www.haleyaldrich.com

2021-2022 PERIODIC REVIEW REPORT

HYDRO-AIR COMPONENTS, INC. PROPERTY FORMER STEELFIELDS AREA IV BCP SITE (#C915204) 100 RITTLING BLVD. BUFFALO, NEW YORK

by Haley & Aldrich of New York Rochester, New York

for New York State Department of Environmental Conservation Buffalo, New York

File No. 0129356-011 August 2022

HALEY & ALDRICH OF NEW YORK 200 Town Centre Drive Suite 2 Rochester, NY 14623 585.359.9000

2 August 2022 File No. 0129356-011

New York State Department of Environmental Conservation Division of Environmental Remediation, Region 9 270 Michigan Avenue Buffalo, New York 14203-2999

- Attention: Megan Kuczka Environmental Program Specialist 1
- Subject: Hydro-Air Components, Inc. Property Former Steelfields Area IV BCP Site; NYSDEC Site #C915204 2021-2022 Periodic Review Report & Institutional Controls/ Engineering Controls Certification 100 Rittling Blvd. Buffalo, New York

Ladies and Gentlemen:

On behalf of Hydro-Air Components, Inc. (Hydro-Air), Haley & Aldrich of New York (Haley & Aldrich) hereby submits this Periodic Review Report and Annual Institutional & Engineering Controls Certification for 2021-2022 (2021-2022 PRR). This report summarizes activities performed during the reporting period of 15 April 2021 through 14 April 2022 and was prepared in accordance with the New York State Department of Environmental Conservation (NYSDEC) approved Site Management Plan (SMP) dated November 2007, as amended on 25 March 2014 to incorporate recommendations from the 2012 Corrective Measures Report.

The 2021-2022 PRR documents SMP activities implemented during the reporting period and provides documentation of ongoing monitoring activities required by the SMP.

Haley & Aldrich conducted the annual site engineering controls inspection on 7 March 2022. General site monitoring activities were completed over the reporting period by Hydro-Air personnel and contractors, and documentation of the monitoring activities is attached to and incorporated by reference in this 2021-2022 PRR.

New York State Department of Environmental Conservation 2 August 2022 Page 2

Sincerely yours, HALEY & ALDRICH OF NEW YORK

Contrees I Michado

Andrew L. Nichols Technical Specialist

Ch Whit

Glenn M. White, CHMM Associate

Enclosures

c: Hydro-Air Components, Inc.; Attn: Rob Daigler Barclay Damon, LLP.; Attn: Thomas Walsh, Esq.

 $\label{eq:linear} \label{eq:linear} \label{eq:$

HALEY & ALDRICH OF NEW YORK 200 TOWN CENTRE DRIVE SUITE 2 ROCHESTER, NY 14623 585.359.9000

SIGNATURE PAGE FOR

2021-2022 PERIODIC REVIEW REPORT & INSTITUTIONAL CONTROLS/ENGINEERING CONTROLS CERTIFICATION HYDRO-AIR COMPONENTS, INC. PROPERTY (FORMER STEELFIELDS AREA IV BCP SITE; NYSDEC SITE #C915204) 100 RITTLING BLVD. BUFFALO, NEW YORK

PREPARED FOR

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION BUFFALO, NEW YORK

PREPARED BY:

1 Michdo fordeed

Andrew L. Nichols Technical Specialist Haley & Aldrich of New York

REVIEWED AND APPROVED BY:

ANA

Glenn M. White Associate Haley & Aldrich of New York

www.haleyaldrich.com

Executive Summary

The Steelfields Area IV Brownfields Cleanup Program (BCP) Site, NYSDEC Site #C915204, comprises 30.91 acres of land located at 100 Rittling Boulevard in Buffalo, New York (See Figures 1 and 2) (the "Site"). Originally part of the larger Steelfields Voluntary Cleanup Program (VCP) Site #V00619, remedial activities were initiated in 2003 under a Voluntary Cleanup Agreement (VCA) between the former Site owner, Steelfields Ltd., and the New York State Department of Environmental Conservation (NYSDEC). In 2006, the current Site owner, Hydro-Air Components, Inc. (Hydro-Air), purchased the Steelfields Area IV property, successfully applied for the BCP and subsequently entered into a Brownfields Cleanup Agreement with NYSDEC on 21 August 2006, under which cleanup and redevelopment of the Site was completed in 2007.

The Site is currently developed with a 144,000 square foot manufacturing building and adjoining office space, surrounded by paved parking lots, landscaped areas, a stormwater retention pond, and seasonally vegetated areas. Soil and groundwater on some portions of the Site have been found to contain volatile organic compounds (VOCs), metals (primarily arsenic, chromium, and lead), and cyanide, associated with past use of the Site as the former Donner-Hanna Coke storage yard. Additionally, alkaline groundwater is known to exist in the northeastern corner of the Site, and acidic groundwater is known to exist in the Site.

The NYSDEC-approved remedy for the Site included the following:

- Excavation and removal of soils contaminated from historical coking process wastes, backfilling, and placement of a cover system;
- Use of Oxygen Release Compound (ORC) in Site groundwater wells to stimulate in-situ biodegradation of the residual Site contaminants of interest (began in 2007);
- Installation and operation of an active sub-slab depressurization system (ASD) in the Site building to mitigate the potential for impacted soil vapor intrusion into the indoor air space (ASD constructed and operated continuously since 2007); and,
- Annual inspection by a qualified person verifying that the institutional controls and/or engineering controls employed at the Site remain effective.

Also included as part of the NYSDEC-approved remedy was the recording of an Environmental Easement on 21 December 2007, to address institutional control requirements of the BCP, including, but not limited to:

- Restricting the property to industrial use;
- Preventing use of groundwater at the Site without prior approval; and,
- Adherence to the NYSDEC-approved Site Management Plan (SMP) for long-term management of the Site in order to maintain protection of human health and the environment.

The SMP, dated November 2007, was amended on 25 March 2014 to incorporate recommendations from the 2012 Corrective Measures Report. The SMP consists of institutional and engineering controls (IC/ECs). Site ECs include maintenance of the Site cover system, gasketed stormwater conveyance piping, operation and maintenance of the sub-slab depressurization system (ASD), and application of

ORC in the designated wells. Monitoring of the ECs is conducted periodically per the SMP. Site ICs consist of the Environmental Easement on the property, which include groundwater and land use restrictions, and adherence to the SMP.

The IC/ECs have remained in-place and have functioned as designed during the reporting period. The SMP and Environmental Easement remain in-place, groundwater has not been used, and Site use is consistent with land use restrictions (industrial).

List (List (of Tab of Figu		i iv iv v							
1.	Site Overview and Remedy Implementation									
2.	IC/E	C Compliance Report	2							
	2.1	INSTITUTIONAL CONTROLS - REQUIREMENTS AND COMPLIANCE	2							
	2.2	ENGINEERING CONTROLS - REQUIREMENTS AND COMPLIANCE	2							
		2.2.1 Existing Cover System	2							
		2.2.2 Sub-Slab Depressurization System	4							
		2.2.3 Gasketed Stormwater Conveyance Piping	4							
		2.2.4 ORC In-Situ Treatment	4							
		2.2.5 Groundwater Monitoring	5							
		2.2.6 Stormwater Pond Monitoring	5							
	2.3	IC/EC CERTIFICATION	5							
3.	Оре	rations, Maintenance, & Monitoring Plan Compliance Report	6							
	3.1	ANNUAL INSPECTION	6							
	3.2	GROUNDWATER MONITORING	6							
		3.2.1 Groundwater Elevation Data	6							
		3.2.2 Parameters of Interest	6							
	3.3	ORC WELL MAINTENANCE AND MONITORING	8							
	3.4	SUB-SLAB DEPRESSURIZATION SYSTEM OPERATIONS, MAINTENANCE, AND								
		MONITORING	8							
	3.5	STORMWATER POND MONITORING	9							
4.	Con	clusions and Recommendations	10							
Refe	rence	S	11							

List of Tables

Table No.	Title
I	Summary of Groundwater Analytical Results, July 2021
II	Summary of ORC In-Situ Remediation Well Field Parameter Measurements
Ш	Summary of Monitoring Well Field Parameter Measurements
IV	Summary of Groundwater Depth and Elevation
V	Stormwater Pond Monitoring Form, 2021-2022

List of Figures

Figure No.	Title
1	Project Locus
2	Site Plan
3	Groundwater Elevation Contour Plan – July 2021
4	Groundwater Parameters of Interest – July 2021
5	Groundwater Parameters of Interest – Historical Trends

List of Appendices

Appendix	Title
А	Institutional and Engineering Controls Certification Form
В	NYSDEC Correspondence
С	Annual Inspection Form
D	Photo Log – 2021-2022 PRR Monitoring Period
E	Soil Cover Map
F	ASD System Maintenance and Monitoring Documentation
G	ORC Well Inspection Forms
н	Groundwater Sampling Field Monitoring Forms
I	Groundwater Analytical Data – July 2021
J	Historical Groundwater Analytical Data Tables 2015-2021

1. Site Overview and Remedy Implementation

The Steelfields Area IV Brownfields Cleanup Program (BCP) Site, NYSDEC Site #C915204, comprises 30.91 acres of land located at 100 Rittling Boulevard in Buffalo, New York (See Figures 1 and 2) (the "Site"). Although initially part of a larger New York State Department of Environmental Conservation (NYSDEC) Voluntary Cleanup Program (VCP) site known as Steelfields (Site #V00619), the Site was remediated by the current Site owner, Hydro-Air Components, Inc. (Hydro-Air) under the BCP in 2006. Site development was completed in 2007 with the construction of an approximately 144,000 square foot manufacturing building and adjoining office space. Remaining portions of the Site include paved parking lots, a gravel road, landscaped areas, a stormwater retention pond, and seasonally vegetated areas. Soil and groundwater on some portions of the Site contain volatile organic compounds (VOCs), metals (primarily arsenic, chromium, and lead), and cyanide, associated with past use of the Site as the former Donner-Hanna Coke Storage Yard. Additionally, alkaline groundwater is known to exist in the northeastern corner of the Site, and acidic groundwater is known to exist in the western portion of the Site.

Soil and groundwater investigations were conducted at the Site between 1997 and 2005 as part of VCP activities. Following investigation, and entry of the Site in the BCP by Hydro-Air, a Site remedy was selected consisting of:

- Excavation and removal of soils contaminated with historical coking process wastes; backfilling; and placement of cover material;
- Use of Oxygen Release Compound (ORC) in designated Site groundwater wells to stimulate and enhance intrinsic bioremediation of residual VOCs in the soil and groundwater;
- Installation and operation of an active sub-slab depressurization system (ASD) in the Site building to mitigate the potential for impacted soil vapor intrusion into the indoor air space;
- Use of gasketed stormwater conveyance piping;
- Periodic monitoring; and,
- Annual inspections.

Also included as part of the remedy was the recording of an Environmental Easement on 21 December 2007 to establish institutional control requirements at the Site, including continued industrial use of the property, preventing use of groundwater at the Site without prior approval, and adherence to the Site Management Plan (SMP) for long-term management of the Site to maintain protection of human health and the environment as required by the NYSDEC. The NYSDEC approved the SMP dated November 2007, and its amendment dated 25 March 2014.

This report summarizes activities performed during the period 15 April 2021 through 14 April 2022.

2. IC/EC Compliance Report

2.1 INSTITUTIONAL CONTROLS - REQUIREMENTS AND COMPLIANCE

Site institutional controls (ICs) in the form of Environmental Easement are in effect at the Site. These restrictions include prohibition of groundwater use unless rendered safe for the intended purpose and land use restrictions (industrial use only). The Environmental Easement also stipulates that the Site is managed under a NYSDEC-approved SMP and requires periodic certification indicating that the Site engineering controls (ECs) remain in-place and continue to be protective.

The Site's Environmental Easement remained in force during the reporting period. Certifications are included in Appendix A.

2.2 ENGINEERING CONTROLS - REQUIREMENTS AND COMPLIANCE

There are six (6) ECs in place at the Site, which are as follows and further described in the sections below:

- 2.2.1 Existing Cover System
- 2.2.2 Sub-Slab Depressurization System
- 2.2.3 Gasketed Stormwater Conveyance Piping
- 2.2.4 ORC In-situ Treatment
- 2.2.5 Groundwater Monitoring
- 2.2.6 Stormwater Pond Monitoring

2.2.1 Existing Cover System

Potential direct exposure to residual contamination remaining at the Site is prevented by the existing cover system, which consists of the building slab, pavement, and one foot of clean gravel or clean soil and vegetative cover. The stormwater pond west of the Site building is also part of the cover system. The cover system is required to be maintained in accordance with the SMP. Excavations that breach the cover system require monitoring and soil management in accordance with the Excavation Work Plan appended to the SMP. In addition, should certain fill materials ever be imported onto the Site, they must be tested prior to Site use to demonstrate compliance with the requirements of the SMP. Fill materials were not imported to the Site during the reporting period. A copy of the post-remedial excavation soil cover map at the Site, as presented in the 2007 Final Engineering Report, is included in Appendix E.

2.2.1.1 Prevention of Groundwater Surfacing

Prior to 2010, groundwater that had been in contact with soils from beneath the cover system was observed accumulating in the northeastern loading dock area of the Site building (see Figure 2). Subsequent to corrective measures that were put into place per the NYSDEC-approved Corrective Measures Work Plan, groundwater has not accumulated in the northeastern loading dock area. The reconfiguration of the loading dock pump system (setting to automatic pumping and raising the float

set-point) has enabled sufficient pumping to maintain dry conditions and has sufficiently prevented the surfacing of groundwater in the area. Hydro-Air has continued to monitor the efficacy of these controls regularly throughout the reporting period.

Prior to 2012, evidence of surfacing groundwater from beneath the gravel cover areas on the northern end of the Site was evident (see Figure 2). As a voluntary corrective measure, the gravel cover on the northern portion of the access road was enhanced in 2012 by the placement of additional gravel (an additional 9 to 11 inches). In January 2021, standing water was observed in compacted areas on the gravel roadway between the Site building and northern Site boundary following a period of rainfall and snowmelt. The condition was likely related to the recent rainfall/snow melt/localized groundwater recharge. To limit the potential for future temporary ponding under similar conditions, Hydro-Air imported approximately 88 tons of #2 crushed limestone and elevated the compacted areas and regraded the roadway. Hydro-Air monitored the road conditions throughout the 2021-2022 reporting period and did not observe prolonged unanticipated standing water conditions.

2.2.1.2 Floor Cracking in Office Areas

During the previous 2020-2021 PRR inspection, floor cracks were observed in the walkway floor tiles within the western portions of the Site office areas. The cracks observed in the floor tiles also appeared to extend underneath adjacent carpeted flooring. In March 2022, Hydro-Air personnel removed selected linoleum floor tiles and adjacent carpeting to assess the condition of the underlying floor slab in the areas of cracking. Haley & Aldrich and Hydro-Air personnel observed unanticipated expansion joint separation, with selected joints open up to 5 inches below the concrete slab surface. The expansion joint separation appears to cause the overlying linoleum tiles to stretch and ultimately rip.

Hydro-Air personnel filled the exposed expansion joints with hydraulic cement and sealed the joint surfaces with self-leveling polyurethane caulk. Hydro-Air intends to continue monitoring the linoleum floors throughout the western office area.

Minor surficial floor cracks continue to be observed in select areas of the Site manufacturing space. These cracks do not appear to have expanded since the 2020-2021 PRR reporting period.

2.2.1.3 Site Fencing

During the previous 2020-2021 PRR inspection, chain link fencing along the western boundary of the Site was observed in disrepair. This observation was noted in the Environmental Inspection Form included in Appendix C of the 2020-2021 PRR. In the 24 May 2021 acceptance of the 2020-2021 PRR and IC/EC Certification, the NYSDEC requested the fencing be repaired, with the maintenance activities noted within the 2021-2022 PRR.

However, the Environmental Inspection Form utilized during the annual PRR inspections inadvertently misstated that, "In accordance with the Soil/Fill Management Plan, fencing is required to restrict access in all undeveloped areas..." In fact, Section 2.7 of the Soil/Fill Management Plan referenced in the Environmental Inspection Form specifies only that "fencing shall be temporarily erected and maintained as necessary by the building contractor to control access around utility trenches and other construction excavations." The erection and maintenance of a Site perimeter fence is not a Site engineering control listed in the SMP, other than as a temporary site access control during construction earthwork activities.

The chain link fencing along the western boundary of the Site was observed in disrepair during the 2021-2022 PRR inspection. According to Hydro-Air personnel, the fencing was not damaged by Hydro-Air, and may have been damaged during maintenance by others along the utility right-of-way corridor traversing the western Site boundary. The damaged fence continues to provide a substantial impediment to trespassers, and Hydro-Air personnel have not observed evidence of consistent trespassing along the western Site boundary.

Consistent with Section 2.7 of the Soil/Fill Management Plan, Hydro-Air will require any contractor disturbing site soil/fill to erect and maintain a temporary fence around utility trenches and other construction excavations. Hydro-Air does not anticipate any such activities during the 2022-2023 PRR period.

2.2.2 Sub-Slab Depressurization System

An active sub-slab depressurization (ASD) system was installed during 2006 Site building construction to mitigate the potential for soil vapor intrusion to occur. The ASD system consists of an 8-mil polyethylene vapor barrier and five assemblies strategically placed within the footprint of the Site building, each containing the following items: perforated pipe suction assembly, vertical piping vent stack and associated materials, exhaust fan, and magnehelic pressure gauge.

Based on continued presence of sub-slab vacuum and continuous system operation, the ASD system is operating as designed, and documentation for regular maintenance and monitoring is included in Appendix F. Refer to Section 3.2 below, for additional information, including updates provided within this Periodic Review Report and Annual Institutional & Engineering Controls Certification for 2021-2022 (2021-2022 PRR).

2.2.3 Gasketed Stormwater Conveyance Piping

In areas of the Site with known groundwater impacts, storm water injection (drywells) is prohibited, and storm water conveyance pipes and manholes are required to have gasketed joints for water tightness to prevent the infiltration of impacted groundwater from beneath the cover system into the collection system.

Activities that would have impacted the integrity of the gasketed joints of stormwater conveyance piping were not performed during the reporting period. Gasketed stormwater conveyance pipes therefore remain in-place as designed and installed. No new stormwater conveyance piping was installed during the reporting period.

2.2.4 ORC In-Situ Treatment

The in-situ treatment of residual contamination in remaining soils and groundwater using oxygen release compounds (ORC) is maintained and monitored in accordance with the SMP. The three designated ORC wells are inspected annually, and ORC is required to be replaced semi-annually in accordance with the SMP.

The ORC wells were inspected on 7 July 2021. The ORC wells are currently intact and operational, and the seals appear to have integrity. ORC was replaced in July 2021 and March 2022. Documentation for regular maintenance, monitoring, and ORC replacement is included in Appendix G. Waste ORC socks

were containerized at the Site facility and are awaiting disposal profiling and off-site disposal during the 2022-2023 PRR reporting period. The disposal receipt will be appended to the 2022-2023 PRR.

2.2.5 Groundwater Monitoring

Groundwater samples from five (5) monitoring wells and three (3) in-situ ORC remediation wells identified on Figures 2 and 3, are collected annually using low-flow purge and sampling methods as specified in the SMP. Water quality parameters are measured and recorded in the field during the low-flow purge using a flow-through cell and water quality meter. The following field parameters are measured in each monitoring and in-situ remediation well: pH, temperature, Oxidation-Reduction Potential (ORP), specific conductance, turbidity, dissolved oxygen, CO₂, alkalinity, and visual/olfactory observations. Static depth to groundwater is measured at each monitoring well prior to groundwater sample collection. Static groundwater elevations from July 2021 are shown on Figure 3.

Groundwater samples collected from the five (5) monitoring wells are analyzed for VOCs (Method 8260C), arsenic/chromium/lead (Method 6020B), cyanide (Method 9010C/9012B), and alkalinity (Method 2320B).

Long-term groundwater monitoring continues at the Site. Groundwater analytical data are included in Appendix I. Sampling documentation is included in Appendix H. Groundwater purged during the July 2021 sampling was containerized at the Site facility and is awaiting off-site disposal in 2022. The groundwater disposal receipt will be appended to the 2022-2023 PRR.

2.2.6 Stormwater Pond Monitoring

Hydro-Air staff collect water samples each month from four locations in the Site stormwater pond (see Figure 2 for monitoring locations) and take pH and temperature readings on the samples using a handheld probe. Readings are not collected when the pond is frozen. In accordance with the SMP, samples collected from the midpoint of the main pond and near the pond outlet pipe are combined in the field and analyzed as a composite sample. Stormwater pond sampling continues at the Site. Sampling data are included in Table V.

2.3 IC/EC CERTIFICATION

Based on site visits and interviews with site personnel, the IC/ECs are herein certified by Robert Daigler, designated representative of Hydro-Air Components, Inc., and Glenn M. White, CHMM working for Haley & Aldrich of New York on behalf of Hydro-Air Components, Inc. as the Qualified Environmental Professional. Refer to Appendix A for a copy of the appropriate certification documentation.

3. Operations, Maintenance, & Monitoring Plan Compliance Report

Monitoring activities conducted during this reporting period consisted of an annual inspection, annual groundwater sampling, ORC well inspection and replacement of ORC, review of sub-slab vacuum measurements of the ASD, and stormwater pond monitoring. Monitoring activities were conducted in accordance with the SMP. The results of the groundwater and stormwater pond quality monitoring, and operations, maintenance, and monitoring of the ORC wells and ASD are further described below.

3.1 ANNUAL INSPECTION

A Haley & Aldrich representative conducted an annual certification inspection of the Site on 7 March 2022, in accordance with the SMP. The Environmental Inspection Form summarizing observations is included in Appendix C, and representative Site photographs are included in Appendix D.

3.2 GROUNDWATER MONITORING

Groundwater monitoring was conducted in July 2021 and the results are presented on summary Tables I through IV, and Figures 3 through 5. Figure 3 presents the groundwater elevation contours for the date of sampling as well as approximate groundwater flow direction. Figure 4 is a posting map of the groundwater parameters of interest (benzene, arsenic, and cyanide). Figure 5 illustrates historical trends for the groundwater parameters of interest of interest using data from this monitoring period as well as historical monitoring periods.

The July 2021 groundwater samples were collected by NW Contracting of Alden, New York, and analyzed by Alpha Analytical, located in Westborough, MA. These laboratory data have been submitted as an EQuIS[®] electronic data deliverable (EDD) to the NYSDEC and the laboratory report is included in Appendix I. Groundwater sampling field forms are provided in Appendix H, and historical groundwater monitoring data tables from the period of 2015 through 2021, are presented in Appendix J.

3.2.1 Groundwater Elevation Data

The groundwater contour map included as Figure 3 was prepared using the static groundwater elevations measured at the 5 monitoring wells on 12 July 2021. Current and historical groundwater elevation data are including in Table IV. Due to anomalous groundwater elevation readings at the ORC wells (specifically mounding in the vicinity of A4-ORC-2), these elevations were excluded from contouring. Groundwater mounding around ORC wells A4-ORC-2 and A4-ORC-3 has been observed in prior years and may be influenced by backfilling in portions of the site. Consistent with previous monitoring periods, groundwater elevations indicate that shallow groundwater flow is generally to the southeast across the Site.

3.2.2 Parameters of Interest

The SMP indicates that groundwater quality parameters exceeding applicable NYSDEC Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations - Class GA – June 1998 (Class GA GWQS) for two consecutive events should be considered to be of interest. In 2007, benzene, ethylbenzene, naphthalene, toluene, lead, chromium, cyanide, and arsenic were parameters of interest at the Site. Currently, however, only benzene, cyanide, and arsenic remain parameters of interest per

the SMP. During the 2021 sampling, cyanide was elevated over Class GA GWQS at wells A4-MW-5R and A4-MW-9. Benzene was elevated over Class GA GWQS at wells A4-MW-5R, A4-MW-7R, A4-MW-8R, A4-MW-9, and A4-MW-10. Arsenic was elevated over Class GA GWQS at A4-MW-8R.

Concentrations for each parameter of interest measured in monitoring wells sampled in July 2021 are shown on Figure 4. Historical monitoring data and moving average trendlines for current parameters of interest at wells A4-MW-5R, A4-MW-7R, A4-MW-8R, A4-MW-9, and A4-MW-10 are shown on Figure 5.

3.2.2.1 A4-MW-5R

Cyanide remains a parameter of interest at monitoring well A4-MW-5R, where a concentration of 465 μ g/L was detected in July 2021. Cyanide concentrations have exceeded Class GA GWQS since 2007 and detected concentrations have fluctuated between 103 μ g/L and 920 μ g/L during this period (see Figure 5), resulting in a slight increasing trend over time. Benzene was detected in monitoring well A4-MW-5R at a concentration (7.1 μ g/L) above Class GA GWQS in July 2021. Benzene was detected above Class GA GWQS for two consecutive monitoring periods and is now a parameter of interest at monitoring well A4-MW-5R.

3.2.2.2 A4-MW-7R

Benzene is now considered a parameter of interest at monitoring well A4-MW-7R due to the detection of benzene above Class GA GWQS for two consecutive monitoring periods. Benzene was detected at a concentration of 140 μ g/L in August 2020, and 17 μ g/L in July 2021. Concentrations of other monitored parameters did not exceed Class GA GWQS in July 2021

3.2.2.3 A4-MW-8R

Benzene and arsenic remain parameters of interest at monitoring well A4-MW-8R, where concentrations of 13,000 μ g/L benzene and 25.08 μ g/L arsenic were detected in July 2021. Concentrations of benzene have exceeded Class GA GWQS for 16 consecutive monitoring periods. Benzene concentrations have generally decreased over time. Arsenic concentrations detected in July 2021 exceeded Class GA GWQS and have exceeded Class GA GWQS for 14 of the previous 15 monitoring periods. Arsenic concentrations have shown a stable to slightly decreasing trend over time.

3.2.2.4 A4-MW-9

Benzene and cyanide remain parameters of interest at well A4-MW-9. Concentrations of benzene (18 μ g/L) and cyanide (896 μ g/L) detected in July 2021 decreased from concentrations detected in August 2020 but continue to exceed Class GA GWQS.

3.2.2.5 A4-MW-10

Benzene is now considered a parameter of interest at well A4-MW-10 following its detection at concentrations exceeding Class GA GWQS for 2 consecutive monitoring periods. Benzene was detected in August 2020 (370 μ g/L) and July 2021 (9.3 μ g/L).

3.2.2.6 Trend Assessment

Within an overall decreasing trend since 2007, there were increases in cyanide concentrations at A4-MW-9 in the 2018 and 2020 sampling events. Although cyanide increased noticeably in 2020, it decreased in 2021. Another decreasing cyanide concentration in 2022 would suggest cyanide concentrations at A4-MW-9 are beginning to equilibrate, while another increase beyond the concentrations detected in 2020 would suggest at least a short-term increasing trend (still within an overall decreasing trend since 2007). Per the Shallow Groundwater Elevation Map attached as Figure 3, A4-MW-9 functions as an upgradient well reflecting conditions emanating from off-site on the adjacent Steelfields III site.

Benzene concentrations in every groundwater sample increased significantly in 2020, and then in 2021, decreased in every well except A4-MW-8R. Particularly in A4-MW-7R and A4-MW-10, the 2020 results appear anomalously high, and perhaps not coincidentally, correspond to a change in sampling contractor and analytical laboratory. The current and previous sampling and analytical contractors have used similar methods and analytical techniques in accordance with the SMP. Currently, we cannot identify a readily apparent cause for the increasing benzene trend trends at A4-MW-7R, A4-MW-10, & A4-MW-5R. As with the general decreasing trends in cyanide in A4-MW-9 since 2007, the recent increases in benzene concentrations at A4-MW-7R, A4-MW-10, & A4-MW-5R rely largely on the results from the 2020 and 2021 sampling events and occur within overall declining trends since 2007. The results of the next two events will be integral for determining trends for both cyanide in A4-MW-9 and benzene in A4-MW-7R, A4-MW-8R, A4-MW-10, and A4-MW-5R.

Groundwater monitoring activities will continue in the future following the annual schedule in accordance with the SMP. The next groundwater sampling event is tentatively scheduled for July 2022.

3.3 ORC WELL MAINTENANCE AND MONITORING

The ORC[®] socks were replaced on 7 July 2021 and 17 March 2022. The three ORC[®] wells were monitored during the annual sampling event on 7 July 2021, in accordance with the SMP. The ORC wells are currently intact and operational, and the seals appear to have integrity.

ORC field parameter monitoring results are presented in Table II. The pH in the ORC wells continues to fluctuate. The pH at A4-ORC-1 increased slightly between August 2020 and July 2021 (from 3.61 to 3.66). The pH at A4-ORC-2 increased (from 3.17 to 3.21). The pH at A4-ORC-3 decreased (from 5.13 to 4.09). Overall, the pH within the three ORC[®] wells continues to remain low, and as a result of the low pH conditions, the ORC[®] is likely being inhibited from enhancing biodegradation of residual contaminants.

Note that the groundwater monitoring wells tested surround the Tar/Blue Soil Fill Excavation Limits where the ORC socks have been placed. The pH of the groundwater in the surrounding monitoring wells tested ranged from 6.55 to 7.47.

3.4 SUB-SLAB DEPRESSURIZATION SYSTEM OPERATIONS, MAINTENANCE, AND MONITORING

The ASD system continuously operates at the Site and is monitored monthly by Hydro-Air staff, who record the system vacuum readings and operations data on the maintenance form provided in the

NYSDEC-approved SMP. These data are available on-site. The ASD system and monitoring documentation for the reporting period is provided in Appendix F.

The ASD system was evaluated on 7 March 2022 by Haley & Aldrich as part of the annual Site inspection. The evaluation included confirmation of vacuum measurements at the five (5) existing monitoring points located within the facility. Overall, the ASD system operation is consistent with prior operations, and is operating acceptably and consistent with its intended function, design and construction.

Although apparently not adversely impacting sub-slab vacuum, cracks continue to be observed (see the photo log in Appendix D) in the linoleum tile and underlying concrete slab in the western portions of the Hydro-Air offices. Cracks observed during the previous 2020-2021 PRR reporting period appeared to extend underneath adjacent carpeted flooring. In March 2022, during the 2021-2022 PRR reporting period, Hydro-Air personnel removed selected linoleum floor tiles and adjacent carpeting to assess the condition of the underlying floor slab. Haley & Aldrich and Hydro-Air personnel observed unanticipated expansion joint separation, with selected joints open up to 5 inches below the concrete slab surface. Hydro-Air personnel filled the expansion joints hydraulic cement and sealed the joint surfaces with self-leveling polyurethane caulk. Hydro-Air intends to continue monitoring the linoleum floors throughout the office areas and will seal cracks if the linoleum rips and cracks greater than ¼-inch appear.

3.5 STORMWATER POND MONITORING

Site stormwater pond water quality (pH and temperature) conditions were monitored monthly at four sampling locations (see Figure 2) by Hydro-Air staff. Stormwater pond monitoring data are summarized in Table V. The results of the pond monitoring appear generally consistent with the findings from previous sampling events, and measured pH values within the Northern Embayment and Main Pond did not exceed NYSDEC TOGS 1.1.1 ambient water quality guidance values of pH 8.5 (guidance value) during the PRR monitoring period.

Throughout the 2021-2022 PRR monitoring period, pH measured at the Discharge Pipe sampling location ranged from 10.0 to 12.0, exceeding the guidance value during each sampling event. However, because neither the Northern Embayment nor Main Pond samples exceeded the guidance value during the reporting period, precautionary measures to mitigate potential for an inadvertent exposure to pond water, as described in the SMP, are not needed.

4. Conclusions and Recommendations

The following are conclusions and recommendations for the Site from the results of monitoring activities completed during the reporting period:

- The engineering controls (groundwater monitoring, existing cover system, ASD system, ORC wells) were operated and maintained during the reporting period. During the reporting period linoleum tiles and carpeting in selected office areas of the Hydro-Air building were removed and revealed several locations with unanticipated expansion joint separation in the underlying concrete floor slab. These expansion joints represented potential vapor intrusion pathways. Hydro-Air personnel filled and sealed these expansion joints. Hydro-Air intends to continue monitoring the linoleum and carpeted floors throughout the western office area and will seal cracks if the linoleum flooring rips and cracks greater than ¼-inch appear.
- The Environmental Easement remains in place. Groundwater has not been used at the Site during the reporting period. Site land use has remained for industrial use only during the reporting period.
- Groundwater monitoring results indicate benzene, cyanide and arsenic continue to remain parameters of interest at selected Site groundwater monitoring wells.

References

- 1. Division of Water Technical and Operational Guidance Series (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations, prepared by NYSDEC, dated June 1998.
- 2. Final Engineering Report for Hydro-Air Components, Inc., Former Steelfields Area IV, Voluntary Cleanup Program & Brownfields Cleanup Program, NYSDEC BCP Site #C915204, prepared by TurnKey Environmental Restoration, LLC., dated November 2007.
- 3. Site Management Plan for Hydro-Air Components, Inc., Former Steelfields Area IV Parcel, Brownfields Cleanup Program, NYSDEC Site #C915204, prepared by TurnKey Environmental Restoration, LLC., dated November 2007, amended 25 March 2014.

TABLES

TABLE I SUMMARY OF GROUNDWATER ANALYTICAL RESULTS HYDROAIR COMPONENTS, INC BUFFALO, NEW YORK

Location	Ambient Water	A4-MW-10	A4-MW-5R	A4-MW-7R	A4-MW-8R	A4-MW-9
Sample Date	Quality Standards	07/12/2021	07/12/2021	07/12/2021	07/12/2021	07/12/2021
Inorganic Compounds (ug/L)						
Arsenic, Total	25	4.33	8.2	3.64	25.08 ^[A]	8.58
Chromium, Total	50	0.42 J	0.77 J	1.95	0.74 J	1.37
Cyanide, Total	200	43	465 ^[A]	147	106	896 ^[A]
Lead, Total	25	0.67 J	0.36 J	ND (1)	ND (1)	ND (1)
Other						
Alkalinity, Total (as mg CaCO3/L)	-	709	438	258	645	390
Volatile Organic Compounds (ug/L)						
1,2,4-Trimethylbenzene	5	ND (2.5)	ND (2.5)	ND (2.5)	ND (250)	ND (2.5)
1,3,5-Trimethylbenzene	5	ND (2.5)	ND (2.5)	ND (2.5)	ND (250)	ND (2.5)
2-Phenylbutane (sec-Butylbenzene)	5	ND (2.5)	ND (2.5)	ND (2.5)	ND (250)	ND (2.5)
Benzene	1	9.3 ^[A]	7.1 ^[A]	17 ^[A]	13000 ^[A]	18 ^[A]
Cymene (p-lsopropyltoluene)	-	ND (2.5)	ND (2.5)	ND (2.5)	ND (250)	ND (2.5)
Ethylbenzene	5	ND (2.5)	ND (2.5)	ND (2.5)	ND (250)	ND (2.5)
Isopropylbenzene (Cumene)	5	ND (2.5)	ND (2.5)	ND (2.5)	ND (250)	ND (2.5)
m,p-Xylenes	5	ND (2.5)	ND (2.5)	ND (2.5)	ND (250)	ND (2.5)
Methyl Tert Butyl Ether (MTBE)	10	ND (2.5)	ND (2.5)	ND (2.5)	ND (250)	ND (2.5)
Naphthalene	10	ND (2.5)	ND (2.5)	ND (2.5)	ND (250)	ND (2.5)
n-Butylbenzene	5	ND (2.5)	ND (2.5)	ND (2.5)	ND (250)	ND (2.5)
n-Propylbenzene	5	ND (2.5)	ND (2.5)	ND (2.5)	ND (250)	ND (2.5)
o-Xylene	5	ND (2.5)	ND (2.5)	ND (2.5)	ND (250)	ND (2.5)
tert-Butylbenzene	5	ND (2.5)	ND (2.5)	ND (2.5)	ND (250)	ND (2.5)
Toluene	5	ND (2.5)	0.72 J	ND (2.5)	ND (250)	ND (2.5)

Notes:

Notes: 1. Results in **bold** were detected. 2. [A] - Results in **red** exceed NYSDEC Ambient Water Quality Standards and Guidance Values - Class GA – June 1998 3. ND - Not detected above the reporting limit J - Estimated value

TABLE II SUMMARY OF ORC IN-SITU REMEDIATION WELL FIELD PARAMETER MEASUREMENTS HYDRO-AIR COMPONENTS, INC BUFFALO, NEW YORK

Location	Sample Date	Parameter (Unit):	Conductivity (µS)	Dissolved Oxygen (mg/L)	Oxidation Reduction Potential (mV)	pH (s.u.)	Temperature (Deg C)	Turbidity (NTU)	Alkalinity (mg/L)	Appearance (visual)
	7/12/2007	r aramotor (onit).	3110	8.15	235	2.34	22.9	190	38	brown
	2/4/2008		36600	10.49	155	3.78	3.3	23.1	170	yellow-brown
	6/3/2008		34500	7.26	209	3.49	13.6	176	-	yellow-brown
	6/26/2009		28000	1.55	330	5	17	6.17	_	amber
	6/29/2010		28300	0.44	344	4.07	18	9		dark amber
	6/28/2011		27300	0.54	58	3.5	17.8	8.2	_	amber
	7/6/2012		26800	0.49	190	2.9	19.9	2.46	_	amber
	7/2/2012		27400	0.49	267	3.01	18.6	3.2	-	amber
A4-ORC-1	6/3/2014		82790	0.84	-41	6.13	17.1	33.1	-	amber
	6/26/2014		22000	0.04	250	2.93	18.6	1.17	-	amber
	6/23/2015		22000	0.95	230	2.93	16	2.6	-	
	6/23/2017		23500	0.78	178	2.83		0.82	-	amber
	6/26/2018		23500	0.81	39	2.83 5.7	17.1 16.9	2.53	-	amber amber
	12/19/2019		26370	3.64	217	5.21	5.6	2.55 7.9	-	-
								235	- 1000	
	8/6/2020		22400	1.36	188 220	3.61	20.54			-
	7/7/2021 7/12/2007		25800 3880	6.1 9.05	383	3.66 1.96	14.43 19.1	14.3 130	0	-
					363				0	brown -
	2/4/2008		41700	0.33		1.73	6.4	99.8	-	
	6/3/2008 6/26/2009		46500 34500	7.78	387 466	1.72 4.31	14.2	62.3 50.8	-	dark brown
				1		-	16.1		-	tan/amber
	6/29/2010		40000	0.46	443 352	2.64	17.5	5.01	-	amber
	6/28/2011		17800	0.34		2.3	16	29.1	-	amber
	7/6/2012		27500	0.53	388	1.4	20.1	11.63	-	dark amber
A4-ORC-2	7/2/2013		27300	0.32	461	1.81	17.84	18.6	-	amber
	6/3/2014		298800	-0.5	398	2.37	16	19.7	-	amber
	6/26/2015		32100	0.65	355	2.14	17.9	3.27	-	amber
	6/23/2016		34590	0.56	288	3.09	16.6	3.91	-	amber
	6/23/2017		22100	0.56	210	2.68	17.8	0.65	-	amber
	6/26/2018		20580	0.46	318	3.91	16.9	4.8	-	amber
	12/19/2019		23110	4.32	389	2.95	4.8	13.7	-	orange tint
	8/6/2020		27200	0.24	281	3.17	21.93	204	1000	-
	7/7/2021		39400	3.35	238	3.21	17.42	21.8	0	-
	7/12/2007		3440	9.99	140	2.71	17.9	780	56	brown
	2/4/2008		39700	5.53	263	3.25	7.2	>800	357	-
	6/3/2008		38200	1.05	235	3.45	11.7	92.7	-	yellow-brown
	6/25/2009		32900	0.47	134	5.39	19.72	152	-	orange
	6/29/2010		28000	1.63	174	5.55	15.6	248	-	orange
	6/28/2011		28800	1.95	174	5.75	15.3	87.5	-	orange
	7/6/2012		26900	1.38	296	3.89	18.5	68.9	-	orange
A4-ORC-3	7/2/2013		19700	0.35	302	4.96	20.5	39	-	amber
	6/3/2014		263200	0.23	241	3.4	17.2	4.7	-	amber
	6/26/2015		21490	0.25	217	4.02	17.5	6.73	-	amber
	6/23/2016		23900	0.2	127	4.07	16	1.7	-	amber
	6/23/2017		21400	0.49	110	5.38	17.2	2.72	-	amber
	6/26/2018		28270	0.13	239	3.21	17.8	1.95	-	amber
	12/19/2019		24270	1.99	41	5.57	7.4	1297	-	red/orange
	8/6/2020		14100	0.85	145	5.13	23.02	201	1000	-
	7/7/2021		17400	8.42	259	4.09	16.28	356	180	-

Notes:

Notes:
1. EnSol Environmental Solutions, Ltd. conducted the 25 June 2007 sampling event.
2. Haley & Aldrich completed the February and June 2008 groundwater monitoring events.
3. TestAmerica Buffalo conducted the 25-26 June 2009, 28-29 June 2010, 28-29 June 2011, 5-6 July 2012, 1-2 July 2013, 2-3 June 2014, 25-26 June 2015, 22-23 June 2016, 22-23 June 2017, 25-26 June 2018, and 19 December 2019 sampling events. NW Contracting conducted the August 2020 and July 2021 sampling events.
4. This table has been adapted from the Draft First Semi-Annual Long-Term Groundwater Monitoring Report (June 2007) by Benchmark Environmental Engineering & Science, PLLC.

5. - indicates not analyzed.

TABLE III SUMMARY OF MONITORING WELL FIELD PARAMETER MEASUREMENTS HYDRO-AIR COMPONENTS, INC BUFFALO, NEW YORK

		Parameter (Unit):	Conductivity (µS)	Dissolved Oxygen (mg/L)	Oxidation Reduction Potential (mV)	pH (s.u.)	Temperature (Deg C)	Turbidity (NTU)	Alkalinity (mg/L)	Carbon Dioxide (mg/L)	Appearance (visual)
Location	Sample Date	Class GA GWQS/GV:	na	na	na	6.5-8.5	na	na	na	na	na
	6/25/2007		2265	-	70	6.55	15.9	36	-	-	clear
	6/25/2007		2287	-	74	6.61	17.4	22.5	-	-	clear
	2/1/2008		2740	0.41	-73	6.8	6.3	13.5	765	170	-
	6/2/2008		3090	0.37	-142	6.71	12.3	9.4	660	490	orange tint
	6/25/2009		1920	0.3	-48	6.82	16.87	5.86	629	155	It.brown tint
	6/28/2010		2390	0.37	-39	7.36	18.1	6.42	780	25	tan tint
	6/28/2011		2590	0.65	-183	7.2	15.5	3.2	680	700	slight yellow tint
	7/5/2012		2570	0.92	-22	6.77	19.07	1.36	884	50	-
A4-MW-5R	7/1/2013		8240	0.53	-7	6.14	15.5	3.9	289	42	-
	6/2/2014		858	0.68	37	7.05	16.4	4.41	357	42.5	-
	6/25/2015		1541	0.67	-73	7.18	15.3	2.86	-	125	-
	6/22/2016		1547	0.74	57	7.27	15.2	3.77	-	160	-
	6/22/2017		1022	0.79	142	6.63	15.7	3.29	-	120	-
	6/25/2018		1234	3.2	35	7.39	18	1.8	-	220	-
	12/19/2019		696	6.26	-6	7.43	9.4	3.7	-	-	clear
	8/7/2020		886	0.4	-66	6.15	20.61	0	550	-	slight gray
	7/12/2021		869	4.24	-89	7.47	15.13	1.4	397	192	-
	6/25/2007		3276	-	-73	6.17	18	61	-	-	cloudy
	6/25/2007		3150	-	-98	6.33	18.1	21.6	-	-	-
	1/31/2008		3280	0.59	-146	6.93	6.5	31.2	340	260	-
	6/2/2008		4290	0.35	-91	5.97	11.4	29.8	280	0	orange tint
	6/25/2009		3740	0.15	-40	6.31	18.34	19.3	323	425	yellow tint
	6/28/2010		4950	0.11	7	6.02	15.8	15.04	420	445	yellow tint
	6/28/2011		4950	0.22	-82	5.85	16.6	9.5	400	375	slight sheen in bucket
	7/5/2012		4990	0.45	4	5.23	19.4	6.17	289	375	sheen
A4-MW-7R	7/1/2013		4946	0.34	12	4.76	16.02	13.9	289	389	-
	6/2/2014		4726	0.33	-37	5.61	14.6	16.45	221	275	-
	6/25/2015		3395	0.31	-5	5.67	13.6	3.58	-	275	-
	6/22/2016 6/22/2017		5200 3086	0.17	-30 -29	7.1 6.49	14.1	2.9 3.26	-	300 290	-
	6/26/2018		5066 5105	0.14 0.27	-29 -21	6.49 7.12	14.4 12.5	3.26 0.78	-	290 305	-
	12/19/2019		4507	3.16	-21	5.83	13.5 8.9	0.78 16.5	-	- 305	- clear
	8/6/2020		3390	0.43	0.49	5.69	15.8	0	- 310	-	-
	7/12/2021		2600	3.16	-74	6.6	13.38	0	323	200	_
	6/25/2007		4102	-	-50	6.38	17.3	79	-	-	cloudy
	6/25/2007		4001	-	-50 -65	6.47	18.4	43.6	_	-	cloudy
	1/31/2008		4630	0.67	-78	6.31	7	40.0 84.6	748	0	-
	6/2/2008		4840	0.32	-68	6.02	12.5	27.5	600	0	clear
	6/26/2009		4670	0.26	56	6.5	16.3	8.54	816	550	clear
	6/28/2010		4730	0.14	-22	6.51	18.8	3.88	840	75	clear
	6/28/2011		4650	0.37	-67	6.84	17	1.5	920	160	clear
	7/5/2012		4510	0.34	-35	5.87	19.5	4.2	799	195	-
A4-MW-8R	7/1/2013		3490	0.21	-6	5.69	15.68	1.9	765	175	-
	6/2/2014		3087	0.71	-	6.49	16.6	18.91	714	175	-
	6/25/2015		4188	0.71	-40	6.34	15.2	3.14	-	180	-
	6/22/2016		4767	0.48	-32	6.59	13.4	1.93	-	195	-
	6/22/2017		2965	0.49	-39	6.51	14	2.66	-	210	-
	6/25/2018		4633	3.96	-65	6.45	16.4	4.12	-	210	-
	12/19/2019		4543	5.21	-35	7.12	8.4	4.4	-	-	clear
	8/7/2020		4630	1.3	-49	5.53	15.07	0	760	-	slight gray
	7/12/2021		3980	3.85	-57	6.55	12.81	0.5	929	156	slight yellow

TABLE III SUMMARY OF MONITORING WELL FIELD PARAMETER MEASUREMENTS HYDRO-AIR COMPONENTS, INC BUFFALO, NEW YORK

		Parameter (Unit):	Conductivity (µS)	Dissolved Oxygen (mg/L)	Oxidation Reduction Potential (mV)	pH (s.u.)	Temperature (Deg C)	Turbidity (NTU)	Alkalinity (mg/L)	Carbon Dioxide (mg/L)	Appearance (visual)
Location	Sample Date	Class GA GWQS/GV:	na	na	na	6.5-8.5	na	na	na	na	na
	6/25/2007		11150	-	207	3.99	18.5	383	-	-	turbid
	6/25/2007		11200	-	206	3.96	18.3	69.3	-	-	turbid
	1/31/2008		8280	0.95	127	4.23	6.4	36.7	68	0	-
	6/2/2008		11900	7.93	157	3.9	11.4	10.9	60	0	clear
	6/26/2009		9490	0.2	137	5.91	15.7	10.05	34	300	yellow tint
	6/28/2010		8700	0.1	83	4.53	17.6	4.92	31	315	yellow tint
	6/28/2011		3440	0.24	-42	5.85	18.1	5	40	513	clear
	7/5/2012		4820	0.29	-23	5.15	21.2	18.9	68	581	-
A4-MW-9	7/1/2013		14400	0.12	-20	6.31	15.63	5.23	542	289	-
	6/2/2014		1692	0.71	-93	7.15	14.1	12.99	187	542	-
	6/25/2015		1962	0.7	-139	7.48	15.8	2.06	-	485	-
	6/22/2016		2187	0.54	-41	7.71	14.3	3.54	-	495	-
	6/22/2017		2006	0.57	-18	7.36	14.6	3.18	-	285	-
	6/25/2018		4035	2.29	-87	6.8	14.5	2.22	-	525	-
	12/19/2019		1321	6.27	-72	8.63	6.2	8.4	-	-	orange tint
	8/7/2020		4290	0.33	-68	5.8	19.75	2.5	650	-	gray tint
	7/12/2021		3230	8.01	-103	6.91	12.91	0.4	491	206	-
	6/25/2007		3009	-	-81	6.73	16.7	16.9	-	-	clear
	6/25/2007		2931	-	-91	6.88	18.4	22.8	-	-	clear
	6/2/2008		3140	0.46	-24	6.4	11.1	43	560	422	clear
	6/25/2009		2400	0.15	-5	6.65	17	10.8	969	505	clear
	6/28/2010		2110	0.1	-38	7.13	18	7.5	1100	45	clear
	6/28/2011		2340	0.33	-98	6.88	16.1	5.3	1160	65	clear
	7/5/2012		2440	0.39	-56	6.41	19.5	6.54	1105	55	-
A4-MW-10	7/1/2013		2820	0.46	7	6.04	14.81	6.5	2773	55	-
A+-WW-10	6/2/2014		2317	0.39	-111	7.04	17.9	1.68	1105	47	-
	6/25/2015		2440	0.4	-79	6.9	13.1	1.54	-	195	-
	6/22/2016		2986	0.27	-71	7.23	13	0.98	-	200	-
	6/22/2017		2883	0.26	-14	6.82	16.1	3.89	-	210	-
	6/25/2018		3307	3.56	-79	7	16.3	4.86	-	600	-
	12/19/2019		3172	4.35	-49	6.88	7.5	40.6	-	-	orange tint
	8/6/2020		1960	0.53	-80	6.19	14.93	12.9	1030	-	clear
	7/12/2021		1310	2.66	-101	7.4	13.47	2.9	824	570	-

Notes:

1. Benchmark Environmental Engineering & Science conducted the 25 June 2007 sampling event.

2. Haley & Aldrich completed the February and June 2008 groundwater monitoring events.

3. TestAmerica Buffalo conducted the 25-26 June 2009, 28-29 June 2010, 28-29 June 2011, 5-6 July 2012, 1-2 July 2013, 2-3 June 2014, 25-26 June 2015, 22-23 June 2016, 22-23 June 2017, 25-26 June 2018, and 19 December 2019 sampling events. NW Contracting conducted the August 2020 and July 2021 sampling events.

4. NYSDEC Class "GA" Groundwater Quality Standards (GWQS) as published in NYSDEC Ambient Water Quality Standards/Guidance Values and Groundwater Effluent Limitations (June 1998).

5. na indicates no Class GA GWQS or GV has been established for this compound.

6. - indicates not analyzed.

7. **Bold** results indicate results outside the range of the GWQS/GV.

8. This table has been adapted from the Draft First Semi-Annual Long-Term Groundwater Monitoring Report (June 2007) by Benchmark Environmental Engineering & Science, PLLC

TABLE IV SUMMARY OF GROUNDWATER DEPTH AND ELEVATION HYDRO-AIR COMPONENTS, INC BUFFALO, NEW YORK

		AREA IV - Monitoring Wells								AREA IV - In-Situ Remediation Wells						
Monitoring Location	A4-MW-5R A4-MW-7R			A4-MW-8R A4-MW-9			A4-N	A4-MW-10 A4-ORC-1		A4-ORC-2		A4-ORC-3				
TOR Elevation ¹ (fmsl)	584	4.23	584	4.95	58	6.53	58	587.1		586.55		4.75	585.11		585.06	
Total Depth ² (fbTOR)	1	1.2	1;	3.6	1	5.2	1:	3.5	15	5.55	14	4.4	14.62		14.3	
	DTW	GW Elev	DTW	GW Elev	DTW	GW Elev	DTW	GW Elev	DTW	GW Elev	DTW	GW Elev	DTW	GW Elev	DTW	GW Elev
June/July 2007	4.89	579.34	4.36	580.59	5.51	581.02	7.73	579.37	7.15	579.4	9.27	575.48	6	579.11	6.68	578.38
Jan/Feb 2008	4.47	579.76	3.52	581.43	5.42	581.11	5.8	581.3	NM	NM	4.53	580.22	6.27	578.84	5.25	579.81
June 2008	4.69	579.54	3.85	581.1	5.3	581.23	6.11	580.99	6.7	579.85	3.97	580.78	3.87	581.24	4.66	580.4
June 2009	4.64	579.59	3.72	581.23	5.16	581.37	6.56	580.54	6.96	579.59	4.39	580.36	2.82	582.29	5.16	579.9
June 2010	4.4	579.83	3.28	581.67	4.6	581.93	4.58	582.52	6.29	580.26	2.6	582.15	1.92	583.19	3.57	581.49
June 2011	4.38	579.85	3.18	581.77	4.49	582.04	4.39	582.71	5.69	580.86	2.65	582.1	0.96	584.15	3.55	581.51
July 2012	5.11	579.12	4.52	580.43	8.2	578.33	4.39	582.71	8.41	578.14	4.66	580.09	2.08	583.03	5.82	579.24
July 2013	4.5	579.73	3.62	581.33	3.74	582.79	4.45	582.65	6.08	580.47	2.91	581.84	1.23	583.88	3.55	581.51
June 2014	4.61	579.62	3.73	581.22	4.99	581.54	4.87	582.23	6.37	580.18	3.53	581.22	1.52	583.59	2.9	582.16
June 2015	4.71	579.52	3.64	581.31	4.98	581.55	4.92	582.18	6.3	580.25	3.53	581.22	1.52	583.59	2.9	582.16
June 2016	4.93	579.3	4.36	580.59	5.73	580.8	6.51	580.59	8.13	578.42	4.65	580.1	2.24	582.87	5.62	579.44
June 2017	4.63	579.6	3.89	581.06	5.24	581.29	5.61	581.49	7.08	579.47	3.81	580.94	1.37	583.74	5.28	579.78
June 2018	4.61	579.62	3.5	581.45	4.89	581.64	5.62	581.48	6.38	580.17	4.95	579.8	1.18	583.93	3.81	581.25
Dec 2019	4.32	579.91	3.05	581.9	4.54	581.99	3.95	583.15	5.7	580.85	2.94	581.81	3.41	581.7	3.03	582.03
Aug 2020	5	579.23	3.6	581.35	5	581.53	6.05	581.05	6.65	579.9	4.42	580.33	1.5	583.61	6	579.06
July 2021	4.81	579.42	3.38	581.57	5	581.53	6.08	581.02	5.99	580.56	4.48	580.27	1.18	583.93	5.92	579.14

Notes:

1. Elevations at most wells were surveyed on June 5, 2007 and at A4-MW-5R on August 1, 2007 by Niagara Boundary.

2. Total depths measured in July 2021 by NW Contracting personnel.

3. DTW measurements were obtained on January 31, 2008, February 1, 2008, February 4, 2008, June 2, 2008 and June 3, 2008 by Haley & Aldrich of New York, based on surveyed well elevations.

4. June/July 2007 DTW measurements were obtained by Benchmark Environmental Engineering & Science and EnSol Environmental Solutions, Ltd. based on surveyed well elevations.

5. DTW measurements were obtained on June 25, 2009, June 28, 2010, June 28, 2011, July 5, 2012, July 1, 2013, June 2, 2014, June 25, 2015, June 22, 2016, June 22, 2017, 25-26 June 2018, and December 2019 by Test America Buffalo, based on surveyed well elevations.

6. DTW measurements were obtained in August 2020 and July 2021 by NW Contracting.

7. This table has been adapted from the Draft First Semi-Annual Long-Term Groundwater Monitoring Report (June 2007) by Benchmark Environmental Engineering & Science, PLLC.

8. DTW measured in fb TOR. GW Elev shown in (fmsl).

Definitions:

DTW = depth to waterGW Elev = Groundwater Elevationfmsl = feet above mean sea levelORC = oxygen releasing compoundfbTOR = feet below top of riserR = replacement wellTOR = top of riserCRC = oxygen releasing compound

Table V - 2021-2022 PRR - Stormwater Pond Monitoring Form Hydro-Air Components, Inc. BCP Site #C915204, Buffalo, New York

In accordance with the Corrective Measures Report (dated 14 December 2012) and the Revised Site Management Plan (dated 25 March 2014) the following pond paramaters have been monitored:

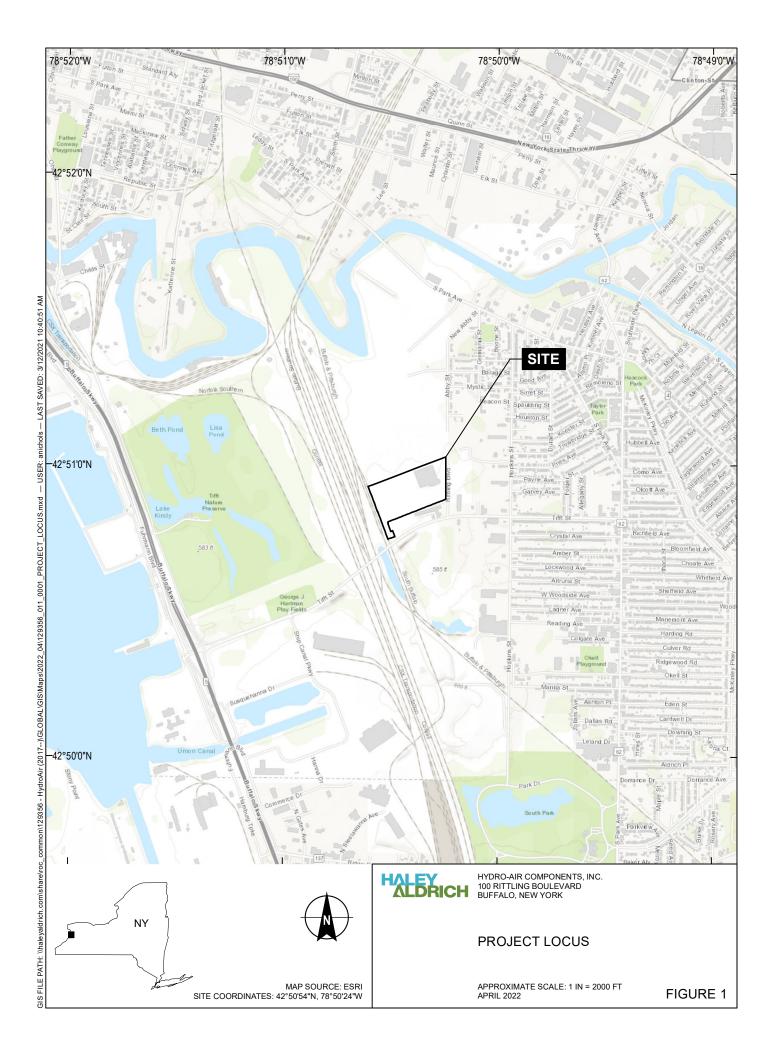
			Estimated Quantity of Water Discharged (Gallons) ³							
Data Collection Completed By:	Date of Measurment (DD/MM/YR)	Time of Measurement		Discharge Pipe		Northern Embayment			(Combined	Conditions at Pond (color, vegetation, odor, frozen,
completed by.				рН	Temp (F)	рН	Temp (F)	рН	Temp (F)	etc.)
Dale Barto	4/27/2021	6:45 AM	88,820	11.00	46	7.10	45	6.00	45	Clear
Dale Barto	5/25/2021	9:00 AM	81,090	12.00	77	7.00	73	6.50	70	Clear
Dale Barto	6/30/2021	9:00 AM	56,470	10.00	73	7.00	72	7.50	77	Clear
Dale Barto	7/28/2021	9:30 AM	102,800	12.00	67	6.00	67	6.50	68	Clear
Dale Barto	8/26/2021	9:00 AM	85,800	10.0	77	6.0	78	7.0	78	Clear
Dale Barto	9/30/2021	12:00 PM	112,000	11.0	64	6.0	58	6.5	62	Clear
Dale Barto	10/30/2021	9:00 AM	172,600	10.0	52	6.0	53	8.0	52	Clear
Dale Barto	11/29/2021	8:00 AM	197,300							Frozen
Dale Barto	12/22/2021	9:00 AM	177,300							Frozen
Dale Barto	1/31/2022	9:00 AM	204,000							Frozen
Dale Barto	2/22/2022	9:00 AM	481,600							Frozen
Dale Barto	3/28/2022	9:30 AM	177,300							Frozen
	Total Reporting	Period Discharge:	1,937,080							

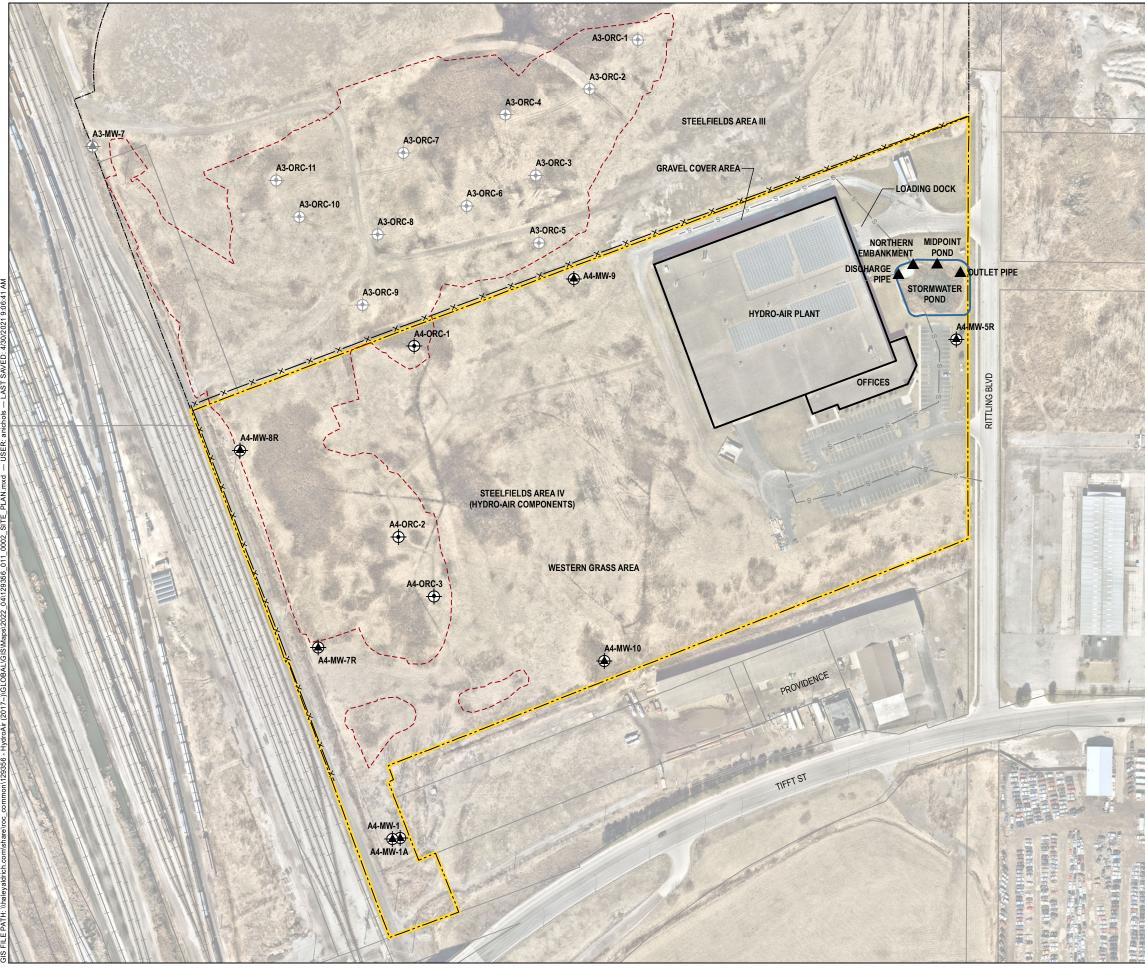
All pH values will be evaluated against the NYSDEC TOGS 1.1.1 ambient water quality guidance value of pH 8.5 selected for protection of public health. Exceedance of the guidance value (8.5) for > 3 consecutive monitoring events (combined sample) will trigger enhancements as descirbed in Section IV of the SMP.

Notes or Other Observations:

1. Combined sample represents the combination of the sample point at the midpoint of the main pond and the sample point near the pond outlet pipe

of the main pond. These pond samples are combined in the field to provide a representative pH value for the main pond area.


If separate measurments are recorded for the main pond and outlet pipe, the measurement values are averaged.


2. pH measurements were collected using a hand-held probe.

3. Water discharged is measured using a Keyence FD-Q clamp-on flow sensor. Presented values represent monthly totals reported by HydroAir personnel.

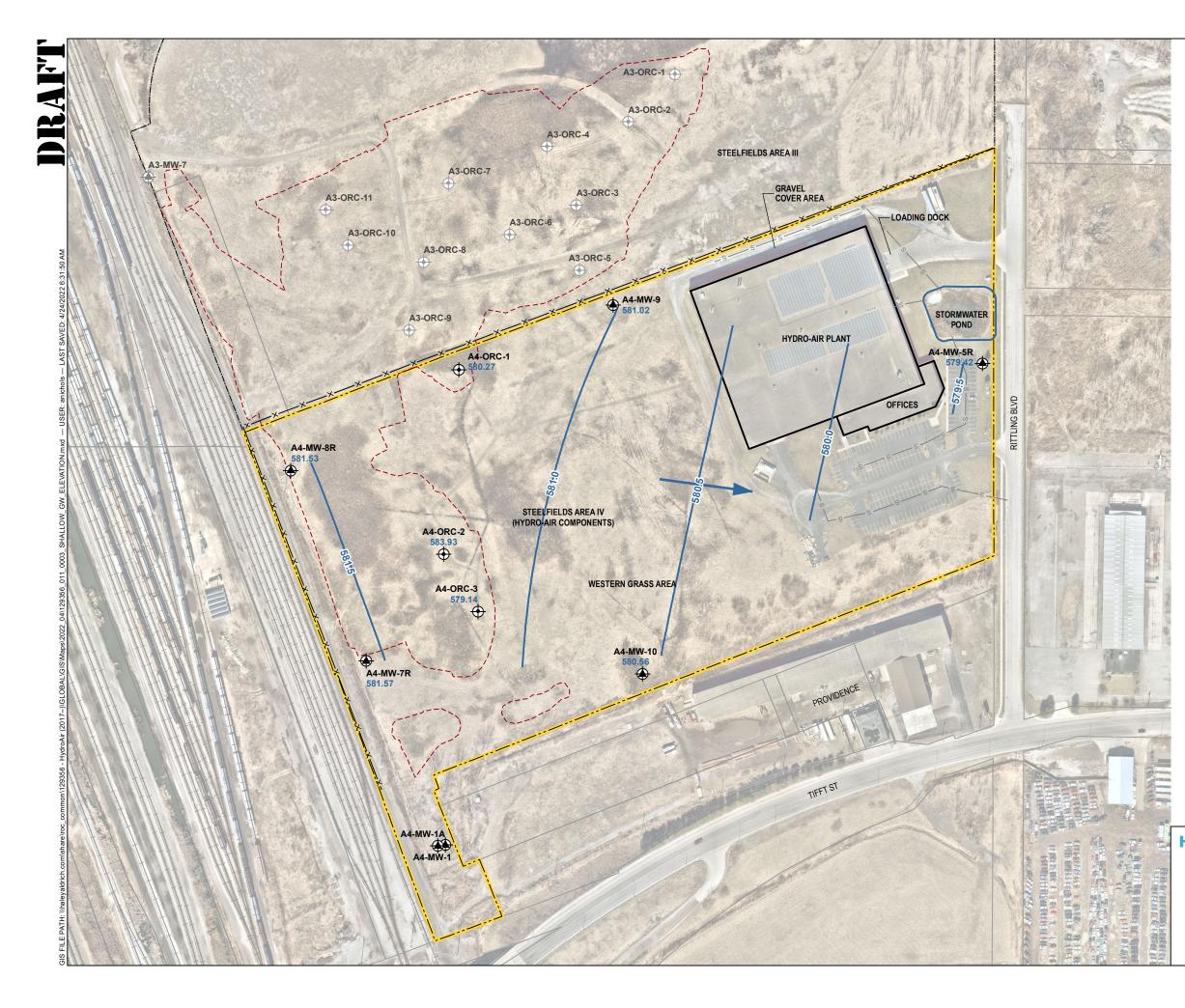
The flow sensor is reset monthly.

FIGURES

LEGEND
ORC WELL, HYDRO-AIR PROPERTY
RETENTION POND MONITORING LOCATION
MONITORING WELL, STEELFIELDS III PROPERTY
ORC WELL, STEELFIELDS III PROPERTY
PLANT AREA
APPROXIMATE TAR AND BLUE SOIL/FILL EXCAVATION LIMITS
POND
RAILROAD
TAX PARCEL BOUNDARY
HYDRO-AIR (STEELFIELDS AREA IV)
STEELFIELDS AREA III

NOTES

- 1. ALL LOCATIONS AND DIMENSIONS ARE APPROXIMATE.
- 2. TAX PARCEL DATA SOURCE: ERIE COUNTY
- 3. AERIAL IMAGERY SOURCE: NEARMAP, MARCH 2020



HALEY HYDRO-AIR COMPONENTS, INC. 100 RITTLING BOULEVARD BUFFALO, NEW YORK

SITE PLAN

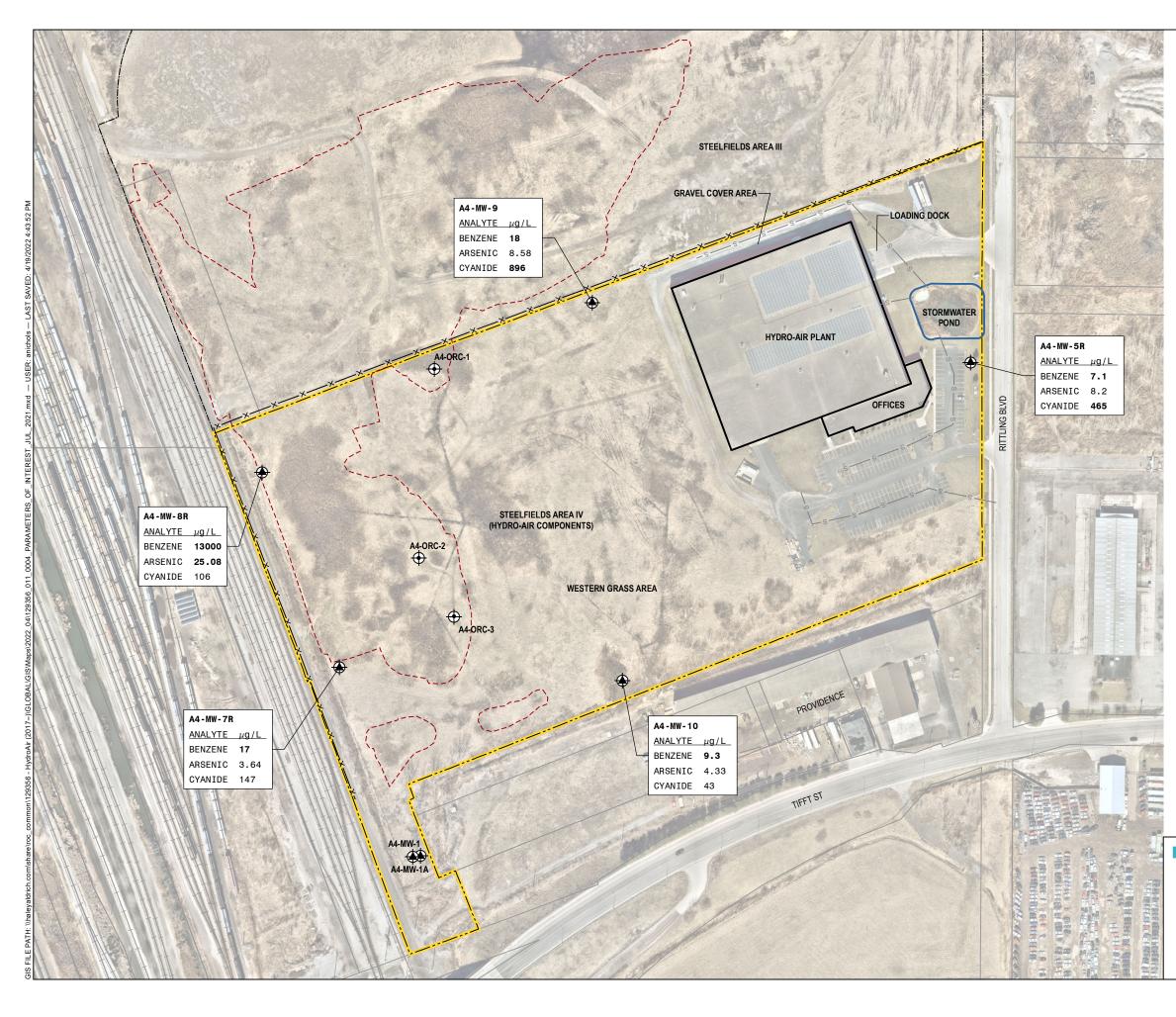
APRIL 2022

FIGURE 2

LEGEND	
LEGEND	
÷	MONITORING WELL, HYDRO-AIR PROPERTY, WITH GROUNDWATER ELEVATION IN FEET
Ð	ORC SOCK WELL, HYDRO-AIR PROPERTY, WITH GROUNDWATER ELEVATION IN FEET
\diamond	MONITORING WELL, STEELFIELDS AREA III PROPERTY
\oplus	ORC SOCK WELL, STEELFIELDS AREA III PROPERTY
\sim	GROUNDWATER ELEVATION CONTOUR, IN FEET ABOVE MEAN SEA LEVEL
-	APPROXIMATE GROUNDWATER FLOW DIRECTION
	PLANT AREA
	APPROXIMATE TAR AND BLUE SOIL/FILL EXCAVATION LIMITS
——×—	FENCE
	POND
s	STORMWATER PIPE
	RAILROAD
	TAX PARCEL BOUNDARY
L	HYDRO-AIR (STEELFIELDS AREA
L	STEELFIELDS AREA
NOTES	

1. ALL LOCATIONS AND DIMENSIONS ARE APPROXIMATE.

2. ASSESSOR PARCEL DATA SOURCE: ERIE COUNTY


3. GROUNDWATER DEPTHS MEASURED ON 7 AND 12 JULY 2021.

4. GROUNDWATER ELEVATIONS FROM ORC WELLS NOT USED IN CONTOURING.

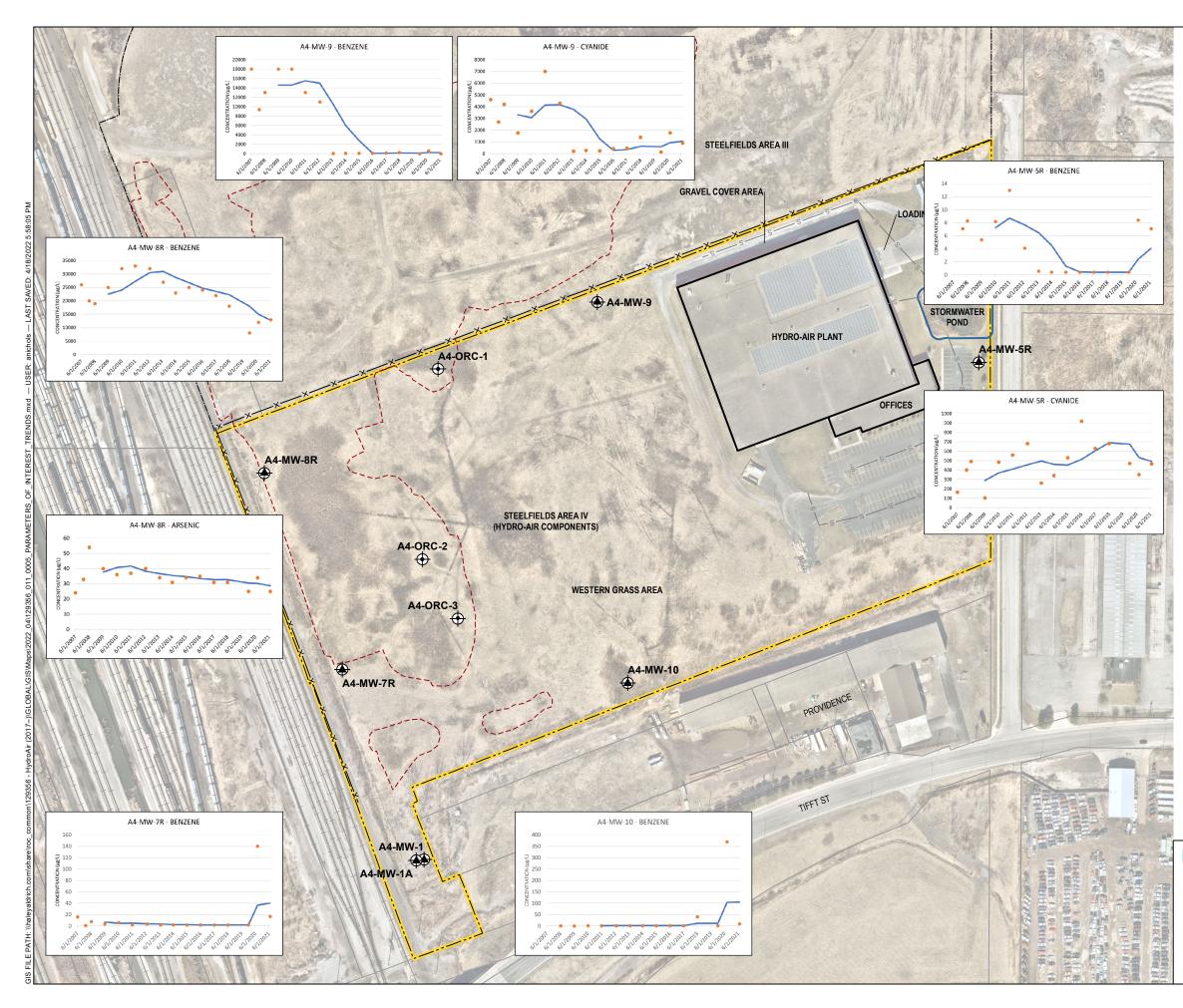
5. AERIAL IMAGERY SOURCE: NEARMAP, MARCH 2020

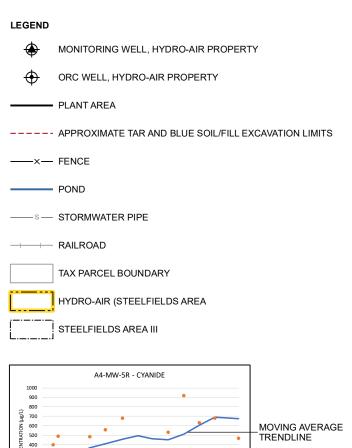
APRIL 2022

LEGEND							
۲	MONITORING WELL, HYDRO-AIR PROPERTY						
¢	ORC WELL, HYDRO-AIR PROPERTY						
	PLANT AREA						
	APPROXIMATE TAR AND BLUE SOIL/FILL EXCAVATION LIMITS						
×	FENCE						
	POND						
s	STORMWATER PIPE						
	RAILROAD						
	TAX PARCEL BOUNDARY						
L	HYDRO-AIR (STEELFIELDS AREA IV)						
[STEELFIELDS AREA						

NOTES

- 1. ALL LOCATIONS AND DIMENSIONS ARE APPROXIMATE.
- 2. ASSESSOR PARCEL DATA SOURCE: ERIE COUNTY
- 3. µg/L = MICROGRAMS PER LITER
- 4. BOLD VALUES EXCEED NYSDEC CLASS GA GWQS.
- 5. AERIAL IMAGERY SOURCE: NEARMAP, MARCH 2020


200 400 SCALE IN FEET


HALEY HYDRO-AIR COMPONENTS, INC. 100 RITTLING BOULEVARD BUFFALO, NEW YORK

GROUNDWATER PARAMETERS OF INTEREST - JULY 2021

APRIL 2022

FIGURE 4

NOTES

1. ALL LOCATIONS AND DIMENSIONS ARE APPROXIMATE. 2. ASSESSOR PARCEL DATA SOURCE: ERIE COUNTY 3. μg/L = MICROGRAMS PER LITER

4. MOVING AVERAGE TENDLINE REPRESENTS THE AVERAGE OF THE 2021 SAMPLE CONCENTRATION AND THE CONCENTRATIONS IDENTIFIED DURING THE THREE (3) PREVIOUS SAMPLING EVENTS. METHOD DETECTION LIMITS USED IN AVERAGING IF AN ANALYTE WAS NOT DETECTED. 5. AERIAL IMAGERY SOURCE: ESRI

SCALE IN FEET

HALEY ALDRICH HYDRO-AIR COMPONENTS, INC. 100 RITTLING BOULEVARD BUFFALO, NEW YORK

GROUNDWATER PARAMETERS OF INTEREST HISTORICAL TRENDS

APRIL 2022

FIGURE 5

_SAMPLE CONCENTRATION

APPENDIX A Institutional and Engineering Controls Certification Form

Enclosure 2 NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form

Sit	e No.	C915204	Site Details	i		Box 1					
Site Name Steelfields Area IV											
City Co	e Address: y/Town: Bu unty:Erie e Acreage:		Zip Code: 14220								
Re	Reporting Period: April 14, 2021 to April 14, 2022										
						YES	NO				
1.	Is the inform	mation above correct	t?			X					
	If NO, include handwritten above or on a separate sheet.										
2.		or all of the site prop nendment during this		livided, merged, or ι	undergone a		X				
3.	Has there been any change of use at the site during this Reporting Period (see 6NYCRR 375-1.11(d))?						X				
4.	•	ederal, state, and/or e property during this	• • •	ouilding, discharge)	been issued		X				
	If you answered YES to questions 2 thru 4, include documentation or evidence that documentation has been previously submitted with this certification form.										
5.	Is the site o	currently undergoing	development?				Х				
					Box 2						
						YES	NO				
6.	Is the curre Industrial	ent site use consister	nt with the use(s) list	ed below?		Х					
7.	Are all ICs	in place and functior	ning as designed?		Х						
IF THE ANSWER TO EITHER QUESTION 6 OR 7 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.											
A Corrective Measures Work Plan must be submitted along with this form to address these issues.											
Sig	nature of Ow	ner, Remedial Party	or Designated Repres	sentative	Date						

		1			Box 2/	Box 2A				
				YES	NO					
8.	Has any new information revealed that assumptions made in the Qualitative Exposure Assessment regarding offsite contamination are no longer valid?									
	If you answered YES to question 8, include documentation or evidence that documentation has been previously submitted with this certification form.									
9.	9. Are the assumptions in the Qualitative Exposure Assessment still valid?									
(The Qualitative Exposure Assessment must be certified every five years)										
If you answered NO to question 9, the Periodic Review Report must include an updated Qualitative Exposure Assessment based on the new assumptions.										
SITE NO. C915204						Box 3				
	Description of Insti	tutional Controls								
<u>Parcel</u>		<u>Owner</u>		Institutional Contr	<u>ol</u>					
132.1	2-1-9.121	Hydro-Air Corr	ponents, Inc.							
	Site Manageme		Site Management	nt Plan						
	Ground Water Use Restriction					ion				
	Landuse Restriction									

i) until the remedial goals for the Controlled Property are attained or deemed complete by the Department, the Department-approved Site Management Plan (SMP) for the implemented remedy must be adhered to.

ii) a soil cover system and vegetation in accordance with the Soil/Fill Management Plan in the SMP shall be maintained over undeveloped portions of the Controlled Property.

iii) an active subslab depressurization system (ASD) to eliminate potential soil vapor intrusion shall be installed, operated and maintained in all new buildings and building additions in accordance with the standards and procedures specified in the SMP, and the ASD already installed in the existing building shall continue to be operated and maintained in accordance with the SMP, unless the Department determines that the ASD is not necessary based on the results of a Department-approved evaluation of potential sub-slab vapor impacts.

iv) the groundwater beneath the Controlled Property cannot be used as a potable water source or for any other use without prior written permission of the Department.

v) groundwater monitoring in accordance with the SMP shall continue until the Department determines that continued monitoring is unnecessary.

vi) the in-situ treatment of residual contamination in native soils using oxygen release compounds (ORC) shall be maintained and monitored in accordance with the SMP until the Department determines that continued maintenance and monitoring of ORC is unnecessary.

vii) in areas of the Controlled Property with known groundwater impacts, storm water injection (drywells) will be prohibited and storm water conveyance pipes will be required to have gasketed joints for water tightness to prevent the infiltration of impacted groundwater into the collection system.

Box 4

Soil/Fill Management Plan

Description of Engineering Controls

Par	cel Engineering Control		
132	2.12-1-9.121		
	Cover System		
	Vapor Mitigation		
	Maintenance of In-Situ ORC Treatment		
	Gasketed Joints for Stormwater Conveyance		
			Box 5
	Periodic Review Report (PRR) Certification Statements		
1	Leartify by checking "VES" below that:		
1.	I certify by checking "YES" below that:		
	 a) the Periodic Review report and all attachments were prepared under the direct reviewed by, the party making the Engineering Control certification; 	ction of,	and
	b) to the best of my knowledge and belief, the work and conclusions described i are in accordance with the requirements of the site remedial program, and gener		
	engineering practices; and the information presented is accurate and compete.	YES	NO
		Х	
2.	For each Engineering control listed in Box 4, I certify by checking "YES" below that all following statements are true:	of the	
	(a) The Engineering Control(s) employed at this site is unchanged since the date that the Control was put in-place, or was last approved by the Dep	partmen	t;
	(b) nothing has occurred that would impair the ability of such Control, to protect the environment;	public h	ealth and
	 (c) access to the site will continue to be provided to the Department, to evaluate remedy, including access to evaluate the continued maintenance of this Control; 		
	(d) nothing has occurred that would constitute a violation or failure to comply wit Site Management Plan for this Control; and	h the	
	(e) if a financial assurance mechanism is required by the oversight document fo mechanism remains valid and sufficient for its intended purpose established in the		
		YES	NO
		X	
	IF THE ANSWER TO QUESTION 2 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.		
A	A Corrective Measures Work Plan must be submitted along with this form to address th	nese iss	sues.
S	Signature of Owner, Remedial Party or Designated Representative Date		

IC CERTIFICATIONS SITE NO. C915204

Box 6

SITE OWNER OR DESIGNATED REPRESENTATIVE SIGNATURE

I certify that all information and statements in Boxes 1,2, and 3 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

I_Scott F	allotta	at[D	print business add	ud, Buffalo, NY 14,220 dress			
am certifying as _	Owner	-12/1		(Owner or Remedial Party)			
for the Site named in the Site Details Section of this form.							
Signature of Own	Allos	r Designat	ed Penresentative	5/11/22			

Signature of Owner, Remedial Party, or Designated Representative Rendering Certification

Date

EC CERTIFICATIONS

Box 7

Qualified Environmental Professional Signature

I certify that all information in Boxes 4 and 5 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

I Glenn M. White, CHMM at200 Ťown	drich of New York Centre Dr. Ste. 2, Rochester, NY 14623
print name pri	nt business address
am certifying as a Qualified Environmental Professional	for the
	(Owner or Remedial Party)
Ch Whit	<u>12 May 2022</u>
Signature of Qualified Environmental Professional, for the Owner or Remedial Party, Rendering Certification	Stamp Date (Required for PE)

APPENDIX B NYSDEC Correspondence

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

Division of Environmental Remediation

625 Broadway, 11th Floor, Albany, NY 12233-7020 P: (518)402-9543 | F: (518)402-9547 www.dec.ny.gov

2/22/2022

Robert Daigler Vp Of Finance Hydro-Air Components Inc. 100 Rittling Blvd Buffalo, NY 14220 RDaigler@Zehnder-Rittling.com

Re: Reminder Notice: Site Management Periodic Review Report and IC/EC Certification Submittal Site Name: Steelfields Area IV Site No.: C915204 Site Address: 100 Rittling Blvd. Buffalo, NY 14220

Dear Robert Daigler:

This letter serves as a reminder that sites in active Site Management (SM) require the submittal of a periodic progress report. This report, referred to as the Periodic Review Report (PRR), must document the implementation of, and compliance with, site-specific SM requirements. Section 6.3(b) of DER-10 *Technical Guidance for Site Investigation and Remediation* (available online at http://www.dec.ny.gov/regulations/67386.html) provides guidance regarding the information that must be included in the PRR. Further, if the site is comprised of multiple parcels, then you as the Certifying Party must arrange to submit one PRR for all parcels that comprise the site. The PRR must be received by the Department no later than **May 14, 2022**. Guidance on the content of a PRR is enclosed.

Site Management is defined in regulation (6 NYCRR 375-1.2(at)) and in Chapter 6 of DER-10. Depending on when the remedial program for your site was completed, SM may be governed by multiple documents (e.g., Operation, Maintenance, and Monitoring Plan; Soil Management Plan) or one comprehensive Site Management Plan.

A Site Management Plan (SMP) may contain one or all of the following elements, as applicable to the site: a plan to maintain institutional controls and/or engineering controls ("IC/EC Plan"); a plan for monitoring the performance and effectiveness of the selected remedy ("Monitoring Plan"); and/or a plan for the operation and maintenance of the selected remedy ("O&M Plan"). Additionally, the technical requirements for SM are stated in the decision document (e.g., Record of Decision) and, in some cases, the legal agreement directing the remediation of the site (e.g., order on consent, voluntary agreement, etc.).

When you submit the PRR (by the due date above), include the enclosed forms documenting that all SM requirements are being met. The Institutional Controls (ICs) portion of the form (Box 6) must be signed by you or your designated representative. The Engineering Controls (ECs) portion of the form (Box 7) must be signed by a Qualified Environmental Professional (QEP). If you cannot certify that all SM requirements are being met, you must submit a Corrective Measures Work Plan that identifies the actions to be taken to restore compliance. The work plan must include a schedule to be approved by the Department. The Periodic Review process will not be considered complete until all necessary corrective measures are completed and all required controls are certified. Instructions for completing the certifications are enclosed.

All site-related documents and data, including the PRR, must be submitted in electronic format to the Department of Environmental Conservation. The required format for documents is an Adobe PDF file with optical character recognition and no password protection. Data must be submitted as an electronic data deliverable (EDD) according to the instructions on the following webpage:

https://www.dec.ny.gov/chemical/62440.html

Documents may be submitted to the project manager either through electronic mail or by using the Department's file transfer service at the following webpage:

https://fts.dec.state.ny.us/fts/

The Department will not approve the PRR unless all documents and data generated in support of the PRR have been submitted using the required formats and protocols.

You may contact Megan Kuczka, the Project Manager, at 716-842-2175 or megan.kuczka@dec.ny.gov with any questions or concerns about the site. Please notify the project manager before conducting inspections or field work. You may also write to the project manager at the following address:

New York State Department of Environmental Conservation 270 Michigan Ave

Buffalo, NY 14203-2915

Enclosures

PRR General Guidance Certification Form Instructions Certification Forms

ec: w/ enclosures

Megan Kuczka, Project Manager Andrea Caprio, Hazardous Waste Remediation Supervisor, Region 9

Haley & Aldrich, Inc. - Glenn White - gwhite@HaleyAldrich.com

Enclosure 1

Certification Instructions

I. Verification of Site Details (Box 1 and Box 2):

Answer the three questions in the Verification of Site Details Section. The Owner and/or Qualified Environmental Professional (QEP) may include handwritten changes and/or other supporting documentation, as necessary.

II. Certification of Institutional Controls/ Engineering Controls (IC/ECs)(Boxes 3, 4, and 5)

1.1.1. Review the listed IC/ECs, confirming that all existing controls are listed, and that all existing controls are still applicable. If there is a control that is no longer applicable the Owner / Remedial Party should petition the Department separately to request approval to remove the control.

2. In Box 5, complete certifications for all Plan components, as applicable, by checking the corresponding checkbox.

3. If you <u>cannot</u> certify "YES" for each Control listed in Box 3 & Box 4, sign and date the form in Box 5. Attach supporting documentation that explains why the **Certification** cannot be rendered, as well as a plan of proposed corrective measures, and an associated schedule for completing the corrective measures. Note that this **Certification** form must be submitted even if an IC or EC cannot be certified; however, the certification process will not be considered complete until corrective action is completed.

If the Department concurs with the explanation, the proposed corrective measures, and the proposed schedule, a letter authorizing the implementation of those corrective measures will be issued by the Department's Project Manager. Once the corrective measures are complete, a new Periodic Review Report (with IC/EC Certification) must be submitted within 45 days to the Department. If the Department has any questions or concerns regarding the PRR and/or completion of the IC/EC Certification, the Project Manager will contact you.

III. IC/EC Certification by Signature (Box 6 and Box 7)**:**

If you certified "YES" for each Control, please complete and sign the IC/EC Certifications page as follows:

- For the Institutional Controls on the use of the property, the certification statement in Box 6 shall be completed and may be made by the property owner or designated representative.
- For the Engineering Controls, the certification statement in Box 7 must be completed by a Professional Engineer or Qualified Environmental Professional, as noted on the form.

Enclosure 2 NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form

Site	e No. 🛛	C915204	Site Details			Box 1	
Site	e Name Stee	lfields Area IV					
City Co	e Address: 10 //Town: Buffa unty:Erie e Acreage: 30		Zip Code: 14220				
Re	porting Period	l: April 14, 2021 to	April 14, 2022				
						YES	NO
1.	Is the inform	ation above correct	t?				
	If NO, include	e handwritten abov	e or on a separate s	heet.			
2.			erty been sold, subd Reporting Period?	ivided, merged, or ι	undergone a		
3.		en any change of ι R 375-1.11(d))?	use at the site during	this Reporting Peri	od		
4.			local permits (e.g., b Reporting Period?	uilding, discharge) l	been issued		
			tions 2 thru 4, inclu previously submit				
5.	Is the site cu	rrently undergoing	development?				
						Box 2	
						YES	NO
6.	Is the curren Industrial	t site use consisten	nt with the use(s) liste	ed below?			
7.	Are all ICs in	place and function	ning as designed?				
			HER QUESTION 6 O E THE REST OF THI	· -		Ind	
AC	Corrective Mea	asures Work Plan r	must be submitted a	long with this form	to address tl	nese issi	Jes.
Sig	nature of Own	er Remedial Party o	or Designated Repres	entative	Date		

				Box 2	Α
				YES	NO
8.		Has any new information revealed that assumptions made in the Qualitative Exposure Assessment regarding offsite contamination are no longer valid?			
	If you answered YES that documentation				
9.	 Are the assumptions in the Qualitative Exposure Assessment still valid? (The Qualitative Exposure Assessment must be certified every five years) 				
	-	to question 9, the Periodic Re Exposure Assessment based	-		
SIT	E NO. C915204			Box	<i>,</i> 2
				507	
	Description of Institut	tional Controls		507	
Parce		t ional Controls <u>Owner</u> Hydro-Air Components, Inc.	Institutional Contro		

i) until the remedial goals for the Controlled Property are attained or deemed complete by the Department, the Department-approved Site Management Plan (SMP) for the implemented remedy must be adhered to.

ii) a soil cover system and vegetation in accordance with the Soil/Fill Management Plan in the SMP shall be maintained over undeveloped portions of the Controlled Property.

iii) an active subslab depressurization system (ASD) to eliminate potential soil vapor intrusion shall be installed, operated and maintained in all new buildings and building additions in accordance with the standards and procedures specified in the SMP, and the ASD already installed in the existing building shall continue to be operated and maintained in accordance with the SMP, unless the Department determines that the ASD is not necessary based on the results of a Department-approved evaluation of potential sub-slab vapor impacts.

iv) the groundwater beneath the Controlled Property cannot be used as a potable water source or for any other use without prior written permission of the Department.

v) groundwater monitoring in accordance with the SMP shall continue until the Department determines that continued monitoring is unnecessary.

vi) the in-situ treatment of residual contamination in native soils using oxygen release compounds (ORC) shall be maintained and monitored in accordance with the SMP until the Department determines that continued maintenance and monitoring of ORC is unnecessary.

vii) in areas of the Controlled Property with known groundwater impacts, storm water injection (drywells) will be prohibited and storm water conveyance pipes will be required to have gasketed joints for water tightness to prevent the infiltration of impacted groundwater into the collection system.

Box 4

Description of Engineering Controls

	<u>Cel</u> <u>Engineering Control</u>		
13	2.12-1-9.121 Cover System Vapor Mitigation		
			Box 5
	Periodic Review Report (PRR) Certification Statements		
1.	I certify by checking "YES" below that:		
	a) the Periodic Review report and all attachments were prepared under the direction reviewed by, the party making the Engineering Control certification;	of,	and
	b) to the best of my knowledge and belief, the work and conclusions described in this are in accordance with the requirements of the site remedial program, and generally engineering practices; and the information presented is accurate and compete.		
	YE	5	NO
2.	For each Engineering control listed in Box 4, I certify by checking "YES" below that all of the following statements are true:	9	
	(a) The Engineering Control(s) employed at this site is unchanged since the date that the Control was put in-place, or was last approved by the Department of the date that the Control was put in-place.	ent	,
	(b) nothing has occurred that would impair the ability of such Control, to protect publi the environment;	c he	ealth and
	(c) access to the site will continue to be provided to the Department, to evaluate the remedy, including access to evaluate the continued maintenance of this Control;		
	(d) nothing has occurred that would constitute a violation or failure to comply with the Site Management Plan for this Control; and	•	
	(e) if a financial assurance mechanism is required by the oversight document for the mechanism remains valid and sufficient for its intended purpose established in the do		
	YES	5	NO
	IF THE ANSWER TO QUESTION 2 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.		
	A Corrective Measures Work Plan must be submitted along with this form to address these	iss	ues.
-	Signature of Owner, Remedial Party or Designated Representative Date	-	

IC CERTIFICATIONS SITE NO. C915204

Box 6

SITE OWNER OR DESIGNATED REPRESENTATIVE SIGNATURE

I certify that all information and statements in Boxes 1,2, and 3 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

۱at	
print name	print business address
am certifying as	(Owner or Remedial Party)
for the Site named in the Site Details Section of t	his form.
Signature of Owner, Remedial Party, or Designal Rendering Certification	ted Representative Date

	EC CERTIFICAT		
Qualified	Environmental Pro	fessional Signature	Box 7
certify that all information in Boxes 4 unishable as a Class "A" misdemear			
	at		,
print name	prin	business address	
print name		or the	
	ental Professional f	or the	

Enclosure 3 Periodic Review Report (PRR) General Guidance

- I. Executive Summary: (1/2-page or less)
 - A. Provide a brief summary of site, nature and extent of contamination, and remedial history.
 - B. Effectiveness of the Remedial Program Provide overall conclusions regarding;
 - 1. progress made during the reporting period toward meeting the remedial objectives for the site
 - 2. the ultimate ability of the remedial program to achieve the remedial objectives for the site.
 - C. Compliance
 - 1. Identify any areas of non-compliance regarding the major elements of the Site Management Plan (SMP, i.e., the Institutional/Engineering Control (IC/EC) Plan, the Monitoring Plan, and the Operation & Maintenance (O&M) Plan).
 - 2. Propose steps to be taken and a schedule to correct any areas of non-compliance.
 - D. Recommendations
 - 1. recommend whether any changes to the SMP are needed
 - 2. recommend any changes to the frequency for submittal of PRRs (increase, decrease)
 - 3. recommend whether the requirements for discontinuing site management have been met.
- II. Site Overview (one page or less)
 - A. Describe the site location, boundaries (figure), significant features, surrounding area, and the nature
- and extent of contamination prior to site remediation.
 - B. Describe the chronology of the main features of the remedial program for the site, the components of the selected remedy, cleanup goals, site closure criteria, and any significant changes to the selected remedy that have been made since remedy selection.
- III. Evaluate Remedy Performance, Effectiveness, and Protectiveness

Using tables, graphs, charts and bulleted text to the extent practicable, describe the effectiveness of the remedy in achieving the remedial goals for the site. Base findings, recommendations, and conclusions on objective data. Evaluations and should be presented simply and concisely.

- IV. IC/EC Plan Compliance Report (if applicable)
 - A. IC/EC Requirements and Compliance
 - 1. Describe each control, its objective, and how performance of the control is evaluated.
 - 2. Summarize the status of each goal (whether it is fully in place and its effectiveness).
 - 3. Corrective Measures: describe steps proposed to address any deficiencies in ICECs.
 - 4. Conclusions and recommendations for changes.
 - B. IC/EC Certification
 - 1. The certification must be complete (even if there are IC/EC deficiencies), and certified by the appropriate party as set forth in a Department-approved certification form(s).
- V. Monitoring Plan Compliance Report (if applicable)
 - A. Components of the Monitoring Plan (tabular presentations preferred) Describe the requirements of the monitoring plan by media (i.e., soil, groundwater, sediment, etc.) and by any remedial technologies being used at the site.
 - B. Summary of Monitoring Completed During Reporting Period Describe the monitoring tasks actually completed during this PRR reporting period. Tables and/or figures should be used to show all data.
 - C. Comparisons with Remedial Objectives Compare the results of all monitoring with the remedial objectives for the site. Include trend analyses where possible.
 - D. Monitoring Deficiencies Describe any ways in which monitoring did not fully comply with the monitoring plan.
 - E. Conclusions and Recommendations for Changes Provide overall conclusions regarding the monitoring completed and the resulting evaluations regarding remedial effectiveness.
- VI. Operation & Maintenance (O&M) Plan Compliance Report (if applicable)
 - A. Components of O&M Plan Describe the requirements of the O&M plan including required activities, frequencies, recordkeeping, etc.
 - B. Summary of O&M Completed During Reporting Period Describe the O&M tasks actually completed during this PRR reporting period.
 - C. Evaluation of Remedial Systems Based upon the results of the O&M activities completed, evaluated

the ability of each component of the remedy subject to O&M requirements to perform as designed/expected.

- D. O&M Deficiencies Identify any deficiencies in complying with the O&M plan during this PRR reporting period.
- E. Conclusions and Recommendations for Improvements Provide an overall conclusion regarding O&M for the site and identify any suggested improvements requiring changes in the O&M Plan.
- VII. Overall PRR Conclusions and Recommendations
 - A. Compliance with SMP For each component of the SMP (i.e., IC/EC, monitoring, O&M), summarize;
 - 1. whether all requirements of each plan were met during the reporting period
 - 2. any requirements not met
 - 3. proposed plans and a schedule for coming into full compliance.
 - B. Performance and Effectiveness of the Remedy Based upon your evaluation of the components of the SMP, form conclusions about the performance of each component and the ability of the remedy to achieve the remedial objectives for the site.
 - C. Future PRR Submittals
 - 1. Recommend, with supporting justification, whether the frequency of the submittal of PRRs should be changed (either increased or decreased).
 - 2. If the requirements for site closure have been achieved, contact the Departments Project Manager for the site to determine what, if any, additional documentation is needed to support a decision to discontinue site management.

VIII. Additional Guidance

Additional guidance regarding the preparation and submittal of an acceptable PRR can be obtained from the Departments Project Manager for the site.

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

Division of Environmental Remediation 270 Michigan Avenue, Buffalo, NY 14203-2915 P: (716) 851-7220| F: (716) 851-7226 www.dec.ny.gov

May 24, 2021

Robert Daigler Hydro-Air Components, Inc. 100 Rittling Blvd Buffalo, NY 14220

> Re: Site Management (SM) -Periodic Review Report (PRR) Response Letter Steelfields Area IV, Buffalo Erie County, Site No.: **C915204**

Dear Robert Daigler (as the Certifying Party):

The Department has reviewed your Periodic Review Report (PRR) and IC/EC Certification for the following period: January 15, 2020 to April 14, 2021. The Department hereby accepts the PRR and IC/EC Certification.

The frequency of Periodic Reviews for this site is once a year, and your next PRR will be due on May 14, 2022 (Certifying Period of April 14, 2021 to April 14, 2022). You will receive a reminder letter and updated certification form 75-days prior to the report's due date. Regardless of receipt or not of the reminder notice, the next PRR, including the signed certification form, is still due on the date specified above.

In future PRR's, please complete the following revisions:

- Include a figure of the cover system
- Include Table 3 (Groundwater Elevation Measurements) from the previous Groundwater Monitoring Reports, within the PRR's
- Complete the tile and fence repairs and note the maintenance activities within the 2021-2022 PRR

If you have any questions, please contact me at 716-851-7220 or email: megan.kuczka@dec.ny.gov.

Sincerely,

Megan Kuczka

Environmental Program Specialist – 1

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

Division of Environmental Remediation 270 Michigan Avenue, Buffalo, NY 14203-2915 P: (716) 851-7220| F: (716) 851-7226 www.dec.ny.gov

ec: Andrea Caprio – NYSDEC Glenn White – Haley & Aldrich Drew Nichols – Haley & Aldrich Tom Robitaille – Haley & Aldrich Scott Pallotta – Hydro-Air Components, Inc.

Department of Environmental Conservation

Nichols, Andrew

From:	Kuczka, Megan E (DEC) <megan.kuczka@dec.ny.gov></megan.kuczka@dec.ny.gov>
Sent:	Wednesday, July 27, 2022 8:18 AM
То:	White, Glenn
Cc:	'Daigler, Robert (ZRI)'; Walsh, Thomas F.; Nichols, Andrew; Kulow, Kristin (HEALTH)
Subject:	RE: 2021-2022 Periodic Review Report (PRR), Steelfields Area IV (#C915204)

CAUTION: External Email

Glenn –

Please proceed with the PRR revisions as noted below.

Sincerely,

Megan Kuczka

she/her/hers Environmental Program Specialist 1, Division of Environmental Remediation

New York State Department of Environmental Conservation

700 Delaware Avenue, Buffalo, NY 14209 P: (716) 851-7220 | F: (716) 851-7226 | Megan.Kuczka@dec.ny.gov

www.dec.ny.gov

NEW YORK STATE Conservation

From: White, Glenn <GWhite@haleyaldrich.com>
Sent: Tuesday, July 26, 2022 2:36 PM
To: Kuczka, Megan E (DEC) <Megan.Kuczka@dec.ny.gov>
Cc: 'Daigler, Robert (ZRI)' <rdaigler@zehnder-rittling.com>; Walsh, Thomas F. <twalsh@barclaydamon.com>; anichols@haleyaldrich.com; Kulow, Kristin (HEALTH) <kristin.kulow@health.ny.gov>
Subject: RE: 2021-2022 Periodic Review Report (PRR), Steelfields Area IV (#C915204)

ATTENTION: This email came from an external source. Do not open attachments or click on links from unknown senders or unexpected emails.

Megan,

As requested for your review, proposed revisions to the PRR and answers to DEC's questions are included below in <u>red</u> <u>text.</u> Upon your approval, we will incorporate the responses below into the PRR. Please let us know if you have any questions.

Regards, Glenn

- Any building cover cracks, that are not surficial, should be repaired in order to maintain the cover system and proper operation of the SSDS system. Are any of the cracks not surficial? <u>All observed cracks in the manufacturing space are surficial.</u>
- Please assess in the text why cyanide concentrations are increasing at MW-9 and benzene concentrations are increasing at MW-7R, MW-10, & MW-5R Within the overall decreasing trend since 2007, there were increases in cyanide concentrations at MW-9 in the 2018 and 2020 sampling events. Although cyanide increased noticeably in 2020, it decreased in 2021. Another decreasing cyanide concentration in 2022 would suggest cyanide concentrations at MW-9 are beginning to equilibrate, while another increase beyond the concentrations detected in 2020 would suggest at least a short-term increasing trend (still within an overall decreasing trend since 2007). Per the Shallow Groundwater Elevation Map attached as Figure 3 to the 2021-2022 PRR, MW-9 functions as an upgradient well reflecting conditions emanating from off-site on Steelfields III.

Benzene concentrations in every groundwater sample increased significantly in 2020, and then in 2021, decreased in every well except MW-8R. Particularly in MW-7R and MW-10, the 2020 results appear anomalously high, and perhaps not coincidentally, correspond to a change in sampling contractor and analytical laboratory. The current and previous sampling and analytical contractors have used similar methods and analytical techniques in accordance with the SMP. Currently, we cannot identify a readily apparent cause for the increasing benzene trend trends at MW-7R, MW-10, & MW-5R. As with the general decreasing trends in cyanide in MW-9 since 2007, the recent increases in benzene concentrations at MW-7R, MW-8R, & MW-5R rely largely on the results from the 2020 and 2021 sampling events and occur within overall declining trends since 2007. The results of the next two events will be integral for determining trends for both cyanide in MW-9 and benzene in MW-7R, MW-8R, MW-10, & MW-5R.

- Does the pond discharge to the sewer? Is there a discharge permit from the BSA associated with this? If yes, please share a copy with the Department The <u>pond discharges to a stormwater ditch across Rittling</u> <u>Boulevard. There is no BSA discharge permit as the water is not discharged into the storm sewer.</u>
- Please provide a groundwater disposal receipt Groundwater <u>generated and containerized during the 2021-22</u> <u>PRR reporting period remains at the site. It is currently being profiled for disposal and will be disposed off-site</u> <u>during the 2022-23 PRR reporting period. The groundwater disposal receipt will be appended to the 2022-23</u> <u>PRR.</u>
- Section 2.2.1
 - Please indicate the pond is part of the cover system as well <u>This will be incorporated in the revised 2021-</u> <u>22 PRR.</u>
 - Detail if any materials were imported during the certifying period <u>No materials were imported during</u> <u>the 2021-22 PRR reporting period</u>. A statement to that effect will be incorporated in the revised 2021-<u>22 PRR</u>.
- Section 2.2.5 The lab methods listed are not the actual methods the laboratory used. Why were the lab
 methods changed? Also please input the actually used lab methods in this section <u>The metals analytical method</u>
 (6020B) corresponds to the new EPA SW-846 methods used by the analytical laboratory. An alternative alkalinity
 method was used by the analytical lab.
- Table 2 Please differentiate between ND and not tested for in the alkalinity and carbon dioxide columns All dashes are for "not tested." The missing alkalinity values for the 2021 ORC wells will be added to the table.
 - It appears some wells did not have alkalinity and carbon dioxide assessed. Why is this? <u>Testing for</u> <u>alkalinity in the ORC wells between June 2008 and December 2019 were not collected by the former</u> <u>sampling contractor</u>. Carbon dioxide has not been monitored in the ORC wells, and that column will be removed from the table included in the revised 2021-22 PRR report.
- Table 4 The total depth of each well changed and is not the same as the 2007 results, per footnote 2. Were these measured in the field in 2021? If yes, please revise the footnote <u>Yes, well depths were measured in the field in 2021</u>. We will use the measurements from 2021 and revise the table/footnote in the revised 2021-22 PRR report.
- Table 5 –

- Do the dashes mean no reading was collected or no flow occurred? Please clarify in a footnote <u>This was</u> a mistake made during table generation. We have reviewed flow data with Hydro-Air personnel and will revise Table V to include flow values for each month. Additionally, several flow values (July, September, and October 2021) will be revised as they were mistakenly recorded in field sheets as a factor of 10 greater than the measured value. Those values will be corrected in Table V of the revised 2021-22 PRR.
- Detail how the flow is estimated and if the flow estimates reset each month in the footnotes. <u>Flow rate</u> is measured monthly using a clamp-on flow sensor, from which monthly discharge volumes are calculated by Hydro-Air personnel. The flow meter is reset each month. This will be included as a footnote in Table V.

Glenn M. White, CHMM Haley & Aldrich Tel: 585.321.4239 Fax: 585.359.4650 gwhite@HaleyAldrich.com

From: Kuczka, Megan E (DEC) <<u>Megan.Kuczka@dec.ny.gov</u>>
Sent: Friday, June 24, 2022 2:55 PM
To: White, Glenn <<u>GWhite@haleyaldrich.com</u>>
Cc: 'Daigler, Robert (ZRI)' <<u>rdaigler@zehnder-rittling.com</u>>; Walsh, Thomas F. <<u>twalsh@barclaydamon.com</u>>; Nichols,
Andrew <<u>ANichols@haleyaldrich.com</u>>; Kulow, Kristin (HEALTH) <<u>kristin.kulow@health.ny.gov</u>>
Subject: RE: 2021-2022 Periodic Review Report (PRR), Steelfields Area IV (#C915204)

CAUTION: External Email

Glenn –

The requested submittal extension is acceptable.

Sincerely,

Megan Kuczka she/her/hers Environmental Program Specialist 1, Division of Environmental Remediation

New York State Department of Environmental Conservation

700 Delaware Avenue, Buffalo, NY 14209 P: (716) 851-7220 | F: (716) 851-7226 | <u>Megan.Kuczka@dec.ny.gov</u>

From: White, Glenn <<u>GWhite@haleyaldrich.com</u>>
Sent: Friday, June 24, 2022 2:46 PM
To: Kuczka, Megan E (DEC) <<u>Megan.Kuczka@dec.ny.gov</u>>
Cc: 'Daigler, Robert (ZRI)' <<u>rdaigler@zehnder-rittling.com</u>>; Walsh, Thomas F. <<u>twalsh@barclaydamon.com</u>>;
anichols@haleyaldrich.com; Kulow, Kristin (HEALTH) <<u>kristin.kulow@health.ny.gov</u>>
Subject: RE: 2021-2022 Periodic Review Report (PRR), Steelfields Area IV (#C915204)

Megan,

On behalf of Hydo-Air Components, we request an additional 30 days to revise the PRR and answer DEC's questions in your e-mail below.

Sincerely, Glenn

Glenn M. White, CHMM Haley & Aldrich Tel: 585.321.4239 Fax: 585.359.4650 gwhite@HaleyAldrich.com

From: Kuczka, Megan E (DEC) <<u>Megan.Kuczka@dec.ny.gov</u>>
Sent: Monday, June 13, 2022 9:05 AM
To: Nichols, Andrew <<u>ANichols@haleyaldrich.com</u>>
Cc: 'Daigler, Robert (ZRI)' <<u>rdaigler@zehnder-rittling.com</u>>; Walsh, Thomas F. <<u>twalsh@barclaydamon.com</u>>; White,
Glenn <<u>GWhite@haleyaldrich.com</u>>; Nichols, Andrew <<u>ANichols@haleyaldrich.com</u>>; Kulow, Kristin (HEALTH)
<<u>kristin.kulow@health.ny.gov</u>>
Subject: RE: 2021-2022 Periodic Review Report (PRR), Steelfields Area IV (#C915204)

CAUTION: External Email

Drew –

The Department has completed their review of the Steelfields Area IV PRR. Prior to approval, some revisions are requested. Please complete the following revisions/answer the following questions by June 27th:

- Any building cover cracks, that are not surficial, should be repaired in order to maintain the cover system and proper operation of the SSDS system. Are any of the cracks not surficial?
- Please assess in the text why cyanide concentrations are increasing at MW-9 and benzene concentrations are increasing at MW-7R, MW-10, & MW-5R
- Does the pond discharge to the sewer? Is there a discharge permit from the BSA associated with this? If yes, please share a copy with the Department
- Please provide a groundwater disposal receipt
- Section 2.2.1
 - \circ $\;$ Please indicate the pond is part of the cover system as well
 - Detail if any materials were imported during the certifying period
- Section 2.2.5 The lab methods listed are not the actual methods the laboratory used. Why were the lab methods changed? Also please input the actually used lab methods in this section
- Table 2 Please differentiate between ND and not tested for in the alkalinity and carbon dioxide columns
 - \circ It appears some wells did not have alkalinity and carbon dioxide assessed. Why is this?
- Table 4 The total depth of each well changed and is not the same as the 2007 results, per footnote 2. Were
- these measured in the field in 2021? If yes, please revise the footnote
- Table 5
 - Do the dashes mean no reading was collected or no flow occurred? Please clarify in a footnote
 - \circ $\;$ Detail how the flow is estimated and if the flow estimates reset each month in the footnotes $\;$

Feel free to reach out with any questions.

Sincerely,

Megan Kuczka she/her/hers Environmental Program Specialist 1, Division of Environmental Remediation

New York State Department of Environmental Conservation 700 Delaware Avenue, Buffalo, NY 14209 P: (716) 851-7220 | F: (716) 851-7226 | Megan.Kuczka@dec.ny.gov

From: Kuczka, Megan E (DEC)
Sent: Friday, May 13, 2022 1:18 PM
To: Nichols, Andrew <<u>ANichols@haleyaldrich.com</u>>
Cc: 'Daigler, Robert (ZRI)' <<u>rdaigler@zehnder-rittling.com</u>>; Walsh, Thomas F. <<u>twalsh@barclaydamon.com</u>>; White,
Glenn <<u>GWhite@haleyaldrich.com</u>>; anichols@haleyaldrich.com; Kulow, Kristin (HEALTH)
<<u>kristin.kulow@health.ny.gov</u>>
Subject: RE: 2021-2022 Periodic Review Report (PRR), Steelfields Area IV (#C915204)

Drew -

The PRR for Steelfields Area IV has been successfully downloaded. NYSDEC and NYSDOH will review and will reach out with any questions.

Sincerely,

Megan Kuczka

she/her/hers Environmental Program Specialist 1, Division of Environmental Remediation

New York State Department of Environmental Conservation 270 Michigan Avenue, Buffalo, NY 14203 P: (716) 851-7220 | F: (716) 851-7226 | Megan.Kuczka@dec.ny.gov

From: Nichols, Andrew <<u>ANichols@haleyaldrich.com</u>>

Sent: Friday, May 13, 2022 1:04 PM

To: Kuczka, Megan E (DEC) <<u>Megan.Kuczka@dec.ny.gov</u>>

Cc: 'Daigler, Robert (ZRI)' <<u>rdaigler@zehnder-rittling.com</u>>; Walsh, Thomas F. <<u>twalsh@barclaydamon.com</u>>; White, Glenn <<u>GWhite@haleyaldrich.com</u>>; <u>anichols@haleyaldrich.com</u>

Subject: 2021-2022 Periodic Review Report (PRR), Steelfields Area IV (#C915204)

ATTENTION: This email came from an external source. Do not open attachments or click on links from unknown senders or unexpected emails.

Good afternoon Megan,

On behalf of Hydro-Air Components, Inc., Haley & Aldrich of New York is pleased to submit the 2021-2022 Periodic Review Report (PRR) for the Former Steelfields Area IV Site (#C915204) in Buffalo, New York. A .pdf of the PRR can be downloaded through the link enclosed in this email.

https://haleyaldrich.sharefile.com/d-sb2ef37ee36f24796b2557f792f128837

Please do not hesitate to reach out if you have any questions or concerns.

Sincerely, Drew Nichols

Andrew L. Nichols Technical Specialist

Haley & Aldrich, Inc.

200 Town Centre Drive | Suite 2 Rochester, NY 14623-4264 (585) 321.4220 (O) (617) 650-2373 (C) anichols@haleyaldrich.com

APPENDIX C Annual Inspection Form

Environmental Inspection Form Operation, Monitoring, & Maintenance Work Plan

Property Name: Former Steelfields Area IV Site	Project No.:	C915204					
Client: Hydro-Air Components, Inc.							
Property Address: 100 Rittling Blvd.	City, State:	Buffalo, NY	Zip Code: 14220				
Property ID: (Tax Assessment Map) Section:	Block:	L	.ot(s):				
Preparer's Name: Glenn White	Date/Time:						
CERTIFICATION							
The results of this inspection were discussed with the owner and/or owner's representative. Any corrective actions required have been identified and noted in this report, and a supplemental Corrective Actions Form has been completed. Proper implementation of these corrective actions have been discussed with the owner, agreed upon, and scheduled.							
Preparer / Inspector: Glenn White, Haley & Aldrich	of NY	Date:					
Signature:							
Next Scheduled Inspection (date): 3/202	3						
In accordance with the Soil/Fill Management Plan, v concrete) surface coverage over the entire redevelo as a pre-condition of occupancy. The following doc	ped parcel is requ	ired by the dev	eloper or owner				
1. Final Cover is in Place and in good condition?	🛛 yes	no	□ N/A				
Cover consists of (mainly): Field grasses, build	dings, asphalt parkin	g lot, and asphal	It and gravel drives.				
2. Evidence of erosion?	□ yes	X no	N/A				
		⊠ no	□ N/A				
3. Cracks visible in pavement?	yes						
4. Evidence of distressed vegetation/turf?		∑ no	□ N/A				
 Evidence of unintended traffic and/or rutting? Evidence of unover actilement and/or panding? 		∑ no					
 Evidence of uneven settlement and/or ponding? Demage to any surface severage? 	X yes	no No					
7. Damage to any surface coverage?	yes	K no	N/A				

If yes to any question above, please provide more information below.

See attachment

Property Security & Access

In accordance with the Soil/Fill Management Plan, fencing is required to restrict access in all undeveloped areas and as necessary in redeveloped areas. In addition, all fencing around undeveloped areas will be posted with "No Trespassing" signs.

1. Is access controlled by perimeter fencing?	📋 yes	🕅 no	□ N/A
If not, please note: Site is partially fenced			
2. Is fencing in need of repair?	🕅 yes	🗌 no	□ N/A
3. Area access gates in working order?	📋 yes	🗌 no	X N/A
4. Sufficient signage posted (No Trespassing)?	🔀 yes	🗌 no	N/A
5. Has there been any noted or reported trespassing?	yes	∑ no	□ N/A

Please note any irregularities/ changes in site access and security:

Portions of fencing along the western site boundary are falling over. Remaining fencing still provides substantial impediment to trespassing. Hydro-Air personnel did not observe evidence of trespassing during the PRR period. Site perimeter fencing is not a Site engineering control listed in the SMP.

Property Use Changes / Site Development	
---	--

Has the property usage changed, or site been redeveloped since the last inspection?

∟уе	s	ХI	no		N/A
	1 I	:		-1 41	њ:I.

If so, please list with date: Property use has not changed since 2006 when HydroAir first occupied the building.

Active Sub-SI	ab Depressuri:	zation System	(ASD)

Is there an ASD present on-site?			
	X yes	🗌 no	🗌 N/A
If yes, is it currently operating?			
	🛛 yes	🗌 no	🗌 N/A
Is the ASD annual inspection checklist completed and enclosed	?		
See attachment	🗴 yes	🗌 no	🗌 N/A

Environmental Inspection Form Operation, Monitoring, & Maintenance Work Plan

ORC Well Monitoring and Mainter	nance			
Is there ORC mitigation present on-	site?			
		🔀 yes	🗌 no	🗌 N/A
Are the wells currently intact and op	erational?			
		🗙 yes	🗌 no	🗌 N/A
Has regular maintenance and monit	toring been documented an	d enclosed o	or referenced	1?
		🗙 yes	🗌 no	□ N/A
Long-Term Ground Water Monito	ring		**********************	
Is there a plan in place and current	y being followed?			
		🗴 yes	🗌 no	□ N/A
Are the wells currently intact and op	perational?			
Maintenance of well caps and locking	mechanisms is recommended	X yes	no	🗌 N/A
When was the most recent samplin	g event report and submitta	l? Date:	Included w	ith 2021-2022 PI
When is the next projected samplin	g event? Date: J	uly 2022		
New Information				
Has any new information been brou engineering and institutional control	-			and/or all
		🗌 yes	X no	□ N/A
Comments:				
This space for Notes and Comme	ents			
Please include the following Atta	chments:			
1. Site Sketch				
2. Photographs Site sl	ketch and photographs include	d in 2021-22 l	PRR report	

Attachment to Page 1 of 3

Coverage in Western Grass Area

As requested by NYSDEC, french drains were installed in May 2008 to minimize ponding observed after the installation of the soil cover in 2007. Minor ponding was observed during the annual 2021-2022 PRR inspection following prior snowmelt. Wetland vegetation continues to grow in the western grass area.

Northern Loading Dock

Subsequent to corrective measures that were put into place on 1 December 2012 (per the Corrective Measures Work Plan, approved 29 December 2011 by the Department), water has not accumulated in the northeastern loading dock area. The reconfiguration of the loading dock pump system (setting to automatic pumping and raising the float set-point) enabled sufficient pumping to maintain dry conditions and has sufficiently prevented the surfacing of groundwater in the area. Hydro-Air has continued to monitor the efficacy of these controls regularly throughout the 2021-22 monitoring period.

Gravel Cover Areas

Prior to 2012, evidence of surfacing groundwater from beneath the gravel cover areas on the northern end of the Site was evident (see Figure 2). As a voluntary corrective measure, the gravel cover on the northern portion of the access road was enhanced in 2012 by the placement of additional gravel (an additional 9 to 11 inches). During the 2020-2021 PRR Site inspection on 5 January 2021, standing water was observed in compacted areas on the gravel roadway between the Site building and northern Site boundary following a period of rainfall and snowmelt. This condition was likely related to recent rainfall/snow melt/localized groundwater recharge. To limit the potential for future temporary ponding under similar conditions, Hydro-Air imported approximately 88 tons of #2 crushed limestone to elevate the compacted areas and re-grade the roadway. The crushed stone was imported to the Site on 14 April 2021, per import approval provided by NYSDEC on 24 March 2021. Hydro-Air monitored the road conditions throughout the 2021-2022 reporting period and did not observe unanticipated standing water.

APPENDIX D Photo Log – 2021-2022 PRR Monitoring Period

Photo 1: Expansion joint separation underneath office linoleum tile and carpeting.

Photo 3: Expansion joint separation underneath office linoleum tile and carpeting.

Photo 5: Expansion joint sealing in office area.

Photo 2: Expansion joint separation underneath office linoleum tile and carpeting.

Photo 4: Expansion joint separation underneath office linoleum tile and carpeting.

Photo 6: Expansion joint sealing in office area.

Photo 7: Rips in linoleum floor tile.

Photo 9: Fencing along western site boundary.

Photo 11: Minor floor cracking in manufacturing space.

Photo 8: Gravel road along north side of site building

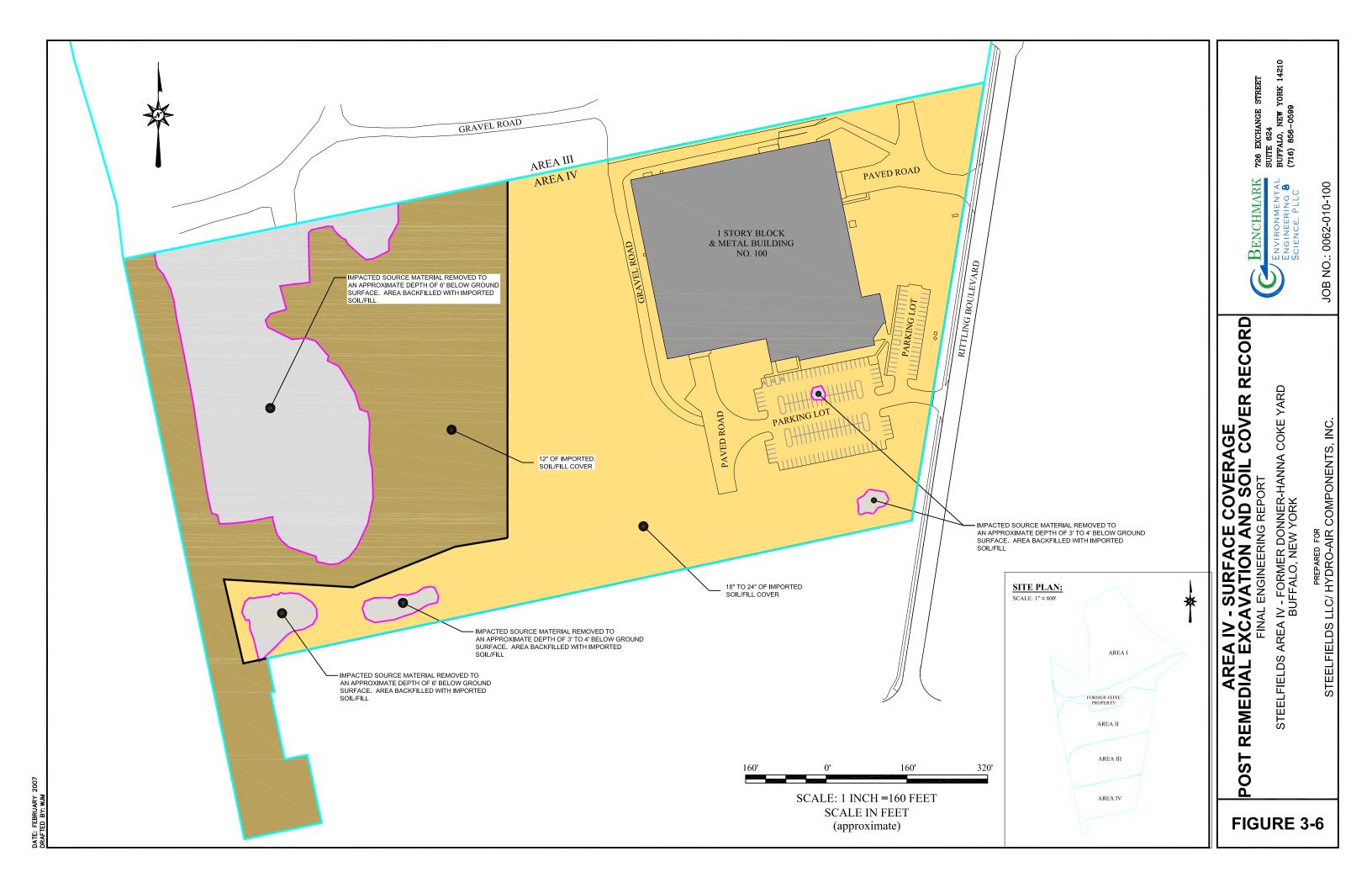


Photo 10: Stormwater pond.

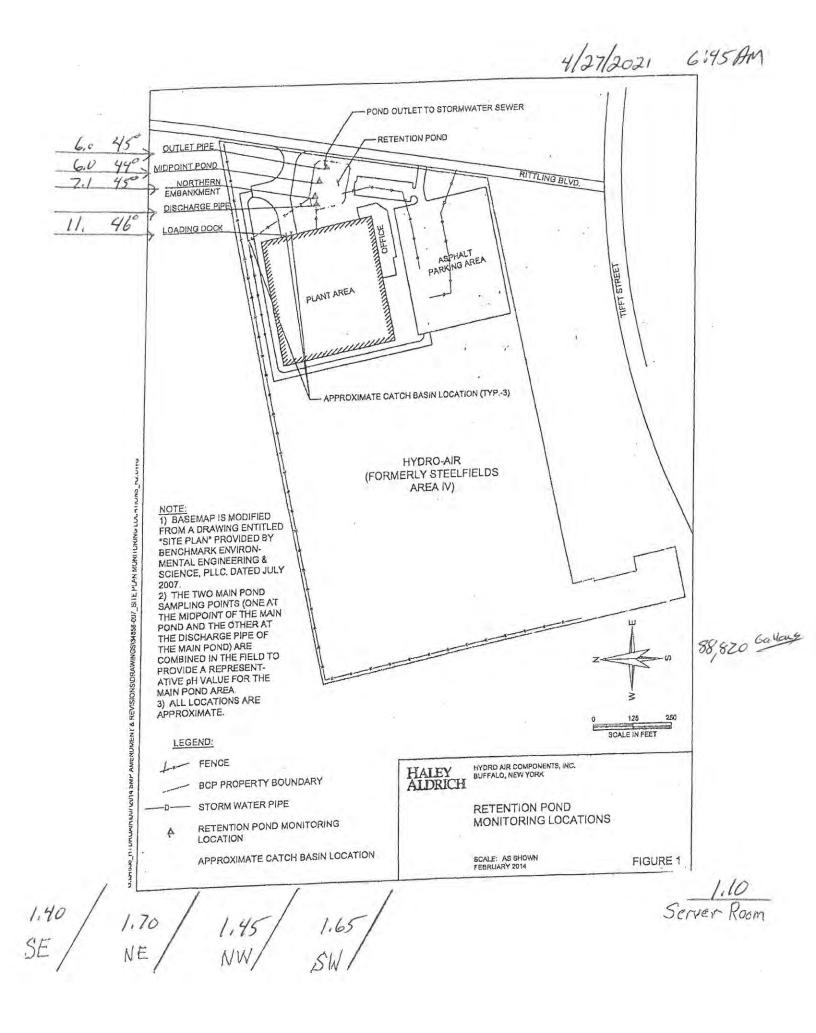


Photo 12: Minor floor cracking in manufacturing space.

APPENDIX E Soil Cover Map

APPENDIX F ASD System Maintenance and Monitoring Documentation

Monthly Operation & Maintenance Log Active Sub-Slab Depressurization System

Project Name:	Project No.:
Project Location:	Client:
Preparer's Name: Dale A Barto	Date/Time: 4/27/2021 6:4
Notes:	
	· · · · ·
Monthly Operating Status:	
System(s) currently running? If yes	
Has the system been off-line in the past mor	
	ption why (i.e. maintenance, part replacement, etc.):
What is the current Vacuum reading?	1 44
What is the current Vacuum reading?	1.46
	1.46 yes Pro
Visual Inspection:	
Visual Inspection: Any piping disconnected? Any cracks visible in piping? Any new cracks visible in slab floor?	yes Ino
Visual Inspection: Any piping disconnected? Any cracks visible in piping?	□ yes
Visual Inspection: Any piping disconnected? Any cracks visible in piping? Any new cracks visible in slab floor? Nagnehelic guage reading 0?	□ yes □ no □ yes □ no □ yes □ no □ yes □ no
Visual Inspection: Any piping disconnected? Any cracks visible in piping? Any new cracks visible in slab floor? lagnehelic guage reading 0?	□ yes □ no □ yes □ no □ yes □ no □ yes □ no
Visual Inspection: Any piping disconnected? Any cracks visible in piping? Any new cracks visible in slab floor? Nagnehelic guage reading 0?	□ yes □ no □ yes □ no □ yes □ no □ yes □ no
Visual Inspection: Any piping disconnected? Any cracks visible in piping? Any new cracks visible in slab floor?	□ yes □ no □ yes □ no □ yes □ no □ yes □ no
Visual Inspection: any piping disconnected? any cracks visible in piping? ny new cracks visible in slab floor? lagnehelic guage reading 0?	□ yes □ no □ yes □ no □ yes □ no □ yes □ no
Visual Inspection: ny piping disconnected? ny cracks visible in piping? ny new cracks visible in slab floor? agnehelic guage reading 0?	□ yes □ no □ yes □ no □ yes □ no □ yes □ no

Sub-Slab Depressurization Certification Inspection

Monthly Operation & Maintenance Log Active Sub-Slab Depressurization System

.

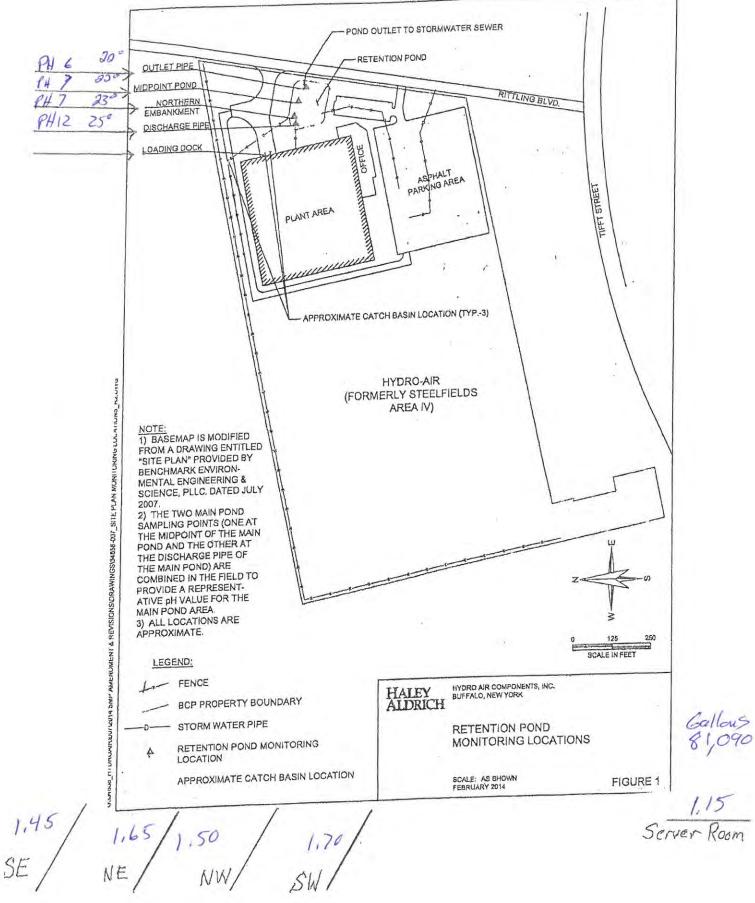
Please in	idicate general use	e of floor space?	M	an uSact	ur, Na		
Has this	general use chang	ed in the past mor	nth?	🗌 yes	10 TO		
If yes, ple	ease explain:						
			*			•	
						_	
_			_				
System N	Indifications:						
	Iodifications:	n made to the Sub	-Slah Denr	essurization	System?		The second secon
Have any	modifications been	n made to the Sub	-Slab Depr	essurizatior	System?	🗌 yes	E no
Have any		n made to the Sub	-Slab Depri	essurizatior	I System?	🗌 yes	[] no
Have any	modifications been	n made to the Sub	-Slab Depr	essurizatior	I System?	🗌 yes	E no
Have any	modifications been	n made to the Sub	-Slab Depri	essurizatior	I System?	☐ yes	L no
Have any	modifications been	n made to the Sub	-Slab Depri	essurizatior	i System?	☐ yes	E no
Have any	modifications been	n made to the Sub	-Slab Depr	essurizatior	I System?	☐ yes	I no
Have any	modifications been	n made to the Sub	-Slab Depri	essurizatior	i System?	☐ yes	I no

In accordance with

1. ph and temperature of a representative water from the 4 locations indicated on Figure 1.

weather conditions (general- wet/ dry, avg temp) since last measurement
 estimated volume of water pumped from loading dock (based upon pump run time data)

Staff Member	Date of Measure-ment	(Me	asurem	ent Locat	ion		Pump	Est. Quantity	Visual	Comments
		Discharge Pipe		Northern Embayment		Main Pond (Combined Samples)		Run Time*	of Water **	Condition of Pond (color, vegetation,	(e.g. weather conditions, etc)
		ph	Temp (°F)	ph	Temp (°F)	ph	Temp (°F)			etc.)	
Dale A Barto	1/27/2021 9:00am										
ale A Barto	2/26/2021 9:00am									102,198	Cloudy
Dale A Barto	3/31/2021 10:30am	9.00	42	10.00	41	6.00	42		54,420	Cloudy	Raining


#1 Server Room Office #2 S.E. Corner Cell 600/800 #3 N.E. Corner Warehouse #4 N.W. Corner Cell 200 #5 S.W. Corner Cell 100

Date	#1 Server Room	#2 S.E. Corner	#3 N.E. Corner	#4 N.W. Corner	#5 S.W. Corner	Average
1/27/2021	1.15	1.35	1.70	1.20	1.70	1.42
2/26/2021	1.20	1.35	1,65	1.25	1.65	1.42
3/31/2021	1.15	1.45	1.70	1.40	1.65	1.47
4/27/2021	1.10	1.40	1.70	1.45	1.65	1.46
						0.00
						0.00
						0.00
						0.00
						0.00
						0.00

0.00

0.00

5/25/2021 Am

Moi	nthly	Oper	ration	&	Maintena	nce	Loa
Active	Sub-	Slab	Depre	955	surization	Sys	stem

÷

G

BENCHMARK

ENVIRONMENTAL ENGINEERING & SCIENCE, PLLC

Project Location:		roject No .:		
	C	lient:		
Preparer's Name: Dale A B	arto D	ate/Time:	5/25/2011	9:00
Notes:			10. 10001	
Monthly Operating Status:				
<u></u>	1			
	yes	🗆 no	/	
Has the system been off-line in the particular	st month?	6	no	
If yes, please list the dates and brief de	escription why (i.e. ma	aintenance,	part replacement, etc.).
What is the current Vacuum reading?	1,49			
Visual Inspection:				
			/	and the second
ny piping disconnected?	🗋 yes	E n	9	
ny piping disconnected? ny cracks visible in piping?	☐ yes ☐ yes			
ny piping disconnected? ny cracks visible in piping? ny new cracks visible in slab floor?			2	
ny piping disconnected? ny cracks visible in piping? ny new cracks visible in slab floor?	□ yes		x >/	
ny piping disconnected? ny cracks visible in piping? ny new cracks visible in slab floor? agnehelic guage reading 0?	☐ yes ☐ yes ☐ yes		x >/	
ny piping disconnected? ny cracks visible in piping? ny new cracks visible in slab floor? agnehelic guage reading 0?	☐ yes ☐ yes ☐ yes		x >/	
ny piping disconnected? ny cracks visible in piping? ny new cracks visible in slab floor? agnehelic guage reading 0?	☐ yes ☐ yes ☐ yes		x >/	
ny piping disconnected? ny cracks visible in piping? ny new cracks visible in slab floor? agnehelic guage reading 0?	☐ yes ☐ yes ☐ yes		x >/	
Visual Inspection: ny piping disconnected? ny cracks visible in piping? ny new cracks visible in slab floor? agnehelic guage reading 0? yes to any question above, please provid	☐ yes ☐ yes ☐ yes		x >/	
ny piping disconnected? ny cracks visible in piping? ny new cracks visible in slab floor? agnehelic guage reading 0?	☐ yes ☐ yes ☐ yes		x >/	

Sub-Slab Depressurization Certification Inspection

Monthly Operation & Maintenance Log Active Sub-Slab Depressurization System

			of floor s		11	anufac	turing	1	
			ed in the p	ast month?		🗌 yes	no /		
If yes,	please exp	ain:							
and the second									
				P.					
Systen	n Modificat	ions:							
			made to	the Sub-Sla	b Depres	ssurization	System?	🗌 yes	C n
lave a		ions beer	made to	the Sub-Sla	b Depres	ssurization	System?	🗌 yes	C n
lave a	ny modifica	ions beer	made to	the Sub-Sla	b Depres	ssurization	System?	☐ yes	C n
lave a	ny modifica	ions beer	made to	the Sub-Sla	b Depres	ssurization	System?	☐ yes	C n
lave a	ny modifica	ions beer	made to	the Sub-Sla	b Depres	ssurization	System?	☐ yes	C n
lave a	ny modifica	ions beer	made to	the Sub-Sla	b Depres	ssurization	System?	U yes	C n
lave a	ny modifica	ions beer	made to	the Sub-Sla	b Depres	ssurization	System?	☐ yes	Ċ n
lave a	ny modifica	ions beer	made to	the Sub-Sla	b Depres	ssurization	System?	U yes	

Sub-Slab Depressurization Certification Inspection

In accordance with

1, ph and temperature of a representative water from the 4 locations indicated on Figure 1.

2. weather conditions (general- wet/ dry, avg temp) since last measurement

3. estimated volume of water pumped from loading dock (based upon pump run time data)

Staff Member	Date of Measure-ment		Me	easurem	ent Loca	tion		Pump	Est. Quantity	Visual	Comments
		Dischar	ge Pipe		thern yment	(Con	n Pond nbined nples)	Run Time*	of Water **	Condition of Pond (color, vegetation,	(e.g. weather conditions, etc
		ph	Temp (°F)	ph	Temp (°F)	ph	Temp (°F)		í	etc.)	· · · · · ·
Dale A Barto	1/27/2021 9:00am										
Dale A Barto	2/26/2021 9:00am									102,198	Cloudy
Dale A Barto	3/31/2021 10:30am	9.00	42	10.00	41	6.00	42		54,420		Raining
Dale A Barto	4/27/2021 9:30am	11.00	46	7.00	45	6.00	44		88,820		Sunny
Dale A Barto	5/25/2021 9:00am	12.00	77	7.00	73	7.00	71		81,090		Sunny
Dale A Barto											
Dale A Barto											
Dale A Barto											
Dale A Barto											
Dale A Barto											
Dale A BArto											
Dale A Barto											
Dale A Barto											
Dale A Barto											
Dale A Barto											
Dale A Barto											
Dale A Barto											
Dale A Barto											
Dale A Barto											
Dale A Barto											
Dale A Barto											
Dale A Barto											
ale A Barto											
ale A Barto											
ale A Barto											

6-30-21 9:00 Am POND OUTLET TO STORMWATER SEWER 7 PH 84 69 72 RETENTION POND OUTLET PIPE 8 PH MIDPOINT POND 7 81 RITTLING BLVD. NORTHERN EMBANKMENT 10 PH 73 0 DISCHARGE PIPE LOADING DOCK ------ASPHALT PARKING AREA STREET PLANT AREA E E Mulle APPROXIMATE CATCH BASIN LOCATION (TYP.-3) HYDRO-AIR ชงย_กา บานหนานนา ผนาจ อพราสงคะหมวงคอกได้ REVISIONSDRAMINGS134856-007_511E FLAN MUNI เป็นหาง มนนากามกจ_กษณาการ (FORMERLY STEELFIELDS AREA IV) NOTE: 1) BASEMAP IS MODIFIED FROM A DRAWING ENTITLED "SITE PLAN" PROVIDED BY BENCHMARK ENVIRON-MENTAL ENGINEERING & SCIENCE, PLLC. DATED JULY 2007. 2) THE TWO MAIN POND SAMPLING POINTS (ONE AT THE MIDPOINT OF THE MAIN POND AND THE OTHER AT THE DISCHARGE PIPE OF THE MAIN POND) ARE COMBINED IN THE FIELD TO PROVIDE A REPRESENT-ATIVE PH VALUE FOR THE MAIN POND AREA. 3) ALL LOCATIONS ARE APPROXIMATE. 2 125 250 SCALE IN FEET LEGEND: FENCE HYDRO AIR COMPONENTS, INC. BUFFALO, NEW YORK HALEY ALDRICH BCP PROPERTY BOUNDARY STORM WATER PIPE RETENTION POND 56,470 gallons; per HydroAir MONITORING LOCATIONS RETENTION POND MONITORING LOCATION APPROXIMATE CATCH BASIN LOCATION SCALE: AS SHOWN FEBRUARY 2014 FIGURE 1 1.10 1.50 SE / Server Room 1,60 1,70 1,75 NE

	Active Sub	-Slab De	on & Maintenand pressurization S	System
Project Name:		Project No.:		
Project Location:		Client:		
Preparer's Name: Dale A	Barto	Date/Time:	6-30-21	9:00 Au
Notes:				
			<i>i</i>	
Monthly Operating Status				
Monthly Operating Status:	/			
System(s) currently running?	占 yes	🗆 no		
Has the system been off-line in the p If yes, please list the dates and brief			Pro part replacement, etc.):
	description why (i.e. r):
If yes, please list the dates and brief	description why (i.e. r):
If yes, please list the dates and brief What is the current Vacuum reading? Visual Inspection:	description why (i.e. r		e, part replacement, etc.):
If yes, please list the dates and brief What is the current Vacuum reading? Visual Inspection: Any piping disconnected?	description why (i.e. r		e, part replacement, etc.);
If yes, please list the dates and brief What is the current Vacuum reading?	description why (i.e. r	maintenance	no):
If yes, please list the dates and brief What is the current Vacuum reading? Visual Inspection: Any piping disconnected? Any cracks visible in piping?	description why (i.e. r	maintenance	no no no):
If yes, please list the dates and brief What is the current Vacuum reading? Visual Inspection: Any piping disconnected? Any cracks visible in piping? Any new cracks visible in slab floor?	description why (i.e. r	maintenance	no no no):
If yes, please list the dates and brief What is the current Vacuum reading? Visual Inspection: Any piping disconnected? Any cracks visible in piping? Any new cracks visible in slab floor? Magnehelic guage reading 0?	description why (i.e. r	maintenance	no no no):
If yes, please list the dates and brief What is the current Vacuum reading? Visual Inspection: Any piping disconnected? Any cracks visible in piping? Any new cracks visible in slab floor? Magnehelic guage reading 0? If yes to any question above, please pro	description why (i.e. r	n below.	no no no no);

.

.

Monthly Operation & Maintenance Log Active Sub-Slab Depressurization System

Change in Occupancy / Use of Space:		
Please indicate general use of floor space?	Once facto	rinc
Has this general use changed in the past month?	🗌 yes	Pho
If yes, please explain:		
	and the second	

System Modifications:

Have any modifications been made to the Sub-Slab Depressurization System? Have no lf so, please list with date:

Sub-Slab Depressurization Certification Inspection

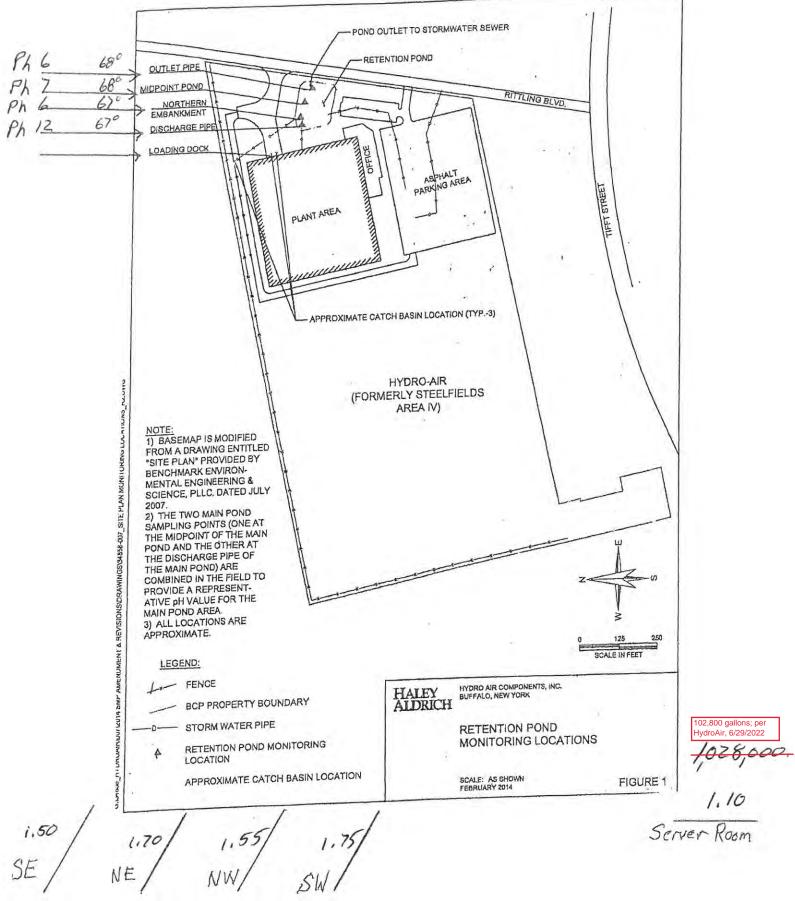
In accordance with

1. ph and temperature of a representative water from the 4 locations indicated on Figure 1.

2. weather conditions (general- wet/ dry, avg temp) since last measurement

3. estimated volume of water pumped from loading dock (based upon pump run time data)

Staff Member	Pr Date of Measure-ment		Me	asurem	ent Loca	tion		Pump	Est. Quantity		Comments
		Dischar	ge Pipe		hern yment	(Con	n Pond nbined nples)	Run Time*	of Water **	Condition of Pond (color, vegetation,	(e.g. weather conditions, etc
		ph	Temp (°F)	ph	Temp (°F)	ph	Temp (°F)			etc.)	
Dale A Barto	1/27/2021 9:00am										
Dale A Barto	2/26/2021 9:00am									102,198	Cloudy
Dale A Barto	3/31/2021 10:30am	9.00	42	10.00	41	6.00	42		54,420	Cloudy	Raining
Dale A Barto	4/27/2021 9 :30am	11.00	46	7.00	45	6.00	44		88,820	Clear	Sunny
Dale A Barto	5/25/2021 9:00am	12.00	77	7.00	73	7.00	71		81,090	Clear	Sunny
Dale A Barto	6/30/2021 9:00am	10.00	73	7.00	72	7.00	84		56,470	clear	Sunny
Dale A Barto											
Dale A Barto											
Dale A Barto											
Dale A Barto											
Dale A BArto											
Dale A Barto											
Dale A Barto											
Dale A Barto											
Dale A Barto											
Dale A Barto											
Dale A Barto											
Dale A Barto											
Dale A Barto											
Dale A Barto											
ale A Barto											
ale A Barto											
ale A Barto											
ale A Barto											
ale A Barto											


#1 Server Room Office #2 S.E. Corner Cell 600/800 #3 N.E. Corner Warehouse #4 N.W. Corner Cell 200 #5 S.W. Corner Cell 100

Date	#1 Server Room	#2 S.E. Corner	#3 N.E. Corner	#4 N.W. Corner	#5 S.W. Corner	Average
1/27/2021	1.15	1.35	1.70	1.20	1.70	1.42
2/26/2021	1.20	1.35	1.65	1.25	1.65	1.42
3/31/2021	1.15	1.45	1.70	1.40	1.65	1.47
4/27/2021	1.10	1.40	1.70	1.45	1.65	1.46
5/25/2021	1.15	1.45	1.65	1.50	1.70	1.49
6/30/2021	1.10	1.50	1.70	1.60	1.75	1.53
						0.00
						0.00
						0.00

0.00

0.00

7/28/2021

SCIENCE, PLLC	Monthly (Active Sub-S	Operatio Slab Dep	on & Maintenance pressurization S	e Log ystem
Project Name:	Pi	oject No.:		
Project Location:	CI	ient:		
Preparer's Name: Dale A	Saite Da	ate/Time:	7/28/2021	9:301
Notes:				
			ð -	
1				
Monthly Operating Status:				
	/			
System(s) currently running?	yes	no 🗆		
Has the system been off-line in the pas	st month? yes		Eno	
What is the current Vacuum reading?	1.52			
What is the current Vacuum reading? Visual Inspection:	1.52			
Visual Inspection:	1.52		0	
Visual Inspection: Any piping disconnected?				
	yes	-/	0	
Visual Inspection: Any piping disconnected? Any cracks visible in piping?	☐ yes ☐ yes	G n	0	

Sub-Slab Depressurization Certification Inspection

1. 44

Monthly Operation & Maintenance Log Active Sub-Slab Depressurization System

		se of floor space	? Ma	Nufact	uring		
		ged in the past r	nonth?	🗋 yes	Dino)	
If yes, plea	ise explain:						
				Sittle and the second			-
						Whiteware	
and the second se					nië d		
	difications:						/
		en made to the S	ub-Slab Dep	pressurization	System?	🗆 yes 🛛	Гпо
f so, please	list with date:						
			~				
							-
						Ť	
							_
						•	_

#1 Server Room Office
#2 S.E. Corner Cell 600/800
#3 N.E. Corner Warehouse
#4 N.W. Corner Cell 200
#5 S.W. Corner Cell 100

Date	#1 Server Room	#2 S.E. Corner	#3 N.E. Corner	#4 N.W. Corner	#5 S.W. Corner	Average
1/27/2021	1.15	1.35	1.70	1.20	1.70	1.42
2/26/2021	1.20	1.35	1.65	1.25	1.65	1,42
3/31/2021	1.15	1.45	1.70	1.40	1.65	1.47
4/27/2021	1.10	1.40	1.70	1.45	1.65	1.46
5/25/2021	1.15	1.45	1.65	1.50	1.70	1.49
6/30/2021	1.10	1.50	1.70	1.60	1.75	1.53
7/28/2021	1.10	1.50	1.70	1.55	1.75	1.52
						0.00
						0.00
						0.00

0.00

14

In accordance with

1. ph and temperature of a representative water from the 4 locations indicated on Figure 1.

2. weather conditions (general- wet/ dry, avg temp) since last measurement

3. estimated volume of water pumped from loading dock (based upon pump run time data)

						Main	Pond	Run	of Water **	Condition of	(e.g. weather
		Dischar	ge Pipe		hern yment	(Com	bined ples)	Time*		Pond (color, vegetation,	conditions, et
		ph	Temp (°F)	ph	Temp (°F)	ph	Temp (°F)			etc.)	
Dale A Barto	1/27/2021 9:00am										
Dale A Barto	2/26/2021 9:00am									102,198	Cloudy
Dale A Barto	3/31/2021 10:30am	9.00	42	10.00	41	6.00	42		54,420	Cloudy	Raining
Dale A Barto	4/27/2021 9:30am	11.00	46	7.00	45	6.00	44		88,820	Clear	Sunny
Dale A Barto	5/25/2021 9:00am	12.00	77	7.00	73	7.00	71		81,090	Clear	Sunny
Dale A Barto	6/30/2021 9:00am	10.00	73	7.00	72	7.00	84		56,470	clear	Sunny
Dale A Barto	7/28/2021 9:00am	12.00	68	6.00	67	12.00	67		1,028,000	clear	Sunny
Dale A Barto											
Dale A Barto											
Dale A Barto											
Dale A BArto											
Dale A Barto											
Dale A Barto											
Dale A Barto											
Dale A Barto											
Dale A Barto											
Dale A Barto											
Dale A Barto											
Dale A Barto											
Dale A Barto											
Dale A Barto											
Dale A Barto											
Dale A Barto											
Dale A Barto											

8/26/2021 9:00 Hau POND OUTLET TO STORMWATER SEWER RETENTION POND OUTLET PIPE 780 MIDPOINT POND RITTLING BLVD 180 NORTHERN EMBANKMENT 770 DISCHARGE PIPE (monormanication) LOADING DOCK 800 ASPHALT PARKING AREA TIFFT STREET PLANT AREA uuuuu APPROXIMATE CATCH BASIN LOCATION (TYP .- 3) HYDRO-AIR องก_ก เป็นประเทศ (การ อาศา องคะ สงคะหมาศะคา! & REVISIONSDRAWINGSIG4858-007_511E FLAN MUNII เป็นทาง เป็นเคร_การจ (FORMERLY STEELFIELDS AREA IV) NOTE: 1) BASEMAP IS MODIFIED FROM A DRAWING ENTITLED *SITE PLAN* PROVIDED BY BENCHMARK ENVIRON-MENTAL ENGINEERING & SCIENCE, PLLC, DATED JULY 2007. 2) THE TWO MAIN POND SAMPLING POINTS (ONE AT THE MIDPOINT OF THE MAIN POND AND THE OTHER AT THE DISCHARGE PIPE OF THE MAIN POND) ARE COMBINED IN THE FIELD TO PROVIDE A REPRESENT-ATIVE PH VALUE FOR THE MAIN POND AREA. 3) ALL LOCATIONS ARE APPROXIMATE. 250 125 SCALE IN FEET LEGEND: FENCE HYDRO AIR COMPONENTS, INC. BUFFALO, NEW YORK HALEY BCP PROPERTY BOUNDARY STORM WATER PIPE RETENTION POND MONITORING LOCATIONS RETENTION POND MONITORING 4 LOCATION APPROXIMATE CATCH BASIN LOCATION SCALE: AS SHOWN FEBRUARY 2014 1.15 FIGURE 1 1,75/ SE / Server Room 1,70 1,60 1.50 NE

85, 800. Purpod to Pard

ENGINEERING & Science, PLLC	Monthly Active Sub-	Operation Slab Dep	on & Maintenand pressurization S	ce Log System
Project Name:	1	Project No.:		
Project Location:	and the second sec	Client:		
Preparer's Name: Dale A F	anto 1	Date/Time:	8/26/21	9:00A
Notes:				
*			,	
Monthly Operating Status:		1. S		
and the second	/		- Group and a second	
System(s) currently running?	yes		/	
System(s) currently running?	t month? 🗆 ye		Dino part replacement, etc.	.):
Has the system been off-line in the pas	t month? 🗆 ye	S		.):
Has the system been off-line in the pas If yes, please list the dates and brief de	t month?	S		.):
Has the system been off-line in the pas If yes, please list the dates and brief de What is the current Vacuum reading? Visual Inspection:	t month? scription why (i.e. m	es aintenance,	part replacement, etc.	_):
Has the system been off-line in the pas If yes, please list the dates and brief de What is the current Vacuum reading? Visual Inspection: Any piping disconnected?	t month? scription why (i.e. m 		part replacement, etc.	.):
Has the system been off-line in the pas If yes, please list the dates and brief de What is the current Vacuum reading? Visual Inspection: Any piping disconnected? Any cracks visible in piping?	t month? scription why (i.e. m 7.54 yes yes		part replacement, etc.	.):
Has the system been off-line in the pas If yes, please list the dates and brief de What is the current Vacuum reading? Visual Inspection: Any piping disconnected? Any cracks visible in piping? Any new cracks visible in slab floor?	t month? scription why (i.e. m 		part replacement, etc.	_):
Has the system been off-line in the pas If yes, please list the dates and brief de What is the current Vacuum reading?	t month? scription why (i.e. m 7.54 yes yes yes yes yes yes		part replacement, etc.	_):
Has the system been off-line in the pas If yes, please list the dates and brief de What is the current Vacuum reading? Visual Inspection: Any piping disconnected? Any cracks visible in piping? Any new cracks visible in slab floor? Magnehelic guage reading 0?	t month? scription why (i.e. m 7.54 yes yes yes yes yes yes		part replacement, etc.	

.

Monthly Operation & Maintenance Log Active Sub-Slab Depressurization System

Change	in	Occupancy / Use of Space:	

Please indicate general use of floor space? Has this general use changed in the past month? If yes, please explain:

Manufacturi □ yes TO no

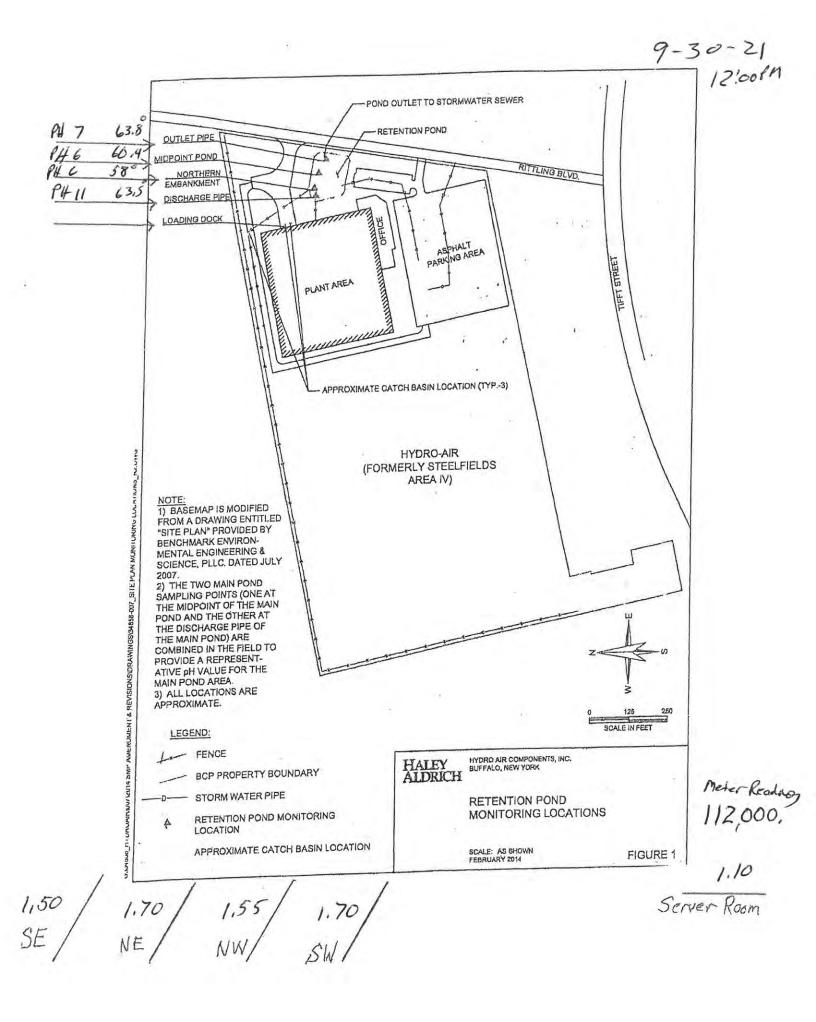
System Modifications:

Have any modifications been made to the Sub-Slab Depressurization System?	🛛 yes	19 no
If so, please list with date:		

In accordance with

1. ph and temperature of a representative water from the 4 locations indicated on Figure 1.

2. weather conditions (general- wet/ dry, avg temp) since last measurement


3. estimated volume of water pumped from loading dock (based upon pump run time data)

Staff Member	Date of Measure-ment		Me	asurem	ent Loca	tion		Pump	Est. Quantity		Comments
		Dischar	ge Pipe		hern yment	(Com	Pond bined ples)	Run Time*	of Water **	Condition of Pond (color, vegetation,	(e.g. weather conditions, etc
		ph	Temp (°F)	ph	Temp (°F)	ph	Temp (°F)			etc.)	
Dale A Barto	1/27/2021 9:00am										
Dale A Barto	2/26/2021 9:00am									102,198	Cloudy
Dale A Barto	3/31/2021 10:30am	9.00	42	10.00	41	6.00	42		54,420	Cloudy	Raining
Dale A Barto	4/27/2021 9 :30am	11.00	46	7.00	45	6.00	44		88,820	Clear	Sunny
Dale A Barto	5/25/2021 9:00am	12.00	77	7.00	73	7.00	71		81,090	Clear	Sunny
Dale A Barto	6/30/2021 9:00am	10.00	73	7.00	72	7.00	84		56,470	clear	Sunny
Dale A Barto	7/28/2021 9:00am	12.00	68	6.00	67	12.00	67		1,028,000	clear	Sunny
Dale A Barto	8/26/2021 8:00am	10.00	77	6.00	78	7.00	78		85,800	clear	Sunny
Dale A Barto											
Dale A Barto											
Dale A BArto											
Dale A Barto											
Dale A Barto											
Dale A Barto											
Dale A Barto											
Dale A Barto											
Dale A Barto											
Dale A Barto											
Dale A Barto											
ale A Barto											
ale A Barto											
ale A Barto											
ale A Barto											
2.04.0m											
ale A Barto											

#1 Server Room Office #2 S.E. Corner Cell 600/800 #3 N.E. Corner Warehouse #4 N.W. Corner Cell 200 #5 S.W. Corner Cell 100

Date	#1 Server Room	#2 S.E. Corner	#3 N.E. Corner	#4 N.W. Corner	#5 S.W. Corner	Average
1/27/2021	1.15	1.35	1.70	1.20	1.70	1.42
2/26/2021	1.20	1.35	1.65	1.25	1.65	1.42
3/31/2021	1.15	1.45	1.70	1.40	1.65	1.47
4/27/2021	1.10	1.40	1.70	1.45	1.65	1.46
5/25/2021	1,15	1.45	1.65	1.50	1.70	1.49
6/30/2021	1.10	1.50	1.70	1.60	1.75	1.53
7/28/2021	1.10	1.50	1.70	1.55	1.75	1.52
8/26/2021	1.15	1.75	1.70	1.60	1.50	1.54
						0.00
						0.00
						0.00

0.00

Project Name:		b-Slab Der				
Project Location:		Project No.:	-			
Preparer's Name: Uple A	21	Client:	a			
Notes:	Darto	Date/Time:	1.	-30	-21	_12:00F
· · · ·						
		and and and a second				
Marshill Orac di Andre		-41				
Monthly Operating Status:						
System(s) currently running?						
	yes	🗆 no		15-		
Has the system been off-line in the pas If yes, please list the dates and brief de	t month?	ves	Defi part re	placeme	nt, etc.):	
Has the system been off-line in the pas	t month?	ves	Dri part re	placeme	nt, etc.):	
Has the system been off-line in the pas	t month?	ves	Dri part re	placeme	nt, etc.):	
Has the system been off-line in the pas If yes, please list the dates and brief de	t month?	ves	Deri re	placeme	nt, etc.):	
Has the system been off-line in the pas If yes, please list the dates and brief de What is the current Vacuum reading? Visual Inspection:	t month?	yes maintenance,	part re	placeme	nt, etc.):	
Has the system been off-line in the pas If yes, please list the dates and brief de What is the current Vacuum reading? Visual Inspection: Any piping disconnected? Any cracks visible in piping?	t month?	yes maintenance,	part re	placeme	nt, etc.):	
Has the system been off-line in the pas If yes, please list the dates and brief de What is the current Vacuum reading? Visual Inspection: Any piping disconnected? Any cracks visible in piping? Any new cracks visible in slab floor?	t month? scription why (i.e.	yes maintenance,	part re	placeme	nt, etc.):	
Has the system been off-line in the pas If yes, please list the dates and brief de What is the current Vacuum reading?	t month? scription why (i.e. 	yes maintenance,	part re	placeme	nt, etc.):	
Has the system been off-line in the pas If yes, please list the dates and brief de What is the current Vacuum reading? Visual Inspection: Any piping disconnected? Any cracks visible in piping? Any new cracks visible in slab floor? Magnehelic guage reading 0?	t month? □ scription why (i.e. 	yes maintenance,	part re	placeme	nt, etc.):	
Has the system been off-line in the pas If yes, please list the dates and brief de What is the current Vacuum reading? Visual Inspection: Any piping disconnected? Any cracks visible in piping? Any new cracks visible in slab floor?	t month? □ scription why (i.e. 	yes maintenance,	part re		nt, etc.):	
Has the system been off-line in the pas If yes, please list the dates and brief de What is the current Vacuum reading? Visual Inspection: Any piping disconnected? Any cracks visible in piping? Any new cracks visible in slab floor? Magnehelic guage reading 0?	t month? □ scription why (i.e. 	yes maintenance,	part re	placeme	nt, etc.):	

.

Sub-Slab Depressurization Certification Inspection

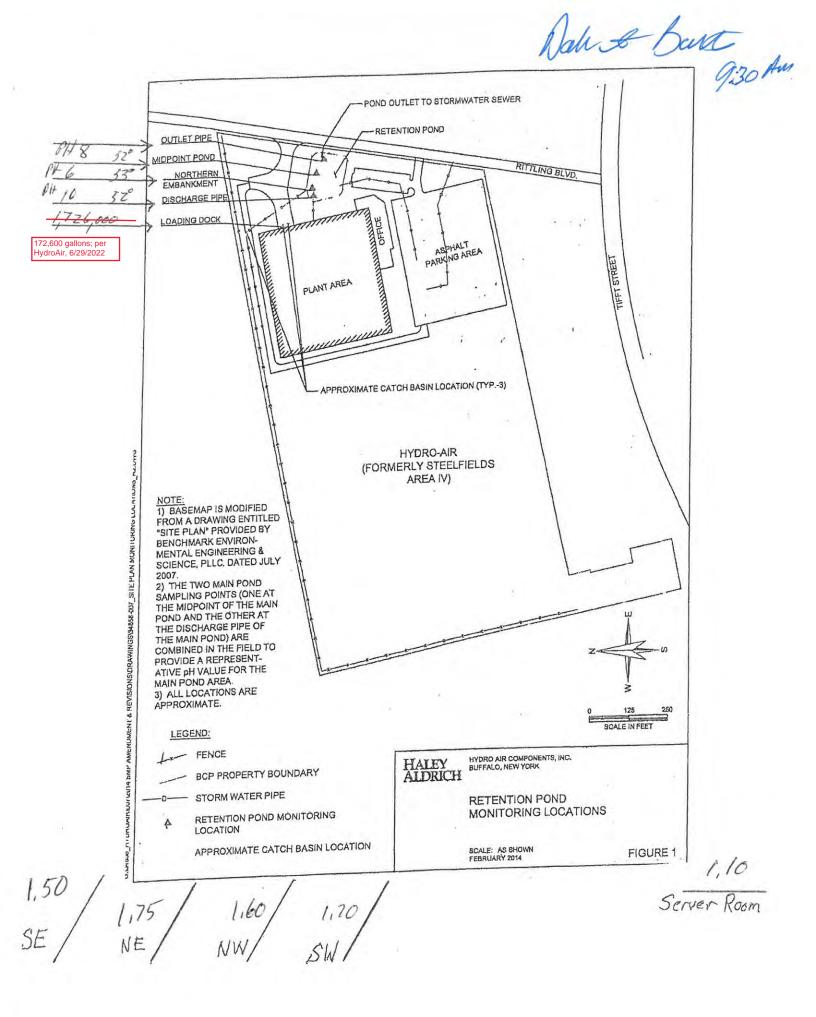
Monthly Operation & Maintenance Log Active Sub-Slab Depressurization System

Change in Occupancy / Use of Space:				
Please indicate general use of floor space?	Manu	End :		
Has this general use changed in the past month?		acturi De	ng	
If yes, please explain:		10	1	
System Modifications:				
Have any modifications been made to the Sub-Slab De				_/
If so, please list with date:	epressurization	System?	□ yes	1 no

In accordance with

1. ph and temperature of a representative water from the 4 locations indicated on Figure 1.

weather conditions (general- wet/ dry, avg temp) since last measurement
 estimated volume of water pumped from loading dock (based upon pump run time data)


Staff Member	Date of Measure-ment	-	Me	asurem	ent Loca	ation		Pump	Est. Quantit		Comments
		Discha	rge Pipe		thern yment	(Cor	n Pond nbined nples)	Run Time*	of Water **	Condition of Pond (color, vegetation,	(e.g. weather conditions, etc
		ph	Temp (°F)	ph	Temp (°F)	ph	Temp (°F)			etc.)	
Dale A Barto	1/27/2021 9:00am										
Dale A Barto	2/26/2021 9:00am									102,198	Cloudy
Dale A Barto	3/31/2021 10:30am	9.00	42	10.00	41	6.00	42		54,420	Cloudy	Raining
Dale A Barto	4/27/2021 9:30am	11.00	46	7.00	45	6.00	44		88,820	Clear	Sunny
Dale A Barto	5/25/2021 9:00am	12.00	77	7.00	73	7.00	71		81,090		Sunny
Dale A Barto	6/30/2021 9:00am	10.00	73	7.00	72	7.00	84		56,470		Sunny
Dale A Barto	7/28/2021 9:00am	12.00	68	6.00	67	12.00	67				Sunny
Dale A Barto	8/26/2021 8:00am	10.00	77	6.00	78	7.00	78		85,800		Sunny
Dale A Barto	9/30/2021 12:00pm	11.00	63	6.00	58	7.00	63				cloudy
Dale A Barto											
Dale A BArto											
Dale A Barto											
Dale A Barto											
Dale A Barto											
Dale A Barto											
ale A Barto											
ale A Barto											
ale A Barto											
ale A Barto											
ale A Barto											
ale A Barto											
ale A Barto											
ale A Barto											
le A Barto											
le A Barto											

Magnehelic Readings

#1 Server Room Office #2 S.E. Corner Cell 600/800 #3 N.E. Corner Warehouse #4 N.W. Corner Cell 200 #5 S.W. Corner Cell 100

Date	#1 Server Room	#2 S.E. Corner	#3 N.E. Corner	#4 N.W. Corner	#5 S.W. Corner	Average
1/27/2021	1.15	1.35	1.70	1.20	1.70	1.42
2/26/2021	1.20	1.35	1.65	1.25	1.65	1.42
3/31/2021	1.15	1.45	1.70	1.40	1.65	1.42
4/27/2021	1.10	1.40	1.70	1.45	1.65	1.46
5/25/2021	1.15	1.45	1.65	1.50	1.70	
6/30/2021	1.10	1.50	1.70	1.60	1.75	1.49
7/28/2021	1.10	1.50	1.70	1.55	1.75	1.53
8/26/2021	1.15	1.75	1.70	1.60	1.50	1.52
9/30/2021	1.10	1.50	1.70	1.55	1.70	1.54
		1.50	1.70	1.55	1.70	1.51
						0.00
						0.00

0.00

Project Name:		Project No.:		
Project Location:	(Client:	1 .	
Preparer's Name: Dal A Bart	5 [Date/Time:	10/29/2021	9
Notos:				
			,	
Monthly Operating Status:	-			
Contact to the second s	/		The second se	
	es	🗆 по		
Has the system been off-line in the past r	month? ye	S	D no part replacement, etc.)	:
System(s) currently running? Has the system been off-line in the past r If yes, please list the dates and brief desc What is the current Vacuum reading?	month? ye	S	D no part replacement, etc.)	:
Has the system been off-line in the past r If yes, please list the dates and brief desc	month? ye	S	D no part replacement, etc.)	:
Has the system been off-line in the past r If yes, please list the dates and brief desc What is the current Vacuum reading?	month? ye	es aintenance,	part replacement, etc.)	
Has the system been off-line in the past r If yes, please list the dates and brief desc What is the current Vacuum reading? Visual Inspection: ny piping disconnected? y cracks visible in piping?	month?	S	part replacement, etc.)	:
Has the system been off-line in the past r If yes, please list the dates and brief desc What is the current Vacuum reading? //isual Inspection: ny piping disconnected? y cracks visible in piping? y new cracks visible in slab floor?	month?	es naintenance,	part replacement, etc.)	· · ·
Has the system been off-line in the past r If yes, please list the dates and brief desc What is the current Vacuum reading? Visual Inspection: ny piping disconnected? y cracks visible in piping?	month? pription why (i.e. m <i>J.53</i> yes yes		part replacement, etc.)	
Has the system been off-line in the past r If yes, please list the dates and brief desc What is the current Vacuum reading? Visual Inspection: ny piping disconnected? y cracks visible in piping? y new cracks visible in slab floor? ignehelic guage reading 0?	month?		part replacement, etc.)	
Has the system been off-line in the past r If yes, please list the dates and brief desc What is the current Vacuum reading? //isual Inspection: ny piping disconnected? y cracks visible in piping? y new cracks visible in slab floor?	month?		part replacement, etc.)	

- ----

Sub-Slab Depressurization Certification Inspection

BENCHMARK ENVIRONMENTAL ENGINEERING & SCIENCE, PLLC

Monthly Operation & Maintenance Log Active Sub-Slab Depressurization System

Change in Occupancy / Use of Space:	
Please indicate general use of floor space? Mawu Has this general use changed in the past month?	facturing yes Prio
System Modifications: Have any modifications been made to the Sub-Slab Depressuriz	zation System?

Sub-Slab Depressurization Certification Inspection

In accordance with

1. ph and temperature of a representative water from the 4 locations indicated on Figure 1.

2. weather conditions (general- wet/ dry, avg temp) since last measurement

3. estimated volume of water pumped from loading dock (based upon pump run time data)

Staff Member	Date of Measure-ment	-	Me							st. Quantity Visual	Comments
		Discharge Pipe			Northern Embayment		Pond bined ples)	Run Time*	of Water **	Condition of Pond (color, vegetation,	(e.g. weather conditions, etc)
		ph	Temp (°F)	ph	Temp (°F)	ph	Temp (°F)			etc.)	·
Dale A Barto	1/27/2021 9:00am										
Dale A Barto	2/26/2021 9:00am									102,198	Cloudy
Dale A Barto	3/31/2021 10:30am	9.00	42	10.00	41	6.00	42		54,420	Cloudy	Raining
Dale A Barto	4/27/2021 9 :30am	11.00	46	7.00	45	6.00	44		88,820	Clear	Sunny
Dale A Barto	5/25/2021 9:00am	12.00	77	7.00	73	7.00	71		81,090	Clear	Sunny
Dale A Barto	6/30/2021 9:00am	10.00	73	7.00	72	7.00	84		56,470	clear	Sunny
Dale A Barto	7/28/2021 9:00am	12.00	68	6.00	67	12.00	67		1,028,000	clear	Sunny
Dale A Barto	8/26/2021 8:00am	10.00	77	6.00	78	7.00	78		85,800	clear	Sunny
Dale A Barto	9/30/2021 12:00pm	11.00	63	6.00	58	7.00	63		1,120,000	clear	cloudy
Dale A Barto	10/29/2021 9:30am	10.00	52	6.00	53	8.00	52		1,726,000	cloudy	cloudy
Dale A BArto											
Dale A Barto											
Dale A Barto											
Dale A Barto											
Dale A Barto											
Dale A Barto											
ale A Barto											
ale A Barto											
ale A Barto											
ale A Barto											
ale A Barto											
ale A Barto											
ale A Barto											
ale A Barto											
ale A Barto											

Magnehelic Readings

#1 Server Room Office #2 S.E. Corner Cell 600/800 #3 N.E. Corner Warehouse #4 N.W. Corner Cell 200 #5 S.W. Corner Cell 100

Date	#1 Server Room	#2 S.E. Corner	#3 N.E. Corner	#4 N.W. Corner	#5 S.W. Corner	Average
1/27/2021	1.15	1.35	1.70	1.20	1.70	Average
2/26/2021	1.20	1.35	1.65	1.25	1.65	1.42
3/31/2021	1.15	1.45	1.70	1.40	1.65	1.42 1.47
4/27/2021	1.10	1.40	1.70	1.45	1.65	1.47
5/25/2021	1.15	1.45	1.65	1.50	1.70	1.40
6/30/2021	1.10	1.50	1.70	1.60	1.75	1.49
7/28/2021	1.10	1.50	1.70	1.55	1.75	1.55
8/26/2021	1.15	1.75	1.70	1.60	1.50	1.54
9/30/2021	1.10	1.50	1.70	1.55	1.70	1.51
10/29/2021	1.10	1.50	1.75	1.60	1.70	1.53
						0.00
						0.00

11-29-2021 8:00 Am POND OUTLET TO STORMWATER SEWER Pond Frozen RETENTION POND OUTLET PIPE MIDPOINT POND RITTLING BLVD. NORTHERN EMBANKMENT DISCHARGE PIPE DEFICE DEFICE 97300 DADING DOCK ASPHALT ,300 gallons; pei PARKING AREA HvdroAir, 6/29/2022 STREET PLANT AREA TIFIT APPROXIMATE CATCH BASIN LOCATION (TYP.-3) HYDRO-AIR איוריורואיבאו גיע צבעצוטאפוטאפוטאמאואפאפיסע. און די אראא אוזאוורואינאי ערירייוויזיאי אאיניאיזיי (FORMERLY STEELFIELDS AREA IV) NOTE: 1) BASEMAP IS MODIFIED FROM A DRAWING ENTITLED "SITE PLAN" PROVIDED BY BENCHMARK ENVIRON-MENTAL ENGINEERING & SCIENCE, PLLC. DATED JULY 2007. 2) THE TWO MAIN POND SAMPLING POINTS (ONE AT THE MIDPOINT OF THE MAIN POND AND THE OTHER AT LU THE DISCHARGE PIPE OF THE MAIN POND) ARE COMBINED IN THE FIELD TO PROVIDE A REPRESENT-ATIVE PH VALUE FOR THE MAIN POND AREA 3) ALL LOCATIONS ARE APPROXIMATE. 125 250 SCALE IN FEET LEGEND: FENCE HYDRO AIR COMPONENTS, INC. BUFFALO, NEW YORK HALEY JMC. BCP PROPERTY BOUNDARY ALDRICH STORM WATER PIPE RETENTION POND MONITORING LOCATIONS RETENTION POND MONITORING 4 LOCATION APPROXIMATE CATCH BASIN LOCATION SCALE: AS SHOWN FEBRUARY 2014 FIGURE 1 1.15 Server Room 1.40 1.65 SW/ 1.70 1.55 SE NE

BENCHMARK ENVIRONMENTAL ENGINEERING & SCIENCE, PLLC

C

Monthly Operation & Maintenance Log Active Sub-Slab Depressurization System

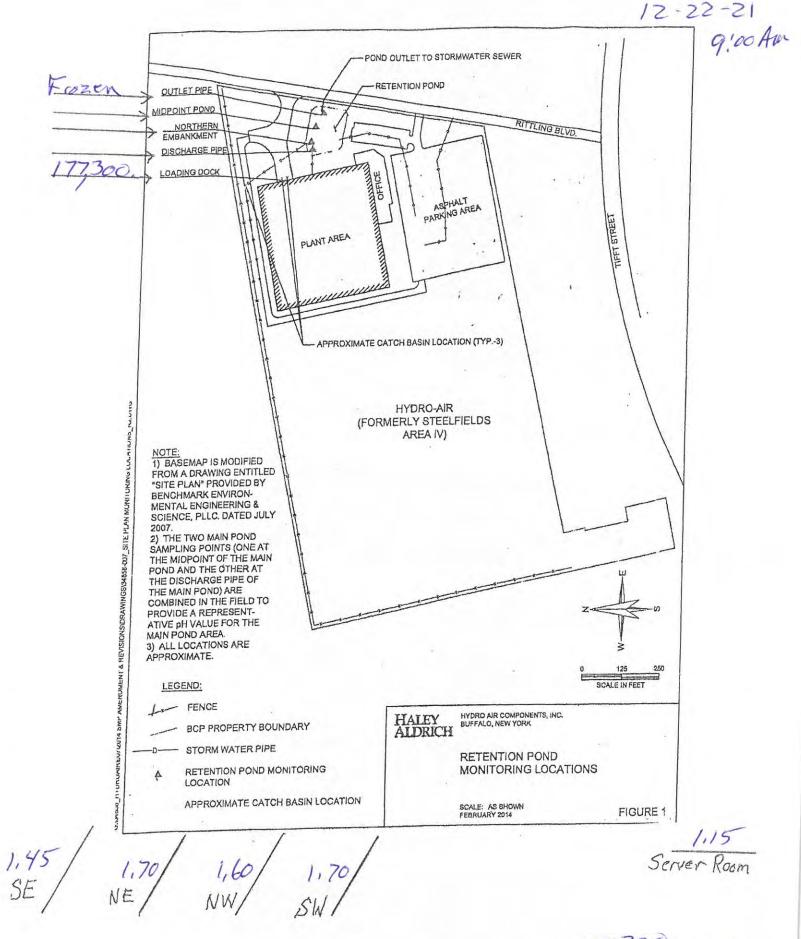
	Project No.:		
	Client:		
arte	Date/Time:	11-29-21	8:00 K
	allest str.		
es			
nonth?		The	
ription why (i.e.	maintananaa	Lierno	
1.49			
1,49]		
		10	
yes □yes		10	
_ yes		10	
☐ yes ☐ yes	e.	10	
☐ yes ☐ yes ☐ yes ☐ yes		10	
☐ yes ☐ yes ☐ yes		10	
☐ yes ☐ yes ☐ yes ☐ yes		10	
☐ yes ☐ yes ☐ yes ☐ yes		10	
☐ yes ☐ yes ☐ yes ☐ yes		10	
	arte	Client: art Date/Time: as no nonth? ves	Client: 27-2 Date/Time: //-29-21

Sub-Slab Depressurization Certification Inspection

Monthly Operation & Maintenance Log Active Sub-Slab Depressurization System

Please	indicate genera	l use of floor space?	M	C I	•		
Has this	s general use ch	nanged in the past m	onth?	IN ufact	uring		
If yes, p	lease explain:				640		
		¥	-				
System I	Modifications:						
		een made to the Sul	b-Slab Depr	essurization	Svetom?	🗍 ves	-
so, plea	se list with date	:			Cysterni	∐ yes	Le no
							•
							•

Magnehelic Readings


#1 Server Room Office #2 S.E. Corner Cell 600/800 #3 N.E. Corner Warehouse #4 N.W. Corner Cell 200 #5 S.W. Corner Cell 100

Date	#1 Server Room	#2 S.E. Corner	#3 N.E. Corner	#4 N.W. Corner	#5 S.W. Corner	Auguana
1/27/2021	1.15	1.35	1.70	1.20	1.70	Average
2/26/2021	1.20	1.35	1.65	1.25		1.42
3/31/2021	1.15	1.45			1.65	1.42
4/27/2021	1.10		1.70	1.40	1.65	1.47
5/25/2021		1.40	1.70	1.45	1.65	1.46
	1.15	1.45	1.65	1.50	1.70	1.49
6/30/2021	1.10	1.50	1.70	1.60	1.75	
7/28/2021	1.10	1.50	1.70			1.53
8/26/2021	1.15	1.75		1.55	1.75	1.52
9/30/2021	CHAR.		1.70	1.60	1.50	1.54
	1.10	1.50	1.70	1.55	1.70	1.51
10/29/2021	1.10	1.50	1.75	1.60	1.70	1.53
11/29/2021	1.15	1.40	1.70	1.55		
		1.44 B	1.70	1.55	1.65	1.49
						0.00

In accordance with

1. ph and temperature of a representative water from the 4 locations indicated on Figure 1. private temperature of a representative water from the 4 locations indicated on Figure 1.
 weather conditions (general- wet/ dry, avg temp) since last measurement
 estimated volume of water pumped from loading dock (based upon pump run time data)

Staff Member	Date of Measure-ment	-	M	easurer	nent Lo	cation	100	Pump	Ect Outer		-
		Discharge Pipe		Northern Embayment		Main Pond (Combined t Samples)		Run Time*	Est. Quantity of Water **		Comments (e.g. weather conditions, etc)
		ph	Temp (°F)	ph	Temp (°F)		Temp (°F)			etc.)	
Dale A Barto	1/27/2021 9:00am						1.1				
Dale A Barto	2/26/2021 9:00am										
Dale A Barto	3/31/2021 10:30am	9.00	42	10.00	41	6.00	42		54 430		3 Cloudy
Dale A Barto	4/27/2021 9:30am	11.00	46	7.00	45	6.00	44		54,420 88,820	Cloudy	Raining
Dale A Barto	5/25/2021 9:00am	12.00	77	7.00	73	7.00	71		81,090	Clear	Sunny
Dale A Barto	6/30/2021 9:00am	10.00	73	7.00	72	7.00	84		- Autom	Clear	Sunny
Dale A Barto	7/28/2021 9:00am	12.00	68	6.00	67	12.00	67				Sunny
Dale A Barto	8/26/2021 8:00am	10.00	77	6.00	78	7.00	78		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		Sunny
Dale A Barto	9/30/2021 12:00pm 1	1.00	63	6.00	58	7.00	63				Sunny
Dale A Barto	10/29/2021 9:30am 1	0.00	52	5.00	53	8.00	52		a demont		cloudy
ale A BArto	11/29/2021 8:00am					302					loudy
									197,300 fi	ozen s	nowing

177,300, 10 Pond

Project Name:	Month Active Su		ressurizatio	n System	
Project Location:		Project No.:			
	2	Client:			
Notes:	Borto	Date/Time:	12-22-	-21	9:00 An
			,		
Monthly Operating Status:					
0.1.1.	yes				
Has the system been off-line in the pas	st month?	🗆 no	Eno		
If yes, please list the dates and brief de	escription why (i.e.	yes maintenance, p	art replacement,	etc.):	
If yes, please list the dates and brief de	escription why (i.e.	yes maintenance, p	art replacement,	etc.):	
If yes, please list the dates and brief de	escription why (i.e.	yes maintenance, p	art replacement,	etc.):	
If yes, please list the dates and brief de	escription why (i.e.	yes maintenance, p	Part replacement,	etc.);	
If yes, please list the dates and brief de	escription why (i.e.	yes maintenance, p	art replacement,	etc.);	
If yes, please list the dates and brief de	escription why (i.e.	yes maintenance, p	Part replacement,	etc.);	
If yes, please list the dates and brief de What is the current Vacuum reading?	i.e	yes maintenance, p	Part replacement,	etc.):	
If yes, please list the dates and brief de	escription why (i.e.	yes maintenance, p	bart replacement,	etc.);	
If yes, please list the dates and brief de What is the current Vacuum reading? Visual Inspection:	escription why (i.e.	maintenance, p	Part replacement,	etc.);	
If yes, please list the dates and brief de What is the current Vacuum reading? Visual Inspection: Any piping disconnected?	escription why (i.e.	maintenance, p	art replacement,	etc.);	
If yes, please list the dates and brief de What is the current Vacuum reading? Visual Inspection: Any piping disconnected? Any cracks visible in piping?	escription why (i.e	maintenance, p	art replacement,	etc.);	
If yes, please list the dates and brief de What is the current Vacuum reading? Visual Inspection: Any piping disconnected? Any cracks visible in piping? Any new cracks visible in slab floor?	escription why (i.e. i. 5 2 □ yes □ yes □ yes	maintenance, p	art replacement,	etc.);	
If yes, please list the dates and brief de What is the current Vacuum reading? Visual Inspection: Any piping disconnected? Any cracks visible in piping? Any new cracks visible in slab floor? Magnehelic guage reading 0?	i.e.	maintenance, p	art replacement,	etc.);	
If yes, please list the dates and brief de What is the current Vacuum reading? Visual Inspection: Any piping disconnected? Any cracks visible in piping? Any new cracks visible in slab floor?	i.e.	maintenance, p	art replacement,	etc.);	
If yes, please list the dates and brief de What is the current Vacuum reading? Visual Inspection: Any piping disconnected? Any cracks visible in piping? Any new cracks visible in slab floor? Magnehelic guage reading 0?	escription why (i.e	maintenance, p	Part replacement,	etc.);	
If yes, please list the dates and brief de What is the current Vacuum reading? Visual Inspection: Any piping disconnected? Any cracks visible in piping? Any new cracks visible in slab floor? Magnehelic guage reading 0?	escription why (i.e	maintenance, p	Part replacement,	etc.):	
If yes, please list the dates and brief de What is the current Vacuum reading? Visual Inspection: Any piping disconnected? Any cracks visible in piping? Any new cracks visible in slab floor? Magnehelic guage reading 0?	escription why (i.e	maintenance, p	Part replacement,	etc.);	
If yes, please list the dates and brief de What is the current Vacuum reading? Visual Inspection: Any piping disconnected? Any cracks visible in piping? Any new cracks visible in slab floor? Magnehelic guage reading 0? Yes to any question above, please provid	escription why (i.e.	maintenance, p	Part replacement,	etc.);	
If yes, please list the dates and brief de What is the current Vacuum reading? Visual Inspection: Any piping disconnected? Any cracks visible in piping? Any new cracks visible in slab floor? Magnehelic guage reading 0? Yes to any question above, please provid	escription why (i.e	maintenance, p	Part replacement,	etc.);	
If yes, please list the dates and brief de What is the current Vacuum reading? Visual Inspection: Any piping disconnected? Any cracks visible in piping? Any new cracks visible in slab floor? Magnehelic guage reading 0? Yes to any question above, please provid	escription why (i.e.	maintenance, p	Part replacement,	etc.);	

Monthly Operation & Maintenance Log Active Sub-Slab Depressurization System

-	A1 0 1
	lease indicate general use of floor space? Manufacturity a
Н	as this general use changed in the past month? yes no
lf	yes, please explain:
-	
Sy	stem Modifications:
На	ve any modifications been made to the Sub-Slab Depressurization System?
На	
На	ve any modifications been made to the Sub-Slab Depressurization System?
На	ve any modifications been made to the Sub-Slab Depressurization System?
На	ve any modifications been made to the Sub-Slab Depressurization System?
Ha	ve any modifications been made to the Sub-Slab Depressurization System?
Ha	ve any modifications been made to the Sub-Slab Depressurization System?
Ha	ve any modifications been made to the Sub-Slab Depressurization System?
На	ve any modifications been made to the Sub-Slab Depressurization System?

Page 2 of 2

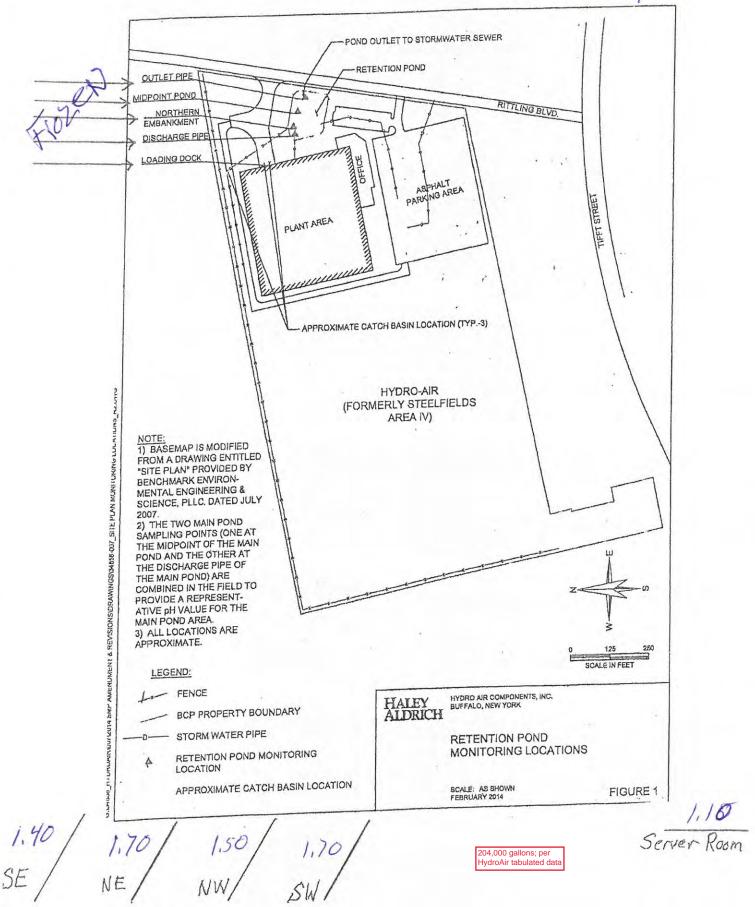
Loading Dock Discharge Monitoring Form Hydro-Air Components, Inc. BCP Site #C915204, Buffalo, NY

In accordance with

1. ph and temperature of a representative water from the 4 locations indicated on Figure 1.

2. weather conditions (general- wet/ dry, avg temp) since last measurement

3. estimated volume of water pumped from loading dock (based upon pump run time data)


4. notes on condition of pond (visual)

Staff Member	Date of Measure-ment		Me	asurem	ent Loca	tion		Pump	Est. Quantity	Visual	Comments
		Dischar	ge Pipe		hern yment	(Com	Pond bined ples)	Run Time*	of Water **	Condition of Pond (color, vegetation,	(e.g. weather conditions, etc)
	1	ph	Temp (°F)	ph	Temp (°F)	ph	Temp (°F)			etc.)	
Dale A Barto	1/27/2021 9:00am										
Dale A Barto	2/26/2021 9:00am									102,198	Cloudy
Dale A Barto	3/31/2021 10:30am	9.00	42	10.00	41	6.00	42		54,420	Cloudy	Raining
Dale A Barto	4/27/2021 9 :30am	11.00	46	7.00	45	6.00	44		88,820	Clear	Sunny
Dale A Barto	5/25/2021 9:00am	12.00	77	7.00	73	7.00	71		81,090	Clear	Sunny
Dale A Barto	6/30/2021 9:00am	10.00	73	7.00	72	7.00	84		56,470	clear	Sunny
Dale A Barto	7/28/2021 9:00am	12.00	68	6.00	67	12.00	67		1,028,000	clear	Sunny
Dale A Barto	8/26/2021 8:00am	10.00	77	6.00	78	7.00	78		85,800	clear	Sunny
Dale A Barto	9/30/2021 12:00pm	11.00	63	6.00	58	7.00	63		1,120,000	clear	cloudy
Dale A Barto	10/29/2021 9:30am	10.00	52	6.00	53	8.00	52		1,726,000	cloudy	cloudy
ale A BArto	11/29/2021 8:00am								197,300	frozen	snowing
ale A Barto	12/23/2021 9:00am								177,300	Frozen	cloudy

#1 Server Room Office #2 S.E. Corner Cell 600/800 #3 N.E. Corner Warehouse #4 N.W. Corner Cell 200 #5 S.W. Corner Cell 100

Date	#1 Server Room	#2 S.E. Corner	#3 N.E. Corner	#4 N.W. Corner	#5 S.W. Corner	Average
1/27/2021	1.15	1.35	1.70	1.20	1.70	1.42
2/26/2021	1.20	1.35	1.65	1.25	1.65	1.42
3/31/2021	1.15	1.45	1.70	1.40	1.65	1.47
4/27/2021	1.10	1.40	1.70	1.45	1.65	1.46
5/25/2021	1.15	1.45	1.65	1.50	1.70	1.49
6/30/2021	1.10	1.50	1.70	1.60	1.75	1.53
7/28/2021	1.10	1.50	1.70	1.55	1.75	1.52
8/26/2021	1.15	1.75	1.70	1.60	1.50	1.54
9/30/2021	1.10	1.50	1.70	1.55	1.70	1.51
10/29/2021	1.10	1.50	1.75	1.60	1.70	1.53
11/29/2021	1.15	1.40	1.70	1.55	1.65	1.49
12/23/2021	1.15	1.45	1.70	1.60	1.70	1.52

1-31-22 9:00 Am

C	BENCHMARK
C	ENVIRONMENTAL ENGINEERING & SCIENCE, PLLC

Monthly Operation & Maintenance Log Active Sub-Slab Depressurization System

the second se		
Client:		
Date/Time:	1-31-22	900
		A Constanting of the second second
	,	
🗆 no		
	🖸 no	
ion why (i.e. maintenance	, part replacement, et	c.):
1:78		
	/	
🗆 yes 🛛	no	
	/	
🗌 yes 🔛	no	
🗋 yes 📑	no	
	no	
yes 🗗	no	
	Date/Time:	Date/Time: <u>1-31-22</u> □ no th? □ yes □ no ion why (i.e. maintenance, part replacement, et 1.46 □ yes □ no □ yes □ no

Sub-Slab Depressurization Certification Inspection

Monthly Operation & Maintenance Log Active Sub-Slab Depressurization System

Change in Occupancy / Use of Space:			
Please indicate general use of floor space? Has this general use changed in the past month? If yes, please explain:	Manusaco	Luciwa	
	·		
System Modifications:			
Have any modifications been made to the Sub-Slab	Depressurization	System? 🛛 yes	D no
If so, please list with date:			

Page 2 of 2

#1 Server Room Office #2 S.E. Corner Cell 600/800 #3 N.E. Corner Warehouse #4 N.W. Corner Cell 200 #5 S.W. Corner Cell 100

Date	#1 Server Room	#2 S.E. Corner	#3 N.E. Corner	#4 N.W. Corner	#5 S.W. Corner	Average	
1/31/2022 9:00am	1.10	1.40	1.70	1.50	1.70	1.48	
						0.00	
						0.00	
						0.00	
						0.00	
						0.00	
						0.00	
						0.00	
						0.00	
						0.00	
						0.00	
						0.00	

Loading Dock Discharge Monitoring Form Hydro-Air Components, Inc. BCP Site #C915204, Buffalo, NY

In accordance with

1. ph and temperature of a representative water from the 4 locations indicated on Figure 1.

2. weather conditions (general- wet/ dry, avg temp) since last measurement

3. estimated volume of water pumped from loading dock (based upon pump run time data)

4. notes on condition of pond (visual)

Staff Member	Date of Measure-ment	Measurement Locati		ion	ion		Est. Quantity	Visual	Comments		
		Discharge Pipe		Northern Embayment		Main Pond (Combined Samples)		Run Time*	of Water **	Condition of Pond (color, vegetation,	(e.g. weather conditions, etc)
		ph	Temp (°F)	ph	Temp (°F)	ph	Temp (°F)			etc.)	
Dale A Barto	1/31/22 9:00 AM								204,000	Frozen	Sunny
Dale A Barto											
Dale A Barto											
Dale A Barto											
Dale A Barto											
Dale A Barto											
Dale A Barto											
Dale A Barto											
Dale A Barto											
Dale A Barto											
ale A BArto											
ale A Barto											

2/22/22 9:00 Am POND OUTLET TO STORMWATER SEWER Frezen RETENTION POND OUTLET PIPE MIDPOINT POND RITTLING BLVD NORTHERN EMBANKMENT DISCHARGE PIPE 481600 LOADING DOCK ASPHALT PARKING AREA - STREET PLANT AREA THEFT'S uuuuu APPROXIMATE CATCH BASIN LOCATION (TYP.-3) HYDRO-AIR (FORMERLY STEELFIELDS AREA IV) NOTE: 1) BASEMAP IS MODIFIED FROM A DRAWING ENTITLED "SITE PLAN" PROVIDED BY BENCHMARK ENVIRON-MENTAL ENGINEERING & SCIENCE, PLLC. DATED JULY 2007 2007. 2007. 2) THE TWO MAIN POND SAMPLING POINTS (ONE AT THE MIDPOINT OF THE MAIN POND AND THE OTHER AT THE DISCHARGE PIPE OF THE MAIN POND) ARE COMBINED IN THE FIELD TO PROVIDE A REPRESENT-ATIVE PH VALUE FOR THE MAIN POND AREA. 3) ALL LOCATIONS ARE APPROXIMATE. 250 125 SCALE IN FEET LEGEND: FENCE HYDRO AIR COMPONENTS, INC. BUFFALO, NEW YORK HALEY ALDRICH BCP PROPERTY BOUNDARY STORM WATER PIPE RETENTION POND MONITORING LOCATIONS RETENTION POND MONITORING LOCATION APPROXIMATE CATCH BASIN LOCATION SCALE: AS BHOWN FEBRUARY 2014 FIGURE 1 1,15 Server Room 1.50 SE / 1,55 1.75 1,75 NE NW

G	BENCHMARK
C	ENVIRONMENTAL ENGINEERING & SCIENCE, PLLC

Monthly Operation & Maintenance Log Active Sub-Slab Depressurization System

	No.:		_
Client:	all a start		
-to Date/Tim	ne: 2-23	2-72	9:00
1			
		A-0.00.00000000000000000000000000000000	
<u> </u>	/		
intion why (i.e. maintena			- 1
1.54			
			and the second second second second
	/		
🗋 yes	M ng		
☐ yes ☐ yes			
	-/		
☐ yes ☐ yes	E no		
☐ yes ☐ yes	E no E no		
☐ yes ☐ yes ☐ yes	E no E no		
☐ yes ☐ yes ☐ yes	E no E no		
☐ yes ☐ yes ☐ yes	E no E no		
☐ yes ☐ yes ☐ yes	E no E no		
	PS Date/Time PS	Date/Time: 2-25	Date/Time: 2-22-32

Sub-Slab Depressurization Certification Inspection

Page	1	of	2
		0.	-

Monthly Operation & Maintenance Log Active Sub-Slab Depressurization System

Change in Occupancy / Use of Space: Please indicate general use of floor space? Has this general use changed in the past month? □ yes If yes, please explain: System Modifications: Have any modifications been made to the Sub-Slab Depressurization System? 🛛 yes 🖾 no If so, please list with date: i date to St. A. + 1.5 . 1. See.

Page 2 of 2

Loading Dock Discharge Monitoring Form Hydro-Air Components, Inc. BCP Site #C915204, Buffalo, NY

in accordance with

1. ph and temperature of a representative water from the 4 locations indicated on Figure 1.

2. weather conditions (general- wet/ dry, avg temp) since last measurement

3. estimated volume of water pumped from loading dock (based upon pump run time data)

4. notes on condition of pond (visual)

Staff Member	Date of Measure-ment		Me	asurem	ient Locat	ion		Pump	Est. Quantity	Visual	Comments
		Discha	rge Pipe		Northern Embayment		n Pond nbined nples)	Run Time*	of Water **	Condition of Pond (color, vegetation,	(e.g. weather conditions, etc)
		ph	Temp (°F)	ph	Temp (°F)	ph	Temp (°F)			etc.)	
Dale A Barto	1/31/22 9:00 AM								204,000	Frozen	Sunny
Dale A Barto	2/22/2022 9:00am								481,600	Frozen	Cloudy
Dale A Barto											
Dale A Barto											
Dale A Barto											
Dale A Barto											
Dale A Barto											
Dale A Barto											
ale A Barto											
Dale A Barto											
ale A BArto											

Dale A Barto

#1 Server Room Office#2 S.E. Corner Cell 600/800#3 N.E. Corner Warehouse#4 N.W. Corner Cell 200#5 S.W. Corner Cell 100

Date	#1 Server Room	#2 S.E. Corner	#3 N.E. Corner	#4 N.W. Corner	#5 S.W. Corner	Average
1/31/2022 9:00am	1.10	1.40	1.70	1.50	1.70	1.48
2/22/2022	1.15	1.50	1.75	1.55	1.75	1.54
						0.00
						0.00
						0.00
						0.00
						0.00
						0.00
						0.00
						0.00
						0.00
						0.00

÷

3/28/2022 9:30AM POND OUTLET TO STORMWATER SEWER RETENTION POND OUTLET PIPE MIDPOINT POND RITTLING BLVD. 102el NORTHERN EMBANKMENT DISCHARGE PIPE Community and the second second LOADING DOCK ASPHALT PARKING AREA TIFFT STREET PLANT AREA uuuuu APPROXIMATE CATCH BASIN LOCATION (TYP.-3) HYDRO-AIR (FORMERLY STEELFIELDS AREA IV) ระหายผย ทายการสมบารยาครามที่ สมทะหมาหระทางสะทางสะทางสายเรื่องราวที่ SITE PLAN พังหาเป็นหระ มีประเทณ NOTE: 1) BASEMAP IS MODIFIED FROM A DRAWING ENTITLED "SITE PLAN" PROVIDED BY BENCHMARK ENVIRON-MENTAL ENGINEERING & SCIENCE, PLLC, DATED JULY 2007. 2) THE TWO MAIN POND SAMPLING POINTS (ONE AT THE MIDPOINT OF THE MAIN POND AND THE OTHER AT THE DISCHARGE PIPE OF THE MAIN POND) ARE COMBINED IN THE FIELD TO PROVIDE A REPRESENT-ATIVE PH VALUE FOR THE MAIN POND AREA 3) ALL LOCATIONS ARE APPROXIMATE. 250 125 SCALE IN FEET LEGEND: FENCE HYDRO AIR COMPONENTS, INC. BUFFALO, NEW YORK HALEY ALDRICH Pimp 1 177,300 BCP PROPERTY BOUNDARY STORM WATER PIPE RETENTION POND MONITORING LOCATIONS RETENTION POND MONITORING LOCATION APPROXIMATE CATCH BASIN LOCATION SCALE: AS BHOWN FEBRUARY 2014 FIGURE 1 1.05 Server Room 1.45 1.60 1,50 1,60 SE NE NW

	Active Si	ub-Slab De	on & Maintena pressurization	System
Project Name:		Project No.:		
Project Location:	0	Client:		
Preparer's Name: Dale A	Barto	Date/Time:	3/28/2022	9:30A
Notes:				_/:= _ /
			r	
Monthly Operating Status:				
System(s) currently running?	U yes			
, , , , , , , , , , , , , , , , , , ,	Lp 900	L 110		
Has the system been off-line in the	e past month?	l yes	Dino	
Has the system been off-line in the lif yes, please list the dates and bri		l yes e. maintenance		etc.):
	ef description why (i.e			etc.):
If yes, please list the dates and bri	ef description why (i.e			etc.):
If yes, please list the dates and bri What is the current Vacuum reading Visual Inspection:	ef description why (i.e	e. maintenance	, part replacement, e	etc.):
If yes, please list the dates and bri What is the current Vacuum readin Visual Inspection:	ef description why (i.e	e. maintenance	no	etc.):
If yes, please list the dates and bri What is the current Vacuum reading Visual Inspection: Any piping disconnected? Any cracks visible In piping?	ef description why (i.e	e. maintenance	no	etc.):
If yes, please list the dates and bri What is the current Vacuum readin Visual Inspection: Any piping disconnected? Any cracks visible in piping?	ef description why (i.e	e. maintenance	no no	etc.):
If yes, please list the dates and bri	ef description why (i.e g? <u>1.44</u> ye ye ye	e. maintenance	no no	etc.):
If yes, please list the dates and bri What is the current Vacuum readin Visual Inspection: Any piping disconnected? Any cracks visible in piping? Iny new cracks visible in slab floor? lagnehelic guage reading 0?	ef description why (i.e g? <u>1.44</u> ye ye ye	e. maintenance	no no	etc.):

14

ie na

..... 4 ------

Monthly Operation & Maintenance Log Active Sub-Slab Depressurization System

2

Change in Occupancy / Use of Space:				
Please indicate general use of floor space? Has this general use changed in the past month?	Mawu fa	eturin Eno	3	
If yes, please explain:				
				-
System Modifications:				/
Have any modifications been made to the Sub-Slat	b Depressurizatio	n System?	🗌 yes	12 no
lave any modifications been made to the Sub-Slat	b Depressurizatio	n System?	☐ yes	1 no
System Modifications: Have any modifications been made to the Sub-Slat f so, please list with date:	b Depressurizatio	n System?	☐ yes	no no
Have any modifications been made to the Sub-Slat	b Depressurizatio	n System?	☐ yes	No no
Have any modifications been made to the Sub-Slat	b Depressurizatio	n System?	☐ yes	no N

Page 2 of 2

Loading Dock Discharge Monitoring Form Hydro-Air Components, Inc. BCP Site #C915204, Buffalo, NY

In accordance with

1. ph and temperature of a representative water from the 4 locations indicated on Figure 1.

2. weather conditions (general- wet/ dry, avg temp) since last measurement

3. estimated volume of water pumped from loading dock (based upon pump run time data)

4. notes on condition of pond (visual)

Staff Member	Date of Measure-ment	1	Me	asurem	ent Locat	ion	1	Pump	Est. Quantity		Comments
		Discha	rge Pipe	Northern Embayment		(Con	n Pond nbined nples)	Run Time*	of Water **	Condition of Pond (color, vegetation,	
		ph	Temp (°F)	ph	Temp (°F)	ph	Temp (°F)			etc.)	
Dale A Barto	1/31/22 9:00 AM								204,000	Frozen	Sunny
Dale A Barto	2/22/2022 9:00am								481,600	Frozen	Cloudy
Dale A Barto	3/28/2022 9:30AM								177,300	Frozen	Cloudy
Dale A Barto											
Dale A Barto											
Dale A Barto											
Dale A Barto											
Dale A Barto											
Dale A Barto											
Dale A Barto											
ale A BArto											

Dale A Barto

#1 Server Room Office #2 S.E. Corner Cell 600/800 #3 N.E. Corner Warehouse #4 N.W. Corner Cell 200 #5 S.W. Corner Cell 100

Date	#1 Server Room	#2 S.E. Corner	#3 N.E. Corner	#4 N.W. Corner	#5 S.W. Corner	Average
1/31/2022 9:00am	1.10	1.40	1.70	1.50	1.70	1.48
2/22/2022 9:00AM	1.15	1.50	1.75	1.55	1.75	1.54
3/28/2022 9:30AM	1.05	1.45	1.60	1.50	1.60	1.44
						0.00
						0.00
						0.00
						0.00
						0.00
						0.00
						0.00
						0.00
						0.00

APPENDIX G ORC Well Inspection Forms

ORC WELL ANNUAL INSPECTION FORM Active ORC monitoring wells

Project Name: Zel	inder Ri	HUng	Project I	No.:		
<u> </u>	Iffalo N	Y	Client:			
Preparer's Name:			Date/Tir	ne: 7/7/21		
	A4 - C	RC - 1	A4 - 0	RC - 2	A4 - O	RC - 3
sampling dates:	7/7/21	1:29pm	7/7/21	10:49gm	7/7/21	9:15 an
Field groundwater	quality measu	<u>irements</u>			TOC	
	TOC		TOC		12.61	
Water Level	10,32		12.86		JAKE .	
Bottom Depth	14,4	3	14.62		14.3	
рH	3.66		3,21		4.09	
Temperature	25.8		17.42	: -	16.28%	
DO	6.17		3.35	2 	8,42	
ORP	220		238	3 <u></u> }	259	
Alkalinity	0	3		·	~180	
Refer to Figure 1 fo	or well location	S			100	
Well integrity						
Cement seal	🗹 goo	d 🗌 poor	If poor pleas	se note well		
Pro - casing conditi	ion 🗹 goo	di ∏poor		se note any d	amade.	
-				,	5	
Lock condition	1 ,goo	d poor	If poor pleas	se note well.		
Working J - plug	🕁 yes	no	If no please	note well.		
ORC Sock's		^				
Have any Socks be	•	🗹 yes	n 🗌 na	D		
If replaced on what	date and why	7/7/21				
0		samplina				
	Q	eamping				
Are socks fully sub	merged in wel	screens.	1 yes	no		
	-					
Are all ORC wells b	egin sampled	and maintained	according to th	he site manac	ement nlan	
∏ yes □ n						
lf no please state w	/hy					
~~~						
Initial:				Date:		
USED SOC Propodal	ts wel	20 BAVE	- to Pu	ANT MA	INYENAN(	E FUR
PESPONAL	CDANE	BANTO)				

	HALE	RICH			LOW	FLOW	/MNA	FIELD	SAMP	LING F	ORM		Page of
	PROJECT				Samply	15						H&A FILE NO.	The Com
	LOCATION	All states	Halo	NY	1						73	PROJECT MGR. FIELD REP.	Jerry Dones
	CLIENT		nder	Riff				2			9	SAMPLING DATE	\$ 2/7/21
	CONTRACTOR Sampling Data		w Con	MUCHN	)			from	Tor				
	Well ID:		RC-01	Well Dept	n:	14				er: U. L	∱ ft	Purging Device:	tes Rump
	Start time:	1220	1	•	 Top Of Screen:	0					ft	Tubing Present In We	ell: Elles I No
	Finish Time	223	8	•	Bottom Of Scre	1.			Well Installed:			Tubing Type:	3/8 OD
		Depth To	Pump	Purge	Cumulative	Temp-							
	Elapsed	Water	Setting	Rate	Purge Vol.	erature		Conduct-	Dissolved				
	Time	From Casing	(ml/min) or	(ml/min) or	(liters) or	(°F) or		ivity	Oxygen	Turbidity	ORP/eH		
	(24 hour)	(ft)	(gal/min)	(gal/min)	(gal)	0	pН	(us/cm) +/%	(mg/L) +/%	(NTU) <nt∪< td=""><td>(mv) +/ mv</td><td></td><td>Comments</td></nt∪<>	(mv) +/ mv		Comments
1:20	Ð	4,48	· \		0	+///a	+/	+/76		( IIIO		CUSING	height: 2.15
-39	10	Galle		011		16.42	3,79	27.9	5,46	7.5	231	0	
1:49	20	7.16		0,1	2	16.87	3.74	27.1	5.51	10,3	229	Water colo	un; 9.92
1.39	.30	8.07		01	3	16.17	3.74	26.7	6.72	8.8	227		1.67
2:08	39	8.76		0.1	ч	15.64	3.71	26.8	4.41	24.4	225	meilvol: 6	2.65 gal
2,10	49	9.48		01	5	15.49	3.72	26.4	4.37	16.4	223		
2:26	59	10.00		01	6	14.87	3,72	26.1	4.45	15.3	224		
乙烯	69	10.32	-	OIL		14-93	3.66	25.8	6-17	14.3	220	ALL UL	
												Al Ralinity.	- 0
												Sactah	anged on 7/7/21
												SOUNCI	angea on maj
												CO2: Wat	er is tab
								-				mentomina	
												to work.	
												- water	is very off
												color, 1	tration is
												unreliabl	P.

	PROJECT LOCATION CLIENT	H	pdro A ustalo bader	Rit	empline +lihj	5		5 A 4				H&A FILE NO. PROJECT MGR. FIELD REP.	Jerry Jons
	CONTRACTOR Sampling Data Well ID: Start time: Finish Time	44-0R	9 9		9		2	ft Initial I ft Depth		e:	ft	SAMPLING DATE Purging Device: Tubing Present In We Tubing Type:	Pentholic Rom No 3/8'00-
	Elapsed Time (24 hour)	Depth To Water From Casing (ft)	Pump Setting (mi/min) or	Purge Rate (ml/min) or	Cumulative Purge Vol. (liters) or	Temp- erature (°F) or	рН +/-	Conduct- ivity (us/cm) +/%	Dissolved Oxygen (mg/L) +/%	Turbidity (NTU) < NTU	ORP/eH ` (mv) +/mv		Comments
10:49	0 10 20	1,18 3,63 11,65		0.1	1-2	16.3	3.6	35.8 35.8 24,9	6.4 6.4 5.65	47.8 44.8 27.4	206 206 210	casing her	13,44 ·
(v.31 (v.31	31 42 57	611 7.35 8.49	8	.09 .09 .07	345	16.22 16.56 16:43	3.58 3.57 3.55	26.2 26.2 27,6	5,16 4,64 U199	48.8 39.5 40.0	218 218 192	Well Walum	ne: 9 gal
12:10	68	9,97 11,20 11.91	7 B	-09 -07 +08	67	18.0 16.85 16.3	8.57 3.39 3.4	25.3 36.4 35.6	3.01 4.65 4.52	58.8 847.8 50.9	298 234 207	Slow re Soch cha	charge
12:59	116	12.61		0.1	q 10 11	14,98	3.39 3.41 8.21	35,7 35,3 39,4	3,28	3:4,8 200	218' 216 238	7/7/21	F 1
		r ²							an s			-meter we	started blutship

Form 3010

HALE	RICH			LOW	FLOW	/MNA	FIELD	SAMP	LING F	ORM	Ťe	Page
PROJECT LOCATION CLIENT CONTRACTOR	Bi	shale	A Rit	tling	29		at any				H&A FILE NO. PROJECT MGR: FIELD REP. SAMPLING DATE	Jerry Jon 78/7/21
Sampling Data Well ID: Start time: Finish Time	<u>A+1-01</u> 9:21	26-03 8 am		h: Top Of Screen: Bottom Of Scre		3,	ft Depth	TO C Depth To Wate Of Pump Intak Well Installed:	e:		Purging Device: Tubing Present In We Tubing Type:	Polita 1/12 111: Dryes □ <u>3/8"0D</u>
Elapsed Time (24 hour)	Depth To Water From Casing (ft)	Pump Setting (mlXmin) or (gal/min)	Purge Rate (ml/min) or	Cumulative Purge Vol. (liters) or	Temp- erature (°F) or	рН +/-	Conduct- ivity (us/cm) +/%	Dissolved Oxygen (mg/L) +/%	Turbidity (NTU) < NTU	ORP/eH (mv) +/mv	а.	Comments
0.09 12 27	5.82 8.23 a.37		:08 .07	1-20	+7.18 17.16 16.14	4.02 1.02 4.00 4.04	21.5 21.5 21.5 21.5	8,35 8,35 6,89 6,72	182 182 193 156	277 277 274 258	4.67	nater colum gal = Iwell Volum
60	12.61	/	.06	<u>э</u> Ц	16.28	4.09	17,4	8.42	356	259	Cosing 1	reight 2=
											Very slo	ow recharge
											Material 4" of we	at bottop
											LIPIL Dr.	o after Mg

Form 3010

sock changed on 212

APPENDIX H Groundwater Sampling Field Monitoring Forms

PROJECT LOCATION CLIENT CONTRACTO	Zel	dro Air Buffai nnder NW Co	O, MY Rittin	ng							H&A FILE NO. PROJECT MGR. FIELD REP. SAMPLING DATE	Jerry Jones 7-12-21
Sampling Da Well ID: Start time Finish Tin	A4-N 2:15	1W-5R	Well Depti Depth To 1	J	MXV	1	ft Depth	PVC Depth To Wate Of Pump Intak Well Installed:	e:	) ft	Purging Device: Tubing Present in Well: Tubing Type:	Peristatic
Elapsed Time (24 hour)	Depth To Water From Casing (ft)	Pump Setting (ml/min) or (gal/min)	Purge Rate (ml/min) or	Cumulative Purge Vol. (liters) or	Temp- erature (°F) or	рН +/	Conduct- ivity (us/cm) +/%	Dissolved Oxygen (mg/L) +/%	Turbidity (NTU) <ntu< td=""><td>ORP/eH (mv) +/mv</td><td></td><td>omments</td></ntu<>	ORP/eH (mv) +/mv		omments
05	4.81 7.01 8.10		0.20 0.17	1	15.80	7.67	0. <i>849</i> 0.957	4.93 3.51	11.8 2.0	-115	Well Volum _11.55 20 1.81 17	e : <del>- 1.15 gal</del> 1.0
17 124 134	9.43	Slowed	0.17 0.14 0.05	3 4 4.5	14.97 14.69 15.13	7.48 7.36 7.47	0.910 0.838 0.869	3.01 3.30 4.24	0.1 1.1 1.4	-104 -91 -89		1.09gal wiground leve
											(02:96*2	= 192 ^{mg} /L of C
		175									Alkalinity: 3	97
											Samples coll 2:55	ected at pm
											Shiw rechan	ge

.

Forin 3010

	HALE	RICH			LOW	FLOW	/MNA	FIELD	SAMP	LING F	ORM		Page of
	PROJECT	H.	dro An	r Samp	ling							H&A FILE NO.	3
	LOCATION			r <u>Samp</u> i NY				- 6				PROJECT MGR.	Jerry Jones
	CLIENT	Zel	onler F	Ri #ling				s				FIELD REP.	7-12-21
	CONTRACTOR	_Nv	N Conto	paitson								SAMPLING DATE	1 12-21
	Sampling Data:			0						<b>~</b> ~	\$		
	Well ID:		W-7R	Well Dept	h:	13.0	ωO				<b>8</b> ft	Purging Device:	peristatic
	Start time:	12:2		Depth To 1	Top Of Screen:	-		ft Depth	Of Pump Intak	e:	ft	Tubing Present In Well	
	Finish Time	1:07	2	Depth To i	Bottom Of Scre	en:		ft Date	Well Installed:	)		Tubing Type:	<u>3/8" OD</u>
		Depth To	Pump	Purge	Cumulative	Temp-							
	Elapsed	Water	Setting	Rate	Purge Vol.	erature		Conduct-	Dissolved				
	Time	From Casing	(ml/min) or	(ml/min) or	(liters) or	(°F) or		ivity	Oxygen	Turbidity	ORP/eH		
	(24 hour)	(ft)	(gal/min)	gal/min)	(gal)	+/%	рН +/	(us/cm) +/%	(mg/L) +/%	(NTU) <ntu< td=""><td>(mv) +/ու</td><td>C</td><td>omments</td></ntu<>	(mv) +/ու	C	omments
23	0	3.38										Well volume	: 1.74 991
29	6	6.64		0.17	1	14.90	6.60	3.25	9.00	20.8	-7	13.60	0
:35	12	7.35		0.17	2	13.51	6.19	3.28	8.42	4.5	-3	3.38	
2:46	17	7.40		0.20	3	13.88	6.35	3.09	3.42	0.2	-41	1.74 901	
2:45	22	7.42		0.20	4	13.39	6.55	2.90	3.16	0.Z	- 54	casing heig	int: 2.01
:51	28	7.51		0.17	5	13.34	6.57	2.73	3.19	0	-58	÷	
:56	33	7.43		6.20	6	13.37	6.56	2.66	3.61	0	-61	(OZ: 100.Z=	200 mg/L of COZ
02	39	7,40		0.17	7	13.38	6.60	2.40	3.16	Ó	-74	85	
02		/. /V										Alkalinity:	323
											n	CAUNI 125	Cold PLAND
												AT UNC	COLLELIND PM
												MI 1.02	
1									1				
		-	11.0										

Form 3010

PROJECT	Hyo	tro Air	Samplin	nq							H&A FILE NO.	T L	
LOCATION	But	Falc, M	17	5			1				PROJECT MGR.	Jerry Jones	
CLIENT											FIELD REP.	7-12-21	
CONTRACTOR	N	w con	tractiv	<u>9</u>	_		-				SAMPLING DATE	116 61	
Sampling Dat						-			GA	<b>•</b>		On different in	
Well ID:								220			Purging Device:     PeriStatic       Tubing Present In Well:     Ves     No		
							ft Depth Of Pump Intake: ft				318" OD		
Finish Tim	e: <u>11:5</u>	5	Depth To I	Bottom Of Scre	en:		ft Date	Well Installed:			Tubing Type:	310 00	
	Depth To	Pump	Purge	Cumulative	Temp-								
Elapsed	Water	Setting	Rate	Purge Vol.	erature		Conduct-	Dissolved					
Time	From Casing	(ml/min) or		(liters) or	(°F) or		ivity	Oxygen	Turbidity	ORP/eH			
(24 hour)	(ft)	(gal/min)	(gal/min)	(gal)	(1°C))	рН +/-	(us/cm) +/%	(mg/L) +/%	(NTU) < NTU	(mv) +/ mv	Cor	nments	
0	5.00										well volume:	1.73 gal	
9	6.42		0.11	1	14.88	6.57	4.08	13.66	9.8	-48	15.2	0	
21	7.85		0.08	2	15.57	6.88	4.04	3.29	29.4	-69	- 5.00		
25	8.55		0.25	3	13.00	6.92	3.80	4.50	12.9	-71	x.17 1.73gal		
30	8.90		0.20	4	12.62	6.59	3.83	3.89	8.3	-57			
35	8W002		0.20	5	12.36	6.55	3.79	4.51	3.0	-52	casing neigh	יד: 3.7'	
40	7.92		0.20	6	12.55	6.66	3.83	4.21	2.4	-45	0		
46	8.92		0.17	7	13.05		3.89	4.11	5.3	-64	changed pump	o speed	
51	7,95		0.20	8		6.63	3.85	4,33	4,2	- 54	from 350rpm	1 to 600 rpm	
61	7.95		6.10	9	12.81	6.55	3.98	3.85	0.5	-57			
											water has ligh	It yellow color	
											L>no sedino	ient	
												1 mg/ 0.007	
												156 mg/L of CO2	
											Alkalinity: 9	29	
			· · · · · · · · · · · · · · · · · · ·									ected at 12:00,	

Form 3010

	PROJECT LOCATION CLIENT	Hydr Bu Zer	o Air	Samplin NY Bittling	9			-				H&A FILE NO. PROJECT MGR. FIELD REP.	Jerry James
	CONTRACTOR       NW       Contracting         Sampling Data:					 0 Of Screen:				(e:	15 ft	SAMPLING DATE     7/12/21       Purging Device:     Peristatic       Tubing Present In Well:     Yes       Tubing Type:     3/8" 0D	
9:12 7:24 9:33 9:43 9:52 10:01 10:11	Elapsed Time (24 hour) 0 12 21 31 40 40 49 59	Depth To Water From Casing (ft) (6.08 8.10 8.67 8.93 9.33 9.45 9.89	Pump Setting (ml/min) or (gal/min)	Purge Rate (ml/min) or (gal/min) 0.08 0.11 0.10 0.11 0.10	Cumulative Purge Vol. (liters) or (ga) 1 2 3 4 4 5 5	Temp- erature (°F) or +/% 15.22 14.31 14.03 12.95 12.94 12.91	^{pH} +/- 5.98 6.91 6.95 6.91 6.90 6.91 6.90 6.91	Conduct- ivity (us/cm) +/% 3.40 3.05 3.13 3.10 3.17 3.23	Dissolved Oxygen (mg/L) +/% 14.69 9.49 11.91 5.68 10.19 8.01	4.8	ORP/eH (mv) +/mv -85 -87 -97 -97 -95 -94 -103	13.5 - 6.08 × .17 1.2(0go) w (Oz calculo 103 × 2.0	ents entry height: 2.5 entry h
												Samples colle	491 cted at 10:15 gm

( 60 ( )X (

	HALE	Y RICH			LOW	FLOW	/MNA	FIELD	SAMP	LING F	ORM		Page L of
2	PROJECT <u>Hydro Air Sampling</u> LOCATION <u>Buffalo</u> , NY CLIENT <u>Zeppler Rittling</u>							9 21				H&A FILE NO. PROJECT MGR. FIELD REP.	Jerry Jones
	CONTRACTOR		in cont									SAMPLING DATE	7/12/2/
	Sampling Data Well ID: Start time: Finish Time	<u>A4-N</u> 1:20		Depth To	h: Top Of Screen: Bottom Of Scre		.65	ft Depth		e:	19ft	Purging Device: Tubing Present In Well: Tubing Type:	<u>Peristatic</u> Vres INO <u>3/8" OD</u>
	Elapsed Time (24 hour)	Depth To Water From Casing (ft)	Pump Setting (ml/min) or (gal/min)	Purge Rate (ml/min) or	Cumulative Purge Vol. (liters) or	Temp- erature (°F) or	рН	Conduct- ivity (us/cm) +/%	Dissolved Oxygen (mg/L) +/%	Turbidity (NTU) < NTU	ORP/eH (mv) +/mv	Ca	omments
20	0	5.99		$\sim$		+/%	+/	+/%	+/%	<		well volum	e:1.63 gal
26	6	7.11		0.17	1	14.61	7.12	1.53	2.63	10.3	-74		0
30	10	7.21		0.25	2	13.33	7.28	1.43	3.16	6.5	-96	15.65 - 5.99 X 17	
35	15	7.25		0.20	3	13.25	7.30	1.39	2.88	5.0	-103	1.(03ga) Casing height	
40	20	7.31		0.20	4	13.31	7.31	1.34	3.22	2.5	-105	casing height	-: 3.5'
:45	25	7.35		0.20	5	13.47	7.40	1.31	2.66	2.9	-101		
												COZ: 285×2	= 570 mal/2 of coz
												4 solid be	gan to form
												Alkalinity: 8	24
												60 - 0185 - 501	1 as hard
											1	samples col at 1:45	
										·			

-li

APPENDIX I Groundwater Analytical Data – July 2021



# ANALYTICAL REPORT

Lab Number:	L2137489
Client:	NW Contracting 3553 Crittenden Rd Alden, NY 14004
ATTN: Phone: Project Name:	Dale Gramza (716) 937-6527 ZEHNDER RITTLING HYDRO AIR
Project Number: Report Date:	20-014 08/06/21

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com



Project Name:ZEHNDER RITTLING HYDRO AIRProject Number:20-014

 Lab Number:
 L2137489

 Report Date:
 08/06/21

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2137489-01	A4-MW-5R	WATER	BUFFALO, NY	07/12/21 14:55	07/13/21
L2137489-02	A4-MW-7R	WATER	BUFFALO, NY	07/12/21 13:05	07/13/21
L2137489-03	A4-MW-8R	WATER	BUFFALO, NY	07/12/21 12:00	07/13/21
L2137489-04	A4-MW-9	WATER	BUFFALO, NY	07/12/21 10:15	07/13/21
L2137489-05	A4-MW-10	WATER	BUFFALO, NY	07/12/21 13:45	07/13/21
L2137489-06	TRIP BLANK	WATER	BUFFALO, NY	07/12/21 00:00	07/13/21

# Project Name: ZEHNDER RITTLING HYDRO AIR Project Number: 20-014

Lab Number: L2137489 Report Date: 08/06/21

## **Case Narrative**

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.



Project Name: ZEHNDER RITTLING HYDRO AIR Project Number: 20-014

 Lab Number:
 L2137489

 Report Date:
 08/06/21

## **Case Narrative (continued)**

# **Report Submission**

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

## Sample Receipt

L2137489-05: The sample identified as "A4-MW-10R" on the chain of custody was identified as "A4-MW-10" on the container label. At the client's request, the sample is reported as "A4-MW-10".

L2137489-06: A sample identified as "TRIP BLANK" was received, but not listed on the Chain of Custody. This sample was analyzed.

L2137489-03 and -04: Headspace was noted in the sample containers submitted for Total Alkalinity - SM 2320.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Sebastian Corbin

Authorized Signature:

Title: Technical Director/Representative

Date: 08/06/21



# ORGANICS



## VOLATILES



		Serial_No:08062114:13
Project Name:	ZEHNDER RITTLING HYDRO AIR	Lab Number: L2137489
Project Number:	20-014	<b>Report Date:</b> 08/06/21
	SAMPLE RESULTS	
Lab ID: Client ID: Sample Location:	L2137489-01 A4-MW-5R BUFFALO, NY	Date Collected:07/12/21 14:55Date Received:07/13/21Field Prep:Not Specified
Sample Depth: Matrix: Analytical Method: Analytical Date: Analyst:	Water 1,8260C 07/23/21 03:01 NLK	

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough Lab						
Benzene	7.1		ug/l	0.50	0.16	1
Toluene	0.72	J	ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1
n-Propylbenzene	ND		ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	105	70-130	
Toluene-d8	105	70-130	
4-Bromofluorobenzene	108	70-130	
Dibromofluoromethane	101	70-130	



			Serial_N	o:08062114:13
Project Name:	ZEHNDER RITTLING	HYDRO AIR	Lab Number:	L2137489
Project Number:	20-014		Report Date:	08/06/21
		SAMPLE RESULTS		
Lab ID:	L2137489-02		Date Collected:	07/12/21 13:05
Client ID:	A4-MW-7R		Date Received:	07/13/21
Sample Location:	BUFFALO, NY		Field Prep:	Not Specified
Sample Depth:				
Matrix:	Water			
Analytical Method:	1,8260C			
Analytical Date:	07/23/21 02:38			
Analyst:	NLK			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	stborough Lab					
Benzene	17		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1
n-Propylbenzene	ND		ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	107		70-130	
Toluene-d8	105		70-130	
4-Bromofluorobenzene	108		70-130	
Dibromofluoromethane	100		70-130	



			Serial_N	0:08062114:13
Project Name:	ZEHNDER RITTLIN	IG HYDRO AIR	Lab Number:	L2137489
Project Number:	20-014		Report Date:	08/06/21
		SAMPLE RESULTS		
Lab ID: Client ID: Sample Location:	L2137489-03 A4-MW-8R BUFFALO, NY	D	Date Collected: Date Received: Field Prep:	07/12/21 12:00 07/13/21 Not Specified
Sample Depth: Matrix: Analytical Method: Analytical Date: Analyst:	Water 1,8260C 07/23/21 03:24 NLK			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough Lab						
Benzene	13000		ug/l	50	16.	100
Toluene	ND		ug/l	250	70.	100
Ethylbenzene	ND		ug/l	250	70.	100
Methyl tert butyl ether	ND		ug/l	250	70.	100
p/m-Xylene	ND		ug/l	250	70.	100
o-Xylene	ND		ug/l	250	70.	100
n-Butylbenzene	ND		ug/l	250	70.	100
sec-Butylbenzene	ND		ug/l	250	70.	100
tert-Butylbenzene	ND		ug/l	250	70.	100
Isopropylbenzene	ND		ug/l	250	70.	100
p-Isopropyltoluene	ND		ug/l	250	70.	100
Naphthalene	ND		ug/l	250	70.	100
n-Propylbenzene	ND		ug/l	250	70.	100
1,3,5-Trimethylbenzene	ND		ug/l	250	70.	100
1,2,4-Trimethylbenzene	ND		ug/l	250	70.	100

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	104	70-130	
Toluene-d8	105	70-130	
4-Bromofluorobenzene	109	70-130	
Dibromofluoromethane	98	70-130	



			Serial_No	p:08062114:13
Project Name:	ZEHNDER RITTLING	HYDRO AIR	Lab Number:	L2137489
Project Number:	20-014		Report Date:	08/06/21
		SAMPLE RESULTS		
Lab ID:	L2137489-04		Date Collected:	07/12/21 10:15
Client ID:	A4-MW-9		Date Received:	07/13/21
Sample Location:	BUFFALO, NY		Field Prep:	Not Specified
Sample Depth:				
Matrix:	Water			
Analytical Method:	1,8260C			
Analytical Date:	07/23/21 02:16			
Analyst:	NLK			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - We	Volatile Organics by GC/MS - Westborough Lab						
Benzene	18		ug/l	0.50	0.16	1	
Toluene	ND		ug/l	2.5	0.70	1	
Ethylbenzene	ND		ug/l	2.5	0.70	1	
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1	
p/m-Xylene	ND		ug/l	2.5	0.70	1	
o-Xylene	ND		ug/l	2.5	0.70	1	
n-Butylbenzene	ND		ug/l	2.5	0.70	1	
sec-Butylbenzene	ND		ug/l	2.5	0.70	1	
tert-Butylbenzene	ND		ug/l	2.5	0.70	1	
Isopropylbenzene	ND		ug/l	2.5	0.70	1	
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1	
Naphthalene	ND		ug/l	2.5	0.70	1	
n-Propylbenzene	ND		ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	107	70-130	
Toluene-d8	105	70-130	
4-Bromofluorobenzene	107	70-130	
Dibromofluoromethane	102	70-130	



			Serial_No	p:08062114:13
Project Name:	ZEHNDER RITTLING	HYDRO AIR	Lab Number:	L2137489
Project Number:	20-014		Report Date:	08/06/21
		SAMPLE RESULTS		
Lab ID:	L2137489-05		Date Collected:	07/12/21 13:45
Client ID:	A4-MW-10		Date Received:	07/13/21
Sample Location:	BUFFALO, NY		Field Prep:	Not Specified
Sample Depth:				
Matrix:	Water			
Analytical Method:	1,8260C			
Analytical Date:	07/23/21 01:53			
Analyst:	NLK			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
/olatile Organics by GC/MS - Westborough Lab									
Benzene	9.3		ug/l	0.50	0.16	1			
Toluene	ND		ug/l	2.5	0.70	1			
Ethylbenzene	ND		ug/l	2.5	0.70	1			
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1			
p/m-Xylene	ND		ug/l	2.5	0.70	1			
o-Xylene	ND		ug/l	2.5	0.70	1			
n-Butylbenzene	ND		ug/l	2.5	0.70	1			
sec-Butylbenzene	ND		ug/l	2.5	0.70	1			
tert-Butylbenzene	ND		ug/l	2.5	0.70	1			
Isopropylbenzene	ND		ug/l	2.5	0.70	1			
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1			
Naphthalene	ND		ug/l	2.5	0.70	1			
n-Propylbenzene	ND		ug/l	2.5	0.70	1			
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1			
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1			

% Recovery	Qualifier	Acceptance Criteria	
105		70-130	
105		70-130	
108		70-130	
100		70-130	
	105 105 108	105 105 108	% Recovery         Qualifier         Criteria           105         70-130           105         70-130           108         70-130



			Serial_No	p:08062114:13
Project Name:	ZEHNDER RITTLING H	YDRO AIR	Lab Number:	L2137489
Project Number:	20-014		Report Date:	08/06/21
		SAMPLE RESULTS		
Lab ID:	L2137489-06		Date Collected:	07/12/21 00:00
Client ID:	TRIP BLANK		Date Received:	07/13/21
Sample Location:	BUFFALO, NY		Field Prep:	Not Specified
Sample Depth:				
Matrix:	Water			
Analytical Method:	1,8260C			
Analytical Date:	07/23/21 01:30			
Analyst:	NLK			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
/olatile Organics by GC/MS - Westborough Lab									
Benzene	ND		ug/l	0.50	0.16	1			
Toluene	ND		ug/l	2.5	0.70	1			
Ethylbenzene	ND		ug/l	2.5	0.70	1			
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1			
p/m-Xylene	ND		ug/l	2.5	0.70	1			
o-Xylene	ND		ug/l	2.5	0.70	1			
n-Butylbenzene	ND		ug/l	2.5	0.70	1			
sec-Butylbenzene	ND		ug/l	2.5	0.70	1			
tert-Butylbenzene	ND		ug/l	2.5	0.70	1			
Isopropylbenzene	ND		ug/l	2.5	0.70	1			
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1			
Naphthalene	ND		ug/l	2.5	0.70	1			
n-Propylbenzene	ND		ug/l	2.5	0.70	1			
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1			
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1			

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	105		70-130	
Toluene-d8	104		70-130	
4-Bromofluorobenzene	109		70-130	
Dibromofluoromethane	101		70-130	



Project Name: ZEHNDER RITTLING HYDRO AIR

Project Number: 20-014

Report I k Analysis

 Lab Number:
 L2137489

 Report Date:
 08/06/21

## Method Blank Analysis Batch Quality Control

Analytical Method:1,8260CAnalytical Date:07/22/21 19:47Analyst:TMS

Parameter	Result C	Qualifier Units	RL	MDL	
olatile Organics by GC/MS - West	borough Lab fo	or sample(s): 01-	-06 Batch:	WG1527144-5	
Benzene	ND	ug/l	0.50	0.16	
Toluene	ND	ug/l	2.5	0.70	
Ethylbenzene	ND	ug/l	2.5	0.70	
Methyl tert butyl ether	ND	ug/l	2.5	0.70	
p/m-Xylene	ND	ug/l	2.5	0.70	
o-Xylene	ND	ug/l	2.5	0.70	
n-Butylbenzene	ND	ug/l	2.5	0.70	
sec-Butylbenzene	ND	ug/l	2.5	0.70	
tert-Butylbenzene	ND	ug/l	2.5	0.70	
Isopropylbenzene	ND	ug/l	2.5	0.70	
p-Isopropyltoluene	ND	ug/l	2.5	0.70	
Naphthalene	ND	ug/l	2.5	0.70	
n-Propylbenzene	ND	ug/l	2.5	0.70	
1,3,5-Trimethylbenzene	ND	ug/l	2.5	0.70	
1,2,4-Trimethylbenzene	ND	ug/l	2.5	0.70	

		Acceptance			
Surrogate	%Recovery	Qualifier	Criteria		
1,2-Dichloroethane-d4	104		70-130		
Toluene-d8	105		70-130		
4-Bromofluorobenzene	108		70-130		
Dibromofluoromethane	100		70-130		



## Lab Control Sample Analysis Batch Quality Control

Project Number: 20-014

Lab Number: L2137489 08/06/21

Report Date:

	LCS		LCS		%Recovery			RPD	
Parameter	%Recovery	Qual	%Reco	very Qual	Limits	RPD	Qual	Limits	
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s):	01-06 Ba	tch: WG152714	4-3 WG1527144-4				
Benzene	100		100	)	70-130	0		20	
Toluene	99		98		70-130	1		20	
Ethylbenzene	100		98		70-130	2		20	
Methyl tert butyl ether	97		96		63-130	1		20	
p/m-Xylene	100		95		70-130	5		20	
o-Xylene	95		95		70-130	0		20	
n-Butylbenzene	100		100	)	53-136	0		20	
sec-Butylbenzene	120		11(	)	70-130	9		20	
tert-Butylbenzene	100		100	)	70-130	0		20	
Isopropylbenzene	100		100	)	70-130	0		20	
p-Isopropyltoluene	100		100	)	70-130	0		20	
Naphthalene	74		75		70-130	1		20	
n-Propylbenzene	100		99		69-130	1		20	
1,3,5-Trimethylbenzene	100		97		64-130	3		20	
1,2,4-Trimethylbenzene	98		96		70-130	2		20	

Surrogate	LCS	LCSD	Acceptance
	%Recovery Qual	%Recovery Qual	Criteria
1,2-Dichloroethane-d4	104	103	70-130
Toluene-d8	104	104	70-130
4-Bromofluorobenzene	108	106	70-130
Dibromofluoromethane	102	103	70-130



## METALS



Project Name:	ZEHNDER RITTLING HYDRO AIR	Lab Number:	L2137489
Project Number:	20-014	Report Date:	08/06/21
	SAMPLE RESULTS		
Lab ID:	L2137489-01	Date Collected:	07/12/21 14:55
Client ID:	A4-MW-5R	Date Received:	07/13/21
Sample Location:	BUFFALO, NY	Field Prep:	Not Specified

## Sample Depth:

Matrix:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Ma	nsfield Lab										
Arsenic, Total	0.00820		mg/l	0.00050	0.00016	1	07/17/21 06:10	0 08/05/21 13:11	EPA 3005A	1,6020B	CD
Chromium, Total	0.00077	J	mg/l	0.00100	0.00017	1	07/17/21 06:10	0 08/05/21 13:11	EPA 3005A	1,6020B	CD
Lead, Total	0.00036	J	mg/l	0.00100	0.00034	1	07/17/21 06:10	0 08/05/21 13:11	EPA 3005A	1,6020B	CD



Project Name:	ZEHNDER RITTLING HYDRO AIR	Lab Number:	L2137489
Project Number:	20-014	Report Date:	08/06/21
	SAMPLE RESULTS		
Lab ID:	L2137489-02	Date Collected:	07/12/21 13:05
Client ID:	A4-MW-7R	Date Received:	07/13/21
Sample Location:	BUFFALO, NY	Field Prep:	Not Specified

## Sample Depth:

Matrix:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Ma	nsfield Lab										
Arsenic, Total	0.00364		mg/l	0.00050	0.00016	6 1	07/17/21 06:1	0 08/05/21 13:16	EPA 3005A	1,6020B	CD
Chromium, Total	0.00195		mg/l	0.00100	0.00017	' 1	07/17/21 06:1	0 08/05/21 13:16	EPA 3005A	1,6020B	CD
Lead, Total	ND		mg/l	0.00100	0.00034	· 1	07/17/21 06:1	0 08/05/21 13:16	EPA 3005A	1,6020B	CD



Project Name:	ZEHNDER RITTLING HYDRO AIR	Lab Number:	L2137489
Project Number:	20-014	Report Date:	08/06/21
	SAMPLE RESULTS		
Lab ID:	L2137489-03	Date Collected:	07/12/21 12:00
Client ID:	A4-MW-8R	Date Received:	07/13/21
Sample Location:	BUFFALO, NY	Field Prep:	Not Specified

## Sample Depth:

Matrix:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Ma	nsfield Lab										
Arsenic, Total	0.02508		mg/l	0.00050	0.00016	6 1	07/17/21 06:1	0 08/05/21 13:21	EPA 3005A	1,6020B	CD
Chromium, Total	0.00074	J	mg/l	0.00100	0.00017	· 1	07/17/21 06:1	0 08/05/21 13:21	EPA 3005A	1,6020B	CD
Lead, Total	ND		mg/l	0.00100	0.00034	1	07/17/21 06:1	0 08/05/21 13:21	EPA 3005A	1,6020B	CD



Project Name:	ZEHNDER RITTLING HYDRO AIR	Lab Number:	L2137489
Project Number:	20-014	Report Date:	08/06/21
	SAMPLE RESULTS		
Lab ID:	L2137489-04	Date Collected:	07/12/21 10:15
Client ID:	A4-MW-9	Date Received:	07/13/21
Sample Location:	BUFFALO, NY	Field Prep:	Not Specified

## Sample Depth: Matrix:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mai	nsfield Lab										
Arsenic, Total	0.00858		mg/l	0.00050	0.00016	1	07/17/21 06:10	0 08/05/21 13:25	EPA 3005A	1,6020B	CD
Chromium, Total	0.00137		mg/l	0.00100	0.00017	['] 1	07/17/21 06:10	0 08/05/21 13:25	EPA 3005A	1,6020B	CD
Lead, Total	ND		mg/l	0.00100	0.00034	· 1	07/17/21 06:10	0 08/05/21 13:25	EPA 3005A	1,6020B	CD



Project Name:	ZEHNDER RITTLING HYDRO AIR	Lab Number:	L2137489
Project Number:	20-014	Report Date:	08/06/21
	SAMPLE RESULTS		
Lab ID:	L2137489-05	Date Collected:	07/12/21 13:45
Client ID:	A4-MW-10	Date Received:	07/13/21
Sample Location:	BUFFALO, NY	Field Prep:	Not Specified

## Sample Depth:

Matrix:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Ma	nsfield Lab										
Arsenic, Total	0.00433		mg/l	0.00050	0.00016	1	07/17/21 06:10	0 08/05/21 14:33	EPA 3005A	1,6020B	CD
Chromium, Total	0.00042	J	mg/l	0.00100	0.00017	1	07/17/21 06:10	0 08/05/21 14:33	EPA 3005A	1,6020B	CD
Lead, Total	0.00067	J	mg/l	0.00100	0.00034	1	07/17/21 06:10	0 08/05/21 14:33	EPA 3005A	1,6020B	CD



Project Name:ZEHNDER RITTLING HYDRO AIRProject Number:20-014

 Lab Number:
 L2137489

 Report Date:
 08/06/21

## Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytica Method	Analyst
Total Metals - Mansfie	eld Lab for sample(s):	01-05 E	Batch: WO	G15248	95-1				
Arsenic, Total	ND	mg/l	0.00050	0.00016	5 1	07/17/21 06:10	08/05/21 11:00	0 1,6020B	CD
Chromium, Total	ND	mg/l	0.00100	0.00017	′ 1	07/17/21 06:10	08/05/21 11:00	0 1,6020B	CD
Lead, Total	ND	mg/l	0.00100	0.00034	1	07/17/21 06:10	08/05/21 11:00	0 1,6020B	CD

## **Prep Information**

Digestion Method: EPA 3005A



## Lab Control Sample Analysis

Batch Quality Control

Batch Quality Co

 Lab Number:
 L2137489

 Report Date:
 08/06/21

LCS LCSD %Recovery %Recovery %Recovery Limits **RPD Limits** Parameter Qual RPD Qual Qual Total Metals - Mansfield Lab Associated sample(s): 01-05 Batch: WG1524895-2 Arsenic, Total 102 80-120 --Chromium, Total 101 80-120 --Lead, Total 102 80-120 --



**Project Name:** 

**Project Number:** 

ZEHNDER RITTLING HYDRO AIR

20-014

## Matrix Spike Analysis Batch Quality Control

Project Name: ZEHNDER RITTLING HYDRO AIR

Project Number: 20-014

 Lab Number:
 L2137489

 Report Date:
 08/06/21

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery(	Recovery Qual Limits	RPD Qual	RPD Limits
Total Metals - Mansfield Lab As	sociated sam	ple(s): 01-05	QC Bate	ch ID: WG1524	1895-3	QC Sam	ple: L2134700-0	3 Client ID: M	S Sample	
Arsenic, Total	0.01430	0.12	0.1394	104		-	-	75-125	-	20
Chromium, Total	0.00256	0.2	0.2039	101		-	-	75-125	-	20
Lead, Total	0.00909	0.53	0.4882	90		-	-	75-125	-	20



## Lab Duplicate Analysis Batch Quality Control

Project Name: ZEHNDER RITTLING HYDRO AIR Project Number: 20-014 
 Lab Number:
 L2137489

 Report Date:
 08/06/21

Parameter Native Sample **Duplicate Sample** Units RPD Qual **RPD Limits** Total Metals - Mansfield Lab Associated sample(s): 01-05 QC Batch ID: WG1524895-4 QC Sample: L2134700-03 Client ID: DUP Sample 0.01430 0.01431 20 Arsenic, Total mg/l 0 Chromium, Total 0.00256 0.00246 mg/l 4 20 Lead, Total 0.00909 0.00911 20 mg/l 0



Project Name: Project Number:	•			Lab Serial Dilution Analysis Batch Quality Control				b Number: port Date:	L21374 08/06/2	
Parameter		Native S	ample	Serial Dil	ution	Units	% D	Qual	RPD Limits	
Total Metals - Mansfield	Lab Associated sample(s):	01-05 QC B	atch ID: WG152	4895-6 Q0	C Sample:	L2134700-03	Client ID:	DUP Samp	le	
Arsenic, Total		0.014	.30	0.0148	6	mg/l	4		20	



# INORGANICS & MISCELLANEOUS



Project Name:	ZEHNDER F	ZEHNDER RITTLING HYDRO AIR 20-014						umber: L	_2137489			
Project Number:	20-014							t Date: 0	08/06/21			
			S	AMPLE	RESULT	ſS						
Lab ID:	L2137489-0	1					Date C	collected: 0	)7/12/21 14:55			
Client ID:	A4-MW-5R	A4-MW-5R					Date Received: 07/13/21					
Sample Location:	BUFFALO, I	BUFFALO, NY					Field P	Field Prep: Not Specified				
Sample Depth:												
Matrix:	Water											
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst		
General Chemistry - We	stborough Lat	)										
Alkalinity, Total	438.	m	g CaCO3/L	2.00	NA	1	-	07/15/21 05:52	121,2320B	JB		
Cyanide, Total	0.465		mg/l	0.005	0.001	1	07/16/21 11:00	07/16/21 14:51	1,9010C/9012B	CR		



Project Name: Project Number:		ZEHNDER RITTLING HYDRO AIR 20-014							.2137489 )8/06/21			
r reject Number.	20-014		s		RESULT	s	Report		0,00/21			
						•						
Lab ID:	L2137489-0	37489-02						ollected: 0	07/12/21 13:05			
Client ID:	A4-MW-7R	4-MW-7R						eceived: (	)7/13/21			
Sample Location:	BUFFALO, I	BUFFALO, NY					Field P	Field Prep: Not Specified				
Sample Depth: Matrix:	Water											
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst		
General Chemistry - We	stborough Lat	)										
Alkalinity, Total	258.	m	g CaCO3/L	2.00	NA	1	-	07/15/21 05:52	121,2320B	JB		
Cyanide, Total	0.147		mg/l	0.005	0.001	1	07/16/21 11:00	07/16/21 15:21	1,9010C/9012B	CR		



Project Name:		EHNDER RITTLING HYDRO AIR							2137489				
Project Number:	20-014						Repor	t Date: 0	8/06/21				
			S	AMPLE	RESULT	S							
Lab ID:	L2137489-0	3					Date C	collected: C	7/12/21 12:00				
Client ID:	A4-MW-8R	4-MW-8R						eceived: C	7/13/21				
Sample Location:	BUFFALO, I	BUFFALO, NY					Field P	Field Prep: Not Specified					
Sample Depth:													
Matrix:	Water												
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst			
eneral Chemistry - We	stborough Lat	C											
Ikalinity, Total	645.	m	g CaCO3/L	10.0	NA	5	-	07/15/21 05:52	121,2320B	JB			
Cyanide, Total	0.106		mg/l	0.005	0.001	1	07/16/21 11:00	07/16/21 14:55	1,9010C/9012B	CR			



Project Name: Project Number:		ZEHNDER RITTLING HYDRO AIR 20-014						_	_2137489 )8/06/21			
	20-014		S	AMPLE	RESULT	ſS			0,00,21			
Lab ID:	L2137489-0	4					Date C	collected: 0	)7/12/21 10:15			
Client ID:	A4-MW-9	.4-MW-9						Date Received: 0		07/13/21		
Sample Location:	BUFFALO, I	BUFFALO, NY					Field P	rep: N	Not Specified			
Sample Depth: Matrix:	Water											
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst		
General Chemistry - We	stborough Lat	)										
Alkalinity, Total	390.	m	g CaCO3/L	2.00	NA	1	-	07/15/21 05:52	121,2320B	JB		
Cyanide, Total	0.896		mg/l	0.025	0.009	5	07/16/21 11:00	07/16/21 15:24	1,9010C/9012B	CR		



Serial_N	No:08062114:13
----------	----------------

Project Name: Project Number:		EHNDER RITTLING HYDRO AIR							.2137489 )8/06/21			
roject Number.	20-014						Керог	Date.	0/00/21			
			S	AMPLE	RESULT	ſS						
Lab ID:	L2137489-0	5					Date C	ollected: 0	)7/12/21 13:45			
Client ID:	A4-MW-10	4-MW-10						Date Received: 07/13/21				
Sample Location:	BUFFALO, I	BUFFALO, NY					Field P	Field Prep: Not Specified				
Sample Depth:												
Matrix:	Water											
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst		
General Chemistry - We	stborough Lat	)										
Alkalinity, Total	709.	m	g CaCO3/L	10.0	NA	5	-	07/15/21 05:52	121,2320B	JB		
Cyanide, Total	0.043		mg/l	0.005	0.001	1	07/16/21 11:00	07/16/21 15:04	1,9010C/9012B	CR		



Project Name:ZEHNDER RITTLING HYDRO AIRProject Number:20-014

 Lab Number:
 L2137489

 Report Date:
 08/06/21

## Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst	
General Chemistry - Westborough Lab for sample(s): 01-05 Batch: WG1524240-1										
Alkalinity, Total	ND	mg CaCO3/L	2.00	NA	1	-	07/15/21 05:52	121,2320B	JB	
General Chemistry - Westborough Lab for sample(s): 01-05 Batch: WG1524626-1										
Cyanide, Total	ND	mg/l	0.005	0.001	1	07/16/21 11:00	07/16/21 14:47	1,9010C/9012	B CR	



## Lab Control Sample Analysis Batch Quality Control

Project Name: ZEHNDER RITTLING HYDRO AIR

Project Number: 20-014

 Lab Number:
 L2137489

 Report Date:
 08/06/21

Parameter	LCS %Recovery Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s): 01-05	Batch: WG152424	0-2			
Alkalinity, Total	104	-	90-110	-		10
General Chemistry - Westborough Lab	Associated sample(s): 01-05	Batch: WG152462	6-2 WG1524626-3			
Cyanide, Total	91	90	85-115	1		20



## Matrix Spike Analysis

	Native	MS	MS	MS	MSD	MSD	Recovery	RPD
Project Number:	20-014						Report Date:	08/06/21
Project Name:	ZEHNDER RITTL	ING HYDRO	D AIR	Bate	ch Quality Contro	bl	Lab Number:	L2137489

Parameter	Sample	Added	Found	%Recovery	Qual Found	%Recovery	Qual Limits	RPDQ	ual Limits
General Chemistry - Westbo	orough Lab Asso	ciated samp	le(s): 01-05	QC Batch II	D: WG1524240-4	QC Sample: I	_2137771-01 C	Client ID: MS	S Sample
Alkalinity, Total	78.6	100	177	98	-	-	86-116	-	10
General Chemistry - Westbo MW-5R	prough Lab Asso	ciated samp	le(s): 01-05	QC Batch II	D: WG1524626-4	WG1524626-5	QC Sample: L2	2137489-01	Client ID: A
Cyanide, Total	0.465	0.2	0.632	84	0.649	92	80-120	3	20



10

Project Name: Project Number:		ITTLING HYDRO AIR		Lab Duplicate Ana Batch Quality Contro			ab Numbe eport Date	LZ 107 403
Parameter		Nati	ve Sample	le Duplicate Sample	Units	RPD	Qual	RPD Limits
General Chemistry - Wes	stborough Lab	Associated sample(s):	01-05 Q	QC Batch ID: WG1524240-3	QC Sample:	L2137771-01	Client ID:	DUP Sample

79.0

78.6

mg CaCO3/L

1



Alkalinity, Total

#### Project Name: ZEHNDER RITTLING HYDRO AIR Project Number: 20-014

### Sample Receipt and Container Information

Were project specific reporting limits specified?

YES

### **Cooler Information**

Cooler	Custody Seal
A	Absent

Container Info	ormation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	pН	рН		Pres	Seal	Date/Time	Analysis(*)
L2137489-01A	Vial HCI preserved	А	NA		2.8	Y	Absent		NYTCL-8260-R2(14)
L2137489-01B	Vial HCI preserved	А	NA		2.8	Y	Absent		NYTCL-8260-R2(14)
L2137489-01C	Vial HCI preserved	А	NA		2.8	Y	Absent		NYTCL-8260-R2(14)
L2137489-01D	Plastic 250ml unpreserved/No Headspace	А	NA		2.8	Y	Absent		ALK-T-2320(14)
L2137489-01E	Plastic 250ml HNO3 preserved	А	<2	<2	2.8	Y	Absent		CR-6020T(180),PB-6020T(180),AS-6020T(180)
L2137489-01F	Plastic 250ml NaOH preserved	А	>12	>12	2.8	Y	Absent		TCN-9010(14)
L2137489-02A	Vial HCl preserved	А	NA		2.8	Y	Absent		NYTCL-8260-R2(14)
L2137489-02B	Vial HCI preserved	А	NA		2.8	Y	Absent		NYTCL-8260-R2(14)
L2137489-02C	Vial HCI preserved	А	NA		2.8	Y	Absent		NYTCL-8260-R2(14)
L2137489-02D	Plastic 250ml unpreserved/No Headspace	А	NA		2.8	Y	Absent		ALK-T-2320(14)
L2137489-02E	Plastic 250ml HNO3 preserved	А	<2	<2	2.8	Y	Absent		CR-6020T(180),PB-6020T(180),AS-6020T(180)
L2137489-02F	Plastic 250ml NaOH preserved	А	>12	>12	2.8	Y	Absent		TCN-9010(14)
L2137489-03A	Vial HCI preserved	А	NA		2.8	Y	Absent		NYTCL-8260-R2(14)
L2137489-03B	Vial HCI preserved	А	NA		2.8	Y	Absent		NYTCL-8260-R2(14)
L2137489-03C	Vial HCI preserved	А	NA		2.8	Y	Absent		NYTCL-8260-R2(14)
L2137489-03D	Plastic 250ml unpreserved/No Headspace	А	NA		2.8	Y	Absent		ALK-T-2320(14)
L2137489-03E	Plastic 250ml HNO3 preserved	А	<2	<2	2.8	Y	Absent		CR-6020T(180),PB-6020T(180),AS-6020T(180)
L2137489-03F	Plastic 250ml NaOH preserved	А	>12	>12	2.8	Y	Absent		TCN-9010(14)
L2137489-04A	Vial HCI preserved	А	NA		2.8	Y	Absent		NYTCL-8260-R2(14)
L2137489-04B	Vial HCI preserved	А	NA		2.8	Y	Absent		NYTCL-8260-R2(14)
L2137489-04C	Vial HCl preserved	А	NA		2.8	Y	Absent		NYTCL-8260-R2(14)
L2137489-04D	Plastic 250ml unpreserved/No Headspace	А	NA		2.8	Y	Absent		ALK-T-2320(14)
L2137489-04E	Plastic 250ml HNO3 preserved	А	<2	<2	2.8	Y	Absent		CR-6020T(180),PB-6020T(180),AS-6020T(180)



## Project Name: ZEHNDER RITTLING HYDRO AIR Project Number: 20-014

Container Info	ormation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2137489-04F	Plastic 250ml NaOH preserved	А	>12	>12	2.8	Y	Absent		TCN-9010(14)
L2137489-05A	Vial HCl preserved	А	NA		2.8	Y	Absent		NYTCL-8260-R2(14)
L2137489-05B	Vial HCl preserved	А	NA		2.8	Y	Absent		NYTCL-8260-R2(14)
L2137489-05C	Vial HCI preserved	А	NA		2.8	Y	Absent		NYTCL-8260-R2(14)
L2137489-05D	Plastic 250ml unpreserved/No Headspace	А	NA		2.8	Y	Absent		ALK-T-2320(14)
L2137489-05E	Plastic 250ml HNO3 preserved	А	<2	<2	2.8	Y	Absent		CR-6020T(180),PB-6020T(180),AS-6020T(180)
L2137489-05F	Plastic 250ml NaOH preserved	А	>12	>12	2.8	Y	Absent		TCN-9010(14)
L2137489-06A	Vial HCI preserved	А	NA		2.8	Y	Absent		NYTCL-8260-R2(14)
L2137489-06B	Vial HCI preserved	А	NA		2.8	Y	Absent		NYTCL-8260-R2(14)
L2137489-06C	Vial HCI preserved	А	NA		2.8	Y	Absent		-
L2137489-06D	Vial HCl preserved	А	NA		2.8	Y	Absent		-



## Project Name: ZEHNDER RITTLING HYDRO AIR

Project Number: 20-014

## Lab Number: L2137489

### Report Date: 08/06/21

#### GLOSSARY

#### Acronyms

,,,,	
DL	<ul> <li>Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)</li> </ul>
EDL	- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).
EMPC	- Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.
EPA	- Environmental Protection Agency.
LCS	- Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LCSD	- Laboratory Control Sample Duplicate: Refer to LCS.
LFB	- Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LOD	- Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
LOQ	- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
	Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
MDL	- Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
MS	<ul> <li>Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.</li> </ul>
MSD	- Matrix Spike Sample Duplicate: Refer to MS.
NA	- Not Applicable.
NC	- Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
NDPA/DPA	- N-Nitrosodiphenylamine/Diphenylamine.
NI	- Not Ignitable.
NP	- Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.
NR	- No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile Organic TIC only requests.
RL	- Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
RPD	- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.
SRM	- Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.
STLP	- Semi-dynamic Tank Leaching Procedure per EPA Method 1315.
TEF	- Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.
TEQ	- Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.
TIC	- Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: DU Report with 'J' Qualifiers



#### **Project Name:** ZEHNDER RITTLING HYDRO AIR

**Project Number:** 20-014

#### Lab Number: L2137489

**Report Date:** 08/06/21

#### Footnotes

1

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

#### Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Waterpreserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'. Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benz(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA, this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

#### Data Qualifiers

- A - Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- B - The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- С - Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- D - Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- Е - Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F - The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G - The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- н - The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I - The lower value for the two columns has been reported due to obvious interference.
- J - Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- М - Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- ND - Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.

Report Format: DU Report with 'J' Qualifiers



## Project Name: ZEHNDER RITTLING HYDRO AIR

Project Number: 20-014

Lab Number: L2137489

Report Date: 08/06/21

#### Data Qualifiers

- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.



Project Name:ZEHNDER RITTLING HYDRO AIRProject Number:20-014

 Lab Number:
 L2137489

 Report Date:
 08/06/21

#### REFERENCES

- 1 Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - VI, 2018.
- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

#### LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.



## **Certification Information**

#### The following analytes are not included in our Primary NELAP Scope of Accreditation:

#### Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625/625.1: alpha-Terpineol

**EPA 8260C/8260D:** <u>NPW</u>: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; <u>SCM</u>: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.

**EPA 8270D/8270E:** <u>NPW:</u> Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; <u>SCM</u>: Dimethylnaphthalene,1,4-Diphenylhydrazine. **SM4500**: <u>NPW</u>: Amenable Cyanide; <u>SCM</u>: Total Phosphorus, TKN, NO2, NO3.

#### Mansfield Facility

SM 2540D: TSS EPA 8082A: <u>NPW</u>: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187. EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene. Biological Tissue Matrix: EPA 3050B

#### The following analytes are included in our Massachusetts DEP Scope of Accreditation

#### Westborough Facility:

#### **Drinking Water**

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP. Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

#### Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics, EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II.

**EPA 608.3**: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs **EPA 625.1**: SVOC (Acid/Base/Neutral Extractables), **EPA 600/4-81-045**: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

#### Mansfield Facility:

#### **Drinking Water**

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

#### Non-Potable Water

**EPA 200.7:** Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn. **EPA 200.8:** Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn. **EPA 245.1** Hg. **SM2340B** 

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

	NEW YORK CHAIN OF CUSTODY	Service Centers Mahwah, NJ 07430: 35 Whitney Albany, NY 12205: 14 Walker Wa Tonawanda, NY 14150: 275 Coo	iy .	5	Page ) of		Ton Mar	Date I in L		711	1/2	1		ALPHA JO L21	\$7789	
Westborough, MA 01581 8 Walkup Dr.	Mansfield, MA 02048 320 Forbes Blvd	Project Information					Delive	erables	5		-			Billing Infor		
TEL: 508-898-9220 FAX: 508-898-9193	TEL: 508-822-9300 FAX: 508-822-3288	Project Name: Zehno	ler Ri	Hling	Hirdro	Air		ASP-/			-	SP-B		Same	as Client Info	
PAX, 300-000-9155	PAA: 506-622-5266	Project Location: BUP	tato A	IV	1			EQuis	5 (1 Fi	le)	E	QuIS	(4 File)	PO#		
Client Information		Project # 20-014	1					Other	2							
Client: NW LOA:	tracting	(Use Project name as Pro	oject #)	1000			Regu	latory	Requi	rement				Disposal Si	te Information	
Address: 3553 (		Project Manager: Jen	v Jone	S				NY TO	GS			IY Part	375	1.17777770000000	fy below location of	2
Aiden, NY	14004	ALPHAQuote #:	,		-	1111		AWQ S	Standa	ds		IY CP-5	1	applicable di	sposal facilities.	
	57-6527	Turn-Around Time						NY Re	stricted	Use		ther		Disposal Fac	ility:	
Fax:		Standard	$\checkmark$	Due Date:				NY Un	restrict	ed Use				🗌 NJ	NY NY	
	NW/onterting.ic	Rush (only if pre approved)		# of Days:				NYC S	iewer D	)ischarg	е			Other:		
These samples have b							ANA	LYSIS	8					Sample Fi	Itration	T
Other project specific	the second s	Contraction of the second s								5				Done		1.
Only the STA		s needs to be	reporte	ed .			8260C	20	2.6	Alkalini H (310.				Lab to Preservati	on	a   B 0 -
		15. 11	Colle	ection	0	Constants	5	15	012	0						t
ALPHA Lab ID (Lab Use Only)	Sa	ample ID	Date	Time	Sample Matrix	Sampler's Initials	20	10	ž	当		- 1		Sample Spe	cific Comments	- !
E CARLES AND	ALL ANY	0						-	1	1	-	-	_	Compile opt		•
37489-01	A4-MW-5		7/12/21	2:55	GW	72	3	1	1	+	+	+		-		6
-02	A4 - MW - 7		7/12/21	1:05	GW	55	3	1	1	1	$\rightarrow$	-	_			
-23	A4-MW-5	3R	7/12/21	12:00	GW	22	3	1	1	1	-+	-	_	-		6
-14	A4-MW-0	1	7112121	10:15	GW	JJ	3	1	1	1	-	$\rightarrow$	_			_
-05	AH-MW-1	IOR	7/12/21	1:45	GW	55	3	1	1	1	-	-	_			6
					-		<u> </u>	<u> </u>			-	$\rightarrow$	_			+
Male And States											_	_	_			+
									_		_	_	_	1		+
											_	_	_	-		+-
									_			_		-		
Preservative Code: A = None B = HCI C = HNO ₃	Container Code P = Plastic A = Amber Glass V = Vlal	Westboro: Certification N Mansfield: Certification N			Cor	ntainer Type	A	P	P	P		-		and con	print clearly, legib pletely. Samples ogged in and	
D = H ₂ SO ₄ E = NaOH	G = Glass B = Bacteria Cup					Preservative	HCI	10	E	A				turnarou start un	and time clock wil il any ambiguities	s are
$F = MeOH$ $G = NaHSO_4$ $H = Na_2S_2O_3$ $K/E = Zn Ac/NaOH$ $O = Other$	C = Cube O = Other E = Encore D = BOD Bottle	Relipquished	And T	13/2/ 13/2/	Time 12-30 1400		Rocei	ved By		JN )	7/13		123 22 40	THIS CA HAS RE TO BE TERMS	I. BY EXECUTIN DC, THE CLIENT AD AND AGREE BOUND BY ALPI & CONDITIONS verse side.)	T ES HA'S
Form No: 01-25 HC (rev. 3	30-Sept-2013)								$\mathcal{C}$	28				- 65		

APPENDIX J Historical Groundwater Analytical Data Tables (2015-2021)

# TABLE A1 HISTORICAL GROUNDWATER ANALYTICAL RESULTS HYDRO-AIR COMPONENTS, INC BUFFALO, NEW YORK

ocation	Ambient Water	0.0105			A4-MW-5R	10110	00/0F	00110	00/05	00/05		A4-MW-7R	10/10		0=110	00/05		00/06	A4-MW-8R		00/05	
ample Date	Quality Standards	06/25/2015	06/22/2016	06/22/2017	06/25/2018	12/19/2019	08/07/2020	07/12/2021	06/25/2015	06/22/2016	06/22/2017	06/26/2018	12/19/2019	08/06/2020	07/12/2021	06/25/2015	06/22/2016	06/22/2017	06/25/2018	12/19/2019	08/07/2020	07/12/2
organic Compounds (ug/L)																						
rsenic, Total	25	5.8 J	5.9 J	ND (15)	ND (15)	ND (15)	6.61	8.2	ND (15)	ND (15)	ND (15)	ND (15)	ND (75)	5.19	3.64	34 ^[A]	35 ^[A]	31 ^[A]	31 ^[A]	25	33.88 ^[A]	25.08
hromium, Total	50	ND (4)	ND (4)	ND (4)	ND (4)	1 Ĵ	0.98 J	0.77 J	8.2 J	7.3	6.3 J	6.5 J	ND (20)	3.29	1.95	ND (4)	ND (4)	1.3 J	ND (4)	ND (4)	1.2	0.74
ead, Total	25	ND (10)	3.7 J	3.6 J	ND (10)	ND (10)	0.7 J	0.36 J	ND (50)	17	13 J	ND (200)	ND (50)	ND (1)	ND (1)	3.3 J	7 J	4.7 J	ND (200)	3.1 J	ND (1)	ND (
ther		500000 B	555000 B	270000	400000 D		400000	420000	00000		ND (40000)	450000 D	42000 B		050000	707000	400000 D	405000	700000 B			C 4 5 0
Ikalinity, Total (as CaCO3) (ug/L)	-	508000 B	555000 B	379000 630 ^[A]	433000 B	272000	420000 350 ^[A]	438000 465 ^[A]	28300	ND (10000)	ND (10000)	158000 B	43800 B	230000	258000	737000	492000 B	485000	708000 B	668000	878000	6450
yanide (ug/L)	200	530 ^[A]	920 ^[A]	630 **	680 ^[A]	470 ^[A]	350 **	465 **	14	66	89	33	74	500 ^[A]	147	120	160	120	140	130	111	106
olatile Organic Compounds (ug/L)																						
1,1-Trichloroethane	5	-	-	-		-	ND (2.5)	-	-	-	-	-	-	ND (2.5)	-	-	-	-	-	-	ND (250)	-
1,2,2-Tetrachloroethane	5	-	-	-	-	-	ND (0.5)	-	-	-	-	-	-	ND (0.5)	-	-	-	-	-	-	ND (50)	-
1,2-Trichloroethane	1	-	-	-	-	-	ND (1.5)	-	-	-	-	-	-	ND (1.5)	-	-	-	-	-	-	ND (150)	-
1-Dichloroethane	5	-	-	-	-	-	ND (2.5)	-	-	-	-	-	-	ND (2.5)	-	-	-	-	-	-	ND (250)	-
1-Dichloroethene	5	-	-	-	-	-	ND (0.5)	-	-	-	-	-	-	ND (0.5)	-	-	-	-	-	-	ND (50)	-
2,3-Trichlorobenzene	5	-	-	-	-	-	ND (2.5)	-	-	-	-	-	-	ND (2.5)	-	-	-	-	-	-	ND (250)	-
2,4-Trichlorobenzene	5	-	-	-	-	-	ND (2.5)	-	-	-	-	-	-	ND (2.5)	-	-	-	-	-	-	ND (250)	-
2,4-Trimethylbenzene	5 0.04	ND (1)	ND (1)	ND (1)	ND (1)	ND (1)	- ND (2.5)	ND (2.5)	ND (5)	- ND (2.5)	ND (2.5)	ND (500)	ND (500)	ND (50)	ND (500)	ND (200)	- ND (250)	ND (2				
2-Dibromo-3-chloropropane (DBCP) 2-Dibromoethane (Ethylene Dibromide)	0.0006	-	-	-	-	-	ND (2.5) ND (2)	-	-	-	-	-	-	ND (2.5) ND (2)	-	-	-	-	-	-	ND (200)	-
2-Dichlorobenzene	3	-	-	-	-	-	ND (2.5)	-	-	-	-	-	-	ND (2.5)	-	-	-	-	-	-	ND (200) ND (250)	
2-Dichloroethane	0.6	-	-	-	-	-	ND (0.5)	-	-	-	-	-	-	ND (0.5)	-	-	-	-	-	-	ND (50)	-
2-Dichloropropane	1	-	-	-	-	-	ND (1)	-	-	-	-	-	-	ND (1)	-	-	-	-	-	-	ND (100)	-
3,5-Trimethylbenzene	5	ND (1)	ND (1)	ND (1)	ND (1)	ND (1)	-	ND (2.5)	ND (5)	-`´	ND (2.5)	ND (500)	ND (500)	ND (50)	ND (500)	ND (200)	-	ND (2				
3-Dichlorobenzene	3		-	-	-	-	ND (2.5)	-	-	-	-	-	-	ND (2.5)	-	-	-	-	-	-	ND (250)	-
4-Dichlorobenzene	3	-	-	-	-	-	ND (2.5)	-	-	-	-	-	-	ND (2.5)	-	-	-	-	-	-	ND (250)	-
4-Dioxane	-	-	-	-	-	-	ND (250)	-	-	-	-	-	-	ND (250)	-	-	-	-	-	-	ND (25000)	-
Butanone (Methyl Ethyl Ketone)	50	-	-	-	-	-	ND (5)	-	-	-	-	-	-	ND (5)	-	-	-	-	-	-	ND (500)	-
Hexanone (Methyl Butyl Ketone)	50	- ND (1)	- ND (1)	- ND (1)	- ND (1)	- ND (1)	ND (5)	- ND (2.5)	- ND (5)	- ND (5)	- ND (5)	- ND (5)	- ND (6)	ND (5)	- ND (2.5)	- ND (500)	- ND (500) 52	- ND (50)	- ND (500)	- ND (200)	ND (500)	- ND (2
Phenylbutane (sec-Butylbenzene) Methyl-2-Pentanone (Methyl Isobutyl Ketone)	5	ND (1)	ND (1)	ND (1)	ND (1)	ND (1)	- ND (5)	ND (2.5)	ND (5)	- ND (5)	ND (2.5)	ND (500)	ND (500) F2	ND (50)	ND (500)	ND (200)	- ND (500)	ND (2				
cetone	50	-	-	-	-	-	ND (5)	-	-	-	-	-	-	ND (5) ND (5)	-	-	-	-	-	-	ND (500) ND (500)	-
enzene	1	ND (1)	ND (1)	ND (1)	ND (1)	ND (1)	8.4 ^[A]	7.1 ^[A]	ND (5)	140 ^[A]	17 ^[A]	25000 ^[A]	24000 ^[A]	22000 ^[A]	18000 ^[A]	8100 ^[A]	12000 ^[A]	1300				
romodichloromethane	50	-	-	-	-	-	ND (0.5)		-	-	-	-	-	ND (0.5)		-		-	-	-	ND (50)	-
romoform	50	-	-	-	-	-	ND (2)	-	-	-	-	-	-	ND (2)	-	-	-	-	-	-	ND (200)	-
romomethane (Methyl Bromide)	5	-	-	-	-	-	ND (2.5)	-	-	-	-	-	-	ND (2.5)	-	-	-	-	-	-	ND (250)	-
arbon disulfide	60	-	-	-	-	-	ND (5)	-	-	-	-	-	-	ND (5)	-	-	-	-	-	-	ND (500)	-
arbon tetrachloride	5	-	-	-	-	-	ND (0.5)	-	-	-	-	-	-	ND (0.5)	-	-	-	-	-	-	ND (50)	-
hlorobenzene	5	-	-	-	-	-	ND (2.5)	-	-	-	-	-	-	ND (2.5)	-	-	-	-	-	-	ND (250)	-
hlorobromomethane		-	-	-	-	-	ND (2.5)	-	-	-	-	-	-	ND (2.5)	-	-	-	-	-	-	ND (250)	-
hloroethane	5	-	-	-	-	-	ND (2.5)	-	-	-	-	-	-	ND (2.5)	-	-	-	-	-	-	ND (250)	-
hloroform (Trichloromethane) hloromethane (Methyl Chloride)	5	-	-	-	-	-	ND (2.5) ND (2.5)	-	-	-	-	-	-	ND (2.5) ND (2.5)	-	-	-	-	-	-	ND (250) ND (250)	-
s-1,2-Dichloroethene	5		-	-		-	ND (2.5)	-	_	-	-	-	-	ND (2.5)		-	-	-	-	-	ND (250)	
s-1,3-Dichloropropene	0.4	_	-	-	-	-	ND (0.5)	-	_	-	-	-	-	ND (0.5)	-	-	-	-	-	-	ND (50)	_
yclohexane	-	-	-	-	-	-	ND (10)	-	-	-	-	-	-	ND (10)	-	-	-	-	-	-	ND (1000)	-
ymene (p-Isopropyltoluene)	-	ND (1)	ND (1)	ND (1)	ND (1)	ND (1)	-	ND (2.5)	ND (5)	-	ND (2.5)	ND (500)	ND (500)	ND (50)	ND (500)	ND (200)	-	ND (2				
ibromochloromethane	50	-	-	-	-	-	ND (0.5)	-		-	-	-	-	ND (0.5)		- '	-	-	-	-	ND (50)	-
ichlorodifluoromethane (CFC-12)	5	-	-	-	-	-	ND (5)	-	-	-	-	-	-	ND (5)	-	-	-	-	-	-	ND (500)	-
thylbenzene	5	ND (1)	ND (1)	ND (1)	ND (1)	ND (1)	ND (2.5)	ND (2.5)	ND (5)	ND (2.5)	ND (2.5)	ND (500)	ND (500) F2	ND (50)	ND (500)	ND (200)	ND (250)	ND (2				
opropylbenzene (Cumene)	5	ND (1)	ND (1)	ND (1)	ND (1)	ND (1)	ND (2.5)	ND (2.5)	ND (5)	ND (2.5)	ND (2.5)	ND (500)	ND (500) F1	ND (50)	ND (500)	ND (200)	ND (250)	ND (2				
,p-Xylenes	5	ND (2)	ND (2)	ND (2)	ND (2)	ND (2)	ND (2.5)	ND (2.5)	ND (10)	0.97 J	ND (2.5)	ND (1000)	ND (1000)	ND (100)	ND (1000)	ND (400)	ND (250)	ND (2				
ethyl acetate lethyl Tert Butyl Ether (MTBE)	- 10	- ND (1)	- ND (1)	- ND (1)	- ND (1)	- ND (1)	ND (2)	- ND (2.5)		- ND (5)	- ND (5)	- ND (5)		ND (2) ND (2.5)	- ND (2.5)	- ND (500)	- ND (500)	- ND (50)	- ND (500)	- ND (200)	ND (200)	- ND (2
lethyl Tert Butyl Ether (MTBE) lethylcyclohexane	iU	(I) _			ND (1)	ND (1)	ND (2.5) ND (10)	ND (2.5)	ND (5)	(5) -	ND (5)	ND (3)	ND (5)	ND (2.5) ND (10)	ND (2.5)	ND (500)	(300)	(00)	ND (500)	ND (200)	ND (250) ND (1000)	ND (2
ethylene chloride (Dichloromethane)	5		-	-	-	-	ND (10) ND (2.5)	-		-	-	-	-	ND (10) ND (2.5)		-	-	-	-		ND (1000) ND (250)	
aphthalene	10	2.9	ND (1)	ND (1)	ND (1)	0.5 J	-	ND (2.5)	ND (5)	-	ND (2.5)	ND (500)	ND (500)	ND (50)	ND (500)	ND (200)	-	ND (2				
Butylbenzene	5	ND (1)	ND (1)	ND (1)	ND (1)	ND (1)	-	ND (2.5)	ND (5)	-	ND (2.5)	ND (500)	ND (500) F2	ND (50)	ND (500)	ND (200)	-	ND (2				
Propylbenzene	5	ND (1)	ND (1)	ND (1)	ND (1)	ND (1)	-	ND (2.5)	ND (5)	-	ND (2.5)	ND (500)	ND (500) F2	ND (50)	ND (500)	ND (200)	-	ND (2				
Xylene	5	ND (1)	ND (1)	ND (1)	ND (1)	ND (1)	ND (2.5)	ND (2.5)	ND (5)	ND (2.5)	ND (2.5)	ND (500)	ND (500)	ND (50)	ND (500)	ND (200)	ND (250)	ND (2				
tyrene	5	-	-	-	-	-	ND (2.5)	-	-	-	-	-	-	ND (2.5)	-	-	-	-	-	-	ND (250)	-
rt-Butylbenzene	5	ND (1)	ND (1)	ND (1)	ND (1)	ND (1)	-	ND (2.5)	ND (5)	-	ND (2.5)	ND (500)	ND (500) F2	ND (50)	ND (500)	ND (200)	-	ND (2				
etrachloroethene	5		-	-	-	-	ND (0.5)	-	-	-	-	-	-	ND (0.5)	-	-	-	-	-	-	ND (50)	-
oluene	5	ND (1)	ND (1)	ND (1)	ND (1)	ND (1)	ND (2.5)	0.72 J	ND (5)	22 ^[A]	ND (2.5)	ND (500)	ND (500)	ND (50)	ND (500)	ND (200)	ND (250)	ND (2				
ans-1,2-Dichloroethene	5	-	-	-	-	-	ND (2.5)	-	-	-	-	-	-	ND (2.5)	-	-	-	-	-	-	ND (250)	-
ans-1,3-Dichloropropene	0.4		-	-	-	-	ND (0.5)	-	- 1	-	-	-	-	ND (0.5)	-	-	-	-	-	-	ND (50)	-
richloroethene richlorofluoromethane (CFC-11)	5 5	-	-	-	-	-	ND (0.5)	-	-	-	-	-	-	ND (0.5)	-	-	-	-	-	-	ND (50)	-
rifluorofiuoromethane (CFC-11) rifluorotrichloroethane (Freon 113)	5	-	-	-	-	-	ND (2.5)	-	-	-	-	-	-	ND (2.5)	-	-	-	-	-	-	ND (250)	-
inyl chloride	5		-	-	-	-	ND (2.5) ND (1)	-		-	-	-	-	ND (2.5) ND (1)	-		-	-	-	-	ND (250) ND (100)	-
ylene (total)	2	- ND (2)	- ND (2)	- ND (2)	- ND (2)	- ND (2)	ND (1) -	-	- ND (10)	ND (1)	-	- ND (1000)	- ND (1000)	- ND (100)	- ND (1000)	- ND (400)	-	-				
otes:	J	(2)		11D (Z)	110 (2)	(Z)	-	-				10 (10)	10 (10)	-	-	(1000)	(1000)	100 (100)	1000)		-	
Results in <b>bold</b> were detected.																						
[A] - Results in red exceed NYSDEC Ambient W	ater Quality Standard	s and Guidance	Values - Class	GA – June 199	98																	
			0.000	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	-																	
ND - Not detected above the reporting limit																						

# TABLE A1 HISTORICAL GROUNDWATER ANALYTICAL RESULTS HYDRO-AIR COMPONENTS, INC BUFFALO, NEW YORK

Inorganic Compounds (ug/L) Arsenic, Total Chromium, Total Lead, Total Other Alkalinity, Total (as CaCO3) (ug/L) Cyanide (ug/L) 2 Volatile Organic Compounds (ug/L) 1,1,1-Trichloroethane 1,1,2-Tichloroethane 1,1,2-Tichloroethane 1,1,2-Tichloroethane 1,1,2-Tichlorobenzene 1,2,3-Trichlorobenzene 1,2,4-Trimethylbenzene 1,2-Dirbnomethane (Ethylene Dibromide) 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloropenzene 1,3-5-Timethylbenzene 1,3-5-Timethylbenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzen	Standards         06/25/2015           25         ND (15)           50         ND (4)           25         ND (10)           - <b>312000</b> 00 <b>250</b> ^(A) 5         -           5         -           5         -           5         -           5         -           5         -           5         -           5         -           5         -           5         -           5         -           5         -           5         -           5         ND (2)           04         -           006         -           3         -           5         ND (2)           3         -           50         -           55         ND (2)           -         -           50         -           50         -           50         -           50         -           50         -           50         -           50 </th <th>5.6 J ND (4) 4.6 J 303000 420 ^[A] - - - - - - - - - - - - - - - - - - -</th> <th>06/22/2017 ND (15) ND (4) ND (10) 364000 450 ^[A] - - - ND (2) - ND (2) - ND (2) - - - - - - - - - - - - -</th> <th>06/25/2018 ND (15) 1.4 J ND (200) 226000 B 1400 ^[A] - - - ND (2) - ND (2) - ND (2) - - ND (2) - - - - - - - - - - - - -</th> <th>12/19/2019 ND (15) ND (4) ND (10) 359000 140 - - - - ND (5) ND (5)</th> <th>08/07/2020 18.22 4.14 0.6 J 320000 1760 ^[A] ND (12) ND (2.5) ND (12) ND (2.5) ND (12) ND (5)</th> <th>07/12/2021 8.58 1.37 ND (1) 390000 896 ^(A) - - - - - - - - - - - - - - - - - - -</th> <th>06/25/2015 <b>8 J</b> ND (4) ND (10) <b>1220000</b> <b>55</b> - - - - - - - - - - - - -</th> <th>06/22/2016 8.9 J ND (4) 5.1 J 1200000 88 - - - - - - - - - - - - -</th> <th>06/22/2017 11 J ND (4) ND (10) 1100000 79 - - - - ND (5) - -</th> <th>06/25/2018 10 J ND (4) ND (20) 1170000 B 73 - - - - - - - - - - - - -</th> <th>12/19/2019 43 [A] 3.6 J 9.3 J 1040000 61 - - - - - - - - - - - - - - - - - -</th> <th>08/06/2020 5.47 0.98 J 0.92 J 854000 61 ND (10) ND (2) ND (6) ND (10) ND (2) ND (10) ND (2) ND (10) ND (2) ND (10)</th> <th>07/12/202⁻ 4.33 0.42 J 0.67 J 709000 43 - - - - - - - - - - - - - - - - - -</th>	5.6 J ND (4) 4.6 J 303000 420 ^[A] - - - - - - - - - - - - - - - - - - -	06/22/2017 ND (15) ND (4) ND (10) 364000 450 ^[A] - - - ND (2) - ND (2) - ND (2) - - - - - - - - - - - - -	06/25/2018 ND (15) 1.4 J ND (200) 226000 B 1400 ^[A] - - - ND (2) - ND (2) - ND (2) - - ND (2) - - - - - - - - - - - - -	12/19/2019 ND (15) ND (4) ND (10) 359000 140 - - - - ND (5) ND (5)	08/07/2020 18.22 4.14 0.6 J 320000 1760 ^[A] ND (12) ND (2.5) ND (12) ND (2.5) ND (12) ND (5)	07/12/2021 8.58 1.37 ND (1) 390000 896 ^(A) - - - - - - - - - - - - - - - - - - -	06/25/2015 <b>8 J</b> ND (4) ND (10) <b>1220000</b> <b>55</b> - - - - - - - - - - - - -	06/22/2016 8.9 J ND (4) 5.1 J 1200000 88 - - - - - - - - - - - - -	06/22/2017 11 J ND (4) ND (10) 1100000 79 - - - - ND (5) - -	06/25/2018 10 J ND (4) ND (20) 1170000 B 73 - - - - - - - - - - - - -	12/19/2019 43 [A] 3.6 J 9.3 J 1040000 61 - - - - - - - - - - - - - - - - - -	08/06/2020 5.47 0.98 J 0.92 J 854000 61 ND (10) ND (2) ND (6) ND (10) ND (2) ND (10) ND (2) ND (10) ND (2) ND (10)	07/12/202 ⁻ 4.33 0.42 J 0.67 J 709000 43 - - - - - - - - - - - - - - - - - -
Arsenic, Total Chromium, Total Chromium, Total Chromium, Total Chromium, Total Chromium, Total Chromited Statement Chromited S	50 ND (4) 55 ND (10) - 312000 00 250 ^[A] 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 -	ND (4) 4.6 J 303000 420 ^[A] - - - - - - - - - - - - - - - - - - -	ND (4) ND (10) 364000 450 ^[A] - - - - - - - - - - - - - - - - - - -	1.4 J ND (200) 226000 B 1400 ^[A] - - - - - - - - - - - - - - - - - - -	ND (4) ND (10) 359000 140 - - - - - - - - - - - - - - - - - - -	4.14 0.6 J 320000 1760 ^[A] ND (12) ND (2.5) ND (7.5) ND (12) ND (2.5) ND (12) ND (12) ND (12) ND (12) ND (12) ND (12) ND (12) ND (12)	1.37 ND (1) 390000 896 ^[A] - - - - - - - - - - - - -	ND (4) ND (10) 1220000 55 - - - - - - - - - - - - - - -	ND (4) 5.1 J 1200000 88 - - - - - - - - - - - - - - - -	ND (4) ND (10) 1100000 79 - - - - - - - - - - - - - - - - - -	ND (4) ND (20) 1170000 B 73 - - - - - - - - - - - - - - - - - -	3.6 J 9.3 J 1040000 61 - - - - - - - - - - - - -	0.98 J 0.92 J 854000 61 ND (10) ND (2) ND (6) ND (10) ND (2) ND (10)	0.42 J 0.67 J 709000 43 - - - - - - - - - -
Chromium, Total .ead, Total Dther Alkalinity, Total (as CaCO3) (ug/L) Cyanide (ug/L) 2 /olatile Organic Compounds (ug/L) 1,1,1-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,2-Trichlorobenzene 1,2-Trichlorobenzene 1,2-Trichlorobenzene 1,2-Trichlorobenzene 1,2-Trichlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dicklorobenzene 1,4-Dicklorobenzene 1,4-Dicklorobenzene 1,4-Dicklorobenzene 1,4-Dicklorobenzene 1,4-Dicklorobenzene 1,4-Dicklorobenzene 1,4-Dicklorobenzene 1,4-Dicklorobenzene 1,4-Dicklorobenzene 1,4-Dicklorobenzene 1,4-Dicklorobenzene 1,4-Dicklorobenzene 1,4-Dicklorobenzene 1,4-Dicklorobenzene 1,4-Dicklorobenzene 1,4-Dicklorobenzene 1,4-Dicklorobenzene 1,4-Dicklorobenzene 1,4-Dicklorobenzene 1,4-Dicklorobenzene 1,4-Dicklorobenzene 1,4-Dicklorobenzene 1,4-Dicklorobenzene 1,4-Dicklorobenzene 1,4-Dicklorobenzene 1,4-Dicklorobenzene 1,4-Dicklorobenzene 1,4-Dicklorobenzene 1,4-Dicklorobenzene 1,4-Dicklorobenzene 1,4-Dicklorobenzene 1,4-Dicklorobenzene 1,4-Dicklorobenzene 1,4-Dicklorobenzene 1,4-Dicklorobenzene 1,4-Dicklorobenzene 1,4-Dicklorobenzene 1,4-Dicklorobenzene 1,4-Dicklorobenzene 1,4-Dicklorobenzene 1,4-Dicklorobenzene 1,4-Dicklorobenzene 1,4-Dicklorobenzene 1,4-Dicklorobenzene 1,4-Dicklorobenzene 1,4-Dicklorobenzene 1,4-Dicklorobenzene 1,4-Dicklorobenzene 1,4-Dicklorobenzene 1,4-Dicklorobenzene 1,4-Dicklorobenzene 1,4-Dicklorobenzene 1,4-Dicklorobenzene 1,4-Dicklorobenzene 1,4-Dicklorobenzene 1,4-Dicklorobenzene 1,4-Dicklorobenzene 1,4-Dicklorobenzene 1,4-Dicklorobenzene 1,4-Dicklorobenzene 1,4-Dicklorobenzene 1,4-Dicklorobenzene 1,4-Dicklorobenzene 1,4-Dicklorobenzene 1,4-Dicklorobenzene 1,4-Dicklorobenzene 1,4-Dicklorobenzene 1,4-Dicklorobenzene 1,4-Dicklorobenzen	50 ND (4) 55 ND (10) - 312000 00 250 ^[A] 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 -	ND (4) 4.6 J 303000 420 ^[A] - - - - - - - - - - - - - - - - - - -	ND (4) ND (10) 364000 450 ^[A] - - - - - - - - - - - - - - - - - - -	1.4 J ND (200) 226000 B 1400 ^[A] - - - - - - - - - - - - - - - - - - -	ND (4) ND (10) 359000 140 - - - - - - - - - - - - - - - - - - -	4.14 0.6 J 320000 1760 ^[A] ND (12) ND (2.5) ND (7.5) ND (12) ND (2.5) ND (12) ND (12) ND (12) ND (12) ND (12) ND (12) ND (12) ND (12)	1.37 ND (1) 390000 896 ^[A] - - - - - - - - - - - - -	ND (4) ND (10) 1220000 55 - - - - - - - - - - - - - - -	ND (4) 5.1 J 1200000 88 - - - - - - - - - - - - - - - -	ND (4) ND (10) 1100000 79 - - - - - - - - - - - - - - - - - -	ND (4) ND (20) 1170000 B 73 - - - - - - - - - - - - - - - - -	3.6 J 9.3 J 1040000 61 - - - - - - - - - - - - -	0.98 J 0.92 J 854000 61 ND (10) ND (2) ND (6) ND (10) ND (2) ND (10)	0.42 J 0.67 J 709000 43 - - - - - - - - - - - - - - - -
Lead, Total  Lead, Total  Dther  Alkalinity, Total (as CaCO3) (ug/L)  Cyanide (ug/L)  2  Volatile Organic Compounds (ug/L)  1,1,1-Trichloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2-Dirbhoroethane 1,2-Tirmethylbenzene 1,2-Dibromo-3-chloropropane (DBCP) 0,1 2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,3-Dichlorobenzene 1,3-Dichlorobenzene 1,3-Dichlorobenzene 1,3-Dichlorobenzene 1,3-Dichlorobenzene 1,3-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dicklorobenzene 3-Dichlorobenzene 1,4-Dicklorobenzene 3-Dicklorobenzene 3-Dic	25 ND (10) - 312000 00 250 ^[A] 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 -	4.6 J 303000 420 ^[A] - - - - - - - - - - - - - - - - - - -	ND (10) 364000 450 ^[A] - - - - - - - - - - - - - - - - - - -	ND (200) 226000 B 1400 ^[A] - - - ND (2) - - - - - - - - - - - - -	ND (10) 359000 140 - - - - - - - - - - - - - - - - - - -	0.6 J 320000 1760 ^[A] ND (12) ND (2.5) ND (7.5) ND (12) ND (12) ND (12) ND (12) ND (12) ND (12) ND (12) ND (12) ND (12) ND (2.5)	ND (1) 390000 896 ^[A] - - - - - - - - - - - - - - - - -	ND (10) 1220000 55 - - - - - - - - - - - - - -	5.1 J 1200000 88 - - - - - - - - - - - - - - - -	ND (10) 1100000 79 - - - - - ND (5) -	ND (20) 1170000 B 73 - - - - - - - - - - - - - - -	9.3 J 1040000 61 - - - - - - - - - - - -	0.92 J 854000 61 ND (10) ND (2) ND (6) ND (10) ND (2) ND (10)	0.67 J 709000 43 - - - - - - - - - - - - - - - -
Other         Alkalinity, Total (as CaCO3) (ug/L)         Cyanide (ug/L)       2         Volatile Organic Compounds (ug/L)       1,1,1-Trichloroethane         1,1,2,2-Tetrachloroethane       1,1,2,2-Trichloroethane         1,1-Dichloroethane       1,1-Dichloroethane         1,1-Dichloroethane       1,1-Dichloroethane         1,2,2-Trichloroethane       1,2-Dichloroethane         1,2-Dichloroethane       0,1         1,2-Trichlorobenzene       0,2         1,2-Dichlorobenzene       0,1         1,2-Dichlorobenzene       0,1         1,2-Dichlorobenzene       0,1         1,2-Dichloropenzene       0,1         1,2-Dichloropenzene       0,1         1,3-Dichlorobenzene       1,3-Dichlorobenzene         1,3-Dichlorobenzene       1,3-Dichlorobenzene         1,4-Dicknore       2-Butanone (Methyl Ethyl Ketone)         2-Heaxnone (Methyl Butyl Ketone)       2-Heaxnone (Methyl Butyl Ketone)         2-Phenylbutane (sec-Butylbenzene)       4-Methyl-2-Pentanone (Methyl Isobutyl Ketone)         Acetone       Benzene       Bromodichloromethane         Bromodichloromethane       Bromodichloromethane       Bromodichloromethane	- 312000 00 250 ^[A] 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 -	303000 420 ^(A) - - - - - - - - - - - - - - - - - - -	364000 450 ^(A) - - - - - - - - - - - - - - - - - - -	226000 B 1400 ^(A) - - - - - - - - - - - - - - - - - - -	359000 140 - - - - - - - - - - - - - - - - - - -	320000 1760 ^[A] ND (2.5) ND (7.5) ND (12) ND (12) ND (12) ND (12) ND (12) ND (12) ND (12) ND (12)	390000 896 ^(A) - - - - - - - - - -	1220000 55 - - - - - - - - - - - - -	1200000 88 - - - - - - - - - - - - - - - -	1100000 79 - - - - - - - - - - - ND (5)	1170000 B 73 - - - - - - - - - - - -	1040000 61 - - - - - - - - - -	854000 61 ND (10) ND (2) ND (6) ND (10) ND (2) ND (10)	709000 43 - - - - - - - - - - - -
Alkalinity, Total (as CaCO3) (ug/L)       2         Cyanide (ug/L)       2         Volatile Organic Compounds (ug/L)       1,1-Trichloroethane         1,1-Trichloroethane       1,12-Trichloroethane         1,1.2-Trichloroethane       1,12-Trichloroethane         1,1.2-Trichloroethane       1,12-Trichloroethane         1,2.3-Trichloroethane       1,2.3-Trichlorobenzene         1,2.4-Trichlorobenzene       1,2.4-Trichlorobenzene         1,2.4-Trichlorobenzene       0.0         1,2-Dichorobenzene       0.0         1,2-Dichorobenzene       0.0         1,2-Dichorobenzene       0.0         1,2-Dichorobenzene       0.0         1,2-Dichorobenzene       0.0         1,3-Drimethylbenzene       1.3-Drimethylbenzene         1,3-Drimethylbenzene       1.3-Drichlorobenzene         1,4-Dichlorobenzene       1.4-Dicklorobenzene         1,4-Dickne       2-Butanone (Methyl Ethyl Ketone)         2-Heanylbutane (sec-Butylbenzene)       4-Methyl-2-Pentanone (Methyl Isobutyl Ketone)         2-Phenylbutane (sec-Butylbenzene)       4-Methyl-2-Pentanone (Methyl Isobutyl Ketone)         Acetone       Enzene         Bromodichloromethane       Enomodichloromethane         Bromodichloromethane       Enomodichloromethane	00 250 ^[A] 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 -	420 ^(A) ND (2) - ND (2) ND (2)	450 ^(A) - - - - ND (2) - - - - - - - - - -	1400 ^(A) - - - - - - - - - - - - - - - - - - -	140 - - - - - - ND (5) - - - - - - - - - - - - - - - - - - -	1760 ^[A] ND (2.5) ND (7.5) ND (12) ND (12) ND (12) ND (12) ND (12) ND (12) ND (12) ND (12) ND (12) ND (2.5)	896 ^(A) - - - - - - - - - - -	55 - - - - - - - - - - -	88 - - - - - - ND (5) -	79 - - - - - - - - - - - - - - - - - - -	73	61 - - - - - - - - -	61 ND (10) ND (2) ND (6) ND (10) ND (2) ND (10)	43 - - - - - - -
Cyanide (ug/L) 2 Volatile Organic Compounds (ug/L) 1,1,1-Trichloroethane 1,1,2-Zretrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichlorobenzene 1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene 1,2-Dibromo-3-chloropropane (DBCP) 00 1,2-Dibromo-3-chloropropane (DBCP) 01 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,3-Drimethylbenzene 1,3-Drimethylbenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,4-	00 250 ^[A] 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 -	420 ^(A) ND (2) - ND (2) ND (2)	450 ^(A) - - - - ND (2) - - - - - - - - - -	1400 ^(A) - - - - - - - - - - - - - - - - - - -	140 - - - - - - ND (5) - - - - - - - - - - - - - - - - - - -	1760 ^[A] ND (2.5) ND (7.5) ND (12) ND (12) ND (12) ND (12) ND (12) ND (12) ND (12) ND (12) ND (12) ND (2.5)	896 ^(A) - - - - - - - - - - -	55 - - - - - - - - - - -	88 - - - - - - ND (5) -	79 - - - - - - - - - - - - - - - - - - -	73	61 - - - - - - - - -	61 ND (10) ND (2) ND (6) ND (10) ND (2) ND (10)	43 - - - - - - -
Volatile Organic Compounds (ug/L) (1,1-Trichloroethane 1,1,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichlorobenzene 1,2-A-Trinethylbenzene 1,2-A-Trinethylbenzene 1,2-Dibromoethane (Ethylene Dibromide) 1,2-Dibrobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 4-Methyl-2-Pentanone (Methyl Isobutyl Ketone) 2-Phenylbutane (sec-Butylbenzene) 4-Methyl-2-Pentanone (Methyl Isobutyl Ketone) Acetone Benzene Bromodichloromethane Bromodichloromethane	5 - 5 - 1 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5	- - - - - - - - - - - - - - - - - - -	- - - - ND (2) - - - - -	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	ND (12) ND (2.5) ND (7.5) ND (2.5) ND (2.5) ND (12) - - ND (12) ND (12) ND (10) ND (12) ND (12) ND (2.5)	- - - - -		- - - - ND (5)	- - - - ND (5)	- - - - - -	- - - - - -	ND (10) ND (2) ND (6) ND (10) ND (2) ND (10)	
1,1,1-Trichloroethane         1,1,2-Tichloroethane         1,1-2-Tichloroethane         1,1-2-Tichloroethane         1,1-Dichloroethane         1,1-Dichloroethane         1,2-Tichlorobenzene         1,2-Tichlorobenzene         1,2-Dichomoethane (Ethylene Dibromide)         1,2-Dichomoethane (Ethylene Dibromide)         1,2-Dichorobenzene         1,2-Dichorobenzene         1,2-Dichoropopane         1,2-Dichoropopane         1,2-Dichorobenzene         1,2-Dichorobenzene         1,2-Dichorobenzene         1,2-Dichoropopane         1,3-Dichlorobenzene         1,3-Dichlorobenzene         1,3-Dichlorobenzene         1,3-Dichlorobenzene         1,4-Dichlorobenzene         1,4-Dichlorobenzene <t< td=""><td>-5         -           1         -           5         -           5         -           5         -           5         -           5         -           5         -           5         ND (2)           04         -           0006         -           3         -           5         ND (2)           3         -           -         -           5         ND (2)           3         -           -         -           50         -           5         ND (2)           -         -           50         -           5         ND (2)           -         -           50         -           50         -           50         -           50         -           50         -           50         -           50         -           50         -</td><td>ND (2)</td><td></td><td></td><td></td><td>ND (2.5) ND (7.5) ND (12) ND (225) ND (12) ND (12) - ND (12) ND (12) ND (12) ND (12) ND (2.5)</td><td>- - - - -</td><td>- - - - ND (5)</td><td>-</td><td>-</td><td>- - - ND (5)</td><td>- - - - ND (5)</td><td>ND (2) ND (6) ND (10) ND (2) ND (10)</td><td>- - -</td></t<>	-5         -           1         -           5         -           5         -           5         -           5         -           5         -           5         -           5         ND (2)           04         -           0006         -           3         -           5         ND (2)           3         -           -         -           5         ND (2)           3         -           -         -           50         -           5         ND (2)           -         -           50         -           5         ND (2)           -         -           50         -           50         -           50         -           50         -           50         -           50         -           50         -           50         -	ND (2)				ND (2.5) ND (7.5) ND (12) ND (225) ND (12) ND (12) - ND (12) ND (12) ND (12) ND (12) ND (2.5)	- - - - -	- - - - ND (5)	-	-	- - - ND (5)	- - - - ND (5)	ND (2) ND (6) ND (10) ND (2) ND (10)	- - -
1,1,1-Trichloroethane         1,1,2-Trichloroethane         1,1,2-Trichloroethane         1,1-Dichloroethane         1,1-Dichloroethane         1,1-Dichloroethane         1,1-Dichloroethane         1,2-Trichlorobenzene         1,2-Trichlorobenzene         1,2-Dichomoethane (Ethylene Dibromide)         1,2-Dichoroethane         1,2-Dichorobenzene         1,2-Dichoropopane (DBCP)         0,1         1,2-Dichorobenzene         1,2-Dichoropopane         1,2-Dichoropopane         1,2-Dichoropopane         1,3-Drimethylbenzene         1,3-Drimethylbenzene         1,3-Dichloropopane         1,3-Dichlorobenzene         1,4-Dicknoe         2-Butanone (Methyl Ethyl Ketone)         2-Heanylbutane (sec-Butylbenzene)         4-Methyl-2-Pentanone (Methyl Isobutyl Ketone)         Acetone         Benzene         Bromodichloromethane         Bromodichloromethane	-5         -           1         -           5         -           5         -           5         -           5         -           5         -           5         -           5         ND (2)           04         -           0006         -           3         -           5         ND (2)           3         -           -         -           5         ND (2)           3         -           -         -           50         -           5         ND (2)           -         -           50         -           5         ND (2)           -         -           50         -           50         -           50         -           50         -           50         -           50         -           50         -           50         -	ND (2)				ND (2.5) ND (7.5) ND (12) ND (225) ND (12) ND (12) - ND (12) ND (12) ND (12) ND (12) ND (2.5)	- - - - -	- - - - - - - - - - - - - - - - - - -	-	-	- - - ND (5)	- - - - ND (5)	ND (2) ND (6) ND (10) ND (2) ND (10)	- - -
1,1,2,2-Tetrachloroethane         1,1-2.Trichloroethane         1,1-Dichloroethane         1,1-Dichloroethane         1,1-Dichloroethane         1,2-Trichlorobenzene         1,2,4-Trinethylbenzene         1,2-Dichlorobenzene         1,2-Dichlorobenzene         1,2-Dichlorobenzene         1,2-Dichlorobenzene         1,2-Dichlorobenzene         1,2-Dichlorobenzene         1,2-Dichlorobenzene         1,2-Dichlorobenzene         1,2-Dichlorobenzene         1,3-5-Timethylbenzene         1,3-5-Timethylbenzene         1,3-5-Timethylbenzene         1,3-5-Timethylbenzene         1,4-Dicklorobenzene         2-Heanone (Methyl Ethyl Ketone)         2-Phenylbutane (sec-Butylbenzene)         Acetone       Senzene         Bromodichloromethane       Senmodichloromethane	-5         -           1         -           5         -           5         -           5         -           5         -           5         -           5         -           5         ND (2)           04         -           0006         -           3         -           5         ND (2)           3         -           -         -           5         ND (2)           3         -           -         -           50         -           5         ND (2)           -         -           50         -           5         ND (2)           -         -           50         -           50         -           50         -           50         -           50         -           50         -           50         -           50         -	ND (2)				ND (2.5) ND (7.5) ND (12) ND (225) ND (12) ND (12) - ND (12) ND (12) ND (12) ND (12) ND (2.5)	- - - - -	- - - ND (5)	-	-	- - - ND (5)	- - - - ND (5)	ND (2) ND (6) ND (10) ND (2) ND (10)	- - -
1,1,2-Trichloroethane         1,1-Dichloroethane         1,1-Dichloroethane         1,2,3-Trichlorobenzene         1,2,4-Trichlorobenzene         1,2,4-Trichlorobenzene         1,2-Dibromo-3-chloropropane (DBCP)         0         1,2-Dibromo-3-chloropropane (DBCP)         0,1         1,2-Dichorobenzene         1,2-Dichlorobenzene         1,2-Dichlorobenzene         1,2-Dichlorobenzene         1,3-Dichlorobenzene         1,3-Dichlorobenzene         1,3-Dichlorobenzene         1,3-Dichlorobenzene         1,4-Dicklorobenzene         2-Henylbutane (sec-Butylbenzene)         4-Methyl-2-Pentanone (Methyl Isobutyl Ketone)         Acetone       Benze	1     -       5     -       5     -       5     -       5     -       5     -       5     -       5     ND (2)       006     -       3     -       1     -       5     ND (2)       3     -       5     ND (2)       -     -       50     -       5     ND (2)       -     -       50     -       50     -       50     -	ND (2)				ND (7.5) ND (12) ND (2.5) ND (12) ND (12) - ND (12) ND (12) ND (10) ND (12) ND (2.5)	- - - ND (2.5) - - -	- - - ND (5)	-	-	- - - - ND (5)	- - - - ND (5)	ND (6) ND (10) ND (2) ND (10)	- - -
1,1-Dichloroethane         1,1-Dichloroethane         1,2,3-Trichlorobenzene         1,2,4-Trichlorobenzene         1,2,4-Trichlorobenzene         1,2-Dichomoethane (Ethylene Dibromide)         1,2-Dichoroethane (Ethylene Dibromide)         1,2-Dichoroethane (Ethylene Dibromide)         1,2-Dichloroethane         1,2-Dichloroethane         1,2-Dichloroethane         1,3-Drimethylbenzene         1,3-Trimethylbenzene         1,3-Dichlorobenzene         1,4-Dickane         2-Butanone (Methyl Ethyl Ketone)         2-Heanylbutane (sec-Butylbenzene)         4-Methyl-2-Pentanone (Methyl Isobutyl Ketone)         Acetone         Benzene         Bromodichloromethane         Bromodichloromethane	-5 - 5 - 5 - 5 - 1006 - 1 - 5 ND (2) 006 - 1 - 5 ND (2) 3 - 3 - 3 - 5 ND (2) 3 - 5 ND (2) 3 - 5 ND (2) - 5 ND (2) -	ND (2)				ND (12) ND (2.5) ND (12) ND (12) - ND (12) ND (12) ND (10) ND (12) ND (2.5)	- - - ND (2.5) - -	- - ND (5) -	-	-	- - - ND (5)	- - - ND (5)	ND (10) ND (2) ND (10)	- - -
1,1-Dichloroethene         1,2,3-Trichlorobenzene         1,2,4-Trichlorobenzene         1,2,4-Trimethylbenzene         1,2-Dichlorobenzene         1,2-Dichlorobenzene         1,2-Dichlorobenzene         1,2-Dichlorobenzene         1,2-Dichloropropane (DBCP)         1,2-Dichlorobenzene         1,2-Dichloropropane         1,3-Trimethylbenzene         1,3-Dichlorobenzene         1,3-Dichlorobenzene         1,3-Dichlorobenzene         1,4-Dicknobenzene         1,4-Dicknobenzene         1,4-Dicknobenzene         1,4-Dicklorobenzene         1,4-Dicknobenzene         1,4-Dicknobenzene         1,4-Dicknobenzene         1,4-Dicknobenzene         1,4-Dicknobenzene         4.4-Dicknobenzene         2-Butanone (Methyl Ethyl Ketone)         2-Heanylbutane (sec-Butylbenzene)         4-Methyl-2-Pentanone (Methyl Isobutyl Ketone)         Acetone         Benzene         Bromodichloromethane         Bromodichloromethane         Bromodichloromethane	-5 - 5 - 5 - 5 - 1006 - 1 - 5 ND (2) 006 - 1 - 5 ND (2) 3 - 3 - 3 - 5 ND (2) 3 - 5 ND (2) 3 - 5 ND (2) - 5 ND (2) -	ND (2)				ND (2.5) ND (12) ND (12) - ND (12) ND (12) ND (10) ND (12) ND (2.5)	- - ND (2.5) - -	- - ND (5) -	-	-	- - - ND (5)	- - ND (5)	ND (2) ND (10)	-
1,2,3-Trichlorobenzene         1,2,4-Trichlorobenzene         1,2,4-Trichlorobenzene         1,2-Dibromo-3-chloropropane (DBCP)       0         1,2-Dibromo-st-chloropropane (DBCP)       0         1,2-Dibromo-st-chloropropane (DBCP)       0         1,2-Dichlorobenzene       1         1,2-Dichlorobenzene       1         1,3-Dichlorobenzene       1         1,3-Dichlorobenzene       1         1,4-Dicknore       1         1,4-Dicklorobenzene       1         1,4-Dickane       2         2-Butanone (Methyl Ethyl Ketone)       2         2-Phenylbutane (sec-Butylbenzene)       3         4-Methyl-2-Pentanone (Methyl Isobutyl Ketone)       3         2-Phenylbutane (sec-Butylbenzene)       3         4-Rotene       3         Benzene       3         Bromodichloromethane       3         Bromodichloromethane       3         Bromodichloromethane       3         Bromodichloromethane       3	5 - 5 ND (2) 04 - 1006 - 3 - 1 - 5 ND (2) 1 - 5 ND (2) 3 - 3 - 5 ND (2) 5 ND (2) - 5 ND (2) -	ND (2)				ND (12) ND (12) - ND (12) ND (10) ND (12) ND (2.5)	- ND (2.5) - - -	- ND (5) -	-	-	- - ND (5)	- - ND (5)	ND (10)	-
1,2,4-Trichlorobenzene         1,2,4-Trimethylbenzene         1,2-Dibromo-3-chloropropane (DBCP)       0         1,2-Dichorobenzene       0.1         1,2-Dichlorobenzene       0.1         1,2-Dichlorobenzene       0         1,2-Dichloropropane       0         1,3-Dichlorobenzene       0         1,3-Dichlorobenzene       1         1,4-Dichlorobenzene       1         1,4-Dicklorobenzene       1         2-Phenylbutane (sec-Butylbenzene)       1         2-Phenylbutane (sec-Butylbenzene)       1         4-Methyl-2-Pentanone (Methyl Isobutyl Ketone)       1         Acetone       1         Benzene       1         Bromodichloromethane       1         Bromodichloromethane       1	5         -           5         ND (2)           .04         -           .006         -           .3         -           .6         -           1         -           5         ND (2)           3         -           5         ND (2)           -         -           50         -           5         ND (2)           -         -           50         -           50         -           50         -           50         -           50         -           50         -           50         -	ND (2)				ND (12) - ND (12) ND (10) ND (12) ND (2.5)	- ND (2.5) - - - -	ND (5)	-	-	ND (5)	- ND (5)		- - ND (2.5
1,2,4-Trimethylbenzene       0         1,2-Dibromo-3-chloropropane (DBCP)       0         1,2-Dibromo-3-chloropropane (Ethylene Dibromide)       0.0         1,2-Dichlorobenzene       0         1,2-Dichloropropane       0         1,2-Dichloropenzene       0         1,3-Drimethylbenzene       0         1,3-Trimethylbenzene       0         1,3-Dichlorobenzene       1         1,4-Dickhorobenzene       1         1,4-Dickhorobenzene       1         1,4-Dickhorobenzene       1         1,4-Dicknone       2         2-Butanone (Methyl Ethyl Ketone)       2         2-Hexnone (Methyl Butyl Ketone)       2         2-Phenylbutane (sec-Butylbenzene)       4         Akethyl-2-Pentanone (Methyl Isobutyl Ketone)       2         Acetone       3         Benzene       3         Bromodichloromethane       3         Bromodichloromethane       3	-5 ND (2) 04 - 1006 - 1 - 5 ND (2) 3 - 5 ND (2) 3 - 3 - 5 - 5 ND (2) 3 - 5 ND (2) - 5 ND (2) - - 5 ND (2) - 5 ND (2)	ND (2)				ND (12) ND (10) ND (12) ND (2.5)	- ND (2.5) - - - -	ND (5) -	-	-	ND (5)	ND (5)	-	- ND (2.5
1,2-Dibromo-3-chloropropane (DBCP)     0       1,2-Dibromoethane (Ethylene Dibromide)     0.0       1,2-Dichlorobenzene     0       1,2-Dichloropropane     0       1,2-Dichloropropane     0       1,3-Trimethylbenzene     0       1,3-Dichlorobenzene     0       1,3-Dichlorobenzene     0       1,4-Dichlorobenzene     0       1,4-Dichlorobenzene     0       1,4-Dichlorobenzene     0       2-Butanone (Methyl Ethyl Ketone)     0       2-Hexanone (Methyl Butyl Ketone)     0       2-Phenylbutane (sec-Butylbenzene)     0       4-Methyl-2-Pentanone (Methyl Isobutyl Ketone)     0       3enzene     3romodichloromethane       3romodichloromethane     0	.04 - .0006 - .0016 - .0.6 - .0.6 - .0.7	ND (2)				ND (10) ND (12) ND (2.5)	- - - -	-	-	-	-	ND (3)	-	
1,2-Dibromoethane (Ethylene Dibromide)       0.0         1,2-Dichlorobenzene       1         1,2-Dichloropthane       0         1,2-Dichloropthane       0         1,3-Dichloropthane       0         1,3-Dichloropthane       0         1,3-Dichlorobenzene       1         1,4-Dichlorobenzene       1         1,4-Dichlorobenzene       1         1,4-Dixane       2-Butanone (Methyl Ethyl Ketone)         2-Phenylbutane (sec-Butylbenzene)       2         4-Methyl-2-Pentanone (Methyl Isobutyl Ketone)       2         Acetone       2         Benzene       Bromodichloromethane         Bromodichloromethane       3	0006         -           3         -           0.6         -           1         -           5         ND (2)           3         -           50         -           50         -           50         -           50         -           50         -           50         -           50         -           50         -           50         -           50         -           50         -           50         -           50         -		- - - ND (2) - -	-	:	ND (10) ND (12) ND (2.5)	-	-	-				ND (10)	- (0
1,2-Dichlorobenzene       (1,2-Dichloropthane       (1,2-Dichloropthane         1,2-Dichloropthane       (1,2-Dichlorobenzene       (1,3-Dichlorobenzene         1,3-Dichlorobenzene       (1,4-Dickane       (1,2-Dickane         2-Butanone (Methyl Ethyl Ketone)       (1,2-Dickane       (1,2-Dickane         2-Hexnone (Methyl Butyl Ketone)       (1,2-Dickane       (1,2-Dickane         2-Phenylbutane (sce-Butylbenzene)       (1,2-Dickane       (1,2-Dickane         4-Methyl-2-Pentanone (Methyl Isobutyl Ketone)       (1,2-Dickane       (1,2-Dickane         3enzene       (1,2-Dickane       (1,2-Dickane       (1,2-Dickane         3enzene       (1,2-Dickane       (1,2-Dickane       (1,2-Dickane         3enzene       (1,2-Dickane       (1,2-Dickane       (1,2-Dickane         3romodichloromethane       (1,2-Dickane       (1,2-Dickane       (1,2-Dickane	3 - .6 - 1 - 5 ND (2) 3 - 3 - 50 - 5 ND (2) - 5 ND (2) - 5 - 5 ND (2) - 5 - 5 ND (2) - 5 - 5 - 5 - 5 - 5 - 5 - 5 -		ND (2)	-	:	ND (12) ND (2.5)	-						ND (8)	
1,2-Dichloroethane       (1,2-Dichloropropane)         1,2-Dichloropropane       (1,3-Trimethylbenzene)         1,3-Trimethylbenzene       (1,4-Dichlorobenzene)         1,4-Dichlorobenzene       (1,4-Dichlorobenzene)         2-Butanone (Methyl Ethyl Ketone)       (1,2-Dichlorobenzene)         2-Hexanone (Methyl Butyl Ketone)       (1,2-Dichlorobenzene)         2-Phenylbutane (sec-Butylbenzene)       (1,2-Dichlorobenzene)         4-Methyl-2-Pentanone (Methyl Isobutyl Ketone)       (1,2-Dichlorobenzene)         Acetone       (1,2-Dichlorobenzene)         3enzene       (1,2-Dichlorobenzene)         3romodichloromethane       (1,2-Dichlorobenzene)	1.6 - 1 - 5 ND (2) 3 - 3 - 5 - 50 - 5 ND (2) - 5 - 5 - 5 - 50 - 5 - 5 - 50 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5		- ND (2) -	-	- - ND (5)	ND (2.5)	-		-	-	-	-	ND (10)	-
1,2-Dichloropropane 1,3-5-Trimethylbenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dioxane 2-Butanone (Methyl Ethyl Ketone) 2-Hexanone (Methyl Butyl Ketone) 2-Phenylbutane (sec-Butylbenzene) 4-Methyl-2-Pentanone (Methyl Isobutyl Ketone) Acetone 3-aromodichloromethane 3-romodichloromethane	1 - 5 ND (2) 3 - 3 - 50 - 5 ND (2) - 5 ND (2) - 50 - 5 - 50 -		- ND (2) - -	ND (2)	- ND (5)			-	-	-	-	-	ND (2)	-
1,3,5-Trimethylbenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dixane 2-Butanone (Methyl Ethyl Ketone) 2-Heavylbutane (sec-Butylbenzene) 4-Methyl-2-Pentanone (Methyl Isobutyl Ketone) 4-detone 3-erzene 3-romodichloromethane 3-romodichloromethane	3		ND (2) - -	ND (2)	ND (5)		-	-	-	-	-	-	ND (4)	-
1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dickne 2-Butanone (Methyl Ethyl Ketone) 2-Phenylbutane (sec-Butylbenzene) 1-Methyl-2-Pentanone (Methyl Isobutyl Ketone) Acetone 3enzene 3romodichloromethane 3romodichlorom	3 - 3 - 50 - 5 ND (2) - 50 - 5 - 50 - 5 - 50		-	-		-	ND (2.5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	-	ND (2.5
1,4-Dichlorobenzene 1,4-Dickane 2-Butanone (Methyl Ethyl Ketone) 2-Hexanone (Methyl Butyl Ketone) 2-Phenylbutane (sec-Butylbenzene) 4-Methyl-2-Pentanone (Methyl Isobutyl Ketone) Acetone Benzene Bromodichloromethane Bromodichloromethane		-	-	-	-	ND (12)	-	-	-	-	-	-	ND (10)	-
2-Butanone (Methyl Ethyl Ketone) 2-Hexanone (Methyl Butyl Ketone) 2-Penanylbutane (sec-Butylbenzene) 4-Methyl-2-Pentanone (Methyl Isobutyl Ketone) Acetone Benzene Bromodichloromethane Bromodichloromethane	50 - 5 ND (2)  50 -	-	-	-	-	ND (12)	-	-	-	-	-	-	ND (10)	-
2-Butanone (Methyl Ethyl Ketone) 2-Hexanone (Methyl Butyl Ketone) 2-Penanylbutane (sec-Butylbenzene) 4-Methyl-2-Pentanone (Methyl Isobutyl Ketone) Acetone Benzene Bromodichloromethane Bromodichloromethane	50 - 5 ND (2)  50 -	-		-	-	ND (1200)	-	-	-	-	-	-	ND (1000)	-
2-Hexanone (Methyl Butyl Ketone) 2-Phenylbutane (sec-Butylbenzene) 4-Methyl-2-Pentanone (Methyl Isobutyl Ketone) Acetone Benzene Bromodichloromethane Bromodichlorom	5 ND (2)  50 -	-	-	-	-	ND (25)	-	-	-	-	-	-	ND (20)	-
4-Methyl-2-Pentanone (Methyl Isobutyl Ketone) Acetone Benzene Bromodichloromethane Bromoform			-	-	-	ND (25)	-	-	-	-	-	-	ND (20)	-
Acetone Benzene Bromodichloromethane Bromoform		ND (2)	ND (2)	ND (2)	ND (5)	-	ND (2.5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	-	ND (2.5
Benzene Bromodichloromethane Bromoform		-	-	-	-	ND (25)	-	-	-	-	-	-	ND (20)	-
Bromodichloromethane Bromoform	1 00 [A]	-		-	-	ND (25)	-	-	-	-		-	7.4 J	
Bromoform		90 ^[A]	150 ^[A]	260 ^[A]	ND (5)	590 ^[A]	18 ^[A]	ND (5)	ND (5)	ND (5)	41 ^[A]	ND (5)	370 ^[A]	9.3 ^[A]
	- 50	-	-	-	-	ND (2.5)	-	-	-	-	-	-	ND (2)	-
Bromomethane (Methyl Bromide)	50 -	-	-	-	-	ND (10)	-	-	-	-	-	-	ND (8)	-
	5 -	-	-	-	-	ND (12)	-	-	-	-	-	-	ND (10)	-
	50 -	-	-	-	-	5 J	-	-	-	-	-	-	ND (20)	-
	5 -	-	-	-	-	ND (2.5)	-	-	-	-	-	-	ND (2)	-
	5 -	-	-	-	-	ND (12)	-	-	-	-	-	-	ND (10)	-
Chlorobromomethane Chloroethane	5 -	-	-	-	-	ND (12) ND (12)	-	-	-	-	-	-	ND (10) ND (10)	-
	7	-	-	-	-	ND (12) ND (12)	-	-	-	-	-	-	ND (10) ND (10)	-
Chloroform (Trichloromethane) Chloromethane (Methyl Chloride)	5 -	-	-	-	-	ND (12) ND (12)	-	-	-	-	-	-	ND (10) ND (10)	-
	5 -				-	ND (12)							ND (10)	-
	.4 -	-	-	-	-	ND (2.5)	-	-	-	-	-	-	ND (2)	-
Cyclohexane		-	-	-	-	ND (50)	-	-	-	-	-	-	ND (40)	-
Cymene (p-Isopropyltoluene)	- ND (2)	ND (2)	ND (2)	ND (2)	ND (5)	-	ND (2.5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	-	ND (2.5)
	50 -	-	-	-	-	ND (2.5)	-	-	-	-	-	-	ND (2)	-
	5 -	-	-	-	-	ND (25)	-	-	-	-	-	-	ND (20)	-
	5 ND (2)	ND (2)	ND (2)	ND (2)	ND (5)	ND (12)	ND (2.5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (10)	ND (2.5)
	5 ND (2)	ND (2)	ND (2)	ND (2)	ND (5)	ND (12)	ND (2.5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (10)	ND (2.5)
	5 ND (4)	ND (4)	ND (4)	ND (4)	ND (10)	ND (12)	ND (2.5)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (2.5)
Methyl acetate		-	-	-	-	ND (10)	-	-	-	-	-	-	ND (8)	-
	10 ND (2)	ND (2)	ND (2)	ND (2)	ND (5)	ND (12)	ND (2.5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (10)	ND (2.5)
Methylcyclohexane		-	-	-	-	ND (50)	-	-	-	-	-	-	ND (40)	-
······,·····,	5 -		-	-	-	ND (12)	-	-	-	-	-	-	ND (10)	-
	10 ND (2)	ND (2)	ND (2)	ND (2)	ND (5)	-	ND (2.5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	-	ND (2.5)
DatyibonEono	5 ND (2)	ND (2)	ND (2)	ND (2)	ND (5)	-	ND (2.5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	-	ND (2.5)
	5 ND (2)	ND (2)	ND (2)	ND (2)	ND (5)	-	ND (2.5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	-	ND (2.5)
	5 ND (2)	ND (2)	ND (2)	ND (2)	ND (5)	ND (12)	ND (2.5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (10)	ND (2.5)
	5 - 5 ND (2)	-	- ND (2)	- ND (2)	- ND (5)	ND (12)	- ND (2.5)		- ND (5)	- ND (5)		- ND (5)	ND (10)	
,	5 ND (2) 5 -	ND (2)	ND (2)	ND (2)	ND (5)	- ND (2.5)	ND (2.5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	- ND (2)	ND (2.5
		-	- ND (2)	- ND (2)		• •	- ND (2.5)						ND (2) 40 ^[A]	- ND (2.5
	5 ND (2) 5 -	ND (2)	ND (2)	ND (2)	ND (5)	ND (12)	ND (2.5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)		ND (2.5
	5 - 0.4 -	-	-	-	-	ND (12) ND (2.5)	-	-	-	-	-	-	ND (10) ND (2)	-
	5 -	-	-	-	-	ND (2.5) ND (2.5)	-	-	-	-	-	-	ND (2) ND (2)	-
	5 -	-	-	-	-	ND (2.5) ND (12)	-	-	-	-	-	-	ND (2) ND (10)	-
()	5 -	-	-	-	-	ND (12) ND (12)	-	-	-	-	-	-	ND (10) ND (10)	
	2 -	-	-	-	-	ND (12) ND (5)	-	-	-	-	-	-	ND (10) ND (4)	
	5 ND (4)	ND (4)	ND (4)	ND (4)	ND (10)	-	-	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	-	-
Notes:														