www.haleyaldrich.com



2020 PERIODIC REVIEW REPORT

HYDRO-AIR COMPONENTS, INC. PROPERTY FORMER STEELFIELDS AREA IV BCP SITE (#C915204) 100 RITTLING BLVD. BUFFALO, NEW YORK

by Haley & Aldrich of New York Rochester, New York

for New York State Department of Environmental Conservation Buffalo, New York

HALEY & ALDRICH OF NEW YORK 200 Town Centre Drive Suite 2 Rochester, NY 14623 585.359.9000

30 April 2021 File No. 0129356-009

New York State Department of Environmental Conservation Division of Environmental Remediation, Region 9 270 Michigan Avenue Buffalo, New York 14203-2999

- Attention: Megan Kuczka Environmental Program Specialist 1
- Subject: Hydro-Air Components, Inc. Property Former Steelfields Area IV BCP Site; NYSDEC Site #C915204 2020 Periodic Review Report & Institutional Controls/Engineering Controls Certification 100 Rittling Blvd. Buffalo, New York

Ladies and Gentlemen:

On behalf of Hydro-Air Components, Inc. (Hydro-Air), Haley & Aldrich of New York (Haley & Aldrich) hereby submits this Periodic Review Report and Annual Institutional & Engineering Controls Certification for 2020 (2020 PRR). This report summarizes activities performed during the reporting period of 16 January 2020 through 14 April 2021 and was prepared in accordance with the New York State Department of Environmental Conservation (NYSDEC) approved Site Management Plan dated November 2007, as amended on 25 March 2014 to incorporate recommendations from the 2012 Corrective Measures Report (SMP).

The 2020 PRR documents SMP activities implemented during the reporting period and provides documentation of ongoing monitoring activities required by the SMP.

Haley & Aldrich conducted the annual site engineering controls inspection on 5 January 2021. During the inspection Haley & Aldrich observed apparent groundwater discharging at the toe of the slope between the Hydro-Air property and the property to the north. The discharging water was observed ponding in low lying areas of the gravel driveway between the site building and northern property boundary. NYSDEC authorized the extension of the PRR reporting period through 30 April 2021 to allow

New York State Department of Environmental Conservation 30 April 2021 Page 2

for this temporary condition to be addressed through placement of additional gravel and re-grading of the gravel roadway. General site monitoring activities were completed over the reporting period by Hydro-Air personnel and contractors, and documentation of the monitoring activities is attached to and incorporated by reference in this 2020 PRR.

Sincerely yours, HALEY & ALDRICH OF NEW YORK

Conteen I Michdon

Andrew L. Nichols Technical Specialist

Enclosures

Ch Anter

Glenn M. White, CHMM Associate | Senior Project Manager

c: Hydro-Air Components, Inc.; Attn: Rob Daigler Barclay Damon, LLP.; Attn: Thomas Walsh, Esq.

\\haleyaldrich.com\share\roc_common\129356 - HydroAir (2017--)\009\2020_PRR_report\2021_0430_HydroAir_PRR_2020_F.DOCX

HALEY & ALDRICH OF NEW YORK 200 TOWN CENTRE DRIVE SUITE 2 ROCHESTER, NY 14623 585.359.9000

SIGNATURE PAGE FOR

2020 PERIODIC REVIEW REPORT & INSTITUTIONAL CONTROLS/ENGINEERING CONTROLS CERTIFICATION HYDRO-AIR COMPONENTS, INC. PROPERTY (FORMER STEELFIELDS AREA IV BCP SITE; NYSDEC SITE #C915204) 100 RITTLING BLVD. BUFFALO, NEW YORK

PREPARED FOR

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION BUFFALO, NEW YORK

PREPARED BY:

1 Michdon forder

Andrew L. Nichols Technical Specialist Haley & Aldrich of New York

REVIEWED AND APPROVED BY:

Whit

Glenn M. White Associate | Senior Project Manager Haley & Aldrich of New York

Executive Summary

The Steelfields Area IV Brownfields Cleanup Program (BCP) Site, NYSDEC Site #C915204, comprises 30.91 acres of land located at 100 Rittling Boulevard in Buffalo, New York (See Figures 1 and 2) (the "Site"). Originally part of the larger Steelfields Voluntary Cleanup Program (VCP) Site #V00619, remedial activities were initiated in 2003 under a Voluntary Cleanup Agreement (VCA) between the former Site owner, Steelfields Ltd., and the New York State Department of Environmental Conservation (NYSDEC). In 2006, the current Site owner, Hydro-Air Components, Inc. (Hydro-Air), purchased the Steelfields Area IV property, successfully applied for the BCP and subsequently entered into a Brownfields Cleanup Agreement with NYSDEC under which cleanup and redevelopment of the Site was completed in 2007.

The Site is currently developed with a 144,000 square foot manufacturing building and adjoining office space, surrounded by paved parking lots, landscaped areas, a stormwater retention pond, and seasonally vegetated areas. Soil and groundwater on some portions of the Site have been found to contain volatile organic compounds (VOCs), metals (primarily arsenic, chromium, and lead), and cyanide, associated with past use of the Site as the former Donner-Hanna Coke storage yard. Additionally, alkaline groundwater is known to exist in the northeastern corner of the Site, and acidic groundwater is known to exist in the Site.

The NYSDEC-approved remedy for the Site included the following:

- Excavation and removal of soils contaminated from historical coking process wastes, backfilling, and placement of a cover system;
- Use of Oxygen Release Compound (ORC) in Site groundwater wells to stimulate in-situ biodegradation of the Site contaminants of interest (began in 2007); and,
- Installation and operation of an active sub-slab depressurization system (ASD) in the Site building to mitigate the potential for impacted soil vapor intrusion into the indoor air space (ASD constructed and operated continuously since 2007).

Also included as part of the NYSDEC-approved remedy was the recording of a Declaration of Covenants and Restrictions (Deed Restrictions) to address institutional control requirements of the BCP, including, but not limited to:

- Restricting the property to industrial use;
- Preventing use of groundwater at the Site without prior approval; and,
- Adherence to the NYSDEC-approved Site Management Plan (SMP) for long-term management of the Site in order to maintain protection of human health and the environment.

The SMP, dated November 2007, was amended on 25 March 2014 to incorporate recommendations from the 2012 Corrective Measures Report. The SMP consists of institutional and engineering controls (IC/ECs). Site ECs include maintenance of the Site cover system, gasketed stormwater conveyance piping, operation, and maintenance of the sub-slab depressurization system (ASD), and application of ORC in the designated wells. Monitoring of the ECs is conducted periodically per the SMP. Site ICs consist of the Deed Restrictions on the property, which include groundwater and land use restrictions, and adherence to the SMP.

The IC/ECs have remained in-place and have functioned as designed during the reporting period. The SMP and Deed Restrictions remain in-place, groundwater has not been used, and Site use is consistent with land use restrictions (industrial).

List of	itive Si f Table f Figur	-	i v v
1.	Site C	overview and Remedy Implementation	1
2.	IC/EC	Compliance Report	2
	2.1	INSTITUTIONAL CONTROLS - REQUIREMENTS AND COMPLIANCE	2
	2.2	ENGINEERING CONTROLS - REQUIREMENTS AND COMPLIANCE	2
		2.2.1 Existing Cover System	2
		2.2.2 Sub-Slab Depressurization System	4
		2.2.3 Gasketed Stormwater Conveyance Piping	4
		2.2.4 ORC In-Situ Treatment	4
		2.2.5 Groundwater Monitoring	5
		2.2.6 Stormwater Pond Monitoring	5
	2.3	IC/EC CERTIFICATION	5
3.	Opera	ations, Maintenance, & Monitoring Plan Compliance Report	6
	3.1	ANNUAL INSPECTION	6
	3.2	GROUNDWATER MONITORING	6
		3.2.1 Groundwater Elevation Data	6
		3.2.2 Parameters of Interest	6
	3.3	ORC WELL MAINTENANCE AND MONITORING	8
	3.4	SUB-SLAB DEPRESSURIZATION SYSTEM OPERATIONS, MAINTENANCE, AND	
		MONITORING	8
	3.5	STORMWATER POND MONITORING	9
4.	Concl	usions and Recommendations	10
Refer	ences		11

iii

Tables

Figures

Appendix A – Institutional and Engineering Controls Certification Form

Appendix B – NYSDEC Correspondence

Appendix C – Annual Inspection Form

Appendix D – Photo Log – 2020 PRR Monitoring Period

Appendix E – Imported Soil Documentation and Soil Disposal Receipt

Appendix F – ASD System Maintenance and Monitoring Documentation

Appendix G – ORC Well Inspection Forms

Appendix H – Groundwater Sampling Field Monitoring Forms

Appendix I – Groundwater Analytical Data – August 2020

Appendix J – Historical Groundwater Analytical Data Tables

List of Tables

Table No.	Title
I	Summary of Groundwater Analytical Results, August 2020
II	Summary of ORC In-Situ Remediation Well Field Parameter Measurements, August 2020
Ш	Summary of Monitoring Well Field Parameter Measurements, August 2020
IV	Stormwater Pond Monitoring Form, 2020

List of Figures

Figure No.	Title
1	Project Locus
2	Site Plan
3	Groundwater Elevation Contour Plan – August 2020
4	Groundwater Parameters of Interest – August 2020
5	Groundwater Parameters of Interest – Historical Trends

1. Site Overview and Remedy Implementation

The Steelfields Area IV Brownfields Cleanup Program (BCP) Site, NYSDEC Site #C915204, comprises 30.91 acres of land located at 100 Rittling Boulevard in Buffalo, New York (See Figures 1 and 2) (the "Site"). Although initially part of a larger New York State Department of Environmental Conservation (NYSDEC) Voluntary Cleanup Program (VCP) site known as Steelfields (Site #V00619), the Site was remediated by the current Site owner, Hydro-Air Components, Inc. (Hydro-Air) under the BCP in 2006. Site development was completed in 2007 with the construction of an approximately 144,000 square foot manufacturing building and adjoining office space. Remaining portions of the Site include paved parking lots, a gravel road, landscaped areas, a stormwater retention pond, and seasonally vegetated areas. Soil and groundwater on some portions of the Site contain volatile organic compounds (VOCs), metals (primarily arsenic, chromium, and lead), and cyanide, associated with past use of the Site as the former Donner-Hanna Coke Storage Yard. Additionally, alkaline groundwater is known to exist in the northeastern corner of the Site, and acidic groundwater is known to exist in the western portion of the Site.

Soil and groundwater investigations were conducted at the Site between 1997 and 2005 as part of VCP activities. Following investigation, and entry of the Site in the BCP by Hydro-Air, a Site remedy was selected consisting of:

- Excavation and removal of soils contaminated with historical coking process wastes; backfilling; and placement of cover material;
- Use of Oxygen Release Compound (ORC) in designated Site groundwater wells to stimulate and enhance intrinsic bioremediation of the VOCs in the soil and groundwater;
- Installation and operation of an active sub-slab depressurization system (ASD) in the Site building to mitigate the potential for impacted soil vapor intrusion into the indoor air space;
- Use of gasketed stormwater conveyance piping; and,
- Periodic monitoring.

Also included as part of the remedy was the recording of a Declaration of Covenants and Restrictions (Deed Restrictions) to establish institutional control requirements at the Site, including continued industrial use of the property, preventing use of groundwater at the Site without prior approval, and adherence to the Site Management Plan (SMP) for long-term management of the Site to maintain protection of human health and the environment as required by the NYSDEC. The NYSDEC approved the SMP dated November 2007, and its amendment dated 25 March 2014.

This report summarizes activities performed during the period 16 January 2020 through 14 April 2021. This report includes data collected since the SMP was approved in 2007.

2. IC/EC Compliance Report

2.1 INSTITUTIONAL CONTROLS - REQUIREMENTS AND COMPLIANCE

Site institutional controls (ICs) in the form of Deed Restrictions are in effect at the Site. These restrictions include prohibition of groundwater use unless rendered safe for the intended purpose and land use restrictions (industrial use only). The Deed Restrictions also stipulate that the Site is managed under a NYSDEC-approved SMP and requires periodic certification indicating that the Site engineering controls (ECs) remain in-place and continue to be protective.

The Site's Deed Restrictions remained in force during the reporting period. Certifications are included in Appendix A.

2.2 ENGINEERING CONTROLS - REQUIREMENTS AND COMPLIANCE

There are six (6) ECs in place at the Site, which are as follows and further described in the sections below:

- 2.2.1 Existing Cover System
- 2.2.2 Active Sub-Slab Depressurization System
- 2.2.3 Gasketed Stormwater Conveyance
- 2.2.4 ORC In-situ Treatment
- 2.2.5 Groundwater Monitoring
- 2.2.6 Stormwater Pond Monitoring

2.2.1 Existing Cover System

Potential direct exposure to residual contamination remaining at the Site is prevented by the existing cover system, which consists of the building slab, pavement, and one foot of clean gravel or clean soil and vegetative cover. The cover system is required to be maintained in accordance with the SMP. Excavations that breach the cover system may require monitoring and soil management in accordance with the Excavation Work Plan appended to the SMP. In addition, should certain fill materials ever be imported onto the Site, they must be tested prior to Site use to demonstrate compliance with the requirements of the SMP.

2.2.1.1 Prevention of Groundwater Surfacing

Prior to 2010, groundwater that had been in contact with soils from beneath the cover system was observed accumulating in the northeastern loading dock area of the Site building (see Figure 2). Subsequent to corrective measures that were put into place per the NYSDEC-approved Corrective Measures Work Plan, groundwater has not accumulated in the northeastern loading dock area. The reconfiguration of the loading dock pump system (setting to automatic pumping and raising the float set-point) has enabled sufficient pumping to maintain dry conditions and has sufficiently prevented the surfacing of groundwater in the area. Hydro-Air has continued to monitor the efficacy of these controls regularly throughout the reporting period.

Prior to 2012, evidence of surfacing groundwater from beneath the gravel cover areas on the northern end of the Site was evident (see Figure 2). As a voluntary corrective measure, the gravel cover on the northern portion of the access road was enhanced in 2012 by the placement of additional gravel (an additional 9 to 11 inches). Since then, Hydro-Air monitored the continual efficacy of the gravel cover area throughout 2020 and did not observe evidence of groundwater surfacing in these areas. Nonetheless, during the Site inspection on 5 January 2021, standing water was observed in compacted areas on the gravel roadway between the Site building and northern Site boundary following a period of rainfall and snowmelt. This condition was likely related to recent rainfall/snow melt/localized groundwater recharge. Per correspondence with the NYSDEC on 26 January 2021, it was agreed Hydro-Air would temporarily block-off the access road until seasonal snow cover was melted to see if the standing water condition persisted, and if it did, assess options for the placement of additional gravel cover in the area. In March 2021, Hydro-Air provided photographs documenting the absence of standing water along the road, suggesting the conditions observed in January 2021 were temporary and associated with rapid rainfall and snowmelt prior to the Site inspection. However, to limit the potential for future temporary ponding under similar conditions, Hydro-Air imported approximately 88 tons of #2 crushed limestone to elevate the compacted areas and re-grade the roadway. The crushed stone was imported to the Site on 14 April 2021, per import approval provided by NYSDEC on 24 March 2021. Hydro-Air will continue to monitor the road conditions throughout the 2021 reporting period and prohibit access to the road if unanticipated standing water is observed.

Refer to Appendix B for NYSDEC correspondence; Appendix C for the Annual Inspection Form; Appendix D for representative photographs of standing water conditions on 5 January 2021, "dry" road conditions in March 2021, and gravel placement in April 2021. Import Material Documentation is presented in Appendix E.

2.2.1.2 Soil Rutting During Subsurface Investigations

In October 2020, geotechnical soil borings were advanced on the western portions of the Site in support of scoping activities associated with the proposed Buffalo Skyway infrastructure development. Haley & Aldrich of New York (Haley & Aldrich) was engaged by the Buffalo Skyway project and provided oversight of the subsurface exploration activities, which were conducted in accordance with the SMP. Exploration activities generated 8 drums of drilling fluids/sludge, which were characterized and disposed off-site at the Steuben County Landfill in Bath, New York. The non-hazardous waste manifest and disposal receipt are included in Appendix E.

While accessing the soil boring locations, the drilling rig generated ruts, temporarily breaching the Site cover system. On 23 November 2020, the NYSDEC approved use of imported topsoil to fill the ruts and repair the cover system. NW Contracting was contracted by the Buffalo Skyway project to repair the ruts in December 2020.

The cover system continues to function in accordance with the SMP. Refer to Appendix B for NYSDEC correspondence. See Appendix D for photographs of initial rutting and subsequent repairs. Import Material Documentation is presented in Appendix E.

2.2.1.3 Floor Cracking in Office Areas

During the previous 2019 PRR inspection, floor cracks were observed in walkways within the Site office areas. In August 2020, Hydro-Air personnel repaired observable floor cracks greater than approximately ¼ inch in width using hydraulic cement. See Appendix D for photographs of the floor crack repairs. Additional minor cracks were observed in the floor tile and underlying concrete slab of the Hydro-Air offices during the annual Site inspection. Hydro-Air intends to remove the flooring throughout the office areas and repair the concrete in the future. Minor floor cracks were also observed in select areas of the Site manufacturing space. These cracks will be monitored for potential future expansion.

2.2.2 Sub-Slab Depressurization System

An active sub-slab depressurization (ASD) system was installed during 2006 Site building construction to mitigate the potential for soil vapor intrusion to occur. The ASD system consists of an 8-mil polyethylene vapor barrier and five assemblies strategically placed within the footprint of the Site building, each containing the following items: perforated pipe suction assembly, vertical piping vent stack and associated materials, exhaust fan, and magnehelic pressure gauge.

Based on continued presence of sub-slab vacuum and continuous system operation, the ASD system is operating as designed, and documentation for regular maintenance and monitoring is included in Appendix F. Refer to Section 3.2 below, for additional information, including updates provided within this Periodic Review Report and Annual Institutional & Engineering Controls Certification for 2020 (2020 PRR).

2.2.3 Gasketed Stormwater Conveyance Piping

In areas of the Site with known groundwater impacts, storm water injection (drywells) is prohibited, and storm water conveyance pipes and manholes are required to have gasketed joints for water tightness to prevent the infiltration of impacted groundwater from beneath the cover system into the collection system.

Activities that would have impacted the integrity of the gasketed joints of stormwater conveyance piping were not performed during the reporting period. Gasketed stormwater conveyance pipes therefore remain in-place as designed and installed. No new stormwater conveyance piping was installed during the reporting period.

2.2.4 ORC In-Situ Treatment

The in-situ treatment of residual contamination in remaining soils and groundwater using oxygen release compounds (ORC) is maintained and monitored in accordance with the SMP. The three designated ORC wells are inspected annually, and ORC is required to be replaced semi-annually in accordance with the SMP.

The ORC wells were inspected on both 30 January 2020 and 6 August 2020. The ORC wells are currently intact and operational, and the seals appear to have integrity. ORC was replaced in January 2020, August 2020, and January 2021. Documentation for regular maintenance, monitoring, and ORC replacement is included in Appendix G.

2.2.5 Groundwater Monitoring

Groundwater samples from five (5) monitoring wells and three (3) in-situ ORC remediation wells identified on Figures 2 and 3, are collected annually using low-flow purge and sampling methods as specified in the SMP. Water quality parameters are measured and recorded in the field during the low-flow purge using a flow-through cell and water quality meter. The following field parameters are measured in each monitoring and in-situ remediation well: pH, temperature, Oxidation-Reduction Potential (ORP), specific conductance, turbidity, dissolved oxygen, CO₂, alkalinity, and visual/olfactory observations. Static depth to groundwater is measured at each monitoring well prior to groundwater sample collection. Static groundwater elevations from August 2020 are shown on Figure 3.

Groundwater samples collected from the five (5) monitoring wells are analyzed for VOCs (Method 8260C), arsenic/chromium/lead (Method 6010C), cyanide (Method 9012B), and alkalinity (Method 310.2).

Long-term groundwater monitoring continues at the Site. Groundwater analytical data are included in Appendix I. Sampling documentation is included in Appendix H.

2.2.6 Stormwater Pond Monitoring

Hydro-Air staff collect water samples each month from four locations in the Site stormwater pond (see Figure 2 for monitoring locations) and take pH and temperature readings on the samples using a handheld probe. Readings are not collected when the pond is frozen. In accordance with the SMP, samples collected from the midpoint of the main pond and near the pond outlet pipe are combined in the field and analyzed as a composite sample.

Stormwater pond sampling continues at the Site. The majority of the pH measurements were between 6 -8 during the reporting period. Sampling data are included in Table IV.

2.3 IC/EC CERTIFICATION

Based on site visits and interviews with site personnel, the IC/ECs are herein certified by Robert Daigler, designated representative of Hydro-Air Components, Inc., and Glenn M. White, CHMM working for Haley & Aldrich of New York on behalf of Hydro-Air Components, Inc. as the Qualified Environmental Professional. Refer to Appendix A for a copy of the appropriate certification documentation.

3. Operations, Maintenance, & Monitoring Plan Compliance Report

Monitoring activities conducted during this reporting period consisted of an annual inspection, annual groundwater sampling, ORC well inspection and replacement of ORC, review of sub-slab vacuum measurements of the ASD, and stormwater pond monitoring. Monitoring activities were conducted in accordance with the SMP. The results of the groundwater and stormwater pond quality monitoring, and operations, maintenance, and monitoring of the ORC wells and ASD are further described below.

3.1 ANNUAL INSPECTION

A Haley & Aldrich representative conducted an annual certification inspection of the Site on 5 January 2021, in accordance with the SMP. The Environmental Inspection Form summarizing observations is included in Appendix C, and representative Site photographs are included in Appendix D.

3.2 GROUNDWATER MONITORING

Groundwater monitoring was conducted in August 2020 and the results are presented on summary Tables I through III, and Figures 3 through 5. Figure 3 presents the groundwater elevation contours for the date of sampling as well as approximate groundwater flow direction. Figure 4 is a posting map of the groundwater parameters of interest (benzene, arsenic, and cyanide). Figure 5 illustrates historical trends for the groundwater parameters of interest using data from this monitoring period as well as historical monitoring periods.

The August 2020 groundwater samples were collected by NW Contracting of Alden, New York, and analyzed by Alpha Analytical, located in Buffalo, NY. These laboratory data have been submitted as an EQuIS[®] electronic data deliverable (EDD) to the NYSDEC and the laboratory report is included in Appendix I. Groundwater sampling field forms are provided in Appendix H, and historical groundwater monitoring data tables are presented in Appendix J.

3.2.1 Groundwater Elevation Data

The groundwater contour map included as Figure 3 was prepared using the static groundwater elevations measured at the 5 monitoring wells on 6 and 7 August 2020. Due to anomalous groundwater elevation readings at the ORC wells (specifically mounding in the vicinity of A4-ORC-3), these elevations were excluded from contouring. Groundwater mounding around ORC wells A4-ORC-2 and A4-ORC-3 has been observed in prior years and may be influenced by backfilling in portions of the site. Consistent with previous monitoring periods, groundwater elevations indicate that shallow groundwater flow is generally to the southeast across the Site.

3.2.2 Parameters of Interest

The SMP indicates that groundwater quality parameters exceeding applicable NYSDEC Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations - Class GA – June 1998 (Class GA GWQS) for two consecutive events should be considered to be of interest. In 2007, benzene, ethylbenzene, naphthalene, toluene, lead, chromium, cyanide, and arsenic were parameters of interest at the Site. Currently, however, only benzene, cyanide, and arsenic remain parameters of interest per the SMP. During the 2020 sampling, cyanide was elevated over Class GA GWQS at wells A4-MW-5R, A4-

MW-7R, and A4-MW-9. Benzene was elevated over Class GA GWQS at wells A4-MW-5R, A4-MW-7R, A4-MW-8R, A4-MW-9, and A4-MW-10. Arsenic was elevated over Class GA GWQS at A4-MW-8R.

Concentrations for each parameter of interest measured in monitoring wells sampled in August 2020 are shown on Figure 4. Historical monitoring data and moving average trendlines for current parameters of interest at wells A4-MW-5R, A4-MW-8R and A4-MW-9 are shown on Figure 5.

3.2.2.1 A4-MW-5R

Cyanide remains a parameter of interest at monitoring well A4-MW-5R, where a concentration of 350 μ g/L was detected in August 2020. Cyanide concentrations have exceeded Class GA GWQS since 2007, and detected concentrations have fluctuated between 103 μ g/L and 920 μ g/L during this period (see Figure 5), resulting in a slight increasing trend over time. Benzene was detected in monitoring well A4-MW-5R at a concentration (8.4 μ g/L) above Class GA GWQS in August 2020 and will be evaluated for inclusion as a parameter of interest in 2021.

3.2.2.2 A4-MW-7R

Currently, there are no parameters of interest at monitoring well A4-MW-7R. However, benzene (140 μ g/L), toluene (22 μ g/L) and cyanide (500 μ g/L) were detected in monitoring well A4-MW-7R at concentrations above Class GA GWQS in August 2020 and will be evaluated for inclusion as parameters of interest in 2021.

3.2.2.3 A4-MW-8R

Benzene and arsenic remain parameters of interest at monitoring well A4-MW-8R, where concentrations of 12,000 µg/L benzene and 33.88 µg/L arsenic were detected in August 2020. Concentrations of benzene have exceeded Class GA GWQS for 15 consecutive monitoring periods. Benzene concentrations have generally decreased over time. Arsenic concentrations detected in August 2020 exceeded Class GA GWQS and have exceeded Class GA GWQS for 13 of the previous 14 monitoring periods. This suggests arsenic should remain a parameter of interest at well A4-MW-8R. Arsenic concentrations have shown a stable to slightly decreasing trend over time.

3.2.2.4 A4-MW-9

Benzene and cyanide remain parameters of interest at well A4-MW-9. While unexpectedly low concentrations of cyanide (140 μ g/L) and benzene (non-detect) were identified in well A4-MW-9 in December 2019, each below Class GA GWQS, concentrations of benzene (590 μ g/L) and cyanide (1760 μ g/L) increased in August 2020. Detected concentrations of each constituent have exceeded Class GA GWQS for 6 of the last 7 years.

3.2.2.5 A4-MW-10

Since 2007, parameters of interest have not been identified in well A4-MW-10. However, benzene was detected in August 2020 (370 μ g/L) and June 2018 (41 μ g/L) at concentrations exceeding Class GA GWQS. Benzene will be evaluated for inclusion as a parameter of interest at well A4-MW-10 in 2021.

Groundwater monitoring activities will continue in the future following the annual schedule in accordance with the SMP. The next groundwater sampling event is tentatively scheduled for June 2021.

3.3 ORC WELL MAINTENANCE AND MONITORING

The ORC[®] socks were replaced on 30 January 2020, 7 August 2020, and 27 January 2021. The three ORC[®] wells were monitored during the annual sampling event on 6 August 2020, in accordance with the SMP. The ORC wells are currently intact and operational, and the seals appear to have integrity.

ORC field parameter monitoring results are presented in Table II. The pH in the ORC wells continues to fluctuate. The pH at A4-ORC-1 decreased between December 2019 and August 2020 (from 5.21 to 3.61). The pH at A4-ORC-2 increased (from 2.95 to 3.17). The pH at A4-ORC-3 decreased (from 5.57 to 5.13). Overall, the pH within the three ORC[®] wells continues to remain low, and as a result of the low pH conditions, the ORC[®] is likely being inhibited from enhancing biodegradation of residual contaminants.

Note that the groundwater monitoring wells tested surround the Tar/Blue Soil Fill Excavation Limits where the ORC socks have been placed. The pH of the groundwater in the surrounding monitoring wells tested ranged from 5.53 to 6.19.

As requested by NYSDEC in their 18 February 2020 PRR Response Letter, CO₂ and alkalinity were included as monitoring well field parameters during the annual sampling event. Alkalinity values were measured in the field and reported in Table II. However, field titration kits required for CO₂ measurements repeatedly failed. The test kit manufacturer indicated metals interference as a potential cause of test failure. Hydro-Air and NW Contracting will explore using alternative CO₂ test kits during the 2021 sampling event.

3.4 SUB-SLAB DEPRESSURIZATION SYSTEM OPERATIONS, MAINTENANCE, AND MONITORING

The ASD system continuously operates at the Site and is monitored monthly by Hydro-Air staff, who record the system vacuum readings and operations data on the maintenance form provided in the NYSDEC-approved SMP. These data are available on-site. The ASD system and monitoring documentation for the reporting period is provided in Appendix F.

The ASD system was evaluated on 5 January 2021 by Haley & Aldrich as part of the annual Site inspection. The evaluation included confirmation of vacuum measurements at the five (5) existing monitoring points located within the facility. One magnehelic gauge (NW) indicated no pressurization at the time of the evaluation. According to Hydro-Air staff, the gauge hose was knocked off during the movement of facility equipment the day prior to the evaluation. Following the site inspection, Hydro-Air staff confirmed re-pressurization to levels consistent with historical system operation. Overall, the ASD system operation is consistent with prior operations, and is operating acceptably and consistent with its intended function, design and construction.

Although apparently not adversely impacting sub-slab vacuum, minor cracks continue to be observed (see the photo log in Appendix D) in the tile and underlying concrete slab of the Hydro-Air offices. Visible large cracks observed during the 2019 monitoring period were repaired with hydraulic cement in August 2020. Due to the continued minor cracking, Hydro-Air intends to remove the flooring throughout the office areas and repair the concrete surfaces in the future.

3.5 STORMWATER POND MONITORING

Site stormwater pond water quality (pH and temperature) conditions were monitored monthly at four sampling locations (see Figure 2) by Hydro-Air staff. Stormwater pond monitoring data are summarized in Table IV. For much of the reporting period, the results of the pond monitoring appear consistent with the findings from previous sampling events, and measured pH values generally did not exceed NYSDEC TOGS 1.1.1 ambient water quality guidance values of pH 8.5 (guidance value) during the PRR monitoring period.

During the October 2020 sampling period, pH measured at the discharge pipe (10.5) and northern embayment (11.0) sampling locations exceeded the guidance value. The pH values at each pond monitoring location did not exceed 8.5 during the November 2020 monitoring period. The pond was frozen during the December 2020, January 2021 and February 2021 monitoring periods, precluding field pH measurements. The pH measured at the discharge pipe (9.0) and northern embayment (10.0) sampling locations in March 2021 following thawing of the pond again exceeded the guidance value. Because stormwater pond measurements have not exceeded the guidance value of pH 8.5 for more than three consecutive monitoring events, precautionary measures to mitigate potential for an inadvertent exposure to pond water, as described in the SMP, are not needed.

4. Conclusions and Recommendations

The following are conclusions and recommendations for the Site from the results of monitoring activities completed during the reporting period:

- Access to soil boring locations associated with the regional Buffalo Skyway project generated ruts that breached the Site Cover system. The ruts were repaired, maintaining the integrity of the cover system.
- The engineering controls (groundwater monitoring, existing cover system, ASD system, ORC wells) were operated and maintained during the reporting period. Small cracks continue to be observed in the tile and underlying concrete slab in the office areas of the Hydro-Air building during the reporting period. The cracks represent potential vapor intrusion pathways. Hydro-Air is planning to remove the flooring throughout the offices and repair the underlying concrete surface in the future.
- Water ponding/shallow groundwater surfacing in the gravel areas along the northern Site boundary occurred following rainfall and rapid snowmelt in early January 2021. Access to the area was restricted by Hydro-Air, and ponding water was not observed in March 2021. Hydro-Air imported gravel/stone and elevated/re-graded the road in April 2021. Hydro-Air plans to monitor the road conditions throughout the remainder of 2021 and prohibit access to the road if and when standing water is observed.
- The Deed Restrictions remain in place. Groundwater has not been used at the Site during the reporting period. Site land use has remained for industrial use only during the reporting period.
- Groundwater monitoring results indicate benzene, cyanide and arsenic continue to remain parameters of interest at selected Site groundwater monitoring wells.

References

- 1. Site Management Plan for Hydro-Air Components, Inc., Former Steelfields Area IV Parcel, Brownfields Cleanup Program, NYSDEC Site #C915204, prepared by TurnKey Environmental Restoration, LLC., dated November 2007, amended 25 March 2014.
- 2. Division of Water Technical and Operational Guidance Series (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations, prepared by NYSDEC, dated June 1998.

\\haleyaldrich.com\share\roc_common\129356 - HydroAir (2017--)\009\2020_PRR_report\2021_0430_HydroAir_PRR_2020_F.DOCX

TABLES

TABLE I SUMMARY OF GROUNDWATER ANALYTICAL RESULTS HYDROAIR COMPONENTS, INC BUFFALO, NEW YORK

Location	Ambient Water	A4-MW-5R	A4-MW-7R	A4-MW-8R	A4-MW-9	A4-MW-10
Sample Date	Quality Standards		8/6/2020	8/7/2020	8/7/2020	8/6/2020
Inorganic Compounds (ug/L)						
Arsenic, Total	25	6.61	5.19	33.88 ^[A]	18.22	5.47
Chromium, Total	50	0.98 J	3.29	1.2	4.14	0.98 J
Cyanide, Total	200	350 ^[A]	500 ^[A]	111	1760 ^[A]	61
Lead, Total	25	0.7 J	ND (1)	ND (1)	0.6 J	0.92 J
			()			
Other						
Alkalinity, Total (as CaCO3)	-	420000	230000	878000	320000	854000
Volatile Organic Compounds (ug/L)						
1,1,1-Trichloroethane	5	ND (2.5)	ND (2.5)	ND (250)	ND (12)	ND (10)
1,1,2,2-Tetrachloroethane	5	ND (0.5)	ND (0.5)	ND (50)	ND (2.5)	ND (2)
1,1,2-Trichloroethane	1	ND (1.5)	ND (1.5)	ND (150)	ND (7.5)	ND (6)
1,1-Dichloroethane	5	ND (2.5)	ND (2.5)	ND (250)	ND (12)	ND (10)
1,1-Dichloroethene	5	ND (0.5)	ND (0.5)	ND (50)	ND (2.5)	ND (2)
1,2,3-Trichlorobenzene	5	ND (2.5)	ND (2.5)	ND (250)	ND (12)	ND (10)
1,2,4-Trichlorobenzene	5	ND (2.5)	ND (2.5)	ND (250)	ND (12)	ND (10)
1,2-Dibromo-3-chloropropane (DBCP)	0.04	ND (2.5)	ND (2.5)	ND (250)	ND (12)	ND (10)
1,2-Dibromoethane (Ethylene Dibromide)	0.0006	ND (2)	ND (2)	ND (200)	ND (10)	ND (8)
1,2-Dichlorobenzene	3	ND (2.5)	ND (2.5)	ND (250)	ND (12)	ND (10)
1,2-Dichloroethane	0.6	ND (0.5)	ND (0.5)	ND (50)	ND (2.5)	ND (2)
1,2-Dichloropropane	1	ND (1)	ND (1)	ND (100)	ND (5)	ND (4)
1,3-Dichlorobenzene	3	ND (2.5)	ND (2.5)	ND (250)	ND (12)	ND (10)
1,4-Dichlorobenzene	3	ND (2.5)	ND (2.5)	ND (250)	ND (12)	ND (10)
1,4-Dioxane	-	ND (250)	ND (250)	ND (25000)	ND (1200)	ND (1000)
2-Butanone (Methyl Ethyl Ketone)	50	ND (5)	ND (5)	ND (500)	ND (25)	ND (20)
2-Hexanone	50	ND (5)	ND (5)	ND (500)	ND (25)	ND (20)
4-Methyl-2-Pentanone (Methyl Isobutyl Ketone)	-	ND (5)	ND (5)	ND (500)	ND (25)	ND (20)
Acetone	50	ND (5)	ND (5)	ND (500)	ND (25)	7.4 J
Benzene	1	8.4 ^[A]	140 ^[A]	12000 ^[A]	590 ^[A]	370 ^[A]
Bromodichloromethane	50	ND (0.5)	ND (0.5)	ND (50)	ND (2.5)	ND (2)
Bromoform	50	ND (2)	ND (2)	ND (200)	ND (10)	ND (8)
Bromomethane (Methyl Bromide)	5	ND (2.5)	ND (2.5)	ND (250)	ND (12)	ND (10)
Carbon disulfide	60	ND (5)	ND (5)	ND (500)	5 J	ND (20)
Carbon tetrachloride	5	ND (0.5)	ND (0.5)	ND (50)	ND (2.5)	ND (2)
Chlorobenzene	5	ND (2.5)	ND (2.5)	ND (250)	ND (12)	ND (10)
Chlorobromomethane	-	ND (2.5)	ND (2.5)	ND (250)	ND (12)	ND (10)
Chloroethane	5	ND (2.5)	ND (2.5)	ND (250)	ND (12)	ND (10)
Chloroform (Trichloromethane)	7	ND (2.5)	ND (2.5)	ND (250)	ND (12)	ND (10)
Chloromethane (Methyl Chloride) cis-1,2-Dichloroethene	5 5	ND (2.5)	ND (2.5)	ND (250)	ND (12)	ND (10)
	0.4	ND (2.5)	ND (2.5)	ND (250)	ND (12)	ND (10)
cis-1,3-Dichloropropene	0.4	ND (0.5)	ND (0.5)	ND (50)	ND (2.5)	ND (2)
Cyclohexane Dibromochloromethane	- 50	ND (10) ND (0.5)	ND (10) ND (0.5)	ND (1000) ND (50)	ND (50) ND (2.5)	ND (40) ND (2)
Dichlorodifluoromethane (CFC-12)	5	ND (0.3) ND (5)	ND (0.3) ND (5)	ND (500)	ND (2.3) ND (25)	ND (2) ND (20)
Ethylbenzene	5	ND (3) ND (2.5)	ND (3) ND (2.5)	ND (300) ND (250)	ND (25) ND (12)	ND (20) ND (10)
Isopropylbenzene (Cumene)	5	ND (2.5) ND (2.5)	ND (2.5) ND (2.5)	ND (250)	ND (12) ND (12)	ND (10) ND (10)
m,p-Xylenes	5	ND (2.5) ND (2.5)	0.97 J	ND (250)	ND (12) ND (12)	ND (10)
Methyl acetate		ND (2.3) ND (2)	ND (2)	ND (200)	ND (12) ND (10)	ND (10)
Methyl cyclohexane	-	ND (10)	ND (10)	ND (1000)	ND (50)	ND (40)
Methyl Tert Butyl Ether	10	ND (2.5)	ND (2.5)	ND (250)	ND (12)	ND (10)
Methylene chloride	5	ND (2.5)	ND (2.5)	ND (250)	ND (12)	ND (10)
o-Xylene	5	ND (2.5)	ND (2.5)	ND (250)	ND (12)	ND (10)
Styrene	5	ND (2.5)	ND (2.5)	ND (250)	ND (12)	ND (10)
Tetrachloroethene	5	ND (0.5)	ND (0.5)	ND (50)	ND (2.5)	ND (2)
Toluene	5	ND (2.5)	22 ^[A]	ND (250)	ND (12)	40 ^[A]
trans-1,2-Dichloroethene	5	ND (2.5)	ND (2.5)	ND (250)	ND (12)	ND (10)
trans-1,3-Dichloropropene	0.4	ND (0.5)	ND (0.5)	ND (50)	ND (2.5)	ND (2)
Trichloroethene	5	ND (0.5)	ND (0.5)	ND (50)	ND (2.5)	ND (2)
Trichlorofluoromethane (CFC-11)	5	ND (2.5)	ND (2.5)	ND (250)	ND (12)	ND (10)
Trifluorotrichloroethane (Freon 113)	5	ND (2.5)	ND (2.5)	ND (250)	ND (12)	ND (10)
Vinyl chloride	2	ND (1)	ND (1)	ND (100)	ND (5)	ND (4)
Notes:	. –		\ '/			('/

Notes:

1. Results in **bold** were detected.

2. [A] - Results in red exceed NYSDEC Ambient Water Quality Standards and Guidance Values - Class GA – June 1998

3. ND - Not detected above the reporting limit

J - Estimated value

Haley & Aldrich, Inc.

\\haleyaldrich.com\share\roc_common\129356 - HydroAir (2017--)\009\2020_PRR_report\Tables\2021-0119-HAI-Annual_Analytical_Table.xlsx

April 2021

Table II Summary of ORC Assessment Results August 2020 Twelth Annual Groundwater Monitoring Event Hydro-Air Site (Formerly Steelfields Area IV) Buffalo, New York

	1										Monitoria	g Location																		
Parameter								A4-ORC-1			WORLD												A4-ORC-2							
	7/12/2007	2/4/2008	6/3/2008	6/26/2009	6/29/2010	6/29/2011	7/6/2012	7/2/2013	6/3/2014	6/26/2015	6/23/2016	6/23/2017	6/26/2018	12/19/2019	8/6/2020	7/12/2007	2/4/2008	6/3/2008	6/26/2009	6/29/2010	6/29/2011	7/6/2012	7/2/2013	6/3/2014	6/26/2015	6/23/2016	6/23/2017	6/26/2018	12/19/2019	8/6/2020
-					•								Field Mea	surements																
DTW (fbTOR)	9.27	4.53	3.97	4.22	2.62	2.65	4.66	2.91	4.89	4.04	4.65	3.82	5.3	2.94	4.42	6	6.27	3.87	2.75	2.01	0.96	2.08	1.23	2.46	2.5	2.25	1.4	1.35	3.41	1.5
pH (units)	2.34	3.78	3.49	5.00	4.07	3.50	2.90	3.01	6.13	2.93	3.66	2.83	5.70	5.21	3.61	1.96	1.73	1.72	4.31	2.64	2.30	1.40	1.81	2.37	2.14	3.09	2.68	3.91	2.95	3.17
Temperature (°C)	22.9	3.3	13.6	17.0	18.0	17.8	19.9	18.6	17.1	18.6	16.0	17.1	16.9	5.6	20.5	19.1	6.4	14.2	16.1	17.5	16.0	20.1	17.8	16.0	17.9	16.6	17.8	16.9	4.8	21.9
Specific Conductance (mS)	3.11	36.6	34.5	28.0	28.3	27.3	26.8	27.4	82.8	22.0	28.0	23.5	21.3	26.4	22.4	3.88	41.7	46.5	34.5	40	17.8	27.5	27.3	298.8	32.1	34.6	22.1	20.6	23.1	27.2
Turbidity (NTU)	190	23.1	176	6.17	9	8.19	2.46	3.2	33.1	1.17	2.6	0.82	2.53	7.9	235	130	99.8	62.3	50.8	5.01	29.1	11.63	18.6	19.7	3.27	3.91	0.65	4.8	13.7	204
Dissolved Oxygen (mg/L)	8.15	10.49	7.26	1.55	0.44	0.54	0.49	0.67	0.84	0.95	0.78	0.81	0.7	3.64	1.36	9.05	0.33	7.78	1.00	0.46	0.34	0.53	0.32	-0.5	0.65	0.56	0.56	0.46	4.32	0.24
Eh (mV)	235	155	209	330	344	58	190	267	-41	250	227	178	39	217	188	383	358	387	466	443	352	388	461	398	355	288	210	318	389	281
CO2 (mg/L)		no rxn					-								no rxn	-	no rxn							-						
Alkalinity (ppm)	38	170					-								1000	6	no rxn					-	-	-						1000
Appearance (visual)	brown		yellow-brown	amber	dark amber	amber	amber	amber	amber	amber	amber	amber	amber			brown		dark brown	tan/amber	amber	amber	dark amber	amber	amber	amber	amber	amber	amber	orange tint	

Notes: 1. EnSol Environmental Solutions, Ltd. conducted the 25 June 2007 sampling event 2. Haley & Aldrich completed the February and June 2008 groundwater monitoring event! 3. TestAmerica Buffalo conducted the 25-26 June 2009, 28-29 June 2010, 28-29 June 2011, 5-6 July 2012, 1-2 July 2013, 2-3 June 2014, 25-26 June 2015, 22-23 June 2016, 22-23 June 2017, 25-26 June 2018, an 19 December 2019 sampling events. IW Contracting conducted the August 2020 sampling event. 4. This table has been adapted from the Draft First Semi-Annual Long-Term Groundwater Monitoring Report (June 2007) by Benchmark Environmental Engineering & Science, PLLC.

Table II Summary of ORC Assessment Results August 2020 Twelth Annual Groundwater Monitoring Event Hydro-Air Site (Formerly Steelfields Area IV) Buffalo, New York

							M	onitoring Locati	on						
Parameter								A4-ORC-3							
	7/12/2007	2/4/2008	6/3/2008	6/25/2009	6/29/2010	6/29/2011	7/6/2012	7/2/2013	6/3/2014	6/26/2015	6/23/2016	6/23/2017	6/26/2018	12/19/2019	8/6/2020
						Fi	eld Measureme	nts							
DTW (fbTOR)	6.68	5.25	4.66	5.16	3.6	3.55	5.82	3.55	3.92	4.95	5.62	5.28	3.95	3.03	6
pH (units)	2.71	3.25	3.45	5.39	5.55	5.75	3.89	4.96	3.4	4.02	4.07	5.38	3.21	5.57	5.13
Temperature (°C)	17.9	7.2	11.7	19.72	15.6	15.3	18.5	20.5	17.2	17.5	16	17.2	17.8	7.4	23.02
Specific Conductance (mS)	3.44	39.7	38.2	32.9	28	28.8	26.9	19.7	263.2	21.49	23.9	21.4	28.27	24.27	14.1
Turbidity (NTU)	780	> 800	92.7	152	248	87.5	68.9	39	4.7	6.73	1.7	2.72	1.95	1297	201
Dissolved Oxygen (mg/L)	9.99	5.53	1.05	0.47	1.63	1.95	1.38	0.35	0.23	0.25	0.2	0.49	0.13	1.99	0.85
Eh (mV)	140	263	235	134	174	174	296	302	241	217	127	110	239	41	145
CO2 (mg/L)		no rxn													no rxn
Alkalinity (ppm)	56	357						-				-	-		1000
Appearance (visual)	brown	-	yellow-brown	orange	orange	orange	orange	amber	amber	amber	amber	amber	amber	red/orange	

Notes: 1. EnSol Environmental Solutions, Ltd. conducted the 25 June 2007 sampling even 2. Haley & Adrich completed the February and June 2008 groundwater monitoring events 3. TestAmerica Buffalo conducted the 25-26 June 2009, 28-29 June 2010, 28-29 June 2014, 25-26 June 2014, 25-26 June 2015, 22-23 June 2016, 22-23 June 2017, 25-26 June 2018, an 19 December 2019 sampling events. NW Contracting conducted the August 2020 sampling event.

4. This table has been adapted from the Draft First Semi-Annual Long-Term Groundwater Monitoring Report (June 2007) by Benchmark Environmental Engineering & Science, PLLC.

Table III Summary of Field Measurements August 2020

Twelth Annual Groundwater Monitoring Event Hydro-Air Site (Formerly Steelfields Area IV) Buffalo, New York

																Monitorin	g Location															
Parameter								A4-N	1W-5R															A4-M	1W-7R							
	6/25	/2007	2/1/2008	6/2/2008	6/25/2009	6/28/2010	6/28/2011	7/5/2012	7/1/2013	6/2/2014	6/25/2015	6/22/2016	6/22/2017	6/25/2018	12/19/2019	8/7/2020	6/25	/2007	1/31/2008	6/2/2008	6/25/2009	6/28/2010	6/28/2011	7/5/2012	7/1/2013	6/2/2014	6/25/2015	6/22/2016	6/22/2017	6/26/2018	12/19/2019	9 8/6/202
ield Measurements																																
H (units)	6.55	6.61	6.80	6.71	6.82	7.36	7.20	6.77	6.14	7.05	7.18	7.27	6.63	7.39	7.43	6.15	6.17	6.33	6.93	5.97	6.31	6.02	5.85	5.23	4.76	5.61	5.67	7.10	6.49	7.12	5.83	5.69
emperature (°C)	15.9	17.4	6.3	12.3	16.87	18.1	15.5	19.07	15.5	16.4	15.3	15.2	15.7	18	9.4	20.61	18.0	18.1	6.5	11.4	18.34	15.8	16.6	19.4	16.02	14.6	13.6	14.1	14.4	13.5	8.9	15.8
specific Conductance (uS)	2265	2287	2740	3090	1920	2390	2590	2570	8240	858	1541	1547	1022	1234	696	886	3276	3150	3280	4290	3740	4950	4640	4990	4946	4726	3395	5200	3086	5105	4507	3390
urbidity (NTU)	36	22.5	13.5	9.4	5.86	6.42	3.18	1.36	3.9	4.41	2.86	3.77	3.29	1.8	3.7	0	61	21.6	31.2	29.8	19.3	15.04	9.51	6.17	13.9	16.45	3.58	2.9	3.26	0.78	16.5	0
Dissolved Oxygen (mg/L)			0.41	0.37	0.30	0.37	0.65	0.92	0.53	0.68	0.67	0.74	0.79	3.20	6.26	0.40			0.59	0.35	0.15	0.11	0.22	0.45	0.34	0.33	0.31	0.17	0.14	0.27	3.16	0.43
Dxidation Reduction Potential																																
mV)	+70	+74	-73	-142	-48	-39	-183	-22	-7	+37	-73	+57	+142	+35	-6	-66	-73	-98	-146	-91	-40	+7	-82	4	12	-37	-5	-30	-29	-21	12	0.49
ppearance (visual)	cl	ear		orange tint	t It.brown tint	tan tint	slight yellow tint								clear	slight gray	clo	udy		orange tint	yellow tint	yellow tint	slight sheen in bucket	sheen							clear	
Odor (olfactory)	no	one		none	slight	slight	slight										su	lfur		none	slight	slight	slight								strong	
CO2 (mg/L)			170	490	155	25	700	50	42	42.5	125	160	120	220					260	0	425	445	375	375	389	275	275	300	290	305		
Ikalinity (mg/L)			765	660	629	780	680	884	289	357						550		-	340	280	323	420	400	289	289	221						310

Notes:
1. Benchmark Environmental Engineering & Science conducted the 25 June 2007 sampling event
2. Haley & Aldrich completed the February and June 2008 groundwater monitoring events
3. TestAmerica Buffalo conducted the 25-26 June 2009, 28-29 June 2011, 5-6 July 2013, 2-3 June 2014, 25-26 June 2015, 22-23 June 2017, 25-26 June 2018, and 19 December 2019 sampling events. NW Contracting conducted the August 2020 sampling event.
4. NYSDEC Class "GA" Groundwater Quality Standards (GWQS) as published in NYSDEC Ambient Water Quality Standards/Guidance Values and Groundwater Effluent Limitations (June 1998).
5. na indicates no Class GA GWQS or GV has been established for this compound.
6. NS indicates not analyzed.
7. -- indicates not analyzed.
8. Shaded results indicate results outside the range of the GWQS/GV
9. This table has been adapted from the Draft First Semi-Annual Long-Term Groundwater Monitoring Report (June 2007) by Benchmark Environmental Engineering & Science, PLLC.

Table III Summary of Field Measurements August 2020

Twelth Annual Groundwater Monitoring Event Hydro-Air Site (Formerly Steelfields Area IV) Buffalo, New York

								Monitoring	g Location							
Parameter								A4-M	W-8R							
	6/25/	/2007	1/31/2008	6/2/2008	6/26/2009	6/28/2010	6/28/2011	7/5/2012	7/1/2013	6/2/2014	6/25/2015	6/22/2016	6/22/2017	6/25/2018	12/19/2019	8/7/2020
Field Measurements																
pH (units)	6.38	6.47	6.31	6.02	6.5	6.51	6.38	5.87	5.69	6.49	6.34	6.59	6.51	6.45	7.12	5.53
Temperature (°C)	17.3	18.4	7	12.5	16.3	18.8	17	19.5	15.68	16.6	15.2	13.4	14	16.4	8.4	15.07
Specific Conductance (uS)	4102	4001	4630	4840	4670	4730	4650	4510	3490	3087	4188	4767	2965	4633	4543	4630
Turbidity (NTU)	79	43.6	84.6	27.5	8.54	3.88	1.5	4.2	1.9	18.91	3.14	1.93	2.66	4.12	4.4	0
Dissolved Oxygen (mg/L)			0.67	0.32	0.26	0.14	0.37	0.34	0.21	0.71	0.71	0.48	0.49	3.96	5.21	1.30
Oxidation Reduction Potential																
(mV)	-50	-65	-78	-68	+56	-22	-67	-35	-6		-40	-32	-39	-65	-35	-49
Appearance (visual)	clo	udy		clear	clear	clear	clear	-	-	-					clear	slight gray
Odor (olfactory)	su	lfur		none	none	none	none									
CO2 (mg/L)			0	0	550	75	160	195	175	175	180	195	210	210		
Alkalinity (mg/L)	-	-	748	600	816	840	920	799	765	714						760

Table III Summary of Field Measurements August 2020

Twelth Annual Groundwater Monitoring Event Hydro-Air Site (Formerly Steelfields Area IV) Buffalo, New York

																Monitoring	g Location																
Parameter								A4-I	/W-9															A4-M									Class G
	6/25/	2007	1/31/2008	6/2/2008	6/26/2009	6/28/2010	6/28/2011	7/5/2012	7/1/2013	6/2/2014	6/25/2015	6/22/2016	6/22/2017	6/25/2018	12/19/2019	8/7/2020	6/25	6/2007	1/31/2008	6/2/2008	6/25/2009	6/28/2010	6/28/2011	7/5/2012	7/1/2013	6/2/2014	6/25/2015	6/22/2016	6/22/2017	6/25/2018	12/19/2019	8/6/2020	GWQS/0
eld Measurements																														-			1
H (units)	3.99	3.96	4.23	3.9	5.91	4.53	5.85	5.15	6.31	7.15	7.48	7.71	7.36	6.80	8.63	5.80	6.73	6.88	NS	6.40	6.65	7.13	6.88	6.41	6.04	7.04	6.90	7.23	6.82	7.00	6.88	6.19	6.5-8.5
emperature (°C)	18.5	18.3	6.4	11.4	15.7	17.6	18.1	21.2	15.63	14.1	15.8	14.3	14.6	14.5	6.2	19.75	16.7	18.4	NS	11.1	17	18	16.1	19.5	14.81	17.9	13.1	13	16.1	16.3	7.5	14.93	na
pecific Conductance (uS)	11150	11200	8280	11900	9490	8700	3440	4820	14400	1692	1962	2187	2006	4035	1321	4290	3009	2931	NS	3140	2400	2110	2340	2440	2820	2317	2440	2986	2883	3307	3172	1960	na
urbidity (NTU)	383	69.3	36.7	10.9	10.05	4.92	4.96	18.9	5.23	12.99	2.06	3.54	3.18	2.22	8.4	2.5	16.9	22.8	NS	43	10.8	7.5	5.26	6.54	6.5	1.68	1.54	0.98	3.89	4.86	40.6	12.9	na
Dissolved Oxygen (mg/L)	-		0.95	7.93	0.2	0.1	0.24	0.29	0.12	0.71	0.70	0.54	0.57	2.29	6.27	0.33			NS	0.46	0.15	0.1	0.33	0.39	0.46	0.39	0.40	0.27	0.26	3.56	4.35	0.53	na
Dxidation Reduction Potential																														1			
mV)	+207	+206	+127	+157	+137	+83	-42	-23	-20	-93	-139	-41	-18	-87	-72	-68	-81	-91	NS	-24	-5	-38	-98	-56	7	-111	-79	-71	-14	-79	-49	-80	na
oppearance (visual)	tur	bid		clear	yellow tint	yellow tint	clear			-		-			orange tint	gray tint	cl	ear	NS	clear	clear	clear	clear						I		orange tint	clear	na
Odor (olfactory)	sul	fur		none	none	slight	slight										slight	t sulfur	NS	none	none	none	none						¹				na
:O2 (mg/L)	-	-	0	0	300	315	513	581	289	542	485	495	285	525					NS	422	505	45	65	55	55	47	195	200	210	600			na
Ikalinity (mg/L)	-	-	68	60	34	31	40	68	542	187						650			NS	560	969	1100	1160	1105	2773	1105			· '			1030	na

Notes:

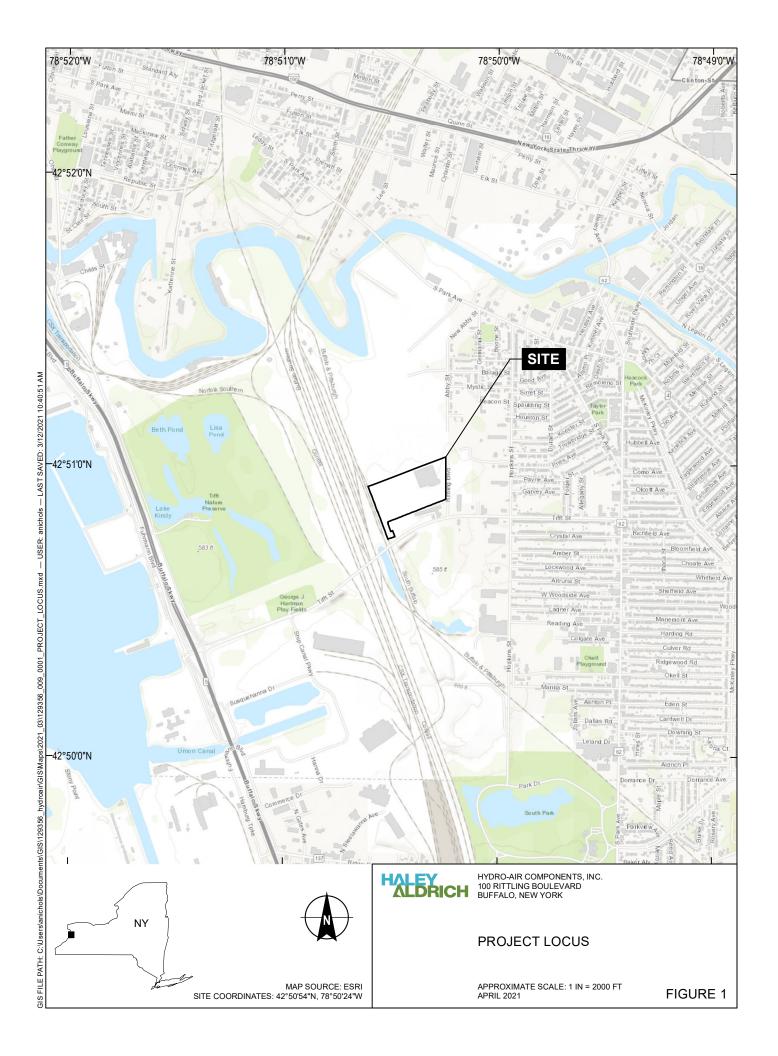
I. Benchmark Environmental Engineering & Science conducted the 25 June 2007 sampling event
Haley & Aldrich completed the February and June 2008 groundwater monitoring events
TestAmerica Buffalo conducted the February and June 2008 groundwater monitoring events
TestAmerica Buffalo conducted the February and June 2008 groundwater monitoring events
TestAmerica Buffalo conducted the February and June 2008 groundwater monitoring events
TestAmerica Buffalo conducted the February and June 2008 groundwater monitoring events
TestAmerica Buffalo conducted the February and June 2008 groundwater monitoring events
TestAmerica Buffalo conducted the February and June 2009, 28-29 June 2011, 5-6 July 2013, 2-3 June 2014, 25-26 June 2015, 22-23 June 2017, 25-26 June 2018, and 19 December 2019 sampling events. NW Contracting conducted the August 2020 sampling event.
NW Contracting conducted the August 20

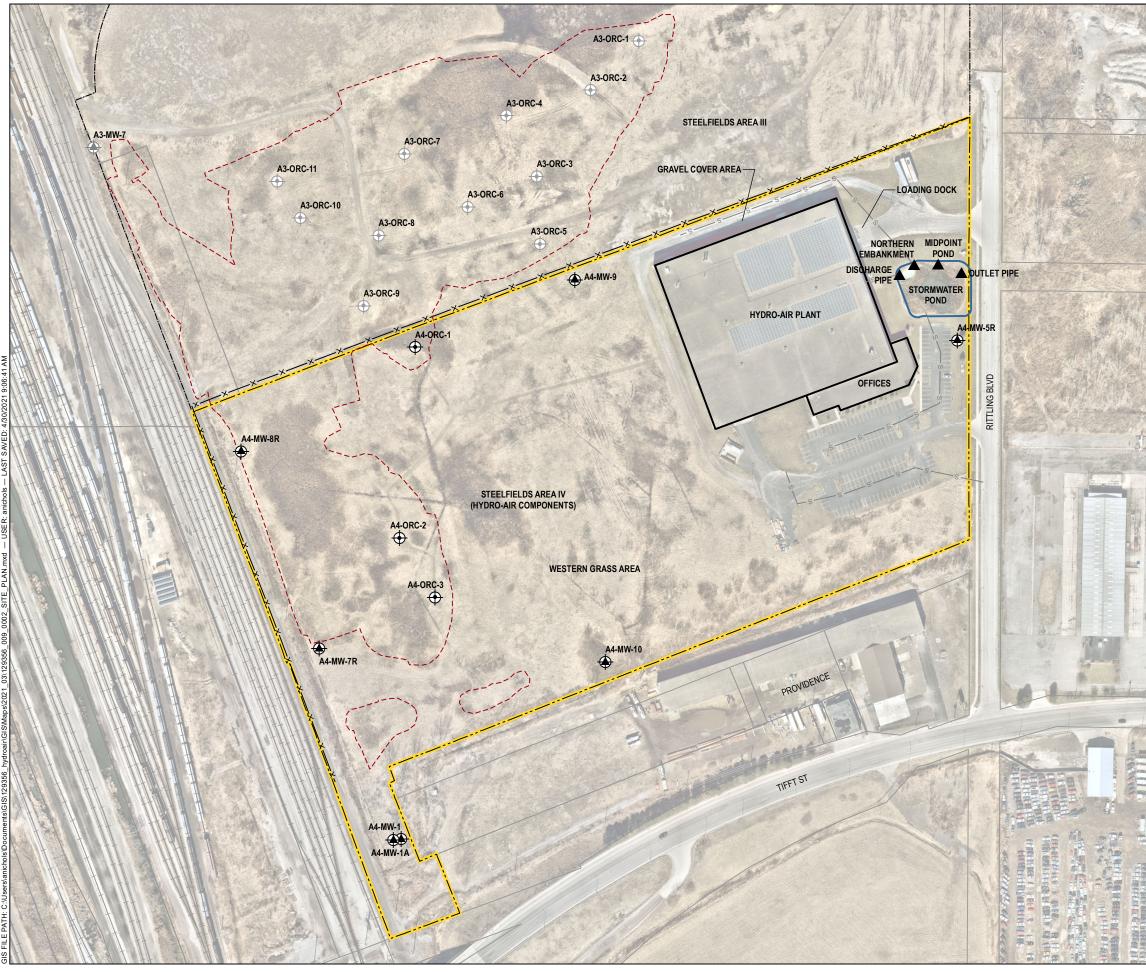
Table IV - 2020 PRR - Stormwater Pond Monitoring Form Hydro-Air Components, Inc. BCP Site #C915204, Buffalo, New York

In accordance with the Corrective Measures Report (dated 14 December 2012) and the Revised Site Management Plan (dated 25 March 2014) the following pond parameters have been monitored:

						Measurem	ent Location				
Data Collection	Date of Measurment	Time of	Estimated Quantity of Water Discharged	Discha	rge Pipe	Northern	Embayment		(Combined	Conditions at Pond (color, vegetation,	General Comments (weather conditions,
Completed By:	(DD/MM/YR)	Measurement	(Gallons)	рН	Temp (F)	рН	Temp (F)	рН	Temp (F)	odor, frozen, etc.)	etc)
Dale Barto	12/31/2019	11:00 AM	N/A (Starting Point)							Frozen	Cloudy
Dale Barto	1/30/2020	9:00 AM	26,598							Frozen	Cloudy
Dale Barto	2/28/2020	9:00 AM								Frozen	Cloudy
Dale Barto	3/25/2020	9:30 AM	64,706							Frozen	Cloudy
Dale Barto	4/30/2020	9:30 AM	53,295	7.8	46	7.5	44	6.6	44	Clear	Raining
Dale Barto	5/28/2020	9:30 AM	102,139	7.8	48	7.6	53	7.3	49	Clear	Sunny
Dale Barto	6/29/2020	9:00 AM	53,259	7.8	54	7.2	53	7.6	51	Clear	Sunny
Dale Barto	7/27/2020	10:30 AM	102,175	7.5	69	6.5	67	6.5	68	Clear	Sunny
Dale Barto	8/26/2020	9:00 AM	53,259	7.9	72	6.7	74	7.5	72	Clear	Sunny
Dale Barto	9/29/2020		102,175	7.7	64	7.1	65	7.2	64	Clear	Cloudy
Dale Barto	10/28/2020	9:30 AM	53,259	10.5	54	11.0	56	6.0	57	Clear	Cloudy
Dale Barto	11/30/2020	8:30 AM	102,175	7.8	55	7.1	54	7.1	58	Clear	Cloudy
Dale Barto	12/30/2020	9:00 AM								Frozen	Cloudy
Dale Barto	1/27/2021	9:00 AM								Frozen	Cloudy
Dale Barto	2/26/2021	9:00 AM	102,198							Frozen	Cloudy
Dale Barto	3/31/2021	9:00 AM	54,420	9.0	42	10.0	40	6.0	42	Cloudy	Raining
	Total Reporting	Period Discharge:	869,658								

All pH values will be evaluated against the NYSDEC TOGS 1.1.1 ambient water quality guidance value of pH 8.5 selected for protection of public health. Exceedance of the guidance value (8.5) for > 3 consecutive monitoring events (combined sample) will trigger enhancements as descirbed in Section IV of the SMP.


Notes or Other Observations:


1 Combined sample represents the combination of the sample point at the midpoint of the main pond and the sample point near the pond outlet pipe of the main pond. These pond samples are combined in the field to provide a representative pH value for the main pond area. 2 pH measurements were collected using a hand-held probe.

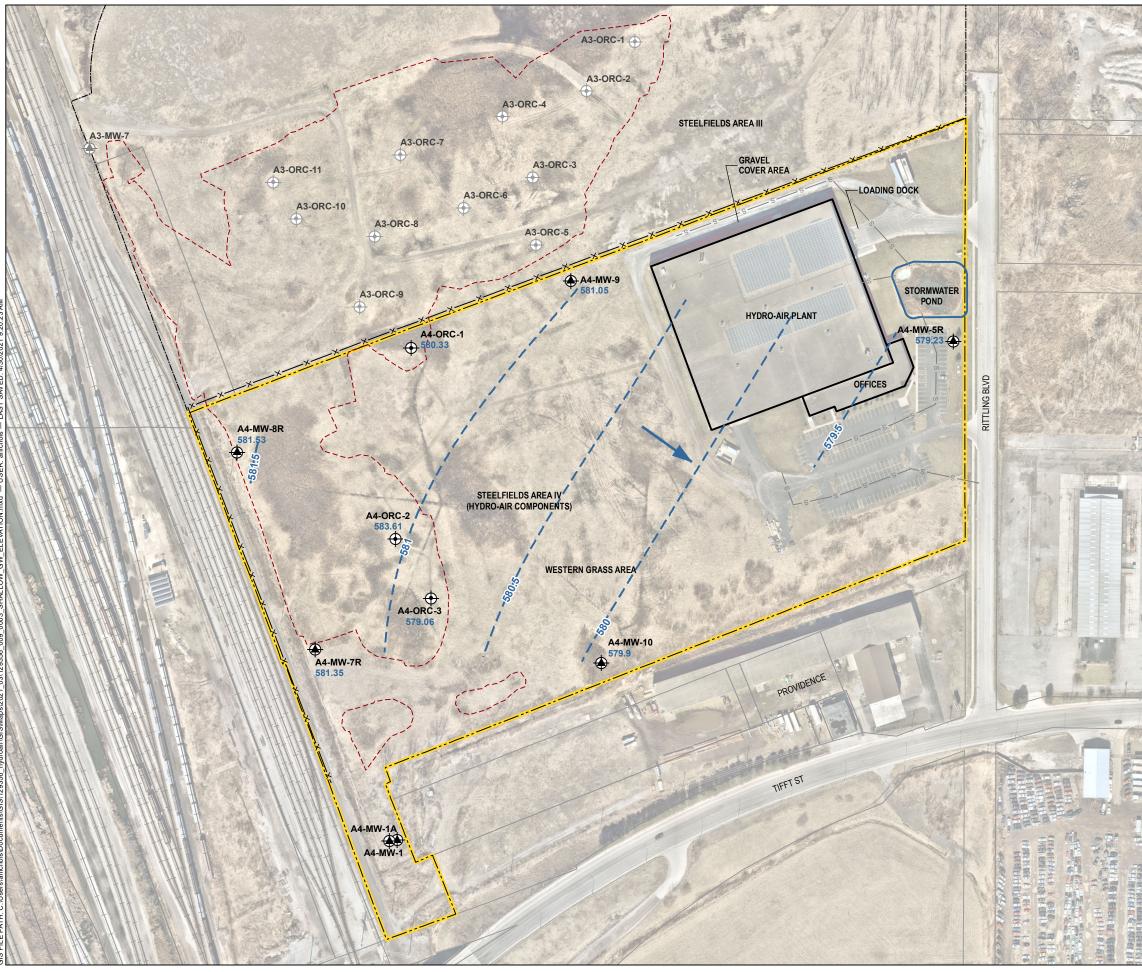
Page <u>1</u> of <u>1</u>

HydroAir COMPONENTS FIGURES

LEGEND	
•	MONITORING WELL, HYDRO-AIR PROPERTY
()	ORC WELL, HYDRO-AIR PROPERTY
	RETENTION POND MONITORING LOCATION
۲	MONITORING WELL, STEELFIELDS III PROPERTY
\oplus	ORC WELL, STEELFIELDS III
	PLANT AREA
	APPROXIMATE TAR AND BLUE SOIL/FILL EXCAVATION LIMITS
×	FENCE
	POND
s	STORMWATER PIPE
	RAILROAD
	TAX PARCEL BOUNDARY
	HYDRO-AIR (STEELFIELDS AREA
[STEELFIELDS AREA

NOTES

- 1. ALL LOCATIONS AND DIMENSIONS ARE APPROXIMATE.
- 2. TAX PARCEL DATA SOURCE: ERIE COUNTY
- 3. AERIAL IMAGERY SOURCE: NEARMAP, MARCH 2020



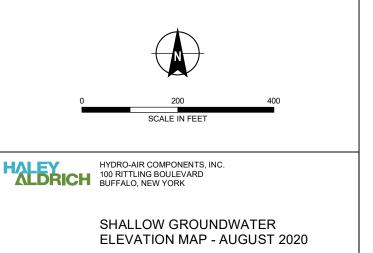
HALEY HYDRO-AIR COMPONENTS, INC. 100 RITTLING BOULEVARD BUFFALO, NEW YORK

SITE PLAN

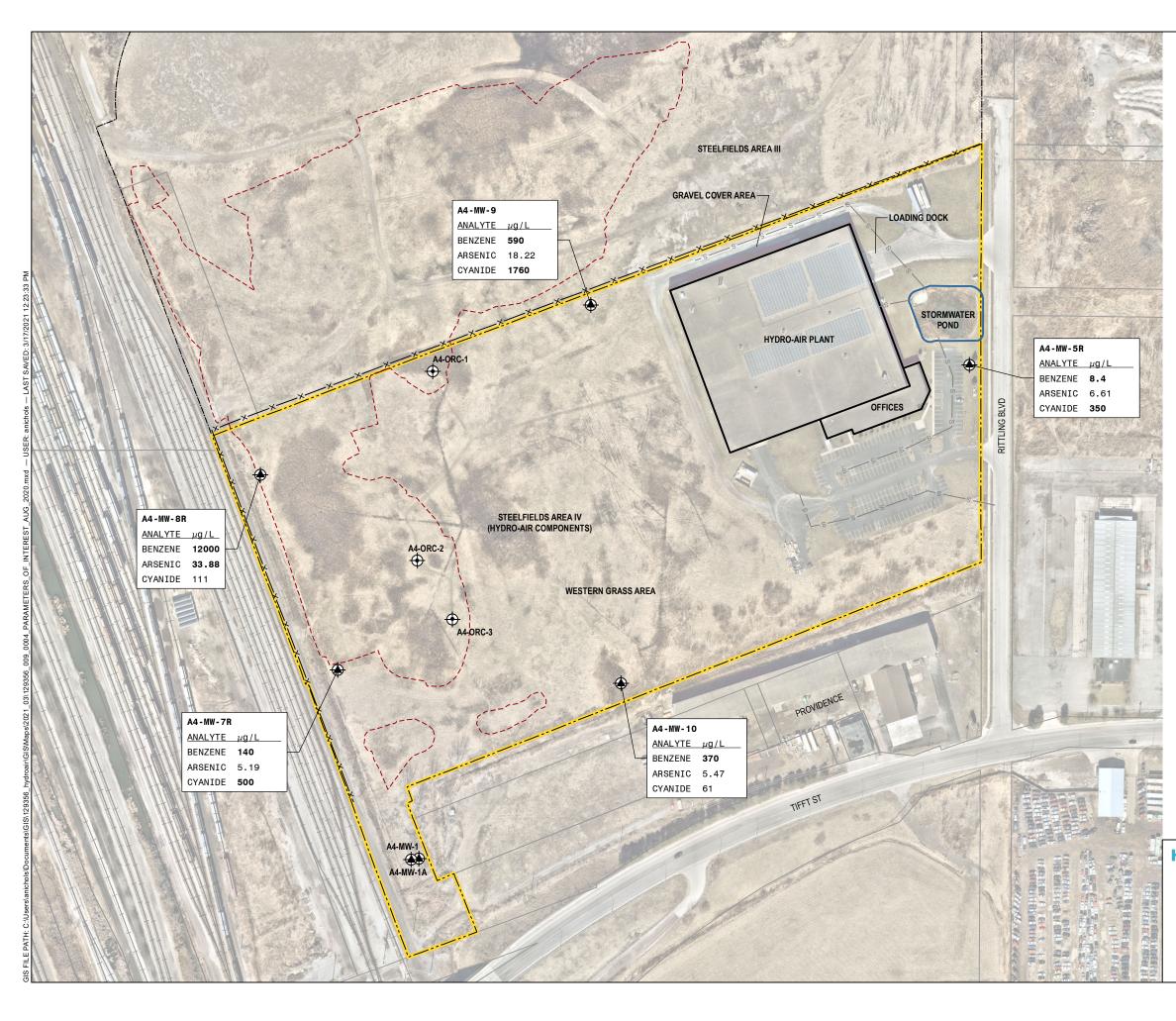
APRIL 2021

FIGURE 2

LEGEND	
	MONITORING WELL, HYDRO-AIR PROPERTY, WITH GROUNDWATER ELEVATION IN FEET
÷	ORC SOCK WELL, HYDRO-AIR PROPERTY, WITH GROUNDWATER ELEVATION IN FEET
	MONITORING WELL, STEELFIELDS AREA III PROPERTY
\oplus	ORC SOCK WELL, STEELFIELDS AREA III PROPERTY
	GROUNDWATER ELEVATION CONTOUR, IN FEET ABOVE MEAN SEA LEVEL
-	APPROXIMATE GROUNDWATER FLOW DIRECTION
	• PLANT AREA
	APPROXIMATE TAR AND BLUE SOIL/FILL EXCAVATION LIMITS
×	FENCE
	POND
s	STORMWATER PIPE
	RAILROAD
	TAX PARCEL BOUNDARY
L	HYDRO-AIR (STEELFIELDS AREA IV)
	STEELFIELDS AREA III
NOTES	


1. ALL LOCATIONS AND DIMENSIONS ARE APPROXIMATE.

2. ASSESSOR PARCEL DATA SOURCE: ERIE COUNTY


3. GROUNDWATER DEPTHS MEASURED ON 6 AND 7 AUGUST 2020.

4. GROUNDWATER ELEVATIONS FROM ORC WELLS NOT USED IN CONTOURING.

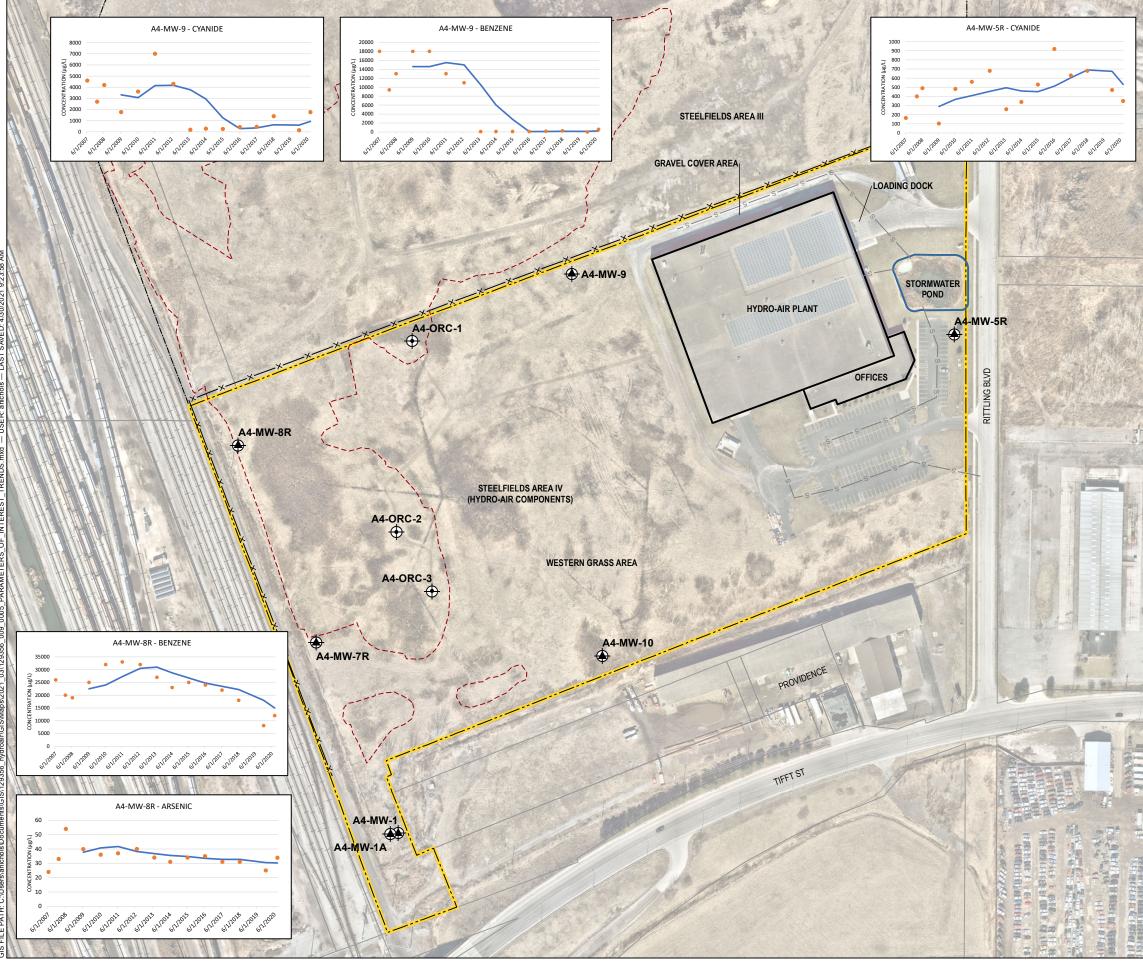
5. AERIAL IMAGERY SOURCE: NEARMAP, MARCH 2020

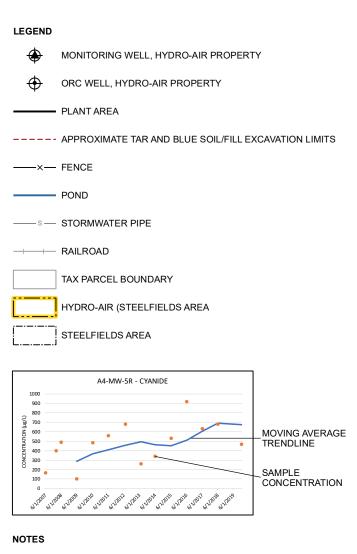
APRIL 2021

LEGEND	
÷	MONITORING WELL, HYDRO-AIR PROPERTY
÷	ORC WELL, HYDRO-AIR PROPERTY
	PLANT AREA
	APPROXIMATE TAR AND BLUE SOIL/FILL EXCAVATION LIMITS
——×—	FENCE
	POND
s	STORMWATER PIPE
	RAILROAD
	TAX PARCEL BOUNDARY
	HYDRO-AIR (STEELFIELDS AREA
[STEELFIELDS AREA

NOTES

- 1. ALL LOCATIONS AND DIMENSIONS ARE APPROXIMATE.
- 2. ASSESSOR PARCEL DATA SOURCE: ERIE COUNTY
- 3. µg/L = MICROGRAMS PER LITER
- 4. BOLD VALUES EXCEED NYSDEC CLASS GA GWQS.
- 5. AERIAL IMAGERY SOURCE: NEARMAP, MARCH 2020


400 200 SCALE IN FEET


HALEY HYDRO-AIR COMPONENTS, INC. 100 RITTLING BOULEVARD BUFFALO, NEW YORK

GROUNDWATER PARAMETERS OF **INTEREST - AUGUST 2020**

APRIL 2021

FIGURE 4

1. ALL LOCATIONS AND DIMENSIONS ARE APPROXIMATE. 2. ASSESSOR PARCEL DATA SOURCE: ERIE COUNTY 3. μg/L = MICROGRAMS PER LITER

4. MOVING AVERAGE TENDLINE REPRESENTS THE AVERAGE OF THE 2020 SAMPLE CONCENTRATION AND THE CONCENTRATIONS IDENTIFIED DURING THE THREE (3) PREVIOUS SAMPLING EVENTS. METHOD DETECTION LIMITS USED IN AVERAGING IF AN ANALYTE WAS NOT DETECTED. 5. AERIAL IMAGERY SOURCE: ESRI

> 200 400 SCALE IN FEET

HALEY ALDRICH HYDRO-AIR COMPONENTS, INC. 100 RITTLING BOULEVARD BUFFALO, NEW YORK

GROUNDWATER PARAMETERS OF INTEREST HISTORICAL TRENDS

APRIL 2021

FIGURE 5

APPENDIX A

Institutional and Engineering Controls Certification Form

Enclosure 2 NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form

Site	No. C915204	Site Details		Box 1	
Site	Name Steelfields Area IV				
City Cou	Address: 100 Rittling Blvd. /Town: Buffalo nty:Erie Acreage: 30.910	Zip Code: 14220			
Rep	orting Period: January 15, 202	20 to April 14, 2021			
				YES	NO
1.	Is the information above correct	pt?		х	
	If NO, include handwritten abo	ve or on a separate sheet.			
	Has some or all of the site prop tax map amendment during thi	perty been sold, subdivided, merge s Reporting Period?	d, or undergone a		х
	Has there been any change of (see 6NYCRR 375-1.11(d))?	use at the site during this Reportin	g Period		х
	Have any federal, state, and/or for or at the property during this	r local permits (e.g., building, disch s Reporting Period?	arge) been issued		х
		tions 2 thru 4, include documen n previously submitted with this			
5.	Is the site currently undergoing	development?			х
				Box 2	
				YES	NO
	Is the current site use consiste Industrial	nt with the use(s) listed below?		х	
7.	Are all ICs in place and functio	ning as designed?	Х		
		THER QUESTION 6 OR 7 IS NO, sig TE THE REST OF THIS FORM. Oth	-	ind	
A C	orrective Measures Work Plan	must be submitted along with this	s form to address tl	nese iss	ues.
01-					
Sigr	ature of Owner, Remedial Party	or Designated Representative	Date		

					Box 2/	4
					YES	NO
8.		tion revealed that assum g offsite contamination ar		alitative Exposure	NA	
		to question 8, include has been previously su				
9.	 Are the assumptions in the Qualitative Exposure Assessment still valid? (The Qualitative Exposure Assessment must be certified every five years) 					
		to question 9, the Peric Exposure Assessment	•			
SITE	E NO. C915204				Вох	3
	Description of Institut	tional Controls				
Parce		<u>Owner</u>		Institutional Contro	<u>) </u>	
132.1	2-1-9.121	Hydro-Air Components	, Inc.			
				Site Management		ion

i) until the remedial goals for the Controlled Property are attained or deemed complete by the Department, the Department-approved Site Management Plan (SMP) for the implemented remedy must be adhered to.

ii) a soil cover system and vegetation in accordance with the Soil/Fill Management Plan in the SMP shall be maintained over undeveloped portions of the Controlled Property.

iii) an active subslab depressurization system (ASD) to eliminate potential soil vapor intrusion shall be installed, operated and maintained in all new buildings and building additions in accordance with the standards and procedures specified in the SMP, and the ASD already installed in the existing building shall continue to be operated and maintained in accordance with the SMP, unless the Department determines that the ASD is not necessary based on the results of a Department-approved evaluation of potential sub-slab vapor impacts.

iv) the groundwater beneath the Controlled Property cannot be used as a potable water source or for any other use without prior written permission of the Department.

v) groundwater monitoring in accordance with the SMP shall continue until the Department determines that continued monitoring is unnecessary.

vi) the in-situ treatment of residual contamination in native soils using oxygen release compounds (ORC) shall be maintained and monitored in accordance with the SMP until the Department determines that continued maintenance and monitoring of ORC is unnecessary.

vii) in areas of the Controlled Property with known groundwater impacts, storm water injection (drywells) will be prohibited and storm water conveyance pipes will be required to have gasketed joints for water tightness to prevent the infiltration of impacted groundwater into the collection system.

Box 4

Landuse Restriction Soil Management Plan

Description of Engineering Controls

Pa		
132	12-1-9.121 Cover System Vapor Mitigation	
		Box 5
	Periodic Review Report (PRR) Certification Statements	
1.	I certify by checking "YES" below that:	
	 a) the Periodic Review report and all attachments were prepared under the direction or reviewed by, the party making the Engineering Control certification; 	of, and
	b) to the best of my knowledge and belief, the work and conclusions described in this are in accordance with the requirements of the site remedial program, and generally a engineering practices; and the information presented is accurate and compete.	
	YES	NO
	Х	
2.	For each Engineering control listed in Box 4, I certify by checking "YES" below that all of the following statements are true:	
	(a) The Engineering Control(s) employed at this site is unchanged since the date that the Control was put in-place, or was last approved by the Departme	ent;
	(b) nothing has occurred that would impair the ability of such Control, to protect public the environment;	health and
	(c) access to the site will continue to be provided to the Department, to evaluate the remedy, including access to evaluate the continued maintenance of this Control;	
	(d) nothing has occurred that would constitute a violation or failure to comply with the Site Management Plan for this Control; and	
	(e) if a financial assurance mechanism is required by the oversight document for the s mechanism remains valid and sufficient for its intended purpose established in the doc	
	YES	NO
	Х	
	IF THE ANSWER TO QUESTION 2 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.	
	Corrective Measures Work Plan must be submitted along with this form to address these i	ssues.
-	gnature of Owner, Remedial Party or Designated Representative Date	

IC CERTIFICATIONS SITE NO. C915204

Box 6

SITE OWNER OR DESIGNATED REPRESENTATIVE SIGNATURE

I certify that all information and statements in Boxes 1,2, and 3 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

I ROBERT W. DAIgler, JR at 100 Rithing Blud BUFFALD, NY print name print business address am certifying as Vice President of Finance (Owner or Remedial Party) for the Site hamed in the Site Details Section of this form. 4/29/2021

Signature of Owner, Remedial Party, or Designated Representative Rendering Certification

Date

EC CERTIFICATIONS

Box 7

Qualified Environmental Professional Signature

I certify that all information in Boxes 4 and 5 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

	Haley & Aldrich of I 200 Town Centre E	Dr. Ste 2, Roche	ester, NY 14623
print name	print busines	ss address	
am certifying as a Qualified Environmental Pro	fessional for the	Owner	
		(Owner or Rem	edial Party)
Ch Whit			
Christian			29 April 2021
Signature of Qualified Environmental Professio		•	Date
the Owner or Remedial Party, Rendering Certi	fication (Re	quired for PE)	

APPENDIX B

NYSDEC Correspondence

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

Division of Environmental Remediation, Region 9 270 Michigan Avenue, Buffalo, NY 14203-2915 P: (716) 851-7220 | F: (716) 851-7226 www.dec.ny.gov

February 18, 2020

Mr. Robert Daigler VP of Finance Hydro-Air Components Incorporated 100 Rittling Boulevard Buffalo, New York 14220

Dear Mr. Daigler (as the Certifying Party):

Site Management (SM) Periodic Review Report (PRR) Response Letter Steelfields Area IV, Buffalo Erie County, Site No.: **C915204**

The Department has reviewed your Periodic Review Report (PRR) and IC/EC Certification for the following period: January 15, 2019 to January 15, 2020. The Department hereby accepts the PRR and IC/EC Certification.

The frequency of Periodic Reviews for this site is one year, and your next PRR will be due on February 14, 2021. You will receive a reminder letter and updated certification form 75-days prior to the report's due date. Regardless of receipt or not of the reminder notice, the next PRR, including the signed certification form, is still due on the date specified above.

In future PRR's, please complete the following edits:

- Repair the cracks located in the hallway and provide photo documentation along with a narrative explaining the repair in the 2020-2021 PRR.
- Table 1 Summary of Groundwater Analytical Results is missing ambient water quality standards for specific analytes (e.g.: 1,2,4-Trimethylbenzene, etc.). Please include the missing standards in future reports.
- Include an Environmental Inspection Form, completed during the site-wide annual inspection. This Form was included in past PRR's.
- Include a table of the monitoring well field parameters, including CO₂ and alkalinity. Also include CO₂ and alkalinity values for the ORC wells in Table 2 – Summary of ORC Assessment Results.

Mr. Robert Daigler February 18, 2020 Page 2

If you have any questions, please contact me at 716-851-7220 or email: megan.kuczka@dec.ny.gov.

Sincerely,

Jufn Mega

Megan Kuczka Environmental Program Specialist – 1

MK/jl

- ec: Ms. Andrea Caprio, NYSDEC
 - Mr. Maurice Moore, NYSDEC
 - Mr. Glenn White, Haley & Aldrich
 - Mr. Tom Robitaille, Haley & Aldrich
 - Mr. Andrew Nichols, Haley & Aldrich
 - Mr. Ryan Panfil, Hydro-Air Components Inc.
 - Mr. Robert Daigler, Hydro-Air Components Inc.

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

Division of Environmental Remediation 625 Broadway, 11th Floor, Albany, NY 12233-7020 P: (518)402-9543 | F: (518)402-9547 www.dec.ny.gov

12/7/2020

Robert Daigler Vp Of Finance Hydro-Air Components Inc. 100 Rittling Blvd Buffalo, NY 14220 RDaigler@Zehnder-Rittling.com

Re: Reminder Notice: Site Management Periodic Review Report and IC/EC Certification Submittal

Site Name: Steelfields Area IV Site No.: C915204 Site Address: 100 Rittling Blvd. Buffalo, NY 14220

Dear Robert Daigler:

This letter serves as a reminder that sites in active Site Management (SM) require the submittal of a periodic progress report. This report, referred to as the Periodic Review Report (PRR), must document the implementation of, and compliance with, site-specific SM requirements. Section 6.3(b) of DER-10 *Technical Guidance for Site Investigation and Remediation* (available online at http://www.dec.ny.gov/regulations/67386.html) provides guidance regarding the information that must be included in the PRR. Further, if the site is comprised of multiple parcels, then you as the Certifying Party must arrange to submit one PRR for all parcels that comprise the site. The PRR must be received by the Department no later than **February 14, 2021**. Guidance on the content of a PRR is enclosed.

Site Management is defined in regulation (6 NYCRR 375-1.2(at)) and in Chapter 6 of DER-10. Depending on when the remedial program for your site was completed, SM may be governed by multiple documents (e.g., Operation, Maintenance, and Monitoring Plan; Soil Management Plan) or one comprehensive Site Management Plan.

A Site Management Plan (SMP) may contain one or all of the following elements, as applicable to the site: a plan to maintain institutional controls and/or engineering controls ("IC/EC Plan"); a plan for monitoring the performance and effectiveness of the selected remedy ("Monitoring Plan"); and/or a plan for the operation and maintenance of the selected remedy ("O&M Plan"). Additionally, the technical requirements for SM are stated in the decision document (e.g., Record of Decision) and, in some cases, the legal agreement directing the remediation of the site (e.g., order on consent, voluntary agreement, etc.).

When you submit the PRR (by the due date above), include the enclosed forms documenting that all SM requirements are being met. The Institutional Controls (ICs) portion of the form (Box 6) must be signed by you or your designated representative. The Engineering Controls (ECs) portion of the form (Box 7) must be signed by a Qualified Environmental Professional (QEP). If you cannot certify that all SM requirements are being met, you must submit a Corrective Measures Work Plan that identifies the actions to be taken to restore compliance. The work plan must include a schedule to be approved by the Department. The Periodic Review process will not be considered complete until all necessary corrective measures are completed and all required controls are certified. Instructions for completing the certifications are enclosed

All site-related documents and data, including the PRR, must be submitted in electronic format to the Department of Environmental Conservation. The required format for documents is an Adobe PDF file with optical character recognition and no password protection. Data must be submitted as an electronic data deliverable (EDD) according to the instructions on the following webpage:

https://www.dec.ny.gov/chemical/62440.html

Documents may be submitted to the project manager either through electronic mail or by using the Department's file transfer service at the following webpage:

https://fts.dec.state.ny.us/fts/

The Department will not approve the PRR unless all documents and data generated in support of the PRR have been submitted using the required formats and protocols.

You may contact Megan Kuczka, the Project Manager, at 716-842-2175 or megan.kuczka@dec.ny.gov with any questions or concerns about the site. Please notify the project manager before conducting inspections or field work. You may also write to the project manager at the following address:

New York State Department of Environmental Conservation 270 Michigan Ave

Buffalo, NY 14203-2915

Enclosures

PRR General Guidance Certification Form Instructions Certification Forms

ec: w/ enclosures

Megan Kuczka, Project Manager Andrea Caprio, Hazardous Waste Remediation Supervisor, Region 9

Haley & Aldrich, Inc. - Glenn White - gwhite@HaleyAldrich.com

Enclosure 1

Certification Instructions

I. Verification of Site Details (Box 1 and Box 2):

Answer the three questions in the Verification of Site Details Section. The Owner and/or Qualified Environmental Professional (QEP) may include handwritten changes and/or other supporting documentation, as necessary.

II. Certification of Institutional Controls/ Engineering Controls (IC/ECs)(Boxes 3, 4, and 5)

1.1.1. Review the listed IC/ECs, confirming that all existing controls are listed, and that all existing controls are still applicable. If there is a control that is no longer applicable the Owner / Remedial Party should petition the Department separately to request approval to remove the control.

2. In Box 5, complete certifications for all Plan components, as applicable, by checking the corresponding checkbox.

3. If you <u>cannot</u> certify "YES" for each Control listed in Box 3 & Box 4, sign and date the form in Box 5. Attach supporting documentation that explains why the **Certification** cannot be rendered, as well as a plan of proposed corrective measures, and an associated schedule for completing the corrective measures. Note that this **Certification** form must be submitted even if an IC or EC cannot be certified; however, the certification process will not be considered complete until corrective action is completed.

If the Department concurs with the explanation, the proposed corrective measures, and the proposed schedule, a letter authorizing the implementation of those corrective measures will be issued by the Department's Project Manager. Once the corrective measures are complete, a new Periodic Review Report (with IC/EC Certification) must be submitted within 45 days to the Department. If the Department has any questions or concerns regarding the PRR and/or completion of the IC/EC Certification, the Project Manager will contact you.

III. IC/EC Certification by Signature (Box 6 and Box 7)**:**

If you certified "YES" for each Control, please complete and sign the IC/EC Certifications page as follows:

- For the Institutional Controls on the use of the property, the certification statement in Box 6 shall be completed and may be made by the property owner or designated representative.
- For the Engineering Controls, the certification statement in Box 7 must be completed by a Professional Engineer or Qualified Environmental Professional, as noted on the form.

Enclosure 2 NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form

Sit	e No.	C915204	Site Details	;		Box 1	
Sit	e Name Ste	elfields Area IV					
Cit Co	e Address: 1 y/Town: Buf unty:Erie e Acreage: 3		Zip Code: 14220				
Re	porting Peric	d: January 15, 202	0 to January 15, 202	21			
						YES	NO
1.	Is the inform	nation above correc	t?				
	If NO, inclu	de handwritten abov	ve or on a separate s	sheet.			
2.		or all of the site prop nendment during this		livided, merged, or u	ndergone a		
3.		peen any change of RR 375-1.11(d))?	use at the site during	g this Reporting Perio	bd		
4.		ederal, state, and/or property during this		ouilding, discharge) b	been issued		
				de documentation			
5.	Is the site c	urrently undergoing	development?				
						Box 2	
						YES	NO
6.	Is the curre Industrial	nt site use consister	nt with the use(s) list	ed below?			
7.	Are all ICs i	n place and functior	ning as designed?				
	IF TH			PR 7 IS NO, sign and IS FORM. Otherwise		and	
AC	Corrective M	easures Work Plan	must be submitted a	along with this form	to address t	hese iss	ues.
Sig	nature of Ow	ner, Remedial Party	or Designated Repres	sentative	Date		

				Box 2	Α
				YES	NO
8.		ion revealed that assumptions m g offsite contamination are no lor	nade in the Qualitative Exposure nger valid?		
	If you answered YES that documentation				
9.	 Are the assumptions in the Qualitative Exposure Assessment still valid? (The Qualitative Exposure Assessment must be certified every five years) 				
	-	to question 9, the Periodic Re Exposure Assessment based	-		
SIT	E NO. C915204			Box	<i>,</i> 2
				507	
	Description of Institut	tional Controls		507	
Parce		t ional Controls <u>Owner</u> Hydro-Air Components, Inc.	Institutional Contro		

i) until the remedial goals for the Controlled Property are attained or deemed complete by the Department, the Department-approved Site Management Plan (SMP) for the implemented remedy must be adhered to.

ii) a soil cover system and vegetation in accordance with the Soil/Fill Management Plan in the SMP shall be maintained over undeveloped portions of the Controlled Property.

iii) an active subslab depressurization system (ASD) to eliminate potential soil vapor intrusion shall be installed, operated and maintained in all new buildings and building additions in accordance with the standards and procedures specified in the SMP, and the ASD already installed in the existing building shall continue to be operated and maintained in accordance with the SMP, unless the Department determines that the ASD is not necessary based on the results of a Department-approved evaluation of potential sub-slab vapor impacts.

iv) the groundwater beneath the Controlled Property cannot be used as a potable water source or for any other use without prior written permission of the Department.

v) groundwater monitoring in accordance with the SMP shall continue until the Department determines that continued monitoring is unnecessary.

vi) the in-situ treatment of residual contamination in native soils using oxygen release compounds (ORC) shall be maintained and monitored in accordance with the SMP until the Department determines that continued maintenance and monitoring of ORC is unnecessary.

vii) in areas of the Controlled Property with known groundwater impacts, storm water injection (drywells) will be prohibited and storm water conveyance pipes will be required to have gasketed joints for water tightness to prevent the infiltration of impacted groundwater into the collection system.

Box 4

Description of Engineering Controls

	<u>Cel</u> <u>Engineering Control</u>		
13	2.12-1-9.121 Cover System Vapor Mitigation		
			Box 5
	Periodic Review Report (PRR) Certification Statements		
1.	I certify by checking "YES" below that:		
	a) the Periodic Review report and all attachments were prepared under the direction reviewed by, the party making the Engineering Control certification;	of,	and
	b) to the best of my knowledge and belief, the work and conclusions described in this are in accordance with the requirements of the site remedial program, and generally engineering practices; and the information presented is accurate and compete.		
	YE	5	NO
2.	For each Engineering control listed in Box 4, I certify by checking "YES" below that all of the following statements are true:	9	
	(a) The Engineering Control(s) employed at this site is unchanged since the date that the Control was put in-place, or was last approved by the Department of the date that the Control was put in-place.	ent	,
	(b) nothing has occurred that would impair the ability of such Control, to protect publi the environment;	c he	ealth and
	(c) access to the site will continue to be provided to the Department, to evaluate the remedy, including access to evaluate the continued maintenance of this Control;		
	(d) nothing has occurred that would constitute a violation or failure to comply with the Site Management Plan for this Control; and	•	
	(e) if a financial assurance mechanism is required by the oversight document for the mechanism remains valid and sufficient for its intended purpose established in the do		
	YES	5	NO
	IF THE ANSWER TO QUESTION 2 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.		
	A Corrective Measures Work Plan must be submitted along with this form to address these	iss	ues.
-	Signature of Owner, Remedial Party or Designated Representative Date	-	

IC CERTIFICATIONS SITE NO. C915204

Box 6

SITE OWNER OR DESIGNATED REPRESENTATIVE SIGNATURE

I certify that all information and statements in Boxes 1,2, and 3 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

۱at	
print name	print business address
am certifying as	(Owner or Remedial Party)
for the Site named in the Site Details Section of t	his form.
Signature of Owner, Remedial Party, or Designal Rendering Certification	ted Representative Date

	EC CERTIFICAT		
Qualified	Environmental Pro	fessional Signature	Box 7
certify that all information in Boxes 4 unishable as a Class "A" misdemear			
	at		,
print name	prin	business address	
print name		or the	
	ental Professional f	or the	

Enclosure 3 Periodic Review Report (PRR) General Guidance

- I. Executive Summary: (1/2-page or less)
 - A. Provide a brief summary of site, nature and extent of contamination, and remedial history.
 - B. Effectiveness of the Remedial Program Provide overall conclusions regarding;
 - 1. progress made during the reporting period toward meeting the remedial objectives for the site
 - 2. the ultimate ability of the remedial program to achieve the remedial objectives for the site.
 - C. Compliance
 - 1. Identify any areas of non-compliance regarding the major elements of the Site Management Plan (SMP, i.e., the Institutional/Engineering Control (IC/EC) Plan, the Monitoring Plan, and the Operation & Maintenance (O&M) Plan).
 - 2. Propose steps to be taken and a schedule to correct any areas of non-compliance.
 - D. Recommendations
 - 1. recommend whether any changes to the SMP are needed
 - 2. recommend any changes to the frequency for submittal of PRRs (increase, decrease)
 - 3. recommend whether the requirements for discontinuing site management have been met.
- II. Site Overview (one page or less)
 - A. Describe the site location, boundaries (figure), significant features, surrounding area, and the nature
- and extent of contamination prior to site remediation.
 - B. Describe the chronology of the main features of the remedial program for the site, the components of the selected remedy, cleanup goals, site closure criteria, and any significant changes to the selected remedy that have been made since remedy selection.
- III. Evaluate Remedy Performance, Effectiveness, and Protectiveness

Using tables, graphs, charts and bulleted text to the extent practicable, describe the effectiveness of the remedy in achieving the remedial goals for the site. Base findings, recommendations, and conclusions on objective data. Evaluations and should be presented simply and concisely.

- IV. IC/EC Plan Compliance Report (if applicable)
 - A. IC/EC Requirements and Compliance
 - 1. Describe each control, its objective, and how performance of the control is evaluated.
 - 2. Summarize the status of each goal (whether it is fully in place and its effectiveness).
 - 3. Corrective Measures: describe steps proposed to address any deficiencies in ICECs.
 - 4. Conclusions and recommendations for changes.
 - B. IC/EC Certification
 - 1. The certification must be complete (even if there are IC/EC deficiencies), and certified by the appropriate party as set forth in a Department-approved certification form(s).
- V. Monitoring Plan Compliance Report (if applicable)
 - A. Components of the Monitoring Plan (tabular presentations preferred) Describe the requirements of the monitoring plan by media (i.e., soil, groundwater, sediment, etc.) and by any remedial technologies being used at the site.
 - B. Summary of Monitoring Completed During Reporting Period Describe the monitoring tasks actually completed during this PRR reporting period. Tables and/or figures should be used to show all data.
 - C. Comparisons with Remedial Objectives Compare the results of all monitoring with the remedial objectives for the site. Include trend analyses where possible.
 - D. Monitoring Deficiencies Describe any ways in which monitoring did not fully comply with the monitoring plan.
 - E. Conclusions and Recommendations for Changes Provide overall conclusions regarding the monitoring completed and the resulting evaluations regarding remedial effectiveness.
- VI. Operation & Maintenance (O&M) Plan Compliance Report (if applicable)
 - A. Components of O&M Plan Describe the requirements of the O&M plan including required activities, frequencies, recordkeeping, etc.
 - B. Summary of O&M Completed During Reporting Period Describe the O&M tasks actually completed during this PRR reporting period.
 - C. Evaluation of Remedial Systems Based upon the results of the O&M activities completed, evaluated

the ability of each component of the remedy subject to O&M requirements to perform as designed/expected.

- D. O&M Deficiencies Identify any deficiencies in complying with the O&M plan during this PRR reporting period.
- E. Conclusions and Recommendations for Improvements Provide an overall conclusion regarding O&M for the site and identify any suggested improvements requiring changes in the O&M Plan.
- VII. Overall PRR Conclusions and Recommendations
 - A. Compliance with SMP For each component of the SMP (i.e., IC/EC, monitoring, O&M), summarize;
 - 1. whether all requirements of each plan were met during the reporting period
 - 2. any requirements not met
 - 3. proposed plans and a schedule for coming into full compliance.
 - B. Performance and Effectiveness of the Remedy Based upon your evaluation of the components of the SMP, form conclusions about the performance of each component and the ability of the remedy to achieve the remedial objectives for the site.
 - C. Future PRR Submittals
 - 1. Recommend, with supporting justification, whether the frequency of the submittal of PRRs should be changed (either increased or decreased).
 - 2. If the requirements for site closure have been achieved, contact the Departments Project Manager for the site to determine what, if any, additional documentation is needed to support a decision to discontinue site management.

VIII. Additional Guidance

Additional guidance regarding the preparation and submittal of an acceptable PRR can be obtained from the Departments Project Manager for the site.

From:	Kuczka, Megan E (DEC)
То:	White, Glenn
Cc:	Daigler, Robert (ZRI) (rdaigler@zehnder-rittling.com); Panfil, Ryan (ZRI); Nichols, Andrew; Barto, Dale (ZRI)
Subject:	Re: Steelfields Area IV (C915204)
Date:	Wednesday, March 24, 2021 12:38:30 PM
Attachments:	image001.png
	image002.png
	Outlook-pav24igs.png

CAUTION: External Email

Glenn -

Thank you for submitting an Import Request for the 2" crusher run. The material is acceptable for use at Steelfields Area IV.

Sincerely,

Megan Kuczka

Environmental Program Specialist 1, Division of Environmental Remediation

New York State Department of Environmental Conservation

270 Michigan Avenue, Buffalo, NY 14203 P: (716) 851-7220 | F: (716) 851-7226 | <u>Megan.Kuczka@dec.ny.gov</u>

www.dec.ny.gov | 🖭 | 🖭 |

From: White, Glenn <GWhite@haleyaldrich.com>
Sent: Wednesday, March 24, 2021 12:23 PM
To: Kuczka, Megan E (DEC) <Megan.Kuczka@dec.ny.gov>
Cc: Daigler, Robert (ZRI) (rdaigler@zehnder-rittling.com) <rdaigler@zehnder-rittling.com>; Panfil,
Ryan (ZRI) <rpanfil@zehnder-rittling.com>; anichols@haleyaldrich.com
<anichols@haleyaldrich.com>; Barto, Dale (ZRI) <dbarto@zehnder-rittling.com>
Subject: RE: Steelfields Area IV (C915204)

ATTENTION: This email came from an external source. Do not open attachments or click on links from unknown senders or unexpected emails.

Megan,

As requested, and on behalf of Zender Rittling (HydroAir), please find attached the import material request form. The facility plans to import 17 cy of #2 crushed limestone for use on its existing access road.

We look forward to your approval.

Regards, Glenn

Glenn M. White, CHMM Haley & Aldrich Tel: 585.321.4239 Fax: 585.359.4650 gwhite@HaleyAldrich.com

From: Kuczka, Megan E (DEC) <Megan.Kuczka@dec.ny.gov>
Sent: Wednesday, March 24, 2021 10:31 AM
To: White, Glenn <GWhite@haleyaldrich.com>
Cc: Daigler, Robert (ZRI) (rdaigler@zehnder-rittling.com) <rdaigler@zehnder-rittling.com>; Panfil, Ryan (ZRI) <rpanfil@zehnder-rittling.com>; Nichols, Andrew <ANichols@haleyaldrich.com>; Barto, Dale (ZRI) <dbarto@zehnder-rittling.com>
Subject: Re: Steelfields Area IV (C915204)

CAUTION: External Email

Glenn -

Yes, this material will be acceptable. As you stated, please fill out an Import Request Form and I can issue an official approval.

Sincerely,

Megan Kuczka

Environmental Program Specialist 1, Division of Environmental Remediation

New York State Department of Environmental Conservation

270 Michigan Avenue, Buffalo, NY 14203 P: (716) 851-7220 | F: (716) 851-7226 | <u>Megan.Kuczka@dec.ny.gov</u>

From: White, Glenn <<u>GWhite@haleyaldrich.com</u>>
Sent: Wednesday, March 24, 2021 10:27 AM
To: Kuczka, Megan E (DEC) <<u>Megan.Kuczka@dec.ny.gov</u>>
Cc: Daigler, Robert (ZRI) (<u>rdaigler@zehnder-rittling.com</u>) <<u>rdaigler@zehnder-rittling.com</u>>; Panfil,
Ryan (ZRI) <<u>rpanfil@zehnder-rittling.com</u>>; anichols@haleyaldrich.com
<<u>anichols@haleyaldrich.com</u>>; Barto, Dale (ZRI) <<u>dbarto@zehnder-rittling.com</u>>
Subject: RE: Steelfields Area IV (C915204)

Good morning Megan,

Zender is planning to purchase 17 yards of #2 crushed limestone. Please see attached sieve analysis. Although it is not definitive that less than 10% by weight passes the #80 sieve, will this material be acceptable. It is a virgin crushed rock product from a permitted mine.

Let us know and then we can fill out the form.

Thanks Glenn

Glenn M. White, CHMM Haley & Aldrich Tel: 585.321.4239 Fax: 585.359.4650 gwhite@HaleyAldrich.com

From: Kuczka, Megan E (DEC) <<u>Megan.Kuczka@dec.ny.gov</u>>
Sent: Friday, March 19, 2021 11:16 AM
To: White, Glenn <<u>GWhite@haleyaldrich.com</u>>
Cc: Daigler, Robert (ZRI) (<u>rdaigler@zehnder-rittling.com</u>) <<u>rdaigler@zehnder-rittling.com</u>>; Panfil,
Ryan (ZRI) <<u>rpanfil@zehnder-rittling.com</u>>; Nichols, Andrew <<u>ANichols@haleyaldrich.com</u>>; Barto,
Dale (ZRI) <<u>dbarto@zehnder-rittling.com</u>>; Subject: Re: Steelfields Area IV (C915204)

CAUTION: External Email

Glenn -

The PRR submittal date can be extended to April 30th. As stated previously, please make sure to submit an Import Request Form, prior to bringing any materials onsite.

Sincerely,

Megan Kuczka Environmental Program Specialist 1, Division of Environmental Remediation

New York State Department of Environmental Conservation 270 Michigan Avenue, Buffalo, NY 14203 P: (716) 851-7220 | F: (716) 851-7226 | Megan.Kuczka@dec.ny.gov

Department of Environmental Conservation From: White, Glenn <<u>GWhite@haleyaldrich.com</u>>
Sent: Friday, March 19, 2021 10:28 AM
To: Kuczka, Megan E (DEC) <<u>Megan.Kuczka@dec.ny.gov</u>>
Cc: Daigler, Robert (ZRI) (<u>rdaigler@zehnder-rittling.com</u>) <<u>rdaigler@zehnder-rittling.com</u>>; Panfil,
Ryan (ZRI) <<u>rpanfil@zehnder-rittling.com</u>>; anichols@haleyaldrich.com
<<u>anichols@haleyaldrich.com</u>>; Barto, Dale (ZRI) <<u>dbarto@zehnder-rittling.com</u>>
Subject: RE: Steelfields Area IV (C915204)

ATTENTION: This email came from an external source. Do not open attachments or click on links from unknown senders or unexpected emails.

Good morning Megan,

Zender Rittling anticipates placement of additional stone and regrading the surface of the road within the next 4 weeks. Could you extend the deadline for PRR submittal until the April 30 to accommodate completion of this work?

There is currently no standing water in the area which is good news given the freeze/thaw over the last weeks.

Please let us know if you have any questions or concerns.

Thank you, Glenn

Glenn M. White, CHMM Haley & Aldrich Tel: 585.321.4239 Fax: 585.359.4650 gwhite@HaleyAldrich.com

From: Kuczka, Megan E (DEC) <<u>Megan.Kuczka@dec.ny.gov</u>>
Sent: Friday, January 29, 2021 10:56 AM
To: White, Glenn <<u>GWhite@haleyaldrich.com</u>>
Cc: Daigler, Robert (ZRI) (<u>rdaigler@zehnder-rittling.com</u>) <<u>rdaigler@zehnder-rittling.com</u>>; Panfil,
Ryan (ZRI) <<u>rpanfil@zehnder-rittling.com</u>>; Nichols, Andrew <<u>ANichols@haleyaldrich.com</u>>
Subject: Re: Steelfields Area IV (C915204)

CAUTION: External Email

Glenn -

Also please remember to submit an Import Request Form for the gravel, prior to bringing it onsite.

Sincerely,

Megan Kuczka

Environmental Program Specialist 1, Division of Environmental Remediation

New York State Department of Environmental Conservation

270 Michigan Avenue, Buffalo, NY 14203

P: (716) 851-7220 | F: (716) 851-7226 | Megan.Kuczka@dec.ny.gov

From: White, Glenn <<u>GWhite@haleyaldrich.com</u>>
Sent: Tuesday, January 26, 2021 10:48 AM
To: Kuczka, Megan E (DEC) <<u>Megan.Kuczka@dec.ny.gov</u>>
Cc: Daigler, Robert (ZRI) (<u>rdaigler@zehnder-rittling.com</u>) <<u>rdaigler@zehnder-rittling.com</u>>; Panfil,
Ryan (ZRI) <<u>rpanfil@zehnder-rittling.com</u>>; <u>anichols@haleyaldrich.com</u>
<<u>anichols@haleyaldrich.com</u>>
Subject: RE: Steelfields Area IV (C915204)

ATTENTION: This email came from an external source. Do not open attachments or click on links from unknown senders or unexpected emails.

Megan, thank you.

Glenn M. White, CHMM Haley & Aldrich Tel: 585.321.4239 Fax: 585.359.4650 gwhite@HaleyAldrich.com

From: Kuczka, Megan E (DEC) <<u>Megan.Kuczka@dec.ny.gov</u>>
Sent: Tuesday, January 26, 2021 8:11 AM
To: White, Glenn <<u>GWhite@haleyaldrich.com</u>>
Cc: Daigler, Robert (ZRI) (<u>rdaigler@zehnder-rittling.com</u>) <<u>rdaigler@zehnder-rittling.com</u>>; Panfil,
Ryan (ZRI) <<u>rpanfil@zehnder-rittling.com</u>>; Nichols, Andrew <<u>ANichols@haleyaldrich.com</u>>
Subject: Re: Steelfields Area IV (C915204)

CAUTION: External Email

Glenn -

Thank you for reaching out regarding the groundwater discharge onsite and the need for a PRR extension. Please plan on submitting the PRR by March 31, 2021 and extend the Certifying Period on the IC-EC Certificate. If weather does not allow for the stone to be placed

by the end of March, please let me know.

Sincerely,

Megan Kuczka

Environmental Program Specialist 1, Division of Environmental Remediation

New York State Department of Environmental Conservation

270 Michigan Avenue, Buffalo, NY 14203 P: (716) 851-7220 | F: (716) 851-7226 | <u>Megan.Kuczka@dec.ny.gov</u>

From: White, Glenn <<u>GWhite@haleyaldrich.com</u>>
Sent: Monday, January 25, 2021 4:21 PM
To: Kuczka, Megan E (DEC) <<u>Megan.Kuczka@dec.ny.gov</u>>
Cc: Daigler, Robert (ZRI) (<u>rdaigler@zehnder-rittling.com</u>) <<u>rdaigler@zehnder-rittling.com</u>>; Panfil,
Ryan (ZRI) <<u>rpanfil@zehnder-rittling.com</u>>; <u>anichols@haleyaldrich.com</u>
<<u>anichols@haleyaldrich.com</u>>
Subject: Steelfields Area IV (C915204)

ATTENTION: This email came from an external source. Do not open attachments or click on links from unknown senders or unexpected emails.

Megan,

As we discussed this afternoon, on behalf of Hydro Air Components, we respectfully request an extension to complete the PRR currently due on February 14, 2021.

The extension will provide enough time to remedy a current and temporary condition that would otherwise prevent certification that the site cover is protective. Placement of additional crushed stone onto the access road along the north side of the building and associated regrading is necessary to prevent contact with groundwater discharging at the toe of slope between the subject property and the property to the north. The groundwater is suspected to have high pH evidenced by the white flocculent that has accumulated on the road. We anticipate that this condition is seasonal and related to snow melt/localized groundwater recharge. This same condition has been successfully addressed in the past at this site by adding more stone, however, adding stone under the current freeze/thaw conditions is not recommended. We anticipate the stone and regrading can be accomplished during March 2021. Hydro Air Components has agreed to block-off the road until the condition can be remedied.

Please let me know if you have any questions or concerns.

Regards, Glenn

Glenn M. White, CHMM Associate Haley & Aldrich 200 Town Centre Drive | Suite 2 Rochester, NY 14623

T: (585) 321.4239 C: (585) 370.2412

www.haleyaldrich.com

Glenn M. White, CHMM Haley & Aldrich Tel: 585.321.4239 Fax: 585.359.4650 gwhite@HaleyAldrich.com

From: Kuczka, Megan E (DEC) <Megan.Kuczka@dec.ny.gov>
Sent: Monday, November 23, 2020 12:45 PM
To: White, Glenn <GWhite@haleyaldrich.com>; Melnyk, Eugene W (DEC)
<eugene.melnyk@dec.ny.gov>
Cc: James, Renjit P. (DOT) <Renjit.James@dot.ny.gov>; McKenna, Santa
<SMcKenna@haleyaldrich.com>
Subject: Re: Buffalo Skyway - Tire rut repair on HydroAir Site

CAUTION: External Email

Glenn -

You are referring to the Steelfields Area IV (C915204) site correct? If yes, the topsoil is approved for use onsite. Please note the rutting and restoration in the upcoming PRR.

Sincerely,

Megan Kuczka

Environmental Program Specialist 1, Division of Environmental Remediation

New York State Department of Environmental Conservation

270 Michigan Avenue, Buffalo, NY 14203

P: (716) 851-7220 | F: (716) 851-7226 | Megan.Kuczka@dec.ny.gov

From: White, Glenn <<u>GWhite@haleyaldrich.com</u>>
Sent: Monday, November 23, 2020 12:10 PM
To: Melnyk, Eugene W (DEC) <<u>eugene.melnyk@dec.ny.gov</u>>; Kuczka, Megan E (DEC)
<<u>Megan.Kuczka@dec.ny.gov</u>>
Cc: James, Renjit P. (DOT) <<u>Renjit.James@dot.ny.gov</u>>; McKenna, Santa
<<u>SMcKenna@haleyaldrich.com</u>>
Subject: Buffalo Skyway - Tire rut repair on HydroAir Site

ATTENTION: This email came from an external source. Do not open attachments or click on links from unknown senders or unexpected emails.

Good morning Gene,

During our work on the Buffalo Skyway project, we were most recently using a CPT rig on the HydroAir property. The CPT is a bit heavier than a regular HSA rig and that resulted in tire ruts in the 1-foot cover on the site. We are planning to repair the ruts next week by filling them in with topsoil. We plan to purchase 15 yards of soil from JF Krantz. Nature Way Environmental will be placing the soil. The soil has already been tested and approved by the DEC for another site; see attached. There is still enough quantity remaining in that stockpile to complete the work at HydroAir.

Haley & Aldrich is requesting DEC's approval to use the topsoil represented by the attached to fill the ruts on the HydroAir Site.

Please let me know if you have any questions.

Thank you, Glenn

Glenn M. White, CHMM Associate | Senior Project Manager Scientist

Haley & Aldrich 200 Town Centre Drive | Suite 2 Rochester, NY 14623

T: (585) 321.4239 C: (585) 370.2412

www.haleyaldrich.com

<u>NEW YORK STATE</u> <u>DEPARTMENT OF ENVIRONMENTAL CONSERVATION</u>

Request to Import/Reuse Fill or Soil

This form is based on the information required by DER-10. Section 5.4(e). Use of this form is not a substitute for reading the applicable Technical Guidance document.

SECTION 1 – SITE BACKGROUND						
The allowable site use is: Commercial or Industrial Use						
Have Ecological Resources been identified? no						
Is this soil originating from the site? no						
How many cubic yards of soil will be imported/reused? 50-80	n =					
If greater than 1000 cubic yards will be imported, enter volume to be imported:						

SECTION 2 – MATERIAL OTHER THAN SOIL

Is the material to be imported gravel, rock or stone?	yes TOPSOIL
Does it contain less than 10%, by weight, material that	it would pass a size 80 sieve? NO
Is this virgin material from a permitted mine or quarr	y? [no]
Is this material recycled concrete or brick from a DEC	C registered processing facility? no

SECTION 3 - SAMPLING

Provide a brief description of the number and type of samples collected in the space

below: see attached: antithetical testing per DER/PFAS

Example Text: 5 discrete samples were collected and analyzed for VOCs. 2 composite samples were collected and analyzed for SVOCs, Inorganics & PCBs/Pesticides.

If the material meets requirements of DER-10 section 5.5 (other material), no chemical testing needed.

SECTION 3 CONT'D - SAMPLING

Provide a brief written summary of the sampling results or attach evaluation tables (compare to DER-10, Appendix 5):

See attached soil results, ZERO OUTLIERS

Topsoil from JF Krantz Stockpile #1 is Clean!

We are bringing in Native Topsoil sourced from land stripping / Grubbing for a sub division in the WNY area.

Example Text: Arsenic was detected up to 17 ppm in 1 (of 5) samples; the allowable level is 16 ppm.

If Ecological Resources have been identified use the "If Ecological Resources are Present" column in Appendix 5.

SECTION 4 – SOURCE OF FILL

Name of person providing fill and relationship to the source:

JF Krantz

Location where fill was obtained:

Clarance NY

Identification of any state or local approvals as a fill source:

If no approvals are available, provide a brief history of the use of the property that is the fill source:

Vacant Farm Land

Provide a list of supporting documentation included with this request:

See attached summary

Revised August 2014

The information provided on this form is accurate and complete.

1/28/20 Date

Signature Brice Recd Print Name NW Contractions DBA Firm Natures Way Environmental

Client:	NWEC&	<u>C</u>			
Project Reference:	20-179				
Sample Identifier:	,	ntz Stock Pile #1		Data Camuladi	10/15/2020
Lab Sample ID:	204965 Socil	5-01		Date Sampled:	10/15/2020
Matrix:	Soil			Date Received:	10/15/2020
<u>Metals</u>					
<u>Analyte</u>		<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
Arsenic		3.48	mg/Kg		10/19/2020 11:05
Barium		74.7	mg/Kg		10/19/2020 11:05
Beryllium		0.275	mg/Kg		10/19/2020 11:05
Cadmium		0.794	mg/Kg		10/19/2020 13:02
Chromium		16.4	mg/Kg		10/19/2020 11:05
Copper		13.1	mg/Kg		10/19/2020 11:05
Lead		24.6	mg/Kg		10/19/2020 11:05
Manganese		427	mg/Kg		10/19/2020 11:05
Nickel		14.7	mg/Kg		10/19/2020 11:05
Selenium		2.35	mg/Kg		10/19/2020 11:05
Silver		< 0.519	mg/Kg		10/19/2020 11:05
Zinc		104	mg/Kg		10/19/2020 11:05
Method Referen		EPA 6010C EPA 3050B			
Preparation Da Data File:	te:	10/16/2020 201019B			

Client:	<u>NWEC&</u>	<u>•C</u>					
Project Reference:	20-179						
Sample Identifier:	JF Krai	ntz Stock Pile #1					
Lab Sample ID:	20496	5-01		Dat	e Sampled:	10/15/2020)
Matrix:	Soil			Dat	e Received:	10/15/2020)
<u>PCBs</u>							
Analyte		Result	<u>Units</u>		Qualifier	Date Analy	vzed
PCB-1016		< 0.0304	mg/Kg			10/16/2020	10:37
PCB-1221		< 0.0304	mg/Kg			10/16/2020	10:37
PCB-1232		< 0.0304	mg/Kg			10/16/2020	10:37
PCB-1242		< 0.0304	mg/Kg			10/16/2020	10:37
PCB-1248		< 0.0304	mg/Kg			10/16/2020	10:37
PCB-1254		< 0.0304	mg/Kg			10/16/2020	10:37
PCB-1260		< 0.0304	mg/Kg			10/16/2020	10:37
PCB-1262		< 0.0304	mg/Kg			10/16/2020	10:37
PCB-1268		< 0.0304	mg/Kg			10/16/2020	10:37
<u>Surrogate</u>		Perc	ent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Analy	zed
Tetrachloro-m-xylene			38.1	15.1 - 91		10/16/2020	10:37
Method Referen	ce(s):	EPA 8082A					
Preparation Dat	e:	EPA 3546 10/16/2020					

Client:	NWEC&C				
Project Reference:	20-179				
Sample Identifier: Lab Sample ID: Matrix:	JF Krantz Sto 204965-01 Soil	ck Pile #1		Date Sampled: Date Received:	10/15/2020 10/15/2020
Chlorinated Pesti	<u>cides</u>				
Analyte		<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
4,4-DDD		< 3.04	ug/Kg		10/16/2020 10:56
4,4-DDE		< 3.04	ug/Kg		10/16/2020 10:56
4,4-DDT		< 3.04	ug/Kg		10/16/2020 10:56
Aldrin		< 3.04	ug/Kg		10/16/2020 10:56
alpha-BHC		< 3.04	ug/Kg		10/16/2020 10:56
beta-BHC		< 3.04	ug/Kg		10/16/2020 10:56
cis-Chlordane		< 3.04	ug/Kg		10/16/2020 10:56
delta-BHC		< 3.04	ug/Kg		10/16/2020 10:56
Dieldrin		11.1	ug/Kg		10/16/2020 10:56
Endosulfan I		< 3.04	ug/Kg		10/16/2020 10:56
Endosulfan II		< 3.04	ug/Kg		10/16/2020 10:56
Endosulfan Sulfate		< 3.04	ug/Kg		10/16/2020 10:56
Endrin		< 3.04	ug/Kg		10/16/2020 10:56
Endrin Aldehyde		< 3.04	ug/Kg		10/16/2020 10:56
Endrin Ketone		< 3.04	ug/Kg		10/16/2020 10:56
gamma-BHC (Lindane))	< 3.04	ug/Kg		10/16/2020 10:56
Heptachlor		< 3.04	ug/Kg		10/16/2020 10:56
Heptachlor Epoxide		< 3.04	ug/Kg		10/16/2020 10:56
Methoxychlor		2.78	ug/Kg	J	10/16/2020 10:56
Toxaphene		< 30.4	ug/Kg		10/16/2020 10:56
trans-Chlordane		< 3.04	ug/Kg		10/16/2020 10:56

Client:	<u>NWEC&C</u>					
Project Reference:	20-179					
Sample Identifier:	JF Krantz Stock P	ile #1				
Lab Sample ID:	204965-01		Date	e Sampled:	10/15/2020)
Matrix:	Soil		Date	e Received:	10/15/2020)
<u>Surrogate</u>		Percent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Analy	zed
Decachlorobiphenyl (1	.)	45.7	16.8 - 119		10/16/2020	10:56
Tetrachloro-m-xylene	(1)	39.1	20.8 - 112		10/16/2020	10:56
Method Referen	EPA 3546					
Preparation Dat	e: 10/16/2020					

10/16/2020 17:08

10/16/2020 17:08

10/16/2020 17:08

10/16/2020 17:08

10/16/2020 17:08

10/16/2020 17:08

				245110,000121	201900
Client:	<u>NWEC&C</u>				
Project Reference:	20-179				
Sample Identifier:	JF Krantz St	cock Pile #1			
Lab Sample ID:	204965-01			Date Sampled:	10/15/2020
Matrix:	Soil			Date Received:	10/15/2020
Semi-Volatile Org	ganics (Acid/B	ase Neutrals)		
<u>Analyte</u>		<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
1,1-Biphenyl		< 301	ug/Kg		10/16/2020 17:08
1,2,4,5-Tetrachlorobe	enzene	< 301	ug/Kg		10/16/2020 17:08
1,2,4-Trichlorobenze	ne	< 301	ug/Kg		10/16/2020 17:08
1,2-Dichlorobenzene		< 301	ug/Kg		10/16/2020 17:08
1,3-Dichlorobenzene		< 301	ug/Kg		10/16/2020 17:08
1,4-Dichlorobenzene		< 301	ug/Kg		10/16/2020 17:08
2,2-0xybis (1-chloro	propane)	< 301	ug/Kg		10/16/2020 17:08
2,3,4,6-Tetrachloropl	henol	< 301	ug/Kg		10/16/2020 17:08
2,4,5-Trichlorophenc	bl	< 301	ug/Kg		10/16/2020 17:08
2,4,6-Trichlorophenc	ol	< 301	ug/Kg		10/16/2020 17:08
2,4-Dichlorophenol		< 301	ug/Kg		10/16/2020 17:08
2,4-Dimethylphenol		< 301	ug/Kg		10/16/2020 17:08
2,4-Dinitrophenol		< 1200	ug/Kg		10/16/2020 17:08
2,4-Dinitrotoluene		< 301	ug/Kg		10/16/2020 17:08

2-Nitrophenol	< 301	ug/Kg	10/16/2020 17:08
3&4-Methylphenol	356	ug/Kg	10/16/2020 17:08
3,3'-Dichlorobenzidine	< 301	ug/Kg	10/16/2020 17:08

ug/Kg

ug/Kg

ug/Kg

ug/Kg

ug/Kg

ug/Kg

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

< 301

< 301

< 301

< 301

< 301

< 301

2,6-Dinitrotoluene

2-Chlorophenol

2-Methylphenol

2-Nitroaniline

2-Chloronaphthalene

2-Methylnapthalene

Client:	NWEC&C				
Project Reference:	20-179				
Sample Identifier:	JF Krantz Sto	ock Pile #1			
Lab Sample ID:	204965-01			Date Sampled:	10/15/2020
Matrix:	Soil			Date Received:	10/15/2020
3-Nitroaniline		< 301	ug/Kg		10/16/2020 17:08
4,6-Dinitro-2-methylp	ohenol	< 602	ug/Kg		10/16/2020 17:08
4-Bromophenyl pheny	yl ether	< 301	ug/Kg		10/16/2020 17:08
4-Chloro-3-methylph	enol	< 301	ug/Kg		10/16/2020 17:08
4-Chloroaniline		< 301	ug/Kg		10/16/2020 17:08
4-Chlorophenyl pheny	yl ether	< 301	ug/Kg		10/16/2020 17:08
4-Nitroaniline		< 301	ug/Kg		10/16/2020 17:08
4-Nitrophenol		< 301	ug/Kg		10/16/2020 17:08
Acenaphthene		< 301	ug/Kg		10/16/2020 17:08
Acenaphthylene		< 301	ug/Kg		10/16/2020 17:08
Acetophenone		< 301	ug/Kg		10/16/2020 17:08
Anthracene		< 301	ug/Kg		10/16/2020 17:08
Atrazine		< 301	ug/Kg		10/16/2020 17:08
Benzaldehyde		< 301	ug/Kg		10/16/2020 17:08
Benzo (a) anthracene		< 301	ug/Kg		10/16/2020 17:08
Benzo (a) pyrene		< 301	ug/Kg		10/16/2020 17:08
Benzo (b) fluoranther	ıe	< 301	ug/Kg		10/16/2020 17:08
Benzo (g,h,i) perylene)	< 301	ug/Kg		10/16/2020 17:08
Benzo (k) fluoranther	ie	< 301	ug/Kg		10/16/2020 17:08
Bis (2-chloroethoxy)	methane	< 301	ug/Kg		10/16/2020 17:08
Bis (2-chloroethyl) et	her	< 301	ug/Kg		10/16/2020 17:08
Bis (2-ethylhexyl) pht	thalate	< 301	ug/Kg		10/16/2020 17:08
Butylbenzylphthalate		< 301	ug/Kg		10/16/2020 17:08
Caprolactam		< 301	ug/Kg		10/16/2020 17:08
Carbazole		< 301	ug/Kg		10/16/2020 17:08

Client:	<u>NWEC&C</u>				
Project Reference:	20-179				
Sample Identifier:	JF Krantz Sto	ck Pile #1			
Lab Sample ID:	204965-01			Date Sampled:	10/15/2020
Matrix:	Soil			Date Received:	10/15/2020
Chrysene		< 301	ug/Kg		10/16/2020 17:08
Dibenz (a,h) anthracen	ie	< 301	ug/Kg		10/16/2020 17:08
Dibenzofuran		< 301	ug/Kg		10/16/2020 17:08
Diethyl phthalate		< 301	ug/Kg		10/16/2020 17:08
Dimethyl phthalate		< 301	ug/Kg		10/16/2020 17:08
Di-n-butyl phthalate		< 301	ug/Kg		10/16/2020 17:08
Di-n-octylphthalate		< 301	ug/Kg		10/16/2020 17:08
Fluoranthene		266	ug/Kg	J	10/16/2020 17:08
Fluorene		< 301	ug/Kg		10/16/2020 17:08
Hexachlorobenzene		< 301	ug/Kg		10/16/2020 17:08
Hexachlorobutadiene		< 301	ug/Kg		10/16/2020 17:08
Hexachlorocyclopenta	diene	< 1200	ug/Kg		10/16/2020 17:08
Hexachloroethane		< 301	ug/Kg		10/16/2020 17:08
Indeno (1,2,3-cd) pyre	ne	< 301	ug/Kg		10/16/2020 17:08
Isophorone		< 301	ug/Kg		10/16/2020 17:08
Naphthalene		< 301	ug/Kg		10/16/2020 17:08
Nitrobenzene		< 301	ug/Kg		10/16/2020 17:08
N-Nitroso-di-n-propyla	amine	< 301	ug/Kg		10/16/2020 17:08
N-Nitrosodiphenylami	ne	< 301	ug/Kg		10/16/2020 17:08
Pentachlorophenol		< 602	ug/Kg		10/16/2020 17:08
Phenanthrene		< 301	ug/Kg		10/16/2020 17:08
Phenol		< 301	ug/Kg		10/16/2020 17:08
Pyrene		234	ug/Kg	J	10/16/2020 17:08

Client:	NWEC&C						
Project Reference:	20-179						
Sample Identifier: JF Krantz Stock P		Pile #1					
Lab Sample ID:	204965-01		Dat	e Sampled:	10/15/2020		
Matrix:	Soil		Dat	e Received:	10/15/2020		
<u>Surrogate</u>		Percent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Analy	zed	
2,4,6-Tribromopheno	l	57.3	40.1 - 84.5		10/16/2020	17:08	
2-Fluorobiphenyl		57.7	43.3 - 79.9		10/16/2020	17:08	
2-Fluorophenol		55.6	42.4 - 75.9		10/16/2020	17:08	
Nitrobenzene-d5		59.9	39.8 - 77.5		10/16/2020	17:08	
Phenol-d5		56.3	43 - 78.8		10/16/2020	17:08	
Terphenyl-d14		63.5	43.1 - 87.7		10/16/2020	17:08	
Method Referer Preparation Da	EPA 3546 te: 10/16/2020						
Data File:	B50116.D						

Client:	NWEC&C				
Project Reference:	20-179				
Sample Identifier: Lab Sample ID: Matrix:	JF Krantz Sto 204965-01 Soil	ock Pile #1		Date Sampled: Date Received:	10/15/2020 10/15/2020
Volatile Organics					
Analyte		<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
1,1,1-Trichloroethane		< 4.30	ug/Kg		10/16/2020 12:56
1,1,2,2-Tetrachloroetha	ane	< 4.30	ug/Kg		10/16/2020 12:56
1,1,2-Trichloroethane		< 4.30	ug/Kg		10/16/2020 12:56
1,1-Dichloroethane		< 4.30	ug/Kg		10/16/2020 12:56
1,1-Dichloroethene		< 4.30	ug/Kg		10/16/2020 12:56
1,2,3-Trichlorobenzene	9	< 10.8	ug/Kg		10/16/2020 12:56
1,2,4-Trichlorobenzene	9	< 10.8	ug/Kg		10/16/2020 12:56
1,2,4-Trimethylbenzen	e	< 4.30	ug/Kg		10/16/2020 12:56
1,2-Dibromo-3-Chlorop	propane	< 21.5	ug/Kg		10/16/2020 12:56
1,2-Dibromoethane		< 4.30	ug/Kg		10/16/2020 12:56
1,2-Dichlorobenzene		< 4.30	ug/Kg		10/16/2020 12:56
1,2-Dichloroethane		< 4.30	ug/Kg		10/16/2020 12:56
1,2-Dichloropropane		< 4.30	ug/Kg		10/16/2020 12:56
1,3,5-Trimethylbenzen	e	< 4.30	ug/Kg		10/16/2020 12:56
1,3-Dichlorobenzene		< 4.30	ug/Kg		10/16/2020 12:56
1,4-Dichlorobenzene		< 4.30	ug/Kg		10/16/2020 12:56
1,4-Dioxane		< 43.0	ug/Kg		10/16/2020 12:56
2-Butanone		< 21.5	ug/Kg		10/16/2020 12:56
2-Hexanone		< 10.8	ug/Kg		10/16/2020 12:56
4-Methyl-2-pentanone		< 10.8	ug/Kg		10/16/2020 12:56
Acetone		< 21.5	ug/Kg		10/16/2020 12:56
Benzene		< 4.30	ug/Kg		10/16/2020 12:56
Bromochloromethane		< 10.8	ug/Kg		10/16/2020 12:56

Client:	<u>NWEC&C</u>				
Project Reference:	20-179				
Sample Identifier:	JF Krantz Sto	ck Pile #1			
Lab Sample ID:	204965-01			Date Sampled:	10/15/2020
Matrix:	Soil			Date Received:	10/15/2020
Bromodichloromethan	ie	< 4.30	ug/Kg		10/16/2020 12:56
Bromoform		< 10.8	ug/Kg		10/16/2020 12:56
Bromomethane		< 4.30	ug/Kg		10/16/2020 12:56
Carbon disulfide		< 4.30	ug/Kg		10/16/2020 12:56
Carbon Tetrachloride		< 4.30	ug/Kg		10/16/2020 12:56
Chlorobenzene		< 4.30	ug/Kg		10/16/2020 12:56
Chloroethane		< 4.30	ug/Kg		10/16/2020 12:56
Chloroform		< 4.30	ug/Kg		10/16/2020 12:56
Chloromethane		< 4.30	ug/Kg		10/16/2020 12:56
cis-1,2-Dichloroethene		< 4.30	ug/Kg		10/16/2020 12:56
cis-1,3-Dichloroproper	ne	< 4.30	ug/Kg		10/16/2020 12:56
Cyclohexane		< 21.5	ug/Kg		10/16/2020 12:56
Dibromochloromethan	ie	< 4.30	ug/Kg		10/16/2020 12:56
Dichlorodifluorometha	ane	< 4.30	ug/Kg		10/16/2020 12:56
Ethylbenzene		< 4.30	ug/Kg		10/16/2020 12:56
Freon 113		< 4.30	ug/Kg		10/16/2020 12:56
Isopropylbenzene		< 4.30	ug/Kg		10/16/2020 12:56
m,p-Xylene		< 4.30	ug/Kg		10/16/2020 12:56
Methyl acetate		< 4.30	ug/Kg		10/16/2020 12:56
Methyl tert-butyl Ether	r	< 4.30	ug/Kg		10/16/2020 12:56
Methylcyclohexane		< 4.30	ug/Kg		10/16/2020 12:56
Methylene chloride		< 10.8	ug/Kg		10/16/2020 12:56
Naphthalene		< 10.8	ug/Kg		10/16/2020 12:56
n-Butylbenzene		< 4.30	ug/Kg		10/16/2020 12:56
n-Propylbenzene		< 4.30	ug/Kg		10/16/2020 12:56

Client:	NWEC&C						
Project Reference:	20-179						
Sample Identifier:	JF Krantz Sto	ock Pile #1					
Lab Sample ID:	204965-01			Da	te Sampled:	10/15/2020)
Matrix:	Soil			Da	te Received:	10/15/2020)
o-Xylene		< 4.30	ug/Kg			10/16/2020	12:56
p-Isopropyltoluene		< 4.30	ug/Kg			10/16/2020	12:56
sec-Butylbenzene		< 4.30	ug/Kg			10/16/2020	12:56
Styrene		< 10.8	ug/Kg			10/16/2020	12:56
tert-Butylbenzene		< 4.30	ug/Kg			10/16/2020	12:56
Tetrachloroethene		< 4.30	ug/Kg			10/16/2020	12:56
Toluene		< 4.30	ug/Kg			10/16/2020	12:56
trans-1,2-Dichloroethe	ne	< 4.30	ug/Kg			10/16/2020	12:56
trans-1,3-Dichloroprop	ene	< 4.30	ug/Kg			10/16/2020	12:56
Trichloroethene		< 4.30	ug/Kg			10/16/2020	12:56
Trichlorofluoromethan	e	< 4.30	ug/Kg			10/16/2020	12:56
Vinyl chloride		< 4.30	ug/Kg			10/16/2020	12:56
Surrogate		Perc	ent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Analy	zed
1,2-Dichloroethane-d4			92.6	61 • 146		10/16/2020	12:56
4-Bromofluorobenzene	2		61.8	48.8 - 138		10/16/2020	12:56
Pentafluorobenzene			102	65.4 - 141		10/16/2020	12:56
Toluene-D8			84.7	62.8 - 133		10/16/2020	12:56

Internal standard outliers indicate probable matrix interference
Method Reference(s): EPA 8260C
EPA 5035A - L

Data File:

x74078.D

This sample was not collected following SW846 5035A specifications. Accordingly, any Volatiles soil results that are less than 200 ug/Kg, including Non Detects, may be biased low, per ELAP method 5035 guidance document from 11/15/2012.

Client:	<u>NWEC&C</u>								
Project Reference:	20-179								
Sample Identifier:	JF Krantz Stock Pile #1								
Lab Sample ID:	204965-01		Date Sampled:	10/15/2020					
Matrix:	Soil		Date Received:	10/15/2020					
<u>Total Cyanide</u>									
<u>Analyte</u>	<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed					
Cyanide, Total	< 0.524	mg/Kg		10/16/2020					

 Method Reference(s):
 EPA 9014

 EPA 9010C

 Preparation Date:
 10/19/2020

Client:	<u>NWEC&C</u>								
Project Reference:	20-179								
Sample Identifier:	JF Krantz Stock Pile	#1							
Lab Sample ID:	204965-01Date Sampled:10/15/2020								
Matrix:	Soil			Date Receive	ed: 10/15/2020				
<u>Miscellaneous</u>									
<u>Analyte</u>	Resul	lt	<u>Units</u>	Qualifie	er Date Analyzed				
Miscellaneous #1	In Prog	ress	mg/Kg						

Method Reference(s): N/A

				179 Lai	ke Avenue, Rochester, NY		Office (585) 647-2530 Fax	(585) 647-3311		101
PAF	RADIG	M		CLIENT: NW Contract ADDRESS: 3553 Critta CITY: Alden STATE PHONE: 716-864-74	o: ting enden Rd. : Ny ^{ZIP} 14004	CLIENT: ADDRESS CITY: PHONE:	INVOICE		LAB PROJECT 204965 Quotation #: Email:	
PROJE	ct refere	ENCE		ATTN: Brize Matrix Codes: AQ - Aqueous Liquid NQ - Non-Aqueous Liquid	• WA - Water WG - Groundwa	ATTN:	DW - Drinking Water WW - Wastewater	SO - Soil SL - Sludge	e PT - Paint CK - Caulk	OL - Oil AR - Air
DATE COLLECTED	TIME COLLECTED	C O M P O S I T E	G R A B	SAMPLE IDENTIFIER	M C A D R E I S X	N O U N B A F S	PFAS - DER - 10 Pt. 375 SUCS Pt. 375 SUCS Pt. 375 Port Pt. 375 Port PCBS	Total cyanide Hex. Chronie Sisher Sishex PFAS	REMARKS	PARADIGM LAB SAMPLE NUMBER
10 /15 /20	11:20	χ		JF Krantz Stock	file #1 50	5		×××××	\$60.00 sampling fee	01
									Subsent direffos	mb lab

Turnaroun	d Time	Re	eport Supp	plements		10 - 2	
Availabi	lity continger	nt upon lab approva	al; additional	fees may apply.		BrimBle	ch 10/15/2
Standard 5 day		None Required		None Required		Sampled By	Date/Time
10 day		Batch QC		Basic EDD		Relinquished By	Date/Time
Rush 3 day		Category A				Brian Juch	- 10/15/2
Rush 2 day	X	Category B	\square	wot n	BZ	Received By	
Rush 1 day				required	×	Received @ Lab By	Date/Time
Date Needed		Other		Other EDD			2020 15:40
please indicate date neede	ed:	please indicate package r	teeded:	please indicate EDD need	ded :	By signing this form, client a	agrees to Paradigm Terms
1					-		Se

Brim Blech		11=20		
Sampled By	Date/Time		Total Cost:	
Relinquished By	Date/Time			
Brim Juch	10/15/20	11:20		
Myly Vail	Date/Time	1544	P.I.F.	
Received @ Lab By 4°C iced 10/15/202	Date/Time			
By signing this form, client agrees		onditions (re	verse).	

ee additional page for sample conditions.

2012

Chain of Custody Supplement

Client:	NW Contractor	Completed by:	Mybrail
Lab Project ID:	204965	Date:	10/15/2020
3	Sample Condit Per NELAC/ELAP		
Condition	NELAC compliance with the samp Yes	le condition requirements i No	upon receipt N/A
Container Type Comments	С У Ш	[50]]	
Transferred to method- compliant container			X
Headspace (<1 mL) Comments			, Х
Preservation Comments			
Chlorine Absent (<0.10 ppm per test strip) Comments			
Holding Time Comments	ŢŹ	4	
Temperature Comments	Y°ciud		nut
Compliant Sample Quantity/ Comments	······································	me, Silvex Sa	bel diety to sub the

			÷.	Cł	venue, Rochester, HAIN OF						2530 e	Fax (!			Office (595)PP (2025)00114	x 1965	的有效是	6 1 45	11148 11148
A STATE			Con Parlo	REPORT TO:			S-DER	20.0		11	NOIC	ETC		的法自己的新	en an	194.20		sets	
PA	RADIG	M	COMPANY:		mental	co	MPANY		_	ame	_	_		1.0.000		JENT P	ROJEC	T#:	12.4. (
A Rouge			ADDRESS:	179 Lake Avenue	0.27	AD	DRESS		4	er i fie	e.e	-		9	1 2 3200	1.200.0		General Sector	- 1.V-83 51
N ana	Contraction of the local distance of the loc		CITY:	Rochester STATE:	NY ^{ZIP:} 146	18 Cri	IY:					STAT	E:	ZIP:	TURNAROUND TIME: (WORK	UNG DA	YS)		
	No. of Concession, Name		PHONE:	FAX:		РН	IONE:				FAX	C:				STD)	10.000	OTHER
JECT NAME/SITE	ENAME:		ATTN:	Reporting		AT	TN:	ł	Acco	unts I	Payat	ble			1 X 2		5	Γ	
	20-179		COMMENT	B: Please email results	s to reporting@	para	adigm	nenv	.com	ĩ					Date Due:				
1.Stational	20-175	STORE STORE	and the second			Enn		R	EQU	ESTE	DAN	NAL)	SIS		Isate rate:	197.5	330	in the	防装运行的目
DATE	TIME	С О М Р О S I Т Е	G R A B	SAMPLE LOCATION/FIELD		- M	C O N T A S I N E R	PFAS	Part 375 Mercury Hex Chrome	Silvex					REMARKS	PA	RADIG	M LAB	SAMPLE NUMBER
10/15/20	11:20	х		JF Krantz Stock Pil	le#1 S	2	3	x	xx	x									
														5 Day tu	Irn for the PFAS				
														only.					5
						1			100							T	T		
							-							Categor	y B is required at		П		
					1000 C								-		d turn around time.		1 T		
			1.0						-	11							ht		
									Ť	++						-	H	-	
								- 1					-				H	+	-
			_				-		+		+		-			+			
BUSEC	NLY BELO	W THIS	INE	and the second		19/2	THE R.	6964	G 23		STELLE	ALC: N		- A MARTIN CONTRACTOR			Colleges of	Sales	And the Long of
	on: Per NELA	C/ELAP 210										Concession of the local division of the loca							
	Receipt Par			NELAC Compliance	-											1			
ients:	Container T	ype:		Y [N [_]	Cli Sampled By		-				,		e/Time		Total Cos	-			
nents:	Preservati	on:		Y 🔲 N 🛄	Relinquished by Date/Time														
ients:	Holding Tir	те:		Y 🔲 N 🛄	Received By Date/Time P.I.F,														
nents:	Temperatu	ire:		Y N	Received By Date/Time														
					Received @	Lab B	By			_	_	Date	/Time						

ANALYTICAL REPORT

Lab Number:	L2044315
Client:	Paradigm Environmental Services 179 Lake Avenue Rochester, NY 14608
ATTN: Phone:	Jane Daloia (585) 647-2530
Project Name:	20-179
Project Number:	20-179
Report Date:	10/22/20

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Serial No	10222014:46
-----------	-------------

 Lab Number:
 L2044315

 Report Date:
 10/22/20

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2044315-01	JF KRANTZ STOCK PILE #1	SOIL	Not Specified	10/15/20 11:20	10/15/20

Project Name:

Project Number: 20-179

20-179

 Lab Number:
 L2044315

 Report Date:
 10/22/20

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.

 Lab Number:
 L2044315

 Report Date:
 10/22/20

Case Narrative (continued)

Report Submission

October 22, 2020: This final report includes the results of all requested analyses. October 19, 2020: This is a preliminary report.

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Perfluorinated Alkyl Acids by Isotope Dilution

L2044315-01: The sample was re-extracted within holding time due to QC failures in the original extraction. The results of the re-extraction are reported.

L2044315-01: Extracted Internal Standard recoveries were outside the acceptance criteria for individual analytes. Please refer to the surrogate section of the report for details.

The Extracted Internal Standard recovery for the WG1424371-1 Method Blank, associated with L2044315-01, is below the acceptance criteria for Perfluoro[13C8]Octanesulfonamide (M8FOSA) (less than 10%); however, all associated samples are non-detect for Perfluoroctanesulfonamide (FOSA) and have an acceptable Extracted Internal Standard recovery for M8FOSA; therefore, no further actions were taken. WG1424371-2: The Extracted Internal Standard recovery is below the acceptance criteria for Perfluoro[13C8]Octanesulfonamide (M8FOSA) (less than 10%); however, all associated target analytes are within criteria; therefore, no further action was taken.

Total Metals

The WG1423055-3 MS recovery, performed on L2044315-01, is outside the acceptance criteria for mercury (122%). A post digestion spike was performed and was within acceptance criteria.

Hexavalent Chromium

The WG1423133-2 LCS recovery for chromium, hexavalent (74%), associated with L2044315-01, is outside our in-house acceptance criteria, but within the vendor-certified acceptance limits. The results of the original

 Lab Number:
 L2044315

 Report Date:
 10/22/20

Case Narrative (continued)

analyses are reported.

The WG1423133-4 Insoluble MS recovery for chromium, hexavalent (18%), performed on L2044315-01, is outside the acceptance criteria. The Soluble MS recovery for chromium, hexavalent (0%) was also outside criteria. This has been attributed to matrix interference. A post-spike was performed with a recovery of 95%.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

609 Sendow Kelly Stenstrom

Authorized Signature:

Title: Technical Director/Representative

Date: 10/22/20

ORGANICS

SEMIVOLATILES

		Serial_No:102	222014:46
Project Name:	20-179	Lab Number:	L2044315
Project Number:	20-179	Report Date:	10/22/20
	SAMPLE RESULTS		
Lab ID:	L2044315-01 RE\R	Date Collected: 10)/15/20 11:20
Client ID:	JF KRANTZ STOCK PILE #1	Date Received: 10)/15/20
Sample Location:	Not Specified	Field Prep: No	ot Specified
Sample Depth:			
Matrix:	Soil	Extraction Method: Al	_PHA 23528
Analytical Method:	134,LCMSMS-ID	Extraction Date: 10)/20/20 19:15
Analytical Date:	10/22/20 12:22		
Analyst:	JW		
Percent Solids:	85%		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
Perfluorinated Alkyl Acids by Isotope Dilution - Mansfield Lab									
Perfluorobutanoic Acid (PFBA)	0.130	J	ug/kg	0.550	0.025	1			
Perfluoropentanoic Acid (PFPeA)	0.061	J	ug/kg	0.550	0.051	1			
Perfluorobutanesulfonic Acid (PFBS)	ND		ug/kg	0.550	0.043	1			
Perfluorohexanoic Acid (PFHxA)	0.086	J	ug/kg	0.550	0.058	1			
Perfluoroheptanoic Acid (PFHpA)	0.061	J	ug/kg	0.550	0.050	1			
Perfluorohexanesulfonic Acid (PFHxS)	ND		ug/kg	0.550	0.067	1			
Perfluorooctanoic Acid (PFOA)	0.271	J	ug/kg	0.550	0.046	1			
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	ND		ug/kg	0.550	0.197	1			
Perfluoroheptanesulfonic Acid (PFHpS)	ND		ug/kg	0.550	0.150	1			
Perfluorononanoic Acid (PFNA)	0.091	J	ug/kg	0.550	0.083	1			
Perfluorooctanesulfonic Acid (PFOS)	0.344	J	ug/kg	0.550	0.143	1			
Perfluorodecanoic Acid (PFDA)	ND		ug/kg	0.550	0.074	1			
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	ND		ug/kg	0.550	0.316	1			
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND		ug/kg	0.550	0.222	1			
Perfluoroundecanoic Acid (PFUnA)	ND		ug/kg	0.550	0.051	1			
Perfluorodecanesulfonic Acid (PFDS)	ND		ug/kg	0.550	0.168	1			
Perfluorooctanesulfonamide (FOSA)	ND		ug/kg	0.550	0.108	1			
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND		ug/kg	0.550	0.093	1			
Perfluorododecanoic Acid (PFDoA)	ND		ug/kg	0.550	0.077	1			
Perfluorotridecanoic Acid (PFTrDA)	ND		ug/kg	0.550	0.225	1			
Perfluorotetradecanoic Acid (PFTA)	ND		ug/kg	0.550	0.059	1			
PFOA/PFOS, Total	0.615	J	ug/kg	0.550	0.046	1			

Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
Sample Depth:								
Sample Location:	Not Specified				Field Prep	:	Not Specified	
Client ID:	JF KRANTZ STO	CK PILE #1			Date Rece		10/15/20	
Lab ID:	L2044315-01	RE\R			Date Colle	cted:	10/15/20 11:20	
		SAMP		S				
Project Number:	20-179				Report D	ate:	10/22/20	
Project Name:	20-179				Lab Num	ber:	L2044315	
					Se	erial_No	5:10222014:46	

Perfluorinated Alkyl Acids by Isotope Dilution - Mansfield Lab

Surrogate (Extracted Internal Standard)	% Recovery	Qualifier	Acceptance Criteria	
Perfluoro[13C4]Butanoic Acid (MPFBA)	92		60-153	
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	92		65-182	
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	102		70-151	
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	91		61-147	
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	91		62-149	
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	109		63-166	
Perfluoro[13C8]Octanoic Acid (M8PFOA)	97		62-152	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	68		32-182	
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	99		61-154	
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	109		65-151	
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	99		65-150	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	72		25-186	
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	37	Q	45-137	
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	102		64-158	
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	26		1-125	
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	55		42-136	
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	91		56-148	
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	78		26-160	

 Lab Number:
 L2044315

 Report Date:
 10/22/20

 Project Name:
 20-179

 Project Number:
 20-179

Method Blank Analysis Batch Quality Control

Analytical Method:134,LCMSMS-IDAnalytical Date:10/22/20 11:32Analyst:JW

Extraction Method: ALPHA 23528 Extraction Date: 10/20/20 19:15

arameter	Result	Qualifier	Units	RL	MDL	
erfluorinated Alkyl Acids by Isotope	Dilution -	Mansfield	Lab for sar	mple(s): 01	Batch:	WG1424371-7
Perfluorobutanoic Acid (PFBA)	ND		ug/kg	0.500	0.023	3
Perfluoropentanoic Acid (PFPeA)	ND		ug/kg	0.500	0.04	6
Perfluorobutanesulfonic Acid (PFBS)	ND		ug/kg	0.500	0.03	Э
Perfluorohexanoic Acid (PFHxA)	ND		ug/kg	0.500	0.05	3
Perfluoroheptanoic Acid (PFHpA)	ND		ug/kg	0.500	0.04	5
Perfluorohexanesulfonic Acid (PFHxS)	ND		ug/kg	0.500	0.06	1
Perfluorooctanoic Acid (PFOA)	ND		ug/kg	0.500	0.042	2
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	ND		ug/kg	0.500	0.18)
Perfluoroheptanesulfonic Acid (PFHpS)	ND		ug/kg	0.500	0.13	6
Perfluorononanoic Acid (PFNA)	ND		ug/kg	0.500	0.07	5
Perfluorooctanesulfonic Acid (PFOS)	ND		ug/kg	0.500	0.13)
Perfluorodecanoic Acid (PFDA)	ND		ug/kg	0.500	0.06	7
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	d ND		ug/kg	0.500	0.28	7
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	c ND		ug/kg	0.500	0.202	2
Perfluoroundecanoic Acid (PFUnA)	ND		ug/kg	0.500	0.04	7
Perfluorodecanesulfonic Acid (PFDS)	ND		ug/kg	0.500	0.15	3
Perfluorooctanesulfonamide (FOSA)	ND		ug/kg	0.500	0.098	3
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND		ug/kg	0.500	0.08	5
Perfluorododecanoic Acid (PFDoA)	ND		ug/kg	0.500	0.070)
Perfluorotridecanoic Acid (PFTrDA)	ND		ug/kg	0.500	0.204	4
Perfluorotetradecanoic Acid (PFTA)	ND		ug/kg	0.500	0.054	4
PFOA/PFOS, Total	ND		ug/kg	0.500	0.042	2

L2044315

10/22/20

Lab Number:

Report Date:

Project Name:	20-179
Project Number:	20-179

Method Blank Analysis Batch Quality Control

Analytical Method:	134,LCMSMS-ID	Extraction Method:	ALPHA 23528
Analytical Date:	10/22/20 11:32	Extraction Date:	10/20/20 19:15
Analyst:	JW		

Parameter	Result	Qualifier	Units	RL	MDL	
Perfluorinated Alkyl Acids by Isotop	be Dilution -	Mansfield L	_ab for sa	ample(s): 01	Batch: WG	31424371-1

Surrogate (Extracted Internal Standard)	%Recovery	Acceptance Qualifier Criteria
erfluoro[13C4]Butanoic Acid (MPFBA)	96	60-153
erfluoro[13C5]Pentanoic Acid (M5PFPEA)	98	65-182
erfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	105	70-151
erfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	95	61-147
erfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	96	62-149
erfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	113	63-166
erfluoro[13C8]Octanoic Acid (M8PFOA)	100	62-152
H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	70	32-182
erfluoro[13C9]Nonanoic Acid (M9PFNA)	104	61-154
erfluoro[13C8]Octanesulfonic Acid (M8PFOS)	108	65-151
erfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	107	65-150
H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	72	25-186
-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	75	45-137
erfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	114	64-158
erfluoro[13C8]Octanesulfonamide (M8FOSA)	7	1-125
I-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	90	42-136
erfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	99	56-148
erfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	87	26-160

Lab Control Sample Analysis Batch Quality Control

Lab Number: L2044315

Report Date: 10/22/20

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Perfluorinated Alkyl Acids by Isotope Dilution	- Mansfield Lab	Associated sa	ample(s): 01	Batch: WO	G1424371-2 WG	1424371-3		
Perfluorobutanoic Acid (PFBA)	101		115		71-135	13		30
Perfluoropentanoic Acid (PFPeA)	97		109		69-132	12		30
Perfluorobutanesulfonic Acid (PFBS)	88		101		72-128	14		30
Perfluorohexanoic Acid (PFHxA)	98		112		70-132	13		30
Perfluoroheptanoic Acid (PFHpA)	98		114		71-131	15		30
Perfluorohexanesulfonic Acid (PFHxS)	97		109		67-130	12		30
Perfluorooctanoic Acid (PFOA)	100		113		69-133	12		30
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	114		126		64-140	10		30
Perfluoroheptanesulfonic Acid (PFHpS)	101		115		70-132	13		30
Perfluorononanoic Acid (PFNA)	99		110		72-129	11		30
Perfluorooctanesulfonic Acid (PFOS)	108		122		68-136	12		30
Perfluorodecanoic Acid (PFDA)	98		111		69-133	12		30
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	114		130		65-137	13		30
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	98		117		63-144	18		30
Perfluoroundecanoic Acid (PFUnA)	99		114		64-136	14		30
Perfluorodecanesulfonic Acid (PFDS)	115		130		59-134	12		30
Perfluorooctanesulfonamide (FOSA)	90		116		67-137	25		30
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	110		119		61-139	8		30
Perfluorododecanoic Acid (PFDoA)	103		123		69-135	18		30
Perfluorotridecanoic Acid (PFTrDA)	102		121		66-139	17		30
Perfluorotetradecanoic Acid (PFTA)	99		112		69-133	12		30

Lab Control Sample Analysis Batch Quality Control

Project Name: 20-179

Project Number: 20-179

Lab Number: L2044315

Report Date: 10/22/20

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Perfluorinated Alkyl Acids by Isotope Dilutior	n - Mansfield Lab	Associated	sample(s): 01	Batch: WG	1424371-2 WG1	424371-3			

Surrogate (Extracted Internal Standard)	LCS %Recovery	Qual	LCSD %Recovery	Qual	Acceptance Criteria	
Perfluoro[13C4]Butanoic Acid (MPFBA)	104		104		60-153	
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	102		103		65-182	
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	107		108		70-151	
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	102		103		61-147	
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	101		102		62-149	
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	115		117		63-166	
Perfluoro[13C8]Octanoic Acid (M8PFOA)	103		105		62-152	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	73		76		32-182	
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	107		112		61-154	
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	110		111		65-151	
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	106		110		65-150	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	74		73		25-186	
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	83		87		45-137	
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	109		111		64-158	
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	7		11		1-125	
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	86		92		42-136	
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	101		106		56-148	
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	86		93		26-160	

PESTICIDES

		Serial_No	:10222014:46
Project Name:	20-179	Lab Number:	L2044315
Project Number:	20-179	Report Date:	10/22/20
	SAMPLE RESULTS		
Lab ID: Client ID: Sample Location:	L2044315-01 JF KRANTZ STOCK PILE #1 Not Specified	Date Collected: Date Received: Field Prep:	10/15/20 11:20 10/15/20 Not Specified
Sample Depth: Matrix: Analytical Method: Analytical Date: Analyst: Percent Solids: Methylation Date:	Soil 1,8151A 10/18/20 17:30 JMC 85% 10/17/20 12:35	Extraction Method Extraction Date:	: EPA 8151A 10/16/20 23:46

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Fac	tor Column
Chlorinated Herbicides by GC - W	estborough Lab						
2,4,5-TP (Silvex)	ND		ug/kg	191	5.09	1	А
Surrogate			% Recovery	Qualifier	Accept Crite		Column
DCAA			91		30-	-150	A
DCAA			88		30-	-150	В

Project Name:	20-179		Lab Number:	L2044315
Project Number:	20-179		Report Date:	10/22/20
		Method Blank Analysis Batch Quality Control		
Analytical Method: Analytical Date: Analyst:	1,8151A 10/18/20 16:36 JMC		Extraction Method: Extraction Date:	EPA 8151A 10/16/20 23:46
Methylation Date:	10/17/20 12:35			

Parameter	Result	Qualifier	Units	RL	MDL	Column
Chlorinated Herbicides by GC -	Westborough I	_ab for samp	ole(s): C	1 Batch:	WG1423164-1	
2,4,5-TP (Silvex)	ND		ug/kg	166	4.41	А

a Column
A
В
)

Lab Control Sample Analysis Batch Quality Control

 Project Name:
 20-179

 Project Number:
 20-179

 Lab Number:
 L2044315

 Report Date:
 10/22/20

	LCS		LCSD		%Recovery			RPD	
Parameter	%Recovery	Qual	%Recover	ry Qual	Limits	RPD	Qual	Limits	Column
Chlorinated Herbicides by GC - Westborough	Lab Associate	d sample(s):	01 Batch:	WG1423164-2	WG1423164-3				
2,4,5-TP (Silvex)	97		80		30-150	19		30	A

Surrogate	LCS	LCSD	Acceptance
	%Recovery Qua	al %Recovery Qual	Criteria Column
DCAA	91	71	30-150 A
DCAA	89	73	30-150 B

METALS

Serial	No:1	022201	4:46
001101			

Total Metals - Mans	sfield Lab										
Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analys
Percent Solids:	85%					Dilution	Date	Date	Prep	Analytical	
Matrix:	Soil										
Sample Depth:											
Sample Location:	Not Sp	pecified					Field Pr	ep:	Not Spec	ified	
Client ID:	JF KR	KRANTZ STOCK PILE #1 Specified					Date Re	eceived:	10/15/20		
Lab ID:	L2044	315-01					Date Co	ollected:	10/15/20	11:20	
				SAMPL	E RES	ULTS					
Project Number:	20-17	9					Report	Date:	10/22/20	C	
Project Name:	20-17	9					Lab Nu	mber:	L20443	15	

 Lab Number:
 L2044315

 Report Date:
 10/22/20

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared		Analytica Method	
Total Metals - Man	sfield Lab for sample(s):	01 Batch	n: WG14	423055-	1				
Mercury, Total	ND	mg/kg	0.083	0.054	1	10/16/20 21:50	10/17/20 11:36	1,7471B	AL

Prep Information

Digestion Method: EPA 7471B

Lab Control Sample Analysis Batch Quality Control

 Project Name:
 20-179

 Project Number:
 20-179

 Lab Number:
 L2044315

 Report Date:
 10/22/20

Parameter	LCS %Recovery	Qual %I	LCSD Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample	e(s): 01 Batch:	WG1423055-2	SRM Lot N	umber: D1	09-540			
Mercury, Total	96		-		60-140	-		

		Matrix Spike Analysis Batch Quality Control		
Project Name:	20-179	Batch Quality Control	Lab Number:	L2044315
Project Number:	20-179		Report Date:	10/22/20

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Recovery Qual Limits	RPD Qu	RPD _{Ial} Limits
Total Metals - Mansfield Lab	Associated san	nple(s): 01	QC Batch	ID: WG142305	5-3 (QC Sample:	L2044315-01	Client ID: JF KR	ANTZ STC	OCK PILE #1
Mercury, Total	ND	0.159	0.194	122	Q	-	-	80-120	-	20

Project Name:	20-179	La	Lab Duplicate Analysis Batch Quality Control					315
Project Number:	20-179				R	eport Date	e: 10/22/	20
Parameter		Native Sample	Duplicate Sample	Units	RPD	Qual	RPD Limits	

raiaiietei	Native Sample	Duplicate Sample	Units	RFD	Qual	
Total Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG142308	55-4 QC Sample:	L2044315-01	Client ID:	JF KRANTZ	STOCK PILE #1
Mercury, Total	ND	0.058J	mg/kg	NC		20

INORGANICS & MISCELLANEOUS

Lab Number: L2044315 Report Date: 10/22/20

 Project Name:
 20-179

 Project Number:
 20-179

SAMPLE RESULTS

Lab ID: Client ID: Sample Location	L2044315-01 JF KRANTZ STO Not Specified	CK PILE #1				20.10	Received:	10/15/20 11:20 10/15/20 Not Specified)
Sample Depth: Matrix:	Soil								
Parameter	Result Qua	ifier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - W	estborough Lab								
Solids, Total	85.2	%	0.100	NA	1	-	10/16/20 13:3	5 121,2540G	RI
Chromium, Hexavalent	ND	mg/kg	0.939	0.188	1	10/17/20 00:01	10/18/20 16:42	2 1,7196A	JW

 Lab Number:
 L2044315

 Report Date:
 10/22/20

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifie	er Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab for s	ample(s): 01	Batch:	WG14	23133-1				
Chromium, Hexavalent	ND	mg/kg	0.800	0.160	1	10/17/20 00:01	10/18/20 16:31	1,7196A	JW

Lab Control Sample Analysis Batch Quality Control

Lab Number: L2044315 Report Date: 10/22/20

Project Name: 20-179 Project Number: 20-179

LCS LCSD %Recovery %Recovery %Recovery Limits RPD **RPD** Limits Parameter Qual Qual Qual General Chemistry - Westborough Lab Associated sample(s): 01 Batch: WG1423133-2 20 Chromium, Hexavalent 74 Q 80-120 --

		Matrix Spike Analysis Batch Quality Control		
Project Name:	20-179		Number:	L2044315
Project Number:	20-179	Rep	ort Date:	10/22/20

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Qual	Recovery Limits	RPD	Qual	RPD Limits
General Chemistry - Westborou PILE #1	ugh Lab Asso	ciated samp	ole(s): 01	QC Batch ID: V	VG1423	3133-4	QC Sample: L20)44315-	01 Client	ID: JF	KRAN	TZ STOCK
Chromium, Hexavalent	ND	889	162	18	Q	-	-		75-125	-		20

Project Name:	20-179	Lab Duplicate Analysis Batch Quality Control	Lab Number:	L2044315	
Project Number:	20-179		Report Date:	10/22/20	

Parameter	Native S	ample	Duplicate Sam	ple Unit	s RPD	Qual	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s): 01	QC Batch ID:	WG1422999-1	QC Sample:	L2044300-06	Client ID:	DUP Sample
Solids, Total	93.8	3	93.4	%	0		20
General Chemistry - Westborough Lab PILE #1	Associated sample(s): 01	QC Batch ID:	WG1423133-6	QC Sample:	L2044315-01	Client ID:	JF KRANTZ STOCK
Chromium, Hexavalent	ND		ND	mg/k	g NC		20

 Project Name:
 20-179

 Project Number:
 20-179

Serial_No:10222014:46 *Lab Number:* L2044315 *Report Date:* 10/22/20

Sample Receipt and Container Information

Were project specific reporting limits specified?

YES

Cooler Information

Cooler	Custody Seal
A	Absent

Container Information

Container Info	rmation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2044315-01A	Plastic 2oz unpreserved for TS	А	NA		5.6	Y	Absent		HG-T(28)
L2044315-01B	Glass 120ml/4oz unpreserved	А	NA		5.6	Υ	Absent		HERB-APA(14),TS(7),HEXCR-7196(30)
L2044315-01C	Plastic 8oz unpreserved	А	NA		5.6	Y	Absent		A2-NY-537-ISOTOPE(14)

Project Name: 20-179

Project Number: 20-179

Serial_No:10222014:46 Lab Number: L2044315 Report Date: 10/22/20

PFAS PARAMETER SUMMARY

Parameter	Acronym	CAS Number
PERFLUOROALKYL CARBOXYLIC ACIDS (PFCAs)		
Perfluorooctadecanoic Acid	PFODA	16517-11-6
Perfluorohexadecanoic Acid	PFHxDA	67905-19-5
Perfluorotetradecanoic Acid	PFTA	376-06-7
Perfluorotridecanoic Acid	PFTrDA	72629-94-8
Perfluorododecanoic Acid	PFDoA	307-55-1
Perfluoroundecanoic Acid	PFUnA	2058-94-8
Perfluorodecanoic Acid	PFDA	335-76-2
Perfluorononanoic Acid	PFNA	375-95-1
Perfluorooctanoic Acid	PFOA	335-67-1
Perfluoroheptanoic Acid	PFHpA	375-85-9
Perfluorohexanoic Acid	PFHxA	307-24-4
Perfluoropentanoic Acid	PFPeA	2706-90-3
Perfluorobutanoic Acid	PFBA	375-22-4
PERFLUOROALKYL SULFONIC ACIDS (PFSAs)		
Perfluorododecanesulfonic Acid	PFDoDS	79780-39-5
Perfluorodecanesulfonic Acid	PFDS	335-77-3
Perfluorononanesulfonic Acid Perfluorooctanesulfonic Acid	PFNS PFOS	68259-12-1
		1763-23-1
Perfluoroheptanesulfonic Acid Perfluorohexanesulfonic Acid	PFHpS PFHxS	375-92-8
Perfluoropentanesulfonic Acid	PFPeS	355-46-4 2706-91-4
Perfluoroputanesulfonic Acid	PFBS	375-73-5
	FIDS	375-73-5
FLUOROTELOMERS		
1H,1H,2H,2H-Perfluorododecanesulfonic Acid	10:2FTS	120226-60-0
1H,1H,2H,2H-Perfluorodecanesulfonic Acid	8:2FTS	39108-34-4
1H,1H,2H,2H-Perfluorooctanesulfonic Acid	6:2FTS	27619-97-2
1H,1H,2H,2H-Perfluorohexanesulfonic Acid	4:2FTS	757124-72-4
PERFLUOROALKANE SULFONAMIDES (FASAs)	5001	
Perfluorooctanesulfonamide	FOSA	754-91-6
N-Ethyl Perfluorooctane Sulfonamide	NEtFOSA	4151-50-2
N-Methyl Perfluorooctane Sulfonamide	NMeFOSA	31506-32-8
PERFLUOROALKANE SULFONYL SUBSTANCES		
N-Ethyl Perfluorooctanesulfonamido Ethanol	NEtFOSE	1691-99-2
N-Methyl Perfluorooctanesulfonamido Ethanol	NMeFOSE	24448-09-7
N-Ethyl Perfluorooctanesulfonamidoacetic Acid	NEtFOSAA	2991-50-6
N-Methyl Perfluorooctanesulfonamidoacetic Acid	NMeFOSAA	2355-31-9
PER- and POLYFLUOROALKYL ETHER CARBOXYLIC ACIDS		
2,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3,3-Heptafluoropropoxy]-Propanoic Acid	HFPO-DA	13252-13-6
4,8-Dioxa-3h-Perfluorononanoic Acid	ADONA	919005-14-4
CHLORO-PERFLUOROALKYL SULFONIC ACIDS		
11-Chloroeicosafluoro-3-Oxaundecane-1-Sulfonic Acid	11CI-PF3OUdS	763051-92-9
9-Chlorohexadecafluoro-3-Oxanone-1-Sulfonic Acid	9CI-PF3ONS	756426-58-1
PERFLUOROETHER SULFONIC ACIDS (PFESAs)		
Perfluoro(2-Ethoxyethane)Sulfonic Acid	PFEESA	113507-82-7
PERFLUOROETHER/POLYETHER CARBOXYLIC ACIDS (PFPCAs)		
Perfluoro-3-Methoxypropanoic Acid	PFMPA	377-73-1
Perfluoro-4-Methoxybutanoic Acid	PFMBA	863090-89-5
Nonafluoro-3,6-Dioxaheptanoic Acid	NFDHA	151772-58-6

Serial_No:10222014:46

Project Name: 20-179

Project Number: 20-179

Lab Number: L2044315

Report Date: 10/22/20

GLOSSARY

Acronyms

Acronyms	
DL	- Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
EDL	- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).
EMPC	- Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.
EPA	- Environmental Protection Agency.
LCS	- Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LCSD	- Laboratory Control Sample Duplicate: Refer to LCS.
LFB	- Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LOD	- Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
LOQ	- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
	Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
MDL	- Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
MS	- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.
MSD	- Matrix Spike Sample Duplicate: Refer to MS.
NA	- Not Applicable.
NC	- Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
NDPA/DPA	- N-Nitrosodiphenylamine/Diphenylamine.
NI	- Not Ignitable.
NP	- Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.
NR	- No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile Organic TIC only requests.
RL	- Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
RPD	- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.
SRM	- Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.
STLP	- Semi-dynamic Tank Leaching Procedure per EPA Method 1315.
TEF	- Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.
TEQ	- Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.
TIC	- Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: DU Report with 'J' Qualifiers

Project Name:	20-179	Lab Number:	L2044315
Project Number:	20-179	Report Date:	10/22/20

Footnotes

1

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Waterpreserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'. Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benz(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. If a 'Total' result is requested, the results of its individual components will also be reported.

The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA,this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- B The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For NJ-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- C Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- **D** Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- **F** The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- J Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where

Report Format: DU Report with 'J' Qualifiers

Serial_No:10222014:46

Project Name:	20-179	Lab Number:	L2044315
Project Number:	20-179	Report Date:	10/22/20

Data Qualifiers

the identification is based on a mass spectral library search.

- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- **S** Analytical results are from modified screening analysis.

 Project Name:
 20-179

 Project Number:
 20-179

 Lab Number:
 L2044315

 Report Date:
 10/22/20

REFERENCES

- 1 Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - VI, 2018.
- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.
- 134 Determination of Selected Perfluorinated Alkyl Acids in Drinking Water by Solid Phase Extraction and Liquid Chromatography/Tandem Mass Spectrometry (LC/MS/MS) using Isotope Dilution. Alpha SOP 23528.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene
EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.
EPA 8270D: NPW: Dimethylnaphthalene, 1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene, 1,4-Diphenylhydrazine.
SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.
Mansfield Facility
SM 2540D: TSS
EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.
EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 1-Methylnaphthalene.
EPA 3C Fixed gases
Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP. Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs **EPA 625.1**: SVOC (Acid/Base/Neutral Extractables), **EPA 600/4-81-045**: PCB-Oil.

Microbiology SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn. **EPA 200.8:** Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn. **EPA 245.1** Hg. **SM2340B**

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

179 Lake Avenue, Rochester, NY 14608 Office (585) 647-2530 Fax (585) 647-3311

CHAIN OF CUSTODY

11148

Serial_No:10222014:46

1					011		- 00		10		<u>_</u>						L2044315	5			
PA	RADIG	M			PORT TO:		145				11	IOVA	CET	0:							34544
Cavina.		and I	COMPANY	Paradig	m Environm	ental	COM	DORESS: Same					LAB PROJECT #: CL	IENT PR	ROJECT	# :					
			ADDRESS	179 Lak	e Avenue		ADD														
			CITY:	Rochester	STATE:	NY ZIP: 146	14608 CITY: STATE:				ZIP:	TURNAROUND TIME: (WORK	ING DA	3 DAYS)							
	No. of Concession, Name		PHONE:		FAX:		PHO	NE:	-		-	FA	X:		_			-			
PROJECT NAME/SITI	converte. Plea			Reporting					Δ	2001	nte (Paya	hlo								
					email results	Darad	iama				uyu			_		1 X 2 3		5			
	20-179		Comment	a. 110000	india roodito	to reporting@	sparau	REQUESTED ANALYSIS				Date Due:	Date Due:								
	1000	25/20.20	-	and the house								DA	NAL	YSIS		Contraction of		-	1990		
DATE	TIME	C M P O S I T E	G R A B	SAMPLE	LOCATION/FIELD I			s	PFAS Part 375 Mercurv	Hex. Chrome	Silvex						REMARKS	PAI	RADIGN	I LAB SI	MPLE NUMBER
10/15/20	11:20	х		JF Kran	tz Stock Pile	#1 S	0 3		x x	x	x								\square		
															T	5 Day	turn for the PFAS	\square		\square	(
							-	-	+				+	\vdash	+	only.		+	\vdash	++	
								+	+-	+		1	+	\vdash	+	only.		+	\vdash	++	
													+		+	Cate	gory B is required at		\vdash	++	
																	lard turn around time.				
**LAB USE C				A STATE OF THE OWNER	Willester Sta	and the second	and allowing		24	122	100	-	2-6		100	-Solds					ENGBER ST
Sample Condition	Receipt Par		/241/242/24	3/244 NELAC Com	nllanas																
	Container T				N	Cli												-			
Comments:						Sampled By	1						Dat	e/Time	1		Total Cost	È.			
Comments	Preservati	on:		Y 🗌 🕴		Relinquishe	dBy	/	5	1	d	~	Dat		15	120	1:20				

(AAL)

AAL

Relinguished

10/15/20

10/15/20

0/16/20

Date/Time

Date/Time

Date/Time

13:20

13:20

01:20

P.I.F.

Page 37 of 37

Comments:

Comments:

Holding Time:

Temperature:

Y 🗌

Y 🔲

N 🗌

N 🗌

Received By

Received @ Lab By

APPENDIX C

Annual Inspection Form

Environmental Inspection Form Operation, Monitoring, & Maintenance Work Plan

Property Name: Former Steelfields Area IV Site Project No.: C915204											
Client: Hydro-Air Components, Inc.											
Property Address: 100 Rittling Blvd.	City	, State:	Buffalo, NY	Zip Code: 14220							
Property ID: (Tax Assessment Map) Sec	ction:	Block:		Lot(s):							
Preparer's Name: Glenn White Date/Time:											
CERTIFICATION											
The results of this inspection were discussed with the owner and/or owner's representative. Any corrective actions required have been identified and noted in this report, and a supplemental Corrective Actions Form has been completed. Proper implementation of these corrective actions have been discussed with the owner, agreed upon, and scheduled.											
Preparer / Inspector: Glenn White, Haley & Al	drich of NY		Date:								
Signature:											
Next Scheduled Inspection (date):	12/2021										
Final Surface Cover / Vegetation											
In accordance with the Soil/Fill Management PI concrete) surface coverage over the entire rede as a pre-condition of occupancy. The following	eveloped parce	el is requi	red by the de	eveloper or owner							
1. Final Cover is in Place and in good condition	n? 🛛 yes	[no	□ N/A							
Cover consists of (mainly): Field grasses	, buildings, aspł	nalt parking	g lot, and asph	alt and gravel drives.							
2. Evidence of erosion?	yes	[X no	N/A							
3. Cracks visible in pavement?	yes	Į	🚺 no	□ N/A							
4. Evidence of distressed vegetation/turf?	🗌 yes	ĺ	x no	□ N/A							
5. Evidence of unintended traffic and/or rutting	? 🕅 yes		no	□ N/A							
6. Evidence of uneven settlement and/or pond	ing? 🕅 yes		no	□ N/A							
7. Damage to any surface coverage?	X yes		no	N/A							

If yes to any question above, please provide more information below.

See attachment

Property Security & Access

In accordance with the Soil/Fill Management Plan, fencing is required to restrict access in all undeveloped areas and as necessary in redeveloped areas. In addition, all fencing around undeveloped areas will be posted with "No Trespassing" signs.

1. Is access controlled by perimeter fencing?	🗂 yes	[X] no		□ N/A
If not, please note: Site is partially fenced				
2. Is fencing in need of repair?	X yes	no no		N/A
3. Area access gates in working order?	yes	no		 N/A
4. Sufficient signage posted (No Trespassing)?	X yes	no		N/A
5. Has there been any noted or reported trespassing?	🗌 yes	X no		N/A
Please note any irregularities/ changes in site access a	-			
Portions of fencing along the western site boundary are falling	g over.			
Property Use Changes / Site Development				
Has the property usage changed, or site been redevelo	-			
Has the property usage changed, or site been redevelo		yes	🕅 no	□ N/A
		yes	🕅 no	
Has the property usage changed, or site been redevelo		yes	🕅 no	
Has the property usage changed, or site been redevelo		yes	🕅 no	
Has the property usage changed, or site been redevelo		yes	🕅 no	
Has the property usage changed, or site been redevelo		yes	🕅 no	
Has the property usage changed, or site been redevelo		yes	🕅 no	
Has the property usage changed, or site been redevelo		yes	🕅 no	
Has the property usage changed, or site been redevelor If so, please list with date: Property use has not changed Active Sub-Slab Depressurization System (ASD)	since 2006 whe	yes	🕅 no	
Has the property usage changed, or site been redevelor If so, please list with date: Property use has not changed Active Sub-Slab Depressurization System (ASD)	since 2006 whe	yes en HydroAi	⊠ no r first occu	pied the building
Has the property usage changed, or site been redevelor If so, please list with date: Property use has not changed Active Sub-Slab Depressurization System (ASD) Is there an ASD present on-site?	since 2006 whe	yes en HydroAi	⊠ no r first occu	pied the building
Has the property usage changed, or site been redevelor If so, please list with date: Property use has not changed Active Sub-Slab Depressurization System (ASD) Is there an ASD present on-site? If yes, is it currently operating? Is the ASD annual inspection checklist completed and	since 2006 whe	yes en HydroAi	⊠ no r first occu 	pied the building
Has the property usage changed, or site been redevelor If so, please list with date: Property use has not changed Active Sub-Slab Depressurization System (ASD) Is there an ASD present on-site? If yes, is it currently operating?	since 2006 whe	yes en HydroAi	⊠ no r first occu 	pied the building

Environmental Inspection Form Operation, Monitoring, & Maintenance Work Plan

ORC Well Monitoring a	and Maintenance			
Is there ORC mitigation	present on-site?			
is there once mugation	present on one	X yes	no	🗌 N/A
Are the wells currently ir	ntact and operational?	y = -		_
,		🗴 yes	🗌 no	🗌 N/A
Has regular maintenanc	e and monitoring been docu	mented and enclosed	or referenced	1?
		🕅 yes	no	🗌 N/A
Long-Term Ground Wa	ater Monitoring			
Is there a plan in place a	and currently being followed?			
Are the wells ourrently it	atast and anarational?	🗶 yes	∐ no	∐ N/A
Are the wells currently in		🛛 yes	no	🗌 N/A
When was the most rec	ent sampling event report an			th 2020 PRR
When is the next projec				
New Information				
-	n been brought to the owner/			and/or all
engineering and instituti	ional controls and their opera			
Comments:		yes	🗙 no	□ N/A
This space for Notes a	and Comments			
Please include the foll	owing Attachments:			
1. Site Sketch			Durant	
2. Photographs	Site sketch and photogra	pns included in 2020 PR	k report	

Attachment to Page 1 of 3

Coverage in Western Grass Area

As requested by NYSDEC, french drains were installed in May 2008 to minimize ponding observed after the installation of the soil cover in 2007. While ponding water in the western grass areas was not reported by Hydro-Air throughout the PRR period, ponding was observed during the annual 2020 inspection following prior rainfall and snowmelt. Wetland vegetation continues to grow in the western grass area, as evidenced in photos attached to this PRR.

In October 2020, geotechnical soil borings were advanced in the western grass area as part of scoping activities associated with the proposed Buffalo Skyway development. While accessing the soil boring locations, the drilling rig generated ruts, temporarily breaching the Site cover system. On 23 November 2020, the NYSDEC approved use of imported topsoil to fill the ruts and repair the cover system. Rut repairs were made on 3 December 2020.

During the 2020 annual inspection, isolated rodent burrow holes were observed penetrating the site cover in limited areas of the western grass area, as evidenced in photos attached to this PRR. Observed burrowing activities will be monitored.

Northern Loading Dock

Subsequent to corrective measures that were put into place on 1 December 2012 (per the Corrective Measures Work Plan, approved 29 December 2011 by the Department), water has not accumulated in the northeastern loading dock area. The reconfiguration of the loading dock pump system (setting to automatic pumping and raising the float set-point) enabled sufficient pumping to maintain dry conditions and has sufficiently prevented the surfacing of groundwater in the area. Hydro-Air has continued to monitor the efficacy of these controls regularly throughout 2020.

Gravel Cover Areas

Prior to 2012, evidence of surfacing groundwater from beneath the gravel cover areas on the northern end of the Site was evident (see Figure 2). As a voluntary corrective measure, the gravel cover on the northern portion of the access road was enhanced in 2012 by the placement of additional gravel (an additional 9 to 11 inches). Since then, Hydro-Air monitored the continual efficacy of the gravel cover area throughout 2020 and did not observe evidence of groundwater surfacing in these areas. Nonetheless, during the Site inspection on 5 January 2021, standing water was observed in compacted areas on the gravel roadway between the Site building and northern Site boundary following a period of rainfall and snowmelt. This condition was likely related to recent rainfall/snow melt/localized groundwater recharge. Per correspondence with the NYSDEC on 26 January 2021, it was agreed Hydro-Air would temporarily block-off the access road until seasonal snow cover was melted to see if the standing water condition persisted, and if it did, assess options for the placement of additional gravel cover in the area. In March 2021, Hydro-Air provided photographs documenting the absence of standing water along the road, suggesting the conditions observed in January 2021 were temporary and associated with rapid rainfall and snowmelt prior to the Site inspection. However, to limit the potential for future temporary ponding under similar conditions, Hydro-Air imported approximately 88 tons of #2 crushed limestone to elevate the compacted areas and re-grade the roadway. The crushed stone was imported to the Site on 14 April 2021, per import approval provided by NYSDEC on 24 March 2021. Hydro-Air will continue to monitor the road conditions throughout the 2021 reporting period and prohibit access to the road if unanticipated standing water is observed.

APPENDIX D

Photo Log – 2020 PRR Monitoring Period

HydroAir Components Buffalo, New York File No. 129356-009

Photo 1: Representative office floor crack repair with hydraulic cement.

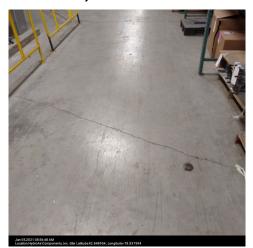


Photo 3: Minor floor crack in manufacturing space.

Photo 5: Standing water along gravel drive in northeast corner of Site. Photo taken 5 January 2021.

Photo 2: Small floor cracks extending below carpeted floor coverings in Site office.

Photo 4: Minor floor crack in manufacturing space.

Photo 6: Standing water along gravel drive on north side of Site building. Photo taken 5 January 2021.

HydroAir Components Buffalo, New York File No. 129356-009

Photo 7: Potential rodent burrow in grass covered area in western portions of the Site.

Photo 9: Rutting in western grass covered area following October 2020 drilling activities.

Photo 11: Rutting repair with imported topsoil, December 2020.

Photo 8: Rutting in western grass covered area following October 2020 drilling activities.

Photo 10: Rutting repair with imported topsoil, December 2020.

Photo 12: Wetland vegetation in western grass area.

HydroAir Components Buffalo, New York File No. 129356-009

Photo 13: Gravel drive on north side of Site building. Photo taken 11 March 2021

Photo 14: Gravel drive on north side of Site building. Photo taken 11 March 2021

Photo 15: Gravel drive on north side of Site building. Photo taken 11 March 2021.

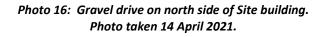


Photo 17: Gravel drive on north side of Site building. Photo taken 14 April 2021.

Photo 18: Gravel drive on north side of Site building. Photo taken 14 April 2021.

APPENDIX E

Imported Soil Documentation and Soil Disposal Receipt

<u>NEW YORK STATE</u> DEPARTMENT OF ENVIRONMENTAL CONSERVATION

Request to Import/Reuse Fill or Soil

This form is based on the information required by DER-10, Section 5.4(e). Use of this form is not a substitute for reading the applicable Technical Guidance document.

SECTION 1 – SITE BACKGROUND

The allowable site use is:

Have Ecological Resources been identified?

Is this soil originating from the site?

How many cubic yards of soil will be imported/reused?

If greater than 1000 cubic yards will be imported, enter volume to be imported:

SECTION 2 – MATERIAL OTHER THAN SOIL

Is the material to be imported gravel, rock or stone?

Does it contain less than 10%, by weight, material that would pass a size 80 sieve?

Is this virgin material from a permitted mine or quarry?

Is this material recycled concrete or brick from a DEC registered processing facility?

SECTION 3 - SAMPLING

Provide a brief description of the number and type of samples collected in the space below:

Example Text: 5 discrete samples were collected and analyzed for VOCs. 2 composite samples were collected and analyzed for SVOCs, Inorganics & PCBs/Pesticides.

If the material meets requirements of DER-10 section 5.5 (other material), no chemical testing needed.

SECTION 3 CONT'D - SAMPLING

Provide a brief written summary of the sampling results or attach evaluation tables (compare to DER-10, Appendix 5):

Example Text: Arsenic was detected up to 17 ppm in 1 (of 5) samples; the allowable level is 16 ppm.

If Ecological Resources have been identified use the "If Ecological Resources are Present" column in Appendix 5.

SECTION 4 – SOURCE OF FILL

Name of person providing fill and relationship to the source:

Location where fill was obtained:

Identification of any state or local approvals as a fill source:

If no approvals are available, provide a brief history of the use of the property that is the fill source:

Provide a list of supporting documentation included with this request:

The information provided on this form is accurate and complete.

Ch Whit

3/24/2021

Date

Signature Glenn White

Print Name Haley & Aldrich of New York

Firm

13870 Taylor Hollow Rd, Collins, New York, 14034 - 716-532-3371 - Fax 716-532-9000

3/22/2021

ZEHNDER-RITTLING 100 RITTLING BUFFALO NY Via EMail:dbarto@zehnder-rittling.com

ATTENTION: DALE BARTO

RE: Material Submittal DRIVEWAY SUBBASE

Dear DALE

This is to certify that the -2" Crusher Run Hard Head Gravel proposed for use on the above listed project meets all the requirements for NYSDOT Item 304 Type 2. This material is manufactured by crushing +2" gravel hard heads into a dense graded subbase. The resulting material is a 100% manufactured product devoid of any natural fines and is comparable and equivalent to limestone subbase. The '-2" Hardheads will be supplied out of our NYSDOT approved Middle Road pit which is an virgin sand and gravel deposit with both NYSDOT and NYSDEC material source approvals. NYSDOT Source # 2997, NYSDEC Mine ID #-90369, NYSDEC Permit # 9043-30-0369.

A typical mechanical analysis of the proposed material follows:

-2' Cr. Run Hard Head Gravel - NYSDOT 304 Type 2 (Equivalent) - Middle Road

Sieve Size	Percent Passing	Specification
2"	100	100
1/4"	31	25-60
#40	13	5-40
#200	8	0-10

Sincerely,

Gernatt Asphalt Products, Inc.

Willum M. Phillin

Bill Phillips Sales Representative Glenn M. White, CHMM Haley & Aldrich Tel: 585.321.4239 Fax: 585.359.4650 gwhite@HaleyAldrich.com

From: Kuczka, Megan E (DEC) <Megan.Kuczka@dec.ny.gov>
Sent: Monday, November 23, 2020 12:45 PM
To: White, Glenn <GWhite@haleyaldrich.com>; Melnyk, Eugene W (DEC)
<eugene.melnyk@dec.ny.gov>
Cc: James, Renjit P. (DOT) <Renjit.James@dot.ny.gov>; McKenna, Santa
<SMcKenna@haleyaldrich.com>
Subject: Re: Buffalo Skyway - Tire rut repair on HydroAir Site

CAUTION: External Email

Glenn -

You are referring to the Steelfields Area IV (C915204) site correct? If yes, the topsoil is approved for use onsite. Please note the rutting and restoration in the upcoming PRR.

Sincerely,

Megan Kuczka

Environmental Program Specialist 1, Division of Environmental Remediation

New York State Department of Environmental Conservation

270 Michigan Avenue, Buffalo, NY 14203

P: (716) 851-7220 | F: (716) 851-7226 | Megan.Kuczka@dec.ny.gov

From: White, Glenn <<u>GWhite@haleyaldrich.com</u>>
Sent: Monday, November 23, 2020 12:10 PM
To: Melnyk, Eugene W (DEC) <<u>eugene.melnyk@dec.ny.gov</u>>; Kuczka, Megan E (DEC)
<<u>Megan.Kuczka@dec.ny.gov</u>>
Cc: James, Renjit P. (DOT) <<u>Renjit.James@dot.ny.gov</u>>; McKenna, Santa
<<u>SMcKenna@haleyaldrich.com</u>>
Subject: Buffalo Skyway - Tire rut repair on HydroAir Site

ATTENTION: This email came from an external source. Do not open attachments or click on links from unknown senders or unexpected emails.

Good morning Gene,

During our work on the Buffalo Skyway project, we were most recently using a CPT rig on the HydroAir property. The CPT is a bit heavier than a regular HSA rig and that resulted in tire ruts in the 1-foot cover on the site. We are planning to repair the ruts next week by filling them in with topsoil. We plan to purchase 15 yards of soil from JF Krantz. Nature Way Environmental will be placing the soil. The soil has already been tested and approved by the DEC for another site; see attached. There is still enough quantity remaining in that stockpile to complete the work at HydroAir.

Haley & Aldrich is requesting DEC's approval to use the topsoil represented by the attached to fill the ruts on the HydroAir Site.

Please let me know if you have any questions.

Thank you, Glenn

Glenn M. White, CHMM Associate | Senior Project Manager Scientist

Haley & Aldrich 200 Town Centre Drive | Suite 2 Rochester, NY 14623

T: (585) 321.4239 C: (585) 370.2412

www.haleyaldrich.com

<u>NEW YORK STATE</u> <u>DEPARTMENT OF ENVIRONMENTAL CONSERVATION</u>

Request to Import/Reuse Fill or Soil

This form is based on the information required by DER-10. Section 5.4(e). Use of this form is not a substitute for reading the applicable Technical Guidance document.

SECTION 1 – SITE BACKGROUND	
The allowable site use is: Commercial or Industrial Use	
Have Ecological Resources been identified? no	
Is this soil originating from the site? no	
How many cubic yards of soil will be imported/reused? 50-80	n =
If greater than 1000 cubic yards will be imported, enter volume to be imported:	

SECTION 2 – MATERIAL OTHER THAN SOIL

Is the material to be imported gravel, rock or stone?	yes TOPSOIL
Does it contain less than 10%, by weight, material that	it would pass a size 80 sieve? NO
Is this virgin material from a permitted mine or quarr	y? [no]
Is this material recycled concrete or brick from a DEC	C registered processing facility? no

SECTION 3 - SAMPLING

Provide a brief description of the number and type of samples collected in the space

below: see attached: antithetical testing per DER/PFAS

Example Text: 5 discrete samples were collected and analyzed for VOCs. 2 composite samples were collected and analyzed for SVOCs, Inorganics & PCBs/Pesticides.

If the material meets requirements of DER-10 section 5.5 (other material), no chemical testing needed.

SECTION 3 CONT'D - SAMPLING

Provide a brief written summary of the sampling results or attach evaluation tables (compare to DER-10, Appendix 5):

See attached soil results, ZERO OUTLIERS

Topsoil from JF Krantz Stockpile #1 is Clean!

We are bringing in Native Topsoil sourced from land stripping / Grubbing for a sub division in the WNY area.

Example Text: Arsenic was detected up to 17 ppm in 1 (of 5) samples; the allowable level is 16 ppm.

If Ecological Resources have been identified use the "If Ecological Resources are Present" column in Appendix 5.

SECTION 4 – SOURCE OF FILL

Name of person providing fill and relationship to the source:

JF Krantz

Location where fill was obtained:

Clarance NY

Identification of any state or local approvals as a fill source:

If no approvals are available, provide a brief history of the use of the property that is the fill source:

Vacant Farm Land

Provide a list of supporting documentation included with this request:

See attached summary

Revised August 2014

The information provided on this form is accurate and complete.

1/28/20 Date

Signature Brice Recd Print Name NW Contractions DBA Firm Natures Way Environmental

Client:	NWEC&	<u>C</u>			
Project Reference:	20-179				
Sample Identifier:	,	ntz Stock Pile #1		Data Camuladi	10/15/2020
Lab Sample ID:	204965 Socil	5-01		Date Sampled:	10/15/2020
Matrix:	Soil			Date Received:	10/15/2020
<u>Metals</u>					
<u>Analyte</u>		Result	<u>Units</u>	Qualifier	Date Analyzed
Arsenic		3.48	mg/Kg		10/19/2020 11:05
Barium		74.7	mg/Kg		10/19/2020 11:05
Beryllium		0.275	mg/Kg		10/19/2020 11:05
Cadmium		0.794	mg/Kg		10/19/2020 13:02
Chromium		16.4	mg/Kg		10/19/2020 11:05
Copper		13.1	mg/Kg		10/19/2020 11:05
Lead		24.6	mg/Kg		10/19/2020 11:05
Manganese		427	mg/Kg		10/19/2020 11:05
Nickel		14.7	mg/Kg		10/19/2020 11:05
Selenium		2.35	mg/Kg		10/19/2020 11:05
Silver		< 0.519	mg/Kg		10/19/2020 11:05
Zinc		104	mg/Kg		10/19/2020 11:05
Method Referen		EPA 6010C EPA 3050B			
Preparation Da Data File:	te:	10/16/2020 201019B			

Client:	<u>NWEC8</u>	<u>&C</u>					
Project Reference:	20-179						
Sample Identifier:	JF Kra	ntz Stock Pile #1					
Lab Sample ID:	20496	5-01		Dat	e Sampled:	10/15/2020)
Matrix:	Soil			Dat	e Received:	10/15/2020)
<u>PCBs</u>							
<u>Analyte</u>		Result	<u>Units</u>		Qualifier	Date Analy	zed
PCB-1016		< 0.0304	mg/Kg			10/16/2020	10:37
PCB-1221		< 0.0304	mg/Kg			10/16/2020	10:37
PCB-1232		< 0.0304	mg/Kg			10/16/2020	10:37
PCB-1242		< 0.0304	mg/Kg			10/16/2020	10:37
PCB-1248		< 0.0304	mg/Kg			10/16/2020	10:37
PCB-1254		< 0.0304	mg/Kg			10/16/2020	10:37
PCB-1260		< 0.0304	mg/Kg			10/16/2020	10:37
PCB-1262		< 0.0304	mg/Kg			10/16/2020	10:37
PCB-1268		< 0.0304	mg/Kg			10/16/2020	10:37
<u>Surrogate</u>		Perc	ent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Analy	zed
Tetrachloro-m-xylene			38.1	15.1 - 91		10/16/2020	10:37
Method Referen	ice(s):	EPA 8082A					
Preparation Dat	te:	EPA 3546 10/16/2020					

Client:	<u>NWEC&C</u>				
Project Reference:	20-179				
Sample Identifier: Lab Sample ID: Matrix:	JF Krantz Sto 204965-01 Soil	ck Pile #1		Date Sampled: Date Received:	10/15/2020 10/15/2020
Chlorinated Pesti	<u>cides</u>				
Analyte		<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
4,4-DDD		< 3.04	ug/Kg		10/16/2020 10:56
4,4-DDE		< 3.04	ug/Kg		10/16/2020 10:56
4,4-DDT		< 3.04	ug/Kg		10/16/2020 10:56
Aldrin		< 3.04	ug/Kg		10/16/2020 10:56
alpha-BHC		< 3.04	ug/Kg		10/16/2020 10:56
beta-BHC		< 3.04	ug/Kg		10/16/2020 10:56
cis-Chlordane		< 3.04	ug/Kg		10/16/2020 10:56
delta-BHC		< 3.04	ug/Kg		10/16/2020 10:56
Dieldrin		11.1	ug/Kg		10/16/2020 10:56
Endosulfan I		< 3.04	ug/Kg		10/16/2020 10:56
Endosulfan II		< 3.04	ug/Kg		10/16/2020 10:56
Endosulfan Sulfate		< 3.04	ug/Kg		10/16/2020 10:56
Endrin		< 3.04	ug/Kg		10/16/2020 10:56
Endrin Aldehyde		< 3.04	ug/Kg		10/16/2020 10:56
Endrin Ketone		< 3.04	ug/Kg		10/16/2020 10:56
gamma-BHC (Lindane))	< 3.04	ug/Kg		10/16/2020 10:56
Heptachlor		< 3.04	ug/Kg		10/16/2020 10:56
Heptachlor Epoxide		< 3.04	ug/Kg		10/16/2020 10:56
Methoxychlor		2.78	ug/Kg	J	10/16/2020 10:56
Toxaphene		< 30.4	ug/Kg		10/16/2020 10:56
trans-Chlordane		< 3.04	ug/Kg		10/16/2020 10:56

Client:	<u>NWEC&C</u>					
Project Reference:	20-179					
Sample Identifier:	JF Krantz Stock P	ile #1				
Lab Sample ID:	204965-01		Date	e Sampled:	10/15/2020)
Matrix:	Soil		Date	e Received:	10/15/2020)
<u>Surrogate</u>		Percent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Analy	zed
Decachlorobiphenyl (1	l)	45.7	16.8 - 119		10/16/2020	10:56
Tetrachloro-m-xylene	(1)	39.1	20.8 - 112		10/16/2020	10:56
Method Referen	EPA 3546					
Preparation Dat	ie: 10/16/2020					

10/16/2020 17:08

10/16/2020 17:08

10/16/2020 17:08

10/16/2020 17:08

10/16/2020 17:08

10/16/2020 17:08

				245110,000121	201900
Client:	<u>NWEC&C</u>				
Project Reference:	20-179				
Sample Identifier:	JF Krantz St	tock Pile #1			
Lab Sample ID:	204965-01			Date Sampled:	10/15/2020
Matrix:	Soil			Date Received:	10/15/2020
Semi-Volatile Org	ganics (Acid/B	ase Neutrals)		
<u>Analyte</u>		<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
1,1-Biphenyl		< 301	ug/Kg		10/16/2020 17:08
1,2,4,5-Tetrachlorobe	enzene	< 301	ug/Kg		10/16/2020 17:08
1,2,4-Trichlorobenze	ene	< 301	ug/Kg		10/16/2020 17:08
1,2-Dichlorobenzene		< 301	ug/Kg		10/16/2020 17:08
1,3-Dichlorobenzene		< 301	ug/Kg		10/16/2020 17:08
1,4-Dichlorobenzene		< 301	ug/Kg		10/16/2020 17:08
2,2-0xybis (1-chloro	propane)	< 301	ug/Kg		10/16/2020 17:08
2,3,4,6-Tetrachloropl	henol	< 301	ug/Kg		10/16/2020 17:08
2,4,5-Trichlorophenc	ol	< 301	ug/Kg		10/16/2020 17:08
2,4,6-Trichlorophenc	ol	< 301	ug/Kg		10/16/2020 17:08
2,4-Dichlorophenol		< 301	ug/Kg		10/16/2020 17:08
2,4-Dimethylphenol		< 301	ug/Kg		10/16/2020 17:08
2,4-Dinitrophenol		< 1200	ug/Kg		10/16/2020 17:08
2,4-Dinitrotoluene		< 301	ug/Kg		10/16/2020 17:08

2-Nitrophenol	< 301	ug/Kg	10/16/2020 17:08
3&4-Methylphenol	356	ug/Kg	10/16/2020 17:08
3,3'-Dichlorobenzidine	< 301	ug/Kg	10/16/2020 17:08

ug/Kg

ug/Kg

ug/Kg

ug/Kg

ug/Kg

ug/Kg

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

< 301

< 301

< 301

< 301

< 301

< 301

2,6-Dinitrotoluene

2-Chlorophenol

2-Methylphenol

2-Nitroaniline

2-Chloronaphthalene

2-Methylnapthalene

Client:	NWEC&C				
Project Reference:	20-179				
Sample Identifier:	JF Krantz Sto	ock Pile #1			
Lab Sample ID:	204965-01			Date Sampled:	10/15/2020
Matrix:	Soil			Date Received:	10/15/2020
3-Nitroaniline		< 301	ug/Kg		10/16/2020 17:08
4,6-Dinitro-2-methylp	ohenol	< 602	ug/Kg		10/16/2020 17:08
4-Bromophenyl pheny	yl ether	< 301	ug/Kg		10/16/2020 17:08
4-Chloro-3-methylph	enol	< 301	ug/Kg		10/16/2020 17:08
4-Chloroaniline		< 301	ug/Kg		10/16/2020 17:08
4-Chlorophenyl pheny	yl ether	< 301	ug/Kg		10/16/2020 17:08
4-Nitroaniline		< 301	ug/Kg		10/16/2020 17:08
4-Nitrophenol		< 301	ug/Kg		10/16/2020 17:08
Acenaphthene		< 301	ug/Kg		10/16/2020 17:08
Acenaphthylene		< 301	ug/Kg		10/16/2020 17:08
Acetophenone		< 301	ug/Kg		10/16/2020 17:08
Anthracene		< 301	ug/Kg		10/16/2020 17:08
Atrazine		< 301	ug/Kg		10/16/2020 17:08
Benzaldehyde		< 301	ug/Kg		10/16/2020 17:08
Benzo (a) anthracene		< 301	ug/Kg		10/16/2020 17:08
Benzo (a) pyrene		< 301	ug/Kg		10/16/2020 17:08
Benzo (b) fluoranther	ıe	< 301	ug/Kg		10/16/2020 17:08
Benzo (g,h,i) perylene)	< 301	ug/Kg		10/16/2020 17:08
Benzo (k) fluoranther	ie	< 301	ug/Kg		10/16/2020 17:08
Bis (2-chloroethoxy)	methane	< 301	ug/Kg		10/16/2020 17:08
Bis (2-chloroethyl) et	her	< 301	ug/Kg		10/16/2020 17:08
Bis (2-ethylhexyl) pht	thalate	< 301	ug/Kg		10/16/2020 17:08
Butylbenzylphthalate		< 301	ug/Kg		10/16/2020 17:08
Caprolactam		< 301	ug/Kg		10/16/2020 17:08
Carbazole		< 301	ug/Kg		10/16/2020 17:08

Client:	<u>NWEC&C</u>				
Project Reference:	20-179				
Sample Identifier:	JF Krantz Sto	ck Pile #1			
Lab Sample ID:	204965-01			Date Sampled:	10/15/2020
Matrix:	Soil			Date Received:	10/15/2020
Chrysene		< 301	ug/Kg		10/16/2020 17:08
Dibenz (a,h) anthracen	ie	< 301	ug/Kg		10/16/2020 17:08
Dibenzofuran		< 301	ug/Kg		10/16/2020 17:08
Diethyl phthalate		< 301	ug/Kg		10/16/2020 17:08
Dimethyl phthalate		< 301	ug/Kg		10/16/2020 17:08
Di-n-butyl phthalate		< 301	ug/Kg		10/16/2020 17:08
Di-n-octylphthalate		< 301	ug/Kg		10/16/2020 17:08
Fluoranthene		266	ug/Kg	J	10/16/2020 17:08
Fluorene		< 301	ug/Kg		10/16/2020 17:08
Hexachlorobenzene		< 301	ug/Kg		10/16/2020 17:08
Hexachlorobutadiene		< 301	ug/Kg		10/16/2020 17:08
Hexachlorocyclopenta	diene	< 1200	ug/Kg		10/16/2020 17:08
Hexachloroethane		< 301	ug/Kg		10/16/2020 17:08
Indeno (1,2,3-cd) pyre	ne	< 301	ug/Kg		10/16/2020 17:08
Isophorone		< 301	ug/Kg		10/16/2020 17:08
Naphthalene		< 301	ug/Kg		10/16/2020 17:08
Nitrobenzene		< 301	ug/Kg		10/16/2020 17:08
N-Nitroso-di-n-propyla	amine	< 301	ug/Kg		10/16/2020 17:08
N-Nitrosodiphenylami	ne	< 301	ug/Kg		10/16/2020 17:08
Pentachlorophenol		< 602	ug/Kg		10/16/2020 17:08
Phenanthrene		< 301	ug/Kg		10/16/2020 17:08
Phenol		< 301	ug/Kg		10/16/2020 17:08
Pyrene		234	ug/Kg	J	10/16/2020 17:08

Client:	NWEC&C						
Project Reference:	20-179						
Sample Identifier: JF Krantz Stock P		Pile #1					
Lab Sample ID:	204965-01		Dat	e Sampled:	10/15/2020		
Matrix:	Soil		Dat	e Received:	10/15/2020		
<u>Surrogate</u>		Percent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Analy	zed	
2,4,6-Tribromopheno	l	57.3	40.1 - 84.5		10/16/2020	17:08	
2-Fluorobiphenyl		57.7	43.3 - 79.9		10/16/2020	17:08	
2-Fluorophenol		55.6	42.4 - 75.9		10/16/2020	17:08	
Nitrobenzene-d5		59.9	39.8 - 77.5		10/16/2020	17:08	
Phenol-d5		56.3	43 - 78.8		10/16/2020	17:08	
Terphenyl-d14		63.5	43.1 - 87.7		10/16/2020	17:08	
Method Referer Preparation Da	EPA 3546 te: 10/16/2020						
Data File:	B50116.D						

Client:	NWEC&C				
Project Reference:	20-179				
Sample Identifier: Lab Sample ID: Matrix:	JF Krantz Sto 204965-01 Soil	ock Pile #1		Date Sampled: Date Received:	10/15/2020 10/15/2020
Volatile Organics					
Analyte		<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
1,1,1-Trichloroethane		< 4.30	ug/Kg		10/16/2020 12:56
1,1,2,2-Tetrachloroetha	ane	< 4.30	ug/Kg		10/16/2020 12:56
1,1,2-Trichloroethane		< 4.30	ug/Kg		10/16/2020 12:56
1,1-Dichloroethane		< 4.30	ug/Kg		10/16/2020 12:56
1,1-Dichloroethene		< 4.30	ug/Kg		10/16/2020 12:56
1,2,3-Trichlorobenzene	9	< 10.8	ug/Kg		10/16/2020 12:56
1,2,4-Trichlorobenzene	9	< 10.8	ug/Kg		10/16/2020 12:56
1,2,4-Trimethylbenzen	e	< 4.30	ug/Kg		10/16/2020 12:56
1,2-Dibromo-3-Chlorop	propane	< 21.5	ug/Kg		10/16/2020 12:56
1,2-Dibromoethane		< 4.30	ug/Kg		10/16/2020 12:56
1,2-Dichlorobenzene		< 4.30	ug/Kg		10/16/2020 12:56
1,2-Dichloroethane		< 4.30	ug/Kg		10/16/2020 12:56
1,2-Dichloropropane		< 4.30	ug/Kg		10/16/2020 12:56
1,3,5-Trimethylbenzen	e	< 4.30	ug/Kg		10/16/2020 12:56
1,3-Dichlorobenzene		< 4.30	ug/Kg		10/16/2020 12:56
1,4-Dichlorobenzene		< 4.30	ug/Kg		10/16/2020 12:56
1,4-Dioxane		< 43.0	ug/Kg		10/16/2020 12:56
2-Butanone		< 21.5	ug/Kg		10/16/2020 12:56
2-Hexanone		< 10.8	ug/Kg		10/16/2020 12:56
4-Methyl-2-pentanone		< 10.8	ug/Kg		10/16/2020 12:56
Acetone		< 21.5	ug/Kg		10/16/2020 12:56
Benzene		< 4.30	ug/Kg		10/16/2020 12:56
Bromochloromethane		< 10.8	ug/Kg		10/16/2020 12:56

Client:	<u>NWEC&C</u>				
Project Reference:	20-179				
Sample Identifier:	JF Krantz Sto	ck Pile #1			
Lab Sample ID:	204965-01			Date Sampled:	10/15/2020
Matrix:	Soil			Date Received:	10/15/2020
Bromodichloromethan	ie	< 4.30	ug/Kg		10/16/2020 12:56
Bromoform		< 10.8	ug/Kg		10/16/2020 12:56
Bromomethane		< 4.30	ug/Kg		10/16/2020 12:56
Carbon disulfide		< 4.30	ug/Kg		10/16/2020 12:56
Carbon Tetrachloride		< 4.30	ug/Kg		10/16/2020 12:56
Chlorobenzene		< 4.30	ug/Kg		10/16/2020 12:56
Chloroethane		< 4.30	ug/Kg		10/16/2020 12:56
Chloroform		< 4.30	ug/Kg		10/16/2020 12:56
Chloromethane		< 4.30	ug/Kg		10/16/2020 12:56
cis-1,2-Dichloroethene		< 4.30	ug/Kg		10/16/2020 12:56
cis-1,3-Dichloroproper	ne	< 4.30	ug/Kg		10/16/2020 12:56
Cyclohexane		< 21.5	ug/Kg		10/16/2020 12:56
Dibromochloromethan	ie	< 4.30	ug/Kg		10/16/2020 12:56
Dichlorodifluorometha	ane	< 4.30	ug/Kg		10/16/2020 12:56
Ethylbenzene		< 4.30	ug/Kg		10/16/2020 12:56
Freon 113		< 4.30	ug/Kg		10/16/2020 12:56
Isopropylbenzene		< 4.30	ug/Kg		10/16/2020 12:56
m,p-Xylene		< 4.30	ug/Kg		10/16/2020 12:56
Methyl acetate		< 4.30	ug/Kg		10/16/2020 12:56
Methyl tert-butyl Ether	r	< 4.30	ug/Kg		10/16/2020 12:56
Methylcyclohexane		< 4.30	ug/Kg		10/16/2020 12:56
Methylene chloride		< 10.8	ug/Kg		10/16/2020 12:56
Naphthalene		< 10.8	ug/Kg		10/16/2020 12:56
n-Butylbenzene		< 4.30	ug/Kg		10/16/2020 12:56
n-Propylbenzene		< 4.30	ug/Kg		10/16/2020 12:56

Client:	NWEC&C						
Project Reference:	20-179						
Sample Identifier:	JF Krantz Sto	ock Pile #1					
Lab Sample ID:	204965-01			Da	te Sampled:	10/15/2020)
Matrix:	Soil			Da	te Received:	10/15/2020)
o-Xylene		< 4.30	ug/Kg			10/16/2020	12:56
p-Isopropyltoluene		< 4.30	ug/Kg			10/16/2020	12:56
sec-Butylbenzene		< 4.30	ug/Kg			10/16/2020	12:56
Styrene		< 10.8	ug/Kg			10/16/2020	12:56
tert-Butylbenzene		< 4.30	ug/Kg			10/16/2020	12:56
Tetrachloroethene		< 4.30	ug/Kg			10/16/2020	12:56
Toluene		< 4.30	ug/Kg			10/16/2020	12:56
trans-1,2-Dichloroethe	ne	< 4.30	ug/Kg			10/16/2020	12:56
trans-1,3-Dichloroprop	ene	< 4.30	ug/Kg			10/16/2020	12:56
Trichloroethene		< 4.30	ug/Kg			10/16/2020	12:56
Trichlorofluoromethan	e	< 4.30	ug/Kg			10/16/2020	12:56
Vinyl chloride		< 4.30	ug/Kg			10/16/2020	12:56
Surrogate		Perc	ent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Analy	zed
1,2-Dichloroethane-d4			92.6	61 • 146		10/16/2020	12:56
4-Bromofluorobenzene	2		61.8	48.8 - 138		10/16/2020	12:56
Pentafluorobenzene			102	65.4 - 141		10/16/2020	12:56
Toluene-D8			84.7	62.8 - 133		10/16/2020	12:56

Internal standard outliers indicate probable matrix interference
Method Reference(s): EPA 8260C
EPA 5035A - L

Data File:

x74078.D

This sample was not collected following SW846 5035A specifications. Accordingly, any Volatiles soil results that are less than 200 ug/Kg, including Non Detects, may be biased low, per ELAP method 5035 guidance document from 11/15/2012.

Client:	<u>NWEC&C</u>								
Project Reference:	20-179								
Sample Identifier:	JF Krantz Stock Pile #1								
Lab Sample ID:	204965-01		Date Sampled:	10/15/2020					
Matrix:	Soil		Date Received:	10/15/2020					
<u>Total Cyanide</u>									
<u>Analyte</u>	<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed					
Cyanide, Total	< 0.524	mg/Kg		10/16/2020					

 Method Reference(s):
 EPA 9014

 EPA 9010C

 Preparation Date:
 10/19/2020

Client:	<u>NWEC&C</u>								
Project Reference:	20-179								
Sample Identifier:	JF Krantz Stock Pile	#1							
Lab Sample ID:	204965-01Date Sampled:10/15/2020								
Matrix:	Soil			Date Receive	ed: 10/15/2020				
<u>Miscellaneous</u>									
<u>Analyte</u>	Resul	lt	<u>Units</u>	Qualifie	er Date Analyzed				
Miscellaneous #1	In Prog	ress	mg/Kg						

Method Reference(s): N/A

				179 Lai	ke Avenue, Rochester, NY		Office (585) 647-2530 Fax	(585) 647-3311		101
PAF	RADIG	M		CLIENT: NW Contract ADDRESS: 3553 Critta CITY: Alden STATE PHONE: 716-864-74	o: ting enden Rd. : Ny ^{ZIP} 14004	CLIENT: ADDRESS CITY: PHONE:	INVOICE		LAB PROJECT 204965 Quotation #: Email:	
PROJE	ct refere	ENCE		ATTN: Brize Matrix Codes: AQ - Aqueous Liquid NQ - Non-Aqueous Liquid	• WA - Water WG - Groundwa	ATTN:	DW - Drinking Water WW - Wastewater	SO - Soil SL - Sludge	e PT - Paint CK - Caulk	OL - Oil AR - Air
DATE COLLECTED	TIME COLLECTED	C O M P O S I T E	G R A B	SAMPLE IDENTIFIER	M C A D R E I S X	N O U N B A F S	PFAS - DER - 10 Pt. 375 SUCS Pt. 375 SUCS Pt. 375 Port Pt. 375 Port PCBS	Total cyanide Hex. Chronie Sisher Sishex PFAS	REMARKS	PARADIGM LAB SAMPLE NUMBER
10 /15 /20	11:20	χ		JF Krantz Stock	file #1 50	5		×××××	\$60.00 sampling fee	01
									Subsent direffos	mb lab

Turnaroun	d Time	Re	eport Supp	plements		10 - 2	
Availabi	lity continger	nt upon lab approva	al; additional	fees may apply.		BrimBle	ch 10/15/2
Standard 5 day		None Required		None Required		Sampled By	Date/Time
10 day		Batch QC		Basic EDD		Relinquished By	Date/Time
Rush 3 day		Category A				Brian Juch	- 10/15/2
Rush 2 day	X	Category B	\square	wot n	BZ	Received By	
Rush 1 day				required	×	Received @ Lab By	Date/Time
Date Needed		Other		Other EDD			2020 15:40
please indicate date neede	ed:	please indicate package r	teeded:	please indicate EDD need	ded :	By signing this form, client a	agrees to Paradigm Terms
1					-		Se

Brim Blech		11=20		
Sampled By	Date/Time		Total Cost:	
Relinquished By	Date/Time			
Brim Juch	10/15/20	11:20		
Myly Vail	Date/Time	1544	P.I.F.	
Received @ Lab By 4°C iced 10/15/202	Date/Time			
By signing this form, client agrees		onditions (re	verse).	

ee additional page for sample conditions.

2012

Chain of Custody Supplement

Client:	NW Contractor	Completed by:	Mybrail
Lab Project ID:	204965	Date:	10/15/2020
3	Sample Condit Per NELAC/ELAP		
Condition	NELAC compliance with the samp Yes	le condition requirements i No	upon receipt N/A
Container Type Comments	С У Ш	[50]]	
Transferred to method- compliant container			X
Headspace (<1 mL) Comments			, Х
Preservation Comments			
Chlorine Absent (<0.10 ppm per test strip) Comments			
Holding Time Comments	ŢŹ	4	
Temperature Comments	Y°ciud		nut
Compliant Sample Quantity/ Comments	······································	me, Silvex Sa	bel diety to sub the

			÷.	Cł	venue, Rochester, HAIN OF						2530 e	Fax (!			Office (595)PP (2025)00114	x 1965	的有效是	6 1 45	11148 11148
A STATE			Con Parlo	REPORT TO:			S-DER	20.0		11	NOIC	ETC		的法自己的新	en an	194.20		sets	
PA	RADIG	M	COMPANY:		mental	co	MPANY		_	ame	_	_		1.0.000		JENT P	ROJEC	T#:	12.4. (
A Rouge			ADDRESS:	179 Lake Avenue	0.27	AD	DRESS		4	er i fie	e.e	-		9	1 2 3200	1.200.0		General Sector	- 1.V-83 51
N ana	Contraction of the local distance of the loc		CITY:	Rochester STATE:	NY ^{ZIP:} 146	18 Cri	IY:					STAT	E:	ZIP:	TURNAROUND TIME: (WORK	UNG DA	YS)		
	No. of Concession, Name		PHONE:	FAX:		РН	IONE:				FAX	C:				STD)	10.000	OTHER
JECT NAME/SITE	ENAME:		ATTN:	Reporting		AT	TN:	ł	Acco	unts I	Payat	ble			1 X 2		5	Γ	
	20-179		COMMENT	B: Please email results	s to reporting@	para	adigm	nenv	.com	ĩ					Date Due:				
1.Stational	20-175	STORE STORE	and the second			Enn		R	EQU	ESTE	DAN	NAL)	SIS		Isate rate:	197.5	330	in the	防装运行的目
DATE	TIME	С О М Р О S I Т Е	G R A B	SAMPLE LOCATION/FIELD		- M	C O N T A S I N E R	PFAS	Part 375 Mercury Hex Chrome	Silvex					REMARKS	PA	RADIG	M LAB	SAMPLE NUMBER
10/15/20	11:20	х		JF Krantz Stock Pil	le#1 S	2	3	x	xx	x									
														5 Day tu	Irn for the PFAS				
														only.					5
						1			100							T	T		
							-							Categor	y B is required at		П		
					1000 C								-		d turn around time.		1 T		
			1.0						-	11							ht		
									Ť	++						-	H	-	
								- 1					-				H	+	-
			_				-		+		+		-			+			
BUSEC	NLY BELO	W THIS	INE	and the second		19/2	THE R.	6964	G 23		STELLE	ALC: N		- A MARTIN CONTRACTOR			Colleges of	Sales	And the Long of
	on: Per NELA	C/ELAP 210										Concession of the local division of the loca							
	Receipt Par			NELAC Compliance	-											1			
ients:	Container T	ype:		Y [N [_]	Cli Sampled By		-				,		e/Time		Total Cos	-			
nents:	Preservati	on:		Y 🔲 N 🛄	Relinquished by Date/Time														
ients:	Holding Tir	те:		Y 🔲 N 🛄	Received By Date/Time P.I.F,														
nents:	Temperatu	ire:		Y N	Received By Date/Time														
					Received @	Lab B	By			_	_	Date	/Time						

ANALYTICAL REPORT

Lab Number:	L2044315
Client:	Paradigm Environmental Services 179 Lake Avenue Rochester, NY 14608
ATTN: Phone:	Jane Daloia (585) 647-2530
Project Name:	20-179
Project Number:	20-179
Report Date:	10/22/20

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Serial No	10222014:46
-----------	-------------

 Lab Number:
 L2044315

 Report Date:
 10/22/20

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2044315-01	JF KRANTZ STOCK PILE #1	SOIL	Not Specified	10/15/20 11:20	10/15/20

Project Name:

Project Number: 20-179

20-179

 Lab Number:
 L2044315

 Report Date:
 10/22/20

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.

 Lab Number:
 L2044315

 Report Date:
 10/22/20

Case Narrative (continued)

Report Submission

October 22, 2020: This final report includes the results of all requested analyses. October 19, 2020: This is a preliminary report.

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Perfluorinated Alkyl Acids by Isotope Dilution

L2044315-01: The sample was re-extracted within holding time due to QC failures in the original extraction. The results of the re-extraction are reported.

L2044315-01: Extracted Internal Standard recoveries were outside the acceptance criteria for individual analytes. Please refer to the surrogate section of the report for details.

The Extracted Internal Standard recovery for the WG1424371-1 Method Blank, associated with L2044315-01, is below the acceptance criteria for Perfluoro[13C8]Octanesulfonamide (M8FOSA) (less than 10%); however, all associated samples are non-detect for Perfluoroctanesulfonamide (FOSA) and have an acceptable Extracted Internal Standard recovery for M8FOSA; therefore, no further actions were taken. WG1424371-2: The Extracted Internal Standard recovery is below the acceptance criteria for Perfluoro[13C8]Octanesulfonamide (M8FOSA) (less than 10%); however, all associated target analytes are within criteria; therefore, no further action was taken.

Total Metals

The WG1423055-3 MS recovery, performed on L2044315-01, is outside the acceptance criteria for mercury (122%). A post digestion spike was performed and was within acceptance criteria.

Hexavalent Chromium

The WG1423133-2 LCS recovery for chromium, hexavalent (74%), associated with L2044315-01, is outside our in-house acceptance criteria, but within the vendor-certified acceptance limits. The results of the original

 Lab Number:
 L2044315

 Report Date:
 10/22/20

Case Narrative (continued)

analyses are reported.

The WG1423133-4 Insoluble MS recovery for chromium, hexavalent (18%), performed on L2044315-01, is outside the acceptance criteria. The Soluble MS recovery for chromium, hexavalent (0%) was also outside criteria. This has been attributed to matrix interference. A post-spike was performed with a recovery of 95%.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

609 Sendow Kelly Stenstrom

Authorized Signature:

Title: Technical Director/Representative

Date: 10/22/20

ORGANICS

SEMIVOLATILES

		Serial_No:102	222014:46
Project Name:	20-179	Lab Number:	L2044315
Project Number:	20-179	Report Date:	10/22/20
	SAMPLE RESULTS		
Lab ID:	L2044315-01 RE\R	Date Collected: 10)/15/20 11:20
Client ID:	JF KRANTZ STOCK PILE #1	Date Received: 10)/15/20
Sample Location:	Not Specified	Field Prep: No	ot Specified
Sample Depth:			
Matrix:	Soil	Extraction Method: Al	_PHA 23528
Analytical Method:	134,LCMSMS-ID	Extraction Date: 10)/20/20 19:15
Analytical Date:	10/22/20 12:22		
Analyst:	JW		
Percent Solids:	85%		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
Perfluorinated Alkyl Acids by Isotope Dilution - Mansfield Lab									
Perfluorobutanoic Acid (PFBA)	0.130	J	ug/kg	0.550	0.025	1			
Perfluoropentanoic Acid (PFPeA)	0.061	J	ug/kg	0.550	0.051	1			
Perfluorobutanesulfonic Acid (PFBS)	ND		ug/kg	0.550	0.043	1			
Perfluorohexanoic Acid (PFHxA)	0.086	J	ug/kg	0.550	0.058	1			
Perfluoroheptanoic Acid (PFHpA)	0.061	J	ug/kg	0.550	0.050	1			
Perfluorohexanesulfonic Acid (PFHxS)	ND		ug/kg	0.550	0.067	1			
Perfluorooctanoic Acid (PFOA)	0.271	J	ug/kg	0.550	0.046	1			
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	ND		ug/kg	0.550	0.197	1			
Perfluoroheptanesulfonic Acid (PFHpS)	ND		ug/kg	0.550	0.150	1			
Perfluorononanoic Acid (PFNA)	0.091	J	ug/kg	0.550	0.083	1			
Perfluorooctanesulfonic Acid (PFOS)	0.344	J	ug/kg	0.550	0.143	1			
Perfluorodecanoic Acid (PFDA)	ND		ug/kg	0.550	0.074	1			
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	ND		ug/kg	0.550	0.316	1			
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND		ug/kg	0.550	0.222	1			
Perfluoroundecanoic Acid (PFUnA)	ND		ug/kg	0.550	0.051	1			
Perfluorodecanesulfonic Acid (PFDS)	ND		ug/kg	0.550	0.168	1			
Perfluorooctanesulfonamide (FOSA)	ND		ug/kg	0.550	0.108	1			
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND		ug/kg	0.550	0.093	1			
Perfluorododecanoic Acid (PFDoA)	ND		ug/kg	0.550	0.077	1			
Perfluorotridecanoic Acid (PFTrDA)	ND		ug/kg	0.550	0.225	1			
Perfluorotetradecanoic Acid (PFTA)	ND		ug/kg	0.550	0.059	1			
PFOA/PFOS, Total	0.615	J	ug/kg	0.550	0.046	1			

Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
Sample Depth:								
Sample Location:	Not Specified				Field Prep	:	Not Specified	
Client ID:	JF KRANTZ STO	CK PILE #1			Date Rece		10/15/20	
Lab ID:	L2044315-01	RE\R			Date Colle	cted:	10/15/20 11:20	
		SAMP		S				
Project Number:	20-179				Report D	ate:	10/22/20	
Project Name:	20-179				Lab Num	ber:	L2044315	
					Se	erial_No	5:10222014:46	

Perfluorinated Alkyl Acids by Isotope Dilution - Mansfield Lab

Surrogate (Extracted Internal Standard)	% Recovery	Qualifier	Acceptance Criteria	
Perfluoro[13C4]Butanoic Acid (MPFBA)	92		60-153	
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	92		65-182	
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	102		70-151	
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	91		61-147	
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	91		62-149	
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	109		63-166	
Perfluoro[13C8]Octanoic Acid (M8PFOA)	97		62-152	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	68		32-182	
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	99		61-154	
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	109		65-151	
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	99		65-150	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	72		25-186	
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	37	Q	45-137	
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	102		64-158	
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	26		1-125	
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	55		42-136	
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	91		56-148	
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	78		26-160	

 Lab Number:
 L2044315

 Report Date:
 10/22/20

 Project Name:
 20-179

 Project Number:
 20-179

Method Blank Analysis Batch Quality Control

Analytical Method:134,LCMSMS-IDAnalytical Date:10/22/20 11:32Analyst:JW

Extraction Method: ALPHA 23528 Extraction Date: 10/20/20 19:15

arameter	Result	Qualifier	Units	RL	MDL	
erfluorinated Alkyl Acids by Isotope	Dilution -	Mansfield	Lab for sar	mple(s): 01	Batch:	WG1424371-7
Perfluorobutanoic Acid (PFBA)	ND		ug/kg	0.500	0.023	3
Perfluoropentanoic Acid (PFPeA)	ND		ug/kg	0.500	0.04	6
Perfluorobutanesulfonic Acid (PFBS)	ND		ug/kg	0.500	0.03	Э
Perfluorohexanoic Acid (PFHxA)	ND		ug/kg	0.500	0.05	3
Perfluoroheptanoic Acid (PFHpA)	ND		ug/kg	0.500	0.04	5
Perfluorohexanesulfonic Acid (PFHxS)	ND		ug/kg	0.500	0.06	1
Perfluorooctanoic Acid (PFOA)	ND		ug/kg	0.500	0.042	2
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	ND		ug/kg	0.500	0.18)
Perfluoroheptanesulfonic Acid (PFHpS)	ND		ug/kg	0.500	0.13	6
Perfluorononanoic Acid (PFNA)	ND		ug/kg	0.500	0.07	5
Perfluorooctanesulfonic Acid (PFOS)	ND		ug/kg	0.500	0.13)
Perfluorodecanoic Acid (PFDA)	ND		ug/kg	0.500	0.06	7
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	d ND		ug/kg	0.500	0.28	7
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	c ND		ug/kg	0.500	0.202	2
Perfluoroundecanoic Acid (PFUnA)	ND		ug/kg	0.500	0.04	7
Perfluorodecanesulfonic Acid (PFDS)	ND		ug/kg	0.500	0.15	3
Perfluorooctanesulfonamide (FOSA)	ND		ug/kg	0.500	0.098	3
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND		ug/kg	0.500	0.08	5
Perfluorododecanoic Acid (PFDoA)	ND		ug/kg	0.500	0.070)
Perfluorotridecanoic Acid (PFTrDA)	ND		ug/kg	0.500	0.204	4
Perfluorotetradecanoic Acid (PFTA)	ND		ug/kg	0.500	0.054	4
PFOA/PFOS, Total	ND		ug/kg	0.500	0.042	2

L2044315

10/22/20

Lab Number:

Report Date:

Project Name:	20-179
Project Number:	20-179

Method Blank Analysis Batch Quality Control

Analytical Method:	134,LCMSMS-ID	Extraction Method:	ALPHA 23528
Analytical Date:	10/22/20 11:32	Extraction Date:	10/20/20 19:15
Analyst:	JW		

Parameter	Result	Qualifier	Units	RL	MDL	
Perfluorinated Alkyl Acids by Isotop	be Dilution -	Mansfield L	_ab for sa	ample(s): 01	Batch: WG	31424371-1

Surrogate (Extracted Internal Standard)	%Recovery	Acceptance Qualifier Criteria
erfluoro[13C4]Butanoic Acid (MPFBA)	96	60-153
erfluoro[13C5]Pentanoic Acid (M5PFPEA)	98	65-182
erfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	105	70-151
erfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	95	61-147
erfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	96	62-149
erfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	113	63-166
erfluoro[13C8]Octanoic Acid (M8PFOA)	100	62-152
H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	70	32-182
erfluoro[13C9]Nonanoic Acid (M9PFNA)	104	61-154
erfluoro[13C8]Octanesulfonic Acid (M8PFOS)	108	65-151
erfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	107	65-150
H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	72	25-186
-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	75	45-137
erfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	114	64-158
erfluoro[13C8]Octanesulfonamide (M8FOSA)	7	1-125
I-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	90	42-136
erfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	99	56-148
erfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	87	26-160

Lab Control Sample Analysis Batch Quality Control

Lab Number: L2044315

Report Date: 10/22/20

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Perfluorinated Alkyl Acids by Isotope Dilution	- Mansfield Lab	Associated sa	ample(s): 01	Batch: WO	G1424371-2 WG	1424371-3		
Perfluorobutanoic Acid (PFBA)	101		115		71-135	13		30
Perfluoropentanoic Acid (PFPeA)	97		109		69-132	12		30
Perfluorobutanesulfonic Acid (PFBS)	88		101		72-128	14		30
Perfluorohexanoic Acid (PFHxA)	98		112		70-132	13		30
Perfluoroheptanoic Acid (PFHpA)	98		114		71-131	15		30
Perfluorohexanesulfonic Acid (PFHxS)	97		109		67-130	12		30
Perfluorooctanoic Acid (PFOA)	100		113		69-133	12		30
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	114		126		64-140	10		30
Perfluoroheptanesulfonic Acid (PFHpS)	101		115		70-132	13		30
Perfluorononanoic Acid (PFNA)	99		110		72-129	11		30
Perfluorooctanesulfonic Acid (PFOS)	108		122		68-136	12		30
Perfluorodecanoic Acid (PFDA)	98		111		69-133	12		30
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	114		130		65-137	13		30
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	98		117		63-144	18		30
Perfluoroundecanoic Acid (PFUnA)	99		114		64-136	14		30
Perfluorodecanesulfonic Acid (PFDS)	115		130		59-134	12		30
Perfluorooctanesulfonamide (FOSA)	90		116		67-137	25		30
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	110		119		61-139	8		30
Perfluorododecanoic Acid (PFDoA)	103		123		69-135	18		30
Perfluorotridecanoic Acid (PFTrDA)	102		121		66-139	17		30
Perfluorotetradecanoic Acid (PFTA)	99		112		69-133	12		30

Lab Control Sample Analysis Batch Quality Control

Project Name: 20-179

Project Number: 20-179

Lab Number: L2044315

Report Date: 10/22/20

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Perfluorinated Alkyl Acids by Isotope Dilutior	n - Mansfield Lab	Associated	sample(s): 01	Batch: WG	1424371-2 WG1	424371-3			

Surrogate (Extracted Internal Standard)	LCS %Recovery	Qual	LCSD %Recovery	Qual	Acceptance Criteria	
Perfluoro[13C4]Butanoic Acid (MPFBA)	104		104		60-153	
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	102		103		65-182	
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	107		108		70-151	
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	102		103		61-147	
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	101		102		62-149	
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	115		117		63-166	
Perfluoro[13C8]Octanoic Acid (M8PFOA)	103		105		62-152	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	73		76		32-182	
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	107		112		61-154	
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	110		111		65-151	
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	106		110		65-150	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	74		73		25-186	
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	83		87		45-137	
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	109		111		64-158	
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	7		11		1-125	
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	86		92		42-136	
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	101		106		56-148	
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	86		93		26-160	

PESTICIDES

		Serial_No	:10222014:46
Project Name:	20-179	Lab Number:	L2044315
Project Number:	20-179	Report Date:	10/22/20
	SAMPLE RESULTS		
Lab ID: Client ID: Sample Location:	L2044315-01 JF KRANTZ STOCK PILE #1 Not Specified	Date Collected: Date Received: Field Prep:	10/15/20 11:20 10/15/20 Not Specified
Sample Depth: Matrix: Analytical Method: Analytical Date: Analyst: Percent Solids: Methylation Date:	Soil 1,8151A 10/18/20 17:30 JMC 85% 10/17/20 12:35	Extraction Method Extraction Date:	: EPA 8151A 10/16/20 23:46

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Fac	tor Column
Chlorinated Herbicides by GC - W	estborough Lab						
2,4,5-TP (Silvex)	ND		ug/kg	191	5.09	1	А
Surrogate			% Recovery	Qualifier	Accept Crite		Column
DCAA			91		30-	-150	A
DCAA			88		30-	-150	В

Project Name:	20-179		Lab Number:	L2044315
Project Number:	20-179		Report Date:	10/22/20
		Method Blank Analysis Batch Quality Control		
Analytical Method: Analytical Date: Analyst:	1,8151A 10/18/20 16:36 JMC		Extraction Method: Extraction Date:	EPA 8151A 10/16/20 23:46
Methylation Date:	10/17/20 12:35			

Parameter	Result	Qualifier	Units	RL	MDL	Column
Chlorinated Herbicides by GC -	Westborough I	_ab for samp	ole(s): C	1 Batch:	WG1423164-1	
2,4,5-TP (Silvex)	ND		ug/kg	166	4.41	А

a Column
A
В
)

Lab Control Sample Analysis Batch Quality Control

 Project Name:
 20-179

 Project Number:
 20-179

 Lab Number:
 L2044315

 Report Date:
 10/22/20

	LCS		LCSD		%Recovery			RPD	
Parameter	%Recovery	Qual	%Recover	ry Qual	Limits	RPD	Qual	Limits	Column
Chlorinated Herbicides by GC - Westborough	Lab Associate	d sample(s):	01 Batch:	WG1423164-2	WG1423164-3				
2,4,5-TP (Silvex)	97		80		30-150	19		30	A

Surrogate	LCS	LCSD	Acceptance
	%Recovery Qua	al %Recovery Qual	Criteria Column
DCAA	91	71	30-150 A
DCAA	89	73	30-150 B

METALS

Serial	No:1	022201	4:46
001101			

Total Metals - Mans	sfield Lab										
Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analys
Percent Solids:	85%					Dilution	Date	Date	Prep	Analytical	
Matrix:	Soil										
Sample Depth:											
Sample Location:	Not Sp	pecified					Field Pr	ep:	Not Spec	ified	
Client ID:	JF KR	KRANTZ STOCK PILE #1 Specified					Date Re	eceived:	10/15/20		
Lab ID:	L2044	315-01					Date Co	ollected:	10/15/20	11:20	
				SAMPL	E RES	ULTS					
Project Number:	20-17	9					Report	Date:	10/22/20	C	
Project Name:	20-17	9					Lab Nu	mber:	L20443	15	

 Lab Number:
 L2044315

 Report Date:
 10/22/20

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared		Analytica Method	
Total Metals - Man	sfield Lab for sample(s):	01 Batch	n: WG14	423055-	1				
Mercury, Total	ND	mg/kg	0.083	0.054	1	10/16/20 21:50	10/17/20 11:36	1,7471B	AL

Prep Information

Digestion Method: EPA 7471B

Lab Control Sample Analysis Batch Quality Control

 Project Name:
 20-179

 Project Number:
 20-179

 Lab Number:
 L2044315

 Report Date:
 10/22/20

Parameter	LCS %Recovery	Qual %I	LCSD Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample	e(s): 01 Batch:	WG1423055-2	SRM Lot N	umber: D1	09-540			
Mercury, Total	96		-		60-140	-		

		Matrix Spike Analysis Batch Quality Control		
Project Name:	20-179	Batch Quality Control	Lab Number:	L2044315
Project Number:	20-179		Report Date:	10/22/20

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Recovery Qual Limits	RPD Qu	RPD _{Ial} Limits
Total Metals - Mansfield Lab	Associated san	nple(s): 01	QC Batch	ID: WG142305	5-3 (QC Sample:	L2044315-01	Client ID: JF KR	ANTZ STC	OCK PILE #1
Mercury, Total	ND	0.159	0.194	122	Q	-	-	80-120	-	20

Project Name:	20-179	La	Lab Duplicate Analysis Batch Quality Control					315
Project Number:	20-179				R	eport Date	e: 10/22/	20
Parameter		Native Sample	Duplicate Sample	Units	RPD	Qual	RPD Limits	

raiaiietei	Native Sample	Duplicate Sample	Units	RFD	Qual	
Total Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG142308	55-4 QC Sample:	L2044315-01	Client ID:	JF KRANTZ	STOCK PILE #1
Mercury, Total	ND	0.058J	mg/kg	NC		20

INORGANICS & MISCELLANEOUS

Lab Number: L2044315 Report Date: 10/22/20

 Project Name:
 20-179

 Project Number:
 20-179

SAMPLE RESULTS

Lab ID: Client ID: Sample Location	L2044315-01 JF KRANTZ STO Not Specified	CK PILE #1				20.10	Received:	10/15/20 11:20 10/15/20 Not Specified)
Sample Depth: Matrix:	Soil								
Parameter	Result Qua	ifier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - W	estborough Lab								
Solids, Total	85.2	%	0.100	NA	1	-	10/16/20 13:3	5 121,2540G	RI
Chromium, Hexavalent	ND	mg/kg	0.939	0.188	1	10/17/20 00:01	10/18/20 16:42	2 1,7196A	JW

 Lab Number:
 L2044315

 Report Date:
 10/22/20

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifie	er Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab for s	ample(s): 01	Batch:	WG14	23133-1				
Chromium, Hexavalent	ND	mg/kg	0.800	0.160	1	10/17/20 00:01	10/18/20 16:31	1,7196A	JW

Lab Control Sample Analysis Batch Quality Control

Lab Number: L2044315 Report Date: 10/22/20

Project Name: 20-179 Project Number: 20-179

LCS LCSD %Recovery %Recovery %Recovery Limits RPD **RPD** Limits Parameter Qual Qual Qual General Chemistry - Westborough Lab Associated sample(s): 01 Batch: WG1423133-2 20 Chromium, Hexavalent 74 Q 80-120 --

		Matrix Spike Analysis Batch Quality Control		
Project Name:	20-179		Number:	L2044315
Project Number:	20-179	Rep	ort Date:	10/22/20

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Qual	Recovery Limits	RPD	Qual	RPD Limits
General Chemistry - Westborou PILE #1	ugh Lab Asso	ciated samp	ole(s): 01	QC Batch ID: V	VG1423	3133-4	QC Sample: L20)44315-	01 Client	ID: JF	KRAN	TZ STOCK
Chromium, Hexavalent	ND	889	162	18	Q	-	-		75-125	-		20

Project Name:	20-179	Lab Duplicate Analysis Batch Quality Control	Lab Number:	L2044315
Project Number:	20-179		Report Date:	10/22/20

Parameter	Native S	ample	Duplicate Sam	ple Unit	s RPD	Qual	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s): 01	QC Batch ID:	WG1422999-1	QC Sample:	L2044300-06	Client ID:	DUP Sample
Solids, Total	93.8	3	93.4	%	0		20
General Chemistry - Westborough Lab PILE #1	Associated sample(s): 01	QC Batch ID:	WG1423133-6	QC Sample:	L2044315-01	Client ID:	JF KRANTZ STOCK
Chromium, Hexavalent	ND		ND	mg/k	g NC		20

 Project Name:
 20-179

 Project Number:
 20-179

Serial_No:10222014:46 *Lab Number:* L2044315 *Report Date:* 10/22/20

Sample Receipt and Container Information

Were project specific reporting limits specified?

YES

Cooler Information

Cooler	Custody Seal
A	Absent

Container Information

Container Info	rmation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2044315-01A	Plastic 2oz unpreserved for TS	А	NA		5.6	Y	Absent		HG-T(28)
L2044315-01B	Glass 120ml/4oz unpreserved	А	NA		5.6	Υ	Absent		HERB-APA(14),TS(7),HEXCR-7196(30)
L2044315-01C	Plastic 8oz unpreserved	А	NA		5.6	Y	Absent		A2-NY-537-ISOTOPE(14)

Project Name: 20-179

Project Number: 20-179

Serial_No:10222014:46 Lab Number: L2044315 Report Date: 10/22/20

PFAS PARAMETER SUMMARY

Parameter	Acronym	CAS Number
PERFLUOROALKYL CARBOXYLIC ACIDS (PFCAs)		
Perfluorooctadecanoic Acid	PFODA	16517-11-6
Perfluorohexadecanoic Acid	PFHxDA	67905-19-5
Perfluorotetradecanoic Acid	PFTA	376-06-7
Perfluorotridecanoic Acid	PFTrDA	72629-94-8
Perfluorododecanoic Acid	PFDoA	307-55-1
Perfluoroundecanoic Acid	PFUnA	2058-94-8
Perfluorodecanoic Acid	PFDA	335-76-2
Perfluorononanoic Acid	PFNA	375-95-1
Perfluorooctanoic Acid	PFOA	335-67-1
Perfluoroheptanoic Acid	PFHpA	375-85-9
Perfluorohexanoic Acid	PFHxA	307-24-4
Perfluoropentanoic Acid	PFPeA	2706-90-3
Perfluorobutanoic Acid	PFBA	375-22-4
PERFLUOROALKYL SULFONIC ACIDS (PFSAs)		
Perfluorododecanesulfonic Acid	PFDoDS	79780-39-5
Perfluorodecanesulfonic Acid	PFDS	335-77-3
Perfluorononanesulfonic Acid Perfluorooctanesulfonic Acid	PFNS PFOS	68259-12-1
		1763-23-1
Perfluoroheptanesulfonic Acid Perfluorohexanesulfonic Acid	PFHpS PFHxS	375-92-8
Perfluoropentanesulfonic Acid	PFPeS	355-46-4 2706-91-4
Perfluoroputanesulfonic Acid	PFBS	375-73-5
	FIDS	375-73-5
FLUOROTELOMERS		
1H,1H,2H,2H-Perfluorododecanesulfonic Acid	10:2FTS	120226-60-0
1H,1H,2H,2H-Perfluorodecanesulfonic Acid	8:2FTS	39108-34-4
1H,1H,2H,2H-Perfluorooctanesulfonic Acid	6:2FTS	27619-97-2
1H,1H,2H,2H-Perfluorohexanesulfonic Acid	4:2FTS	757124-72-4
PERFLUOROALKANE SULFONAMIDES (FASAs)	5001	
Perfluorooctanesulfonamide	FOSA	754-91-6
N-Ethyl Perfluorooctane Sulfonamide	NEtFOSA	4151-50-2
N-Methyl Perfluorooctane Sulfonamide	NMeFOSA	31506-32-8
PERFLUOROALKANE SULFONYL SUBSTANCES		
N-Ethyl Perfluorooctanesulfonamido Ethanol	NEtFOSE	1691-99-2
N-Methyl Perfluorooctanesulfonamido Ethanol	NMeFOSE	24448-09-7
N-Ethyl Perfluorooctanesulfonamidoacetic Acid	NEtFOSAA	2991-50-6
N-Methyl Perfluorooctanesulfonamidoacetic Acid	NMeFOSAA	2355-31-9
PER- and POLYFLUOROALKYL ETHER CARBOXYLIC ACIDS		
2,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3,3-Heptafluoropropoxy]-Propanoic Acid	HFPO-DA	13252-13-6
4,8-Dioxa-3h-Perfluorononanoic Acid	ADONA	919005-14-4
CHLORO-PERFLUOROALKYL SULFONIC ACIDS		
11-Chloroeicosafluoro-3-Oxaundecane-1-Sulfonic Acid	11CI-PF3OUdS	763051-92-9
9-Chlorohexadecafluoro-3-Oxanone-1-Sulfonic Acid	9CI-PF3ONS	756426-58-1
PERFLUOROETHER SULFONIC ACIDS (PFESAs)		
Perfluoro(2-Ethoxyethane)Sulfonic Acid	PFEESA	113507-82-7
PERFLUOROETHER/POLYETHER CARBOXYLIC ACIDS (PFPCAs)		
Perfluoro-3-Methoxypropanoic Acid	PFMPA	377-73-1
Perfluoro-4-Methoxybutanoic Acid	PFMBA	863090-89-5
Nonafluoro-3,6-Dioxaheptanoic Acid	NFDHA	151772-58-6

Serial_No:10222014:46

Project Name: 20-179

Project Number: 20-179

Lab Number: L2044315

Report Date: 10/22/20

GLOSSARY

Acronyms

Acronyms	
DL	- Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
EDL	- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).
EMPC	- Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.
EPA	- Environmental Protection Agency.
LCS	- Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LCSD	- Laboratory Control Sample Duplicate: Refer to LCS.
LFB	- Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LOD	- Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
LOQ	- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
	Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
MDL	- Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
MS	- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.
MSD	- Matrix Spike Sample Duplicate: Refer to MS.
NA	- Not Applicable.
NC	- Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
NDPA/DPA	- N-Nitrosodiphenylamine/Diphenylamine.
NI	- Not Ignitable.
NP	- Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.
NR	- No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile Organic TIC only requests.
RL	- Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
RPD	- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.
SRM	- Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.
STLP	- Semi-dynamic Tank Leaching Procedure per EPA Method 1315.
TEF	- Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.
TEQ	- Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.
TIC	- Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: DU Report with 'J' Qualifiers

Project Name:	20-179	Lab Number:	L2044315
Project Number:	20-179	Report Date:	10/22/20

Footnotes

1

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Waterpreserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'. Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benz(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. If a 'Total' result is requested, the results of its individual components will also be reported.

The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA,this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- B The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For NJ-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- C Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- **D** Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- **F** The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- J Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where

Report Format: DU Report with 'J' Qualifiers

Serial_No:10222014:46

Project Name:	20-179	Lab Number:	L2044315
Project Number:	20-179	Report Date:	10/22/20

Data Qualifiers

the identification is based on a mass spectral library search.

- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- **S** Analytical results are from modified screening analysis.

 Project Name:
 20-179

 Project Number:
 20-179

 Lab Number:
 L2044315

 Report Date:
 10/22/20

REFERENCES

- 1 Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - VI, 2018.
- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.
- 134 Determination of Selected Perfluorinated Alkyl Acids in Drinking Water by Solid Phase Extraction and Liquid Chromatography/Tandem Mass Spectrometry (LC/MS/MS) using Isotope Dilution. Alpha SOP 23528.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene
EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.
EPA 8270D: NPW: Dimethylnaphthalene, 1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene, 1,4-Diphenylhydrazine.
SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.
Mansfield Facility
SM 2540D: TSS
EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.
EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 1-Methylnaphthalene.
EPA 3C Fixed gases
Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP. Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs **EPA 625.1**: SVOC (Acid/Base/Neutral Extractables), **EPA 600/4-81-045**: PCB-Oil.

Microbiology SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn. **EPA 200.8:** Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn. **EPA 245.1** Hg. **SM2340B**

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

179 Lake Avenue, Rochester, NY 14608 Office (585) 647-2530 Fax (585) 647-3311

CHAIN OF CUSTODY

11148

Serial_No:10222014:46

1					011		- 00	/0	10		<u>_</u>						L2044315	5			
PA	RADIG	M			PORT TO:		145				11	IOVA	CET	0:							34544
Cavina.		and I	COMPANY	Paradig	m Environm	ental	COM	PANY:		Sa	me						LAB PROJECT #: CL	IENT PR	ROJECT	# :	
			ADDRESS	179 Lak	e Avenue		ADD	RESS:													
			CITY:	Rochester	STATE:	NY ZIP: 146	08 CITY						STA	TE:		ZIP:	TURNAROUND TIME: (WORK	ING DA	YS)		
	No. of Concession, Name		PHONE:		FAX:		PHO	NE:	-		-	FA	X:		_			070			07000
PROJECT NAME/SITI	E NAME:		ATTN:	Reportir	a		ATTA	t:	Δ	2001	nte l	Paya	hlo					STD			OTHER
			COMMENT		email results	to reporting/	Darad	iama				uyu			_		1 X 2 3		5		
	20-179		Comment	a. 1100001	india roodito	to reporting@	sparau	igine									Date Due:				
	1000	25/20.20	-	and the house								DA	NAL	YSIS		Contraction of		-	1990		
DATE	TIME	C M P O S I T E	G R A B	SAMPLE	LOCATION/FIELD I			s	PFAS Part 375 Mercurv	Hex. Chrome	Silvex						REMARKS	PAI	RADIGN	I LAB SI	MPLE NUMBER
10/15/20	11:20	х		JF Kran	tz Stock Pile	#1 S	0 3		x x	x	x								\square		
															T	5 Day	turn for the PFAS	\square		\square	(
							-	-	+				+	\vdash	+	only.		+	\vdash	++	
								+	+-	+		1	+	\vdash	+	only.		+	\vdash	++	
													+		+	Cate	gory B is required at		\vdash	++	
																	lard turn around time.				
			_																\square		
**LAB USE C				A REAL PROPERTY.	Willester Sta	and the second	and all		24	122	100	1	2-6		100	-Solds					ENGBER ST
Sample Condition	Receipt Par		/241/242/24	3/244 NELAC Com	nllanas																
	Container T				N	Cli												-			
Comments:						Sampled By	1						Dat	e/Time	1		Total Cost	È.			
Comments	Preservati	on:		Y 🗌 🕴		Relinquishe	dBy	/	5	1	d	~	Dat		15	120	1:20				

(AAL)

AAL

Relinguished

10/15/20

10/15/20

0/16/20

Date/Time

Date/Time

Date/Time

13:20

13:20

01:20

P.I.F.

Page 37 of 37

Comments:

Comments:

Holding Time:

Temperature:

Y 🗌

Y 🔲

N 🗌

N 🗌

Received By

Received @ Lab By

Waste Disposal Documentation

WASTE MANIFEST	1. Generator ID Number M &		1	Emergency Respor	1-0556	7	Tracking Num	^{ber} 5154
5. Generator's Name and Ma NYSDOT C 200 TOW	o Haley i Alcinc	h of NY Suite Z		nerator's Site Addre Buffalo				
Generator's Phone: 6. Transporter 1 Company N	, NY 14623			1		U.S. EPA ID) Number	
FINGER LAK	ES ENVIROTECH, L	LC	1.1.1 ⁴			U.S. EPA IE	0178632	2
7. Transporter 2 Company N	ame						Number	
8. Designated Facility Name Stenben (Tumpike Facility's Phone:	and Site Address County Land fill Ed. Bath, NV	1- 18acha Le 14810		2 ° • •	reg ⁵ Ne	U.S. EPA IC) Number	
9. Waste Shipping Na	me and Description		н айн	10. Co No.	ntainers Type	11. Total Quantity	12. Unit Wt./Vol.	
and the second se	water (Sludg 19A St.	c		ŀ	DM	15		
2. Groun	d water sluc		φ. Γ)	DM	8		
	d w Attack South Par		- 3	1	DM	1		
4.								
13. Special Handling Instruct Baraga St	ions and Additional Information -13	Approv	141 H	20100	6-1			
Baraga St Hydio Air - Am nex -	- 13 (0 - 1 OR'S CERTIFICATION: I hereby de arded, and are in all respects in prop //Typed Name	eclare that the contents of this	A I H s consignment are fu cording to applicable Signat	lly and accurately d international and na	escribed above b	by the proper sh ntal regulations	nipping name, a	and are classified, package Month Day
Baraga St Hycro Air Amner 14. GENERATOR'S/OFFER marked and labeled/plac	- 13 (G - 1 OR'S CERTIFICATION: I hereby de arded, and are in all respects in prop /Typed Name Charles And Anti- Constant of the second	eclare that the contents of this	s consignment are fu cording to applicable	ly and accurately d international and na ire	escribed above b	by the proper st ntal regulations	nipping namé, a	Month Day
Baraga St Hy Go Air- Am nex 14. GENERATOR'S/OFFER marked and labeled/plac Generator's/Offeror's Printeo Halest Aldona 15. International Shipments Transporter Signature (for e)	- 13 (0 - 1 OR'S CERTIFICATION: I hereby de arded, and are in all respects in prop /Typed Name A Trim Williams [] Import to U.S. (ports only): ment of Receipt of Materials Name B ROWN	eclare that the contents of this	s consignment are fu cording to applicable Signat	ly and accurately d international and na ire Port of Date le ure	escribed above to attional governme	ntal regulations	hipping name, a	Month Day
Baraga St Hydro Arr- Amrex - 14. GENERATOR'S/OFFER marked and labeled/plac Generator's/Offeror's Printec Halest Aldre 15. International Shipments Transporter Signature (for e) 16. Transporter Acknowledg Transporter 1 Printed/Typed LAVEANE	- 13 (OR'S CERTIFICATION: I hereby de arded, and are in all respects in prop UTyped Name A Tim Williams D Import to U.S. (ports only): ment of Receipt of Materials Name B B B C W N Name Space Quantity AO 1	eclare that the contents of this	s consignment are fu cording to applicable Signat Export from U.S. Signat	ly and accurately d international and na ire Port of Date le ure	escribed above to ational governme	ntal regulations	ejection	Month Day 1008 Month Day
Baraga St Hydro Air- Am nex 14. GENERATOR'S/OFFER marked and labeled/plac Generator's/Offeror's Printed Halest Alding 15. International Shipments Transporter Signature (for ex 16. Transporter Acknowledg Transporter 1 Printed/Typed LAUEAN Transporter 2 Printed/Typed 17. Discrepancy 17a. Discrepancy Indication	-13 (G -1 OR'S CERTIFICATION: I hereby de arded, and are in all respects in pro- //Typed Name A Tim Williams import to U.S. aports only): ment of Receipt of Materials Name B B B B WWN Name Space Quantity A D Tim A	eclare that the contents of this per condition for transport acc	s consignment are fu cording to applicable Signat Export from U.S. Signat	lly and accurately d international and na irre Will Port of Date le irre Comme	escribed above to ational governme	Partial R	ejection	Month Day 1008

STEUBEN COUNTY D.P.W. BATH LANDFI

Ticket #: 1080850

DATE	IN:	10/09/20	DATE OUT:	10/09/20
TIME	IN:	08:59 AM	TIME OUT:	11:15 AM
ID-	IN:	JLH	ID-OUT:	JLH

Vehicle#: C6771 TT= Commercial BY WEIGHT OT= Not Specified

Haul Acct#: TRSPILL Haul Company: TER SPILL RESPONSE 677

Bill Acct #: TRSPILL Bill Company: T&R SPILL RESPONSE 677

Gross:	33380	lb	16.69	tn
Tare:	21740	1b	10.87	tn
Net:	11640	1b	5.82	th

Material

Industrial Sludge

Subtotal: \$256.08 Tax: \$6.00

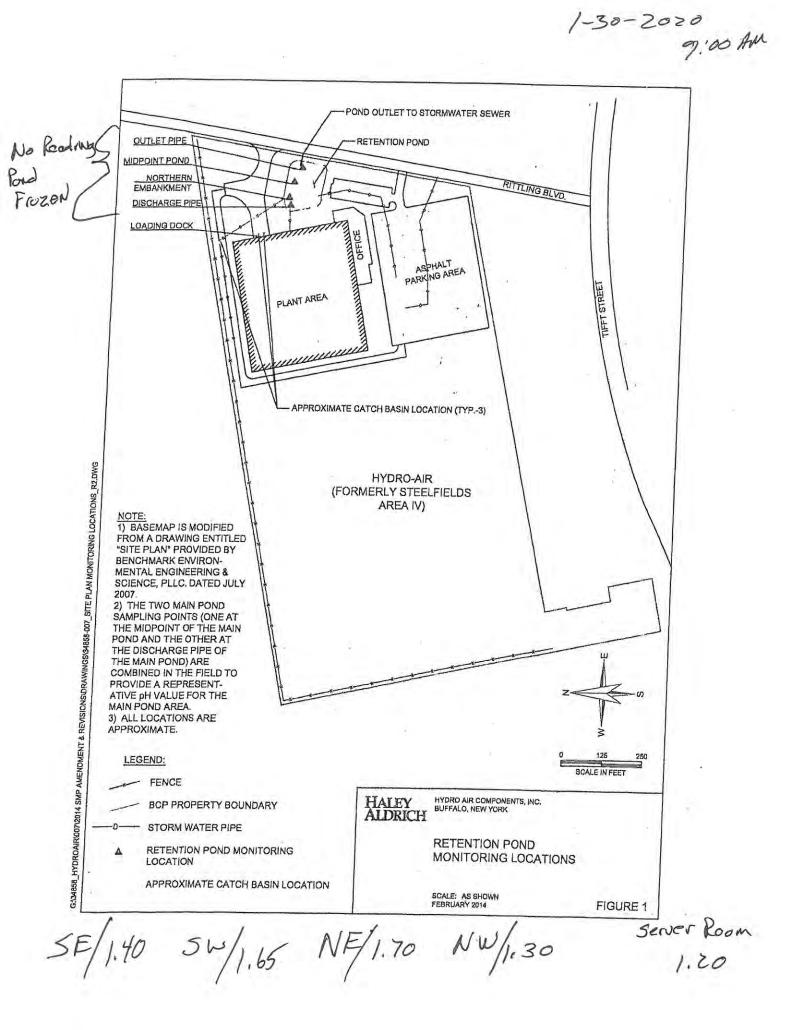
0

Total:

\$256.08 Payment Method(s): 1 - Charge

\$256.08

Change: \$0.00


Driver:

DOT 5154

APPENDIX F

ASD System Maintenance and Monitoring Documentation

Monthly Operation & Maintenance Log Active Sub-Slab Depressurization System

Project Name:		Project No.		
Project Location:		Client:	Non-tractication	_
Preparer's Name: Dale A	Barto	Date/Time:	1/30/20	050
Notes:				
	······································		4	
Monthly Operating Status:	/			
System(s) currently running?	Ø yes	🗆 no	/	
Has the system been off-line in the If yes, please list the dates and bri		🗆 yes	D'no	
What is the current Vacuum readin	g? [].43			
Visual Inspection:	g? [].43			
Visual Inspection: ny piping disconnected?	g? [].43	yes G	Tuno	
Visual Inspection: ny piping disconnected? ny cracks visible in piping?	g? [].43	yes t	Tho	
Visual Inspection: by piping disconnected? by cracks visible in piping? y new cracks visible in slab floor?	g? [].43	yes	Uno no no	
Visual Inspection: ny piping disconnected? ny cracks visible in piping? ny new cracks visible in slab floor?	g? [].73	yes		
Visual Inspection: ny piping disconnected? ny cracks visible in piping? ny new cracks visible in slab floor? agnehelic guage reading 0?		yes 🚺 yes 🚺 yes 🖸		
Visual Inspection: ny piping disconnected? ny cracks visible in piping? ny new cracks visible in slab floor?		yes 🚺 yes 🚺 yes 🖸		
Visual Inspection: ny piping disconnected? ny cracks visible in piping? ny new cracks visible in slab floor? agnehelic guage reading 0?		yes 🚺 yes 🚺 yes 🖸		· · ·
Visual Inspection: ny piping disconnected? ny cracks visible in piping? ny new cracks visible in slab floor? agnehelic guage reading 0?		yes 🚺 yes 🚺 yes 🖸		
isual Inspection: / piping disconnected? / cracks visible in piping? / new cracks visible in slab floor? gnehelic guage reading 0? es to any question above, please p		yes 🚺 yes 🚺 yes 🖸		

C

...

BENCHMARK

ENVIRONMENTAL Engineering & Science, PLLC

Sub-Slab Depressurization Certification Inspection

-

. ..

.....

Monthly Operation & Maintenance Log Active Sub-Slab Depressurization System

Chan	ge in Occup	ancy / Use	of Space:					
	e indicate ge			e? /	hanu fao	Luriw	9	
	iis general u		in the past	month?	🗋 yes	Tio		
If yes,	please expla	ain:						
		- • [- K	
						an action		
0				n 2007 - Talan Sanata Sanata Sanata				
	n Modificati							/
	ease list with		lade to the	Sub-Slab De	epressurizatio	n System?	🗌 yes	no 🛛
1 30, pi		luale.						
		and the statement			047 - 0149 - 14			
				the second se				

Page 2 of 2

Loading Dock Discharge Monitoring Form Hydro-Air Components, Inc. BCP Site #C915204, Buffalo, NY

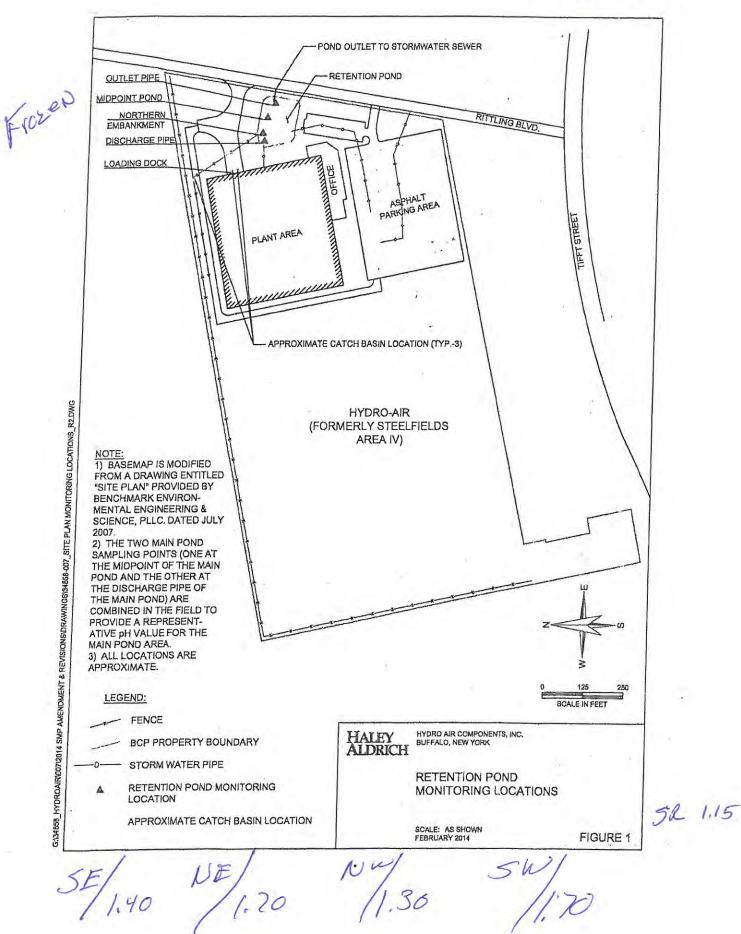
In accordance with

1. ph and temperature of a representative water from the 4 locations indicated on Figure 1.

2. weather conditions (general- wet/ dry, avg temp) since last measurement

3. estimated volume of water pumped from loading dock (based upon pump run time data)

4. notes on condition of pond (visual)


Staff Member	Date of Measure-ment	1	Me	asurem	ent Locat	tion		Pump	Est.	Visual	Comments	
		Discharge Pipe		Northern harge Pipe Embayment		Main Pond (Combined Samples)		Run Time*	Quantity of Water **	Pond (color, vegetation,	(e.g. weather conditions, etc)	
		ph	Temp (°F)	ph	Temp (°F)	ph	Temp (°F)			etc.)		
Dale Barto	3/29/19 12:00 AM	8.10	45	7.50	44	6.50	46		9,895	clear	sunny	
Dale A Barto	4/29/2019 9:30am	7.90	46	7.80	44	6.80	45		61,125	clear	cloudy	
Dale A Barto	5/30/2019 9:30am	7.95	48	7.75	46	6.60	47		30,036	clear	sunny	
Dale A Barto	6/28/2019 9:30am	7.80	54	7.60	53	7.10	53		61,125	clear	sunny	
Dale A Barto	7/29/2019 9:00am	7.75	72	7.50	72	7.00	73		30,036	clear	sunny	
Dale A Barto	8/29/2019 9:30am	7.80	63	7.20	64	7.10	63		61,125	clear	sunny	
Dale A Barto	9/30/2019 9:00am	7.70	60	7.30	61	7.00	61		26,560	clear	cloudy	
Dale A Barto	10/29/2019 9:00am	7.75	48	7.20	46	7.15	47		64,646	clear	sunny	
Dale A Barto	11/27/19 12:00 AM								26,570	Frozen	clear	
ale A Barto	12/31/2019 11:00am								64,653	Frozen	Cloudy	
Dale A Barto	1/30/20 12:00 AM								26,598	Frozen	cloudy	

Magnehelic Readings

#1 Server Room Office#2 S.E. Corner Cell 600/800#3 N.E. Corner Warehouse#4 N.W. Corner Cell 200#5 S.W. Corner Cell 100

5.4		- 0252 C	102 11 - D - T - T		
Date	#1 Server Room	#2 S.E. Corner	#3 N.E. Corner	#4 N.W. Corner	#5 S.W. Corner
12/28/2018	1.10	1.45	1.70	1.25	1.70
1/31/2018	1.10	1.40	1.65	1.25	1.65
2/28/2019	1.15	1.45	1.75	1.35	1.70
3/29/2019	1.10	1.45	1.70	1.35	1.70
4/29/2019	1.20	1.40	1.70	1.35	1.40
5/30/2019	1.15	1.40	1.75	1.40	1.75
6/28/2019	1.10	1.45	1.75	1.75	1.75
7/29/2019	1.10	1.45	1.75	1.50	1.75
8/29/2019	1.10	1.50	1.75	1,35	1.75
9/30/2019	1.10	1.40	1.75	1.45	1.70
10/29/2019	1.15	1.40	1.70	1.35	1.70
11/27/2019	1.10	1.35	1.65	1.20	1.65
12/31/2019	1.10	1.40	1.75	1.35	1.70
1/30/2020	1.10	1.40	1.70	1.30	1.65

2/28/2020

Monthly Operation & Maintenance Log Active Sub-Slab Depressurization System

Project Name:	Proj	ect No.:				
Project Location:	Clie	Client:				
Preparer's Name: 1) al < A R	salfo Date	Time: 2/28/2020	9:00 A			
Notes:						
-	······					
Monthly Operating Status:	· /					
System(s) currently running?	yes [] no				
Has the system been off-line in the past	t month? yes	🗆 no				
If yes, please list the dates and brief des	scription why (i.e. mair	tenance, part replacement.	etc.):			
What is the current Vacuum reading?	1:45					
Visual Inspection:	1:45					
Visual Inspection:	1:45 yes	<u>no</u>				
Visual Inspection: any piping disconnected? any cracks visible in piping?	yes yes	no no no				
Visual Inspection: ny piping disconnected? ny cracks visible in piping? ny new cracks visible in slab floor?						
	□ yes	no				
Visual Inspection: any piping disconnected? any cracks visible in piping? any new cracks visible in slab floor? lagnehelic guage reading 0?	☐ yes ☐ yes ☐ yes					
Visual Inspection: any piping disconnected? any cracks visible in piping? any new cracks visible in slab floor? lagnehelic guage reading 0?	☐ yes ☐ yes ☐ yes					
Visual Inspection: any piping disconnected? any cracks visible in piping? any new cracks visible in slab floor? lagnehelic guage reading 0?	☐ yes ☐ yes ☐ yes					
Visual Inspection: any piping disconnected? any cracks visible in piping? any new cracks visible in slab floor?	☐ yes ☐ yes ☐ yes					
Visual Inspection: any piping disconnected? any cracks visible in piping? any new cracks visible in slab floor? lagnehelic guage reading 0?	☐ yes ☐ yes ☐ yes					

Sub-Slab Depressurization Certification Inspection

.

BENCHMARK

ENVIRONMENTAL ENGINEERING & SCIENCE, PLLC

. .

. .

14/14

Monthly Operation & Maintenance Log Active Sub-Slab Depressurization System

Cha	nge in Oc	cupancy	/Use d	of Spa	ce:					2003) , - 202			terre de co	
Plea	se indicate	e general	use of	floor sp	bace?		N	lanu	Sac	fust	ale			
	this gener					onth?		□ ves		100	3			
	s, please e													
											- 7			
100														-
														-
		1404										1		
											_			
Syste	m Modifi	cations:			×									
	any modif		een ma	ade to t	the Su	h-Slah I	Denre	ecurizat	ion 9	vetom	2	🗆 yes	M	
	please list					o oldo i	Dopie	554112.40	1011 0	ystern		L yes		no
											~			
	t diama di	and			and the second			the second					-	-
		1						-						
					and the second second									
		94 May 10												-
														-

e.

Magnehelic Readings

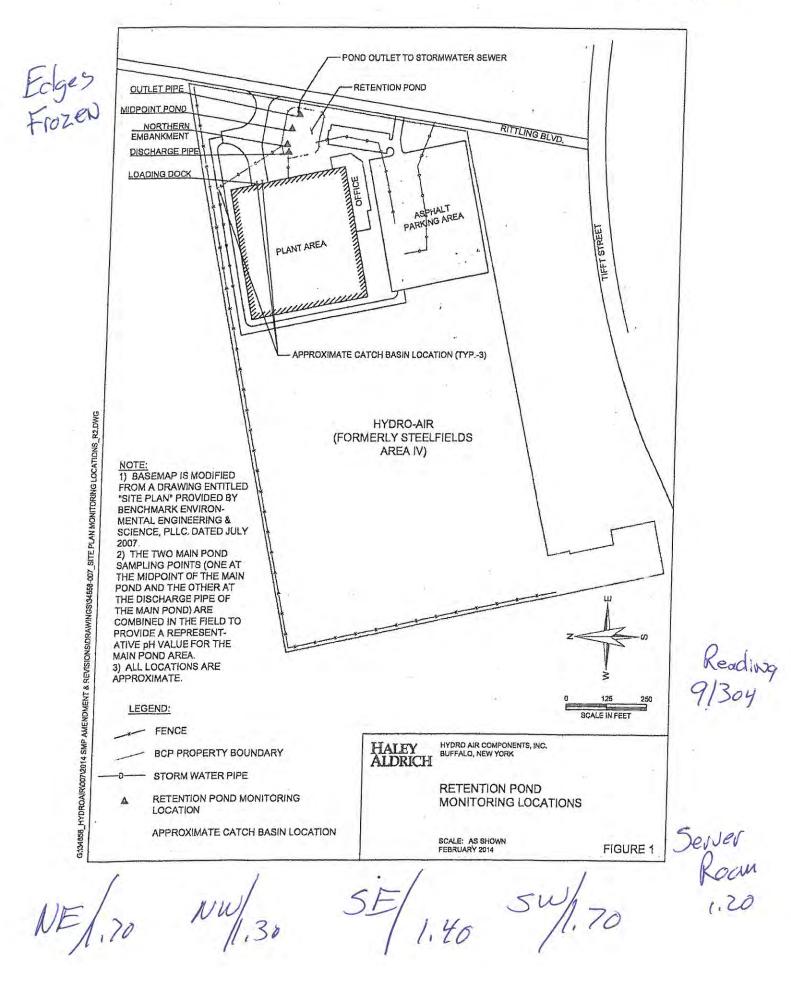
#1 Server Room Office#2 S.E. Corner Cell 600/800#3 N.E. Corner Warehouse#4 N.W. Corner Cell 200#5 S.W. Corner Cell 100

Date	#1 Server Room	#2 S.E. Corner	#3 N.E. Corner	#4 N.W. Corner	#5 S.W. Corner
12/28/2018	1.10	1.45	1.70	1.25	1.70
1/31/2018	1.10	1.40	1.65	1.25	1.65
2/28/2019	1.15	1.45	1.75	1.35	1.70
3/29/2019	1.10	1.45	1.70	1.35	1.70
4/29/2019	1.20	1.40	1.70	1.35	1.40
5/30/2019	1.15	1.40	1.75	1.40	1.75
6/28/2019	1.10	1.45	1.75	1.75	1.75
7/29/2019	1.10	1.45	1.75	1.50	1.75
8/29/2019	1.10	1.50	1.75	1.35	1.75
9/30/2019	1.10	1.40	1.75	1.45	1.70
10/29/2019	1.15	1.40	1.70	1.35	1.70
11/27/2019	1.10	1.35	1.65	1.20	1.65
12/31/2019	1.10	1.40	1.75	1.35	1.70
1/30/2020	1.10	1.40	1.70	1.30	1.65
2/28/2020	1.15	1.40	1.70	1.30	1.70

Loading Dock Discharge Monitoring Form Hydro-Air Components, Inc. BCP Site #C915204, Buffalo, NY

In accordance with

1. ph and temperature of a representative water from the 4 locations indicated on Figure 1.


2. weather conditions (general- wet/ dry, avg temp) since last measurement

3. estimated volume of water pumped from loading dock (based upon pump run time data)

4. notes on condition of pond (visual)

Staff Member	Date of Measure-ment	Measurement Location						Pump	Est.	Visual	Comments	
		Discha	rge Pipe		thern yment	(Com	Pond bined ples)	Run Time*	Quantity of Water **	Condition of Pond (color, vegetation,	(e.g. weather conditions, etc)	
		ph	Temp (°F)	ph	Temp (°F)	ph	Temp (°F)			etc.)		
Dale Barto	3/29/19 12:00 AM	8.10	45	7.50	44	6.50	46		9,895	clear	sunny	
Dale A Barto	4/29/2019 9:30am	7.90	46	7.80	44	6.80	45		61,125	clear	cloudy	
Dale A Barto	5/30/2019 9:30am	7.95	48	7.75	46	6.60	47		30,036	clear	sunny	
Dale A Barto	6/28/2019 9:30am	7.80	54	7.60	53	7.10	53		61,125	clear	sunny	
Dale A Barto	7/29/2019 9:00am	7.75	72	7.50	72	7.00	73		30,036	clear	sunny	
Dale A Barto	8/29/2019 9:30am	7.80	63	7.20	64	7.10	63		61,125	clear	sunny	
Dale A Barto	9/30/2019 9:00am	7.70	60	7.30	61	7.00	61		26,560	clear	cloudy	
Dale A Barto	10/29/2019 9:00am	7.75	48	7.20	46	7.15	47		64,646	clear	sunny	
Dale A Barto	11/27/19 12:00 AM								26,570	Frozen	clear	
Dale A Barto	12/31/2019 11:00am								64,653	Frozen	Cloudy	
Dale A Barto	1/30/20 12:00 AM								26,598	Frozen	cloudy	
Dale A Barto	2/28/2020 9:00am									Frozen	cloudy	

3/25/2020

PIOLE	ect No.:		
Clier	the second se		C. C. Star
Date	/Time: 3-74	5-2020	9:000
	<u> </u>	1 2020	
	, î		
	and an and a second second		
es 🗆	no		
í			
1.46			
□ yes	17 no		
☐ yes ☐ yes	M no M no	2	
		×-	
□ yes	1 no		
☐ yes ☐ yes			
☐ yes ☐ yes ☐ yes			
☐ yes ☐ yes ☐ yes			
	es Date	es I no month? I yes Pno	es 🗆 no

-

...

Monthly Operation & Maintenance Log Active Sub-Slab Depressurization System

Change in Occupancy / Use of Space:				
Please indicate general use of floor space?	Manufac	turin	a	
Has this general use changed in the past month?	🗌 yes	no	3	
If yes, please explain:				
4			ai	
			water and the second	
			n an an	
	and the state of the			
System Modifications:	a lo for the loss		_	-
Have any modifications been made to the Sub-Slab	Depressurizatio	n System?	🗆 yes	nc 🗹
f so, please list with date:				
			- Marine -	
	and the second statement of the second s	eng		

Sub-Slab Depressurization Certification Inspection

Page 2 of 2

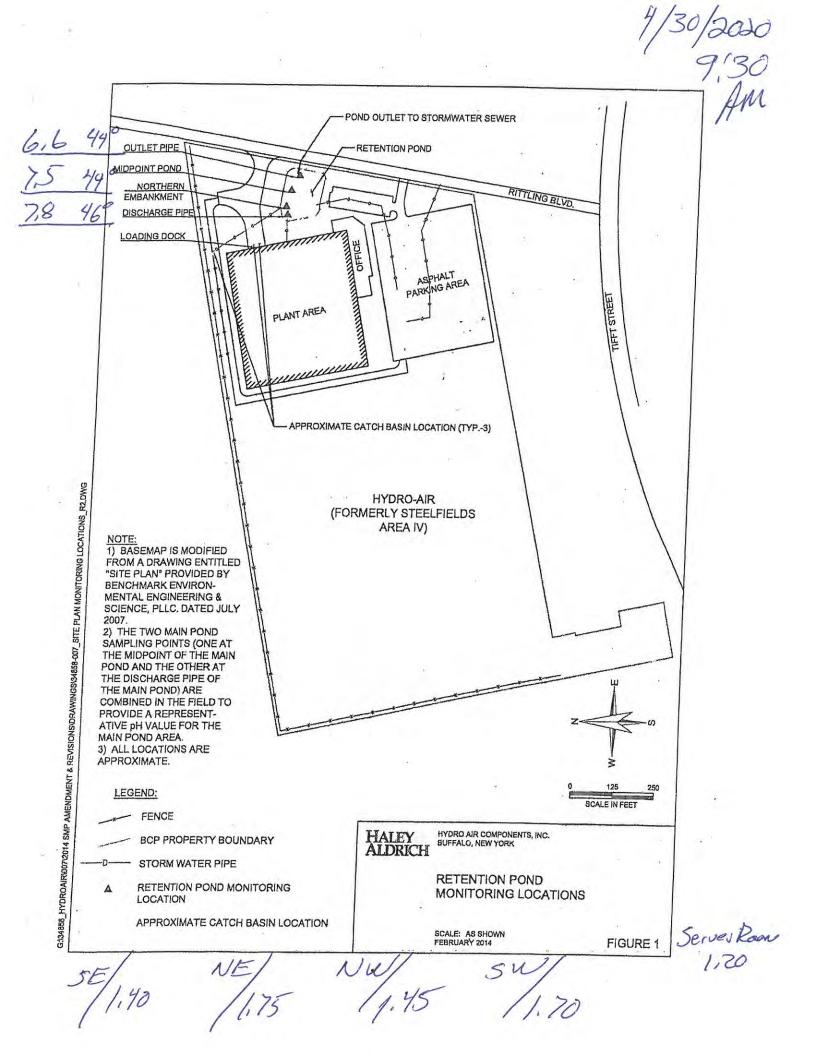
Magnehelic Readings

#1 Server Room Office#2 S.E. Corner Cell 600/800#3 N.E. Corner Warehouse#4 N.W. Corner Cell 200#5 S.W. Corner Cell 100

Date	#1 Server Room	#2 S.E. Corner	#3 N.E. Corner	#4 N.W. Corner	#5 S.W. Corner
12/28/2018	1.10	1.45	1.70	1.25	1.70
1/31/2018	1.10	1.40	1.65	1.25	1.65
2/28/2019	1.15	1.45	1.75	1.35	1.70
3/29/2019	1.10	1.45	1.70	1.35	1.70
4/29/2019	1.20	1.40	1.70	1.35	1.40
5/30/2019	1.15	1.40	1.75	1.40	1.75
6/28/2019	1.10	1.45	1.75	1.75	1.75
7/29/2019	1.10	1.45	1.75	1.50	1.75
8/29/2019	1.10	1.50	1.75	1.35	1.75
9/30/2019	1.10	1.40	1.75	1.45	1.70
10/29/2019	1.15	1.40	1.70	1.35	1.70
11/27/2019	1.10	1.35	1.65	1.20	1.65
12/31/2019	1.10	1.40	1.75	1.35	1.70
1/30/2020	1.10	1.40	1.70	1.30	1.65
2/28/2020	1.15	1.40	1.70	1.30	1.70
3/25/2020	1.20	1.40	1.70	1.30	1.70

Loading Dock Discharge Monitoring Form Hydro-Air Components, Inc. BCP Site #C915204, Buffalo, NY

In accordance with

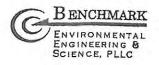

1. ph and temperature of a representative water from the 4 locations indicated on Figure 1.

2. weather conditions (general- wet/ dry, avg temp) since last measurement

3. estimated volume of water pumped from loading dock (based upon pump run time data)

4. notes on condition of pond (visual)

Staff Member Date of Measure-ment	Date of Measure-ment	Measurement Location						Pump	Est.	Visual	Comments
		Discharge Pipe		Northern Embayment		Main Pond (Combined Samples)		Run Time*	Quantity of Water **	Condition of Pond (color, vegetation,	(e.g. weather conditions, etc
	ph	Temp (°F)	ph	Temp (°F)	ph	Temp (°F)			etc.)		
Dale Barto	3/29/19 12:00 AM	8.10	45	7.50	44	6.50	46		9,895	clear	sunny
Dale A Barto	4/29/2019 9:30am	7.90	46	7.80	44	6.80	45		61,125	clear	cloudy
Dale A Barto	5/30/2019 9:30am	7.95	48	7.75	46	6.60	47		30,036	clear	sunny
Dale A Barto	6/28/2019 9:30am	7.80	54	7.60	53	7.10	53		61,125	clear	sunny
Dale A Barto	7/29/2019 9:00am	7.75	72	7.50	72	7.00	73		30,036	clear	sunny
Dale A Barto	8/29/2019 9:30am	7.80	63	7.20	64	7.10	63		61,125	clear	sunny
Dale A Barto	9/30/2019 9:00am	7.70	60	7.30	61	7.00	61		26,560	clear	cloudy
Dale A Barto	10/29/2019 9:00am	7.75	48	7.20	46	7.15	47		64,646	clear	sunny
Dale A Barto	11/27/19 12:00 AM								26,570	Frozen	clear
Dale A Barto	12/31/2019 11:00am								64,653	Frozen	Cloudy
Dale A Barto	1/30/20 12:00 AM								26,598	Frozen	cloudy
Dale A Barto	2/28/2020 9:00am									Frozen	cloudy
Dale A Barto	3/25/2020 9:00am								64,706	Frozen	cloudy


C	BENCHMARK
9	ENVIRONMENTAL ENGINEERING 8
	SCIENCE, PLLC

Monthly Operation & Maintenance Log Active Sub-Slab Depressurization System

		ect No.:	
Project Location:	Clie	nt:	
Preparer's Name: Dele A	barte Date	e/Time: 4/39/27	2 9130
Notes:		- 11 upatal	
Tel		si	
Monthly Operating Status:			
System(s) currently running?		no	
Has the system been off-line in the past mo	onth?	🗆 no	
If yes, please list the dates and brief descri	ption why (i.e. main	tenance, part replacement, etc.):	
What is the current Vacuum reading?	150		
What is the current Vacuum reading?	150		
	150		
Visual Inspection:			
Visual Inspection: ny piping disconnected?	☐ yes	- /	
Visual Inspection: ny piping disconnected? ny cracks visible in piping?	☐ yes ☐ yes	CP no	
Visual Inspection: ny piping disconnected? ny cracks visible in piping? ny new cracks visible in slab floor? agnehelic guage reading 0?	☐ yes ☐ yes ☐ yes ☐ yes		
Visual Inspection: ny piping disconnected? ny cracks visible in piping? ny new cracks visible in slab floor?	☐ yes ☐ yes ☐ yes ☐ yes		
Visual Inspection: ny piping disconnected? ny cracks visible in piping? ny new cracks visible in slab floor? agnehelic guage reading 0?	☐ yes ☐ yes ☐ yes ☐ yes		
Visual Inspection: ny piping disconnected? ny cracks visible in piping? ny new cracks visible in slab floor? agnehelic guage reading 0?	☐ yes ☐ yes ☐ yes ☐ yes		
Visual Inspection: ny piping disconnected? ny cracks visible in piping? ny new cracks visible in slab floor? agnehelic guage reading 0?	☐ yes ☐ yes ☐ yes ☐ yes		
Visual Inspection: ny piping disconnected? ny cracks visible in piping? ny new cracks visible in slab floor? agnehelic guage reading 0?	☐ yes ☐ yes ☐ yes ☐ yes		

Sub-Slab Depressurization Certification Inspection

. ..

Monthly Operation & Maintenance Log Active Sub-Slab Depressurization System

.

Change in Occupancy / Use of S	pace:		in the second		
Please indicate general use of floor Has this general use changed in the If yes, please explain:		Manu U yes	actur:	Ng	
System Modifications: Have any modifications been made t	to the Sub-Slab	Depressurizatio	n System?	□ ves	
f so, please list with date:					
	1. 1				

Magnehelic Readings

#1 Server Room Office#2 S.E. Corner Cell 600/800#3 N.E. Corner Warehouse#4 N.W. Corner Cell 200#5 S.W. Corner Cell 100

Date	#1 Server Room	#2 S.E. Corner	#3 N.E. Corner	#4 N.W. Corner	#5 S.W. Corner
12/28/2018	1.10	1.45	1.70	1.25	1.70
1/31/2018	1.10	1.40	1.65	1.25	1.65
2/28/2019	1.15	1.45	1.75	1.35	1.70
3/29/2019	1.10	1.45	1.70	1.35	1.70
4/29/2019	1.20	1.40	1.70	1.35	1.40
5/30/2019	1.15	1.40	1.75	1.40	1.75
6/28/2019	1.10	1.45	1.75	1.75	1.75
7/29/2019	1.10	1.45	1.75	1.50	1.75
8/29/2019	1.10	1.50	1.75	1.35	1.75
9/30/2019	1.10	1.40	1.75	1.45	1.70
10/29/2019	1.15	1.40	1.70	1.35	1.70
11/27/2019	1.10	1.35	1.65	1.20	1.65
12/31/2019	1.10	1.40	1.75	1.35	1.70
1/30/2020	1.10	1.40	1.70	1.30	1.65
2/28/2020	1.15	1.40	1.70	1.30	1.70
3/25/2020	1.20	1.40	1.70	1.30	1.70
4/30/2020	1.20	1.40	1.75	1.45	1.70

Loading Dock Discharge Monitoring Form Hydro-Air Components, Inc. BCP Site #C915204, Buffalo, NY

In accordance with

1. ph and temperature of a representative water from the 4 locations indicated on Figure 1.

2. weather conditions (general- wet/ dry, avg temp) since last measurement

3. estimated volume of water pumped from loading dock (based upon pump run time data)

4. notes on condition of pond (visual)

Staff Member Date of Measure-ment	Date of Measure-ment	Measurement Location						Pump	Est.	Visual	Comments
		Discharge Pipe		Northern Embayment		Main Pond (Combined Samples)		Run Time*	Quantity of Water **	Condition of Pond (color, vegetation,	(e.g. weather conditions, etc)
	ph	Temp (°F)	ph	Temp (°F)	ph	Temp (°F)			etc.)		
Dale Barto	3/29/19 12:00 AM	8.10	45	7.50	44	6.50	46		9,895	clear	sunny
Dale A Barto	4/29/2019 9:30am	7.90	46	7.80	44	6.80	45		61,125	clear	cloudy
Dale A Barto	5/30/2019 9:30am	7.95	48	7.75	46	6.60	47		30,036	clear	sunny
Dale A Barto	6/28/2019 9:30am	7.80	54	7.60	53	7.10	53		61,125	clear	sunny
Dale A Barto	7/29/2019 9:00am	7.75	72	7.50	72	7.00	73		30,036	clear	sunny
Dale A Barto	8/29/2019 9:30am	7.80	63	7.20	64	7.10	63		61,125	clear	sunny
Dale A Barto	9/30/2019 9:00am	7.70	60	7.30	61	7.00	61		26,560	clear	cloudy
Dale A Barto	10/29/2019 9:00am	7.75	48	7.20	46	7.15	47		64,646	clear	sunny
Dale A Barto	11/27/19 12:00 AM								26,570	Frozen	clear
Dale A Barto	12/31/2019 11:00am								64,653	Frozen	Cloudy
Dale A Barto	1/30/20 12:00 AM								26,598	Frozen	cloudy
Dale A Barto	2/28/2020 9:00am									Frozen	cloudy
Dale A Barto	3/25/2020 9:00am								64,706	Frozen	cloudy
Dale A Barto	4/30/20 12:00 AM	7.80	46	75.00	44	6.60	44		53,295	clear	raining

5/28/2020 9.130 Am

.

Monthly Operation & Maintenance Log Active Sub-Slab Depressurization System

Project Name:	Projec	t No.:		
Project Location:	Client			1.1.1
Preparer's Name: Dale A Ba	arto Date/	ime: 5/2	8/2020	9:301
Notes:			2100000	
		У.		
Monthly Operating Status:	-			
System(s) currently running?		10		
Has the system been off-line in the past m	nonth?	In no		
If yes, please list the dates and brief descr	ription why (i.e. mainte	nance, part replace	ment. etc.):	
What is the current Vacuum reading?	147.1			
vinacia the current vacuum reading?	1.47			
Visual Inspection:				
ny piping disconnected?	🗍 yes	PIng		
ny cracks visible in piping?	☐ yes	□ no		
ny new cracks visible in slab floor?	☐ yes			
lagnehelic guage reading 0?	☐ yes	no		
		-		
yes to any question above, please provide r	more information below			

Sub-Slab Depressurization Certification Inspection

. ..

....

=

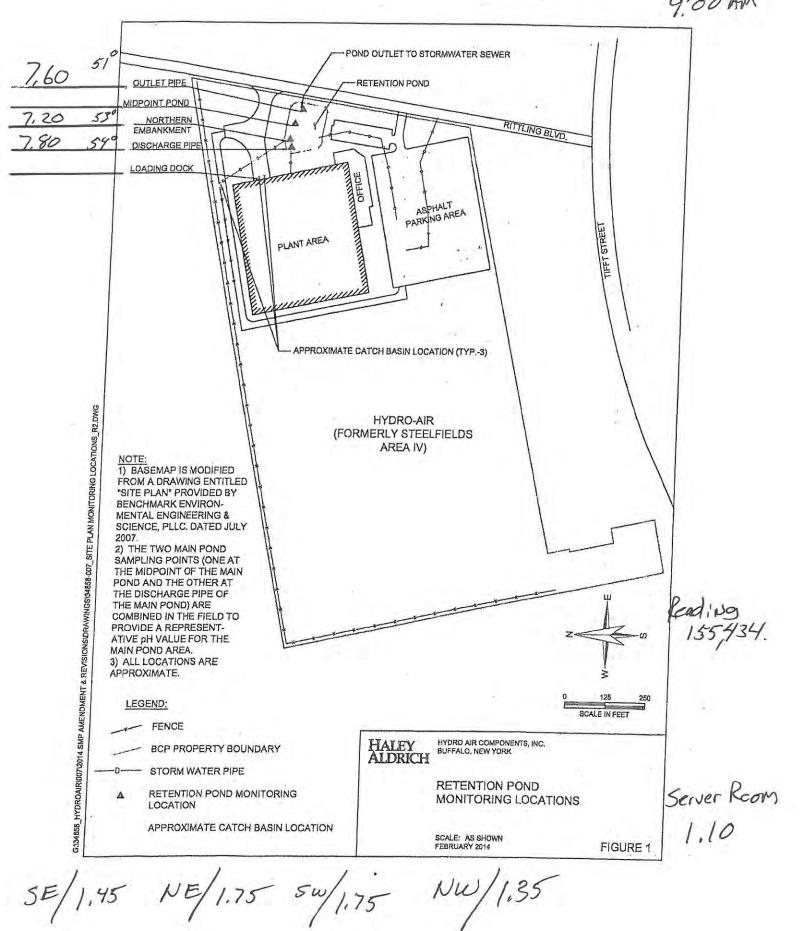
Monthly Operation & Maintenance Log Active Sub-Slab Depressurization System

CI	hange in Occupancy / Use of Space:
Ple	ease indicate general use of floor space? Manufacturing
Ha	as this general use changed in the past month?
lf y	ves, please explain:
	· · · · · · · · · · · · · · · · · · ·
	×
-	
Svs	stem Modifications:
fsc	o, please list with date:

Page 2 of 2

In accordance with

1. ph and temperature of a representative water from the 4 locations indicated on Figure 1.


2. weather conditions (general- wet/ dry, avg temp) since last measurement

3. estimated volume of water pumped from loading dock (based upon pump run time data)

Staff Member	Date of Measure-ment	Measurement Location						Pump	Est.	Visual	Comments
		Discharge Pipe		Northern Embayment		Main Pond (Combined Samples)		Run Time*	Quantity of Water **	Condition of Pond (color, vegetation,	(e.g. weather conditions, etc)
		ph	Temp (°F)	ph	Temp (°F)	ph	Temp (°F)			etc.)	
Dale Barto	3/29/19 12:00 AM	8.10	45	7.50	44	6.50	46		9,895	clear	sunny
Dale A Barto	4/29/2019 9:30am	7.90	46	7.80	44	6.80	45		61,125	clear	cloudy
Dale A Barto	5/30/2019 9:30am	7.95	48	7.75	46	6.60	47		30,036	clear	sunny
Dale A Barto	6/28/2019 9:30am	7.80	54	7.60	53	7.10	53		61,125	clear	sunny
Dale A Barto	7/29/2019 9:00am	7.75	72	7.50	72	7.00	73		30,036	clear	sunny
Dale A Barto	8/29/2019 9:30am	7.80	63	7.20	64	7.10	63		61,125	clear	sunny
Dale A Barto	9/30/2019 9:00am	7.70	60	7.30	61	7.00	61		26,560	clear	cloudy
Dale A Barto	10/29/2019 9:00am	7.75	48	7.20	46	7.15	47		64,646	clear	sunny
Dale A Barto	11/27/19 12:00 AM								26,570	Frozen	clear
Dale A Barto	12/31/2019 11:00am								64,653	Frozen	Cloudy
Dale A Barto	1/30/20 12:00 AM								26,598	Frozen	cloudy
Dale A Barto	2/28/2020 9:00am									Frozen	cloudy
ale A Barto	3/25/2020 9:00am								64,706	Frozen	cloudy
ale A Barto	4/30/20 12:00 AM	7.80	46	75.00	44	6.60	44		53,295	clear	raining
ale A Barto	5/28/2020 9:30AM	7.80	51	7.60	53	7.30	49		102,139	clear	sunny

Date	#1 Server Room	#2 S.E. Corner	#3 N.E. Corner	#4 N.W. Corner	#5 S.W. Corner
12/28/2018	1.10	1.45	1.70	1.25	1.70
1/31/2018	1.10	1.40	1.65	1.25	1.65
2/28/2019	1.15	1.45	1.75	1.35	1.70
3/29/2019	1.10	1.45	1.70	1.35	1.70
4/29/2019	1.20	1.40	1.70	1.35	1.40
5/30/2019	1.15	1.40	1.75	1.40	1.75
6/28/2019	1.10	1.45	1.75	1.75	1.75
7/29/2019	1.10	1.45	1.75	1.50	1.75
8/29/2019	1.10	1.50	1.75	1.35	1.75
9/30/2019	1.10	1.40	1.75	1.45	1.70
10/29/2019	1.15	1.40	1.70	1.35	1.70
11/27/2019	1.10	1.35	1.65	1.20	1.65
12/31/2019	1.10	1.40	1.75	1.35	1.70
1/30/2020	1.10	1.40	1.70	1.30	1.65
2/28/2020	1.15	1.40	1.70	1.30	1.70
3/25/2020	1.20	1.40	1.70	1.30	1.70
4/30/2020	1.20	1.40	1.75	1.45	1.70
5/28/2020	1.15	1.40	1.70	1.40	1.70

6/29/2022 9:00 AM

G	BENCHMARK
C	ENVIRONMENTAL ENGINEERING & SCIENCE, PLLC

Monthly Operation & Maintenance Log Active Sub-Slab Depressurization System

Project Name:	Project No			
Project Location:	Client:			
Preparer's Name: Dale A Barto	Date/Time	6-29-	2020	9:00 A
Notes:		Contraction of the second s	acao	
		1. 1.		
Monthly Operating Status:	<u> </u>			
System(s) currently running?	no 🗆 no	/		
Has the system been off-line in the past mo		110		
If yes, please list the dates and brief descrip	ption why (I.e. maintenand	ce, part replacemen	t, etc.):	
and the second se				
			,	
What is the current Vacuum reading?	140			
What is the current Vacuum reading?	1.48			
What is the current Vacuum reading?	1.48			
		<u> </u>		
Visual Inspection:	yes	1 no 2 no		
Visual Inspection: any piping disconnected? any cracks visible in piping?	□ yes [□ yes [4 no		
Visual Inspection:	☐ yes [☐ yes [☐ yes [
Visual Inspection: any piping disconnected? any cracks visible in piping? any new cracks visible in slab floor? lagnehelic guage reading 0?	☐ yes [☐ yes [☐ yes [☐ yes [☐ yes [no no		
Visual Inspection: any piping disconnected? any cracks visible in piping? any new cracks visible in slab floor?	☐ yes [☐ yes [☐ yes [☐ yes [☐ yes [no no		
Visual Inspection: any piping disconnected? any cracks visible in piping? any new cracks visible in slab floor? lagnehelic guage reading 0?	☐ yes [☐ yes [☐ yes [☐ yes [☐ yes [no no		
Visual Inspection: any piping disconnected? any cracks visible in piping? any new cracks visible in slab floor? lagnehelic guage reading 0?	☐ yes [☐ yes [☐ yes [☐ yes [☐ yes [no no		
Visual Inspection: any piping disconnected? any cracks visible in piping? any new cracks visible in slab floor? lagnehelic guage reading 0?	☐ yes [☐ yes [☐ yes [☐ yes [☐ yes [no no		
Visual Inspection: any piping disconnected? any cracks visible in piping? any new cracks visible in slab floor? lagnehelic guage reading 0?	☐ yes [☐ yes [☐ yes [☐ yes [☐ yes [no no		
Visual Inspection: any piping disconnected? any cracks visible in piping? any new cracks visible in slab floor? lagnehelic guage reading 0?	☐ yes [☐ yes [☐ yes [☐ yes [☐ yes [no no		

Sub-Slab Depressurization Certification Inspection

Monthly Operation & Maintenance Log Active Sub-Slab Depressurization System

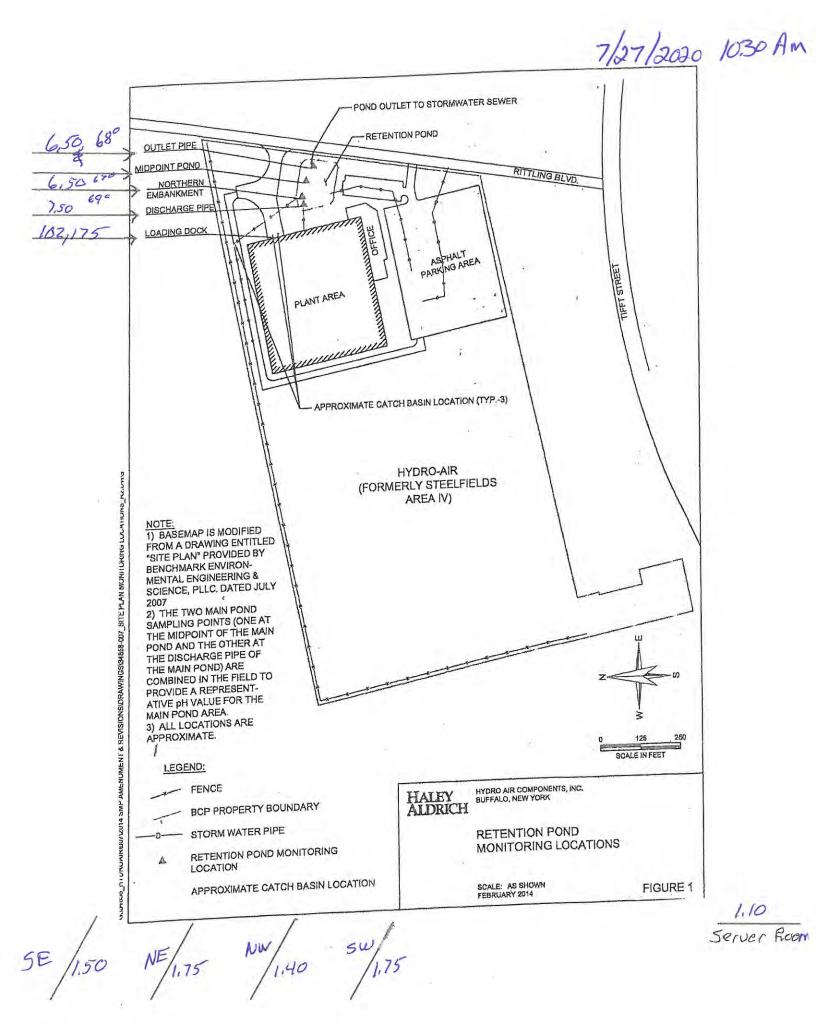
Change in O	ccupancy / Use of S	Space:	······································			
	e general use of floo ral use changed in th explain:		Manuf.	Bro	g	
			9			
		P.				
System Modif						
Have any mod If so, please lis	fications been made with date:	to the Sub-Sla	b Depressuriza	tion System?	🗌 yes	no no

4

BENCHMARK

ENVIRONMENTAL ENGINEERING & SCIENCE, PLLC

In accordance with


1. ph and temperature of a representative water from the 4 locations indicated on Figure 1.

2. weather conditions (general- wet/ dry, avg temp) since last measurement

3. estimated volume of water pumped from loading dock (based upon pump run time data)

Staff Member	Aember Date of Measure-ment Measurement Location				Pump		Visual	Comments			
		Discha	rge Pipe	1.	thern lyment	(Com	Pond bined ples)	Run Time*	Quantity of Water **	Condition of Pond (color, vegetation,	(e.g. weather conditions, etc
		ph	Temp (°F)	ph	Temp (°F)	ph	Temp (°F)	11.		etc.)	
Dale Barto	3/29/19 12:00 AM	8.10	45	7.50	44	6.50	46		9,895	clear	sunny
Dale A Barto	4/29/2019 9:30am	7.90	46	7.80	44	6.80	45		61,125	clear	cloudy
Dale A Barto	5/30/2019 9:30am	7.95	48	7.75	46	6.60	47		30,036	clear	sunny
Dale A Barto	6/28/2019 9:30am	7.80	54	7.60	53	7,10	53		61,125	clear	sunny
Dale A Barto	7/29/2019 9:00am	7.75	72	7.50	72	7.00	73		30,036	clear	sunny
Dale A Barto	8/29/2019 9:30am	7.80	63	7.20	64	7.10	63		61,125	clear	sunny
Dale A Barto	9/30/2019 9:00am	7.70	60	7.30	61	7.00	61		26,560	clear	cloudy
Dale A Barto	10/29/2019 9:00am	7.75	48	7.20	46	7.15	47		64,646	clear	sunny
Dale A Barto	11/27/19 12:00 AM								26,570	Frozen	clear
Dale A Barto	12/31/2019 11:00am								64,653	Frozen	Cloudy
Dale A Barto	1/30/20 12:00 AM								26,598	Frozen	cloudy
Dale A Barto	2/28/2020 9:00am									Frozen	cloudy
Dale A Barto	3/25/2020 9:00am								64,706	Frozen	cloudy
Dale A Barto	4/30/20 12:00 AM	7.80	46	75.00	44	6.60	44		53,295	clear	raining
Dale A Barto	5/28/2020 9:30AM	7.80	51	7.60	53	7.30	49		102,139	clear	sunny
Dale A Barto	6/29/2020 9:00am	7.80	54	7.20	53	7.60	51		53,259	clear	sunny

Date	#1 Server Room	#2 S.E. Corner	#3 N.E. Corner	#4 N.W. Corner	#5 S.W. Corner
12/28/2018	1.10	1.45	1.70	1.25	1.70
1/31/2018	1.10	1.40	1.65	1.25	1.65
2/28/2019	1.15	1.45	1.75	1.35	1.70
3/29/2019	1.10	1.45	1.70	1.35	1.70
4/29/2019	1.20	1.40	1.70	1.35	1.40
5/30/2019	1.15	1.40	1.75	1.40	1.75
6/28/2019	1.10	1.45	1.75	1.75	1.75
7/29/2019	1.10	1.45	1.75	1.50	1.75
8/29/2019	1.10	1.50	1.75	1.35	1.75
9/30/2019	1.10	1.40	1.75	1.45	1.70
10/29/2019	1.15	1.40	1.70	1.35	1.70
11/27/2019	1.10	1.35	1.65	1.20	1.65
12/31/2019	1.10	1.40	1.75	1.35	1.70
1/30/2020	1.10	1.40	1.70	1.30	1.65
2/28/2020	1.15	1.40	1.70	1.30	1.70
3/25/2020	1.20	1.40	1.70	1.30	1.70
4/30/2020	1.20	1.40	1.75	1.45	1.70
5/28/2020	1.15	1.40	1.70	1.40	1.70
6/29/2020	1.10	1.45	1.75	1.35	1.75

BENCHMARK G ENVIRONMENTAL ENGINEERING & SCIENCE, PLLC

.

Monthly Operation & Maintenance Log Active Sub-Slab Depressurization System

	Project No.:		
Project Location:	Client:		
Preparer's Name: Dale A B	arto Date/Time:	7/27/2020	10:30 A
Notes:			
Monthly Operating Status:			
System(s) currently running?	es 🗆 no		
Has the system been off-line in the past m		no	
If yes, please list the dates and brief desc	ription why (i.e. maintenance	, part replacement, etc.);	
	(
	Marine Constanting		
What is the current Vacuum reading?			
What is the current Vacuum reading?	1.50		
What is the current Vacuum reading? Visual Inspection:	1.50		
		no	
Visual Inspection:	□ yes ⊡	no	
Visual Inspection: Any piping disconnected?	□ yes 🖸 □ yes 🗗	no	
Visual Inspection: Any piping disconnected? Any cracks visible in piping?	☐ yes		
Visual Inspection: Any piping disconnected? Any cracks visible in piping? Any new cracks visible in slab floor? flagnehelic guage reading 0?	☐ yes ☐ yes ☐ yes ☐ yes ☐ yes ☐	no no	
Visual Inspection: Any piping disconnected? Any cracks visible in piping? Any new cracks visible in slab floor?	☐ yes ☐ yes ☐ yes ☐ yes ☐ yes ☐	no no	
Visual Inspection: Any piping disconnected? Any cracks visible in piping? Any new cracks visible in slab floor? flagnehelic guage reading 0?	☐ yes ☐ yes ☐ yes ☐ yes ☐ yes ☐	no no	
Visual Inspection: Any piping disconnected? Any cracks visible in piping? Any new cracks visible in slab floor? flagnehelic guage reading 0?	☐ yes ☐ yes ☐ yes ☐ yes ☐ yes ☐	no no	
Visual Inspection: Any piping disconnected? Any cracks visible in piping? Any new cracks visible in slab floor? flagnehelic guage reading 0?	☐ yes ☐ yes ☐ yes ☐ yes ☐ yes ☐	no no	·
Visual Inspection: Any piping disconnected? Any cracks visible in piping? Any new cracks visible in slab floor? flagnehelic guage reading 0?	☐ yes ☐ yes ☐ yes ☐ yes ☐ yes ☐	no no	
Visual Inspection: Any piping disconnected? Any cracks visible in piping? Any new cracks visible in slab floor? flagnehelic guage reading 0?	☐ yes ☐ yes ☐ yes ☐ yes ☐ yes ☐	no no	

Sub-Slab Depressurization Certification Inspection

. ..

ű,

Monthly Operation & Maintenance Log Active Sub-Slab Depressurization System

P	lease indicate general use of floor space? <u>Manufacturing</u>
	as this general use changed in the past month?
	yes, please explain:
	stem Modifications:
Ha	ve any modifications been made to the Sub Slab Depresentiation Sustance
	문제 그렇게 잘 한 것 같아요. 그는 것 같아요. 그는 것 같아요. 전 그는 것 같아요. 여행들은 것 같아요. 이것 것 가지 않아요. 이것 것 것 같아요. 그 것 같은 것 같아요. 그 것같이 가지 않
	o, please list with date:

P.

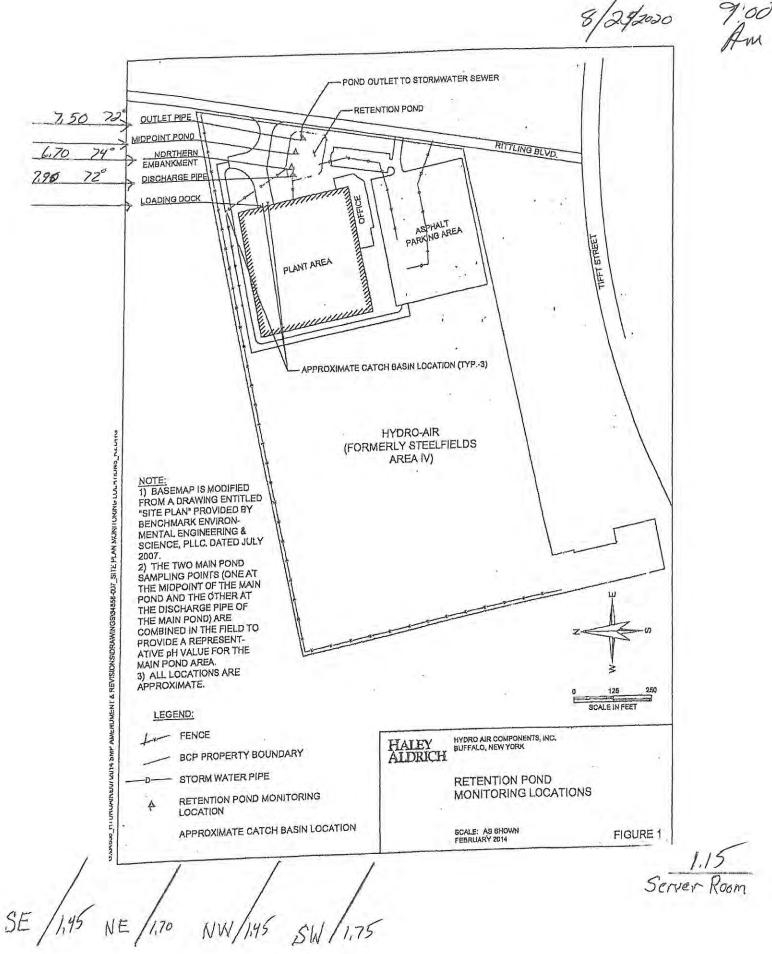
Page 2 of 2

In accordance with

1. ph and temperature of a representative water from the 4 locations indicated on Figure 1.

2. weather conditions (general- wet/ dry, avg temp) since last measurement

3. estimated volume of water pumped from loading dock (based upon pump run time data)


4. notes on condition of pond (visual)

Staff Member	Date of Measure-ment		Mea	sureme	nt Locati	on		Est.	Visual	Comments
		Dischar	Discharge Pipe		hern yment	Main Pond (Combined Samples)		Quantity of Water **	Condition of Pond (color, vegetation,	(e.g. weather conditions, etc)
		ph	Temp (°F)	ph	Temp (°F)	ph	Temp (°F)		etc.)	
Dale A Barto	1/30/2020 12:00am							26,570	Frozen	clear
Dale A Barto	2/28/2020 11:00am							64,653	Frozen	cloudy
Dale A Barto	3/25/2020 12:00am							26,598	Frozen	cloudy
Dale A Barto	4/30/2020 12:00am 7.8	0	46	75.00	44	6.60	44	53,295	clear	raining
Dale A Barto	5/28/20 12:00 AM	7.80	51	7.60	53	7.30	49	102,139	clear	sunny
Dale A Barto	6/29/2020 9:00am	7.80	54	7.20	53	7.60	51	53,259	clear	sunny
Dale A Barto	7/27/2020 9:00am	7.50	69	6.50	67	6.50	68	102,175	clear	sunny

* May, 2016 is the first month the discharge quantity was calculated via flow meter

Date	#1 Server Room	#2 S.E. Corner	#3 N.E. Corner	#4 N.W. Corner	#5 S.W. Corner
12/28/2018	1.10	1.45	1.70	1.25	1.70
1/31/2018	1.10	1.40	1.65	1.25	1.65
2/28/2019	1.15	1.45	1.75	1.35	1.70
3/29/2019	1.10	1.45	1.70	1.35	1.70
4/29/2019	1.20	1.40	1.70	1.35	1.40
5/30/2019	1.15	1.40	1.75	1.40	1.75
6/28/2019	1.10	1.45	1.75	1.75	1.75
7/29/2019	1,10	1.45	1.75	1.50	1.75
8/29/2019	1.10	1.50	1.75	1.35	1.75
9/30/2019	1.10	1.40	1.75	1.45	1.70
10/29/2019	1.15	1.40	1.70	1.35	1.70
11/27/2019	1.10	1.35	1.65	1.20	1.65
12/31/2019	1.10	1.40	1.75	1.35	1.70
1/30/2020	1.10	1.40	1.70	1.30	1.65
2/28/2020	1.15	1.40	1.70	1.30	1.70
3/25/2020	1.20	1.40	1.70	1.30	1.70
4/30/2020	1.20	1.40	1.75	1.45	1.70
5/28/2020	1.15	1.40	1.70	1.40	1.70
6/29/2020	1.10	1.45	1.75	1.35	1.75
7/27/2020	1.10	1.50	1.75	1.40	1.75

8/242020

Project Name:		Project No.:				
Project Location:		Client:				
Preparer's Name: Jak A Ba	arto	Date/Time:	8-	25-	-2020	1
Notes:				1496 L		
				1	_	
Monthly Operating Status:			- Contraction of the local diversion of the local diversion of the local diversion of the local diversion of the			
		and				
System(s) currently running?		🗆 no		/		
System(s) currently running? If y Has the system been off-line in the past of If yes, please list the dates and brief desc	month?	yes	⊡r , part re	placeme	nt, etc.):	
Has the system been off-line in the past i	month?	yes	⊡r , part re	placeme	nt, etc.):	
Has the system been off-line in the past i	month?	yes	⊡r , part re	placeme	nt, etc.):	
Has the system been off-line in the past i	month?	yes	⊡r , part re	placeme	nt, etc.):	
Has the system been off-line in the past of If yes, please list the dates and brief desc	month?	yes	⊡rr , part re	placeme	nt, etc.):	
Has the system been off-line in the past i	month?	yes	⊡ŕr , part re	placeme	nt, etc.):	
Has the system been off-line in the past of If yes, please list the dates and brief desc	month?	yes	Ør , part re	placeme	nt, etc.):	
Has the system been off-line in the past off If yes, please list the dates and brief desc What is the current Vacuum reading? Visual Inspection:	month?	yes maintenance	, part re	placeme	nt, etc.):	
Has the system been off-line in the past off the formation of the system been off-line in the past of the system o	month?	yes maintenance	, part re	placeme	nt, etc.):	
Has the system been off-line in the past off If yes, please list the dates and brief desc What is the current Vacuum reading? Visual Inspection: ny piping disconnected?	month?	yes maintenance	no no	placeme	nt, etc.):	
Has the system been off-line in the past off If yes, please list the dates and brief desc What is the current Vacuum reading? Visual Inspection: ny piping disconnected? ny cracks visible in piping?	month?	yes maintenance	no no	placeme	nt, etc.):	
Has the system been off-line in the past of If yes, please list the dates and brief desc What is the current Vacuum reading? Visual Inspection: ny piping disconnected? ny cracks visible in piping? ny new cracks visible in slab floor?	month?	yes maintenance	no no		nt, etc.):	
Has the system been off-line in the past off If yes, please list the dates and brief desc What is the current Vacuum reading? Visual Inspection: ny piping disconnected? ny cracks visible in piping? ny new cracks visible in slab floor?	month?	yes maintenance	no no		nt, etc.):	
Has the system been off-line in the past off If yes, please list the dates and brief desc What is the current Vacuum reading? Visual Inspection: ny piping disconnected? my cracks visible in piping? my new cracks visible in slab floor? agnehelic guage reading 0?	month?	yes maintenance	no no		nt, etc.):	

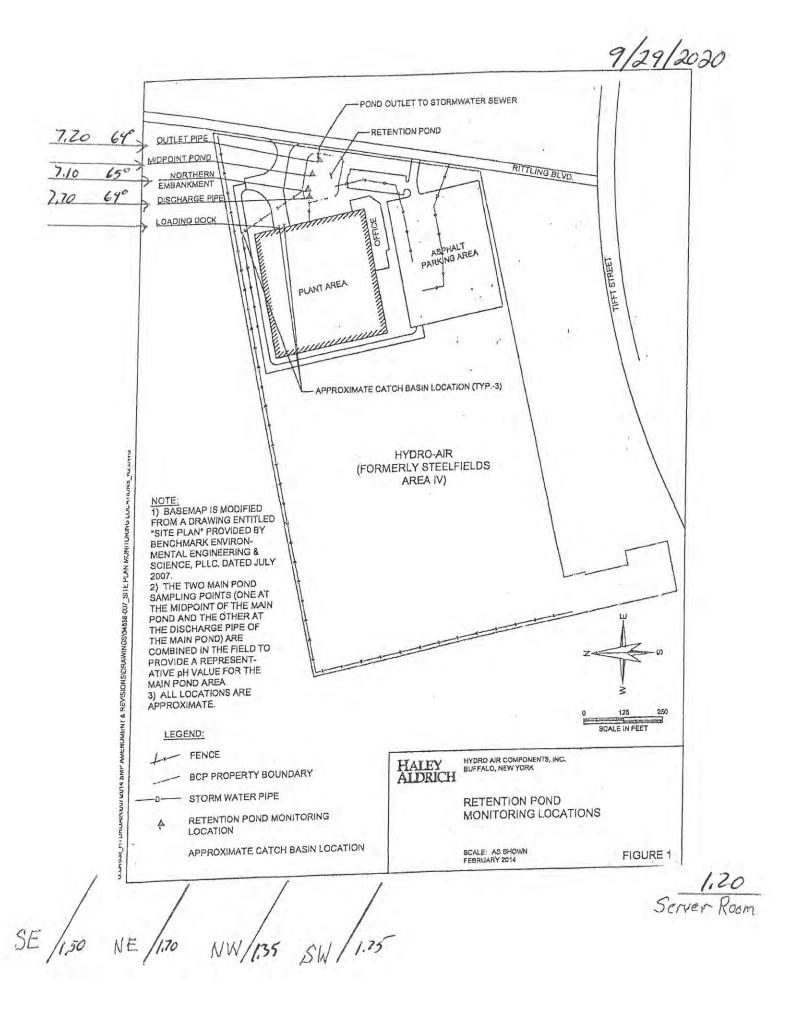
Sub-Slab Depressurization Certification Inspection

. .

Monthly Operation & Maintenance Log Active Sub-Slab Depressurization System

Change	in Occupancy	/ Use of Space				1
Has this g		use of floor spac anged in the pas	ce? t month?	aNU fac O yes	HUI.NG)
Suctor II	odification					
Have any i	odifications: modifications b e list with date	een made to the	sub-Slab De	pressurizatio	n System?	U yes D no

Date	#1 Server Room	#2 S.E. Corner	#3 N.E. Corner	#4 N.W. Corner	#5 S.W. Corner
12/28/2018	1.10	1.45	1.70	1.25	1.70
1/31/2018	1.10	1.40	1.65	1.25	1.65
2/28/2019	1.15	1.45	1.75	1.35	1.70
3/29/2019	1.10	1.45	1.70	1.35	1.70
4/29/2019	1.20	1.40	1.70	1.35	1.40
5/30/2019	1.15	1.40	1.75	1.40	1.75
6/28/2019	1.10	1.45	1.75	1.75	1.75
7/29/2019	1.10	1.45	1.75	1.50	1.75
8/29/2019	1.10	1.50	1.75	1.35	1.75
9/30/2019	1.10	1.40	1.75	1.45	1.70
10/29/2019	1.15	1.40	1.70	1.35	1.70
11/27/2019	1.10	1.35	1.65	1.20	1.65
12/31/2019	1.10	1.40	1.75	1.35	1.70
1/30/2020	1.10	1.40	1.70	1.30	1.65
2/28/2020	1.15	1.40	1.70	1.30	1.70
3/25/2020	1.20	1.40	1.70	1.30	1.70
4/30/2020	1.20	1.40	1.75	1.45	1.70
5/28/2020	1.15	1.40	1.70	1.40	1.70
6/29/2020	1.10	1.45	1.75	1.35	1.75
7/27/2020	1.10	1.50	1.75	1.40	1.75
8/26/2020	1.15	1.45	1.70	1.45	1.75


In accordance with

1. ph and temperature of a representative water from the 4 locations indicated on Figure 1.

weather conditions (general- wet/ dry, avg temp) since last measurement

3. estimated volume of water pumped from loading dock (based upon pump run time data)

Staff Member	Date of Measure-ment		Me	asurem	ent Loca	tion		Pump	Est.	Visual	Comments
		Discha	irge Pipe		thern ayment	(Com	n Pond nbined nples)	Run Time*	Quantity o Water **	f Condition of Pond (color, vegetation,	(e.g. weather conditions, etc)
		ph	Temp (°F)	ph	Temp (°F)	ph	Temp (°F)			etc.)	
Dale Barto	3/29/19 12:00 AM	8.10	45	7.50	44	6.50	46		9,895	clear	sunny
Dale A Barto	4/29/2019 9:30am	7.90	46	7.80	44	6.80	45		61,125	clear	cloudy
Dale A Barto	5/30/2019 9:30am	7.95	48	7.75	46	6.60	47		30,036	clear	sunny
Dale A Barto	6/28/2019 9:30am	7.80	54	7.60	53	7.10	53		61,125	clear	sunny
Dale A Barto	7/29/2019 9:00am	7.75	72	7.50	72	7.00	73		30,036	clear	sunny
Dale A Barto	8/29/2019 9:30am	7.80	63	7.20	64	7.10	63		61,125	clear	sunny
Dale A Barto	9/30/2019 9:00am	7.70	60	7.30	61	7.00	61		26,560	clear	cloudy
Dale A Barto	10/29/2019 9:00am	7.75	48	7.20	46	7.15	47		64,646	clear	sunny
Dale A Barto	11/27/19 12:00 AM								26,570	Frozen	clear
Dale A Barto	12/31/2019 11:00am								64,653	Frozen	Cloudy
Dale A Barto	1/30/20 12:00 AM								26,598	Frozen	cloudy
Dale A Barto	2/28/2020 9:00am									Frozen	cloudy
Dale A Barto	3/25/2020 9:00am								64,706	Frozen	cloudy
ale A Barto	4/30/20 12:00 AM	7.80	46	75.00	44	6.60	44		53,295	clear	raining
ale A Barto	5/28/2020 9:30AM	7.80	51	7.60	53	7.30	49		102,139		sunny
ale A Barto	6/29/2020 9:00am	7.80	54	7.20	53	7.60	51		53,259 0		sunny
ale A Barto	7/27/2020 9:00am	7.50,	69	5.50	67	6.50	68		102,175 c		unny
ale A Barto	8/26/20 12:00 AM	7.90	72 (5.70	74	7.50	72		53,259 c		unny
									and the second second		

Project Name:		Project No.:		
Project Location:		Client:		
Preparer's Name: Dale A	Barto	Date/Time:	9/29/2020	9:30
Notes:			10 1000	
			- A	
Monthly Operating Status:				
System(s) currently running?	yes	🗆 no		
Has the system been off-line in the past If yes, please list the dates and brief dates		yes	19 no	
Has the system been off-line in the pas If yes, please list the dates and brief de				
	escription why (i.e			
If yes, please list the dates and brief de				
If yes, please list the dates and brief de What is the current Vacuum reading? Visual Inspection:	escription why (i.e			
If yes, please list the dates and brief de What is the current Vacuum reading? Visual Inspection:	escription why (i.e	maintenance,	part replacement, etc.):	
If yes, please list the dates and brief de What is the current Vacuum reading? Visual Inspection: my piping disconnected? my cracks visible in piping?	escription why (i.e	maintenance,	part replacement, etc.):	
If yes, please list the dates and brief de What is the current Vacuum reading? Visual Inspection: my piping disconnected? my cracks visible in piping? my new cracks visible in slab floor?	escription why (i.e		part replacement, etc.):	
If yes, please list the dates and brief de What is the current Vacuum reading? Visual Inspection: my piping disconnected? my cracks visible in piping?	escription why (i.e		part replacement, etc.):	
If yes, please list the dates and brief de What is the current Vacuum reading? Visual Inspection: my piping disconnected? my cracks visible in piping? my new cracks visible in slab floor?	escription why (i.e		part replacement, etc.):	
If yes, please list the dates and brief de What is the current Vacuum reading? Visual Inspection: my piping disconnected? my cracks visible in piping? my new cracks visible in slab floor? agnehelic guage reading 0?	escription why (i.e		part replacement, etc.):	

(11) (1)

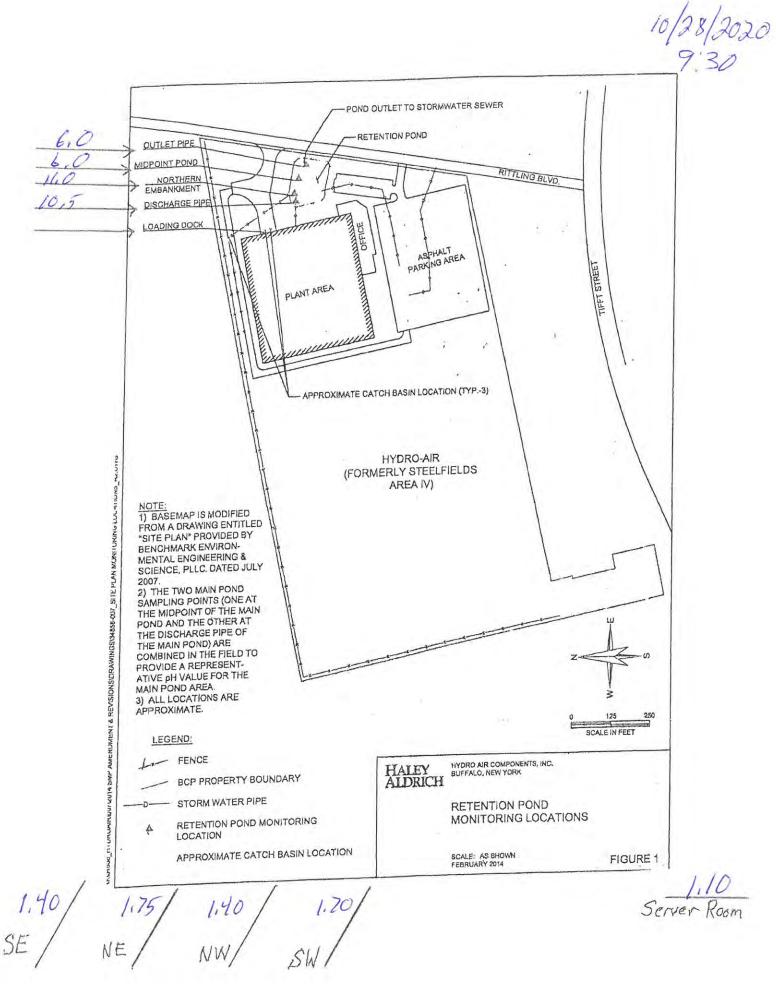
Monthly Operation & Maintenance Log Active Sub-Slab Depressurization System

.

Ples	ise indicate gener	luce of floor and	1002	Maria	C /	1	
				Mawu	Sactur	ing	
	this general use o	nangeo in the pa	st month?	L] yes	P no	5	
ii ye	s, please explain:						
						i.	
						- Anton	
	em Modifications						
	em Modifications any modifications		e Sub-Slab D	Depressurization	System?	🗌 yes	
Have		been made to th	e Sub-Slab E	Depressurization	system?	🗌 yes	1 nc
Have	any modifications	been made to th	e Sub-Slab E	Depressurizatior	i System?	🗌 yes	1 nc
Have	any modifications	been made to th	e Sub-Slab E	Depressurizatior	n System?	☐ yes	nc
Have	any modifications	been made to th	e Sub-Slab E	Depressurization	i System?	🗌 yes	C no
Have	any modifications	been made to th	e Sub-Slab E	Depressurization	n System?	☐ yes	
Have	any modifications	been made to th	e Sub-Slab E	Depressurization	i System?	☐ yes	
Have	any modifications	been made to th	e Sub-Slab E	Depressurization	i System?	U yes	C no
Have	any modifications	been made to th	e Sub-Slab E	Depressurization	n System?	☐ yes	E nc

14

In accordance with


1. ph and temperature of a representative water from the 4 locations indicated on Figure 1.

2. weather conditions (general- wet/ dry, avg temp) since last measurement

3. estimated volume of water pumped from loading dock (based upon pump run time data)

Staff Member	Date of Measure-ment	-	Measurement Location					Pump	Est.	Visual	Comments
		Discha	rge Pipe		thern lyment	(Con	n Pond nbined nples)	Run Time*	Quantity of Water **	Condition of Pond (color, vegetation,	(e.g. weather conditions, etc
	10	ph	Temp (°F)	ph	Temp (°F)	ph	Temp (°F)			etc.)	
Dale Barto	3/29/19 12:00 AM	8.10	45	7.50	44	6.50	46		9,895	clear	sunny
Dale A Barto	4/29/2019 9:30am	7.90	46	7.80	44	6,80	45		61,125	clear	cloudy
Dale A Barto	5/30/2019 9:30am	7.95	48	7.75	46	6.60	47		30,036	clear	sunny
Dale A Barto	6/28/2019 9:30am	7.80	54	7.60	53	7.10	53		61,125	clear	sunny
Dale A Barto	7/29/2019 9:00am	7.75	72	7.50	72	7.00	73		30,036	clear	sunny
Dale A Barto	8/29/2019 9:30am	7.80	63	7.20	64	7.10	63		61,125	clear	sunny
Dale A Barto	9/30/2019 9:00am	7.70	60	7.30	61	7.00	61		26,560	clear	cloudy
Dale A Barto	10/29/2019 9:00am	7.75	48	7.20	46	7.15	47		64,646	clear	sunny
Dale A Barto	11/27/19 12:00 AM								26,570	Frozen	clear
Dale A Barto	12/31/2019 11:00am								64,653	Frozen	Cloudy
Dale A Barto	1/30/20 12:00 AM								26,598	Frozen	cloudy
Dale A Barto	2/28/2020 9:00am									Frozen	cloudy
Dale A Barto	3/25/2020 9:00am								64,706	Frozen	cloudy
Dale A Barto	4/30/20 12:00 AM	7.80	46	75.00	44	6.60	44		53,295	clear	raining
Dale A Barto	5/28/2020 9:30AM	7.80	51	7.60	53	7.30	49		102,139	clear	sunny
Dale A Barto	6/29/2020 9:00am	7.80	54	7.20	53	7.60	51		53,259	lear	sunny
ale A Barto	7/27/2020 9:00am	7.50,	69	6.50	67	6.50	68		102,175	clear	sunny
ale A Barto	8/26/20 12:00 AM	7.90	72	6.70	74	7.50	72		53,259	ler	sunny
ale A Barto	9/29/20 12:00 AM	7.70	64	7.10	65	7.20	64		102,175	lear	cloudy

Date	#1 Server Room	#2 S.E. Corner	#3 N.E. Corner	#4 N.W. Corner	#5 S.W. Corner
12/28/2018	1.10	1.45	1.70	1.25	1.70
1/31/2018	1.10	1.40	1.65	1.25	1.65
2/28/2019	1.15	1.45	1.75	1.35	1.70
3/29/2019	1.10	1.45	1.70	1.35	1.70
4/29/2019	1.20	1.40	1.70	1.35	1.40
5/30/2019	1.15	1.40	1.75	1.40	1.75
6/28/2019	1.10	1.45	1.75	1.75	1.75
7/29/2019	1.10	1.45	1.75	1.50	1.75
8/29/2019	1.10	1.50	1.75	1.35	1.75
9/30/2019	1.10	1.40	1.75	1.45	1.70
10/29/2019	1.15	1.40	1.70	1.35	1.70
11/27/2019	1.10	1.35	1.65	1.20	1.65
12/31/2019	1.10	1.40	1.75	1.35	1.70
1/30/2020	1.10	1.40	1.70	1.30	1.65
2/28/2020	1.15	1.40	1.70	1.30	1.70
3/25/2020	1.20	1.40	1.70	1.30	1.70
4/30/2020	1.20	1.40	1.75	1.45	1.70
5/28/2020	1.15	1.40	1.70	1.40	1.70
6/29/2020	1.10	1.45	1.75	1.35	1.75
7/27/2020	1.10	1.50	1.75	1.40	1.75
8/26/2020	1.15	1.45	1.70	1.45	1.75
9/29/2020	1.20	1.50	1.70	1.35	1.75

Project Name:		b Depressurization	System
Project Location:		ct No.:	
Prove ALLE	Client		
Notes:	te Date/	Time: 10/28/20	020 7:30
Notes.			
	and the second		
		the provided of the second secon	
Monthly Operating Status:			N
System(s) currently running?	es 🛛	no	
Has the system been off-line in the past r		Dino	
Thas the system been off-line in the past r	nonth?		
If yes, please list the dates and brief desc			c.):
			c.):
			<u>c.):</u>
If yes, please list the dates and brief desc			c.):
			<u>c.):</u>
If yes, please list the dates and brief desc			c.):
If yes, please list the dates and brief desc What is the current Vacuum reading? Visual Inspection:	ription why (i.e. mainte	enance, part replacement, et	<u>c.):</u>
If yes, please list the dates and brief desc What is the current Vacuum reading? Visual Inspection: Any piping disconnected?	ription why (i.e. mainte	nance, part replacement, et	<u>c.):</u>
If yes, please list the dates and brief desc What is the current Vacuum reading? Visual Inspection: Any piping disconnected? Any cracks visible in piping?	ription why (i.e. mainte	nance, part replacement, et	<u>c.):</u>
If yes, please list the dates and brief desc What is the current Vacuum reading? Visual Inspection: Any piping disconnected? Any cracks visible in piping? Any new cracks visible in slab floor?	ription why (i.e. mainte	nance, part replacement, et	<u>c.):</u>
If yes, please list the dates and brief desc What is the current Vacuum reading? Visual Inspection: Any piping disconnected? Any cracks visible in piping? Any new cracks visible in slab floor?	ription why (i.e. mainte	nance, part replacement, et	<u>c.):</u>
If yes, please list the dates and brief desc What is the current Vacuum reading? Visual Inspection: Any piping disconnected? Any cracks visible in piping? Any new cracks visible in slab floor? Magnehelic guage reading 0?	yes yes yes yes yes	nance, part replacement, et	<u>c.):</u>
If yes, please list the dates and brief desc What is the current Vacuum reading? Visual Inspection: Any piping disconnected? Any cracks visible in piping? Any new cracks visible in slab floor? Magnehelic guage reading 0?	yes yes yes yes yes	nance, part replacement, et	<u>c.):</u>
If yes, please list the dates and brief desc What is the current Vacuum reading? Visual Inspection: Any piping disconnected? Any cracks visible in piping? Any new cracks visible in slab floor? Magnehelic guage reading 0?	yes yes yes yes yes	nance, part replacement, et	<u>c.):</u>
If yes, please list the dates and brief desc What is the current Vacuum reading? Visual Inspection: Any piping disconnected? Any cracks visible in piping? Any new cracks visible in slab floor? Magnehelic guage reading 0?	yes yes yes yes yes	nance, part replacement, et	<u>c.):</u>
If yes, please list the dates and brief desc	yes yes yes yes yes	nance, part replacement, et	<u>c.):</u>
If yes, please list the dates and brief desc What is the current Vacuum reading? Visual Inspection: Any piping disconnected? Any cracks visible in piping? Any new cracks visible in slab floor? Magnehelic guage reading 0? If yes to any question above, please provide	yes yes yes yes yes	nance, part replacement, et	<u>c.):</u>

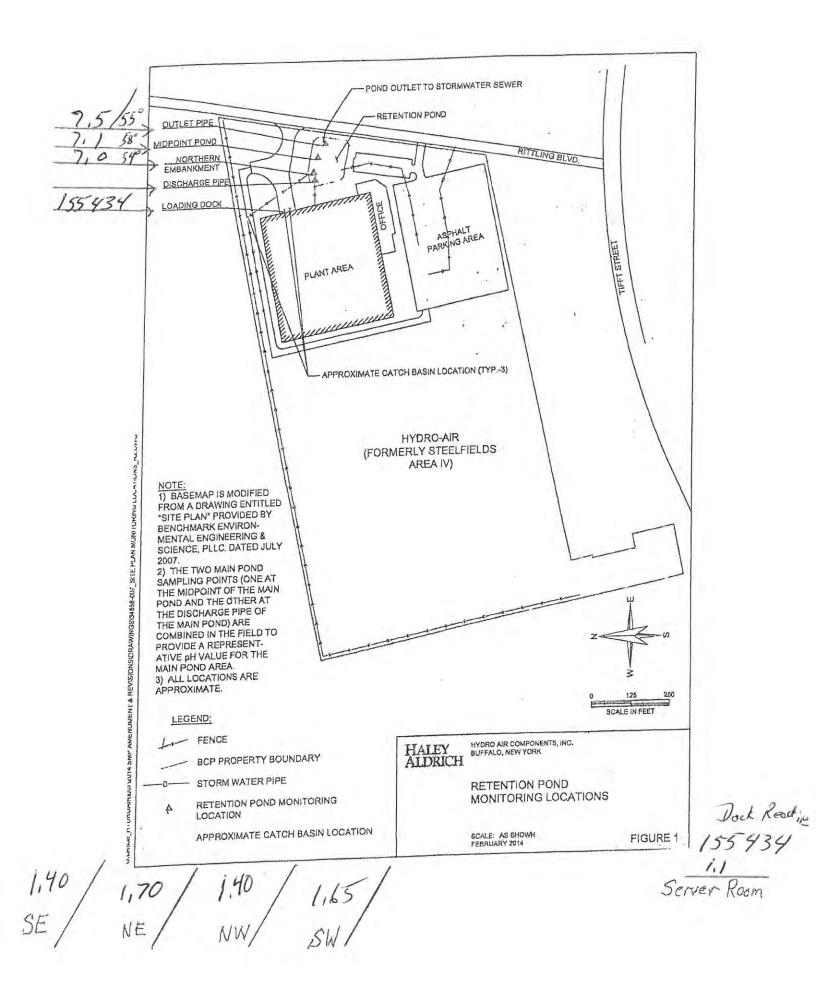
.

Monthly Operation & Maintenance Log Active Sub-Slab Depressurization System

2

Cha	nge in Occupancy / Use of Space:
Has	this general use of floor space? <u>Mawufact willing</u> this general use changed in the past month? I yes B no
lave	em Modifications: any modifications been made to the Sub-Slab Depressurization System? yes olease list with date:

In accordance with


1. ph and temperature of a representative water from the 4 locations indicated on Figure 1.

2. weather conditions (general- wet/ dry, avg temp) since last measurement

3. estimated volume of water pumped from loading dock (based upon pump run time data)

Staff Member	Date of Measure-ment		Me	asurem	ent Loca	tion		Pump	Est.	Visual	Comments
		Discha	rge Pipe	10.000	thern	(Com	Pond bined ples)	Run Time*	Quantity o Water **	F Condition of Pond (color, vegetation,	(e.g. weather conditions, etc
			Temp	11.5	Temp		Temp		1	etc.)	
(ph	(°F)	ph	(°F)	ph	(°F)	_			
Dale Barto	3/29/19 12:00 AM	8.10	45	7.50	44	6.50	46		9,895	clear	sunny
Dale A Barto	4/29/2019 9:30am	7.90	46	7.80	44	6.80	45		61,125	clear	cloudy
Dale A Barto	5/30/2019 9:30am	7.95	48	7,75	46	6.60	47		30,036	clear	sunny
Dale A Barto	6/28/2019 9:30am	7.80	54	7.60	53	7.10	53		61,125	clear	sunny
Dale A Barto	7/29/2019 9:00am	7.75	72	7.50	72	7.00	73		30,036	clear	sunny
Dale A Barto	8/29/2019 9:30am	7.80	63	7.20	64	7.10	63		61,125	clear	sunny
Dale A Barto	9/30/2019 9:00am	7.70	60	7.30	61	7.00	61		26,560	clear	cloudy
Dale A Barto	10/29/2019 9:00am	7.75	48	7.20	46	7.15	47		64,646	clear	sunny
Dale A Barto	11/27/19 12:00 AM								26,570	Frozen	clear
ale A Barto	12/31/2019 11:00am								64,653	Frozen	Cloudy
ale A Barto	1/30/20 12:00 AM								26,598	Frozen	cloudy
ale A Barto	2/28/2020 9:00am									Frozen	cloudy
ale A Barto	3/25/2020 9:00am								64,706	Frozen	cloudy
ale A Barto	4/30/20 12:00 AM	7.80	46	75.00	44	6.60	44		53,295	clear	raining
ale A Barto	5/28/2020 9:30AM	7.80	51	7.60	53	7.30	49		102,139	clear	sunny
ale A Barto	6/29/2020 9:00am	7.80	54	7.20	53	7.60	51		53,259	clear	sunny
ale A Barto	7/27/2020 9:00am	7.50,	69	6.50	67	6.50	68		102,175	clear	sunny
ale A Barto	8/26/20 12:00 AM	7.90	72	6.70	74	7.50	72		53,259	cler	sunny
ale A Barto	9/29/20 12:00 AM	7.70	64	7.10	65	7.20	64		102,175	clear	cloudy
ale A Barto	10/28/2020 9:30AM	10.50	54	6.00	56	6.00	57		53,259	clear	cloudy

Date	#1 Server Room	#2 S.E. Corner	#3 N.E. Corner	#4 N.W. Corner	#5 S.W. Corner
12/28/2018	1.10	1.45	1.70	1.25	1.70
1/31/2018	1.10	1.40	1.65	1.25	1.65
2/28/2019	1.15	1.45	1.75	1.35	1.70
3/29/2019	1.10	1.45	1.70	1.35	1.70
4/29/2019	1.20	1.40	1.70	1.35	1.40
5/30/2019	1.15	1.40	1.75	1.40	1.75
6/28/2019	1.10	1.45	1.75	1.75	1.75
7/29/2019	1.10	1.45	1.75	1.50	1.75
8/29/2019	1.10	1.50	1.75	1.35	1.75
9/30/2019	1.10	1.40	1.75	1.45	1.70
10/29/2019	1.15	1.40	1.70	1.35	1.70
11/27/2019	1.10	1.35	1.65	1.20	1.65
12/31/2019	1.10	1.40	1.75	1.35	1.70
1/30/2020	1.10	1.40	1.70	1.30	1.65
2/28/2020	1.15	1.40	1.70	1.30	1.70
3/25/2020	1.20	1.40	1.70	1.30	1.70
4/30/2020	1.20	1.40	1.75	1.45	1.70
5/28/2020	1.15	1.40	1.70	1.40	1.70
6/29/2020	1.10	1.45	1.75	1.35	1.75
7/27/2020	1.10	1.50	1.75	1.40	1.75
8/26/2020	1.15	1.45	1.70	1.45	1.75
9/29/2020	1.20	1.50	1.70	1.35	1.75

Project Name:	Proje	ect No.:			
Project Location:	Clien				
Preparer's Name: Dale + Ba	the Date	/Time:	11/30/2020	0 8	30
Notes:					
			> (
100					
Monthly Operating Status:					
System(s) currently running?		no			
We ye		11/1			
Has the system been off-line in the past n	the second se	110	THE		
Has the system been off-line in the past n If yes, please list the dates and brief desc	nonth? yes		L ^a no part replacement, e	itc.):	
	nonth? yes		L' no part replacement, e	etc.):	
If yes, please list the dates and brief desc	nonth? yes ription why (i.e. mainte		L' no part replacement, e	etc.):	
If yes, please list the dates and brief desc What is the current Vacuum reading? Visual Inspection:	nonth?	enance,	part replacement, e	etc.):	
If yes, please list the dates and brief desc What is the current Vacuum reading? Visual Inspection:	nonth? yes ription why (i.e. mainte 1.45	enance,	part replacement, e	etc.):	
If yes, please list the dates and brief desc What is the current Vacuum reading? Visual Inspection:	nonth? yes ription why (i.e. mainte 1.45		part replacement, e	etc.):	
If yes, please list the dates and brief desc What is the current Vacuum reading? Visual Inspection: Any piping disconnected? Any cracks visible in piping?	nonth? yes ription why (i.e. mainte 1.45	enance,	part replacement, e	etc.):	
If yes, please list the dates and brief desc What is the current Vacuum reading? Visual Inspection: Any piping disconnected? Any cracks visible in piping? Any new cracks visible in slab floor?	nonth? yes ription why (i.e. mainte 1.45		part replacement, e	etc.):	

Page 1 of 2

A

Monthly Operation & Maintenance Log Active Sub-Slab Depressurization System

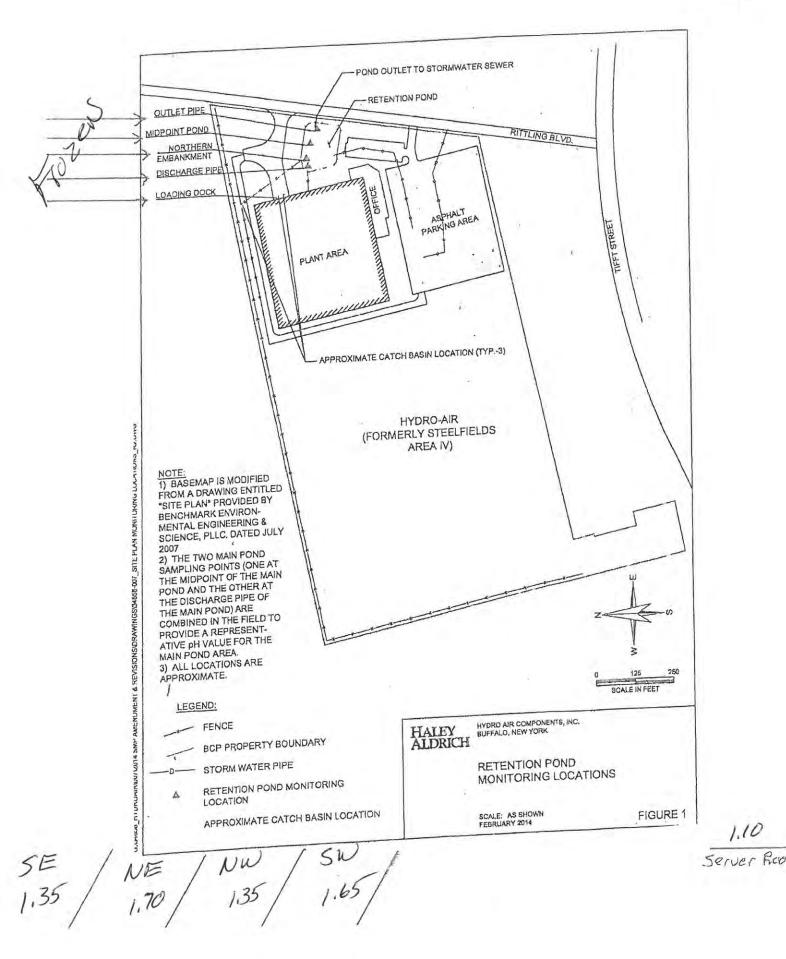
2

C	hange in Occupancy / Use of Space:
Н	lease indicate general use of floor space? <u>Manufacturing</u> as this general use changed in the past month? I yes Ino yes, please explain:
	· · ·
Sy	stem Modifications:
	ive any modifications been made to the Sub-Slab Depressurization System? yes room of the sub-Slab Depressurization System? yes room of the sub-Slab Depressurization System?

Page 2 of 2

Date	#1 Server Room	#2 S.E. Corner	#3 N.E. Corner	#4 N.W. Corner	#5 S.W. Corner	Average
12/28/2018	1.10	1.45	1.70	1.25	1.70	1.44
1/31/2018	1.10	1.40	1.65	1.25	1.65	1.41
2/28/2019	1.15	1.45	1.75	1.35	1.70	1.48
3/29/2019	1.10	1.45	1.70	1.35	1.70	1.46
4/29/2019	1.20	1.40	1.70	1.35	1.40	1.41
5/30/2019	1.15	1.40	1.75	1.40	1.75	1.49
6/28/2019	1.10	1.45	1.75	1.75	1.75	1.56
7/29/2019	1.10	1.45	1,75	1.50	1.75	1.51
8/29/2019	1.10	1.50	1.75	1.35	1.75	1.49
9/30/2019	1.10	1.40	1.75	1.45	1.70	1.48
10/29/2019	1.15	1.40	1.70	1.35	1.70	1.46
11/27/2019	1.10	1.35	1.65	1.20	1.65	1.39
12/31/2019	1.10	1.40	1.75	1.35	1.70	1.46
1/30/2020	1.10	1.40	1.70	1.30	1.65	1.43
2/28/2020	1.15	1.40	1.70	1.30	1.70	1.45
3/25/2020	1.20	1.40	1.70	1.30	1.70	1.46
4/30/2020	1.20	1.40	1.75	1.45	1.70	1.50
5/28/2020	1.15	1.40	1.70	1.40	1.70	1,47
6/29/2020	1.10	1.45	1.75	1.35	1.75	1.48
7/27/2020	1.10	1.50	1.75	1.40	1.75	1.50
8/26/2020	1.15	1.45	1.70	1.45	1.75	1,50
9/29/2020	1.20	1.50	1.70	1.35	1.75	1.50
10/27/2020	1.15	1.40	1.75	1.40	1.70	1.48
11/30/2020	1.10	1.40	1.70	1.40	1.65	1.45

In accordance with


1. ph and temperature of a representative water from the 4 locations indicated on Figure 1.

2. weather conditions (general- wet/ dry, avg temp) since last measurement

3. estimated volume of water pumped from loading dock (based upon pump run time data)

Staff Member	Date of Measure-ment	Measurement Location					_	Pump	Est.	Visual	Comments
		Discharge Pipe		Northern Embayment		Main Pond (Combined Samples)		Run Time*	Quantity of Water **	f Condition of Pond (color, vegetation,	(e.g. weather conditions, etc)
		ph	Temp (°F)	ph	Temp (°F)	ph	Temp (°F)			etc.)	
Dale Barto	3/29/19 12:00 AM	8.10	45	7.50	44	6.50	46		9,895	clear	sunny
Dale A Barto	4/29/2019 9:30am	7.90	46	7.80	44	6,80	45		61,125	clear	cloudy
Dale A Barto	5/30/2019 9:30am	7.95	48	7.75	46	6.60	47		30,036	clear	sunny
Dale A Barto	6/28/2019 9:30am	7.80	54	7.60	53	7.10	53		61,125	clear	sunny
Dale A Barto	7/29/2019 9:00am	7.75	72	7.50	72	7.00	73		30,036	clear	sunny
Dale A Barto	8/29/2019 9:30am	7.80	63	7.20	64	7.10	63		61,125	clear	sunny
Dale A Barto	9/30/2019 9:00am	7.70	60	7.30	61	7.00	61		26,560	clear	cloudy
Dale A Barto	10/29/2019 9:00am	7.75	48	7.20	46	7.15	47		64,646	clear	sunny
Dale A Barto	11/27/19 12:00 AM								26,570	Frozen	clear
Dale A Barto	12/31/2019 11:00am								64,653	Frozen	Cloudy
Dale A Barto	1/30/20 12:00 AM								26,598	Frozen	cloudy
Dale A Barto	2/28/2020 9:00am									Frozen	cloudy
Dale A Barto	3/25/2020 9:00am								64,706	Frozen	cloudy
Dale A Barto	4/30/20 12:00 AM	7.80	46	7.50	44	6.60	44		53,295	clear	raining
Dale A Barto	5/28/2020 9:30AM	7.80	51	7.60	53	7.30	49		102,139	clear	sunny
Dale A Barto	6/29/2020 9:00am	7.80	54	7.20	53	7.60	51		53,259	clear	sunny
ale A Barto	7/27/2020 9:00am	7.50,	69	6.50	67	6.50	68		102,175	clear :	sunny
ale A Barto	8/26/20 12:00 AM	7.90	72	6.70	74	7.50	72		53,259	cler s	sunny
ale A Barto	9/29/20 12:00 AM	7.70	64	7.10	65	7.20	64		102,175	clear d	cloudy
ale A Barto	10/28/2020 9:30AM	10.50	54	6.00	56	6.00	57		53,259 0	clear d	cloudy
ale A Barto	11/30/2020 8:30 AM 7.8	в	55	7.10	54	7.10	58		102,175 c	lear (Cloudy

12/30/2020 9:00 Am

Monthly Operation & Maintenance Log Active Sub-Slab Depressurization System

÷

Project Name:	Project No	.:
Project Location:	Client:	***
Preparer's Name:	Date/Time:	
Notes:		
		4
Monthly Operating Status:		
System(s) currently running?	es 🗆 no	
Has the system been off-line in the past i	month? yes	Dino
If yes, please list the dates and brief desc	cription why (i.e. maintenanc	e. part replacement etc.)
What is the current Vacuum reading? Visual Inspection:	1.43	
ny piping disconnected?	— — —	
ry cracks visible in piping?		I no
ny new cracks visible in slab floor?		no
agnehelic guage reading 0?		/
	🗌 yes 🔽	no
ves to any question above, please provide		L NO
ves to any question above, please provide		r no
ves to any question above, please provide		F 110
ves to any question above, please provide		F 110
		Y 110

Sub-Slab Depressurization Certification Inspection

-

Monthly Operation & Maintenance Log Active Sub-Slab Depressurization System

Change in Occupancy / Use of Space:				
Please indicate general use of floor space?	Man	factur;	NG	
Has this general use changed in the past month?	□ yes	Pino	-9	
If yes, please explain:				
	,		·	
System Medifications				
System Modifications:	Deserved		-	-
Have any modifications been made to the Sub-Slab f so, please list with date:	Depressurizatio	on System?	☐ yes	19 no
		All Andre Street		

Magnehelic Readings

#1 Server Room Office #2 S.E. Corner Cell 600/800 #3 N.E. Corner Warehouse #4 N.W. Corner Cell 200 #5 S.W. Corner Cell 100

Date	#1 Server Room	#2 S.E. Corner	#3 N.E. Corner	#4 N.W. Corner	#5 S.W. Corner	Average
12/28/2018	1.10	1.45	1.70	1.25	1.70	1.44
1/31/2018	1.10	1.40	1.65	1.25	1.65	1.41
2/28/2019	1.15	1.45	1.75	1.35	1.70	1.48
3/29/2019	1.10	1.45	1.70	1.35	1.70	1.46
4/29/2019	1.20	1.40	1.70	1.35	1.40	1.41
5/30/2019	1.15	1.40	1.75	1.40	1.75	1.49
6/28/2019	1.10	1.45	1.75	1.75	1.75	1.56
7/29/2019	1.10	1.45	1.75	1.50	1.75	1,51
8/29/2019	1.10	1.50	1.75	1.35	1.75	1.49
9/30/2019	1.10	1.40	1.75	1.45	1.70	1.48
10/29/2019	1.15	1.40	1.70	1.35	1.70	1.46
11/27/2019	1.10	1.35	1.65	1.20	1.65	1.39
12/31/2019	1.10	1.40	1.75	1.35	1.70	1.46
1/30/2020	1.10	1.40	1.70	1.30	1.65	1.43
2/28/2020	1.15	1.40	1.70	1.30	1.70	1.45
3/25/2020	1.20	1.40	1.70	1.30	1.70	1.46
4/30/2020	1.20	1.40	1.75	1.45	1.70	1.50
5/28/2020	1.15	1.40	1.70	1.40	1.70	1.47
6/29/2020	1.10	1.45	1.75	1.35	1.75	1.48
7/27/2020	1.10	1.50	1.75	1.40	1.75	1.50
8/26/2020	1.15	1.45	1.70	1.45	1.75	1.50
9/29/2020	1.20	1.50	1.70	1.35	1.75	1.50
10/27/2020	1.15	1.40	1.75	1.40	1.70	1.48
11/30/2020	1.10	1.40	1.70	1.40	1.65	1.45
12/29/2020	1.10	1.35	1.70	1.35	1.65	1.43

Loading Dock Discharge Monitoring Form Hydro-Air Components, Inc. BCP Site #C915204, Buffalo, NY

In accordance with

1. ph and temperature of a representative water from the 4 locations indicated on Figure 1.

weather conditions (general- wet/ dry, avg temp) since last measurement
 estimated volume of water pumped from loading dock (based upon pump run time data)

4. notes on condition of pond (visual)

Staff Member	Date of Measure-ment	125	Me	asurem	ent Loca	tion		Pump	Est.	Visual	Comments					
		Discha	Northern (Co		Discharge Pipe		the second se				Main Pond (Combined t Samples)		Run Time*	Quantity of Water **	f Condition of Pond (color, vegetation,	(e.g. weather conditions, etc)
		ph	Temp (°F)	ph	Temp (°F)	ph	Temp (°F)	·		etc.)						
Dale Barto	3/29/19 12:00 AM	8.10	45	7.50	44	6.50	46		9,895	clear	sunny					
Dale A Barto	4/29/2019 9:30am	7.90	46	7.80	44	6.80	45		61,125	clear	cloudy					
Dale A Barto	5/30/2019 9:30am	7.95	48	7,75	46	6.60	47		30,036	clear	sunny					
Dale A Barto	6/28/2019 9:30am	7.80	54	7.60	53	7.10	53		61,125	clear	sunny					
Dale A Barto	7/29/2019 9:00am	7.75	72	7.50	72	7.00	73		30,036	clear	sunny					
Dale A Barto	8/29/2019 9:30am	7.80	63	7.20	64	7.10	63		61,125	clear	sunny					
Dale A Barto	9/30/2019 9:00am	7.70	60	7.30	61	7.00	61		26,560	clear	cloudy					
Dale A Barto	10/29/2019 9:00am	7.75	48	7.20	46	7.15	47		64,646	clear	sunny					
ale A Barto	11/27/19 12:00 AM								26,570	Frozen	clear					
ale A Barto	12/31/2019 11:00am								64,653	Frozen	Cloudy					
ale A Barto	1/30/20 12:00 AM								26,598	Frozen	cloudy					
ale A Barto	2/28/2020 9:00am									Frozen	cloudy					
ale A Barto	3/25/2020 9:00am								64,706	Frozen	cloudy					
ale A Barto	4/30/20 12:00 AM	7.80	46	7.50	44	6.60	44		53,295	clear	raining					
Dale A Barto	5/28/2020 9:30AM	7.80	51	7.60	53	7.30	49		102,139	clear	sunny					
ale A Barto	6/29/2020 9:00am	7.80	54	7.20	53	7.60	51		53,259	clear	sunny					
ale A Barto	7/27/2020 9:00am	7.50,	69	6.50	67	6.50	68		102,175	clear	sunny					
ale A Barto	8/26/20 12:00 AM	7.90	72	6.70	74	7.50	72		53,259	cler	sunny					
ale A Barto	9/29/20 12:00 AM	7.70	64	7.10	65	7.20	64		102,175	clear	cloudy					
ale A Barto	10/28/2020 9:30AM	10.50	54	6.00	56	6.00	57		53,259	clear	cloudy					
ale A Barto	11/30/2020 9:00am								1.5	Frozen	Cloudy					
ale A Barto	12/30/2020 9:00am								_9	Frozen	cloudy					

1-27-2021 9:00 Am POND OUTLET TO STORMWATER SEWER RETENTION POND OUTLET PIPE MIDPOINT POND RITTLING BLVD. TOZEN NORTHERN EMBANKMENT DISCHARGE PIPE LOADING DOCK ASPHALT PARKING AREA STREET PLANT AREA TIFFT 11111 APPROXIMATE CATCH BASIN LOCATION (TYP.-3) HYDRO-AIR יניאישיים זיין טרעאורשטו בטוא אוויר אאברוטאבאני & REVISIONSDRAWINGSS4858-007 אווב אישא אנאוו וטארוים ערעידו נואי (FORMERLY STEELFIELDS AREA IV) NOTE 1) BASEMAP IS MODIFIED FROM A DRAWING ENTITLED "SITE PLAN" PROVIDED BY BENCHMARK ENVIRON-MENTAL ENGINEERING & SCIENCE, PLLC, DATED JULY 2007. 2) THE TWO MAIN POND SAMPLING POINTS (ONE AT THE MIDPOINT OF THE MAIN POND AND THE OTHER AT LL. THE DISCHARGE PIPE OF THE MAIN POND) ARE COMBINED IN THE FIELD TO PROVIDE A REPRESENT-ATIVE pH VALUE FOR THE MAIN POND AREA. 3) ALL LOCATIONS ARE APPROXIMATE. 250 125 SCALE IN FEET LEGEND: FENCE HYDRO AIR COMPONENTS, INC. BUFFALO, NEW YORK HALEY BCP PROPERTY BOUNDARY ALDRICH STORM WATER PIPE RETENTION POND MONITORING LOCATIONS RETENTION POND MONITORING LOCATION APPROXIMATE CATCH BASIN LOCATION SCALE: AS SHOWN FEBRUARY 2014 FIGURE 1 1.15 Server Room SE 1.35 NE 1.70 NW/1.20 SW/1.70

S.E. Corner 1.45 1.40 1.45 1.45 1.40 1.40 1.40 1.45 1.45 1.45	#3 N.E. Corner 1.70 1.65 1.75 1.70 1.70 1.75 1.75	#4 N.W. Corner 1.25 1.25 1.35 1.35 1.35 1.40 1.75	#5 S.W. Corner 1.70 1.65 1.70 1.70 1.40 1.75	Average 1.44 1.41 1.48 1.46 1.41
1.40 1.45 1.45 1.40 1.40 1.45 1.45	1.65 1.75 1.70 1.70 1.75 1.75	1.25 1.35 1.35 1.35 1.40	1.65 1.70 1.70 1.40	1.41 1.48 1.46 1.41
1.45 1.45 1.40 1.40 1.45 1.45	1.75 1.70 1.70 1.75 1.75	1.35 1.35 1.35 1.40	1.70 1.70 1.40	1.48 1.46 1.41
1.45 1.40 1.40 1.45 1.45	1.70 1.70 1.75 1.75	1.35 1.35 1.40	1.70 1.40	1.46 1.41
1.40 1.40 1.45 1.45	1.70 1.75 1.75	1.35 1.40	1.40	1.41
1.40 1.45 1.45	1.75 1.75	1.40		
1.45 1.45	1.75		1.75	
1.45		1 75		1.49
		1./5	1.75	1.56
4.50	1.75	1.50	1.75	1.51
1.50	1.75	1.35	1.75	1.49
1.40	1.75	1.45	1.70	1.48
1.40	1.70	1.35	1.70	1.46
1.35	1.65	1.20	1.65	1.39
1.40	1.75	1.35	1.70	1.46
1.40	1.70	1.30	1.65	1.43
1.40	1.70	1.30	1.70	1.45
1.40	1.70	1.30	1.70	1.46
1.40	1.75	1.45	1.70	1.50
1.40	1.70	1.40	1.70	1.47
1.45	1.75	1.35	1.75	1.48
1.50	1.75	1.40	1.75	1.50
1.45	1.70	1.45	1.75	1.50
1.50	1.70	1.35	1.75	1.50
1.40	1.75	1.40	1.70	1.48
1.40	1.70	1.40	1.65	1.45
1.35	1.70	1.35	1.65	1.43
1222	1.70	1.20	1.70	1.42
	1.40 1.40 1.45 1.50 1.45 1.50 1.40 1.40	1.401.701.401.751.401.701.451.751.501.751.451.701.501.701.401.751.401.701.351.70		1.401.701.301.701.401.751.451.701.401.701.401.701.451.751.351.751.501.751.401.751.451.701.451.751.501.701.351.751.401.751.401.701.401.751.401.651.351.701.351.65

G	BENCHMARK
C	ENVIRONMENTAL ENGINEERING & SCIENCE, PLLC

Monthly Operation & Maintenance Log Active Sub-Slab Depressurization System

Project Name:	Proje	ect No .:		
Project Location:	Clier	nt:	1-27	-2021
Preparer's Name: Dale A B	Darle Date	/Time:	9:20	AM
Notes:				
+			1	
Monthly Operating Status:				
montally operating status.	/			
System(s) currently running?	es 🗆	no		
Has the system been off-line in the past r			Bino	
If yes, please list the dates and brief desc				it etc.):
Flow motor for	over flow		D	eds
to be replaced -	Cleaned	1 1 0	y and	aus
Meter red Same as	last mon	11 1	1	meter to
What is the current Vacuum reading?	1.42			
Visual Inspection:				
ny piping disconnected?	🗌 yes	12 19		
ny cracks visible in piping?	🗆 yes	Eng		
ny new cracks visible in slab floor?	🗆 yes	19 ng		
lagnehelic guage reading 0?	🗋 yes	19 no		
yes to any question above, please provide	more information belo	DW.		
				 Standalastica de anticipation de la constante de

Sub-Slab Depressurization Certification Inspection

Monthly Operation & Maintenance Log Active Sub-Slab Depressurization System

Change in Occupancy / Use of Space:

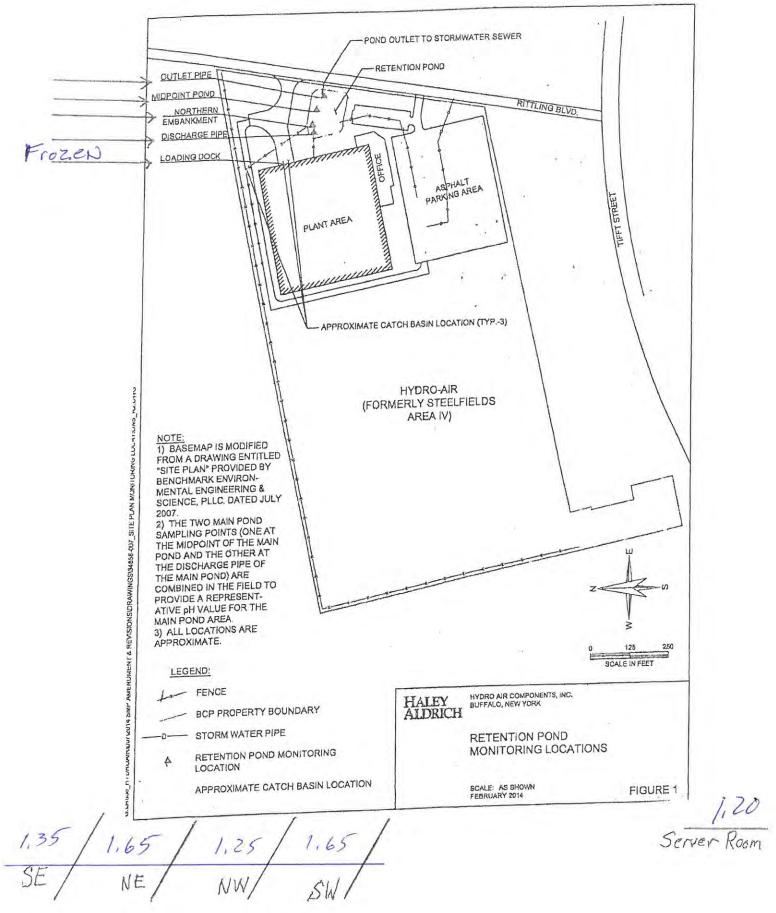
Please indicate general use of floor space? Has this general use changed in the past month? If yes, please explain:

Manufacture 🗌 yes

System Modifications:

Have any modifications been made to the Sub-Slab Depressurization System? Uses is no If so, please list with date:

Loading Dock Discharge Monitoring Form Hydro-Air Components, Inc. BCP Site #C915204, Buffalo, NY


In accordance with

ph and temperature of a representative water from the 4 locations indicated on Figure 1.
 weather conditions (general- wet/ dry, avg temp) since last measurement

estimated volume of water pumped from loading dock (based upon pump run time data)
 notes on condition of pond (visual)

Staff Member	Date of Measure-ment		Me	asurem	ent Loca	tion		Pump	Est.	Visual	Comments
	The I	Discha	rge Pipe	1000	thern syment	(Con	n Pond nbined nples)	Run Time*	Quantity o Water **	Pond (color, vegetation,	(e.g. weather conditions, etc
		ph	Temp (°F)	ph	Temp (°F)	ph	Temp (°F)			etc.)	
Dale Barto	3/29/19 12:00 AM	8.10	45	7.50	44	6.50	46		9,895	clear	sunny
Dale A Barto	4/29/2019 9:30am	7.90	46	7.80	44	6.80	45		61,125	clear	cloudy
Dale A Barto	5/30/2019 9:30am	7.95	48	7.75	46	6.60	47		30,036	clear	sunny
Dale A Barto	6/28/2019 9:30am	7.80	54	7.60	53	7.10	53		61,125	clear	sunny
Dale A Barto	7/29/2019 9:00am	7.75	72	7.50	72	7.00	73		30,036	clear	sunny
Dale A Barto	8/29/2019 9:30am	7.80	63	7.20	64	7.10	63		61,125	clear	sunny
Dale A Barto	9/30/2019 9:00am	7.70	60	7.30	61	7.00	61		26,560	clear	cloudy
Dale A Barto	10/29/2019 9:00am	7.75	48	7.20	46	7.15	47		64,646	clear	sunny
Dale A Barto	11/27/19 12:00 AM								26,570	Frozen	clear
Dale A Barto	12/31/2019 11:00am								64,653	Frozen	Cloudy
Dale A Barto	1/30/20 12:00 AM								26,598	Frozen	cloudy
Dale A Barto	2/28/2020 9:00am									Frozen	cloudy
Dale A Barto	3/25/2020 9:00am								64,706	Frozen	cloudy
Dale A Barto	4/30/20 12:00 AM	7.80	46	7.50	44	6.60	44		53,295	clear	raining
ale A Barto	5/28/2020 9:30AM	7.80	51	7.60	53	7.30	49		102,139	clear	sunny
Dale A Barto	6/29/2020 9:00am	7.80	54	7.20	53	7.60	51		53,259	clear	sunny
ale A Barto	7/27/2020 9:00am	7.50,	69	6.50	67	6.50	68		102,175	clear	sunny
ale A Barto	8/26/20 12:00 AM	7.90	72	6.70	74	7.50	72		53,259	cler	sunny
ale A Barto	9/29/20 12:00 AM	7.70	64	7.10	65	7.20	64		102,175	clear	cloudy
ale A Barto	10/28/2020 9:30AM	10.50	54	6.00	56	6.00	57		53,259	clear	cloudy
ale A Barto	11/30/2020 9:00am									Frozen	Cloudy
ale A Barto	12/30/2020 9:00am								- 6	Frozen	cloudy
ale A Barto	1/27/2021 9:00am								6.8	Frozen	Cloudy

2/26/21

Loading Dock Discharge Monitoring Form Hydro-Air Components, Inc. BCP Site #C915204, Buffalo, NY

In accordance with

1. ph and temperature of a representative water from the 4 locations indicated on Figure 1.

2. weather conditions (general- wet/ dry, avg temp) since last measurement

3. estimated volume of water pumped from loading dock (based upon pump run time data)

4. notes on condition of pond (visual)

Staff Member	Date of Measure-ment	.).	Me	asurem	ent Loca	tion		Pump	Est.	Visual	Comments
		Discha	rge Pipe		thern lyment	(Con	i Pond ibined iples)	Run Time*	Quantity of Water **	Pond (color, vegetation,	(e.g. weather conditions, etc
		ph	Temp (°F)	ph	Temp (°F)	ph	Temp (°F)			etc.)	
Dale Barto	3/29/19 12:00 AM	8.10	45	7.50	44	6.50	46		9,895	clear	sunny
Dale A Barto	4/29/2019 9:30am	7.90	46	7.80	44	6.80	45		61,125	clear	cloudy
Dale A Barto	5/30/2019 9:30am	7.95	48	7.75	46	6.60	47		30,036	clear	sunny
Dale A Barto	6/28/2019 9:30am	7.80	54	7.60	53	7.10	53		61,125	clear	sunny
Dale A Barto	7/29/2019 9:00am	7.75	72	7.50	72	7.00	73		30,036	clear	sunny
Dale A Barto	8/29/2019 9:30am	7.80	63	7.20	64	7.10	63		61,125	clear	sunny
Dale A Barto	9/30/2019 9:00am	7.70	60	7.30	61	7.00	61		26,560	clear	cloudy
Dale A Barto	10/29/2019 9:00am	7.75	48	7.20	46	7.15	47		64,646	clear	sunny
Dale A Barto	11/27/19 12:00 AM								26,570	Frozen	clear
Dale A Barto	12/31/2019 11:00am								64,653	Frozen	Cloudy
Dale A Barto	1/30/20 12:00 AM								26,598	Frozen	cloudy
ale A Barto	2/28/2020 9:00am									Frozen	cloudy
ale A Barto	3/25/2020 9:00am								64,706	Frozen	cloudy
ale A Barto	4/30/20 12:00 AM	7.80	46	7.50	44	6.60	44		53,295	clear	raining
ale A Barto	5/28/2020 9:30AM	7.80	51	7.60	53	7.30	49		102,139	clear	sunny
ale A Barto	6/29/2020 9:00am	7.80	54	7.20	53	7.60	51		53,259	clear	sunny
ale A Barto	7/27/2020 9:00am	7.50,	69	6.50	67	6.50	68		102,175	clear	sunny
ale A Barto	8/26/20 12:00 AM	7.90	72	6.70	74	7.50	72		53,259	cler	sunny
ale A Barto	9/29/20 12:00 AM	7.70	64	7.10	65	7.20	64		102,175	clear	cloudy
ale A Barto	10/28/2020 9:30AM	10.50	54	6.00	56	6.00	57		53,259	clear	cloudy
ale A Barto	11/30/2020 9:00am									Frozen	Cloudy
ale A Barto	12/30/2020 9:00am									Frozen	cloudy
ale A Barto	1/27/2021 9:00am								1	Frozen	Cloudy
ale A Barto	2/26/2021 9:00am								102,198	Frozen	cloudy

2

45 1.70 1.25 1.70 1.41 46 1.65 1.35 1.65 1.41 47 1.75 1.35 1.70 1.48 46 1.75 1.35 1.70 1.48 47 1.75 1.35 1.70 1.48 48 1.75 1.35 1.70 1.49 49 1.75 1.35 1.75 1.49 40 1.75 1.35 1.70 1.48 40 1.76 1.35 1.70 1.48 40 1.70 1.35 1.70 1.46 40 1.70 1.30 1.70 1.46 40 1.70 1.30 1.70 1.46 40 1.70 1.30 1.70 1.46 41 1.70 1.30 1.70 1.46 41 1.70 1.30 1.70 1.46 41 1.70 1.40 1.47 1.48	#1 Server Room
1.251.651.351.701.351.701.351.701.351.751.401.751.751.751.451.751.451.761.351.701.361.761.301.701.301.701.301.701.301.701.301.701.301.701.301.701.301.701.301.701.301.701.351.701.401.701.351.701.401.701.351.701.401.701.351.701.401.701.401.751.401.751.201.751.201.751.201.761.201.761.201.701.251.651.261.701.251.65	1.10 1.45
1.35 1.70 1.35 1.40 1.35 1.40 1.35 1.75 1.75 1.75 1.75 1.75 1.35 1.75 1.35 1.70 1.35 1.70 1.35 1.70 1.30 1.70 1.30 1.70 1.30 1.70 1.30 1.70 1.30 1.70 1.30 1.70 1.31 1.70 1.32 1.70 1.40 1.70 1.40 1.70 1.40 1.70 1.40 1.70 1.40 1.70 1.40 1.70 1.20 1.70 1.20 1.70 1.20 1.70 1.20 1.75 1.20 1.70 1.20 1.75 1.20 1.75 1.20 1.70	1.10 1.40
1.35 1.70 1.35 1.40 1.75 1.75 1.75 1.75 1.75 1.75 1.35 1.70 1.35 1.70 1.35 1.70 1.36 1.70 1.30 1.70 1.30 1.70 1.30 1.70 1.30 1.70 1.30 1.70 1.30 1.70 1.40 1.70 1.40 1.70 1.40 1.70 1.40 1.70 1.40 1.75 1.40 1.75 1.40 1.75 1.40 1.75 1.40 1.70 1.20 1.75 1.20 1.75 1.20 1.75 1.20 1.75 1.20 1.75 1.20 1.75 1.20 1.75 1.20 1.75 1.20 1.75 1.20 1.75 1.20 1.76 1.20 1.65 1.20 1.70 1.20 1.70 1.20 1.70 1.20 1.70 1.20 1.70 1.20 1.70 1.20 1.70 1.20 1.70 1.20 1.70 1.20 1.70 1.20 1.70 1.20 1.70 1.20 1.70 1.20 1.70 1.20 1.70	1.15 1.45
1.35 1.40 1.75 1.75 1.75 1.75 1.75 1.75 1.35 1.75 1.35 1.70 1.35 1.70 1.30 1.65 1.30 1.65 1.30 1.70 1.30 1.70 1.30 1.70 1.30 1.70 1.30 1.70 1.30 1.70 1.45 1.70 1.46 1.70 1.45 1.70 1.40 1.75 1.40 1.75 1.40 1.75 1.40 1.75 1.20 1.75 1.20 1.75 1.20 1.75 1.20 1.75 1.20 1.75 1.20 1.65 1.20 1.65 1.20 1.65 1.20 1.65 1.20 1.65 1.65 1.75 <td>1.10 1.45</td>	1.10 1.45
1.40 1.75 1.75 1.75 1.75 1.75 1.35 1.75 1.35 1.70 1.45 1.70 1.30 1.65 1.30 1.70 1.30 1.70 1.30 1.70 1.30 1.70 1.30 1.70 1.45 1.70 1.46 1.70 1.40 1.70 1.45 1.70 1.40 1.70 1.40 1.75 1.40 1.75 1.20 1.75 1.20 1.75 1.20 1.75 1.20 1.75 1.20 1.75 1.20 1.75 1.20 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.20 1.75 1.20 1.75 1.20 1.75 1.20 1.65 1.20 1.65 1.25 1.65	
1.75 1.75 1.50 1.75 1.35 1.75 1.45 1.70 1.35 1.70 1.36 1.70 1.30 1.65 1.30 1.70 1.30 1.70 1.30 1.70 1.45 1.70 1.35 1.70 1.40 1.70 1.40 1.70 1.40 1.70 1.40 1.70 1.40 1.70 1.40 1.70 1.35 1.70 1.40 1.75 1.40 1.75 1.75 1.75 1.75 1.75 1.70 1.70 1.75 1.70 1.75 1.70 1.75 1.70 1.75 1.70 1.20 1.70 1.25 1.65 1.26 1.70 1.25 1.65 1.65 1.75 1.75 1.75 1.75 1.70 1.75 1.75 1.76 1.76 1.76 1.76 1.76 1.75 1.75 1.75 1.75 1.75 1.76 1.75 1.75 1.76 1.76	1.15 1.40
1.75 1.50 1.75 1.75 1.35 1.75 1.75 1.35 1.70 1.70 1.35 1.70 1.70 1.35 1.70 1.75 1.35 1.70 1.70 1.30 1.65 1.70 1.30 1.70 1.70 1.30 1.70 1.70 1.30 1.70 1.70 1.30 1.70 1.70 1.30 1.70 1.70 1.40 1.70 1.70 1.40 1.70 1.70 1.40 1.75 1.70 1.40 1.75 1.70 1.35 1.70 1.70 1.35 1.70 1.70 1.35 1.75 1.70 1.35 1.70 1.70 1.35 1.70 1.70 1.35 1.70 1.70 1.35 1.70 1.70 1.20 1.70 1.70 1.20 1.70 1.70 1.20 1.70 1.70 1.25 1.65	1.10 1.45
1.75 1.35 1.75 1.76 1.45 1.70 1.70 1.35 1.70 1.70 1.35 1.70 1.70 1.35 1.70 1.70 1.30 1.70 1.70 1.30 1.70 1.70 1.30 1.70 1.70 1.30 1.70 1.70 1.30 1.70 1.70 1.30 1.70 1.70 1.30 1.70 1.70 1.40 1.70 1.70 1.40 1.75 1.70 1.40 1.75 1.70 1.35 1.75 1.70 1.35 1.75 1.70 1.35 1.75 1.70 1.35 1.75 1.70 1.35 1.75 1.70 1.35 1.75 1.70 1.35 1.75 1.70 1.35 1.75 1.70 1.35 1.75 1.70 1.35 1.70 1.70 1.20 1.70 1.70 1.25 1.65 1.65 1.25 1.65	1.10 1.45
1.75 1.45 1.70 1.70 1.35 1.70 1.65 1.20 1.65 1.70 1.35 1.70 1.70 1.30 1.70 1.70 1.30 1.70 1.70 1.30 1.70 1.70 1.30 1.70 1.75 1.40 1.70 1.75 1.40 1.70 1.70 1.40 1.70 1.75 1.40 1.70 1.70 1.40 1.70 1.70 1.40 1.75 1.70 1.35 1.75 1.70 1.35 1.75 1.70 1.35 1.75 1.70 1.35 1.75 1.70 1.35 1.75 1.70 1.35 1.75 1.70 1.20 1.70 1.70 1.20 1.70 1.70 1.20 1.70 1.70 1.20 1.65 1.70 1.20 1.70 1.65 1.65 1.65 1.65 1.65 1.65 1.65 1.70 1.65 1.70 1.65 1.70 1.65 1.70 1.65 1.70 1.65 1.70 1.65 1.65 1.65 1.65 1.65 1.65 1.70 1.65 1.65 1.65 1.65 1.65 1.65 1.65 1.65 1.6	1.10 1.50
1.70 1.35 1.70 1.65 1.20 1.65 1.75 1.35 1.70 1.70 1.30 1.65 1.70 1.30 1.70 1.70 1.30 1.70 1.70 1.30 1.70 1.70 1.30 1.70 1.70 1.40 1.70 1.75 1.40 1.70 1.75 1.40 1.70 1.70 1.40 1.75 1.70 1.40 1.75 1.70 1.40 1.75 1.70 1.40 1.75 1.70 1.40 1.75 1.70 1.40 1.75 1.70 1.40 1.75 1.70 1.40 1.75 1.70 1.40 1.75 1.70 1.40 1.75 1.70 1.20 1.70 1.70 1.20 1.70 1.70 1.20 1.70 1.65 1.25 1.65	1.10 1.40
1.65 1.20 1.65 1.75 1.35 1.70 1.70 1.30 1.70 1.70 1.30 1.70 1.70 1.30 1.70 1.70 1.30 1.70 1.75 1.46 1.70 1.75 1.40 1.70 1.75 1.40 1.70 1.75 1.40 1.75 1.75 1.40 1.75 1.70 1.45 1.75 1.70 1.46 1.75 1.70 1.40 1.75 1.70 1.40 1.75 1.70 1.40 1.75 1.70 1.40 1.75 1.70 1.40 1.75 1.70 1.40 1.75 1.70 1.40 1.75 1.70 1.40 1.75 1.70 1.70 1.70 1.70 1.20 1.70 1.65 1.70 1.70 1.65 1.70 1.70 1.65 1.70 1.65 1.70 1.65 1.70 1.65 1.70 1.65 1.70	1.15 1.40
1.75 1.35 1.70 1.70 1.30 1.65 1.70 1.30 1.70 1.70 1.30 1.70 1.70 1.30 1.70 1.75 1.45 1.70 1.70 1.40 1.70 1.70 1.40 1.70 1.75 1.40 1.70 1.75 1.40 1.75 1.70 1.45 1.75 1.70 1.45 1.75 1.70 1.40 1.75 1.70 1.35 1.75 1.70 1.35 1.75 1.70 1.35 1.75 1.70 1.35 1.76 1.70 1.35 1.65 1.70 1.20 1.65 1.65 1.70 1.65 1.65 1.70 1.76 1.65 1.70 1.65 1.65 1.70 1.65 1.65 1.70 1.70 1.65 1.70 1.70 1.65 1.70	1.10 1.35
1.701.301.651.701.301.701.701.301.701.751.451.701.751.401.701.751.401.751.751.401.751.701.451.751.701.451.751.701.451.751.701.351.751.701.351.751.701.351.751.701.351.751.701.351.701.701.351.701.701.351.701.701.351.701.701.351.651.701.201.651.651.201.701.651.201.65	1.10 1.40
1.30 1.70 1.30 1.70 1.45 1.70 1.46 1.70 1.40 1.75 1.45 1.75 1.45 1.75 1.45 1.75 1.45 1.75 1.40 1.75 1.40 1.75 1.40 1.75 1.35 1.75 1.40 1.76 1.40 1.76 1.40 1.65 1.20 1.65 1.20 1.65 1.25 1.65	
1.30 1.70 1.45 1.70 1.40 1.70 1.35 1.75 1.40 1.75 1.45 1.75 1.40 1.75 1.40 1.75 1.40 1.75 1.40 1.75 1.40 1.75 1.40 1.75 1.40 1.76 1.40 1.70 1.40 1.65 1.20 1.65 1.20 1.65	
1.45 1.70 1.40 1.70 1.35 1.75 1.40 1.75 1.45 1.75 1.45 1.75 1.40 1.75 1.35 1.75 1.40 1.75 1.40 1.75 1.40 1.76 1.40 1.70 1.40 1.65 1.20 1.65 1.20 1.70 1.25 1.65	
1.70 1.40 1.70 1.75 1.35 1.75 1.75 1.40 1.75 1.70 1.45 1.75 1.70 1.35 1.75 1.70 1.40 1.70 1.70 1.40 1.70 1.70 1.40 1.70 1.70 1.40 1.70 1.70 1.35 1.65 1.70 1.20 1.70 1.65 1.20 1.70	1.20 1.40
1.75 1.35 1.75 1.75 1.40 1.75 1.70 1.45 1.75 1.70 1.35 1.75 1.70 1.35 1.75 1.70 1.35 1.75 1.70 1.35 1.70 1.70 1.35 1.70 1.70 1.40 1.70 1.70 1.40 1.65 1.70 1.35 1.65 1.70 1.20 1.70 1.65 1.65 1.65 1.65 1.65 1.65	
1.75 1.40 1.75 1.70 1.45 1.75 1.70 1.35 1.75 1.70 1.40 1.70 1.70 1.40 1.65 1.70 1.35 1.65 1.70 1.20 1.70 1.70 1.20 1.70 1.65 1.20 1.70	
1.70 1.45 1.75 1.70 1.35 1.75 1.70 1.40 1.70 1.70 1.40 1.65 1.70 1.35 1.65 1.70 1.20 1.70 1.65 1.20 1.70	
1.70 1.35 1.75 1.75 1.40 1.70 1.70 1.40 1.65 1.70 1.35 1.65 1.70 1.35 1.65 1.70 1.20 1.70 1.70 1.20 1.65 1.70 1.20 1.65	1.15 1.45
1.75 1.40 1.70 1.70 1.40 1.65 1.70 1.35 1.65 1.70 1.35 1.65 1.70 1.20 1.70 1.65 1.20 1.65 1.70 1.20 1.65	
1.40 1.65 1.35 1.65 1.20 1.70 1.25 1.65	1.15 1.40
1.70 1.35 1.65 1.70 1.20 1.70 1.65 1.25 1.65	1.10 1.40
1.20 1.70 1 1.25 1.65 1	1.10 1.35
1.65 1.25 1.65 1	1,15 1.35
	1.20 1.35

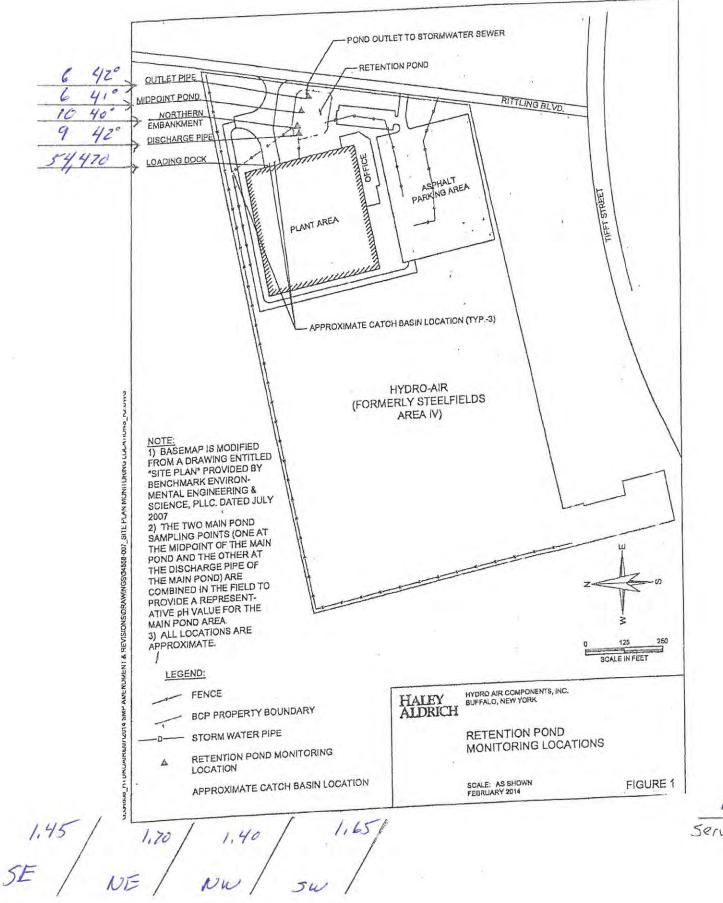
G	BENCHMARK
G	ENVIRONMENTAL ENGINEERING & SCIENCE, PLLC

Monthly Operation & Maintenance Log Active Sub-Slab Depressurization System

.

Project Name:		Project No.:				
Project Location:	Client:					
Preparer's Name: Dale A Ba	No	Date/Time:	2-26-21	- 9:00		
Notos:						
Monthly Operating Status:						
System(s) currently running?	les	🗆 no				
Has the system been off-line in the past	month?	yes	Dino			
If yes, please list the dates and brief des	cription why (i.e	maintenance	part replacem	ent. etc.):		
What is the current Vacuum reading?	1.42		en ander			
Visual Inspection:						
ny piping disconnected?	yes	· ·	no	4		
ny cracks visible in piping?	🗆 yes	E E	no			
ny new cracks visible in slab floor?	🗆 yes		no			
agnehelic guage reading 0?	🗌 yes	I	no			
yes to any question above, please provide	more informati	on below.				
we will be instaling	a Ne	w flo	" Met	er		
Emetime in March -	J u	sill ken	ep you	poster		
14	NAME AND AND ADDRESS OF A					
	angana ang sa					
Sub-Slab Depressurization Certification Inspection	Page 1 of 2					

Page 1 of 2


....

Monthly Operation & Maintenance Log Active Sub-Slab Depressurization System

Change in Occupancy / Use of Space:				<u>,</u>	
Please indicate general use of floor space?	Man	Jufact	Uring Dro		
Has this general use changed in the past month?	7	□ yes	Tho		
If yes, please explain:					
	4				
System Modifications:					
Have any modifications been made to the Sub-Sla	ab Depres	ssurizatior	System?	🗌 yes	I no
If so, please list with date:					

Page 2 of 2

3/31/21

1.15 Server Roo

C	BENCHMARK
C	ENVIRONMENTAL ENGINEERING & SCIENCE, PLLC

Monthly Operation & Maintenance Log Active Sub-Slab Depressurization System

Design (1)		oject No.:		
Project Location:		ent:		
Preparer's Name: Dale A B	arto Da	te/Time:	3/31/21	1 10:30 A
Notes:				
			$ \psi $	
Monthly Operating Status:		-1.		
System(s) currently running?	05	7		
Has the system been off-line in the past r		no no	🗆 no	
If yes, please list the dates and brief desc	cription why (i.e. ma	Intononac		
				c.):
01 1 1 1	4 1	th a		ence
flow control with	a didaital	read	no t	
	a chegitai	1 - uc	out,	
	a congran	Teuc	<i>bcl</i> ,	
		1000		
What is the current Vacuum reading?	1,47			
What is the current Vacuum reading? Visual Inspection: Any piping disconnected?				
What is the current Vacuum reading? Visual Inspection: Any piping disconnected? Any cracks visible in piping?	J. 1,47		0	
What is the current Vacuum reading? Visual Inspection: Any piping disconnected?	<u>1,47</u>		0 0	
What is the current Vacuum reading? Visual Inspection: Any piping disconnected? Any cracks visible in piping?	yes yes		0 0 0	
What is the current Vacuum reading? Visual Inspection: Any piping disconnected? Any cracks visible in piping? Any new cracks visible in slab floor? Magnehelic guage reading 0?	yes yes yes yes yes		0 0 0	
What is the current Vacuum reading? Visual Inspection: Any piping disconnected? Any cracks visible in piping? Any new cracks visible in slab floor?	yes yes yes yes yes		0 0 0	
What is the current Vacuum reading? Visual Inspection: Any piping disconnected? Any cracks visible in piping? Any new cracks visible in slab floor? Magnehelic guage reading 0?	yes yes yes yes yes		0 0 0	
What is the current Vacuum reading? Visual Inspection: Any piping disconnected? Any cracks visible in piping? Any new cracks visible in slab floor? Magnehelic guage reading 0?	yes yes yes yes yes		0 0 0	
What is the current Vacuum reading? Visual Inspection: Any piping disconnected? Any cracks visible in piping? Any new cracks visible in slab floor? Magnehelic guage reading 0?	yes yes yes yes yes		0 0 0	
What is the current Vacuum reading? Visual Inspection: Any piping disconnected? Any cracks visible in piping? Any new cracks visible in slab floor? Magnehelic guage reading 0?	yes yes yes yes yes		0 0 0	
What is the current Vacuum reading? Visual Inspection: Any piping disconnected? Any cracks visible in piping? Any new cracks visible in slab floor? Magnehelic guage reading 0?	yes yes yes yes yes		0 0 0	

Sub-Slab Depressurization Certification Inspection

Monthly Operation & Maintenance Log Active Sub-Slab Depressurization System

Change in Occupancy / Use of Space:				
Please indicate general use of floor space? Has this general use changed in the past month?		es B	wikey The	
If yes, please explain:				
				- ()
System Modifications: Have any modifications been made to the Sub-Slab If so, please list with date:	Depressuri	zation Syst	em? 🗌 yes	s 🗐 no
		50		

Page 2 of 2

Date	#1 Server Room	#2 S.E. Corner	#3 N.E. Corner	#4 N.W. Corner	#5 S.W. Corner	Average
12/28/2018	1.10	1.45	1.70	1.25	1.70	1.44
1/31/2018	1.10	1.40	1.65	1.25	1.65	1.41
2/28/2019	1.15	1.45	1.75	1.35	1.70	1.48
3/29/2019	1.10	1.45	1.70	1.35	1.70	1.46
4/29/2019	1.20	1.40	1.70	1.35	1.40	1.41
5/30/2019	1.15	1.40	1.75	1.40	1.75	1.49
6/28/2019	1.10	1.45	1.75	1.75	1.75	1.56
7/29/2019	1.10	1.45	1.75	1.50	1.75	1.51
8/29/2019	1.10	1.50	1.75	1.35	1.75	1.49
9/30/2019	1.10	1.40	1.75	1.45	1.70	1.48
10/29/2019	1.15	1.40	1.70	1.35	1.70	1.46
11/27/2019	1.10	1.35	1.65	1.20	1.65	1.39
12/31/2019	1.10	1.40	1.75	1.35	1.70	1.46
1/30/2020	1.10	1.40	1.70	1.30	1.65	1.43
2/28/2020	1.15	1.40	1.70	1.30	1.70	1.45
3/25/2020	1.20	1.40	1.70	1.30	1.70	1.46
4/30/2020	1.20	1.40	1.75	1.45	1.70	1.50
5/28/2020	1.15	1.40	1.70	1.40	1.70	1.47
6/29/2020	1.10	1.45	1.75	1.35	1.75	1.48
7/27/2020	1.10	1.50	1.75	1.40	1.75	1.50
8/26/2020	1.15	1.45	1.70	1.45	1.75	1.50
9/29/2020	1.20	1.50	1.70	1.35	1.75	1.50
10/27/2020	1.15	1.40	1.75	1.40	1.70	1.48
11/30/2020	1.10	1.40	1.70	1.40	1.65	1.45
12/29/2020	1.10	1.35	1.70	1.35	1.65	1.43
1/27/2021	1,15	1.35	1.70	1.20	1.70	1.42
2/26/2021	1.20	1.35	1.65	1.25	1.65	1.42
3/31/2021	1.15	1.45	1.70	1.40	1.65	1.47

Loading Dock Discharge Monitoring Form Hydro-Air Components, Inc. BCP Site #C915204, Buffalo, NY

In accordance with

1. ph and temperature of a representative water from the 4 locations indicated on Figure 1.

2. weather conditions (general- wet/ dry, avg temp) since last measurement

3. estimated volume of water pumped from loading dock (based upon pump run time data)

4. notes on condition of pond (visual)

Staff Member	Date of Measure-ment		M	easurem	ent Loca	1		Pump	Est.	Visual	Comments
		Discha	rge Pipe	10000	thern ayment	(Con	n Pond nbined nples)	Run Time*	Quantity of Water **	f Condition of Pond (color, vegetation,	(e.g. weather conditions, etc
		ph	Temp (°F)	ph	Temp (°F)	ph	Temp (°F)			etc.)	
Dale Barto	3/29/19 12:00 AM	8.10	45	7.50	44	6.50	46		9,895	clear	sunny
Dale A Barto	4/29/2019 9:30am	7.90	46	7.80	44	6.80	45		61,125	clear	cloudy
Dale A Barto	5/30/2019 9:30am	7.95	48	7.75	46	6.60	47		30,036	clear	sunny
Dale A Barto	6/28/2019 9:30am	7.80	54	7.60	53	7.10	53		61,125	clear	sunny
Dale A Barto	7/29/2019 9:00am	7.75	72	7.50	72	7.00	73		30,036	clear	sunny
Dale A Barto	8/29/2019 9:30am	7.80	63	7.20	64	7.10	63		61,125	clear	sunny
Dale A Barto	9/30/2019 9:00am	7.70	60	7.30	61	7.00	61		26,560	clear	cloudy
Dale A Barto	10/29/2019 9:00am	7.75	48	7.20	46	7.15	47		64,646	clear	sunny
Dale A Barto	11/27/19 12:00 AM								26,570	Frozen	clear
Dale A Barto	12/31/2019 11:00am								64,653	Frozen	Cloudy
Dale A Barto	1/30/20 12:00 AM								26,598	Frozen	cloudy
Dale A Barto	2/28/2020 9:00am									Frozen	cloudy
Dale A Barto	3/25/2020 9:00am								64,706	Frozen	cloudy
Dale A Barto	4/30/20 12:00 AM	7.80	46	7.50	44	6.60	44		53,295	clear	raining
Dale A Barto	5/28/2020 9:30AM	7.80	51	7.60	53	7.30	49		102,139	clear	sunny
Dale A Barto	6/29/2020 9:00am	7.80	54	7.20	53	7,60	51		53,259	clear	sunny
Dale A Barto	7/27/2020 9:00am	7.50,	69	6.50	67	6.50	68		102,175	clear	sunny
ale A Barto	8/26/20 12:00 AM	7.90	72	6.70	74	7.50	72		53,259	cler	sunny
ale A Barto	9/29/20 12:00 AM	7.70	64	7.10	65	7.20	64		102,175	clear	cloudy
ale A Barto	10/28/2020 9:30AM	10.50	54	6.00	56	6.00	57		53,259	clear	cloudy
ale A Barto	11/30/2020 9:00am									Frozen	Cloudy
ale A Barto	12/30/2020 9:00am									Frozen	cloudy
ale A Barto	1/27/2021 9:00am								4	Frozen	Cloudy
ale A Barto	2/26/2021 9:00am								102,198 F	Frozen	cloudy
ale A Barto	3/31/21 10:30 AM	9.00	42	10.00	41	6.00	42		54,420 0	loudy	Rainning

APPENDIX G

ORC Well Inspection Forms

	Zehnour RiHlin	A	
Project Name:	HydroHir	Project No.:	
Project Location:	2011100 001	Client:	K
Preparer's Name	. / 04 3	Quran Date/Time: 1-35-9	0 7:15
	A4 - ORC - 1	A4-ORC-2	A4 - ORC - 3
sampling dates	<u>i 1-30-20</u>	1-30-20 10-50 1-	30.20 1100
	11:30	1:4S	3: 50
Field groundwa	ater quality measurements		
C-	10.13	,	,
Water Level	WARE-	<i>D</i> .1	/3.3
Bottom Depth	14,4'	14.62	14.3'
рH	3.45	3.51	5,36
<u>Temperature</u>	7.58	8.85	6.93
DO	2 22	1.03	2,40
<u>ORP</u>	180	239	70
<u>Alkalinity</u>			
Refer to Figure	e 1 for well locations		
Well integrity		17	
Cement seal	🔲 good 🗌 po	oor If poor please note well.	
Pro - casing co	ondition 🛛 good 🗌 p	oor If poor please note any damag	e.
Lock condition	1 🕅 good 🗌 pa		
Working J - plu		oor If poor please note well. o If no please note well.	
fronting o pr			
ORC Sock's			
	ks been replaced	🗙 yes 🗌 no	
2		2-20	
	ezures replacement		
	ocorres information	ac, a modilis or un	wan
Are socks fully	submerged in well screens.	🗶 yes 🗌 no	<u> </u>
If no explain w			
lf no explain w			
lf no explain w			
If no explain w			
	ells begin sampled and main	tained according to the site management	nt plan
	ells begin sampled and maint □ no	tained according to the site managemer	nt plan
Are all ORC w	no	tained according to the site managemen	nt plan
Are all ORC w	no	tained according to the site managemen	nt plan
Are all ORC w	no	tained according to the site managemen	nt plan
Are all ORC w	no	tained according to the site managemer	nt plan

Initial: Duc Date: 8/7/20	Are all ORC wells begin sampled and maintained according to the site management plan we no	ORC Sock's Have any Socks been replaced If replaced on what date and why. Are socks fully submerged in well screens. If no explain why.	Cement seal Pro - casing condition Lock condition Working J - plug Working Working J - plug	Water Level11.310.5Bottom Depth14.4 14.4 DH 3.61 14.4 Temperature 3.61 14.63 DQ 1.36 21.73 DQ 1.36 0.24 DQ 1.92 DQ 0.24 DQ 0.24 DQ 0.24 DQ 1.92 DQ 1.92 DQ 0.24 DQ 0.25 DQ 0.25 DQ 0.24 DQ 0.25 DQ 0.25 DQ 0.25 DQ 0.26 DQ <th>ORC WELL ANNUAL INSPECTION FORM Active ORC monitoring wells Project Name: Zennler RHUng - HuzuFr Project No:: Project Location: BuffQuo, NY Client: Preparer's Name: LOUYER MUMODS Date/Time: 8 - 6 - 30 A4 - ORC - 1 A4 - ORC - 2 A4 - ORC - 3 Sampling dates: 9 6 3 9 6 3 9 6 3 Field groundwater quality measurements</th>	ORC WELL ANNUAL INSPECTION FORM Active ORC monitoring wells Project Name: Zennler RHUng - HuzuFr Project No:: Project Location: BuffQuo, NY Client: Preparer's Name: LOUYER MUMODS Date/Time: 8 - 6 - 30 A4 - ORC - 1 A4 - ORC - 2 A4 - ORC - 3 Sampling dates: 9 6 3 9 6 3 9 6 3 Field groundwater quality measurements

APPENDIX H

Groundwater Sampling Field Monitoring Forms

	PROJECT LOCATION CLIENT CONTRACTOR	2	Buf Buf NW	faio,	Riffin Biffin	20	· · · · · · · · · · · · · · · · · · ·	-				Page of H&A FILE NO. PROJECT MGR. FIELD REP. SAMPLING DATE 8/72
	Sampling Data Well ID: Start time: Finish Time	A4-1		Depth To T	h: Fop Of Screen: Bottom Of Scre		-from-k .55	ft Depth	Depth To Wate		0 ft 10.01+0/14	Purging Device: Tubing Present In Well: Yes No Tubing Type: 3 8 00
nc =	Elapsed Time (24 hour)	Depth To Water From Casing (ft)	Pump Setting (ml/min) or (gal/min)	Purge Rate (ml/min) or	Cumulative Purge Vol. (liters) or	Temp- erature (°F) or	рН	Conduct- ivity (us/cm)	Dissolved Oxygen (mg/L)	Turbidity (NTU)	ORP/eH (mv)	Comments
11:56 12:02 VZ:08	6	5.0 6.4 7.1		x17	V 2	21, 31,39 2(,39	+/ 6,20 6,19	+/% +637 .743	+/%	< NTU 38.4 19.5	+/mv -98 -96	Lasing height; groun Veve Weder column: 6,55
12:25 12:25 12:35 12:35	39	2.0 2.9 9.7 1.0		.125	5	21,2.8 20,61 20,96 20,78	6.21 6.22 6.19	.921 .945 .899	.52 .45 .43	15.1 .6 0	-105 -100 -90 -74	2" Lell : . 17 mu Hiplyer Well whome : 1.1 get
12:56	60	10.2		.08	6 7	20,61	6.15	.895 .896	.50 .40	0	-66	Water clear w/ slight Bray appearance
		k V										Ackacimity- 550
												Slow recharge

.

	HALE	RICH			LOW	FLOW	//MNA	FIELD	SAMP	LING F	ORM	*	Page of
	PROJECT LOCATION CLIENT CONTRACTOR	2	-42.10 Buffo ennder Sw co	- pit	ling	J		-				H&A FILE NO. PROJECT MGR. FIELD REP. SAMPLING DATE	DMG B-6-20
2	Sampling Dat Well ID: Start time: Finish Time	A4-1	44-7R	Depth To	h: Fop Of Screen: Bottom Of Scre		.60	ft Depth			60 ft ft	Purging Device: Tubing Present In Well Tubing Type:	Der notatic Vires □ No 3/8"20
	Elapsed Time (24 hour)	Depth To Water From Casing (ft)	Pump Setting (ml/min) or (gal/min)	Purge Rate (ml/min) or	Cumulative Purge Vol. (liters) or	Temp- erature (°F).or	рН +/-	Conduct- ivity (us/cm) +/%	Dissolved Oxygen (mg/L) +/%	Turbidity (NTU) <nt∪< td=""><td>ORP/eH (mv) +/ mv</td><td>C</td><td>omments</td></nt∪<>	ORP/eH (mv) +/ mv	C	omments
2:22 2:12 2:12	0 7 80 7 9	3.6' 6.25 6.7 6.25		• 25 • 25 • 16	-03 M	15.5 15. 15.4	5.21 5.33 5.4	4.5 4.4 4.32	1.05 1.01 •96	69.4 27.1 0	38 17 -3	water col	umn: 10'
2:26 2:33 2:43	19 26 36	6.9 6.9 6.9		010 017 02	3.8 5 7	14.8 14.9 15.8	5.47 5.6 5.69	4.04 3.66 3.39	•48 • 43 • 43	000	0.2 - 36 - 49	J" RUC- Well VOIUM	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
£.													

ALE								SAMP			Р	age of
PROJECT LOCATION CLIENT	1	Buffor	0. N	Sanpl JY SHINO)		1				H&A FILE NO. PROJECT MGR.	46
CONTRACTOR			CONTO)		-					7-20
Sampling Dat				9		1	BTOC	R.				1
Well ID:			R Well Dept	n:	15	5.2'	ft Initial	Depth To Wate	er: <u>5.</u> 0) ft	Purging Device:	HOLAIL
Start time			2	op Of Screen			•	Of Pump Intal	e:	ft	Tubing Present In Well: Ves	□ No
Finish Tim	e: <u>9:5</u> 2	×	Depth To I	Bottom Of Scr	een:	1	ft Date	Well Installed:			Tubing Type: <u>318</u>	" OD
	Depth To	Pump	Purge	Cumulative	Temp-							
Elapsed	Water	Setting	Rate	Purge Vol.	erature		Conduct-	Dissolved	Turbidity	ORP/eH		
Time (24 hour)	From Casing (ft)	(ml/min) or (gal/min)	(ml/min) or	(liters) or	(°F) or (°C)	рН	ivity (us/cm)	Oxygen (mg/L)	(NTU)	(mv)	Comments	
		(84),,	Gail	Ibail	+1- %	+/	+/%	+/%	< NTU	+/mv		
<u>Q</u>	5.0'		0.0		10.51	6.71	11.70	0.00	2.11	- 60		19-Used
5	6.S' 7		0.2	2	19.5	5.72	4.25 4.45	2.27	3.4 2.5	- <u>58</u> -55	318" OD HER 1	HDPE
18	7.3		0.2	3	15.72	5:48	4.55	1.26	0	-49	HOSER WILDOWN	10.2
24	7.5		.17	में –	15.6	5.46	4.56	1.17	0	-48		
29	75		•2	5	15.4	5.47	4.59	1.23	0	-47	2" yell 3 .17	MuHipluer
36	7.6		- 28	7	15.4	3.55	4.57	1.93	0.7	-47		° J
44	7.6		013	_8	15.3	5.52	4.60	1.23	0.4	-49	Well volume: 1.	13 gallos
55	7.7		.18	10	15.07	5.53	4.63	13	0	-49		271
											coving height :	3.7'
				<u> </u>								
				- 24							(obc: near s)	OM
											(1) CUDY: (1007, 5), (1) CUT: (1007, 5),	<u>u</u> iu
											Alkolinty - 70	

PROJECT LOCATION CLIENT CONTRACT Sampling D Well ID: Start tin Finish Ti	DR	2 enni	AQUO, Ler R	Hing H	. U		5				H&A FILE NO.
Well ID: Start tin	A4-1		M AIL	dinia			-				FIELD REP.
	11	MW - 9 45 37	Depth To	h: Top Of Screen: Bottom Of Scre		0.5´	ft Depth	Depth To Wate Of Pump Intal Well Installed:			Purging Device: Tubing Present In Well: $\sqrt{2}$ Yes \Box No Tubing Type: $3/3^{\circ}$ O
Elapsed	Depth To Water	Pump Setting (ml/min) or	Purge Rate (ml/min) or	Cumulative Purge Vol.	Temp- erature (°F) or		Conduct- ivity	Dissolved Oxygen	Turbidity	ORP/eH	
Time (24 hour)	From Casing (ft)	(mi/min) or (gal/min)	(gal/min)	(liters) or	(°C)	рН +/-	(us/cm) +/%	(mg/L)	(NTU) <ntu< td=""><td>(mv)</td><td>Comments</td></ntu<>	(mv)	Comments
50	6.05									0.1	cosing height: 2.5'
10 10 25	9.15	Y	0000	-2~	23.23 21.19 21.15	6.12	3.18 3.47 3.74	1:09 0.83 659	11.9 203	-81 -88 -74	Water column: 7.95
35	9.1		0.1	4	13.36	5.86	4,18	∘58 ∘43	84 3.2	-72 -72	2" Hell 3 .17
43	901		<u></u>	ى (19.75	5.8	4.29		2.5	- 68	velloulume : 1.27 qu
											water clear, grayism
											From Vell
											·lots of sitt after 1 well wolume
											ipoused at 11:00 to clear tibe

ľ

١

PROJECT	H	yero F	air So	mina				<u>A</u>			H&A FILE NO.	Page c
LOCATION	-2	S OU	Flavo	· Nº			_				PROJECT MGR.	DMG
CLIENT	2	ehnle	r RH	HING			-				FIELD REP.	
CONTRACTO)	NWC	philocal	ng			-				SAMPLING DATE	8-6-20
Sampling Dat	a: A4			A.			-	राक्ते भ	proved			
Well (D:		11-10	Well Dept	h:	15	D. SS	ft Initial	Depth To Wat	er: <u>6.(</u>	ft ft	Purging Device: Tubing Present In Well:	per source ;
Start time		5	Depth To	Top Of Screen:			ft Depth	Of Pump Intal	ke:	ft	Tubing Present In Well:	Yes N
Finish Tim	e:		Depth To	Bottom Of Scre	een:		ft Date	Well installed:			Tubing Type:	3/8'00
	Depth To	Pump	Purge	Cumulative	Temp-							
Elapsed	Water	Setting	Rate	Purge Vol.	erature		Conduct-	Dissolved				
Time	From Casing	(ml/min) or	(ml/min) or	(liters) or	(°F) or	1	ivity	Oxygen	Turbidity	ORP/eH		
(24 hour)	(ft)	(gal/min)	(gal/min)	(gal)	(°C)	рН +/-	(us/cm) +/%	(mg/L) +/%	(NTU) <ntu< td=""><td>(mv) +/mv</td><td>Co</td><td>mments</td></ntu<>	(mv) +/mv	Co	mments
0	6.65										cosing hero	NJ: 3.5'
5	7.45		.2		24.5	6.27	2.42	.62	115	-72		
11	7.5		.15	1.9	14.43	6. Ole	2.86	.70	40.2	- 68	HAVER WU	mn : 89
19	7.5		022	i)	14.37	6.06	2.32	· 50	12.4	-73	2" PUC -	
<u> </u>	7.65		. 14	4	14.7	6.07	2.13	७ म।	16.7	-78		
35	7.65		٥١١	5	14.93	6.19	1.96	•53	12.9	- 80	yell volume	1.51 qui
				-							Very good	Kenn or De
												Dear Nosa
											Alkalinity	: 1030
					í							

-

LC CL	ROJECT DCATION LIENT DNTRACTOR	2	BUE 10 BUE 0 Ennier	10, OL	Jy '	2		-				Page 1 of H&A-FILE NO. PROJECT MGR. DMG FIELD REP. SAMPLING DATE $\Im - 6 - 20$
Sa	Well ID: Start time: Finish Time	" <u>A</u> 4-(<u>></u>)R(- () \$ 9: 26	Well Dept)	()	.ц'	ft Initial ft Depth		н: <mark>Ч.</mark>	42 ft	Purging Device: Por Hastic Ru Tubing Present In Well: Yes INO Tubing Type: <u>318100</u>
	Elapsed Time	Depth To Water From Casing	Pump Setting (ml/min) or	Purge Rate (ml/min) or	Cumulative Purge Vol. (liters) or	Temp- erature (°F) or		Conduct- ivity	Dissolved Oxygen	Turbidity	ORP/eH	
	(24 hour)	(ft)	(gal/min)	(gal/min)	(gal)	(1°C)	рН +/	(us/cm) +/%	(mg/L) +/%	(NTU) <ntu< td=""><td>(mv) +/mv</td><td>Comments</td></ntu<>	(mv) +/mv	Comments
	O Sm(n	4.42 5:4	0-1	s l	0.5	17.62	4.05	27.6	3.10	178	ଥାବ	cobing height: 2.15'
	7	5.1		5	A B	15.51	3.44	26.9	1.40	141	211	9.98' u der Wumn
	15	MR 8		010	2.5	16.7		25.2	1.05	132	210	X X VOUZ
	25	8.35		.12	3	17.74	3.49	24.5	.89	133	213	ueil oulume: totalla
	30	9.55		ollo	3.8	16.64	3.43	24:8	099	144	224	6.68 julions
3	34	10		.15	5	18.35		23.9	1.2	136	219	
s L'	45	10.6		015	7	13.17	3.46	24	.62	152	20	Slow recharge
3 5	$\mathbf{\hat{o}}$	10.7		\$ 615	1.8		3.44	23	-39	159	207	ofter I well wolume
6 5	58	11.2		055	35	19		23-7	-36	226	184	ugger at 10.6 bg
		11.3			10	20-54	3.61	22.4	1.36	235	ାଟ୍ୟ	
												Cock change on 8/6/
_												01 10:19 AM
												WL ~ 4.45'

	LOW FLOW/MNA FIELD SAMPLING FORM												
	PROJECT LUCYO AVE DOMINO											H&A FILE NO.	
	CLIENT Zennzer Ritting							-				PROJECT MGR.	
	CONTRACTOR		Alb		Hradi			-			SAMPLING DATE		
	Sampling Data:						010	K					
	Well ID: <u>A4-020-02</u> Well Depth: <u>14.62</u> f						.leZ	_ft Initial	ft Initial Depth To Water: 1.5' ft Purging Device:				
	Start time:) -17 Depth To Top Of Screen:							ft Depth	Of Pump Intal	ke:	ft	Tubing Present In Well: Yes 🛛 No	
~	Finish Time: 12:18 Depth To Bottom Of Screen:							ft Date	Well Installed:			Purging Device: Tubing Present In Well: Tubing Type: Tubing Type:	
>		Depth To	Pump	Purge	Cumulative	Temp-							
	Elapsed	Water	S <mark>e</mark> tting	Rate	Purge Vol.	erature		Conduct-	Dissolved				
	Time	From Casing	(ml/min) or	(ml/min) or	(liters) or	(°F) or		ivity	Oxygen	Turbidity	ORP/eH		
	(24 hour)	(ft)	(gal/min)	(gal/min)	(gal)	(°C)	рН +/	(us/cm) +/%	(mg/L) +/%	(NTU) <ntu< td=""><td>(mv) +/mv</td><td>Comments /</td></ntu<>	(mv) +/mv	Comments /	
11:17	OH S	1.5		_								Cosing hears: 25'	
11:23	Q	2.7		°08	0.5	20.45	3.19	29.6	·28	865	168	udder (Olump: 13.12'	
11-33	16	4.0		.15	2.5	21.8	3.24	26.2	.25	101	179		
	31	1161		016		22.21	326	25	•24	59.5	195	yell ours; 8.79 gallon	
11:57	40	12.2		.2		21.45		25.4	5.57	70.1	250		
12:05	48	8-7		.15	00 o	21.93	3.19	24.5	02)	48	301	SUW YERNOYOR	
12:18	01	10.5		0.1	9	21.93	3.17	27.2	3 9 41	204	281		
			·										
									· · · ·			JOCK MODE ON 87/20	
												10:13 AM	
												WL: 8.8'	
1													
							·						
	1					÷							

and the

Form 3010

	HALEY ALDRICH				LOW	FLOW	/MNA	FIELD SAMPLING FORM					Page of /
	PROJECT Hydo Air Sompling LOCATION BUHOLO NY CLIENT Zennlor BIHING CONTRACTOR NW CONSYGENG										H&A FILE NO. PROJECT MGR. FIELD REP. SAMPLING DATE	DMG 8-6-20	
	Sampling Data: 14.3 Well ID: 12.25 Start time: 12.25 Finish Time: 103					.3'	ft Initial Depth To Water: 6 · 0 ft ft Depth Of Pump Intake: ft ft ft Date Well Installed:				Purging Device: Tubing Present In Well Tubing Type:	Yes No 313" 20	
2	Elapsed Time (24 hour)	Depth To Water From Casing (ft)	Pump Setting (ml/min) or (gal/min)	Purge Rate (ml/min) or	Cumulative Purge Vol. (liters) or	Temp- erature (°F) or (°C) +/%	рН +/	Conduct- ivity (us/cm) +/%	Dissolved Oxygen (mg/L) +/%	Turbidity (NTU) <ntu< td=""><td>ORP/eH (mv) +/ mv</td><td>с</td><td>omments</td></ntu<>	ORP/eH (mv) +/ mv	с	omments
12:25 12:37 12:45	072	6.0 7.4 9.7		014 015	本 1 3	27.14 27.64	4.92 4.93	15.2 15.2	3.32	144 126	190	Lioseratumn: 8.3	
12:33	යුම 35 දුල	11.9		0.2 02	5	22.54 23.02	4.91 5.13	13.2 14.1	-95 -95	183 201	151 145	× 007	e: 5.56 gana
		0										Very Daw Runpez	recharge
			1									after	~1 Uell Volume
-												5000 chor	0e on 8/7/20 D:06 pm
								4				9.2	
							20						

B

APPENDIX I

Groundwater Analytical Data – August 2020

ANALYTICAL REPORT

Lab Number:	L2032151
Client:	NW Contracting 3553 Crittenden Rd Alden, NY 14004
ATTN: Phone:	Dale Gromza (716) 937-6527
Project Name:	ZEHNZOR RITTLING HYDROAIR
Project Number: Report Date:	20-014 08/17/20

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name:	ZEHNZOR RITTLING HYDROAIR				
Project Number:	20-014				

Lab Number:	L2032151
Report Date:	08/17/20

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2032151-01	A4-MW-10R	WATER	BUFFALO, NY	08/06/20 13:15	08/07/20
L2032151-02	A4-MW-7R	WATER	BUFFALO, NY	08/06/20 14:15	08/07/20
L2032151-03	A4-MW-8R	WATER	BUFFALO, NY	08/07/20 09:00	08/07/20
L2032151-04	A4-MW-9	WATER	BUFFALO, NY	08/07/20 10:45	08/07/20
L2032151-05	A4-MW-5R	WATER	BUFFALO, NY	08/07/20 12:00	08/07/20
L2032151-06	TRIP BLANK	WATER	BUFFALO, NY	08/07/20 00:00	08/07/20

Project Name: ZEHNZOR RITTLING HYDROAIR Project Number: 20-014

Lab Number: L2032151 Report Date: 08/17/20

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.

Project Name: ZEHNZOR RITTLING HYDROAIR Project Number: 20-014

 Lab Number:
 L2032151

 Report Date:
 08/17/20

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Sample Receipt

L2032151-01: The sample identified as "A4-MW-10R" on the chain of custody was identified as "A4-MW-10" on the container label. At the client's request, the sample is reported as "A4-MW-10R". L2032151-06: A sample identified as "TRIP BLANK" for Volatile Organics analysis was received, but not listed on the Chain of Custody. At the client's request, this sample was analyzed.

Cyanide, Total

The WG1397060-4 MS recovery, performed on L2032151-03, is outside the acceptance criteria for cyanide, total (122%); however, the associated LCS recovery is within criteria. No further action was taken.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

N 2014 Jennifer L Clements

Title: Technical Director/Representative

Date: 08/17/20

ORGANICS

VOLATILES

				Serial_N	o:08172019:30
Project Name:	ZEHNZOR RITTLIN	G HYE	ROAIR	Lab Number:	L2032151
Project Number:	20-014		SAMPLE RESULTS	Report Date:	08/17/20
Lab ID: Client ID: Sample Location:	L2032151-01 A4-MW-10R BUFFALO, NY	D		Date Collected: Date Received: Field Prep:	08/06/20 13:15 08/07/20 Not Specified
Sample Depth: Matrix: Analytical Method: Analytical Date: Analyst:	Water 1,8260C 08/10/20 10:57 PD				

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor				
Volatile Organics by GC/MS - Westborough Lab										
Methylene chloride	ND		ug/l	10	2.8	4				
1,1-Dichloroethane	ND		ug/l	10	2.8	4				
Chloroform	ND		ug/l	10	2.8	4				
Carbon tetrachloride	ND		ug/l	2.0	0.54	4				
1,2-Dichloropropane	ND		ug/l	4.0	0.55	4				
Dibromochloromethane	ND		ug/l	2.0	0.60	4				
1,1,2-Trichloroethane	ND		ug/l	6.0	2.0	4				
Tetrachloroethene	ND		ug/l	2.0	0.72	4				
Chlorobenzene	ND		ug/l	10	2.8	4				
Trichlorofluoromethane	ND		ug/l	10	2.8	4				
1,2-Dichloroethane	ND		ug/l	2.0	0.53	4				
1,1,1-Trichloroethane	ND		ug/l	10	2.8	4				
Bromodichloromethane	ND		ug/l	2.0	0.77	4				
trans-1,3-Dichloropropene	ND		ug/l	2.0	0.66	4				
cis-1,3-Dichloropropene	ND		ug/l	2.0	0.58	4				
Bromoform	ND		ug/l	8.0	2.6	4				
1,1,2,2-Tetrachloroethane	ND		ug/l	2.0	0.67	4				
Benzene	370		ug/l	2.0	0.64	4				
Toluene	40		ug/l	10	2.8	4				
Ethylbenzene	ND		ug/l	10	2.8	4				
Chloromethane	ND		ug/l	10	2.8	4				
Bromomethane	ND		ug/l	10	2.8	4				
Vinyl chloride	ND		ug/l	4.0	0.28	4				
Chloroethane	ND		ug/l	10	2.8	4				
1,1-Dichloroethene	ND		ug/l	2.0	0.68	4				
trans-1,2-Dichloroethene	ND		ug/l	10	2.8	4				
Trichloroethene	ND		ug/l	2.0	0.70	4				
1,2-Dichlorobenzene	ND		ug/l	10	2.8	4				

	Serial_No:08172019:30							
Project Name:	ZEHNZOR RITTLIN	NG HYDROAIR			Lab Nu	mber:	L2032151	
Project Number:	20-014				Report	Date:	08/17/20	
		SAMPL	E RESULTS	6				
Lab ID: Client ID: Sample Location:	L2032151-01 A4-MW-10R BUFFALO, NY	D			Date Co Date Re Field Pre	ceived:	08/06/20 13:15 08/07/20 Not Specified	
Sample Depth:		5	o			MD		
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics b	oy GC/MS - Westboro	ugh Lab						
1,3-Dichlorobenzene		ND		ug/l	10	2.8	4	
1,4-Dichlorobenzene		ND		ug/l	10	2.8	4	
Methyl tert butyl ether		ND		ug/l	10	2.8	4	
p/m-Xylene				-			•	
F		ND		ug/l	10	2.8	4	
o-Xylene		ND ND		ug/l ug/l	10 10			
·				•		2.8	4	
o-Xylene		ND		ug/l	10	2.8 2.8	4	
o-Xylene cis-1,2-Dichloroethene		ND ND		ug/l ug/l	10 10	2.8 2.8 2.8	4 4 4	
o-Xylene cis-1,2-Dichloroethene Styrene		ND ND ND	J	ug/l ug/l ug/l	10 10 10	2.8 2.8 2.8 2.8	4 4 4 4	

ND

ANALYTICAL

7.8

4.0

4.0

2.8

2.6

2.8

2.8

2.8

2.8

0.94

1.1

240

2.8

1.6

Acceptance Criteria

70-130

70-130

70-130

70-130

4

4

4

4

4

4

4

4

4

4

4

4

4

4

20

20

20

10

8.0

10

10

10

10

8.0

40

1000

10

40

Qualifier

ug/l

% Recovery

107

98

106

97

2-Butanone

2-Hexanone

4-Methyl-2-pentanone

Bromochloromethane

1,2-Dibromo-3-chloropropane

1,2-Dibromoethane

Isopropylbenzene

Methyl Acetate

Cyclohexane

1,4-Dioxane

Freon-113

Methyl cyclohexane

Surrogate

Toluene-d8

1,2-Dichloroethane-d4

4-Bromofluorobenzene

Dibromofluoromethane

1,2,3-Trichlorobenzene

1,2,4-Trichlorobenzene

		Serial_No	p:08172019:30
Project Name:	ZEHNZOR RITTLING HYDROAIR	Lab Number:	L2032151
Project Number:	20-014	Report Date:	08/17/20
	SAMPLE RESULTS		
Lab ID: Client ID: Sample Location:	L2032151-02 A4-MW-7R BUFFALO, NY	Date Collected: Date Received: Field Prep:	08/06/20 14:15 08/07/20 Not Specified
Sample Depth: Matrix: Analytical Method: Analytical Date: Analyst:	Water 1,8260C 08/10/20 12:02 PD		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
Volatile Organics by GC/MS - Westborough Lab									
Methylene chloride	ND		ug/l	2.5	0.70	1			
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1			
Chloroform	ND		ug/l	2.5	0.70	1			
Carbon tetrachloride	ND		ug/l	0.50	0.13	1			
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1			
Dibromochloromethane	ND		ug/l	0.50	0.15	1			
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1			
Tetrachloroethene	ND		ug/l	0.50	0.18	1			
Chlorobenzene	ND		ug/l	2.5	0.70	1			
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1			
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1			
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1			
Bromodichloromethane	ND		ug/l	0.50	0.19	1			
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1			
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1			
Bromoform	ND		ug/l	2.0	0.65	1			
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1			
Benzene	140		ug/l	0.50	0.16	1			
Toluene	22		ug/l	2.5	0.70	1			
Ethylbenzene	ND		ug/l	2.5	0.70	1			
Chloromethane	ND		ug/l	2.5	0.70	1			
Bromomethane	ND		ug/l	2.5	0.70	1			
Vinyl chloride	ND		ug/l	1.0	0.07	1			
Chloroethane	ND		ug/l	2.5	0.70	1			
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1			
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1			
Trichloroethene	ND		ug/l	0.50	0.18	1			
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1			

Serial_No:08172019:30 **Project Name:** ZEHNZOR RITTLING HYDROAIR Lab Number: L2032151 **Project Number: Report Date:** 20-014 08/17/20 SAMPLE RESULTS Lab ID: Date Collected: L2032151-02 08/06/20 14:15 Date Received: Client ID: A4-MW-7R 08/07/20 Sample Location: **BUFFALO, NY** Field Prep: Not Specified Sample Depth: Qualifier MDL **Dilution Factor** Parameter Result Units RL Volatile Organics by GC/MS - Westborough Lab 1,3-Dichlorobenzene ND 2.5 0.70 1 ug/l 1,4-Dichlorobenzene ND ug/l 2.5 0.70 1 Methyl tert butyl ether ND ug/l 2.5 0.70 1 p/m-Xylene 0.97 J 2.5 0.70 1 ug/l o-Xylene ND ug/l 2.5 0.70 1 cis-1,2-Dichloroethene ND ug/l 2.5 0.70 1 Styrene ND ug/l 2.5 0.70 1 Dichlorodifluoromethane ND ug/l 5.0 1.0 1 ND Acetone ug/l 5.0 1.5 1 Carbon disulfide ND ug/l 5.0 1.0 1 ND 1 2-Butanone ug/l 5.0 1.9 4-Methyl-2-pentanone ND 5.0 1.0 1 ug/l ND 2-Hexanone 5.0 1.0 1 ug/l

2.5

2.0

2.5

2.5

2.5

2.5

2.0

10

250

2.5

10

0.70

0.65

0.70

0.70

0.70

0.70

0.23

0.27

61.

0.70

0.40

ND

Surrogate	% Recovery	A Qualifier	cceptance Criteria	
1,2-Dichloroethane-d4	103		70-130	
Toluene-d8	99		70-130	
4-Bromofluorobenzene	106		70-130	
Dibromofluoromethane	98		70-130	
Toluene-d8 4-Bromofluorobenzene	99 106		70-130 70-130	

1

1

1

1

1

1

1

1

1

1

1

Bromochloromethane

1,2-Dibromo-3-chloropropane

1,2-Dibromoethane

Isopropylbenzene

Methyl Acetate

Cyclohexane

1,4-Dioxane

Freon-113

Methyl cyclohexane

1,2,3-Trichlorobenzene

1,2,4-Trichlorobenzene

				Serial_N	o:08172019:30
Project Name:	ZEHNZOR RITTLIN	G HYD	ROAIR	Lab Number:	L2032151
Project Number:	20-014			Report Date:	08/17/20
			SAMPLE RESULTS		
Lab ID: Client ID: Sample Location:	L2032151-03 A4-MW-8R BUFFALO, NY	D		Date Collected: Date Received: Field Prep:	08/07/20 09:00 08/07/20 Not Specified
Sample Depth: Matrix: Analytical Method: Analytical Date: Analyst:	Water 1,8260C 08/10/20 11:19 PD				

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor				
Volatile Organics by GC/MS - Westborough Lab										
Methylene chloride	ND		ug/l	250	70.	100				
1,1-Dichloroethane	ND		ug/l	250	70.	100				
Chloroform	ND		ug/l	250	70.	100				
Carbon tetrachloride	ND		ug/l	50	13.	100				
1,2-Dichloropropane	ND		ug/l	100	14.	100				
Dibromochloromethane	ND		ug/l	50	15.	100				
1,1,2-Trichloroethane	ND		ug/l	150	50.	100				
Tetrachloroethene	ND		ug/l	50	18.	100				
Chlorobenzene	ND		ug/l	250	70.	100				
Trichlorofluoromethane	ND		ug/l	250	70.	100				
1,2-Dichloroethane	ND		ug/l	50	13.	100				
1,1,1-Trichloroethane	ND		ug/l	250	70.	100				
Bromodichloromethane	ND		ug/l	50	19.	100				
trans-1,3-Dichloropropene	ND		ug/l	50	16.	100				
cis-1,3-Dichloropropene	ND		ug/l	50	14.	100				
Bromoform	ND		ug/l	200	65.	100				
1,1,2,2-Tetrachloroethane	ND		ug/l	50	17.	100				
Benzene	12000		ug/l	50	16.	100				
Toluene	ND		ug/l	250	70.	100				
Ethylbenzene	ND		ug/l	250	70.	100				
Chloromethane	ND		ug/l	250	70.	100				
Bromomethane	ND		ug/l	250	70.	100				
Vinyl chloride	ND		ug/l	100	7.1	100				
Chloroethane	ND		ug/l	250	70.	100				
1,1-Dichloroethene	ND		ug/l	50	17.	100				
trans-1,2-Dichloroethene	ND		ug/l	250	70.	100				
Trichloroethene	ND		ug/l	50	18.	100				
1,2-Dichlorobenzene	ND		ug/l	250	70.	100				

					:	Serial_No	0:08172019:30	
Project Name:	ZEHNZOR RITTLIN	NG HYDROAIR			Lab Nu	mber:	L2032151	
Project Number:	20-014				Report	Date:	08/17/20	
-		SAMPL	E RESULTS	6	-			
Lab ID: Client ID: Sample Location: Sample Depth:	L2032151-03 A4-MW-8R BUFFALO, NY	D			Date Col Date Rec Field Pre	ceived:	08/07/20 09:00 08/07/20 Not Specified	
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics b	y GC/MS - Westboro	ugh Lab						
J J	,	0						
1,3-Dichlorobenzene		ND		ug/l	250	70.	100	
1,4-Dichlorobenzene		ND		ug/l	250	70.	100	
Methyl tert butyl ether		ND		ug/l	250	70.	100	
p/m-Xylene		ND		ug/l	250	70.	100	
o-Xylene		ND		ug/l	250	70.	100	
cis-1,2-Dichloroethene		ND		ug/l	250	70.	100	
Styrene		ND		ug/l	250	70.	100	
Dichlorodifluoromethane		ND		ug/l	500	100	100	
Acetone		ND		ug/l	500	150	100	
Carbon disulfide		ND		ug/l	500	100	100	
2-Butanone		ND		ug/l	500	190	100	
4-Methyl-2-pentanone		ND		ug/l	500	100	100	
2-Hexanone		ND		ug/l	500	100	100	
Bromochloromethane		ND		ug/l	250	70.	100	
1,2-Dibromoethane		ND		ug/l	200	65.	100	
1,2-Dibromo-3-chloroprop	bane	ND		ug/l	250	70.	100	
Isopropylbenzene		ND		ug/l	250	70.	100	
1,2,3-Trichlorobenzene		ND		ug/l	250	70.	100	
1,2,4-Trichlorobenzene		ND		ug/l	250	70.	100	
Methyl Acetate		ND		ug/l	200	23.	100	
Cyclohexane		ND		ug/l	1000	27.	100	

hyl cyclohexane ND ug		ug/l	1000	40.	100	
Surrogate		% Recovery	Qualifier	Accepta Criter		
1,2-Dichloroethane-d4		101		70-1	30	
Toluene-d8		100		70-1	30	
4-Bromofluorobenzene		107		70-1	30	
Dibromofluoromethane		96		70-1	30	

25000

250

ug/l

ug/l

6100

70.

ND

ND

100

100

1,4-Dioxane

Freon-113

				Serial_N	o:08172019:30
Project Name:	ZEHNZOR RITTLIN	IG HYD	ROAIR	Lab Number:	L2032151
Project Number:	20-014		SAMPLE RESULTS	Report Date:	08/17/20
Lab ID: Client ID: Sample Location:	L2032151-04 A4-MW-9 BUFFALO, NY	D		Date Collected: Date Received: Field Prep:	08/07/20 10:45 08/07/20 Not Specified
Sample Depth: Matrix: Analytical Method: Analytical Date: Analyst:	Water 1,8260C 08/10/20 11:40 PD				

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	stborough Lab					
Methylene chloride	ND		ug/l	12	3.5	5
1,1-Dichloroethane	ND		ug/l	12	3.5	5
Chloroform	ND		ug/l	12	3.5	5
Carbon tetrachloride	ND		ug/l	2.5	0.67	5
1,2-Dichloropropane	ND		ug/l	5.0	0.68	5
Dibromochloromethane	ND		ug/l	2.5	0.74	5
1,1,2-Trichloroethane	ND		ug/l	7.5	2.5	5
Tetrachloroethene	ND		ug/l	2.5	0.90	5
Chlorobenzene	ND		ug/l	12	3.5	5
Trichlorofluoromethane	ND		ug/l	12	3.5	5
1,2-Dichloroethane	ND		ug/l	2.5	0.66	5
1,1,1-Trichloroethane	ND		ug/l	12	3.5	5
Bromodichloromethane	ND		ug/l	2.5	0.96	5
trans-1,3-Dichloropropene	ND		ug/l	2.5	0.82	5
cis-1,3-Dichloropropene	ND		ug/l	2.5	0.72	5
Bromoform	ND		ug/l	10	3.2	5
1,1,2,2-Tetrachloroethane	ND		ug/l	2.5	0.84	5
Benzene	590		ug/l	2.5	0.80	5
Toluene	ND		ug/l	12	3.5	5
Ethylbenzene	ND		ug/l	12	3.5	5
Chloromethane	ND		ug/l	12	3.5	5
Bromomethane	ND		ug/l	12	3.5	5
Vinyl chloride	ND		ug/l	5.0	0.36	5
Chloroethane	ND		ug/l	12	3.5	5
1,1-Dichloroethene	ND		ug/l	2.5	0.84	5
trans-1,2-Dichloroethene	ND		ug/l	12	3.5	5
Trichloroethene	ND		ug/l	2.5	0.88	5
1,2-Dichlorobenzene	ND		ug/l	12	3.5	5

					5	Serial_No	0:08172019:30	
Project Name:	ZEHNZOR RITTLIN	G HYDROAIR			Lab Nu	mber:	L2032151	
Project Number:	20-014				Report	Date:	08/17/20	
-		SAMPL	E RESULTS	6	-			
Lab ID: Client ID: Sample Location:	L2032151-04 A4-MW-9 BUFFALO, NY	D			Date Coll Date Rec Field Pre	eived:	08/07/20 10:45 08/07/20 Not Specified	
Sample Depth:								
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics b	y GC/MS - Westborou	ıgh Lab						
1.2 Disklarshansana					40	25	<i>_</i>	
1,3-Dichlorobenzene		ND		ug/l	12 12	3.5	5	
1,4-Dichlorobenzene		ND		ug/l	12	3.5 3.5	5	
Methyl tert butyl ether		ND		ug/l	12	3.5	5	
p/m-Xylene		ND		ug/l	12	3.5	5	
o-Xylene				ug/l				
cis-1,2-Dichloroethene		ND		ug/l	12 12	3.5 3.5	5	
Styrene				ug/l				
Dichlorodifluoromethane		ND		ug/l	25	5.0	5	
Acetone		ND		ug/l	25	7.3	5	
Carbon disulfide		5.0	J	ug/l	25	5.0	5	
2-Butanone		ND		ug/l	25	9.7	5	
4-Methyl-2-pentanone		ND		ug/l	25	5.0	5	
2-Hexanone		ND		ug/l	25	5.0	5	
Bromochloromethane		ND		ug/l	12	3.5	5	
1,2-Dibromoethane		ND		ug/l	10	3.2	5	
1,2-Dibromo-3-chloroprop	bane	ND		ug/l	12	3.5	5	
Isopropylbenzene		ND		ug/l	12	3.5	5	
1,2,3-Trichlorobenzene		ND		ug/l	12	3.5	5	
1,2,4-Trichlorobenzene		ND		ug/l	12	3.5	5	
Methyl Acetate		ND		ug/l	10	1.2	5	
Cyclohexane		ND		ug/l	50	1.4	5	
1,4-Dioxane		ND		ug/l	1200	300	5	
Freon-113		ND		ug/l	12	3.5	5	

Surrogate	% Recovery	Acceptance Qualifier Criteria
1,2-Dichloroethane-d4	102	70-130
Toluene-d8	99	70-130
4-Bromofluorobenzene	104	70-130
Dibromofluoromethane	98	70-130

50

ug/l

2.0

ND

5

Methyl cyclohexane

			Serial_No	p:08172019:30
Project Name:	ZEHNZOR RITTLING HYD	DROAIR	Lab Number:	L2032151
Project Number:	20-014		Report Date:	08/17/20
		SAMPLE RESULTS		
Lab ID:	L2032151-05		Date Collected:	08/07/20 12:00
Client ID:	A4-MW-5R		Date Received:	08/07/20
Sample Location:	BUFFALO, NY		Field Prep:	Not Specified
Sample Depth:				
Matrix:	Water			
Analytical Method:	1,8260C			
Analytical Date:	08/10/20 12:23			
Analyst:	PD			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	estborough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	8.4		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

Project Number:20-014Report Date:08/17/20Lab ID:L2032151-05Date Collected:08/07/20 12:00Client ID:A4-MW-5RDate Received:08/07/20Sample Location:BUFFALO, NYField Prep:Not Specified							Serial_No	0:08172019:30	
Lab ID: L2032151-05 Client ID: A4-MW-5R Sample Location: BUFFALO, NY Sample Location: BUFFALO, NY Sample Depth: No Parmeter Result Qualifier No ND Dituition Factor Voltile Organics by GC/MS - Westborough Lab ND ugf 2.5 0.70 1 1.4-Dichlorobenzene ND ugf 2.5 0.70 1 Methyl terbuly lether ND ugf 2.5 0.70 1 pm-Xylene ND ugf 2.5 0.70 1 cis-12-Dichloroethene ND ugf 2.5 0.70 1 pm-Xylene ND ugf 2.5 0.70 1 cis-12-Dichloroethene ND ugf 2.5 0.70 1 Styrene ND ugf 2.5 0.70 1 Dichloroethene ND ugf 2.5 0.70 1 Styrene ND ugf 2.5 0.70 1 Dichloroethene ND <t< th=""><th>Project Name:</th><th>ZEHNZOR RITTLING</th><th>G HYDROAIR</th><th></th><th></th><th>Lab Nu</th><th>umber:</th><th>L2032151</th><th></th></t<>	Project Name:	ZEHNZOR RITTLING	G HYDROAIR			Lab Nu	umber:	L2032151	
Lab ID:L2032151-05 A4-MW-5R BUFFALO, NYDate Collecter:08/07/20 12:00 Date Received:Sample Location:BUFFALO, NYBUFFALO, NYDate Received:08/07/20 Not SpecifiedSample Depth:reameterResultQualifierUnitsRLMDDiluton FactorVoltatile Organics by Cr/MS - Westborough LabNDug/l2.50.7011.3-DichlorobenzeneNDug/l2.50.7011.4-DichlorobenzeneNDug/l2.50.7011.4-DichlorobenzeneNDug/l2.50.701orXyleneNDug/l2.50.701orXyleneNDug/l2.50.701OrdinorothenzeneNDug/l2.50.701DichlorothenzeneNDug/l2.50.701orXyleneNDug/l2.50.701OrdinorotheneNDug/l2.50.701DichlorotheneNDug/l5.01Carbon disulfideNDug/l5.01012-ButanoneNDug/l5.01.012-HoxanoneNDug/l5.01.012-HoxanoneNDug/l5.01.012-HoxanoneNDug/l5.01.012-HoxanoneNDug/l5.01.012-HoxanoneNDug/l5.01.01<	Project Number:	20-014				Report	Date:	08/17/20	
Client ID: A4-MW-5R Sample Location: BUFFALO, NY Date Received: 08/07/20 Parameter Result Qualifier Units RL MDL Dilution Factor Volatile Organics by GC/MS - Westborough Lab ND ug/l 2.5 0.70 1 1,4-Dichlorobenzene ND ug/l 2.5 0.70 1 1,4-Dichlorobenzene ND ug/l 2.5 0.70 1 1,4-Dichlorobenzene ND ug/l 2.5 0.70 1 p/m-Xylene ND ug/l 2.5 0.70 1 o-Xylene ND ug/l 2.5 0.70 1 Styrene ND ug/l 2.5 0.70 1 Dichlorodtifluoromethane ND ug/l 2.5 0.70 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1			SAMP		S				
ParameterResultQualifierUnitsRLMDLDilution FactorVolatile Organics by GC/MS - Westborough Lab1,3-DichlorobenzeneNDug/l2.50.7011,4-DichlorobenzeneNDug/l2.50.7011,4-DichlorobenzeneNDug/l2.50.701Methyl tert butyl etherNDug/l2.50.701o-XyleneNDug/l2.50.701cis-1,2-DichloroetheneNDug/l2.50.701StyreneNDug/l2.50.701DichlorodifluoromethaneNDug/l2.50.701CarbonNDug/l5.01.012-ButanoneNDug/l5.01.014-Methyl-2-pentanoneNDug/l5.01.012-HexanoneNDug/l5.01.012-DichloromethaneNDug/l5.01.012-HexanoneNDug/l5.01.012-HotomotehaneNDug/l5.01.012-HotomotehaneNDug/l5.01.012-HotomotehaneNDug/l5.01.012-HotomotehaneNDug/l5.01.012-DichloromethaneNDug/l5.01.012-DichloromethaneNDug/l5.01.012-Dichloromethan	Lab ID: Client ID: Sample Location:	A4-MW-5R				Date Re	ceived:	08/07/20	
Volatile Organics by GC/MS - Westborough Lab ug/l 2.5 0.70 1 1.4-Dichlorobenzene ND ug/l 2.5 0.70 1 1.4-Dichlorobenzene ND ug/l 2.5 0.70 1 Methyl tert butyl ether ND ug/l 2.5 0.70 1 p/m-Xylene ND ug/l 2.5 0.70 1 o-Xylene ND ug/l 2.5 0.70 1 cis-1,2-Dichloroethene ND ug/l 2.5 0.70 1 Styrene ND ug/l 2.5 0.70 1 Dichloroethane ND ug/l 5.0 1.0 1 Acetone ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 2-	Sample Depth:								
1,3-Dichlorobenzene ND ug/l 2.5 0.70 1 1,4-Dichlorobenzene ND ug/l 2.5 0.70 1 Methyl tert butyl ether ND ug/l 2.5 0.70 1 p/m-Xylene ND ug/l 2.5 0.70 1 o-Xylene ND ug/l 2.5 0.70 1 o-Xylene ND ug/l 2.5 0.70 1 o-Xylene ND ug/l 2.5 0.70 1 cis-1,2-Dichloroethene ND ug/l 2.5 0.70 1 Styrene ND ug/l 5.0 1.0 1 Acetone ND ug/l 5.0 1.0 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone	Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
1,4-Dichlorobenzene ND ug/l 2.5 0.70 1 Methyl tert butyl ether ND ug/l 2.5 0.70 1 p/m-Xylene ND ug/l 2.5 0.70 1 o-Xylene ND ug/l 2.5 0.70 1 o-Xylene ND ug/l 2.5 0.70 1 cis-1,2-Dichloroethene ND ug/l 2.5 0.70 1 Styrene ND ug/l 2.5 0.70 1 Dichlorodifluoromethane ND ug/l 5.0 1.0 1 Acetone ND ug/l 5.0 1.5 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 Bromochlorome	Volatile Organics b	oy GC/MS - Westborou	gh Lab						
1,4-Dichlorobenzene ND ug/l 2.5 0.70 1 Methyl tert butyl ether ND ug/l 2.5 0.70 1 p/m-Xylene ND ug/l 2.5 0.70 1 o-Xylene ND ug/l 2.5 0.70 1 o-Xylene ND ug/l 2.5 0.70 1 cis-1,2-Dichloroethene ND ug/l 2.5 0.70 1 Styrene ND ug/l 2.5 0.70 1 Dichlorodifluoromethane ND ug/l 5.0 1.0 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 Bromochloromethane ND ug/l 5.0 1.0 1 2-Ibitormoethane ND ug/l 5.0 1.0 1	1,3-Dichlorobenzene		ND		ug/l	2.5	0.70	1	
Methyl tert butyl ether ND ug/l 2.5 0.70 1 p/m-Xylene ND ug/l 2.5 0.70 1 o-Xylene ND ug/l 2.5 0.70 1 o-Xylene ND ug/l 2.5 0.70 1 cis-1,2-Dichloroethene ND ug/l 2.5 0.70 1 Styrene ND ug/l 2.5 0.70 1 Dichlorodifluoromethane ND ug/l 5.0 1.0 1 Acetone ND ug/l 5.0 1.5 1 2-Butanone ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 Bromochloromethane ND ug/l 5.0 1.0 1 1,2-Dibromoethane ND ug/l 5.0 1.0 1	1,4-Dichlorobenzene		ND		-	2.5	0.70	1	
ND ug/l 2.5 0.70 1 cis-1,2-Dichloroethene ND ug/l 2.5 0.70 1 Styrene ND ug/l 2.5 0.70 1 Dichlorodifluoromethane ND ug/l 5.0 1.0 1 Acetone ND ug/l 5.0 1.0 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 12-Dibromoethane ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 Bromochloromethane ND ug/l 2.5 0.70 1 1,2-Dibromoethane ND	Methyl tert butyl ether		ND		-	2.5	0.70	1	
ND ug/l 2.5 0.70 1 Styrene ND ug/l 2.5 0.70 1 Dichlorodifluoromethane ND ug/l 5.0 1.0 1 Acetone ND ug/l 5.0 1.5 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 Bromochloromethane ND ug/l 5.0 1.0 1 1,2-Dibromoethane ND ug/l 5.0 1.0 1	p/m-Xylene		ND		ug/l	2.5	0.70	1	
Styrene ND ug/l 2.5 0.70 1 Dichlorodifluoromethane ND ug/l 5.0 1.0 1 Acetone ND ug/l 5.0 1.5 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 Bromochloromethane ND ug/l 5.0 1.0 1 1,2-Dibromoethane ND ug/l 5.0 1.0 1	o-Xylene		ND		ug/l	2.5	0.70	1	
Dichlorodifluoromethane ND ug/l 5.0 1.0 1 Acetone ND ug/l 5.0 1.5 1 Carbon disulfide ND ug/l 5.0 1.5 1 2-Butanone ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 Bromochloromethane ND ug/l 5.0 1.0 1 1,2-Dibromoethane ND ug/l 5.0 1.0 1	cis-1,2-Dichloroethene		ND		ug/l	2.5	0.70	1	
Acetone ND ug/l 5.0 1.5 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.9 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 Bromochloromethane ND ug/l 5.0 1.0 1 1,2-Dibromoethane ND ug/l 2.5 0.70 1	Styrene		ND		ug/l	2.5	0.70	1	
Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.9 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 Bromochloromethane ND ug/l 2.5 0.70 1 1,2-Dibromoethane ND ug/l 2.0 0.65 1	Dichlorodifluoromethane		ND		ug/l	5.0	1.0	1	
2-Butanone ND ug/l 5.0 1.9 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 Bromochloromethane ND ug/l 5.0 1.0 1 1,2-Dibromoethane ND ug/l 2.5 0.70 1	Acetone		ND		ug/l	5.0	1.5	1	
4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 Bromochloromethane ND ug/l 2.5 0.70 1 1,2-Dibromoethane ND ug/l 2.0 0.65 1	Carbon disulfide		ND		ug/l	5.0	1.0	1	
2-Hexanone ND ug/l 5.0 1.0 1 Bromochloromethane ND ug/l 2.5 0.70 1 1,2-Dibromoethane ND ug/l 2.0 0.65 1	2-Butanone		ND		ug/l	5.0	1.9	1	
Bromochloromethane ND ug/l 2.5 0.70 1 1,2-Dibromoethane ND ug/l 2.0 0.65 1	4-Methyl-2-pentanone		ND		ug/l	5.0	1.0	1	
ND ug/l 2.0 0.65 1	2-Hexanone		ND		ug/l	5.0	1.0	1	
	Bromochloromethane		ND		ug/l	2.5	0.70	1	
1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1	1,2-Dibromoethane		ND		ug/l	2.0	0.65	1	
	1,2-Dibromo-3-chloropro	pane	ND		ug/l	2.5	0.70	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria
1,2-Dichloroethane-d4	107	70-130
Toluene-d8	100	70-130
4-Bromofluorobenzene	106	70-130
Dibromofluoromethane	98	70-130

ND

ND

ND

ND

ND

ND

ND

ND

0.70

0.70

0.70

0.23

0.27

61.

0.70

0.40

1

1

1

1

1

1

1

1

2.5

2.5

2.5

2.0

10

250

2.5

10

ug/l

ug/l

ug/l

ug/l

ug/l

ug/l

ug/l

ug/l

Isopropylbenzene

Methyl Acetate

Cyclohexane

1,4-Dioxane

Freon-113

Methyl cyclohexane

1,2,3-Trichlorobenzene

1,2,4-Trichlorobenzene

		Serial_N	p:08172019:30
Project Name:	ZEHNZOR RITTLING HYDROAIR	Lab Number:	L2032151
Project Number:	20-014	Report Date:	08/17/20
	SAMPLE RES	ULTS	
Lab ID:	L2032151-06	Date Collected:	08/07/20 00:00
Client ID:	TRIP BLANK	Date Received:	08/07/20
Sample Location:	BUFFALO, NY	Field Prep:	Not Specified
Sample Depth:			
Matrix:	Water		
Analytical Method:	1,8260C		
Analytical Date:	08/10/20 10:36		
Analyst:	PD		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westbo	orough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

Serial_No:08172019:30 Project Name: Lab Number: ZEHNZOR RITTLING HYDROAIR L2032151 **Project Number:** Report Date: 20-014 08/17/20 SAMPLE RESULTS Lab ID: L2032151-06 Date Collected: 08/07/20 00:00 Client ID: TRIP BLANK Date Received: 08/07/20 Sample Location: Field Prep: Not Specified BUFFALO, NY Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough	n Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Surrogate	% Recovery	Acceptance Qualifier Criteria
1,2-Dichloroethane-d4	101	70-130
Toluene-d8	99	70-130
4-Bromofluorobenzene	108	70-130
Dibromofluoromethane	100	70-130

L2032151

08/17/20

Lab Number:

Report Date:

Project Name: ZEHNZOR RITTLING HYDROAIR

Project Number: 20-01

20-014

Method Blank Analysis Batch Quality Control

Analytical Method:1,8260CAnalytical Date:08/10/20 10:14Analyst:PD

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS - V	/estborough Lab	for sample(s):	01-06 Batch:	WG1397279-5
Methylene chloride	ND	ug/l	2.5	0.70
1,1-Dichloroethane	ND	ug/l	2.5	0.70
Chloroform	ND	ug/l	2.5	0.70
Carbon tetrachloride	ND	ug/l	0.50	0.13
1,2-Dichloropropane	ND	ug/l	1.0	0.14
Dibromochloromethane	ND	ug/l	0.50	0.15
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50
Tetrachloroethene	ND	ug/l	0.50	0.18
Chlorobenzene	ND	ug/l	2.5	0.70
Trichlorofluoromethane	ND	ug/l	2.5	0.70
1,2-Dichloroethane	ND	ug/l	0.50	0.13
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70
Bromodichloromethane	ND	ug/l	0.50	0.19
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14
Bromoform	ND	ug/l	2.0	0.65
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17
Benzene	ND	ug/l	0.50	0.16
Toluene	ND	ug/l	2.5	0.70
Ethylbenzene	ND	ug/l	2.5	0.70
Chloromethane	ND	ug/l	2.5	0.70
Bromomethane	ND	ug/l	2.5	0.70
Vinyl chloride	ND	ug/l	1.0	0.07
Chloroethane	ND	ug/l	2.5	0.70
1,1-Dichloroethene	ND	ug/l	0.50	0.17
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Trichloroethene	ND	ug/l	0.50	0.18
1,2-Dichlorobenzene	ND	ug/l	2.5	0.70
1,3-Dichlorobenzene	ND	ug/l	2.5	0.70

L2032151

08/17/20

Lab Number:

Report Date:

Project Name: ZEHNZOR RITTLING HYDROAIR

Project Number:

20-014

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: Analyst: PD

08/10/20 10:14

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS - V	Vestborough Lab	for sample(s):	01-06 Batch:	WG1397279-5
1,4-Dichlorobenzene	ND	ug/l	2.5	0.70
Methyl tert butyl ether	ND	ug/l	2.5	0.70
p/m-Xylene	ND	ug/l	2.5	0.70
o-Xylene	ND	ug/l	2.5	0.70
cis-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Styrene	ND	ug/l	2.5	0.70
Dichlorodifluoromethane	ND	ug/l	5.0	1.0
Acetone	ND	ug/l	5.0	1.5
Carbon disulfide	ND	ug/l	5.0	1.0
2-Butanone	ND	ug/l	5.0	1.9
4-Methyl-2-pentanone	ND	ug/l	5.0	1.0
2-Hexanone	ND	ug/l	5.0	1.0
Bromochloromethane	ND	ug/l	2.5	0.70
1,2-Dibromoethane	ND	ug/l	2.0	0.65
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5	0.70
Isopropylbenzene	ND	ug/l	2.5	0.70
1,2,3-Trichlorobenzene	ND	ug/l	2.5	0.70
1,2,4-Trichlorobenzene	ND	ug/l	2.5	0.70
Methyl Acetate	ND	ug/l	2.0	0.23
Cyclohexane	ND	ug/l	10	0.27
1,4-Dioxane	ND	ug/l	250	61.
Freon-113	ND	ug/l	2.5	0.70
Methyl cyclohexane	ND	ug/l	10	0.40

L2032151 08/17/20

Project Name:	ZEHNZOR RITTLING HYDROAIR	Lab Number:
Project Number:	20-014	Report Date:
	Method Blank Analysis	

Method Blank Analysis Batch Quality Control

Analytical Method:1,8260CAnalytical Date:08/10/20 10:14Analyst:PD

Parameter	Result	Qualifier	Units	RL	MDL	
Volatile Organics by GC/MS - We	stborough La	ab for sample	e(s): 01-06	Batch:	WG1397279-5	

			Acceptance
Surrogate	%Recovery	Qualifier	Criteria
1,2-Dichloroethane-d4	104		70-130
Toluene-d8	99		70-130
4-Bromofluorobenzene	105		70-130
Dibromofluoromethane	101		70-130

Project Number: 20-014

Lab Number: L2032151 08/17/20

Report Date:

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - Westborough	Lab Associated s	ample(s): 01	I-06 Batch: V	VG1397279-3	WG1397279-4			
Methylene chloride	99		100		70-130	1		20
1,1-Dichloroethane	96		100		70-130	4		20
Chloroform	92		100		70-130	8		20
Carbon tetrachloride	91		100		63-132	9		20
1,2-Dichloropropane	95		110		70-130	15		20
Dibromochloromethane	88		95		63-130	8		20
1,1,2-Trichloroethane	94		100		70-130	6		20
Tetrachloroethene	86		95		70-130	10		20
Chlorobenzene	90		99		75-130	10		20
Trichlorofluoromethane	92		100		62-150	8		20
1,2-Dichloroethane	93		100		70-130	7		20
1,1,1-Trichloroethane	93		96		67-130	3		20
Bromodichloromethane	90		99		67-130	10		20
trans-1,3-Dichloropropene	89		99		70-130	11		20
cis-1,3-Dichloropropene	90		97		70-130	7		20
Bromoform	82		93		54-136	13		20
1,1,2,2-Tetrachloroethane	91		100		67-130	9		20
Benzene	94		100		70-130	6		20
Toluene	93		99		70-130	6		20
Ethylbenzene	92		100		70-130	8		20
Chloromethane	120		130		64-130	8		20
Bromomethane	98		110		39-139	12		20
Vinyl chloride	100		110		55-140	10		20

ZEHNZOR RITTLING HYDROAIR **Project Name:**

Project Number: 20-014

Lab Number: L2032151 08/17/20

Report Date:

arameter	LCS %Recovery	Qual		LCSD Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
olatile Organics by GC/MS - Westborough I	_ab Associated	sample(s):	01-06	Batch:	WG1397279-3	WG1397279-4			
Chloroethane	93			96		55-138	3		20
1,1-Dichloroethene	88			98		61-145	11		20
trans-1,2-Dichloroethene	93			100		70-130	7		20
Trichloroethene	93			100		70-130	7		20
1,2-Dichlorobenzene	94			100		70-130	6		20
1,3-Dichlorobenzene	96			100		70-130	4		20
1,4-Dichlorobenzene	94			100		70-130	6		20
Methyl tert butyl ether	86			93		63-130	8		20
p/m-Xylene	95			100		70-130	5		20
o-Xylene	90			100		70-130	11		20
cis-1,2-Dichloroethene	95			100		70-130	5		20
Styrene	95			100		70-130	5		20
Dichlorodifluoromethane	120			120		36-147	0		20
Acetone	110			110		58-148	0		20
Carbon disulfide	90			99		51-130	10		20
2-Butanone	93			110		63-138	17		20
4-Methyl-2-pentanone	82			92		59-130	11		20
2-Hexanone	80			94		57-130	16		20
Bromochloromethane	91			97		70-130	6		20
1,2-Dibromoethane	90			98		70-130	9		20
1,2-Dibromo-3-chloropropane	78			85		41-144	9		20
Isopropylbenzene	99			100		70-130	1		20
1,2,3-Trichlorobenzene	89			93		70-130	4		20

Project Name: ZEHNZOR RITTLING HYDROAIR

Project Number: 20-014

 Lab Number:
 L2032151

 Report Date:
 08/17/20

	LCS		LCSD		%Recovery			RPD	
Parameter	%Recovery	Qual	%Recovery	' Qual	Limits	RPD	Qual	Limits	
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s):	01-06 Batch:	WG1397279-3	WG1397279-4				
1,2,4-Trichlorobenzene	89		93		70-130	4		20	
Methyl Acetate	92		100		70-130	8		20	
Cyclohexane	100		100		70-130	0		20	
1,4-Dioxane	88		94		56-162	7		20	
Freon-113	99		100		70-130	1		20	
Methyl cyclohexane	91		100		70-130	9		20	

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	99	103	70-130
Toluene-d8	101	101	70-130
4-Bromofluorobenzene	106	106	70-130
Dibromofluoromethane	96	98	70-130

METALS

Project Name:	ZEHNZOR RITTLING HYDROAIR	Lab Number:	L2032151
Project Number:	20-014	Report Date:	08/17/20
	SAMPLE RESULTS		
Lab ID:	L2032151-01	Date Collected:	08/06/20 13:15
Client ID:	A4-MW-10R	Date Received:	08/07/20
Sample Location:	BUFFALO, NY	Field Prep:	Not Specified

Sample Depth:

Matrix:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Ma	nsfield Lab										
Arsenic, Total	0.00547		mg/l	0.00050	0.00016	6 1	08/10/20 20:50	0 08/11/20 14:44	EPA 3005A	1,6020B	AM
Chromium, Total	0.00098	J	mg/l	0.00100	0.00017	' 1	08/10/20 20:50	0 08/11/20 14:44	EPA 3005A	1,6020B	AM
Lead, Total	0.00092	J	mg/l	0.00100	0.00034	1	08/10/20 20:50	0 08/11/20 14:44	EPA 3005A	1,6020B	AM

Project Name:	ZEHNZOR RITTLING HYDROAIR	Lab Number:	L2032151
Project Number:	20-014	Report Date:	08/17/20
	SAMPLE RESULTS		
Lab ID:	L2032151-02	Date Collected:	08/06/20 14:15
Client ID:	A4-MW-7R	Date Received:	08/07/20
Sample Location:	BUFFALO, NY	Field Prep:	Not Specified

Sample Depth: Matrix:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Ma	nsfield Lab										
Arsenic, Total	0.00519		mg/l	0.00050	0.00016	1	08/10/20 20:50	08/11/20 14:49	EPA 3005A	1,6020B	AM
Chromium, Total	0.00329		mg/l	0.00100	0.00017	1	08/10/20 20:50	08/11/20 14:49	EPA 3005A	1,6020B	AM
Lead, Total	ND		mg/l	0.00100	0.00034	1	08/10/20 20:50	08/11/20 14:49	EPA 3005A	1,6020B	AM

Project Name:	ZEHNZOR RITTLING HYDROAIR	Lab Number:	L2032151
Project Number:	20-014	Report Date:	08/17/20
	SAMPLE RESULTS		
Lab ID:	L2032151-03	Date Collected:	08/07/20 09:00
Client ID:	A4-MW-8R	Date Received:	08/07/20
Sample Location:	BUFFALO, NY	Field Prep:	Not Specified

Sample Depth:

Matrix:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Ma	nsfield Lab										
Arsenic, Total	0.03388		mg/l	0.00050	0.00016	1	08/10/20 20:50	0 08/11/20 14:54	EPA 3005A	1,6020B	AM
Chromium, Total	0.00120		mg/l	0.00100	0.00017	['] 1	08/10/20 20:50	0 08/11/20 14:54	EPA 3005A	1,6020B	AM
Lead, Total	ND		mg/l	0.00100	0.00034	· 1	08/10/20 20:50	0 08/11/20 14:54	EPA 3005A	1,6020B	AM

Project Name:	ZEHNZOR RITTLING HYDROAIR	Lab Number:	L2032151						
Project Number:	20-014	Report Date:	08/17/20						
SAMPLE RESULTS									
Lab ID:	L2032151-04	Date Collected:	08/07/20 10:45						
Client ID:	A4-MW-9	Date Received:	08/07/20						
Sample Location:	BUFFALO, NY	Field Prep:	Not Specified						

Sample Depth:

Matrix:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Ma	nsfield Lab										
Arsenic, Total	0.01822		mg/l	0.00050	0.00016	1	08/10/20 20:50) 08/11/20 15:36	EPA 3005A	1,6020B	AM
Chromium, Total	0.00414		mg/l	0.00100	0.00017	1	08/10/20 20:50) 08/11/20 15:36	EPA 3005A	1,6020B	AM
Lead, Total	0.00060	J	mg/l	0.00100	0.00034	1	08/10/20 20:50) 08/11/20 15:36	EPA 3005A	1,6020B	AM

Project Name:	ZEHNZOR RITTLING HYDROAIR	Lab Number:	L2032151							
Project Number:	20-014	Report Date:	08/17/20							
SAMPLE RESULTS										
Lab ID:	L2032151-05	Date Collected:	08/07/20 12:00							
Client ID:	A4-MW-5R	Date Received:	08/07/20							
Sample Location:	BUFFALO, NY	Field Prep:	Not Specified							

Sample Depth:

Matrix:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Ma	nsfield Lab										
Arsenic, Total	0.00661		mg/l	0.00050	0.00016	1	08/10/20 20:50	08/11/20 15:41	EPA 3005A	1,6020B	AM
Chromium, Total	0.00098	J	mg/l	0.00100	0.00017	′ 1	08/10/20 20:50) 08/11/20 15:41	EPA 3005A	1,6020B	AM
Lead, Total	0.00070	J	mg/l	0.00100	0.00034	1	08/10/20 20:50) 08/11/20 15:41	EPA 3005A	1,6020B	AM

Project Name:ZEHNZOR RITTLING HYDROAIRProject Number:20-014

 Lab Number:
 L2032151

 Report Date:
 08/17/20

Method Blank Analysis Batch Quality Control

Parameter	Result Q	ualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst	
Total Metals - Mansfield Lab for sample(s): 01-05 Batch: WG1397401-1											
Arsenic, Total	ND		mg/l	0.00050	0.00016	5 1	08/10/20 20:50	08/11/20 12:29	0 1,6020B	AM	
Chromium, Total	0.00045	J	mg/l	0.00100	0.00017	['] 1	08/10/20 20:50	08/11/20 12:29	0 1,6020B	AM	
Lead, Total	ND		mg/l	0.00100	0.00034	· 1	08/10/20 20:50	08/11/20 12:29	1,6020B	AM	

Prep Information

Digestion Method: EPA 3005A

Lab Number: L2032151

ZEHNZOR RITTLING HYDROAIR **Project Name:**

Project Number: 20-014

Report Date: 08/17/20

Parameter	LCS %Recovery	LCSD Qual %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample	e(s): 01-05 Batch	n: WG1397401-2					
Arsenic, Total	108	-		80-120	-		
Chromium, Total	101	-		80-120	-		
Lead, Total	112	-		80-120	-		

Matrix Spike Analysis Batch Quality Control

Project Name: ZEHNZOR RITTLING HYDROAIR

Project Number: 20-014

 Lab Number:
 L2032151

 Report Date:
 08/17/20

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Recovery Qual Limits		RPD Qual Limits
Total Metals - Mansfield Lab	Associated sam	nple(s): 01-05	QC Bat	ch ID: WG139	7401-3	WG139740	1-4 QC Sam	nple: L2032147-07	Client	t ID: MS Sample
Arsenic, Total	0.00034J	0.12	0.1268	106		0.1292	108	75-125	2	20
Chromium, Total	0.0015	0.2	0.2026	100		0.2094	104	75-125	3	20
Lead, Total	ND	0.51	0.5584	109		0.5723	112	75-125	2	20

INORGANICS & MISCELLANEOUS

Project Name: Project Number:		HNZOR RITTLING HYDROAIR -014						_	.2032151 8/17/20	
Project Number.	20-014		_				Repor	i Dale.	0/17/20	
			5	SAMPLE	RESULT	S				
Lab ID:	L2032151-0	1					Date Collected: 08/06/20 13:1			
Client ID:	A4-MW-10R				Date R	Date Received: 08/07/20				
Sample Location:	BUFFALO, I	١Y					Field P	Prep: N	lot Specified	
Sample Depth: Matrix:	Water									
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
eneral Chemistry - We	stborough Lat)								
Ikalinity, Total	854.	m	g CaCO3/L	2.00	NA	1	-	08/11/20 07:35	121,2320B	JA
Cyanide, Total	0.061		mg/l	0.005	0.001	1	08/08/20 15:30	08/10/20 14:59	1,9010C/9012B	AG

							-			
Project Name:		RITTLING	HYDRO	AIR					2032151	
Project Number:	20-014						керог	t Date: 0	8/17/20	
			S	AMPLE	RESULT	ſS				
Lab ID:	L2032151-0	2					Date C	collected: 0	8/06/20 14:15	
Client ID:	A4-MW-7R						Date R	eceived: 0	8/07/20	
Sample Location:	BUFFALO, I	١Y					Field P	Prep: N	lot Specified	
Sample Depth: Matrix:	Water									
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	stborough Lab)								
Alkalinity, Total	230.	m	g CaCO3/L	2.00	NA	1	-	08/11/20 07:35	121,2320B	JA
Cyanide, Total	0.500		mg/l	0.005	0.001	1	08/08/20 15:30	08/10/20 15:00	1,9010C/9012B	AG

Project Name:	ZEHNZOR F	RITTLING	HYDRO	AIR			Lab Nu	umber: L	_2032151	
Project Number:	20-014						Repor	t Date: 0)8/17/20	
			S	SAMPLE	RESULT	S				
Lab ID:	L2032151-0	3					Date C	collected: 0	08/07/20 09:00	
Client ID:	A4-MW-8R						Date R	eceived: 0	08/07/20	
Sample Location:	BUFFALO, N	١Y					Field P	Prep: N	Not Specified	
Sample Depth: Matrix:	Water									
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	stborough Lab)								
Alkalinity, Total	878.	m	g CaCO3/L	2.00	NA	1	-	08/11/20 07:35	5 121,2320B	JA
Cyanide, Total	0.111		mg/l	0.005	0.001	1	08/08/20 15:30	08/10/20 15:01	1,9010C/9012B	AG

Project Name:	ZEHNZOR F	RITTLING	HYDRO	AIR			Lab N	umber: L	.2032151	
Project Number:	20-014						Repor	t Date: 0	8/17/20	
			S	SAMPLE	RESULT	S				
Lab ID:	L2032151-0	4					Date C	collected: (8/07/20 10:45	
Client ID:	A4-MW-9						Date R	eceived: (8/07/20	
Sample Location:	BUFFALO, I	NY					Field P	Prep: N	Not Specified	
Sample Depth: Matrix:	Water									
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
eneral Chemistry - We	stborough Lat)								
alinity, Total	320.	m	g CaCO3/L	2.00	NA	1	-	08/11/20 07:35	121,2320B	JA
anide, Total	1.76		mg/l	0.025	0.009	5	08/10/20 15:30	08/10/20 15:40	1,9010C/9012B	AG
		mç	5			5			,	

ZEHNZOR F	RITTLING	G HYDRO	AIR			Lab Nu	umber: լ	_2032151	
20-014						Report	t Date: ()8/17/20	
		S	AMPLE	RESULT	ſS				
L2032151-0	5					Date C	ollected: (08/07/20 12:00	
A4-MW-5R						Date R	eceived: ()8/07/20	
BUFFALO, I	NY					Field P	rep: N	Not Specified	
Water									
Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
stborough Lat)								
		g CaCO3/L	2.00	NA	1	_	08/11/20 07:35	5 121,2320B	JA
420.	m	y Cacos/L	2.00	INA	1	-	00/11/20 07.50	121,25200	54
	20-014 L2032151-0 A4-MW-5R BUFFALO, I Water Result	20-014 L2032151-05 A4-MW-5R BUFFALO, NY Water Result Qualifier stborough Lab	20-014 S L2032151-05 A4-MW-5R BUFFALO, NY Water Result Qualifier Units stborough Lab	SAMPLE L2032151-05 A4-MW-5R BUFFALO, NY Water Result Qualifier Units RL stborough Lab	20-014 SAMPLE RESULT L2032151-05 A4-MW-5R BUFFALO, NY Water Result Qualifier Units RL MDL stborough Lab	20-014 SAMPLE RESULTS L2032151-05 A4-MW-5R BUFFALO, NY Water Result Qualifier Units RL MDL Dilution Factor Stborough Lab	20-014 Report SAMPLE RESULTS L2032151-05 A4-MW-5R BUFFALO, NY Water Result Qualifier Units RL MDL Dilution Date Factor Prepared Stborough Lab	20-014 Report Date: 0 SAMPLE RESULTS L2032151-05 A4-MW-5R BUFFALO, NY Water Result Qualifier Units RL MDL Dilution Date Analyzed Stborough Lab	20-014 Report Date: 08/17/20 L2032151-05 Date Collected: 08/07/20 12:00 A4-MW-5R Date Received: 08/07/20 BUFFALO, NY Field Prep: Not Specified Water Vater Date Qualifier Units RL MDL BUFFALD, NY Date Received: Date Analyzed Analytical Method

Project Name:ZEHNZOR RITTLING HYDROAIRProject Number:20-014

 Lab Number:
 L2032151

 Report Date:
 08/17/20

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifie	· Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - V	Vestborough Lab for sa	mple(s): 01	-05 Ba	tch: WO	G1397060-´	1			
Cyanide, Total	ND	mg/l	0.005	0.001	1	08/08/20 15:30	08/10/20 14:46	1,9010C/9012E	B AG
General Chemistry - V	Vestborough Lab for sa	mple(s): 01	-05 Ba	tch: WO	G1397499-′	1			
Alkalinity, Total	ND	mg CaCO3/L	2.00	NA	1	-	08/11/20 07:35	121,2320B	JA

Project Name: ZEHNZOR RITTLING HYDROAIR

Project Number: 20-014

 Lab Number:
 L2032151

 Report Date:
 08/17/20

Parameter	LCS %Recovery Qual	LCSD %Recovery	% Qual	Recovery Limits	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s): 01-05	Batch: WG139706	0-2 WG139	7060-3			
Cyanide, Total	100	100		85-115	0		20
General Chemistry - Westborough Lab	Associated sample(s): 01-05	Batch: WG139749	9-2				
Alkalinity, Total	104			90-110	-		10

2

-

80-120

QC Sample: L2031745-02 Client ID: MS Sample

86-116

20

10

Matrix Spike Analysis

118

-

Project Name: Project Number:	ZEHNZOR RITTL 20-014	ING HYDRC	DAIR	Ва	tch Qua	llity Contr	rol	 Number: ort Date:		L20321 08/17/2	
Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	ecovery Limits F	RPD		RPD Limits

General Chemistry - Westborough Lab Associated sample(s): 01-05 QC Batch ID: WG1397060-4 WG1397060-5 QC Sample: L2032151-03 Client ID: A4-

Q

QC Batch ID: WG1397499-4

0.347

-

122

112

ΔLPHA
ANALYTICAL

MW-8R

Cyanide, Total

Alkalinity, Total

0.111

420.

General Chemistry - Westborough Lab Associated sample(s): 01-05

0.2

100

0.354

532

10

Project Name: Project Number:	-	ITTLING HYDROAIR	Lab Dupli Batch Q	cate Ana uality Contr			b Numbe eport Date	LZ002101	
Parameter		Native Sam	nple Duplic	ate Sample	Units	RPD	Qual	RPD Limits	
General Chemistry - Wes	stborough Lab	Associated sample(s): 01-05	QC Batch ID: WG1	1397499-3	QC Sample:	L2031745-01	Client ID:	DUP Sample	

296

mg CaCO3/L

1

298.

Alkalinity, Total

Project Name: ZEHNZOR RITTLING HYDROAIR Project Number: 20-014

Sample Receipt and Container Information

Were project specific reporting limits specified?

YES

Cooler Information

Cooler	Custody Seal
A	Absent

Container Info	ormation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2032151-01A	Vial HCI preserved	А	NA		5.7	Y	Absent		NYTCL-8260-R2(14)
L2032151-01B	Vial HCI preserved	А	NA		5.7	Y	Absent		NYTCL-8260-R2(14)
L2032151-01C	Vial HCI preserved	А	NA		5.7	Y	Absent		NYTCL-8260-R2(14)
L2032151-01D	Plastic 250ml unpreserved/No Headspace	А	NA		5.7	Y	Absent		ALK-T-2320(14)
L2032151-01E	Plastic 250ml NaOH preserved	А	>12	>12	5.7	Y	Absent		TCN-9010(14)
L2032151-01F	Plastic 250ml HNO3 preserved	А	<2	<2	5.7	Y	Absent		CR-6020T(180),PB-6020T(180),AS-6020T(180)
L2032151-02A	Vial HCl preserved	А	NA		5.7	Y	Absent		NYTCL-8260-R2(14)
L2032151-02B	Vial HCl preserved	А	NA		5.7	Y	Absent		NYTCL-8260-R2(14)
L2032151-02C	Vial HCl preserved	А	NA		5.7	Y	Absent		NYTCL-8260-R2(14)
L2032151-02D	Plastic 250ml unpreserved/No Headspace	А	NA		5.7	Y	Absent		ALK-T-2320(14)
L2032151-02E	Plastic 250ml NaOH preserved	А	>12	>12	5.7	Y	Absent		TCN-9010(14)
L2032151-02F	Plastic 250ml HNO3 preserved	А	<2	<2	5.7	Y	Absent		CR-6020T(180),PB-6020T(180),AS-6020T(180)
L2032151-03A	Vial HCl preserved	А	NA		5.7	Υ	Absent		NYTCL-8260-R2(14)
L2032151-03B	Vial HCl preserved	А	NA		5.7	Υ	Absent		NYTCL-8260-R2(14)
L2032151-03C	Vial HCl preserved	А	NA		5.7	Y	Absent		NYTCL-8260-R2(14)
L2032151-03D	Plastic 250ml unpreserved/No Headspace	А	NA		5.7	Y	Absent		ALK-T-2320(14)
L2032151-03E	Plastic 250ml NaOH preserved	А	>12	>12	5.7	Y	Absent		TCN-9010(14)
L2032151-03F	Plastic 250ml HNO3 preserved	А	<2	<2	5.7	Y	Absent		CR-6020T(180),PB-6020T(180),AS-6020T(180)
L2032151-04A	Vial HCl preserved	А	NA		5.7	Y	Absent		NYTCL-8260-R2(14)
L2032151-04B	Vial HCl preserved	А	NA		5.7	Y	Absent		NYTCL-8260-R2(14)
L2032151-04C	Vial HCl preserved	А	NA		5.7	Y	Absent		NYTCL-8260-R2(14)
L2032151-04D	Plastic 250ml unpreserved/No Headspace	А	NA		5.7	Y	Absent		ALK-T-2320(14)
L2032151-04E	Plastic 250ml NaOH preserved	А	>12	>12	5.7	Y	Absent		TCN-9010(14)

Project Name: ZEHNZOR RITTLING HYDROAIR*Project Number:* 20-014

Serial_No:08172019:30 *Lab Number:* L2032151 *Report Date:* 08/17/20

Container Info	ormation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	pН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2032151-04F	Plastic 250ml HNO3 preserved	А	<2	<2	5.7	Y	Absent		CR-6020T(180),PB-6020T(180),AS-6020T(180)
L2032151-05A	Vial HCI preserved	А	NA		5.7	Y	Absent		NYTCL-8260-R2(14)
L2032151-05B	Vial HCI preserved	А	NA		5.7	Y	Absent		NYTCL-8260-R2(14)
L2032151-05C	Vial HCI preserved	А	NA		5.7	Y	Absent		NYTCL-8260-R2(14)
L2032151-05D	Plastic 250ml unpreserved/No Headspace	А	NA		5.7	Y	Absent		ALK-T-2320(14)
L2032151-05E	Plastic 250ml NaOH preserved	А	>12	>12	5.7	Y	Absent		TCN-9010(14)
L2032151-05F	Plastic 250ml HNO3 preserved	А	<2	<2	5.7	Y	Absent		CR-6020T(180),PB-6020T(180),AS-6020T(180)
L2032151-06A	Vial HCI preserved	А	NA		5.7	Y	Absent		NYTCL-8260-R2(14)
L2032151-06B	Vial HCI preserved	А	NA		5.7	Y	Absent		NYTCL-8260-R2(14)

Serial_No:08172019:30

Project Name: ZEHNZOR RITTLING HYDROAIR

Project Number: 20-014

Lab Number: L2032151

Report Date: 08/17/20

GLOSSARY

Acronyms

Actionyms	
DL	- Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
EDL	- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).
EMPC	- Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.
EPA	- Environmental Protection Agency.
LCS	- Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LCSD	- Laboratory Control Sample Duplicate: Refer to LCS.
LFB	- Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LOD	- Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
LOQ	- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
	Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
MDL	- Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
MS	- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.
MSD	- Matrix Spike Sample Duplicate: Refer to MS.
NA	- Not Applicable.
NC	- Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
	- N-Nitrosodiphenylamine/Diphenylamine.
NI	- Not Ignitable.
NP	- Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.
RL	- Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
RPD	- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.
SRM	- Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.
STLP	- Semi-dynamic Tank Leaching Procedure per EPA Method 1315.
TEF	- Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.
TEQ	- Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.
TIC	- Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.
Footnotes	

Footnotes

Report Format: DU Report with 'J' Qualifiers

Project Name: ZEHNZOR RITTLING HYDROAIR

Project Number: 20-014

 Lab Number:
 L2032151

 Report Date:
 08/17/20

1

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum. Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Waterpreserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'. Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benz(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. If a 'Total' result is requested, the results of its individual components will also be reported.

The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA,this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- B The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For NJ-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- C Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- **D** Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- **F** The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration. (DoD and NYSDEC Part 375 PFAS only.)
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- J Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.

Report Format: DU Report with 'J' Qualifiers

Serial_No:08172019:30

Project Name: ZEHNZOR RITTLING HYDROAIR

Project Number: 20-014

Lab Number: L2032151 Report Date: 08/17/20

Data Qualifiers

- **P** The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- **S** Analytical results are from modified screening analysis.

Report Format: DU Report with 'J' Qualifiers

Project Name:ZEHNZOR RITTLING HYDROAIRProject Number:20-014

 Lab Number:
 L2032151

 Report Date:
 08/17/20

REFERENCES

- 1 Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - VI, 2018.
- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene
EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.
EPA 8270D: NPW: Dimethylnaphthalene, 1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene, 1,4-Diphenylhydrazine.
SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.
Mansfield Facility
SM 2540D: TSS
EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.
EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 1-Methylnaphthalene.
SPA 3C Fixed gases
Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP. Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs **EPA 625.1**: SVOC (Acid/Base/Neutral Extractables), **EPA 600/4-81-045**: PCB-Oil.

Microbiology SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn. **EPA 200.8:** Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn. **EPA 245.1** Hg. **SM2340B**

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Serial_No:08172019:30

	NEW YORK CHAIN OF CUSTODY	Service Centers Mahwah, NJ 07430: 35 Whitney Albany, NY 12205: 14 Walker W Tonawanda, NY 14150: 275 Cor	lay	5	Page			Date in I			081	120	20	ALPHA Job#	
Westborough, MA 01581 8 Walkup Dr.	Mansfield, MA 02048 320 Forbes Blvd	Project Information		A A TA		the state	Deliv	erable	s			25		Billing Information	and the second
TEL: 508-898-9220 FAX: 508-898-9193	TEL: 508-822-9300	Project Name: Zeh	intor R	itling 1-	-Juzio A	lir		ASP-	A			ASP-B		Same as Client Info	
PAA: 008-090-9193	FAX: 508-822-3288	Project Location: 3u	Faio N	40	1			EQu	S (1 F	ile)		EQuIS	(4 File)	PO#	
Client Information		Project # 20 -	014					Other							
Client: NW COR	dracting	(Use Project name as Pr	oject #)				Regu	ilatory	Requi	remen	it		II STAT	Disposal Site Information	
Address: 3553 0	rittentent	Project Manager: Do	le Gran	nza				NY TO	GS			NY Part	375	Please identify below location of	f
Rook, Allen.		ALPHAQuote #:						AWQ	Standa	rds		NY CP-8	51	applicable disposal facilities.	
Phone: 7169376	527 14004	Turn-Around Time	The second					NY Re	stricted	i Use		Other		Disposal Facility:	
Fax:		Standard		Due Date:				NY Ur	restrict	ed Use	1			YN LI VY	
Email: DGromza	CHW Lond roding	Rush (only if pre approved		# of Days:				NYC S	Sewer D	Dischar	ge			Other:	
These samples have be	een previously analyze	ed by Alpha					ANA	LYSIS	6					Sample Filtration	Т
Other project specific	requirements/comm	ients:												Done	- 0 t
Please specify Metals	or TAL.		Colle	ection	Sample	Sampler's	DONGE .	0100	0126	Kalinity				Lab to do Preservation Lab to do (Please Specify below)	a I Bott
(Lab Use Only)	Sa	mple ID	Date	Time	Matrix	Initials	Vac	3	9	B				Sample Specific Comments	- 1
32151-01	A4 - MW-	10R	3620	1:15	GW	DNG	3	1	1	i					56
-02	A4 - MW		36120	2:15	GN	DNG	3	3	à	1		+			G
-03	AU- MU	00	3/7/20	9:00	GW	DMC	3	1	4	1		-			6
-04	A4- MW	-	Sitia	10:45		DNG	3	1	í	i		-+	-		6
-05	A4 - MW			TEIZU	GN		3	1	1	+		+			6
	HI MW	UIS	101 1/20	pare	160	DMG	0	+	1	1		-			0
	1.1.1						17 1		-	-		+	_		+-1
							-		<u>.</u>		-	-+	_		+-1
			-				-					-	_		+-
							-	-				\rightarrow			+
C = HNO ₃ D = H ₂ SO ₄	Container Code P = Plastic A = Amber Glass V = Vial G = Glass B = Bacteria Cup	Westboro: Certification N Mansfield: Certification N				ntainer Type Preservative	A	P	Ρ	P				Please print clearly, legib and completely. Samples not be logged in and turnaround time clock wil start until any ambiguities	s can Il not
F = MeOH G = NaHSO4 H = Na ₂ S ₂ O ₃	C = Cube O = Other E = Encore D = BOD Bottle	Relinquished	By:	Date/ 8/720 8/700	Time 3:50 1700	Gji	Receiv	ved By	ne V	070	5/		ime 1550 01/00	resolved. BY EXECUTIN	IG ES HA'S

APPENDIX J

Historical Groundwater Analytical Data Tables

Table 1 Summary of Historical Groundwater Analytical Results Twelth Annual Groundwater Monitoring Event Hydro-Air Site (Formerly Steelfields Area IV) Buffalo, New York

												Monitori	ng Locatio	n																	
Parameter (ug/L)	Class GA GWQS/GV								A4-MW-5	R														A4-MW-7	7R						
	01100/01	6/25/2007	2/1/2008	6/2/2008	6/25/2009	6/28/2010	6/28/2011	7/5/2012	7/1/2013	6/2/2014	6/25/2015	6/22/2016	6/22/2017	6/26/2018	12/19/2019	8/7/2020	6/25/2007	7 1/31/2008	6/2/2008	6/25/2009	6/28/2010	0 6/28/2011	7/5/2012	7/1/2013	6/2/2014	6/25/2015	6/22/2016	6/22/2017	6/26/2018	12/19/2019	8/6/2020
Volatile Organic Compou	unds																														
1,2,4-Trimethylbenzene	5	NM	NM	18	3.8 J	3.8 J	18	ND <10	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	NM	NM	NM	ND < 1.0	ND < 5.0	ND < 5.0	ND < 5.0	ND <5.0	ND <5.0	ND <5.0	ND <5.0	ND <5.0	ND <5.0	ND <5.0	ND <5.0	NM
Acetone	50*	6.7 J	ND < 50	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	ND<5.0	11 J	ND < 50	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	ND<5.0
Benzene	1	ND	7.1	8.3	5.4	8.2	13	ND <10	0.6 J	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	8.4	16	ND < 1.0	7.9	3.6	6.4	2.3 J	3.6 J	ND <5.0	2.3 J	ND <5.0	ND <5.0	ND <5.0	ND <5.0	ND <5.0	140
Carbon disulfide	60*	ND	ND < 1.0	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	ND<5.0	24	3.1	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	ND<5.0
Ethylbenzene	5	ND	3.1	4.4	3.5	ND < 5.0	9.1	ND <10	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<2.5	ND	ND < 1.0	ND < 1.0	ND<5.0	ND < 5.0	ND < 5.0	ND <5.0	ND <5.0	ND <5.0	ND <5.0	ND <5.0	ND <5.0	ND <5.0	ND <5.0	ND<2.5
2-Butanone (MEK)	50*	ND	ND < 10	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	2.8 J	ND < 10	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
Napthalene	10	NM	NM	940	28	29	420	ND <10	14	ND<1.0	2.9	ND<1.0	ND<1.0	ND<1.0	0.5 J	NM	NM	NM	ND<5.0	ND<5.0	ND<5.0	3.3 J	ND <5.0	ND <5.0	ND <5.0	ND <5.0	ND <5.0	ND <5.0	ND <5.0	ND <5.0	NM
Toluene	5	ND	ND < 5.0	1.6	ND<5.0	ND < 5.0	ND < 5.0	ND <10	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<2.5	ND	ND < 5.0	ND < 1.0	ND<5.0	ND < 5.0	ND < 5.0	ND <5.0	ND <5.0	ND <5.0	ND <5.0	ND <5.0	ND <5.0	ND <5.0	ND <5.0	22
Xylenes, Total	5	ND	32	25.5	ND<10	NM	NM	ND <20	1.7 J	ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND<2.5	1.4 J	ND < 3.0	ND < 1.0	ND<10	NM	NM	ND <10	ND <10	ND <10	ND <10	ND <10	ND <10	ND <10	ND <10	0.97 J
Metals																															
Arsenic	25	ND	ND < 20	21	19.1	11.5	7.9 J	14	17	ND<1.5	5.8 J	5.9 J	ND<1.5	ND <15	ND <15	6.6	9.1	ND < 20	29	ND<50	ND < 10	ND < 10	12	11	7.3	ND < 15	ND < 15	ND < 15	ND < 15	ND < 75	5.19
Chromium	50	ND	ND < 10	ND<10	1.8 J	2.1 J	1.7 J	4.1	1.6 J	ND<0.4	ND<0.4	ND<0.4	ND<0.4	ND < 4	1.0 J	0.98 J	11	ND < 10	21	ND<20	ND < 4.0	ND < 4.0	11	ND < 20	9	8.2 J	7.3	6.3 J	6.5 J	ND < 20	3.29
Lead	25	ND	ND < 5.0	ND<5.0	ND<5.0	ND < 5.0	ND < 5.0	ND <5.0	ND < 5.0	ND<1.0	ND<1.0	3.7 J	3.6 J	ND <10	ND <10	0.70 J	7.6	6.2	17	ND<5.0	4.4	ND < 5.0	27	23	ND < 5.0	ND < 5.0	17	13 J	ND < 200	ND < 50	ND<1.0
Wet Chemistry																															
Alkalinity						-					508000 B	555000 B	379000	433000 B	272,000	420,000										28,300	ND < 10,000	ND < 10,000	158,000	43800 B	230,000
Cyanide	200	165	400	490	103	482	560	680	260	340	530	920	630	680	470	350	42.9	100	41	39.4	64	240	49	91	550	14	66	89	33	74	500

Notes:

Benchmark Environmental Engineering & Science conducted the 25 June 2007 sampling event.
 Haley & Aldrich completed the February and June 2008 groundwater monitoring events.

3. TestÁmerica Buffalo conducted the 25-26 June 2009, 28-29 June 2010, 28-29 June 2011, 5-6 July 2012, 1-2 July 2013, 2-3 June 2014, 25-26 June 2015, 22-23 June 2016, 22-23 June 2017, 25-26 June 2018, and 19 December 2019 sampling events. NW Contracting conducted the August 2020 sampling event.

4. Only those analytes detected above the Class GA GW QS/GV are presented in this table.

5. NYSDEC Class "GA" Groundwater Quality Standards (GWQS) as published in NYSDEC Ambient Water Quality Standards/Guidance Values and Groundwater Effluent Limitations (June 1998).

6. Shaded results indicate exceedance of the GWQS/GV.

7. ND indicates not detected above laboratory detection limits.

8. NS indicates not sampled.

9. NM indicates not measured.

10. Samples that contain results between the MDL and RL were flagged as estimated, "J", by the laboratory. Samples that contain results flagged with "B" by the laboratory identifies that the compound was found in the blank and the sample. The data user should be aware that there is a possibility of false positive or mis-identification at the quantitation levels. 11. This table has been adapted from the Draft First Semi-Annual Long-Term Groundwater Monitoring Report (June 2007) by Benchmark Environmental Engineering & Science, PLLC.

Table 1 Summary of Historical Groundwater Analytical Results Twelth Annual Groundwater Monitoring Event Hydro-Air Site (Formerly Steelfields Area IV) Buffalo, New York

												Monitori	ng Locatio	n																	
Parameter (ug/L)	Class GA GWQS/GV								A4-MW-8	R														A4-MW-	9						
	01100/01	6/25/2007	1/31/2008	6/2/2008	6/26/2009	6/28/2010	6/28/2011	7/5/2012	7/1/2013	6/2/2014	6/25/2015	6/22/2016	6/22/2017	6/26/2018	12/19/2019	8/7/2020	6/25/2007	1/31/2008	6/2/2008	6/26/2009	6/28/2010	6/28/2011	7/5/2012	7/1/2013	6/2/2014	6/25/2015	6/22/2016	6/22/2017	6/26/2018	12/19/2019	8/7/2020
Volatile Organic Compou	unds																														
1,2,4-Trimethylbenzene	5	NM	NM	ND < 25	ND < 5.0	ND < 400	ND < 100	ND < 500	ND < 500	ND < 500	ND < 500	ND < 500	ND <50	ND <500	ND <200	NM	NM	NM	ND < 100	ND<10	ND < 200	ND < 5	ND <200	ND < 1.0	ND < 1.0	ND < 2.0	ND < 2.0	ND < 2.0	ND < 2.0	ND < 5.0	NM
Acetone	50*	ND	ND < 50	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	ND<500	660 J	ND < 50	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	ND<25
Benzene	1	26000 D	20000 D	19000	25000	32000	33000	32000	27000	23000	25000	24000	22000	18000	8100	12000	18000 D	9400	13000	18000	18000	13000	11000	72	93	90	90	150	260	ND < 5.0	590
Carbon disulfide	60*	ND	ND < 1.0	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	ND<500	77 J	4.2	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	5.0 J
Ethylbenzene	5	38 J	ND < 1.0	25	33	ND < 400	ND < 100	ND <500	ND <500	ND <500	ND <500	ND <500	ND <50	ND <500	ND <200	ND<250	ND	ND < 1.0	ND < 100	ND<10	ND < 200	ND < 5	ND <200	ND < 1.0	ND < 1.0	ND < 2.0	ND < 2.0	ND < 2.0	ND < 2.0	ND < 5.0	ND<12.0
2-Butanone (MEK)	50*	ND	ND < 10	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	ND	ND < 10	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
Napthalene	10	NM	NM	ND<120	ND<5.0	ND < 400								ND <500		NM	NM	NM	ND<500	ND<10	ND < 200										NM
Toluene	5	60 J	ND < 5.0	ND < 25	3.8	ND < 400						ND <500		ND <500	ND <200	ND<250	230 J	11	160	270	280									ND < 5.0	
Xylenes, Total	5	ND	ND < 3.0	ND < 25	5.8	NM	NM	ND <1000	ND <1000	ND <1000	ND <1000	ND <1000	ND <100	ND <1000	ND <400	ND<250	ND	ND < 3.0	ND < 100	ND<20	NM	NM	ND <400	ND < 2.0	ND < 2.0	ND < 4.0	ND < 4.0	ND < 4.0	ND < 4.0	ND < 10.0	ND<12.0
Metals																															
Arsenic	25	24	33	54	39.9	36	37	40	34	31	34	35	31	31	25	33.88	34	ND < 20	ND < 400	ND<50	ND < 50	20	26	ND < 10	7.2 J	ND < 15	5.6 J	ND < 15	ND < 15	ND < 15	18.22
Chromium	50	3.8	ND < 10	ND < 10	ND < 4.0			1.7 J	ND < 4	1.5 J	ND < 4	ND < 4	1.3 J	ND < 4	ND < 4	1.2	170	21	390	84.3	68.4	30	22	1.7 J	1.3 J		ND < 4.0	ND < 4.0	1.4 J	ND < 4.0	4.14
Lead	25	ND	26	8.5	ND < 40	ND < 5.0	ND < 5	3.5 J	ND < 5	ND < 10	3.3 J	7.0 J	4.7 J	ND < 200	3.1 J	ND<1.0	28	590	160	12.0 J	16.3	13	53	ND < 5	ND < 10	ND < 10	4.6 J	ND < 10	ND < 200	ND < 10	0.6 J
Wet Chemistry																															
Alkalinity				-							737,000	492,000 B	485,000	708,000 B	668,000	878,000					-					312,000	303,000	364,000	226,000 B	359,000	320,000
Cyanide	200	106	86	94	137	91.2	140	140	130	120	120	160	120	140	130	111	4600	2700	4200	1770	3610	7000	4300	190	280	250	420	450	1400	140	1760

Notes:

Benchmark Environmental Engineering & Science conducted the 25 June 2007 sampling event.
 Haley & Aldrich completed the February and June 2008 groundwater monitoring events.

3. TestÁmerica Buffalo conducted the 25-26 June 2009, 28-29 June 2010, 28-29 June 2011, 5-6 July 2012, 1-2 July 2013, 2-3 June 2014, 25-26 June 2015, 22-23 June 2016, 22-23 June 2017, 25-26 June 2018, and 19 December 2019 sampling events. NW Contracting conducted the August 2020 sampling event.

4. Only those analytes detected above the Class GA GW QS/GV are presented in this table.

5. NYSDEC Class "GA" Groundwater Quality Standards (GWQS) as published in NYSDEC Ambient Water Quality Standards/Guidance Values and Groundwater Effluent Limitations (June 1998).

6. Shaded results indicate exceedance of the GWQS/GV.

7. ND indicates not detected above laboratory detection limits.

8. NS indicates not sampled.

9. NM indicates not measured.

10. Samples that contain results between the MDL and RL were flagged as estimated, "J", by the laboratory. Samples that contain results flagged with "B" by the laboratory identifies that the compound was found in the blank and the sample. The data user should be aware that there is a possibility of false positive or mis-identification at the quantitation levels. 11. This table has been adapted from the Draft First Semi-Annual Long-Term Groundwater Monitoring Report (June 2007) by Benchmark Environmental Engineering & Science, PLLC.

Table 1 Summary of Historical Groundwater Analytical Results Twelth Annual Groundwater Monitoring Event Hydro-Air Site (Formerly Steelfields Area IV) Buffalo, New York

								Мо	nitoring Lo	cation						
Parameter (ug/L)	Class GA GWQS/GV								A4-MW-1	0						
	01100/01	6/25/2007	1/31/2008	6/2/2008	6/25/2009	6/28/2010	6/28/2011	7/5/2012	7/1/2013	6/2/2014	6/25/2015	6/22/2016	6/22/2017	6/25/2018	12/19/2019	8/6/2020
Volatile Organic Compou	ınds															
1,2,4-Trimethylbenzene	5	NM	NM	ND<1.0	ND<5.0	ND < 5.0	3.8 J	ND <200	ND < 1.0	ND < 5.0	ND < 5.0	ND < 5.0	ND < 5.0	ND < 5.0	ND < 5.0	NM
Acetone	50*	5.8 J	NS	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	7.4 J
Benzene	1	ND	NS	ND < 1.0	ND<5.0	ND < 5.0	ND < 5.0	ND <5.0	ND <5.0	ND <5.0	ND <5.0	ND <5.0	ND < 5.0	41	ND < 5.0	370
Carbon disulfide	60*	ND	NS	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	ND <20
Ethylbenzene	5	ND	NS	ND < 1.0	ND<5.0	ND < 5.0	ND < 5.0	ND <5.0	ND <5.0	ND <5.0	ND <5.0	ND <5.0	ND < 5.0	ND < 5.0	ND < 5.0	ND<10
2-Butanone (MEK)	50*	ND	NS	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
Napthalene	10	NM	NM	7.3	ND<5.0	ND<5.0	ND<5.0	ND <5.0	ND <5.0	ND <5.0	ND <5.0	ND <5.0	ND < 5.0	ND < 5.0	ND < 5.0	NM
Toluene	5	ND	NS	ND < 1.0	ND<5.0	ND < 5.0	ND < 5.0	ND <5.0	ND <5.0	ND <5.0	ND <5.0	ND <5.0	ND < 5.0	ND < 5.0	ND < 5.0	40
Xylenes, Total	5	ND	NS	ND < 1.0	ND<10	NM	NM	ND <10	ND <10	ND <10	ND <10	ND <10	ND <10	ND <10	ND < 10.0	ND <10.0
Metals																
Arsenic	25	6.1	NS	26	13.1	8.3 J	7.4 J	13	8.8 J	7.8 J	8.0 J	8.9 J	11 J	10 J	43	5.47
Chromium	50	ND	NS	ND < 10	ND<4.0	ND < 4.0	ND < 4.0	2.1 J	2.4 J	1.4 J	ND < 4.0	ND < 4.0	ND < 4.0	ND < 4.0	3.6 J	0.98 J
Lead	25	ND	NS	ND < 5.0	ND<5.0	ND < 5.0	ND < 5.0	ND <5.0	ND <5.0	3.7 J	ND <10	5.1 J	ND <10	ND <20	9.3 J	0.92 J
Wet Chemistry																
Alkalinity											1220000	120000	1100000	1170000 B	1,040,000	854,000
Cyanide	200	108	NS	73	35.7	51.0	110	110	96	86	55	88	79	73	61	61

Notes:

1. Benchmark Environmental Engineering & Science conducted the 25 June 2007 sampling event.

2. Haley & Aldrich completed the February and June 2008 groundwater monitoring events.

3. TestAmerica Buffalo conducted the 25-26 June 2009, 28-29 June 2010, 28-29 June 2011, 5-6 July 2012, 1-2 July 2013, 2-3 June 2014, 25-26 June 2015, 22-23 June 2016, 22-23 June 2017, 25-26 June 2018, and 19 December 2019 sampling events. NW Contracting conducted the August 2020 sampling event.

4. Only those analytes detected above the Class GA GW QS/GV are presented in this table.

5. NYSDEC Class "GA" Groundwater Quality Standards (GWQS) as published in NYSDEC Ambient Water Quality Standards/Guidance Values and Groundwater Effluent Limitations (June 1998).

6. Shaded results indicate exceedance of the GWQS/GV.

7. ND indicates not detected above laboratory detection limits.

8. NS indicates not sampled.

9. NM indicates not measured.

Now indicates not measured.
 Now indicates not measured.
 Samples that contain results between the MDL and RL were flagged as estimated, "J", by the laboratory. Samples that contain results flagged with "B" by the laboratory identifies that the compound was found in the blank and the sample. The data user should be aware that there is a possibility of false positive or mis-identification at the quantitation levels.
 This table has been adapted from the Draft First Semi-Annual Long-Term Groundwater Monitoring Report (June 2007) by Benchmark Environmental Engineering & Science, PLLC.