ExxonMobil **Environmental Services Company** 1001 Wampanoag Trail Riverside, Rhode Island 02915

ExonMobil

April 22, 2008 2009

Mr. Chad Staniszewski New York State Department of **Environmental Conservation** 270 Michigan Avenue Buffalo, NY 14203

RE: EXXON MOBIL OIL CORPORATION FORMER BUFFALO TERMINAL **625 ELK STREET BUFFALO, NEW YORK BROWNFIELD SITE #C915201 OPERABLE UNITS 2 & 3** SOIL VAPOR SAMPLING REPORT

Dear Mr. Doster:

Attached please find the "Soil Vapor Sampling Report" dated January 30, 2009 for Operable Units 2 and 3 for the above referenced site. The report includes a work plan for additional sampling.

If there are any questions please call me at (401) 434-7356.

Sincerely,

J.A. Abel Project Manager

RECEIVED FEB 0 4 2009 NYSDEC REG 9 VREL UNREL

Cc: Mr. Cameron O'Connor - NYSDOH Buffalo **Buckeye Terminals LLC** One Babcock Terminal

January 30, 2009

SOIL VAPOR SAMPLING REPORT

ExxonMobil Former Buffalo Terminal Buffalo, New York

Prepared for

EXXONMOBIL OIL CORPORATION 1001 Wampanoag Trail Riverside, Rhode Island 02915

ROUX ASSOCIATES, INC.

Environmental Consulting & Management

TABLE OF CONTENTS

1.0 INTRODUCTION	1
2.0 SOIL VAPOR SAMPLING SCOPE OF WORK PERFORMED	5
2.1 Description of Samples Collected	
2.1.1 BSPA Vapor Samples in the Vicinity of Buildings 135 and 140	
2.1.2 AOOA Vapor Samples in the Vicinity of Buildings 152 and 153	7
2.1.3 OU-3 Characterization of the Potential for Soil Vapor Generation in	0
Separate-Phase Product Areas	
2.1.4 Additional Boundary Son Vapor Samples	9
2.2.1 Task 1 – Utility Clearance and Installation of Soil Vapor Sampling Points	
2.2.2 Task 2 – Sample Collection and Analysis	
3.0 EVALUATION OF AMBIENT AIR AND SOIL VAPOR SAMPLE RESULTS	
3.1 Evaluation of Ambient Air Results	
3.2 Development of Sub-slab Attenuation Factors and Comparison to Criteria	14
3.2.1 Sub-slab Attenuation Factors and Comparison Criteria	15
3.2.2 Comparison to Adjusted Indoor Air Criteria	
3.2.3 Comparison to OSHA PELs	
3.2.4 Comparison to Twenty-five Percent of Methane LEL	17
3.3 Evaluation of Comparison Results	
4.0 PROPOSED ADDITIONAL SAMPLING	20
4.1 Proposed BSPA Vapor Samples in the Vicinity of Buildings 135 and 140, the 72-	
inch Municipal Sewer in Babcock Street and the Western BCP Site Boundary	20
4.1.1 Proposed Additional Sub Slab Soil Vapor Sampling in the Vicinity of	20
Building 135 4.1.2 Proposed Additional Sub Slab Soil Vapor Sampling and Methane Screening	20
in the Vicinity of Building 140	20
4.1.3 Proposed Sampling Along the BSA Municipal Sewer in Babcock Street	
4.1.4 Proposed Additional Soil Vapor Samples to Evaluate the Western BCP Site	
Boundary	21
4.2 Proposed AOOA Vapor Samples in the Vicinity of Buildings 152 and 153 and	
NPSA Vapor Sample Along the Sewer Line that Extends to Elk Street Near the Mair	
Entrance	
4.2.1 Proposed Sampling at Building 152	
4.2.2 Proposed Sampling at Building 1534.2.3 Proposed Sampling Along the Sewer Line that Extends to Elk Street Near	22
4.2.5 Proposed Sampling Along the Sewer Line that Extends to Elk Street Near the Main Entrance in the NPSA	$\gamma\gamma$
4.3 Sampling and Analysis Protocols	
5.0 PROJECT SCHEDULE.	
6.0 REFERENCES	

TABLE OF CONTENTS

(Continued)

TABLES

- 1. Comparison Detected Soil Vapor Concentrations to Adjusted Background Indoor Air Values and Adjusted OSHA PELs
- 2. Summary of Fixed Gas Concentrations in Soil Vapor Samples
- 3. Summary of Exceedances of Comparison Values and Rationale for Further Sampling

FIGURES

- 1. Site Location Map
- 2. Soil Vapor Sampling Locations
- 3. Typical Temporary Sub-Slab Vapor and Soil Vapor Monitoring Point and Sampling Scheme for VOCs

APPENDICES

- A. Soil Vapor Sampling Field Forms
- B. Field Equipment Calibration Forms
- C. Data Usability Summary Report

1.0 INTRODUCTION

Roux Associates, Inc. (Roux Associates), on behalf of ExxonMobil Oil Corporation (ExxonMobil), has prepared the following description of soil vapor sampling results and scope of work for additional soil vapor sampling within Operable Units 2 and 3 (OU-2 and OU-3) of the ExxonMobil former Buffalo Terminal, Buffalo, New York (Site; Figure 1). The soil vapor sampling described in this report was completed in October and November 2008 in accordance with:

- the Soil Vapor Sampling Plan dated April 21, 2008 (Plan);
- the letter dated June 16, 2008 entitled "Response to NYSDEC Draft Comments Dated May 28, 2008 Regarding Soil Vapor Sampling Plan dated April 21, 20098 (Site # C915201)"; and
- the letter dated August 11, 2008, entitled "Response to NYSDEC/NYSDOH Emailed Comments Dated July 22, 2008 Regarding Soil Vapor Sampling Plan dated April 21, 2008 (Site # C915201)"

The soil vapor sampling results (summary tables and analytical reports) were forwarded to the NYSDEC in a letter dated December 5, 2008. This report includes an evaluation of the data and proposes additional sampling.

OU-2 is located south of Elk Street and north of Prenatt Street and OU-3 is located south of Prenatt Street and north of the Buffalo River, as shown in Figure 2. The results of previous subsurface investigations within OU-2 and OU-3 were described in the Plan and will not be reiterated here.

The soil vapor sampling and analysis of the potential for soil vapor intrusion completed per the Plan in October and November 2008, coupled with the further sampling recommended in this report, will address the following three goals:

- Evaluation of existing occupied buildings onsite;
- Evaluation of site property boundaries; and
- Evaluation of the potential for vapor generation from areas of separate-phase product.

The results described herein relate to four buildings associated with the former petroleum refinery and/or active petroleum storage and distribution operation that are currently occupied within the limits of OU-2 and OU-3. These are:

- the Buckeye Terminals, LLC (Buckeye) warehouse/garage/main terminal office in the Administrative Offices and Operations Area (AOOA) in OU-2 (identified on Figure 2 as Building 152 Main Office [Former Mechanical Shops]);
- the building identified on Figure 2 as Building 153 Store House in the AOOA in OU-2;
- the garages in the Babcock Street Properties Area (BSPA) in OU-2 (identified on Figure 2 as Building 140 One Babcock Street Tenants (One Babcock) [former Lakes Division Garage]); and
- the One Babcock Street offices and warehouse (identified on Figure 2 as Building 135 One Babcock Street Offices [former Barrel House]), located within the BSPA in OU-3.

Vehicles and equipment are stored and maintained in the garages in all buildings with the exception of Building 135 and activities include the use of petroleum products. In addition, portions of each of the buildings include office and/or storage space. Detailed descriptions of the site setting and history of OU-2 and OU-3 were described in the Plan and will not be reiterated here. Unoccupied buildings were not included in the Plan and include the Laboratory Building located within the AOOA which is abandoned and locked with no plans to reopen it, the Electrical Sub-Station A structure in the AOOA which is not used for continuous occupancy, and the One Babcock Street Storage Facility [former Truck Loading Rack] used for storage and which is not occupied on a regular basis.

To evaluate existing occupied buildings, ExxonMobil collected multiple soil vapor and/or subslab vapor samples either beneath the slabs of the occupied buildings or immediately adjacent to the buildings. Samples were collected due to the presence of volatile petroleum constituents and/or mercury in soil and groundwater in the vicinity of occupied buildings and utility corridors and due to the presence of separate-phase product in OU-3.

In addition, several soil vapor samples were collected along the BCP site boundary in areas where volatile petroleum constituents and/or mercury were detected in soil and groundwater during previous investigations.

Finally, soil vapor samples were collected at two locations above the separate-phase product plume in OU-3 to evaluate the potential for generation of impacted soil vapor in separate-phase product areas.

Where possible, soil vapor points were located underneath pavement or concrete.

Sampling was conducted in accordance with the Soil Vapor Intrusion Guidance Document (NYSDOH, 2006). In the following sections, the results of the soil vapor and sub-slab samples are evaluated relative to NYSDOH soil vapor comparison values (NYSDOH, 2006).

In order to address the environmental conditions at the Site, ExxonMobil entered into a Brownfield Site Cleanup Agreement with the New York State Department of Environmental Conservation (NYSDEC) on April 3, 2006. Under this agreement, the Site entered into New York State's Brownfield Cleanup Program (BCP). The Site is defined, for the purposes of the BCP, as the area within the limits of the five OUs. In addition, the Site was divided into nine geographic areas for the purpose of assessing environmental conditions and reporting the results of areaspecific activities. These geographic areas were designated according to the historical primary operations that occurred in each portion of the Site. OU-2 encompasses portions of the former geographic areas designated as the northern portion of the BSPA and the AOOA, as well as the northern portion of the Former Refinery Area (FRA), Northern Tank Yard Area (NTYA), Northeast Process and Storage Area (NPSA), and a small northern portion of the Central Rail and Process Area (CRPA). OU-2 is depicted on Figure 2. OU-3 encompasses the southern portions of the BSPA, FRA, and CRPA, as well as the entire Southern Tank Yard Area (STYA), as shown on Figure 2.

The operational portion of the Site south of Elk Street is currently a petroleum products storage and distribution facility owned and operated by Buckeye with the surrounding non-operating area (formerly part of historic operations) owned by ExxonMobil.

Until recently, there was no comprehensive development plan currently in place for this portion of Buffalo. However, ExxonMobil and other stakeholders in the area undertook an evaluation of the best future use of the property and surrounding areas of this portion of Buffalo known as the "Elk Street Corridor". In November 2008, the results of the evaluation were documented in a report entitled "Elk Street Corridor Redevelopment Plan" (Wendel Duchscherer, 2008). In the vicinity of the Site, the Preferred Redevelopment Plan includes a combination of light industrial, back office, commercial, green space, and very limited retail use. Until the redevelopment plan is implemented, continued uses of the Site include vacant land with a portion operating as a petroleum products storage and distribution terminal owned and operated by Buckeye and a portion (on the Babcock Street Properties Area (BSPA)) owned and operated by One Babcock for various industrial purposes. This work plan will guide further evaluation of soil vapor impacts based on current and reasonably anticipated future uses of the property.

2.0 SOIL VAPOR SAMPLING SCOPE OF WORK PERFORMED

The following sections include the description and rationale for selection of the soil vapor samples collected in October and November 2008 and the scope of work completed to collect the samples.

2.1 Description of Samples Collected

Because volatile petroleum constituents have been detected in soil and groundwater in OU-2 and OU-3 and separate-phase product has been identified in site wells, ExxonMobil evaluated the potential for intrusion of site-related constituents from the subsurface to the interior spaces for the three occupied buildings in OU-2 and the occupied building in OU-3. In addition, ExxonMobil evaluated the potential for soil vapor near the separate-phase product plume and the Site property boundary. All samples were analyzed for petroleum-related VOCs and methane. In addition, two samples were analyzed for mercury, as described below. As described in Section 1, soil vapor sampling activities were completed at four buildings associated with the former petroleum refinery and/or active petroleum storage and distribution operation are currently occupied within the limits of OU-2 and OU-3. These are:

- the One Babcock Street offices (former Barrel House), identified as Building 135, located within the BSPA;
- the garages in the BSPA (identified as Building 140 Former Lakes Division Garage [One Babcock Street Tenants]);
- the Buckeye's warehouse/garage/main terminal office in the AOOA (identified as Building 152 Main Office (Former Mechanical Shops)); and
- the building identified as Building 153 Store House in the AOOA.

Because soil samples collected near the four occupied buildings have measured concentrations of volatiles as discussed in the Plan and one occupied building in the BSPA is in the vicinity of a separate-phase product plume, ExxonMobil collected multiple soil vapor and/or sub-slab vapor samples either beneath the slabs of the occupied buildings or immediately adjacent to the buildings. The locations and depths of the samples are described below by area. Figure 2 shows the locations of the sub-slab and/or soil vapor samples. The rationale for the selected sampling points is described below. In most cases, the samples were collected from the location shown in the Plan or from an alternative location less than 5 feet away. The actual locations are shown on

Figure 2. Where installation of the sampling point was not possible (SV-7) or the location was moved significantly (SV-12), these changes are described below.

2.1.1 BSPA Vapor Samples in the Vicinity of Buildings 135 and 140

Soil samples collected from the BSPA near Building 135 identified petroleum impacts in shallow and deep soil. Soil samples collected near Building 140 identified petroleum and mercury impacts at 2.5 feet below grade. The soil vapor samples were collected from a shallow depth of 2 feet, approximately 1 foot deeper than the building slab of the slab-on-grade buildings to evaluate the potential for vapor intrusion into the buildings.

A well point system for groundwater remediation operates along the entire southern border of OU-3 adjacent to the bulkhead. The well point system depresses the water table and extracts groundwater by inducing a vacuum on the well points. In order to limit the potential effects of the vacuum generated by the well point system on the soil vapor samples in OU-3, the well point system was temporarily shut down one day before and during the sampling event.

A discussion of the sampling locations for each building is described below. Figure 2 presents the locations of each sample. All samples were analyzed for petroleum-related VOCs and fixed gasses, including methane, carbon dioxide, carbon monoxide, oxygen, hydrogen, and nitrogen. In addition, sample SV-1 was analyzed for mercury.

Building 135

Separate product has been identified in the immediate vicinity of Building 135 - One Babcock Street Offices (former Barrel House). Separate-phase product thicknesses are generally higher in the vicinity of the northern portion of Building 135. In addition, the highest concentrations of VOCs in soil and groundwater were observed toward the northern end of the building and upgradient of the building. A storm sewer (potential preferential pathway) runs east-west approximately 30 feet north of the building. In addition, the 72-inch municipal sewer in Babcock Street runs in a north to south direction from the Buffalo River to Elk Street. A natural gas line runs south from Elk Street along the east side of Babcock Street to Building 135. It enters the west side of the building approximately five feet from the northwest corner of the building. One soil vapor sample (SV-10) was installed in asphalt between the One Babcock

Street Offices and the sewer line near the northwest corner of the building. A second soil vapor sample (SV-11) was installed in asphalt between the One Babcock Street Offices and the storm sewer line near the northeast corner of the building. These samples were used to assess the potential for soil vapor intrusion into the occupied building, as well as the potential for generation of impacted soil vapor in separate-phase product areas (discussed further below). The northern portion of the building is occupied with offices. The southern portion of the building is used as warehouse space. Since separate-phase product has only been detected infrequently in isolated monitoring wells near the southern portion of the building and since the southern end of the building is unoccupied, no soil vapor samples were completed at the southern end of the building.

Building 140

The highest concentrations in soil and/or groundwater were in samples collected on the upgradient end of Building 140. As pipe removal activities were conducted just north of the building and the most occupied garage is located at the northern end of the building, a sub-slab vapor sample (SV-1) was collected within the occupied portion of Building 140. Utilities are located on the southern and eastern edges of the building and may present a preferential pathway of vapor migration. A natural gas line runs south from Elk Street along the east side of Babcock Street. A branch from the main line crosses under Babcock Street and enters through the south side Building 140 approximately 10 feet from the southeast corner of the building. A second sub-slab vapor sample (SV-2) was collected within the occupied office space located on the southeast end of the building. The southern sample, SV-2, is closest to the western end of OU-2; therefore, it was also selected to evaluate for the presence of subsurface vapor at the Site property boundary.

2.1.2 AOOA Vapor Samples in the Vicinity of Buildings 152 and 153

Soil samples collected from the AOOA near Buildings 152 and 153 identified petroleum impacts in shallow soils in the area. The shallow contamination is likely due to surface spills, instead of groundwater contamination, as deeper soils at the groundwater table are generally not contaminated. As groundwater is shallow and potential sources are likely related to surface spills, the soil vapor samples were collected from a shallow depth of 2 feet, approximately 1 foot deeper than the building slab of the slab-on-grade buildings to evaluate the potential for vapor intrusion into the buildings. A discussion of the sampling locations for each building is described below. Figure 2 presents the locations of each sample. Samples were analyzed for petroleum-related VOCs and fixed gasses.

Building 152

To characterize potential vapors in the vicinity of Building 152 and to identify any areas for future characterization, three soil vapor samples were collected from paved areas around Building 152. One sample (SV-3) was collected from an unpaved area upgradient of the building near the storm sewer line. Installation of this point in the proposed paved area was not possible due to encountering concrete beneath the asphalt pavement in excess of 14 inches. One soil vapor sample (SV-4) was collected east of Building 152 in the paved area between this building and Building 153. In addition, one soil vapor sample (SV-5) was collected from a paved area at the downgradient edge of the building to characterize soil vapor on the southern side of the building. This sample was located near the underground electrical/control conduit, which runs south from Building 152 to the Tank Truck Loading Rack (Building 112), in order to also characterize the potential preferential pathway along the underground utility that may be due to migration of vapors from separate-phase product and soil impacts in the vicinity of the loading rack.

Building 153

Two soil samples which were collected from SB-192, located approximately 100 feet north of the Store House (Building 153), identified petroleum constituents at a shallow depth, stained soils, and PID reading in excess of 100 ppm. As this area may have a source of volatile constituents and is located upgradient of the building, one soil vapor sample (SV-6) was collected from a concrete area to the north of Building 153, downgradient of SB-192. In addition, one soil vapor sample (SV-7) was attempted in a paved area immediately downgradient of the building to characterize the extent of any potential soil vapor contamination. SV-7 could not be installed due to shallow water encountered at approximately 1.5 feet below grade. Several unsuccessful attempts were made to install this sample point. This point was intended to characterize the extent of any potential soil vapor impacts that may be due to migration of vapors from separate-phase product and soil impacts in the vicinity of the loading rack. In addition, it was located approximately 50 feet to the east of soil boring SB-191 where VOC soil

concentrations, black staining, petroleum odor, and a PID reading of 30 ppm were observed at 3 to 4 feet below land surface.

2.1.3 OU-3 Characterization of the Potential for Soil Vapor Generation in Separate-Phase Product Areas

In addition to characterizing potential for vapor intrusion into Building 135, SV-10 and SV-11 also characterized soil vapor VOCs and methane related to the separate-phase product plume in OU-3. One additional sample (SV-12) was collected in OU-3 for this purpose. Sample SV-12 was initially located above the main product plume in OU-3 in a paved road just to the west of the active lined aboveground tank farm in the STYA. The point was moved approximately 160 feet to the west in an unpaved area adjacent to a paved road after three unsuccessful attempts were made to install the point in the original location (concrete/rock in excess of 14 inches was encountered at each location attempted). SV-12 is located in the vicinity of several wells, which currently and historically have separate-phase product present.

The soil vapor samples were collected from a shallow depth of 2 feet. In order to limit the potential effects of the vacuum generated by the well point system on the soil vapor samples in OU-3, the well point system was temporarily shut down one day before and during the sampling event.

2.1.4 Additional Boundary Soil Vapor Samples

As described above, sub-slab soil vapor sample SV-2 was collected to understand soil vapor concentrations that may migrate to offsite areas to the west, as well as to assess potential soil vapor impacts to the occupied building. Two additional samples, SV-8 and SV-9, were collected on the northern property boundary within the FRA and northeastern property boundary, within the NPSA, respectively. The soil vapor samples were collected from a shallow depth of 2 feet.

These samples were collected to further understand the concentrations of soil vapor that may be present at the Site boundaries adjacent to offsite areas. Sample SV-8 was moved from its original location in the NTYA near the site entrance to the FRA just north of Test Pit 12A based upon the second round of comments provided by the NYSDEC and NYSDOH on July 22, 2008. The comments stated that NYSDEC and NYSDOH were concerned about the potential off-site

migration of vapors from existing contamination in the northern portion of the FRA. SV-9 was collected from an unpaved area just west of the OU-2 boundary and current ExxonMobil property line. No utilities are located in this area. SV-9 is located between soil boring SB-107 and the property line since SB-107 had the highest total VOC and TPH concentrations in the vicinity of and below the water table in this area of OU-2 and had one of the highest concentrations of mercury in OU-2. SV-9 was therefore analyzed for petroleum-related VOCs, methane and mercury. SV-8 was analyzed for petroleum-related VOCs and methane.

2.2 Scope of Work Completed

The Scope of Work for the sample collection and data evaluation was divided into the following tasks:

- Task 1 Utility Clearance Activities;
- Task 2 Sample Collection and Analysis; and
- Task 3 Data Evaluation and Report Preparation.

Each task is described below:

2.2.1 Task 1 – Utility Clearance and Installation of Soil Vapor Sampling Points

Prior to any intrusive activities, the New York One Call center was contacted to mark out all of the utilities in the study area. To ensure that no utilities were disrupted during the installation of the sampling points, a utility clearance was completed by hand prior to installing the sample collection point. The building owner was also questioned to provide information regarding the location of any potential utilities in the areas that were to be sampled.

Soil Vapor Sample Points

The soil vapor sample points were installed to a depth of 2 to 2.5 feet using hand tools. Each sample point was installed at least one foot above the water table. Approximately 2 inches of sand were installed in the bottom of the borehole and a length of Teflon-lined sample tubing fitted with a six inch long stainless steel sample screen was inserted into the borehole. The annular space was backfilled with coarse sand to one foot above the sample tubing. Above the sand, a bentonite seal was installed in the annular space to within one foot of ground surface to secure the sample tubing in place and to seal the borehole to prevent infiltration of ambient air to

the soil gas sample point. The borehole was then backfilled with non-impacted native material, more bentonite, or clean sand to grade. Figure 3 provides a schematic of the sampling set-up for VOCs and Figure 4 provides a schematic of the sampling setup for mercury. The end of the tubing protruding above the land surface was sealed until the soil sampling began. The sample points were left in place with the tubing capped following sample collection.

Sub-Slab Vapor Sample Points

For indoor sub-slab samples, a 1-inch hole was drilled through the concrete slab and a vacuum was used to loosen and remove the material within the boring to a depth of eight inches below the slab. Upon reaching the target depth, two inches of coarse sand were installed in the bottom of the borehole. A six inch long stainless steel sample screen attached to a length of Teflon-lined sample tubing was extended to the bottom of the boring (the screened interval was zero to six inches below the slab). The annular space was backfilled with coarse sand to the top of the sample screen. Above the sand, a temporary bentonite or modeling clay seal was installed in the annular space between the sample tubing and the slab penetration to secure the sample tubing in place and to seal the penetration through the slab to prevent migration of any potential vapors present beneath the slab into the building. Figure 3 provides a schematic of the sampling set-up for VOCs and Figure 4 provides a schematic of the sampling setup for mercury. The sample points were left in place with the tubing capped following sample collection.

2.2.2 Task 2 – Sample Collection and Analysis

Soil vapor samples were collected from the locations described above. The following procedural steps were followed during soil vapor sample collection:

- 1. For both VOC and mercury sampling, new Teflon-lined tubing was passed through a plastic container (i.e., bucket) and connected to a 'T' connector three-way valve assembly, with one end of the 'T' connector leading to a vacuum air purge pump and the other end leading to:
 - a. a pre-evacuated six-liter summa canister with regulator calibrated to collect a sample over an 8-hour period for VOC sampling.
 - b. the mercury sampling train including the mixed cellulose ester (MCE) pre-filter cartridge, solid sorbent tube (Hopcalite media), and pre-calibrated sample pump.

- 2. A tracer gas (i.e., helium) was then used to enrich the atmosphere in the immediate vicinity of the sampling location (using an inverted bucket) where the sampling tubing intersects the ground surface in order to test the borehole seal and verify that ambient air is not inadvertently drawn into the sample. The tracer gas was used to verify that ambient air did not dilute the soil vapor sample being collected.
- 3. The soil vapor sample tubing was purged of approximately three volumes of the sample tubing using a vacuum pump set at a rate of approximately 0.2 liters per minute.
- 4. Both the purged air in the sample tubing and the helium-enriched area within the bucket were screened for the tracer gas. The tracer gas was measured utilizing a portable helium detecting meter, which measures the rate of helium leakage in milliliters per second. If the screening results indicated that the rate of helium detected in the sampling tubing was greater than 20 percent of the helium detected in the enriched area (i.e., within the bucket), the seals around the sampling equipment were reset and the sample tubing purged again until the tracer gas was no longer detected at levels greater than 20 percent of the enriched concentration located directly above the borehole.
- 5. Following the purging and tracer gas verification steps, the air purge pump was turned off, the valve leading to the air purge pump was closed, and the soil vapor was directed to the summa canister for VOC samples or mercury sample pump for mercury samples for sample collection. The summa canister regulator restricted the sample collection rate to approximately 12.5 milliliters per minute (0.0125 liters per minute) to allow the sample to be collected over an 8-hour period. The mercury sample pump was laboratory calibrated for a flow rate of 210 milliliters per minute (0.21 liters per minute) to allow for a 100 liter sample to be collected over 8 hours.

Samples were collected on October 6 and 7, 2008, October 28 and 29, 2008 and November 5,

- 2008. The following problems occurred during sampling:
 - On October 7, 2008, the mercury sample from SV-9 was discarded due to water being drawn into the sample pump.
 - On October 29, 2008 an attempt was made sample SV-1 for mercury for the first time and to resample SV-9 for mercury. These samples were not completed as it was discovered that the laboratory had sent the wrong sample tube. Both locations were successfully re-sampled on November 5, 2008.

Outdoor ambient air samples were collected concurrently with the soil vapor and sub-slab vapor samples. Two duplicate samples for VOCs were obtained during the sampling program by collecting two samples sequentially from the same sample point.

During sampling, weather conditions were recorded (e.g., precipitation, indoor and outdoor temperature, and barometric pressure). In addition, any pertinent outdoor observations (e.g., odors, PID readings, and significant activities in the vicinity) were recorded.

The field sampling team maintained a sample log sheet summarizing the sample identification, date and time of sample collection, identity of samplers, sampling methods and devices utilized, vacuum of canisters before and after samples are collected, and sample analyses. Soil vapor sampling field forms are presented in Appendix A (including forms for samples that were discarded and re-sampled) and equipment calibration forms are presented in Appendix B.

Each VOC sample was collected in a Summa canister over an 8-hour period. Each VOC air sample was collected using the sampling methods in accordance with the NYSDOH Soil Vapor Intrusion Guidance (NYSDOH, 2006). Each air/soil vapor sample was analyzed for VOCs under a USEPA Method TO-15 list of analytes and methane by modified ASTM 1946 (modified method achieves a detection limit of 10 ppm_v). In addition, soil vapor sample SV-1 was collected with a sample train consisting of a solid sorbent tube with MCE pre-filter cartridge and analyzed for mercury by NIOSH method 6009. The use of the pre-filter allowed for analysis of only elemental mercury vapor on the sorbent tube. The pre-filter was not analyzed. Method-specific QA/QC protocols were followed by the laboratory. Test America Laboratories of Nashville, Tennessee and Phoenix, Arizona provided all laboratory services including the sampling containers and regulators. Test America is an Environmental Laboratory Approved Program (ELAP) certified laboratory. Laboratory data was be reported in NYSDEC ASP Category B deliverables.

In addition, a Data Usability Summary Report (DUSR) was prepared for the vapor samples by a party independent from the laboratory performing the analysis in accordance with Appendix 2B of DER-10. The report prepared by Data Validation Services (DVS) of North Creek, New York is presented in Appendix C. In the instances where DVS suggested adding a qualifier to the laboratory data, the summary tables were modified to reflect that qualification.

3.0 EVALUATION OF AMBIENT AIR AND SOIL VAPOR SAMPLE RESULTS

The following sections provide an evaluation of the soil vapor and ambient air data collected relative to several potentially applicable regulatory criteria and comparison values. Sampling results are provided on Table 1 for VOCs and Table 2 for fixed gases (including methane). The evaluation of fixed gasses presented below focuses only on methane.

Petroleum and non-petroleum related VOCs were detected in the soil vapor and ambient air samples. In addition, methane was detected at several locations at elevated concentrations. Mercury was not detected in either of the soil vapor samples analyzed for this parameter. The discussion below focuses on VOCs and methane. Based on the results, no further assessment of mercury was conducted and no additional sampling is recommended.

3.1 Evaluation of Ambient Air Results

VOCs were detected in all ambient air samples and results were compared to soil vapor concentrations to determine whether multiple sources of VOCs may impact indoor air.

At least four compounds were detected in each ambient air sample and at least three compounds were detected in each soil vapor sample. The maximum concentrations of acetone and chloromethane were detected in Ambient Air 2 and Ambient Air 3, respectively, suggesting that an ambient source, rather than a subsurface source, could contribute to acetone or chloromethane concentrations in indoor air. Likewise, other VOCs detected in ambient air at similar concentrations as soil vapor samples, including 1,3-dichlorobenzene, 2-butanone, 2-propanol, dichlorodifluoromethane, and methylene chloride would likely represent a larger source of indoor air concentrations relative to soil vapor¹.

3.2 Development of Sub-slab Attenuation Factors and Comparison to Criteria

Soil vapor sampling results were evaluated relative to indoor air comparison criteria and a methane screening level. In order to compare indoor air criteria to soil vapor results, indoor air criteria were multiplied by an attenuation factor to convert each indoor air concentration to a

¹ Indoor air VOC sources, such as adhesives, solvents, petroleum products and dry cleaned clothing, also contribute to indoor air concentrations.

corresponding soil vapor concentration. The development of the attenuation factors and the comparison criteria are described below.

3.2.1 Sub-slab Attenuation Factors and Comparison Criteria

Two sub-slab attenuation factors were used in this analysis. First, a sub-slab attenuation factor of 20 was used as a conservative value and represents the lowest indoor air to soil vapor factor used by NYSDOH in Decision Matrix 1 of the Soil Vapor Intrusion Guidance² (NYSDOH, 2006). A second attenuation factor of 150 was used as a more typical attenuation factor based on studies summarized below:

- An investigation of radon by Mosley et al. (2004) found that sub-slab vapor concentrations were approximately 100 to 500 times greater than indoor air concentrations, with ninety percent of the attenuation factors greater than approximately 150. Little et al. (1992) reported that indoor air concentrations were approximately 625 times greater than soil vapor concentrations (i.e., indicating slightly greater attenuation than reported by Mosley et al.). McHugh (2005) reported a radon-based attenuation factor in a small office building of 2000, again indicating greater attenuation than reported by Mosley et al.
- Wertz & McDonald (2004) reported on the confounding effects of background indoor air concentration on the calculation and interpretation of sub-slab attenuation factors from a soil vapor/indoor air investigation involving a chlorinated solvent plume at Endicott, NY. They found that background concentrations in indoor air heavily influenced calculated subslab attenuation factors. Furthermore, they found that the effect of background indoor air concentration on sub-slab attenuation factors could be reduced, but not eliminated, by calculating sub-slab attenuation factors only when soil vapor concentrations were above 100 X 75% background. Using this approach, they reported that 75% of the attenuation factors for the combined PCE, TCE, and trichloroethane (TCA) data were approximately 150 or more. This did not eliminate the effect of background and they calculated theoretical attenuation factors ranging from 250 to 500.

The following soil vapor comparison criteria include:

• Background indoor air concentrations provided by the NYSDOH (NYSDOH, 2006) adjusted for comparison to soil vapor data³. VOCs are present in indoor air, regardless of the presence of a subsurface source. Data are compared to adjusted indoor air concentrations to identify whether any indoor air impacts above background levels due to impacted soil vapor are probable.

² NYSDOH applies a factor of twenty to the lowest indoor air concentration in decision matrix 1 (0.25 ug/m³) which results in the lowest sub-slab vapor concentration of 5 ug/m³.

³ Indoor air comparison criteria were adjusted by attenuation factors of 20 and 150, as described in Section 3.2.1.

- OSHA PELs adjusted for soil vapor comparison³. Because onsite buildings are used for industrial/commercial purposes, OSHA PELs were identified as relevant worker-related comparison values.
- Twenty-five percent of the methane lower explosive limit (LEL) or 12,500 ppm_v . This was a conservative screening value selected to evaluate the methane concentrations detected.

3.2.2 Comparison to Adjusted Indoor Air Criteria

As part of the data evaluation process, NYSDOH presents background indoor air levels as screening tools generally used to determine appropriate next steps in a vapor intrusion evaluation (NYSDOH, 2006). Background indoor air concentrations represent those concentrations of VOCs present in indoor air of buildings not affected by environmental contamination. When site indoor air concentrations are consistent with background concentrations, the source(s) of VOCs in indoor air can be difficult to identify. In this scenario, mitigation measures often do not result in a reduction of indoor air concentrations as other interior or ambient sources remain.

As described in Section 3.2, in order to compare background indoor air concentrations presented in the Soil Vapor Intrusion Guidance (NYSDOH, 2006) to soil vapor concentrations, the background indoor air values were multiplied by a factor of 20 as a conservative attenuation factor and 150 as a more typical attenuation factor. These factors were applied to identify soil vapor concentrations that could result in indoor air concentrations equal to the background indoor air level.

Table 1 presents the comparison of detected soil vapor concentrations to adjusted background indoor air concentrations. The following soil vapor results exceeded the background comparison criteria:

- SV-4 and/or SV-4 DUP: 1,1-dichloroethane (1,1-DCA), carbon disulfide, cis-1,2dichlroethene (cis-1,2-DCE) and TCE exceed the background concentration using an attenuation factor of 20. When an attenuation factor of 150 is applied, only the 1,1-DCA concentration exceeds its background comparison criterion.
- SV-10: benzene (attenuation factors of 20 and 150).

³ Indoor air comparison criteria were adjusted by attenuation factors of 20 and 150, as described in Section 3.2.1.

• SV-12: benzene and ethylbenzene (attenuation factors of 20 and 150).

In addition, detection limits of certain compounds at SV-1, SV-10, SV-11 and SV-12 were above the adjusted background indoor air comparison criteria.

3.2.3 Comparison to OSHA PELs

Table 1 also presents a comparison of adjusted OSHA PELs to soil vapor concentrations to assess whether subsurface conditions have the potential to impact indoor air at concentrations greater than occupational health and safety standards. No subsurface soil vapor concentration exceeded its corresponding adjusted OSHA PEL; therefore, no worker standards are expected to be exceeded in indoor air.

3.2.4 Comparison to Twenty-five Percent of Methane LEL

Soil vapor methane concentrations ranged from non-detect (less than 10 ppm_v) to 159,200 ppm_v . Four sampling results, collected at SV-1, SV-10, SV-11, and SV-12 exceeded the methane comparison criteria of 12,500 ppm_v .

3.3 Evaluation of Comparison Results

Vapor concentrations of subsurface petroleum-related constituents exceeding comparison values were found at three points (SV-10, SV-11, and SV-12) within the separate phase product area. Because the northern portion of Building 135 is partially located within this area and adjacent to SV-10 and SV-11, further assessment is necessary. Petroleum constituents do not appear to be present at elevated concentrations in the vicinity of Buildings 152 and 153; however, concentrations of carbon disulfide, TCE, and select degradation compounds have been detected at SV-4 at concentrations exceeding comparison criteria. The presence of chlorinated compounds in this area may be due to historical vehicle maintenance activities that occurred within the building.

Due to elevated detection limits, VOC concentrations at SV-1 and in the northern portion of Building 140 are unknown; concentrations of VOCs detected in soil vapor under the southern portion of Building 140 (SV-2) are below levels of concern.

In line with the three goals of the vapor sampling stated in the Plan and reiterated in Section 1 of this report, the following was concluded:

1. Evaluation of existing occupied buildings onsite:

Further subsurface sampling is proposed at all buildings, and indoor air screening for methane is proposed in Building 140. Additional sampling locations are described in Section 4. No additional evaluation of mercury is required, as mercury was not detected in SV-1.

2. Evaluation of Site property boundaries:

No VOC exceeded any soil vapor or indoor air comparison criterion at boundary samples SV-8 (northern boundary) and SV-9 (eastern boundary), and no further investigation of VOCs, mercury, or methane is required in these areas based upon these sampling results⁴. SV-2, close to the western boundary, did not have any VOCs that exceeded comparison criteria nor did it have elevated methane. However, based upon the results of SV-1, which had elevated detection limits for VOCs and elevated methane, an additional soil vapor boundary sample will be collected to assess the western boundary of OU-2.

3. Evaluation of the potential for vapor generation from areas of separate-phase product:

Soil vapor samples collected from areas of separate-phase product exhibited high concentrations of petroleum-related compounds, including benzene, ethylbenzene, and hexane. In addition, methane was detected at greater than 25% of its LEL. Impacted soil vapor may be a concern during future remedial activities and/or redevelopment in free product areas. Other than in the vicinity of Building 135 (proposed sampling described in Section 4), no further sampling is warranted at this time.

In addition to these three goals outlined in the Plan, an additional goal for this work plan includes:

4. Assessment of the potential for vapor migration along sewer lines:

Concentrations of VOCs and/or methane exceeding comparison values were detected in samples SV-1, SV-10, SV-11, and SV-4. Each of these samples was collected near a sewer line. Additional assessment is proposed to assess the potential for migration of VOCs and/or methane to Elk Street.

Therefore, the three goals of additional soil vapor and indoor air investigation and assessment in OU-2 and OU-3 proposed herein include:

1. Additional assessment of each occupied building;

⁴ While no additional samples are proposed based upon previous sampling results, additional samples are proposed along Elk Street to assess the potential for vapor migration along sewer lines.

- 2. Evaluation of the western site boundary; and,
- 3. Assessment of the potential for vapor migration along sewer lines onsite and to Elk Street.

Eight additional soil vapor samples are proposed to be collected, as described in Section 4, below. In addition, a methane screening will be conducted in Building 140 using an LEL meter.

4.0 PROPOSED ADDITIONAL SAMPLING

Based upon the evaluation of the soil vapor data collected in October and November 2008, as presented in Section 3, additional sampling is recommended as described in this section. The rationale for selection of sampling locations is described below and summarized in Table 3.

4.1 Proposed BSPA Vapor Samples in the Vicinity of Buildings 135 and 140, the 72-inch Municipal Sewer in Babcock Street and the Western BCP Site Boundary

The following additional sampling is proposed in the BSPA.

4.1.1 Proposed Additional Sub Slab Soil Vapor Sampling in the Vicinity of Building 135

Samples SV-10 and SV-11 were collected adjacent to Building 135 and near storm sewer piping. As shown on Table 2, elevated concentrations of methane (greater than 25% of the LEL) were detected in these samples, as were elevated concentrations of petroleum constituents. A subslab soil vapor sample (SV-13) will be collected beneath the slab of Building 135 in the vicinity of occupied offices and will be sampled for VOCs and methane. In addition to methane, forensic analysis, including carbon isotope, hydrogen isotope, and fixed gases analyses for assessment of the methane source (i.e., thermogenic versus biogenic) will be conducted. The approximate location of SV-13 is shown on Figure 2. Since the building is elevated above grade and to avoid disruption of the owner's operations, ExxonMobil will attempt to collect the sample through the northern foundation of the building. If this is not possible, the sample will be collected from within the warehouse space immediately adjacent to the offices or from within the active office space. In addition to the samples described above, one ambient air sample will be collected on each day of sampling and analyzed for VOCs and methane.

4.1.2 Proposed Additional Sub Slab Soil Vapor Sampling and Methane Screening in the Vicinity of Building 140

Due to the elevated detection limits for VOCs in sample SV-1 and the elevated methane concentration, the soil vapor at this location will be re-sampled and will be analyzed for VOCs and methane. In addition, soil vapor will undergo forensic analysis, including carbon isotope, hydrogen isotope, and fixed gases analyses for assessment of the methane source (i.e., thermogenic versus biogenic). Because methane was detected at SV-1 at a concentration exceeding 25% of its LEL, the indoor air within the northern portion of Building 140 will be screened for methane using an LEL meter. In addition to the samples described above, one

ambient air sample will be collected on each day of sampling and analyzed for VOCs and methane.

4.1.3 Proposed Sampling Along the BSA Municipal Sewer in Babcock Street

Based upon the results for SV-1 and SV-10, and due to the potential for migration of impacted soil vapor along the 72-inch municipal sewer in Babcock Street, additional soil vapor sampling is proposed at two locations along the sewer as shown on Figure 2:

- one location (SV-14) at the boundary between OU-2 and OU-3.
- one location (SV-15) at Elk Street.

Construction of the proposed sample points and the proposed sampling train will be in accordance with Figure 3. Sampling will be conducted in accordance with the procedures described in section 2.2 for VOCs and methane. One ambient air sample will also be collected on each day of sampling and analyzed for VOCs and methane.

4.1.4 Proposed Additional Soil Vapor Samples to Evaluate the Western BCP Site Boundary

Due to the presence of elevated concentrations of several VOCs, elevated detection limits for other VOCs, and elevated methane at SV-1, an additional boundary soil vapor sample, SV-16, is proposed in an unimproved area along the BCP site boundary immediately west of SV-1. Construction of the proposed sample point and the proposed sampling train will be in accordance with Figure 3. Sampling will be conducted in accordance with the procedures described in section 2.2 for VOCs and methane. In addition to the samples described above, one ambient air sample will be collected on each day of sampling and analyzed for VOCs and methane.

4.2 Proposed AOOA Vapor Samples in the Vicinity of Buildings 152 and 153 and NPSA Vapor Sample Along the Sewer Line that Extends to Elk Street Near the Main Entrance

The following additional sampling is proposed in the AOOA and NPSA

4.2.1 Proposed Sampling at Building 152

Due to the presence of VOC concentrations in excess of comparison criteria, a vapor sample will be collected beneath the slab of Building 152. The sample, SV-17, will be located immediately to the west of the SV-4 sampling location, beneath a multi-purpose room. This location was

selected to best represent concentrations of VOCs beneath the occupied portion of the building and to evaluate the potential for the sewer line that enters the building near the SV-4 sample location to act as a preferential transport pathway. In addition to the samples described above, one ambient air sample will be collected on each day of sampling and analyzed for VOCs and methane.

Construction of the proposed sample points and the proposed sampling train will be in accordance with Figure 3. Sampling will be conducted in accordance with the procedures described in Section 2.2 for VOCs and methane.

4.2.2 Proposed Sampling at Building 153

As shown on Figure 2, a sewer line runs from the western side of Building 153 to Building 152, near the sampling location SV-4. Due to the elevated concentrations of VOCs in SV-4 and the possibility that the sewer line may act as a preferential transport pathway, subslab soil vapor sample SV-18 will be collected underneath Building 153 immediately adjacent to the sewer line, as shown on Figure 2. This sample will be located beneath the occupied portion of the building.

Construction of the proposed sample points and the proposed sampling train will be in accordance with Figure 3. Sampling will be conducted in accordance with the procedures described in section 2.2 for VOCs and methane. In addition to the samples described below, one ambient air sample will be collected on each day of sampling and analyzed for VOCs and methane.

4.2.3 Proposed Sampling Along the Sewer Line that Extends to Elk Street Near the Main Entrance in the NPSA

Based upon the results for SV-4 and due to the potential for migration of impacted soil vapor along the sewer line that extends from Building 152 and 153 to Elk Street, soil vapor sample SV-19 is proposed along the sewer at the intersection of the boundary of OU-2 and Elk Street.

Construction of the proposed sample points and the proposed sampling train will be in accordance with Figure 3. Sampling will be conducted in accordance with the procedures described in section 2.2 for VOCs and methane. In addition to the samples described below, one

ambient air sample will be collected on each day of sampling and analyzed for VOCs and methane.

4.3 Sampling and Analysis Protocols

Sampling protocols for soil vapor and subslab soil samples will be consistent with the protocols for collection of samples described in Section 2 of this report. Samples will be analyzed in accordance with the methods for VOCs and methane described in Section 2. In addition, samples from SV-1 and SV-13 will be sent for forensic analysis, including carbon isotope, hydrogen isotope, and fixed gases analyses for assessment of the methane source (i.e., thermogenic versus biogenic) at Zymax Laboratories in San Luis Obispo, California. Isotopic and fixed gases analyses of the vapor samples will indicate if the methane is likely natural gas (thermogenic) or derived from the biodegradation of petroleum hydrocarbons (biogenic). This may indicate whether further evaluation of the natural gas line that runs along the east side of Babcock Street to Building 135 and which crosses Babcock Street and enters the south side of Building 140 is warranted.

During sampling, weather conditions will be recorded (e.g., precipitation, indoor and outdoor temperature, and barometric pressure). In addition, any pertinent indoor and outdoor observations (e.g., odors, PID readings, and significant activities in the vicinity) will be recorded.

The field sampling team will maintain a sample log sheet similar to those presented in Appendix A, summarizing the sample identification, date and time of sample collection, identity of samplers, sampling methods and devices utilized, vacuum of canisters before and after samples are collected, and sample analyses.

5.0 PROJECT SCHEDULE

Roux Associates estimates that the utility clearance activities and soil vapor sample collection point installation can be performed at a rate of 3 locations per day (barring delays due to subsurface obstructions). Outdoor ambient air and soil vapor sample collection will commence at the properties following the equilibrium period. The field activities described above will occur according to the following schedule:

- Soil vapor and subslab soil vapor sample collection and outdoor ambient air sample collection three business days;
- Laboratory analysis of sub-slab and soil vapor and ambient air samples (14-day turnaround time); and
- Evaluation of the analytical data and report preparation (45 business days).

Therefore, the total time to complete the field investigation activities, evaluate the resulting data, and prepare an investigation summary report is approximately thirteen weeks. Preliminary results including the laboratory analytical data, summary tables, and a brief cover letter will be provided one week following the receipt of the laboratory results. A final report including a thorough evaluation of the data will be submitted 45 business days following receipt of laboratory analytical results.

Respectfully Submitted,

ame ROUX ASSOCIATES, INC. nise IR O

Denise Kmetzo Senior Scientist

÷

/ 1 MC

Noelle M. Clarke, P.E. Principal Engineer

6.0 REFERENCES

- Little, J.C., Daisey, J.M. and Nazaroff, W.M. 1992. Transport of subsurface contaminants into buildings: An exposure pathway for volatile organics. Env. Sci. Tech. Vol. 26, No. 11, pp. 2058-2066.
- Mosley et al. 2004. Use of Radon and Per Fluorocarbon Measurements to Project VOC Entry Rates, USEPA Vapor Attenuation Workshop, San Diego, CA. http://iavi.rti.org/attachments/Resources/AEHS_VI_Workshop_3-15-04_Mosley.pdf
- NYSDOH, 2006. Final Guidance for Evaluating Soil Vapor Intrusion in the State of New York. October.
- Roux Associates, 2001. Babcock Street Properties Area (BSPA) Investigation Completion Report, ExxonMobil Former Buffalo Terminal, Buffalo, New York. June 5, 2001.
- Roux Associates, 2002. Site Investigation Completion Report, ExxonMobil Former Buffalo Terminal, Buffalo, New York. March 12, 2002.
- Roux Associates, 2008. Soil Vapor Sampling Plan, ExxonMobil Former Buffalo Terminal, Buffalo, New York. April 21.
- Wendel Duchscherer, 2008. Elk Street Corridor Redevelopment Plan, ExxonMobil Former Buffalo Terminal, Buffalo, New York. November 5, 2008.
- Wertz, W. and McDonald, G. 2004. Evaluation of Observed Vapor Attenuation in Upstate New York. USEPA Vapor Attenuation Workshop, San Diego, CA. http://iavi.rti.org/attachments/Resources/Wertz-McDonald_Endicott.pdf
- USEPA, 2002. OSWER Draft Guidance for Evaluating the Vapor Intrusion to Indoor Air Pathway from Groundwater and Soils (Subsurface Vapor Intrusion Guidance), November, 2002.

Table 1: Comparison of Detected Soil Vapor Concentrations to Adjusted Background Indoor Air Values and Adjusted OSHA PELs

				Sample Designation:	Ambient Air 1	Ambient Air 2	Ambient Air 3	Ambient Air 4	SV-1	SV-2	SV-3	SV-4	SV-4 DUP	SV-5	SV-6
				Sample Date:	10/06/08	10/07/08	10/28/08	10/29/08	10/28/08	10/29/08	10/07/08	10/06/08	10/07/08	10/06/08	10/06/08
Parameter				Units:	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$
	Adjusted Background	Adjusted Background	Adjusted OSHA	Adjusted OSHA											
	Air Concentrations	Air Concentrations	Permissible Exposure	Permissible Exposure											
	(Attenuation Factor of	(Attenuation Factor of	Limits (Attenuation	Limits (Attenuation											
	20) (1)	150) (2)	Factor of 20) (3)	Factor of 150) (4)											
1.1.1-Trichloroethane	412	3090	3.80E+07	2.85E+08	2.73 U	2.73 U	2.73 U	2.73 U	546 U	2.73 U	180	150	170	5.46 U	110
1,1-Dichloroethane	14	105	8.00E+06	6.00E+07	1.98 U	2.02 U	2.02 U	2.02 U	405 U	2.02 U	2.02 U	260	300	4.05 U	2.02 U
1,1-Dichloroethene	28	210	1.58E+07	1.19E+08	1.98 U	1.98 U	1.98 U	1.98 U	396 U	1.98 U	1.98 U	5.2	2.9	3.96 U	1.98 U
1,2,4-Trimethylbenzene	190	1425			2.46 U	2.46 U	2.46 U	2.46 U	492 U	13	3.5	2.7 JV	2.6 JV	4.92 U	2.46 U
1,3,5-Trimethylbenzene	74	555			2.46 U	2.46 U	2.46 U	2.46 U	492 U	3.4	2.46 U	2.46 U	2.46 U	4.92 U	2.46 U
1,3-Dichlorobenzene	48	360			8.4	9	3.01 U	3.01 U	601 U	3.01 U	3.01 U	3.01 U	3.01 U	6.01 U	15
1,4-Dichlorobenzene	110	825	9.00E+06	6.75E+07	3.01 U	3.01 U	3.3	3.01 U	601 U	9.6	11	78	30	84	27
2,2,4-Trimethylpentane					2.34 U	11	6.5	2.34 U	17750	14	2.34 U	2.34 U	130	6.1	2.34 U
2-Butanone	240	1800	1.18E+07	8.85E+07	2.95 U	12	2.95 U	2.95 U	590 U	2.95 U	5.3	19	2.95 U	9.1	5.9
2-Hexanone			8.20E+06	6.15E+07	4.1 U	4.1 U	4.1 U	4.1 U	819 U	4.1 U	4.1 U	4.1 U	4.1 U	8.19 U	4.1 U
2-Propanol	5000	37500	1.96E+07	1.47E+08	13	23	4.92 U	4.92 U	983 U	5.2	4.92 U	4.92 U	4.92 U	30	4.92 U
4-Ethyltoluene	72	540			2.46 U	2.46 U	2.46 U	2.46 U	492 U	2.8	2.8	2.46 U	2.46 U	4.92 U	2.46 U
Acetone	1978	14835	4.80E+07	3.60E+08	74	160	13	15	2735 U	20	11.9 U	140	11.9 U	86	48
Benzene	188	1410	6.39E+04	4.79E+05	1.6 U	1.6	1.8	1.6 U	319 U	12	1.6	8	11	3.8	3.8
Carbon disulfide	84	630	1.25E+06	9.34E+06	4.1	1.56 U	1.56 U	1.56 U	311 U	2.5	9.7	90	37	3.11 U	23
Carbon tetrachloride	26	195	1.26E+06	9.44E+06	3.15 U	3.15 U	3.15 U	3.15 U	629 U	3.15 U	4.1	3.15 U	3.15 U	6.29 U	3.15 U
Chloroform	22	165	4.80E+06	3.60E+07	2.44 U	2.44 U	2.44 U	2.44 U	488 U	2.44 U	2.44 U	8.8	11	4.88 U	2.44 U
Chloromethane	74	555	4.13E+06	3.10E+07	2.3	3.7	1.03 U	1.1	206 U	1.2	1.03 U	1.03 U	1.03 U	2.06 U	1.03 U
cis-1,2-Dichloroethene	38	285			1.98 U	1.98 U	1.98 U	1.98 U	396 U	1.98 U	1.98 U	170	190	3.96 U	1.98 U
Cyclohexane			2.10E+07	1.58E+08	1.72 U	6.2	17	1.72 U	5160	13	1.72 U	52		7.6	10
Dichlorodifluoromethane	330	2475	9.90E+07	7.43E+08	2.47 U	2.47 U	2.47 U	3.1	495 U	3.8	2.47 U	2.47 U	2.47 U	4.95 U	2.47 U
Ethyl Acetate	108	810	2.80E+07	2.10E+08	1.8 U	1.8 U	1.8 U	1.8 U	360 U	1.8 U	18	1.8 U	1.8 U	3.6 U	1.8 U
Ethylbenzene	114	855	8.70E+06	6.53E+07	3.5 U	2.17 U	2.17 U	2.17 U	434 U	7.4	2.9	2.7	2.17 U	4.34 U	3.2
Heptane			4.00E+07	3.00E+08	2.05 U	2.8	2.05 U	2.05 U	410 U	9	2.05 U	4.5	32	4.1 U	6.2
Hexane			3.60E+07	2.70E+08	1.76 U	4.2	19	1.76 U	560	34	4.9	35	490	17	22
m+p-Xylene	444	3330	8.70E+06	6.53E+07	4.34 U	4.34 U	4.34 U	4.34 U	868 U	18	4.34 U	8.3	4.34 U	9.6	10
Methylene Chloride	200	1500	1.74E+06	1.30E+07	1.74 U	5.9	4.2	3.4	347 U	8.3	5.2	4.9	1.74 U	4.5	7.3
o-Xylene	158	1185	8.70E+06	6.53E+07	2.17 U	2.17 U	2.17 U	2.17 U	434 U	7.4	2.17 U	2.8	2.17 U	4.34 U	2.8
Propene (5)			1.72E+07	1.29E+08	9.6	12	0.861 U	0.861 U	172 U	0.861 U	0.861 U	69	26	6.7	13
Styrene	38	285	8.52E+06	6.39E+07	2.13 U	2.13 U	2.13 U	2.13 U	426 U	2.13 U	3.2	2.13 U	3.1 JV	8.5 JV	3.3 JV
Tetrachloroethene	318	2385	1.36E+07	1.02E+08	3.39 U	3.39 U	3.39 U	3.39 U	678 U	3.39 U	13	120	200	6.78 U	7.5
Tetrahydrofuran			1.18E+07	8.85E+07	5.9 U	5.9 U	5.9 U	5.9 U	1180 U	5.9 U	8.3	5.9 U	5.9 U	11.8 U	5.9 U
Toluene	860	6450	1.51E+07	1.13E+08	2.2	4.9	3.8	1.88 U	377 U	37	7.2	14	9.8	16	12
trans-1,2-Dichloroethene					1.98 U	1.98 U	1.98 U	1.98 U	396 U	1.98 U	1.98 U	23	1.98 U	3.96 U	1.98 U
Trichloroethene	84	630	1.07E+07	8.06E+07	2.69 U	2.69 U	2.69 U	2.69 U	537 U	2.69 U	2.69 U	91	120	5.37 U	2.69 U
Trichlorofluoromethane	362	2715	1.12E+08	8.40E+08	2.81 U	2.81 U	2.81 U	2.81 U	562 U	2.81 U	4.3	2.81 U	2.81 U	5.62 U	4.4
MEDCUDY									0.42.17						
MERCURY Notes:									0.43 U						

Notes:

µg/m³ - Micrograms per cubic meter

U - Not detected

J - Estimated Concentration

V - qualifier added by the Data Validotor (Data Validation Services)

(1) Values are equal to the 90th percentile background indoor air value from the EPA 2001 BASE study, as provided by NYSDOH in Appendix C, Guidance for Evaluating Soil Vapor Intrusion in the State of New York, October, 2006, multiplied by an attenuation factor of 20. This attenuation factor was obtained from NYSDOH (2006) as the factor applied to the lowest indoor air concentration in Decision Matrix 1 (0.25 ug/m³) which results in the lowest sub-slab vapor concentration of 5 ug/m³. If the compound was nondetect in background samples, the detection limit multiplied by 20 was used as a surrogate value.

(2) Values are equal to the 90th percentile background indoor air value from the EPA 2001 BASE study, as provided by NYSDOH in Appendix C, Guidance for Evaluating Soil Vapor Intrusion in the State of New York, October, 2006, multiplied by 150, which is a conservative value within the range of attenuation factors measured in numerous studies (Mosley et al, 2004, Wertz & McDonald, 2004), as described in Section 3.2.1 of the report. If the compound was nondetect in background samples, the detection limit multiplied by 20 was used as a surrogate value.

(3) Values are equal to the Permissible Exposures Limits (PELs) presented by the Occupational Safety and Health Administration (OSHA) in Tables Z-1 and Z-2 of 29 CFR 1910.1000, last updated February 28, 2006, multiplied by an attenuation factor of 20. This attenuation factor was obtained from NYSDOH (2006) as the factor applied to the lowest indoor air concentration in Decision Matrix 1 (0.25 ug/m³) which results in the lowest sub-slab vapor concentration of 5 ug/m³.

(4) Values are equal to the Permissible Exposures Limits (PELs) presented by the Occupational Safety and Health Administration (OSHA) in Tables Z-1 and Z-2 of 29 CFR 1910.1000, last updated February 28, 2006, multiplied by an attenuation factor of 150, which is a conservative value within the range of attenuation factors measured in numerous studies (Mosley et al, 2004, Wertz & McDonald, 2004), as described in Section 3.2.1 of the report.

(5) OSHA does not present a PEL for Propene in CFR 1910.1000 Table Z-1 or Table Z-2 (updated February 28, 2006). However, the American Conference of Governmental Industrial Hygienists (ACGIH) presents an 8-hour time weighted average for Propene in TLVs and BEIs Based on the Documentation of the Threshold Limit Values for Chemical Substances and Physical Agents & Biological Exposure Indices (ACGIH, 2006).

Values in italics indicate that there was no background indoor air comparison value.

Values in bold and shaded indicate an exceedence of 20 times the background indoor air comparison values.

Values in **bold**, shaded and outlined indicate an exceedence of 150 times the background indoor air comparison values. No detected concentration exceeds the adjusted OSHA PELs. Table 1: Comparison of Detected Soil Vapor Concentrations to Adjusted Background Indoor Air Values and Adjusted OSHA PELs

				Sample Designation:	SV-6 DUP	SV-8	SV-9	SV-10	SV-11	SV-12
				Sample Date:	10/07/08	10/28/08	10/06/08	10/28/08	10/28/08	10/07/08
Parameter				Units:	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$
	Adjusted Background Air Concentrations (Attenuation Factor of 20) (1)	Adjusted Background Air Concentrations (Attenuation Factor of 150) (2)	Adjusted OSHA Permissible Exposure Limits (Attenuation Factor of 20) (3)	Adjusted OSHA Permissible Exposure Limits (Attenuation Factor of 150) (4)						
1.1.1-Trichloroethane	412	3090	3.80E+07	2.85E+08	60	2.73 U	2.73 U	5457 U	5239 U	5350 U
1.1-Dichloroethane	14	105	8.00E+06	6.00E+07	2.02 U	2.02 U	2.02 U	4047 U	3886 U	3970 U
1,1-Dichloroethene	28	210	1.58E+07	1.19E+08	2.02 U 1.98 U	2.02 U 1.98 U	2.02 U 1.98 U	3965 U	3806 U 3806 U	3970 U 3890 U
1,2,4-Trimethylbenzene	28 190	1425	1.38E+07	1.19E+08	1.98 U 2.46 U	1.98 0	4.3	4916 U	4719 U	4820 U
1,3,5-Trimethylbenzene	74	555			2.46 U	2.8	2.46 U	4916 U	4719 U	4820 U
1,3-Dichlorobenzene	48	360	0.005.07	6 35D 03	3.01 U	3.01 U	8.4	6012 U	5772 U	5890 U
1,4-Dichlorobenzene	110	825	9.00E+06	6.75E+07	3.01 U	8.4	55	6012 U	5772 U	5890 U
2,2,4-Trimethylpentane					140	4.7	2.34 U	144830	60740	3100000
2-Butanone	240	1800	1.18E+07	8.85E+07	2.95 U	2.95 U	2.95 U	5898 U	5603 U	5900 U
2-Hexanone			8.20E+06	6.15E+07	4.1 U	4.1 U	4.9	8193 U	7783 U	8190 U
2-Propanol	5000	37500	1.96E+07	1.47E+08	4.92 U	4.92 U	4.92 U	10078 U	9587 U	9590 U
4-Ethyltoluene	72	540			2.46 U	2.46 U	2.9	4916 U	4719 U	4820 U
Acetone	1978	14835	4.80E+07	3.60E+08	11.9 U	11.9 U	43	23755 U	22804 U	23300 U
Benzene	188	1410	6.39E+04	4.79E+05	3.8	14	2.6	26520	3067 U	58000
Carbon disulfide	84	630	1.25E+06	9.34E+06	9.3	8.4	3.7	3114 U	2989 U	3050 U
Carbon tetrachloride	26	195	1.26E+06	9.44E+06	3.15 U	3.15 U	3.15 U	6291 U	6040 U	6170 U
Chloroform	22	165	4.80E+06	3.60E+07	2.44 U	2.44 U	2.44 U	4883 U	4687 U	4780 U
Chloromethane	74	555	4.13E+06	3.10E+07	1.2	1.03 U	1.03 U	2065 U	1982 U	2020 U
cis-1,2-Dichloroethene	38	285			1.98 U	1.98 U	1.98 U	3965 U	3806 U	3890 U
Cyclohexane			2.10E+07	1.58E+08	110	41	1.72 U	413060	209970	2500000
Dichlorodifluoromethane	330	2475	9.90E+07	7.43E+08	2.47 U	2.47	2.47 U	4945 U	4748 U	4850 U
Ethyl Acetate	108	810	2.80E+07	2.10E+08	1.8 U	1.8 U	1.8 U	3604 U	3460 U	3530 U
Ethylbenzene	114	855	8.70E+06	6.53E+07	2.17 U	7	3.5	4342 U	4169 U	8700
Heptane			4.00E+07	3.00E+08	32	14	2.05 U	4098 U	3934 U	860000
Hexane			3.60E+07	2.70E+08	110	71	8.8	493440	38770	6000000
m+p-Xylene	444	3330	8.70E+06	6.53E+07	4.34 U	14	7.4	8684 U	8250 U	8680 U
Methylene Chloride	200	1500	1.74E+06	1.30E+07	27	3.1	4.5	3474 U	3335 U	3400 U
o-Xylene	158	1185	8.70E+06	6.53E+07	2.17 U	6.5	2.17 U	4342 U	4169 U	4260 U
Propene (5)	150	1105	1.72E+07	1.29E+08	2.17 0	13	0.861 U	1721 U	1652 U	1690 U
Styrene	38	285	8.52E+06	6.39E+07	2.13 U	2.13 U	3	4260 U	4089 U	4170 U
Tetrachloroethene	318	2385	1.36E+07	1.02E+08	18	3.39 U	3.39 U	4200 U 6782 U	4089 U 6511 U	6650 U
Tetrahydrofuran	510	2303	1.36E+07 1.18E+07	8.85E+07	5.9 U	5.9 U	5.9 U	12092 U	11502 U	11500 U
Toluene	860	6450	1.18E+07 1.51E+07	8.85E+07 1.13E+08	4.9	5.9 U 18	5.9 U 11	12092 U 3769 U	3618 U	3690 U
trans-1.2-Dichloroethene	800	0450	1.31E+07	1.13E+06	4.9 1.98 U	18 1.98 U	11 1.98 U	3769 U 3965 U	3618 U 3806 U	3890 U 3890 U
Trichloroethene	84	630	1.07E+07	8.06E+07	1.98 U 2.69 U	1.98 U 2.69 U	1.98 U 2.69 U	3965 U 5374 U	3806 U 5159 U	3890 U 5270 U
Trichlorofluoromethane	362	2715	1.12E+08	8.40E+08	2.81 U	3.4	2.81 U	5618 U	5394 U	5510 U
MERCURY							0.433 U			

Notes:

 $\mu g/m^3$ - Micrograms per cubic meter

U - Not detected

J - Estimated Concentration

V - qualifier added by the Data Validotor (Data Validation Services)

(1) Values are equal to the 90th percentile background indoor air value from the EPA 2001 BASE study, as provided by NYSDOH in Appendix C, Guidance for Evaluating Soil Vapor Intrusion in the State of New York, October, 2006, multiplied by an attenuation factor of 20. This attenuation factor was obtained from NYSDOH (2006) as the factor applied to the lowest indoor air concentration in Decision Matrix 1 (0.25 ug/m³) which results in the lowest sub-slab vapor concentration of 5 ug/m³. If the compound was nondetect in background samples, the detection limit multiplied by 20 was used as a surrogate value.

(2) Values are equal to the 90th percentile background indoor air value from the EPA 2001 BASE study, as provided by NYSDOH in Appendix C, Guidance for Evaluating Soil Vapor Intrusion in the State of New York, October, 2006, multiplied by 150, which is a conservative value within the range of attenuation factors measured in numerous studies (Mosley et al, 2004, Wertz & McDonald, 2004), as described in Section 3.2.1 of the report. If the compound was nondetect in background samples, the detection limit multiplied by 20 was used as a surrogate value.

(3) Values are equal to the Permissible Exposures Limits (PELs) presented by the Occupational Safety and Health Administration (OSHA) in Tables Z-1 and Z-2 of 29 CFR 1910.1000, last updated February 28, 2006, multiplied by an attenuation factor of 20. This attenuation factor was obtained from NYSDOH (2006) as the factor applied to the lowest indoor air concentration in Decision Matrix 1 (0.25 ug/m³) which results in the lowest sub-slab vapor concentration of 5 ug/m³.

(4) Values are equal to the Permissible Exposures Limits (PELs) presented by the Occupational Safety and Health Administration (OSHA) in Tables Z-1 and Z-2 of 29 CFR 1910.1000, last updated February 28, 2006, multiplied by an attenuation factor of 150, which is a conservative value within the range of attenuation factors measured in numerous studies (Mosley et al, 2004, Wertz & McDonald, 2004), as described in Section 3.2.1 of the report.

(5) OSHA does not present a PEL for Propene in CFR 1910.1000 Table Z-1 or Table Z-2 (updated February 28, 2006). However, the American Conference of Governmental Industrial Hygienists (ACGIH) presents an 8-hour time weighted average for Propene in TLVs and BEIs Based on the Documentation of the Threshold Limit Values for Chemical Substances and Physical Agents & Biological Exposure Indices (ACGIH, 2006).

Values in italics indicate that there was no background indoor air comparison value.

Values in bold and shaded indicate an exceedence of 20 times the background indoor air comparison values. Values in bold, shaded and outlined indicate an exceedence of 150 times the background indoor air comparison values.

No detected concentration exceeds the adjusted OSHA PELs.

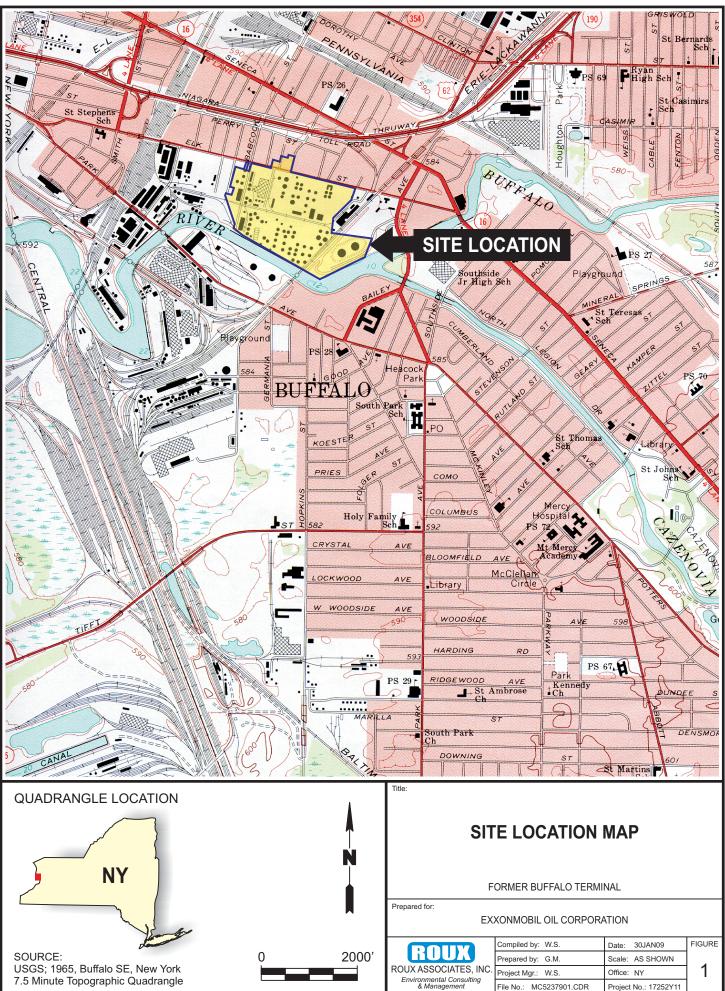
Parameter	25% Methane LEL (1)	Sample Designation: Sample Date:	Ambient Air 1 10/06/08	Ambient Air 2 10/07/08	Ambient Air 3 10/28/08	Ambient Air 4 10/29/08	SV-1 10/28/08	SV-2 10/29/08	SV-3 10/07/08	SV-4 10/06/08	SV-4 DUP 10/07/08	SV-5 10/06/08	SV-6 10/06/08	SV-6 DUP 10/07/08	SV-8 10/28/08	SV-9 10/06/08	SV-10 10/28/08	SV-11 10/28/08	SV-12 10/07/08
	ppmv	Units:	ppmv	ppmv	ppmv	ppmv	ppmv	ppmv	ppmv	ppmv	ppmv	ppmv	ppmv	ppmv	ppmv	ppmv	ppmv	ppmv	ppmv
Carbon Dioxide Carbon Monoxide			440.5 10 U	434.5 10 U	435 10 U	520 10 U	32890 10 U	553.5 10 U	27640 10 U	3023 10 U	2959 10 U	454 10 U	1291 10 U	1146 10 U	3495 10 U	41180 10 U	84780 10 U	12070 10 U	99170 10 U
Hydrogen			246 U	246 U	246 U	246 U	246 U	246 U	246 U	246 U	246 U	246 U	246 U	246 U	246 U	246 U	246 U	246 U	246 U
Methane	12500		9.92 U	9.92 U	9.92 U	9.92 U	130200	9.92 U	9.92 U	9.92 U	9.92 U	25.63	52.31	57.99	9.92 U	9.92 U	412500	244800	159200
Nitrogen Oxygen			759000 201800	728500 201800	744400 193000	775200 197500	748800 110100	735500 208100	775500 132400	715200 193400	785500 199600	784700 199300	754500 199300	742600 204800	747200 191900	774000 159800	422300 13350	718500 14840	647900 46780

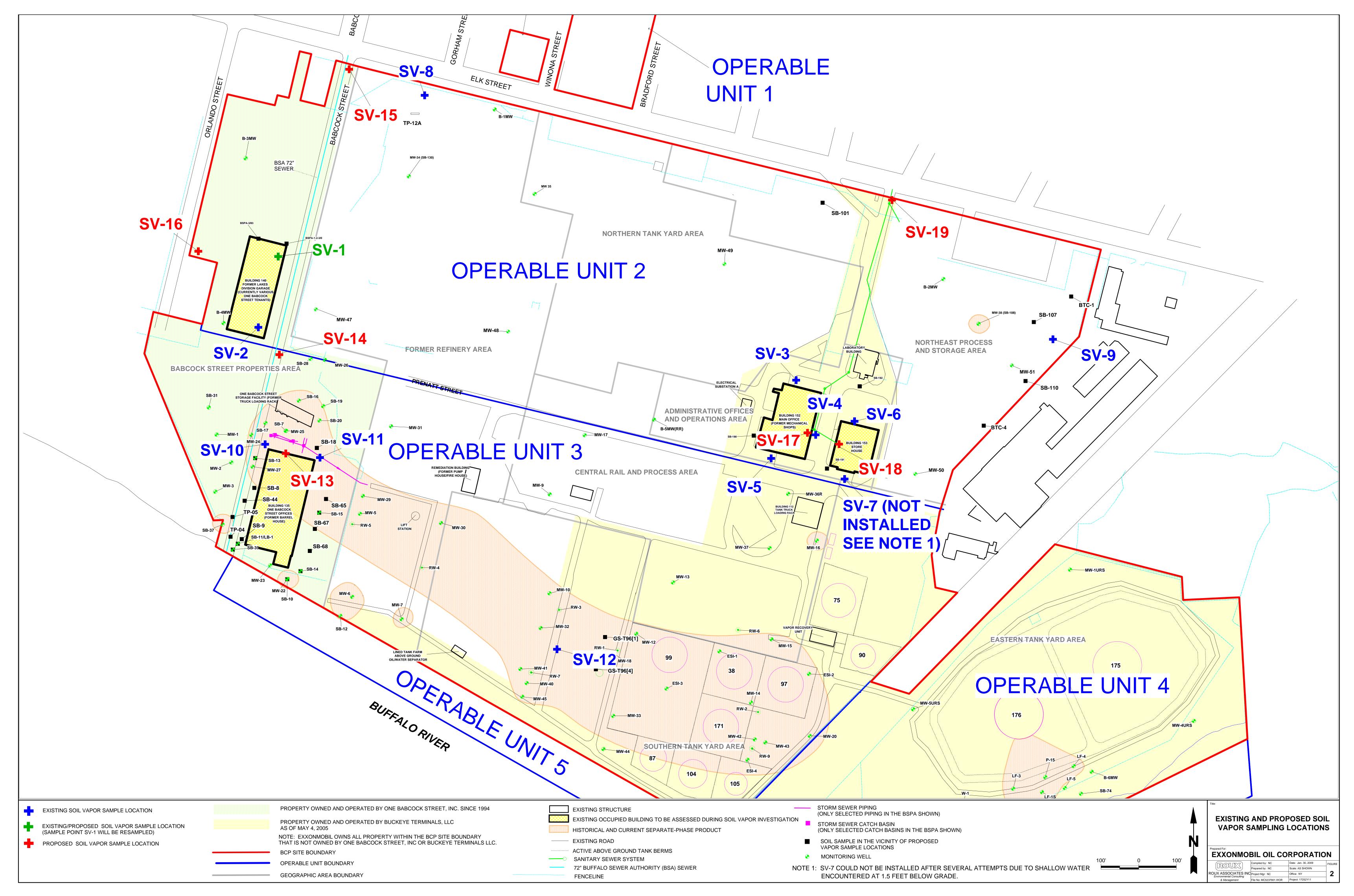
Notes:

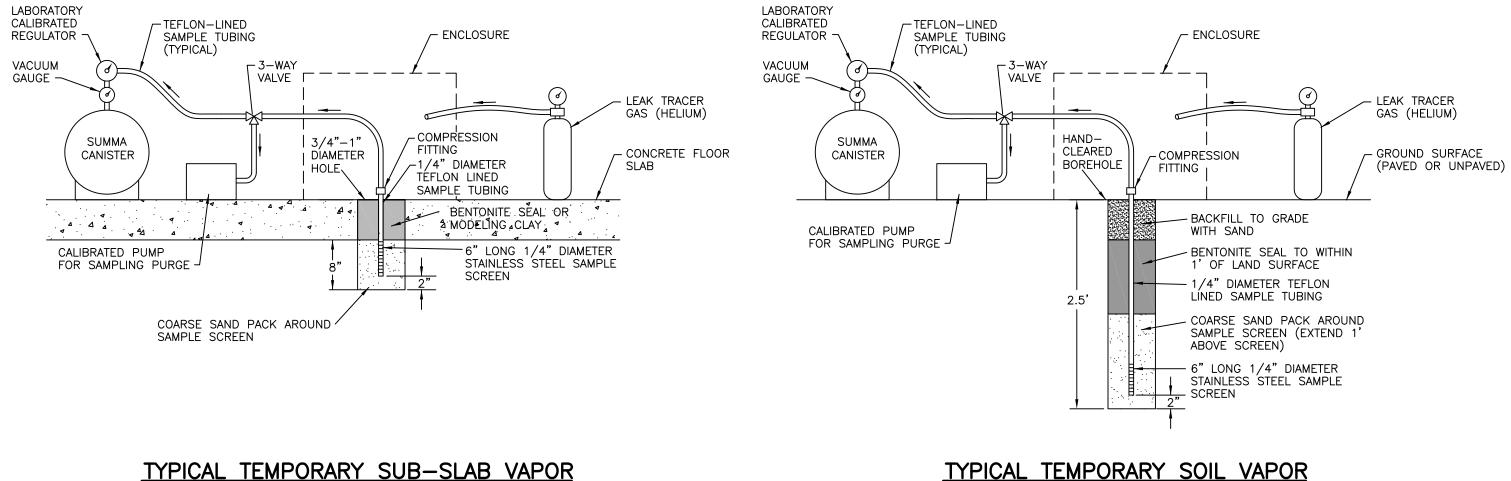
(1) Twenty-five percent of the methane lower explosive limit was used for comparison purposes. There is no regulatory limit set for methane.

ppmv - Parts per million/volume Values in bold and shaded indicate exceedence of 25% of the LEL (12,500 ppmv).

U - Not detected

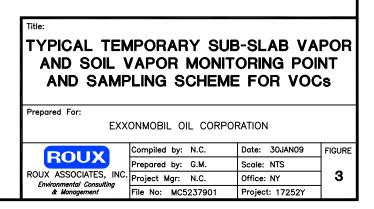

Table 3: Summary of Exceedences of Comparison Values and Rationale for Further Sampling Former ExxonMobil Terminal, Buffalo, NY


r ormer Exx	ner ExxonMobil Terminal, Buffalo, NY Detected Values Exceed (1):							
		Background	Background	OSHA PEL	OSHA PEL	Methane Screening	Additonal	
Sample	Rationale for Selection of Location	Indoor Air Value	Indoor Air Value	(Adjusted by	(Adjusted by	Level (25 %-LEL; 12,500 ppmv)?	Sampling	Rationale for Selection of Sampling Location
Designation:	-Determine Ambient Air Levels	(Adjusted by 20)?	(Adjusted by 150)?	20)?	150)?	12,500 ppinv):	Location	Location
Ambient Air 1 Ambient Air 2	-Determine Ambient Air Levels							
Ambient Air 2 Ambient Air 3	-Determine Ambient Air Levels							
Ambient Air 4	-Determine Ambient Air Levels							
SV-1	 Subslab point beneath the northern portion of Building 140. Near area of highest VOC and mercury concentrations at BSPA-1-2-3/0 and BSPA-3/83. Underneath the most occupied portion of the building. 					X	SV-1	Due to elevated detection limits at SV-1, resample soil vapor at SV-1 for VOCs and methane. SV-1 will also undergo forensic analysis for evaluation of methane., and indoor air in Building 140 will be screened for methane with an LEL meter.
SV-2	 Subslab point beneath the southeastern portion of Building 140. Adjacent to the 72-inch BSA sewer and north of the product plume in OU-3. To assess the potential for vapor migration to offsite areas to the west. 							No further evaluation as no exceedences
SV-3	 North of Building 152 Near storm sewer piping that could act as a preferential pathway for soil vapor. 						SV-17	Will be collected beneath the multi-purpose room in Building 152 near the location of former sample SV-4.
	 Located between Buildings 152 and 153. In vicinity of storm sewers that may be a preferential pathway from potential source areas to the south including impract in the vicinity of the second background second second						SV-17	Will be collected beneath the multi-purpose room in Building 152 near the location of former sample SV-4. Will be collected to assess potential impacts at
SV-4 and SV-4 DUP	the south, including impacts in the vicinity of the Tank Truck Loading Rack.	Х	Х				SV-18	Building 153 due to vapor transport along the
							SV-19	Will be collected to assess transport of vapors along the sewer line to Elk Street.
SV-5	 South of the building. Near electrical and signal conduit that may be a preferential migration pathway from potential source areas to the south, including impacts in the vicinity of the Tank Truck Loading Rack. 							No further evaluation as no exceedences
SV-6	 North of the building. Located downgradient of soil sample SB-192 that indicated stained soils, PID readings exceeding 100 ppm and petroleum constituents at a shallow depth (0-2 feet below land surface). 						SV-18	No further sampling will be conducted based on SV-6 results; however, SV-18 will be collected to assess potential impacts at Building 153 due to vapor transport along the sewer line.
SV-6 DUP								


Table 3: Summary of Exceedences of Comparison Values and Rationale for Further Sampling Former ExxonMobil Terminal, Buffalo, NY

FORMER EXX	onMobil Terminal, Buffalo, NY		D-44	J Volues E.	J (1).			
			Detect	ed Values Excee	a (1):			
Sample		Background Indoor Air Value	Background Indoor Air Value	OSHA PEL (Adjusted by	OSHA PEL (Adjusted by	Methane Screening Level (25 %-LEL;	Additonal Sampling	Rationale for Selection of Sampling
Designation:	Rationale for Selection of Location	(Adjusted by 20)?	(Adjusted by 150)?	20)?	150)?	12,500 ppmv)?	Location	Location
SV-8	 Located in the main entrance road to the Site in the AOOA in an area where VOCs were detected in soil. In the vicinity of the sanitary sewer pipe that extends from Buildings 152 and 153 in OU-2 to Elk Street and could be a preferential pathway. To assess the potential for vapor migration to offsite areas to the north. 							No further evaluation as no exceedences
SV-9	 Near eastern edge of OU-2/Site boundary in Northeast Process and Storage Area. Between SB-107 and the Site boundary, which had petroleum odor, black staining and sheen above the water table and relatively high VOCs and TPH.'- Subslab point beneath the northern portion of the building. Near area of highest VOC and mercury concentrations in OU-2 at BTC-4. 							No further evaluation as no exceedences
SV-10	 Northwest corner of the Building. Within area of product plume to evaluate the potential for vapor generation in product areas. Near storm sewer piping. 	X				X	SV-13	Sample sub-slab soil vapor beneath the occupied office space. SV-13 will also undergo forensic analysis for evaluation of methane.
SV-11	 Northeast corner of the Building. Within area of product plume to evaluate the potential for vapor generation in product areas. Near storm sewer piping. 					X	SV-13, SV-14, SV-15	Will be collected adjacent to the Babcock Street Municipal Sewer Line
SV-12	-Characterization of the potential for soil vapor generation in separate-phase product areas	X				X		

Notes: (1) Tables 1 and 2 provide the comparisons of all detected concentrations to adjusted indoor air and methane values.



TYPICAL TEMPORARY SUB-SLAB VAPOR MONITORING POINT FOR VOCs

MONITORING POINT FOR VOCs

APPENDIX A

Soil Vapor Sampling Field Forms

Appendix A	
Soil Vapor Sampling Form ExxonMobil Former Buffalo Terminal	
Date: 10.78.08 Time: 75D Sampled By: 1P Sampling Identification #: 5U-1 Summa Canister Identification #: 13.479 Flow Regulator ID # 735.58 Analysis Uo C	
Weather (general description): 19 39 Own Cast	
Temperature: 39° Humidity: 78%	
Wind Magnitude: 16-2 Wind Direction: WWW	
Barometric Pressure: 29.93 Barometer Falling Astrop(circle one)	
Site Condition (i.e. any adjacent facilities, vent pipes, tanks, etc. and what type of basements are present)	
Sample Purge and Leak Tracer Test: Calibrate the Helium detection meter Purge Rate: 0.19 //www.Must be less than 0.2 L/min Purge Time: 75 500 note : Assuming 0.17" I.D. tubing purge 15 sec. for every Helium Rate at enclosure: 4×10-3 Helium Rate from sample tubing: 0 Is this rate <20% of the rate at the enclosure from sample tubing: 0 If the Helium readings have a greater ratio than 20% the seals should be rechecked and the tracer gas should be reapp	- -
Sample Collection for VOCs;	
Once the tracer gas screening procedures are completed and no short-circuiting is determined to be present at the location, the soil can be collected in a lab certified clean summa canister at a rate less than 0.2 L/min.	vapor sample
Finishing pressure should be within 0.5 - 4 " of Hg	
Starting Pressure: 30 ^{°°} in. of Hg Starting Time: <u>30</u> Ending Time: <u>1610</u> Ending Pressure: 10°° in. of Hg	
Sample Collection for Mercury:	
Once the tracer gas screening procedures are completed and no short-circuiting is determined to be present at the location, the soil can be collected with a sample train consisting of a calibrated sample pump, solid sorbent tube and MCE filter cartridge	, ,
Pump shall be field calibrated before and after sampling with the complete sample train in line to a flow rate of 210 ml/min (sorbent initial calibration must be replaced with a new tube immediately prior to sampling)	tube used for
Pre-sampling pump flow rate: ml/min Starting Time:	
Ending Time:ml/min	

Appendix A	
Soil Vapor Sampling Form	
ExxonMobil Former Buffalo Terminal	
11-5-08	
Date: 1990	
Sampled By: TP	
Sampling Identification #: SV-1	
Summa Canister Identification #:	
Flow Regulator ID #	
Analysis Mencury	ni ^{la}
Weather (general description) :	len
Temperature: V	Humidity: 87%
Wind Magnitude:	Wind Direction:
Barometric Pressure: 30-	Barometer Falling #Using (circle one)
Site Condition (i.e. any adjacent facilities, vent pipes, tanks, e	etc. and what type of basements are present)
· · · · · · · · · · · · · · · · · · ·	
Sample Purge and Leak Tracer Test:	
Calibrate the Helium detection meter	
Purge Rate: Purge Time:	Must be less than 0.2 L/min
Helium Rate at enclosure:	note : Assuming 0.17" I.D. tubing purge 15 sec. for every 10 ft of tubing
Helium Rate from sample tubing:	ls this rate <20% of the rate at the enclosure Yes
If the Helium readings have a greater ratio than 20%	the seals should be rechecked and the tracer gas should be reapplied.
in the relient readings have a greater rate than 20 %	and seals should be recilected and the tracel gas should be reapplied.
Sample Collection for VOCs:	
Once the tracer gas screening procedures are completed and no can be collected in a lab certified	short-circuiting is determined to be present at the location, the soil vapor sample clean summa canister at a rate less than 0.2 L/min.
Finishing pressu	re should be within 0.5 - 4 " of Hg
·	
Starting Pre Starting	
	g Time:
Ending Pre	
Sample Collection for Mercury:	
Once the tracer gas screening procedures are completed and no can be collected with a sample train consisting of a	short-circuiting is determined to be present at the location, the soil vapor sample calibrated sample pump, solid sorbent tube and MCE filter cartridge
initial calibration must be replace	complete sample train in line to a flow rate of 210 ml/min (sorbent tube used for a dwith a new tube immediately prior to sampling) $_{m} ho$ LFM 138
Pre-sampling pump flo	wrate: 209.5 ml/min
Starting	
Ending	Time:
Post-sampling pump flor	w rate:ml/min
. 0	
Field B	laule started @ 833
	com 6tel @ 1635
	$L(m) \rightarrow (l(0))$

Appendix A

oendix A				
		· · · · · · · · · · · · · · · · · · ·		
Vapor Sampling Form	T			
conMobil Former Buffalo				
	Date: 10-7-08			
	Time: <u>150</u>			
	ation #: 57-3			
Sampling Identifica Summa Canister Identifica		· ·		
Flow Regula	tor ID # 541-12	1		
Ā	nalysis VCC			
147 11-	er (general description) : _	aen		
weathe	Temperature:	310 Hum		
	Wind Magnitude:	3 Wind Direc	alling Rising (circle one)	1
, -	Barometric Pressure:			
te Condition (i.e. any adja	cent facilities, vent pipes,	tanks, etc. and what type c	f basements are present)	
		······································		
		······································		
ample Purge and Leak Tra alibrate the Helium detectio	acer rest.	- iC	tt an 0.01/min	
alibrate the Helium detection	Purge Rate:	0.15 Must be les	s than 0.2 L/min mine 0.17" I.D. tubing purge	15 sec. for every 10 ft of tubing
	Purge Time:		•	
+	felium Rate at enclosure:	Is this rate	<20% of the rate at the enclo	sure Yes
Helium	Rate from sample tubing:			
If the Heljum rea	adings have a greater ratio t	han 20% the seals should be	recnecked and the fidoor ge	
	s	tarting Pressure: 29	in. of Hg	
Sample Collection for Mer Once the tracer gas scree can be coller Pump shall be field calibr	rcury: ning procedures are comple cted with a sample train cor ated before and after sampl initial calibration mus	Ending Pressure:4 eted and no short-circuiting is issisting of a calibrated sample ling with the complete sample st be replaced with a new tube ng pump flow rate: Starting Time:	in. of Hg determined to be present at t pump, solid sorbent tube an train in line to a flow rate of 2	10 milmin (sorbent tube used i
Sample Collection for Mer Once the tracer gas scree can be collec Pump shall be field calibr	rcury: ning procedures are comple cted with a sample train cor ated before and after sampl initial calibration mu Pre-samplir	Starting Time: 5: Ending Time: 66 Ending Pressure: 66 eted and no short-circuiting is isisting of a calibrated sample ing with the complete sample st be replaced with a new tube of pump flow rate: 67 Starting Time: 67 Ending Time:	in. of Hg determined to be present at t pump, solid sorbent tube an train in line to a flow rate of 2 e immediately prior to samplir	10 ml/min (sorbent tube used f
Sample Collection for Mea Once the tracer gas scree can be collec Pump shall be field calibr	rcury: ning procedures are comple cted with a sample train cor ated before and after sampl initial calibration mu Pre-samplir	Starting Time: 5: Ending Time: 160 Ending Pressure: 160 eted and no short-circuiting is asisting of a calibrated sample ing with the complete sample st be replaced with a new tube of pump flow rate:	in. of Hg determined to be present at the pump, solid sorbent tube an train in line to a flow rate of 2 e immediately prior to sampling ml/min	10 ml/min (sorbent tube used f
Sample Collection for Men Once the tracer gas scree can be coller Pump shall be field calibr	rcury: ning procedures are comple cted with a sample train cor ated before and after sampl initial calibration mu Pre-samplir	Starting Time: 5: Ending Time: 66 Ending Pressure: 66 eted and no short-circuiting is isisting of a calibrated sample ing with the complete sample st be replaced with a new tube of pump flow rate: 67 Starting Time: 67 Ending Time:	in. of Hg determined to be present at the pump, solid sorbent tube an train in line to a flow rate of 2 e immediately prior to sampling ml/min	10 ml/min (sorbent tube used f
Sample Collection for Men Once the tracer gas scree can be coller Pump shall be field calibr	rcury: ning procedures are comple cted with a sample train cor ated before and after sampl initial calibration mu Pre-samplir	Starting Time: 5: Ending Time: 66 Ending Pressure: 66 eted and no short-circuiting is isisting of a calibrated sample ing with the complete sample st be replaced with a new tube of pump flow rate: 67 Starting Time: 67 Ending Time:	in. of Hg determined to be present at the pump, solid sorbent tube an train in line to a flow rate of 2 e immediately prior to sampling ml/min	10 ml/min (sorbent tube used f
Sample Collection for Men Once the tracer gas scree can be coller Pump shall be field calibr	rcury: ning procedures are comple cted with a sample train cor ated before and after sampl initial calibration mu Pre-samplir	Starting Time: 5: Ending Time: 66 Ending Pressure: 66 eted and no short-circuiting is isisting of a calibrated sample ing with the complete sample st be replaced with a new tube of pump flow rate: 67 Starting Time: 67 Ending Time:	in. of Hg determined to be present at the pump, solid sorbent tube an train in line to a flow rate of 2 e immediately prior to sampling ml/min	10 ml/min (sorbent tube used f
Sample Collection for Mea Once the tracer gas scree can be coller Pump shall be field calibr	rcury: ning procedures are comple cted with a sample train cor ated before and after sampl initial calibration mu Pre-samplir	Starting Time: 5: Ending Time: 66 Ending Pressure: 66 eted and no short-circuiting is isisting of a calibrated sample ing with the complete sample st be replaced with a new tube of pump flow rate: 67 Starting Time: 67 Ending Time:	in. of Hg determined to be present at the pump, solid sorbent tube an train in line to a flow rate of 2 e immediately prior to sampling ml/min	10 ml/min (sorbent tube used f
Sample Collection for Mea Once the tracer gas scree can be coller Pump shall be field calibr	rcury: ning procedures are comple cted with a sample train cor ated before and after sampl initial calibration mu Pre-samplir	Starting Time: 5: Ending Time: 66 Ending Pressure: 66 eted and no short-circuiting is isisting of a calibrated sample ing with the complete sample st be replaced with a new tube of pump flow rate: 67 Starting Time: 67 Ending Time:	in. of Hg determined to be present at the pump, solid sorbent tube an train in line to a flow rate of 2 e immediately prior to sampling ml/min	10 ml/min (sorbent tube used f
Sample Collection for Mea Once the tracer gas scree can be collec Pump shall be field calibr	rcury: ning procedures are comple cted with a sample train cor ated before and after sampl initial calibration mu Pre-samplir	Starting Time: 5: Ending Time: 66 Ending Pressure: 66 eted and no short-circuiting is isisting of a calibrated sample ing with the complete sample st be replaced with a new tube of pump flow rate: 67 Starting Time: 67 Ending Time:	in. of Hg determined to be present at the pump, solid sorbent tube an train in line to a flow rate of 2 e immediately prior to sampling ml/min	10 ml/min (sorbent tube used f
Sample Collection for Mer Once the tracer gas scree can be collec Pump shall be field calibr	rcury: ning procedures are comple cted with a sample train cor ated before and after sampl initial calibration mu Pre-samplir	Starting Time: 5: Ending Time: 66 Ending Pressure: 66 eted and no short-circuiting is isisting of a calibrated sample ing with the complete sample st be replaced with a new tube of pump flow rate: 67 Starting Time: 67 Ending Time:	in. of Hg determined to be present at the pump, solid sorbent tube an train in line to a flow rate of 2 e immediately prior to sampling ml/min	10 ml/min (sorbent tube used f
Sample Collection for Me Once the tracer gas scree can be collec Pump shall be field calibr	rcury: ning procedures are comple cted with a sample train cor ated before and after sampl initial calibration mu Pre-samplir	Starting Time: 5: Ending Time: 66 Ending Pressure: 66 eted and no short-circuiting is isisting of a calibrated sample ing with the complete sample st be replaced with a new tube of pump flow rate: 67 Starting Time: 67 Ending Time:	in. of Hg determined to be present at the pump, solid sorbent tube an train in line to a flow rate of 2 e immediately prior to sampling ml/min	10 ml/min (sorbent tube used f
Sample Collection for Mea Once the tracer gas scree can be collec Pump shall be field calibr	rcury: ning procedures are comple cted with a sample train cor ated before and after sampl initial calibration mu Pre-samplir	Starting Time: 5: Ending Time: 66 Ending Pressure: 66 eted and no short-circuiting is isisting of a calibrated sample ing with the complete sample st be replaced with a new tube of pump flow rate: 67 Starting Time: 67 Ending Time:	in. of Hg determined to be present at the pump, solid sorbent tube an train in line to a flow rate of 2 e immediately prior to sampling ml/min	10 ml/min (sorbent tube used f
Sample Collection for Mer Once the tracer gas scree can be collec Pump shall be field calibr	rcury: ning procedures are comple cted with a sample train cor ated before and after sampl initial calibration mu Pre-samplir	Starting Time: 5: Ending Time: 66 Ending Pressure: 66 eted and no short-circuiting is isisting of a calibrated sample ing with the complete sample st be replaced with a new tube of pump flow rate: 67 Starting Time: 67 Ending Time:	in. of Hg determined to be present at the pump, solid sorbent tube an train in line to a flow rate of 2 e immediately prior to sampling ml/min	10 ml/min (sorbent tube used f
Sample Collection for Mea Once the tracer gas scree can be collec Pump shall be field calibr	rcury: ning procedures are comple cted with a sample train cor ated before and after sampl initial calibration mu Pre-samplir	Starting Time: 5: Ending Time: 66 Ending Pressure: 66 eted and no short-circuiting is isisting of a calibrated sample ing with the complete sample st be replaced with a new tube of pump flow rate: 67 Starting Time: 67 Ending Time:	in. of Hg determined to be present at the pump, solid sorbent tube an train in line to a flow rate of 2 e immediately prior to sampling ml/min	10 ml/min (sorbent tube used f
Sample Collection for Mea Once the tracer gas scree can be collect Pump shall be field calibr	rcury: ning procedures are comple cted with a sample train cor ated before and after sampl initial calibration mu Pre-samplir	Starting Time: 5: Ending Time: 66 Ending Pressure: 66 eted and no short-circuiting is isisting of a calibrated sample ing with the complete sample st be replaced with a new tube of pump flow rate: 67 Starting Time: 67 Ending Time:	in. of Hg determined to be present at the pump, solid sorbent tube an train in line to a flow rate of 2 e immediately prior to sampling ml/min	10 ml/min (sorbent tube used f
Sample Collection for Mea Once the tracer gas scree can be collec Pump shall be field calibr	rcury: ning procedures are comple cted with a sample train cor ated before and after sampl initial calibration mu Pre-samplir	Starting Time: 5: Ending Time: 66 Ending Pressure: 66 eted and no short-circuiting is isisting of a calibrated sample ing with the complete sample st be replaced with a new tube of pump flow rate: 67 Starting Time: 67 Ending Time:	in. of Hg determined to be present at the pump, solid sorbent tube an train in line to a flow rate of 2 e immediately prior to sampling ml/min	10 ml/min (sorbent tube used f

	•			
ppendix A		······································	-	
oil Vapor Sampling Form				
xxonMobil Former Buffalo Terminal				
10.1.01				
Date: 10-6-08				
Time: <u>805</u>				÷
Sampled By: TP				
Sampling Identification #: 50-4				,
Summa Canister Identification #: 790% Flow Regulator ID # 723 4750	<u>-</u>			
Flow Regulator ID # <u>723 4750</u> Analysis VOC	<u> </u>			
Alialysis VUC				
Weather (general descriptio	n): Parth (-uny		
Temperati		Humidity: 66		
Wind Magnitu	de: 10	Wind Direction: <u>NN</u>		
Barometric Press	ire: <u>30,40</u>	Barometer Falling (Rising)	circle one)	
ite Condition (i.e. any adjacent facilities, vent p	ipes, tanks, etc. and	what type of basements a	are present)	
		· · · · · · · · · · · · · · · · · · ·		
ample Purge and Leak Tracer Test:		<u> </u>		· .
calibrate the Helium detection meter	.			
Purge R	ate: 0.15	Must be less than 0.2 L/mi	n	- 40 ft of hubion
Purge Ti		note : Assuming 0.17" I.D.	tubing purge 15 sec. to	or every to it of tubing
Helium Rate at enclose		mL/S		(And)
Helium Rate from sample tub	ing:O	Is this rate <20% of the rat	e at the enclosure	(Tes)
If the Helium readings have a greater ra	itio than 20% the seal	s should be rechecked and	the tracer gas should	be reapplied.
ample Collection for VOCs:	<u> </u>	<u> </u>		
Once the tracer gas screening procedures are com	weted and no short-c	ircuiting is determined to be	e present at the locatio	n, the soil vapor sample
can be collected in	a lab certified clean su	mma canister at a rate les	s than 0.2 L/min.	
Fi	nishing pressure shou	ild be within 0.5 - 4 " of Hg		
		29 C		
	Starting Pressure:	in. of Hg		
	Starting Time:			
	Ending Time:			
· ·	Ending Pressure:	HD in. of Hg		÷
Sample Collection for Mercury:	+			
Once the tracer gas screening procedures are cor can be collected with a sample train	npleted and no short-c consisting of a calibra	ircuiting is determined to b ted sample pump, solid so	e present at the locatic bent tube and MCE filt	m, the soil vapor sample er cartridge
Pump shall be field calibrated before and after sa initial calibration	mpling with the comple must be replaced with	ete sample train in line to a a new tube immediately pr	ior to sampling)	(solden tube about for
Presam	pling pump flow rate	:ml/min		
, , , , , , , , , , , , , , , , , , ,	Starting Time	• 		
	Ending Time			
Post-sam	pling pump flow rate	:ml/min		
	<u>.</u>			
	1	. 1		
Duplicate 2	laken	ON 10/7		
- privat O	$\cdot \cdot \cdot \cdot \cdot$	··· · / ·		
ţ.				
		•		
	4 			
				4

pendix A	
Vapor Sampling Form	
conMobil Former Buffalo Terminal	
Date: 10-6-01	K
Time: 529	
Sampled By:	p
Sampling Identification #:	5
Summa Canister Identification #: 740	
Flow Regulator ID # 72	-9530
Analysis <u>VOC</u>	
and the second dependent	ion. Parth Climb
Weather (general descripti Tempera	ature de l'annoise de la company
Wind Magni	Wind Direction: W/V C
Barometric Pres	sure: 30.40 Barometer Falling Hising (circle one)
-	
te Condition (i.e. any adjacent facilities, vent	pipes, tanks, etc. and what type of basements are present)
ample Purge and Leak Tracer Test:	
alibrate the Helium detection meter	Rate: 0.15 Must be less than 0.2 L/min
Purge	
Purge Helium Rate at enclo	
Helium Rate at encir Helium Rate from sample to	Julio //es /
Henum Rate from sample to	asing
If the Helium readings have a greater	r ratio than 20% the seals should be rechecked and the tracer gas should be reapplied.
ample Collection for VOCs:	the he magent at the location, the soil vapor sample
Once the tracer gas screening procedures are c	completed and no short-circuiting is determined to be present at the location, the soil vapor sample in a lab certified clean summa canister at a rate less than 0.2 L/min.
	Finishing pressure should be within 0.5 - 4 " of Hg
	20
	Starting Pressure: 30in. of Hg
	Starting Pressure:in. of Hg Starting Time:
· · ·	Starting Time: <u>940</u> Starting Time: <u>1480</u>
· · ·	Starting Time: <u>%40</u>
Sample Collection for Mercury:	Starting Pressure:
Sample Collection for Mercury:	Starting Pressure: <u>940</u> Starting Time: <u>940</u> Ending Time: <u>1900</u> Ending Pressure: <u>40</u> in of Hg
Once the tracer gas screening procedures are to	Starting Pressure:
Once the tracer gas screening procedures are to	Starting Pressure:
Once the tracer gas screening procedures are can be collected with a sample tra	Starting Pressure: <u>340</u> Ending Time: <u>400</u> Ending Pressure: <u>400</u> in. of Hg completed and no short-circuiting is determined to be present at the location, the soil vapor sample ain consisting of a calibrated sample pump, solid sorbent tube and MCE filter cartridge
Once the tracer gas screening procedures are can be collected with a sample tra	Starting Pressure: <u>340</u> Ending Time: <u>400</u> Ending Pressure: <u>400</u> in. of Hg completed and no short-circuiting is determined to be present at the location, the soil vapor sample ain consisting of a calibrated sample pump, solid sorbent tube and MCE filter cartridge
Once the tracer gas screening procedures are can be collected with a sample tra	Starting Pressure:
Once the tracer gas screening procedures are can be collected with a sample tra Pump shall be field calibrated before and after initial calibration	Starting Pressure: <u><u>340</u> Ending Time: <u><u>400</u></u> Ending Pressure: <u><u>400</u></u> in. of Hg completed and no short-circuiting is determined to be present at the location, the soil vapor sampl ain consisting of a calibrated sample pump, solid sorbent tube and MCE filter cartridge sampling with the complete sample train in line to a flow rate of 210 ml/min (sorbent tube used fo on must be replaced with a new tube immediately prior to sampling)</u>
Once the tracer gas screening procedures are can be collected with a sample tra Pump shall be field calibrated before and after initial calibration	Starting Pressure: <u><u>940</u> Ending Time: <u><u>940</u></u> Ending Pressure: <u><u>400</u></u> in. of Hg completed and no short-circuiting is determined to be present at the location, the soil vapor sampl ain consisting of a calibrated sample pump, solid sorbent tube and MCE filter cartridge sampling with the complete sample train in line to a flow rate of 210 ml/min (sorbent tube used for on must be replaced with a new tube immediately prior to sampling)</u>
Once the tracer gas screening procedures are can be collected with a sample tra Pump shall be field calibrated before and after initial calibration Pre-sa	Starting Pressure:
Once the tracer gas screening procedures are can be collected with a sample tra Pump shall be field calibrated before and after initial calibration Pre-sa	Starting Pressure: <u><u>940</u> Ending Time: <u><u>940</u></u> Ending Pressure: <u><u>400</u></u> in. of Hg completed and no short-circuiting is determined to be present at the location, the soil vapor sampl ain consisting of a calibrated sample pump, solid sorbent tube and MCE filter cartridge sampling with the complete sample train in line to a flow rate of 210 ml/min (sorbent tube used for on must be replaced with a new tube immediately prior to sampling)</u>

ppendix A						
oil Vapor Sampling Form xxonMobil Former Buffalo Terminal	-					
	1-6-08					
Date:						
Time: Sampled By:	0					
Sampled By Sampling Identification #:	51-6					
Summa Canister Identification #:	5113					
Flow Regulator ID #	73406-N					
Analysis	VOC_	0.1	~ 1	•		
Weather (general o	escription) :	Parsh				
	Temperature:	47	Humidity		_	· · ·
	d Magnitude:		Wind Direction arometer Falli	ng (circle	one)	
	tric Pressure:					
ite Condition (i.e. any adjacent facilitie	es, vent pipes, ta	nks, etc. and w	hat type of b	asements are pro	esent)	
	······································			<u></u>		
				AVERA OU	mp AEL	LEMION
ample Purge and Leak Tracer Test:				prop fr		
alibrate the Helium detection meter	Purge Rate:	015	lust be less th	an 0.2 L/min	. –	10 2 - 5
	Purge Time:			g 0.17" I.D. tubing	purge 15 sec. f	or every 10 ft of tubing
Helium Rate	at enclosure:	2×10-3	mL/S	% of the rate at th	e enclosure	(Yes)
Helium Rate from sa			*			\sim
If the Helium readings have a	greater ratio than	20% the seals	should be rec	hecked and the tr	acer gas should	be reapplied.
Sample Collection for VOCs: Once the tracer gas screening procedur			cuiting is dete	rmined to be pres	ent at the locatio	on, the soil vapor samp
Once the tracer gas screening procedur	es are completed a pliected in a lab ce	nd no snort-cir rtified clean sur	nma canister a	at a rate less than	0.2 L/min.	
	Finishing	pressure shoul	1 be within 0.5	1-4 of Hig		
			20			
		ing Pressure:		in. of Hg		
		Starting Time: Ending Time:	<u> </u>	12		
		ing Pressure:	<u> </u>	in. of Hg		
Sample Collection for Mercury:						
Once the tracer gas screening procedu can be collected with a sa	es are completed	and no short-ci	rcuiting is dete	ermined to be pres	sent at the location to the sent at the location to the sent the sent the sent to the sent	on, the soil vapor sam Iter cartridge
can be collected with a sa	mple train consist	ng of a calibrat				· /
Pump shall be field calibrated before a	nd after sampling v	vith the comple	ie sample train	n in line to a flow r	ate of 210 mi/mi	n (sorbent tube used
initial of	alibration must be	replaced with	a new tube imi	mediately phor to	sampling/	
	Pre-sampling p	imp flow rate:		m!/min		
	-	Starting Time:		·		
	Post-sampling p	Ending Time: imp flow rate:	,,,,	ml/min		
-	rusesamping p					
				·		
n i 1	i la	4	10/7			
Duplicate 1	taren	5	· · / /			
- pin -	X					
1						

Appendix A

Soli Vapor Sampling Form ExconMobil Former Buffalo Terminal Date: 10.7464 Trime: Sample Dy: 11. Date: 10.7464 Trime: Sample Dy: 11. Date: 10.7464 Trime: Sample Dy: 11. Weather (general description): 11. Weather (general description): 11. Weather (general description): 11. Weather (general description): 12. Weather (general description): 12. Wind Magnitude: 12.23 Wind Magnitude: 12.23 Barometer Falling Keengelander on a solitation of the solitation must be a solitation on a solitation must be a solitation on a solitation must be a solitation on a solitation of the soli
Date: 10.245 M Sampling Identification # 31.515 F Summa Canister Identification # 31.515 F Marking Market Pressure: 31.515 F Marking Market Pressure: 31.515 F Ste Condition (I.e. any adjacent facilities, vent pipes, tanks, etc. and what type of basements are present) Sample Purge and Losk Tracer Test: Calibrate the Helium date from sample tubing: 755.52 C Purge Rate: 0.16 M/s/Must be less than 0.2 L/min Purge Rate: 0.16 M/s/Must be less than 0.2 L/min Purge Time: 755.52 note : Assuming 0.17* I.D. tubing purge 15 sec. for every 10 ft of tubing Helium Rate from sample tubing: 0 16 this rate <20% of the rate at the enclosure
Sample displaysing the sample display
Sample By: Summa Canister identification #
Sampling identification if
Flow Regulator ID #
Analysis
Weather (general description): Wind Magnitude: Humidity: Triggenerature: Wind Magnitude: Wind Direction: Wind Direction: Wind Direction: Barometer Pressure: DQ_4_5
Temperature: Wind Magnitude: Wind Direction: Wind Carebook Barometirc Pressure: Direction: Wind Direction: Wind Carebook Barometirc Pressure: Direction: Wind Direction: Wind Direction: Sample Purge and Loak Tracer Test: Direction: Direction: Wind Direction: Sample Purge and Loak Tracer Test: Direction: Direction: Direction: Sample Purge and Loak Tracer Test: Direction: Direction: Direction: Barometer Flaing Purge Rate: Diference Diference Helium Rate at enclosure: Diference Diference Diference Helium Rate at enclosure: Diference Diference Diference Helium Rate at enclosure: Diference Diference Diference Helium Rate from sample tubing: Diference Is this rate <20% of the rate at the enclosure
Wind Magnitude: 10.13 Wind Direction: Minute: Barometric Pressure: 29.45 Barometer Falling Petroperion: Barometric Pressure: 29.45 Barometer Falling Petroperion: Barometer Falling Purge and Leak Tracer Test: Sample Purge and Leak Tracer Test: Calibrate the Helium detection meter Purge Rate: 75.522 Helium Rate at enclosure: 34.10-3 Test 20% of the rate at the enclosure: If the Helium readings have a greater ratio than 20% the seals should be rechecked and the tracer gas should be reapplied. Sample Collection for VOCS: Is this rate <20% of the rate at the location, the soil vapor sample can be collected in a lab certified clean summa canister at a rate less than 0.2 L/min.
Barometric Pressure: 99.95 Barometer Falling Perspectation (i.e. any adjacent facilities, vent pipes, tanks, etc. and what type of basements are present) Sample Purge and Leak Tracer Test: Calibrate the Helium detection meter Purge Rate: 0.19 Yes. The second state of the second state
Sample Purge and Leak Tracer Test: Calibrate the Helium detection meter Purge Time:
Sample Purge and Leak Tracer Test: Calibrate the Helium detection meter Purge Time:
Calibrate the Helium detection meter Purge Rate: Purge Purge Purge Plane Purge Plane Plane Purge Plane
Calibrate the Helium detection meter Purge Rate: Purge Purge Rate: Purge Purge Rate: Purge Purge Rate: Purge Pare: Purge Rate: Purge Pare: Purge Pare: Purge Pare: Purge Pare:
Purge Rate: Off GMA Must be less than 0.2 L/min Purge Time: J Purge Time: J Pu
Purge Time: Helium Rate at enclosure: J < 10 - 3 Is this rate <20% of the rate at the enclosure To the Helium Rate from sample tubing: Is this rate <20% of the rate at the enclosure To the Helium readings have a greater ratio than 20% the seals should be rechecked and the tracer gas should be reapplied. Sample Collection for VOCs: Once the tracer gas screening procedures are completed and no short-circuiting is determined to be present at the location, the soil vapor sample can be collected in a lab certified clean summa canister at a rate less than 0.2 L/min. Finishing pressure should be within 0.5 - 4 " of Hg Starting Time: Ending Time: Ending Pressure: Starting Time: Ending Pressure: Mode to be present at the location, the soil vapor sample can be collected and no short-circuiting is determined to be present at the location, the soil vapor sample can be collected in a lab certified clean summa canister at a rate less than 0.2 L/min. Finishing pressure: Starting Pressure: Mode Time: Mode Time: Mode Time: Mode Time: Mode Time: Mode Time: Mode Time: Mode Time: Pre-sampling pump flow rate: Mode Time: Mode Ti
Hellum Rate at enclosure: <u>3 × 10 + 3</u> <u>0 </u> Is this rate <20% of the rate at the enclosure
If the Helium readings have a greater ratio than 20% the seals should be rechecked and the tracer gas should be reapplied. Sample Collection for VOCs: Once the tracer gas screening procedures are completed and no short-circuiting is determined to be present at the location, the soil vapor sample can be collected in a lab certified clean summa canister at a rate less than 0.2 L/min. Finishing pressure:
Sample Collection for VOCs: Once the tracer gas screening procedures are completed and no short-circuiting is determined to be present at the location, the soil vapor sample can be collected in a lab certified clean summa canister at a rate less than 0.2 L/min. Finishing pressure should be within 0.5 - 4 " of Hg Starting Pressure: 99.5
Once the tracer gas screening procedures are completed and no short-circuiting is determined to be present at the location, the soil vapor sample can be collected in a lab certified clean summa canister at a rate less than 0.2 L/min. Finishing pressure should be within 0.5 - 4 " of Hg Starting Pressure:
Once the tracer gas screening procedures are completed and no short-circuiting is determined to be present at the location, the soil vapor sample can be collected in a lab certified clean summa canister at a rate less than 0.2 L/min. Finishing pressure should be within 0.5 - 4 " of Hg Starting Pressure:
can be collected in a lab certified clean summa canister at a rate less than 0.2 L/min. Finishing pressure should be within 0.5 - 4 " of Hg Starting Pressure:
Starting Pressure:
Starting Pressure: 995 in. of Hg Starting Time: 906 1706 Ending Time: 906 1706 Sample Collection for Mercury: in. of Hg Once the tracer gas screening procedures are completed and no short-circuiting is determined to be present at the location, the soil vapor sample can be collected with a sample train consisting of a calibrated sample pump, solid sorbent tube and MCE filter cartridge Pump shall be field calibrated before and after sampling with the complete sample train in line to a flow rate of 210 ml/min (sorbent tube used for initial calibration must be replaced with a new tube immediately prior to sampling) Pre-sampling pump flow rate: ml/min Starting Time: ml/min
Starting Time:
Starting Time: Ending Time: in. of Hg Ending Pressure:
Ending Pressure: in. of Hg Sample Collection for Mercury: Once the tracer gas screening procedures are completed and no short-circuiting is determined to be present at the location, the soil vapor sample can be collected with a sample train consisting of a calibrated sample pump, solid sorbent tube and MCE filter cartridge Pump shall be field calibrated before and after sampling with the complete sample train in line to a flow rate of 210 ml/min (sorbent tube used for initial calibration must be replaced with a new tube immediately prior to sampling) Pre-sampling pump flow rate: ml/min Starting Time: ml/min
Conce the tracer gas screening procedures are completed and no short-circuiting is determined to be present at the location, the soil vapor sample can be collected with a sample train consisting of a calibrated sample pump, solid sorbent tube and MCE filter cartridge Pump shall be field calibrated before and after sampling with the complete sample train in line to a flow rate of 210 ml/min (sorbent tube used for initial calibration must be replaced with a new tube immediately prior to sampling) Pre-sampling pump flow rate: Starting Time: Ending Time:
Once the tracer gas screening procedures are completed and no short-circuiting is determined to be present at the location, the soil vapor sample can be collected with a sample train consisting of a calibrated sample pump, solid sorbent tube and MCE filter cartridge Pump shall be field calibrated before and after sampling with the complete sample train in line to a flow rate of 210 ml/min (sorbent tube used for initial calibration must be replaced with a new tube immediately prior to sampling) Pre-sampling pump flow rate: Starting Time: Ending Time:
can be collected with a sample train consisting of a calibrated sample pump, solid sorbent tube and MCE filter cartridge Pump shall be field calibrated before and after sampling with the complete sample train in line to a flow rate of 210 ml/min (sorbent tube used for initial calibration must be replaced with a new tube immediately prior to sampling) Pre-sampling pump flow rate: Starting Time: Ending Time:
initial calibration must be replaced with a new tube immediately prior to sampling) Pre-sampling pump flow rate: Starting Time: Ending Time:
initial calibration must be replaced with a new tube immediately prior to sampling) Pre-sampling pump flow rate: Starting Time: Ending Time:
Starting Time: Ending Time:
Starting Time: Ending Time:
Ending Time:

Appendix A
Soil Vapor Sampling Form
ExxonMobil Former Buffalo Terminal
Data: 0-608
Date.
Time:
Sampled By: TP
Sampling Identification #: <u>50-9</u> Summa Canister Identification #: <u>1017C</u>
Flow Regulator ID # 7335479
Analysis VOC
Dev Chal
Weather (general description) : 10/15 Chim
Temperature: 50° Humidity: 66° Wind Magnitude: 10 Wind Direction: NNE
Barometric Pressure: 30.40 Barometer Falling (Circle one)
Site Condition (i.e. any adjacent facilities, vent pipes, tanks, etc. and what type of basements are present)
Sample Purge and Leak Tracer Test:
Calibrate the Helium detection meter Purge Rate: , 15 Must be less than 0.2 L/min
Helium Rate at enclosure: $3 \times 3^{-3} \times 4^{-5}$ Helium Rate from sample tubing: Is this rate <20% of the rate at the enclosure 7^{-5}
If the Helium readings have a greater ratio than 20% the seals should be rechecked and the tracer gas should be reapplied.
Sample Collection for VOCs:
Once the tracer gas screening procedures are completed and no short-circuiting is determined to be present at the location, the soil vapor sample
can be collected in a lab certified clean summa canister at a rate less than 0.2 L/min.
Finishing pressure should be within 0.5 - 4 " of Hg
30 to at the
Starting Pressure:in. of Hg
Starting Time: 90'1
Ending Pressure:in. of Hg
Sample Collection for Mercury:
One the tracer are percenting procedures are completed and no short-circuiting is determined to be present at the location, the soil vapor sample
can be collected with a sample train consisting of a calibrated sample pump, solid sorbent tube and MCE filter cartridge
Pump shall be field calibrated before and after sampling with the complete sample train in line to a flow rate of 210 ml/min (sorbent tube used for
Pump shall be field calibrated before and after sampling with the complete sample train in line to a flow rate of 210 ml/min (sorbent tube used for initial calibration must be replaced with a new tube immediately prior to sampling)
Pump shall be field calibrated before and after sampling with the complete sample train in line to a flow rate of 210 ml/min (sorbent tube used for initial calibration must be replaced with a new tube immediately prior to sampling)
initial calibration must be replaced with a new tube immediately prior to sampling)
initial calibration must be replaced with a new tube immediately prior to sampling) Pre-sampling pump flow rate:ml/min Starting Time:
initial calibration must be replaced with a new tube immediately prior to sampling) Pre-sampling pump flow rate:ml/min Starting Time:
initial calibration must be replaced with a new tube immediately prior to sampling) Pre-sampling pump flow rate:ml/min Starting Time:

۲

.

Appendix A	
Soil Vapor Sampling Form	
ExxonMobil Former Buffalo Terminal	
1. 6.00	
Date: 11-5-08	
Time: 942	
Sampled By:	
Sampling Identification #: 51-9	
Summa Canister Identification #:	
Flow Regulator ID #	
Analysis Mercun	
	0i -
Weather (general description) :	Clan
Temperature:	44° Humidity: 97%
Wind Magnitude:	Wind Direction: S
Barometric Pressure:	30.19 Barometer Falling /Rising (circle one)
-	
ite Condition (i.e. any adjacent facilities, vent pipes,	tanks, etc. and what type of basements are present)
	· · · · · · · · · · · · · · · · · · ·
ample Purge and Leak Tracer Test:	
ample Purge and Leak Tracer Test: alibrate the Helium detection meter	• · · · · · · · · · · · · · · · · · · ·
Purge Rate:	Must be less than 0.2 L/min
Purge Rate: Purge Time:	note : Assuming 0.17" I.D. tubing purge 15 sec. for every 10 ft of tubing
Helium Rate at enclosure:	note . Assuming 0.17 T tubing purge to sec. tor every 10 π of tubing
Helium Rate at enclosure:	Is this rate <20% of the rate at the enclosure Yes
riendin Rate nom sample tubility.	is this rate <20% of the rate at the enclosure fes
If the Helium readings have a greater ratio that	an 20% the seals should be rechecked and the tracer gas should be reapplied.
	an zo % me seals should be rechecked and me mace/ gas should be reapplied.
ample Collection for VOCs:	
•	and no short-circuiting is determined to be present at the location, the soil vapor sample
	g pressure should be within 0.5 - 4 * of Hg
Star	ting Pressure: in. of Hg
	Starting Time:
	Ending Time:
Enc	ling Pressure: In. of Hg
ample Collection for Mercury:	
	and no short-circuiting is determined to be present at the location, the soil vapor sample ing of a calibrated sample pump, solid sorbent tube and MCE filter cartridge
	with the complete sample train in line to a flow rate of 210 ml/min (sorbent tube used for
anual calibration must be	replaced with a new tube immediately prior to sampling)
	Pump - LFM 143
Pre-sampling pu	1 DA4 4
	Starting Time: 342
. `	Ending Time: 1643
Post-sampling p	
, sor arriburg b	
· · · · · · · · · · · · · · · · · · ·	
	Blank 2 started @ 844
treld	DIAME L SIGNAR C VII
	A CONTRACTOR
	10mp/sted @ 1644
•	i apri-va vila []
	V r
	· · ·
· · · ·	

Appendix A

Soll Vapor Sampling Form ExxonMobil Former Buffalo Terminal
10.00.00
Time: 817 Sampled By: 71
Sampling Identification #: SV-10
Summa Canister Identification #: 93143 Flow Regulator ID # 7335479
Analysis VOC
Weather (general description): Overcast
Temperature: 39° Humidity: 78%
Wind Magnitude: 1621 Wind Direction: WWW Barometric Pressure: 24.44 Barometer Falling (Cisrig)(circle one)
Balometric Pressure. <u>APT</u> Balometer raining (Vasito Circle One)
Site Condition (i.e. any adjacent facilities, vent pipes, tanks, etc. and what type of basements are present)
Sample Purge and Leak Tracer Test:
Calibrate the Helium detection meter Purge Rate: 0.19 Umin Must be less than 0.2 Umin
Purge Time: 75 Sec note : Assuming 0.17" I.D. tubing purge 15 sec. for every 10 ft of tubing
Helium Rate at enclosure: 6×10^{-3}
Helium Rate from sample tubing: 1×10 ⁻³ Is this rate <20% of the rate at the enclosure Yes
If the Helium readings have a greater ratio than 20% the seals should be rechecked and the tracer gas should be reapplied.
Sample Collection for VOCs:
Once the tracer gas screening procedures are completed and no short-circuiting is determined to be present at the location, the soil vapor sample can be collected in a lab certified clean summa canister at a rate less than 0.2 L/min.
Finishing pressure should be within 0.5 - 4 " of Hg
295
Starting Pressure: 27.7 in. of Hg Starting Time: 528
Ending Time: 1548
Ending Pressure: 0.5 in. of Hg
Sample Collection for Mercury:
Once the tracer gas screening procedures are completed and no short-circuiting is determined to be present at the location, the soil vapor sample can be collected with a sample train consisting of a calibrated sample pump, solid sorbent tube and MCE filter cartridge
Pump shall be field calibrated before and after sampling with the complete sample train in line to a flow rate of 210 ml/min (sorbent tube used for initial calibration must be replaced with a new tube immediately prior to sampling)
Pre-sampling pump flow rate: ml/min
Starting Time:
Ending Time: Post-sampling pump flow rate: ml/min
rost-samping pump now rateontron

Appendix A	
Soil Vapor Sampling Form ExxonMobil Former Buffalo Terminal	
Date: 10-28-08 Time: 333 Sampled By: 77 Sampling Identification #: 5V-1) Summa Canister Identification #: 12/92 Flow Regulator ID # 733-3370 Analysis V&C	
Weather (general description) : Temperature: <u>39</u> Wind Magnitude: <u>16-21</u> Barometric Pressure: <u>39.9</u> Humidity: <u>78%</u> Wind Direction: <u>N/W</u> Barometer Sting (circle one)	·
Site Condition (i.e. any adjacent facilities, vent pipes, tanks, etc. and what type of basements are present)	
Sample Purge and Leak Tracer Test: Calibrate the Helium detection meter Purge Rate: 0.49 U/m/N Purge Time: 75 56C Helium Rate at enclosure: 3×10-5 Helium Rate from sample tubing: 0 Is this rate <20% of the rate at the enclosure 0 If the Helium readings have a greater ratio than 20% the seals should be rechecked and the tracer gas should be reapplied	, , , , , , , , , , , , , , , , , , ,
Sample Collection for VOCs: Once the tracer gas screening procedures are completed and no short-circuiting is determined to be present at the location, the soil can be collected in a lab certified clean summa canister at a rate less than 0.2 L/min.	apor sample
Finishing pressure should be within 0.5 - 4 " of Hg	
Starting Pressure: <u>30</u> in. of Hg Starting Time: <u>843</u> Ending Time: <u>1645</u> Ending Pressure: <u>15</u> in. of Hg	
Once the tracer gas screening procedures are completed and no short-circuiting is determined to be present at the location, the soil v can be collected with a sample train consisting of a calibrated sample pump, solid sorbent tube and MCE filter cartridge	
Pump shall be field calibrated before and after sampling with the complete sample train in line to a flow rate of 210 ml/min (sorbent t initial calibration must be replaced with a new tube immediately prior to sampling)	•
Pre-sampling pump flow rate:ml/min Starting Time: Ending Time:	
Post-sampling pump flow rate:ml/min	

pendix A
Vanor Sampling Form
onMobil Former Buffalo Terminal
10-708
$\frac{\text{Date:}}{\text{Time:}} 1000000000000000000000000000000000000$
Sampled By:
Sampling Identification #: <u>SV-12</u>
Summa Canister Identification #:A-322
Flow Regulator ID #7333412
Analysis Vuc
Weather (general description): SUNNS, clear sties
Weather (general description) : <u>SUNNS, Clear STRES</u> Temperature: <u>34</u> Humidity: <u>84</u>
Wind Direction:
Wind Magnitude:Barometer Falling (Rising (circle one)
e Condition (i.e. any adjacent facilities, vent pipes, tanks, etc. and what type of basements are present)
mple Purge and Leak Tracer Test:
librate the Helium detection meter
Purge Rate:Must be less than 0.2 chains Purge Time:note : Assuming 0.17" I.D. tubing purge 15 sec. for every 10 ft of tubing
Lines wills
Helium Rate at enclosure: <u>5×10.5</u> Is this rate <20% of the rate at the enclosure (Yes) Helium Rate from sample tubing: <u>6</u> Is this rate <20% of the rate at the enclosure
Heauth Rate from sumpto transfer
If the Helium readings have a greater ratio than 20% the seals should be rechecked and the tracer gas should be reapplied.
ample Collection for VOCs: Once the tracer gas screening procedures are completed and no short-circuiting is determined to be present at the location, the soil vapor sample Once the tracer gas screening procedures are completed and no short-circuiting is determined to be present at the location, the soil vapor sample
Once the tracer gas screening procedures are completed and no snort-calculing is determine to be than 0.2 L/min. can be collected in a lab certified clean summa canister at a rate less than 0.2 L/min.
Finishing pressure should be within 0.5 - 4 " of Hg
Finishing pressure should be many
Starting Pressure:in. of Hg
Starting Time: <u>920</u>
Ending Time: 1630 in. of Hg
ample Collection for Mercury:
ample Collection for Mercury: Once the tracer gas screening procedures are completed and no short-circuiting is determined to be present at the location, the soil vapor sample Once the tracer gas screening procedures are completed and no short-circuiting is determined to be present at the location, the soil vapor sample
pop be collected with a sample main consisting of a second
the second training the second training the training the second training the second the second the second the second terms and the second terms and the second terms are second to be secon
Pump shall be field calibrated before and after sampling with the complete sample built where the prior to sampling) initial calibration must be replaced with a new tube immediately prior to sampling)
initial calibration must be replaced many a non-see a many and
mining and the second sec
Pre-sampling pump now rate.
Starting Time:
Ending Time:ml/min Post-sampling pump flow rate:ml/min

÷

Appendix A
Soil Vapor Sampling Form ExxonMobil Former Buffalo Terminal Date: 107-05 Time: 900 Sampled By: 77 Sampling Identification #: 900 Sampled By: 77 Sampling Identification #: 900 Sampled By: 77 Summa Canister Identification #: 900 Flow Regulator ID # 7340650 Analysis 100 Weather (general description) : 000 Weather (general description) : 15 Wind Magnitude: 3 Wind Direction: 655 Barometric Pressure: 30, 75 Barometer Falling //Sting/scircle one)
Barometric Pressure: <u>30.15</u> Barometer Failing (<u>Rising Circle One</u>) Site Condition (i.e. any adjacent facilities, vent pipes, tanks, etc. and what type of basements are present)
Site Condition (i.e. any adjacent facilities, vent pipes, tanks, etc. and what type of second s
Sample Purge and Leak Tracer Test: Calibrate the Helium detection meter Purge Rate: 0.15 Purge Time: 75 Note : Assuming 0.17" I.D. tubing purge 15 sec. for every 10 ft of tubing Helium Rate at enclosure: 15 Helium Rate from sample tubing: 15 If the Helium readings have a greater ratio than 20% the seals should be rechecked and the tracer gas should be reapplied.
Sample Collection for VOCs: Sample Collection for VOCs: Once the tracer gas screening procedures are completed and no short-circuiting is determined to be present at the location, the soil vapor sample can be collected in a lab certified clean summa canister at a rate less than 0.2 L/min.
Finishing pressure should be within 0.5 - 4 " of Hg
Starting Pressure: Starting Time: Ending Time: Ending Pressure: <u>4.0</u> in. of Hg
Sample Collection for Mercury:
Once the tracer gas screening procedures are completed and no short-circuiting is determined to be present at the location, the soil vapor sample can be collected with a sample train consisting of a calibrated sample pump, solid sorbent tube and MCE filter cartridge
Pump shall be field calibrated before and after sampling with the complete sample train in line to a flow rate of 210 ml/min (sorbent tube used for initial calibration must be replaced with a new tube immediately prior to sampling)
Pre-sampling pump flow rate:ml/min Starting Time: Ending Time: Post-sampling pump flow rate:ml/min

pendix A
I Vapor Sampling Form
Date: 851 10-7-08 Time: Sampled By: Dupli Take 2-7
951 10-1-00
Date:
Time: 🗸
Sampled By:
Summa Canister Identification #:4319 - 46
Flow Regulator ID # 723 1 101
Analysis VIC Clean
Temperature: 5 / Humany
Wind Direction: E
Barometric Pressure: 30.45 Barometer Falling/Rising(circle one)
and what type of basements are present)
te Condition (i.e. any adjacent facilities, vent pipes, tanks, etc. and what type of basements are present)
ample Purge and Leak Tracer Test:
alibrate the Helium detection meter
alibrate the Helium detection meter Purge Rate: 0.15 Must be less than 0.2 Umin
Purge Time: 75 note : Assuming 0.17 h.D. tubing purge to each of each of the
Helium Rate at enclosure:
Helium Rate from sample tubing: Is this face <20% of the face at the same
If the Helium readings have a greater ratio than 20% the seals should be rechecked and the tracer gas should be reapplied.
If the Helium readings have a greater ratio than 20% the sears should be reconstruct
ample Collection for VOCs:
ample Collection for VOCs: Once the tracer gas screening procedures are completed and no short-circuiting is determined to be present at the location, the soil vapor sample can be collected in a lab certified clean summa canister at a rate less than 0.2 L/min.
can be collected in a lab certilied clean summa canada, an and
Finishing pressure should be within 0.5 - 4 " of Hg
runsing presente entend = 1 man
A0 C
Starting Pressure: <u>31.5</u> in. of Hg
Starting Time:
Ending Time: 1708 in. of Hg
Sample Collection for Mercury:
Once the tracer gas screening procedures are completed and no short-circuiting is determined to be present at the resent at the
Pump shall be field calibrated before and after sampling with the complete sample train in line to a flow rate of 210 ml/min (sorbent tube used for pump shall be field calibrated before and after sampling with the complete sample train in line to a flow rate of 210 ml/min (sorbent tube used for pump shall be field calibrated before and after sampling with the complete sample train in line to a flow rate of 210 ml/min (sorbent tube used for pump shall be field calibrated before and after sampling with the complete sample train in line to a flow rate of 210 ml/min (sorbent tube used for pump shall be field calibrated before and after sampling with the complete sample train in line to a flow rate of 210 ml/min (sorbent tube used for pump shall be field calibrated before and after sampling with the complete sample train in line to a flow rate of 210 ml/min (sorbent tube used for pump shall be field calibrated before and after sampling with the complete sample train in line to a flow rate of 210 ml/min (sorbent tube used for pump shall be field calibrated before and after sampling with the complete sample train in line to a flow rate of 210 ml/min (sorbent tube used for pump shall be field calibrated before and after sampling with the complete sample train in line to a flow rate of 210 ml/min (sorbent tube used for pump shall be field calibrated before and after sample train the complete sample train in line to a flow rate of 210 ml/min (sorbent tube used for pump shall be field calibrated before and after sample train tube used for pump shall be field calibrated before and after sample to a flow rate of 210 ml/min (sorbent tube used for pump shall be field calibrated before and after sample tube tube tube sample train tube sample tube sample tube sample tube sample tube sample tube s
Pumo shall be field calibrated before and after sampling with the complete sample train in line to a low rate of zine of zine training (contracting the sampling)
Pump shall be field calibrated before and after sampling with the complete sample trained with the prior to sampling) initial calibration must be replaced with a new tube immediately prior to sampling)
Pre-sampling pump flow rate:ml/min
Starting Time:
Ending Time:

r_s

·		· · ·		· .		•
Appendix A						
Soil Vapor Sampling Form ExxonMobil Former Buffalo Ter	minal					
	Date: 10-7-08			·		
	ime: <u>123</u>				4 - 	
Sampling Identificatio	on #: <u>SV-9</u>					· .
Summa Canister Identificatio Flow Regulator	ID #	· -				
Anal	هب ا	Sim				
Weather (g	peneral description) : Temperature:	Hum				
	Wind Magnitude: Barometric Pressure: 30		tion:			
Site Condition (i.e. any adjacen	t facilities, vent pipes, tanks	, etc. and what type o	f basements are presen	t)		
· ·			· · · · · · · · · · · · · · · · · · ·			
Sample Purge and Leak Tracer		······································				
Calibrate the Helium detection me	Purge Rate:O	.15 Must be less	than 0.2 L/min	4. 	fl af tubian	
Heliu	Purge Time: 7 m Rate at enclosure:		ning 0.17" I.D. tubing pur		π or tuoing	
Helium Rate	from sample tubing:	· · · · ·	20% of the rate at the en			
If the Helium reading	s have a greater ratio than 20	% the seals should be r	echecked and the tracer	gas should be reapplied	d	
Sample Collection for VOCs:	<u></u>					
Once the tracer gas screening p	rocedures are completed and an be collected in a lab certifie	no short-circuiting is de ed clean summa caniste	termined to be present at r at a rate less than 0.2 L	i the location, the soil v /min.	apor sample	
					1	
	Finishing pres	ssure should be within ().5 - 4 " of Hg			
	Finishing pres	ssure should be within ().5 - 4 " of Hg			
	Starting	ssure should be within (Pressure:	1.5 - 4 " of Hg in. of Hg			
	Starting Start Enc	Pressure:				
Sample Collection for Mercury:	Starting Start End Ending	Pressure: ting Time: ting Time: Pressure:	in. of Hg in. of Hg	t the leastion the spilu	anor sample	
Once the tracer cas screening n	Starting Start End Ending	Pressure: ting Time: ting Time: Pressure: no short-circuiting is de	in. of Hg in. of Hg in. of be present a	t the location, the soil v nd MCE filter cartridge	apor sample	
Once the tracer gas screening p can be collected w	Starting Start End Ending rocedures are completed and ith a sample train consisting c efore and after sampling with	Pressure: ting Time: Pressure: no short-circuiting is de of a calibrated sample p the complete sample tr	in. of Hg in. of Hg termined to be present a ump, solid sorbent tube a ain in line to a flow rate of	nd MGE niter cannoge 210 ml/min (sorbent ti		
Once the tracer gas screening p can be collected w	Starting Start End Ending rocedures are completed and ith a sample train consisting c	Pressure: ting Time: Pressure: no short-circuiting is de of a calibrated sample p the complete sample tr	in. of Hg in. of Hg termined to be present a ump, solid sorbent tube a ain in line to a flow rate of nmediately prior to samp	nd MCE filter carriage 210 ml/min (sorbent ti ling)	ube used for	
Once the tracer gas screening p can be collected w	Starting Start End Ending rocedures are completed and ith a sample train consisting c efore and after sampling with initial calibration must be rep Pre-sampling pump	Pressure: ting Time: Pressure: no short-circuiting is de of a calibrated sample p the complete sample tra- laced with a new tube in flow rate: \mathcal{FIC}	in. of Hg in. of Hg termined to be present a ump, solid sorbent tube a ain in line to a flow rate of nmediately prior to sampi M	nd MGE niter cannoge 210 ml/min (sorbent ti	ube used for	
Once the tracer gas screening p can be collected w	Starting Start End Ending rocedures are completed and ith a sample train consisting c efore and after sampling with initial calibration must be rep Pre-sampling pump Star End	Pressure:	in. of Hg in. of Hg in. of Hg ump, solid sorbent tube a ain in line to a flow rate of nmediately prior to samp ml/min	nd MCE filter carriage 210 ml/min (sorbent ti ling)	ube used for	
Once the tracer gas screening p can be collected w	Starting Start End Ending rocedures are completed and ith a sample train consisting c efore and after sampling with initial calibration must be rep Pre-sampling pump Star	Pressure:	in. of Hg in. of Hg termined to be present a ump, solid sorbent tube a ain in line to a flow rate of nmediately prior to sampi M	nd MCE filter carriage 210 ml/min (sorbent ti ling)	ube used for	
Once the tracer gas screening p can be collected w	Starting Start End Ending rocedures are completed and ith a sample train consisting c efore and after sampling with initial calibration must be rep Pre-sampling pump Star End	Pressure:	in. of Hg in. of Hg in. of Hg ump, solid sorbent tube a ain in line to a flow rate of nmediately prior to samp ml/min	nd MCE filter carriage 210 ml/min (sorbent ti ling)	ube used for	
Once the tracer gas screening p can be collected w Pump shall be field calibrated b	Starting Start End End rocedures are completed and with a sample train consisting of efore and after sampling with initial calibration must be rep Pre-sampling pump Star End Post-sampling pump	Pressure: ling Time: Pressure: no short-circuiting is de of a calibrated sample p the complete sample tr laced with a new tube in flow rate: flow rate: flow rate:	in. of Hg in. of Hg itermined to be present a ump, solid sorbent tube a ain in line to a flow rate of nmediately prior to samp ml/min ml/min	nd MCE niter carnoge 210 ml/min (sorbent ti ing) EL LFM IC	ube used for	
Once the tracer gas screening p can be collected w Pump shall be field calibrated b	Starting Start End Ending rocedures are completed and ith a sample train consisting c efore and after sampling with initial calibration must be rep Pre-sampling pump Star End	Pressure: ling Time: Pressure: no short-circuiting is de of a calibrated sample p the complete sample tr laced with a new tube in flow rate: flow rate: flow rate:	in. of Hg in. of Hg in. of Hg ump, solid sorbent tube a ain in line to a flow rate of nmediately prior to samp ml/min	nd MCE niter carnoge 210 ml/min (sorbent ti ing) EL LFM IC	ube used for	
Once the tracer gas screening p can be collected w Pump shall be field calibrated b	Starting Start Enci Encing rocedures are completed and ith a sample train consisting of efore and after sampling with initial calibration must be rep Pre-sampling pump Star Enc Post-sampling pump	Pressure: ling Time: Pressure: no short-circuiting is de of a calibrated sample p the complete sample tr laced with a new tube in flow rate: flow rate: flow rate:	in. of Hg in. of Hg itermined to be present a ump, solid sorbent tube a ain in line to a flow rate of nmediately prior to samp ml/min ml/min	nd MCE niter carnoge 210 ml/min (sorbent ti ing) EL LFM IC	ube used for	
Once the tracer gas screening p can be collected w Pump shall be field calibrated b	Starting Start Enci Encing rocedures are completed and ith a sample train consisting of efore and after sampling with initial calibration must be rep Pre-sampling pump Star Enc Post-sampling pump	Pressure: ling Time: Pressure: no short-circuiting is de of a calibrated sample p the complete sample tr laced with a new tube in flow rate: flow rate: flow rate:	in. of Hg in. of Hg itermined to be present a ump, solid sorbent tube a ain in line to a flow rate of nmediately prior to samp ml/min ml/min	nd MCE niter carnoge 210 ml/min (sorbent ti ing) EL LFM IC	ube used for	
Once the tracer gas screening p can be collected w Pump shall be field calibrated b	Starting Start End End rocedures are completed and with a sample train consisting of efore and after sampling with initial calibration must be rep Pre-sampling pump Star End Post-sampling pump	Pressure: ling Time: Pressure: no short-circuiting is de of a calibrated sample p the complete sample tr laced with a new tube in flow rate: flow rate: flow rate:	in. of Hg in. of Hg itermined to be present a ump, solid sorbent tube a ain in line to a flow rate of nmediately prior to samp ml/min ml/min	nd MCE niter carnoge 210 ml/min (sorbent ti ing) EL LFM IC	ube used for	
Once the tracer gas screening p can be collected w Pump shall be field calibrated b	Starting Start Enci Encing rocedures are completed and ith a sample train consisting of efore and after sampling with initial calibration must be rep Pre-sampling pump Star Enc Post-sampling pump	Pressure: ling Time: Pressure: no short-circuiting is de of a calibrated sample p the complete sample tr laced with a new tube in flow rate: flow rate: flow rate:	in. of Hg in. of Hg itermined to be present a ump, solid sorbent tube a ain in line to a flow rate of nmediately prior to samp ml/min ml/min	nd MCE niter carnoge 210 ml/min (sorbent ti ing) EL LFM IC	ube used for	
Once the tracer gas screening p can be collected w Pump shall be field calibrated b	Starting Start Enci Encing rocedures are completed and ith a sample train consisting of efore and after sampling with initial calibration must be rep Pre-sampling pump Star Enc Post-sampling pump	Pressure: ling Time: Pressure: no short-circuiting is de of a calibrated sample p the complete sample tr laced with a new tube in flow rate: flow rate: flow rate:	in. of Hg in. of Hg itermined to be present a ump, solid sorbent tube a ain in line to a flow rate of nmediately prior to samp ml/min ml/min	nd MCE niter carnoge 210 ml/min (sorbent ti ing) EL LFM IC	ube used for	
Once the tracer gas screening p can be collected w Pump shall be field calibrated b	Starting Start Enci Encing rocedures are completed and ith a sample train consisting of efore and after sampling with initial calibration must be rep Pre-sampling pump Star Enc Post-sampling pump	Pressure: ling Time: Pressure: no short-circuiting is de of a calibrated sample p the complete sample tr laced with a new tube in flow rate: flow rate: flow rate:	in. of Hg in. of Hg itermined to be present a ump, solid sorbent tube a ain in line to a flow rate of nmediately prior to samp ml/min ml/min	nd MCE niter carnoge 210 ml/min (sorbent ti ing) EL LFM IC	ube used for	
Once the tracer gas screening p can be collected w Pump shall be field calibrated b	Starting Start Enci Encing rocedures are completed and ith a sample train consisting of efore and after sampling with initial calibration must be rep Pre-sampling pump Star Enc Post-sampling pump	Pressure: ling Time: Pressure: no short-circuiting is de of a calibrated sample p the complete sample tr laced with a new tube in flow rate: flow rate: flow rate:	in. of Hg in. of Hg itermined to be present a ump, solid sorbent tube a ain in line to a flow rate of nmediately prior to samp ml/min ml/min	nd MCE niter carnoge 210 ml/min (sorbent ti ing) EL LFM IC	ube used for	

Appendix A
Soil Vapor Sampling Form ExxonMobil Former Buffalo Terminal
10.26-08
Date: 100100 Time: 546
Sampled By:
Sampling Identification #: 5V-1
Summa Canister Identification #:
Analysis
Mul (L)
Temperature: 35 Humidity: 65% Wind Magnitude: 16-21 Wind Direction: W//W
Barometric Pressure: 29.76 Barometer Falling /Ristor (circle one)
Site Condition (i.e. any adjacent facilities, vent pipes, tanks, etc. and what type of basements are present)
Sample Purge and Leak Tracer Test: Calibrate the Helium detection meter
Purge Rate: Must be less than 0.2 L/min
Purge Time: note : Assuming 0.17" I.D. tubing purge 15 sec. for every 10 it of tubing
Helium Rate at enclosure: Is this rate <20% of the rate at the enclosure Yes
If the Helium readings have a greater ratio than 20% the seals should be rechecked and the tracer gas should be reapplied.
Sample Collection for VOCs:
Once the tracer gas screening procedures are completed and no short-circuiting is determined to be present at the location, the soil vapor sample can be collected in a lab certified clean summa canister at a rate less than 0.2 L/min.
Finishing pressure should be within 0.5 - 4 " of Hg
Starting Pressure: in. of Hg
Starting Time:
Ending Time:
Ending Pressure:in. of Hg Sample Collection for Mercury:
-
Once the tracer gas screening procedures are completed and no short-circuiting is determined to be present at the location, the soil vapor sample can be collected with a sample train consisting of a calibrated sample pump, solid sorbent tube and MCE filter cartridge
Pump shall be field calibrated before and after sampling with the complete sample train in line to a flow rate of 210 ml/min (sorbent tube used for
initial calibration must be replaced with a new tube immediately prior to sampling)
Primp AEL 108 210 D
Pre-sampling pump flow rate: 210.0 ml/min
Starting Time: 751 Ending Time: 751
Post-sampling pump flow rate:ml/min
FIPPIL 1 LOCA
Field Blank 1 started @ 852
@ 1652
- wrong tubes used to collect this sample. SU-1 was
recencial an ulsta a RZRAM
resampled on 11/5/08 @ 828AM

ана Алана — на

Soil Vapor Sampling F ExxonMobil Former Bu	00113
	Date: 10-29-08
÷	Time: 357
	Sampled By:
(entification #: <u>SV-4</u>
Summa Canister Ide	
	Regulator ID #
	Analysis
w	leather (general description) : Mosth Claub
· · ·	Temperature: 35° Humidity: 65%
	Wind Magnitude: 16-21 Wind Direction: 6/10/10/10/10/10/10/10/10/10/10/10/10/10/
	Barometric Pressure: 29.76 Barometer Falling (Circle one)
Site Condition (i.e. any	r adjacent facilities, vent pipes, tanks, etc. and what type of basements are present)
Sample Purge and Lea Calibrate the Helium det	
Canorate me menum 0e0	Purge Rate: Must be less than 0.2 L/min
	Purge Time: note : Assuming 0.17" I.D. tubing purge 15 sec. for every 10 ft of tu
	Helium Rate at enclosure:
Hali	ium Rate from sample tubing: Is this rate <20% of the rate at the enclosure Yes
If the Helium	n readings have a greater ratio than 20% the seals should be rechecked and the tracer gas should be reapplied.
Sample Collection for \	, ////
Once the tracer gas scr	reening procedures are completed and no short-circuiting is determined to be present at the location, the soil vapor s
	can be collected in a lab certified clean summa canister at a rate less than 0.2 L/min.
	and the second
	Finishing pressure should be within 0.5 - 4 " of Hg
	Starting Pressure: in. of Hg
	Starting Pressure:in. of Hg Starting Time:
	Ending Time:
Sample Collection for M	Ending Pressure: in. of Hg
-	Ending Pressure:in. of Hg Mercury:
Once the tracer gas scre	Ending Pressure:in. of Hg Mercury: eening procedures are completed and no short-circuiting is determined to be present at the location, the soil vapor s
Once the tracer gas scre	Ending Pressure:in. of Hg Mercury:
Once the tracer gas scro can be col	Ending Pressure: in. of Hg Mercury: eening procedures are completed and no short-circuiting is determined to be present at the location, the soil vapor se llected with a sample train consisting of a calibrated sample pump, solid sorbent tube and MCE filter cartridge
Once the tracer gas scro can be col	Ending Pressure:in. of Hg Mercury: eening procedures are completed and no short-circuiting is determined to be present at the location, the soil vapor s llected with a sample train consisting of a calibrated sample pump, solid sorbent tube and MCE filter cartridge brated before and after sampling with the complete sample train in line to a flow rate of 210 ml/min (sorbent tube us
Once the tracer gas scro can be col	Ending Pressure:in. of Hg Mercury: eening procedures are completed and no short-circuiting is determined to be present at the location, the soil vapor s llected with a sample train consisting of a calibrated sample pump, solid sorbent tube and MCE filter cartridge brated before and after sampling with the complete sample train in line to a flow rate of 210 ml/min (sorbent tube us initial calibration must be replaced with a new tube immediately prior to sampling)
Once the tracer gas scro can be col	Ending Pressure:in. of Hg Mercury: eening procedures are completed and no short-circuiting is determined to be present at the location, the soil vapor s llected with a sample train consisting of a calibrated sample pump, solid sorbent tube and MCE filter cartridge brated before and after sampling with the complete sample train in line to a flow rate of 210 ml/min (sorbent tube us initial calibration must be replaced with a new tube immediately prior to sampling)
Once the tracer gas scro can be col	Ending Pressure:in. of Hg Mercury: eening procedures are completed and no short-circuiting is determined to be present at the location, the soil vapor s llected with a sample train consisting of a calibrated sample pump, solid sorbent tube and MCE filter cartridge brated before and after sampling with the complete sample train in line to a flow rate of 210 ml/min (sorbent tube us initial calibration must be replaced with a new tube immediately prior to sampling) Pamp AEL 140
Once the tracer gas scro can be col	Ending Pressure:in. of Hg Mercury: eening procedures are completed and no short-circuiting is determined to be present at the location, the soil vapor s llected with a sample train consisting of a calibrated sample pump, solid sorbent tube and MCE filter cartridge brated before and after sampling with the complete sample train in line to a flow rate of 210 ml/min (sorbent tube us initial calibration must be replaced with a new tube immediately prior to sampling) Pump AEL 140 Pre-sampling pump flow rate:09.4 ml/min
Once the tracer gas scro can be col	Ending Pressure:in. of Hg Mercury: eening procedures are completed and no short-circuiting is determined to be present at the location, the soil vapor s llected with a sample train consisting of a calibrated sample pump, solid sorbent tube and MCE filter cartridge brated before and after sampling with the complete sample train in line to a flow rate of 210 ml/min (sorbent tube us initial calibration must be replaced with a new tube immediately prior to sampling) Pamp AEL 140 Pre-sampling pump flow rate:ml/min
Once the tracer gas scro can be col	Ending Pressure:in. of Hg Mercury: eening procedures are completed and no short-circuiting is determined to be present at the location, the soil vapor s llected with a sample train consisting of a calibrated sample pump, solid sorbent tube and MCE filter cartridge brated before and after sampling with the complete sample train in line to a flow rate of 210 ml/min (sorbent tube us initial calibration must be replaced with a new tube immediately prior to sampling) Pump AEL 140 Pre-sampling pump flow rate:MI/min Starting Time:MI/min
Once the tracer gas scro can be col	Ending Pressure:in. of Hg Mercury: eening procedures are completed and no short-circuiting is determined to be present at the location, the soil vapor s llected with a sample train consisting of a calibrated sample pump, solid sorbent tube and MCE filter cartridge brated before and after sampling with the complete sample train in line to a flow rate of 210 ml/min (sorbent tube us initial calibration must be replaced with a new tube immediately prior to sampling) Pamp AEL 140 Pre-sampling pump flow rate:MI/min Starting Time:
Once the tracer gas scro can be col	Ending Pressure: in. of Hg Mercury: eening procedures are completed and no short-circuiting is determined to be present at the location, the soil vapor s llected with a sample train consisting of a calibrated sample pump, solid sorbent tube and MCE filter cartridge brated before and after sampling with the complete sample train in line to a flow rate of 210 ml/min (sorbent tube us initial calibration must be replaced with a new tube immediately prior to sampling) Pamp AEL 140 Pre-sampling pump flow rate: 201.4 ml/min Starting Time: 170 \$ ml/min Post-sampling pump flow rate: ml/min
Once the tracer gas scro can be col	Ending Pressure:in. of Hg Mercury: eening procedures are completed and no short-circuiting is determined to be present at the location, the soil vapor si llected with a sample train consisting of a calibrated sample pump, solid sorbent tube and MCE filter cartridge brated before and after sampling with the complete sample train in line to a flow rate of 210 ml/min (sorbent tube us initial calibration must be replaced with a new tube immediately prior to sampling) Pamp AEL 140 Pre-sampling pump flow rate:mi/min Starting Time:m/2mi/min Post-sampling pump flow rate:m//mi/min
Once the tracer gas scro can be col	Ending Pressure:in. of Hg Mercury: eening procedures are completed and no short-circuiting is determined to be present at the location, the soil vapor s llected with a sample train consisting of a calibrated sample pump, solid sorbent tube and MCE filter cartridge brated before and after sampling with the complete sample train in line to a flow rate of 210 ml/min (sorbent tube us initial calibration must be replaced with a new tube immediately prior to sampling) Pump AEL 140 Pre-sampling pump flow rate:MI/min Starting Time:MI/min
Once the tracer gas scro can be col	Ending Pressure:in. of Hg Mercury: eening procedures are completed and no short-circuiting is determined to be present at the location, the soil vapor si llected with a sample train consisting of a calibrated sample pump, solid sorbent tube and MCE filter cartridge brated before and after sampling with the complete sample train in line to a flow rate of 210 ml/min (sorbent tube us initial calibration must be replaced with a new tube immediately prior to sampling) Pamp AEL 140 Pre-sampling pump flow rate:mi/min Starting Time:m/2mi/min Post-sampling pump flow rate:m//mi/min
Once the tracer gas scro can be col	Ending Pressure:in. of Hg Mercury: eening procedures are completed and no short-circuiting is determined to be present at the location, the soil vapor s llected with a sample train consisting of a calibrated sample pump, solid sorbent tube and MCE filter cartridge brated before and after sampling with the complete sample train in line to a flow rate of 210 ml/min (sorbent tube us initial calibration must be replaced with a new tube immediately prior to sampling) Pump AEL 140 Pre-sampling pump flow rate:MI/min Starting Time:MI/min Post-sampling pump flow rate:mml/min
Once the tracer gas scr can be col Pump shall be field calil	Ending Pressure:in. of Hg Mercury: eening procedures are completed and no short-circuiting is determined to be present at the location, the soil vapor so llected with a sample train consisting of a calibrated sample pump, solid sorbent tube and MCE filter cartridge brated before and after sampling with the complete sample train in line to a flow rate of 210 ml/min (sorbent tube use initial calibration must be replaced with a new tube immediately prior to sampling) Pre-sampling pump flow rate:
Once the tracer gas scr can be col Pump shall be field calil	Ending Pressure:in. of Hg Mercury: eening procedures are completed and no short-circuiting is determined to be present at the location, the soil vapor so llected with a sample train consisting of a calibrated sample pump, solid sorbent tube and MCE filter cartridge brated before and after sampling with the complete sample train in line to a flow rate of 210 ml/min (sorbent tube use initial calibration must be replaced with a new tube immediately prior to sampling) Pre-sampling pump flow rate:
Once the tracer gas scr can be col Pump shall be field calil	Ending Pressure:in. of Hg Mercury: eening procedures are completed and no short-circuiting is determined to be present at the location, the soil vapor so llected with a sample train consisting of a calibrated sample pump, solid sorbent tube and MCE filter cartridge brated before and after sampling with the complete sample train in line to a flow rate of 210 ml/min (sorbent tube use initial calibration must be replaced with a new tube immediately prior to sampling) Pre-sampling pump flow rate:
Once the tracer gas scrucan be col Pump shall be field calif	Ending Pressure: in. of Hg Mercury: eening procedures are completed and no short-circuiting is determined to be present at the location, the soil vapor so llected with a sample train consisting of a calibrated sample pump, solid sorbent tube and MCE filter cartridge brated before and after sampling with the complete sample train in line to a flow rate of 210 ml/min (sorbent tube use initial calibration must be replaced with a new tube immediately prior to sampling) Pre-sampling pump flow rate:ml/min Starting Time:ml/22ml/min Field Bluck 2 Student @ 903 @ 1703 Were used to collect this sample. Such SV-1
Once the tracer gas scrucan be col Pump shall be field calif	Ending Pressure: in. of Hg Mercury: eening procedures are completed and no short-circuiting is determined to be present at the location, the soil vapor so llected with a sample train consisting of a calibrated sample pump, solid sorbent tube and MCE filter cartridge brated before and after sampling with the complete sample train in line to a flow rate of 210 ml/min (sorbent tube use initial calibration must be replaced with a new tube immediately prior to sampling) Pre-sampling pump flow rate:ml/min Starting Time:ml/22ml/min Field Bluck 2 Student @ 903 @ 1703 Were used to collect this sample. Such SV-1
Once the tracer gas scrucan be col Pump shall be field calif	Ending Pressure: in. of Hg Mercury: eening procedures are completed and no short-circuiting is determined to be present at the location, the soil vapor so llected with a sample train consisting of a calibrated sample pump, solid sorbent tube and MCE filter cartridge brated before and after sampling with the complete sample train in line to a flow rate of 210 ml/min (sorbent tube use initial calibration must be replaced with a new tube immediately prior to sampling) Pre-sampling pump flow rate:ml/min Starting Time:ml/22ml/min Field Bluck 2 Student @ 903 @ 1703 Were used to collect this sample. Such SV-1
Once the tracer gas scrucan be col Pump shall be field calif	Ending Pressure:in. of Hg Mercury: eening procedures are completed and no short-circuiting is determined to be present at the location, the soil vapor so llected with a sample train consisting of a calibrated sample pump, solid sorbent tube and MCE filter cartridge brated before and after sampling with the complete sample train in line to a flow rate of 210 ml/min (sorbent tube use initial calibration must be replaced with a new tube immediately prior to sampling) Pre-sampling pump flow rate:

ROUX ASSOCIATES, INC.

APPENDIX B

Field Equipment Calibration Forms

Sampling Pump Calibration Log

			7	
ExxonMobil	Buffalo T	remiral	Cail Luge	
Pump ID	Pump ID	Pump ID	Pump ID	Pump ID
AGUOS	AGL 130			
U-m142	LEM 102			
209.0m	210.6 min			
208.9 ml	209:2 min			
209-0min	211.5 min			
. *				
209.0 ml	210.4 ml			
	Pump ID AGLIOS LIT-MI42 209.0ml Tim 208.9 ml Tim 209.0ml	ExxonMobil Buffalo T Pump ID Pump ID AGLIOS AGLIBO LF-MI42 LFMIO2 209.0ml 210.6ml 208.9 ml 209.2ml 208.9 ml 209.2ml min 209.0ml 209.0ml 211.5 ml	Pump IDPump IDPump IDAGL 130AGL 130Lr-m142LFM 102209.0ml210.6 ml209.0ml210.6 ml208.9 ml209.2 ml	ExxonMobil Buffalo Terminal / Cail Lucar Pump ID Pump ID Pump ID Pump ID AGLIOS AGLIBO LIF-MI42 LEMIO2 209.0ml 210.6 ml 208.9 ml 209.2 ml 209.0ml 211.5 ml 209.0ml 211.5 ml

	Post-Calibration						
Client/Projec	t:		-				
.:	Pump ID	Pump ID	Pump ID	Pump ID	Pump ID		
Date:							
:							
Flow 1							
Flow 2							
Flow 3	,				a		
Average							

		Pre-C	alibration			
Client/Project: Exxen mobil / Andy Senik						
	Pump ID	Pump ID	Pump ID	Pump ID	Pump ID	
Date: 10/2/08	AEL138 LEM101					
Flow 1	149.6 ml				· · · · · · · ·	
Flow 2	149.8 min			······································		
Flow 3	151.2 NL					
Average	150.2 ml					

. سيب،

Sampling Pump Calibration Log

Post-Calibration						
Client/Proje	ect:					
	Pump ID	Pump ID	Pump ID	Pump ID	Pump ID	
Date:		<u>·</u>				
Flow 1						
Flow 2						
Flow 3						
					*	
Average						
		-				

Sampling Pump Calibration Log

14

	÷ -	Pre-Cal	ibration		
Client/Project:	Expon/G	ail Larg			· · · · · · · · · · · · · · · · · · ·
		0			
	Pump ID	Pump ID	Pump ID	Pump ID	Pump ID
Date:	AGLIOS	AGLIND	20071101002		
1922/08		LFM127	LT-MI14		
Flow 1					
	210.2 min	209.4ml	192.3 min		
Flow 2		~			
	208.9 ml	209.3 ml	193.9 ml		
Flow 3					
	210.8 min	209.4 ml	[92.7 min		
Average					
	210. Onl	209.4ml	193.0ml		

	Post-Calibration						
Client/Proje	ect:						
	Pump ID	Pump ID	Pump ID	Pump ID	Pump ID		
Date:							
Flow 1							
Flow 2							
Flow 3							
A. 10 10 010							
Average							

1

Sampling Pump Calibration Log

Client/Project	Exxan		ibration	· · · · · · · · · · · · · · · · · · ·	
	_				
	Pump ID	Pump ID	Pump ID Purging	Pump ID	Pump ID
Date: 11/03/0-9	AEL#141 LFM#143	S/N 14107 LFM#138	5/N 20071101002 LFM#114		
Flow 1	209.5 min	209.7 ml	200,2 ^{nl}		
Flow 2	209.3 me	209.2 min	200.1 ml		
Flow 3	209. 4 ml	209.5 min	200.5 mi		
Average	209.4 ml	209.5 mi	20.3 ml		

Post-Calibration							
Client/Project:							
	Pump ID						
Date:				· · · ·			
Flow 1							
Flow 2							
Flow 3							
Average							

à

1

8

Page 1 of 1 Certificate Number: 46082 Calibration Date: 29 February 2008

Asset No: Description: Manufacturer: Serial No: Calibration Date: Next Calibration: Accuracy of Unit Under Test: Adjustments made: Calibration Technician: R7619 ION SCIENCE GASCHECK 3000 ION SCIENCE 05-01099 29 February 2008 28 February 2009 Manufacturers Specifications None Victor Boccardo

Details of any limitations to the use of the equipment $\ensuremath{\textbf{None}}$

The following measurement equipment used during the calibration procedure is traceable to National Standards.

Measurement Equipment/S ION SCIENCE CALCHECK HELIU	Reference
Calibrated By:	

Victor Boccardo

APPENDIX C

Data Usability Summary Report

Data Validation Services

120 Cobble Creek Road P.O. Box 208 North Creek, NY 12853

> Phone 518-251-4429 Facsimile 518-251-4428

January 9, 2009

Noelle Clark Roux Associates 209 Shafter St. Islandia, NY 11749

RE: Data Validation Report for the ExxonMobil Buffalo site TAL-Nashville SDG Nos. PRJ0559, PRJ0560, PRJ1586, and PRK0301 Soil Vapor and Ambient Air

Dear Ms. Clarke :

Review has been completed for the data packages generated by TestAmerica Laboratories that pertain to air samples collected 10/06/08 through 11/05/08 at the ExxonMobil Buffalo site. Seventeen 6L summa canisters (including two field duplicates) were analyzed for volatile analytes by method USEPA TO-15 and six fixed gases by ASTM method D1946. Three sample Anasorb tubes and field blanks were analyzed for mercury by a modified NIOSH method 6009.

The raw data and the results of QC evaluations have been reviewed for application of validation qualifiers, with consideration of the analytical methods and the USEPA Region 2 validation SOP HW-32. Although the data packages were to have been full deliverables, many of the summary forms were not available, and in those instances the corresponding raw data were reviewed for the required parameters. The following items were reviewed:

- * Laboratory Narrative Discussion
- * Custody Documentation
- * Holding Times
- * Surrogate Standard Recoveries
- * Internal Standard Recoveries
- * Field Duplicate Correlation
- * Preparation/Calibration Blanks
- * Control Spike/Laboratory Control Samples
- * Instrumental Tunes
- * Calibration Standard Responses
- * Sample Result Verification

Those items listed above which show deficiencies are discussed within the text of this narrative. All of the other items were determined to be acceptable. **In summary**, sample processing was compliant with analytical protocol requirements. Sample results are either usable as reported, or usable with qualification of values as quantitatively estimated.

Copies of the laboratory case narratives, including sample IDs covered in this report, are attached to this text, and should be reviewed in conjunction with this narrative. Also included in this submission are sample results forms with recommended qualifiers and edits applied in red ink.

Method TO-15 laboratory processing and data validation were performed using the units of ppbv (as required of the analytical protocol). Random conversions to ug/M3 were checked, and no errors found in the laboratory reporting of those units.

Volatile Analyses by USEPA TO-15

Due to an apparent transcription error, the result for cyclohexane was not reported for Duplicate 2. The value is 72 ppbv (250 ug/M3). The result has been entered on the attached report forms.

Results for analytes that initially showed responses above the instrument calibration range have been derived from the dilution analyses of the samples.

The field duplicates of SV-6 (Duplicate 1) and SV-4 (Duplicate 2) show outlying correlations greater than 50%RPD or >±CRDL for almost all detected analytes. In some instances variances exceed an order of magnitude. The duplicates were collected sequentially rather than concurrently, and as such they are not true replicates as described by method TO-15. Therefore, those correlations have not been evaluated during this review. Those results should be used with caution until the variances are better understood.

Holding times were met, and instrument tune fragmentation is within protocol. Surrogate and internal standard responses were acceptable. Method blanks show no contamination.

Initial and continuing calibration standards meet protocol and validation requirements.

Due to elevated response in the associated LCS (135% to 145%), detections of 1,2,4-trimethylbenene and styrene in the samples processed 10/29/08 and 10/30/08 are considered additionally estimated. Elevated LCS recoveries for analytes that are not detected in the samples do not affect reported results.

Although the protocol requires an acceptance range of 70% to 130% for LCS recoveries, the laboratory ranges are 65% to 135%. The protocol range was utilized in the validation evaluation.

Some of the samples were processed at initial dilution due to elevated target analyte responses. This resulted in elevated reporting limits for compounds not detected in those samples.

QC summary forms listing surrogate recoveries, internal standard responses, and continuing calibration standard differences were not provided in the data package. These items were reviewed from the raw data.

Fixed Gases Analyses by ASTM D-1946

Holding times were met, and blanks show no contamination. Instrument performance was within validation guidelines.

LCSs (performed in duplicate) show acceptable accuracy and precision.

Sample results are substantiated by the raw data, and no qualification is made.

Mercury Analyses by NIOSH 6009

Instrument processing was acceptable, and blanks show no contamination.

The laboratory duplicate of SV-1 correlates well with the parent sample (both report no detection).

LCSs (performed in duplicate) show good accuracy and precision.

Sample results are substantiated by the raw data, and no qualification is made.

Please do not hesitate to contact me if questions or comments arise during your review of this report.

Very truly yours,

Judy Harry

VALIDATION QUALIFIER DEFINITIONS

DATA QUALIFIER DEFINITIONS

The following definitions provide brief explanations of the national qualifiers assigned to results in the data review process. If the Regions choose to use additional qualifiers, a complete explanation of those qualifiers should accompany the data review.

- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- J The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- N The analysis indicates the present of an analyte for which there is presumptive evidence to make a "tentative identification."
- NJ The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.
- UJ The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.

CLIENT and LABORATORY SAMPLE IDs and CASE NARRATIVES

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

4625 East Cotton Center Blvd. Ste 189, Phoenix, AZ 85040 (602) 437-3340 Fax:(602) 454-9303

LABORATORY REPORT

Prepared For: TestAmerica Nashville 2960 Foster Creighton Drive Nashville, TN 37204 Attention: Gail Lage

Project: Exxon 3-1010 Buffalo / NRJ1277

Sampled: 10/06/08-10/07/08 Received0/09/08 Issued: 10/30/08 17:58

NELAP #01109CA California ELAP#2446 Arizona DHS#AZ0728 Nevada #AZ01030 ORELAP #AZ100001

The results listed within this Laboratory Report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the applicable certifications as noted. All soil samples are reported on a wet weight basis unless otherwise noted in the report. This Laboratory Report is confidential and is intended for the sole use of TestAmerica and its client. This report shall not be reproduced, except in full, without written permission from TestAmerica. The Chain(s) of Custody, 2 pages, are included and are an integral part of this report.

This entire report was reviewed and approved for release.

CASE NARRATIVE

LABORATORY ID	CLIENT ID	MATRIX
PRJ0559-01	SV-6	Air
PRJ0559-02	SV-4	Air
PRJ0559-03	SV-5	Air
PRJ0559-04	SV-9	Air
PRJ0559-05	Ambient Air 1	Air
PRJ0559-06	SV-3	Air
PRJ0559-07	SV-12	Air
PRJ0559-08	Duplicate 2	Air
PRJ0559-09	Duplicate 1	Air
PRJ0559-10	Ambient Air	Air

TestAmerica Phoenix

Denise Harrington Project Manager

4 of 851

PRJ0559 <Page 1 of 13>

<u>TestAmerica</u>

THE LEADER IN ENVIRONMENTAL TESTING 4625 East Cotton Center Blvd. Ste 189 Phoenix, AZ 85040 * (602) 437-3340 * Fax (602) 454-9303

TestAmerica NashvilleWork Order:PRJ1586Received:10/30/082960 Foster Creighton DriveReported:11/26/0814:55Nashville, TN 37204Project:N_ExxonMobil Buffalo11/26/08Gail LageProject Number:Exxon 3-1010Buffalo / NRK0367

SAMPLE IDENTIFICATION

NRK0367-01 (SV-1) NRK0367-02 (SV-10) NRK0367-03 (SV-11) NRK0367-04 (SV-8) NRK0367-05 (Ambient Air 3) NRK0367-06 (SV-2) NRK0367-07 (Ambient Air 4)

LAB_NUMBER

PRJ1586-01 PRJ1586-02 PRJ1586-03 PRJ1586-04 PRJ1586-05 PRJ1586-06 PRJ1586-07 COLLECTION DATE

10/28/08 10/28/08 10/28/08 10/28/08 10/28/08 10/28/08 10/28/08

CONTAINER TYPE

 S/N
 12478
 6L
 Canister

 S/N
 93143
 6L
 Canister

 S/N
 12492
 6L
 Canister

 S/N
 02643
 6L
 Canister

 S/N
 1327
 6L
 Canister

 S/N
 12185
 6L
 Canister

 S/N
 6673
 6L
 Canister

13 of 465

Page 2 of 28

THE LEADER IN ENVIRONMENTAL TESTING

TestAmerica Nashville 2960 Foster Creighton Drive Nashville, TN 37204 Gail Lage 4625 East Cotton Center Blvd, Ste 189 Phoenix, AZ 85040 * (602) 437-3340 * Fax (602) 454-9303

Work Order: PRJ0560

Report Project: N_ExxonMobil Buffalo Project Number: Exxon 3-1010 Buffalo / NRJ1279

Received: 10/09/08 Reported: 10/21/08 12:20

SAMPLE IDENTIFICATION

NRJ1279-01 (SV-9)

LAB NUMBER PRJ0560-01 <u>COLLECTION DATE</u> 10/07/08

CONTAINER TYPE

PTFE filter, 13-mm, 1micron/150 mg Ox impreg

4 of 28

Page 2 of 5

THE LEADER IN ENVIRONMENTAL TESTING

TestAmerica Nashville 2960 Foster Creighton Drive Nashville, TN 37204 Gail Lage 4625 East Cotton Center Blvd. Ste 189 Phoenix, AZ 85040 * (602) 437-3340 * Fax (602) 454-9303

Work Order: PRK0301 Re Re Project: N_ExxonMobil Buffalo Project Number: Exxon 3-1010 Buffalo / NRK0460

Received: 11/06/08 Reported: 11/21/08 10:32

SAMPLE IDENTIFICATION

NRK0460-01 (SV-1) NRK0460-02 (Field Blank 1) NRK0460-03 (SV-9) NRK0460-04 (Field Blank 2) LAB NUMBER

PRK0301-01 PRK0301-02 PRK0301-03 PRK0301-04

COLLECTION DATE

11/05/08 11/05/08 11/05/08 11/05/08 CONTAINER TYPE

 Anasorb
 C300,
 200
 mg

 Anasorb
 C300,
 200
 mg

 Anasorb
 C300,
 200
 mg

 Anasorb
 C300,
 200
 mg

 Anasorb
 C300,
 200
 mg

4 of 39

Page 2 of 5

THE LEADER IN ENVIRONMENTAL TESTING

4625 East Cotton Center Blvd. Ste 189, Phoenix, AZ 85040 (602) 437-3340 Fax:(602) 454-9303

1			+54-2505
TestAmerica Nashville	Project ID: Exxon 3-1010 Buffalo / NRJ1277		
2960 Foster Creighton Drive Nashville, TN 37204 Attention: Gail Lage	Report Number: PRJ0559	Sampled: Received:	10/06/08-10/07/08 10/09/08
SAMPLE RECEIPT:	Samples were received intact, at 20°C, on ice and with chain of custody docu	mentation.	
HOLDING TIMES:	All samples were analyzed within prescribed holding times and/or in accordance Sample Acceptance Policy unless otherwise noted in the report.	e with the T	estAmerica
PRESERVATION:	Samples requiring preservation were verified prior to sample analysis.		
QA/QC CRITERIA:	All analyses met method criteria, except as noted in the report with data quali	fiers.	
COMMENTS:	No significant observations were made.		
SUBCONTRACTED:	No analyses were subcontracted to an outside laboratory.		

Reviewed By:

Denise Harrington

TestAmerica Phoenix Denise Harrington Project Manager

THE LEADER IN ENVIRONMENTAL TESTING

4625 East Cotton Center Blvd. Ste 189 Phoenix, AZ 85040 * (602) 437-3340 * Fax (602) 454-9303

November 26, 2008

LABORATORY REPORT

Client: TestAmerica Nashville 2960 Foster Creighton Drive Nashville, TN 37204 Attn: Gail Lage

 Work
 Order:
 PRJ1586

 Project
 Name:
 N_ExxonMobil
 Buffalo

 Project
 Number:
 Exxon 3-1010
 Buffalo / NRK0367

 Date
 Received:
 10/30/08

The results listed within this Laboratory Report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the applicable certifications as noted. All soil samples are reported on a wet weight basis unless otherwise noted in the report. This Laboratory Report is confidential and is intended for the sole use of TestAmerica and its client. This report shall not be reproduced, except in full, without written permission from TestAmerica.

TestAmerica Laboratories, Inc., Phoenix Laboratory certifies that the analytical results contained herein apply only to the specific sample(s) analyzed.

The Chain of Custody, I page, is included and is an integral part of this report. This entire report was reviewed and approved for release.

If you have any questions relating to this analytical report, please contact your Laboratory Project Manager at 1-(602)437-3340

Analyses included in this report were performed by the laboratory shown at the top of this report unless otherwise indicated.

CASE NARRATIVE: SAMPLE RECEIPT: Samples were received intact, at 20°C and with chain of custody documentation.

HOLDING TIMES: All samples were analyzed within prescribed holding times and/or in accordance with the TestAmerica Sample Acceptance Policy unless otherwise noted in the report.

PRESERVATION: Samples requiring preservation were verified prior to sample analysis.

QA/QC CRITERIA: All analyses met method criteria, except as noted in the report with data qualifiers.

COMMENTS: No significant observations were made.

SUBCONTRACTED: Refer to the last page for specific subcontract laboratory information included in this report.

Approved By:

Denise Harrington

Denise Harrington Project Manager

12 of 465

Page 1 of 28

THE LEADER IN ENVIRONMENTAL TESTING

4625 East Cotton Center Blvd. Ste 189 Phoenix, AZ 85040 * (602) 437-3340 * Fax (602) 454-9303

October 21, 2008

LABORATORY REPORT

Client: TestAmerica Nashville 2960 Foster Creighton Drive Nashville, TN 37204 Attn: Gail Lage

PRJ0560 Work Order: Project Name: N ExxonMobil Buffalo Project Number: Exxon 3-1010 Buffalo / NRJ1279 Date Received: 10/09/08

The results listed within this Laboratory Report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the applicable certifications as noted. All soil samples are reported on a wet weight basis unless otherwise noted in the report. This Laboratory Report is confidential and is intended for the sole use of TestAmerica and its client. This report shall not be reproduced, except in full, without written permission from TestAmerica.

TestAmerica Laboratories, Inc., Phoenix Laboratory certifies that the analytical results contained herein apply only to the specific sample(s) analyzed.

This entire report was reviewed and approved for release.

If you have any questions relating to this analytical report, please contact your Laboratory Project Manager at 1-(602)437-3340

Analyses included in this report were performed by the laboratory shown at the top of this report unless otherwise indicated.

CASE NARRATIVE: SAMPLE RECEIPT: Samples were received intact, at 20°C and with chain of custody documentation.

HOLDING TIMES: All samples were analyzed within prescribed holding times and/or in accordance with the TestAmerica Sample Acceptance Policy unless otherwise noted in the report.

PRESERVATION: Samples requiring preservation were verified prior to sample analysis.

QA/QC CRITERIA: All analyses met method criteria, except as noted in the report with data qualifiers.

COMMENTS: Post calibration could not be done on the air pump upon lab receipt due to water in the system.

SUBCONTRACTED: Refer to the last page for specific subcontract laboratory information included in this report.

Approved By:

Denise Harrington

Denise Harrington Project Manager

3 of 28

Page 1 of 5

THE LEADER IN ENVIRONMENTAL TESTING

4625 East Cotton Center Blvd. Ste 189 Phoenix, AZ 85040 * (602) 437-3340 * Fax (602) 454-9303

November 21, 2008

LABORATORY REPORT

 Client:
 TestAmerica Nashville
 Work Order:
 PRK0301

 2960 Foster Creighton Drive
 Project Name:
 N_ExxonMobil Buffalo

 Nashville, TN 37204
 Project Number:
 Exxon 3-1010 Buffalo / NRK0460

 Attn: Gail Lage
 Date Received:
 11/06/08

The results listed within this Laboratory Report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the applicable certifications as noted. All soil samples are reported on a wet weight basis unless otherwise noted in the report. This Laboratory Report is confidential and is intended for the sole use of TestAmerica and its client. This report shall not be reproduced, except in full, without written permission from TestAmerica.

TestAmerica Laboratories, Inc., Phoenix Laboratory certifies that the analytical results contained herein apply only to the specific sample(s) analyzed.

This entire report was reviewed and approved for release.

If you have any questions relating to this analytical report, please contact your Laboratory Project Manager at 1-(602)437-3340

Analyses included in this report were performed by the laboratory shown at the top of this report unless otherwise indicated.

CASE NARRATIVE: SAMPLE RECEIPT: Samples were received intact, at 19.8°C and with chain of custody documentation.

HOLDING TIMES: All samples were analyzed within prescribed holding times and/or in accordance with the TestAmerica Sample Acceptance Policy unless otherwise noted in the report.

PRESERVATION: Samples requiring preservation were verified prior to sample analysis.

QA/QC CRITERIA: All analyses met method criteria, except as noted in the report with data qualifiers.

COMMENTS: No significant observations were made.

SUBCONTRACTED: Refer to the last page for specific subcontract laboratory information included in this report.

Approved By:

Denise Harrington

Denise Harrington Project Manager

3 of 39

Page 1 of 5

QUALIFIED SAMPLE REPORT FORMS

х ,

THE LEADER IN ENVIRONMENTAL TESTING

4625 East Cotton Center Blvd. Ste 189 Phoenix, AZ 85040 * (602) 437-3340 * Fax (602) 454-9303

TestAmerica Nashville ' 2960 Foster Creighton Drive Nashville, TN 37204 Gail Lage Work Order: PRJ0559

Received: 10/09/08 Reported: 11/03/08 16:35

Project:N_ExxonMobilBuffaloProjectNumber:Exxon3-1010Buffalo/

ANALYTICAL REPORT

	pp	bv	ug/m3		Data		Date		
	Result	PQL	Result	PQL	Qualifiers J	Dilution	Analyzed	Analyst	Method
Volatile Organic Compounds by EPA	TO-15								
Sample ID: PRJ0559-01 (SV-6)								Sampled:	10/06/08 07:58
1,1,1-Trichloroethane	20	0.50	110	2.73	1.	0	10/30/2008	ŢŢ	EPA TOIS
1,1,2,2-Tetrachloroethane	<0,50	0.50	<3.43	3.43	1.	0	10/30/2008	JJ	EPA TO15
1,1,2-Trichloroethane	<0,50	0.50	<2.73	2.73	Ι.	.0	10/30/2008	JJ	EPA TO15
1, I-Dichloroethane	<0,50	0,50	<2.02	2.02	1.	.0	10/30/2008	JJ	EPA TO15
1,1-Dichloroethene	<0.50	0.50	<1.98	1.98	1.	0	10/30/2008	IJ	EPA TO15
1,2,4-Trichlorobenzene	<2,0	2.0	<14.8	14.8	1.	0	10/30/2008	JJ	EPA TO15
1,2,4-Trimethylbenzene	<0.50	0.50	<2.46	2.46	1.	0	10/30/2008	11	EPA TO15
1,2-Dibromoethane (EDB)	<0,50	0,50	<3.84	3.84	1.	.0	10/30/2008	JJ	EPA TO15
1,2-Dichlorobenzene	<0.50	0.50	<3.01	3.01	· 1.	.0	10/30/2008	JJ -	EPA TO15
1,2-Dichloroethane	<0,50	0,50	<2.02	2.02	1.	.0	10/30/2008	JĴ	EPA TO15
1,2-Dichloropropane	<0.50	0.50	<2.31	2.31	1.	.0	10/30/2008	JJ	EPA TO15
1,3,5-Trimethylbenzene	<0.50	0.50	<2.46	2.46	1.	.0	10/30/2008	JĴ	EPA TO15
1,3-Butadiene	<0.50	0.50	<1.10	1,10	1.	.0	10/30/2008	JJ	EPA TO15
1,3-Dichlorobenzene	2.5	0.50	15	3.01	1.	.0	10/30/2008	JJ	EPA TOIS
1,4-Dichlorobenzene	4.5	0.50	27	3.01	1.	.0	10/30/2008	11	EPA TOIS
2,2,4-Trimethylpentane	<0.50	0.50	<2.34	2.34	1.	.0	10/30/2008	JJ	EPA TO15
2-Butanone (MEK)	2.0	1.0	5.9	2,95	1.	0	10/30/2008	JJ	EPA TOIS
2-Hexanone	<1,0	1.0	<4.10	4.10	1.	.0	10/30/2008	JJ	EPA TO15
2-Propanol	<2.0	2.0	<4.92	4.92	1.	.0	10/30/2008	jj	EPA TO15
4-Ethyltoluene	<0,50	0,50	<2.46	2.46	1.	.0	10/30/2008	JJ	EPA TO15
4-Methyl-2-pentanone (MIBK)	<1.0	1.0	<4.10	4,10	1.	.0	10/30/2008	JJ	EPA TO15
Acetone	20	5.0	48	11.9	1.	.0	10/30/2008	ĩl	EPA TOIS
Allyl Chloride	<0.50	0.50	<1.56	1.56	1.	.0	10/30/2008	JJ	EPA TO15
Benzene	1.2	0.50	3,8	1.60	1.	.0	10/30/2008	JJ	EPA TOIS
Benzyl Chloride	<2.0	2.0	<10.4	10.4	1.	.0	10/30/2008	31	EPA TO15
Bromodichloromethane	<0.50	0,50	<3.35	3.35	1.	.0	10/30/2008	JJ	EPA TO15
Bromoethene(Vinyl Bromide)	<0.50	0,50	<2.19	2.19	1,	.0	10/30/2008	11	EPA TO15
Bromoform	<0,50	0.50	<5.17	5.17	1.	.0	10/30/2008	JJ	EPA TO15
Bromomethane	<0.50	0.50	<1.94	1.94	1.	.0	10/30/2008	JI	EPA TO15
Carbon disulfide	7.4	0.50	23	1.56	1.	.0	10/30/2008	11	EPA TOIS
Carbon tetrachloride	<0.50	0.50	<3.15	3.15	1.	.0	10/30/2008	JI	EPA TOIS
Chlorobenzene	<0.50	0.50	<2.30	2.30	1.	.0	10/30/2008	JJ	EPA TO15
Chloroethane	<0.50	0.50	<1.32	1,32	1.	.0	10/30/2008	JJ	EPA TO15
Chloroform	<0.50	0.50	<2.44	2.44	1.	.0	10/30/2008	JJ	EPA TO15
Chloromethane	<0,50	0.50	<1.03	1.03	1.	.0	10/30/2008	JJ	EPA TOIS
cis-1,2-Dichloroethene	<0.50	0.50	<1.98	1,98	1.	.0	10/30/2008	JJ	EPA TO15
cis-1,3-Dichloropropene	<0.50	0.50	<2.27	2.27	1.	.0	10/30/2008	JJ	EPA TO15
Cyclohexane	2.9	0.50	10	1.72	1.	.0	10/30/2008	JJ	EPA TOIS
Dibromochloromethane	<0.50	0.50	<4.26	4.26	1.	.0	10/30/2008	JJ	EPA TO15
Dichlorodifluoromethane	<0.50	0.50	<2.47	2.47	1.	.0	10/30/2008	JJ	EPA TO15
Dichlorotetrafluoroethane(F-114)	<0.50	0.50	<3.50	3.50	1.	.0	10/30/2008		EPA TOIS
Ethyl Acetate	<0.50	0.50	<1.80	1.80	1.		10/30/2008	22	0fe851

THE LEADER IN ENVIRONMENTAL TESTING

4625 East Cotton Center Blvd. Ste 189 Phoenix, AZ 85040 * (602) 437-3340 * Fax (602) 454-9303

TestAmerica Nashville 2960 Foster Creighton Drive Nashville, TN 37204 Gail Lage Work Order: PRJ0559

Received: 10/09/08 Reported: 11/03/08 16:35

Project: N_ExxonMobil Buffalo

Project Number: Exxon 3-1010 Buffalo / NRJ1277

	ppl	<u>v</u>	<u>ug/m3</u>		Data		Date		
	Result	PQL	Result	PQL	Qualifiers	Dilution	Analyzed	Analyst	Method
Volatile Organic Compounds by	EPA TO-15								
Sample ID: PRJ0559-01 (SV-6) - 0	cont.								10/06/08 07:58
Ethylbenzene	0.73	0.50	3.2	2.17		1.0	10/30/2008	JJ	EPA TOIS
Freon 113	<0.50	0.50	<3.83	3.83		1.0	10/30/2008	11	EPA TO15
Heptane	1.5	0.50	6,2	2.05		1.0	10/30/2008	IJ	EPA TO15
Hexachlorobutadiene	<1.0	1.0	<10.7	10.7		1.0	10/30/2008	JJ	EPA TO15
Hexane	6.1	0.50	22	1,76		1.0	10/30/2008	31	EPA TOIS
m,p-Xylenes	2,3	1.0	10	4,34		1.0	10/30/2008	JJ	EPA TO15
Methylene Chloride	2.1	0.50	7.3	1.74		1.0	10/30/2008	JJ	EPA TOIS
Methyl-tert-butyl Ether (MTBE)	<1.0	1.0	<3.61	3,61		1.0	10/30/2008]]	EPA TO15
o-Xylene	0.64	0.50	2.8	2.17		1.0	10/30/2008	11	EPA TOIS
Propene	7.6	0.50	13	0.861		1.0	10/30/2008	JJ	EPA TOIS
Styrene	0.78	0.50	3.3	2.13	T	1.0	10/30/2008	JĴ	EPA TOIS
Tetrachloroethene	1.1	0.50	7.5	3.39	~	1.0	10/30/2008	JJ	EPA TO1
Tetrahydrofuran	<2.0	2.0	<5.90	5,90		1.0	10/30/2008	ĴJ	EPA TOIS
Toluene	3.1	0.50	12	1.88		1.0	10/30/2008	JJ	EPA TOI
trans-1,2-Dichloroethene	<0.50	0.50	<1.98	1,98		1.0	10/30/2008	JJ	EPA TO1
trans-1,3-Dichloropropene	<0.50	0.50	<2.27	2.27		1.0	10/30/2008	JJ	EPA TOI:
Trichloroethene	<0.50	0.50	<2.69	2.69		1.0	10/30/2008	JI	EPA TOI:
Trichlorofluoromethane	0.79	0.50	4.4	2.81		1.0	10/30/2008	JJ	EPA TOI
Vinyl Acetate	<0,50	0.50	<1.76	1.76		1.0	10/30/2008	JJ	EPA TOI
•	<0.50	0.50	<1.28	1.28		1.0	10/30/2008	IJ	EPA TOI
Vinyl chloride		0.00	Limit 70-130						
Surrogate: 4-Bromofluorobenzene	87 %		Dunne 199120						

THE LEADER IN ENVIRONMENTAL TESTING

4625 East Cotton Center Blvd. Ste 189 Phoenix, AZ 85040 * (602) 437-3340 * Fax (602) 454-9303

TestAmerica Nashville 2960 Foster Creighton Drive Nashville, TN 37204 Gail Lage

Work Order: PRJ0559

Project:

Received: 10/09/08 Reported: 11/03/08 16:35

N ExxonMobil Buffalo

Project Number: Exxon 3-1010 Buffalo / NRJ1277

	<u>ppl</u>		<u>ug/m3</u>	POT	Data Qualifiers	Thiller 45 and	Date Analyzed	Amatura	Method
	Result	PQL	Result	PQL	Quantiers	Dilution	Analyzeu	Analyst	
olatile Organic Compounds by EP.	A TO-15								
Sample ID: PRJ0559-02 (SV-4)									10/06/08 08:2
1,1,1-Trichloroethane	28	0.50	150	2.73		1.0	10/29/2008	JJ	EPA TO
1,1,2,2-Tetrachloroethane	<0.50	0.50	<3.43	3.43		1.0	10/29/2008	11	EPA TO
1,1,2-Trichloroethane	<0.50	0.50	<2.73	2.73		1.0	10/29/2008	JJ 	EPA TO
1,1-Dichloroethene	1.3	0.50	5.2	1.98		1.0	10/29/2008	JJ	EPA TO
1,2,4-Trichlorobenzene	<2.0	2.0	<14.8	14.8		1.0	10/29/2008	JJ 	EPA TO
1,2,4-Trimethylbenzene	0.54	0.50	2.7	2.46	J	1.0	10/29/2008	13	EPA TO
1,2-Dibromoethane (EDB)	<0.50	0,50	<3.84	3.84		1.0	10/29/2008	lì	EPA TO
1,2-Dichlorobenzene	<0.50	0.50	<3.01	3.01		1.0	10/29/2008	JJ	EPA TO
1,2-Dichloroethane	<0.50	0,50	<2.02	2.02		1.0	10/29/2008	IJ	EPA TO
1,2-Dichloropropane	<0.50	0.50	<2,31	2,31		1.0	10/29/2008	JJ	EPA TO
1,3,5-Trimethylbenzene .	<0.50	0.50	<2,46	2.46		1.0	10/29/2008	JJ	EPA TO
1,3-Butadiene	<0.50	0,50	<1.10	1.10		1.0	10/29/2008	IJ	EPA TO
1,3-Dichlorobenzene	<0,50	0.50	<3.01	3.01		1.0	10/29/2008	JJ	EPA TO
1,4-Dichlorobenzene	13	0.50	78	3.01		1.0	10/29/2008	JĴ	ЕРА ТО
2,2,4-Trimethylpentane	<0.50	0.50	<2.34	2.34		1.0	10/29/2008	JJ	EPA TO
2-Butanone (MEK)	6.3	1.0	19	2.95		1.0	10/29/2008	JJ	EPA TO
2-Hexanone	<1.0	1.0	<4,10	4,10		1.0	10/29/2008	JJ	EPA TO
2-Propanol	<2.0	2.0	<4.92	4.92		1.0	10/29/2008	31	EPA TO
4-Ethyltoluene	<0.50	0.50	<2,46	2.46		1.0	10/29/2008	JJ	EPA TO
4-Methyl-2-pentanone (MIBK)	<1,0	1.0	<4.10	4.10		1.0	10/29/2008	JJ	EPA TO
Allyl Chloride	<0.50	0.50	<1.56	1.56		1.0	10/29/2008]}	EPA TO
Benzene	2.5	0.50	8.0	1.60		1.0	10/29/2008	JJ	EPA TO
Benzyl Chloride	<2.0	2,0	<10.4	10.4		1.0	10/29/2008	JJ	EPA TO
Bromodichloromethane	<0.50	0.50	<3.35	3,35		1.0	10/29/2008	JJ	EPA TO
Bromoethene(Vinyl Bromide)	<0,50	0.50	<2.19	2.19		1.0	10/29/2008	JJ	EPA TO
Bromoform	<0.50	0.50	<5.17	5.17		1.0	10/29/2008	JJ	EPA TO
Bromomethane	<0,50	0.50	<1.94	1.94		1.0	10/29/2008	JJ	EPA TO
Carbon disulfide	29	0.50	90	1.56		1.0	10/29/2008	JJ	EPA TO
Carbon tetrachloride	<0.50	0.50	<3.15	3.15		1.0	10/29/2008	IJ	EPA TO
Chlorobenzene	<0.50	0.50	<2,30	2.30		1.0	10/29/2008	JJ	EPA TO
Chloroethane	<0.50	0.50	<1.32	1.32		1.0	10/29/2008	11	EPA TO
Chloroform	`1.8	0.50	8.8	2.44		1.0	10/29/2008	11	EPA TO
Chloromethane	<0.50	0.50	<1.03	1.03		1.0	10/29/2008	JJ	EPA TO
cis-1,2-Dichloroethene	42	0.50	170	1.98		1.0	10/29/2008	11	EPA TO
cis-1,3-Dichloropropene	<0.50	0,50	<2.27	2.27		1.0	10/29/2008]]	EPA TO
Cyclohexane	15	0.50	52	1.72		1.0	10/29/2008	13	EPA TO
Dibromochloromethane	<0.50	0.50	<4,26	4.26		1.0	10/29/2008	JJ	EPA TO
Dichlorodifluoromethane	<0.50	0.50	<2.47	2.47		1.0	10/29/2008	IJ	EPA TO
Dichlorotetrafluoroethane(F-114)	<0.50	0.50	<3.50	3,50		1.0	10/29/2008	11	EPA TO
Ethyl Acetate	<0.50	0.50	<1.80	1.80		1.0	10/29/2008	JJ	EPA TO
Ethylbenzene	0.63	0.50	2.7	2.17		1.0	10/29/2008	11	EPA TO
Freon 113	<0.50	0.50	<3.83	3.83		1.0	10/29/2008	11	EPA TO
Heptane	1.1	0.50	4.5	2.05		1.0	10/29/2008	JJ	EPA TO
Hexachlorobutadiene	<1.0	1.0	<10.7	10.7		1.0	10/29/2008	24	01E859
Hexane	9.8	0.50	35	1.76		1.0	10/29/2008	IJ	EPA TO

Page 5 of 39

THE LEADER IN ENVIRONMENTAL TESTING

4625 East Cotton Center Blvd. Ste 189 Phoenix, AZ 85040 * (602) 437-3340 * Fax (602) 454-9303

TestAmerica Nashville 2960 Foster Creighton Drive Nashville, TN 37204 Gail Lage Work Order: Project:

.

Received: 10/09/08 Reported: 11/03/08 16:35

Reported: 11/ N_ExxonMobil Buffalo

Project Number: Exxon 3-1010 Buffalo / NRJ1277

PRJ0559

	ppl)V	<u>ug/m3</u>		Data		Date			
	Result	PQL	Result	PQL	Qualifiers	Dilution	Analyzed	Analys	Met	hod
Volatile Organic Compounds by EPA	TO-15									
Sample ID: PRJ0559-02 (SV-4) - cont.								Sampled:		
m,p-Xylenes	1.9	1.0	8.3	4.34		1.0	10/29/2008	; JJ		TO15
Methylene Chloride	1.4	0.50	4.9	1.74		1.9	10/29/2008	JJ		TO15
Methyl-tert-butyl Ether (MTBE)	<1.0	1.0	<3.61	3.61		1.0	10/29/2008	JJ	EPA	TO15
o-Xylene	0.64	0.50	2.8	2,17		1.0	10/29/2008	JJ	EPA	TO15
Propene	40	0.50	69	0.861		1.0	10/29/2008	IJ	EPA	TO15
Styrene	<0.50	0.50	<2.13	2.13		1.0	10/29/2008	11	EPA	TO15
Tetrachloroethene	18	0.50	120	3.39		1.0	10/29/2008	JJ	EPA	TO15
Tetrahydrofuran	<2,0	2.0	<5.90	5.90		1.0	10/29/2008	JJ	EPA	TO15
Toluene	3.7	0.50	14	1.88		1.0	10/29/2008	JJ	EPA	TO15
trans-1,2-Dichloroethene	5.9	0.50	23	1.98		1.0	10/29/2008	JJ	EPA	TO15
trans-1,3-Dichloropropene	<0.50	0.50	<2.27	2.27		1.0	10/29/2008	JJ	EPA	TO15
Trichloroethene	17	0.50	91	2.69		1.0	10/29/2008	JJ	EPA	TO15
Trichlorofluoromethane	<0.50	0.50	<2.81	2.81		1.0	10/29/2008	JJ	EPA	TO15
Vinyl Acetate	<0.50	0.50	<1.76	1.76		1,0	10/29/2008	JJ	EPA	TO15
Vinyl chloride	<0.50	0.50	<1.28	1.28		1.0	10/29/2008	JJ	EPA	TO15
Surrogate: 4-Bromofluorobenzene	87 %		Limit 70-130							
Sample ID: PRJ0559-02RE1 (SV-4)								Sampled:		
1,1-Dichloroethane	64	2.5	260	10.1		5.0	10/29/2008	JJ		T015
Acetone	57	25	140	59.4		5.0	10/29/2008	JI	EPA	TO15
Surrogate: 4-Bromofluorobenzene	84 %		Limit 70-130							

THE LEADER IN ENVIRONMENTAL TESTING

4625 East Cotton Center Blvd. Ste 189 Phoenix, AZ 85040 * (602) 437-3340 * Fax (602) 454-9303

TestAmerica Nashville 2960 Foster Creighton Drive Nashville, TN 37204 Gail Lage Work Order: PRJ0559

Project:

Received: 10/09/08 Reported: 11/03/08 16:35

Reported: 1 N_ExxonMobil Buffalo

Project Number: Exxon 3-1010 Buffalo / NRJ1277

	ppl	<u> vv</u>	<u>ug/m3</u>		Data		Date		
	Result	PQL	Result	PQL	Qualifiers	Dilution	Analyzed	Analyst	Method
olatile Organic Compounds by EPA	TO-15								
Sample ID: PRJ0559-03 (SV-5)									10/06/08 08:4
1,1,1-Trichloroethane	<1.0	1.0	<5.46	5.46		2.0	10/30/2008	JJ	EPA TO
1,1,2,2-Tetrachloroethane	<1.0	1.0	<6.87	6,87		2,0	10/30/2008	31	EPA TO
1,1,2-Trichloroethane	<1.0	1.0	<5.46	5.46		2.0	10/30/2008	JJ	EPA TO
1,1-Dichloroethane	<1.0	1.0	<4.05	4,05		2.0	10/30/2008	JJ	EPA TO
1,1-Dichloroethene	<1.0	1.0	<3.96	3.96		2.0	10/30/2008	JJ	EPA TO
1,2,4-Trichlorobenzene	<4.0	4.0	<29.7	29.7		2.0	10/30/2008	11	EPA TO
1,2,4-Trimethylbenzene	<1.0	1.0	<4.92	4.92		2.0	10/30/2008	JJ	EPA TO
1,2-Dibromoethane (EDB)	<1.0	1.0	<7.68	7.68		2.0	10/30/2008	IJ	EPA TO
1,2-Dichlorobenzene	<1.0	1.0	<6.01	6,01		2.0	10/30/2008	ŢŢ	EPA TO
1,2-Dichloroethane	<1.0	1.0	<4.05	4.05		2.0	10/30/2008	11	EPA TO
1,2-Dichloropropane	<1.0	1.0	<4.62	4.62		2.0	10/30/2008	JJ	EPA TO
1,3,5-Trimethylbenzene	<1.0	1.0	<4.92	4.92		2.0	10/30/2008	JJ	EPA TO
1,3-Butadiene	<1.0	1.0	<2.21	2.21		2.0	10/30/2008	JJ	EPA TO
1,3-Dichlorobenzene	<1.0	1.0	<6.01	6.01		2.0	10/30/2008	11	EPA TO
1,4-Dichlorobenzene	14	1.0	84	6.01		2.0	10/30/2008	JJ	EPA TO
2,2,4-Trimethylpentane	1.3	1.0	6.1	4.67		2.0	10/30/2008	11	EPA TO
2-Butanone (MEK)	3.1	2.0	9.1	5.90		2.0	10/30/2008	11	EPA TO
2-Hexanone	<2.0	2.0	<8.19	8.19		2.0	10/30/2008]]	EPA TO
2-Propanol	12	4.0	30	9.83		2.0	10/30/2008	11	ЕРА ТС
4-Ethyltoluene	<1.0	1.0	<4.92	4.92		2.0	10/30/2008	JJ	ΕΡΑ ΤΟ
4-Methyl-2-pentanone (MIBK)	<2.0	2.0	<8.19	8,19		2.0	10/30/2008	JJ	EPA TO
Acetone	36	10	86	23.8		2.0	10/30/2008	11	EPA TO
Allyl Chloride	<1.0	1.0	<3.13	3.13		2.0	10/30/2008	jj	ΕΡΑ ΤΟ
Benzene	1.2	1.0	3.8	3.19		2.0	10/30/2008	JJ	EPA TO
Benzyl Chloride	<4.0	4.0	<20.7	20.7		2.0	10/30/2008	JJ	EPA TO
Bromodichloromethane	<1.0	1.0	<6.70	6.70		2,0	10/30/2008	IJ	EPA TO
Bromoethene(Vinyl Bromide)	<1.0	1.0	<4.38	4.38		2.0	10/30/2008	11	ΕΡΑ ΤΟ
Bromoform	<1.0	1.0	<10.3	10.3		2,0	10/30/2008	JJ	ΕΡΑ ΤΟ
Bromomethane	<1.0	1.0	<3.88	3.88		2.0	10/30/2008]]	EPA TO
Carbon disulfide	<1.0	1.0	<3.11	3,11		2,0	10/30/2008	JI	EPA TO
Carbon tetrachloride	<1.0	1.0	<6.29	6.29		2.0	10/30/2008	11	EPA TO
Chlorobenzene	<1.0	1.0	<4.60	4.60		2.0	10/30/2008	lì	EPA TO
Chloroethane	<1.0	1.0	<2.64	2.64		2.0	10/30/2008	IJ	ΕΡΑ ΤΟ
Chloroform	<1.0	1.0	<4.88	4.88		2.0	10/30/2008]]	ΕΡΑ ΤΟ
Chloromethane	<1.0	1.0	<2.06	2.06		2.0	10/30/2008	11	EPA TO
cis-1,2-Dichloroethene	<1.0	1.0	<3.96	3.96		2.0	10/30/2008	11	ΕΡΑ ΤΟ
cis-1,3-Dichloropropene	<1.0	1.0	<4.54	4.54		2.0	10/30/2008	JJ	ΕΡΑ ΤΟ
Cyclohexane	2.2	1.0	7.6	3.44		2.0	10/30/2008	IJ	EPA TO
Dibromochloromethane	<1.0	1.0	<8.52	8.52		2.0	10/30/2008	J]	ΕΡΑ ΤΟ
Dichlorodifluoromethane	<1.0	1.0	<4.95	4,95		2.0	10/30/2008	JJ	EPA TO
Dichlorotetrafluoroethane(F-114)	<1.0	1.0	<6.99	6.99		2.0	10/30/2008	JJ	EPA TO
Ethyl Acetate	<1.0	1.0	<3.60	3,60		2.0	10/30/2008]]	EPA TO
Ethylbenzene	<1.0	1.0	<4.34	4.34		2,0	10/30/2008	JJ	EPA TO
Freon 113	<1.0	1.0	<7.66	7.66		2.0	10/30/2008	26	oferso
Heptane	<1.0	1.0	<4.10	4,10		2,0	10/30/2008	JJ	EPA TO

THE LEADER IN ENVIRONMENTAL TESTING

4625 East Cotton Center Blvd. Ste 189 Phoenix, AZ 85040 * (602) 437-3340 * Fax (602) 454-9303

TestAmerica Nashville [·] 2960 Foster Creighton Drive Nashville, TN 37204 Gail Lage Work Order: PRJ0559

Project:

Received: 10/09/08 Reported: 11/03/08 16:35

N_ExxonMobil Buffalo

Project Number: Exxon 3-1010 Buffalo / NRJ1277

	pp	<u>ov</u>	<u>ug/m3</u>		Data		Date		
	Result	PQL	Result	PQL	Qualifiers	Dilution	Analyzed	Analyst	Method
olatile Organic Compounds by EPA	TO-15								
Sample ID: PRJ0559-03 (SV-5) - cont.								Sampled:	10/06/08 08:4
Hexachlorobutadiene	<2.0	2.0	<21.3	21.3		2.0	10/30/2008	JJ	EPA TOI
Hexane	4.9	1.0	17	3.52		2.0	10/30/2008	JJ	EPA TOI
m,p-Xylenes	2.2	2.0	9.6	8.68		2.0	10/30/2008	JJ	EPA TO1
Methylene Chloride	1.3	1.0	4.5	3.47		2.0	10/30/2008	IJ	EPA TO1
Methyl-tert-butyl Ether (MTBE)	<2.0	2.0	<7.21	7,21		2.0	10/30/2008]]	EPA TOI
o-Xylene	<1.0	1.0	<4.34	4,34		2.0	10/30/2008	JJ	EPA TOI
Propene	3.9	1.0	6.7	1.72		2.0	10/30/2008	JJ	EPA TO1
Styrene	2.0	1.0	8.5	4.26	T	2.0	10/30/2008	JI	EPA TO1
Tetrachloroethene	<1.0	1.0	<6.78	6.78	Ŭ.	2.0	10/30/2008	JĬ	EPA TO1
Tetrahydrofuran	<4.0	4.0	<11.8	11.8		2.0	10/30/2008	JJ	EPA TO1
Toluene	4.2	1.0	16	3.77		2.0	10/30/2008	JJ	EPA TOI
trans-1,2-Dichloroethene	<1.0	1.0	<3.96	3.96		2.0	10/30/2008	JJ	EPA TO1
trans-1,3-Dichloropropene	<1.0	1,0	<4.54	4.54		2,0	10/30/2008	JJ	EPA TOI
Trichloroethene	<1.0	1.0	<5.37	5,37		2.0	10/30/2008	11	EPA TO1
Trichlorofluoromethane	<1.0	1.0	<5.62	5.62		2,0	10/30/2008	JJ	EPA TO1
Vinyi Acetate	<1.0	1.0	<3.52	3.52		2.0	10/30/2008	IJ	EPA TO1
Vinyl chloride	<1.0	1.0	<2.56	2.56		2.0	10/30/2008	JJ	EPA TO1
Surrogate: 4-Bromofluorobenzene	86 %		Limit 70-130						

THE LEADER IN ENVIRONMENTAL TESTING

4625 East Cotton Center Blvd. Ste 189 Phoenix, AZ 85040 * (602) 437-3340 * Fax (602) 454-9303

TestAmerica Nashville 2960 Foster Creighton Drive Nashville, TN 37204

Gail Lage

Work Order: PRJ0559

Project:

Received: 10/09/08 Reported: 11/03/08 16:35

N_ExxonMobil Buffalo

Project Number: Exxon 3-1010 Buffalo / NRJ1277

	ppl	<u>w</u>	<u>ug/m3</u>		Data		Date		N. A. J
	Result	PQL	Result	PQL	Qualifiers	Dilution	Analyzed	Analyst	Method
Volatile Organic Compounds by EPA	TO-15								
Sample ID: PRJ0559-04 (SV-9)									10/06/08 09:04
1,1,1-Trichloroethane	<0.50	0,50	<2.73	2.73		1.0	10/27/2008]]	EPA TO15
1,1,2,2-Tetrachloroethane	<0.50	0.50	<3.43	3,43		1.0	10/27/2008	11	EPA TO15
1,1,2-Trichloroethane	<0.50	0.50	<2.73	2.73		1.0	10/27/2008	JJ	EPA TOIS
1,1-Dichloroethane	<0.50	0.50	<2.02	2.02		1.0	10/27/2008	3J	EPA TO15
1,1-Dichloroethene	<0.50	0.50	<1,98	1.98		1.0	10/27/2008	11 11	EPA TOIS
1,2,4-Trichlorobenzene	<2.0	2.0	<14.8	14.8		1.0	10/27/2008	 11	EPA TO15
1,2,4-Trimethylbenzene	0.87	0.50	4,3	2.46		1.0	10/27/2008	 J1	EPA TOIS
1,2-Dibromoethane (EDB)	<0.50	0,50	<3.84	3.84		1.0	10/27/2008	JJ	EPA TO15
1,2-Dichlorobenzene	<0.50	0.50	<3,01	3,01		1.0	10/27/2008	JJ	EPA TO15
1,2-Dichloroethane	<0,50	0,50	<2.02	2.02		1.0	10/27/2008	J3	EPA TO15
1,2-Dichloropropane	<0.50	0.50	<2.31	2.31		1.0	10/27/2008	JJ	EPA TO15
1,3,5-Trimethylbenzene	<0.50	0.50	<2.46	2,46		1.0	10/27/2008	11	EPA TO15
1,3-Butadiene	<0.50	0.50	<1.10	1.10		1.0	10/27/2008]]	EPA TOIS
1,3-Dichlorobenzene	1.4	0.50	8.4	3.01		1.0	10/27/2008	3J	EPA TOI:
1,4-Dichlorobenzene	9.2	0.50	55	3.01		1.0	10/27/2008	JJ 	EPA TOIS
2,2,4-Trimethylpentane	<0.50	0.50	<2.34	2.34		1.0	10/27/2008	JJ	EPA TO15
2-Butanone (MEK)	<1.0	1.0	<2.95	2.95		1.0	10/27/2008	JJ	EPA TOIS
2-Hexanone	1,2	1.0	4.9	4.10		1.0	10/27/2008	11 1	EPA TOIS
2-Propanol	<2.0	2.0	<4.92	4.92		1.0	10/27/2008	JJ	EPA TOIS
4-Ethyltoluene	0.58	0.50	2.9	2.46		1.0	10/27/2008	JJ	EPA TOI
4-Methyl-2-pentanone (MIBK)	<1.0	1.0	<4.10	4.10		1.0	10/27/2008	JJ	EPA TOIS
Acetone	18	5.0	43	11.9		1.0	10/27/2008	JJ 	EPA TOIS
Allyl Chloride	<0.50	0.50	<1.56	1.56		1.0	10/27/2008]]	EPA TOIS
Benzene	0.81	0,50	2,6	1.60		1.0	10/27/2008	JJ	EPA TOI
Benzyl Chloride	<2,0	2.0	<10.4	10,4		1.0	10/27/2008	j]	EPA TOIS
Bromodichloromethane	<0.50	0.50	<3.35	3.35		1.0	10/27/2008	JJ	EPA TOIS
Bromoethene(Vinyl Bromide)	<0.50	0.50	<2.19	2,19		1.0	10/27/2008	JJ	EPA TOIS
Bromoform	<0.50	0.50	<5.17	5.17		1.0	10/27/2008	JJ	
Bromomethane	<0.50	0.50	<1.94	1,94		1.0	10/27/2008	31	EPA TOIS
Carbon disulfide	1.2	0.50	3.7	1.56		1.0	10/27/2008	Ĵ]	EPA TOI
Carbon tetrachloride	<0.50	0.50	<3.15	3.15		1.0	10/27/2008	11	EPA TOIS
Chlorobenzene	<0.50	0.50	<2.30	2.30		1.0	10/27/2008	JJ	EPA TOIS
Chloroethane	<0,50	0.50	<1.32	1,32		1.0	10/27/2008	IJ	EPA TOIS
Chloroform	<0.50	0.50	<2.44	2.44		1.0	10/27/2008)]	EPA TOIS
Chloromethane	<0.50	0.50	<1.03	1.03		1.0	10/27/2008	11 1	EPA TOIS
cis-1,2-Dichloroethene	<0.50	0.50	<1,98	1,98		1.0	10/27/2008	JJ	EPA TOIS
cis-1,3-Dichloropropene	<0.50	0.50	<2.27	2.27		1.0	10/27/2008	JI	EPA TOIS
Cyclohexane	<0.50	0.50	<1.72	1.72		1.0	10/27/2008	JJ	EPA TOIS
Dibromochloromethane	<0.50	0.50	<4.26	4,26		1.0	10/27/2008]]	EPA TOIS
Dichlorodifluoromethane	<0.50	0.50	<2.47	2.47		1.0	10/27/2008	JJ	EPA TOIS
Dichlorotetrafluoroethane(F-114)	<0.50	0.50	<3.50	3.50		1.0	10/27/2008	jj	EPA TOI:
Ethyl Acetate	<0.50	0.50	<1.80	1,80		1.0	10/27/2008	JJ	EPA TOIS
Ethylbenzene	0.80	0.50	3.5	2.17		1.0	10/27/2008	ji An	EPA TO1
Freon 113	<0.50	0,50	<3.83	3.83		1.0	10/27/2008	Z8	OIEOSI
Heptane	<0,50	0.50	<2.05	2.05		1.0	10/27/2008]]	EPA TO15

THE LEADER IN ENVIRONMENTAL TESTING

4625 East Cotton Center Blvd. Ste 189 Phoenix, AZ 85040 * (602) 437-3340 * Fax (602) 454-9303

TestAmerica Nashville 2960 Foster Creighton Drive Nashville, TN 37204 Gail Lage Work Order: PRJ0559

Project:

Received: 10/09/08 Reported: 11/03/08 16:35

N_ExxonMobil Buffalo

Project Number: Exxon 3-1010 Buffalo / NRJ1277

	ppl	<u>)v</u>	<u>ug/m3</u>		Data		Date		
	Result	PQL	Result	PQL	Qualifiers	Dilution	Analyzed	Analyst	Method
Volatile Organic Compounds by EPA	TO-15								
Sample ID: PRJ0559-04 (SV-9) - cont.									10/06/08 09:04
Hexachlorobutadiene	<1.0	1,0	<10.7	10.7		1.0	10/27/2008	JJ	EPA TO15
Hexane	2.5	0.50	8.8	1.76		1,0	10/27/2008	11	EPA TO15
m,p-Xylenes	1.7	1.0	7.4	4,34		1.0	10/27/2008	JJ	EPA TO15
Methylene Chloride	1.3	0.50	4.5	1.74		1.0	10/27/2008	JJ	EPA TO15
Methyl-tert-butyl Ether (MTBE)	<1.0	1.0	<3.61	3.61		1.0	10/27/2008	JJ	EPA TO15
o-Xylene	<0.50	0.50	<2.17	2.17		1.0	10/27/2008	JJ	EPA TO15
Propene	<0.50	0,50	<0.861	0.861		1.0	10/27/2008]]	EPA TO15
Styrene	0.70	0,50	3.0	2.13		1.0	10/27/2008	JJ	EPA TO15
Tetrachloroethene	<0.50	0.50	<3.39	3.39		1.0	10/27/2008]]	EPA TO15
Tetrahydrofuran	<2.0	2.0	<5.90	5.90		1,0	10/27/2008	11	EPA TO15
Tolucne	3.0	0.50	11	1.88		1.0	10/27/2008	JI	EPA TO15
trans-1,2-Dichloroethene	<0.50	0.50	<1,98	1.98		1.0	10/27/2008	JJ	EPA TO15
trans-1,3-Dichloropropene	<0.50	0.50	<2.27	2.27		1.0	10/27/2008	JJ	EPA TO15
Trichloroethene	<0,50	0.50	<2.69	2.69		1,0	10/27/2008	11	EPA TO15
Trichlorofluoromethane	<0.50	0.50	<2.81	2.81		1.0	10/27/2008	JJ	EPA TO15
Vinyl Acetate	<0,50	0,50	<1.76	1.76		1.0	10/27/2008	JÌ	EPA TO15
Vinyl chloride	<0.50	0.50	<1.28	1.28		1.0	10/27/2008	JJ	EPA TO15
Surrogate: 4-Bromofluorobenzene	93 %		Limit 70-130						

THE LEADER IN ENVIRONMENTAL TESTING

4625 East Cotton Center Blvd. Ste 189 Phoenix, AZ 85040 * (602) 437-3340 * Fax (602) 454-9303

TestAmerica Nashville 2960 Foster Creighton Drive Nashville, TN 37204

Gail Lage

Work Order: PRJ0559

Project:

Received: 10/09/08 Reported: 11/03/08 16:35

N_ExxonMobil Buffalo

Project Number: Exxon 3-1010 Buffalo / NRJ1277

	<u>ppl</u> Result	v PQL	<u>ug/m3</u> Result	PQL	Data Qualifiers	Dilution	Date Analyzed	Analyst	Method
		- 20							
Volatile Organic Compounds by								~ • •	*****
Sample ID: PRJ0559-05 (Ambient				0.70		1.0	10/30/2008	Sampled:	10/06/08 09:30 EPA TO15
1,1,1-Trichloroethane	<0.50	0.50	<2.73	2.73		1.0	10/30/2008	JJ .	EPA TO15
1,1,2,2-Tetrachloroethane	<0.50	0.50	<3.43	3.43			10/30/2008	JJ	EPA TO15
1,1,2-Trichloroethane	<0.50	0,50	<2.73	2.73		1.0	10/30/2008	JJ	EPA TO15
1,1-Dichloroethane	<0.50	0.50	<2.02	2.02		1.0)]	EPA TOIS
1,1-Dichloroethene	<0.50	0.50	<1.98	1.98		1.0	10/30/2008 10/30/2008	11	EPA TOIS
1,2,4-Trichlorobenzene	<2.0	2.0	<14.8	14.8		1.0	10/30/2008	11	EPA TOIS
1,2,4-Trimethylbenzene	<0,50	0.50	<2.46	2.46		1.0			EPA TOIS
1,2-Dibromoethane (EDB)	<0.50	0.50	<3.84	3.84		1.0	10/30/2008	11 11	EPA TOIS
1,2-Dichlorobenzene	<0.50	0,50	<3.01	3.01		1.0	10/30/2008	IJ	EPA TOIS
1,2-Dichloroethane	<0.50	0.50	<2.02	2.02		1.0	10/30/2008	11	
1,2-Dichloropropane	<0.50	0.50	<2.31	2.31		1.0	10/30/2008	JJ	EPA TOIS
1,3,5-Trimethylbenzene	<0.50	0.50	<2.46	2.46		1.0	10/30/2008	11	EPA TOIS
1,3-Butadiene	<0,50	0.50	<1.10	1,10		1.0	10/30/2008	31	EPA TOIS
1,3-Dichlorobenzene	1.4	0.50	8.4	3.01		1.0	10/30/2008	31	EPA TOI:
1,4-Dichlorobenzene	<0,50	0,50	<3.01	3.01		1.0	10/30/2008	Jl	EPA TOI:
2,2,4-Trimethylpentane	<0.50	0.50	<2.34	2.34		1.0	10/30/2008	JJ	EPA TOIS
2-Butanone (MEK)	<1.0	1.0	<2.95	2,95		1.0	10/30/2008	lì	EPA TOI
2-Hexanone	<1.0	1.0	<4.10	4.10		1.0	10/30/2008]]	EPA TO1:
2-Propanol	5.1	2.0	13	4.92		1.0	10/30/2008	IJ	EPA TOI
4-Ethyltoluene	<0.50	0.50	<2.46	2.46		1.0	10/30/2008	IJ	EPA TOIS
4-Methyl-2-pentanone (MIBK)	<1.0	1.0	<4.10	4.10		1.0	10/30/2008	JĴ	EPA TOI:
Acetone	31	5.0	74	11.9		1.0	10/30/2008	11	EPA TO1
Allyl Chloride	<0,50	0.50	<1.56	1.56		1.0	10/30/2008	JJ	EPA TOI:
Benzene	<0.50	0.50	<1.60	1.60		1.0	10/30/2008	JJ	EPA TOI:
Benzyl Chloride	<2,0	2.0	<10.4	10.4		1.0	10/30/2008	JJ	EPA TOI:
Bromodichloromethane	<0.50	0.50	<3,35	3.35		1.0	10/30/2008	11	EPA TOI:
Bromoethene(Vinyl Bromide)	<0.50	0.50	<2.19	2.19		1.0	10/30/2008	IJ	EPA TOI
Bromoform	<0.50	0.50	<5.17	5.17		1,0	10/30/2008	JJ	EPA TOI
Bromomethane	<0.50	0.50	<1.94	1.94		1.0	10/30/2008	JI	EPA TOIS
Carbon disulfide	1.3	0.50	4.1	1.56		1.0	10/30/2008	JJ	EPA TO1
Carbon tetrachloride	<0.50	0.50	<3.15	3.15		1.0	10/30/2008	11	EPA TOI
	<0.50	0.50	<2.30	2.30		1,0	10/30/2008	JJ	EPA TOI
Chlorobenzene	<0.50	0.50	<1,32	1.32		1.0	10/30/2008	JJ	EPA TOI:
Chloroethane	<0.50	0.50	<2,44	2.44		1.0	10/30/2008	JJ	EPA TOI
Chloroform		0.50		1.03		1.0	10/30/2008	JJ	EPA TO1
Chloromethane	1.1	0.50	2.3 <1.98	1.05		1.0	10/30/2008	JJ	EPA TOL
cis-1,2-Dichloroethene	<0.50	0.50	<2.27	2,27		1.0	10/30/2008	JJ	EPA TOI:
cis-1,3-Dichloropropene	<0.50			1.72		1,0	10/30/2008	JJ	EPA TOL
Cyclohexane	<0.50	0.50	<1.72	4,26		1.0	10/30/2008	JJ	EPA TOI
Dibromochloromethane	<0.50	0.50	<4.26			1.0	10/30/2008	JJ	EPA TO1
Dichlorodifluoromethane	<0.50	0.50	<2,47	2.47		1.0	10/30/2008	JJ	EPA TOI
Dichlorotetrafluoroethane(F-114)	<0,50	0.50	<3.50	3,50			10/30/2008	33 33	EPA TOI:
Ethyl Acetate	<0.50	0.50	<1.80	1.80		1,0	10/30/2008	11 11	EPA TOI:
Ethylbenzene	<0,50	0.50	<2.17	2.17		1.0	10/30/2008	~ ~	
Freon 113	<0.50	0.50	<3.83	3.83		1.0	10/30/2008	ЭO	of #859

,

THE LEADER IN ENVIRONMENTAL TESTING

4625 East Cotton Center Blvd. Ste 189 Phoenix, AZ 85040 * (602) 437-3340 * Fax (602) 454-9303

TestAmerica Nashville 2960 Foster Creighton Drive Nashville, TN 37204 Gail Lage

PRJ0559 Work Order: N_ExxonMobil Buffalo

Project:

10/09/08 Received: 11/03/08 16:35

Reported:

Project Number: Exxon 3-1010 Buffalo / NRJ1277

					D-4-		Date			
	<u>ppb</u> Result	PQL	<u>ug/m3</u> Result	PQL	Data Qualifiers	Dilution	Analyzed	Analyst	Meth	hod
platile Organic Compounds by	EPA TO-15									
Sample ID: PRJ0559-05 (Ambient	Air 1) - cont.							Sampled:		
Heptane	<0.50	0.50	<2.05	2,05		1.0	10/30/2008]]	ÉPA	
Hexachlorobutadiene	<1.0	1.0	<10.7	10.7		1.0	10/30/2008	11	EPA	
Hexane	<0.50	0,50	<1.76	1.76		1.0	10/30/2008	11	EPA	
m,p-Xylenes	<1.0	1.0	<4,34	4.34		1.0	10/30/2008	11	EPA	
Methylene Chloride	<0.50	0.50	<1.74	1,74		1.0	10/30/2008	IJ	EPA	
Methyl-tert-butyl Ether (MTBE)	<1.0	1.0	<3.61	3.61		1.0	10/30/2008	jj	EPA	
o-Xylene	<0.50	0.50	<2.17	2.17		1.0	10/30/2008	JJ	EPA	
Propene	5.6	0.50	9.6	0.861		1.0	10/30/2008		EPA	
Styrene	<0.50	0.50	<2.13	2.13		1.0	10/30/2008	JI	EPA	
Tetrachloroethene	<0.50	0.50	<3.39	3.39		1.0	10/30/2008]]	EPA	
Tetrahydrofuran	<2.0	2.0	<5.90	5.90		1.0	10/30/2008	IJ	EPA	
Toiuene	0.58	0.50	2.2	1.88		1.0	10/30/2008	JJ	EPA	
trans-1,2-Dichloroethene	<0,50	0,50	<1.98	1.98		1.0	10/30/2008	JJ	EPA	
trans-1,3-Dichloropropene	<0.50	0.50	<2.27	2.27		1.0	10/30/2008]]	EPA	TO
Trichloroethene	<0.50	0.50	<2.69	2.69		1.0	10/30/2008	11	EPA	то
Trichlorofluoromethane	<0.50	0.50	<2.81	2.81		1.0	10/30/2008	Jl	EPA	то
Vinvl Acetate	<0.50	0.50	<1.76	1.76		1.0	10/30/2008	JJ	EPA	то
Vinyl chloride	<0.50	0.50	<1.28	1.28		1.0	10/30/2008	JJ	EPA	то
Surrogate: 4-Bromofluorobenzene	88 %		Limit 70-130							

THE LEADER IN ENVIRONMENTAL TESTING

4625 East Cotton Center Blvd. Ste 189 Phoenix, AZ 85040 * (602) 437-3340 * Fax (602) 454-9303

TestAmerica Nashville 2960 Foster Creighton Drive Nashville, TN 37204 Gail Lage Work Order: PRJ0559

Project:

Received: 10/09/08 Reported: 11/03/08 16:35

N_ExxonMobil Buffalo

Project Number: Exxon 3-1010 Buffalo / NRJ1277

	ppl	<u>)v</u>	<u>ug/m3</u>		Data		Date			
	Result	PQL	Result	PQL	Qualifiers	Dilution	Analyzed	Analyst	Metho	od
olatile Organic Compounds by EPA	TO-15									
Sample ID: PRJ0559-06 (SV-3)						1.0	10/27/2008	Sampled: JJ	10/07/08 1 EPA 1	
1,1,1-Trichloroethane	32	0,50	180	2.73		1.0		11	EPA 1	
1,1,2,2-Tetrachloroethane	<0.50	0.50	<3.43	3.43		1.0	10/27/2008))))	EPA 1	
1,1,2-Trichloroethane	<0.50	0.50	<2.73	2.73		1.0	10/27/2008	11	EPA 1	
1,1-Dichloroethane	<0.50	0.50	<2.02	2.02		1.0	10/27/2008	33 33	EPA 1	
1,1-Dichloroethene	<0.50	0.50	<1.98	1.98		1.0	10/27/2008		EPA 1	
1,2,4-Trichlorobenzene	<2.0	2.0	<14.8	14.8		1.0	10/27/2008	JJ	EPA 1	
1,2,4-Trimethylbenzene	0.72	0.50	3.5	2.46		1.0	10/27/2008	JJ	EPA 1	
1,2-Dibromoethane (EDB)	<0,50	0.50	<3.84	3.84		1.0	10/27/2008	JJ	EPA 1	
1,2-Dichlorobenzene	<0.50	0.50	<3.01	3.01		1.0	10/27/2008]]		
1,2-Dichloroethane	<0.50	0.50	<2.02	2.02		1.0	10/27/2008	JJ	EPA 1	
1,2-Dichloropropane	<0.50	0.50	<2.31	2,31		1.0	10/27/2008	11	EPA C	
1,3,5-Trimethylbenzene	<0.50	0.50	<2.46	2.46		1.0	10/27/2008	JJ	EPA '	
1,3-Butadiene	<0.50	0,50	<1.10	1.10		1.0	10/27/2008	11	EPA 7	
1,3-Dichlorobenzene	<0.50	0.50	<3.01	3.01		1.0	10/27/2008	11	EPA	
1,4-Dichlorobenzene	1.9	0.50	11	3.01		1.0	10/27/2008	IJ	EPA '	
2,2,4-Trimethylpentane	<0.50	0.50	<2.34	2.34		1.0	10/27/2008	JJ	EPA '	
2-Butanone (MEK)	1.8	1.0	5.3	2.95		1.0	10/27/2008	33	EPA '	
2-Hexanone	<1.0	1.0	<4.10	4,10		1.0	10/27/2008	1)	EPA '	
2-Propanol	<2.0	2.0	<4.92	4.92		1.0	10/27/2008	JÌ	EPA '	
4-Ethyltoluene	0.56	0.50	2.8	2.46		1.0	10/27/2008	JJ	EPA '	
4-Methyl-2-pentanone (MIBK)	<1.0	1.0	<4.10	4,10		1,0	10/27/2008	11	EPA '	
Acetone	<5.0	5,0	<11.9	11.9		1.0	10/27/2008	11	EPA '	
Allyl Chloride	<0.50	0.50	<1.56	1.56		1.0	10/27/2008	ŢŢ	EPA '	
Benzene	0.51	0.50	1.6	1.60		1.0	10/27/2008	JJ	EPA '	TC
Benzyl Chloride	<2.0	2.0	<10.4	10.4		1.0	10/27/2008	11	EPA	
Bromodichloromethane	<0.50	0.50	<3.35	3.35		1.0	10/27/2008	IJ	EPA	TO
Bromoethene(Vinyl Bromide)	<0.50	0.50	<2.19	2.19		1.0	10/27/2008	11	EPA '	TC
Bromoform	<0.50	0.50	<5.17	5.17		1.0	10/27/2008	JJ	EPA 1	TÛ
Bromomethane	<0.50	0.50	<1.94	1.94		1,0	10/27/2008	11	EPA	TC
Carbon disulfide	3.1	0.50	9.7	1.56		1.0	10/27/2008	11	EPA	T
Carbon tetrachloride	0.65	0.50	4,1	3.15		1.0	10/27/2008	IJ	EPA	TC
Chlorobenzene	<0.50	0.50	<2.30	2.30		1.0	10/27/2008	IJ	EPA	TC
Chloroethane	<0.50	0,50	<1.32	1.32		1.0	10/27/2008	JJ	EPA	TC
Chloroform	<0.50	0.50	<2.44	2.44		1.0	10/27/2008	IJ	EPA	ТC
	<0.50	0.50	<1.03	1.03		1.0	10/27/2008	JJ	EPA	TC
Chloromethane	<0.50	0.50	<1,98	1.98		1.0	10/27/2008	JJ	EPA	тс
cis-1,2-Dichloroethene	<0.50	0.50	<2.27	2.27		1.0	10/27/2008	IJ	EPA	TC
cis-1,3-Dichloropropene	<0.50	0.50	<1.72	1.72		1.0	10/27/2008	IJ	EPA	TC
Cyclohexane	<0.50	0.50	<4.26	4.26		1.0	10/27/2008	11	EPA	тс
Dibromochloromethane	<0.50	0.50	<2,47	2.47		1.0	10/27/2008		EPA	тc
Dichlorodifluoromethane	<0.50 <0.50	0.50	<3,50	3.50		1.0	10/27/2008		EPA	TC
Dichlorotetrafiuoroethane(F-114)				1.80		1.0	10/27/2008		EPA	
Ethyl Acetate	4,9	0.50	18	2,17		1.0	10/27/2008		EPA	
Ethylbenzene	0.67	0.50	2.9	3.83		1.0	10/27/2008	din din	ofe@4	ي ت
Freon 113	<0.50	0.50	<3.83	2.02		***		- S low	4#6 6¥.	J.

THE LEADER IN ENVIRONMENTAL TESTING

4625 East Cotton Center Blvd. Ste 189 Phoenix, AZ 85040 * (602) 437-3340 * Fax (602) 454-9303

TestAmerica Nashville 2960 Foster Creighton Drive Nashville, TN 37204 Gail Lage

.

PRJ0559 Work Order: N_ExxonMobil Buffalo Project:

10/09/08 Received: 11/03/08 16:35

Reported:

Project Number: Exxon 3-1010 Buffalo / NRJ1277

	pp	bv	<u>ug/m3</u>		Data		Date		
	Result	PQL	Result	PQL	Qualifiers	Dilution	Analyzed	Analyst	Method
Volatile Organic Compounds by EPA	TO-15								
Sample ID: PRJ0559-06 (SV-3) - cont.									10/07/08 16:06
Hexachlorobutadiene	<1.0	1.0	<10.7	10.7		1.0	10/27/2008	ļļ	EPA TO15
Hexane	1.4	0.50	4,9	1.76		1.0	10/27/2008	11	EPA TO15
m,p-Xylenes	<1.0	1.0	<4.34	4.34		1.0	10/27/2008	11	EPA TO15
Methylene Chloride	1.5	0.50	5.2	1.74		1.0	10/27/2008	11	EPA TO15
Methyl-tert-butyl Ether (MTBE)	<1.0	1.0	<3.61	3.61		1.0	10/27/2008	11	EPA TO15
o-Xylene	<0.50	0.50	<2.17	2.17		1.0	10/27/2008	JJ	EPA TO15
Propene	<0,50	0.50	<0.861	0.861		1.0	10/27/2008	JJ	EPA TO15
Styrene	0.75	0.50	3.2	2,13		1.0	10/27/2008	JJ	EPA TO15
Tetrachloroethene	1.9	0.50	13	3,39		1.0	10/27/2008	JJ	EPA TO15
Tetrahydrofuran	2.8	2.0	8,3	5.90		1.0	10/27/2008	JJ	EPA TO15
Toluene	1.9	0.50	7,2	1.88		1.0	10/27/2008	JJ	EPA TO15
trans-1.2-Dichloroethene	<0.50	0.50	<1.98	1.98		1.0	10/27/2008	IJ	EPA TO15
trans-1,3-Dichloropropene	<0.50	0.50	<2.27	2,27		1.0	10/27/2008	JJ	EPA TO15
Trichloroethene	<0.50	0,50	<2.69	2.69		1.0	10/27/2008	JJ	EPA TO15
	0.77	0.50	4.3	2.81		1.0	10/27/2008	JJ	EPA TO15
Trichlorofluoromethane	<0.50	0,50	<1.76	1.76		1.0	10/27/2008	IJ	EPA TO15
Vinyl Acetate	<0,50	0,50	<1.28	1.28		1.0	10/27/2008		EPA TO15
Vinyl chloride		0.50		1.20		***			
Surrogate: 4-Bromofluorobenzene	86 %		Limit 70-130						

THE LEADER IN ENVIRONMENTAL TESTING

4625 East Cotton Center Blvd, Ste 189 Phoenix, AZ 85040 * (602) 437-3340 * Fax (602) 454-9303

TestAmerica Nashville 2960 Foster Creighton Drive Nashville, TN 37204 Gail Lage Work Order: PRJ0559

Project:

Received: 10/09/08 Reported: 11/03/08 16:35

N_ExxonMobil Buffalo

Project Number: Exxon 3-1010 Buffalo / NRJ1277

	ppl		<u>ug/m3</u>	TOY	Data Ouclificant	No. 19	Date Analyzed	A - o Frief	Metho	hn
	Result	PQL	Result	PQL	Qualifiers	Dilution	Analyzeu	Analyst		
platile Organic Compounds by EPA	TO-15									
Sample ID: PRJ0559-07 (SV-12)						2000	10/30/2008	Sampled:	10/07/08 1 EPA T	
1,1,1-Trichloroethane	<980	980	<5350	5350		2000		11	EPA T	
1,1,2,2-Tetrachloroethane	<980	980	<6730	6730		2000	10/30/2008	33 JJ	EPA T	
1,1,2-Trichloroethane	<980	980	<5350	5350		2000	10/30/2008	11	EPA 1	
1,1-Dichloroethane	<980	980	<3970	3970		2000	10/30/2008	JJ	EPA J	
1,1-Dichloroethene	<980	980	<3890	3890		2000	10/30/2008		EPA 1	
1,2,4-Trichlorobenzene	<3900	3900	<28900	28900		2000	10/30/2008	JJ	EPA 1 EPA 1	
1,2,4-Trimethylbenzene	<980	980	<4820	4820		2000	10/30/2008]]	EPA I	
1,2-Dibromoethane (EDB)	<980	980	<7530	7530		2000	10/30/2008	JJ	EPA T	
1,2-Dichlorobenzene	<980	980	<5890	5890		2000	10/30/2008	IJ		
1,2-Dichloroethane	<980	980	<3970	3970		2000	10/30/2008	IJ	EPA 1	
1,2-Dichloropropane	<980	980	<4530	4530		2000	10/30/2008	. JJ	EPA T	
1,3,5-Trimethylbenzene	<980	980	<4820	4820		2000	10/30/2008	, 11	EPA 1	
1,3-Butadiene	<980	980	<2160	2160		2000	10/30/2008	JJ	EPA 1	
1,3-Dichlorobenzene	<980	980	<5890	5890		2000	10/30/2008	JI	EPA 7	
1,4-Dichlorobenzene	<980	980	<5890	5890		2000	10/30/2008	11	EPA 7	
2-Butanone (MEK)	<2000	2000	<5900	5900		2000	10/30/2008	JJ	EPA 7	
2-Hexanone	<2000	2000	<8190	8190		2000	10/30/2008	JJ	EPA 7	
2-Propanol	<3900	3900	<9590	9590		2000	10/30/2008	11	EPA 1	
4-Ethyltoluene	<980	980	<4820	4820		2000	10/30/2008	JJ	EPA 1	
4-Methyl-2-pentanone (MIBK)	<2000	2000	<8190	8190		2000	10/30/2008	JJ	EPA 1	TC
Acetone	<9800	9800	<23300	23300		2000	10/30/2008	JJ	EPA 1	TC
Allyl Chloride	<980	980	<3070	3070		2000	10/30/2008	11	EPA 1	TC
Benzene	18000	980	58000	3130		2000	10/30/2008	11	EPA 1	T
Benzyl Chloride	<3900	3900	<20200	20200		2000	10/30/2008	IJ	EPA 1	TC
Bromodichloromethane	<980	980	<6570	6570		2000	10/30/2008	JJ	EPA 1	TÇ
Bromoethene(Vinyl Bromide)	<980	980	<4290	4290		2000	10/30/2008	JJ	EPA T	TC
Bromoform	<980	980	<10100	10100		2000	10/30/2008	JÌ	EPA 🗅	Ŧζ
Bromomethane	<980	980	<3810	3810		2000	10/30/2008	JI	EPA 🗅	ΤÇ
Carbon disulfide	<980	980	<3050	3050		2000	10/30/2008	JĴ	EPA 🕻	TC
Carbon tetrachloride	<980	980	<6170	6170		2000	10/30/2008	JĴ	EPA [T(
	<980	980	<4510	4510		2000	10/30/2008	11	EPA 7	TC
Chlorobenzene	<980	980	<2590	2590		2000	10/30/2008	IJ	EPA 7	тc
Chloroethane	<980	980	<4780	4780		2000	10/30/2008	JJ	EPA .	TC
Chloroform	<980	980	<2020	2020		2000	10/30/2008	JJ	EPA 7	T(
Chloromethane			<3890	3890		2000	10/30/2008	JJ	EPA (T
cis-1,2-Dichloroethene	<980	980	<4450	4450		2000	10/30/2008	JJ	EPA 1	T
cis-1,3-Dichloropropene	<980	980	<8350	8350		2000	10/30/2008	JJ	EPA 1	TC
Dibromochloromethane	<980	980	<8350 <4850	4850		2000	10/30/2008	n	EPA	
Dichlorodifluoromethane	<980	980		4850 6850		2000	10/30/2008	JJ	EPA	
Dichlorotetrafluoroethane(F-114)	<980	980	<6850	3530		2000	10/30/2008	JJ	EPA '	
Ethyl Acetate	<980	980	<3530			2000	10/30/2008	11	EPA '	
Ethylbenzene	2000	980	8700	4260			10/30/2008	11	EPA '	
Freen 113	<980	980	<7510	7510		2000	10/30/2008	11	EPA '	
Hexachlorobutadiene	<2000	2000	<21300	21300		2000	10/20/2008	33	ofe84	

THE LEADER IN ENVIRONMENTAL TESTING

4625 East Cotton Center Blvd. Ste 189 Phoenix, AZ 85040 * (602) 437-3340 * Fax (602) 454-9303

TestAmerica Nashville 2960 Foster Creighton Drive Nashville, TN 37204 Gail Lage Work Order: PRJ0559

Project:

Received: 10/09/08 Reported: 11/03/08 16:35

N_ExxonMobil Buffalo

Project Number: Exxon 3-1010 Buffalo / NRJ1277

	ppl	by	<u>ug/m3</u>		Data		Date				
	Result	PQL	Result	PQL	Qualifiers	Dilution	Analyzed	Analyst	Met	hod	
Volatile Organic Compounds by EPA	TO-15										
Sample ID: PRJ0559-07 (SV-12) - con	t.							Sampled:			
Methylene Chloride	<980	980	<3400	3400		2000	10/30/2008	JJ		TO15	
Methyl-tert-butyl Ether (MTBE)	<2000	2000	<7210	7210		2000	10/30/2008				
o-Xylene	<980	980	<4260	4260		2000	10/30/2008			TO15	
Propene	<980	980	<1690	1690		2000	10/30/2008			TO15	
Styrene	<980	980	<4170	4170		2000	10/30/2008	11		TO15	
Tetrachloroethene	<980	980	<6650	6650		2000	10/30/2008	JJ		TO15	
Tetrahydrofuran	<3900	3900	<11500	11500		2000	10/30/2008	JJ		TO15	
Toluene	<980	980	<3690	3690		2000	10/30/2008	IJ		TO15	
trans-1,2-Dichloroethene	<980	980	<3890	3890		2000	10/30/2008	JJ		TO15	
trans-1,3-Dichloropropene	<980	980	<4450	4450		2000	10/30/2008	JI	EPA	TO15	
Trichloroethene	<980	980	<5270	5270		2000	10/30/2008	11	EPA	TO15	
Trichlorofluoromethane	<980	980	<5510	5510		2000	10/30/2008	JJ	EPA	TO15	
Vinyl Acetate	<980	980	<3450	3450		2000	10/30/2008	IJ	EPA	TO15	
Vinyl chloride	<980	980	<2510	2510		2000	10/30/2008	JJ	EPA	TO15	
Surrogate: 4-Bromofluorobenzene	84 %		Limit 70-130								
Sample ID: PRJ0559-07RE1 (SV-12)								Sampled:			
2,2,4-Trimethylpentane	670000	20000	3100000	93400		41000	10/30/2008	jj		T015	
Cyclohexane	720000	20000	2500000	68800		41009	10/30/2008	JJ	EPA	TO15	
Heptane	210000	20000	860000	82000		41000	10/30/2008	11	EPA	TO15	
Hexane	1700000	20000	6000000	70500		41000	10/30/2008	JĴ	EPA	TO15	
Surrogate: 4-Bromofluorobenzene	87 %		Limit 70-130								

THE LEADER IN ENVIRONMENTAL TESTING

4625 East Cotton Center Blvd, Ste 189 Phoenix, AZ 85040 * (602) 437-3340 * Fax (602) 454-9303

TestAmerica Nashville 2960 Foster Creighton Drive Nashville, TN 37204 Gail Lage

10/09/08 PRJ0559 Received: Work Order: 11/03/08 16:35 Reported: N_ExxonMobil Buffalo Project: Project Number: Exxon 3-1010 Buffalo / NRJ1277

	<u>ppb</u> Result	<u>v</u> PQL	<u>ug/m3</u> Result	PQL	Data Qualifiers	Dilution	Date Analyzed	Analys	Method
Volatile Organic Compounds by EPA	TO-15								
Sample ID: PRJ0559-08 (Duplicate 2)								-	10/07/08 17:0
1,1,1-Trichloroethane	31	0.50	170	2.73		1.0	10/30/2008	JJ	EPA TO
1,1,2,2-Tetrachloroethane	<0.50	0.50	<3.43	3.43		1.0	10/30/2008]]	EPA TOI
1,1,2-Trichloroethane	<0.50	0.50	<2.73	2,73		1.0	10/30/2008	JJ	EPA TOI
1,1-Dichloroethene	0.73	0.59	2.9	1.98		1.0	10/30/2008	JJ	EPA TO
1,2,4-Trichlorobenzene	<2.0	2.0	<14.8	14.8		1.0	10/30/2008	JJ	EPA TOI
1,2,4-Trimethylbenzene	0.53	0.50	2.6	2.46	ゴ	1.0	10/30/2008	JJ	EPA TO
1,2-Dibromoethane (EDB)	<0,50	0.50	<3.84	3.84		1.0	10/30/2008	JJ	EPA TOI
1,2-Dichlorobenzene	<0.50	0,50	<3.01	3.01		1.0	10/30/2008	JJ	EPA TO1
1,2-Dichloroethane	<0.50	0.50	<2.02	2.02		1.0	10/30/2008	JJ	EPA TOI
1,2-Dichloropropane	<0.50	0,50	<2.31	2.31		1.0	10/30/2008	JJ	EPA TO
1,3,5-Trimethylbenzene	<0.50	0.50	<2.46	2.46		1.0	10/30/2008	JJ .	EPA TO1
1,3-Butadiene	<0.50	0,50	<1.10	1.10		1.0	10/30/2008	JJ	EPA TO
1,3-Dichlorobenzene	<0.50	0.50	<3,01	3.01		1.0	10/30/2008	11	EPA TO
1,4-Dichlorobenzene	4.9	0.50	30	3.01		1.0	10/30/2008	11	ЕРА ТО
2,2,4-Trimethylpentane	28	0.50	130	2.34		1.0	10/30/2008	JJ	ЕРА ТО
2-Butanone (MEK)	<1.0	1.0	<2.95	2.95		1.0	10/30/2008]]	EPA TO
2-Hexanone	<1.0	1.0	<4.10	4.10		1,0	10/30/2008	JJ	έρα το
2-Propanol	<2,0	2.0	<4,92	4.92		1.0	10/30/2008	JJ	ΕΡΑ ΤΟ
4-Ethyltoluene	<0.50	0.50	<2.46	2.46		1.0	10/30/2008	JJ	ΕΡΑ ΤΟ
4-Methyl-2-pentanone (MIBK)	<1.0	1.0	<4.10	4.10		1.0	10/30/2008	JJ	ΕΡΑ ΤΟ
Acetone	<5.0	5.0	<11.9	11.9		1.0	10/30/2008	JJ	ΕΡΑ ΤΟ
Allyl Chloride	<0.50	0.50	<1.56	1.56		1.0	10/30/2008	JJ	ΕΡΑ ΤΟ
Benzene	3,5	0.50	11	1.69		1.0	10/30/2008	11	ЕРА ТО
Benzyl Chloride	<2.0	2.0	<10.4	10.4		1,0	10/30/2008	JJ	EPA TO
Bromodichloromethane	<0.50	0,50	<3.35	3.35		1.0	10/30/2008	33	ΕΡΑ ΤΟ
Bromoethene(Vinyl Bromide)	<0.50	0.50	<2.19	2.19		1.0	10/30/2008	JJ	ера то
Bromoform	<0.50	0.50	<5,17	5.17		1.0	10/30/2008	11	ера то
Bromomethane	<0.50	0.50	<1.94	1,94		1.0	10/30/2008	11	EPA TO
Carbon disulfide	12	0.50	37	1.56		1.0	10/30/2008	jj	ЕРА ТО
Carbon tetrachloride	<0.50	0,50	<3.15	3.15		1.0	10/30/2008	ŢŢ	EPA TO
Chlorobenzene	<0,50	0.50	<2.30	2.30		1.0	10/30/2008	JI	EPA TO
Chloroethane	<0.50	0.50	<1.32	1.32		1,0	10/30/2008	JJ	EPA TO
Chloroferm	2.2	0.50	11	2.44		1.0	10/30/2008	11	ЕРА ТО
Chloromethane	<0.50	0.50	<1.03	1.03		1,0	10/30/2008	JJ	EPA TO
cis-1,2-Dichloroethene	48	0.50	190	1.98		1.0	10/30/2008	11	ЕРА ТО
cis-1,3-Dichloropropene	<0,50	0,50	<2.27	2,27		1.0	10/30/2008	IJ	EPA TO
Dibromochloromethane	<0.50	0.50	<4.26	4.26		1.0	10/30/2008	JJ	ΕΡΑ ΤΟ
Dichlorodifluoromethane	<0.50	0.50	<2,47	2.47		1.0	10/30/2008	JJ	έρα το
Dichlorotetrafiuoroethane(F-114)	<0.50	0.50	<3,50	3.50		1.0	10/30/2008	JJ	ΕΡΑ ΤΟ
Ethyl Acetate	<0,50	0.50	<1.80	1.80		1.0	10/30/2008	IJ	EPA TO
Ethylionzene	<0.50	0.50	<2.17	2.17		1.0	10/30/2008	IJ	EPA TO
Freen 113	<0.50	0.50	<3.83	3.83		1.0	10/30/2008	JJ	EPA TO
	7.7	0.50	32	2.05		1.0	10/30/2008	11	ера то
Heptane	<1.0	1.0	<10.7	10.7		1,0	10/30/2008	46	nferado
Hexachlorobutadiene m.p-Xylenes	<1.0	1.0	<4.34	4.34		1.0	10/30/2008	JJ	EPA TO

THE LEADER IN ENVIRONMENTAL TESTING

4625 East Cotton Center Blvd. Ste 189 Phoenix, AZ 85040 * (602) 437-3340 * Fax (602) 454-9303

TestAmerica Nashville 2960 Foster Creighton Drive Nashville, TN 37204 Gail Lage Work Order: PRJ0559

Project:

Received: 10/09/08 Reported: 11/03/08 16:35

N_ExxonMobil Buffalo

Project Number: Exxon 3-1010 Buffalo / NRJ1277

	dqq	V	<u>ug/m3</u>		Data		Date			
	Result	PQL	Result	PQL	Qualifiers	Dilution	Analyzed	Analyst	Met	hod
Volatile Organic Compounds by I	EPA TO-15									
Sample ID: PRJ0559-08 (Duplicate	2) - cont.							Sampled:		
Methylene Chloride	<0.50	0.50	<1.74	1.74		1.0	10/30/2008]]		TO15
Methyl-tert-butyl Ether (MTBE)	<1.0	1.0	<3.61	3.61		1.0	10/30/2008	JJ		TO15
o-Xylene	<0.50	0.50	<2.17	2.17		1.0	10/30/2008]]		TO15
Propene	15	0.50	26	0.861		1.0	10/30/2008	ĴЈ		TO15
Styrene	0,72	0.50	3.1	2.13	J	1.0	10/30/2008	11		TO15
Tetrachloroethene	29	0.50	200	3.39		1.0	10/30/2008	JĴ		TO15
Tetrahydrofuran	<2.0	2.0	<5.90	5,90		1.0	10/30/2008	JJ		TO15
Toluene	2.6	0.50	9.8	1.88		1.0	10/30/2008	JJ	EPA	TO15
trans-1.2-Dichloroethene	<0.50	0,50	<1.98	1.98		1.0	10/30/2008	JJ	EPA	TO15
trans-1,3-Dichloropropene	<0.50	0.50	<2.27	2.27		1.0	10/30/2008	JJ	EPA	TO15
Trichloroethene	22	0,50	120	2.69		1.0	10/30/2008	11	EPA	TO15
Trichlorofluoromethane	<0,50	0.50	<2.81	2.81		1.0	10/30/2008	JJ	EPA	TO15
Vinyl Acetate	<0,50	0.50	<1.76	1.76		1.0	10/30/2008]]	EPA	TO15
Vinyl chloride	<0.50	0.50	<1.28	1.28		1.0	10/30/2008	JJ	EPA	TO15
vinyi canonac Surrogate: 4-Bromofluorobenzene	83 %		Limit 70-130							
Sample ID: PRJ0559-08RE1 (Duplie	cate 2)							Sampled:		
1.1-Dichloroethane	73	5.0	300	20.2		10	10/30/2008	JJ		TO15
Hexane	140	5.0	490	17.6		10	10/30/2008	JJ	EPA	TO15
Surrogate: 4-Bromofluorobenzene	79 %		Limit 70-130							
cy elo hexane	72		250			0	10/30/08	}		

THE LEADER IN ENVIRONMENTAL TESTING

4625 East Cotton Center Blvd. Ste 189 Phoenix, AZ 85040 * (602) 437-3340 * Fax (602) 454-9303

TestAmerica Nashville 2960 Foster Creighton Drive Nashville, TN 37204 Gail Lage Work Order: PRJ0559

Project:

Received: 10/09/08 Reported: 11/03/08 16:35

N_ExxonMobil Buffalo

Project Number: Exxon 3-1010 Buffalo / NRJ1277

	<u>pp</u> Result	<u>bv</u> PQL	<u>ug/m3</u> Result	PQL	Data Qualifiers	Dilution	Date Analyzed	Analyst	Method
		* ~~~							
olatile Organic Compounds by EPA	TO-15							Samalada	10/07/08 17:4
Sample ID: PRJ0559-09 (Duplicate 1)		0.50	(0)	2.73		1.0	10/30/2008	JJ	EPA TO
1,1,1-Trichloroethane	11	0.50	60 <3,43	3.43		1.0	10/30/2008	JJ	EPA TOI
1,1,2,2-Tetrachloroethane	<0.50	0.50	<2.73	2.73		1.0	10/30/2008	IJ	EPA TO
1,1,2-Trichloroethane	<0.50	0.50	<2.73	2.02		1.0	10/30/2008	JJ	EPA TO
1,1-Dichloroethane	<0,50	0.50	<1.98	1.98		1.0	10/30/2008]]	EPA TO
1,1-Dichloroethene	<0.50	0.50	<1.96 <14,8	1.98		1.0	10/30/2008	11	EPA TO
1,2,4-Trichlorobenzene	<2.0	2.0		2.46		1.0	10/30/2008	IJ	EPA TO
1,2,4-Trimethylbenzene	<0.50	0.50	<2.46	3.84		1.0	10/30/2008	JJ	EPA TO
1,2-Dibromoethane (EDB)	<0.50	0.50	<3.84	3.04		1.0	10/30/2008	JJ	EPA TO
1,2-Dichlorobenzene	<0.50	0.50	<3.01			1.0	10/30/2008)J	EPA TO
1,2-Dichloroethane	<0.50	0.50	<2.02	2.02		1.0	10/30/2008	JJ	EPA TO
1,2-Dichloropropane	<0.50	0.50	<2.31	2.31		1.0	10/30/2008	JI	EPA TO
1,3,5-Trimethylbenzene	<0.50	0.50	<2.46	2.46		1.0	10/30/2008	JJ	EPA TO
1,3-Butadiene	<0.50	0.50	<1.10	1.10		1.0	10/30/2008	11	EPA TO
1,3-Dichlorobenzene	<0.50	0.50	<3.01	3.01		1.0	10/30/2008	JJ	EPA TO
1,4-Dichlorobenzene	<0.50	0.50	<3.01	3.01		1.0	10/30/2008	11	EPA TO
2,2,4-Trimethylpentane	29	0.50	140	2,34		1.0	10/30/2008	33 33	EPA TO
2-Butanone (MEK)	<1.0	1.0	<2.95	2.95		1.0	10/30/2008	11	EPA TO
2-Hexanone	<1.0	1.0	<4.10	4.10		1.0	10/30/2008	JJ	EPA TO
2-Propanol	<2.0	2.0	<4.92	4.92		1.0	10/30/2008		EPA TO
4-Ethyltoluene	<0.50	0.50	<2.46	2.46		1.0	10/30/2008		EPA TO
4-Methyl-2-pentanone (MIBK)	<1.0	1.0	<4.10	4.10		1.0	10/30/2008		EPA TO
Acetone	<5.0	5.0	<11.9	11.9		1.0	10/30/2008		EPA TO
Allyl Chloride	<0.50	0.50	<1.56	1.56		1.0	10/30/2008		EPA TO
Benzene	1.2	0.50	3.8	1,60		1.0	10/30/2008		EPA TO
Benzyl Chloride	<2.0	2.0	<10.4	10.4		1.0	10/30/2008		EPA TO
Bromodichloromethane	<0.50	0.50	<3.35	3.35		1.0	10/30/2008		EPA TO
Bromoethene(Vinyl Bromide)	<0.50	0.50	<2.19	2.19		1.0	10/30/2008		EPA TO
Bromoform	<0.50	0,50	<5.17	5.17			10/30/2008		EPA TO
Bromomethane	<0.50	0.50	<1.94	1.94		1.0	10/30/2008		EPA T
Carbon disulfide	3.0	0.50	9.3	1.56		1.0	10/30/2008		EPA TO
Carbon tetrachloride	<0.50	0.50	<3.15	3.15		1.0	10/30/2008		EPA TO
Chlorobenzene	<0.50	0.50	<2.30	2.30		1.0	10/30/2008		EPA TO
Chloroethane	<0.50	0.50	<1.32	1.32		1.0	10/30/2008		EPA TO
Chloroform	<0.50	0.50	<2.44	2.44		1.0			EPA T
Chloromethane	0.59	0.50	1.2	1.03		1.0	10/30/2008 10/30/2008		EPA TO
cis-1,2-Dichloroethene	<0.50	0.50	<1.98	1.98		1.0	10/30/2008		EPA TO
cis-1,3-Dichloropropene	<0.50	0.50	<2.27	2,27		1.0	10/30/2008		EPA T
Cyclohexane	32	0.50	110	1.72		1.0	10/30/2008		EPA TO
Dibromochloromethane	<0.50	0.50	<4.26	4,26		1,0	10/30/2008		EPA TO
Dichlorodifluoromethane	<0.50	0.50	<2.47	2.47		1.0	10/30/2008		EPA TO
Dichlorotetrafluoroethane(F-114)	<0.50	0.50	<3.50	3,50		1.0	10/30/2008		EPA TO
Ethyl Acetate	<0.50	0.50	<1.80	1.80		1.0	10/30/2008		EPA TO
Ethylbenzene	<0.50	0.50	<2.17	2.17		1.0			ofenso
Freon 113	<0.50	0.50	<3.83	3.83		1.0	10/30/2008	38	

THE LEADER IN ENVIRONMENTAL TESTING

4625 East Cotton Center Blvd. Ste 189 Phoenix, AZ 85040 * (602) 437-3340 * Fax (602) 454-9303

TestAmerica Nashville 2960 Foster Creighton Drive Nashville, TN 37204 Gail Lage Work Order: PRJ0559
Project: N_Exxon

Received: 10/09/08 Reported: 11/03/08 16:35

N_ExxonMobil Buffalo

Project Number: Exxon 3-1010 Buffalo / NRJ1277

	ppl	<u>)v</u>	ug/m3		Data		Date		Met	had
	Result	PQL	Result	PQL	Qualifiers	Dilution	Analyzed	Analyst	. Meu	nou
olatile Organic Compounds by El	PA TO-15									
Sample ID: PRJ0559-09 (Duplicate 1) - cont.							Sampled:		
Hexachlorobutadiene	<1.0	1.0	<10.7	10.7		1.0	10/30/2008	lì		TO15
Hexane	32	0.50	110	1.76		1.0	10/30/2008	33		TO1:
m,p-Xylenes	<1.0	1.0	<4.34	4,34		1.0	10/30/2008	JJ		TOIS
Methylene Chloride	7.9	0.50	27	1.74		1.0	10/30/2008	31	EPA	TOI
Methyl-tert-butyl Ether (MTBE)	<1.0	1.0	<3.61	3.61		1.0	10/30/2008	11	EPA	TOI
o-Xylene	< 0.50	0.50	<2.17	2.17		1.0	10/30/2008	JJ	EPA	TO1
Propene	14	0.50	24	0,861		1.0	10/30/2008	11	EPA	TOI
Styrene	<0.50	0.50	<2.13	2.13		1.0	10/30/2008	11	EPA	TOI
Tetrachloroethene	2.6	0.50	18	3.39		1.0	10/30/2008	11	EPA	TOI
Tetrahydrofuran	<2.0	2.0	<5.90	5.90		1.0	10/30/2008	JJ	EPA	TOI
Toluene	1.3	0.50	4.9	1.88		1.0	10/30/2008	JJ	EPA	TO 1
trans-1,2-Dichloroethene	<0.50	0,50	<1.98	1.98		1.0	10/30/2008	JJ	EPA	TOI
	<0.50	0.50	<2.27	2.27		1.0	10/30/2008	JJ	EPA	TO1
trans-1,3-Dichloropropene	<0.50	0.50	<2.69	2.69		1.0	10/30/2008	JJ	EPA	TO1
Trichloroethene	<0.50	0.50	<2.81	2.81		1.0	10/30/2008	11	EPA	TO1
Trichlorofluoromethane		0.50	<1.76	1.76		1.0	10/30/2008	JJ	EPA	TOI
Vinyl Acetate	<0.50		<1.78	1.70		1.0	10/30/2008		EPA	TOI
Vinyl chloride	<0.50	0.50		1.20			1010000000			
Surrogate: 4-Bromofluorobenzene	78 %		Limit 70-130							

THE LEADER IN ENVIRONMENTAL TESTING

4625 East Cotton Center Blvd. Ste 189 Phoenix, AZ 85040 * (602) 437-3340 * Fax (602) 454-9303

TestAmerica Nashville 2960 Foster Creighton Drive Nashville, TN 37204

Gail Lage

Work Order: PRJ0559

Received: 10/09/08 Reported: 11/03/08 16:35

Project: N_ExxonMobil Buffalo

Project Number: Exxon 3-1010 Buffalo / NRJ1277

	ppb	v	<u>ug/m3</u>		Data		Date			
	Result	PQL	Result	PQL	Qualifiers	Dilution	Analyzed	Analyst	Metl	nod
Volatile Organic Compounds by EPA	TO-15									
Sample ID: PRJ0559-10 (Ambient Air)						1.0		Sampled:	10/07/08 FPA	20:35 TO15
1,1,1-Trichloroethane	<0.50	0,50	<2.73	2.73		1.0	10/30/2008]]]?		TOIS
1,1,2,2-Tetrachloroethane	<0.50	0.50	<3.43	3.43		1.0	10/30/2008			TO1:
1,1,2-Trichloroethane	<0.50	0.50	<2.73	2,73		1.0	10/30/2008	IJ	EPA	
1,1-Dichloroethane	<0.50	0.50	<2.02	2.02		1.0	10/30/2008	n		
1,1-Dichloroethene	<0.50	0.50	<1.98	1.98		1.0	10/30/2008	11	EPA	
1,2,4-Trichlorobenzene	<2.0	2.0	<14.8	14.8		1.0	10/30/2008	JJ	EPA	
1,2,4-Trimethylbenzene	<0.50	0.50	<2.46	2.46		1.0	10/30/2008	11	EPA	
1,2-Dibromoethane (EDB)	<0,50	0.50	<3.84	3.84		1.0	10/30/2008	IJ	EPA	
1,2-Dichlorobenzene	<0.50	0.50	<3.01	3.01		1,0	10/30/2008	11	EPA	
1,2-Dichloroethane	<0.50	0.50	<2.02	2.02		1.0	10/30/2008	11		TO1
1,2-Dichloropropane	<0.50	0.50	<2.31	2.31		1,0	10/30/2008	11	EPA	
1,3,5-Trimethylbenzene	<0.50	0.50	<2,46	2.46		1.0	10/30/2008	JJ		TO1
1,3-Butadiene	<0.50	0,50	<1.10	1,10		1.0	10/30/2008	IJ		TO1
1,3-Dichlorobenzene	1.5	0.50	9.0	3.01		1.0	10/30/2008	33	EPA	
1.4-Dichlorobenzene	<0.50	0.50	<3.01	3.01		1.0	10/30/2008	IJ	EPA	
2,2,4-Trimethylpentane	2.4	0.50	11	2.34		1.0	10/30/2008	11	EPA	
2-Butanone (MEK)	4.1	1.0	12	2.95		1.0	10/30/2008	JJ	EPA	TO
2-Hexanone	<1,0	1,0	<4.10	4.10		1.0	10/30/2008	JJ	EPA	TOT
2-Propanol	9.3	2.0	23	4.92		1.0	10/30/2008	JJ	EPA	то
4-Ethyltoluene	<0.50	0.50	<2.46	2.46		1.0	10/30/2008	jj	EPA	TO
4-Methyl-2-pentanone (MIBK)	<1.0	1.0	<4.10	4.10		1.0	10/30/2008	IJ	EPA	TO
Allyl Chloride	<0.50	0.50	<1,56	1.56		1.0	10/30/2008	IJ	EPA	TO
Benzene	0.50	0.50	1.6	1.60		1.0	10/30/2008	JJ	EPA	TO
Benzyl Chloride	<2,0	2.0	<10.4	10.4		1.0	10/30/2008	JJ	EPA	TO
Bromodichloromethane	<0.50	0,50	<3.35	3.35		1.0	10/30/2008	Jĭ	EPA	TO
	<0.50	0.50	<2.19	2.19		1.0	10/30/2008	JJ	EPA	TO
Bromoethene(Vinyl Bromide)	<0.50	0.50	<5.17	5,17		1.0	10/30/2008	JJ	EPA	TO
Bromoform	<0.50	0.50	<1.94	1.94		1.0	10/30/2008	JJ	EPA	TO
Bromomethane	<0.50	0.50	<1.56	1.56		1.0	10/30/2008	JJ	EPA	TO
Carbon disulfide	<0.50	0.50	<3,15	3.15		1.0	10/30/2008	11	EPA	TÖ
Carbon tetrachloride		0.50	<2.30	2.30		1.0	10/30/2008	JI	EPA	TO
Chlorobenzene	<0.50	0.50	<1.32	1.32		1.0	10/30/2008	JJ	EPA	TO
Chloroethane	<0.50	0.50	<2.44	2.44		1.0	10/30/2008		EPA	TO
Chloroform	<0.50			1.03		1.0	10/30/2008		EPA	то
Chloromethane	1.8	0.50	3.7	1.03		1.0	10/30/2008		EPA	то
cis-1,2-Dichloroethene	<0.50	0.50	<1.98	2.27		1.0	10/30/2008		EPA	TO
cis-1,3-Dichloropropene	<0.50	0.50	<2.27			1.0	10/30/2008			то
Cyclohexane	1.8	0.50	6.2	1.72		1.0	10/30/2008			то
Dibromochloromethane	<0.50	0.50	<4.26	4.26		1.0	10/30/2008			то
Dichlorodifluoromethane	<0.50	0.50	<2.47	2.47			10/30/2008			то
Dichlorotetrafluoroethane(F-114)	<0.50	0.50	<3.50	3.50		1,0				то
Ethyl Acetate	<0.50	0,50	<1.80	1.80		1.0	10/30/2008			. 10 . TO
Ethylbenzene	<0.50	0.50	<2.17	2.17		1.0	10/30/2008			
Freon 113	<0.50	0.50	<3.83	3,83		1.0	10/30/2008	60	EPA	TO Fá
Heptane	0.68	0.50	2.8	2.05		1.0	10/30/2008		OIE	59
Hexachlorobutadiene	<1,0	1.0	<10,7	10.7		1.0	10/30/2008	JJ	EPA	TO

Page 21 of 39

THE LEADER IN ENVIRONMENTAL TESTING

4625 East Cotton Center Blvd. Ste 189 Phoenix, AZ 85040 * (602) 437-3340 * Fax (602) 454-9303


TestAmerica Nashville 2960 Foster Creighton Drive Nashville, TN 37204 Gail Lage

PRJ0559 Work Order: N_ExxonMobil Buffalo Project:

10/09/08 Received: 11/03/08 16:35 Reported:

Project Number: Exxon 3-1010 Buffalo / NRJ1277

	ppt	<u>vv</u>	<u>ug/m3</u>		Data		Date			
	Result	PQL	Result	PQL	Qualifiers	Dilution	Analyzed	Analyst	Meti	hod
olatile Organic Compounds by	EPA TO-15									
Sample ID: PRJ0559-10 (Ambient	Air) - cont.							Sampled:		
Hexane	1.2	0.50	4.2	1.76		1.0	10/30/2008	11 1		TO15
m,p-Xylenes	<1.0	1,0	<4.34	4,34		1.0	10/30/2008	33		TO15
Methylene Chloride	1.7	0.50	5.9	1.74		1.0	10/30/2008	IJ		TO15
Methyl-tert-butyl Ether (MTBE)	<1.0	1.0	<3.61	3.61		1.0	10/30/2008	11		TO15
o-Xylene	<0,50	0.50	<2.17	2.17		1.0	10/30/2008	JJ		TO15
Propene	6.8	0.50	12	0.861		1.0	10/30/2008	11		TO15
Styrene	<0.50	0.50	<2.13	2.13		1.0	10/30/2008	JJ		TO15
Tetrachloroethene	<0.50	0.50	<3.39	3.39		1.0	10/30/2008	JJ		TO15
Tetrahydrofuran	<2.0	2.0	<5.90	5.90		1.0	10/30/2008	33		TO15
Toluene	1.3	0.50	4.9	1.88		1.0	10/30/2008	JJ		TO15
trans-1.2-Dichloroethene	<0.50	0.50	<1.98	1.98		1.0	10/30/2008	JJ .		TO15
trans-1,3-Dichloropropene	<0.50	0,50	<2.27	2.27		1.0	10/30/2008	IJ	ÉPA	TO15
Trichloroethene	<0.50	0.50	<2.69	2.69		1.0	10/30/2008	IJ	EPA	TO15
Trichlorofluoromethane	<0.50	0.50	<2.81	2.81		1.0	10/30/2008	JJ	EPA	TO15
Vinyl Acetate	<0.50	0.50	<1.76	1.76		1.0	10/30/2008	JJ	EPA	TO15
Vinyl chloride	<0.50	0.50	<1.28	1.28		1.0	10/30/2008	JJ	EPA	TO15
Surrogate: 4-Bromofluorobenzene	80 %	i	Limit 70-130							
Sample ID: PRJ0559-10RE1 (Ambi	ient Air)							Sampled:		
Acetone	66	10	160	23.8		2.0	10/30/2008	11	EPA	TO15
Surrogate: 4-Bromofluorobenzene	82 %		Limit 70-130							

THE LEADER IN ENVIRONMENTAL TESTING

TestAmerica Nashville

Gail Lage

2960 Foster Creighton Drive Nashville, TN 37204 4625 East Cotton Center Blvd. Ste 189 Phoenix, AZ 85040 * (602) 437-3340 * Fax (602) 454-9303

Work Order:		Received: Reported:	
	N_ExxonMobil Buffalo Exxon 3-1010 Buffalo / NRK	0367	

	ppl	w	ug/m3		Data		Date			
	Result	PQL	Result	PQL	Qualifiers	Dilution	Analyzed	Analyst	Metl	hod
olatile Organic Compounds by	EPA TO-15									
Sample ID: PRJ1586-01 (NRK036	7-01 (SV-1))							Sampled:		
1,1,1-Trichloroethane	<100	100	<546	546		200	11/13/2008	JJ	EPA	
1,1,2,2-Tetrachloroethane	<100	100	<687	687		200	11/13/2008	JÌ	EPA	
1,1,2-Trichloroethane	<100	100	<546	546		200	11/13/2008	IJ	EPA	
1,1-Dichloroethane	<100	100	<405	405		200	11/13/2008	33	EPA	
1,1-Dichloroethene	<100	100	<396	396		200	11/13/2008]]	EPA	
1,2,4-Trichlorobenzene	<400	400	<2970	2970	C, L	200	11/13/2008	11	EPA	
1,2,4-Trimethylbenzene	<100	100	<492	492		200	11/13/2008	J]	EPA	
1,2-Dibromoethane (EDB)	<100	100	<768	768		200	11/13/2008	11	EPA	
1,2-Dichlorobenzene	<100	100	<601	601		200	11/13/2008	JJ	EPA	
1,2-Dichloroethane	<100	100	<405	405		200	11/13/2008	JJ	EPA	
1,2-Dichloropropane	<100	100	<462	462		200	11/13/2008	JJ	EPA	
1,3,5-Trimethylbenzene	<100	100	<492	492		200	11/13/2008	JJ	EPA	
1,3-Butadiene	<100	100	<221	221		200	11/13/2008	JJ	EPA	TO
1,3-Dichlorobenzene	<100	100	<601	601		200	11/13/2008	JJ	EPA	
1,4-Dichlorobenzene	<100	100	<601	601		200	11/13/2008]]	EPA	TO
2,2,4-Trimethylpentane	3800	100	18000	467		200	11/13/2008	JJ	EPA	то
2-Butanone (MEK)	<200	200	<590	590		200	11/13/2008	J]	EPA	
2-Hexanone	<200	200	<819	819		200	11/13/2008	JJ	EPA	то
2-Propanol	<400	400	<983	983		200	11/13/2008	IJ	EPA	TO
4-Ethyltoluene	<100	100	<492	492		200	11/13/2008	JJ	EPA	TO
4-Methyl-2-pentanone (MIBK)	<200	200	<819	819		200	11/13/2008	JJ	EPA	то
Acetone	<1000	1000	<2380	2380		200	11/13/2008	11	EPA	TO
Allyl Chloride	<100	100	<313	313		200	11/13/2008	IJ	EPA	TO
Benzenc	<100	100	<319	319		200	11/13/2008	11	EPA	то
Benzyl Chloride	<400	400	<2070	2070		200	11/13/2008	11	EPA	TO
Bromodichloromethane	<100	100	<670	670		200	11/13/2008	11	EPA	TO
Bromoethene(Vinyl Bromide)	<100	100	<438	438		200	11/13/2008	JJ	EPA	TO
Bromoform	<100	100	<1030	1030		200	11/13/2008	11	EPA	TO
Bromomethane	<100	100	<388	388		200	11/13/2008	11	EPA	TO
Carbon disulfide	<100	100	<311	311		200	11/13/2008	11	EPA	TO
Carbon tetrachloride	<100	100	<629	629		200	11/13/2008	IJ	EPA	TO
Chlorobenzene	<100	100	<460	460		200	11/13/2008	11	EPA	TO
	<100	100	<264	264		200	11/13/2008	JJ	EPA	TO
Chloroethane Chloroform	<100	100	<488	488		200	11/13/2008	11	EPA	то
Chloromethane	<100	100	<206	206		200	11/13/2008	JJ	EPA	то
	<100	100	<396	396		200	11/13/2008	11	EPA	то
cis-1,2-Dichloroethene	<100	100	<454	454		200	11/13/2008	JJ	EPA	то
cis-1,3-Dichloropropene	1500	100	5200	344		200	11/13/2008	IJ	EPA	то
Cyclohexane	<100	100		344 852		200	11/13/2008	JJ	EPA	
Dibromochloromethane		100	<852	495		200	11/13/2008	ίι	EPA	
Dichlorodifluoromethane	<100		<699	490 699		200	11/13/2008	11	EPA	
Dichlorotetrafluoroethane(F-114)	<100	100	<360	360		200	11/13/2008	 •1111	- A"EPA	d G
Ethyl Acetate	<100 <100	100 100	<360 <434	360 434		200	11/13/2008	14	OI 3	$\mathbf{Q}_{\alpha}^{\pi}$

THE LEADER IN ENVIRONMENTAL TESTING

4625 East Cotton Center Blvd. Ste 189 Phoenix, AZ 85040 * (602) 437-3340 * Fax (602) 454-9303

TestAmerica Nashville 2960 Foster Creighton Drive Nashville, TN 37204 Gail Lage

PRJ1586 Work Order:

10/30/08 Received:

N_ExxonMobil Buffalo Project Number: Exxon 3-1010 Buffalo / NRK0367

11/26/08 14:55 Reported:

Project:

	pp	<u>)v</u>	<u>ug/m3</u>		Data		Date		
	Result	PQL	Result	PQL	Qualifiers	Dilution	Analyzed	Analyst	Method
Volatile Organic Compounds by E	PA TO-15								
Sample ID: PRJ1586-01 (NRK0367-0	1 (SV-1)) - c	ont.							10/28/08 16:10
Freon 113	<100	100	<766	766		200	11/13/2008	JJ	EPA TO15
Heptane	<100	100	<410	410		200	11/13/2008	jj	EPA TO15
Hexachlorobutadiene	<200	200	<2130	2130	C, L	200	11/13/2008	JJ	EPA TO15
Hexane	160	100	560	352		200	11/13/2008	JJ	EPA TO15
m,p-Xylenes	<200	200	<868	868		200	11/13/2008	JJ	EPA TO15
Methylene Chloride	<100	100	<347	347		200	11/13/2008]]	EPA TO15
Methyl-tert-butyl Ether (MTBE)	<200	200	<721	721		200	11/13/2008	JJ	EPA TO15
o-Xylene	<100	100	<434	434		200	11/13/2008	JJ	EPA TO15
Propene	<100	100	<172	172		200	11/13/2008]]	EPA TO15
Styrene	<100	100	<426	426		200	11/13/2008	11	EPA TO15
Tetrachloroethene	<100	100	<678	678		200	11/13/2008	11	EPA TO15
Tetrahydrofuran	<400	400	<1180	1180		200	11/13/2008	11	EPA TO15
Toluene	<100	100	<377	377		200	11/13/2008	JJ	EPA TO15
trans-1,2-Dichloroethene	<100	100	<396	396		200	11/13/2008	ĴĴ	EPA TO15
trans-1,3-Dichloropropene	<100	100	<454	454		200	11/13/2008	JJ	EPA TO15
Trichloroethene	<100	100	<537	537		200	11/13/2008	JI	EPA TO15
Trichlorofluoromethane	<100	100	<562	562		200	11/13/2008	· JJ	EPA TO15
Vinyl Acetate	<100	100	<352	352		200	11/13/2008	JJ	EPA TO15
Vinyl chloride	<100	100	<256	256		200	11/13/2008]]	EPA TO15
Surrogate: 4-Bromofluorobenzene	88 %		Limit 70~130						

THE LEADER IN ENVIRONMENTAL TESTING

,

4626 East Cotton Center Blvd. Ste 189 Phoenix, AZ 85040 * (602) 437-3340 * Fax (602) 454-9303

	•		. •				Ĩ
TestAmerica Nashville		Work Order:	PRJ1586		Received:	10/30/08	
2960 Foster Creighton Drive			e trade		Reported:	11/26/08 14	H55
Nashville, TN 37204		Project:	N_ExxonMobil				and the second se
Gail Lage		Project Number	r: Exxon 3-1010	Buffalo /	NRK0367		
	1.5		·· .		- ·		

s-1 1

\$ 100

 $\gamma_{ij}(\lambda_i)$

 $\mathbb{R}_{\geq 0}$

	ppl	by	<u>ug/m3</u>	Ϋ́.	Data		Date		
	Result	PQL	Result	PQL	Qualifiers	Dilution	Analyzed	Analys	Method
olatile Organic Compounds by	y EPA TO-15	e + 11	K .:						
Sample ID: PRJ1586-02 (NRK03	i67-02 (SV-10))		11/1	38 - 2 ¹⁶ -					10/28/08 15:48
1,1,1-Trichloroethane	<1000	1000	<5460	5460		2000	11/13/2008]]	EPA TO15
1,1,2,2-Tetrachloroethane	<1000	1000	<6870	6870		2000	11/13/2008	13	EPA TO15
1,1,2-Trichloroethane	<1000	1000	<5460	5460		2000	11/13/2008]]	EPA TO15
1,1-Dichloroethane	<1000	1000	<4050	4050		2000	11/13/2008	11	EPA TO15
1,1-Dichloroethene	<1000	1000	<3960	3960		2000	11/13/2008	JJ	EPA TO15
1,2,4-Trichlorobenzene	<4100	4100	<30400	30400	C, L	2000	11/13/2008	JJ	EPA TO15
1,2,4-Trimethylbenzene	<1000	1000	<4920	4920		2000	11/13/2008	JJ	EPA TO15
1.2-Dibromoethane (EDB)	<1000	1000	<7680	7680		2000	11/13/2008	IJ	EPA TO15
1,2-Dichlorobenzene	<1000	1000	<6010	6010		2000	11/13/2008	11	EPA TO15
1,2-Dichloroethane	<1000	1000	<4050	4050		2000	11/13/2008	JJ	EPA TO15
1,2-Dichloropropane	<1000	1000	<4620	4620		2000	11/13/2008	JJ	EPA TO15
1.3.5-Trimethylbenzene	<1000	1000	<4920	4920		2000	11/13/2008	JJ	EPA TO15
1,3-Butadiene	<1000	1000	<2210	2210		2000	11/13/2008	IJ	EPA TO15
1,3-Dichlorobenzene	<1000	1000	<6010	6010		2000	11/13/2008	IJ	EPA TO15
1,4-Dichlorobenzene	<1000	1000	<6010	6010		2000	11/13/2008	11	EPA TO15
2,2,4-Trimethylpentane	31000	1000	150000	4670		2000	11/13/2008	jj	EPA TO15
2-Butanone (MEK)	<2000	2000	<5900	5900		2000	11/13/2008	11	EPA TO15
2-Hexanone	<2000	2000	<8190	8190		2000	11/13/2008	11	EPA TO15
2-Propanoi	<4100	4100	<10100	10100		2000	11/13/2008	JJ	EPA TO15
4-Ethyltoluene	<1000	1000	<4920	4920		2000	11/13/2008	JJ	EPA TO15
4-Methyl-2-pentanone (MIBK)	<2000	2000	<8190	8190		2000	11/13/2008	11	EPA TO15 EPA TO15
Acetone 2010	<10000	10000	<23800	23800		2000	11/13/2008	3J	EPA TOIS
Allyl Chloride	<1000	1000	<3130	3130		2000	11/13/2008	. 11	EPA TOIS
Benzene.	8300)	1000	27000	3190		2000	11/13/2008	3J *1	EPA TO15
Benzyl Chloride	<4100	4100	<2.1200	21200		2000	11/13/2008	JJ	EPA TOIS
Bromodichloromethane	<1000	1000	<6700	6700		2000	11/13/2008	JJ	EPA TOIS EPA TOIS
Bromoethene(Vinyl Bromide)	<1000	1000	<4380	4380		2000	11/13/2008	JJ	EPA 1015 EPA 1015
Bromoform	<1000	1000	<10300	10300		2000	11/13/2008	JJ	EPA TOIS
Bromomethane	<1000	1000	<3880	3880		2000	11/13/2008]]	EPA TOIS
Carbon disulfide	<1000	1000	<3110	3110		2000	11/13/2008	11 11	EPA TOIS
Carbon tetrachloride	<1000	1000	<6290	6290		2000	11/13/2008 11/13/2008	11	EPA TOIS
Chlorobenzene	<1000	1000	<4600	4600		2000		11	EPA TO15
Chloroethane	<1000	1000	<2640	2640		2000	11/13/2008	11	EPA TOIS
Chloroform	<1000	1000	<4880	4880		2000	11/13/2008		EPA TOIS
Chloromethane	<1000	1000	<2060	2060		2000	11/13/2008 11/13/2008	11 11	EPA TO15
cis-1,2-Dichloroethene	<1000	1000	<3960	3960		2000		1]	EPA TO15
cis-1,3-Dichloropropene	<1000	1000	<4540	4540		2000	11/13/2008		EPA TOIS
Dibromochloromethane	<1000	1000	<8520	8520		2000	11/13/2008	JJ	EPA TOIS
Dichlorodifluoromethane	<1000	1000	<4950	4950		2000	11/13/2008	JJ	
Dichlorotetrafluoroethane(F-114)	<1000	1000	<6990	6990		2000	11/13/2008	JJ	EPA TO15 EPA TO15
Ethyl Acetate	<1000	1000	<3600	3600		2000	11/13/2008	J]	
Ethylbenzene	<1000	1000	<4340	4340	,	2000	11/13/2008	, II	EPA TO15
Freon 113	<1000	1000	<7660	7660		2000	11/13/2008	JJ	EPA TO15
Heptane	<1000	1000	<4100		_			16	of era 603
Heptane Hexachlorobutadiene	<1000 <2000	1000 2000	<4100 <21300	4100 21300	C, L	2000 2000	11/13/2008 11/13/2008	Į.	6

THE LEADER IN ENVIRONMENTAL TESTING

4625 East Cotton Center Blvd. Ste 189 Phoenix, AZ 85040 * (602) 437-3340 * Fax (602) 454-9303

TestAmerica Nashville 2960 Foster Creighton Drive Nashville, TN 37204 Gail Lage

PRJ1586 Work Order: N_ExxonMobil Buffalo Project:

10/30/08 Received:

11/26/08 14:55 Reported:

Project Number: Exxon 3-1010 Buffalo / NRK0367

	ppb	v	<u>ng/m3</u>		Data		Date			
	Result	PQL	Result	PQL	Qualifiers	Dilution	Analyzed	Analyst	Met	hod
Volatile Organic Compounds by	EPA TO-15									
Sample ID: PRJ1586-02 (NRK0367	-02 (SV-10)) - c	ont.						Sampled:		
m,p-Xylenes	<2000	2000	<8680	8680		2000	11/13/2008	IJ		TO15
Methylene Chloride	<1000	1000	<3470	3470		2000	11/13/2008	JJ		TO15
Methyl-tert-butyl Ether (MTBE)	<2000	2000	<7210	7210		2000	11/13/2008	11		TO15
o-Xylene	<1000	1000	<4340	4340		2000	11/13/2008	11		TO15
Propene	<1000	1000	<1720	1720		2000	11/13/2008	JJ	EPA	TO15
Styrene	<1000	1000	<4260	4260		2000	11/13/2008	JJ	EPA	TO15
Tetrachloroethene	<1000	1000	<6780	6780		2000	11/13/2008	ŢĨ	EPA	TO15
Tetrahydrofuran	<4100	4100	<12100	12100		2000	11/13/2008	jj	EPA	TO15
Toluene	<1000	1000	<3770	3770		2000	11/13/2008	11	EPA	TO15
trans-1,2-Dichloroethene	<1000	1000	<3960	3960		2000	11/13/2008	JJ	EPA	TO15
trans-1,3-Dichloropropene	<1000	1000	<4540	4540		2000	11/13/2008	1]	EPA	TO15
Trichloroethene	<1000	1000	<5370	5370		2000	11/13/2008	JJ	EPA	TO15
Trichlorofluoromethane	<1000	1000	<5620	5620		2000	11/13/2008	JJ	EPA	TO15
Vinyl Acetate	<1000	1000	<3520	3520		2000	11/13/2008	JJ	EPA	TO15
Vinyl chloride	<1000	1000	<2560	2560		2000	11/13/2008	JJ	EPA	TO15
Surrogate: 4-Bromofluorobenzene	90 %		Limit 70-130							
Sample ID: PRJ1586-02RE1 (NRK	0367-02 (SV-10))							Sampled:		
Cyclohexane	120000	1900	410000	6540		3800	11/13/2008	31		TO15
Hexane	140000	1900	490000	6700		3800	11/13/2008	JJ	EPA	TO15
Surrogate: 4-Bromofluorobenzene	89 %		Limit 70-130							

THE LEADER IN ENVIRONMENTAL TESTING

4625 East Cotton Center Blvd. Ste 189 Phoenix, AZ 85040 * (602) 437-3340 * Fax (602) 454-9303

TestAmerica Nashville 2960 Foster Creighton Drive Nashville, TN 37204 Gail Lage

PRJ1586 Work Order: N_ExxonMobil Buffalo Project:

10/30/08 Received:

11/26/08 14:55 Reported:

Project Number: Exxon 3-1010 Buffalo / NRK0367

	<u>ppbv</u> Result	PQL	<u>ng/m3</u> Result	PQL	Data Qualifiers	Dilution	Date Analyzed	Analys	t Method
Volatile Organic Compounds by	EPA TO-15								
Sample ID: PRJ1586-03 (NRK0367-	-03 (SV-11))								10/28/08 16:4
1,1,1-Trichloroethane	<960	960	<5240	5240		1900	11/13/2008)J	EPA TOI:
1,1,2,2-Tetrachloroethane	<960	960	<6590	6590		1900	11/13/2008	IJ	EPA TOI
1,1,2-Trichloroethane	<960	960	<5240	5240		1900	11/13/2008	11	EPA TOI:
1,1-Dichloroethane	<960	960	<3890	3890		1900	11/13/2008	JJ	EPA TOI:
1,1-Dichloroethene	<960	960	<3810	3810		1900	11/13/2008	IJ	EPA TOI
1,2,4-Trichlorobenzene	<3900	3900	<28900	28900	C, L	1900	11/13/2008	IJ	EPA TOI
1,2,4-Trimethylbenzene	<960	960	<4720	4720		1900	11/13/2008	IJ	EPA TOI
1,2-Dibromoethane (EDB)	<960	960	<7380	7380		1900	11/13/2008	JJ	EPA TOI
1,2-Dichlorobenzene	<960	960	<5770	5770		1900	11/13/2008	31	EPA TOI
1,2-Dichloroethane	<960	960	<3890	3890		1900	11/13/2008	IJ	EPA TOI
1,2-Dichloropropane	<960	960	<4440	4440		1900	11/13/2008	JJ	EPA TOI
1,3,5-Trimethylbenzene	<960	960	<4720	4720		1900	11/13/2008	11	EPA TOI
1,3-Butadiene	<960	960	<2120	2120		1900	11/13/2008	JJ	EPA TOI
1,3-Dichlorobenzene	<960	960	<5770	5770		1900	11/13/2008	IJ	EPA TO
1,4-Dichlorobenzene	<960	960	<5770	5770		1900	11/13/2008	IJ	EPA TO
2,2,4-Trimethylpentane	13000	960	61000	4490		1900	11/13/2008	JJ	ЕРА ТО
2-Butanone (MEK)	<1900	1900	<5600	5600	÷	1900	11/13/2008	IJ	EPA TO
2-Hexanone	<1900	1900	<7780	7780		1900	11/13/2008	IJ	EPA TO
2-Propanol	<3900	3900	<9590	9590		1900	11/13/2008	11	EPA TO
4-Ethyltoluene	<960	960	<4720	4720		1900	11/13/2008]]	EPA TO
4-Methyl-2-pentanone (MIBK)	<1900	1900	<7780	7780		1900	11/13/2008]]	EPA TO
Acetone	<9600	9600	<22800	22800		1900	11/13/2008	IJ	EPA TO
Allyl Chloride	<960	960	<3000	3000		1900	11/13/2008	11	EPA TO
Benzene	<960	960	<3070	3070		1900	11/13/2008]]	EPA TO
Benzyl Chloride	<3900	3900	<20200	20200		1900	11/13/2008]]	EPA TO
Bromodichloromethane	<960	960	<6430	6430		1900	11/13/2008	JJ	EPA TO
Bromoethene(Vinyl Bromide)	<960	960	<4200	4200		1900	11/13/2008	11	EPA TO
Bromoform	<960	960	<9920	9920		1900	11/13/2008	JI	EPA TO
Bromomethane	<960	960	<3730	3730		1900	11/13/2008	11	EPA TO
Carbon disulfide	<960	960	<2990	2990		1900	11/13/2008	JI	EPA TO
Carbon tetrachloride	<960	960	<6040	6040		1900	11/13/2008	JJ	EPA TO
Chlorobenzene	<960	960	<4420	4420		1900	11/13/2008	JJ	EPA TO
Chloroethane	<960	960	<2530	2530		1900	11/13/2008	JI	EPA TO
Chloroform	<960	960	<4690	4690		1900	11/13/2008	JJ	EPA TO
Chloromethane	<960	960	<1980	1980		1900	11/13/2008	11	EPA TO
cis-1,2-Dichloroethene	<960	960	<3810	3810		1900	11/13/2008	11	EPA TO
cis-1,3-Dichloropropene	<960	960	<4360	4360		1900	11/13/2008	JJ	EPA TO
Cyclohexane	61000	960	210000	3300		1900	11/13/2008	JJ	EPA TO
Dibromochloromethane	<960	960	<8180	8180		1900	11/13/2008	11	EPA TOI
Dichlorodifluoromethane	<960	960	<4750	4750		1900	11/13/2008	JJ	EPA TO
Dichlorotetrafiuoroethane(F-114)	<960	960	<6710	6710		1900	11/13/2008	11	EPA TO
Ethyl Acetate	<960	960	′ <3460	3460		1900	11/13/2008]]	'EPA TOI
Ethylbenzene	<960	960	<4170	4170		1900	11/13/2008	JJ	EPA TO
Freon 113	<960	960	<7360	7360		1900	11/13/2008	4o	of end of
Heptane	<960	960	<3930	3930		1900	11/13/2008	18	UL EPR Voi

THE LEADER IN ENVIRONMENTAL TESTING

4625 East Cotton Center Blvd. Ste 189 Phoenix, AZ 85040 * (602) 437-3340 * Fax (602) 454-9303

TestAmerica Nashville 2960 Foster Creighton Drive Nashville, TN 37204 Gail Lage

,

Project: N_

Work Order:

Received: 10/30/08 Reported: 11/26/08 14:55

N_ExxonMobil Buffalo

Project Number: Exxon 3-1010 Buffalo / NRK0367

PRJ1586

	<u>ppl</u> Result	<u>pv</u> PQL	<u>ug/m3</u> Result	PQL	Data Qualifiers	Dilution	Date Analyzed	Analyst	Method
latile Organic Compounds by E	РА ТО-15								
Sample ID: PRJ1586-03 (NRK0367-0)3 (SV-11)) -	cont.							10/28/08 16:
Hexachtorobutadiene	<1900	1900	<20300	20300	C, L	1900	11/13/2008	JJ	EPA TO
Hexane	11000	960	39000	3380		1900	11/13/2008	JJ	EPA TO
m,p-Xylenes	<1900	1900	<8250	8250		1900	11/13/2008	JI	EPA TO
Methylene Chloride	<960	960	<3330	3330		1900	11/13/2008	JJ	EPA TO
Methyl-tert-butyl Ether (MTBE)	<1900	1900	<6850	6850		1900	11/13/2008]]	EPA TO
o-Xylene	<960	960	<4170	4170		1900	11/13/2008	JJ	EPA TO
Propene	<960	960	<1650	1650		1900	11/13/2008	31	EPA TO
Styrene	<960	960	<4090	4090		1900	11/13/2008	JJ	EPA TO
Tetrachloroethene	<960	960	<6510	6510		1900	11/13/2008	JJ ·	EPA TO
Tetrahydrofuran	<3900	3900	<11500	11500		1900	11/13/2008	11	EPA TO
Toluene	<960	960	<3620	3620		1900	11/13/2008	JJ	EPA TO
trans-1.2-Dichloroethene	<960	960	<3810	3810		1900	11/13/2008	11	EPA TC
trans-1,3-Dichloropropene	<960	960	<4360	4360		1900	11/13/2008	JI	EPA TO
Trichloroethene	<960	960	<5160	5160		1900	11/13/2008	IJ	EPA TC
Trichlorofluoromethane	<960	960	<5390	5390		1900	11/13/2008	IJ	EPA TC
Vinyl Acetate	<960	960	<3380	3380		1900	11/13/2008	JJ	EPA TC
Vinyl chloride	<960	960	<2450	2450		1900	11/13/2008	11	EPA TC
Surrogate: 4-Bromofluorobenzene	88 %		Limit 70-130						

THE LEADER IN ENVIRONMENTAL TESTING

4625 East Cotton Center Blvd. Ste 189 Phoenix, AZ 85040 * (602) 437-3340 * Fax (602) 454-9303

TestAmerica Nashville 2960 Foster Creighton Drive Nashville, TN 37204 Gail Lage

Work Order: Project:

N_ExxonMobil Buffalo Project Number: Exxon 3-1010 Buffalo / NRK0367

10/30/08 Received: 11/26/08 14:55 Reported:

PRJ1586

	ppl	ppbv			Data		Date			
	Result	PQL	Result	PQL	Qualifiers	Dilution	Analyzed	Analysi	Method	
Volatile Organic Compounds by	EPA TO-15									
Sample ID: PRJ1586-04 (NRK0367	7-04 (SV-8))						11/12/2008	Sampled: JJ	10/28/08 17:0 EPA TOI:	
1,1,1-Trichloroethane	<0.50	0.50	<2.73	2.73	•	1.0	11/13/2008	3)]]	EPA TOI:	
1,1,2,2-Tetrachloroethane	<0.50	0.50	<3.43	3.43		1.0	11/13/2008	31 31	EPA TOI:	
1,1,2-Trichloroethane	<0.50	0.50	<2.73	2.73		1.0	11/13/2008		EPA TOI:	
1,1-Dichloroethane	<0.50	0.50	<2.02	2.02		1.0	11/13/2008	JJ	EPA TOI	
1,1-Dichloroethene	<0.50	0.50	<1.98	1.98		1.0	11/13/2008	JJ	EPA TOI: EPA TOI:	
1,2,4-Trichlorobenzene	<2.0	2.0	<14.8	14.8	C, L	1.0	11/13/2008	11		
1,2,4-Trimethylbenzene	2.5	0.50	12	2.46		1.0	11/13/2008	IJ	EPA TOI	
1,2-Dibromoethane (EDB)	<0.50	0.50	<3.84	3,84		1.0	11/13/2008		EPA TOL	
1,2-Dichlorobenzene	<0.50	0.50	<3.01	3.01		1.0	11/13/2008		EPA TOI	
1,2-Dichloroethane	<0.50	0.50	<2.02	2.02		1.0	11/13/2008		EPA TOI	
1,2-Dichloropropane	<0.50	0.50	<2.31	2.31		1.0	11/13/2008		EPA TOI	
1,3,5-Trimethylbenzene	0.56	0.50	2.8	2.46		1.0	11/13/2008		EPA TO1	
1,3-Butadiene	<0.50	0.50	<1.10	1,10		1.0	11/13/2008	JJ	EPA TO1	
1,3-Dichlorobenzene	<0,50	0.50	<3.01	3.01		1.0	11/13/2008	11	EPA TO1	
1,4-Dichlorobenzene	1.4	0.50	8.4	3.01		1.0	11/13/2008	11	EPA TO1	
2,2,4-Trimethylpentane	1.0	0.50	4.7	2.34		1.0	11/13/2008	JJ	EPA TO	
2-Butanone (MEK)	<1.0	1.0	<2.95	2.95		1.0	11/13/2008	JJ	EPA TOI	
2-Hexanone	<1.0	1.0	<4.10	4.10		1.0	11/13/2008	JJ	έρα τοι	
2-Propanol	<2.0	2.0	<4.92	4.92		1.0	11/13/2008	11	EPA TOI	
4-Ethyltoluene	<0.50	0.50	<2.46	2.46		1.0	11/13/2008	JJ	EPA TOI	
4-Methyl-2-pentanone (MIBK)	<1.0	1,0	<4.10	4.10		1.0	11/13/2008	JJ	EPA TOI	
Acetone	<5,0	5.0	<11.9	11.9		1.0	11/13/2008	JJ	EPA TO1	
Allyl Chloride	<0.50	0.50	<1.56	1.56		1.0	11/13/2008	JJ	EPA TOI	
Benzene	4.4	0.50	14	1.60		1.0	11/13/2008	11	EPA TO	
	<2.0	2.0	<10.4	10.4		1.0	11/13/2008	IJ	EPA TO1	
Benzyl Chloride	<0.50	0.50	<3.35	3,35		1.0	11/13/2008	IJ	EPA TOI	
Bromodichloromethane	<0.50	0,50	<2.19	2,19		1.0	11/13/2008	IJ	EPA TOI	
Bromoethene(Vinyl Bromide)	<0.50	0.50	<5.17	5.17		1.0	11/13/2008	JJ	EPA TO	
Bromoform		0.50	<1.94	1.94		1.0	11/13/2008	IJ	EPA TO1	
Bromomethane	<0.50			1.56		1.0	11/13/2008		EPA TO	
Carbon disulfide	2.7	0.50	8.4 <3.15	3,15		1.0	11/13/2008		EPA TO	
Carbon tetrachloride	<0.50	0.50		2.30		1.0	11/13/2008		EPA TOI	
Chlorobenzene	<0.50	0.50	<2.30			1.0	11/13/2008		EPA TOI	
Chloroethane	<0.50	0.50	<1.32	1.32		1.0	11/13/2008		EPA TO1	
Chloroform	<0.50	0.50	<2.44	2.44		1.0	11/13/2008		EPA TO	
Chloromethane	<0.50	0.50	<1.03	1.03			11/13/2008		EPA TO	
cis-1,2-Dichloroethene	<0.50	0.50	<1.98	1.98		1.0	11/13/2008		EPA TO	
cis-1,3-Dichloropropene	<0.50	0.50	<2.27	2.27		1.0			EPA TO	
Cyclohexane	12	0.50	41	1.72		1.0	11/13/2008		EPA TO	
Dibromochloromethane	<0,50	0.50	<4.26	4.26		1.0	11/13/2008			
Dichlorodifluoromethane	0.50	0.50	2.5	2.47		1.0	11/13/2008		ЕРА ТО ЕРА ТОІ	
Dichlorotetrafluoroethane(F-114)	<0.50	0.50	<3.50	3.50		1.0	11/13/2008			
Ethyl Acetate	 <0.50 	0.50	<1.80	1.80		1.0 '	11/13/2008		EPA TO	
Ethylbenzene	1.6	0,50	7.0	2.17		1.0	11/13/2008		EPA TO	
Freon 113	<0.50	0.50	<3.83	3.83		1.0	11/13/2008	4n	OLEMOA	
Heptane	3.3	0.50	14	2.05		1.0	11/13/2008			
Hexachlorobutadiene	<1.0	1.0	<10.7	10.7	C, L	1.0	11/13/2008	11	EPA TO	

THE LEADER IN ENVIRONMENTAL TESTING

4625 East Cotton Center Blvd. Ste 189 Phoenix, AZ 85040 * (602) 437-3340 * Fax (602) 454-9303

TestAmerica Nashville 2960 Foster Creighton Drive Nashville, TN 37204 Gail Lage Work Order: PRJ1586

Received: 10/30/08 Reported: 11/26/08 14:55

Reported: N_ExxonMobil Buffalo

Project: N_ExxonMobil Buffalo Project Number: Exxon 3-1010 Buffalo / NRK0367

	pp	<u>bv</u>	v <u>ng/m3</u>		Data		Date			
	Result	PQL	Result	PQL	Qualifiers	Dilution	Analyzed	Analyst	t Method	
platile Organic Compounds by	EPA TO-15									
Sample ID: PRJ1586-04 (NRK0367	'-04 (SV-8)) - c	ont.						Sampled:	10/28/08	17:0
Hexane	20	0.50	71	1.76		1.0	11/13/2008	11		T01
m,p-Xylenes	3.2	1.0	14	4.34		1.0	11/13/2008	JJ		TO
Methylene Chloride	0.90	0.50	3.1	1.74		1.0	11/13/2008	JJ		TO
Methyl-tert-butyl Ether (MTBE)	<1.0	1.0	<3.61	3.61		1.0	11/13/2008	JJ	EPA	T01
o-Xylene	1.5	0.50	6.5	2.17		1.0	11/13/2008	11		TO
Propene	7.7	0.50	13	0.861		1.0	11/13/2008	JJ	EPA	TO
Styrene	<0,50	0,50	<2.13	2.13		1.0	11/13/2008	11		TO
Tetrachloroethene	<0.50	0.50	<3.39	3.39		1.0	11/13/2008	JJ		TO
Tetrahydrofuran	<2.0	2.0	<5.90	5.90		1.0	11/13/2008	11	EPA	TO
Toluene	4.7	0.50	18	1.88		1.0	11/13/2008	JJ	EPA	TO
trans-1,2-Dichloroethene	<0.50	0.50	<1.98	1,98		1.0	11/13/2008	lì	EPA	TOI
trans-1,3-Dichloropropene	<0,50	0.50	<2.27	2.27		1.0	11/13/2008	11	EPA	TO
Trichloroethene	<0.50	0.50	<2.69	2.69		1.0	11/13/2008	JJ	EPA	TO
Trichlorofluoromethane	0.60	0.50	3.4	2.81		1.0	11/13/2008	JJ	EPA	то
Vinyl Acetate	<0.50	0.50	<1.76	1.76		1.0	11/13/2008	3J	EPA	TO
Vinyl chloride	<0.50	0.50	<1.28	1.28		1,0	11/13/2008	ĴЈ	EPA	TO
Surrogate: 4-Bromofluorobenzene	97 %		Limit 70-130							

THE LEADER IN ENVIRONMENTAL TESTING

4625 East Cotton Center Blvd. Ste 189 Phoenix, AZ 85040 * (602) 437-3340 * Fax (602) 454-9303

TestAmerica Nashville 2960 Foster Creighton Drive Nashville, TN 37204 Gail Lage Work Order: PRJ1586

Project:

Received: 10/30/08 Reported: 11/26/08 14:55

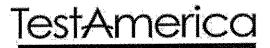
N_ExxonMobil Buffalo

Project Number: Exxon 3-1010 Buffalo / NRK0367

	<u>ppbv</u> Result	PQL	<u>ug/m3</u> Result	PQL	Data Qualifiers	Dilution	Date Analyzed	Analyst	Method
olatile Organic Compounds by E	РА ТО-15								
Sample ID: PRJ1586-05 (NRK0367-0	95 (Ambient Air	3))						•	10/28/08 17:2
1,1,1-Trichloroethane	<0.50	0.50	<2.73	2.73		1.0	11/13/2008	IJ	EPA TO
1,1,2,2-Tetrachioroethane	<0.50	0,50	<3.43	3.43		1.0	11/13/2008	JJ	EPÁ TO
1,1,2-Trichloroethane	<0.50	0.50	<2.73	2.73		1.0	11/13/2008]]	EPA TO
1,1-Dichloroethane	<0.50	0.50	<2.02	2.02		1.0	11/13/2008	11	EPA TO
1,1-Dichloroethene	<0.50	0.50	<1.98	1.98		1.0	11/13/2008	JÌ	EPA TO
1,2,4-Trichlorobenzene	<2.0	2.0	<14.8	14.8		1.0	11/13/2008	JJ	EPA TO
1,2,4-Trimethylbenzene	<0.50	0.50	<2.46	2.46		1.0	11/13/2008	11	EPA TO
1,2-Dibromoethane (EDB)	<0,50	0.50	<3.84	3.84		1.0	11/13/2008	11	EPA TO
1,2-Dichlorobenzene	<0,50	0.50	<3.01	3.01		1,0	11/13/2008	11	EPA TO
1,2-Dichloroethane	<0.50	0.50	<2.02	2.02		1.0	11/13/2008	11	ΕΡΑ ΤΟ
1,2-Dichloropropane	<0.50	0.50	<2.31	2.31		1.0	11/13/2008	11	EPA TO
1,3,5-Trimethylbenzene	<0.50	0.50	<2.46	2.46		1.0	11/13/2008	11	EPA TO
1,3-Butadiene	<0,50	0.50	<1.10	1.10		1.0	11/13/2008	JJ	EPA TO
1,3-Dichlorobenzene	<0.50	0.50	<3.01	3.01		1.0	11/13/2008	ĵ1	EPA TO
1,4-Dichlorobenzene	0.55	0.50	3.3	3.01		1.0	11/13/2008	11	EPA TO
2,2,4-Trimethylpentane	1.4	0.50	6.5	2.34		1.0	11/13/2008	JJ	ЕРА ТС
2-Butanone (MEK)	<1.0	1.0	<2.95	2.95		1,0	11/13/2008	11	EPA TO
2-Hexanone	<1.0	1.0	<4,10	4,10		1.0	11/13/2008	33	ΕΡΑ ΤΟ
2-Propanol	<2.0	2.0	<4.92	4.92		1.0	11/13/2008	11	EPA TO
4-Ethyltoluene	<0.50	0.50	<2.46	2.46		1.0	11/13/2008	JJ	EPA TO
4-Methyl-2-pentanone (MIBK)	<1.0	1.0	<4,10	4,10		1.0	11/13/2008	11	EPA TO
Acetone	5.6	5,0	13	11.9		1.0	11/13/2008	11	ЕРА ТС
Allyl Chloride	<0.50	0.50	<1.56	1.56		1.0	11/13/2008]]	EPA TO
Benzene	0.57	0.50	1.8	1.60		1.0	11/13/2008	JJ	EPA TO
Benzyl Chloride	<2.0	2.0	<10.4	10.4		1.0	11/13/2008	JJ	ΕΡΑ ΤΟ
Bromodichloromethane	<0.50	0.50	<3.35	3.35		1.0	11/13/2008]]	EPA TO
Bromoethene(Vinyl Bromide)	<0,50	0.50	<2.19	2.19		1.0	11/13/2008	JJ	EPA TO
Bromoform	<0.50	0.50	<5.17	5.17		1.0	11/13/2008]]	EPA TC
Bromomethane	<0.50	0.50	<1.94	1.94		1.0	11/13/2008	11	EPA TO
Carbon disulfide	<0.50	0.50	<1.56	1.56		1.0	11/13/2008	JJ	EPA TO
Carbon tetrachloride	<0.50	0.50	<3.15	3.15		1.0	11/13/2008	11	EPA TO
Chlorobenzene	<0.50	0.50	<2.30	2.30		1.0	11/13/2008	11	EPA TO
Chloroethane	<0.50	0.50	<1.32	1.32		1.0	11/13/2008	JJ	EPA TO
Chloroform	<0.50	0.50	<2.44	2.44		1,0	11/13/2008	JJ	EPA TO
Chloromethane	<0.50	0.50	<1.03	1.03		1.0	11/13/2008	33	EPA TO
cis-1,2-Dichloroethene	<0.50	0.50	<1.98	1.98		1.0	11/13/2008	Jl	ΕΡΑ ΤΟ
cis-1,3-Dichloropropene	<0.50	0.50	<2.27	2.27		1.0	11/13/2008	33	EPA TO
Cyclohexane	4.8	0.50	17	1.72		1.0	11/13/2008	JJ	EPA TO
Dibromochloromethane	<0,50	0.50	<4.26	4,26		1.0	11/13/2008	J	EPA TO
Dichlorodifluoromethane	<0.50	0.50	<2.47	2,47		1.0	11/13/2008	11	ЕРА ТО
Dichlorotetrafluoroethane(F-114)	<0,50	0.50	<3.50	3.50		1.0	11/13/2008	33	ΕΡΑ ΤΟ
Ethyl Acetate	<0,50	0.50	<1,80	· 1.80		1.0	11/13/2008	JJ	EPA TO
Ethylbenzene	<0.50	0.50	<2.17	2.17		1.0	11/13/2008	JJ	EPA TO
Freon 113	<0.50	0.50	<3.83	3.83		1.0	11/13/2008	Al A	EPA TO
Heptane	<0.50	0.50	<2.05	2.05		1.0	11/13/2008	22	of erade

THE LEADER IN ENVIRONMENTAL TESTING

. 4625 East Cotton Center Blvd. Ste 189 Phoenix, AZ 85040 * (602) 437-3340 * Fax (602) 454-9303

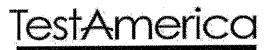

TestAmerica Nashville 2960. Foster Creighton Drive Nashville, TN 37204 Gail Lage Work Order: PRJ1586

Received: 10/30/08 Reported: 11/26/08 14:55

Project: N_ExxonMobil Buffalo

Project Number: Exxon 3-1010 Buffalo / NRK0367

	ppl Result	<u>ov</u> PQL	<u>ug/m3</u> Result	PQL	Data Qualifiers	Dilution	Date Analyzed	Analyst	Met	hod
olatile Organic Compounds by E	СРА ТО-15									
Sample ID: PRJ1586-05 (NRK0367-0		.ir 3)) - c	ont.					Sampled:	10/28/08	17:20
Hexachlorobutadiene	<1.0	1.0	<10.7	10.7		1,0	11/13/2008	JJ	EPA	TO15
Hexane	5.5	0.50	19	1.76		1.0	11/13/2008	JI	EPA	TO15
m,p-Xylenes	<1.0	1.0	<4.34	4,34		1.0	11/13/2008	JJ .	EPA	TO15
Methylene Chloride	1.2	0.50	4.2	1.74		1.0	11/13/2008	JJ	EPA	TO15
Methyl-tert-butyl Ether (MTBE)	<1.0	1.0	<3.61	3.61		1.0	11/13/2008	11	EPA	TO15
o-Xyiene	< 0.50	0.50	<2,17	2.17		1.0	11/13/2008	JJ	EPA	TO15
Propene	<0.50	0.50	<0,861	0.861		1.0	11/13/2008	JJ	EPA	TO15
Styrene	< 0.50	0.50	<2,13	2.13		1.0	11/13/2008	JJ	EPA	TO15
Tetrachloroethene	<0.50	0.50	<3.39	3.39		1.0	11/13/2008	IJ	EPA	TO15
Tetrahydrofuran	<2.0	2.0	<5.90	5.90		1.0	11/13/2008	JJ	EPA	TO15
Tolucne	1.0	0.50	3.8	1.88	÷	1.0	11/13/2008	JI	EPA	TO15
trans-1,2-Dichloroethene	<0,50	0.50	<1.98	1,98		1.0	11/13/2008	JJ	EPA	TO15
trans-1.3-Dichloropropene	<0.50	0,50	<2.27	2.27		1.0	11/13/2008	JJ	EPA	TO15
Trichloroethene	<0.50	0,50	<2.69	2.69		1.0	11/13/2008	JJ	EPA	TO15
Trichlorofluoromethane	<0.50	0.50	<2.81	2.81		1.0	11/13/2008	JJ	EPA	TO15
Vinyl Acetate	<0.50	0.50	<1,76	1.76		1.0	11/13/2008	JJ	EPA	TO15
Vinyl chloride	<0,50	0.50	<1.28	1.28		1.0	11/13/2008	IJ	EPA	TO15
Surrogate: 4-Bromofluorobenzene	92 %		limit 70-130							



۰.,

4625 East Cotton Center Blvd. Ste 189 Phoenix, AZ 85040 * (602) 437-3340 * Fax (602) 454-9303

TestAmerica Nashville 2960 Foster Creighton Drive Nashville, TN 37204 Gail Lage Work Order:PRJ1586Received:10/30/08Reported:11/26/0814:55Project:N_ExxonMobilBuffaloProjectNumber:Exxon3-1010Buffalo/NRK0367

Visiti FQ: FX: FQ: FX: FX: FX: Volatile Componed by EPA T0-15 Sample: 5 Sample: 10/13/006 1/1 EPA 1,1,2-7:trashoroshane -0.50 0.59 -2.73 2.73 1.0 1/11/2008 1/1 EPA 1,1,2-7:trashoroshane -0.50 0.50 -2.73 2.73 1.0 1/11/2008 1/1 EPA 1,1,2-7:trashoroshane -0.50 0.50 -2.02 1.0 1/11/2008 1/1 EPA 1,2-7:trashoroshane -4.50 0.50 -2.02 1.0 1/11/2008 1/1 EPA 1,2-4:trashoroshane -2.0 0.44 1.48 1.0 1/11/2008 1/1 EPA 1,2-4:trashoroshane -0.50 0.50 -2.02 1.0 1/11/2008 1/1 EPA 1,2-bichoroshane -0.50 0.50 -2.02 1.0 1/11/2008 1/1 EPA 1,2-bichoroshane -0.50 0.50 -2.02 1.0<		ppb		<u>ug/m3</u> Desult	DOI	Data Qualifiers	Dilution	Date Analyzed	Analysi	Method
Sample IP. PJLIJS6.06 (NRK0367-06 (SV-2)) US		Result	PQL	Result	PQL	Quamers	DIUITION	rshaiyzau	Padatyst	
1,1,-Tradhereshane 0.50 0.50 -2.73 2.73 1.0 1.1/12/2008 JJ EP 1,1,2,2-Tradhorosthane -0.50 0.50 -2.43 3.43 1.0 11/13/2008 JJ EP 1,1-Jichkorosthane -0.50 0.50 -2.02 2.02 1.0 11/13/2008 JJ EP 1,2-Tridioorobane -0.50 0.50 -2.02 2.0 1.0 11/13/2008 JJ EP 1,2-Artinokrybenzee -2.7 0.50 1.3 2.46 1.0 11/13/2008 JJ EP 1,2-Dichorobenzee -0.50 0.50 -3.01 3.61 1.0 11/13/2008 JJ EP 1,2-Dichorobenzee -0.50 0.50 -2.02 2.02 1.0 11/13/2008 JJ EP 1,2-Dichorobenzee -0.50 0.50 -3.01 3.01 1.0 11/13/2008 JJ EP 1,3-Dichorobenzee -0.50 0.50 -3.01 3.01 1.0 11/13/20										
1,1,1,2,2,Tenabiovechane 0,00 0,00 0,21 2,73 1,0 11/17/2008 11 EP. 1,1,2,Tenabiovechane 0,50 0,50 0,273 2,73 1,0 11/17/2008 11 EP. 1,1,Dichloroschane 0,50 0,50 0,20 2,02 10 11/17/2008 11 EP. 1,2,A-Trinathylbreare 2,0 0,10 11/32008 11 EP. 1,2,A-Trinathylbreare 2,0 0,10 1,34 3,84 1.0 11/172008 11 EP. 1,2,A-Trinathylbreare 0,50 0,50 -2,02 2,02 1.0 11/172008 11 EP. 1,2-Dibloroschanze 0,50 0,50 -2,02 2,02 1.0 11/172008 11 EP. 1,2-Dibloroschanze 0,50 0,50 -2,02 2,02 1.0 11/172008 11 EP. 1,2-Dibloroschanze 0,50 0,50 -4,10 1.0 11/172008 11 EP. 1,2-Dibloroschanze 0,50 0,50 -1,10 1.0 1.0 11/172008	•				0.70		10	11/12/2008		EPA TO1:
1,1,2,-relations/endume 4,1,5 1,1,2,-relations/endume 1,1,1,2,-relations/endume 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,										EPA TOI
L.J. Picklorendmane C.D.S C.D.S C.D.S C.D.S District of the second se										EPA TOI:
1,1-Diableorebinse 0.00 0.00 0.00 0.00 1.00 <td>1,1,2-Trichloroethane</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>EPA TOI</td>	1,1,2-Trichloroethane									EPA TOI
1,1,2,4,1-Tickhovensete 4,0,0 6,0,0 6,1,0,0 1,1,0,0 1,1,0,0 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,	1,1-Dichloroethane									EPA TOI
J.A. Frineityblenzee 2.7 6.50 1.0.8	1,1-Dichloroethene					A 1				EPA TOL
1,4,7 intertyperate 1,7 1,8 1,7 1,8 1,7 1,8 1,7 1,8 1,7 1,8 1,8 1,8 1,8 1,8 1,8 1,8 1,8 1,8 1,8 1,8 1,8 1,8 1,1	1,2,4-Trichlorobenzene					U, L				EPA TO
12.bitkonochane (b)n) 43.50 0.50 0.50 1.01 111132008 11 111132008 11 111132008 11 111132008 11 111132008 11 111132008 11 111132008 11 111132008 11 111132008 11 111132008 11 111132008 11 111132008 11 111132008 11 111132008 11 111132008 11 111132008 11 12 111132008 11 12 111132008 11 12 12 111132008 11 12 12 111132008 11 12	1,2,4-Trimethylbenzene									EPA TOI
j.2. Junktoomethene 45 55 77 17 17 1.2. Dickloredense 40.50 0.50 <2.31	1,2-Dibromoethane (EDB)									
1,2-Dichloroperane 0.50 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.55 <td>1,2-Dichlorobenzene</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>EPA TOI</td>	1,2-Dichlorobenzene									EPA TOI
L2-Distroinery bearse 0.09 0.09 0.14 1.14 1.14 1.14 1.14 L3-S-Trinery bearse 0.09 0.50 <1.10	1,2-Dichloroethane	<0.50	0.50							EPA TOI
J.S1 mitering better So.5 J.S. J.M. L.M. H.M. J.S-Bataliens <0.50	1,2-Dichloropropane	<0,50	0.50	<2,31	2.31					EPA TOI
1,3-Bit Modeline 0,0-0 0,1-0 1,1-0 1,1-0 1,11/12/008 JJ EPP 1,4-Dichlorobenzene 1.6 0.50 0.01 3.01 1.0 11/13/2008 JJ EPP 2,2,4-Trimethylpentane 3.0 0.50 1.4 2.24 1.0 11/13/2008 JJ EPP 2-Butanone (MEK) 0.10 0.255 2.55 1.0 11/13/2008 JJ EPP 2-Hexanone 0.10 0.4.10 4.10 1.0 11/13/2008 JJ EPP 2-Hexanone 0.10 0.4.10 4.10 1.0 11/13/2008 JJ EPP 4-Ethylothuren 0.57 0.50 2.8 2.46 1.0 11/13/2008 JJ EPP Acetore 8.4 5.0 2.0 11.0 1.00 11/13/2008 JJ EPP Alkyl Chloride 0.50 0.50 <1.56	1,3,5-Trimethylbenzene	0.69	0.50	3.4						EPA TOI
1,3-Diabotoenzene1.60.500.411.01/13/2008JJIP2,2,4-Trimethylpentane3.00.59142.341.011/13/2008JJIP2-Butanone (MEK)<1.0	1,3-Butadiene	<0.50	0.50	<1.10	1.10		1.0			EPA TOI
1,4-Unitorinalization1,55,151,14 <th< td=""><td>1,3-Dichlorobenzene</td><td><0.50</td><td>0.50</td><td><3.01</td><td>3.01</td><td></td><td>1.0</td><td></td><td></td><td>EPA TOI</td></th<>	1,3-Dichlorobenzene	<0.50	0.50	<3.01	3.01		1.0			EPA TOI
2,2,4 Interfay D.0 D.0 D.0 D.0 D.0 2-Butanone (MEK) <1.0	1,4-Dichlorobenzene	1.6	0.50	9.6	3.01		1.0			EPA TO
2-Hitmanne (KDEK) C1.0 C1.0 <thc1.0< th=""> C1.0 C1.0</thc1.0<>	2,2,4-Trimethylpentane	3.0	0.50	14	2.34		1.0	11/13/2008		EPA TO
2-recanone 1.0 1.0 1.0 1.0 1.0 1.0 1.0 2-Propanol 2.1 2.0 5.2 4.92 1.0 11/13/2008 JJ EP 4-Methyl-2-pentanone (MIBK) 1.0 1.0 4.10 4.10 1.0 11/13/2008 JJ EP Actone 8.4 5.0 2.0 1.56 1.0 11/13/2008 JJ EP Actone 8.4 5.0 2.0 1.56 1.0 11/13/2008 JJ EP Actone 3.7 0.50 1.2 1.60 1.0 11/13/2008 JJ EP Benzen 3.7 0.50 4.15 3.35 1.0 11/13/2008 JJ EP Bromodichloromethane 4.050 0.50 <3.35	2-Butanone (MEK)	<1.0	1.0	<2.95	2.95		1.0	11/13/2008	JJ	EPA TOI
Z-Propanol L.1 L.3 S.2 L.1 L.1 L.3 L.3 L.1 L.1 L.3 L.3 L.1 L.1 L.3 L.3 L.1 L.1 L.3 L.1 L.1 <thl.1< th=""> L.1 <thl.1< th=""> <thl.1< td=""><td>2-Hexanone</td><td><1.0</td><td>1.0</td><td><4.10</td><td>4.10</td><td></td><td>1.0</td><td>11/13/2008</td><td>IJ</td><td>EPA TOI</td></thl.1<></thl.1<></thl.1<>	2-Hexanone	<1.0	1.0	<4.10	4.10		1.0	11/13/2008	IJ	EPA TOI
A-Ethylonitene 0.30 2.30 2.40 1.40 1.40 1.40 1.40 1.40 1.40 1.40 1.40 1.40 1.40 1.41 1.40 1.41 1.40 1.41 1.40 1.41 1.40 1.41 1.40 1.41 1.40 1.11/13/2008 JJ EP Actone 8.4 5.0 2.0 2.0 2.0 1.56 1.56 1.0 11/13/2008 JJ EP Bernzene 3.7 0.50 0.50 <3.53	2-Propanol	2.1	2.0	5.2	4.92		1.0	11/13/2008	JJ	EPA TO
Action 1.0 1.0 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.11/12/08 JJ EP Acetone 3.7 0.50 0.50 <1.56	4-Ethyltoluene	0.57	0.50	2.8	2.46		1.0	11/13/2008	31	EPA TO
Acetone 8.4 5.0 20 11.9 1.0 11/13/2008 JJ EP Allyl Chloride <0.50	4-Methyl-2-pentanone (MIBK)	<1.0	1.0	<4.10	4.10		1.0	11/13/2008	JJ	EPA TO
Allyl Chloride <0.50 <1.56 1.60 1.1/13/2008 JJ EP Benzene 3.7 0.50 12 1.60 1.0 11/13/2008 JJ EP Benzyl Chloride <2.0 2.0 <10.4 10.4 1.0 11/13/2008 JJ EP Bromodichloromethane <0.50 0.50 <3.35 3.35 1.0 11/13/2008 JJ EP Bromodichloromethane <0.50 0.50 <3.35 3.35 1.0 11/13/2008 JJ EP Bromodichloromethane <0.50 0.50 <1.77 5.17 1.0 11/13/2008 JJ EP Bromodifile <0.50 0.50 <1.75 1.77 1.0 11/13/2008 JJ EP Carbon disulfide <0.50 0.50 <3.15 3.15 1.0 11/13/2008 JJ EP Chloroethane <0.50 0.50 <2.30 2.30 1.0 11/13/2008 JJ EP		8.4	5.0	20	11.9		1.0	11/13/2008	3J	EPA TO
Benzene 3.7 0.50 12 1.60 1.0 11/13/2008 JJ EP Benzyl Chloride <2.0		<0,50	0.50	<1.56	1,56		1.0	11/13/2008	31	EPA TO
Benzyl Chloride <2.0 2.0 <10.4 10.4 1.0 11/13/2008 JJ EPA Bromodichloromethane <0.50	·	3.7	0.50	12	1.60		1.0	11/13/2008	31	EPA TO
Bromodichloromethane <0,50 <3.35 3.35 1.0 11/13/2008 JJ EP. Bromoethene(Vinyl Bromide) <0,50		<2.0	2.0	<10.4	10.4		1.0	11/13/2008	JJ	EPA TOI
Bromoethene(Vinyl Bromide) <0.50 0.50 <2.19 2.19 1.0 11/13/2008 JJ EP/ Bromoethane <0.50	•		0,50	<3.35	3.35		1.0	11/13/2008	IJ	EPA TOI
Bromoform <0.50 0.50 <5.17 5.17 1.0 11/13/2008 JJ EP. Bromoform <0.50				<2.19	2.19		1,0	11/13/2008]]	EPA TOI
Bromomethane<0.500.50<1.941.941.011/13/2008JJEP.Carbon disulfide0.800.502.51.561.011/13/2008JJEP.Carbon tetrachloride<0.500.50<2.302.301.011/13/2008JJEP.Chlorobenzene<0.500.50<2.302.301.011/13/2008JJEP.Chlorotethane<0.500.50<2.302.301.011/13/2008JJEP.Chlorotethane<0.500.50<2.442.441.011/13/2008JJEP.Chlorotethane<0.57<0.50<2.442.441.011/13/2008JJEP.Chlorotethane<0.57<0.50<2.44<2.441.011/13/2008JJEP.Chlorotethane<0.57<0.50<2.27<1.031.011/13/2008JJEP.Cis-1,2-Dichlorotethene<0.50<0.50<2.27<2.271.011/13/2008JJEP.Cyclohexane3.7<0.50<3.8<2.471.011/13/2008JJEP.Dibromochloromethane<0.50<5.0<3.8<2.471.011/13/2008JJEP.Dichlorotetrafluoroethane(F-114)<0.50<5.0<3.50<3.501.011/13/2008JJEP.Dichlorotetrafluoroethane(F-114)<0.50<5.0<3.50<3.501.011/13/2008JJEP.Dichlorotetrafluo				<5.17	5.17		1.0	11/13/2008	11	EPA TOI
Carbon disulfide0.800.502.51.561.011/13/2008JJEPCarbon tetrachloride<0.50					1.94		1.0	11/13/2008	11	EPA TOI
Carbon tetrachloride<0,500,50<3.153.151.011/13/2008JJEP.Chlorobenzene<0,50							1.0	11/13/2008	JJ	EPA TO
Chlorobenzene<0.500.50<2.302.301.011/13/2008JJEP.Chlorobenzene<0.50							1.0	11/13/2008	JJ	EPA TOI
Chloroethane<0.500.50<1.321.321.011/13/2008JJEP.Chloroform<0.50								11/13/2008	JĴ	EPA TO
Chloroform <0.50 0.50 <2.44 2.44 1.0 11/13/2008 JJ EP Chloroform 0.57 0.50 <2.44 2.44 1.0 11/13/2008 JJ EP Chloromethane 0.57 0.50 1.2 1.03 1.0 11/13/2008 JJ EP cis-1,2-Dichloroethene <0.50 0.50 <1.98 1.98 1.0 11/13/2008 JJ EP cis-1,3-Dichloropropene <0.50 0.50 <2.27 2.27 1.0 11/13/2008 JJ EP Cyclohexane 3.7 0.50 13 1.72 1.0 11/13/2008 JJ EP Dibromochloromethane <0.50 0.50 <3.8 2.47 1.0 11/13/2008 JJ EP Dichlorodifluoromethane <0.76 <0.50 <3.8 <2.47 1.0 11/13/2008 JJ EP Dichlorodifluoromethane(F-114) <0.50 <0.50 <3.50 3.50 1.0 11/13/2008 JJ EP Ethyl Acetate ' <0.50 <0.50 <1.80<									11	EPA TO
Chloronethane 0.50 0.50 1.1 1.11 1.11 Chloromethane 0.57 0.59 1.2 1.03 1.9 11/13/2008 JJ EP cis-1,2-Dichloroethene <0.50 0.50 <1.98 1.98 1.0 11/13/2008 JJ EP cis-1,3-Dichloropropene <0.50 0.50 <2.27 2.27 1.0 11/13/2008 JJ EP Cyclohexane 3.7 0.50 13 1.72 1.0 11/13/2008 JJ EP Dibromochloromethane <0.50 0.50 <4.26 4.26 1.0 11/13/2008 JJ EP Dichlorodifluoromethane <0.50 0.50 <4.26 4.26 1.0 11/13/2008 JJ EP Dichlorodifluoromethane(F-114) <0.50 0.50 <3.50 3.50 1.0 11/13/2008 JJ EP Ethyl Acetate ' <0.50 0.50 <1.80 1.80 1.0 11/13/2008 JJ EP										EPA TO
cis-1,2-Dichloroethene <0.50										EPA TO
cis-1,2-Dichloroethene <0.50										EPA TOI
Cyclohexane 3.7 0.50 13 1.72 1.0 11/13/2008 JJ EP Dibromochloromethane <0.50										EPA TOI
Cyclonexane 3.7 6.50 1.0 1.12 1.11 2.008 1.12 EP 1.11 2.008 J.J EP Dichlorodifluoromethane 0.76 0.50 3.8 2.47 1.0 11/13/2008 J.J EP Dichlorotetrafluoroethane(F-114) <0.50 <0.50 <3.50 3.50 1.0 11/13/2008 J.J EP Ethyl Acetate ' <0.50 <0.50 <1.80 1.80 1.0 11/13/2008 J.J EP Ethyl Acetate ' <0.50										EPA TO
Dischlorodifluoromethane 0.76 0.50 3.8 2.47 1.0 11/13/2008 JJ EP Dischlorodifluoromethane 0.50 0.50 <3.50	•									EPA TO
Dichlorodifuorometrane 0.76 0.50 5.3 2.47 10 11/13/2008 JJ EP. Dichlorodifuorometrane <0.50										EPA TO
Ethyl Acetate ' <0.50 <1.80 1.80 1.0 11/13/2008 JJ EP. Ethyl benzene 1.7 0.50 7.4 2.17 1.0 11/13/2008 JJ EP.										EPA TOI
Ethylbenzene 1.7 0.50 7.4 2.17 1.0 11/13/2008 JJ EP.										EPA TO
Envidenzene in ond in the Environment	Ethyl Acetate '									
	Ethylbenzene									EPA TOI
	Freon 113	<0,50	0.50	<3.83	3.83		1.0	11/13/2008	24	Of EAGS
neptane and sto area	Heptane	2.2	0.50							
Hexachlorobutadiene <1.0 1.0 <10.7 10.7 C, L 1.0 11/13/2008 JJ EPA	Hexachlorobutadiene	<1.0	1.0	<10.7	10.7	C, L	1.0	11/13/2008	11	EPA TOI

4625 East Cotton Center Blvd. Ste 189 Phoenix, AZ 85040 * (602) 437-3340 * Fax (602) 454-9303

TestAmerica Nashville 2960 Foster Creighton Drive Nashville, TN 37204 Gail Lage Work Order:PRJ1586Received:10/30/08Project:N_ExxonMobil BuffaloProjectNumber:Exxon3-1010Buffalo

ppl Result	DV PQL	<u>ug/m3</u> Result	PQL	Data Qualifiers	Dilution	Date Analyzed	Analyst	Method
EPA TO-15								
06 (SV-2)) - c	ont.							10/28/08 16:
9,5	0.50	34	1.76		1.0	11/13/2008	JJ	ЕРА ТО
4.1	1.0	18	4.34		1.0	11/13/2008	JI	EPA TO
2.4	0.50	8,3	1.74		1.0	11/13/2008	11	ЕРА ТО
<1.0	1.0	<3.61	3.61		1.0	11/13/2008	JJ	ЕРА ТО
1.7	0.50	7.4	2,17		1.0	11/13/2008	JI	ЕРА ТО
<0,50	0.50	<0.861	0.861		1.0	11/13/2008	JĬ	EPA TO
<0.50	0.50	<2.13	2.13		1.0	11/13/2008	JJ	EPA TO
<0.50	0.50	<3.39	3.39		1.0	11/13/2008	JJ	EPA TO
<2.0	2.0	<5.90	5.90		1.0	11/13/2008	IJ	EPA TO
9.7	0.50	37	1.88		1,0	11/13/2008	$\mathbf{J}\mathbf{J}$	EPA TO
<0.50	0.50	<1.98	1.98		1.0	11/13/2008	JJ	EPA TO
<0.50	0.50	<2.27	2.27		1.0	11/13/2008	11	EPA TO
<0,50	0.50	<2.69	2.69		1.0	11/13/2008	JJ	EPA TO
<0.50	0.50	<2.81	2.81		1.0	11/13/2008	JJ	ΕΡΑ ΤΟ
<0.50	0.50	<1.76	1.76		1.0	11/13/2008	JJ	EPA TO
<0.50	0.50	<1.28	1,28		1.0	11/13/2008	11	EPA TO
		Limit 70-130						
	Result EPA TO-15 06 (SV-2)) - 0 9.5 4.1 2.4 <1.0	CPA TO-15 06 (SV-2)) - cont. 9.5 0.50 4.1 1.0 2.4 0.50 <1.0	Result PQL Result CPA TO-15 0.50 34 9.5 0.50 34 4.1 1.0 18 2.4 0.50 8.3 <1.0	Result PQL Result PQL CPA TO-15 06 (SV-2)) - cont. 9.5 0.50 34 1.76 4.1 1.0 18 4.34 2.4 0.50 8,3 1.74 <1.0	ResultPQLResultPQLQualifiersCPA TO-15 9.5 0.50 34 1.76 4.1 1.0 18 4.34 2.4 0.50 8.3 1.74 <1.0 1.0 <3.61 3.61 1.7 0.50 7.4 2.17 <0.50 0.50 <2.13 2.13 <0.50 0.50 <2.13 2.13 <0.50 0.50 <3.39 3.39 <2.0 2.0 <5.90 5.90 9.7 0.50 37 1.88 <0.50 0.50 <1.98 1.98 <0.50 0.50 <2.27 2.27 <0.50 0.50 <2.81 2.81 <0.50 0.50 <1.76 2.81 <0.50 0.50 <1.28 1.28	Result PQL Result PQL Qualifiers Dilution CPA TO-15	ResultPQLResultPQLQualifiersDilutionAnalyzedEPA TO-15 $9,5$ 0.50 34 1.76 1.0 $11/13/2008$ 4.1 1.0 18 4.34 1.0 $11/13/2008$ 2.4 0.50 8.3 1.74 1.0 $11/13/2008$ <1.0 1.0 <3.61 3.61 1.0 $11/13/2008$ <1.0 1.0 <3.61 3.61 1.0 $11/13/2008$ <1.0 1.0 <3.61 3.61 1.0 $11/13/2008$ <0.50 0.50 <2.13 2.13 1.0 $11/13/2008$ <0.50 0.50 <2.13 2.13 1.0 $11/13/2008$ <0.50 0.50 <3.39 3.39 1.0 $11/13/2008$ <2.0 2.0 <5.90 5.90 1.0 $11/13/2008$ <0.50 0.50 <1.98 1.98 1.0 $11/13/2008$ <0.50 0.50 <2.27 2.27 1.0 $11/13/2008$ <0.50 0.50 <2.81 2.81 1.0 $11/13/2008$ <0.50 0.50 <2.81 2.81 1.0 $11/13/2008$ <0.50 0.50 <2.81 2.81 1.0 $11/13/2008$ <0.50 0.50 <1.76 1.76 1.0 $11/13/2008$ <0.50 0.50 <1.28 1.28 1.0 $11/13/2008$ <0.50 0.50 <1.28 1.28 1.0 $11/13/208$ <td>LeftPQLResultPQLQualifiersDilutionAnalyzedAnalystEPA TO-15$066 (SV-2)) - cont.$9.50.50341.761.011/13/2008JJ4.11.0184.341.011/13/2008JJ2.40.508.31.741.011/13/2008JJ<1.0</td> 1.0<3.61	LeftPQLResultPQLQualifiersDilutionAnalyzedAnalystEPA TO-15 $066 (SV-2)) - cont.$ 9.50.50341.761.011/13/2008JJ4.11.0184.341.011/13/2008JJ2.40.508.31.741.011/13/2008JJ<1.0

THE LEADER IN ENVIRONMENTAL TESTING

4625 East Cotton Center Blvd. Ste 189 Phoenix, AZ 85040 * (602) 437-3340 * Fax (602) 454-9303

TestAmerica Nashville 2960 Foster Creighton Drive Nashville, TN 37204 Gail Lage Work Order: PRJ1586

Received: 10/30/08 Reported: 11/26/08 14:55

Reported: 11/

Project: N_ExxonMobil Buffalo Project Number: Exxon 3-1010 Buffalo / NRK0367

riojeci	Number, Exactin	3-1010	Dunino	******

	<u>pph</u> Result	<u>w</u> PQL	<u>ug/m3</u> Result	PQL	Data Qualifiers	Dilution	Date Analyzed	Analysi	r Method
		1 QL	Resurt		~~~~~~	Diracion			,
olatile Organic Compounds by								G	10/20/00 17.
Sample ID: PRJ1586-07 (NRK0367			~2.72	2.73		1.0	11/13/2008	Sampled:	10/28/08 17: EPA TO
1,1,1-Trichloroethane	<0.50	0.50	<2.73			1.0	11/13/2008	JJ	EPA TO
1,1,2,2-Tetrachloroethane	<0.50	0.50	<3.43	3,43 2.73		1.0	11/13/2008))]]	EPA TO
1,1,2-Trichloroethane	<0.50	0.50	<2.73	2.73		1.0	11/13/2008	JJ	EPA TO
1,1-Dichloroethane	<0.50	0.50	<2.02	1.98		1.0	11/13/2008)]	EPA TO
1,1-Dichloroethene	<0.50	0.50	<1.98		с т	1.0	11/13/2008	JJ	EPA TO
1,2,4-Trichlorobenzene	<2.0	2.0	<14.8	14.8	C, L		11/13/2008)]	EPA TO
1,2,4-Trimethylbenzene	<0.50	0.50	<2.46	2.46		1.0	11/13/2008	11	EFA TO
1,2-Dibromoethane (EDB)	<0.50	0.50	<3.84	3.84		1.0		,, J]	EPA TO
1,2-Dichlorobenzene	<0.50	0,50	<3.01	3.01		1.0	11/13/2008]]]]	EPA TO
1,2-Dichloroethane	<0.50	0.50	<2.02	2.02		1.0	11/13/2008		
1,2-Dichloropropane	<0.50	0.50	<2.31	2.31		1,0	11/13/2008	JĴ	ЕРА ТС ЕРА ТС
1,3,5-Trimethylbenzene	<0.50	0.50	<2.46	2.46		1.0	11/13/2008)J	
1,3-Butadiene	<0.50	0.50	<1.10	1.10		1.0	11/13/2008	JJ	EPA TO
1,3-Dichlorobenzene	<0.50	0.50	<3.01	3.01		1.0	11/13/2008	JJ	EPA TO
1,4-Dichlorobenzene	<0,50	0.50	<3.01	3.01		1.0	11/13/2008	IJ	EPA TO
2,2,4-Trimethylpentane	<0.50	0.50	<2.34	2.34		1.0	11/13/2008)J	EPA TO
2-Butanone (MEK)	<1.0	1.0	<2.95	2.95		1.0	11/13/2008	11	EPA TO
2-Hexanone	<1.0	1.0	<4,10	4,10		1.0	11/13/2008	11	EPA TO
2-Propanol	<2.0	2.0	<4.92	4.92		1.0	11/13/2008	IJ	EPA TC
4-Ethyltoluene	<0.50	0.50	<2.46	2.46		1,0	11/13/2008	11	EPA TO
4-Methyl-2-pentanone (MIBK)	<1,0	1.0	<4.10	4.10		1.0	11/13/2008	11	EPA TO
Acetone	6.5	5.0	15	11.9		1.0	11/13/2008	JJ	EPA TO
Allyl Chloride	<0.50	0,50	<1.56	1.56		1.0	11/13/2008]]	EPA TO
Benzene	<0.50	0.50	<1.60	1.60		1.0	11/13/2008	11	EPA TO
Benzyl Chloride	<2.0	2.0	<10.4	10.4		1.0	11/13/2008]]	EPA TO
Bromodichloromethane	<0.50	0.50	<3.35	3.35		1.0	11/13/2008	ŢŢ	ΕΡΑ ΤΟ
Bromoethene(Vinyl Bromide)	<0.50	0.50	<2.19	2.19		1.0	11/13/2008	JJ	ΕΡΑ ΤΟ
Bromoform	<0,50	0.50	<5.17	5.17		1.0	11/13/2008	JJ	EPA TO
Bromomethane	<0.50	0.50	<1.94	1.94		1.0	11/13/2008	JJ	EPA TO
Carbon disulfide	<0,50	0.50	<1.56	1.56		1.0	11/13/2008	JJ	EPA TO
Carbon tetrachloride	<0.50	0.50	<3.15	3.15		1.0	11/13/2008	11	EPA TC
Chlorobenzene	<0,50	0.50	<2.30	2.30		1.0	11/13/2008	jj	EPA TO
Chloroethane	<0,50	0.50	<1.32	1.32		1.0	11/13/2008	11	EPA TO
Chloroform	<0,50	0.50	<2.44	2.44		1.0	11/13/2008	11	EPA TO
Chloromethane	0.51	0.50	1.1	1.03		1.0	11/13/2008	ĴЈ	EPA TO
cis-1,2-Dichloroethene	<0.50	0.50	<1.98	1.98		1.0	11/13/2008]]	EPA TO
cis-1,3-Dichloropropene	<0.50	0.50	<2.27	2.27		1.0	11/13/2008]]	EPA TO
Cyclohexane	<0.50	0.50	<1.72	1,72		1.0	11/13/2008	JJ	ΕΡΑ ΤΟ
Dibromochloromethane	<0.50	0,50	<4.26	4.26		1.0	11/13/2008	JJ	EPA TO
Dichlorodifluoromethane	0.62	0.50	3.1	2.47		1.0	11/13/2008	JJ	ЕРА ТС
Dichlorotetrafluoroethane(F-114)	<0.50	0,50	<3.50	3.50		1.0	11/13/2008	JJ	ΕΡΑ ΤΟ
Ethyl Acetate	<0.50	0,50	<1.80	1,80	,	1.0	11/13/2008	′ JJ	ЕРА ТО
Ethylbenzene	<0,50	0.50	<2.17	2.17		1.0	11/13/2008	JJ	ΕΡΑ ΤΟ
Freon 113	<0.50	0.50	<3.83	3.83		1.0	11/13/2008	4/	EPA TO
Heptane	<0.50	0.50	<2.05	2.05		1.0	11/13/2008	40	of epa 69

America es

4625 East Cotton Center Bivd. Ste 189 Phoenix, AZ 85040 * (602) 437-3340 * Fax (602) 454-9303 THE LEADER IN ENVIRONMENTAL TESTING

TestAmerica Nashville 2960 Foster Creighton Drive Nashville, TN 37204 Gail Lage

PRJ1586 Work Order:

10/30/08 Received: 11/26/08 14:55

Reported:

N_ExxonMobil Buffalo Project: Project Number: Exxon 3-1010 Buffalo / NRK0367

						www.communicative.com/	*********	menter i sociale i calificati e contra da Calificati da Calificati		****
	ppb Result	Y PQL	<u>ug/m3</u> Result	PQL	Data Qualifiers	Dilution	Date Analyzed	Analyst	Met	hod
Volatile Organic Compounds by EP	A TO-15									
Sample ID: PRJ1586-07 (NRK0367-07	(Ambient Ai	r 4)) - cont.						Sampled:	10/28/08	17:17
Hexachlorobutadiene	<1.0	1.0	<10.7	10,7	C, L	1.0	11/13/2008	11	EPA	TO15
Hexane	<0.50	0.50	<1.76	1.76		1.0	11/13/2008	JJ	ÉPA	TO15
m,p-Xylenes	<1.0	1.0	<4.34	4.34		1.0	11/13/2008	11	EPA	TO15
Methylene Chloride	0,99	0.50	3.4	1.74		1.0	11/13/2008	11	EPA	TO15
Methyl-tert-butyl Ether (MTBE)	<1.0	1,0	<3.61	3.61		1.0	11/13/2008	JJ	EPA	TO15
o-Xylene	<0:50	0.50	<2.17	2.17		1.0	11/13/2008	11	EPA	TO15
Propene	<0.50	0.50	<0.861	0.861		1.0	11/13/2008	11	EPA	TO15
Styrene	<0.50	0.50	<2.13	2.13		1.0	11/13/2008	11	EPA	TO15
Tetrachloroethene	<0.50	0.50	<3.39	3.39		1.0	11/13/2008	JĴ	EPA	TO15
Tetrahydrofturan	<2,0	2.0	<5.90	5.90		1.0	11/13/2008	JJ	EPA	TO15
Toluene	<0.50	0.50	<1.88	1.88		1.0	11/13/2008	IJ	EPA	TO15
trans-1,2-Dichloroethene	<0.50	0.50	<1.98	1.98		1.0	11/13/2008	JJ	EPA	TO15
trans-1,3-Dichloropropene	<0.50	0.50	<2.27	2.27		1.0	11/13/2008	JJ	EPA	TO15
Trichloroethene	<0.50	0.50	<2.69	2.69		1.0	11/13/2008	IJ	EPA	TO15
Trichlorofluoromethane	<0.50	0.50	<2.81	2.81		1.0	11/13/2008	11	EPA	TO15
Vinyl Acetate	<0.50	0.50	<1.76	1.76		1.0	11/13/2008	JJ	EPA	TO15
Vinyl chloride	<0,50	0.50	<1.28	1.28		1.0	11/13/2008	1]	EPA	TO15
- Surrogate: 4-Bromofluorobenzene	100 %	Limit	70-130							

4625 East Cotton Center Blvd. Ste 189, Phoenix, AZ 85040 (602) 437-3340 Fax:(602)

454-9303

TestAmerica Nashville 2960 Foster Creighton Drive Nashville, TN 37204 Attention: Gail Lage Project ID: Exxon 3-1010 Buffalo / NRJ1277

Report Number: PRJ0559

Sampled: 10/06/08-10/07/08 Received: 10/09/08

Fixed Gases by EPA 3C/ASTM D-1946

	I IACU	Gubbb Nj						
			Reporting	Sample	Dilution	Date	Date	Data
Analyte	Method	Batch	Limit	Result	Factor	Extracted	Analyzed	Qualifiers
Sample ID: PRJ0559-01 (SV-6 - Air)					Sampled:	10/06/08		
Reporting Units: ppmv								
Hydrogen	3C/D-1946	P8J1311	246.0	ND	1		10/13/2008	
Carbon Monoxide	3C/D-1946	P8J1311	10.00	ND	1		10/13/2008	
Methane	3C/D-1946	P8J1311	9.920	52.31	1		10/13/2008	
Carbon Diexide	3C/D-1946	P8J1311	10.00	1291	1	10/13/2008	10/13/2008	
Sample ID: PRJ0559-01RE1 (SV-6 - Ai	r)				Sampled:	10/06/08		
Reporting Units: ppmv	, ,							
Oxygen	3C/D-1946	P8J1413	12500	199300	50	10/14/2008	10/14/2008	RL7
Nitrogen	3C/D-1946	P8J1413	24700	754500	100	10/14/2008	10/14/2008	RL7
Sample ID: PRJ0559-02 (SV-4 - Air)					Sampled:	10/06/08		
Reporting Units: ppmv								
Hydrogen	3C/D-1946	P8J1413	246.0	ND	1	10/14/2008	10/14/2008	
Oxygen	3C/D-1946	P8J1413	12500	193400	50	10/14/2008	10/14/2008	RL7
Nitrogen	3C/D-1946	P8J1413	24700	715200	100	10/14/2008	10/14/2008	RL7
Carbon Monoxide	3C/D-1946	P8J1413	10.00	ND	1		10/14/2008	
Methane	3C/D-1946	P8J1413	9.920	ND	1	10/14/2008	10/14/2008	
Carbon Dioxide	3C/D-1946	P8J1413	10.00	3023	1	10/14/2008	10/14/2008	
Sample ID: PRJ0559-03 (SV-5 - Air)					Sampled:	10/06/08		
Reporting Units: ppmv								
Hydrogen	3C/D-1946	P8J1413	246.0	ND	1		10/14/2008	
Carbon Monoxide	3C/D-1946	P8J1413	10.00	ND	1	10/14/2008	10/14/2008	
Methane	3C/D-1946	P8J1413	9.920	25.63	1	10/14/2008	10/14/2008	
Carbon Dioxide	3C/D-1946	P8J1413	10.00	454.0	1	10/14/2008	10/14/2008	
Sample ID: PRJ0559-03RE1 (SV-5 - Ai	r)				Sampled:	10/06/08		
Reporting Units: ppmv								
Oxygen	3C/D-1946	P8J1506	12500	199300	50	10/15/2008	10/15/2008	RL7
Nitrogen	3C/D-1946	P8J1506	24700	784700	100	10/15/2008	10/15/2008	RL7
Sample ID: PRJ0559-04 (SV-9 - Air)					Sampled:	10/06/08		
Reporting Units: ppmv								
Hydrogen	3C/D-1946	P8J1506	246.0	ND	1		10/15/2008	
Oxygen	3C/D-1946	P8J1506	12500	159800	50		10/15/2008	RL7
Nitrogen	3C/D-1946	P8J1506	24700	774000	100		10/15/2008	RL7
Carbon Monoxide	3C/D-1946	P8J1506	10.00	ND	1		10/15/2008	
Methane	3C/D-1946	P8J1506	9.920	ND	1		10/15/2008	
Carbon Dioxide	3C/D-1946	P8J1506	500.0	41180	50	10/15/2008	10/15/2008	RL7

TestAmerica Phoenix

Denise Harrington Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from TestAmerica.

4625 East Cotton Center Blvd. Ste 189, Phoenix, AZ 85040 (602) 437-3340 Fax:(602) 454-9303

TestAmerica Nashville 2960 Foster Creighton Drive Nashville, TN 37204 Attention: Gail Lage Project ID: Exxon 3-1010 Buffalo / NRJ1277

Report Number: PRJ0559

Sampled: 10/06/08-10/07/08 Received: 10/09/08

Fixed Gases by EPA 3C/ASTM D-1946

	Fixed	Gases by	EPA :	SC/AST M	D-1940			
Analyte	Method	Batch	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: PRJ0559-05 (Ambient Air)	l - Air)				Sampled:	10/06/08		
Reporting Units: ppmv		5071 #0.4		100	1	10/15/0000	10/16/0000	
Hydrogen	3C/D-1946	P8J1506	246.0	ND	1		10/15/2008	
Carbon Monoxide	3C/D-1946	P8J1506	10.00	ND	1	10/15/2008		
Methane	3C/D-1946	P8J1506	9.920	ND	1	10/15/2008		
Carbon Dioxide	3C/D-1946	P8J1506	10.00	440.5	1		10/15/2008	
Sample ID: PRJ0559-05RE1 (Ambient A Reporting Units: ppmv	Air 1 - Air)				Sampled:	10/06/08		
Oxygen	3C/D-1946	P8J1607	12500	201800	50	10/16/2008	10/16/2008	RL7
Sample ID: PRJ0559-05RE2 (Ambient A	Air 1 - Air)				Sampled:	10/06/08		
Reporting Units: ppmv Nitrogen	3C/D-1946	P8J2027	24700	759000	100	10/21/2008	10/21/2008	RL7
Sample ID: PRJ0559-06 (SV-3 - Air) Reporting Units: ppmv					Sampled:	10/07/08		
Reporting Units: ppmv Hydrogen	3C/D-1946	P8J1607	246.0	ND	1	10/16/2008	10/16/2008	
Oxygen	3C/D-1946	P8J1607	12500	132400	50		10/16/2008	RL7
Carbon Monoxide	3C/D-1946	P8J1607	10.00	ND	1	10/16/2008	10/16/2008	
Methane	3C/D-1946	P8J1607	9.920	ND	1	10/16/2008	10/16/2008	
Carbon Dioxide	3C/D-1946	P8J1607	500.0	27640	50	10/16/2008	10/16/2008	RL7
Sample ID: PRJ0559-06RE1 (SV-3 - Ai	r)				Sampled:	10/07/08		
Reporting Units: ppmv		5070.00 0	0.4500	******	100	10/01/0000	10/01/0009	RL7
Nitrogen	3C/D-1946	P8J2027	24700	775500	100		10/21/2008	
Sample ID: PRJ0559-07 (SV-12 - Air) Reporting Units: ppmv					Sampled:	10/07/08		
Hydrogen	3C/D-1946	P8J2027	246.0	ND	1	10/21/2008	10/21/2008	
Carbon Monoxide	3C/D-1946	P8J2027	10.00	ND	1	10/21/2008	10/21/2008	
Sample ID: PRJ0559-07RE1 (SV-12 - A Reporting Units: ppmv	Air)				Sampled:	10/07/08		
Reporting Units: ppmv Oxygen	3C/D-1946	P8J2702	12500	46780	50	10/22/2008	10/22/2008	RL7
Nitrogen	3C/D-1946	P8J2702	24700	647900	100	10/22/2008	10/22/2008	RL7
Methane	3C/D-1946	P8J2702	496.0	159200	50	10/22/2008	10/22/2008	RL7
Carbon Dioxide	3C/D-1946	P8J2702	500.0	99170	50	10/22/2008	10/22/2008	RL7
Sample ID: PRJ0559-08 (Duplicate 2 -	Air)				Sampled:	10/07/08		
Reporting Units: ppmv Hydrogen	3C/D-1946	P8J2702	246.0	ND	1	10/22/2008	10/22/2008	
Oxygen	3C/D-1946	P8J2702	12500	199600	50		10/22/2008	RL7
Carbon Monoxide	3C/D-1946	P8J2702	10.00	ND	1		10/22/2008	
Methane	3C/D-1946	P8J2702	9.920	ND	1		10/22/2008	
Carbon Dioxide	3C/D-1946	P8J2702	10.00	2959	1		10/22/2008	
Varoun Divanc		1002.02			-			

TestAmerica Phoenix

Denise Harrington Project Manager 7 of 851

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from TestAmerica.

4625 East Cotton Center Blvd. Ste 189, Phoenix, AZ 85040 (602) 437-3340 Fax:(602)

454-9303

TestAmerica Nashville 2960 Foster Creighton Drive Nashville, TN 37204 Attention: Gail Lage Project ID: Exxon 3-1010 Buffalo / NRJ1277

Report Number: PRJ0559

Sampled: 10/06/08-10/07/08 Received: 10/09/08

Fixed Gases by EPA 3C/ASTM D-1946

Analyte	Method	Batch	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: PRJ0559-08RE1 (Duplicate	2 - Air) - cont.				Sampled:	10/07/08		
Reporting Units: ppmv Nitrogen	3C/D-1946	P8J2705	24700	785500	100	10/23/2008	10/23/2008	RL7
Sample ID: PRJ0559-09 (Duplicate 1 -	Air)				Sampled:	10/07/08		
Reporting Units: ppmv								
Hydrogen	3C/D-1946	P8J2705	246.0	ND	1	10/23/2008	10/23/2008	
Oxygen	3C/D-1946	P8J2705	12500	204800	50	10/23/2008	10/23/2008	RL7
Carbon Monoxide	3C/D-1946	P8J2705	10.00	ND	1	10/23/2008	10/23/2008	
Methane	3C/D-1946	P8J2705	9.920	57.99	1	10/23/2008	10/23/2008	
Carbon Dioxide	3C/D-1946	P8J2705	10.00	1146	1	10/23/2008	10/23/2008	
Sample ID: PRJ0559-09RE1 (Duplicate	1 - Air)				Sampled:	10/07/08		
Reporting Units: ppmv					100	10/04/0000	10/04/0000	DI 7
Nitrogen	3C/D-1946	P8J2707	24700	742600	100	10/24/2008	10/24/2008	RL7
Sample ID: PRJ0559-10 (Ambient Air	- Air)				Sampled:	10/07/08		
Reporting Units: ppmv					_	1010 10000	10/04/0000	
Hydrogen	3C/D-1946	P8J2707	246.0	ND	1		10/24/2008	D1 7
Oxygen	3C/D-1946	P8J2707	12500	201800	50		10/24/2008	RL7
Carbon Monoxide	3C/D-1946	P8J2707	10.00	ND	1		10/24/2008	
Methane	3C/D-1946	P8J2707	9.920	ND	1		10/24/2008	
Carbon Dioxide	3C/D-1946	P8J2707	10.00	434.5	1	10/24/2008	10/24/2008	
Sample ID: PRJ0559-10RE1 (Ambient	Air - Air)				Sampled:	10/07/08		
Reporting Units: ppmv								
Nitrogen	3C/D-1946	P8J2711	24700	728500	100	10/27/2008	10/27/2008	RL7

TestAmerica Phoenix

Denise Harrington Project Manager

THE LEADER IN ENVIRONMENTAL TESTING

4625 East Cotton Center Blvd. Ste 189, Phoenix, AZ 85040 (602) 437-3340 Fax:(602)

454-9303

TestAmerica NashvilleProject ID: Exxon 3-1010 Buffalo / NRK03672960 Foster Creighton DriveSampled: 10/28/08Nashville, TN 37204Report Number: PRJ1586Received: 10/30/08Attention: Gail LageGail LageSampled: 10/28/08

Fixed Gases by EPA 3C/ASTM D-1946

	FIXCU	Gases by	MA J		D-1240			
			Reporting	Sample	Dilution	Date	Date	Data
Analyte	Method	Batch	Limit	Result	Factor	Extracted	Analyzed	Qualifiers
Sample ID: PRJ1586-01 (NRK0367-01	(SV-1) - Air)							
Reporting Units: ppmv								
Hydrogen	3C/D-1946	P8K0601	246.0	ND	1	11/6/2008	11/6/2008	
Oxygen	3C/D-1946	P8K0601	12500	110100	50	11/6/2008	11/6/2008	RL7
Carbon Monoxide	3C/D-1946	P8K0601	10.00	ND	1	11/6/2008	11/6/2008	
Methane	3C/D-1946	P8K0601	496.0	130200	50	11/6/2008	11/6/2008	RL7
Carbon Dioxide	3C/D-1946	P8K0601	500.0	32890	50	11/6/2008	11/6/2008	RL7
Sample ID: PRJ1586-01RE1 (NRK036	7-01 (SV-1) - A	(ir)						
-	/-01 (57-1) - 2							
Reporting Units: ppmv Nitrogen	3C/D-1946	P8K0711	24700	748800	100	11/7/2008	11/7/2008	RL7
			27,00	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
Sample ID: PRJ1586-02 (NRK0367-02	(SV-10) - Air)							
Reporting Units: ppmv						11/11/2000	11/11/0000	
Hydrogen	3C/D-1946	P8K1108	246.0	ND	1		11/11/2008	D1 6
Oxygen	3C/D-1946	P8K1108	12500	13350	50		11/11/2008	RL7
Nitrogen	3C/D-1946	P8K1108	12350	422300	50		11/11/2008	RL7
Carbon Monoxide	3C/D-1946	P8K1108	10.00	ND	1		11/11/2008	017
Methane	3C/D-1946	P8K1108	496.0	412500	50		11/11/2008	RL7
Carbon Dioxide	3C/D-1946	P8K1108	500.0	84780	50	11/11/2008	11/11/2008	RL7
Sample ID: PRJ1586-03 (NRK0367-03	(SV-11) - Air)							
Reporting Units: ppmv								
Hydrogen	3C/D-1946	P8K0601	246.0	ND	1	11/6/2008	11/6/2008	
Oxygen	3C/D-1946	P8K0601	12500	14840	50	11/6/2008	11/6/2008	RL7
Nitrogen	3C/D-1946	P8K0601	24700	718500	100	11/6/2008	11/6/2008	RL7
Carbon Monoxide	3C/D-1946	P8K0601	10.00	ND	1	11/6/2008	11/6/2008	
Methane	3C/D-1946	P8K0601	496.0	244800	50	11/6/2008	11/6/2008	RL7
Carbon Dioxide	3C/D-1946	P8K0601	10.00	12070	1	11/6/2008	11/6/2008	
Sample ID: PRJ1586-04 (NRK0367-04	(SV-8) - Air)							
Reporting Units: ppmv	(5. 0))							
Hydrogen	3C/D-1946	P8K0521	246.0	ND	1	11/5/2008	11/5/2008	
Oxygen	3C/D-1946	P8K0521	12500	191900	50	11/5/2008	11/5/2008	RL7
Nitrogen	3C/D-1946	P8K0521	24700	747200	100	11/5/2008	11/5/2008	RL7
Carbon Monoxide	3C/D-1946	P8K0521	10.00	ND	1	11/5/2008	11/5/2008	
Methane	3C/D-1946	P8K0521	9.920	ND	1	11/5/2008	11/5/2008	
Carbon Dioxide	3C/D-1946	P8K0521	10.00	3495	1	11/5/2008	11/5/2008	
Sample ID: PRJ1586-05 (NRK0367-05	(Ambient Air .	5) - Air)						
Reporting Units: ppmv Hydrogen	3C/D-1946	P8K1108	246.0	ND	1	11/11/2008	11/11/2008	
	3C/D-1946	P8K1108	12500	193000	50	11/11/2008		RL7
Oxygen Nitrogen	3C/D-1946	P8K1108	24700	744400	100	11/11/2008		RL7 RL7
Carbon Monoxide	3C/D-1946	P8K1108	10,00	ND	1	11/11/2008		
Curoni monovido	,	1 0121100	* ****	6 . AP				
an extension Discounting								

TestAmerica Phoenix

Denise Harrington Project Manager 4 of 465

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from TestAmerica.

3

THE LEADER IN ENVIRONMENTAL TESTING

4625 East Cotton Center Blvd. Ste 189, Phoenix, AZ 85040 (602) 437-3340 Fax:(602)

454-9303

TestAmerica Nashville 2960 Foster Creighton Drive Nashville, TN 37204 Attention: Gail Lage

Report Number: PRJ1586

Sampled: 10/28/08 Received: 10/30/08

Fixed Gases by EPA 3C/ASTM D-1946

Project ID: Exxon 3-1010 Buffalo / NRK0367

Analyte	Method	Batch	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: PRJ1586-05 (NRK0367-05	(Ambient Air 3)	- Air) -	cont.					
Reporting Units: ppmv								
Methane	3C/D-1946	P8K1108	9.920	ND	1	11/11/2008	11/11/2008	
Carbon Dioxide	3C/D-1946	P8K1108	10.00	435.0	1	11/11/2008	11/11/2008	•
Sample ID: PRJ1586-06 (NRK0367-06	(SV-2) - Air)							
Reporting Units: ppmv								
Hydrogen	3C/D-1946	P8K0711	246.0	ND	1	11/7/2008	11/7/2008	
Oxygen	3C/D-1946	P8K0711	12500	208100	50	11/7/2008	11/7/2008	RL7
	3C/D-1946	P8K0711	24700	735500	100	11/7/2008	11/7/2008	RL7
Carbon Monoxide	3C/D-1946	P8K0711	10.00	ND	1	11/7/2008	11/7/2008	
Methane	3C/D-1946	P8K0711	9.920	ND	1	11/7/2008	11/7/2008	
Carbon Dioxide	3C/D-1946	P8K0711	10.00	553.5	1	11/7/2008	11/7/2008	
Sample ID: PRJ1586-07 (NRK0367-07	(Ambient Air 4)	- Air)						
Reporting Units: ppmv								
Hydrogen	3C/D-1946	P8K1008	246.0	ND	1	11/10/2008	11/10/2008	
Oxygen	3C/D-1946	P8K1008	12500	197500	50	11/10/2008	11/10/2008	RL7
Nitrogen	3C/D-1946	P8K1008	24700	775200	100	11/10/2008	11/10/2008	RL7
Carbon Monoxide	3C/D-1946	P8K1008	10.00	ND	1	11/10/2008	11/10/2008	
Methane	3C/D-1946	P8K1008	9.920	ND	1	11/10/2008	11/10/2008	
Carbon Dioxide	3C/D-1946	P8K1008	10.00	520.0	1	11/10/2008	11/10/2008	
Oxygen Nitrogen Carbon Monoxide Methane Carbon Dioxide Sample ID: PRJ1586-07 (NRK0367-07 Reporting Units: ppmv Hydrogen Oxygen Nitrogen Carbon Monoxide Methane	3C/D-1946 3C/D-1946 3C/D-1946 3C/D-1946 3C/D-1946 (Ambient Air 4) 3C/D-1946 3C/D-1946 3C/D-1946 3C/D-1946 3C/D-1946	P8K0711 P8K0711 P8K0711 P8K0711 P8K0711 - Air) P8K1008 P8K1008 P8K1008 P8K1008 P8K1008	12500 24700 10.00 9.920 10.00 246.0 12500 24700 10.00 9.920	208100 735500 ND ND 553.5 ND 197500 775200 ND ND	100 1 1 1 1 50 100 1 1	11/7/2008 11/7/2008 11/7/2008 11/7/2008 11/7/2008 11/7/2008 11/10/2008 11/10/2008 11/10/2008 11/10/2008 11/10/2008	11/7/2008 11/7/2008 11/7/2008 11/7/2008 11/7/2008 11/10/2008 11/10/2008 11/10/2008 11/10/2008 11/10/2008	RL7 RL7

TestAmerica Phoenix

Denise Harrington Project Manager

THE LEADER IN ENVIRONMENTAL TESTING 4625 East Cotton Center Blvd. Ste 189 Phoenix, AZ 85040 * (602) 437-3340 * Fax (602) 454-9303

TestAmerica Nashville 2960 Foster Creighton Drive	Work Order:	PRJ0560	Received: Reported:	
Nashville, TN 37204 Gail Lage	Project: Project Number:	N_ExxonMobil Exxon 3-1010	1279	

ANALYTICAL REPORT

Analyte		Result		Qual	Date Analyzed Analyst	Rpt Limit	Method	
Mercury by NIOSH 6009 (Modified)							
Sample ID: PRJ0560-01 (NRJ1279-01 (SV-9))		Filter	Filter Sample		Volume:100.99L	Sam	Sampled: 10/07/08	
	ug, Total	mg/m3	ppm			ug, Total		
Mercury	<0.0435	<0.000431	<0.0000525		10/17/2008 AJ	0.0435 N	IOSH 6009 (Modified)	

.

)

~

,

THE LEADER IN ENVIRONMENTAL TESTING 4625 East Cotton Center Blvd. Ste 189 Phoenix, AZ 85040 * (602) 437-3340 * Fax (602) 454-9303

.

TestAmerica Nashville 2960 Foster Creighton Drive	Work Order: PRK0301		Received: 11/06/08 Reported: 11/21/08 1		
Nashville, TN 37204	Project: Project Number:	N_ExxonMobil Exxon 3-1010	/ NRK0460		

ANALYTICAL REPORT

Analyte		Result		Qual	Date Analyzed Analyst	Rpt Method Limit
Mercury by NIOSH 6009 (Mod	ified)					
Sample ID: PRK0301-01 (NR	(K0460-01 (SV-1))	Tube		Sample Air	Volume:101.19L	Sampled: 11/05/08
	ug, Total	mg/m3	ppm			ug, Total
Mercury	<0.0435	<0.00043	<0.0000524		11/12/2008 AJ	0.0435 NIOSH 6009 (Modified)
Sample ID: PRK0301-02 (NRK04	60-02 (Field Blank	1)) Tube		Sample A	ir Volume:0L	Sampled: 11/05/08
	ug, Total	mg/m3	ppm			ug, Total
Mercury	<0.0435	-	P/14		11/12/2008 AJ	0.0435 NIOSH 6009 (Modified)
Sample ID: PRK0301-03 (NRK0460-03 (SV-9))		Tube		Sample Air	Volume:100.51L	Sampled: 11/05/08
	ug, Total	mg/m3	ррт			ug, Total
Mercury	<0.0435	<0.000433	<0.0000528		11/12/2008 AJ	0.0435 NIOSH 6009 (Modified)
Sample ID: PRK0301-04 (NRK04	60-04 (Field Blank	2)) Tube		Sample A	ir Volume:0L	Sampled: 11/05/08
	ug, Total	mg/m3	ppm			ug, Total
Mercury	<0.0435	**			11/12/2008 AJ	0.0435 NIOSH 6009 (Modified)

,