

Mr. Eugene Melnyk, PE New York State Department of Environmental Conservation Division of Environmental Remediation, Region 9 270 Michigan Avenue Buffalo, New York 14203-2915

Subject:

Groundwater Sampling Report ExxonMobil Oil Former Buffalo Terminal OU-2 East 503/625/635 Elk Street Buffalo, New York 14210 NYSDEC Site No. C915201B

Dear Mr. Melnyk:

This letter has been prepared by Arcadis of New York, Inc. (Arcadis), on behalf of ExxonMobil Environmental and Property Solutions Company (ExxonMobil), to present the scope and results of the groundwater sampling activities conducted on June 28, 2018 at the ExxonMobil Oil Former Buffalo Terminal Operable Unit 2 (OU-2) East site (hereinafter, the "Site") in Buffalo, New York. The work was conducted pursuant to the New York State Department of Environmental Conservation's (NYSDEC's) *Request for Sampling of Emergent Contaminants* (NYSDEC 2018) and in accordance with the *Groundwater Sampling Work Plan – OU-2 East* (Groundwater and Environmental Services, Inc. 2018), which was approved by NYSDEC on June 11, 2018.

Groundwater samples were collected on June 28, 2018 from monitoring wells B-2MW, MW-34, MW-49, and MW-50 (Figure 1). At each well, an oil-water interface probe was used to measure the depth to groundwater and evaluate the presence/absence of non-aqueous phase liquid. Non-aqueous phase liquid was not detected in any of the monitoring wells subject to sampling. Groundwater samples were collected using low-flow purging and sampling procedures in general conformance with NYSDEC's *Collection of Groundwater Samples for Perfluorooctanoic Acid (PFOA) and Perfluorinated Compounds (PFC) from Monitoring Wells Sample Protocol* (NYSDEC 2016). Copies of the groundwater sampling logs are provided in Attachment A of this letter. Arcadis of New York, Inc. One Lincoln Center 110 West Fayette Street Suite 300 Syracuse New York 13202 Tel 315 446 9120 Fax 315 449 0017 www.arcadis.com

ENVIRONMENT

Date: February 28, 2019

Contact: Michael Benoit, PE

Phone: 315.671.9298

Email: michael.benoit@arcadis.com

Our ref: B0085953.1802.00009

Mr. Eugene Melnyk, PE NYSDEC February 28, 2019

Groundwater samples were submitted to Eurofins Lancaster Laboratories Environmental, LLC of Lancaster, Pennsylvania for analysis of per- and polyfluoroalkyl substances and 1,4-dioxane in accordance with United States Environmental Protection Agency Modified Method 537, Version 1.1 and United States Environmental Protection Agency SW-846 Method 8270D SIM, respectively. The results of the above analyses are summarized in Table 1. The laboratory data report (NYSDEC Analytical Services Protocol Category B data deliverable) and data usability summary report for the groundwater sample data are provided in Attachments B and C, respectively.

Please do not hesitate to contact me if you have any questions or require additional information.

Sincerely,

Arcadis of New York, Inc.

Michael Benoit, PE Principal Environmental Engineer

Copies: Chad Staniszewski, PE, NYSDEC Elizabeth Zinkevicz, ExxonMobil Krista Manley, Buckeye Partners, LP Paul Neureuter, Elk Street Commerce Park, LLC

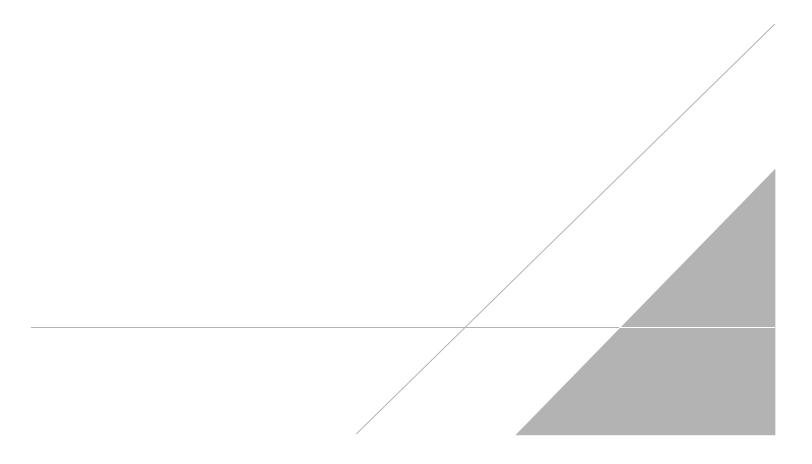
Enclosures: Tables

1 Summary of Groundwater Sample Results

Figures

1 Site Plan

Attachments


- A Low-Flow Groundwater Sampling Logs
- B Laboratory Data Report
- C Data Usability Summary Report

Mr. Eugene Melnyk, PE NYSDEC February 28, 2019

References:

- Groundwater and Environmental Services, Inc. 2018. *Groundwater Sampling Work Plan OU-2 East.* ExxonMobil Oil Former Buffalo Terminal OU-2 East, Buffalo, New York. Prepared for ExxonMobil. May 24.
- NYSDEC. 2016. Collection of Groundwater Samples for Perfluorooctanoic Acid (PFOA) and Perfluorinated Compounds (PFC) from Monitoring Wells Sample Protocol. Revision 1.2. June 29.
- NYSDEC. 2018. *Request for Sampling of Emerging Contaminants*. ExxonMobil Oil Former Buffalo Terminal, Buffalo, New York. Division of Environmental Remediation. April 12.

Tables

Table 1Summary of Groundwater Sample Results

ExxonMobil Oil Former Buffalo Terminal OU-2 East 503/625/635 Elk Street Buffalo, New York 14210

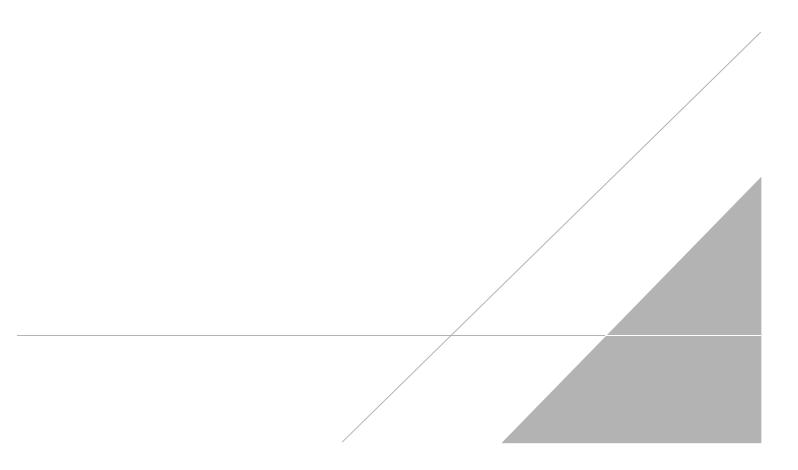
Location ID Sample ID		B-2MW B-2MW	MW-34 MW-34	MW-34 DUP-062818-OU2E	MW-49 OU-2 East	MW-50 OU-2 East
Parameter Sample Date:	Units	6/28/2018	6/28/2018	6/28/2018	6/28/2018	6/28/2018
Semivolatile Organic Compounds (USEPA SW-	846 Metl	hod 8270D SIM)				
1,4-Dioxane	µg/L	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U
Per- and Polyfluoroalkyl Substances (USEPA N	lethod 5	37 Version 1.1 Modifie	ed)			
Perfluorobutanesulfonate	ng/L	8.8 J	1.4 J	0.77 J	7.3 J	3.1
Perfluorohexanesulfonate	ng/L	19	17	18	3.0 J	2.8 J
Perfluoroheptanesulfonate	ng/L	5.0 U	1.1 J	1.0 J	3.4 U	5.0 U
Perfluorooctanesulfonate	ng/L	16	65	61	4.2	11
Perfluorodecanesulfonate	ng/L	5.0 U	3.3 U	3.3 U	3.4 U	5.0 U
Perfluorobutanoic acid	ng/L	28 J	9.9 U	10 U	110 J	9.7 J
Perfluoropentanoic acid	ng/L	15 UJ	9.9 U	10 U	7.8 J	15 U
Perfluorohexanoic acid	ng/L	5.8	1.6 J	2.4 J	7.7	4.9 J
Perfluoroheptanoic acid	ng/L	3.5	2.0	1.8	3.0	11
Perfluorooctanoic acid	ng/L	7.3	3.7	3.3	12	14
Perfluorononanoic acid	ng/L	4.1 J	3.6	3.4	2.6 J	150
Perfluorodecanoic acid	ng/L	5.0 U	3.3 U	3.3 U	3.4 U	5.6
Perfluoroundecanoic acid	ng/L	5.0 U	3.3 U	3.3 U	3.4 U	5.3
Perfluorododecanoic acid	ng/L	5.0 U	3.3 U	3.3 U	3.4 U	5.0 U
Perfluorotridecanoic acid	ng/L	2.5 U	1.6 U	1.7 U	1.7 U	2.5 U
Perfluorotetradecanoic acid	ng/L	2.5 U	1.6 U	1.7 U	1.7 U	2.5 U
6:2 fluorotelomersulfonate	ng/L	5.0 U	3.3 U	3.3 U	3.4 U	5.0 U
8:2 fluorotelomersulfonate	ng/L	15 U	9.9 U	10 U	10 U	15 U
Perfluorooctanesulfonamide	ng/L	7.4 U	4.9 U	5.0 U	5.1 U	7.5 U
N-methyl perfluorooctanesulfonamidoacetic acid	ng/L	7.4 U	4.9 U	5.0 U	5.1 U	7.5 U
N-ethyl perfluorooctanesulfonamidoacetic acid	ng/L	7.4 U	4.9 U	5.0 U	5.1 U	7.5 U

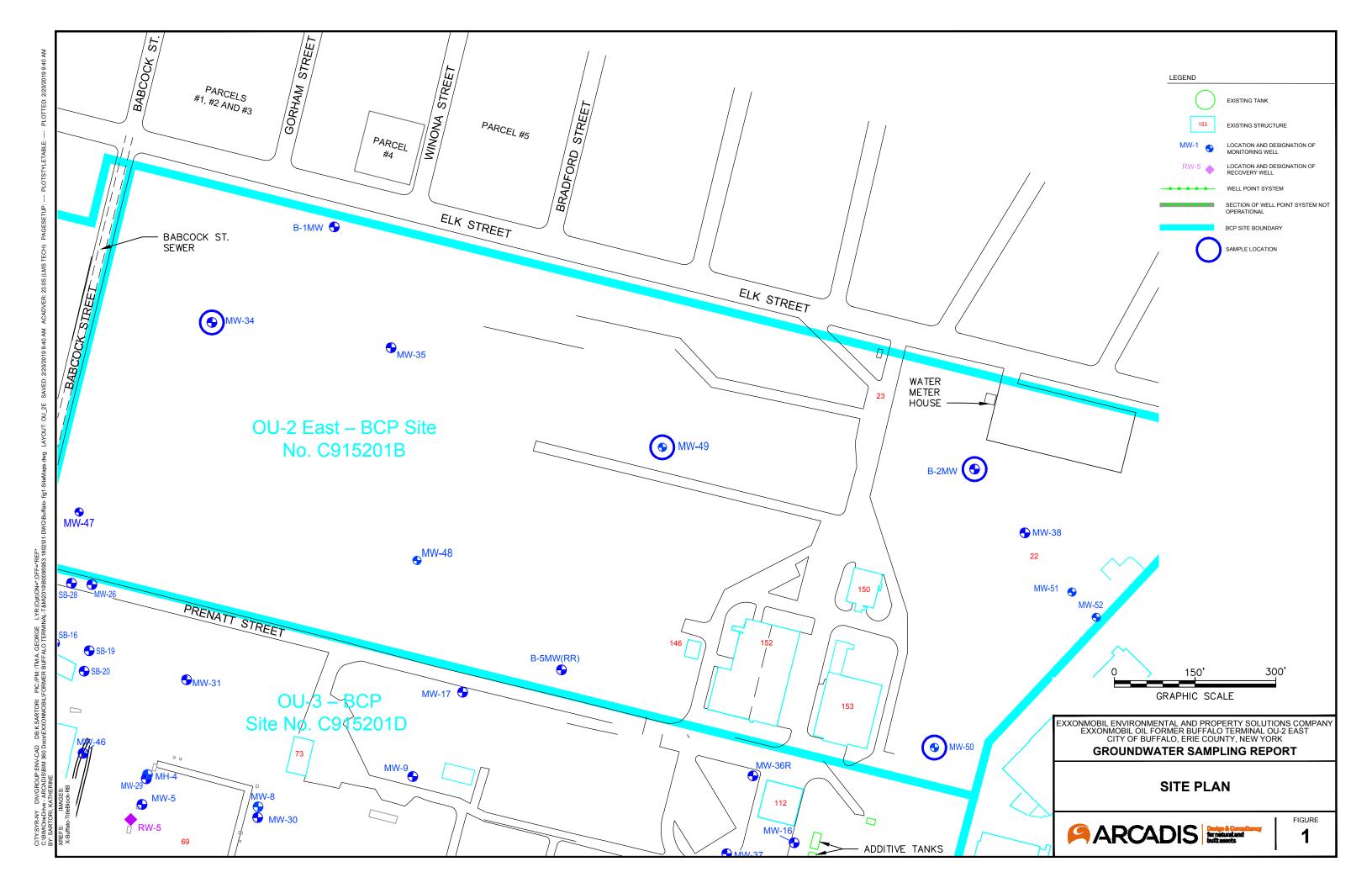
Notes:

1. Bolded sample concentrations denote detected parameters.

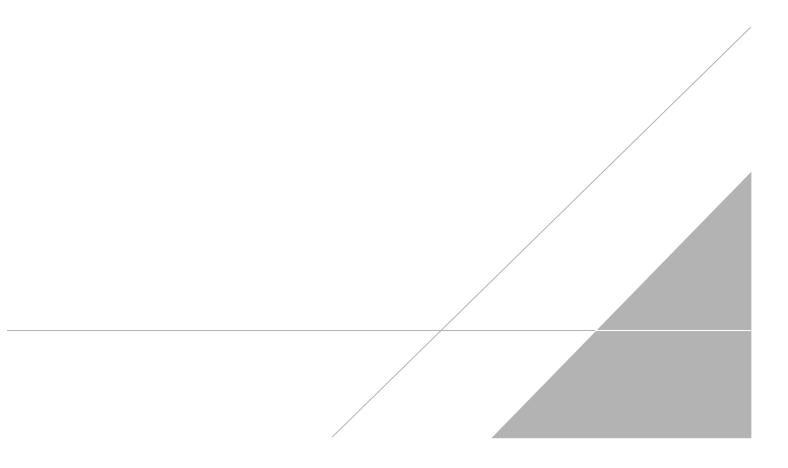
2. ng/L: nanograms per liter.

3. µg/L: micrograms per liter.

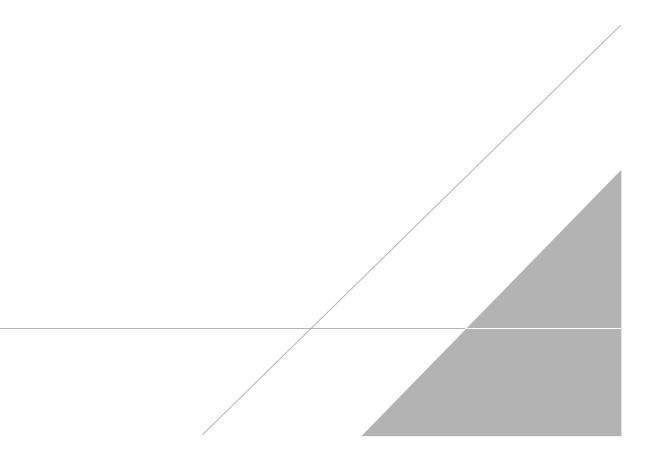

Data Qualifiers:


1. J: Concentration is less than the reporting limit (RL), but greater than or equal to the method detection limit. The reported concentration is an estimate.

2. U: Parameter was not detected in the sample. The reported concentration is the RL.


3. UJ: Parameter was not detected above the reported RL. However, the reported RL is approximate and may or may not represent the actual RL.

Figures



Attachments

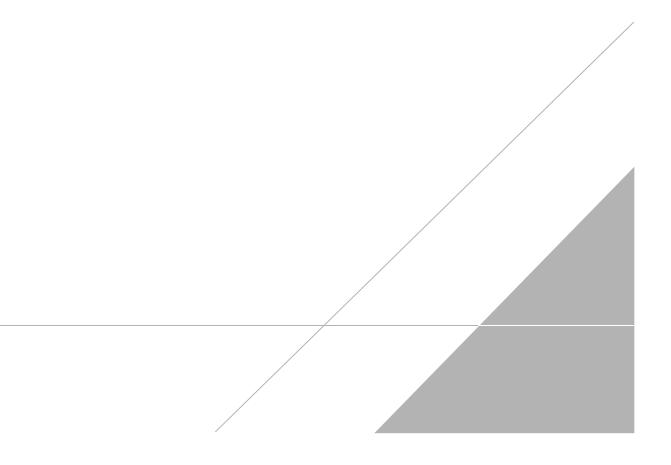
Attachment A

Low-Flow Groundwater Sampling Logs

Division	lad	~~~~~	100			0 714	1			_	Page 1	
		5753 .		-	Well ID	B-2Mh	J	-		Date	6/28/18	1
		ExxonMol	oil Former Buffalo	Terminal							70 over	
Measuring Pt. Description	TIC		Screen Setting (ft-bmp)	4.1-16	,)	Casing Diameter (in.)	2	-:		Well Mate	rial <u>X</u>	_PVC _SS
Static Water Level (ft-bmp)	3,19		Total Depth (ft-bm			Water Colum Gallons in W	in/ ell 11.95	1/1.95	jal .			
MP Elevation		,	Pump Intake (ft-b			Purge Metho	d: Centrifuga	Peristaltic		Sample	Low Flow	
Pump On/Off	/		Volumes Purged	1.5	<u> </u>		Submersit	le		Method	Low Flow	
Sample Time:	Start L	025 025 030	Replicate/ Code No.		/	- PIL	Dev. Oppn	2		Sampled I	J. Orgv	re
Time	Minutes Elapsed	Rate (gpm) (mL/min)	Depth to Water (ft)	Gallons Purged	pН	Cond. (mMhos)	Turbidity (NTU)	Dissolved Oxygen (mg/L)	Temp. (°F)	Redox (mV)	Appe: Color	arance Odor
6950	5	YOU	3.47	0.5	9.33	0.892	11.5	0.17	15.19	-201.2	1 0 0	alahers
0955	10	300	3.58	0.9	9.33	0.880	9.72	0.46	15.69	-206.3	N	н
1000	15	300	3.53	1.3	9.35	6.897	8.18	0.36	16.56	-207.6	13	þ
1005	no	300	3.53	1.7	9,37	0.903	8.52	0.25	16.98	-206.3		"
1010	25	300	3.53	2.1	9.36	0.900	9.51	6.18	17.32	-204,6	U .	0
1015	30	300	3.53	2.5	9.37	0.908	9.70	0.13	17.61	-203.3	11	11 11
1020	35	300	3'23	2.9	9.36	0.906	10.5%	0.09	17.70	-202.5	()	
1025	Sempla	<u>x</u>										
10+2	je											
Constituents PCAS	Sampled				Container	- HOPE			Number 2		Preservat	ive
1.4-Diagon	٩			-	250 ML	1100			2	·	Atre	
				-								
				-			X					
				_			a bat as					
				-			10001 de 1930au					
Well Casing V	olumes			-								
Gallons/Foot	1" = 0.04 1.25" = 0.06		5" = 0.09 = 0.16	2.5" = 0.26 3" = 0.37		5" = 0.50 ' = 0.65	6" = 1.47					
Well Informa				,								
Well Loca		<u>w</u>	-2-West Fas	,t				Locked at		Yes	1 (No
Condition of	-	gued	lunk Marriet 1		>			ked at De		Yes	1	(No)
Well Compl	etion:	F	lush Mount /	Stick			Key	Number 7	o well:			

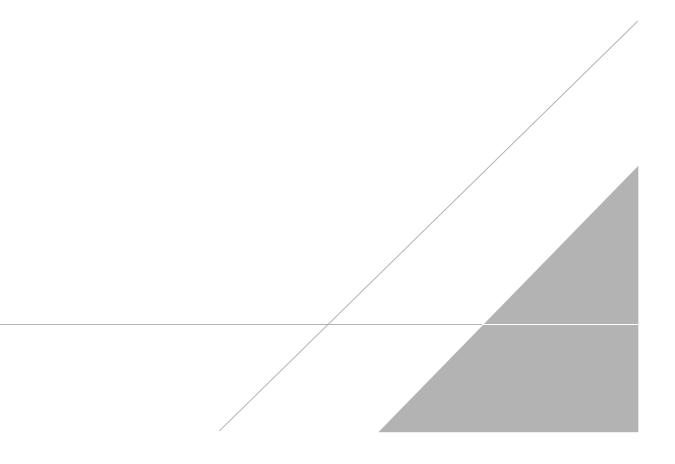
ONCOND		.11 07-1011									Page	1 of /
Project No.	BON	785953	1802		Well ID	MW-31	i	_		Date	6h8	(118
Project Name	/Locatior	ExxonMol	oil Former Buffa	lo Termina						Weather	70	unorcast
Measuring Pt. Description	TIC	·	Screen Setting (ft-bmp)	4-1	٤	Casing Diameter (in.	, 4	_		Well Mate	rial <u>)</u>	
Static Water Level (ft-bmp)	5.3	8	Total Depth (ft-	·bmp) R.(00	Water Colur Gallons in W	vell 7.2	2'/4	.7gal			
MP Elevation			Pump Intake (f	it-bmp) 9		Purge Metho		Peristalti	c	Sample		
Pump On/Off	121	~	Volumes Purge	ed <u>U-75</u>			Centrifuga Submersit Other			Method	Low Flo	W
Sample Time:	Label Start End	1300 1300 1315	Replicate/ Code No.	DUP-0 MW-34	MS/MSP	DUZE)3ppm		Sampled I	J. Or	prette
Time	Minutes Elapsed	(gpm)	Depth to Water	Gallons Purged	pН	Cond. (mMhos)	Turbidity	Dissolved Oxygen	(°C)	Redox	App	pearance
1220	0	(mL/min) 300	(ft) 5.40	0	10.30	(mS/cm)	(NTU) +.0238	(mg/L)	(°F) 17.47	(mV) ~211.0	Color	Odor Slight
1225	5	300	5.42	0.5	9.98	6.821	9.86	1.18	18.55	-173.4	ho	ne
1230	10	300	5.43	1.0	9.94	6.694	11.2	1.65	19.30	-136.5	11	
1235	15	300	5.43	1.5	9.89	0.645	10.0	2.02	19,44	-114.2	11	11
1240	20	300	5.43	20	9.88	0.634	9.31	1.92	19.79	-105.2	11	τι
1245	25	300	5.43	2.5	9,58	0682	9.10	1.64	2020	-100.8	14	
1250	30	300	5,43	3.0	9.88	0.677	8.99	1.59	20.25	-96.6	* .	• 1
	35	30	5.43	3,5	9.88	0.684	8.41	1.58	20.25	-97.3	10	
									•			
Constituents S	Sampled		<i>¥</i>		Container 750 ml	JAAM	Q		Number Z1Z+Y		Preserva	
1,4-Diaca	re				25Unl	1 -			2+2+4	• •	Ne	
								с				
				<u> </u>						-		
										-		
			1.141							-		
										-		
	olumes 1" = 0.04 1.25" = 0.0		5" = 0.09 = 0.16	2.5" = 0.26 3" = 0.37		.5" = 0.50 " = 0.65	6" = 1.47		ŕ			
Well Informat		~ 17	Gal									
Well Locat	33	012.	Bast					Locked at		Yes		NO
Condition of Well Comple		FI	ush Mount	/ Stick	Th		-	ked at De Number 1		Yes	/	(No)
							ney	TAULIDEL	o well.			

	GROUND	VVAID	ER SAM	PLING LUG								D	. 1
	Project No.	BOI	085953.	1802	_	Well ID	MW-49		_		Date	Page /	_ of
	Project Name	/Location	ExxonMol	bil Former Buffalo	Terminal	ĥ.					Weather	75, M	ustyclud
	Measuring Pt. Description	T	C	Screen Setting (ft-b mp)	2-12	5	Casing Diameter (in.	12	_		Well Mate	. /	PVC SS
	Static Water Level (ft-bmp)	3,2	13	Setting (ft-bmp) bj5	•		Water Colun Gallons in W	nn/ Vell 12.02	/ 1.969	n			
	MP Elevation			Pump Intake (ft-t		-	Purge Metho	od:	Peristaltic	o	Sample		
	Pump On/Off	1340	1515	Volumes Purgeo	3.1			Centrifuga Submersit			Method	Low Flow	
	Sample Time:	Label Start End	1510 1510 1515	Replicate/ Code No.	/	/	-	Other			Sampled I	oy A. Gee J. Pujr	ne ette
	Time	Minutes Elapsed		Depth to Water (ft)	Gallons Purged	pН	Cond. (mMhos) (mS/cm)	Turbidity	Dissolved Oxygen	Temp.	Redox	Appea	
	1345	5	300	5.11	6.4	9.57	1.089	(NTU) 8.46	(mg/L)	(°F) 17.74	(mV) 7225.3	Color	Odor u darless
	1350	10	200	6.14	0.75	9.45	1.129	5.54	0.75	18.66	-274.8		11
	1355	15	200	6.89	i.0	9.49	1.142	9,05	0.15	19.07	-272.3	11	u
	1400	20	100	6.97	1.15	9.53	1.153	11.2	0.16	19.84	-228.6	n	U
	1405	25	100	7.06	1.3	9.51	1.109	10.5	0.08	20.02	- 230.6	()	11
	1410	30	100	7.09	1.45	9.50	1.167	10.7	0.07	19.82	-230,8	11	n
	14.5	35	100	7,17	1.6	9.52	1.154	10.2	0.05	19.56	-7285	1.	V.
	1420	40	400	7.40	2.0	9.49	1.121	10.6	0.09	19.55	-224,1	11	u
	1425	45	100	4.51	2.15	9.50	1.150	10.2	0.06	19.50	-223.7	1)),
	1430	50	100	7.69	7.3	9.52	1.101	9.70	6.05	16.64	-721.1	()	2)
	1435	55	400	8.71	2.7	9.43	1.029	9.50	0.00	15.35	-204.6	.1	u)
¥	1440	60	100	8.84	2.85	9.42	1.031	10.1	0.95	16.44	-203.4	11	1)
7	1445	65 70	500	9.40	4	9.54	1.005	83.2	2.02	13.92	-703.2	1)	1
	1450	75	500	jo.13	5	9.41	1.008	20.1	0.06		-784.1		11
	1500	80	500	10.48	6	9.58	1.013	9.07	0.00	15.03	-208.1	11	(7
et !	1510 500		1.300		V	-115 0	1.012	1.01	0.01	19:01	110.0		
	Constituents	Sampleo	d			Container	1			Number		Preservati	ve
÷	PFAS				-	250ml	-HUPE			2		None	
-	1, 4-Diviene	٤		<u></u>		Isoml	ambo			L		Nore	
											1	-	
-									o				
++	3 well vol	110.000	co. the							6			
+		1	Will ater	not to purge w	elldrig	think st	Julpedia 0	wint.					
			1.	5" = 0.09 = 0.16	2.5" = 0.26 3" = 0.37	3.	5" = 0.50 = 0.65	6" = 1.47				47	
	Well Informat	tion											
ſ	Well Locat	tion:	602	Fast				Well	Locked at	Arrival:	Yes	1/	No
	Condition of	Well:	goul					Well Loci			Yes	, 0	No
L	Well Comple	etion:	FI	ush Mount	Stick	Up		Key	Number 7	o Well:			



and a state of the

ONCOND	VV/~IL	-11 0741911	FLING LOG								Page /	of
Project No.	BUU	85953.1	402	_	Well ID	MW-50	>	_		Date	6/28/19	8
Project Name	/Locatior		bil Former Buffalo	Terminal	I					Weather	65,00	reast
Measuring Pt. Description	ti	e	Screen Setting (ft-b mp) bij s	2.5-	12	Casing Diameter (in.	2	_		Well Mat	erial	_PVC _SS
Static Water Level (ft-bmp)	39	50	Total Depth (ft-br			Water Colun Gallons in W	nn/ /ell 11.45	1.90	sal			
MP Elevation	·		Pump Intake (ft-t	omp) 10		Purge Metho	od:	Peristaltic	,	Sample		
Pump On/Off	083	5/0n5	Volumes Purgeo	1_0.4	8		Centrifuga Submersit Other	ll ble		Method	Low Flow	
Sample Time:		010	so-daess of the state of the second		/	PIO-					A (m	0.5
	Start End	0920	Code No.		-		0.0pm			Sampled	by A. Geo. J. Dugs	rette
Time	Minutes Elapsed		Depth to Water	Gallons	pН	Cond.	Turbidity	Dissolved	Temp.	Redox	Appe	arance
		(gpm)	(ft)	Purged		(mMhos) (mS/cm)	(NTU)	Oxygen (mg/L)	(°F)	(mV)	Color	Odor
0840	5	350	3.74	0.45	6.62	0.678	59.8	2.29	17.89	150.3	10/0.455	dorlass.
0845	10	350	3.87	0.9	7.04	0.689	31.0	1.29	18.10	131,0	k.	**
0850	15	350	3.92	1.35	6.74	0.675	20.3	6.82	17.93	126.8	11	н
0900		350	3.93	1.90	6.67	0.663	M.3	6.77	17.88	124.9		18
	25	350	3.98	1.2	6.74	0.650	13.4	0.92	17.69	118.8	n n	N N
0905	35	350	3,98	1.15	670	0.639	11.5	0.66	17.53	119.3		-1
0915	40	350	3.98	1.6	6.80	0.638	11.0	0.56	17.37	115.6	84	11
0920		impled		1.0	0,00	0.050	11.0	011	17.09	10.7		
1		pag					1				1	
									-			
							1		0			
							56					
Constituents S	Sampleo				Container 750 M	1 1 1			Number		Preservat	ive
14 - Dioxan	0		and the second second	-		Amber		•	2		None	
DIVAN					250 ml	anneo			-	·	Volle	1.8
								с -		÷		
								-		f		
										(
				•				8 6 <u>.</u>		ł		
								-		4		
Well Casing V	olumoa			-				-				
Gallons/Foot	1" = 0.04		5" = 0.09	2.5" = 0.26			6" = 1.47					
Well Informat	1.25" = 0.0	ю 2"	= 0.16	3" = 0.37	4"	= 0.65						
Well Locat		00-2	F				Mall	ookod at	Arrivol	Ver		
Condition of		00-0	<u> </u>					Locked at ked at Dep		Yes Yes	(NO
Well Comple		FI	ush Mount /	Stick	Up	1.1.1. (A)		Number T		165	1	
				\bigcirc	,							


Attachment B

Laboratory Data Report

Attachment C

Data Usability Summary Report

ExxonMobil-Buffalo Terminal

DATA USABILTY SUMMARY REPORT (DUSR)

Buffalo, New York

Per/polyfluorinated Alkyl Substances (PFASs) and

Semi-volatile (1,4-Dioxane) Analyses

SDG #BUF06

Analyses Performed By: Eurofins-Lancaster Laboratories Lancaster, Pennsylvania

Report #30934R Review Level: Tier III Project: B0085953.1802.00009

SUMMARY

This data quality assessment summarizes the review of Sample Delivery Group (SDG) #BUF06 for samples collected in association with the ExxonMobil-Buffalo Terminal, Buffalo, NY Site. The review was conducted as a Tier III evaluation and included review of data package completeness. Only analytical data associated with constituents of concern were reviewed for this validation. Field documentation was not included in this review. Included with this assessment are the validation annotated sample result sheets, and chain of custody. Analyses were performed on the following samples:

000				Sample	Parent	Analysis	
SDG	Sample ID	Lab ID	Matrix	Collection Date	Sample	PFASs	svoc
	MW-50	9683955	Groundwater	06/28/2018		Х	х
	B-2MW	9683956	Groundwater	06/28/2018		Х	х
BUERO	MW-34	9683957	Groundwater	06/28/2018		Х	х
BUF06	MW-49	9683960	Groundwater	06/28/2018		Х	х
	DUP-062818-OU2E	9683961	Groundwater	06/28/2018	MW-34	Х	х
	FB-062818-OU2E	9683962	Groundwater	06/28/2018		Х	

Note:

1. The matrix spike/matrix spike duplicate (MS/MSD) analysis was performed on sample location MW-34 for PFAs and 1,4-Dioxane analyses.

ANALYTICAL DATA PACKAGE DOCUMENTATION

The table below is the evaluation of the data package completeness.

		Rep	orted	Performance Acceptable		Not	
	Items Reviewed	No	Yes	No	Yes	Required	
1.	Sample receipt condition		Х		X		
2.	Requested analyses and sample results		Х		Х		
3.	Master tracking list		Х		Х		
4.	Methods of analysis		Х		Х		
5.	Reporting limits		Х		Х		
6.	Sample collection date		Х		Х		
7.	Laboratory sample received date		Х		Х		
8.	Sample preservation verification (as applicable)		Х		Х		
9.	Sample preparation/extraction/analysis dates		Х		Х		
10.	Fully executed Chain-of-Custody (COC) form		Х		Х		
11.	Narrative summary of QA or sample problems provided		Х		Х		
12.	Data Package Completeness and Compliance		Х		Х		

Note:

QA - Quality Assurance

ORGANIC ANALYSIS INTRODUCTION

Analyses were performed according to United States Environmental Protection Agency (USEPA) Methods: 537 Modified (based on the laboratory standard operating procedure (SOP) "Polyfluorinated Alkyl Substances (PFAs) in Aqueous Samples by Method 537, Revision 1.1 Modified Using LC/MS/MS" (Doc #:T-PFAS-WI14355), Version 6, Rev. Date 03/01/18); and, Semi-volatile analysis by 8270D Selected Ion Monitoring (SIM). Data were reviewed in accordance with USEPA National Functional Guidelines for Organic Superfund Methods Data Review, EPA 540-R-2017-002, January 2017 (with reference to the historical USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review, OSWER 9240.1-05A-P, October 1999, as appropriate) and Department of Defense (DoD) Quality Systems Manual (QSM) 5.1.

The data review process is an evaluation of data on a technical basis rather than a determination of contract compliance. As such, the standards against which the data are being weighed may differ from those specified in the analytical method. It is assumed that the data package represents the best efforts of the laboratory and had already been subjected to adequate and sufficient quality review prior to submission.

During the review process, laboratory qualified and unqualified data are verified against the supporting documentation. Based on this evaluation, qualifier codes may be added, deleted, or modified by the data reviewer. Results are qualified with the following codes in accordance with USEPA National Functional Guidelines:

- Concentration (C) Qualifiers
 - U The compound was analyzed for but not detected. The associated value is the compound quantitation limit.
 - B The compound has been found in the sample as well as its associated blank, its presence in the sample may be suspect.
- Quantitation (Q) Qualifiers
 - E The compound was quantitated above the calibration range.
 - D Concentration is based on a diluted sample analysis.
- Validation Qualifiers
 - J The compound was positively identified; however, the associated numerical value is an estimated concentration only.
 - UJ The compound was not detected above the reported sample quantitation limit. However, the reported limit is approximate and may or may not represent the actual limit of quantitation.
 - JN The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification. The associated numerical value is an estimated concentration only.
 - UB Compound is considered non-detect at the listed value due to associated blank contamination.
 - N The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification.
 - R The sample results are rejected.

Two facts should be noted by all data users. First, the "R" flag means that the associated value is unusable. In other words, due to significant quality control (QC) problems, the analysis is invalid and provides no information as to whether the compound is present or not. "R" values should not appear on data tables because they cannot be relied upon, even as a last resort. The second fact to keep in mind is that no compound concentration, even if it has passed all QC tests, is guaranteed to be accurate. Strict QC serves to increase confidence in data but any value potentially contains error.

PER- and POLYFLUORINATED ALKYL SUBSTANCES (PFASs) ANALYSES

1. Holding Times

The specified holding times for the following methods are presented in the following table.

Method	Matrix	Holding Time	Preservation
EPA 537 Modified	Water	14 days from collection to extraction and28 days from extraction to analysis	Cool to <6 °C; Extracts must be allowed to come to room temperature until analysis.

All samples were analyzed within the specified holding time criteria.

2. Blank Contamination

Quality assurance (QA) blanks (i.e., method and rinse blanks) are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Rinse blanks measure contamination of samples during field operations.

A blank action level (BAL) of five times the concentration of a detected compound in an associated blank (common laboratory contaminant compounds are calculated at ten times) is calculated for QA blanks containing concentrations greater than the method detection limit (MDL). The BAL is compared to the associated sample results to determine the appropriate qualification of the sample results, if needed.

Compounds were not detected above the MDL in the associated blanks; therefore, detected sample results were not associated with blank contamination.

3. Calibration

Satisfactory instrument calibration is established to ensure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument daily performance is satisfactory.

3.1 Initial Calibration

The method specifies the initial calibration standards exhibit a relative standard deviation (%RSD) less than the control limit (20%) or correlation coefficient greater than or equal to 0.995 for each target compound. All calibration points must be within a percent difference (%D) of \pm 70%-130% of its true value. The lowest level calibration point for each compound must be within a %D of \pm 50%-150% of its true value. A technical review of the data applies limits to all compounds with no exceptions.

3.2 Continuing Calibration

All target compounds associated with the continuing calibration verification (CCV) standard must exhibit a percent difference (%D) less than the control limit (30%).

All compounds associated with the calibrations were within the specified control limits.

4. Extracted Internal Standard (EIS)

Labeled standards must be added to all field samples and QC samples prior to extraction. For aqueous samples prepared by serial dilution instead of solid phase extraction (SPE), they must be added to samples prior to analysis. EIS recoveries must be within DoD QSM 5.1 specified limits of 50% to150%. The DOD guidance is currently the only guidance available for the evaluation of EIS.

Sample locations associated with EIS exhibiting recoveries outside of the control limits are presented in the following table.

Sample Locations	Extracted Internal Standard	Associated PFASs Compounds	CAS #	Recovery
MW-50				
B-2MW	13C3-PFBS	Perfluorobutanesulfonate (PFBS)	375-73-5	>UL
MW-49				
B-2MW	1202 6/2 FTS	612 fluorotolomoroulfonato (612 ETC)	27640 07 2	. 1 11
MW49	13C2-6:2-FTS	6:2 fluorotelomersulfonate (6:2-FTS)	27619-97-2	>UL

```
Notes:
```

UL = Upper control limit

LL = Lower control limit

The criteria used to evaluate the EIS recoveries are presented in the following table. In the case of an EIS deviation, the sample results associated with the EIS are qualified as documented in the table below.

Control Limit	Sample Result	Qualification
4-202	Non-detect	
> 150%	Detect	
	Non-detect	No Action
< 50% but > 25%	Detect	
	Non-detect	R
< 25%	Detect	J

As part of the isotope dilution analysis, the EIS are used for quantitation of the sample results, therefore the calculation of sample concentrations is adjusted for EIS recoveries. The data will not be qualified unless EIS recoveries are less than 25%.

5. Internal Standard Performance

Internal standards must be added to the aliquot of sample dilutions, QC samples, and standards just prior to analysis. Peak areas must be within -50% to +50% of the area measured in the ICAL midpoint standard. When an ICAL is not performed, the peak areas must be within 50% to 150% of the peak area measured in daily CCV.

Sample locations associated with internal standards exhibiting responses outside of the control limits are presented in the following table.

Sample Locations	Internal Standard	Associated PFASs compounds	CAS #	Response
MW-50		Perfluorobutanoic acid (PFBA)	375-22-4	
MW-34	13C3-PFBA	Perfluoropentanoic acid (PFPeA)	2706-90-3	< LL but > 25%
DUP-062818-OU2E		Perfluorobutanesulfonate (PFBS)	375-73-5	
		Perfluorobutanoic acid (PFBA)	375-22-4	
B-2MW	13C3-PFBA	Perfluoropentanoic acid (PFPeA)	2706-90-3	< 25%
MW-49		Perfluorobutanesulfonate (PFBS)	375-73-5	

Notes:

UL = Upper limit

LL = Lower limit

The criteria used to evaluate the internal standard responses are presented in the following table. In the case of an internal standard deviation, the compounds quantitated under the deviant internal standard are qualified as documented in the table below.

Control Limit	Sample Result	Qualification
4-004	Non-detect	
> 150%	Detect	No Action
	Non-detect	
< 50% but > 25%	Detect	No Action
0501	Non-detect	J
< 25%	Detect	J

Note: The internal standard responses have less of an impact on the reported concentration of compounds associated with sample results since this method employs the use of EIS. Therefore, the data less than the criteria have a been qualified as estimated.

6. Matrix Spike/Matrix Spike Duplicate (MS/MSD) Analysis

MS/MSD data are used to assess the precision and accuracy of the analytical method. The compounds used to perform the MS/MSD analysis must exhibit a percent recovery within 70-130% or within 50-150% at the low-level fortified amount (near the RL). The relative percent difference (RPD) between the MS/MSD recoveries must exhibit an RPD within 30%.

Note: The MS/MSD recovery control limits do not apply for MS/MSD performed on sample locations where the compound concentration detected in the parent sample exceeds the MS/MSD concentration by a factor of four or greater.

Sample locations associated with the MS/MSD exhibiting recoveries outside of the control limits are presented in the following table.

Sample Locations	Compound	CAS #	MS Recovery	MSD Recovery
	Perfluorobutanoic acid (PFBA)	375-22-4	>UL	AC
MW-34	Perfluoropentanoic acid (PFPeA)	2706-90-3	AC	>UL
Note:				

AC Acceptable

The criteria used to evaluate the MS/MSD recoveries are presented in the following table. In the case of an MS/MSD deviation, the sample results are qualified as documented in the table below.

Control Limit	Sample Result	Qualification	
	Non-detect	No Action	
> the upper control limit (UL)	Detect	J	
	Non-detect	UJ	
< the lower control limit (LL) but > 10%	Detect	J	
	Non-detect	R	
< 10%	Detect	J	
Parent sample concentration > four times the MS/MSD spiking	Detect		
solution concentration.	Non-detect	No Action	

7. Laboratory Control Sample (LCS) Analysis

The LCS analysis is used to assess the precision and accuracy of the analytical method independent of matrix interferences. The compounds associated with the LCS analysis must exhibit a percent recovery within the laboratory-established acceptance limits.

All compounds associated with the LCS analysis exhibited recoveries within the control limits.

8. Field Duplicate Analysis

Field duplicate analysis is used to assess the overall precision of the field sampling procedures and analytical method. A control limit of 30% for water matrices is applied to the RPD between the parent sample and the field duplicate. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of two times the RL is applied for water matrices.

Results for duplicate samples are summarized in the following table.

Sample ID/ Duplicate ID	Compound	CAS #	Sample Result	Duplicate Result	RPD
	Perfluorobutanesulfonate (PFBS)	375-73-5	1.4 J	0.77 J	AC
MW-34/ DUP-062818-OU2E	Perfluoroheptanesulfonate (PFHpS)	375-92-8	1.1 J	1.0 J	AC
	Perfluoroheptanoic acid (PFHpA)	375-85-9	2.0	1.8	AC

Sample ID/ Duplicate ID	Compound	CAS #	Sample Result	Duplicate Result	RPD
	Perfluorohexanesulfonate (PFHxS)	355-46-4	17	18	5.7%
	Perfluorohexanoic acid (PFHxA)	307-24-4	1.6 J	2.4 J	AC
	Perfluorononanoic acid (PFNA)	375-95-1	3.6	3.4	AC
	Perfluoro-octanesulfonate (PFOS)	1763-23-1	65	61	6.3%
	Perfluorooctanoic acid (PFOA)	335-67-1	3.7	3.3	AC

Notes:

AC Acceptable

The calculated RPDs between the parent sample and field duplicate were acceptable.

9. Compound Identification

Compounds are identified on the LC/MS by using the analytes relative retention time and ion spectra.

10. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

DATA VALIDATION CHECKLIST FOR PFASs

PFASs: EPA 537 Modified	Repo	orted		mance ptable	Not
	No	Yes	No	Yes	Required
Liquid Chromatography/Tandem Mass Spect	rometry (L	C/MS/MS)			
Tier II Validation					
Holding times		X		X	
Reporting limits (units)		x		x	
Blanks					
A. Method blanks		X		X	
B. Instrument blanks					х
C. Field blanks		X		X	
Laboratory Control Sample (LCS) %R		x		x	
Laboratory Control Sample Duplicate(LCSD) %R					Х
LCS/LCSD Precision (RPD)					х
Matrix Spike (MS) %R		x	х		
Matrix Spike Duplicate(MSD) %R		x	х		
MS/MSD Precision (RPD)		x		x	
Field/Lab Duplicate (RPD)		x		X	
Extracted Internal Standards (EIS) %R		x	x		
Dilution Factor		x		x	
Moisture Content					х
Tier III Validation					
System performance and column resolution		x		x	
Initial calibration %RSDs (or %Ds)		x		X	
Continuing calibration %Ds		x		x	
Internal standard (injected)		x	х		
Compound identification and quantitation					
A. Reconstructed ion chromatograms		Х		Х	
B. Quantitation Reports		Х		Х	
C. RT of sample compounds within the established RT windows		х		х	
D. Quantitation transcriptions/calculations		Х		Х	
E. Reporting limits adjusted to reflect sample dilutions		x		x	

Notes:	
%RSD	Relative standard deviation
%R	Percent recovery
RPD	Relative percent difference
%D	Percent difference

SEMIVOLATILE ORGANIC COMPOUND (SVOC) ANALYSES

1. Holding Times

The specified holding times for the following methods are presented in the following table.

Method	Matrix	Holding Time	Preservation
SW-846 8270D- SIM	Water	7 days from collection to extraction and 40 days from extraction to analysis	Cool to <6 °C

All samples were analyzed within the specified holding time criteria.

2. Blank Contamination

Quality assurance (QA) blanks (i.e., method and rinse blanks) are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Rinse blanks measure contamination of samples during field operations.

A blank action level (BAL) of five times the concentration of a detected compound in an associated blank (common laboratory contaminant compounds are calculated at ten times) is calculated for QA blanks containing concentrations greater than the method detection limit (MDL). The BAL is compared to the associated sample results to determine the appropriate qualification of the sample results, if needed.

Compounds were detected in the associated QA blanks; however, the associated sample results were greater than the BAL and/or were non-detect. No qualification of the sample results was required.

3. Mass Spectrometer Tuning

Mass spectrometer performance was acceptable, and all analyses were performed within a 12-hour tune clock.

System performance and column resolution were acceptable.

4. Calibration

Satisfactory instrument calibration is established to ensure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument daily performance is satisfactory.

4.1 Initial Calibration

The method specifies percent relative standard deviation (%RSD) and relative response factor (RRF) limits for select compounds only. A technical review of the data applies limits to all compounds with no exceptions.

All target compounds associated with the initial calibration standards must exhibit a %RSD less than the control limit (20%) or a correlation coefficient greater than 0.99 and an RRF value greater than control limit (0.05).

4.2 Continuing Calibration

All target compounds associated with the continuing calibration standard must exhibit a percent difference (%D) less than the control limit (20%) and RRF value greater than control limit (0.05).

All compounds associated with the calibrations were within the specified control limits.

5. Surrogates/System Monitoring Compounds

All samples to be analyzed for organic compounds are spiked with surrogate compounds prior to sample preparation to evaluate overall laboratory performance and efficiency of the analytical technique. SVOC analysis requires that two of the three SVOC surrogate compounds within each fraction exhibit recoveries within the laboratory-established acceptance limits.

All surrogate recoveries were within control limits.

6. Internal Standard Performance

Internal standard performance criteria insure that the GC/MS sensitivity and response are stable during every sample analysis. The criteria require the internal standard compounds associated with the SVOC exhibit area counts that are not greater than two times (+100%) or less than one-half (-50%) of the area counts of the associated continuing calibration standard.

All internal standard responses were within control limits.

7. Matrix Spike/Matrix Spike Duplicate (MS/MSD) Analysis

MS/MSD data are used to assess the precision and accuracy of the analytical method. The compounds used to perform the MS/MSD analysis must exhibit a percent recovery within the laboratory-established acceptance limits. The relative percent difference (RPD) between the MS/MSD recoveries must exhibit an RPD within the laboratory-established acceptance limits.

Note: The MS/MSD recovery control limits do not apply for MS/MSD performed on sample locations where the compound concentration detected in the parent sample exceeds the MS/MSD concentration by a factor of four or greater.

The MS/MSD exhibited acceptable recoveries and RPD between the MS/MSD recoveries.

8. Laboratory Control Sample (LCS) Analysis

The LCS analysis is used to assess the precision and accuracy of the analytical method independent of matrix interferences. The compounds associated with the LCS analysis must exhibit a percent recovery within the laboratory-established acceptance limits.

All compounds associated with the LCS analysis exhibited recoveries within the control limits.

9. Field Duplicate Analysis

Field duplicate analysis is used to assess the overall precision of the field sampling procedures and analytical method. A control limit of 30% for water matrices is applied to the RPD between the parent sample and the field duplicate. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of two times the RL is applied for water matrices.

Results for duplicate samples are summarized in the following table.

Sample ID/Duplicate ID	Compound	Sample Result	Duplicate Result	RPD
MW-34/				
DUP-062818-OU2E	1,4-Dioxane	U	U	AC
Notes:			·	

AC Acceptable

The calculated RPDs between the parent sample and field duplicate were acceptable.

10. Compound Identification

Compounds are identified on the GC/MS by using the analytes relative retention time and ion spectra.

All identified compounds met the specified criteria.

11. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

DATA VALIDATION CHECKLIST FOR SVOCs

SVOCs: SW-846 8270D SIM	Rep	orted		Performance Acceptable		
	No	Yes	No	Yes	Required	
GAS CHROMATOGRAPHY/MASS SPECTROM	IETRY (GC	/MS)				
Tier II Validation						
Holding times		х		Х		
Reporting limits (units)		х		Х		
Blanks						
A. Method blanks		х	x			
B. Equipment blanks					Х	
Laboratory Control Sample (LCS) %R		Х		Х		
Laboratory Control Sample Duplicate (LCSD) %R					Х	
LCS/LCSD Precision (RPD)					х	
Matrix Spike (MS) %R		х		х		
Matrix Spike Duplicate (MSD) %R		X		х		
MS/MSD Precision (RPD)		X		х		
Field/Lab Duplicate (RPD)		х		х		
Surrogate Spike Recoveries		X		х		
Dilution Factor		X		х		
Moisture Content					х	
Tier III Validation	·	·				
System performance and column resolution		X		X		
Initial calibration %RSDs		X		х		
Continuing calibration RRFs		X		Х		
Continuing calibration %Ds		Х		Х		
Instrument tune and performance check		Х		Х		
Ion abundance criteria for each instrument used		Х		Х		
Internal standard		X		Х		
Compound identification and quantitation						
A. Reconstructed ion chromatograms		X		Х		
B. Quantitation Reports		X		Х		
C. RT of sample compounds within the established RT windows		х		X		

Repo	rted	Perforn Accep		Not			
No	Yes	No	Yes	Required			
GAS CHROMATOGRAPHY/MASS SPECTROMETRY (GC/MS)							
	Х		Х				
	х		х				
	No	ETRY (GC/MS) X	Reported Acception No Yes No ETRY (GC/MS) X X	Reported Acceptable No Yes No Yes ETRY (GC/MS) X X			

Notes:

%RSD Relative standard deviation

%R Percent recovery

RPD Relative percent difference

%D Percent difference

SAMPLE COMPLIANCE REPORT

SAMPLE COMPLIANCE REPORT

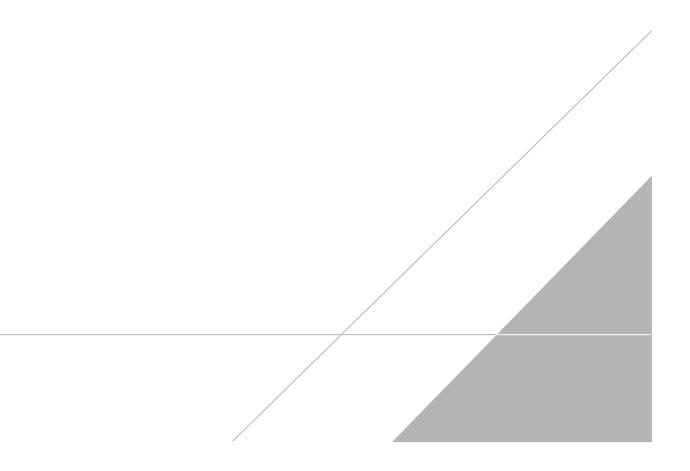
Sample						C	omplian	су¹			
Delivery Group (SDG)	Sampling Date	Protocol	Sample ID	Matrix	voc	SVOC	РСВ	МЕТ	PFASs	Noncompliance PFAs-Internal standard response PFAs-Internal standard response	
	06/28/2018		MW-50	Groundwater		Yes			Yes		
	06/28/2018		B-2MW	Groundwater		Yes			No	PFAs-Internal standard response	
	06/28/2018	EPA 537 Mod and	MW-34	Groundwater		Yes			Yes		
BUF06	06/28/2018	SW-846	MW-49	Groundwater		Yes			No	PFAs-Internal standard response	
	06/28/2018	8270D-SIM	DUP-062818-OU2E	Groundwater		Yes			Yes		
	06/28/2018		FB-062818-OU2E	Groundwater					Yes		

Note:

1 Samples which are compliant with no added validation qualifiers are listed as "yes". Samples which are non-compliant or which have added qualifiers are listed as "no". A "no" designation does not necessarily indicate that the data have been rejected or are otherwise unusable.

VALIDATION PERFORMED BY: Lisa Horton

SIGNATURE:


Lion Hoston

DATE: October 29, 2018

PEER REVIEW: Dennis Capria

DATE: November 14, 2018

CHAIN OF CUSTODY CORRECTED SAMPLE ANALYSIS DATA SHEETS

Environmental Analysis Request/Chain of Custody

Acct #

69.9	eu	rofi	ns

Lancaster Laboratories

For Eurofins Lancaster Laboratories Environmental use only 43388 Group # 1960909 Sample # 9683655-962 COC # 552234

Environmental								ampic					C/ 1 20							
Client Informa			Matrix					Analysis Requested				F	For Lab Use Only							
Client: ∧ ∖,	Acct. #:							1		Pr	eser	vation	and Fi	Itratio	n Coc	les	F	SC:		
Arcadis						11]		s	CR#:		
Project Name/#:	PWSID #:				Tissue	Ground Surface				. <							Γ	Prese	rvatio	n Codes
Pormer Temini, Butalo	P.O. #:					ntí				SIM								H=HCI		T=Thiosulfate
Mile Beroit	r .0. #.					ျပ က		۲	51	S								N=HNO ₃		B=NaOH
	Quote #;				ŧ			e u	534 vi.1	antry								S =H₂SO₄ F=Field Filt		P=H₃PO₄ D=Other
Sampler: A. George					Sediment	<u>e</u> 0		Containers	100		•						ŀ		Rema	
State where samples were collected: For Compliance	e:			4	ļ.	Potable NPDES		ğ	7								F	<u>w-r</u>		and the second
N-ew Jork Yes	No □			site	Ň	L A H		5	Nuthal	, je										
Sample Identification	Coll	ected	Q	Composite		Water	Other:	Total #	E.	1-Dixon								PFAS in C 4-Diuxen		
· · · · · · · · · · · · · · · · · · ·	Date	Time	Grab	S	Soil	Na	0 th O	ŏ	Æ	5)			
MW-50	6/28/18		X			X		Ч	2	2			1				1			
B-ZMW	and the second	1025	ÍΧ					4	2	2										
MW-34	6/28/18	1306	\mathbf{v}					Ч	2	2										
MW-34 MS/MSD	6/18/18		$\hat{\nabla}$	1010 <u>-</u> 2012-000		$\overline{\langle}$		8	u U	ÿ				-						
MW-49	6/28/18		$\hat{\mathbf{x}}$			$1 \odot$		U	2	2		┝━─┢		-						
DUP-067218-0UZE	6/28/18		$\hat{\mathbf{v}}$			$\left \begin{array}{c} \\ \\ \end{array} \right $		4 U	7	1	****							en e		
FB-062818-0UZE		1545	X					2		6										
	- 40010	1313							2											
			1					1	····			<u> </u>								
								I	-	┝──┤									NAMES AND ADDRESS OF A DOC	
Turnaround Time (TAT) Request	ed (please circ		Relinal	ished	by			l		Date		Time	Rec	eived by		1		IC	Date	Time
Standard)	Rush	.0)	14	D	C	,					slig	1630		,						
(Rush TAT is subject to laboratory approval and surch	arge.)		Relinqu	ished	by			******	201 112012-000	Date		Time		eived by		Carlo Horizona Carlo		C)ate	Time
											- Contraction of the second se	()								
Date results are needed:	····	-	Relinqu	ished l	by					Date		Time	Rec	eived by		-	Same and the second	C	Date	Time
E-mail address: Michael, benoit Ocr	cadis.com		Relinqu	lished I	by					Date	5110	Time	Rec	eived by					Date	Time
Data Package Options (circle		-					and the second second	-						Superior State						
Type I (EPA Level 3	VI (Raw Data	Only	Relinqu	ished I	by			*****		Date	*********	Time	Rec	eived by	2.0	14°	~		ate	Time
Equivalent/non-CLP)	vi (isaw Dala	Ully)													M	N	<u>کے</u>	<u> </u>	7 <u>129</u>	18 093
Type III (Reduced non-CLP) NJ Dł	QP TX T	RRP-13		ŀ	fvee	EDD Req			(és)	No			8	inquisi JPS				al Carrier. Other		
	~ -					ecific QC (I) (au	Ne	es)	 No							810	
NYSDEC Category A or B MA M	CP CT F	KCP			•	ate QC sample			• •	No. of Concession, Name	COLOR STREET			Te	mpera	ature up	pon re	eceipt <u></u>	<u>~</u> [7]	

Eurofins Lancaster Laboratories Environmental, LLC • 2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300

The white copy should accompany samples to Eurofin Blancafer Bacce 23 Eofin 359 Intal. The yellow copy should be retained by the client.

Page 18 of 21

🔅 eurofins

Data Qualifiers

Qualifier	Definition
С	Result confirmed by reanalysis
D1	Indicates for dual column analyses that the result is reported from column 1
D2	Indicates for dual column analyses that the result is reported from column 2

Lancaster Laboratories

Environmental

D2	Indicates for dual column analyses that the result is reported from column 2
E	Concentration exceeds the calibration range
K1	Initial Calibration Blank is above the QC limit and the sample result is ND
K2	Continuing Calibration Blank is above the QC limit and the sample result is ND
K3	Initial Calibration Verification is above the QC limit and the sample result is ND
K4	Continuing Calibration Verification is above the QC limit and the sample result is ND
J (or G, I, X)	Estimated value >= the Method Detection Limit (MDL or DL) and < the Limit of Quantitation (LOQ or RL)
Р	Concentration difference between the primary and confirmation column >40%. The lower result is reported.
P^	Concentration difference between the primary and confirmation column > 40%. The higher result is reported.
U	Analyte was not detected at the value indicated
V	Concentration difference between the primary and confirmation column >100%. The reporting limit is raised
	due to this disparity and evident interference.
W	The dissolved oxygen uptake for the unseeded blank is greater than 0.20 mg/L.
Z	Laboratory Defined - see analysis report

Additional Organic and Inorganic CLP qualifiers may be used with Form 1 reports as defined by the CLP methods. Qualifiers specific to Dioxin/Furans and PCB Congeners are detailed on the individual Analysis Report.

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Analysis Report

REVISED

							REVISED	
Sample Description: MW-50 Grab Groundwater 635 Elk St Buffalo, NY 31010 - Buffalo, NY							WW 9683955 1960908 ar	
Projec	t Name:	31010 - Buffalo,	NY					
	tal Date/Time: ion Date/Time:	06/29/2018 09:30 06/28/2018 09:20 BUF06-01						
CAT No.	Analysis Name		CAS Number	Result	Limit of Quantitation*	Method Detection Limit	Dilution Factor	
GC/MS	Semivolatiles	SW-846 827		ug/l	ug/l	ug/l		
14244	1,4-Dioxane	011 040 021	123-91-1	N.D.	0.3	0.1	1	
LC/MS	/MS Miscellaneo	ous EPA 537 Ve Modified	rsion 1.1	ng/l	ng/l	ng/l		
14473	6:2 fluorotelomersul	fonate	27619-97-2	N.D.	5.0	2.5	1	
14473	8:2 fluorotelomersul	fonate	39108-34-4	N.D.	15	5.0	1	
14473	NEtFOSAA		2991-50-6	N.D.	7.5	2.5	1	
	NEtFOSAA is the ad	cronym for N-ethyl perfl	uorooctanesulfonal	midoacetic Acid.				
14473	NMeFOSAA		2355-31-9	N.D.	7.5	2.5	1	
	NMeFOSAA is the a	acronym for N-methyl pe	erfluorooctanesulfo	namidoacetic Acid.				
14473	Perfluorobutanesulf	onate	375-73-5	3.1	2.5	0.75	1	
14473	Perfluorobutanoic a	cid	375-22-4	9.7 J	15	5.0	1	
14473	Perfluorodecanesul	fonate	335-77-3	N.D.	5.0	1.5	1	
14473	Perfluorodecanoic a	icid	335-76-2	5.6	5.0	2.3	1	
14473	Perfluorododecanoi	c acid	307-55-1	N.D.	5.0	1.3	1	
14473	Perfluoroheptanesu	lfonate	375-92-8	N.D.	5.0	1.0	1	
14473	Perfluoroheptanoic	acid	375-85-9	11	2.5	1.0	1	
14473	Perfluorohexanesul	fonate	355-46-4	2.8 J	5.0	1.0	1	
14473	Perfluorohexanoic a	icid	307-24-4	4.9 J	5.0	1.0	1	
14473	Perfluorononanoic a	acid	375-95-1	150	5.0	1.0	1	
14473	Perfluorooctanesulf		754-91-6	N.D.	7.5	1.3	1	
14473	Perfluoro-octanesul		1763-23-1	11	5.0	1.0	1	
14473	Perfluorooctanoic a		335-67-1	14	2.5	0.75	1	
14473	Perfluoropentanoic		2706-90-3	N.D.	15	5.0	1	
14473	Perfluorotetradecan		376-06-7	N.D.	2.5	0.75	1	
14473	Perfluorotridecanoic		72629-94-8	N.D.	2.5	1.0	1	
14473	Perfluoroundecanoi		2058-94-8	5.3	5.0	1.0	1	
The r	ecovery for labeled co	mpound used as extrac	ction standards					

is outside of QC acceptance limits as noted on the QC Summary due to the matrix of the sample.

The sample injection internal standard peak areas were outside of the QC limits for both the initial injection and the re-injection. The values here are from the initial injection of the sample.

Laboratory Sample Analysis Record

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
14244	SIM SVOAs 8270D MINI	SW-846 8270D SIM	1	18184WAW026	08/09/2018 15:22	Catherine E Bachman	1
10466	BNA Water Extraction SIM	SW-846 3510C	1	18184WAW026	07/03/2018 19:15	Mathias Okpo	1

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Analysis Report

REVISED

Sample Description: MW-50 Grab Groundwater 635 Elk St Buffalo, NY 31010 - Buffalo, NY		ARCADIS U.S., Inc. ELLE Sample #: WW 9683955 ELLE Group #: 1960908 Matrix: Groundwater
Project Name:	31010 - Buffalo, NY	
Submittal Date/Time: Collection Date/Time: SDG#:	06/29/2018 09:30 06/28/2018 09:20 BUF06-01	

Laboratory Sample Analysis Record

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
14473	PFAS in Water by LC/MS/MS	EPA 537 Version 1.1 Modified	1	18192013	07/12/2018 14:52	Jason W Knight	1
14091	PFAS Water Prep	EPA 537 Version 1.1 Modified	2	18192013	07/11/2018 16:50	Danielle D McCully	1

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Analysis Report

REVISED

							REVISED
Sample	e Description:	B-2MW Grab Gi 635 Elk St Bu 31010 - Buffalo	ffalo, NY				WW 9683956 1960908 r
Project	t Name:	31010 - Buffalo	, NY				
	tal Date/Time: on Date/Time:	06/29/2018 09:3 06/28/2018 10:2 BUF06-02					
CAT No.	Analysis Name		CAS Number	Result	Limit of Quantitation*	Method Detection Limit	Dilution Factor
GC/MS	Semivolatiles	SW-846 827		ug/l	ug/l	ug/l	
14244	1,4-Dioxane	011 040 021	123-91-1	N.D.	0.3	0.1	1
LC/MS/	/MS Miscellaneo	us EPA 537 Ve Modified	ersion 1.1	ng/l	ng/l	ng/l	
14473	6:2 fluorotelomersul	fonate	27619-97-2	N.D.	5.0	2.5	1
14473	8:2 fluorotelomersul	fonate	39108-34-4	N.D.	15	5.0	1
14473	NEtFOSAA		2991-50-6	N.D.	7.4	2.5	1
	NEtFOSAA is the ad	cronym for N-ethyl perf	luorooctanesulfona	midoacetic Acid.			
14473	NMeFOSAA		2355-31-9	N.D.	7.4	2.5	1
	NMeFOSAA is the a	acronym for N-methyl p	erfluorooctanesulfo	namidoacetic Acid.			
14473	Perfluorobutanesulf	onate	375-73-5	8.8 <mark>J</mark>	2.5	0.74	1
14473	Perfluorobutanoic a	cid	375-22-4	28 <mark>J</mark>	15	5.0	1
14473	Perfluorodecanesulf	fonate	335-77-3	N.D.	5.0	1.5	1
14473	Perfluorodecanoic a	icid	335-76-2	N.D.	5.0	2.2	1
14473	Perfluorododecanoi	c acid	307-55-1	N.D.	5.0	1.2	1
14473	Perfluoroheptanesu	lfonate	375-92-8	N.D.	5.0	0.99	1
14473	Perfluoroheptanoic a	acid	375-85-9	3.5	2.5	0.99	1
14473	Perfluorohexanesulf	fonate	355-46-4	19	5.0	0.99	1
14473	Perfluorohexanoic a	cid	307-24-4	5.8	5.0	0.99	1
14473	Perfluorononanoic a	icid	375-95-1	4.1 J	5.0	0.99	1
14473	Perfluorooctanesulfo	onamide	754-91-6	N.D.	7.4	1.2	1
14473	Perfluoro-octanesulf	fonate	1763-23-1	16	5.0	0.99	1
14473	Perfluorooctanoic ad	cid	335-67-1	7.3	2.5	0.74	1
14473	Perfluoropentanoic a	acid	2706-90-3	N.D. J	15	5.0	1
14473	Perfluorotetradecan	oic acid	376-06-7	N.D.	2.5	0.74	1
14473	Perfluorotridecanoic	acid	72629-94-8	N.D.	2.5	0.99	1
14473	Perfluoroundecanoi		2058-94-8	N.D.	5.0	0.99	1
Thore	tated OC limits are ad	hisony only until ouffici	ant data nainta				

The stated QC limits are advisory only until sufficient data points can be obtained to calculate statistical limits.

The recovery for labeled compound used as extraction standards is outside of QC acceptance limits as noted on the QC Summary due to the matrix of the sample.

The sample injection internal standard peak areas were outside of the QC limits for both the initial injection and the re-injection. The values here are from the initial injection of the sample.

The recovery for labeled compound used as extraction standards is outside of QC acceptance limits as noted on the QC Summary.

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Analysis Report

REVISED

Sample Description: B-2MW Grab Groundwater 635 Elk St Buffalo, NY 31010 - Buffalo, NY		ARCADIS U.S., Inc. ELLE Sample #: WW 9683956 ELLE Group #: 1960908 Matrix: Groundwater
Project Name:	31010 - Buffalo, NY	
Submittal Date/Time: Collection Date/Time: SDG#:	06/29/2018 09:30 06/28/2018 10:25 BUF06-02	

Laboratory Sample Analysis Record

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
14244	SIM SVOAs 8270D MINI	SW-846 8270D SIM	1	18184WAW026	08/09/2018 15:51	Catherine E Bachman	1
10466	BNA Water Extraction SIM	SW-846 3510C	1	18184WAW026	07/03/2018 19:15	Mathias Okpo	1
14473	PFAS in Water by LC/MS/MS	EPA 537 Version 1.1 Modified	1	18192013	07/12/2018 15:11	Jason W Knight	1
14091	PFAS Water Prep	EPA 537 Version 1.1 Modified	2	18192013	07/11/2018 16:50	Danielle D McCully	1

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Analysis Report

REVISED

							REVISED
Sampl	Sample Description: MW-34 Grab Groundwater 635 Elk St Buffalo, NY 31010 - Buffalo, NY					•	WW 9683957 1960908 r
Projec	t Name:	31010 - Buffalo	, NY				•
	tal Date/Time: ion Date/Time:	06/29/2018 09:3 06/28/2018 13:0 BUF06-03BKG	-				
CAT No.	Analysis Name		CAS Number	Result	Limit of Quantitation*	Method Detection Limit	Dilution Factor
GC/MS	Semivolatiles	SW-846 827	OD SIM	ug/l	ug/l	ug/l	
14244	1,4-Dioxane	011 040 021	123-91-1	N.D.	0.3	0.1	1
LC/MS	MS Miscellaneo	ous EPA 537 Ve Modified	ersion 1.1	ng/l	ng/l	ng/l	
14473	6:2 fluorotelomersul	fonate	27619-97-2	N.D.	3.3	1.6	1
14473	8:2 fluorotelomersul	fonate	39108-34-4	N.D.	9.9	3.3	1
14473	NEtFOSAA		2991-50-6	N.D.	4.9	1.6	1
	NEtFOSAA is the ad	cronym for N-ethyl perf	luorooctanesulfona	midoacetic Acid.			
14473	NMeFOSAA		2355-31-9	N.D.	4.9	1.6	1
	NMeFOSAA is the a	acronym for N-methyl p	erfluorooctanesulfo	namidoacetic Acid.			
14473	Perfluorobutanesulf	onate	375-73-5	1.4 J	1.6	0.49	1
14473	Perfluorobutanoic a	cid	375-22-4	N.D.	9.9	3.3	1
14473	Perfluorodecanesul	fonate	335-77-3	N.D.	3.3	0.99	1
14473	Perfluorodecanoic a	icid	335-76-2	N.D.	3.3	1.5	1
14473	Perfluorododecanoi	c acid	307-55-1	N.D.	3.3	0.82	1
14473	Perfluoroheptanesu	lfonate	375-92-8	1.1 J	3.3	0.66	1
14473	Perfluoroheptanoic	acid	375-85-9	2.0	1.6	0.66	1
14473	Perfluorohexanesul	fonate	355-46-4	17	3.3	0.66	1
14473	Perfluorohexanoic a	icid	307-24-4	1.6 J	3.3	0.66	1
14473	Perfluorononanoic a	acid	375-95-1	3.6	3.3	0.66	1
14473	Perfluorooctanesulf	onamide	754-91-6	N.D.	4.9	0.82	1
14473	Perfluoro-octanesul	fonate	1763-23-1	65	3.3	0.66	1
14473	Perfluorooctanoic a	cid	335-67-1	3.7	1.6	0.49	1
14473	Perfluoropentanoic	acid	2706-90-3	N.D.	9.9	3.3	1
14473	Perfluorotetradecan	oic acid	376-06-7	N.D.	1.6	0.49	1
14473	Perfluorotridecanoio	acid	72629-94-8	N.D.	1.6	0.66	1
14473	Perfluoroundecanoi	c acid	2058-94-8	N.D.	3.3	0.66	1
The	recovery for the sampl	e injection standard an	d the labeled comp	ound			

The recovery for the sample injection standard and the labeled compound used as extraction standard is outside the QC acceptance limits as noted on the QC Summary. The recovery for the injection standard and labeled compound used as extraction standard is also outside the QC acceptance limits in the associated matrix spike and matrix spike duplicate, indicating a matrix effect.

Laboratory Sample Analysis Record

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
14244	SIM SVOAs 8270D MINI	SW-846 8270D SIM	1	18184WAW026	08/09/2018 13:58	Catherine E Bachman	1
10466	BNA Water Extraction SIM	SW-846 3510C	1	18184WAW026	07/03/2018 19:15	Mathias Okpo	1
14473	PFAS in Water by LC/MS/MS	EPA 537 Version 1.1 Modified	1	18192013	07/12/2018 15:29	Jason W Knight	1

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Analysis Report

REVISED

Sample Description:	MW-34 Grab Groundwater 635 Elk St Buffalo, NY 31010 - Buffalo, NY	ARCADIS U.S., Inc. ELLE Sample #: WW 9683957 ELLE Group #: 1960908 Matrix: Groundwater
Project Name:	31010 - Buffalo, NY	
Submittal Date/Time: Collection Date/Time: SDG#:	06/29/2018 09:30 06/28/2018 13:00 BUF06-03BKG	

	Laboratory Sample Analysis Record										
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor				
14091	PFAS Water Prep	EPA 537 Version 1.1 Modified	2	18192013	07/11/2018 16:50	Danielle D McCully	1				

14473

14473

14473

14473

14473

14473

14473

14473

14473

14473

14473

14473

14473

Perfluorodecanoic acid

Perfluorododecanoic acid

Perfluoroheptanesulfonate

Perfluoroheptanoic acid

Perfluorohexanoic acid

Perfluorononanoic acid

Perfluorooctanoic acid

Perfluoropentanoic acid

Perfluorotridecanoic acid

Perfluorotetradecanoic acid

Perfluorohexanesulfonate

Perfluorooctanesulfonamide

Perfluoro-octanesulfonate

Lancaster Laboratories Environmental

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Analysis Report

REVISED

								REVISED
Sample	e Description:	MW-49 Grab 635 Elk St E 31010 - Buffa	Buffalo, NY				ARCADIS U.S., Inc. ELLE Sample #: ELLE Group #: Matrix: Groundwat	WW 9683960 1960908 er
Projec	t Name:	31010 - Buffa	lo, NY					-
	tal Date/Time: ion Date/Time:	06/29/2018 09 06/28/2018 15 BUF06-04						
CAT No.	Analysis Name		CAS Number	Resu	ılt	Limit of Quantitation*	Method Detection Limit	Dilution Factor
GC/MS	Semivolatiles	SW-846 8	270D SIM	ug/l		ug/l	ug/l	
accep	1,4-Dioxane ecovery for the sample otance limits as noted of h and no target analyte ted.	on the QC Summar	y. Since the recovery	N.D.		0.3	0.1	1
LC/MS	/MS Miscellaneo	us EPA 537 Modified	Version 1.1	ng/l		ng/l	ng/l	
14473	6:2 fluorotelomersulf		27619-97-2	N.D.		3.4	1.7	1
14473	8:2 fluorotelomersulf		39108-34-4	N.D.		10	3.4	1
14473	NEtFOSAA		2991-50-6	N.D.		5.1	1.7	1
	NEtFOSAA is the ac	ronym for N-ethyl p	erfluorooctanesulfona	midoace	tic Acid.			
14473	NMeFOSAA		2355-31-9	N.D.		5.1	1.7	1
	NMeFOSAA is the a	cronym for N-methy	l perfluorooctanesulfo	namidoa	acetic Acid.			
14473	Perfluorobutanesulfo	onate	375-73-5	7.3	J	1.7	0.51	1
14473	Perfluorobutanoic ac	cid	375-22-4	110	J	10	3.4	1
14473	Perfluorodecanesulf	onate	335-77-3	N.D.		3.4	1.0	1

14473Perfluoroundecanoic acid2058-94-8The stated QC limits are advisory only until sufficient data points
can be obtained to calculate statistical limits.

335-76-2

307-55-1

375-92-8

375-85-9

355-46-4

307-24-4

375-95-1

754-91-6

1763-23-1

335-67-1

2706-90-3

376-06-7

72629-94-8

N.D.

N.D.

N.D.

3.0 J

2.6 J

7.8 J

N.D.

4.2

12

N.D.

N.D.

N.D.

3.0

7.7

3.4

3.4

3.4

1.7

3.4

3.4

3.4

5.1

3.4

1.7

10

1.7

1.7

3.4

1.5

0.85

0.68

0.68

0.68

0.68

0.68

0.85

0.68

0.51

3.4

0.51

0.68

0.68

1

1

1

1

1

1

1

1

1

1

1

1

1

1

The recovery for labeled compound used as extraction standards is outside of QC acceptance limits as noted on the QC Summary due to the matrix of the sample.

The sample injection internal standard peak areas were outside of the QC limits for both the initial injection and the re-injection. The values here are from the initial injection of the sample.

The recovery for labeled compound used as extraction standards

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Analysis Report

REVISED

Sample Description:	MW-49 Grab Groundwater 635 Elk St Buffalo, NY 31010 - Buffalo, NY	ARCADIS U.S., Inc. ELLE Sample #: WW 9683960 ELLE Group #: 1960908 Matrix: Groundwater
Project Name:	31010 - Buffalo, NY	
Submittal Date/Time: Collection Date/Time: SDG#:	06/29/2018 09:30 06/28/2018 15:10 BUF06-04	
САТ		Limit of Method Dilution

CAS Number Analysis Name No.

Result

Quantitation*

Detection Limit

Factor

is outside of QC acceptance limits as noted on the QC Summary.

Laboratory Sample Analysis Record

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
14244	SIM SVOAs 8270D MINI	SW-846 8270D SIM	1	18184WAW026	08/09/2018 16:19	Catherine E Bachman	1
10466	BNA Water Extraction SIM	SW-846 3510C	1	18184WAW026	07/03/2018 19:15	Mathias Okpo	1
14473	PFAS in Water by LC/MS/MS	EPA 537 Version 1.1 Modified	1	18192013	07/12/2018 15:56	Jason W Knight	1
14091	PFAS Water Prep	EPA 537 Version 1.1 Modified	2	18192013	07/11/2018 16:50	Danielle D McCully	1

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Analysis Report

REVISED

Sample Description: DUP-062818-OU21 635 Elk St Buffa 31010 - Buffalo, N			ffalo, NY	Indwater		ARCADIS U.S., Inc. ELLE Sample #: WW 9683961 ELLE Group #: 1960908 Matrix: Groundwater		
Projec	t Name:	31010 - Buffalo	, NY					
Submittal Date/Time: Collection Date/Time: SDG#:		06/29/2018 09:3 06/28/2018 BUF06-05FD	0					
CAT No.	Analysis Name		CAS Number	Result	Limit of Quantitation*	Method Detection Limit	Dilution Factor	
GC/MS	Semivolatiles	SW-846 827	70D SIM	ug/l	ug/l	ug/l		
14244	1,4-Dioxane		123-91-1	N.D.	0.3	0.1	1	
LC/MS	/MS Miscellaneo	ous EPA 537 Ve Modified	ersion 1.1	ng/l	ng/l	ng/l		
14473	6:2 fluorotelomersul		27619-97-2	N.D.	3.3	1.7	1	
14473	8:2 fluorotelomersul	fonate	39108-34-4	N.D.	10	3.3	1	
14473	NEtFOSAA		2991-50-6	N.D.	5.0	1.7	1	
	NEtFOSAA is the ac	cronym for N-ethyl perf	luorooctanesulfona	midoacetic Acid.				
14473	NMeFOSAA		2355-31-9	N.D.	5.0	1.7	1	
	NMeFOSAA is the a	acronym for N-methyl p	erfluorooctanesulfo	namidoacetic Acid.				
14473	Perfluorobutanesulf	onate	375-73-5	0.77 J	1.7	0.50	1	
14473	Perfluorobutanoic a	cid	375-22-4	N.D.	10	3.3	1	
14473	Perfluorodecanesulf	fonate	335-77-3	N.D.	3.3	1.0	1	
14473	Perfluorodecanoic a	icid	335-76-2	N.D.	3.3	1.5	1	
14473	Perfluorododecanoi	c acid	307-55-1	N.D.	3.3	0.83	1	
14473	Perfluoroheptanesu	lfonate	375-92-8	1.0 J	3.3	0.67	1	
14473	Perfluoroheptanoic a	acid	375-85-9	1.8	1.7	0.67	1	
14473	Perfluorohexanesulf	fonate	355-46-4	18	3.3	0.67	1	
14473	Perfluorohexanoic a	cid	307-24-4	2.4 J	3.3	0.67	1	
14473	Perfluorononanoic a	icid	375-95-1	3.4	3.3	0.67	1	
14473	Perfluorooctanesulfo	onamide	754-91-6	N.D.	5.0	0.83	1	
14473	Perfluoro-octanesul	fonate	1763-23-1	61	3.3	0.67	1	
14473	Perfluorooctanoic ad	cid	335-67-1	3.3	1.7	0.50	1	
14473	Perfluoropentanoic a	acid	2706-90-3	N.D.	10	3.3	1	
14473	Perfluorotetradecan	oic acid	376-06-7	N.D.	1.7	0.50	1	
14473	Perfluorotridecanoic	acid	72629-94-8	N.D.	1.7	0.67	1	
14473	Perfluoroundecanoi	c acid	2058-94-8	N.D.	3.3	0.67	1	

The sample injection internal standard peak areas were outside of the QC limits for both the initial injection and the re-injection. The values here are from the initial injection of the sample.

Laboratory Sample Analysis Record

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
14244	SIM SVOAs 8270D MINI	SW-846 8270D SIM	1	18184WAW026	08/09/2018 16:47	Catherine E Bachman	1
10466	BNA Water Extraction SIM	SW-846 3510C	1	18184WAW026	07/03/2018 19:15	Mathias Okpo	1
14473	PFAS in Water by LC/MS/MS	EPA 537 Version 1.1 Modified	1	18192013	07/12/2018 16:23	Jason W Knight	1
14091	PFAS Water Prep	EPA 537 Version 1.1 Modified	2	18192013	07/11/2018 16:50	Danielle D McCully	1

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Analysis Report

REVISED

5 Elk St Buffalo, NY 010 - Buffalo, NY	ARCADIS U.S., Inc. ELLE Sample #: WV ELLE Group #: 196 Matrix: Groundwater		
010 - Buffalo, NY	Matrix: Groundwat	er	
/29/2018 09:30 /28/2018 15:45 JF06-06FB			
	010 - Buffalo, NY 010 - Buffalo, NY 29/2018 09:30 28/2018 15:45	D10 - Buffalo, NY ELLE Group #: Matrix: Groundwat D10 - Buffalo, NY 29/2018 09:30 28/2018 15:45 28/2018 15:45	

CAT No.	Analysis Name	CAS Number	Result	Limit of Quantitation*	Method Detection Limit	Dilution Factor
LC/MS	/MS Miscellaneous	EPA 537 Version 1.1 Modified	ng/l	ng/l	ng/l	
14473	6:2 fluorotelomersulfonate	27619-97-2	N.D.	1.7	0.87	1
14473	8:2 fluorotelomersulfonate	39108-34-4	N.D.	5.2	1.7	1
14473	NEtFOSAA	2991-50-6	N.D.	2.6	0.87	1
	NEtFOSAA is the acronyr	n for N-ethyl perfluorooctanesulfonar	midoacetic Acid.			
14473	NMeFOSAA	2355-31-9	N.D.	2.6	0.87	1
	NMeFOSAA is the acrony	m for N-methyl perfluorooctanesulfo	namidoacetic Acid.			
14473	Perfluorobutanesulfonate	375-73-5	N.D.	0.87	0.26	1
14473	Perfluorobutanoic acid	375-22-4	N.D.	5.2	1.7	1
14473	Perfluorodecanesulfonate	335-77-3	N.D.	1.7	0.52	1
14473	Perfluorodecanoic acid	335-76-2	N.D.	1.7	0.78	1
14473	Perfluorododecanoic acid	307-55-1	N.D.	1.7	0.43	1
14473	Perfluoroheptanesulfonate	e 375-92-8	N.D.	1.7	0.35	1
14473	Perfluoroheptanoic acid	375-85-9	N.D.	0.87	0.35	1
14473	Perfluorohexanesulfonate	355-46-4	N.D.	1.7	0.35	1
14473	Perfluorohexanoic acid	307-24-4	N.D.	1.7	0.35	1
14473	Perfluorononanoic acid	375-95-1	N.D.	1.7	0.35	1
14473	Perfluorooctanesulfonami	de 754-91-6	N.D.	2.6	0.43	1
14473	Perfluoro-octanesulfonate	1763-23-1	N.D.	1.7	0.35	1
14473	Perfluorooctanoic acid	335-67-1	N.D.	0.87	0.26	1
14473	Perfluoropentanoic acid	2706-90-3	N.D.	5.2	1.7	1
14473	Perfluorotetradecanoic ac	id 376-06-7	N.D.	0.87	0.26	1
14473	Perfluorotridecanoic acid	72629-94-8	N.D.	0.87	0.35	1
14473	Perfluoroundecanoic acid	2058-94-8	N.D.	1.7	0.35	1

Laboratory Sample Analysis Record

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
14473	PFAS in Water by LC/MS/MS	EPA 537 Version 1.1 Modified	1	18192013	07/12/2018 16:41	Jason W Knight	1
14091	PFAS Water Prep	EPA 537 Version 1.1 Modified	3	18192013	07/11/2018 16:50	Danielle D McCully	1