/Guldance Values (GWQS/GV) as per 6 NYCRR Part 703.
- 3. Blind Duplicate and Matrix Spike/Matrix SpikeDuplicate (MS/MSD) analysis performed on groundwater sample collected from MWN-19A.
- 4. Field measurements were collected immediately before and after groundwater sample collection.

Definitions:

- J = Estimated Value; result is less than the sample quantitation limit but greater than zero.
- D = Sample required dillution due foaming or high concentration of target analyte(s).
- B = Indicates a value greater than or equal to the instrument detection limit, but less than the quantitation limit.
- NA = Not available
- ND = Indicates parameter was not detected above laboratory reporting limit.
- ND L4 = Poor recovery of laboratory control sample and or laboratory control sample dup, recovery was below the acceptance limits. A low bias to sample results required SVOCs to be re-analyzed.
- * = The Guidance Value was used where a Standard has not been established.
- ** = The general standard of 1.0 ug/L for phenolic compounds was used.

BOLD

= Result exceeds the GWQS/GV.

TABLE 10 POTENTIAL CHEMICAL-SPECIFIC ARARs

PHASE III BUSINESS PARK SITE ALTERNATIVES ANALYSIS REPORT

	ALIERNATIVES A	IVALISIS REPORT
Standard, Requirement, Criteria or Limitation	Citation or Reference	Description/Comments
Groundwater:		
RCRA Groundwater Protection Standards and Maximum Concentration Limits	40 CFR 264, Subpart F	Establishes criteria for groundwater consumption. Groundwater is/will not be used for potable purposes. Potentially relevant for off-site groundwater quality.
NYSDEC Surface Water and Groundwater Quality Standards and Groundwater Effluent Limitations	6NYCRR Parts 701- 703	Establishes groundwater and surface water quality criteria. Applicable to on-site and off-site groundwater quality, and runoff/groundwater migration. Establishes criteria for groundwater consumption.
Ambient Water Quality Standards and Guidance Values	TOGS 1.1.1, October 1993	Establishes groundwater and surface water quality standards and guidance values. Applicable to on-site and off-site groundwater quality
Air:		
New York State Air Quality Classifications and Standards	6NYCRR Parts 256 and 257	Establishes air quality standards protective of public health. Potentially applicable to disruptive activities.
National Primary and Secondary Ambient Air Quality Standards (NAAQS)	40 CFR Part 50	Establishes primary and secondary ambient air quality standards to protect public health and welfare. Potentially applicable to disruptive activities.
New York State DOH Soil Vapor Intrusion Guidance	New York State Department of Health, Oct. 2006	Establishes sub-slab and indoor air thresholds for sites impacted by VOCs. Potentially relevant.
Soil:	, , , , , , , , , , , , , , , , , , , ,	, , , , , , , , , , , , , , , , , , , ,
NYSDEC Environmental Remedial Programs	6NYCRR Part 375	Establishes procedures for inactive haz. waste site remedy selection & identifies Soil Cleanup Objectives based on human health, ecological protection, and groundwater protection. Applicable to site soil/fill.
NYSDEC Technical Assistance and Guidance Memorandum 4046	NYSDEC TAGM HWR-94- 4046, November 1993	Presents recommended soil cleanup objectives based on protection of health under a residential use condition, background levels, and protection of groundwater. Potentially relevant.
USEPA Preliminary Remediation Goals	EPA Region IX, Oct. 2002, updated per EPA Toxicity Guidance Memo (12/12/04)	Presents residential and non-residential soil cleanup goals based on human health criteria and groundwater protection. Potentially relevant.
USEPA Soil Screening Guidance	Technical Background Document and Users Guide, May 1996 revisions	Presents a framework for developing risk-based, soil screening levels for protection of human health. Provides a tiered approach to site evaluation and screening level development for Superfund sites. Potentially relevant.
Other:		
USEPA Integrated Risk Information System (IRIS)	www.epa.gov/iris	Database of human health effects that may result from exposure to various substances found in the environment.

TABLE 11 POTENTIAL LOCATION-SPECIFIC ARARS

PHASE III BUSINESS PARK SITE ALTERNATIVES ANALYSIS REPORT

Standard, Requirement, Criteria or Limitation	Citation or Reference	Description/Comments
Other:		
National Historic Preservation Act	16 CFR Part 470	Requires avoiding impacts on cultural resources having historical
		significance. Potentially applicable to remedial alternatives involving
		soil/fill disruption.
NYSDEC Environmental Remedial	6NYCRR Part 375	Requires consideration of future land use in remedy selection and soil
Programs		cleanup criteria. Applicable to site soil/fill.

TABLE 12 POTENTIAL ACTION-SPECIFIC ARARs

PHASE III BUSINESS PARK SITE ALTERNATIVES ANALYSIS REPORT

Standard, Requirement, Criteria or	Citation or Reference	Description/Comments
Limitation		•
Groundwater:	40 CED 402 F	C 1 DOTTW
Clean Water Act, National Pretreatment	40 CFR 403.5	General pretreatment regulations for discharge to POTWs – potentially
Standards		applicable for soil excavation alternatives involving temporary discharges
		of storm water or perched groundwater to sanitary sewer.
Air:	1	
NYSDEC Guidance for Fugitive Dust	NYSDEC TAGM 4031	Establishes guidance for community air monitoring and controls to
Suppression and Particulate Monitoring at		monitor and mitigate fugitive dusts during intrusive activities at NY State
Inactive Hazardous Waste Sites.		inactive hazardous waste sites – applicable to disruptive activities.
OSHA General Industry Air	29 CFR 1910.1000	Establishes Permissible Exposure Limits for workers exposed to airborne
Contaminants Standard		contaminants. Applicable to disruptive activities.
Solid, Hazardous, and Non-Hazardous	Waste:	
NYSDEC Inactive Hazardous Waste	6NYCRR Part 375	Establishes procedures for inactive hazardous waste disposal site
Disposal Sites		identification, classification, and investigation activities, as well as remedy
		selection and interim remedial actions. To be considered.
NY State Solid Waste Transfer Permits	6NYCRR Part 364	Establishes procedures to protect the environment from mishandling and
		mismanagement of all regulated waste transported from a site of
		generation to the site of ultimate treatment, storage, or disposal.
		Potentially applicable for alternatives involving off-site disposal.
DOT Rules for Hazardous Materials	(49 CFR 107, 171.1 - 171.5).	Establishes requirements for shipping of hazardous materials. Potentially
Transport	,	applicable for alternatives involving off-site disposal
Occupational Safety and Health Act (29	29 CFR Part 1910 and 1926	Describes procedures for maintaining worker safety. Applicable to site
USC 651 et seq.)		construction activities.
NYSDEC Land Disposal Restrictions	6NYCRR Part 376	Identifies hazardous wastes that are restricted from land disposal and
•		defines those limited circumstances under which an otherwise prohibited
		waste may be land disposed. Applicable to soil/fill disposal alternatives

SOIL/FILL ALTERNATIVE 2: EXCAVATION OF IMPACTED SOIL/FILL TO UNRESTRICTED SCOs

Remedial Investigation / Alternative Analysis Report Phase III Business Park Area Tecumseh Redevelopment Inc. Lackawanna, New York

Quantity	Units		Unit Cost		Total Cost
149 1923093 3269259	Acres CY TON	\$ \$ \$	4,000 8 35	\$ \$ \$ \$	596,000 15,384,747 114,424,053 2,000,000
1	LS	\$	50,000	\$	50,000
1802900 120193 149	CY CY Acres	\$ \$ \$	15 20 2,500	\$ \$	27,043,500 2,403,867 372,500
			,	\$	29,819,867 162,274,667
				\$\$\$\$ 6	100,000 150,000 16,227,467 178,752,130
	1923093 3269259 1 1	1923093 CY 3269259 TON 1 LS 1 LS 1 S	1923093	1923093	1923093

Total Present Worth (PW): Capital Cost + OM&M PW \$178,752,000

Notes:

1. Per 6NYCRR 375-6.7(d)(ii)(b)

SOIL/FILL ALTERNATIVE 3: HOTSPOT REMOVAL & PLACEMENT OF A SOIL COVER SYSTEM PRIOR TO REDEVELOPMENT

Remedial Investigation / Alternative Analysis Report Phase III Business Park Area Tecumseh Redevelopment Inc. Lackawanna, New York

ltem	Quantity	Units		Unit		Total
				Cost		Cost
Institutional Controls						
Develop Site Management Plan, Easement, Survey	1	LS	\$	25,000	\$	25,000
Subtotal:					\$	25,000
Soil Excavation/Offsite Disposal- Hotspot A						
Soil/Fill Excavation	20	CY	\$	8	\$	160
Waste Profile	1	LS	\$	3,000	\$	3,000
Transport & Offsite Pb Stabilization/Disposal	34	Tons	\$	225	\$	7,650
Verification Sampling	6	Ea	\$	50	\$	300
Slag Backfill (furnish, place, compact) Subtotal:	34	Tons	\$	10	\$ \$	340 11,450
Subtotal.					Ψ	11,430
Soil Excavation/Offsite Disposal- Hotspot B						
Soil/Fill Excavation	2500	CY	\$	8	\$	20,000
Waste Profile	1	LS	\$	3,000	\$	3,000
Transport & Offsite Disposal (non-haz) Verification Sampling	4250 20	Tons Ea	\$	40 100	\$	170,000 2,000
Slag Backfill (furnish, place, compact)	4250	Tons	\$	100	\$	42,500
Subtotal:			Ė		\$	237,500
			1			
Soil Excavation/Onsite Biotreatment - Hotspot C			_	4.00-	_	0.00-
Clearing & Grubbing Onsite Biopad Prep/Mulch	2 2500	Acres CY	\$	4,000 11.5	\$	8,000 28,750
Soil/Fill Excavation & Dewatering ¹	17500	CY	\$	8	\$	140,000
Onsite Hauling to/from biopad	5000	CY	\$	5	\$	25,000
Biotilling/fertilizing	1500	Day	\$	2	\$	3,000
Verification Sampling	30	Ea	\$	150	\$	4,500
Backfilling w/ umimpacted & treated Soil	17500	CY	\$	4	\$	70,000
Subtotal:					\$	279,250
Soil Excavation/Onsite Biotreatment - Hotspot D						
Soil/Fill Excavation & Dewatering1	25	CY	\$	8	\$	200
Onsite Hauling to/from biopad	25	CY	\$	5	\$	125
Biotilling/fertilizing	90	Day	\$	2	\$	180
Verification Sampling Slag Backfill (furnish, place, compact)	6 43	Ea Tons	\$	50 10	\$	300 425
Subtotal:	43	10115	Ψ	10	\$	1,230
					ľ	,
Soil Cover System						
Clearing & Grubbing	149	Acres	\$	4,000	\$	596,000
6" Part 375 ² Compliant Cover, Place & Compact	120193 120193	CY CY	\$	15 20	\$	1,802,900 2,403,867
6" Topsoil Seeding	149	Acres	\$	2,500	\$	372,500
Subtotal:		710100	Ť	2,000	\$	5,175,267
Subtotal Remedial Cost					\$	5,729,697
Contractor Mobilization/Demobilization (5%) Health and Safety (2%)					\$	286,485 114,594
Engineering/Contingency					\$	150,000
					_	,
Total Capital Remediation Cost					\$	6,280,775
Emilian manufal Based Bad 1 1 2 1			1			
Environmental-Based Redevelopment Costs	400000	01/		_	<u>۴</u>	004 547
Clear/Remove & Transport Existing Cover Soil ³	192309 192309	CY CY	\$	5 10	\$	961,547
Off-site Transportation and Staging Offsite Air Monitoring during Intrusive Work	192309	LS	\$	15,000	\$	1,923,093 15,000
Subtotal:	·		Ť	10,000	\$	2,899,640
TOTAL CAPITAL COSTS					\$	9,180,415
Annual Operation Maintenance & Maniterine (CARCAN)						
Annual Operation Maintenance & Monitoring (OM&M) Site Maintenance and Mowing	<u>:</u> 2	Yr	\$	9,000	\$	18,000
Groundwater Sampling / Reporting	2	Yr	\$	7,500	\$	15,000
Annual Certification	1	Yr	\$	3,000	\$	3,000
Total Annual OM&M Cost					\$	36,000
Number of Veers (n):						20
Number of Years (n): Interest Rate (i):						30 3%
p/A value:						19.6004
·						
OM&M Present Worth (PW):					\$	705,614

Total Present Worth	(PW): Capital Cost + OM&M PW
----------------------------	------------------------------

\$ 9,886,000

- Notes:
 1. Includes 5-feet of overlying soil/fill at Hotspot "A"
 2. Per 6NYCRR 375-6.7(d)(ii)(b)
 3. Assumes 20% of vegeatated cover remains in place

SOIL/FILL ALTERNATIVE 4: HOTSPOT REMOVAL & DEFERRED SOIL COVER SYSTEM DURING REDEVELOPMENT

Remedial Investigation / Alternative Analysis Report Phase III Business Park Area Tecumseh Redevelopment Inc. Lackawanna, New York

1	0	I lade		Unit		Total
Item	Quantity	Units		Cost		Cost
Institutional Controls						
Develop Site Management Plan, Easement, Survey	1	LS	\$	25,000	\$	25,000
Subtotal:					\$	25,000
Soil Excavation/Offsite Disposal- Hotspot A						
Soil/Fill Excavation	20	CY	\$	8	\$	160
Waste Profile	1	LS	\$	3,000	\$	3,000
Transport & Offsite Pb Stabilization/Disposal Verification Sampling	34 6	Tons Ea	\$	225 50	\$	7,650 300
Slag Backfill (furnish, place, compact)	34	Tons	\$	10	\$	340
Subtotal:					\$	11,450
Soil Excavation/Offsite Disposal- Hotspot B						
Soil/Fill Excavation	2500	CY	\$	8	\$	20,000
Waste Profile	1	LS	\$	3,000	\$	3,000
Transport & Offsite Disposal (non-haz)	4250	Tons	\$	40	\$	170,000
Verification Sampling	20 4250	Ea Tons	\$	100 10	\$	2,000
Slag Backfill (furnish, place, compact) Subtotal:	4230	10115	Φ	10	\$	42,500 237,500
- Culticum					Ť	201,000
Soil Excavation/Onsite Biotreatment - Hotspot C		A -	_	4 000	_	0.000
Clearing & Grubbing Onsite Biopad Prep/Mulch	2 2500	Acres CY	\$	4,000 11.5	\$	8,000 28,750
Soil/Fill Excavation & Dewatering ¹	17500	CY	\$	8	\$	140,000
Onsite Hauling to/from biopad	5000	CY	\$	5	\$	25,000
Biotilling/fertilizing	1500	Day	\$	2	\$	3,000
Verification Sampling	30	Ea	\$	150	\$	4,500
Backfilling w/ umimpacted & treated Soil Subtotal:	17500	CY	\$	4	\$ \$	70,000 279,250
oustotai.					•	270,200
Soil Excavation/Onsite Biotreatment - Hotspot D						
Soil/Fill Excavation & Dewatering1	25	CY	\$	8	\$	200
Onsite Hauling to/from biopad Biotilling/fertilizing	25 90	CY Day	\$	5 2	\$	125 180
Verification Sampling	6	Ea	\$	50	\$	300
Slag Backfill (furnish, place, compact)	43	Tons	\$	10	\$	425
Subtotal:					\$	1,230
Soil Cover System ¹						
Clearing & Grubbing	149	Acres	\$	4,000	\$	596,000
6" Part 375 ² Compliant Cover, Place & Compact	24039	CY	\$	15	\$	360,580
6" Topsoil	24039	CY	\$	20	\$	480,773
Seeding	30	Acres	\$	2,500	\$	74,500
Subtotal:					\$	1,511,853
Subtotal Remedial Cost					\$	2,066,283
Contractor Mobilization/Demobilization (5%)					\$	103,314
Health and Safety (2%)					\$	41,326
Engineering/Contingency					\$	150,000
Total Capital Remediation Cost					\$	2,360,923
Environmental Based Badayalanment Costs						
Environmental-Based Redevelopment Costs Air Monitoring during Intrusive Work	1	LS	\$	15,000	\$	15,000
Subtotal:			Ť	,	\$	15,000
TOTAL CARITAL COOTS						0.075.000
TOTAL CAPITAL COSTS					\$	2,375,923
Annual Operation Maintenance & Monitoring (OM&M):						
Site Maintenance and Mowing	2	Yr	\$	9,000	\$	18,000
Groundwater Sampling / Reporting Annual Certification	2 1	Yr Yr	\$ \$	7,500		15,000
Annual Ceruncation	1	11	Φ	3,000	Ф	3,000
Total Annual OM&M Cost					\$	36,000
Number of Years (n):						30
Interest Rate (i):						3%
p/A value:						19.6004
OM&M Present Worth (PW):					\$	705,614

Total Present Worth (PW): Capital Cost + OM&M PW	\$ 3,081,538
--	--------------

- Notes:
 1. Assumed to cover 20% of the Site (remainder covered by building, pavement, etc.)
 2. Per 6NYCRR 375-6.7(d)(ii)(b)

ASBESTOS WASTE ALTERNATIVE 1: ASBESTOS EXCAVATION WITH OFF-SITE DISPOSAL

Remedial Investigation / Alternative Analysis Report Phase III Business Park Area Tecumseh Redevelopment Inc. Lackawanna, New York

Item	Quantity	Units		Unit Cost		Total Cost
Excavation and Disposal of Asbestos Waste Permits Excavate, Size-Reduce & Wet Asbestos Waste¹ Transportation and Disposal at TSDF Third Party Asbestos Air Monitoring Subtotal: Restoration	1 50 9000 50	LS Day Ton Day	\$ \$ \$ \$	3,000 4,000 100 800	\$ \$ \$ \$ \$ \$ \$	3,000 200,000 900,000 40,000 1,143,000
Slag Backfill (furnish, place, compact) ²	15000	Ton	\$	10	\$	150,000
Subtotal: Subtotal Capital Cost Contractor Mobilization/Demobilization (5%) Health and Safety (5%) Engineering/Contingency (10%) Total Capital Cost					\$ \$\$ \$\$ \$\$	150,000 1,293,000 64,650 64,650 129,300 1,551,600

Total Present Worth (PW): Capital Cost + OM&M PW³ \$ 1,552,000

Notes:

- 1. Assumes bulkier debris, 1.2 ton per CY
- 2. Assumes 2 ton per CY
- 3. Assumes OM&M remains with soil/fill alternatives

ASBESTOS WASTE ALTERNATIVE 2: RESTRICTED USE WITH NO FURTHER DEVELOPMENT

Remedial Investigation / Alternative Analysis Report Phase III Business Park Area Tecumseh Redevelopment Inc. Lackawanna, New York

ltem	Quantity	Units	Unit Cost								Total Cost
Institutional Controls Prepare Foundation Metes & Bounds Survey Prepare Location-Specific Restrictions for Easement	1	7 %	\$ \$	4,000 1,000	\$ \$	4,000 1,000					
Subtotal:	ı	LO	Ψ	1,000	\$	5,000					
Subtotal Capital Cost					\$	5,000					
Engineering/Contingency (10%)					\$	500					
Total Capital Cost					\$	5,500					

Present Worth (PW): Capital Cost + OM&M PW ¹ \$	6,000
--	-------

Notes:

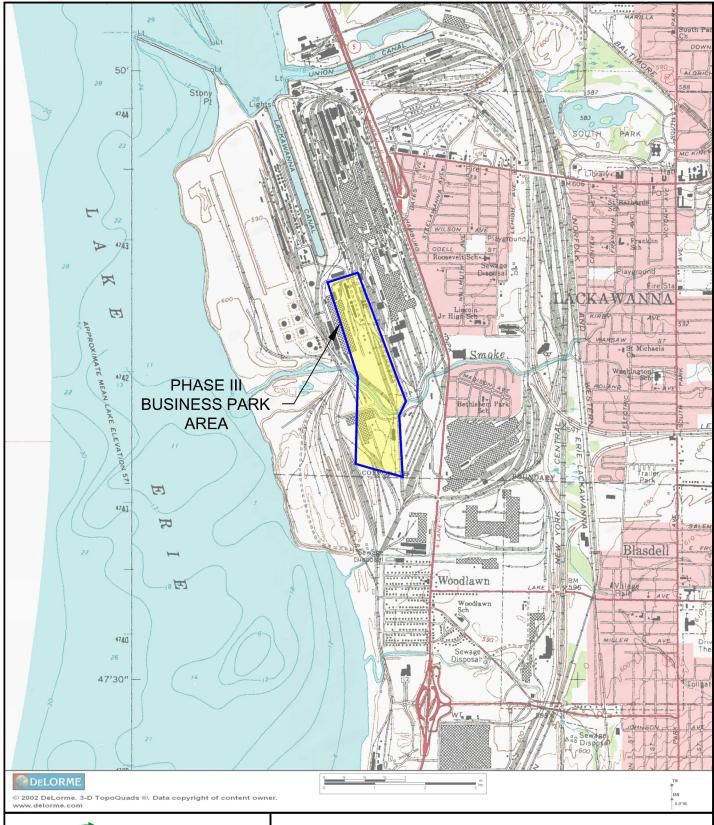
1. Assumes OM&M remains with Soil/Fill Alternatives

ASBESTOS WASTE ALTERNATIVE 3: RESTRICTED USE AS ON-SITE SOIL/FILL BIOTREATMENT PAD

Remedial Investigation / Alternative Analysis Report Phase III Business Park Area Tecumseh Redevelopment Inc. Lackawanna, New York

ltem	Quantity	Units		Unit Cost				Total Cost
Institutional Controls Prepare Foundation Metes & Bounds Survey Prepare Location-Specific Restrictions for Easeme Subtotal: Biotreatment Area Construction Subgrade Preparation (clearing/ filling gaps, etc)	1 1	LS LS	\$ \$	4,000 1,000 2,500	\$ \$ \$	4,000 1,000 5,000 2,500		
1' Wood Chips or Sand, Delivered and Placed Fencing, Installed with double gate & signs	389 1440	CY LF	\$ \$	20 25	\$ \$	7,778 36,000		
Subtotal: Subtotal Capital Cost					\$	46,278 51,278		
Contractor Mobilization/Demobilization (5%) Health and Safety/Air Monitoring (2%) Engineering/Contingency (10%) Total Capital Cost					\$ \$ \$ \$	2,564 1,026 5,128 60,000		

Total Present Worth (PW): Capital Cost + OM&M PW ¹ \$ 60,00
--


Notes:

1. Assumes OM&M remains with Soil/Fill Alternatives

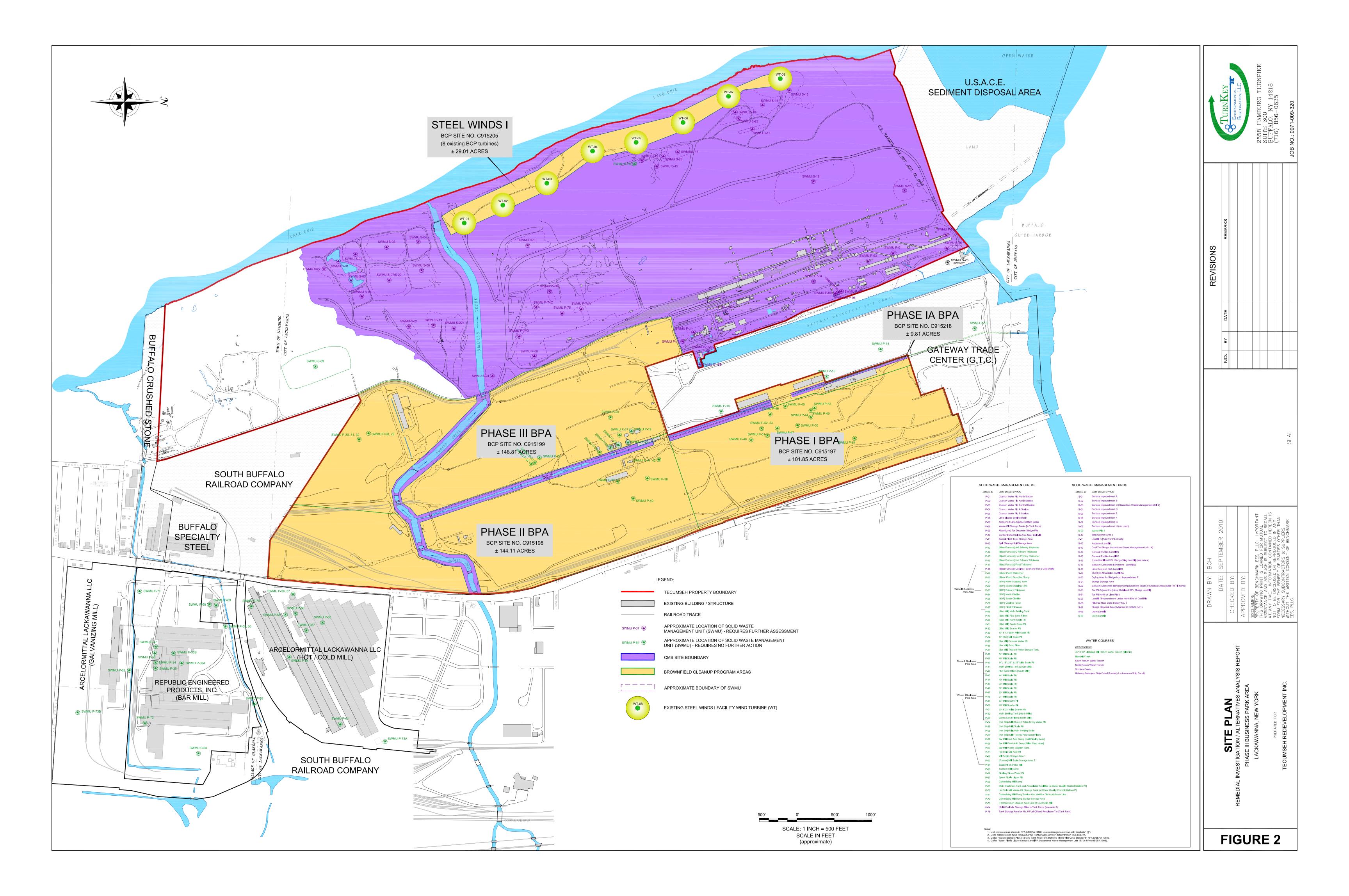
FIGURES

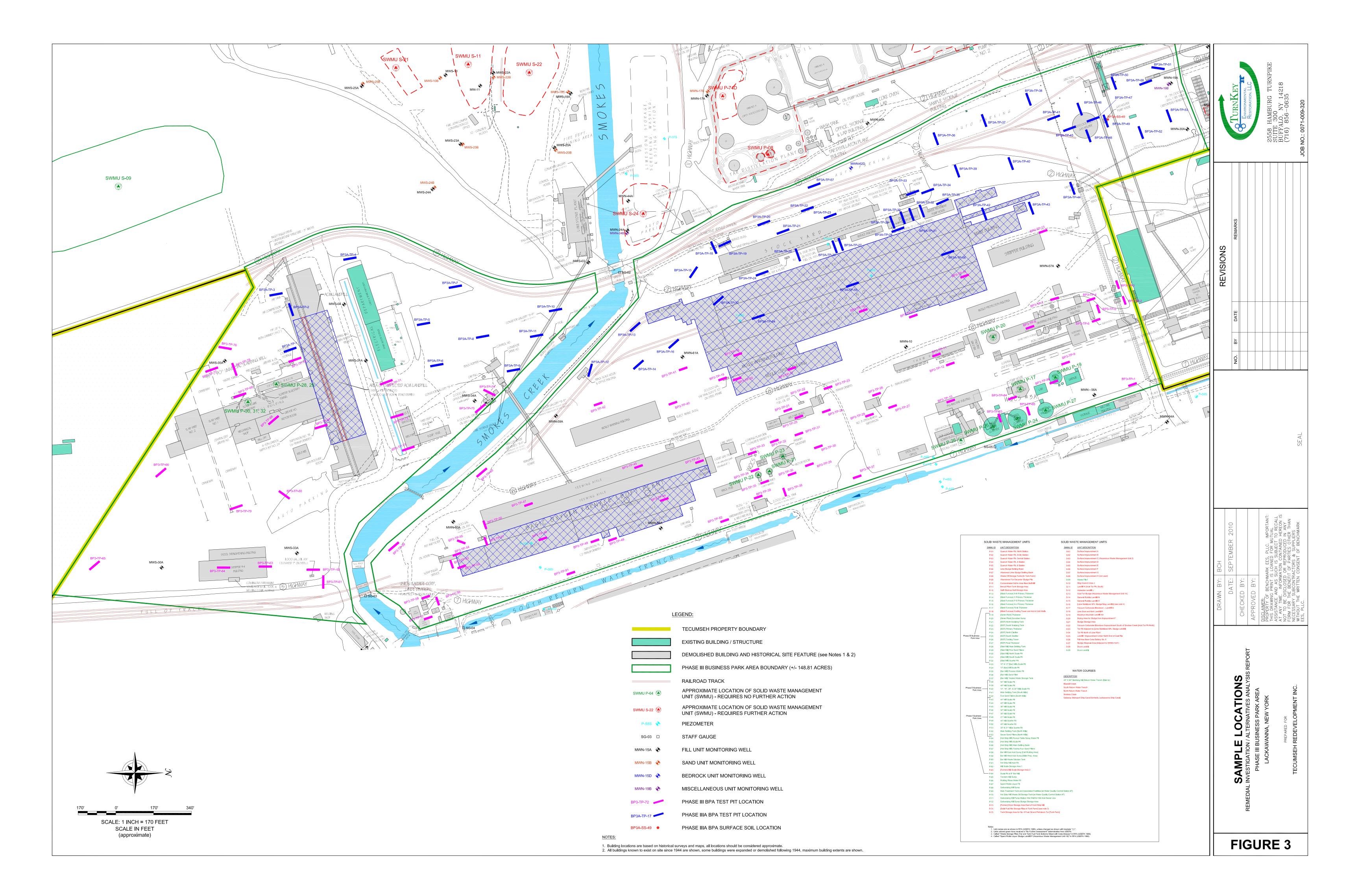
FIGURE 1

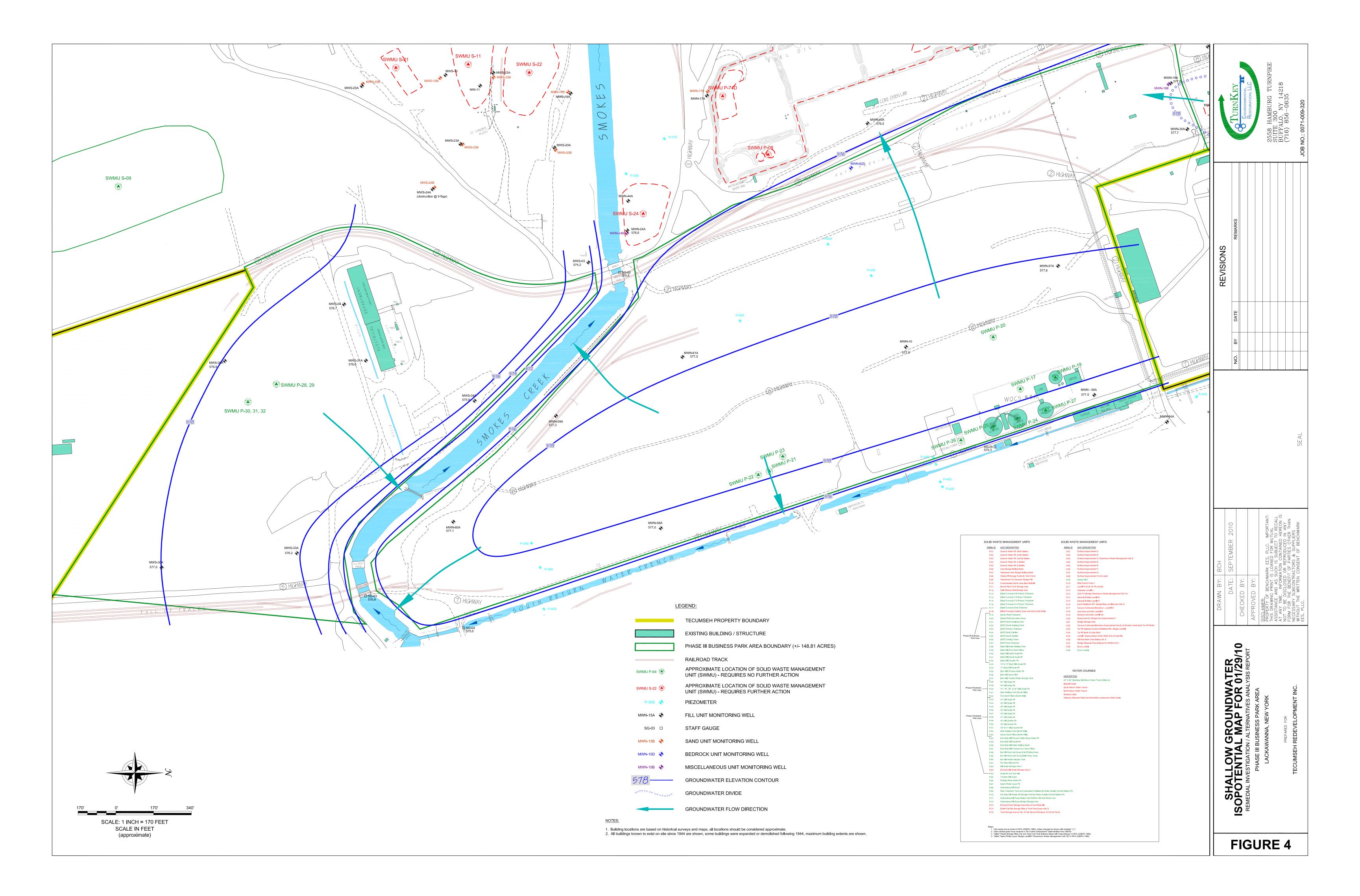
2558 HAMBURG TURNPIKE SUITE 300 BUFFALO, NY 14218 (716) 858-0635

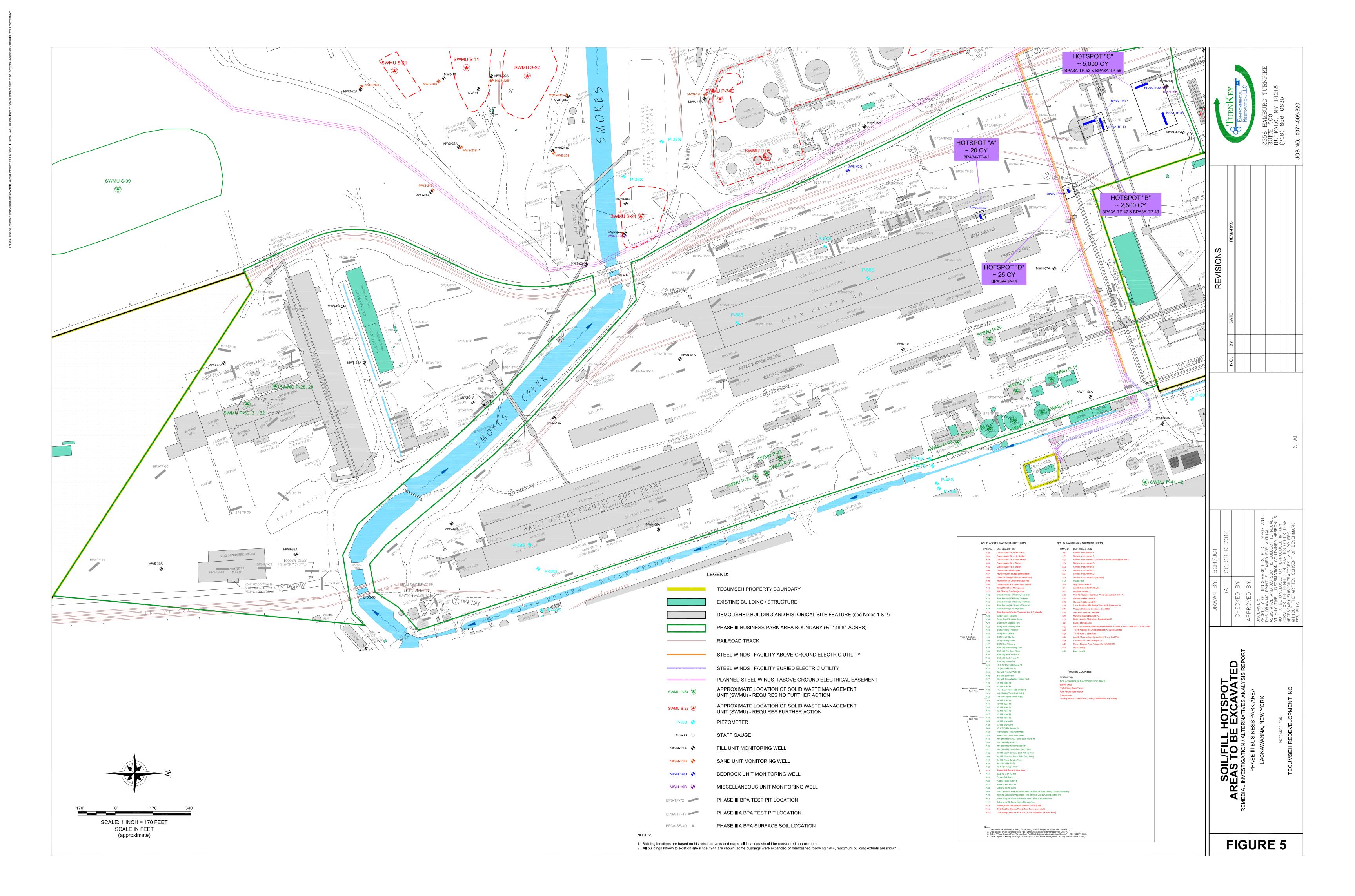
PROJECT NO.: 0071-009-320

DATE: SEPTEMBER 2011


DRAFTED BY: JCT


SITE LOCATION & VICINITY MAP


RI/AA REPORT


PHASE III BUSINESS PARK AREA LACKAWANNA, NEW YORK

PREPARED FOR TECUMSEH REDEVELOPMENT, INC.

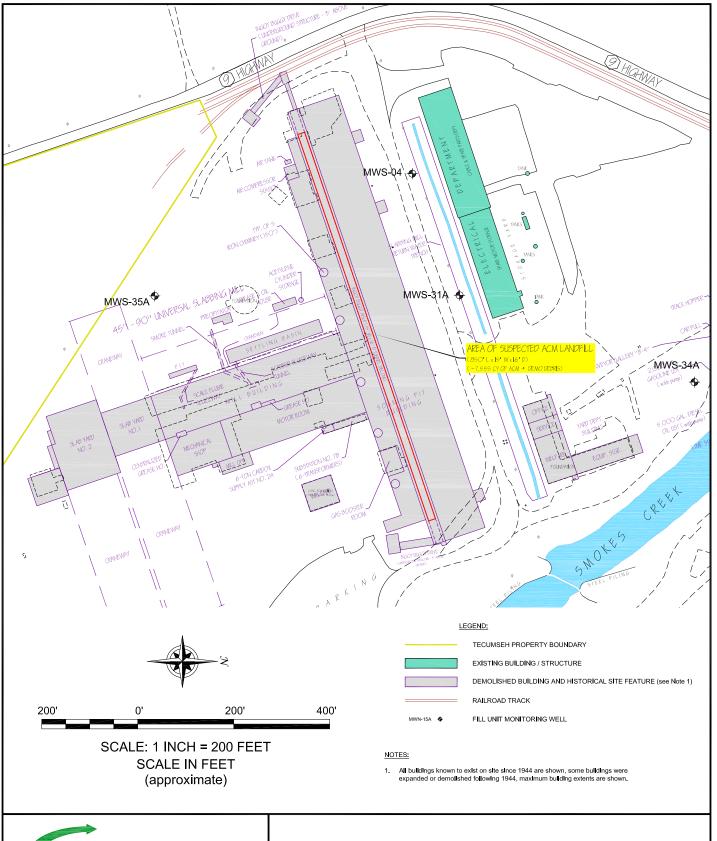


FIGURE 6

2558 HAMBURG TURNPIKE SUITE 300 BUFFALO, NY 14218 (716) 856-0635

PROJECT NO.: 0071009-320
DATE: NOVEMBER 2010

DRAFTED BY: BCH

ACM CONCRETE-LINED TUNNEL

RI/AA REPORT

PHASE III BUSINESS PARK AREA LACKAWANNA, NEW YORK

PREPARED FOR

TECUMSEH REDEVELOPMENT INC.

APPENDIX A

TEST PIT EXCAVATION LOGS & MONITORING WELL SAMPLING LOGS

Project:	Phase III E	BPA Remedial Investig	gation	TEST P	IT I.D.:	BPA 3	3-TP-1		
Project No.:	0071-00	8-300		Excavat	ion Date:	08/12/08			
Client:	ArcelorN	littal Tecumseh Redev	elopment, Inc	Excavat	ion Method:	Bobcat 43	80		
Location:	Tecums	eh, Phase III BPA		Logged	/ Checked By:	BG/BH			
Test Pit Loca	ation: NOT	TO SCALE	I	Test Pit C	ross Section:				
		III report for exact location		Grade - 0		GRA	SS & TOP	SOIL	
				Grade - 0					
/U P-19	. <i>K</i>			2					
CARACK P-86	48" 51.	BPA 3-TP-1	CAN SIL	4'		FII	AL .		
A 3-11	F2A	DI//OTF 1		4					
26" CV	- 53A			6'					
		7000 NO. 2		8'					
TIME		The same of the sa	(O					
TIMI Start:	⊏ 13:45	Length: 7.0 ft. Width: 2.0 ft.	(approx.) (approx.)	10					
End:	14:30	Depth: 5.0 ft.	(approx.)						
Depth		USCS	Symbol & Soil			PID	Photos	Samples	
(fbgs)			escription			Headspace (ppm)	Y/N	Collected (fbgs)	
	0	al tamas ili				(PP)		(1290)	
0.0 - 0.5		i d topsoil: Brown, moist, silt with soi	me slag, loose			NA	Υ	NO	
	Fill:								
0.5 - 2.0		ist, Slag fill with macadar	m layer on top, v	very dense, lo	oose when	0.2	Υ	YES	
	disturbed								
	Fill:								
2.0 - 5.0	Banded c	colors of reddish brown, g		noist , Slag f	ill with cindery	0.2	Υ	NO	
	ash and b	orick, dense, loose when	disturbed						
5.0	End of Te	est Pit							
COMMENTS	:								
GROUNDW	ATER ENC	OUNTERED:	✓ YES	NO	If yes, depth	to GW:	5'		
VISUAL IMI	PACTS:		YES 🗸	NO _	Describe:				
OLFACTOR	RY OBSERV	/ATIONS:	YES 🗸	NO _	Describe:				
NON-NATI\	/E FILL ENG	COUNTERED:	✓ YES] NO		Slag, ash, and brick			
OTHER OB	SERVATIO	NS:	_	_] NO	Describe:				
SAMPLES				_	Sample I.D.:		TP-1 (0-2')		
		- -			Sample I.D.:		(02)		

TP-1 Page 1 of 86

Project:	Phase III E	BPA Remedial Investig	gation	TEST P	IT I.D.:	BPA 3	3-TP-2	
Project No.:	0071-00	8-300		Excavat	ion Date:	08/13/08		
Client:		littal Tecumseh Redev	elopment, Inc	Excavat	ion Method:	Bobcat 43	80	
Location:	Tecumse	eh, Phase III BPA		Logged	/ Checked By:	BG/BH		
Test Pit Loca		TO SCALE III report for exact location			ross Section:	GRA	SS & TOP	SOIL
	2.509 KK			Grade - 0				
BPA 3-TF	SAUD DEVE	BPA 3-TP-2		2				
ORACK BIN	2,500			4	_	FIL	\mathbf{A}	
	BPA 3-	7 P-3		4				
	SUBSTATION 7			6				
BPA 3	3-TP-6							
HOUSE		3		8				
TIMI Start:	E 10:00	Length: 7.0 ft. Width: 2.0 ft.	(approx.) (approx.)	10				
End:	11:50	Depth: 6.0 ft.	(approx.)					
Depth		USCS	Symbol & Soi	il		PID	Photos	Samples
(fbgs)		D	escription			Headspace (ppm)	Y/N	Collected (fbgs)
	Fill:					(66)		(1290)
0.0 - 2.0		brown, moist, Slag fill wi	th cindery ash	and brick, der	nse, loose when	6.5	Υ	YES
	disturbed							
	Fill:							
2.0 - 4.0	Gray and	brown, moist, Slag fill wi	th cindery ash	and brick, der	nse, loose when	50.1	Υ	YES
	disturbed	, petroleum like odor						
	Fill:							
4.0 - 6.0		oist, Slag fill with cinder	y ash and brick	, dense, loos	e when	<50.1	Υ	No
	disturbed							
6.0	End of Te	est Pit						
COMMENTS	:		_					
GROUNDW	VATER ENC	OUNTERED:	✓ YES [] NO	If yes, depth	to GW:	6'	
VISUAL IM	PACTS:		☐ YES ✓	NO NO	Describe:			
OLFACTOR	RY OBSERV	/ATIONS:	✓ YES [NO	Describe:	Petroleum like	odor	
NON-NATI\	VE FILL ENG	COUNTERED:	✓ YES [NO		Slag, ash, and brick		
OTHER OB	SERVATIO	NS:	YES V	NO -	Describe:	:		
SAMPLES	COLLECTE	D:	=		Sample I.D.:	D.: TP-2 (0-2')		
					Sample I.D.:		TP-2 (2-4')	

TP-2 Page 2 of 86

OTHER OBSERVATIONS:

SAMPLES COLLECTED:

TEST PIT EXCAVATION LOG

instantial, 220											
Project:	Project: Phase III BPA Remedial Investigation							I.D.:	BPA 3	3-TP-3	
Project No.:	0071-00	8-300				E	xcavatio	n Date:	08/13/08		
Client:	ArcelorN	littal Tecums	seh Redev	elopm	ent, In	C E	xcavatio	n Method:	Bobcat 43	30	
Location:	Tecums	eh, Phase III	BPA			L	ogged / 0	Checked By:	BG/BH		
Test Pit Loca	otion: NOT	TO 0041 F				Tor	at Dit Cra	ss Section:			
			act location					ss section.	GRA	SS & TOP	SOIL
Refer to Figure in the Phase III report for exact location BPA 3-TP-4 BPA 3-TP-2							ade - 0' — — 2' — — 4' — — 6' —		FII	.I.	
BUILDING	BEA 3-	1-3					8' —				
TIME	<u>-</u> 1	Length:	7.0 ft.	(ann	rox)		_ 10'—				
	J (11)										
End:	13:45	Depth:	6.0 ft.	(app	rox.)			_			T
Depth (fbgs)			USCS : De	Symbo escript		oil			PID Headspace (ppm)	Photos Y / N	Samples Collected (fbgs)
0.0 - 0.5		nd topsoil: noist, silt with s	some slag, l	oose					NA	Y	NO
0.5 - 3.0		brown, moist en disturbed	, Slag fill wit	th mac	adam la	ayer at	t 1.5' to 2.0)', very dense,	0.3	Y	NO
3.0 - 6.0	Fill: Brown, m disturbed	oist , Slag fill	with cindery	ash aı	nd brick	k, dens	se, loose w	/hen	NA	Y	YES
6.0	End of Te	est Pit									
COMMENTS:											
GROUNDW	ATER ENC	OUNTERED:		✓ ·	YES [N	0	If yes, depth t	to GW:	6'	
VISUAL IMF	PACTS:				YES [✓ N	0	Describe:			
OLFACTOR	RY OBSERV	ATIONS:			YES [✓ N	0	Describe:			
NON-NATIVE FILL ENCOUNTERED: ✓ YES							0		Slag, ash, an	d brick	

TP-3 Page 3 of 86

YES V NO

Describe:

Sample I.D.:

Sample I.D.:

TP-3 (3-6')

Project:	Phase III	BPA Remedia	I Investiga	ation		TI	EST PIT	I.D.:	BPA 3	3-TP-4		
Project No.:	0071-00	8-300				E	xcavation	n Date:	08/11/08			
Client:	ArcelorN	Mittal Tecumse	h Redeve	elopme	ent, Ind	(E	xcavation	n Method:	Bobcat 43	30		
Location:	Tecums	eh, Phase III E	ВРА			Lo	ogged / C	Checked By:	BG/BH			
Test Pit Loca	ation: NOT	TO SCALE				Tes	t Pit Cros	ss Section:				
		e III report for exac	ct location						GRA	SS & TOP	SOIL	
TOTAL OLT	2,509 bx				/	Gia	de - 0' — —					
BPA 3-TF	FAND DEVE	BPA 3-	TP-2				2'—					
ORACK BIN	2,500						_ 4'—		FII	A_{-}		
	BPA 3-	TP-5					4 —					
	SUBSTATION.	14	STATE OF STATE OF				6' -					
BPÁ 3	3-TP-6											
HOUSE		E 3	<u> </u>				8' -					
TIME Start:	E 15:00	Length: Width:	7.0 ft. 2.0 ft.	(app			10'—					
End:	16:15	Depth:	6.0 ft.	(app	•							
Depth			USCS S			il			PID	Photos	Samples	
(fbgs)				scripti					Headspace (ppm)	Y / N	Collected (fbgs)	
	_								(ррпп)		(ibgs)	
0.0 - 0.5		nd topsoil: brown, moist, si	It with som	ne slag.	loose				NA	Y	NO	
0.0 0.0		,,										
	F:II.											
0.5 - 2.0	Fill: Reddish	brown, moist, S	lag fill with	cinder	y ash a	nd bric	ck, dense,	loose when	0.6	Y	YES	
	disturbed		J									
	Fill:											
2.0 - 6.0		colors of reddish	brown, gr	ay and	black,	moist,	, Slag fill v	vith cindery	3.5	Υ	NO	
	ash and l	brick, dense, loc	se when d	disturbe	ed							
6.0	End of Te	est Pit										
COMMENTS:												
GROUNDW	ATER ENC	COUNTERED:		✓ Y	ES [NO)	If yes, depth t	to GW:	6'		
VISUAL IMI	PACTS:			Y	ES \	Z NO)	Describe:				
OLFACTOR	RY OBSER\	/ATIONS:			ES \	/ NO)	Describe:				
NON-NATI\	/E FILL EN	COUNTERED:			ES [NO)		Slag, ash, and brick			
OTHER OB	SERVATIO	NS:		_	_	_ NO)	Describe:				
SAMPLES (COLLECTE	D:			_	-		Sample I.D.:		TP-4 (0-2')		
O, WII EEG GGELEGTEB.								Sample I D :		(/		

TP-4 Page 4 of 86

Project:	Phase III	BPA Remedia	al Investig	ation		TEST	PIT I.D.:	BPA 3	3-TP-5	
Project No.:	0071-00						ation Date:	08/11/08		
Client:	ArcelorN	/littal Tecums	eh Redeve	elopment	, Inc	Excav	ation Method:	Bobcat 43	30	
Location:		eh, Phase III		-	<u> </u>	Logge	d / Checked By:	BG/BH		
T (D)						T (D)	0 0 1			
Test Pit Loca		TO SCALE • III report for exa	act location				Cross Section:	GRA	SS & TOP	SOIL
BPA 3-TF	2,504 LUBE OIL		3-TP-2			Grade -	2'-			
ORACE BIN	2500						4'—	FII	L	
Sull Constitution of the C	DRA 3-						6'			
BPA 3	3-TP-6	2					8'			
TIME Length: 7.0 ft. (approx.)										
Start:	10:00	Width:	2.0 ft.	(approx	.)	1	0'			
End:	11:50	Depth:	6.0 ft.	(approx	.)			DID		Camania
Depth (fbgs)				Symbol & escription	Soil			PID Headspace (ppm)	Photos Y/N	Samples Collected (fbgs)
0.0 - 0.5		nd topsoil: noist, silt with s	ome slag, lo	oose				NA	Υ	NO
0.5 - 2.0	Fill: Gray, mo disturbed	oist, Slag fill wit	h macadam	n layer on t	op, ve	ery dense,	loose when	0.2	Y	YES
2.0 - 6.0		colors of reddis orick, dense, lo			ick, m	noist , Slag	fill with cindery	2.3	Y	NO
6.0	End of Te	est Pit								
COMMENTS	:									
GROUNDW	ATER ENC	COUNTERED:		✓ YES		NO	If yes, depth	to GW:	6'	
VISUAL IMI	PACTS:			YES	✓	NO	Describe:			
OLFACTOR	RY OBSER\	/ATIONS:		YES	✓	NO	Describe:			
NON-NATI\	VE FILL EN	COUNTERED:	-	✓ YES		NO		Slag, ash, an	d brick	
OTHER OB	SERVATIO	NS:		YES	✓	NO	Describe:			
SAMPLES	COLLECTE	D:					Sample I.D.:		TP-5 (0-2')	
							Sample I.D.:			

TP-5 Page 5 of 86

Project:	Phase III BPA Remedial Investigation		TEST P	IT I.D.:	BPA 3	3-TP-6	
Project No.:	0071-008-300		Excavat	ion Date:	08/11/08		
Client:	ArcelorMittal Tecumseh Redevelopme	ent, Inc	Excavat	ion Method:	Bobcat 43	0	
Location:	Tecumseh, Phase III BPA		Logged	/ Checked By:	BG/BH		
	ation: NOT TO SCALE in the Phase III report for exact location		Test Pit C Grade - 0	ross Section:	GRA	SS & TOP	SOIL
BPA 3-TF	BPA 3-TP-3		2' 4' 6'		FII	.L	
SCREENING.	3		8				
TIME	3 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		10				
Start: End:	10:00 Width: 2.0 ft. (appr 11:50 Depth: 6.0 ft. (appr						
Depth (fbgs)	USCS Symbol Description	l & Soil			PID Headspace (ppm)	Photos Y/N	Samples Collected (fbgs)
0.0 - 0.5	Grass and topsoil: Brown, moist, silt with some slag, loose				NA	Υ	NO
0.5 - 2.0	Fill: Reddish brown, moist, Slag fill with cindery when disturbed	∕ ash and	l brick, very	dense, loose	2.7	Υ	YES
2.0 - 6.0	Fill: Banded colors of reddish brown, gray and ash and brick, dense, loose when disturbed		oist , Slag f	II with cindery	3.6	Υ	NO
6.0	End of Test Pit						
COMMENTS:							
GROUNDW	/ATER ENCOUNTERED:	ES	NO	If yes, depth	to GW:	6'	
VISUAL IMI	PACTS:	ES 🗸	NO	Describe:			
OLFACTOR	RY OBSERVATIONS:	ES 🗸	NO	Describe:			
NON-NATI\	/E FILL ENCOUNTERED:	ES	NO		Slag, ash, an	d brick	
OTHER OB	SERVATIONS:	ES 🗸	NO	Describe:			
SAMPLES	COLLECTED:		_	Sample I.D.:		TP-6 (0-2')	

TP-6 Page 6 of 86

Project: Phase II BPA Remedial Investigation								
Client: ArcelorMittal Tecumseh Redevelopment, Inc. Excavation Method: Bobcat 430 Location: Tecumseh, Phase III BPA	Project:	Phase III BPA Remedial Investigation	tion	TEST PIT I	.D.:	BPA 3	3-TP-7	
Test Pit Location: NOT TO SCALE Roler to Figure in the Phase III report for exact location Time Start: 13:45 End: 15:30 Depth: 6.5 ft. (approx.) Depth (fbgs) Grass and topsoli: Reddish Brown, moist, slit with some slag, loose Fill: Brown, moist, Slag fill with cindery ash and brick, dense, loose when disturbed Fill: Brown, moist, Slag fill with cindery ash and brick, dense, loose when disturbed Fill: Brown, moist, Slag fill with cindery ash and brick, dense, loose when disturbed Test Pit Cross Section: Grade - 0 FILL FIL	Project No.:	0071-008-300		Excavation	Date:	08/13/08		
Test Pit Location: NOT TO SCALE Refer to Figure in the Phase Ill report for exact location Test Pit Cross Section: GRASS & TOPSOIL	Client:	ArcelorMittal Tecumseh Redevel	lopment, Inc	Excavation	Method:	Bobcat 43	0	
Comments	Location:	Tecumseh, Phase III BPA		Logged / Cl	hecked By:	BG/BH		
TiME					s Section:	GRA	SS & TOP	SOIL
Start: 13:45	B	PA 3-TP-7 (NO) STORAGE ON ST	200 L	2' — 4' — 6' —		FII	.L.	
Start: 13:45		<u> </u>		10'				
Depth (fbgs) USCS Symbol & Soil Description Description Reddish Brown, moist, silt with some slag, loose NA NA Y NO NO 1.5 - 2.0 Fill: Brown, moist, Slag fill with cindery ash and brick, dense, loose when disturbed Description NA NA NA NO NO NO TELLO Banded colors of gray, Yellowish brown and black, moist, Slag fill with cindery ash and brick, dense, loose when disturbed COMMENTS: GROUNDWATER ENCOUNTERED: VISUAL IMPACTS: OLFACTORY OBSERVATIONS: NO NO NO NO Slag, ash, and brick OTHER OBSERVATIONS: VES NO Describe: NO Describe:				· · ·				
0.0 - 0.5 Reddish Brown, moist, silt with some slag, loose	Depth	USCS S	ymbol & Soil			Headspace		Collected
Pill: 2.0 - 6.5 Brown, moist, Slag fill with cindery ash and brick, dense, loose when disturbed 7	0.0 - 0.5		e slag, loose			NA	Υ	NO
2.0 - 6.5 Banded colors of gray, Yellowish brown and black, moist , Slag fill with cindery ash and brick, dense, loose when disturbed 6.5 End of Test Pit COMMENTS: GROUNDWATER ENCOUNTERED: VISUAL IMPACTS: OLFACTORY OBSERVATIONS: NO Describe: NON-NATIVE FILL ENCOUNTERED: VYES NO Describe: NOHER OBSERVATIONS: NO Describe: NOBERVATIONS: NO Describe: NOBERVATIONS: VYES NO Describe:	0.5 - 2.0		sh and brick, d	ense, loose wh	en disturbed	0.7	Υ	YES
COMMENTS: GROUNDWATER ENCOUNTERED: ✓ YES	2.0 - 6.5	Banded colors of gray, Yellowish bro			I with	1.1	Υ	NO
GROUNDWATER ENCOUNTERED:	6.5	End of Test Pit						
VISUAL IMPACTS: OLFACTORY OBSERVATIONS: NON-NATIVE FILL ENCOUNTERED: OTHER OBSERVATIONS: YES V NO Describe: NO Slag, ash, and brick OTHER OBSERVATIONS: YES V NO Describe:	COMMENTS:							
OLFACTORY OBSERVATIONS: NON-NATIVE FILL ENCOUNTERED: VES NO Describe: NON-NATIVE FILL ENCOUNTERED: VES NO Describe:	GROUNDW	ATER ENCOUNTERED:	✓ YES	NO I	f yes, depth t	o GW:	6.25'	
NON-NATIVE FILL ENCOUNTERED: VES NO Slag, ash, and brick OTHER OBSERVATIONS: VES NO Describe:	VISUAL IMI	PACTS: [YES 🗸	NO I	Describe:			
OTHER OBSERVATIONS: YES V NO Describe:	OLFACTOR	RY OBSERVATIONS:	YES 🗸	NO I	Describe:			
	NON-NATI\	/E FILL ENCOUNTERED: [✓ YES	NO		Slag, ash, an	d brick	
SAMPLES COLLECTED: Sample I.D.: TP-7 (0-2')	OTHER OB	SERVATIONS: [YES 🗸	NO I	Describe:			
	SAMPLES	COLLECTED:			Sample I.D.:		TP-7 (0-2')	

TP-7 Page 7 of 86

SAMPLES COLLECTED:

TEST PIT EXCAVATION LOG

TP-8 (0-2')

Project:	Phase III E	3PA Remedi	al Investig	ation		TEST	PIT I.E	D.:	BPA 3	8-TP-8	
Project No.:	0071-00	8-300				Excav	ation D	Date:	08/18/08		
Client:	ArcelorN	littal Tecums	seh Redev	elopme	nt, Inc	Excav	ation N	/lethod:	Case 9030	0	
Location:	Tecums	eh, Phase III	BPA			Logge	d / Che	ecked By:	BG/BH		
Test Pit Loca	ation: NOT	TO SCALE				Test Pit	Cross	Section:	CON	CDETE	
Refer to Figure	in the Phase	III report for ex	act location			Grade -			CON	NCRETE	
			PPA 3	3-TP-1	5-18 PS	Grade -					
				0			2'—				
1110	HWAY						4'		FIL	dL.	
6) PM)II -		2-TP-8		EM.		-				
SW	/MU P-20	BPA	VIDI COLLECTORS				6'				<u>'''''''''''''''''''''''''''''''''''''</u>
							8'				
TIMI		Length:	10.0 ft.	(appro) x		_				
Start:	9:40	Width:	3.0 ft.	(appro		1	0'				
End:	11:10	Depth:	6.0 ft.	(appro							
Depth			USCS	Symbol	& Soi	ī			PID	Photos	Samples
(fbgs)				escriptio					Headspace (ppm)	Y/N	Collected (fbgs)
									(РРП)		(lbgs)
0.0 - 0.5	Concrete	with Rebar:							NA	Υ	NO
0.0 0.0											
	F:II.										
0.5 - 7.0	Fill: Dark brov	vn, moist, Slag	g fill with cir	ndery ash	n, brick	and little S	Silt, den	se, loose	0.6	Υ	YES
	when dist		•	•			,				
7.0	End of Te	est Pit									
COMMENTS											
GROUNDW	ATER ENC	OUNTERED:		✓ YE	s [NO	If	yes, depth t	o GW:	6.0'	
VISUAL IMI	PACTS:		-	YE	s 🔽	NO	D	escribe:			
OLFACTOR	RY OBSERV	ATIONS:		YE	S 🗸	NO	De	escribe:			
NON-NATI\	/E FILL ENG	COUNTERED:	:	✓ YE	S	NO			Slag and ash		
OTHER OB	OTHER OBSERVATIONS: YES							escribe:			

TP-8 Page 8 of 86

ALBIONATION									
Project:	Phase III I	3PA Remedi	al Investiga	ation	TEST	PIT I.D.:	BPA 3	8-TP-9	
Project No.:	0071-00	8-300			Excav	ation Date:	08/12/08		
Client:	ArcelorN	littal Tecums	seh Redeve	elopment, Ind	Excav	ation Method:	Bobcat 43	80	
Location:	Tecums	eh, Phase III	BPA		Logge	d / Checked By:	BG/BH		
Test Pit Loca					Test Pit	Cross Section:	GRA	SS & TOP	SOIL
Refer to Figure	in the Phase	III report for ex	act location	,,,	Grade -	0'		*******	******
10 19 E OALLE	BPA	3-TP-9				2'—	FIL	L	
	SWMU	I D 10				4'—————————————————————————————————————			
	S VVIVIC	96	48" 51.			6'			
17	BPA	3-TP-00		BPA 3-		8'			
TIME	=	Length:	53A 7.0 ft.	(approx.)		<u> </u>			
	_ 14:30	Width:	2.0 ft.	(approx.)	1	0'			
End:	15:20	Depth:	4.5 ft.	(approx.)		<u>—</u>	1		1
Depth (fbgs)				Symbol & So scription	il		PID Headspace (ppm)	Photos Y / N	Samples Collected (fbgs)
0.0 - 0.5		nd topsoil: noist, silt with s	some slag, lo	oose			NA	Y	NO
0.5 - 2.0	Fill: Gray, mo	ist, Slag fill, de	ense, loose v	when disturbe	d		0.0	Y	YES
2.0 - 4.5	Fill: Brown, m disturbed	oist , Slag fill [,]	with cindery	ash and brick	, dense, loc	se when	0.0	Υ	NO
4.5	End of Te	est Pit							
COMMENTS:									
GROUNDW	ATER ENC	OUNTERED:		✓ YES [NO	If yes, depth	to GW:	4.5'	
VISUAL IMF	PACTS:			YES S	/ NO	Describe:			
OLFACTOR	RY OBSERV	ATIONS:		YES S	/ NO	Describe:			
NON-NATIV	/E FILL EN	COUNTERED	 :	✓ YES [NO		Slag, ash, an	d brick	
OTHER OB	SERVATIO	NS:		YES S	/ NO	Describe:			
SAMPLES (COLLECTE	D:				Sample I.D.:		TP-9 (0-2')	

TP-9 Page 9 of 86

VISUAL IMPACTS:

OLFACTORY OBSERVATIONS:

OTHER OBSERVATIONS:

SAMPLES COLLECTED:

NON-NATIVE FILL ENCOUNTERED:

TEST PIT EXCAVATION LOG

Project No.: 0071-008-300									
Client: ArcelorMittal Tecumseh Redevelopment, Inc. Excavation Method: Case 9030 Logaed / Checked By: BG/BH Test Pit Location: NOT TO SCALE Refer to Figure in the Phase III report for exact location TIME Length: 10.0 ft. (approx.) Start: 11:10 Width: 3.0 ft. (approx.) End: 12:15 Depth: 5.0 ft. (approx.) Depth (fbgs) Grass and topsoil: Brown, moist, Slag fill with cindery ash and silt, dense, loose when disturbed Fill: Dark brown, moist, Slag fill with cindery ash and silt, dense, loose when disturbed COMMENTS:	Project:	Phase III I	BPA Remed	ial Investig	ation	TEST PIT I.D.:	BPA 3	<u>3-TP-10</u>	
Test Pit Location: NOT TO SCALE Refer to Figure in the Phase III report for exact location Test Pit Location: NOT TO SCALE Refer to Figure in the Phase III report for exact location TIME Start: 11:10	Project No.:	0071-00	8-300			Excavation Date:	08/18/08		
Test Pit Location: NOT TO SCALE Refer to Figure in the Phase III report for exact location TIME Start: 11:10 Width: 3.0 ft. (approx.) End: 12:15 Depth: 5.0 ft. (approx.) Depth (fbgs) Grass and topsoil: Brown, moist, silt with some slag, loose Time Start: 10:10 Dark brown, moist, Slag fill with cindery ash and silt, dense, loose when disturbed Fill: Dark brown, moist, Slag fill with cindery ash and silt, dense, loose when disturbed COMMENTS:	Client:	ArcelorN	/littal Tecum	seh Redev	elopment, Inc	Excavation Method:	Case 903	0	
Refer to Figure in the Phase III report for exact location Grade - 0' TIME Start: 11:10	Location:	Tecums	eh, Phase II	I BPA		Logged / Checked By	BG/BH		
Refer to Figure in the Phase III report for exact location Grade - 0' TIME Start: 11:10						Di O O II			
TIME Length: 10.0 ft. (approx.) Start: 11:10 Width: 3.0 ft. (approx.) Depth (fbgs) Grass and topsoil: Brown, moist, silt with some slag, loose 1.0 - 2.0 Fill: Dark brown, moist, Slag fill with cindery ash and silt, dense, loose when disturbed End of Test Pit COMMENTS:				vact location			G]	RASS & TO	OPSOIL
TIME Length: 10.0 ft. (approx.) Start: 11:10 Depth: 5.0 ft. (approx.) Depth (fbgs) One of the start of the s	Neier to rigure	Bt	in report for ex	act location		Grade - 0'		******	*****
TIME Length: 10.0 ft. (approx.) Start: 11:10 Depth: 5.0 ft. (approx.) Depth (fbgs) One of the start of the s	TRANSFORME					21			
TIME Length: 10.0 ft. (approx.) Start: 11:10 Width: 3.0 ft. (approx.) End: 12:15 Depth: 5.0 ft. (approx.) Depth (fbgs) Grass and topsoil: Brown, moist, silt with some slag, loose 1.0 - 2.0 Fill: 2.0 - 5.0 End of Test Pit COMMENTS:						²]	1211	4	
TIME Start: 11:10			-D.10		BPA 3	4'—	1711	414	
TIME Start: 11:10			PA 3-TP	SULON STATE	The state of the s				
TIME Length: 10.0 ft. (approx.) Start: 11:10 Width: 3.0 ft. (approx.) End: 12:15 Depth: 5.0 ft. (approx.) Depth (fbgs) Grass and topsoil: Brown, moist, silt with some slag, loose Fill: 1.0 - 2.0 Dark brown, moist, Slag fill with cindery ash and silt, dense, loose when disturbed Fill: 2.0 - 5.0 End of Test Pit COMMENTS:	3-TP-21		PK MACE	The same		6' —			
TIME Length: 10.0 ft. (approx.) Start: 11:10 Width: 3.0 ft. (approx.) End: 12:15 Depth: 5.0 ft. (approx.) Depth (fbgs) Grass and topsoil: Brown, moist, silt with some slag, loose Fill: 1.0 - 2.0 Dark brown, moist, Slag fill with cindery ash and silt, dense, loose when disturbed Fill: 2.0 - 5.0 End of Test Pit COMMENTS:	3PA 3		Su		N.	0'			
Start: 11:10			Mr.		50	8			
Start: 11:10						10'			
Depth (fbgs) USCS Symbol & Soil Description PID Headspace (ppm) O.0 - 1.0 Grass and topsoil: Brown, moist, silt with some slag, loose 1.0 - 2.0 Fill: Dark brown, moist, Slag fill with cindery ash and silt, dense, loose when disturbed Fill: Dark brown, moist, Slag fill with cindery ash and silt, dense, loose when disturbed Fill: Dark brown, moist, Slag fill with cindery ash and silt, dense, loose when disturbed Fill: Dark brown, moist, Slag fill with cindery ash and silt, dense, loose when disturbed COMMENTS:									
Depth (fbgs) Description Headspace (ppm) Outline (ppm)		12.13	г Берин.				PID		Samples
Grass and topsoil: Brown, moist, silt with some slag, loose 1.0 - 2.0 Fill: Dark brown, moist, Slag fill with cindery ash and silt, dense, loose when disturbed Fill: Dark brown, moist, Slag fill with cindery ash and silt, dense, loose when disturbed Fill: Dark brown, moist, Slag fill with cindery ash and silt, dense, loose when disturbed Fill: Dark brown, moist, Slag fill with cindery ash and silt, dense, loose when disturbed COMMENTS:						il			
Description of Test Pit Comments: Brown, moist, silt with some slag, loose Description of the comments	(fbgs)			De	escription		(ppm)	Y / IN	(fbgs)
Description of Test Pit Comments: Brown, moist, silt with some slag, loose Description of the comments		Grass an	nd topsoil:						
1.0 - 2.0 Dark brown, moist, Slag fill with cindery ash and silt, dense, loose when disturbed Fill: 2.0 - 5.0 Dark brown, moist, Slag fill with cindery ash and silt, dense, loose when disturbed 5.0 End of Test Pit COMMENTS:	0.0 - 1.0			some slag, l	oose		0.6	Υ	YES
1.0 - 2.0 Dark brown, moist, Slag fill with cindery ash and silt, dense, loose when disturbed Fill: 2.0 - 5.0 Dark brown, moist, Slag fill with cindery ash and silt, dense, loose when disturbed 5.0 End of Test Pit COMMENTS:									
1.0 - 2.0 Dark brown, moist, Slag fill with cindery ash and silt, dense, loose when disturbed Fill: 2.0 - 5.0 Dark brown, moist, Slag fill with cindery ash and silt, dense, loose when disturbed 5.0 End of Test Pit COMMENTS:		-							
disturbed Fill: 2.0 - 5.0 Dark brown, moist, Slag fill with cindery ash and silt, dense, loose when disturbed 5.0 End of Test Pit COMMENTS:	10-20		wn moist Sla	a fill with cir	nderv ash and s	silt dense loose when	0.6	Υ	YES
2.0 - 5.0 Dark brown, moist, Slag fill with cindery ash and silt, dense, loose when disturbed 5.0 End of Test Pit COMMENTS:	1.0 2.0			9	idory dorr drid c	om, donos, rocco mion	0.0		120
2.0 - 5.0 Dark brown, moist, Slag fill with cindery ash and silt, dense, loose when disturbed 5.0 End of Test Pit COMMENTS:		1							
disturbed 5.0 End of Test Pit COMMENTS:								.,	
5.0 End of Test Pit COMMENTS:	2.0 - 5.0			g fill with cir	ndery ash and s	silt, dense, loose when	0.2	Y	NO
COMMENTS:		aiotarboa	!						
COMMENTS:									
	5.0	End of Te	est Pit						
GROUNDWATER ENCOUNTERED: VES NO If yes, depth to GW: 5.0'	COMMENTS	:					1		ı
	GROUNDV	VATER FNC	COUNTERED.		- ✓ YES	NO If ves. depth	to GW:	5.0'	

TP-10 Page 10 of 86

✓ NO

✓ NO

NO

NO

Describe:

Describe:

Describe:

Sample I.D.:

Sample I.D.:

Slag and ash

TP-10 (0-2')

YES

YES

YES

YES

Project:	Phase III BPA Remedial Investigation	TEST PIT I.D.:	BPA 3-TP-11
Project No.:	0071-008-300	Excavation Date:	08/15/08
Client:	ArcelorMittal Tecumseh Redevelopment, Inc	Excavation Method:	Case 9030
Location:	Tecumseh, Phase III BPA	Logged / Checked By:	BG/BH

	est Pit Location: NOT TO SCALE efer to Figure in the Phase III report for exact location						ss Section:	√ Gl	RASS & TO	PSOIL
MWN-10	PA3-TP-1	3-TP-12	DOO ON.	2"	000	Grade - 0' - - 2' - 2' - 4' - - 6' -		FIL	.L	
TIMES	_	l amouth.	40.0 #	(22222)	S	8' - -				
TIME Start: End:	= 13:00 13:40	Length: Width: Depth:	10.0 ft. 3.0 ft. 7.0 ft.	(approx.) (approx.) (approx.)		10' -				
Depth (fbgs)				Symbol & S escription	Soil			PID Headspace (ppm)	Photos Y/N	Samples Collected (fbgs)
0.0 - 0.5		d topsoil: oist, silt with	some slag, l	oose				NA	Y	NO
0.5 - 2.0	Fill: Gray, moist, Slag fill with cindery ash, dense, loose when disturbed 0.5 Y YES									
2.0 - 5.0	Fill: Brown, m	oist, Slag fill	with cindery	ash and silt,	dens	se, loose wh	en disturbed	NA	Y	NO
5.0 - 7.0	Fill: Reddish b	orown, moist	to wet (5.5'),	silt (mill sca	ıle?)			NA	Y	NO
7.0	End of Te	est Pit								
COMMENTS:		Uncovei	ed four 12" i	metal pipes o	on 8' (center				
GROUNDW	ATER ENC	OUNTERED		✓ YES		NO	If yes, depth	to GW:	5.5'	
VISUAL IMF	PACTS:			YES	\checkmark	NO	Describe:			
OLFACTOR	Y OBSERV	'ATIONS:		YES	✓	NO	Describe:			
NON-NATIV	/E FILL ENG	COUNTERED):	✓ YES		NO		Slag and ash	ı	
OTHER OB	SERVATIO	NS:		YES	\checkmark	NO	Describe:			
SAMPLES (COLLECTE	D:					Sample I.D.:		TP-11 (0-2)
							Sample I.D.:			

TP-11 Page 11 of 86

Project:	Phase III E	3PA Remedi	al Investig	ation		TE	TEST PIT I.D.: BPA 3-TP-12				
Project No.:	0071-00	8-300				E	cavatio	n Date:	08/15/08		
Client:	ArcelorM	littal Tecums	seh Redev	elopm	ent, Ind	(Ex	cavatio	n Method:	Case 903	30	
Location:	Tecums	eh, Phase III	BPA			Lo	ogged / C	Checked By:	BG/BH		
Test Pit Loca Refer to Figure			act location	AIN.	(A) \(\frac{1}{2}\)		: Pit Cros	ss Section:	_ G	RASS & TO	OPSOIL
BPA	3-TP-12	OL PST CHAMP VO SELOND	12"	SWN			2'— 2'— 4'—		FII	L.	
			BPA 3-1	5VVIV	TO P		6' -				
BPA	3-TP-10	S	"May	140			8'—				
TIMI Start: End:	E 11:40 12:30	Length: Width: Depth:	60.0 ft. 3.0 ft. 6.5 ft.	(app (app (app	rox.)		10'—				
Depth (fbgs)	USCS Symbol & Soil Description								PID Headspace (ppm)	Photos Y / N	Samples Collected (fbgs)
0.0 - 1.5		d topsoil: orown, moist,	silt with son	ne slag	, loose				0.6	Y	YES
1.5 - 6.5	Fill: Brown, m when dist	oist to wet (at urbed	6.0'), Slag	fill with	cindery	/ ash aı	nd brick, (dense, loose	0.0	Y	YES
6.5	End of Te	est Pit									
COMMENTS:	:									•	•
GROUNDW	ATER ENC	OUNTERED:		✓ Y	YES [] NO		If yes, depth t	o GW:	6.0'	
VISUAL IMPACTS: YES V					✓ NO		Describe:				
OLFACTORY OBSERVATIONS: YES						✓ NO		Describe:			
NON-NATIVE FILL ENCOUNTERED: ✓ YES] NO		Slag, ash, and brick			
OTHER OBSERVATIONS: YES						✓ NO		Describe:			
SAMPLES COLLECTED:								Sample I.D.:		TP-12 (0-2')

TP-12 Page 12 of 86

Project:	Phase III BPA Remedial Investig	gation	TEST PIT	I.D.:	BPA 3	3-TP-13	
Project No.:	0071-008-300		Excavatio	n Date:	08/14/08		
Client:	ArcelorMittal Tecumseh Redev	elopment, Inc	Excavatio	n Method:	Bobcat 43	0	
Location:	Tecumseh, Phase III BPA		Logged / (Checked By:	BG/BH		
	ation: NOT TO SCALE in the Phase III report for exact location			Pit Cross Section: GRASS & TOPSOIL			
BPA3-TP	SERR SCHE FORE SCHE FORE CONVEYOR ON STEEL PELT CONE CONVEYOR ON STEEL		Grade - 0' 2' 4' 6' 8'		FII	.L	
TIMI	E Length: 7.0 ft.	(approx.)	10' -				
Start:	16:30 Width: 2.0 ft.	(approx.)	10 -				
End: Depth (fbgs)		(approx.) Symbol & Soil escription		PID Headspace (ppm)	Photos Y/N	Samples Collected (fbgs)	
0.0 - 0.5	Grass and topsoil: Reddish brown, moist, silt with sor	me slag, loose			NA	Υ	NO
0.5 - 2.0	Fill: Gray, moist, Slag fill with cindery a 2.0'), loose when disturbed	ash and brick, de	ense (very den	se from 1.5-	0.5	Y	YES
2.0 - 8.5	Fill: Gray, moist to wet (7.5'), Slag fill w when disturbed	vith cindery ash a	and brick, den	se, loose	1.4	Υ	NO
8.5	End of Test Pit						
COMMENTS							
GROUNDW	/ATER ENCOUNTERED:	- ✓ YES 🗌	NO	If yes, depth	to GW:	7.5'	
VISUAL IM	PACTS:	YES 🗸	NO	Describe:			
OLFACTOR	RY OBSERVATIONS:	YES 🗸	NO	Describe:			
NON-NATI\	/E FILL ENCOUNTERED:	✓ YES	NO	Slag			
OTHER OB	SERVATIONS:		NO	Describe:			
SAMPLES	COLLECTED:	_		Sample I.D.:		TP-13 (0-2')

TP-13 Page 13 of 86

NON-NATIVE FILL ENCOUNTERED:

OTHER OBSERVATIONS:

SAMPLES COLLECTED:

TEST PIT EXCAVATION LOG

Slag and ash

TP-14 (0-2')

Describe:

Sample I.D.:

Sample I.D.:

								DD4 6	TD 44	
Project:		BPA Remedial Ir	nvestigati	on		EST PIT			3-TP-14	
Project No.:						xcavation		08/18/08		
Client:		Mittal Tecumseh		ppment, Ir			n Method:	Case 903	0	
Location:	Tecums	eh, Phase III BP	A		L	.ogged / C	Checked By:	BG/BH		
Test Pit Loc	ation: NOT	TO SCALE			Tes	st Pit Cros	ss Section:	C 1	DACC o To	DEOH
		e III report for exact lo	ocation			ade - 0' 		G	RASS & TO	JPSOIL
		0.75	0-14		U O I O	——————————————————————————————————————				
		BPA 3-TF				2'—				
5								FII	\mathbf{A}	
						4' 				
						6' 				
						_				
2 TP	-15			TINNIA		8'—				
TIM				approx.)		10' <i>-</i>				
Start:	8:00			approx.)		_				
End:	9:40			approx.)				PID		Samples
Depth		ι		mbol & So	lic			Headspace	Photos	Collected
(fbgs)			Desc	cription				(ppm)	Y/N	(fbgs)
	Grass an	nd topsoil:								
0.0 - 1.0		noist, silt with some	e slag, loos	se				0.7	Υ	YES
	Fill:									
1.0 - 3.0		l brown, moist, Sla	g fill with c	indery ash	and si	lt, dense, l	oose when	0.7	Υ	YES
	disturbed	i								
	Fill:									
3.0 - 7.0	Gray and	l brown, moist, Sla			, brick	and little S	Silt, dense,	0.5	Υ	NO
	loose who	en disturbed (very	dense froi	m 3-4')						
7.0	End of Te	est Pit								
COMMENTS	 S:									
		COUNTERED:		YES	□ NO	 O	If yes, depth	to GW:	7.0'	
VISUAL IM					No		Describe:			
	RY OBSERV	/ATIONS·			N(Describe:			

TP-14 Page 14 of 86

✓ YES □ NO

YES V NO

Project:	Phase III BPA Remedial Investigation	TEST PIT I.D.:	BPA 3-TP-15
Project No.:	0071-008-300	Excavation Date:	08/15/08
Client:	ArcelorMittal Tecumseh Redevelopment, Inc	Excavation Method:	Case 9030
Location:	Tecumseh, Phase III BPA	Logged / Checked By:	BG/BH

Test Pit Loca Refer to Figure			act location		Test F	Pit Cross Section:	_ GI	RASS & TO	OPSOIL
A 3-TP-16		BPA 3-TP-	15	MOU		2'	FIL	I.	
TIMI		Length:	10.0 ft.	(approx.)		10'			
Start: End:	13:40 15:00	Width: Depth:	3.0 ft. 7.0 ft.	(approx.)					
Depth (fbgs)		- 1	USCS S	Symbol & S scription	oil		PID Headspace (ppm)	Photos Y / N	Samples Collected (fbgs)
0.0 - 0.5		d topsoil: oist, silt with s	some slag, lo	oose			NA	Y	NO
0.5 - 2.0	Fill: Dark brov disturbed		g fill with cin	dery ash and	d silt, dens	e, loose when	0.2	Y	YES
2.0 - 7.0	Fill: Gray, mo	ist, Slag fill wi	th cindery as	sh, dense, lo	ose when	disturbed	1.4	Y	NO
7.0	End of Te	est Pit							
COMMENTS									
GROUNDW	ATER ENC	OUNTERED:		✓ YES	□ NO	If yes, depth	to GW:	7'	
VISUAL IMI	PACTS:			YES	✓ NO	Describe:			
OLFACTOR					✓ NO	Describe:			
		COUNTERED	:	✓ YES	NO NO		Slag and ash		
OTHER OB				YES	✓ NO	Describe:			
SAMPLES	COLLECTE	D:				Sample I.D.:		TP-15 (0-2)
						Sample I.D.:			

TP-15 Page 15 of 86

Project:	Phase III BPA Remedial Investig	ation	TEST PIT	I.D.:	BPA 3	8-TP-16	
Project No.:	0071-008-300		Excavation	n Date:	08/15/08		
Client:	ArcelorMittal Tecumseh Redev	elopment, Inc	Excavation	n Method:	Case 903	0	
Location:	Tecumseh, Phase III BPA		Logged / 0	Checked By:	BG/BH		
	ation: NOT TO SCALE in the Phase III report for exact location	. 11 Y	Test Pit Cros	ss Section:	GI	RASS & TO	PSOIL
A 3-TP-16	BPA 3-TP-15	Mour	2' — 4' —		FII	L	
)	MWN-10		6' 8' 				
TIMI		(approx.)	10' <i>-</i>				
Start: End:	15:00 Width: 3.0 ft. 15:45 Depth: 7.5 ft.	(approx.) (approx.)	_				
Depth (fbgs)	USCS	Symbol & Soi escription	I		PID Headspace (ppm)	Photos Y / N	Samples Collected (fbgs)
0.0 - 1.0	Grass and topsoil: Brown, moist, silt with some slag, I	oose			0.6	Y	YES
1.0 - 2.0	Fill: Gray, moist, Slag fill with little silt, o	dense, loose wl	hen disturbed		0.6	Y	YES
2.0 - 7.5	Fill: Gray, moist, Slag fill with cindery a	sh, dense, loos	e when disturb	ed	0.9	Y	NO
7.5	End of Test Pit						
COMMENTS	:						
GROUNDW	ATER ENCOUNTERED:	✓ YES	NO	If yes, depth	to GW:	7.5'	
VISUAL IM	PACTS:	YES 🗸	NO	Describe:			
OLFACTOR	RY OBSERVATIONS:		Describe:				
NON-NATI\	VE FILL ENCOUNTERED:	NO NO	 Slag and ash				
OTHER OB	SERVATIONS:	YES 🗸		Describe:			
SAMPLES	COLLECTED:	=		Sample I.D.:		TP-16 (0-2')

TP-16 Page 16 of 86

Project:	Phase III BPA Remedial Investigation	TEST PIT I.D.:	BPA 3-TP-17
Project No.:	0071-008-300	Excavation Date:	08/20/08
Client:	ArcelorMittal Tecumseh Redevelopment, Inc	Excavation Method:	Case 9030
Location:	Tecumseh, Phase III BPA	Logged / Checked By:	BG/BH

	Test Pit Location: NOT TO SCALE Refer to Figure in the Phase III report for exact location						Cross Section: GRASS & TOPSOIL				
BPA 3-TP-17 BPA 3-TP-22 BPA 3-TP-22 BPA 3-TP-21 BPA 3-TP-21						Grade - 0'- 2'- 4'- 6'- 8'-		FIL	.L		
TIME		Length:	15.0 ft.	(approx.)		10'-					
Start: End:	11:00 12:40	Width: Depth:	3.0 ft. 8.0 ft.	(approx.)		-					
Depth (fbgs)			USCS	Symbol & Sescription				PID Headspace (ppm)	Photos Y / N	Samples Collected (fbgs)	
0.0 - 1.0		d topsoil: oist, silt with	some slag, l	oose				1.2	Y	YES	
1.0 - 2.5	Fill: Gray and black, dry, macadam (black top like material) 0.1 Y							NO			
2.5 - 8.0	Fill: Dark brov disturbed	vn, moist, Sla	ng fill with cin	ndery ash ar	nd bric	ck, dense, lo	pose when	3.0	Υ	NO	
8.0	End of Te	est Pit									
COMMENTS:											
GROUNDW	ATER ENC	OUNTERED:		✓ YES		NO	If yes, depth	to GW:	7.5'		
VISUAL IM	PACTS:			YES	✓	NO	Describe:				
OLFACTOR				YES	✓ _	NO	Describe:				
		COUNTERED):	✓ YES		NO		Slag, ash, an	d brick		
OTHER OB				YES	✓	NO	Describe:				
SAMPLES	COLLECTE	D:					Sample I.D.:		TP-17 (0-2)	
							Sample I.D.:				

TP-17 Page 17 of 86

VISUAL IMPACTS:

OLFACTORY OBSERVATIONS:

OTHER OBSERVATIONS:

SAMPLES COLLECTED:

NON-NATIVE FILL ENCOUNTERED:

TEST PIT EXCAVATION LOG

Project:	Phase III E	BPA Remedi	ial Investig	ation	TEST PIT I.D.:	BPA:	3-TP-18	
Project No.:	0071-00	8-300			Excavation Date:	08/20/08		
Client:	ArcelorN	/littal Tecums	seh Redev	elopment, Inc	Excavation Method:	Case 903	30	
Location:		eh, Phase III			Logged / Checked B	v: BG/BH		
						-		
Test Pit Loca					Test Pit Cross Section:	: G	RASS & TO	OPSOIL
Refer to Figure	in the Phase	III report for ex	act location		Grade - 0'		*********	*********
P-41	BPA .	BPA 3-T	P-18	D WARMIN	2' — 4' — 6' —	FII	A.	
		1000 Mg-TF	5-20		8'-			
TIM	F	Length:	15.0 ft.	(approx.)				
Start:	12:40	Width:	3.0 ft.	(approx.)	10'			
End:	14:00	Depth:	7.0 ft.	(approx.)		•	ı	
Depth (fbgs)				Symbol & Soi escription	I	PID Headspace (ppm)	Photos Y/N	Samples Collected (fbgs)
0.0 - 0.5		nd topsoil: noist, silt with s	some slag, l	oose		0.2	Y	YES
0.5 - 7.0	Fill: Brown, m disturbed		with cindery	ash, brick and	little Silt, dense, loose whe	en 0.2	Y	YES
7.0	End of Te	∍st Pit						
COMMENTS	<u> </u>							<u> </u>
		COUNTERED:		✓ YES □	NO If yes, dept	th to GW:	7.0'	

TP-18 Page 18 of 86

✓ NO

✓ NO

NO

NO

Describe:

Describe:

Describe:

Sample I.D.:

Sample I.D.:

Slag, ash, and brick

TP-18 (0-2')

YES

YES

YES

YES

Project:	Phase III BPA Remedial Investigation	TEST PIT I.D.:	BPA 3-TP-19
Project No.:	0071-008-300	Excavation Date:	08/20/08
Client:	ArcelorMittal Tecumseh Redevelopment, Inc	Excavation Method:	Case 9030
Location:	Tecumseh, Phase III BPA	Logged / Checked By:	BG/BH

TIME Length: 10.0 ft. (approx.) Start: 14:00 Width: 3.0 ft. (approx.) End: 14:40 Depth: 8.0 ft. (approx.) Depth (fbgs) USCS Symbol & Soil Description PID Headspace (ppm) PyN Collected (fbgs)	Test Pit Loca						Test P	t Cross Section:	oss Section: — GRASS & TOPSOIL				
TiME	Refer to Figure	in the Phase	III report for ex	xact location			Grade	- 0'					
Start: 14:00	10 00 A 3-TP-20							2' — 4' — 6' —	FILL				
End: 14:40 Depth: 8.0 ft. (approx.) I USCS Symbol & Soil Description Photos Collected (fbgs) Depth (fbgs) Grass and topsoil:								10'					
Description	End:	14:40	Depth:	8.0 ft.									
No.									Headspace		Collected		
Brown, moist, Slag fill with cindery ash and little Silt, dense, loose when disturbed Fill: Brown, moist, Slag fill with cindery ash, brick and little Silt, dense, loose when disturbed 8.0 End of Test Pit COMMENTS: GROUNDWATER ENCOUNTERED: VISUAL IMPACTS: OLFACTORY OBSERVATIONS: VISUAL IMPACTS: NON-NATIVE FILL ENCOUNTERED: VISUAL	0.0 - 0.5			some slag, l	oose				0.2	Υ	YES		
2.5 - 8.0 Brown, moist, Slag fill with cindery ash, brick and little Silt, dense, loose when disturbed 8.0 End of Test Pit COMMENTS: GROUNDWATER ENCOUNTERED: VISUAL IMPACTS: OLFACTORY OBSERVATIONS: NO VISUAL ENCOUNTERED: VES NO Describe: NON-NATIVE FILL ENCOUNTERED: VES NO Describe: NON-NATIVE FILL ENCOUNTERED: VES NO Describe: Sample I.D.: TP-19 (0-2')	0.5 - 2.5	Brown, m		with cindery	ash and	l little Si	ilt, dense	, loose when	0.2	Y	YES		
COMMENTS: GROUNDWATER ENCOUNTERED: VYES NO Describe: OLFACTORY OBSERVATIONS: NON-NATIVE FILL ENCOUNTERED: VYES NO Describe: NON-ROBSERVATIONS: VYES NO Describe: NO Slag, ash, and brick OTHER OBSERVATIONS: YES NO Describe: SAMPLES COLLECTED: Sample I.D.: TP-19 (0-2')	2.5 - 8.0	Brown, m		with cindery	ash, brid	ck and	little Silt,	dense, loose when	0.2	Y	NO		
GROUNDWATER ENCOUNTERED: VISUAL IMPACTS: OLFACTORY OBSERVATIONS: NON-NATIVE FILL ENCOUNTERED: OTHER OBSERVATIONS: SAMPLES COLLECTED: VYES NO If yes, depth to GW: Describe: NO Describe: NO Slag, ash, and brick Describe: Sample I.D.: TP-19 (0-2')	8.0	End of Te	est Pit										
VISUAL IMPACTS: OLFACTORY OBSERVATIONS: NON-NATIVE FILL ENCOUNTERED: OTHER OBSERVATIONS: SAMPLES COLLECTED: VES V NO Describe: NO Slag, ash, and brick Describe: Sample I.D.: TP-19 (0-2')	COMMENTS:												
OLFACTORY OBSERVATIONS: NON-NATIVE FILL ENCOUNTERED: VES NO Slag, ash, and brick OTHER OBSERVATIONS: YES NO Describe: SAMPLES COLLECTED: Sample I.D.: TP-19 (0-2')	GROUNDW	ATER ENC	OUNTERED:	:	✓ YE	ES] NO	If yes, depth	to GW:	8.0'			
NON-NATIVE FILL ENCOUNTERED: OTHER OBSERVATIONS: SAMPLES COLLECTED: VES V NO Describe: Sample I.D.: TP-19 (0-2')	VISUAL IMF	PACTS:			YE	ES 🗸] NO	Describe:					
OTHER OBSERVATIONS: YES NO Describe: SAMPLES COLLECTED: Sample I.D.: TP-19 (0-2')	OLFACTOR	RY OBSERV	'ATIONS:		YE	ES 🗸] NO	Describe:					
SAMPLES COLLECTED: Sample I.D.: TP-19 (0-2')	NON-NATI\	/E FILL ENG	COUNTERED):	✓ YE	ES] NO		Slag, ash, an	nd brick			
	OTHER OB	SERVATIO	NS:		YE	ES 🗸] NO	Describe:					
Sample I.D.:	SAMPLES (COLLECTE	D:					Sample I.D.:		TP-19 (0-2)		
								Sample I.D.:					

TP-19 Page 19 of 86

Project:	Phase III BPA Remedial Investigation	TEST PIT I.D.:	BPA 3-TP-20
Project No.:	0071-008-300	Excavation Date:	08/20/08
Client:	ArcelorMittal Tecumseh Redevelopment, Inc	Excavation Method:	Case 9030
Location:	Tecumseh, Phase III BPA	Logged / Checked By:	BG/BH

	Pit Location: NOT TO SCALE to Figure in the Phase III report for exact location						Cross Section: GRASS & TOPSOIL				
p-41	SPA R(I	BPA 3-TF	5.20	D WAR	MIE G	6rade - 0' — 2' — 4' — 6' —		FII	A.		
- TIME		Longth:	10.0 ft.	(approx		8' -					
	- 14:40	Length: Width:	3.0 ft.	(approx.)		10'—					
End:	15:15	Depth:	7.0 ft.	(approx.))						
Depth (fbgs)				Symbol & secription	Soil			PID Headspace (ppm)	Photos Y / N	Samples Collected (fbgs)	
0.0 - 0.5		d topsoil: oist, silt with	some slag, I		0.0	Y	YES				
0.5 - 1.0	Fill: Brown, m disturbed	oist, Slag fill v	with cindery	when	0.0	Y	YES				
1.0 - 7.0	Fill: Brown, m disturbed	oist, Slag fill v	with cindery	ash, brick	and littl	le Silt, dense	, loose when	0.0	Y	NO	
7.0	End of Te	st Pit									
COMMENTS:											
GROUNDW	ATER ENC	OUNTERED:		✓ YES		NO	If yes, depth t	o GW:	7.0'		
VISUAL IMF	PACTS:			YES	✓	NO	Describe:				
OLFACTOR	RY OBSERV	ATIONS:		YES	✓	NO	Describe:				
NON-NATI\	/E FILL ENC	COUNTERED):	✓ YES		NO		Slag, ash, an	d brick		
OTHER OB	SERVATIO	NS:		YES	\checkmark	NO	Describe:				
SAMPLES (COLLECTE	D:					Sample I.D.:		TP-20 (0-2')	
							Sample I.D.:				

TP-20 Page 20 of 86

NON-NATIVE FILL ENCOUNTERED:

OTHER OBSERVATIONS:

SAMPLES COLLECTED:

TEST PIT EXCAVATION LOG

Slag, ash, and brick

TP-21 (0-2')

Project:	Phase III F	BPA Remedial Investi	gation		TEST P	IT I D ·	RPA 1	3-TP-21	
Project No.:	0071-008		ganon			ion Date:	08/20/08	, 11 21	
Client:		littal Tecumseh Rede	velopme	ent Inc		ion Method:	Case 903	0	
Location:		eh, Phase III BPA	Tolopino	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		/ Checked By:	BG/BH		
Location.	rocarnoc	71, 1 Hadd III 21 71			Loggod	7 Onochod By:	20,2		
Test Pit Loc					Test Pit C	ross Section:	_ G	RASS & TO	OPSOIL
Refer to Figure	e in the Phase	III report for exact location			Grade - 0		<u> </u>	*********	*********
3-TP-2	1	- 2A	$\setminus H$		0	_			
BPA	FARE PLVA.	2PA 3-TP-2			2		FII	¥	
TO DEPT.	D-25		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	J-TP	4	-			
BPA 3-	, ·		BLI	\		_			
TO ATE ORM	BPA 3-T	P-31	\ \		6				
P-32	BPAROM	₩ 	\ \	-\\	8	· - 			
TIM	F I	Length: 8.0 ft.	(appr	ox)					
Start:	8:00	Width: 3.0 ft.	(appr		10				
End:	9:20	Depth: 6.0 ft.	(appr	ox.)			1		ı
Depth		USCS	Symbol	l & Soil			PID Headspace	Photos	Samples Collected
(fbgs)		Γ	Description	on			(ppm)	Y/N	(fbgs)
	Grass and	d tonsoil:					/		
0.0 - 0.5		oist, silt with some slag	loose				3.1	Υ	YES
0.5 - 2.5	Fill:	st, Slag fill and little Silt	voru dor	200			3.1	Υ	YES
	Gray, mor	st, slag illi arid little slit	, very der	156					
	fill:								
2.5 - 6.0		brown, moist, Gravel w	ith little S	ilt and tr	ace Slag fill	(with cindery	0.5	Υ	NO
	ash, and b	orick), dense, loose whe	en disturb	ed					
6.0	End of Te	st Pit							
COMMENTS	:						ı		1
		OUNTERED:		ES 🗌	NO _	If yes, depth	to GW:	6.0'	
VISUAL IMPACTS: YES ✓					NO —	Describe:			
					NO _	Describe:			

TP-21 Page 21 of 86

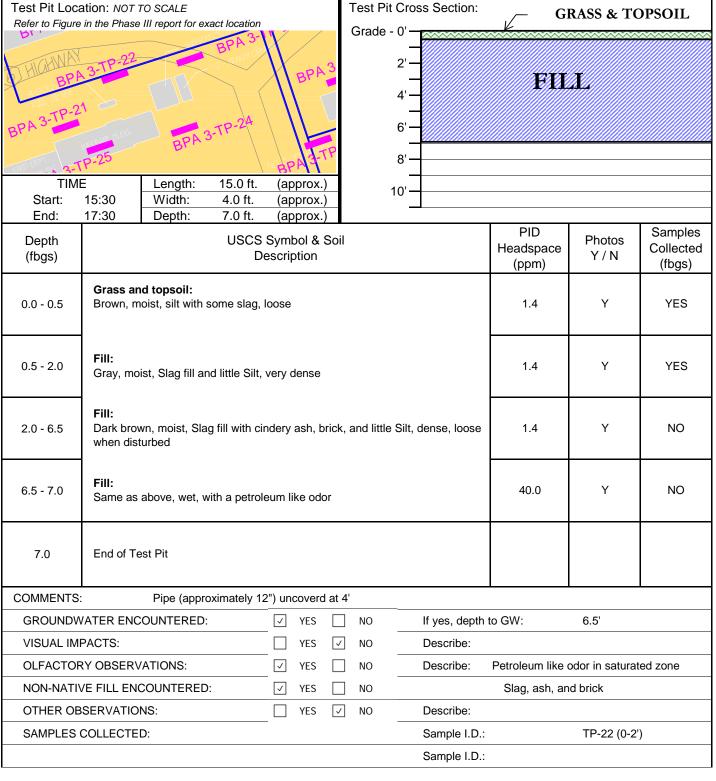
NO

NO

Describe:

Sample I.D.:

Sample I.D.:


 \checkmark

YES

YES

BPA 3-TP-22 Project: Phase III BPA Remedial Investigation TEST PIT I.D.: 0071-008-300 08/19/08 Project No.: **Excavation Date:** ArcelorMittal Tecumseh Redevelopment, Inc Case 9030 Client: **Excavation Method:** Tecumseh, Phase III BPA Location: Logged / Checked By: BG/BH

TP-22 R Page 22 of 86

VISUAL IMPACTS:

OLFACTORY OBSERVATIONS:

OTHER OBSERVATIONS:

SAMPLES COLLECTED:

NON-NATIVE FILL ENCOUNTERED:

TEST PIT EXCAVATION LOG

Project:	Phase III E	BPA Remedi	al Investig	ation	TEST PIT I.D.:	BPA 3	3-TP-23	
Project No.:	0071-00	8-300			Excavation Date:	08/20/08		
Client:	ArcelorN	littal Tecums	eh Redev	elopment, Inc	Excavation Method:	Case 903	0	
Location:	Tecums	eh, Phase III	BPA		Logged / Checked By	: BG/BH		
Test Pit Loca					Test Pit Cross Section:	G	RASS & TO	PSOIL
MOULD PARTIE	-17	III report for exa	act location	12 / L-23	Grade - 0'	<u> </u>		
DHIGHWAY BPA	3-TP-22	SIESTM	BPA 3-	BPA 3	4'— 6'—	FII	A.	
RPA 3-TP-2	1		TP-24		8'-			
TIM Start:	E 10:10	Length: Width:	8.0 ft. 3.0 ft.	(approx.) (approx.)	10'			
End:	11:00	Depth:	6.0 ft.	(approx.)				
Depth (fbgs)			USCS	Symbol & Soi	il	PID Headspace (ppm)	Photos Y / N	Samples Collected (fbgs)
0.0 - 0.5		nd topsoil: noist, silt with s	ome slag, l	oose		1.0	Y	YES
0.5 - 2.5	Fill: Gray, mo	ist, Slag fill an	d little Silt,	dense (very de	nse 1.5-2.0)	1.0	Y	YES
2.5 - 6.0	Fill: Brown, m	oist, Slag fill w	vith cindery	ash and brick,	dense, loose when disturbed	d 0.2	Y	NO
6.0	End of Te	est Pit						
COMMENTS	:							
GROUNDY	VATER ENC	OUNTERED.		_ ✓ YES □	NO If yes, depth	n to GW:	6.0'	

TP-23 Page 23 of 86

YES V NO

☐ YES ✓ NO

 \checkmark

NO

NO

YES

YES

Describe:

Describe:

Describe:

Sample I.D.:

Sample I.D.:

Slag, ash, and brick

TP-23 (0-2')

NON-NATIVE FILL ENCOUNTERED:

OTHER OBSERVATIONS:

SAMPLES COLLECTED:

TEST PIT EXCAVATION LOG

Slag, ash, and brick

TP-24 (0-2')

Describe:

Sample I.D.:

Sample I.D.:

Project:	Phase III B	SPA Remedial	Investiga	ntion		TEST PIT	I.D.:	BPA 3	8-TP-24	
Project No.:	0071-008	3-300				Excavatio	n Date:	08/19/08		
Client:	ArcelorM	ittal Tecumsel	h Redeve	lopment, li	nc	Excavatio	n Method:	Case 903	0	
Location:	Tecumse	h, Phase III B	BPA			Logged / 0	Checked By:	BG/BH		
Test Pit Location: NOT TO SCALE Refer to Figure in the Phase III report for exact location						est Pit Cro Grade - 0' –	ss Section:	G	RASS & TO	OPSOIL
BPA 3-TP-2	A 3-TP-22 21 21 21 20 NO.	BPA 3-	BPA 3-1	BPA,	3	2' 2' 4' 6' 8'		FII	.I.	
TIM	E	Length:	6.0 ft.	(approx.)	<i>/</i>	4.01				
Start:	12:55		4.0 ft.	(approx.)		10' <i>-</i>				
End: Depth (fbgs)	13:40	Depth:		(approx.) Symbol & S scription	oil			PID Headspace (ppm)	Photos Y / N	Samples Collected (fbgs)
0.0 - 0.5	Grass and Brown, mo	d topsoil: oist, silt with sor	me slag, lo	ose				0.4	Υ	YES
0.5 - 1.5	Fill: Brown, mo	oist, Slag fill and	d little Silt,	dense, loos	e whe	en disturbed		0.4	Y	YES
1.5 - 5.5		own, moist, Slaç Silt (mill scale?),					ete pieces,	0.4	Y	YES
5.5	End of Tes	st Pit								
COMMENTS	::									
GROUNDW	VATER ENC	OUNTERED:		✓ YES		NO	If yes, depth	to GW:	5.5'	
VISUAL IM	PACTS:			YES	✓	NO	Describe:			
						Describe:				

TP-24 Page 24 of 86

✓ YES NO

YES V NO

Project:	Phase III I	BPA Remedial Investi	gation	TEST PIT	I.D.:	BPA 3	8-TP-25	
Project No.:	0071-00	8-300		Excavation Date: 08/20/08				
Client:	ArcelorN	/littal Tecumseh Rede	elopment, Inc	Excavation	n Method:	Case 903	0	
Location:	Tecums	eh, Phase III BPA		Logged /	Checked By:	BG/BH		
Test Pit Loca				Test Pit Cro	ss Section:	∠ CON	CRETE	
Refer to Figure	in the Phase	III report for exact location		Grade - 0' -	^~~~~	- K		×××××××
BPA 3-TP-2	1	2-TP-24		2' -		VOID		
VAND DEPT.	P-25	BPA	APA 3-TP	4' <i>-</i>		FIL	Ä.	
BPAS				6' -				
6-32-0-5')	BPA 3-T	P-31		_				
No.	THICKE	TP-30		8'-				
TIMI		Length: 7.0 ft.	(approx.)	10' <i>-</i>				
Start:	9:20	Width: 4.0 ft.	(approx.)	-				
End:	10:10	Depth: 7.0 ft.	(approx.)	_		PID		Samples
Depth (fbgs)			Symbol & Soi escription			Headspace	Photos Y / N	Collected
(fbgs)			escription			(ppm)	1 / IN	(fbgs)
0.0 - 0.5	Concrete	e with Rebar:				NA	Υ	NO
0.5 - 3.0	Void: Crawl spa	ace for former building				NA	Υ	NO
3.0 - 7.0		brown, moist, Silt with s sh, and brick), dense, loo			Slag fill (with	0.5	Υ	YES
7.0	End of Te	est Pit						
COMMENTS	:							
GROUNDW	ATER ENC	OUNTERED:	✓ YES [] NO	If yes, depth t	o GW:	7.0'	
VISUAL IM	PACTS:		YES 🗸		Describe:			
OLFACTOR	RY OBSERV	/ATIONS:	☐ YES ✓] NO	Describe:			
NON-NATI\	VE FILL EN	COUNTERED:	✓ YES] NO		Slag, ash, an	d brick	
OTHER OB	SERVATIO	NS:	YES 🗸] NO	Describe:			
SAMPLES	COLLECTE	D:			Sample I.D.:		TP-25 (3-7')	1

TP-25 Page 25 of 86

Project:	Phase III BPA Remedial Investigation	TEST PIT I.D.:	BPA 3-TP-26
Project No.:	0071-008-300	Excavation Date:	08/15/08
Client:	ArcelorMittal Tecumseh Redevelopment, Inc	Excavation Method:	Case 9030
Location:	Tecumseh, Phase III BPA	Logged / Checked By:	BG/BH

Test Pit Location: NOT TO SCALE Refer to Figure in the Phase III report for exact location	,		Test Pit Cross Section: GRASS & TOPSOIL					
TIME Length: 10.0 ft. Start: 11:00 Width: 3.0 ft. End: 11:40 Depth: 14.0 ft.	TRAVES ORIVERS	Grade	12' — Silt and Clay 20' —					
Depth USCS	S Symbol & S Description	oil		PID Headspace (ppm)	Photos Y / N	Samples Collected (fbgs)		
Grass and topsoil: 0.0 - 1.0 Brown, moist, silt with some slag,	Grass and topsoil: Brown, moist, silt with some slag, loose							
Fill: 1.0 - 12.0 Fill: Brown and black, moist to wet (at when disturbed	Brown and black, moist to wet (at 5.5'), Slag fill with cindery ash, dense, loose							
Silt and Clay: Brown, moist, Silt with some Clay	, low plasticity	′,		NA	N	NO		
14.0 End of Test Pit								
COMMENTS:								
GROUNDWATER ENCOUNTERED:	✓ YES	☐ NO	If yes, depth	to GW:	5.5'			
VISUAL IMPACTS:	YES	✓ NO	Describe:					
OLFACTORY OBSERVATIONS:	YES	✓ NO	Describe:					
NON-NATIVE FILL ENCOUNTERED:	✓ YES	☐ NO		Slag and ash	1			
OTHER OBSERVATIONS:	YES	✓ NO	Describe:	Describe:				
SAMPLES COLLECTED:		Sample I.D.:		TP-26 (0-1)			
			Sample I.D.:					

TP-26 Page 26 of 86

Project:	Phase III BPA Remedial Investigation	TEST PIT I.D.:	BPA 3-TP-27
Project No.:	0071-008-300	Excavation Date:	08/15/08
Client:	ArcelorMittal Tecumseh Redevelopment, Inc	Excavation Method:	Case 9030
Location:	Tecumseh, Phase III BPA	Logged / Checked By:	BG/BH

	ation: NOT TO S in the Phase III re	CALE eport for exact loca	tion				t Cross Section: GRASS & TOPSOIL				
BPA 3-TP	NBPA	ength: 10.0	ft. (appro	S S	Grade	2' — 2' — 4' — 6' — 8' —		FII	IL.		
Start: End:	10:30 V	Vidth: 3.0 f	t. (appro	x.)		10'	Cla	ay			
Depth (fbgs)	·		CS Symbol Description	& Soil				PID Headspace (ppm)	Photos Y/N	Samples Collected (fbgs)	
0.0 - 0.5	Grass and to Reddish brow	opsoil: vn, moist, silt with	some slag, lo		NA	Y	NO				
0.5 - 4.0	Fill: Brown, moist, Slag fill with little Silt, dense, loose when disturbed							0.7	Y	YES	
4.0 - 8.5	Fill: Brown, moist when disturbe	to wet (4.5'), Slaged	g fill with cind	ery asł	n and br	rick, den	se, loose	NA	Y	NO	
8.5 - 9.0	Silty Clay: Brown, moist,	, Silty Clay, medi	um plasticity,	firm				NA	Y	NO	
9.0	End of Test P	Pit									
COMMENTS:											
GROUNDW	ATER ENCOU	NTERED:	✓ YES	s 🗌	NO		If yes, depth	to GW:	4.5'		
VISUAL IMI	PACTS:		YES	s 🗸	NO		Describe:				
OLFACTOR	RY OBSERVATION	ONS:	YES	s 🗸	NO		Describe:				
NON-NATI\	NON-NATIVE FILL ENCOUNTERED:						Slag, ash, and brick				
OTHER OB	OTHER OBSERVATIONS: YES						Describe:	be:			
SAMPLES (SAMPLES COLLECTED:						Sample I.D.:	.D.: TP-27 (0-2')			
							Sample I.D.:				

TP-27 Page 27 of 86

Project:	Phase III BPA Remedial Investiga	Phase III BPA Remedial Investigation TEST PIT I.D.:									
Project No.:	0071-008-300		Excavat	tion Date:	08/15/08						
Client:	ArcelorMittal Tecumseh Redeve	elopment, Ind	Excavat	tion Method:	Case 903	0					
Location:	Tecumseh, Phase III BPA		Logged	/ Checked By:	BG/BH						
	ation: NOT TO SCALE in the Phase III report for exact location	Test Pit C Grade - 0	Pit Cross Section: GRASS & TOPSOIL								
BPA 3-TP	BPA 3-TP-28 BPA 3-	TP-21	2 4 6	- - - -	FII	I.					
3-TP-30	1011 51	STEEL PIV	8	'							
TIMI		(approx.)	10	'-							
Start: End:	9:40 Width: 3.0 ft. 10:30 Depth: 7.0 ft.	(approx.) (approx.)									
Depth (fbgs)	USCS S	PID Headspace (ppm)	Photos Y/N	Samples Collected (fbgs)							
0.0 - 0.5	Grass and topsoil: Reddish brown, moist, silt with som		NA	Y	NO						
0.5 - 2.0	Fill: Brown, moist, Slag fill with cindery	ash and brick,	dense, loose	when disturbed	0.9	Y	YES				
2.0 - 7.0	Fill: Yellowish brown, moist to wet (5.5) when disturbed), Slag fill with	cindery ash,	dense, loose	1.4	Y	NO				
7.0	End of Test Pit										
COMMENTS					<u> </u>		I.				
GROUNDW	ATER ENCOUNTERED:	✓ YES [NO	If yes, depth	to GW:	5.5'					
VISUAL IMI	PACTS:	YES V	NO	Describe:							
OLFACTOR	RY OBSERVATIONS:	YES -	NO -	Describe:							
NON-NATI\	/E FILL ENCOUNTERED:	✓ YES [NO	Slag, ash, and brick							
OTHER OB	SERVATIONS:	YES -	/ NO	Describe:							
SAMPLES	COLLECTED:		Sample I.D.:		TP-28 (0-2')					

TP-28 Page 28 of 86

Project:	Phase III B	BPA Remed	ial Investig	ation			TEST PI	T.D.:	BPA 3	3-TP-29	
Project No.:	0071-00	8-300					Excavation	n Date:	08/18/08		
Client:	ArcelorM	littal Tecum	seh Redev	elopm	nent, I	nc	Excavation	n Method:	Case 903	0	
Location:	Tecums	eh, Phase II	BPA				Logged /	Checked By:	BG/BH		
Test Pit Loca Refer to Figure			act location					oss Section:	G1	RASS & TO	PSOIL
BPA	3-11	, 			B. 3		Grade - 0' - -				
32 (P. 32 (N 5')	BPA	3-TP-31					2' <i>-</i> -		FII	Л.	
SW.	/MU P-23	BPA 3	-TP-30	311 51.			4'-		7.77		
S MAN		NOTOR ROOM BPA	TP-CO	_	$\overline{}$		6' - - 8' -				
2.	Z CN PINC	//		<u>, ~-</u>	1		-				
TIME Start:	± 12:55	Length: Width:	10.0 ft. 3.0 ft.		orox.) orox.)		10'-				
End:	13:40	Depth:	7.5 ft.		orox.)		_				
Depth (fbgs)	USCS Symbol & Soil Description							PID Headspace (ppm)	Photos Y/N	Samples Collected (fbgs)	
0.0 - 0.5		d topsoil: oist, silt with	some slag, l	oose					0.5	Y	YES
0.5 - 3.5	Fill: Brown, m disturbed	oist, Slag fill v	with cindery	ash aı	nd little	e Silt	, dense, loos	se when	0.5	Y	YES
3.5 - 7.5	Fill: Brown, m disturbed	_	vith cindery	ash, b	orick a	nd li	ttle Silt, dens	se, loose when	0.2	Υ	NO
7.5	End of Te	est Pit									
COMMENTS:											
GROUNDW	/ATER ENC	OUNTERED:		✓	YES		NO	If yes, depth	to GW:	7.5'	
VISUAL IM	PACTS:				YES	√	NO	Describe:			
OLFACTOR	RY OBSERV	ATIONS:			YES	_	NO	Describe:			
NON-NATI\							NO	Slag and ash			
OTHER OB	SERVATIO	NS:			YES	$\overline{\ }$	NO	Describe:	-		
SAMPLES								Sample I.D.:		TP-29 (0-2')

TP-29 Page 29 of 86

Project:	Phase III BPA Remedial Investigation	TEST PIT I.D.:	BPA 3-TP-30
Project No.:	0071-008-300	Excavation Date:	08/18/08
Client:	ArcelorMittal Tecumseh Redevelopment, Inc	Excavation Method:	Case 9030
Location:	Tecumseh, Phase III BPA	Logged / Checked By:	BG/BH

Test Pit Location: NOT TO SCALE Refer to Figure in the Phase III report for exact location					Test Pit Cr Grade - 0'	ross Section:	GRASS & TOPSOIL				
SWMU P-23 BPA 3-TP-30 BPA 3-T					2' 4' 6' 8'		FILL				
TIME Length: 10.0 ft. (approx.) Start: 12:15 Width: 3.0 ft. (approx.)					10'		1				
End:	12:55	Depth:	10.0 ft.	(approx.)		Silt with Clay					
Depth (fbgs)				Symbol & So escription	il		PID Headspace (ppm) Photos Y / N Samples Collected (fbgs)				
0.0 - 0.5		nd topsoil: noist, silt with	some slag, l		0.4	Y	YES				
0.5 - 3.5	Fill: Brown an disturbed	• •	:, Slag fill wit	e, loose when	0.4	Y	YES				
3.5 - 9.0		nd gray, moist (very dense		e, loose when	0.0	Y	NO				
9.0 - 10.0	Silt with Brown, m	Clay: oist, Silt with	little Clay, lo		NA	Y	NO				
10.0	End of Test Pit										
COMMENTS:											
GROUNDW	ATER ENC	OUNTERED	:	✓ YES [NO	If yes, depth	to GW:	7.5'			
VISUAL IMF	PACTS:			YES S	/ NO	Describe:					
OLFACTOR	RY OBSERV	/ATIONS:		YES S	/ NO _	Describe:					
NON-NATI\	/E FILL EN	COUNTERED	D:	✓ YES [NO		Slag and ash				
OTHER OB	SERVATIO	NS:		YES [NO _	Describe:					
SAMPLES (COLLECTE	D:				Sample I.D.:		TP-30 (0-2')		
						Sample I.D.:					

TP-30 Page 30 of 86

NON-NATIVE FILL ENCOUNTERED:

OTHER OBSERVATIONS:

SAMPLES COLLECTED:

TEST PIT EXCAVATION LOG

Slag, ash, and brick

TP-31 (0-2')

Describe:

Sample I.D.:

Sample I.D.:

Project:	Phase III E	BPA Remedial	Investiga	tion		TEST P	TEST PIT I.D.: BPA 3-TI				
Project No.:	0071-008-300					Excavat	on Date:	08/19/08			
Client:	ArcelorMittal Tecumseh Redevelopment, Inc					Excavation Method: Case 9030					
Location:	Tecums	eh, Phase III B	3PA			Logged	/ Checked By:	BG/BH			
Test Pit Loca	ation: NOT	TO SCALE			Тт	est Pit C	oss Section:		D 1 00 0 TI		
			t location			GRASS & TUPSUIL					
Refer to Figure in the Phase III report for exact location BPA 3-TP-21 BPA 3-TP-25 BPA 3-TP-31 BPA 3-TP-31						Grade - 0' 2' 4' 6' 8'		FILL			
TIME			10.0 ft.	(approx.)		10'					
Start:	13:40		3.0 ft.	(approx.)		.0					
End: Depth (fbgs)	14:20	Depth:		(approx.) ymbol & s scription		PID Headspace (ppm)	Photos Y / N	Samples Collected (fbgs)			
0.0 - 0.5		d topsoil: prown, moist, sil	t with some	e slag, loos	se		0.5	Y	YES		
0.5 - 1.5	Fill: Reddish l	prown, moist, Sl	ag fill and li	n disturbed	0.5	Y	YES				
1.5 - 7.0	Fill: Dark gray, moist, Slag fill with cindery ash, brick, and little Silt (mill scale?), dense, loose when disturbed								Y	YES	
7.0	End of Test Pit										
COMMENTS:	:										
GROUNDWATER ENCOUNTERED:						NO	If yes, depth	to GW:	7.0'		
VISUAL IMPACTS:						NO	Describe:				
OLFACTORY OBSERVATIONS: YES						NO	Describe:				

TP-31 Page 31 of 86

✓ YES NO

YES V NO

SAMPLES COLLECTED:

TEST PIT EXCAVATION LOG

Project:	Phase III	BPA Remedial Inves	tigation	TEST PIT	I.D.:	BPA 3-TP-32					
Project No.:	0071-00	8-300		Excavation	n Date:	08/19/08					
Client:	ArcelorN	/littal Tecumseh Red	evelopment, Inc	Excavation	n Method:	Case 903	0				
Location:	Tecums	eh, Phase III BPA		Logged / (Checked By:	BG/BH					
Test Pit Loca		TO SCALE Ill report for exact location	on	Test Pit Cros	ss Section:	GRASS & TOPSOIL					
	\3	BPA		Grade - 0'-	~~~~~~ ///////////////////////////////			~~~~~			
	BPA 3-TP	BPA(3	TP-31	2'-		FILL					
ROCEN	N.	SWMU P-23	BPA 3-11	4' <i>-</i> -							
3-TP	33	W. John W.	CORPONDA 3-IF	6'—							
BPA	S	N P7 NEW		8' <i>-</i>							
rete Pari TIME		77 40 2	(opprov.)	_							
Start:	_ 11:30	Length: 10.0 ft Width: 3.0 ft.		10'-							
End:	12:55	Depth: 7.5 ft.		_							
Depth		USC	S Symbol & So	il		PID	Photos	Samples Collected			
(fbgs)			Description			Headspace (ppm)	Y/N	(fbgs)			
0.0 - 0.5		nd topsoil: noist, silt with some sla		1.2	Υ	YES					
0.5 - 2.0	Fill: Brown, m	noist, Slag fill and little		1.2	Y	YES					
2.0 - 7.5		noist, Slag fill with cinde loose when disturbed	2.3	Y	NO						
7.5	End of Te	est Pit									
COMMENTS:		Uncover 12" pipe at	7'								
GROUNDW	ATER ENC	OUNTERED:	✓ YES		If yes, depth	to GW:	7.5'				
VISUAL IMF	PACTS:		YES V	NO O	Describe:						
OLFACTOR	RY OBSER\	/ATIONS:	/ NO	Describe:							
NON-NATI\	/E FILL EN	COUNTERED:	NO		Slag, ash, an	d brick					
OTHER OR	SER\/ATIO	NS.			Describe:						

TP-32 Page 32 of 86

Sample I.D.:

Sample I.D.:

TP-32 (0-2')

BPA 3-TP-33 Phase III BPA Remedial Investigation TEST PIT I.D.: Project: 0071-008-300 08/19/08 Project No.: **Excavation Date:** ArcelorMittal Tecumseh Redevelopment, Inc Case 9030 Client: **Excavation Method:** Tecumseh, Phase III BPA BG/BH Location: Logged / Checked By:

Test Pit Location: NOT TO SCALE Refer to Figure in the Phase III report for exact location							st Pit Cross Section: GRASS & TOPSOIL				
SWMU P-23 BPA 3-TP-34 BPA 3-TP-36 BPA 3-TP							2' — 4' — 6' — 8' — 0' — 0' — 6' — 6' — 6' — 6' — 6' — 6	FILL			
Start: End:	10:50 11:30	Width: Depth:	3.0 ft. 10.5 ft.	(approx.			Clay —	1			
Depth (fbgs)	11.00	Ворин.	USCS	Symbol & escription			J	PID Headspace (ppm)	Photos Y/N	Samples Collected (fbgs)	
0.0 - 0.5		d topsoil: orown, moist,	silt with som	ne slag, loos	se			0.7	Y	YES	
0.5 - 1.5	Fill: Reddish b when dist		Slag fill with	dense, loose	0.7	Y	YES				
1.5 - 10.0		oist to wet (7. en disturbed	.5'), Slag fill	with cindery	y ash,	, brick ar	d little Silt, dense,	0.2	Y	YES	
10.0 - 10.5	Silty Clay Brown, m	/: oist, Silty Cla	y, medium p	olasticity, fire	m			NA	Y	NO	
8.0	End of Test Pit										
COMMENTS:		Rial road ti	es just unde	r the surfac	e (old	d rail road	bed)				
GROUNDWATER ENCOUNTERED:						NO	If yes, depth	to GW:	7.5'		
VISUAL IMPACTS: YES					/	NO	Describe:				
OLFACTORY OBSERVATIONS: YES					/	NO	Describe:				
NON-NATIVE FILL ENCOUNTERED:						NO		Slag, ash, an	d brick		
OTHER OBSERVATIONS: YES				YES	✓	NO	Describe:				
SAMPLES COLLECTED:							Sample I.D.:		TP-33 (0-2')	
							Sample I.D.:				

TP-33 Page 33 of 86

Project:	Phase III BPA Remedial Investigation	TEST PIT I.D.:	BPA 3	3-TP-34		
Project No.:	0071-008-300	Excavation Date:	08/19/08			
Client:	ArcelorMittal Tecumseh Redevelopment, Inc	Excavation Method:	Case 903	0		
Location:	Tecumseh, Phase III BPA	Logged / Checked By:	BG/BH			
Test Pit Loca	ation: NOT TO SCALE	Test Pit Cross Section:			NDCOII	
	in the Phase III report for exact location	Grade - 0'	GI	RASS & TO	PSOIL	
5502.		- Indicate - O				
eke Pari	-34 1/2 - CO-36	2'-				
BPA 3-11	E BPA 3-11 28 MO E	4'—	FII	A_{i}		
3-TP	.35 App A 3-78-37	<u> </u>				
BPN	B 100 Jano	6'—				
3PA 3-TP-30	SPRIO.	8'—				
TIMI	E Length: 7.0 ft. (approx.)	-				
Start:	E Length: 7.0 ft. (approx.) 9:30 Width: 3.0 ft. (approx.)	10'				
End:	10:50 Depth: 8.0 ft. (approx.)					
Depth	USCS Symbol & Soil	I	PID	Photos	Samples Collected	
(fbgs)	Description		Headspace (ppm)	Y/N	(fbgs)	
	Grass and topsoil:		(11)		(3 /	
0.0 - 0.5	Brown, moist, silt with some slag, loose		0.5	Υ	YES	
	Fill:					
0.5 - 1.5	Gray, moist, Slag fill with cindery ash and little Silt	, dense, loose when	0.5	Υ	YES	
	disturbed					
	 Fill:					
1.5 - 8.0	Brown, moist, Slag fill with cindery ash, brick and	little Silt, dense, loose when	0.5	Υ	YES	
	disturbed					
8.0	End of Test Pit					
COMMENTS						
GROUNDW	/ATER ENCOUNTERED:] NO If yes, depth	o GW:	8.0'		
VISUAL IMI	PACTS: YES	NO Describe:				
OLFACTOR	RY OBSERVATIONS: YES	NO Describe:				
NON-NATI\	/E FILL ENCOUNTERED:] NO	Slag, ash, and brick			
OTHER OB	SERVATIONS: YES	NO Describe:				
SAMPLES	COLLECTED:	Sample I.D.:		TP-34 (0-4')	

TP-34 Page 34 of 86

SAMPLES COLLECTED:

TEST PIT EXCAVATION LOG

Project:	Phase III	BPA Remedi	al Investig	ation			TEST	PIT I.D.:	BPA 3	3-TP-35		
Project No.:	0071-00	8-300					Excava	ation Date:	08/18/08			
Client:	ArcelorN	/littal Tecums	seh Redev	elopn	nent, I	nc	Excava	ation Method:	Case 903	0		
Location:	Tecums	eh, Phase III	BPA				Logge	d / Checked By:	BG/BH			
Test Pit Loca	ation: NOT	TO SCALE				1	Test Pit	Cross Section:	_ G	RASS & TO	DPSOIL.	
Refer to Figure	in the Phase	III report for ex	act location	Br.	•		Grade -	0'-	<u> </u>	************	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
TP-9	33 6	my &		M00°	13-I	E						
BPA 3-1	O'E	No.	MOTOR	BP	7/			2'	1211	*		
te pad	24 hr.	750V	Mr.	/				4'—	FII	414		
OPA 3-TP	SONPHUIC	3-743-7	TP=30		i Ch.	2		-				
BPA 3-TP	.35°	\$ BLI.	3-58-38	17 L	J			6' 🗖				
BPA 3-11		BPA						8'—				
TIMI		Length:	10.0 ft.	(ap	prox.)	_		_				
Start:	_ 14:10	Width:	3.0 ft.		prox.)		1	0'				
End:	15:55	Depth:	8.5 ft.	(ap	prox.)						T	
Depth			USCS	Symb	ool & S	Soil			PID Headspace	Photos	Samples Collected	
(fbgs)			De	escrip	tion				(ppm)	Y/N	(fbgs)	
	Grass ar	nd topsoil:							,			
0.0 - 0.5		noist, silt with s	some slag, l	oose					1.6	Υ	YES	
	Fill:											
0.5 - 2.0			vith cindery	ash, b	orick a	nd li	ittle Silt, d	ense, loose when	1.6	Υ	YES	
	disturbed											
	Fill:											
2.0 - 8.5							ittle Silt, d	ense, loose when	1.2	Y	NO	
	disturbed	l, (from 4-6' sa	na bedaing	101 12	z pipe)							
8.5	End of Te	est Pit										
COMMENTS				_								
GROUNDW	ATER ENC	COUNTERED:		✓	YES		NO	If yes, depth t	o GW:	8.5'		
VISUAL IM	PACTS:				YES	\checkmark	NO	Describe:				
OLFACTOR	FACTORY OBSERVATIONS: YES [NO	Describe:	escribe:			
NON-NATI\	VE FILL EN	COUNTERED	:	/	YES		NO		Slag, ash, ar	nd brick		
OTHER OB	ER OBSERVATIONS: YES						NO	Describe:				

TP-35 Page 35 of 86

Sample I.D.:

Sample I.D.:

TP-35 (0-2')

RESTORATION,	LLC								
Project:	Phase III E	BPA Remedi	al Investig	ation	TEST PIT I.D.:		BPA:	3-TP-36	
Project No.:	0071-008	8-300			Excavation Da	ite:	08/18/08		
Client:	ArcelorN	littal Tecums	eh Redev	elopment, Inc	Excavation Me	ethod:	Case 903	0	
Location:	Tecumse	eh, Phase III	BPA		Logged / Chec	ked By:	BG/BH		
Test Pit Location: NOT TO SCALE Refer to Figure in the Phase III report for exact location BPA 3-TP-34 BPA 3-TP-36 BPA 3-TP-36 BPA 3-TP-36 BPA 3-TP-36					Test Pit Cross Si Grade - 0'	ection:	FII	AL	PSOIL
TIME		Length:	8.0 ft.	(approx.)	10'				
	13:40	Width:	3.0 ft.	(approx.)					
End:	14:10	Depth:	7.0 ft.	(approx.)		I	DID		Samples

Grass and topsoil: Brown, moist, silt with some slag, loose Fill: 0.5 - 2.5 Brown, moist, Slag fill with cindery ash and little Silt, dense, loose when disturbed Fill: 2.5 - 7.0 Brown, moist, Slag fill with cindery ash, brick and little Silt, dense, loose when 0.3 Y	YES
0.5 - 2.5 Brown, moist, Slag fill with cindery ash and little Silt, dense, loose when disturbed Fill: 2.5 - 7.0 Brown, moist, Slag fill with cindery ash, brick and little Silt, dense, loose when 0.3 Y	YES
2.5 - 7.0 Brown, moist, Slag fill with cindery ash, brick and little Silt, dense, loose when 0.3 Y	
disturbed	NO
7.0 End of Test Pit	
COMMENTS:	
GROUNDWATER ENCOUNTERED:	
VISUAL IMPACTS:	
OLFACTORY OBSERVATIONS: YES NO Describe:	
NON-NATIVE FILL ENCOUNTERED: YES NO Slag, ash, and brick	
OTHER OBSERVATIONS:	
SAMPLES COLLECTED: Sample I.D.: TP-36 (0-2')	ı
Sample I.D.:	

TP-36 Page 36 of 86

SAMPLES COLLECTED:

TEST PIT EXCAVATION LOG

Project:	Phase III B	BPA Remedi	al Investig	ation			TEST F	PIT I.D.:	BPA 3	3-TP-37	
Project No.:	0071-00	8-300					Excava	tion Date:	08/15/08		
Client:	ArcelorM	littal Tecums	seh Redev	elopm	nent, In	10	Excava	tion Method:	Case 903	0	
Location:	Tecums	eh, Phase III	BPA				Logged	/ Checked By:	BG/BH		
Test Pit Loca	ation: NOT	TO SCALE				Te	est Pit C	ross Section:		ASI	PHALT
Refer to Figure	in the Phase			-		G	Grade - C	' 	***************************************	1131	· 11/1L1
	BPA	-p-29						-			
	NOTOR ROOM BPA	3-11					2	'-	1217	+	
ST CHEIN			\	\ \			4	· I	FII	A_{\bullet}	
TP-36		BPA 3-7	TP-37	\ \			·	-			
PA 3-11	38/ NÖ	BPK					6	· - ////////////////////////////////////			
BPA 3-TF							8	· =			
TIMI	NORE)	Length:	10.0 ft.	(anr	orox.)	1					
Start:	8:20	Width:	3.0 ft.		orox.)		10	'-			
End:	9:40	Depth:	9.0 ft.		orox.)			<u> </u>			
Depth			USCS	Symb	ol & So	oil			PID	Photos	Samples
(fbgs)			De	escript	tion				Headspace (ppm)	Y/N	Collected (fbgs)
								(РР)		(1030)	
0.0 - 0.5	Asphalt a	nd subbase							NA	Υ	NO
	1										
0.5 - 1.5	Fill:	ist, Slag fill wi	th cindery a	ich and	l littla S	ilt ve	arv dance		0.5	Υ	YES
	Gray, mo	ist, Olag IIII Wi	ur omacry a	ion and	intiic O	iit, vc	ory derise	,			
	Fill:										
1.5 - 9.0		ist to wet (7.0), Slag fill w	ith cin	dery as	h and	d brick, d	ense, loose	0.0	Υ	YES
	when dist	turbed									
9.0	End of Te	est Pit									
COMMENTS	:			_			_				
GROUNDW	VATER ENC	OUNTERED:		V	YES [NO	If yes, depth	to GW:	7.0'	
VISUAL IM	L IMPACTS: YES					√	NO _	Describe:			
OLFACTOR	ACTORY OBSERVATIONS: YES						NO	Describe:			
NON-NATI\	DN-NATIVE FILL ENCOUNTERED: YES						NO		Slag and mill	scale?	
OTHER OB	ER OBSERVATIONS: YES						NO	Describe:			

TP-37 Page 37 of 86

Sample I.D.:

Sample I.D.:

TP-37 (0-2')

SAMPLES COLLECTED:

TEST PIT EXCAVATION LOG

Project:	Phase III I	BPA Remedial Invest	igation	TEST	PIT I.D.:		BPA 3	-TP-38	
Project No.:	0071-00	8-300		Excav	ation Dat	e:	08/19/08		
Client:	ArcelorN	littal Tecumseh Rede	velopment, Inc	Excav	ation Met	thod:	Case 9030)	
Location:	Tecums	eh, Phase III BPA		Logge	d / Checl	ked By:	BG/BH		
Test Pit Loca				Test Pit	Cross Se	ection:	_ GI	RASS & TO	PSOIL.
Refer to Figure	in the Phase	III report for exact location	n Mr.	Grade -	0'-	~~~~	<u> </u>		~~~~~~
3-TP-9	3	nne D	OR ROOM A 3-TE		2'-				
se pad	Sh.	₹7 NEW			4'—		FIL	L	
6) PRPA 3-TP	-34 PM	32 TP-36	S.C. B		-				
K 510K.	.35	\$ BF1.	<i>λ</i> / ⁰		6'				
BPA 3-TP		BPAS			8'				
TIMI		Length: 16.0 ft.	(approx.)		_				
Start:	8:00	Width: 3.0 ft.	(approx.)	1	0'				
End:	8:55	Depth: 6.0 ft.	(approx.)						·
Depth		USCS	Symbol & So	il			PID	Photos	Samples Collected
(fbgs)		Γ	Description		Headspace (ppm)	Y/N	(fbgs)		
0.0 - 0.5		nd topsoil: noist, silt with some slag	, loose				0.2	Υ	YES
0.5 - 1.5	Fill: Gray, mo disturbed	ist, Slag fill with cindery	ash and little Si	lt, dense, lo	ose when		0.2	Y	YES
1.5 - 6.0	Fill: Brown, m disturbed	noist, Slag fill with cinder	y ash, brick and	d little Silt, d	ense, loos	se when	0.1	Υ	NO
6.0	End of Te	est Pit							
COMMENTS:		Two 4" metal pipes c	ross the test pit						
GROUNDW	ATER ENC	COUNTERED:	✓ YES [NO	If yes	s, depth t	o GW:	6.0'	
VISUAL IMI	PACTS:		/ NO	Desc	cribe:				
OLFACTOR	RY OBSERV	/ATIONS:	YES S	/ NO	Desc	cribe:			
NON-NATI\	/E FILL EN	COUNTERED:	✓ YES [NO			Slag, ash, an	d brick	
OTHER OB	SERVATIO	NS:	/ NO	Desc	cribe:				

TP-38 Page 38 of 86

Sample I.D.:

Sample I.D.:

TP-38 (0-2')

Project:	Phase III E	BPA Remedi	al Investig	ation			TEST PI	IT I.	.D.:	BPA 3	3-TP-39	
Project No.:	0071-00	8-300					Excavati	ion	Date:	08/19/08		
Client:	ArcelorN	littal Tecums	seh Redev	elopr	nent, I	nc	Excavati	ion	Method:	Case 903	0	
Location:	Tecumse	eh, Phase III	BPA				Logged ,	/ CI	hecked By:	BG/BH		
Test Pit Loca Refer to Figure			act location				Test Pit Cr	ross	s Section:	G.	RASS & TO	PSOIL
6) BPA 3-TP	-35 PART 2	E BPA 3	TP-36	17)		E	Grade - 0' 2'	<u> </u>		FII	Ť	
BPA		12 29					4'	'-		* **	48.4	
3PA 3-TP-39	5.00 - CO- 5.8 R.Y. CO- 5.78 P. O. O.			1			6'					
Y Nev Y	NELY AND						8'	+				
TIMI Start:	E 8:55	Length: Width:	8.0 ft. 3.0 ft.		prox.)		10'	 				
End:	9:30	Depth:	7.0 ft.		prox.)							
Depth (fbgs)	USCS Symbol & Description									PID Headspace (ppm)	Photos Y / N	Samples Collected (fbgs)
0.0 - 0.5		d topsoil: oist, silt with s	some slag, l	oose						1.4	Y	YES
0.5 - 3.0	Fill: Gray, moi disturbed	ist, Slag fill wit	th cindery a	sh an	d little (Silt,	dense, loos	se w	hen	1.4	Y	YES
3.0 - 7.0	Fill: Brown, m disturbed	oist, Slag fill v	vith cindery	ash, l	brick a	nd li	ittle Silt, der	nse,	loose when	1.4	Y	YES
7.0	End of Te	est Pit										
COMMENTS												
GROUNDW	/ATER ENC	OUNTERED:		V	YES		NO	ı	f yes, depth t	o GW:	7.0'	
VISUAL IMI	PACTS:				YES	/	NO	[Describe:			
OLFACTOR	ACTORY OBSERVATIONS: YES V NO											
NON-NATI\	/E FILL ENC	COUNTERED:	:		YES		NO			Slag, ash, ar	nd brick	
OTHER OB	SERVATIO	NS:			YES	✓	NO	[Describe:			
SAMPLES	LES COLLECTED:								Sample I.D.: TP-39 (0-6')			

TP-39 Page 39 of 86

Project:	Phase III BPA Remedial Investigation	TEST PIT	I.D.:	BPA 3	3-TP-40	
Project No.:	0071-008-300	Excavatio		08/21/08	<u> </u>	
Client:	ArcelorMittal Tecumseh Redevelopment, In-	Excavatio	n Method:	Case 903	0	
Location:	Tecumseh, Phase III BPA	Logged / 0	Checked By:	BG/BH		
	ation: NOT TO SCALE in the Phase III report for exact location	Test Pit Cro	ss Section:	√ G	RASS & TO	OPSOIL
GELTING	BPA 3-TP-40	Grade - 0 2'- 4'- 6'- 8'-		FII	.L	
TIMI		10'-				
Start: End:	13:00 Width: 3.0 ft. (approx.) 13:40 Depth: 6.5 ft. (approx.)	_				
Depth (fbgs)	USCS Symbol & So Description	oil		PID Headspace (ppm)	Photos Y / N	Samples Collected (fbgs)
0.0 - 0.5	Grass and topsoil: Brown, moist, silt with some slag, loose			1.4	Y	YES
0.5 - 6.5	Fill: Brown, moist, Slag fill with cindery ash, brick and disturbed	d little Silt, dens	e, loose when	1.2	Y	YES
6.5	End of Test Pit					
COMMENTS	:				•	•
GROUNDW	VATER ENCOUNTERED: VES	NO	If yes, depth t	to GW:	6.5'	
VISUAL IM	PACTS: YES		Describe:			
OLFACTOR	RY OBSERVATIONS:		Describe:			
NON-NATI\	VE FILL ENCOUNTERED:	NO		Slag, ash, an	nd brick	
OTHER OB	SERVATIONS: YES	Z NO	Describe:			
SAMPLES	COLLECTED:		Sample I.D.:		TP-40 (0-2))

TP-40 Page 40 of 86

SAMPLES COLLECTED:

TEST PIT EXCAVATION LOG

Project:	Phase III I	BPA Remedia	al Investig	ation			TEST	PIT I	.D.:	BPA 3-TP-41			
Project No.:	0071-00	8-300					Excav	ation	Date:	08/20/08			
Client:	ArcelorN	/littal Tecums	eh Redev	elopm	ent, l	Inc	Excav	ation	Method:	Case 903)		
Location:	Tecums	eh, Phase III	BPA				Logge	d / Cl	hecked By:	BG/BH			
Test Pit Loca						1	Test Pit	Cross	s Section:	Gl	RASS & TO	OPSOIL.	
Refer to Figure	in the Phase	III report for exa	act location	\ Q	V [`		Grade -	0' -	********	<u> </u>	***********	**********	
		2.41						2'—		FII	Æ		
	BPA 3-TF		BPA	3-11	24	1		4'—					
				AN BR	3-	T		6'—					
		- AC	<i>\</i>	ON/3121		_		8'					
TIME		Length:	10.0 ft.		orox.)		1	0'					
Start:	15:30 16:10	Width:	3.0 ft. 7.0 ft.		orox.)		•	`					
End: Depth (fbgs)	10.10	Depth:	USCS			Soil				PID Headspace (ppm)	Photos Y/N	Samples Collected (fbgs)	
0.0 - 0.5		nd topsoil: noist, silt with s	ome slag, l	oose						0.4	Υ	YES	
0.5 - 1.5	Fill: Brown, m disturbed	noist, Slag fill w	vith cindery	ash ar	nd little	e Silt	t, dense,	loose	when	0.4	Υ	YES	
1.5 - 7.0	Fill: Brown, m disturbed	noist, Slag fill w	vith cindery	ash, b	rick a	and li	ttle Silt, d	lense,	loose when	0.4	Υ	YES	
7.0	End of Te	est Pit											
COMMENTS:													
GROUNDW	/ATER ENC	OUNTERED:		✓	YES		NO	I	If yes, depth t	to GW:	7.0'		
VISUAL IM	PACTS:				YES	\checkmark	NO	ı	Describe:				
OLFACTOR	RY OBSERV	/ATIONS:			YES	✓	NO	ı	Describe:				
NON-NATI\	/E FILL EN	COUNTERED:		✓	YES		NO	-		Slag, ash, an	d brick		
OTHER OB	SERVATIO	NS:			YES		NO	-	Describe:				

TP-41 Page 41 of 86

Sample I.D.:

Sample I.D.:

TP-41 (0-2')

Project:	Phase III I	BPA Remedial Investig	ation	1		TEST PIT	I.D.:	BPA 3	3-TP-42	
Project No.:	0071-00	8-300				Excavation	n Date:	08/21/08		
Client:	ArcelorN	littal Tecumseh Redev	elopi	ment, I	nc	Excavation	n Method:	Bobcat 43	80	
Location:	Tecums	eh, Phase III BPA				Logged / C	Checked By:	BG/BH		
Test Pit Loca	ation: NOT	TO SCALE			T	Test Pit Cros	ss Section:		D 4 00 0 7T 0	POOL
		III report for exact location				Grade - 0'—		GI	RASS & TO	PSOIL
					_	Grade - 0 —				
			/			2'—				
		TP-42						FII	\mathbf{A}	
CALLERY "B-3"	BPA	3-TP-42				4 —				
0/F (0) 10/6/F 10/10/6/F 21(B-10/F)						6' 				
VN - 56A					-			<u> </u>	<u> </u>	<u> </u>
						8' — —				
TIME Start:	∃ 10:00	Length: 20.0 ft. Width: 2.0 ft.		prox.)	-	10'—				
End:	15:30	Depth: 7.0 ft.		prox.) prox.)		_				
Depth		USCS			oil			PID	Photos	Samples
(fbgs)			escri		OII			Headspace	Y / N	Collected
								(ppm)		(fbgs)
0.0 - 0.5		nd topsoil: noist, silt with some slag,	looso					NA	Y	YES
0.0 - 0.5	Diowii, iii	ioist, siit with some slag,	10036					INA	'	120
0.5 - 1.5	Fill:	oist, Slag fill with cindery	ash a	and little	Silt	t dense loose	when	400	Υ	YES
0.0 1.0		, paint like material (brick					WIICH	400	'	120
1.5 - 7.0	Fill: Brown m	oist, Slag fill with cindery	ash	brick ar	nd lit	ttle Silt-dense	loose when	9.2	Υ	YES
1.5 7.0	disturbed		uon,	briok ai	1 4 III	tilo Olit, dolloo	, 10000 WHOH	0.2	'	120
7.0	End of Te	ost Pit								
7.0	Liid oi 10	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,								
COMMENTS:	Fresh bre	ak of paint like material h	ad Pl	D readi	ngs	of 1300 ppm.	Area of impac	ct approximately	10' X 10'	
GROUNDW	/ATER ENC	OUNTERED:	_	YES	√	NO	If yes, depth t	o GW:	7.0'	
VISUAL IMI				YES		NO	Describe:			
OLFACTOR		/ATIONS:	- 	YES	\Box	NO	Describe:	Paint like odd	or	
		COUNTERED:	YES		NO		Slag, ash, and brick			
OTHER OB			YES		NO	Describe:	2.29, 30, 3 2.101			
SAMPLES				125	ٺ		Sample I.D.:		TP-42 (0-2)	<u> </u>
SAIVIPLES	COLLECTE	υ.					Sample I.D.:		15-42 (0-2	1

TP-42 Page 42 of 86

NON-NATIVE FILL ENCOUNTERED:

OTHER OBSERVATIONS:

SAMPLES COLLECTED:

TEST PIT EXCAVATION LOG

Slag, ash, and brick

TP-43 (0-2')

Project:	Phase III	BPA Remedi	ial Investiga	ation		TEST P	IT I.D.:	BPA 3	3-TP-43	
Project No.:	0071-00						ion Date:	08/21/08	, II 1 <u>0</u>	
Client:		Mittal Tecums	seh Redeve	elopment.	Inc		ion Method:	Case 903	0	
Location:		eh, Phase III					/ Checked By:	BG/BH		
								20,2		
Test Pit Loca						Test Pit C	ross Section:	_ G	RASS & TO	OPSOIL
Refer to Figure	in the Phase	e III report for ex	act location			Grade - 0		<u> </u>		
HIGHWAY		3PA 3-TP-4	NACIUN DEGRÉSINA	NEGOVI LIQUID GISS Con concrete obeyated 6)(C)	2 4 6 8		FII	IL.	
TIMI	<u>- </u>	Length:	6.0 ft.	(approx.)			_			
Start:	15:30	Width:	3.0 ft.	(approx.)		10	'			
End:	16:00	Depth:	8.0 ft.	(approx.)						
Depth (fbgs)				Symbol & S scription	Soil			PID Headspace (ppm)	Photos Y / N	Samples Collected (fbgs)
0.0 - 0.5		nd topsoil: noist, silt with s	some slag, lo	oose				1.2	Y	YES
0.5 - 2.0	Fill: Brown, m disturbed	noist, Slag fill v I	with cindery a	ash and littl	e Silt	t, dense, lo	ose when	1.2	Υ	YES
2.0 - 8.0	Fill: Brown, m disturbed		with cindery a	ash, brick a	and li	ittle Silt, de	nse, loose when	1.2	Υ	NO
8.0	End of Te	est Pit								
COMMENTS	:									
GROUNDWATER ENCOUNTERED: ✓ YES						NO	If yes, depth	to GW:	8.0'	
VISUAL IMI	PACTS:			YES	/	NO	Describe:			
OLFACTOR	OLFACTORY OBSERVATIONS: YES						Describe:			

TP-43 Page 43 of 86

NO

NO

Describe:

Sample I.D.:

Sample I.D.:

 \checkmark

YES

YES

Project:	Phase III I	3PA Remedial Inves	tigation	TEST	PIT I.D.:	BPA 3	3-TP-44	
Project No.:	0071-00	8-300		Excav	ation Date:	08/21/08		
Client:	ArcelorN	littal Tecumseh Red	evelopment, In	c Excav	ation Method:	Case 903	0	
Location:	Tecums	eh, Phase III BPA		Logge	d / Checked By:	BG/BH		
Test Pit Loca Refer to Figure		TO SCALE III report for exact location	on (O'') h	Test Pit Grade -	Cross Section:			
BPA 3-TF	ALBUILDIN		BP		2' — 4' — 6' — 8' —	FII	.L	
TIMI		Length: 10.0 ft		1	0'			
Start: End:	16:00 16:45	Width: 3.0 ft. Depth: 8.5 ft.						
Depth (fbgs)	10.10	USC	S Symbol & So Description	oil		PID Headspace (ppm)	Photos Y / N	Samples Collected (fbgs)
0.0 - 8.5		oist, Slag fill with cinde en disturbed	ery ash, metal, b	rick and little	e Silt, dense,	2.5	Y	YES
8.5	End of Te	est Pit						
COMMENTS:								
GROUNDW	ATER ENC	OUNTERED:	✓ YES [NO	If yes, depth t	to GW:	8.5'	
VISUAL IMI	PACTS:		YES [✓ NO	Describe:			
OLFACTOR	RY OBSERV	ATIONS:	YES [✓ NO	Describe:			
NON-NATI\	/E FILL ENG	COUNTERED:	✓ YES [NO		Slag, ash, an	nd brick	
OTHER OB	SERVATIO	NS:	YES [✓ NO	Describe:			
SAMPLES	COLLECTE	D:			Sample I.D.:		TP-44 (0-2')

TP-44 Page 44 of 86

Project:	Phase III I	BPA Remedi	al Investiga	ation		TES	T PIT	I.D.:	BPA 3	3-TP-45	
Project No.:	0071-00	0071-008-300					avation	n Date:	08/21/08		
Client:	ArcelorN	littal Tecums	eh Redeve	lopmer	ıt, Inc	Exc	avatior	n Method:	Case 903	0	
Location:	Tecums	eh, Phase III	BPA			Log	ged / C	Checked By:	BG/BH		
Test Pit Loca Refer to Figure		TO SCALE III report for ex	act location	OR Instead	O w.	Test P		ss Section:			
BPA 3-TP-43 BPA 3-TP-43 1					2'— 4'— 6'—	FILL 5'-					
		<u> </u>	11				8'—				
TIMI Start:	≣ 16:45	Length: Width:	10.0 ft. 3.0 ft.	(appro			10'—				
End:	17:00	Depth:	7.0 ft.	(appro							
Depth (fbgs)			USCS S		& Soi	il			PID Headspace (ppm)	Photos Y/N	Samples Collected (fbgs)
0.0 - 7.0		noist, Slag fill w en disturbed	vith cindery a	ash, met	al, brid	ck and li	ttle Silt,	, dense,	0.2	Υ	YES
7.0	End of Te	est Pit									
COMMENTS:		Refusal on	very hard, d	ense, co	ncrete	e like ma	erial at	: 7'			
GROUNDW	ATER ENC	OUNTERED:		YES	S 🗸	NO NO		If yes, depth t	o GW:		
VISUAL IMI	PACTS:			YES	s 🗸	NO		Describe:			
OLFACTOR	RY OBSERV	/ATIONS:		YES	s 🗸	NO NO		Describe:			
NON-NATIVE FILL ENCOUNTERED: ✓ YES					s [NO			Slag, ash, an	d brick	
OTHER OB	SERVATIO	NS:		YES	s 🗸	NO NO		Describe:			
SAMPLES	COLLECTE	D:						Sample I.D.:		TP-45 (0-2))

TP-45 Page 45 of 86

Project:	Phase III BPA Remedial Investig	ation	TEST PI	TEST PIT I.D.: BPA 3-TP-46			
Project No.:	0071-008-300		Excavati	on Date:	08/22/08		
Client:	ArcelorMittal Tecumseh Redev	elopment, Inc	Excavati	on Method:	Case 903	0	
Location:	Tecumseh, Phase III BPA		Logged /	Checked By:	BG/BH		
	ation: NOT TO SCALE in the Phase III report for exact location	, , , , , , , , , , , , , , , , , , ,	Test Pit Cr Grade - 0'	t Pit Cross Section: GRASS & TOPSOIL			
3-TP-51	BPA 3-TP-46	BPA3-TP	2' 4' 6' 8'		FII	L	
TIMI	Length: 10.0 ft. 11:00 Width: 3.0 ft.	(approx.)	10'				
Start: End:	13:30 Depth: 9.0 ft.	(approx.) (approx.)					
Depth (fbgs)	USCS	Symbol & Soi		PID Headspace (ppm)	Photos Y/N	Samples Collected (fbgs)	
0.0 - 0.5	Grass and topsoil: Brown, moist, silt with some slag, I	oose			1.2	Y	YES
0.5 - 9.0	Fill: Brown, moist, Slag fill with cindery disturbed	ash, brick and	l little Silt, den	se, loose when	1.2	Y	YES
9.0	End of Test Pit						
COMMENTS:	Metal pipe (approximate	tely 24" diamete	er) uncoverd a	ı 6'			
GROUNDW	/ATER ENCOUNTERED:	✓ YES [NO —	If yes, depth	to GW:	9.0'	
VISUAL IMI	PACTS:	YES 🗸	NO	Describe:			
OLFACTOR	RY OBSERVATIONS:	YES 🗸	NO	Describe:			
NON-NATI\	/E FILL ENCOUNTERED:	✓ YES			Slag, ash, an	d brick	
OTHER OB	SERVATIONS:	YES 🗸] NO	Describe:			
SAMPLES (COLLECTED:		- 	Sample LD.:		TP-46 (0-2')

TP-46 Page 46 of 86

Project:	Phase III BPA Remedial Investigation	TEST PIT I.D.:	BPA 3-TP-47
Project No.:	0071-008-300	Excavation Date:	08/22/08
Client:	ArcelorMittal Tecumseh Redevelopment, Inc	Excavation Method:	Case 9030
Location:	Tecumseh, Phase III BPA	Logged / Checked By:	BG/BH

Test Pit Loca			vaat laaatian		Те	st Pit Cros	s Section:	Gl	RASS & TO	OPSOIL
Refer to Figure	·	III Teport for ex	raci location		Gr	rade - 0' — - 4' — - 8' — - 12' —		FII	I.	
						16'				
TIMI Start: End:	13:30 14:50	Length: Width: Depth:	10.0 ft. 3.0 ft. 12.5 ft.	(approx.) (approx.) (approx.)		20'				
Depth (fbgs)		- 1	USCS	Symbol & So escription	oil			PID Headspace (ppm)	Photos Y / N	Samples Collected (fbgs)
0.0 - 0.5		nd topsoil: noist, silt with s	some slag, l	oose				0.2	Y	YES
0.5 - 3.0								0.2	Y	YES
3.0 - 10.0	Fill: Brown, m disturbed	oist, Slag fill v	with cindery	ash, brick ar	nd little	e Silt, dense	, loose when	0.2	Y	NO
10.0 - 12.5	Silty Cla y Brown, m	y: noist, Silty Cla	y, medium p	plasticity, firm				NA	Y	NO
12.5	End of Te	est Pit								
COMMENTS:										
GROUNDW	ATER ENC	OUNTERED:		✓ YES [N	NO	If yes, depth t	to GW:	9.0'	
VISUAL IMI	PACTS:			YES [✓ N		Describe:			
OLFACTOR	RY OBSERV	ATIONS:		YES [✓ N	NO	Describe:			
NON-NATI\	/E FILL EN	COUNTERED	:	✓ YES [N	10		Slag, ash, an	d brick	
OTHER OB	SERVATIO	NS:		YES [✓ N	NO	Describe:			
SAMPLES	COLLECTE	D:					Sample I.D.:		TP-47 (0-2)
							Sample I.D.:			

TP-47 Page 47 of 86

Project:	Phase III BPA Remedial Investigation	TEST PIT I.D.:	BPA 3-TP-48
Project No.:	0071-008-300	Excavation Date:	08/22/08
Client:	ArcelorMittal Tecumseh Redevelopment, Inc	Excavation Method:	Case 9030
Location:	Tecumseh, Phase III BPA	Logged / Checked By:	BG/BH

	Fest Pit Location: NOT TO SCALE Refer to Figure in the Phase III report for exact location						Cross Section:	GRASS & TOPSOIL				
TIMI Start:	9:50	Length: Width:	10.0 ft. 3.0 ft.	(app	prox.)			2'	FII	I.		
End:	10:20	Depth:	8.0 ft.		orox.)				PID	Dhataa	Samples	
Depth (fbgs)			USCS : De	script		OII			Headspace (ppm)	Photos Y / N	Collected (fbgs)	
0.0 - 0.5		d topsoil: oist, silt with	some slag, l	oose					1.3	Y	YES	
0.5 - 1.0	Fill: Gray and black, dry, macadam (black top like material)							1.3	Y	YES		
1.0 - 8.0	Fill: Brown, m disturbed		with cindery	ash, b	rick ar	nd lit	tle Silt, de	ense, loose when	1.1	Y	YES	
8.0	End of Te	est Pit										
COMMENTS:							_					
GROUNDW	ATER ENC	OUNTERED:		✓	YES		NO	If yes, depth t	o GW:	8.0'		
VISUAL IMI	PACTS:				YES	√	NO	Describe:				
OLFACTOR						✓ 	NO	Describe:				
NON-NATIVE FILL ENCOUNTERED:							NO _		Slag, ash, an	d brick		
OTHER OB					YES	√	NO _	Describe:				
SAMPLES	COLLECTE	D:						Sample I.D.:		TP-48 (0-2')	
								Sample I.D.:				

TP-48 Page 48 of 86

Project:	Phase III BPA Remedial Investig	ation	TEST PIT	I.D.:	BPA 3	8-TP-49		
Project No.:	0071-008-300		Excavation	n Date:	08/22/08			
Client:	ArcelorMittal Tecumseh Redev	elopment, Inc	Excavation	n Method:	Case 903	0		
Location:	Tecumseh, Phase III BPA		Logged / C	Logged / Checked By: BG/BH				
	ation: NOT TO SCALE in the Phase III report for exact location		Test Pit Cros	ss Section:	Section: GRASS & TOPSOIL			
SPA 3-TP-48	MV M	VN - 55A	2' — 4' — 6' — 8' —		FII	L		
TIMI	E Length: 10.0 ft.	(approx.)	_					
Start:	9:10 Width: 3.0 ft.	(approx.)	10'—					
End: Depth (fbgs)		(approx.) Symbol & Soi escription		PID Headspace (ppm)	Photos Y / N	Samples Collected (fbgs)		
0.0 - 0.5	Grass and topsoil: Brown, moist, silt with some slag, I	oose			1.0	Y	YES	
0.5 - 2.0	Fill: Gray, moist, Slag fill with cindery a disturbed	sh and little Silt	t, dense, loose	when	1.0	Y	YES	
2.0 - 8.0	Fill: Brown, moist, Slag fill with cindery disturbed	ash, brick and	little Silt, dense	e, loose when	0.8	Y	NO	
8.0	End of Test Pit							
COMMENTS								
GROUNDW	/ATER ENCOUNTERED:	✓ YES [If yes, depth t	o GW:	8.0'		
VISUAL IM	PACTS:	YES 🗸	NO	Describe:				
OLFACTOR	RY OBSERVATIONS:	YES 🗸		Describe:				
NON-NATI\	/E FILL ENCOUNTERED:	✓ YES	NO NO		Slag, ash, and brick			
OTHER OB	R OBSERVATIONS: YES V NO Describe:							
SAMPLES	COLLECTED:	-		Sample I.D.: TP-49 (0-2')				

TP-49 Page 49 of 86

Project:	Phase III BPA Remedial Investigation	TEST PIT I.D.:	BPA 3-TP-50
Project No.:	0071-008-300	Excavation Date:	08/26/08
Client:	ArcelorMittal Tecumseh Redevelopment, Inc	Excavation Method:	Case 9030
Location:	Tecumseh, Phase III BPA	Logged / Checked By:	BG/BH

Test Pit Loca	est Pit Location: NOT TO SCALE					Test Pit Cross Section: — GRASS & TOPSOIL					
Refer to Figure	in the Phase	III report for ex	act location			Grade - 0' —		<u> </u>		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
BPA 3	BPA 3-TP-50 BPA 3-TP-51					2'- - 4'- 6'- 8'-					
TIME	Ξ	Length:	10.0 ft.	(approx.)		10'		MINISTER OF STREET			
Start:	9:40	Width:	3.0 ft.	(approx.)							
End: Depth (fbgs)	10:40	Depth:		(approx.) Symbol & Sescription	Soil			PID Headspace (ppm)	Photos Y/N	Samples Collected (fbgs)	
0.0 - 0.5		nd topsoil: noist, silt with	some slag, l	oose				1.3	Y	YES	
0.5 - 2.5	Fill: Gray, moist, Slag fill with little Silt, dense, loose when disturbed 1.3 Y YES							YES			
2.5 - 9.0	Fill: Brown, m	noist to wet (8), Slag fill wi	ith cindery as	sh, br	rick and little \$	Silt, dense	5.0	Y	NO	
9.0 - 9.5	Silty Cla Brown, m	y: noist, Silty Cla	y, medium p	lasticity, stiff	:			NA	Y	NO	
9.5	End of Te	est Pit									
COMMENTS											
GROUNDW	ATER ENC	COUNTERED:		✓ YES		NO	If yes, depth t	to GW:	8.0'		
VISUAL IMI	PACTS:			YES	\checkmark	NO	Describe:				
OLFACTOR	RY OBSER\	/ATIONS:		YES	✓	NO	Describe:				
NON-NATI\	/E FILL EN	COUNTERED):	✓ YES		NO		Slag, ash, an	d brick		
OTHER OB	SERVATIO	NS:		YES	√	NO	Describe:				
SAMPLES	COLLECTE	D:		=			Sample I.D.:		TP-50 (0-2')	
							Sample I.D.:				

TP-50 Page 50 of 86

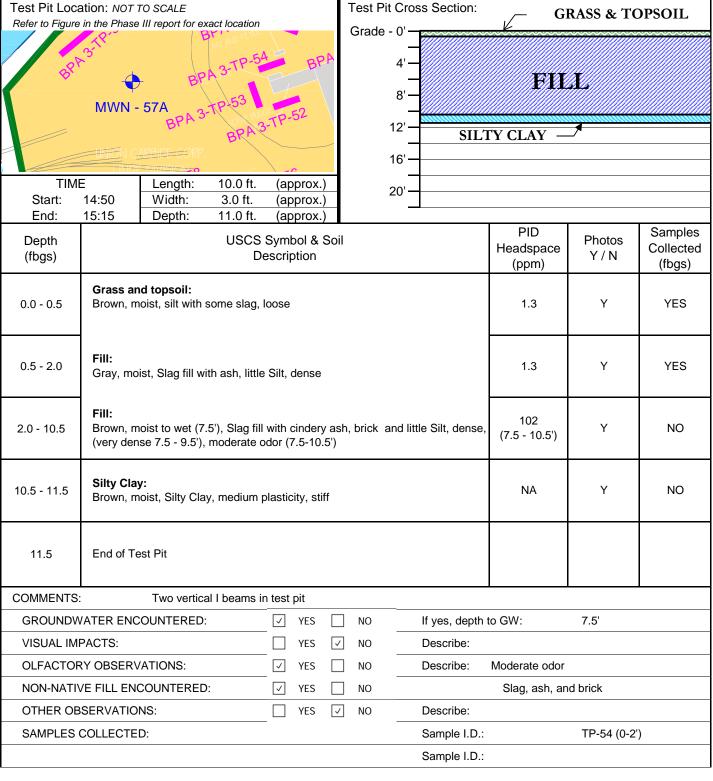
Project:	Phase III BPA Remedial Investigation	TEST PIT I.D.:	BPA 3-TP-51
Project No.:	0071-008-300	Excavation Date:	08/26/08
Client:	ArcelorMittal Tecumseh Redevelopment, Inc	Excavation Method:	Case 9030
Location:	Tecumseh, Phase III BPA	Logged / Checked By:	BG/BH

Test Pit Loca Refer to Figure			act location			Cross Section:	√ Gl	RASS & TO	PSOIL
BPA 3-TP-53 BPA 3-TP-53 BPA 3-TP-53	TP-55	BPA 3-TP	.51	BPA 3-TP		2' — 4' — 6' — 8' —	FIL	L	
TIME		Length:	10.0 ft.	(approx.)	l 1	0'	OIL TV		
	8:00 9:40	Width: Depth:	3.0 ft. 11.0 ft.	(approx.) (approx.)			SILTY	LAY	
Depth (fbgs)			USCS S		PID Headspace (ppm)	Photos Y / N	Samples Collected (fbgs)		
0.0 - 0.5		nd topsoil: noist, silt with s	some slag, lo	oose			2.6	Y	YES
0.5 - 1.5	Fill: Brown, m	oist, Slag fill v	2.6	Y	YES				
1.5 - 10.0	Fill: Brown, m 8'-10')	oist, Slag fill v	with cindery	ash, brick and	ense (very dense	40.0	Y	NO	
10.0 - 11.0	Silty Clay Brown, m	y: loist, Silty Cla	y, medium p	lasticity, stiff			NA	Y	NO
11.0	End of Te	est Pit							
COMMENTS:									
GROUNDW	ATER ENC	OUNTERED:		✓ YES [NO	If yes, depth	to GW:	8.0'	
VISUAL IMF	PACTS:			YES .	✓ NO	Describe:			
OLFACTOR	RY OBSERV	ATIONS:		YES	✓ NO	Describe:			
NON-NATIVE FILL ENCOUNTERED: YES NO Slag, ash, and brick									
OTHER OB	SERVATIO	NS:		YES [✓ NO	Describe:			
SAMPLES (COLLECTE	D:				Sample I.D.:		TP-51 (0-2)
						Sample I.D.:			

TP-51 Page 51 of 86

Project:	Phase III BPA Remedial Investig	ation	TEST PIT	I.D.:	BPA 3	3-TP-52	
Project No.:	0071-008-300		Excavation	n Date:	08/25/08		
Client:	ArcelorMittal Tecumseh Redev	elopment, Inc	Excavation	n Method:	Case 903	0	
Location:	Tecumseh, Phase III BPA		Logged / C	Checked By:	BG/BH		
Toet Dit Loc	ation: NOT TO SCALE	I	Test Pit Cros	es Soction:			
	in the Phase III report for exact location			os occion.	G	RASS & TO	OPSOIL
V	BRAN		Grade - 0' —				
	MWN - 57A 25 P 53		2'—				
	BPA 3	TP-52	_		FII	\mathbf{X}_{-}	
	-HATEN I CAPRINE CORP		4'—				
	LINDE DIVISIONA	-6	6'—				
	PLANT NO PA 3-TP OF LITY BPA 3-	18-20	_				
	Bri	8	8'—				
TIM		(approx.)	10' <i>-</i>				
Start:	12:50 Width: 3.0 ft. 13:40 Depth: 8.5 ft.	(approx.)	_				
End:		(approx.)			PID		Samples
Depth (fbgs)		Symbol & Soil escription			Headspace	Photos Y / N	Collected
(ibgs)	De	-3011ption			(ppm)	1 / 1	(fbgs)
	Grass and topsoil:						
0.0 - 0.5	Brown, moist, silt with some slag, I	oose			0.5	Υ	YES
	Fill:						
0.5 - 8.5	Brown, moist, Slag fill with cindery disturbed	ash, brick and	little Silt, dense	e, loose when	2.3	Υ	YES
	disturbed						
8.5	End of Test Pit						
COMMENTS	:						
GROUNDW	ATER ENCOUNTERED:	✓ YES		If yes, depth t	o GW:	8.5'	
VISUAL IM	PACTS:	YES] NO	Describe:			
OLFACTOR	RY OBSERVATIONS:	YES 🗸] NO	Describe:			
NON-NATI	VE FILL ENCOUNTERED:	✓ YES] NO		Slag, ash, an	nd brick	
OTHER OF	SERVATIONS:	YES 🗸] NO	Describe:			
SAMPLES	COLLECTED:	-		Sample I.D.:		TP-52 (0-2')

TP-52 Page 52 of 86


Project:	Phase III BPA Remedial Investigation	TEST PIT I.D.:	BPA 3-TP-53
Project No.:	0071-008-300	Excavation Date:	08/25/08
Client:	ArcelorMittal Tecumseh Redevelopment, Inc	Excavation Method:	Case 9030
Location:	Tecumseh, Phase III BPA	Logged / Checked By:	BG/BH
Test Pit Loc	ation: NOT TO SCALE	Test Pit Cross Section:	_ GRASS & TOPSOII

	est Pit Location: NOT TO SCALE Refer to Figure in the Phase III report for exact location					Test Pit Cross Section: GRASS & TOPSOIL Grade - 0'					
MWN	N - 57A BP I CARBIDE G	BPA 3-TP-53 A 3-TP-53 BPA	54 - F 3-TP-52	3PA 3-TP	Grade	2' — 4' — 6' — 8' —	FII	.I.			
TIME Start:	13:40	Length: Width:	8.0 ft. 3.0 ft.	(approx.) (approx.)		10'					
End:	14:50	Depth:	7.5 ft.	(approx.)							
Depth (fbgs)			USCS : De		PID Headspace (ppm)	Photos Y / N	Samples Collected (fbgs)				
0.0 - 0.5	Grass and topsoil: Brown, moist, silt with some slag, loose 2.6 Y								YES		
0.5 - 1.5	Fill: Gray, mo	ist, Slag fill wi	th ash, little	2.6	Y	YES					
1.5 - 7.5	Fill: Brown, m disturbed		with cindery	ash, brick aı	nd little Sil	t, dense, loose when	7.2	Y	YES		
7.5	End of Te	est Pit									
COMMENTS:	:										
GROUNDW	ATER ENC	OUNTERED:		✓ YES	□ NO	If yes, depth	to GW:	7.0'			
VISUAL IM	PACTS:			YES	✓ NO	Describe:					
OLFACTOR	RY OBSERV	ATIONS:		YES	✓ NO	Describe:					
		COUNTERED	:	✓ YES	□ NO		Slag, ash, an	d brick			
OTHER OB				YES	Describe:						
SAMPLES	COLLECTE	D:				Sample I.D.:		TP-53 (0-2)		
						Sample I.D.:					

TP-53 Page 53 of 86

Project:	Phase III BPA Remedial Investigation	TEST PIT I.D.:	BPA 3-TP-54
Project No.:	0071-008-300	Excavation Date:	08/25/08
Client:	ArcelorMittal Tecumseh Redevelopment, Inc	Excavation Method:	Case 9030
Location:	Tecumseh, Phase III BPA	Logged / Checked By:	BG/BH

TP-54 Page 54 of 86

Project:	Phase III BPA Remedial Investigation	TEST PIT I.D.:	BPA 3-TP-54A
Project No.:	0071-008-300	Excavation Date:	08/26/08
Client:	ArcelorMittal Tecumseh Redevelopment, Inc	Excavation Method:	Case 9030
Location:	Tecumseh, Phase III BPA	Logged / Checked By:	BG/BH

	est Pit Location: NOT TO SCALE Refer to Figure in the Phase III report for exact location							Section:	√ Gl	RASS & TO	DPSOIL
BRA	MWN -	57A BPA 3	A 3-TP-54 -TP-53 -BRA3	TP-52	3PA	Grade - 0' 4' 8' 12' 16'		SILT	FIL TY CLAY —	.L 	
TIME Start: End:	E 11:20 11:35	Length: Width: Depth:	10.0 ft. 3.0 ft. 10.0 ft.	(appro (appro	ox.)	20'					
Depth (fbgs)	11.55	рории.	USCS De		PID Headspace (ppm)	Photos Y / N	Samples Collected (fbgs)				
0.0 - 0.5	Grass and topsoil: Brown, moist, silt with some slag, loose								3.0	Υ	NO
0.5 - 1.5	Fill: Gray, moist, Slag fill with ash, little Silt, dense								3.0	Y	NO
1.5 - 9.5	Fill: Brown, moist to wet (8'), Slag fill with cindery ash, brick and little Silt, dense,								11.0	Y	NO
9.5 - 10	Silty Clay: Brown, moist, Silty Clay, medium plasticity, stiff								NA	Y	NO
10	End of Test Pit										
COMMENTS:		Located 30)' south of TI	P-54				•			•
GROUNDW	ATER ENC	OUNTERED:		✓ YE	s 🗌	NO	If y	es, depth t	o GW:	8'	
VISUAL IMI	PACTS:			_ YE	s 🗸	NO	De	scribe:			
OLFACTOR	RY OBSERV	/ATIONS:		YE	S 🗸	NO	De	scribe:			
NON-NATIVE FILL ENCOUNTERED:						NO			Slag, ash, an	d brick	
OTHER OBSERVATIONS: YES						NO	De	scribe:			
SAMPLES (COLLECTE	D:					Sa	mple I.D.:			
							Sa	mple I.D.:			

TP-54A Page 55 of 86

Project:	Phase III BPA Remedial Investigation	TEST PIT I.D.:	BPA 3-TP-55
Project No.:	0071-008-300	Excavation Date:	08/25/08
Client:	ArcelorMittal Tecumseh Redevelopment, Inc	Excavation Method:	Case 9030
Location:	Tecumseh, Phase III BPA	Logged / Checked By:	BG/BH

Test Pit Location: NOT TO SCALE						Test Pit Cross Section: — GRASS & TOPSOIL					
Refer to Figure	in the Phase	III report for ex	kact location			Grade - 0	' 	<u> </u>	********	~~~~~	
- 57A BPA 3-	PA 3-TP-54 A 3-TP-54 TP-53 BRA3	BPA TP-52	3-TP-51	В	P	2 4 6	- - - - - - - - - - -	FII	L		
TIME		Length:	10.0 ft.	(approx.	.)	10	, <u> </u>	SILTY C	CLAY		
Start:	15:15	Width:	3.0 ft.	(approx.							
End: Depth (fbgs)	16:40 Depth: 10.0 ft. (approx.) USCS Symbol & Soil Description								Photos Y / N	Samples Collected (fbgs)	
0.0 - 0.5		nd topsoil: noist, silt with	some slag, l		1.5	Y	YES				
0.5 - 3.0	Fill: Brown, m disturbed	noist, Slag fill	with cindery	ose when	1.5	Y	YES				
3.0 - 9.0	Fill: Brown, m	noist, brick fill	with cindery	sturbed	28.0	Y	YES				
9.0 - 10.0	Silty Cla y Brown, m	y: noist, Silty Cla	y, medium p	olasticity, st	iff			NA	Y	NO	
10.0	End of Test Pit										
COMMENTS:											
GROUNDW	ATER ENC	OUNTERED:		✓ YES		NO	If yes, depth t	to GW:	7.0'		
VISUAL IMF	PACTS:			YES	\checkmark	NO	Describe:				
OLFACTOR	RY OBSERV	/ATIONS:		YES	\checkmark	NO	Describe:				
NON-NATIVE FILL ENCOUNTERED:						NO		Slag, ash, an	nd brick		
OTHER OBSERVATIONS: YES						NO	Describe:				
SAMPLES COLLECTED:							Sample I.D.:	Sample I.D.: TP-55 (0-2')			
							Sample I.D.:				

TP-55 Page 56 of 86

Project:	Phase III BPA Remedial Investigation	TEST PIT I.D.:	BPA 3-TP-55A
Project No.:	0071-008-300	Excavation Date:	08/26/08
Client:	ArcelorMittal Tecumseh Redevelopment, Inc	Excavation Method:	Case 9030
Location:	Tecumseh, Phase III BPA	Logged / Checked By:	BG/BH

	est Pit Location: NOT TO SCALE Refer to Figure in the Phase III report for exact location						it Cross Section:	GRASS & TOPSOIL				
- 57A BPA 3-	PA 3-TP-54 3-TP-54 TP-53 BRA3	55 TP-52	3-TP-51		3P	Grade	2'	FII	.L			
TIME		Length:	10.0 ft.	(approx			10'	MINISTENTA C	LAY			
Start: End:	11:35 12:50	Width: Depth:	3.0 ft. 9.5 ft.	(approx								
Depth (fbgs)		- 1	USCS :	PID Headspace (ppm)	Photos Y / N	Samples Collected (fbgs)						
0.0 - 0.5		d topsoil: oist, silt with	some slag, l	NA	Y	NO						
0.5 - 3.0	Fill: Brown, m disturbed	oist, Slag fill v	with cindery	NA	Y	NO						
3.0 - 9.0	Fill: Brown, m	oist, brick fill	with cindery	n disturbed	20.0	Y	NO					
9.0 - 9.5	Silty Cla y Brown, m	/: oist, Silty Cla	y, medium p		NA	Y	NO					
9.5	End of Te	est Pit										
COMMENTS:		Located 30	' southwest	fo TP-55								
GROUNDW	ATER ENC	OUNTERED:		✓ YES		NO	If yes, depth	to GW:	7.5'			
VISUAL IMF	PACTS:			YES	✓	NO	Describe:					
OLFACTORY OBSERVATIONS: YES							Describe:					
NON-NATIVE FILL ENCOUNTERED:						NO		Slag, ash, an	d brick			
OTHER OBSERVATIONS: YES							Describe:					
SAMPLES COLLECTED:							Sample I.D.:					
							Sample I.D.:					

TP-55A Page 57 of 86

KESTORATION	LLC									
Project:	Phase III E	BPA Remedi	ial Investig	ation	TEST PIT I.	D.:	BPA 3	BPA 3-TP-56		
Project No.:	0071-00	8-300			Excavation [Date:	08/25/08	08/25/08		
Client:	ArcelorN	littal Tecums	seh Redev	elopment, Inc	Excavation N	Method:	Case 903	0		
Location:	Tecumse	eh, Phase III	BPA		Logged / Ch	ecked By:	BG/BH			
Test Pit Loca			act location		Test Pit Cross Grade - 0'	Section:	G₁	RASS & TO	OPSOIL	
51001	BPA 3-T	P-48 SUBSTATION TK POINTS ORNESS	BPA 3-TP	1.49 4811 51.	2' — 4' — 6' — 8' —		FII	.L		
TIMI Start:	<u>=</u> 9:00	Length: Width:	8.0 ft. 3.0 ft.	(approx.) (approx.)	10'					
End:	10:40	Depth:	8.0 ft.	(approx.)						
Depth (fbas)				Symbol & Soi	1		PID Headspace	Photos Y / N	Samples Collected	

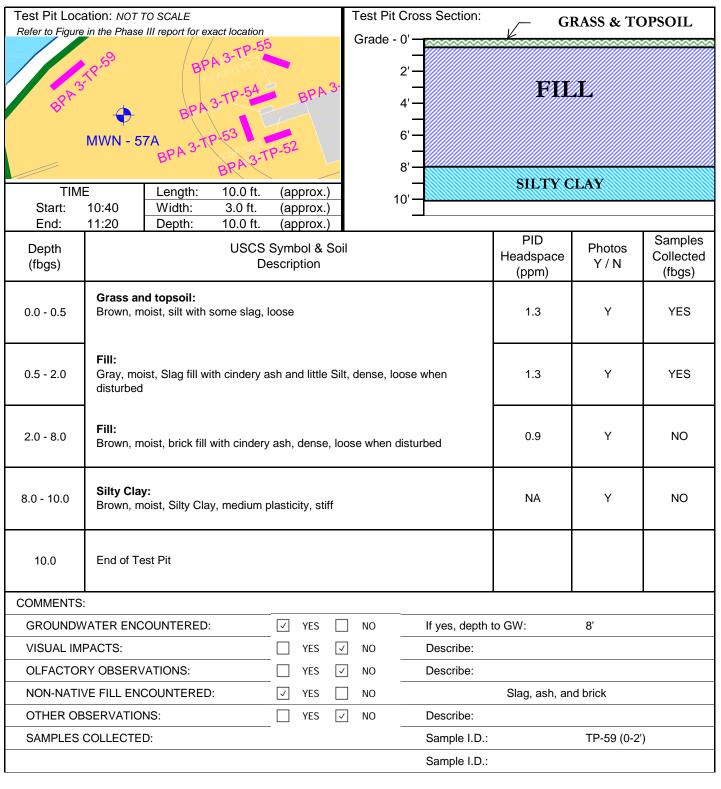
(fbgs)	De	escri	otion				(ppm)	Y/N	(fbgs)		
0.0 - 0.5	Grass and topsoil: Brown, moist, silt with some slag, I	oose		2.2	Y	YES					
0.5 - 3.0	Fill: Gray, moist, Slag fill with ash, little	Silt,	and tra	ace ta	r, dense	(very dense 2-3')	2.2	Y	YES		
3.0 - 8.0	Fill: Brown, moist, Slag fill with cindery disturbed	dense, loose when	0.8	Y	NO						
8.0	End of Test Pit										
COMMENTS:											
GROUNDW	/ATER ENCOUNTERED:	/	YES		NO	If yes, depth t	to GW:	o GW: 8.0'			
VISUAL IMF	PACTS:		YES	✓	NO	Describe:					
OLFACTOR	RY OBSERVATIONS:		YES	✓	NO	Describe:					
NON-NATI\	/E FILL ENCOUNTERED:	√	YES		NO		Slag, ash, an	d brick			
OTHER OB	SERVATIONS:		YES	✓	NO	Describe:					
SAMPLES	COLLECTED:	Sample I.D.:		TP-56 (0-2))						
						Sample I.D.:					

TP-56 Page 58 of 86

Project:	Phase III BPA Remedial Investigation	TEST PIT I.D.:	BPA 3-TP-57
Project No.:	0071-008-300	Excavation Date:	08/25/08
Client:	ArcelorMittal Tecumseh Redevelopment, Inc	Excavation Method:	Case 9030
Location:	Tecumseh, Phase III BPA	Logged / Checked By:	BG/BH

Location.	recums	en, Fnase in	וטות			Logged / Checked by. Bo/BH							
Test Pit Loca						T	rest Pi	t Cross Section:	G)	RASS & TO)PSOIL		
Refer to Figure	In the Phase	ill report for ex		-D-58	ò	(Grade	- 0' 		0122012	*******		
TIME	PLANT NO.	Length:	8.0 ft.		prox.)			2'	FIL				
	12:10	Width:	3.0 ft.		prox.)	1		10'	SILTY	LAY			
End: Depth (fbgs)	12:50	Depth:	11.0 ft.	(ap	prox.) ool & So	oil			PID Headspace (ppm)	Photos Y / N	Samples Collected (fbgs)		
0.0 - 0.5		nd topsoil: noist, silt with s	some slag, l	loose					0.3	Y	YES		
0.5 - 1.5	Concrete:								NA	Y	YES		
1.5 - 6.0	Fill: Brown, m when dist		with cindery	√ash, t	brick ar	nd lit	ttle Silt,	dense, loose	0.3	Y	YES		
6.0 - 10.0	Fill: Reddish l	brown, moist,	Silt (mill sc	ale), fii	rm, low	plas	plasticity 0.3				NO		
10.0 - 11.0	Silty Clay Gray, mo	y: bist, Silty Clay,	, medium pl	asticity	y, stiff				0.3	Y	NO		
11.0	End of Te	est Pit											
COMMENTS:	:	Two vertica	al I beams ir	n test į	pit								
GROUNDW	ATER ENC	COUNTERED	:	J	YES [NO	If yes, depth	to GW:	7.0'			
VISUAL IM	PACTS:				YES [1	NO	Describe:					
OLFACTOR	OLFACTORY OBSERVATIONS: YES						NO	Describe:					
NON-NATI\	√E FILL EN	COUNTERED):	1	YES [NO	Slag, ash, and brick					
OTHER OB	SERVATIO	NS:			YES [J	NO	Describe:					
SAMPLES (COLLECTE	D:						Sample I.D.:		TP-57 (0-2'	')		

TP-57 Page 59 of 86


Project:	Phase III BPA Remedial Investigation	TEST PIT I.D.:	BPA 3-TP-58
Project No.:	0071-008-300	Excavation Date:	08/25/08
Client:	ArcelorMittal Tecumseh Redevelopment, Inc	Excavation Method:	Case 9030
Location:	Tecumseh, Phase III BPA	Logged / Checked By:	BG/BH

	Test Pit Location: NOT TO SCALE Refer to Figure in the Phase III report for exact location					est Pit Cros	Cross Section: — GRASS & TOPSOIL					
Refer to Figure	in the Phase	III report for ex	act location	~17-0-	G	Grade - 0' —		· K	********	**********		
LINION CARBIDE GORP. LINIOE DIVISIONS PLANTING BPA 3-TP-56 BPA 3-TP-56						2' — 4' — 6' — 8' —	6'- 6'-					
TIME	=	Length:	8.0 ft.	(approx.)		10' <i>—</i>						
Start:	10:40	Width:	3.0 ft.	(approx.)		10 —						
End: Depth (fbgs)	12:10	Depth:		(approx.) Symbol & S escription	Soil			PID Headspace (ppm)	Photos Y/N	Samples Collected (fbgs)		
0.0 - 0.5		nd topsoil: noist, silt with s	some slag, l	oose				1.2	Y	YES		
0.5 - 2.0	Fill: Gray, mo	ist, Slag fill wi	th ash, little	Silt, dense				1.2	Y	YES		
2.0 - 7.5	Fill: Brown, m disturbed	noist, Slag fill v	with cindery	ash, brick a	nd littl	le Silt, dense	, loose when	1.2	Y	NO		
7.5	End of Te	est Pit										
COMMENTS:				_								
GROUNDW	ATER ENC	OUNTERED:		✓ YES		NO	If yes, depth t	o GW:	7.5'			
VISUAL IMI	PACTS:			YES	✓ I	NO	Describe:					
OLFACTOR	RY OBSERV	/ATIONS:		YES	✓ I	NO	Describe:					
		COUNTERED	r:	✓ YES		NO		Slag, ash, an	d brick			
OTHER OBSERVATIONS:						NO	Describe:					
SAMPLES	COLLECTE	D:					Sample I.D.:		TP-58 (0-2')		
							Sample I.D.:					

TP-58 Page 60 of 86

Project:	Phase III BPA Remedial Investigation	TEST PIT I.D.:	BPA 3-TP-59
Project No.:	0071-008-300	Excavation Date:	08/26/08
Client:	ArcelorMittal Tecumseh Redevelopment, Inc	Excavation Method:	Case 9030
Location:	Tecumseh, Phase III BPA	Logged / Checked By:	BG/BH

TP-59 Page 61 of 86

Project:	Phase III BPA Remedial Investigation	TEST PIT I.D.:	BPA 3-TP-60
Project No.:	0071-008-300	Excavation Date:	08/22/08
Client:	ArcelorMittal Tecumseh Redevelopment, Inc	Excavation Method:	Case 9030
Location:	Tecumseh, Phase III BPA	Logged / Checked By:	BG/BH
Test Pit Loc	ation: NOT TO SCALE	Test Pit Cross Section:	∠ GRASS & TOPSOIL
Refer to Figure	e in the Phase III report for exact location	Crada O	GIGIOS & TOTSOIL

Test Pit Loca Refer to Figure			kact location				Pit Cros le - 0' 	s Section:	G	GRASS & TOPSOIL				
51001	BPA 3-1	P-48 SUBSTATION TK PRINTS (PRINTS)		-49 8" 51.	*0 1	O, u.o.	2' — 2' — 4' — 6' — 8' —		FII	.I.				
TIMI Start:	E 14:50	Length: Width:	10.0 ft. 3.0 ft.	(appro			10'—							
End:	16:00	Depth:	8.0 ft.	(appro										
Depth (fbgs)				Symbol escriptio		l			PID Headspace (ppm)	Photos Y/N	Samples Collected (fbgs)			
0.0 - 0.5		nd topsoil: noist, silt with	some slag, I	oose					0.2	Y	YES			
0.5 - 2.0	Fill: Gray, moist, Slag fill with rail road ties and little Silt, dense, loose when disturbed 0.2 Y YES													
2.0 - 8.0	Fill: Brown, m disturbed	noist, Slag fill v	with cindery	ash, bric	k and	little S	ilt, dense	, loose when	0.2	Y	YES			
8.0	End of Te	est Pit												
COMMENTS	•													
GROUNDW	ATER ENC	OUNTERED:	:	✓ YE	S] NO		If yes, depth t	to GW:	8.0'				
VISUAL IM	PACTS:			YE	S <] NO		Describe:						
OLFACTOR	RY OBSERV	/ATIONS:		YE	S 🗸] NO		Describe:						
NON-NATI\	VE FILL EN	COUNTERED):	✓ YE	S] NO			Slag, ash, an	d brick				
OTHER OB	SERVATIO	NS:		YE	S ✓] NO		Describe:						
SAMPLES	COLLECTE	D:						Sample I.D.:		TP-60 (0-2)			
								Sample I.D.:						

TP-60 Page 62 of 86

Project:	Phase III BPA Remedial Investigation	TEST PIT I.D.:	BPA 3-TP-61
Project No.:	0071-008-300	Excavation Date:	08/26/08
Client:	ArcelorMittal Tecumseh Redevelopment, Inc	Excavation Method:	Case 9030
Location:	Tecumseh, Phase III BPA	Logged / Checked By:	BG/BH

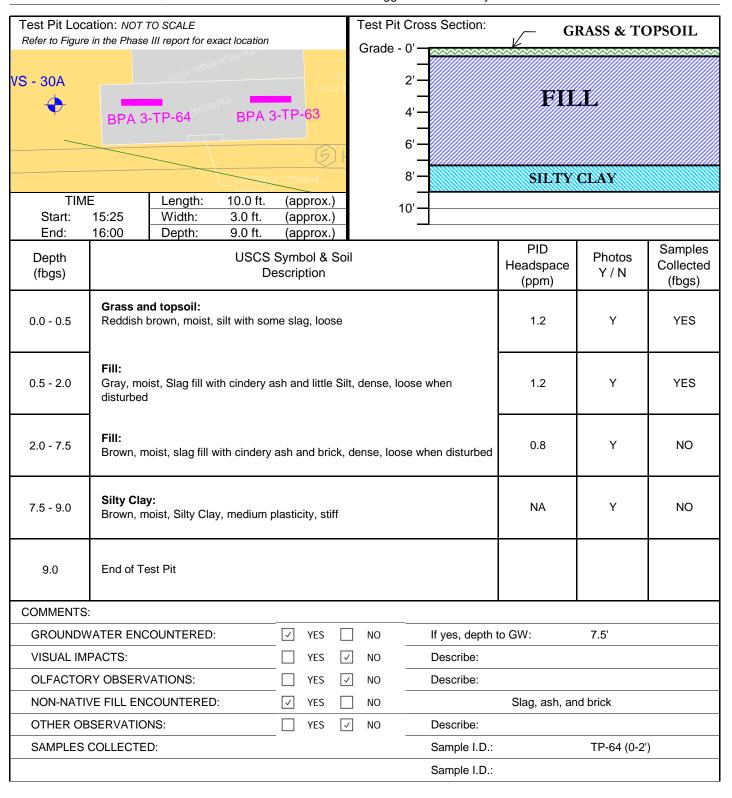
	Test Pit Location: NOT TO SCALE Refer to Figure in the Phase III report for exact location						Test Pit Cross Section: GRASS & TOPSOIL					
TIME Length: 10.0 ft. (approx.) Start: 13:40 Width: 3.0 ft. (approx.)						Grade - 0' 2' 4' 6' 8' SILTY CLAY						
End: Depth (fbgs)	14:15	Depth:		(appro Symbol & escription	& Soil			PID Headspace (ppm)	Photos Y / N	Samples Collected (fbgs)		
0.0 - 0.5		d topsoil: oist, silt with s	some slag, l	oose				2.2	Y	YES		
0.5 - 2.0	Fill: Gray, moist, Slag fill with cindery ash and little Silt disturbed						loose when	2.2	Y	YES		
2.0 - 8.0	Fill: Brown, m	oist, brick fill	with cindery	ash, den	se, loo	oose when disturbed 37.0 Y				NO		
8.0 - 8.5	Silty Clay Brown, m	/: oist, Silty Cla	y, medium p	lasticity, s	stiff			NA	Y	NO		
8.5	End of Te	est Pit										
COMMENTS:		Relocated	to the south	west out	of road							
GROUNDW	ATER ENC	OUNTERED:		✓ YES		NO	If yes, depth	to GW:	7'			
VISUAL IMF	PACTS:			✓ YES		NO	Describe:	Sheen on wa	iter			
OLFACTOR	ACTORY OBSERVATIONS: YES						Describe:					
NON-NATIV	ION-NATIVE FILL ENCOUNTERED:							Slag, ash, an	nd brick			
OTHER OB	SERVATIO	NS:		YES	V	NO	Describe:	escribe:				
SAMPLES (COLLECTE	D:		-			Sample I.D.:	mple I.D.: TP-61 (0-2')				
							Sample I.D.:					

TP-61 Page 63 of 86

Project:	Phase III BPA Remedial Investigation	TEST PIT I.D.:	BP	A 3-TP-62
Project No.:	0071-008-300	Excavation Date:	08/26	/08
Client:	ArcelorMittal Tecumseh Redevelopment, Inc	Excavation Method:	Case	9030
Location:	Tecumseh, Phase III BPA	Logged / Checked By:	BG/B	Н
Test Pit Loca	ation: NOT TO SCALE	Test Pit Cross Section:	_	GRASS & TOPSOIL
Refer to Figure	in the Phase III report for exact location	Crada O	V	312100 & 101001E

Refer to Figure	Refer to Figure in the Phase III report for exact location					Grade -	0' 	GM65 & TOTSOIL					
TP-63 STREAMLINE							2' — 4' — 6' — 8' —	FILL SILTY CLAY					
TIME		Length:	10.0 ft.	(approx.)		1	0'						
Start: End:	12:50 13:40	Width: Depth:	3.0 ft. 8.0 ft.	(approx.)									
Depth (fbgs)	10.10	Борин.	USCS	Symbol & sescription					PID Headspace (ppm)	Photos Y/N	Samples Collected (fbgs)		
0.0 - 0.5		Grass and topsoil: Brown, moist, silt with some slag, loose							2.9	Y	YES		
0.5 - 2.0	Fill: Gray, moist, Slag fill with cindery ash and little Silt, dense, loose when disturbed 2.9 Y								YES				
2.0 - 7.0	Fill: Brown, m	oist, slag fill v	vith cindery	ash and brid	ck, de	ense, loos	se whe	n disturbed	40.0	Y	NO		
7.0 - 8.0	Silty Clay Brown, m	y: loist, Silty Cla	y, medium p	olasticity, sti	ff				NA	Y	NO		
8.0	End of Te	est Pit											
COMMENTS:													
GROUNDW	ATER ENC	OUNTERED:		✓ YES		NO	I1	f yes, depth t	o GW:	7'			
VISUAL IMI	PACTS:			✓ YES		NO		Describe:	Sheen on wa	ter			
OLFACTOR	RY OBSERV	'ATIONS:		YES	✓	NO		Describe:					
NON-NATIVE FILL ENCOUNTERED:						NO			Slag, ash, an	d brick			
OTHER OB	✓	NO		Describe:									
SAMPLES	COLLECTE	D:					S	Sample I.D.:		TP-62 (0-2')		
							S	Sample I.D.:					

TP-62 Page 64 of 86


Project:	Phase III BPA Remedial Investigation	TEST PIT I.D.:	BPA 3-TP-63
Project No.:	0071-008-300	Excavation Date:	08/26/08
Client:	ArcelorMittal Tecumseh Redevelopment, Inc	Excavation Method:	Case 9030
Location:	Tecumseh, Phase III BPA	Logged / Checked By:	BG/BH
Test Pit Loc	ation: NOT TO SCALE	Test Pit Cross Section:	GRASS & TOPSOII

	Test Pit Location: NOT TO SCALE Refer to Figure in the Phase III report for exact location					est Pit Cro	ss Section:	G	RASS & TO	OPSOIL		
3-TP-64 PER PUL	BPA 3	B-TP-63	OO GAL, OIL AST TEP 7' ON BPA	A 3 - TP- 6:	N/3-TD-61	2'- 4'- 6'- 8'-						
TIME Start:	14:15	Length: Width:	10.0 ft. 3.0 ft.	(approx.)		10' <i>-</i>						
	15:25	Depth:	8.0 ft.	(approx.)		_						
Depth (fbgs)				Symbol & S escription	oil			PID Headspace (ppm)	Photos Y / N	Samples Collected (fbgs)		
0.0 - 0.5		nd topsoil: brown, moist,	silt with som	ne slag, loose	Э			0.9	Y	YES		
0.5 - 2.0	Fill: Gray, mo disturbed	oist, Slag fill w I	ith cindery as	sh and little S	Silt, d	dense, loose	when	0.9	Y	YES		
2.0 - 8.0	Fill: Brown, m	noist, slag fill v	with cindery a	ash and brick	k, der	nse, loose w	hen disturbed	1.2	Y	NO		
8.0	End of Te	est Pit										
COMMENTS:												
GROUNDW	ATER ENC	COUNTERED	!	✓ YES		NO	If yes, depth	to GW:	8'			
VISUAL IMF	PACTS:			YES	\checkmark	NO	Describe:					
OLFACTOR	Y OBSER\	/ATIONS:		YES	✓	NO	Describe:					
NON-NATI\	/E FILL EN	COUNTERED):	✓ YES		NO		Slag, ash, an	d brick			
OTHER OB	SERVATIO	NS:		YES	✓	NO	Describe:					
SAMPLES (COLLECTE	D:					Sample I.D.:		TP-63 (0-2)		
							Sample I.D.:					

TP-63 Page 65 of 86

BPA 3-TP-64 Project: Phase III BPA Remedial Investigation TEST PIT I.D.: 0071-008-300 08/26/08 Project No.: **Excavation Date:** ArcelorMittal Tecumseh Redevelopment, Inc Case 9030 Client: **Excavation Method:** Tecumseh, Phase III BPA Location: Logged / Checked By: BG/BH

TP-64 Page 66 of 86

Project:	Phase III BPA Remedial Investigation	TEST PIT I.D.:	BPA 3-TP-65
Project No.:	0071-008-300	Excavation Date:	08/26/08
Client:	ArcelorMittal Tecumseh Redevelopment, Inc	Excavation Method:	Case 9030
Location:	Tecumseh, Phase III BPA	Logged / Checked By:	BG/BH

Test Pit Location: NOT TO SCALE Refer to Figure in the Phase III report for exact location						Test Pit Cross Section: GRASS & TOPSOIL Grade - 0'						
Barana Ba						2'- 4'- 6'- 8'-						
TIME Length: 10.0 ft. (approx.)							10'	MINISTER BYEC	LAY			
Start: End:	16:00 16:25	Width: Depth:	3.0 ft. 9.0 ft.	(approx								
Depth (fbgs)	USCS Symbol & Soil Description							PID Headspace (ppm)	Photos Y / N	Samples Collected (fbgs)		
0.0 - 0.5		nd topsoil: noist, silt with s	some slag, l		0.8	Y	YES					
0.5 - 1.5	Fill: Gray, mo disturbed		ith cindery a	ish and littl	e Silt,	t, dense, loose when 0.8 Y				YES		
1.5 - 8.5	Fill: Brown, m disturbed), slag fill wi	ith cindery	ash a	and brick, dense, loose when 0.8 Y N						
8.5 - 9.0	Silty Clay: Brown, moist, Silty Clay, medium plasticity, stiff							NA	Y	NO		
9.0	End of Test Pit											
COMMENTS												
GROUNDW	ATER ENC	COUNTERED:		✓ YES		NO	If yes, depth	h to GW: 7'				
VISUAL IMPACTS:					✓	NO	Describe:					
					✓ _	NO	Describe:					
NON-NATIVE FILL ENCOUNTERED: YES						NO		Slag, ash, an	nd brick			
OTHER OB				YES	✓	NO	Describe:		TD 65 (2.5)	<u> </u>		
SAMPLES COLLECTED:							Sample I.D.:					
							Sample I.D.:					

TP-65 Page 67 of 86

NON-NATIVE FILL ENCOUNTERED:

OTHER OBSERVATIONS:

SAMPLES COLLECTED:

TEST PIT EXCAVATION LOG

SILTY CLAY

Slag, ash, and brick

TP-66 (0-2')

Project: Phase III BPA Rei	nedial Investigation	TEST PIT I.D.:	BPA 3-TP-6	6
Project No.: 0071-008-300		Excavation Date:	08/28/08	
Client: ArcelorMittal Ted	cumseh Redevelopment, Inc	Excavation Method:	John Deere 330	
Location: Tecumseh, Phas	e III BPA	Logged / Checked By:	BG/BH	
Test Pit Location: NOT TO SCALE		Test Pit Cross Section:	— GRASS &	TOPSOIL
Refer to Figure in the Phase III report	or exact location	Grade - 0'	J GRADO &	TOTOOIL
BPA3-TP.66	CRAWN	2' — 4' — 6' —	FILL	

TIM Start:	E 10:50	Length: Width:	10.0 ft. 3.0 ft.		rox.) rox.)		10	0'				
End:	11:30	Depth:	8.5 ft.		rox.)					PID		Samples
Depth (fbgs)	USCS Symbol & Soil Description									Headspace (ppm)	Photos Y / N	Collected (fbgs)
0.0 - 0.5	Grass and topsoil: Brown, moist, silt with some slag, loose								0.7	Y	YES	
0.5 - 7.5		Fill: Brown, moist to wet (6'), slag fill with cindery ash and brick, dense, loose when disturbed									Y	YES
7.5 - 8.5	Silty Clay: Brown, moist, Silty Clay, medium plasticity, stiff								NA	Y	NO	
8.5	End of Test Pit											
COMMENTS	:											
GROUNDV	GROUNDWATER ENCOUNTERED: ✓ YES NO If yes, depth						If yes, depth	to GW:	6'			
VISUAL IMPACTS: YES V NO Describe:					Describe:							
OLFACTORY OBSERVATIONS: YES V NO Describe:						Describe:						

TP-66 Page 68 of 86

✓ NO

NO

Describe:

Sample I.D.:

Sample I.D.:

YES

YES

SAMPLES COLLECTED:

TEST PIT EXCAVATION LOG

Project:	Phase III BPA F	Remedial Investig			TEST P	IT I.D.:	BPA 3-TP-67				
Project No.:	0071-008-300					Excavat	ion Date:	08/28/08			
Client:	ArcelorMittal Tecumseh Redevelopment, Inc					Excavat	ion Method:	John Dee	ere 330		
Location:	Tecumseh, Phase III BPA					Logged	/ Checked By:	BG/BH			
Refer to Figure in the Phase III report for exact location						est Pit Cross Section: GRASS & TOPSOIL Grade - 0'					
30, 31, 32 BPA 33 6-001 CP 9-PPLY NOT N	,					2' — FILL 6' — 8' —					
TIMI Start:		ngth: 10.0 ft. dth: 3.0 ft.		orox.) orox.)		10	'-				
End:	12:45 De	pth: 9.0 ft.	(ap	orox.)							
Depth (fbgs)	USCS Symbol & Soil Description							PID Headspace (ppm)	Photos Y/N	Samples Collected (fbgs)	
0.0 - 0.5	Grass and topsoil: Brown, moist, silt with some slag, loose							0.4	Y	YES	
0.5 - 1.5	Fill: Gray, moist, Sla disturbed	ag fill with cindery a	d little S	ilt, de	ense, loos	se when	0.8	Y	YES		
0.5 - 9.0	Fill: Brown, moist to when disturbed	lag and	dense, loose	0.3	Y	YES					
9.0	End of Test Pit										
COMMENTS	<u> </u>							1	1		
GROUNDWATER ENCOUNTERED:						NO	If yes, depth	to GW:	8.5'		
VISUAL IMPACTS: YES					√	NO	Describe:				
OLFACTORY OBSERVATIONS: YES 🗸					√	NO	Describe:				
NON-NATIVE FILL ENCOUNTERED:						NO _		Slag, ash, ar	nd brick		
OTHER OBSERVATIONS: YES						NO	Describe:				
						_					

TP-67 Page 69 of 86

Sample I.D.:

Sample I.D.:

TP-67 (0-2')

Project:	Phase III E	3PA Remedia	al Investig	ation			TEST PIT	I.D.:	BPA 3	8-TP-68		
Project No.:	0071-00	0071-008-300 ArcelorMittal Tecumseh Redevelopme					Excavation	n Date:	08/28/08			
Client:	ArcelorN	littal Tecums	eh Redev	elopm	nent, In	C	Excavation	n Method:	John Deer	re 330		
Location:	Tecumse	eh, Phase III	BPA				Logged / C	Checked By:	BG/BH			
Test Pit Loca Refer to Figure		O SCALE	act location				est Pit Cros	ss Section:	√ Gl	RASS & TO	OPSOIL	
TIME Length: 10.0 ft. (app Start: 11:30 Width: 3.0 ft. (app			57		4'- 8'- 12'- 16'-							
					orox.)		20'—					
Start: End:	11:30 12:05	Depth:	3.0 π. 12.0 ft.		orox.) orox.)		_					
Depth (fbgs)			USCS		ol & So	oil			PID Headspace (ppm)	Photos Y/N	Samples Collected (fbgs)	
0.0 - 0.5		Grass and topsoil: Brown, moist, silt with some slag, loose 0.8 Y YES							YES			
0.5 - 3.0	Fill: Brown, moist, brick fill with slag and cindery as				ery ash,	den	nse, loose wh	nen disturbed	0.8	Y	YES	
3.0 - 12.0	Fill: Brown, m	oist to wet (8')	, brick fill, d	dense,	loose w	/hen	disturbed		0.3	Y	NO	
12	End of Te	est Pit										
COMMENTS	:											
GROUNDW	VATER ENC	OUNTERED:		V	YES [NO	If yes, depth t	to GW:	8'		
VISUAL IMI	PACTS:				YES [✓	NO	Describe:				
OLFACTOR	RY OBSERV	ATIONS:			YES [✓	NO	Describe:				
NON-NATIVE FILL ENCOUNTERED: ✓ YES					YES [NO		Slag, ash, an	d brick		
OTHER OB	DBSERVATIONS: YES					✓ _	NO	Describe:				
SAMPLES	PLES COLLECTED:							Sample I.D.:	ple I.D.: TP-68 (0-2')			
G, 220 002220125.							Sample I.D.:					

TP-68 Page 70 of 86

Project:	Phase III	BPA Remedial Investig	ation	TE	EST PIT	I.D.:	BPA 3	3-TP-69	
Project No.:	0071-00	8-300		E	xcavatior	n Date:	08/28/08		
Client:	ArcelorN	/littal Tecumseh Redev	elopment, Ir	n Ex	xcavatior	n Method:	John Dee	re 330	
Location:	Tecums	eh, Phase III BPA		Lo	ogged / C	checked By:	BG/BH		
Test Pit Loca Refer to Figure		TO SCALE III report for exact location			t Pit Cros	ss Section:	G]	RASS & TO	PSOIL
CSWRWW		TP-69 WMU P-30, 31, 32	BPA SWA		2'— 4'— 6'— 8'—		FIL	L	
TIMI Start:	E 12:45	Length: 10.0 ft. Width: 3.0 ft.	(approx.) (approx.)		10'—				
End:	14:00	Depth: 9.0 ft.	(approx.)						
Depth (fbgs)			Symbol & S escription		PID Headspace (ppm)	Photos Y / N	Samples Collected (fbgs)		
0.0 - 0.5		nd topsoil: noist, silt with some slag, I	oose				0.9	Y	YES
0.5 - 9.0		dark grayish blue, moist e, loose when disturbed	to wet (8'), sla	ag fill wit	th cindery	ash and little	0.6	Υ	YES
9.0	End of Te	est Pit							
COMMENTS		sample include both co	olors of slag						
GROUNDW	ATER ENC	COUNTERED:	✓ YES	☐ NO)	If yes, depth t	to GW:	8'	
VISUAL IM	PACTS:		YES	✓ NO)	Describe:			
OLFACTORY OBSERVATIONS:				✓ NO)	Describe:			
NON-NATIVE FILL ENCOUNTERED: ✓ YES				☐ NO)	Slag and ash			
OTHER OBSERVATIONS: YES)	Describe:			
SAMPLES	COLLECTE	D:		-	Sample I.D.:				

TP-69 Page 71 of 86

Sample I.D.:

Project:	Phase III BPA Remedial Investigation	TEST PIT I.D.:	BPA 3-TP-70
Project No.:	0071-008-300	Excavation Date:	08/29/08
Client:	ArcelorMittal Tecumseh Redevelopment, Inc	Excavation Method:	John Deere 330
Location:	Tecumseh, Phase III BPA	Logged / Checked By:	BG/BH

Location:	recums	sen, Phase III BPA		Logged /	Спескеа ву:	BG/BH					
Test Pit Loca				Test Pit Cro	oss Section:	G]	RASS & TO	OPSOIL			
Refer to Figure	in the Phase	e III report for exact location	on D	Grade - 0'-	*****	<u>~~~~~~~~</u>	*********	*********			
BPA 3-TF PRECIPIENCE).78 (**	BPA 3-TP-7	20 20	3' - 3' - 6' - - 9' -		FILL					
0.TP-69		SVIVIO F	-26, 29	-							
PA 3-TP-69		SCARFER SCHOOL		12'-							
TIME		Length: 10.0 ft		15' -	1	SILTY C	LAY	_/			
Start: End:	8:00 9:45	Width: 3.0 ft. Depth: 12.0 ft		-							
Depth (fbgs)	9.40	USC	t. (approx.) CS Symbol & Sol Description	vil		PID Headspace (ppm)	Photos Y / N	Samples Collected (fbgs)			
0.0 - 0.5		nd topsoil: noist, silt with some sla	g, loose			0.4	Y	YES			
0.5 - 6.0	Fill: Brown, m disturbed	noist, slag fill with cinde	ery ash, brick and	little silt, dense	∍, loose when	0.9	Y	YES			
6.0 -10.0	Fill: Yellowish	h brown, moist to wet (8	3.0), Fill, silt with s	some clay and	few slag	0.9	Y	YES			
10.0 - 12.0	Silty Clay Brown ar	n y: nd gray, moist, Silty Cla	ıy, medium plastic	city, stiff		NA	Y	NO			
12.0	End of Te	est Pit									
COMMENTS:	.:										
GROUNDW	VATER ENC	COUNTERED:	✓ YES [NO	If yes, depth t	to GW:	8'				
VISUAL IMF	PACTS:		YES -	√ NO	Describe:						
OLFACTOR	RY OBSER	VATIONS:	YES -	√ NO	Describe:						
NON-NATI\	VE FILL EN	COUNTERED:	✓ YES	NO		Slag, ash, an	nd brick				
OTHER OB	SERVATIO	NS:	YES _	✓ NO	Describe:						
SAMPLES	COLLECTE	D:			Sample I.D.:	D.: TP-70 (0-2')					
				-	Sample I.D.:	-					

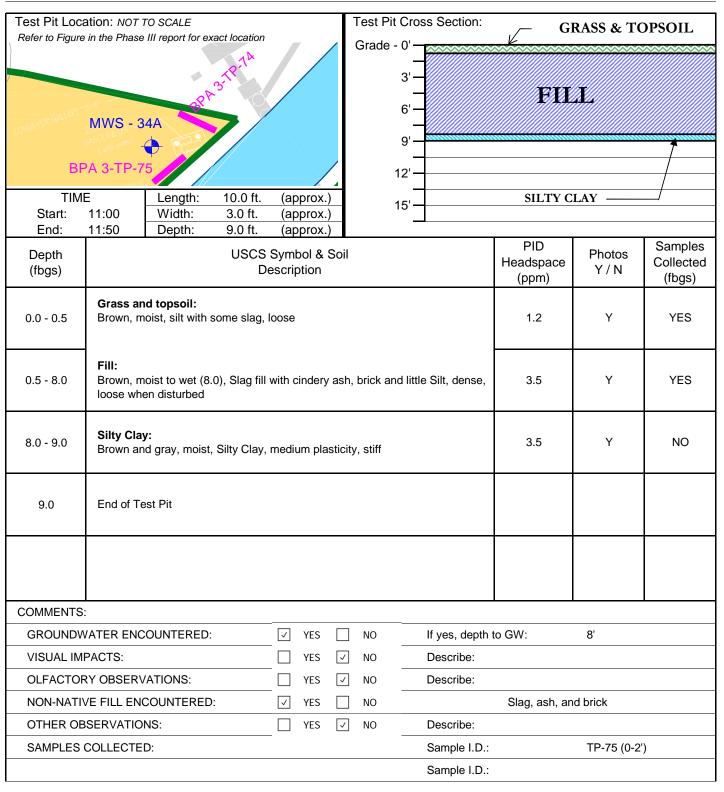
TP-70 Page 72 of 86

Project:	Phase III BPA Remedial Investig	ation	TEST PI	T I.D.:	3-TP-71		
Project No.:	0071-008-300		Excavati	on Date:	08/29/08		
Client:	ArcelorMittal Tecumseh Redev	elopment, Inc	Excavati	on Method:	John Dee	re 330	
Location:	Tecumseh, Phase III BPA		Logged /	Checked By:	BG/BH		
Refer to Figure	ation: NOT TO SCALE in the Phase III report for exact location		Test Pit Cr Grade - 0'	oss Section:	GI	RASS & TC	PSOIL
BPA 3	PA 3-1 P-72	MWS - 3 MWS - 3 MSOLIE DATA MECHINATION BPA 3-TP-7 SOLUTE (Millian) (Approxy)	2' 4' 6' 8'		FIL	L	
Start:	E Length: 10.0 ft. 12:00 Width: 3.0 ft.	(approx.) (approx.)	10'		<u> </u>	<u> </u>	<u> </u>
End: Depth (fbgs)		(approx.) Symbol & Soil escription	I		PID Headspace (ppm)	Photos Y/N	Samples Collected (fbgs)
0.0 - 0.5	Asphalt and subbase				0.6	Υ	YES
0.5 - 10.0	Fill: Brown, moist to wet (8.5), Slag fill loose when disturbed	with cindery ash	n, brick and lit	tle Silt, dense,	0.5	Y	YES
10.0	End of Test Pit						
COMMENTS	sample include both co	olors of slag					
GROUNDW	/ATER ENCOUNTERED:	✓ YES [If yes, depth	to GW:	7.5'	
VISUAL IM	PACTS:	YES 🗸	NO	Describe:			
OLFACTOR	RY OBSERVATIONS:	YES 🗸] NO	Describe:			
NON-NATI\	VE FILL ENCOUNTERED:	✓ YES] NO	Slag and ash			
OTHER OB	SERVATIONS:	YES 🗸] NO	Describe:			
SAMPLES	COLLECTED:		<u> </u>	Sample I.D.:		TP-76 (0-2'))

TP-71 Page 73 of 86

Sample I.D.:

TP-76 (2-7')



Project:	Phase III	BPA Remedial Investig	ation		TEST PI	Γ I.D.:	BPA 3	8-TP-74		
Project No.:	0071-00	8-300			Excavation	on Date:	08/29/08			
Client:		littal Tecumseh Redev	elopment,	Inc	Excavation	on Method:	John Dee	re 330		
Location:	Tecums	eh, Phase III BPA			Logged /	Checked By:	BG/BH			
Test Pit Loca Refer to Figure		TO SCALE III report for exact location			Test Pit Cro	oss Section:	– Gl	RASS & TO	PSOIL	
CONVEYOR GIVLERY"	MWS - 34A (NSOLVERY OF ALLERY OF AL						FIL	.L	1	
BF	PA 3-TP-7	5			12'-					
TIM	E	Length: 10.0 ft.	(approx.))	15'-		SILTY C	LAY —		
Start:	9:45	Width: 3.0 ft.	(approx.)		15 -					
End: Depth (fbgs)	11:00		(approx.) Symbol & Sescription				PID Headspace (ppm)	Photos Y/N	Samples Collected (fbgs)	
0.0 - 0.5		Grass and topsoil: Brown, moist, silt with some slag, loose 0.6 Y YES								
0.5 - 8.5	Fill: Brown, m disturbed	noist, slag fill with cindery	nd li	ttle silt, dense	e, loose when	0.5	Y	YES		
8.5 - 9.5	Silty Cla Brown ar	y: nd gray, moist, Silty Clay,	medium plas	sticit	ty, stiff		0.5	Y	NO	
9.5	End of Te	est Pit								
COMMENTS	:									
GROUNDW	VATER ENC	OUNTERED:	YES	√	NO	If yes, depth	to GW:			
VISUAL IM	PACTS:		YES	V	NO	Describe:				
OLFACTOR	RY OBSER\	/ATIONS:	YES	✓	NO	Describe:				
NON-NATIVE FILL ENCOUNTERED: ✓ YES					NO		Slag, ash, and brick			
OTHER OBSERVATIONS: YES					NO	Describe:	-			
SAMPLES	COLLECTE	D:	-			Sample I.D.:		TP-74 (0-2')	
						Sample I.D.:		TP-74 (2-8'		

TP-74 Page 74 of 86

Project:	Phase III BPA Remedial Investigation	TEST PIT I.D.:	BPA 3-TP-75
Project No.:	0071-008-300	Excavation Date:	08/29/08
Client:	ArcelorMittal Tecumseh Redevelopment, Inc	Excavation Method:	John Deere 330
Location:	Tecumseh, Phase III BPA	Logged / Checked By:	BG/BH

TP-75 Page 75 of 86

Project:	Phase III I	BPA Remedial Investig	ation		TEST F	PIT I	I.D.:	BPA 3	BPA 3-TP-76			
Project No.:	0071-00	8-300			Excava	tion	Date:	08/28/08				
Client:	ArcelorN	littal Tecumseh Redev	elopment,	Inc	Excava	tion	Method:	John Dee	re 330			
Location:	Tecums	eh, Phase III BPA			Logged	1 / C	hecked By:	BG/BH				
Test Pit Loca		TO SCALE III report for exact location			Test Pit C		s Section:	G₁	RASS & TO	PSOIL		
MW/S	- 35A - A5'' 6NOKE	BPA 3-TP-78 PRECEPTATOR PRECEPTATOR ONE TAME! SHOYE TAME! SHOYE TAME! SHOYE TAME! SWAN SAME SAME SHOYE TAME!						FIL	FILL			
TIM	F	Length: 10.0 ft.	(approx.			_						
Start:	15:25	Width: 3.0 ft.	(approx.		10)' 🗌						
End:	15:40	Depth: 8.0 ft.	(approx.	.)								
Depth (fbgs)	USCS Symbol & Soil Description							PID Headspace (ppm)	Photos Y / N	Samples Collected (fbgs)		
0.0 - 0.5		Grass and topsoil: Brown, moist, silt with some slag, loose						0.5	Y	YES		
0.5 - 8.0		own, moist to wet (7.5), S en disturbed	Slag fill with	cind	lery ash and	d few	/ Silt, dense,	0.5	Y	YES		
8	End of Te	est Pit										
COMMENTS	:	sample include both co	olors of slag	J								
GROUNDV	VATER ENC	OUNTERED:	✓ YES] NO		If yes, depth t	o GW:	7.5'			
VISUAL IM	PACTS:		YES	√] NO		Describe:					
OLFACTOR	OLFACTORY OBSERVATIONS: YES [Describe:					
NON-NATI	NON-NATIVE FILL ENCOUNTERED:] NO			Slag and ash				
OTHER OF	R OBSERVATIONS:					Describe:						
SAMPLES	COLLECTE	D:		_		Sample I.D.:						

TP-76 Page 76 of 86

Sample I.D.:

TP-76 (2-7')

Project:	Phase III BPA Remedial Investigation		TEST PIT	I.D.:	BPA 3	3-TP-77	
Project No.:	0071-008-300		Excavation	n Date:	08/28/08		
Client:	ArcelorMittal Tecumseh Redevelopment,	Inc	Excavation	n Method:	John Dee	re 330	
Location:	Tecumseh, Phase III BPA		Logged / C	checked By:	BG/BH		
	ation: NOT TO SCALE in the Phase III report for exact location		Test Pit Cros	ss Section:	G1	RASS & TC	PSOIL
CAWEMA	SWMU P-30, 31, 32	AICE)	2' — 4' — 6' — 8' —		FIL	L	
TIMI Start:	E Length: 10.0 ft. (approx.) 14:50 Width: 3.0 ft. (approx.)		10'—				
End:	15:25 Depth: 8.0 ft. (approx.)		_				
Depth (fbgs)	USCS Symbol & S Description	Soil			PID Headspace (ppm)	Photos Y / N	Samples Collected (fbgs)
0.0 - 0.5	Grass and topsoil: Brown, moist, silt with some slag, loose	Υ	YES				
0.5 - 8.0	Fill: Brown, moist to wet (7.5), Slag fill with cindery when disturbed	ash a	and few Silt, d	ense, loose	0.8	Υ	YES
8	End of Test Pit						
COMMENTS	sample include both colors of slag						
GROUNDW	/ATER ENCOUNTERED: VES		NO	If yes, depth t	o GW:	8'	
VISUAL IM	PACTS: YES	\checkmark	NO	Describe:			
OLFACTOR	RY OBSERVATIONS: YES	\checkmark	NO	Describe:			
NON-NATI\	/E FILL ENCOUNTERED: YES		NO		Slag and ash		
OTHER OB	SERVATIONS: YES	\checkmark	NO	Describe:			
SAMPLES	COLLECTED:			Sample I.D.: TP-77 (0-2')			
				Sample I.D.:			

TP-77 Page 77 of 86

Project:	Phase III BPA Remedial Investigation	TEST PIT I.D.:	BPA 3-TP-78
Project No.:	0071-008-300	Excavation Date:	08/28/08
Client:	ArcelorMittal Tecumseh Redevelopment, Inc	Excavation Method:	John Deere 330
Location:	Tecumseh, Phase III BPA	Logged / Checked By:	BG/BH

Location:	recums	sen, Phase II	IBPA		L(oggea / C	лескеа ву:	BG/BH		
Test Pit Loca			east location		Tes	t Pit Cros	ss Section:		RASS & TO	OPSOIL
Refer to Figure		3 III report for ex	kacı iocalion		Gra	ade - 0' -	******		*************	******
	AS'	3PA 3-TP-TS	B CASE ASE &	OUSE BPA3		3' — 6' — 9' —		FIL	$oldsymbol{L}$	
		TD-69		SWA	V	~ <u> </u>				
	BPA 3	5-11				12' —				
TIME	E	Length:	10.0 ft.	(approx.)	4	4 <i>E</i> '		SILTY C	LAY —	_/
Start:	14:00	Width:	3.0 ft.	(approx.)		15' 				
End:	14:50	Depth:	12.5 ft.	(approx.)				T -15		1 - ,
Depth (fbgs)				Symbol & S escription	oil			PID Headspace (ppm)	Photos Y/N	Samples Collected (fbgs)
0.0 - 0.5		nd topsoil: noist, silt with :	some slag, l	oose				0.5	Y	YES
0.5 - 5.5	Fill: Brown, moist, slag fill with cindery ash, brick and little silt, dense, loose when disturbed 0.5							Y	YES	
5.5 -11.5	Fill: Brown, moist to wet (9.5'), sandy silt with, dense,					when dist	turbed	0.5	Y	YES
11.5 - 12.5	Silty Clay Brown, m	n y: noist, Silty Cla	ıy, medium p	olasticity, stiff	:			NA	Y	NO
12.5	End of Te	est Pit								
COMMENTS:	:							<u> </u>		
GROUNDW	/ATER ENC	COUNTERED	 V:	✓ YES	□ NO		If yes, depth t	to GW:	9.5'	
VISUAL IMF				YES	✓ NO		Describe:			
OLFACTOR		VATIONS:	·	YES	✓ NO		Describe:			
		COUNTERED	 D:	_ ✓ YES	☐ NO	-		Slag, ash, an	nd brick	
	OTHER OBSERVATIONS: VES V NO Describe:									
SAMPLES (Sample I.D.:		TP-78 (0-2)	·')
					-		Sample I.D.:			,

TP-78 Page 78 of 86

Project:	Phase III E	BPA Remedia	al Investig	ation			TEST PIT	I.D.:	BPA 3	3-TP-79		
Project No.:	0071-00	8-300					Excavation	Date:	08/28/08			
Client:	ArcelorM	littal Tecums	eh Redev	elopm	ent, In	C	Excavation	Method:	John Deer	re 330		
Location:	Tecums	eh, Phase III	BPA				Logged / C	hecked By:	BG/BH			
Test Pit Loca	ation: NOT	TO SCALE				1	Test Pit Cros	s Section:		DAGC 0 7TC	DCOIL	
		III report for exa	ct location				Grade - 0'		_ GI	RASS & TO	PSOIL	
	TIME Length: 10.0 ft. (approx.)					2' — 2' — 4' — 6' — 8' —		FILL				
TIMI	E	Length:		(app	orox.)	1	10' <i>-</i>					
Start:	10:15	Width:	3.0 ft.		orox.)		10_					
End: Depth (fbgs)	10:50	Depth:	8.5 ft. USCS De			oil			PID Headspace (ppm)	Photos Y/N	Samples Collected (fbgs)	
0.0 - 0.5	Grass and topsoil: Brown, moist, silt with some slag, loose 0.6 Y YES											
0.5 - 8.0	Fill: Brown, moist to wet (7'), slag fill with cindery ash and brick, dense, loose when disturbed O.4 Y						Υ	YES				
8.0 - 8.5	Silty Clay Grayish b	y: prown, moist, S	ilty Clay, m	nedium	plastic	ity,	stiff		NA	Υ	NO	
8.5	End of Te	est Pit										
COMMENTS	:											
GROUNDW	ATER ENC	OUNTERED:		V	YES [NO	If yes, depth t	to GW:	7'		
VISUAL IMI	PACTS:				YES [✓	NO	Describe:				
OLFACTOR	RY OBSERV	/ATIONS:			YES [✓	NO	Describe:				
NON-NATIVE FILL ENCOUNTERED: ✓ YES						NO		Slag, ash, and brick				
OTHER OB	OTHER OBSERVATIONS: YES V NO						NO	Describe:	cribe:			
SAMPLES (SAMPLES COLLECTED:							Sample I.D.: TP-79 (0-2')				
								Sample I.D.:				

TP-79 Page 79 of 86

Project:	Phase III E	3PA Remedi	al Investig	ation			TEST PIT	I.D.:	BPA 3	8-TP-80	
Project No.:	0071-00	8-300					Excavation	Date:	08/28/08		
Client:	ArcelorN	littal Tecums	seh Redev	elopn	nent, In	C	Excavation	Method:	John Deer	re 330	
Location:	Tecums	eh, Phase III	BPA				Logged / C	hecked By:	BG/BH		
Test Pit Loca	ation: NOT	TO SCALE				Τ-	Test Pit Cros	s Section:			DCOIL
Refer to Figure			act location				Grade - 0'		- GI	RASS & TC	PSOIL
							- Clade - 0				
		0.85					2'—		444		
	1	3'					4'—		FII	<u> </u>	
	48										
							6'—				
							8' —				
TIMI		Longth	10 0 ft	(on	orov \		Ŭ –			EA Y	
Start:	9:30	Length: Width:	10.0 ft. 3.0 ft.		orox.) orox.)		10'—				
End:	10:15	Depth:	8.5 ft.		orox.)						
Depth			USCS	Symb	ol & So	oil			PID	Photos	Samples
(fbgs)				escrip					Headspace (ppm)	Y/N	Collected (fbgs)
	Grass an	d topsoil:							(FF)		('9')
0.0 - 0.5		oist, silt with s	some slag, l	oose					0.5	Υ	YES
	 Fill:										
0.5 - 8.0	Brown, m), slag fill wi	th cind	dery ash	n an	nd brick, dense	e, loose when	0.5	Υ	YES
	disturbed										
	0:14 01										
8.0 - 8.5	Silty Clay Gravish b	y: prown, moist, \$	Silty Clay, m	nedium	n plastic	ity.	stiff		NA	Υ	NO
	,		, ,,		<u>'</u>	,					
8.5	End of Te	est Pit									
COMMENTS	:										
GROUNDW	VATER ENC	OUNTERED:		✓	YES [NO	If yes, depth t	to GW:	7'	
VISUAL IM	PACTS:				YES [√	NO	Describe:			
OLFACTOR	RY OBSERV	ATIONS:			YES [✓	NO	Describe:			
NON-NATI\	VE FILL EN	COUNTERED	:	✓	YES [NO		Slag, ash, an	d brick	
OTHER OB	SERVATIO	NS:			YES [√	NO	Describe:			
SAMPLES	COLLECTE	D:						Sample I.D.:		TP-80 (0-2'))
								Sample I.D.:		TP-80 (2-7'))

TP-80 Page 80 of 86

Project:	Phase III BPA Remedial Investigation	TEST PIT I.D.:	BPA 3-TP-81
Project No.:	0071-008-300	Excavation Date:	08/22/08
Client:	ArcelorMittal Tecumseh Redevelopment, Inc	Excavation Method:	Case 9030
Location:	Tecumseh, Phase III BPA	Logged / Checked By:	BG/BH

	est Pit Location: NOT TO SCALE Refer to Figure in the Phase III report for exact location						Cross Section:	G	RASS & TO	DPSOIL
BPA	3-TP-49	BPA 3	BPA 3-1	9RSTMONTA PRAYSTORIES			2'	FII	L	
Start: End:	- 10:20 11:00	Length: Width: Depth:	3.0 ft. 9.8 ft.	(approx.) (approx.) (approx.)		10	0'			
Depth (fbgs)								PID Headspace (ppm)	Photos Y / N	Samples Collected (fbgs)
0.0 - 0.5	Grass and topsoil: 0.0 - 0.5 Brown, moist, silt with some slag, loose								Y	YES
0.5 - 1.0	Fill: - 1.0 Fill: Gray, moist, Slag fill with cindery ash and little Silt, dense, loose when disturbed							0.6	Υ	YES
1.0 - 9.5	Fill: Brown, m disturbed		with cindery	ash, brick ar	nd litt	tle Silt, de	ense, loose when	1.1	Y	YES
9.5 - 9.8	Silty Cla y Brown, m	/: oist, Silty Cla _!	y, medium p	olasticity, firm				NA	Y	NO
9.8	End of Te	est Pit								
COMMENTS:										
GROUNDW	ATER ENC	OUNTERED:		✓ YES		NO	If yes, depth t	o GW:	9.0'	
VISUAL IMI				YES	✓	NO	Describe:			
OLFACTOR				-	✓ —	NO NO	Describe:			
	NON-NATIVE FILL ENCOUNTERED: YES							Slag, ash, an	d brick	
	OTHER OBSERVATIONS: YES SAMPLES COLLECTED:						Describe:		TD 04 (0.0)	,
SAMPLES	COLLECTE	υ:					Sample I.D.:		TP-81 (0-2)
							Sample I.D.:			

TP-81 Page 81 of 86

Project:	Phase III BPA Remedial Investigation	TEST PIT I.D.:	BPA 3-TP-82
Project No.:	0071-008-300	Excavation Date:	08/22/08
Client:	ArcelorMittal Tecumseh Redevelopment, Inc	Excavation Method:	Case 9030
Location:	Tecumseh, Phase III BPA	Logged / Checked By:	BG/BH

Refer to Figure	est Pit Location: NOT TO SCALE Refer to Figure in the Phase III report for exact location				Test Pit Cross Section: GRASS & TOPSOIL Grade - 0'				
)	VN - 55A	CNPHAL		3-TP-82		2' - 4' - 6' - 8' -	FII	I.	
TIMI Start:	= 8:00	Length: Width:	10.0 ft. 3.0 ft.	(approx.)	=	10'			
End: Depth (fbgs)	9:10	Depth:		(approx.) Symbol & Sescription	oil		PID Headspace (ppm)	Photos Y / N	Samples Collected (fbgs)
0.0 - 0.5	Grass and topsoil: 0.0 - 0.5 Brown, moist, silt with some slag, loose 0.7 Y YES								
0.5 - 1.5	Fill: Brown, m disturbed	oist, Slag fill v	with cindery	ash and little	Silt, dense	, loose when	0.7	Y	YES
1.5 - 6.0	Fill: Brown, m disturbed		with cindery	ash, brick ar	nd little Silt,	dense, loose when	0.2	Y	YES
6.0	End of Te	est Pit							
COMMENTS	1								
GROUNDW	/ATER ENC	OUNTERED:		✓ YES	NO	If yes, depth	to GW:	6.0'	
VISUAL IMI	PACTS:			YES	✓ NO	Describe:			
OLFACTOR					✓ NO	Describe:			
		COUNTERED	:	✓ YES	NO		Slag, ash, an	d brick	
OTHER OB				YES	✓ NO	Describe:			
SAMPLES	COLLECTE	D:				Sample I.D.:		TP-82 (0-2)
						Sample I.D.:			

TP-82 Page 82 of 86

Project:	Phase III BPA Remedial Investigat	tion	TEST PIT	I.D.:	BPA 3	8-TP-83	
Project No.:	0071-008-300		Excavation	n Date:	08/14/08		
Client:	ArcelorMittal Tecumseh Redevel	lopment, Inc	Excavation	n Method:	Bobcat 43	0	
Location:	Tecumseh, Phase III BPA		Logged / C	Checked By:	BG/BH		
Toot Dit Loop	tion: NOT TO COME		Test Pit Cros	o Coation:			
	ition: NOT TO SCALE in the Phase III report for exact location			ss section.	GRA	SS & TOPS	SOIL
	BPY BPY	MWN	Grade - 0' —				
BPA 3-TH	9-84	736" C.L.	2'-				
No.	M. C.		-		FIL	AL.	
	SWMU P-2	27	4'—				
5	BPA 3-TP-85	576	6'—				
TO REPORT OF THE PARTY OF THE P	and						
Cr Mell n	SPA 3-1P-83		8'—				
TIME		(approx.)	10'—				
Start: End:		(approx.) (approx.)	_				
	·				PID	Dhataa	Samples
Depth (fbgs)		ymbol & Soil scription			Headspace	Photos Y / N	Collected
(1090)					(ppm)	. ,	(fbgs)
	Grass and topsoil:						
0.0 - 0.5	Brown, moist, silt with some slag, loc	ose			NA	Υ	NO
0.5.00	Fill:	11 2 1			0.0		VE0
0.5 - 2.0	Gray, moist, Slag fill with cindery ash disturbed	n and brick, ve	ery dense, loose	e wnen	0.3	Υ	YES
00.50	Fill:		. eu - 20 - 25 - 15		0.0		NO
2.0 - 5.0	Banded colors of gray and dark brow dense, loose when disturbed	vn, moist , Sia	g till with cinde	ry asn,	0.2	Υ	NO
	,						
		ı.					
5.0	End of Test Pit due to 4" plastic water	er line					
COMMENTS:	··						
GROUNDW	ATER ENCOUNTERED:	YES 🗸] NO	If yes, depth t	o GW:		
VISUAL IMF	PACTS:	YES 🗸] NO	Describe:			
OLFACTOR	Y OBSERVATIONS:	YES 🗸] NO	Describe:			
NON-NATI\	'E FILL ENCOUNTERED: [✓ YES] NO		Slag		
OTHER OB	SERVATIONS: [✓ YES] NO	Describe:	4" plastic wat	er line uncove	d at 5'
SAMPLES (COLLECTED:			Sample I.D.:		TP-83 (0-2'))
				Sample I D :		. ,	

TP-83 Page 83 of 86

Sample I.D.:

Project:	Phase III	BPA Remedi	al Investiga	ation		TEST PIT	I.D.:	BPA 3	3-TP-84	
Project No.:	0071-00	8-300				Excavatio	n Date:	08/14/08		
Client:	ArcelorN	/littal Tecums	seh Redeve	elopment,	, Inc	Excavatio	n Method:	Bobcat 43	30	
Location:	Tecums	eh, Phase III	BPA			Logged / (Checked By:	BG/BH		
Test Pit Loca	ation: NOT	TO SCALE				Test Pit Cro	ss Section:			
Refer to Figure			act location			Grade - 0' -		GRA	SS & TOP	SOIL
BPA 3-TI	P-84	LAS A	BPI	736" C.	VN	2' - 4' -		FII	L	<u> </u>
	BPA-3-TP	BPA 3	SWMU P	-27	510	6' – 6' – 8' –				
TIME		Length:	6.0 ft.	(approx	.)	401				
Start:	14:55	Width:	2.0 ft.	(approx	.)	10' <i>-</i>				
End:	16:20	Depth:	7.0 ft.	(approx	.)			PID		Samples
Depth (fbgs)				Symbol & scription	Soil			Headspace (ppm)	Photos Y / N	Collected (fbgs)
0.0 - 0.5		nd topsoil: brown, moist,	silt with som	e slag, loo	se			NA	Y	NO
0.5 - 7.0	Fill: Gray, mo disturbed	oist to wet (6.5), Slag fill wi	th cindery	ash,	dense, loose	when	0.2	Υ	YES
7.0	End of Te	est Pit								
COMMENTS:	:									
GROUNDW	ATER ENC	COUNTERED:		✓ YES		NO	If yes, depth	to GW:	6.5'	
VISUAL IM	PACTS:			YES	✓	NO	Describe:			
OLFACTOR	RY OBSER\	/ATIONS:		YES	✓	NO	Describe:			
NON-NATI\	/E FILL EN	COUNTERED	:	✓ YES		NO		Slag		
OTHER OB	SERVATIO	NS:		YES	✓	NO	Describe:			
SAMPLES	COLLECTE	D:					Sample I.D.:		TP-84 (0-2')
							Sample I.D.:			

TP-84 Page 84 of 86

Sample I.D.:

SAMPLES COLLECTED:

TEST PIT EXCAVATION LOG

Project:	Phase III B	BPA Remedia	al Investig	ation			TEST	PIT I	.D.:	BPA 3	3-TP-85	
Project No.:	0071-00	8-300					Excava	ation	Date:	08/14/08		
Client:	ArcelorN	/littal Tecums	eh Redev	elopm	nent, Ir	าด	Excava	ation	Method:	Bobcat 43	0	
Location:	Tecums	eh, Phase III	BPA				Logged	d/C	hecked By:	BG/BH		
Test Pit Loca	ation: NOT	TO SCALE					Test Pit (Cros	s Section:		ASI	PHALT
Refer to Figure	in the Phase	III report for exa	act location			ı,	Grade - (0'—	~~~~		/ ASI	· 11/1L1
	LAB	BP	MY	VN - 5	53A	1		_				
3-TP-84	# 12 A	///	1561101	,	+	ı	2	2'—		****		
A CONTRACTOR OF THE PARTY OF TH							_	4' 🗆		FIL	A_{-}	
A Day of	1 WO	SWMUF	P-27	NOW.	E W			· —				
1 Der	BPA	4.3-TP-85		510N			(6'—				
DDA 2-TI	202						9	8'				
БРА 3-11	-0.5		- O ()			_	,	~				
TIMI Start:	E 10:20	Length: Width:	5.0 ft. 2.0 ft.		orox.) orox.)	1	10	0'-				
End:	13:10	Depth:	7.5 ft.		orox.)	1						
Depth			USCS	Symb	ol & S	oil				PID	Photos	Samples
(fbgs)				escrip		O.,				Headspace	Y / N	Collected
										(ppm)		(fbgs)
0.0 - 0.5	Asphalt a	nd subbase								NA	Y	NO
0.0 - 0.5										14/1	,	110
0.5 - 4.0	Fill:	colors of reddis	h brown an	nd aray	, moiet	. CI	ag fill with	cind	ony ach	0.6	Y	YES
0.5 - 4.0		se, loose when		iu gray	, IIIOISI	., Old	ag illi witii	Ciriu	ery asri,	0.0	1	TES
	-											
40.75	Fill:									0.3	Y	NO
4.0 - 7.5	Reddish b	brown, moist to	wet (6.5'),	, silt (m	nill scal	e?)				0.3	1	INO
7.5	F	Dia										
7.5	End of Te	est Pit										
COMMENTS						_	-					
GROUNDW	VATER ENC	OUNTERED:		✓	YES		NO		If yes, depth t	o GW:	6.5 fbgs	
VISUAL IM	PACTS:				YES	√	NO		Describe:			
OLFACTOR	RY OBSERV	/ATIONS:			YES	√	NO	l	Describe:			
NON-NATI\	VE FILL ENG	COUNTERED:	_	✓	YES		NO	_		Slag and mill	scale?	
OTHER OBSERVATIONS: YES						√	NO		Describe:			

TP-85 Page 85 of 86

Sample I.D.:

Sample I.D.:

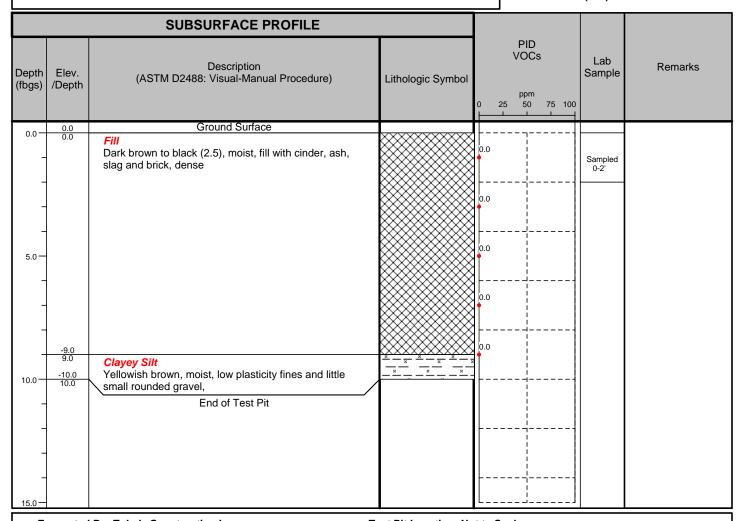
TP-85 (0-2')

Project:	Phase III I	BPA Remedial In	vestiga	tion		TEST	PIT I.D.:	BPA 3	3-TP-86	
Project No.:	0071-00	8-300				Excav	ation Date:	08/14/08		
Client:	ArcelorN	/littal Tecumseh I	Redeve	lopmen	t, Inc	Excav	ation Method:	Bobcat 43	30	
Location:	Tecums	eh, Phase III BP	A			Logge	ed / Checked By:	BG/BH		
Test Pit Loca	ation: NOT	TO SCALE				Test Pit	Cross Section:			
		III report for exact lo	cation			Grade -			ASI	PHALT
000 1		SWMU P-1	9	(<i>x</i>	Grade -	Ŭ_ <i></i>			
SWMU P-17		CARACK	86	48" 5) (,		2'—			
SVVIVIO P-17	TAB.	BPA 3-TP					4'	FII	$\mathbf{A}_{\mathbf{A}}$	
2-84		7611	TVVN -	53A			* -			
104	2	/ 70		+			6'			
	M ANG	WMU P-27		0.16	FAFE		8'-			
TIME	1 JAIL		a cost		\		0			
TIMI Start:	= 9:30	•	0 ft. 0 ft.	(approx		1	0'			
End:	10:10		0 ft.	(approx						
Depth		ι	JSCS S	ymbol 8	& Soil			PID	Photos	Samples
(fbgs)				scription				Headspace (ppm)	Y/N	Collected (fbgs)
								(PPIII)		(1090)
0.0 - 0.5	Asphalt a	ind peastone						NA	Y	NO
	Fill:									
0.5 - 2.0		colors of gray and r	eddish b	rown, m	oist, S	Slag fill wit	h cindery ash,	0.5	Υ	YES
	dense (ve	ery dense from 1.5	-2.0'), lo	ose whe	n distu	ırbed				
	Fill:									
2.0 - 6.0	Banded o	colors of dark brow					oist to wet (5.5'),	0.8	Υ	NO
	Slag fill w	vith cindery ash, de	ense, loo	se when	distu	bed				
6.0	End of Te	est Pit								
COMMENTS:	:									
GROUNDW	ATER ENC	OUNTERED:		✓ YES	; [NO	If yes, depth	to GW:	5.5 fbgs	
VISUAL IMI	PACTS:			YES	· _	NO	Describe:			
OLFACTOR	RY OBSERV	/ATIONS:		YES	· _	NO	Describe:			
NON-NATI\	/E FILL ENG	COUNTERED:		✓ YES	; [NO	-	Slag		
OTHER OB	SERVATIO	NS:		YES	· _/	NO	Describe:			
SAMPLES	COLLECTE	D:					Sample I.D.:		TP-86 (0-2')
							Sample I.D.:			

TP-86 Page 86 of 86

Sample I.D.:

Project No: 0071-009-320 Test Pit I.D.: TP-1


Project: Business Park Area 3A Logged By: BMG

Client: Tecumseh Redevelopment Inc Checked By: BCH

Site Location: Tecumseh Lackawanna Site

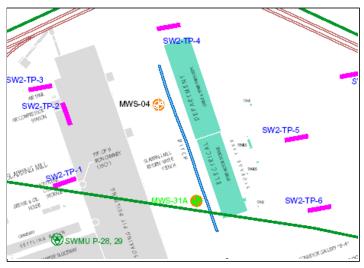
TurnKey Environmental Restoration, LLC 2558 Hamburg Turnpike, Suite 300 Buffalo, NY 14218 (716) 856-0635

Excavated By: Zoladz Construction Inc.

Excavator Type: John Deere 892 ELC

Excavation Date(s): 11-18-09

Length: 15'
Width: 5'
Depth: 10'


Depth to Water: 9.5'

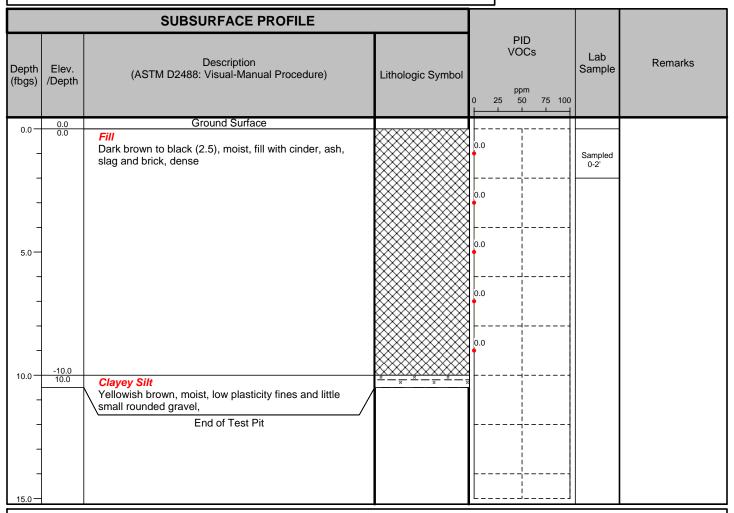
Visual Impacts: Slight sheen on water

Olfactory Observations: no odor

Comments:

Test Pit Location: Not to Scale

Project No: 0071-009-320 **Test Pit I.D.:** TP-2


Project: Business Park Area 3A Logged By: BMG

Client: Tecumseh Redevelopment Inc Checked By: BCH

Site Location: Tecumseh Lackawanna Site

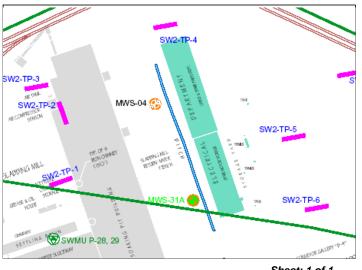
TurnKey Environmental Restoration, LLC 2558 Hamburg Turnpike, Suite 300 Buffalo, NY 14218 (716) 856-0635

Excavated By: Zoladz Construction Inc.

Excavator Type: John Deere 892 ELC

Excavation Date(s): 11-18-09

Length: 20'
Width: 5'
Depth: 10.5'


Depth to Water: 9.5'
Visual Impacts: none

Olfactory Observations: no odor

Comments:

--

Project No: 0071-009-320 **Test Pit I.D.:** TP-3

Project: Business Park Area 3A Logged By: BMG

Client: Tecumseh Redevelopment Inc Checked By: BCH

Site Location: Tecumseh Lackawanna Site

TurnKey Environmental Restoration, LLC 2558 Hamburg Turnpike, Suite 300 Buffalo, NY 14218 (716) 856-0635

		SUBSURFACE PROFILE				
Depth (fbgs)	Elev. /Depth	Description (ASTM D2488: Visual-Manual Procedure)	Lithologic Symbol	PID VOCs ppm 0 25 50 75 100	Lab Sample	Remarks
0.0	0.0	Ground Surface				
5.0	0.0	Fill Dark brown to black (2.5), moist, fill with cinder, ash, slag and brick, dense		0.0	Sampled 2-6'	
	7.0			0.0		
10.0	-7.0 7.0 -10.0 10.0	Silty Clay Brown, moist, medium plasticicty fines, may be reworked (between two structures)		0.0		
15.0	10.0	End of Test Pit				

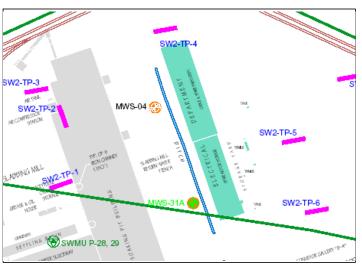
Excavated By: Zoladz Construction Inc.

Excavator Type: John Deere 892 ELC

Excavation Date(s): 11-18-09

Length: 40'
Width: 5'
Depth: 10'

Depth to Water: NA due to water leaching from sewer bedding


Visual Impacts: none

Olfactory Observations: no odor

Comments:

__

Project No: 0071-009-320 Test Pit I.D.: TP-4

Project: Business Park Area 3A Logged By: BMG

Client: Tecumseh Redevelopment Inc Checked By: BCH

Site Location: Tecumseh Lackawanna Site

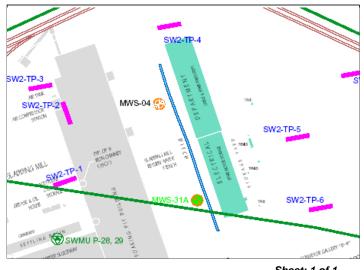
TurnKey Environmental Restoration, LLC 2558 Hamburg Turnpike, Suite 300 Buffalo, NY 14218 (716) 856-0635

		SUBSURFACE PROFILE				
Depth (fbgs)	/Depth	Description (ASTM D2488: Visual-Manual Procedure)	Lithologic Symbol	PID VOCs ppm 0 25 50 75 100	Lab Sample	Remarks
0.0	0.0	Ground Surface				
0.0— 5.0— 10.0—	-6.3 6.3	Fill Dark brown to black (2.5), moist, fill with cinder, ash, slag and brick, very dense, refusal at 6.3' End of Test Pit		0.0	Sampled 0-2'	
15.0						

Excavated By: Zoladz Construction Inc.

Excavator Type: John Deere 892 ELC

Excavation Date(s): 11-18-09


Length: 15' Width: 5' Depth: 6.3'

Depth to Water: none Visual Impacts: none

Olfactory Observations: no odor

Comments:

Project No: 0071-009-320 **Test Pit I.D.:** TP-5

Project: Business Park Area 3A Logged By: BMG

Client: Tecumseh Redevelopment Inc Checked By: BCH

Site Location: Tecumseh Lackawanna Site

TurnKey Environmental Restoration, LLC 2558 Hamburg Turnpike, Suite 300 Buffalo, NY 14218 (716) 856-0635

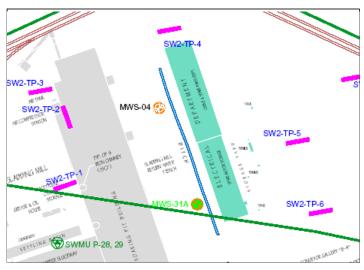
		SUBSURFACE PROFILE				
Depth (fbgs)	Elev. /Depth	Description (ASTM D2488: Visual-Manual Procedure)	Lithologic Symbol	PID VOCs ppm 0 25 50 75 100	Lab Sample	Remarks
0.0	0.0	Ground Surface				
5.0	0.0	Fill Dark brown, black and gray layers, moist, fill with cinder, ash, slag and brick, dense		0.0		
_	-8.0 8.0		<u> </u>	 		
- 10.0 — - - - - - 15.0 —	5.5	End of Test Pit				

Excavated By: Zoladz Construction Inc.

Excavator Type: John Deere 892 ELC

Excavation Date(s): 11-18-09

Length: 15'
Width: 5'
Depth: 8'


Depth to Water: none Visual Impacts: none

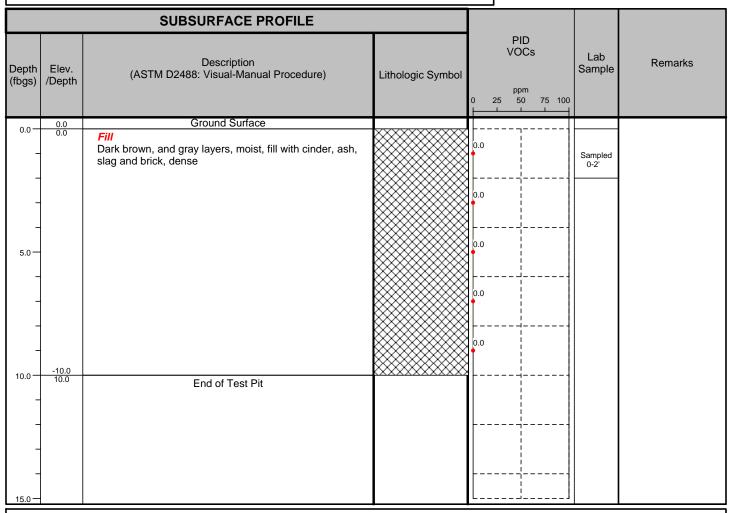
Olfactory Observations: no odor

Comments:

__

Test Pit Location: Not to Scale

Project No: 0071-009-320 **Test Pit I.D.:** TP-6


Project: Business Park Area 3A Logged By: BMG

Client: Tecumseh Redevelopment Inc Checked By: BCH

Site Location: Tecumseh Lackawanna Site

TurnKey Environmental Restoration, LLC 2558 Hamburg Turnpike, Suite 300 Buffalo, NY 14218 (716) 856-0635

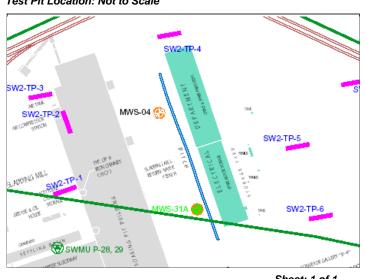
Excavated By: Zoladz Construction Inc.

Excavator Type: John Deere 892 ELC

Excavation Date(s): 11-18-09

Length: 15'
Width: 5'
Depth: 10'

Depth to Water: 10


Visual Impacts: slight sheen on water

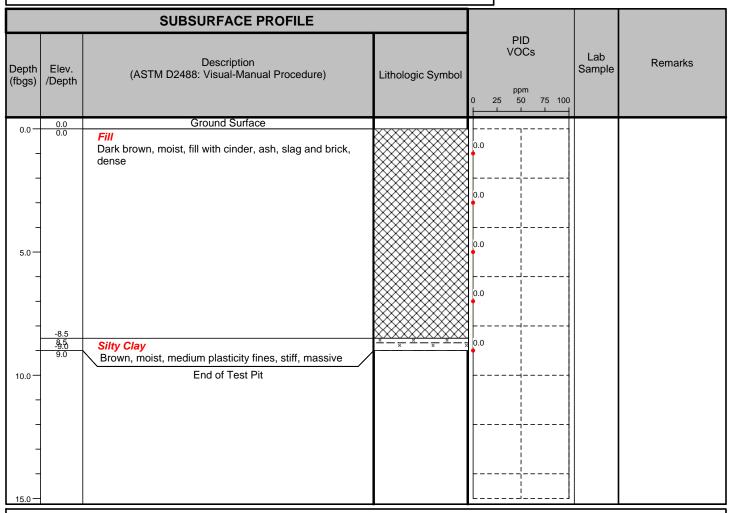
Olfactory Observations: no odor

Comments:

__

Test Pit Location: Not to Scale

Project No: 0071-009-320 **Test Pit I.D.:** TP-7


Project: Business Park Area 3A Logged By: BMG

Client: Tecumseh Redevelopment Inc Checked By: BCH

Site Location: Tecumseh Lackawanna Site

TurnKey Environmental Restoration, LLC 2558 Hamburg Turnpike, Suite 300 Buffalo, NY 14218 (716) 856-0635

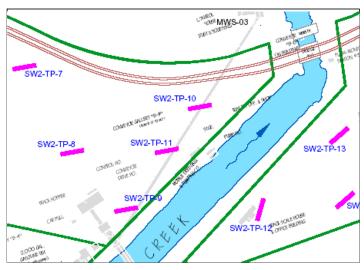
Excavated By: Zoladz Construction Inc.

Excavator Type: John Deere 892 ELC

Excavation Date(s): 11-18-09

Length: 20'
Width: 5'

Depth: 9'


Depth to Water: 8'

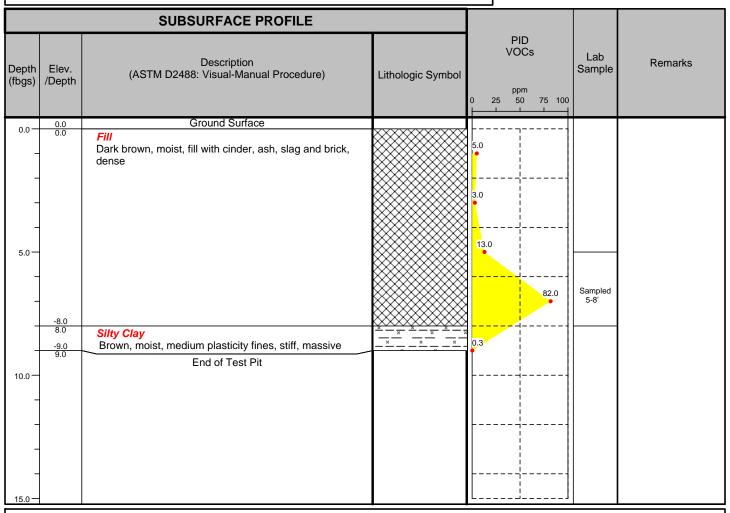
Visual Impacts: none

Olfactory Observations: no odor

Comments:

Test Pit Location: Not to Scale

Project No: 0071-009-320 **Test Pit I.D.:** TP-8


Project: Business Park Area 3A Logged By: BMG

Client: Tecumseh Redevelopment Inc Checked By: BCH

Site Location: Tecumseh Lackawanna Site

TurnKey Environmental Restoration, LLC 2558 Hamburg Turnpike, Suite 300 Buffalo, NY 14218 (716) 856-0635

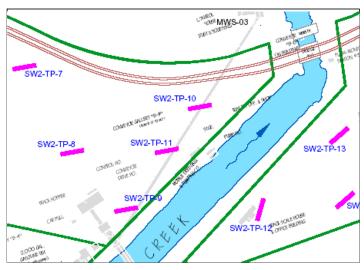
Excavated By: Zoladz Construction Inc.

Excavator Type: John Deere 892 ELC

Excavation Date(s): 11-18-09

Length: 20' Width: 5'

Depth: 9'

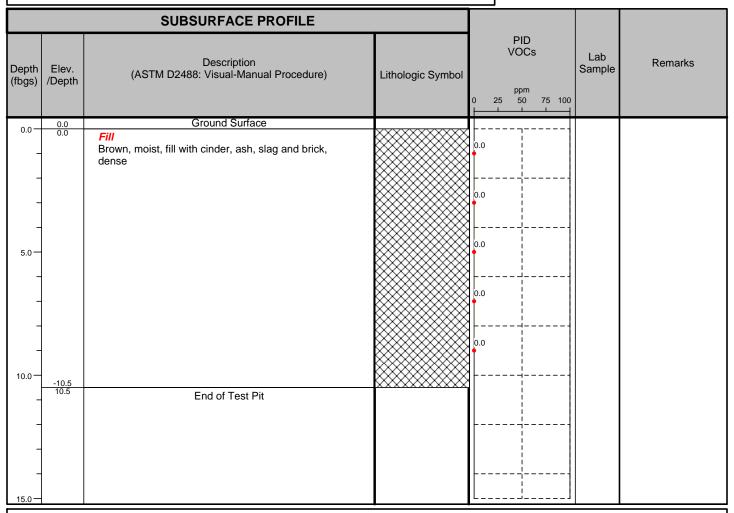

Depth to Water: 8.5'

Visual Impacts: black stained fill at 7'
Olfactory Observations: slight odor

Comments:

__

Project No: 0071-009-320 **Test Pit I.D.:** TP-9


Project: Business Park Area 3A Logged By: BMG

Client: Tecumseh Redevelopment Inc Checked By: BCH

Site Location: Tecumseh Lackawanna Site

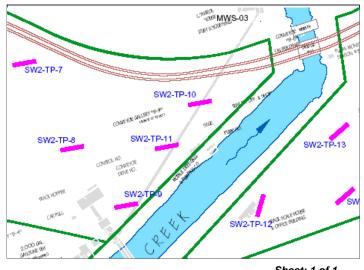
TurnKey Environmental Restoration, LLC 2558 Hamburg Turnpike, Suite 300 Buffalo, NY 14218 (716) 856-0635

Excavated By: Zoladz Construction Inc.

Excavator Type: John Deere 892 ELC

Excavation Date(s): 11-19-09

Length: 15'
Width: 5'
Depth: 10.5'

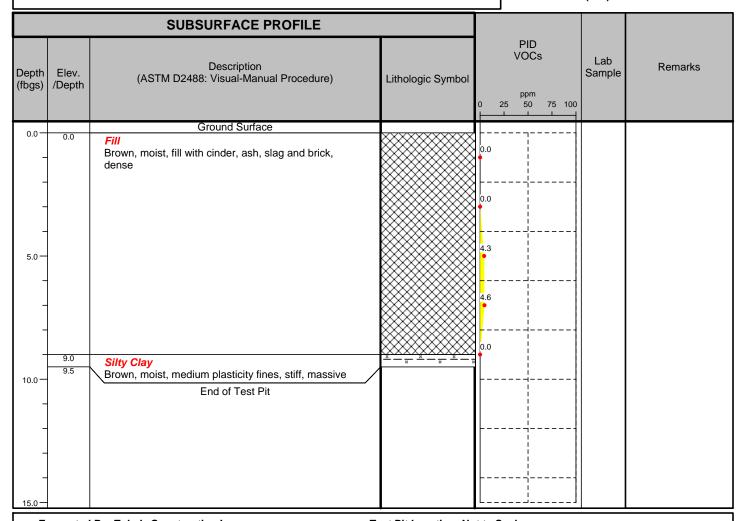

Depth to Water: 10
Visual Impacts: none

Olfactory Observations: no odor

Comments:

__

Project No: 0071-009-320 **Test Pit I.D.:** TP-10


Project: Business Park Area 3A Logged By: BMG

Client: Tecumseh Redevelopment Inc Checked By: BCH

Site Location: Tecumseh Lackawanna Site

TurnKey Environmental Restoration, LLC 2558 Hamburg Turnpike, Suite 300 Buffalo, NY 14218 (716) 856-0635

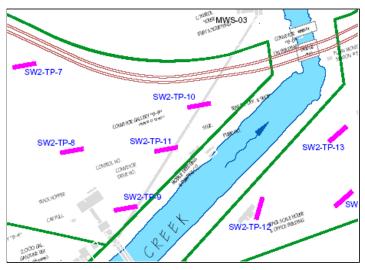
Excavated By: Zoladz Construction Inc.

Excavator Type: John Deere 892 ELC

Excavation Date(s): 11-19-09

Length: 15'
Width: 5'
Depth: 9.5'

Depth to Water: 9'
Visual Impacts: none


ricuar impactor riciio

Olfactory Observations: no odor

Comments:

__

Test Pit Location: Not to Scale

Project No: 0071-009-320 **Test Pit I.D.:** BPA-3A-TP-11

Project:Business Park Area 3ALogged By:BMGClient:Tecumseh Redevelopment IncChecked By:BCH

Site Location: Tecumseh Lackawanna Site

TurnKey Environmental Restoration, LLC 2558 Hamburg Turnpike, Suite 300 Buffalo, NY 14218 (716) 856-0635

SUBSURFACE PROFILE						
Depth (fbgs)	Elev. /Depth	Description (ASTM D2488: Visual-Manual Procedure)	Lithologic Symbol	PID VOCs ppm 0 25 50 75 100	Lab Sample	Remarks
0.0	0.0	Ground Surface				
5.0		Fill Brown, moist, fill with cinder, ash, slag and brick, dense		0.0		
-	-8.0 8.0	End of Test Pit	<u> </u>			
- 10.0 — - - - - 15.0 —						

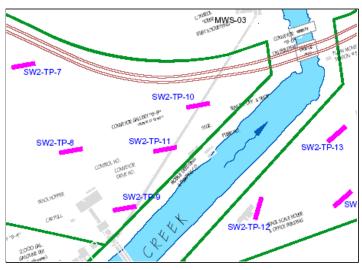
Excavated By: Zoladz Construction Inc.

Excavator Type: John Deere 892 ELC

Excavation Date(s): 11-19-09

Length: 15'
Width: 5'
Depth: 8'

Depth to Water: 8'


Visual Impacts: none

Olfactory Observations: no odor

Comments:

-

Test Pit Location: Not to Scale

Project No: 0071-009-320 **Test Pit I.D.:** BPA-3A-TP-12

Project:Business Park Area 3ALogged By:BMGClient:Tecumseh Redevelopment IncChecked By:BCH

Site Location: Tecumseh Lackawana Site

TurnKey Environmental Restoration, LLC 2558 Hamburg Turnpike, Suite 300 Buffalo, NY 14218 (716) 856-0635

SUBSURFACE PROFILE						
Depth (fbgs)	Elev. /Depth	Description (ASTM D2488: Visual-Manual Procedure)	Lithologic Symbol	PID VOCs ppm 0 25 50 75 100	Lab Sample	Remarks
0.0	0.0	Ground Surface				
5.0	0.0	Fill Brown, moist, fill with cinder, ash, slag and brick, dense		0.0		
_	-8.0 8.0		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX]		
- 10.0 — - - - - - 15.0 —	6.0	End of Test Pit				

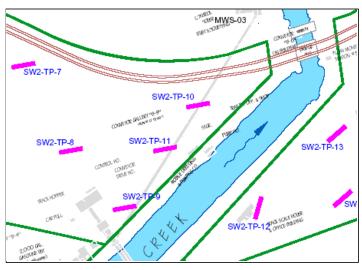
Excavated By: Zoladz Construction Inc.

Excavator Type: John Deere 892 ELC

Excavation Date(s): 11-19-09

Length: 15' Width: 5'

Depth: 8'


Depth to Water: 7.5'

Visual Impacts: none

Olfactory Observations: no odor

Comments:

Test Pit Location: Not to Scale

Project No: 0071-009-320 **Test Pit I.D.:** BPA-3A-TP-13

Project:Business Park Area 3ALogged By:BMGClient:Tecumseh Redevelopment IncChecked By:BCH

Site Location: Tecumseh Lackawanna Site

TurnKey Environmental Restoration, LLC 2558 Hamburg Turnpike, Suite 300 Buffalo, NY 14218 (716) 856-0635

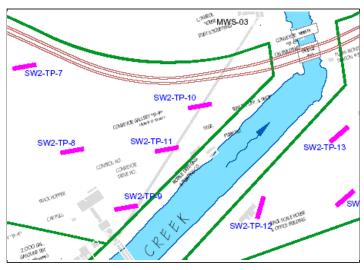
SUBSURFACE PROFILE						
Depth (fbgs)	Elev. /Depth	Description (ASTM D2488: Visual-Manual Procedure)	Lithologic Symbol	PID VOCs ppm 0 25 50 75 100	Lab Sample	Remarks
0.0	0.0	Ground Surface				
5.0		Fill Brown, moist, fill with cinder, ash, slag and brick, dense		0.0		
-	-8.0 8.0	End of Test Pit	·	1 ├		
10.0 —		2.1d 3. 1 33.1 1				

Excavated By: Zoladz Construction Inc.

Excavator Type: John Deere 892 ELC

Excavation Date(s): 11-19-09

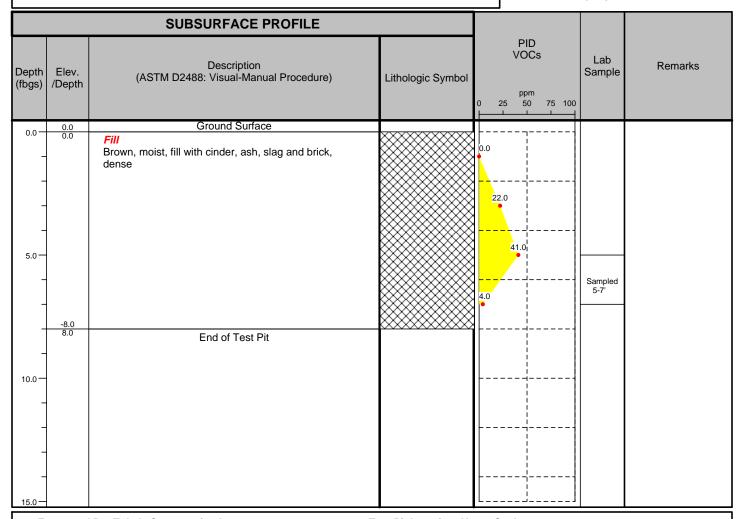
Length: 15'
Width: 5'
Depth: 8'


Depth to Water: 7.5'
Visual Impacts: none

Olfactory Observations: no odor

Comments:

--


Project No: 0071-009-320 **Test Pit I.D.:** BPA-3A-TP-14

Project:Business Park Area 3ALogged By:BMGClient:Tecumseh Redevelopment IncChecked By:BCH

Site Location: Tecumseh Lackawanna Site

TurnKey Environmental Restoration, LLC 2558 Hamburg Turnpike, Suite 300 Buffalo, NY 14218 (716) 856-0635

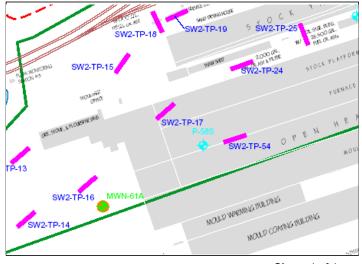
Excavated By: Zoladz Construction Inc.

Excavator Type: John Deere 892 ELC

Excavation Date(s): 11-19-09

Length: 15'
Width: 5'

Depth: 8'

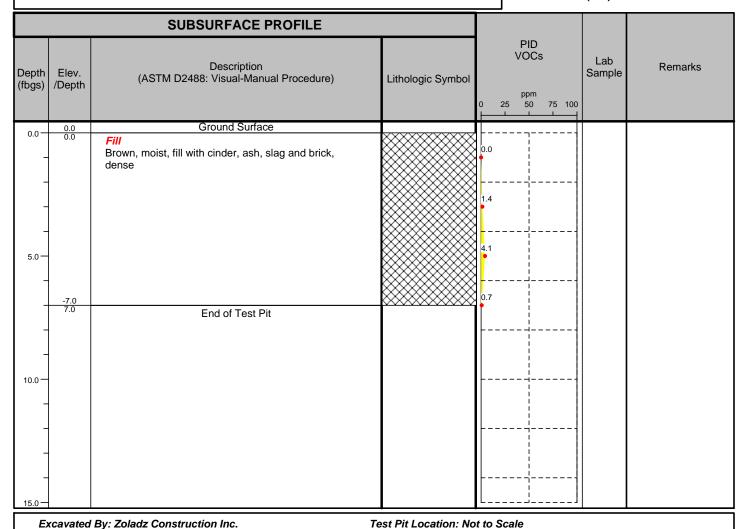

Depth to Water: 7.5'
Visual Impacts: none

Olfactory Observations: no odor

Comments:

-

Test Pit Location: Not to Scale


Project No: 0071-009-320 Test Pit I.D.: BPA-3A-TP-15

Project: Business Park Area 3A Logged By: BMG Client: Tecumseh Redevelopment Inc Checked By: BCH

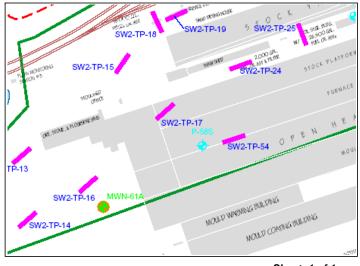
Site Location: Tecumseh Lackawanna Site

TurnKey Environmental Restoration, LLC 2558 Hamburg Turnpike, Suite 300 Buffalo, NY 14218 (716) 856-0635

Excavated By: Zoladz Construction Inc.

Excavator Type: John Deere 892 ELC

Excavation Date(s): 11-20-09

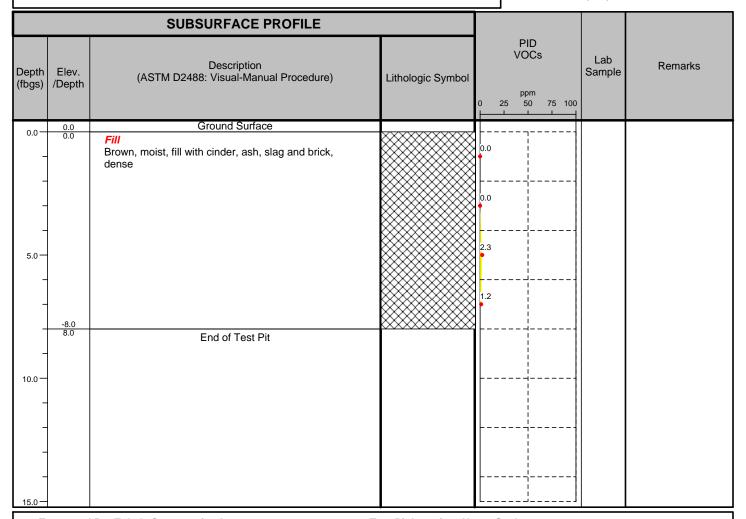

Length: 15' Width: 5'

Depth: 7'

Depth to Water: 6.5' Visual Impacts: none

Olfactory Observations: no odor

Comments:


Project No: 0071-009-320 **Test Pit I.D.:** BPA-3A-TP-14

Project:Business Park Area 3ALogged By:BMGClient:Tecumseh Redevelopment IncChecked By:BCH

Site Location: Tecumseh Lackawanna Site

TurnKey Environmental Restoration, LLC 2558 Hamburg Turnpike, Suite 300 Buffalo, NY 14218 (716) 856-0635

Excavated By: Zoladz Construction Inc.

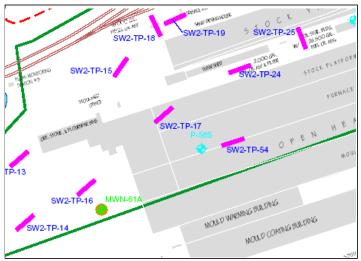
Excavator Type: John Deere 892 ELC

Excavation Date(s): 11-19-09

Length: 15'

Width: 5' Depth: 8'

Depth to Water: 7.5'

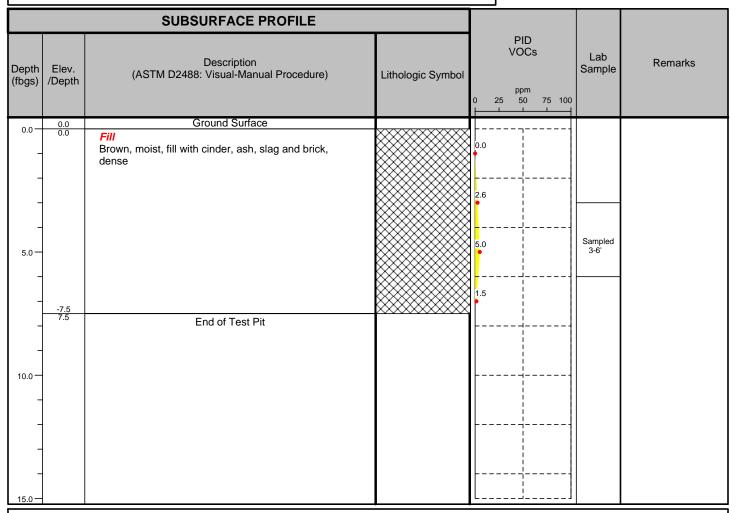

Visual Impacts: none

Olfactory Observations: no odor

Comments:

--

Test Pit Location: Not to Scale


Project No: 0071-009-320 **Test Pit I.D.:** BPA-3A-TP-17

Project:Business Park Area 3ALogged By:BMGClient:Tecumseh Redevelopment IncChecked By:BCH

Site Location: Tecumseh Lackawanna Site

TurnKey Environmental Restoration, LLC 2558 Hamburg Turnpike, Suite 300 Buffalo, NY 14218 (716) 856-0635

Excavated By: Zoladz Construction Inc.

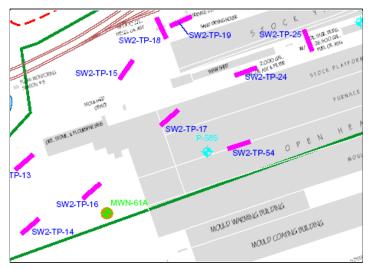
Excavator Type: John Deere 892 ELC

Excavation Date(s): 11-20-09

Length: 15' Width: 5'

Depth: 7.5'

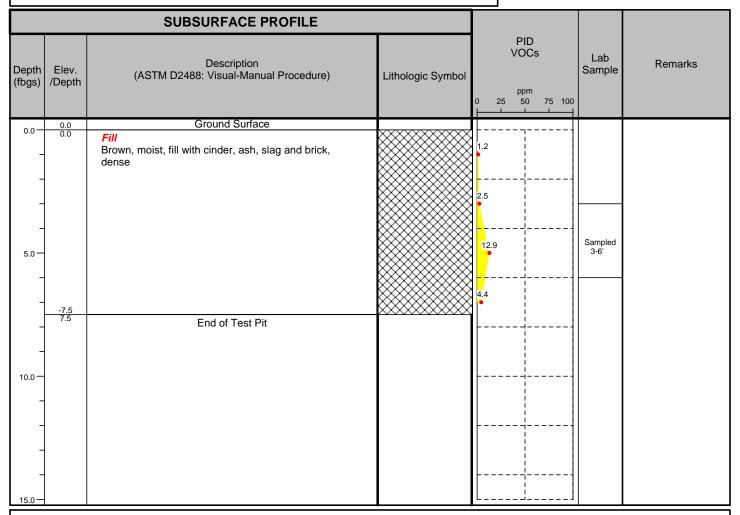
Depth to Water: 7'


Visual Impacts: none

Olfactory Observations: no odor

Comments:

--


Project No: 0071-009-320 **Test Pit I.D.:** BPA-3A-TP-17

Project:Business Park Area 3ALogged By:BMGClient:Tecumseh Redevelopment IncChecked By:BCH

Site Location: Tecumseh Lackawanna Site

TurnKey Environmental Restoration, LLC 2558 Hamburg Turnpike, Suite 300 Buffalo, NY 14218 (716) 856-0635

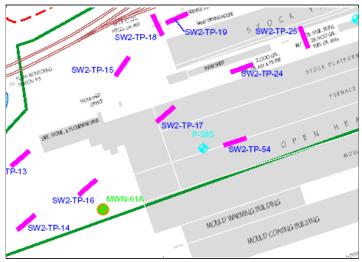
Excavated By: Zoladz Construction Inc.

Excavator Type: John Deere 892 ELC

Excavation Date(s): 11-20-09

Length: 15'
Width: 5'
Depth: 7.5'

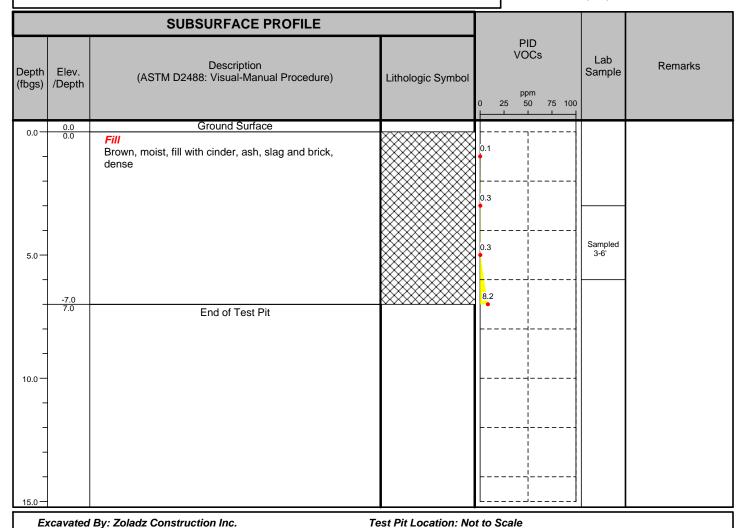
Depth to Water: 7'


Visual Impacts: none

Olfactory Observations: no odor

Comments:

--


Project No: 0071-009-320 Test Pit I.D.: BPA-3A-TP-19

Project: Business Park Area 3A Logged By: BMG Client: Tecumseh Redevelopment Inc Checked By: BCH

Site Location: Tecumseh Lackawanna Site

TurnKey Environmental Restoration, LLC 2558 Hamburg Turnpike, Suite 300 Buffalo, NY 14218 (716) 856-0635

Excavated By: Zoladz Construction Inc.

Excavator Type: John Deere 892 ELC

Excavation Date(s): 11-20-09

Length: 15' Width: 5'

Depth: 7'

Depth to Water: 6.5' Visual Impacts: none

Olfactory Observations: slight odor

Comments:

SW2-TP-18 SW2-TP-54 MORD WIRMING PRECING HOLD COMPARED NO

Project No: 0071-009-320 **Test Pit I.D.:** BPA-3A-TP-20

Project:Business Park Area 3ALogged By:BMGClient:Tecumseh Redevelopment IncChecked By:BCH

Site Location: Tecumseh Lackawanna Site

TurnKey Environmental Restoration, LLC 2558 Hamburg Turnpike, Suite 300 Buffalo, NY 14218 (716) 856-0635

SUBSURFACE PROFILE						
Depth (fbgs)	Elev. /Depth	Description (ASTM D2488: Visual-Manual Procedure)	Lithologic Symbol	PID VOCs ppm 0 25 50 75 100	Lab Sample	Remarks
0.0	0.0	Ground Surface				
5.0	0.0	Fill Brown, moist, fill with cinder, ash, slag and brick, dense		0.0		
5.0	0.0					
10.0 —	-6.0 6.0	End of Test Pit				

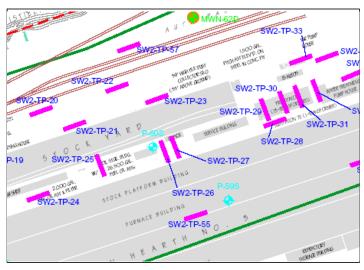
Excavated By: Zoladz Construction Inc.

Excavator Type: John Deere 892 ELC

Excavation Date(s): 11-20-09

Length: 15'
Width: 5'
Depth: 6'

Depth to Water: 5.5'

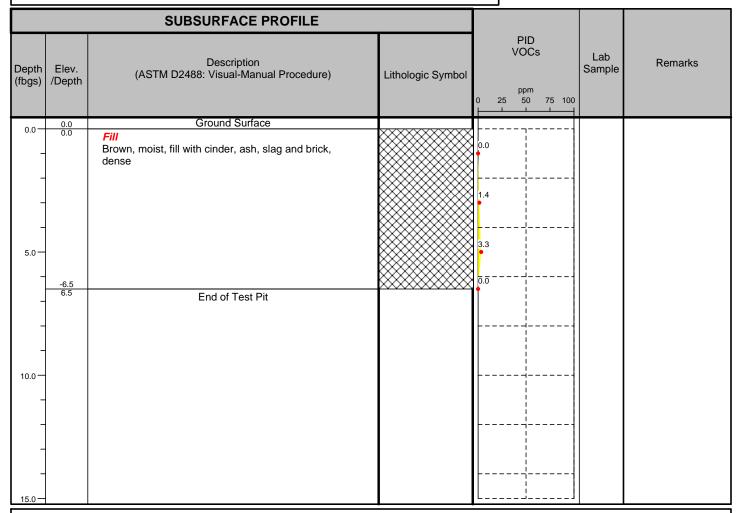

Visual Impacts: slight sheen on water

Olfactory Observations: no odor

Comments:

--

Test Pit Location: Not to Scale


Project No: 0071-009-320 Test Pit I.D.: BPA-3A-TP-21

Project: Business Park Area 3A Logged By: BMG Client: Tecumseh Redevelopment Inc Checked By: BCH

Site Location: Tecumseh Lackawanna Site

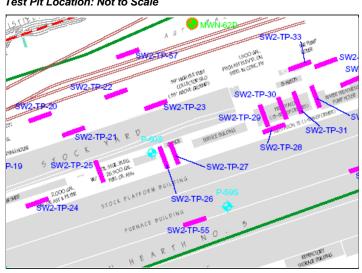
TurnKey Environmental Restoration, LLC 2558 Hamburg Turnpike, Suite 300 Buffalo, NY 14218 (716) 856-0635

Excavated By: Zoladz Construction Inc.

Excavator Type: John Deere 892 ELC

Excavation Date(s): 11-20-09

Length: 15' Width: 5' Depth: 6.5'


Depth to Water: 6'

Visual Impacts: slight sheen on water

Olfactory Observations: no odor

Comments:

Test Pit Location: Not to Scale

Project No: 0071-009-320 **Test Pit I.D.:** BPA-3A-TP-22

Project:Business Park Area 3ALogged By:BMGClient:Tecumseh Redevelopment IncChecked By:BCH

Site Location: Tecumseh Lackawanna Site

TurnKey Environmental Restoration, LLC 2558 Hamburg Turnpike, Suite 300 Buffalo, NY 14218 (716) 856-0635

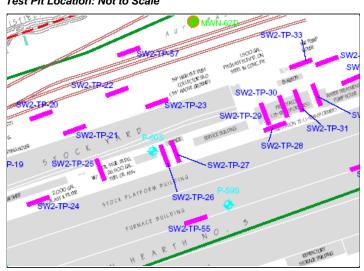
SUBSURFACE PROFILE						
Depth (fbgs)	Elev. /Depth	Description (ASTM D2488: Visual-Manual Procedure)	Lithologic Symbol	PID VOCs ppm 0 25 50 75 100	Lab Sample	Remarks
0.0	0.0	Ground Surface				
-	0.0	Fill Brown, moist, fill with cinder, ash, slag and brick, dense		0.0	Sampled 0-2	2
5.0	-6.0 6.0			1.0		
10.0 —	6.0	End of Test Pit				

Excavated By: Zoladz Construction Inc.

Excavator Type: John Deere 892 ELC

Excavation Date(s): 11-20-09

Length: 15'
Width: 5'
Depth: 6'


Depth to Water: 5.5'
Visual Impacts: none

Olfactory Observations: no odor

Comments:

__

Test Pit Location: Not to Scale

Project No: 0071-009-320 **Test Pit I.D.:** BPA-3A-TP-23

Project:Business Park Area 3ALogged By:BMGClient:Tecumseh Redevelopment IncChecked By:BCH

Site Location: Tecumseh Lackawanna Site

TurnKey Environmental Restoration, LLC 2558 Hamburg Turnpike, Suite 300 Buffalo, NY 14218 (716) 856-0635

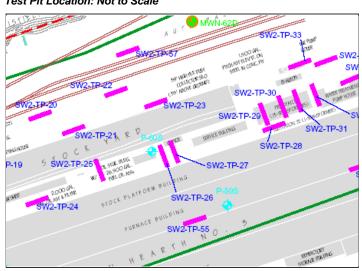
SUBSURFACE PROFILE						
Depth (fbgs)	Elev. /Depth	Description (ASTM D2488: Visual-Manual Procedure)	Lithologic Symbol	PID VOCs ppm 0 25 50 75 100	Lab Sample	Remarks
0.0	0.0	Ground Surface				
5.0	0.0	Fill Brown, moist, fill with cinder, ash, slag and brick, dense		0.0		
-	-8.0 8.0		·			
- 10.0 — - - - - - 15.0 —	3.3	End of Test Pit				

Excavated By: Zoladz Construction Inc.

Excavator Type: John Deere 892 ELC

Excavation Date(s): 11-20-09

Length: 15'
Width: 5'
Depth: 8'


Depth to Water: 6'
Visual Impacts: none

Olfactory Observations: no odor

Comments:

__

Test Pit Location: Not to Scale

Project No: 0071-009-320 **Test Pit I.D.:** BPA-3A-TP-24

Project:Business Park Area 3ALogged By:BMGClient:Tecumseh Redevelopment IncChecked By:BCH

Site Location: Tecumseh Lackawanna Site

TurnKey Environmental Restoration, LLC 2558 Hamburg Turnpike, Suite 300 Buffalo, NY 14218 (716) 856-0635

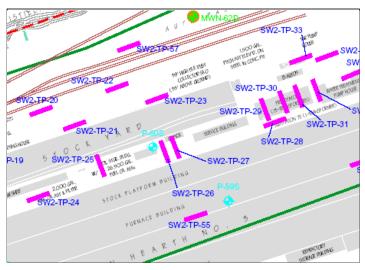
	SUBSURFACE PROFILE					
Depth (fbgs)	Elev. /Depth	Description (ASTM D2488: Visual-Manual Procedure)	Lithologic Symbol	PID VOCs Lab Sample	Remarks	
0.0	0.0	Ground Surface				
-	0.0	Fill Brown, moist, fill with cinder, ash, slag and brick, dense		0.0	Sampled 0-2'	
-				0.0		
5.0 —				0.0		
-	-7.0 7.0	End of Test Pit				
10.0						
_						
15.0						

Excavated By: Zoladz Construction Inc.

Excavator Type: John Deere 892 ELC

Excavation Date(s): 11-20-09

Length: 15'
Width: 5'
Depth: 7'

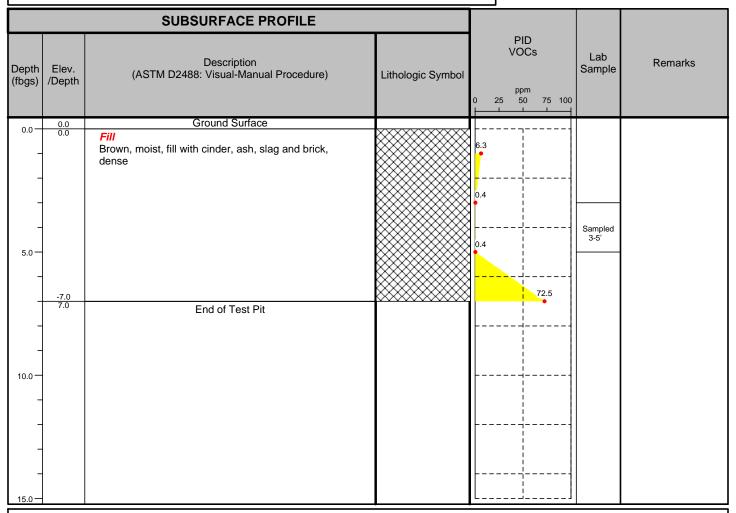

Depth to Water: 6.5'
Visual Impacts: none

Olfactory Observations: slight odor

Comments: reddish slag

__

Test Pit Location: Not to Scale


Project No: 0071-009-320 **Test Pit I.D.:** BPA-3A-TP-25

Project:Business Park Area 3ALogged By:BMGClient:Tecumseh Redevelopment IncChecked By:BCH

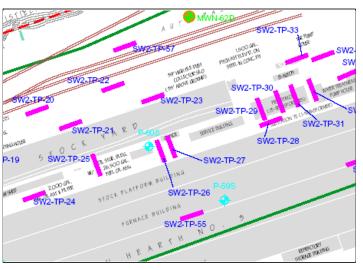
Site Location: Tecumseh Lackawanna Site

TurnKey Environmental Restoration, LLC 2558 Hamburg Turnpike, Suite 300 Buffalo, NY 14218 (716) 856-0635

Excavated By: Zoladz Construction Inc.

Excavator Type: John Deere 892 ELC

Excavation Date(s): 11-20-09


Length: 15'
Width: 5'
Depth: 7'

Depth to Water: 6.4'
Visual Impacts: none

Olfactory Observations: slight odor Comments: Sampled just above water

__

Test Pit Location: Not to Scale

Project No: 0071-009-320 **Test Pit I.D.:** BPA-3A-TP-26

Project:Business Park Area 3ALogged By:BMGClient:Tecumseh Redevelopment IncChecked By:BCH

Site Location: Tecumseh Lackawanna Site

TurnKey Environmental Restoration, LLC 2558 Hamburg Turnpike, Suite 300 Buffalo, NY 14218 (716) 856-0635

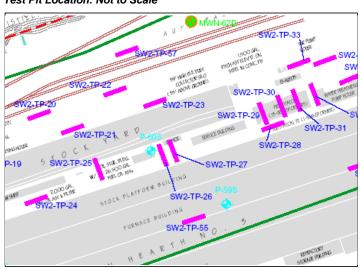
SUBSURFACE PROFILE						
Depth (fbgs)	Elev. /Depth	Description (ASTM D2488: Visual-Manual Procedure)	Lithologic Symbol	PID VOCs ppm 0 25 50 75 100	Lab Sample	Remarks
0.0	0.0	Ground Surface				
5.0		Fill Brown, moist, fill with cinder, ash, slag and brick, dense		0.0	Sampled 0-2'	
-	-9.0 9.0	End of Test Pit	***********	i		
10.0 —						
-						
-						
15.0				L		

Excavated By: Zoladz Construction Inc.

Excavator Type: John Deere 892 ELC

Excavation Date(s): 11-23-09

Length: 15'
Width: 5'
Depth: 9'

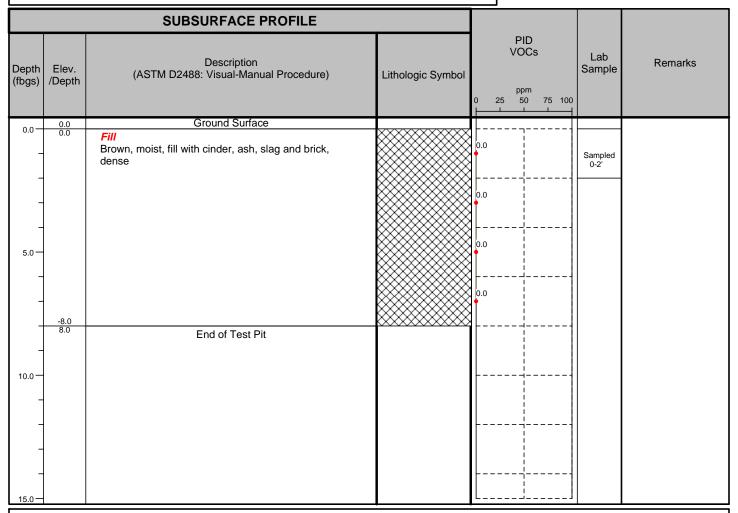

Depth to Water: 8.5'
Visual Impacts: none

Olfactory Observations: none

Comments:

__

Test Pit Location: Not to Scale


Project No: 0071-009-320 **Test Pit I.D.:** BPA-3A-TP-27

Project:Business Park Area 3ALogged By:BMGClient:Tecumseh Redevelopment IncChecked By:BCH

Site Location: Tecumseh Lackawanna Site

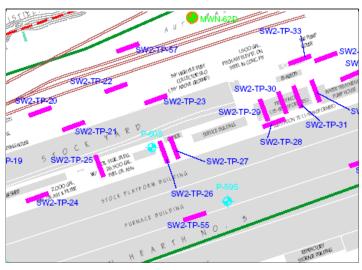
TurnKey Environmental Restoration, LLC 2558 Hamburg Turnpike, Suite 300 Buffalo, NY 14218 (716) 856-0635

Excavated By: Zoladz Construction Inc.

Excavator Type: John Deere 892 ELC

Excavation Date(s): 11-23-09

Length: 15'
Width: 5'
Depth: 8'


Depth to Water: 7.5'
Visual Impacts: none

Olfactory Observations: none

Comments:

--

Test Pit Location: Not to Scale

Project No: 0071-009-320 **Test Pit I.D.:** BPA-3A-TP-28

Project:Business Park Area 3ALogged By:BMGClient:Tecumseh Redevelopment IncChecked By:BCH

Site Location: Tecumseh Lackawanna Site

TurnKey Environmental Restoration, LLC 2558 Hamburg Turnpike, Suite 300 Buffalo, NY 14218 (716) 856-0635

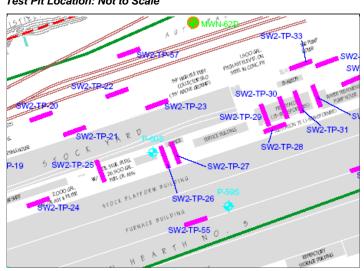
SUBSURFACE PROFILE						
Depth (fbgs)	Elev. /Depth	Description (ASTM D2488: Visual-Manual Procedure)	Lithologic Symbol	PID VOCs ppm 0 25 50 75 100	Lab Sample	Remarks
0.0	0.0	Ground Surface				
5.0		Fill Brown, moist, fill with cinder, ash, slag and brick, dense		0.0	Sampled 0-2'	
-	-8.0 8.0	End of Test Pit	· · · · · · · · · · · · · · · · · · ·			
10.0 —						

Excavated By: Zoladz Construction Inc.

Excavator Type: John Deere 892 ELC

Excavation Date(s): 11-23-09

Length: 15'
Width: 5'
Depth: 8'


Depth to Water: 7.2'
Visual Impacts: none

Olfactory Observations: none

Comments:

__

Test Pit Location: Not to Scale

Project No: 0071-009-320 **Test Pit I.D.:** BPA-3A-TP-29

Project:Business Park Area 3ALogged By:BMGClient:Tecumseh Redevelopment IncChecked By:BCH

Site Location: Tecumseh Lackawanna Site

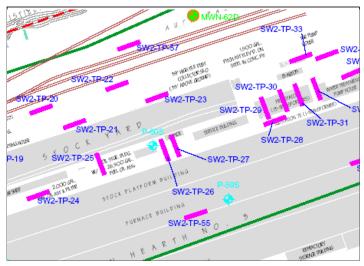
TurnKey Environmental Restoration, LLC 2558 Hamburg Turnpike, Suite 300 Buffalo, NY 14218 (716) 856-0635

SUBSURFACE PROFILE						
Depth (fbgs)	/Depth	Description (ASTM D2488: Visual-Manual Procedure)	Lithologic Symbol	PID VOCs ppm 0 25 50 75 100	Lab Sample	Remarks
0.0	0.0	Ground Surface				
5.0—		Fill Brown, moist, fill with cinder, ash, slag and brick, dense		0.0	Sampled 0-2'	
-	-8.0 8.0	End of Test Pit	***************************************			
10.0 —						

Excavated By: Zoladz Construction Inc.

Excavator Type: John Deere 892 ELC

Excavation Date(s): 11-23-09


Length: 15'
Width: 5'
Depth: 8'

Depth to Water: 7'
Visual Impacts: none

Olfactory Observations: none

Comments:

Test Pit Location: Not to Scale

Project No: 0071-009-320 Test Pit I.D.: BPA-3A-TP-30

Project: Business Park Area 3A Logged By: BMG Client: Tecumseh Redevelopment Inc Checked By: BCH

Site Location: Tecumseh Lackawanna Site

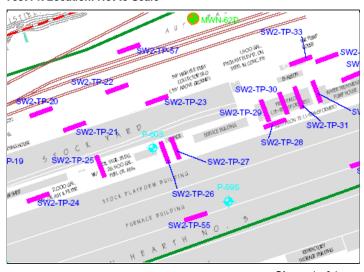
TurnKey Environmental Restoration, LLC 2558 Hamburg Turnpike, Suite 300 Buffalo, NY 14218 (716) 856-0635

	SUBSURFACE PROFILE					
Depth (fbgs)	Elev. /Depth	Description (ASTM D2488: Visual-Manual Procedure)	Lithologic Symbol	PID VOCs ppm 0 25 50 75 100	Lab Sample	Remarks
0.0	0.0	Ground Surface				
5.0 —		Fill Brown, moist, fill with cinder, ash, slag and brick, dense		0.0	Sampled 2-5'	
10.0	-7.0 7.0	End of Test Pit				
- - 15.0 —						

Excavated By: Zoladz Construction Inc.

Excavator Type: John Deere 892 ELC

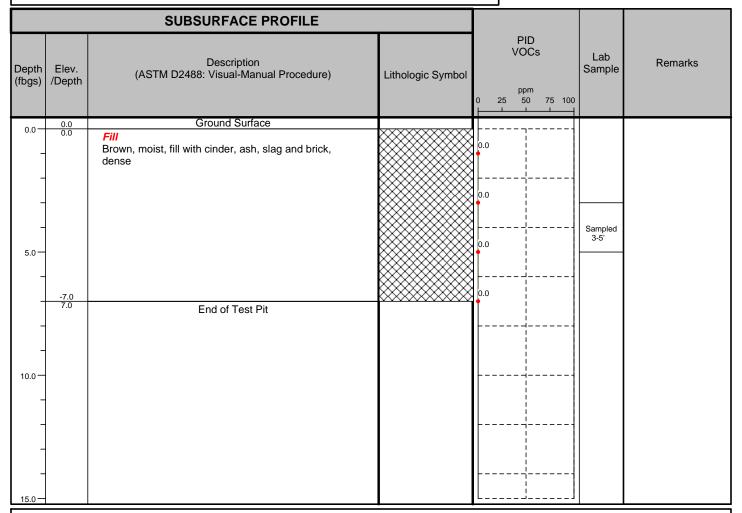
Excavation Date(s): 11-23-09


Length: 15' Width: 5' Depth: 7'

Depth to Water: 6.5' Visual Impacts: none

Olfactory Observations: none

Comments: Could not sample 0-2 because of slag with no fines


Project No: 0071-009-320 **Test Pit I.D.:** BPA-3A-TP-31

Project:Business Park Area 3ALogged By:BMGClient:Tecumseh Redevelopment IncChecked By:BCH

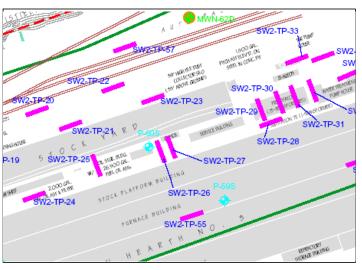
Site Location: Tecumseh Lackawanna Site

TurnKey Environmental Restoration, LLC 2558 Hamburg Turnpike, Suite 300 Buffalo, NY 14218 (716) 856-0635

Excavated By: Zoladz Construction Inc.

Excavator Type: John Deere 892 ELC

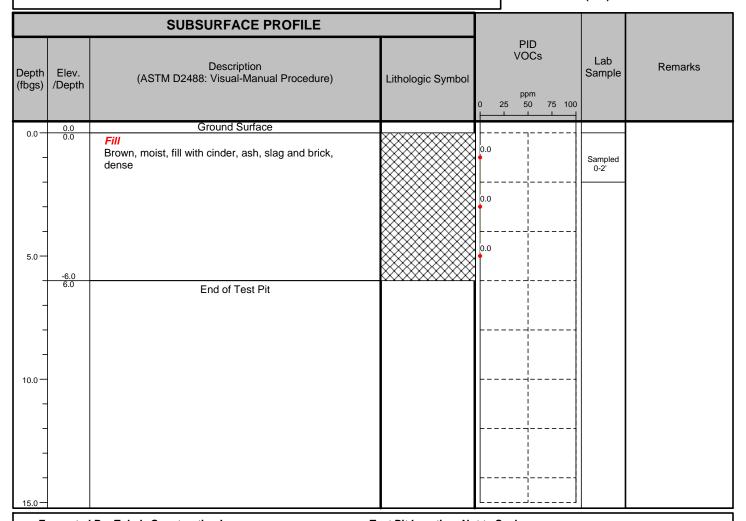
Excavation Date(s): 11-23-09


Length: 15'
Width: 5'
Depth: 7'

Depth to Water: 6.5'
Visual Impacts: none

Olfactory Observations: none

Comments: Could not sample 0-2 because of slag with no fines


Project No: 0071-009-320 **Test Pit I.D.:** BPA-3A-TP-32

Project:Business Park Area 3ALogged By:BMGClient:Tecumseh Redevelopment IncChecked By:BCH

Site Location: Tecumseh Lackawanna Site

TurnKey Environmental Restoration, LLC 2558 Hamburg Turnpike, Suite 300 Buffalo, NY 14218 (716) 856-0635

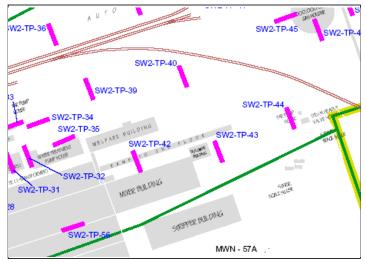
Excavated By: Zoladz Construction Inc.

Excavator Type: John Deere 892 ELC

Excavation Date(s): 11-23-09

Length: 15' Width: 5'

Depth: 6'


Depth to Water: 5.5'
Visual Impacts: none

Olfactory Observations: none

Comments:

--

Test Pit Location: Not to Scale

Project No: 0071-009-320 **Test Pit I.D.:** BPA-3A-TP-33

Project:Business Park Area 3ALogged By:BMGClient:Tecumseh Redevelopment IncChecked By:BCH

Site Location: Tecumseh Lackawanna Site

TurnKey Environmental Restoration, LLC 2558 Hamburg Turnpike, Suite 300 Buffalo, NY 14218 (716) 856-0635

SUBSURFACE PROFILE						
Depth (fbgs)	Elev. /Depth	Description (ASTM D2488: Visual-Manual Procedure)	Lithologic Symbol	PID VOCs ppm 0 25 50 75 100	Lab Sample	Remarks
0.0	0.0	Ground Surface				
5.0	0.0	Fill Brown, moist, fill with cinder, ash, slag and brick, dense, layer of sand 5-6.5' followed by cinders		0.0	Sampled 0-2'	
-	-7.0 7.0	End of Test Pit		2.1		
10.0						
-						
15.0 —						

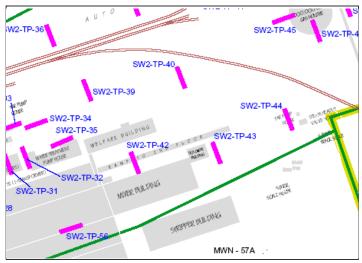
Excavated By: Zoladz Construction Inc.

Excavator Type: John Deere 892 ELC

Excavation Date(s): 11-23-09

Length: 15'
Width: 5'

Depth: 7'


Depth to Water: 6.5'
Visual Impacts: none

Olfactory Observations: none

Comments:

--

Project No: 0071-009-320 **Test Pit I.D.:** BPA-3A-TP-34

Project:Business Park Area 3ALogged By:BMGClient:Tecumseh Redevelopment IncChecked By:BCH

Site Location: Tecumseh Lackawanna Site

TurnKey Environmental Restoration, LLC 2558 Hamburg Turnpike, Suite 300 Buffalo, NY 14218 (716) 856-0635

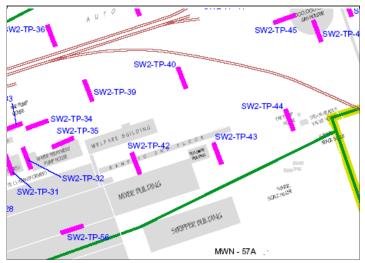
SUBSURFACE PROFILE						
Depth (fbgs)	/Depth	Description (ASTM D2488: Visual-Manual Procedure)	Lithologic Symbol	PID VOCs ppm 0 25 50 75 100	Lab Sample	Remarks
0.0	0.0	Ground Surface				
5.0		Fill Brown, moist, fill with cinder, ash, slag and brick, dense, layer of sand at 7' same as TP-33		0.0	Sampled 0-2'	
	-8.5 8.5	E 1 (T 1 B)	***************************************			
10.0 —		End of Test Pit				

Excavated By: Zoladz Construction Inc.

Excavator Type: John Deere 892 ELC

Excavation Date(s): 11-23-09

Length: 15'
Width: 5'
Depth: 8.5'


Depth to Water: 7'
Visual Impacts: none

Olfactory Observations: none

Comments:

--

Test Pit Location: Not to Scale

Project No: 0071-009-320 **Test Pit I.D.:** BPA-3A-TP-35

Project:Business Park Area 3ALogged By:BMGClient:Tecumseh Redevelopment IncChecked By:BCH

Site Location: Tecumseh Lackawanna Site

TurnKey Environmental Restoration, LLC 2558 Hamburg Turnpike, Suite 300 Buffalo, NY 14218 (716) 856-0635

	SUBSURFACE PROFILE					
Depth (fbgs)	Elev. /Depth	Description (ASTM D2488: Visual-Manual Procedure)	Lithologic Symbol	PID VOCs ppm 0 25 50 75 100	Lab Sample	Remarks
0.0	0.0	Ground Surface				
5.0	0.0	Fill Brown, moist, fill with cinder, ash, slag and brick, dense, layer of reddish silt (precipitator dust) between 5-6'		0.0	Sampled 0-2'	
	-8.5 8.5		***************************************			
10.0 —	5.5	End of Test Pit				

Excavated By: Zoladz Construction Inc.

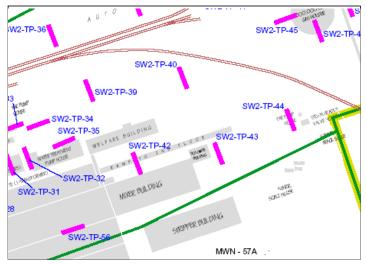
Excavator Type: John Deere 892 ELC

Excavation Date(s): 11-23-09

Length: 15' Width: 5'

Depth: 8.5'

Depth to Water: 7'


Visual Impacts: none

Olfactory Observations: none

Comments:

--

Test Pit Location: Not to Scale

Project No: 0071-009-320 **Test Pit I.D.:** BPA-3A-TP-41

Project:Business Park Area 3ALogged By:BMGClient:Tecumseh Redevelopment IncChecked By:BCH

Site Location: Tecumseh Lackawanna Site

TurnKey Environmental Restoration, LLC 2558 Hamburg Turnpike, Suite 300 Buffalo, NY 14218 (716) 856-0635

SUBSURFACE PROFILE						
Depth (fbgs)	Elev. /Depth	Description (ASTM D2488: Visual-Manual Procedure)	Lithologic Symbol	PID VOCs ppm 0 25 50 75 100	Lab Sample	Remarks
0.0	0.0	Ground Surface				
5.0	0.0	Fill Brown, moist, fill with cinder, ash, slag, sand and brick, dense		0.0		
_	-8.0 8.0		××××××××××××××××××××××××××××××××××××××			
10.0 —	6.0	End of Test Pit				

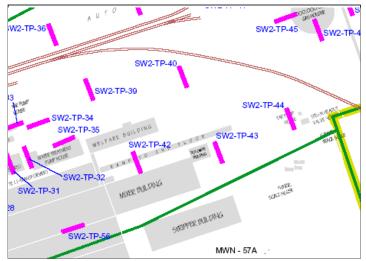
Excavated By: Zoladz Construction Inc.

Excavator Type: John Deere 892 ELC

Excavation Date(s): 11-24-09

Length: 15'
Width: 5'

Depth: 8'

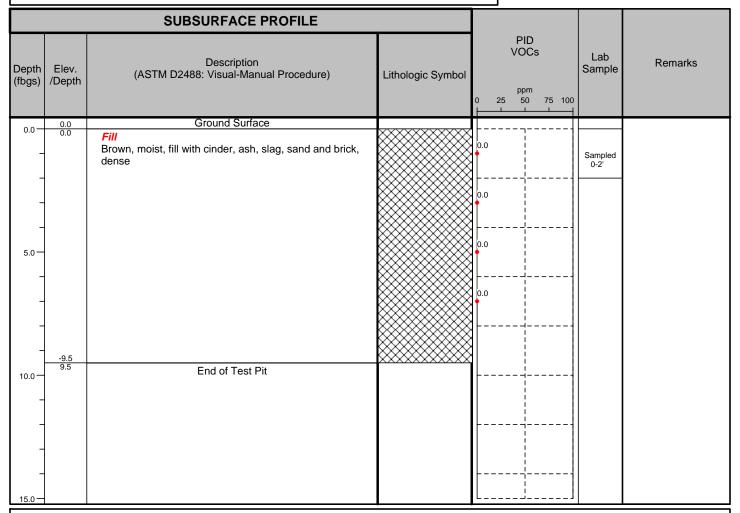

Depth to Water: 6'

Visual Impacts: none

Olfactory Observations: none

Comments:

Test Pit Location: Not to Scale


Project No: 0071-009-320 **Test Pit I.D.:** BPA-3A-TP-37

Project:Business Park Area 3ALogged By:BMGClient:Tecumseh Redevelopment IncChecked By:BCH

Site Location: Tecumseh Lackawanna Site

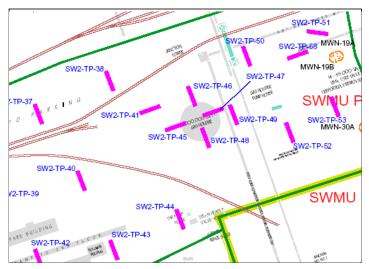
TurnKey Environmental Restoration, LLC 2558 Hamburg Turnpike, Suite 300 Buffalo, NY 14218 (716) 856-0635

Excavated By: Zoladz Construction Inc.

Excavator Type: John Deere 892 ELC

Excavation Date(s): 11-24-09

Length: 15'
Width: 5'
Depth: 9.5'


Depth to Water: 8'
Visual Impacts: none

Olfactory Observations: none

Comments:

__

Project No: 0071-009-320 **Test Pit I.D.:** BPA-3A-TP-38

Project:Business Park Area 3ALogged By:BMGClient:Tecumseh Redevelopment IncChecked By:BCH

Site Location: Tecumseh Lackawanna Site

TurnKey Environmental Restoration, LLC 2558 Hamburg Turnpike, Suite 300 Buffalo, NY 14218 (716) 856-0635

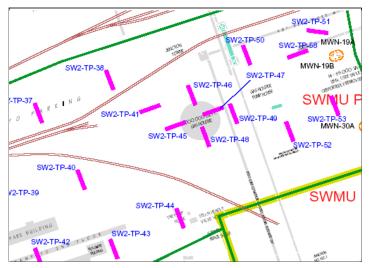
		SUBSURFACE PROFILE				
Depth (fbgs)	Elev. /Depth	Description (ASTM D2488: Visual-Manual Procedure)	Lithologic Symbol	PID VOCs ppm 0 25 50 75 100	Lab Sample	Remarks
0.0	0.0	Ground Surface				
5.0 —		Fill Brown, moist, fill with cinder, ash, slag, sand and brick, dense		0.0		
10.0	-10.0 10.0	End of Test Pit	(XXXXXXXXXXXX	 		
		2.13 51 1554 1 1				

Excavated By: Zoladz Construction Inc.

Excavator Type: John Deere 892 ELC

Excavation Date(s): 11-24-09

Length: 15'
Width: 5'
Depth: 10'


Depth to Water: 8'
Visual Impacts: none

Olfactory Observations: none

Comments:

--

Project No: 0071-009-320 **Test Pit I.D.:** BPA-3A-TP-39

Project:Business Park Area 3ALogged By:BMGClient:Tecumseh Redevelopment IncChecked By:BCH

Site Location: Tecumseh Lackawanna Site

TurnKey Environmental Restoration, LLC 2558 Hamburg Turnpike, Suite 300 Buffalo, NY 14218 (716) 856-0635

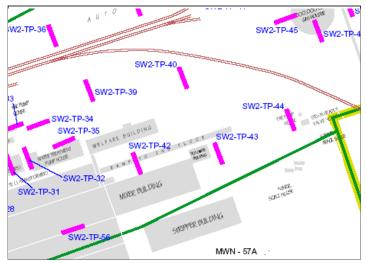
SUBSURFACE PROFILE						
Depth (fbgs)	Elev. /Depth	Description (ASTM D2488: Visual-Manual Procedure)	Lithologic Symbol	PID VOCs ppm 0 25 50 75 100	Lab Sample	Remarks
0.0	0.0	Ground Surface				
5.0		Fill Brown, moist, fill with cinder, ash, slag and brick, dense		0.0		
- 10.0	-6.2 6.2	End of Test Pit	*****			

Excavated By: Zoladz Construction Inc.

Excavator Type: John Deere 892 ELC

Excavation Date(s): 11-24-09

Length: 15'
Width: 5'
Depth: 6.2'


Depth to Water: 5.5'
Visual Impacts: none

Olfactory Observations: none

Comments:

--

Test Pit Location: Not to Scale

Project No: 0071-009-320 **Test Pit I.D.:** BPA-3A-TP-40

Project:Business Park Area 3ALogged By:BMGClient:Tecumseh Redevelopment IncChecked By:BCH

Site Location: Tecumseh Lackawanna Site

TurnKey Environmental Restoration, LLC 2558 Hamburg Turnpike, Suite 300 Buffalo, NY 14218 (716) 856-0635

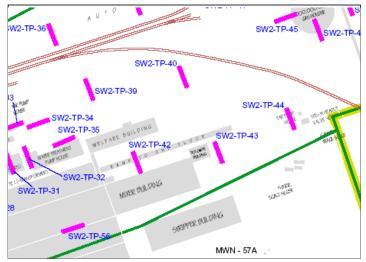
		SUBSURFACE PROFILE				
Depth (fbgs)	Elev. /Depth	Description (ASTM D2488: Visual-Manual Procedure)	Lithologic Symbol	PID VOCs ppm 0 25 50 75 100	Lab Sample	Remarks
0.0	0.0	Ground Surface				
0.0— 5.0— - 10.0—	-5.5 5.5	Fill Brown, moist, fill with cinder, ash, slag and brick, dense Fill Reddish brown, moist, non-plastic fines (suspected precipitator dust), soft, bedded (2" thick)		0.0 0.0 0.3 0.6 0.6	Sampled 0-2'	
15.0 —	14.0 -15.0 15.0 -16.0 16.0	Peat Dark brown and black, moist, organic material, fiberous with wood chips and broken branches Silty Clay Brown, moist, medium plasticity fines, stiff, massive, roots throughout End of Test Pit	* * * * * * * * * * * * * * * * * * *	0.0		

Excavated By: Zoladz Construction Inc.

Excavator Type: John Deere 892 ELC

Excavation Date(s): 11-24-09

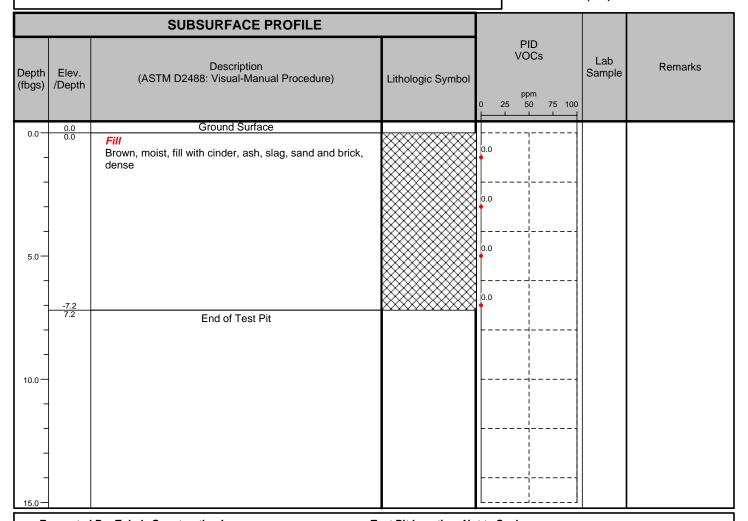
Length: 15'
Width: 5'
Depth: 16'


Depth to Water: 5.5'
Visual Impacts: none

Olfactory Observations: none

Comments:

--


Project No: 0071-009-320 Test Pit I.D.: BPA-3A-TP-41

Project: Business Park Area 3A Logged By: BMG Client: Tecumseh Redevelopment Inc Checked By: BCH

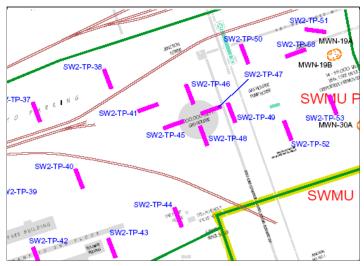
Site Location: Tecumseh Lackawanna Site

TurnKey Environmental Restoration, LLC 2558 Hamburg Turnpike, Suite 300 Buffalo, NY 14218 (716) 856-0635

Excavated By: Zoladz Construction Inc.

Excavator Type: John Deere 892 ELC

Excavation Date(s): 11-24-09


Length: 15' Width: 5' Depth: 7.2'

Depth to Water: 5' Visual Impacts: none

Olfactory Observations: none

Comments:

Project No: 0071-009-320 **Test Pit I.D.:** BPA-3A-TP-42

Project:Business Park Area 3ALogged By:BMGClient:Tecumseh Redevelopment IncChecked By:BCH

Site Location: Tecumseh Lackawanna Site

TurnKey Environmental Restoration, LLC 2558 Hamburg Turnpike, Suite 300 Buffalo, NY 14218 (716) 856-0635

SUBSURFACE PROFILE						
Depth (fbgs)	Elev. /Depth	Description (ASTM D2488: Visual-Manual Procedure)	Lithologic Symbol	PID VOCs ppm 0 25 50 75 100	Lab Sample	Remarks
0.0	0.0	Ground Surface				
5.0 —		Fill Brown, moist, fill with cinder, ash, slag, reddish brown silty material (precipitator dust) and brick, dense		0.0		
-	-8.0 8.0	End of Test Pit	·····	1		
10.0 —		2.13 51.153.111				

Excavated By: Zoladz Construction Inc.

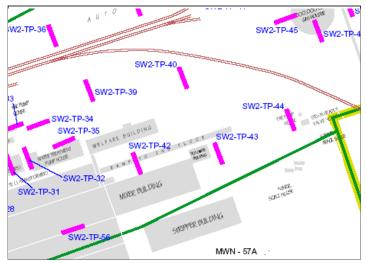
Excavator Type: John Deere 892 ELC

Excavation Date(s): 11-24-09

Length: 15'
Width: 5'

Depth: 8'

Depth to Water: 7'


Visual Impacts: none

Olfactory Observations: none

Comments:

--

Test Pit Location: Not to Scale

Project No: 0071-009-320 **Test Pit I.D.:** BPA-3A-TP-43

Project:Business Park Area 3ALogged By:BMGClient:Tecumseh Redevelopment IncChecked By:BCH

Site Location: Tecumseh Lackawanna Site

TurnKey Environmental Restoration, LLC 2558 Hamburg Turnpike, Suite 300 Buffalo, NY 14218 (716) 856-0635

SUBSURFACE PROFILE						
Depth (fbgs)	Elev. /Depth	Description (ASTM D2488: Visual-Manual Procedure)	Lithologic Symbol	PID VOCs ppm 0 25 50 75 100	Lab Sample	Remarks
0.0	0.0	Ground Surface				
5.0—		Fill Brown, moist, fill with cinder, ash, slag, and brick, dense		0.0		
-	-8.0 8.0	End of Test Pit	·	1		
10.0 —		Liiu oi Test Fit				

Excavated By: Zoladz Construction Inc.

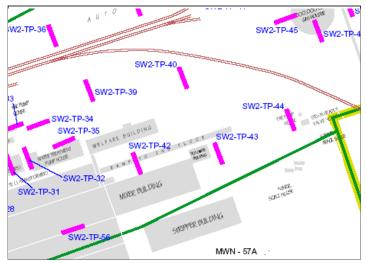
Excavator Type: John Deere 892 ELC

Excavation Date(s): 11-24-09

Length: 15'
Width: 5'

Depth: 8'

Depth to Water: 7'


Visual Impacts: none

Olfactory Observations: none

Comments:

--

Test Pit Location: Not to Scale

Project No: 0071-009-320 **Test Pit I.D.:** BPA-3A-TP-44

Project:Business Park Area 3ALogged By:BMGClient:Tecumseh Redevelopment IncChecked By:BCH

Site Location: Tecumseh Lackawanna Site

TurnKey Environmental Restoration, LLC 2558 Hamburg Turnpike, Suite 300 Buffalo, NY 14218 (716) 856-0635

SUBSURFACE PROFILE						
Depth (fbgs)	/Depth	Description (ASTM D2488: Visual-Manual Procedure)	Lithologic Symbol	PID VOCs ppm 0 25 50 75 100	Lab Sample	Remarks
0.0	0.0	Ground Surface				
5.0 —		Fill Brown, moist, fill with cinder, ash, slag, and brick, dense		0.0		
-	-8.0 8.0	End of Test Pit			Sampled 7-8'	

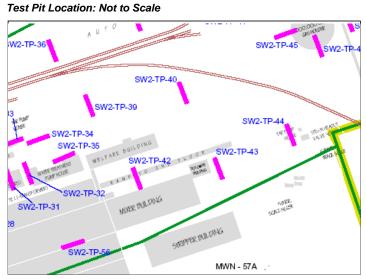
Excavated By: Zoladz Construction Inc.

Excavator Type: John Deere 892 ELC

Excavation Date(s): 11-24-09

Length: 15'
Width: 5'

Depth: 8'

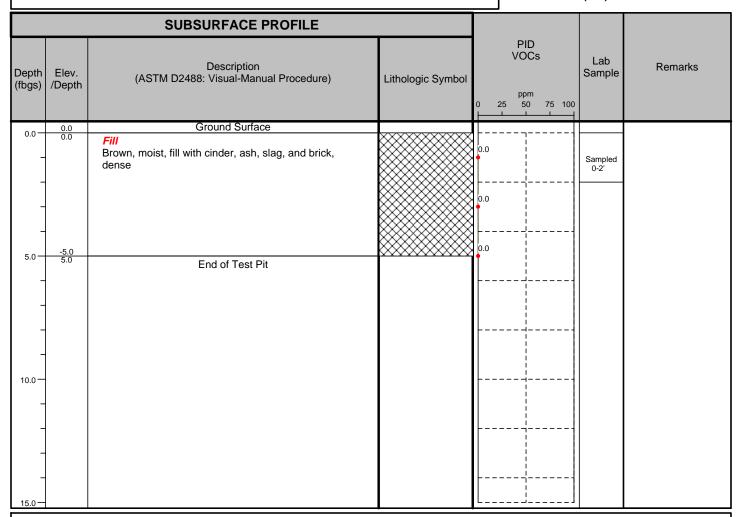

Depth to Water: 7'

Visual Impacts: Oil/tar soaked fill, with sheen on fill and water

Olfactory Observations: moderate odor

Comments: Impacts seem to start at the water table

__


Project No: 0071-009-320 **Test Pit I.D.:** BPA-3A-TP-45

Project:Business Park Area 3ALogged By:BMGClient:Tecumseh Redevelopment IncChecked By:BCH

Site Location: Tecumseh Lackawanna Site

TurnKey Environmental Restoration, LLC 2558 Hamburg Turnpike, Suite 300 Buffalo, NY 14218 (716) 856-0635

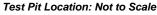
Excavated By: Zoladz Construction Inc.

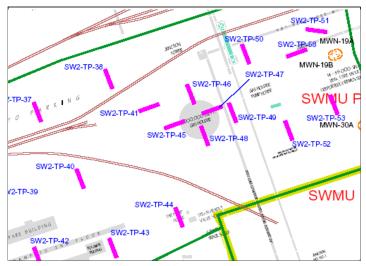
Excavator Type: John Deere 892 ELC

Excavation Date(s): 11-30-09

Length: 15' Width: 5'

Depth: 5'

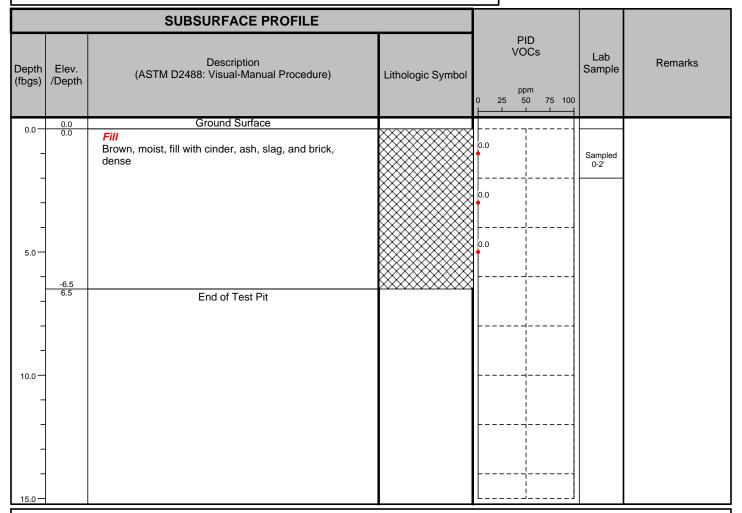

Depth to Water: 4'

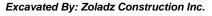

Visual Impacts: none

Olfactory Observations: none

Comments:

--


Project No: 0071-009-320 **Test Pit I.D.:** BPA-3A-TP-46


Project:Business Park Area 3ALogged By:BMGClient:Tecumseh Redevelopment IncChecked By:BCH

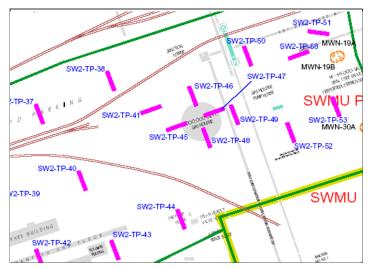
Site Location: Tecumseh Lackawanna Site

TurnKey Environmental Restoration, LLC 2558 Hamburg Turnpike, Suite 300 Buffalo, NY 14218 (716) 856-0635

Excavator Type: John Deere 892 ELC

Excavation Date(s): 11-30-09

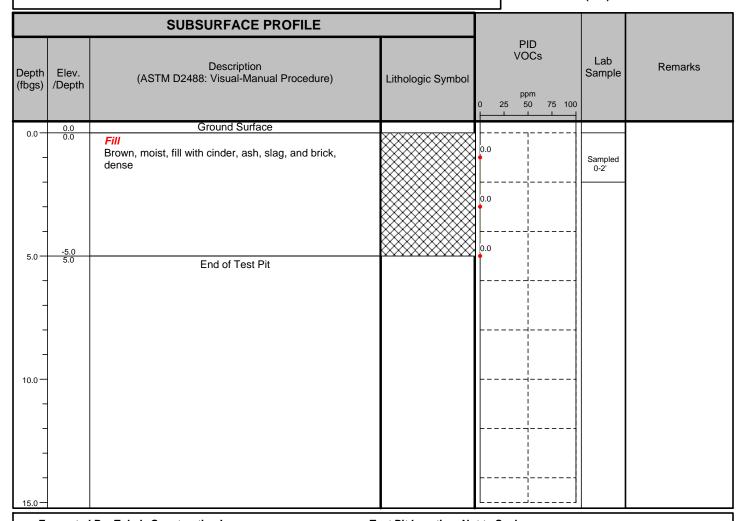
Length: 15'
Width: 5'
Depth: 6.5'


Depth to Water: 5'
Visual Impacts: none

Olfactory Observations: none

Comments:

__


Project No: 0071-009-320 **Test Pit I.D.:** BPA-3A-TP-47

Project:Business Park Area 3ALogged By:BMGClient:Tecumseh Redevelopment IncChecked By:BCH

Site Location: Tecumseh Lackawanna Site

TurnKey Environmental Restoration, LLC 2558 Hamburg Turnpike, Suite 300 Buffalo, NY 14218 (716) 856-0635

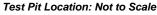
Excavated By: Zoladz Construction Inc.

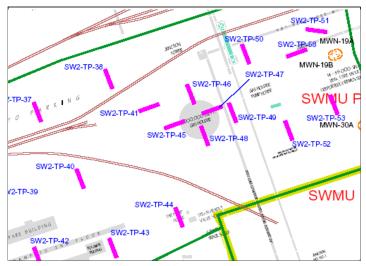
Excavator Type: John Deere 892 ELC

Excavation Date(s): 11-30-09

Length: 15' Width: 5'

Depth: 5'

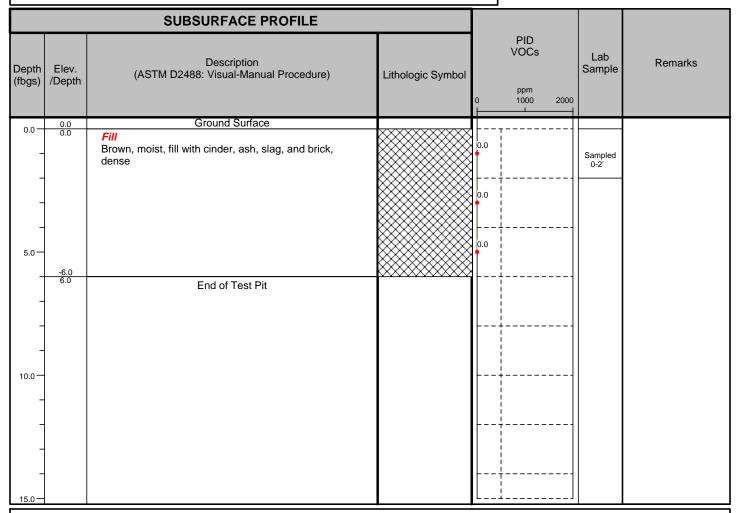

Depth to Water: 4'


Visual Impacts: Blue stained fill at the surface

Olfactory Observations: none

Comments:

__


Project No: 0071-009-320 **Test Pit I.D.:** BPA-3A-TP-48

Project:Business Park Area 3ALogged By:BMGClient:Tecumseh Redevelopment IncChecked By:BCH

Site Location: Tecumseh Lackawanna Site

TurnKey Environmental Restoration, LLC 2558 Hamburg Turnpike, Suite 300 Buffalo, NY 14218 (716) 856-0635

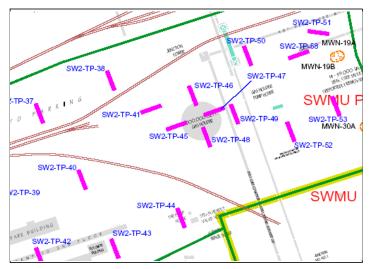
Excavated By: Zoladz Construction Inc.

Excavator Type: John Deere 892 ELC

Excavation Date(s): 11-30-09

Length: 15'
Width: 5'

Depth: 6'


Depth to Water: 4.5'
Visual Impacts: none

Olfactory Observations: none

Comments:

--

Project No: 0071-009-320 **Test Pit I.D.:** BPA-3A-TP-49

Project:Business Park Area 3ALogged By:BMGClient:Tecumseh Redevelopment IncChecked By:BCH

Site Location: Tecumseh Lackawanna Site

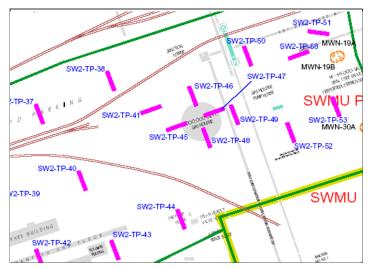
TurnKey Environmental Restoration, LLC 2558 Hamburg Turnpike, Suite 300 Buffalo, NY 14218 (716) 856-0635

Excavated By: Zoladz Construction Inc.

Excavator Type: John Deere 892 ELC

Excavation Date(s): 11-30-09

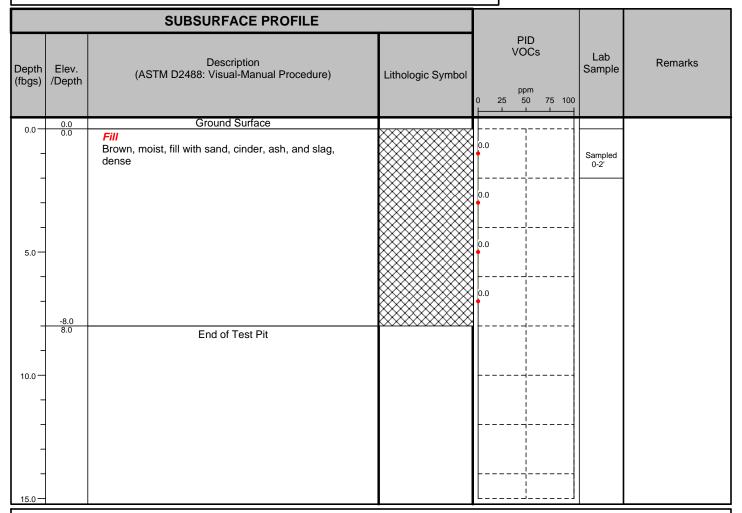
Length: 15'
Width: 5'
Depth: 9.5'


Depth to Water: 7.5'
Visual Impacts: none

Olfactory Observations: none

Comments:

--


Project No: 0071-009-320 **Test Pit I.D.:** BPA-3A-TP-50

Project:Business Park Area 3ALogged By:BMGClient:Tecumseh Redevelopment IncChecked By:BCH

Site Location: Tecumseh Lackawanna Site

TurnKey Environmental Restoration, LLC 2558 Hamburg Turnpike, Suite 300 Buffalo, NY 14218 (716) 856-0635

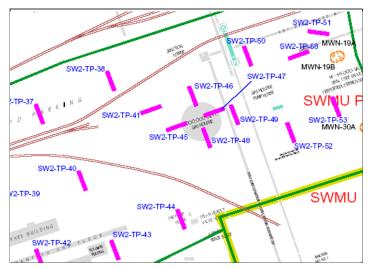
Excavated By: Zoladz Construction Inc.

Excavator Type: John Deere 892 ELC

Excavation Date(s): 11-30-09

Length: 15'
Width: 5'

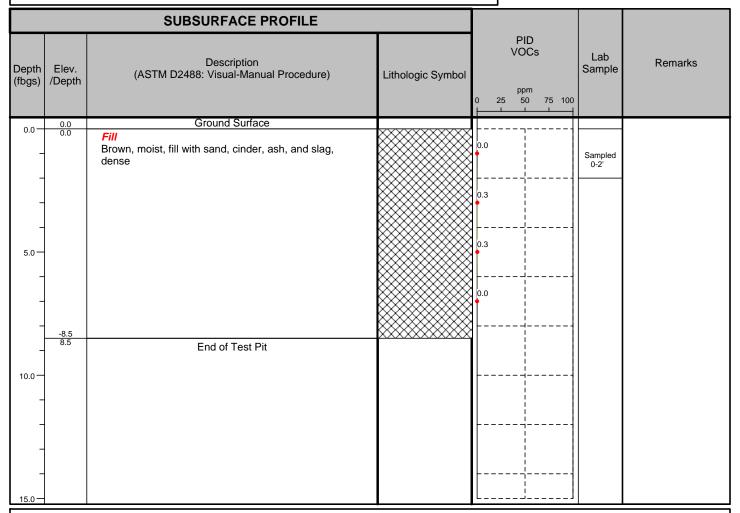
Depth: 8'


Depth to Water: 5'
Visual Impacts: none

Olfactory Observations: none

Comments:

__


Project No: 0071-009-320 **Test Pit I.D.:** BPA-3A-TP-51

Project:Business Park Area 3ALogged By:BMGClient:Tecumseh Redevelopment IncChecked By:BCH

Site Location: Tecumseh Lackawanna Site

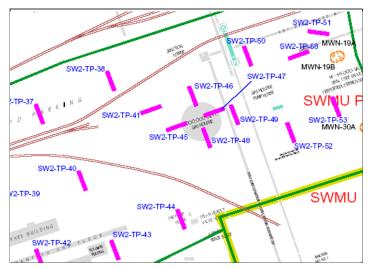
TurnKey Environmental Restoration, LLC 2558 Hamburg Turnpike, Suite 300 Buffalo, NY 14218 (716) 856-0635

Excavated By: Zoladz Construction Inc.

Excavator Type: John Deere 892 ELC

Excavation Date(s): 11-30-09

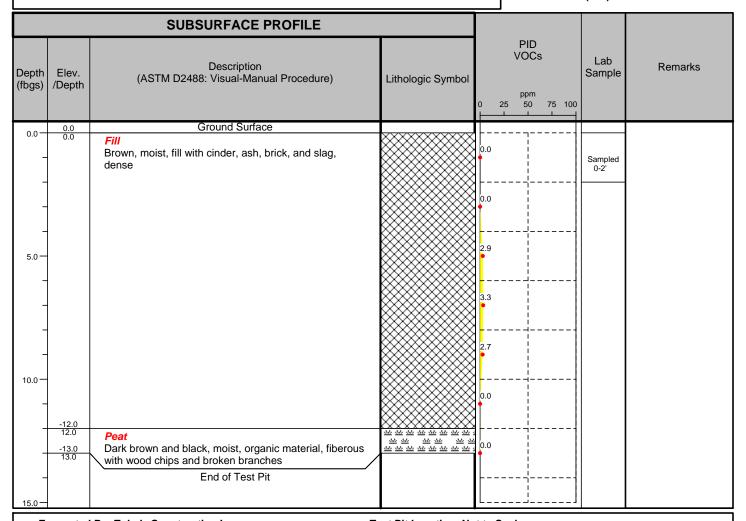
Length: 15'
Width: 5'
Depth: 8.5'


Depth to Water: 7'
Visual Impacts: none

Olfactory Observations: slight odor

Comments:

--


Project No: 0071-009-320 Test Pit I.D.: BPA-3A-TP-52

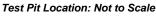
Project: Business Park Area 3A Logged By: BMG Client: Tecumseh Redevelopment Inc Checked By: BCH

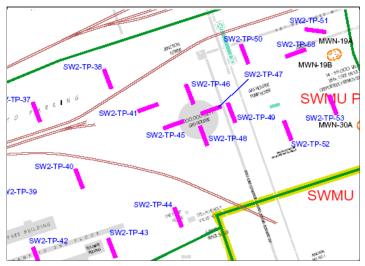
Site Location: Tecumseh Lackawanna Site

TurnKey Environmental Restoration, LLC 2558 Hamburg Turnpike, Suite 300 Buffalo, NY 14218 (716) 856-0635

Excavated By: Zoladz Construction Inc.

Excavator Type: John Deere 892 ELC

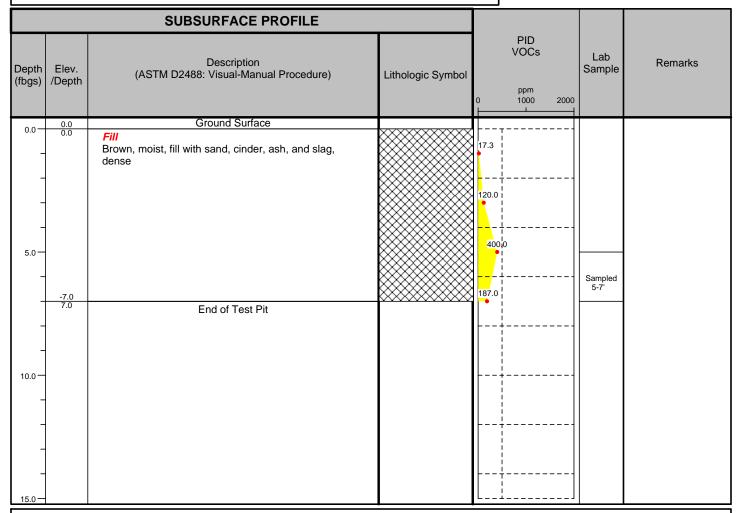

Excavation Date(s): 12-2-09


Length: 15' Width: 5' Depth: 13'

Depth to Water: 5' Visual Impacts: none

Olfactory Observations: none

Comments:


Project No: 0071-009-320 **Test Pit I.D.:** BPA-3A-TP-53

Project:Business Park Area 3ALogged By:BMGClient:Tecumseh Redevelopment IncChecked By:BCH

Site Location: Tecumseh Lackawanna Site

TurnKey Environmental Restoration, LLC 2558 Hamburg Turnpike, Suite 300 Buffalo, NY 14218 (716) 856-0635

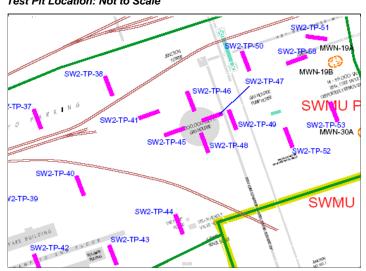
Excavated By: Zoladz Construction Inc.

Excavator Type: John Deere 892 ELC

Excavation Date(s): 12-1-09

Length: 15'
Width: 5'
Depth: 7'

Depth to Water: 5'


Visual Impacts: Sheen on fill and water

Olfactory Observations: moderate odor

Comments:

__

Project No: 0071-009-320 **Test Pit I.D.:** BPA-3A-TP-54

Project:Business Park Area 3ALogged By:BMGClient:Tecumseh Redevelopment IncChecked By:BCH

Site Location: Tecumseh Lackawanna Site

TurnKey Environmental Restoration, LLC 2558 Hamburg Turnpike, Suite 300 Buffalo, NY 14218 (716) 856-0635

SUBSURFACE PROFILE						
Depth (fbgs)	Elev. /Depth	Description (ASTM D2488: Visual-Manual Procedure)	Lithologic Symbol	PID VOCs ppm 0 25 50 75 100	Lab Sample	Remarks
0.0	0.0	Ground Surface				
-	0.0	Fill Brown, moist, fill with cinder, ash, brick, and slag, dense		0.0	Sampled 0-2'	
5.0—				0.0		
-	-7.0 7.0	End of Test Pit		0.0		
10.0						
- - _						
15.0						

Test Pit Location: Not to Scale

SW2-TP-18

SW2-TP-17

SW2-TP-54

MORD WASHING BY DING

Excavated By: Zoladz Construction Inc.

Excavator Type: John Deere 892 ELC

Excavation Date(s): 12-2-09

Length: 15' Width: 5'

Depth: 7'

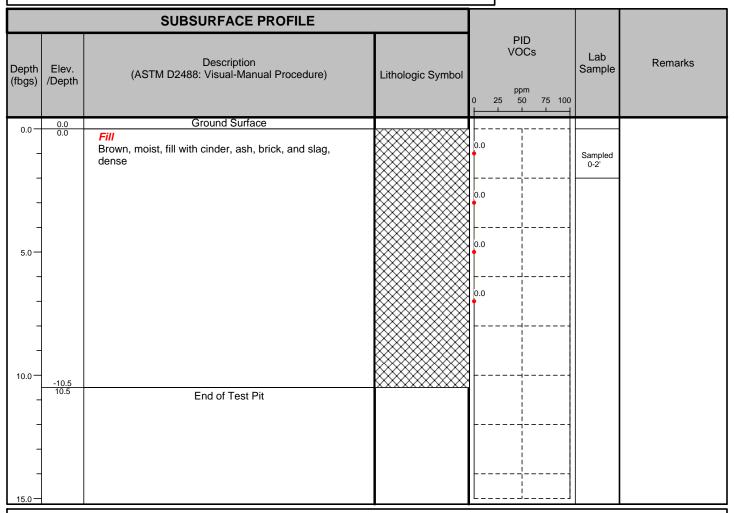
Depth to Water: NA
Visual Impacts: none

Olfactory Observations: none

Comments: refusal on hard slag

Sheet: 1 of 1

NOTO COMPABILITY


Project No: 0071-009-320 **Test Pit I.D.:** BPA-3A-TP-55

Project:Business Park Area 3ALogged By:BMGClient:Tecumseh Redevelopment IncChecked By:BCH

Site Location: Tecumseh Lackawanna Site

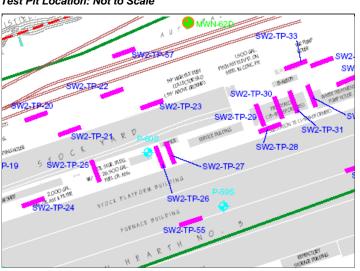
TurnKey Environmental Restoration, LLC 2558 Hamburg Turnpike, Suite 300 Buffalo, NY 14218 (716) 856-0635

Excavated By: Zoladz Construction Inc.

Excavator Type: John Deere 892 ELC

Excavation Date(s): 12-2-09

Length: 15'
Width: 5'
Depth: 10.5'


Depth to Water: 7'

Visual Impacts: none

Olfactory Observations: none

Comments:

Test Pit Location: Not to Scale

TEST PIT EXCAVATION LOG

Project No: 0071-009-320 **Test Pit I.D.:** BPA-3A-TP-56

Project:Business Park Area 3ALogged By:BMGClient:Tecumseh Redevelopment IncChecked By:BCH

Site Location: Tecumseh Lackawanna Site

TurnKey Environmental Restoration, LLC 2558 Hamburg Turnpike, Suite 300 Buffalo, NY 14218 (716) 856-0635

		SUBSURFACE PROFILE				
Depth (fbgs)	Elev. /Depth	Description (ASTM D2488: Visual-Manual Procedure)	Lithologic Symbol	PID VOCs ppm 0 25 50 75 100	Lab Sample	Remarks
0.0	0.0	Ground Surface				
-	0.0	Fill Brown, moist, fill with cinder, ash, brick, and slag, dense		0.0	Sampled 0-2'	
5.0 —				0.0		
10.0 —	-9.0 9.0	End of Test Pit				

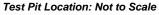
Excavated By: Zoladz Construction Inc.

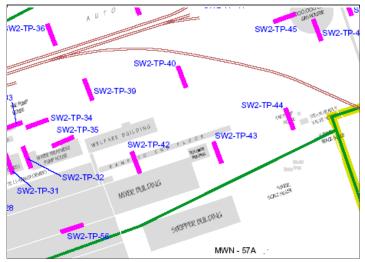
Excavator Type: John Deere 892 ELC

Excavation Date(s): 12-2-09

Length: 15' Width: 5'

Depth: 9'


Depth to Water: 7.5'


Visual Impacts: none

Olfactory Observations: none

Comments:

--

TEST PIT EXCAVATION LOG

Project No: 0071-009-320 **Test Pit I.D.:** BPA-3A-TP-57

Project:Business Park Area 3ALogged By:BMGClient:Tecumseh Redevelopment IncChecked By:BCH

Site Location: Tecumseh Lackawanna Site

TurnKey Environmental Restoration, LLC 2558 Hamburg Turnpike, Suite 300 Buffalo, NY 14218 (716) 856-0635

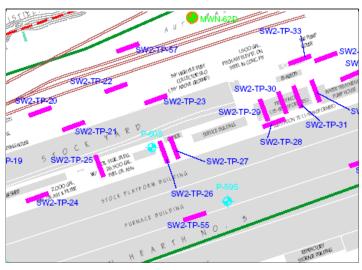
		SUBSURFACE PROFILE				
Depth (fbgs)	Elev. /Depth	Description (ASTM D2488: Visual-Manual Procedure)	Lithologic Symbol	PID VOCs ppm 0 25 50 75 100	Lab Sample	Remarks
0.0	0.0	Ground Surface				
5.0	0.0	Fill Brown, moist, fill with cinder, ash, slag, sand and brick, dense		0.0	Sampled 0-2'	
-	-8.5 8.5	End of Test Pit		0.0		
10.0 —						

Excavated By: Zoladz Construction Inc.

Excavator Type: John Deere 892 ELC

Excavation Date(s): 11-24-09

Length: 15'
Width: 5'
Depth: 8.5'


Depth to Water: 8'
Visual Impacts: none

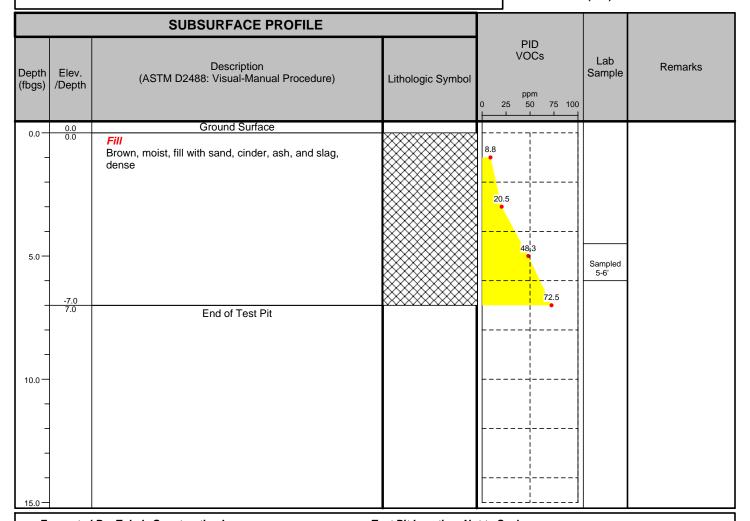
Olfactory Observations: none

Comments:

__

Test Pit Location: Not to Scale

TEST PIT EXCAVATION LOG


Project No: 0071-009-320 **Test Pit I.D.:** BPA-3A-TP-58

Project:Business Park Area 3ALogged By:BMGClient:Tecumseh Redevelopment IncChecked By:BCH

Site Location: Tecumseh Lackawanna Site

TurnKey Environmental Restoration, LLC 2558 Hamburg Turnpike, Suite 300 Buffalo, NY 14218 (716) 856-0635

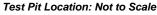
Excavated By: Zoladz Construction Inc.

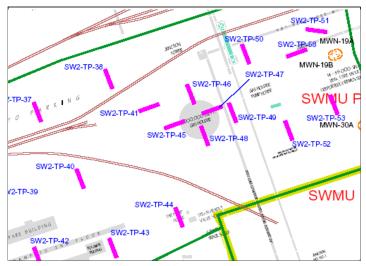
Excavator Type: John Deere 892 ELC

Excavation Date(s): 11-30-09

Length: 15' Width: 5'

Depth: 7'


Depth to Water: 5.5'


Visual Impacts: sheen on fill and water

Olfactory Observations: moderate odor

Comments:

__

Project No.:	N:	B P.4			Date:	10/17/0		Dontol
Client: Tecument					Instrumer	it Source:	_ TK	Rental
METER TYPE	UNITS	TIME	MAKE/MODEL	SERIAL NUMBER	CAL. BY	STANDARD	POST CAL. READING	SETTINGS
pH meter	units	/00°	Myron L Company Ultra Meter 6P	606987	TAB	4.00 7.00 10.01	4.00 7.00 9.58	4.00 7.00 10.68
Turbidity meter	NTU	10/5	Hach 2100P Turbidimeter	970600014560	TAB	< 0.4 20 100 800	.0.3/ 22.0 [60 79.2	(201 20.0 100 800
Sp. Cond. meter	uS mS	100	Myron L Company Ultra Meter 6P	606987	TAB	1413ms @ 25°C	1414	1413
PID	ppm		MinRAE 2000			open air zeroppm Iso. Gas		MIBK response factor = 1.0
Dissolved Oxygen	ppm	949	-YSI Model 55	05D2677	TAB		% Saturation	L
Particulate meter	mg/m ³					zero air		
Oxygen	%					open air		
☐ Hydrogen sulfide	ppm					open air		
Carbon monoxide	ppm					open air		
LEL	%					open air]
Radiation Meter	uR/H					background area		
	1							
ADDITIONAL REMARKS					<i>†</i>			
PREPARED BY:	100			DATE: [0]	117/08			

Direlopm + GROUNDWATER SAMPLING FORM

Project Name:	Phuse	TIL.	BBA		Date: 10/17	128
Location:	Phase I	BF	A Tewart	Project No.:	Sampler(s):	TAB

Note: All measurements are in feet, distance from top of riser.

Note: 2" = 0.163 g/ft, 4" = 0.653 g/ft, 6" = 1.469 g/ft.

Well No	. MWN-	-53A	Diameter:	2"		Sample T	 ime:				
Product D	Depth:		Water Col	lumn (B): /	2.90	DTW whe	n sampled:	ed: ←			
DTW (sta	tic): 73	r	Casing Volume: 2./c			80% Reco	overy (A - [B	x 0.8]):			
Total Dep	oth (A): 20.	28	Purge Volume: 2/, c 7			Purge Me	thod: 🔼	Lex			
Time	Water Level 13fbFOR)	Acc. Volume (gallons)	pH (units)	Temp. (deg. C)	(45)M5	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Appearance & Odor		
1038	de la	20	7.28	15.8	10.27	71000	6.25	-165	Auk Brim No	cá s	
1043	7.3 8	40	7.54	15.8	10.57	>100c	0.25	20164		Mist	
1051	738	6.0	7,70	15.4	10.40	>1000	0.39	-162	il		
1057	23 Y	8.0	777	15.4	10.36	'>100 C	051	-155	T T	ĺ	
1102	7.39	10.0	7.89	154	10.17	7/000	035	-141	11	l	
1109	7.35	120	8.08	15.0	ic 1/	>100 c	092	-134	1/	l	
1115	7.36	14.7	7 15	14.6	10.08	>10:0	1.18	-114	11		
1124	7.36	180	806	15.2	10.15	>100 C	0 14	-134	11	ı	
1136	737	18.0	8.07	15.3	10.10	71000	1.02	-133	"	i	
Sample I	nformation:										
1/36	7.37	260	8.61	15.6	10.17	7/000	0.83	-137	11		
										1	

Well No	. MWN	-5 4 A	Diameter:	2"		Sample T	ime:		
Product D	epth: -	~	Water Col	lumn (B): /	1.91	DTW whe	n sampled:		
DTW (sta	tic): 7.4	77	Casing Volume: 1.94			80% Reco	overy (A - [B	x 0.8]):	
Total Dep	oth (A):	21.38	Purge Volume: /5. 4/			Purge Me	thod: [3	richer	
Time	Water Level (fbFOR)	Acc. Volume (gallons)	pH (units)	Temp. (deg. C)	SC (uS)	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Appearance & Odor
1201	Initial	20	6.64	13.7	3636	71000	1.33	-16	Brow sed Mi
1208	9.89	4.0	6.90	14.3	3563	Dioso	1.05	-100	11
1214	10.05	6.0	7.00	14.7	3471	71000	120	-107	U
1219	10.03	8.0	7.95	14.7	3344	2/000	1.14	-101	7/
1226	10.15	10.0	7.15	14.8	3293	71000	1.44	-105	//
1233	10.13	72.0	7.20	14.3	3352	7/000	1.20	705	//
1238	9,95	14.0	1.28	14.1	3348	2/000	1.08	-109	11
1245	9,89	16.0	7.23	14.7	3360	7/000	0.80	-108	20
1251	9,99	18.0	731	15.0	3272	>1000	0.52	-116	/1
Sample I	nformation:								
1257	10.00	20.0	7.36	15.0	3242	71000	1.09	~1/6	1

REMARKS:

PREPARED BY:

rake

GROUNDWATER SA

Project Name: Phuse III	PBA.	Date: 10/	17/08
Location: Temps	Project No.:	Sampler(s):	T413

Note: All measurements are in feet, distance from top of riser.

Note: 2" = 0.163 g/ft, 4" = 0.653 g/ft, 6" = 1.469 g/ft.

				24						
Well No	. MWN-5	5A	Diameter:			Sample T	ime:			
Product D	epth:		Water Col	umn (B):	878	DTW whe	hen sampled:			
DTW (stat	ic): 10	91	Casing Vo	olume: /	.43	80% Reco	overy (A - [B	x 0.8]):		
Total Dept	h (A):	19.69	Purge Vol		1.31	Purge Me		Baila		
Time	Water Level (fbTOR)	Acc. Volume (gallons)	pH (units)	Temp. (deg. C)	SC (uS)	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Appearance & Odor	
1345	\ ³ doitial	1.50	740	14.6	535.7	71000	0.16	-127	gray said	
1353	16.36	3. c	7.35	13.6	5348	21000	.06	-146	77	
1400	15.55	4.5	7.26	13.3	524.3	21000	-10	-133	11	
1407	153 ²	6.0	7.17	121	571.7	2/000	.21	-116	17	
1413	15.56	7.5	7.13	13.0	496.7	21000	.60	-100	11	
1420	12.25	9.0	712	i3.1	7777	71000	1.17	79/	11	
1427	12.20	10.5	7.16	13.0	479.4	71000	0.74	-83	They said	
1432	12.03	12.0	7.16	13.2	474.3	7100 C	245-	-85	17	
1440	1699	13.5	7.15	13.1	4754	>1000	0.50	-89	11	
Sample Ir	formation:									
1445	11.88	15.0	7.15	13.3	4871	2/000	0.61	-9/-	11	
1453	16.76	165	7-14	13.2	484.8	71000	0.51		//	
								-88		

Well No	MWN-C	7-14	Diameter:	٦′′		Sample Ti	ime:	_	
Product D	epth:		Water Col	umn (B): 💃 (2.63	DTW whe	n sampled:	_	
DTW (stat	tic): 10-2	7	Casing Vo		.73	80% Reco	overy (A - [B	x 0.8]):	
Total Dep	th (A): 30	,40	Purge Vol	ume: İ	7.32	Purge Me	thod: 🖔	الما أن	
Time	Water Level (fbTOR)	Acc. Volume (gallons)	pH (units)	Temp. (deg. C)	SC (uS)	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Appearance & Odor
1514	Įnitia	1.75	6283	13.9	835.3	>1000	653	ーテス	musty odv
1519	10.42	3.50	7.26	14.4	7181	7/000	0.72	-126	fl
1524	10.55	5.25	7.37	14,5	694.0	>1001	138	-128	No odo
1730	10.45	7.00	2.42	14 x	693.8	2/000	br 47_	-126	11
1 536	10.56	8.75	7.63	14.8	662.3	>1000	2.22	-124	1
1540	10.47	10.50	スケブ	14.9	663,5	2/000	2.16	-121	11
1546	10,46	12.25	7.61	14.8	657.5	>/000	244	-122	ir
1551	10-51	14.00	7.68	14.8	646.4	21000	259	-121	11
1557	10.40	15-75	7.72	15.0	642.4	>1000	2.99	-125	11
Sample I	nformation:			·- ·- 	•		,		
1602	10-55	17.50	7.71	17.9	640.2	7/000	2.40	-125	11
			<u> </u>		<u> </u>				

REMARKS: On MWN-554 Double checked Bottom. New 3. Hom @ 12 20.88

PREPARED BY: TAB

GROUNDWATER SAMPLING FORM

Project Name:	Phys II	BPA		Date: M/	ない	1/0	6
Location: 7	einnsel		Project No.:	Sampler(s):	_ 7	Ai	3

Note: All measurements are in feet, distance from top of riser.

Note: 2" = 0.163 g/ft, 4" = 0.653 g/ft, 6" = 1.469 g/ft.

Well No	. MWN-	-56A	Diameter:			Sample T	ime:	_		
Product D			Water Col	lumn (B):	10,23	DTW whe	n sampled:			
DTW (stat	tic): 11.0	9	Casing Volume: 1.66			80% Reco	overy (A - [B	x 0.8]):		
Total Dep	th (A):	1.32	Purge Vol	ume: /᠘	67	Purge Me	thod: 13 a. (las]]
Time	Water Level (fbTOP)	Acc. Volume (gallons)	pH (units)	Temp. (deg. C)	SC (uS)	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Appearance & Odor	
1001	Initial	1.5	7.27	13.0	780.3	21000	1	7/02	Brown and]]
1005	11.71	3.0	7.04	/3./	769.80	71000		-89	le 1	
1009	11.70	4.5	7.03	13.2	768.50	71000	1	-85	11	1 .
1015	1162	6.0	7.08	13.3	753.5	Dicar	-	-78	11 No	k du
1019	1177	7.5	7.11	13.2	742.9	Zioc J	_	-72	10	
1023	11 84	9.0	7.12	13.1	738.1	>1000		-68	Ü	
1028	11.57	10.5	7.13	13. D	733.0	>1000	-	-65	7	}
1034	11.74	12.0	7.16	12.8	730.4	21000	,	-62	11]
1039	11.70	13.5	7:6	129	725.7	71000	-	-64	4	
Sample II	nformation:			· ·	·					1
1044	11,74	15.0	7.15	12.9	728.4	71000		-62	4	
][

Well No	. MWs-	34A	Diameter:	211		Sample T	ime: 🚩				
Product D	epth:		Water Col	umn (B):	7.80	DTW whe	n sampled:	_			
DTW (sta	tic): 11.5	51	Casing Vo	olume: [,	5-9	80% Recovery (A - [B x 0.8]):					
Total Dep	th (A): \mathcal{A}_{l}	3/	Purge Vol	ume: /	5,97	Purge Me	thod: 🤔	Bailer			
Time	Water Level (fbTOR)	Acc. Volume (gallons)	pH (units)	Temp. (deg. C)	SC (uS)	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Appearance & Odor		
lici	·Initial	1.50	6.73	15 2	1022	2/000	~	-61	Brown and		
1106	12.15	3.00	6.78	15.8	906.0	71000	_	- 70	Machin hor		
1/10	13.0	4.50	689	16.0	8587	21000	_	-70			
1115	12-10	6.0	6.92	16.0	\$ 12/8/197	21000		-77	9.2 sel		
1118	12.22	75	7.00	16.2	776.0	71000		-76	1		
1123	11.65	9.0	7.05	16.2	761.4	2/000	-	-75	11		
1128	11.86	111.5	7.05	16.5	755.0	71000		-75	11		
1132	12.50	12.0	765	16.5	746.1	71000		-76	10		
1136	13.10	13.5	7.05	16.5	743.6	71000		-75	ď		
Sample I	nformation:					W ₁ .					
1141	12.31	15,0	2.04	17.0	7348	71009		-80	11		
		<u>L</u>				1			L		

REMARKS:	

PREPARED BY:

TAB

 $\label{thm:monitoring Well Sampling Form (UNDER CONSTRUCTION). xls $$GWSF-TK$$

به لخ مد لخه

TURNKEY ENVIRONMENTAL RESTORATION, LLC

GROUNDWATER SAMPLING FORM

Project Name:	WW-35 A	Phise II BPA	Date: 10/20/20
Location:	Teumsh	Project No.:	Sampler(s): 743

Note: All measurements are in feet, distance from top of riser.

Note: 2" = 0.163 g/ft, 4" = 0.653 g/ft, 6" = 1.469 g/ft.

Well No	MWD.	35/1	Diameter:			Sample T	me:			
Product D			Water Col	lumn (B): /n	22	DTW whe	DTW when sampled:			
DTW (stat	ic): ///	61		Casing Volume: 1,66			very (A - [B	x 0.8]):		
Total Dept	th (A): 40	20.83	Purge Vol	Purge Volume: 16.65			thod:			
Time	Water Level (fbTOR)	Acc. Volume (gallons)	pH (units)	Temp. (deg. C)	SC (uS)	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Appearance & Odor	
1251	Amittal	450	10.70	17.3	807.2	>1000		-240	Brun sid	نساء دور خو
1258	102.64	3.0	10.51	14.1	280.5	71000	_	-281	Bru ced	1.4
1304	10.85	4	10.61	13.9	722.7	>1000	_	-282	11	
130%	10.86	6.0	10.66	13.8	696.7	7(000	(-300	1	l
13/5	10,76	7.5	10.70	13.5	6579	21000		-288	11	
1320	10.80	9.0	17.72	13.6	628.3	2/000	_	-246	4	
1326	10,77	10.5	€10.61	13.5	585.1	71000		-230	ic	
1331	10.71	12.0	10.65	13.7	579.6	2000	1	-226	C 1	İ
1336	10.71	13.5	10.66	13.8	572.3	>1000		-205	0	
Sample Ir	nformation:									ĺ
1341	10.77	15,0	10.61	13.6	550.5	21000	~	-202	12	

Well No	. mws -	33A	Diameter:	2~		Sample Ti	me:		
Product D	epth:		Water Co	lumn (B):	7:16	DTW when sampled:			
DTW (stat	tic): 11.66		Casing Volume: 1.54			80% Reco	very (A - [B	x 0.8]):	
Total Dep	th (A): ス <i>l.</i>	12	Purge Volume: 15-71			Purge Me	thod:		
Time	Water Level (fbTQR)	Acc." Volume (gallons)	pH (units)	Temp. (deg. C)	SC (uS)	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Appearance & Odor
1413	-Initial	1.5	7.03	13.8	1089	606	_	-74	gray sid maj
1418	1865	3.0	6.33	/3.3	1066	21001	_	543	il
1423	DRY	4.0	6.32	12.9	1011	>1000		-44	11
1543	DRY	5.5	6.52	13.1	969.6	>1000	-	-34	//
1149	1690	70	6,11	122	390.5	579		8	il
1155	19.55	8.5	6.02	11.2	907.2	>1610	,	-26	11
12.0)	DRY	4.5	5.78	10.8	856.2	7,000	<u> </u>	-19	11
1530	15.18	110	6.62	10.1	8333	188	-	-55	il
1537	19.00	125	6.57	10.2	8438	71000		-47	11
Sample II	nformation:								
1553	DRY	13.5	6.54	9.7	835,2	7/600	· ·	-5.2	11

REMARKS:

Monitoring Well Sampling Form (UNDER CONSTRUCTION).xls GWSF-TK

PREPARED BY:

TX1

GROUNDWATER SAMPLING FORM

Project Name: Phusy III	PBA	Date: 10 /2	olor
Location: Tecume	Project No.:	Sampler(s):	TAB

Note: All measurements are in feet, distance from top of riser.

Note: 2" = 0.163 g/ft, 4" = 0.653 g/ft, 6" = 1.469 g/ft.

Well No	.MWs-	304	Diameter:	2.5		Sample Ti	me:			
Product D	epth:		Water Col	Water Column (B): 11.18			DTW when sampled:			
DTW (stat	tic): 9.25	/	Casing Vo		82	80% Reco	very (A - [B	x 0.8]):		
Total Dept	th (A): 2	0.42	Purge Vol	ume: /8	22	Purge Met	thod:			
Time	Water Level (fbTOR)	Acc. Volume (gallons)	pH (units)	Temp. (deg. C)	SC (uS)	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Appearance & Odor	
1439	-initi ai	175	6.83	14.7	868.5	71000		-53	See No day	
1445	956	3.50	202	14. 9	857.5	71000		-58	11	
1452	7.46	5.25	7.05	14.8	847.2	71000)	-52	()	
1457	9.56	7.00	7.11	15.0	8424	21000	(-51	10	
150/	9.51	8.75	7.14	14.9	8388	Dind	_	-21	C	
1506	9.41	9-50	7.14	14.9	837.2	>1000		-49	11	
1511	9.45	4.25	7.16	14.8	870833.5	71000	(-47	"	
1517	9.40	13.00	7.19	14.8	830.4	>1000	(-47	C	
1522	9.50	14.75	7.23	14.9	830.8	>icor		-51	4	
Sample Ir	nformation:									
1528	9.50	16.50	724	14.4	831.2	71000		-48	1	

Well No	s. MWN-	-10	Diameter:	4."		Sample Ti	me:			
Product E	Pepth:		Water Col	Water Column (B): 9 46			DTW when sampled:			
DTW (sta	tic): 8.8	7	Casing Vo	olume: 6	,17	80% Reco	very (A - [B	x 0.8]):	/	
Total Dep	oth (A):	, 33	Purge Vol	ume: 💋.	77	Purge Met	hod:			
Time	Water Level (fbTOR)2	Acc. Volume (gallons)	pH (units)	Temp. (deg. C)	SC (uS)	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Appearance & Odor	
1612	- Trittel	6.0	8.96	14.7	1788	76		-182	Musty ody	
1620	9.34	12.0	9,57	14.9	17-72	71		-208	10	
1632	9.27	18.0	9.65	146	1783	68	~	-211	14	
1222	9.30	24.0	9.61	11.9	1799	93	Ţ	-200	11	
1231	950	30.0	10.01	12.0	1804	71		-215	11	
1240	9.46	36.0	9.44	12.3	1814	73		-211	11	
1244	9.56	48.0	10.29	11.4	1814	75		-215	ir	
1256	9.59	4B. 0	10.38	12.1	1828	76	****	-213	11	
1305	9.43	54.0	10 43	12.3	1841	34		214	10	
Sample I	nformation:	60.0				٠,				
1314	9.31	100000	10.40	10.9	1832	92		-200	11	

D		A .	۸ ۱	ы	,	c	
R	⊏ľ	VI.	41	ΚI	٦.	3	

10/21/68
S\$7

Monitoring Well Sampling Form (UNDER CONSTRUCTION).xls

PREPARED BY:

TAB

Ż

Proje	JECT INFORMATION ct Name: ct No.:	ON:			Date:	1/14/09			
Clien						Instrumer	nt Source:	ВМ 🗀	Rental
	METER TYPE	UNITS	TIME	MAKE/MODEL	SERIAL NUMBER	CAL. BY	STANDARD	POST CAL. READING	SETTINGS
×	pH meter	units	8 30	Myron L Company Ultra Meter 6P	606987	Pun	4.00 7.00 10.01	3.99 7.00 10.00	7.00 ok
×	Turbidity meter	NTU	8:35	Hach 2100P Turbidimeter	970600014560	Phi	< 0.4 20 100 800	. 19 19.3 97.9 793	20.40k 2000 1000k 8000k
×	Sp. Cond. meter	uS mS	930	Myron L Company Ultra Meter 6P	606987	PWW	<u>7764</u> ms @ 25 °C	2762	2764 uk
	PID	ppm		MinRAE 2000			open air zero		MIBK response factor = 1.0
X	Dissolved Oxygen	ppm	8:40	YSI Model 55	05D2677	PINN	100%	100%	100% of
	Particulate meter	mg/m ³					zero air	10010	10000
	Oxygen	%					open air		<u>.</u>
	Hydrogen sulfide	ppm					open air		.
	Carbon monoxide	ppm					open air		
	LEL	%					open air		
	Radiation Meter	uR/H					background area		
ADDI'	TIONAL REMARKS	S:							
PREP	ARED BY:				DATE:				

Project Name: Phi SCH BPA Location: Terminal Date: 1/14/09
Field Team: TAB/PUW Project No.:

Well No	. MWV	564	Diameter (in	ches):	2 =	Sample Tim	e:	0:00		
Product Dep	th (fbTOR):	, –	Water Colum	Water Column (ft): 13,45			DTW when sampled: 6, 82			
DTW (static)	(fbTOR):	1.79	Casing Volu	Casing Volume: 9 63 1.19				Development	Sampling	
Total Depth	(fbTOR): 2	0.28	Purge Volun	Purge Volume (gal):			od: Low	Flore		
Time	Water Level (fbTOR)	Acc. Volume (gallons)	pH (units)	Temp. (deg. C)	SC (y8)m3	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Appearance & Odor	
1:36	o Initial	25	6.19	103	-1.25	286	1.49	77	Short From Dich	
741	19.79	1 401	6.48	10.9	19.45	187	1.60	-18	clight Turmaboung	
947	西.82	2. 0	7.67	9.8	18.80	52.4	1.77	-109	clear/stabl Sulfi	
G 5!	3 B. 8Z	3.5	7.98	10.5	18.70	31.4	1.78	-145	1/	
9.53	4 6.82	4.5	806	105	18 65	23.7	1.66	- 162	//	
9:56	5 6.82	5	8,13	10.6	18 64	19.6	1.51	-170	//	
	6									
	7									
	8									
	9									
	10									
Sample I	nformation:									
	S1 6,82	5.5	8.14	10.6	1861	11.2	1.21	-/8Z	//	
	52 6.82		8.13	10.6	18.52	8.08	1.10	-173	11	

						_===			
Well No	. MUN -	57A	Diameter (in	ches):	2 "	Sample Time		0:55	
Product Der	oth (fbTOR):		Water Colur		2.94	DTW when s	sampled:	8.62	
DTW (static) (fbTOR):	3. 5 4	Casing Volu	me:	2.11	Purpose:		Development	Sampling Sampling
Total Depth	(fbTOR): Ž	1.38	Purge Volun			Purge Metho	od: Lou	~ Fleu	, j
Time	Water Level (fbTOR)	Acc. Volume (gallons)	pH (units)	Temp. (deg. C)	SC (uS)	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Appearance & Odor
10:35	o Initial	4,25	7.14	10.1	4058	306	1.89	-88	Sligh Tribid brown
15 191	1 X.5 V	1.0	7.17	10.4	4013	89.5	1.69	-88	clearlshight
10:44	28.58	20	7.23	10.7	413	57.8	1.59	-95	// /
10:46	3 8 5 X	2.5	7.24	11.0	4153	43.0	1.49	-98	<i>)</i>)
1048	48.58	30	7.24	11.1	4190	32 Z	1.74	-104	11
	5								
	6								
	7								
	8								
	9								
	10								
Sample I	nformation								
4	S1 8 5 Z	3.5	7,25	10.3	4192	24.	1.78	-105	11
	S2 8.1-0	40	7.31	10.8	4010	22.8	1.48	-109)ı
·		· · · · · · ·						Stab	ilization Criteria

Note: All measurements are in feet, distance from top of riser.

Groundwater Field Form.xls GWFF - BM

Volume C	Volume Calculation						
Diam.	Vol. (g/ft)						
1"	0.041						
2"	0.163						
4"	0.653						

Parameter	Criteria
pН	± 0.1 unit
sc	± 3%
Turbidity	± 10%
DO	± 0.3 mg/L
ORP	± 10 mV

PREPARED BY:

Ca	BENCHMARK
	ENVIRONMENTAL ENGINEERING &

Groundwater Field Form.xls GWFF - BM

GROUNDWATER FIELD FORM

	EERING & CE, PLLC								
Project Nam	e: Pha	ise III	BPA	7			Date:	1/14	109 PWN /TAB
Location:				Project	No.:		Field Te	am:	PWW MAB
Well No	AA147/	V-10	Diameter (inc	phos): U	(Sample Time	a. 11:	35	
Product Dep		* 0	Water Colum	 7	().37	DTW when :		8.31	
DTW (static)		8.01	Casing Volu		5.74	Purpose:		Development	Sampling
Total Depth		8.33	Purge Volum			Purge Metho	od:	Low Flo	
Time	Water Level (fbTOR)	Acc. Volume (gallons)	pH (units)	Temp. (deg. C)	SC (uS)	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Appearance & Odor
11:20	o Initial	4.25	10.18	9.9	1869	10.8	1.58	-159	clear strait Su
11:24	18,31	1.0	10.09	10.2	1963	8.55	1.74	-163	11
11:28	28,31	2.0	10.05	10.5	1071	5,85	1,44	-164	1/
11.31	383	3.5	10 02	10.4	1887	4.98	1.28	-184	1)
	4								
	5								
 	6							<u> </u>	
	7				 				ļ
	8	ļ			ļ	ļ———-	-		ļ ————
	10				 				
		L	L	L	L	L	l		L
Sample I	nformation:		(0.00)	1011	1077	7/11		-1C1	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
11033	S1 8.31 S2 8.3/	4:5	10.00	10.7	1069	3,47	1.55	-191	
11.90	<u>" C. X</u>	1	10.00	10.0	LISSI	6.68	1,94	- 1-13	<u></u>
		· I col							 _
Well No		<u>N-58A</u>	Diameter (in	cnes):		Sample Tim		13.15	
Product Der			Water Colun		0.81	DTW when	sampled:	10.2	
DTW (static		10.12	Casing Volu		. /	Purpose:	<u>_</u>	Development	, , , , , , , , , , , , , , , , , , ,
Total Depth	1	Acc.	Purge Volun	ne (gai):	T	Purge Metho	oa:	SW FR	
Time	Water Level (fbTOR)	Volume (gallons)	pH (units)	Temp. (deg. C)	SC (uS)	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Appearance & Odor
12.59	o Initial	4.25	7.89	10.2	420.2	71000	2.00	-148	Turbed brown 519
1301	1 10 26	1.5	7.80	10.2	418.1	7/000	2.09	-130	''
13 04	2 /0.26	2.5	7.75	10.2	1417,2	204	1,47	-126	Slight Turbid
13:06	3 10.28	3,	7.73	10.0	1 414.5	101	1.65	- 12.1	clear '
1300	10.LE	4.5	7.72	10.0	412.7	50	1,94	178	
13:10	0.40	4.5	1, 11	101	1/17.5	9119	1.47	-120	'' ''
<u> </u>	7	 			 	<u> </u>			
<u> </u>	8				 -				
	9	1			 		 		
	10	1			<u> </u>				
Sample I	nformation	<u>.</u>	•		·•		·	<u> </u>	
13:12	51 10.28	5	7,71	10.3	412.4	31,1	1.61	-/28	11
13:20	S2 10.28	5.5	7,71	9.3	411.5	22.6	1.91	-120	"/
	·								oilization Criteria
REMARK	S:						ume Calculation	Parame	
							am. Vol. (g/ft) 1" 0.041	PH SC	± 0.1 unit ± 3%
							2" 0.041	Turbid	
			·				4" 0.653	DO	
Note: All me	easurements	s are in feet,	distance fron	n top of rise	<i>r.</i>		6" 1.469	ORF	± 10 mV
								11/1	A STATE OF THE STA
Groundwater Field	Form.xls			PREPAR	ED BY:	/	and hi	LAND	memory .
GWFF - BM									

Location:

GROUNDWATER FIELD FORM

Phase III BPA Project Name:

Project No.:

Date: Field Team:

Well No	MWN.	- 59A	Diameter (in	ches): 2	//	Sample Time	e:	14:3	30
Product Dep	oth (fbTOR):		Water Colum	nn (ft):	06	DTW when s	ampled:	10.45	
DTW (static) (fbTOR):	0.32	Casing Volu	me:	• BO	Purpose:		Development	Sampling
Total Depth	(fbTOR):	1138	Purge Volum	ne (gal):		Purge Metho	od:	LOW 1	Flow
Time	Water Level (fbTOR)	Acc. Volume (gallons)	pH (units)	Temp. (deg. C)	SC (uS)	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Appearance & Odor
14217	o Initial	4.25	2.59	8,4	2/89	71000	1.79	-91	promin se à
14:15	10:46	.75	7.35	9.0	721.7	607	2 11	- 84	11
1419	2 1045	1.5	7.40	9.0	723.0	175	2.02	-124	Clear/ No de
1423	3 10.45	2.5	7.45	9.1	712.0	81.6	1.96	-132	11
14.25	4 15.45	3gal	7.50	9.3	708.1	480	2.01	-138	_ //
	5								
	6								
	7								
	.8								
	9								
	10								
Sample I	nformation:								
14:27	s1 10,45	3,5	7.55	9.1	704.3	24.4	1.78	-142	11
14.35	s2 10.45	4.0	7,60	8.8	700.8	/1. [1.96	-142	И

Well No	. MWN-	WA.	Diameter (in	ches): Z	4	Sample Tim	e: /3	55		
Product Dep	oth (fbTOR):	_	Water Colun	nn (ft):	29	DTW when	sampled:	980		
DTW (static)) (fbTOR):	9.67	Casing Volu		89	Purpose:		Development	Sampling)
Total Depth	(fbTOR):	20.96	Purge Volun	ne (gal):		Purge Metho	od:	Low	Flow	İ
Time	Water Level (fbTOR)	Acc. Volume (gallons)	pH (units)	Temp. (deg. C)	SC (uS)	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Appearance & Odor	
13:37	o Initial	4.50	6.56	9.4	1158	71000	614	- 58	Turbed brown 5	Afor cobs
13:39	19.81		6.78	10:1	714.5	484	1.69	-63	11	11
1346	2 4.70	7	7.25	9.9	587.0	81.8	1,90	- 92	clear / 11	· ·
1342	39.80	~2.5	7.71	9.7	584.7	37.9	1,34	-136	" 1 "	
13:45	4980	3.0	A.02	9.6	593.2	20.1	1.67	-170	11/11	
13.48	5 9.30	3.5	8.18	<u>9.8</u>	606.5	11.8	1.71	-192	11/11	
13:49	6 9.80	4 gal	8.27	৭.প্র	609.3	8,25	1.28		11) 1	
13:51	7 9.80	4.25	8.27	9.5	611.8	7.61	1.72	-190	0/4	
	8									
	9									
	10									
Sample I	nformation:				_		_			
/3:53	s1 9.80	4.5	8.28	9.6	614.8	5,51	1.33	-197	11/11	
14:00	S2 9,80	5	8.29	9,6	619.0	4.54	1,63	-189	"] //	

REMARKS:

Diam. Vol. (g/ft) 0.041 2" 0.163 4" 0.653 6" 1.469

Volume Calculation

Parameter Criteria рΗ ± 0.1 unit SC ± 3% Turbidity ± 10% DO ± 0.3 mg/L ORP ± 10 mV

Stabilization Criteria

Note: All measurements are in feet, distance from top of riser.

PREPARED BY:

Groundwater Field Form.xls GWFF - BM

Project Name: Phus III VI3A	Date: 1/16/0 5
Location: Jeu Project No.:	Field Team: TAB, BC

Well No	. MV5-	344	Diameter (in	ches): 2^{\prime}		Sample Tim	e: 9	122		
Product Dep			Water Colum	nn (ft): 9,	79	DTW when	sampled:	11.85		
DTW (static		1.49	Casing Volu	me:	(c)	Purpose:		Development	Sampling Sampling	
Total Depth		1.28	Purge Volun	ne (gal): 4	1.78	Purge Metho	od: /pw	Flow		
Time	Water Level (fbTOR)	Acc. Volume (gallons)	pH (units)	Temp. (deg. C)	SC (uS)	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Appearance & Odor	á
906	o Initial	0.25	6.2%	10.0	1078	71000	1.34	-60	Bion rec/ May	1
907	111.65	0.75	6.41	10.0	938.4	410	1.34	-71		
910	2 11.65	1.25	Gal	9.6	931.5	221	1.62	-81	11	
912	3 1/6	2.0	1.82	9.6	9223	80.1	1.26	-100	SL TINGS	
914	4 11.65	2.5	(50	9.10	928.3	45.2	1.16	-107	~	
716	5 11.64	3.0	6 98	9.2	932.4	30,1	1.05	-113	11	
	6							<u> </u>		
	7									
	8									
	9									
	10									
Sample	Information									
922	S1 11.85	2-5	7.07	7.9	9336	25.8	1,31	-119	11	
426	S2 1.85		716	8.9	9024	19.5	1.09	-118	"	

					7		,			1
Well No	. MW5-	33/4	Diameter (in	ches): Z		Sample Tim	e:			
Product Dep	oth (fbTOR):		Water Colur	nn (ft): 	1.44	DTW when	sampled:		Sampling	
DTW (static) (fbTOR):	0.79	Casing Volu	me: <u>/</u>	, 53	Purpose:				
Total Depth	(fbTOR): 2	0.18	Purge Volur	ne (gal):	1.61	Purge Meth	od: Low	Flow	·	
Time	Water Level (fbTOR)	Acc. Volume (gallons)	pH (units)	Temp. (deg. C)	SC (uS)	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Appearance & Odor	
1054	o Initial	0	7,58	5.3	1192	347	9.01	-32	Bram I ght thered	mestyola
11/21	1 1199	0.5	7.27	4.1	1107	357	7.59	-9		7.10
1104	212.15	1,0	908	11.9	1104	270	7.80	534	11 4	
1107	3 13.04	1.25	7.13	5.1	11.04	172	7.27	°-5	11 1]
1109	4 12,41	1.50	7.10	4.6	1/05	140	6.64	-31	1735 turbia	łi da da da da da da da da da da da da da
1912	5 /3.65	1.75	7.06	3.8	1090	128	6.60	-39	11 11]
1117	6 /3.97	2.0	7.83	2,3	1082	107	6.09	-35	1 4]
1116	7 14.34	2.25	6.91	5,8	1066	68.7	4.30	-35	11 4	
1119	8 14.69	3.0	6.85	3.7	1033	45.2	3.28	-42	h t ₁	
1123	9 15.36	3.25	6.74	5.1	1035	34.6	2.69	-48	"("	
	10									
Sample	Information	:								
1125	s115.87	3.50	6.73	1,9	1031	43.2	7.07	-44	11 4	
1132	S2 18.76	3.75	6.28	5.9	947.1	38.2	3.27	0]
		<u> </u>						Stal	bilization Criteria	-

 REMARKS:
 Volume Calculation

 Diam.
 Vol. (g/ft)

 1"
 0.041

 2"
 0.163

 4"
 0.653

Parameter	Criteria
pН	± 0.1 unit
SC	± 3%
Turbidity	± 10%
DO	± 0.3 mg/L
ORP	± 10 mV

1.469

Note: All measurements are in feet, distance from top of riser.

Thise It BPA Project Name:

Date: 1-16-08

Location:

Project No.: 007/-00

Field Team TAS, B6

Well No	. 35A	,	Diameter (in	cnes):	a	Sample Tim	e:]
Product Dep	th (fbTOR):		Water Colun	nn (ft): 1	1.01	DTW when	sampled:]]
DTW (static		97	Casing Volu	me: 1.	79	Purpose:		Development	Sam	pling]]
Total Depth	(fbTOR): 2	0.48	Purge Volun	ne (gal): 5	. 3}	Purge Meth	od: Low 1	You]
Time	Water Level (fbTOR)	Acc. Volume (gallons)	pH (units)	Temp. (deg. C)	SC (uS)	Turbidity (NTU)	DO (mg/L)	ORP (mV)		arance & Odor	
9.91	o Initial	0	9.49	6.9	808.4	7,000	0.36	-280	Bown	Turbill 1	odo
9.55	1 10.02	1	9.49	7.5	485,6	71000	0.85	.223	"	и	Resy
958	2 10.02	1,5	9.82	6.8	4558	>1000	1.63	-182	1055 7	hobel]
1000	3 10.02	1.75	10.25	6.9	445.3	848	0.88	-175	11	4]
1002	4 10.00	2.0	10.62	7.4	458.7	528	1.72	-182	11	u	
1004	5 10.04	2,25	10.97	7.5	4823	249	1.26	-194	u	17]
1007	6 10.04	2.75	11.22	7.9	540.5	85.6	1.26	-184	1]
1012	7 10.04	3.25	11.27	7.8	569.2	52.0	1.86	-172	18857	tubed	
1015	8 10.04	3.15	11.32	8.0	551.3	46.5	0.75	-/71	1	u	1
	9]
	10							<u> </u>			.}
Sample I	nformation:										
1017	S1 /0.04	4.25	11.30	3.7	544.6	37.5	1,50	-169	11	1	
10.92	S2 It ity	(5.30	11.14	7.7	4824	22.7	439	-161	1.	"	

Well No	-cwm.	POA	Diameter (in	ches):	11	Sample Time	e: 1/15/	109			
Product Dep	oth (fbTOR):	_	Water Colur	nn (ft):	52	DTW when sampled:					
DTW (static) (fbTOR):	8,85	Casing Volu	me: /	87	Purpose:		Developmen	t Samp	oling	
Total Depth	(fbTOR): 20		Purge Volun	ne (gal):		Purge Metho	od: 130 i	L			
Time	Water Level (fbTOR)	Acc. Volume (gallons)	pH (units)	Temp. (deg. C)	SC (uS)	Turbidity (NTU)	DO (mg/L)	ORP (mV)	1	arance & Odor	
1343	o Initial	0	7.39	6.1	841.1	1100	1.92	-110	5light	Bren to	
1346	19.11	0.5	7.46	1.2	841.3	126	2.25	-16	11	٠,	
1350	2913	1.25	7.60	7.9	833.0	66.9	2.27	-21	11	41	
13 53	3 9 13	1.75	7.69	7.5	833.2	23.5	1,04	-25	1	u	
	4						7			<u> </u>	
	5								1		
	6										
	7										
	8										
	9								1		
	10										
Sample I	nformation										
	s1 9.14	2,50	7.69	7.60	834.7	130	209	-36	11	U	
ALC:	52 9.15	2.75	7,74	7.5	836.7	6.84	2.47	-61	ıl	11	
								Sta	bilization Crit	eria	

REMARKS: 35A -D MS, MSD, + Blud

Note: All measurements are in feet, distance from top of riser.

2" 4" 6"

Diam.

Volume Calculation

Vol. (g/ft)

0.041

0.163

0.653

1.469

Parameter Criteria ± 0.1 unit pН ± 3% SC ± 10% Turbidity DO ± 0.3 mg/L ORP ± 10 mV

Project No.:)N: [// /	3 PA		Date:	16/09				
Client: Teumel	<u> </u>			Instrument Source: BM Rental					
METER TYPE	UNITS	TIME	MAKE/MODEL	SERIAL NUMBER	CAL. BY	STANDARD	POST CAL. READING	SETTINGS	
pH meter	units	0745	Myron L Company Ultra Meter 6P	606987	THB	4.00 7.00 10.01	5.98 7.02 9.95	Y. 3 700 10.0	
Turbidity meter	NTU	750	Hach 2100P Turbidimeter	970600014560	TAB	< 0.4 20 100 800	0.17 19.9 99.9 759	0.1 20 100	
Sp. Cond. meter	uS mS	753	Myron L Company Ultra Meter 6P	606987	TAB	<u>(√/)</u> mS @ 25 °C	1413	14/3	
☐ PID	ppm		MinRAE 2000			open air zero		MIBK response factor = 1.0	
Dissolved Oxygen	ppm		YSI Model 55	05D2 077		ppin iso. Gas			
Particulate meter	mg/m ³					zero air		- Control of the Cont	
Oxygen / O	% ppm	744	Hach		TA13	open air open air	100% Su	Fere Coe	
☐ Carbon monoxide	ppm					open air			
LEL	%					open air			
Radiation Meter	uR/H					background area			
PREPARED BY:	12			DATE: //	15/05				

PROJECT INFORMATION Project Name: phose Project No.: Client: Tellow		BP.	1		Date: // c//o j Instrument Source: BM Rental				
METER TYPE	UNITS	TIME	MAKE/MODEL	SERIAL NUMBER	CAL. BY	STANDARD	POST CAL. READING	SETTINGS	
pH meter	units	900	Myron L Company Ultra Meter 6P	606987	TAB	4.00 7.00 10.01	4.0 9 6-5 9 9.93	4.0	
Turbidity meter	NTU	915	Hach 2100P Turbidimeter	06120C020523) 07110C026405	TAB	< 0.4 20 100 800	.1 23 99 198	100	
Sp. Cond. meter	uS mS	900	Myron L Company Ultra Meter 6P	606987 6212375	TAB	<u>(7 / 3</u> mS @ 25 °C	1413	1413	
□ PID	ppm		MinRAE 2000			open air zero ppm Iso. Gas		MIBK response factor = 1.0	
☐ Dissolved Oxygen	ppm		HACH Model HQ30d			100% Satuartion			
Particulate meter	mg/m ³					zero air			
Oxygen	%	<u> </u>				open air			
☐ Hydrogen sulfide	ppm				-	open air			
☐ Carbon monoxide	ppm					open air			
_ LEL	%					open air	h		
Radiation Meter	uR/H					background area			
ADDITIONAL REMARKS	S:								
PREPARED BY:	13			DATE: 1/17	109				

Project No.:	N: TILiuj	<i>\$</i> 8	BP4	/	Date: //₺//と Instrument Source: BM Rental				
Client: Tewah					l	1	POST CAL.		
METER TYPE	UNITS	TIME	MAKE/MODEL	SERIAL NUMBER	CAL. BY	STANDARD	READING	SETTINGS	
pH meter	units	1000	Myron L Company Ultra Meter 6P	606987	TAB	7.00 10.01	4.01 7.02 9.98	7,0 2,0	
Turbidity meter	NTU	1605	Hach 2100P Turbidimeter	06120C020523	TAB	< 0.4 20 100 800			
Sp. Cond. meter	uS mS	1000	Myron L Company Ultra Meter 6P	606987 6212375 ×	TAG3	<u>1413</u> mS @ 25 °C	1413	14/3	
☐ PID	ppm		MinRAE 2000			open air zero ppm Iso. Gas		MIBK response factor = 1.0	
		<u> </u>	HACH Model HQ30d			100% Satuartion			
Dissolved Oxygen	ppm	<u> </u>	HACH Model NG300			zero air			
Particulate meter	mg/m ³					open air			
Oxygen					<u> </u>	open air			
Hydrogen sulfide	ppm	<u> </u>				open air			
Carbon monoxide	ppm					open air			
LEL .	%					background area			
Radiation Meter	uR/H								
ADDITIONAL REMARKS	s:			DATE: 1//	5/10				

TURNKEY		
Environmental Regionation, LLC		
	_	

RESTORATION.												
Proiect Nan	ne: Phusz	THA	BPA				Date:	1/14/10				
	Ternaz			Project I	No.:		Field Te	1/14/10 am: 743				
	11	/A.~			· · · · · · · · · · · · · · · · · · ·							
Well No	5. MWN-	(120)					Sample Date / Time: /// y / 6 //					
	pth (fbTOR):	/	Water Colum		7.74		n sampled:		Purge & Sample			
DTW (statio	· · · · · · · · · · · · · · · · · · ·	16	One Well Volume (gal): 8,43				Development	Sample				
Total Depth	(fbTOR): 💪 🕹	.50	Total Volume	e Purged (gal):	97.0	Purge Met	thod:	mr / sub	meill pump			
Time	Water Level (fbTOR)	Acc. Volume (gallons)	pH (units)	Temp. (deg. C)	SC (uS)	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Appearance & Odor			
1021	o Initial	821-	8.15	7.6	582.7	7/000	-	208	Birm Se 2 po c			
1034	1478	8,50	6,96	9.9	13/3	71650	-	-2	11 522 Sul			
1055	2 D (\ \ \ \ \	17.0	6.43	9.1	1749	7/000	, –	70	" SL sulf			
14-24	3	17,0			1111							
1345	4 17 45	20.0	6.85	9.9	1675	334	_	~ ?	State of sec			
14 00	5 3(.59	40.0	7.05	11.5	1540	58.0	-	-63	11			
1412	6 30.30	60.0	7.05	11.7	1530	27.7	_	-78	17			
1427	730-71	80,0	6.70	12.17	1530	44.1		-71	4			
1767	8	70,0		1 7	1 1/ /	· · · · · · · · · · · · · · · · · · ·						
	9											
	10											
		NEid	Bottom	- 15	47	1151	> = Flow P.	-19	0 0.1/			
Sample	Information:	1/10	1001 1000	<u> </u>	, / /- , - ,	111511	> = F1000 PC	- 1,1				
	S1											
	S2	L	<u></u>	<u> </u>	<u> </u>							
		-100						.,,				
Well N	O. MWN	-61A	Diameter (in	nches): 2	1/	Sample [Date / Time: //	7/09				
	epth (fbTOR):		Water Colu	mn (ft):	1.28	DTW who	TW when sampled:					
DTW (stati	ic) (fbTOR): 9	94	One Well V	olume (gal):	151	Purpose:	Purpose: Development Sample Purge & Sample					
Total Dept	h (fbTOR):	19.22	Total Volum	ne Purged (gal):	15,0	Purge Me	ethod: Buile		 			
Time	Water Level (fbTOR)	Acc. Volume (gallons)	pH (units)	Temp. (deg. C)	SC (uS)	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Appearance & Odor			
11 (80)	 	(gallollo)	720	8,0	8579	7/000	- 	-47	Bluck m. Hh			
1113	o Initial	1 "	787	10.0	1.976	71000		-/03	7//			
<u> </u>		(1)	+ 	17.	40	2 7/000	,	-111	il			
1115	24.95	13.0	7.96	10.2	291613,	7/600	} 	-106	11 SL moth 6			
1179	37.55	7.5	7.91	10 7	036-3	71000	-	-112	11			
12-/	49.55	1 62 - C	7.7/	10-2	150.9	2/00	<i>a</i> -	-117	4			
1128	3 7.55		101	1012	(12)	71000		 	4			
1130	67.55	7.0	18.17	10 2	65205	 		-119	11			
1134	7.55	10.5	3,07	10.5	1 FS -7	>1000 >1000		-121	1			
IJX	8 7, 3 5	17.0	7.7 1	10.	757	+						
1041	9,55	13.5	7.9/-		 	21000		-1/0	17			
1045	10.7,55	\$ 1510	8.03	10.5	658.9	11000		-111				
Sample	Information	<u>):</u>			1			T	T***			
	S1											
	S2					<u> </u>		<u></u>				
									bilization Criteria			
REMAR	KS:						Volume Calculation	¬ ———				
							Diam. Vol. (g/fl					
. ———							1" 0.041 2" 0.163	SC				
							4" 0.653	DC				
Noto: All -	magguramen	to are in fact	dietanae fra	m ton of rice			6" 1.469	OR				
NOIE: All I	measurement	is are in teet,	uistance tro	in top of rise	71.	L	1.403					

PREPARED BY:

TURNKEY	
O Environmental. Restoration, ELC	

	LC					GROUNDWATER FIELD FORM					
Droicat Mai	0	Th A	(RD 4			Date: 1/14/16 Field Team: 743/RLD					
	ie: Phuse		1 DY A	Project	No :	Field Team 747 (#1 D					
Location:	Towns	<u> </u>		Project	INO	ried team. 745/NCV					
Well No	. MWN -	1913	Diameter (inc	thes): 2	71	Sample Date / Time: 1/1-1/Fb					
Product Dep		119	Water Colum		72	DTW when sa		''		•	
DTW (static)	_ `	986	One Well Vo	lume (gal):	3.68	Purpose:	Development	, Sample	Purge & Sample		
Total Depth		77.77		Purged (gal):		Purge Method		lu			
	Water	Acc.			60		DO	ORP	Appearance 8		
Time	Level (fbTOR)	Volume (gallons)	pH (units)	Temp. (deg. C)	SC (uS)	Turbidity (NTU)	(mg/L)	(mV)	Appearance & Odor		
1338	o Initial		6.06	120	1034	949			Work Color		
	1/30		6.16	11.7	1027	991		+21			
1553	2 2 2 45	_6	611	10.8	1031	449		+ y	BEN TOREST		
1403	3 DIKSY	9	6.24	102	1089	100		/_	juk BID		
	4		<u> </u>		•					i	
	5										
	6										
	7						_				
	8										
	9									1	
	10				,						
Sample	nformation:		\ <u></u> _								
_ Jampie i	S1		I — —								
	S2					<u> </u>					
	102				<u> </u>	<u> </u>	لـــــــــــــــــــــــــــــــــــــ	=====		1	
										1	
Well No	o. MNN	-19 A	Diameter (in	iches):	2	Sample Date	/ Time: //	1/4/09			
	oth (fbTOR):	-19.A	 	iches):	1.97			1/4/09			
Product De	pth (fbTOR):		Diameter (in Water Colur One Well Vo	nn (ft):	u 197 V 1.59	DTW when s		·	Purge & Sample		
Product Dep	pth (fbTOR):) (fbTOR):	2.23	Water Colur One Well Vo	nn (ft):	1.97 \$1.59	DTW when s	ampled: Development	Sample	Purge & Sample		
Product De	pth (fbTOR): (fbTOR): (fbTOR):	2.23	Water Colur One Well Vo Total Volum	onn (ft): colume (gal): de Purged (gal):	1.97	DTW when s Purpose: Purge Metho	ampled: Development d:	Sample	Buil	(
Product Dep DTW (static	pth (fbTOR):) (fbTOR):	1800	Water Colur One Well Vo Total Volum	mn (ft): blume (gal): e Purged (gal): Temp.	.97 % 1.59 sc	DTW when s Purpose: Purge Metho Turbidity	ampled: Development d: DO	Sample	Appearance &	1	
Product De DTW (static Total Depth	pth (fbTOR): (fbTOR): (fbTOR): Water	8 2 3 18 00 Acc.	Water Colur One Well Vo Total Volum	onn (ft): colume (gal): de Purged (gal):	1.97	DTW when s Purpose: Purge Metho	ampled: Development d:	Sample ORP (mV)	Appearance & Odor	(st st	
Product De DTW (static Total Depth	pth (fbTOR): (fbTOR): (fbTOR): Water Level	8.23 18.00 Acc. Volume	Water Colur One Well Vo Total Volum	nn (ft): oblume (gal): e Purged (gal): Temp. (deg. C)	.97 % 1.59 sc	DTW when s Purpose: Purge Metho Turbidity	ampled: Development d: DO	ORP (mV)	Appearance &	ر 31 د ا	
Product Dep DTW (static Total Depth	oth (fbTOR): (fbTOR): (fbTOR): Water Level (fbTOR) o Initial	8.23 18.00 Acc. Volume	Water Colur One Well Vo Total Volum pH (units)	nn (ft): blume (gal): e Purged (gal): Temp. (deg. C)	\$1.59 sc (us)	DTW when s Purpose: Purge Metho Turbidity (NTU)	ampled: Development d: DO	Sample ORP (mV)	Appearance & Odor	ر اعلام	
Product Dep DTW (static Total Depth	oth (fbTOR): (fbTOR): (fbTOR): Water Level (fbTOR) o Initial	8.23 18.00 Acc. Volume	Water Colum One Well Vo Total Volum pH (units) 6.65	nn (ft): nn (ft): polume (gal): e Purged (gal): Temp. (deg. C) // // // // // // // // //	\$1.57 sc (us)	DTW when s Purpose: Purpose: Purge Metho Turbidity (NTU)	ampled: Development d: DO	ORP (mV)	Appearance & Odor	ر 31 ه	
Product Dep DTW (static Total Depth	oth (fbTOR): (fbTOR): (fbTOR): Water Level (fbTOR) o Initial	8.23 18.00 Acc. Volume	Water Colum One Well Vol Total Volum pH (units) 6.65 6.31 6.96	nn (ft): olume (gal): e Purged (gal): Temp. (deg. C)	SC (us) 1847	DTW when s Purpose: Purge Metho Turbidity (NTU) 7/6°.' 7.553 7.61	ampled: Development d: DO	ORP (mV)	Appearance & Odor Muth hulf oder	(Slac	
Product Dep DTW (static Total Depth	oth (fbTOR): (fbTOR): (fbTOR): Water Level (fbTOR) Initial 1 8 3 / 2 8 9 / 1 3 5 7 1	Acc. Volume (gallons)	Water Colum One Well Vo Total Volum pH (units) 6.65	mn (ft): colume (gal): de Purged (gal): Temp. (deg. C) // // // // // // // // //	SC (us) 1847	DTW when s Purpose: Purge Metho Turbidity (NTU) 7/6°.' 7 5 3	ampled: Development d: DO	ORP (mV) -16 -31	Appearance & Odor Mush hul/ Odap	ز 31 هن	
Product Dep DTW (static Total Depth	oth (fbTOR): (fbTOR): (fbTOR): Water Level (fbTOR) Initial 1 8 3 /	8.23 18.00 Acc. Volume	Water Colum One Well Vo Total Volum pH (units) 6.65 6.31 6.91 6.71	reches): Inn (ft): Colume (gal): Re Purged (gal): Temp. (deg. C) I I S I S I S I S I S I S I S	SC (us) 1847	DTW when s Purpose: \(\sum_{\text{Purpose}} \) Purge Metho Turbidity (NTU) 7/6°.' 7.5°3 7.6°1 6.6°2 7/00°0	ampled: Development d: DO	ORP (mV) -16 -31 -50 -35	Appearance & Odor Mush hull odor 11	(31 s l	
Product Dep DTW (static Total Depth	pth (fbTOR): (fbTOR): (fbTOR): Water Level (fbTOR) Initial I 8 3/ 2 8 4/ 3 8 4 7 4 5 4 2	Acc. Volume (gallons)	Water Colum One Well Vol Total Volum pH (units) 6.65 6.31 6.96	reches): Imn (ff): Dolume (gal): e Purged (gal): Temp. (deg. C) /// //	SC (US) 1847 1148 1154 1154 1157	DTW when s Purpose: Purpose: Purpose: Purpose: Purpose: Purpose Metho Turbidity (NTU) 7/6*. 7 5 3 7 6 9 (U 2 7/000	ampled: Development d: DO	ORP (mV) -16 -31 -50 -35	Appearance & Odor Muth hull oder 11 11 11	56 56 Blac	
Product Dep DTW (static Total Depth	oth (fbTOR): (fbTOR): (fbTOR): Water Level (fbTOR) Initial 1 8 3 / 2 8 9 / 1 3 5 7 1	Acc. Volume (gallons)	Water Colum One Well Vo Total Volum pH (units) 6.65 6.31 6.91 6.71	reches): Inn (ft): column (gal): e Purged (gal): Temp. (deg. C) /// /// /// /// /// /// ///	SC (US) 1847 1148 1154 1154 1157	DTW when s Purpose: Purpose: Purge Metho Turbidity (NTU) 7/66.7 7.53 7.61 6.62 7/000 7/000 7/000	ampled: Development d: DO (mg/L)	ORP (mV) -16 -31 -50 -35 -65	Appearance & Odor Muth hulf oder If If If BRuine juil	0	
Product Department of the product Department of the product Depth Time #3 4/	oth (fbTOR): (fbTOR): (fbTOR): Water Level (fbTOR) o Initial 183/ 28.4/ 38.4/ 45.42 55.4/ 67.4/	Acc. Volume (gallons)	Water Colum One Well Vo Total Volum pH (units) 6.65 6.31 6.91 6.71	reches): Inn (ff): Colume (gal): Re Purged (gal): Temp. (deg. C) I I S I C G I I S I C G I I S I C G I	SC (US) 1847 1148 1154 1157 1158 1162	DTW when s Purpose: \(\) Purpose: \(\) Purge Metho Turbidity (NTU) 7/6%? 7.57 7.69 7.69 7/600 7/600 7/600	ampled: Development d: DO (mg/L)	ORP (mV) -16 -31 -50 -35 -66 -13	Appearance & Odor Muth hull oder 11 11 11	0	
Product Dep DTW (static Total Depth Time #3 4// /3 4// /3 5 2 /3 5 7 /4 6 4 /4 6 /4 /6 /4 /6	pth (fbTOR): (fbTOR): (fbTOR): (fbTOR): Water Level (fbTOR) o Initial 183/ 28.4/ 38.47 45.42 55.4/ 67.46	Acc. Volume (gallons)	Water Colum One Well Vo Total Volum pH (units) 6.65 6.31 6.91 6.71	reches): Inn (ft): column (gal): e Purged (gal): Temp. (deg. C) /// /// /// /// /// /// ///	SC (US) 1847 1847 1154 1157 1158 1162	DTW when s Purpose: \(\) Purpose: \(\) Purge Metho Turbidity (NTU) 7/6% 7/53 7/6/1 6/6/2 7/000 7/000 7/000 7/000 7/000	ampled: Development d: DO (mg/L)	ORP (mV) -16 -31 -50 -35 -65 -65 -73	Appearance & Odor Mush half odor It If If If If If If If If If	0	
Product Dep DTW (station Total Depth Time #3 4/ / 3 4 4 / 3 5 2 / 3 5 7 / 4 6 4 / 4 7 6 / 4 7 6 / 4 7 6 / 4 7 6 / 4 7 7 / 4 7 6 / 4 7 7 / 4 7 6 / 4 7 7 / 4 7	pth (fbTOR): (fbTOR): (fbTOR): (fbTOR): Water Level (fbTOR) o Initial 183/ 28.4/ 38.47 45.42 55.4/ 67.46 87.46 9 J.46	Acc. Volume (gallons)	Water Colum One Well Vo Total Volum pH (units) 6.65 6.31 6.91 6.71 6.72 6.79 6.79 6.79	riches): Inn (ft): Inn (ft): Colume (gal): Re Purged (gal): Temp. (deg. C) II. Y IV. Y IV. C IV. C IV. C IV. T IV. C IV. T	SC (US) 1847 1847 1154 1157 1158 1162 1152	DTW when s Purpose: Purpo	ampled: Development d: DO (mg/L)	ORP (mV) -16 -31 -50 -35 -65 -65 -73 -74 -74	Appearance & Odor Muth half odap If If If If If If If If If I	0	
Product Dep DTW (static Total Depth Time #3 44 / 3 44 / 3 5 2 / 3 5 7 / 4 6 4 / 4 / 6 / 4 / 7 / 4 / 6 / 4 / 6 / 4 / 7 / 4 / 6 / 4 / 7 / 4 / 6 / 4 / 7	pth (fbTOR): (fbTOR): (fbTOR): Water Level (fbTOR) 0 Initial 1 8 3/ 2 8 4/ 3 8 4 7 4 5 4 2 5 8 4/ 6 7 4 46 7 4 46 9 3 46 10 4 5 46	Acc. Volume (gallons)	Water Colum One Well Vo Total Volum pH (units) 6.65 6.31 6.91 6.71	reches): Inn (ff): Colume (gal): Re Purged (gal): Temp. (deg. C) I I S I C G I I S I C G I I S I C G I	SC (US) 1847 1847 1154 1157 1158 1162	DTW when s Purpose: \(\) Purpose: \(\) Purge Metho Turbidity (NTU) 7/6% 7/53 7/6/1 6/6/2 7/000 7/000 7/000 7/000 7/000	ampled: Development d: DO (mg/L)	ORP (mV) -16 -31 -50 -35 -65 -65 -73	Appearance & Odor Mush half odor It If If If If If If If If If	0	
Product Dep DTW (static Total Depth Time #3 41 / 3 4 4 / 3 5 7 / 4 6 4 / 4 / 6 / 5 / 6 / 5 / 7 / 7 / 7 / 4 / 6 / 5 / 6 / 5 / 7 / 7 / 7 / 4 / 6 / 5 / 7 / 7 / 7 / 4 / 7 / 5 / 7 / 7 / 7 / 4 / 7 / 4 / 7 / 5 / 7 / 5 / 7 / 7 /	pth (fbTOR): (fbTOR): (fbTOR): (fbTOR): Water Level (fbTOR) o Initial 183/ 28.4/ 38.47 45.42 55.4/ 67.46 87.46 9 J.46	Acc. Volume (gallons)	Water Colum One Well Vo Total Volum pH (units) 6.65 6.31 6.91 6.71 6.72 6.79 6.79 6.79	riches): Inn (ft): Inn (ft): Colume (gal): Re Purged (gal): Temp. (deg. C) II. Y IV. Y IV. C IV. C IV. C IV. T IV. C IV. T	SC (US) 1847 1847 1154 1157 1158 1162 1152	DTW when s Purpose: Purpo	ampled: Development d: DO (mg/L)	ORP (mV) -16 -31 -50 -35 -65 -65 -73 -74 -74	Appearance & Odor Muth half odap If If If If If If If If If I	0	
Product Dep DTW (static Total Depth Time #3 41 / 3 4 4 / 3 5 7 / 4 6 4 / 4 / 6 / 5 / 6 / 5 / 7 / 7 / 7 / 4 / 6 / 5 / 6 / 5 / 7 / 7 / 7 / 4 / 6 / 5 / 7 / 7 / 7 / 4 / 7 / 5 / 7 / 7 / 7 / 4 / 7 / 4 / 7 / 5 / 7 / 5 / 7 / 7 /	pth (fbTOR): (fbTOR): (fbTOR): Water Level (fbTOR) 0 Initial 1 8 3/ 2 8 4/ 3 8 4 7 4 5 4 2 5 8 4/ 6 7 4 46 7 4 46 9 3 46 10 4 5 46	Acc. Volume (gallons)	Water Colum One Well Vo Total Volum pH (units) 6.65 6.31 6.91 6.71 6.72 6.79 6.79 6.79	riches): Inn (ft): Inn (ft): Colume (gal): Re Purged (gal): Temp. (deg. C) II. Y IV. Y IV. C IV. C IV. C IV. T IV. C IV. T	SC (US) 1847 1847 1154 1157 1158 1162 1152	DTW when s Purpose: Purpo	ampled: Development d: DO (mg/L)	ORP (mV) -16 -31 -50 -35 -65 -65 -73 -74 -74	Appearance & Odor Muth half odap If If If If If If If If If I	0	
Product Dep DTW (static Total Depth Time #3 41 / 3 5 2 / 3 5 7 1 0 4 1 0 7 1 1 0 7	pth (fbTOR): (fbTOR): (fbTOR): Water Level (fbTOR) o Initial 1 8 3/ 2 8 4/ 3 8 4 7 4 5 4 2 5 8 4/ 6 8 4/6 9 8 4/6 10 9 4/6 Information	Acc. Volume (gallons)	Water Colum One Well Vo Total Volum pH (units) 6.65 6.31 6.91 6.71 6.72 6.79 6.79 6.79	riches): Inn (ft): Inn (ft): Colume (gal): Re Purged (gal): Temp. (deg. C) II. Y IV. Y IV. C IV. C IV. C IV. T IV. C IV. T	SC (US) 1847 1847 1154 1157 1158 1162 1152	DTW when s Purpose: Purpo	ampled: Development d: DO (mg/L)	ORP (mV) -16 -31 -50 -35 -65 -65 -73 -74 -74	Appearance & Odor Muth half odap If If If If If If If If If I	0	
Product Dep DTW (static Total Depth Time #3 41 / 3 5 2 / 3 5 7 1 0 4 1 0 7 1 1 0 7	pth (fbTOR): (fbTOR): (fbTOR): Water Level (fbTOR) o Initial 1 8 3/ 2 8 4/ 3 8 4 7 4 5 4 2 5 5 4/ 6 7 7 6 7 7 6 9 7 7 6 Information S1	Acc. Volume (gallons)	Water Colum One Well Vo Total Volum pH (units) 6.65 6.31 6.91 6.71 6.72 6.79 6.79 6.79	riches): Inn (ft): Inn (ft): Colume (gal): Re Purged (gal): Temp. (deg. C) II. Y IV. Y IV. C IV. C IV. C IV. T IV. C IV. T	SC (US) 1847 1847 1154 1157 1158 1162 1152	DTW when s Purpose: Purpo	ampled: Development d: DO (mg/L)	ORP (mV) -16 -31 -50 -35 -65 -13 -59 -61	Appearance & Odor Muth half odap If If If If If If If If If I	0	
Product Depth Time #3 4/ / 3 4 4 / 3 5 2 / 3 5 7 / 4 6 / 4 6 / 4 6 / 4 6 / 4 6 / 4 6 / 4 6 / 4 6 / 4 6 / 4 6 / 4 6 / 4 6 / 4 6 / 4 6 / 4 6 / 4 6 / 4 6 / 4 6 / 4 6 / 4 7 / 4 7 / 4 7 / 4 8 Sample	pth (fbTOR): (fbTOR): (fbTOR): (fbTOR): Water Level (fbTOR) Initial R 3/ S 4/ S 4/ S 4/ S 4/ S 4/ S 4/ S 4/ S 4	3 2 3 18 017 Acc. Volume (gallons)	Water Colum One Well Vol Total Volum pH (units) 6.65 6.31 6.94 6.71 6.97 6.97 6.97 6.97 6.97 6.97	riches): Inn (ft): Inn (ft): Purged (gal): Re Purged (gal): Temp. (deg. C) II. Y IV. Y IV. C IV. I IV. C IV. I IV. C IV. I IV. C IV. I IV. C IV. I IV. C IV. I IV. C IV. I IV. C	SC (US) 1847 1847 1113 1157 1158 1162 1152 1151	DTW when s Purpose: \(\subseteq Purpose: \subseteq \text{Purpose:	ampled: Development d: DO (mg/L)	□ Sample ORP (mV) -16 -31 -50 -35 -60 -13 -59 -58 -61 State Parame	Appearance & Odor Mush bull oder I I I I I I I I I I I I I I I I I I I	Q.	
Product Depth Time #3 4/ / 3 4 4 / 3 5 2 / 3 5 7 / 4 6 / 4 6 / 4 6 / 4 6 / 4 6 / 4 6 / 4 6 / 4 6 / 4 6 / 4 6 / 4 6 / 4 6 / 4 6 / 4 6 / 4 6 / 4 6 / 4 6 / 4 6 / 4 6 / 4 7 / 4 7 / 4 7 / 4 8 Sample	pth (fbTOR): (fbTOR): (fbTOR): Water Level (fbTOR) o Initial 1 8 3/ 2 8 4/ 3 8 4 7 4 5 4 2 5 5 4/ 6 7 7 6 7 7 6 9 7 7 6 Information S1	3 2 3 18 017 Acc. Volume (gallons)	Water Colum One Well Vol Total Volum pH (units) 6.65 6.31 6.94 6.71 6.97 6.97 6.97 6.97 6.97 6.97	riches): Inn (ft): Inn (ft): Purged (gal): Re Purged (gal): Temp. (deg. C) II. Y IV. Y IV. C IV. I IV. C IV. I IV. C IV. I IV. C IV. I IV. C IV. I IV. C IV. I IV. C IV. I IV. C	SC (US) 1847 1847 1113 1157 1158 1162 1152 1151	DTW when s Purpose: Purpo	ampled: Development d: DO (mg/L) me Calculation am. Vol. (g/ft)	Sample ORP (mV) -16 -31 -50 -35 -60 -13 -59 -58 -61 State Parame pH	Appearance & Odor Mush bull oder I I I I I I I I I I I I I I I I I I I	Q.	
Product Depth Time #3 4/ / 3 4 4 / 3 5 2 / 3 5 7 / 4 6 / 4 6 / 4 6 / 4 6 / 4 6 / 4 6 / 4 6 / 4 6 / 4 6 / 4 6 / 4 6 / 4 6 / 4 6 / 4 6 / 4 6 / 4 6 / 4 6 / 4 6 / 4 6 / 4 7 / 4 7 / 4 7 / 4 8 Sample	pth (fbTOR): (fbTOR): (fbTOR): (fbTOR): Water Level (fbTOR) Initial R 3/ S 4/ S 4/ S 4/ S 4/ S 4/ S 4/ S 4/ S 4	3 2 3 18 017 Acc. Volume (gallons)	Water Colum One Well Vol Total Volum pH (units) 6.65 6.31 6.94 6.71 6.97 6.97 6.97 6.97 6.97 6.97	riches): Inn (ft): Inn (ft): Purged (gal): Re Purged (gal): Temp. (deg. C) II. Y IV. Y IV. C IV. I IV. C IV. I IV. C IV. I IV. C IV. I IV. C IV. I IV. C IV. I IV. C IV. I IV. C	SC (US) 1847 1847 1113 1157 1158 1162 1152 1151	DTW when s Purpose: Purpo	me Calculation am. Vol. (g/ft) " 0.041	Sample ORP (mV) -16 -31 -50 -35 -60 -13 -59 -61/ State Parame pH sc	Appearance & Odor Mush bull oder I fr I	o O	
Product Depth Time #3 4/ / 3 4 4 / 3 5 2 / 3 5 7 / 4 6 / 4 6 / 4 6 / 4 6 / 4 6 / 4 6 / 4 6 / 4 6 / 4 6 / 4 6 / 4 6 / 4 6 / 4 6 / 4 6 / 4 6 / 4 6 / 4 6 / 4 6 / 4 6 / 4 7 / 4 7 / 4 7 / 4 8 Sample	pth (fbTOR): (fbTOR): (fbTOR): (fbTOR): Water Level (fbTOR) Initial R 3/ S 4/ S 4/ S 4/ S 4/ S 4/ S 4/ S 4/ S 4	3 2 3 18 017 Acc. Volume (gallons)	Water Colum One Well Vol Total Volum pH (units) 6.65 6.31 6.94 6.71 6.97 6.97 6.97 6.97 6.97 6.97	riches): Inn (ft): Inn (ft): Purged (gal): Re Purged (gal): Temp. (deg. C) II. Y IV. Y IV. C IV. I IV. C IV. I IV. C IV. I IV. C IV. I IV. C IV. I IV. C IV. I IV. C IV. I IV. C	SC (US) 1847 1847 1113 1157 1158 1162 1152 1151	DTW when s Purpose: Purpo	me Calculation am. Vol. (g/ft) " 0.041 " 0.163	□ Sample ORP (mV) -16 -31 -50 -35 -66 -13 -59 -61/ Stat Parame pH SC Turbic	Appearance & Odor Mush bull oder If If If If If If If If If I	o O	
Product Dep DTW (static Total Depth Time #3 4/ / 3 5 2 / 3 5 7 1 0 4 1 0 7 1 1 2 1 1 2 Sample REMARK	pth (fbTOR): (fbTOR): (fbTOR): (fbTOR): Water Level (fbTOR) Initial R 3/ S 4/ S 4/ S 4/ S 4/ S 4/ S 4/ S 4/ S 4	3.23 1800 Acc. Volume (gallons)	Water Colum One Well Vo Total Volum pH (units) 6.65 6.31 6.96 6.71 6.97 6.97 6.97 6.97 6.97 6.97	Inn (ff): Inn (ff):	SC (US) 1847 1847 1154 1158 1152 1152 1151	DTW when s Purpose: \int Purpo	me Calculation am. Vol. (g/ft) " 0.041	Sample ORP (mV) -16 -31 -50 -35 -60 -13 -59 -61/ State Parame pH sc	Appearance & Odor Muffh hulf Odor It for the form of	SI SI	

Groundwater Field Form.xls
GWFF - TK

PREPARED BY: TAB

8 TURNKEY ENGRENMENTS IN PROTECTION LLC

GROUNDWATER FIELD FORM

Project Name:	Plin IIA	77/	Date: 1/14/16
Location:	Teumsh	Project No.:	Field Team: TAB/KLD

Well No	n mw	SUA	Diameter (in	ches): Z	i	Sample Date / Time: //15/10					
Product Dep	th (fbTOR):	7	Water Colun	Water Column (ft): 12 52			DTW when şampled:				
DTW (static	(fbTOR):	¥.44	One Well Vo	olume (gal):	28 2117	Purpose:					
Total Depth (fbTOR): 2016			Total Volume	e Purged (gal):		Purge Metho	od: Brev		Foot value		
Time	Water Level (fbTOR)	Acc. Volume (gallons)	pH (units)	Temp. (deg. C)	SC (uS)	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Appearance & Odor		
1651	o Initial		6.83	59	2821	71800		-106	Black, 5 Leen, Po		
1033	1 8.52	2,0	7.20	10.0	2140	7/000	_	-190	<i>u'</i> '		
1037	2 8.50	4.0	7.52	10.2	2046	> Mag o	_	-227	11		
10.12	3 8.50	60	2.69	4.7	2012	>1000	-	-234	()		
Tour	4 8.54	8.0	761	9.7	1919	71000		-248	17		
1052	5 × 5 4	10.0	7.75	10.0	1818	71000	_	-253	(/		
1057	6 8.54	12.0	7.78	16.2	1784	128		-259	()		
1102	78.54	14.0	7.95	10.2	1718	107		-258	11		
1106	8 8 47	16.0	799	10.0	1669	164	_	-267	SLTWbilie		
1108	9 8 50	18.0	792	11.2	1650	97.4	<i></i>	-206	i/		
1110	10 8.50	20,0	7.46	11.0	1582	98.1	•	-264	1/		
	nformation:		relim =	In We	[CPi	nck V					
	S1		,								
	S2										

Product Depth (bTOR):	Well No	o. MWS -	3/4	Diameter (in	ches): 2	/	Sample Date / Time: /// 4// v				
DTW (static) (fbTOR): 10 3 9 One Well Volume (gal): 1.44 Purpose: ©Evelopment Sample Purge & Sample Total Depth (fbTOR): 14 3 7 Total Volume Purged (gal): Purge Method: 1.4			-	Water Colum	nn (ft):	3.98	- 77				
Total Depth (fbTOR):		DTW (static) (fbTOR): 10 3 9			olume (gal):	6.64	Purpose:	Development	☐ Sample	Purge & Sample	
Time Level (fbTOR) Volume (gallons) (units) (deg. C) (us) (NTU) (mg/L) (mV) Odor (MTU) (mV) O		41.4					Purge Metho	od: Ba	lice		
	Time	Level	Volume								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	15065	o Initial	-	8 42	79	738.2	7/000		73	Blacks	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7.	1 10 45	0.15	9 /2	61	7-74.8	2/000		62	i' Sh she	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	· · · · · · · · · · · · · · · · · · ·			9.50	83	2241	7/00%	_	80		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				9.65	9.0		71000		81	1/	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1513		2 ^	971	8.9		>1000	_	77	11	
1515 610.45 41.50 4.86 1.2 6.70.5 7/010 - 71 11 1576 710.45 5.25 9.88 9.7 6688 7/000 - 65 11 1518 810.45 6.0 9.86 9.2 (.80.8 7/000 - 66 10 1519 810.45 6.75 9.3 5.3 657 2 7/000 - 61 11 1520 190 11 7 7.50 9.54 9.3 655 4 7/000 - 57 11 Sample Information:	1514		3 5	9.82		6721	7 1001	_	ナぐ	Î	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1		4,50	1	1.7			_	71	11	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1571				9.7		71000	_	65		
1519 910.45 6.75 9.53 5.3 657 2 7/000 - 61 1/1 1520 190 45 7.50 9.54 9.3 655 4 7/000 - 57 1/1 Sample Information:	1518		6.0	9.86	9.2		71000	_	66	ĺř	
1520 19 11 7 7 50 9.54 9.3 655 1 71000 - 57 17 Sample Information:	1519	910.45	6.25	9.93	5.3	6572	7/000	_	Ĝ/	ij	
Sample Information:	1520	1	250	9.54	9.3	7		_	57	11	
S1 S1			· · · · · · · · · · · · · · · · · · ·								
60	Campio										
		S2									

			Stabilizatio	n Criteria
REMARKS:	Volume (Calculation	Parameter	Criteria
	Diam.	Vol. (g/ft)	pН	± 0.1 unit
THE COMMENT OF THE CONTRACT OF	1"	0.041	sc	± 3%
The second secon	2"	0.163	Turbidity	± 10%
	4"	0.653	DO	± 0.3 mg/L
Note: All measurements are in feet, distance from top of riser.	6"	1.469	ORP	± 10 mV

PREPARED BY: 7/48

Groundwater Field Form xls GWFF - TK

TURNKEY ENVIRONMENTAL RESTORATION, LLC		
Project Name:	Phrs IIIA	BPA

Location: Tecuns 1 Feder tom 1

GROUNDWATER FIELD FORM

Date: 1/14/05
Field Team: 7/13/04D

	7-0								// -	.
Well No	o. Mws	-04	Diameter (inc			Sample Date	e / Time:	1/4/09		
Product De	pth (fbTOR):	7	Water Colum	nn (ft): / [6 9	DTW when sampled:				
	DTW (static) (fbTOR): 9.79			lume (gal):	.98	Purpose:	Development	t 🗌 Sample	Purge & Sample	
Total Depth	Α,	1.4/2	Total Volume	Purged (gal):		Purge Metho	od: Ba	ex		
Time	Water Level (fbTOR)	Åcc. Volume (gallons)	pH (units)	Temp. (deg. C)	SC (uS)	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Appearance & Odor	
	0 Initial			8.7	538	7/000		152	DIVIAD	/ Gre.
1536	1 11.60	2	11.39	9.3	725	260	_	-33	11 11] /
1546	2 12,00	14	11.41	9.1	767	284		-74	'''	
1548	3 /1.44	21	11.37	9.2	VII	236		-63	· '/	
1558	4 12.24	28	11.29	y >	753	194		-57	i y	
	5		_	·						
	6		1					ļ		ł
	7									1
	8									4
	9	-						ļ		1
	10		l					, , , , , , , , , , , , , , , , , , , ,		4
Sample	Information:		1		1				r	1
	S1									
	S2]

Project No.:

Well No	o. MW-	620	Diameter (in	ches):	Z "	Sample Date	e / Time:]	15-10	
Product De	oth (fbTOR):		Water Colum	nn (ft):	51.05	DTW when s	ampled:		,
DTW (statio	(fbTOR): /	2.45	One Well Vo	olume (gal):	8.37	Purpose:	Development	: Sampl	e Purge & Sample
Total Depth	(fbTOR):	3.50	Total Volum	e Purged (gal):		Purge Metho	od:		
Time	Water Level (fbTOR)	Acc. Volume (gallons)	pH (units)	Temp. (deg. C)	SC (uS)	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Appearance & Odor
13:45	o Initial	20.0	1.85	4.9	1675	334		-01	P77 7 3 3 3 4
/U://	13.57	401	7.05	11.5	1540	18		-63	Con Son Sulfue
14:12	2 7 0	400	7			77.71		-78	- 1 82 2 H
14:27	3 30.71	800	6.90	12/12	1550	44.		-71	1/ 2/11/28
	4					, ,		•	.*
	5								
	6								
	7								
	8								
	9								
	10								
Sample	Information	:							
	S1						1		
	S2								
			1					Sta	ibilization Criteria

REMARKS:

Note: All measurements are in feet, distance from top of riser.

Volume Calculation

Diam. Vol. (g/ft)

1" 0.041

2" 0.163

4" 0.653

6" 1.469

 Parameter
 Criteria

 pH
 ± 0.1 unit

 SC
 ± 3%

 Turbidity
 ± 10%

 DO
 ± 0.3 mg/L

 ORP
 ± 10 mV

PREPARED BY:

Project Name: Tournal Project No.:		T	3P4	·· · ·	Date:	/21/18		
Client: Tecumul				<u> </u>	Instrume	nt Source:] вм 🗀	Rental
METER TYPE	UNITS	TIME	MAKE/MODEL	SERIAL NUMBER	CAL. BY	STANDARD	POST CAL. READING	SETTINGS
pH meter	units	0161	Myron L Company Ultra Meter 6P	606987 S 6212375 S	T43	4.00 7.00 10.01	4,00 6,9+ W 96	4.3 7.0
Turbidity meter	NTU	OKA	Hach 2100P Turbidimeter	06120C020523 07110C026405	T43	< 0.4 20 100 800	0,47	0/0 20 100 800
Sp. Cond. meter	uS mS	5 805	Myron L Company Ultra Meter 6P	606987 G212375	743	1412ms @ 25°C		1413
☐ PID	ppm		MinRAE 2000			open air zero ppm Iso. Gas		MIBK response factor = 1.0
☐ Dissolved Oxygen	ppm		HACH Model HQ30d			100% Satuartion		
Particulate meter	mg/m ³					zero air		<u> </u>
Oxygen	%					open air		
☐ Hydrogen sulfide	ppm					open air		
☐ Carbon monoxide	ppm					open air		
LEL	%					open air		
Radiation Meter	uR/H					background area		
ADDITIONAL REMARKS								
PREPARED BY: TAB	<u></u>			DATE: \2	,//-			

Project Nan	ne: Town	= L P	hose III A	A BPA Project	No ·		Date:	1-21- eam: 74	10 210 m)	
			T=	Troject	11 1					1
Well No	. MW5-	. 64	Diameter (in	nches):		Sample Date	te / Time:	-21-10	11:00	
Product Dep	oth (fbTOR):		Water Colur	mn (ft):	10 58	DTW when	sampled:	ر2،	34	
DTW (static) (fbTOR):	1.85	One Well Vo	olume (gal):	670	Purpose:	Development	Sample	Purge & Sample	
Total Depth	(fbTOR): 2	0.43	Total Volum	e Purged (gal):	4.75	Purge Meth	od: lostle-	2 (Misi	wenseer)	
Time	Water Level (fbTOR)	Acc. Volume (gallons)	pH (units)	Temp. (deg. C)	SC (uS)	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Appearance & Odor	
10:47	o Initial	4.25	7.93	89	530.8	901		97	Clear/slight	1374
10.49	1 10.42	1_1	9.06	105	469.8	627		53	Ches/No vo	}
10:51	2/1.44	1.5	7.30	10.7	4857.4	48;4	-	Li 1	(4	
12 63	3 10.4!	2.	9.36	108	490.7	:141)		20	,,	1
in ce	10 42	2.5	9.44	10.7	490.0	404		7	4,	1
250 57		3	9.60	108	:152.5	36.3	 -	-39	//	1
	5 10 72			 		- 26.	 			$\ $
10:59	6 10 36	3.5	9.64	10.7	497.8	34.7		-87	//	
	7 10 34	\$4	0.65	10.8	5041	33.9		-101	11	
	8		<u> </u>		·					<u> </u>
	9									ll
	10		T							1
Co	nformati	·		<u> </u>	I		<u> </u>			
	nformation:		1000	T					11	
	S1 10 34	4.5	9.57	10.5	5065	<u> 33.5</u>		"121))
11.06	S2 / C . 34	4.75	9.90	10.1	537.5	25.0	<u> </u>	-149	/(]]
										_
M/all Ni	14:15	21.0	T	ooboo): 7	.,		<u>.</u>	71 19	117	1
well No	o. MWS-	312	Diameter (ir	nches):		Sample Da	te / Time:	21-09	1117	
Product De	oth (fbTOR): -		Water Colu	mn (ft):	13.3	DTW when	sampled:	10 48		
DTW (statio) (fbTOR): /C		One Well V	olume (gal):	e 6 S	Purpose:	Development	Sample	Purge & Sample	
Total Depth	(fbTOR): /4	1.28	Total Volum	ne Purged (gal):	16	Purge Meth	اری <u>ا (</u> :nod	10~ (M	MIMONSON)	
	Water	Acc.		T	60	T. administra	DO	ORP	Appearance &	
Time	Level (fbTOR)	Volume (gallons)	pH (units)	Temp. (deg. C)	SC (uS)	Turbidity (NTU)	(mg/L)	(mV)	Odor Odor	
11:07	o Initial	4.25	9.19	7.1	584.4	71000	:	· 5E	Twindblack / No	ofer
11:11	110 50	75	9.26	84	555.1	7/000		-54	11	
			+				 		11	#
1113	2 10 50	, 30	9.34	89	551.0	71000	 	-56		
11:15	3 10.4B	.110	9.35	87	542.4	7/000	} -}	-59	''	#
	4	<u> </u>		<u></u>	ļ]
	5		1	ļ	!					ji
	6	1								
	7	t			Ţ		1 7			1
	8	 	 	 	ļ		1 1			1
	ļ <u>-</u>	 		 	 		+			1
ļ	9		<u> </u>	 	ļ		 			-
	10	L	<u> </u>	<u> </u>	L		<u> </u>	l	<u> </u>	<u> </u>
Sample	Information	:]]
11:17	S1 /0 :/9	5	7.31	87	537.7	7/000	1	-64	()	Ì
	52 10.48	. 6	741	7.0	547.0	Tree	1-1	~/ =	11	1
			1.11			7/ . ₹		Stah	ilization Criteria	1
REMARK	S. 64	10 t-1		La for	Heredio	ノCI ノ Vol	ume Calculation	Parame		1
/ /	<u></u>	115/6/	smyth T	C 11/	(CISCILICS		iam. Vol. (g/ft)	,	± 0.1 unit	1
100	Til.	<u> ۱۵ ر</u> ر				F	1" 0.041	sc	± 3%	1
						-	2" 0.163	Turbid		1
		·						DO	± 0.3 mg/L	1
Note: All	0001/202	o oro in feet	diatanas fr	m ton of sign			4" 0.653 6" 1.469	ORE		-
ivote: All m	easurements	s are in teet,	distance froi	iii tob of rise		<u>L</u>	1.409		, I TO MIN	J
						. 15	11/10	11.1	1	
Groundwater Fiel	d Form.xls			PREPAR	ED BY:	li	I W.	Mit	6	
GWFF - TK										

		meh 1	Park Ala	Project			Date: Field To	・21・ eam: でぼ		65.
Well N	o. MWN-	611	Diameter (in	nches):	tt.	Sample Dat	e / Time:	-21-10.	11:50	
Product De	epth (fbTOR):		Water Colur	mn (ft): 🦪	.67	DTW when	sampled:	10.0	6	
DTW (station	c) (fbTOR):	096	One Well Vo	olume (gal):	1.25	Purpose:	Developmen	t 🗌 Sample	e 🄀 Purge & Sample	
Total Depth	n (fbTOR):	1803	Total Volum	e Purged (gal):	3.25	Purge Meth	od: (1)	0 / 3/3	17/11/6	
Time	Water Level (fbTOR)	Acc. Volume (gallons)	pH (units)	Temp. (deg. C)	SC (uS)	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Appearance & Odor	
11:35	o Initial	2.5	7.39	93,1	1196	7/000	,	-155	Tour town to	1 /2
11:37	110.07	4.5	7.38	8.9	824.8	784		-165	11	1
1:39	2 10.06	.75	7.46	9.5	608.1	492		-157	11	1
1:41	3 10.06	1.5	7.57	9.7	614.5	236		- 140	11	1
11:43	4 10.06	A 20	7.64	9.9	624.7	115		-136	(lee * Molhball od	
11:45	5 10.06	2.5	7.67	9.8	625.7	53.2		-143	7 11	1
11:47	6 10.06	3 2.75	7.69	10.0	625.9	33.5		-151	11	1
1	7		, , ,		01.7.	77.1		121		1
	8			† · · · · ·						1
	9									1
	10									1
Sample	Information:	<u></u>	L	l	1			L		1
11:50	s1 10.06	3	7 / 7	9.5	1756	710	, , , , , , , , , , , , , , , , , , ,	-1115	- 11	1
11.70			7.67		625.9	71.0	1	-145	- 1	II
1:57	S2 O. 06	3.25	7.65	9.4	623.8	11-7		1-71.10	11] 1
Weli N	o. MWN-		7.65 Diameter (ir	nches): Z	623.8 " 3.28	Sample Dat		<i>1-21-10</i>	, tt	
Weli N	o. //WN- epth (fbTOR):	620 120 -	Diameter (ir	nches): 7	· II	Sample Dat		1-21-10		
Well No	o. //WN- epth (fbTOR):	620 120166 —	Diameter (ir Water Colur One Well Vo	nches): 7	 3. 2 8	Sample Dat	sampled: Developmen	/-Z/-/O		
Well No Product De DTW (station	o. //WN- epth (fbTOR):	620 120 -	Diameter (ir Water Colur One Well Vo	mn (ft): 5	 3. 2 8	Sample Dat DTW when Purpose:	sampled: Developmen	/-Z/-/O	Purge & Sample	
Well No Product De DTW (station Total Depth	epth (fbTOR): c) (fbTOR): Water Level	62D 77156	Diameter (ir Water Colur One Well Vo Total Volum pH (units)	nches): mn (ft): colume (gal): e Purged (gal): Temp. (deg. C)	3. 28 8. 68 SC (us)	Sample Dat DTW when Purpose: Purge Meth Turbidity	sampled: Developmen od: DO	/-Z/-/O t Sample four (mini) ORP	Appearance & Odor	
Well Normal Product Depth Time	epth (fbTOR): c) (fbTOR): Water Level (fbTOR) 0 Initial	62D 72066 ~ 2.68 5.96 Acc. Volume	Diameter (ir Water Colur One Well Vo Total Volum pH (units)	nches): Z mn (ft): S blume (gal): ne Purged (gal): Temp. (deg. C)	" 3. 28 8. 68 sc (us)	Sample Dat DTW when Purpose: Purge Meth Turbidity (NTU)	sampled: Developmen od: DO	/-Z/-/O t Sample four (mini) ORP	Purge & Sample Appearance &	
Well No. Product De DTW (station Total Depth Time 3:14 13:16	epth (fbTOR): c) (fbTOR): Mater Level (fbTOR) o Initial	62D 2.68 5.96 Acc. Volume (gallons) .25 .5	Diameter (in Water Colum One Well Volum pH (units)	nches): Z mn (ft): 5 clume (gal): ne Purged (gal): Temp. (deg. C)	" 3. 28 8. 68 sc (us) /620	Sample Dat DTW when Purpose: Purge Meth Turbidity (NTU) [4,] 78.5	sampled: Developmen od: DO	-Z - O t Sample foca (mini) ORP (mV)	Appearance & Odor	
Well No. Product Depth Station Total Depth Time 13:14 13:16	epth (fbTOR): c) (fbTOR): Water Level (fbTOR) 0 Initial	62D 77156	Diameter (ir Water Colur One Well Vo Total Volum pH (units)	nches): Z mn (ft): S blume (gal): ne Purged (gal): Temp. (deg. C)	" 3. 28 8. 68 sc (us)	Sample Date DTW when Purpose: Purge Method Turbidity (NTU) 14, 78.5 30.8	sampled: Developmen od: DO	-Z - O t Sample foca (mini) ORP (mV)	Appearance & Odor	
Well No Product Depth (static Total Depth Time 13:14 13:16 13:18 13:20	o. MWN- epth (fbTOR): c) (fbTOR): Water Level (fbTOR) Initial INFR 87 2 5 11 3 14 91	62D 1.60 5.96 Acc. Volume (gallons) .25 .5	Diameter (ir Water Colum One Well Vo Total Volum pH (units) 5.68 6.06 6.20	nches): 7 mn (ft): 5 clume (gal): 6 ne Purged (gal): 7 mn (deg. C) 9.0 10.1 10.5	sc (us) 1620 1674 1660 1645	Sample Dat DTW when Purpose: [Purge Meth Turbidity (NTU) 14, [28.5 30.8 37.0	sampled: Developmen od: DO	1-Z1-10 t Sample Social (Minical ORP (mV) 117 44 17 -0	Appearance & Odor Clear No ador	
Well Normal Product Depth Time	o. MWN- epth (fbTOR): c) (fbTOR): Water Level (fbTOR) In (fbTOR): Value 2 5. 1 3 14. 9 4 15. 05	62D 2.68 5.76 Acc. Volume (gallons) .25 .5 .1.10	Diameter (ir Water Colur One Well Vo Total Volum pH (units) 5.68 6.06 6.20 6.36	nches): 2 mn (ft): 5 plume (gal): ne Purged (gal): Temp. (deg. C) 9.0 10.1 10.5 10.5	"3. 28 8. 68 Sc (us) 1620 1674 1660 1645 1640	Sample Dat DTW when Purpose: Purge Meth Turbidity (NTU) 14, 28.5 30.8 39.0	sampled: Developmen od: DO	/-Z/-/O t □ Sample four (mini / ORP (mV) 117 44 17 -0 -40	Appearance & Odor Clear No ador	
Well None Product Depth Time 3:14 13:16 3:18 3:20 3:24	o. MWN- epth (fbTOR): c) (fbTOR): Mater Level (fbTOR) o Initial 1 4 .87 2 5 . 1 3 4 .91 4 5 .05 5 4 .75	62D 2.68 5.96 Acc. Volume (gallons) .25 .5 .16 1.10 1.20	Diameter (in Water Colum One Well Volum pH (units) 5.68 6.06 6.20 6.36 6.41	nches): 7 mn (ft): 5 colume (gal): ne Purged (gal): (deg. C) 9.0 10.1 10.5 10.7 10.7	SC (US) 1620 1674 1660 1645 1640 1635	Sample Dat DTW when Purpose: Purge Meth Turbidity (NTU) 14, 28.5 30.8 39.0 66.7	sampled: Developmen od: DO	/-Z/-/O t Sample /oc. (mini / ORP (mV) 117	Appearance & Odor Clear No ador	j J
Well No. Product Depty (static Total Depty 13:14 13:16 13:18 13:20 13:24 13:24	o. MWN- ppth (fbTOR): 6 c) (fbTOR): 6 Water Level (fbTOR) 0 Initial 1 4 87 2 5 11 3 4 9 4 5 05 6 4 92	62D 2.68 5.96 Acc. Volume (gallons) .25 .5 .10 1.10 1.20 1.25	Diameter (in Water Colum One Well Volum pH (units) 5.68 6.06 6.20 6.36 6.41 6.43	nches): 2 mn (ft): 5 plume (gal): ne Purged (gal): Temp. (deg. C) 9.0 10.1 10.5 10.5	SC (US) 1620 1674 1660 1645 1640 1635 1637	Sample Dat DTW when Purpose: Purge Meth Turbidity (NTU) 14, 28.5 30.8 39.0	sampled: Developmen od: DO	/-Z/-/0 t	Appearance & Odor Clear/No ador 11 11 11 11 11 11 11 11 11	
Well N. Product De DTW (static Total Depth Time 3: [4] 13: 16 3: 18 3: 20 3: 24 7: 24	o. MWN- epth (fbTOR): c) (fbTOR): Mater Level (fbTOR) o Initial 1 4 .87 2 5 . 1 3 4 .91 4 5 .05 5 4 .75	62D 2.68 5.96 Acc. Volume (gallons) .25 .5 .16 1.10 1.20	Diameter (in Water Colum One Well Volum pH (units) 5.68 6.06 6.20 6.36 6.41	nches): 7 mn (ft): 5 colume (gal): ne Purged (gal): (deg. C) 9.0 10.1 10.5 10.7 10.7	SC (US) 1620 1674 1660 1645 1640 1635	Sample Dat DTW when Purpose: Purge Meth Turbidity (NTU) 14, 28.5 30.8 39.0 66.7	sampled: Developmen od: DO	/-Z/-/O t Sample /oc. (mini / ORP (mV) 117	Appearance & Odor Clear No ador	j j
Well No. Product Depty (static Total Depty 13:14 13:16 13:18 13:20 13:24 13:24	o. MWN- ppth (fbTOR): 6 c) (fbTOR): 6 Water Level (fbTOR) 0 Initial 1 4 87 2 5 11 3 4 9 4 5 05 6 4 92	62D 2.68 5.96 Acc. Volume (gallons) .25 .5 .10 1.10 1.20 1.25	Diameter (in Water Colum One Well Volum pH (units) 5.68 6.06 6.20 6.36 6.41 6.43	nches): 7 mn (ft): 5 colume (gal): ne Purged (gal): (deg. C) 9.0 10.1 10.5 10.7 10.7	SC (US) 1620 1674 1660 1645 1640 1635 1637	Sample Dat DTW when Purpose: Purge Meth Turbidity (NTU) 14, 28.5 30.8 39.0 66.7	sampled: Developmen od: DO	/-Z/-/0 t	Appearance & Odor Clear/No ador 11 11 11 11 11 11 11 11 11	j.
Well No. Product Depty (static Total Depty 13:14 13:16 13:18 13:20 13:24 13:24	O. MWN- epth (fbTOR): c) (fbTOR): (fbTOR): Water Level (fbTOR) Initial I 4 87 2 5 1 3 4 9 4 5 05 5 4 75 6 4 92 7 5 0 8	62D 2.68 5.96 Acc. Volume (gallons) .25 .5 .10 1.10 1.20 1.25	Diameter (in Water Colum One Well Volum pH (units) 5.68 6.06 6.20 6.36 6.41 6.43	nches): 7 mn (ft): 5 colume (gal): ne Purged (gal): (deg. C) 9.0 10.1 10.5 10.7 10.7	SC (US) 1620 1674 1660 1645 1640 1635 1637	Sample Dat DTW when Purpose: Purge Meth Turbidity (NTU) 14, 28.5 30.8 39.0 66.7	sampled: Developmen od: DO	/-Z/-/0 t	Appearance & Odor Clear/No ador 11 11 11 11 11 11 11 11 11	j j
Well No. Product Depth Time 3:14 13:16 3:18 3:20 3:22 13:26 3:78	o. MWN- epth (fbTOR): c) (fbTOR): d) Water Level (fbTOR) o Initial 1 4 87 2 5 1 3 4 5 05 5 4 75 6 4 92 7 5 10 8 9	62D 1.68 5.96 Acc. Volume (gallons) .25 .5 .15 1.10 1.20 1.25 1.5	Diameter (in Water Colum One Well Volum pH (units) 5.68 6.06 6.20 6.36 6.41 6.43	nches): 7 mn (ft): 5 colume (gal): ne Purged (gal): (deg. C) 9.0 10.1 10.5 10.7 10.7	SC (US) 1620 1674 1660 1645 1640 1635 1637	Sample Dat DTW when Purpose: Purge Meth Turbidity (NTU) 14, 28.5 30.8 39.0 66.7	sampled: Developmen od: DO	/-Z/-/O t	Appearance & Odor Clear/No ador 11 11 11 11 11 11 11 11 11	
Well No. Product Depth Time 13:14 13:16 13:20 13:22 13:22 13:24 13:26 13:28	O. MWN- epth (fbTOR): c) (fbTOR): d) Water Level (fbTOR) 0 Initial 1 4 87 2 5 1 3 14 9 4 5 05 5 4 75 6 4 92 7 5 0 8 9 10 Information:	62D 1.68 5.96 Acc. Volume (gallons) .25 .5 .10 1.20 1.25 1.5	Diameter (ir Water Colum One Well Vo Total Volum pH (units) 5.68 6.06 6.20 6.36 6.41 6.43	nches): 7 mn (ft): 5 plume (gal): re Purged (gal): 10.1 10.5 10.5 10.7 10.7 10.7	SC (US) 1620 1674 1660 1645 1640 1635 1637	Sample Dat DTW when Purpose: Purge Meth Turbidity (NTU) 14. 28.5 30.8 39.0 66.7 III 140	sampled: Developmen od: DO	/-Z/-/0 t Sample Social (minical ORP (mV) 117 -0 -40 -63 -73 -98	Appearance & Odor Clear No ador II II II Slight wrbd braw	
Well No. Product Depth Time 13:14 13:16 13:20 13:22 13:22 13:28 Sample 13:26	O. MWN- epth (fbTOR): c) (fbTOR): d) Water Level (fbTOR) o Initial 1 4 87 2 5 1 3 14 91 4 5 05 5 4 75 6 4 92 7 5 10 8 9 10 Information: S1 15 10	62D 1.60 5.96 Acc. Volume (gallons) .25 .5 .10 1.20 1.25 1.5	Diameter (ir Water Colum One Well Vo Total Volum pH (units) 5.68 6.06 6.20 6.36 6.41 6.43	nches): 7 mn (ft): 5 plume (gal): ne Purged (gal): Geg. C) 9.0 10.1 10.5 10.5 10.7 10.7 10.7	SC (US) 1620 1674 1645 1645 1645 1637 1637	Sample Dat DTW when Purpose: [Purge Meth Turbidity (NTU) 14, [28.5 30.8 39.0 66.7 III 140	sampled: Developmen od: DO	/-Z/-/0 t Sample Sample Soci (mini / 0RP (mV) 117 -0 -40 -63 -73 -95	Appearance & Odor Clear/No ador 11 11 11 11 11 11 11 11 11	
Well N Product De DTW (station Total Depth Time 3:14 13:16 3:18 3:20 3:22 3:22 3:22 3:24 3:26 3:26 3:28	O. MWN- epth (fbTOR): c) (fbTOR): d) Water Level (fbTOR) o Initial 1 4 87 2 5 1 3 4 5 05 5 4 75 6 4 92 7 5 10 8 9 10 Information: S1 15 10	62D 1.68 5.96 Acc. Volume (gallons) .25 .5 .15 .100 1.25 1.5	Diameter (ir Water Colum One Well Vo Total Volum pH (units) 5.68 6.06 6.20 6.36 6.41 6.43 6.47 6.51	nches): 7 mn (ft): 5 polume (gal): le Purged (gal): 7	SC (US) 1620 1674 1660 1645 1645 1637 1633 1625	Sample Dat DTW when Purpose: Purge Meth Turbidity (NTU) 14. 28.5 30.8 39.0 66.7 III 140	sampled: Developmen od: DO	1-21-10 t Sample for (nini) ORP (mV) 117 -0 -40 -63 -73 -85 -92	Appearance & Odor Clear No ador II II II Slight wrbd braw	

PREPARED BY:

Paul Willet

0.163

0.653

1.469

4"

Turbidity

DO

ORP

± 10%

 \pm 0.3 mg/L

± 10 mV

Groundwater Field Form.xls GWFF - TK

Note: All measurements are in feet, distance from top of riser.

Project Name: Tecunseh Phase IIA BPA
Location: Tecunseh Project No.:

Date: //2///D Field Team: TAB (PWW)

Well N	o. MWN	19B	Diameter (ir	nches):	2 "	Sample Dat	e / Time:	-21-10	14:11]
Product De	pth (fbTOR):		Water Colu	mn (ft):	18.55	DTW when	sampled:	14.05		
DTW (station		0.26	One Well V	olume (gal):	3.02	Purpose:	Development	: Sample	Purge & Sample	
Total Depti	n (fbTOR):	28.81	Total Volum	e Purged (gal):	1.5	Purge Meth	od: 10wf/	ow (mini	MONSCON)	
Time	Water Level (fbTOR)	Acc. Volume (gallons)	pH (units)	Temp. (deg. C)	SC (uS)	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Appearance & Odor	
14:02	o Initial	4.25	6.01	9.6	1156	110		84	slight turned brow	n/Nooder
14:05	11.86	1984.5	5.88	10.7	1204	117			111	,
14:07		.5	5.89	10.9	1159	124		- 55	11	
14:09	3 12.95	100	5.90	12.1	1114	135		-57	1/	J.
	4									j
	5									
	6									
	7									
	8									
ļ	9									
-	10		L							
	Information:									
14:11	s1 14.05	1.25	5.89	12.0	1077	128		- 51	11	
14:15	^{S2} 18. Z3	1.50	5.81	11.5	1050	91,4		-0	1/	

Well No	. MWN-	-19A	Diameter (in	nches):	? "	Sample Dat	e / Time:	-21-10	14:34]
Product Dep	pth (fbTOR):		Water Colur	nn (ft): 9	.83	DTW when	sampled:	8.68		
DTW (static) (fbTOR):	3.41	One Well Vo	olume (gal):	1.60	Purpose:	Development		Purge & Sample	
Total Depth	(fbTOR): /8	3.24	Total Volum	e Purged (gal):	3.25	Purge Metho	od: /out/o	w/min,	monsoon)	
Time	Water Level (fbTOR)	Acc. Volume (gallons)	pH (units)	Temp. (deg. C)	SC (uS)	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Appearance & Odor	
14:21	o Initial	4.25	6.38	9.6	1199	400	1	- 76	Tuched bray - Petro	1.ke odor
14:25	18.61	. 75	6.47	9.9	1197	94.7		-91	Turbidbrown/Petro	Vite adar
14:27	2 8.66	1.5	6.51	10.5	1192	50.6		-93	11 / Pelis	ME COOL
14:30	3 8,68	2.5	6.54	10.4	1189	18.0		-102	u	
	4				7,0	70.0		, ,		
,	5									
	6									
	7									
	8									
	9									
	10									
Sample I	nformation:			·						
14:34	S1 8.68	3	6.55	10.8	1187	14.6	1	-98	11	
	S2 8.66	3. z5	6.49	9.2	1205	7.91		-100	14	
			44-1	,		11.0/1	rate	Stabi	ilization Criteria	1

REMARKS: MWN-19A MS/MSD Take + Blud DyNolume Calculation

MWN-196-sol metals to be filtered in Lab

Diam. Vol. (g/ft)

1" 0.041

2" 0.163

4" 0.653

 Parameter
 Criteria

 pH
 ± 0.1 unit

 SC
 ± 3%

 Turbidity
 ± 10%

 DO
 ± 0.3 mg/L

 ORP
 ± 10 mV

Note: All measurements are in feet, distance from top of riser.

PREPARED BY: Tank What

1.469

Groundwater Field Form.xls GWFF - TK

Groundwater Field Form.xls GWFF - TK

GROUNDWATER FIELD FORM

						0 10117								
Nell N	o. MWN-3	SOA	Diameter (in	nches): Z	ıl	Sample Date	e / Time:	1-21-10						
Product De	pth (fbTOR):		Water Colur	nn (ft):	11.53	DTW when	sampled:							
OTW (statio	c) (fbTOR): 9	.42	One Well Vo	olume (gal):	1.88	Purpose:	Developmen	t 🗌 Samp	le 🔀 Purge & Sample					
otal Depth	n (fbTOR): 2	0.95	Total Volum	e Purged (gal):		Purge Metho	od: /owf/	ow (MI)	i monson)					
Time	Water Level (fbTOR)	Acc. Volume (gallons)	pH (units)	Temp. (deg. C)	SC (uS)	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Appearance & Odor					
:07	o Initial	4.25	6.75	9.7	2318	39.3		-158 -210	Clear wheen petro					
5:09		2901	7.29	9.3	1337	21.7			- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					
5:11	2 9.4Z 3 9.45	4 90	7.48	10.4	1567	140		-239	Turbid tablack w/sheen					
5:13	1, 1, 42	6901	7.64	10.5	1.573	69.4	9.4		Clear w/sheen / petro					
	5	 - 		ļ			 							
	6			-	 									
	7	 		 	 	 	 	 	 					
	18	ļ ———		 	 	 	 							
	-			 		 	 	<u> </u>	 					
	9	 		 	 	 	 							
	10	L		<u> </u>	<u> </u>	L	L							
	Information:	:	1 = = .1	1	1	T = 10								
<u> 5:15</u>	S1 9.45	6 9	7.74	10.6	1619	56.4		-269	11					
: 20	S2 9.45	6.10	7.75	8.7	1674	83.9		- 258	11					
	epth (fbTOR):		Water Colu			DTW when Purpose:	sampled: Developmen	t Samp	le Purge & Sample					
			0110 11011 1			 								
rW (static) (fbTOR): otal Depth (fbTOR): Water			Total Volum	ne Purged (gal)		I Purge Meth	od:							
	h (fbTOR):	Acc. Volume (gallons)	Total Volum pH (units)	Temp. (deg. C)	SC (uS)	Purge Method Turbidity (NTU)	DO (mg/L)	ORP (mV)	Appearance & Odor					
otal Dept	Water Level (fbTOR)	Volume	pН	Temp.	sc	Turbidity	DO							
otal Dept	h (fbTOR): Water Level	Volume	pН	Temp.	sc	Turbidity	DO							
otal Dept	Water Level (fbTOR)	Volume	pН	Temp.	sc	Turbidity	DO							
otal Dept	h (fbTOR): Water Level (fbTOR) Initial	Volume	pН	Temp.	sc	Turbidity	DO							
otal Dept	h (fbTOR): Water Level (fbTOR) o Initial	Volume	pН	Temp.	sc	Turbidity	DO							
otal Dept	h (fbTOR): Water Level (fbTOR) o Initial	Volume	pН	Temp.	sc	Turbidity	DO							
otal Dept	h (fbTOR): Water Level (fbTOR) 0 Initial 1 2 3	Volume	pН	Temp.	sc	Turbidity	DO							
otal Dept	h (fbTOR): Water Level (fbTOR) Initial 2 3 4	Volume	pН	Temp.	sc	Turbidity	DO							
otal Dept	h (fbTOR): Water Level (fbTOR) Initial 2 3 4	Volume	pН	Temp.	sc	Turbidity	DO							
otal Dept	h (fbTOR): Water Level (fbTOR) Initial 1 2 3 4 5 6 7	Volume	pН	Temp.	sc	Turbidity	DO							
otal Dept	h (fbTOR): Water Level (fbTOR) Initial 2 3 4 5 6 7	Volume	pН	Temp.	sc	Turbidity	DO							
otal Depti	h (fbTOR): Water Level (fbTOR) Initial I I I I I I I I I I I I I	Volume (gallons)	pН	Temp.	sc	Turbidity	DO							
otal Depti	h (fbTOR): Water Level (fbTOR) o Initial 1 2 3 4 5 6 7 8 9 10 Information	Volume (gallons)	pН	Temp.	sc	Turbidity	DO							
otal Depti	h (fbTOR): Water Level (fbTOR) 0 Initial 1 2 3 4 5 6 7 8 9 10 Information S1	Volume (gallons)	pН	Temp.	sc	Turbidity	DO							
otal Depti	h (fbTOR): Water Level (fbTOR) o Initial 1 2 3 4 5 6 7 8 9 10 Information	Volume (gallons)	pН	Temp.	sc	Turbidity	DO	(mV)	Odor					
ample	h (fbTOR): Water Level (fbTOR) Initial	Volume (gallons)	pH (units)	Temp. (deg. C)	SC (uS)	Turbidity (NTU)	DO (mg/L)	(mV)	Odor					
Time Sample	h (fbTOR): Water Level (fbTOR) 0 Initial 1 2 3 4 5 6 7 8 9 10 Information S1	Volume (gallons)	pH (units)	Temp. (deg. C)	SC (uS)	Turbidity (NTU)	DO (mg/L)	St:	abilization Criteria neter Criteria					
tal Depti Fime	h (fbTOR): Water Level (fbTOR) Initial	Volume (gallons)	pH (units)	Temp. (deg. C)	SC (uS)	Turbidity (NTU) Lab Volu	DO (mg/L) ume Calculation am. Vol. (g/ft	St. Parar pl	abilization Criteria meter Criteria H ± 0.1 unit					
ime ample	h (fbTOR): Water Level (fbTOR) Initial	Volume (gallons)	pH (units)	Temp. (deg. C)	SC (uS)	Turbidity (NTU)	DO (mg/L) ume Calculation am. Vol. (g/ft 1" 0.041	Sta Parar pl	abilization Criteria neter Criteria H ± 0.1 unit C ± 3%					
ample	h (fbTOR): Water Level (fbTOR) Initial	Volume (gallons)	pH (units)	Temp. (deg. C)	SC (uS)	Turbidity (NTU) Leb Volu	DO (mg/L) ume Calculation am. Vol. (g/ft	St. Parar pl	abilization Criteria neter Criteria H ± 0.1 unit C ± 3% idity ± 10%					

PREPARED BY:

APPENDIX B

BORING LOGS & WELL COMPLETION DETAILS

Project No: 0071-008-300 Borehole Number: ALF-01

Project: Phase III Business Park A.K.A.:

Client: Arcelor Mittal Tecumseh Logged By: TAB

Site Location: Phase III Business Park Checked By: BCH

TurnKey Environmental Restoration, LLC 2558 Hamburg Turnpike, Suite 300 Buffalo, NY 14218 (716) 856-0635

	SUBSURFACE PROFILE		S	SAM	PLE	•			
Depth (fbgs)	Elev. /Depth	Description (ASTM D2488: Visual-Manual Procedure)	Sample No.	SPT N-Value	Recovery (ft)	Symbol	PID VOCs ppm 0 12.5 25	Lab Sample	Well Completion Details or Remarks
0.0	0.0	Ground Surface							
-	-1.5 1.5	Fill Dark brown, moist, non - plastic fines wth some fine sand, with slag and cinders, Dense, loose when disturbed, no odor, refusal at 1.5.	1	34	1.5				
_	1.5	Concrete Third location for ALF-01, concrete refusal at 1.5 fbgs at each location, augered down to 4.0 fbgs, collected sample for possible ACM							
_			2	NA	0			Asbestos sample	
-	-4.0 4.0	End of Borehole							
5.0 —									

Drilled By: Earth Dimensions, Inc. Drill Rig Type: Dietrich D120

Drill Method: 4.25-inch HSA continous SS sample

Drill Date(s): 9/19/08

Hole Size: 9 - inch

Stick-up:

Datum: mean sea level

Project No: 0071-008-300 Borehole Number: ALF-02

Project: Phase III Business Park A.K.A.:

Client: Arcelor Mittal Tecumseh Logged By: TAB

Site Location: Phase III Business Park Checked By: BCH

TurnKey Environmental Restoration, LLC 2558 Hamburg Turnpike, Suite 300 Buffalo, NY 14218 (716) 856-0635

		SUBSURFACE PROFILE	S	AM	PLE				
Depth (fbgs)	Elev. /Depth	Description (ASTM D2488: Visual-Manual Procedure)	Sample No.	SPT N-Value	Recovery (ft)	Symbol	PID VOCs ppm 0 12.5 25	Lab Sample	Well Completion Details or Remarks
0.0	0.0	Ground Surface							
-	0.0	Fill Dark brown, moist, non - plastic fines wth some fine sand, with slag and cinders, Dense, loose when disturbed, no odor, refusal at 1.0 fbgs augered to 1.5 fbgs where large steel gratiting was encountered. was able to sample via 3-inch spoon through grating to 4.5 fbgs where refusal was encountered, no ACM sample collected.	1	NA	0.5				
-									
5.0	-4.5 4.5	End of Borehole							
_									

Drilled By: Earth Dimensions, Inc. Drill Rig Type: Dietrich D120

Drill Method: 4.25-inch HSA continous SS sample

Drill Date(s): 9/19/08

Hole Size: 9 - inch

Stick-up:

Sheet: 1 of 1

Datum: mean sea level

Borehole Number: MWN-56A Project No: 0071-008-300

Project: Phase III Business Park Area A.K.A.:

Client: ArcelorMittal Tecumseh Redevelopment, Inc. Logged By: TAB

Site Location: Phase III Business Park Area Checked By: BCH

TurnKey Environmental Restoration, LLC 2558 Hamburg Turnpike, Suite 300 Buffalo, NY 14218 (716) 856-0635

		SUBSURFACE PROFILE	S	AM	PLE				
Depth (fbgs)	Elev. /Depth	Description (ASTM D2488: Visual-Manual Procedure)	Sample No.	SPT N-Value	Recovery (ft)	Symbol	PID VOCs ppm 0 12.5 25	Lab Sample	Well Completion Details or Remarks
-3.0 —	0.0	Ground Surface							J-plug
	0.0 0.0 -0.5 0.5	Asphalt Strout S	1						7007
	0.5	Augered through former asphalt parking lot.					4.0		pa
2.0	-2.0 2.0	Fill Black, moist, non-plastic fines with some fine sand, with cinders and slag peices, medium dense, loose when disturbed, no odor.	1	57	1.0	1			Concrete well pad
-	-4.0	As above, with reddish brown burnt peices.	2	15	1.2		2.9		5.0
-	-4.0 4.0	As above wet.	3	4	0.7		3.0		N III
7.0	-6.0 6.0	As above, no burnt looking material.	4	17	0.6		10.5		Bentonite Seal
	-8.0 8.0	As above, grey with orange brick.					3.5		Ber
_			5	31	1.1		<u></u>		
12.0	-11.0 11.0	Peat Dark to reddish brown, wet, silt with fine sand and few clay, with organic material (woody material), no odor.	6	2	0.0		NA		
-		materia (woody materia), no odo:	7	2	1.2		0.9		WC 0.010 Stot Screen
-	-14.5 14.5	Silty Clay Gray, wet, silty clay with trace fine sand, soft , high plasticity, laminated,	8	2	1.1		3.1		2" PVC 0.C
	-15.5 15.5	no odor. Peat As 11.0 - 14.50 fbgs.	_						
17.0	-18.0 18.0		9	2	0.0				
_	10.0	End of Borehole							

Drilled By: Earth Dimensions, Inc. Drill Rig Type: CME 550 ATV rig

Drill Method: 4.25-inch HSA continous SS sample

Drill Date(s): 09/11/08

Hole Size: 9-inches Stick-up: approx. 3-feet Datum: mean sea level

Borehole Number: MWN-57A Project No: 0071-008-300

Project: Phase III Business Park Area A.K.A.:

Client: ArcelorMittal Tecumseh Redevelopment, Inc. Logged By: TAB

Site Location: Phase III Business Park Area Checked By: BCH

TurnKey Environmental Restoration, LLC 2558 Hamburg Turnpike, Suite 300 Buffalo, NY 14218 (716) 856-0635

		SUBSURFACE PROFILE	S	SAM	PLE				
Depth (fbgs)	Elev. /Depth	Description (ASTM D2488: Visual-Manual Procedure)	Sample No.	SPT N-Value	Recovery (ft)	Symbol	PID VOCs ppm 0 12.5 25	Lab Sample	Well Completion Details or Remarks
-3.0 —									J-plug
	0.0	Ground Surface							cking
_	0.0	Fill Black, moist, non plastic - fines with some fine sand, with cinders and slag peices, dense, loose when disturbed, no odor.	1	36	1.1		3.1		Concrete well pad
2.0 —	-2.0 2.0	As above, with yellow brick.	2	21	1.0		1.6		Concrete
-	-4.0 4.0	As above, wet, no yellow brick.	3	9	1.1		1.8		Seal
7.0	-6.0 6.0	As above, wet.	4	6	1.0		2.5		Bentonite Seal
_	-8.0 8.0	As above.	5	5	1.1		2.1		
_	-10.0 10.0	As above, with some brown fine sand, with slight sheen on groundwater no odor.	6	7	1.0		2.0		
12.0	-12.0 12.0 -13.0 13.0	As above, with no brown fine sand, no sheeing on ground water Silty Clay	7	7	10		2.6		#OON Sand Pack
_	-14.0 14.0 -14.5 14.5	Gray, wet, silty clay with trace fine sand, medium soft, high plasticity, laminated, no odor. As above. Peat	8	5	0.9		2.3		2" PVC 0.01
17.0		Dark brown, wet, peat, silt with little fine sand and few clay, medium pasticity, medium soft, with organic material, no odor.	9	6	1.0		2.2		
-	-18.0 18.0	End of Borehole							

Drilled By: Earth Dimensions, Inc. Drill Rig Type: CME 550 ATV rig

Drill Method: 4.25-inch HSA continous SS sample

Drill Date(s): 09/11/08

Hole Size: 9-inches Stick-up: approx. 3-feet Datum: mean sea level

Borehole Number: MWN-58A Project No: 0071-008-300

Project: Phase III Business Park A.K.A.:

Client: Arcelor Mittal Tecumseh Logged By: TAB

Site Location: Phase III Business Park Checked By: BCH

TurnKey Environmental Restoration, LLC 2558 Hamburg Turnpike, Suite 300 Buffalo, NY 14218 (716) 856-0635

		SUBSURFACE PROFILE	S	AM	PLE				
Depth (fbgs)	Elev. /Depth	Description (ASTM D2488: Visual-Manual Procedure)	Sample No.	SPT N-Value	Recovery (ft)	Symbol	PID VOCs ppm 0 12.5 25	Lab Sample	Well Completion Details or Remarks
-3.0 —									J-plug
	0.0	Ground Surface							Ckin
_	-2.0 2.0	Fill Dark brown and black, moist, non - plastic fines with some fine sand, and with few coarse sands and fine gravel, with blue grey slag, dense, loose when disturbed, no odor.	1	30	1.1		3.8		Concrete well pad
2.0 —	-4.0	As above, with blue slag peices, loose.	2	9	0.6		8.8		Concrete
_	4.0	As above, with yellow refractory brick no blue slag.	3	5	1.4		1.2		Seal
7.0	-6.0 6.0 -8.0	As above, wet.	4	6	1.5		1.5		Bentonite Seal
_	-10.0	As above.	5	5	0.6		2.1		2,1
_	10.0	As above	6	4	0.3		1.6		
12.0	12.0	Silty Clay Gray, wet, silty clay with trace fine sand, medium soft, high plasticity, laminated, no odor.	7	7	1.4		1.6		2" PVC 0.010 Stot Screen #00N Sand Pack
_	14.0	As above.	8	4	1.3		1.4		2" PVC 0.0
17.0	-16.0 16.0	As above.	9	7	1.7		1.9		
_	-18.0 18.0	End of Borehole							

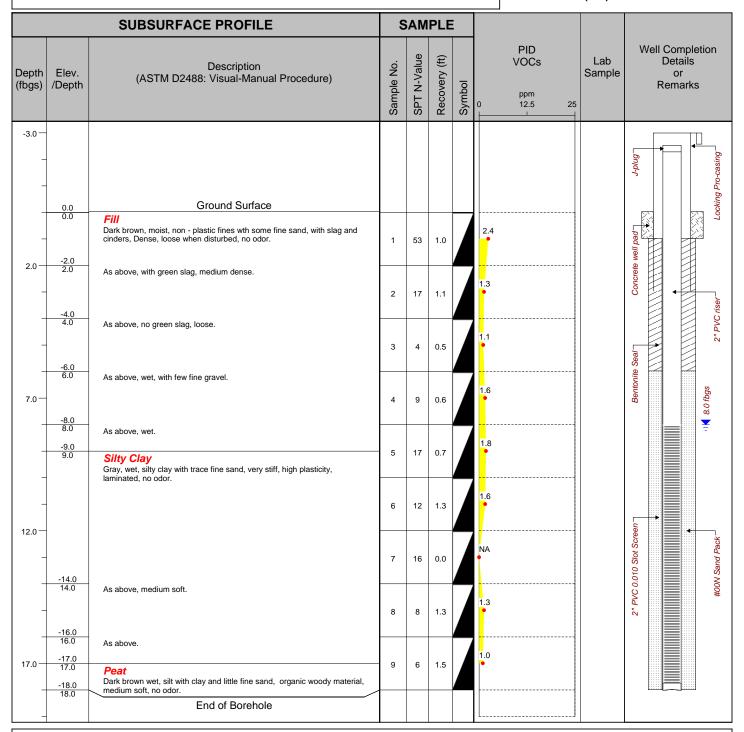
Drilled By: Earth Dimensions, Inc. Drill Rig Type: CME 550 ATV rig

Drill Method: 4.25-inch HSA continous SS sample

Drill Date(s): 9/12/08

Hole Size: 9-inch Stick-up: approx. 3 - foot Datum: mean sea level

Project No: 0071-008-300 Borehole Number: MWN-59A


Project: Phase III Business Park A.K.A.:

Client: Arcelor Mittal Tecumseh Logged By: TAB

Site Location: Phase III Business Park Checked By: BCH

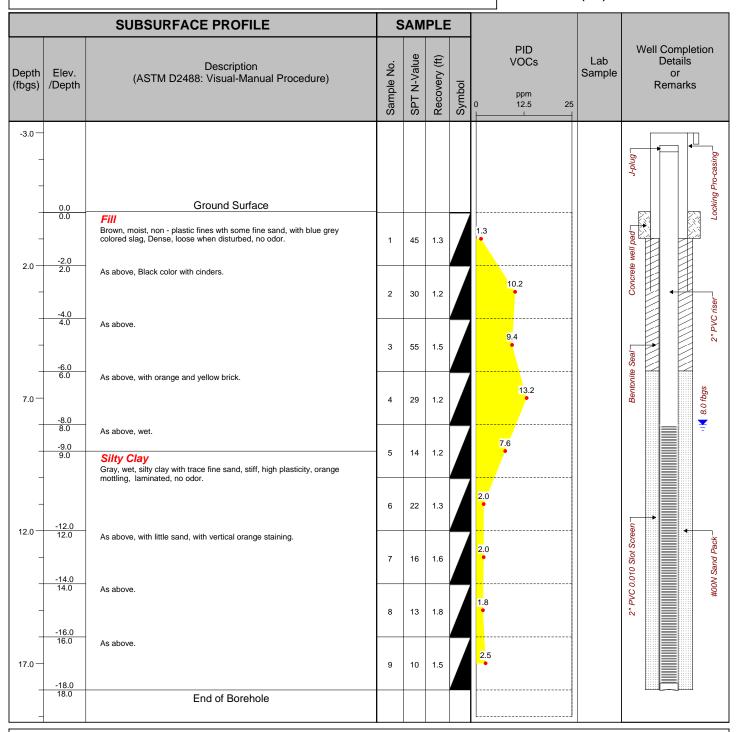
TurnKey Environmental Restoration, LLC 2558 Hamburg Turnpike, Suite 300 Buffalo, NY 14218 (716) 856-0635

Drilled By: Earth Dimensions
Drill Rig Type: Dietrich D120

Drill Method: 4.25-inch HSA continous SS sample

Drill Date(s): 9/16/08 Sheet: 1 of 1

Hole Size: 9 - inch Stick-up: approx. 3 - foot Datum: mean sea level Project No: 0071-008-300 **Borehole Number: MWN-60A**


Project: Phase III Business Park A.K.A.:

Client: Arcelor Mittal Tecumseh Logged By: TAB

Site Location: Phase III Business Park Checked By: BCH

TurnKey Environmental Restoration, LLC 2558 Hamburg Turnpike, Suite 300 Buffalo, NY 14218 (716) 856-0635

Drilled By: Earth Dimensions, Inc. Drill Rig Type: Dietrich D120

Drill Method: 4.25-inch HSA continous SS sample

Drill Date(s): 9/16/08

Hole Size: 9 - inch Stick-up: approx. 3 - foot Datum: mean sea level

Project No: 0071-008-300 Borehole Number: MWS-30A

Project: Phase III Business Park A.K.A.:

Client: Arcelor Mittal Tecumseh Logged By: TAB

Site Location: Phase III Business Park Checked By: BCH

TurnKey Environmental Restoration, LLC 2558 Hamburg Turnpike, Suite 300 Buffalo, NY 14218 (716) 856-0635

SUBSURFACE PROFILE				AM	PLE				
Depth (fbgs)	Elev. /Depth	Description (ASTM D2488: Visual-Manual Procedure)	Sample No.	SPT N-Value	Recovery (ft)	Symbol	PID VOCs ppm 0 12.5 25	Lab Sample	Well Completion Details or Remarks
-3.0 —	0.0	Ground Surface							J-plug
_	0.0	Fill							
2.0	-2.0 2.0	Brown to black, moist, non - plastic, fines with some fine sand, with cinders and slag peices, dense, loose when disturbed, no odor.	1	31	1.8		1.0		Concrete well pad
_		As above, loose.	2	8	1.4		8.5		Concre
-	-4.0 4.0	As above.	3	5	1.2		0.2		Seal
7.0	-6.0 6.0	As above, wet, with yellow color and broken up concrete, medium dense.	4	25	0.6		0.0		otonite (
_	-8.0 8.0	Silty Clay Gray, wet, silty clay with trace fine sand, very stiff , high plasticity, laminated, no odor.	5	12	1.6		1.0		Ber
_	-10.0 10.0	As above.	6	18	1.4		1.0		
12.0	12.0	As above, stiff.	7	11	1.6		0.8		2" PVC 0.010 Stot Screen
_	14.0	As above, medium soft.	8	8	1.4		1.7		2" PVC 0.
17.0	-16.0 16.0	As above, with little sand.	9	5	1.0		2.0		
-	-18.0 18.0	End of Borehole							
_									

Drilled By: Earth Dimensions Drill Rig Type: Dietrich D-120

Drill Method: 4.25-inch HSA continous SS sample

Drill Date(s): 9/18/08 Sheet: 1 of 1

Hole Size: 9 - inch Stick-up: approx. 3 - foot Datum: mean sea level

Borehole Number: MWS-33A Project No: 0071-008-300

Project: Phase III Business Park A.K.A.:

Client: Arcelor Mittal Tecumseh Logged By: TAB

Site Location: Phase III Business Park Checked By: BCH

TurnKey Environmental Restoration, LLC 2558 Hamburg Turnpike, Suite 300 Buffalo, NY 14218 (716) 856-0635

		SUBSURFACE PROFILE	S	AM	PLE				
Depth (fbgs)	Elev. /Depth	Description (ASTM D2488: Visual-Manual Procedure)	Sample No.	SPT N-Value	Recovery (ft)	Symbol	PID VOCs ppm 0 12.5 25	Lab Sample	Well Completion Details or Remarks
-3.0 —									J-plug
	0.0	Ground Surface							ckin
_	0.0	Fill Dark brown, moist, non - plastic fines wth some fine sand, with slag and cinders, Dense, loose when disturbed, no odor.	1	34	1.5		1.4		Concrete well pad
2.0 —	-2.0 2.0	As above.		100			<u> </u>		:refe
_			2	3	0.3		1.1		Com
			-		0.0				
-	-4.0 4.0	As above, with black slag.	3	17	0.7		1.7		ite Seal
_	-6.0 6.0								S S Z
7.0	-8.0	As above, wet, slight musty odor.	4	9	1.0		18.4		Bentonite Seal
_	8.0	Silty Clay Gray, wet, silty clay with trace fine sand, stiff, high plasticity, laminated, no odor.	5	9	1.3		20.4		
-	-10.0 10.0	As above, brown staining.							
12.0	-12.0 12.0		6	12	1.2		2.3		Lues The Control of t
_	-14.0	As above.	7	13	1.8		1.4		2" PVC 0.010 Stot Screen
_	14.0	As above.	8	6	1.6		0.4		2" PVC 0.
17.0	-16.0 16.0	As above, with little sand.	9	4	1.8		0.9		
-	-18.0 18.0			_					
	10.0	End of Borehole							
							L		

Drilled By: Earth Dimensions Drill Rig Type: Dietrich D120

Drill Method: 4.25-inch HSA continous SS sample

Drill Date(s): 9/18/08

Hole Size: 9 - inch Stick-up: approx. 3 - foot Datum: mean sea level

Project No: 0071-008-300 Borehole Number: MWS-34A

Project: Phase III Business Park A.K.A.:

Client: Arcelor Mittal Tecumseh Logged By: TAB

Site Location: Phase III Business Park Checked By: BCH

TurnKey Environmental Restoration, LLC 2558 Hamburg Turnpike, Suite 300 Buffalo, NY 14218 (716) 856-0635

		SUBSURFACE PROFILE	S	AM	PLE				
Depth (fbgs)	Elev. /Depth	Description (ASTM D2488: Visual-Manual Procedure)	Sample No.	SPT N-Value	Recovery (ft)	Symbol	PID VOCs ppm 0 25 50	Lab Sample	Well Completion Details or Remarks
-3.0 —									J-plug
	0.0	Ground Surface							ing
2.0	-2.0 2.0	Fill Dark brown to reddish brown, moist, non - plastic, fines with some fine sand and slag peices, with rusty material dense, loose when disturbed, no odor.	1	25	1.1		2.4		Concrete well pad
	-4.0	As above, with some coarse sand and fine garvel, mixed with blue grey slag.	2	16	1.2		2.1		Concrete
_	-6.0	As above but black with cinders.	3	22	1.3		1.7		Seal C
7.0	-8.0 8.0	As above, with orange brick, hydrocarbon type odor.	4	6	0.8		16.2		Bentonite Seal
_	-10.0	As above brown with hydrocarbon type odor. Auger refusal at 9.0 fbgs moved ~25.0 feet to west. Augered with out sampling encountered auger refusal at 4.0 fbgs, moved rig ~10.0 feet to west augered to 8.0 fbgs and continued sampling.	5	17	0.6		32.3		=
_	10.0 -12.0	Silty Clay Gray, wet, silty clay with trace fine sand, medium soft, high plasticity, laminated, no odor.	6	5	0.7		10.4		
12.0	-14.0	As above.	7	8	0.8		14.4		2" PVC 0.010 Stot Screen
_	-16.0	As above.	8	5	2.0		1.5		2" PVC 0.0 h
17.0	16.0	As above.	9	6	1.4		4.7		
-	-18.0 18.0	End of Borehole							
22.0 —									

Drilled By: Earth Dimensions, Inc Drill Rig Type: CME 550 ATV rig

Drill Method: 4.25-inch HSA continous SS sample

Drill Date(s): 9/12/08 & 9/15/08

Hole Size: 9 - inch Stick-up: aprrox 3 - foot Datum: mean sea level

Borehole Number: MWS-35A Project No: 0071-008-300

Project: Phase III Business Park A.K.A.:

Client: Arcelor Mittal Tecumseh Logged By: TAB

Site Location: Phase III Business Park Checked By: BCH

TurnKey Environmental Restoration, LLC 2558 Hamburg Turnpike, Suite 300 Buffalo, NY 14218 (716) 856-0635

		SUBSURFACE PROFILE	S	SAM	PLE				
Depth (fbgs)	Elev. /Depth	Description (ASTM D2488: Visual-Manual Procedure)	Sample No.	SPT N-Value	Recovery (ft)	Symbol	PID VOCs ppm 0 12.5 25	Lab Sample	Well Completion Details or Remarks
-3.0 — _									J-plug
	0.0	Ground Surface							ckin
_	-2.0	Fill Dark brown, moist, non - plastic fines with some fine sand few fine gravel, and slag peices, with yellow refractory brick and cinders, medium dense, loose when disturbed, no odor.	1	20	1.5		4.3		Concrete well pad
2.0 —	2.0	As above, with more cinders and orange brick.	2	9	1.2		1.0		
_	4.0	As above, with yellow refractory brick.	3	17	1.2		1.7		2" PVC risel
7.0	-6.0 6.0	As above, with no yellow and orange brick.	4	10	0.8		11.6		Bentonite Seal
_	-8.0 8.0	As above, wet, very dense, auger refusal at 9.0 fbgs moved ~15.0 feet to west, augered with out sampling to 10.0 fbgs and continued sampling.	5	100	0.6		1.4		=
_	-10.0 10.0	As above, but black with few coarse gravel.	6	44	1.3		0.6		
12.0	-12.0 12.0	As above, medium dense.	7	21	0.4		0.8		PVC 0.010 Stot Screen
_	-14.0 14.0	Silty Clay Gray, wet, silty clay with trace fine sand, medium soft, high plasticit, laminated. no odor.	8	7	1.0		0.8		2" PVC 0.0
17.0	-16.5 16.5 -18.0	Peat Dark brown, wet, silt with clay and few fine sand, medium soft, with organic material, no odor.	9	6	1.5		0.3		
	18.0	End of Borehole							لنسبل است

Drilled By: Earth Dimensions, Inc. Drill Rig Type: CME 550 ATV rig

Drill Method: 4.25-inch HSA continous SS sample

Drill Date(s): 9/15/08

Hole Size: 9 - inch Stick-up: aprrox. 3 - foot Datum: mean sea level

Project No: 0071 - 009 - 310 Borehole Number: MWN-61A

Project: Phase IIIA Business Park Area A.K.A.:

Client: Tecumseh Redevelopment Inc. Logged By: TAB

Site Location: Lackawanna , NY Checked By: BCH

TurnKey Environmental Restoration, LLC 2558 Hamburg Turnpike, Suite 300 Buffalo, NY 14218 (716) 856-0635

		SUBSURFACE PROFILE	S	AM	PLE				
Depth (fbgs)	Elev. /Depth	Description (ASTM D2488: Visual-Manual Procedure)	Sample No.	SPT N-Value	Recovery (ft)	Symbol	PID VOCs ppm 0 12.5 25	Lab Sample	Well Completion Details or Remarks
-3.0 —									
_	0.0 0.0	Ground Surface FIII Dark Brown, moist, fill, non plastic fines with some fine and coarse sand, few coarse gravel, grey slag, very dense, loose when disturbed.	1	NA	0.8		0.0		Concrete Concrete
2.0	-4.0 4.0	As above, black, red/orange slag peices.	2	94	1.6		0.3		2" PVC Riser 17, 2009 Bentonite chips
_	-6.0	As above.	3	91	1.8		1.1		2" F PVC Screen, 0.010" slot — 2" F
7.0	-8.0 8.0	As above, wet.	4	24	0.8		0.0		
-		As above, slight sheen and slight petroleum-like odor.	5	19	0.5		0.0		10" slot ————————————————————————————————————
12.0	-10.5 10.5 -12.0 12.0	Lean Clay Dark grey, wet, medium plasticity fines, little fine sand, trace coarse sand, rootlets. As above	6	4	0.5		4.5		2" PVC Screen, 0.010" slot
_	-14.0 14.0		7	5	1.3		4.4		
-	-16.0	As above, trace fine sand.	8	8	1.5		0.0		<u>.</u>
17.0	16.0	End of Borehole							

Drilled By: Earth Dimensions, Inc. Drill Rig Type: Deitrich D120

Drill Method: 2-foot split spoon fowolled by 41/4-inch hollow stem augers

Comments:

Drill Date(s): 11/17/09 - 11/20/09

Hole Size: 8.5-inch Stick-up: 2.5 - feet Datum: Mean Sea level

Project No: 0071 - 009 - 310 Borehole Number: MWN-62D

Project: Phase IIIA Business Park Area A.K.A.:

Client: Tecumseh Redevelopment, Inc. Logged By: TAB

Site Location: Lackawanna, NY Checked By: BCH

TurnKey Environmental Restoration, LLC 2558 Hamburg Turnpike, Suite 300 Buffalo, NY 14218 (716) 856-0635

		SUBSURFACE PROFILE	S	AM	PLE				
Depth (fbgs)			Sample No.	SPT N-Value	Recovery (ft)	Symbol	PID VOCs ppm 0 12.5 25	Lab Sample	Well Completion Details or Remarks
-3.0 —	0.0 0.0 -2.0 2.0 -4.0 4.0 -6.0	Ground Surface Fill Black, moist, fill, non plastic fines with some fine and coarse sand, few coarse gravel, grey slag, very dense, loose when disturbed, yellow brick. As above, no yellow brick, with coal peices Lean Clay Dark brown/black and grey, moist, mostly medium plastic fines with some fine sand, with coal peices, medium plasticity. Poorly Graded Sand with Silt and Gravel Brown to grey, wet, fine sand with few coarse sand and trace coarse gravel and non-plasstic fines, rapid dilatancy, medium dense.	1 2 3 4 5	29 29 5 11 16	1.1 1.5 0.8 1.3 1.0		0.0 0.0 0.0 0.0		Cemnt/Bentonite grout Protective Casing
17.0	-13.0 13.0 -16.0 16.0	Organic soil with sand Brown, wet, mostly low plasticity fines, little fine sand, organic material. As above	7 8 9	28 7 6	0.7 1.5		0.0		Cem
22.0	-18.0 18.0 -19.0 19.0	Lean Clay Grey, wet, mostly high plasticiy fines with trace fine sand, soft. Organic Soil with Sand As 13.0 fbgs to 18.0 fbgs.	10	5	1.6		0.0		
27.0 —	-24.0 24.0 24.0 -28.0 28.0	Silty Sand Grey, wet, mostly non plastic fines with some fine sand, loose, rapid dilatancy Lean Clay Grey, wet, mostly high plasticity fines, trace fine and coarse sand, varved with reddish brown layers where clay is not extremly soft.	13 14 15	7 15 13	1.4 1.8 1.0		0.0		2" PVC Riser

Drilled By: Earth Dimensions, Inc. Drill Rig Type: Deitrich D120

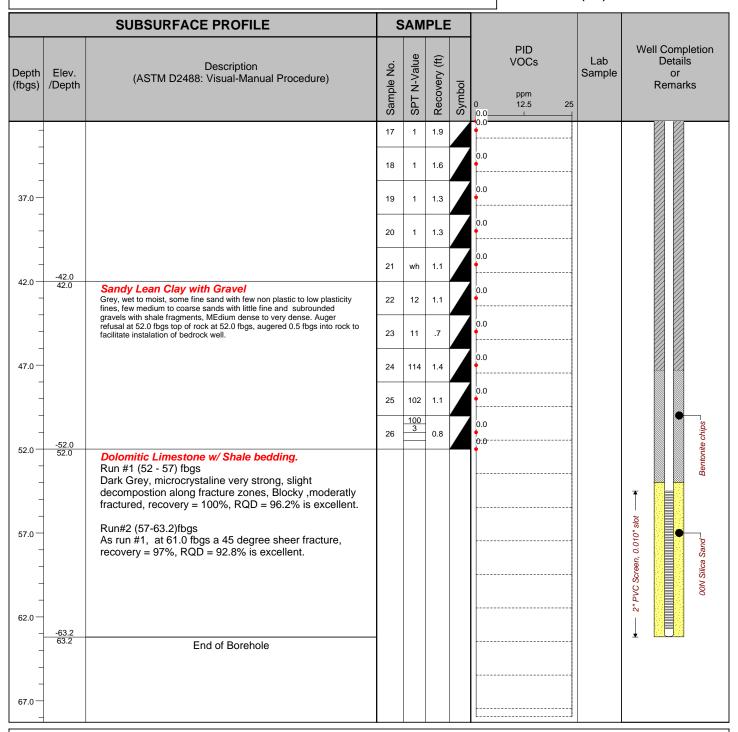
Drill Method: 2-foot split spoon fowolled by 41/4-inch hollow stem augers

Comments:

Drill Date(s): 11/17/09 - 11/20/09

Hole Size: 8,5-inch Stick-up: 2.5 - feet Datum: Mean Sea level

Project No: 0071 - 009 - 310 Borehole Number: MWN-62D


Project: Phase IIIA Business Park Area A.K.A.:

Client: Tecumseh Redevelopment, Inc. Logged By: TAB

Site Location: Lackawanna, NY Checked By: BCH

TurnKey Environmental Restoration, LLC 2558 Hamburg Turnpike, Suite 300 Buffalo, NY 14218 (716) 856-0635

Drilled By: Earth Dimensions, Inc. Drill Rig Type: Deitrich D120

Drill Method: 2-foot split spoon fowolled by 41/4-inch hollow stem augers

Comments:

Drill Date(s): 11/17/09 - 11/20/09

Hole Size: 8,5-inch Stick-up: 2.5 - feet Datum: Mean Sea level

Project No: 0071 - 009 - 310 Borehole Number: MWS-31A

Project: Phase IIIA Business Park Area A.K.A.:

Client: Tecumseh Redevelopment, Inc. Logged By: TAB

Site Location: Lackawanna, NY Checked By:

TurnKey Environmental Restoration, LLC 2558 Hamburg Turnpike, Suite 300 Buffalo, NY 14218 (716) 856-0635

		SUBSURFACE PROFILE	S	SAM	PLE				
Depth (fbgs)	Elev. /Depth	Description (ASTM D2488: Visual-Manual Procedure)	Sample No.	SPT N-Value	Recovery (ft)	Symbol	PID VOCs ppm 0 12.5 25	Lab Sample	Well Completion Details or Remarks
-3.0 —									■ ↓ buis
_	0.0	Ground Surface		100		_			crete
		FIII Black/grey, moist, fill, non plastic fines with some fine and coarswe sand,		3			0.0		e de la control
-		some grey salg, with rootlets at top, very dense, loose when disturbed.	1		0.7		•		Concrete
	-2.0								Cou
2.0	2.0	As above, black							396
-	4.0		2	32	1.4		0.0		2" PVC Riser
-	-4.0 4.0	As above with orange brick in shoe							2
_	-6.0		3	30	0.8		0.0		0000
_	6.0	As above dark brown, yellow brick in shoe							" slot
7.0			4	74	1.4		0.0		PVC Screen, 0.010" slot
_	-8.0 8.0	As above, wet with coal peices							P P
-			5	12	1.3		0.0		2" PVC Screen, 0.010" slot
	-10.5								0
-	10.5	Lean Clay Grey, wet to moist, high plasticity fines, few fine sand, trace coarse sand, stiff.	6	9	1.5		0.0		
12.0	-12.0 12.0	End of Borehole							
		End of Botonoic							
_									
_									
-									
-									
47.0									
17.0									

Drilled By: Earth Dimensions, Inc. Drill Rig Type: Deitrich D120

Drill Method: 2-foot split spoon fowolled by 41/4-inch hollow stem augers

Comments:

Drill Date(s): 11/17/09 - 11/20/09

Hole Size: 8-inch Stick-up: 2.5 - feet Datum: Mean Sea level

APPENDIX C

DATA USABILITY SUMMARY REPORTS (DUSRS)

Data Usability Summary Report

Vali-Data of WNY, LLC 1514 Davis Rd. West Falls, NY 14170

Tecumseh Redevelopment Site
Phase III Business Park
TestAmerica Laboratories Inc. #A08-A306
December 2, 2008

Prepared by

Jodi Zimmerman, B.S. Owner Vali-Data of WNY, LLC 1514 Davis Rd. West Falls, NY 14170

DELIVERABLES

This Data Usability Summary Report (DUSR) was prepared by evaluating the analytical data package for Turnkey/Benchmark, Tecumseh Redevelopment Site, Phase III Business Park, TestAmerica Laboratories, Inc. ID A08-A306, submitted to Vali-Data of WNY, LLC on October 30, 2008. The laboratory performed the analyses using USEPA methods 8260 (TCLP Volitile Organics), 8270 (Semi-Volitile Organics), 8082 (PCBs), 6010 (Inorganics), 7470 (Mercury), 1010(Flashpoint) and 1311(Toxicity Characteristic Leaching Procedure).

VOLATILE ORGANIC COMPOUNDS

The following items/criteria were reviewed for this analytical suite:

- Data Completeness
- Narrative and Data Reporting Forms
- Chain-of-Custody and Traffic Reports
- Holding Times
- Internal Standard (IS) Area Performance
- Surrogate Spike Recoveries
- Method Blank
- Laboratory Control Samples
- MS/MSD
- Compound Quantitation
- Initial Calibration
- Continuing Calibration
- GC/MS Performance Check

The items listed above were technically in compliance with the method and SOP criteria with the exceptions discussed in the text below. The data have been reviewed according to the procedures outlined above and qualified accordingly.

OVERALL EVALUATION OF DATA AND POTENTIAL USABILITY ISSUES

The data are acceptable for use except where qualified below in the MS/MSD and Surrogate Recoveries.

DATA COMPLETENESS

All criteria were met.

NARRATIVE AND DATA REPORTING FORMS

CHAIN-OF CUSTODY AND TRAFFIC REPORTS

All criteria were met except.

HOLDING TIMES

All holding times for the samples were met.

INTERNAL STANDARD (IS)

The IS did meet criteria for all samples.

SURROGATE SPIKE RECOVERIES

Surrogate recoveries were met.

METHOD BLANK

All the criteria were met.

FIELD DUPLICATE SAMPLE PRECISION

No field duplicate was performed.

LABORATORY CONTROL SAMPLES

All criteria were met except the %Rec for 2-Butanone fell outside of QC limits; however, this analyte was not found in the sample.

MS/MSD

No MS/MSD samples were performed.

COMPOUND QUANTITATION

All criteria were met.

INITIAL CALIBRATION

All criteria were met.

CONTINUING CALIBRATION

All criteria were met.

GC/MS PERFORMANCE CHECK

All criteria were met.

SEMIVOLATILE ORGANIC COMPOUNDS

The following items/criteria were reviewed for this analytical suite:

- Data Completeness
- Narrative and Data Reporting Forms
- Chain-of-Custody and Traffic Reports
- Holding Times
- Internal Standard (IS) Area Performance
- Surrogate Spike Recoveries
- Method Blank
- Laboratory Control Samples
- MS/MSD
- Compound Quantitation
- Initial Calibration
- Continuing Calibration
- GC/MS Performance Check

The items listed above were technically in compliance with the method and SOP criteria with the exceptions discussed in the text below. The data have been reviewed according to the procedures outlined above and qualified accordingly.

OVERALL EVALUATION OF DATA AND POTENTIAL USABILITY ISSUES

Overall the data are usable except where qualified below in the Method Blank.

DATA COMPLETENESS

All criteria were met.

NARRATIVE AND DATA REPORTING FORMS

All criteria were met.

CHAIN-OF CUSTODY AND TRAFFIC REPORTS

All criteria were met.

HOLDING TIMES

All holding times were met.

INTERNAL STANDARD (IS)

The IS did meet criteria.

SURROGATE SPIKE RECOVERIES

Surrogate recoveries were met.

METHOD BLANK

All criteria were met except the blank contained Chrysene. All blanks and the associated samples were qualified as estimated.

FIELD DUPLICATE SAMPLE PRECISION

No field duplicate was performed.

LABORATORY CONTROL SAMPLES

No laboratory control samples were performed.

MS/MSD

All criteria were met.

COMPOUND QUANTITATION

All criteria were met.

INITIAL CALIBRATION

All criteria were met.

CONTINUING CALIBRATION

All criteria were met.

GC/MS PERFORMANCE CHECK

All criteria were met.

POLYCHLORINATED BIPHENYLS

The following items/criteria were reviewed for this analytical suite:

- Data Completeness
- Narrative and Data Reporting Forms
- Chain-of-Custody and Traffic Reports
- Holding Times
- Internal Standard (IS) Area Performance
- Surrogate Spike Recoveries
- Method Blank
- Holding Blank
- Field Duplicate Precision
- Laboratory Control Samples
- MS/MSD
- Compound Quantitation
- Initial Calibration

- Continuing Calibration
- GC/MS Tuning

The items listed above were technically in compliance with the method and SOP criteria with the exceptions discussed in the text below. The data have been reviewed according to the procedures outlined above and qualified accordingly.

OVERALL EVALUATION OF DATA AND POTENTIAL USABILITY ISSUES

The data are acceptable for use.

DATA COMPLETENESS

All criteria were met except the columns were mislabeled for several 'PCB Single Point Calibration of Multi-component Analytes' The appropriate corrections have been made by the laboratory and are attached.

NARRATIVE AND DATA REPORTING FORMS

All criteria were met.

CHAIN-OF CUSTODY AND TRAFFIC REPORTS

All criteria were met.

HOLDING TIMES

All holding times for the samples were met.

INTERNAL STANDARD (IS)

The IS did meet criteria for all samples.

SURROGATE SPIKE RECOVERIES

Surrogate recoveries were met.

METHOD BLANK

All the criteria were met for the method blank.

HOLDING BLANK

No holding blank was acquired.

FIELD DUPLICATE SAMPLE PRECISION

No field duplicate was performed.

LABORATORY CONTROL SAMPLES

No laboratory control samples were performed.

MS/MSD

All criteria were met.

COMPOUND QUANTITATION

All criteria were met.

INITIAL CALIBRATION

All criteria were met

CONTINUING CALIBRATION

All criteria were met except %D was out of range for Arochlor1260 and Decachlorobiphenyl for continuing calibration run dated 8/27/08, 13:09, off column #2.

GC/MS TUNING

All criteria were met.

TAL METALS

The following items/criteria were reviewed for this analytical suite:

- Data Completeness
- Narrative and Data Reporting Forms
- Chain-of-Custody and Traffic Reports
- Holding Times
- Method Blank
- Laboratory Control Samples
- MS/MSD
- Duplicate
- Serial Dilution
- Compound Quantitation
- Calibration

The items listed above were technically in compliance with the method and SOP criteria with the exceptions discussed in the text below. The data have been reviewed according to the procedures outlined above.

OVERALL EVALUATION OF DATA AND POTENTIAL USABILITY ISSUES

The data are acceptable for use.

DATA COMPLETENESS

NARATIVE AND DATA REPORTING FORMS

All criteria were met.

CHAIN OF CUSTODY AND TRAFFIC REPORTS

All criteria were met.

HOLDING TIMES

All criteria were met.

METHOD BLANK

All criteria were met.

LABORATORY CONTROL SAMPLE

All criteria were met.

MS/MSD

All criteria were met.

DUPLICATE

All criteria were met.

SERIAL DILUTIONS

All criteria were met except the %D for a few analytes were out of range. Those analytes were not found in the samples.

COMPOUND QUANITATION

All criteria were met.

CALIBRATION

All criteria were met except Barium was out of QC limits for AD848601.

MERCURY

The following items/criteria were reviewed for this analytical suite:

- Data Completeness
- Narrative and Data Reporting Forms
- Chain-of-Custody and Traffic Reports
- Holding Times
- Method Blank
- Laboratory Control Samples
- MS
- Compound Quantitation

- Calibration

The items listed above were technically in compliance with the method and SOP criteria with any exceptions discussed in the text below. The data have been reviewed according to the procedures outlined above.

OVERALL EVALUATION OF DATA AND POTENTIAL USABILITY ISSUES

The data are acceptable for use.

DATA COMPLETENESS

All criteria were met.

NARRATIVE AND DATA REPORTING FORMS

All criteria were met.

CHAIN-OF-CUSTODY

All criteria were met.

HOLDING TIMES

All criteria were met.

METHOD BLANK

All criteria were met.

LABORATORY CONTROL SAMPLES

All criteria were met.

MS/MSD

All criteria were met except where indicated above.

COMPOUND QUANTITATION

All criteria were met.

CALIBRATION

Data Usability Summary Report

Vali-Data of WNY, LLC 1514 Davis Rd. West Falls, NY 14170

Tecumseh Redevelopment Site
Phase III Business Park
TestAmerica Laboratories Inc. #A08-A153, A226
December 4, 2008

Prepared by

Jodi Zimmerman, B.S. Owner Vali-Data of WNY, LLC 1514 Davis Rd. West Falls, NY 14170

DELIVERABLES

This Data Usability Summary Report (DUSR) was prepared by evaluating the analytical data package for Turnkey/Benchmark, Tecumseh Redevelopment Site, Phase III Business Park, TestAmerica Laboratories, Inc. ID A08-A153, -A226, submitted to Vali-Data of WNY, LLC on October 30, 2008. The laboratory performed the analyses using USEPA methods, 8260 (Volatile Organics & STARS), 8021 (Volatile Organics), 8270 (Semi-Volatile Organics), 8270 (TCL Base Neutral Compounds), 8082 (PCBs), 6010 (Inorganics), 7471 (Mercury), 9012A (Cyanide).

VOLATILE ORGANIC COMPOUNDS

The following items/criteria were reviewed for this analytical suite:

- Data Completeness
- Narrative and Data Reporting Forms
- Chain-of-Custody and Traffic Reports
- Holding Times
- Internal Standard (IS) Area Performance
- Surrogate Spike Recoveries
- Method Blank
- Laboratory Control Samples
- MS/MSD
- Compound Quantitation
- Initial Calibration
- Continuing Calibration
- GC/MS Performance Check

The items listed above were technically in compliance with the method and SOP criteria with the exceptions discussed in the text below. The data have been reviewed according to the procedures outlined above and qualified accordingly.

OVERALL EVALUATION OF DATA AND POTENTIAL USABILITY ISSUES

The data are acceptable for use except where qualified below in the Method Blank.

DATA COMPLETENESS

All criteria were met.

NARRATIVE AND DATA REPORTING FORMS

All criteria were met.

CHAIN-OF CUSTODY AND TRAFFIC REPORTS

All criteria were met except the Sample ID #'s were unreadable on the Chain of Custody. A more legible copy was submitted by the lab and is attached.

HOLDING TIMES

All holding times for the samples were met.

INTERNAL STANDARD (IS)

The IS did meet criteria for all samples.

SURROGATE SPIKE RECOVERIES

Surrogate recoveries were met except a,a,a-Trifluorotoluene fell outside the QC limits, low, in the BlindMS for Method 8021. Surrogate recoveries fell within limits for the samples.

METHOD BLANK

All the criteria were met except the method blank, for Method 8260, contained Toluene, which was J qualified.

FIELD DUPLICATE SAMPLE PRECISION

No field duplicate was performed.

LABORATORY CONTROL SAMPLES

No laboratory control samples were performed.

MS/MSD

All criteria were met except the %Rec for 1, 1-Dichloroethene was out of range, high, in the MS in Method 8260.

COMPOUND QUANTITATION

All criteria were.

INITIAL CALIBRATION

All criteria were met.

CONTINUING CALIBRATION

All criteria were met except the %D for a,a,a-Trifluorotoluene fell outside the QC limits.

GC/MS PERFORMANCE CHECK

SEMIVOLATILE ORGANIC COMPOUNDS

The following items/criteria were reviewed for this analytical suite:

- Data Completeness
- Narrative and Data Reporting Forms
- Chain-of-Custody and Traffic Reports
- Holding Times
- Internal Standard (IS) Area Performance
- Surrogate Spike Recoveries
- Method Blank
- Laboratory Control Samples
- MS/MSD
- Compound Quantitation
- Initial Calibration
- Continuing Calibration
- GC/MS Performance Check

The items listed above were technically in compliance with the method and SOP criteria with the exceptions discussed in the text below. The data have been reviewed according to the procedures outlined above and qualified accordingly.

OVERALL EVALUATION OF DATA AND POTENTIAL USABILITY ISSUES

Overall the data are usable.

DATA COMPLETENESS

All criteria were met.

NARRATIVE AND DATA REPORTING FORMS

All criteria were met.

CHAIN-OF CUSTODY AND TRAFFIC REPORTS

All criteria were met.

HOLDING TIMES

All holding times for the samples were met.

INTERNAL STANDARD (IS)

The IS did meet criteria for all samples except Perylene-D12 was above the QC limits for sample TP-31 (0-2)DL. All other IS for TP-31(0-2)DL were within limits.

SURROGATE SPIKE RECOVERIES

Surrogate recoveries were met except 2,4,6-Tribromophenol was out of range, low, for samples TP-32(0-2) and Blind. All other surrogates for these samples fell within QC limits.

METHOD BLANK

All the criteria were met for the method blank except Chrysene was detected and qualified accordingly in the blank and the samples

FIELD DUPLICATE SAMPLE PRECISION

No field duplicate was performed.

LABORATORY CONTROL SAMPLES

No laboratory control samples were performed.

MS/MSD

All criteria were met except, % RPD was out of range, high, for Pyrene. Three analytes were found in the MS, Hexachloropentadiene, 4,6-Dinitro-2-methylphenol and 2,4-Dinitrophenol, and were qualified as estimated. The latter two were also found in the MSD, also qualified as estimated. None of these analytes were detected in the sample.

COMPOUND QUANTITATION

All criteria were.

INITIAL CALIBRATION

All criteria were met.

CONTINUING CALIBRATION

All criteria were met.

GC/MS PERFORMANCE CHECK

All criteria were met.

POLYCHLORINATED BIPHENYLS

The following items/criteria were reviewed for this analytical suite:

- Data Completeness
- Narrative and Data Reporting Forms
- Chain-of-Custody and Traffic Reports
- Holding Times
- Internal Standard (IS) Area Performance

- Surrogate Spike Recoveries
- Method Blank
- Holding Blank
- Field Duplicate Precision
- Laboratory Control Samples
- MS/MSD
- Compound Quantitation
- Initial Calibration
- Continuing Calibration
- GC/MS Tuning

The items listed above were technically in compliance with the method and SOP criteria with the exceptions discussed in the text below. The data have been reviewed according to the procedures outlined above and qualified accordingly.

OVERALL EVALUATION OF DATA AND POTENTIAL USABILITY ISSUES

Overall the data are acceptable for use.

DATA COMPLETENESS

All criteria were met except the columns were mislabeled for several 'PCB Single Point Calibration of Multi-component Analytes' The appropriate corrections have been made by the laboratory and are attached.

NARRATIVE AND DATA REPORTING FORMS

All criteria were met.

CHAIN-OF CUSTODY AND TRAFFIC REPORTS

All criteria were met.

HOLDING TIMES

All holding times for the samples were met.

INTERNAL STANDARD (IS)

The IS did meet criteria for all samples.

SURROGATE SPIKE RECOVERIES

Surrogate recoveries were met for the Method Blank and Matrix Spike Blank. The %Rec for Decachlorobiphenyl off column #2 was out of range high for all samples. The %Rec for Decachlorobiphenyl off column #1 was out of range high for TP-20(0-2)MS.

METHOD BLANK

All the criteria were met for the method blank.

HOLDING BLANK

No holding blank was acquired.

FIELD DUPLICATE SAMPLE PRECISION

No field duplicate was performed.

LABORATORY CONTROL SAMPLES

No laboratory control samples were performed.

MS/MSD

All criteria were met except %Rec was out of range of the QC limits, high, for Arochlor 1260 in the MS. Due to this, the %RPD for Arochlor 1260 was out of range.

COMPOUND QUANTITATION

All criteria were met.

INITIAL CALIBRATION

All criteria were met

CONTINUING CALIBRATION

All criteria were met except the %D was out of range for Arochlor 1260 and DCBP on 8/27/2008 at 13:09 and DCBP on 8/27/08 at 15:13 and 17:21 off the second column (ZB-35).

GC/MS TUNING

All criteria were met.

TAL METALS

The following items/criteria were reviewed for this analytical suite:

- Data Completeness
- Narrative and Data Reporting Forms
- Chain-of-Custody and Traffic Reports
- Holding Times
- Method Blank
- Laboratory Control Samples
- MS/MSD
- Duplicate
- Serial Dilution
- Compound Quantitation
- Calibration

The items listed above were technically in compliance with the method and SOP criteria with the exceptions discussed in the text below. The data have been reviewed according to the procedures outlined above.

OVERALL EVALUATION OF DATA AND POTENTIAL USABILITY ISSUES

Overall the data are acceptable for use except those qualified in Serial Dilutions, MS/MSD and Duplicate below.

DATA COMPLETENESS

All criteria were met.

NARATIVE AND DATA REPORTING FORMS

All criteria were met.

CHAIN OF CUSTODY AND TRAFFIC REPORTS

All criteria were met.

HOLDING TIMES

All criteria were met.

METHOD BLANK

All criteria were met.

LABORATORY CONTROL SAMPLE

All criteria were met.

MS/MSD

All criteria were met except Antimony, Barium, Mercury and Vanadium fell out of range, low, for %Rec in TP-20MS. The %Rec was out of range, high, for Chromium and Vanadium in TP-20SD. The %Rec was out of range, low, for Antimony, Nickel and Mercury in TP-20SD. All metals where no control limits were provided showed sample results in which the concentration was >5x the concentration of spike added.

A post-digest spike sample recovery was performed and yielded %Rec out of range of the QC limits for Calcium, Iron, Lead, Manganese and Zinc. These results, in conjunction with the MS/SD results, could be an indication of matrix interference. These metals should be qualified as estimated in TP-20(0-2)MS/SD/A(post digest) and TP-20(0-2).

DUPLICATE

All metals except Arsenic, Copper, Iron, Lead, Nickel, Mercury and Zinc exceeded the RPD between the sample TP-20(0-2) and the duplicate TP-20(0-2)SD. This indicates nonhomogeneity of the samples.

Vanadium is the only metal with sample result and duplicate result >5x CRQL, thus should be qualified as estimated in TP-20(0-2)MS/SD and TP-20(0-2). TestAmerica has qualified these metals in the samples.

SERIAL DILUTIONS

All criteria were met except, Arsenic, Calcium, Nickel and Zinc were out of range, E qualified. All associated samples are qualified.

COMPOUND QUANITATION

All criteria were met.

CALIBRATION

All criteria were met.

MERCURY

The following items/criteria were reviewed for this analytical suite:

- Data Completeness
- Narrative and Data Reporting Forms
- Chain-of-Custody and Traffic Reports
- Holding Times
- Method Blank
- Laboratory Control Samples
- MS
- Compound Quantitation
- Calibration

The items listed above were technically in compliance with the method and SOP criteria with any exceptions discussed in the text below. The data have been reviewed according to the procedures outlined above.

OVERALL EVALUATION OF DATA AND POTENTIAL USABILITY ISSUES

The data are acceptable for use except were indicated in the Inorganics section above.

DATA COMPLETENESS

All criteria were met.

NARRATIVE AND DATA REPORTING FORMS

All criteria were met.

CHAIN-OF-CUSTODY

HOLDING TIMES

All criteria were met.

METHOD BLANK

All criteria were met.

LABORATORY CONTROL SAMPLES

All criteria were met.

MS/MSD

All criteria were met except where indicated above.

COMPOUND QUANTITATION

All criteria were met.

CALIBRATION

All criteria were met.

CYANIDE

The following Items/criteria were reviewed for this analytical suite:

- Data Completeness
- Narrative and Data Reporting Forms
- Chain-of-Custody and Traffic Reports
- Holding Times
- Method Blank
- Laboratory Control Samples
- MS
- Compound Quantitation
- Calibration

The items listed above were technically in compliance with the method and SOP criteria with any exceptions discussed in the text below. The data have been reviewed according to the procedures outlined above.

OVERALL EVALUATION OF DATA AND POTENTIAL USABILITY ISSUES

The data are usable except those indicated as qualified in the MS/MSD below.

DATA COMPLETENESS

NARRATIVE AND DATA REPORTING FORMS

All criteria were met.

CHAIN-OF-CUSTODY

All criteria were met.

HOLDING TIMES

All criteria were met.

METHOD BLANK

All criteria were met.

LABORATORY CONTROL SAMPLES

All criteria were met.

MS/MSD

All criteria were met except several samples within the Batch QC, %Rec fell out of range, half of which was out of range high the other half low. The MS/SD was not performed on any of the samples in this sample delivery group. No post-distillation spike was performed.

COMPOUND QUANTITATION

All criteria were met.

CALIBRATION

APPENDIX D

ANALYTICAL DATA PACKAGES (PROVIDED ELECTRONICALLY)

APPENDIX E

SAMPLE RESULTS FOR ALF-02

EMSL Analytical, Inc.

490 Rowley Road, Depew, NY 14043

Fax: (716) 651-0394 Phone: (716) 651-0030 Email: buffalolab@emsl.com

Attn: Thomas A. Behrendt

Turnkey Environmental Restoration, LLC

726 Exchange Street

Suite 624

Buffalo, NY 14210

(716) 856-0583

Phone: (716) 856-0599

Project: None

Fax:

EMSL Proj:

Analysis Date:

Customer ID:

Customer PO:

EMSL Order:

Received:

9/22/2008

TURN30

140805305

09/19/08 5:18 PM

Test Report: Asbestos Analysis of Bulk Materials by PLM via the NY State ELAP 198.1 Method

				<u>Non</u>	-Asbestos		<u>Asbestos</u>
Sample	Description	Appearance	%	Fibrous	%	Non-Fibrous	% Type
AEF02(1.5-4.0)	asbestos landfill	Gray			100.009	% Non-fibrous (other)	None Detected
140805305-0001	location #2	Non-Fibrous					
		Homogeneous					

Initial report from 09/22/2008	12:29:43		
		 	 _

Analyst(s)

Andrew Maciejewski (1)

Rhonda McGee, Laboratory Manager or other approved signatory

PLM has been known to miss asbestos in a small percentage of samples which contain asbestos. Negative PLM results cannot be guaranteed. Samples reported as <1% or none detected should be tested with TEM. The above test report relates only to the items tested. This report may not be reproduced, except in full, without written approval by EMSL Analytical, Inc. The above test must not be used by the client to claim product endorsement by NVLAP nor any agency of the United States Government. Unless otherwise noted, the results in this report have not been blank corrected. Samples received in good condition unless otherwise noted. Samples analyzed by EMSL Analytical, Inc. 490 Rowley Road, DepewNY NYS ELAP 11606

140805305

Qualitative

Quantitative

Chain of Custody

EMSL Analytical, Inc. 490 Rowley Road Depew, NY 14043

Asbestos Lab Services

Phone: (716) 651-0030 Fax: (716) 651-0394 http://www.emsl.com

Please print all information legibly.

Company:	Turnkey l	Environmental Re	storation	Bill	To:	Turnl	cey Environmental	Restoration	
Address I:	726 Exch	ange St, Suite 624		Addı	ress1:	726 E	exchange St, Suite 6	524	
Address2:				Addı	ress2:				
City, State:	Buffalo, 1	٧Y		City,	State:	Buffa	ilo, NY		
Zip/Post Cod	le: 14210			Zip/Post Code: 14			0		
Country:	US			Cou	ntry:	US			
Contact Nam	ie: Thomas I	Behrendt		Attn		Thon	nas Behrendt		
Phone:	716-856-	0635		Pho	ne:	716-8	356-0635		
Fax:	716-856-	0583		Fax:	-	716-8	356-0583		
Email:	Tbehrend	t@turnkeyllc.com	1	Ema	il:	Tbeh	rendt@turnkeyllc.c	om	
EMSL Rep:				P.O.	Number:	,			
Project Nam	e/Number:								
	MATRIX				T	URN	AROUND		
Air	Soil	Micro-Vac	3 Ho	urs	☐ 6 Ho		Same Day or 12 Hours*	24 Hours (1 day)	
Bulk	Drinking Water		48 H (2 d	ours ays)	72 H		96 Hours (4 days)	☐ 120 Hours (5 days)	
☐ Wipe	☐ Wastewater		144+	- hours	(6-10 da	ys)			
samples. You w	ars, 6 hours, Please call ah ill be asked to sign an auti arrive by 11:00a.m. Mon	orization form for this	s service.	i charge i	for 3-hour ta	it, please	call 1-800-220-3675 for j	price prior to sendin	
PCM - Air		TEM Air	•			TI	EM WATER		
☐ NIOSH	7400(A) Issue 2: August	1994 AHEI	RA 40 CFR	l, Part 7	763 Subpa	n E 🗀	EPA 100.1		
OSHA w	//TWA	☐ NIOS	H 7402				EPA 100.2		
Other:		☐ EPA I	Level II			Ĺ	NYS 198.2		
PLM - Bulk		TEM BU	LK			TI	EM Microvac/Wip	<u>e</u>	
□ EPA 600)/R-93/116	☐ Drop	Mount (Qu	ıalitativ	/e)		ASTM D 5755-9:	5 (quantative method	
EPA Poi	int Count	Chatf	ield SOP -	1988-0	2		Wipe Qualitative		
NY Strat	tified Point Count	□тем	NOB (Gra	vimetri	c) NYS 1	98.4			
PLM NO	OB (Gravimetric) NY	S 198.1 EMS	L Standard	Additi	on:	XRD			
□NIOSH							Asbestos		
□EMSL S	standard Addition:	PLM Soi	PLM Soil				Silica NIOSH 7500		
SEM Air or	r Bulk	EPA	Protocol Q	ualitati	ve				

EMSL MSD 9000 Method fibers/gram

EPA Protocol Quantitative

OTHER

140805305 140865236

Please print all information legibly.

Chain of Custody

Asbestos Lab Services

EMSL Analytical, Inc. 490 Rowley Road Depew, NY 14043

Phone: (716) 651-0030 Fax: (716) 651-0394 http://www.emsl.com

Client Sample # (s) ALE	=01 (15-40) -	Total Samples #:/
Relinquished:	Date: 9-19-08 09-19-08P05:18 RCVD	Time:
Received: 1000	<u> </u>	Time:
Relinquished:	Date:	Time:
Received:	Date:	Time:
SAMPLE NUMBER	SAMPLE DESCRIPTION/LOCATION	VOLUME (if applicable)
(1.5-4.0)	Aspestos Landfill Location #2	

APPENDIX F

FISH AND WILDLIFE RESOURCE IMPACT ANALYSIS CHECKLIST

	Appendix 3C Fish and Wildlife Resources Impact Analysis Decision Key	If YES Go to:	If NO Go to:
1.	Is the site or area of concern a discharge or spill event?	13	2
2.	Is the site or area of concern a point source of contamination to the groundwater which will be prevented from discharging to surface water? Soil contamination is not widespread, or if widespread, is confined under buildings and paved areas.	13	3
3.	Is the site and all adjacent property a developed area with buildings, paved surfaces and little or no vegetation?	4	9
4.	Does the site contain habitat of an endangered, threatened or special concern species?	Section 3.10.1	5
5.	Has the contamination gone off-site?	6	14
6.	Is there any discharge or erosion of contamination to surface water or the potential for discharge or erosion of contamination?	7	14
7.	Are the site contaminants PCBs, pesticides or other persistent, bioaccumulable substances?	Section 3.10.1	8
8.	Does contamination exist at concentrations that could exceed ecological impact SCGs or be toxic to aquatic life if discharged to surface water?	Section 3.10.1	14
9.	Does the site or any adjacent or downgradient property contain any of the following resources? i. Any endangered, threatened or special concern species or rare plants or their habitat ii. Any DEC designated significant habitats or rare NYS Ecological Communities iii. Tidal or freshwater wetlands iv. Stream, creek or river v. Pond, lake, lagoon vi. Drainage ditch or channel vii. Other surface water feature viii. Other marine or freshwater habitat ix. Forest x. Grassland or grassy field xi. Parkland or woodland xii. Shrubby area xiii. Urban wildlife habitat xiv. Other terrestrial habitat	11	10
10.	Is the lack of resources due to the contamination?	3.10.1	14
11.	Is the contamination a localized source which has not migrated and will not migrate from the source to impact any on-site or off-site resources?	14	12
12.	Does the site have widespread surface soil contamination that is not confined under and around buildings or paved areas?	Section 3.10.1	12
13.	Does the contamination at the site or area of concern have the potential to migrate to, erode into or otherwise impact any on-site or off-site habitat of endangered, threatened or special concern species or other fish and wildlife resource? (See #9 for list of potential resources. Contact DEC for information regarding endangered species.)	Section 3.10.1	14
14.	No Fish and Wildlife Resources Impact Analysis needed.		

Final DER-10 Page 222 of 226
Technical Guidance for Site Investigation and Remediation May 2010

APPENDIX G

95% UPPER CONFIDENCE LIMIT CALCULATIONS

APPENDIX G

STATISTICAL DATA SUMMARY

Remedial Investigation / Alternatives Analysis Report Phase III Business Park Area Tecumseh Redevelopment Inc. Lackawanna, New York

Parameter				Range (mg/kg)		Range (mg/kg		95% UCL on	5X the
raiailletei	Min	Max	Samples	Wicali	Ĺ	Siu. Dev.	the Mean	95% UCL	
Arsenic	2.3	132	104	27.7	1.66	26.6	32.1	160	

Notes:

UCL = Upper confidence limit

APPENDIX H

LAND USE EVALUATION

NYSDEC's Part 375 regulations require that the reasonableness of the anticipated future land be factored into the evaluation of remedial alternatives. The regulations identify 16 criteria that must be considered. These criteria and the resultant outcome for the Phase III Business Park are presented below.

- 1. Current use and historical and/or recent development patterns: The Phase III Business Park Site is located in an industrial area in the City of Lackawanna. The Site was formerly used to house a portion of Bethlehem Steel Company's integrated steel making operations. Most facility operations ceased in 1983, with a majority of the structures at the facility demolished in subsequent years. The approximately 144-acre Site is comprised mostly of vacant land, but includes some active railroad spurs and other structures. Accordingly, industrial/commercial-use redevelopment would be consistent with historic site use.
- 2. Applicable zoning laws and maps: The Site is currently zoned industrial and is located in an area of the City zoned primarily as industrial and commercial. Use in an industrial/commercial capacity is therefore consistent with current zoning.
- 3. Brownfield opportunity areas as designated set forth in GML 970-r: The Brownfield Opportunity Areas Program provides municipalities and community based organizations with assistance, to complete revitalization plans and implementation strategies for areas or communities affected by the presence of brownfield sites, and site assessments for strategic sites. The Phase III Business Park Site lies within a BOA designated by the City of Lackawanna. As such, the site is in a location where environmental impacts are ubiquitous. Reuse in a restricted capacity is expected in areas where background conditions preclude achieving unrestricted use soil cleanup objectives.
- 4. Applicable comprehensive community master plans, local waterfront revitalization plans as provided for in EL article 42, or any other applicable land use plan formally adopted by a municipality: The Phase III Business Park falls within a Master Redevelopment Plan for the entire 1100-acre Tecumseh property, which is the subject of a Memorandum of Understanding signed by Erie County, the City of Lackawanna, and Tecumseh Redevelopment. Redevelopment of the Phase III Business Park Area in a commercial/industrial capacity is consistent with the Master Redevelopment Plan.
- 5. Proximity to real property currently used for residential use, and to urban, commercial, industrial, agricultural, and recreational areas: The Site is surrounded by vacant land and industrial properties. Land use east of the Site across Route 5 includes vacant land, commercial, industrial, and residential properties. Nearby and adjacent property is primarily used in a non-residential capacity, both for industrial and commercial

TURNKEY

ENVIRONMENTAL
RESTORATION. LLC

purposes. Maintaining use of the Site in an industrial/commercial capacity is consistent with surrounding property.

- 6. Any written and oral comments submitted by members of the public on the proposed use as part of the activities performed pursuant to the citizen participation plan: No comments have been received from the public relevant to Site use concerns.
- 7. Environmental justice concerns, which include the extent to which the proposed use may reasonably be expected to cause or increase a disproportionate burden on the community in which the site is located, including low-income minority communities, or to result in a disproportionate concentration of commercial or industrial uses in what has historically been a mixed use or residential community: Nearby and adjacent property is actively used in a non-residential capacity, both for industrial and commercial purposes. Maintaining use of the Site in a commercial/industrial capacity does not pose environmental justice issues.
- 8. Federal or State land use designations: The property is designated Urban Land (U2) by the Soil Conservation Service. Urban land typically contains ubiquitous contaminants. Reuse in a restricted capacity is typical in areas where background conditions preclude achieving unrestricted use soil cleanup objectives.
- 9. Population growth patterns and projections: The population of the City of Lackawanna in 2000 was 19,064 (2000 Census). The 2008 population estimate for the City of Lackawanna is 17,588 (City Data.com), representing a decline of 7.7%. A declining population indicates a surplus housing market. Reuse of the Site in a non-residential capacity does not materially affect opportunities for residential growth.
- 10. Accessibility to existing infrastructure: The main local roadways that provide access to the Site are NYS Route 5/Hamburg Turnpike and Fuhrmann Boulevard. Utilities (sewer, water, electric, natural gas, and communication) present along Route 5 previously serviced the Site when it was an active industrial facility. Existing infrastructure supports reuse in an industrial capacity.
- 11. Proximity of the site to important cultural resources, including federal or State historic or heritage sites or Native American religious sites: No such resources or sites are known to be present on or near the property.
- 12. Natural resources, including proximity of the site to important federal, State or local natural resources, including waterways, wildlife refuges, wetlands, or critical habitats of endangered or threatened species: State or Federal wetlands do not exist on the subject property. The nearest Federal wetland is approximately 0.3 miles west of the Site; protected bird species have been identified on that nearby wetland. There are no threatened or endangered species, nor important plant habitats on the Site. **The absence of**

significant ecological resources on or adjacent to the Site indicates that cleanup to restricted use conditions will not pose an ecological threat.

- 13. Potential vulnerability of groundwater to contamination that might emanate from the site, including proximity to wellhead protection and groundwater recharge areas and other areas identified by the Department and the State's comprehensive groundwater remediation and protection program established set forth in ECL article 15 title 31: Groundwater at the Site is assigned Class "GA" by 6NYCRR Part 701.15. Seventeen environmental monitoring wells and exist on the Site. Groundwater data obtained during the RI indicate no significant impact. Detected constituents were generally below Class GA groundwater quality standards and guidance values and/or present at de-minimis levels except for areas where associated soil/fill impacts were identified and will be subject to cleanup. No potable wells were identified on the Site. The absence of potable wells, wellhead protection, and groundwater recharge areas indicates that cleanup to restricted use conditions will not pose a drinking water threat.
- 14. Proximity to flood plains: The Erie County Internet Mapping System indicates that the 100-year floodplain is limited to the immediate bank of Smokes Creek, and is likely within the creek bank buffer zone excluded from the Phase III Business Park Area; however the flood plain map does not appear to be updated based on dredging of the mouth of Smokes Creek in late 2008 early 2009. As flood plains are not present on the BCP property, there is no risk of significant soil erosion due to flooding. As such, cleanup to commercial or industrial standards does not pose a threat to surface water.
- 15. Geography and geology: The flat-lying Site is located within the Erie-Ontario lake plain physiographic province, which is typified by little topographic relief and gentle slope toward Lake Erie, except in the immediate vicinity of major drainage ways. Drilling logs from monitoring wells constructed on or near the Site indicate that the upper two feet (east side) to eight feet (west side) is typically composed of steel and iron-making slag and/or other fill material. The fill is underlain by lacustrine clays and silts that are, in turn, underlain by shale or limestone bedrock. Bedrock is about 60 feet below grade near the eastern perimeter of the Site. Geography and geology are consistent with a commercial or industrial re-use.
- 16. Current institutional controls applicable to the site: There is an existing deed restriction that prohibits the use of groundwater on the property and limits redevelopment to industrial, office and other uses not involving prolonged occupancy by persons under the age of 18. The planned commercial/industrial redevelopment is consistent with the existing institutional controls.

Based on the above analysis, reuse of the Site in a commercial/industrial capacity is consistent with past and current development and zoning on and around the Site, and does not pose additional environmental or human health risk.

