

Hydrogeologic Investigation Report Babcock Street Combined Sewer Overflow

Location:

ExxonMobil Oil Former Buffalo Terminal OU-3 503/625 Elk Street and 1 Babcock Street, Buffalo, New York NYSDEC Site No. C915201D

Prepared for:

Elk Street Commerce Park, LLC 4 Centre Drive Orchard Park, New York 14127

LaBella Project No. 2200012

July 2021

Table of Contents

1.0	SITE B	ACKGROUND	1
2.0	SCOPE	OF WORK	2
2.1	Soil	Boring Investigation	2
2.2	Hyd	rogeologic Investigation	3
2	2.2.1	Hydraulic Conductivity Testing	3
2	2.2.2	Well Installation	3
2	2.2.3	Pump Testing	4
3.0	FINDIN	NGS	5
3.1	Soil	Boring Investigation	5
3.2	Hyd	rogeologic Investigation	6
3	3.2.1	Hydraulic Conductivity Testing	6
3	3.2.2	Step Testing	8
3	3.2.3	Constant Rate Pump Testing	8
3	3.2.4	Discussion of Results	10
4.0	SUMM	IARY AND CONCLUSIONS	11
5.0	LIMITA	ATIONS	13
Figure	9 S	Figure 1 – Site Location Figure 2 – Hydrogeologic Investigation Area Figure 3 – Site Map – Hydrogeologic Investigation Figure 4 – Top of Basal Clay Contour Map Figure 5 – Lines of Cross-Sections Figure 6 – Cross-Section A-A' Figure 7 – Cross-Section B-B' Figure 8 – Cross-Section C-C' Figure 9 – Product Occurrence During Soil Boring Program Figure 10 – Static Liquid Levels Figure 11 – Observed Drawdown During Pump Testing	
Table		Table 1 – Well Specifications Table 2 – Summary of Slug Testing Results Table 3 – Static and End of Test Liquid Levels Table 4 – Summary of Pump Test Results Table 5 – Comparison of K Determined via Slug Testing and Pump Testing	
Apper Apper Apper	ndix B	Soil Boring and Well Completion Logs Laboratory Report Slug Test and Constant Rate Pump Test Data	

1.0 SITE BACKGROUND

Operable Unit No. 3 (OU-3) of the ExxonMobil Former Buffalo Terminal Site (hereinafter referred to as the "Site") was formerly part of a petroleum refinery and bulk storage terminal that occupied approximately 89 acres of land extending from Elk Street southward to the Buffalo River. Petroleum refinery operations commenced circa 1880 at this location and, in 1892, most of the facility was acquired by Standard Oil Company, ExxonMobil's predecessor. All refinery operations had ceased at the facility by 1981, but the facility continued to be utilized by ExxonMobil as a distribution terminal until 2005, when the remaining active petroleum storage and distribution terminal facilities were acquired by Buckeye Partners, LLC (Buckeye).

Historical facility plans indicate that extensive petroleum storage and distribution facilities previously existed on the Site, as did a large storm water control and separator system that serviced the refinery property. With the exception of the active petroleum bulk storage (PBS) facilities operated by Buckeye, the PBS facilities were removed and the storm water system was abandoned in place in phases between 1993 and 2001.

In 2017, Elk Street Commerce Park, LLC (ESCP) entered into a Brownfield Cleanup Agreement (BCA) with the New York State Department of Environmental Conservation (NYSDEC), as a volunteer, to remediate the Site. ESCP subsequently acquired all portions of the Site, excluding the portion owned by Buckeye, in several transactions that occurred in 2018 and 2019. Remediation of the Site was performed by ESCP in 2018-2019 in accordance with a NYSDEC-approved Remedial Action Work Plan (RAWP) dated December 2017 and revised May 2018. A Final Engineering Report (FER) summarizing and documenting the remedial program completed at the Site was filed in December 2019 and subsequently approved by NYSDEC. The Site is zoned industrial, encompasses approximately 33.12 acres and is located at 503/625/635 Elk Street and 1 Babcock Street in the City of Buffalo, Erie County, New York (see Figure 1).

The area of investigation, for the purpose of this Hydrogeologic Investigation, includes the western portion of the Site. This area includes the Babcock Street Combined Sewer Overflow (CSO), which is owned and operated by the Buffalo Sewer Authority (BSA). Based on observations at the Site, it appears that the deteriorated condition of the CSO structure is enabling communication between the structure and the surrounding subsurface. Specifically, fluctuating stages of the Buffalo River are believed to be flushing free-phase petroleum hydrocarbons from the subsurface into the CSO structure. The mechanism believed to be the driving force is the exfiltration of water from the river into the subsurface via the CSO structure during a high river stage, and the infiltration of groundwater and petroleum products back into the CSO structure from the subsurface during a low river stage.

This hydrogeologic investigation has been undertaken by ESCP in order to evaluate feasible options for eliminating further infiltration of petroleum products from the subsurface into the CSO and subsequently, to the Buffalo River. The specific goals of this investigation are to evaluate the stratigraphy in the area adjacent to the CSO and, to evaluate the distribution of petroleum hydrocarbons in the soils adjacent to a deteriorated portion of the CSO structure. Additional hydrogeologic information has also been obtained in order to update and refine the existing groundwater flow model to reflect Site conditions after the installation of a slurry wall in the area east

of the CSO structure. This updated hydrogeologic information will be used to more fully evaluate groundwater flow paths, including the effect of the existing slurry wall and CSO structure on local groundwater flow; and to ensure that an effective, long-term solution to this condition is developed for implementation.

2.0 SCOPE OF WORK

The infiltration of free-phase petroleum was noted primarily in the approximate 200 foot (ft.) segment of the CSO shown on **Figure 2**. This area correlates with the historical presence of petroleum documented in the Babcock Street Properties Area Investigation Report prepared by Roux Associates (June 2001). Additionally, historical information indicates that this area also contains the former channel of the Buffalo River (backfilled circa 1914-1917). This backfilled channel may function as a preferential migration pathway and/or accumulation point for subsurface dissolved and/or free-phase petroleum.

Considering the observations and information described above, the hydrogeologic investigation focused on the rectangular area shown on **Figure 3**. This area measures approximately 300 ft. in length and 50 ft. in width and straddles the CSO structure. This area falls between the OU-3 slurry wall (to the east) and, an area where petroleum-impacted soil was previously subjected to in-situ stabilization to the west. It is bounded on the south by a "hanging" sheet pile wall (installed just north of the CSO headwall structure) and extends toward the north to the approximate northern boundary of the former river channel.

The scope of the hydrogeologic investigation was outlined in the March 25, 2021 scope of work prepared by LaBella Associates, D.P.C and approved by NYSDEC with the condition that additional delineation efforts be applied if warranted. The investigations conducted within this area included:

- Advancement of a series of soil borings to define subsurface stratigraphy and evaluate the extent of gross petroleum impacts, and;
- Conducting a hydrogeologic investigation to update and refine the existing groundwater flow model and evaluate the effect of the CSO structure on local groundwater flow patterns.

2.1 Soil Boring Investigation

The soil boring investigation included a series of test borings advanced using direct-push drilling equipment along two (2) parallel lines running the length of the CSO through the investigation area. These borings were advanced on an approximate 30-foot spacing along lines oriented north-to-south. The borings were used to collect continuous macro-core samples from the ground surface until a basal clay unit was encountered generally at a depth range of 20-to-30 fbg (with variation) depending on location. This basal clay unit was the target into which the adjacent slurry wall (to the east) was keyed. The goal of the soil borings was to evaluate site stratigraphy and determine the lateral and vertical limits of gross petroleum impacts in each direction. Based on the observations made during the soil boring program, and, at the request of NYSDEC, additional soil borings were advanced to the west of the investigation area in order to better define the western extent of petroleum impacted soil.

At each borehole location, continuous soil core samples were retrieved in 5.0-foot intervals via a macro-core sampler lined with a dedicated acetate sleeve. The sleeve was subsequently cut-open and

the length of recovered soil core recorded. The soil core was evaluated for composition, visible impairment, olfactory indications of impairment, and detectable concentrations of volatile organic compounds (VOCs) via headspace screening with a photo-ionization detector (PID). On completion, sample tooling was washed using an Alconox and water solution prior to commencing with the next borehole. All decontamination fluids were containerized and transported to the on-site Groundwater Treatment Facility (GWTF) for treatment. Test boring logs were subsequently prepared for each boring to record location, depth, soil classifications, stratigraphy, depth at which groundwater is encountered, presence or absence of liquid phase petroleum (i.e., free product), evidence of impairment and total VOC concentrations via headspace screening.

2.2 Hydrogeologic Investigation

The March 25, 2021 scope of work proposed three (3) elements for the hydrogeologic investigation. This included hydraulic conductivity testing of selected existing monitoring wells on the western boundary of OU-3 (wells MW-3, ESCP-MW-7 & ESCP-MW-8); installation of new wells for pump testing (ESCP-CSO-MW-4) and related water level monitoring (ESCP-CSO-PZ-1; ESCP-CSO-PZ-2 & ESCP-CSO-PZ-3) during the proposed testing, and, associated pump testing. The purpose of the testing was to evaluate the spatial variability of the hydraulic conductivity (K) of the saturated site soil so that the inputs into an existing groundwater flow model can be refined. These tests would also help to evaluate the effect of the CSO structure on groundwater flow.

2.2.1 Hydraulic Conductivity Testing

Hydraulic conductivity testing (i.e. slug testing) was conducted via the proposed wells using a solid slug to displace water in the tested well. This slug was constructed of a 3.0-inch diameter solid PVC slug that was 4.0-feet in length, and displaced an approximate volume of 1.5 gallons in the tested wells. The testing was conducted by rapidly introducing the slug into the well and submerging it to a depth below the static water level. The slug was allowed to remain in the well while the displaced water levels returned (declined) back to static conditions. After re-establishing static conditions, the slug was rapidly removed from the well until the displaced water returned (increased) back to static conditions. The displaced water levels during the slug testing were recorded every 15 seconds during each test using electronic pressure transducers. A minimum of three (3) "falling head" and "rising head" tests were conducted on each well.

2.2.2 Well Installation

Four new wells were installed as part of the hydrogeologic investigation. This includes the test well (ESCP-CSO-MW-4) and three (3) piezometers (ESCP-CSO-PZ-1, ESCP-CSO-PZ-2 & ESCP-CSO-PZ-3). Each of the wells/piezometers were installed via hollow stem augers. At each drilled location, the augers were advanced down to the underlying clay layer. Well ESCP-CSO-MW-4 (the pump tested well) was constructed of 6.0-inch inside diameter (ID) continuous slot stainless steel well screen (# 20-slot) and PVC riser to grade. Piezometers were installed approximately 11 feet to the south (ESCP-CSO-PZ-1); approximately 11-feet to the north (ESCP-CSO-PZ-2); and approximately 35-feet to the east (ESCP-CSO-PZ-3) of ESCP-CSO-MW-4. Piezometers were constructed of 2.0-inch ID continuous slot (#20 slot) PVC well screen and riser to grade. The test well and two (2) of the piezometers (ESCP-CSO-PZ-1 and ESCP-CSO-PZ-2) were each installed in the area west of the slurry wall (and east of the CSO). Piezometer ESCP-CSO-PZ-3 was installed in the area east of the slurry wall. This area is hydraulically

isolated from the area west of the slurry wall where the test well is located.

The wells were installed by advancing the augers to the appropriate depth and removing the center plug. The well screen/casing assembly was installed inside of the augers and the sand pack placed as the augers were incrementally withdrawn from the borehole. Once the sand was confirmed to extend 1.0-to-2.0-feet above the well screen, a bentonite seal was placed over the sand pack and hydrated. Each well was finished with a steel, bolt-down road box set in a concrete pad. After completing their installation, each of the newly installed wells (and, existing well MW-24, which would also be used for water level monitoring during the subsequent pump testing) were developed in order to improve the hydraulic connection between the well screen/sand pack and the formation. The horizontal position of each well location, and top of well casing elevation, was subsequently surveyed. Well construction specifications for the newly installed well and piezometers are included in Table 1 below; soil boring and well completion logs are included in Appendix A.

	Table 1 Well Specifications									
Location ID	Nominal Diameter (inches)	Screen Type & Material	Screen Slot Size ⁷ (inches)	Screen Length (feet)	Screened Interval (fbg)	Total Depth (fbg)				
ESCP-CSO-MW4	6	ContSlot (Vee-Wire) Type 304 SS	0.020	20	5.0-25	25				
ESCP-CSO-PZ1	2	ContSlot (Vee Wire) PVC	0.020	20	9.0-29	29				
ESCP-CSO-PZ2	2	ContSlot (Vee-Wire) PVC	0.020	20	7.0-27	27				
ESCP-CSO-PZ3	2	ContSlot (Vee Wire) PVC	0.020	20	5.0-25	25				

Notes:

- 1. fbg: feet below grade;
- PVC: polyvinyl chloride;
 Sch.: Schedule;
- 4. PVC casing and screen will conform to ASTM D1785 (Standard Specification for Poly[Vinyl Chloride] Plastic Pipe, Schedules 40, 80, and 120) and ASTM F480 (Standard Specification for Thermoplastic Well Casing Pipe and Couplings Made in Standard Dimension Rations [SDR], Sch. 40 and Sch. 80);
- 5. Stainless steel screen will conform to ASTM A580/A580M (Standard Specification for Stainless Steel Wire);
- All casing and screen will be proved with flush-threaded joints; and
- 7. Screen slot size and filter pack material for the new monitoring well and piezometers will be confirmed by the field geologist based on soil conditions encountered at each location.

2.2.3 Pump Testing

The pumping tests proposed for the site included initial short duration step testing followed by a constant rate pump test conducted over a longer duration. The purpose of the step testing was to use that short duration testing to determine the sustained yield of the tested well so that an appropriate flow rate for conducting the longer term constant rate pump test could be determined.

Step Testing:

The step testing proposed for well ESCP-CSO-MW-4 in the March 25, 2021 scope of work envisioned four (4) steps/flow rates. These include a starting flow rate estimated at 10 gallons per minute (gpm) with steps increasing incrementally to 15 gpm (Step-2), 20 gpm (Step-3) and 25 gpm (Step-4). The final yield for the test well was expected to fall in the 25 gpm range. However, during development of well ESCP-CSO-MW-4, continuous drawdown was noted at a flow rate estimated at 3.0 gpm. A similar observation was made during development of monitoring well MW-24, which was to be used for monitoring liquid levels during the testing conducted via well ESCP-CSO-MW-4. Specifically, well MW-24 was easily pumped dry, at an estimated flow rate of 3.0 gpm, during development. Well MW-24 is located approximately 20 feet west of ESCP-CSO-MW-4.

Based on the observation that water levels continued to decline at a rate of 3.0 gpm and appeared to stabilize in well ESCP-CSO-MW-4 at a flow rate below 3.0 gpm, the step testing approach as proposed in the scope of work was modified. Based on these findings, a flow rate of 2.5 gpm was determined to be appropriate for conducting the 10-hour constant rate pump test.

Constant Rate Pump Testing:

The constant rate pump test was initiated on April 27, 2021 and lasted for a 10-hour duration. Prior to initiating the test, the tested well (ESCP-CSO-MW-4), three (3) piezometers (ESCP-CSO-PZ-1, ESCP-CSO-PZ-2 & ESCP-CSO-PZ-3), MH-1, and MW-24 were equipped with pressure transducers to collect liquid levels before, during and after completing the constant rate pump test. Pressure transducers collected liquid level measurements every 15-seconds for a minimum of 4 hours prior to initiating the test and after the test until recovery back to static conditions had been reached.

The constant rate pump test was initiated at 8:15 am on Tuesday, April 27th and terminated on that same day at 6:15 pm. The test duration was approximately 10-hours and at an average flow rate estimated at 2.5 gpm. After completing the constant rate test, the pressure transducers were retrieved and the data downloaded to a spreadsheet program for evaluation and review.

3.0 FINDINGS

3.1 Soil Boring Investigation

The soil boring investigation was conducted during the period between April 5 and 21, 2021. This included the advancement of a total of 28 soil borings. Ten (10) borings were advanced on a line in the area between the slurry wall and the CSO structure (CSO-SB-1 through CSO-SB-10); while nine (9) borings (CSO-SB-11 through CSO-SB-19) were advanced in a line in the area west-of the CSO structure. Each of these 19 soil borings were advanced to a depth sufficient to verify the basal clay into which the slurry wall was keyed. Nine (9) additional borings (CSO-SB-20 through CSO-SB-28) were distributed throughout the western portion of OU-3 in order to better define site stratigraphy and distribution of petroleum in the subsurface. One (1) of these borings (CSO-SB-20) did not encounter the basal clay unit. CSO-SB-20 was advanced down to a terminal depth of 35 fbg. Each of the other eight (8) soil borings confirmed the presence of the basal clay. **Figure 4** presents a contour map depicting the elevation of the top of the basal clay unit.

Evaluation of the soil boring logs developed from the soil boring program and well/piezometer installation (Appendix A) reveal a heterogeneous subsurface that includes fill (wood, brick, concrete & miscellaneous debris in a silty clay or silty, sandy, gravelly matrix); silty clay; silty/sandy gravel; interbedded brown clay with sandy gravel lensing; sandy gravel; and a basal continuous clay unit. Figure 5 presents the locations of three (3) cross-sections that present the stratigraphic relationship of these units. These geologic cross-sections are shown in Figure 6 (A-A'), Figure 7 (B-B') and, Figure

8 (C-C'). Groundwater and/or petroleum product is present primarily within the interbedded brown clay with sandy gravel lensing and/or underlying sandy gravel.

Two (2) apparently distinct occurrences of free-phase petroleum product were noted in several of the soil borings installed as part of this investigation. This includes a "shallow" product that is amber in color and was observed near the water table during borehole advancement. A deeper occurrence of free-phase petroleum product that is black in color and has a "greasy" appearance was also noted. This material has a very "weathered" appearance and appears to be stratigraphically trapped by low permeability clays within the deeper portion of the interbedded brown clay with sandy gravel lensing (and/or, within the underlying sandy gravel unit). Both product occurrences were noted in the soil borings associated with each of the piezometers (ESCP-CSO-PZ-1; ESCP-CSO-PZ-2 and ESCP-CSO-PZ-3) as well as soil borings CSO-SB-8 and CSO-SB-16. The stratigraphically trapped dark product was also observed in CSO-SB-2, CSO-SB-12, CSO-SB-13, CSO-SB-14, and CSO-SB-26. Figure 9 indicates the locations where product occurrences were noted during the soil boring program.

It is interesting to note that the piezometer installed at ESCP-CSO-PZ-2 was screened through the interbedded zone and into the underlying sandy gravel. This enabled the "shallow" amber product as well as the "deeper" underlying dark-colored (and stratigraphically trapped) product to enter the piezometer. The resulting thickness of product in PZ-2 during the pump testing activities was approximately 4.0 feet and was composed of both the "shallow" and "deeper" products. A sample of this floating product layer was collected via a sampling bailer after completing the pump test. This comingled product sample was collected and sent to the Buffalo, New York analytical laboratory facility of Eurofins TestAmerica Laboratories for determination of its specific gravity. The results, which are included in **Appendix B** verify that the dark product is lighter than water with a specific gravity of 0.84 grams per cubic centimeter (g/cm³).

LaBella has initiated product recovery efforts via well ESCP-CSO-MW-4 and the three (3) piezometers (ESCP-CSO-PZ-1, ESCP-CSO-PZ-2 and ESCP-CSO-PZ-3) since completing the testing associated with the hydrogeologic investigation.

3.2 Hydrogeologic Investigation

3.2.1 Hydraulic Conductivity Testing

Two (2) episodes of hydraulic conductivity (i.e. slug) testing were conducted at the site. The first round of slug testing was conducted on April 19 & 20, 2021 and involved testing of wells MW-3, ESCP-MW-7 and ESCP-MW-8. The second round of slug testing was conducted on May 3, 2021 and involved monitoring well MW-24 and well ESCP-CSO-MW-4. These tests were added to the investigation after completing the pump test in order to provide additional information, for comparative purposes, based on observations made during the course of the investigation. Specifically, the slug test on well MW-24 was made to verify the anticipated low hydraulic conductivity (K) based on the well pumping dry during well development; the slug test on well ESCP-CSO-MW-4 was made for comparison with the pump test results. Stratigraphic and well completion logs for all of the wells tested are included in Appendix A.

As indicated previously, the displacement for the slug testing was via a solid PVC slug that was rapidly introduced into (and extracted from) the tested well while a pressure transducer recorded the water

level recovery back to static conditions. The recovery data, which was recorded in 15-second intervals, was downloaded from the pressure transducers into an excel spreadsheet and evaluated in terms of the drawdown observed over time. The time/drawdown data for each test was subsequently input into AQTESOLVE for windows (version 4.50.002) where it was analyzed via the Bouwer and Rice Method. This method of slug test analysis is suitable for fully or partially penetrating wells completed in an unconfined aquifer.

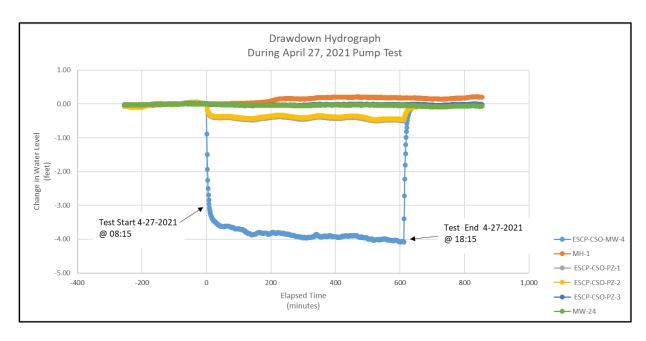
Hydraulic Conductivity or "K" is a measure of a soil's ability to transmit a volume of viscous fluid, over a given time period, through a two-dimensional planar surface. K values are typically given in units of cubic feet per day (ft³/day) per square foot (ft²) of soil material (ft³/day/ft²). After cancellation of like units, hydraulic conductivity values are represented as feet per day (ft/day) or centimeters per second (cm/sec). The slug testing results, which are summarized below in Table 2, indicate that the subsurface is spatially heterogeneous with relatively low K values determined for wells MW-3 and MW-24, a moderate K value determined for well ESCP-CSO-MW-4 and progressively higher K values determined for wells ESCP-MW-7 and ESCP-MW-8. Based on the soil materials encountered and screened at each location (as indicated in the attached soil boring and well completion logs), these results appear to be within the published K ranges for these types of soil materials.

Table 2 Summary of Slug Testing Results										
Well ID	Clust IN /OUT	Hydraulic Co	nductivity*	Slug Test I	Results					
Well ID	Slug IN/OUT	cm/sec	ft/day	cm/sec	ft/day					
	T-1 IN	4.35E-04	1.22							
	T-1 OUT	4.41E-04	1.25							
MW-3	T-2 IN	4.15E-04	1.17	4.29E-04	1.22					
IVIVV-3	T-2 OUT	4.18E-04	1.19	4.29E-04	1.22					
	T-3 IN	4.23E-04	1.20							
	T-3 OUT	4.45E-04	1.26							
	T-1 IN	1.55E-04	0.44							
MW-24	T-1 OUT	3.53E-04	1.00	2.69E-04	0.76					
IVI VV-24	T-2 IN	1.74E-04	0.49	2.09E-04	0.76					
	T-2 OUT	3.93E-04	1.11							
	T-1 IN	3.65E-03	10.35							
ESCP-CSO-MW-4	T-1 OUT	4.36E-03	12.34	2.065.02	11.22					
ESCP-CSU-IVIW-4	T-2 IN	5.37E-03	15.23	3.96E-03	11.22					
	T-2 OUT	2.46E-03	6.96							
	T-1 IN	7.56E-03	21.44							
	T-1 OUT	1.23E-02	34.80							
ECOD MW 7	T-2 IN	1.33E-02	37.69	0.555.00	07.00					
ESCP-MW-7	T-2 OUT	1.10E-03	3.13	9.55E-03	27.06					
	T-3 IN	5.62E-03	15.94							
	T-3 OUT	1.74E-02	49.40							
	T-1 IN	1.96E-02	55.43							
	T-1 OUT	2.47E-02	70.00							
ESCP-MW-8	T-2 IN	1.85E-02	52.34	2.55E-02	72.16					
EOUP-IVIVV-8	T-2 OUT	2.55E-02	72.29	2.55E-U2	12.16					
	T-3 IN	2.50E-02	70.88							
	T-3 OUT	3.95E-02	112.02							
Notes:										

Slug tests conducted April 19 & 20, 2021 and May 3, 2021; pump test conducted April 27, 2021.

^{*} Hydraulic conductivity given in centimeters per second and feet per day

The displacement data collected during the slug testing and AQTESOLVE outputs for each test are included in **Appendix C**.


3.2.2 Step Testing

As indicated previously, the step testing on well ESCP-CSO-MW-4 was completed as part of the development for this well. At that time, declining water levels were observed while pumping the well at an approximate rate of 3.0 gpm. Consequently, water levels within this well were observed to stabilize when the flow rate was reduced to below 3.0 gpm, and a flow rate of 2.5 gpm was selected for conducting the constant rate pump test.

3.2.3 Constant Rate Pump Testing

The constant rate pump test was conducted on April 27, 2021 via well ESCP-CSO-MW-4 at a flow rate of 2.5 gpm. The test lasted for approximately 10 hours after which time the pumping was terminated and liquid levels allowed to return to static conditions. Liquid levels were recorded before, during and after the test in the tested well, piezometers to the north (ESCP-CSO-PZ-2) and south (ESCP-CSO-PZ-1) of the tested well, a monitoring well west of the tested well (MW-24), MH-1, and, a piezometer hydraulically isolated from the tested well located east of the slurry wall (ESCP-CSO-PZ-3).

Prior to commencing with the test, static liquid levels were recorded (for a minimum duration of four (4) hours) in order to document pre-test trends. After terminating the test, liquid levels were monitored for the full recovery period for the wells to return to static conditions. Additional liquid level monitoring was conducted to verify a return to the pre-test trends. As shown in the chart below, approximately 4.0-feet of drawdown were noted in the tested well.

During this testing period, drawdown was noted in piezometers ESCP-CSO-PZ-1 (approximately 11 feet south of the tested well) and ESCP-CSO-PZ-2 (located approximately 11 feet north of the tested well). Drawdown noted in well MW-24 (located approximately 20-feet west of the tested well) was negligible and drawdown was not noted in ESCP-CSO-PZ-3 (located approximately 35 feet east of the tested well

on the opposite side of the slurry wall). The liquid level within the CSO at MH-1 rose slightly (0.24 feet) during the course of the test, mirroring a similar rise in the river level observed during this time period.

Table 3 summarizes the static and end of test liquid levels/elevations recorded for the pump test. A static contour map (**Figure 10**) was prepared from liquid level measurements obtained prior to the start of the constant rate pump test. After approximately 10 hours of pumping via the tested well, 0.50 feet of drawdown were recorded in PZ-1 and 0.46 feet of drawdown were noted in PZ-2. The drawdowns observed during the pump test are included Table 3 below, and **Figure 11** presents an end of test contour via measurements obtained at the end of the constant rate pump test.

Table 3 Static and End of Test Liquid Levels									
Well ID	TOC	S	tatic	End	of Test	Obs DD			
Well ID	100	DTL	ELEV	DTL	ELEV	(feet)			
ESCP-CSO-MW-4	584.98	12.51	572.47	16.58	568.40	(4.07)			
ESCP-CSO-PZ-1	584.71	12.14	572.57	12.63	572.08	(0.50)			
ESCP-CSO-PZ-2	587.17	14.14	573.03	14.50	572.67	(0.46)			
ESCP-CSO-PZ-3	585.17	13.71	571.46	13.71	571.46	(0.02)			
MW-24	586.72	14.00	572.72	13.96	572.76	(0.05)			
MH-1	584.32	11.54	572.78	11.30	573.02	+0.24			

Notes:

TOC elevations represent temporary risers installed for Pump Test

Elevations and depths given in feet relative to TOC

The data collected during the constant rate pump test, including the flow rates recorded at specific time intervals and the drawdown recorded via the pressure transducers, was loaded into an excel spreadsheet and subsequently used as input into AQTESOLVE. The pump test data were analyzed via the Jacob Straight Line Method.

In the Jacob Straight Line Method, the data are plotted on a semi-logarithmic time-drawdown graph. Time is plotted on the logarithmic x-axis, while drawdown is plotted on the arithmetic y-axis. A best-fit straight line is subsequently drawn through the data to encompass at least one complete log cycle of time. From the graph, the drawdown per log cycle of time is determined and used to estimate the transmissivity (T) via the following relation:

$$T = [264Q/(h_o-h)] \times 7.48$$

Where: Q = Pumping Rate (gpm)

 h_0 -h = Drawdown per log cycle of time (ft)

 $T = Transmissivity (ft^2/day)$

From the transmissivity, the hydraulic conductivity can be estimated through the relation:

$$K = T/b$$

Where: K = Hydraulic conductivity (ft/day)

T = Transmissivity (ft²/day) b = Saturated thickness (ft) The time/drawdown graphs are used to estimate K from the data collected at each observation well. The K values calculated via AQTESOLVE for the pump test observations are summarized below in **Table 4**. Four (4) evaluations of the time-drawdown data are presented. These include an evaluation of the drawdown responses from all wells (as an "average" K for the site); an evaluation of the drawdown responses from both nearby piezometers (ESCP-CSO-PZ-1 & ESCP-CSO-PZ-2 - both of which responded similarly during the test); an evaluation of the drawdown response from well MW-24 (which responded with 0.05 feet of drawdown during the test); and well ESCP-CSO-MW-4 (the tested well).

Table 4 Summary of Pump Test Results									
Well ID	Well ID cm/sec ft/day								
ALL WELLS	5.44E-03	15.42							
PZ-1/PZ-2	3.66E-02	103.66							
MW-24	2.16E-02	61.21							
ESCP-CSO-MW-4 6.90E-03 19.54									
Note: Constant rate pump test conducted April 27, 2021									

The drawdown data collected during the constant rate pump testing and AQTESOLVE outputs for the four (4) evaluations presented in Table 4 are included in Appendix C.

3.2.4 Discussion of Results

During the course of the constant rate pump test, it was noted that drawdown was not observed in well ESCP-CSO-PZ-3, completed within the containment area on the east side of the slurry wall. This lack of observed drawdown during the testing verifies that the interior portion of the containment area is hydraulically isolated from the area west of the slurry wall (i.e. where the pump testing was conducted). On the west side of the slurry wall, groundwater extraction via the tested well resulted in approximately 0.5-feet of observed drawdown in the two (2) nearby piezometers (ESCP-CSO-PZ-1 and ESCP-CSO-PZ-2). The tested well and both piezometers are located in the area between the slurry wall (to the east) and CSO structure to the west.

It is also observed that negligible drawdown was noted in well MW-24 during the constant rate pump test. As shown on Figure 3, the CSO structure is located between well MW-24 and well ESCP-CSO-MW-4. It is also thought that the deteriorated condition of the CSO structure has historically allowed both the exfiltration of water from the Buffalo River into the subsurface as well as infiltration of petroleum product and/or sheen from adjacent groundwater with subsequent transport to the River (depending on the stage of the River). LaBella believes that one possible explanation for the negligible drawdown observed in well MW-24 during the pump test is that exfiltrating water from the CSO structure during the test was serving as a constant head boundary to the tested well. An evaluation of the static contour map (Figure 10) and end of test contour map (Figure 11) supports the thought that leakage from the CSO structure may be serving as a constant head boundary.

Additional slug testing was also undertaken via well MW-24 and the tested well during the course of the investigation. This additional testing was conducted in order to provide comparative evaluation of

K determined via slug testing vs. pump testing. The slug test via well MW-24 was conducted to verify the low K anticipated based on the well pumping dry during well development; while the slug test via well ESCP-CSO-MW-4 was conducted for comparison with the pump test results. Comparing the results for well MW-24 indicates that the K determined via slug testing and pump testing differ by approximately two orders of magnitude. Based on the observations made during well development (i.e. well pumping dry at approximately 3.0 gpm) and the plot of the recovery data (presented in Appendix C), LaBella believes that the K of 2.69×10^{-4} centimeters per second (cm/sec or, 0.76 feet per day (ft/day)) determined via slug testing represents the more reliable result when compared to the 2.16×10^{-2} cm/sec (61.21 ft/day) determined for this same well via the pump testing. An evaluation of the K determined via slug testing and pump testing for well ESCP-CSO-MW-4 yields comparable results.

Table 5 Comparison of K determined via Slug Testing and Pump Testing									
	K via Slu	g Testing	K via Pum	p Testing					
Well ID	II ID cm/sec ft/day ft/day ft/day								
MW-24	2.69E-04	0.76	2.16E-02	61.21					
ESCP-CSO-MW-4	ESCP-CSO-MW-4 3.96E-03 11.22 6.90E-03 19.54								
Note: Constant rate pump test conducted April 27, 2021; Slug testing conducted May 3, 2021.									

4.0 SUMMARY AND CONCLUSIONS

The hydrogeologic investigation was conducted in the area that includes the western portion of Operable Unit No. 3 (OU-3) of the ExxonMobil Former Buffalo Terminal Site. This area includes the Babcock Street CSO structure. Based on observations made at the site, it appears that the deteriorated condition of the CSO structure is enabling communication between the structure and the surrounding subsurface. Specifically, fluctuating stages of the Buffalo River are believed to be flushing free-phase petroleum hydrocarbons from the subsurface into the CSO structure. The mechanism believed to be the driving force is the exfiltration of water from the river into the subsurface during a high river stage, and the infiltration of groundwater and petroleum products back into the CSO structure from the subsurface during a low river stage.

This purpose of this investigation was to collect additional information that will help to evaluate feasible options for eliminating further infiltration of petroleum products from the subsurface into the CSO structure and, consequently, to the Buffalo River. The specific goals of this investigation were to evaluate the stratigraphy in the area adjacent to the CSO structure and, to evaluate the distribution of petroleum hydrocarbons in the soil adjacent to the deteriorated portion of the CSO structure. Additional hydrogeologic information has also been obtained to update and refine an existing groundwater flow model that was developed prior to the installation of a slurry wall in the area east of the CSO structure. This updated flow model will be used to more fully evaluate groundwater flow paths (including the effect of the slurry wall and CSO structure on local groundwater flow) and, to ensure that an effective, long-term solution to this condition is developed for implementation.

The scope of the investigation was outlined in the March 25, 2021 scope of work prepared by LaBella Associates, D.P.C. and conditionally approved by the NYSDEC. This investigation included the advancement of a series of soil borings to define subsurface stratigraphy and evaluate the extent of gross petroleum impacts; and conducting hydraulic conductivity testing and a constant rate pump test in order to update and refine the existing groundwater flow model.

The soil boring program associated with the investigation included installation of 28 soil borings throughout the western portion of OU-3. Evaluation of the stratigraphy encountered at these locations revealed a heterogeneous subsurface that includes fill (wood, brick, concrete & miscellaneous debris in a silty clay or silty, sandy, gravelly matrix); silty clay; silty/sandy gravel; interbedded brown clay with sandy gravel lensing; sandy gravel; and an apparently continuous basal clay unit. Within this stratigraphic sequence, groundwater and/or petroleum product is present primarily within the interbedded brown clay with sandy gravel lensing and underlying sandy gravel.

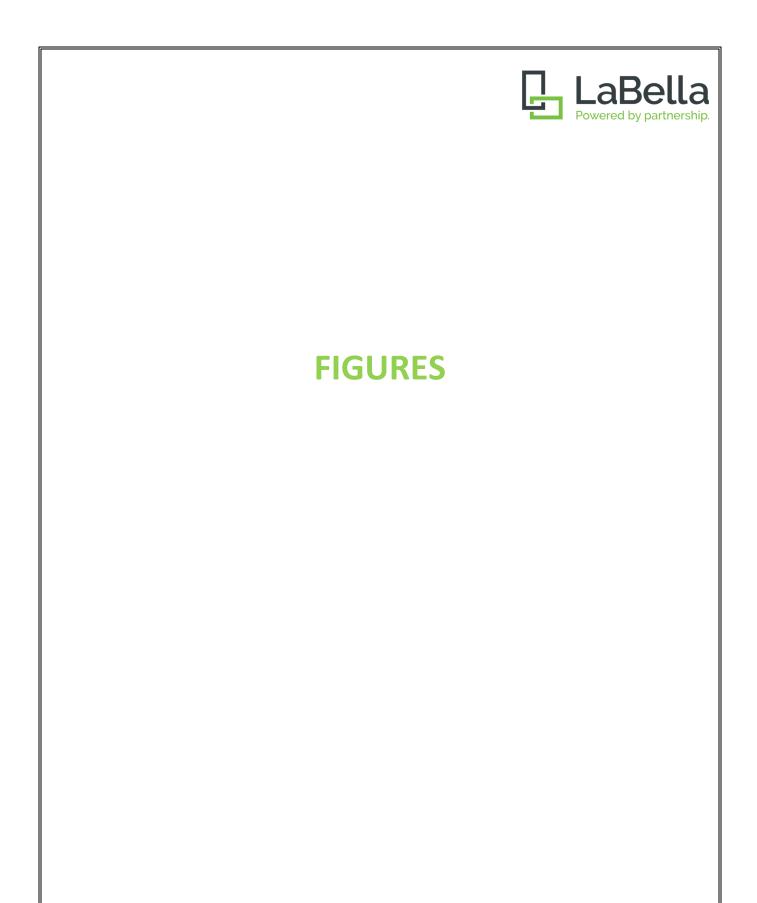
Two (2) apparently distinct occurrences of free-phase petroleum product were noted in several of the soil borings installed. This includes a "shallow" product that is amber in color and is found near the water table. A "deeper" occurrence of free-phase petroleum product, that is dark gray to black in color and has a "greasy" appearance, was also noted in several soil borings. This deeper petroleum occurrence appears to be stratigraphically trapped by low permeability clays within the lower portion of the interbedded brown clay with sandy gravel lensing (and/or, within the underlying sandy gravel unit). A sample of this stratigraphically trapped dark product was collected and analyzed for specific gravity. Analysis of this material confirms that its density (0.84 g/cm³) is lighter than water.

Observations made during development of the tested well (ESCP-CSO-MW-4) and re-development of a nearby existing monitoring well (MW-24) suggested that the anticipated yield for the planned constant rate pump test would be significantly lower than expected. This is because continuous drawdown was noted in well ESCP-CSO-MW-4 during development (at an estimated flow rate of 3.0 gpm) and well MW-24 was pumped to dryness at that rate. The drawdown noted in well ESCP-CSO-MW-4 was subsequently observed to stabilize when the flow rate was reduced below 3.0 gpm. As such, the step testing was not conducted as proposed in the March 25, 2021 scope of work. These observations resulted in a flow rate of approximately 2.5 gpm for conducting the constant rate pump test.

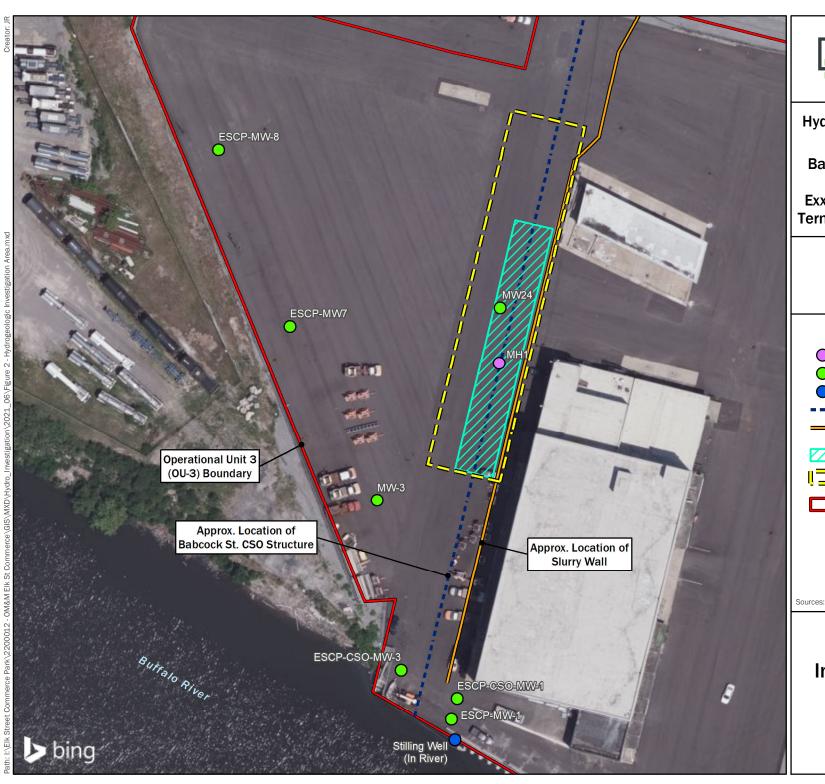
The slug testing results verify a subsurface that is spatially heterogeneous. Relatively low K values were determined for wells MW-3 (1.22 ft/day) and MW-24 (0.76 ft/day); a moderate K value (1.22 ft/day) was determined for well ESCP-CSO-MW-4; and progressively higher K values were determined for wells ESCP-MW-7 (27.06 ft/day) and ESCP-MW-8 (72.16 ft/day). Based on the soil materials encountered and screened at each location, these results appear to be consistent with published K ranges for these types of soil materials.

Observations during the constant rate pump test indicate that no drawdown was noted in well ESCP-CSO-PZ-3, completed on the east side of a recently installed slurry wall. The purpose of the slurry wall is to hydraulically isolate the eastern portion of OU-3 from the western portion and to increase the efficiency of remedial efforts in that portion of the site. A lack of observed drawdown in this portion of the site during the constant rate pump test (as represented via ESCP-CSO-PZ-3) confirms the integrity of the slurry wall. Additionally, the minimal drawdown noted in well MW-24, which is located on the

west side of the CSO structure, suggests that exfiltration from this structure may have been causing it to act as a constant head boundary during the pump testing.

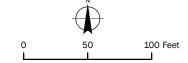

Evaluation of the observed drawdown data collected from well MW-24 also yielded a K value (61.21 ft/day) that is not consistent with observation of the well being pumped to dryness during redevelopment. Subsequent slug testing resulted in a K value of 0.76 ft/day for the soil materials at this location. LaBella believes that this result (via slug testing) is a better representation of the K for the soil materials at this location. Conversely, the K values determined for well ESCP-CSO-MW-4 via slug testing (11.22 ft/day) and pump testing (19.54 ft/day) were comparable. Overall, the K values determined for the site via slug testing and pump testing (except as noted for well MW-24) are consistent with published values for the soil types screened.

5.0 LIMITATIONS


The conclusions presented in this report are based on information gathered in accordance with generally acceptable professional consulting principles and practices. All conclusions reflect observable conditions existing at the time of the Site inspection. Information provided by outside sources (individuals, agencies, laboratories, etc.) as cited herein, was used in the assessment of the Site. The accuracy of the conclusions drawn from this assessment is, therefore, dependent upon the accuracy of information provided by these sources. Furthermore, LaBella is not responsible for the impacts of any changes in environmental standards, practices, or regulations subsequent to the performance of services.

This report is based upon the application of scientific principles and professional judgment to certain facts with resultant subjective interpretations. Professional judgments expressed herein are based upon the facts currently available with the limits of the existing data, scope of services, budget and schedule. To the extent that more definitive conclusions are desired by the Client than are warranted by the current available facts, it is specifically Labella's' intent that the conclusions and recommendations stated herein will be intended as guidance and not necessarily a firm course of action expect where explicitly stated as such. LaBella makes no warranties, expressed or implied including without limitation, warranties as to merchantability or fitness of a particular purpose. Furthermore, the information provided in this report is not be construed as legal advice.

This hydrogeologic investigation and report have been completed and prepared on behalf of and for the exclusive use of Elk Street Commerce Park, LLC. Any reliance on this report by a third party is at such party's sole risk.



Babcock Street Combined Sewer Overflow Area ExxonMobil Former Buffalo Terminal Operable Unit No. 3

Legend

CSO Manhole

Monitoring Well

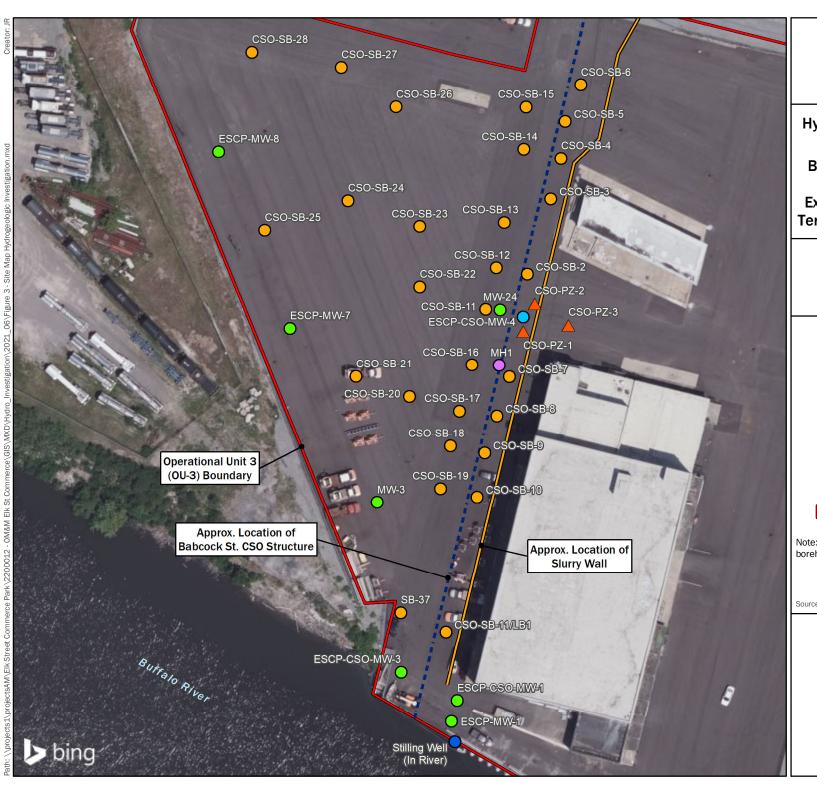
Stilling Well

Babcock St. CSO Structure

Slurry Wall

Location of Product

Infiltration into CSO Structure


I Investigation Area

Operational Unit 3 (OU-3) Boundary

Sources: Bing 2020; Erie County 2020; LaBella 2021.

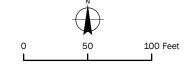
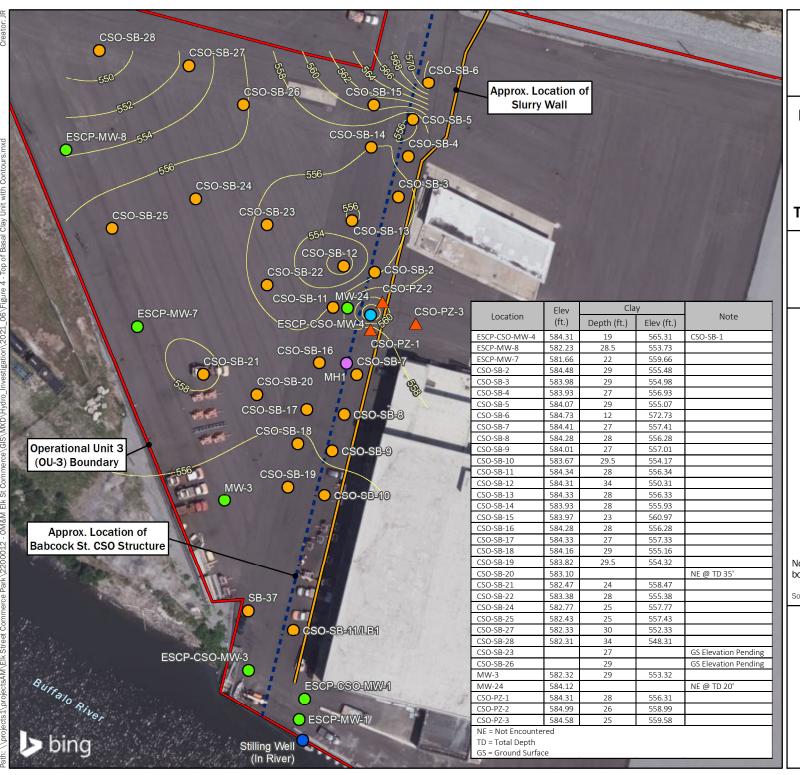

Hydrogeologic **Investigation Area**

Figure 2

Babcock Street Combined Sewer Overflow Area ExxonMobil Former Buffalo Terminal Operable Unit No. 3

<u>Legend</u>


- CSO Manhole
- Monitoring Well
- Pump Test Well
- Stilling Well
- Soil Boring
- Piezometer
- ■ Babcock St. CSO Structure
- Slurry Wall
- Operational Unit 3 (OU-3) Boundary

Note: Well ESCP-CSO-MW-4 installed at the borehole location for CSO-SB-1.

Sources: Bing 2020; Erie County 2020; LaBella 2021.

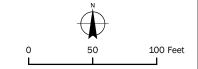

Site Map -Hydrogeologic Investigation

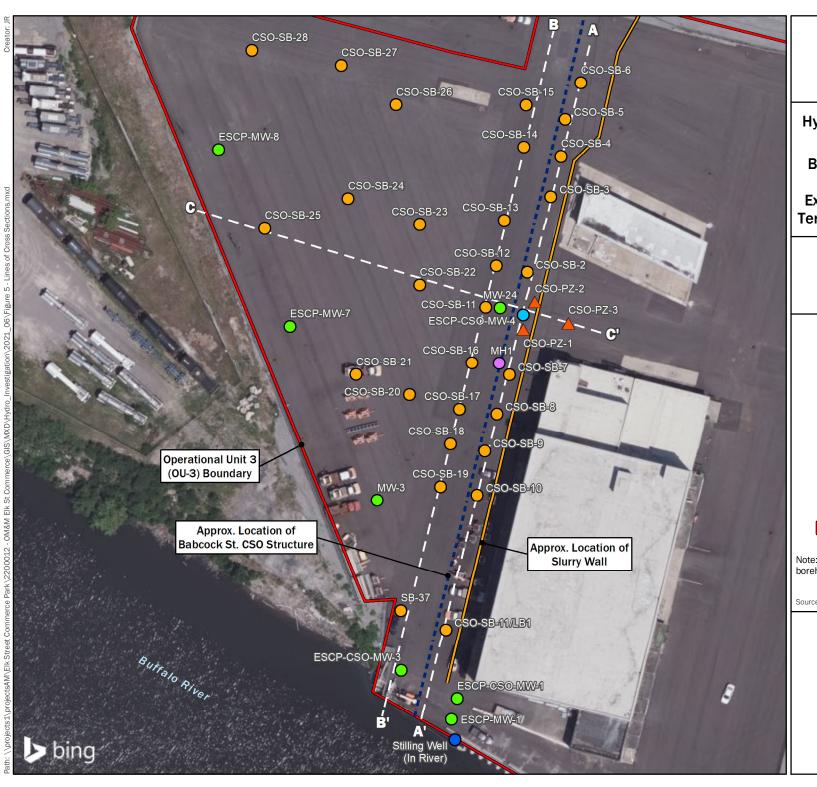
Figure 3

Babcock Street Combined Sewer Overflow Area ExxonMobil Former Buffalo Terminal Operable Unit No. 3

Legend

- CSO Manhole
- Monitoring Well
- Pump Test Well
- Stilling Well
- Soil Boring
- Piezometer

Top of Basal Clay Unit Elevation Contour (ft.)


- ■ Babcock St. CSO Structure
- Slurry Wall
- Operational Unit 3 (OU-3) Boundary

Note: Well ESCP-CSO-MW-4 installed at the borehole location for CSO-SB-1.

Sources: Bing 2020; Erie County 2020; LaBella 2021.

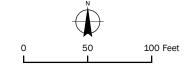

Top of Basal Clay Unit

Figure 4

Babcock Street Combined Sewer Overflow Area ExxonMobil Former Buffalo Terminal Operable Unit No. 3

Legend

CSO Manhole

Monitoring Well

Pump Test Well

Stilling Well

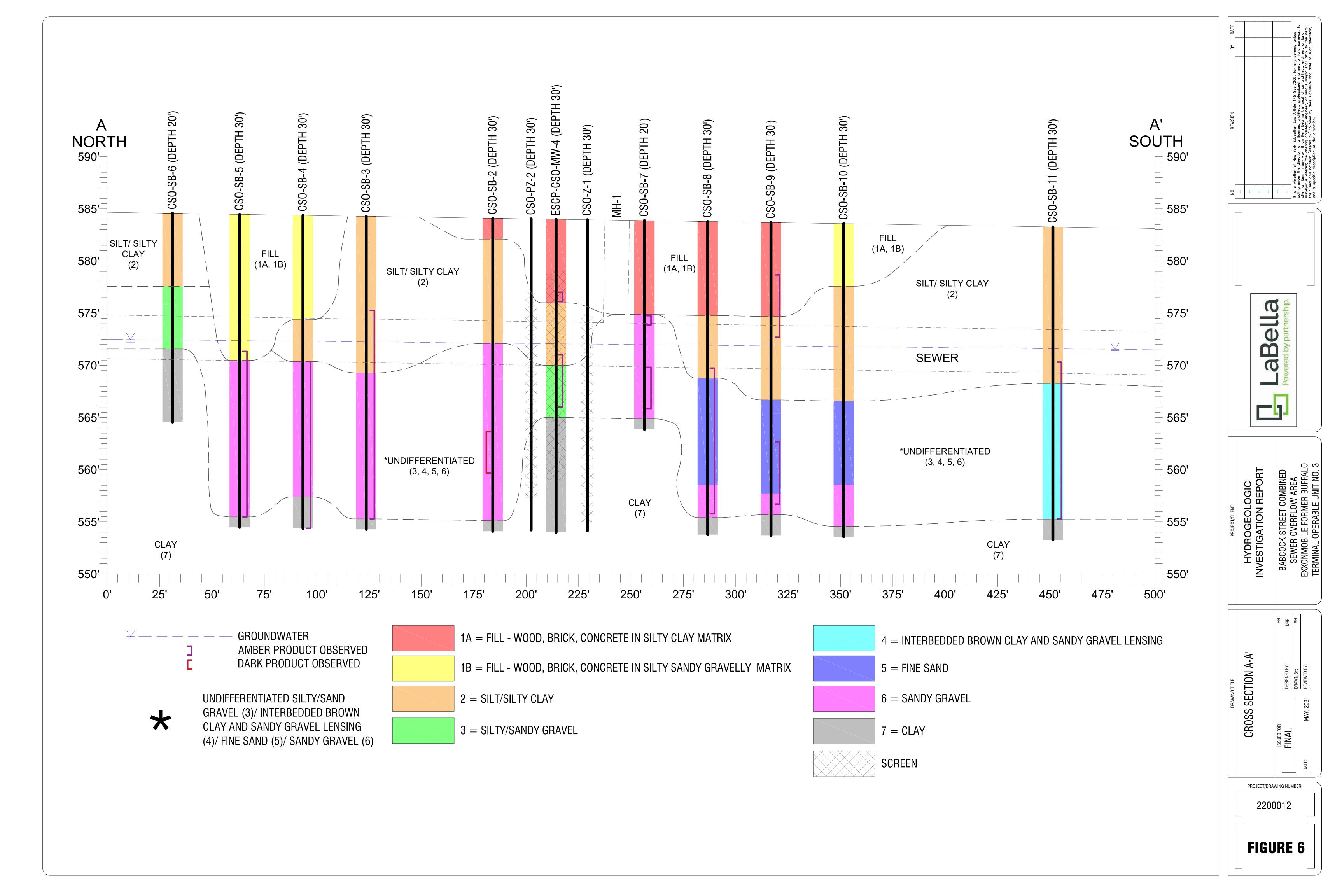
O Soil Boring

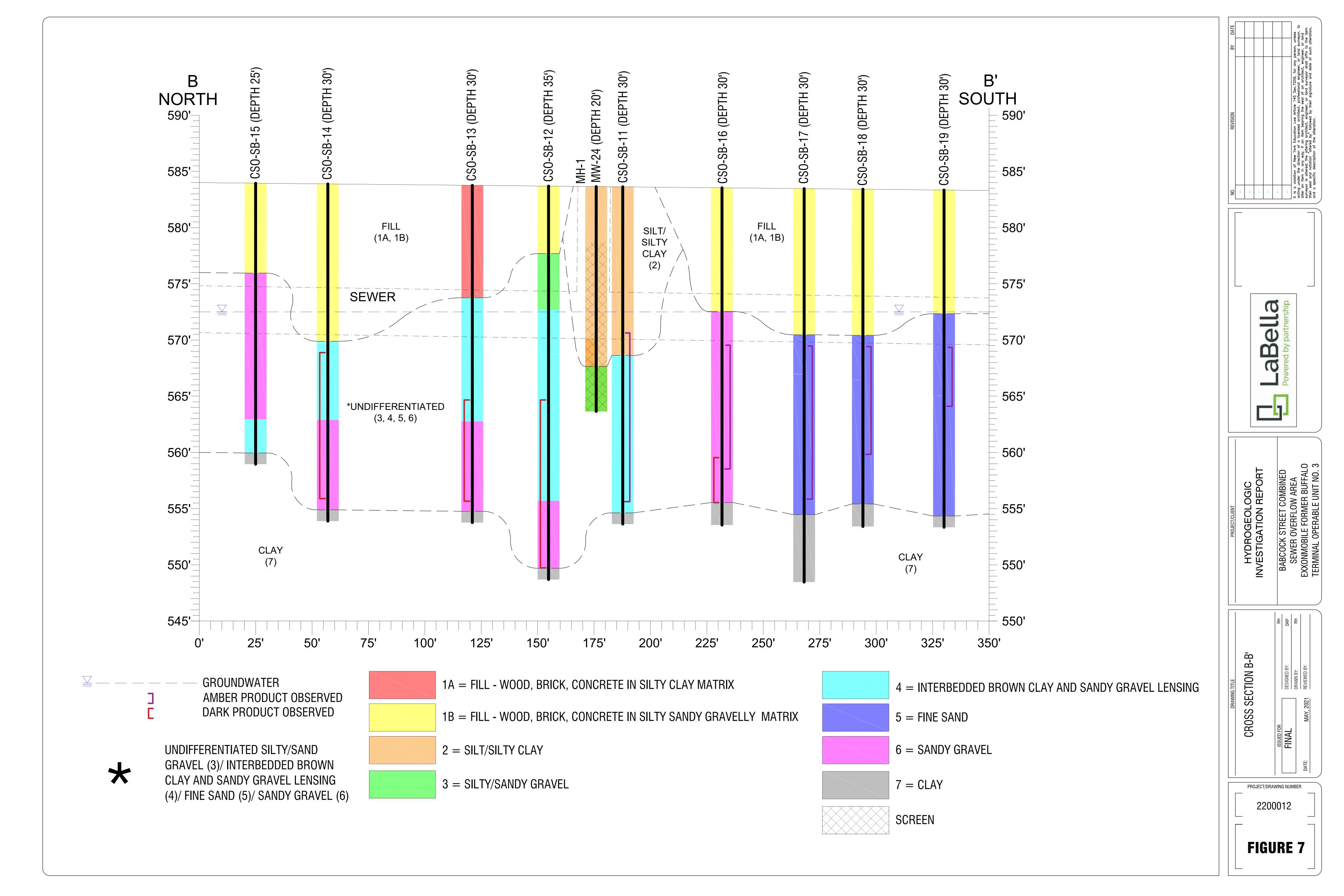
Piezometer

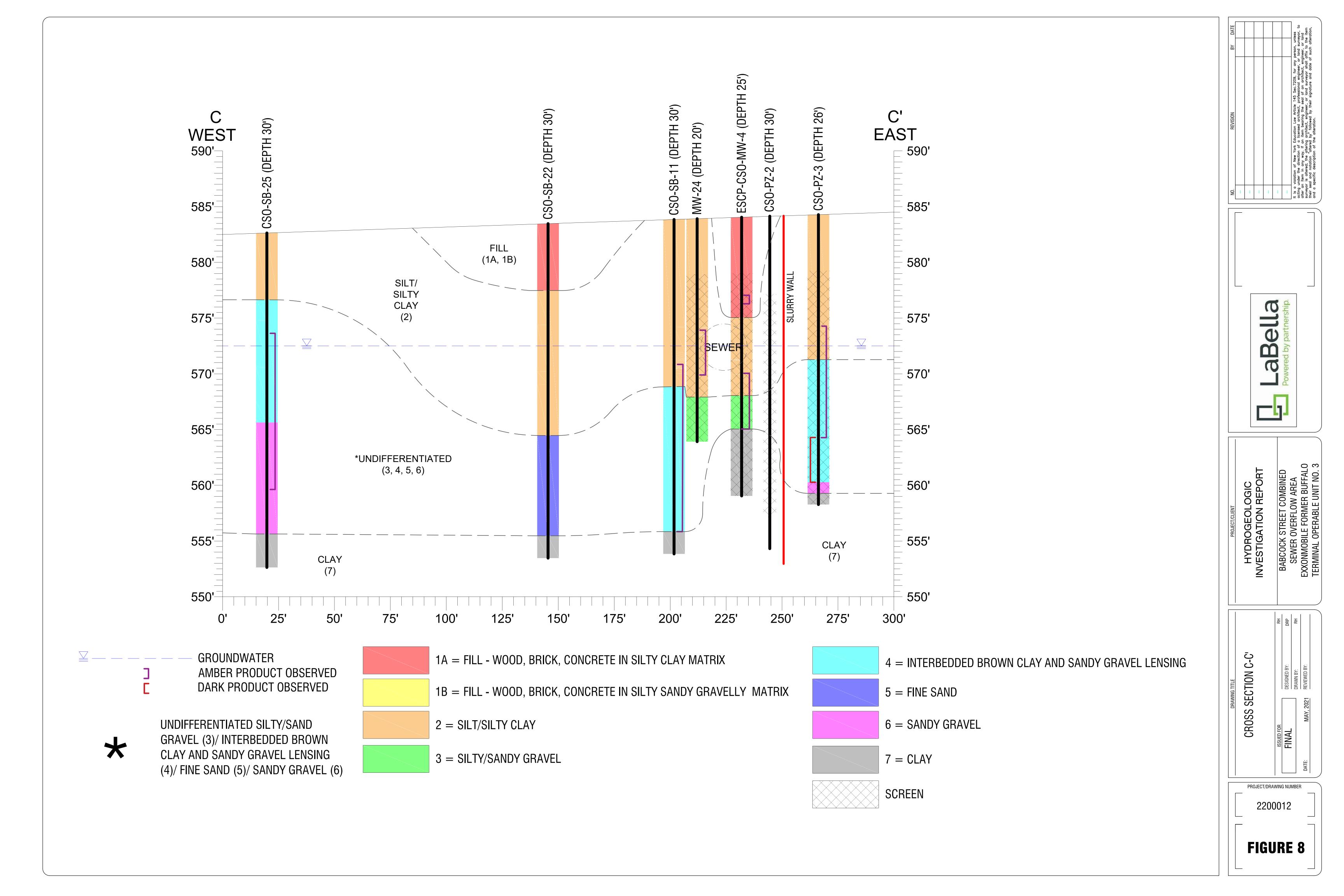
Cross-Section Location

■■ Babcock St. CSO Structure

— Slurry Wall


Operational Unit 3 (OU-3) Boundary


Note: Well ESCP-CSO-MW-4 installed at the borehole location for CSO-SB-1.


Sources: Bing 2020; Erie County 2020; LaBella 2021.

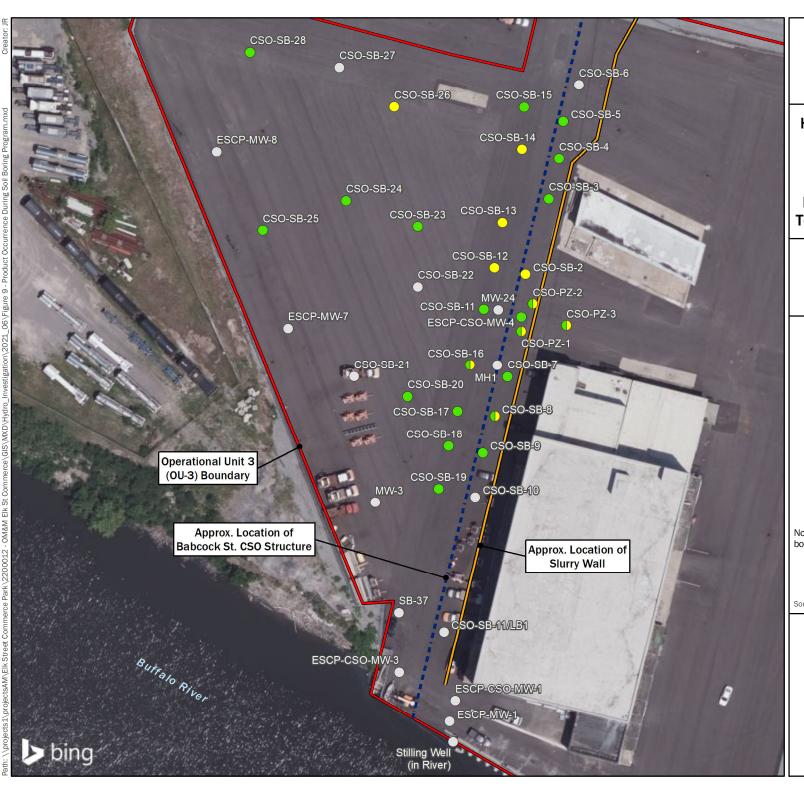
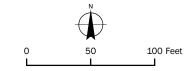

Lines of Cross-Sections

Figure 5

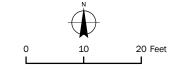


Babcock Street Combined Sewer Overflow Area ExxonMobil Former Buffalo Terminal Operable Unit No. 3

Legend

- Amber, Shallow Product
- Black Stratigraphically
 Trapped Product
- Both Products Noted in Borehole
- Product Not Observed
- Babcock St. CSO Structure
- Slurry Wall
- Operational Unit 3 (OU-3) Boundary

Note: Well ESCP-CSO-MW-4 installed at the borehole location for CSO-SB-1.


Sources: Bing 2020; Erie County 2020; LaBella 2021.

Product Occurrence During Soil Boring Program

Figure 9

Babcock Street Combined Sewer Overflow Area ExxonMobil Former Buffalo Terminal Operable Unit No. 3

<u>Legend</u>

CSO Manhole

Monitoring Well

Pump Test Well

Piezometer

Static Liquid Level Contour Prior to Pump Test (ft.)

■ ■ ■ Babcock St. CSO Structure

Slurry Wall

Operational Unit 3 (OU-3) Boundary

Note: Well ESCP-CSO-MW-4 installed at the borehole location for CSO-SB-1.

Sources: Bing 2020; Erie County 2020; LaBella 2021.

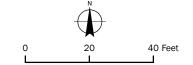

Static Liquid Level Contours Prior to Pump Test

Figure 10

Babcock Street Combined Sewer Overflow Area ExxonMobil Former Buffalo Terminal Operable Unit No. 3

Legend

CSO Manhole

Monitoring Well

Pump Test Well

Piezometer

End of Test Liquid Level Contour (ft.)

Babcock St. CSO Structure

Slurry Wall

Operational Unit 3 (OU-3) Boundary

Note: Well ESCP-CSO-MW-4 installed at the borehole location for CSO-SB-1.

Sources: Bing 2020; Erie County 2020; LaBella 2021.


End of Test Liquid Level Contours

Figure 11

APPENDIX 1

Soil Boring and Well Completion Logs

Elk Street Commerce Park, LLC CSO Investigation

BORING: CS

CSO-SB-11 OF

ESCP #2200012

JOB: CHKD BY:

300 PEARL STREET, BUFFALO, NY ENVIRONMENTAL ENGINEERING CONSULTANTS

CONTRACTOR: LaBella LLC
DRILLER: Neal Short
LABELLA REPRESENTATIVE: Andy Janik

BORING LOCATION: Babcock Street CSO Outfall GROUND SURFACE ELEVATION NA START DATE: 4/5/2021 0915

TYPE OF EQUIPMENT: GP-6610DT DRIVE SAMPLER TYPE: Acetate liners

AUGER SIZE AND TYPE: Direct Push INSIDE DIAMETER: 1.5"

OVERBURDEN SAMPING METHOD: Field Screening OTHER: -

	1			T			1	
D E P		SAMPLE					PID FIELD SCREEN	NOTES
T H	BLOW COUNT	SAMPLE RECOVERY	STRATA CHANGE		VISUAL CLASSIFICA	ATION	(PPM)	
0-5'	-	70%	-	Pavement,	concrete, Fill- wood, gra	avel, trace of Clay, tar	2.6	
5'-10'	-	75%	-	Continued Fill- dark	wood, tar, brick; 8' below amber oil to impacted,	w grade, 2" sand lens with gray, Silty Clay	667.5	
10'-15'	-	60%	-	Continued mo Sandy Gra	oist, gray, Silty Clay with vel at 14' below grade, s	organics (wood), to wet strong petroleum odor	267.8	Observed Groundwater at 14'
15'-20'	-	100%	-		et, gray, Sandy Silt and C smooth red/brown Clay a	Gravel, trace dark amber at 19' below grade	131.6	Observed Clay at 19'
								Impacts observed at location
		l		DEPTH (FT)		NOTES:		
DATE	WATER LEVI		BOTTOM OF CASING			NA = Not Applicable ND = Non Detect		tht of Hammer ght of Rod
-	-	-	-	-	-		****	D
			1	<u> </u>				

GENERAL NOTES

- 1) STRATIFICATION LINES REPRESENT APPROXMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL.
- 2) WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER MAY OCCURE DUE TO OTHER FACTORS THAN THOSE PRESENT AT THE TIME MEASUREMENTS WERE MADE

Elk Street Commerce Park, LLC **CSO** Investigation

BORING: SHEET

JOB: CHKD BY:

CSO-SB-2 1 OF

1 ESCP #2200012

ENVIRONMENTAL ENGINEERING CONSULTANTS

CONTRACTOR: LaBella LLC DRILLER: Neal Short LABELLA REPRESENTATIVE: Andy Janik BORING LOCATION: Babcock Street CSO Outfall GROUND SURFACE ELEVATION

START DATE: 4/5/2021 1020

TYPE OF EQUIPMENT: GP-6610DT AUGER SIZE AND TYPE: Direct Push OVERBURDEN SAMPING METHOD Field Screening

DRIVE SAMPLER TYPE: Acetate liners INSIDE DIAMETER: 1.5"

OTHER:

D E P	E P				PID FIELD SCREEN	NOTES
T H	BLOW COUNT	SAMPLE RECOVERY	STRATA CHANGE	VISUAL CLASSIFICATION	(PPM)	
0-5'	-	80%	-	Pavement, concrete, Fill- wood, gravel, tar, to olive Silty Clay at 2' below grade	5.6	
5'-10'	-	90%	-	Olive Silty Clay with gravel to 9' below grade, with organics (wood- black stained), to moist red/brown Clay with Gravel continued from 9' below grade	184.2	
10'-15'	-	95%	-	Continued moist red/brown Clay with embedded Gravel, lens of Sandy Gravel, black stained. Beginning at 12', intermittent lenses of Clay and Sandy Gravel beds		Observed Groundwater at 15'
15'-20'	-	95%	-	Wet, gray, Sandy Gravel, to medium/fine Sand, black stained strong petroleum odor	134.7	
20'-25'	-	50%	-	Continued wet, Sandy Gravel, gray, with black oil/grease at 22'-25'	122.9	
25'-30'	-	100%	-	Continued wet, black/gray, fine, Sandy Gravel to smooth red brown Clay at 29', petroleum odor	102.7	Observed Clay at 29'
						Impacts observed at location
	WATER LEVE	I DATA	BOTTOM OF	DEPTH (FT) NOTES: BOTTOM OF GROUNDWATER NA = Not Applicable	W/H = W/pic	ght of Hammer
DATE -	TIME	ELASPED TIME	CASING	BORING ENCOUNTERED ND = Non Detect	_	ght of Rod

GENERAL NOTES

- 1) STRATIFICATION LINES REPRESENT APPROXMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL.
- 2) WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER MAY OCCURE DUE TO OTHER FACTORS THAN THOSE PRESENT AT THE TIME MEASUREMENTS WERE MADE

Elk Street Commerce Park, LLC **CSO** Investigation

BORING: SHEET

JOB:

1.5"

CHKD BY:

CSO-SB-3 1 OF

ESCP #2200012

ENVIRONMENTAL ENGINEERING CONSULTANTS CONTRACTOR: LaBella LLC BORING LOCATION: Babcock Street CSO Outfall DRILLER: Neal Short GROUND SURFACE ELEVATION

LABELLA REPRESENTATIVE: Andy Janik START DATE: 4/5/2021 1245

> TYPE OF EQUIPMENT: GP-6610DT DRIVE SAMPLER TYPE: Acetate liners AUGER SIZE AND TYPE: Direct Push INSIDE DIAMETER: OVERBURDEN SAMPING METHOD Field Screening OTHER:

	1			
D E P	SAMPLE BLOW SAMPLE STRATA		l strata	PID FIELD NOTES SCREEN (PRM)
T H	COUNT	RECOVERY	CHANGE	VISUAL CLASSIFICATION (PPM)
0-5'	-	60%	-	Pavement, concrete, Sandy Gravel, to olive Silty Clay at 2' below grade 1.4
5'-10'	-	70%	-	Silty/Sandy/Clay, moist, brown, petroleum odor 180.2
10'-15'	-	75%	-	Continued moist red/brown Silty/Sandy/Clay with embedded Gravel, lens of Sandy Gravel, black stained with sheen, wet at 139.6 13' Observed Groundwater at 13'
15'-20'	-	75%	-	Wet, gray, Sandy Gravel, black stained, with amber colored oil, sheen, strong petroleum odor
20'-25'	-	75%	-	Continued wet, Sandy Gravel, gray, some residual oil and sheen
25'-30'	1	75%	-	Continued wet, Sandy Gravel, gray, some residual oil and sheen to smooth red/brown Clay at 29' Observed Clay at 29'
				Impacts observed at location
			20	DEPTH (FT) NOTES:
DATE	TIME	EL DATA ELASPED TIME	BOTTOM OF CASING	BOTTOM OF GROUNDWATER NA = Not Applicable WH = Weight of Hammer BORING ENCOUNTERED ND = Non Detect WR = Weight of Rod
-	-	-	-	

GENERAL NOTES

- 1) STRATIFICATION LINES REPRESENT APPROXMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL.
- 2) WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER MAY OCCURE DUE TO OTHER FACTORS THAN THOSE PRESENT AT THE TIME MEASUREMENTS WERE MADE

Elk Street Commerce Park, LLC **CSO** Investigation

BORING: CSO-SB-4

SHEET JOB: CHKD BY:

1 OF 1 ESCP #2200012

ENVIRONMENTAL ENGINEERING CONSULTANTS

CONTRACTOR: LaBella LLC DRILLER: Neal Short

LABELLA REPRESENTATIVE: Andy Janik

BORING LOCATION: Babcock Street CSO Outfall GROUND SURFACE ELEVATION

START DATE: 4/5/2021 1405

TYPE OF EQUIPMENT: GP-6610DT AUGER SIZE AND TYPE: Direct Push OVERBURDEN SAMPING METHOD Field Screening

DRIVE SAMPLER TYPE: Acetate liners INSIDE DIAMETER: 1.5"

OTHER:

D E		SAMPLE			PID FIELD	NOTES
P T H	BLOW COUNT	SAMPLE RECOVERY	STRATA CHANGE	VISUAL CLASSIFICATION	SCREEN (PPM)	
0-5'	-	60%	-	Pavement, olive Silty Clay to moist, brown Silty Clay	11.8	
5'-10'	-	50%	-	Fill- concrete, brick; to black stained Silty Sand, some wood debris	od 198.2	
10'-15'	-	60%	-	Moist, brown, Clay, to wet Sandy Gravel at 14'	30.2	Observed Groundwater at 14'
15'-20'	-	90%	-	Wet, gray, Sandy Gravel, black stained, with amber color oil, sheen, strong petroleum odor	ed 53.3	
20'-25'	-	60%	-	Continued wet, Sandy Gravel, gray, some residual oil an sheen	d 114.4	
25'-30'	-	100%	-	Continued wet, Sandy Gravel, gray, some residual oil an sheen to smooth red/brown Clay at 27'	d 29.7	Observed Clay at 27'
						Impacts observed at location
	\A/ATED / E\ '	TI DATA	DOTTOMACE	DEPTH (FT) NOTES:	\A/II \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	aht of Hommer
DATE	WATER LEVE	ELASPED TIME	BOTTOM OF CASING	BOTTOM OF GROUNDWATER NA = Not Applicable BORING ENCOUNTERED ND = Non Detect		gnt of Hammer ight of Rod
-	-	-	-			

GENERAL NOTES

- 1) STRATIFICATION LINES REPRESENT APPROXMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL.
- 2) WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER MAY OCCURE DUE TO OTHER FACTORS THAN THOSE PRESENT AT THE TIME MEASUREMENTS WERE MADE

Elk Street Commerce Park, LLC **CSO** Investigation

BORING: SHEET

JOB:

CHKD BY:

CSO-SB-5

1 OF ESCP #2200012

1

ENVIRONMENTAL ENGINEERING CONSULTANTS

CONTRACTOR: LaBella LLC DRILLER: Neal Short

LABELLA REPRESENTATIVE: Andy Janik

BORING LOCATION: Babcock Street CSO Outfall GROUND SURFACE ELEVATION

START DATE: 4/5/2021 1515

TYPE OF EQUIPMENT: GP-6610DT AUGER SIZE AND TYPE: Direct Push OVERBURDEN SAMPING METHOD Field Screening

DRIVE SAMPLER TYPE: Acetate liners INSIDE DIAMETER: 1.5"

OTHER:

D E P		SAMPLE			PID FIELD SCREEN	NOTES
Т Н	BLOW COUNT	SAMPLE RECOVERY	STRATA CHANGE	VISUAL CLASSIFICATION	(PPM)	
0-5'	-	95%	-	Pavement, Fill- brick, stone, concrete	10.4	
5'-10'	-	50%	-	Fill- concrete, brick; to medium Gravel	2.3	
10'-15'	-	30%	-	Moist to wet Sandy Gravel at 14', with sheen	144.5	Observed Groundwater at 14'
15'-20'	-	10%	-	Push	28.6	
20'-25'	-	10%	-	Push	7.8	
25'-30'	-	20%	-	Continued wet, Sandy Gravel, gray, some residual sheen to smooth red/brown Clay at 29'		Observed Clay at 29'
						Impacts observed at location
	\A/ATED 5\'5	TI DATA	DOTTOM OF	DEPTH (FT) NOTES:		sht of Homoso
DATE	WATER LEVE TIME	ELASPED TIME	BOTTOM OF CASING	BOTTOM OF GROUNDWATER NA = Not Applicable BORING ENCOUNTERED ND = Non Detect	vvn = vvei WR = We	gnt of Hammer ight of Rod
-	-	-	-			_

GENERAL NOTES

- 1) STRATIFICATION LINES REPRESENT APPROXMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL.
- 2) WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER MAY OCCURE DUE TO OTHER FACTORS THAN THOSE PRESENT AT THE TIME MEASUREMENTS WERE MADE

300 PEARL STREET, BUFFALO, NY ENVIRONMENTAL ENGINEERING CONSULTANTS

LABELLA REPRESENTATIVE: Andy Janik

CONTRACTOR:

DRILLER:

Elk Street Commerce Park, LLC **CSO** Investigation

BORING: SHEET

CSO-SB-6

1 OF ESCP #2200012

1

JOB: CHKD BY:

BORING LOCATION: Babcock Street CSO Outfall GROUND SURFACE ELEVATION

START DATE: 4/6/2021 0815

TYPE OF EQUIPMENT: GP-6610DT AUGER SIZE AND TYPE: Direct Push OVERBURDEN SAMPING METHOD Field Screening

LaBella LLC

Neal Short

DRIVE SAMPLER TYPE: Acetate liners INSIDE DIAMETER: 1.5"

OTHER:

D E P		SAMPLE					PID FIELD SCREEN	NOTES
т Н	BLOW COUNT	SAMPLE RECOVERY	STRATA CHANGE		VISUAL CLASSIFICA	ATION	(PPM)	
0-5'	-	100%	-	Paven	nent, concrete, to olive,	black stained Silt	44.8	
5'-10'	-	70%	-	Olive Silty/	Sandy/Clay, with trace of coarse Grave	organics to wet, black,	80.4	Observed Groundwater at 10'
10'-15'	-	60%	-	Wet, coar	se, Gravel, to moist, sm	nooth, red/brown Clay	6.8	Observed Clay at 12'
15'-20'	-	10%	-		Push		28.6	
	WATER LEV	FI DATA	BOTTOM OF	DEPTH (FT)	GROUNDWATER	NOTES:	\\/H = \\/\cig	wht of Hammer
DATE -	TIME -	ELASPED TIME	CASING -			NA = Not Applicable ND = Non Detect	WR = Wei	ght of Hammer ight of Rod

GENERAL NOTES

- 1) STRATIFICATION LINES REPRESENT APPROXMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL.
- 2) WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER MAY OCCURE DUE TO OTHER FACTORS THAN THOSE PRESENT AT THE TIME MEASUREMENTS WERE MADE

ENVIRONMENTAL ENGINEERING CONSULTANTS

300 PEARL STREET, BUFFALO, NY

Elk Street Commerce Park, LLC **CSO** Investigation

BORING: SHEET

JOB:

CHKD BY:

CSO-SB-7 1 OF

ESCP #2200012

1

CONTRACTOR: LaBella LLC DRILLER: Neal Short

LABELLA REPRESENTATIVE: Andy Janik

BORING LOCATION: Babcock Street CSO Outfall GROUND SURFACE ELEVATION 4/6/2021 0855 START DATE:

TYPE OF EQUIPMENT: GP-6610DT DRIVE SAMPLER TYPE: Acetate liners AUGER SIZE AND TYPE: Direct Push **INSIDE DIAMETER:** 1.5" OVERBURDEN SAMPING METHOD Field Screening OTHER:

D E P	SAMPLE				PID FIELD SCREEN	NOTES
Т Н	BLOW COUNT	SAMPLE RECOVERY	STRATA CHANGE	VISUAL CLASSIFICATION	(PPM)	
0-5'	-	80%	-	Pavement, concrete, to olive/brown, Silty Clay, with trace Gravel and organics	1.2	
5'-10'	-	60%	-	Fluff, to moist brown Clay, Sandy Gravel lens at 9', petroleum odor, black crystalline material with ash fill and amber colored oil at 9.5'	592.6	
10'-15'	-	40%	-	Fine, coarse grained, Sandy Gravel, with intermittent Clay lens, wet at 14'	355.8	Observed Groundwater at 14'
15'-20'	-	75%	-	Wet, intermittent Sandy Gravel and moist, brown, Clay lenses, sheen throughout	648.7	
20'-25'	-	5%	-	Push	-	
25'-30'	-	40%	-	Sandy Gravel to moist, red/brown, smooth Clay at 27'	103.4	Observed Clay at 27'
						Impacts observed at location
			BOTTOM OF	DEPTH (FT) NOTES: BOTTOM OF GROUNDWATER NA = Not Applicable		
DATE -	TIME -	ELASPED TIME -	CASING -	BORING ENCOUNTERED ND = Non Detect	WR = Weight of Rod	

GENERAL NOTES

- 1) STRATIFICATION LINES REPRESENT APPROXMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL.
- 2) WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER MAY OCCURE DUE TO OTHER FACTORS THAN THOSE PRESENT AT THE TIME MEASUREMENTS WERE MADE

Elk Street Commerce Park, LLC **CSO** Investigation

BORING: SHEET

JOB:

CHKD BY:

CSO-SB-8

1 OF 1 ESCP #2200012

ENVIRONMENTAL ENGINEERING CONSULTANTS

CONTRACTOR: LaBella LLC DRILLER: Neal Short LABELLA REPRESENTATIVE: Andy Janik BORING LOCATION: Babcock Street CSO Outfall GROUND SURFACE ELEVATION

START DATE: 4/6/2021 0945

TYPE OF EQUIPMENT: GP-6610DT AUGER SIZE AND TYPE: Direct Push OVERBURDEN SAMPING METHOD Field Screening DRIVE SAMPLER TYPE: Acetate liners INSIDE DIAMETER: 1.5" OTHER:

	ı			1				
D E P		SAMPLE					PID FIELD SCREEN	NOTES
T H	BLOW COUNT	SAMPLE RECOVERY	STRATA CHANGE		VISUAL CLASSIFICA	ATION	(PPM)	
0-5'	-	95%	-	Pavement,	concrete, to olive/browr Gravel and ash	n, Silty Clay, with trace Fill	14.6	
5'-10'	-	50%	-	M	oist, ash fill, some Sand	y Gravel at 9'	776.2	
10'-15'	-	10%	-		Moist, gray, Silty	Clay	391.3	
15'-20'	-	95%	-	Wet, gray	, fine Sand, saturated w	ith amber colored oil	648.7	Observed Groundwater at 15'
20'-25'	-	95%	-	Wet, gray,	fine Sand, saturated wit medium/coarse Grav	h amber colored oil to el at 24'	596.7	
25'-30'	1	90%	-		ne Sand, stained black rse Gravel, to moist, sm 28'	with neavy sneening to ooth, red/brown Clay at	104.2	Observed Clay at 28'
								Impacts observed at location
	WATER LEVE	I DATA	BOTTOM OF	DEPTH (FT)		NOTES:	\\\L = \\\air	tht of Hammer
DATE -	TIME -	ELASPED TIME	CASING -	BORING -		NA = Not Applicable ND = Non Detect		ght of Hammer ght of Rod
			•	<u> </u>	<u>. </u>			

GENERAL NOTES

- 1) STRATIFICATION LINES REPRESENT APPROXMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL.
- 2) WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER MAY OCCURE DUE TO OTHER FACTORS THAN THOSE PRESENT AT THE TIME MEASUREMENTS WERE MADE

DRILLER:

Elk Street Commerce Park, LLC **CSO** Investigation

BORING: SHEET

JOB:

CHKD BY:

CSO-SB-9

1 OF 1 ESCP #2200012

ENVIRONMENTAL ENGINEERING CONSULTANTS CONTRACTOR: LaBella LLC

Neal Short LABELLA REPRESENTATIVE: Andy Janik BORING LOCATION: Babcock Street CSO Outfall GROUND SURFACE ELEVATION

START DATE: 4/6/2021 1040

TYPE OF EQUIPMENT: GP-6610DT AUGER SIZE AND TYPE: Direct Push OVERBURDEN SAMPING METHOC Field Screening DRIVE SAMPLER TYPE: Acetate liners INSIDE DIAMETER: 1.5"

OTHER:

D E P		SAMPLE			PID FIELD SCREEN	NOTES
T H	BLOW COUNT	SAMPLE RECOVERY	STRATA CHANGE	VISUAL CLASSIFICATION	(PPM)	
0-5'	-	85%	-	Pavement, concrete, to olive/brown, Silty Clay, with brid	ck Fill 1.4	
5'-10'	-	70%	-	Fill to fine, gray/black, Sandy Silt, moist at 8' with she	een 358.6	
10'-15'	-	95%	-	Moist, gray, Silty Clay, trace organics	231.6	
15'-20'	-	100%	-	Moist, gray, Silty Sand, with organics and petroleum of	odor 78.8	
20'-25'	-	100%	-	Wet, gray, Silty Sand, saturated with amber colored oil t Sandy Gravel at 23'	261.5	Observed Groundwater at 23'
25'-30'	-	100%	-	Wet, gray, Sandy Gravel, with heavy sheening to mo smooth, red/brown Clay at 27'	521.2	Observed Clay at 27'
						Impacts observed at location
_						
_						
	\A/ATED : 5: '5	LDATA	DOTTOM 4 CE	DEPTH (FT) NOTES:	de same same	
DATE	WATER LEVE	L DATA ELASPED TIME	BOTTOM OF CASING	BOTTOM OF GROUNDWATER NA = Not Applicab BORING ENCOUNTERED ND = Non Detect		ght of Hammer ght of Rod

GENERAL NOTES

- 1) STRATIFICATION LINES REPRESENT APPROXMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL.
- 2) WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER MAY OCCURE DUE TO OTHER FACTORS THAN THOSE PRESENT AT THE TIME MEASUREMENTS WERE MADE

Elk Street Commerce Park, LLC **CSO** Investigation

BORING: SHEET

CHKD BY:

CSO-SB-10

JOB:

1 OF ESCP #2200012

ENVIRONMENTAL ENGINEERING CONSULTANTS

CONTRACTOR: LaBella LLC DRILLER: Neal Short LABELLA REPRESENTATIVE: Andy Janik BORING LOCATION: Babcock Street CSO Outfall GROUND SURFACE ELEVATION

START DATE: 4/6/2021 1225

TYPE OF EQUIPMENT: GP-6610DT AUGER SIZE AND TYPE: Direct Push OVERBURDEN SAMPING METHOD Field Screening DRIVE SAMPLER TYPE: Acetate liners **INSIDE DIAMETER:** 1.5"

OTHER:

D E P	SAMPLE				PID FIELD SCREEN	NOTES
T H	BLOW COUNT	SAMPLE RECOVERY	STRATA CHANGE	VISUAL CLASSIFICATION	(PPM)	
0-5'	-	75%	-	Pavement, concrete, to Fill with tan Sand	9.1	
5'-10'	-	70%	-	Tan Sand to moist, olive Silt with organics, some brown Clay	7.6	
10'-15'	-	75%	-	Gray, moist, Sandy/Silty/Clay to Silty Sand at 14'	347.6	
15'-20'	-	75%	-	Moist/wet, gray, medium Sand, with petroleum odor	490.2	Observed Groundwater at 16'
20'-25'	-	50%	-	Wet, gray, Silty Sand, to coarse Sand at 22', to well sorted Gravel at 25'	1.7	
25'-30'	-	95%	-	Wet, gray, Sandy Gravel, to moist, smooth, red/brown Clay at 29.5'	1.9	Observed Clay at 29.5'
	WATER LEVE	L DATA	BOTTOM OF	DEPTH (FT) BOTTOM OF GROUNDWATER BORING ENCOUNTERED NOTES: NA = Not Applicable ND = Non Detect	WH = Weig WR = Wei	tht of Hammer

GENERAL NOTES

- 1) STRATIFICATION LINES REPRESENT APPROXMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL.
- 2) WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER MAY OCCURE DUE TO OTHER FACTORS THAN THOSE PRESENT AT THE TIME MEASUREMENTS WERE MADE

Elk Street Commerce Park, LLC **CSO** Investigation

BORING:

CSO-SB-11

SHEET JOB:

CHKD BY:

1.5"

1 OF 1 ESCP #2200012

ENVIRONMENTAL ENGINEERING CONSULTANTS

CONTRACTOR: LaBella LLC DRILLER: Neal Short LABELLA REPRESENTATIVE: Andy Janik BORING LOCATION: Babcock Street CSO Outfall GROUND SURFACE ELEVATION

START DATE: 4/6/2021 1330

TYPE OF EQUIPMENT: GP-6610DT DRIVE SAMPLER TYPE: Acetate liners AUGER SIZE AND TYPE: Direct Push INSIDE DIAMETER: OVERBURDEN SAMPING METHOD Field Screening OTHER:

D E P	SAMPLE				PID FIELD SCREEN	NOTES
Т Н	BLOW COUNT	SAMPLE RECOVERY	STRATA CHANGE	VISUAL CLASSIFICATION	(PPM)	
0-5'	-	100%	-	Pavement, to brown, Sandy/Silty/Clay	2.6	
5'-10'	-	100%	-	Brown, Silty Clay	2.1	
10'-15'	-	60%	-	Moist/wet, brown, Clay with embedded Gravel; Sand and Gravel lensing with amber colored oil at 14'	474.4	Observed Groundwater at 14'
15'-20'	-	100%	-	Wet, gray, Silty Sand with amber colored oil and sheening	486.2	
20'-25'	-	85%	-	Wet, intermittent Brown Clay and Sandy Gravel lensing windsheen	h 19.3	
25'-30'	-	95%	-	Wet, gray, Sandy Gravel, with organic wood debris and sheen, to moist, smooth, red/brown Clay at 28'	68.9	Observed Clay at 28'
						Impacts observed at location
	WATER LEVE	L DATA	BOTTOM OF	DEPTH (FT) NOTES: BOTTOM OF GROUNDWATER NA = Not Applicable	WH = Weig	ght of Hammer
DATE -	TIME -	ELASPED TIME -	CASING -	BORING ENCOUNTERED ND = Non Detect		ght of Rod

GENERAL NOTES

- 1) STRATIFICATION LINES REPRESENT APPROXMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL.
- 2) WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER MAY OCCURE DUE TO OTHER FACTORS THAN THOSE PRESENT AT THE TIME MEASUREMENTS WERE MADE

Elk Street Commerce Park, LLC **CSO** Investigation

BORING: SHEET

CSO-SB-12 1 OF

JOB:

CHKD BY:

ESCP #2200012

ENVIRONMENTAL ENGINEERING CONSULTANTS

CONTRACTOR: LaBella LLC DRILLER: Neal Short LABELLA REPRESENTATIVE: Andy Janik BORING LOCATION: Babcock Street CSO Outfall GROUND SURFACE ELEVATION

START DATE: 4/6/2021 1440

TYPE OF EQUIPMENT: GP-6610DT AUGER SIZE AND TYPE: Direct Push OVERBURDEN SAMPING METHOD Field Screening

DRIVE SAMPLER TYPE: Acetate liners INSIDE DIAMETER: 1.5"

OTHER:

D E P		SAMPLE			PID FIELD SCREEN	NOTES
Т Н	BLOW COUNT	SAMPLE RECOVERY	STRATA CHANGE	VISUAL CLASSIFICATION	(PPM)	
0-5'	-	90%	-	Pavement, to brown, Sandy/Silty/Clay, some brick	3.3	
5'-10'	-	85%	-	Moist, brown, Silt, with some Gravel, to brown Clay at 9.5	2.4	
10'-15'	-	60%	-	Moist/wet, brown, Clay with embedded Gravel, petroleum or	or 473.2	Observed Groundwater at 14'
15'-20'	-	60%	-	Wet, gray, Sandy Gravel and brown Clay lensing	70.3	
20'-25'	-	50%	-	Wet, Silty Sandy Gravel lensing, saturated with black oil/grease	164.9	
25'-30'	-	95%	-	Wet, gray, Sandy Gravel, saturated with black oil/grease, strong petroleum odor	28.3	
30'-35'	-	80%	-	Wet, gray, Sandy Gravel, saturated with black oil/grease, strong petroleum odor, to smooth, red/brown Clay at 34'	28.3	Observed Clay at 34'
						Impacts observed at location
	\A/ATES : =: :=	LDATA	DOTTO: CO	DEPTH (FT) NOTES:	\A## *** *	
DATE	WATER LEVE	L DATA ELASPED TIME	BOTTOM OF CASING	BOTTOM OF GROUNDWATER NA = Not Applicable BORING ENCOUNTERED ND = Non Detect		ght of Hammer ight of Rod
-	-	-	-			

GENERAL NOTES

- 1) STRATIFICATION LINES REPRESENT APPROXMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL.
- 2) WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER MAY OCCURE DUE TO OTHER FACTORS THAN THOSE PRESENT AT THE TIME MEASUREMENTS WERE MADE

Elk Street Commerce Park, LLC **CSO** Investigation

BORING: CSO-SB-13 SHEET

JOB: CHKD BY: 1 OF

ESCP #2200012

ENVIRONMENTAL ENGINEERING CONSULTANTS

CONTRACTOR: LaBella LLC DRILLER: Neal Short LABELLA REPRESENTATIVE: Andy Janik BORING LOCATION: Babcock Street CSO Outfall GROUND SURFACE ELEVATION

START DATE: 4/8/2021 0750

TYPE OF EQUIPMENT: GP-6610DT AUGER SIZE AND TYPE: Direct Push OVERBURDEN SAMPING METHOD Field Screening

DRIVE SAMPLER TYPE: Acetate liners INSIDE DIAMETER: 1.5"

OTHER:

	_							
D E P T	BLOW	SAMPLE SAMPLE	STRATA		VISUAL CLASSIFIO	^ATION	PID FIELD SCREEN (PPM)	NOTES
Н	COUNT	RECOVERY	CHANGE		VISUAL CLASSII N	CATION	(FFIVI)	
0-5'	-	100%	-	Paveme	nt, to brown, Sandy/S	ilty/Clay, some wood	6.9	
5'-10'	-	100%	-	Moist, brown	, Silty/Sandy Fill, to m	oist gray Silty Clay at 9.5'	0.5	
10'-15'	-	90%	-	Moist, gray, Si	lty Clay, to intermitten Clay layer	: Sandy Gravel and brown, s	21.2	Observed Groundwater at 13'
15'-20'	-	100%	-	Intermittent S 18', t	andy Gravel and brow hen well sorted Grave	n, Clay layers continue to I, wet throughout	71.9	
20'-25'	-	100%	-	Wet, w	vell sorted Sandy Grav	el, black oil/grease	120.4	
25'-30'	-	95%	-			ed with black oil/grease, n, red/brown Clay at 28'	113.5	Observed Clay at 28'
								Impacts observed at location
				DEPTH (FT)		NOTES:		
DATE	WATER LEVE	EL DATA ELASPED TIME	BOTTOM OF CASING	BOTTOM OF	GROUNDWATER ENCOUNTERED	NA = Not Applicable ND = Non Detect		ght of Hammer ght of Rod
-	-	-	-	-	-	Non Better	**!\ - VVC	p 31 1100

GENERAL NOTES

- 1) STRATIFICATION LINES REPRESENT APPROXMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL.
- 2) WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER MAY OCCURE DUE TO OTHER FACTORS THAN THOSE PRESENT AT THE TIME MEASUREMENTS WERE MADE

300 PEARL STREET, BUFFALO, NY ENVIRONMENTAL ENGINEERING CONSULTANTS

DRILLER:

Elk Street Commerce Park, LLC **CSO** Investigation

BORING: CSO-SB-14 SHEET

1 OF ESCP #2200012

JOB: CHKD BY:

1.5"

CONTRACTOR: LaBella LLC BORING LOCATION: Babcock Street CSO Outfall Neal Short GROUND SURFACE ELEVATION

LABELLA REPRESENTATIVE: Andy Janik START DATE: 4/8/2021 0900

> TYPE OF EQUIPMENT: GP-6610DT DRIVE SAMPLER TYPE: Acetate liners AUGER SIZE AND TYPE: Direct Push INSIDE DIAMETER: OVERBURDEN SAMPING METHOD Field Screening OTHER:

D E		SAMPLE					PID FIELD	NOTES
P T H	BLOW COUNT	SAMPLE RECOVERY	STRATA CHANGE		VISUAL CLASSIFICA	ATION	SCREEN (PPM)	
0-5'	-	95%	-	F	Pavement, to brown, Silt	y Sandy Fill	1.6	
5'-10'	-	80%	-		Silty Sandy Fill, some	concrete	2.8	
10'-15'	-	50%	-	Wet, Silty S	Sandy Fill to 13', then we	et, gray, Sandy Gravel	118.4	Observed Groundwater at 13'
15'-20'	-	95%	-		andy Gravel and brown vell sorted Gravel, wet t oil/grease	, Clay layers continue to hroughout with black	203.7	
20'-25'	-	50%	-	Wet, well	sorted Sandy Gravel, tr	ace black oil/grease	200.3	
25'-30'	-	100%	-	Wet, gray, strong petr	Sandy Gravel, saturated oleum odor, to smooth,	l with black oil/grease, red/brown Clay at 28'	71.4	Observed Clay at 28'
								Impacts observed at location
				DEPTH (FT)		NOTES:	1	
DATE	WATER LEVE		BOTTOM OF	BOTTOM OF	GROUNDWATER	NA = Not Applicable		tht of Hammer
DATE	TIME	ELASPED TIME	CASING			ND = Non Detect	vvk = Wei	ght of Rod
-	-	-	-	-	-			

GENERAL NOTES

- 1) STRATIFICATION LINES REPRESENT APPROXMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL.
- 2) WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER MAY OCCURE DUE TO OTHER FACTORS THAN THOSE PRESENT AT THE TIME MEASUREMENTS WERE MADE

LaBella LLC

Neal Short

300 PEARL STREET, BUFFALO, NY ENVIRONMENTAL ENGINEERING CONSULTANTS

CONTRACTOR:

DRILLER:

Elk Street Commerce Park, LLC CSO Investigation

BORING: CSO-SB-15

SHEET **JOB:** 1 OF **ESCP #2200012**

CHKD BY:

BORING LOCATION: Babcock Street CSO Outfall GROUND SURFACE ELEVATION NA

LABELLA REPRESENTATIVE: Andy Janik START DATE: 4/8/2021 0900

TYPE OF EQUIPMENT: GP-6610DT

AUGER SIZE AND TYPE: Direct Push

OVERBURDEN SAMPING METHOC Field Screening

DRIVE SAMPLER TYPE: Acetate liners INSIDE DIAMETER: 1.5"

OTHER: -

				_			_	
D E P		SAMPLE					PID FIELD SCREEN	NOTES
T H	BLOW COUNT	SAMPLE RECOVERY	STRATA CHANGE		VISUAL CLASSIFIC	ATION	(PPM)	
0-5'	-	100%	-	Pave	ment/concrete, to brow	n, Silty Sandy Fill	1.3	
5'-10'	-	85%	-	Continued	Silty Sandy Fill to mois	t, black, oily Silty Sand	21.9	
10'-15'	-	85%	-		Wet, gray, Sandy	Gravel	28.6	Observed Groundwater at 13'
15'-20'	-	90%	-	Wet, medium	Sand, some Gravel, tr Clay at 19.5	ace of oil, to moist brown	242.8	
20'-25'	-	100%	-	Wet, interm	nittent brown Clay and S smooth, red/brown C	Sandy Gravel lenses to Clay at 23'	15.4	Observed Clay at 23'
								Impacts observed at location
		<u> </u>		DEPTH (FT)		NOTES:	1	<u> </u>
DATE	WATER LEVE TIME	EL DATA ELASPED TIME	BOTTOM OF CASING		GROUNDWATER ENCOUNTERED	NA = Not Applicable ND = Non Detect		ght of Hammer ght of Rod
-	-	-	-	-	-			

GENERAL NOTES

- 1) STRATIFICATION LINES REPRESENT APPROXMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL.
- 2) WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER MAY OCCURE DUE TO OTHER FACTORS THAN THOSE PRESENT AT THE TIME MEASUREMENTS WERE MADE

LaBella LLC

Neal Short

300 PEARL STREET, BUFFALO, NY ENVIRONMENTAL ENGINEERING CONSULTANTS

CONTRACTOR:

DRILLER:

Elk Street Commerce Park, LLC CSO Investigation

BORING: CSO-SB-16

SHEET 1 OF

JOB: CHKD BY: ESCP #2200012

BORING LOCATION: Babcock Street CSO Outfall GROUND SURFACE ELEVATION NA

LABELLA REPRESENTATIVE: Andy Janik START DATE: 4/8/2021 1225

TYPE OF EQUIPMENT: GP-6610DT DRIVE SAMPLER TYPE: Acetate liners

AUGER SIZE AND TYPE: Direct Push
OVERBURDEN SAMPING METHOC Field Screening
OTHER: -

D E P		SAMPLE			PID FIELD SCREEN	NOTES
Т Н	BLOW COUNT	SAMPLE RECOVERY	STRATA CHANGE	VISUAL CLASSIFICATION	(PPM)	
0-5'	-	100%	-	Pavement/concrete, to brown, Silty Sandy Fill	1.8	
5'-10'	-	90%	-	Silty Sandy Fill	3.2	
10'-15'	-	95%	-	Wet, gray, Sandy Gravel and brown, Clay lensing, amber colored oil at 15'	763.1	Observed Groundwater at 15'
15'-20'	-	90%	-	Wet, fine Sand, some Gravel, saturated with amber colored o	l 462.5	
20'-25'	-	90%	-	Wet, fine, gray Sand with sheen	267.3	
25'-30'	-	95%	-	Wet, fine, gray Sand with sheen, trace black oil/grease, to red/brown smooth Clay at 28'	252.8	Observed Clay at 28'
						Impacts observed at location
	WATER LEVE	EL DATA	BOTTOM OF	DEPTH (FT) NOTES: BOTTOM OF GROUNDWATER NA = Not Applicable	WH = Weig	ght of Hammer
DATE -	TIME -	ELASPED TIME -	CASING -	BORING ENCOUNTERED ND = Non Detect		ight of Rod

GENERAL NOTES

- 1) STRATIFICATION LINES REPRESENT APPROXMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL.
- 2) WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER MAY OCCURE DUE TO OTHER FACTORS THAN THOSE PRESENT AT THE TIME MEASUREMENTS WERE MADE

Elk Street Commerce Park, LLC **CSO** Investigation

BORING: SHEET

CSO-SB-17

JOB:

CHKD BY:

1 OF ESCP #2200012

ENVIRONMENTAL ENGINEERING CONSULTANTS

CONTRACTOR: LaBella LLC DRILLER: Neal Short LABELLA REPRESENTATIVE: Andy Janik BORING LOCATION: Babcock Street CSO Outfall GROUND SURFACE ELEVATION

START DATE: 4/8/2021 1325

TYPE OF EQUIPMENT: GP-6610DT AUGER SIZE AND TYPE: Direct Push OVERBURDEN SAMPING METHOD Field Screening

DRIVE SAMPLER TYPE: Acetate liners INSIDE DIAMETER: 1.5"

OTHER:

D		SAMPLE					PID	
E P T	BLOW	SAMPLE	STRATA	1	VISUAL CLASSIFICA	ATION	FIELD SCREEN (PPM)	NOTES
0-5'	COUNT -	RECOVERY 90%	CHANGE -	Pavement/	concrete, to brown, Silty	/ Sandy Fill, with brick	1.9	
5'-10'	-	90%	-	Brown,	Silty Sandy Fill, with bri	ck, petroleum odor	200.3	
10'-15'	-	5%	-		Minimal recovery, brid	ck in cap	-	
15'-20'	-	95%	-	Wet, fine, gr	ay, Sand, saturated witl	n free amber colored oil	667.2	Observed Groundwater at 15'
20'-25'	-	100%	-	We	t, fine, gray Sand with s	heen, trace oil	739.4	
25'-30'	-	60%	-	W	et, fine, gray Sand with	trace sheen	136.2	
30'-35'	-	50%	-	Wet, fine, red/brown Cla	gray Sand with trace s by on outside of cap/line	heen (fluff), smooth, er (estimated Clay at 27')	136.2	Estimated Clay at 27'
								Impacts observed at location
				DEPTH (FT)		NOTES:	I	
	WATER LEVE		BOTTOM OF	BOTTOM OF	GROUNDWATER	NA = Not Applicable		ht of Hammer
DATE	TIME	ELASPED TIME	CASING			ND = Non Detect	WR = Wei	ght of Rod
-	-	-	-	-	-			

GENERAL NOTES

- 1) STRATIFICATION LINES REPRESENT APPROXMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL.
- 2) WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER MAY OCCURE DUE TO OTHER FACTORS THAN THOSE PRESENT AT THE TIME MEASUREMENTS WERE MADE

LABELLA REPRESENTATIVE: Andy Janik / Brent Miller

Elk Street Commerce Park, LLC CSO Investigation

BORING:

CSO-SB-18

SHEET

JOB:
CHKD BY:

1 OF **ESCP #2200012**

300 PEARL STREET, BUFFALO, NY ENVIRONMENTAL ENGINEERING CONSULTANTS

CONTRACTOR: LaBella LLC DRILLER: Neal Short

BORING LOCATION: Babcock Street CSO Outfall GROUND SURFACE ELEVATION NA

START DATE: 4/9/2021 0750

TYPE OF EQUIPMENT: GP-6610DT

AUGER SIZE AND TYPE: Direct Push

OVERBURDEN SAMPING METHOC Field Screening

DRIVE SAMPLER TYPE: Acetate liners INSIDE DIAMETER: 1.5"

OTHER:

SAMPLE D PID FIELD Ε **NOTES SCREEN** Т **BLOW** SAMPLE STRATA VISUAL CLASSIFICATION (PPM) Н COUNT **RECOVERY** CHANGE 0-5' Pavement/concrete, to brown, Silty Sandy Fill, with brick 90% 49.0 5'-10' 90% Brown, Silty Sandy Fill, with some coarse Gravel 2.6 10'-15' Fill to fine, wet, gray, Sand 507.0 Observed Groundwater at 15' 90% 15'-20' Wet, fine, gray, Sand, saturated with free amber colored oil 100% 486.0 20'-25' 100% Wet, fine, gray, Sand, saturated with free amber colored oil 246.0 25'-30' 50% Wet, fine, gray Sand, to smooth, red/brown Clay at 29' 305.0 Observed Clay at 29' Impacts observed at location

GENERAL NOTES

DATE

WATER LEVEL DATA

ELASPED TIME

TIME

1) STRATIFICATION LINES REPRESENT APPROXMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL.

DEPTH (FT)

BORING

BOTTOM OF

CASING

BOTTOM OF GROUNDWATER

ENCOUNTERED

NOTES:

NA = Not Applicable

ND = Non Detect

2) WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER MAY OCCURE DUE TO OTHER FACTORS THAN THOSE PRESENT AT THE TIME MEASUREMENTS WERE MADE

BORING: CSO-SB-18

WH = Weight of Hammer

WR = Weight of Rod

TYPE OF EQUIPMENT:

Elk Street Commerce Park, LLC CSO Investigation

BORING: CSO-SB-19

SHEET JOB:

CHKD BY:

1 OF **ESCP #2200012**

300 PEARL STREET, BUFFALO, NY ENVIRONMENTAL ENGINEERING CONSULTANTS

CONTRACTOR: LaBella LLC
DRILLER: Neal Short

BORING LOCATION: Babcock Street CSO Outfall GROUND SURFACE ELEVATION NA

4/9/2021 0855

LABELLA REPRESENTATIVE: Andy Janik / Brent Miller START DATE:

GP-6610DT

DRIVE SAMPLER TYPE: Acetate liners

AUGER SIZE AND TYPE: Direct Push
OVERBURDEN SAMPING METHOC Field Screening

INSIDE DIAMETER: 1.5"
OTHER: -

D E P		SAMPLE			PID FIELD SCREEN	NOTES
T H	BLOW COUNT	SAMPLE RECOVERY	STRATA CHANGE	VISUAL CLASSIFICATION	(PPM)	
0-5'	-	80%	-	Pavement/concrete, to brown, Silty Sandy Fill, with br	ick 4.5	
5'-10'	-	90%	-	Continued brown, Silty Sandy Fill	5.1	
10'-15'	-	90%	-	Moist, gray, Sandy Silt	256.0	
15'-20'	-	100%	-	Wet, fine, gray, Sand with sheen	280.0	Observed Groundwater at 16'
20'-25'	-	25%	-	Continued Wet, fine, gray, Sand	374.0	
25'-30'	-	90%	-	Wet, fine, gray Sand/Sandy Gravel, to smooth, red/brown at 29.5'	n Clay 102.0	Observed Clay at 29.5'
						Impacts observed at location
	WATER LEVE	EL DATA	BOTTOM OF	DEPTH (FT) NOTES: BOTTOM OF GROUNDWATER NA = Not Applicable	0 \A/Ll = \A/a:	ght of Hammer
DATE	TIME	ELASPED TIME	CASING	BORING ENCOUNTERED ND = Non Detect		ight of Rod
-	-	-	-			

GENERAL NOTES

- 1) STRATIFICATION LINES REPRESENT APPROXMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL.
- 2) WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER MAY OCCURE DUE TO OTHER FACTORS THAN THOSE PRESENT AT THE TIME MEASUREMENTS WERE MADE

LABELLA REPRESENTATIVE: Andy Janik

CONTRACTOR:

DRILLER:

ENVIRONMENTAL ENGINEERING CONSULTANTS

Elk Street Commerce Park, LLC **CSO** Investigation

START DATE:

BORING: CSO-SB-20

SHEET 1 OF JOB:

CHKD BY:

ESCP #2200012

BORING LOCATION: Babcock Street CSO Outfall GROUND SURFACE ELEVATION

4/9/2021 1030

TYPE OF EQUIPMENT: GP-6610DT AUGER SIZE AND TYPE: Direct Push

OVERBURDEN SAMPING METHOD Field Screening

LaBella LLC

Neal Short

DRIVE SAMPLER TYPE: Acetate liners **INSIDE DIAMETER:**

OTHER: Additional boring resquested by NYSDEC

D E P	SAMPLE				PID FIELD SCREEN	NOTES
Т Н	BLOW COUNT	SAMPLE RECOVERY	STRATA CHANGE	VISUAL CLASSIFICATION	(PPM)	
0-5'	-	90%	-	Pavement/concrete, to brown, Silty Sandy Fill, with brick	0.9	
5'-10'	-	70%	-	Continued brown, Silty Sandy Fill to moist, olive Sandy Silt	1.7	
10'-15'	-	95%	-	Moist, gray, fine Sand, some organics	8.8	
15'-20'	-	100%	-	Wet, fine, gray, Sand with sheen	213.6	Observed Groundwater at 15'
20'-25'	-	100%	-	Continued wet, fine, gray, Sand, trace oil with sheen	718.3	
25'-30'	-	80%	-	Wet, fluid, gray, fine Sand, trace oil with sheen	376.4	
30'-35'	-	40%	-	Wet, fluid, gray, fine Sand, to coarse Gravel	19.8	Clay not observed to 35'
						Impacts observed at location
DATE	WATER LEVE	EL DATA ELASPED TIME	BOTTOM OF CASING	DEPTH (FT) BOTTOM OF GROUNDWATER BORING ENCOUNTERED NOTES: NA = Not Applicable ND = Non Detect		tht of Hammer ght of Rod

GENERAL NOTES

- 1) STRATIFICATION LINES REPRESENT APPROXMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL.
- 2) WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER MAY OCCURE DUE TO OTHER FACTORS THAN THOSE PRESENT AT THE TIME MEASUREMENTS WERE MADE

Elk Street Commerce Park, LLC **CSO** Investigation

BORING: CSO-SB-21 SHEET

JOB:

CHKD BY:

1 OF

ESCP #2200012

ENVIRONMENTAL ENGINEERING CONSULTANTS

CONTRACTOR: LaBella LLC DRILLER: Neal Short LABELLA REPRESENTATIVE: Andy Janik BORING LOCATION: Babcock Street CSO Outfall GROUND SURFACE ELEVATION START DATE: 4/9/2021 1115

TYPE OF EQUIPMENT: GP-6610DT DRIVE SAMPLER TYPE: Acetate liners AUGER SIZE AND TYPE: Direct Push **INSIDE DIAMETER:**

OVERBURDEN SAMPING METHOD Field Screening OTHER: Additional boring resquested by NYSDEC

			3					,
D E P T	BLOW	SAMPLE SAMPLE	STRATA		VISUAL CLASSIFIC	CATION	PID FIELD SCREEN (PPM)	NOTES
H 0-5'	COUNT -	RECOVERY 80%	CHANGE -	Pa	avement/concrete, to b	rown, Silty Fill	0.8	
5'-10'	-	80%	-		Moist, gray, Silt, with	n organics	0.7	
10'-15'	-	100%	-	Moist, gray,	Silty Clay with organics	s and wood, to fine Sand	0.9	
15'-20'	-	100%	-	Wet, fine, gr	ray, Sand with brown C Sand	lay lensing, to gray Silty	0.9	Observed Groundwater at 17'
20'-25'	-	100%	-	Continued	wet, fine, gray, Sand, t red/brown Clay encou	o coarse Sand, smooth ntered at 24'	0.6	Observed Clay at 24'
								Impacts NOT observed at location
DATE	WATER LEVE		BOTTOM OF			NOTES: NA = Not Applicable		ght of Hammer
DATE -	TIME -	ELASPED TIME -	CASING -	BORING -	ENCOUNTERED -	ND = Non Detect	vvk = Wei	ght of Rod

GENERAL NOTES

- 1) STRATIFICATION LINES REPRESENT APPROXMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL.
- 2) WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER MAY OCCURE DUE TO OTHER FACTORS THAN THOSE PRESENT AT THE TIME MEASUREMENTS WERE MADE

Elk Street Commerce Park, LLC **CSO** Investigation

BORING: CSO-SB-22

SHEET 1 OF JOB: ESCP #2200012

CHKD BY:

ENVIRONMENTAL ENGINEERING CONSULTANTS

CONTRACTOR: LaBella LLC DRILLER: Neal Short LABELLA REPRESENTATIVE: Andy Janik BORING LOCATION: Babcock Street CSO Outfall GROUND SURFACE ELEVATION 4/12/2021 0850 START DATE:

TYPE OF EQUIPMENT: GP-6610DT DRIVE SAMPLER TYPE: Acetate liners AUGER SIZE AND TYPE: Direct Push **INSIDE DIAMETER:**

OVERBURDEN SAMPING METHOD Field Screening OTHER: Additional boring resquested by NYSDEC

D E P		SAMPLE		PID FIELD NOTES SCREEN
Т Н	BLOW COUNT	SAMPLE RECOVERY	STRATA CHANGE	VISUAL CLASSIFICATION (PPM)
0-5'	-	90%	-	Pavement/concrete, to brown, Silty Fill, black, tar-like lens at 2' 15.1
5'-10'	-	80%	-	Moist, brown, Clay with embedded medium Gravel to gray, Silty Sand
10'-15'	-	80%	-	Moist, brown, Clay with embedded Gravel to gray Silty Clay, to dense, gray, Silty Sand
15'-20'	-	100%	-	Wet, gray, Silty Clay to gray, Silty Sand, to fine, gray Sand - Observed Groundwater at 15'
20'-25'	-	90%	-	Wet, fine, gray, Sand 0.6
25'-30'	-	95%	-	Wet, fine, gray, Sand to moist, smooth, red/brown Clay at 28' 0.6 Observed Clay at 28'
				Impacts NOT observed at location
	\A/ATES : 5: 5		DOTTO: / CT	DEPTH (FT) NOTES:
DATE	WATER LEVE TIME	ELASPED TIME	BOTTOM OF CASING	BOTTOM OF GROUNDWATER NA = Not Applicable WH = Weight of Hammer BORING ENCOUNTERED ND = Non Detect WR = Weight of Rod
-	-	-	-	

GENERAL NOTES

- 1) STRATIFICATION LINES REPRESENT APPROXMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL.
- 2) WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER MAY OCCURE DUE TO OTHER FACTORS THAN THOSE PRESENT AT THE TIME MEASUREMENTS WERE MADE

CONTRACTOR:

DRILLER:

ENVIRONMENTAL ENGINEERING CONSULTANTS

Elk Street Commerce Park, LLC **CSO** Investigation

BORING: CSO-SB-23

SHEET JOB:

1 OF ESCP #2200012

CHKD BY:

LaBella LLC BORING LOCATION: Babcock Street CSO Outfall Neal Short GROUND SURFACE ELEVATION 4/12/2021 0955 LABELLA REPRESENTATIVE: Andy Janik START DATE:

> TYPE OF EQUIPMENT: GP-6610DT DRIVE SAMPLER TYPE: Acetate liners AUGER SIZE AND TYPE: Direct Push **INSIDE DIAMETER:**

OVERBURDEN SAMPING METHOD Field Screening OTHER: Additional boring resquested by NYSDEC

D E P		SAMPLE			PID FIELD SCREEN	NOTES
Т Н	BLOW COUNT	SAMPLE RECOVERY	STRATA CHANGE	VISUAL CLASSIFICATION	(PPM)	
0-5'	-	95%	-	Pavement/concrete, mottled Fill with brick and glass, to brow Silty Clay	0.7	
5'-10'	-	85%	-	Moist, brown, Clay with embedded medium Gravel	0.2	
10'-15'	-	70%	-	Continued moist, brown, Clay with embedded Gravel to gray Sandy Gravel	54.4	
15'-20'	-	95%	-	Wet, gray, Sandy Gravel, to gray, Silty Sand	-	Observed Groundwater at 15'
20'-25'	-	65%	-	Moist, brown, Clay with embedded Gravel to gray, Sandy Gravel with trace sheen	8.0	
25'-30'	-	100%	-	Wet, gray, Sandy Gravel with sheen to moist, smooth, red/brown Clay at 27'	0.7	Observed Clay at 27'
						Impacts observed at location
				DEPTH (FT) NOTES:		
DATE -	WATER LEVE TIME	EL DATA ELASPED TIME -	BOTTOM OF CASING	BOTTOM OF GROUNDWATER NA = Not Applicable BORING ENCOUNTERED ND = Non Detect		ght of Hammer ght of Rod

GENERAL NOTES

- 1) STRATIFICATION LINES REPRESENT APPROXMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL.
- 2) WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER MAY OCCURE DUE TO OTHER FACTORS THAN THOSE PRESENT AT THE TIME MEASUREMENTS WERE MADE

Elk Street Commerce Park, LLC **CSO** Investigation

BORING: CSO-SB-24 SHEET

1 OF

JOB: CHKD BY: ESCP #2200012

ENVIRONMENTAL ENGINEERING CONSULTANTS CONTRACTOR: LaBella LLC

DRILLER:

Neal Short LABELLA REPRESENTATIVE: Andy Janik BORING LOCATION: Babcock Street CSO Outfall GROUND SURFACE ELEVATION

START DATE: 4/12/2021 1055

TYPE OF EQUIPMENT: GP-6610DT AUGER SIZE AND TYPE: Direct Push OVERBURDEN SAMPING METHOC Field Screening DRIVE SAMPLER TYPE: Acetate liners **INSIDE DIAMETER:**

OTHER:

Additional boring resquested by NYSDEC

								, , , , , , , , , , , , , , , , , , ,
D E P T	BLOW	SAMPLE SAMPLE	STRATA		VISUAL CLASSIFIO	CATION	PID FIELD SCREEN (PPM)	NOTES
H	COUNT	RECOVERY	CHANGE		V130712 027 13311 10		(1.1.17)	
0-5'	-	100%	-	Pa	evement/concrete, to b	rown Silty Clay	0.4	
5'-10'	-	80%	-	Moist, b	rown, Clay with embed	lded medium Gravel	0.3	
10'-15'	-	80%	-	Continued mo	ist, brown, Clay with e gray Sandy Gı	mbedded Gravel to dense, avel	117.6	
15'-20'	-	95%	-	Wet, gray, S	andy Gravel, with moi fine, gray, Sand, shee	st, brown Clay lensing to n throughout	92.7	Observed Groundwater at 15'
20'-25'	-	80%	-	Wet, gray, Sa	andy Gravel with shee to smooth red/brown (n, some organics (wood), Clay (in cap)	9.2	
25'-30'	-	40%	-	Wet, gray, S	andy Gravel (fluff), to Clay	moist, smooth, red/brown	0.7	Observed Clay at 25'
								Impacts observed at location
				DECT: (==)		luores.		
	WATER LEVE	L DATA	BOTTOM OF	DEPTH (FT) BOTTOM OF	GROUNDWATER	NOTES: NA = Not Applicable	WH = Weig	ght of Hammer
DATE	TIME	ELASPED TIME	CASING	BORING	ENCOUNTERED	ND = Non Detect		ght of Rod
-	-	-	-	-	-	<u></u>		
								

GENERAL NOTES

- 1) STRATIFICATION LINES REPRESENT APPROXMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL.
- 2) WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER MAY OCCURE DUE TO OTHER FACTORS THAN THOSE PRESENT AT THE TIME MEASUREMENTS WERE MADE

Elk Street Commerce Park, LLC **CSO** Investigation

BORING: CSO-SB-25 SHEET

1 OF

ESCP #2200012

ENVIRONMENTAL ENGINEERING CONSULTANTS

CONTRACTOR: LaBella LLC DRILLER: Neal Short

LABELLA REPRESENTATIVE: Andy Janik

BORING LOCATION: Babcock Street CSO Outfall GROUND SURFACE ELEVATION

START DATE: 4/12/2021 1240

TYPE OF EQUIPMENT: GP-6610DT AUGER SIZE AND TYPE: **Direct Push**

OVERBURDEN SAMPING METHOD Field Screening

DRIVE SAMPLER TYPE: Acetate liners INSIDE DIAMETER:

OTHER: Additional boring resquested by NYSDEC

JOB:

CHKD BY:

D E P		SAMPLE			PID FIELD SCREEN	NOTES
т н	BLOW COUNT	SAMPLE RECOVERY	STRATA CHANGE	VISUAL CLASSIFICATION	(PPM)	
0-5'	-	90%	-	Pavement/concrete, to stiff, brown Silty Clay, some orgal lensing	0.3	
5'-10'	-	90%	-	Moist, brown, Clay with embedded medium Gravel	0.7	
10'-15'	-	100%	-	Continued moist, brown, Clay with embedded Gravel to de gray, wet, Sandy Gravel with sheen	nse, 32.8	Observed Groundwater at 15'
15'-20'	-	95%	-	Wet, fine gray, Sand with sheen, to moist, Sandy Silt	1.8	
20'-25'	-	60%	-	Wet, fine, gray, Sand with sheen to moist, smooth, red/bro	own 13.2	Observed Clay at 25'
						Impacts observed at location
	WATER LEVE	I DATA	DOTTOM OF	DEPTH (FT) NOTES: BOTTOM OF GROUNDWATER NA = Not Applicable	\A/I I = \A/s!	Tht of Hammer
DATE -	TIME -	ELASPED TIME	BOTTOM OF CASING -	BOTTOM OF GROUNDWATER NA = Not Applicable BORING ENCOUNTERED ND = Non Detect		ght of Hammer ight of Rod

GENERAL NOTES

- 1) STRATIFICATION LINES REPRESENT APPROXMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL.
- 2) WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER MAY OCCURE DUE TO OTHER FACTORS THAN THOSE PRESENT AT THE TIME MEASUREMENTS WERE MADE

Elk Street Commerce Park, LLC **CSO** Investigation

BORING: CSO-SB-26

SHEET JOB:

CHKD BY:

1 OF ESCP #2200012

ENVIRONMENTAL ENGINEERING CONSULTANTS

CONTRACTOR: LaBella LLC DRILLER: Neal Short LABELLA REPRESENTATIVE: Andy Janik BORING LOCATION: Babcock Street CSO Outfall

GROUND SURFACE ELEVATION START DATE: 4/12/2021 1325

TYPE OF EQUIPMENT: GP-6610DT AUGER SIZE AND TYPE: **Direct Push**

OVERBURDEN SAMPING METHOD Field Screening

DRIVE SAMPLER TYPE: Acetate liners INSIDE DIAMETER:

OTHER: Additional boring resquested by NYSDEC

D E P	SAMPLE				PID FIELD SCREEN	NOTES	
T H	BLOW COUNT	SAMPLE RECOVERY	STRATA CHANGE	VISUAL CLASSIFICATION	(PPM)		
0-5'	-	95%	-	Pavement/concrete, ash material, to brown, Silty Clay	2.3		
5'-10'	-	60%	-	Moist, brown, Clay with embedded medium Gravel	3.9		
10'-15'	-	70%	-	Continued moist, brown, Clay with embedded Gravel to Sandy Gravel lensing	1.2		
15'-20'	-	100%	-	Wet, fine, gray, Sandy Gravel, some Silt	12.9	Observed Groundwater at 15'	
20'-25'	-	50%	-	Wet, fine, gray, Sandy Gravel, with black oil/grease	46.6		
25'-30'	-	70%	-	Wet, fine, gray, Sandy Gravel, with sheen, to smooth, red/brown Clay at 29'	6.7	Observed Clay at 29'	
						Impacts observed at location	
	WATER LEVE	-ι ΠΔΤΔ	BOTTOM OF	DEPTH (FT) NOTES: BOTTOM OF GROUNDWATER NA = Not Applicable	WH - Weig	ght of Hammer	
DATE -	TIME -	ELASPED TIME -	CASING -	BORING ENCOUNTERED ND = Non Detect		ght of Rod	

GENERAL NOTES

- 1) STRATIFICATION LINES REPRESENT APPROXMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL.
- 2) WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER MAY OCCURE DUE TO OTHER FACTORS THAN THOSE PRESENT AT THE TIME MEASUREMENTS WERE MADE

Elk Street Commerce Park, LLC **CSO** Investigation

BORING: CSO-SB-27 SHEET

JOB:

CHKD BY:

1 OF ESCP #2200012

ENVIRONMENTAL ENGINEERING CONSULTANTS

CONTRACTOR: LaBella LLC Chris Stone DRILLER: LABELLA REPRESENTATIVE: Heather Geoghegan BORING LOCATION: Babcock Street CSO Outfall GROUND SURFACE ELEVATION

4/20/2021 0905 START DATE:

TYPE OF EQUIPMENT: CME-55 LC AUGER SIZE AND TYPE: **Direct Push**

OVERBURDEN SAMPING METHOC Field Screening

DRIVE SAMPLER TYPE: Acetate liners **INSIDE DIAMETER:**

OTHER:

Additional boring resquested by NYSDEC

			•					<i>,</i>
D E P T	BLOW	SAMPLE	CTDATA		VICUAL CLASSIFIA	CATION	PID FIELD SCREEN	NOTES
I H	BLOW COUNT	SAMPLE RECOVERY	STRATA CHANGE		VISUAL CLASSIFIC	ATION	(PPM)	
0-5'	-	80%	-	Pavement/c	oncrete, black stained wood	Sand and Gravel, some	0.0	
5'-10'	-	50%	-	Д	sh and Fill, some brov	vn, Silty Sand	0.0	
10'-15'	-	55%	-	Ash, to mois	t, brown, Clay with em Gravel lensi	bedded Gravel to Sandy ng	0.0	Observed Groundwater at 15'
15'-20'	-	0%	-		No Recove	у	-	
20'-25'	-	70%	-	Wet, fine, gra	y, well sorted Sandy G	Gravel, with some gray Silt	0.1	
25'-30'	-	0%	-	Red	Red/brown Clay potentially at 30' (in cap)			Estimated Clay at 30'
30'-35'	-	0%	-		No Recove	у	-	
								Impacts NOT observed at location
	1 1			DEPTH (FT)		NOTES:		
DATE	WATER LEVEL	L DATA ELASPED TIME	BOTTOM OF CASING		GROUNDWATER ENCOUNTERED	NA = Not Applicable ND = Non Detect		ght of Hammer ght of Rod
-	-	-	-	-	-			

GENERAL NOTES

- 1) STRATIFICATION LINES REPRESENT APPROXMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL.
- 2) WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER MAY OCCURE DUE TO OTHER FACTORS THAN THOSE PRESENT AT THE TIME MEASUREMENTS WERE MADE

Elk Street Commerce Park, LLC **CSO** Investigation

BORING: CSO-SB-28 SHEET

1 OF

JOB: CHKD BY: ESCP #2200012

ENVIRONMENTAL ENGINEERING CONSULTANTS

CONTRACTOR: LaBella LLC Chris Stone DRILLER: LABELLA REPRESENTATIVE: Heather Geoghegan BORING LOCATION: Babcock Street CSO Outfall GROUND SURFACE ELEVATION 4/21/2021 0705 START DATE:

TYPE OF EQUIPMENT: CME-55 LC DRIVE SAMPLER TYPE: Acetate liners AUGER SIZE AND TYPE: **Direct Push INSIDE DIAMETER:**

OVERBURDEN SAMPING METHOD Field Screening OTHER: Additional boring resquested by NYSDEC

			o .			
D E P T	DI OVA	SAMPLE	CTDATA	VISUAL CLASSIFICATION	PID FIELD SCREEN	NOTES
I H	BLOW COUNT	SAMPLE RECOVERY	STRATA CHANGE	VISUAL CLASSIFICATION	(PPM)	
0-5'	-	75%	-	Pavement/concrete, black stained Sand and Gravel, with as Fill, some wood	h 0.0	
5'-10'	-	70%	-	Ash and Fill	0.0	
10'-15'	-	75%	-	Ash and Fill, gray, wet Sand with trace Silty Clay	0.0	Observed Groundwater at 15'
15'-20'	-	100%	-	Wet, gray, medium/fine Silty Sand, to fine Silty Sand, slight sheen	0.0	
20'-25'	-	40%	-	Wet, fine, gray, fluid Sand, slight sheen	0.0	
25'-30'	-	60%	-	Wet, fine, gray, fluid Sand	0.0	
30'-35'	-	60%	-	Wet, fine, gray, Sand, to smooth, red/brown Clay at 34'	0.0	Observed Clay at 34'
						Impacts NOT observed at location
				DEPTH (FT) NOTES:		l
DATE	WATER LEVE	EL DATA ELASPED TIME	BOTTOM OF CASING	BOTTOM OF GROUNDWATER NA = Not Applicable BORING ENCOUNTERED ND = Non Detect		ght of Hammer ght of Rod
-	-	-	-			

GENERAL NOTES

- 1) STRATIFICATION LINES REPRESENT APPROXMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL.
- 2) WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER MAY OCCURE DUE TO OTHER FACTORS THAN THOSE PRESENT AT THE TIME MEASUREMENTS WERE MADE

Elk Street Commerce Park, LLC CSO Investigation

BORING: CS

CSO-SB-11 OF

ESCP #2200012

JOB: CHKD BY:

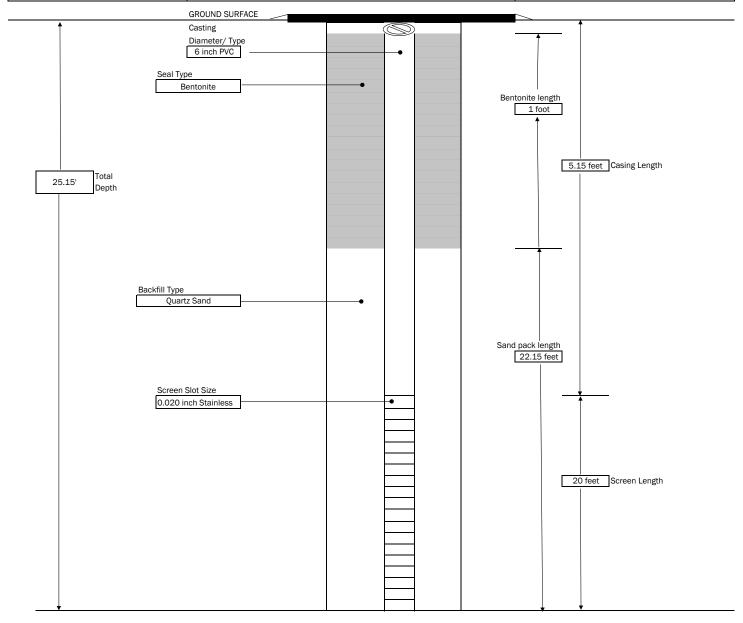
300 PEARL STREET, BUFFALO, NY ENVIRONMENTAL ENGINEERING CONSULTANTS

CONTRACTOR: LaBella LLC
DRILLER: Neal Short
LABELLA REPRESENTATIVE: Andy Janik

BORING LOCATION: Babcock Street CSO Outfall GROUND SURFACE ELEVATION NA START DATE: 4/5/2021 0915

TYPE OF EQUIPMENT: GP-6610DT DRIVE SAMPLER TYPE: Acetate liners

AUGER SIZE AND TYPE: Direct Push INSIDE DIAMETER: 1.5"


OVERBURDEN SAMPING METHOD: Field Screening OTHER: -

	1			T			1	
D E P		SAMPLE					PID FIELD SCREEN	NOTES
T H	BLOW COUNT	SAMPLE RECOVERY	STRATA CHANGE		VISUAL CLASSIFICA	ATION	(PPM)	
0-5'	-	70%	-	Pavement,	concrete, Fill- wood, gra	avel, trace of Clay, tar	2.6	
5'-10'	-	75%	-	Continued Fill- dark	wood, tar, brick; 8' below amber oil to impacted,	w grade, 2" sand lens with gray, Silty Clay	667.5	
10'-15'	-	60%	-	Continued mo Sandy Gra	oist, gray, Silty Clay with vel at 14' below grade, s	organics (wood), to wet strong petroleum odor	267.8	Observed Groundwater at 14'
15'-20'	-	100%	-		et, gray, Sandy Silt and C smooth red/brown Clay a	Gravel, trace dark amber at 19' below grade	131.6	Observed Clay at 19'
								Impacts observed at location
		l		DEPTH (FT)		NOTES:		
DATE	WATER LEVI		BOTTOM OF CASING			NA = Not Applicable ND = Non Detect		tht of Hammer ght of Rod
-	-	-	-	-	-		****	D
			1	<u> </u>				

GENERAL NOTES

- 1) STRATIFICATION LINES REPRESENT APPROXMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL.
- 2) WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER MAY OCCURE DUE TO OTHER FACTORS THAN THOSE PRESENT AT THE TIME MEASUREMENTS WERE MADE

	PROJEC	Т	MONITORING WELL:	CSO-SB-1 ESCP-MW-4
LaBella Powered by partnership.	Elk Street Commerc	SHEET	1 OF 1	
300 PEARL STREET, BUFFALO, NEW YORK ENVIRONMENTAL ENGINEERING CONSULTANTS	Interim Corrective	Measures	JOB#	2200012.2021-08
CONTRACTOR: LaBella Environmental LLC	BORING LOCATION: Babcock Street CSO	Outfall	TYPE OF DRILL RIG: CME55	
DRILLER:	GROUND SURFACE ELEVATION:	NA DATUM: NA	AUGER SIZE AND TYPE: 8" ID Hollow	Stem
LABELLA REPRESENTATIVE:	START DATE: 4/16/2021 1105	END DATE: 4/16/2021	OVERBURDEN SAMPLING METHOD:	Acetate liners

Hole Diameter

◆ 12 inches — 1

GENERAL NOTES:

1) NOT TO SCALE

2) DEPTHS ARE APPROXIMATE

ENVIRONMENTAL ENGINEERING CONSULTANTS

LABELLA REPRESENTATIVE: Andy Janik

CONTRACTOR:

DRILLER:

Elk Street Commerce Park, LLC **CSO** Investigation

BORING: CSO-PZ-1

1 OF SHEET JOB: ESCP #2200012

1

CHKD BY:

BORING LOCATION: Babcock Street CSO Outfall

GROUND SURFACE ELEVATION NA START DATE: 4/16/2021 1105

TYPE OF EQUIPMENT: CME-55 LC

LaBella LLC

Neal Short

DRIVE SAMPLER TYPE: Acetate liners

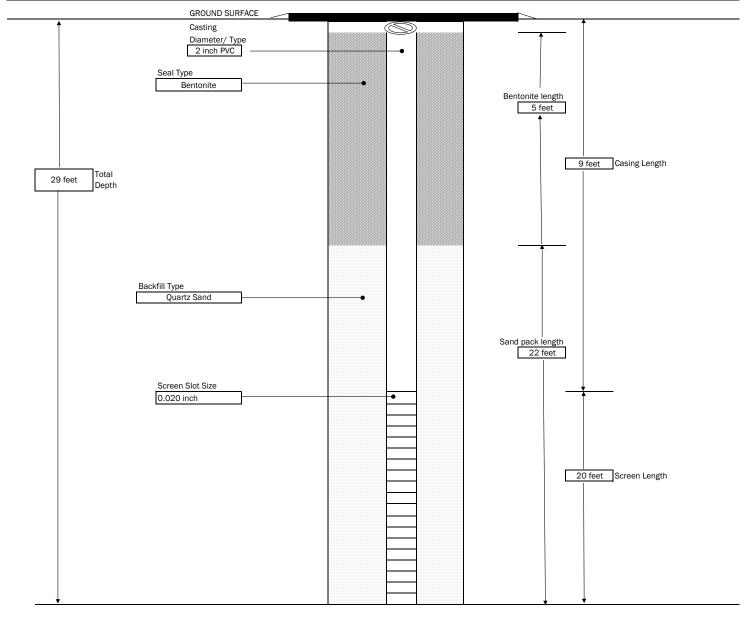
Direct Push for Field Screen, 6.25" augers for PZ install AUGER SIZE AND TYPE:

INSIDE DIAMETER:

OTHER:

OVERBURDEN SAMPING METHOD: Field Screening

EOB=30', Screen set at 29', Sand to 7', Chips to 5'


15'-20' - 90% - Continued wet, gray, brown Clay and Sandy Gravel lensing with sheen 28.3 20'-25' - 60% - Wet, fine, gray, Sand with black oil/grease, to fine, Sandy Gravel 117.2 25'-30' - 70% - Continued wet, gray, Sandy Gravel with sheen, to smooth, red/brown Clay at 28'		OVERBURE	SURDEN SAMPING METHOD:	Field Screening	OTHEK:		Wire, 0.020 screen installed
T BLOW COUNT RECOVERY CHANGE 0-5' 0-5' Not Sampled 5'-10' - 50% - Moist, ash Fill, black stained, with petroleum odor 10'-15' - 50% - Ash Fill, to brown Clay and Sandy Gravel lensing with amber colored oil, saturated 15'-20' - 90% - Continued wet, gray, brown Clay and Sandy Gravel lensing with sheen 28.3 20'-25' - 60% - Wet, fine, gray, Sand with black oil/grease, to fine, Sandy Gravel 17.2 Continued wet, gray, Sandy Gravel with sheen, to smooth, red/brown Clay at 28'	E		SAMPLE			FIELD	NOTES
0-5' - - 0-5' Not Sampled 5'-10' - 50% - Moist, ash Fill, black stained, with petroleum odor 205.0 10'-15' - 50% - Ash Fill, to brown Clay and Sandy Gravel lensing with amber colored oil, saturated 527.9 Observed groundwater at 15'-20' - 90% - Continued wet, gray, brown Clay and Sandy Gravel lensing with sheen 28.3 20'-25' - 60% - Wet, fine, gray, Sand with black oil/grease, to fine, Sandy Gravel 117.2 25'-30' - 70% - Continued wet, gray, Sandy Gravel with sheen, to smooth, red/brown Clay at 28' 6.4 Observed Clay at 28'	T	1			VISUAL CLASSIFICATION	1	
10'-15' - 50% - Ash Fill, to brown Clay and Sandy Gravel lensing with amber colored oil, saturated 527.9 Observed groundwater at 15'-20' - 90% - Continued wet, gray, brown Clay and Sandy Gravel lensing with sheen 28.3 20'-25' - 60% - Wet, fine, gray, Sand with black oil/grease, to fine, Sandy Gravel 117.2 25'-30' - 70% - Continued wet, gray, Sandy Gravel with sheen, to smooth, red/brown Clay at 28'					-	-	0-5' Not Sampled
15'-20' - 90% - Continued wet, gray, brown Clay and Sandy Gravel lensing with sheen 28.3 20'-25' - 60% - Wet, fine, gray, Sand with black oil/grease, to fine, Sandy Gravel 117.2 25'-30' - 70% - Continued wet, gray, Sandy Gravel with sheen, to smooth, red/brown Clay at 28'	5'-10'	-	50%	-	Moist, ash Fill, black stained, with petroleum odor	205.0	
Sheen 28.3 20'-25' - 60% - Wet, fine, gray, Sand with black oil/grease, to fine, Sandy Gravel 117.2 25'-30' - 70% - Continued wet, gray, Sandy Gravel with sheen, to smooth, red/brown Clay at 28'	10'-15'	-	50%	-	Ash Fill, to brown Clay and Sandy Gravel lensing with amber colored oil, saturated	527.9	Observed groundwater at 14'
25'-30' - 60% - Continued wet, gray, Sandy Gravel with sheen, to smooth, red/brown Clay at 28' - Observed Clay at 28'	15'-20'	-	90%	-		28.3	
red/brown Clay at 28' 6.4 Observed Clay at 28	20'-25'	-	60%	-	Wet, fine, gray, Sand with black oil/grease, to fine, Sandy Gravel	117.2	
Impacts observed at loca	25'-30'	-	70%	-	Continued wet, gray, Sandy Gravel with sheen, to smooth, red/brown Clay at 28'	6.4	Observed Clay at 28'
							Impacts observed at location
DEPTH (FT) NOTES:					DEDTH (ET) NOTES.		
WATER LEVEL DATA BOTTOM OF BOTTOM OF GROUNDWATER NA = Not Applicable WH = Weight of Hammer					BOTTOM OF GROUNDWATER NA = Not Applicable		
DATE TIME ELASPED TIME CASING BORING ENCOUNTERED ND = Non Detect WR = Weight of Rod 9' 30' ~14'		- - -				WR = Wei	ght of Rod

GENERAL NOTES

- 1) STRATIFICATION LINES REPRESENT APPROXMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL.
- 2) WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER MAY OCCURE DUE TO OTHER FACTORS THAN THOSE PRESENT AT THE TIME MEASUREMENTS WERE MADE

BORING: CSO-PZ-1

		PROJEC	т			MONITORING WELL:	CSO-PZ-1
LaBella Powered by partnership.	Elk S	Street Comme	rce Park, LLC			SHEET	1 OF 1
300 PEARL STREET, BUFFALO, NEW YORK ENVIRONMENTAL ENGINEERING CONSULTANTS	Int	erim Corrective	e Measures			JOB #	2200012.2021-08
CONTRACTOR: LaBella Environmental LLC	BORING LOCATION: Babco	ock Street CSO	Outfall			TYPE OF DRILL RIG:	CME55
DRILLER:	GROUND SURFACE ELEVATION:		NA	DATUM:	NA	AUGER SIZE AND TYPE	: 6.25" Hollow Stem
LABELLA REPRESENTATIVE:	START DATE: 4/16/2021	1105	END D	ATE: 4/16/	2021	OVERBURDEN SAMPLI	NG METHOD: Acetate liners

Hole Diameter

← 6.25 inches →

GENERAL NOTES:

1) NOT TO SCALE

2) DEPTHS ARE APPROXIMATE

Elk Street Commerce Park, LLC CSO Investigation

BORING: CSO-PZ-2

SHEET 1 OF
JOB: ESCP #2

CHKD BY:

OF 1 ESCP #2200012

300 PEARL STREET, BUFFALO, NY ENVIRONMENTAL ENGINEERING CONSULTANTS

CONTRACTOR: LaBella LLC
DRILLER: Neal Short
LABELLA REPRESENTATIVE: Andy Janik / Brent Miller

BORING LOCATION: Babcock Street CSO Outfall GROUND SURFACE ELEVATION NA START DATE: 4/16/2021 0815

TYPE OF EQUIPMENT: CME-55 LC

DRIVE SAMPLER TYPE: Acetate liners

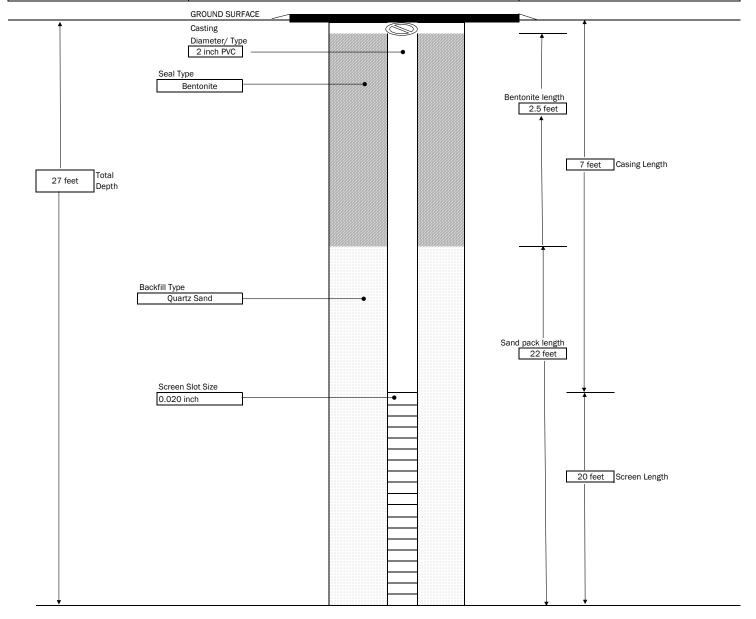
all INSIDE DIAMETER: 1.5

OTHER:

AUGER SIZE AND TYPE: Direct Push for Field Screen, 6.25" augers for PZ install OVERBURDEN SAMPING METHOD: Field Screening

EOB=27', Screen set at 27', Sand to 5', Chips to 2.5'

20' of 2" V-Wire, 0.020 screen installed


							20' of 2" V-	Wire, 0.020 screen installed
D E P T	BLOW	SAMPLE SAMPLE	STRATA		VISUAL CLASSIFIC	ATION	PID FIELD SCREEN (PPM)	NOTES
H 0-5'	COUNT -	RECOVERY -	CHANGE -		-		-	0-5' Not Sampled
5'-10'	-	75%	-	Moist, ash F	Fill, to fine, gray Sand, t embedded Gra	o moist brown Clay with	8.9	
10'-15'	-	75%	-	Brown Clay a	and Sandy Gravel lensin saturated	ng with amber colored oil,	586.0	Observed groundwater at 14'
15'-20'	-	50%	-	Continued w	vet, gray, brown Clay ar	nd Sandy Gravel lensing	35.8	
20'-25'	-	75%	-	Wet, fine, gray	, Sand with black oil/gre	ease, to fine, Sandy Grave	el 32.0	
25'-30'	-	70%	-	Continued v	wet, gray, Sandy Grave red/brown Clay	I with sheen, to smooth, at 26'	13.6	Observed Clay at 26'
								Impacts observed at location
	WATER LEVE		BOTTOM OF		GROUNDWATER	NOTES: NA = Not Applicable		tht of Hammer
DATE -	TIME -	ELASPED TIME -	CASING 7'	BORING 27'	ENCOUNTERED ~14'	ND = Non Detect	WR = Wei	ght of Rod

GENERAL NOTES

- 1) STRATIFICATION LINES REPRESENT APPROXMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL.
- 2) WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER MAY OCCURE DUE TO OTHER FACTORS THAN THOSE PRESENT AT THE TIME MEASUREMENTS WERE MADE

BORING: CSO-PZ-2

	PROJECT		MONITORING WELL:	CSO-PZ-2				
LaBella Powered by partnership.	Elk Street Commerce	Park, LLC	SHEET	1 OF 1				
300 PEARL STREET, BUFFALO, NEW YORK ENVIRONMENTAL ENGINEERING CONSULTANTS	Interim Corrective M	Interim Corrective Measures						
CONTRACTOR: LaBella Environmental LLC	BORING LOCATION: Babcock Street CSO Ou	tfall	TYPE OF DRILL RIG: CME55					
DRILLER:	GROUND SURFACE ELEVATION:	NA DATUM: NA	AUGER SIZE AND TYPE: 6.25" Hollow S	tem				
LABELLA REPRESENTATIVE:	START DATE: 4/16/2021 0805	END DATE: 4/16/2021	OVERBURDEN SAMPLING METHOD:	Acetate liners				

Hole Diameter

← 6.25 inches →

GENERAL NOTES:

1) NOT TO SCALE

2) DEPTHS ARE APPROXIMATE

Elk Street Commerce Park, LLC **CSO** Investigation

CSO-PZ-3 **BORING:**

SHEET 1 OF JOB: ESCP #2200012

CHKD BY:

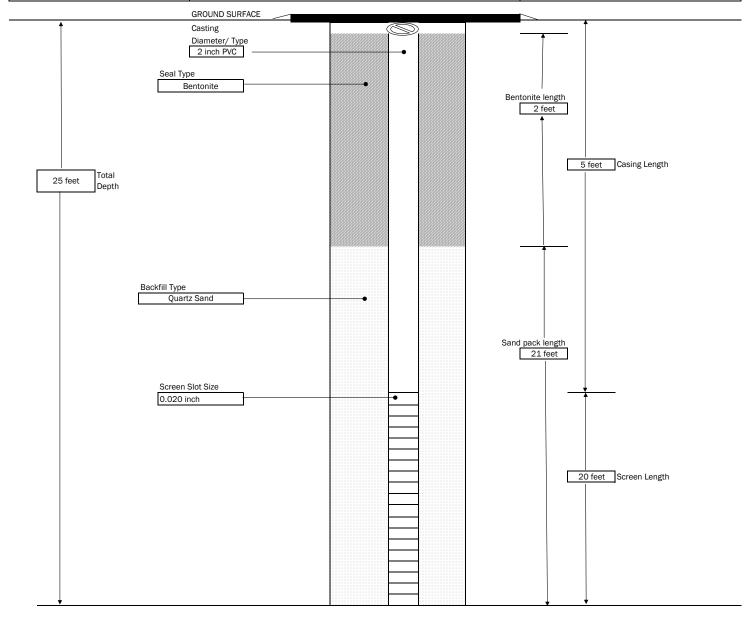
NA

ENVIRONMENTAL ENGINEERING CONSULTANTS

BORING LOCATION: Babcock Street CSO Outfall CONTRACTOR: LaBella LLC **Neal Short** DRILLER: GROUND SURFACE ELEVATION LABELLA REPRESENTATIVE: Andy Janik / Brent Miller START DATE: 4/16/2021 0815

> CME-55 LC TYPE OF EQUIPMENT: DRIVE SAMPLER TYPE: Split Spoon Split Spoon for Field Screen, 6.25" augers for PZ install INSIDE DIAMETER: AUGER SIZE AND TYPE:

OVERBURDEN SAMPING METHOD Field Screening OTHER: EOB=25', Screen set at 25', Sand to 4', Chips to 2'


	OVERBUR	DEN SAMPING METHOL	rieid Screening			OTHER:		-Wire, 0.020 screen installed
D		SAMPLE					PID	
E							FIELD	NOTES
Р		T	T	_			SCREEN	
T	BLOW	SAMPLE	STRATA		VISUAL CLASSIFICA	ATION	(PPM)	
H	COUNT	RECOVERY	CHANGE					0.41Not.0000101
0-4'	-	-	-		<u>-</u>		-	0-4' Not Sampled
4'-6'	1-2/3-3	50%	-		st, brown Clay with emb		4.0	
6'-8'	3-4/3-4	50%	-	Mois	st, brown Clay with emb	pedded Gravel	35.9	
8'-10'	1-1/2-2	50%	-		st, brown Clay with emb		0.3	
10'-12'	2-2/2-2	95%	-	Moist, brown C	lay with embedded Gra Sand lens at 1	avel, amber colored oil in 1.8'	66.9	
12'-14'	3-4/3-3	95%	-			n embedded Gravel and trace amber colored oil	114.6	
14'-16'	2-3/3-2	<5%	_	Moi	ist/wet, gray Silty Sand	trace Gravel	16.3	Observed Groundwater at 16'
16'-18'	3-2/1-2	100%	_		Sand, some Gravel, he		1.3	
18'-20'	1-1/1-1	5%	-		brown, Clay with trace		0.5	
			-		gray, Sand with sheen			
20'-22'	1-1/1-2	50%	-	vvet, iiile, g	organics (blac		3.2	
22'-24'	3-2/5-5	30%	_	Wet med	lium to coarse Gravel v		22.1	
24'-26'	5-3/1-1	50%	_			th, red/brown Clay at 25'	41.5	Observed Clay at 25'
-						. , ,		,
								Impacts observed at location
			-	+				
	<u>l</u>		<u> </u>					
		<u> </u>		DEDTH (CT)		NOTEC:		<u> </u>
	\A/ATED : E''	EL DATA	DOTTON 4 OF	DEPTH (FT)	CDOLINDVALATED	NOTES:	14/LL - 14/-1	what of Hammer
DATE	WATER LEV	EL DATA ELASPED TIME	BOTTOM OF		GROUNDWATER	NA = Not Applicable		ght of Hammer
DATE	TIME	ELASPED HIVE	CASING 5'	BORING 25'	ENCOUNTERED	ND = Non Detect	vvk = vvei	ght of Rod
-			5'	25	~16'	1		

GENERAL NOTES

- 1) STRATIFICATION LINES REPRESENT APPROXMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL.
- 2) WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER MAY OCCURE DUE TO OTHER FACTORS THAN THOSE PRESENT AT THE TIME MEASUREMENTS WERE MADE

BORING: CSO-PZ-3

	PROJECT	MONITORING WELL: CSO-PZ-3
LaBella Powered by partnership.	Elk Street Commerce Park, LLC	SHEET 1 OF 1
300 PEARL STREET, BUFFALO, NEW YORK ENVIRONMENTAL ENGINEERING CONSULTANTS	Interim Corrective Measures	JOB # 2200012.2021-08
CONTRACTOR: LaBella Environmental LLC	BORING LOCATION: Babcock Street CSO Outfall	TYPE OF DRILL RIG: CME55
DRILLER:	GROUND SURFACE ELEVATION: NA DATUM: NA	AUGER SIZE AND TYPE: 6.25" Hollow Stem
LABELLA REPRESENTATIVE:	START DATE: 4/16/2021 0815 END DATE: 4/16/2021	OVERBURDEN SAMPLING METHOD: Acetate liners

Hole Diameter

— 6.25 inches —

GENERAL NOTES:

1) NOT TO SCALE

2) DEPTHS ARE APPROXIMATE

Elk Street Commerce Park, LLC Interim Corrective Measures

BORING: ESCP MW-7 OF SHEET 1

2200012.20-17

JOB: CHKD BY: HEG

ENVIRONMENTAL ENGINEERING CONSULT

CONTRACTOR: DRILLER: LaBella LLC Neal Short LABELLA REPRESENTATIVE: Heather Geoghegan

BORING LOCATION: Babcock Street CSO Outfall GROUND SURFACE ELEVATION

START DATE: 10/21/2020

CME 55

END DATE: 10/21/2020

DRIVE SAMPLER TYPE: 140 lbs Hammer INSIDE DIAMETER: 2 ft x 2 inside diameter sampler

TYPE OF EQUIPMENT: AUGER SIZE AND TYPE: 4 inch OVERBURDEN SAMPING METHOD: Split Spoon OTHER:

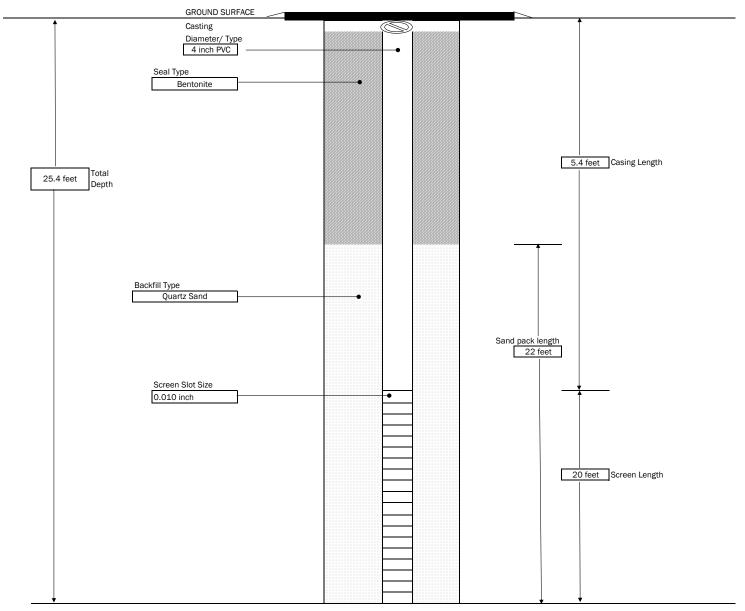
D SAMPLE PID FIELD SCREEN NOTES SAMPLE STRATA CHANGE BLOW VISUAL CLASSIFICATION (PPM) COUNT RECOVERY Pavement and course sand 0.0 NA NA NA NA NA NA Reddish brown Clay with silt, some wellrounded Pebbles NA NA NA Reddish brown Clay with Silt, some wellrounded Pebbles 0.0 NA NA NA Gray-brown Clay with Silt, some wellrounded Pebbles 0.0 NA NA Grav-brown Clay with Silt, some wellrounded Pebbles NA 10 NA NA NA Gray-brown Clay with Silt, some wellrounded Pebbles 0.0 NA NA 0.0 NA Gray-brown Clay with Silt, some wellrounded Pebbles NA NA NA Garay-brown Clay with Silt, some wellrounded Pebbles, course Sand 0.0 Ground water @ ~15' bgs 16 Gray-brown Silt, some wellrounded Pebbles, some course Sand, little Clay 0.0 NA NA NA 18 Gray-brown Silt, some wellrounded Pebbles, some course Sand, little Clay 0.0 NA NA Gray-brown Silt, some wellrounded Pebbles, some course Sand, little Clay 0.0 NA NA Gray to reddish brown Clay with some well rounded Pebbles 0.0 NA NA 24 Gray to reddish brown Clay with some well rounded Pebbles 0.0 NA NA NA DEPTH (FT) GROUNDWATER NA = Not Applicable ENCOUNTERED ND = Non Detect WATER LEVEL DATA BOTTOM OF BOTTOM OF WH = Weight of Hammer

GENERAL NOTES

TIME ELASPED TIME

CASING

1) STRATIFICATION LINES REPRESENT APPROXMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL.


BORING

2) WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER MAY OCCURE DUE TO OTHER FACTORS THAN THOSE PRESENT AT THE TIME MEASUREMENTS WERE MADE

BORING: ESCP-MW-7

WR = Weight of Rod

		PROJECT				MONITORING WELL:		ESCP MW-7
LaBella Powered by partnership. 300 PEARL STREET, BUFFALO, NEW YORK ENVIRONMENTAL ENGINEERING CONSULTANTS		eet Commerce Pa	,			SHEET JOB #		1 OF 1 2200012.20-17
CONTRACTOR: LaBella Environmental LLC		ESCP MW-7				TYPE OF DRILL RIG:		CME55
DRILLER: Neal Short	GROUND SURFACE ELEVATION:		NA	DATUM:	NA	AUGER SIZE AND TYPE:	4 inch 2'x2' in:	side diameter
LABELLA REPRESENTATIVE: Heather Geoghegan	START DATE:	10/21/2020	END D	ATE:	10/21/2020	OVERBURDEN SAMPLING	G METHOD:	Split spoon

Hole Diameter

← 6.25 inches →

GENERAL NOTES:

1) NOT TO SCALE

2) DEPTHS ARE APPROXIMATE

Elk Street Commerce Park, LLC Interim Corrective Measures

BORING: ESCP MW-8

SHEET 1 JOB:

CHKD BY: HEG

2200012.20-17

ENVIRONMENTAL ENGINEERING CONSULTANTS

CONTRACTOR: LaBella LLC DRILLER: Neal Short LABELLA REPRESENTATIVE: Heather Geoghegan

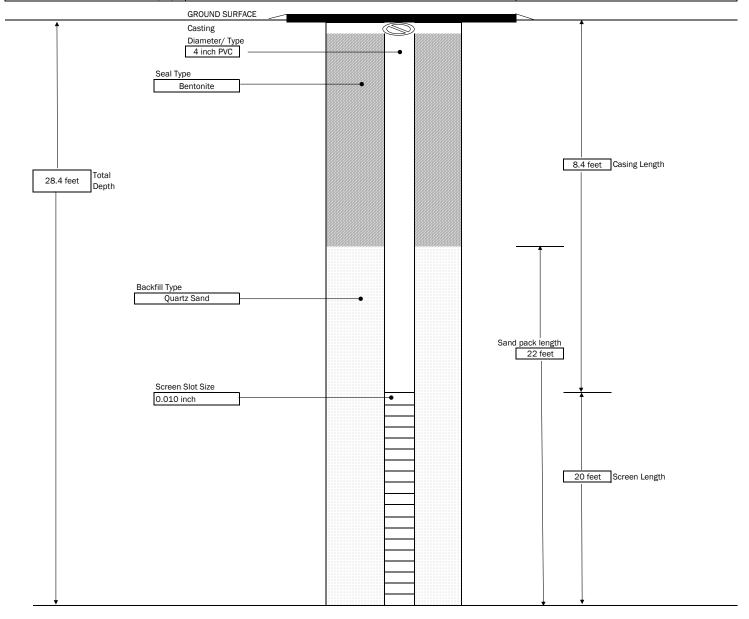
BORING LOCATION: Babcock Street CSO Outfall GROUND SURFACE ELEVATION NA

START DATE: 10/22/2020 10/22/2020

TYPE OF EQUIPMENT: CME 55 AUGER SIZE AND TYPE: 4 inch OVERBURDEN SAMPING METHOD: Split Spoon DRIVE SAMPLER TYPE: 140 lbs Hammer

INSIDE DIAMETER: 2 ft x 2 inside diameter sampler

OTHER:


	1			1				
D E P		SAMPLE						NOTES
T H	BLOW COUNT	SAMPLE RECOVERY	STRATA CHANGE		VISUAL CLASSIFIC	CATION	(PPM)	
2	5 5 1 2	14"		6-14" Brow	0-6" Pavemer n, course medium Sand Moist		0.1	
4	6 3 3 4	15"			gray, Clay, some well ro Pebbles, trace couse m Moist		0.1	
6	2 2 2 2	18"		Reddish (gray, Clay, some well ro Pebbles Moist	unded to subangular		
8	1 2 3 3	24"		Reddish	gray, Clay, some well ro Pebbles Moist	unded to subangular	0.1	
10	1 1 2 2	10"			ay Clay, with trace well trace course medium S Moist		0.1	
12	1 4 15 3	13"			ray clay with trace well i some course medium S Moist		0.1	
14	10 8 8 7	3'			v, fragmented Rock, son y, trace well rounded to Wet	ne course medium Sand, subangular Pebbles.	0.1	Ground Water @ ~ 14' bgs
16	3 11 16 10	14"		14.7-15.4	= Black, fragmented Ro Sand, trace Cl ' = Reddish brown, cour Rock, some surounded	ay.	1.4	Possible Staining 14.5-14.7' Odor noted
18	6 3 4 5	19"				edium Sand, some Silt. ce course medium Sand, astic. Wet	0.2	
20	WH WH WH	3"		Large to	medium Sand, some w Wet	ell rounded Pebbles	NA	
22	2 2 1 2	19"		Brow	n, large to medium San Wet	d, with trace Silt	0.3	
24	2 3 6 10	14"		Brow	n, large to medium San Wet	d, with trace Silt	0.7	
26	1 4 6 10	14"		Brown to g	ray course medium San in tip of Spoo Wet		0.3	
28	10 5 8 8	20"		28	-28.6' = Brown, course \$ 28.6-30' = reddish g Moist		0.3	
30	WR WR WR WH	24"		Reddish brown to gray, Clay			0.0	
	WATER LEVE	EL DATA ELASPED TIME	BOTTOM OF CASING	DEPTH (FT) BOTTOM OF BORING	GROUNDWATER ENCOUNTERED	NOTES: NA = Not Applicable ND = Non Detect	WH = Weig	ght of Hammer aht of Rod
10/22/2020	-	-	28'	28'	~14'	11011 201001		9.1. 5. 1.55

GENERAL NOTES

- 1) STRATIFICATION LINES REPRESENT APPROXMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL.
 2) WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER MAY OCCURE DUE TO OTHER FACTORS THAN THOSE PRESENT AT THE TIME MEASUREMENTS WERE MADE

BORING: ESCP MW-8

		PROJECT				MONITORING WELL:	ESCP MW-8
LaBella Powered by partnership.	Elk Stre	et Commerce Pa	ark, LLC			SHEET	1 OF 1
300 PEARL STREET, BUFFALO, NEW YORK ENVIRONMENTAL ENGINEERING CONSULTANTS	Interin	n Corrective Mea	JOB#	2200012.20-17			
CONTRACTOR: LaBella Environmental LLC		ESCP MW-8				TYPE OF DRILL RIG:	CME55
DRILLER: Neal Short	GROUND SURFACE ELEVATION:		NA	DATUM:	NA	AUGER SIZE AND TYPE:	4 inch 2'x2' inside diameter
LABELLA REPRESENTATIVE: Heather Geoghegan	START DATE: 10/22/2020 END DATE: 10/22/2020				OVERBURDEN SAMPLING	G METHOD: Split spoon	

Hole Diameter

— 4.25 inches —

GENERAL NOTES:

1) NOT TO SCALE

2) DEPTHS ARE APPROXIMATE

•											_
	rar Nis	HED			89	_	SOILS	VIPIRE INVESTIGATIONS INC. SUBSURFACE LOC	HOLE NO. 3-MW SURF. ELEV. 582.19 G. W. DEPTH See notes		
PROJECT Mobil Oil Corporation LOCATION One Babcock Street											
			ВТ	A-89	9-15	6		Buffalo,	New York		
л Оветн.гт	SAMPLES	SAMPLE NO	9,	SAMI		N	PID SAMPLI	SOIL OR ROCK CLASSIFICATION	NOTES	TO	PII OP (UGI
"	It		 	JGEF				Asphaltic Concrete (0.2')		+	
-	<u> </u>	2	9	13	25	31	17.0- 17.2 6.0-	Black CINDERS and Slag (moist, FILL) Brn. to black f-c Silty SAND, some f-c Gravel, little Cinders, tr.		1	ВС
5_	1/ 1/	3	14	9			6.2 12.2	brick, tr. wood, tr. clay (moist, FILL) Contains tr. slag	-	1	-
	7	4	3 4 7	4 5 8		12	12.4 3.0- 3.8	Black to gray organic SILT and Clay	-	1	BG
-10-	7	5	1 3	3		6	2,8- 3.0	little f-m Sand (moist, medium) Contains f-c Silty SAND laminations	-	1	
•							3.0	•	}		BG
15	17	6	1 4	2		6	3.4- 3.6	Gray f-c Silty SAND, tr. gravel, tr. clay (moist-wet, loose)]	-
.			4	J			3.0	Contains Clay laminations		1	BG
-20-	1	7	1 3	2		5	BG	Contains tr. organics (wood)	-	+	\vdash
-									Note: Water put into borehole to displace "running " sands	- - - - - - -	BG
25-	Z		WOR 9	10		14	BG	Contains little f-c Gravel (firm)	WOR=Weight of Rods	<u> </u>	ВС
-	u	9_	8	7		15	BG		-	1	
30	1	10	WQR WOR	WQR WOR		< 2	BG	Gray to brn. Silty CLAY, tr. sand (moist-wet, very soft)		+	\vdash
								Boring Complete at 32.0'	Free standing water recorded at 7.6' at	1	
								PID=organic vapors measured with Photoionization Detector (PID) measurements recorded in parts per million (ppm)	Boring Completion BG=Background BG=0.0-0.3ppm using Hnu with 11:7 eV probe		
								"with 140 lb pin wt. falling 30 "per blow. CLASS			
	C = No blows to drive" casing" with"per blow										

MONITOR WELL COMPLETION REPORT :

*ocem	5.5		
^Ф <u>рсетн</u>	21.5		•
*ocrni	30.0		

WELL Nº_	3-MW	JOB Nº BTA-89-156
PROJECT_	Mobil Oil	Corporation
_	One Babcoo	ck Street

- 1. Curb Box 1.0. 6.0 MCNES.
- 2. SURFACE SEAL TYPE Cement Grout
- 3. BOREHOLE DIAMETER 10.0 INCHES.
- 4. RISER PIPE:
 - a Type Poly Vinyl Chloride
 - D. LD. 4.0 INCHES
 - c Longto 5.5 FEET
 - A Soint Type Threaded
- 5. BACKFILL:
 - a. ترور Cement/Bentonite Grout
- 6. Type of SEAL Bentonite
 - T. SCREEN

Poly Vinyl Chloride

A LO MONES

a she sie 0.020 mores

d. Longth 13.0 FEET

8. SCREEN FILTER TYPE #4 Quartzite Sand

*Depth in leet below grade.

BORING/WELL 17252Y03.GPJ ROUX GDT 5/22/01

1377 Motor Parkway Islandia, NY 11749 Telephone: 631-232-2600 Fax: 631-232-9898

	of 1			LL CC		CTION LOG					
WELL NO. MW-	.24	N	ORTHING		EASTING						
PROJECT NO./					LOCATION						
17252Y03 / E	ExxonMobi	l Buff	alo Termina	al	625 Elk St	reet					
APPROVED BY		L	OGGED BY								
N. Clarke			l. Falzone		Buffalo, N	ew York					
DRILLING CONT	TRACTOR/DRI	LLER			GEOGRAPHI	C AREA					
SJB / Art DRILL BIT DIAM	METER/TYPE	BOE	REHOLE DIAME	TED	BSPA	QUIPMENT/METHOD	SAMPLIN	C MACT	LIOD	CTART FINICH DATE	
2-in. /	ELLIVITIE		1/4-inches	ILIX	ICME 75 /		2" Split			START-FINISH DATE 7/21/00	
CASING MAT./C	DIA.		EEN:		ICIVIL 737	ПЗА	Z Spiit	Spo	OII	1/21/00-//21/00	
PVC / 4-inch	1		TYPE Slotted	і м	AT. PVC	TOTAL LENGTH 1	5.0	DIA. 4	-inch	SLOT SIZE 20-Slot	
ELEVATION OF	: GR	OUND	SURFACE		ELL CASING	TOP & BOTTOM SCR			SURFAC		
(FT.)											
Flushm	iount		Lock and J plug				Blow		PID		
Depth, feet			P9	Graphic Log	Visual	Description	Counts	V	alues	REMARKS	
		$\stackrel{\leftarrow}{\Rightarrow}$		Log			per 6"		(ppm)		
			CEMENT	1							
		\mathbb{X}	Cement seal around PVC								
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Y/X	riser								
			ł								
			Bentonite								
			pellets used for water								
			impermeable								
	• • • • •		seal								
5		•									
	8 8 8 8 8					with some coarse to	1		4	40% recovery	-
	88888					ace of fine to coarse			-	•	
-	3 3 3 3				Gravel, Wood no	tea; ivioist	6				
	8 8 8 8						2				
	8 8 8 8										
	8 8 8 8 8					with little coarse Sand,	3			Petroleum odor, 50%	
	8 8 8 8				trace angular Gra	vel	2	V		recovery	
							2				
	8 8 8 8 8						2		ı		
						with little soft medium to	1			Petroleum odor, 25%	
10	8 8 8 8				coarse Sand, trac	e angular Gravel; Wet	1	V	ľ	recovery	
10_	8 8 8 8 8						2	$ \mathbf{I} $			_1
	8 8 8 8 8						2				
	8 8 8 8 8						_				
			Sand pook			rown soft CLAY with d, little angular Gravel	2	V		Sheen, petroleum odor, 60%	
	8 8 8 8		 Sand pack from 3-20 feet 		some coarse san	u, iittie arigular Gravei	1			recovery	
	8 8 8 8 8	∄ ∷∷:	bls.				3				
	8 8 8 8 8 8	8 8 8 8 8	20 Slot PVC								
	8 8 8 8		Screen from 5-19.95 feet				3		1		
			bls.			rown soft CLAY with d, little angular Gravel	1			Sheen, petroleum odor, 5% recovery	
						a,a ungulai Olavoi	1	7		recovery	
							1				
15_	8 8 8 8 8				Olive-grovemed	m to coarse lease CAND	-			06	_
	3 8 8 8					n to coarse loose SAND r Gravel, little Clay	1	V	68	Sheen, petroleum odor	
	8 8 8 8 8				5		1				
-	8 8 8 8 8			0 0			1				
	8 8 8 8 8								Ì		
-					Olive grave mad	n to coarea laces CANID	-				
		88888			with some angula	n to coarse loose SAND r Gravel, trace of Clay	1		0.0		
_	8 8 8 8			0	grading to a red-b	rown Till: Clay with little	1	1			
	8 8 8	8 8 8 8		0 0	angular Gravel, tr	ace fine Sand	1	Å			
	3 8 8 8	88888		0							
-	8 8 8 8						_			Oottom of having = +40 fe 1	
	8 8 8 8									Bottom of boring at 19 feet ols., bottom of well at 19.95	
	8 8 8	– 8 ັ8 [°] 8 [°]		1				, 1		eet bls.	

APPENDIX 2

Laboratory Report

Environment Testing America

ANALYTICAL REPORT

Eurofins TestAmerica, Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

Laboratory Job ID: 480-184405-1

Client Project/Site: Waste Characterization

For:

LaBella Associates DPC 300 Pearl Street Suite 130 Buffalo, New York 14202

Attn: Jessica Dombrowski

J

Authorized for release by: 5/14/2021 4:05:48 PM
Rebecca Jones, Project Management Assistant I
Rebecca.Jones@Eurofinset.com

Designee for

Brian Fischer, Manager of Project Management (716)504-9835

Brian.Fischer@Eurofinset.com

LINKS

Review your project results through

Total Access

Have a Question?

Visit us at:

www.eurofinsus.com/Env

The test results in this report meet all 2003 NELAC, 2009 TNI, and 2016 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Client: LaBella Associates DPC Project/Site: Waste Characterization Laboratory Job ID: 480-184405-1

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
QC Sample Results	7
QC Association Summary	8
Lab Chronicle	9
Certification Summary	10
Method Summary	11
Cample Cammary	12
Chain of Custody	13
Receipt Checklists	14

10

12

13

Definitions/Glossary

Client: LaBella Associates DPC Job ID: 480-184405-1

Project/Site: Waste Characterization

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report. Listed under the "D" column to designate that the result is reported on a dry weight basis %R Percent Recovery CFL Contains Free Liquid CFU Colony Forming Unit CNF Contains No Free Liquid DER Duplicate Error Ratio (normalized absolute difference) Dil Fac **Dilution Factor** Detection Limit (DoD/DOE) DL

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin) LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE)

EPA recommended "Maximum Contaminant Level" MCL MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit ML Minimum Level (Dioxin) Most Probable Number MPN MQL Method Quantitation Limit

NC Not Calculated

Not Detected at the reporting limit (or MDL or EDL if shown) ND

NEG Negative / Absent POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive **Quality Control** 0C

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) **TEQ** Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Page 3 of 14

Case Narrative

Client: LaBella Associates DPC
Project/Site: Waste Characterization
Job ID: 480-184405-1

Job ID: 480-184405-1

Laboratory: Eurofins TestAmerica, Buffalo

Narrative

Job Narrative 480-184405-1

Comments

No additional comments.

Receipt

The sample was received on 5/7/2021 11:30 AM. Unless otherwise noted below, the sample arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 16.2° C.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

1

3

4

_

6

10

111

13

11)

Detection Summary

Client: LaBella Associates DPC Job ID: 480-184405-1

Project/Site: Waste Characterization

Client Sample ID: PZ-2 Lab Sample ID: 480-184405-1

Analyte	Result Qualifier	RL	RL Unit	Dil Fac	D Method	Prep Type
Specific Gravity	0.8419	0.1000	0.1000 g/mL	1	D1429-87	Total/NA

4

5

7

10

11

13

Client Sample Results

Client: LaBella Associates DPC Job ID: 480-184405-1

Project/Site: Waste Characterization

Lab Sample ID: 480-184405-1 **Client Sample ID: PZ-2** Date Collected: 05/07/21 08:00

Matrix: Waste

Date Received: 05/07/21 11:30

General Chemistry								
Analyte	Result Qu	ıalifier RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Specific Gravity	0.8419	0.1000	0.1000	g/mL			05/14/21 11:50	1

QC Sample Results

Client: LaBella Associates DPC Job ID: 480-184405-1

Project/Site: Waste Characterization

Method: D1429-87 - Specific Gravity

Lab Sample ID: LCS 480-581002/1 **Client Sample ID: Lab Control Sample**

Matrix: Waste

Analysis Batch: 581002

Spike LCS LCS %Rec. Added Result Qualifier Unit Limits Analyte D %Rec Specific Gravity 1.0001 90 - 110 1.00 g/mL 100

Lab Sample ID: 480-184405-1 DU

Matrix: Waste

Analysis Batch: 581002

	Sample	Sample	DU	DU				RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit
Specific Gravity	0.8419		0.8432		g/mL		0.2	20

Prep Type: Total/NA

Client Sample ID: PZ-2

Prep Type: Total/NA

QC Association Summary

Client: LaBella Associates DPC
Project/Site: Waste Characterization
Job ID: 480-184405-1

General Chemistry

Analysis Batch: 581002

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-184405-1	PZ-2	Total/NA	Waste	D1429-87	
LCS 480-581002/1	Lab Control Sample	Total/NA	Waste	D1429-87	
480-184405-1 DU	PZ-2	Total/NA	Waste	D1429-87	

16

4

5

8

46

11

13

Lab Chronicle

Client: LaBella Associates DPC Job ID: 480-184405-1

Project/Site: Waste Characterization

Client Sample ID: PZ-2 Lab Sample ID: 480-184405-1 Date Collected: 05/07/21 08:00

Matrix: Waste

Date Received: 05/07/21 11:30

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	D1429-87		1	581002	05/14/21 11:50	SRA	TAL BUF

Laboratory References:

TAL BUF = Eurofins TestAmerica, Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

Accreditation/Certification Summary

Client: LaBella Associates DPC
Project/Site: Waste Characterization
Job ID: 480-184405-1

Laboratory: Eurofins TestAmerica, Buffalo

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Pro	ogram	Identification Number	Expiration Date	
New York	NE	LAP	10026	04-01-22	
The following analyte	s are included in this reno	rt but the laboratory is r	not certified by the governing authority	This list may include analytes for w	
The following analyte the agency does not	•	rt, but the laboratory is r	not certified by the governing authority.	This list may include analytes for w	
	•	rt, but the laboratory is r Matrix	not certified by the governing authority. Analyte	This list may include analytes for w	

3

4

5

7

0

10

13

Method Summary

Client: LaBella Associates DPC Project/Site: Waste Characterization

Job ID: 480-184405-1

Method	Method Description	Protocol	Laboratory
D1429-87	Specific Gravity	ASTM	TAL BUF

Protocol References:

ASTM = ASTM International

Laboratory References:

TAL BUF = Eurofins TestAmerica, Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

5

8

4.6

11

10

Sample Summary

Client: LaBella Associates DPC Project/Site: Waste Characterization

Job ID: 480-184405-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Asset ID
480-184405-1	PZ-2	Waste	05/07/21 08:00	05/07/21 11:30	

6

Q

9

10

12

13

Chain of Custody Record

eurofins	Environment Testing
	The state of the s

#N/A #N/A TestAmerica #N/A #N/A Regulatory Program: DW ■NPDES □RCRA □Other: **Client Contact** Project Manager: Andrew Janik Site Contact: Andrew Janik Date: 5/7/2021 COC No: LaBella Tel:716-345-6709 Lab Contact: Carrier: of COCs 300 Pearl Street, Suite 130 **Analysis Turnaround Time** Sampler:Brent Miller Buffalo NY 14202 ☐ CALENDAR DAYS ☐ WORKING DAYS For Lab Use Only: 716-551-6281 TAT if different from Below Walk-in Client: MS/MSD (Y/ Filtered Sample (Y/N 2 weeks Lab Sampling: Project Name: ESCP 1 week Site:ESCP 2 days Specific Gravity Job / SDG No. P O # 2200012 1 day Sample Type Sample Sample # of (C=Comp. Sample Identification Date Time G=Grab) Matrix Cont. Sample Specific Notes: PZ-2 5/7/2021 0800 G OIL THIS SAMPLE IS OIL. Preservation Used: 1= Ice, 2= HCI; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other Possible Hazard Identification: Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Are any samples from a listed EPA Hazardous Waste? Please List any EPA Waste Codes for the sample in the Comments Section if the lab is to dispose of the sample. □Non-Hazard □Flammable ☐Skin Irritant □Poison B Unknown ☑Disposal by Lab ☐Archive for Months Special Instructions/QC Requirements & Comments: Email report to ajanik@labellapc.com 5 day TAT Custody Seals Intact: ☐ No Custody Seal No. Cooler Temp. (°C): Obs'd: 10 Corr'd: Therm ID No: Relinquished by: Date/Time: 5/7/21 /000 Received by: Company Date/Time: trow#2 loam Relinguished by: Company: Date/Time: Company: Date/Time: Relinquished by: Company: Date/Time: Received in Laboratory by Company: Date/Time:

5/14/2021

Page

3 으 4

W

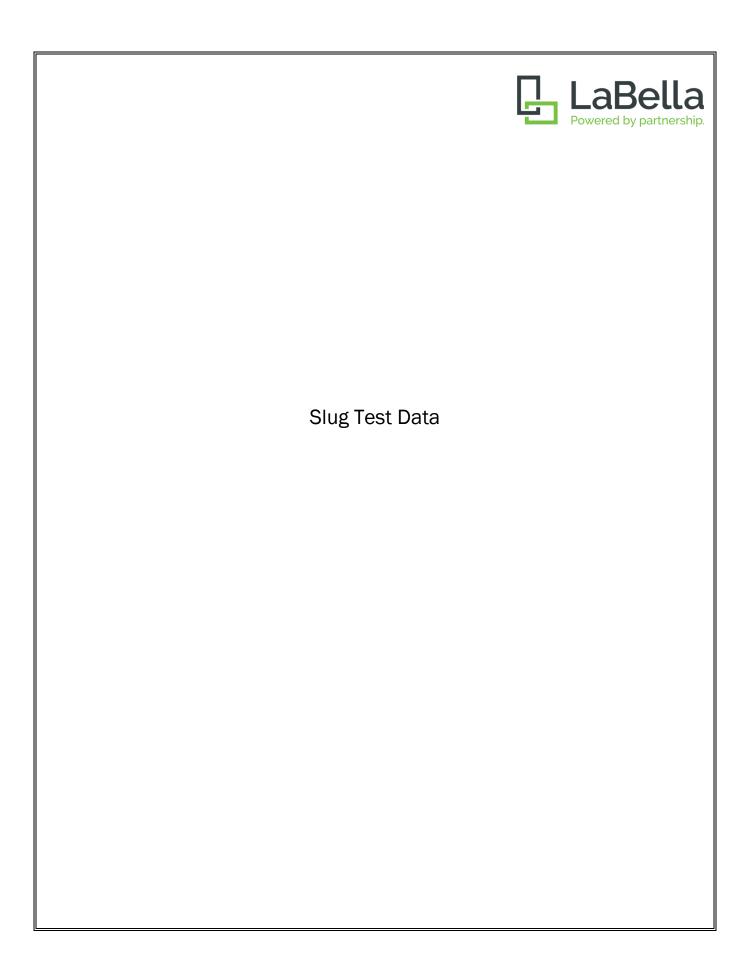
Form No. CA-C-WI-002, Rev. 4.15, dated 9/27/2017

Client: LaBella Associates DPC

Job Number: 480-184405-1

Login Number: 184405 List Source: Eurofins TestAmerica, Buffalo

List Number: 1


Creator: Kolb, Chris M

Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	False	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time (Excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	N/A	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	LABELLA
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	True	
Chlorine Residual checked.	N/A	

APPENDIX 3

Slug Test and Constant Rate Pump Test Data

Summary of Slug Test Results Elk Street Commerce Park Buffalo

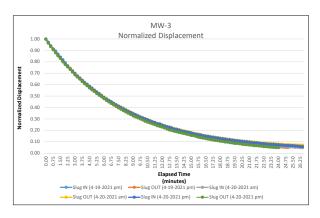
Well ID	Slug IN/OUT	Hydraulic Co	nductivity*	Average Hydraulic Conductivity			
		cm/sec ft/day		cm/sec	ft/day		
	T-1 IN	4.35E-04	1.22		· · ·		
8444.2	T-1 OUT	4.41E-04	1.25				
	T-2 IN	4.15E-04	1.17	1 4 205 04	4 22		
MW-3	T-2 OUT	4.18E-04	1.19	4.29E-04	1.22		
	T-3 IN	4.23E-04	1.20	1			
	T-3 OUT	4.45E-04	1.26	1			
	T-1 IN	1.55E-04	0.44				
MW-24	T-1 OUT	3.53E-04	1.00	2 605 04	0.76		
IVI VV-24	T-2 IN	1.74E-04	0.49	2.69E-04	0.76		
	T-2 OUT	3.93E-04	1.11	1			
	T-1 IN	3.65E-03	10.35				
ESCP-CSO-MW-4	T-1 OUT	4.36E-03	12.34	3.96E-03	11.22		
ESCP-CSO-IVIVV-4	T-2 IN	5.37E-03	15.23	3.90E-03	11.22		
	T-2 OUT	2.46E-03	6.96	1			
	T-1 IN	7.56E-03	21.44				
	T-1 OUT	1.23E-02	34.80	1			
ECCD NAVA 7	T-2 IN	1.33E-02	37.69	0.555.03	27.06		
ESCP-MW-7	T-2 OUT	1.10E-03	3.13	9.55E-03			
	T-3 IN	5.62E-03	15.94	1			
	T-3 OUT	1.74E-02	49.40	1			
	T-1 IN	1.96E-02	55.43				
	T-1 OUT	2.47E-02	70.00]			
ESCP-MW-8	T-2 IN	1.85E-02	52.34	2.55E-02	72.16		
ESCY-IVIVV-8	T-2 OUT	2.55E-02	72.29	2.55E-U2	/2.10		
	T-3 IN	2.50E-02	70.88]			
	T-3 OUT	3.95E-02	112.02	7			

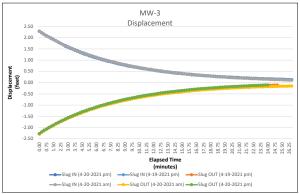
Notes:

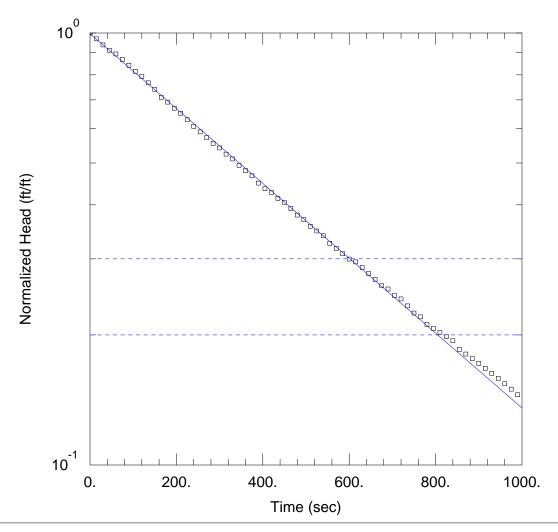
Slug tests conducted April 19 & 20, 2021 and May 3, 2021

^{*} Hydraulic conductivity given in centimeters per second and feet per day

MW-3


Flanca		Slug IN (4	-19-2021 pm)					Slug OUT (4	4-19-2021 pm)		
	ed Time	DTW	GW Elev	Displacement	Normalized		d Time	DTW	GW Elev	Displacement	Normalize
Seconds 0	Minutes 0.00	8.92	575.59	2.27	Displacement 1.00	Seconds 0	Minutes 0.00	13.46	571.05	-2.27	Displaceme 1.00
15	0.25	8.99	575.52	2.20	0.97	15	0.25	13.38	571.13	-2.19	0.96
30	0.50	9.06	575.45	2.13	0.94	30	0.50	13.31	571.20	-2.12	0.94
45	0.75	9.12	575.39	2.07	0.91	45	0.75	13.25	571.26	-2.06	0.91
60 75	1.00 1.25	9.16 9.22	575.35 575.29	2.03 1.97	0.89 0.87	60 75	1.00 1.25	13.19 13.13	571.32 571.38	-2.00 -1.94	0.88 0.85
90	1.50	9.28	575.23	1.91	0.84	90	1.50	13.07	571.44	-1.88	0.83
105	1.75	9.34	575.17	1.85	0.82	105	1.75	13.02	571.49	-1.83	0.81
120	2.00	9.39	575.12	1.80	0.79	120	2.00	12.96	571.55	-1.77	0.78
135	2.25	9.45	575.06	1.74	0.77	135	2.25	12.91	571.60	-1.72	0.76
150 165	2.50 2.75	9.51 9.58	575.00 574.93	1.68 1.61	0.74 0.71	150 165	2.50 2.75	12.86 12.80	571.65 571.71	-1.67 -1.61	0.73 0.71
180	3.00	9.62	574.89	1.57	0.69	180	3.00	12.76	571.75	-1.57	0.69
195	3.25	9.67	574.84	1.52	0.67	195	3.25	12.71	571.80	-1.52	0.67
210	3.50	9.71	574.80	1.48	0.65	210	3.50	12.67	571.84	-1.48	0.65
225 240	3.75 4.00	9.76 9.81	574.75 574.70	1.43 1.38	0.63 0.61	225 240	3.75 4.00	12.62 12.58	571.89 571.93	-1.43 -1.39	0.63 0.61
255	4.25	9.85	574.66	1.34	0.59	255	4.25	12.53	571.98	-1.34	0.59
270	4.50	9.89	574.62	1.30	0.57	270	4.50	12.49	572.02	-1.30	0.57
285	4.75	9.93	574.58	1.26	0.56	285	4.75	12.46	572.05	-1.27	0.56
300	5.00	9.96	574.55	1.23	0.54	300	5.00	12.42	572.09	-1.23	0.54
315 330	5.25 5.50	10.00 10.03	574.51 574.48	1.19 1.16	0.52 0.51	315 330	5.25 5.50	12.38 12.35	572.13 572.16	-1.19 -1.16	0.52 0.51
345	5.75	10.07	574.44	1.12	0.49	345	5.75	12.32	572.19	-1.13	0.50
360	6.00	10.10	574.41	1.09	0.48	360	6.00	12.28	572.23	-1.09	0.48
375	6.25	10.13	574.38	1.06	0.47	375	6.25	12.24	572.27	-1.05	0.46
390	6.50	10.17	574.34	1.02	0.45	390	6.50	12.21	572.30	-1.02	0.45
405 420	6.75 7.00	10.20 10.22	574.31 574.29	0.99 0.97	0.44 0.43	405 420	6.75 7.00	12.18 12.15	572.33 572.36	-0.99 -0.96	0.44 0.42
435	7.00	10.22	574.29	0.97	0.43	435	7.00	12.13	572.39	-0.98	0.42
450	7.50	10.27	574.24	0.92	0.40	450	7.50	12.09	572.42	-0.90	0.40
465	7.75	10.30	574.21	0.89	0.39	465	7.75	12.07	572.44	-0.88	0.39
480	8.00	10.33	574.18	0.86	0.38	480	8.00	12.04	572.47	-0.85	0.37
495 510	8.25 8.50	10.35	574.16 574.13	0.84	0.37	495 510	8.25 8.50	12.01	572.50 572.52	-0.82	0.36
510 525	8.50 8.75	10.38 10.40	574.13 574.11	0.81 0.79	0.36 0.35	510 525	8.50 8.75	11.99 11.97	572.52 572.54	-0.80 -0.78	0.35 0.34
540	9.00	10.40	574.11	0.79	0.35	540	9.00	11.94	572.54	-0.75	0.34
555	9.25	10.45	574.06	0.74	0.33	555	9.25	11.92	572.59	-0.73	0.32
570	9.50	10.47	574.04	0.72	0.32	570	9.50	11.90	572.61	-0.71	0.31
585	9.75	10.49	574.02	0.70	0.31	585	9.75	11.88	572.63	-0.69	0.30
600 615	10.00 10.25	10.51 10.52	574.00 573.99	0.68 0.67	0.30 0.29	600 615	10.00 10.25	11.85 11.83	572.66 572.68	-0.66 -0.64	0.29 0.28
630	10.23	10.52	573.97	0.65	0.29	630	10.50	11.82	572.69	-0.63	0.28
645	10.75	10.56	573.95	0.63	0.28	645	10.75	11.80	572.71	-0.61	0.27
660	11.00	10.58	573.93	0.61	0.27	660	11.00	11.77	572.74	-0.58	0.26
675	11.25	10.60	573.91	0.59	0.26	675	11.25	11.76	572.75	-0.57	0.25
690	11.50	10.61	573.90	0.58	0.26	690	11.50	11.75	572.76	-0.56	0.24
705 720	11.75 12.00	10.63 10.64	573.88 573.87	0.56 0.55	0.25 0.24	705 720	11.75 12.00	11.72 11.71	572.79 572.80	-0.53 -0.52	0.24 0.23
735	12.25	10.66	573.85	0.53	0.23	735	12.25	11.69	572.82	-0.50	0.22
750	12.50	10.68	573.83	0.51	0.23	750	12.50	11.68	572.83	-0.49	0.21
765	12.75	10.69	573.82	0.50	0.22	765	12.75	11.66	572.85	-0.47	0.21
780	13.00	10.71	573.80	0.48	0.21	780	13.00	11.65	572.86	-0.46	0.20
795 810	13.25 13.50	10.72 10.73	573.79 573.78	0.47 0.46	0.21 0.20	795 810	13.25 13.50	11.64 11.62	572.87 572.89	-0.45 -0.43	0.20 0.19
825	13.75	10.73	573.77	0.45	0.20	825	13.75	11.61	572.90	-0.43	0.19
840	14.00	10.75	573.76	0.44	0.19	840	14.00	11.60	572.91	-0.41	0.18
855	14.25	10.77	573.74	0.42	0.19	855	14.25	11.59	572.92	-0.40	0.17
870	14.50	10.78	573.73	0.41	0.18	870	14.50	11.58	572.93	-0.39	0.17
885	14.75	10.79	573.72	0.40	0.18	885 900	14.75	11.56	572.95	-0.37	0.16
900 915	15.00 15.25	10.80 10.81	573.71 573.70	0.39 0.38	0.17 0.17	915	15.00 15.25	11.55 11.54	572.96 572.97	-0.36 -0.35	0.16 0.15
930	15.50	10.82	573.69	0.37	0.16	930	15.50	11.54	572.97	-0.35	0.15
945	15.75	10.83	573.68	0.36	0.16	945	15.75	11.52	572.99	-0.33	0.15
960	16.00	10.84	573.67	0.35	0.15	960	16.00	11.51	573.00	-0.32	0.14
975 990	16.25	10.85	573.66	0.34	0.15	975 990	16.25	11.50	573.01	-0.31	0.14
1,005	16.50 16.75	10.86 10.86	573.65 573.65	0.33 0.33	0.15 0.14	1,005	16.50 16.75	11.49 11.48	573.02 573.03	-0.30 -0.29	0.13 0.13
1,020	17.00	10.87	573.64	0.33	0.14	1,020	17.00	11.48	573.03	-0.29	0.13
1,035	17.25	10.88	573.63	0.31	0.13	1,035	17.25	11.47	573.04	-0.28	0.12
1,050	17.50	10.89	573.62	0.30	0.13	1,050	17.50	11.46	573.05	-0.27	0.12
1,065	17.75	10.90	573.61	0.29	0.13	1,065	17.75	11.45	573.06	-0.26	0.12
1,080 1,095	18.00 18.25	10.90 10.91	573.61 573.60	0.29 0.28	0.13 0.12	1,080 1,095	18.00 18.25	11.44 11.44	573.07 573.07	-0.25 -0.25	0.11 0.11
1,110	18.50	10.91	573.58	0.26	0.12	1,110	18.50	11.44	573.07	-0.25	0.11
1,125	18.75	10.93	573.58	0.26	0.12	1,125	18.75	11.42	573.09	-0.23	0.10
1,140	19.00	10.93	573.58	0.26	0.11	1,140	19.00	11.41	573.10	-0.22	0.10
1,155	19.25	10.94	573.57	0.25	0.11	1,155	19.25	11.41	573.10	-0.22	0.10
1,170 1,185	19.50 19.75	10.94 10.95	573.57 573.56	0.25 0.24	0.11 0.10	1,170 1,185	19.50 19.75	11.40 11.40	573.11 573.11	-0.21 -0.21	0.09
1,185	20.00	10.95	573.55	0.24	0.10	1,185	20.00	11.40	573.11	-0.21	0.09
1,215	20.25	10.97	573.54	0.22	0.10	1,215	20.25	11.38	573.13	-0.19	0.09
1,230	20.50	10.97	573.54	0.22	0.10	1,230	20.50	11.38	573.13	-0.19	0.08
1,245	20.75	10.97	573.54	0.22	0.09	1,245	20.75	11.37	573.14	-0.18	0.08
1,260 1,275	21.00 21.25	10.98 10.98	573.53 573.53	0.21 0.21	0.09	1,260 1,275	21.00 21.25	11.37 11.36	573.14 573.15	-0.18 -0.17	0.08
1,273	21.50	10.99	573.52	0.21	0.09	1,273	21.50	11.36	573.15	-0.17	0.08
1,305	21.75	10.99	573.52	0.20	0.09	1,305	21.75	11.35	573.16	-0.16	0.07
1,320	22.00	11.00	573.51	0.19	0.08	1,320	22.00	11.35	573.16	-0.16	0.07
1,335	22.25	11.00	573.51	0.19	0.08	1,335	22.25	11.34	573.17	-0.15	0.07
1,350 1,365	22.50 22.75	11.01 11.01	573.50 573.50	0.18	0.08	1,350 1,365	22.50 22.75	11.34 11.33	573.17 573.18	-0.15 -0.14	0.07 0.06
1,365	23.00	11.01	573.50 573.50	0.18 0.18	0.08	1,365	22.75	11.33	573.18 573.18	-0.14	0.06
1,395	23.25	11.02	573.49	0.17	0.08	1,395	23.25	11.33	573.18	-0.14	0.06
1,410	23.50	11.02	573.49	0.17	0.08	1,410	23.50	11.32	573.19	-0.13	0.06
1,425	23.75	11.03	573.48	0.16	0.07	1,425	23.75	11.32	573.19	-0.13	0.06
1,440	24.00	11.03	573.48	0.16	0.07	1,440	24.00	11.32	573.19	-0.13	0.06
1,455	24.25	11.03	573.48 573.48	0.16	0.07	1,455	24.25	11.31	573.20 573.20	-0.12 -0.12	0.05
1,470 1,485	24.50 24.75	11.03 11.04	573.48 573.47	0.16 0.15	0.07 0.07	1,470 1,485	24.50 24.75	11.31 11.30	573.20 573.21	-0.12 -0.11	0.05 0.05
1,485	25.00	11.04	573.47	0.15	0.07	1,485	25.00	11.30	573.21 573.21	-0.11	0.05
	25.25	11.04	573.46	0.13	0.07	1,500	_3.55	11.50	3,3,21	0.11	0.00
1,515				0.14	0.06						
	25.50	11.05	573.46	0.14							
1,530 1,545	25.75	11.05	573.46	0.14	0.06						
1,515 1,530 1,545 1,560 1,575											


Slug Test Data Well MW-3 Hydrogeologic Investigation - Combined Sewer Outfall Elk St. Commerce Park


		Slug IN (4-	20-2021 am)					Slug OUT (4	-20-2021 am)		
	ed Time	DTW	GW Elev	Displacement	Normalized		d Time	DTW	GW Elev	Displacement	Normalized
Seconds 0	Minutes 0.00	8.76	575.75	2.28	Displacement 1.00	Seconds 0	Minutes 0.00	13.33	571.18	-2.29	Displacement 1.00
15	0.00	8.83	575.68	2.21	0.97	15	0.25	13.25	571.26	-2.21	0.97
30	0.50	8.90	575.61	2.14	0.94	30	0.50	13.19	571.32	-2.15	0.94
45	0.75	8.96	575.55	2.08	0.91	45	0.75	13.12	571.39	-2.08	0.91
60	1.00	9.02	575.49	2.02	0.89	60	1.00	13.07	571.44	-2.03	0.88
75 90	1.25 1.50	9.09 9.14	575.42 575.37	1.95 1.90	0.86 0.83	75 90	1.25 1.50	13.00 12.95	571.51 571.56	-1.96 -1.91	0.86 0.83
105	1.75	9.14	575.31	1.84	0.83	105	1.75	12.95	571.63	-1.91	0.83
120	2.00	9.26	575.25	1.78	0.78	120	2.00	12.84	571.67	-1.80	0.78
135	2.25	9.31	575.20	1.73	0.76	135	2.25	12.78	571.73	-1.74	0.76
150	2.50	9.36	575.15	1.68	0.74	150	2.50	12.74	571.77	-1.70	0.74
165	2.75	9.41	575.10	1.63	0.71	165	2.75	12.69	571.82	-1.65	0.72
180	3.00	9.45	575.06	1.59	0.70	180	3.00	12.64	571.87	-1.60	0.70
195 210	3.25 3.50	9.50 9.55	575.01 574.96	1.54 1.49	0.68 0.66	195 210	3.25 3.50	12.59 12.55	571.92 571.96	-1.55 -1.51	0.68 0.66
225	3.75	9.59	574.92	1.45	0.64	225	3.75	12.50	572.01	-1.46	0.64
240	4.00	9.63	574.88	1.41	0.62	240	4.00	12.46	572.05	-1.42	0.62
255	4.25	9.67	574.84	1.37	0.60	255	4.25	12.42	572.09	-1.38	0.60
270	4.50	9.71	574.80	1.33	0.58	270	4.50	12.38	572.13	-1.34	0.59
285	4.75	9.75	574.76	1.29	0.57	285	4.75	12.34	572.17	-1.30	0.57
300 315	5.00 5.25	9.79 9.81	574.72 574.70	1.25 1.23	0.55 0.54	300 315	5.00 5.25	12.31 12.27	572.20 572.24	-1.27 -1.23	0.55 0.54
330	5.50	9.85	574.66	1.19	0.52	330	5.50	12.23	572.28	-1.19	0.52
345	5.75	9.89	574.62	1.15	0.51	345	5.75	12.20	572.31	-1.16	0.50
360	6.00	9.92	574.59	1.12	0.49	360	6.00	12.16	572.35	-1.12	0.49
375	6.25	9.96	574.55	1.08	0.48	375	6.25	12.13	572.38	-1.09	0.48
390	6.50	9.99	574.52	1.05	0.46	390	6.50	12.09	572.42	-1.05	0.46
405	6.75	10.02	574.49	1.02	0.45	405	6.75	12.06	572.45	-1.02	0.45
420 435	7.00 7.25	10.04 10.08	574.47 574.43	1.00 0.96	0.44 0.42	420 435	7.00 7.25	12.04 12.01	572.47 572.50	-1.00 -0.97	0.44 0.42
450	7.50	10.10	574.41	0.94	0.41	450	7.50	11.99	572.52	-0.95	0.41
465	7.75	10.13	574.38	0.91	0.40	465	7.75	11.95	572.56	-0.91	0.40
480	8.00	10.15	574.36	0.89	0.39	480	8.00	11.93	572.58	-0.89	0.39
495	8.25	10.18	574.33	0.86	0.38	495	8.25	11.91	572.60	-0.87	0.38
510 525	8.50 8.75	10.20	574.31 574.28	0.84 0.81	0.37	510 525	8.50 8.75	11.88	572.63 572.65	-0.84	0.37
525 540	8.75 9.00	10.23 10.24	574.28 574.27	0.81	0.36 0.35	525 540	8.75 9.00	11.86 11.84	572.65 572.67	-0.82 -0.80	0.36 0.35
555	9.00	10.24	574.27	0.80	0.33	555	9.00	11.84	572.70	-0.80	0.33
570	9.50	10.29	574.22	0.75	0.33	570	9.50	11.79	572.72	-0.75	0.33
585	9.75	10.32	574.19	0.72	0.32	585	9.75	11.77	572.74	-0.73	0.32
600	10.00	10.33	574.18	0.71	0.31	600	10.00	11.75	572.76	-0.71	0.31
615	10.25	10.35	574.16	0.69	0.30	615	10.25	11.73	572.78	-0.69	0.30
630 645	10.50 10.75	10.37 10.39	574.14 574.12	0.67 0.65	0.29 0.28	630 645	10.50 10.75	11.71 11.69	572.80 572.82	-0.67 -0.65	0.29 0.28
660	11.00	10.41	574.10	0.63	0.27	660	11.00	11.67	572.84	-0.63	0.27
675	11.25	10.43	574.08	0.61	0.27	675	11.25	11.65	572.86	-0.61	0.27
690	11.50	10.45	574.06	0.59	0.26	690	11.50	11.63	572.88	-0.59	0.26
705	11.75	10.46	574.05	0.58	0.25	705	11.75	11.62	572.89	-0.58	0.25
720	12.00	10.47	574.04	0.57	0.25	720	12.00	11.60	572.91	-0.56	0.25
735 750	12.25 12.50	10.50 10.51	574.01 574.00	0.54 0.53	0.24 0.23	735 750	12.25 12.50	11.59 11.57	572.92 572.94	-0.55 -0.53	0.24
765	12.75	10.51	573.99	0.52	0.23	765	12.75	11.56	572.95	-0.52	0.23
780	13.00	10.54	573.97	0.50	0.22	780	13.00	11.55	572.96	-0.51	0.22
795	13.25	10.55	573.96	0.49	0.21	795	13.25	11.53	572.98	-0.49	0.21
810	13.50	10.57	573.94	0.47	0.21	810	13.50	11.52	572.99	-0.48	0.21
825	13.75	10.58	573.93	0.46	0.20	825	13.75	11.51	573.00	-0.47	0.21
840 855	14.00 14.25	10.59 10.60	573.92 573.91	0.45 0.44	0.20 0.19	840 855	14.00 14.25	11.49 11.48	573.02 573.03	-0.45 -0.44	0.20 0.19
870	14.50	10.62	573.89	0.44	0.19	870	14.50	11.47	573.04	-0.44	0.19
885	14.75	10.63	573.88	0.41	0.18	885	14.75	11.46	573.05	-0.42	0.19
900	15.00	10.64	573.87	0.40	0.18	900	15.00	11.45	573.06	-0.41	0.18
915	15.25	10.66	573.85	0.38	0.17	915	15.25	11.44	573.07	-0.40	0.17
930	15.50	10.66	573.85	0.38	0.17	930	15.50	11.43	573.08	-0.39	0.17
945	15.75 16.00	10.68 10.68	573.83	0.36 0.36	0.16 0.16	945 960	15.75 16.00	11.42 11.41	573.09	-0.38	0.17 0.16
960 975	16.25	10.68	573.83 573.81	0.34	0.16	975	16.25	11.41	573.10 573.11	-0.37 -0.36	0.16
990	16.50	10.71	573.80	0.33	0.15	990	16.50	11.39	573.12	-0.35	0.15
1,005	16.75	10.71	573.80	0.33	0.14	1,005	16.75	11.38	573.13	-0.34	0.15
1,020	17.00	10.72	573.79	0.32	0.14	1,020	17.00	11.37	573.14	-0.33	0.14
1,035	17.25	10.73	573.78	0.31	0.14	1,035	17.25	11.36	573.15	-0.32	0.14
1,050	17.50	10.74	573.77	0.30	0.13	1,050	17.50	11.36	573.15	-0.32	0.14
1,065 1,080	17.75 18.00	10.75 10.75	573.76 573.76	0.29 0.29	0.13 0.13	1,065 1,080	17.75 18.00	11.35 11.34	573.16 573.17	-0.31 -0.30	0.13 0.13
1,080	18.25	10.75	573.75	0.29	0.13	1,080	18.25	11.34	573.17	-0.30	0.13
1,110	18.50	10.77	573.74	0.27	0.12	1,110	18.50	11.33	573.18	-0.29	0.13
1,125	18.75	10.78	573.73	0.26	0.11	1,125	18.75	11.32	573.19	-0.28	0.12
1,140	19.00	10.79	573.72	0.25	0.11	1,140	19.00	11.32	573.19	-0.28	0.12
1,155 1,170	19.25 19.50	10.79 10.80	573.72 573.71	0.25 0.24	0.11 0.11	1,155 1,170	19.25 19.50	11.31 11.30	573.20 573.21	-0.27 -0.26	0.12 0.11
1,170	19.50	10.80	573.71	0.24	0.11	1,170	19.50	11.30	573.22	-0.25	0.11
1,200	20.00	10.82	573.69	0.22	0.10	1,200	20.00	11.29	573.22	-0.25	0.11
1,215	20.25	10.82	573.69	0.22	0.10	1,215	20.25	11.28	573.23	-0.24	0.11
1,230	20.50	10.83	573.68	0.21	0.09	1,230	20.50	11.28	573.23	-0.24	0.10
1,245	20.75	10.83	573.68	0.21	0.09	1,245	20.75	11.27	573.24	-0.23	0.10
1,260 1,275	21.00 21.25	10.83 10.84	573.68 573.67	0.21 0.20	0.09 0.09	1,260 1,275	21.00 21.25	11.27 11.26	573.24 573.25	-0.23 -0.22	0.10 0.10
1,275	21.25	10.84	573.66	0.20	0.09	1,275	21.25	11.26	573.25	-0.22	0.10
1,305	21.75	10.85	573.66	0.19	0.08	1,305	21.75	11.25	573.26	-0.21	0.09
1,320	22.00	10.86	573.65	0.18	0.08	1,320	22.00	11.25	573.26	-0.21	0.09
1,335	22.25	10.87	573.64	0.17	0.08	1,335	22.25	11.24	573.27	-0.20	0.09
1,350	22.50	10.87	573.64	0.17	0.08	1,350	22.50	11.24	573.27	-0.20	0.09
1,365 1,380	22.75 23.00	10.87 10.88	573.64 573.63	0.17 0.16	0.07 0.07	1,365 1,380	22.75 23.00	11.24 11.23	573.27 573.28	-0.20 -0.19	0.09
1,395	23.25	10.88	573.63	0.16	0.07	1,395	23.25	11.23	573.28	-0.19	0.08
1,410	23.50	10.89	573.62	0.15	0.07	1,410	23.50	11.23	573.28	-0.19	0.08
1,425	23.75	10.89	573.62	0.15	0.06	1,425	23.75	11.22	573.29	-0.18	0.08
1,440	24.00	10.89	573.62	0.15	0.06	1,440	24.00	11.22	573.29	-0.18	0.08
1,455	24.25	10.90	573.61	0.14	0.06	1,455	24.25	11.21	573.30	-0.17	0.08
1,470	24.50	10.90	573.61	0.14	0.06	1,470	24.50	11.21	573.30	-0.17	0.08
1,485	24.75	10.91	573.60	0.13	0.06	1,485	24.75	11.21	573.30	-0.17	0.07
1,500	25.00	10.91	573.60 573.60	0.13	0.06	1,500	25.00	11.21	573.30 573.30	-0.17 -0.17	0.07
1,515 1,530	25.25 25.50	10.91 10.92	573.60 573.59	0.13 0.12	0.06 0.05	1,515 1,530	25.25 25.50	11.21 11.20	573.30 573.31	-0.17 -0.16	0.07 0.07
1,545	25.75	10.92	573.59	0.12	0.05	1,545	25.75	11.20	573.31	-0.16	0.07
1,560	26.00	10.92	573.59	0.12	0.05	1,560	26.00	11.20	573.31	-0.16	0.07
1,500	26.25	10.93	573.58	0.11	0.05	1,575	26.25	11.20	573.31	-0.16	0.07

Slug Test Data Well MW-3 Hydrogeologic Investigation - Combined Sewer Outfall Elk St. Commerce Park

		China INI /A	20 2021\					China Chita //	20 2021\		
Elapse	d Time	Slug IN (4-	-20-2021 pm)	Disalassassas	Normalized	Elapse	d Time	DTW	1-20-2021 pm)	Disalessant	Normalized
Seconds	Minutes		GW Elev	Displacement	Displacement	Seconds	Minutes		GW Elev	Displacement	Displacement
0 15	0.00 0.25	8.85 8.93	575.66 575.58	2.29	1.00 0.97	0 15	0.00 0.25	13.42 13.34	571.09 571.17	-2.28 -2.20	1.00 0.96
30	0.50	8.99	575.52	2.15	0.94	30	0.50	13.27	571.24	-2.13	0.93
45	0.75	9.05	575.46	2.09	0.91	45	0.75	13.21	571.30	-2.07	0.91
60 75	1.00 1.25	9.11 9.17	575.40 575.34	2.03 1.97	0.88	60 75	1.00 1.25	13.14 13.08	571.37 571.43	-2.00 -1.94	0.88 0.85
90	1.50	9.23	575.28	1.91	0.84	90	1.50	13.03	571.43	-1.89	0.83
105	1.75	9.29	575.22	1.85	0.81	105	1.75	12.96	571.55	-1.82	0.80
120	2.00	9.35	575.16	1.79	0.78	120	2.00	12.91	571.60	-1.77	0.78
135 150	2.25 2.50	9.40 9.45	575.11 575.06	1.74 1.69	0.76 0.74	135 150	2.25 2.50	12.86 12.81	571.65 571.70	-1.72 -1.67	0.76 0.73
165	2.75	9.50	575.01	1.64	0.72	165	2.75	12.76	571.75	-1.62	0.73
180	3.00	9.55	574.96	1.59	0.69	180	3.00	12.70	571.81	-1.56	0.69
195	3.25	9.60	574.91	1.54	0.67	195	3.25	12.66	571.85	-1.52	0.67
210 225	3.50 3.75	9.64 9.68	574.87 574.83	1.50 1.46	0.66 0.64	210 225	3.50 3.75	12.62 12.57	571.89 571.94	-1.48 -1.43	0.65 0.63
240	4.00	9.72	574.79	1.42	0.62	240	4.00	12.53	571.98	-1.39	0.61
255	4.25	9.76	574.75	1.38	0.60	255	4.25	12.49	572.02	-1.35	0.59
270 285	4.50 4.75	9.81 9.84	574.70 574.67	1.33 1.30	0.58 0.57	270 285	4.50 4.75	12.44 12.41	572.07 572.10	-1.30 -1.27	0.57 0.56
300	5.00	9.88	574.63	1.30	0.57	300	5.00	12.41	572.10	-1.27	0.56
315	5.25	9.92	574.59	1.22	0.53	315	5.25	12.33	572.18	-1.19	0.52
330	5.50	9.95	574.56	1.19	0.52	330	5.50	12.30	572.21	-1.16	0.51
345	5.75	9.99	574.52	1.15	0.50	345	5.75	12.27	572.24	-1.13	0.49
360 375	6.00 6.25	10.03 10.06	574.48 574.45	1.11 1.08	0.49 0.47	360 375	6.00 6.25	12.23 12.19	572.28 572.32	-1.09 -1.05	0.48 0.46
390	6.50	10.09	574.42	1.05	0.46	390	6.50	12.16	572.35	-1.02	0.45
405	6.75	10.11	574.40	1.03	0.45	405	6.75	12.13	572.38	-0.99	0.44
420	7.00	10.15	574.36	0.99	0.43	420	7.00	12.11	572.40	-0.97	0.42
435 450	7.25 7.50	10.17 10.20	574.34 574.31	0.97 0.94	0.42 0.41	435 450	7.25 7.50	12.07 12.05	572.44 572.46	-0.93 -0.91	0.41 0.40
465	7.75	10.23	574.28	0.91	0.41	465	7.75	12.03	572.49	-0.91	0.40
480	8.00	10.26	574.25	0.88	0.39	480	8.00	11.99	572.52	-0.85	0.37
495	8.25	10.28	574.23	0.86	0.38	495	8.25	11.96	572.55	-0.82	0.36
510 525	8.50 8.75	10.31 10.33	574.20 574.18	0.83 0.81	0.36 0.36	510 525	8.50 8.75	11.94 11.91	572.57 572.60	-0.80 -0.77	0.35 0.34
540	9.00	10.35	574.16	0.81	0.34	540	9.00	11.88	572.63	-0.77	0.34
555	9.25	10.37	574.14	0.77	0.34	555	9.25	11.86	572.65	-0.72	0.32
570	9.50	10.40	574.11	0.74	0.32	570	9.50	11.84	572.67	-0.70	0.31
585 600	9.75 10.00	10.42 10.44	574.09 574.07	0.72 0.70	0.32 0.31	585 600	9.75 10.00	11.82 11.80	572.69 572.71	-0.68 -0.66	0.30 0.29
615	10.00	10.44	574.06	0.69	0.30	615	10.00	11.78	572.73	-0.64	0.28
630	10.50	10.48	574.03	0.66	0.29	630	10.50	11.76	572.75	-0.62	0.27
645	10.75	10.50	574.01	0.64	0.28	645	10.75	11.74	572.77	-0.60	0.26
660 675	11.00 11.25	10.52 10.53	573.99 573.98	0.62 0.61	0.27 0.27	660 675	11.00 11.25	11.73 11.71	572.78 572.80	-0.59 -0.57	0.26 0.25
690	11.50	10.55	573.96	0.59	0.26	690	11.50	11.69	572.82	-0.55	0.24
705	11.75	10.56	573.95	0.58	0.25	705	11.75	11.68	572.83	-0.54	0.23
720	12.00	10.58	573.93	0.56	0.24	720	12.00	11.66	572.85	-0.52	0.23
735 750	12.25 12.50	10.60 10.61	573.91 573.90	0.54 0.53	0.24 0.23	735 750	12.25 12.50	11.64 11.62	572.87 572.89	-0.50 -0.48	0.22 0.21
765	12.75	10.62	573.89	0.52	0.23	765	12.75	11.60	572.91	-0.46	0.20
780	13.00	10.64	573.87	0.50	0.22	780	13.00	11.59	572.92	-0.45	0.20
795	13.25	10.66	573.85	0.48	0.21	795	13.25	11.58	572.93	-0.44	0.19
810 825	13.50 13.75	10.67 10.68	573.84 573.83	0.47 0.46	0.21 0.20	810 825	13.50 13.75	11.57 11.55	572.94 572.96	-0.43 -0.41	0.19 0.18
840	14.00	10.70	573.81	0.44	0.19	840	14.00	11.55	572.96	-0.41	0.18
855	14.25	10.71	573.80	0.43	0.19	855	14.25	11.53	572.98	-0.39	0.17
870	14.50	10.72	573.79	0.42	0.19	870	14.50	11.52	572.99	-0.38	0.17
885 900	14.75	10.73 10.74	573.78	0.41	0.18	885 900	14.75 15.00	11.51 11.49	573.00	-0.37 -0.35	0.16
900	15.00 15.25	10.74	573.77 573.76	0.40	0.18 0.17	915	15.25	11.49	573.02 573.02	-0.35	0.16 0.15
930	15.50	10.76	573.75	0.38	0.17	930	15.50	11.47	573.04	-0.33	0.15
945	15.75	10.77	573.74	0.37	0.16	945	15.75	11.46	573.05	-0.32	0.14
960 975	16.00 16.25	10.78 10.79	573.73 573.72	0.36 0.35	0.16 0.15	960 975	16.00 16.25	11.45 11.44	573.06 573.07	-0.31 -0.30	0.14 0.13
990	16.50	10.79	573.72	0.34	0.15	990	16.50	11.44	573.08	-0.29	0.13
1,005	16.75	10.81	573.70	0.33	0.15	1,005	16.75	11.42	573.09	-0.28	0.12
1,020	17.00	10.82	573.69	0.32	0.14	1,020	17.00	11.41	573.10	-0.27	0.12
1,035 1,050	17.25 17.50	10.82 10.83	573.69 573.68	0.32 0.31	0.14 0.13	1,035 1,050	17.25 17.50	11.40 11.39	573.11 573.12	-0.26 -0.25	0.12 0.11
1,050	17.50	10.83	573.68	0.31	0.13	1,050	17.50	11.39	573.12 573.12	-0.25	0.11
1,080	18.00	10.85	573.66	0.29	0.13	1,080	18.00	11.38	573.13	-0.24	0.10
1,095	18.25	10.85	573.66	0.29	0.13	1,095	18.25	11.37	573.14	-0.23	0.10
1,110 1,125	18.50 18.75	10.86 10.87	573.65 573.64	0.28 0.27	0.12 0.12	1,110 1,125	18.50 18.75	11.36 11.36	573.15 573.15	-0.22 -0.22	0.10 0.10
1,140	19.00	10.87	573.64	0.27	0.12	1,140	19.00	11.35	573.16	-0.22	0.10
1,155	19.25	10.88	573.63	0.26	0.11	1,155	19.25	11.34	573.17	-0.20	0.09
1,170	19.50	10.89	573.62	0.25	0.11	1,170	19.50	11.33	573.18	-0.19	0.08
1,185 1,200	19.75 20.00	10.90 10.90	573.61 573.61	0.24 0.24	0.11 0.11	1,185 1,200	19.75 20.00	11.33 11.33	573.18 573.18	-0.19 -0.19	0.08
1,215	20.25	10.91	573.60	0.23	0.10	1,215	20.25	11.32	573.19	-0.18	0.08
1,230	20.50	10.91	573.60	0.23	0.10	1,230	20.50	11.31	573.20	-0.17	0.08
1,245	20.75	10.91	573.60 573.50	0.23	0.10	1,245	20.75	11.31	573.20 573.21	-0.17 -0.16	0.07
1,260 1,275	21.00 21.25	10.92 10.93	573.59 573.58	0.22 0.21	0.10 0.09	1,260 1,275	21.00 21.25	11.30 11.30	573.21 573.21	-0.16 -0.16	0.07 0.07
1,290	21.50	10.94	573.57	0.20	0.09	1,290	21.50	11.29	573.22	-0.15	0.06
1,305	21.75	10.94	573.57	0.20	0.09	1,305	21.75	11.29	573.22	-0.15	0.07
1,320 1,335	22.00 22.25	10.94 10.95	573.57 573.56	0.20 0.19	0.09 0.08	1,320 1,335	22.00 22.25	11.28 11.28	573.23 573.23	-0.14 -0.14	0.06 0.06
1,350	22.23	10.95	573.56	0.19	0.08	1,350	22.25	11.28	573.24	-0.14	0.06
1,365	22.75	10.96	573.55	0.18	0.08	1,365	22.75	11.27	573.24	-0.13	0.06
1,380	23.00	10.96	573.55	0.18	0.08	1,380	23.00	11.26	573.25	-0.12	0.05
1,395 1,410	23.25 23.50	10.97 10.97	573.54 573.54	0.17 0.17	0.08 0.08	1,395 1,410	23.25 23.50	11.26 11.25	573.25 573.26	-0.12 -0.11	0.05 0.05
1,410	23.75	10.97	573.54	0.17	0.08	1,410	23.75	11.25	573.26	-0.11	0.05
1,440	24.00	10.97	573.54	0.17	0.07	1,440	24.00	11.25	573.26	-0.11	0.05
1,455	24.25	10.98	573.53	0.16	0.07						
1,470	24.50	10.98	573.53 573.53	0.16 0.15	0.07						
1,485 1,500	24.75 25.00	10.99 10.99	573.52 573.52	0.15	0.07 0.07						
1,515	25.25	10.99	573.52	0.15	0.06						
1,530	25.50	10.99	573.52	0.15	0.06						
1,545	25.75	11.00	573.51	0.14	0.06						
1,560	26.00 26.25	11.00 11.01	573.51 573.50	0.14 0.13	0.06 0.06						
1,575											

TEST 1, SLUG IN

Data Set: C:\...\MW-3 T-1 SLUG IN.aqt

Date: 05/05/21 Time: 14:05:57

PROJECT INFORMATION

Company: <u>LaBella Associates, D.P.C.</u> Client: <u>Elk Street Commerce Park</u>

Project: 2200012-2021-08

Location: Babcock Street Combined Sewer

Test Well: MW-3

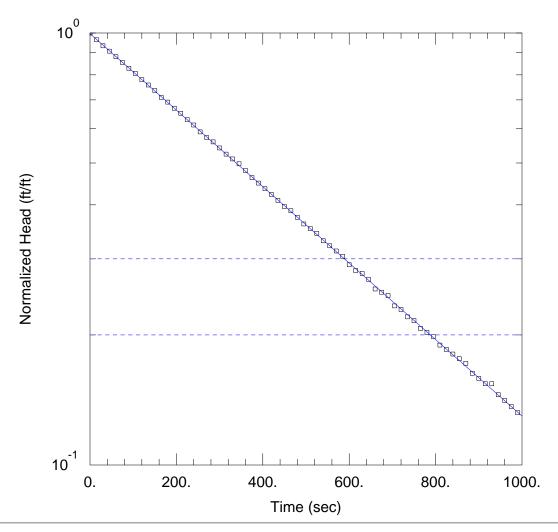
Test Date: April 19, 2021

AQUIFER DATA

Saturated Thickness: 15.5 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW-3 T-1 SLUG IN)

Initial Displacement: 2.27 ft Static Water Column Height: 10.44 ft


Total Well Penetration Depth: 10.44 ft Screen Length: 10.44 ft Casing Radius: 0.166 ft Well Radius: 0.41 ft

Gravel Pack Porosity: 0.3

SOLUTION

Aquifer Model: Unconfined Solution Method: Bouwer-Rice

K = 0.0004348 cm/sec y0 = 2.261 ft

TEST 1, SLUG OUT

Data Set: C:\...\MW-3 T-1 SLUG OUT.aqt

Date: 05/05/21 Time: 14:05:11

PROJECT INFORMATION

Company: <u>LaBella Associates, D.P.C.</u> Client: <u>Elk Street Commerce Park</u>

Project: 2200012-2021-08

Location: Babcock Street Combined Sewer

Test Well: MW-3

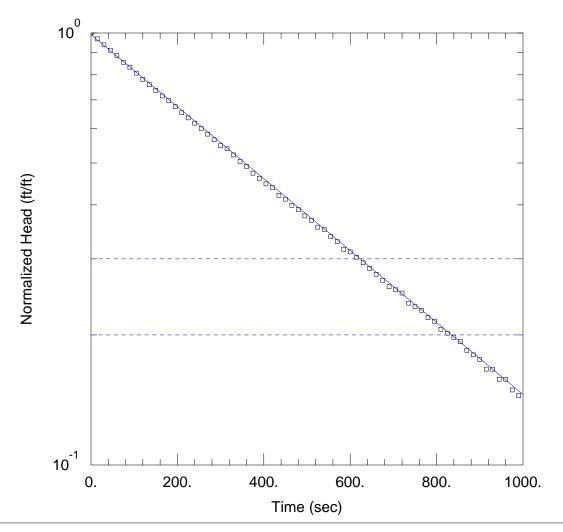
Test Date: April 19, 2021

AQUIFER DATA

Saturated Thickness: 15.5 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW-3 T-1 SLUG OUT)

Initial Displacement: 2.27 ft Static Water Column Height: 10.44 ft


Total Well Penetration Depth: 10.44 ft Screen Length: 10.44 ft Casing Radius: 0.166 ft Well Radius: 0.41 ft

Gravel Pack Porosity: 0.3

SOLUTION

Aquifer Model: Unconfined Solution Method: Bouwer-Rice

K = 0.0004441 cm/sec y0 = 2.262 ft

TEST 2, SLUG IN

Data Set: C:\...\MW-3 T-2 SLUG IN.aqt

Date: 05/05/21 Time: 14:04:26

PROJECT INFORMATION

Company: <u>LaBella Associates, D.P.C.</u> Client: <u>Elk Street Commerce Park</u>

Project: 2200012-2021-08

Location: Babcock Street Combined Sewer

Test Well: MW-3

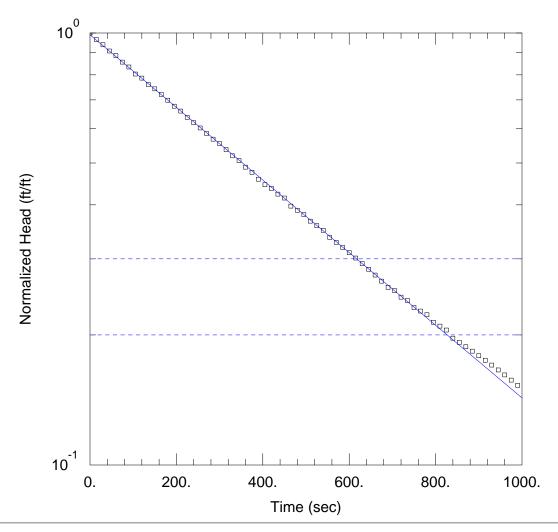
Test Date: April 20, 2021

AQUIFER DATA

Saturated Thickness: 15.5 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW-3 T-2 SLUG IN)

Initial Displacement: 2.28 ft Static Water Column Height: 10.59 ft


Total Well Penetration Depth: 10.59 ft Screen Length: 10.59 ft Casing Radius: 0.166 ft Well Radius: 0.41 ft

Gravel Pack Porosity: 0.3

SOLUTION

Aquifer Model: Unconfined Solution Method: Bouwer-Rice

K = 0.0004146 cm/sec y0 = 2.259 ft

TEST 2, SLUG OUT

Data Set: C:\...\MW-3 T-2 SLUG OUT.aqt

Date: 05/05/21 Time: 14:03:57

PROJECT INFORMATION

Company: <u>LaBella Associates, D.P.C.</u> Client: <u>Elk Street Commerce Park</u>

Project: 2200012-2021-08

Location: Babcock Street Combined Sewer

Test Well: MW-3

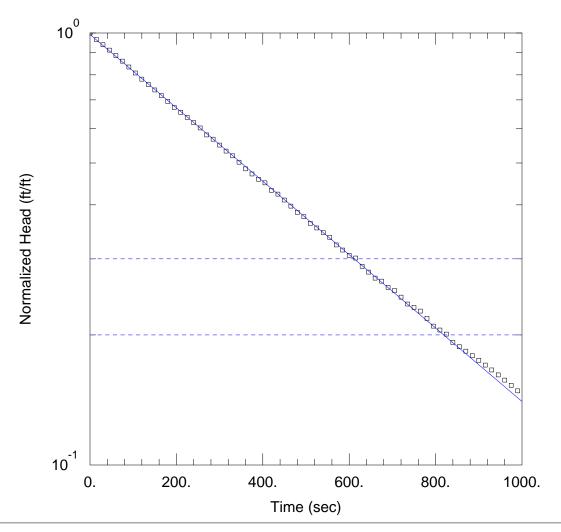
Test Date: April 20, 2021

AQUIFER DATA

Saturated Thickness: 15.5 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW-3 T-2 SLUG OUT)

Initial Displacement: 2.29 ft Static Water Column Height: 10.6 ft


Total Well Penetration Depth: 10.6 ft Screen Length: 10.6 ft Casing Radius: 0.166 ft Well Radius: 0.41 ft

Gravel Pack Porosity: 0.3

SOLUTION

Aquifer Model: Unconfined Solution Method: Bouwer-Rice

K = 0.0004183 cm/sec y0 = 2.268 ft

TEST 3, SLUG IN

Data Set: C:\...\MW-3 T-3 SLUG IN.aqt

Date: 05/05/21 Time: 14:03:20

PROJECT INFORMATION

Company: <u>LaBella Associates, D.P.C.</u> Client: <u>Elk Street Commerce Park</u>

Project: 2200012-2021-08

Location: Babcock Street Combined Sewer

Test Well: MW-3

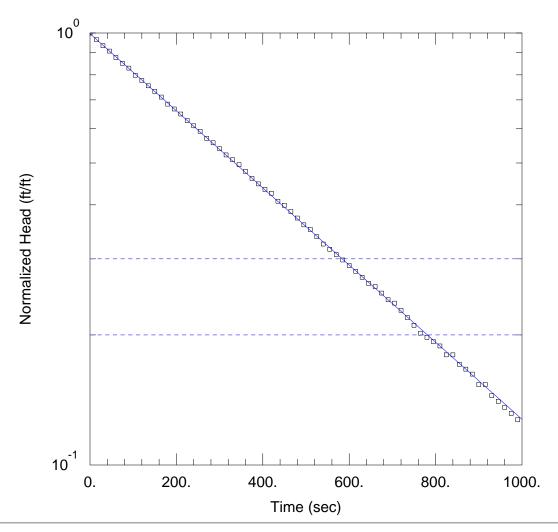
Test Date: April 20, 2021

AQUIFER DATA

Saturated Thickness: <u>15.5</u> ft Anisotropy Ratio (Kz/Kr): <u>1.</u>

WELL DATA (MW-3 T-3 SLUG IN)

Initial Displacement: 2.29 ft Static Water Column Height: 10.6 ft


Total Well Penetration Depth: 10.6 ft Screen Length: 10.6 ft Casing Radius: 0.166 ft Well Radius: 0.41 ft

Gravel Pack Porosity: 0.3

SOLUTION

Aquifer Model: Unconfined Solution Method: Bouwer-Rice

K = 0.0004228 cm/sec y0 = 2.272 ft

TEST 3, SLUG OUT

Data Set: C:\...\MW-3 T-3 SLUG OUT.aqt

Date: 05/05/21 Time: 14:02:32

PROJECT INFORMATION

Company: <u>LaBella Associates, D.P.C.</u> Client: <u>Elk Street Commerce Park</u>

Project: 2200012-2021-08

Location: Babcock Street Combined Sewer

Test Well: MW-3

Test Date: April 20, 2021

AQUIFER DATA

Saturated Thickness: 15.5 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW-3 T-3 SLUG OUT)

Initial Displacement: 2.28 ft Static Water Column Height: 10.59 ft

Total Well Penetration Depth: 10.59 ft Screen Length: 10.59 ft Casing Radius: 0.166 ft Well Radius: 0.41 ft

Well Radius: 0.41 ft
Gravel Pack Porosity: 0.3

SOLUTION

Aquifer Model: Unconfined Solution Method: Bouwer-Rice

K = 0.0004445 cm/sec y0 = 2.271 ft

Slug Test Data Well MW-24 Hydrogeologic Investigation - Combined Sewer Outfall Elk St. Commerce Park

						T					
		Slug IN (5-3-2	2021 12:10 pm)	1	,			Slug OUT (5-3	-2021 1:00 pm)		1
	ed Time	DTW	GW Elev	Displacement	Normalized		d Time	DTW	GW Elev	Displacement	Normalized
Seconds 0	Minutes 0.00	12.41	-12.41	0.88	Displacement 1.00	Seconds 0	Minutes 0.00	15.08	-15.08	-1.73	Displacement 1.00
15	0.00	12.41	-12.41	0.88	0.95	15	0.00	14.62	-15.08	-1.73	0.74
30	0.50	12.45	-12.45	0.84	0.93	30	0.23	14.34	-14.62	-0.99	0.74
45	0.75	12.50	-12.50	0.79	0.89	45	0.75	14.20	-14.20	-0.95	0.49
60	1.00	12.53	-12.53	0.76	0.87	60	1.00	14.12	-14.12	-0.83	0.45
75	1.25	12.55	-12.55	0.74	0.84	75	1.25	14.07	-14.07	-0.72	0.43
90	1.50	12.56	-12.56	0.73	0.83	90	1.50	14.02	-14.02	-0.67	0.39
105	1.75	12.57	-12.57	0.72	0.81	105	1.75	13.99	-13.99	-0.64	0.37
120	2.00	12.59	-12.59	0.70	0.79	120	2.00	13.96	-13.96	-0.61	0.36
135	2.25	12.61	-12.61	0.68	0.78	135	2.25	13.94	-13.94	-0.59	0.34
150	2.50	12.62	-12.62	0.67	0.76	150	2.50	13.91	-13.91	-0.56	0.32
165	2.75	12.62	-12.62	0.67	0.76	165	2.75	13.89	-13.89	-0.54	0.31
180	3.00	12.63	-12.63	0.66	0.75	180	3.00	13.88	-13.88	-0.53	0.30
195	3.25	12.64	-12.64	0.65	0.74	195	3.25	13.86	-13.86	-0.51	0.30
210	3.50	12.65	-12.65	0.64	0.73	210	3.50	13.84	-13.84	-0.49	0.29
225	3.75	12.66	-12.66	0.63	0.71	225	3.75	13.82	-13.82	-0.47	0.27
240	4.00	12.67	-12.67	0.62	0.70	240	4.00	13.81	-13.81	-0.46	0.27
255	4.25	12.68	-12.68	0.61	0.70	255	4.25	13.79	-13.79	-0.44	0.26
270	4.50	12.69	-12.69	0.60	0.68	270	4.50	13.78	-13.78	-0.43	0.25
285	4.75	12.69	-12.69	0.60	0.68	285	4.75	13.77	-13.77	-0.42	0.24
300	5.00	12.71	-12.71	0.58	0.66	300	5.00	13.75	-13.75	-0.40	0.23
315	5.25	12.72	-12.72	0.57	0.65	315	5.25	13.74	-13.74	-0.39	0.23
330	5.50	12.72	-12.72	0.57	0.65	330	5.50	13.73	-13.73	-0.38	0.22
345	5.75	12.73	-12.73	0.56	0.64	345	5.75	13.72	-13.72	-0.37	0.22
360	6.00	12.74	-12.74	0.55	0.63	360	6.00	13.71	-13.71	-0.36	0.21
375	6.25	12.74	-12.74	0.55	0.62	375	6.25	13.70	-13.70	-0.35	0.20
390	6.50	12.75	-12.75	0.54	0.61	390	6.50	13.69	-13.69	-0.34	0.20
405	6.75	12.76	-12.76	0.53	0.61	405	6.75	13.68	-13.68	-0.33	0.19
420	7.00	12.77	-12.77	0.52	0.59	420	7.00	13.67	-13.67	-0.32	0.19
435	7.25	12.77	-12.77	0.52	0.59	435	7.25	13.67	-13.67	-0.32	0.18
450 465	7.50 7.75	12.78 12.79	-12.78 -12.79	0.51 0.50	0.58	450 465	7.50 7.75	13.66 13.65	-13.66 -13.65	-0.31 -0.30	0.18 0.17
465 480	8.00	12.79	-12.79	0.50	0.57 0.56	480	8.00	13.64	-13.64	-0.29	0.17
495	8.25	12.79	-12.80	0.49	0.55	495	8.25	13.63	-13.63	-0.29	0.16
510	8.50	12.81	-12.81	0.48	0.55	510	8.50	13.62	-13.62	-0.27	0.16
525	8.75	12.82	-12.82	0.47	0.54	525	8.75	13.61	-13.61	-0.26	0.15
540	9.00	12.82	-12.82	0.47	0.53	570	9.50	13.59	-13.59	-0.24	0.14
555	9.25	12.83	-12.83	0.46	0.53	600	10.00	13.58	-13.58	-0.23	0.13
570	9.50	12.84	-12.84	0.45	0.52	660	11.00	13.56	-13.56	-0.21	0.12
585	9.75	12.84	-12.84	0.45	0.51	705	11.75	13.55	-13.55	-0.20	0.11
615	10.25	12.85	-12.85	0.44	0.50	750	12.50	13.53	-13.53	-0.18	0.10
660	11.00	12.87	-12.87	0.42	0.48	795	13.25	13.51	-13.51	-0.16	0.09
690	11.50	12.88	-12.88	0.41	0.47	855	14.25	13.50	-13.50	-0.15	0.08
705	11.75	12.88	-12.88	0.41	0.46	915	15.25	13.48	-13.48	-0.13	0.07
735	12.25	12.89	-12.89	0.40	0.45	1,005	16.75	13.46	-13.46	-0.11	0.06
765	12.75	12.91	-12.91	0.38	0.44	1,110	18.50	13.44	-13.44	-0.09	0.05
780	13.00	12.91	-12.91	0.38	0.43	1,185	19.75	13.43	-13.43	-0.08	0.04
810	13.50	12.92	-12.92	0.37	0.42	1,320	22.00	13.41	-13.41	-0.06	0.03
840	14.00	12.93	-12.93	0.36	0.41	1,455	24.25	13.39	-13.39	-0.04	0.02
870	14.50	12.94	-12.94	0.35	0.40	1,575	26.25	13.37	-13.37	-0.02	0.01
915	15.25	12.95	-12.95	0.34	0.39	1,755	29.25	13.36	-13.36	-0.01	0.00
930	15.50	12.96	-12.96	0.33	0.38						
960	16.00	12.96	-12.96	0.33	0.37						
1,005	16.75	12.97	-12.97	0.32	0.36						
1,050	17.50	12.98	-12.98	0.31	0.35						
1,065	17.75	12.99	-12.99	0.30	0.34						
1,110	18.50	13.00	-13.00	0.29	0.33						
1,155	19.25	13.01	-13.01	0.28	0.32						
1,215	20.25	13.02	-13.02	0.27	0.31						
1,260	21.00	13.03	-13.03	0.26	0.30						
1,290	21.50	13.03	-13.03	0.26	0.29						
1,335	22.25	13.04	-13.04	0.25	0.28						
1,425	23.75	13.05	-13.05	0.24	0.27						
1,440	24.00	13.06	-13.06 13.07	0.23	0.26						

1,500

1,605

1,695

1,740

1,935

2,040

2,145

2,295

2,385

2,565

2,715

2,880

25.00

26.75

28.25

29.00

32.25

34.00

35.75

38.25

39.75

42.75

45.25

48.00

13.07

13.08

13.09

13.09

13.11

13.12

13.13

13.14

13.15

13.16

13.17

13.18

-13.07

-13.08

-13.09

-13.09

-13.11

-13.12

-13.13

-13.14

-13.15

-13.16

-13.17

-13.18

0.22

0.21

0.20

0.20

0.18

0.17

0.16

0.15

0.14

0.13

0.12

0.11

0.25

0.24

0.23

0.22

0.21

0.19

0.18

0.17

0.16

0.15

0.14

0.13

Slug Test Data Well MW-24 Hydrogeologic Investigation - Combined Sewer Outfall Elk St. Commerce Park

					Elk St. Com	imerce Park					
		Slug IN (5-3-	Slug IN (5-3-2021 3:00 pm)			Slug OUT (5-3-2021 3:50					
Elapse	ed Time	2711	GW 51:	B:1	Normalized	Elapse	d Time	DT14/	OW EL.	5:1	Normalized
Seconds	Minutes	DTW	GW Elev	Displacement	Displacement	Seconds	Minutes	DTW	GW Elev	Displacement	Displacement
0	0.00	12.36	-12.36	0.91	1.00	0	0.00	15.24	-15.24	-1.90	1.00
15	0.25	12.42	-12.42	0.85	0.93	15	0.25	14.85	-14.85	-1.51	0.80
30	0.50	12.46	-12.46	0.81	0.89	30	0.50	14.49	-14.49	-1.15	0.61
45	0.75	12.49	-12.49	0.78	0.86	45	0.75	14.29	-14.29	-0.95	0.50
60	1.00	12.52	-12.52	0.75	0.83	60	1.00	14.19	-14.19	-0.85	0.45
75	1.25	12.53	-12.53	0.74	0.81	75	1.25	14.12	-14.12	-0.78	0.41
90	1.50	12.55	-12.55	0.72	0.79	90	1.50	14.07	-14.07	-0.73	0.38
105	1.75	12.57	-12.57	0.70	0.77	105	1.75	14.03	-14.03	-0.69	0.36
120	2.00	12.59	-12.59	0.68	0.75	120	2.00	13.99	-13.99	-0.65	0.34
135	2.25	12.60	-12.60	0.67	0.74	135	2.25	13.96	-13.96	-0.62	0.33
150	2.50	12.61	-12.61	0.66	0.73	150	2.50	13.94	-13.94	-0.60	0.31
165	2.75	12.62	-12.62	0.65	0.72	165	2.75	13.92	-13.92	-0.58	0.30
180	3.00	12.64	-12.64	0.63	0.69	180	3.00	13.90	-13.90	-0.56	0.29
195	3.25	12.65	-12.65	0.62	0.68	195	3.25	13.88	-13.88	-0.54	0.28
210	3.50	12.66	-12.66	0.61	0.67	210	3.50	13.86	-13.86	-0.52	0.27
225	3.75	12.67	-12.67	0.60	0.66	225	3.75	13.84	-13.84	-0.50	0.26
240	4.00	12.68	-12.68	0.59	0.65	240	4.00	13.82	-13.82	-0.48	0.25
255	4.25	12.69	-12.69	0.58	0.64	255	4.25	13.80	-13.80	-0.46	0.24
270	4.50	12.70	-12.70	0.57	0.63	270	4.50	13.79	-13.79	-0.45	0.24
285	4.75	12.71	-12.71	0.56	0.61	285	4.75	13.78	-13.78	-0.44	0.23
300	5.00	12.71	-12.71	0.56	0.61	300	5.00	13.76	-13.76	-0.42	0.22
315	5.25	12.73	-12.73	0.54	0.60	315	5.25	13.75	-13.75	-0.41	0.22
330	5.50	12.73	-12.73	0.54	0.59	330	5.50	13.74	-13.74	-0.40	0.21
345	5.75	12.74	-12.74	0.53	0.58	345	5.75	13.72	-13.72	-0.38	0.20
360	6.00	12.75	-12.75	0.52	0.57	360	6.00	13.72	-13.72	-0.38	0.20
375	6.25	12.76	-12.76	0.51	0.56	375	6.25	13.71	-13.71	-0.37	0.19
390	6.50	12.76	-12.76	0.51	0.56	390	6.50	13.70	-13.70	-0.36	0.19
405	6.75	12.77	-12.77	0.50	0.55	405	6.75	13.69	-13.69	-0.35	0.18
420	7.00	12.78	-12.78	0.49	0.54	420	7.00	13.67	-13.67	-0.33	0.18
435	7.25	12.78	-12.78	0.49	0.53	435	7.25	13.67	-13.67	-0.33	0.17
450	7.50	12.80	-12.80	0.47	0.52	450	7.50	13.66	-13.66	-0.32	0.17
465	7.75	12.80	-12.80	0.47	0.52	465	7.75	13.65	-13.65	-0.31	0.16
480	8.00	12.81	-12.81	0.46	0.51	480	8.00	13.64	-13.64	-0.30	0.16
495	8.25	12.81	-12.81	0.46	0.50	495	8.25	13.63	-13.63	-0.29	0.15
510	8.50	12.82	-12.82	0.45	0.49	510	8.50	13.63	-13.63	-0.29	0.15
525	8.75	12.83	-12.83	0.44	0.49	540	9.00	13.61	-13.61	-0.27	0.14
540	9.00	12.84	-12.84	0.43	0.48	585	9.75	13.59	-13.59	-0.25	0.13
555	9.25	12.84	-12.84	0.43	0.48	630	10.50	13.57	-13.57	-0.23	0.12
570	9.50	12.84	-12.84	0.43	0.47	675	11.25	13.55	-13.55	-0.21	0.11
585	9.75	12.85	-12.85	0.42	0.46	735	12.25	13.53	-13.53	-0.19	0.10
600	10.00	12.86	-12.86	0.41	0.45	795	13.25	13.52	-13.52	-0.18	0.09
615	10.25	12.86	-12.86	0.41	0.45	870	14.50	13.50	-13.50	-0.16	0.08
630	10.50	12.87	-12.87	0.40	0.44	930	15.50	13.48	-13.48	-0.14	0.07
645	10.75	12.87	-12.87	0.40	0.44	1,050	17.50	13.45	-13.45	-0.11	0.06
660	11.00	12.88	-12.88	0.39	0.43	1,125	18.75	13.44	-13.44	-0.10	0.05
675	11.25	12.88	-12.88	0.39	0.43	1,290	21.50	13.42	-13.42	-0.10	0.04
705	11.75	12.89	-12.89	0.38	0.42	1,350	22.50	13.41	-13.42	-0.07	0.03
720	12.00	12.90	-12.90	0.37	0.41	1,530	25.50	13.38	-13.38	-0.04	0.02
765	12.75	12.91	-12.91	0.36	0.39	1,695	28.25	13.36	-13.36	-0.02	0.01
795	13.25	12.92	-12.92	0.35	0.39	_,555				, 5.02	1 -102
810	13.50	12.93	-12.93	0.34	0.38	ĺ					
855	14.25	12.94	-12.94	0.33	0.36	ĺ					
900	15.00	12.95	-12.95	0.32	0.35	ĺ					
915	15.25	12.96	-12.96	0.31	0.34						
975	16.25	12.97	-12.97	0.30	0.33	ĺ					
990	16.50	12.97	-12.97	0.30	0.33	ĺ					
1,005	16.75	12.98	-12.98	0.29	0.32	ĺ					
1,065	17.75	12.98	-12.98	0.29	0.32	ĺ					
1,065	17.75					ĺ					
1,125	19.75	13.00 13.01	-13.00 -13.01	0.27 0.26	0.30 0.28	ĺ					
1,200	20.00	13.01	-13.01	0.25	0.28	ĺ					
1,200	21.50	13.02	-13.02	0.24	0.27	ĺ					
1,250	22.50	13.03	-13.03	0.24	0.27	ĺ					

1,350

1,395

1,455

1,560

1,575

2,460 2,475

2,595

2,805

3,030

3,045

3,060

22.50

23.25

24.25

26.00

26.25

41.00

41.25

43.25

46.75

50.50

50.75

51.00

13.04

13.05

13.06

13.07

13.08

13.15

13.15

13.16

13.17

13.17

13.17

13.17

-13.04

-13.05

-13.06

-13.07

-13.08

-13.15

-13.15

-13.16

-13.17

-13.17

-13.17

-13.17

0.23

0.22

0.21

0.20

0.19

0.12

0.12

0.11

0.10

0.10

0.10

0.10

0.25

0.24

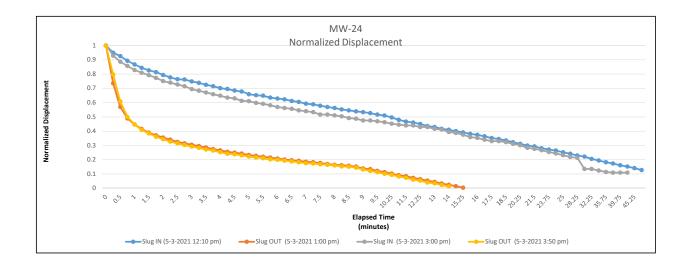
0.23

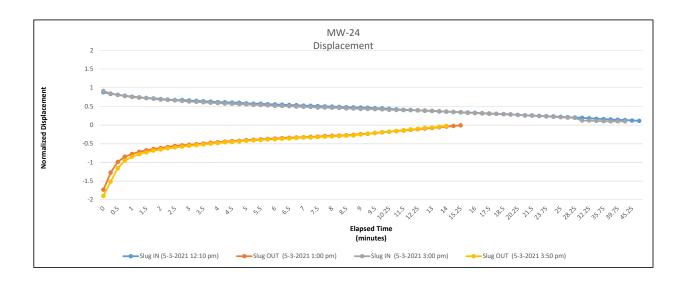
0.22

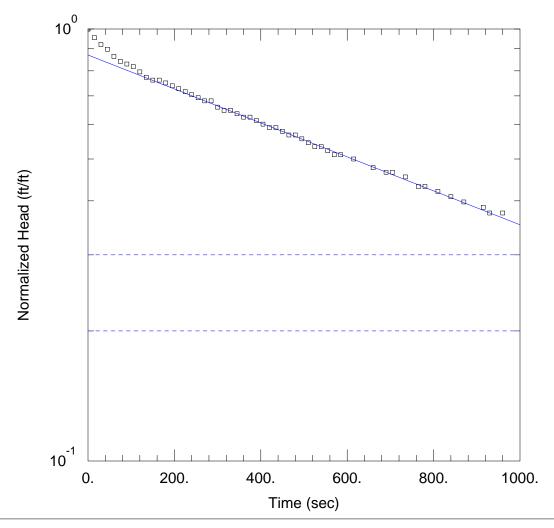
0.21

0.14

0.14


0.12


0.11


0.11

0.11

0.11

MW-24: TEST 1, SLUG IN

Data Set: C:\...\MW-24 T-1 SLUG IN.aqt

Date: 05/05/21 Time: 11:12:36

PROJECT INFORMATION

Company: <u>LaBella Associates, D.P.C.</u> Client: <u>Elk Street Commerce Park</u>

Project: 2200012-2021-08

Location: Babcock Street Combined Sewer

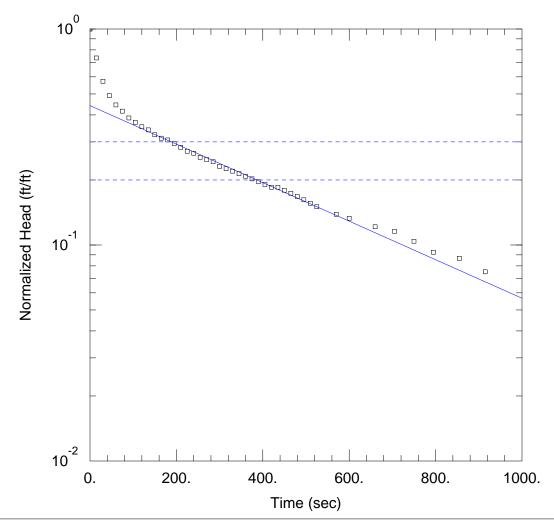
Test Well: MW-24
Test Date: May 3, 2021

AQUIFER DATA

Saturated Thickness: <u>5.</u> ft Anisotropy Ratio (Kz/Kr): <u>1.</u>

WELL DATA (MW-24 T-1 SLUG IN)

Initial Displacement: 0.88 ft Static Water Column Height: 7.3 ft


Total Well Penetration Depth: 7.3 ft Screen Length: 7.3 ft Casing Radius: 0.16 ft Well Radius: 0.33 ft

Gravel Pack Porosity: <u>0.3</u>

SOLUTION

Aquifer Model: Confined Solution Method: Bouwer-Rice

K = 0.0001554 cm/sec y0 = 0.766 ft

MW-24: TEST 1, SLUG OUT

Data Set: C:\...\MW-24 T-1 SLUG OUT.aqt

Date: 05/05/21 Time: 11:16:23

PROJECT INFORMATION

Company: <u>LaBella Associates, D.P.C.</u> Client: <u>Elk Street Commerce Park</u>

Project: 2200012-2021-08

Location: Babcock Street Combined Sewer

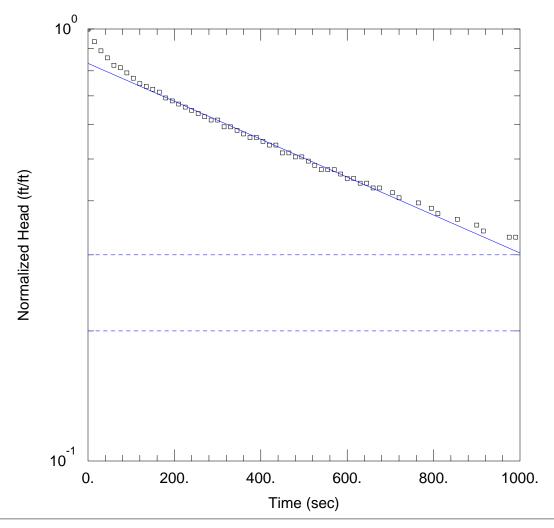
Test Well: MW-24
Test Date: May 3, 2021

AQUIFER DATA

Saturated Thickness: <u>5.</u> ft Anisotropy Ratio (Kz/Kr): <u>1.</u>

WELL DATA (MW-24 T-1 SLUG OUT)

Initial Displacement: 1.73 ft Static Water Column Height: 7.3 ft


Total Well Penetration Depth: 7.3 ft Screen Length: 7.3 ft Casing Radius: 0.16 ft Well Radius: 0.33 ft

Gravel Pack Porosity: <u>0.3</u>

SOLUTION

Aquifer Model: Confined Solution Method: Bouwer-Rice

K = 0.0003526 cm/sec y0 = 0.7643 ft

MW-24: TEST 2, SLUG IN

Data Set: C:\...\MW-24 T-2 SLUG IN.aqt

Date: 05/05/21 Time: 11:20:35

PROJECT INFORMATION

Company: <u>LaBella Associates, D.P.C.</u> Client: <u>Elk Street Commerce Park</u>

Project: 2200012-2021-08

Location: Babcock Street Combined Sewer

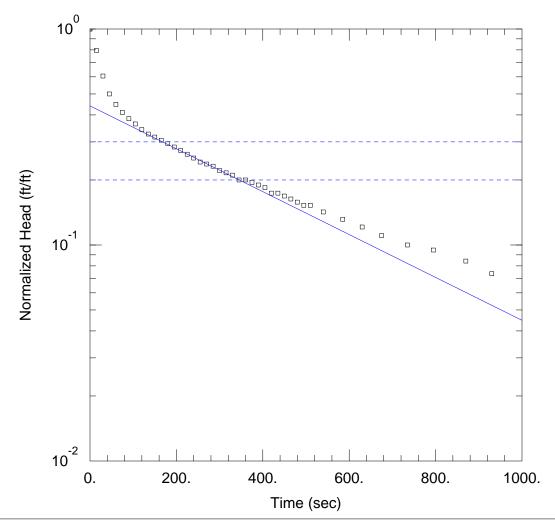
Test Well: MW-24
Test Date: May 3, 2021

AQUIFER DATA

Saturated Thickness: <u>5.</u> ft Anisotropy Ratio (Kz/Kr): <u>1.</u>

WELL DATA (MW-24 T-2 SLUG IN)

Initial Displacement: 0.91 ft Static Water Column Height: 7.3 ft


Total Well Penetration Depth: 7.3 ft Screen Length: 7.3 ft

Casing Radius: 0.16 ft Well Radius: 0.33 ft
Gravel Pack Porosity: 0.3

SOLUTION

Aquifer Model: Confined Solution Method: Bouwer-Rice

K = 0.0001735 cm/sec y0 = 0.7575 ft

MW-24: TEST 2, SLUG OUT

Data Set: C:\...\MW-24 T-2 SLUG OUT.aqt

Date: 05/05/21 Time: 11:24:02

PROJECT INFORMATION

Company: <u>LaBella Associates, D.P.C.</u> Client: <u>Elk Street Commerce Park</u>

Project: 2200012-2021-08

Location: Babcock Street Combined Sewer

Test Well: MW-24
Test Date: May 3, 2021

AQUIFER DATA

Saturated Thickness: <u>5.</u> ft Anisotropy Ratio (Kz/Kr): <u>1.</u>

WELL DATA (MW-24 T-2 SLUG OUT)

Initial Displacement: 1.9 ft Static Water Column Height: 7.3 ft

Total Well Penetration Depth: 7.3 ft

Casing Radius: 0.16 ft

Screen Length: 7.3 ft

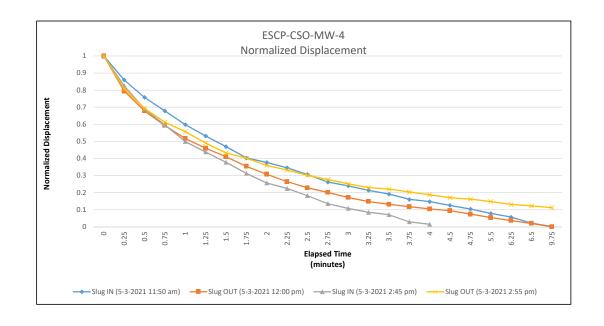
Well Radius: 0.33 ft

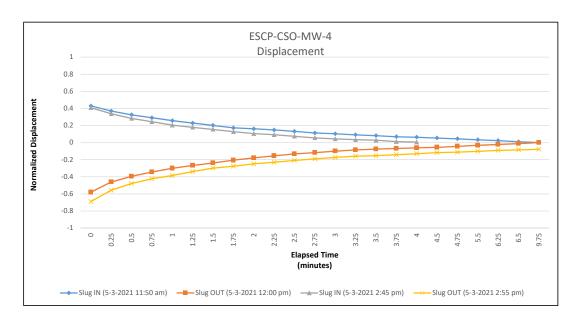
Gravel Pack Porosity: 0.3

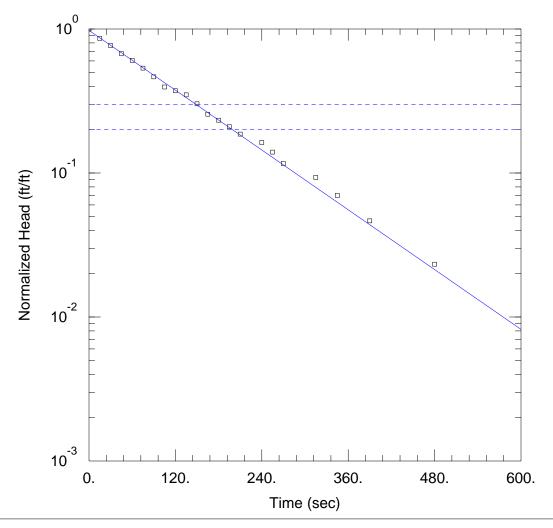
SOLUTION

Aquifer Model: Confined Solution Method: Bouwer-Rice

K = 0.0003925 cm/sec y0 = 0.8369 ft


Slug Test Data Well ESCP-CSO-MW-4


Hydrogeologic Investigation - Combined Sewer Outfall


		Slug IN (5-3-2	021 11:50 am)					Slug OUT (5-3-2	2021 12:00 pm)		
Elapse	d Time	DTW	GW Elev	Displacement	Normalized	Elapse	d Time	DTW	GW Elev	Displacement	Normalized
Seconds	Minutes	DIW	GW Elev	Displacement	Displacement	Seconds	Minutes	DIW	GW Elev	Displacement	Displacement
0	0.00	11.58	573.40	0.43	1.00	0	0.00	12.61	572.37	-0.58	1.00
15	0.25	11.64	573.34	0.37	0.86	15	0.25	12.49	572.49	-0.46	0.79
30	0.50	11.68	573.30	0.33	0.76	30	0.50	12.42	572.56	-0.39	0.68
45	0.75	11.72	573.26	0.29	0.68	45	0.75	12.37	572.61	-0.34	0.59
60	1.00	11.75	573.23	0.26	0.60	60	1.00	12.33	572.65	-0.30	0.52
75	1.25	11.78	573.20	0.23	0.53	75	1.25	12.30	572.68	-0.27	0.46
90	1.50	11.81	573.17	0.20	0.47	90	1.50	12.27	572.71	-0.24	0.41
105	1.75	11.84	573.14	0.17	0.40	105	1.75	12.24	572.74	-0.21	0.35
120	2.00	11.85	573.13	0.16	0.38	120	2.00	12.21	572.77	-0.18	0.31
135	2.25	11.86	573.12	0.15	0.35	135	2.25	12.18	572.80	-0.15	0.26
150	2.50	11.88	573.10	0.13	0.31	150	2.50	12.16	572.82	-0.13	0.23
165	2.75	11.90	573.08	0.11	0.26	165	2.75	12.15	572.83	-0.12	0.20
180	3.00	11.91	573.07	0.10	0.24	180	3.00	12.13	572.85	-0.10	0.17
195	3.25	11.92	573.06	0.09	0.21	195	3.25	12.12	572.86	-0.09	0.15
210	3.50	11.93	573.05	0.08	0.19	210	3.50	12.11	572.87	-0.08	0.13
240	4.00	11.94	573.04	0.07	0.16	225	3.75	12.10	572.88	-0.07	0.12
255	4.25	11.95	573.03	0.06	0.15	240	4.00	12.09	572.89	-0.06	0.10
270	4.50	11.96	573.02	0.05	0.13	255	4.25	12.08	572.90	-0.05	0.09
315	5.25	11.97	573.01	0.04	0.10	270	4.50	12.07	572.91	-0.04	0.07
345	5.75	11.98	573.00	0.03	0.08	315	5.25	12.06	572.92	-0.03	0.05
390	6.50	11.99	572.99	0.02	0.06	360	6.00	12.05	572.93	-0.02	0.04
480	8.00	12.00	572.98	0.01	0.02	375	6.25	12.04	572.94	-0.01	0.02
570	9.50	12.01	572.97	0.00	0.00	465	7.75	12.03	572.95	0.00	0.00

		Slug IN (5-3-2	.021 2:45 pm)					Slug OUT (5-3-	2021 2:55 pm)		
Elapse	d Time	DTW	GW Elev	Displacement	Normalized	Elapse	d Time	DTW	GW Elev	Displacement	Normalized
Seconds	Minutes	DIW	GW Elev	Displacement	Displacement	Seconds	Minutes	DIW	GW Elev	Displacement	Displacement
0	0.00	11.62	573.36	0.41	1.00	0	0.00	12.72	572.26	-0.69	1.00
15	0.25	11.69	573.29	0.34	0.83	15	0.25	12.59	572.39	-0.56	0.81
30	0.50	11.75	573.23	0.28	0.69	30	0.50	12.51	572.47	-0.48	0.69
45	0.75	11.79	573.19	0.24	0.60	45	0.75	12.45	572.53	-0.42	0.61
60	1.00	11.83	573.15	0.20	0.50	60	1.00	12.41	572.57	-0.38	0.56
75	1.25	11.85	573.13	0.18	0.44	75	1.25	12.37	572.61	-0.34	0.49
90	1.50	11.88	573.10	0.15	0.38	90	1.50	12.33	572.65	-0.30	0.43
105	1.75	11.90	573.08	0.13	0.31	105	1.75	12.31	572.67	-0.28	0.40
120	2.00	11.92	573.06	0.11	0.26	120	2.00	12.28	572.70	-0.25	0.36
135	2.25	11.94	573.04	0.09	0.22	135	2.25	12.26	572.72	-0.23	0.33
150	2.50	11.96	573.02	0.07	0.18	150	2.50	12.24	572.74	-0.21	0.30
165	2.75	11.97	573.01	0.06	0.14	165	2.75	12.22	572.76	-0.19	0.28
180	3.00	11.99	572.99	0.04	0.11	180	3.00	12.20	572.78	-0.17	0.25
195	3.25	12.00	572.98	0.03	0.08	195	3.25	12.19	572.79	-0.16	0.23
210	3.50	12.00	572.98	0.03	0.07	210	3.50	12.18	572.80	-0.15	0.22
225	3.75	12.02	572.96	0.01	0.03	225	3.75	12.17	572.81	-0.14	0.20
240	4.00	12.02	572.96	0.01	0.02	240	4.00	12.16	572.82	-0.13	0.19
						270	4.50	12.15	572.83	-0.12	0.17
						285	4.75	12.14	572.84	-0.11	0.16
						330	5.50	12.13	572.85	-0.10	0.15
						375	6.25	12.12	572.86	-0.09	0.13
						390	6.50	12.11	572.87	-0.08	0.12
						585	9.75	12.11	572.87	-0.08	0.11

Slug Test Data
Well ESCP-CSO-MW-4
Hydrogeologic Investigation - Combined Sewer Outfall
Elk St. Commerce Park

ESCP-MW-4: TEST 1, SLUG IN

Data Set: C:\...\ESCP MW-4 T-1 SLUG IN.aqt

Date: <u>05/05/21</u> Time: <u>11:04:43</u>

PROJECT INFORMATION

Company: <u>LaBella Associates, D.P.C.</u> Client: <u>Elk Street Commerce Park</u>

Project: 2200012-2021-08

Location: Babcock Street Combined Sewer

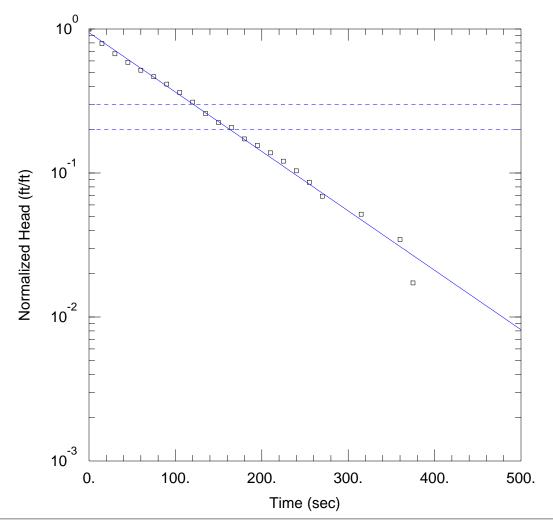
Test Well: ESCP-MW-4
Test Date: May 3, 2021

AQUIFER DATA

Saturated Thickness: <u>8.</u> ft Anisotropy Ratio (Kz/Kr): <u>1.</u>

WELL DATA (ESCP MW-4 T-1 SLUG IN)

Initial Displacement: 0.43 ft Static Water Column Height: 13.63 ft


Total Well Penetration Depth: 13.63 ft Screen Length: 13.63 ft Casing Radius: 0.25 ft Well Radius: 0.42 ft

Gravel Pack Porosity: 0.3

SOLUTION

Aquifer Model: Unconfined Solution Method: Bouwer-Rice

K = 0.003652 cm/sec y0 = 0.4203 ft

ESCP-MW-4: TEST 1, SLUG OUT

Data Set: C:\...\ESCP MW-4 T-1 SLUG OUT.aqt

Date: 05/05/21 Time: 11:03:55

PROJECT INFORMATION

Company: <u>LaBella Associates, D.P.C.</u> Client: <u>Elk Street Commerce Park</u>

Project: 2200012-2021-08

Location: Babcock Street Combined Sewer

Test Well: ESCP-MW-4
Test Date: May 3, 2021

AQUIFER DATA

Saturated Thickness: <u>8.</u> ft Anisotropy Ratio (Kz/Kr): <u>1.</u>

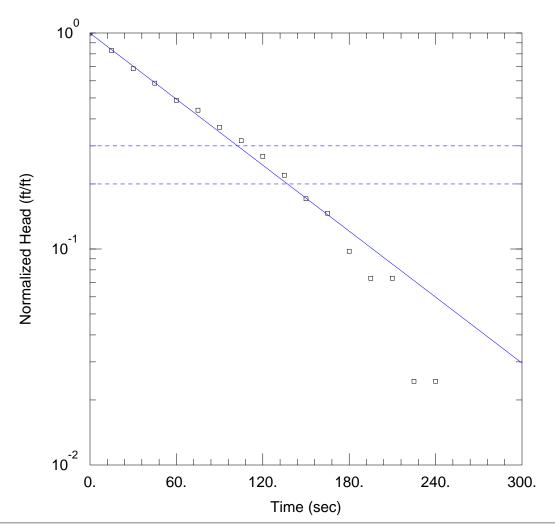
WELL DATA (ESCP MW-4 T-1 SLUG OUT)

Initial Displacement: 0.58 ft

ft Static Water Column Height: 13.63 ft

Total Well Penetration Depth: 13.63 ft

Screen Length: 13.63 ft Well Radius: 0.42 ft Gravel Pack Porosity: 0.3


Casing Radius: 0.25 ft

SOLUTION

Aguifer Model: Unconfined

Solution Method: Bouwer-Rice

K = 0.004355 cm/sec y0 = 0.547 ft

ESCP-MW-4: TEST 2, SLUG IN

Data Set: C:\...\ESCP MW-4 T-2 SLUG IN.aqt

Date: 05/05/21 Time: 11:03:00

PROJECT INFORMATION

Company: LaBella Associates, D.P.C. Client: Elk Street Commerce Park

Project: 2200012-2021-08

Location: Babcock Street Combined Sewer

Test Well: ESCP-MW-4 Test Date: May 3, 2021

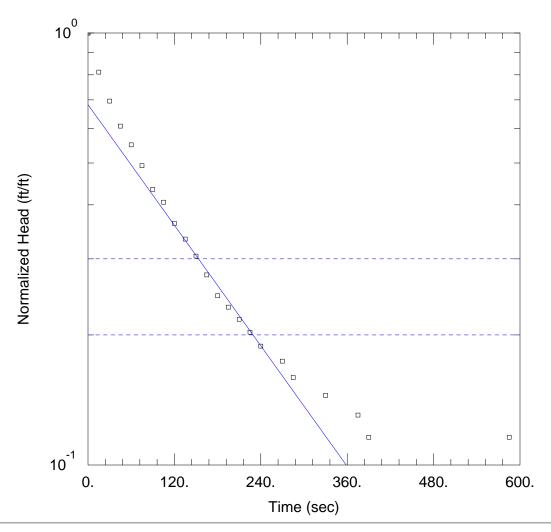
AQUIFER DATA

Saturated Thickness: 8. ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (ESCP MW-4 T-2 SLUG IN)

Initial Displacement: 0.41 ft

Static Water Column Height: 13.63 ft Screen Length: 13.63 ft


Total Well Penetration Depth: 13.63 ft Casing Radius: 0.25 ft

Well Radius: 0.42 ft Gravel Pack Porosity: 0.3

SOLUTION

Aquifer Model: Unconfined Solution Method: Bouwer-Rice

K = 0.005373 cm/secy0 = 0.4089 ft

ESCP-MW-4: TEST 2, SLUG OUT

Data Set: C:\...\ESCP MW-4 T-2 SLUG OUT.aqt

Date: 05/05/21 Time: 11:01:44

PROJECT INFORMATION

Company: <u>LaBella Associates, D.P.C.</u> Client: <u>Elk Street Commerce Park</u>

Project: 2200012-2021-08

Location: Babcock Street Combined Sewer

Test Well: ESCP-MW-4
Test Date: May 3, 2021

AQUIFER DATA

Saturated Thickness: 8. ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (ESCP MW-4 T-2 SLUG OUT)

Initial Displacement: 0.69 ft

Static Water Column Height: 13.63 ft

Total Well Penetration Depth: 13.63 ft

Screen Length: 13.63 ft Well Radius: 0.42 ft

Casing Radius: 0.25 ft

Gravel Pack Porosity: 0.3

SOLUTION

Aguifer Model: Unconfined

Solution Method: Bouwer-Rice

K = 0.002455 cm/sec

y0 = 0.4708 ft

Slug Test Data Elk Street Commerce Park Buffalo, NY

ESCP-MW-7 TOC Elevation

210

225

240 255

270

285

300

315

584.13

3.50

3.75

4.00

4.25

4.50

4.75

5.00 5.25 9.88

9.89

9.89

9.89

9.89

9.89

9.89

9.90

574.25

574.24

574.24 574.24 574.24

574.24

574.24

574.23

0.05

0.04

0.04 0.04 0.04

0.04

0.04

0.03

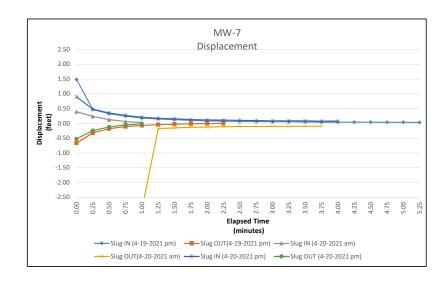
		Slug IN (4	-19-2021 pm)					Slug OUT(4	1-19-2021 pm)		
Elapse	d Time	DTW	GW Elev	Displacement	Normalized	Elapse	d Time	DTW	GW Elev	Displacement	Normalized
Seconds	Minutes	DIW	GW Elev	Displacement	Displacement	Seconds	Minutes	DIW	GW LIEV	Displacement	Displacement
0	0.00	8.44	575.69	1.49	1.00	0	0.00	10.59	573.54	-0.66	1.00
15	0.25	9.46	574.67	0.47	0.32	15	0.25	10.25	573.88	-0.32	0.49
30	0.50	9.60	574.53	0.33	0.22	30	0.50	10.11	574.02	-0.18	0.27
45	0.75	9.68	574.45	0.25	0.17	45	0.75	10.04	574.09	-0.11	0.17
60	1.00	9.75	574.38	0.18	0.12	60	1.00	10.00	574.13	-0.07	0.11
75	1.25	9.78	574.35	0.15	0.10	75	1.25	9.97	574.16	-0.04	0.06
90	1.50	9.80	574.33	0.13	0.09	90	1.50	9.96	574.17	-0.03	0.04
105	1.75	9.83	574.30	0.10	0.07	105	1.75	9.94	574.19	-0.01	0.02
120	2.00	9.84	574.29	0.09	0.06	120	2.00	9.94	574.19	-0.01	0.01
135	2.25	9.85	574.28	0.08	0.05	135	2.25	9.93	574.20	0.00	0.00
150	2.50	9.86	574.27	0.07	0.05						
165	2.75	9.87	574.26	0.06	0.04						
180	3.00	9.87	574.26	0.06	0.04						
195	3.25	9.87	574.26	0.06	0.04						

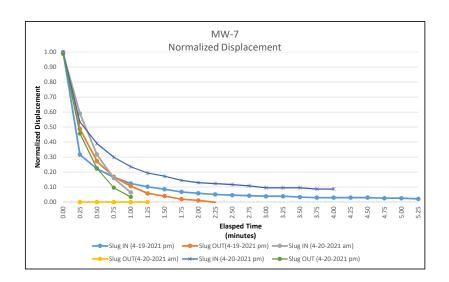
0.03

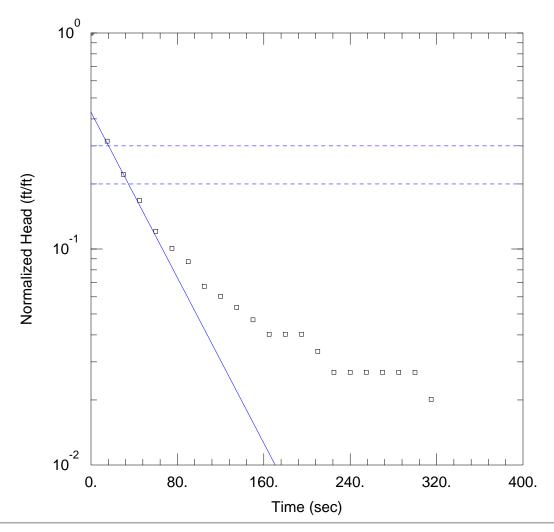
0.03

0.03

0.03


0.03


0.03


0.02

-	•	Slug IN (4	-20-2021 am)					Slug OUT(4	I-20-2021 am)	•	·
Elapse	ed Time	DTW	GW Elev	Displacement	Normalized	Elapse	d Time	DTW	GW Elev	Displacement	Normalized
Seconds	Minutes	DIW	GW Elev	Displacement	Displacement	Seconds	Minutes	DIW	GW Elev	Displacement	Displacemen
0	0.00	9.38	574.75	0.40	0.99	0	0.00	14.29	569.84	-4.51	
15	0.25	9.54	574.59	0.24	0.59	15	0.25	21.74	562.39	-11.96	XD
30	0.50	9.65	574.48	0.13	0.32	30	0.50	17.79	566.34	-8.01	moved
45	0.75	9.72	574.41	0.06	0.16	45	0.75	15.20	568.93	-5.42	when
60	1.00	9.75	574.38	0.03	0.06	60	1.00	12.71	571.42	-2.93	removing
						75	1.25	9.96	574.17	-0.18	slug
						90	1.50	9.93	574.20	-0.15	
						105	1.75	9.91	574.22	-0.13	
						120	2.00	9.90	574.23	-0.12	
						135	2.25	9.89	574.24	-0.11	
						150	2.50	9.89	574.24	-0.11	
						165	2.75	9.89	574.24	-0.11	
						180	3.00	9.88	574.25	-0.10	
						195	3.25	9.88	574.25	-0.10	
						210	3.50	9.88	574.25	-0.10	
						225	3.75	9.87	574.26	-0.09	

		Slug IN (4-	20-2021 pm)					Slug OUT (4-20-2021 pm)		
Elapse	d Time	DTW	GW Elev	Displacement	Normalized	Elapse	d Time	DTW	GW Elev	Displacement	Normalized
Seconds	Minutes	DIW	GW LIEV	Displacement	Displacement	Seconds	Minutes	DIW	GW LIEV	Displacement	Displacement
0	0.00	8.97	575.16	0.90	1.00	0	0.00	10.39	573.74	-0.52	0.99
15	0.25	9.39	574.74	0.48	0.53	15	0.25	10.11	574.02	-0.24	0.46
30	0.50	9.52	574.61	0.35	0.39	30	0.50	9.99	574.14	-0.12	0.23
45	0.75	9.60	574.53	0.27	0.30	45	0.75	9.92	574.21	-0.05	0.10
60	1.00	9.66	574.47	0.21	0.24	60	1.00	9.89	574.24	-0.02	0.03
75	1.25	9.70	574.43	0.17	0.19						
90	1.50	9.72	574.41	0.15	0.17						
105	1.75	9.74	574.39	0.13	0.14						
120	2.00	9.75	574.38	0.12	0.13						
135	2.25	9.76	574.37	0.11	0.12						
150	2.50	9.77	574.36	0.10	0.12						
165	2.75	9.77	574.36	0.10	0.11						
180	3.00	9.78	574.35	0.09	0.10						
195	3.25	9.78	574.35	0.09	0.10						
210	3.50	9.78	574.35	0.09	0.10						
225	3.75	9.79	574.34	0.08	0.09						
240	4.00	9.79	574.34	0.08	0.09						

ESCP-MW-7: TEST 1, SLUG IN

Data Set: C:\...\ESCP MW-7 T-1 SLUG IN.aqt

Date: 05/05/21 Time: 11:57:32

PROJECT INFORMATION

Company: <u>LaBella Associates, D.P.C.</u> Client: <u>Elk Street Commerce Park</u>

Project: 2200012-2021-08

Location: Babcock Street Combined Sewer

Test Well: ESCP-MW-7
Test Date: April 19, 2021

AQUIFER DATA

Saturated Thickness: <u>8.</u> ft Anisotropy Ratio (Kz/Kr): <u>1.</u>

WELL DATA (ESCP MW-7 T-1 SLUG IN)

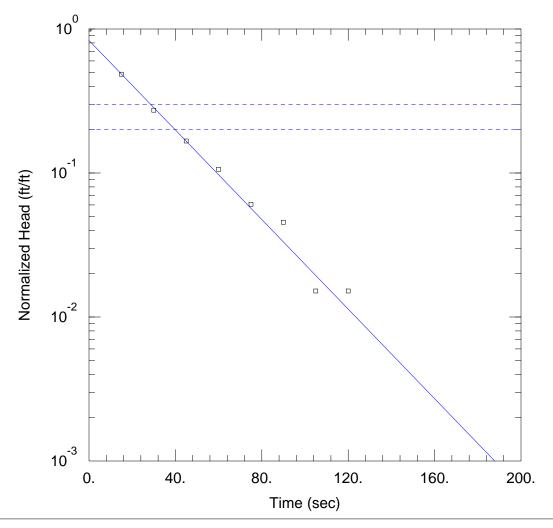
Initial Displacement: 1.49 ft

Static Water Column Height: 15.5 ft

Total Well Penetration Depth: 15.5 ft

Screen Length: 15.5 ft Well Radius: 0.41 ft

Casing Radius: 0.166 ft


Gravel Pack Porosity: 0.3

SOLUTION

Aguifer Model: Unconfined

Solution Method: Bouwer-Rice

K = 0.007564 cm/sec y0 = 0.6402 ft

ESCP-MW-7: TEST 1, SLUG OUT

Data Set: C:\...\ESCP MW-7 T-1 SLUG OUT.aqt

Date: 05/05/21 Time: 11:56:55

PROJECT INFORMATION

Company: LaBella Associates, D.P.C. Client: Elk Street Commerce Park

Project: 2200012-2021-08

Location: Babcock Street Combined Sewer

Test Well: ESCP-MW-7 Test Date: April 19, 2021

AQUIFER DATA

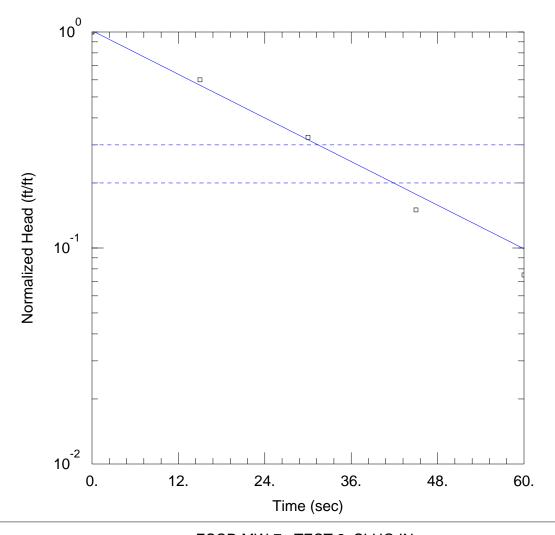
Saturated Thickness: 8. ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (ESCP MW-7 T-1 SLUG OUT)

Initial Displacement: 0.66 ft

Static Water Column Height: 15.5 ft

Total Well Penetration Depth: 15.5 ft Casing Radius: 0.166 ft


Screen Length: 15.5 ft Well Radius: 0.41 ft Gravel Pack Porosity: 0.3

SOLUTION

Aquifer Model: Unconfined

Solution Method: Bouwer-Rice

K = 0.01228 cm/secy0 = 0.5493 ft

ESCP-MW-7: TEST 2, SLUG IN

Data Set: C:\...\ESCP MW-7 T-2 SLUG IN.aqt

Date: 05/05/21 Time: 11:55:39

PROJECT INFORMATION

Company: <u>LaBella Associates, D.P.C.</u> Client: <u>Elk Street Commerce Park</u>

Project: 2200012-2021-08

Location: Babcock Street Combined Sewer

Test Well: ESCP-MW-7
Test Date: April 20, 2021

AQUIFER DATA

Saturated Thickness: <u>8.</u> ft Anisotropy Ratio (Kz/Kr): <u>1.</u>

WELL DATA (ESCP MW-7 T-2 SLUG IN)

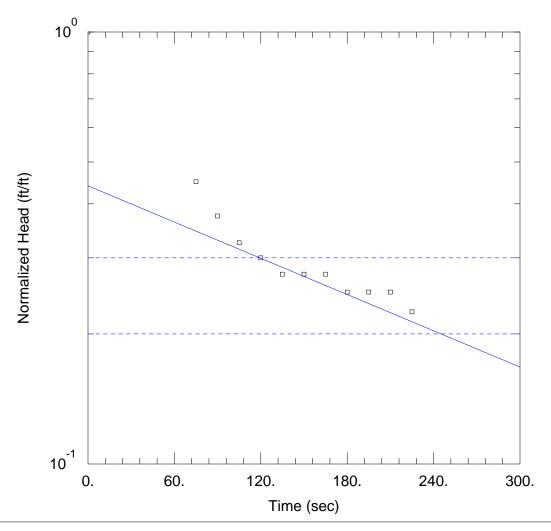
Initial Displacement: 0.4 ft

Static Water Column Height: 15.5 ft

Total Well Penetration Depth: 15.5 ft

Screen Length: 15.5 ft Well Radius: 0.41 ft

Casing Radius: 0.166 ft


Gravel Pack Porosity: 0.3

SOLUTION

Aguifer Model: Unconfined

Solution Method: Bouwer-Rice

K = 0.0133 cm/sec y0 = 0.4056 ft

ESCP-MW-7: TEST 2, SLUG OUT

Data Set: C:\...\ESCP MW-7 T-2 SLUG OUT.aqt

Date: 05/05/21 Time: 11:54:48

PROJECT INFORMATION

Company: <u>LaBella Associates, D.P.C.</u> Client: <u>Elk Street Commerce Park</u>

Project: 2200012-2021-08

Location: Babcock Street Combined Sewer

Test Well: ESCP-MW-7
Test Date: April 20, 2021

AQUIFER DATA

Saturated Thickness: <u>8.</u> ft Anisotropy Ratio (Kz/Kr): <u>1.</u>

WELL DATA (ESCP MW-7 T-2 SLUG OUT)

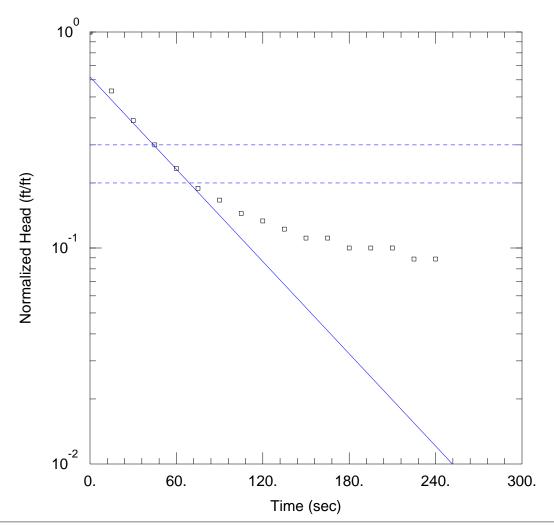
Initial Displacement: 0.4 ft

Static Water Column Height: 15.5 ft

Total Well Penetration Depth: 15.5 ft

Screen Length: 15.5 ft Well Radius: 0.41 ft

Casing Radius: 0.166 ft


Gravel Pack Porosity: 0.3

SOLUTION

Aguifer Model: Unconfined

Solution Method: Bouwer-Rice

K = 0.001104 cm/sec y0 = 0.1761 ft

ESCP-MW-7: TEST 3, SLUG IN

Data Set: C:\...\ESCP MW-7 T-3 SLUG IN.aqt

Date: 05/05/21 Time: 11:53:37

PROJECT INFORMATION

Company: <u>LaBella Associates, D.P.C.</u> Client: <u>Elk Street Commerce Park</u>

Project: 2200012-2021-08

Location: Babcock Street Combined Sewer

Test Well: ESCP-MW-7
Test Date: April 20, 2021

AQUIFER DATA

Saturated Thickness: <u>8.</u> ft Anisotropy Ratio (Kz/Kr): <u>1.</u>

WELL DATA (ESCP MW-7 T-3 SLUG IN)

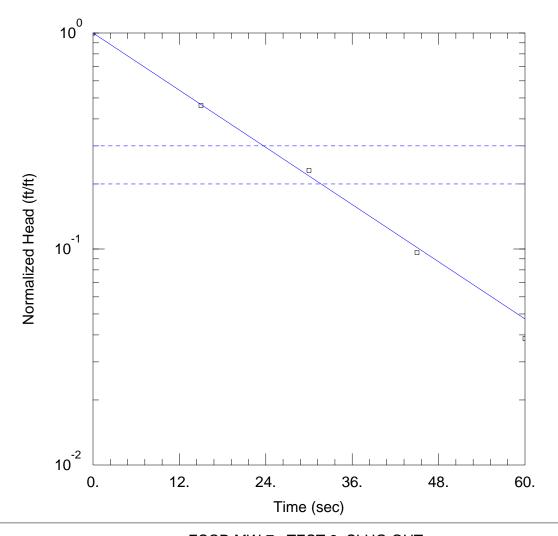
Initial Displacement: 0.9 ft

Static Water Column Height: 15.5 ft

Total Well Penetration Depth: 15.5 ft

Screen Length: 15.5 ft Well Radius: 0.41 ft

Casing Radius: 0.166 ft


Gravel Pack Porosity: 0.3

SOLUTION

Aguifer Model: Unconfined

Solution Method: Bouwer-Rice

K = 0.005623 cm/sec y0 = 0.5567 ft

ESCP-MW-7: TEST 3, SLUG OUT

Data Set: C:\...\ESCP MW-7 T-3 SLUG OUT.aqt

Date: 05/05/21 Time: 11:52:08

PROJECT INFORMATION

Company: LaBella Associates, D.P.C. Client: Elk Street Commerce Park

Project: 2200012-2021-08

Location: Babcock Street Combined Sewer

Test Well: ESCP-MW-7 Test Date: April 20, 2021

AQUIFER DATA

Saturated Thickness: 8. ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (ESCP MW-7 T-3 SLUG OUT)

Initial Displacement: 0.52 ft

Total Well Penetration Depth: 15.5 ft

Static Water Column Height: 15.5 ft

Casing Radius: 0.166 ft

Screen Length: 15.5 ft Well Radius: 0.41 ft

Gravel Pack Porosity: 0.3

SOLUTION

Aquifer Model: Unconfined

Solution Method: Bouwer-Rice

K = 0.01743 cm/secy0 = 0.5198 ft

Slug Test Data Elk Street Commerce Park Buffalo, NY

ESCP-MW-8

TOC Elevation 584.26 DTW measurements adjusted 0.25' in order to compensate for inadvertent transducer movement during testing.

		Slug IN	l (4-19-2021 pm)				Slug OUT (4-19-2021 pm)							
Elapsed Tin	ne	DTW	Adjusted DTW	Adjusted GW	Displacement	Normalized	Elapse	d Time	DTW	Adjusted DTW	Adjusted GW	Displacement	Normalized	
Seconds	Minutes	DIW	Aujusteu Di W	Elev	Displacement	Displacement	Seconds	Minutes	DIW	Aujusteu Di W	Elev	Displacement	Displacement	
0	0.00	10.20	10.20	574.06	0.45	0.37	0	0.00	11.90	11.65	572.61	-1.00	0.83	
15	0.25	10.79	10.54	573.72	0.11	0.09	15	0.25	11.07	10.82	573.44	-0.17	0.14	
30	0.50	10.86	10.61	573.65	0.04	0.04	30	0.50	10.95	10.70	573.56	-0.05	0.04	
45	0.75	10.90	10.65	573.61	0.00	0.00	45	0.75	10.91	10.66	573.60	-0.01	0.01	

		Slug IN	(4-19-2021 pm)						Slu	g OUT (4-19-202	21 pm)		
Elapsed Tin	ne	DTW	Adjusted DTW	Adjusted GW	Displacement	Normalized	Elapse	d Time	DTW	Adjusted DTW	Adjusted GW	Displacement	Normalized
Seconds	Minutes	DIW	Aujusteu Di W	Elev	Displacement	Displacement	Seconds	Minutes	DIW	Aujusteu Di W	Elev	Displacement	Displacement
0	0.00	9.87	9.62	574.64	1.03	0.85	0	0.00	11.74	11.49	572.77	-0.84	0.69
15	0.25	10.64	10.39	573.87	0.26	0.21	15	0.25	11.03	10.78	573.48	-0.13	0.11
30	0.50	10.81	10.56	573.70	0.09	0.08	30	0.50	10.95	10.70	573.56	-0.05	0.04
45	0.75	10.84	10.59	573.67	0.06	0.05	45	0.75	10.92	10.67	573.59	-0.02	0.02
60	1.00	10.85	10.60	573.66	0.05	0.04	60	1.00	10.91	10.66	573.60	-0.01	0.01
75	1.25	10.85	10.60	573.66	0.05	0.04	75	1.25	10.91	10.66	573.60	-0.01	0.01
90	1.50	10.86	10.61	573.65	0.04	0.03	90	1.50	10.92	10.67	573.59	-0.02	0.02
105	1.75	10.86	10.61	573.65	0.04	0.03	105	1.75	10.92	10.67	573.59	-0.02	0.02
120	2.00	10.86	10.61	573.65	0.04	0.03	120	2.00	10.92	10.67	573.59	-0.02	0.02
135	2.25	10.86	10.61	573.65	0.04	0.03	135	2.25	10.92	10.67	573.59	-0.02	0.02

Elapsed Time

Minutes

0.00

0.25

Seconds

0

15

Slug OUT (4-19-2021 pm)

Adjusted DTW

11.62

10.71

DTW

11.87

10.96

Adjusted GW

Elev

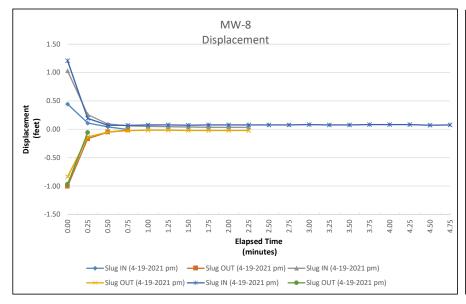
572.64

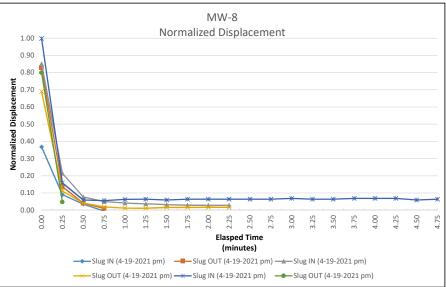
573.55

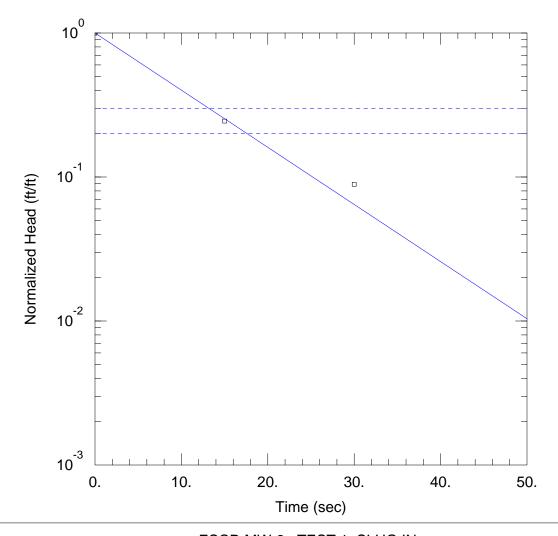
Displacement

-0.97

-0.06


Normalized


Displacement


0.80

0.05

	Slug IN (4-19-2021 pm)										
Elapsed Tin	ne	DTW	Adjusted DTW	Adjusted GW	Displacement	Normalized	I				
Seconds	Minutes	DIW	Aujusteu Di W	Elev	Displacement	Displacement					
0	0.00	9.69	9.44	574.82	1.21	1.00	I				
15	0.25	10.71	10.46	573.80	0.19	0.16					
30	0.50	10.83	10.58	573.68	0.07	0.06	Γ				
45	0.75	10.83	10.58	573.68	0.07	0.06					
60	1.00	10.82	10.57	573.69	0.08	0.06					
75	1.25	10.82	10.57	573.69	0.08	0.06					
90	1.50	10.83	10.58	573.68	0.07	0.06					
105	1.75	10.82	10.57	573.69	0.08	0.06					
120	2.00	10.82	10.57	573.69	0.08	0.06					
135	2.25	10.82	10.57	573.69	0.08	0.06					
150	2.50	10.82	10.57	573.69	0.08	0.06					
165	2.75	10.82	10.57	573.69	0.08	0.06	ı				
180	3.00	10.82	10.57	573.69	0.08	0.07					
195	3.25	10.82	10.57	573.69	0.08	0.06	ı				
210	3.50	10.82	10.57	573.69	0.08	0.06					
225	3.75	10.82	10.57	573.69	0.08	0.07	ı				
240	4.00	10.82	10.57	573.69	0.08	0.07	ı				
255	4.25	10.82	10.57	573.69	0.08	0.07	ı				
270	4.50	10.83	10.58	573.68	0.07	0.06	ĺ				
285	4.75	10.82	10.57	573.69	0.08	0.06	I				

ESCP-MW-8: TEST 1, SLUG IN

Data Set: C:\...\ESCP MW-8 T-1 SLUG IN.aqt

Date: 05/05/21 Time: 12:06:29

PROJECT INFORMATION

Company: <u>LaBella Associates, D.P.C.</u> Client: <u>Elk Street Commerce Park</u>

Project: 2200012-2021-08

Location: Babcock Street Combined Sewer

Test Well: ESCP-MW-8
Test Date: April 19, 2021

AQUIFER DATA

Saturated Thickness: 14. ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (ESCP MW-8 T-1 SLUG IN)

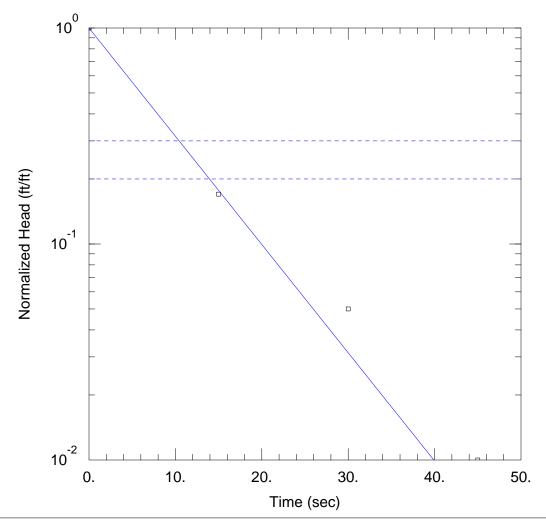
Initial Displacement: 0.45 ft

Static Water Column Height: 17.5 ft

Total Well Penetration Depth: 17.5 ft

Screen Length: 17.5 ft Well Radius: 0.41 ft

Casing Radius: 0.166 ft


Gravel Pack Porosity: 0.3

SOLUTION

Aguifer Model: Unconfined

Solution Method: Bouwer-Rice

K = 0.01956 cm/sec y0 = 0.4495 ft

ESCP-MW-8: TEST 1, SLUG OUT

Data Set: C:\...\ESCP MW-8 T-1 SLUG OUT.aqt

Date: 05/05/21 Time: 12:05:45

PROJECT INFORMATION

Company: <u>LaBella Associates, D.P.C.</u> Client: <u>Elk Street Commerce Park</u>

Project: 2200012-2021-08

Location: Babcock Street Combined Sewer

Test Well: ESCP-MW-8
Test Date: April 19, 2021

AQUIFER DATA

Saturated Thickness: 14. ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (ESCP MW-8 T-1 SLUG OUT)

Initial Displacement: 1. ft

Total Well Penetration Depth: 17.5 ft

Casing Radius: 0.166 ft

Static Water Column Height: 17.5 ft

Screen Length: 17.5 ft
Well Radius: 0.41 ft
Gravel Pack Porosity: 0.3

SOLUTION

Aguifer Model: Unconfined

Solution Method: Bouwer-Rice

K = 0.0247 cm/sec y0 = 0.9994 ft

ESCP-MW-8: TEST 2, SLUG INT

Data Set: C:\...\ESCP MW-8 T-2 SLUG IN.aqt

Date: 05/05/21 Time: 12:05:01

PROJECT INFORMATION

Company: <u>LaBella Associates, D.P.C.</u> Client: <u>Elk Street Commerce Park</u>

Project: 2200012-2021-08

Location: Babcock Street Combined Sewer

Test Well: ESCP-MW-8
Test Date: April 20, 2021

AQUIFER DATA

Saturated Thickness: 14. ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (ESCP MW-8 T-1 SLUG IN)

Initial Displacement: 1.03 ft Static Water Column Height: 17.5 ft


Total Well Penetration Depth: 17.5 ft Screen Length: 17.5 ft Casing Radius: 0.166 ft Well Radius: 0.41 ft

Gravel Pack Porosity: 0.3

SOLUTION

Aquifer Model: Unconfined Solution Method: Bouwer-Rice

K = 0.01847 cm/sec y0 = 1.026 ft

ESCP-MW-8: TEST 2, SLUG OUT

Data Set: C:\...\ESCP MW-8 T-2 SLUG OUT.aqt

Date: 05/05/21 Time: 12:04:23

PROJECT INFORMATION

Company: <u>LaBella Associates, D.P.C.</u> Client: <u>Elk Street Commerce Park</u>

Project: 2200012-2021-08

Location: Babcock Street Combined Sewer

Test Well: ESCP-MW-8
Test Date: April 20, 2021

AQUIFER DATA

Saturated Thickness: 14. ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (ESCP MW-8 T-1 SLUG OUT)

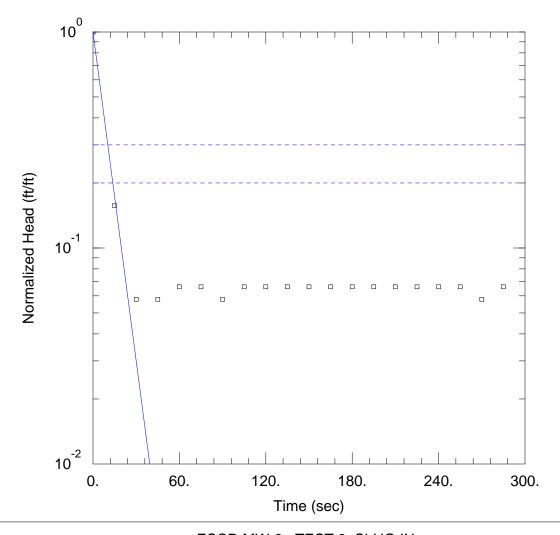
Initial Displacement: 0.84 ft

Static Water Column Height: 17.5 ft

Total Well Penetration Depth: 17.5 ft

Screen Length: 17.5 ft Well Radius: 0.41 ft

Casing Radius: 0.166 ft


Gravel Pack Porosity: 0.3

SOLUTION

Aguifer Model: Unconfined

Solution Method: Bouwer-Rice

K = 0.02551 cm/sec y0 = 0.8391 ft

ESCP-MW-8: TEST 3, SLUG IN

Data Set: C:\...\ESCP MW-8 T-3 SLUG IN.aqt

Date: 05/05/21 Time: 12:03:42

PROJECT INFORMATION

Company: <u>LaBella Associates, D.P.C.</u> Client: <u>Elk Street Commerce Park</u>

Project: 2200012-2021-08

Location: Babcock Street Combined Sewer

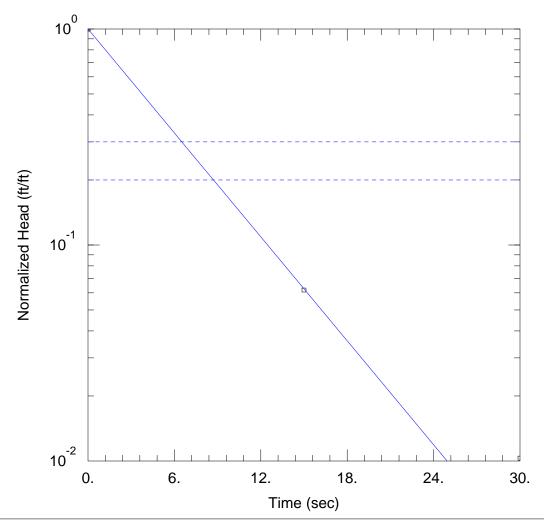
Test Well: ESCP-MW-8
Test Date: April 20, 2021

AQUIFER DATA

Saturated Thickness: 14. ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (ESCP MW-8 T-3 SLUG IN)

Initial Displacement: 1.21 ft Static Water Column Height: 17.5 ft


Total Well Penetration Depth: 17.5 ft Screen Length: 17.5 ft Casing Radius: 0.166 ft Well Radius: 0.41 ft

Well Radius: 0.41 ft
Gravel Pack Porosity: 0.3

SOLUTION

Aguifer Model: Unconfined Solution Method: Bouwer-Rice

K = 0.02501 cm/sec y0 = 1.208 ft

ESCP-MW-8: TEST 3, SLUG OUT

Data Set: C:\...\ESCP MW-8 T-3 SLUG OUT.aqt

Date: 05/05/21 Time: 12:02:55

PROJECT INFORMATION

Company: LaBella Associates, D.P.C. Client: Elk Street Commerce Park

Project: 2200012-2021-08

Location: Babcock Street Combined Sewer

Test Well: ESCP-MW-8 Test Date: April 20, 2021

AQUIFER DATA

Saturated Thickness: 14. ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (ESCP MW-8 T-3 SLUG OUT)

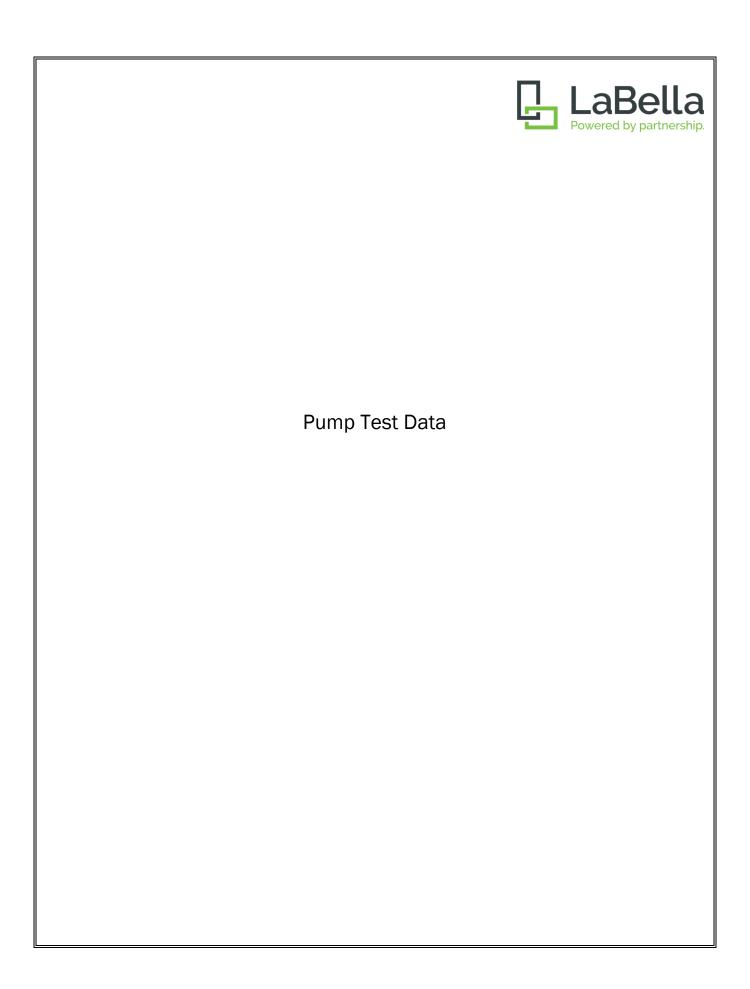
Initial Displacement: 0.97 ft

Static Water Column Height: 17.5 ft

Total Well Penetration Depth: 17.5 ft Casing Radius: 0.166 ft

Screen Length: 17.5 ft Well Radius: 0.41 ft

Gravel Pack Porosity: 0.3


SOLUTION

Aquifer Model: Unconfined

Solution Method: Bouwer-Rice

K = 0.03953 cm/sec

y0 = 0.97 ft

Summary of Hydraulic Conductivity Testing Results Elk Street Commerce Park Buffalo, NY

		Usalas dis Co			Average Hydrau	lic Conductivity	
Well ID	Slug IN/OUT	Hydraulic Co	onductivity*	Slug Tes	t Results	Pump Te	st Results
		cm/sec	ft/day	cm/sec	ft/day	cm/sec	ft/day
	T-1 IN	4.35E-04	1.22				
	T-1 OUT	4.41E-04	1.25				
	T-2 IN	4.15E-04	1.17	4 205 04	4.22		
MW-3	T-2 OUT	4.18E-04	1.19	4.29E-04	1.22	NA	NA
	T-3 IN	4.23E-04	1.20				
	T-3 OUT	4.45E-04	1.26				
	T-1 IN	1.55E-04	0.44				
_	T-1 OUT	3.53E-04	1.00				
MW-24	T-2 IN	1.74E-04	0.49	2.69E-04	0.76	2.16E-02	61.21
-	T-2 OUT	3.93E-04	1.11				
	T-1 IN	3.65E-03	10.35				
	T-1 OUT	4.36E-03	12.34				
ESCP-CSO-MW-4	T-2 IN	5.37E-03	15.23	3.96E-03	11.22	6.90E-03	19.54
	T-2 OUT	2.46E-03	6.96				
	T-1 IN	7.56E-03	21.44				
	T-1 OUT	1.23E-02	34.80		27.06		1
	T-2 IN	1.33E-02	37.69	1		NA	
ESCP-MW-7	T-2 OUT	1.10E-03	3.13	9.55E-03			NA
	T-3 IN	5.62E-03	15.94				
	T-3 OUT	1.74E-02	49.40				
	T-1 IN	1.96E-02	55.43				
	T-1 OUT	2.47E-02	70.00				
	T-2 IN	1.85E-02	52.34				
ESCP-MW-8	T-2 OUT	2.55E-02	72.29	2.55E-02	72.16	NA	NA
	T-3 IN	2.50E-02	70.88				
	T-3 OUT	3.95E-02	112.02	-			
	. 3 3 3 .	3.332 02	112.02				
ESCP-CSO-PZ-1	NA	NA	NA	NA	NA	3.66E-02	103.66
ESCP-CSO-PZ-2	NA	NA	NA	NA	NA	3.66E-02	103.66

Notes:

Slug tests conducted April 19 & 20, 2021 and May 3, 2021; pump test conducted April 27, 2021.

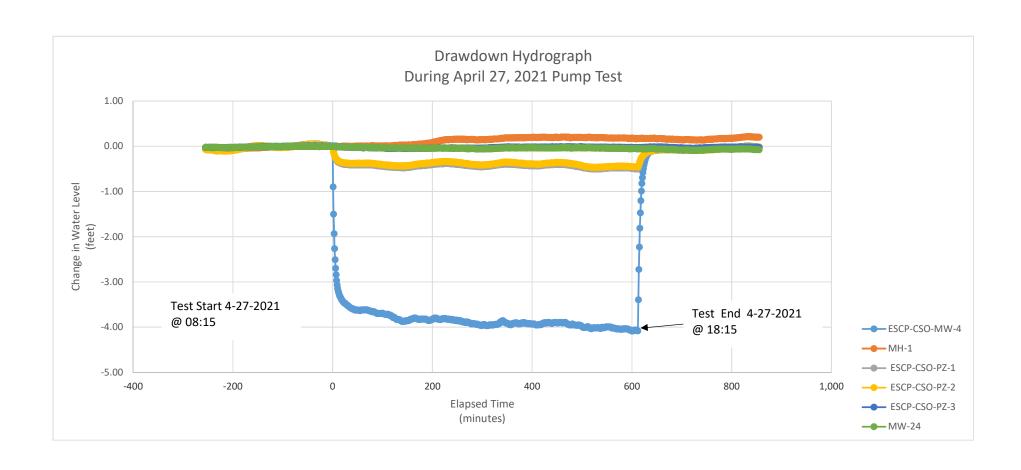
NA = Not Applicable

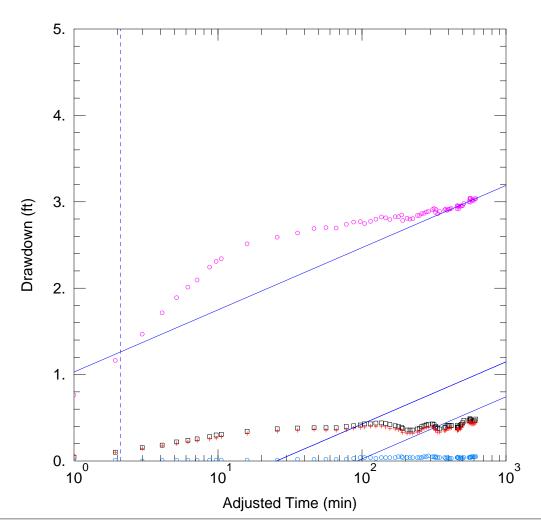
^{*} Hydraulic conductivity given in centimeters per second and feet per day

AQTESOLVE Inputs - Pump Test ESCP-CSO-MW-4 April 27, 2021 Elk Street Commerce Park Buffalo, NY

OBSERVED DRAWDOWN

ESCP-CS	O-MW-4	М	H-1	ESCP-C	SO-PZ-1	ESCP-C	SO-PZ-2	MW	<i>I</i> -24	ESCP-SC	CO-PZ-3
Elapsed Time	DD	Elapsed Time	DD	Elapsed Time	DD	Elapsed Time	DD	Elapsed Time	DD	Elapsed Time	DD
0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00
1	0.90	1	0.00	1	0.05	1	0.07	1	0.00	1	0.00
2	1.50	2	0.00	2	0.12	2	0.12	2	0.01	2	0.00
3	1.93	3	0.00	3	0.18	3	0.17	3	0.00	3	0.00
4	2.26	4	0.00	4	0.21	4	0.20	4	0.01	4	0.00
5	2.51	5	0.00	5	0.25	5	0.23	5	0.01	5	0.00
6	2.70	6	0.01	6	0.27	6	0.25	6	0.01	6	0.00
7	2.84	7	0.00	7	0.29	7	0.27	7	0.01	7	0.00
8	2.97	8	0.01	8	0.31	8	0.28	8	0.01	8	0.01
9	3.07	9	0.00	9	0.33	9	0.29	9	0.01	9	0.00
10	3.14	10	0.00	10	0.34	10	0.31	10	0.01	10	0.01
15	3.33	15	0.00	15	0.37	15	0.34	15	0.01	15	0.02
25	3.47	25	0.00	25	0.40	25	0.37	25	0.01	25	0.02
35	3.56	35	0.00	35	0.41	35	0.38	35	0.02	35	0.02
45	3.62	45	0.00	45	0.41	45	0.39	45	0.02	45	0.02
55	3.64	55	0.01	55	0.41	55	0.38	55	0.02	55	0.03
65	3.63	65	0.01	65	0.41	65	0.38	65	0.02	65	0.03
75	3.65	75	0.01	75	0.42	75	0.38	75	0.02	75	0.03
85	3.70	85	0.01	85	0.43	85	0.40	85	0.03	85	0.03
95	3.71	95	0.01	95	0.44	95	0.41	95	0.04	95	0.04
105	3.73	105	0.01	105	0.46	105	0.42	105	0.04	105	0.04
115	3.78	115	0.02	115	0.46	115	0.43	115	0.04	115	0.05
125	3.83	125	0.03	125	0.47	125	0.43	125	0.03	125	0.04
135	3.86	135	0.02	135	0.47	135	0.43	135	0.04	135	0.05
145	3.84	145	0.03	145	0.46	145	0.42	145	0.04	145	0.04
155	3.80	155	0.04	155	0.45	155	0.40	155	0.04	155	0.04
165	3.82	165	0.05	165	0.43	165	0.39	165	0.04	165	0.05
175	3.82	175	0.06	175	0.42	175	0.38	175	0.05	175	0.05
185	3.86	185	0.07	185	0.41	185	0.37	185	0.05	185	0.03
195	3.80	195	0.10	195	0.41	195	0.35	195	0.03	195	0.04
205	3.83	205	0.10	205	0.38	205	0.33	205	0.04	205	0.03
215	3.81	215	0.12	215	0.38	215	0.34	215	0.04	203	0.03
215	3.82	215	0.14	215	0.38	215	0.34	215	0.04	215	0.03
235	3.82	225		225	0.38	225		225	0.04	225	0.04
			0.16				0.35				
245	3.85	245	0.16	245	0.40	245	0.36	245	0.04	245	0.04
255	3.89	255	0.16	255	0.42	255	0.38	255	0.04	255	0.04
265	3.90	265	0.15	265	0.43	265	0.40	265	0.05	265	0.04
275	3.93	275	0.15	275	0.44	275	0.41	275	0.05	275	0.04
285	3.94	285	0.15	285	0.45	285	0.41	285	0.06	285	0.05
295	3.94	295	0.14	295	0.45	295	0.41	295	0.05	295	0.04
305	3.96	305	0.15	305	0.44	305	0.40	305	0.05	305	0.03
315	3.94	315	0.16	315	0.42	315	0.38	315	0.05	315	0.03
325	3.92	325	0.17	325	0.41	325	0.37	325	0.04	325	0.03
335	3.89	335	0.18	335	0.40	335	0.35	335	0.04	335	0.02
345	3.94	345	0.19	345	0.39	345	0.35	345	0.04	345	0.01
355	3.91	355	0.19	355	0.40	355	0.36	355	0.04	355	0.01
365	3.93	365	0.19	365	0.41	365	0.37	365	0.03	365	0.02
375	3.90	375	0.19	375	0.43	375	0.39	375	0.04	375	0.02
385	3.92	385	0.20	385	0.43	385	0.39	385	0.03	385	0.01
395	3.93	395	0.20	395	0.43	395	0.39	395	0.03	395	0.02
405	3.94	405	0.19	405	0.43	405	0.40	405	0.03	405	0.02
415	3.91	415	0.20	415	0.42	415	0.38	415	0.04	415	0.01
425	3.90	425	0.20	425	0.40	425	0.37	425	0.04	425	0.02
435	3.89	435	0.19	435	0.40	435	0.37	435	0.04	435	0.01
445	3.89	445	0.19	445	0.40	445	0.36	445	0.04	445	0.01
455	3.89	455	0.20	455	0.41	455	0.37	455	0.03	455	0.01
465	3.95	465	0.18	465	0.43	465	0.38	465	0.04	465	0.01
475	3.95	475	0.20	475	0.44	475	0.40	475	0.03	475	0.01
485	3.96	485	0.20	485	0.46	485	0.42	485	0.03	485	0.01
495	4.01	495	0.19	495	0.49	495	0.45	495	0.04	495	0.02
505	4.03	505	0.20	505	0.49	505	0.46	505	0.04	505	0.02
515	4.01	515	0.19	515	0.50	515	0.47	515	0.04	515	0.02
525	4.03	525	0.19	525	0.49	525	0.46	525	0.04	525	0.02
535	4.00	535	0.19	535	0.48	535	0.45	535	0.04	535	0.02
545	3.99	545	0.19	545	0.48	545	0.45	545	0.04	545	0.03
555	4.03	555	0.13	555	0.48	555	0.44	555	0.05	555	0.02
565	4.03	565	0.18	565	0.47	565	0.44	565	0.05	565	0.02
575	4.04	575	0.18	575	0.48	575	0.44	575	0.05	575	0.02
585	4.03	585	0.18	585	0.48	585	0.44	585	0.05	585	0.02
595	4.07	585 595	0.18	585 595	0.48	585 595	0.44	585 595	0.05	585 595	0.03


FLOW RATE


Elapsed Time (minutes)	Flow Rate (GPM)
0	2.70
1	2.83
2	2.80
3	2.74
4	2.71
5	2.70
6	2.70
7	2.61
8	2.60
9	2.61
10	2.54
40	2.52
65	2.49
95	2.52
125	2.51
155	2.49
185	2.52
200	2.51
215	2.51
230	2.49
260	2.49
290	2.47
320	2.49
350	2.46
380	2.46
410	2.42
440	2.44
470	2.44
500	2.40
530	2.42
600	2.44

AQTESOLVE Inputs - Pump Test ESCP-CSO-MW-4 April 27, 2021 Elk Street Commerce Park Buffalo, NY

RECOVERY

ESCP-CS	O-MW-4	MI	H-1	ESCP-C	SO-PZ-1	ESCP-C	SO-PZ-2	MW	<i>I</i> -24	ESCP-S	CO-PZ-3
Elapsed Time	DD	Elapsed Time	DD	Elapsed Time	DD	Elapsed Time	DD	Elapsed Time	DD	Elapsed Time	DD
596	3.39	596	0.18	596	0.49	596	0.44	596	0.49	596	0.03
597	2.72	597	0.18	597	0.45	597	0.40	597	0.45	597	0.03
598	2.23	598	0.18	598	0.40	598	0.37	598	0.40	598	0.02
599	1.81	599	0.18	599	0.36	599	0.34	599	0.36	599	0.03
600	1.47	600	0.18	600	0.33	600	0.31	600	0.33	600	0.03
601	1.20	601	0.18	601	0.31	601	0.28	601	0.31	601	0.03
602	0.99	602	0.18	602	0.28	602	0.26	602	0.28	602	0.02
603	0.82	603	0.18	603	0.26	603	0.24	603	0.26	603	0.02
604	0.69	604	0.18	604	0.24	604	0.22	604	0.24	604	0.02
605	0.58	605	0.18	605	0.22	605	0.21	605	0.22	605	0.03
606	0.50	606	0.18	606	0.21	606	0.19	606	0.21	606	0.02
607	0.42	607	0.17	607	0.19	607	0.19	607	0.19	607	0.02
608	0.36	608	0.17	608	0.18	608	0.18	608	0.18	608	0.02
609	0.32	609	0.17	609	0.17	609	0.16	609	0.17	609	0.02
610	0.28	610	0.17	610	0.17	610	0.15	610	0.17	610	0.02
611	0.25	611	0.17	611	0.16	611	0.15	611	0.16	611	0.02
612	0.22	612	0.17	612	0.15	612	0.14	612	0.15	612	0.02
613	0.20	613	0.17	613	0.14	613	0.14	613	0.14	613	0.02
614	0.18	614	0.17	614	0.14	614	0.13	614	0.14	614	0.02
615	0.17	615	0.17	615	0.13	615	0.13	615	0.13	615	0.02
616	0.16	616	0.17	616	0.13	616	0.12	616	0.13	616	0.02
617	0.14	617	0.17	617	0.12	617	0.12	617	0.12	617	0.02
618	0.13	618	0.17	618	0.12	618	0.12	618	0.12	618	0.02
619	0.13	619	0.17	619	0.12	619	0.11	619	0.12	619	0.01
620	0.12	620	0.17	620	0.11	620	0.10	620	0.11	620	0.02
621	0.11	621	0.18	621	0.11	621	0.10	621	0.11	621	0.01
622	0.11	622	0.18	622	0.10	622	0.11	622	0.10	622	0.02
623	0.11	623	0.18	623	0.11	623	0.10	623	0.11	623	0.02
624	0.11	624	0.18	624	0.11	624	0.10	624	0.11	624	0.02
625	0.09	625	0.18	625	0.10	625	0.09	625	0.10	625	0.02

BABCOCK STREET COMBINED SEWER OVERFLOW

Data Set: C:\...\Pump Test - PZ-3 REM w-REC.aqt

Date: 05/06/21 Time: 16:29:24

PROJECT INFORMATION

Company: LaBella Associates, D.P.C. Client: Elk Street Commerce Park

Project: 2200012-2021-08

Location: Babcock Street Combined Sewer

Test Well: ESCP-CSO-MW-4 Test Date: April 27, 2021

AQUIFER DATA

Saturated Thickness: 8. ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA

Pumping Wells Observation Wells

Well Name	X (ft)	Y (ft)	Well Name	X (ft)	Y (ft)
ESCP-CSO-MW-4	0	0	□ PZ-1	0	-11
		_	+ PZ-2	0	11
			∘ MW-24	-21	0
			ESCP-CSO-MW-4	0	0

SOLUTION

Aquifer Model: Unconfined Solution Method: Cooper-Jacob

AQTESOLV for Windows

Data Set: C:\Program Files (x86)\HydroSOLVE\AQTESOLV Std 4.0\Elk St Commerce Park\Pump Test\PT w-Recovery\Pump Test -

Title: Babcock Street Combined Sewer Overflow

Date: 05/06/21 Time: 16:29:55

PROJECT INFORMATION

Company: LaBella Associates, D.P.C. Client: Elk Street Commerce Park

Project: 2200012-2021-08

Location: Babcock Street Combined Sewer

Test Date: April 27, 2021 Test Well: ESCP-CSO-MW-4

AQUIFER DATA

Saturated Thickness: 8. ft Anisotropy Ratio (Kz/Kr): 1.

PUMPING WELL DATA

No. of pumping wells: 1

Pumping Well No. 1: ESCP-CSO-MW-4

X Location: 0. ft Y Location: 0. ft

Casing Radius: 0.25 ft Well Radius: 0.42 ft

Fully Penetrating Well

No. of pumping periods: 32

	Pumping Pe	eriod Data		
Time (min)	Rate (gal/min)	Time (min)	Rate (gal/min)	
0.	2.7	185.	2.52	
1.	2.83	200.	2.51	
2.	2.8	215.	2.51	
3.	2.74	230.	2.49	
4.	2.71	260.	2.49	
5.	2.7	290.	2.47	
6.	2.7	320.	2.49	
7.	2.61	350.	2.46	
8.	2.6	380.	2.46	
9.	2.61	410.	2.42	
10.	2.54	440.	2.44	
40.	2.52	470.	2.44	
65.	2.49	500.	2.4	
95.	2.52	530.	2.42	
125.	2.51	595.	0.	
155.	2.49	600.	0.	

OBSERVATION WELL DATA

No. of observation wells: 4

Observation Well No. 1: PZ-1

X Location: 0. ft Y Location: -11. ft

Radial distance from ESCP-CSO-MW-4: 11. ft

Fully Penetrating Well

No. of Observations: 99

	Observation	on Data	
Time (min)	Displacement (ft)	Time (min)	Displacement (ft)
1.	0.05	415.	0.42
2.	0.12	425.	0.4
3.	0.18	435.	0.4
4.	0.21	445.	0.4
5.	0.25	455.	0.41
6.	0.27	465.	0.43
7.	0.29	475.	0.44
8.	0.31	485.	0.46
9.	0.33	495.	0.49
10.	0.34	505.	0.49
15.	0.37	515.	0.5
25.	0.4	525.	0.49
35.	0.41	535.	0.48
45.	0.41	545.	0.48
55.	0.41	555.	0.47
65.	0.41	565.	0.48
75.	0.42	575.	0.48
85.	0.43	585.	0.48
95.	0.44	595.	0.5
105.	0.46	596.	0.49
115.	0.46	597.	0.45
125.	0.47	598.	0.4
135.	0.47	599.	0.36
145.	0.46	600.	0.33
155.	0.45	601.	0.31
165.	0.43	602.	0.28
175.	0.42	603.	0.26
185.	0.41	604.	0.24
195.	0.4	605.	0.22
205.	0.38	606.	0.21
215.	0.38	607.	0.19
225.	0.38	608.	0.18
235.	0.39	609.	0.17
245.	0.4	610.	0.17
255.	0.42	611.	0.16
265.	0.43	612.	0.15
275.	0.44	613.	0.14
285.	0.45	614.	0.14
295.	0.45	615.	0.13
305.	0.44	616.	0.13
315.	0.42	617.	0.12
325.	0.41	618.	0.12
335.	0.4	619.	0.12
345.	0.39	630.	0.11
355.	0.4	631.	0.11
365.	0.41	632.	0.1
375.	0.43	633.	0.11
385.	0.43	634.	0.11
395.	0.43	635.	0.1
405.	0.43		

Observation Well No. 2: PZ-2

X Location: 0. ft Y Location: 11. ft

Radial distance from ESCP-CSO-MW-4: 11. ft

Fully Penetrating Well
No. of Observations: 98

Observation Data

Time (min) 1. 2. 3. 4.	Displacement (ft) 0.07 0.12 0.17 0.2	Time (min) 405. 415. 425. 435.	Displacement (ft) 0.4 0.38 0.37 0.37
5.	0.23	445.	0.36
6.	0.25	455.	0.37
7.	0.27	465.	0.38
8.	0.28	475.	0.4
9.	0.29	485.	0.42
10.	0.31	495.	0.45
15.	0.34	505.	0.46
25.	0.37	515.	0.47
35.	0.38	525.	0.46
45.	0.39	535.	0.45
55.	0.38	545.	0.45
65.	0.38	555.	0.44
75.	0.38	565.	0.44
85.	0.4	575.	0.44
95.	0.41	585.	0.44
105.	0.42	595.	0.46
115.	0.43	596.	0.44
125.	0.43	597.	0.4
135.	0.43	598.	0.37
145.	0.42	599.	0.34
155.	0.4	600.	0.31
165.	0.39	601.	0.28
175.	0.38	602.	0.26
185.	0.37	603.	0.24
195.	0.35	604.	0.22
205.	0.34	605.	0.21
215.	0.34	606.	0.19
225.	0.34	607.	0.19
235.	0.35	608.	0.18
245.	0.36	609.	0.16
255.	0.38	610.	0.15
265. 275. 285. 295. 305.	0.4 0.41 0.41 0.41 0.4	611. 612. 613. 614. 615.	0.15 0.15 0.14 0.14 0.13 0.13
315. 325. 335. 345. 355. 365.	0.38 0.37 0.35 0.35 0.36 0.37	616. 617. 618. 619. 620. 621.	0.12 0.12 0.12 0.12 0.11 0.1 0.1
375.	0.39	622.	0.11
385.	0.39	623.	0.1
395.	0.39	624.	0.1

Observation Well No. 3: MW-24

X Location: -21. ft Y Location: 0. ft

Radial distance from ESCP-CSO-MW-4: 21. ft

Fully Penetrating Well

No. of Observations: 99

Observation Data					
Time (min)	Displacement (ft)	Time (min)	Displacement (ft)		
1.	0.	415.	0.04		
2.	0.01	425.	0.04		
3.	0.	435.	0.04		

4. 0.01 445. 0.04 5. 0.01 455. 0.03 6. 0.01 465. 0.04 7. 0.01 475. 0.03 8. 0.01 485. 0.03 9. 0.01 485. 0.03 9. 0.01 485. 0.03 9. 0.01 505. 0.04 10. 0.01 505. 0.04 15. 0.01 525. 0.04 25. 0.01 525. 0.04 45. 0.02 535. 0.04 45. 0.02 545. 0.05 65. 0.02 555. 0.05 65. 0.02 555. 0.05 65. 0.02 555. 0.05 65. 0.02 555. 0.05 65. 0.02 555. 0.05 105. 0.04 595. 0.05 105. 0.04 595. 0.05 115. 0.04 595. 0.05 115. 0.04 596. 0.05 115. 0.04 597. 0.05 115. 0.04 599. 0.05 115. 0.04 600. 0.05 115. 0.04 601. 0.05 145. 0.04 601. 0.05 185. 0.04 601. 0.05 185. 0.04 601. 0.05 185. 0.04 602. 0.05 177. 0.05 185. 0.04 601. 0.05 185. 0.04 601. 0.05 185. 0.04 602. 0.05 175. 0.05 603. 0.05 175. 0.05 603. 0.05 175. 0.06 604. 0.05 175. 0.06 606. 0.05 175. 0.06 607. 0.05 225. 0.04 608. 0.05 235. 0.04 609. 0.05 245. 0.04 609. 0.05 245. 0.04 609. 0.05 245. 0.04 609. 0.05 245. 0.04 601. 0.05 255. 0.04 608. 0.05 255. 0.04 609. 0.05 255. 0.04 609. 0.05 255. 0.04 609. 0.05 255. 0.04 609. 0.05 255. 0.04 609. 0.05 255. 0.04 609. 0.05 255. 0.04 609. 0.05 255. 0.04 609. 0.05 255. 0.04 601. 0.05 255. 0.04 609. 0.05 255. 0.05 609. 0.05 255. 0.06 609. 0.05 255. 0.06 609. 0.05 255. 0.06 609. 0.05 255. 0.06 609. 0.05 255. 0.06 609. 0.05 255. 0.06 609. 0.05 255. 0.06 609. 0.05 255. 0.06 609. 0.05 255. 0.06 609. 0.05 255. 0.06 609. 0.05 255. 0.06 609. 0.05 255. 0.06 609. 0.05 25	Time (min)	Displacement (ft)	Time (min)	Displacement (ft)
6. 0.01 465. 0.04 7. 0.01 475. 0.03 8. 0.01 485. 0.03 9. 0.01 495. 0.04 10. 0.01 505. 0.04 15. 0.01 515. 0.04 25. 0.01 525. 0.04 25. 0.02 535. 0.04 45. 0.02 545. 0.05 65. 0.02 555. 0.05 65. 0.02 575. 0.05 85. 0.03 585. 0.05 85. 0.03 585. 0.05 95. 0.04 595. 0.05 115. 0.04 595. 0.05 115. 0.04 596. 0.05 115. 0.04 597. 0.05 125. 0.03 588. 0.05 125. 0.04 599. 0.05 145. 0.04 600. 0.05 145. 0.04 600. 0.05 145. 0.04 600. 0.05 155. 0.04 602. 0.05 175. 0.05 185. 0.04 600. 0.05 125. 0.04 600. 0.05 125. 0.04 600. 0.05 125. 0.04 600. 0.05 125. 0.04 600. 0.05 125. 0.04 600. 0.05 125. 0.04 600. 0.05 125. 0.04 600. 0.05 125. 0.04 600. 0.05 125. 0.04 600. 0.05 125. 0.04 600. 0.05 125. 0.04 600. 0.05 125. 0.04 600. 0.05 125. 0.04 600. 0.05 125. 0.04 600. 0.05 125. 0.04 600. 0.05 125. 0.04 606. 0.05 125. 0.04 607. 0.05 125. 0.04 608. 0.05 125. 0.04 609. 0.05 125. 0.04 609. 0.05 125. 0.04 609. 0.05 125. 0.04 609. 0.05 125. 0.04 609. 0.05 125. 0.04 609. 0.05 125. 0.04 609. 0.05 125. 0.04 609. 0.05 125. 0.04 609. 0.05 125. 0.04 609. 0.05 125. 0.04 609. 0.05 125. 0.04 609. 0.05 125. 0.04 609. 0.05 125. 0.04 609. 0.05 125. 0.04 609. 0.05 125. 0.04 609. 0.05 125. 0.04 609. 0.05 125. 0.04 609. 0.05 125. 0.04 609. 0.05 125. 0.05 611. 0.05 125. 0.06 614. 0.05 125. 0.06 615. 0.06 125. 0.06 616. 0.05 125. 0.06 616. 0.05 125. 0.06 616. 0.05 125. 0.06 617. 0.05 125. 0.06 619. 0.05 125. 0.06 619. 0.05 125. 0.06 619. 0.05 125. 0.06 619. 0.05 125. 0.06 619.				
7. 0.01 475. 0.03 8. 0.01 485. 0.03 9. 0.01 485. 0.04 10. 0.01 505. 0.04 15. 0.01 515. 0.04 25. 0.01 525. 0.04 35. 0.02 535. 0.04 45. 0.02 545. 0.05 65. 0.02 555. 0.05 65. 0.02 555. 0.05 85. 0.02 575. 0.05 85. 0.03 585. 0.05 85. 0.03 585. 0.05 105. 0.04 596. 0.05 115. 0.04 596. 0.05 115. 0.04 597. 0.05 125. 0.03 588. 0.05 125. 0.03 588. 0.05 125. 0.04 599. 0.05 125. 0.03 588. 0.05 125. 0.04 599. 0.05 125. 0.04 600. 0.05 135. 0.04 600. 0.05 145. 0.04 600. 0.05 155. 0.04 600. 0.05 155. 0.04 600. 0.05 155. 0.04 600. 0.05 155. 0.04 600. 0.05 125. 0.04 600. 0.05 125. 0.04 600. 0.05 125. 0.04 600. 0.05 125. 0.04 600. 0.05 125. 0.04 600. 0.05 125. 0.04 600. 0.05 125. 0.04 600. 0.05 125. 0.04 600. 0.05 125. 0.04 600. 0.05 125. 0.04 600. 0.05 125. 0.04 600. 0.05 125. 0.04 606. 0.05 125. 0.05 604. 0.05 125. 0.04 606. 0.05 125. 0.04 607. 0.05 125. 0.04 608. 0.05 125. 0.04 609. 0.05 125. 0.04 609. 0.05 125. 0.04 609. 0.05 125. 0.04 609. 0.05 125. 0.04 611. 0.05 1255. 0.04 612. 0.05 1255. 0.04 612. 0.05 1255. 0.04 613. 0.05 1255. 0.04 614. 0.05 1255. 0.05 615. 0.05 1255. 0.06 614. 0.05 1255. 0.06 614. 0.05 1255. 0.06 615. 0.05 1255. 0.06 615. 0.05 1255. 0.06 615. 0.05 1255. 0.06 615. 0.05 1255. 0.06 615. 0.05 1255. 0.06 615. 0.05 1255. 0.06 615. 0.05 1255. 0.06 615. 0.05 1255. 0.06				
8. 0.01 485. 0.03 9. 0.01 495. 0.04 10. 0.01 505. 0.04 15. 0.01 515. 0.04 25. 0.01 525. 0.04 35. 0.02 535. 0.04 45. 0.02 545. 0.05 65. 0.02 555. 0.05 65. 0.02 565. 0.05 65. 0.02 575. 0.05 85. 0.03 585. 0.05 85. 0.04 595. 0.05 105. 0.04 596. 0.05 115. 0.04 596. 0.05 115. 0.04 597. 0.05 115. 0.04 597. 0.05 125. 0.03 599. 0.05 125. 0.03 599. 0.05 125. 0.04 600. 0.05 135. 0.04 600. 0.05 145. 0.04 600. 0.05 165. 0.04 601. 0.05 165. 0.04 602. 0.05 175. 0.05 185. 0.04 602. 0.05 185. 0.04 602. 0.05 185. 0.04 606. 0.05 195. 0.04 607. 0.05 205. 0.04 608. 0.05 225. 0.04 609. 0.05 225. 0.04 609. 0.05 225. 0.04 609. 0.05 225. 0.04 609. 0.05 225. 0.04 609. 0.05 225. 0.04 609. 0.05 225. 0.04 609. 0.05 225. 0.04 609. 0.05 225. 0.04 609. 0.05 225. 0.04 609. 0.05 225. 0.04 610. 0.05 225. 0.04 611. 0.05 225. 0.04 619. 0.05 235. 0.04 619. 0.05 235. 0.04 619. 0.05 235. 0.04 619. 0.05 235. 0.04 619. 0.05 235. 0.04 619. 0.05 235. 0.04 619. 0.05 235. 0.04 619. 0.05 235. 0.04 619. 0.05 235. 0.04 619. 0.05 235. 0.04 619. 0.05 235. 0.05 235. 0.06 614. 0.05 235. 0.06 614. 0.05 235. 0.06 619. 0.05 235. 0.006 619. 0.05	6.			
8. 0.01 485. 0.03 9. 0.01 495. 0.04 10. 0.01 505. 0.04 15. 0.01 515. 0.04 25. 0.01 525. 0.04 35. 0.02 535. 0.04 45. 0.02 545. 0.05 65. 0.02 555. 0.05 65. 0.02 565. 0.05 65. 0.02 575. 0.05 85. 0.03 585. 0.05 85. 0.04 595. 0.05 105. 0.04 596. 0.05 115. 0.04 596. 0.05 115. 0.04 597. 0.05 115. 0.04 597. 0.05 125. 0.03 599. 0.05 125. 0.03 599. 0.05 125. 0.04 600. 0.05 135. 0.04 600. 0.05 145. 0.04 600. 0.05 165. 0.04 601. 0.05 165. 0.04 602. 0.05 175. 0.05 185. 0.04 602. 0.05 185. 0.04 602. 0.05 185. 0.04 606. 0.05 195. 0.04 607. 0.05 205. 0.04 608. 0.05 225. 0.04 609. 0.05 225. 0.04 609. 0.05 225. 0.04 609. 0.05 225. 0.04 609. 0.05 225. 0.04 609. 0.05 225. 0.04 609. 0.05 225. 0.04 609. 0.05 225. 0.04 609. 0.05 225. 0.04 609. 0.05 225. 0.04 609. 0.05 225. 0.04 610. 0.05 225. 0.04 611. 0.05 225. 0.04 619. 0.05 235. 0.04 619. 0.05 235. 0.04 619. 0.05 235. 0.04 619. 0.05 235. 0.04 619. 0.05 235. 0.04 619. 0.05 235. 0.04 619. 0.05 235. 0.04 619. 0.05 235. 0.04 619. 0.05 235. 0.04 619. 0.05 235. 0.04 619. 0.05 235. 0.05 235. 0.06 614. 0.05 235. 0.06 614. 0.05 235. 0.06 619. 0.05 235. 0.006 619. 0.05	7.	0.01	475.	0.03
9. 0.01 495. 0.04 10. 0.01 505. 0.04 15. 0.01 515. 0.04 25. 0.01 525. 0.04 35. 0.02 535. 0.04 45. 0.02 545. 0.05 65. 0.02 555. 0.05 65. 0.02 565. 0.05 75. 0.02 575. 0.05 85. 0.03 586. 0.05 85. 0.04 596. 0.05 105. 0.04 596. 0.05 115. 0.04 597. 0.05 125. 0.03 598. 0.05 125. 0.04 599. 0.05 135. 0.04 599. 0.05 135. 0.04 600. 0.05 145. 0.04 600. 0.05 145. 0.04 601. 0.05 155. 0.04 602. 0.05 175. 0.05 185. 0.04 602. 0.05 185. 0.04 605. 0.05 205. 0.04 606. 0.05 215. 0.04 607. 0.05 225. 0.04 608. 0.05 225. 0.04 609. 0.05 225. 0.04 609. 0.05 225. 0.04 609. 0.05 225. 0.04 609. 0.05 225. 0.04 609. 0.05 225. 0.04 609. 0.05 225. 0.04 609. 0.05 225. 0.04 609. 0.05 235. 0.04 609. 0.05 245. 0.04 609. 0.05 245. 0.04 609. 0.05 245. 0.04 609. 0.05 245. 0.04 609. 0.05 245. 0.04 611. 0.05 265. 0.05 613. 0.05 285. 0.06 614. 0.05 295. 0.06 614. 0.05 295. 0.06 614. 0.05 335. 0.06 614. 0.05 335. 0.06 614. 0.05 335. 0.06 614. 0.05 335. 0.06 614. 0.05 335. 0.06 614. 0.05 335. 0.06 614. 0.05 335. 0.06 614. 0.05 335. 0.06 614. 0.05 335. 0.06 619. 0.05 335. 0.06 619. 0.05 335. 0.06 619. 0.05 335. 0.004 620. 0.05 3355. 0.004 621. 0.05 3355. 0.004 622. 0.05 3395. 0.03 6224. 0.05	8.	0.01	485.	0.03
10. 0.01 505. 0.04 15. 0.01 515. 0.04 25. 0.01 525. 0.04 35. 0.02 535. 0.04 45. 0.02 545. 0.04 55. 0.02 565. 0.05 65. 0.02 575. 0.05 75. 0.02 575. 0.05 85. 0.03 585. 0.05 95. 0.04 595. 0.05 105. 0.04 596. 0.05 115. 0.04 597. 0.05 125. 0.03 588. 0.05 125. 0.03 598. 0.05 135. 0.04 599. 0.05 145. 0.04 600. 0.05 145. 0.04 601. 0.05 165. 0.04 602. 0.05 175. 0.05 603. 0.05			495.	
15. 0.01 515. 0.04 25. 0.01 525. 0.04 35. 0.02 535. 0.04 45. 0.02 545. 0.04 55. 0.02 555. 0.05 65. 0.02 575. 0.05 75. 0.02 575. 0.05 85. 0.03 585. 0.05 95. 0.04 596. 0.05 105. 0.04 596. 0.05 115. 0.04 597. 0.05 125. 0.03 598. 0.05 125. 0.03 598. 0.05 135. 0.04 599. 0.05 145. 0.04 599. 0.05 145. 0.04 600. 0.05 155. 0.04 601. 0.05 165. 0.04 602. 0.05 175. 0.05 603. 0.05 185. 0.05 604. 0.05 195. 0.04 606.			505	0.04
25. 0.01 525. 0.04 35. 0.02 535. 0.04 45. 0.02 545. 0.04 55. 0.02 565. 0.05 65. 0.02 565. 0.05 75. 0.02 575. 0.05 85. 0.03 585. 0.05 95. 0.04 595. 0.05 105. 0.04 596. 0.05 115. 0.04 597. 0.05 125. 0.03 598. 0.05 135. 0.04 599. 0.05 145. 0.04 600. 0.05 145. 0.04 600. 0.05 155. 0.04 601. 0.05 155. 0.04 601. 0.05 165. 0.04 602. 0.05 175. 0.05 603. 0.05 185. 0.05 604. 0.05 <t< td=""><td></td><td>0.01</td><td>515</td><td></td></t<>		0.01	515	
35. 0.02 535. 0.04 45. 0.02 545. 0.04 55. 0.02 555. 0.05 65. 0.02 575. 0.05 75. 0.02 575. 0.05 85. 0.03 585. 0.05 95. 0.04 595. 0.05 105. 0.04 596. 0.05 115. 0.04 597. 0.05 125. 0.03 598. 0.05 125. 0.03 598. 0.05 135. 0.04 599. 0.05 145. 0.04 600. 0.05 155. 0.04 601. 0.05 165. 0.04 602. 0.05 175. 0.05 603. 0.05 185. 0.05 604. 0.05 195. 0.04 605. 0.05 205. 0.04 606. 0.05 <				
45. 0.02 545. 0.04 55. 0.02 555. 0.05 65. 0.02 565. 0.05 75. 0.02 575. 0.05 85. 0.03 585. 0.05 95. 0.04 595. 0.05 105. 0.04 596. 0.05 115. 0.04 597. 0.05 125. 0.03 598. 0.05 135. 0.04 599. 0.05 145. 0.04 600. 0.05 145. 0.04 601. 0.05 165. 0.04 601. 0.05 165. 0.04 602. 0.05 175. 0.05 603. 0.05 185. 0.05 604. 0.05 195. 0.04 605. 0.05 205. 0.04 606. 0.05 225. 0.04 607. 0.05 225. 0.04 608. 0.05 225. 0.04 6				
55. 0.02 555. 0.05 65. 0.02 565. 0.05 75. 0.02 575. 0.05 85. 0.03 585. 0.05 95. 0.04 595. 0.05 105. 0.04 596. 0.05 115. 0.04 597. 0.05 125. 0.03 598. 0.05 135. 0.04 599. 0.05 145. 0.04 600. 0.05 155. 0.04 601. 0.05 165. 0.04 602. 0.05 175. 0.05 603. 0.05 185. 0.05 604. 0.05 185. 0.05 604. 0.05 195. 0.04 605. 0.05 205. 0.04 606. 0.05 215. 0.04 607. 0.05 225. 0.04 608. 0.05				
65. 0.02 565. 0.05 75. 0.02 575. 0.05 85. 0.03 585. 0.05 95. 0.04 595. 0.05 105. 0.04 596. 0.05 115. 0.04 597. 0.05 125. 0.03 598. 0.05 125. 0.03 598. 0.05 135. 0.04 599. 0.05 145. 0.04 600. 0.05 145. 0.04 601. 0.05 165. 0.04 602. 0.05 175. 0.05 603. 0.05 185. 0.05 604. 0.05 195. 0.04 605. 0.05 205. 0.04 606. 0.05 215. 0.04 607. 0.05 225. 0.04 607. 0.05 235. 0.04 609. 0.05			545. 555	
75. 0.02 575. 0.05 85. 0.03 585. 0.05 96. 0.04 596. 0.05 105. 0.04 596. 0.05 115. 0.04 597. 0.05 125. 0.03 598. 0.05 135. 0.04 599. 0.05 145. 0.04 600. 0.05 155. 0.04 601. 0.05 165. 0.04 602. 0.05 175. 0.05 603. 0.05 185. 0.05 603. 0.05 185. 0.05 604. 0.05 195. 0.04 605. 0.05 205. 0.04 606. 0.05 215. 0.04 607. 0.05 225. 0.04 608. 0.05 235. 0.04 609. 0.05 245. 0.04 610. 0.05				
85. 0.03 585. 0.05 95. 0.04 595. 0.05 105. 0.04 596. 0.05 115. 0.04 597. 0.05 125. 0.03 598. 0.05 135. 0.04 599. 0.05 145. 0.04 600. 0.05 155. 0.04 601. 0.05 165. 0.04 602. 0.05 175. 0.05 603. 0.05 185. 0.05 604. 0.05 195. 0.04 605. 0.05 205. 0.04 606. 0.05 215. 0.04 607. 0.05 225. 0.04 608. 0.05 235. 0.04 609. 0.05 245. 0.04 610. 0.05 245. 0.04 610. 0.05 225. 0.04 610. 0.05 245. 0.04 611. 0.05 225. 0.05 <				
95.			5/5.	
105. 0.04 596. 0.05 115. 0.04 597. 0.05 125. 0.03 598. 0.05 135. 0.04 599. 0.05 145. 0.04 600. 0.05 155. 0.04 601. 0.05 165. 0.04 602. 0.05 175. 0.05 603. 0.05 185. 0.05 604. 0.05 195. 0.04 605. 0.05 205. 0.04 606. 0.05 215. 0.04 607. 0.05 225. 0.04 608. 0.05 235. 0.04 608. 0.05 235. 0.04 609. 0.05 245. 0.04 610. 0.05 255. 0.04 611. 0.05 255. 0.05 612. 0.05 275. 0.05 613. 0.05				
115. 0.04 597. 0.05 125. 0.03 598. 0.05 135. 0.04 599. 0.05 145. 0.04 600. 0.05 155. 0.04 601. 0.05 165. 0.04 602. 0.05 175. 0.05 603. 0.05 185. 0.05 604. 0.05 195. 0.04 605. 0.05 205. 0.04 606. 0.05 215. 0.04 607. 0.05 225. 0.04 608. 0.05 235. 0.04 609. 0.05 245. 0.04 610. 0.05 245. 0.04 611. 0.05 255. 0.04 611. 0.05 255. 0.05 612. 0.05 275. 0.05 612. 0.05 285. 0.06 614. 0.05 285. 0.06 614. 0.05 305. 0.05				
125. 0.03 598. 0.05 135. 0.04 599. 0.05 145. 0.04 600. 0.05 155. 0.04 601. 0.05 165. 0.04 602. 0.05 175. 0.05 603. 0.05 185. 0.05 604. 0.05 195. 0.04 605. 0.05 205. 0.04 606. 0.05 215. 0.04 607. 0.05 225. 0.04 608. 0.05 235. 0.04 609. 0.05 245. 0.04 610. 0.05 255. 0.04 611. 0.05 255. 0.04 611. 0.05 275. 0.05 612. 0.05 275. 0.05 613. 0.05 285. 0.06 614. 0.05 295. 0.05 615. 0.05 305. 0.05 616. 0.05 315. 0.05				
135. 0.04 599. 0.05 145. 0.04 600. 0.05 155. 0.04 601. 0.05 165. 0.04 602. 0.05 175. 0.05 603. 0.05 185. 0.05 604. 0.05 195. 0.04 605. 0.05 205. 0.04 606. 0.05 215. 0.04 607. 0.05 225. 0.04 608. 0.05 235. 0.04 609. 0.05 245. 0.04 610. 0.05 245. 0.04 611. 0.05 255. 0.04 611. 0.05 265. 0.05 612. 0.05 275. 0.05 613. 0.05 285. 0.06 614. 0.05 295. 0.05 615. 0.05 305. 0.05 616. 0.05 315. 0.05 617. 0.05 325. 0.04				0.05
145. 0.04 600. 0.05 155. 0.04 601. 0.05 165. 0.04 602. 0.05 175. 0.05 603. 0.05 185. 0.05 604. 0.05 195. 0.04 605. 0.05 205. 0.04 606. 0.05 215. 0.04 607. 0.05 225. 0.04 608. 0.05 235. 0.04 609. 0.05 245. 0.04 610. 0.05 255. 0.04 611. 0.05 265. 0.05 612. 0.05 275. 0.05 613. 0.05 285. 0.06 614. 0.05 295. 0.05 615. 0.05 305. 0.05 616. 0.05 325. 0.04 618. 0.05 325. 0.04 618. 0.05 335. 0.04 619. 0.05 345. 0.04				
155. 0.04 601. 0.05 165. 0.04 602. 0.05 175. 0.05 603. 0.05 185. 0.05 604. 0.05 195. 0.04 605. 0.05 205. 0.04 606. 0.05 215. 0.04 607. 0.05 225. 0.04 608. 0.05 235. 0.04 609. 0.05 245. 0.04 610. 0.05 255. 0.04 611. 0.05 265. 0.05 612. 0.05 275. 0.05 613. 0.05 285. 0.06 614. 0.05 295. 0.05 615. 0.05 305. 0.05 616. 0.05 315. 0.05 617. 0.05 325. 0.04 618. 0.05 335. 0.04 619. 0.05 345. 0.04 620. 0.05 345. 0.04				
165. 0.04 602. 0.05 175. 0.05 603. 0.05 185. 0.05 604. 0.05 195. 0.04 605. 0.05 205. 0.04 606. 0.05 215. 0.04 607. 0.05 225. 0.04 608. 0.05 235. 0.04 609. 0.05 245. 0.04 610. 0.05 255. 0.04 611. 0.05 265. 0.05 612. 0.05 285. 0.05 613. 0.05 285. 0.06 614. 0.05 295. 0.05 615. 0.05 305. 0.05 616. 0.05 315. 0.05 617. 0.05 325. 0.04 618. 0.05 335. 0.04 619. 0.05 345. 0.04 620. 0.05 355. 0.04 621. 0.05 375. 0.04		0.04		0.05
175. 0.05 603. 0.05 185. 0.05 604. 0.05 195. 0.04 605. 0.05 205. 0.04 606. 0.05 215. 0.04 607. 0.05 225. 0.04 608. 0.05 235. 0.04 609. 0.05 245. 0.04 610. 0.05 255. 0.04 611. 0.05 265. 0.05 612. 0.05 275. 0.05 613. 0.05 285. 0.06 614. 0.05 295. 0.05 615. 0.05 305. 0.05 616. 0.05 315. 0.05 617. 0.05 325. 0.04 618. 0.05 335. 0.04 619. 0.05 345. 0.04 620. 0.05 375. 0.04 623. 0.05 375. 0.04 623. 0.05 385. 0.03				0.05
185. 0.05 604. 0.05 195. 0.04 605. 0.05 205. 0.04 606. 0.05 215. 0.04 607. 0.05 225. 0.04 608. 0.05 235. 0.04 609. 0.05 245. 0.04 610. 0.05 255. 0.04 611. 0.05 265. 0.05 612. 0.05 275. 0.05 613. 0.05 285. 0.06 614. 0.05 295. 0.05 615. 0.05 305. 0.05 616. 0.05 315. 0.05 617. 0.05 325. 0.04 618. 0.05 335. 0.04 619. 0.05 345. 0.04 620. 0.05 365. 0.03 622. 0.05 375. 0.04 623. 0.05 385. 0.03 624. 0.05 395. 0.03	165.	0.04	602.	0.05
185. 0.05 604. 0.05 195. 0.04 605. 0.05 205. 0.04 606. 0.05 215. 0.04 607. 0.05 225. 0.04 608. 0.05 235. 0.04 609. 0.05 245. 0.04 610. 0.05 255. 0.04 611. 0.05 265. 0.05 612. 0.05 275. 0.05 613. 0.05 285. 0.06 614. 0.05 295. 0.05 615. 0.05 305. 0.05 616. 0.05 315. 0.05 617. 0.05 325. 0.04 618. 0.05 335. 0.04 619. 0.05 345. 0.04 620. 0.05 365. 0.03 622. 0.05 375. 0.04 623. 0.05 385. 0.03 624. 0.05 395. 0.03	175.	0.05	603.	0.05
195. 0.04 605. 0.05 205. 0.04 606. 0.05 215. 0.04 607. 0.05 225. 0.04 608. 0.05 235. 0.04 609. 0.05 245. 0.04 610. 0.05 255. 0.04 611. 0.05 265. 0.05 612. 0.05 275. 0.05 613. 0.05 285. 0.06 614. 0.05 295. 0.05 615. 0.05 305. 0.05 616. 0.05 315. 0.05 617. 0.05 325. 0.04 618. 0.05 335. 0.04 619. 0.05 345. 0.04 620. 0.05 355. 0.04 621. 0.05 365. 0.03 622. 0.05 385. 0.04 623. 0.05 385. 0.03 624. 0.05 395. 0.03	185.			
205. 0.04 606. 0.05 215. 0.04 607. 0.05 225. 0.04 608. 0.05 235. 0.04 609. 0.05 245. 0.04 610. 0.05 255. 0.04 611. 0.05 265. 0.05 612. 0.05 275. 0.05 613. 0.05 285. 0.06 614. 0.05 295. 0.05 615. 0.05 305. 0.05 616. 0.05 315. 0.05 617. 0.05 325. 0.04 618. 0.05 345. 0.04 619. 0.05 345. 0.04 620. 0.05 355. 0.04 621. 0.05 365. 0.03 622. 0.05 375. 0.04 623. 0.05 385. 0.03 624. 0.05 395. 0.03 625. 0.06	195.		605.	
215. 0.04 607. 0.05 225. 0.04 608. 0.05 235. 0.04 609. 0.05 245. 0.04 610. 0.05 255. 0.04 611. 0.05 265. 0.05 612. 0.05 275. 0.05 613. 0.05 285. 0.06 614. 0.05 295. 0.05 615. 0.05 305. 0.05 616. 0.05 315. 0.05 617. 0.05 325. 0.04 618. 0.05 335. 0.04 619. 0.05 345. 0.04 620. 0.05 365. 0.04 621. 0.05 375. 0.04 622. 0.05 385. 0.03 624. 0.05 385. 0.03 624. 0.05 395. 0.03 625. 0.06				
225. 0.04 608. 0.05 235. 0.04 609. 0.05 245. 0.04 610. 0.05 255. 0.04 611. 0.05 265. 0.05 612. 0.05 275. 0.05 613. 0.05 285. 0.06 614. 0.05 295. 0.05 615. 0.05 305. 0.05 616. 0.05 315. 0.05 617. 0.05 325. 0.04 618. 0.05 335. 0.04 619. 0.05 345. 0.04 620. 0.05 355. 0.04 621. 0.05 365. 0.03 622. 0.05 375. 0.04 623. 0.05 385. 0.03 624. 0.05 395. 0.03 625. 0.06				
235. 0.04 609. 0.05 245. 0.04 610. 0.05 255. 0.04 611. 0.05 265. 0.05 612. 0.05 275. 0.05 613. 0.05 285. 0.06 614. 0.05 295. 0.05 615. 0.05 305. 0.05 616. 0.05 315. 0.05 617. 0.05 325. 0.04 618. 0.05 335. 0.04 619. 0.05 345. 0.04 620. 0.05 355. 0.04 621. 0.05 365. 0.03 622. 0.05 375. 0.04 623. 0.05 385. 0.03 624. 0.05 395. 0.03 625. 0.06				
245. 0.04 610. 0.05 255. 0.04 611. 0.05 265. 0.05 612. 0.05 275. 0.05 613. 0.05 285. 0.06 614. 0.05 295. 0.05 615. 0.05 305. 0.05 616. 0.05 315. 0.05 617. 0.05 325. 0.04 618. 0.05 335. 0.04 619. 0.05 345. 0.04 620. 0.05 355. 0.04 621. 0.05 365. 0.03 622. 0.05 375. 0.04 623. 0.05 385. 0.03 624. 0.05 395. 0.03 625. 0.06			609	
255. 0.04 611. 0.05 265. 0.05 612. 0.05 275. 0.05 613. 0.05 285. 0.06 614. 0.05 295. 0.05 615. 0.05 305. 0.05 616. 0.05 315. 0.05 617. 0.05 325. 0.04 618. 0.05 335. 0.04 619. 0.05 345. 0.04 620. 0.05 355. 0.04 621. 0.05 365. 0.03 622. 0.05 375. 0.04 623. 0.05 385. 0.03 624. 0.05 395. 0.03 625. 0.06				
265. 0.05 612. 0.05 275. 0.05 613. 0.05 285. 0.06 614. 0.05 295. 0.05 615. 0.05 305. 0.05 616. 0.05 315. 0.05 617. 0.05 325. 0.04 618. 0.05 335. 0.04 619. 0.05 345. 0.04 620. 0.05 355. 0.04 621. 0.05 365. 0.03 622. 0.05 375. 0.04 623. 0.05 385. 0.03 624. 0.05 395. 0.03 625. 0.06				
275. 0.05 613. 0.05 285. 0.06 614. 0.05 295. 0.05 615. 0.05 305. 0.05 616. 0.05 315. 0.05 617. 0.05 325. 0.04 618. 0.05 335. 0.04 619. 0.05 345. 0.04 620. 0.05 355. 0.04 621. 0.05 365. 0.03 622. 0.05 375. 0.04 623. 0.05 385. 0.03 624. 0.05 395. 0.03 625. 0.06			612	
285. 0.06 614. 0.05 295. 0.05 615. 0.05 305. 0.05 616. 0.05 315. 0.05 617. 0.05 325. 0.04 618. 0.05 335. 0.04 619. 0.05 345. 0.04 620. 0.05 355. 0.04 621. 0.05 365. 0.03 622. 0.05 375. 0.04 623. 0.05 385. 0.03 624. 0.05 395. 0.03 625. 0.06			613	0.05
295. 0.05 615. 0.05 305. 0.05 616. 0.05 315. 0.05 617. 0.05 325. 0.04 618. 0.05 335. 0.04 619. 0.05 345. 0.04 620. 0.05 355. 0.04 621. 0.05 365. 0.03 622. 0.05 375. 0.04 623. 0.05 385. 0.03 624. 0.05 395. 0.03 625. 0.06				
305. 0.05 616. 0.05 315. 0.05 617. 0.05 325. 0.04 618. 0.05 335. 0.04 619. 0.05 345. 0.04 620. 0.05 355. 0.04 621. 0.05 365. 0.03 622. 0.05 375. 0.04 623. 0.05 385. 0.03 624. 0.05 395. 0.03 625. 0.06				0.05
315. 0.05 617. 0.05 325. 0.04 618. 0.05 335. 0.04 619. 0.05 345. 0.04 620. 0.05 355. 0.04 621. 0.05 365. 0.03 622. 0.05 375. 0.04 623. 0.05 385. 0.03 624. 0.05 395. 0.03 625. 0.06	290. 205	0.05		
325. 0.04 618. 0.05 335. 0.04 619. 0.05 345. 0.04 620. 0.05 355. 0.04 621. 0.05 365. 0.03 622. 0.05 375. 0.04 623. 0.05 385. 0.03 624. 0.05 395. 0.03 625. 0.06				
335. 0.04 619. 0.05 345. 0.04 620. 0.05 355. 0.04 621. 0.05 365. 0.03 622. 0.05 375. 0.04 623. 0.05 385. 0.03 624. 0.05 395. 0.03 625. 0.06				
345. 0.04 620. 0.05 355. 0.04 621. 0.05 365. 0.03 622. 0.05 375. 0.04 623. 0.05 385. 0.03 624. 0.05 395. 0.03 625. 0.06				
355. 0.04 621. 0.05 365. 0.03 622. 0.05 375. 0.04 623. 0.05 385. 0.03 624. 0.05 395. 0.03 625. 0.06				
365. 0.03 622. 0.05 375. 0.04 623. 0.05 385. 0.03 624. 0.05 395. 0.03 625. 0.06				
375. 0.04 623. 0.05 385. 0.03 624. 0.05 395. 0.03 625. 0.06				
385. 0.03 624. 0.05 395. 0.03 625. 0.06			622.	
395. 0.03 625. 0.06				
405. 0.03			625.	0.06
	405.	0.03		

Observation Well No. 4: ESCP-CSO-MW-4

X Location: 0. ft Y Location: 0. ft

Radial distance from ESCP-CSO-MW-4: 0. ft

Fully Penetrating Well

No. of Observations: 99

	Observation	on Data	
Time (min)	Displacement (ft)	Time (min)	Displacement (ft)
1.	0.9	415.	3.91
2.	1.5	425.	3.9
3.	1.93	435.	3.89
4.	2.26	445.	3.89
5.	2.51	455.	3.89

Time (min)	Displacement (ft)	Time (min)	Displacement (ft)	
6.	2.7	465.	3.95	
7.	2.84	475.	3.95	
8.	2.97	485.	3.96	
9.	3.07	495.	4.01	
10.	3.14	505.	4.03	
15.	3.33	515.	4.01	
25.	3.47	525.	4.03	
35.	3.56	535.	4.	
45.	3.62	545.	3.99	
55.	3.64	555.	4.03	
65.	3.63	565.	4.04	
75.	3.65	575.	4.03	
85.	3.7	585.	4.07	
95.	3.71	595.	4.07	
105.	3.73	596.	3.39	
115.	3.78	597.	2.72	
125.	3.83	598.	2.23	
135.	3.86	599.	1.81	
145.	3.84	600.	1.47	
155.	3.8	601.	1.2	
165.	3.82	602.	0.99	
175.	3.82	603.	0.82	
185.	3.86	604.	0.69	
195.	3.8	605.	0.58	
205.	3.83			
205. 215.	3.81	606. 607.	0.5 0.42	
215. 225.	3.82	608.	0.36	
225.	3.0Z	600	0.30	
235.	3.85	609.	0.32	
245.	3.85	610.	0.28	
255.	3.89	611.	0.25	
265.	3.9	612.	0.22	
275.	3.93	613.	0.2	
285.	3.94	614.	0.18	
295.	3.94	615.	0.17	
305.	3.96	616.	0.16	
315.	3.94	617.	0.14	
325.	3.92	618.	0.13	
335.	3.89	619.	0.13	
345.	3.94	620.	0.12	
355.	3.91	621.	0.11	
365.	3.93	622.	0.11	
375.	3.9	623.	0.11	
385.	3.92	624.	0.11	
395.	3.93	625.	0.09	
405.	3.94			

SOLUTION

Pumping Test

Aquifer Model: Unconfined Solution Method: Cooper-Jacob

VISUAL ESTIMATION RESULTS

Estimated Parameters

 $\begin{array}{ccc} \underline{\text{Parameter}} & \underline{\text{Estimate}} \\ \overline{\text{T}} & \overline{1.275} & \text{cm}^2\text{/sec} \\ S & 0.03899 \end{array}$

K = T/b = 0.00523 cm/sec Ss = S/b = 0.004873 1/ft

NOTES

Estimated with observations from test wel, MW-24 and PZ-1, PZ-2I

AQTESOLV for Windows

Data Set: C:\Program Files (x86)\HydroSOLVE\AQTESOLV Std 4.0\Elk St Commerce Park\Pump Test\PT w-Recovery\Pump Test -

Title: Babcock Street Combined Sewer Overflow

Date: 05/06/21 Time: 16:22:54

PROJECT INFORMATION

Company: LaBella Associates, D.P.C. Client: Elk Street Commerce Park

Project: 2200012-2021-08

Location: Babcock Street Combined Sewer

Test Date: April 27, 2021 Test Well: ESCP-CSO-MW-4

AQUIFER DATA

Saturated Thickness: 8. ft Anisotropy Ratio (Kz/Kr): 1.

PUMPING WELL DATA

No. of pumping wells: 1

Pumping Well No. 1: ESCP-CSO-MW-4

X Location: 0. ft Y Location: 0. ft

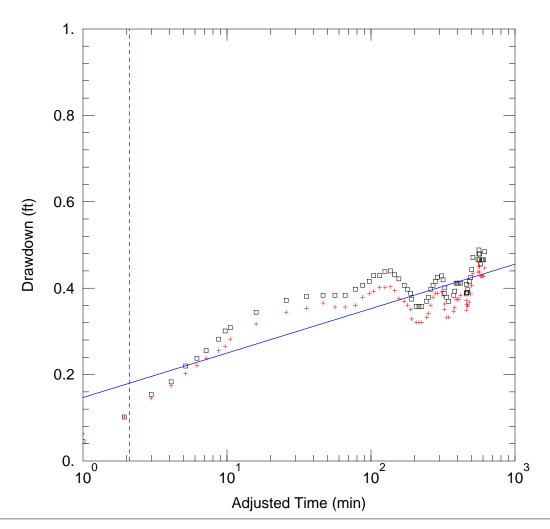
Casing Radius: 0.25 ft Well Radius: 0.42 ft

Fully Penetrating Well

No. of pumping periods: 32

Time (min) Rate (gal/min) Time (min) Rate (gal/min) 0. 2.7 185. 2.52 1. 2.83 200. 2.51 2. 2.8 215. 2.51	
1. 2.83 200. 2.51	
2. 2.8 215. 2.51	
3. 2.74 230. 2.49	
4. 2.71 260. 2.49	
5. 2.7 290. 2.47	
6. 2.7 320. 2.49	
7. 2.61 350. 2.46	
8. 2.6 380. 2.46	
9. 2.61 410. 2.42	
10. 2.54 440. 2.44	
40. 2.52 470. 2.44	
65. 2.49 500. 2.4	
95.	
125. 2.51 595. 0.	
155. 2.49 600. 0.	

OBSERVATION WELL DATA


No. of observation wells: 2

Observation Well No. 1: PZ-1

X Location: 0. ft Y Location: -11. ft

Radial distance from ESCP-CSO-MW-4: 11. ft

Fully Penetrating Well

BABCOCK STREET COMBINED SEWER OVERFLOW

Data Set: C:\...\Pump Test - PZ-1 & PZ-2 w-REC.aqt

Date: 05/06/21 Time: 16:22:23

PROJECT INFORMATION

Company: <u>LaBella Associates, D.P.C.</u> Client: <u>Elk Street Commerce Park</u>

Project: 2200012-2021-08

Location: Babcock Street Combined Sewer

Test Well: ESCP-CSO-MW-4
Test Date: April 27, 2021

AQUIFER DATA

Saturated Thickness: 8. ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA

 Pumping Wells

 Well Name
 X (ft)
 Y (ft)

 ESCP-CSO-MW-4
 0
 0

Well Name	X (ft)	Y (ft)
□ PZ-1	0	-11
+ PZ-2	0	11

Observation Wells

SOLUTION

Aquifer Model: Unconfined

Solution Method: Cooper-Jacob

 $T = 8.919 \text{ cm}^2/\text{sec}$ S = 0.0004003

No. of Observations: 99

	Observation	on Data	
Time (min)	Displacement (ft)	Time (min)	Displacement (ft)
1.	0.05	415.	0.42
2.	0.12	425.	0.4
3.	0.18	435.	0.4
4.	0.21	445.	0.4
5.	0.25	455.	0.41
6.	0.27	465.	0.43
7.	0.29	475.	0.44
8.	0.31	485.	0.46
9.	0.33	495.	0.49
10.	0.34	505.	0.49
15.	0.37	515.	0.5
25.	0.4	525.	0.49
35.	0.41	535.	0.48
45.	0.41	545.	0.48
55.	0.41	555.	0.47
65.	0.41	565.	0.48
75.	0.42	575.	0.48
85.	0.43	585.	0.48
95.	0.44	595.	0.5
105.	0.46	596.	0.49
115.	0.46	597.	0.45
125.	0.47	598.	0.4
135.	0.47	599.	0.36
145.	0.46	600.	0.33
155.	0.45	601.	0.31
165.	0.43	602.	0.28
175.	0.42	603.	0.26
185.	0.41	604.	0.24
195.	0.4	605.	0.22
205.	0.38	606.	0.21
215.	0.38	607.	0.19
225.	0.38	608.	0.18
235.	0.39	609.	0.17
245.	0.4	610.	0.17
255.	0.42	611.	0.16
265.	0.43	612.	0.15
275.	0.44	613.	0.14
285.	0.45	614.	0.14
295.	0.45	615.	0.13
305.	0.44	616.	0.13
315.	0.42	617.	0.12
325.	0.41	618.	0.12
335.	0.4	619.	0.12
345.	0.39	630.	0.11
355.	0.4	631.	0.11
365.	0.41	632.	0.1
375.	0.43	633.	0.11
385.	0.43	634.	0.11
395.	0.43	635.	0.1
405.	0.43		

Observation Well No. 2: PZ-2

X Location: 0. ft Y Location: 11. ft

Radial distance from ESCP-CSO-MW-4: 11. ft

Fully Penetrating Well

No. of Observations: 98

Observation Data

Time (min)	Displacement (ft)	Time (min)	Displacement (ft)	
1.	0.07	405.	0.4	
2.	0.12	415.	0.38	
3.	0.17	425.	0.37	
4.	0.2	435.	0.37	
5.	0.23	445.	0.36	
6.	0.25	455.	0.37	
7.	0.27	465.	0.38	
7. 8.	0.28	475.	0.4	
9.	0.29	475. 485.	0.42	
9. 10.	0.29	495.	0.42	
15.	0.34	505.	0.46	
25.	0.37	505. 515.	0.46	
25. 35.	0.38	515. 525.	0.47	
	0.36	525. 535.		
45.	0.39	535. F4F	0.45	
55.	0.36	545.	0.45	
65. 75	0.38	555.	0.44	
75.	0.38	565.	0.44	
85.	0.4	575.	0.44	
95.	0.41	585.	0.44	
105.	0.42	595.	0.46	
115.	0.43	596.	0.44	
125.	0.43	597.	0.4	
135.	0.43	598.	0.37	
145.	0.42	599.	0.34	
155.	0.4	600.	0.31	
165.	0.39	601.	0.28	
175.	0.38	602.	0.26	
185.	0.37	603.	0.24	
195.	0.35	604.	0.22	
205.	0.34	605.	0.21	
215.	0.34	606.	0.19	
225.	0.34	607.	0.19	
235.	0.35	608.	0.18	
245.	0.36	609.	0.16	
255.	0.38	610.	0.15	
265.	0.4	611.	0.15	
275.	0.41	612.	0.14	
285.	0.41	613.	0.14	
295.	0.41	614.	0.13	
305.	0.4	615.	0.13	
315.	0.38	616.	0.12	
325.	0.37	617.	0.12	
335.	0.35	618.	0.12	
345.	0.35	619.	0.11	
355.	0.36	620.	0.1	
365.	0.37	621.	0.1	
375.	0.39	622.	0.11	
385.	0.39	623.	0.1	
395.	0.39	624.	0.1	

SOLUTION

Pumping Test Aquifer Model: Unconfined Solution Method: Cooper-Jacob

VISUAL ESTIMATION RESULTS

Estimated Parameters

Parameter Estimate cm²/sec 8.919 0.0004003

K = T/b = 0.03658 cm/sec Ss = S/b = 5.003E-5 1/ft

AUTOMATIC ESTIMATION RESULTS

Estimated Parameters

Parameter	Estimate	Std. Error	Approx. C.I.	t-Ratio	•
T	8.919	0.4362	+/- 0.8628	20.45	cm ² /sec
S	0.0004003	0.0001427	+/- 0.0002822	2.806	

C.I. is approximate 95% confidence interval for parameter t-ratio = estimate/std. error No estimation window

K = T/b = 0.03658 cm/secSs = S/b = 5.003E-5 1/ft

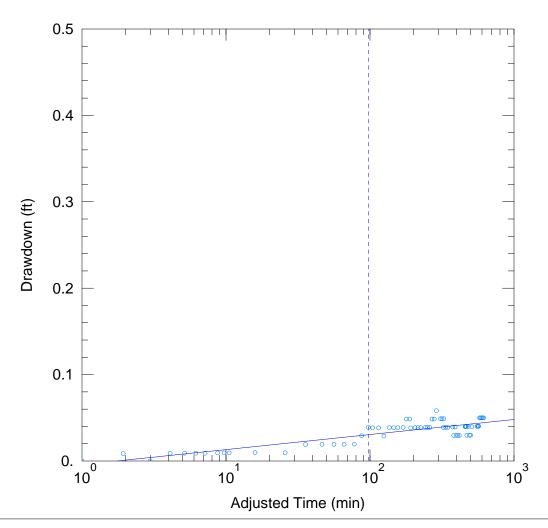
Parameter Correlations

T 1.00 -0.97 S -0.97 1.00

Residual Statistics

for weighted residuals

 Sum of Squares
 0.2939 ft²


 Variance
 0.002161 ft²

 Std. Deviation
 0.04649 ft

 Mean
 0.0002647 ft

 No. of Residuals
 138

 No. of Estimates
 2

BABCOCK STREET COMBINED SEWER OVERFLOW

Data Set: C:\...\Pump Test - MW-24 w-REC.aqt

Date: 05/06/21 Time: 16:32:18

PROJECT INFORMATION

Company: <u>LaBella Associates, D.P.C.</u> Client: <u>Elk Street Commerce Park</u>

Project: 2200012-2021-08

Location: Babcock Street Combined Sewer

Test Well: ESCP-CSO-MW-4
Test Date: April 27, 2021

AQUIFER DATA

Saturated Thickness: <u>8.</u> ft Anisotropy Ratio (Kz/Kr): <u>1.</u>

WELL DATA

Pumping vveils			Observa	tion vveiis	
Well Name	X (ft)	Y (ft)	Well Name	X (ft)	Y (ft)
ESCP-CSO-MW-4	0	0	MW-24	-21	0

SOLUTION

Aquifer Model: <u>Unconfined</u>

Solution Method: Cooper-Jacob

 $T = 52.66 \text{ cm}^2/\text{sec}$ S = 0.03053

AQTESOLV for Windows

Data Set: C:\Program Files (x86)\HydroSOLVE\AQTESOLV Std 4.0\Elk St Commerce Park\Pump Test\PT w-Recovery\Pump Test -

Title: Babcock Street Combined Sewer Overflow

Date: 05/06/21 Time: 16:32:44

PROJECT INFORMATION

Company: LaBella Associates, D.P.C. Client: Elk Street Commerce Park

Project: 2200012-2021-08

Location: Babcock Street Combined Sewer

Test Date: April 27, 2021 Test Well: ESCP-CSO-MW-4

AQUIFER DATA

Saturated Thickness: 8. ft Anisotropy Ratio (Kz/Kr): 1.

PUMPING WELL DATA

No. of pumping wells: 1

Pumping Well No. 1: ESCP-CSO-MW-4

X Location: 0. ft Y Location: 0. ft

Casing Radius: 0.25 ft Well Radius: 0.42 ft

Fully Penetrating Well

No. of pumping periods: 32

Pumping Period Data						
Time (min)	Rate (gal/min)	Time (min)	Rate (gal/min)			
0.	2.7	185.	2.52			
1.	2.83	200.	2.51			
2.	2.8	215.	2.51			
3.	2.74	230.	2.49			
4.	2.71	260.	2.49			
5.	2.7	290.	2.47			
6.	2.7	320.	2.49			
7.	2.61	350.	2.46			
8.	2.6	380.	2.46			
9.	2.61	410.	2.42			
10.	2.54	440.	2.44			
40.	2.52	470.	2.44			
65.	2.49	500.	2.4			
95.	2.52	530.	2.42			
125.	2.51	595.	0.			
155.	2.49	600.	0.			

OBSERVATION WELL DATA

No. of observation wells: 1

Observation Well No. 1: MW-24

X Location: -21. ft Y Location: 0. ft

Radial distance from ESCP-CSO-MW-4: 21. ft

Fully Penetrating Well

No. of Observations: 99

Observation Data					
Time (min)	Displacement (ft)	Time (min)	Displacement (ft)		
1.	0.	415.	0.04		
2.	0.01	425.	0.04		
3.	0.	435.	0.04		
4.	0.01	445.	0.04		
5.	0.01	455.	0.03		
6.	0.01	465.	0.04		
7.	0.01	475.	0.03		
8.	0.01	485.	0.03		
9.	0.01	495.	0.04		
10.	0.01	505.	0.04		
15.	0.01	515.	0.04		
25.	0.01	525.	0.04		
35.	0.02	535.	0.04		
45.	0.02	545.	0.04		
55.	0.02	555.	0.05		
65. 75	0.02	565.	0.05		
75.	0.02	575.	0.05		
85.	0.03	585.	0.05		
95. 105.	0.04 0.04	595. 596.	0.05		
115.	0.04	596. 597.	0.05 0.05		
115. 125.	0.04	597. 598.	0.05		
125. 135.	0.03	596. 599.	0.05		
145.	0.04	600.	0.05		
155.	0.04	601.	0.05		
165.	0.04	602.	0.05		
175.	0.05	603.	0.05		
185.	0.05	604.	0.05		
195.	0.04	605.	0.05		
205.	0.04	606.	0.05		
215.	0.04	607.	0.05		
225.	0.04	608.	0.05		
235.	0.04	609.	0.05		
245.	0.04	610.	0.05		
255.	0.04	611.	0.05		
265.	0.05	612.	0.05		
275.	0.05	613.	0.05		
285.	0.06	614.	0.05		
295.	0.05	615.	0.05		
305.	0.05	616.	0.05		
315.	0.05	617.	0.05		
325.	0.04	618.	0.05		
335.	0.04	619.	0.05		
345.	0.04	620.	0.05		
355.	0.04	621.	0.05		
365.	0.03	622.	0.05		
375.	0.04	623.	0.05		
385.	0.03	624.	0.05		
395.	0.03	625.	0.06		
405.	0.03				

SOLUTION

Pumping Test Aquifer Model: Unconfined Solution Method: Cooper-Jacob

VISUAL ESTIMATION RESULTS

Estimated Parameters

 $\frac{\text{Estimate}}{52.66}$ <u>Parameter</u> cm²/sec

AQTESOLV for Windows

S

0.03053

K = T/b = 0.216 cm/secSs = S/b = 0.003816 1/ft

AUTOMATIC ESTIMATION RESULTS

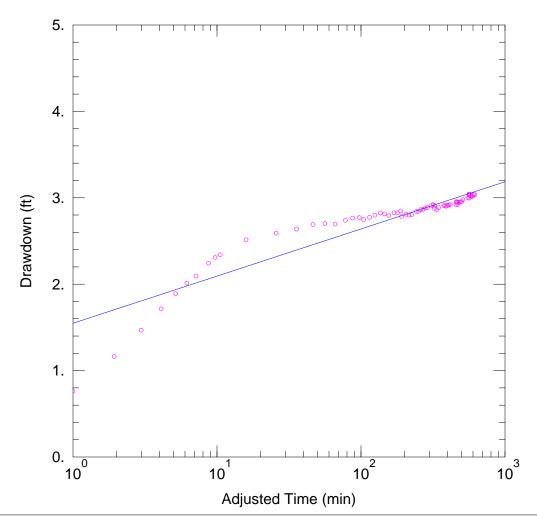
Estimated Parameters

Parameter	Estimate	Std. Error	Approx. C.I.	t-Ratio	•
T	52.66	3.519	+/- 7.025	14.96	cm ² /sec
S	0.03053	0.007447	+/- 0.01486	4.099	

C.I. is approximate 95% confidence interval for parameter t-ratio = estimate/std. error No estimation window

K = T/b = 0.216 cm/secSs = S/b = 0.003816 1/ft

Parameter Correlations


1.00 -0.89 S -0.89 1.00

Residual Statistics

for weighted residuals

Mean -2.341E-5 ft No. of Residuals 69

No. of Estimates. 2

BABCOCK STREET COMBINED SEWER OVERFLOW

Data Set: C:\...\Pump Test - ESCP-MW-4 w-REC.aqt

Date: 05/06/21 Time: 16:11:23

PROJECT INFORMATION

Company: LaBella Associates, D.P.C. Client: Elk Street Commerce Park

Project: 2200012-2021-08

Location: Babcock Street Combined Sewer

Test Well: ESCP-CSO-MW-4
Test Date: April 27, 2021

AQUIFER DATA

Saturated Thickness: <u>8.</u> ft Anisotropy Ratio (Kz/Kr): <u>1.</u>

WELL DATA

Pumping Wells			Observa	tion Wells	
Well Name	X (ft)	Y (ft)	Well Name	X (ft)	Y (ft)
ESCP-CSO-MW-4	0	0	ESCP-CSO-MW-4	0	0

SOLUTION

Aquifer Model: <u>Unconfined</u> Solution Method: <u>Cooper-Jacob</u>

 $T = 1.681 \text{ cm}^2/\text{sec}$ S = 0.002026

AQTESOLV for Windows

Data Set: C:\Program Files (x86)\HydroSOLVE\AQTESOLV Std 4.0\Elk St Commerce Park\Pump Test\PT w-Recovery\Pump Test -

Title: Babcock Street Combined Sewer Overflow

Date: 05/06/21 Time: 16:12:29

PROJECT INFORMATION

Company: LaBella Associates, D.P.C. Client: Elk Street Commerce Park

Project: 2200012-2021-08

Location: Babcock Street Combined Sewer

Test Date: April 27, 2021 Test Well: ESCP-CSO-MW-4

AQUIFER DATA

Saturated Thickness: 8. ft Anisotropy Ratio (Kz/Kr): 1.

PUMPING WELL DATA

No. of pumping wells: 1

Pumping Well No. 1: ESCP-CSO-MW-4

X Location: 0. ft Y Location: 0. ft

Casing Radius: 0.25 ft Well Radius: 0.42 ft

Fully Penetrating Well

No. of pumping periods: 32

	Pumping Pe	eriod Data		
Time (min)	Rate (gal/min)	Time (min)	Rate (gal/min)	
0.	2.7	185.	2.52	
1.	2.83	200.	2.51	
2.	2.8	215.	2.51	
3.	2.74	230.	2.49	
4.	2.71	260.	2.49	
5.	2.7	290.	2.47	
6.	2.7	320.	2.49	
7.	2.61	350.	2.46	
8.	2.6	380.	2.46	
9.	2.61	410.	2.42	
10.	2.54	440.	2.44	
40.	2.52	470.	2.44	
65.	2.49	500.	2.4	
95.	2.52	530.	2.42	
125.	2.51	595.	0.	
155.	2.49	600.	0.	

OBSERVATION WELL DATA

No. of observation wells: 1

Observation Well No. 1: ESCP-CSO-MW-4

X Location: 0. ft Y Location: 0. ft

Radial distance from ESCP-CSO-MW-4: 0. ft

Fully Penetrating Well

No. of Observations: 99

Observation Data						
Time (min)	Displacement (ft)	Time (min)	Displacement (ft)			
1.	0.9	415.	3.91			
2.	1.5	425.	3.9			
3.	1.93	435.	3.89			
4.	2.26	445.	3.89			
5.	2.51	455.	3.89			
6.	2.7	465.	3.95			
7.	2.84	475.	3.95			
8.	2.97	485.	3.96			
9.	3.07	495.	4.01			
10.	3.14	505.	4.03			
15.	3.33	515.	4.01			
25.	3.47	525.	4.03			
35.	3.56	535.	4.			
45.	3.62	545.	3.99			
55.	3.64	555.	4.03			
65.	3.63	565.	4.04			
75.	3.65	575.	4.03			
85.	3.7	585.	4.07			
95.	3.71	595.	4.07			
105.	3.73	596.	3.39			
115.	3.78	597.	2.72			
125.	3.83	598.	2.23			
135.	3.86	599.	1.81			
145.	3.84	600.	1.47			
155.	3.8	601.	1.2			
165.	3.82	602.	0.99			
175.	3.82	603.	0.82			
185.	3.86	604.	0.69			
195.	3.8	605.	0.58			
205.	3.83	606.	0.5			
215.	3.81	607.	0.42			
225.	3.82	608.	0.36			
235.	3.85	609.	0.32			
245.	3.85	610.	0.28			
255.	3.89	611.	0.25			
265.	3.9	612.	0.22			
275.	3.93	613.	0.2			
285.	3.94	614.	0.18			
295.	3.94	615.	0.17			
305.	3.96	616.	0.16			
315.	3.94	617.	0.14			
325.	3.92	618.	0.13			
335.	3.89	619.	0.13			
345.	3.94	620.	0.12			
355.	3.91	621.	0.11			
365.	3.93	622.	0.11			
375.	3.9	623.	0.11			
385.	3.92	624.	0.11			
395.	3.93	625.	0.09			
405.	3.94					

SOLUTION

Pumping Test Aquifer Model: Unconfined Solution Method: Cooper-Jacob

VISUAL ESTIMATION RESULTS

Estimated Parameters

Estimate 1.681 <u>Parameter</u> cm²/sec S 0.002026

K = T/b = 0.006895 cm/secSs = S/b = 0.0002532 1/ft

NOTES

Observations in tested well