December 14, 1999

Mr. Timothy Dieffenbach New York State Department of Environmental Conservation 270 Michigan Avenue Buffalo, New York 14203-2999

Re: Submittal of SFI Completion Report

Dear Mr. Dieffenbach:

On behalf on ExxonMobil Corporation (ExxonMobil), Roux Associates, Inc. (Roux Associates) is pleased to submit the attached nine copies of the Site Facility Investigation (SFI) Completion Report for the Mobil Buffalo Terminal in Buffalo, New York. This report is being submitted for your review in accordance with the SFI Continuation Work Plan dated June 3, 1999 and subsequent letter correspondence dated June 24, 1999 and July 1, 1999. Laboratory analytical data packages are currently undergoing reproduction and will be forwarded to you under separate cover when available.

If you have any questions, please do not hesitate to contact Noelle Clarke or Drew Baris at 631-232-2600.

Sincerely,

ROUX ASSOCIATES, INC.

Noelle M. Clarke, P.E. Senior Engineer/ Project Manager

Andrew J. Baris Principal Hydrogeologist

cc: J. Abel, ExxonMobil R. Ciccotelli, ExxonMobil C. Zink, GES M. Falzone, GB3 W. Palomino, USEPA

# SITE FACILITY INVESTIGATION COMPLETION REPORT

Mobil Buffalo Terminal Location No. 31-010 Buffalo, New York

December 14, 1999

Prepared for:

Mobil Oil Corporation Inwood, New York

Prepared by:

ROUX ASSOCIATES, INC. 1377 Motor Parkway Islandia, New York 11788



# CONTENTS

| 1.0 INTRODUCTION                                          | 1  |
|-----------------------------------------------------------|----|
| 2.0. STUDY AREA BACKGROUND AND SCOPE OF WORK              | 2  |
| 2.0 STODI TREADREROROOND AND SCOTE OF WORK                | 2  |
| 2.1.1 Soil Boring and Sampling                            | 3  |
| 2.2. Buffalo Terminal Disposal Site                       | 4  |
| 2.2 Soil Boring and Sampling                              | 5  |
| 2.2.2 Monitoring Well Installation                        | 6  |
| 2.2.3 Water-Level and Free-Product Thickness Measurements | 7  |
| 2.2.4 Groundwater Sampling                                | 7  |
| 2.2.5 Slug Testing                                        | 7  |
| 2.2.6 Piezometer Abandonment                              | 8  |
| 2.3 Former Lube Building                                  | 8  |
| 2.3.1 Soil Boring and Sampling                            | 9  |
| 2.3.2 Monitoring Well Installation                        | 10 |
| 2.3.3 Water-Level and Free-Product Thickness Measurements | 11 |
| 2.3.4 Groundwater Sampling                                | 11 |
| 2.4 Site-Wide Monitoring Well Gauging                     | 12 |
| 2.5 Groundwater Resampling                                | 12 |
| 2.6 Validation of Analytical Data                         | 12 |
|                                                           |    |
| 3.0 SITE FACILITY INVESTIGATION CONTINUATION RESULTS      | 14 |
| 3.1 Elk Street Lot.                                       | 14 |
| 3.1.1 Soil Sampling Results                               | 15 |
| 3.2 Buffalo Terminal Disposal Site                        | 15 |
| 3.2.1 Soll Sampling Results                               | 10 |
| 3.2.2 Free-Product Defineation                            | 10 |
| 2.2.4 Slug Testing Desults                                | 10 |
| 3.2.4 Slug results Results                                | 1/ |
| 3.2.5 Containmant Loading Evaluation                      | 10 |
| 3.2.5.2 Identification of COCs in Groundwater             | 10 |
| and Calculation of Mass Flux                              | 10 |
| 3 2 5 3 Estimation of Potential Maximum Concentrations    | 1) |
| of COCs in Surface Water                                  | 20 |
| 3 2 5 4 Discussion of the Results                         | 21 |
| 3 3 Former Lube Building                                  | 21 |
| 3 3 1 Soil Sampling Results                               | 21 |
| 3 3 2 Free-Product Delineation                            | 22 |
| 3.3.3 Babcock Street Sewer                                |    |
| 3.4 Site-Wide Groundwater Flow and Quality                | 23 |
|                                                           |    |

# **CONTENTS (Continued)**

| 4.0 SUMMARY OF FINDINGS AND CONCLUSIONS |    |
|-----------------------------------------|----|
| 4.1 Elk Street Lot                      |    |
| 4.2 Buffalo Terminal Disposal Site      |    |
| 4.3 Former Lube Building                | 27 |
| 5.0 REFERENCES                          |    |

### TABLES

- 1. Summary of Well Construction Details, Mobil Buffalo Terminal, Buffalo, New York
- 2. Groundwater and Free-Product Measurements, Mobil Buffalo Terminal, Buffalo, New York
- 3. Summary of Semivolatile Organic Compounds Detected in Soil Samples, Mobil Buffalo Terminal, Buffalo, New York
- 4. Summary of Metals Detected in Soil Samples, Mobil Buffalo Terminal, Buffalo, New York
- 5. Summary of Volatile Organic Compounds Detected in Soil Samples, Mobil Buffalo Terminal, Buffalo, New York
- 6. Summary of Volatile Organic Compounds Detected in Groundwater Samples, Mobil Buffalo Terminal, Buffalo, New York
- 7. Summary of Semivolatile Organic Compounds Detected in Groundwater Samples, Mobil Buffalo Terminal, Buffalo, New York
- 8. Summary of Metals Detected in Groundwater Samples, Mobil Buffalo Terminal, Buffalo, New York
- 9. Summary of Free-Product Data in the Vicinity of the Babcock Street Sewer, Mobil Buffalo Terminal, Buffalo, New York

# FIGURES

- 1. Site Location Map
- 2. Study Area Location Map
- 3. Elk Street Lot Sample Location Map
- 4. Buffalo Terminal Disposal Site Sample Location Map
- 5. Former Lube Building Sample Location Map
- 6. Concentrations of SVOCs Detected in Soil at Elk Street Lot
- 7. Concentrations of Metals Detected in Soil at Elk Street Lot
- 8. Concentrations of VOCs Detected in Soil at the Former Lube Building Area Shallow Interval
- 9. Concentrations of VOCs Detected in Soil at the Former Lube Building Area Deep Interval

### FIGURES (Continued)

- 10. Concentrations of SVOCs Detected in Soil at the Former Lube Building Area -Shallow Interval
- 11. Concentrations of SVOCs Detected in Soil at the Former Lube Building Area Deep Interval
- 12. Concentrations of Metals Detected in Soil at the Former Lube Building Area -Shallow Interval
- 13. Concentrations of Metals Detected in Soil at the Former Lube Building Area Deep Interval

### **APPENDICES**

- A. Geologic Logs
- B. Well Development Notes
- C. Aquifer Test Procedures and Analytical Results
- D. Data Validation Report
- E. Contaminant Loading Evaluation Results

# PLATES

- 1. Groundwater Potentiometric Map October 7, 1999
- 2. Concentrations of VOCs in Groundwater
- 3. Concentrations of SVOCs in Groundwater
- 4. Concentrations of Metals in Groundwater

#### **1.0 INTRODUCTION**

On behalf of Mobil Oil Corporation (Mobil), Roux Associates, Inc. (Roux Associates) has prepared this Site Facility Investigation (SFI) Completion Report to document the additional environmental investigation activities at the Mobil Oil Corporation petroleum distribution terminal (Site), located at 625 Elk Street, Buffalo, New York (Figure 1). This work was performed in accordance with the SFI Continuation Work Plan (Work Plan) dated June 3, 1999 and subsequent letter correspondence to the New York State Department of Environmental Conservation (NYSDEC) dated June 3, 1999, June 24, 1999 and July 1, 1999 (Roux Associates, 1999a, 1999b, 1999c and 1999d). The results of the initial phase of the SFI were presented in the SFI Report dated November 25, 1998 (Roux Associates, 1998).

The SFI Continuation field program was performed between July 19, 1999 to October 19, 1999 by Groundwater & Environmental Services, Inc. (GES). The focus of the Work Plan was to perform additional subsurface investigation activities in three areas of the Site which were prioritized based on the results of the initial SFI work; and to address written and verbal comments provided by the NYSDEC regarding the initial SFI Report. The areas investigated include the Elk Street Lot, the Former Lube Building and the Buffalo Terminal Disposal Site (Figure 2). Soil and groundwater samples were collected from the three study areas as part of the field program. In addition, the field program included monitoring well installation, gauging of monitoring wells, groundwater sampling and slug testing. The specific investigation scopes of work for each area and the ancillary tasks are outlined in Section 2.0. The results of the work are presented in Section 3.0. A summary of findings and conclusions is presented in Section 4.0.

#### 2.0 STUDY AREA BACKGROUND AND SCOPE OF WORK

The following sections briefly describe the setting, history and SFI results for the three SFI Continuation study areas. A more detailed discussion of the Site history and environmental conditions within each study area can be found in the SFI Report (Roux Associates, 1998). Following the background information for each study area is a description of the scope of work completed as part of the SFI Continuation field program. All SFI field tasks described below were conducted by GES. All evaluation and reporting of investigation results presented in Sections 3.0 and 4.0 were performed by Roux Associates.

#### 2.1 Elk Street Lot

The historical usage of the Elk Street Lot was residential. On March 12, 1976, Tank 60 within the Northern Tank Yard (Figure 2) overheated and ruptured, releasing heavy-end petroleum associated with asphalt. Several homes and other buildings on the north side of Elk Street were affected by the release. Some of the structures were subsequently purchased by Mobil and demolished.

During the SFI, soil samples were collected at 12 sample locations (ESL-1 through ESL-12) in the Elk Street Lot. Sample results indicated no volatile organic compounds (VOCs) exceeded the NYSDEC Recommended Soil Cleanup Objectives (RSCOs) (NYSDEC, 1994) or Toxicity Characteristic Leaching Procedure (TCLP) Alternative Guidance Value Criteria (NYSDEC, 1992). The applicable RSCO criteria for semivolatile organic compounds (SVOCs) was exceeded in surface soils (0.0-0.5 feet below land surface [ft bls]) by at least one compound at each of the sampling locations. No SVOCs were detected in the deeper sample (8-10 ft bls) collected at ESL-8. The northern edge of the study area was the only area identified as having SVOCs at concentrations exceeding Site Background criteria that were developed as part of the SFI Work Plan (Woodward-Clyde, 1998). Concentrations of numerous metals exceeded the RSCO criteria and/or Site Background criteria at multiple sample locations. No pattern to the metal exceedances of RSCO or Site Background criteria was observed at the Elk Street Lot.

Based upon the SFI results described above, the objective of the additional work at the Elk Street Lot was to more precisely define the areal and vertical extent of SVOCs exceeding the Site Background in the northern portion of the Elk Street Lot and to evaluate soil quality conditions at two residential properties immediately to the north of the Elk Street Lot. A soil boring and sampling program was performed to obtain the data necessary to meet these objectives. A description of the work performed as part of the additional investigation is provided below.

#### 2.1.1 Soil Boring and Sampling

A Geoprobe<sup>™</sup> direct-push drilling rig was utilized to complete four borings (ESL-13, ESL-14, ESL-15 and ESL-18) on the Elk Street Lot and four borings (ESL-16, ESL-17, ESL-19 and ESL-20) on the properties to the north of the Elk Street Lot. The locations of the borings are shown in Figure 3. The soil borings were performed by Zebra Environmental Corporation (Zebra) under the direction of an on-site GES geologist. Prior to initiating investigative activities on the properties north of the Elk Street Lot, GES obtained access permission from the property owners. All soil borings were advanced using a Macrocore<sup>™</sup> sampler. At each boring location, samples were collected continuously from land surface to a total depth of 3 ft bls. All soil samples were inspected and logged by the field geologist, and screened with a photoionization detector (PID) to determine the potential presence of VOCs. The geologic logs for each boring, provided in Appendix A, describe the lithologic characteristics, any visual or olfactory evidence of hydrocarbon impact, percent recovery, moisture content, and PID screening results.

Three soil samples were retained for laboratory analysis from each boring: surface (0 to 0.5 ft bls), intermediate (1 to 2 ft bls) and deep (2 to 3 ft bls). At locations overlain by surface material consisting of sod, asphalt, broken concrete and brick fragments resulting from the historical demolition activities, the surface material of up to 1 ft in depth was removed prior to collection of the first soil sample. Description and thickness of the surface material at each location are provided on the geologic logs included in Appendix A.

Each sample was collected for analysis of NYSDEC Spill Technology and Remediation Series (STARS) Memo #1 list of SVOCs and reduced target analyte list (TAL) metals via United States Environmental Protection Agency (USEPA) Methods 8270 and 6010B, respectively. Trip blank and field rinsate blank samples were also collected at a frequency of one per day of sampling activities.

All samples were submitted under chain of custody to Lancaster Laboratories, Inc. (Lancaster Laboratories) of Lancaster, Pennsylvania, which is a NYSDEC Analytical Services Protocol (ASP) certified laboratory.

### 2.2 Buffalo Terminal Disposal Site

The Buffalo Terminal Disposal Site (Terminal Disposal Site) comprises approximately 12 acres located in the southeast portion of the facility (Figure 2). The land comprising the Terminal Disposal Site was created when the Buffalo River channel was re-aligned for navigation in the late 1910s to early 1920s. The historical channel was aligned roughly parallel to the railroad right-of-way and generally bisected the Terminal Disposal Site in a northeast-southwest direction as shown in Figure 4.

The Terminal Disposal Site was used by the City of Buffalo for disposal of municipal waste from 1921 to 1951. Mobil purchased the Terminal Disposal Site in 1951 and, in 1953, erected two above-ground storage tanks with 3,150,000 (No. 175) and 3,360,000 (No. 176) gallon capacities (CDM, 1988). Four above-ground propane gas tanks (29,400 gallon capacity) were also constructed. Mobil also used the area for waste disposal from 1951 to 1976. A detailed description of the history of the Terminal Disposal Site and pre-SFI investigations was provided in the SFI Report.

The results of the SFI indicated the presence of free product in the south-central portion of the Terminal Disposal Site (Monitoring Wells P-15, LF-1S and MW-3URS in Figure 4). Accordingly, the primary objective of the SFI Continuation field program was to further delineate the free product. In addition, as specified by the NYSDEC, the field program included collection of additional hydrogeologic and water quality data to facilitate evaluation of potential contaminant loading from the Terminal Disposal Site to the Buffalo River. In order to achieve these objectives the following tasks were performed:

- soil boring and sampling;
- monitoring well installation;
- water-level and free-product thickness measurements;

- groundwater sampling;
- slug testing; and
- abandonment of any previously installed piezometers and/or wells deemed no longer useful.

The scope of work performed for each task is described below.

# 2.2.1 Soil Boring and Sampling

A hollow-stem auger drilling rig was utilized to complete six borings (LF-3 through LF-8 in Figure 4) in the Terminal Disposal Site. Soil boring drilling was performed by SJB Services, Inc. (SJB) under the direction of an on-site GES geologist. Three of the borings (LF-6, LF-7, and LF-8) were drilled to document the depth to the top of the clay unit underlying the Site.

At each boring location, samples were collected at 5-ft intervals from 5 ft bls to approximately 5 feet above the anticipated water-table depth, then continuously to a total depth of approximately 37 ft bls, with the exception of LF-8. Samples were collected continuously at LF-8 to document lithologic conditions within the historical Buffalo River channel. The absence of utilities at all boring locations was documented by using an air knife to a depth of 5 ft bls prior to the use of drilling equipment. All soil samples were inspected and logged by the GES field geologist and screened with a PID to determine the potential presence of VOCs. The geologic logs for each boring, provided in Appendix A, describe the lithologic characteristics, any visual or olfactory evidence of hydrocarbon impact, percent recovery, moisture content, and PID screening results.

Since the main objective was to delineate free product, only a limited number of soil samples were collected for laboratory analysis. One soil sample from immediately above the water table was retained from soil borings LF-5 and LF-7, both of which did not display visual or olfactory evidence of free product. The goal of the laboratory analysis was to demonstrate that the samples were beyond the areal extent of any smear zone potentially associated with the free product plume.

Each sample was collected for analysis of NYSDEC STARS Memo #1 list of VOCs and SVOCs via USEPA Methods 8021 and 8270 and reduced TAL metals via USEPA Method 6010B. Field rinsate blank, field duplicate and matrix spike/matrix spike duplicate (MS/MSD) samples were generally collected at a frequency of one per day of sampling activities or one per twenty samples. Due to an oversight, the reduced TAL metals were not analyzed in the soil sample collected from boring LF-5.

All samples were submitted under chain of custody to Lancaster Laboratories.

# 2.2.2 Monitoring Well Installation

In order to evaluate the occurrence and verify the delineation of free product in the Terminal Disposal Site, six monitoring wells were installed at locations LF-3 through LF-8. Monitoring well drilling was performed by SJB under the direction of an on-site GES geologist. The locations of the monitoring wells are shown in Figure 4. Final locations for the wells were based on the findings of the soil boring task. As stated in Roux Associates' letter to the NYSDEC dated June 24, 1999, one of the monitoring wells (LF-8) was installed within the historical Buffalo River channel.

The monitoring wells were installed within the shallow overburden to a total depth of approximately 37 ft bls. Each well was constructed of 4-inch diameter Schedule 40 polyvinyl chloride (PVC) casing and screen. Each well was constructed such that the screened interval straddles the water table, allowing for fluctuation in static water levels and detection of free product (if present). Well construction logs are provided in Appendix A. A summary of well construction details is presented in Table 1.

Following installation, each well was developed by surging and pumping to remove drillingrelated fluids and sediment from the well bore and filter pack, and to allow for the collection of representative groundwater samples. All fluid pumped from the wells was transported to the onsite treatment system and off-loaded for treatment. Field notes describing well development activities are provided in Appendix B. Each well was subsequently surveyed for horizontal coordinates and land surface elevations accurate to  $\pm 0.1$  foot and measuring point (top of casing) elevations accurate to  $\pm 0.01$  foot by C.T. Male Associates, P.C. of North Syracuse, New York. In addition to the new wells, all existing wells were also surveyed. This new survey data identified several erroneous monitoring well measuring point elevations. The new survey data for all wells was used throughout this report.

### 2.2.3 Water-Level and Free-Product Thickness Measurements

Following development, the newly installed monitoring wells were incorporated into the waterlevel and free-product monitoring program. Each well was assessed for the presence of free product using an oil-water interface probe. A summary of the well gauging data is included in Table 2.

# 2.2.4 Groundwater Sampling

The objective of the groundwater sampling program was to provide additional groundwater quality data for the Terminal Disposal Site and support the evaluation of contaminant loading to the Buffalo River.

Monitoring Wells LF-3 through LF-8 were purged and sampled by GES on August 23 and 25, 1999. All purge water was transported to the on-site treatment system and off-loaded for treatment. Each groundwater sample was collected for analysis of the NYSDEC STARS Memo #1 list of VOCs and SVOCs via USEPA Methods 8021 and 8270, and reduced TAL metals via USEPA Method 6010B. Field rinsate blank, field duplicate and MS/MSD samples were generally collected at a frequency of one per day of sampling activities or one per twenty samples. Trip blank samples were generally collected at a frequency of one per day of sampling activities of one per sample shipment. (Note: Only benzene, toluene, ethyl benzene and xylenes (BTEX) parameters were requested on the chain of custody. As a result, the wells were resampled for VOC analysis on September 28, 1999.)

All samples were submitted under chain of custody to Lancaster Laboratories.

# 2.2.5 Slug Testing

Slug tests were performed in monitoring wells LF-5, LF-7 and LF-8, none of which contained free product. The rising head tests were performed by GES following the standard operating

#### ROUX ASSOCIATES, INC.

procedure provided in the Work Plan. The results of the slug tests are provided in Appendix C. This data was then used in conjunction with other chemical and hydrological data to evaluate contaminant loading from the Terminal Disposal Site to the Buffalo River. The results of the contaminant loading evaluation are presented in Section 3.2.5.

#### 2.2.6 Piezometer Abandonment

Abandonment of existing piezometers P-1 through P-14 and P-16 through P-25 was performed by Zebra, under the direction of the on-site GES geologist. Piezometer abandonment was performed in accordance with the NYSDEC groundwater monitoring well decommissioning procedures (NYSDEC, 1996). Prior to abandonment, water-level, free-product thickness, and depth to bottom measurements were obtained from each piezometer. The piezometer casings were first pulled and then the open boreholes resounded to confirm that significant collapse of the borehole had not occurred. The open boreholes were then grouted with cement grout placed using the tremie method. As needed, well pads and/or well stick-up protectors were also removed.

### 2.3 Former Lube Building

The Former Lube Building was built in 1920 to serve as a lubrication oil processing/packaging facility. A garage and storage sheds were added to the building in the 1940s. Lubrication oil processing and packaging operations ceased approximately 20 years ago. The Former Lube Building and surrounding property was sold to Pinto Construction in 1994. A detailed description of the Former Lube Building history and previous investigations was provided in the SFI Report.

The main objectives of the SFI Continuation field program were to delineate free product at the Former Lube Building and to complete characterization of subsurface soils in the vicinity of previous boring SB-7. The tasks performed to obtain the data necessary to achieve these objectives included soil boring and sampling, monitoring well installation, water-level and free-product thickness measurements and groundwater sampling. A description of the work performed as part of the additional investigation is provided below.

#### 2.3.1 Soil Boring and Sampling

A hollow-stem auger drilling rig was utilized to complete 21 borings (SB-11 through SB-31) in the vicinity of the Former Lube Building, with the exception of SB-12 which was drilled using the Geoprobe<sup>™</sup> method due to access constraints for larger drilling equipment. Soil boring drilling was performed by SJB and Zebra (SB-12) under the direction of an on-site GES geologist. The initial borings proposed (SB-11 through SB-20) were installed at the approximate locations shown in the Work Plan. Additional borings were installed for free-product delineation per the letter dated June 24, 1999 (Roux Associates, 1999c). Locations of all soil borings are shown in Figure 5. The need for additional borings was determined in the field based on the evidence of free product in the soil samples collected from the initial set of borings. If an initial boring exhibited visual evidence of free product, one or more additional borings were installed approximately 30 to 50 feet from the original boring, in the direction(s) that the extent of free product had not already been delineated. This process continued until the extent of free product was defined by borings with no visual evidence of free product. The delineation to the north of boring location SB-28, which exhibited indications of free product during drilling, could not be completed due to access limitations caused by active operations on the adjacent property currently leased to Custom Topsoil. The soil borings that were not completed as monitoring wells were backfilled with soil cuttings upon completion.

At each boring location, samples were collected continuously from 5 ft bls to a total depth ranging from 13 ft bls to 24 ft bls. The absence of utilities at all boring locations was documented using an air knife to a depth of 5 ft bls prior to the use of drilling equipment. All soil samples were inspected and logged by the field geologist, and screened with a PID to determine the potential presence of VOCs. The geologic logs for each boring, provided in Appendix A, describe the lithologic characteristics, any visual or olfactory evidence of hydrocarbon impact, percent recovery, moisture content, and PID screening results.

At soil boring locations SB-17, SB-18, SB-20, adjacent to previous well SB-7, and final perimeter delineation borings (SB-24, SB-27, SB-28 and SB-30), the soil samples were retained from two depths and sent for laboratory analysis. At each location, one sample was retained from the 0 to 0.5 foot interval and a second at the zone where the greatest PID reading was detected, with the exception of SB-20. At SB-20, the shallow interval sample was collected from

3 to 3.5 ft bls due to the presence of asphalt and large pieces of fill material to 3 ft bls. If no PID readings were noted, the second sample was collected from immediately above the water table.

At originally proposed soil boring locations SB-11, SB-13, SB-14, SB-15, SB-16, and SB-19, only the sample exhibiting the highest PID reading was submitted for laboratory analysis in order to evaluate the extent of any smear zone potentially associated with the free product plume. Soil samples were not collected for laboratory analysis from intermediate free-product delineation soil borings SB-21, SB-22, SB-23, SB-25, SB-26, SB-29 and SB-31, or from SB-12 which was specifically installed for monitoring the effectiveness of the western leg of the Well Point System (WPS).

Each sample was collected for analysis of NYSDEC STARS Memo #1 list of VOCs and SVOCs via USEPA Methods 8021 and 8270, and reduced TAL metals via USEPA Method 6010B. Field rinsate blank, field duplicate and MS/MSD samples were generally collected at a frequency of one per day of sampling activities or one per twenty samples. (Note: Due to insufficient sample volume from boring interval 16-18 ft bls at SB-11, only metals analyses were performed. Soil from the 18-20 ft bls interval was analyzed for VOCs and SVOCs.)

All samples were submitted under chain of custody to Lancaster Laboratories.

### 2.3.2 Monitoring Well Installation

In order to evaluate the occurrence of free product in the vicinity of the Former Lube Building, 11 monitoring wells were installed (SB-11 through SB-17, SB-19, SB-20, SB-28 and SB-31). The locations of the monitoring wells are shown in Figure 5. Monitoring well drilling was performed by SJB and Zebra (SB-12) under the direction of an on-site GES geologist.

The monitoring wells were installed within the shallow overburden to total depths ranging from 13 ft bls to 24 ft bls. Each well was constructed of 4-inch diameter Schedule 40 PVC casing and screen with the exception of SB-12, which was constructed of 2-inch diameter PVC due to access constraints for larger drilling equipment capable of installing larger wells. Each well was constructed such that the screened interval straddles the water table, allowing for fluctuation in

static water levels and detection of free product (if present). Well construction logs are provided in Appendix A. A summary of well construction details is presented in Table 1.

Following installation, each well was developed by surging and pumping to remove drillingrelated fluids and sediment from the well bore and filter pack, and to allow for the collection of representative groundwater samples. All fluid pumped from the wells was transported to the onsite treatment system, and off-loaded for treatment. Field notes describing well development activities are provided in Appendix B. Each well was subsequently surveyed for horizontal coordinates and land surface elevations accurate to  $\pm 0.1$  foot and measuring point (top of casing) elevations accurate to  $\pm 0.01$  foot by C.T. Male Associates, P.C. of North Syracuse, New York.

### 2.3.3 Water-Level and Free-Product Thickness Measurements

Following development, the newly installed monitoring wells were incorporated into the waterlevel and free-product monitoring program. Each well was assessed for the presence of free product using an oil-water interface probe. A summary of the well gauging data is included in Table 2.

### 2.3.4 Groundwater Sampling

Newly installed wells that did not contain free product were purged and sampled by GES on August 23, 1999. Groundwater samples were collected from wells SB-11, SB-12, SB-14 and SB-16. All purge water was transported to the on-site treatment system for treatment. Each groundwater sample was collected for analysis of the NYSDEC STARS Memo #1 list of VOCs and SVOCs via USEPA Methods 8021 and 8270, and reduced TAL metals via USEPA Method 6010B. Field rinsate blank, field duplicate and MS/MSD samples were generally collected at a frequency of one per day of sampling activities. Trip blank samples were generally collected at a frequency of one per sample shipment.

As previously mentioned, an incorrect list of VOC parameters was requested during the August 23, 1999 sampling. As a result, the wells were resampled for VOC analysis on September 28, 1999. However, wells SB-12 and SB-16 were not resampled due to insufficient water and the presence of free product, respectively. In addition, wells SB-19 and SB-28, which

were inadvertently omitted from the initial sampling list, were sampled for the above list of parameters on September 29, 1999 only. Finally, SB-28, which was inadvertently omitted from the initial sampling list, could not be sampled on September 29, 1999 due to insufficient sample volume. The drawdown observed in this well is due to the operation of the western leg of the Well Point System.

All samples were submitted under chain of custody to Lancaster Laboratories.

# 2.4 Site-Wide Monitoring Well Gauging

A synoptic round of water-level and free-product thickness measurements were collected from all new and previously installed monitoring wells on October 7, 1999. The water-level elevation of the Buffalo River was also measured in conjunction with the gauging event. Gauging results are summarized in Table 2.

# 2.5 Groundwater Resampling

As presented in the Work Plan, several previously sampled monitoring wells were resampled to provide additional groundwater quality data. The following wells were resampled:

- temporary monitoring wells BTC-4 and BTC-5 for analysis of total lead and tetra ethyl lead (TEL);
- temporary monitoring well NTY-T60 for analysis of total lead and hexavalent chromium; and
- monitoring well MW-1URS for analysis of total lead and TEL.

All samples were submitted under chain of custody to Lozier Analytical Group (Lozier Analytical) of Middlesex, New York and Rochester, New York.

# 2.6 Validation of Analytical Data

Analytical data from Lancaster Laboratories and Lozier Analytical were validated by Data Validation Services of North Creek, New York, whose function was to provide an independent review of the data packages. The data validation was performed to determine conformance with the analytical method used for analysis. The protocols established in the SFI Work Plan

(Woodward-Clyde, 1998) and in the following USEPA documents were used as guidance during the validation process:

- evaluation of Metals Data for the Contract Laboratory Program (CLP). SOP No. HW-2. Prepared by USEPA Region II; and
- CLP Organics Data Review and Preliminary Review. SOP No. HW-6. Prepared by USEPA Region II.

The data review and validation were structured to ensure that:

- calibration data were scientifically sound, appropriate to the method, and completely documented;
- quality control (QC) samples were within established guidelines;
- qualitative identification of sample components was correct;
- quantitative results were correct;
- transcription errors were not present;
- documentation was complete and correct (all anomalies in the preparation and analysis have been documented); holding times were documented;
- the data were ready for incorporation into the final report; and
- the data package was complete and ready for data archival.

Upon completion of the validation/review effort, a final report covering the overall assessment of the data quality was submitted to Roux Associates. The report includes:

- a general assessment of the data package as it pertains to completeness and compliance;
- descriptions of any and all deviations from the required protocol;
- an assessment of outliers and effect of the outliers on the overall usability of the data; and
- identification of applicable data qualifiers, including, if necessary, rejection of noncompliant data.

The data validation report is included in Appendix D.

### **3.0 SITE FACILITY INVESTIGATION CONTINUATION RESULTS**

The following sections present the results of the SFI Continuation field program for the three study areas. Tables 3 through 8 summarize analytical results for soil and groundwater by SFI study area and type of analyses (e.g., VOC, SVOC, etc.). These tables only contain data for the target analytes that were detected in at least one sample.

As specified in the SFI Continuation Work Plan and Roux Associates' correspondence to the NYSDEC dated June 24, 1999 RSCOs, Toxicity Characteristic Leaching Procedure (TCLP) Alternative Guidance Values and Site Background concentrations were used to evaluate the soil quality at the Site. Evaluation of the data relative to the RSCOs and TCLP Alternative Guidance Values guidelines enables identification of areas that would pose a potential risk under a residential land use scenario as well as those areas that have potential to impact groundwater at concentrations exceeding drinking water standards. Given the current industrial land use at the Site, the background soil concentrations existing throughout the area surrounding the site and Mobil's intention to continue operation of the Site as a petroleum distribution terminal, remediation of soil to achieve residential guidelines is not appropriate. Therefore, the data were compared to the Site Background concentrations developed during preparation of the SFI Work Plan for evaluating the need for soil remediation, where appropriate.

Summary maps were prepared for the Elk Street Lot and Former Lube Building using the analytical database and MapInfo<sup>™</sup> Geographic Information System (GIS) Software to show soil sample concentration data in relation to the criteria. Locations where contaminant concentrations exceed the RSCOs, TCLP Alternative Guidance Values or the Site Background concentrations are shown in Figures 6 through 13.

### 3.1 Elk Street Lot

As described in Section 2.1, soil samples were collected at eight sample locations (ESL-13 through ESL-20) in the Elk Street Lot area during the SFI Continuation field program. In addition, sample locations ESL-1 through ESL-12 were sampled during the initial SFI. The results of the soil investigation are described below.

#### 3.1.1 Soil Sampling Results

SVOCs were detected in surface soils (0.0-0.5 ft bls) at all eight new sampling locations. The applicable RSCO criteria was exceeded by at least one compound at each of the sampling locations (Figure 6). In addition, RSCO criteria were exceeded at locations ESL-16, ESL-17, and ESL-20 in the 1-2 ft interval and ESL-17 in the 2-3 ft interval. SVOCs were detected at concentrations exceeding Site Background at locations ESL-13, ESL-14 and ESL-15 in both the 0-0.5 ft interval and the 1 to 2 ft interval. Boring ESL-12, installed during the initial SFI field program also exhibited concentrations of SVOCs exceeding Site Background. A summary of the SVOC concentrations detected in soil is provided in Table 3.

These data indicate that the areal extent of SVOCs exceeding Site Background concentrations is limited to the northeast corner of the Elk Street Lot and that the impacts exceeding Site Background do not extend offsite. The data also indicate that the vertical extent of impact extends from land surface to a maximum depth of 2 feet below the broken concrete and brick fragments which are present in this area. No SVOCs were detected above Site Background concentrations in the deeper samples (2-3 ft bls) collected.

As shown in Figure 7, cadmium, chromium, mercury, nickel, selenium, thallium, and vanadium were detected at concentrations exceeding RSCOs and Site Background concentrations at multiple locations. However, no pattern to the exceedances of RSCOs or Site Background concentrations was observed. Moreover, no correlation between SVOC and metals concentrations was observed. A summary of metals concentrations detected in soil is provided in Table 4.

### **3.2 Buffalo Terminal Disposal Site**

As described in Section 2.2, the SFI Continuation scope of work for the Terminal Disposal Site consisted of soil boring and sampling and monitoring well installation and gauging to delineate free product. In addition, slug testing and groundwater sampling were conducted to support the performance of a contaminant loading evaluation for the Buffalo River. The results of the additional investigative tasks are presented in the following sections.

### 3.2.1 Soil Sampling Results

Soil samples were collected at two locations (LF-5 and LF-7) in the Terminal Disposal Site during the SFI Continuation field program. Analytical results for VOCs, SVOCs and metals are summarized in Tables 5, 3 and 4, respectively. These results indicate:

- No VOCs were detected;
- SVOCs were detected in the sample collected from LF-7; however, none of the concentrations exceeded RSCO criteria; and
- chromium and nickel were detected above RSCO criteria in the sample collected from LF-7; however, the concentrations were less than Site Background.

LF-5 and LF-7 were designed to be perimeter borings to delineate the horizontal limits of the free-product plume. The absence of VOCs and the low concentrations of SVOCs in the soil samples collected immediately above the water table confirm that the borings are outside of the limits of the free-product plume and any associated smear zone.

### **3.2.2 Free-Product Delineation**

Evidence of the presence of free product was not encountered during the drilling of the six newly installed wells (LF-3 through LF-8). Measurable free product was not identified in any of the wells during subsequent gauging. As indicated in Plate 1, free product occurrence is limited to the immediate vicinity of previously installed wells LF-1S, MW-3URS, and piezometer P-15.

# 3.2.3 Groundwater Sampling Results

Groundwater samples were collected from the six newly installed wells (LF-3 through LF-8) in the Terminal Disposal Site. Summaries of VOCs, SVOCs and metals detected in groundwater are provided in Tables 6 through 8, respectively. The groundwater sampling results were used to update the groundwater quality maps presented in the initial SFI Report. The updated maps for VOCs, SVOCs and metals are provided in Plates 2, 3 and 4, respectively. These data indicate that relatively low concentrations of dissolved phase hydrocarbon compounds are present in groundwater at the Terminal Disposal Site. VOCs were detected at five of the six new sampling locations with concentrations of total VOCs ranging from 1.1 micrograms per liter ( $\mu$ g/L) (LF-7) to 113.8  $\mu$ g/L in LF-3, based on the September 28, 1999 sampling. Benzene was the VOC detected at the highest concentrations, ranging from 50  $\mu$ g/L (LF-3) to 80  $\mu$ g/L (LF-6), based on the September 28, 1999 sampling. A summary of VOCs detected in groundwater is provided in Table 6.

SVOCs were only detected at locations LF-3 and LF-6. Total SVOC concentrations at the two locations were 24  $\mu$ g/L to 16  $\mu$ g/L, respectively. Due to a laboratory error, the sample collected from LF-5 was not analyzed for SVOCs.

Neither VOCs nor SVOCs were detected in groundwater in well LF-8, which is located within the historical Buffalo River channel.

Metals were detected in all new wells in the Terminal Disposal Site with the exception of LF-7. The highest concentrations for the reduced list of TAL metals were detected in LF-4. As the groundwater samples were not filtered and metals occur naturally as suspended sediment and dissolved components in groundwater, detected concentrations may not necessarily be related to Site activities. A summary of metals detected in groundwater is provided in Table 8.

### **3.2.4 Slug Testing Results**

Slug testing was performed at newly installed monitoring wells LF-5, LF-7 and LF-8. The hydraulic conductivity (K) values obtained for the three overburden wells tested (i.e., LF-5, LF-7 and LF-8) range from 32 to 190 feet per day (ft/d). These values of K are all within the range of hydraulic conductivities characteristic of soil types similar to those identified throughout the Terminal Disposal Area (i.e., clean sand with silt and gravel). The highest K value was determined for well LF-8, which was installed within the location of historical Buffalo River channel and screens a slightly coarser portion of the formation than wells LF-5 and LF-7. The lowest K value was determined for well LF-7. The geologic log for LF-7 indicates the presence of a relatively thin layer of tight fine silty sand (beneath the water table) described in the geologic log as "dry." The average K value obtained from the three wells was approximately

100 ft/d. A more detailed description of the field methods and data interpretation performed is presented in Appendix C.

# **3.2.5** Contaminant Loading Evaluation

The contaminant loading evaluation included the following work elements:

- estimation of the groundwater flux to the Buffalo River;
- identification of constituents of concern (COCs) in groundwater;
- estimation of the concentrations of COCs in groundwater discharging to the Buffalo River;
- calculation of the mass loading of COCs to the Buffalo River based upon the groundwater flux and the concentrations of COCs;
- estimation of the potential concentrations of COCs in surface water; and
- comparison of the concentrations of COCs in surface water to relevant criteria to evaluate the potential for impact to aquatic life.

A discussion of each of these work elements and the corresponding results are provided below. Additional details and calculation sheets regarding the contaminant loading evaluation are provided in Appendix E.

# **3.2.5.1** Groundwater Flux to the Buffalo River

The groundwater flux to the Buffalo River was estimated using the following two methods:

- 1) analytical calculations according to Darcy's law; and
- 2) use of the MODFLOW groundwater model (McDonald and Harbaugh, 1988) developed for the Site during the SFI (Roux Associates, 1998).

The analytical calculations according to Darcy's law were performed using data obtained during SFI and SFI Continuation field work. These data include:

• the average hydraulic conductivity of 53.5 ft/day across the zone of groundwater discharge within the Terminal Disposal Area determined from the slug tests conducted in monitoring wells LF-5 and LF-7;

- the length of the reach of river (350 ft) comprising the zone of groundwater discharge, which was determined from evaluation of groundwater flow directions, the extent of impacted groundwater and hydraulic influence of the Well Point System;
- the average hydraulic gradient of 0.026 feet per foot (ft/ft) determined from analysis of October 7, 1999 groundwater flow across the zone of groundwater discharge within the Terminal Disposal Area (Plate 1); and
- the average saturated thickness (11.86 ft) of the sand formation based upon geologic data from boreholes for monitoring wells LF-5, LF-7, and LF-8.

Based upon the above data, the groundwater flux was calculated to be 5,774 cubic feet per day (ft<sup>3</sup>/day).

The MODFLOW groundwater model developed during the SFI was updated with the October 7, 1999 pumping conditions to simulate groundwater flow. Groundwater elevation contours from the simulation agreed relatively well with those developed based upon the field measured condition (Plate 1). The USGS software utility known as Zone Budget was used with the MODFLOW model to estimate the groundwater flux into the Buffalo River. The results of the Zone Budget analysis indicated a flux of 2,519 ft<sup>3</sup>/day across the groundwater discharge zone.

The groundwater flux determined using analytical calculations  $(5,774 \text{ ft}^3/\text{day})$  is approximately two times the flux determined using the MODFLOW model (2,519 ft<sup>3</sup>/day). The results of the two methods are in good agreement considering that small changes in hydraulic parameters could account for the difference. For example, performing the calculations using a hydraulic conductivity value of 32 ft/day (as was measured at LF-7) rather than the average value of 53.5 ft/day, and a hydraulic gradient of 0.02 rather than 0.026, results in a difference of only five percent from the MODFLOW estimate. The groundwater flux estimate (5,774 ft<sup>3</sup>/day) was used in subsequent steps of the contaminant loading evaluation to be conservative.

# 3.2.5.2 Identification of COCs in Groundwater and Calculation of Mass Flux

Table E-1 (Appendix E) provides a comparison of the maximum concentrations of all compounds detected in groundwater during the SFI and SFI Continuation field work to their respective Ambient Water Quality Standards and Guidance Values for Class C surface waters (NYSDEC, 1998). The Class C water quality criteria were used since the segment of the Buffalo

River adjacent to the Terminal has been designated by NYSDEC as Class C (6 NYCRR, Part 837.4). The best usage of Class C water bodies is fishing.

The results of the comparison indicate maximum concentrations of benzene, phenanthrene, acenaphthene and fluorene in groundwater exceed their respective Class C standards or guidance values. Therefore, these compounds were retained for further evaluation in the contaminant loading evaluation. All of the other compounds could not pose a potential impact to the Buffalo River since the maximum concentrations are less than the relevant surface-water criteria.

The mass flux of each constituent of concern into the Buffalo River was calculated by multiplying the maximum concentrations of each compound by the groundwater flux estimate of  $5,774 \text{ ft}^3/\text{day}$ . This is a conservative estimate of mass flux since it utilizes the maximum groundwater flux estimate, the maximum concentrations observed in groundwater and assumes that there will be no attenuation or degradation of the compounds during migration to the River. The River is approximately 100 to 150 feet downgradient from where the maximum concentrations were detected. The calculated mass flux of each constituent of concern into the Buffalo River is shown in Table E-2 (Appendix E).

### 3.2.5.3 Estimation of Potential Maximum Concentrations of COCs in Surface Water

Potential maximum concentrations of COCs in surface water were estimated by considering the mixing of the groundwater discharge with various percentages of the estimated surface-water discharge of the Buffalo River adjacent to the Site. Based upon review of published information and discussions with the United States Geologic Survey (USGS), there are no surface-water gauging stations along the Buffalo River. Therefore, the discharge of the Buffalo River was approximated as the cumulative flow of its tributaries: Cazenovia Creek, Cayuga Creek and Buffalo Creek. Published gauging data exist for all three of streams for the period May 1, 1974 to September 30, 1998 (USGS, 1999). During this period of record, the average long-term discharge of the Buffalo River was 511 cubic feet per second (ft<sup>3</sup>/sec) or  $4.4 \times 10^7$  ft<sup>3</sup>/day.

Table E-2 summarizes the maximum concentrations of COCs that could occur following mixing of 5,774  $ft^3$ /day of groundwater with 100, 50, 1, 0.1 and 0.05 percent of the surface-water flow in the Buffalo River. As shown, only at the 0.1 and 0.05 percent mixing levels is there any potential for exceedances of the Class C water quality criteria.

### **3.2.5.4** Discussion of the Results

The results of the contaminant loading evaluation indicate that the potential for impacts to aquatic life in the Buffalo River is negligible. The maximum concentrations of COCs in groundwater are very low and only slightly exceed their respective water quality criteria. Even conservatively assuming that the maximum concentrations in groundwater discharge to surface water, and using the more conservative estimate of groundwater flux to the River, the resulting surface-water concentrations would be in compliance with the water quality criteria almost immediately upon discharge. Based upon the attenuation characteristics of the COCs, the actual concentrations reaching the River, and corresponding potential for impact to the River, would be even further reduced.

# 3.3 Former Lube Building

As described in Section 2.3, the SFI Continuation scope of work for the Former Lube Building Area consisted of soil borings and monitoring well installation to delineate free product and to provide additional soil and groundwater quality data. The results of the additional investigative tasks are presented in the following sections.

# 3.3.1 Soil Sampling Results

As discussed in Section 2.3.1, soil samples were collected and sent for laboratory analysis from 13 locations in the Former Lube Building Area during the SFI Continuation and at four locations during the initial SFI.

As shown in Figures 8 and 9, the BTEX compounds, and 1,2,4-trimethylbenzene were each detected in at least one location above RSCO criteria or TCLP Alternative Guidance Values. In general, higher concentrations were observed in the deeper samples, with no apparent pattern to the areal extent of elevated concentrations in either the shallow or deep intervals. A summary of the VOCs detected in soil is provided in Table 5.

#### ROUX ASSOCIATES, INC.

As shown in Figures 10 and 11, SVOCs were detected at concentrations exceeding RSCOs and Site Background concentrations at multiple sample locations. There was no pattern of higher and lower concentrations relative to depth. However, all of the exceedances of Site Background concentrations were confined to the portion of the property east of Babcock Street. In addition, the exceedances of Site Background concentrations in the deeper sampling interval were limited to those sample locations in the vicinity of the former truck loading rack. A summary of the SVOCs detected in soil is provided in Table 3.

As shown in Figures 12 and 13, metals concentrations exceeded RSCOs at multiple locations and in both the shallow and deeper intervals. Nickel and chromium were the metals most frequently detected at concentrations exceeding RSCOs. Site Background concentrations were exceeded for mercury, nickel and selenium in both the shallow and deeper intervals. Nickel and selenium were the metals most frequently detected at concentrations exceeding Site Background concentrations. There is no discernible pattern to the horizontal or vertical distribution of the metals exceedances in either interval. A summary of the metals detected in soil is provided in Table 4.

#### **3.3.2 Free-Product Delineation**

Of the 2 wells installed during the initial SFI and the 11 wells installed during the SFI Continuation field work in the Former Lube Building Area, only wells SB-17, SB-16 and SB-20 contained measurable free product during the October 7, 1999 site-wide gauging round. Measured thickness ranged from 0.01 ft to 0.87 ft. As indicated on Plate 1, the distribution of the wells exhibiting measurable free-product indicate that the free product plume extends north and west of the Former Truck Rack, and to the south through the central portion of the Former Lube Building. Wells SB-13 and SB-12 are also shown within the free-product plume based on August 10, 1999 gauging data which indicated free-product thicknesses in the two wells to be 0.1 ft and 0.02 ft, respectively. Based upon field observations during the drilling program, soil borings SB-21, SB-22, SB-24, SB-26 and SB-29 on the west side of Babcock Street indicated the presence of free product in soil samples collected from the vicinity of the water table. The next boring to the west, SB-30, did not show any evidence of free product. Therefore, the free-product plume was shown to extend beyond Babcock Street to the west even though no wells

were installed between SB-17 and SB-30 to define free-product thickness in this area. The installation and subsequent gauging of Monitoring Well SB-31 confirmed that delineation had been achieved in this area. In addition, boring SB-28 showed evidence of free product; however, access limitations prevented further delineation to the north. Therefore, it is possible that the free-product plume may extend beyond SB-28 to the north.

### **3.3.3 Babcock Street Sewer**

The potential for impacts to the Babcock Street Sewer was evaluated by comparing groundwater and free-product elevations to the sewer invert and sewer bedding elevations. The elevation data for the sewer was obtained from Buffalo Sewer Authority installation drawings. The analysis included measurements from both before and after startup of the western leg of the Well Point System on August 23, 1999. The groundwater, free product and sewer elevation data are summarized on Table 9.

The gauging data collected prior to startup of the western leg of the WPS indicated that the groundwater and free-product elevations were generally above the sewer invert elevation; and in all instances above the approximate elevation of the sewer bedding material. Following startup of the western leg of the WPS, the data indicated groundwater and free product elevations declined to below the sewer invert and bedding material, with the exception of groundwater at Monitoring Well SB-16.

Based upon these data, the startup of the western leg of the WPS has reduced the potential for any impacts to the Babcock Street Sewer.

### 3.4 Site-Wide Groundwater Flow and Quality

As shown in Plate 1, groundwater flows towards the south in the region between the northern Site boundary and the dual-phase recovery systems (RW-1 through RW-5). This is the natural direction of groundwater flow in the absence of pumping (i.e., toward discharge at the Buffalo River). In the area between the dual-phase recovery systems and the Well Point System, a groundwater flow divide is created between the cones of influence of the two pumping systems. In the area between the Well Point System and the River, pumping of the Well Point System depresses the water table sufficiently to induce recharge from the Buffalo River into the aquifer and prevent the discharge of contaminants from the aquifer to the River. This effect of the Well Point System is documented by the 5.4 feet of head difference between well MW-21 and the Buffalo River; and approximately 5.5 feet of head difference between well SB-12 and the Buffalo River (Plate 1).

The groundwater flow directions depicted in Plate 1 are very similar to those observed during prior monitoring rounds at the Site and that were shown in the initial SFI Report. One notable difference is that the activation of the western leg of the WPS has resulted in hydraulic capture of groundwater beneath and to the west of Babcock Street. In addition, the survey of all new and existing wells performed by the licensed surveyor as part of the SFI Continuation field work identified several erroneous monitoring well measuring point elevations. While this new information did not change the overall interpretation of groundwater flow directions presented in the SFI, it did clarify some anomalies identified during past gauging events. For example, groundwater elevations in the Terminal Disposal Area previously could not be contoured. However, based on the new surveyed elevations of several existing wells in this area, flow is clearly shown to be toward the Buffalo River.

Plates 2, 3 and 4 the summarize the site-wide groundwater quality data that was collected during the initial SFI and the SFI Continuation field work. As described in the SFI Report, the groundwater sampling results generally indicate low or nondetectable concentrations of VOCs and SVOCs at the upgradient northern edge of the Site and higher concentrations towards the center and southern areas. This is consistent with the historical Site operations, as well as groundwater flow direction, and presence of free product within the southern portion of the Site. A site-wide pattern of metals occurrence or concentrations in groundwater was not observed.

The data collected during the SFI Continuation program (summarized in Tables 6 through 8, and included on Plates 2 through 4) are consistent with the results of the initial SFI and do not affect the general understanding of groundwater quality at the Site.

As described above, the dual-phase recovery wells and Well Point System provide hydraulic capture of groundwater at the Site. As a result of the recent activation of the western leg of the

Well Point System, hydraulic capture of impacted groundwater is provided across the whole Site with the exception of the groundwater in the vicinity of the free-product plume at the Terminal Disposal Site. The contaminant loading evaluation described in Section 3.2.5 indicates that there is little to no potential for groundwater in this area to impact the Buffalo River.

As requested by NYSDEC and as discussed in Section 2.5, monitoring wells BTC-4 and BTC-5 in the Biotreatment Cell Area and MW-1URS in the Terminal Disposal Area were resampled for lead and TEL, and monitoring well NTY-T60 in the Northern Tank Yard/Former Refinery Area was resampled for hexavalent chromium and lead. Groundwater samples collected from all four locations contained lead at concentrations ranging from 0.007 mg/L in NTY-T60 to 0.167 mg/L in BTC-5. There were no detections of TEL or hexavalent chromium. A summary of metals detected in groundwater is provided in Table 8.

### 4.0 SUMMARY OF FINDINGS AND CONCLUSIONS

A summary of the key findings and conclusions of the initial SFI and SFI Continuation field program with respect to the Elk Street Lot, Terminal Disposal Site and Former Lube Building Area is provided in the following sections.

### 4.1 Elk Street Lot

The results of the initial SFI and SFI Continuation field program indicate that the concentrations of SVOCs and metals in soil exceed RSCOs across the entire Elk Street Lot and on the properties immediately north of the Elk Street Lot. However, the areal extent of the SVOCs exceeding Site Background is limited to the northeast corner of the Elk Street Lot; and, the vertical extent is from land surface to a depth of two feet below the layer of surficial material (e.g., concrete and brick fragments) present in this area. The groundwater quality data from the initial SFI indicate no impacts to groundwater quality beneath the Elk Street Lot.

Based upon the information summarized above, remedial alternatives will be developed and evaluated to address the northeast corner of the Elk Street Lot where SVOCs are present at concentrations exceeding Site Background. Remediation to achieve Site Background concentrations will eliminate all impacts potentially associated with Mobil's historical Site operations, including the historical discharge from Tank 60.

# 4.2 Buffalo Terminal Disposal Site

The results of the initial SFI and SFI Continuation field program indicate that the extent of free product has been delineated to the immediate vicinity of Monitoring Wells P-15, LF-1S and MW-3URS. During the SFI Continuation field program free product was not present in MW-3URS, however, this well is still shown to be within the area impacted by free product pending the results of future monitoring.

The three monitoring wells that contain or have contained free product, as well as the new wells not containing free product, will be incorporated into a routine interim free-product recovery program. The interim program will include use of appropriate methods (e.g., bailing and gauging, passive bailers, skimmers, etc.) to recover free product and collect additional data regarding temporal fluctuations in free-product occurrence and thickness, and sustainable freeproduct recovery rates. The frequency of the interim recovery efforts will be based upon the ability of the well to sustain free-product recovery. Results will be included in Quarterly Monitoring reports that are submitted to document ongoing remedial activities at the Site.

The results of the Contaminant Loading Evaluation indicate that the potential for the groundwater beneath the Terminal Disposal Site to impact aquatic life in the Buffalo River is negligible. Quarterly groundwater monitoring of the wells installed as part of the SFI and SFI Continuation field program will be performed to determine whether there are any temporal fluctuations or trends in groundwater quality and, in turn, to verify the conclusions of the Contaminant Loading Evaluation.

### 4.3 Former Lube Building

The results of the initial SFI and SFI Continuation field program indicate that free product extends from the western leg of the Well Point System on the south side of the Former Lube Building to north of the former truck loading rack on the north side of the Former Lube Building. East of the Former Lube Building, the free product extends onto the current terminal property and is co-mingled with other free product. West of the Former Lube Building, the data from Monitoring Well SB-13 and SB-17 indicate that the free product extends beneath Babcock Street. Monitoring wells installed on the west side of Babcock Street did not show evidence of free product.

Comparison of the Babcock Street sewer elevation with the free-product elevation in monitoring wells indicates that the free product layer was at or above the sewer invert elevation prior to activation of western leg of the Well Point System. Following activation of the western leg, groundwater and free-product elevations were lowered below the sewer invert and bedding material, with the exception of well SB-16.

A feasibility study of remedial alternatives to improve the recovery of free product beneath the Former Lube Building will be performed during the year 2000. During the performance of the feasibility study, interim free-product recovery efforts will be performed as previously described for the Terminal Disposal Site. In addition, as part of the feasibility study, it is anticipated that various types of recovery equipment will be tested; thereby, improving free-product recovery.

Soil quality in the area of the Former Lube Building and the truck loading rack has been impacted by historical activities. Concentrations of VOCs and SVOCs exceed the RSCOs as well as Site Background. The SFI Continuation Work Plan specified that an exposure assessment would be conducted to develop Site-specific criteria for soil at the Former Lube Building Area. Based upon the results of the investigation and the future remedial activities planned for the Former Lube Building Area, it is not appropriate to develop Site-specific criteria for soil at this time. Specifically, the feasibility study of free-product recovery alternatives and anticipated future pipe removal activities in this area will result in the collection of additional soil and groundwater characterization data that will be pertinent to the exposure assessment. Therefore, the conduct of the exposure assessment to develop Site-specific cleanup levels for soil and groundwater will be deferred until these data are collected and remedial alternatives for free-product recovery have been implemented.

Respectfully submitted,

# ROUX ASSOCIATES, INC.

Noelle Clarke, P.E. Senior Engineer/ Project Manager

Andrew Baris Principal Hydrogeologist/ Project Principal

#### **5.0 REFERENCES**

- CDM, 1988. Draft RCRA Facility Assessment Report, CDM Federal Programs Corporation, November 30, 1988.
- McDonald, M.G. and Harbaugh, A.W., 1988. A modular three-dimensional finite-difference groundwater flow model. Techniques of Water-Resources Investigations of the United States Geological Survey. Book 6, Chapter A1.
- New York State Department of Environmental Conservation, 1992. Spill Technology and Remediation Series (STARS) Memo # 1, Petroleum-Contaminated Soil Guidance Policy, August 1992.
- New York State Department of Environmental Conservation, 1994. Division of Hazardous Waste Remediation. Division Technical and Administrative Guidance Memorandum: Determination of Soil Cleanup Objectives and Cleaning Levels, January 24, 1994.
- New York State Department of Environmental Conservation, 1996. Groundwater Monitoring Well Decommissioning Procedures, October 1996.
- New York State Department of Environmental Conservation, 1998. Division of Technical and Operational Guidance Series (1.1.1) Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations, June 1998.
- Roux Associates, Inc., 1998. Site Facility Investigation Report, Mobil Buffalo Terminal, November 25, 1998.
- Roux Associates, Inc., 1999a. June 3, 1999 letter to Mr. Tim Dieffenbach at the NYSDEC regarding the response to NYSDEC comments regarding SFI report.
- Roux Associates, Inc., 1999b. Work Plan for the Continuation of Site Facility Investigation, Mobil Buffalo Terminal, June 3, 1999.
- Roux Associates, Inc., 1999c. June 24, 1999 letter to Mr. Tim Dieffenbach at the NYSDEC regarding addendum to the response to NYSDEC comments regarding SFI report.
- Roux Associates, Inc., 1999d. July 1, 1999 letter to Mr. Tim Dieffenbach at the NYSDEC regarding acknowledgement and acceptance of NYSDEC clarifications regarding June 24, 1999 addendum to response for Mobil's Buffalo Terminal.
- Title 6, New York Code of Rules and Regulations (6NYCRR), Part 837.4.
- United States Geological Survey, 1999. Stream gauging data from Stations 04124500, 04215000 and 04125500 from the USGS web site "http://ny-usgs.gov/rt-cgi/gen\_stn\_pg."
- Woodward-Clyde, 1998. Site Facility Investigation Work Plan, Mobil Oil Corporation Buffalo Terminal. Revised February 2, 1998.

Table 1. Summary of Well Construction Details, Mobil Buffalo Terminal, Buffalo, New York.

| Well        |                |           | Measuring Point     | Land Surface        | Depth of        | Depth of      | Screen Interval | Screen Length |  |
|-------------|----------------|-----------|---------------------|---------------------|-----------------|---------------|-----------------|---------------|--|
| Designation | Date Installed | Installer | Elevation (ft amsl) | Elevation (ft amsl) | Boring (ft bls) | Well (ft bls) | (ft bls)        | (feet)        |  |
| LF-3        | 8/3/99         | GES       | 596.17              | 594.1               | 36              | 36            | 16-36           | 20            |  |
| LF-4        | 8/5/99         | GES       | 594.87              | 595.6               | 37              | 36            | 16-36           | 20            |  |
| LF-5        | 8/6/99         | GES       | 597.62              | 595                 | 37              | 37            | 17-37           | 20            |  |
| LF-6        | 8/13/99        | GES       | 598.14              | 595.8               | 37              | 36            | 16-36           | 20            |  |
| LF-7        | 8/16/99        | GES       | 598.28              | 596.1               | 38              | 38            | 18-38           | 20            |  |
| LF-8        | 8/17/99        | GES       | 596.99              | 594.8               | 37              | 37            | 17-37           | 20            |  |
| SB-11/LB-1  | 7/2/99         | GES       | 584.24              | 582.1               | 24              | 24            | 7-24            | 17            |  |
| SB-12       | 7/9/99         | GES       | 582.74              | 583                 | 21.5            | 18            | 3-18            | 15            |  |
| SB-13       | 7/27/99        | GES       | 583.44              | 583.9               | 15              | 15            | 5-15            | 10            |  |
| SB-14       | 7/27/99        | GES       | 584.79              | 582.8               | 23              | 23            | 5-23            | 18            |  |
| SB-15       | 7/27/99        | GES       | 583.35              | 583.35              | 15              | 15            | 5-15            | 10            |  |
| SB-16       | 7/28/99        | GES       | 583.81              | 584                 | 17              | 17            | 5-17            | 12            |  |
| SB-17       | 7/28/99        | GES       | 583.53              | 583.8               | 20              | 20            | 5-20            | 15            |  |
| SB-19       | 7/29/99        | GES       | 583.13              | 583.8               | 20              | 20            | 5-20            | 15            |  |
| SB-20       | 7/29/99        | GES       | 583.46              | 583.8               | 15              | 15            | 5-15            | 10            |  |
| SB-28       | 8/2/99         | GES       | 588.13              | 585.3               | 15              | 15            | 5-15            | 10            |  |
| SB-31       | 8/5/99         | GES       | 581.92              | 582.6               | 15              | 15            | 5-15            | 10            |  |

Notes:

ft amsl = feet above mean sea level

ft bls = feet below land surface
|                 |         | Measuring |              |            |                |          |           |          |
|-----------------|---------|-----------|--------------|------------|----------------|----------|-----------|----------|
|                 |         | Point     | Depth to     | Depth to   | Product        | Specific | Corrected |          |
| Designation     | Date    | Elevation | Product (ft) | Water (ft) | Thickness (ft) | Gravity  | Elevation | Comments |
| B-1MW           | 10/7/99 | 590.31    |              | 5.76       |                |          | 584.55    |          |
| B-2MW           | 10/7/99 | 588.45    |              | 6          |                |          | 582.45    | sheen    |
| B-3MW           | 10/7/99 | 586.82    |              | 4.78       |                |          | 582.04    |          |
| B-4MW           | 10/7/99 | 587.05    |              | 8.77       |                |          | 578.28    |          |
| B-5MW           | 10/7/99 | 587.82    |              | 4.6        |                |          | 583.22    |          |
| B-6MW           | 10/7/99 | 596.35    |              | 25.48      |                |          | 570.87    |          |
| ESI-1           | 10/7/99 | 586.69    | 20.06        | 21.44      | 1.38           | 0.8236   | 566.39    |          |
| ESI-2           | 10/7/99 | 586.5     | 17.78        | 19.75      | 1.97           | 0.8338   | 568.39    |          |
| ESI-3           | 10/7/99 | 588.32    | 22.11        | 22.12      | 0.01           | 0.8      | 566.21    |          |
| ESI-4           | 10/7/99 | 583.49    |              | 16.96      |                |          | 566.53    |          |
| ESI-5           | 10/7/99 | 586.97    | 13.15        | 13.51      | 0.36           | 0.856    | 573.77    |          |
| LF-1S           | 10/7/99 | 596.27    | 25.92        | 26.01      | 0.09           | 0.8      | 570.33    |          |
| LF-2D           | 10/7/99 | 581.83    | 20.72        | 12.79      | 0.07           | 0.0      | 569.04    |          |
| LF-2S           | 10/7/99 | 581.77    |              | 13.93      |                |          | 567.84    |          |
| LF-3            | 10/7/99 | 596.17    |              | 25.37      |                |          | 570.80    |          |
| LF-4            | 10/7/99 | 594.87    |              | 22.88      |                |          | 571.99    |          |
| LF-5            | 10/7/99 | 597.62    |              | 26.77      |                |          | 570.85    |          |
| LF-6            | 10/7/99 | 598.14    |              | 27.33      |                |          | 570.81    |          |
| LI-0<br>I F-7   | 10/7/99 | 598.28    |              | 27.35      |                |          | 570.88    |          |
| LT - 7<br>L F-8 | 10/7/00 | 596.20    |              | 27.4       |                |          | 570.82    |          |
| MW_1            | 10/7/00 | 582.13    |              | 15 75      |                |          | 566.38    |          |
| 101 $W - 1$     | 10/7/00 | 594 79    | 12/11        | 16.7       | 4 20           | 0 7076   | 571.50    |          |
| MW-10           | 10/7/00 | 595.22    | 12.41        | 10.7       | 4.29           | 0.7970   | 560.80    |          |
| MW 12           | 10/7/00 | 596.69    | 13.43        | 13.43      | 0.02           | 0.828    | 5(7.2)    |          |
| MW-12           | 10/7/99 | 584.27    | 19.28        | 20.49      | 1.21           | 0.8811   | 507.20    |          |
| MW-13           | 10/7/99 | 584.57    | 10.72        | 0.74       | 2.59           | 0.0120   | 585.05    |          |
| MW-14           | 10/7/99 | 580.91    | 18.72        | 21.5       | 2.58           | 0.8128   | 567.71    |          |
| MW-15           | 10/7/99 | 580.65    | 17.8         | 18./3      | 0.93           | 0.8265   | 568.69    |          |
| MW-16           | 10/7/99 | 589.66    |              | 5.01       |                |          | 584.65    |          |
| MW-17           | 10/7/99 | 588.39    | 1(22         | 4.55       | 1.46           | 0.0010   | 583.84    |          |
| MW-18           | 10/7/99 | 582.88    | 16.33        | 17.79      | 1.46           | 0.8212   | 566.29    |          |
| MW-19           | 10/7/99 | 585.37    | 16.7         | 19.61      | 2.91           | 0.8294   | 568.17    |          |
| MW-IURS         | 10/7/99 | 594.82    |              | 14.62      |                |          | 580.20    |          |
| MW-2            | 10/7/99 | 583.09    | 1.5.00       | 16.26      |                |          | 566.83    |          |
| MW-20           | 10/7/99 | 585.97    | 17.88        | 18.99      | 1.11           | 0.8702   | 567.95    |          |
| MW-21           | 10/7/99 | 582.69    |              | 17.64      |                |          | 565.05    |          |
| MW-2URS         | 10/7/99 | 581.83    |              | 14.17      |                |          | 567.66    |          |
| MW-3            | 10/7/99 | 581.72    |              | 16.71      |                |          | 565.01    |          |
| MW-3URS         | 10/7/99 | 598.63    |              | 27.76      |                | 0.8822   | 570.87    |          |
| MW-4            | 10/7/99 | 586.01    | 9.29         | 11.77      | 2.48           | 0.8504   | 576.35    |          |
| MW-4URS         | 10/7/99 | 594.59    |              | 23.79      |                |          | 570.80    |          |
| MW-5            | 10/7/99 | 585.77    | 10.72        | 11.26      | 0.54           | 0.8922   | 574.99    |          |
| MW-5URS         | 10/7/99 | 595.36    |              | 14.84      |                |          | 580.52    |          |
| MW-6            | 10/7/99 | 585.99    |              | 16.86      |                |          | 569.13    | film     |
| MW-7            | 10/7/99 | 586.36    | 19.23        |            |                | 0.9593   | NA        |          |
| MW-8            | 10/7/99 | 587.45    | 13.82        | 18.34      | 4.52           | 0.8017   | 572.73    |          |
| MW-9            | 10/7/99 | 588.5     |              | 4.94       |                |          | 583.56    |          |
| P-15            | 10/7/99 | 597.04    | 26.12        | 26.6       | 0.48           | 0.88     | 570.86    |          |
| RIVER           | 10/7/99 | 583.75    |              | 13.3       |                |          | 570.45    |          |
| RW-1            | 10/7/99 | 581.8     | 18.04        | 19.9       | 1.86           | 0.8      | 563.39    |          |
| RW-2            | 10/7/99 | 581.61    | 16.2         | 16.4       | 0.2            | 0.8      | 565.37    |          |
| RW-3            | 10/7/99 | 583.21    | 18.65        | 18.7       | 0.05           | 0.8      | 564.55    |          |
| RW-4            | 10/7/99 | 581.91    | 19.05        | 19.25      | 0.2            | 0.8433   | 562.83    |          |

## Table 2. Groundwater and Free-Product Measurements, Mobil Buffalo Terminal, Buffalo, New York.

|             |         | Measuring |              |            |                |          |           |                                          |
|-------------|---------|-----------|--------------|------------|----------------|----------|-----------|------------------------------------------|
|             |         | Point     | Depth to     | Depth to   | Product        | Specific | Corrected |                                          |
| Designation | Date    | Elevation | Product (ft) | Water (ft) | Thickness (ft) | Gravity  | Elevation | Comments                                 |
| RW-5        | 10/7/99 | 581.98    | 17           | 17.1       | 0.1            | 0.8529   | 564.97    |                                          |
| RW-6        | 10/7/99 | 581.99    |              | 3.48       |                |          | 578.51    | sheen                                    |
| SB-10       | 10/7/99 | 582.13    |              | 10.35      |                |          | 571.78    |                                          |
| SB-11       | 10/7/99 | 584.24    |              | 19.49      |                |          | 564.75    |                                          |
| SB-12       | 10/7/99 | 582.74    |              | 17.76      |                |          | 564.98    |                                          |
| SB-13       | 10/7/99 | 583.44    |              | 14.02      |                |          | 569.42    |                                          |
| SB-14       | 10/7/99 | 584.79    |              | 21.83      |                |          | 562.96    |                                          |
| SB-15       | 10/7/99 | 583.35    |              | 13.44      |                |          | 569.91    | film, I" of product on water in road box |
| SB-16       | 10/7/99 | 583.81    | 13.98        | 14.16      | 0.18           | 0.8      | 569.79    |                                          |
| SB-17       | 10/7/99 | 583.53    | 17.6         | 18.47      | 0.87           | 0.8      | 565.76    |                                          |
| SB-19       | 10/7/99 | 583.13    |              | 8.05       |                |          | 575.08    |                                          |
| SB-20       | 10/7/99 | 583.46    | 13.74        | 13.75      | 0.01           | 0.8      | 569.72    |                                          |
| SB-31       | 10/7/99 | 581.92    |              | 14.72      |                |          | 567.20    |                                          |
| SB-7        | 10/7/99 | 583.37    | 4.57         | 4.58       | 0.01           | 0.8      | 578.80    |                                          |
| W-1         | 10/7/99 | 595.98    |              | 18.31      |                |          | 577.67    |                                          |

NA - Not applicable

| Area:                     | Elk Street I | Lot    |             |         |         |         |         |              |              |
|---------------------------|--------------|--------|-------------|---------|---------|---------|---------|--------------|--------------|
| Sample Designation:       | ESL-1        | ESL-2  | ESL-3       | ESL-4   | ESL-5   | ESL-6   | ESL-7   | ESL-8/ESL-W1 | ESL-8/ESL-W1 |
| Sample Date:              | 6/17/98      | 9/2/99 | 6/17/98     | 6/17/98 | 6/17/98 | 6/17/98 | 6/17/98 | 6/17/98      | 6/22/98      |
| Sample Depth (ft bls):    | 0-0.5        | 0-0.5  | 0-0.5       | 0-0.5   | 0-0.5   | 0-0.5   | 0-0.5   | 0-0.5        | 8-10         |
| Parameter                 |              |        |             |         |         |         |         |              |              |
| (Concentrations in µg/kg) |              |        |             |         |         |         |         |              |              |
| Acenaphthene              | 42J          | 36U    | <b>34</b> U | 64.J    | 36J     | 37U     | 130J    | 38U          | <b>42</b> U  |
| Acenaphthylene            | 58J          | 51J    | 68J         | 120J    | 190     | 160J    | 250     | 38U          | 42U          |
| Anthracene                | 120J         | 96J    | 110J        | 320     | 230     | 180J    | 470     | 38U          | 42U          |
| Benzo[a]anthracene        | 770          | 380    | 480         | 1300    | 780     | 410     | 1700    | 93J          | 42U          |
| Benzo[a]pyrene            | 860          | 410    | 440         | 1200    | 800     | 400     | 1700    | 90J          | 42U          |
| Benzo[b]fluoranthene      | 1200         | 530J   | 640         | 1600    | 980     | 570     | 2100    | 140J         | 42U          |
| Benzo[g,h,i]perylene      | 720          | 350    | 330         | 800     | 550     | 280     | 970     | 77J          | 42U          |
| Benzo[k]fluoranthene      | 420          | 210J   | 230         | 570     | 370     | 180J    | 760     | 45J          | 42U          |
| Chrysene                  | 850          | 430    | 450         | 1300    | 840     | 470     | 1800    | 110J         | 42U          |
| Dibenzo[a,h]anthracene    | 170J         | 120J   | 99J         | 280     | 170J    | 82J     | 300     | 38U          | 42U          |
| Fluoranthene              | 1700         | 740    | 790         | 2500    | 1300    | 680     | 3500    | 120J         | 42U          |
| Fluorene                  | 38J          | 36U    | 34U         | 100J    | 59J     | 45J     | 150J    | 38U          | 42U          |
| Indeno[1,2,3-cd]pyrene    | 780          | 340    | 400         | 900     | 610     | 300     | 1100    | 77J          | 42U          |
| Naphthalene               | 38U          | 36U    | 34U         | 100J    | 35U     | 110J    | 84J     | 160J         | 42U          |
| Phenanthrene              | 970          | 400    | 240         | 1400    | 530     | 430     | 2000    | 140J         | 42U          |
| Pyrene                    | 1400         | 610    | 650         | 1900    | 1200    | 610     | 2800    | 130J         | 42U          |
| TOTAL SVOCS               | 10098        | 4667   | 4927        | 14454   | 8645    | 4907    | 19814   | 1182         | 0            |

µg/kg - Micrograms per kilogram

U - The analyte was analyzed for, but not detected above the reported quantitation limit.

J - The analyte was positively identified: the associated numerical value is the approximate concentration of the analyte in the sample.

UJ - The analyte was not detected above the reported quantitation limit. However the reported quantitation limit may be biased.

NA - Not analyzed

| Area:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Elk Street I  | Lot         |            |                |               |        |        |              |        |             |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-------------|------------|----------------|---------------|--------|--------|--------------|--------|-------------|
| Sample Designation:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ESL-9         | ESL-10      | ESL-11     | ESL-12         | ESL-13        | ESL-13 | ESL-13 | ESL-14       | ESL-14 | ESL-14      |
| Sample Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6/17/98       | 6/17/98     | 6/17/98    | 6/17/98        | 9/2/99        | 9/2/99 | 9/2/99 | 9/2/99       | 9/2/99 | 9/2/99      |
| Sample Depth (ft bls):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0-0.5         | 0-0.5       | 0-0.5      | 0-0.5          | 0-0.5         | 1-2    | 2-3    | 0-0.5        | 1-2    | 2-3         |
| Parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               |             |            |                |               |        |        |              |        |             |
| (Concentrations in µg/kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               |             |            |                |               |        |        |              |        |             |
| Acenanhthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <b>101</b> 1  | 621         | 641        | 5300           | 1700 I        | 2100   | 350    | 7601         | 1600   | 61 I        |
| A compatible and a compa | 400<br>74 I   | 02J<br>78 I | 110T       | 2500           | 1700J<br>0/01 | 1100   | 220    | 700J<br>400U | 1000   | 4211        |
| Anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | /4J<br>110 T  | 70J<br>270  | 220        | 2300           | 5500          | 5500   | 1100   | 2200 I       | 5100   | 420<br>1701 |
| Benzo[a]anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4301          | 930         | 760        | 69000          | 16000         | 16000  | 2500   | 6800         | 7700   | 510         |
| Benzo[a]nvrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 450J<br>450 I | 930<br>870  | 700        | 57000          | 13000         | 14000  | 2300   | 7000         | 6900   | 570         |
| Benzo[h]fluoranthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 430J<br>59N I | 1000        | 940        | 63000          | 15000         | 17000  | 2900   | 7600         | 8900   | 570<br>740  |
| Benzo[g h i]pervlene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 390J          | 550         | 520        | 30000          | 6500          | 5200   | 1000   | 4500         | 2400   | 440         |
| Benzo[k]fluoranthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 200.1         | <b>410</b>  | 310        | 26000          | 6300          | 5700   | 1200   | 3500         | 3800   | 260         |
| Chrysene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2000<br>550.I | 850         | 800        | 20000<br>59000 | 16000         | 16000  | 2600   | 6900         | 7800   | 200<br>560  |
| Dibenzo[a h]anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 120J          | 170.I       | 150J       | 9200.1         | 2400          | 1700   | 340    | 1400         | 990.1  | 130.1       |
| Fluoranthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 760.I         | 1700        | 1600       | 140000         | 29000         | 35000  | 4700   | 12000        | 16000  | 940         |
| Fluorene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 40U           | 70J         | 79.J       | 5600           | 2100          | 3100   | 540    | 830.1        | 3300   | 120J        |
| Indeno[1 2 3-cd]nyrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 360.1         | 610         | 520        | 35000          | 8200          | 10000  | 1300   | 5100         | 3300   | 470         |
| Nanhthalene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <b>40</b> U   | 74J         | 520<br>76J | 1200           | 720J          | 2300   | 330    | 400U         | 1200J  | 47.J        |
| Phenanthrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 410.1         | 890         | 1000       | 69000          | 18000         | 26000  | 3800   | 7300         | 12000  | 530         |
| Pyrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 670J          | 1400        | 1300       | 120000         | 28000         | 29000  | 4500   | 12000        | 13000  | 820         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.00          | 1.00        | 1000       | 120000         | 20000         | _> 300 |        | 12000        | 10000  |             |
| TOTAL SVOCS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5114          | 9934        | 9159       | 712800         | 169360        | 189700 | 29680  | 77890        | 100470 | 6338        |

µg/kg - Micrograms per kilogram

U - The analyte was analyzed for, but not detected above the reported quantitation limit.

J - The analyte was positively identified: the associated numerical value is the approximate concentration of the analyte in the sample.

UJ - The analyte was not detected above the reported quantitation limit. However the reported quantitation limit may be biased.

NA - Not analyzed

| Area:                     | Elk Street | Lot    |        |        |        |        |        |        |        |        |        |
|---------------------------|------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| Sample Designation:       | ESL-15     | ESL-15 | ESL-15 | ESL-16 | ESL-16 | ESL-16 | ESL-17 | ESL-17 | ESL-17 | ESL-18 | ESL-18 |
| Sample Date:              | 9/2/99     | 9/2/99 | 9/2/99 | 9/2/99 | 9/2/99 | 9/2/99 | 9/2/99 | 9/2/99 | 9/2/99 | 9/2/99 | 9/2/99 |
| Sample Depth (ft bls):    | 0-0.5      | 1-2    | 2-3    | 0-0.5  | 1-2    | 2-3    | 0-0.5  | 1-2    | 2-3    | 0-0.5  | 1-2    |
| Parameter                 |            |        |        |        |        |        |        |        |        |        |        |
| (Concentrations in µg/kg) |            |        |        |        |        |        |        |        |        |        |        |
| Acenaphthene              | 3400       | 950    | 170J   | 49J    | 36U    | 37U    | 110J   | 150J   | 37U    | 36U    | 38U    |
| Acenaphthylene            | 410        | 500J   | 110J   | 110J   | 53J    | 37U    | 160J   | 300    | 37U    | 36U    | 38U    |
| Anthracene                | 7400       | 2600   | 580    | 190    | 110J   | 37U    | 340    | 510    | 66J    | 44J    | 38U    |
| Benzo[a]anthracene        | 18000      | 6700   | 2200   | 710    | 310    | 37U    | 1100   | 2000   | 150J   | 180    | 110J   |
| Benzo[a]pyrene            | 13000      | 5500   | 1800   | 750    | 320    | 53J    | 1100   | 1800   | 130J   | 250    | 130J   |
| Benzo[b]fluoranthene      | 14000J     | 7200   | 2200   | 1000   | 400    | 64J    | 1400J  | 2200J  | 130J   | 230J   | 120J   |
| Benzo[g,h,i]perylene      | 4200       | 3200   | 910    | 600    | 290    | 49J    | 810    | 1100   | 73J    | 250    | 96J    |
| Benzo[k]fluoranthene      | 13000J     | 3700   | 940    | 330    | 140J   | 37UJ   | 610J   | 970J   | 50J    | 74J    | 55J    |
| Chrysene                  | 20000      | 7200   | 2300   | 910    | 390    | 45J    | 1300   | 2200   | 180J   | 200    | 120J   |
| Dibenzo[a,h]anthracene    | 2500       | 1000   | 330    | 180    | 96J    | 37U    | 250    | 380    | 37U    | 74J    | 38U    |
| Fluoranthene              | 30000      | 15000  | 3900   | 1400   | 670    | 65J    | 2200   | 3200   | 260    | 280    | 150J   |
| Fluorene                  | 3400       | 1400   | 180J   | 74J    | 52J    | 37U    | 110J   | 170J   | 37U    | 36U    | 38U    |
| Indeno[1,2,3-cd]pyrene    | 5200       | 3600   | 1100   | 630    | 290    | 43J    | 940    | 1300   | 69J    | 160J   | 84J    |
| Naphthalene               | 1700       | 600J   | 90J    | 100J   | 58J    | 37U    | 52J    | 78J    | 37U    | 36U    | 38U    |
| Phenanthrene              | 25000      | 11000  | 1600   | 790    | 510    | 43J    | 1400   | 1800   | 350    | 160J   | 45J    |
| Pyrene                    | 33000      | 13000  | 3500   | 1300   | 610    | 60J    | 1900   | 2900   | 340    | 270    | 140J   |
| TOTAL SVOCS               | 194210     | 83150  | 21910  | 9123   | 4299   | 422    | 13782  | 21058  | 1798   | 2172   | 1050   |

 $\mu g/kg$  - Micrograms per kilogram

U - The analyte was analyzed for, but not detected above the reported quantitation limit.

J - The analyte was positively identified: the associated numerical value is the approximate concentration of the analyte in the sample.

UJ - The analyte was not detected above the reported quantitation limit. However the reported quantitation limit may be biased.

NA - Not analyzed

| Area:                     | Elk Street  | Lot          |             |             |        |        |        | Terminal Disp | osal Site  |
|---------------------------|-------------|--------------|-------------|-------------|--------|--------|--------|---------------|------------|
| Sample Designation:       | ESL-18      | ESL-19       | ESL-19      | ESL-19      | ESL-20 | ESL-20 | ESL-20 | LF-5          | LF-7       |
| Sample Date:              | 9/2/99      | 9/2/99       | 9/2/99      | 9/2/99      | 9/2/99 | 9/2/99 | 9/2/99 | 8/6/99        | 8/16/99    |
| Sample Depth (ft bls):    | 2-3         | 0-0.5        | 1-2         | 2-3         | 0-0.5  | 1-2    | 2-3    | 21-23         | 21-23      |
| Parameter                 |             |              |             |             |        |        |        |               |            |
| (Concentrations in µg/kg) |             |              |             |             |        |        |        |               |            |
| A 1.1                     | 2011        |              | 2011        | 2011        | 4177   | 4011   | 4011   | 4011          | 4211       |
| Acenaphthene              | 38U<br>2011 | 33J<br>120 I | 390         | 390         | 410    | 420    | 400    | 420           | 430        |
| Acenaphthylene            | 380         | 130J         | 390         | 390         | 53J    | 420    | 400    | NA            | 430        |
| Anthracene                | 380         | 300          | 390         | 390         | 110J   | 420    | 400    | 420           | 430        |
| Benzo[a]anthracene        | 38U         | 1400         | 390         | 390         | 490    | 120J   | 40U    | 42UJ          | 44J        |
| Benzo[a]pyrene            | 38U         | 1300         | 39U         | 39U         | 420    | 170J   | 40U    | 42U           | 43U        |
| Benzo[b]fluoranthene      | 38U         | 1500J        | <b>39</b> U | 39U         | 560J   | 130J   | 50J    | 42U           | 53J        |
| Benzo[g,h,i]perylene      | 38U         | 1000         | 39U         | 39U         | 400    | 150J   | 40U    | 42U           | 43U        |
| Benzo[k]fluoranthene      | 38U         | 1200J        | 39U         | 39U         | 410J   | 100J   | 40UJ   | 42U           | 43U        |
| Chrysene                  | 38U         | 1800         | <b>39</b> U | 39U         | 630    | 170J   | 40U    | 42UJ          | <b>46J</b> |
| Dibenzo[a,h]anthracene    | 38U         | 530          | 39U         | 39U         | 190J   | 42J    | 40U    | 42U           | 43U        |
| Fluoranthene              | 38U         | 2100         | <b>40J</b>  | 39U         | 650    | 110J   | 40U    | 42U           | 91J        |
| Fluorene                  | 38U         | 100J         | 39U         | 39U         | 41U    | 42U    | 40U    | 42U           | 43U        |
| Indeno[1,2,3-cd]pyrene    | 38U         | 910          | 39U         | 39U         | 350    | 93J    | 40U    | 42U           | 43U        |
| Naphthalene               | 38U         | 42J          | 39U         | 39U         | 41U    | 42U    | 40U    | 42U           | 43U        |
| Phenanthrene              | 38U         | 1400         | 39U         | 39U         | 450    | 79J    | 40U    | 42U           | 66J        |
| Pyrene                    | 38U         | 2500         | 42J         | <b>39</b> U | 1000   | 200J   | 45J    | 42UJ          | 74J        |
| TOTAL SVOCS               | 0           | 16267        | 82          | 0           | 5713   | 1364   | 95     | 0             | 374        |

 $\mu g/kg$  - Micrograms per kilogram

U - The analyte was analyzed for, but not detected above the reported quantitation limit.

J - The analyte was positively identified: the associated numerical value is the approximate concentration of the analyte in the sample.

UJ - The analyte was not detected above the reported quantitation limit. However the reported quantitation limit may be biased.

NA - Not analyzed

| Area: F                   | Former Lube | Building |             |         |             |             |         |         |            |
|---------------------------|-------------|----------|-------------|---------|-------------|-------------|---------|---------|------------|
| Sample Designation:       | SB-7        | SB-7     | SB-8        | SB-8    | SB-9        | SB-9        | SB-10   | SB-10   | SB-11/LB-1 |
| Sample Date:              | 6/26/98     | 6/26/98  | 6/26/98     | 6/26/98 | 6/26/98     | 6/26/98     | 6/26/98 | 6/26/98 | 7/1/99     |
| Sample Depth (ft bls):    | 0-2         | 8-10     | 0-2         | 10-12   | 0-2         | 10-12       | 0-2     | 8-10    | 18-20      |
| Parameter                 |             |          |             |         |             |             |         |         |            |
| (Concentrations in µg/kg) |             |          |             |         |             |             |         |         |            |
| Acenaphthene              | 5300        | 24000    | 35U         | 90.J    | 190.J       | <b>44</b> U | 2100U   | 2000    | 130J       |
| Acenaphthylene            | 710U        | 4300     | 35U         | 45U     | <b>39</b> U | 44U         | 2100U   | 580     | 38UJ       |
| Anthracene                | 10000       | 46000    | 47J         | 230     | 300         | 44U         | 3200J   | 750     | 100J       |
| Benzofalanthracene        | 12000       | 45000    | 180J        | 160J    | 890         | 44U         | 13000   | 920     | 100J       |
| Benzo[a]pyrene            | 10000       | 41000    | 220         | 66J     | 1300        | 44U         | 20000   | 1100    | 38UJ       |
| Benzo[b]fluoranthene      | 12000       | 42000    | 310J        | 45U     | 1200        | 44U         | 13000   | 560     | 38UJ       |
| Benzo[g,h,i]perylene      | 4400        | 18000    | 93J         | 45U     | 1700        | 44U         | 2100U   | 680     | 38UJ       |
| Benzo[k]fluoranthene      | 4000        | 17000    | 93J         | 45U     | 360         | 44U         | 3600J   | 95J     | 38UJ       |
| Chrysene                  | 11000       | 41000    | 300         | 270     | 1100        | 44U         | 17000   | 1400    | 120J       |
| Dibenzo[a,h]anthracene    | 1500J       | 5000     | 35UJ        | 45U     | 550         | 44U         | 2100U   | 240     | 38UJ       |
| Fluoranthene              | 25000       | 130000   | 350         | 100J    | 1800        | 44U         | 14000   | 810     | 180J       |
| Fluorene                  | 7400        | 39000    | 35U         | 140J    | 130J        | 44U         | 2900J   | 2500    | 370J       |
| Indeno[1,2,3-cd]pyrene    | 5100        | 21000    | 60J         | 45U     | 1000        | 44U         | 6600J   | 320     | 38UJ       |
| Naphthalene               | 3100J       | 37000    | <b>35</b> U | 45U     | 170J        | 44U         | 2100U   | 770     | 38UJ       |
| Phenanthrene              | 27000       | 180000   | 280         | 130J    | 1700        | 44U         | 13000   | 7500    | 190J       |
| Pyrene                    | 22000       | 110000   | 410         | 600     | 1800        | 44U         | 36000   | 2800    | 310J       |
| TOTAL SVOCS               | 159800      | 800300   | 2343        | 1786    | 14190       | 0           | 142300  | 23025   | 1500       |

 $\mu g/kg$  - Micrograms per kilogram

- U The analyte was analyzed for, but not detected above the reported quantitation limit.
- J The analyte was positively identified: the associated numerical value is the approximate concentration of the analyte in the sample.
- UJ The analyte was not detected above the reported quantitation limit. However the reported quantitation limit may be biased.

NA - Not analyzed

| Area: I                   | Former Lub | e Building  |         |         |         |         |         |         |         |         |
|---------------------------|------------|-------------|---------|---------|---------|---------|---------|---------|---------|---------|
| Sample Designation:       | SB-13      | SB-14       | SB-15   | SB-16   | SB-17   | SB-17   | SB-18   | SB-18   | SB-19   | SB-20   |
| Sample Date:              | 7/27/99    | 7/26/99     | 7/27/99 | 7/28/99 | 7/28/99 | 7/28/99 | 7/29/99 | 7/29/99 | 7/29/99 | 7/29/99 |
| Sample Depth (ft bls):    | 11-13      | 13-15       | 11-13   | 11-13   | 0-0.5   | 11-13   | 0-0.5   | 11-13   | 7-9     | 3-4     |
| Parameter                 |            |             |         |         |         |         |         |         |         |         |
| (Concentrations in µg/kg) |            |             |         |         |         |         |         |         |         |         |
| Acenaphthene              | 3000       | 290         | 1600    | 1700    | 61J     | 1500    | 5200    | 850     | 8100    | 450     |
| Acenaphthylene            | 210U       | NA          | 510J    | 1500J   | NA      | 410UJ   | 1800J   | 240J    | 2400J   | 100J    |
| Anthracene                | 16000      | 250         | 1200    | 1500    | 180     | 1400    | 2200    | 640     | 6200    | 94J     |
| Benzo[a]anthracene        | 1200       | 170U        | 500     | 880     | 510     | 560     | 1800    | 260U    | 4400    | 140U    |
| Benzo[a]pyrene            | 470U       | 140U        | 220U    | 370U    | 510     | 270     | 1700    | 140U    | 3800    | 160U    |
| Benzo[b]fluoranthene      | 310U       | 170U        | 190U    | 270U    | 490U    | 170U    | 1700    | 89U     | 3400    | 180U    |
| Benzo[g,h,i]perylene      | 290U       | 130U        | 140U    | 260U    | 440     | 170U    | 430U    | 40U     | 430U    | 35U     |
| Benzo[k]fluoranthene      | 210U       | 68U         | 120U    | 260U    | 190U    | 43U     | 530     | 40U     | 1000    | 52U     |
| Chrysene                  | 1700J      | 220U        | 720J    | 1200J   | 490U    | 900J    | 2400    | 440     | 6500    | 170U    |
| Dibenzo[a,h]anthracene    | 210U       | <b>48</b> J | 120U    | 260U    | 150     | 93J     | 430U    | 40U     | 910     | 35U     |
| Fluoranthene              | 210U       | 360U        | 740U    | 780U    | 700U    | 680U    | 3900    | 290U    | 8800    | 280U    |
| Fluorene                  | 5300       | 480U        | 2700    | 2800    | 210U    | 2300    | 6800    | 1200    | 17000   | 650U    |
| Indeno[1,2,3-cd]pyrene    | 210U       | 140U        | 120U    | 260U    | 340U    | 110U    | 1100    | 40U     | 2100    | 87U     |
| Naphthalene               | 3500       | 72J         | 1700    | 990     | 310     | 1500    | 4700    | 340     | 1800    | 140J    |
| Phenanthrene              | 210U       | 990U        | 9000    | 10000   | 580U    | 8000    | 16000   | 4500    | 27000   | 1600    |
| Pyrene                    | 3100J      | 380U        | 1500J   | 2600J   | 940U    | 1900J   | 5600    | 1100    | 16000   | 700U    |
| TOTAL SVOCS               | 33800      | 660         | 19430   | 23170   | 2161    | 18423   | 55430   | 9310    | 109410  | 2384    |

 $\mu g/kg$  - Micrograms per kilogram

U - The analyte was analyzed for, but not detected above the reported quantitation limit.

J - The analyte was positively identified: the associated numerical value is the approximate concentration of the analyte in the sample.

UJ - The analyte was not detected above the reported quantitation limit. However the reported quantitation limit may be biased.

NA - Not analyzed

| Area: F                   | ormer Lube   | Building |        |        |        |        |        |        |        |
|---------------------------|--------------|----------|--------|--------|--------|--------|--------|--------|--------|
| Sample Designation:       | SB-20        | SB-24    | SB-24  | SB-27  | SB-27  | SB-28  | SB-28  | SB-30  | SB-30  |
| Sample Date:              | 7/29/99      | 8/4/99   | 8/2/99 | 8/4/99 | 8/3/99 | 8/4/99 | 8/3/99 | 8/6/99 | 8/5/99 |
| Sample Depth (ft bls):    | 9-11         | 0-0.5    | 13-15  | 0-0.5  | 11-13  | 0-0.5  | 11-13  | 0-0.5  | 9-11   |
| Parameter                 |              |          |        |        |        |        |        |        |        |
| (Concentrations in µg/kg) |              |          |        |        |        |        |        |        |        |
| Acenaphthene              | 10000        | 90J      | 44U    | 99J    | 280    | 3000   | 42U    | 43U    | 42U    |
| Acenaphthylene            | 2400J        | NA       | NA     | NA     | NA     | NA     | NA     | NA     | NA     |
| Anthracene                | 4000         | 230      | 44U    | 350    | 570    | 5000   | 62J    | 43U    | 42U    |
| Benzo[a]anthracene        | 2700         | 670      | 44U    | 1100   | 560U   | 9900   | 42U    | 43U    | 42U    |
| Benzo[a]pyrene            | 1700         | 860      | 44U    | 1100   | 280U   | 10000  | 42U    | 43U    | 42U    |
| Benzo[b]fluoranthene      | 920          | 1300     | 44U    | 1600   | 190U   | 13000  | 42U    | 43U    | 42U    |
| Benzo[g,h,i]perylene      | 1000         | 670      | 44U    | 840    | 180U   | 5600   | 42U    | 43U    | 42U    |
| Benzo[k]fluoranthene      | 540U         | 420      | 44U    | 660    | 41U    | 5200   | 42U    | 43U    | 42U    |
| Chrysene                  | 5300         | 810      | 47U    | 1400   | 550U   | 12000  | 55U    | 43U    | 42U    |
| Dibenzo[a,h]anthracene    | 540U         | 290      | 44U    | 260    | 99J    | 1700   | 42U    | 43U    | 42U    |
| Fluoranthene              | 2400         | 770J     | 44U    | 2400   | 480U   | 19000  | 57U    | 43U    | 42U    |
| Fluorene                  | 13000        | 140J     | 44U    | 130J   | 470U   | 4400   | 50U    | 43U    | 42U    |
| Indeno[1,2,3-cd]pyrene    | <b>540</b> U | 530      | 44U    | 910    | 82U    | 6500   | 42U    | 43U    | 42U    |
| Naphthalene               | 22000        | 300      | 44U    | 180    | 41U    | 3800   | 42U    | 43U    | 42U    |
| Phenanthrene              | 41000        | 830J     | 64U    | 1600   | 660U   | 20000  | 200U   | 55U    | 42U    |
| Pyrene                    | 9300         | 1700     | 190U   | 2400   | 1700   | 20000  | 140U   | 50U    | 42U    |
| TOTAL SVOCS               | 115720       | 9610     | 0      | 14899  | 2649   | 139100 | 62     | 0      | 0      |

µg/kg - Micrograms per kilogram

- U The analyte was analyzed for, but not detected above the reported quantitation limit.
- J The analyte was positively identified: the associated numerical value is the approximate concentration of the analyte in the sample.
- UJ The analyte was not detected above the reported quantitation limit. However the reported quantitation limit may be biased.

NA - Not analyzed

|               | Area:                  | Elk Street L | ot      |         |         |         |         |         |              |              |         |
|---------------|------------------------|--------------|---------|---------|---------|---------|---------|---------|--------------|--------------|---------|
|               | Sample Designation:    | ESL-1        | ESL-2   | ESL-3   | ESL-4   | ESL-5   | ESL-6   | ESL-7   | ESL-8/ESL-W1 | ESL-8/ESL-W1 | ESL-9   |
|               | Sample Date:           | 6/17/98      | 6/17/98 | 6/17/98 | 6/17/98 | 6/17/98 | 6/17/98 | 6/17/98 | 6/17/98      | 6/22/98      | 6/17/98 |
|               | Sample Depth (ft bls): | 0-0.5        | 0-0.5   | 0-0.5   | 0-0.5   | 0-0.5   | 0-0.5   | 0-0.5   | 0-0.5        | 8-10         | 0-0.5   |
| Parameters    |                        |              |         |         |         |         |         |         |              |              |         |
| (Concentratio | ons in mg/kg)          |              |         |         |         |         |         |         |              |              |         |
|               |                        |              |         |         |         |         |         |         |              |              |         |
| Cadmium       |                        | 1.81         | 1.04    | 0.36    | 0.96    | 0.92    | 1.31    | 2.7     | 1.76         | 3.8J         | 1.36    |
| Chromium      |                        | 838          | 15.9    | 73.7    | 15.3    | 35.5    | 24.8    | 32.6    | 26.6         | 19.4J        | 14.9    |
| Lead          |                        | 85.6         | 129     | 25.7    | 333     | 130     | 232     | 723     | 324          | 11.9EJ       | 169     |
| Mercury       |                        | 0.0755       | 0.33    | 0.0381  | 0.38    | 0.18    | 0.0257  | 1.38    | 0.0658       | 0.0202       | 0.31    |
| Nickel        |                        | 12           | 20.1    | 7.8     | 13.1    | 16.9    | 12.4    | 27      | 15.7         | 35.6         | 16.6    |
| Selenium      |                        | 1.4          | 0.41    | 0.37U   | 1.2     | 0.39U   | 1.02    | 1.8     | 1.7          | 0.46UJ       | 1.2     |
| Thallium      |                        | 12.9         | 1.39    | 1.94    | 1.1     | 1.43    | 1.97    | 1.77    | 1.54         | 2.01         | 0.92    |
| Vanadium      |                        | 300          | 15.3    | 27.7    | 15.5    | 22.7    | 18.9    | 28.4    | 27.6         | 21.7         | 18.2    |

Notes:

mg/kg - Milligrams per kilogram

- J The analyte was positively identified: the associated numerical value is the approximate concentration of the analyte in the sample.
- UJ The analyte was not detected above the reported quantitation limit. However the reported quantitation limit may be biased.
- NA Not analyzed
- Bold Analyte detected

|               | Area:                  | Elk Street I | Lot     |         |        |        |        |        |        |              |        |        |        |
|---------------|------------------------|--------------|---------|---------|--------|--------|--------|--------|--------|--------------|--------|--------|--------|
|               | Sample Designation:    | ESL-10       | ESL-11  | ESL-12  | ESL-13 | ESL-13 | ESL-13 | ESL-14 | ESL-14 | ESL-14       | ESL-15 | ESL-15 | ESL-15 |
|               | Sample Date:           | 6/17/98      | 6/17/98 | 6/17/98 | 9/2/99 | 9/2/99 | 9/2/99 | 9/2/99 | 9/2/99 | 9/2/99       | 9/2/99 | 9/2/99 | 9/2/99 |
|               | Sample Depth (ft bls): | 0-0.5        | 0-0.5   | 0-0.5   | 0-0.5  | 1-2    | 2-3    | 0-0.5  | 1-2    | 2-3          | 0-0.5  | 1-2    | 2-3    |
| Parameters    |                        |              |         |         |        |        |        |        |        |              |        |        |        |
| (Concentratio | ons in mg/kg)          |              |         |         |        |        |        |        |        |              |        |        |        |
|               |                        |              |         |         |        |        |        |        |        |              |        |        |        |
| Cadmium       |                        | 1.49         | 9.7     | 2.6     | 0.056U | 0.06U  | 0.057U | 0.061U | 0.065U | 0.52         | 2.64   | 0.06U  | 0.058U |
| Chromium      |                        | 22.6         | 32.7    | 21.1    | 31.2   | 22.8   | 30.1   | 28.1   | 24.4   | 14.7         | 27.1   | 24.7   | 14.9   |
| Lead          |                        | 214          | 625     | 164     | 1410   | 533    | 44.2   | 652    | 1620   | 491          | 704    | 514    | 324    |
| Mercury       |                        | 0.57         | 2.04    | 0.6     | 2.54   | 0.41   | 0.0998 | 1.56   | 0.83   | 0.0983       | 1.59   | 1.09   | 0.13   |
| Nickel        |                        | 22.8         | 31.8    | 29.6    | 23.6   | 18.2   | 35     | 24.3   | 23.3   | 13           | 18     | 20.5   | 16.5   |
| Selenium      |                        | 0.47         | 2.1     | 0.6     | 5.2    | 2.8    | 0.46U  | 1.4    | 3.6    | <b>0.5</b> U | 0.47   | 2.9    | 0.47U  |
| Thallium      |                        | 2.6          | 2.3     | 4.2     | 0.75U  | 2.4    | 2.3    | 0.81U  | 3.6    | 0.83U        | 0.75U  | 1.96   | 1.37   |
| Vanadium      |                        | 37.8         | 26.4    | 18.3    | 32     | 29.4   | 34     | 58.6   | 35.5   | 17.9         | 41.6   | 29.3   | 25.5   |

Notes:

mg/kg - Milligrams per kilogram

- J The analyte was positively identified: the associated numerical value is the approximate concentration of the analyte in the sample.
- UJ The analyte was not detected above the reported quantitation limit. However the reported quantitation limit may be biased.
- NA Not analyzed
- Bold Analyte detected

|               | Area:                  | Elk Street | Lot    |        |        |        |        |        |        |        |        |        |        |
|---------------|------------------------|------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
|               | Sample Designation:    | ESL-16     | ESL-16 | ESL-16 | ESL-17 | ESL-17 | ESL-17 | ESL-18 | ESL-18 | ESL-18 | ESL-19 | ESL-19 | ESL-19 |
|               | Sample Date:           | 9/2/99     | 9/2/99 | 9/2/99 | 9/2/99 | 9/2/99 | 9/2/99 | 9/2/99 | 9/2/99 | 9/2/99 | 9/2/99 | 9/2/99 | 9/2/99 |
|               | Sample Depth (ft bls): | 0-0.5      | 1-2    | 2-3    | 0-0.5  | 1-2    | 2-3    | 0-0.5  | 1-2    | 2-3    | 0-0.5  | 1-2    | 2-3    |
| Parameters    |                        |            |        |        |        |        |        |        |        |        |        |        |        |
| (Concentratio | ons in mg/kg)          |            |        |        |        |        |        |        |        |        |        |        |        |
|               |                        |            |        |        |        |        |        |        |        |        |        |        |        |
| Cadmium       |                        | 4.94       | 0.056U | 0.054U | 0.28U  | 0.058U | 0.055U | 2.3    | 0.058U | 0.057U | 6.89   | 0.058U | 0.059U |
| Chromium      |                        | 26.7       | 16.1   | 18.2   | 87.3   | 32.8   | 14.7   | 14.5   | 19.4   | 20.1   | 119    | 24.6   | 25.4   |
| Lead          |                        | 449        | 261    | 30.3   | 552    | 294    | 16.5   | 112    | 33.5   | 31.1   | 1610   | 27.1   | 34     |
| Mercury       |                        | 0.71       | 0.92   | 0.0676 | 0.82   | 0.45   | 0.025  | 0.12   | 0.0589 | 0.0339 | 1.41   | 0.0778 | 0.0391 |
| Nickel        |                        | 30.4       | 16.3   | 27.8   | 41     | 31.5   | 23.4   | 17.2   | 22.8   | 33.6   | 24.2   | 27.2   | 35.1   |
| Selenium      |                        | 1.5        | 1.2    | 0.44U  | 10.2   | 4.4    | 0.44U  | 0.5    | 1.12   | 0.46U  | 2      | 0.47U  | 0.47U  |
| Thallium      |                        | 0.74U      | 1.08   | 1.6    | 36     | 4.8    | 1.02   | 0.73U  | 1.51   | 0.76U  | 0.8U   | 0.96   | 1.5    |
| Vanadium      |                        | 32.9       | 20.3   | 24.5   | 88     | 30.6   | 18.7   | 19.1   | 27.2   | 24.4   | 47.1   | 26.6   | 27.9   |

Notes:

mg/kg - Milligrams per kilogram

- J The analyte was positively identified: the associated numerical value is the approximate concentration of the analyte in the sample.
- UJ The analyte was not detected above the reported quantitation limit. However the reported quantitation limit may be biased.
- NA Not analyzed
- Bold Analyte detected

|               | Area:                  | Elk Street | Lot    |        | Terminal Disposal Site | Former Lu | be Building |         |         |         |         |
|---------------|------------------------|------------|--------|--------|------------------------|-----------|-------------|---------|---------|---------|---------|
|               | Sample Designation:    | ESL-20     | ESL-20 | ESL-20 | LF-7                   | SB-7      | SB-7        | SB-8    | SB-8    | SB-9    | SB-9    |
|               | Sample Date:           | 9/2/99     | 9/2/99 | 9/2/99 | 8/16/99                | 6/26/98   | 6/26/98     | 6/26/98 | 6/26/98 | 6/26/98 | 6/26/98 |
|               | Sample Depth (ft bls): | 0-0.5      | 1-2    | 2-3    | 21-23                  | 0-2       | 8-10        | 0-2     | 10-12   | 0-2     | 10-12   |
| Parameters    |                        |            |        |        |                        |           |             |         |         |         |         |
| (Concentratio | ons in mg/kg)          |            |        |        |                        |           |             |         |         |         |         |
|               |                        |            |        |        |                        |           |             |         |         |         |         |
| Cadmium       |                        | 0.62U      | 0.64   | 0.062U | 0.066U                 | 0.91      | 0.38        | 0.24    | 0.35    | 0.44    | 0.36    |
| Chromium      |                        | 985        | 197    | 57.2   | 15J                    | 14.3J     | 11.1J       | 10.4J   | 15.1J   | 13.9J   | 16.2J   |
| Lead          |                        | 676        | 134    | 48.1   | 18.1                   | 48.9      | 12.1        | 70.6    | 12.1    | 73.7    | 12      |
| Mercury       |                        | 0.91       | 0.27   | 0.0356 | 0.0384                 | 0.17      | 0.0381U     | 0.0365U | 0.053U  | 0.0897  | 0.0304U |
| Nickel        |                        | 28.7       | 21.4   | 35.8   | 22.6                   | 11.5U     | 16.6U       | 12.9U   | 29.3U   | 24.6U   | 29.4U   |
| Selenium      |                        | 5U         | 1.3    | 0.5U   | 0.53UJ                 | 0.39U     | 0.45U       | 0.38U   | 0.49U   | 0.44U   | 0.49U   |
| Thallium      |                        | 13.5       | 3      | 2.04   | 4.1                    | 0.79U     | 0.9U        | 0.77U   | 1U      | 0.94    | 1U      |
| Vanadium      |                        | 266        | 72.1   | 38.7   | 23.2                   | 11.7      | 17.3        | 18      | 19      | 28.8    | 21.1    |

Notes:

mg/kg - Milligrams per kilogram

U - The analyte was analyzed for, but not detected above the reported quantitation limit.

J - The analyte was positively identified: the associated numerical value is the approximate concentration of the analyte in the sample.

UJ - The analyte was not detected above the reported quantitation limit. However the reported quantitation limit may be biased.

NA - Not analyzed

|               | Area:                  | Former Lu | be Building |            |         |         |         |         |         |         |         |         |
|---------------|------------------------|-----------|-------------|------------|---------|---------|---------|---------|---------|---------|---------|---------|
|               | Sample Designation:    | SB-10     | SB-10       | SB-11/LB-1 | SB-13   | SB-14   | SB-15   | SB-16   | SB-17   | SB-17   | SB-18   | SB-18   |
|               | Sample Date:           | 6/26/98   | 6/26/98     | 7/1/99     | 7/27/99 | 7/26/99 | 7/27/99 | 7/28/99 | 7/28/99 | 7/28/99 | 7/29/99 | 7/29/99 |
|               | Sample Depth (ft bls): | 0-2       | 8-10        | 16-18      | 11-13   | 13-15   | 11-13   | 11-13   | 0-0.5   | 11-13   | 0-0.5   | 11-13   |
| Parameters    |                        |           |             |            |         |         |         |         |         |         |         |         |
| (Concentratio | ons in mg/kg)          |           |             |            |         |         |         |         |         |         |         |         |
|               |                        |           |             |            |         |         |         |         |         |         |         |         |
| Cadmium       |                        | 1.01      | 0.34        | 0.65       | 0.062U  | 0.13    | 0.058U  | 0.6     | 0.26    | 0.061U  | 0.065U  | 0.06U   |
| Chromium      |                        | 12.4J     | 13.1J       | 6.3J       | 11.7    | 11.8    | 14.3    | 21.4    | 14.9    | 18.1    | 18.3    | 16.5    |
| Lead          |                        | 2380      | 34.9        | 10.2       | 20.2    | 16      | 10.3    | 584     | 77.2    | 10.5    | 57.5    | 9.1     |
| Mercury       |                        | 0.46      | 0.0417U     | 0.0089     | 0.0113  | 0.0156  | 0.0233  | 3.33    | 0.18    | 0.03    | 0.0343  | 0.0112  |
| Nickel        |                        | 14.8U     | 22.1U       | 11.2       | 14.3    | 19      | 17.7    | 20.6    | 22.1    | 22.6    | 31.2    | 19.5    |
| Selenium      |                        | 0.46U     | 0.47U       | 0.48U      | 0.5U    | 0.53U   | 0.47U   | 16.9    | 0.76    | 0.49U   | 1.03    | 0.49U   |
| Thallium      |                        | 0.91U     | 0.94U       | 0.79U      | 0.82U   | 0.88U   | 0.77U   | 1U      | 0.79U   | 0.82U   | 0.87U   | 0.81U   |
| Vanadium      |                        | 14.6      | 20.6        | 8.5        | 17.4    | 16.1    | 17.2    | 36.8    | 24.5    | 24.8    | 35.3    | 22.7    |

mg/kg - Milligrams per kilogram

- J The analyte was positively identified: the associated numerical value is the approximate concentration of the analyte in the sample.
- UJ The analyte was not detected above the reported quantitation limit. However the reported quantitation limit may be biased.
- NA Not analyzed
- Bold Analyte detected

|               | Area:                  | Former Lul | be Building |         |         |        |        |        |        |        |        |        |
|---------------|------------------------|------------|-------------|---------|---------|--------|--------|--------|--------|--------|--------|--------|
|               | Sample Designation:    | SB-19      | SB-20       | SB-20   | SB-24   | SB-24  | SB-27  | SB-27  | SB-28  | SB-28  | SB-30  | SB-30  |
|               | Sample Date:           | 7/29/99    | 7/29/99     | 7/29/99 | 8/2/99  | 8/4/99 | 8/3/99 | 8/4/99 | 8/3/99 | 8/4/99 | 8/5/99 | 8/6/99 |
|               | Sample Depth (ft bls): | 7-9        | 3-4         | 9-11    | 13-15   | 0-0.5  | 11-13  | 0-0.5  | 11-13  | 0-0.5  | 9-11   | 0-0.5  |
| Parameters    |                        |            |             |         |         |        |        |        |        |        |        |        |
| (Concentratio | ons in mg/kg)          |            |             |         |         |        |        |        |        |        |        |        |
|               |                        |            |             |         |         |        |        |        |        |        |        |        |
| Cadmium       |                        | 0.066U     | 0.053U      | 0.081U  | 1.05    | 0.063U | 0.062U | 0.66   | 0.064U | 0.062U | 0.064U | 0.58   |
| Chromium      |                        | 14.1       | 7.7         | 15.8    | 14.6    | 28     | 10.8   | 34.7   | 23.6   | 114    | 15.8   | 23.4   |
| Lead          |                        | 46.1       | 20.1        | 5800    | 12.5    | 188    | 34.1   | 377    | 14.8   | 299    | 15.6   | 38.1   |
| Mercury       |                        | 0.0909     | 0.0313      | 0.17    | 0.0062U | 3.9    | 0.0607 | 0.8    | 0.0226 | 0.32   | 0.0879 | 0.64   |
| Nickel        |                        | 26.8       | 9.3         | 30      | 39.1    | 21.8   | 42.6   | 16.3   | 35.1   | 30.2   | 29.3   | 39.5   |
| Selenium      |                        | 1.3        | 0.43U       | 1.36    | 0.53U   | 6.5    | 0.5U   | 2.8U   | 0.54   | 2.9    | 0.51U  | 3      |
| Thallium      |                        | 0.88U      | 0.71U       | 1.1U    | 0.88U   | 1.86   | 0.83U  | 4.6U   | 0.85U  | 1.26   | 0.85U  | 1.31   |
| Vanadium      |                        | 27.5       | 13.8        | 27.1    | 19.4    | 47.8   | 16.7   | 46     | 30.4   | 47.5   | 21.3   | 35     |

Notes:

mg/kg - Milligrams per kilogram

- J The analyte was positively identified: the associated numerical value is the approximate concentration of the analyte in the sample.
- UJ The analyte was not detected above the reported quantitation limit. However the reported quantitation limit may be biased.
- NA Not analyzed
- Bold Analyte detected

| Area:                    | Elk Street | Lot          |              |         | Terminal Disp | osal Site | Former Lube Bu | uilding |
|--------------------------|------------|--------------|--------------|---------|---------------|-----------|----------------|---------|
| Sample Designation:      | ESL-4      | ESL-8/ESL-W1 | ESL-8/ESL-W1 | ESL-12  | LF-5          | LF-7      | SB-7           | SB-7    |
| Sample Date:             | 6/22/98    | 6/22/98      | 6/22/98      | 6/22/98 | 8/6/99        | 8/16/99   | 6/26/98        | 6/26/98 |
| Sample Depth (ft bls):   | 1.5-2      | 1.5-2        | 8-10         | 1.5-2   | 21-23         | 21-23     | 0-2            | 8-10    |
| Parameter                |            |              |              |         |               |           |                |         |
| (Concentration in µg/kg) |            |              |              |         |               |           |                |         |
| Benzene                  | 5.5U       | 5U           | 5U           | 5.2U    | 5U            | 5.2U      | 110U           | 240     |
| Toluene                  | 18J        | 9.1J         | 5U           | 5.2U    | 5U            | 5.2U      | 110U           | 46      |
| Ethylbenzene             | 7.2J       | 8.5J         | 5U           | 5.2U    | 5U            | 5.2U      | 110U           | 97      |
| Xylenes (total)          | 35J        | 24           | 10U          | 10U     | 10U           | 10U       | 1700           | 160     |
| TOTAL BTEX               | 60.2       | 41.6         | 0            | 0       | 0             | 0         | 1700           | 543     |
| 1,2,4-Trimethylbenzene   | 29J        | 27           | 5U           | 5.2U    | 5U            | 5.2U      | 5200           | 220     |
| 1,3,5-Trimethylbenzene   | 7.9J       | 6.3J         | 5U           | 5.2U    | 5U            | 5.2U      | 2200           | 93      |
| Cumene                   | 7.5J       | 5U           | 5U           | 5.2U    | 5U            | 5.2U      | 430U           | 500     |
| MTBE                     | 5.5U       | 5U           | 5U           | 5.2U    | 5U            | 5.2U      | 110U           | 5U      |
| n-Butylbenzene           | 8.2J       | 12J          | 5U           | 5.2U    | 5U            | 5.2U      | 8600           | 700     |
| n-Propylbenzene          | 8J         | 7.1J         | 5U           | 5.2U    | 5U            | 5.2U      | 3000           | 400     |
| Naphthalene              | 51UJ       | 42           | 5U           | 12U     | 5U            | 5.2U      | 2100U          | 1300    |
| o-Xylene                 | <b>30J</b> | 12J          | 5U           | 5.2U    | 5U            | 5.2U      | 450            | 140     |
| p-Isopropyltoluene       | 5.5U       | 6.9J         | 5U           | 5.2U    | 5U            | 5.2U      | 11000U         | 550     |
| sec-Butylbenzene         | 5.6J       | 5U           | 5U           | 5.2U    | 5U            | 5.2U      | 7800           | 570     |
| tert-Butylbenzene        | 5.5U       | 5U           | 5U           | 5.2U    | 5U            | 5.2U      | 7300           | 330     |
| Total VOCS               | 156.4      | 154.9        | 0            | 0       | 0             | 0         | 36250          | 5346    |

 $\mu g/kg$  - Micrograms per kilogram

U - The analyte was analyzed for, but not detected above the reported quantitation limit.

J - The analyte was positively identified: the associated numerical value is the approximate concentration of the analyte in the sample.

UJ - The analyte was not detected above the reported quantitation limit. However the reported quantitation limit may be biased.

NA - Not analyzed

| Area: H                  | Former Lube | Building |         |         |         |         |            |         |         |         |
|--------------------------|-------------|----------|---------|---------|---------|---------|------------|---------|---------|---------|
| Sample Designation:      | SB-8        | SB-8     | SB-9    | SB-9    | SB-10   | SB-10   | SB-11/LB-1 | SB-13   | SB-14   | SB-15   |
| Sample Date:             | 6/26/98     | 6/26/98  | 6/26/98 | 6/26/98 | 6/26/98 | 6/26/98 | 7/1/99     | 7/27/99 | 7/26/99 | 7/27/99 |
| Sample Depth (ft bls):   | 0-2         | 10-12    | 0-2     | 10-12   | 0-2     | 8-10    | 18-20      | 11-13   | 13-15   | 11-13   |
| Parameter                |             |          |         |         |         |         |            |         |         |         |
| (Concentration in µg/kg) |             |          |         |         |         |         |            |         |         |         |
| Benzene                  | 4 211       | 23.I     | 4 7U    | 13U     | 34      | 750     | 120        | 2500    | 780     | 2300    |
| Toluene                  | 7.5J        | 13U      | 14      | 27.J    | 40      | 300     | 180        | 2500    | 220     | 680     |
| Ethylbenzene             | 4.2U        | 76       | 4.7U    | 170     | 24      | 740     | 610        | 8200    | 1400    | 5100    |
| Xylenes (total)          | 11U         | 120      | 16U     | 480     | 170     | 2200    | 830        | 22000   | 730     | 3500    |
| TOTAL BTEX               | 7.5         | 219      | 14      | 677     | 268     | 3990    | 1740       | 35200   | 3130    | 11580   |
| 1,2,4-Trimethylbenzene   | 8.7J        | 580      | 16      | 1100    | 150     | 3100    | 2400       | 18000   | 1100    | 11000   |
| 1,3,5-Trimethylbenzene   | 5.1J        | 300      | 4.9J    | 680     | 100     | 4900    | 1500       | 9100    | 980     | 8600    |
| Cumene                   | 5.3J        | 520      | 4.7U    | 1700    | 78      | 12000   | 2800       | 20000   | 1900    | 11000   |
| MTBE                     | 4.2U        | 13U      | 4.7U    | 13U     | 5U      | 25U     | 23U        | 120U    | 130U    | 1500    |
| n-Butylbenzene           | 10J         | 850      | 6.5J    | 2700    | 130     | 7800    | 3400       | 24000   | 3100    | 18000   |
| n-Propylbenzene          | 4.2U        | 220      | 5J      | 13U     | 29      | 4100    | 1300       | 15000   | 2400    | 12000   |
| Naphthalene              | 28          | 2000     | 20      | 4600    | 180     | 9600    | 2600       | 33000   | 1300    | 23000   |
| o-Xylene                 | 5.3J        | 47       | 11J     | 210     | 39      | 500     | 300        | 7200    | 360     | 1900    |
| p-Isopropyltoluene       | 4.2U        | 130U     | 4.9J    | 1800    | 62      | 13000   | 2300U      | 20000   | 1300U   | 13000   |
| sec-Butylbenzene         | 4.8J        | 670      | 5.9J    | 520U    | 75      | 7600    | 2500J      | 12000   | 1500    | 7400    |
| tert-Butylbenzene        | 4.2U        | 550      | 4.7U    | 1700    | 45      | 7000    | 2400       | 11000   | 1300    | 7100    |
| Total VOCS               | 74.7        | 5956     | 88.2    | 15167   | 1156    | 73590   | 20940      | 204500  | 17070   | 126080  |

µg/kg - Micrograms per kilogram

- U The analyte was analyzed for, but not detected above the reported quantitation limit.
- J The analyte was positively identified: the associated numerical value is the approximate concentration of the analyte in the sample.
- UJ The analyte was not detected above the reported quantitation limit. However the reported quantitation limit may be biased.
- NA Not analyzed
- Bold Analyte detected

| Area:                    | Former Lub | e Building |         |         |         |         |         |         |        |        |
|--------------------------|------------|------------|---------|---------|---------|---------|---------|---------|--------|--------|
| Sample Designation:      | SB-16      | SB-17      | SB-17   | SB-18   | SB-18   | SB-19   | SB-20   | SB-20   | SB-24  | SB-24  |
| Sample Date:             | 7/28/99    | 7/28/99    | 7/28/99 | 7/29/99 | 7/29/99 | 7/29/99 | 7/29/99 | 7/29/99 | 8/2/99 | 8/4/99 |
| Sample Depth (ft bls):   | 11-13      | 0-0.5      | 11-13   | 0-0.5   | 11-13   | 7-9     | 3-4     | 9-11    | 13-15  | 0-0.5  |
| Parameter                |            |            |         |         |         |         |         |         |        |        |
| (Concentration in µg/kg) |            |            |         |         |         |         |         |         |        |        |
| Benzene                  | 3000       | 170        | 1200    | 2000    | 520     | 26U     | 91      | 12000   | 5 3U   | 8.7    |
| Toluene                  | 430        | 28         | 220     | 520     | 130     | 79      | 24      | 7500    | 5 3U   | 23     |
| Ethylbenzene             | 1600       | 43         | 1200    | 3200    | 820     | 200     | 73      | 14000   | 5.3U   | 13     |
| Xylenes (total)          | 1800       | 170        | 2300    | 3400    | 1700    | 1600    | 250     | 60000   | 11U    | 40     |
| TOTAL BTEX               | 6830       | 411        | 4920    | 9120    | 3170    | 1879    | 438     | 93500   | 0      | 84.7   |
| 1,2,4-Trimethylbenzene   | 2500       | 350        | 6300    | 4100    | 8400    | 1600    | 340     | 95000   | 5.3U   | 100    |
| 1,3,5-Trimethylbenzene   | 1300       | 210        | 2600    | 5200    | 2800    | 1400    | 180     | 37000   | 5.3U   | 97     |
| Cumene                   | 5500       | 53         | 5200    | 12000   | 3800    | 4100    | 360     | 12000   | 5.3U   | 79     |
| MTBE                     | 30U        | 4.7U       | 24U     | 51U     | 48U     | 26U     | 4.2U    | 320U    | 12     | 5U     |
| n-Butylbenzene           | 13000      | 290        | 6700    | 14000   | 6400    | 4900    | 400     | 49000   | 5.3U   | 180    |
| n-Propylbenzene          | 17000      | 41         | 4700    | 7400    | 3600    | 1300    | 220     | 39000   | 5.3U   | 63     |
| Naphthalene              | 20000      | 240        | 8800    | 26000U  | 7800    | 12000   | 530     | 31000   | 5.3U   | 310    |
| o-Xylene                 | 960        | 84         | 980J    | 1200    | 1300    | 360     | 91      | 20000   | 5.3U   | 73     |
| p-Isopropyltoluene       | 3000U      | 120U       | 6100U   | 26000U  | 5100    | 2600U   | 210U    | 11000   | 5.3U   | 88     |
| sec-Butylbenzene         | 8200       | 55         | 3500    | 8100    | 2700    | 5500    | 190     | 16000   | 5.3U   | 76     |
| tert-Butylbenzene        | 4000       | 66         | 3500    |         |         |         |         |         |        |        |
| Total VOCS               | 79290      | 1800       | 47200   | 61120   | 45070   | 33039   | 2749    | 403500  | 12     | 1150.7 |

 $\mu g/kg$  - Micrograms per kilogram

U - The analyte was analyzed for, but not detected above the reported quantitation limit.

J - The analyte was positively identified: the associated numerical value is the approximate concentration of the analyte in the sample.

UJ - The analyte was not detected above The reported quantition limit. However The reported quantitation limit may be biased.

NA - Not analyzed

| Area: F                  | Former Lube   | e Building |        |        |        |              |
|--------------------------|---------------|------------|--------|--------|--------|--------------|
| Sample Designation:      | SB-27         | SB-27      | SB-28  | SB-28  | SB-30  | SB-30        |
| Sample Date:             | 8/3/99        | 8/4/99     | 8/3/99 | 8/4/99 | 8/5/99 | 8/6/99       |
| Sample Depth (ft bls):   | 11-13         | 0-0.5      | 11-13  | 0-0.5  | 9-11   | 0-0.5        |
| Parameter                |               |            |        |        |        |              |
| (Concentration in µg/kg) |               |            |        |        |        |              |
| Benzene                  | <b>4 9</b> 11 | 5 4U       | 511    | 2511   | 5 111  | 5 211        |
| Toluene                  | 6.2           | 7.8        | 5U     | 57     | 5.1U   | 5.20<br>5.2U |
| Ethylbenzene             | 27            | 5.8        | 5U     | 390    | 5.1U   | 5.2U         |
| Xylenes (total)          | 97            | 35         | 10U    | 4200   | 10U    | 10U          |
|                          |               |            |        |        |        |              |
| TOTAL BTEX               | 130.2         | 48.6       | 0      | 4647   | 0      | 0            |
| 1,2,4-Trimethylbenzene   | 180           | 38U        | 5U     | 12000  | 5.1U   | 6.5U         |
| 1,3,5-Trimethylbenzene   | 110           | 15         | 5U     | 4900   | 5.1U   | 5.2U         |
| Cumene                   | 350           | 7.5        | 5U     | 2100   | 5.1U   | 5.2U         |
| MTBE                     | 4.9U          | 5.4U       | 5U     | 25U    | 5.1U   | 5.2U         |
| n-Butylbenzene           | 300           | 16U        | 5U     | 7100   | 5.1U   | 5.2U         |
| n-Propylbenzene          | 92            | 9.3U       | 5U     | 770    | 5.1U   | 5.2U         |
| Naphthalene              | 660           | 47U        | 25U    | 7300   | 5.1U   | 8.6U         |
| o-Xylene                 | 27            | 9.2        | 5U     | 330    | 5.1U   | 5.2U         |
| p-Isopropyltoluene       | 270           | 9.7        | 5U     | 1800   | 5.1U   | 5.2U         |
| sec-Butylbenzene         | 290           | 7.1        | 5U     | 1200   | 5.1U   | 5.2U         |
| tert-Butylbenzene        |               |            |        |        |        |              |
| Total VOCS               | 2409.2        | 97.1       | 0      | 42147  | 0      | 0            |

µg/kg - Micrograms per kilogram

- U The analyte was analyzed for, but not detected above the reported quantitation limit.
- J The analyte was positively identified: the associated numerical value is the approximate concentration of the analyte in the sample.
- UJ The analyte was not detected above The reported quantitation limit. However The reported quantitation limit may be biased.
- NA Not analyzed
- Bold Analyte detected

| Area:                               | Terminal D      | isposal Site    |                     |                 |                 |                 |                 |                 |                 |
|-------------------------------------|-----------------|-----------------|---------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Sample Designation:<br>Sample Date: | LF-3<br>8/23/99 | LF-3<br>9/28/99 | LF-3 DUP<br>9/28/99 | LF-4<br>8/23/99 | LF-4<br>9/28/99 | LF-5<br>8/25/99 | LF-5<br>9/28/99 | LF-6<br>8/25/99 | LF-6<br>9/28/99 |
| Parameter                           |                 |                 |                     |                 |                 |                 |                 |                 |                 |
| (Concentrations in µg/L)            |                 |                 |                     |                 |                 |                 |                 |                 |                 |
| Benzene                             | 45              | 50J             | 56                  | 0.2U            | 0.2U            | 0.2U            | 0.2U            | 83              | 80              |
| Toluene                             | 0.7             | 0.6J            | 0.7                 | 0.2U            | 0.2U            | 0.2U            | 0.2U            | 2               | 2.3             |
| Ethylbenzene                        | 0.2U            | 0.2UJ           | 0.2U                | 0.2U            | 0.2U            | 0.3             | 0.2U            | 1U              | 0.2U            |
| Xylenes (total)                     | 2U              | 0.5J            | 0.4U                | 0.6U            | 0.4U            | 0.6U            | 0.4U            | 3U              | 0.5             |
| TOTAL BTEX                          | 45.7            | 51.1            | 56.7                | 0               | 0               | 0.3             | 0               | 85              | 82.8            |
| 1,2,4-Trimethylbenzene              | NA              | 0.2J            | 0.3                 | NA              | 0.2U            | NA              | 0.2U            | NA              | 0.3             |
| 1,3,5-Trimethylbenzene              | NA              | 0.2J            | 0.2                 | NA              | 0.2U            | NA              | 0.2U            | NA              | 0.2U            |
| Cumene                              | NA              | 7.7J            | 7                   | NA              | 0.2U            | NA              | 0.2U            | NA              | 1.8             |
| MTBE                                | NA              | 26J             | 24                  | NA              | 4.7             | NA              | 5.5             | NA              | 4.6             |
| n-Butylbenzene                      | NA              | 11J             | 9.3                 | NA              | 0.2U            | NA              | 0.2U            | NA              | 2.3             |
| n-Propylbenzene                     | NA              | 10J             | 9.6                 | NA              | 0.2U            | NA              | 0.2U            | NA              | 2.7             |
| Naphthalene                         | NA              | 5UJ             | 1.9                 | NA              | 0.2U            | NA              | 0.2U            | NA              | 0.5             |
| o-Xylene                            | NA              | 0.4J            | 0.4                 | NA              | 0.2U            | NA              | 0.2U            | NA              | 0.2U            |
| p-Isopropyltoluene                  | NA              | 1UJ             | 0.2U                | NA              | 0.2U            | NA              | 0.2U            | NA              | 0.2U            |
| sec-Butylbenzene                    | NA              | 7.2J            | 6.5                 | NA              | 0.2U            | NA              | 0.2U            | NA              | 1.7             |
| Total VOCS                          | 45.7            | 113.8           | 57.3                | 0               | 4.7             | 0.3             | 5.5             | 85              | 96.7            |

µg/L - Micrograms per liter

- U The analyte was analyzed for, but not detected above the reported quantitation limit.
- J The analyte was positively identified: the associated numerical value is the approximate concentration of the analyte in the sample.
- UJ The analyte was not detected above the reported quantitation limit. However the reported quantitation limit may be biased.
- NA Not analyzed
- Bold Analyte detected

|                          | Area:        | Ferminal Dis | sposal Site |         |         | Former Lube Bu | ilding     |         |         |         |
|--------------------------|--------------|--------------|-------------|---------|---------|----------------|------------|---------|---------|---------|
| Sample                   | Designation: | LF-7         | LF-7        | LF-8    | LF-8    | SB-11/LB-1     | SB-11/LB-1 | SB-12   | SB-14   | SB-14   |
| S                        | Sample Date: | 8/25/99      | 9/28/99     | 8/25/99 | 9/28/99 | 8/23/99        | 09/28/99   | 8/23/99 | 8/23/99 | 9/28/99 |
| Parameter                |              |              |             |         |         |                |            |         |         |         |
| (Concentrations in µg/L) |              |              |             |         |         |                |            |         |         |         |
| Benzene                  |              | 0.2U         | 0.2U        | 0.2U    | 0.2U    | 46             | 8          | 6       | 10      | 14      |
| Toluene                  |              | 0.2U         | 0.2U        | 0.2U    | 0.2U    | 17             | 2U         | 1U      | 3       | 1.2     |
| Ethylbenzene             |              | 0.2U         | 0.2U        | 0.2U    | 0.2U    | 15             | 5.6        | 1       | 6       | 1.3     |
| Xylenes (total)          |              | 0.6U         | 0.4U        | 0.6U    | 0.4U    | 50U            | 4U         | 3U      | 5       | 2.6     |
| TOTAL BTEX               |              | 0            | 0           | 0       | 0       | 78             | 13.6       | 7       | 24      | 19.1    |
| 1,2,4-Trimethylbenzene   |              | NA           | 0.2U        | NA      | 0.2U    | NA             | 2U         | NA      | NA      | 1.4     |
| 1,3,5-Trimethylbenzene   |              | NA           | 0.2U        | NA      | 0.2U    | NA             | 2U         | NA      | NA      | 1.9     |
| Cumene                   |              | NA           | 0.2U        | NA      | 0.2U    | NA             | 5          | NA      | NA      | 2.8     |
| MTBE                     |              | NA           | 1.1         | NA      | 0.2U    | NA             | 2U         | NA      | NA      | 8.4     |
| n-Butylbenzene           |              | NA           | 0.2U        | NA      | 0.2U    | NA             | 14         | NA      | NA      | 4.8     |
| n-Propylbenzene          |              | NA           | 0.2U        | NA      | 0.2U    | NA             | 16         | NA      | NA      | 6.5     |
| Naphthalene              |              | NA           | 0.2U        | NA      | 0.2U    | NA             | 3.3        | NA      | NA      | 1.7     |
| o-Xylene                 |              | NA           | 0.2U        | NA      | 0.2U    | NA             | 2U         | NA      | NA      | 0.6     |
| p-Isopropyltoluene       |              | NA           | 0.2U        | NA      | 0.2U    | NA             | 2U         | NA      | NA      | 0.4U    |
| sec-Butylbenzene         |              | NA           | 0.2U        | NA      | 0.2U    | NA             | 9.9        | NA      | NA      | 3.9     |
| Total VOCS               |              | 0            | 1.1         | 0       | 0       | 78             | 61.8       | 7       | 24      | 51.1    |

µg/L - Micrograms per kilogram

U - The analyte was analyzed for, but not detected above the reported quantitation limit.

J - The analyte was positively identified: the associated numerical value is the approximate concentration of the analyte in the sample.

UJ - The analyte was not detected above the reported quantitation limit. However the reported quantitation limit may be biased.

NA - Not analyzed

|                          | Area: Forme   | r Lube Buildi | ing     |           |
|--------------------------|---------------|---------------|---------|-----------|
| Sample Design            | nation: SB-   | l6 SB-19      | 9 SB-28 | SB-28 DUP |
| Sample                   | e Date: 8/23/ | /99 9/29/9    | 9/29/99 | 9/29/99   |
| Parameter                |               |               |         |           |
| (Concentrations in µg/L) |               |               |         |           |
| Benzene                  | 610           | ) 0.7         | 2.4     | 2.4       |
| Toluene                  | 17            | 0.4           | 1.3     | 1.3       |
| Ethylbenzene             | 7             | 1.6           | 10      | 11        |
| Xylenes (total)          | 30            | 5.6           | 15      | 16        |
| TOTAL BTEX               | 664           | 8.3           | 28.7    | 30.7      |
| 1,2,4-Trimethylbenzene   | NA            | . 14          | 42J     | 43        |
| 1,3,5-Trimethylbenzene   | NA            | 8.1           | 21      | 21        |
| Cumene                   | NA            | 6.9           | 3.7     | 11        |
| MTBE                     | NA            | . 1           | 0.2U    | 0.2U      |
| n-Butylbenzene           | NA            | 5.2           | 16      | 16        |
| n-Propylbenzene          | NA            | 1.7           | 7.2     | 7.4       |
| Naphthalene              | NA            | 6.5           | 7.1     | 7.2       |
| o-Xylene                 | NA            | 3.8           | 4.5     | 4.7       |
| p-Isopropyltoluene       | NA            | 0.5           | 2.2     | 2.2       |
| sec-Butylbenzene         | NA            | 4.1           | 3       | 3.1       |
| Total VOCS               | 664           | 60.1          | 135.4   | 115.6     |

µg/L - Micrograms per kilogram

- U The analyte was analyzed for, but not detected above the reported quantitation limit.
- J The analyte was positively identified: the associated numerical value is the approximate concentration of the analyte in the sample.
- UJ The analyte was not detected above the reported quantitation limit. However the reported quantitation limit may be biased.
- NA Not analyzed
- Bold Analyted detected

| Area:                    | Terminal Dispo | osal Site |           |           |           | Former Lube | Building       |           |           |
|--------------------------|----------------|-----------|-----------|-----------|-----------|-------------|----------------|-----------|-----------|
| Sample Designation:      | LF-3           | LF-4      | LF-6      | LF-7      | LF-8      | SB-11/LB-1  | SB-11/LB-1 DUI | SB-12     | SB-14     |
| Sample Date:             | 8/23/1999      | 8/23/1999 | 8/25/1999 | 8/25/1999 | 8/25/1999 | 8/23/1999   | 8/23/1999      | 8/23/1999 | 8/23/1999 |
| Parameters               |                |           |           |           |           |             |                |           |           |
| (Concentrations in µg/L) |                |           |           |           |           |             |                |           |           |
|                          |                |           |           |           |           |             |                |           |           |
| Acenaphthene             | 9              | 1U        | 4J        | 1U        | 1U        | 6           | 7              | 3J        | 3J        |
| Acenaphthylene           | NA             | NA        | NA        | NA        | NA        | 3NJ         | 3NJ            | 1U        | 1U        |
| Anthracene               | 1U             | 1U        | 1U        | 1U        | 1U        | 2J          | 3J             | 3         | 1         |
| Benzo[a]anthracene       | 1U             | 1U        | 1U        | 1U        | 1U        | 2J          | 2J             | 4         | 1U        |
| Benzo[a]pyrene           | 1U             | 1U        | 1U        | 1U        | 1U        | 1J          | 1J             | 2         | 1U        |
| Benzo[b]fluoranthene     | 1U             | 1U        | 1U        | 1U        | 1U        | 1J          | 1J             | 2         | 1U        |
| Benzo[g,h,i]perylene     | 1U             | 1U        | 1U        | 1U        | 1U        | 1U          | 1U             | 1U        | 1U        |
| Benzo[k]fluoranthene     | 1U             | 1U        | 1U        | 1U        | 1U        | 1U          | 1U             | 1U        | 1U        |
| Chrysene                 | 1U             | 1U        | 1U        | 1U        | 1U        | 3J          | 3J             | 6         | 1U        |
| Dibenzo[a,h]anthracene   | 1U             | 1U        | 1U        | 1U        | 1U        | 1U          | 1U             | 1U        | 1U        |
| Fluoranthene             | 1U             | 1U        | 1U        | 1U        | 1U        | 4J          | 5              | 7         | 1         |
| Fluorene                 | 7              | 1U        | 3         | 1U        | 1U        | 10          | 1U             | 5         | 5         |
| Indeno[1,2,3-cd]pyrene   | 1U             | 1U        | 1U        | 1U        | 1U        | 1U          | 1U             | 1U        | 1U        |
| Naphthalene              | 1U             | 1U        | 1U        | 1U        | 1U        | 6NJ         | 7NJ            | 1U        | 2         |
| Phenanthrene             | 8              | 1U        | 9         | 1U        | 1U        | 10          | 12             | 6         | 2         |
| Pyrene                   | 1U             | 1U        | 1U        | 1U        | 1U        | 9           | 10             | 11        | 3         |
| TOTAL SVOCS              | 24             | 0         | 16        | 0         | 0         | 57          | 54             | 49        | 17        |

Notes:

 $\mu g/L$  - Micrograms per liter

U - The analyte was analyzed for, but not detected above the reported quantitation limit.

J - The analyte was positively identified: the associated numerical value is the approximate concentration of the analyte in the sample.

UJ - The analyte was not detected above the reported quantitation limit. However the reported quantitation limit may be biased.

N - Detections considered tentative due to poor spectral quality.

NA - Not analyzed

| A                        | rea:           |           |           |
|--------------------------|----------------|-----------|-----------|
| Sample Designat          | ion: SB-16     | SB-19     | SB-28     |
| Sample D                 | ate: 8/23/1999 | 9/29/1999 | 9/29/1999 |
| Parameters               |                |           |           |
| (Concentrations in µg/L) |                |           |           |
|                          |                |           |           |
| Acenaphthene             | 5              | 3         | 1U        |
| Acenaphthylene           | 1              | 0.9U      | 1U        |
| Anthracene               | 3              | 2         | 1U        |
| Benzo[a]anthracene       | 3              | 1         | 1U        |
| Benzo[a]pyrene           | 1              | 0.9U      | 1U        |
| Benzo[b]fluoranthene     | 1U             | 0.9U      | 1U        |
| Benzo[g,h,i]perylene     | 1U             | 0.9U      | 1U        |
| Benzo[k]fluoranthene     | 1U             | 0.9U      | 1U        |
| Chrysene                 | 4              | 2         | 1U        |
| Dibenzo[a,h]anthracene   | 1U             | 0.9U      | 1U        |
| Fluoranthene             | 2              | 3         | 1U        |
| Fluorene                 | 1U             | 4         | 1U        |
| Indeno[1,2,3-cd]pyrene   | 1U             | 0.9U      | 1U        |
| Naphthalene              | 3              | 4         | 1U        |
| Phenanthrene             | 21             | 7         | 1U        |
| Pyrene                   | 7              | 3         | 1U        |
| TOTAL SVOCS              | 50             | 29        | 2         |

Notes:

- µg/L Micrograms per liter
  - U The analyte was analyzed for, but not detected above the reported quantitation limit.
  - J The analyte was positively identified: the associated numerical value is the approximate concentration of the analyte in the sample.
  - UJ The analyte was not detected above the reported quantitation limit. However the reported quantitation limit may be biased.
  - N Detections considered tentative due to poor spectral quality.
- NA Not analyzed
- Bold Analyte detected

| Area: Terminal Disposal Site |           |          |          |         | Former Lube Building |           |            |                |         |          |
|------------------------------|-----------|----------|----------|---------|----------------------|-----------|------------|----------------|---------|----------|
| Sample Designation           | LF-3      | LF-4     | LF-5     | LF-6    | LF-7                 | LF-8      | SB-11/LB-1 | SB-11/LB-1 DUP | SB-12   | SB-14    |
| Sample Date:                 | 8/23/99   | 8/23/99  | 8/25/99  | 8/25/99 | 8/25/99              | 8/25/99   | 8/23/99    | 8/23/99        | 8/23/99 | 8/23/99  |
| Parameter                    |           |          |          |         |                      |           |            |                |         |          |
| (Concentrations in mg/L)     |           |          |          |         |                      |           |            |                |         |          |
| Cadmium                      | 0.0017U   | 0.0043   | 0.0017U  | 0.0017U | 0.0017U              | 0.0042    | 0.0019     | 0.0035         | 0.0017U | 0.0043   |
| Chromium                     | 0.0103    | 0.0955   | 0.0389   | 0.0197  | 0.0017U              | 0.0017U   | 0.022      | 0.213          | 0.037   | 0.0062   |
| Hexavalent Chromium          | NA        | NA       | NA       | NA      | NA                   | NA        | NA         | NA             | NA      | NA       |
| Lead                         | 0.0137    | 0.16     | 0.051    | 0.04    | 0.0019U              | 0.044     | 0.18       | 0.19           | 0.069   | 0.02     |
| Mercury                      | 0.000042U | 0.000152 | 0.000045 | 0.00006 | 0.000042U            | 0.000042U | 0.000052   | 0.0001         | 0.0001  | 0.000121 |
| Nickel                       | 0.016     | 0.186    | 0.07     | 0.0398  | 0.0054U              | 0.0054U   | 0.051      | 0.051          | 0.0344  | 0.0242   |
| Selenium                     | 0.0016U   | 0.0022   | 0.0016U  | 0.0016U | 0.0016U              | 0.0016U   | 0.0035     | 0.0044         | 0.0047  | 0.0016U  |
| Tetra Ethyl Lead             | NA        | NA       | NA       | NA      | NA                   | NA        | NA         | NA             | NA      | NA       |
| Thallium                     | 0.0097U   | 0.0113   | 0.0097U  | 0.0097U | 0.0097U              | 0.0097U   | 0.0118     | 0.0097U        | 0.0097U | 0.049    |
| Vanadium                     | 0.0082    | 0.123    | 0.043    | 0.024   | 0.0028U              | 0.0028U   | 0.036      | 0.034          | 0.028   | 0.026    |

mg/L - Milligrams per liter

U - The analyte was analyzed for, but not detected above the reported quantitation limit.

J - The analyte was positively identified: the associated numerical value is the approximate concentration of the analyte in the sample.

UJ - The analyte was not detected above the reported quantitation limit. However the reported quantitation limit may be biased.

NA - Not analyzed

| Area                     | : Former Lub | e Building |           | Resampling | z Locations |         |             |         |  |
|--------------------------|--------------|------------|-----------|------------|-------------|---------|-------------|---------|--|
| Sample Designation       | n: SB-16     | SB-19      | SB-28     | BTC-4      | BTC-5       | MW-1URS | MW-1URS DUP | NTY-T60 |  |
| Sample Date              | : 8/23/99    | 9/29/99    | 9/29/99   | 8/24/99    | 8/24/99     | 8/24/99 | 8/24/99     | 8/24/99 |  |
| Parameter                |              |            |           |            |             |         |             |         |  |
| (Concentrations in mg/L) |              |            |           |            |             |         |             |         |  |
|                          |              |            |           |            |             |         |             |         |  |
| Cadmium                  | 0.0017U      | 0.0017U    | 0.0017U   | NA         | NA          | NA      | NA          | NA      |  |
| Chromium                 | 0.0123       | 0.0059     | 0.0131    | NA         | NA          | NA      | NA          | NA      |  |
| Hexavalent Chromium      | NA           | NA         | NA        | NA         | NA          | NA      | NA          | 0.02U   |  |
| Lead                     | 0.51         | 0.0263     | 0.0115    | 0.013      | 0.167       | 0.019   | 0.018       | 0.007   |  |
| Mercury                  | 0.00381      | 0.000047   | 0.000042U | NA         | NA          | NA      | NA          | NA      |  |
| Nickel                   | 0.0172       | 0.0136     | 0.0232    | NA         | NA          | NA      | NA          | NA      |  |
| Selenium                 | 0.0056       | 0.0016UJ   | 0.0024J   | NA         | NA          | NA      | NA          | NA      |  |
| Tetra Ethyl Lead         | NA           | NA         | NA        | 0.001U     | 0.001U      | 0.001U  | 0.001U      | NA      |  |
| Thallium                 | 0.0097U      | 0.0097U    | 0.0097U   | NA         | NA          | NA      | NA          | NA      |  |
| Vanadium                 | 0.02         | 0.0074     | 0.021     | NA         | NA          | NA      | NA          | NA      |  |

mg/L - Milligrams per liter

U - The analyte was analyzed for, but not detected above the reported quantitation limit.

J - The analyte was positively identified: the associated numerical value is the approximate concentration of the analyte in the sample.

UJ - The analyte was not detected above the reported quantitation limit. However the reported quantitation limit may be biased.

NA - Not analyzed

### Table 9. Summary of Free-Product Data in the Vicinity of the Babcock Street Sewer, Mobil Buffalo Terminal, Buffalo, New York

## **Free-Product Data**

|               | Be                 | fore Western Leg | Startup             | After Western Leg Startup |                |                     |  |
|---------------|--------------------|------------------|---------------------|---------------------------|----------------|---------------------|--|
| Well Location | Adjusted           | Apparent         | Elevation of        | Adjusted                  | Apparent       | Elevation of        |  |
|               | Elevation to Water | Free-Product     | Top of Free Product | Elevation to Water        | Free-Product   | Top of Free Product |  |
|               | (ft amsl)          | Thickness (ft)   | (ft amsl)           | (ft amsl)                 | Thickness (ft) | (ft amsl)           |  |
|               |                    |                  |                     |                           |                |                     |  |
| SB-11         | 570.9              | 0.0              | NA                  | 564.8                     | 0.0            | 564.8               |  |
| SB-13         | 571.7              | 0.0              | NA                  | 569.4                     | 0.0            | 569.4               |  |
| SB-16         | 571.6              | 0.0              | NA                  | 569.8                     | 0.2            | 570.0               |  |
| SB-17         | 570.2              | 6.2              | 576.4               | 565.8                     | 0.9            | 566.6               |  |
| SB-31         | 571.4              | 0.0              | NA                  | NA                        | NA             | NA                  |  |
|               |                    |                  |                     |                           |                |                     |  |

### Sewer Construction Data

| Babcock Street Sewer Manhole<br>Location                                             | Manhole Rim<br>Elevation<br>(ft amsl) | Sewer Invert<br>Elevation<br>(ft amsl) | Approx. Elevation<br>of Sewer Bedding<br>Material (ft amsl) |
|--------------------------------------------------------------------------------------|---------------------------------------|----------------------------------------|-------------------------------------------------------------|
| Manhole west of SB-13<br>Manhole at intersection of<br>former Prenatt St and Babcock | 584.1<br>583.5                        | 570.0<br>570.2                         | 568.0<br>568.2                                              |
| Manhole approximately 300 ft<br>south of Elk St.                                     | 583.6                                 | 570.7                                  | 568.7                                                       |

Notes: ft amsl - feet above mean sea level NA - Not applicable













# <u>LEGEND</u>

| $\Phi$   | EXISTING MONITORING WELL                                  |
|----------|-----------------------------------------------------------|
| -        | EXISTING RECOVERY WELL                                    |
| $\oplus$ | EXISTING PIEZOMETER                                       |
| · · · ·  | EXISTING WELL POINT SYSTEM                                |
|          | STUDY AREA BOUNDARY                                       |
| ۲        | SFI SOIL BORING LOCATION                                  |
| •        | SFI CONTINUATION SOIL BORING LOCATION                     |
| $\oplus$ | SFI CONTINUATION MONITORING WELL LOCATION                 |
|          | INOPERABLE PORTION OF WESTERN LEG<br>OF WELL POINT SYSTEM |
|          |                                                           |












# BENZO(a)ANTHRACENE





#### MAP OF SAMPLING LOCATIONS



### EXISTING SFI LOCATION

• SFI CONTINUATION LOCATION

DIBENZO(a,h)ANTHRACENE

FORMER LUBE BUILDING AREA

-

# BENZO(a)PYRENE





| LEGEND FOR COLOR CODING OF CONCENTRATIONS FOR<br>INDIVIDUAL SVOCs                                                                                                                                                         |                                                                                                                            | NYSDEC RSCO<br>STANDARDS (ug/kg)         | SITE BACKGROUND<br>VALUES (ug/kg)                | LEGEND FOR COLOR CODING OF<br>OF TOTAL SVOC                                                                                                                    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|------------------------------------------|--------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>10 Times Greater than Site Background</li> <li>Greater than Site Background</li> <li>Greater than NYSDEC RSCO, Less than Site Background</li> <li>Less than NYSDEC RSCO</li> <li>ANALYTE NOT DETECTED</li> </ul> | BENZO(a)ANTHRACENE<br>BENZO(b)FLUORANTHENE<br>CHRYSENE<br>DIBENZO(a,h)ANTHRACENE<br>BENZO(a)PYRENE<br>BENZO(k)FLUORANTHENE | 224<br>1,100<br>400<br>14<br>61<br>1,100 | 5,587<br>5,568<br>6,470<br>584<br>5,238<br>5,142 | Greater than 1,000,000 ug/kg<br>Greater than 100,000 ug/kg, Less the<br>Greater than 10,000 ug/kg, Less that<br>Less than 10,000 ug/kg<br>ANALYTE NOT DETECTED |
| NOTE:<br>Naphthalene Detections Are Not Shown.<br>Concentrations For Naphthalene By Method 8021 Are Shown On Figure 9.                                                                                                    |                                                                                                                            |                                          |                                                  |                                                                                                                                                                |







# APPENDIX A

Geologic Logs

ROUX ASSOCIATES, INC.

Jero con con con con

**Ť**<sup>10,000</sup> k = 100

a na na la salata siyang arawa na salahang katang arawa katang katang katang katang katang katang katang katang

MC17252Y02.111/A-C

tere e en contractor e a conserve e



| LOG        |  |
|------------|--|
| SB-11/LB-1 |  |

Date: 02-Jul-99

Project Name: Mobil Terminal Location: Former Lube Oil Building Well Number: SB-1/LB-1 Casing Elevation: 584.24 Screen Diameter: 4 Inches Casing Diameter: 4 Inches

Log By: M.Falzone **Driller:** Maxxim Technologies Drilling Method: Hollow Stem Auger Slot Size: 20 Type: PVC Sample Method: 3 inch Split Spoon

**Construction Details** Water Level (Init): NC Cement/Grout Interval: 3 - grade = Cement/Grout Borehole Diameter: 10 inches **Backfill Interval:** NA = Backfill Total Well Depth: 24 Feet Bentonite Interval: 5-3 Feet = Bentonite Sand Pack Interval: 24-5 Feet = Sand Screen Interval: 24-7 Feet Sand Pack Type: Morrie #2 Completion Details: Pro casing Lithology: Burmister Classification System Sample Blow Percent PID Count Recovery Depth (ft) (ft) (ppm) 0 Air knifed. FILL. 1 2 3 4 5 0 6-8 3,4,4,5 70 FILL : Brown/orange fine Sand and Silt with some Clay with brick 6 fragments, little medium sand, moist. 7 8 8-10 1 3,2,3,5 100 FILL : Brown/orange fine Sand and Silt with little Clay, brick fragments and Gravel, 8-9' grading to gray fine Sand with Silt, little Clay, moist, slight odor. 9 10-12 2,2,3,2 10 1 65 FILL: Brown petroleum stained fine Sand and Clay grading to fine to medium Sand with some Clay, little Silt and rock fragments, 11 moist, slight odor. 12 12-14 5 5,4,5,7 80 FILL : Brown petroleum stained fine Sand and Clay with some brick/rock fragments and Ash, wet at 14', significant odor at 14', slight odor at 12-13.8'. 13 14-16 8 2,3,4,5 60 14 FILL : Petroleum stained fine to medium Sand with Ash and rock/brick fragments, saturated, odor. 15 16 16-18 4 4,5,4,6 80 FILL: Black stained Ash and Gravel and coarse Sand, saturated, odor, sheen. 17 18-20 18 25 9,8,8,7 60 FILL: Fine to medium Sand with Ash and little Gravel, brown with petroleum staining, saturated. Note: hit wood shear. 19 20 20-22 0 5,4,6,6 50 FILL: Gray coarse SAND and ASH with little Gravel and fine Sand, saturated. 21 22

Bottom of boring (a) 24 feet.



|                                           |                                                                                       |                                                                   |                       |                     |                                                                                                                                                                                           | LOG                                                  |
|-------------------------------------------|---------------------------------------------------------------------------------------|-------------------------------------------------------------------|-----------------------|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|
| Pro<br>Wa<br>Casin<br>Screen<br>Casin     | oject Name:<br>Location:<br>ell Number:<br>g Elevation:<br>n Diameter:<br>g Diameter: | Mobil Ten<br>Former Lu<br>SB-12<br>582.74<br>2 Inches<br>2 Inches | minal<br>ıbe Oil Buil | lding               | Log By: M.Falzone<br>Driller: Zebra<br>Drilling Method: Geoprobe<br>Slot Size: 10<br>Type: PVC<br>Sample Method: 2 inch Macrocore Soil Sampler                                            | <b>Date:</b> 09-Jul-99                               |
| Water<br>Borehol<br>Total<br>Scre<br>Sand | Level (Init):<br>e Diameter:<br>Well Depth:<br>en Interval:<br>Pack Type:             | NC<br>3 inches<br>18 feet<br>18-3 Feet<br>Morrie #2               |                       | Con                 | struction Details<br>Cement/Grout Interval: .5-grade<br>Backfill Interval: NA<br>Bentonite Interval: 25 Feet<br>Sand Pack Interval: 18-2 Feet<br>Completion Details: Flush mount road box | = Cement/Grou<br>= Backfill<br>= Bentonite<br>= Sand |
| (B)                                       | Sample                                                                                | PID                                                               | Blow<br>Count         | Percent<br>Recovery | Lithology: Burmister Classification System                                                                                                                                                |                                                      |
| (ft)<br>0<br>1<br>2                       | Depth (ft)                                                                            | (ppm)                                                             | Air knifed.           |                     | FILL: Coarse Sand with brick and concrete.                                                                                                                                                |                                                      |
| 3<br>4                                    |                                                                                       |                                                                   |                       |                     |                                                                                                                                                                                           |                                                      |
| 5<br>6                                    | 5-6<br>6-9                                                                            | 0<br>6                                                            | NA                    | 50<br>100           | FILL: Brown coarse Sand with brick, concrete and rock, dry, no<br>odor.<br>FILL: Brown and black stained, coarse to medium Sand with Ash,<br>Stone and little Silt moist netroleum odor.  |                                                      |
| 7<br>8                                    |                                                                                       |                                                                   |                       |                     |                                                                                                                                                                                           |                                                      |
| 9<br>10                                   | 9-10<br>10-13                                                                         | 1.4<br>3                                                          | NA<br>NA              | 25<br>25            | FILL: Black stained coarse Sand with some medium Sand and Silt,<br>saturated, petroleum odor, staining, product.<br>Black stained coarse Sand first with intermittent intervals with      |                                                      |
| 11<br>12                                  |                                                                                       |                                                                   |                       |                     | brown/gray Silt/Clay to 13', saturated, product.                                                                                                                                          |                                                      |
| 13<br>14                                  | 13-17                                                                                 | 7.2                                                               | NA                    | 100                 | FILL: Reworked Green gray Clay/Silt 13-15', overlying black Ash, saturated, significant petroleum odor.                                                                                   |                                                      |
| 15<br>16                                  |                                                                                       |                                                                   |                       |                     |                                                                                                                                                                                           |                                                      |
| 17<br>18                                  | 17-19                                                                                 | 11.2                                                              | NA                    | 50                  | FILL: Gray reworked Silt 17-18' overlying gray stained medium Sand, saturated, petroleum odor.                                                                                            |                                                      |
| 19                                        | 19-20                                                                                 | 8.5                                                               | NA                    | 100                 | FILL: Black Ash overlying black medium Sand with wood, saturated, petroleum odor.                                                                                                         |                                                      |
| 20                                        | 20-21.5                                                                               | 52                                                                | NA                    | 100                 | FILL: Black Ash overlying black medium Sand with wood at bottom, saturated, significant petroleum odor.                                                                                   |                                                      |
| 21                                        |                                                                                       |                                                                   |                       |                     |                                                                                                                                                                                           |                                                      |

Bottom of boring @ 21.5 feet.



| LOG   |  |
|-------|--|
| SB-13 |  |

Date: 27-Jul-99

Project Name: Mobil Terminal Location: Former Lube Oil Building Well Number: SB-13 Casing Elevation: 583.44 Screen Diameter: 4 Inches Casing Diameter: 4 Inches

Log By: D. D'Amico Driller: SJB Drilling Method: Hollow Stem Auger Slot Size: 20 Type: PVC Sample Method: 3 inch Split Spoon

**Construction Details** Cement/Grout Interval: 2 - grade Backfill Interval: NA Bentonite Interval: 4-2 feet Sand Pack Interval: 15-4 feet



| nd | Pack Type: | Morrie #2 |             |          | Completion Details: Flush mount road box                                                                                                                                       |  |
|----|------------|-----------|-------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|    | Sample     | PID       | Blow        | Percent  | Lithology: Burmister Classification System                                                                                                                                     |  |
|    | Depth (ft) | (ppm)     | Count       | Recovery |                                                                                                                                                                                |  |
|    | 0-1        |           | Air Knifed. |          | Concrete/Asphalt.                                                                                                                                                              |  |
|    | 1-2        |           |             |          | FILL: Brown and gray medium Sand and Silt and w/ bricks, cinders, gravel, dry                                                                                                  |  |
|    | 2-5        | 3.0       |             |          | FILL: Brown and gray medium Sand and Silt with bricks, cinders, gravel, dry.                                                                                                   |  |
|    |            |           | •           |          |                                                                                                                                                                                |  |
| -  | 5-7        | 100       | 4,1,1,3     | 50       | FILL: Gray Clay (5-6'), some medium Sand, some Silt, trace<br>cinders, moist. Gray Cinders/Fill material (6-7'), some Clay, little<br>medium Sand, little Silt, trace Cobbles. |  |
|    | 7-9        | 90        | 3,2,3,2     | 30       | FILL: Black medium Sand and Silt and Cinders fill, little Gravel, trace Clay, moist, stained, sheen.                                                                           |  |
|    | 9-11       | 125       | 1,2,4,2     | 50       | Gray medium SAND and SILT, some fine Gravel, some Clay,<br>moist, stained, sheen, product.                                                                                     |  |
|    | 11-13      | 110       | 3,3,4,3     | 75       | Gray medium SAND and SILT, some fine Gravel, some Clay, saturated, stained, sheen, product.                                                                                    |  |
|    | 13-15      | 115       | 1,3,3,3     | 50       | Black medium to coarse SAND and SILT, some fine Gravel, trace<br>Clay, odor, staining, sheen, saturated, product droplets.                                                     |  |
|    |            |           |             |          |                                                                                                                                                                                |  |

Bottom of boring @ 15 feet.

Water Level (Init): NC Borehole Diameter: 10 inches Total Well Depth: 15 Feet Screen Interval: 15-5 Feet San

(ft) 0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18



Project Name: Mobil Terminal Location: Former Lube Oil Building Well Number: SB-14
Casing Elevation: 584.79
Screen Diameter: 4 Inches
Casing Diameter: 4 Inches Log By: M.Falzone Driller: SJB Drilling Method: Hollow Stem Auger Slot Size: 20 Type: PVC Sample Method: 3 inch Split Spoon

**Construction Details** = Cement/Grout Water Level (Init): NC Cement/Grout Interval: 2- grade = Backfill Borehole Diameter: 10 inches Backfill Interval: NA Bentonite Interval: 4-2 Feet = Bentonite Total Well Depth: 23 Feet Screen Interval: 23-5 Feet Sand Pack Interval: 23-4 Feet = Sand Sand Pack Type: Morrie #2 **Completion Details:** Pro Casing Lithology: Burmister Classification System Sample Blow Percent PID Count Recovery (ft) Depth (ft) (ppm) Air knifed. 0 1 2 3 4 NC 1,2,2,2 5 5-7 50 FILL. Brown coarse Sand with brick plus rock intervals of reworked Silt and Clay, stained, moist, petroleum odor. 6 7 7-9 11.1 50 2,2,2,2 FILL: Coarse Sand and Brick overlying gray/green Silty Sand and little Clay and Ash, moist, stained, petroleum odor. 8 9-11 0 9 NA 2.2.4.1 no recovery 10 11-13 24 2,2,3,3 10 11 FILL:Stones and Brick fragments with Ash, black stained, petroleum odor. 12 13 13-15 45.3 1,1,2,2 75 FILL. Olive-gray fine Sand and Clay grading to fine to medium Sand with some Silt, trace Clay, saturated, petroleum odor, stained. 14 15 15-17 35 1,3,7,2 75 FILL. Olive gray medium to fine Sand with some Silt, trace Clay, saturated, petroleum odor. 16 Olive gray fine SAND with Silt grading to fine to medium Sand 17-19 24.3 1,3,9,7 17 80 with little coarse Sand and Gravel at 19', saturated, petro odor. 18 19-21 30.3 7,9,9,10 19 80 Stained medium to coarse SAND with little fine Gravel, saturated, petroleum odor. 20 21-23 18.5 4.6.6.7 80 Brown medium to coarse SAND with little fine Gravel, saturated, 21 petroleum odor. 22 23 Bottom of boring @ 23 feet.

Date: 27-Jul-99



| LOG   |  |
|-------|--|
| SB-15 |  |

Date: 27-Jul-99

Project Name: Mobil Terminal Location: Former Lube Oil Building Well Number: SB-15
Casing Elevation: 583.35
Screen Diameter: 4 Inches
Casing Diameter: 4 Inches Log By: D. D'Amico Driller: SJB Drilling Method: Hollow Stem Auger Slot Size: 20 Type: PVC Sample Method: 3 inch Split Spoon

| Water<br>oreho<br>Total<br>Scre<br>Sand | Level (Init):<br>le Diameter:<br>Well Depth:<br>een Interval:<br>Pack Type: | NC<br>10 inches<br>15 Feet<br>15-5 Feet<br>Morrie #2 |             | Con      | Instruction Details       = Cement/Grout         Cement/Grout Interval: 2 - grade       = Backfill         Backfill Interval: NA       = Backfill         Bentonite Interval: 4-2 Feet       = Bentonite         Sand Pack Interval: 15-4 Feet       = Sand         Completion Details: Flush mount road box       = Sand |
|-----------------------------------------|-----------------------------------------------------------------------------|------------------------------------------------------|-------------|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                         | Sample                                                                      | PID                                                  | Blow        | Percent  | Lithology: Burmister Classification System                                                                                                                                                                                                                                                                                |
| (ft)                                    | Depth (ft)                                                                  | (ppm)                                                | Count       | Recovery |                                                                                                                                                                                                                                                                                                                           |
| 0                                       | 05                                                                          | 6                                                    | Air Knifed. |          | FILL: Black tar like substance, petroleum odor, brown, medium to                                                                                                                                                                                                                                                          |
| 1                                       |                                                                             |                                                      |             |          | coarse Sand and Silt, trace Clay, trace Gravel, moist.<br>.5-5' Brown medium to coarse SAND and SILT, some<br>Gravel/Cobbles, trace Clay, slight odor, moist.                                                                                                                                                             |
| 2                                       |                                                                             |                                                      |             |          |                                                                                                                                                                                                                                                                                                                           |
| 3                                       |                                                                             |                                                      |             |          |                                                                                                                                                                                                                                                                                                                           |
| 4                                       |                                                                             |                                                      | <b>↓</b>    |          |                                                                                                                                                                                                                                                                                                                           |
| 5                                       | 5-7                                                                         | 75                                                   | W.O.H.      | 50       | Red brown CLAY with some brown and gray coarse Sand and fine                                                                                                                                                                                                                                                              |
| 6                                       |                                                                             |                                                      | 1,1,1       |          | Gravel, moist, odor.                                                                                                                                                                                                                                                                                                      |
| 7                                       | 7-9                                                                         | 12.5                                                 | 1,2,3,5     | 100      | Red brown CLAY with some brown and gray coarse Sand and fine                                                                                                                                                                                                                                                              |
| 8                                       |                                                                             |                                                      |             |          |                                                                                                                                                                                                                                                                                                                           |
| 9                                       | 9-11                                                                        | 110                                                  | 5,5,6,7     | 100      | Brown medium SAND and SILT, trace medium Gravel, moist,                                                                                                                                                                                                                                                                   |
| 10                                      |                                                                             |                                                      |             |          |                                                                                                                                                                                                                                                                                                                           |
| 11                                      | 11-13                                                                       | 100                                                  | 2,3,2,3     | 75       | Brown medium SAND and SILT, trace medium Gravel,                                                                                                                                                                                                                                                                          |
| 12                                      |                                                                             |                                                      |             |          |                                                                                                                                                                                                                                                                                                                           |
| 13                                      | 13-15                                                                       | 80                                                   | 3,3,4,3     | 90       | Brown medium SAND and SILT, trace medium Gravel, trace                                                                                                                                                                                                                                                                    |
| 14                                      |                                                                             |                                                      |             |          | Clay, moist, petro. odor, product.                                                                                                                                                                                                                                                                                        |
| 15                                      |                                                                             |                                                      |             |          |                                                                                                                                                                                                                                                                                                                           |
| 16                                      |                                                                             |                                                      |             |          |                                                                                                                                                                                                                                                                                                                           |
| 17                                      |                                                                             |                                                      |             |          |                                                                                                                                                                                                                                                                                                                           |
| 18                                      |                                                                             |                                                      |             |          |                                                                                                                                                                                                                                                                                                                           |



| Pr             | oject Name:   | Mobil Ter | minal         |         | Log By:                       | A.Kearns                   |
|----------------|---------------|-----------|---------------|---------|-------------------------------|----------------------------|
|                | Location:     | Former Lu | ube Oil Build | ding    | Driller:                      | SJB                        |
| W              | ell Number:   | SB-16     |               | 0       | <b>Drilling Method:</b>       | Hollow Stem Auger          |
| Casin          | g Elevation:  | 583.81    |               |         | Slot Size:                    | 20                         |
| Screen         | Diameter:     | 4 Inches  |               |         | Type:                         | PVC                        |
| Casin          | g Diameter:   | 4 Inches  |               |         | Sample Method:                | 3 inch Split Spoon         |
|                | 0             |           |               |         | -                             |                            |
|                |               |           |               | Co      | nstruction Details            |                            |
| Water          | Level (Init): | NC        |               |         | <b>Cement/Grout Interval:</b> | 2 to grade                 |
| Borehol        | e Diameter:   | 10 inches |               |         | Backfill Interval:            | NA                         |
| Total <b>'</b> | Well Depth:   | 17 Feet   |               |         | <b>Bentonite Interval:</b>    | 4-2 Feet                   |
| Scre           | en Interval:  | 17-5 Feet |               |         | Sand Pack Interval:           | 17-4 Feet                  |
| Sand           | Pack Type:    | Morrie #2 |               |         | <b>Completion Details:</b>    | Flush mount road bo        |
|                | Sample        | DIA       | Blow          | Percent | Lithology: Burm               | ister Classification Syste |
| (ft)           | Depth (ft)    | (ppm)     | Count         | Recover |                               |                            |
| 0              |               |           | Air knifed.   | у       | 3" Asphalt. Fill to 5 feet.   |                            |
|                |               |           |               |         | -                             |                            |
| 1              |               |           |               |         |                               |                            |
|                |               |           |               |         |                               |                            |
| 2              |               |           |               |         |                               |                            |
|                |               |           |               |         |                               |                            |
| 3              |               |           |               |         |                               |                            |
|                |               |           |               |         |                               |                            |
| 4              |               |           | $\downarrow$  |         |                               |                            |
|                |               |           | <u> </u>      |         |                               |                            |
| 5              | 5-7           | 50        | 2,3,4,4       | 40      | FILL. Black gray Ash, dry.    |                            |

. . .

.

| SB | -16 |  |
|----|-----|--|
|    |     |  |
|    |     |  |
|    |     |  |

LOG

Date: 28-Jul-99

| Water   | Level (Init): | NC        |             |         | Cement/Grout Interval: 2 to grade                                   | =     | = Cement/Grout |
|---------|---------------|-----------|-------------|---------|---------------------------------------------------------------------|-------|----------------|
| Borehol | e Diameter:   | 10 inches |             |         | Backfill Interval: NA                                               | -     | = Backfill     |
| Total   | Well Depth:   | 17 Feet   |             |         | Bentonite Interval: 4-2 Feet                                        | =     | = Bentonite    |
| Scre    | en Interval:  | 17-5 Feet |             |         | Sand Pack Interval: 17-4 Feet                                       | =     | = Sand         |
| Sand    | Pack Type:    | Morrie #2 |             |         | Completion Details: Flush mount road box                            |       |                |
|         | Sample        | PID       | Blow        | Percent | Lithology: Burmister Classification System                          |       |                |
| (ft)    | Depth (ft)    | (ppm)     | Count       | Recover |                                                                     |       |                |
| 0       |               |           | Air knifed. | у       | 3" Asphalt. Fill to 5 feet.                                         |       |                |
|         |               |           | 1           |         |                                                                     |       |                |
| 1       |               |           |             |         |                                                                     |       |                |
|         |               |           |             |         |                                                                     |       |                |
| 2       |               |           |             |         |                                                                     |       |                |
| ,       |               |           |             |         |                                                                     |       |                |
| 3       |               |           |             |         |                                                                     |       |                |
| 4       |               |           |             |         |                                                                     |       |                |
| -       |               |           | <b>★</b>    |         |                                                                     |       |                |
| 5       | 5-7           | 50        | 2,3,4,4     | 40      | FILL. Black gray Ash, dry.                                          |       |                |
|         |               |           |             |         |                                                                     | ::::E |                |
| 6       |               |           |             |         |                                                                     | E     |                |
|         |               |           |             |         |                                                                     | ::::E |                |
| 7       | 7-9           | 140       | 1,2,1,2     | 25      | FILL. Black gray Ash, some Silt, dry, petro.odor.                   |       |                |
|         |               |           |             |         |                                                                     | E     |                |
| 8       |               |           |             |         |                                                                     | ::::E |                |
| 0       | 0.11          | 120       | 2222        | 50      |                                                                     |       |                |
| 9       | 9-11          | 120       | 2,2,2,2     | 50      | FILL. Product in sample. Stained brown coarse Sand, some Silt,      |       |                |
| 10      |               |           |             |         | indie Asii, inoisi, peuto odor.                                     | ::::E |                |
| 10      |               |           |             |         |                                                                     |       |                |
| 11      | 11-13         | 150       | 2.2.2.2     | 50      | FILL: Stained Brown coarse Sand, some Silt, little Ash, wet.        |       |                |
|         |               |           | , , , ,     |         | Product, saturated, trace wood, petro odor.                         | ::::E |                |
| 12      |               |           |             |         |                                                                     |       |                |
|         |               |           |             |         |                                                                     | ::::E |                |
| 13      | 13-15         | 130       | 1,2,6,12    | 30      | FILL. Stained fine Sand and Silt, some fine to medium Gravel, trace |       |                |
| 14      |               |           |             |         | wood, saturated.                                                    |       |                |
| 14      |               |           |             |         |                                                                     | ::::E |                |
| 15      | 15-17         | 110       | 10.9.8.5    | 40      | FILL, Stained fine Sand and Silt and fine to medium Gravel.         |       |                |
|         |               |           | ,-,-,-      |         | product, some Ash, saturated.                                       |       |                |
| 16      |               |           |             |         |                                                                     | ::::E |                |
|         |               |           |             |         |                                                                     | E     |                |
| 17      |               |           |             |         |                                                                     |       |                |
|         |               |           |             |         |                                                                     |       |                |
| 18      |               |           |             |         |                                                                     |       |                |
| 10      |               |           |             |         | D-4                                                                 |       |                |
| 19      |               |           |             |         | Bottom of boring (a) 17 feet.                                       |       |                |

----

T



| LOG   |  |
|-------|--|
| SB-17 |  |

Date: 28-Jul-99

Project Name: Mobil Terminal Location: Former Lube Oil Building Well Number: SB-17 Casing Elevation: 583.53 Screen Diameter: 4 inches Casing Diameter: 4 inches

Log By: A.Kearns Driller: SJB Drilling Method: Hollow Stem Auger Slot Size: 20 Type: PVC Sample Method: 3 inch Split Spoon

| Water 2<br>Borehold<br>Total 2<br>Scre<br>Sand | Level (Init):<br>e Diameter:<br>Well Depth:<br>en Interval:<br>Pack Type: | NC<br>10 inches<br>20 Feet<br>20 -5 Feet<br>Morrie #2 |               | Con                 | struction Details<br>Cement/Grout Interval: 2.5- grade<br>Backfill Interval: NC<br>Bentonite Interval: 4-2.5 Feet<br>Sand Pack Interval: 20-4 Feet<br>Completion Details: Flush mount road box |   | Cement/Grout<br>Backfill<br>Bentonite<br>Sand |
|------------------------------------------------|---------------------------------------------------------------------------|-------------------------------------------------------|---------------|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|-----------------------------------------------|
| (ft)                                           | Sample<br>Depth (ft)                                                      | PID<br>(ppm)                                          | Blow<br>Count | Percent<br>Recovery | Lithology: Burmister Classification System                                                                                                                                                     |   |                                               |
| 0                                              | Deptil (11)                                                               | (ppiii)                                               | Air Knifed.   |                     | Asphalt/Concrete to 2.5'. Fill to 5'.                                                                                                                                                          |   |                                               |
| 1<br>2                                         | 2.5-3                                                                     | 2.5                                                   |               |                     |                                                                                                                                                                                                |   |                                               |
| 3                                              |                                                                           |                                                       |               |                     |                                                                                                                                                                                                |   |                                               |
| 4                                              |                                                                           |                                                       | $\downarrow$  |                     |                                                                                                                                                                                                |   |                                               |
| 5                                              | 5-7                                                                       | 75                                                    | 2,2,2,1       | 20                  | FILL. Black stained fine Sand, some Ash and fine to medium                                                                                                                                     |   |                                               |
| 6                                              |                                                                           |                                                       |               |                     | Gravel, product.                                                                                                                                                                               |   |                                               |
| 7                                              | 7-9                                                                       | 60                                                    | 2,2,1,2       | 40                  | TILL. Reworked.Black stained Silty Clay with little fine Gravel, product saturated                                                                                                             |   |                                               |
| 8                                              |                                                                           |                                                       |               |                     |                                                                                                                                                                                                |   |                                               |
| 9                                              | 9-11                                                                      | 125                                                   | 1,2,2,2       | 70                  | TILL. Reworked. Brown Clayey Silt, some fine to coarse Gravel, product,saturated.                                                                                                              |   |                                               |
| 10                                             |                                                                           |                                                       |               |                     |                                                                                                                                                                                                |   |                                               |
| 11                                             | 11-13                                                                     | 150                                                   | 3,3,5,5       | 80                  | TILL. Brown Clay and Silt, some fine Gravel, product, saturated.                                                                                                                               |   |                                               |
| 12                                             |                                                                           |                                                       |               |                     |                                                                                                                                                                                                |   |                                               |
| 13                                             |                                                                           |                                                       |               |                     | Spooned to 13'/Augered to 20'.                                                                                                                                                                 |   |                                               |
| 14                                             |                                                                           |                                                       |               |                     |                                                                                                                                                                                                |   |                                               |
| 15                                             |                                                                           |                                                       |               |                     |                                                                                                                                                                                                |   |                                               |
| 16                                             |                                                                           |                                                       |               |                     |                                                                                                                                                                                                |   |                                               |
| 17                                             |                                                                           |                                                       |               |                     |                                                                                                                                                                                                |   |                                               |
| 18                                             |                                                                           |                                                       |               |                     |                                                                                                                                                                                                |   |                                               |
| 19                                             |                                                                           |                                                       |               |                     |                                                                                                                                                                                                |   |                                               |
| 20                                             |                                                                           |                                                       |               |                     | Bottom of boring @ 20 feet.                                                                                                                                                                    | - |                                               |



| LOG       |  |
|-----------|--|
| <br>SB-18 |  |

Date: 29-Jul-99

Project Name: Mobil Terminal Location: Former Lube Oil Building Well Number: NA Casing Elevation: NA Screen Diameter: NA Casing Diameter: NA

| Log By:          | A.Kearns           |
|------------------|--------------------|
| Driller:         | SJB                |
| Drilling Method: | Hollow Stem Auger  |
| Slot Size:       | NA                 |
| Туре:            | NA                 |
| Sample Method:   | 3 inch Split Spoon |

|                              | Construction Details                             |       |             |          |                                                                              |  |  |
|------------------------------|--------------------------------------------------|-------|-------------|----------|------------------------------------------------------------------------------|--|--|
| Water                        | Water Level (Init): NA Cement/Grout Interval: NA |       |             |          |                                                                              |  |  |
| Borehole Diameter: 10 inches |                                                  |       |             |          | Backfill Interval: NA                                                        |  |  |
| Total <b>'</b>               | Well Depth:                                      | NA    |             |          | Bentonite Interval: NA                                                       |  |  |
| Scre                         | en Interval:                                     | NA    |             |          | Sand Pack Interval: NA                                                       |  |  |
| Sand                         | Pack Type:                                       | NA    |             |          | Completion Details: NA                                                       |  |  |
|                              | Sample                                           | PID   | Blow        | Percent  | Lithology: Burmister Classification System                                   |  |  |
| (ft)                         | Depth (ft)                                       | (ppm) | Count       | Recovery |                                                                              |  |  |
| 0                            |                                                  |       | Air knifed. |          | 3" Asphalt. Fill to 5 feet.                                                  |  |  |
|                              |                                                  |       | 1           |          |                                                                              |  |  |
| 1                            |                                                  |       |             |          |                                                                              |  |  |
|                              |                                                  |       |             |          |                                                                              |  |  |
| 2                            |                                                  |       |             |          |                                                                              |  |  |
| 2                            | 254                                              | 05    |             |          |                                                                              |  |  |
| 3                            | 3.3-4                                            | 95    |             |          | Cloury SILT and fine to seems CDAVEL black law viscous meduat                |  |  |
| А                            |                                                  |       |             |          | Clayey SILT and line to coarse GRAVEL, black low viscous product.            |  |  |
| 7                            |                                                  |       | ♥           |          |                                                                              |  |  |
| 5                            | 5-7                                              | 150   | W.O.H.      | 60       | FILL Clayev Silt some fine to coarse Sand little fine Gravel trace coarse    |  |  |
| Ĵ                            |                                                  |       | 1.2.1       |          | Gravel, saturated.                                                           |  |  |
| 6                            |                                                  |       | 7-7-        |          |                                                                              |  |  |
|                              |                                                  |       |             |          |                                                                              |  |  |
| 7                            | 7-9                                              | 12.5  | 4,6,4,3     | 90       | TILL. Clayey Silt, some fine to coarse Sand, little Gravel, saturated.       |  |  |
|                              |                                                  |       |             |          |                                                                              |  |  |
| 8                            | -                                                |       |             |          |                                                                              |  |  |
| 0                            | 0.11                                             | 110   | 2256        | 70       |                                                                              |  |  |
| 9                            | 9-11                                             | 110   | 2,3,5,6     | 70       | Fine to coarse SAND, some fine to coarse Gravel and Clay, product,           |  |  |
| 10                           |                                                  |       |             |          | saturated.                                                                   |  |  |
| 10                           |                                                  |       |             |          |                                                                              |  |  |
| 11                           | 11-13                                            | 105   | 6644        | 50       | Fine to coarse SAND, some fine to coarse Gravel and Clay, product, saturated |  |  |
|                              | 11 15                                            | 105   | 0,0,1,1     | 50       |                                                                              |  |  |
| 12                           | ł                                                |       |             |          |                                                                              |  |  |
|                              |                                                  |       |             |          |                                                                              |  |  |
| 13                           |                                                  |       |             |          |                                                                              |  |  |
|                              |                                                  |       |             |          |                                                                              |  |  |
| 14                           |                                                  |       |             |          |                                                                              |  |  |
|                              |                                                  |       |             |          |                                                                              |  |  |
| 15                           |                                                  |       |             |          |                                                                              |  |  |
| 14                           |                                                  |       |             |          |                                                                              |  |  |
| 10                           |                                                  |       |             |          |                                                                              |  |  |
| 17                           | 1                                                |       |             |          |                                                                              |  |  |
| 1/                           |                                                  |       |             |          |                                                                              |  |  |
| 18                           |                                                  |       |             |          |                                                                              |  |  |
|                              | [                                                |       |             |          |                                                                              |  |  |
| 19                           |                                                  |       |             |          | Bottom of boring @ 13 feet.                                                  |  |  |



**LOG** SB-19

Date: 29-Jul-99

| <b>Project Name:</b>     | Mobil Terminal           |
|--------------------------|--------------------------|
| Location:                | Former Lube Oil Building |
| Well Number:             | SB-19                    |
| <b>Casing Elevation:</b> | 583.13                   |
| Screen Diameter:         | 4 Inches                 |
| <b>Casing Diameter:</b>  | 4 Inches                 |

Log By: A.Kearns Driller: SJB Drilling Method: Hollow Stem Auger Slot Size: 20 Type: PVC Sample Method: 3 inch Split Spoon

•

| Water Level (Init): NA<br>Borehole Diameter: 10 inches<br>Total Well Depth: 20 Feet<br>Screen Interval: 20-5 Feet<br>Sand Pack Type: Morrie #2 |            |               | و چې و چې و چې و | Construction Details       = Cement         Cement/Grout Interval: 2.5 - grade       = Backfill         Backfill Interval: NA       = Backfill         Bentonite Interval: 4-2.5 Feet       = Benton         Sand Pack Interval: 20-4 Feet       = Sand         Completion Details: Flush mount road box       = Sand |                                                                                              |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------|------------|---------------|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--|--|--|
| (ft)                                                                                                                                           | Sample     | PID           | Blow<br>Count    | Percent<br>Recovery                                                                                                                                                                                                                                                                                                   | Lithology: Burmister Classification System                                                   |  |  |  |
| 0                                                                                                                                              | Depui (It) | <u>(ppin)</u> | Air knifed.      |                                                                                                                                                                                                                                                                                                                       | 4" Asphalt. Fill.                                                                            |  |  |  |
| 1                                                                                                                                              |            |               |                  |                                                                                                                                                                                                                                                                                                                       |                                                                                              |  |  |  |
| 2                                                                                                                                              |            |               |                  |                                                                                                                                                                                                                                                                                                                       |                                                                                              |  |  |  |
| 3                                                                                                                                              |            |               |                  |                                                                                                                                                                                                                                                                                                                       |                                                                                              |  |  |  |
| 4                                                                                                                                              |            |               | ♦                |                                                                                                                                                                                                                                                                                                                       |                                                                                              |  |  |  |
| 5                                                                                                                                              | 5-7        | 75            | 1,1,1,2          | 70                                                                                                                                                                                                                                                                                                                    | TILL, Clayey Silt, some fine Gravel, little medium to coarse<br>Gravel, product, very moist. |  |  |  |
| 6                                                                                                                                              |            |               |                  |                                                                                                                                                                                                                                                                                                                       |                                                                                              |  |  |  |
| 7                                                                                                                                              | 7-9        | 70            | 4,3,3,4          | 70                                                                                                                                                                                                                                                                                                                    | TILL. Clayey Silt and fine to coarse Gravel, little coarse Sand, product, saturated.         |  |  |  |
| 8                                                                                                                                              |            |               |                  |                                                                                                                                                                                                                                                                                                                       | A                                                                                            |  |  |  |
| 9                                                                                                                                              | 9-11       | 40            | 2,2,4,2          | 30                                                                                                                                                                                                                                                                                                                    | SILT and fine GRAVEL, some coarse Sand and medium Gravel, product, saturated.                |  |  |  |
| 10                                                                                                                                             |            |               |                  |                                                                                                                                                                                                                                                                                                                       |                                                                                              |  |  |  |
| 11                                                                                                                                             | 11-13      | 30            | 6,2,2,2          | 5                                                                                                                                                                                                                                                                                                                     | SILT and fine GRAVEL, some coarse Sand and medium Gravel, product, saturated.                |  |  |  |
| 12                                                                                                                                             |            |               |                  |                                                                                                                                                                                                                                                                                                                       |                                                                                              |  |  |  |
| 13                                                                                                                                             |            |               |                  |                                                                                                                                                                                                                                                                                                                       |                                                                                              |  |  |  |
| 14                                                                                                                                             |            |               |                  |                                                                                                                                                                                                                                                                                                                       |                                                                                              |  |  |  |
| 15                                                                                                                                             |            |               |                  |                                                                                                                                                                                                                                                                                                                       |                                                                                              |  |  |  |
| 16                                                                                                                                             |            |               |                  |                                                                                                                                                                                                                                                                                                                       |                                                                                              |  |  |  |
| 17                                                                                                                                             |            |               |                  |                                                                                                                                                                                                                                                                                                                       |                                                                                              |  |  |  |
| 18                                                                                                                                             |            |               |                  |                                                                                                                                                                                                                                                                                                                       |                                                                                              |  |  |  |
| 19                                                                                                                                             |            |               |                  |                                                                                                                                                                                                                                                                                                                       | Augered to 20'.                                                                              |  |  |  |
| 20                                                                                                                                             |            |               |                  |                                                                                                                                                                                                                                                                                                                       | Bottom of boring @ 20 feet.                                                                  |  |  |  |



|                    |                              |                        |                        |          |                                                                                    |       | LOG<br>SB-20                 |
|--------------------|------------------------------|------------------------|------------------------|----------|------------------------------------------------------------------------------------|-------|------------------------------|
| Pro                | oject Name:<br>Location:     | Mobil Ter<br>Former Lu | minal<br>1be Oil Build | ling     | Log By: A.Keams<br>Driller: SJB                                                    | Date: | 29-Jul-99                    |
| We<br>Casin        | ell Number:<br>g Elevation:  | SB-20<br>583.46        |                        |          | <b>Slot Size:</b> 20                                                               |       |                              |
| Screen             | Diameter:                    | 4 Inches               |                        |          | Type: PVC                                                                          |       |                              |
| Casin              | g Diameter:                  | 4 Inches               |                        |          | Sample Method: 3 Inch Spin Spoon                                                   |       |                              |
|                    |                              |                        |                        | Con      | struction Details                                                                  |       |                              |
| Water .<br>Borehol | Level (Init):<br>e Diameter: | NC<br>10 inches        |                        |          | <b>Backfill Interval:</b> 2- grade                                                 |       | = Cement/Grout<br>= Backfill |
| Total '            | Well Depth:                  | 15 Feet                |                        |          | Bentonite Interval: 4-2 Feet                                                       |       | = Bentonite                  |
| Scre               | en Interval:                 | 15-5 Feet              |                        |          | Sand Pack Interval: 15-4 Feet                                                      |       | = Sand                       |
| Sand               | Sample                       | Morrie #2              | Blow                   | Percent  | Lithology: Burmister Classification System                                         |       |                              |
| (ft)               | Depth (ft)                   | PID<br>(ppm)           | Count                  | Recovery |                                                                                    |       |                              |
| 0                  |                              |                        | Air Knifed.            |          | FILL. Fine Sand and Ash, trace fine to coarse Gravel.                              |       |                              |
| 1                  |                              |                        |                        |          |                                                                                    |       |                              |
| 2                  |                              |                        |                        |          |                                                                                    |       |                              |
| 3                  | 3-3.5                        | 23                     |                        |          |                                                                                    |       |                              |
| 4                  |                              |                        |                        |          |                                                                                    |       |                              |
| 5                  | 5-7                          | 60                     | <b>▼</b><br>7,6,5,5    | 3        | FILL. Fine Sand, some fine to coarse Gravel, product at end of the                 |       |                              |
| 6                  |                              |                        |                        |          | spoon (at 7), saturated.                                                           |       |                              |
| 7                  | 7-9                          | 70                     | 2,2,2,3                | 5        | FILL. Fine Sand and Ash, some fine to coarse Gravel, product,                      |       |                              |
| . 8                |                              |                        |                        |          | saturated.                                                                         |       |                              |
| 9                  | 9-11                         | 100                    | 1,1,1,2                | 50       | FILL. Fine to coarse Gravel, some fine to coarse Sand and Ash, product, saturated. |       |                              |
| 10                 |                              |                        |                        |          | r ,                                                                                |       |                              |
| 11                 | 11-13                        | 70                     | 2,2,8,7                | 40       | FILL: Fine to coarse Gravel, some fine to coarse Sand, product, saturated.         |       |                              |
| 12                 |                              |                        |                        |          |                                                                                    |       |                              |
| 13                 | 13-15                        | 65                     | 8,8,6,6                | 50       | FILL. Fine to coarse Gravel, some fine to coarse Sand, product, saturated.         |       |                              |
| 14                 |                              |                        |                        |          |                                                                                    |       |                              |
| 15                 |                              |                        |                        |          |                                                                                    |       |                              |
| 16                 |                              |                        |                        |          |                                                                                    |       |                              |
| 17                 |                              |                        |                        |          |                                                                                    |       |                              |
| 18                 |                              |                        |                        |          |                                                                                    |       |                              |

Bottom of boring @ 15 feet.



|            |               |                 |               |            |                                                                       |            | LOG                |
|------------|---------------|-----------------|---------------|------------|-----------------------------------------------------------------------|------------|--------------------|
|            |               |                 |               |            |                                                                       |            | SB-21              |
| Pr         | oject Name:   | Mobil ler       | minal         |            | Log By: A.Kearns                                                      | <b>D</b> . | <b>30 1 1 00</b>   |
| <b>W</b> 7 | Location:     | Former Lu       | ibe Oil Build | ling       | Driller: SJB<br>Drilling Method: Hollow Stem Auger                    | Date:      | 30 <b>-</b> Jul-99 |
| Casin      | a Flevation:  | NΔ              |               |            | Slot Size: NA                                                         |            |                    |
| Screet     | Diameter:     | NA              |               |            | Type: NA                                                              |            |                    |
| Casin      | g Diameter:   | NA              |               |            | Sample Method: 3 inch Split Spoon                                     |            |                    |
|            |               |                 |               |            |                                                                       |            |                    |
|            |               | 110             |               | <u>Con</u> | struction Details                                                     |            |                    |
| Water .    | Level (Init): | NC<br>10 inchas |               |            | Cement/Grout Interval: NA                                             |            |                    |
| Total V    | Well Denth    | NA              |               |            | Bentonite Interval: NA                                                |            |                    |
| Scre       | en Interval:  | NA              |               |            | Sand Pack Interval: NA                                                |            |                    |
| Sand       | Pack Type:    | NA              |               |            | Completion Details: NA                                                |            |                    |
|            | Sample        | PID             | Blow          | Percent    | Lithology: Burmister Classification System                            |            |                    |
| (ft)       | Depth (ft)    | (ppm)           | Count         | Recovery   |                                                                       |            |                    |
| 0          |               |                 | Air knifed.   |            | 3" Asphalt. Fill.                                                     |            |                    |
| 1          |               |                 |               | :          |                                                                       |            |                    |
| 1          |               |                 |               |            |                                                                       |            |                    |
| 2          |               |                 |               |            |                                                                       |            |                    |
|            |               |                 |               |            |                                                                       |            |                    |
| 3          |               |                 |               |            |                                                                       |            |                    |
| 4          |               |                 |               |            |                                                                       |            |                    |
|            |               |                 | <b>—</b>      |            |                                                                       |            |                    |
| 5          | 5-7           | 15              | 3,4,5,6       | 40         | FILL. Brown fine Sand and Silt, little fine to medium Gravel, dry, pe | etro. odo  | r.                 |
| 6          |               |                 |               |            |                                                                       |            |                    |
| 0          |               |                 |               |            |                                                                       |            |                    |
| 7          | 7-9           | 13              | 4,6,8,7       | 40         | TILL. Brown fine Sand and Silt, some Clay, little fine Gravel, dry, p | etro.      |                    |
| 0          |               |                 |               |            | odor.                                                                 |            |                    |
| 8          |               |                 |               |            |                                                                       |            |                    |
| 9          | 9-11          | 75              | 1,2,2,3       | 70         | TILL.Brown Silty Clay, trace fine to medium Gravel, residual produ    | ct,        |                    |
|            |               |                 |               |            | moist.                                                                |            |                    |
| 10         |               |                 |               |            |                                                                       |            |                    |
| 11         | 11-12         | 120             | 4444          | 100        | TILL Grav Silt and fine Sand some Clav residual product moist         |            |                    |
| 11         | 11-13         | 120             | 7,7,7,7       | 100        | The oray one and the band, some oray, residual product, III0181.      |            |                    |
| 12         |               |                 |               |            |                                                                       |            |                    |
| 12         | 12.15         | 100             | 1124          | 70         |                                                                       |            |                    |
| 15         | 13-15         | 100             | 1,1,3,4       | 70         | Uray line SAND and SIL1, product, saturated.                          |            |                    |
| 14         |               |                 |               |            |                                                                       |            |                    |
|            |               |                 |               |            |                                                                       |            |                    |
| 15         | 15-17         | 115             | 2,4,5,3       | 50         | Gray tine SAND and SILT, product, saturated.                          |            |                    |
| 16         |               |                 |               |            |                                                                       |            |                    |
|            |               |                 |               |            |                                                                       |            |                    |
| 17         | 17-19         | 100             | 1,1,2,3       | 100        | Gray fine SAND and SILT, heavy sheen, saturated, .                    |            |                    |
| 19         |               |                 |               |            |                                                                       |            |                    |
| 10         |               |                 |               |            |                                                                       |            |                    |
| 19         |               |                 |               |            | Bottom of boring @ 19 feet.                                           |            |                    |

-------

and a second strand data and the second strands and the second strangs and the second strangs and the second st

T

-----



|                                                                                                                                          |         | <b>LOG</b><br>SB-22 |
|------------------------------------------------------------------------------------------------------------------------------------------|---------|---------------------|
| Log By: A.Kearns<br>Driller: SJB<br>Drilling Method: Hollow Stem Auger<br>Slot Size: NA<br>Type: NA<br>Sample Method: 3 inch Split Spoon | Date:   | 30-Jul-99           |
| tion Details                                                                                                                             |         |                     |
| ment/Grout Interval: NA                                                                                                                  |         |                     |
| Backfill Interval: NA                                                                                                                    | · . · · |                     |
| Bentonite Interval: NA                                                                                                                   |         |                     |
| Sand Pack Interval: NA                                                                                                                   |         |                     |
| Completion Details: NA                                                                                                                   |         | A                   |
| Lithology: Burmister Classification System                                                                                               |         |                     |
| sphalt. Fill.                                                                                                                            |         |                     |
|                                                                                                                                          |         |                     |
|                                                                                                                                          |         |                     |
|                                                                                                                                          |         |                     |
|                                                                                                                                          |         |                     |
|                                                                                                                                          |         |                     |
|                                                                                                                                          |         |                     |

Project Name: Mobil Terminal Location: Former Lube Oil Building Well Number: NA **Casing Elevation:** NA Screen Diameter: NA **Casing Diameter: NA** 

Construc Water Level (Init): NC Ce Borehole Diameter: 10 inches Total Well Depth: NA Screen Interval: NA Sand Pack Type: NA Blow Sample Percent PID Count Recovery (ft) Depth (ft) (ppm) 3" A 0 Air knifed. 1 2 3 4 6.5 5 5-7 3,4,5,6 70 FILL. Clayey Silt, some fine Gravel, dry. 6 6,7,8,7 7 7-9 5 50 FILL. Fine to coarse Sand and Silt, some fine to medium Gravel, little Ash and Clay, dry. 8 2.5 9 9-11 2,2,3,3 80 TILL.Clayey Silt, some fine to coarse Sand, little fine Gravel, moist. 10 11-13 123 3,4,3,5 80 TILL. Clayey Silt, some fine Gravel. Then fine to coarse Sand and Gravel, trace 11 Silt and Clay, trace product, saturated. 12 13-15 95 4,5,6,5 13 50 Fine to coarse SAND and GRAVEL, little Silt and Clay, product globules, saturated. 14 15 16 17 18 19 Bottom of boring @ 15 feet.



| I | LOG          |  |
|---|--------------|--|
| S | <b>B-2</b> 3 |  |

Project Name: Mobil Terminal Location: Former Lube Oil Building Well Number: NA Casing Elevation: NA Screen Diameter: NA Casing Diameter: NA Log By: A.Kearns Driller: SJB Drilling Method: Hollow Stem Auger Slot Size: NA Type: NA Sample Method: 3 inch Split Spoon

Date: 30-Jul-99

| Water ]<br>Borehold<br>Total V<br>Scre<br>Sand | Level (Init):<br>e Diameter:<br>Well Depth:<br>en Interval:<br>Pack Type: | NC<br>10 inches<br>NA<br>NA<br>NA |            | Cons     | struction Details<br>Cement/Grout Interval: NA<br>Backfill Interval: NA<br>Bentonite Interval: NA<br>Sand Pack Interval: NA<br>Completion Details: NA |
|------------------------------------------------|---------------------------------------------------------------------------|-----------------------------------|------------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                | Sample                                                                    | PID                               | Blow       | Percent  | Lithology: Burmister Classification System                                                                                                            |
| (ft)                                           | Depth (ft)                                                                | (ppm)                             | Air Knifed | Recovery | 3" Apphalt Fill                                                                                                                                       |
| 1                                              |                                                                           |                                   |            |          |                                                                                                                                                       |
| 2                                              |                                                                           |                                   |            |          |                                                                                                                                                       |
| 3                                              |                                                                           |                                   |            |          |                                                                                                                                                       |
| 4                                              |                                                                           |                                   | •          |          |                                                                                                                                                       |
| 5                                              | 5-7                                                                       | 7                                 | 1,2,2,3    | 70       | FILL. Brown Clayey Silt, some fine to medium Gravel, dry.                                                                                             |
| 6                                              |                                                                           |                                   |            |          |                                                                                                                                                       |
| 7<br>8                                         | 7-9                                                                       | 120                               | 4,4,5,5    | 50       | FILL. 7-8' Brown Clayey Silt, some fine to medium Gravel, trace brick. 8-<br>9' Black stained fine to coarse Sand and Gravel, some Silt,<br>product.  |
| 9                                              | 9-11                                                                      | 95                                | 5,1,3,3    | 50       | Black stained fine to coarse SAND and GRAVEL, some Silt and Clay, product, saturated.                                                                 |
| 10<br>11                                       | 11-13                                                                     | 80                                | 3,3,5,5    | 50       | Fine to medium SAND and SILT, some Clay and fine to medium Gravel, trace                                                                              |
| 12                                             |                                                                           |                                   |            |          | coarse Gravel, product, saturated.                                                                                                                    |
| 13                                             |                                                                           |                                   |            |          |                                                                                                                                                       |
| 14                                             |                                                                           |                                   |            |          |                                                                                                                                                       |
| 15                                             |                                                                           |                                   |            |          |                                                                                                                                                       |
| 16                                             |                                                                           |                                   |            |          |                                                                                                                                                       |
| 17                                             |                                                                           |                                   |            |          |                                                                                                                                                       |
| 18                                             |                                                                           |                                   |            |          |                                                                                                                                                       |
| 19                                             |                                                                           |                                   |            |          | Bottom of boring @ 13 feet.                                                                                                                           |

Log By: D.D'Amico



T

| LOG   |  |
|-------|--|
| SB-24 |  |
|       |  |

| W      | Location:<br>'ell Number: | Former Lu<br>NA | ibe Oil Build | ling     | Driller: SJB<br>Drilling Method: Hollow Stem Auger                | Date:      | 0 <b>2-</b> Aug-99 |
|--------|---------------------------|-----------------|---------------|----------|-------------------------------------------------------------------|------------|--------------------|
| Casin  | g Elevation:              | NA              |               |          | Slot Size: NA                                                     |            |                    |
| Scree  | n Diameter:               | NA              |               |          | Type: NA                                                          |            |                    |
| Casin  | g Diameter:               | NA              |               |          | Sample Method: 3 inch Split Spoon                                 |            |                    |
|        |                           |                 |               | Con      | struction Details                                                 |            |                    |
| Water  | Level (Init):             | NC              |               |          | Cement/Grout Interval: NA                                         |            |                    |
| Boreho | le Diameter:              | 10 inches       |               |          | Backfill Interval: NA                                             |            |                    |
| Total  | Well Depth:               | NA              |               |          | Bentonite Interval: NA                                            |            |                    |
| Scre   | en Interval:              | NA              |               |          | Sand Pack Interval: NA                                            |            |                    |
| Sand   | Pack Type:                | NA              |               |          | Completion Details: NA                                            |            |                    |
|        | Sample                    | PID             | Blow          | Percent  | Lithology: Burmister Classification System                        |            |                    |
| (ft)   | Depth (ft)                | (ppm)           | Count         | Recovery |                                                                   |            |                    |
| 0      | 0-5                       |                 | Air           |          | FILL material (bricks, rocks) and brown/gray medium to coarse     |            |                    |
| 1      |                           |                 | Knifed.       |          | Sand and Silt.                                                    |            |                    |
|        |                           |                 |               |          |                                                                   |            |                    |
| 2      |                           |                 |               |          |                                                                   |            |                    |
| 3      |                           |                 |               |          |                                                                   |            |                    |
| 4      |                           |                 | •             |          |                                                                   |            |                    |
| 5      | 5-7                       | 2               | 1,2,1,2       | 75       | Brown and gray medium to coarse SAND, some fine Silt, trace petro | oleum tar  | like               |
| 6      |                           |                 |               |          | globules, moist.                                                  |            |                    |
| 7      | 7-9                       | 1               | 1,2,2,4       | 100      | Brown and gray medium to coarse SAND, some fine Silt, trace Clay  | <i>'</i> , |                    |
| 8      |                           |                 |               |          | moist.                                                            |            |                    |
| 9      | 9-11                      | .8              | 1,2,2,3       | 100      | Brown fine SAND and SILT, little Clay, moist.                     |            |                    |
| 10     |                           |                 |               |          |                                                                   |            |                    |
| 11     | 11-13                     | .3              | 3,3,4,3       | 100      | Brown fine to medium to coarse SAND and SILT, little Clay, satura | ted.       |                    |
| 12     |                           |                 |               |          |                                                                   |            |                    |
| 13     | 13-15                     | .2              | 2,3,3,4       | 100      | Brown fine to medium to coarse SAND and SILT, little Clay, satura | ted.       |                    |
| 14     |                           |                 |               |          |                                                                   |            |                    |
| 15     | 15-17                     | .3              | 1,1,2,2       | 100      | Brown fine to medium to coarse SAND and SILT, little Clay,        |            |                    |
| 16     |                           |                 |               |          | saturated.                                                        |            |                    |
| 17     | 17-19                     | .2              | 2,2,2,3       | 100      | Brown fine to medium to coarse SAND and SILT, little Clay.        |            |                    |
| 18     |                           |                 |               |          | saturated.                                                        |            |                    |
| 19     |                           |                 |               | ×        | Bottom of boring @ 19 feet.                                       |            |                    |

Project Name: Mobil Terminal



|       | - |
|-------|---|
| LOG   |   |
| SB-25 |   |
|       |   |

Project Name: Mobil Terminal Location: Former Lube Oil Building Well Number: NA Casing Elevation: NA Screen Diameter: NA Casing Diameter: NA

| Log By:                 | D.D'Amico          |
|-------------------------|--------------------|
| Driller:                | SJB                |
| <b>Drilling Method:</b> | Hollow Stem Auger  |
| Slot Size:              | NA                 |
| Туре:                   | NA                 |
| Sample Method:          | 3 inch Split Spoon |

**Date:** 02-Aug-99

| Water Level (Init): NC<br>Borehole Diameter: 10 inches<br>Total Well Depth: NA<br>Screen Interval: NA<br>Sand Pack Type: NA |            |       | <u>Construction Details</u><br>Cement/Grout Interval: NA<br>Backfill Interval: NA<br>Bentonite Interval: NA<br>Sand Pack Interval: NA<br>Completion Details: NA |          |                                                                                                                                                                    |  |  |
|-----------------------------------------------------------------------------------------------------------------------------|------------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                                                                                                                             | Sample     | PID   | Blow                                                                                                                                                            | Percent  | Lithology: Burmister Classification System                                                                                                                         |  |  |
| (ft)<br>0                                                                                                                   | Depth (ft) | (ppm) | Air                                                                                                                                                             | Recovery |                                                                                                                                                                    |  |  |
| 1                                                                                                                           |            |       | Knifed.                                                                                                                                                         |          |                                                                                                                                                                    |  |  |
| 2                                                                                                                           |            |       |                                                                                                                                                                 |          |                                                                                                                                                                    |  |  |
| 3                                                                                                                           |            |       |                                                                                                                                                                 |          |                                                                                                                                                                    |  |  |
| 4                                                                                                                           |            |       | +                                                                                                                                                               |          |                                                                                                                                                                    |  |  |
| 5                                                                                                                           | 5-7        | 96    | 1,3,4,3                                                                                                                                                         | 50       | Brown/black, petroleum stained medium to coarse SAND, some Silt. some<br>medium Gravel, moist sediment, product.                                                   |  |  |
| - 6                                                                                                                         |            |       |                                                                                                                                                                 |          |                                                                                                                                                                    |  |  |
| 7                                                                                                                           | 7-9        | 48    | 1,2,1,2                                                                                                                                                         | 100      | Gray petroleum stained fine SAND and SILT, some Clay, trace medium<br>Gravel, moist, slight petroleum sheen.                                                       |  |  |
| 8                                                                                                                           |            |       |                                                                                                                                                                 |          |                                                                                                                                                                    |  |  |
| 9                                                                                                                           | 9-11       | 19.8  | 4,9,12,15                                                                                                                                                       | 100      | Red brown CLAY, some fine Sand, trace petroleum staining (~2" section on top-<br>gray petroleum stained fine Sand and Silt, some Clay, trace medium Gravel, moist, |  |  |
| 10                                                                                                                          |            |       |                                                                                                                                                                 |          | slight petroleum sheen), moist.                                                                                                                                    |  |  |
| 11                                                                                                                          | 11-13      | 42    | 11,12,12,15                                                                                                                                                     | 100      | Red brown CLAY, some fine Sand, trace petroleum staining, moist.                                                                                                   |  |  |
| 12                                                                                                                          |            |       |                                                                                                                                                                 |          |                                                                                                                                                                    |  |  |
| 13                                                                                                                          | 13-15      | 3     | 10,7,6,5                                                                                                                                                        | 100      | Red brown CLAY, some fine Sand, trace petroleum staining, saturated.                                                                                               |  |  |
| 14                                                                                                                          |            |       |                                                                                                                                                                 |          |                                                                                                                                                                    |  |  |
| 15                                                                                                                          |            |       |                                                                                                                                                                 |          |                                                                                                                                                                    |  |  |
| 16                                                                                                                          |            |       |                                                                                                                                                                 |          |                                                                                                                                                                    |  |  |
| 17                                                                                                                          |            |       |                                                                                                                                                                 |          |                                                                                                                                                                    |  |  |
| 18                                                                                                                          |            |       |                                                                                                                                                                 |          |                                                                                                                                                                    |  |  |
| 19                                                                                                                          |            |       |                                                                                                                                                                 |          | Bottom of boring @ 15 feet.                                                                                                                                        |  |  |



| LOG   |  |
|-------|--|
| SB-26 |  |

Project Name: Mobil Terminal Log By: D.D'Amico Location: Former Oil Lube Building Driller: SJB Date: 02-Aug-99 Well Number: NA Drilling Method: Hollow Stem Auger Casing Elevation: NA Slot Size: NA Screen Diameter: NA Type: NA Casing Diameter: NA Sample Method: 3 inch Split Spoon **Construction Details** Water Level (Init): NC **Cement/Grout Interval: NA** Borehole Diameter: 10 inches Backfill Interval: NA Total Well Depth: NA Bentonite Interval: NA Screen Interval: NA Sand Pack Interval: NA Sand Pack Type: NA **Completion Details: NA** Sample Blow Percent Lithology: Burmister Classification System PID Count Recovery (ft) Depth (ft) (ppm) 0 Air Knifed FILL Brown/gray medium to coarse Sand and Silt w/Cinders, Cobbles and boulders, some Clay at lower depths, dry, no petroleum staining, slight 1 odor. 2 3 4 5-7 8,4,4,4 10 5 slight FILL:Brown/gray fine Sand and Silt, some Clay, trace Cinders, moist, no deflection petroleum odor or sheen. 6 7 7-9 ND 4,4,5,5 25 FILL:Reddish brown Clay, trace fine Sand, trace Silt (little wood preventing full recovery), moist, no odor or staining. 8 9 9-11 17.0 Brown/gray CLAY, little medium Gravel, trace Sand, trace Silt, product 2,2.2,3 50 saturated. 10 11-13 11 78 5,6,8,4 75 Brown/gray medium SAND and SILT and medium GRAVEL, some Clay, product. 12 13-15 80.0 100 Brown/gray medium SAND and SILT and medium GRAVEL, some Clay, 13 2,2,2,2 product. 14 15 16 17 18

Bottom of boring @ 15 feet.



| - |       |  |
|---|-------|--|
|   | LOG   |  |
|   | SB-27 |  |
|   |       |  |

**Date:** 03-Aug-99

Project Name: Mobil Terminal Location: Former Oil Lube Building Well Number: NA Casing Elevation: NA Screen Diameter: NA Casing Diameter: NA

| Log By:          | D.D'Amico          |
|------------------|--------------------|
| Driller:         | SJB                |
| Drilling Method: | Hollow Stem Auger  |
| Slot Size:       | NA                 |
| Туре:            | NA                 |
| Sample Method:   | 3 inch Split Spoon |

|         |               |           |                        | <u>Con</u> | struction Details                                                        |  |  |
|---------|---------------|-----------|------------------------|------------|--------------------------------------------------------------------------|--|--|
| Water   | Level (Init): | NC        |                        |            | Cement/Grout Interval: NA                                                |  |  |
| Borehol | le Diameter:  | 10 inches |                        |            | Backfill Interval: NA                                                    |  |  |
| Total ` | Well Depth:   | NA        |                        |            | Bentonite Interval: NA                                                   |  |  |
| Scre    | en Interval:  | NA        | Sand Pack Interval: NA |            |                                                                          |  |  |
| Sand    | Pack Type:    | NA        |                        |            | Completion Details: NA                                                   |  |  |
|         | Sample        | PID       | Blow                   | Percent    | Lithology: Burmister Classification System                               |  |  |
| (ft)    | Depth (ft)    | (ppm)     | Count                  | Recovery   |                                                                          |  |  |
| 0       |               |           | Air                    |            | FILL: Brown/gray coarse Sand and Silt and Gravel/Cobbles.                |  |  |
|         |               |           | Knifed.                |            |                                                                          |  |  |
| ì       |               |           |                        |            |                                                                          |  |  |
| 2       |               |           |                        |            |                                                                          |  |  |
|         |               |           |                        |            |                                                                          |  |  |
| 3       |               |           |                        |            |                                                                          |  |  |
| 4       |               |           |                        |            |                                                                          |  |  |
|         |               |           | <u> </u>               |            |                                                                          |  |  |
| 5       | 5-7           | 1.4       | 1,2,2,2                | 50         | FILL: Brown/gray coarse Cinders/Wood and medium Sand and Silt, moist,    |  |  |
| 6       |               |           |                        |            | no petroleum odor or sheen.                                              |  |  |
| 0       |               |           |                        |            |                                                                          |  |  |
| 7       | 7-9           | 1.0       | 3,2,3,2                | 50         | FILL: Brown/gray coarse Cinders/Wood and medium Sand and Silt, moist,    |  |  |
|         |               |           |                        |            | no petroleum odor or sheen.                                              |  |  |
| 8       |               |           |                        |            |                                                                          |  |  |
|         |               |           |                        |            |                                                                          |  |  |
| 9       | 9-11          | 6.2       | 4,7,10,14              | 75         | FILL:Brown/gray medium to coarse Sand and Silt, some fine Gravel, little |  |  |
|         |               |           |                        |            | Clay, trace wood/fill, moist, slight petroleum odor, slight staining.    |  |  |
| 10      |               |           |                        |            |                                                                          |  |  |
|         |               | 20.2      | 10.15.10.17            | 00         |                                                                          |  |  |
| 11      | 11-13         | 20.2      | 10,15,19,17            | 90         | Brown/gray medium to coarse SAND and SIL1 and line GRAVEL, trace Clay,   |  |  |
| 12      |               |           |                        |            | saturated, singht petroleum odor, singht stammig.                        |  |  |
| 12      |               |           |                        |            |                                                                          |  |  |
| 13      | 13-15         | 7.8       | 5554                   | 30         | Brown/gray medium to coarse SAND and SILT and fine GRAVEL, trace Clay    |  |  |
|         | 10 10         | 7.0       | 5,5,5,7                |            | saturated, slight petroleum odor, slight staining.                       |  |  |
| 14      |               |           |                        |            |                                                                          |  |  |
|         |               |           |                        |            |                                                                          |  |  |
| 15      |               |           |                        |            |                                                                          |  |  |
| 14      |               |           |                        |            |                                                                          |  |  |
| 10      |               |           |                        |            |                                                                          |  |  |
| 17      |               |           |                        |            |                                                                          |  |  |
| .,      |               |           |                        |            |                                                                          |  |  |
| 18      |               |           |                        |            |                                                                          |  |  |
|         |               |           |                        |            |                                                                          |  |  |
| 19      |               |           |                        |            | Bottom of boring @ 15 feet.                                              |  |  |

Cement/Grout Interval: 2- grade

Backfill Interval: NA

**Bentonite Interval:** 4-2 Feet **Sand Pack Interval:** 15-4 Feet

**Construction Details** 



| LOG   |  |
|-------|--|
| SB-28 |  |

Date: 02-Aug-99

Project Name: Mobil Terminal Location: Former Oil Lube Building Well Number: SB-28
Casing Elevation: 588.13
Screen Diameter: 4 Inches
Casing Diameter: 4 Inches Log By: D.D'Amico Driller: SJB Drilling Method: Hollow Stem Auger Slot Size: 20 Type: PVC Sample Method: 3 inch Split Spoon

| = Cement/Grout |
|----------------|
| = Backfill     |
| = Bentonite    |
| = Sand         |

Water Level (Init): NC Borehole Diameter: 10 inches Total Well Depth: 15 Feet Screen Interval: 15-5 Feet

| Sand | Pack Type: | Morrie #2 |             |          | Completion Details: Pro Casing                                  |                                                                                                                  |
|------|------------|-----------|-------------|----------|-----------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
|      | Sample     | PID       | Blow        | Percent  | Lithology: Burmister Classification System                      |                                                                                                                  |
| (ft) | Depth (ft) | (ppm)     | Count       | Recovery |                                                                 |                                                                                                                  |
| 0    |            |           | Air         |          | Black medium to coarse SAND and SILT, trace Clay, saturated,    |                                                                                                                  |
|      |            |           | Knifed.     |          | distinct petroleum odor/sheen.                                  |                                                                                                                  |
| 1    |            |           |             |          |                                                                 |                                                                                                                  |
| 2    |            |           |             |          |                                                                 |                                                                                                                  |
| 3    |            |           |             |          |                                                                 |                                                                                                                  |
|      |            |           |             |          |                                                                 |                                                                                                                  |
| 4    |            |           | <b>▼</b>    |          |                                                                 |                                                                                                                  |
| 5    | 5-7        | 12.2      | 1,4,9,9     | 60       | Gray/black CLAY, some fine to medium Sand, some Silt, some fine | e                                                                                                                |
| 6    |            |           |             |          | Gravel, petroleum odor, petroleum staining, saturated.          |                                                                                                                  |
| 0    |            |           |             |          |                                                                 |                                                                                                                  |
| 7    | 7-9        | 13.8      | 10,15,18,16 | 100      | Black medium SAND and medium GRAVEL (7-7.5'), saturated,        |                                                                                                                  |
|      |            |           |             |          | petroleum odor/staining/slight sheen. Brown CLAY, little fine   |                                                                                                                  |
| 8    |            |           |             |          | Sand (7.5-9'), saturated, slight petroleum staining.            |                                                                                                                  |
| 9    | 9-11       | 2.0       | 9 12 14 18  | 100      | Brown fine SAND and SILT and CLAY, saturated, some slough       |                                                                                                                  |
| ,    | 7 11       | 2.0       | 2,12,14,10  | 100      | slight petroleum odor.                                          |                                                                                                                  |
| 10   |            |           |             |          |                                                                 |                                                                                                                  |
|      |            |           |             |          |                                                                 |                                                                                                                  |
| 11   | 11-13      | 3.0       | 11,9,11,9   | 100      | Brown fine SAND and SILT and CLAY, saturated, slight            |                                                                                                                  |
| 12   |            |           |             |          | ipenoleum odor. 🗝 section medium Oraver.                        |                                                                                                                  |
| 12   |            |           |             |          |                                                                 |                                                                                                                  |
| 13   | 13-15      | .8        | 9,6,6,5     | 100      | Brown fine SAND and SILT and CLAY, little Sand and Silt,        |                                                                                                                  |
|      |            |           |             |          | saturated, slight petroleum odor.                               |                                                                                                                  |
| 14   |            |           |             |          |                                                                 |                                                                                                                  |
| 15   |            |           |             |          |                                                                 |                                                                                                                  |
|      |            |           |             |          |                                                                 | terret and the second |
| 16   |            |           |             |          |                                                                 |                                                                                                                  |
| 17   |            |           |             |          |                                                                 |                                                                                                                  |
| 1/   |            |           |             |          |                                                                 |                                                                                                                  |
| 18   |            |           |             |          |                                                                 |                                                                                                                  |
|      |            |           |             |          |                                                                 |                                                                                                                  |
| 19   |            |           |             | L        | Bottom of boring (a) 15 feet.                                   |                                                                                                                  |



| LOG   |  |
|-------|--|
| SB-29 |  |

**Date:** 03-Aug-99

Project Name: Mobil Terminal Location: Former Oil Lube Building Well Number: NA Casing Elevation: NA Screen Diameter: NA Casing Diameter: NA

19

Log By: D.D'Amico Driller: SJB Drilling Method: Hollow Stem Auger Slot Size: NA Type: NA Sample Method: 3 inch Split Spoon

|                              | Construction Details |       |          |                           |                                                                            |  |  |  |  |
|------------------------------|----------------------|-------|----------|---------------------------|----------------------------------------------------------------------------|--|--|--|--|
| Water                        | Level (Init):        | NC    |          | Cement/Grout Interval: NA |                                                                            |  |  |  |  |
| Borehole Diameter: 10 inches |                      |       |          | Backfill Interval: NA     |                                                                            |  |  |  |  |
| Total Well Depth: NA         |                      |       |          | Bentonite Interval: NA    |                                                                            |  |  |  |  |
| Scre                         | en Interval:         | NA    |          | Sand Pack Interval: NA    |                                                                            |  |  |  |  |
| Sand                         | Pack Type:           | NA    |          | Completion Details: NA    |                                                                            |  |  |  |  |
|                              | Sample               | PID   | Blow     | Percent                   | Lithology: Burmister Classification System                                 |  |  |  |  |
| (ft)                         | Depth (ft)           | (ppm) | Count    | Recovery                  |                                                                            |  |  |  |  |
| 0                            |                      |       | Air      |                           | Brown/black medium to coarse SAND and SILT and GRAVEL/Cobbles.             |  |  |  |  |
|                              |                      |       | Knifed.  |                           |                                                                            |  |  |  |  |
| 1                            |                      |       |          |                           |                                                                            |  |  |  |  |
| 2                            |                      |       |          |                           |                                                                            |  |  |  |  |
| -                            |                      |       |          |                           |                                                                            |  |  |  |  |
| 3                            |                      |       |          |                           |                                                                            |  |  |  |  |
| 4                            |                      |       |          |                           |                                                                            |  |  |  |  |
|                              |                      |       | <u> </u> |                           |                                                                            |  |  |  |  |
| 5                            | 5-7                  | .4    | 1,2,2,2  | 100                       | Brown CLAY, some coarse SAND and SILT, some fine Gravel, moist.            |  |  |  |  |
| 6                            |                      |       |          |                           |                                                                            |  |  |  |  |
| 0                            |                      |       |          |                           |                                                                            |  |  |  |  |
| 7                            | 7-9                  | 19.8  | 4,4,5,15 | 100                       | Brown CLAY and coarse SAND and SILT, some fine Gravel, moist, slight petro |  |  |  |  |
|                              |                      |       |          |                           | odor (large rock at 9'-refusal-15 blow count).                             |  |  |  |  |
| 8                            |                      |       |          |                           |                                                                            |  |  |  |  |
|                              |                      |       |          |                           |                                                                            |  |  |  |  |
| 9                            | 9-11                 | 82    | 2,2,3,4  | 90                        | Brown CLAY and coarse SAND and SILT, some fine Gravel, moist, product.     |  |  |  |  |
|                              |                      |       |          |                           |                                                                            |  |  |  |  |
| 10                           |                      |       |          |                           |                                                                            |  |  |  |  |
| .,                           | 11.12                | (0)   | 1617     | 100                       |                                                                            |  |  |  |  |
| 11                           | 11-13                | 60    | 4,6,4,7  | 100                       | Brown CLAY and coarse SAND and SIL1, some time Gravel, moist, some         |  |  |  |  |
| 12                           |                      |       |          |                           | product.                                                                   |  |  |  |  |
| 12                           |                      |       |          |                           |                                                                            |  |  |  |  |
| 13                           | 13-15                | 48    | 2323     | 75                        | Brown CLAY and coarse SAND and SILT some fine Gravel moist sheen some      |  |  |  |  |
| 1.5                          | 15 15                | 10    | 2,3,2,5  | 15                        | product.                                                                   |  |  |  |  |
| 14                           |                      |       |          |                           |                                                                            |  |  |  |  |
|                              |                      |       |          |                           |                                                                            |  |  |  |  |
| 15                           |                      |       |          |                           |                                                                            |  |  |  |  |
| 16                           |                      |       |          |                           |                                                                            |  |  |  |  |
| 10                           |                      |       |          |                           |                                                                            |  |  |  |  |
| 17                           |                      |       |          |                           |                                                                            |  |  |  |  |
|                              |                      |       |          |                           |                                                                            |  |  |  |  |
| 18                           |                      |       |          |                           |                                                                            |  |  |  |  |

Bottom of boring @ 15 feet.



| LOG           | 1 |
|---------------|---|
| <b>SB-3</b> 0 |   |
|               |   |

| Pr                | oject Name:   | Mobil Ter       | minal         | Log By: D.D'Amico |                                                                               |         |  |  |
|-------------------|---------------|-----------------|---------------|-------------------|-------------------------------------------------------------------------------|---------|--|--|
| Location: For     |               | Former Of       | il Lube Build | ling              | Driller: SJB Date: 05                                                         | -Aug-99 |  |  |
| Well Number: NA   |               | NA              |               |                   | Drilling Method: Hollow Stem Auger                                            |         |  |  |
| Casin             | g Elevation:  | NA              |               |                   | Slot Size: NA                                                                 |         |  |  |
| Screer            | Diameter:     | NA              |               |                   | Type: NA                                                                      |         |  |  |
| Casin             | g Diameter:   | NA              |               |                   | Sample Method: 3 inch Split Spoon                                             |         |  |  |
|                   |               |                 |               | 0                 | a dama di sa Dada ila                                                         |         |  |  |
| ***               | [] ( <b>[</b> | NO              |               | Con               | nstruction Details                                                            |         |  |  |
| water.            | Diamatari     | NC<br>10 inchos |               |                   | Cement/Grout Interval: NA<br>Backfill Interval: NA                            |         |  |  |
| Dorenoi           | Wall Danth    | NIA             |               |                   | Bontonito Interval: NA                                                        |         |  |  |
| 1 otal            | on Interval:  | NA<br>NA        |               |                   | Sand Pack Interval: NA                                                        |         |  |  |
| Sand              | Pack Type     | NA              |               |                   | Completion Details: NA                                                        |         |  |  |
| Sand              | Sample        |                 | Blow          | Percent           | Lithology: Burmister Classification System                                    |         |  |  |
| ( <del>11</del> ) | Denth (ft)    | (ppm)           | Count         | Recovery          |                                                                               |         |  |  |
| 0                 |               | (ppm)           | Air Knifed.   |                   |                                                                               |         |  |  |
| č                 |               |                 |               |                   |                                                                               |         |  |  |
| 1                 |               |                 |               |                   |                                                                               |         |  |  |
| 2                 |               |                 |               |                   |                                                                               |         |  |  |
| 2                 |               | 1               |               |                   |                                                                               |         |  |  |
| 3                 |               |                 |               |                   |                                                                               |         |  |  |
| 4                 |               |                 |               |                   |                                                                               |         |  |  |
| •                 |               |                 | <u> </u>      |                   |                                                                               |         |  |  |
| 5                 | 5-7           | 3.0             | 1,2,2,2       | 75                | Brown/gray coarse SAND and CLAY, fine to medium Gravel. moist, some           |         |  |  |
| 6                 |               | [               |               | i                 | black staining, slight odor.                                                  |         |  |  |
| 0                 |               |                 |               |                   |                                                                               |         |  |  |
| 7                 | 7-9           | 1.0             | 1,2,3,4       | 100               | Brown/gray coarse SAND and CLAY, fine Gravel (7-8.75'), moist, some black     |         |  |  |
|                   |               |                 |               |                   | staining, slight odor. Gray fine to medium SAND and SILT (8.75-9'), moist, no |         |  |  |
| 8                 |               |                 |               |                   | odor, no staining/sheen.                                                      |         |  |  |
|                   |               |                 |               |                   |                                                                               |         |  |  |
| 9                 | 9-11          | 2.0             | 2,5,9,8       | 100               | Gray fine to medium SAND and SILT (9-10.5'), moist, no odor, no               |         |  |  |
|                   |               |                 |               |                   | staining/sheen. Gray line SAND and SIL1, some Clay(10.3-11), saturated, no    |         |  |  |
| 10                |               |                 |               |                   | ouor, stam or sheen.                                                          |         |  |  |
| 11                | 11-13         | 2.0             | 5555          | 100               | Grav fine SAND and SILT trace Clay trace wood saturated no odor stain or      |         |  |  |
| 11                | 11-15         | 2.0             | 5,5,5,5       | 100               | sheen.                                                                        |         |  |  |
| 12                |               |                 |               |                   |                                                                               |         |  |  |
|                   |               | 1               |               |                   |                                                                               |         |  |  |
| 13                | 13-15         | 1.0             | 1,2,3,2       | 100               | Gray/black fine SAND and SILT, some Organic staining and debris (leaves,      |         |  |  |
|                   |               |                 |               |                   | woody stems, etc.), moist, no odor or sheen.                                  |         |  |  |
| 14                |               |                 |               |                   |                                                                               |         |  |  |
| 1.5               |               |                 |               |                   |                                                                               |         |  |  |
| 15                |               | l               |               |                   |                                                                               |         |  |  |
| 16                |               |                 |               |                   |                                                                               |         |  |  |
|                   |               |                 |               |                   |                                                                               |         |  |  |
| 17                |               |                 |               |                   |                                                                               |         |  |  |
| 10                |               |                 |               |                   |                                                                               |         |  |  |
| 18                |               |                 |               |                   |                                                                               |         |  |  |
| 10                |               |                 |               |                   | Bottom of horing @ 15 feet                                                    |         |  |  |
| 17                |               | L               |               | L                 | Lottom of Johns (4/15 100.                                                    |         |  |  |



| J | LOG  |  |
|---|------|--|
| S | B-31 |  |

Date: 05-Aug-99

Project Name: Mobil Terminal Location: Former Oil Lube Building Well Number: SB-31 Casing Elevation: 581.92 Screen Diameter: 4 Inches Casing Diameter: 4 Inches

Log By: D.D'Amico Driller: SJB Drilling Method: Hollow Stem Auger Slot Size: 20 Type: PVC Sample Method: 3 inch Split Spoon

**Construction Details** Cement/Grout Interval: 2- grade Backfill Interval: NA Bentonite Interval: 4-2 Feet Sand Pack Interval: 15-4 Feet

| = Cement/Grout |
|----------------|
| = Backfill     |
| = Bentonite    |
| = Sand         |

| Sand | Pack Type: | Morrie #2 |             |          | Completion Details: Flush mount road box                                                                                 | L |  |
|------|------------|-----------|-------------|----------|--------------------------------------------------------------------------------------------------------------------------|---|--|
|      | Sample     | PID       | Blow        | Percent  | Lithology: Burmister Classification System                                                                               |   |  |
| (ft) | Depth (ft) | (ppm)     | Count       | Recovery |                                                                                                                          |   |  |
| 0    |            |           | Air Knifed. |          | All hand clear cuttings hauled away on 4-Aug-1999-unable to                                                              |   |  |
| 1    |            |           |             |          | denote lithology.                                                                                                        |   |  |
| 2    |            |           |             |          |                                                                                                                          |   |  |
| 3    |            |           |             |          |                                                                                                                          |   |  |
| 4    |            |           |             |          |                                                                                                                          |   |  |
| 5    | 5-7        | 3.0       | 1,2,3,5     | 75       | Reddish brown CLAY, some fine Sand, some Silt, some fine to                                                              |   |  |
| 6    |            |           |             |          | coarse Gravel/Cobbles, no odor, staining or sheen, moist.                                                                |   |  |
|      |            |           |             |          |                                                                                                                          |   |  |
| - 7  | 7-9        | 3.0       | 4,3,3,4     | 100      | Reddish brown CLAY, some fine Sand, some Silt, some fine to coarse Gravel/Cobbles, no odor, staining or sheen, saturated |   |  |
| 8    |            |           |             |          |                                                                                                                          |   |  |
| N    | 0.11       | (0)       | 21244       | 75       | Reddish brown CLAY (9-10'), some fine Sand, some Silt, some                                                              |   |  |
| 9    | 9-11       | 60        | 5,12,4,4    | 73       | sheen, saturated. Gray medium to coarse SAND and SILT and                                                                |   |  |
| 10   |            |           |             |          | medium to coarse GRAVEL (10-11'), saturated, petroleum odor<br>and sheen and staining.                                   |   |  |
| 11   | 11-13      | 73        | 4,4,5,4     | 75       | Gray medium to coarse SAND and SILT and medium to coarse                                                                 |   |  |
|      |            |           |             |          | Gravel, trace Clay saturated, petroleum odor, sheen and staining.                                                        |   |  |
| 12   |            |           |             |          |                                                                                                                          |   |  |
| 13   | 13-15      | 32        | 2,2,2,3     | 100      | Gray medium to coarse SAND and SILT and medium to coarse                                                                 |   |  |
| 14   |            |           |             | :        | staining. Black fine SAND and SILT (13.5-15'), saturated,                                                                | 1 |  |
| 15   |            |           |             |          | petroleum odor, sheen, and staining.                                                                                     |   |  |
| 15   |            |           |             |          |                                                                                                                          |   |  |
| 10   |            |           |             |          |                                                                                                                          |   |  |
| 17   |            |           |             |          |                                                                                                                          |   |  |
| 18   |            |           |             |          |                                                                                                                          |   |  |
| 10   |            |           |             |          |                                                                                                                          |   |  |
| 19   |            |           |             |          | Bottom of boring (a) 15 feet.                                                                                            |   |  |

Water Level (Init): NC Borehole Diameter: 10 inches Total Well Depth: 15 Feet Screen Interval: 15-5 Feet



| LOG    |  |
|--------|--|
| ESL-13 |  |

T

Project Name: Mobil Terminal Log By: D.D'Amico Date: 02-Sep-99 Location: Elk Street Lot Driller: Zebra Drilling Method: Geoprobe Well Number: NA Casing Elevation: NA Slot Size: NA Screen Diameter: NA Type: NA Sample Method: 2 inch Macro Core Soil Sampler **Casing Diameter: NA Construction Details** Water Level (Init): NA **Cement/Grout Interval: NA** Backfill Interval: NA Borehole Diameter: 3 inches Total Well Depth: NA Bentonite Interval: NA Sand Pack Interval: NA Screen Interval: NA Sand Pack Type: NA **Completion Details: NA** Sample Blow Percent Lithology: Burmister Classification System PID Count Recovery Depth (ft) (ft) (ppm) 0-1 Surface Material. sod, crushed coarse Gravel.\* 0 1-1.5 0.2 NA NA FILL: Red brown fine Sand and Silt and Brick, some medium to 1 coarse Gravel, trace Organics, dry, no odor. 2 2-3 0.2 NA NA FILL: Brown to dark brown fine Sand and Silt, brick, some medium to coarse Gravel, dry, no odor. 3 3-4 ND NA NA FILL: Olive gray and dark brown fine Sand and Silt, some medium Gravel, trace Brick, trace Clay, dry, no odor. 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

\*Indicates material removed prior to sampling.

20

NOTE: As per NYSDEC request, soil was collected within the zone below the "surface material". The samples sent for laboratory analysis were noted as 0-.5, 1-2, and 2-3 as per the SFI workplan, though the actual depth of sample is dependent on thickness of surface material.

Bottom of boring @ 4 feet.



LOG

T

|         |                                          |                |       |               |                                                                                                                                        | E                      | ESL-14                 |
|---------|------------------------------------------|----------------|-------|---------------|----------------------------------------------------------------------------------------------------------------------------------------|------------------------|------------------------|
| Pr      | Landing Elle Ct. Lat                     |                |       |               | Log By: D.D'Amico                                                                                                                      | Dete                   | 02.6.00                |
| ***     | LOCATION: LIK SI. LOI<br>Wall Number: NA |                |       |               | Driller: Lebra                                                                                                                         | Date:                  | 02-Sep-99              |
| w       | ell Number:                              | NA             |       |               | Drilling Method: Geoprobe                                                                                                              |                        |                        |
| Screet  | g Elevation:                             | NA<br>NA       |       | Slot Size: NA |                                                                                                                                        |                        |                        |
| Casin   | o Diameter                               | NA             |       |               | Sample Method: 2 inch Macro Core Soil Sampler                                                                                          |                        |                        |
| Cubin   |                                          |                |       |               | <b>1</b>                                                                                                                               |                        |                        |
| **/ - 4 | I                                        | NTA            |       | Cons          | truction Details                                                                                                                       |                        |                        |
| Borehol | Level (Init):                            | NA<br>3 inches |       |               | Cement/Grout Interval: NA<br>Backfill Interval: NA                                                                                     |                        |                        |
| Total   | Well Denth                               | NA             |       |               | Bentonite Interval: NA                                                                                                                 |                        |                        |
| Scre    | en Interval:                             | NA             |       |               | Sand Pack Interval: NA                                                                                                                 |                        |                        |
| Sand    | Pack Type:                               | NA             |       |               | Completion Details: NA                                                                                                                 |                        |                        |
|         | Sample                                   | PID            | Blow  | Percent       | Lithology: Burmister Classification System                                                                                             |                        |                        |
| (ft)    | Depth (ft)                               | (ppm)          | Count | Recovery      |                                                                                                                                        |                        |                        |
| 0       | 0-1                                      |                |       |               | Surface Material: Asphalt/Gravel.*                                                                                                     |                        |                        |
| 1       | 1-1.5                                    | 0.2            | NA    | NA            | FILL: Dark gray medium Sand and Silt and Cinders and Brick, som                                                                        | e medium               | n Gravel, dry,         |
| 2       | 2-3                                      | 0.2            | NA    | NA            | FILL: Dark gray medium Sand and Silt and Cinders and Brick, som petroleum odor, trace Organic, trace Concrete, thick tar like petroleu | e medium<br>ım substar | n Gravel, dry,<br>nce. |
| 3       | 3-4                                      | 0.4            | NA    | NA            | FILL: 6" Black fine Sand and Silt, some Brick, some medium grave odor.                                                                 | l, dry, slig           | <u>zht</u>             |
| 4       |                                          |                |       |               |                                                                                                                                        |                        |                        |
| 5       |                                          |                |       |               |                                                                                                                                        |                        |                        |
| 6       |                                          |                |       |               |                                                                                                                                        |                        |                        |
| 7       |                                          |                |       |               |                                                                                                                                        |                        |                        |
| 8       |                                          |                |       |               |                                                                                                                                        |                        |                        |
| 9<br>10 |                                          |                |       |               |                                                                                                                                        |                        |                        |
| 11      |                                          |                |       |               |                                                                                                                                        |                        |                        |
| 12      |                                          |                |       |               |                                                                                                                                        |                        |                        |
| 13      |                                          |                |       |               |                                                                                                                                        |                        |                        |
| 14      |                                          |                |       |               |                                                                                                                                        |                        |                        |
| 15      |                                          |                |       |               |                                                                                                                                        |                        |                        |
| 16      |                                          |                |       |               |                                                                                                                                        |                        |                        |
| 17      |                                          |                |       |               |                                                                                                                                        |                        |                        |
| 18      |                                          |                | 1     |               |                                                                                                                                        |                        |                        |
| 19      |                                          |                |       |               |                                                                                                                                        |                        |                        |
| 20      |                                          |                |       |               | Bottom of boring @ A feet                                                                                                              |                        |                        |

\*Indicates material removed prior to sampling.

NOTE: As per NYSDEC request, soil was collected within the zone below the "surface material". The samples sent for laboratory analysis were noted as 0-.5, 1-2, and 2-3 as per the SFI workplan, though the actual depth of sample is dependent on thickness of surface material.

**Cement/Grout Interval: NA** 

Backfill Interval: NA

Bentonite Interval: NA

**Construction Details** 

Log By: D.D'Amico

Sample Method: 2 inch Macro Core Sampler

Driller: Zebra

Type: NA

Drilling Method: Geoprobe Slot Size: NA



| LOG    | _ |
|--------|---|
| ESL-15 |   |

Date: 26-Aug-99

1

Project Name: Mobil Terminal Location: Elk St. Lot Well Number: NA Casing Elevation: NA Screen Diameter: NA Casing Diameter: NA

Water Level (Init): NA Borehole Diameter: 3 inches Total Well Depth: NA Screen Interval: NA

| Screen Interval: NA<br>Sand Pack Type: NA |                      |              |               |                     | Sand Pack Interval: NA<br>Completion Details: NA                                                                            |
|-------------------------------------------|----------------------|--------------|---------------|---------------------|-----------------------------------------------------------------------------------------------------------------------------|
| (ft)                                      | Sample<br>Depth (ft) | PID<br>(ppm) | Blow<br>Count | Percent<br>Recovery | Lithology: Burmister Classification System                                                                                  |
| 0                                         | 0-1                  |              |               |                     | Surface Material: Asphalt/Gravel/Weeds.*                                                                                    |
| 1                                         | 1-1.5                | 3.0          | NA            | NA                  | FILL: Red brown and brown fine Sand and Silt and Brick, some medium gravel, trace<br>Organic, dry, no odor.                 |
| 2                                         | 2-3                  | 65           | NA            | NA                  | FILL: Black fine Sand and Silt and Brick, medium to coarse Gravel, trace Slate and Coal, trace Organic, dry, distinct odor. |
| 3                                         | 3-4                  | 108          | NA            | NA                  | Olive gray fine Sand and Silt, trace Clay. ~4" Black fine Sand and Silt overlain material, dry, distinct petroleum odor.    |
| 4                                         |                      |              |               |                     |                                                                                                                             |
| 5                                         |                      |              |               |                     |                                                                                                                             |
| 6                                         |                      |              |               |                     |                                                                                                                             |
| 7                                         |                      |              |               |                     |                                                                                                                             |
| 8                                         |                      |              |               |                     |                                                                                                                             |
| 9 <sup>·</sup>                            |                      |              |               |                     |                                                                                                                             |
| 10                                        |                      |              |               |                     |                                                                                                                             |
| 11                                        |                      |              |               |                     |                                                                                                                             |
| 12                                        |                      |              |               |                     |                                                                                                                             |
| 13                                        |                      |              | e.            |                     |                                                                                                                             |
| 14                                        |                      |              |               |                     |                                                                                                                             |
| 15                                        |                      |              |               |                     |                                                                                                                             |
| 16                                        |                      |              |               |                     |                                                                                                                             |
| 17                                        |                      |              |               |                     |                                                                                                                             |
| 18                                        |                      |              |               |                     |                                                                                                                             |
| 19                                        |                      |              |               |                     |                                                                                                                             |
| 20                                        |                      |              |               |                     | Bottom of boring @ 4 feet.                                                                                                  |

\*Indicates material removed prior to sampling.

NOTE: As per NYSDEC request, soil was collected within the zone below the "surface material". The samples sent for laboratory analysis were noted as 0-.5, 1-2, and 2-3 as per the SFI workplan, though the actual depth of sample is dependent on thickness of surface material.



|         |               |          |        |            |                                                                |                   | LOG                |
|---------|---------------|----------|--------|------------|----------------------------------------------------------------|-------------------|--------------------|
| Dr      | aiact Nama:   | Mobil Te | rminal |            | Log Bu D. D'Amico                                              | E                 | SL-16              |
| rr      | Location      | Elk St L | ot     |            | Lug Dy: D.DAIIICO<br>Driller: Zebra                            | Date <sup>.</sup> | 02-Sen-99          |
| W       | ell Number:   | NA       | 51     |            | Drilling Method: Geoprobe                                      | Dute.             | 02-0 <b>c</b> p-99 |
| Casin   | g Elevation:  | NA       |        |            | Slot Size: NA                                                  |                   |                    |
| Screen  | Diameter:     | NA       |        |            | Type: NA                                                       |                   |                    |
| Casin   | g Diameter:   | NA       |        |            | Sample Method: 2 inch Macro Core Sampler                       |                   | ·                  |
|         |               |          |        | Con        | struction Details                                              |                   |                    |
| Water ] | Level (Init): | NA       |        |            | Cement/Grout Interval: NA                                      |                   |                    |
| orehol  | e Diameter:   | 3 inches |        |            | Backfill Interval: NA                                          |                   |                    |
| Total V | Well Depth:   | NA       |        |            | Bentonite Interval: NA                                         |                   |                    |
| Scre    | Pack Type:    | NA       |        |            | Completion Details: NA                                         |                   |                    |
|         | Sample        | PID      | Blow   | Percent    | Lithology: Burmister Classification System                     |                   | ]                  |
| (ft)    | Depth (ft)    | (ppm)    | Count  | Recovery   |                                                                |                   |                    |
| 0       | 0-0.5         |          |        |            | Surface Material: Sod.*                                        |                   |                    |
| 1       | 0.5-1         | ND       | NA     | NA         | Brown (topsoil) fine SAND and SILT, some fine to medium Grave  | , trace           |                    |
| 1       | 1.5-2.5       | ND       | NA     | NA         | Brown and orange brown (topsoil) fine SAND and SILT, some fine | to                |                    |
| 2       |               |          |        | [          | medium Gravel, trace Clay, trace Organics, dry, no odor.       |                   | 1                  |
| 2       | 2.5-3.5       | ND       | NA     | NA         | Brown and light gray fine SAND and SILT, some Clay, trace Orga | nic,              |                    |
| 3       |               |          |        |            | dry, no odor.                                                  |                   |                    |
|         |               |          |        |            |                                                                |                   |                    |
| 4       |               |          |        |            |                                                                |                   |                    |
| 5       |               |          |        |            |                                                                |                   |                    |
|         |               |          |        |            |                                                                |                   |                    |
| 6       |               |          |        |            |                                                                |                   |                    |
| 7       |               |          |        |            |                                                                |                   |                    |
|         |               |          |        |            |                                                                |                   |                    |
| δ       |               |          |        |            |                                                                |                   | 1                  |
| 9       |               |          |        |            |                                                                |                   |                    |
| 10      |               |          |        |            |                                                                |                   |                    |
|         |               |          |        |            |                                                                |                   | 1                  |
| 11      |               |          |        | <b>,</b> , |                                                                |                   |                    |
| 12      |               |          |        |            |                                                                |                   |                    |
| 13      |               |          |        |            |                                                                |                   |                    |
|         |               |          |        |            |                                                                |                   |                    |
| 14      |               |          |        |            |                                                                |                   |                    |
| 15      |               |          |        |            |                                                                |                   |                    |
| 16      |               |          |        |            |                                                                |                   |                    |
| 10      |               |          |        |            |                                                                |                   |                    |
| 17      |               |          |        |            |                                                                |                   |                    |
| 18      |               |          |        |            |                                                                |                   |                    |
| 10      |               |          |        |            |                                                                |                   |                    |
| 19      |               |          |        |            | Bottom of boring @ 3.5 feet.                                   |                   |                    |

\*Indicates material removed prior to sampling.

NOTE: As per NYSDEC request, soil was collected within the zone below the "surface material".

The samples sent for laboratory analysis were noted as 0-.5, 1-2, and 2-3 as per the SFI workplan, though the actual depth of sample is dependent on thickness of surface material.

-

T

Constant de la const



Г

|             |                       |                 |       |          |                                                                                                                                                                                                                                                                                                                                                                                                                | LOG             |
|-------------|-----------------------|-----------------|-------|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| Du          | ia d Nama.            | Mahil Tor       | minal |          | Log Pru D D'Amino                                                                                                                                                                                                                                                                                                                                                                                              | <u>ESL-17</u>   |
| Pro         | Location: Elk St. Lot |                 |       |          | Data: 02-Sen-00                                                                                                                                                                                                                                                                                                                                                                                                |                 |
| We          | Location:             | EIK SL LO<br>NA | l     |          | Drilling Method: Geoprobe                                                                                                                                                                                                                                                                                                                                                                                      | Date. 02-Sep-33 |
| Casino      | Elevation             | NA              |       |          | Slot Size: NA                                                                                                                                                                                                                                                                                                                                                                                                  |                 |
| Screen      | Diameter:             | NA              |       |          | Type: NA                                                                                                                                                                                                                                                                                                                                                                                                       |                 |
| Casing      | g Diameter:           | NA              |       |          | Sample Method: 2 inch Macro Core Soil Sampler                                                                                                                                                                                                                                                                                                                                                                  |                 |
|             |                       |                 |       |          |                                                                                                                                                                                                                                                                                                                                                                                                                |                 |
|             |                       |                 |       | Con      | struction Details                                                                                                                                                                                                                                                                                                                                                                                              |                 |
| Water I     | Level (Init):         | NA              |       |          | Cement/Grout Interval: NA                                                                                                                                                                                                                                                                                                                                                                                      |                 |
| Borehole    | e Diameter:           | 3 inches        |       |          | Backfill Interval: NA                                                                                                                                                                                                                                                                                                                                                                                          |                 |
| Total V     | Vell Depth:           | NA              |       |          | Bentonite Interval: NA                                                                                                                                                                                                                                                                                                                                                                                         |                 |
| Scree       | Pack Type             | ΝΔ              |       |          | Completion Details: NA                                                                                                                                                                                                                                                                                                                                                                                         |                 |
| Junu        | Sample                | DID             | Blow  | Percent  | Lithology: Burmister Classification System                                                                                                                                                                                                                                                                                                                                                                     |                 |
| (#)         | Denth (ft)            | PID<br>(nrm)    | Count | Recovery | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, ,, ,, ,, ,, _, ,, ,, ,, ,, ,, ,, , ,, ,, ,, ,, ,, ,, ,, , ,, ,, ,, ,, ,, ,, , ,, ,, ,, ,, ,, , ,, ,, ,, ,, , ,, ,, ,, ,, , ,, ,, , ,, , ,, ,, , ,, ,, , ,, , , , |                 |
| <u>(II)</u> | 0-1                   | (phu)           |       | ·        | Surface Material: Sod *                                                                                                                                                                                                                                                                                                                                                                                        |                 |
| 0           | 0-1                   |                 |       |          |                                                                                                                                                                                                                                                                                                                                                                                                                |                 |
|             |                       |                 |       |          |                                                                                                                                                                                                                                                                                                                                                                                                                |                 |
| 1           | 1-1.5                 | ND              | NA    | NA       | Brown fine SAND and SILT, some light gray Clay, trace iron                                                                                                                                                                                                                                                                                                                                                     |                 |
|             |                       |                 |       |          | staining, trace Organic, dry, no odor, trace fine Gravel.                                                                                                                                                                                                                                                                                                                                                      |                 |
|             | 2-3                   | 2.8             | NA    | NA       | Brown fine SAND and SILT, some light gray Clay, trace iron stain                                                                                                                                                                                                                                                                                                                                               | ing,            |
| 2           |                       |                 |       |          | trace Organic, dry, no odor, trace line Gravel.                                                                                                                                                                                                                                                                                                                                                                |                 |
|             | 3_1                   | 24              | NA    | NΔ       | Dark brown fine SAND and SILT, some light grav Clay, trace iron                                                                                                                                                                                                                                                                                                                                                | staining trace  |
| 3           | 5-4                   | 2.4             | INA   | 1471     | Organic, dry, no odor, trace fine Gravel.                                                                                                                                                                                                                                                                                                                                                                      | Saming, uuse    |
| 5           |                       |                 |       |          |                                                                                                                                                                                                                                                                                                                                                                                                                |                 |
|             |                       |                 |       |          |                                                                                                                                                                                                                                                                                                                                                                                                                |                 |
| 4           |                       |                 |       |          |                                                                                                                                                                                                                                                                                                                                                                                                                |                 |
|             |                       |                 |       |          |                                                                                                                                                                                                                                                                                                                                                                                                                |                 |
| -           |                       |                 |       |          |                                                                                                                                                                                                                                                                                                                                                                                                                |                 |
| 5           |                       |                 |       |          |                                                                                                                                                                                                                                                                                                                                                                                                                |                 |
|             |                       |                 |       |          |                                                                                                                                                                                                                                                                                                                                                                                                                |                 |
| 6           |                       |                 |       |          |                                                                                                                                                                                                                                                                                                                                                                                                                |                 |
|             |                       |                 |       |          |                                                                                                                                                                                                                                                                                                                                                                                                                |                 |
|             |                       |                 |       |          |                                                                                                                                                                                                                                                                                                                                                                                                                |                 |
| 7           |                       |                 |       |          |                                                                                                                                                                                                                                                                                                                                                                                                                |                 |
|             |                       |                 |       |          |                                                                                                                                                                                                                                                                                                                                                                                                                |                 |
| 8           |                       |                 |       |          |                                                                                                                                                                                                                                                                                                                                                                                                                |                 |
|             |                       |                 |       |          |                                                                                                                                                                                                                                                                                                                                                                                                                |                 |
| Q           |                       |                 |       |          |                                                                                                                                                                                                                                                                                                                                                                                                                |                 |
| 7           |                       |                 |       |          |                                                                                                                                                                                                                                                                                                                                                                                                                |                 |
|             |                       |                 |       |          |                                                                                                                                                                                                                                                                                                                                                                                                                |                 |
| 10          |                       |                 |       |          |                                                                                                                                                                                                                                                                                                                                                                                                                |                 |
|             |                       |                 |       |          |                                                                                                                                                                                                                                                                                                                                                                                                                |                 |
|             |                       |                 |       |          |                                                                                                                                                                                                                                                                                                                                                                                                                |                 |
| 11          |                       |                 |       |          |                                                                                                                                                                                                                                                                                                                                                                                                                |                 |
|             |                       |                 |       |          |                                                                                                                                                                                                                                                                                                                                                                                                                |                 |
| 12          |                       |                 |       |          |                                                                                                                                                                                                                                                                                                                                                                                                                |                 |
|             |                       |                 |       |          |                                                                                                                                                                                                                                                                                                                                                                                                                |                 |
|             |                       |                 |       |          |                                                                                                                                                                                                                                                                                                                                                                                                                |                 |
| 13          |                       |                 |       |          | Bottom of boring @ 4 feet.                                                                                                                                                                                                                                                                                                                                                                                     |                 |

\*Indicates material removed prior to sampling.

NOTE: As per NYSDEC request, soil was collected within the zone below the "surface material".

The samples sent for laboratory analysis were noted as 0-.5, 1-2, and 2-3 as per the SFI workplan, though the actual depth of sample is dependent on thickness of surface material.



Г

|                       |               |                           |       |                             |                                                                          | LOG                       |  |
|-----------------------|---------------|---------------------------|-------|-----------------------------|--------------------------------------------------------------------------|---------------------------|--|
|                       |               |                           |       |                             |                                                                          | ESL-18                    |  |
| Pr                    | oject Name:   | Mobil Ter                 | minal |                             | Log By: D.D'Amico                                                        |                           |  |
| Location: Elk St. Lot |               |                           | t     | Driller: Zebra Date: 02-Set |                                                                          |                           |  |
| Well Number: NA       |               | Drilling Method: Geoprobe |       |                             |                                                                          |                           |  |
| Casin                 | g Elevation:  | NA                        |       |                             | Slot Size: NA                                                            |                           |  |
| Screer                | n Diameter:   | NA                        |       |                             | Type: NA                                                                 |                           |  |
| Casin                 | g Diameter:   | NA                        |       |                             | Sample Method: 2 inch Macro Core Soil Sampler                            |                           |  |
|                       |               |                           |       | Con                         | struction Details                                                        |                           |  |
| Water                 | Level (Init): | NA                        |       | 0.011                       |                                                                          |                           |  |
| Boreho                | le Diameter:  | 3 inches                  |       | Backfill Interval: NA       |                                                                          |                           |  |
| Total '               | Well Depth:   | NA                        |       | Bentonite Interval: NA      |                                                                          |                           |  |
| Scre                  | en Interval:  | NA                        |       |                             | Sand Pack Interval: NA                                                   |                           |  |
| Sand                  | Pack Type:    | NA                        | Play  | Paraant                     | Lithology: Burnister Classification System                               |                           |  |
|                       | Darath (A)    | PID                       | Count | Recoverv                    | Liutotogy. Durinister Classification System                              |                           |  |
| (#)                   | Depth $(ft)$  | (ppm)                     |       |                             | Surface Material: Sod *                                                  |                           |  |
| U                     | 0-1           |                           |       |                             | Surface Material, Sou.                                                   |                           |  |
| 1                     | 1-1.5         | ND                        | NA    | NA                          | Brown (topsoil) fine SAND and SILT, trace fine Gravel, trace Gravel      | , trace Clay, trace Iron, |  |
|                       |               |                           |       |                             | trace Organic, occasional large gravel, dry, no odor.                    |                           |  |
| 2                     | 2-3           | ND                        | NA    | NA                          | Y ellowish brown and brown (topsoil) fine SAND and SILT, trace fine      | e Gravel, trace Gravel,   |  |
| 3                     | 3-4           | ND                        | NA    | NA                          | Yellowish brown and brown (tonsoil) fine SAND and SILT trace fine        | e Gravel, trace Gravel    |  |
| 5                     | 5.            | TID.                      |       |                             | trace light gray Clay, trace Iron, trace Organic, occasional large grave | el, dry, no odor.         |  |
| 4                     |               |                           |       |                             |                                                                          |                           |  |
|                       |               |                           |       |                             |                                                                          |                           |  |
| 5                     |               |                           |       |                             |                                                                          |                           |  |
| 6                     |               |                           |       |                             |                                                                          |                           |  |
| 0                     |               |                           |       |                             |                                                                          |                           |  |
| 7                     |               |                           |       |                             |                                                                          |                           |  |
|                       |               |                           | 1     |                             |                                                                          |                           |  |
| 8                     |               |                           |       |                             |                                                                          |                           |  |
| 9                     |               |                           |       |                             |                                                                          |                           |  |
|                       |               |                           |       |                             |                                                                          |                           |  |
| 10                    |               |                           |       |                             |                                                                          |                           |  |
| 11                    |               |                           |       | 1                           |                                                                          |                           |  |
|                       |               |                           |       |                             |                                                                          |                           |  |
| 12                    |               |                           |       |                             |                                                                          |                           |  |
| 13                    |               |                           |       | ł                           |                                                                          |                           |  |
| 15                    |               |                           |       |                             |                                                                          |                           |  |
| 14                    |               |                           |       |                             |                                                                          |                           |  |
|                       |               |                           |       | 1                           |                                                                          |                           |  |
| 15                    |               |                           |       | 1                           |                                                                          |                           |  |
| 16                    |               |                           |       | 1                           |                                                                          |                           |  |
|                       |               |                           |       |                             |                                                                          |                           |  |
| 17                    |               |                           |       | 1                           |                                                                          |                           |  |
| 10                    |               |                           |       |                             |                                                                          |                           |  |
| 18                    |               |                           |       |                             |                                                                          |                           |  |
| 19                    |               |                           |       | l                           |                                                                          |                           |  |
|                       |               |                           |       |                             |                                                                          |                           |  |
| 20                    |               |                           |       | 1                           | Bottom of boring @ 4 feet.                                               |                           |  |

\*Indicates material removed prior to sampling.

NOTE: As per NYSDEC request, soil was collected within the zone below the "surface material". The samples sent for laboratory analysis were noted as 0-.5, 1-2, and 2-3 as per the SFI workplan, though the actual depth of sample is dependent on thickness of surface material.



Date: 02-Sep-99

Project Name: Mobil Terminal Log By: D.D'Amico Location: Elk St. Lot Driller: Zebra Well Number: NA Drilling Method: Geoprobe Slot Size: NA **Casing Elevation: NA** Screen Diameter: NA Type: NA **Casing Diameter: NA** Sample Method: 2 inch Macro Core Soil Sampler **Construction Details Cement/Grout Interval: NA** Water Level (Init): NA Borehole Diameter: 3 inches **Backfill Interval: NA** Bentonite Interval: NA Total Well Depth: NA Screen Interval: NA Sand Pack Interval: NA Sand Pack Type: NA **Completion Details: NA** Sample Blow Percent Lithology: Burmister Classification System PID Count Recovery Depth (ft) (ft) (ppm) 0-1 Surface Material: .5' Sod, .5' Asphalt/Concrete/Gravel mix.\* 0 ND 1 1-1.5 NA NA FILL: Trace Brick, Cinders, Coal. Dark brown and orange brown marble color, fine Sand and Silt, trace red brown Clay, trace fine to medium Gravel, dry, no odor. 2 2-3 ND NA NA Brown and orange brown fine SAND and SILT, some light gray Clay, trace fine to medium gravel, dry, no odor. 3 3-4 ND NA Brown and orange brown fine SAND and SILT, some light gray NA Clay, trace fine to medium gravel, dry, no odor. 4 5 6 7 8 9 10 11 12 13 14

\*Indicates material removed prior to sampling.

15

16 17

18

19

20

NOTE: As per NYSDEC request, soil was collected within the zone below the "surface material".

The samples sent for laboratory analysis were noted as 0-.5, 1-2, and 2-3 as per the SFI workplan, though the actual depth of sample is dependent on thickness of surface material.

Bottom of boring @ 4 feet.

Log By: D.D'Amico

Driller: Zebra



Date: 02-Sep-99

Drilling Method: Geoprobe Well Number: NA Slot Size: NA **Casing Elevation: NA** Screen Diameter: NA Type: NA Sample Method: 2 inch Macrocore Soil Sampler Casing Diameter: NA **Construction Details** Cement/Grout Interval: NA Water Level (Init): NA Borehole Diameter: 3 inches Backfill Interval: NA Bentonite Interval: NA Total Well Depth: NA Sand Pack Interval: NA Screen Interval: NA Sand Pack Type: NA **Completion Details: NA** Sample Blow Percent Lithology: Burmister Classification System PID Recovery Count Depth (ft) (ppm) (ft) Surface Material: Asphalt/Gravel.\* 0 0-1 FILL: Dark brown fine Sand and Silt, fine to medium Gravel. 0.4 NA NA 1 1-1.5 trace Wood, Slag and Cinders, dry, no odor. 6" FILL: Red brown and dark brown fine Sand and Silt, fine to medium Gravel, trace NA 2 2-3 0.4 NA Wood, Slag and Cinders, dry, no odor. 6" Brown and orange brown fine SAND and SILT, moist, no odor. Dark brown fine SAND and SILT and fine GRAVEL. 10" brown fine 3 NA 3-4 0.2 NA SAND and SILT, some light gray Clay (moist), no odor. 4 5 6 7 8 9 10 11 12 13 14 15 16 Bottom of boring @ 4 feet.

\*Indicates material removed prior to sampling.

Project Name: Mobil Terminal

Location: Elk St. Lot

NOTE: As per NYSDEC request, soil was collected within the zone below the "surface material".

The samples sent for laboratory analysis were noted as 0-.5, 1-2, and 2-3 as per the SFI workplan, though the actual depth of sample is dependent on thickness of surface material.

**Construction Details** 



# LOG LF-3

Date: 03-Aug-99

and 04-Aug-99

Project Name: Mobil Terminal Location: Upper Tank Farm (Disposal Area) Well Number: LF-3 Casing Elevation: 596.17 Screen Diameter: 4 Inches Casing Diameter: 4 Inches

Log By: D.D'Amico Driller: SJB Drilling Method: Hollow Stem Auger Slot Size: 20 Type: PVC Sample Method: 3 inch Split Spoon

Cement/Grout Interval: 13.4 - grade

Bentonite Interval: 15-13.4 Feet

Completion Details: Pro casing installed.

Sand Pack Interval: 36-15 Feet

**Backfill Interval: NA** 

= Cement/Grout = Backfill = Bentonite = Sand

| Water Level (Init):       | NC         |
|---------------------------|------------|
| <b>Borehole Diameter:</b> | 10 inches  |
| Total Well Depth:         | 36 Feet    |
| Screen Interval:          | 36-16 Feet |
| Sand Pack Type:           | Morrie #2  |

|      | Sample     | PID   | Blow                  | Percent  | Lithology: Burmister Classification System                                                                           |
|------|------------|-------|-----------------------|----------|----------------------------------------------------------------------------------------------------------------------|
| (ft) | Depth (ft) | (ppm) | Count                 | Recovery |                                                                                                                      |
| 0    | 0-5        |       | Air Knifed.           |          | Hand cleared.                                                                                                        |
| 1    |            |       |                       |          |                                                                                                                      |
| 2    |            |       |                       |          |                                                                                                                      |
| 3    |            |       |                       |          |                                                                                                                      |
| 4    |            |       | <b>•</b>              |          |                                                                                                                      |
| 5    | 5-7        | NC    | W.O.H. for<br>12".1.1 | 10       | FILL: Reddish brown coarse Sand and Silt and fine to n<br>Gravel (cinders, cobbles) (5-7'), dry, no odor, staining o |
| 6    |            |       | ,-                    |          |                                                                                                                      |
| 7    |            |       |                       |          |                                                                                                                      |
| 8    |            |       |                       |          |                                                                                                                      |
| 9    |            |       |                       |          |                                                                                                                      |
| 10   | 10-12      | NC    | W.O.H. for<br>12",1,3 | 30       | FILL:Reddish brown coarse Sand and Silt and fine to m                                                                |

1,2,1

19

d Silt and fine to medium no odor, staining or sheen.

| 10 | 10-12 | NC   | W.O.H. for<br>12",1,3 | 30 | FILL:Reddish brown coarse Sand and Silt and fine to medium Gravel (cinders, cobbles), moist, no odor, staining or sheen. |  |
|----|-------|------|-----------------------|----|--------------------------------------------------------------------------------------------------------------------------|--|
| 12 |       |      |                       |    |                                                                                                                          |  |
| 13 |       |      |                       |    |                                                                                                                          |  |
| 14 |       |      |                       |    |                                                                                                                          |  |
| 15 |       |      |                       | 3  |                                                                                                                          |  |
| 16 |       |      |                       |    |                                                                                                                          |  |
| 17 |       |      |                       |    |                                                                                                                          |  |
| 18 | 18-20 | 20.0 | W.O.H.                | 75 | Gray black fine SAND and SILT, some Clay, moist, saturated at                                                            |  |

19.5', petroleum odor, slight staining, no sheen.

**Construction Details** 



# LOG LF-3

Date: 03-Aug-99

and 04-Aug-99

Project Name: Mobil Terminal Location: Upper Tank Farm (Disposal Area) Well Number: LF-3 Casing Elevation: 596.17 Screen Diameter: 4 Inches Casing Diameter: 4 Inches

Water Level (Init): NC

Borehole Diameter: 10 inches

Log By: D.D'Amico Driller: SJB Drilling Method: Hollow Stem Auger Slot Size: 20 Type: PVC Sample Method: 3 inch Split Spoon

Cement/Grout Interval: 13.4 - grade

**Backfill Interval: NA** 

|                                              | _              |
|----------------------------------------------|----------------|
|                                              | = Cement/Grout |
|                                              | = Backfill     |
| <i>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</i> | = Bentonite    |
|                                              | - Sand         |

| Total Well Depth: 36 Feet<br>Screen Interval: 36-16 Feet<br>Sand Pack Type: Morrie #2 |            |       | t       | Bentonite Interval:15-13.4 Feet= BentoniteSand Pack Interval:36-15 Feet= SandCompletion Details:Pro casing |                                                                                                             |  |
|---------------------------------------------------------------------------------------|------------|-------|---------|------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|--|
|                                                                                       | Sample     | PID   | Blow    | Percent                                                                                                    | Lithology: Burmister Classification System                                                                  |  |
| (ft)                                                                                  | Depth (ft) | (ppm) | Count   | Recovery                                                                                                   |                                                                                                             |  |
| 20                                                                                    | 20-22      | 42.0  | 1,1,1,2 | 50                                                                                                         | Gray black medium SAND and SILT, trace Clay, saturated,                                                     |  |
| 21                                                                                    |            |       |         |                                                                                                            | petroleum odor, nue stamme.                                                                                 |  |
| 22                                                                                    | 22-24      | 38    | 2,3,2,2 | 100                                                                                                        | Gray black medium SAND and SILT, trace Clay, saturated,<br>petroleum odor. little staining.                 |  |
| 23                                                                                    |            |       |         |                                                                                                            | r                                                                                                           |  |
| 24                                                                                    | 24-26      | 64.0  | 1,1,1   | 50                                                                                                         | Gray black medium SAND and SILT, trace Clay, saturated, petroleum odor, little staining, slight sheen.      |  |
| 25                                                                                    |            |       |         |                                                                                                            |                                                                                                             |  |
| 26                                                                                    | 26-28      | 58.0  | 2,3,5,6 | 25                                                                                                         | Black, medium SAND and SILT, saturated, petroleum odor, slight<br>sheen.                                    |  |
| 27                                                                                    |            |       |         |                                                                                                            |                                                                                                             |  |
| 28                                                                                    | 28-30      | 10.0  | 5,4,6,8 | 25                                                                                                         | Black, coarse SAND and SILT and fine GRAVEL, saturated, petroleum odor, no sheen.                           |  |
| 29                                                                                    |            |       |         |                                                                                                            |                                                                                                             |  |
| 30                                                                                    | 30-32      | 4.2   | 4,3,3,3 | 25                                                                                                         | Black coarse SAND and SILT and medium GRAVEL, some Clay, saturated, slight petroleum odor, no sheen.        |  |
| 31                                                                                    |            |       |         |                                                                                                            |                                                                                                             |  |
| 32                                                                                    | 32-34      | 5.6   | 3,2,4,4 | 25                                                                                                         | Black coarse SAND and SILT and medium GRAVEL, some Clay, saturated, slight petroleum odor, no sheen.        |  |
| 33                                                                                    |            |       |         |                                                                                                            |                                                                                                             |  |
| 34                                                                                    | 34-36      | 0.8   | 2,3,6,9 | 50                                                                                                         | Black coarse SAND and SILT and medium to coarse<br>GRAVEL/COBBLES, some Clay, saturated, no petroleum odor, |  |
| 35                                                                                    |            |       |         |                                                                                                            | no sheen.                                                                                                   |  |
| 36                                                                                    |            |       |         |                                                                                                            |                                                                                                             |  |
| 37                                                                                    |            |       |         |                                                                                                            |                                                                                                             |  |
| 38                                                                                    |            |       |         |                                                                                                            |                                                                                                             |  |
| 39                                                                                    |            |       |         |                                                                                                            | Bottom of boring @ 36 feet.                                                                                 |  |


T

| Pre<br>W<br>Casin<br>Screen<br>Casin      | oject Name:<br>Location:<br>ell Number:<br>g Elevation:<br>n Diameter:<br>g Diameter: | Mobil Ter<br>Upper Tar<br>LF-4<br>594.87<br>4 Inches<br>4 Inches | minal<br>ık Farm (Dis | sposal Area)        | Log By: D.D'Amico<br>Driller: SJB<br>Drilling Method: Hollow Stem Auger<br>Slot Size: 20<br>Type: PVC<br>Sample Method: 3 inch Split Spoon                                                     | LOG<br>LF-4<br>Date: 05-Aug-99<br>and 06-Aug-99       |
|-------------------------------------------|---------------------------------------------------------------------------------------|------------------------------------------------------------------|-----------------------|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|
| Water<br>Borehol<br>Total<br>Scre<br>Sand | Level (Init):<br>e Diameter:<br>Well Depth:<br>en Interval:<br>Pack Type:             | NC<br>10 inches<br>36 Feet<br>36-16 Fee<br>Morrie #2             | t                     | Cons                | truction Details<br>Cement/Grout Interval: 13 - grade<br>Backfill Interval: NA<br>Bentonite Interval: 15-13 Feet<br>Sand Pack Interval: 36-15 Feet<br>Completion Details: Flush mount road box | = Cement/Grout<br>= Backfill<br>= Bentonite<br>= Sand |
|                                           | Sample                                                                                | PID                                                              | Blow<br>Count         | Percent<br>Recovery | Lithology: Burmister Classification System                                                                                                                                                     |                                                       |
| (ft)                                      | Depth (ft)                                                                            | (ppm)                                                            | Air Knifed            |                     | Hand cleared: Brown coarse SAND and SILT and                                                                                                                                                   |                                                       |
| 1                                         | 0-5                                                                                   |                                                                  |                       |                     | GRAVEL/FILL, dry, no odor.                                                                                                                                                                     |                                                       |
| 2                                         |                                                                                       |                                                                  |                       |                     |                                                                                                                                                                                                |                                                       |
| 3<br>4                                    |                                                                                       |                                                                  |                       |                     |                                                                                                                                                                                                |                                                       |
| 5<br>6                                    | 5-7                                                                                   | 1.8                                                              | <u>,1,1,2,1</u>       | 25                  | FILL:Brown medium Sand and Silt, some medium Gravel/cobbles,<br>trace Cinders/fill material, moist, no odor, no sheen.                                                                         |                                                       |
| 7<br>8<br>9                               |                                                                                       |                                                                  |                       |                     |                                                                                                                                                                                                |                                                       |
| 10                                        | 10-12                                                                                 | 1.4                                                              | 1,2,4,4               | 30                  | 10-12' Brown, coarse SAND and SILT, trace fine to medium<br>Cobbles, moist, no odor, no sheen.                                                                                                 |                                                       |
| 11                                        |                                                                                       |                                                                  |                       |                     |                                                                                                                                                                                                |                                                       |
| 12                                        |                                                                                       |                                                                  |                       |                     |                                                                                                                                                                                                |                                                       |
| 13                                        |                                                                                       |                                                                  |                       |                     |                                                                                                                                                                                                |                                                       |
| 14                                        |                                                                                       |                                                                  |                       |                     |                                                                                                                                                                                                |                                                       |
| 15                                        | 15-17                                                                                 | 1.6                                                              | W.O.H.<br>1,1,1       | 75                  | Gray fine SAND and SILT, trace Clay, moist, black staining, no odor.                                                                                                                           |                                                       |
| 16                                        |                                                                                       |                                                                  |                       |                     |                                                                                                                                                                                                |                                                       |
| 17                                        | 17-19                                                                                 | 1.8                                                              | 1,2,2,2               | 50                  | Gray fine SAND and SILT, trace Clay, moist, black staining, no odor.                                                                                                                           |                                                       |
| 18                                        |                                                                                       |                                                                  |                       |                     |                                                                                                                                                                                                |                                                       |
| 19                                        |                                                                                       |                                                                  |                       |                     |                                                                                                                                                                                                |                                                       |

Cement/Grout Interval: 13 - grade

**Construction Details** 



## LOG LF-4

Date: 05-Aug-99

and 06-Aug-99

Project Name: Mobil Terminal Location: Upper Tank Field (Disposal Area) Well Number: LF-4 Casing Elevation: 594.87 Screen Diameter: 4 Inches Casing Diameter: 4 Inches

Water Level (Init): NC

Log By: D.D'Amico Driller: SJB Drilling Method: Hollow Stem Auger Slot Size: 20 Type: PVC Sample Method: 3 inch Split Spoon

> = Cement/Grout = Backfill

| Borehol                     | e Diameter: | 10 inches |                       |                                | Backfill Interval: NA                                                                                                      | = Backfill |
|-----------------------------|-------------|-----------|-----------------------|--------------------------------|----------------------------------------------------------------------------------------------------------------------------|------------|
| Total Well Depth: 36 Feet   |             |           |                       | Bentonite Interval: 15-13 Feet |                                                                                                                            |            |
| Screen Interval: 36-16 Feet |             |           | t                     |                                | Sand Pack Interval: 36-15 Feet                                                                                             | = Sand     |
| Sand                        | Pack Type:  | Morrie #2 |                       |                                | Completion Details: Flush mount road box                                                                                   |            |
| ,                           | Sample      | PID       | Blow                  | Percent                        | Lithology: Burmister Classification System                                                                                 |            |
| (ft)                        | Depth (ft)  | (ppm)     | Count                 | Recovery                       |                                                                                                                            |            |
| 20                          | 19-21       | 1.6       | W.O.H.<br>for 12",2,2 | 50                             | Gray fine to medium SAND and some Silt, moist, black staining, no odor.                                                    |            |
| 21                          | 21-23       | 1.2       | 2,2,4,3               | 50                             | Gray fine to medium SAND with trace Silt, moist, black staining, no odor.                                                  |            |
| 22                          |             |           |                       |                                |                                                                                                                            |            |
| 23                          | 23-25       | 1.4       | W.O.H.<br>1,1,1       | 40                             | Gray fine to medium SAND with trace Silt, saturated, black staining, no odor.                                              |            |
| 24                          |             |           |                       |                                |                                                                                                                            |            |
| 25                          | 25-27       | 1.5       | W.O.H.<br>for 12",1,4 | 30                             | Gray fine to medium SAND with trace Silt, saturated, black staining, no odor.                                              |            |
| 26                          | 27.20       | 16        | 2734                  | 75                             | 27.28 Gray fine to medium SAND with trace Silt saturated                                                                   |            |
| 27                          | 21-29       | 1.0       | 3,2,3,4               | 15                             | black, non-petroleum staining, no odor. 28-29' Black medium to<br>coarse SAND and SILT and fine to medium                  |            |
| 29                          | 29-31       | 2.6       | 1,7,6,7               | 75                             | GRAVEL/COBBLES, saturated, no odor, no sheen.<br>Gray coarse SAND and SILT, fine GRAVEL, saturated, no odor,               |            |
| 30                          |             |           |                       |                                | no sheen.                                                                                                                  |            |
| 31                          | 31-33       | 2.0       | 5,8,10,10             | 40                             | Gray coarse SAND and SILT, fine GRAVEL, saturated, no odor, no sheen.                                                      |            |
| 32                          |             |           |                       |                                |                                                                                                                            |            |
| 33                          | 33-35       | ND        | 1,3,3,3               | 40                             | Gray coarse SAND and SILT (33-34'), tine GRAVEL, saturated,<br>no odor. no sheen. Gray CLAY(34-35'), some fine Sand, trace |            |
| 34                          | 35.37       | ND        | 5434                  | 30                             | Silt, saturated, no odor, no staining, no sneen.                                                                           |            |
| 35                          | 33-37       | ND        | ,,,,,,,               | 50                             | coarse GRAVEL, some SAND, trace Silt, saturated, no odor, no staining, no sheen.                                           |            |
| 37                          |             |           |                       |                                |                                                                                                                            |            |
| 38                          |             |           |                       |                                |                                                                                                                            |            |
| 39                          | · ۱         |           |                       | ľ                              | Bottom of boring @ 37 feet.                                                                                                |            |



|                |                                          |            |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | LOG                    |
|----------------|------------------------------------------|------------|-------------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
|                |                                          |            |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | LF-5                   |
| Pre            | oiect Name:                              | Mobil Ter  | minal       |              | Log By: D. D'Amico                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                        |
|                | Location:                                | Upper Tar  | nk Farm (Di | sposal Area) | Driller: SJB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>Date:</b> 06-Aug-99 |
| W              | ell Number                               | IF-5       |             | sposarrada,  | Drilling Method: Hollow Stem Auger                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C,                     |
| Casin          | a Elevation.                             | 597.62     |             |              | Slot Size: 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                        |
| Screen         | Diameter:                                | 4 Inches   |             |              | Type: PVC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                        |
| Casin          | g Diameter:                              | 4 Inches   |             |              | Sample Method: 3 inch Split Spoon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                        |
| Cushi          | 5 2 100000000000000000000000000000000000 | 1 11101100 |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                        |
|                |                                          |            |             | Const        | ruction Details                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                        |
| Water ]        | Level (Init):                            | NC         |             |              | Cement/Grout Interval: 14-grade                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | = Cement/Grout         |
| Borehol        | e Diameter:                              | 10 inches  |             |              | Backfill Interval: NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | = Backfill             |
| Total <b>`</b> | Well Depth:                              | 37 Feet    |             |              | Bentonite Interval: 16-14 Feet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | = Bentonite            |
| Scre           | en Interval:                             | 37-17 Fee  | t           |              | Sand Pack Interval: 37-16 Feet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Sand                   |
| Sand           | Pack Type:                               | Morrie #2  |             |              | Completion Details: Pro Casing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                        |
|                | Sample                                   | PID        | Blow        | Percent      | Lithology: Burmister Classification System                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                        |
| (ft)           | Depth (ft)                               | (ppm)      | Count       | Recovery     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                        |
| 0              | 0-5                                      |            | Air Knifed. |              | Hand cleared: Dark brown, coarse SAND and SILT, fine to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                        |
|                |                                          |            |             |              | medium to coarse Gravel/Cobbles, dry, cinders.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                        |
| 1              |                                          |            |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                        |
|                |                                          |            |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                        |
| 2              |                                          |            |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | •····                  |
|                |                                          |            |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                        |
| 3              |                                          |            |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                        |
| 1              |                                          |            |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                        |
| 4              |                                          |            | <b>★</b>    |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                        |
| 5              | 5-7                                      | 0.4        | 1 for       | 10           | FILL:Brown coarse Sand and Silt (5-7), some fine to medium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                        |
| 5              | 57                                       | 0.1        | 12".1.1     |              | Gravel/Cobbles, trace glass, cinders, moist, no odor, no sheen.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                        |
| 6              |                                          |            |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                        |
|                |                                          |            |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                        |
| 7              |                                          |            |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                        |
|                |                                          |            |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                        |
| 8              |                                          |            |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                        |
|                |                                          |            |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                        |
| 9              |                                          |            |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                        |
| 10             | 10-12                                    | ND         | 1446        | 30           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                        |
| 10             | 10-12                                    | ПD         | 1,4,4,0     | 50           | FILL Brown gray Clay and fine Sand (10-12) some Silt, some                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                        |
| 11             |                                          |            |             |              | medium Cobbles, cinders, moist, no odor, no sheen, no staining.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                        |
|                |                                          |            |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                        |
| 12             |                                          |            |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                        |
|                |                                          |            |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                        |
| 13             |                                          |            |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                        |
|                |                                          |            |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                        |
| 14             |                                          |            |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                        |
|                |                                          |            |             | •            | THE COLLECTION AND A CITY AND A SHALE AT |                        |
| 15             | 15-17                                    | 0.4        | 1,2,3,2     | 20           | FILL: Gray black line Sand and Sill, trace Clay, trace Shale, trace                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                        |
| 14             |                                          |            |             |              | rill (ceramic, leather), trace line Gravel, moist, slight odor.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                        |
| 10             |                                          |            |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                        |
| 17             | 17-19                                    | 0.4        | 2.3.3.3     | 75           | Gray fine SAND and SILT, trace Clay, trace fine Cobbles, trace                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                        |
| £ /            | ., 17                                    |            | _,_,_,_,_   |              | black staining, moist, no odor, no sheen.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                        |
| 18             |                                          |            |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                        |
|                |                                          | [          |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                        |
| 19             | [                                        |            |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                        |

-----

T

Cement/Grout Interval: 14-grade

**Construction Details** 



| LOG  |  |
|------|--|
| LF-5 |  |

Date: 06-Aug-99

Project Name: Mobil Terminal Location: Upper Tank Field (Disposal Area) Well Number: LF-5 Casing Elevation: 597.62 Screen Diameter: 4 Inches Casing Diameter: 4 Inches

Water Level (Init): NC

Log By: D. D'Amico Driller: SJB Drilling Method: Hollow Stem Auger Slot Size: 20 Type: PVC Sample Method: 3 inch Split Spoon

= Cement/Grout

| Borehole Diameter: 10 inches |              |            |            |          | Backfill Interval: NA                                           | = Backfill  |
|------------------------------|--------------|------------|------------|----------|-----------------------------------------------------------------|-------------|
| Total Well Depth: 37 Feet    |              |            |            |          | Bentonite Interval: 16-14 Feet                                  | = Bentonite |
| Scre                         | en Interval: | 37-17 Fee  | t          |          | Sand Pack Interval: 37-16 Feet                                  | = Sand      |
| Sand                         | Pack Type:   | Morrie #2  |            |          | Completion Details: Pro Casing                                  |             |
|                              | Sample       | PID        | Blow       | Percent  | Lithology: Burmister Classification System                      |             |
| (ft)                         | Depth (ft)   | (ppm)      | Count      | Recovery |                                                                 | <br>        |
| 20                           | 19-21        | 0.4        | W.O.H. for | 75       | Gray fine SAND and SILT, trace Clay, trace fine Cobbles, trace  |             |
| [                            |              |            | 12",1,2    |          | black staining, moist, no odor, no sheen.                       |             |
| 21                           | 21-23        | 0.4        | 2,2,2,2    | 100      |                                                                 |             |
|                              |              | l I        |            |          | Gray fine to medium SAND and SILT, trace Clay, trace fine       |             |
| 22                           |              |            |            |          | Cobbles, trace black staining, moist, no odor, no sheen.        |             |
|                              |              |            | WOUG       |          |                                                                 |             |
| 23                           | 23-25        | 0.2        | W.O.H. for | 75       | Gray, medium SAND and SIL1, saturated, black staining, no odor, |             |
| 2.1                          |              |            | 12",2,1    |          | sneen.                                                          |             |
| 24                           | ĺ            |            |            |          |                                                                 |             |
| 25                           | 25-27        | 0.2        | WOH 1      | 50       | Grav medium SAND and SILT, saturated, black staining, no odor.  |             |
| 23                           | 23 27        | 0.2        | 1.1        |          | sheen.                                                          |             |
| 26                           |              |            | -,-        |          |                                                                 |             |
|                              |              |            |            |          |                                                                 |             |
| 27                           | 27-29        | 0.2        | 2,2,4,4    | 100      | Gray, medium SAND and SILT, saturated, black staining, no odor, |             |
|                              |              |            |            |          | sheen.                                                          |             |
| 28                           |              |            |            |          |                                                                 |             |
|                              |              |            |            |          |                                                                 |             |
| 29                           | 29-31        | 0.2        | 2,4,7,8    | 50       | Gray, medium to coarse SAND and SILT, saturated, black          |             |
|                              |              |            |            |          | staining, no odor, no sheen.                                    |             |
| - 30                         |              |            |            |          |                                                                 |             |
| 21                           | 31.33        | 0.2        | 6770       | 100      | Grav medium to coarse SAND and SILT saturated some fine to      |             |
| .,1                          | 51-55        | 0.2        | 0,7,7,2    | 100      | medium Gravel, black staining, no odor, no sheen.               |             |
| 32                           | 1            |            |            |          |                                                                 |             |
|                              | ł            |            |            |          |                                                                 |             |
| 33                           | 33-35        | ND         | 5,3,6,5    |          |                                                                 |             |
|                              |              |            |            |          | Gray, medium to coarse SAND and SILT, saturated, some fine to   |             |
| 34                           |              |            |            |          | medium Gravel, black staining, no odor, no sheen.               |             |
| 1                            | 1            |            |            |          |                                                                 |             |
| 35                           | 35-37        | slight     | 2,3,7,5    | 25       | 35-36' Gray, medium to coarse SAND and SIL1, saturated, some    |             |
|                              |              | deflection |            |          | tine to medium Gravel, black staining, no odor, no sheen. 36-37 |             |
| 24                           |              |            |            |          | odor no sheen                                                   |             |
| 50                           | l            |            |            |          |                                                                 |             |
| 37                           | ł            |            |            |          |                                                                 |             |
|                              |              |            |            |          |                                                                 | <br>        |
| 38                           | [            |            |            |          | }                                                               |             |
|                              |              |            |            |          |                                                                 | <br>        |
| 39                           | {            | (          |            |          | Bottom of boring (a) 37 feet.                                   |             |



|         |                                                                                                                                                                                   | LOG                                                   |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|
|         |                                                                                                                                                                                   | LF-6                                                  |
| l Area) | Log By: D. D'Amico<br>Driller: SJB<br>Drilling Method: Hollow Stem Auger<br>Slot Size: 20<br>Type: PVC                                                                            | Date: 13-Aug-99                                       |
|         | Sample Method: 3 inch Split Spoon                                                                                                                                                 |                                                       |
| Const   | ruction Details<br>Cement/Grout Interval: 13-grade<br>Backfill Interval: NA<br>Bentonite Interval: 15-13 Feet<br>Sand Pack Interval: 37-15 Feet<br>Completion Details: Pro casing | = Cement/Grout<br>= Backfill<br>= Bentonite<br>= Sand |
| ercent  | Lithology: Burmister Classification System                                                                                                                                        |                                                       |
| 10      | Hand cleared. 5' Deep and 9" Diameter.<br>FILL: Brown medium to coarse Sand and Silt. Cinders, Brick,<br>trace medium Cobbles, dry, no odor or staining.                          |                                                       |
| 25      | FILL:Reddish brown medium to coarse Sand and Silt (10-12'),<br>some medium Gravel, dry, no petroleum odor or staining.                                                            |                                                       |

Project Name: Mobil Terminal Location: Upper Tank Farm (Disposal Well Number: LF-6 Casing Elevation: 598.14 Screen Diameter: 4 Inches Casing Diameter: 4 Inches

Water Level (Init): NC

Sample

Depth (ft)

0-5

5-7

10-12

15-17

17-19

ND

ND

0.2

0.2

1.2.W.O.H.

4,4,5,3

1,1,4,5

3,3,3,4

20

for 12"

(ft) 0

1

2

3

4

5

ΰ

7

8

9

10

11

12

13

14

15

16

17

18

19

Borehole Diameter: 10 inches Total Well Depth: 36 Feet Screen Interval: 36-16 Feet Sand Pack Type: Morrie #2 Pe Blow PID Rec Count (ppm) Air Knifed.

> Reddish brown medium to coarse SAND and SILT, some medium Gravel, dry, no petroleum odor or staining.

Reddish brown medium to coarse SAND and SILT (17-18'), some 25 medium Gravel, dry, no staining. Black fine Sand and Siltand Fill (18-19') (Wood. Brick, Cinders), moist, no petroleum odor.

T



| LOG      |  |
|----------|--|
| <br>LF-6 |  |

.

Date: 13-Aug-99

Project Name: Mobil Terminal Location: Upper Tank Farm (Disposal Area) Well Number: LF-6 Casing Elevation: 598.14 Screen Diameter: 4 Inches Casing Diameter: 4 Inches Log By: D. D'Amico Driller: SJB Drilling Method: Hollow Stem Auger Slot Size: 20 Type: PVC Sample Method: 3 inch Split Spoon

|         |               |           |            | Cons     | struction Details                                               |                |
|---------|---------------|-----------|------------|----------|-----------------------------------------------------------------|----------------|
| Water   | Level (Init): | NC        |            |          | Cement/Grout Interval: 13-grade                                 | = Cement/Grout |
| Borehol | e Diameter:   | 10 inches |            |          | Backfill Interval: NA                                           | = Backfill     |
| Total ' | Well Depth:   | 36 Feet   |            |          | Bentonite Interval: 15-13 Feet                                  | = Bentonite    |
| Scre    | en Interval:  | 36-16 Fee | t          |          | Sand Pack Interval: 37-15 Feet                                  | = Sand         |
| Sand    | Pack Type:    | Morrie #2 |            |          | Completion Details: Pro casing                                  |                |
|         | Sample        | PID       | Blow       | Percent  | Lithology: Burmister Classification System                      |                |
| (ft)    | Depth (ft)    | (ppm)     | Count      | Recovery |                                                                 |                |
| 20      | 19-21         | 30.0      | 2.2.3.4    | 75       | Gray black fine SAND and SILT trace Clay moist slight           |                |
|         |               |           | -,-,-,     |          | petroleum odor, no sheen.                                       |                |
| 21      | 21-23         | 58        | 4,5,5,6    | 100      |                                                                 |                |
|         |               |           |            |          | 21-22' Gray black fine SAND and SILT, trace Clay, moist, slight |                |
| 22      |               |           |            |          | petroleum odor, no sheen, 22-23' Grav fine to medium SAND.      |                |
|         |               |           |            |          | some Silt, moist, petroleum odor, slight sheen.                 |                |
| 23      | 23-25         | 92.0      | 5,4,4,5    | 20       | Gray fine to medium Sand, some Silt, saturated, petroleum odor, |                |
|         |               |           |            |          | slight sheen.                                                   |                |
| 24      |               |           |            |          |                                                                 |                |
|         |               |           |            |          |                                                                 |                |
| 25      | 25-27         | 88.0      | W.O.H.,1,  | 75       | Gray coarse SAND and SILT, saturated, petroleum odor, sheen.    |                |
|         |               |           | 3,3        |          |                                                                 |                |
| 26      |               |           |            |          |                                                                 |                |
|         |               |           |            |          |                                                                 |                |
| 27      | 27-29         | 19.6      | W.O.H. for | 50       | Gray coarse SAND and SILT, saturated, slight petroleum odor, no |                |
|         |               |           | 12",1,1    |          | sheen.                                                          |                |
| 28      |               |           |            |          |                                                                 |                |
|         |               |           |            |          |                                                                 |                |
| 29      | 29-31         | 6.0       | 2,2,3,3    | 25       | Gray coarse SAND and SILT, some coarse to medium Gravel,        |                |
|         |               |           |            |          | saturated, slight petroleum odor, no sheen.                     |                |
| 30      |               |           |            |          |                                                                 |                |
| 21      | 21.22         | 6.0       | 1267       | 50       |                                                                 |                |
| 51      | 31-33         | 5.8       | 1,3,3,7    | 50       | Gray coarse SAND and SIL1, some coarse to medium Gravel,        |                |
| 37      |               |           |            |          | saturated, slight petroleum odor, no sneen.                     |                |
| 32      |               |           |            |          |                                                                 |                |
| 33      | 33-35         | ND        | WOH        | 50       | Red grav fine to medium SAND saturated                          |                |
| 5.57    | 55 55         |           | for 24"    | 50       | Nod gray fille to modium of 11(D, saturator.                    |                |
| 34      |               |           | 10.21      |          |                                                                 |                |
|         |               |           |            |          |                                                                 |                |
| 35      | 35-37         | ND        | 1,1,3,5    | 50       | Dark brown coarse SAND grading to dark brown fine Sand with     |                |
| ]       |               |           |            |          | coarse Gravel in shoe at 37 feet, no odor, saturated.           |                |
| 36      |               |           |            |          | · · · · · · · · · · · · · · · · · · ·                           |                |
|         |               |           |            |          |                                                                 |                |
| 37      |               |           |            |          | CLAY at bottom of boring within bit.                            |                |
|         |               |           |            |          |                                                                 |                |
| 38      |               |           |            |          |                                                                 |                |
|         |               |           |            |          |                                                                 |                |
| 39      |               |           |            |          | Bottom of boring @ 37 feet.                                     |                |

**Construction Details** 



| <u> </u> | LOG  |  |
|----------|------|--|
|          | LF-7 |  |

Date: 16-Aug-99

Project Name: Mobil Terminal Location: Upper Tank Farm (Disposal Area)
Well Number: LF-7
Casing Elevation: 598.28
Screen Diameter: 4 Inches
Casing Diameter: 4 Inches Log By: M.Falzone Driller: SJB Drilling Method: Hollow Stem Auger Slot Size: 20 Type: PVC Sample Method: 3 inch Split Spoon

Cement/Grout Interval: 0-15 Feet

Backfill Interval: NA

= Cement/Grout = Backfill = Bentonite ::::: = Sand

| Total<br>Scre<br>Sand | Well Depth:<br>en Interval:<br>Pack Type: | 38 Feet<br>18-38 Fee<br>Morrie #2 | t           |          | Bentonite Interval: 15-16.5 Feet<br>Sand Pack Interval: 16.5-38 Feet<br>Completion Details: Pro-Casing      |   | = Bentonite<br>= Sand |
|-----------------------|-------------------------------------------|-----------------------------------|-------------|----------|-------------------------------------------------------------------------------------------------------------|---|-----------------------|
|                       | Sample                                    | PID                               | Blow        | Percent  | Lithology: Burmister Classification System                                                                  |   |                       |
| (ft)                  | Depth (ft)                                | (ppm)                             | Count       | Recovery |                                                                                                             |   |                       |
| 0                     |                                           |                                   | Air Knifed. |          |                                                                                                             |   |                       |
| 1                     |                                           |                                   |             |          |                                                                                                             |   |                       |
| 2                     |                                           |                                   |             |          |                                                                                                             |   |                       |
| 3                     |                                           |                                   |             |          |                                                                                                             |   |                       |
| 4                     |                                           |                                   | ↓           |          |                                                                                                             |   |                       |
| 5                     | 5-7                                       | 3.0                               | 1,3,5,3     | 50       | FILL: Brown fine to coarse Sand with glass, concrete and white ash, dry, no petroleum odor.                 |   |                       |
| 6                     |                                           |                                   |             |          |                                                                                                             |   |                       |
| 7                     |                                           |                                   |             |          |                                                                                                             |   |                       |
| 8                     |                                           |                                   |             |          |                                                                                                             |   |                       |
| 9                     |                                           |                                   |             |          |                                                                                                             |   |                       |
| 10                    | 10-12                                     | 1.0                               | 1,1,1,1     | 15       | FILL: Black gray coarse Sand and Ash, some fine Gravel, dry, no                                             |   |                       |
| 11                    |                                           |                                   |             |          | petroleum odor.                                                                                             |   |                       |
|                       |                                           |                                   |             |          |                                                                                                             |   |                       |
| 12                    |                                           |                                   |             |          |                                                                                                             |   |                       |
| 13                    |                                           |                                   |             |          |                                                                                                             |   |                       |
| 14                    |                                           |                                   |             |          |                                                                                                             |   |                       |
| 15                    | 15-17                                     | 1.0                               | 1,1,2,3     | 25       | FILL: Black gray Ash with some coarse Sand and Glass grading t                                              | ° |                       |
| 16                    |                                           |                                   |             |          |                                                                                                             |   |                       |
| 17                    | 17-19                                     | ND                                | 3,9,10,10   | 75       | FILL: Red brown Clay and Silt, fragments of Glass throughout<br>grading to black coarse Sand, moist no odor |   |                       |
| 18                    |                                           |                                   |             |          | Branne to black coarse saile, moist, no buor.                                                               |   |                       |
| 19                    |                                           |                                   |             |          |                                                                                                             |   |                       |

Water Level (Init): NC Borehole Diameter: 10 inches Total Well Depth: 38 Feet



|       |       | LOG       |  |
|-------|-------|-----------|--|
|       |       | LF-7      |  |
| Auger | Date: | 16-Aug-99 |  |

Project Name: Mobil Terminal Location: Upper Tank Farm (Disposal Area)
Well Number: LF-7
Casing Elevation: 598.28
Screen Diameter: 4 Inches
Casing Diameter: 4 Inches Log By: M.Falzone Driller: SJB Drilling Method: Hollow Stem Auger Slot Size: 20 Type: PVC Sample Method: 3 inch Split Spoon

|                              | Construction Details |            |                                  |          |                                                                                                                                        |  |  |
|------------------------------|----------------------|------------|----------------------------------|----------|----------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Water                        | Level (Init):        | NC         |                                  |          | Cement/Grout Interval: 0-15 Feet = Cement/Grout                                                                                        |  |  |
| Borehole Diameter: 10 inches |                      |            | Backfill Interval: NA = Backfill |          |                                                                                                                                        |  |  |
| Total <b>`</b>               | Well Depth:          | 38 Feet    |                                  |          | Bentonite Interval: 15-16.5 Feet = Bentonite                                                                                           |  |  |
| Scre                         | en Interval:         | 18-38 Feet | t                                |          | Sand Pack Interval: 16.5-38 Feet                                                                                                       |  |  |
| Sand                         | Pack Type:           | Morrie #2  |                                  |          | Completion Details: Pro-Casing                                                                                                         |  |  |
|                              | Sample               | PID        | Blow                             | Percent  | Lithology: Burmister Classification System                                                                                             |  |  |
| (ft)                         | Depth (ft)           | (ppm)      | Count                            | Recovery |                                                                                                                                        |  |  |
| 20                           | 19-21                | ND         | 2,2,4,4                          | 75       | FILL: Black, orange, gray, fine to coarse Sand and Ash with little wood and brick. At 19.5' Olive gray Clay with Silt, moist, no odor. |  |  |
| 21                           | 21-23                | ND         | 2,2,3,5                          | 100      | FILL: Olive gray Clay with some Silt grading to olive gray fine<br>Sand with some Silt, saturated, slight petroleum odor.              |  |  |
| 22                           |                      |            |                                  |          |                                                                                                                                        |  |  |
| 23                           | 23-25                | ND         | -,1,1,3                          | 100      | Olive gray fine SAND, trace Silt, saturated, slight petroleum odor.                                                                    |  |  |
| 24                           |                      |            |                                  |          |                                                                                                                                        |  |  |
| 25                           | 25-27                | 1.0        | -,1,1,2                          | 50       | Olive gray fine SAND, trace Silt, areas of dark staining and trace                                                                     |  |  |
| 26                           |                      |            |                                  |          |                                                                                                                                        |  |  |
| 20                           |                      |            |                                  |          |                                                                                                                                        |  |  |
| 27                           | 27-29                | 3.0        | 1,1,1,2                          | 75       | Olive gray fine SAND with trace Silt, saturated, grading to a Silty Sand, dry, slight odor.                                            |  |  |
| 28                           |                      |            |                                  |          |                                                                                                                                        |  |  |
| 29                           | 29-31                | 1.0        | W.O.H.12",<br>1.1                | 75       | Dark gray, medium to coarse SAND and fine GRAVEL, saturated                                                                            |  |  |
| 30                           |                      |            | -,-                              |          |                                                                                                                                        |  |  |
| 31                           | 31-33                | 3.0        | 3,5,5,6                          | 50       | Dark gray, medium to coarse SAND and fine GRAVEL, saturated                                                                            |  |  |
| 22                           |                      |            |                                  |          | no odor, sheen.                                                                                                                        |  |  |
| 52                           |                      |            |                                  |          |                                                                                                                                        |  |  |
| 33                           | 33-35                | 1.0        | 3,3,3,5                          | 50       | Olive gray coarse SAND and fine to medium GRAVEL, some Silt,                                                                           |  |  |
| 34                           |                      |            |                                  |          |                                                                                                                                        |  |  |
| 35                           | 35-37                | ND         | 3,5,5,4                          | 50       | Olive gray coarse SAND and fine to medium GRAVEL, some Silt                                                                            |  |  |
| 36                           |                      |            |                                  |          | Red brown CLAY, some fine Sand and Silt, saturated, no odor or sheen.                                                                  |  |  |
| 37                           |                      |            |                                  |          |                                                                                                                                        |  |  |
| 38                           |                      |            |                                  |          |                                                                                                                                        |  |  |
| 39                           |                      |            |                                  |          | Bottom of boring @ 38 feet.                                                                                                            |  |  |



|                                     |                                                                                              |                                                                  |                        |                     |                                                                                                                                                                                    |       | LOG<br>LF-8                                          |
|-------------------------------------|----------------------------------------------------------------------------------------------|------------------------------------------------------------------|------------------------|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------------------------------------------------------|
| P<br>V<br>Casi<br>Scree<br>Casi     | roject Name:<br>Location:<br>Vell Number:<br>ing Elevation:<br>en Diameter:<br>ing Diameter: | Mobil Ter<br>Upper Tar<br>LF-8<br>596.99<br>4 Inches<br>4 Inches | minal<br>ık Farm (Disj | posal Area)         | Log By: D. D'Amico<br>Driller: SJB<br>Drilling Method: Hollow Stem Auger<br>Slot Size: 20<br>Type: PVC<br>Sample Method: 3 inch Split Spoon                                        | Date: | 17-Aug-99                                            |
| Wate<br>Boreh<br>Tota<br>Sci<br>San | r Level (Init):<br>ole Diameter:<br>I Well Depth:<br>reen Interval:<br>d Pack Type:          | NC<br>10 inches<br>37 Feet<br>37-17 Fee<br>Morrie #2             | t                      | Const               | truction Details<br>Cement/Grout Interval: 14-grade<br>Backfill Interval: NA<br>Bentonite Interval: 16-14 Feet<br>Sand Pack Interval: 37-16 Feet<br>Completion Details: Pro-Casing |       | = Cement/Grou<br>= Backfill<br>= Bentonite<br>= Sand |
|                                     | Sample                                                                                       | PID                                                              | Blow<br>Count          | Percent<br>Recoverv | Lithology: Burmister Classification System                                                                                                                                         |       |                                                      |
| (ft)<br>0<br>1<br>2<br>3            | Depth (ft)                                                                                   | (ppm)                                                            | Air<br>Knifed.         |                     |                                                                                                                                                                                    |       |                                                      |
| 5<br>6                              | 5-7                                                                                          | 2.0                                                              | 20,8,12,18             | 100                 | FILL: Brick ~6 inches, tarlike black coarse Sand, fine cobbles.<br>moist, petroleum odor.                                                                                          |       |                                                      |
| 7                                   | 7-9                                                                                          | 0.6                                                              | 9,10,12,12             | 50                  | FILL: Brick ~6 inches, tarlike black coarse Sand, fine cobbles,<br>moist, petroleum odor, trace concrete.                                                                          |       |                                                      |
| 9<br>10                             | 9-11                                                                                         | 0.1                                                              | 1,1,4,3                | 20                  | Coarse FILL: Brick, cinders, coarse Sand, fine rounded gravel,<br>moist.                                                                                                           |       |                                                      |
| 11<br>12                            | 11-13                                                                                        | 0.2                                                              | 2,1,1,2                | 10                  | Coarse FILL: Brick, cinders, coarse Sand, fine rounded gravel, moist.                                                                                                              |       |                                                      |
| 13<br>14                            | 13-15                                                                                        | 0.1                                                              | 2,1,2,2                | 20                  | Red brown, medium to coarse SAND and FILL and fine GRAVEL, moist, no odor or staining.                                                                                             |       |                                                      |
| 15<br>16                            | 15-17                                                                                        | 0.3                                                              | 1,3,5,10               | 50                  | FILL: Red brown medium to coarse Sand, trace Clay and fine<br>Gravel, moist, no odor.                                                                                              |       |                                                      |
| 17<br>18                            | 17-19                                                                                        | 0.2                                                              | 10,10,12,11            | 50                  | FILL: Brown medium to coarse Sand and fine to medium Gravel,<br>trace Organics, moist, no odor or staining.                                                                        |       |                                                      |
| 10                                  |                                                                                              |                                                                  |                        |                     |                                                                                                                                                                                    |       |                                                      |

Cement/Grout Interval: 14-grade

Backfill Interval: NA

Bentonite Interval: 16-14 Feet Sand Pack Interval: 37-16 Feet

**Construction Details** 



| LOG             |  |
|-----------------|--|
| <br><u>LF-8</u> |  |
| <br>            |  |

Project Name: Mobil Terminal Location: Upper Tank Farm (Disposal Area) Well Number: LF-8 Casing Elevation: 596.99 Screen Diameter: 4 Inches Casing Diameter: 4 Inches

Log By: D. D'Amico Driller: SJB Drilling Method: Hollow Stem Auger Slot Size: 20 Type: PVC Sample Method: 3 inch Split Spoon

Date: 17-Aug-99

= Cement/Grout = Backfill = Bentonite = Sand

| Water Level (Init):       | NC         |
|---------------------------|------------|
| <b>Borehole Diameter:</b> | 10 inches  |
| Total Well Depth:         | 37 Feet    |
| Screen Interval:          | 37-17 Feet |

N · 110 ידר בי

| Sand | Sand Pack Type: Morrie #2 |       |             |          | Completion Details: Pro-Casing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
|------|---------------------------|-------|-------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|      | Sample                    | PID   | Blow        | Percent  | Lithology: Burmister Classification System                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |
| (ft) | Depth (ft)                | (ppm) | Count       | Recovery |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| 20   | 19-21                     | 0.1   | 1,3,5,4     | 40       | FILL: Dark brown, medium to coarse Sand and fine to coarse Gravel, trace Silt, wet, slight organic odor.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
| 21   | 21-23                     | 0.1   | 3,5,6,4     | 40       | Brown fine to medium SAND and 3" SILT and fine to coarse<br>GRAVEL trace 3" cobbles black staining saturated slight                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |
| 22   |                           |       |             |          | petroleum odor.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| 23   | 23-25                     | 0.1   | 3,2,3,3     | 100      | Brown fine to medium SAND and 3" SILT and fine to coarse<br>GRAVEL, trace 3" cobbles, black staining, saturated, slight                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |
| 24   |                           |       |             |          | petroleum odor.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| 25   | 25-27                     | ND    | 1,3,2,2     | 50       | Dark gray medium to coarse SAND and fine to medium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |
| 26   |                           |       |             |          | odor.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |
| 27   | 27-29                     | 4.0   | 3,6,9,12    | 90       | Dark gray medium to coarse SAND and fine to medium<br>GRAVEL some red brown Clay, trace cobbles, saturated, slight                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |
| 28   |                           |       |             |          | petroleum odor.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| 29   | 29-31                     | 3.0   | 6,8,8,9     | 50       | 4 " Dark gray fine to medium SAND and SILT and fine GRAVEL,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |
| 30   |                           |       |             |          | gray medium SAND and SILT and medium to coarse GRAVEL, solution of the second s |  |  |  |  |
| 31   | 31-33                     | 1.8   | 2,3,5,6     | 30       | 4" Dark gray fine to medium SAND, some fine Gravel, trace Silt,<br>4" Olive gray medium SAND and fine to medium GRAVEL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |
| 32   |                           |       |             |          | saturated, slight petroleum odor.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |
| 33   | 33-35                     | 3.6   | 12,18,25,22 | 100      | 16" Olive gray medium to coarse SAND, trace Silt, trace fine<br>Gravel 8" Olive coarse SAND and medium to coarse GRAVEL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |
| 34   |                           |       |             |          | saturated, slight odor or staining.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |
| 35   | 35-37                     | 1.0   | 4,4,5,4     | 100      | 12" Olive gray medium SAND and fine GRAVEL, saturated, no                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
| 36   |                           |       |             |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| 37   |                           |       |             |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| 38   |                           |       |             |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| 39   |                           |       |             |          | Bottom of boring (a) 37 feet.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |

## **APPENDIX B**

.

.

Well Development Notes

### ROUX ASSOCIATES, INC.

1++ ·

-----

and a programmer of the second se

MC17252Y02.111/A-C

**∳**4 44 4 4

-----

nana yanga u dhalaa a yayaa da ahaa ah

| Well        | Development    | Date      |           | Development    | Volume of Water   | Relative Water |                                             |
|-------------|----------------|-----------|-----------|----------------|-------------------|----------------|---------------------------------------------|
| Designation | Method         | Developed | Developer | Time (minutes) | Removed (gallons) | Clarity        | Notes                                       |
| LF-3        | Surge and Pump | 8/11/99   | GES       | 40             | 40                | Clear          | Water clear after 25 gallons purged         |
| LF-4        | Surge and Pump | 8/11/99   | GES       | 40             | 50                | Clear          | Water clear after 25 gallons purged         |
| LF-5        | Surge and Pump | 8/11/99   | GES       | 40             | 35                | Clear          | Purged 35 gallons, dry, grey fines in water |
| LF-6        | Surge and Pump | 8/18/99   | GES       | 45             | 50                | Clear          | Water clear after 20 gallons purged         |
| LF-7        | Surge and Pump | 8/18/99   | GES       | 45             | 20                | Clear          | Purged 20 gallons, dry, grey fines in water |
| LF-8        | Surge and Pump | 8/18/99   | GES       | 40             | 45                | Clear          | Water clear after 35 gallons purged         |
| SB-11       | Surge and Pump | 7/26/99   | GES       | 60             | 22                | Turbid         | Petro, odor, grey fines in water            |
| SB-12       | Surge and Pump | 8/6/99    | GES       | 20             | 5                 | Turbid         | One inch bailer used to surge well          |
| SB-13       | Surge and Pump | 7/27/99   | GES       | 20             | 6                 | Clear          | Product 0.03 inches in thickness            |
| SB-14       | Surge and Pump | 7/28/99   | GES       | 30             | 30                | Turbid         | Good recovery; grey fines                   |
| SB-15       | Surge and Pump | 8/18/99   | GES       | 30             | 5                 | Turbid         | Fine sediment                               |
| SB-16       | Surge and Pump | 8/18/99   | GES       | 30             | 12                | Turbid         | Product; fine sediment                      |
| SB-17       | Surge and Pump | 8/2/99    | GES       | 40             | 30                | Clear          | Thick product noted; Slow recovery          |
| SB-19       | Surge and Pump | 8/2/99    | GES       | 60             | 45                | Clear          | Sheen noted; Very good recovery             |
| SB-20       | Surge and Pump | 8/18/99   | GES       | 30             | 4                 | Turbid         | Black product; fine sediment                |
| SB-28       | Surge and Pump | 8/18/99   | GES       | 45             | 26                | Turbid         | Slight petro odor                           |
| SB-31       | Surge and Pump | 8/18/99   | GES       | 30             | 8                 | Turbid         | Sewer like odor                             |

Table B-1. Summary of Monitoring Well Development for Wells Installed During SFI Continuation, Mobil Buffalo Terminal, Buffalo, New York

į

-

Ŧ

ł

+

ŧ

•

ŧ

frankprint Deter

5B-19 9:57 connenced development DTP DTW T-6/ depth N/A 7.42 20.20 Intervals 7.42 + 12' 9:57 + 10:17 17' to 16' 10:18 to 10:3 16 10 20.20' 10:39 to 10:5 Hoo quality: water char slight - sheen, petro odor sediment quality/descrip ! black, f. sand & silt, petro adar, petro sheen (sel.) Ho quality w/ sospension : black gray, visible sheen, petro 0.do-.

SB-11 Cont 112,0 1/26 St. E/m 15 interval = 3 from 23.9 to 20.9 interval = 2' from 20.9 18.9 interval = 2' from 18.7 Interval = 2' from 18.9 2<sup>rd</sup> 16.9 4th 14.9 5m whereal = 200 from 14.9 12.88 + each @ 13 min = 5 intervals . \* Duration = 60 min total for \_well\_(1h-) Ē1 following Development Ġ. DTP DIW Total depth Time નન -110990 9.00 - 24.00 -12.90 11:35 ASST 1 sediment on probe de gray f. Sand & silt (sat.) Sheen water checked with bailer: OM gray in color w/ a lot of suspension petroleum odor Building sheen proclominant E VA( Truck (Mobil) removed all Har Jeoudojorog jog Dh & suspension (0 11:55. Ellowing vac 13. do Hao quality River Drw 1 c same

38-11 Development Data 7/26 Mobil Terminal Pinto Property 9:15 an 2-bra Discontined EIK SA. Babrort harmer inck procedures a and location 1- determined that laye there thought to have be 7-26-99 On site @ 7:45 w/ MF & 5H concrete was asphalt. W.C. Zebra & SJB arrived between 8:00 Saw cut instead. Moved beatron de banna jack P 8:15 Observen de banne jack <del>obler</del> area 2 with visible NF Discussed scope of work, Concrete Converced @ 9:45 conducted HASP meeting (all parties signed plan) potential Containinents Well Development (550) SB P DT W Toke Devek (4705-14) of concern. SJB set up decon station, Zen - 12-88 (0:00) 23-58 ) produces breight of HoO column = 10.7 Poke determined tasks for each crew 2' intervals = 12 min / interval) (i.e ait Kniking, well pulling & Probe had potro odor & Sheen following topol (ev. Interval Start Stop Nodes 23.9-20.9 10:07 Am 10:19 an STB rig compressed 20.9-18.7 10:20 an 10:37 an Sedimont to a jack hammering) 55B & Zebra moved all equipment to specific location of intended 18.9-16.9 10:33 pm 10:45. to stal dep (4 14.9-14.9 10:44 pm 10:58. 23.9 = -32 site work. set up @ 9:00 AM 17.9-12.88 10:59 AM 11:11: AN OF Ser prom Zebra commenced jart hammaning @ 9:10 AM on Pinto Property 1-in-well sort set - up tig on well @ 11.00 FHO rolumn 9:10 AM on Ainto Property 1 = 5.51 intervals set @ 15+ 00 7'

|     |                         |                   |                  |      |                                                          | Grou                    | Field Observation Log<br>Groundwater Sampling Record |              |                 |                 |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|-----|-------------------------|-------------------|------------------|------|----------------------------------------------------------|-------------------------|------------------------------------------------------|--------------|-----------------|-----------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Sit | e Name                  | MB7               | -                |      |                                                          | <u></u>                 |                                                      | m.,          | Falzono         | 5/A             | Keuns          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Pr  | oject #<br>ill #        | <u>05-0007</u>    |                  |      | Date<br>Weather/Temperature<br>Time of Arrival/Departure |                         | 7/28                                                 |              |                 |                 |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|     | Bample Beq.<br>Well No. | Well<br>Depth     | Well<br>Diameter | DTP  | Product<br>Thickness                                     | Depth to<br>Groundwater | Sampling<br>Depth*                                   | <b>D</b> .O. | Purge<br>Method | Purge<br>Amount | Sample<br>Time | Öbservations<br>Color/Sheen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
|     | SBIY                    | 25.5              | Ч"               | NP   | -                                                        | 13.72                   | SUDUE<br>DEPTH,<br>20-25                             |              | SURGE<br>BLULK  |                 | gonin          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|     |                         |                   |                  |      |                                                          |                         | SURGE<br>0x014<br>20'-15'                            |              | SAA             |                 | gomin          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|     |                         |                   |                  |      |                                                          | 25.5'                   |                                                      |              |                 | 30541           |                | grossilts Final<br>in water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
|     |                         |                   | 1                |      |                                                          | 23'                     |                                                      |              |                 |                 | 11:13:05       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|     |                         |                   |                  |      |                                                          | <b>ୖ</b> ୶୰ୖ            |                                                      |              |                 |                 | 11:13:30       | L. L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
|     |                         |                   |                  | l. I | . 1                                                      | 18'                     |                                                      |              |                 | ÷.              | 11:17:00       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|     |                         |                   | •                | 1    |                                                          | 16.00                   |                                                      |              |                 | 1               | 11:17:05       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|     | ······                  |                   | 1                |      |                                                          |                         |                                                      |              |                 |                 |                | V. scool rocover                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|     |                         |                   |                  |      |                                                          |                         |                                                      |              |                 |                 |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|     | 1                       |                   |                  |      | · ·                                                      |                         |                                                      |              |                 |                 | :              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|     |                         |                   | 1                | ÷.,  |                                                          |                         |                                                      |              |                 | 2 - 4 - 4       |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|     |                         |                   | 1                |      |                                                          |                         |                                                      |              |                 |                 |                | and a second sec |  |
| •   | Depth at time of        | sample collection | on.              |      |                                                          |                         |                                                      |              |                 | <u>.</u>        |                | ð".<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| Ce  | mments:                 | <u></u>           |                  |      |                                                          |                         |                                                      |              |                 |                 |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|     |                         |                   |                  |      |                                                          |                         |                                                      |              |                 |                 |                | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |

4

w. Dovelopment area

Field Observation Log Groundwater Sampling Record

| Site Name               | p                  | BT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |                      |                                                          |                    | Technician(s) | D.                        | D'An                    | nico/M         | Falzaso                               |
|-------------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----------------------|----------------------------------------------------------|--------------------|---------------|---------------------------|-------------------------|----------------|---------------------------------------|
| Project #               | C                  | 59-000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 507 |                      |                                                          |                    |               | 4                         | 1                       |                | 3i -                                  |
| Spill #                 |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                      | Date<br>Weather/Temperature<br>Time of Arrival/Departure |                    | <u> </u>      |                           |                         |                |                                       |
| Sample Seq.<br>Well No. | Well<br>Depth      | Well<br>Diameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | DTP | Product<br>Thickness | Depth to<br>Groundwater                                  | Sampling<br>Depth* | D.O.          | Purge<br>Method           | <b>Purg</b> e<br>Amount | Sample<br>Time | Observations<br>Color/Sheen           |
| SB-19                   | 20.20              | 4"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NP  | HEAVY<br>SHEEN       | 7.42                                                     |                    |               | Sulle<br>BLUCF<br>7.42-12 |                         | 20 mm          |                                       |
|                         |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                      |                                                          |                    |               | Sque Biart<br>12-16'      |                         | gomin          |                                       |
|                         |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                      |                                                          |                    |               | Supled<br>BLOCK           |                         | 2000           |                                       |
|                         |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                      |                                                          |                    |               |                           |                         |                | hator cloor -1<br>slight shoon        |
|                         |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                      |                                                          |                    |               |                           |                         |                | pitro odar<br>black(sta)              |
|                         |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                      |                                                          |                    |               |                           | · .                     |                | Scanner in<br>Suspension              |
|                         |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -   |                      | 11.00'                                                   |                    |               | 11.00                     | ļ                       | 9.25           | to Remove,<br>All LIQUID              |
|                         |                    | e de la composition de la comp | ÷   |                      | 10.00                                                    |                    |               |                           |                         | 9:92:12        | ~ 20+30 th                            |
|                         |                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |                      | 9.00'                                                    |                    |               |                           |                         | a : 2 s . 25   | U.Scool                               |
| Ŧ                       |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                      |                                                          |                    |               |                           |                         | :              | recovers                              |
|                         |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                      |                                                          |                    |               | ÷                         | 1 I                     |                |                                       |
|                         |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                      |                                                          |                    |               |                           |                         |                |                                       |
| * Depth at time o       | f sample collectio | n.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |                      |                                                          |                    |               |                           |                         | :              | 8                                     |
| Comments:               |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                      |                                                          |                    |               |                           |                         |                | · · · · · · · · · · · · · · · · · · · |
|                         |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                      |                                                          |                    |               |                           |                         |                | ۲                                     |

ł

**....** 

|                         |                |                  |       |                      | Grou                    | Field Observa<br>Indwater Sam | ition Log<br>pling Record               | đ               | $\cup$ , $\rho$ e | ue l'épriet          | Dater                             |
|-------------------------|----------------|------------------|-------|----------------------|-------------------------|-------------------------------|-----------------------------------------|-----------------|-------------------|----------------------|-----------------------------------|
| Site Name               |                | MBT              |       |                      |                         |                               | Technician(s)                           | ·p              | ,Ealzon           | 10                   |                                   |
| Project #               | G              | 1-000            | 507   |                      |                         |                               |                                         |                 | 1                 |                      | j:<br>                            |
| Spill #                 |                |                  |       | 1                    |                         | Weather<br>Time of Arr        | Date<br>r/Temperature<br>tval/Departure | <u> </u>        | 791 <u> </u>      |                      |                                   |
| Sample Beq.<br>Well No. | Well<br>Depth  | Well<br>Diameter | DTP   | Product<br>Thickness | Depth to<br>Groundwater | Sempling<br>Depth*            | D.O.                                    | Purge<br>Method | Purge<br>Amount   | Sample<br>Time       | Observations<br>Color/Sheen       |
| SS-17                   | "Dob           | <i>५″</i>        | 12.16 | 4.44                 | 16.60                   |                               |                                         | SURGE BLOCK 16  | -20'              | うしょう                 | THICK PRODUCT                     |
|                         |                |                  |       |                      |                         |                               |                                         | Sulle<br>BLOCK  | . 1               | acmin                |                                   |
| :                       |                |                  |       |                      |                         |                               |                                         |                 |                   | 4.                   | TO REMOVE SEDMONT                 |
| •                       | ·              |                  |       |                      | 16,00                   |                               |                                         |                 | •                 | a:46:36              | und total lizuids<br>~20-305clini |
| • 1                     |                |                  |       |                      | 15.00'                  |                               |                                         |                 |                   | 2:48:05              | 1                                 |
|                         |                |                  | ļ     |                      | 14.00                   |                               |                                         |                 |                   | નેઃ <b>ડે</b> ઇઃ ડેગ |                                   |
| -                       |                |                  |       |                      | 13.001                  |                               |                                         |                 |                   | りここう                 | RUZDOR                            |
| ······                  | 1              | 1                | A. S. |                      | ·                       |                               |                                         |                 |                   |                      |                                   |
|                         |                |                  |       |                      |                         | -                             |                                         |                 |                   |                      |                                   |
| 2                       | 1              | -                |       |                      |                         |                               |                                         |                 |                   | 4                    |                                   |
|                         |                |                  | · ·   |                      |                         |                               |                                         |                 |                   | 4<br>                |                                   |
| ,                       |                | -                |       |                      |                         |                               |                                         | ÷               |                   |                      |                                   |
| * Depth at time of      | sample collect | ion.             |       |                      |                         |                               |                                         |                 |                   |                      |                                   |
| Comments:               |                |                  |       |                      |                         |                               |                                         |                 |                   |                      |                                   |
|                         |                |                  |       |                      |                         |                               |                                         |                 |                   |                      |                                   |

W. Douclopmant Pata 8-18 Mobil Terminal (Pinto Property) 58-16 8-18-99 DTP TOTAL DEPTH DTW H.0 115AVY SHEEN 12.23 13.83 1.6 ARRIVED @ 8:00, CONDUCTED HASP MAGETING PRODUCT THICKNESS (Et) : < . 1 W/ SJB - SIGNED ITASP. OBTAINED HOT WORK MINTERVALS DURATION (MIN) ft /min PERMIT - DISCUSSED SCOPE W/ MF 30 min 41.6 (30 min SET-UP FQUIP PINTO PROPERTY TO SURGE BLOCK INTERVALS (Ft) START WELL DEVELOPMENT @ SB-15 . INSTALLED PADS 13.83 - 12.23 9:55A 10115 @ LF- 7 & LF-8 . DECON AUGERS. 58-15 DTP DTW TOTAL DEPTH HOD COLUMN HEIGHT COMPLETED SETIG DEVELOPMENT @ 10:30 3.59 10.71 12.13 14.30 PRODUCT THICKNESS (Ft) : 1.47 58-20 DTP DTW TOTAL DEPTY HEIGHT 30 ~1.8/15min 11.44 13.87 14.55 a a interaction and the state and the PRODUCT THICKNESS (CF) \$ 2.43 INTERVALS (24) START FINISH \* INTERVALS DURATION (MW) ft Imin 14.30 - 17.50 (1.8') 8:55 A 9:10 A 30 min 15-1-12 12.50 - 10.71 (1.79') 9:11 A 9:26 A INTERVALS (Ft) START EINISH \_\_COMPLETED 58-15 DEVELOPMENT @ 9:30 AM 14.55 - 13.05 11:30 1145 COMPLETED SB-20 DEVELOPMENT @ 12:15 LUNCH: 17:20 - 12:50

| 8-18                                  |                                       |                     | a Daclopment Pater           |
|---------------------------------------|---------------------------------------|---------------------|------------------------------|
| _58-28(PRo_case) ~ 3' AB              | VE GRADE)                             | WELL T              | SEVELOPMENT - PINTO PROPERTY |
| DTP DTW TOTAL_DEPTH                   | HO COLUMN NEIGHT                      |                     | 8-18-99                      |
| N/A 5.98 19.20                        | 13.22                                 |                     |                              |
| PRODUCT THICKNESS (CA) & NA           |                                       | WATER               | A SEDMENT QUALITY            |
| NITERVALS DURATION (MIN)              | ft/min                                | (Follow             | UNG DEFELSENGNT              |
| 3 45                                  | 4.5 / 15min                           |                     | Beleloment J                 |
|                                       |                                       |                     |                              |
| INTERVALS (CH) START                  |                                       | WELL IDENTIFICATIO  | N WATER SEDIMENT             |
| 19.20 - 14:70                         | FINISH<br>IM · U C                    |                     |                              |
|                                       |                                       | 58715               | PRODUCT PRESENT              |
|                                       |                                       |                     |                              |
| _10, + _ J. 18 11.00                  |                                       | RECOURAY RATE :     |                              |
| COMPLETED SB-28 DEVELOPME             | r_@11:30                              | .58-16              | HEAVY SREEN - BLACK          |
|                                       |                                       | •                   | - TAR-LIKE SUBSERVICE        |
| <u>_58-31</u>                         |                                       | RECOVERY RATE :     |                              |
| DEF DEW TOTAL DEPTH                   | - HO COLUMN HEIGHT                    | 58-20               | PRODULT PRESENT              |
| N/A 10.55 14.70                       | 4.15                                  |                     |                              |
| -PRODUCT THICKNESS (CH) : N/A         | · · · · · · · · · · · · · · · · · · · | RECOVERY RAFE :     |                              |
| WERKALS DURATION (MIN)                | ft/min                                | 58-28               | CLEAR                        |
| 2 30 min                              | ~2/min                                |                     |                              |
|                                       |                                       | RECOVERY PARE :     |                              |
| INTERVALS (Ft) START                  |                                       | Ka                  |                              |
| 14.7 + 12.7                           | EINISH                                | 10- 31              |                              |
|                                       |                                       |                     |                              |
|                                       |                                       | RECOVERY RATE:      |                              |
| · · · · · · · · · · · · · · · · · · · |                                       |                     |                              |
| (OMPLETE) SB-31 DEVELOPMEN            | @1:30                                 | SEDIMENT QUALITIES  | X RECOVERY RATES WILL BE     |
|                                       |                                       | . DETERMINED DURING | JET PUMPING / VAC            |

| 8-18                                  |                                       |                     | a Daclopment Pater           |
|---------------------------------------|---------------------------------------|---------------------|------------------------------|
| _58-28(PRo_case) ~ 3' AB              | VE GRADE)                             | WELL T              | SEVELOPMENT - PINTO PROPERTY |
| DTP DTW TOTAL_DEPTH                   | HO COLUMN NEIGHT                      |                     | 8-18-99                      |
| N/A 5.98 19.20                        | 13.22                                 |                     |                              |
| PRODUCT THICKNESS (CA) & NA           |                                       | WATER               | A SEDMENT QUALITY            |
| NITERVALS DURATION (MIN)              | ft/min                                | (Follow             | UNG DEFELSENGNT              |
| 3 45                                  | 4.5 / 15min                           |                     | Beleloment                   |
|                                       |                                       |                     |                              |
| INTERVALS (CH) START                  |                                       | WELL IDENTIFICATIO  | N WATER SEDIMENT             |
| 19.20 - 14:70                         | FINISH<br>IM · U C                    |                     |                              |
|                                       |                                       | 58715               | PRODUCT PRESENT              |
|                                       |                                       |                     |                              |
| _10, + _ J. 18 11.00                  |                                       | RECOURAY RATE :     |                              |
| COMPLETED SB-28 DEVELOPME             | r_@11:30                              | .58-16              | HEAVY SREEN - BLACK          |
|                                       |                                       | •                   | - TAR-LIKE SUBSERVICE        |
| <u>_58-31</u>                         |                                       | RECOVERY RATE :     |                              |
| DEF DEW TOTAL DEPTH                   | - HO COLUMN HEIGHT                    | 58-20               | PRODULT PRESENT              |
| N/A 10.55 14.70                       | 4.15                                  |                     |                              |
| -PRODUCT THICKNESS (CH) : N/A         | · · · · · · · · · · · · · · · · · · · | RECOVERY RAFE :     |                              |
| WERKALS DURATION (MIN)                | ft/min                                | 58-28               | CLEAR                        |
| 2 30 min                              | ~2/min                                |                     |                              |
|                                       |                                       | RECOVERY PARE :     |                              |
| INTERVALS (Ft) START                  |                                       | Ka                  |                              |
| 14.7 + 12.7                           | EINISH                                | 10- 31              |                              |
|                                       |                                       |                     |                              |
|                                       |                                       | RECOVERY RATE:      |                              |
| · · · · · · · · · · · · · · · · · · · |                                       |                     |                              |
| (OMPLETE) SB-31 DEVELOPMEN            | @1:30                                 | SEDIMENT QUALITIES  | X RECOVERY RATES WILL BE     |
|                                       |                                       | . DETERMINED DURING | JET PUMPING / VAC            |

| 8-18                                           | W. Desclepmet Dat                                            |
|------------------------------------------------|--------------------------------------------------------------|
| MOBIL TERMINAL - UPPER TANK FARM               | LF-7                                                         |
| (DISADSAL _AREA)                               | DTP DTW TOTAL DEPTH HO COLUMN NELO                           |
| 8-17-77                                        | N/A 27.0 41.85                                               |
|                                                | PRODUCT THICENESS : N/A                                      |
| UP DATED HOT WARK PERMIT @1:00                 | * INTERVALS DURATION (MIN) FE/min                            |
| WELL DEVELOPMENT (surge block)                 | 3 45 5 15 min                                                |
|                                                |                                                              |
| LF-6                                           | INTERVALS (Ft) . START EINISH                                |
| DTP DIW TOTAL DEPTH HOO COLUMN HEIGHT          | 41.85 - 36-85 2:50 3:05                                      |
| ND 56.75 43.00 16.25                           | 36.85 - 31.85 3:05 8:20                                      |
| - FRODUCT THICENESS : N/A                      | 31.85 7 27.0 3:20 3:65                                       |
| H WERVALS DURATION (MIN) Ft/min                |                                                              |
|                                                |                                                              |
|                                                | COMPLETED LF-7 DEVELOPMENT Q 3:40                            |
| INTERVALS LET START FINISH                     |                                                              |
|                                                | WATER QUALITY : CLEAR                                        |
| 35 0 + 31 0                                    | SEDIMENT QUALITY: Gray, F. Sanda Silt. (5+1) to SHEEN SLUGAT |
| 31.0 7 16 75                                   | RATE OF RECARDE :                                            |
|                                                |                                                              |
|                                                |                                                              |
| COMPLETED DEVELORMENT @ LE-1 @ 2:40            |                                                              |
|                                                |                                                              |
| WATER QUALITY CLEAP                            |                                                              |
| SEDIMENT ANALY & C C - C - C - C               |                                                              |
| RATE OF RETHARGE: Strand & Sill (SAT) NO SHEAN |                                                              |
|                                                |                                                              |

| 8-18                                                                   | 6 Development Dur |
|------------------------------------------------------------------------|-------------------|
|                                                                        |                   |
| LF-8<br>DTP DTW TOTAL DEPTH HO COLUMN HEIGHT                           |                   |
| ND 25.78 40.38 14.6                                                    |                   |
| -PRODUCT THICKNESS : N/A<br>- INTERVALS DURATION (MIN) Lt / mits       |                   |
| 40 - 3.5/10 min                                                        |                   |
| INTERVALS (FY) START FINISH                                            |                   |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                  |                   |
| 33.38 - 29.88 4:10 4:10<br>29.88 - 25.78 4:10 4:20                     |                   |
| COMPLETED LE-8 DEVELOPMENT @ 41 70                                     |                   |
|                                                                        |                   |
| WATER QUALITY: CLEAR NO SHEEN - SLIGHT<br>ODOR<br>SEDIMENT QUALITY: ND |                   |
| RATE OF RECHAROE:                                                      |                   |
| DELON OPS COMMENCED @' 4:30                                            |                   |
|                                                                        |                   |
|                                                                        |                   |
|                                                                        |                   |

|                         |                   |                  |                 |                                       | đ                       | Pull                     | SE DAT.                                 | AFTER W DOUGLE    |                     |                |                                              |
|-------------------------|-------------------|------------------|-----------------|---------------------------------------|-------------------------|--------------------------|-----------------------------------------|-------------------|---------------------|----------------|----------------------------------------------|
| ite Name                | MOBil             | 310              | 010             |                                       |                         |                          | Technician(o)                           | KEEK              | JE                  |                |                                              |
| roject #                | 09-0              | 0000             | 7·              |                                       | _                       | -                        |                                         |                   | 1                   |                | 3                                            |
| pill #                  | , Ř. 11           | •                |                 | i                                     | •<br>•                  | Weather<br>Time of Arr   | Date<br>r/Temperature<br>tval/Departure | 8/2<br>RAIN       | 0/89<br>- RAin<br>1 | - RAi          |                                              |
| Sample Beq.<br>Well No. | Weil<br>Depth     | Weil<br>Diameter | DTP             | Product<br>Thickness                  | Depth to<br>Groundwater | Sampling<br>Depth*       | D.O.                                    | Purge<br>Method   | Furge               | Sample<br>Time | Observations<br>Color/Sheen                  |
| LF-3                    | 37.50             | 4"               |                 |                                       | 24.93                   |                          |                                         | SUB<br>JET        | 40 GAL              |                | DARK GREY WATER<br>OLEALING AFFER<br>25 GALI |
|                         |                   |                  |                 |                                       | 35,18                   |                          |                                         |                   |                     | 11:35          |                                              |
|                         |                   |                  |                 |                                       | 25.12                   |                          |                                         |                   |                     | 11:42          |                                              |
|                         |                   |                  |                 |                                       | 25.09                   |                          |                                         |                   |                     | 11:47          | i i                                          |
| •                       |                   |                  |                 |                                       | 25.05                   |                          |                                         |                   |                     | 11:52          |                                              |
|                         |                   |                  |                 |                                       | 25.02                   |                          |                                         | ( <b>b</b> ) - 01 | Į.                  | 12:04          |                                              |
|                         |                   | 1 - L            | •••1 •<br>• • • | 1                                     |                         |                          |                                         |                   |                     |                |                                              |
|                         |                   |                  |                 |                                       |                         |                          |                                         |                   |                     |                |                                              |
|                         |                   | ·                |                 | · · · · · · · · · · · · · · · · · · · |                         |                          |                                         |                   |                     | ·              |                                              |
|                         |                   |                  |                 |                                       |                         |                          |                                         |                   |                     |                | 1                                            |
|                         |                   |                  |                 |                                       |                         |                          |                                         |                   | : v                 |                |                                              |
| •                       |                   |                  |                 |                                       |                         |                          |                                         |                   |                     |                |                                              |
| Depth at time of        | sample collection | n.               |                 |                                       |                         | L <u>an at 2011</u> 2013 | lone constan                            |                   |                     |                |                                              |
| , (AT <b>UNICITUI</b> ) |                   |                  | , Î             |                                       |                         |                          |                                         |                   |                     |                |                                              |
|                         |                   |                  | ÷ :             |                                       |                         |                          |                                         | •                 |                     |                |                                              |

1

|                         |                   |                                                                                                                                                                                                                                     |            |                       | Grou                    | Field Observa<br>Indwater Sam | ition Log                               | t.∧<br>d        | 11-1- 1-11-1  | 12 Well Belozosmely |                                       |
|-------------------------|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------------------|-------------------------|-------------------------------|-----------------------------------------|-----------------|---------------|---------------------|---------------------------------------|
| Site Name               | MOBI              | L 31                                                                                                                                                                                                                                | 1010       |                       |                         |                               | Technician(s)                           | KEEN            | IE-           |                     | ļ.                                    |
| Project #               | 89-0              | 0007                                                                                                                                                                                                                                | <b>7</b> . |                       |                         |                               |                                         |                 |               |                     | N                                     |
| Spili #                 |                   |                                                                                                                                                                                                                                     | ; ! .      | i                     | •                       | Weather<br>Time of Arr        | Date<br>r/Temperature<br>tval/Departure | RAI             | 199<br>N<br>1 |                     |                                       |
| Sample Beq.<br>Well No. | Well<br>Depth     | Well<br>Diameter                                                                                                                                                                                                                    | DTP        | Product<br>Thickness  | Depth to<br>Groundwater | Sampling<br>Depth*            | D.O.                                    | Purge<br>Method | Purge         | Sample<br>Time      | Observations<br>Calor/Sheen           |
| LF-4                    | 34.70             | 4"                                                                                                                                                                                                                                  | 22.52      |                       | 22.53                   |                               |                                         | SUB<br>JET      | 50 Gol        |                     | DARK GREY WATER.<br>CLEARING AFTER 35 |
|                         |                   |                                                                                                                                                                                                                                     |            |                       | 24.63                   |                               |                                         |                 | 12:14         |                     | GALLONS                               |
|                         |                   |                                                                                                                                                                                                                                     |            |                       | 22.55                   |                               |                                         |                 | 12:18         |                     |                                       |
|                         |                   |                                                                                                                                                                                                                                     |            |                       | 32.54                   |                               |                                         |                 | 12:22         |                     | Ì                                     |
| •                       |                   |                                                                                                                                                                                                                                     |            |                       | 22.53                   |                               |                                         |                 | 12:29         |                     |                                       |
|                         |                   |                                                                                                                                                                                                                                     |            |                       | ι.                      | į                             |                                         | r <b>a</b> s a  | ļ             |                     |                                       |
|                         |                   | 1                                                                                                                                                                                                                                   |            |                       |                         |                               |                                         |                 |               |                     |                                       |
|                         |                   | н                                                                                                                                                                                                                                   |            |                       |                         |                               |                                         |                 |               |                     |                                       |
|                         |                   |                                                                                                                                                                                                                                     |            |                       |                         |                               |                                         |                 |               |                     |                                       |
|                         |                   |                                                                                                                                                                                                                                     |            |                       |                         |                               |                                         |                 |               |                     |                                       |
|                         |                   |                                                                                                                                                                                                                                     |            |                       |                         |                               |                                         |                 |               |                     |                                       |
| ,                       |                   |                                                                                                                                                                                                                                     |            |                       |                         |                               | -                                       |                 |               |                     |                                       |
| • Depth at time of      | sample collection | A second a s<br>A second a se |            | Latination are point. |                         |                               |                                         |                 |               |                     |                                       |
| Contraction;            | <u></u>           |                                                                                                                                                                                                                                     | .ī. '      |                       |                         |                               |                                         | <u></u>         | •<br>•        |                     | · · · · ·                             |
|                         | <b></b>           | 1                                                                                                                                                                                                                                   | Ŧ          |                       |                         |                               |                                         |                 | •             |                     |                                       |

|                         |                    |                  | the design of the | we contraction the second s |                         |                                   |                                         |                 |                  |                |                                      |
|-------------------------|--------------------|------------------|-------------------|-----------------------------------------------------------------------------------------------------------------|-------------------------|-----------------------------------|-----------------------------------------|-----------------|------------------|----------------|--------------------------------------|
| te Name                 | MOBIC              | - 31             | 010               |                                                                                                                 |                         |                                   | Technician()                            | KEE             | NE               |                | · · ·                                |
| oject #                 | 09-0               | 0007             | •                 |                                                                                                                 |                         |                                   | · · _                                   |                 | 1                |                | •                                    |
|                         | 1 H. H             |                  | 11.               | 1                                                                                                               |                         | Weathe<br>Time of Arr             | Date<br>r/Temperature<br>ival/Departure | 8/20<br>R       | 199,<br>Ain<br>1 |                |                                      |
| Sample Beq.<br>Well No. | Well<br>Depth      | Well<br>Diameter | DTP               | Product<br>Thickness                                                                                            | Depth to<br>Groundwater | Sampling<br>Depth*                | D.O.                                    | Purge<br>Method | Purge<br>Amount  | Sample<br>Time | Observations<br>Color/Sheen          |
| LF5                     | .37.90             | 4"               |                   |                                                                                                                 | 26.36                   |                                   |                                         | ЅЦІЗ<br>ЈЕТ     | 35 GAL<br>DRY    |                | HEAVY GREY WATER.<br>DID NOT CLEAR U |
|                         |                    |                  |                   |                                                                                                                 | 27.76                   |                                   |                                         |                 |                  | 12:55          | ATTEMP TO BAIL                       |
|                         |                    |                  |                   |                                                                                                                 | 26.60                   |                                   |                                         |                 |                  | 1:00           | DUE TO RAPID                         |
| •                       |                    |                  |                   |                                                                                                                 | 26.52                   |                                   |                                         |                 |                  | 1:05           | RECHARGE                             |
|                         |                    |                  |                   |                                                                                                                 | 26.51                   |                                   |                                         |                 |                  | 1:15           |                                      |
|                         |                    |                  |                   |                                                                                                                 |                         | !                                 |                                         | 5 <b>4</b> 5 4  | l.               |                |                                      |
|                         |                    | 5                |                   |                                                                                                                 |                         |                                   |                                         |                 |                  |                |                                      |
| ·                       |                    | ۰.               |                   |                                                                                                                 |                         |                                   |                                         |                 |                  | ÷              |                                      |
|                         |                    |                  |                   |                                                                                                                 |                         |                                   |                                         |                 |                  |                |                                      |
|                         |                    |                  |                   |                                                                                                                 |                         |                                   |                                         |                 |                  |                |                                      |
|                         |                    |                  |                   |                                                                                                                 |                         |                                   |                                         |                 | di s             |                |                                      |
|                         |                    |                  |                   |                                                                                                                 |                         |                                   |                                         |                 |                  |                |                                      |
| Depth at time of        | i sample collectio | n                |                   |                                                                                                                 |                         | , agos 2, an ann a sugar ann an s |                                         |                 | •                |                |                                      |
|                         |                    |                  | ι.                |                                                                                                                 |                         |                                   |                                         |                 |                  |                |                                      |
|                         |                    |                  | : :               | •                                                                                                               |                         |                                   |                                         |                 |                  |                |                                      |

|                         | Field Observation Log<br>Groundwater Sampling Record |                  |                 |                                       |                         |                                |                                         |                 |                        |                |                                          |  |  |  |
|-------------------------|------------------------------------------------------|------------------|-----------------|---------------------------------------|-------------------------|--------------------------------|-----------------------------------------|-----------------|------------------------|----------------|------------------------------------------|--|--|--|
| ilte Name               | MOBIL                                                | 310              | 10              |                                       |                         |                                | Technician(s)                           | KEED            | NE                     |                | · · ·                                    |  |  |  |
| 'roject #               | 09-                                                  | 0000             | 7               |                                       |                         |                                | · • .                                   |                 | 1                      |                | ;<br>;;                                  |  |  |  |
| ipill #                 | · · · · ·                                            |                  |                 | i .                                   |                         | Weather<br>Time of Arr         | Date<br>r/Temperature<br>tval/Departure | 8/20<br>        | 199<br>i N<br>1        | •<br>• •       |                                          |  |  |  |
| Sample Beq.<br>Well No. | Well<br>Depth                                        | Well<br>Diameter | DTP             | Product<br>Thickness                  | Depth to<br>Groundwater | Sampling<br>Depth <sup>a</sup> | <b>D.O</b> .                            | Furge<br>Method | Purge<br>Amount        | Sample<br>Time | Observations<br>Color/Sheen              |  |  |  |
| 1F6                     | 39.90                                                | 4"               | 5               | (                                     | 27.06                   |                                |                                         | SUB<br>JET      | 50GAL                  |                | HEAVY GREY WATER<br>CLEARED AFTER 20 GAL |  |  |  |
|                         |                                                      |                  |                 |                                       | 27.12                   |                                |                                         |                 |                        | 1:28           |                                          |  |  |  |
|                         |                                                      |                  |                 |                                       | 27.09                   |                                |                                         |                 |                        | 1:34           |                                          |  |  |  |
|                         | ·                                                    |                  |                 |                                       | 27.05                   |                                |                                         |                 |                        | 1:45           | ŕ                                        |  |  |  |
| •                       |                                                      |                  |                 | •                                     |                         |                                |                                         |                 |                        | •              |                                          |  |  |  |
|                         |                                                      |                  |                 | 11 1 11                               |                         | 1                              | E . P                                   | · • •           | l.                     |                |                                          |  |  |  |
|                         |                                                      | 11               |                 |                                       |                         |                                |                                         |                 |                        |                |                                          |  |  |  |
| ·                       |                                                      | · .              |                 |                                       |                         |                                |                                         |                 |                        |                |                                          |  |  |  |
|                         |                                                      |                  |                 |                                       |                         |                                |                                         |                 |                        |                | 3                                        |  |  |  |
|                         |                                                      |                  |                 |                                       |                         |                                |                                         |                 |                        |                |                                          |  |  |  |
|                         |                                                      |                  |                 |                                       |                         |                                |                                         |                 |                        |                |                                          |  |  |  |
|                         |                                                      |                  |                 |                                       |                         |                                |                                         |                 |                        |                |                                          |  |  |  |
| Depth at time of        | sample collectio                                     | m.               |                 |                                       |                         |                                |                                         |                 | <u>Andrean and and</u> |                |                                          |  |  |  |
| Conwnenti:              |                                                      |                  | 1 <sup>10</sup> | · · · · · · · · · · · · · · · · · · · |                         |                                |                                         |                 |                        |                |                                          |  |  |  |
|                         |                                                      | 1                | : :             |                                       | :                       | : :                            |                                         |                 |                        |                |                                          |  |  |  |

•

| •                          |                  |                  |                                              |                      | Gro                     | Field Observs<br>undwater Sam | ntion Log<br>Apling Recor               | ક્રાટ્ટ(<br>d   | 26 (11)713    | AFTCQ C        | Nell Develedment                     |
|----------------------------|------------------|------------------|----------------------------------------------|----------------------|-------------------------|-------------------------------|-----------------------------------------|-----------------|---------------|----------------|--------------------------------------|
| Site Name                  | MOBI             | L 31             | 010                                          |                      |                         |                               | Technician(s)                           | KEE             | NE            |                |                                      |
| Project #                  | 09-00            | 0007             | •                                            |                      |                         |                               |                                         |                 | - 1           |                | i<br>i                               |
| Spill #                    | · · · ·          |                  | 11.                                          | i .                  |                         | Weathe<br>Time of Arr         | Date<br>r/Temperature<br>ival/Departure | 816<br>Rain     | 1             |                |                                      |
| Sample Seq.<br>Well No.    | Well<br>Depth    | Well<br>Diameter | DTP                                          | Product<br>Thickness | Depth to<br>Groundwater | Sampling<br>Depth*            | D.O.                                    | Purge<br>Method | Purge         | Sample<br>Time | Observations<br>Color/Sheen          |
| LF 7                       | 41.60            | 4''              | <u>مــــــــــــــــــــــــــــــــــــ</u> | &                    | 27.16                   |                               |                                         | Suß<br>JET      | DRY<br>20 Gol |                | HEAVY GREY WATER<br>D'D NOT CLEAR UP |
|                            |                  |                  |                                              |                      | 32,27                   |                               |                                         |                 |               | 1:55           | AFTER 20 GAL.                        |
|                            |                  |                  |                                              |                      | 27.41                   |                               |                                         |                 |               | 2:04           |                                      |
|                            |                  |                  |                                              |                      | 27.02                   |                               |                                         |                 |               | 2:10           | i                                    |
| •                          |                  |                  |                                              |                      | 27.00                   |                               |                                         |                 |               | 2:15           |                                      |
|                            |                  |                  |                                              |                      | с<br>3                  | 1                             |                                         | t kj∞           |               |                |                                      |
|                            |                  |                  |                                              |                      |                         |                               | · · .                                   |                 |               |                |                                      |
| •                          |                  | 1                | :                                            |                      |                         |                               |                                         |                 |               | -              |                                      |
|                            |                  | ·                |                                              |                      |                         |                               |                                         |                 |               | ·              |                                      |
| ÷                          |                  |                  |                                              |                      |                         |                               |                                         |                 |               |                |                                      |
|                            |                  |                  |                                              |                      |                         |                               |                                         |                 |               |                |                                      |
|                            |                  |                  |                                              |                      |                         |                               |                                         |                 |               |                |                                      |
| Depth at time of Comments: | sample collectio | n.               |                                              |                      |                         |                               |                                         |                 | •             |                |                                      |
|                            |                  |                  | dr '                                         |                      |                         |                               |                                         |                 |               |                |                                      |
|                            |                  | ;                | ŧ.                                           |                      | :                       | · : 1                         |                                         | 5<br>-<br>      |               | ,              |                                      |

.

ł

ŧ

| Site Name                    | MOBIC               | - 310            | 10   |                      |                         | •                      | Technician()                            | KEE             | NE              |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
|------------------------------|---------------------|------------------|------|----------------------|-------------------------|------------------------|-----------------------------------------|-----------------|-----------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| Project #                    | 09-00               | 0001             | •    |                      |                         |                        |                                         |                 |                 |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
| Spill #                      | · · · ·             |                  |      | i                    |                         | Weather<br>Time of Arr | Date<br>r/Temperaturo<br>Ival/Departuro | 8/2019<br>RAIN  | <i>7 9</i><br>1 | · · ·          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1           |
| Bample Beq.<br>Well No.      | Well<br>Depth       | Well<br>Diameter | DTP  | Product<br>Thickness | Depth to<br>Groundwater | Sampling<br>Depth*     | D.O.                                    | Purge<br>Method | Furge<br>Amount | Sample<br>Time | Observations<br>Color/Sheen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |
| LF 8                         | 40.05               | 4 <sup>11</sup>  |      |                      | 25.22                   | -                      |                                         | SUB<br>JET      | 45 Gal          |                | HEAVY GREYWATED<br>CLEARED AFTER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2           |
|                              |                     |                  |      |                      | 25,91                   |                        |                                         |                 |                 | 2:30           | 35 Gallons,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |
|                              |                     |                  |      | •                    | 25.85                   |                        |                                         |                 |                 | 2:40           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1<br>1<br>1 |
|                              |                     |                  |      |                      | 25.85                   |                        |                                         |                 |                 | 2:50           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | i           |
|                              |                     | -                | •    |                      |                         |                        |                                         |                 |                 |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
|                              |                     | tes - t          |      |                      | i .                     | 1                      |                                         | ę star          | 1               |                | And the second s | NY DI       |
|                              |                     | 11               |      |                      |                         |                        | · · · ·                                 |                 |                 |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
|                              |                     | ۰.               |      |                      |                         |                        |                                         |                 |                 | :              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
|                              |                     |                  |      |                      |                         |                        |                                         |                 |                 | •              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | . !         |
| r                            |                     |                  |      |                      |                         |                        |                                         |                 |                 |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1           |
|                              |                     |                  |      |                      |                         |                        |                                         |                 |                 |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
| ١                            |                     |                  |      |                      |                         |                        |                                         |                 |                 |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
| * Depth at time<br>Comments: | of sample collectio | n                |      |                      |                         |                        |                                         |                 | ·               |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
|                              |                     |                  | 9 T. |                      |                         |                        |                                         |                 |                 |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |

1

|                                 |                  | ,                |       |                      | l<br>Grou               | Field Observa<br>Indwater Sam | tion Log<br>pling Recor                | ் அட்<br>b      | ese on                 | TA OF          | ice as process              |
|---------------------------------|------------------|------------------|-------|----------------------|-------------------------|-------------------------------|----------------------------------------|-----------------|------------------------|----------------|-----------------------------|
| Site Name                       | MBT              | PIN              | TO T  | roper                | 274                     |                               | Technician(s)                          | 51              | EVIS                   | JAR            | <u>ris</u>                  |
| Project #                       | 09-0             | 20007            | · .   | 02/03                | 3                       |                               |                                        |                 | 1                      |                | j.                          |
| Spin #~                         | SB               | 15               | <br>• | •                    |                         | Weather<br>Time of Arr        | Date<br>/Temperature<br> val/Departure | 80°5            | 19-99<br>WW7<br>CSC SF | <u>a</u>       | 11 15 -12 00-               |
| Sample Seq.<br>Well No.         | Well<br>Depth    | Well<br>Diameter | DTP   | Product<br>Thickness | Depth to<br>Groundwater | Sampling<br>Depth*            | D.O.                                   | Purge<br>Method | Purge<br>Amount        | Sample<br>Time | Observations<br>Color/Sheen |
| SBIS                            | 14.26            | 4"               | 10,70 | THIN                 | 10.73                   |                               |                                        | JET<br>SUB      | 54AL                   | 115            | GIVOUND WATER               |
| ARE                             | COVE             | RY               | 12.60 |                      | 17.51                   |                               |                                        |                 |                        | 1130           | DID NOT FILL HOSE.          |
|                                 |                  |                  | 12.02 |                      | 12.24                   |                               |                                        |                 |                        | 1145           | FINE SECTIMENT              |
|                                 |                  |                  | 11,50 |                      | 11,80                   |                               |                                        |                 |                        | 1200           | LAIDEN - WELL               |
|                                 |                  |                  |       |                      |                         |                               |                                        |                 |                        |                | Bottom Has                  |
|                                 |                  |                  |       | , i                  |                         | :                             |                                        |                 |                        |                | TSLACK, ANCLIFUR            |
|                                 |                  |                  |       |                      |                         |                               |                                        |                 |                        |                | CNYSTAL LIKG                |
|                                 |                  |                  |       |                      |                         |                               |                                        |                 |                        |                | 501 Lances                  |
|                                 |                  |                  |       |                      |                         |                               |                                        |                 |                        |                | PIECES)                     |
|                                 |                  |                  |       |                      |                         |                               |                                        |                 |                        |                |                             |
|                                 |                  |                  |       |                      |                         |                               |                                        |                 |                        |                |                             |
|                                 |                  |                  |       |                      |                         |                               |                                        |                 |                        |                |                             |
| * Depth at time of<br>Comments: | sample collectio | n.               |       |                      |                         |                               |                                        |                 |                        |                |                             |
|                                 |                  |                  |       |                      |                         |                               |                                        |                 |                        |                |                             |
|                                 |                  |                  |       |                      |                         |                               |                                        |                 |                        |                |                             |

|                         |                   |                  |          |                      | Gro                     | Field Observa<br>undwater Sam | tion Log<br>pling Recor                 | đ               | PURCH                | 10-77A         | AFTER LA Decelept.          |
|-------------------------|-------------------|------------------|----------|----------------------|-------------------------|-------------------------------|-----------------------------------------|-----------------|----------------------|----------------|-----------------------------|
| Site Name               | Mī                | 37/              | PINTO    | PROF                 | FETY                    | -                             | Technician(s)                           | $\leq$          | -<br>TEVEN           | HARR           | -1S                         |
| Project #               | 69                | - 00             | 0.7      |                      | ,                       | -                             | -                                       |                 |                      |                | ;i                          |
| Spill #                 | į ė. s            | SB               | - 28     | 1 ····               |                         | Weather<br>Time of Arr        | Data<br>r/Temperaturo<br>tval/Departuro | 8-<br>80<br>3   | 19-99<br>50N<br>2013 | 49             |                             |
| Sample Seq.<br>Well No. | Well<br>Depth     | Well<br>Diameter | DTP      | Product<br>Thickness | Depth to<br>Groundwater | Sampling<br>Depth*            | D.O.                                    | Purge<br>Method | Purge<br>Amount      | Sample<br>Time | Observations<br>Color/Sheen |
| SB-28                   | 19,50             | 4"               | Trace    | \$                   | 5.60                    |                               |                                         | 50B<br>JET      | ZHGNL                | 321            | RISER J'AGOVE               |
|                         |                   |                  |          |                      | 17,50                   |                               |                                         |                 |                      | 339            | Grade                       |
|                         |                   |                  |          |                      | 17.30                   |                               |                                         |                 |                      | 341            |                             |
|                         |                   |                  |          |                      | 01.11                   |                               |                                         |                 |                      | 343            | LIGHT ODOR,                 |
| •                       |                   |                  | ÷.       |                      | 16.90                   |                               |                                         |                 |                      | 3 <u>44</u>    | HZO MUDDY                   |
|                         |                   |                  |          |                      | 16.70                   | :                             |                                         | - <b>1</b>      | l.                   | 3.45           |                             |
|                         |                   | 5                |          |                      | 16.50                   |                               |                                         |                 |                      | 347            |                             |
| ·                       |                   | ۲.               |          |                      | 16.30                   |                               |                                         |                 |                      | 3.49           |                             |
|                         |                   | ·                |          |                      | 16:10                   |                               |                                         |                 |                      | 351            |                             |
|                         |                   |                  |          |                      |                         |                               |                                         |                 |                      |                |                             |
|                         |                   |                  |          |                      |                         |                               |                                         |                 |                      |                |                             |
|                         |                   |                  |          |                      |                         |                               |                                         |                 |                      |                |                             |
| * Depth at time of      | sample collection | n.               |          |                      |                         |                               |                                         |                 |                      |                | v t                         |
|                         |                   |                  | <i>.</i> |                      |                         |                               |                                         |                 | ······               |                |                             |
|                         |                   | :                | : •      |                      |                         |                               |                                         |                 | •                    |                |                             |

;

|                         | Field Observation Log HURGE (DATID PARTIE) C. Devectories<br>Groundwater Sampling Record |                  |       |                      |                         |                         |                                      |                  |                         |                |                             |  |  |
|-------------------------|------------------------------------------------------------------------------------------|------------------|-------|----------------------|-------------------------|-------------------------|--------------------------------------|------------------|-------------------------|----------------|-----------------------------|--|--|
| ite Name                | ME                                                                                       | 37/7             | PINTO | PROP                 | BRTY                    |                         | Technician(s)                        | $\leq$           | TEVEN                   | HA             | TIZIS                       |  |  |
| roject#                 | 09                                                                                       | - 000            | 07    | 02/0                 | 3                       |                         | ·                                    |                  |                         |                |                             |  |  |
| pill #                  | 5                                                                                        | B-2              | ð     | 1                    |                         | Weather<br>Time of Arri | Date<br>Temperaturo<br>val/Departuro | - 8<br>60<br>1 3 | 19-99<br>• SUN<br>• 1 7 | 03             |                             |  |  |
| Sample Beq.<br>Well No. | Well<br>Depth                                                                            | Well<br>Diameter | DTP   | Product<br>Thickness | Depth to<br>Groundwater | Sampling<br>Depth*      | D.O.                                 | Purge<br>Method  | Purge<br>Amount         | Sample<br>Time | Observations<br>Color/Sheen |  |  |
| 5B-20                   | 14.31                                                                                    | 4*               | 11.40 | CRUDE                | 13.46                   |                         |                                      | sub<br>Jet       | 4GAL                    | 130            | PRODUCT TOLACK,             |  |  |
|                         |                                                                                          |                  | 12.90 |                      | 13.23                   |                         |                                      |                  |                         | 150            | THICK, HZO                  |  |  |
|                         |                                                                                          |                  | 12,23 |                      | 12,33                   |                         |                                      |                  |                         | 153            | SECTIMENT LAIDEN            |  |  |
|                         |                                                                                          |                  | 12.00 |                      | 12.22                   |                         |                                      |                  |                         | 15]            | W/FINES (BLACK)             |  |  |
| •                       |                                                                                          |                  | 11.91 |                      | 12.21                   |                         |                                      |                  |                         | Z.3            | COLOR H, O                  |  |  |
|                         |                                                                                          |                  |       |                      |                         | 1                       |                                      | - <b>b</b> - F   |                         |                | CLOUDY                      |  |  |
|                         |                                                                                          | \$ 1             |       |                      |                         |                         |                                      |                  |                         |                |                             |  |  |
|                         |                                                                                          | 4 .              |       |                      |                         |                         |                                      |                  |                         |                |                             |  |  |
|                         |                                                                                          |                  |       |                      |                         |                         |                                      |                  |                         |                |                             |  |  |
|                         |                                                                                          |                  |       |                      |                         |                         |                                      |                  |                         |                | 1                           |  |  |
|                         |                                                                                          |                  | ·     |                      |                         |                         |                                      |                  |                         |                |                             |  |  |
| · · ·                   |                                                                                          |                  |       |                      |                         |                         |                                      |                  |                         |                |                             |  |  |
| Depth at time of        | sample collectio                                                                         | n.               |       |                      |                         |                         |                                      |                  |                         |                | 2                           |  |  |
| omments:                |                                                                                          |                  | ŵ     |                      |                         |                         |                                      |                  | ·····                   |                |                             |  |  |
|                         |                                                                                          | :                | : ;   |                      |                         |                         |                                      |                  |                         |                |                             |  |  |

;

|                                   |                   |                  |                 |                      | Grou                    | Field Observa<br>indwater Sam | tion Log<br>pling Recor                | ď               | PURC                                              | <br>           | D AFTORCOULD NELEZY                   |
|-----------------------------------|-------------------|------------------|-----------------|----------------------|-------------------------|-------------------------------|----------------------------------------|-----------------|---------------------------------------------------|----------------|---------------------------------------|
| Sile Name                         | _Mī               | 37/1             | PINTO           | Prof                 | ERTY                    |                               | Technician(s)                          | 5               | EVEN                                              | Hor            | rs in                                 |
| Project #                         | 09-               | - 000            | <u>27</u>       | 02/0                 | 53 '                    |                               |                                        |                 | 1                                                 |                |                                       |
| Spili #                           | · · · · ·         | <u>58 -</u>      | 16              | 1                    |                         | Weather<br>Time of Arri       | Date<br>Temperature/<br>val/Departure/ | <u> </u>        | <u>۲۹- ۹۹</u><br>لر <u>ن ک</u><br>۲ <u>۹ - ۹۶</u> | 3 0 4          |                                       |
| Sample Beq.<br>Well No.           | Well<br>Depth     | Well<br>Diameter | DTP             | Product<br>Thickness | Depth to<br>Groundwater | Sampling<br>Depth*            | D.O.                                   | Purge<br>Method | Purge<br>Amount                                   | Sample<br>Thme | Observations<br>Color/Sheen           |
| SBIE                              | 14.80             | 4 <sup>(t</sup>  | 12.21           | CRUDE                | 12.22                   |                               |                                        | 5013<br>JE7     | 12GAL                                             | 230            |                                       |
|                                   |                   |                  |                 |                      | 13.47                   |                               |                                        |                 |                                                   | 239            |                                       |
|                                   |                   |                  |                 |                      | 12.92                   |                               |                                        |                 |                                                   | 241            |                                       |
|                                   |                   |                  |                 |                      |                         |                               |                                        |                 | 3                                                 |                | Stop RECOVERY                         |
|                                   |                   |                  |                 |                      |                         |                               |                                        |                 |                                                   |                | TEST DUE TO                           |
|                                   |                   |                  |                 |                      |                         | 1                             |                                        | ke a            | Į.                                                |                | MACFUNCTIONIN                         |
|                                   |                   |                  |                 |                      |                         |                               |                                        |                 | 1                                                 |                | MIST GUAGES                           |
|                                   |                   | ۰.               |                 |                      | 13.25                   |                               |                                        |                 |                                                   | 3.02           |                                       |
|                                   |                   |                  |                 |                      | TZEC                    | -13,00                        |                                        |                 |                                                   | 了萼。            | PRODUCT DANK                          |
|                                   |                   |                  |                 |                      | 15.80                   |                               |                                        |                 |                                                   | 3              | STRONG ODOR                           |
|                                   |                   |                  |                 |                      | 12.40                   |                               |                                        |                 |                                                   | 3 09           | HOO MUDDY                             |
|                                   |                   |                  |                 |                      |                         |                               |                                        |                 |                                                   |                | SSDIMINT LAIDEN                       |
| • Depth at time of a<br>Comments: | numple collection |                  |                 |                      |                         |                               |                                        |                 | •                                                 |                | (Fines)                               |
| ·.                                |                   |                  | ,ē <sup>1</sup> |                      |                         |                               |                                        |                 |                                                   |                | · · · · · · · · · · · · · · · · · · · |
|                                   |                   | :                | : :             |                      | :                       |                               |                                        |                 |                                                   |                |                                       |

Ŧ

ŧ

ł

1

ł

+

|                         |                   | THE RECENTERS    |       |                      |                         |                       |                                         |                 |                 |                |                             |
|-------------------------|-------------------|------------------|-------|----------------------|-------------------------|-----------------------|-----------------------------------------|-----------------|-----------------|----------------|-----------------------------|
| te Name                 | M                 | 37/              | PINTO | Prop                 | ERTY_                   |                       | Technician(s)                           | 57              | WEN             | Har            | rris i                      |
| oject #                 | , 6               | 9-00             | 2007  |                      | <b>/</b>                |                       | ·                                       |                 |                 |                | 71                          |
| 138 #                   | 2 H. 12           | 5B-3             | 31    | i                    | · .                     | Weathe<br>Time of Arr | Date<br>r/Temperature<br>tval/Departure |                 | 19-99<br>500    | 4 30           |                             |
| iample Seq.<br>Well No. | Well<br>Depth     | Well<br>Diameter | DTP   | Product<br>Thickness | Depth to<br>Groundwater | Sampling<br>Depth*    | <b>D</b> .O.                            | Furge<br>Method | Furge<br>Amount | Sample<br>Time | Observations<br>Color/Sheen |
| B-31                    | 14.72             | 4"               | Ð     | Q                    | 10,50                   |                       |                                         | SUB<br>JET      |                 | 400            | HZO HEAVY                   |
|                         |                   |                  |       |                      | Peits                   | -                     |                                         |                 |                 | AR             | SEWAR ODOR                  |
|                         |                   |                  |       |                      | 12,15                   |                       |                                         |                 |                 | 419            | (GREY WATER?)               |
|                         |                   |                  |       |                      | 11.70                   |                       |                                         |                 |                 | 4 =            | i                           |
| •                       |                   |                  | 1     |                      | 11,50                   |                       |                                         |                 |                 | 43             |                             |
|                         |                   |                  |       |                      | 11.30                   | 1                     |                                         | - <b>6</b> - 14 | l.              | 4:22           |                             |
|                         |                   |                  |       |                      | 11.00                   |                       |                                         |                 |                 | 4              |                             |
|                         |                   | ۰.               |       |                      | 10.65                   |                       |                                         |                 |                 | 430            | •                           |
|                         |                   |                  |       |                      |                         |                       |                                         |                 |                 |                |                             |
|                         |                   |                  |       |                      |                         |                       |                                         |                 |                 |                |                             |
|                         |                   |                  |       |                      |                         |                       |                                         |                 | ан н.<br>1      |                |                             |
| ,                       |                   |                  |       |                      |                         |                       |                                         |                 |                 |                |                             |
| epth at time of         | sample collection | 1.               |       |                      |                         | L                     | L                                       |                 | L               |                |                             |
| mnents:                 | <u> </u>          |                  | ,ti   |                      |                         |                       |                                         |                 | •               |                |                             |
|                         |                   |                  | : ;   |                      | <del>-</del>            | :                     |                                         | · ·             |                 |                |                             |

•

F

1

1

;

ŧ

•

8 2 2 

|                                 | MBT/PINTO PRODERTY |                  |      |                      |                         | Field Observa<br>Indwater Sam | tion Log<br>pling Recor                 | đ                           | Puzza                   | 0,27,2 1       | AFTER CELL OFFICE           |
|---------------------------------|--------------------|------------------|------|----------------------|-------------------------|-------------------------------|-----------------------------------------|-----------------------------|-------------------------|----------------|-----------------------------|
| Site Name                       | MB                 | J/F              | NTO  | PROFFIC              | 2TY                     |                               | Technician(s)                           | Sn                          | NEN                     | JAR            | 25                          |
| Project #                       | 00                 | 2-000            | 2007 | 02/                  | 03                      |                               | · • •                                   |                             | 1                       |                |                             |
| Spill #                         | 19. 1              | 5B -             | 19   |                      |                         | Weather<br>Time of Arr        | Date<br>r/Temperature<br>ival/Departure | 8-<br>80<br>121             | 19-99<br>SUN<br>15-1-18 | 2;40           |                             |
| Sample Beq.<br>Well No.         | Well<br>Depth      | Well<br>Diameter | DTP  | Product<br>Thickness | Depth to<br>Groundwater | Sampling<br>Depth*            | D.O.                                    | Purge<br>Method             | <b>Furg</b> e<br>Amount | Sample<br>Time | Observations<br>Color/Sheen |
| SB-19                           | 19.15              | 4"               | Þ    |                      | 7,84                    |                               |                                         | <b>১</b> ৩৪<br>১ <b>ভ</b> T | 45Gal                   | 12 15          | CONT. RECOVERY              |
| REC                             | OVER               | <u> </u>         | θ    |                      | 14.32                   |                               |                                         |                             |                         | 1230           | H20 Full OFFINES            |
|                                 | /                  |                  |      |                      | 12,50                   |                               |                                         |                             |                         | 1235           | GREY PASTE AT               |
|                                 |                    |                  |      |                      | 10.50                   |                               |                                         |                             |                         | 1238           | well isottom                |
|                                 | ļ                  |                  |      |                      | 9,50                    |                               |                                         |                             |                         | 12 40          | HO CLEAR                    |
|                                 |                    |                  |      | 1, 1,                | 8.50                    | 1                             |                                         | k a                         | ļ                       | 1242           |                             |
|                                 |                    |                  |      |                      |                         |                               |                                         |                             |                         |                |                             |
|                                 |                    | · · ·            |      |                      |                         |                               |                                         |                             |                         |                |                             |
|                                 |                    |                  |      |                      |                         |                               |                                         |                             |                         |                |                             |
|                                 |                    |                  |      |                      |                         |                               |                                         |                             |                         |                |                             |
|                                 |                    |                  |      |                      |                         |                               |                                         |                             | 1 - A                   | -              |                             |
| •                               |                    |                  |      |                      |                         |                               |                                         |                             |                         |                |                             |
| • Depth at time of<br>Comments: | sample collection  | n.               |      |                      |                         |                               |                                         |                             | •                       |                |                             |
|                                 |                    |                  | ,÷   |                      |                         |                               |                                         |                             | i                       |                |                             |
|                                 |                    |                  | : '  |                      |                         |                               |                                         | •                           |                         |                |                             |

.

.

Ŧ

l

-

ł

4

# APPENDIX C

Aquifer Test Procedures and Analytical Results

and a second second second

and compared to the statement of

......

ա ապահում է ույս անհեն հր վերաստիներին մութուն է մաջիների։

en en en en angeler e real dete
### AQUIFER TEST PROCEDURES AND ANALYTICAL RESULTS

### **1.0 INTRODUCTION**

Slug tests were performed by GES October 14 and 15, 1999 at Mobil Oil Corporation's Buffalo Terminal (Site) in Buffalo, New York. Three monitoring wells were tested to characterize the hydraulic conductivities of the overburden aquifer beneath the Site. The slug tests were performed in accordance with GES' Field Standard Operating Procedure, Slug Tests (GES, 1992), as provided in the Work Plan for Continuation of the SFI (Roux Associates, Inc., 1999).

### 2.0 EQUIPMENT

The principal equipment used to conduct the slug tests included:

- a one-gallon capacity bailer (i.e., slug) used to displace a volume of water within the well being tested (the slug size was chosen based on well diameter, water column height, and the amount of displacement or drawdown required to adequately stress the aquifer);
- transducers that continuously measured the total hydraulic head above them when lowered below the water table (i.e., the height of the column of water above the transducer tip); and
- an In-Situ, Inc. Hermit<sup>®</sup> 1000C Data Logger, which records and stores the hydraulic head data from the transducers.

### **3.0 SLUG TEST PROCEDURES**

Prior to initiating each slug test, the total well depth and depth to water within the well were determined. The transducer was lowered into the well and secured at a depth that would not interfere with insertion and removal of the bailer.

Background data was measured using an oil/water interface probe to verify that static conditions existed within the well. Once the static level had been determined, the slug test was performed. A rising head test slug test was initiated by rapidly removing one gallon of water from the well, causing a decline in the water level within the well. The data logger then recorded the rise in water level over time. In addition, depth to water measurements were taken with an oil/water

at some at the second second

-1-

interface probe and manually recorded as a backup to the data logger. Once the water level had returned to near static conditions (i.e., at least 90 percent of the initial displacement had recovered), the test was ended.

### 4.0 DATA ANALYSIS

Slug test data were analyzed by the Bouwer and Rice (1976) Method using the software package AQTESOLV<sup>TM</sup> (Glenn M. Duffield, 1998), which allows an interactive graphical method of curve matching to the water-level recovery data. Once the best-fit line through the portion of the data determined to be representative of the aquifer is obtained, the hydraulic conductivity (K) value is automatically calculated. The graphs showing the best-fit lines and calculated K values are provided at the end of this Appendix. All three slug tests were performed on unconsolidated (i.e., overburden) wells. The effective base of ground-water flow for these wells is the clay layer present at 36 feet below grade.

Unconfined conditions occur in all three wells, and the screen zone of each well straddles the water table. Since drawdown occurred within the screen zone of each well tested, the radius of each of these wells (LF-5, LF-7 and LF-8) is affected by its gravel pack. AQTESOLV<sup>™</sup> automatically corrects for the contribution of the gravel pack, where appropriate. One rising test was performed and analyzed for each well. Input values for each well are summarized in Table C-1.

### **5.0 SUMMARY OF RESULTS**

Table C-2 contains a summary of the K values obtained from the slug tests. As listed on the AQTESOLV<sup>TM</sup> graphs, the K values are presented in feet per day (ft/d).

The hydraulic conductivity (K) values obtained for the three overburden wells tested (i.e., LF-5, LF-7 and LF-8) range from 32 to 190 feet per day (ft/d). These values of K are all within the range of hydraulic conductivities characteristic of soil types similar to those identified throughout the Terminal Disposal Area (i.e., clean sand with silt and gravel). The highest K value was determined for well LF-8, which was installed within the location of historical Buffalo River channel and screens a slightly coarser portion of the formation than wells LF-5 and LF-7.

-2-

The lowest K value was determined for well LF-7. The geologic log for LF-7 indicates the presence of a relatively thin layer of tight fine silty sand (beneath the water table) described in the geologic log as "dry." The average K value obtained from the three wells was approximately 100 ft/d. The K values obtained from the slug tests and the associated geology are summarized in Table C-2.

### **6.0 REFERENCES**

- Bouwer, H., 1989. The Bouwer and Rice Slug Test An Update. Ground Water. vol 27. no 3. pp 304-309.
- Bouwer, H. and R.C. Rice, 1976. A Slug Test for Determining Hydraulic Conductivity of Unconfined Aquifers With Completely of Partially Penetrating Wells. Ground Water. vol 12. no 3. pp 423-428.
- Duffield, Glenn M., 1998. AQTESOLV<sup>™</sup> for Windows. ARCADIS Geraghty & Miller, Inc.
- GES, 1992. Field Standard Operating Procedure, Slug Tests. SOP No. 0018, Revision No. 1a. July 10, 1992.
- Roux Associates, Inc., 1999. Work Plan for Continuation of the SFI, Mobil Oil Corporation, Buffalo Terminal, June 3, 1999.

T....

. . .

| _                                 |            |             |            |
|-----------------------------------|------------|-------------|------------|
| Well Designation:                 | LF-5       | <u>LF-7</u> | LF-8       |
| Formation                         | Overburden | Overburden  | Overburden |
| Falling or Rising Head Test       | Rising     | Rising      | Rising     |
| Initial displacement              | 3.606      | 4.341       | 2.977      |
| Casing radius (r)                 | 0.167 *    | 0.167 *     | 0.167 *    |
| Borehole radius (r <sub>w</sub> ) | 0.52       | 0.52        | 0.52       |
| Saturated thickness (b)           | 12.76      | 10.55       | 12.28      |
| Screen length (L)                 | 20.00      | 20.00       | 20.00      |
| Depth of screen bottom            | 36.00      | 36.00       | 36.00      |
| Depth to Water                    | 23.24      | 25.45       | 23.72      |
| Static water column height (h)    | 12.76      | 10.55       | 12.28      |
| Computer file name                | LF5-GES    | LF7-GES     | LF8-GES    |
|                                   |            |             |            |

| Table C-1. Summary of Slug Test Data Used to Prepare AQTESOLV™ Input Files |
|----------------------------------------------------------------------------|
| Mobil Oil Corporation, Buffalo Terminal, Buffalo, New York                 |

NOTES:

All Measurements in feet. Depths are relative to land surface. \* - Casing radius corrected within AQTESOLV<sup>TM</sup>; screen zone straddles water table

-

.... 

| Well<br>Designation | <u>Slug Test Type</u> | Hydraulic Conductivity<br>(feet/day) | Major Component(s) in Screen Zone                             |
|---------------------|-----------------------|--------------------------------------|---------------------------------------------------------------|
| LF-5                | Rising                | 75                                   | Medium SAND and Silt                                          |
| LF-7                | Rising                | 32                                   | Fine SAND grading to SAND and Silt, overlying SAND and Gravel |
| LF-8                | Rising                | <u>190</u>                           | Poorly sorted SAND and Gravel, some Clay, some Silt           |
|                     | AVERAGE               | 99                                   |                                                               |

Table C-2. Summary of Hydraulic Conductivities Calculated from Slug Testing, Mobil Oil Corporation, Buffalo Terminal, Buffalo, New York

ŧ

ł

÷

÷

÷

ŧ.

1

ŧ

İ

į

ŧ

Ì







| LF-8 RISING                                            | HEAD TEST                     |  |  |  |
|--------------------------------------------------------|-------------------------------|--|--|--|
| Data Set: C:\myfiles\MOBIL\17252Y02\Report\LF8-GES.aqt |                               |  |  |  |
| Date: <u>11/18/99</u>                                  | Time: <u>14:25:50</u>         |  |  |  |
| PROJECT IN                                             | FORMATION                     |  |  |  |
| Company: Roux Associates, Inc.                         |                               |  |  |  |
| Client: Mobil                                          |                               |  |  |  |
| Project: 1/252YU2<br>Test Location: Buffalo, New York  |                               |  |  |  |
| Test Well: 1 F-8                                       |                               |  |  |  |
| Test Date: October 14, 1999                            |                               |  |  |  |
| AQUIFE                                                 | R DATA                        |  |  |  |
| Saturated Thickness: <u>12.28</u> ft                   | Anisotropy Ratio (Kz/Kr): 1.  |  |  |  |
| WELL DA                                                | NTA (LF-8)                    |  |  |  |
| Initial Displacement: 2.977 ft                         | Water Column Height: 12.28 ft |  |  |  |
| Casing Radius: 0.167 ft                                | Wellbore Radius: 0.52 ft      |  |  |  |
| Screen Length: 20. ft                                  | Gravel Pack Porosity: 0.3     |  |  |  |
| SOLUTION                                               |                               |  |  |  |
| Aquifer Model: Unconfined                              | Solution Method: Bouwer-Rice  |  |  |  |
| K = <u>190.</u> ft/day                                 | y0 = 1.5 ft                   |  |  |  |

# **APPENDIX D**

Data Validation Report

ROUX ASSOCIATES, INC.

wara a concernante

-----

MC17252Y02.111/A-C

tere and the second 
-

# Data Validation Services

120 Cobble Creek Road P. O. Box 208 North Creek, N. Y. 12853 Phone 518-251-4429 Facsimile 518-251-4428

December 7, 1999

Noelle Clarke Roux Associates 1377 Motor Parkway Islandia, NY 11788

RE: Validation of the Mobil --Elk St. Site Data Packages Lancaster Lab SDG Nos. ELK01 through ELK06 Lozier/Express Lab SDG No. 082499

Dear Ms. Clarke:

Review has been completed for the data packages generated by Lancaster Laboratories and Lozier/Express Laboratories, pertaining to samples collected at the Mobil Elk St. Site. Soil and aqueous samples collected 7/7/99 through 9/29/99 were processed for combinations of STARS volatiles, PAHs, and eight site-specific metals. Five aqueous samples collected 8/24/99 were processed for total lead by Lozier/Express Labs. Four of them were analysed for Tetra Ethyl Lead (TEL), and one of them was also processed for hexavalent chromium. Field and trip blanks, and matrix spikes/duplicates were also processed. Methodologies utilized are those of the USEPA SW846.

Data validation was performed with guidance from the most current editions of the USEPA CLP National Functional Guidelines for Organic and Inorganic Data Review and the USEPA SOPs HW-2 and HW-6. The following items were reviewed:

- \* Data Completeness
- \* Custody Documentation
- \* Holding Times
- \* Surrogate and Internal Standard Recoveries
- \* Matrix Spike Recoveries/Duplicate Correlations
- \* Preparation/Calibration Blanks
- \* Control Spike/Laboratory Control Samples
- \* Instrumental Tunes
- \* Calibration Standards
- \* Instrument IDLs
- \* Method Compliance
- \* Sample Result Verification

Those items showing deficiencies are discussed in the following sections of this report. All others were found to be acceptable as outlined in the above-mentioned validation procedures, and as applicable for the methodology. Unless noted specifically in the following text, reported results are substantiated by the raw data, and generated in compliance with protocol requirements.

In summary, sample processing was primarily conducted with compliance to protocol requirements and with adherance to quality criteria, and most analyte results are usable as reported, or with minor qualification as estimated ("J" validation qualifier). The exceptions are the edits of some of the low level PAH detections due to possible contamination.

Roux data tables representing the Lancaster results were edited with red-ink to include the validation data qualifiers. These are attached to, and referenced within, this report. No qualification to the Lozier/Express Lab data was indicated. Copies of laboratory case narratives are attached, and should be reviewed in conjunction with this narrative.

# Data Completeness/General

There were significant delays between sample collection and shipment to the laboratory, with time intervals of up to 9 days. Technical holding times were met, and results are therefore not qualified, but it is recommended that the status of the samples during the interim (i.e. temperature and custody) be documented by the sampler with a memorandum to the file.

The custodies pertaining to samples collected 7/29/99 through 8/6/99 (received by the laboratory on 8/7/99) do not show shipment dates and times.

Data packages were to have been generated in accordance with the NYSDEC ASP Category B deliverables. They were not, but sufficient information was provided to validate the results. Lancaster analysis report forms include information (i.e. associated blank and spike results) other than the details of the specific sample. Only the sample results were reviewed on these forms.

Data package ELK03 includes four samples, including two samples collected more than a month prior to other two. A single package was generated to provide efficient review. Adequate QC was processed.

No resubmissions were required of Lancaster; raw data for the hexavalent chromium analysis were requested, and provided by Lozier. A copy is attached to this narrative.

### **STARS Volatile and BTEX Analyses by EPA 8021**

Samples which were received at elevated cooler temperatures on 8/23/99 and 8/25/99 in SDG ELK01 were recollected, analysed, and reported in SDG ELK06. The original samples were reported for BTEX, but, with the exception of the data for SB-12 and SB-14, the data were not validated. Results for those four analytes were comparable for the two sample collection events.

Although this analysis was performed on a rather specific detector system (PID), the identifications of the detected analytes has not been confirmed on a second system. Therefore interferences can exist to contribute to false positives. Confirmation analyses are not required if project history provides confidence in the analyte identifications.

The method holding time of 14 days from sample collection was used for this project.

Results for selected analytes in many samples were reported at elevated reporting limits due to interferences which prohibited evaluation at lower limits.

Due to elevated surrogate recovery (124%), detected values of STARS volatile analytes in LF-3 are considered estimated, with a possible slight high bias.

In cases where an initial analyte result exceeds the calibration range, dilution results are used for that analyte.

Matrix spikes/duplicates were performed on aqueous samples SB-28, SB-11, and LF-3, and soil samples SB-17(11-13) and LF-7/21-23. They showed acceptable values, or outlying values not affecting sample results, with the following exceptions:

- a. The detected result for o-xylene in SB-17(11-13) is qualified as estimated ("J") due to outlying matrix spike recoveries (-6% and 214%). Sample nonhomogeneity is suspected.
- b. 1,2,4-trimethylbenzene in SB-28 is estimated due to outlying matrix spike recoveries (120% and 69%).

Aqueous field duplicates of SB-11, LF-3, and SB-28 showed good correlation, although the naphthalene values of LF-3 and LF-3 DUP are qualified estimated due to values above, and below, the MDL.

The field blank collected with the soil samples in SDG ELK02 (collected 7/26/99 through 8/6/99) showed low level contamination. The following sample detections are also possible contamination, and results are edited to reflect nondetection ("U") at the originally reported values:

1,2,4-trimethylbenzene and naphthalene in SB-30/0.5(0-0.5)

1,2,4-trimethylbenzene, n-propylbenzene, n-butylbenzene, and naphthalene in SB-27/0-0.5

Naphthalene was detected in several blanks (method and equipment) in the project, and associated sample results have been reviewed for consideration as contamination. No additional edits were indicated.

Trip blanks were not included with each shipment. Therefore contamination contribution is not thoroughly evaluated.

Due to elevated daily standard responses, the results for sec-butylbenzene (23%D) in LB-1(18-20) are considered estimated

### **STARS PAH Analyses by EPA 8270**

Although not consistent with the NYSDEC ASP reporting requirements, the sample data were reported using Method Detection Limit (MDL) values for reporting limits, rather than method CRDL values (which are about ten times higher). The data package Forms 1 show correct CRDL limits, and values between the MDL and CRDL are correctly flagged with the "J" qualifier. However, the summary analysis reports, and the client tables are not. The attached tables have been edited to include qualification as estimated ("J") for values below the linear range (which is five times the reported MDLs).

In cases where an initial analyte result exceeds the calibration range, dilution results are used for that analyte.

It is noted that acenaphthylene was not reported as a target analyte for some of the project samples. Review of the associated standard and sample data shows that valid results for that analyte should be available from the laboratory by reprocessing the existing sample analysis data files. This should be requested, if of concern for the project.

Due to low surrogate recoveries (21-23%), the results for LB-1(18-20) are considered estimated, possibly biased low. The initial analysis results should be used preferentially over the reanalysis.

Sample SB-17(11-13) exhibited three outlying internal standard recoveries in the initial analysis, but acceptable responses in the dilution analysis. The attached table values have been edited to reflect the most accurate values from the two analyses, and include qualification of the result of associated nondetected analyte acenaphthylene as estimated.

The results for the three analytes in LF-5/21-23 which are associated with internal standard d12chrysene are considered estimated due to its low recovery (42%).

Some of the soil samples produced one low surrogate recovery, and were reextracted. The initial analysis results can be used without qualification. However, it is noted that the reextraction results of SB-16(11-13) showed concentrations about twice those originally determined. The sample results should be used with that consideration.

The field blank collected with the soil samples in SDG ELK02 (collected 7/26/99 through 8/6/99) showed low level contamination of eleven analytes. The samples in that delivery group were evaluated for responses below five times the blank levels, and qualified as nondetection ("U"), accordingly. Numerous low level detections were affected.

Resolution was not possible between benzo(b)fluoranthene and benzo(k)fluoranthene in some samples (see case narratives). The results for these two analytes in affected samples (SDG ELK05) are qualified as estimated, although the reported value is usable as a combined result.

Due to poor spectral quality (nonsubtractive interferences), the detections of naphthalene and acenaphthylene in SB-11 and SB-11-DUP are considered tentative ("N" flag).

Due to poor spectral quality (nonsubtractive interferences), the detection of acenaphthene in SB-19 is also considered tentative ("N" flag). In other cases of observed interferences in the spectra, the relative responses of the secondary and tertiary ions were evaluated.

Standard responses were acceptable, with the exception of those for chrysene and pyrene on 8-6-99 and 8-9-99 (26%D to 29%D; elevated responses). The pyrene and chrysene results for SB-11(11-13), SB-15(11-13), SB-16(11-13), and SB-17(11-13) are considered estimated.

Matrix spikes/duplicates were performed on aqueous samples SB-28 and SB-11, and on soil samples SB-17(11-13), LF-7(21-23), ESL-14(0-0.5), and ESL-15(0-0.5). They showed acceptable values, or outlying values not affecting sample results, with the following exceptions:

- a. Anthracene in ESL-15(0-0.5) is estimated due to elevated matrix spike recoveries (168% and 200%).
- b. Those for ESL-14(0-0.5) do not provide for adequate evaluation due to the analysis dilution performed.

Aqueous field duplicates of SB-11, LF-3, and SB-28 showed good correlation.

The field blank provided with samples in SDG ELK03 (collected 8/16/99) was not processed for PAHs. Contamination is therefore not thoroughly evaluated.

Samples received in SDG ELK01 at elevated cooler temperatures (10 to 13 degrees C) are not recommended for qualification due to the persistance of the PAH target analytes under those conditions.

### **Metals Analyses**

Matrix spikes/duplicates were performed on aqueous samples SB-28, SB-11, on soil samples SB-17(11-13), LF-7(21-23), ESL-14(0-0.5), and ESL-15(0-0.5), and on batch QC for some of the elements run by graphite furnace, . They showed acceptable values, or outlying values not requiring qualification of associated sample results, with the following exceptions:

- a. The chromium results in samples LF-7(21-23) and LB-1(16-18) are estimated due to elevated matrix spike recovery (129%).
- b. Selenium in SB-28 and SB-19 is estimated due to low recovery in the matrix spike duplicate (67%).

ICP serial dilution values for in samples SB-11, SB-28, SB-17(11-13), LF-7(21-23), ESL-14(0-0.5), ESL-15(0-0.5) were acceptable.

Thallium in the field blank of SDG ELK02 is estimated due to low associated CRI standard recoveries (62% to 73%). Selenium in LF-7(21-23) is similarly estimated (63% to 79%).

Some of the metals results are reported at elevated reporting limits due to matrix effect.

### pg. 6/6

The field blank provided with samples in SDG ELK03 (collected 8/16/99) was not processed for metals. Contamination is therefore not thoroughly evaluated.

The receive date on the Form 1-IN for LB1-(16-18) should be 7/9/99.

Aqueous digestion logs should show the sample pHs (required by ASP).

Occasional errors were observed on QC summary form entries. These do not affect sample results, and are not detailed herein.

### Total Lead/Hexavalent Chromium Analyses by Lozier/Express

Accuracy and precision evaluations, and the field duplicate correlation, which were all performed on MW-1URS, were acceptable.

The ICP serial dilution results were also acceptable.

Reported sample results are substantiated by the raw data.

### Tetraethyl Lead Analyses by 8270 by Lozier/Express

No qualifications to the sample results are indicated, but overall instrument/column performance was poor, as indicated by the following parameters:

Calibration standards and sample data showing significant tailing.

- The instrument was not tuned properly, as indicated by the lack of detection of the required m/z 441 ion. Many of the standard and sample responses required manual integration.
- The surrogate standard d5-nitrobenzene produced significant area counts on integration, but showed little overall GC response. Its retention time in the standards varied.
- Internal standard areas in the samples and field blank were about twice those of the associated calibration standards. The sample results, which are nondetection, are not affected by elevated responses.

Although the instrument performance was poor and not incompliance with protocol requirements, the response identified as tetraethyllead was acceptable in the standards, and the reported nondetection in the samples is supported by the raw data.

Accuracy and precision determinations, and field duplicate correlations, of MW-1URS were within laboratory range.

Please do not hesitate to contact me if questions or comments arise during your review of this report.

Very truly yours,

Judy Harry

Lancaster Laboratories A Thermo Analytical Laboratory Where quality is a science.

.

. .

# Sample Reference List for SDG Number ELK01 with a Data Package Type of I

09593 - Mobil Oil Corporation

MOBIL: NY

| Lab<br>Sample | Lab<br>Sample |                                                     |
|---------------|---------------|-----------------------------------------------------|
| Number        | Code          | Client Sample Description                           |
| 3219182       | SB11U         | SB-11 Unspiked Grab Water Sample LOC# WBS#          |
| 3219183       | 11SBU         | SB-11 Duplicate Grab Water Sample LOC# WBS#         |
| 3219184       | SB11U         | SB-11 Matrix Spike Grab Water Sample LOC# WBS#      |
| 3219185       | SB11U         | SB-11 Matrix Spike Dup. Grab Water Sample LOC# WBS# |
| 3219186       | B11FB         | SB-11 Field Blank Grab Water Sample LOC# WBS#       |
| 3219187       | LUBTB         | Trip Blank (Lube Oil #1) Water Sample LOC# WBS#     |
| 3219459       | MNB12         | SB-12 Grab Water Sample LOC# WBS#                   |
| 3219460       | MNB14         | SB-14 Grab Water Sample LOC# WBS#                   |
| 3219461       | MNB16         | SB-16 Grab Water Sample LOC# WBS#                   |
| 3219462       | MNTBK         | Trip Blank (Lube Oil #2) Water Sample LOC# WBS#     |
| 3220988       | LF3           | LF-3 Grab Water Sample LOC # WBS #                  |
| 3220989       | LF4           | LF-4 Grab Water Sample LOC # WBS #                  |
| 3220990       | LF5           | LF-5 Grab Water Sample LOC # WBS #                  |
| 3220991       | LF6           | LF-6 Grab Water Sample LOC # WBS #                  |
| 3220992       | LF7           | LF-7 Grab Water Sample LOC # WBS #                  |
| 3220993       | LF8           | LF-8 Grab Water Sample LOC # WBS #                  |
| 3220994       | ТВ            | Trip Blank Water Sample LOC # WBS #                 |

A Thermo Analytical Laboratory Where quality is a science.

> Sample Reference List for SDG Number ELK02 with a Data Package Type of NYSDEC

> > 09593 - Mobil Oil Corporation MOBIL: 625 Elk St. - Buffalo, NY

| Lab<br>Sample | Lab<br>Sample |                                                                                 |
|---------------|---------------|---------------------------------------------------------------------------------|
| Number        | Code          | Client Sample Description                                                       |
| 3204225       | SB14-         | SB14/13'-15' Grab Soil Sample LOC# 31010 PRCA# 951061 PHC# 5L                   |
| 3204226       | SB15-         | SB15/11'-13' Grab Soil Sample LOC# 31010 PRCA# 951061 PHC# 5L                   |
| 3204227       | SB175         | SB17/.5' Grab Soil Sample LOC# 31010 PRCA# 951061 PHC# 5L                       |
| 3204228       | B1711         | SB17/11'-13' Unspiked Grab Soil Sample LOC# 31010 PRCA# 951061 PHC# 5L          |
| 3204229       | B1711         | SB17/11'-13' Matrix Spike Grab Soil Sample LOC# 31010 PRCA# 951061 PHC# 5L      |
| 3204230       | B1711         | SB17/11'-13' Matrix Spike Dup. Grab Soil Sample LOC# 31010 PRCA# 951061 PHC# 5L |
| 3204231       | B1711         | SB17/11'-13' Duplicate Grab Soil Sample LOC# 31010 PRCA# 951061 PHC# 5L         |
| 3204232       | B17FB         | SB17/Field Blank Grab Water Sample LOC# 31010 PRCA# 951061 PHC# 5L              |
| 3204233       | B17TB         | SB17/Trip Blank Water Sample LOC# 31010 PRCA# 951061 PHC# 5L                    |
| 3204234       | B1611         | SB16/11'-13' Grab Soil Sample LOC# 31010 PRCA# 951061 PHC# 5L                   |
| 3204235       | B1311         | SB13/11'-13' Grab Soil Sample LOC# 31010 PRCA# 951061 PHC# 5L                   |
| 3208444       | BSB18         | SB-18 / .5 (0-0.5) Grab Soil Sample LOC# 31010 PRCA# 951061 PHC# 20-6           |
| 3208445       | B1811         | SB-18 / 11'-13' Grab Soil Sample LOC# 31010 PRCA# 951061 PHC# 20-6              |
| 3208446       | B19-7         | SB-19 / 7'-9' Grab Soil Sample LOC# 31010 PRCA# 951061 PHC# 20-6                |
| 3208447       | B20-3         | SB-20 / .5' (3.0'-3.5') Grab Soil Sample LOC# 31010 PRCA# 951061 PHC# 20-6      |
| 3208448       | B20-9         | SB-20 / 9'-11' Grab Soil Sample LOC# 31010 PRCA# 951061 PHC# 20-6               |
| 3208449       | B24-0         | SB-24 / 0-0.5' Grab Soil Sample LOC# 31010 PRCA# 951061 PHC# 20-6               |
| 3208450       | B2413         | SB-24 / 13'-15' Grab Soil Sample LOC# 31010 PRCA# 951061 PHC# 20-6              |
| 3208451       | B27-0         | SB-27 / 0'-0.5' Grab Soil Sample LOC# 31010 PRCA# 951061 PHC# 20-6              |
| 3208452       | B2711         | SB-27 / 11'-13' Grab Soil Sample LOC# 31010 PRCA# 951061 PHC# 20-6              |
| 3208453       | B28           | SB-28 / .5' (0-0.5') Grab Soil Sample LOC# 31010 PRCA# 951061 PHC# 20-6         |
| 3?:08454      | B2811         | SB-28 / 11'-13' Grab Soil Sample LOC# 31010 PRCA# 951061 PHC# 20-6              |
| 3208455       | B30           | SB-30 / .5' (0-0.5') Grab Soil Sample LOC# 31010 PRCA# 951061 PHC# 20-6         |
| 3208456       | B30-9         | SB-30 / 9'-11' Grab Soil Sample LOC# 31010 PRCA# 951061 PHC# 20-6               |
|               |               |                                                                                 |



Sample Reference List for SDG Number ELK03 with a Data Package Type of NYSDEC

> **09593 - Mobil Oil Corporation** MOBIL: 625 Elk Street - Buffalo, NY

| Lab<br>Sample<br>Number | Lab<br>Sample<br>Code | Client Sample Description                                            |
|-------------------------|-----------------------|----------------------------------------------------------------------|
| 3188734                 | LB118                 | LB1 (18-20) Grab Soil Sample LOC# 31010 PRCA# 951061 PHC# 2L         |
| 3188735                 | LB116                 | LB1 (16-18) Soil Sample LOC# 31010 PRCA# 951061 PHC# 2L              |
| 3188736                 | TRPBL                 | Trip Blank Water Sample LOC# 31010 PRCA# 951061 PHC# 2L              |
| 3213143                 | LF-5-                 | LF-5/21'-23' Composite Soil Sample LOC# 31-010 WBS# 26               |
| 3217224                 | LF-7-                 | LF-7/21'-23' Unspiked Grab Soil Sample LOC# PRCA# PHC# 8             |
| 3217225                 | LF-7-                 | LF-7/21'-23' Matrix Spike Grab Soil Sample LOC# PRCA# PHC# 8         |
| 3217226                 | LF-7-                 | LF-7/21'-23' Matrix Spike Dup/Dup Grab Soil Sample LOC# PRCA# PHC# 8 |
| 3217227                 | LF-FB                 | LF-7/21'-23' Field Blank Water Sample LOC# PRCA# PHC#                |
| 3217228                 | LF-TB                 | LF-7/21'-23' Trip Blank Water Sample LOC# PRCA# PHC#                 |
|                         |                       |                                                                      |

A Thermo Analytical Laboratory Where quality is a science.

# Sample Reference List for SDG Number ELK04 with a Data Package Type of NYSDEC

09593 - Mobil Oil Corporation

MOBIL: Elk St., Buffalo, NY

| Lab<br>Sample<br>Number | Lab<br>Sample<br>Code | Client Sample Description                                 |
|-------------------------|-----------------------|-----------------------------------------------------------|
| 3228185                 | 13005                 | ESL-13/0-0.5' Grab Soil Sample LOC# WBS#                  |
| 3228186                 | 131                   | ESL-13/1'-2' Grab Soil Sample LOC# WBS#                   |
| 3228187                 | 132                   | ESL-13/2'-3' Grab Soil Sample LOC# WBS#                   |
| 3228188                 | 14005                 | ESL-14/0-0.5 Unspiked Grab Soil Sample LOC# WBS#          |
| 3228189                 | 14005                 | ESL-14/0-0.5' Matrix Spike Grab Soil Sample LOC# WBS#     |
| 3228190                 | 14005                 | ESL-14/0-0.5'Matrix Spike Dup/Dup Grab Soil Sample LOC# W |
| 3228191                 | 141                   | ESL-14/1'-2' Grab Soil Sample LOC# WBS#                   |
| 3228192                 | 142                   | ESL-14/2'-3' Grab Soil Sample LOC# WBS#                   |
| 3228196                 | 151                   | ESL-15/1'-2' Grab Soil Sample LOC# WBS#                   |
| 3228197                 | 152                   | ESL-15/2'-3' Grab Soil Sample LOC# WBS#                   |
| 3228198                 | 16005                 | ESL-16/0-0.5' Grab Soil Sample LOC# WBS#                  |
| 3228199                 | 161                   | ESL-16/1'-2' Grab Soil Sample LOC# WBS#                   |

Lancaster Laboratories A Thermo Analytical Laboratory Where quality is a science.

# Sample Reference List for SDG Number ELK05 with a Data Package Type of NYSDEC

09593 - Mobil Oil Corporation

MOBIL: Elk St., Buffalo, NY

| Lab<br>Sample | Lab<br>Sample |                                           |           |      |
|---------------|---------------|-------------------------------------------|-----------|------|
| Number        | Code          | Client Sample Description                 |           |      |
| 3228193       | 15005         | ESL-15/0-0.5' Unspiked Grab Soil Sample   | LOC#      | WBS# |
| 3228194       | 15005         | ESL-15/0-0.5' Matrix Spike Grab Soil Samp | ble LOC#  | WBS# |
| 3228195       | 15005         | ESL-15/0-0.5' Matrix Spike Dup/Dup Grab   | Soil LOC# | WBS# |
| 3228200       | 162           | ESL-16/2'-3' Grab Soil Sample LOC#        | WBS#      |      |
| 3228201       | 17005         | ESL-17/0-0.5' Grab Soil Sample LOC#       | WBS#      |      |
| 3228202       | 171           | ESL-17/1'-2' Grab Soil Sample LOC#        | WBS#      |      |
| 3228203       | 172           | ESL-17/2'-3' Grab Soil Sample LOC#        | WBS#      |      |
| 3228204       | 18005         | ESL-18/0-0.5' Grab Soil Sample LOC#       | WBS#      |      |
| 3228205       | 18FB-         | ESL-18/0-0.5' Field Blank Grab Water Sam  | ple LOC#  | WBS# |
| 3228206       | 181           | ESL-18/1'-2' Grab Soil Sample LOC#        | WBS#      |      |
| 3228207       | 182           | ESL-18/2'-3' Grab Soil Sample LOC#        | WBS#      |      |
| 3228209       | 19005         | ESL-19/0-0.5' Grab Soil Sample LOC#       | WBS#      |      |
| 3228210       | 191           | ESL-19/1'-2' Grab Soil Sample LOC#        | WBS#      |      |
| 3228211       | 192           | ESL-19/2'-3' Grab Soil Sample LOC#        | WBS#      |      |
| 3228212       | 20005         | ESL-20/0-0.5' Grab Soil Sample LOC#       | WBS#      |      |
| 3228213       | 201           | ESL-20/1'-2' Grab Soil Sample LOC#        | WBS#      |      |
| 3228214       | 202           | ESL-20/2'-3' Grab Soil Sample LOC#        | WBS#      |      |

Lancaster Laboratories • 2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 A subsidiary of Thermo TerraTech Inc., a Thermo Electron company Lancaster Laboratories <u>A Thermo Analytical Laboratory</u> Where quality is a science.

### Sample Reference List for SDG Number ELK06 with a Data Package Type of NYSDEC

09593 - Mobil Oil Corporation MOBIL: 635 Elk St., Buffalo, NY

| Lab<br>Sample<br>Number | Lab<br>Sample<br>Code | Client Sample Description                                        |
|-------------------------|-----------------------|------------------------------------------------------------------|
| 3239768                 | LF3BK                 | LF-3 Unspiked Grab Water Sample LOC# 31010 WBS# 26               |
| 3239769                 | LF3BK                 | LF-3 Duplicate Grab Water Sample LOC# 31010 WBS# 26              |
| 3239770                 | LF3BK                 | LF-3 Matrix Spike Grab Water Sample LOC# 31010 WBS# 26           |
| 3?39771                 | LF3BK                 | LF-3 Matrix Spike Duplicate Grab Water Sample LOC# 31010 WBS# 26 |
| 3239772                 | LF3FB                 | LF-3 Field Blank Grab Water Sample LOC# 31010 WBS# 26            |
| 3239773                 | DISTB                 | Disposal/Pinto Trip Blank Water Sample LOC# 31010 WBS# 26        |
| 3239774                 | LF-4-                 | LF-4 Grab Water Sample LOC# 31010 WBS# 26                        |
| 3239775                 | LF-5-                 | LF-5 Grab Water Sample LOC# 31010 WBS# 26                        |
| 3239776                 | LF-6-                 | LF-6 Grab Water Sample LOC# 31010 WBS# 26                        |
| 3239777                 | LF-7-                 | LF-7 Grab Water Sample LOC# 31010 WBS# 26                        |
| 3239778                 | LF-8-                 | LF-8 Grab Water Sample LOC# 31010 WBS# 26                        |
| 3239779                 | SB-11                 | SB-11 Grab Water Sample LOC# 31010 WBS# 26                       |
| 3239780                 | SB-14                 | SB-14 Grab Water Sample LOC# 31010 WBS# 26                       |
|                         |                       |                                                                  |



# Sample Reference List for SDG Number ELK07 with a Data Package Type of NYSDEC

09593 - Mobil Oil Corporation

MOBIL: 635 Elk St., Buffalo, NY

| Lab<br>Sample<br>Number | Lab<br>Sample<br>Code | Client Sample Description                                       |
|-------------------------|-----------------------|-----------------------------------------------------------------|
| 3241775                 | SB28-                 | SB-28 Unspiked Grab Water Sample LOC# 31010 WBS# 26             |
| 3241776                 | SB28-                 | SB-28 Matrix Spike Grab Water Sample LOC# 31010 WBS# 26         |
| 3241777                 | SB28-                 | SB-28 Matrix Spike Dup/Dup Grab Water Sample LOC# 31010 WBS# 26 |
| 3241778                 | SB28D                 | SB-28-Duplicate Grab Water Sample LOC# 31010 WBS# 26            |
| 3241779                 | SB28F                 | SB-28-Field_Blank Grab Water Sample LOC# 31010 WBS# 26          |
| 3241780                 | PINTO                 | Pinto Trip Blank Water Sample LOC# 31010 WBS# 26                |
| 3241781                 | SB19-                 | SB-19 Grab Water Sample LOC# 31010 WBS# 26                      |



### CASE NARRATIVE

# Client: Mobil Oil Corporation SDG #: ELK01

# LANCASTER LABORATORIES SEMIVOLATILES BY GC/MS

### SAMPLE NUMBER(S) :

|            |               | matrix     |                        |
|------------|---------------|------------|------------------------|
| LL #'s     | Sample Code   | Soil Water | Comments               |
| 3219182    | SB11U         | X          | Unspiked               |
| 3219183    | 11SBU         | Х          |                        |
| 3219184    | SB11UMS       | Х          | Matrix Spike           |
| 3219185    | SB11UMSD      | X          | Matrix Spike Dup       |
| 3219186    | B11FB         | X          | Client Blank           |
| 3219459    | MNB12         | Х          |                        |
| 3219460    | MNB14         | Х          |                        |
| 3219461    | MNB16         | Х          |                        |
| 3220988    | LF3           | Х          |                        |
| 3220989    | LF4           | Х          |                        |
| 3220991    | LF6           | X          | • •                    |
| 3220992    | LF7           | X          |                        |
| 3220993    | LF8           | X          |                        |
| LABORATORY | SUBMITTED QC: |            |                        |
| SBLKWD239  | SBLKWD2398    | Х          | Method Blank           |
| SBLKWC242  | SBLKWC2423    | Х          | Method Blank           |
| 239WDLCS   | 239WDLCS8     | X          | Lab Control Sample     |
| 242WCLCS   | 242WCLCS3     | Х          | Lab Control Sample     |
| 242WCLCSD  | 242WCLCSD3    | Х          | Lab Control Sample Dup |

### SAMPLE PREPARATION:

Due to insufficient sample, only 921 mls were used in the extraction of LF--3 and 971 mls in the extraction of LF--4.

No other problems were encountered during the extraction of these samples.

Lancaster Laboratories • 2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 A subsidiary of Thermo TerraTech Inc., a Thermo Electron company



# Case Narrative SDG #: ELK01 continued

### ANALYSIS:

The method used for analysis was SW-846 Method 8270C.

All samples were analyzed for the semivolatile polynuclear aromatic hydrocarbon compounds.

No problems were encountered during the analysis of these samples.

# QUALITY CONTROL AND NONCONFORMANCE SUMMARY:

All QC was within specifications.

### DATA INTERPRETATION:

Only non-conformances for client requested compounds are addressed in this case narrative.

No further interpretation is necessary for the data submitted.

Case Narrative Reviewed and Approved by:

all malling

Charles J. Neslund Group Leader, GC/MS Semivolatiles

Date: 10/1/17



Case Narrative SDG# ELK01

Client : Mobil Oil Corporation Project: MOBIL: NY Petroleum Analysis - Water

#### SAMPLE ANALYSES

| $\mathbf{LL}$ | Sample       | Matrix     |                        |
|---------------|--------------|------------|------------------------|
| Sample #      | Designation  | Soil Water | Comments               |
| 3219459       | MNB12        | x          | DF 5                   |
| 3219461       | MNB16        | Х          | DF 5                   |
|               |              |            |                        |
| QUALITY CONT  | ROL ANALYSES |            |                        |
| BLK1655       |              | х          | Method Blank           |
| BLK1657       |              | Х          | Method Blank           |
| 3219183       |              | х          | DF 5                   |
| 3219184MS     |              | Х          | DF 20 Matrix Spike     |
| 3219185MSD    |              | х          | DF 20 Matrix Spike Dup |
| LCS1655       |              | х          | Lab Control Sample     |
| LDS1655       |              | X          | Lab Control Dup        |

#### SAMPLE PREPARATION

Dilutions were necessary for some samples as noted in the comments sectica above.

#### ANALYSIS

The integration system reviews the chromatogram retention times, comparing them to the retention times in the ID Window column. A peak in the sample chromatogram with a retention time within the ID window is identified as a "hit."

The method used for analysis was EPA Method SW-846 8021B. A J&W DB-MTBE, 60m, 0.45mm column was used for the analysis of all samples.

No problems were encountered during analysis.

#### QUALITY CONTROL AND NONCONFORMANCE SUMMARY

There was no client submitted QC, so Lancaster Laboratories batch QC was referenced.

All QC was within specifications.

#### DATA INTERPRETATION

No explanation is necessary for the data submitted.

Due to the limitations of the data package generating software, the NYSDEC ASP forms could not be included for the GC Volatiles data. Sample results are summarized on the analysis reports, and QC and calibration information is included on summary forms in this section of the data package.



Case Narrative SDG# ELK01

Client : Mobil Oil Corporation Project: MOBIL: NY Petroleum Analysis - Water

٠

Narrative reviewed and approved by:

10/6/99 Date

ı.

Thomas C. Lehman, Group Leader



CASE NARRATIVE FOR INORGANICS

Laboratory Name: Lancaster Laboratories

SDG Number: ELK01

Date Received: 08/28/99

Analysis:

Refer to the analysis run logs for samples requiring dilutions.

The following samples required analysis by Method of Standard Additions (MSA) because the post digestion spike on the background sample of the digestion batch recovered less than 85% or greater than 115%:

| Sample  | Element |
|---------|---------|
| *38541  | Pb      |
| *38541D | Pb      |
| *38541M | Pb      |
| *38541S | Pb      |
| B11FB   | Pb      |
| LF3     | Pb      |
| LF7     | Pb      |
| MNB12   | Pb      |
| MNB14   | Pb      |
| B11FB   | Se      |
| MNB12   | Se      |
| MNB14   | Se      |
| MNB16   | Se      |
| SB11U   | Se      |
| SB11UD  | Se      |
| SB11UM  | Se      |
| SB11US  | Se      |

Preparation:

Sample LF--3 was digested a second time for chromium in batch 99279-1848-005 because of a preparation error.

Quality Control:

The matrix spike (\*38541S) and matrix spike duplicate (\*38541M) were not within the control limits for lead. This indicates that the sample matrix may be affecting the digestion and/or measurement methodology for that analyte; however, the data are considered to be valid because the laboratory control sample is within the control limits.



Explanatory Notes: The final concentration is obtained using the following calculation:

final = instrument reading x final vol. x dilution factor
conc. initial volume or weight

Calibration Standards: Instrument calibration standards are prepared monthly from stock solutions purchased from Spex Industries Inc., JT Baker, Aldrich Chemical, VWR Scientific, EM Science, High Purity, Ultra Scientific or VHG Laboratories.

Case Narrative reviewed and approved by:

10 Date

Betty L. Umble, Specialist Inorganic Data Packages Where guality is a science.

### **CASE NARRATIVE**

# Client: Mobil Oil Corporation SDG #: ELK02

## LANCASTER LABORATORIES SEMIVOLATILES BY GC/MS

# SAMPLE NUMBER(S) :

ter Constantin and

|               |              | Mat         | rix          |                  |
|---------------|--------------|-------------|--------------|------------------|
| <u>LL #'s</u> | Sample Code  | <u>Soil</u> | <u>Water</u> | <u>Comments</u>  |
| 3204225       | SB14-        | Х           |              |                  |
| 3204226       | SB15-        | Х           |              | 3X Dilution      |
| 3204226RE     | SB15-RE      | Х           |              | Reextraction     |
| 3204227       | SB175        | Х           |              |                  |
| 3204228       | B1711        | Х           |              | Unspiked         |
| 3204228DL     | B1711DL      | Х           |              | 2X Dilution      |
| 3204229       | B1711MS      | Х           |              | Matrix Spike     |
| 3204230       | B1711MSD     | Х           |              | Matrix Spike Dup |
| 3204232       | B17FB        |             | Х            | Client Blank     |
| 3204234       | B1611        | Х           |              | 5X Dilution      |
| 3204234RE     | B1611RE      | Х           |              | Reextraction     |
| 3204235       | B1311        | Х           |              | 5X Dilution      |
| 3204235RE     | B1311RE      | Х           |              | Reextraction     |
| 3208444       | BSB18        | Х           |              | 5X Dilution      |
| 3208445       | B1811        | Х           |              |                  |
| 3208445RE     | B1811RE      | Х           |              | Reextraction     |
| 3208446       | B19-7        | Х           |              | 5X Dilution      |
| 3208447       | B20-3        | Х           |              |                  |
| 3208448       | B20-9        | Х           |              | 5X Dilution      |
| 3208449       | B24-0        | Х           |              |                  |
| 3208450       | B2413        | Х           |              |                  |
| 3208451       | B27-0        | Х           |              |                  |
| 3208452       | B2711        | Х           |              |                  |
| 3208453       | B28          | Х           |              |                  |
| 3208454       | B2811        | Х           |              |                  |
| 3208455       | B30          | Х           |              |                  |
| 3208456       | B30-9        | Х           |              |                  |
| LABORATORY S  | UBMITTED QC: |             |              |                  |
| SBLKLA216     | SBLKLA216M   | - <b>X</b>  |              | Method Blank     |
| SBLKWC216     | SBLKWC2163   |             | Х            | Method Blank     |
| SBLKLB222     | SBLKLB2228   | Х           |              | Method Blank     |
| SBLKLC223     | SBLKLC2239   | Х           |              | Method Blank     |
| SBLKLD229     | SBLKLD229J   | Х           |              | Method Blank     |
|               |              |             |              |                  |

# Lancaster Laboratories • 2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681

A subsidiary of Thermo TerraTech Inc., a Thermo Electron company

Where quality is a science.

# Case Narrative SDG #: ELK02 continued

### LABORATORY SUBMITTED QC continued:

| Matrix      |                                                                                           |                                                                              |                                                                                        |
|-------------|-------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| Sample Code | <u>Soil</u>                                                                               | <u>Water</u>                                                                 | <u>Comments</u>                                                                        |
| 216LALCSM   | Х                                                                                         |                                                                              | Lab Control Sample                                                                     |
| 216WCLCS3   |                                                                                           | Х                                                                            | Lab Control Sample                                                                     |
| 216WCLCSD3  |                                                                                           | Х                                                                            | Lab Control Sample Dup                                                                 |
| 222LBLCS8   | Х                                                                                         |                                                                              | Lab Control Sample                                                                     |
| 223LCLCS9   | Х                                                                                         |                                                                              | Lab Control Sample                                                                     |
| 229LDLCS    | Х                                                                                         |                                                                              | Lab Control Sample                                                                     |
|             | Sample Code<br>216LALCSM<br>216WCLCS3<br>216WCLCSD3<br>222LBLCS8<br>223LCLCS9<br>229LDLCS | MatSample CodeSoil216LALCSMX216WCLCS3216WCLCSD3222LBLCS8X223LCLCS9X229LDLCSX | MatrixSample CodeSoilWater216LALCSMX216WCLCS3X216WCLCSD3X222LBLCS8X223LCLCS9X229LDLCSX |

## SAMPLE PREPARATION:

Due to insufficient sample, only 897 mls were used in the extraction of B817FB.

Due to the nature of the sample matrix, the following samples were concentrated to final volumes greater than 1.0 ml.

| Sample Code | Final Volume |
|-------------|--------------|
| BSB18       | 2 mls        |
| B19-7       | 2 mls        |
| B20-9       | 2 mls        |
| B28         | 5 mls        |

No other problems were encountered during the extraction of these samples.

# ANALYSIS:

The method used for analysis was SW-846 Method 8270C.

All samples were analyzed for the semivolatile CLP OLM03.2 target compounds.

SB15- was analyzed at an initial 3X dilution and B1611 and B1311 at initial 5X dilutions due to high concentrations of target compounds.

Lancaster Laboratories • 2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 A subsidiary of Thermo TerraTech Inc., a Thermo Electron company



# Case Narrative SG #: ELK02 continued

BSB18, B19-7, and B20-9 were analyzed at initial 5X dilutions due to high concentrations of non-target compounds.

Due to a concentration of phenanthrene above calibration range, B1711 was analyzed at a further 2X dilution.

Reextractions were required for SB15-, B1611, B1311, B1811 due to unacceptable surrogate recoveries.

No other problems were encountered during the analysis of these samples.

### QUALITY CONTROL AND NONCONFORMANCE SUMMARY:

B1711 had internal standard peak areas outside QC limits. B1711MS and B1711MSD were analyzed and internal standard peak areas were again outside QC limits, indicating a significant matrix effect.

B1711 had the surrogate recovery of nitrobenzene-d5 outside QC limits. B1711MS and B1711MSD were analyzed and surrogate recoveries were again outside QC limits, confirming a matrix effect.

SB15-, B1611, and B1311 had surrogate recoveries outside QC limits for both the initial extraction and the reextraction confirming a matrix effect.

Due to surrogate recoveries outside QC limits, B1811 was reextracted. The reextraction was performed outside the method required holding time. The surrogate recoveries in B1811RE did not confirm the original extraction. Both sets of data are included in this data package.

The recovery of fluorene in B1711MS and B1711MSD was outside QC limits. All recoveries were within specifications in 216LALCSM.

All other QC was within specifications.



# Case Narrative SDG #: ELK02 continued

# DATA INTERPRETATION:

Only non-conformances for client requested compounds are addressed in this case narrative.

No further interpretation is necessary for the data submitted.

Case Narrative Reviewed and Approved by:

1. 1 Mala

Charles J. Neslund Group Leader, GC/MS Semivolatiles

\_\_\_\_\_ Date: 10/1/4;



Case Narrative SDG# ELK02

Client : Mobil Oil Corporation Project: MOBIL: 325 Elk St. Buffalo, NY Volatiles by GC - Soil/Water

#### SAMPLE ANALYSES

| LL            | Sample         | Matrix     |                          |
|---------------|----------------|------------|--------------------------|
| Sample #      | Designation    | Soil Water | Comments                 |
| 2204225       | CD14           | v          |                          |
| 3204225       | 5014-<br>CD15  | A<br>V     |                          |
| 3204226       | SBID-          | X          |                          |
| 3204227       | SBI/S          | X          | DF 20<br>DF 100 Unanikod |
| 3204228       |                | A<br>V     | DF 100 Unspiked          |
| 3204229MS     |                | ×<br>v     | DE 100 Matrix Spike Dup  |
| 2204230M5D    |                | A<br>V     | Dr 100 Macrix Spike Dup  |
| 3204232       | B177B          | x<br>X     |                          |
| 2204222       | D1611          | v          | DF 100                   |
| 2204234       | D1211          | x<br>v     | DF 500                   |
| 3204233       | BIJII<br>BCB18 | x<br>X     | DF 200                   |
| 3208444       | B1811          | X<br>X     | DF 200                   |
| 3208445       | B19-7          | X          | DF 100                   |
| 3208447       | B20-3          | x          | DF 20                    |
| 3208448       | B20-9          | x          | DF 1000                  |
| 3208449       | B20 9          | x          | DF 20                    |
| 3208450       | B2413          | x          |                          |
| 3208451       | B27-0          | x          | DF 20                    |
| 3208452       | B2711          | x          |                          |
| 3208453       | B28            | x          | DF 100                   |
| 3208454       | B2811          | x          | DF 20                    |
| 200454        | B30            | x          | DF 20                    |
| 3208456       | B30-9          | x          | DF 20                    |
| 5200450       | 000            | Λ          | 51 20                    |
|               |                |            |                          |
| OUALITY CONTR | OL ANALYSES    |            |                          |
| <b>x</b>      |                |            |                          |
| BLK0835       |                | X          | DF 20 Method Blank       |
| BLK0837       |                | X          | DF 20 Method Blank       |
| BLK0838       |                | X          | DF 20 Method Blank       |
| BLK1801       |                | х          | Method Blank             |
|               |                |            |                          |

| BLK1801 | Х | Method Blank       |
|---------|---|--------------------|
| BLK1803 | Х | Method Blank       |
| BLK0839 | Х | DF 20 Method Blank |
| BLK0840 | Х | DF 20 Method Blank |
| BLK0947 | Х | DF 20 Method Blank |
| LCS0809 | X | Lab Control Sample |
| LCS1801 | Х | Lab Control Sample |

------

#### SAMPLE PREPARATION

•

Blanks/Standards were prepared by adding 1 mL of methanol to 20 mL of DI water. This mixture was analyzed by purge and trap gas chromatography. This results in a dilution factor of 20.

,



Case Narrative SDG# ELK02

Client : Mobil Oil Corporation Project: MOBIL: 325 Elk St. Buffalo, NY Volatiles by GC - Soil/Water

81

Twenty grams of soil were extracted with 20 mL of methanol. The surrogate standards and spiking solutions are added to the methanol as it is in contact with the soil. The methanol is then diluted into DI water, and injected into a purge and trap concentrator. This diluted extract is then analyzed by gas chromatography.

Dilutions were necessary for some samples as noted in the comments section above.

#### ANALYSIS

The integration system reviews the chromatogram retention times, comparing them to the retention times in the ID Window column. A peak in the sample chromatogram with a retention time within the ID window is identified as a "hit."

The method used for analysis was EPA Method SW-846 5030B/8021B. A J&W DB-VRX, 75m x 0.45mm column was used for the analysis of all samples.

The initial calibration P08187 met the requirements of SW-846 Method 8000B (section 7.7) since the average of all relative standard deviation values was < 20%. (The average % RSD was calculated using all of the compounds in the standard, though the ICAL summary form in this data package reflects only the client requested compounds.) As stated in method 8000B (section 7.5.1.2.3) the data user should be made aware that the %RSD(s) for methyl tert-butyl ether fell outside of the < 20% criteria.

The calibration verification standard (injection #05 analyzed on 08/04/99 at 03:47) met the requirements of SW-846 Method 8000B (section 7.7) since the average of all percent drift values was < 15%. (The average % drift was calculated using all of the compounds in the standard, though the CCV summary form in this data package only reflects the client requested compounds.) As stated in method 8000B (section 7.5.1.2.3) the data user should be made aware that the %drift for methyl tert-butyl ether fell outside of the +/- 15% criteria.

The calibration verification standard (injection #40 analyzed on 08/10/99 at 07:02) met the requirements of SW-846 Method 8000B (section 7.7) since the average of all percent drift values was < 15%. (The average % drift was calculated using all of the compounds in the standard, though the CCV summary form in this data package only reflects the client requested compounds.) As stated in method 8000B (section 7.5.1.2.3) the data user should be made aware that the %drift for p-isopropyltoluene fell outside of the +/- 15% criteria.

The calibration verification standard (injection #55 analyzed on 08/10/99 at 21:37) met the requirements of SW-846 Method 8000B (section 7.7) since the average of all percent drift values was < 15%. (The average % drift was calculated using all of the compounds in the standard, though the CCV summary form in this data package only reflects the client requested compounds.) As stated in method 8000B (section 7.5.1.2.3) the data user should be made aware that the %drift for methyl tert-butyl ether fell outside of the +/- 15% criteria.

The calibration verification standard (injection #32 analyzed on 08/12/99 at 08:08) met the requirements of SW-846 Method 8000B (section 7.7) since the average of all percent drift values was < 15%. (The average % drift was calculated using all of the compounds in the standard, though the CCV summary form in this data package only reflects the client requested compounds.) As stated in method 8000B (section 7.5.1.2.3) the data user should be made aware that the %drift for methyl tert-butyl ether and naphthalene fell outside of the +/- 15% criteria.



Case Narrative SDG# ELK02

Client : Mobil Oil Corporation Project: MOBIL: 325 Elk St. Buffalo, NY Volatiles by GC - Soil/Water

#### QUALITY CONTROL AND NONCONFORMANCE SUMMARY

Client submitted batch QC was referenced.

For samples 3204226, 3204234, 3204235, 3208445 and 3208448, the surrogate, 1-bromo-4chlorobenzene, is outside of specifications due to the dilution needed to perform the analysis.

The recovery of multiple compounds in the MS and/or MSD are outside of specifications. However, the corresponding laboratory control sample is acceptable, and shows the system to be in calibration.

#### DATA INTERPRETATION

Due to the limitations of the data package generating software, the NYSDEC ASP forms could not be included for the GC Volatiles data. Sample results are summarized on the analysis reports, and QC and calibration information is included on summary forms in this section of the data package.

Narrative reviewed and approved by:

e M. Turner, Manager

10.12.99 Date

Where guality is a science.

CASE NARRATIVE FOR INORGANICS

Laboratory Name: Lancaster Laboratories

SDG Number: ELK02S

Date Received: 08/07/99

Analysis:

Refer to the analysis run logs for samples requiring dilutions.

Quality Control:

Poor duplication was observed between the matrix background and matrix duplicate for vanadium. This indicates that the sample matrix may not be homogeneous for that analyte; however, the data are considered to be valid because the laboratory control sample is within the control limits.

Data Package Assembly:

This sample delivery group was separated by matrix into two data packages, ELK02W and ELK02S, due to limitations of the data package generating software.

#### Explanatory Notes:

The instrument detection limits (IDLs) are used for determining the U flags on the initial and continuing calibration blanks. The method detection limits (MDLs) are used for determining all other U flags.

The final concentration is obtained using the following calculation:

final = instrument reading x final vol. x dilution factor
conc. initial volume or weight

#### Calibration Standards:

Instrument calibration standards are prepared monthly from stock solutions purchased from Spex Industries Inc., JT Baker, Aldrich Chemical, VWR Scientific, EM Science, High Purity, Ultra Scientific or VHG Laboratories.

Case Narrative reviewed and approved by: Date 10/8/99

1

4.67

Betty L. Umble, Specialist Inorganic Data Packages

A subsidiary of Thermo TerraTech Inc., a Thermo Electron company
Lancaster Laboratories Where quality is a science.

### **CASE NARRATIVE**

# Client: Mobil Oil Corporation SDG #: ELK03

# LANCASTER LABORATORIES SEMIVOLATILES BY GC/MS

### SAMPLE NUMBER(S) :

|               |               | watrix     |                    |
|---------------|---------------|------------|--------------------|
| <u>LL #'s</u> | Sample Code   | Soil Water | <u>Comments</u>    |
| 3188734       | LB118         | X          |                    |
| 3188734RE     | LB118RE       | Х          | Reextraction       |
| 3213143       | LF-5-         | Х          |                    |
| 3213143RE     | LF-5-RE       | X          | Reinjection        |
| 3217224       | LF-7-         | Х          | Unspiked           |
| 3217225       | LF-7-MS       | Х          | Matrix Spike       |
| 3217226       | LF-7-MSD      | X          | Matrix Spike Dup   |
| LABORATORY    | SUBMITTED QC: |            |                    |
| SBLKLA193     | SBLKLA193M    | Х          | Method Blank       |
| SBLKLB195     | SBLKLB195M    | Х          | Method Blank       |
| SBLKLD229     | SBLKLD229J    | Х          | Method Blank       |
| SBLKLD237     | SBLKLD2373    | Х          | Method Blank       |
| 193LALCS      | 193LALCSM     | Х          | Lab Control Sample |
| 195LBLCS      | 195LBLCSM     | Х          | Lab Control Sample |
| 229LDLCS      | 229LDLCSJ     | Х          | Lab Control Sample |
| 237LDLCS      | 237LDLCS3     | Х          | Lab Control Sample |

### **SAMPLE PREPARATION:**

Due to the nature of the sample matrix, LB118 was concentrated to a final volume of 2 mls.

No other problems were encountered during the extraction of these samples.

# **ANALYSIS:**

The method used for analysis was SW-846 Method 8270C.

Lancaster Laboratories • 2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 A subsidiary of Thermo TerraTech Inc., a Thermo Electron company

Lancaster Laboratories Where quality is a science.

# Case Narrative SDG #: ELK03 continued

All samples were analyzed for the semivolatile CLP OLM03.2 target compounds.

Reextraction was required for LB118 due to unacceptable surrogate recoveries.

No other problems were encountered during the analysis of these samples.

## QUALITY CONTROL AND NONCONFORMANCE SUMMARY:

LF-5- had internal standard peak areas outside QC limits for both the initial injection and the reinjection confirming a matrix effect.

LB118 had surrogate recoveries outside QC limits for both the initial extraction and the reextraction confirming a matrix effect.

All other QC was within specifications.

# DATA INTERPRETATION:

Only non-conformances for client requested compounds are addressed in this case narrative.

No further interpretation is necessary for the data submitted.

Case Narrative Reviewed and Approved by:

Charles J. Neslund Group Leader, GC/MS Semivolatiles

Date: \_\_\_\_\_\_\_\_\_\_\_/6/AG

Lancaster Laboratories • 2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 A subsidiary of Thermo TerraTech Inc., a Thermo Electron company



Case Narrative SDG# ELK03

Client : Mobil Oil Corporation Project: MOBIL: NY Volatiles by GC - Soil/Water

8

#### SAMPLE ANALYSES

| LL             | Sample      | Matrix     |                        |
|----------------|-------------|------------|------------------------|
| Sample #       | Designation | Soil Water | Comments               |
| 2100724        | T D1 1 0    | 37         | DE 100                 |
| 3188/34        | TRT18       | X          | DF 100                 |
| 3188736        | TRPBL       | Х          |                        |
| 3213143        | LF-5-       | Х          | DF 20                  |
| 3217224        | LF-7-       | Х          | DF 20 Unspiked         |
| 3217225MS      | LF-7-       | Х          | DF 20 Matrix Spike     |
| 3217226MSD     | LF-7-       | Х          | DF 20 Matrix Spike Dup |
| 3217227        | LF-FB       | Х          |                        |
| 3217228        | LF-TB       | Х          |                        |
|                |             |            |                        |
|                |             |            |                        |
| QUALITY CONTRO | DL ANALYSES |            |                        |

| BLK0809 | Х | DF 20 Method Blank           |
|---------|---|------------------------------|
| BLK1328 | Х | Method Blank                 |
| BLK1331 | Х | Method Blank                 |
| BLK0853 | x | DF 20 Method Blank           |
| BLK0854 | X | DF 20 Method Blank           |
| BLK1516 | х | Method Blank                 |
| BLK1517 | Х | Method Blank                 |
| LCS1312 | х | Lab Control Sample           |
| LCS0812 | x | Lab Control Sample           |
| LCS1507 | х | Lab Control Sample           |
| LDS1506 | х | Lab Control Sample Duplicate |
|         |   |                              |

#### SAMPLE PREPARATION

Blanks/Standards for soil matrix samples were prepared by adding 1 mL of methanol to 20 mL of DI water. This mixture was analyzed by purge and trap gas chromatography. This results in a dilution factor of 20.

Twenty grams of soil were extracted with 20 mL of methanol. The surrogate standards and spiking solutions are added to the methanol as it is in contact with the soil. The methanol is then diluted into DI water, and injected into a purge and trap concentrator. This diluted extract is then analyzed by gas chromatography.

Dilutions were necessary for some samples as noted in the comments section above.

### ANALYSIS

The integration system reviews the chromatogram retention times, comparing them to the retention times in the ID Window column. A peak in the sample chromatogram with a retention time within the ID window is identified as a "hit."

The method used for analysis was EPA Method SW-846 5030B/8021B. A J&W DB-VRX, 75m x 0.45mm<sup>2</sup> capillary column was used for the analysis of all samples.



Case Narrative SDG# ELK03

Client : Mobil Oil Corporation Project: MOBIL: NY Volatiles by GC - Soil/Water

The initial calibration P08187 met the requirements of SW-846 Method 8000B (section 7.7) since the average of all relative standard deviation values was < 20%. (The average % RSD was calculated using all of the compounds in the standard, though the ICAL summary form in this data package reflects only the client requested compounds.) As stated in method 8000B (section 7.5.1.2.3) the data user should be made aware that the %RSD(s) for methyl tert-butyl ether fell outside of the < 20% criteria.

The calibration verification standard (injection #54 analyzed on 07/14/99 at 21:38) met the requirements of SW-846 Method 8000B (section 7.7) since the average of all percent drift values was < 15%. (The average % drift was calculated using all of the compounds in the standard, though the CCV summary form in this data package only reflects the client requested compounds.) As stated in method 8000B (section 7.5.1.2.3) the data user should be made aware that the %drift for sec-butylbenzene fell outside of the +/- 15% criteria.

The calibration verification standard (injection #02 analyzed on 08/25/99 at 03:02) met the requirements of SW-846 Method 8000B (section 7.7) since the average of all percent drift values was < 15%. (The average % drift was calculated using all of the compounds in the standard, though the CCV summary form in this data package only reflects the client requested compounds.) As stated in method 8000B (section 7.5.1.2.3) the data user should be made aware that the %drift for methyl tert-butyl ether fell outside of the +/- 15% criteria.

#### QUALITY CONTROL AND NONCONFORMANCE SUMMARY

Client submitted batch QC was referenced.

For sample 3188734, the surrogate, 1-bromo-4-chlorobenzene, is outside of specifications due to the dilution needed to perform the analysis.

#### DATA INTERPRETATION

Due to the limitations of the data package generating software, the NYSDEC ASP forms could not be included for the GC Volatiles data. Sample results are summarized on the analysis reports, and QC and calibration information is included on summary forms in this section of the data package.

Narrative reviewed and approved by:

hele M. Turner, Manager

Where guality is a science.

CASE NARRATIVE FOR INORGANICS

Laboratory Name: Lancaster Laboratories

SDG Number: ELK03

Date Received: 08/21/99

Analysis:

Refer to the analysis run logs for samples requiring dilutions.

#### Quality Control:

The matrix spike and matrix spike duplicate were not within the control limits for chromium and vanadium. This indicates that the sample matrix may be affecting the digestion and/or measurement methodology for those analytes; however, the data are considered to be valid because the laboratory control sample is within the control limits.

#### Explanatory Notes:

The instrument detection limits (IDLs) are used for determining the U flags on the initial and continuing calibration blanks. The method detection limits (MDLs) are used for determining all other U flags. The final concentration is obtained using the following

calculation:

final = instrument reading x final vol. x dilution factor conc. initial volume or weight

### Calibration Standards:

Instrument calibration standards are prepared monthly from stock solutions purchased from Spex Industries Inc., JT Baker, Aldrich Chemical, VWR Scientific, EM Science, High Purity, Ultra Scientific or VHG Laboratories.

Case Narrative reviewed and approved by:

\_Date 10/12/99

Kathleen A. Risko, Specialist Inorganic Data Packages



### **CASE NARRATIVE**

# Client: Mobil Oil Corporation SDG #: ELK04

# LANCASTER LABORATORIES SEMIVOLATILES BY GC/MS

### SAMPLE NUMBER(S) :

|               |               | Matrix            |                    |
|---------------|---------------|-------------------|--------------------|
| <u>LL #'s</u> | Sample Code   | <u>Soil Water</u> | <u>Comments</u>    |
| 3228185       | 13005         | Х                 |                    |
| 3228186       | 131           | X                 |                    |
| 3228186DL     | 131DL         | Х                 | 10X Dilution       |
| 3228187       | 132           | Х                 |                    |
| 3228188       | 14005         | Х                 | Unspiked           |
| 3228189       | 14005MS       | Х                 | Matrix Spike       |
| 3228190       | 14005MSD      | Х                 | Matrix Spike Dup   |
| 3228191       | 141           | Х                 |                    |
| 3228192       | 142           | Х                 |                    |
| 3228196       | 151           | Х                 |                    |
| 3228197       | 152           | X                 |                    |
| 3228198       | 16005         | Х                 |                    |
| 3228199       | 161           | X                 |                    |
| LABORATORY    | SUBMITTED QC: |                   |                    |
| SBLKLA256     | SBLKLA256M    | Х                 | Method Blank       |
| 256LALCS      | 256LALCSM     | X                 | Lab Control Sample |
|               |               |                   |                    |

## SAMPLE PREPARATION:

Due to the nature of the sample matrix, the following samples were concentrated to final volumes greater than 1.0 ml.

| Sample Code              | Final Volume |
|--------------------------|--------------|
| 13005                    | 10 mls       |
| 14005, 14005MS, 14005MSD | 10 mls       |
| 141                      | 10 mls       |
| 151                      | 10 mis       |
| 152                      | 2 mls        |

Lancaster Laboratories • 2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 A subsidiary of Thermo TerraTech Inc., a Thermo Electron company

1

30 (2) ver

Lancaster Laboratories

# Case Narrative SDG #: ELK04 continued

No other problems were encountered during the extraction of these samples.

# ANALYSIS:

The method used for analysis was SW-846 Method 8270C.

All samples were analyzed for the semivolatile CLP OLM03.2 target compounds.

Due to a number of concentrations above calibration range, 131-- was analyzed at a further 10X dilution.

No other problems were encountered during the analysis of these samples.

# QUALITY CONTROL AND NONCONFORMANCE SUMMARY:

A number of compounds were not recovered or their recoveries were outside QC limits in 14005MS and 14005MSD. Refer to the matrix spike/matrix spike duplicate form for the specific compounds outside QC limits.

A number of relative percent differences (RPD's) between 14005MS and 14005MSD were greater than 30 percent.

All other QC was within specifications.

### DATA INTERPRETATION:

Only non-conformances for client requested compounds are addressed in this case narrative.

No further interpretation is necessary for the data submitted.

Case Narrative Reviewed and Approved by:

Charles J. Neslund Group Leader, GC/MS Semivolatiles

13/6/96 Date:

Lancaster Laboratories • 2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 A subsidiary of Thermo TerraTech Inc., a Thermo Electron company Lancaster Laboratories

CASE NARRATIVE FOR INORGANICS

Laboratory Name: Lancaster Laboratories

SDG Number: ELK04

Date Received: 09/03/99

Analysis:

Refer to the analysis run logs for samples requiring dilutions.

#### Quality Control:

The matrix spike was not within the control limits for chromium. This indicates that the sample matrix may be affecting the digestion and/or measurement methodology for that analyte; however, the data are considered to be valid because the laboratory control sample is within the control limits.

Poor duplication was observed between the matrix background and matrix duplicate for chromium and mercury. Poor duplication was observed between the matrix spike and matrix spike duplicate for lead. This indicates that the sample matrix may not be homogeneous for those analytes; however, the data are considered to be valid because the laboratory control sample is within the control limits.

The recovery percentages of the matrix spike and matrix spike duplicate for lead and mercury were not used to validate the data because the sample results were greater than four times the respective amounts of spike added.

#### Explanatory Notes:

The instrument detection limits (IDLs) are used for determining the U flags on the initial and continuing calibration blanks. The method detection limits (MDLs) are used for determining all other U flags.

The final concentration is obtained using the following calculation:

final = instrument reading x final vol. x dilution factor
conc. initial volume or weight

Calibration Standards:

Instrument calibration standards are prepared monthly from stock solutions purchased from Spex Industries Inc., JT Baker, Aldrich Chemical, VWR Scientific, EM Science, High Purity, Ultra Scientific or VHG Laboratories.

Case Narrative reviewed and approved by:

menes Date 10/29 Betsy S. Menefee, Senior/Specialist Inorganid Analysis



## **CASE NARRATIVE**

# Client: Mobil Oil Corporation SDG #: ELK05

# LANCASTER LABORATORIES SEMIVOLATILES BY GC/MS

# SAMPLE NUMBER(S) :

|               |              | Matrix            |                        |
|---------------|--------------|-------------------|------------------------|
| <u>LL #'s</u> | Sample Code  | <u>Soil Water</u> | <u>Comments</u>        |
| 3228193       | 15005        | Х                 | Unspiked               |
| 3228193DL     | 15005DL      | Х                 | 10X Dilution           |
| 3228194       | 15005MS      | Х                 | Matrix Spike           |
| 3228195       | 15005MSD     | Х                 | Matrix Spike Dup       |
| 3228200       | 162          | X                 |                        |
| 3228201       | 17005        | X                 |                        |
| 3228202       | 171          | X                 |                        |
| 3228203       | 172          | X                 |                        |
| 3228204       | 18005        | Х                 |                        |
| 3228205       | 18FB-        | X                 | Client Blank           |
| 3228206       | 181          | X                 |                        |
| 3228207       | 182          | X                 |                        |
| 3228209       | 19005        | Х                 |                        |
| 3228210       | 191          | Х                 |                        |
| 3228211       | 192          | Х                 |                        |
| 3228212       | 20005        | Х                 |                        |
| 3228213       | 201          | Х                 |                        |
| 3228214       | 202          | X                 |                        |
|               | UBMITTED QC: |                   |                        |
| SBLKWB255     | SBLKWB2553   | Х                 | Method Blank           |
| SBLKLA256     | SBLKLA256M   | Х                 | Method Blank           |
| SBLKLD258     | SBLKLD258L   | Х                 | Method Blank           |
| 255WBLCS      | 255WBLCS3    | Х                 | Lab Control Sample     |
| 255WBLCSD     | 255WBLCSD3   | Х                 | Lab Control Sample Dup |
| 256LALCS      | 256LALCSM    | Х                 | Lab Control Sample     |
| 258LDLCS      | 258LDLCSL    | Х                 | Lab Control Sample     |

------



# Case Narrative SDG #: ELK05 continued

### SAMPLE PREPARATION:

No problems were encountered during the extraction of these samples.

### ANALYSIS:

The method used for analysis was SW-846 Method 8270C.

All samples were analyzed for the semivolatile polynuclear aromatic hydrocarbon compounds.

Due to a number of concentrations above calibration range, 15005 was analyzed at a further 10X dilution.

In 202--, benzo(b)fluoranthene and benzo(k)fluoranthene were not resolved under the analysis conditions. The benzo(b)fluoranthene value is a combination of results from both isomers.

No other problems were encountered during the analysis of these samples.

### QUALITY CONTROL AND NONCONFORMANCE SUMMARY:

A number of compounds were not recovered or their recoveries were outside QC limits in 15005MS and 15005MSD. Refer to the matrix spike/matrix spike duplicate form for the specific compounds outside QC limits.

All other QC was within specifications.

# DATA INTERPRETATION:

Only non-conformances for client requested compounds are addressed in this case narrative.



# Case narrative SDG #: ELK05 continued

No further interpretation is necessary for the data submitted.

Case Narrative Reviewed and Approved by:

Charles all'in

\_\_\_\_\_ Date: 10/6/96

Charles J. Neslund Group Leader, GC/MS Semivolatiles



CASE NARRATIVE FOR INORGANICS

Laboratory Name: Lancaster Laboratories

SDG Number: ELK05S

Date Received: 09/03/99

Preparation:

Samples 191- and 201-- were digested a second time for all ICP analyses in batch 99273-5708-005 because of a problem during preparation.

Analysis:

Refer to the analysis run logs for samples requiring dilutions.

Quality Control:

Poor duplication was observed between the matrix background and matrix duplicate for chromium. This indicates that the sample matrix may not be homogeneous for that analyte; however, the data are considered to be valid because the laboratory control sample is within the control limits.

Explanatory Notes:

The instrument detection limits (IDLs) are used for determining the U flags on the initial and continuing calibration blanks. The method detection limits (MDLs) are used for determining all other U flags.

The final concentration is obtained using the following calculation:

final = instrument reading x final vol. x dilution factor
conc. initial volume or weight

Data Package Assembly:

This sample delivery group was separated by matrix into two data packages, ELK05W and ELK05S due to limitations of the data package generating software.

#### Calibration Standards:

Instrument calibration standards are prepared monthly from stock solutions purchased from Spex Industries Inc., JT Baker, Aldrich Chemical, VWR Scientific, EM Science, High Purity, Ultra Scientific or VHG Laboratories.

Case Narrative reviewed and approved by:

Betsy S. Menefee, Senior Specialist 702 Inorganic Analysis

Lancaster Laboratories • 2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681

A subsidiary of Thermo TerraTech Inc., a Thermo Electron company



Case Narrative SDG# ELK06

Client : Mobil Oil Corporation Project: MOBIL: 635 Elk St. Buffalo, NY Volatiles by GC - Water

### SAMPLE ANALYSES

| LL         | Sample      | Matrix     |                  |
|------------|-------------|------------|------------------|
| Sample #   | Designation | Soil Water | Comments         |
| 3239768    | LF3BK       | х          | Unspiked         |
| 3239769    | LF3DU       | Х          |                  |
| 3239770MS  | LF3MS       | Х          | Matrix Spike     |
| 3239771MSD | LF3MD       | Х          | Matrix Spike Dup |
| 3239772    | LF3FB       | Х          |                  |
| 3239773    | DISTB       | Х          |                  |
| 3239774    | LF-4-       | Х          |                  |
| 3239775    | LF-5-       | Х          |                  |
| 3239776    | LF-6-       | Х          |                  |
| 3239777    | LF-7-       | Х          |                  |
| 3239778    | LF-8-       | Х          |                  |
| 3239779    | SB-11       | Х          | DF 10            |
| 3239780    | SB-14       | Х          | DF 2             |
|            |             |            |                  |

#### QUALITY CONTROL ANALYSES

| BLK1333 | Х | Method Blank       |
|---------|---|--------------------|
| BLK1834 | Х | Method Blank       |
| BLK1336 | Х | Method Blank       |
| BLK2008 | Х | Method Blank       |
| LCS1305 | Х | Lab Control Sample |
| LCS2002 | Х | Lab Control Sample |
|         |   |                    |

#### SAMPLE PREPARATION

Dilutions were necessary for some samples as noted in the comments section above.

#### ANALYSIS

The integration system reviews the chromatogram retention times, comparing them to the retention times in the ID Window column. A peak in the sample chromatogram with a retention time within the ID window is identified as a "hit."

The method used for analysis was EPA Method SW-846 5030B/8021B. A J&W DB-VRX, 75m  $\times$  0.45mm capillary column was used for the analysis of all samples.

The calibration verification standard (injection #32 analyzed on 09/30/99 at 07:51) met the requirements of SW-846 Method 8000B (section 7.7) since the average of all percent drift values was < 15%. (The average % drift was calculated using all of the compounds in the standard, though the CCV summary form in this data package only reflects the client requested compounds.) As stated in method 8000B (section 7.5.1.2.3) the data user should be made aware that the % % drift for naphthalene fell outside of the +/- 15% criteria.

.



Case Narrative SDG# ELK06

Client : Mobil Oil Corporation Project: MOBIL: 635 Elk St. Buffalo, NY Volatiles by GC - Water

The calibration verification standard (injection #71 analyzed on 10/01/99 at 00:48) met the requirements of SW-846 Method 8000B (section 7.7) since the average of all percent drift values was < 15%. (The average % drift was calculated using all of the compounds in the standard, though the CCV summary form in this data package only reflects the client requested compounds.) As stated in method 8000B (section 7.5.1.2.3) the data user should be made aware that the %drift for o-xylene fell outside of the +/- 15% criteria.

### QUALITY CONTROL AND NONCONFORMANCE SUMMARY

Client submitted batch QC was referenced.

For samples 3239768 and 3239770MS, the surrogate, 1-bromo-4-chlorobenzene, is outside of specifications due to the nature of the sample matrix.

The recovery of naphthalene in the MS and MSD is outside of specifications. However, the corresponding laboratory control sample is acceptable, and shows the system to be in calibration.

### DATA INTERPRETATION

Due to the limitations of the data package generating software, the NYSDEC ASP forms could not be included for the GC Volatiles data. Sample results are summarized on the analysis reports, and QC and calibration information is included on summary forms in this section of the data package.

Narrative reviewed and approved by:

Michele M. Turner, Manager

<u>10.14.99</u> Date

-Pr. CA 620-620



# **CASE NARRATIVE**

# Client: Mobil Oil Corporation SDG #: ELK07

# LANCASTER LABORATORIES SEMIVOLATILES BY GC/MS

### SAMPLE NUMBER(S) :

|               |               | Malix             |                    |
|---------------|---------------|-------------------|--------------------|
| <u>LL #'s</u> | Sample Code   | <u>Soil</u> Water | Comments           |
| 3241775       | SB28-         | X                 | Unspiked           |
| 3241776       | SB28-MS       | Х                 | Matrix Spike       |
| 3241777       | SB28-MSD      | Х                 | Matrix Spike Dup   |
| 3241778       | SB28D         | Х                 |                    |
| 3241779       | SB28F         | Х                 |                    |
| 3241781       | SB19-         | X                 |                    |
| LABORATORY    | SUBMITTED QC: |                   |                    |
| SBLKWC277     | SBLKWC2779    | Х                 | Method Blank       |
| 277WCLCS      | 277WCLCS9     | X                 | Lab Control Sample |
|               |               |                   |                    |

Motrix

### SAMPLE PREPARATION:

Due to insufficient sample, only 975 mls were used in the extraction of SB28D and 968 mls in the extraction of SB28F.

No other problems were encountered during the extraction of these samples.

### **ANALYSIS:**

The method used for analysis was SW-846 Method 8270C.

All samples were analyzed for the semivolatile polynuclear aromatic hydrocarbon compounds.

No problems were encountered during the analysis of these samples.



# Case Narrative SDB #: ELK07 continued

### QUALITY CONTROL AND NONCONFORMANCE SUMMARY:

All QC was within specifications.

### DATA INTERPRETATION:

Only non-conformances for client requested compounds are addressed in this case narrative.

No further interpretation is necessary for the data submitted.

Case Narrative Reviewed and Approved by:

11 1/

Charles J. Neslund Group Leader, GC/MS Semivolatiles

hulling Date: 10/00/19



CASE NARRATIVE FOR INORGANICS

Laboratory Name: Lancaster Laboratories

SDG Number: ELK07

Date Received:

Analysis:

Refer to the analysis run logs for samples requiring dilutions. All of the samples for lead and selenium required analysis by Method of Standard Additions (MSA) because the post digestion spike on the background sample of the digestion batch recovered less than 85%.

#### Quality Control:

The matrix spike was not within the control limits for lead. The matrix spike duplicate was not within the control limits for selenium. This indicates that the sample matrix may be affecting the digestion and/or measurement methodology for those analytes; however, the data are considered to be valid because the laboratory control sample is within the control limits.

Poor duplication was observed between the matrix spike and matrix spike duplicate for selenium. This indicates that the sample matrix may not be homogeneous for that analyte; however, the data are considered to be valid because the laboratory control sample is within the control limits.

#### Explanatory Notes:

The instrument detection limits (IDLs) are used for determining the U flags on the initial and continuing calibration blanks and in the calculation of the %R for the Graphite Furnace AA (GFAA) analytical spikes. The method detection limits (MDLs) are used for determining all other U flags. The final concentration is obtained using the following calculation:

final = instrument reading x final vol. x dilution factor
conc. initial volume or weight

Calibration Standards:

Instrument calibration standards are prepared monthly from stock solutions purchased from Spex Industries Inc., JT Baker, Aldrich Chemical, VWR Scientific, EM Science, High Purity, Ultra Scientific or VHG Laboratories.

Case Narrative reviewed and approved by:

Diane L. Lockard, Senior QA Spectalist

Quality Assurance



Case Narrative SDG# ELK07

Client : Mobil Oil Corporation Project: MOBIL: 635 Elk St., Buffalo, NY Volatiles by GC - Water

### SAMPLE ANALYSES

| LL            | Sample      | Matrix     |                    |
|---------------|-------------|------------|--------------------|
| Sample #      | Designation | Soil Water | Comments           |
| 3241775       | SB28-       | х          | Unspiked           |
| 3241776MS     | SB28-       | Х          | Matrix Spike       |
| 3241777MSD    | SB28-       | Х          | Matrix Spike Dup   |
| 3241778       | SB28D       | Х          |                    |
| 3241779       | SB28F       | Х          |                    |
| 3241780       | PINTO       | Х          |                    |
| 3241781       | SB19-       | Х          |                    |
| QUALITY CONTR | OL ANALYSES |            |                    |
| BLK2019       |             | х          | Method Blank       |
| BLK2020       |             | х          | Method Blank       |
| LCS2004       |             | x          | Lab Control Sample |

### SAMPLE PREPARATION

No sample preparation was necessary.

### ANALYSIS

The integration system reviews the chromatogram retention times, comparing them to the retention times in the ID Window column. A peak in the sample chromatogram with a retention time within the ID window is identified as a "hit."

The method used for analysis was EPA Method SW-846 5030B/8021B. A J&W DB-VRX, 75m x 0.45mm capillary column was used for the analysis of all samples.

No problems were encountered during analysis.

#### QUALITY CONTROL AND NONCONFORMANCE SUMMARY

Client submitted batch QC was referenced.

The recovery of m, p-xylene, o-xylene, n-propylbenzene, 1,3,5-trimethylbenzene, 1,2,4trimethylbenzene, p-isopropyltoluene and naphthalene in the MS and/or MSD is outside of specifications. However, the corresponding laboratory control sample is acceptable, and shows the system to be in calibration.



Case Narrative SDG# ELK07

Client : Mobil Oil Corporation Project: MOBIL: 635 Elk St., Buffalo, NY Volatiles by GC - Water

### LATA INTERPRETATION

Due to the limitations of the data package generating software, the NYSDEC ASP forms could not be included for the GC Volatiles data. Sample results are summarized on the analysis reports, and QC and calibration information is included on summary forms in this section of the data package.

Narrative reviewed and approved by:

 $\left| \mathbf{O} \right|$ Michele M. Turner, Manager

10.20.99 Date

# LOZIER ANALYTICAL GROUP

CR+6 Analysis Sheet

| Date  | 8/25/00 |
|-------|---------|
| Date: | 6/23/89 |

Analyst: K.H.

Start Time: 4:30

End Time: 4:35

Detection Limit: 0.02 Wavelenth: 540nm

Concentration Comments Volume (ml) or Final STD Absorbance From Dilution Client jod # Sample Welghi (g) Concentration iD Curve (mg/.) (rng/l) \$0ml 0.014 BLK 0.014 1 0 0 0 02 0.018 0.032 ۱ 50ml 0.032 0.1 0.08 0 093 4 50mi 0.093 0.2 0.154 0.167 • 50ml 0.167 • 0 514 50ml 0.514 0.5 0.503 20 0.407 0.32 C 395 0.407 1 50m 4905-1 0 0014 1 5Cm 0.014 0.014 1 5Crn. 0.014 485-2 C 4805-3 0 014 • \$Cml 0014 0 4805-4 C 0.014 1 50ml 0.014 4805-5 0 0.014 1 50m 0.014 4805-6 6 0 014 1 50m: 0.01+ 0 0014 Sumi 0.014 4805-5 1 30.4 SCITI 4805-10 0 1 0 014 0014 , SOITI 4305-11 0 1.014 4825-8 Q 0.014 1 50m; C.114 0.32 0 407 90 0.395 , C 407 0.014 ULK. ņ 0 1 0.014

QC Checked by: Onc 3/24/99 Data Entered by: Onc 8/24/99

TOTAL 1.02

-

|                          |              |                |              |               | l            | t           |                 |          |
|--------------------------|--------------|----------------|--------------|---------------|--------------|-------------|-----------------|----------|
| Area:                    | Elk Street   | Lot            |              |               | Terminal Dis | posal Site  | Former Lube O   | Building |
| Sample Designation:      | ESL-4        | ESL-8/ESL-W1   | ESL-8/ESL-W1 | ESL-12        | LF-5         | 1.1-7       | SB-7            | SB-7     |
| Sample Date:             | 6/22/98      | 6/22/98        | 6/22/98      | 6/22/98       | 8/6/99       | 8/16/99     | 6/26/98         | 6/26/98  |
| Sample Depth (ft bls):   | 1.5-2        | 1.5-2          | 8-10         | 1.5-2         | 21-23        | 21-23       | 0-2             | 8-10     |
| Parameter                |              |                |              |               |              |             |                 |          |
| (Concentration in µg/kg) |              |                |              |               |              | <del></del> |                 |          |
| Benzene                  | 5.SU         | SU             | <b>SU</b>    | 5.20          | 5U           | 5.20        | 1100            | 240      |
| Tohicae                  | 1 <b>8</b> J | 9.1J           | 5U           | 5. <b>2</b> U | SU           | 5.2U        | 1100            | 46       |
| Ethylbenzene             | 7.2J         | 8.5J           | SU           | 5.2U          | SU           | 5.2U        | 110U            | 97       |
| Xylenes (total)          | 35J          | 24             | 100          | 10U           | 10U          | 100         | 1700            | 160      |
| TOTAL BTEX               | 60.2         | 41.6           | 0            | 0             | 0            | 0           | 1790            | 543      |
| 1,2,4-Traniethylbenzene  | <b>29.</b> J | 27             | <b>S</b> U   | 5.2U          | SU           | 5.2U        | 5200            | 226      |
| 1,3,5-Trimeshythenzene   | 7.9J         | · 6.3J         | SU           | 5.2U          | SU           | 5.2U        | 2200            | 93       |
| Cunterie                 | 7.5J         | 5U             | 5U           | 5.2U          | SU           | 5.2U        | <b>430U</b>     | 500      |
| MTBE                     | 5.5U         | 5U             | <b>SU</b>    | 5 2U          | su           | 5.2U        | 11 <b>0</b> U   | 5U       |
| n-Butyibenzene           | 8.2J         | 12J            | 5U           | 5.2U          | 5U           | 5.2U        | 8609            | 700      |
| n-Propylbenzene          | <b>8</b> J   | - 7.1 <b>J</b> | 5U           | 5.2U          | 5U           | 5.2U        | 3000            | 400      |
| Naphthalene              | 51WJ         | 42             | 50           | 12U           | 5U           | 5.2U        | 2100U           | 1300     |
| o-Xylene                 | <b>30</b> J  | 12J            | 5U           | 5.2U          | 5U -         | 5.2U        | 450             | 140      |
| p-isopropykoluene        | 5.5U         | 6.9J           | 5U           | 5.2U          | 5U           | 5.2U        | 1100 <b>0</b> U | 550      |
| sec-Butylbenzene         | 5.6J         | SU             | 5U           | 5.2U          | 5U           | 5.2U        | 7800            | 570      |
| text-Butylbenzene        | 5.5U         | <b>5</b> U     | 50           | 5. <b>2</b> U | 5u           | 5.2 U       | 7300            | 330      |
| Total VOCS               | 156.4        | 154.9          | 0            | 0             | 0            | 0           | 36250           | 5346     |

ر مرد ها

µg/kg - Micrograms per kilogram

- U The analyte was analyzed for, but not detected above the reported sample limit.
- I The analyte was positively identified: the associated numerical value is the approximate concentration of the analyte in the sample.
- UI The analyte was not detected above the reported quantitation limit. However the reported quantitation limit may be biased.
- NA Not analyzed
- Beld Analyte detected

ł

ł

|                          |              |                |              |               | l            | t           |                 |          |
|--------------------------|--------------|----------------|--------------|---------------|--------------|-------------|-----------------|----------|
| Area:                    | Elk Street   | Lot            |              |               | Terminal Dis | posal Site  | Former Lube O   | Building |
| Sample Designation:      | ESL-4        | ESL-8/ESL-W1   | ESL-8/ESL-W1 | ESL-12        | LF-5         | 1.1-7       | SB-7            | SB-7     |
| Sample Date:             | 6/22/98      | 6/22/98        | 6/22/98      | 6/22/98       | 8/6/99       | 8/16/99     | 6/26/98         | 6/26/98  |
| Sample Depth (ft bls):   | 1.5-2        | 1.5-2          | 8-10         | 1.5-2         | 21-23        | 21-23       | 0-2             | 8-10     |
| Parameter                |              |                |              |               |              |             |                 |          |
| (Concentration in µg/kg) |              |                |              |               |              | <del></del> |                 |          |
| Benzene                  | 5.SU         | SU             | <b>SU</b>    | 5.20          | 5U           | 5.20        | 1100            | 240      |
| Tohicae                  | 1 <b>8</b> J | 9.1J           | 5U           | 5. <b>2</b> U | SU           | 5.2U        | 1100            | 46       |
| Ethylbenzene             | 7.2J         | 8.5J           | SU           | 5.2U          | SU           | 5.2U        | 110U            | 97       |
| Xylenes (total)          | 35J          | 24             | 100          | 10U           | 10U          | 100         | 1700            | 160      |
| TOTAL BTEX               | 60.2         | 41.6           | 0            | 0             | 0            | 0           | 1790            | 543      |
| 1,2,4-Traniethylbenzene  | <b>29.</b> J | 27             | <b>S</b> U   | 5.2U          | SU           | 5.2U        | 5200            | 226      |
| 1,3,5-Trimeshythenzene   | 7.9J         | · 6.3J         | SU           | 5.2U          | SU           | 5.2U        | 2200            | 93       |
| Cunterie                 | 7.5J         | 5U             | 5U           | 5.2U          | SU           | 5.2U        | <b>430U</b>     | 500      |
| MTBE                     | 5.5U         | 5U             | <b>SU</b>    | 5 2U          | su           | 5.2U        | 11 <b>0</b> U   | 5U       |
| n-Butyibenzene           | 8.2J         | 12J            | 5U           | 5.2U          | 5U           | 5.2U        | 8609            | 700      |
| n-Propylbenzene          | <b>8</b> J   | - 7.1 <b>J</b> | 5U           | 5.2U          | 5U           | 5.2U        | 3000            | 400      |
| Naphthalene              | 51WJ         | 42             | 50           | 12U           | 5U           | 5.2U        | 2100U           | 1300     |
| o-Xylene                 | <b>30</b> J  | 12J            | 5U           | 5.2U          | 5U -         | 5.2U        | 450             | 140      |
| p-isopropykoluene        | 5.5U         | 6.9J           | 5U           | 5.2U          | 5U           | 5.2U        | 1100 <b>0</b> U | 550      |
| sec-Butylbenzene         | 5.6J         | SU             | 5U           | 5.2U          | 5U           | 5.2U        | 7888            | 570      |
| text-Butylbenzene        | 5.5U         | <b>5</b> U     | 50           | 5. <b>2</b> U | 5u           | 5.2 U       | 7300            | 330      |
| Total VOCS               | 156.4        | 154.9          | 0            | 0             | 0            | 0           | 36250           | 5346     |

ر مرد هر

µg/kg - Micrograms per kilogram

- U The analyte was analyzed for, but not detected above the reported sample limit.
- I The analyte was positively identified: the associated numerical value is the approximate concentration of the analyte in the sample.
- UI The analyte was not detected above the reported quantitation limit. However the reported quantitation limit may be biased.
- NA Not analyzed
- Beld Analyte detected

ł

ł

|                          |              |                |              |               | l            | t           |                 |          |
|--------------------------|--------------|----------------|--------------|---------------|--------------|-------------|-----------------|----------|
| Area:                    | Elk Street   | Lot            |              |               | Terminal Dis | posal Site  | Former Lube O   | Building |
| Sample Designation:      | ESL-4        | ESL-8/ESL-W1   | ESL-8/ESL-W1 | ESL-12        | LF-5         | 1.1-7       | SB-7            | SB-7     |
| Sample Date:             | 6/22/98      | 6/22/98        | 6/22/98      | 6/22/98       | 8/6/99       | 8/16/99     | 6/26/98         | 6/26/98  |
| Sample Depth (ft bls):   | 1.5-2        | 1.5-2          | 8-10         | 1.5-2         | 21-23        | 21-23       | 0-2             | 8-10     |
| Parameter                |              |                |              |               |              |             |                 |          |
| (Concentration in µg/kg) |              |                |              |               |              | <del></del> |                 |          |
| Benzene                  | 5.SU         | SU             | <b>SU</b>    | 5.20          | 5U           | 5.20        | 1100            | 240      |
| Tohicae                  | 1 <b>8</b> J | 9.1J           | 5U           | 5. <b>2</b> U | SU           | 5.2U        | 1100            | 46       |
| Ethylbenzene             | 7.2J         | 8.5J           | SU           | 5.2U          | SU           | 5.2U        | 110U            | 97       |
| Xylenes (total)          | 35J          | 24             | 100          | 10U           | 10U          | 100         | 1700            | 160      |
| TOTAL BTEX               | 60.2         | 41.6           | 0            | 0             | 0            | 0           | 1790            | 543      |
| 1,2,4-Traniethylbenzene  | <b>29.</b> J | 27             | <b>S</b> U   | 5.2U          | SU           | 5.2U        | 5200            | 226      |
| 1,3,5-Trimeshythenzene   | 7.9J         | · 6.3J         | SU           | 5.2U          | SU           | 5.2U        | 2200            | 93       |
| Cunterie                 | 7.5J         | 5U             | 5U           | 5.2U          | SU           | 5.2U        | <b>430U</b>     | 500      |
| MTBE                     | 5.5U         | 5U             | <b>SU</b>    | 5 2U          | su           | 5.2U        | 11 <b>0</b> U   | 5U       |
| n-Butyibenzene           | 8.2J         | 12J            | 5U           | 5.2U          | 5U           | 5.2U        | 8609            | 700      |
| n-Propylbenzene          | <b>8</b> J   | - 7.1 <b>J</b> | 5U           | 5.2U          | 5U           | 5.2U        | 3000            | 400      |
| Naphthalene              | 51WJ         | 42             | 50           | 12U           | 5U           | 5.2U        | 2100U           | 1300     |
| o-Xylene                 | <b>30</b> J  | 12J            | 5U           | 5.2U          | 5U -         | 5.2U        | 450             | 140      |
| p-isopropykoluene        | 5.5U         | 6.9J           | 5U           | 5.2U          | 5U           | 5.2U        | 1100 <b>0</b> U | 550      |
| sec-Butylbenzene         | 5.6J         | SU             | 5U           | 5.2U          | 5U           | 5.2U        | 7888            | 570      |
| text-Butylbenzene        | 5.5U         | <b>5</b> U     | 50           | 5. <b>2</b> U | 5u           | 5.2 U       | 7300            | 330      |
| Total VOCS               | 156.4        | 154.9          | 0            | 0             | 0            | 0           | 36250           | 5346     |

ر مرد هر

µg/kg - Micrograms per kilogram

- U The analyte was analyzed for, but not detected above the reported sample limit.
- I The analyte was positively identified: the associated numerical value is the approximate concentration of the analyte in the sample.
- UI The analyte was not detected above the reported quantitation limit. However the reported quantitation limit may be biased.
- NA Not analyzed
- Beld Analyte detected

ł

ł

|                          |              |                |              |               | l            | t           |                 |          |
|--------------------------|--------------|----------------|--------------|---------------|--------------|-------------|-----------------|----------|
| Area:                    | Elk Street   | Lot            |              |               | Terminal Dis | posal Site  | Former Lube O   | Building |
| Sample Designation:      | ESL-4        | ESL-8/ESL-W1   | ESL-8/ESL-W1 | ESL-12        | LF-5         | 1.1-7       | SB-7            | SB-7     |
| Sample Date:             | 6/22/98      | 6/22/98        | 6/22/98      | 6/22/98       | 8/6/99       | 8/16/99     | 6/26/98         | 6/26/98  |
| Sample Depth (ft bls):   | 1.5-2        | 1.5-2          | 8-10         | 1.5-2         | 21-23        | 21-23       | 0-2             | 8-10     |
| Parameter                |              |                |              |               |              |             |                 |          |
| (Concentration in µg/kg) |              |                |              |               |              | <del></del> |                 |          |
| Benzene                  | 5.SU         | SU             | <b>SU</b>    | 5.20          | 5U           | 5.20        | 1100            | 240      |
| Tohicae                  | 1 <b>8</b> J | 9.1J           | 5U           | 5. <b>2</b> U | SU           | 5.2U        | 1100            | 46       |
| Ethylbenzene             | 7.2J         | 8.5J           | SU           | 5.2U          | SU           | 5.2U        | 110U            | 97       |
| Xylenes (total)          | 35J          | 24             | 100          | 10U           | 10U          | 100         | 1700            | 160      |
| TOTAL BTEX               | 60.2         | 41.6           | 0            | 0             | 0            | 0           | 1790            | 543      |
| 1,2,4-Traniethylbenzene  | <b>29.</b> J | 27             | <b>S</b> U   | 5.2U          | SU           | 5.2U        | 5200            | 226      |
| 1,3,5-Trimeshythenzene   | 7.9J         | · 6.3J         | SU           | 5.2U          | SU           | 5.2U        | 2200            | 93       |
| Cunterie                 | 7.5J         | 5U             | 5U           | 5.2U          | SU           | 5.2U        | <b>430U</b>     | 500      |
| MTBE                     | 5.5U         | 5U             | <b>SU</b>    | 5 2U          | su           | 5.2U        | 11 <b>0</b> U   | 5U       |
| n-Butyibenzene           | 8.2J         | 12J            | 5U           | 5.2U          | 5U           | 5.2U        | 8609            | 700      |
| n-Propylbenzene          | <b>8</b> J   | - 7.1 <b>J</b> | 5U           | 5.2U          | 5U           | 5.2U        | 3000            | 400      |
| Naphthalene              | 51WJ         | 42             | 50           | 12U           | 5U           | 5.2U        | 2100U           | 1300     |
| o-Xylene                 | <b>30</b> J  | 12J            | 5U           | 5.2U          | 5U -         | 5.2U        | 450             | 140      |
| p-isopropykoluene        | 5.5U         | 6.9J           | 5U           | 5.2U          | 5U           | 5.2U        | 1100 <b>0</b> U | 550      |
| sec-Butylbenzene         | 5.6J         | SU             | 5U           | 5.2U          | 5U           | 5.2U        | 7888            | 570      |
| text-Butylbenzene        | 5.5U         | <b>5</b> U     | 50           | 5. <b>2</b> U | 5u           | 5.2 U       | 7300            | 330      |
| Total VOCS               | 156.4        | 154.9          | 0            | 0             | 0            | 0           | 36250           | 5346     |

ر مرد هر

µg/kg - Micrograms per kilogram

- U The analyte was analyzed for, but not detected above the reported sample limit.
- I The analyte was positively identified: the associated numerical value is the approximate concentration of the analyte in the sample.
- UI The analyte was not detected above the reported quantitation limit. However the reported quantitation limit may be biased.
- NA Not analyzed
- Beld Analyte detected

ł

ł

| Arca: [[<br>uplc Designation:<br>Sample Date:<br>ble Depth (ft bis): | Former Lube<br>SB-8<br>6/26/98 | Oil Building<br>SB-8                                                                                                    | SB 0                                                                                                                                                                                                                                                                                                                                                               |                                                       |                                                       |                                                       |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                        |                                                       |
|----------------------------------------------------------------------|--------------------------------|-------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------------|
| nple Designation:<br>Sample Date:<br>ble Depth (ft bls):             | SB-8<br>6/26/98                | SB-8                                                                                                                    | CR Q                                                                                                                                                                                                                                                                                                                                                               |                                                       |                                                       |                                                       |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                        |                                                       |
| Sample Date:<br>ble Depth (ft bis):                                  | 6/26/98                        |                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                    | SB-9                                                  | SB-10                                                 | SB-10                                                 | SB-11/J.B-1                                           | SB-13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SB-14                                                  | SB-15                                                 |
| ole Depth (ft bis):                                                  |                                | 6/26/98                                                                                                                 | 6/26/98                                                                                                                                                                                                                                                                                                                                                            | 6/26/98                                               | 6/26/98                                               | 6/26/98                                               | 7/1/99                                                | 7/27/99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7/26/99                                                | 7/27/99                                               |
|                                                                      | 0-2                            | 10-12                                                                                                                   | 0-2                                                                                                                                                                                                                                                                                                                                                                | 10-12                                                 | 0-2                                                   | 8-10                                                  | 18-20                                                 | 11-13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 13-15                                                  | 11-13                                                 |
|                                                                      |                                |                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                    |                                                       |                                                       |                                                       |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                        |                                                       |
|                                                                      |                                |                                                                                                                         | والمراجع والمحافظ والمحاوم والمحاوم والمحاوم والمحافظ والمحافظ والمحافظ والمحافظ والمحافظ والمحافظ والمحافظ وال                                                                                                                                                                                                                                                    |                                                       |                                                       | ·                                                     |                                                       | . <u></u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                        |                                                       |
|                                                                      | <b>4.2</b> U                   | 23J                                                                                                                     | 4.7U                                                                                                                                                                                                                                                                                                                                                               | 13U                                                   | 34                                                    | 750                                                   | 120                                                   | 2500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 780                                                    | 2308                                                  |
|                                                                      | 7.5J                           | 130                                                                                                                     | 14                                                                                                                                                                                                                                                                                                                                                                 | 273                                                   | 40                                                    | 306                                                   | 180                                                   | 2500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 220                                                    | 680                                                   |
|                                                                      | 4.2U                           | 76                                                                                                                      | 4.7U                                                                                                                                                                                                                                                                                                                                                               | 170                                                   | 24                                                    | 740                                                   | 610                                                   | 8200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1400                                                   | 5100                                                  |
|                                                                      | 11 <b>U</b>                    | 1 <b>20</b>                                                                                                             | 16U                                                                                                                                                                                                                                                                                                                                                                | 480                                                   | 178                                                   | 2200                                                  | 830                                                   | <b>72000</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 730                                                    | 3500                                                  |
|                                                                      | 7.5                            | 219                                                                                                                     | 14                                                                                                                                                                                                                                                                                                                                                                 | 677                                                   | 268                                                   | 3990                                                  | 1740                                                  | 35200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3130                                                   | <b>11580</b>                                          |
|                                                                      | 8.7J                           | 588                                                                                                                     | 16                                                                                                                                                                                                                                                                                                                                                                 | 1100                                                  | 150                                                   | 3100                                                  | 2400                                                  | 18000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1100                                                   | 11000                                                 |
|                                                                      | 5.1J ·                         | 300                                                                                                                     | 4.9J                                                                                                                                                                                                                                                                                                                                                               | 680                                                   | 180                                                   | 4900                                                  | 1500                                                  | 9100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 926                                                    | 8688                                                  |
|                                                                      | 5.3J                           | 520                                                                                                                     | 4.7U                                                                                                                                                                                                                                                                                                                                                               | 1700                                                  | 78                                                    | 12000                                                 | 2800                                                  | 20000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1900                                                   | 11000                                                 |
|                                                                      | 4.2U                           | 13U                                                                                                                     | 4.7(1                                                                                                                                                                                                                                                                                                                                                              | 13U                                                   | 5U                                                    | 25U                                                   | 23U                                                   | 120U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 130U                                                   | 1500                                                  |
|                                                                      | 1 <b>0J</b>                    | 850                                                                                                                     | 6.5J                                                                                                                                                                                                                                                                                                                                                               | 2709                                                  | 130                                                   | 7800                                                  | 3488                                                  | 24000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3104                                                   | 18000                                                 |
|                                                                      | 4.2U                           | 220                                                                                                                     | 5J                                                                                                                                                                                                                                                                                                                                                                 | 13U                                                   | 29                                                    | 4100                                                  | 1300                                                  | 15006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2488                                                   | 12000                                                 |
|                                                                      | 28                             | 2090                                                                                                                    | 26                                                                                                                                                                                                                                                                                                                                                                 | 4606                                                  | 180                                                   | 9606                                                  | 2600                                                  | 33000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1300                                                   | 23000                                                 |
|                                                                      | 5.3J                           | 47                                                                                                                      | 11 <b>J</b>                                                                                                                                                                                                                                                                                                                                                        | 210                                                   | 39                                                    | 500                                                   | 390                                                   | 7288                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 360                                                    | 1900                                                  |
|                                                                      | 4.2U                           | . 13 <b>0U</b>                                                                                                          | 4.9J                                                                                                                                                                                                                                                                                                                                                               | 1800                                                  | 62                                                    | 13000                                                 | 2300U                                                 | 20000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1300U                                                  | 13000                                                 |
|                                                                      | 4.8J                           | 670                                                                                                                     | 5.9J                                                                                                                                                                                                                                                                                                                                                               | 520U                                                  | 75                                                    | 7680                                                  | 2500 J                                                | 12000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1500                                                   | 7480                                                  |
|                                                                      | 4.2U                           | 550                                                                                                                     | 4.7U                                                                                                                                                                                                                                                                                                                                                               | 1708                                                  | 45                                                    | 7000                                                  | 2400                                                  | 11909                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1300                                                   | 7100                                                  |
|                                                                      |                                | 4.2U<br>7.5J<br>4.2U<br>11U<br>7.5<br>8.7J<br>5.1J<br>5.3J<br>4.2U<br>10J<br>4.2U<br>28<br>5.3J<br>4.2U<br>4.8J<br>4.2U | 4.2U       23J         7.5J       13U         4.2U       76         11U       120         7.5       219         8.7J       580         5.1J       300         5.3J       520         4.2U       13U         10J       850         4.2U       220         28       2000         5.3J       47         4.2U       130U         4.8J       670         4.2U       550 | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 4.2U $23J$ $4.7U$ $13U$ $34$ $750$ $120$ $7.5J$ $13U$ $14$ $27J$ $40$ $300$ $180$ $4.2U$ $76$ $4.7U$ $176$ $24$ $740$ $610$ $11U$ $120$ $16U$ $480$ $179$ $2200$ $830$ $7.5$ $219$ $14$ $677$ $268$ $3990$ $1740$ $8.7J$ $586$ $16$ $1100$ $150$ $3100$ $2400$ $5.1J$ $306$ $4.9J$ $680$ $100$ $4900$ $1500$ $5.3J$ $526$ $4.7U$ $1700$ $78$ $12000$ $2300$ $4.2U$ $13U$ $4.7U$ $13U$ $5U$ $25U$ $23U$ $10J$ $850$ $6.5J$ $2700$ $130$ $7800$ $3446$ $4.2U$ $220$ $5J$ $13U$ $29$ $4100$ $1300$ $28$ $2090$ $24$ $4606$ $180$ $9606$ $2600$ $5.3J$ $47$ $11J$ $210$ $39$ $590$ $300$ $4.2U$ $130U$ $4.9J$ $1800$ $62$ $13000$ $23000J$ $4.8J$ $670$ $5.9J$ $520U$ $75$ $7660$ $2500$ $J$ $4.2U$ $130U$ $4.9J$ $1800$ $62$ $13000$ $2300J$ $4.8J$ $670$ $5.9J$ $520U$ $75$ $7660$ $2500$ $J$ $4.2U$ $130U$ $4.9J$ $1800$ $62$ $13000$ $2300J$ $J$ $4.2U$ | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ |

µg/kg - Micrograms per kilogram

88.2

5956

74.7

U - The analyte was analyzed for, but not detected above the reported sample limit.

15167

I - The analyte was positively identified: the associated numerical value is the approximate concentration of the analyte in the sample.

1156

73590

18540

204500

17070

- 113 The analyse was not detected above the reported quantitation limit. However the reported quantitation limit may be biased.
- NA Not analyzed
- Bold Analyte detected

**Total VOCS** 

Ī

P.16

| Arca: [[<br>uplc Designation:<br>Sample Date:<br>ble Depth (ft bis): | Former Lube<br>SB-8<br>6/26/98 | Oil Building<br>SB-8                                                                                                    | SB 0                                                                                                                                                                                                                                                                                                                                                               |                                                       |                                                       |                                                       |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                        |                                                       |
|----------------------------------------------------------------------|--------------------------------|-------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------------|
| nple Designation:<br>Sample Date:<br>ble Depth (ft bls):             | SB-8<br>6/26/98                | SB-8                                                                                                                    | CR Q                                                                                                                                                                                                                                                                                                                                                               |                                                       |                                                       |                                                       |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                        |                                                       |
| Sample Date:<br>ble Depth (ft bis):                                  | 6/26/98                        |                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                    | SB-9                                                  | SB-10                                                 | SB-10                                                 | SB-11/J.B-1                                           | SB-13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SB-14                                                  | SB-15                                                 |
| ole Depth (ft bis):                                                  |                                | 6/26/98                                                                                                                 | 6/26/98                                                                                                                                                                                                                                                                                                                                                            | 6/26/98                                               | 6/26/98                                               | 6/26/98                                               | 7/1/99                                                | 7/27/99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7/26/99                                                | 7/27/99                                               |
|                                                                      | 0-2                            | 10-12                                                                                                                   | 0-2                                                                                                                                                                                                                                                                                                                                                                | 10-12                                                 | 0-2                                                   | 8-10                                                  | 18-20                                                 | 11-13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 13-15                                                  | 11-13                                                 |
|                                                                      |                                |                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                    |                                                       |                                                       |                                                       |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                        |                                                       |
|                                                                      |                                |                                                                                                                         | والمراجع والمحافظ والمحاوم والمحاوم والمحاوم والمحافظ والمحافظ والمحافظ والمحافظ والمحافظ والمحافظ والمحافظ وال                                                                                                                                                                                                                                                    |                                                       |                                                       | ·                                                     |                                                       | . <u></u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                        |                                                       |
|                                                                      | <b>4.2</b> U                   | 23J                                                                                                                     | 4.7U                                                                                                                                                                                                                                                                                                                                                               | 13U                                                   | 34                                                    | 750                                                   | 120                                                   | 2500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 780                                                    | 2308                                                  |
|                                                                      | 7.5J                           | 130                                                                                                                     | 14                                                                                                                                                                                                                                                                                                                                                                 | 273                                                   | 40                                                    | 306                                                   | 180                                                   | 2500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 220                                                    | 680                                                   |
|                                                                      | 4.2U                           | 76                                                                                                                      | 4.7U                                                                                                                                                                                                                                                                                                                                                               | 176                                                   | 24                                                    | 740                                                   | 610                                                   | 8200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1400                                                   | 5100                                                  |
|                                                                      | 11 <b>U</b>                    | 1 <b>20</b>                                                                                                             | 16U                                                                                                                                                                                                                                                                                                                                                                | 480                                                   | 178                                                   | 2200                                                  | 830                                                   | <b>72000</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 730                                                    | 3500                                                  |
|                                                                      | 7.5                            | 219                                                                                                                     | 14                                                                                                                                                                                                                                                                                                                                                                 | 677                                                   | 268                                                   | 3990                                                  | 1740                                                  | 35200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3130                                                   | <b>1</b> 1 <b>580</b>                                 |
|                                                                      | 8.7J                           | 588                                                                                                                     | 16                                                                                                                                                                                                                                                                                                                                                                 | 1100                                                  | 150                                                   | 3100                                                  | 2400                                                  | 18000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1100                                                   | 11000                                                 |
|                                                                      | 5.1J ·                         | 300                                                                                                                     | 4.9J                                                                                                                                                                                                                                                                                                                                                               | 680                                                   | 180                                                   | 4900                                                  | 1500                                                  | 9100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 926                                                    | 8688                                                  |
|                                                                      | 5.3J                           | 520                                                                                                                     | 4.7U                                                                                                                                                                                                                                                                                                                                                               | 1700                                                  | 78                                                    | 12000                                                 | 2800                                                  | 20000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1900                                                   | 11000                                                 |
|                                                                      | 4.2U                           | 13U                                                                                                                     | 4.70                                                                                                                                                                                                                                                                                                                                                               | 13U                                                   | 5U                                                    | 25U                                                   | 23U                                                   | 120U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 130U                                                   | 1500                                                  |
|                                                                      | 1 <b>0J</b>                    | 850                                                                                                                     | 6.5J                                                                                                                                                                                                                                                                                                                                                               | 2709                                                  | 130                                                   | 7800                                                  | 3488                                                  | 24000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3104                                                   | 18000                                                 |
|                                                                      | 4.2U                           | 220                                                                                                                     | 5J                                                                                                                                                                                                                                                                                                                                                                 | 13U                                                   | 29                                                    | 4100                                                  | 1300                                                  | 15006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2488                                                   | 12000                                                 |
|                                                                      | 28                             | 2090                                                                                                                    | 26                                                                                                                                                                                                                                                                                                                                                                 | 4606                                                  | 180                                                   | 9606                                                  | 2600                                                  | 33000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1300                                                   | 23000                                                 |
|                                                                      | 5.3J                           | 47                                                                                                                      | 11 <b>J</b>                                                                                                                                                                                                                                                                                                                                                        | 210                                                   | 39                                                    | 500                                                   | 390                                                   | 7288                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 360                                                    | 1900                                                  |
|                                                                      | 4.2U                           | . 13 <b>0U</b>                                                                                                          | 4.9J                                                                                                                                                                                                                                                                                                                                                               | 1800                                                  | 62                                                    | 13000                                                 | 2300U                                                 | 20000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1300U                                                  | 13000                                                 |
|                                                                      | 4.8J                           | 670                                                                                                                     | 5.9J                                                                                                                                                                                                                                                                                                                                                               | 520U                                                  | 75                                                    | 7680                                                  | 2500 J                                                | 12000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1500                                                   | 7488                                                  |
|                                                                      | 4.2U                           | 550                                                                                                                     | 4.7U                                                                                                                                                                                                                                                                                                                                                               | 1708                                                  | 45                                                    | 7888                                                  | 2400                                                  | 11909                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1300                                                   | 7100                                                  |
|                                                                      |                                | 4.2U<br>7.5J<br>4.2U<br>11U<br>7.5<br>8.7J<br>5.1J<br>5.3J<br>4.2U<br>10J<br>4.2U<br>28<br>5.3J<br>4.2U<br>4.8J<br>4.2U | 4.2U       23J         7.5J       13U         4.2U       76         11U       120         7.5       219         8.7J       580         5.1J       300         5.3J       520         4.2U       13U         10J       850         4.2U       220         28       2000         5.3J       47         4.2U       130U         4.8J       670         4.2U       550 | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 4.2U $23J$ $4.7U$ $13U$ $34$ $750$ $120$ $7.5J$ $13U$ $14$ $27J$ $40$ $300$ $180$ $4.2U$ $76$ $4.7U$ $176$ $24$ $740$ $610$ $11U$ $120$ $16U$ $480$ $179$ $2200$ $830$ $7.5$ $219$ $14$ $677$ $268$ $3990$ $1740$ $8.7J$ $586$ $16$ $1100$ $150$ $3100$ $2400$ $5.1J$ $306$ $4.9J$ $680$ $100$ $4900$ $1500$ $5.3J$ $526$ $4.7U$ $1700$ $78$ $12000$ $2300$ $4.2U$ $13U$ $4.7U$ $13U$ $5U$ $25U$ $23U$ $10J$ $850$ $6.5J$ $2700$ $130$ $7800$ $3446$ $4.2U$ $220$ $5J$ $13U$ $29$ $4100$ $1300$ $28$ $2090$ $24$ $4606$ $180$ $9606$ $2600$ $5.3J$ $47$ $11J$ $210$ $39$ $590$ $300$ $4.2U$ $130U$ $4.9J$ $1800$ $62$ $13000$ $23000J$ $4.8J$ $670$ $5.9J$ $520U$ $75$ $7660$ $2500$ $J$ $4.2U$ $130U$ $4.9J$ $1800$ $62$ $13000$ $2300J$ $4.8J$ $670$ $5.9J$ $520U$ $75$ $7660$ $2500$ $J$ $4.2U$ $130U$ $4.9J$ $1800$ $62$ $13000$ $2300J$ $J$ $4.2U$ | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ |

µg/kg - Micrograms per kilogram

88.2

5956

74.7

U - The analyte was analyzed for, but not detected above the reported sample limit.

15167

I - The analyte was positively identified: the associated numerical value is the approximate concentration of the analyte in the sample.

1156

73590

18540

204500

17070

- 113 The analyse was not detected above the reported quantitation limit. However the reported quantitation limit may be biased.
- NA Not analyzed
- Bold Analyte detected

**Total VOCS** 

Ī

P.16

| Arca: [[<br>uplc Designation:<br>Sample Date:<br>ble Depth (ft bis): | Former Lube<br>SB-8<br>6/26/98 | Oil Building<br>SB-8                                                                                                    | SB 0                                                                                                                                                                                                                                                                                                                                                               |                                                       |                                                       |                                                       |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                        |                                                       |
|----------------------------------------------------------------------|--------------------------------|-------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------------|
| nple Designation:<br>Sample Date:<br>ble Depth (ft bls):             | SB-8<br>6/26/98                | SB-8                                                                                                                    | CR Q                                                                                                                                                                                                                                                                                                                                                               |                                                       |                                                       |                                                       |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                        |                                                       |
| Sample Date:<br>ble Depth (ft bis):                                  | 6/26/98                        |                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                    | SB-9                                                  | SB-10                                                 | SB-10                                                 | SB-11/J.B-1                                           | SB-13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SB-14                                                  | SB-15                                                 |
| ole Depth (ft bis):                                                  |                                | 6/26/98                                                                                                                 | 6/26/98                                                                                                                                                                                                                                                                                                                                                            | 6/26/98                                               | 6/26/98                                               | 6/26/98                                               | 7/1/99                                                | 7/27/99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7/26/99                                                | 7/27/99                                               |
|                                                                      | 0-2                            | 10-12                                                                                                                   | 0-2                                                                                                                                                                                                                                                                                                                                                                | 10-12                                                 | 0-2                                                   | 8-10                                                  | 18-20                                                 | 11-13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 13-15                                                  | 11-13                                                 |
|                                                                      |                                |                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                    |                                                       |                                                       |                                                       |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                        |                                                       |
|                                                                      |                                |                                                                                                                         | والمراجع والمحافظ والمحاوم والمحاوم والمحاوم والمحافظ والمحافظ والمحافظ والمحافظ والمحافظ والمحافظ والمحافظ وال                                                                                                                                                                                                                                                    |                                                       |                                                       | ·                                                     |                                                       | . <u></u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                        |                                                       |
|                                                                      | <b>4.2</b> U                   | 23J                                                                                                                     | 4.7U                                                                                                                                                                                                                                                                                                                                                               | 13U                                                   | 34                                                    | 750                                                   | 120                                                   | 2500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 780                                                    | 2308                                                  |
|                                                                      | 7.5J                           | 130                                                                                                                     | 14                                                                                                                                                                                                                                                                                                                                                                 | 273                                                   | 40                                                    | 306                                                   | 180                                                   | 2500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 220                                                    | 680                                                   |
|                                                                      | 4.2U                           | 76                                                                                                                      | 4.7U                                                                                                                                                                                                                                                                                                                                                               | 170                                                   | 24                                                    | 740                                                   | 610                                                   | 8200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1400                                                   | 5100                                                  |
|                                                                      | 11 <b>U</b>                    | 1 <b>20</b>                                                                                                             | 16U                                                                                                                                                                                                                                                                                                                                                                | 480                                                   | 178                                                   | 2200                                                  | 830                                                   | <b>72000</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 730                                                    | 3500                                                  |
|                                                                      | 7.5                            | 219                                                                                                                     | 14                                                                                                                                                                                                                                                                                                                                                                 | 677                                                   | 268                                                   | 3990                                                  | 1740                                                  | 35200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3130                                                   | <b>1</b> 1 <b>580</b>                                 |
|                                                                      | 8.7J                           | 588                                                                                                                     | 16                                                                                                                                                                                                                                                                                                                                                                 | 1100                                                  | 150                                                   | 3100                                                  | 2400                                                  | 18000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1100                                                   | 11000                                                 |
|                                                                      | 5.1J ·                         | 300                                                                                                                     | 4.9J                                                                                                                                                                                                                                                                                                                                                               | 680                                                   | 180                                                   | 4900                                                  | 1500                                                  | 9100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 926                                                    | 8688                                                  |
|                                                                      | 5.3J                           | 520                                                                                                                     | 4.7U                                                                                                                                                                                                                                                                                                                                                               | 1700                                                  | 78                                                    | 12000                                                 | 2800                                                  | 20000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1900                                                   | 11000                                                 |
|                                                                      | 4.2U                           | 13U                                                                                                                     | 4.70                                                                                                                                                                                                                                                                                                                                                               | 13U                                                   | 5U                                                    | 25U                                                   | 23U                                                   | 120U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 130U                                                   | 1500                                                  |
|                                                                      | 1 <b>0J</b>                    | 850                                                                                                                     | 6.5J                                                                                                                                                                                                                                                                                                                                                               | 2709                                                  | 130                                                   | 7800                                                  | 3488                                                  | 24000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3104                                                   | 18000                                                 |
|                                                                      | 4.2U                           | 220                                                                                                                     | 5J                                                                                                                                                                                                                                                                                                                                                                 | 13U                                                   | 29                                                    | 4100                                                  | 1300                                                  | 15006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2488                                                   | 12000                                                 |
|                                                                      | 28                             | 2090                                                                                                                    | 26                                                                                                                                                                                                                                                                                                                                                                 | 4606                                                  | 180                                                   | 9606                                                  | 2600                                                  | 33000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1300                                                   | 23000                                                 |
|                                                                      | 5.3J                           | 47                                                                                                                      | 11 <b>J</b>                                                                                                                                                                                                                                                                                                                                                        | 210                                                   | 39                                                    | 500                                                   | 390                                                   | 7288                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 360                                                    | 1900                                                  |
|                                                                      | 4.2U                           | . 13 <b>0U</b>                                                                                                          | 4.9J                                                                                                                                                                                                                                                                                                                                                               | 1800                                                  | 62                                                    | 13000                                                 | 2300U                                                 | 20000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1300U                                                  | 13000                                                 |
|                                                                      | 4.8J                           | 670                                                                                                                     | 5.9J                                                                                                                                                                                                                                                                                                                                                               | 520U                                                  | 75                                                    | 7680                                                  | 2500 J                                                | 12000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1500                                                   | 7480                                                  |
|                                                                      | 4.2U                           | 550                                                                                                                     | 4.7U                                                                                                                                                                                                                                                                                                                                                               | 1708                                                  | 45                                                    | 7000                                                  | 2400                                                  | 11909                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1300                                                   | 7100                                                  |
|                                                                      |                                | 4.2U<br>7.5J<br>4.2U<br>11U<br>7.5<br>8.7J<br>5.1J<br>5.3J<br>4.2U<br>10J<br>4.2U<br>28<br>5.3J<br>4.2U<br>4.8J<br>4.2U | 4.2U       23J         7.5J       13U         4.2U       76         11U       120         7.5       219         8.7J       580         5.1J       300         5.3J       520         4.2U       13U         10J       850         4.2U       220         28       2000         5.3J       47         4.2U       130U         4.8J       670         4.2U       550 | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 4.2U $23J$ $4.7U$ $13U$ $34$ $750$ $120$ $7.5J$ $13U$ $14$ $27J$ $40$ $300$ $180$ $4.2U$ $76$ $4.7U$ $176$ $24$ $740$ $610$ $11U$ $120$ $16U$ $480$ $179$ $2200$ $830$ $7.5$ $219$ $14$ $677$ $268$ $3990$ $1740$ $8.7J$ $586$ $16$ $1100$ $150$ $3100$ $2400$ $5.1J$ $306$ $4.9J$ $680$ $100$ $4900$ $1500$ $5.3J$ $526$ $4.7U$ $1700$ $78$ $12000$ $2300$ $4.2U$ $13U$ $4.7U$ $13U$ $5U$ $25U$ $23U$ $10J$ $850$ $6.5J$ $2700$ $130$ $7800$ $3446$ $4.2U$ $220$ $5J$ $13U$ $29$ $4100$ $1300$ $28$ $2090$ $24$ $4606$ $180$ $9606$ $2600$ $5.3J$ $47$ $11J$ $210$ $39$ $590$ $300$ $4.2U$ $130U$ $4.9J$ $1800$ $62$ $13000$ $23000J$ $4.8J$ $670$ $5.9J$ $520U$ $75$ $7660$ $2500$ $J$ $4.2U$ $130U$ $4.9J$ $1800$ $62$ $13000$ $2300J$ $4.8J$ $670$ $5.9J$ $520U$ $75$ $7660$ $2500$ $J$ $4.2U$ $130U$ $4.9J$ $1800$ $62$ $13000$ $2300J$ $J$ $4.2U$ | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ |

µg/kg - Micrograms per kilogram

88.2

5956

74.7

U - The analyte was analyzed for, but not detected above the reported sample limit.

15167

I - The analyte was positively identified: the associated numerical value is the approximate concentration of the analyte in the sample.

1156

73590

18540

204500

17070

- 113 The analyse was not detected above the reported quantitation limit. However the reported quantitation limit may be biased.
- NA Not analyzed
- Bold Analyte detected

**Total VOCS** 

Ī

P.16

|                          |              |               |                |               |         |             |         |                |              | 4      |
|--------------------------|--------------|---------------|----------------|---------------|---------|-------------|---------|----------------|--------------|--------|
| Area:                    | Former Lub   | e Oil Buildi  | ng             |               |         |             |         |                |              |        |
| Sample Designation:      | SB-16        | SB-17         | SB-17          | SB-18         | SB-18   | SB-19       | SB-20   | SB-20          | SB-24        | SB-24  |
| Sample Date:             | 7/28/99      | 7/28/99       | 7/28/99        | 7/7.9/99      | 7/29/99 | 7/29/99     | 7/29/99 | 7/29/99        | 8/2/99       | 8/4/99 |
| Sample Depth (It bis):   | 11-13        | Q-0.5         | 11-13          | 0-0.5         | 11-13   | 7-9         | 3-4     | 9-11           | 13-15        | 0-0.5  |
| Parameter                | -            |               |                |               | 1       |             |         |                |              |        |
| (Concentration in µg/kg) |              |               |                | ,             |         |             |         |                |              |        |
| Benzene                  | 3000         | 170           | 1200           | 2000          | 520     | <b>26</b> U | 91      | 12000          | 5.3U         | 8.7    |
| Toluçoc                  | 430          | 28            | 228            | 520           | 130     | 79          | 24      | 7500           | 5.3U         | 23     |
| Ethylbenzene             | 1600         | 43            | 1200           | 3260          | 820     | 200         | 73      | 14000          | 5.3U         | 13     |
| Xylenes (total)          | 1 <b>800</b> | 170           | 2300           | 3400          | 1700    | 1600        | 250     | 60000          | ΠU           | 40     |
| TOTAL BTEX               | 6830         | 411           | 4920           | 9120          | 3170    | 1879        | 438     | 93500          | • 0          | 84.7   |
| 1,2,4-Trimethylbenzenc   | 2500         | 350           | 6300           | 4100          | 8480    | 1660        | 340     | 95006          | 5.3U         | 100    |
| 1,3,5-Trimethylbenzene   | 1300         | • 210         | 2690           | 52 <b>0</b> 0 | 2800    | 1400        | 180     | 37000          | 5.3U         | 97     |
| Cumene                   | 5500         | 53            | 5200           | 12000         | 3809    | 4100        | 360     | 12000          | 5.3U         | 79     |
| MTBE                     | 30U          | 4.7U          | 24U            | 51U           | 48U     | 26U         | 4.2U    | <b>320</b> U   | 12           | SU     |
| n-Butylbenzene           | 13000        | 290           | 6700           | 14000         | 6400    | 4900        | 400     | 49 <b>00</b> 0 | 5. <b>3U</b> | 180    |
| n-Propylbenzene          | 17000        | 41            | 4700           | 7480          | 3600    | 1300        | 220     | 39000          | 5. <b>3U</b> | 63     |
| Naphthalene              | 26000        | 248           | <b>280</b> G   | 26000U        | 7888    | 12080       | 539     | 31000          | 5.3U         | 316    |
| o-Xylene                 | 960          | 84            | 980 J          | 1200          | 1380    | 360         | 91      | 20000          | 5. <b>3U</b> | 73     |
| p-Isopropyltoluene       | 3000U        | 1 <b>20</b> U | 610 <b>0</b> U | 26000U        | 5100    | 2600U       | 210U    | 11000          | 5.3U         | 88     |
| sec-Butybenzene          | 8200         | 55            | 3500           | 8100          | 2700    | 5500        | 190     | 16000          | 5.3U         | 76     |
| tert-Butylbenzene        | 4800         | 66            | 3500           |               |         |             |         |                |              |        |
| Total VOCS               | 79290        | 1890          | 47200          | 61120         | 45070   | 33039       | 2749    | 403500         | 12           | 1150.7 |

µg/kg - Micrograms per kilogram

- U The analyte was analyzed for, but not detected above the reported sample limit.
- J The analyte was positively identified: the associated numerical value is the approximate concentration of the analyte in the sample.
- UI The analyte was not detected above The reported quantitation limit. However The reported quantitation limit may be biased.

NA - Not analyzed

Beid - Analyte detected

.

|                          |              |                |              |               | l            | t           |                 |          |
|--------------------------|--------------|----------------|--------------|---------------|--------------|-------------|-----------------|----------|
| Area:                    | Elk Street   | Lot            |              |               | Terminal Dis | posal Site  | Former Lube O   | Building |
| Sample Designation:      | ESL-4        | ESL-8/ESL-W1   | ESL-8/ESL-W1 | ESL-12        | LF-5         | 1.1-7       | SB-7            | SB-7     |
| Sample Date:             | 6/22/98      | 6/22/98        | 6/22/98      | 6/22/98       | 8/6/99       | 8/16/99     | 6/26/98         | 6/26/98  |
| Sample Depth (ft bls):   | 1.5-2        | 1.5-2          | 8-10         | 1.5-2         | 21-23        | 21-23       | 0-2             | 8-10     |
| Parameter                |              |                |              |               |              |             |                 |          |
| (Concentration in µg/kg) |              |                |              |               |              | <del></del> |                 |          |
| Benzene                  | 5.SU         | SU             | <b>SU</b>    | 5.20          | 5U           | 5.20        | 1100            | 240      |
| Tohicae                  | 1 <b>8</b> J | 9.1J           | 5U           | 5. <b>2</b> U | SU           | 5.2U        | 1100            | 46       |
| Ethylbenzene             | 7.2J         | 8.5J           | SU           | 5.2U          | SU           | 5.2U        | 110U            | 97       |
| Xylenes (total)          | 35J          | 24             | 100          | 10U           | 10U          | 100         | 1700            | 160      |
| TOTAL BTEX               | 60.2         | 41.6           | 0            | 0             | 0            | 0           | 1790            | 543      |
| 1,2,4-Traniethylbenzene  | <b>29.</b> J | 27             | <b>S</b> U   | 5.2U          | SU           | 5.2U        | 5200            | 226      |
| 1,3,5-Trimeshythenzene   | 7.9J         | · 6.3J         | SU           | 5.2U          | SU           | 5.2U        | 2200            | 93       |
| Cunterie                 | 7.5J         | 5U             | 5U           | 5.2U          | SU           | 5.2U        | <b>430U</b>     | 500      |
| MTBE                     | 5.5U         | 5U             | <b>SU</b>    | 5 2U          | su           | 5.2U        | 11 <b>0</b> U   | 5U       |
| n-Butyibenzene           | 8.2J         | 12J            | 5U           | 5.2U          | 5U           | 5.2U        | 8609            | 700      |
| n-Propylbenzene          | <b>8</b> J   | - 7.1 <b>J</b> | 5U           | 5.2U          | 5U           | 5.2U        | 3000            | 400      |
| Naphthalene              | 51WJ         | 42             | 50           | 12U           | 5U           | 5.2U        | 2100U           | 1300     |
| o-Xylene                 | <b>30</b> J  | 12J            | 5U           | 5.2U          | 5U -         | 5.2U        | 450             | 140      |
| p-isopropykoluene        | 5.5U         | 6.9J           | 5U           | 5.2U          | 5U           | 5.2U        | 1100 <b>0</b> U | 550      |
| sec-Butylbenzene         | 5.6J         | SU             | 5U           | 5.2U          | 5U           | 5.2U        | 7800            | 570      |
| text-Butylbenzene        | 5.5U         | <b>5</b> U     | 50           | 5. <b>2</b> U | 5u           | 5.2 U       | 7300            | 330      |
| Total VOCS               | 156.4        | 154.9          | 0            | 0             | 0            | 0           | 36250           | 5346     |

ر مرد هر

µg/kg - Micrograms per kilogram

- U The analyte was analyzed for, but not detected above the reported sample limit.
- I The analyte was positively identified: the associated numerical value is the approximate concentration of the analyte in the sample.
- UI The analyte was not detected above the reported quantitation limit. However the reported quantitation limit may be biased.
- NA Not analyzed
- Beld Analyte detected

ł

ł

|                          |              |               |                |               |         |             |         |                |              | 4      |
|--------------------------|--------------|---------------|----------------|---------------|---------|-------------|---------|----------------|--------------|--------|
| Area:                    | Former Lub   | e Oil Buildi  | ng             |               |         |             |         |                |              |        |
| Sample Designation:      | SB-16        | SB-17         | SB-17          | SB-18         | SB-18   | SB-19       | SB-20   | SB-20          | SB-24        | SB-24  |
| Sample Date:             | 7/28/99      | 7/28/99       | 7/28/99        | 7/7.9/99      | 7/29/99 | 7/29/99     | 7/29/99 | 7/29/99        | 8/2/99       | 8/4/99 |
| Sample Depth (It bis):   | 11-13        | Q-0.5         | 11-13          | 0-0.5         | 11-13   | 7-9         | 3-4     | 9-11           | 13-15        | 0-0.5  |
| Parameter                | -            |               |                |               | 1       |             |         |                |              |        |
| (Concentration in µg/kg) |              |               |                | ,             |         |             |         |                |              |        |
| Benzene                  | 3000         | 170           | 1200           | 2000          | 520     | <b>26</b> U | 91      | 12000          | 5.3U         | 8.7    |
| Toluçoc                  | 430          | 28            | 228            | 520           | 130     | 79          | 24      | 7500           | 5.3U         | 23     |
| Ethylbenzene             | 1600         | 43            | 1200           | 3260          | 820     | 200         | 73      | 14000          | 5.3U         | 13     |
| Xylenes (total)          | 1 <b>800</b> | 170           | 2300           | 3400          | 1700    | 1600        | 250     | 60000          | ΠU           | 40     |
| TOTAL BTEX               | 6830         | 411           | 4920           | 9120          | 3170    | 1879        | 438     | 93500          | • 0          | 84.7   |
| 1,2,4-Trimethylbenzenc   | 2500         | 350           | 6300           | 4100          | 8480    | 1660        | 340     | 95006          | 5.3U         | 100    |
| 1,3,5-Trimethylbenzene   | 1300         | • 210         | 2690           | 52 <b>0</b> 0 | 2800    | 1400        | 180     | 37000          | 5.3U         | 97     |
| Cumene                   | 5500         | 53            | 5200           | 12000         | 3809    | 4100        | 360     | 12000          | 5.3U         | 79     |
| MTBE                     | 30U          | 4.7U          | 24U            | 51U           | 48U     | 26U         | 4.2U    | <b>320</b> U   | 12           | SU     |
| n-Butylbenzene           | 13000        | 290           | 6700           | 14000         | 6400    | 4900        | 400     | 49 <b>00</b> 0 | 5. <b>3U</b> | 180    |
| n-Propylbenzene          | 17000        | 41            | 4700           | 7480          | 3600    | 1300        | 220     | 39000          | 5. <b>3U</b> | 63     |
| Naphthalene              | 26000        | 248           | <b>280</b> G   | 26000U        | 7888    | 12080       | 539     | 31000          | 5.3U         | 316    |
| o-Xylene                 | 960          | 84            | 980 J          | 1200          | 1380    | 360         | 91      | 20000          | 5. <b>3U</b> | 73     |
| p-Isopropyltoluene       | 3000U        | 1 <b>20</b> U | 610 <b>0</b> U | 26000U        | 5100    | 2600U       | 210U    | 11000          | 5.3U         | 88     |
| sec-Butybenzene          | 8200         | 55            | 3500           | 8100          | 2700    | 5500        | 190     | 16000          | 5.3U         | 76     |
| tert-Butylbenzene        | 4800         | 66            | 3500           |               |         |             |         |                |              |        |
| Total VOCS               | 79290        | 1890          | 47200          | 61120         | 45070   | 33039       | 2749    | 403500         | 12           | 1150.7 |

µg/kg - Micrograms per kilogram

- U The analyte was analyzed for, but not detected above the reported sample limit.
- J The analyte was positively identified: the associated numerical value is the approximate concentration of the analyte in the sample.
- UI The analyte was not detected above The reported quantitation limit. However The reported quantitation limit may be biased.

NA - Not analyzed

Beid - Analyte detected

.

|                          |              |                |              |               | l            | t           |                 |          |
|--------------------------|--------------|----------------|--------------|---------------|--------------|-------------|-----------------|----------|
| Area:                    | Elk Street   | Lot            |              |               | Terminal Dis | posal Site  | Former Lube O   | Building |
| Sample Designation:      | ESL-4        | ESL-8/ESL-W1   | ESL-8/ESL-W1 | ESL-12        | LF-5         | 1.1-7       | SB-7            | SB-7     |
| Sample Date:             | 6/22/98      | 6/22/98        | 6/22/98      | 6/22/98       | 8/6/99       | 8/16/99     | 6/26/98         | 6/26/98  |
| Sample Depth (ft bls):   | 1.5-2        | 1.5-2          | 8-10         | 1.5-2         | 21-23        | 21-23       | 0-2             | 8-10     |
| Parameter                |              |                |              |               |              |             |                 |          |
| (Concentration in µg/kg) |              |                |              |               |              | <del></del> |                 |          |
| Benzene                  | 5.SU         | SU             | <b>SU</b>    | 5.20          | 5U           | 5.20        | 1100            | 240      |
| Tohicae                  | 1 <b>8</b> J | 9.1J           | 5U           | 5. <b>2</b> U | SU           | 5.2U        | 1100            | 46       |
| Ethylbenzene             | 7.2J         | 8.5J           | SU           | 5.2U          | SU           | 5.2U        | 110U            | 97       |
| Xylenes (total)          | 35J          | 24             | 100          | 10U           | 10U          | 100         | 1700            | 160      |
| TOTAL BTEX               | 60.2         | 41.6           | 0            | 0             | 0            | 0           | 1790            | 543      |
| 1,2,4-Traniethylbenzene  | <b>29.</b> J | 27             | <b>S</b> U   | 5.2U          | SU           | 5.2U        | 5200            | 226      |
| 1,3,5-Trimeshythenzene   | 7.9J         | · 6.3J         | SU           | 5.2U          | SU           | 5.2U        | 2200            | 93       |
| Cunterie                 | 7.5J         | 5U             | 5U           | 5.2U          | SU           | 5.2U        | <b>430U</b>     | 500      |
| MTBE                     | 5.5U         | 5U             | <b>SU</b>    | 5 2U          | su           | 5.2U        | 11 <b>0</b> U   | 5U       |
| n-Butyibenzene           | 8.2J         | 12J            | 5U           | 5.2U          | 5U           | 5.2U        | 8609            | 700      |
| n-Propylbenzene          | <b>8</b> J   | - 7.1 <b>J</b> | 5U           | 5.2U          | 5U           | 5.2U        | 3000            | 400      |
| Naphthalene              | 51WJ         | 42             | 50           | 12U           | 5U           | 5.2U        | 2100U           | 1300     |
| o-Xylene                 | <b>30</b> J  | 12J            | 5U           | 5.2U          | 5U -         | 5.2U        | 450             | 140      |
| p-isopropykoluene        | 5.5U         | 6.9J           | 5U           | 5.2U          | 5U           | 5.2U        | 1100 <b>0</b> U | 550      |
| sec-Butylbenzene         | 5.6J         | SU             | 5U           | 5.2U          | 5U           | 5.2U        | 7888            | 570      |
| text-Butylbenzene        | 5.5U         | <b>5</b> U     | 50           | 5. <b>2</b> U | 5u           | 5.2 U       | 7300            | 330      |
| Total VOCS               | 156.4        | 154.9          | 0            | 0             | 0            | 0           | 36250           | 5346     |

ر مرد هر

µg/kg - Micrograms per kilogram

- U The analyte was analyzed for, but not detected above the reported sample limit.
- I The analyte was positively identified: the associated numerical value is the approximate concentration of the analyte in the sample.
- UI The analyte was not detected above the reported quantitation limit. However the reported quantitation limit may be biased.
- NA Not analyzed
- Beld Analyte detected

ł

ł

|                          |              |                |              |               | l            | t           |                 |          |
|--------------------------|--------------|----------------|--------------|---------------|--------------|-------------|-----------------|----------|
| Area:                    | Elk Street   | Lot            |              |               | Terminal Dis | posal Site  | Former Lube O   | Building |
| Sample Designation:      | ESL-4        | ESL-8/ESL-W1   | ESL-8/ESL-W1 | ESL-12        | LF-5         | 1.1-7       | SB-7            | SB-7     |
| Sample Date:             | 6/22/98      | 6/22/98        | 6/22/98      | 6/22/98       | 8/6/99       | 8/16/99     | 6/26/98         | 6/26/98  |
| Sample Depth (ft bls):   | 1.5-2        | 1.5-2          | 8-10         | 1.5-2         | 21-23        | 21-23       | 0-2             | 8-10     |
| Parameter                |              |                |              |               |              |             |                 |          |
| (Concentration in µg/kg) |              |                |              |               |              | <del></del> |                 |          |
| Benzene                  | 5.SU         | SU             | <b>SU</b>    | 5.20          | 5U           | 5.20        | 1100            | 240      |
| Tohicae                  | 1 <b>8</b> J | 9.1J           | 5U           | 5. <b>2</b> U | SU           | 5.2U        | 1100            | 46       |
| Ethylbenzene             | 7.2J         | 8.5J           | SU           | 5.2U          | SU           | 5.2U        | 110U            | 97       |
| Xylenes (total)          | 35J          | 24             | 100          | 10U           | 10U          | 100         | 1700            | 160      |
| TOTAL BTEX               | 60.2         | 41.6           | 0            | 0             | 0            | 0           | 1790            | 543      |
| 1,2,4-Traniethylbenzene  | <b>29.</b> J | 27             | <b>S</b> U   | 5.2U          | SU           | 5.2U        | 5200            | 226      |
| 1,3,5-Trimeshythenzene   | 7.9J         | · 6.3J         | SU           | 5.2U          | SU           | 5.2U        | 2200            | 93       |
| Cunterie                 | 7.5J         | 5U             | 5U           | 5.2U          | SU           | 5.2U        | <b>430U</b>     | 500      |
| MTBE                     | 5.5U         | 5U             | <b>SU</b>    | 5 2U          | su           | 5.2U        | 11 <b>0</b> U   | 5U       |
| n-Butyibenzene           | 8.2J         | 12J            | 5U           | 5.2U          | 5U           | 5.2U        | 8609            | 700      |
| n-Propylbenzene          | <b>8</b> J   | - 7.1 <b>J</b> | 5U           | 5.2U          | 5U           | 5.2U        | 3000            | 400      |
| Naphthalene              | 51WJ         | 42             | 50           | 12U           | 5U           | 5.2U        | 2100U           | 1300     |
| o-Xylene                 | <b>30</b> J  | 12J            | 5U           | 5.2U          | 5U -         | 5.2U        | 450             | 140      |
| p-isopropykoluene        | 5.5U         | 6.9J           | 5U           | 5.2U          | 5U           | 5.2U        | 1100 <b>0</b> U | 550      |
| sec-Butylbenzene         | 5.6J         | SU             | 5U           | 5.2U          | 5U           | 5.2U        | 7800            | 570      |
| text-Butylbenzene        | 5.5U         | <b>5</b> U     | 50           | 5. <b>2</b> U | 5u           | 5.2 U       | 7300            | 330      |
| Total VOCS               | 156.4        | 154.9          | 0            | 0             | 0            | 0           | 36250           | 5346     |

ر مرد هر

µg/kg - Micrograms per kilogram

- U The analyte was analyzed for, but not detected above the reported sample limit.
- I The analyte was positively identified: the associated numerical value is the approximate concentration of the analyte in the sample.
- UI The analyte was not detected above the reported quantitation limit. However the reported quantitation limit may be biased.
- NA Not analyzed
- Beld Analyte detected

ł

ł

| Arca: [[<br>uplc Designation:<br>Sample Date:<br>ble Depth (ft bis): | Former Lube<br>SB-8<br>6/26/98 | Oil Building<br>SB-8                                                                                                    | SB 0                                                                                                                                                                                                                                                                                                                                                               |                                                       |                                                       |                                                       |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                        |                                                       |
|----------------------------------------------------------------------|--------------------------------|-------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------------|
| nple Designation:<br>Sample Date:<br>ble Depth (ft bls):             | SB-8<br>6/26/98                | SB-8                                                                                                                    | CR Q                                                                                                                                                                                                                                                                                                                                                               |                                                       |                                                       |                                                       |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                        |                                                       |
| Sample Date:<br>ble Depth (ft bis):                                  | 6/26/98                        |                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                    | SB-9                                                  | SB-10                                                 | SB-10                                                 | SB-11/J.B-1                                           | SB-13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SB-14                                                  | SB-15                                                 |
| ole Depth (ft bis):                                                  |                                | 6/26/98                                                                                                                 | 6/26/98                                                                                                                                                                                                                                                                                                                                                            | 6/26/98                                               | 6/26/98                                               | 6/26/98                                               | 7/1/99                                                | 7/27/99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7/26/99                                                | 7/27/99                                               |
|                                                                      | 0-2                            | 10-12                                                                                                                   | 0-2                                                                                                                                                                                                                                                                                                                                                                | 10-12                                                 | 0-2                                                   | 8-10                                                  | 18-20                                                 | 11-13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 13-15                                                  | 11-13                                                 |
|                                                                      |                                |                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                    |                                                       |                                                       |                                                       |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                        |                                                       |
|                                                                      |                                |                                                                                                                         | والمراجع والمحافظ والمحاوم والمحاوم والمحاوم والمحافظ والمحافظ والمحافظ والمحافظ والمحافظ والمحافظ والمحافظ وال                                                                                                                                                                                                                                                    |                                                       |                                                       | ·                                                     |                                                       | . <u></u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                        |                                                       |
|                                                                      | <b>4.2</b> U                   | 23J                                                                                                                     | 4.7U                                                                                                                                                                                                                                                                                                                                                               | 13U                                                   | 34                                                    | 750                                                   | 120                                                   | 2500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 780                                                    | 2308                                                  |
|                                                                      | 7.5J                           | 130                                                                                                                     | 14                                                                                                                                                                                                                                                                                                                                                                 | 273                                                   | 40                                                    | 306                                                   | 180                                                   | 2500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 220                                                    | 680                                                   |
|                                                                      | 4.2U                           | 76                                                                                                                      | 4.7U                                                                                                                                                                                                                                                                                                                                                               | 176                                                   | 24                                                    | 740                                                   | 610                                                   | 8200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1400                                                   | 5100                                                  |
|                                                                      | 11 <b>U</b>                    | 1 <b>20</b>                                                                                                             | 16U                                                                                                                                                                                                                                                                                                                                                                | 480                                                   | 178                                                   | 2200                                                  | 830                                                   | <b>72000</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 730                                                    | 3500                                                  |
|                                                                      | 7.5                            | 219                                                                                                                     | 14                                                                                                                                                                                                                                                                                                                                                                 | 677                                                   | 268                                                   | 3990                                                  | 1740                                                  | 35200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3130                                                   | <b>1</b> 1 <b>580</b>                                 |
|                                                                      | 8.7J                           | 588                                                                                                                     | 16                                                                                                                                                                                                                                                                                                                                                                 | 1100                                                  | 150                                                   | 3100                                                  | 2400                                                  | 18000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1100                                                   | 11000                                                 |
|                                                                      | 5.1J ·                         | 300                                                                                                                     | 4.9J                                                                                                                                                                                                                                                                                                                                                               | 680                                                   | 180                                                   | 4900                                                  | 1500                                                  | 9100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 926                                                    | 8688                                                  |
|                                                                      | 5.3J                           | 520                                                                                                                     | 4.7U                                                                                                                                                                                                                                                                                                                                                               | 1700                                                  | 78                                                    | 12000                                                 | 2800                                                  | 20000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1900                                                   | 11000                                                 |
|                                                                      | 4.2U                           | 13U                                                                                                                     | 4.70                                                                                                                                                                                                                                                                                                                                                               | 13U                                                   | 5U                                                    | 25U                                                   | 23U                                                   | 120U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 130U                                                   | 1500                                                  |
|                                                                      | 1 <b>0J</b>                    | 850                                                                                                                     | 6.5J                                                                                                                                                                                                                                                                                                                                                               | 2709                                                  | 130                                                   | 7800                                                  | 3488                                                  | 24000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3104                                                   | 18000                                                 |
|                                                                      | 4.2U                           | 220                                                                                                                     | 5J                                                                                                                                                                                                                                                                                                                                                                 | 13U                                                   | 29                                                    | 4100                                                  | 1300                                                  | 15006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2488                                                   | 12000                                                 |
|                                                                      | 28                             | 2090                                                                                                                    | 26                                                                                                                                                                                                                                                                                                                                                                 | 4606                                                  | 180                                                   | 9606                                                  | 2600                                                  | 33000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1300                                                   | 23000                                                 |
|                                                                      | 5.3J                           | 47                                                                                                                      | 11 <b>J</b>                                                                                                                                                                                                                                                                                                                                                        | 210                                                   | 39                                                    | 500                                                   | 390                                                   | 7288                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 360                                                    | 1900                                                  |
|                                                                      | 4.2U                           | . 13 <b>0U</b>                                                                                                          | 4.9J                                                                                                                                                                                                                                                                                                                                                               | 1800                                                  | 62                                                    | 13000                                                 | 2300U                                                 | 20000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1300U                                                  | 13000                                                 |
|                                                                      | 4.8J                           | 670                                                                                                                     | 5.9J                                                                                                                                                                                                                                                                                                                                                               | 520U                                                  | 75                                                    | 7680                                                  | 2500 J                                                | 12000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1500                                                   | 7480                                                  |
|                                                                      | 4.2U                           | 550                                                                                                                     | 4.7U                                                                                                                                                                                                                                                                                                                                                               | 1708                                                  | 45                                                    | 7888                                                  | 2400                                                  | 11909                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1300                                                   | 7100                                                  |
|                                                                      |                                | 4.2U<br>7.5J<br>4.2U<br>11U<br>7.5<br>8.7J<br>5.1J<br>5.3J<br>4.2U<br>10J<br>4.2U<br>28<br>5.3J<br>4.2U<br>4.8J<br>4.2U | 4.2U       23J         7.5J       13U         4.2U       76         11U       120         7.5       219         8.7J       580         5.1J       300         5.3J       520         4.2U       13U         10J       850         4.2U       220         28       2000         5.3J       47         4.2U       130U         4.8J       670         4.2U       550 | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 4.2U $23J$ $4.7U$ $13U$ $34$ $750$ $120$ $7.5J$ $13U$ $14$ $27J$ $40$ $300$ $180$ $4.2U$ $76$ $4.7U$ $176$ $24$ $740$ $610$ $11U$ $120$ $16U$ $480$ $179$ $2200$ $830$ $7.5$ $219$ $14$ $677$ $268$ $3990$ $1740$ $8.7J$ $586$ $16$ $1100$ $150$ $3100$ $2400$ $5.1J$ $306$ $4.9J$ $680$ $100$ $4900$ $1500$ $5.3J$ $526$ $4.7U$ $1700$ $78$ $12000$ $2300$ $4.2U$ $13U$ $4.7U$ $13U$ $5U$ $25U$ $23U$ $10J$ $850$ $6.5J$ $2700$ $130$ $7800$ $3446$ $4.2U$ $220$ $5J$ $13U$ $29$ $4100$ $1300$ $28$ $2090$ $24$ $4606$ $180$ $9606$ $2600$ $5.3J$ $47$ $11J$ $210$ $39$ $590$ $300$ $4.2U$ $130U$ $4.9J$ $1800$ $62$ $13000$ $23000J$ $4.8J$ $670$ $5.9J$ $520U$ $75$ $7660$ $2500$ $J$ $4.2U$ $130U$ $4.9J$ $1800$ $62$ $13000$ $2300J$ $4.8J$ $670$ $5.9J$ $520U$ $75$ $7660$ $2500$ $J$ $4.2U$ $130U$ $4.9J$ $1800$ $62$ $13000$ $2300J$ $J$ $4.2U$ | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ |

µg/kg - Micrograms per kilogram

88.2

5956

74.7

U - The analyte was analyzed for, but not detected above the reported sample limit.

15167

I - The analyte was positively identified: the associated numerical value is the approximate concentration of the analyte in the sample.

1156

73590

18540

204500

17070

- 113 The analyse was not detected above the reported quantitation limit. However the reported quantitation limit may be biased.
- NA Not analyzed
- Bold Analyte detected

**Total VOCS** 

Ī

P.16

|                             |              |                |              |               | l            | t                        |                 |         |
|-----------------------------|--------------|----------------|--------------|---------------|--------------|--------------------------|-----------------|---------|
| Area:                       | Elk Street   | Lot            |              |               | Terminal Dis | Former Lube Oil Building |                 |         |
| Sample Designation: ESL-4 E |              | ESL-8/ESL-W1   | ESL-8/ESL-W1 | ESL-12        | LF-5         | 1.1-7                    | SB-7            | SB-7    |
| Sample Date:                | 6/22/98      | 6/22/98        | 6/22/98      | 6/22/98       | 8/6/99       | 8/16/99                  | 6/26/98         | 6/26/98 |
| Sample Depth (ft bls):      | 1.5-2        | 1.5-2          | 8-10         | 1.5-2         | 21-23        | 21-23                    | 0-2             | 8-10    |
| Parameter                   |              |                |              |               |              |                          |                 |         |
| (Concentration in µg/kg)    |              |                |              |               |              | <del></del>              |                 |         |
| Benzene                     | 5.SU         | su             | ક્ય          | 5.20          | 5U           | 5.20                     | 1100            | 240     |
| Tohicae                     | 1 <b>8</b> J | 9.1J           | 5U           | 5. <b>2</b> U | SU           | 5.2U                     | 1100            | 46      |
| Ethylbenzene                | 7.2J         | 8.5J           | <b>SU</b>    | 5.2U          | SU           | 5.2U                     | 110U            | 97      |
| Xylenes (total)             | 35J          | 24             | 100          | 10U           | 10U          | 100                      | 1700            | 160     |
| TOTAL BTEX                  | 60.2         | 41.6           | 0            | 0             | 0            | 0                        | 1790            | 543     |
| 1,2,4-Traniethylbenzene     | <b>29.</b> J | 27             | <b>5</b> U   | 5.2U          | SU           | 5.2U                     | 5200            | 226     |
| 1,3,5-Trimeshythenzene      | 7.9J         | · 6.3J         | SU           | 5.2U          | SU           | 5.2U                     | 2200            | 93      |
| Cunterie                    | 7.5J         | 5U             | 5U           | 5.2U          | SU           | 5.2U                     | <b>430U</b>     | 500     |
| MTBE                        | 5.5U         | 5U             | SU           | 5 2U          | su           | 5.2U                     | 11 <b>0</b> U   | 5U      |
| n-Butyibenzene              | 8.2J         | 12J            | 5U           | 5.2U          | 5U           | 5.2U                     | 8609            | 700     |
| n-Propylbenzene             | <b>8</b> J   | - 7.1 <b>J</b> | 5U           | 5.2U          | 5U           | 5.2U                     | 3000            | 400     |
| Naphthalene                 | 51WJ         | 42             | 50           | 12U           | 5U           | 5.2U                     | 2100U           | 1300    |
| o-Xylene                    | <b>30</b> J  | 12J            | 5U           | 5.2U          | 5U -         | 5.2U                     | 450             | 140     |
| p-isopropykoluene           | 5.5U         | 6.9J           | 5U           | 5.2U          | 5U           | 5.2U                     | 1100 <b>0</b> U | 550     |
| sec-Butylbenzene            | 5.6J         | SU             | 5 <b>U</b>   | 5.2U          | 5U           | 5.2U                     | 7800            | 570     |
| text-Butylbenzene           | 5.5U         | <b>5</b> U     | <b>5</b> U   | 5. <b>2</b> U | 5u           | 5.2 U                    | 7300            | 330     |
| Total VOCS                  | 156.4        | 154.9          | 0            | 0             | 0            | 0                        | 36250           | 5346    |

ر مرد هر

µg/kg - Micrograms per kilogram

- U The analyte was analyzed for, but not detected above the reported sample limit.
- I The analyte was positively identified: the associated numerical value is the approximate concentration of the analyte in the sample.
- UI The analyte was not detected above the reported quantitation limit. However the reported quantitation limit may be biased.
- NA Not analyzed
- Beld Analyte detected

ł

ł

| Arca: [[<br>aplc Designation:<br>Sample Date:<br>ple Depth (ft bis): | Former Lube<br>SB-8<br>6/26/98 | Oil Building<br>SB-8                                                                                                            | 5                                                                                                                                                                                       |                                                      |                                                       |                                                       |                                                       |                                                       |                                                        |                                                       |  |  |  |  |  |  |
|----------------------------------------------------------------------|--------------------------------|---------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------------|--|--|--|--|--|--|
| aple Designation:<br>Sample Date:<br>ple Depth (ft bls):             | SB-8<br>6/26/98                | SB-8                                                                                                                            | 00.0                                                                                                                                                                                    | Area: Former Lube Oil Building                       |                                                       |                                                       |                                                       |                                                       |                                                        |                                                       |  |  |  |  |  |  |
| Sample Date:<br>ple Depth (ft bis):                                  | 6/26/98                        |                                                                                                                                 | 313-Y                                                                                                                                                                                   | SB-9                                                 | SB-10                                                 | SB-10                                                 | SB-11/)_B-1                                           | SB-13                                                 | SB-14                                                  | SB-15                                                 |  |  |  |  |  |  |
| ole Depth (ft bis):                                                  |                                | 6/26/98                                                                                                                         | 6/26/98                                                                                                                                                                                 | 6/26/98                                              | 6/26/98                                               | 6/26/98                                               | 7/1/99                                                | 7/27/99                                               | 7/26/99                                                | 7/27/99                                               |  |  |  |  |  |  |
|                                                                      | 0-2                            | 10-12                                                                                                                           | 0-2                                                                                                                                                                                     | 10-12                                                | 0-2                                                   | 8-10                                                  | 18-20                                                 | 11-13                                                 | 13-15                                                  | 11-13                                                 |  |  |  |  |  |  |
|                                                                      |                                |                                                                                                                                 |                                                                                                                                                                                         |                                                      |                                                       |                                                       |                                                       |                                                       |                                                        |                                                       |  |  |  |  |  |  |
|                                                                      |                                |                                                                                                                                 |                                                                                                                                                                                         |                                                      |                                                       | ·                                                     |                                                       | . <u></u>                                             |                                                        |                                                       |  |  |  |  |  |  |
|                                                                      | <b>4.2U</b>                    | 23J                                                                                                                             | 4.7U                                                                                                                                                                                    | 13U                                                  | 34                                                    | 750                                                   | 120                                                   | 2500                                                  | 780                                                    | 2300                                                  |  |  |  |  |  |  |
|                                                                      | 7.5J                           | 130                                                                                                                             | 14                                                                                                                                                                                      | 273                                                  | 40                                                    | 306                                                   | 180                                                   | 2500                                                  | 220                                                    | 680                                                   |  |  |  |  |  |  |
|                                                                      | 4.2U                           | 76                                                                                                                              | 4.7U                                                                                                                                                                                    | 174                                                  | 24                                                    | 740                                                   | 610                                                   | 8200                                                  | 1400                                                   | 5100                                                  |  |  |  |  |  |  |
|                                                                      | nv                             | 1 <b>20</b>                                                                                                                     | 16U                                                                                                                                                                                     | 480                                                  | 178                                                   | 2200                                                  | 830                                                   | <b>72000</b>                                          | 730                                                    | 3500                                                  |  |  |  |  |  |  |
|                                                                      | 7.5                            | 219                                                                                                                             | 14                                                                                                                                                                                      | 677                                                  | 268                                                   | 3990                                                  | 1740                                                  | 35200                                                 | 3130                                                   | <b>1</b> 1 <b>580</b>                                 |  |  |  |  |  |  |
|                                                                      | 8.7J                           | 588                                                                                                                             | 16                                                                                                                                                                                      | 1100                                                 | 150                                                   | 3100                                                  | 2460                                                  | 18000                                                 | 1100                                                   | 11000                                                 |  |  |  |  |  |  |
|                                                                      | 5.1J '                         | 300                                                                                                                             | 4.9J                                                                                                                                                                                    | 680                                                  | 180                                                   | 4900                                                  | 1500                                                  | 9100                                                  | 926                                                    | 8666                                                  |  |  |  |  |  |  |
|                                                                      | 5.3J                           | 520                                                                                                                             | 4.7U                                                                                                                                                                                    | 1700                                                 | 78                                                    | 12000                                                 | 2800                                                  | 20000                                                 | 1900                                                   | 11000                                                 |  |  |  |  |  |  |
|                                                                      | 4.2U                           | 13U                                                                                                                             | 4.70                                                                                                                                                                                    | 1 <b>3</b> U                                         | 5U                                                    | 25U                                                   | 23U                                                   | 120U                                                  | 130U                                                   | 1500                                                  |  |  |  |  |  |  |
|                                                                      | 1 <b>0J</b>                    | 859                                                                                                                             | 6.5J                                                                                                                                                                                    | 2700                                                 | 130                                                   | 7800                                                  | 3488                                                  | 24000                                                 | 3104                                                   | 18000                                                 |  |  |  |  |  |  |
|                                                                      | 4.2U                           | 220                                                                                                                             | 5J                                                                                                                                                                                      | 13U                                                  | 29                                                    | 4100                                                  | 1300                                                  | 15006                                                 | 2488                                                   | 12000                                                 |  |  |  |  |  |  |
|                                                                      | 28                             | 2090                                                                                                                            | 28                                                                                                                                                                                      | 4606                                                 | 180                                                   | 9606                                                  | 2600                                                  | 33000                                                 | 1300                                                   | 23000                                                 |  |  |  |  |  |  |
|                                                                      | 5.3J                           | 47                                                                                                                              | 11 <b>J</b>                                                                                                                                                                             | 210                                                  | 39                                                    | 500                                                   | 300                                                   | 7288                                                  | 360                                                    | 1900                                                  |  |  |  |  |  |  |
|                                                                      | 4.2U                           | . 130U                                                                                                                          | 4.9J                                                                                                                                                                                    | 1800                                                 | 62                                                    | 13000                                                 | 2300U                                                 | 20000                                                 | 1300U                                                  | 13000                                                 |  |  |  |  |  |  |
|                                                                      | 4.8J                           | 670                                                                                                                             | 5.9J                                                                                                                                                                                    | 520U                                                 | 75                                                    | 7680                                                  | 2500 J                                                | 12000                                                 | 1500                                                   | 7488                                                  |  |  |  |  |  |  |
|                                                                      | <b>4.2</b> U                   | 550                                                                                                                             | 4.7U                                                                                                                                                                                    | 1708                                                 | 45                                                    | 7888                                                  | 2400                                                  | 11909                                                 | 1300                                                   | 7100                                                  |  |  |  |  |  |  |
|                                                                      |                                | 4.2U<br>7.5J<br>4.2U<br>11U<br>7.5<br>8.7J<br>5.1J<br>5.1J<br>5.3J<br>4.2U<br>10J<br>4.2U<br>28<br>5.3J<br>4.2U<br>4.8J<br>4.2U | 4.2U 23J<br>7.5J 13U<br>4.2U 76<br>11U 120<br>7.5 219<br>8.7J 560<br>5.1J 300<br>5.3J 520<br>4.2U 13U<br>10J 850<br>4.2U 220<br>28 2000<br>5.3J 47<br>4.2U 130U<br>4.8J 670<br>4.2U 550 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ |  |  |  |  |  |  |

µg/kg - Micrograms per kilogram

88.2

5956

74.7

U - The analyte was analyzed for, but not detected above the reported sample limit.

15167

I - The analyte was positively identified: the associated numerical value is the approximate concentration of the analyte in the sample.

1156

73590

18540

204500

17070

- 113 The analyse was not detected above the reported quantitation limit. However the reported quantitation limit may be biased.
- NA Not analyzed
- Bold Analyte detected

**Total VOCS** 

Ī

P.16

|                          |            |               |                |               |         |             |         |              |              | 4.     |
|--------------------------|------------|---------------|----------------|---------------|---------|-------------|---------|--------------|--------------|--------|
| Area:                    | Former Lub | e Oil Buildi  | ng             |               |         |             |         |              | <u></u>      |        |
| Sample Designation:      | SB-16      | SB-17         | SB-17          | SB-18         | SB-18   | SB-19       | SB-20   | SB-20        | SB-24        | SB-24  |
| Sample Date:             | 7/28/99    | 7/28/99       | 7/28/99        | 7/7.9/99      | 7/29/99 | 7/29/99     | 7/29/99 | 7/29/99      | 8/2/99       | 8/4/99 |
| Sample Depth (It bis):   | 11-13      | Q-0.5         | 11-13          | 0-0.5         | 11-13   | 7-9         | 3-4     | 9-11         | 13-15        | 0-0.5  |
| Parameter                | -          |               |                |               | 1       |             |         |              |              |        |
| (Concentration in µg/kg) |            |               |                | ,             |         |             |         |              |              | •      |
| Benzene                  | 3000       | 170           | 1200           | 2000          | 520     | <b>26</b> U | 91      | 12000        | 5.3U         | 8.7    |
| Toluçoc                  | 430        | 28            | 228            | 520           | 130     | 79          | 24      | 7500         | 5.3U         | 23     |
| Ethylbenzene             | 1600       | 43            | 1200           | 3260          | 820     | 200         | 73      | 14000        | 5.3U         | 13     |
| Xylenes (total)          | 1800       | 170           | 2300           | 3400          | 1700    | 1600        | 250     | 60000        | ШU           | 40     |
| TOTAL BTEX               | 6830       | 411           | 4920           | 9120          | 3170    | 1879        | 438     | 93500        | • 0          | 84.7   |
| 1,2,4-Trimethylbenzenc   | 2500       | 350           | 6300           | 4100          | 8480    | 1660        | 340     | 95006        | 5.3U         | 100    |
| 1,3,5-Trimethylbenzene   | 1300       | • 210         | 2690           | 52 <b>0</b> 0 | 2800    | 1400        | 180     | 37000        | 5.3U         | 97     |
| Cumene                   | 5500       | 53            | 5200           | 12000         | 3809    | 4108        | 360     | 12000        | 5.3U         | 79     |
| MTBE                     | 3011       | 4.7U          | 24U            | 51U           | 48U     | 26U         | 4.2U    | <b>320</b> U | 12           | 5U     |
| n-Butylbenzene           | 13000      | 290           | 6700           | 14000         | 6400    | 4900        | 400     | 49000        | 5. <b>3U</b> | 180    |
| n-Propylbenzene          | 17000      | 41            | 4700           | 7480          | 3600    | 1300        | 220     | 39000        | 5. <b>3U</b> | 63     |
| Naphthalene              | 26000      | 248           | <b>280</b> G   | 26000U        | 7888    | 12000       | 539     | 31000        | 5.3U         | 316    |
| o-Xylene                 | 960        | 84            | 980 J          | 1200          | 1380    | 360         | 91      | 20000        | 5. <b>3U</b> | 73     |
| p-Isopropyltoluene       | 3000U      | 1 <b>20</b> U | 610 <b>0</b> U | 26000U        | 5100    | 2600U       | 210U    | 11000        | 5.3U         | 88     |
| sec-Butylbenzene         | 8200       | 55            | 3500           | 8100          | 2700    | 5500        | 190     | 16000        | 5.3U         | 76     |
| tert-Butylbenzene        | 4880       | 66            | 3500           |               |         |             |         |              |              |        |
| Total VOCS               | 79290      | 1890          | 47200          | 61120         | 45070   | 33039       | 2749    | 403500       | . 12         | 1150.7 |

µg/kg - Micrograms per kilogram

- U The analyte was analyzed for, but not detected above the reported sample limit.
- J The analyte was positively identified: the associated numerical value is the approximate concentration of the analyte in the sample.
- UI The analyte was not detected above The reported quantitation limit. However The reported quantitation limit may be biased.

NA - Not analyzed

Beid - Analyte detected

.
| Arca: [[<br>uplc Designation:<br>Sample Date:<br>ble Depth (ft bis): | Former Lube<br>SB-8<br>6/26/98 | Oil Building<br>SB-8                                                                                                                          | SB 0                                                                                                                                                                     |                                                       |                                                       |                                                       |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                        |                                                       |
|----------------------------------------------------------------------|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------------|
| nple Designation:<br>Sample Date:<br>ble Depth (ft bls):             | SB-8<br>6/26/98                | SB-8                                                                                                                                          | CR Q                                                                                                                                                                     |                                                       |                                                       |                                                       |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                        |                                                       |
| Sample Date:<br>ble Depth (ft bis):                                  | 6/26/98                        |                                                                                                                                               |                                                                                                                                                                          | SB-9                                                  | SB-10                                                 | SB-10                                                 | SB-11/J.B-1                                           | SB-13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SB-14                                                  | SB-15                                                 |
| ole Depth (ft bis):                                                  |                                | 6/26/98                                                                                                                                       | 6/26/98                                                                                                                                                                  | 6/26/98                                               | 6/26/98                                               | 6/26/98                                               | 7/1/99                                                | 7/27/99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7/26/99                                                | 7/27/99                                               |
|                                                                      | 0-2                            | 10-12                                                                                                                                         | 0-2                                                                                                                                                                      | 10-12                                                 | 0-2                                                   | 8-10                                                  | 18-20                                                 | 11-13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 13-15                                                  | 11-13                                                 |
|                                                                      |                                |                                                                                                                                               |                                                                                                                                                                          |                                                       |                                                       |                                                       |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                        |                                                       |
|                                                                      |                                |                                                                                                                                               | والمراجع والمحافظ والمحاوم والمحاوم والمحاوم والمحافظ والمحافظ والمحافظ والمحافظ والمحافظ والمحافظ والمحافظ وال                                                          |                                                       |                                                       | ···                                                   |                                                       | . <u></u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                        |                                                       |
|                                                                      | <b>4.2</b> U                   | 23J                                                                                                                                           | 4.7U                                                                                                                                                                     | 13U                                                   | 34                                                    | 750                                                   | 120                                                   | 2500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 780                                                    | 2308                                                  |
|                                                                      | 7.5J                           | 130                                                                                                                                           | 14                                                                                                                                                                       | 273                                                   | 40                                                    | 306                                                   | 180                                                   | 2500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 220                                                    | 680                                                   |
|                                                                      | 4.2U                           | 76                                                                                                                                            | 4.7U                                                                                                                                                                     | 176                                                   | 24                                                    | 740                                                   | 610                                                   | 8200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1400                                                   | 5100                                                  |
|                                                                      | 11 <b>U</b>                    | 1 <b>20</b>                                                                                                                                   | 16U                                                                                                                                                                      | 480                                                   | 178                                                   | 2200                                                  | 830                                                   | <b>72000</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 730                                                    | 3500                                                  |
|                                                                      | 7.5                            | 219                                                                                                                                           | 14                                                                                                                                                                       | 677                                                   | 268                                                   | 3990                                                  | 1740                                                  | 35200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3130                                                   | <b>11580</b>                                          |
|                                                                      | 8.7J                           | 588                                                                                                                                           | 16                                                                                                                                                                       | 1100                                                  | 150                                                   | 3100                                                  | 2400                                                  | 18000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1100                                                   | 11000                                                 |
|                                                                      | 5.1J ·                         | 300                                                                                                                                           | 4.9J                                                                                                                                                                     | 680                                                   | 180                                                   | 4900                                                  | 1500                                                  | 9100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 926                                                    | 8688                                                  |
|                                                                      | 5.3J                           | 520                                                                                                                                           | 4.7U                                                                                                                                                                     | 1700                                                  | 78                                                    | 12000                                                 | 2800                                                  | 20000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1900                                                   | 11000                                                 |
|                                                                      | 4.2U                           | 13U                                                                                                                                           | 4.70                                                                                                                                                                     | 13U                                                   | 5U                                                    | 25U                                                   | 23U                                                   | 120U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 130U                                                   | 1500                                                  |
|                                                                      | 1 <b>0J</b>                    | 850                                                                                                                                           | 6.5J                                                                                                                                                                     | 2709                                                  | 130                                                   | 7800                                                  | 3488                                                  | 24000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3104                                                   | 18000                                                 |
|                                                                      | 4.2U                           | 220                                                                                                                                           | 5J                                                                                                                                                                       | 13U                                                   | 29                                                    | 4100                                                  | 1300                                                  | 15006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2488                                                   | 12000                                                 |
|                                                                      | 28                             | 2090                                                                                                                                          | 26                                                                                                                                                                       | 4606                                                  | 180                                                   | 9606                                                  | 2600                                                  | 33000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1300                                                   | 23000                                                 |
|                                                                      | 5.3J                           | 47                                                                                                                                            | 11 <b>J</b>                                                                                                                                                              | 210                                                   | 39                                                    | 500                                                   | 390                                                   | 7288                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 360                                                    | 1900                                                  |
|                                                                      | 4.2U                           | . 130U                                                                                                                                        | 4.9J                                                                                                                                                                     | 1800                                                  | 62                                                    | 13000                                                 | 2300U                                                 | 20000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1300U                                                  | 13000                                                 |
|                                                                      | 4.8J                           | 670                                                                                                                                           | 5.9J                                                                                                                                                                     | 520U                                                  | 75                                                    | 7680                                                  | 2500 J                                                | 12000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1500                                                   | 7480                                                  |
|                                                                      | 4.2U                           | 550                                                                                                                                           | 4.7U                                                                                                                                                                     | 1708                                                  | 45                                                    | 7000                                                  | 2400                                                  | 11909                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1300                                                   | 7100                                                  |
|                                                                      |                                | 4.2U<br>7.5J<br>4.2U<br>11U<br>7.5<br>8.7J<br>5.1J<br>5.3J<br>4.2U<br>10J<br>4.2U<br>28<br>5.3J<br>4.2U<br>28<br>5.3J<br>4.2U<br>4.8J<br>4.2U | 4.2U 23J   7.5J 13U   4.2U 76   11U 120   7.5 219   8.7J 580   5.1J 300   5.3J 520   4.2U 13U   10J 850   4.2U 220   28 2000   5.3J 47   4.2U 130U   4.8J 670   4.2U 550 | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 4.2U $23J$ $4.7U$ $13U$ $34$ $750$ $120$ $7.5J$ $13U$ $14$ $27J$ $40$ $300$ $180$ $4.2U$ $76$ $4.7U$ $176$ $24$ $740$ $610$ $11U$ $120$ $16U$ $480$ $179$ $2200$ $830$ $7.5$ $219$ $14$ $677$ $268$ $3990$ $1740$ $8.7J$ $586$ $16$ $1100$ $150$ $3100$ $2400$ $5.1J$ $306$ $4.9J$ $680$ $100$ $4900$ $1500$ $5.3J$ $526$ $4.7U$ $1700$ $78$ $12000$ $2300$ $4.2U$ $13U$ $4.7U$ $13U$ $5U$ $25U$ $23U$ $10J$ $850$ $6.5J$ $2700$ $130$ $7800$ $3446$ $4.2U$ $220$ $5J$ $13U$ $29$ $4100$ $1300$ $28$ $2090$ $24$ $4606$ $180$ $9606$ $2600$ $5.3J$ $47$ $11J$ $210$ $39$ $590$ $300$ $4.2U$ $130U$ $4.9J$ $1800$ $62$ $13000$ $23000J$ $4.8J$ $670$ $5.9J$ $520U$ $75$ $7660$ $2500$ $J$ $4.2U$ $130U$ $4.9J$ $1800$ $62$ $13000$ $2300J$ $4.8J$ $670$ $5.9J$ $520U$ $75$ $7660$ $2500$ $J$ $4.2U$ $130U$ $4.9J$ $1800$ $62$ $13000$ $2300J$ $J$ $4.2U$ | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ |

µg/kg - Micrograms per kilogram

88.2

5956

74.7

U - The analyte was analyzed for, but not detected above the reported sample limit.

15167

I - The analyte was positively identified: the associated numerical value is the approximate concentration of the analyte in the sample.

1156

73590

18540

204500

17070

- 113 The analyse was not detected above the reported quantitation limit. However the reported quantitation limit may be biased.
- NA Not analyzed
- Bold Analyte detected

**Total VOCS** 

Ī

P.16

126880

|                          |              |               |                |               |         |             |         |                |              | 4      |
|--------------------------|--------------|---------------|----------------|---------------|---------|-------------|---------|----------------|--------------|--------|
| Area:                    | Former Lub   | e Oil Buildi  | ng             |               |         |             |         |                |              |        |
| Sample Designation:      | SB-16        | SB-17         | SB-17          | SB-18         | SB-18   | SB-19       | SB-20   | SB-20          | SB-24        | SB-24  |
| Sample Date:             | 7/28/99      | 7/28/99       | 7/28/99        | 7/7.9/99      | 7/29/99 | 7/29/99     | 7/29/99 | 7/29/99        | 8/2/99       | 8/4/99 |
| Sample Depth (It bis):   | 11-13        | Q-0.5         | 11-13          | 0-0.5         | 11-13   | 7-9         | 3-4     | 9-11           | 13-15        | 0-0.5  |
| Parameter                | -            |               |                |               | 1       |             |         |                |              |        |
| (Concentration in µg/kg) |              |               |                | ,             |         |             |         |                |              |        |
| Benzene                  | 3000         | 170           | 1200           | 2000          | 520     | <b>26</b> U | 91      | 12000          | 5.3U         | 8.7    |
| Toluçoc                  | 430          | 28            | 228            | 520           | 130     | 79          | 24      | 7500           | 5.3U         | 23     |
| Ethylbenzene             | 1600         | 43            | 1200           | 3260          | 820     | 200         | 73      | 14000          | 5.3U         | 13     |
| Xylenes (total)          | 1 <b>800</b> | 170           | 2300           | 3400          | 1700    | 1600        | 250     | 60000          | ΠU           | 40     |
| TOTAL BTEX               | 6830         | 411           | 4920           | 9120          | 3170    | 1879        | 438     | 93500          | • 0          | 84.7   |
| 1,2,4-Trimethylbenzenc   | 2500         | 350           | 6300           | 4100          | 8480    | 1660        | 340     | 95006          | 5.3U         | 100    |
| 1,3,5-Trimethylbenzene   | 1300         | • 210         | 2690           | 52 <b>0</b> 0 | 2800    | 1400        | 180     | 37000          | 5.3U         | 97     |
| Cumene                   | 5500         | 53            | 5200           | 12000         | 3809    | 4100        | 360     | 12000          | 5.3U         | 79     |
| MTBE                     | 30U          | 4.7U          | 24U            | 51U           | 48U     | 26U         | 4.2U    | <b>320</b> U   | 12           | SU     |
| n-Butylbenzene           | 13000        | 290           | 6700           | 14000         | 6400    | 4900        | 400     | 49 <b>00</b> 0 | 5. <b>3U</b> | 180    |
| n-Propylbenzene          | 17000        | 41            | 4700           | 7480          | 3600    | 1300        | 220     | 39000          | 5. <b>3U</b> | 63     |
| Naphthalene              | 26000        | 248           | <b>280</b> G   | 26000U        | 7888    | 12080       | 539     | 31000          | 5.3U         | 316    |
| o-Xylene                 | 960          | 84            | 980 J          | 1200          | 1380    | 360         | 91      | 20000          | 5. <b>3U</b> | 73     |
| p-Isopropyltoluene       | 3000U        | 1 <b>20</b> U | 610 <b>0</b> U | 26000U        | 5100    | 2600U       | 210U    | 11000          | 5.3U         | 88     |
| sec-Butybenzene          | 8200         | 55            | 3500           | 8100          | 2700    | 5500        | 190     | 16000          | 5.3U         | 76     |
| tert-Butylbenzene        | 4800         | 66            | 3500           |               |         |             |         |                |              |        |
| Total VOCS               | 79290        | 1890          | 47200          | 61120         | 45070   | 33039       | 2749    | 403500         | 12           | 1150.7 |

µg/kg - Micrograms per kilogram

- U The analyte was analyzed for, but not detected above the reported sample limit.
- J The analyte was positively identified: the associated numerical value is the approximate concentration of the analyte in the sample.
- UI The analyte was not detected above The reported quantitation limit. However The reported quantitation limit may be biased.

NA - Not analyzed

Beid - Analyte detected

.

| Atea: 1                  | Former Lub | e Oil Buildin | ng         |             |        |        |
|--------------------------|------------|---------------|------------|-------------|--------|--------|
| Sample Designation:      | SB-27      | SB-27         | SB-28      | SB-28       | SB-30  | SB-30  |
| Sample Date:             | 8/3/99     | 8/4/99        | 8/3/99     | 8/4/99      | 8/5/99 | 8/6/99 |
| Sample Depth (ft bls):   | 11-13      | 0-0.5         | 11-13      | 0-0.5       | 9-11   | 0-0.5  |
| Parameter                |            |               |            |             |        |        |
| (Concentration in µg/kg) |            |               |            |             |        |        |
| Benzene                  | 4.9U       | 5.4U          | <b>5</b> U | 25Ű         | 5.1U   | 5.2U   |
| Talwene                  | 6.2        | 7.8           | <b>S</b> U | 57          | 5.1U   | 5.2U   |
| Ethylbenzene             | 27         | 5.8           | SU         | 390         | 5.1U   | 5.2U   |
| Xyleues (total)          | 97         | 35            | 10U        | 4260        | 10U    | 10U    |
| TOTAL BTEX               | 136.2      | 48.6          | 0          | 4647        | 0      | 0      |
| 1.2.4-Trimethylbenzene   | 186        | 38 2          | // 5U      | 12000       | 5 111  | 65 U   |
| 1.3.5-Trimethylbenzene   | 110 .      | 15            | SU SU      | 4900        | 5.10   | 5211   |
| Cumene                   | 350        | 7.5           | 50         | 2100        | 5.1U   | 520    |
| мтве                     | 4.9U       | 5.4U          | 5U         | 25U         | 5.IU   | 5.2U   |
| n-Butylbenzeae           | 390        | 16 U          | - 50       | 7100        | 5.1U   | 5.20   |
| n-Propylbenzene          | 92         | · 9.3 U       | <b>5</b> U | 77 <b>e</b> | 5.IU   | 5.2U   |
| Nanluhalene              | 660        | 47 U          | L 25U      | 7300        | 5.1U   | 8.6 U  |
| o-Xylene                 | 27         | 9.2           | 5U         | 338         | 5.1U   | 5.20   |
| p-Isopropykoluenc        | 270        | 9.7           | 5U         | 1800        | 5.1U   | 5.2U   |
| sec-Butylbenzene         | 296        | 7.1           | 5U         | 1208        | 5.1U   | 5.2U   |
| tert-Butylbenzene        |            |               |            |             |        |        |
| Total VOCS               | 2409.2     | 207.4         | 0          | 42147       | 0      | 15.1   |

gg/kg - Micrograms per kilogram

- U The analyte was analyzed for, but not detected above the reported sample limit.
- J The analyte was positively identified: the associated numerical value is the approximate concentration of the analyte in the sample.
- UJ The analyte was not detected above The reported quantitation limit. However The reported quantitation limit may be biased.
- NA Not analyzed
- Bold Analyte detected

Ì

H

ł

1

-

P.18

Table 6. Summary of Volatile Organic Compounds Detected in Groundwater Samples, Mobil Buffalo Terminal, Buffalo, New York.

| Area:                               | Terminal D      | isposal Site    |                           |                 |                 | -                |                 |                 |                 |
|-------------------------------------|-----------------|-----------------|---------------------------|-----------------|-----------------|------------------|-----------------|-----------------|-----------------|
| Sample Designation:<br>Sample Date: | LF-3<br>8/23/99 | LF-3<br>9/28/99 | LF-3 DUP<br>9/28/99       | LF-4<br>8/23/99 | LF-4<br>9/28/99 | L.F-5<br>8/25/99 | LF-5<br>9/28/99 | LF-6<br>8/25/99 | LF-6<br>9/28/99 |
| Parameter                           |                 |                 |                           |                 |                 |                  |                 |                 |                 |
| (Concentrations in µg/L)            |                 |                 |                           |                 |                 |                  |                 |                 |                 |
| Benzene                             | 45              | 50 J            | 56                        | 0.2U            | 0.2U            | <b>0</b> .2U     | 0.2U            | 83              | 80              |
| Toluene                             | 0.7             | 0.6             | 0.7                       | 0.2U            | 0.2U            | 0.2U             | 0.2U            | 2               | 2.3             |
| Ethylbenzone                        | 0.20            | 0,2U            | 0.2U                      | 0.2U            | 0.2U            | 0.3              | 0.2U            | 1U              | 0.2U            |
| Xylenes (total)                     | <b>2</b> U      | 0.5 V           | 0.4U                      | 0.6U            | 0.4U            | 0.60             | 0.4U            | 3U              | <b>0</b> .5     |
| TOTAL BTEX                          | 45.7            | <b>51.1</b> J   | 56.7                      | 0               | 0               | 0.3              | 0               | 85              | \$2.\$          |
| 1,2,4-Trimethylbenzene              | NA              | 0.2 J           | ●.3                       | NA              | 0.2U            | NA               | 0.2U            | NA              | 6.3             |
| 1,3,5-Trimethylbenzene              | NA              | 0.2             | <b>0.2</b>                | NA              | 0.2U            | NA               | 0.2U            | NA              | 0. <b>2</b> U   |
| Cumene                              | NA -            | 7.7             | 7                         | NA              | <b>0.2U</b>     | NA               | 0.2U            | NA              | 1.8             |
| MTBE                                | NA              | 26              | 24                        | NA              | 4.7             | NA               | 5.5             | NA              | 4.6             |
| n-Butylbenzene                      | NA              | 11              | 9.3                       | NA              | 0.2U            | NA               | 0.2U            | NA              | 2.3             |
| n-Propylbenzene                     | NA              | 10              | 9.6                       | , NA            | 0.2U            | NA               | 0.2U            | NA              | 2.7             |
| Naphthalene                         | NA              | 5U              | 1,9 <del>,,,,,,,,</del> 9 | <sup>n</sup> NA | 0.2U            | NA               | 0.2U            | NA              | 0.5             |
| o-Xylene                            | NA              | 0.4             | 6.4                       | NA              | 0.2U            | NA               | 0.2U            | NA              | 0.2U            |
| p-Isopropyltoluene                  | NA              | ເບ              | 0.2U                      | NA              | 0.2U            | NA               | 0.2U            | NA              | 0.2U            |
| sec-Butylbenzene                    | NA              | 7.2             | 6.5                       | NA              | 0.2U            | NA               | 0.2U            | NA              | 1.7             |
| Total VOCS                          | 45.7            | 113.8           | 5 57.3                    | G               | 4.7             | 0.3              | 5.5             | 85              | 96.7            |

Notes:

µg/L - Micrograms per liter

- U The analyte was analyzed for, but not detected above the reported sample limit.
- J The analyte was positively identified: the associated numerical value is the approximate concentration of the analyte in the sample.
- UJ The analyte was not detected above the reported quantitation limit. However the reported quantitation limit may be biased.
- NA Not analyzed
- Bold Analyte detected

t

P.19

Table 6. Summary of Volatile Organic Compounds Detected in Groundwater Samples, Mobil Buffalo Terminal, Buffalo, New York.

| Area:                               |                 | Terminal Di      | sposal Site     |                 | Former Lube Bu        | uilding          |                  |                  |                  |                          |
|-------------------------------------|-----------------|------------------|-----------------|-----------------|-----------------------|------------------|------------------|------------------|------------------|--------------------------|
| Sample Designation:<br>Sample Date: | LF-7<br>8/25/99 | L.F-7<br>9/28/99 | LF-8<br>8/25/99 | LF-8<br>9/28/99 | SB-11/LB-1<br>8/23/99 | SR-12<br>8/23/99 | SB-14<br>8/23/99 | SB-14<br>9/28/99 | SB-16<br>8/23/99 | SB-19<br>9/29/ <b>99</b> |
| Parameter                           |                 |                  |                 |                 |                       |                  |                  |                  |                  |                          |
| (Concentrations in µg/L)            |                 |                  |                 |                 |                       |                  |                  |                  |                  |                          |
| Benzene                             | 0.2U            | 0.2U             | 0 2U            | 0.2U            | 46                    | 6                | 10               | 14               | 610              | 0.7                      |
| Toluene                             | 0.2U            | 0.2U             | 0.2U            | 0.2U            | 17                    | 1U               | 3                | 1.2              | 17               | 0.4                      |
| Ethylbenzene                        | 0.2U            | 0.2U             | 0 2U            | 0.2U            | 15                    | 1                | 6                | 1.3              | 7                | 1.6                      |
| Xylencs (total)                     | 0.6U            | 0.4U             | 0.6U            | 0.4U            | 50U                   | 30               | 5                | 2.6              | 30               | 5.6                      |
| TOTAL BTEX                          | 0               | 0                | 0               | 0               | 75                    | 7                | 24               | 19.1             | 664              | 8.3                      |
| 1.2.4-Trimethylbenzene              | NA              | 0.2U             | NA              | 0.2U            | NA                    | NA               | NA               | 1.4              | NA               | 14                       |
| 1.3,5-Trimethylbenzene              | NA              | <b>0</b> .2U     | NA              | 0.2U            | NA                    | NA               | NA               | 1.9              | NA               | 8.1                      |
| Cumene                              | NA              | • 0.2U           | NA              | 0.2U            | NA                    | NΛ               | ŇA               | 2.8              | NA               | 6,9                      |
| MTBE                                | NA              | 1.1              | NA              | 0.2U            | NA                    | NA               | NA               | 8.4              | NA               | 1                        |
| n-Butyibenzene                      | NA              | 0.2U             | NA              | 0.2U            | NA                    | NA               | NA               | 4.8              | NA               | 5.2                      |
| n-Propylbenzene                     | NA              | 0.2U             | NA              | 0.2U            | NA                    | NA               | NA               | 6.5              | NA               | 1.7                      |
| Naphthalene                         | NA              | 0.2U             | NA              | 0.2U            | NA                    | NA               | NA               | 1.7              | NЛ               | 6.5                      |
| o-Xylene                            | NA              | 0.2U             | NA              | 0.20            | NA                    | NA               | NA               | A.6              | NA               | <b>3.</b> B              |
| p-Isopropyltohuene                  | NA              | 0.2U             | NA              | 0.2U            | NA                    | NA               | NA               | 0.4U             | NA               | 0.5                      |
| sec-Butylbeazene                    | NA              | <b>0.2</b> U     | NA              | 0.2U            | NA                    | NA               | NA               | 3.9              | NA               | 4.1                      |
| Total VOCS                          | 0               | 1.1              | 0               | 0               | 78                    | 7                | 24               | 51.1             | 664              | 60.1                     |

Notes:

µg/L - Micrograms per kilogram

U - The analyte was analyzed for, but not detected above the reported sample limit.

1- The analyte was positively identified: the associated numerical value is the approximate concentration of the analyte in the sample.

UJ - The analyte was not detected above the reported quantitation limit. However the reported quantitation limit may be biased.

NA - Not analyzed

Bold - Analyted detected

56, 50 J30

05:49PM ROUX ASSOCIATES

Цð

1

È

Table 6. Summary of Volatile Organic Compounds Detected in Groundwater Samples, Mobil Buffalo Terminal, Buffalo, New York.

| Aica.                    |         |            |
|--------------------------|---------|------------|
| Sample Designation.      | SB-28   | SB-28 DUP  |
| Sample Date:             | 9/29/99 | 9/29/99    |
| Parameter                |         |            |
| (Concentrations in µg/L) |         |            |
| Benzene                  | 2.4     | 2.4        |
| Totucne                  | 1.3     | 1.3        |
| Ethyllicozene            | - 10    | 11         |
| Xyleues (total)          | 15      | 16         |
| TOTAL BTEX               | 28.7    | 30.7       |
| 1,2,4-Trimethylbenzene   | 42 J    | - 43       |
| 1,3,5-Trimethylbenzene   | 21      | 21         |
| Cumene                   | 3.7     | • 11       |
| MTBE                     | 0.2U    | 0.2U       |
| n-Butylbenzene           | 16      | 16         |
| n-Propylbenzene          | 7.2     | 7 <b>A</b> |
| Naphthalene              | 7.1     | 7.2        |
| o-Xylene                 | 4.5     | 4.7        |
| p-isopropyltolucae       | 2.2     | 2.2        |
| sec-Butylbenzene         | 3       | 3.1        |
| Total VOCS               | 135.4   | 115.6      |

ROUX ASSOCIATES, INC.

ź

ŧ

٤.

3 of 3

|                           |               | 65           |              |               |              |               |                |              |               |
|---------------------------|---------------|--------------|--------------|---------------|--------------|---------------|----------------|--------------|---------------|
|                           |               | ý            |              |               |              |               | 1,             |              |               |
| Area:                     | Elk Street L  | .01          |              |               |              |               | <u>-</u>       |              |               |
| Sample Designation:       | ESL-1         | ESL-2        | ESL-3        | ESL-4         | ESL-5        | ESI-6         | ESL-7          | ESL-8/ESL-W1 | ESL-8/ESL-WI  |
| Sample Date:              | 6/17/98       | 9/2/99       | 6/17/98      | 6/17/98       | 6/17/98      | 6/17/98       | 6/17/98        | 6/17/98      | 6/22/98       |
| Sample Depth (ft bls):    | 0- <b>0.5</b> | 0-0.5        | 0-0.5        | 0-0.5         | 0-0.5        | 0-0.5         | 0- <b>0</b> .5 | 0-0.5        | 8-10          |
| Parameter                 |               |              |              |               |              |               |                |              |               |
| (Concentrations in µg/kg) |               |              |              |               |              |               |                |              |               |
| Acenaphthene              | 42J           | 36U          | 34U          | 64J           | .36J         | 37U           | 13 <b>0J</b>   | 380          | 42U           |
| Acenaphthylene            | 58J           | 51 J         | 68J          | 1 20J         | 190          | 1 <b>60</b> J | 254            | 3 <b>8</b> U | 42U           |
| Anthracene                | 1203          | 96J          | 1 <b>10J</b> | 320           | 230          | 180J          | 476            | 38U          | 42U           |
| Benzola Janthuacene       | 770           | 389          | 480          | 1300          | 780          | 410           | 1700           | 93J          | 42U           |
| Uenzo[a)pyrene            | 860           | 410          | 440          | 1204          | 800          | 400           | 1700           | 90J          | 420           |
| Benzo b]fluoranthene      | 12 <b>90</b>  | 530 ナ        | 640          | 1600          | 980          | 570           | 2100           | 140J         | 42U           |
| Benzo [g,h,i]peryleae     | 720           | 350          | 330          | 865           | 550          | 280           | 970            | 77 <b>J</b>  | 42U           |
| Benzo [k] fluoranthene    | 420           | 210 J        | 230          | 570           | 370          | 1 <b>80</b> J | 760            | 45J          | - 42U         |
| Chrysene                  | 850           | 430          | 450          | 1300          | 840          | 470           | 1890           | 110J         | 42U           |
| Dibenzoja, h]anthracene   | 170J          | 12 <b>0J</b> | 99J          | 280           | 1 <b>76j</b> | 82J           | 300            | 38U          | 42U           |
| Fluoranthene              | 1700          | 740          | 790          | 2500          | 1300         | 680           | 3500           | 120J         | 42U           |
| Fluorene                  | 38J           | 36U          | 34U          | 10 <b>0</b> J | 59J          | 45J           | 150J           | <b>38</b> U  | 42U           |
| Indeno[1,2,3-cd]pyrene    | 780           | 340          | 400          | 900           | 618          | 300           | 1100           | 77J          | 42U           |
| Naphthalene               | 38U           | 3 <b>6U</b>  | 34U          | 100J          | 35U          | 11 <b>0</b> J | 84J            | 160J         | 42 <b>1</b> I |
| Phenanthrene              | <b>976</b>    | 400          | 246          | 1400          | 530          | 430           | 2000           | <b>140</b> J | 42U           |
| Pyrene                    | 1400          | 610          | 650          | 1990          | 1290         | 610           | 2800           | <u>1305</u>  | 42U           |
| TOTAL SVOCS               | 10098         | 4667         | 4927         | 14454         | 8645         | 4907          | 19814          | 1182         | 0             |

µg/kg - Micrograms per kilogram

U - The analyte was analyzed for, but not detected above the reported sample limit.

J - The analyte was positively identified, the associated numerical value is the approximate concentration of the analyte in the sample.

UJ - The analyte was not detected above the reported quantitation limit. However the reported quantitation limit may be biased.

NA - Not analyzed

Bold - Analyte detected

DEC 03

. 99

25:41PM ROUX ASSOCIATES

INO

1

ŧ

|                           |               |              |               |               | 04             | -      |                |              |                | - >        |
|---------------------------|---------------|--------------|---------------|---------------|----------------|--------|----------------|--------------|----------------|------------|
| Area:                     | Elk Sueet I   | .ot          |               |               |                |        |                |              | -              |            |
| Sample Designation:       | ESL-9         | ESL-10       | ESL-11        | ESL-12        | ESL-13         | ESL-13 | ESI-13         | ESL-14       | ESL-14         | ESL-14     |
| Sample Date:              | 6/17/98       | 6/17/98      | 6/17/98       | 6/17/98       | <b>9/</b> 2/99 | 9/2/99 | 9/2 <b>/99</b> | 9/2/99       | 9/2/99         | 9/2/99     |
| Sample Depth (ft bls):    | 0-0.5         | 0-0.5        | 0-0.5         | 0-0.5         | 0-0.5          | 1-2    | 2-3            | 0-0.5        | 1-2            | 2-3        |
| Parameter                 |               |              |               |               |                |        |                |              |                |            |
| (Concentrations in µg/kg) |               |              |               |               |                |        |                |              |                |            |
| Acenaokthene              | <b>40</b> U   | 62 <b>J</b>  | 64J           | 5300          | 1700 5         | 2100   | 350            | 769 5        | 1600           | 61 J       |
| Acenanhthylene            | 745           | 78.1         | 1 <b>10</b> J | 2500          | 940 J          | 1100   | 220            | 400U         | 480 5          | 42U        |
| Anthracene                | 110J          | 270          | 220           | 21000         | 5500           | 5508   | 1180           | 2200.5       | 5100           | 146 3      |
| Benzofalanthracene        | 4303          | 930          | 760           | 69000         | 16000          | 16000  | 2500           | 6800         | 7700           | 510        |
| Benzofalovrene            | 450J          | 870          | 710           | 57000         | 13009          | 14000  | 2300           | 7000         | 6900           | 576        |
| Benzolbifuoranthene       | 590 J         | 1000         | 940           | 63000         | 15000          | 17900  | 2900           | 7600         | 8900           | 740        |
| Benzo[g,h,i]perviene      | 39 <b>8 J</b> | 550          | 520           | 30000         | 6588           | 5284   | 1000           | 4500         | 2400           | 448        |
| Benzo{k}fluoranthene      | 200J          | 410          | 310           | 26800         | 6389           | 5700   | 1200           | 3500         | 3800           | 260        |
| Chrysene                  | 550J          | 850          | 860           | 59000         | 16009          | 16600  | 2600           | 6980         | 7800           | 560        |
| Dibenzo[a,h]anthracene    | 12 <b>0</b> J | 170J         | 150J          | 9200J         | 2460           | 1700   | 340            | 1400         | 990 J          | 130 🕽      |
| Fluoranthene              | 76QJ          | 1700         | 1600          | 140009        | 29000          | 35660  | 4700           | 12000        | 1 <b>680</b> 0 | 940        |
| Fluorene                  | <b>40</b> U   | 70J          | 79 <b>J</b>   | 5600          | 2100           | 3100   | 540            | <b>830</b> J | 3300           | 120 J      |
| Indeno[1,2,3-cd]pyrene    | 360J          | 610          | 520           | 35000         | 8200           | 10000  | 1300           | 5190         | 3300           | 476        |
| Naphthálene               | <b>40U</b>    | 7 <b>4</b> J | 761           | 1200          | 72 <b>8</b> J  | 2300   | 330            | 400U         | 1200 5         | 47 5       |
| Phenanthrene              | 410]          | 890          | 1000          | 69 <b>000</b> | 18460          | 26989  | 3800           | 7300         | 18006          | 530        |
| Рутеле                    | 67 <b>0</b> J | 1466         | 1300          | 120000        | 28000          | 29006  | 4500           | 12000        | 13000          | <b>\$2</b> |
| TOTAL SVOCS               | 5114          | 9934         | <b>9159</b>   | 712800        | 169360         | 189700 | 29680          | 77890        | 100470         | 6338       |

µg/kg - Micrograms per kilogram

U - The analyte was analyzed for, but not detected above the reported sample limit.

J - The analyte was positively identified: the associated numerical value is the approximate concentration of the analyte in the sample.

UJ - The analyte was not detected above the reported quantitation limit. However the reported quantitation limit may be biased.

NA - Not analyzed

**Bold** - Analyte detected

٩,

Ρ. ω

|                           | 05         | υŴ     |               | Fages 1         | >                | 05 —   | 4 a.           |                |              | and the second sec | >           |
|---------------------------|------------|--------|---------------|-----------------|------------------|--------|----------------|----------------|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| Area                      | Elk Strect | Lot    |               |                 |                  |        |                |                |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |
| Sample Designation:       | ESL-15     | ESL-15 | ESL-15        | ESL-16          | ESL-16           | ESL-16 | ESL-17         | ESL-17         | ESL-17       | ESL-18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ESL-18      |
| Sample Date:              | 9/2/99     | 9/2/99 | 9/2/99        | 9/2/ <b>99</b>  | 9/2 <b>/99</b>   | 9/2/99 | 9/2 <b>/99</b> | 9/ <b>2/99</b> | 9/2/99       | 9/2/99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9/2/99      |
| Sample Depth (ft bls):    | 0-0.5      | 1-2    | 2-3           | 0-0.5           | l-2              | 2-3    | 0-0.5          | 1-2            | 2-3          | 0-0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1-2         |
| Parameter                 |            |        |               |                 |                  |        |                |                |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |
| (Concentrations in µg/kg) |            |        |               |                 |                  |        |                |                |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |
| Aceranbihene              | 3400       | 950    | 170 5         | 49 T            | 36U              | 37U    | 1105           | 150 J          | 37U          | <b>36</b> U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>38</b> U |
| Acenaphthylene            | 410        | 500 5  | 110 J         | 110 +           | 53 5             | 37U    | 160 5          | 300            | 37U          | 36U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>38</b> U |
| Anthraceae                | 7400       | 2600   | 580           | 190             | 110 T            | 37U    | 340            | 510            | 66 J         | 44.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 38U         |
| Benzolalantiwacene        | 18000      | 6700   | 2200          | 710             | 310              | 37U    | 1100           | 2000           | 150 J        | 180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 110 J       |
| Benzolaborene             | 13000      | 5500   | 1800          | 750             | 320              | 53 J   | 1100           | 1860           | 130 J        | 250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 130 J       |
| Benzo b fluoranthene      | 14000 J    | 7200   | 2200          | 1000            | 400              | 64 J   | 1400 J         | 2200 5         | 130 J        | 230 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 120 J       |
| Benzo[g,h,c]perylene      | 4200       | 3260   | 918           | 680             | 290              | 49 J   | 810            | 1100           | 73 5         | 250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>%</b> J  |
| Benzo(k)fluoranthene      | 13000 7    | 3760   | 940           | 330             | 148丁             | 3705   | 610 J          | 976 J          | 50 J         | 74 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 55 J        |
| Chrysene                  | 20000      | 7200   | 2300          | <del>9</del> 10 | 390              | 45 丁   | 1340           | 2200           | 199 5        | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 120 J       |
| Dibenzo[a, h]anthracene   | 2500       | 1000   | 330           | 120             | 96 丁             | 37U    | 250            | 380            | 370          | 74 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 38U         |
| Fluoranthene              | 30000      | 15000  | 3940          | 1400            | 678              | 65 J   | <b>2200</b> .  | 3200           | 260          | 280                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 150 J       |
| Fluorene                  | 3400       | 1400   | 1 <b>80</b> J | 74 J            | 52 J             | 37U    | 110 ブ          | 170 J          | 37U          | 36U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 38U         |
| Indeno[1,2,3-cd]pyrene    | 5200       | 3600   | 1100          | 630             | 290              | 43 J   | 940            | 1300           | 69 J         | 160丁                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 84 J        |
| Naphthalene               | 1708       | 600 J  | 99 J          | 100 J           | 58.J             | 37U    | 52 J           | 78 J           | 37U          | 360                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 38U         |
| Phenanthrene              | 25000      | 11000  | 1600          | 790             | 510              | 43 J   | 1460           | 1800           | 350          | 160 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 45 J        |
| Ругеле                    | 33090      | 13000  | 3500          | 1304            | 610              | 60 J   | 1900           | 2900           | 340          | 270                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 140 J       |
| TOTAL SVOCS               | 194216     | 83150  | 21910         | 9123            | 42 <del>99</del> | 422    | 13782          | 21058          | 1 <b>798</b> | 2172                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1850        |

µg/kg - Micrograms per kilogram

U - The analyte was analyzed for, but not detected above the reported sample limit.

J - The analyte was positively identified: the associated numerical value is the approximate concentration of the analyte in the sample.

- UJ The analyte was not detected above the reported quantitation limit. However the reported quantitation limit may be biased:
- NA Not analyzed
- Bold Analyte detected

ŧ

ż

66, 80 J30

05:42PM ROUX ASSOCIATES

|                           |               |              |               |               | 04             | -      |                |              |                | - >        |
|---------------------------|---------------|--------------|---------------|---------------|----------------|--------|----------------|--------------|----------------|------------|
| Area:                     | Elk Sueet I   | .ot          |               |               |                |        |                |              | -              |            |
| Sample Designation:       | ESL-9         | ESL-10       | ESL-11        | ESL-12        | ESL-13         | ESL-13 | ESI-13         | ESL-14       | ESL-14         | ESL-14     |
| Sample Date:              | 6/17/98       | 6/17/98      | 6/17/98       | 6/17/98       | <b>9/</b> 2/99 | 9/2/99 | 9/2 <b>/99</b> | 9/2/99       | 9/2/99         | 9/2/99     |
| Sample Depth (ft bls):    | 0-0.5         | 0-0.5        | 0-0.5         | 0-0.5         | 0-0.5          | 1-2    | 2-3            | 0-0.5        | 1-2            | 2-3        |
| Parameter                 |               |              |               |               |                |        |                |              |                |            |
| (Concentrations in µg/kg) |               |              |               |               |                |        |                |              |                |            |
| Acenaokthene              | <b>40</b> U   | 62 <b>J</b>  | 64J           | 5300          | 1700 5         | 2100   | 350            | 764 5        | 1600           | 61 J       |
| Acenanhthylene            | 745           | 78.1         | 1 <b>10</b> J | 2500          | 940 J          | 1100   | 220            | 400U         | 480 5          | 42U        |
| Anthracene                | 1 <b>10</b> ] | 270          | 220           | 21000         | 5500           | 5508   | 1180           | 2200.5       | 5100           | 146 3      |
| Benzofalanthracene        | 4303          | 930          | 760           | 69000         | 16000          | 16000  | 2500           | 6800         | 7700           | 510        |
| Benzofalovrene            | 450J          | 870          | 710           | 57000         | 13009          | 14000  | 2300           | 7000         | 6900           | 576        |
| Benzolbifuoranthene       | 590 J         | 1000         | 940           | 63000         | 15000          | 17900  | 2900           | 7600         | 8900           | 740        |
| Benzo[g,h,i]perviene      | 398J          | 550          | 520           | 30000         | 6588           | 5284   | 1000           | 4500         | 2400           | 448        |
| Benzo{k}fluoranthene      | 200J          | 410          | 310           | 26800         | 6389           | 5700   | 1200           | 3500         | 3800           | 260        |
| Chrysene                  | 550J          | 850          | 860           | 59000         | 16009          | 16600  | 2600           | 6980         | 7800           | 560        |
| Dibenzo[a,h]anthracene    | 12 <b>0</b> J | 170J         | 150J          | 9200J         | 2460           | 1700   | 340            | 1400         | 990 J          | 130 🕽      |
| Fluoranthene              | 76QJ          | 1700         | 1600          | 140009        | 29000          | 35660  | 4700           | 12000        | 1 <b>680</b> 0 | 940        |
| Fluorene                  | <b>40</b> U   | 70J          | 79 <b>J</b>   | 5600          | 2100           | 3100   | 540            | <b>830</b> J | 3300           | 120 J      |
| Indeno[1,2,3-cd]pyrene    | 360J          | 610          | 520           | 35000         | 8200           | 10000  | 1300           | 5190         | 3300           | 476        |
| Naphthálene               | <b>40U</b>    | 7 <b>4</b> J | 761           | 1200          | 72 <b>8</b> J  | 2300   | 330            | 400U         | 1200 5         | 47 5       |
| Phenanthrene              | 410]          | 890          | 1000          | 69 <b>000</b> | 18460          | 26989  | 3800           | 7300         | 18006          | 530        |
| Рутеле                    | 67 <b>0</b> J | 1466         | 1300          | 120000        | 28000          | 29006  | 4500           | 12000        | 13000          | <b>\$2</b> |
| TOTAL SVOCS               | 5114          | 9934         | <b>9159</b>   | 712800        | 169360         | 189700 | 29680          | 77890        | 100470         | 6338       |

µg/kg - Micrograms per kilogram

U - The analyte was analyzed for, but not detected above the reported sample limit.

J - The analyte was positively identified: the associated numerical value is the approximate concentration of the analyte in the sample.

UJ - The analyte was not detected above the reported quantitation limit. However the reported quantitation limit may be biased.

NA - Not analyzed

**Bold** - Analyte detected

٩,

Ρ. ω

|                           | 05         | υ¥     |               | Fages 1         | >                | 05 —   | 4 a.           |                |              | and the second sec | >           |
|---------------------------|------------|--------|---------------|-----------------|------------------|--------|----------------|----------------|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| Area                      | Elk Strect | Lot    |               |                 |                  |        |                |                |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |
| Sample Designation:       | ESL-15     | ESL-15 | ESL-15        | ESL-16          | ESL-16           | ESL-16 | ESL-17         | ESL-17         | ESL-17       | ESL-18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ESL-18      |
| Sample Date:              | 9/2/99     | 9/2/99 | 9/2/99        | 9/2/ <b>99</b>  | 9/2 <b>/99</b>   | 9/2/99 | 9/2 <b>/99</b> | 9/ <b>2/99</b> | 9/2/99       | 9/2/99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9/2/99      |
| Sample Depth (ft bls):    | 0-0.5      | 1-2    | 2-3           | 0-0.5           | l-2              | 2-3    | 0-0.5          | 1-2            | 2-3          | 0-0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1-2         |
| Parameter                 |            |        |               |                 |                  |        |                |                |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |
| (Concentrations in µg/kg) |            |        |               |                 |                  |        |                |                |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |
| Aceranbihene              | 3400       | 950    | 170 5         | 49 T            | 36U              | 37U    | 1105           | 150 J          | 37U          | <b>36</b> U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>38</b> U |
| Acenaphthylene            | 410        | 500 5  | 110 J         | 110 +           | 53 5             | 37U    | 160 5          | 300            | 37U          | 36U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>38</b> U |
| Anthraceae                | 7400       | 2600   | 580           | 190             | 110 T            | 37U    | 340            | 510            | 66 J         | 44.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 38U         |
| Benzolalantiwacene        | 18000      | 6700   | 2200          | 710             | 310              | 37U    | 1100           | 2000           | 150 J        | 180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 110 J       |
| Benzolaborene             | 13000      | 5500   | 1800          | 750             | 320              | 53 J   | 1100           | 1860           | 130 J        | 250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 130 J       |
| Benzo[b]fluoranthene      | 14000 J    | 7200   | 2200          | 1000            | 400              | 64 J   | 1400 J         | 2200 5         | 130 J        | 230 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 120 J       |
| Benzo[g,h,c]perylene      | 4209       | 3260   | 918           | 680             | 290              | 49 J   | 810            | 1100           | 73 5         | 250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>%</b> J  |
| Benzo(k)fluoranthene      | 13000 7    | 3760   | 940           | 330             | 148丁             | 3705   | 610 J          | 976 J          | 50 J         | 74 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 55 J        |
| Chrysene                  | 20000      | 7200   | 2300          | <del>9</del> 10 | 390              | 45 丁   | 1340           | 2200           | 199 5        | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 120 J       |
| Dibenzo[a, h]anthracene   | 2500       | 1000   | 330           | 120             | 96 丁             | 37U    | 250            | 380            | 370          | 74 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 38U         |
| Fluoranthene              | 30000      | 15000  | 3940          | 1400            | 678              | 65 J   | <b>2200</b> .  | 3200           | 260          | 280                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 150 J       |
| Fluorene                  | 3400       | 1400   | 1 <b>80</b> J | 74 J            | 52 J             | 37U    | 110 ブ          | 170 J          | 37U          | 36U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 38U         |
| Indeno[1,2,3-cd]pyrene    | 5200       | 3600   | 1100          | 630             | 290              | 43 J   | 940            | 1300           | 69 J         | 160丁                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 84 J        |
| Naphthalene               | 1708       | 600 J  | 99 J          | 100 J           | 58.J             | 37U    | 52 J           | 78 J           | 37U          | 360                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 38U         |
| Phenanthrene              | 25000      | 11000  | 1600          | 790             | 510              | 43 J   | 1460           | 1800           | 350          | 160 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 45 J        |
| Ругеле                    | 33090      | 13000  | 3500          | 1304            | 610              | 60 J   | 1900           | 2900           | 340          | 270                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 140 5       |
| TOTAL SVOCS               | 194216     | 83150  | 21910         | 9123            | 42 <del>99</del> | 422    | 13782          | 21058          | 1 <b>798</b> | 2172                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1850        |

µg/kg - Micrograms per kilogram

U - The analyte was analyzed for, but not detected above the reported sample limit.

J - The analyte was positively identified: the associated numerical value is the approximate concentration of the analyte in the sample.

- UJ The analyte was not detected above the reported quantitation limit. However the reported quantitation limit may be biased:
- NA Not analyzed
- Bold Analyte detected

ŧ

ż

66, 80 J30

05:42PM ROUX ASSOCIATES

|                           | 05         | υ¥     |               | Fages 1         | >                | 05 —   | 4 a.           |                |              | and the second sec | >           |
|---------------------------|------------|--------|---------------|-----------------|------------------|--------|----------------|----------------|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| Area                      | Elk Strect | Lot    |               |                 |                  |        |                |                |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |
| Sample Designation:       | ESL-15     | ESL-15 | ESL-15        | ESL-16          | ESL-16           | ESL-16 | ESL-17         | ESL-17         | ESL-17       | ESL-18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ESL-18      |
| Sample Date:              | 9/2/99     | 9/2/99 | 9/2/99        | 9/2/ <b>99</b>  | 9/2 <b>/99</b>   | 9/2/99 | 9/2 <b>/99</b> | 9/ <b>2/99</b> | 9/2/99       | 9/2/99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9/2/99      |
| Sample Depth (ft bls):    | 0-0.5      | 1-2    | 2-3           | 0-0.5           | l-2              | 2-3    | 0-0.5          | 1-2            | 2-3          | 0-0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1-2         |
| Parameter                 |            |        |               |                 |                  |        |                |                |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |
| (Concentrations in µg/kg) |            |        |               |                 |                  |        |                |                |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |
| Aceranbihene              | 3400       | 950    | 170 5         | 49 T            | 36U              | 37U    | 1105           | 150 J          | 37U          | <b>36</b> U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>38</b> U |
| Acenaphthylene            | 410        | 500 5  | 110 J         | 110 +           | 53 5             | 37U    | 160 5          | 300            | 37U          | 36U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>38</b> U |
| Anthraceae                | 7400       | 2600   | 580           | 190             | 110 T            | 37U    | 340            | 510            | 66 J         | 44.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 38U         |
| Benzolalantiwacene        | 18000      | 6700   | 2200          | 710             | 310              | 37U    | 1100           | 2000           | 150 J        | 180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 110 J       |
| Benzolaborene             | 13000      | 5500   | 1800          | 750             | 320              | 53 J   | 1100           | 1860           | 130 J        | 250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 130 J       |
| Benzo b fluoranthene      | 14000 J    | 7200   | 2200          | 1000            | 400              | 64 J   | 1400 J         | 2200 5         | 130 J        | 230 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 120 J       |
| Benzo[g,h,c]perylene      | 4209       | 3260   | 918           | 680             | 290              | 49 J   | 810            | 1100           | 73 5         | 250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>%</b> J  |
| Benzo(k)fluoranthene      | 13000 7    | 3760   | 940           | 330             | 148丁             | 3705   | 610 J          | 976 J          | 50 J         | 74 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 55 J        |
| Chrysene                  | 20000      | 7200   | 2300          | <del>9</del> 10 | 390              | 45 丁   | 1340           | 2200           | 199 5        | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 120 J       |
| Dibenzo[a, h]anthracene   | 2500       | 1000   | 330           | 120             | 96 丁             | 37U    | 250            | 380            | 370          | 74 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 38U         |
| Fluoranthene              | 30000      | 15000  | 3940          | 1400            | 678              | 65 J   | <b>2200</b> .  | 3200           | 260          | 280                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 150 J       |
| Fluorene                  | 3400       | 1400   | 1 <b>80</b> J | 74 J            | 52 J             | 37U    | 110 ブ          | 170 J          | 37U          | 36U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 38U         |
| Indeno[1,2,3-cd]pyrene    | 5200       | 3600   | 1100          | 630             | 290              | 43 J   | 940            | 1300           | 69 J         | 160丁                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 84 J        |
| Naphthalene               | 1708       | 600 J  | 99 J          | 100 J           | 58.J             | 37U    | 52 J           | 78 J           | 37U          | 360                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 38U         |
| Phenanthrene              | 25000      | 11000  | 1600          | 790             | 510              | 43 J   | 1460           | 1800           | 350          | 160 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 45 J        |
| Ругеле                    | 33090      | 13000  | 3500          | 1304            | 610              | 60 J   | 1900           | 2900           | 340          | 270                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 140 5       |
| TOTAL SVOCS               | 194216     | 83150  | 21910         | 9123            | 42 <del>99</del> | 422    | 13782          | 21058          | 1 <b>798</b> | 2172                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1850        |

µg/kg - Micrograms per kilogram

U - The analyte was analyzed for, but not detected above the reported sample limit.

J - The analyte was positively identified: the associated numerical value is the approximate concentration of the analyte in the sample.

- UJ The analyte was not detected above the reported quantitation limit. However the reported quantitation limit may be biased:
- NA Not analyzed
- Bold Analyte detected

ŧ

ż

66, 80 J30

05:42PM ROUX ASSOCIATES

|                           | 05         | υ¥     |               | Fages 1         | >                | 05 —   | 4 a.           |                |              | and the second sec | >           |
|---------------------------|------------|--------|---------------|-----------------|------------------|--------|----------------|----------------|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| Area                      | Elk Strect | Lot    |               |                 |                  |        |                |                |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |
| Sample Designation:       | ESL-15     | ESL-15 | ESL-15        | ESL-16          | ESL-16           | ESL-16 | ESL-17         | ESL-17         | ESL-17       | ESL-18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ESL-18      |
| Sample Date:              | 9/2/99     | 9/2/99 | 9/2/99        | 9/2/ <b>99</b>  | 9/2 <b>/99</b>   | 9/2/99 | 9/2 <b>/99</b> | 9/ <b>2/99</b> | 9/2/99       | 9/2/99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9/2/99      |
| Sample Depth (ft bls):    | 0-0.5      | 1-2    | 2-3           | 0-0.5           | l-2              | 2-3    | 0-0.5          | 1-2            | 2-3          | 0-0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1-2         |
| Parameter                 |            |        |               |                 |                  |        |                |                |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |
| (Concentrations in µg/kg) |            |        |               |                 |                  |        |                |                |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |
| Aceranbihene              | 3400       | 950    | 170 5         | 49 T            | 36U              | 37U    | 1105           | 150 J          | 37U          | <b>36</b> U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>38</b> U |
| Acenaphthylene            | 410        | 500 5  | 110 J         | 110 +           | 53 5             | 37U    | 160 5          | 300            | 37U          | 36U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>38</b> U |
| Anthraceae                | 7400       | 2600   | 580           | 190             | 110 T            | 37U    | 340            | 510            | 66 J         | 44.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 38U         |
| Benzolalantiwacene        | 18000      | 6700   | 2200          | 710             | 310              | 37U    | 1100           | 2000           | 150 J        | 180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 110 J       |
| Benzolaborene             | 13000      | 5500   | 1800          | 750             | 320              | 53 J   | 1100           | 1860           | 130 J        | 250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 130 J       |
| Benzo[b]fluoranthene      | 14000 J    | 7200   | 2200          | 1000            | 400              | 64 J   | 1400 J         | 2200 5         | 130 J        | 230 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 120 J       |
| Benzo[g,h,c]perylene      | 4209       | 3260   | 918           | 680             | 290              | 49 J   | 810            | 1100           | 73 5         | 250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>%</b> J  |
| Benzo(k)fluoranthene      | 13000 7    | 3760   | 940           | 330             | 148丁             | 3705   | 610 J          | 976 J          | 50 J         | 74 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 55 J        |
| Chrysene                  | 20000      | 7200   | 2300          | <del>9</del> 10 | 390              | 45 丁   | 1340           | 2200           | 199 5        | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 120 J       |
| Dibenzo[a, h]anthracene   | 2500       | 1000   | 330           | 120             | 96 丁             | 37U    | 250            | 380            | 370          | 74 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 38U         |
| Fluoranthene              | 30000      | 15000  | 3940          | 1400            | 678              | 65 J   | <b>2200</b> .  | 3200           | 260          | 280                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 150 J       |
| Fluorene                  | 3400       | 1400   | 1 <b>80</b> J | 74 J            | 52 J             | 37U    | 110 ブ          | 170 J          | 37U          | 36U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 38U         |
| Indeno[1,2,3-cd]pyrene    | 5200       | 3600   | 1100          | 630             | 290              | 43 J   | 940            | 1300           | 69 J         | 160丁                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 84 J        |
| Naphthalene               | 1708       | 600 J  | 99 J          | 100 J           | 58.J             | 37U    | 52 J           | 78 J           | 37U          | 360                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 38U         |
| Phenanthrene              | 25000      | 11000  | 1600          | 790             | 510              | 43 J   | 1460           | 1800           | 350          | 160 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 45 J        |
| Ругеле                    | 33090      | 13000  | 3500          | 1304            | 610              | 60 J   | 1900           | 2900           | 340          | 270                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 140 J       |
| TOTAL SVOCS               | 194216     | 83150  | 21910         | 9123            | 42 <del>99</del> | 422    | 13782          | 21058          | 1 <b>798</b> | 2172                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1850        |

µg/kg - Micrograms per kilogram

U - The analyte was analyzed for, but not detected above the reported sample limit.

J - The analyte was positively identified: the associated numerical value is the approximate concentration of the analyte in the sample.

- UJ The analyte was not detected above the reported quantitation limit. However the reported quantitation limit may be biased:
- NA Not analyzed
- Bold Analyte detected

ŧ

ż

66, 80 J30

05:42PM ROUX ASSOCIATES

|                           | 05         | υŴ     |               | Fages 1         | >                | 05 —   | 4 a.           |                |              | and the second sec | >           |
|---------------------------|------------|--------|---------------|-----------------|------------------|--------|----------------|----------------|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| Area                      | Elk Strect | Lot    |               |                 |                  |        |                |                |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |
| Sample Designation:       | ESL-15     | ESL-15 | ESL-15        | ESL-16          | ESL-16           | ESL-16 | ESL-17         | ESL-17         | ESL-17       | ESL-18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ESL-18      |
| Sample Date:              | 9/2/99     | 9/2/99 | 9/2/99        | 9/2/ <b>99</b>  | 9/2 <b>/99</b>   | 9/2/99 | 9/2 <b>/99</b> | 9/ <b>2/99</b> | 9/2/99       | 9/2/99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9/2/99      |
| Sample Depth (ft bls):    | 0-0.5      | 1-2    | 2-3           | 0-0.5           | l-2              | 2-3    | 0-0.5          | 1-2            | 2-3          | 0-0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1-2         |
| Parameter                 |            |        |               |                 |                  |        |                |                |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |
| (Concentrations in µg/kg) |            |        |               |                 |                  |        |                |                |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |
| Aceranbihene              | 3400       | 950    | 170 5         | 49 T            | 36U              | 37U    | 1105           | 150 J          | 37U          | <b>36</b> U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>38</b> U |
| Acenaphthylene            | 410        | 500 5  | 110 J         | 110 +           | 53 5             | 37U    | 160 5          | 300            | 37U          | 36U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>38</b> U |
| Anthraceae                | 7400       | 2600   | 580           | 190             | 110 T            | 37U    | 340            | 510            | 66 J         | 44.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 38U         |
| Benzolalantiwacene        | 18000      | 6700   | 2200          | 710             | 310              | 37U    | 1100           | 2000           | 150 J        | 180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 110 J       |
| Benzolaborene             | 13000      | 5500   | 1800          | 750             | 320              | 53 J   | 1100           | 1860           | 130 J        | 250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 130 J       |
| Benzo b fluoranthene      | 14000 J    | 7200   | 2200          | 1000            | 400              | 64 J   | 1400 J         | 2200 5         | 130 J        | 230 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 120 J       |
| Benzo[g,h,c]perylene      | 4200       | 3260   | 918           | 680             | 290              | 49 J   | 810            | 1100           | 73 5         | 250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>%</b> J  |
| Benzo(k)fluoranthene      | 13000 7    | 3760   | 940           | 330             | 148 丁            | 3705   | 610 J          | 976 J          | 50 J         | 74 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 55 J        |
| Chrysene                  | 20000      | 7200   | 2300          | <del>9</del> 10 | 390              | 45 丁   | 1340           | 2200           | 199 5        | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 120 J       |
| Dibenzo[a, h]anthracene   | 2500       | 1000   | 330           | 120             | 96 丁             | 37U    | 250            | 380            | 370          | 74 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 38U         |
| Fluoranthene              | 30000      | 15000  | 3940          | 1400            | 678              | 65 J   | <b>2200</b> .  | 3200           | 260          | 280                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 150 J       |
| Fluorene                  | 3400       | 1400   | 1 <b>80</b> J | 74 J            | 52 J             | 37U    | 110 ブ          | 170 J          | 37U          | 36U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 38U         |
| Indeno[1,2,3-cd]pyrene    | 5200       | 3600   | 1100          | 630             | 290              | 43 J   | 940            | 1300           | 69 J         | 160丁                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 84 J        |
| Naphthalene               | 1708       | 600 J  | 99 J          | 100 J           | 58.J             | 37U    | 52 J           | 78 J           | 37U          | 360                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 38U         |
| Phenanthrene              | 25000      | 11000  | 1600          | 790             | 510              | 43 J   | 1460           | 1800           | 350          | 160 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 45 J        |
| Ругеле                    | 33090      | 13000  | 3500          | 1304            | 610              | 60 J   | 1900           | 2900           | 340          | 270                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 140 J       |
| TOTAL SVOCS               | 194216     | 83150  | 21910         | 9123            | 42 <del>99</del> | 422    | 13782          | 21058          | 1 <b>798</b> | 2172                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1850        |

µg/kg - Micrograms per kilogram

U - The analyte was analyzed for, but not detected above the reported sample limit.

J - The analyte was positively identified: the associated numerical value is the approximate concentration of the analyte in the sample.

- UJ The analyte was not detected above the reported quantitation limit. However the reported quantitation limit may be biased:
- NA Not analyzed
- Bold Analyte detected

ŧ

ż

66, 80 J30

05:42PM ROUX ASSOCIATES

|                           | 05          | • • • • • • • • • • • • • • • • • • • | •••          | ····        |        |             |        | 03             |          |
|---------------------------|-------------|---------------------------------------|--------------|-------------|--------|-------------|--------|----------------|----------|
| Area:                     | Elk Street  | Lut                                   |              |             |        |             |        | crminal Dispos | sal Site |
| Sample Designation:       | ESL-18      | ESI-19                                | ESL-19       | ESL-19      | ESL-20 | ESL-20      | ESL-20 | LF-5           | LF-7     |
| Sample Date:              | 9/2/99      | 9/2/99                                | 9/2/99       | 9/2/99      | 9/2/99 | 9/2/99      | 9/2/99 | 8/6/99         | 8/16/99  |
| Sample Depth (ft bis):    | 2-3         | 0-0.5                                 | 1-2          | 2-3         | 0-0.5  | 1-2         | 2-3    | 21-23          | 21-23    |
| Parameter                 |             |                                       |              |             |        |             |        |                |          |
| (Concentrations in µg/kg) |             |                                       |              |             |        |             |        |                |          |
| Accaphtheae               | 38U         | 55 J                                  | <b>39</b> U  | 39U         | 4IU    | 42U         | 40U    | <b>42</b> U    | 43U      |
| Acenaphthylene            | 38U         | 130 丁                                 | 39U          | 39U         | 53 J   | 42U         | 40U    | NA             | NA 43 LC |
| Anthracene                | 381)        | 300                                   | 39U          | 39U         | 110 J  | <b>4</b> 2U | 40U    | 42U            | 43U      |
| Benzo [a] anthracene      | 38U         | 1400                                  | 39U          | 39U         | 490    | 120 J       | 40U    | 42U プ          | 44 J     |
| Benzoja pyrene            | 38U         | 1300                                  | 39U "        | 39U m       | 420    | 170 J       | 40U    | <b>42</b> U    | 43U      |
| Benzo[b]fluoranthene      | 38U         | 1500 J                                | 39U <b>F</b> | 39U 🖉       | 560 J  | 130 J       | 50 J   | 42U            | 53 J     |
| Benzo(g,h,i)perylene      | 38U         | 1000                                  | 390          | 39U         | 406    | 150 J       | 40U    | <b>42</b> U    | 43U      |
| Benzo[k]tluoranthene      | 38U         | 1200 5                                | 39U          | 39U         | 410 J  | 100 5       | 40U J  | <b>42</b> U    | 43U      |
| Chrysenc                  | 38U         | 1800                                  | 39U          | 390         | 630    | 170 J       | 40U    | 42U J          | 46 0     |
| Dibenzo[a,b]anthracene    | <b>38</b> U | 530                                   | <b>39</b> U  | 39U         | 190 丁  | 42 丁        | 400    | 42U            | 43U      |
| Fluoranthene              | 38U         | 2100                                  | 40 J         | 39U         | 650    | 110 🕁       | 40U    | <b>42</b> U    | 91 J     |
| Fluorenc                  | 38U         | 100 J                                 | 39U          | 39U         | 41U    | 42U         | 40U    | <b>42</b> U    | 43U      |
| Jadeno[1,2,3-cd]pyrene    | 38U         | 910                                   | 39U          | <b>39</b> U | 350    | 93 J        | 40U    | 42U            | 43U      |
| Naphthalene               | 38U         | 42 J                                  | 39U          | 39U         | 41U    | <b>42</b> U | 40U    | <b>42</b> U    | 43U      |
| Phenantheene              | 38U         | 1400                                  | 3 <b>9U</b>  | 39U         | 450    | 79 J        | 40U    | 420            | 66 J     |
| Ругенс                    | <u>38U</u>  | 2508                                  | 42 J         | 39U         | 1008   | 200 5       | 45 J   | 42U J          | 74 J     |
| TOTAL SVOCS               | 0           | 16267                                 | 82           | 0           | 5713   | 1364        | 95     | •              | 374      |

µg/kg - Micrograms per kilogram

U - The analyte was analyzed for, but not detected above the reported sample limit.

J - The analyte was positively identified: the associated numerical value is the approximate concentration of the analyte in the sample.

UI - The analyte was not detected above the reported quantitation limit. However the reported quantitation limit may be biased.

NA - Not analyzed

Bold - Analyte detected

1

4

ŧ

Ì.

-

1

1

р.5

|                           |               |                |               |              |              |             |                            |             |    | • •      |          |
|---------------------------|---------------|----------------|---------------|--------------|--------------|-------------|----------------------------|-------------|----|----------|----------|
| Arca: F                   | Former Lube   | Building       |               |              |              |             |                            |             |    |          |          |
| Sample Designation:       | SB-7          | SB-7           | SB-8          | SB-8         | SB-9         | SB-9        | SB-10                      | SB-10       | SB | -11/LB-1 |          |
| Sample Date:              | 6/26/98       | 6/26/98        | 6/26/98       | 6/26/98      | 6/26/98      | 6/26/98     | 6/26/98                    | 6/26/98     |    | 7/1/99   |          |
| Sample Depth (ft bis):    | 0-2           | 8-10           | 0-2           | 10-12        | 0-2          | 10-12       | 0-2                        | 8-10        |    | 18-20    |          |
| Parameter                 |               |                |               |              |              |             |                            |             |    |          |          |
| (Concentrations in µg/kg) |               |                |               |              |              |             |                            |             |    |          |          |
| Acenaphthene              | 5300          | 24960          | 35U           | 90J          | 190J         | <b>44</b> U | 210 <b>0</b> U             | 2000        |    | 130 5    | ſ        |
| Acenaphthylenc            | 71 <b>0</b> U | 4300           | 35U           | 45U          | 39U          | 44U         | 2100U                      | 580         | 38 | NTW      | 1        |
| Authracene                | 10000         | 46000          | 47J           | 230          | 300          | 44U         | 3 <b>20</b> 0.J            | 750         |    | 100      |          |
| Benzo[a]anthracene        | 12000         | 45000          | 1 <b>86</b> J | <b>160</b> J | 890          | <b>44U</b>  | 13000                      | 920         |    | 100      |          |
| Benzo[a]pyrene            | 19600         | 41000          | 220           | 66J          | 1306         | 44U         | 20000                      | 1100        |    | 38U      | 1        |
| Benzo[b]fluoranthene      | 12600         | 42000          | 31 <b>0</b> J | 45U          | 1204         | 44U         | 13000                      | 560         |    | 38U      | 1        |
| Benzo (g, h, i) perylene  | 4400          | 1 <b>800</b> 0 | 93J           | 45U          | 1780         | 44U         | 2100U                      | 680         |    | 38U      | 1        |
| Benzo[k]fluoranthene      | 4000          | 17000          | 93J           | 45U          | 360          | 44U         | 366GJ                      | 95J         |    | 38U      |          |
| Chrysene                  | 11000         | 41000          | 300           | 270          | 1164         | 44U         | 17006                      | 1400        |    | 120      | l I      |
| Dibenzo[a,h]anthracene    | 1500J         | 5000           | 35UJ          | 45U          | 550          | 44U         | 2100U                      | 240         |    | 38U      |          |
| Fluoranthene              | 25008         | 130000         | 350           | 1 <b>00J</b> | 1800         | 44U         | 14000                      | <b>\$10</b> |    | 180      |          |
| Fluorene                  | 7400          | 39000          | 35U           | 14 <b>0J</b> | 1 <b>30J</b> | 44U         | 29 <b>06</b> J             | 2500        |    | 370      |          |
| Indeno[1,2,3-cd]pyrcne    | 5100          | 21000          | 60.1          | <b>45U</b>   | 1000         | 44U         | <del>66</del> 0 <b>9</b> J | 320         |    | 38U      |          |
| Naphthalene               | 3100J         | 37000          | 35U           | 45U          | 1 <b>70J</b> | 44U         | 2100U                      | 778         |    | 38U      |          |
| Phenanthrene              | 27909         | 180000         | 289           | 130J         | 1700         | 44U         | 13000                      | 7500        |    | 190      |          |
| Pyrene                    | 22000         | 110000         | 410           | 600          | 1800         | 44U         | 36000                      | 2890        |    | 310      | <u>/</u> |
| TOTAL SVOCS               | 159800        | 800340         | 2343          | 1786         | 14190        | Q           | 142388                     | 23025       |    | 1586     | 5        |

µg/kg - Micrograms per kilogram

U- The analyte was analyzed for, but not detected above the reported sample limit.

I - The analyte was positively identified: the associated numerical value is the approximate concentration of the analyte in the sample.

UI - The analyte was not detected above the reported quantitation limit. However the reported quantitation limit may be biased.

NA - Not analyzed

Bold - Analyte detected

ŧ

ъ. 6

03

|                          | 02            |          |               |             |                   |                    |         | 944<br>11    | $\sim $ $> \cdot' -$ | >                                     |
|--------------------------|---------------|----------|---------------|-------------|-------------------|--------------------|---------|--------------|----------------------|---------------------------------------|
| Ares-1                   | Former Lube   | Building |               |             |                   |                    |         |              |                      |                                       |
| Samule Designation:      | SB-13         | SB-14    | SB-15         | SB-16       | SB-17             | SB-17              | SB-18   | SB-18        | SB-19                | SB-20                                 |
| Sample Date:             | 7/27/99       | 7/26/99  | 7/27/99       | 7/28/99     | 7/28/99           | 7/28/99            | 7/29/99 | 7/29/99      | 7/29/99              | 7/29/49                               |
| Sample Depth (ft bls):   | 11-13         | 13-15    | 11-13         | 11-13       | 0-0.5             | 11-13              | 0-0.5   | 11-13        | 7-9                  | 3-4                                   |
| arameter                 |               |          |               |             |                   |                    |         |              |                      |                                       |
| Concentrations in µg/kg) |               |          |               |             |                   |                    |         |              |                      |                                       |
|                          |               |          | 15            | W J         | i                 | 20                 | 1800 5  | 240 5        | 2400 7               |                                       |
| Acenaphthene             | 3000          | 290      | 1680          | ( 1780      | 61J <sup>12</sup> | ·1400              | 5200    | <b>350</b> ) | 8100                 | 450                                   |
| Acenaphthylene           | 210U          | NA 510   | HAJ           | MAC         | NA H              | CU Mil OI          | NAT     | JAK          | Dial                 | NK 100                                |
| Anthracene               | 16000         | 250      | 1200          | 1500        | 180 14            | 00 1500            | 2200    | 640          | 6200                 | 94 J                                  |
| Benzofalanthracene       | 1290          | 170 K    | 500           | 880         | 510 5             | 40 <b>M</b>        | 1209    | 268 UL       | 4400                 | 140 (L                                |
| Benzo(a)pyrene           | 470 U         | 140 U    | 220 U         | 370 U       | 510 2             | 10,260             | 1700    | 140 ()       | 3866                 | 160 4                                 |
| Benzo b fluor anthene    | 310 UL        | 170 U    | 190 U         | 270 Ú       | 4904 1            | 70 <b>.168 I</b> U | L 1780  | 89 U         | 3460                 | 189 以                                 |
| Jenzo[g,h,i]perylene     | 298 U.        | 130 U    | 146 U         | <b>260U</b> | 440 )             | 70 <b>350 T</b> V  | 4300    | 40U          | 430U                 | 350                                   |
| Benzo[k]fluoranthene     | 210U          | 68 U     | 120U          | 260U        | 190 U             | 43 IU              | L 530   | <b>40</b> U  | 1000                 | 52 UL                                 |
| Chrysene                 | 1700 5        | 220 ():  | 720 J         | 1200 J      | 490K 9            | 100 M J            | 2400    | 440          | 6500                 | 170 U                                 |
| Dibenzofa,b]anthraceae   | 21 <b>0U</b>  | 48 J     | 120U          | 260U        | 150 4             | 13 75 1            | t 430U  | 40U          | 916                  | 350                                   |
| luoranthene              | 21 <b>0U</b>  | 360 U    | 748 U         | 780 UL      | 7004 6            | 80 705 UL          | .3900   | 290 (L       | <b>5500</b>          | 280 LL                                |
| Ivorene                  | 5300          | 480 U    | 2700          | 2800        | 210 23            | 0°-2400-           | 6800    | 1244         | 17060                | 650 U                                 |
| ndeno[1,2,3-cd]pyrene    | 21 <b>0</b> U | 140 U.   | 1 <b>20</b> U | 260U        | 340U              | 10 98 54           | 1106    | <b>40U</b>   | 2100                 | \$7 U                                 |
| Naphthalene              | 3500          | 72 J     | 1700          | 990         | 310               | 1560               | 4700    | 340          | 1200                 | 146 5                                 |
| Phenanthrene             | 210U          | 998 (L   | 9000          | 10000       | 580 V             | 8000               | 16000   | 4560         | 27000                | 1600                                  |
| Pyrene                   | 3100 J        | 380 U    | 1500 丁        | 2600 J      | 9404/9            | 60 1700 J          | 5600    | 1100 XM      | 16000                | 700 U                                 |
|                          |               |          |               |             |                   | 1000               |         |              |                      | · · · · · · · · · · · · · · · · · · · |
| ICTAL SVOCS              | 34870         | 3998     | 20240         | 23890       | 0101              | 19818              | 23430   | 9849         | 107010               | 4703                                  |

µg/kg - Micrograms per kilogram

- U The analyte was analyzed for, but not detected above the reported sample limit.
- J The analyte was positively identified: the associated numerical value is the approximate concentration of the analyte in the sample.
- UJ The analyte was not detected above the reported quantitation limit. However the reported quantilation limit may be biased.
- NA Not analyzed
- Bold Analyte detected

ŧ

۶,

Т ,

|                           | 02         |               |             |        |                |        |             |             | نشر           |
|---------------------------|------------|---------------|-------------|--------|----------------|--------|-------------|-------------|---------------|
| Area                      | Former Lub | e Building    |             |        |                |        |             |             |               |
| Sample Designation:       | SB-20      | SB-24         | SB-24       | SB-27  | SB-27          | SB-28  | SB-28       | SH-30       | SB-30         |
| Sample Date:              | 7/29/99    | 8/4/99        | 8/2/99      | 8/4/99 | 8/3/99         | 8/4/99 | 8/3/99      | 8/6/99      | <b>8/5/99</b> |
| Sample Depth (ft bls):    | 9-11       | 0-0.5         | 13-15       | 0-0.5  | 11-13          | 0-0.5  | 11-13       | 0-0.5       | 9-11          |
| Parameter                 |            |               |             |        |                |        |             |             |               |
| (Concentrations in µg/kg) |            |               |             |        |                |        |             |             |               |
| Acensaltificate           | 16608      | 98 J          | 44U         | 99 5   | 280            | 3000   | 42U         | 43U         | 42U           |
| Acenaphilikene 2400 J     | Na         | NA            | NA          | NA     | NA             | NA     | NA          | NA          | NA            |
| Authracent                | 4000       | 230           | 44U         | 350    | 570            | 5000   | 62 J        | 43U         | 42U           |
| Renandalanthracene        | 2780       | 670           | 44U         | 1100   | 560 U.         | 9900   | 42U         | -43U        | 42U           |
| Benzola invene            | 1789       | 860           | 44U         | 1100   | 280 U          | 10060  | 42U         | 43U         | 42U           |
| Benzofblfturrantheae      | 920        | 1300          | 44U         | 1690   | 190 U          | 13000  | <b>42</b> U | <b>4</b> 3U | 42U           |
| Benzole h. iperviene      | 1000       | 670           | <b>44</b> U | 849    | 180 U          | 5600   | <b>42</b> U | 43U         | 42U           |
| Benzofklfhioranthene      | 540U       | 420           | 44U         | 660    | 41U            | 5200   | 42U         | 43U         | 42U           |
| Chrysene                  | 5300       | 810           | 47 VL       | 1400   | 550 U          | 12000  | 55 U.       | 43U         | 42U           |
| Dihenzola blaothracene    | 540U       | 298           | 44U         | 260    | 99 T           | 1784   | <b>42</b> U | 43U         | 42U           |
| Fluoranthene              | 2400       | 77 <b>6</b> J | 44U         | 2400   | 4 <b>90</b> V. | 19000  | 57 (L       | 43U         | 42U           |
| Fluorene                  | 13000      | 140 J         | 44U         | 138 U. | 470 U          | 4400   | 50 U.       | 43U         | 42U           |
| Indeno[1.2.3-cd]nyrenc    | 540U       | 530           | 44U         | 910    | 82 U           | 6500   | 42U         | 43U         | 42U           |
| Nanbihalene               | 22000      | 300           | 44U         | 180    | 41U            | 3800   | 42U         | 43U         | <b>42</b> U   |
| Phenanthrene              | 41000      | <b>130 J</b>  | 61 U        | 1604   | 669 Vy         | 20000  | 200 U       | > 55 U      | <b>42</b> U   |
| Ругере                    | 9360       | 1700          | 190 U       | 2409   | 1700           | 26600  | 140 U       | 50 U        | <u>, 42U</u>  |
| TOTAL SVOCS               | 113320     | 9611          | 391         | 15029  | <b>610</b> T   | 139100 | 564         | 105         | 0             |

~

µg/kg - Miccograms per kilogram

U . The analyte was analyzed for, but not detected above the reported sample limit

J - The analyte was positively identified: the associated numerical value is the approximate concentration of the analyte in the sample.

- UI The analyte was not detected above the reported quantitation limit. However the reported quantitation limit may be biased.
- NA Not analyzed

. :

Bold - Analyte detected

թ. Ծ

2

DEC 08 '59 05:50PM ROUX ASSOCIATES INC

|                          | $\mathcal{O}^{+}$ | 01           |          | ·D1     |           |                 | - 01 _         |              |            | - >        |
|--------------------------|-------------------|--------------|----------|---------|-----------|-----------------|----------------|--------------|------------|------------|
| Area:                    | Terminal D        | isposal Site | /        |         |           |                 | Former Lube Bu | nilding      |            |            |
| Sample Designation:      | LF-3              | LF-4         | LF-4     | LF-6    | LF-7      | LF-8            | SB-11/LB-1 SB  | -11/LB-1 DUP | SB-12      | SB-14      |
| Sample Date:             | 8/23/99           | 8/23/99      | 8/2.3/99 | 8/25/99 | 8/25/99   | 8/25 <b>/99</b> | 8/23/99        | 8/23/99      | 8/23/99    | 8/23/99    |
| Parameters               |                   |              | •        |         |           |                 |                |              |            |            |
| (Concentrations in µg/L) |                   |              |          |         |           |                 |                |              |            | <u>'-</u>  |
| Acenaphthene             | ,                 | IU           | IU       | 45      | w         | IU              | 6              | 7            | 37         | 3 J        |
| Accnaphthylene           | NA                | NA           | NA       | NA      | NA        | NA              | 3NJ            | JNJ          | IU         | 10         |
| Anthracene               | 10                | เบ           | 10       | 30      | ານ        | เบ              | 2 J            | 3 J          | 3 J        | 15         |
| Benzo[a]anthracene       | 10                | IU           | IU       | N       | 10        | IV              | 25             | 2 J          | 4 J        | IU         |
| Benzo(a)pyrene           | 1U                | 1U           | IU       | រប      | 1U        | 1U              | 1 J            | 1 J          | 2 5        | 1U         |
| Benzo [b] fluoranthene   | IU                | 1U           | 1U       | JU      | 1U        | 1U              | 1 5            | 1 丁          | 2 J        | IU         |
| Benzo[g,h,i]perylene     | າບ                | 1U           | បេ       | 10      | 1U        | 1U              | ÎU             | 1U           | U          | IU         |
| Benzo[k]fluoranthene     | 10                | IU           | ٤U       | 1U      | IU        | 1U              | າບ             | 1U           | <b>1</b> U | 1U         |
| Ctacysene                | 1U                | 1U           | łU       | IU      | IU        | IU              | 37             | 3 J          | 6          | 1U         |
| Dibenzo[a,h]anthracene   | . <b>IU</b>       | 1U           | าบ       | ເບ      | 10        | 1U              | 10             | IŬ           | រប         | IU         |
| Fluorantheac             | 1U                | 1U           | IU       | បេ      | IU        | 1U              | 4 5            | 5            | 7          | 1 5        |
| Fluorene                 | 7                 | 1U           | IU       | 3 J     | 1U        | 1U              | 10             | IU           | 5          | 5          |
| Indexo[1,2,3-cd]pyrene   | IU                | <b>1</b> 0   | IU       | 1U      | 10        | 1 <b>U</b>      | IU             | IU           | IU         | IU         |
| Naphthalene              | 10                | 1U           | IU       | បេ      | 1U        | 1U              | 6 NJ           | INJ          | 1U         | 2 🔾        |
| Pheasnthrene             | 8                 | 1U           | U        | 9       | IU        | 1U              | 10             | 12           | 6          | 2 J        |
| Рутепе                   | 1U                | 1U           | 1U       | 10      | <u>1U</u> | 10              | 9              | 10           | 11         | <u>3</u> J |
| TOTAL SVOCS              | 24                | 0            | 0        | 16      | 0         | 0               | 57             | 54           | 49         | 17         |

Table 7. Summary of Semivolatile Organic Compounds Detected in Groundwater Samples, Mobil Buffalo Terminal, Buffalo, New York.

1

Notes:

ng/L - Micrograms per liter

U - The analyte was analyzed for, but not detected above the reported sample limit.

I - The analyte was positively identified: the associated numerical value is the approximate concentration of the analyte in the sample.

UJ - The analyte was not detected above the reported quantitation limit. However the reported quantitation limit may be biased.

NA - Not analyzed

Bold - Analyte detected

P.22

|                                                           |              | A 73        |         |            |
|-----------------------------------------------------------|--------------|-------------|---------|------------|
|                                                           | 61           | 0.1         | 07      | 67         |
| : Area                                                    |              |             |         |            |
| Sample Designation:                                       | SB-16        | SB-19       | SB-28   | SB-28 DUP  |
| Sample Date:                                              | 8/23/99      | 9/29/99     | 9/29/99 | 9/29/99    |
| Parameters                                                |              |             |         |            |
| (Concentrations in µg/L)                                  |              |             |         |            |
| Aconomitions                                              | <b>E</b>     | 2 10        |         | 171        |
|                                                           |              |             | 10      | 10         |
| Acenaphinykine                                            |              | <b>U.9U</b> | 10      | 10         |
| Anthracene                                                | 3 ]          | 2 5         | 10      | เข         |
| Benzo(a)anthracene                                        | 3 5          | 17          | 10      | 10         |
| Benzo[a]pyrene                                            | 15           | 0.9U        | 10      | 1U         |
| Benzo[b]fluoranthene                                      | 1U           | 0.9U        | IU      | 10         |
| Benzo[g,h,i]perylene                                      | 1U           | 0.9U        | IU      | 1U         |
| Benzo[k]fluoranthene                                      | Uf           | 0.90        | IU      | 10         |
| Chrysene                                                  | \ <b>4</b> J | 2 J         | JU      | ເບ         |
| Dibenzo[a,h]anthracene                                    | 1U           | 0.9U        | 1U      | 10         |
| Fluoranthene                                              | 2 J          | 3 J         | IU      | 1 <b>U</b> |
| Fluorene                                                  | 10           | 4J          | IU      | ١U         |
| Indeno[1,2,3-cd]ovrene                                    | IU           | 0.9U        | iU      | JU         |
| Naphthalene                                               | 35           | 4.5         | 10      | IU         |
| Phenanthrene                                              | 21           | 7           | IU      | 10         |
| Pyrene                                                    | 7            | 3 5         | IŪ      | 2 J        |
| ۲۰۰ <u>کے طور میں میں میں میں میں میں میں میں میں میں</u> |              |             |         |            |
| TOTAL SVOCS                                               | 50           | 29          | Û       | 2          |
|                                                           |              |             |         |            |

#### Notes:

µg/L - Micrograms per liter

- U The analyte was analyzed for, but not detected above the reported sample limit.
- 1 The analyte was positively identified: the associated numerical value is the approximate concentration of the analyte in the sample.
- UI- The analyte was not detected above the reported quantitation limit. However the reported quantitation limit may be biased.
- NA Not analyzed
- Bold Analyte detected

P.23

ROUX ASSOCIATES, INC.

ŧ

4

1

ŧ

-

ż

÷

• • •

Table 4. Summary of Metals Detected in Soil Samples, Mobil Buffalo Terminal, Buffalo, New York.

| Arca.                     | Elk Street I | ol            |         |             |         |         |         |              |                |         |
|---------------------------|--------------|---------------|---------|-------------|---------|---------|---------|--------------|----------------|---------|
| Sample Designation:       | ESL-1        | ESL-2         | ESL-3   | ESL-4       | ESL-5   | ESL-6   | ESL-7   | ESL-8/ESL-W1 | ESL-8/ESL-WI   | ESL-9   |
| Sample Date:              | 6/17/98      | 6/17/98       | 6/17/98 | 6/17/98     | 6/17/98 | 6/17/98 | 6/17/98 | 6/17/98      | 6/22/98        | 6/17/98 |
| Sample Depth (ft bls):    | 0-0.5        | <b>0-0</b> .5 | 0-0.5   | 0-0.5       | 0-0.5   | 0-0.5   | 0-0.5   | 0-0.5        | 8-10           | 0-0.5   |
| Parameters                |              |               |         |             |         |         |         |              |                |         |
| (Concentrations in mg/kg) |              |               |         |             |         |         |         |              |                |         |
| Cadmium                   | 1.81         | 1.04          | 9.36    | <b>0.96</b> | 0.92    | 1.31    | 2.7     | 1.76         | 3.8J           | 1.36    |
| Chromium                  | 838          | 15.9          | 73.7    | 15.3        | 35.5    | 24.8    | 32.6    | 26.6         | 1 <b>9.4</b> J | 14.9    |
| Lead                      | \$5.6        | 129           | 25.7    | 333         | 130     | 232     | 723     | 324          | 11.9EJ         | 169     |
| Mercury                   | 0.0755       | 0.33          | 0.0381  | 8.38        | 0.18    | 0.0257  | 1.38    | 0.0658       | <b>8.9292</b>  | 0.31    |
| Nickel                    | 12           | 20.1          | 7.8     | 13.1        | 16.9    | 12.4    | 27      | 15.7         | 35.6           | 16.6    |
| Selenium                  | 1.4          | 0.41          | 0.37U   | 1.2         | 0.39U   | 1.02    | 1.8     | 1.7          | 0.46UJ         | 1.2     |
| Thallium                  | 12.9         | 1.39          | 1.94    | 1.1         | 1.43    | 1.97    | 1.77    | 1.54         | 2.01           | 0.92    |
| Vanadium                  | 300          | 15.3          | 27.7    | 15.5        | 22.7    | 18.9    | 28.4    | 27.6         | 21.7           | 18.2    |

Notes:

mg/kg - Milligrams per kilogram

U - The analyte was analyzed for, but not detected above the reported sample limit.

1 of 6

J - The analyte was positively identified: the associated numerical value is the approximate concentration of the analyte in the sample.

U) - The analyte was not detected above the reported quantitation limit. However the reported quantitation limit may be biased.

NA - Not analyzed

Bold - Analyte detected

Р.9

0EC 08 '99

05:44PM

ROUX

ASSOCIATES

INC

Table 4. Summary of Metals Detected in Soil Samples, Mobil Buffalo Terminal, Buffalo, New York.

|               |                        |              |             |         |                |                | /      | 2             | /             | 1              | /      | <u></u> | $\checkmark$   |
|---------------|------------------------|--------------|-------------|---------|----------------|----------------|--------|---------------|---------------|----------------|--------|---------|----------------|
|               | Arca:                  | Elk Street I | ot          |         |                |                |        |               |               |                |        |         |                |
|               | Sample Designation:    | ESL-10       | ESL-11      | ESL-12  | ESL-13         | ESL-13         | ESI-13 | ESL-14        | <b>ESL-14</b> | <b>ESL-14</b>  | ESL-15 | ESL-15  | ES115          |
|               | Sample Date:           | 6/17/98      | 6/17/98     | 6/17/98 | 9/2 <b>/99</b> | 9/2/99         | 9/2/99 | 9/2/99        | 9/2/99        | 9/2/99         | 9/2/99 | 9/2/99  | 9/2/99         |
|               | Sample Depth (ft bls): | 0-0.5        | 0-0.5       | 0-0.5   | 0-0.5          | 1-2            | 2-3    | 0-0.5         | 1-2           | 2-3            | 0-0.5  | 1-2     | 2-3            |
| Parameters    | • • • •                |              |             |         |                |                |        |               |               |                |        |         |                |
| (Concentratio | ons in mg/kg)          |              |             |         |                |                |        |               | <u> </u>      |                | ,      |         | t              |
| Cadmium       |                        | 1.49         | <b>9.</b> 7 | 2.6     | 0.056U         | 0.0 <b>6</b> U | 0.057U | 0.061U        | 0.065U        | 0.52           | 2.64   | 0.06U   | 0.05 <b>8U</b> |
| Chromium      |                        | 22.6         | 32.7        | 21.1    | 31.2           | 22.8           | 30.1   | 28.1          | 24.4          | 14.7           | 27.1   | 24.7    | 14.9           |
| Lead          |                        | 214          | 625         | 164     | 1410           | 533            | 44.2   | 652           | 1620          | 491            | 704    | 514     | 324            |
| Meicury       |                        | 0.57         | 2.04        | 0.6     | 2.54           | 6.41           | 0.0998 | 1.56          | 0.83          | <b>0.098</b> 3 | 1.59   | 1.09    | 0.13           |
| Nickel        |                        | 22.8         | 31.8        | 29.6    | 23.6           | 18.2           | 35     | 24.3          | 23.3          | 13             | 18     | 20.5    | 16.5           |
| Selenium      |                        | 9.47         | 2.1         | 0.6     | 5.2            | 2.8            | 0.46U  | 1.4           | 3.6           | 8.5U           | 0.47   | 2.9     | 0.47U          |
| Thallium      |                        | 2.6          | 2.3         | 4.2     | 0.75U          | 2.4            | 2.3    | <b>0.81</b> U | 3.6           | 0.83U          | 0.75U  | 1.96    | 1.37           |
| Vanadium      |                        | 37.8         | 26.4        | 18.3    | 32             | 29 <i>.</i> 4  | 34     | 58.6          | 35.5          | 17.9           | 41.6   | 29.3    | 25.5           |

Notes:

mg/kg - Milligrams per kilogram

•

U - The analyte was analyzed for, but not detected above the reported sample limit.

J - The analyte was positively identified: the associated numerical value is the approximate concentration of the analyte in the sample.

UI - The analyte was not detected above the reported quantitation limit. However the reported quantitation limit may be biased.

NA - Not analyzed

Beld - Analyte detected

Ъ.

٠,

Table 4. Summary of Metals Detected in Seil Samples, Mobil Buffalo Terminal, Buffalo, New York

|               |                        | ]          |        |                |                |                    |        |             |               |        |          |        |                 |
|---------------|------------------------|------------|--------|----------------|----------------|--------------------|--------|-------------|---------------|--------|----------|--------|-----------------|
|               | Aica:                  | Elk Street | Lot    |                |                |                    |        |             |               |        |          |        |                 |
|               | Sample Designation:    | ESL-16     | ESL-16 | ESL-16         | ESL-17         | ESL-17             | ESL-17 | ESL-18      | ESL-18        | ESL-18 | ESL-19   | ESL-19 | ESI-19          |
|               | Sample Date:           | 9/2/99     | 9/2/99 | 9/2/99         | 9/2/9 <b>9</b> | <del>9</del> /2/99 | 9/2/99 | 9/2/99      | 9/2/99        | 9/2/99 | 9/2/99   | 9/2/99 | 9/2/99          |
|               | Sample Depth (ft bis): | 0-0.5      | 1-2    | 2-3            | 0-0.5          | 1-2                | 2-3    | 0-0.5       | 1-2           | 2-3    | 0-0.5    | 1-2    | 2-3             |
| Parameters    |                        |            |        |                |                |                    |        |             |               |        |          |        |                 |
| (Concentratio | ons in mg/kg)          |            |        |                |                |                    |        |             |               |        | <u>`</u> |        |                 |
| Cadmium       |                        | 4.94       | 0.056U | 0.054U         | 0.28U          | 0.058U             | 0.055U | 2.3         | 0.058U        | 0.057U | 6.89     | 0.058U | 0.0 <b>59</b> U |
| Chromium      |                        | 26.7       | 16.1   | 18.2           | \$7.3          | 32.8               | 14.7   | 14.5        | 19.4          | 20.1   | 119      | 24.6   | 25.4            |
| Lead          |                        | 449        | 261    | 30.3           | 552            | 294                | 16.5   | 112         | 33.5          | 31.1   | 1610     | 27.1   | 34              |
| Mercury       |                        | 0.71       | 0.92   | <b>0.06</b> 76 | 0.82           | 0.45               | 0.025  | <b>8.12</b> | <b>0.8589</b> | 0.0339 | 1.41     | 0.0778 | 0.0391          |
| Nickel        |                        | 36.4       | 16.3   | 27.8           | 41             | 31.5               | 23.4   | 17.2        | 22.8          | 33.6   | 24.2     | 27.2   | 35.1            |
| Sclenium      |                        | 1.5        | 1.2    | 0.44U          | 10.2           | 4.4                | 0.44U  | 0.5         | 1.12          | 0.46U  | 2        | 0.47U  | 0.47U           |
| Thallium      |                        | 0.74U      | 1.68   | 1.6            | 36             | 4.8                | 1.02   | 0.73U       | 1.51          | 0.76U  | 0.80     | 0.96   | 1.5             |
| Vanadium      |                        | 32.9       | 20.3   | 24.5           | 88             | 30.6               | 18.7   | 19.1        | 27.2          | 24.4   | 47.1     | 26.6   | 27.9            |

Notes:

mg/kg - Milligrams per kilogram

U - The analyte was analyzed for, but not detected above the reported sample limit.

J - The analyte was positively identified: the associated numerical value is the approximate concentration of the analyte in the sample.

UI - The analyte was not detected above the reported quantitation limit. However the reported quantitation limit may be biased.

NA - Not analyzed

Bold - Analyte detected

Table 4. Summary of Metals Detected in Soil Samples, Mobil Buffalo Terminal, Buffalo, New York.

|               |                        | t              |        |                    |                        | /           |                |         |         |         |                 |
|---------------|------------------------|----------------|--------|--------------------|------------------------|-------------|----------------|---------|---------|---------|-----------------|
|               | Aica:                  | Elk Street     | Lot    |                    | Terminal Disposal Site | Former Lu   | be Building    |         |         |         |                 |
|               | Sample Designation:    | ESL-20         | ESL-20 | ESL-20             | L.F7                   | SB-7        | SB-7           | SB-8    | SB-8    | SB-9    | SB-9            |
|               | Sample Date:           | 9/2/9 <b>9</b> | 9/2/99 | 9/2/9 <del>9</del> | 8/16/99                | 6/26/98     | 6/26/98        | 6/26/98 | 6/26/98 | 6/26/98 | 6/2 <b>6/98</b> |
|               | Sample Depth (ft bls): | Q-0.5          | 1-2    | 2-3                | 21-23                  | 0-2         | 8-10           | 0-2     | 10-12   | 0-2     | 10-12           |
| Parameters    | · ·                    |                |        |                    |                        |             |                |         | •.      |         |                 |
| (Concentratio | ms in mg/kg)           | •              |        |                    |                        |             |                |         |         |         |                 |
| Cadmium       |                        | 0.62U          | 0.64   | 0. <b>062</b> U    | 0.0 <b>66U</b>         | <b>6.91</b> | 0.38           | 0.24    | 0.35    | 0.44    | 0.36            |
| Chromium      |                        | <b>985</b>     | 197    | 57.2               | 15 J                   | 14.3J       | 11.1J          | 10.4J   | 15.1J   | 13.9J   | 16.2J           |
| Lead          |                        | 676            | 134    | 48.1               | 18.1                   | 48.9        | 12.1           | 70.6    | 12.1    | 73.7    | 12              |
| Mercury       | 1                      | 0.91           | 0.27   | 0.0356             | 0.0384                 | 0.17        | 0.0381U        | 0.0365U | 0.053U  | 0.0697  | 0.0304U         |
| Nickel        | •                      | 28.7           | 21.4   | 35.8               | 22.6                   | 11.SU       | 16. <b>6</b> U | 12.9U   | 29.3U   | 24.6U   | 29.4U           |
| Selenium      |                        | 5U             | 1.3    | 0.5U               | 0.53U T                | 0.39U       | 0.45U          | 0.38U   | 0.49U   | 0.44U   | 0.49U           |
| Thallium      |                        | 13.5           | 3      | 2.04               | 4.1                    | 0.79U       | 0.9U           | 0.77U   | IU      | 0.94    | 1U              |
| Vanadium      |                        | 266            | 72.1   | 38.7               | 23.2                   | 11.7        | 17.3           | 18      | 19      | 28.8    | 21.1            |

Notes:

mg/kg - Milligrams per kilogram

U - The analyte was analyzed for, but not detected above the reported sample limit.

J - The analyte was positively identified: the associated numerical value is the approximate concentration of the analyte in the sample.

UJ - The analyte was not detected above the reported quantitation limit. However the reported quantitation limit may be biased.

NA Not analyzed

Bohi - Analyte detected

12

ъ.

Table 4. Summary of Metals Detected in Soil Samples, Mobil Buffalo Tenninal, Buffalo, New York.

|                    |                     |           |             | V            |               |              |         |         |              |         |         |         |
|--------------------|---------------------|-----------|-------------|--------------|---------------|--------------|---------|---------|--------------|---------|---------|---------|
|                    |                     |           |             | ]            |               |              |         |         |              |         |         |         |
|                    | Area:               | Former La | be Building |              |               |              |         |         |              |         |         |         |
| San                | nple Designation:   | SB-10     | SB-10       | SB-11/LB-1   | <b>SB-1</b> 3 | SB-14        | SB-15   | SB-16   | SB-17        | SB-17   | SB-18   | SB-18   |
|                    | Sample Date:        | 6/26/98   | 6/26/98     | 7/1/99       | 7/27/99       | 7/26/99      | 7/27/99 | 7/28/99 | 7/28/99      | 7/28/99 | 7/29/99 | 7/29/99 |
| Sam                | ple Depth (ft bls): | 0-2       | 8-10        | 16-18        | 11-13         | 13-15        | 11-13   | 11-13   | 0-0.5        | 11-13   | 0-0.5   | 11-13   |
| Parameters         |                     |           |             |              |               |              |         | •       |              |         |         |         |
| (Concentrations in | mg/kg)              |           |             |              |               |              |         |         |              |         |         |         |
| Cadmium            |                     | 1.01      | 0.34        | <b>0.6</b> 5 | 0.062U        | <b>0</b> .13 | 0.058U  | 0.6     | 0.26         | 0.061U  | 0.065U  | 0.06U   |
| Chromium           |                     | 12.AJ     | 13.1J       | 63 5         | 11.7          | 11.8         | 14.3    | 21.4    | 14.9         | 18.1    | 18.3    | 16.5    |
| Lead               | •                   | 2380      | 34.9        | 10.2         | 20.2          | 16           | 10.3    | 584     | 77.2         | 10.5    | 57.5    | 9.1     |
| Mercury            |                     | 9.46      | 0.0417U     | 0.0089       | 0.0113        | 0.0156       | 0.0233  | 3.33    | 0.18         | 0.03    | 0.0343  | 0.0112  |
| Nickel             |                     | 14.8U     | 22.1U       | 11.2         | 14.3          | 19           | 17.7    | 20.6    | <b>22</b> .1 | 22.6    | 31.2    | 19.5    |
| Selenium           |                     | 0.46U     | 0.47U       | 0.48U        | 0. SU         | 0.53U        | 0.47U   | 16.9    | 0.76         | 0.49U   | 1.03    | 0.49U   |
| <b>Thallium</b>    |                     | 0.91U     | Q.94U       | 0.79U        | 0.82U         | 0.88U        | 0.77U   | 10      | 0.79U        | 0.82U   | 0.87U   | 0.8)U   |
| Vanadium           |                     | 14.6      | 20.6        | 8.5          | 17.4          | 16.1         | 17.2    | 36.8    | 24.5         | 24.8    | 35.3    | 22.7    |

Notes:

mg/kg - Milligrams per kilogram

U - The analyte was analyzed for, but not detected above the reported sample limit.

J - The analyte was positively identified: the associated numerical value is the approximate concentration of the analyte in the sample.

UJ - The analyte was not detected above the reported quantitation limit. However the reported quantitation limit may be biased.

NA - Not analyzed

Boid - Analyte detected

Table 4. Summary of Metals Detected in Soil Samples, Mobil Buffalo Tenninal, Buffalo, New York.

|                    |                     |           |             | V            |               |              |         |         |              |         |         |         |
|--------------------|---------------------|-----------|-------------|--------------|---------------|--------------|---------|---------|--------------|---------|---------|---------|
|                    |                     |           |             | ]            |               |              |         |         |              |         |         |         |
|                    | Area:               | Former La | be Building |              |               |              |         |         |              |         |         |         |
| San                | nple Designation:   | SB-10     | SB-10       | SB-11/LB-1   | <b>SB-1</b> 3 | SB-14        | SB-15   | SB-16   | SB-17        | SB-17   | SB-18   | SB-18   |
|                    | Sample Date:        | 6/26/98   | 6/26/98     | 7/1/99       | 7/27/99       | 7/26/99      | 7/27/99 | 7/28/99 | 7/28/99      | 7/28/99 | 7/29/99 | 7/29/99 |
| Sam                | ple Depth (ft bls): | 0-2       | 8-10        | 16-18        | 11-13         | 13-15        | 11-13   | 11-13   | 0-0.5        | 11-13   | 0-0.5   | 11-13   |
| Parameters         |                     |           |             |              |               |              |         | •       |              |         |         |         |
| (Concentrations in | mg/kg)              |           |             |              |               |              |         |         |              |         |         |         |
| Cadmium            |                     | 1.01      | 0.34        | <b>0.6</b> 5 | 0.062U        | <b>0</b> .13 | 0.058U  | 0.6     | 0.26         | 0.061U  | 0.065U  | 0.06U   |
| Chromium           |                     | 12.AJ     | 13.1J       | 63 T         | 11.7          | 11.8         | 14.3    | 21.4    | 14.9         | 18.1    | 18.3    | 16.5    |
| Lead               | •                   | 2380      | 34.9        | 10.2         | 20.2          | 16           | 10.3    | 584     | 77.2         | 10.5    | 57.5    | 9.1     |
| Mercury            |                     | 9.46      | 0.0417U     | 0.0089       | 0.0113        | 0.0156       | 0.0233  | 3.33    | 0.18         | 0.03    | 0.0343  | 0.0112  |
| Nickel             |                     | 14.8U     | 22.1U       | 11.2         | 14.3          | 19           | 17.7    | 20.6    | <b>22</b> .1 | 22.6    | 31.2    | 19.5    |
| Selenium           |                     | 0.46U     | 0.47U       | 0.48U        | 0. SU         | 0.53U        | 0.47U   | 16.9    | 0.76         | 0.49U   | 1.03    | 0.49U   |
| <b>Thallium</b>    |                     | 0.91U     | Q.94U       | 0.79U        | 0.82U         | 0.88U        | 0.77U   | 10      | 0.79U        | 0.82U   | 0.87U   | 0.8)U   |
| Vanadium           |                     | 14.6      | 20.6        | 8.5          | 17.4          | 16.1         | 17.2    | 36.8    | 24.5         | 24.8    | 35.3    | 22.7    |

Notes:

mg/kg - Milligrams per kilogram

U - The analyte was analyzed for, but not detected above the reported sample limit.

J - The analyte was positively identified: the associated numerical value is the approximate concentration of the analyte in the sample.

UJ - The analyte was not detected above the reported quantitation limit. However the reported quantitation limit may be biased.

NA - Not analyzed

Boid - Analyte detected

|     | -        | DEC          |
|-----|----------|--------------|
|     | ·····    | 88           |
| i2  | SB-14    | ĝ            |
| /99 | 8/23/99  |              |
|     |          | 8            |
|     |          | រដ្ឋ<br>រដ្ឋ |
|     |          | Ţ            |
| 7U  | 0.6643   |              |
| 37  | 0.0062   | ĝ            |
| ١   | NA       | ž            |
| 69  | 0.02     | B            |
| 01  | 0.000121 | S<br>S       |
| 44  | 0.0242   | ្ព           |
| 47  | 0.0016U  | AT           |
| A   | NA       | S            |
| 97U | 0.049    | ij           |
|     | A 016    | ర            |

Table 8. Summary of Metals Detected in Groundwater Samples, Mobil Buffalo Terminal, Buffalo, New York.

Former Lube Building Area: Terminal Disposal Site LF-3 LF-4 1F-5 1.F-6 **LF-7** 1.F-8 SB-11/LB-1 SG-11/LB-1 DUP SB-Sample Designation: 8/25/99 8/25/99 8/25/99 8/25/99 8/23/99 8/23/99 8/23 Sample Date: 8/23/99 8/23/99 Parameter 2 (Concentrations in mg/L) 0.0042 0.0019 0.0035 0.001 0.0017U 0.0017U 0.0017U Cadmium 0.0017U 0.0043 0.213 0.03 0.0197 0.0017U 0.0017U 8.022 0.0163 0.0955 0.0389 Chromium NA NA NA NA NA NA NA N/ NA Hexavalent Chromium 0.051 0.04 0.0019U 8.044 0.18 0.19 0.06 0.0137 0.16 Lead 8.000g52 9.0001 6.80 0.000042U 0.000152 0.000045 0.00006 0.000042U 0.000042U Mercury 0.051 0.051 0.03 0.0398 0.0054U 0.0054U 8.016 **0.18**G 0.07 Nickel 0.0016U 0.0016U 0.0016U 0.0035 0.0044 8.66 0.0022 0.0016U 0.0016U Selenium NA NA NA NA NA NA NA **NA** NA Tetra Ethyl Lead 0.0097U 0.0097U 0.0097U 0.0097U 0.0097U 8110.0 0.0097U 6.0113 0.0097U Thallium 4.443 0.025 0.043 0.024 0.0028U 0.0028U 0.036 0.034 0.026 Vanadium 0.0082 6.123

Notes:

mg/L - Milligrams per liter

U - The analyte was analyzed for, but not detected above the reported sample limit.

J - The analyte was positively identified: the associated numerical value is the approximate concentration of the analyte in the sample.

US - The analyte was not detected above the reported quantitation limit. However the reported quantitation limit may be biased.

NA - Not analyzed

Bold - Analyte detected

Table 4. Summary of Metals Detected in Soil Samples, Mobil Buffalo Terminal, Buffalo, New York.

|                           | 1           |             |         |         |              |        |        |                |        |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|---------------------------|-------------|-------------|---------|---------|--------------|--------|--------|----------------|--------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                           |             |             |         |         |              |        |        |                |        |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Arca:                     | Former Lul  | be Building |         |         |              |        |        |                |        |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Sample Designation:       | SB-19       | SB-20       | SB-20 . | SB-24   | SB-24        | SB-27  | SB 27  | SB-28          | SB 28  | SB-30  | SB 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Sample Date:              | 7/29/99     | 7/29/99     | 7/29/99 | 8/2/99  | 8/4/99       | 8/3/99 | 8/4/99 | 8/3/99         | 8/4/99 | 8/5/99 | 8/6/99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Sample Depth (ft bls):    | 7 <b>-9</b> | 3-4         | 9-11    | 13-15   | 0-0.5        | 11-13  | 0-0.5  | 11-13          | 0-0.5  | 9-11   | 0-0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Parameters                |             |             |         |         |              |        |        |                |        |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (Concentrations in mg/kg) |             |             |         |         |              |        |        |                |        |        | white the same state in the same state of the sa |
| Cadmium                   | 0.066U      | 0.053U      | 0.081U  | 1.05    | 0.063U       | 0.062U | 0.66   | 0.064U         | 0.062U | 0.064U | 0.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Chromium                  | 14.1        | 7.7         | 15.8    | 14.6    | 28           | 10.8   | 34.7   | 23.6           | 114    | 15.8   | 23.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Lead                      | 46.1        | 20.1        | 5800    | 12.5    | 188          | 34.1   | 377    | 14.8           | 299    | 15.6   | 38.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Mercury                   | 0.0909      | 0.0313      | 0.17    | 0.00621 | 3.9          | 0.0607 | 0.8    | <b>0.</b> 8226 | 6.32   | 9.0879 | 0.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Nickel                    | 26.8        | 9.3         | 30      | 39.1    | 21.8         | 42.6   | 16.3   | 35.1           | 30.2   | 29.3   | 39.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Selenium                  | 1.3         | 0.43U       | 1.36    | 0.53U   | 6.5          | 0.5U   | 2.8U   | 0.54           | 2.9    | 0.51U  | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Thallium                  | 0.881)      | 0.71U       | 1.10    | 0.88U   | 1. <b>86</b> | 0.83U  | 4.6U   | 0.85U          | 1.26   | 0.85U  | 1.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Vaqadium                  | 27.5        | 13.8        | 27.1    | 19.4    | 47.8         | 16.7   | 46     | 30.4           | 47.5   | 21.3   | 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

Notes:

mg/kg - Milligrams per kilogram

•

U - The analyte was analyzed for, but not detected above the reported sample limit.

J - The analyte was positively identified: the associated numerical value is the approximate concentration of the analyte in the sample.

U3 - The analyte was not detected above the reported quantitation limit. However the reported quantitation limit may be biased.

NA - Not analyzed

Bold - Analyic detected

P.14

DEC 03 '99 05:51P

Table 8. Summary of Metals Detected in Groundwater Samples, Mobil Buffalo Terminal, Buffalo, New York.

| Area:                    |                   | Former Lube 1 | Building  | Resampling      | Locations |         |             |         |
|--------------------------|-------------------|---------------|-----------|-----------------|-----------|---------|-------------|---------|
| Sample Designation:      | SB-16             | SB-19         | SB-28     | BTC-4           | BTC-5     | MW-IURS | MW-IURS DUP | NTY-T60 |
| Sample Date:             | 8/23/99           | 9/29/99       | 9/29/99   | 8/24/99         | 8/24/99   | 8/24/99 | 8/24/99     | 8/24/99 |
| Parameter                |                   |               | •         |                 | ζ,        |         |             |         |
| (Concentrations in mg/L) |                   |               |           | ~               |           |         |             |         |
| Cadmium                  | 0. <b>0</b> 01.70 | 0.0017U       | 0.0017U   | NA              | NA        | NA      | NA          | NA      |
| Chronum                  | 0.0123            | 0.0059        | 0.0131    | NA              | NA        | NA      | NA          | NA      |
| Hexavalent Chromium      | NA                | NA            | NA        | NA              | NA        | NA      | NA          | 0.02U   |
| Lead                     | 0.51              | 0.0263        | 0.0115    | 0.013           | 0.167     | 6.019   | 810.0       | 0.997   |
| Mercury                  | 0.00381           | 8.906047      | 0.000042U | NA              | NA        | NA      | NA          | NA      |
| Nickel                   | 0.0172            | 0.0136        | 0.0232    | ŃA              | NA        | NA      | NA          | NA      |
| Selenium                 | 0.0056            | 0.0016U J     | 0.0024 )  | <b>NA</b>       | NA        | NA ·    | NA          | NA      |
| Tetra Ethyl Lead         | NA                | NA            | NA        | 0. <b>0</b> 01U | 0.00117   | 0.001U  | 0.001U      | NA      |
| Thallium                 | 0.0097U           | 0.0097U       | Q.0097U   | NΛ              | NA        | NA      | NA          | NA      |
| Vanadium                 | Q. <b>Q2</b>      | 0.0074        | 0.021     | NA              | NA        | NA      | NA          | NA      |

Notes:

mg/L - Milligrams per liter

- U The analyte was analyzed for, but not detected above the reported sample limit.
- J The analyte was positively identified: the associated numerical value is the approximate concentration of the analyte in the sample.
- UJ The analyte was not detected above the reported quantitation limit. However the reported quantitation limit may be biased.

NA - Not analyzed

Bold - Analyte detected

P.25

ROUX ASSOCIATES, INC.

## Case Narrative for Sample Delivery Group No. 082599 - Water

The following data package contains all analytical results corresponding to 9 samples collected on August 24, 1999 and received at Expresslab, Inc. on August 25, 1999. The samples were assigned to sample delivery group (SDG) 082599. Laboratory accession numbers were assigned to each of the 9 samples (I.D. No. 28262 – 28270). The samples were analyzed according to the requirements of USEPA method 8270B following liquid-liquid extraction according to USEPA method 3510. Samples were extracted as per the attached sample preparation log. Results were reported according to the requirements of NYSDEC 12/95 ASP. All results are reported as ug/L wet weight.

The samples were analyzed for tetraethyl lead (TEL) and tentatively identified compounds (TICs) with special attention to the following potential TEL metabolites and related organic lead compounds:

| Ethyltrimethyl lead                    | CAS No. 001762-26-1 |
|----------------------------------------|---------------------|
| Diethyldimethyl lead                   | CAS No. 001762-27-2 |
| Trimethyl [{methylsulfinyl)oxy] - lead | CAS No. 044657-41-2 |
| Triethylmethyl - lead                  | CAS No. 001762-28-3 |
| Tetramethyl – lead                     | CAS No. 000075-74-1 |

## QC Remarks

Fresh MDL determinations were performed as per protocol. Seven repeat extracted spiked samples at 1 PPB resulted in a statistically verifiable MDL of 0.307 PPB with a standard deviation of 0.10 PPB. All QC parameters were within normal limits; however, it should be noted that the internal standard concentrations of the samples and blank were higher than expected by as much as a factor of two. This anomaly is due to a slightly higher baseline background in the extracted samples. MS & MSD spiked recoveries of the samples were 50% and 46%, respectively, within the QC limits range.

In summary, all other quality control samples, ICVs, CCVs, preparation blanks, calibrations, tunes and other parameters including the MS/MSD were within acceptable limits. It should be understood that the requested detection limit of 2 PPB was exceeded (1 PPB actual detection limit) with a MDL of 0.307 PPB. Therefore, the potential error inflicted by the abnormally high internal standard peak area is offset by the lower than requested detection limits.

DFTPP Tune: The tune for this run was acceptable and achieved all NYS ASP requirements as displayed in the raw data.

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. I, William R. Sawyer, Ph.D., Laboratory Director for Expressiab, Inc. hereby release the data contained within this hardcopy data package as accurate and within the specifications of the specified USEPA methods.

Signature: Name: William R. Sawver, Ph.D.

Date:

<u>09-13-99</u>

Title: Laboratory Director

## CASE NARRATIVE FOR SDG # 082499

#### Prepared for:

### Groundwater and Environmental Services, Inc. 70 Pearce Avenue Buffalo, NY 14150

The following package contains the analytical results for 8 aqueous samples received at ExpressLabs on 8/25/99. The samples that required lead analysis were then sent to Lozier Laboratories, Inc. on 8/25/99. The samples were assigned to sample delivery group (SDG) 082499, and to Lab sample number 4825. The samples were analyzed according to the requirements of EPA method 6010B and reported according to the requirements of the NYSDEC 12/95 ASP.

The samples received required analysis for total lead (except for one sample that required analysis for both total lead and hexavalent chromium. The hexavalent chromium is reported on the standard Lozier report which is included in this package). The samples were digested for total lead on 8/26/99 using EPA method 3010A. The samples were analyzed by the TJA 61E Trace on 8/26/99 using EPA method 6010B.

All quality control samples (i.e. - ICV's, CCV's, ICSA's, ICSAB's, ICB's, CCB's, Prep blanks, LCSW, and LCSS) associated with the analytical run were compliant.

The matrix duplicate, the matrix spike, and the matrix spike duplicate were within the required limits.



# INTERNAL MEMORANDUM

To: File From: Marc Falzone Date: 14 December, 1999

### Subject: MBT- Continuation of SFI Investigation, Lab Sample Refrigeration

During the continuation of the Site Facility Investigation completed at the Mobil Terminal located at 625 Elk St., Buffalo, NY it was important to cool the collected soil and groundwater samples between sampling at individual boring/well locations as well as prior to shipment. The samples were therefore stored in a cooler with ice immediately after collection, and then each afternoon and evening the samples were removed from the cooler and placed into a refrigerator (designated for site samples only).

# **APPENDIX E**

•

.

Containment Loading Evaluation Results

յուն ու անցերությունների է են է հետում 
a a company and a company and a company

Table E-1. Detections of Constituents of Concern in Groundwater at Terminal Disposal Site, Mobil Buffalo Terminal, Buffalo, New York.

.

.....

|                                                         | -                      | <u> </u>               | <b></b>                | <b></b>                | · · · · ·    | <b>_</b>     |              |              | <b>.</b>      |               |               | r           | r            | <b></b>       | r—           |              | _              |                |              |                 |                 |               |               | · · · ·      |                  |                  |             | -           |             | _           | _               | , , , , , , , , , , , , , , , , , , , |               |             |
|---------------------------------------------------------|------------------------|------------------------|------------------------|------------------------|--------------|--------------|--------------|--------------|---------------|---------------|---------------|-------------|--------------|---------------|--------------|--------------|----------------|----------------|--------------|-----------------|-----------------|---------------|---------------|--------------|------------------|------------------|-------------|-------------|-------------|-------------|-----------------|---------------------------------------|---------------|-------------|
| Class C Ambient Water<br>Quality (1) Guidance<br>(ug/L) | 33.00                  | 33.00                  |                        | -                      | 5.30         | 210.00       | 210.00       | 210.00       |               |               | 1             |             | 1            |               |              | 13.00        | 1              |                |              |                 |                 | 65.00         | 65.00         | 5.00         |                  |                  | 100.00      | 100.00      | 100.00      |             | 65.00           | 65.00                                 |               | 1           |
| Class C Ambient Water<br>Quality (1) Standard<br>(ug/L) |                        | -                      |                        | -                      | 20.00        | 10.00        | 10.00        | 10.00        |               |               | -             | 0.54        |              | -             | -            | -            |                |                |              | -               | -               | -             |               |              |                  |                  | 6000.00     | 6000.00     | 6000.00     | 14.00       |                 |                                       |               | 1           |
| Concentration<br>(ug/L)                                 | 0.2                    | 0.3                    | 0.2                    | 0.2                    | 6            | 45           | 50           | 56           | 0.0103        | 7.7           | L             | 7           | 0.0137       | 26            | 24           | 1.9          | 11             | 9.3            | 0.016        | 10              | 9.6             | 0.4           | 0.4           | 8            | 7.2              | 6.5              | 0.7         | 0.6         | 0.7         | 0.0082      | 0.5             | 0.4                                   | 0.0043        | 0.0955      |
| Analyte                                                 | l,2,4-Trimethylbenzene | 1,2,4-Trimethylbenzene | l,3,5-Trimethylbenzene | l,3,5-Trimethylbenzene | Acenaphthene | Benzene      | Benzene      | Benzene      | Chromium      | Cumene        | Cumene        | fluorene    | cead         | MTBE          | MTBE         | Vaphthalene  | 1-Butylbenzene | 1-Butylbenzene | Nickel       | 1-Propylbenzene | 1-Propylbenzene | -Xylene       | -Xylene       | Phenanthrene | sec-Butylbenzene | sec-Butylbenzene | loluene     | [] Intere   | [oluene     | Vanadium    | Kylenes (total) | Xylenes (total)                       | Cadmium       | Chromium    |
| Date Sampled                                            | 28-Sep-1999            | 28-Sep-1999            | 28-Sep-1999            | 28-Sep-1999            | 23-Aug-1999  | 23-Aug-1999] | 28-Sep-1999] | 28-Sep-1999] | 23-Aug-1999 ( | 28-Sep-1999 ( | 28-Sep-1999 ( | 23-Aug-1999 | 23-Aug-1999] | 28-Sep-1999 ] | 28-Sep-1999] | 28-Sep-1999] | 28-Sep-1999    | 28-Sep-1999    | 23-Aug-1999] | 28-Sep-1999     | 28-Sep-1999     | 28-Sep-1999 ( | 28-Sep-1999 ( | 23-Aug-1999  | 28-Sep-1999 s    | 28-Sep-1999 s    | 23-Aug-1999 | 28-Sep-1999 | 28-Sep-1999 | 23-Aug-1999 | 28-Sep-1999     | 28-Sep-1999                           | 23-Aug-1999 ( | 23-Aug-1999 |
| Designation                                             | LF-3                   | LF-3                   | LF-3                   | LF-3                   | LF-3         | LF-3         | LF-3         | LF-3         | LF-3          | LF-3          | LF-3          | LF-3        | LF-3         | LF-3          | LF-3         | LF-3         | LF-3           | LF-3           | LF-3         | LF-3            | LF-3            | LF-3          | LF-3          | LF-3         | LF-3             | LF-3             | LF-3        | LF-3        | LF-3        | LF-3        | LF-3            | LF-3                                  | LF-4          | LF-4        |

•\*

-----

....

-

1 of 3

Table E-1. Detections of Constituents of Concern in Groundwater at Terminal Disposal Site, Mobil Buffalo Terminal, Buffalo, New York.

| Designation | Date Sampled | Analyte                | Concentration | Class C Ambient Water | Class C Ambient Water |
|-------------|--------------|------------------------|---------------|-----------------------|-----------------------|
| _           |              |                        |               | Quality (1) Standard  | Quality (1) Guidance  |
|             |              |                        | (µg/L)        | (µg/L)                | (µg/L)                |
| LF-4        | 23-Aug-1999  | Lead                   | 0.16          |                       |                       |
| LF-4        | 23-Aug-1999  | Mercury                | 0.000152      | 0.00                  |                       |
| LF-4        | 28-Sep-1999  | MTBE                   | 4.7           |                       |                       |
| LF-4        | 23-Aug-1999  | Nickel                 | 0.186         |                       |                       |
| LF-4        | 23-Aug-1999  | Selenium               | 0.0022        | 4.60                  |                       |
| LF-4        | 23-Aug-1999  | Thallium               | 0.0113        | 8.00                  |                       |
| LF-4        | 23-Aug-1999  | Vanadium               | 0.123         | 14.00                 |                       |
| LF-5        | 25-Aug-1999  | Chromium               | 0.0389        |                       |                       |
| LF-5        | 25-Aug-1999  | Ethylbenzene           | 0.3           |                       | 17.00                 |
| LF-5        | 25-Aug-1999  | Lead                   | 0.051         |                       |                       |
| LF-5        | 25-Aug-1999  | Mercury                | 0.000045      | 0.00                  |                       |
| LF-5        | 28-Sep-1999  | MTBE                   | 5.5           |                       |                       |
| LF-5        | 25-Aug-1999  | Nickel                 | 0.07          |                       |                       |
| LF-5        | 25-Aug-1999  | Vanadium               | 0.043         | 14.00                 |                       |
| LF-6        | 28-Sep-1999  | 1,2,4-Trimethylbenzene | 0.3           |                       | 33.00                 |
| LF-6        | 25-Aug-1999  | Acenaphthene           | 4             | 20.00                 | 5.30                  |
| LF-6        | 25-Aug-1999  | Benzene                | 83            | 10.00                 | 210.00                |
| LF-6        | 28-Sep-1999  | Benzene                | 80            | 10.00                 | 210.00                |
| LF-6        | 25-Aug-1999  | Chromium               | 0.0197        |                       |                       |
| LF-6        | 28-Sep-1999  | Cumene                 | 1.8           |                       |                       |
| LF-6        | 25-Aug-1999  | Fluorene               | 3             | 0.54                  |                       |
| LF-6        | 25-Aug-1999  | Lead                   | 0.04          |                       |                       |
| LF-6        | 25-Aug-1999  | Mercury                | 0.00006       | 0.00                  |                       |
| LF-6        | 28-Sep-1999  | MTBE                   | 4.6           |                       |                       |
| LF-6        | 28-Sep-1999  | Naphthalene            | 0.5           |                       | 13.00                 |
| LF-6        | 28-Sep-1999  | n-Butylbenzene         | 2.3           |                       |                       |
| LF-6        | 25-Aug-1999  | Nickel                 | 0.0398        |                       |                       |
| LF-6        | 28-Sep-1999  | n-Propylbenzene        | 2.7           |                       |                       |
| LF-6        | 25-Aug-1999  | Phenanthrene           | 9             |                       | 5.00                  |
| LF-6        | 28-Sep-1999  | sec-Butylbenzene       | 1.7           |                       |                       |
| LF-6        | 25-Aug-1999  | Toluene                | 2             | 6000.00               | 100.00                |
| LF-6        | 28-Sep-1999  | Toluene                | 2.3           | 6000.00               | 100.00                |
| LF-6        | 25-Aug-1999  | Vanadium               | 0.024         | 14.00                 |                       |
| LF-6        | 28-Sep-1999  | Xylenes (total)        | 0.5           |                       | 65.00                 |

İ

1

Ì

4

ż

Ì

1

ţ

1
Table E-1. Detections of Constituents of Concern in Groundwater at Terminal Disposal Site, Mobil Buffalo Terminal, Buffalo, New York.

| Designation | Date Sampled | Analyte                | Concentration | Class C Ambient Water | Class C Ambient Water |
|-------------|--------------|------------------------|---------------|-----------------------|-----------------------|
| -           |              |                        |               | Quality (1) Standard  | Quality (1) Guidance  |
|             |              |                        | (µg/L)        | (µg/L)                | (µg/L)                |
| LF-7        | 28-Sep-1999  | MTBE                   | 1.1           |                       |                       |
| LF-8        | 25-Aug-1999  | Cadmium                | 0.0042        |                       |                       |
| LF-8        | 25-Aug-1999  | Lead                   | 0.044         |                       |                       |
| MW-1URS     | 08-Jul-1998  | 1,2,4-Trimethylbenzene | 0.3           |                       | 33.00                 |
| MW-1URS     | 08-Jul-1998  | Chromium               | 0.0097        |                       |                       |
| MW-1URS     | 08-Jul-1998  | Lead                   | 313           |                       |                       |
| MW-1URS     | 24-Aug-1999  | Lead                   | 0.019         |                       |                       |
| MW-1URS     | 24-Aug-1999  | Lead                   | 0.018         |                       |                       |
| MW-1URS     | 08-Jul-1998  | MTBE                   | 0.5           |                       |                       |
| MW-1URS     | 08-Jul-1998  | p-Isopropyltoluene     | 0.2           |                       |                       |
| MW-1URS     | 08-Jul-1998  | sec-Butylbenzene       | 0.4           |                       |                       |
| MW-1URS     | 08-Jul-1998  | tert-Butylbenzene      | 0.3           |                       |                       |
| MW-4URS     | 07-Jul-1998  | 1,2,4-Trimethylbenzene | 0.6           |                       | 33.00                 |
| MW-4URS     | 07-Jul-1998  | Cumene                 | 0.5           |                       |                       |
| MW-4URS     | 07-Jul-1998  | Lead                   | 4.8           |                       |                       |
| MW-4URS     | 07-Jul-1998  | o-Xylene               | 0.2           |                       | 65.00                 |
| MW-4URS     | 07-Jul-1998  | p-Isopropyltoluene     | 0.2           |                       |                       |
| MW-4URS     | 07-Jul-1998  | sec-Butylbenzene       | 0.2           |                       |                       |

(1) - NYSDEC Division of Water Technical and Operational Guidance Series (1.1.1) Ambient Water-Quality Standards and Guidance Values, June 1998

Bold - Data Highlighted in Bold Represent Detections that Exceed the NYSDEC Ambient Water Quality Standards and Guidance Values for Class C Waters

-- No NYSDEC Ambient Water-Quality Standards or Guidance Values Available for Class C Waters

μg/L - Micrograms per liter

Ì

4

4

Table E-1. Detections of Constituents of Concern in Groundwater at Terminal Disposal Site, Mobil Buffalo Terminal, Buffalo, New York.

| Designation | Date Sampled | Analyte                | Concentration | Class C Ambient Water | Class C Ambient Water |
|-------------|--------------|------------------------|---------------|-----------------------|-----------------------|
| -           |              |                        |               | Quality (1) Standard  | Quality (1) Guidance  |
|             |              |                        | (µg/L)        | (µg/L)                | (µg/L)                |
| LF-7        | 28-Sep-1999  | MTBE                   | 1.1           |                       |                       |
| LF-8        | 25-Aug-1999  | Cadmium                | 0.0042        |                       |                       |
| LF-8        | 25-Aug-1999  | Lead                   | 0.044         |                       |                       |
| MW-1URS     | 08-Jul-1998  | 1,2,4-Trimethylbenzene | 0.3           |                       | 33.00                 |
| MW-1URS     | 08-Jul-1998  | Chromium               | 0.0097        |                       |                       |
| MW-1URS     | 08-Jul-1998  | Lead                   | 313           |                       |                       |
| MW-1URS     | 24-Aug-1999  | Lead                   | 0.019         |                       |                       |
| MW-1URS     | 24-Aug-1999  | Lead                   | 0.018         |                       |                       |
| MW-1URS     | 08-Jul-1998  | MTBE                   | 0.5           |                       |                       |
| MW-1URS     | 08-Jul-1998  | p-Isopropyltoluene     | 0.2           |                       |                       |
| MW-1URS     | 08-Jul-1998  | sec-Butylbenzene       | 0.4           |                       |                       |
| MW-1URS     | 08-Jul-1998  | tert-Butylbenzene      | 0.3           |                       |                       |
| MW-4URS     | 07-Jul-1998  | 1,2,4-Trimethylbenzene | 0.6           |                       | 33.00                 |
| MW-4URS     | 07-Jul-1998  | Cumene                 | 0.5           |                       |                       |
| MW-4URS     | 07-Jul-1998  | Lead                   | 4.8           |                       |                       |
| MW-4URS     | 07-Jul-1998  | o-Xylene               | 0.2           |                       | 65.00                 |
| MW-4URS     | 07-Jul-1998  | p-Isopropyltoluene     | 0.2           |                       |                       |
| MW-4URS     | 07-Jul-1998  | sec-Butylbenzene       | 0.2           |                       |                       |

(1) - NYSDEC Division of Water Technical and Operational Guidance Series (1.1.1) Ambient Water-Quality Standards and Guidance Values, June 1998

Bold - Data Highlighted in Bold Represent Detections that Exceed the NYSDEC Ambient Water Quality Standards and Guidance Values for Class C Waters

-- No NYSDEC Ambient Water-Quality Standards or Guidance Values Available for Class C Waters

μg/L - Micrograms per liter

Ì

4

4

|                    |                                                    | •                               | • • •                                      |                                 |
|--------------------|----------------------------------------------------|---------------------------------|--------------------------------------------|---------------------------------|
| Conceptual Basis : |                                                    |                                 |                                            |                                 |
| •                  | 1 - Mass Flux is Equal to the Groundwater Discha   | rge Multiplied by the Concent   | ration of the Analyte                      |                                 |
|                    | 2 - Concentration of Analyte in the River is Equal | to the Mass Flux Divided by t   | he River Discharge                         |                                 |
| Assumptions :      |                                                    |                                 |                                            |                                 |
|                    | 1 - The maximum concentration in groundwater w     | vill discharge into the Buffalo | River (i.e. no attenuation or degradation) |                                 |
|                    | 2 - The maximum concentration occurs throughout    | it the contaminant plume        |                                            |                                 |
|                    | 3 - The groundwater discharge zone is 350 ft base  | d on groundwater flow maps.     |                                            |                                 |
| <u>Equations :</u> |                                                    |                                 | Values :                                   |                                 |
|                    | a. $Q = KIA$                                       |                                 | K =                                        | 53.5 (ft/day)                   |
|                    | b. $A = WS$                                        |                                 | I =                                        | 0.026 (ft/ft)                   |
| <u>Variables :</u> |                                                    |                                 | A =                                        | 4,151 (ft <sup>2</sup> )        |
|                    | Q = Groundwater Discharge                          | ft³/day                         | W =                                        | 350 (ft)                        |
|                    | K = Hydraulic Conductivity                         | (ft/day)                        | S =                                        | 11.86 (ft)                      |
|                    | I = Hydraulic Gradient                             | (ft/ft)                         | Q =                                        | 5,774 ft <sup>3</sup> /day      |
|                    | A = Cross Sectional Area                           | $(\mathrm{ft}^2)$               | or $Q =$                                   | 163,478 L/day                   |
|                    | W = Width of the area                              | (ft)                            | Stream Flow =                              | 44,161,632 ft <sup>3</sup> /day |
|                    | S = Saturated Thickness                            | (ft)                            | or Stream Flow =                           | 1,250,657,418 L/day             |

Table E-2. Calculation of Mass Flux in Groundwater Disposal, Mobil Buffalo Terminal, Terminal Disposal Area, Buffalo, New York

## Mass Flux of COCs that Exceed their Respective Class C Standards or Guidance Values

Mass Flux = (Concentration \* Q)

ş

ţ

4

1

٠

ł.

1

ł

| Well Designation | Date Sampled | Analyte      | Maximum       | Class C Ambient Water | Class C Ambient Water | Mass       |
|------------------|--------------|--------------|---------------|-----------------------|-----------------------|------------|
|                  |              |              | Concentration | Quality (1) Standard  | Quality (1) Guidance  | Flux       |
|                  |              |              | (µg/L)        | (µg/L)                | (µg/L)                | (μg/day)   |
| LF-3             | 8/23/1999    | Acenaphthene | 9             | 20                    | 5.3                   | 1,471,302  |
| LF-3             | 8/23/1999    | Fluorene     | 7             | 0.54                  |                       | 1,144,346  |
| LF-6             | 8/23/1999    | Phenanthrene | 9             |                       | 5                     | 1,471,302  |
| LF-6             | 8/25/1999    | Benzene      | 83            | 10                    | 210                   | 13,568,669 |

## Contaminant Loading of COCs in the Buffalo River

Concentration in River = (Mass Flux / Stream Flow)

| Analyte      | Mass Flux  | Concentration in River       | Concentration in River      | Concentration in River     | Concentration in River       | Concentration in River        |
|--------------|------------|------------------------------|-----------------------------|----------------------------|------------------------------|-------------------------------|
|              |            | Assumed 100 % of Stream Flow | Assumed 50 % of Stream Flow | Assumed 1 % of Stream Flow | Assumed 0.1 % of Stream Flow | Assumed 0.05 % of Stream Flow |
|              | (µg/day)   | (µg/L)                       | (µg/L)                      | (µg/L)                     | (µg/L)                       | (µg/L)                        |
| Acenaphthene | 1,471,302  | 0.001176                     | 0.002353                    | 0.117642                   | 1.176422                     | 2.352845                      |
| Fluorene     | 1,144,346  | 0.000915                     | 0.001830                    | 0.091500                   | 0.914995                     | 1.829991                      |
| Phenanthrene | 1,471,302  | 0.001176                     | 0.002353                    | 0.117642                   | 1.176422                     | 2.352845                      |
| Benzene      | 13,568,669 | 0.010849                     | 0.021698                    | 1.084923                   | 10.849230                    | 21.698459                     |

(1)- NYSDEC Division of Water Technical and Operational Guidance Series (1.1.1) Ambient Water-Quality Standards and Guidance Values, June 1998

Bold - Data Highlighted in Bold Represent Detections that Exceed the NYSDEC Ambient Water Quality Standards and Guidance Values for Class C Waters

µg/L - Micrograms per liter

 $\mu g/day$  - Micrograms per day

# ROUX ASSOCIATES, INC.

|                    |                                                    | •                               | • • •                                      |                                 |
|--------------------|----------------------------------------------------|---------------------------------|--------------------------------------------|---------------------------------|
| Conceptual Basis : |                                                    |                                 |                                            |                                 |
| •                  | 1 - Mass Flux is Equal to the Groundwater Discha   | rge Multiplied by the Concent   | ration of the Analyte                      |                                 |
|                    | 2 - Concentration of Analyte in the River is Equal | to the Mass Flux Divided by t   | he River Discharge                         |                                 |
| Assumptions :      |                                                    |                                 |                                            |                                 |
|                    | 1 - The maximum concentration in groundwater w     | vill discharge into the Buffalo | River (i.e. no attenuation or degradation) |                                 |
|                    | 2 - The maximum concentration occurs throughout    | it the contaminant plume        |                                            |                                 |
|                    | 3 - The groundwater discharge zone is 350 ft base  | d on groundwater flow maps.     |                                            |                                 |
| <u>Equations :</u> |                                                    |                                 | Values :                                   |                                 |
|                    | a. $Q = KIA$                                       |                                 | K =                                        | 53.5 (ft/day)                   |
|                    | b. $A = WS$                                        |                                 | I =                                        | 0.026 (ft/ft)                   |
| <u>Variables :</u> |                                                    |                                 | A =                                        | 4,151 (ft <sup>2</sup> )        |
|                    | Q = Groundwater Discharge                          | ft³/day                         | W =                                        | 350 (ft)                        |
|                    | K = Hydraulic Conductivity                         | (ft/day)                        | S =                                        | 11.86 (ft)                      |
|                    | I = Hydraulic Gradient                             | (ft/ft)                         | Q =                                        | 5,774 ft <sup>3</sup> /day      |
|                    | A = Cross Sectional Area                           | $(\mathrm{ft}^2)$               | or $Q =$                                   | 163,478 L/day                   |
|                    | W = Width of the area                              | (ft)                            | Stream Flow =                              | 44,161,632 ft <sup>3</sup> /day |
|                    | S = Saturated Thickness                            | (ft)                            | or Stream Flow =                           | 1,250,657,418 L/day             |

Table E-2. Calculation of Mass Flux in Groundwater Disposal, Mobil Buffalo Terminal, Terminal Disposal Area, Buffalo, New York

## Mass Flux of COCs that Exceed their Respective Class C Standards or Guidance Values

Mass Flux = (Concentration \* Q)

ş

ţ

4

1

٠

ł.

1

ł

| Well Designation | Date Sampled | Analyte      | Maximum       | Class C Ambient Water | Class C Ambient Water | Mass       |
|------------------|--------------|--------------|---------------|-----------------------|-----------------------|------------|
|                  |              |              | Concentration | Quality (1) Standard  | Quality (1) Guidance  | Flux       |
|                  |              |              | (µg/L)        | (µg/L)                | (µg/L)                | (μg/day)   |
| LF-3             | 8/23/1999    | Acenaphthene | 9             | 20                    | 5.3                   | 1,471,302  |
| LF-3             | 8/23/1999    | Fluorene     | 7             | 0.54                  |                       | 1,144,346  |
| LF-6             | 8/23/1999    | Phenanthrene | 9             |                       | 5                     | 1,471,302  |
| LF-6             | 8/25/1999    | Benzene      | 83            | 10                    | 210                   | 13,568,669 |

## Contaminant Loading of COCs in the Buffalo River

Concentration in River = (Mass Flux / Stream Flow)

| Analyte      | Mass Flux  | Concentration in River       | Concentration in River      | Concentration in River     | Concentration in River       | Concentration in River        |
|--------------|------------|------------------------------|-----------------------------|----------------------------|------------------------------|-------------------------------|
|              |            | Assumed 100 % of Stream Flow | Assumed 50 % of Stream Flow | Assumed 1 % of Stream Flow | Assumed 0.1 % of Stream Flow | Assumed 0.05 % of Stream Flow |
|              | (µg/day)   | (µg/L)                       | (µg/L)                      | (µg/L)                     | (µg/L)                       | (µg/L)                        |
| Acenaphthene | 1,471,302  | 0.001176                     | 0.002353                    | 0.117642                   | 1.176422                     | 2.352845                      |
| Fluorene     | 1,144,346  | 0.000915                     | 0.001830                    | 0.091500                   | 0.914995                     | 1.829991                      |
| Phenanthrene | 1,471,302  | 0.001176                     | 0.002353                    | 0.117642                   | 1.176422                     | 2.352845                      |
| Benzene      | 13,568,669 | 0.010849                     | 0.021698                    | 1.084923                   | 10.849230                    | 21.698459                     |

(1)- NYSDEC Division of Water Technical and Operational Guidance Series (1.1.1) Ambient Water-Quality Standards and Guidance Values, June 1998

Bold - Data Highlighted in Bold Represent Detections that Exceed the NYSDEC Ambient Water Quality Standards and Guidance Values for Class C Waters

µg/L - Micrograms per liter

 $\mu g/day$  - Micrograms per day

# ROUX ASSOCIATES, INC.



# LEGEND:

| 90                            | EXISTING STORAGE TANK                                                                                    |
|-------------------------------|----------------------------------------------------------------------------------------------------------|
| (88)                          | FORMER STORAGE TANK                                                                                      |
| - <del>X</del> X              | FENCE                                                                                                    |
| MW−9 <del>ф</del>             | LOCATION AND DESIGNATION OF<br>MONITORING WELL                                                           |
| RW−1<br><u>563.39</u><br>1.86 | LOCATION AND DESIGNATION OF<br>RECOVERY WELL                                                             |
|                               | - GROUNDWATER ELEVATION, MEASURED<br>IN FEET ABOVE MEAN SEA LEVEL                                        |
|                               | - PRODUCT THICKNESS IN FEET.<br>ABSENCE OF NUMBER INDICATES<br>NO PRODUCT PRESENT.                       |
| NM                            | NOT MEASURED                                                                                             |
| 80—                           | LINE OF EQUAL GROUNDWATER ELEVATION,<br>MEASURED IN FEET ABOVE MEAN SEA LEVEL<br>(DASHED WHERE INFERRED) |
|                               | APPROXIMATE GROUNDWATER FLOW<br>DIRECTION                                                                |
| ••••                          | WELL POINT SYSTEM                                                                                        |
|                               | LATERAL EXTENT OF PRODUCT PLUME                                                                          |
|                               |                                                                                                          |
|                               | WELL AVERAGE FLOW RATE<br>FOR MAY 1998                                                                   |

| WELL<br>DESIGNATION                                               | FOR MAY 1998<br>(GALLONS PER MINUTE)     |
|-------------------------------------------------------------------|------------------------------------------|
| RW-1<br>RW-2<br>RW-3<br>RW-4<br>RW-5<br>RW-6<br>WELL POINT SYSTEM | 20<br>7.5<br>5.5<br>10<br>6<br>0<br>67.6 |

572

\* LF-2D NOT USED; SCREENED AT DEEPER INTERVAL

- \* SB-10 NOT USED; ANOMOUSLY READING
- \* RW-6 GROUNDWATER ELEVATION NOT USED FOR CONTOURING DUE TO ANOMOUSLY HIGH READING
- \* SB-7, MW-4 AND MW-5 GROUND WATER ELEVATIONS NOT USED FOR CONTOURING DUE TO SUSPECTED PERCHED ZONE.

| GROUNDWATER POTENTIOMETRIC MAP<br>OCTOBER 7, 1999 |  |
|---------------------------------------------------|--|
| MOBIL BUFFALO TERMINAL<br>BUFFALO, NEW YORK       |  |

MOBIL OIL CORPORATION

Prepared For:

|                       | 41                 |                 | 2     |
|-----------------------|--------------------|-----------------|-------|
|                       | Compiled by: S.S.  | Date: 11/99     | PLATE |
| RUUA                  | Prepared by: G.M.  | Scale: AS SHOWN |       |
| ROUX ASSOCIATES, INC. | Project Mgr: A.B.  | Office: NY      | 1     |
| & Management          | File No: MC5211107 | Project: 17252Y | 2     |











