

TECHNICAL IMPRACTICABILITY
WAIVER APPLICATION
STEEL WINDS I WIND FACILITY
TECUMSEH REDEVELOPMENT SITE
(SITE NO. C915205)
LACKAWANNA, NEW YORK

# PREPARED FOR:

New York Department of Environmental Conservation Buffalo, New York

# PREPARED BY:

GZA GeoEnvironmental, Inc. Providence, Rhode Island

November 2014 File No. 33579.07

Copyright© 2014 GZA GeoEnvironmental, Inc.

# GZA GeoEnvironmental, Inc.

Engineers and Scientists

November 5, 2014 File No. 03.0033579.07

Mr. Maurice F. Moore
Engineering Geologist 1
New York State Department of Environmental Conservation
Division of Environmental Remediation, Region 9
270 Michigan Avenue
Buffalo, New York 14203-2915

Re: Technical Impracticability Waiver Application

Steel Winds I Wind Facility

Tecumseh Redevelopment Site (Site No. C915205)

Lackawanna, New York

Dear Mr. Moore:

530 Broadway

Providence

Rhode Island 02909

401-421-4140 Fax: 401-751-8613

http://www.gza.com

GZA GeoEnvironmental, Inc. (GZA) is pleased to provide this Technical Impracticability (TI) Waiver Application for the Steel Winds I portion of the Tecumseh Redevelopment Site (Site) to the New York State Department of Environmental Conservation (DEC). This TI Waiver Application has been prepared to address applicable requirements of the Brownfields Cleanup Agreement (BCA) for the Site and is based in part on supplemental field studies performed by GZA in summer 2014, in accordance with the DEC approved TI Waiver Supplemental Field Studies Work Plan (Work Plan), prepared by GZA, dated September 30, 2013. This application has been prepared on behalf of the Site operator, Niagara Wind Power, LLC (NWP) an affiliate of First Wind Energy, LLC (First Wind).

We look forward to you approval of this application. If you have any question or comments, or would like to discuss the waiver application, please feel free to contact Ed or Rick at (401) 421-4140 or via email at edward.summerly@gza.com or richard.carlone@gza.com.

Respectfully,

GZA GEOENVIRONMENTAL, INC.

Richard A. Carlone, P.E.

Project Manager

Karen Kinsella, Ph.D. Consultant/Reviewer

Edward A. Summerly, P.G.

Principal

RAC/EAS:lal

cc: Matthew Forcucci, New York State Department of Health (electronic copy)

Claude Cote, First Wind Energy, LLC (electronic copy) Ryan Fonbuena, First Wind Energy, LLC (electronic copy) Michael Andrzejczak, First Wind Energy, LLC (electronic copy)

Attachments Technical Impracticability Waiver Application

J:\ENV\33579.07.rac\Report\33579.07 Final Cover Letter.doc

<u>Page</u>



| 1.00 | INTR | ODUCTION                                                   | 1  |
|------|------|------------------------------------------------------------|----|
| 2.00 | BACI | KGROUND                                                    | 1  |
|      | 2.10 | SITE DESCRIPTION                                           | 1  |
|      | 2.20 | SUMMARY OF PROPOSED MODIFICATION TO THE GROUNDWATER REMEDY | 2  |
| 3.00 | SUM  | MARY OF SUPPLEMENTAL FIELD ACTIVITIES                      | 3  |
|      | 3.10 | GROUNDWATER DATA COLLECTION                                | 3  |
|      | 3.20 | GROUNDWATER SAMPLING AND ANALYSIS                          | 5  |
|      | 3.30 | SURFACE WATER SAMPLING                                     | 9  |
|      | 3.40 | PORE WATER SAMPLING                                        | 10 |
|      | 3.50 | SEDIMENT SAMPLING                                          | 10 |
|      | 3.60 | QUALITY ASSURANCE/QUALITY CONTROL                          | 11 |
| 4.00 |      | MARY OF CURRENT TECUMSEH REDEVELOPMENT<br>AREA CONDITIONS  | 12 |
|      | 4.10 | BACKGROUNG                                                 | 12 |
|      | 4.20 | GQA REPORT SUMMARY                                         | 12 |
|      | 4.30 | BENZENE AND NAPHTHALENE MASS LOADINGS FROM GQA REPORT      | 13 |
| 5.00 | GEOI | HYDROLOGIC EVALUATION                                      | 14 |
|      | 5.10 | SUBSURFACE SOIL CONDITIONS                                 | 14 |
|      | 5.20 | GEOCHEMICAL EVALUATION                                     | 15 |
|      | 5.30 | GROUNDWATER FLOW                                           | 17 |
|      | 5.40 | HYDRAULIC CONDUCTIVITY TESTING                             | 17 |
|      |      |                                                            |    |

|      |      |                                          |                                                                                                        | Pag                  |
|------|------|------------------------------------------|--------------------------------------------------------------------------------------------------------|----------------------|
|      | 5.50 | WT-01 A                                  | OC NAPTHALENE MASS LOADING EVALUATION                                                                  | 17                   |
| 6.00 | FISH | AND WIL                                  | DLIFE RESOURCES IMPACT ANALYSIS                                                                        | 18                   |
|      | 6.10 | AQUATI                                   | C HABITAT CHARACTERIZATION                                                                             | 19                   |
|      | 6.20 |                                          | TAL EXPOSURE AND SCREENING-LEVEL ASSESSMEN<br>QUATIC RECEPTORS                                         | NT<br>20             |
|      |      | 6.20.01<br>6.20.02<br>6.20.03<br>6.20.04 | Surface Water Sediment Pore Water Sediment (Bulk Concentrations) Bioaccumulation and Food Web Concerns | 21<br>22<br>23<br>25 |
|      | 6.30 | CONCLU                                   | JSIONS AND RECOMMENDATIONS                                                                             | 25                   |
| 7.00 | REM  | EDIAL AL                                 | TERNATIVE EVALUATION                                                                                   | 27                   |
|      | 7.10 | DESCRI                                   | PTION OF EVALUATION CRITERIA                                                                           | 27                   |
|      |      | 7.10.01<br>7.10.02                       | Overall Protection of Human Health and the Environment Conformance with Promulgated Standards,         | 28                   |
|      |      |                                          | Criteria and Guidance                                                                                  | 28                   |
|      |      | 7.10.03                                  | Source Control (From EPA Guidance)                                                                     | 29                   |
|      |      | 7.10.04                                  | Compliance with Waste Management Standards                                                             |                      |
|      |      |                                          | (From EPA Guidance)                                                                                    | 29                   |
|      |      | 7.10.05                                  | Long Term Effectiveness and Permanence                                                                 | 29                   |
|      |      | 7.10.06                                  | Reduction of Toxicity, Mobility and Volume                                                             | 29                   |
|      |      | 7.10.07                                  | Short-Term Impact and Effectiveness                                                                    | 30                   |
|      |      | 7.10.08                                  | Implementability                                                                                       | 30                   |
|      |      | 7.10.09                                  | Cost Effectiveness                                                                                     | 31                   |
|      |      | 7.10.10                                  | Landuse                                                                                                | 32                   |
|      | 7.20 | EVALUA                                   | ATION OF ALTERNATIVES                                                                                  | 32                   |
|      |      | 7.20.01                                  | Evaluation Criteria Common to all Alternatives                                                         | 32                   |
|      |      |                                          | 7.20.01.1 Conformance with Promulgated Standards, Criteria and Guidance                                | 32                   |
|      |      |                                          | 7.20.01.2 Implementibility                                                                             | 33                   |



|         |             |                                                | Page  |
|---------|-------------|------------------------------------------------|-------|
| 7.20.02 | Alternativ  | e 1: Monitored Natural Attenuation             | 33    |
|         | 7.20.02.1   | Overall Protection of Human Health and the     |       |
|         |             | Environment                                    | 33    |
|         | 7.20.02.2   | Source Control                                 | 33    |
|         | 7.20.02.3   | Long Term Effectiveness and Permanence         | 34    |
|         | 7.20.02.4   | Reduction of Waste Toxicity, Mobility or Volu  | ıme34 |
|         | 7.20.02.5   | Short-Term Impact and Effectiveness            | 34    |
|         | 7.20.02.6   | Cost Effectiveness                             | 34    |
| 7.20.03 | Alternativ  | e 2: Air Sparge Curtain Well Points with Enhan | ced   |
|         | Denitrifica | ation System                                   | 34    |
|         | 7.20.03.1   | Overall Protection of Human Health and the     |       |
|         |             | Environment                                    | 35    |
|         | 7.20.03.2   |                                                | 35    |
|         |             | Long-Term Effectiveness and Permanence         | 35    |
|         | 7.20.03.4   | Reduction of Waste Toxicity, Mobility or Volu  |       |
|         | 7.20.03.5   | <u> </u>                                       | 36    |
|         | 7.20.03.6   | Cost Effectiveness                             | 36    |
| 7.20.04 |             | e 3: Air Sparge Curtain Continuous Trench with |       |
|         | Enhanced    | Denitrification System                         | 36    |
|         | 7.20.04.1   |                                                |       |
|         |             | Environment                                    | 37    |
|         | 7.20.04.2   |                                                | 37    |
|         |             | Long Term Effectiveness and Permanence         | 37    |
|         |             | Reduction of Waste Toxicity, Mobility or Volu  |       |
|         | 7.20.04.5   | 1                                              | 37    |
|         | 7.20.04.6   | Cost Effectiveness                             | 38    |
| 7.20.05 | Alternativ  | e 4: In-Situ Chemical Oxidation                | 38    |
|         | 7.20.05.1   |                                                |       |
|         |             | Environment                                    | 38    |
|         |             | Source Control                                 | 38    |
|         | 7.20.05.3   |                                                | 39    |
|         |             | Reduction of Waste Toxicity, Mobility or Volu  |       |
|         | 7.20.05.5   | 1                                              | 39    |
|         | 7.20.05.6   | Cost Effectiveness                             | 39    |

|              |                                                                                                                                                                                                                                                                                                          | <u>Page</u>                  |
|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|
| 7.20.0       | O6 Alternative 5: Hydrodynamic Groundwater Containment                                                                                                                                                                                                                                                   | 40                           |
|              | <ul> <li>7.20.06.1 Overall Protection of Human Health and the Environment</li> <li>7.20.06.2 Source Control</li> <li>7.20.06.3 Long Term Effectiveness and Permanence</li> <li>7.20.06.4 Reduction of Waste Toxicity, Mobility or Volu</li> <li>7.20.06.5 Short-Term Impact and Effectiveness</li> </ul> | 40<br>40<br>40<br>me41<br>41 |
|              | 7.20.06.6 Cost Effectiveness                                                                                                                                                                                                                                                                             | 41                           |
| 7.30 COM     | PARISON OF ALTERNATIVES                                                                                                                                                                                                                                                                                  | 41                           |
| 8.00 SUMMARY | , CONCLUSIONS AND RECOMMEDNATIONS                                                                                                                                                                                                                                                                        | 42                           |
| TABLES       |                                                                                                                                                                                                                                                                                                          |                              |
| TABLE 1      | GROUNDWATER FIELD SCREENING RESULTS                                                                                                                                                                                                                                                                      |                              |
| TABLE 2      | GROUNDWATER ANALYTICAL RESULTS                                                                                                                                                                                                                                                                           |                              |
| TABLE 3      | SURFACE WATER ANALYTICAL RESULTS                                                                                                                                                                                                                                                                         |                              |
| TABLE 4      | PORE WATER ANALYTICAL RESULTS                                                                                                                                                                                                                                                                            |                              |
| TABLE 5      | SEDIMENT ANALYTICAL RESULTS                                                                                                                                                                                                                                                                              |                              |
| TABLE 6      | TOXICITY UNIT EVALUATION                                                                                                                                                                                                                                                                                 |                              |
| TABLE 7      | CONCEPTUAL REMEDIAL COST ESTIMATES                                                                                                                                                                                                                                                                       |                              |
| APPENDICIES  |                                                                                                                                                                                                                                                                                                          |                              |
| APPENDIX A   | LIMITATIONS                                                                                                                                                                                                                                                                                              |                              |
| APPENDIX B   | DATA USABILITY REPORT                                                                                                                                                                                                                                                                                    |                              |
| APPENDIX C   | LABORATORY CERTIFICATES                                                                                                                                                                                                                                                                                  |                              |
| APPENDIX D   | HYDRAULIC CONDICTIVITY TEST CALCULATIONS                                                                                                                                                                                                                                                                 |                              |
| APPENDIX E   | MASS LOADING CALCULATIONS                                                                                                                                                                                                                                                                                |                              |
| APPENDIX F   | REPRESENTATIVE PHOTOGRAPHS                                                                                                                                                                                                                                                                               |                              |

#### 1.00 INTRODUCTION



On behalf of our Client, the Site operator, Niagara Wind Power, LLC (NWP) an affiliate of First Wind Energy, LLC (First Wind), GZA GeoEnvironmental, Inc. (GZA) has prepared this Technical Impracticability (TI) Waiver Application for the Steel Winds I portion of the Tecumseh Redevelopment Site (Site) for the New York State Department of Environmental Conservation (DEC). This report is subject to the limitations contained in Appendix A, and may be subject to modification if additional information is subsequently developed by GZA or any other party.

This TI Waiver Application has been prepared to address applicable requirements of the Brownfields Cleanup Agreement (BCA) for the Site and is based in part on supplemental field studies performed by GZA in summer 2014, in accordance with the DEC approved *TI Waiver Supplemental Field Studies Work Plan* (Work Plan), prepared by GZA, dated September 30, 2013.

#### 2.00 BACKGROUND

The following sections provide a brief description of the Site, and of prior groundwater remedial activities conducted at the Site.

#### 2.10 SITE DESCRIPTION

Tecumseh Redevelopment, Inc. (Tecumseh) owns approximately 1,100 acres of land at 1951 Hamburg Turnpike, as shown on Figure 1 - Locus Plan. The property was formerly used for the production of steel, coke and related products by Bethlehem Steel Corporation (BSC). Steel production on the Tecumseh property was discontinued in 1983 and the coke ovens ceased activity in 2000. Tecumseh acquired the property, along with other BSC assets, out of bankruptcy in 2003.

In September 2006, BQ Energy entered into a long-term lease agreement with Tecumseh to construct and operate wind turbines and supporting power generation equipment and infrastructure on an approximately 29-acre parcel of the Tecumseh property, subsequently referred to as the Steel Winds Site. BQ Energy and the DEC also entered into a Brownfields Cleanup Agreement (BCA) for the Steel Winds Site. The Site is wholly contained within the Slag Fill Area (SFA) Zones 3 and 4 of the Tecumseh property bordered by Lake Erie to the west, Smokes Creek to the south, and former industrial lands of BSC to the north and east, as shown on Figure 1. NWP operates the eight wind turbines installed at the Site.

The Brownfield Cleanup Program (BCP) was successful in achieving the remedial objectives established for the Steel Winds Site. The Site Management Plan (SMP) and Final Engineering Report (FER) were approved by DEC in December 2007. DEC issued a Certificate of Completion (COC) for the Site on December 18, 2007.

The remedial activities conducted at the Site include:



- Excavation and off-site disposal of impacted slag fill from the eight wind turbine foundations and interconnecting utility trenches;
- In-situ enhanced biodegradation of residual volatile organic compounds (VOCs), including benzene, toluene, total xylenes, and naphthalene, using oxygen release compound (ORC®) socks within the saturated soil and groundwater in the vicinity of Wind Tower-01 (WT-01) and associated groundwater quality monitoring. The WT-01 vicinity area of concern (AOC) is approximately 1.3 acres, as shown on Figure 2 (Exploration Location Plan); and,
- Installation of a soil cover system (12 inch thick soil cap).

As described in the 2014 Periodic Review Report (PRR) for the Site, prepared by GZA and dated July 1, 2014, the institutional and engineering controls (IC/EC), i.e., land use restrictions and a soil cap, are in compliance with the SMP. The ICs/ECs currently in place mitigate potential Site related impacts to human health. As such, human health exposure is not discussed further in this TI Waiver Application.

# 2.20 SUMMARY OF PROPOSED MODIFICATION TO THE GROUNDWATER REMEDY

In November 2011, Benchmark Environmental Engineering and Science, PLLC (Benchmark) submitted an Operation, Monitoring and Maintenance Request for Modification (OM&M Request) to the DEC for the Site, prepared on behalf of First Wind. The OM&M Request was submitted to the Department, as a petition requesting a change in the then ongoing ORC® sock groundwater remedy for the WT-01 portion of the Site.

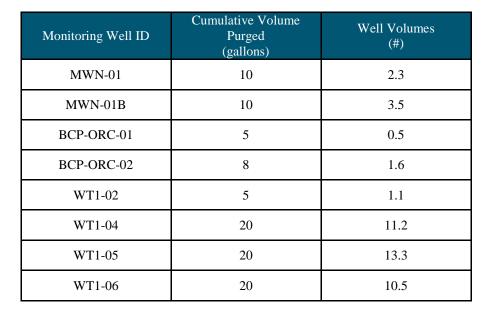
The DEC provided comments to the OM&M Request on April 10, 2012 and GZA responded to these comments on May 2, 2012 on behalf of First Wind. In this response letter, GZA stated that a TI Waiver Application would be submitted for the Site, once remedies at the broader Bethlehem Steel Site had been implemented. On May 31, 2012, DEC provided a follow up letter requesting that the TI Waiver Application be submitted by April 1, 2014. In a June 22, 2012 email, GZA requested that the submittal date be moved to November 1, 2014 because some of the field work involved in preparing the evaluation requires sampling within Smokes Creek and Lake Erie, which is most appropriately conducted in summer. The Department granted this request in a May 1, 2013 email. In response, GZA submitted to September 2013 Work Plan, which was subsequently approved by the Department in a February 24, 2014 letter.

#### 3.00 SUMMARY OF SUPPLEMENTAL FIELD ACTIVITIES



The following sections describe the results of supplement field activities performed by GZA in the summer of 2014, in accordance with the approved Work Plan, to support submittal of this TI Waiver Application. GZA validated and qualified groundwater, surface water, sediment and pore water data using a modified Tier I/Tier II data validation approach, in general accordance with applicable guidance. A data usability report is provided in Appendix B. Laboratory certificates are attached as Appendix C.

# 3.10 GROUNDWATER DATA COLLECTION


GZA collected groundwater samples from the eight (8) monitoring wells (WT1-02, WT1-05, WT1-04, MWN-01B, MWN-01, BCP-ORC-1, BCP-ORC-2, and WT1-06)<sup>1</sup> within the WT-01 AOC between June 25, 2014 and June 26, 2014. A field duplicate sample was collected and is associated with MWN-01B. Samples were packed in coolers with ice immediately following collection, and shipped overnight to Spectrum Analytical in Agawam, Rhode Island for the following laboratory analysis:

- CP-51 Soil Cleanup Guidance list (CP-51 list) VOCs via USEPA Method 8260B,
- Base-Neutral semi-VOCs (SVOCs) via USEPA Method 8270C,
- Methane, ethane and ethene via USEPA Method RSK 175,
- Dissolved iron via USEPA Method 6010B,
- Nitrate via USEPA Method 353.2.
- Sulfate via USEPA Method 300.0,
- Alkalinity via USEPA 2320B, and
- Total organic carbon (TOC) via USEPA Method 5310/9060.

Total organic carbon (TOC) via USEFA Method 3310/9000.

The following tables show the volume of water purged and the number of well volumes removed from each well after a constant head was established following EPA Low Flow purge and sample collection protocols. In general, groundwater purge rates were within 500(±) millimeter per minute (ml/min). Water quality parameters were monitored throughout purging process with a water quality meter equipped with a flow through cell. Stabilized parameters are presented in Table 1. WT-01 vicinity groundwater geochemistry is discussed in Section 5.

<sup>&</sup>lt;sup>1</sup> This is the same suite of monitoring wells required in the SMP for the Annual Site-wide Monitoring Program.





As part of the groundwater sampling event, static groundwater level measurements were collected from top of riser of the monitoring prior to purging, and are listed in the table below. Monitoring point elevation data was available from previous groundwater monitoring reports completed by Benchmark or a supplemental survey conducted by GZA. From this data, groundwater flow directions were estimated and are shown on Figure 3. Note that Figure 3 also includes groundwater elevations based on data collected as part of the June 2014 Site-wide long-term monitoring round, which was conducted concurrently with the supplemental sampling round. Based on the available information, groundwater flow is generally in a southerly direction towards Smokes Creek or in a westerly direction towards Lake Erie.

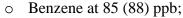
| Monitoring Well<br>Location | Well Screen<br>Depth (ft bgs) | Top of<br>Riser<br>Elevation<br>(ft.) | Groundwater Depth (ft.) | Groundwater Elevation (ft.) |
|-----------------------------|-------------------------------|---------------------------------------|-------------------------|-----------------------------|
| MWN-01                      | 7-17                          | 585.14                                | 15.4                    | 569.7                       |
| MWN-01B                     | 19-29                         | 587.13                                | 16.4                    | 570.8                       |
| BCP-ORC-01                  | 22-32                         | 591.97                                | 19.4                    | 572.6                       |
| BCP-ORC-02                  | 27-37                         | 598.09                                | 27.6                    | 570.5                       |
| WT1-02                      | 26-36                         | 600.78                                | 28.0                    | 572.8                       |
| WT1-04                      | 14-24                         | 586.45                                | 13.9                    | 572.6                       |
| WT1-05                      | 10-20                         | 584.41                                | 12.7                    | 571.7                       |
| WT1-06                      | 20-30                         | 593.20                                | 20.8                    | 572.6                       |

The analytical test results for the groundwater samples were compared to NYSDEC Class GA criteria presented in the Division of Water Technical and Operational Guidance Series (TOGS 1.1.1), dated October 1993, revised June 1998, errata January 1999 and amended April 2000.

#### 3.20 GROUNDWATER SAMPLING AND ANALYSIS



Groundwater sampling results are summarized below by well. Results are summarized in Table 2.


- <u>MWN-01</u>: Nine (9) VOCs were detected above method detection limits of which six (6) exceeded their respective DEC Class GA standards, as follows.
  - o Benzene at 37 parts per billion (ppb);
  - o Toluene at 7.8 ppb;
  - o m,p-Xylene at 17 ppb;
  - o o-Xylene at 14 ppb;
  - o Total Xylene at 31 ppb; and
  - o 1,2,4 Trimethylbenzene at 6.3 ppb.

Naphthalene was also detected at a concentration of 310 ppb, which exceeds its respective groundwater guidance value of 10 ppb. There is no Class GA standard value for this compound.

Ten (10) SVOCs were detected above method detection limits of which two (2) exceeded their respective guidance values, as follows.

- o Fluorene at 76 ppb; and
- o Phenanthrene at 99 ppb, which was obtained from a secondary dilution analysis.

- o Methane at a 370 ppb;
- o Ethane at 4.3 ppb;
- o Dissolved Iron at 31.9 ppb;
- o Sulfate at 200 parts per million (ppm);
- o Alkalinity at 190 ppm; and
- o Total Organic Carbon (TOC) at 6.8 ppm.
- <u>MWN-01B</u>: Ten (10) VOCs were detected above method detection limits of which seven (7) exceeded their respective NYSDEC Class GA criteria, as follows. MWN-01B had a field duplicate associated with it, results of the field duplicate are reported in parenthesis.



- o Toluene at 24 (24) ppb;
- o m,p-Xylene at 15(16) ppb;
- o o-Xylene at 9.8 (9.9) ppb;
- o Total Xylene at 25 (26) ppb;
- o 1,3,5 Trimethylbenzene at 5.7 (5.4) ppb; and
- o 1,2,4 Trimethylbenzene at 8.4 (7.9) ppb.

Naphthalene was detected at a concentration of 1,200 (750) ppb, which exceeds its respective guidance value of 10 ppb.

Ten (10) SVOCs were detected above method detection limits of which one (1) exceeded its respective guidance value, as follows.

o Phenanthrene at 67 (68) ppb.

Other parameters detected include:

- o Methane at a 3,500 (2,300) ppb;
- o Ethane at 2.9 (2.9) ppb;
- O Dissolved Iron at 48.7 (48.1) ppb;
- o Sulfate at 130 (130) ppm;
- o Alkalinity at 150 (150) ppm; and
- o Total Organic Carbon at 9.0 (9.0) ppm.
- <u>BCP-ORC-01</u>: Seven (7) VOCs were detected above method detection limits of which one (1) exceeded its respective NYSDEC Class GA criteria, as follows.
  - o Benzene at 9.5 ppb.

Naphthalene was detected at a concentration of 120 ppb, which exceeds its respective guidance value of 10 ppb.

Ten (10) SVOCs were detected above method detection limits, but below their respective NYSDEC Class GA criteria or guidance values.

- o Methane at a 310 ppb;
- o Dissolved Iron at 55.1 ppb;
- o Sulfate at 150 ppm;
- o Alkalinity at 220 ppm; and
- o Total Organic Carbon at 8.0 ppm.



- <u>BCP-ORC-02</u>: Six (6) VOCs were detected above method detection limits of which one (1) exceeded its respective NYSDEC Class GA criteria, as follows.
  - o Benzene at 9.3 ppb.

Naphthalene was detected at a concentration of 48 ppb, which exceeds its respective guidance value of 10 ppb. This concentration was obtained from a secondary dilution analysis.

Eight (8) SVOCs were detected above method detection limits but below their respective NYSDEC Class GA criteria or guidance values.

Other parameters detected include:

- o Methane at a 190 ppb;
- o Dissolved Iron at 35.4 ppb;
- o Sulfate at 220 ppm;
- o Alkalinity at 280 ppm; and
- o Total Organic Carbon at 6.4 ppm.
- WT1-02: Nine (9) VOCs were detected above method detection limits of which two (2) exceeded their respective NYSDEC Class GA criteria, as follows.
  - o Benzene at 16 ppb; and
  - o Total Xylene at 11 ppb;

Naphthalene was detected at a concentration of 29 ppb, which exceeds its respective guidance value of 10 ppb.

Ten (10) SVOCs were detected above method detection limits but below their respective NYSDEC Class GA criteria or guidance values.

- o Methane at a 36 ppb;
- o Dissolved Iron at 49.7 ppb;
- o Sulfate at 170 ppm;
- o Alkalinity at 370 ppm; and
- o Total Organic Carbon at 5.8 ppm.
- WT1-04: Nine (9) VOCs were detected above method detection limits of which five (5) exceeded their respective NYSDEC Class GA criteria, as follows.
  - o Benzene at 23 ppb;
  - o m,p-Xylene at 12 ppb;



- o o-Xylene at 9.2 ppb;
- o Total Xylene at 21 ppb; and
- o 1,3,5-Trimethylbenzene at 5.1 ppb.

Naphthalene was detected at a concentration of 61 ppb, which exceeds its respective guidance value of 10 ppb.

Ten (10) SVOCs were detected above method detection limits but below their respective NYSDEC Class GA criteria or guidance values.

# Other parameters detected include:

- o Methane at a 98 ppb;
- o Ethane at 1.2 ppb;
- o Dissolved Iron at 33.1 ppb;
- o Sulfate at 130 ppm;
- o Alkalinity at 260 ppm; and
- o Total Organic Carbon at 4.8 ppm.
- <u>WT1-05</u>: Nine (9) VOCs were detected above method detection limits of which one (1) exceeded its respective NYSDEC Class GA criteria, as follows.
  - o Benzene at 11 ppb;

Naphthalene was detected at a concentration of 86 ppb, which exceeds its respective guidance value of 10 ppb.

Ten (10) SVOCs were detected above method detection limits but below their respective NYSDEC Class GA criteria or guidance values.

- o Methane at a 260 ppb;
- o Dissolved Iron at 31.0 ppb;
- o Sulfate at 170 ppm;
- o Nitrogen at 0.39 ppm;
- o Alkalinity at 190 ppm; and
- o Total Organic Carbon at 5.5 ppm.
- <u>WT1-06</u>: Nine (9) VOCs were detected above method detection limits of which five (5) exceeded their respective NYSDEC Class GA criteria, as follows.
  - o Benzene at 42 ppb;
  - o Toluene at 8.3 ppb;
  - o m,p-Xylene at 17 ppb;



- o o-Xylene at 13 ppb; and
- o Total Xylene at 31 ppb.

Naphthalene was detected at a concentration of 200 ppb, which exceeds its respective guidance value of 10 ppb.

Ten (10) SVOCs were detected above method detection limits of which one (1) exceeded its respective guidance value, as follows.

o Phenanthrene at 70 ppb.

Other parameters detected include:

- o Methane at a 490 ppb;
- o Ethane at 4.1 ppb;
- o Dissolved Iron at 33.1 ppb;
- o Sulfate at 190 ppm;
- o Alkalinity at 200 ppm; and
- o Total Organic Carbon at 7.3 ppm.

This VOC and SVOC data is consistent with previous groundwater monitoring conducted at the Site. Note that the majority of VOCs and SVOCs detected at the Site are present at relatively low concentrations and/or are equivalent to background levels, with the exception of benzene and naphthalene. As such, benzene and naphthalene are considered to be the primary groundwater contaminants of concern (COCs) from the WT-01 AOC.

#### 3.30 SURFACE WATER SAMPLING

On August 6, 2014, GZA collected surface water samples SW-1 through SW-4 (from Smokes Creek) and SW-5 through SW-8 (from Lake Erie), as shown on Figure 2. Surface water samples were collected approximately 7 feet from shore, at the approximate center of the water column as measured on the date of collection, using an extendable dip pole. Dedicated disposable sampling cups were used at each location. Surface water samples were analyzed for

- CP-51 list VOCs via EPA Method 8260; and
- Base-neutral SVOCs via EPA Method 8270c

Analytical results are shown in Table 3. As shown, only benzene and naphthalene were detected in one and four of the eight sample locations, respectively. Benzene was reported at a maximum concentration of 1.1 ppb which is below the RL of 5 ppb, so this value is considered an estimate and was J flagged. Naphthalene was reported at a maximum concentration of 12 ppb All VOC detects were below applicable water quality screening benchmarks..



# 3.40 PORE WATER SAMPLING



On July 16, 2014, three passive diffusive sampling bags were buried at sampling locations PZ-2, 3, and 4, in Smokes Creek and left in place for three weeks. GZA returned to the Site on August 6, 2014 to collect the passive diffusive bags found that each bag had been displaced by the strong stream currents. As an alternative sample collection method, the bottom 18 inches of ½-inch steel pipes were perforated (to create a well screen) and driven five feet into the sediment approximately five to seven feet from shore in Smokes Creek. A peristaltic pump was used to collect pore water samples and the pipes were then removed after sampling. Pore water samples were not collected at the proposed sampling locations along Lake Erie due to the presence of a solid slag shelf which the steel rods could not penetrate. Pore water samples were collected at locations PW-2 through PW-4 and analyzed for CP-51 list VOCs via EPA method 8260

Pore water sample results are shown in Table 4. DEC Class GA groundwater standards/guidance value exceedences observed are:

- PZ-2-none;
- PZ–3 (field duplicate value noted in parentheses)-Benzene at 31 ppb (32 ppb), Naphthalene at 95 ppb (100 ppb), Toluene at 6.2 ppb (6.4 ppb), Xylenes at 24 ppb (25 ppb) and Trimethylbenzene at 5.0 ppb (field duplicate only); and
- PZ–4-Benzene at 30 ppb, Naphthalene at 180 ppb, and mixed Xylene at 21 ppb.

Generally, pore water samples collected from Smokes Creek were consistent with groundwater results from WT1-04 and WT1-05, which are located in close proximity to Smokes Creek.

#### 3.50 SEDIMENT SAMPLING

On July 16, 2014 and August 6, 2014, GZA collected five sediment samples designated SED-2 through SED-4, SED-6 and SED-7. Sediment sampling was initially attempted using a sediment core sampling device; sediment recovery was low and GZA subsequently collected the samples using a shovel. Sediment aliquots were collected from an approximately 3-foot by 3-foot area and composited into a stainless-steel mixing bowl. Samples were analyzed for the following parameters:

- CP-51 list VOCs via EPA Method 8260. Samples were collected using EPA Method 5035;
- Base-neutral SVOCs via EPA Method 8270c; and
- TOC via Lloyd Kahn method.

SED-2, SED-3, and SED-4 were collected from the channel of Smokes Creek. A solid slag shelf exists along the Smokes Creek shoreline extending one to five feet into Smokes Creek, and then drops off into the stream channel. Sediment collected from Smokes Creek

was generally silt with organic matter, some fine to coarse sand and fine to coarse gravel, with trace amounts of slag, cinder, and clinker debris.

SED-6 and SED-7 were collected from Lake Erie approximately 20 to 30 feet from the shoreline. As stated above, a solid slag shelf extends out into Lake Erie and is covered with half a foot to one foot of accumulated sediment. Sediment collected from Smokes Creek were generally fine to coarse Sand with some fine to coarse gravel, few cobbles, little silt and organic matter with trace amounts of slag, cinder, and clinker debris.

Sediment analytical results are shown in Table 3. As shown, a number of VOCs (primarily BTEX compounds and naphthalene) and a number of SVOCs (primarily PAHs) were observed in the sediment samples, primarily in the samples collected from Smokes Creek. Detected VOC values were generally low, except for naphthalene which was detected at 1,500 ppm in SED-2 and 2,200 ppm in SED-4. SVOC results were generally between 200 and 1,500 ppm. There were no observed exceedances of DEC's Class C Freshwater Sediment Guidance Values in any of the five sediment samples collected. Total Organic Carbon was ranged between 2,000 and 30,000 ppm as shown in Table 5.

# 3.60 QUALITY ASSURANCE/QUALITY CONTROL

During the supplement sampling round, non-dedicated reusable equipment (i.e., sediment sampler) was decontaminated by scrubbing/washing with a laboratory grade detergent (e.g., alconox) to remove visible contamination, followed by potable (tap) water and analyte-free (deionized organic free) water rinses. Equipment was then wiped dry with clean paper towels, prior to reuse.

Quality Assurance and Quality Control (QA/QC) samples collected during the supplemental sampling round consisted of:

- Trip blanks one trip blank per cooler, were analyzed and all results were not detected;
- Equipment blanks were collected for the sediment sampler, surface water dip pole sampler and a clean stainless-steel piezometer by pouring deionized water over the equipment and collecting the rinse water in laboratory provided containers. All equipment blank results were not detected, except bis(2-ethylhexyl)phthalate which was detected below the quantitation limit in the equipment blank for samples SED-2, SED-3, SED-4 and SED-31. This parameter was detected at a low concentration (1.4 ppb), below the quantitation limit. As such, we do not consider this a QA/QC issue; and
- One blind duplicate was collected for each media and are they shown in the relevant tables. Blind duplicate results are discussed further in the DUSR attached as Appendix B.

As discussed in Appendix B, no major QA/QC issued were noted with the supplemental sampling laboratory data.



# 4.00 SUMMARY OF CURRENT TECUMSEH REDEVELOPMENT CMS AREA CONDITIONS



The following sections provide a brief summary of current groundwater conditions as described in the *Comprehensive Groundwater Quality Assessment Report* (GQA Report) for the 1,100 acre Tecumseh Redevelopment CMS Area, dated August 2013 and prepared by Benchmark. This information provides context on the condition of the area surrounding the WT-01 AOC with which to evaluate the significance of Site-specific findings.

# 4.10 BACKGROUND

In February/March 2012, as approved by DEC, Benchmark conducted groundwater sampling at 132 locations on the Tecumseh Redevelopment Site. The purpose of this study was to evaluate changes in groundwater conditions, as groundwater data presented in the Site's draft Corrective Measures Study (CMS) was collected in 1999/2000. This study culminated in submittal of the GQA Report to DEC in August 2013.

#### 4.20 GQA REPORT SUMMARY

The GQA report concluded that while groundwater conditions had generally improved at the Tecumseh property, mass loadings of COCs to Smokes Creek and Lake Erie from onsite groundwater are significant; in particular benzene, naphthalene and phenolics are prevalent in groundwater across the property. Benchmark attributed the COCs in groundwater to numerous solid waste management units (SWMUs) previously identified on the property. Benchmark divided the Tecumseh property into multiple groundwater discharge subareas based on groundwater contours presented in the GQA Report. The WT-01 AOC is primarily located in watershed area 3A (which discharges to Smokes Creek), with a small portion located in subarea 4A (which discharges to Lake Erie).

Concentrations of benzene at the Tecumseh property were generally between 1 and 100 ppb. However, benzene concentrations over a significant portion of the Tecumseh property were between 10,000 and 40,000 ppb, which is approximately three orders of magnitude higher than benzene concentrations observed in the WT-01 AOC, which are generally similar to upgradient concentrations observed in the GQA Report (approximately 30 to 40 ppb), except in well MWN-01B, where a concentration of 85 ppb was observed during GZA's supplement field investigation.

Concentrations of naphthalene observed in the GQA Report were generally below 500 ppb, with limited areas as high as 20,000 ppb. Concentrations upgradient of the WT-01 vicinity ranged between 18 and 350 ppb, which is comparable to the WT-01 vicinity, except in well MWN-01B, where a concentration of 1,200 ppb was observed during GZA's supplement field investigation.

# 4.30 BENZENE AND NAPHTHALENE MASS LOADINGS FROM GQA REPORT

Benchmark calculated contaminant mass loadings, including benzene and naphthalene (the two primary COCs from the WT-01 AOC), from the Tecumsuh property to Smokes Creek and Lake Erie. Mass loadings from the WT-01 sub-watersheds described above and the property as a whole are summarized below. Note that we have combined mass loadings from the slag fill and sand geologic units in the below table.



# Summary of Benzene and Naphthalene Mass Loadings from GQA Report

| Watershed                    | Area (acres) | Benzene<br>Mass<br>Loading<br>(lb/year) | Benzene<br>Percentage | Naphthalene<br>Mass Loading<br>(lb/year) | Naphthalene<br>Percentage |
|------------------------------|--------------|-----------------------------------------|-----------------------|------------------------------------------|---------------------------|
| Subarea 3A<br>(Smokes Creek) | 45           | 8.9                                     | 0.5%                  | 81.5                                     | 34.8%                     |
| Subarea 4A<br>(Lake Erie)    | 385          | 7.6                                     | 0.4%                  | 79.5                                     | 34.0%                     |
| Smokes Creek                 | 76           | 1739.6                                  | 95.0%                 | 110.4                                    | 47.2%                     |
| Lake Erie                    | 485          | 11.6                                    | 0.6%                  | 118.3                                    | 50.6%                     |
| Ship Canal                   | 24           | 80.2                                    | 4.4%                  | 5.58                                     | 2.4%                      |
| Entire Site                  | 585          | 1831.5                                  | -                     | 234                                      | -                         |

As shown, the Tecumseh property as a whole contributes significant benzene and naphthalene loadings to Smokes Creek and Lake Erie. The watershed areas that include the 1.3 acre WT-01 AOC, which makes up approximately 0.3% of the total combined watershed area, contribute approximately 0.9% of the total benzene loading from the Site. Based on this data the contribution of benzene from the WT-01 AOC is considered insignificant, compared to the contribution from the Site as a whole.

Naphthalene loading from the Tecumseh property is also significant, though the total naphthalene loading is less than the total benzene loading, as shown in the table above. The sub-watersheds which include the WT-01 vicinity make up approximately 69% of the Tecumseh property total naphthalene discharge to Smokes Creek and Lake Erie. An evaluation of naphthalene mass loading from the WT-01 vicinity is provided in Section 5.50.

#### 5.00 GEOHYDROLOGIC EVALUATION

The following sections detail geohydrolygic conditions at the WT-01 AOC. This section includes an evaluation of groundwater naphthalene loadings to Smokes Creek and Lake Erie from the WT-01 AOC and its relative contribution compared to the Tecumseh redevelopment property.



# 5.10 SUBSURFACE SOIL CONDITIONS

Based upon information provided in the *Site Investigation/Remedial Alternatives Report/Interim Remedial Measures Report*, the subsurface soils in the vicinity of the WT-1 AOC consist of the following:

- Fill/slag layer starting at ground surface and ranging in depth from 15 feet to >30 feet. This stratum is a highly variable mixture composed predominately of sand, silt, slag, construction/demolition debris, and coke/coal fines.
- Underlying the slag/fill layer is a natural stratum of sand/silty sand. Most explorations were advanced to approximately 30 feet below grade and terminated in this layer.
- One exploration, MWN-01 penetrated the sand layer and encountered a layer of silty clay, underlain by a layer of till (a dense, poorly sorted glacial deposit with particles typically ranging in size from clay up to cobbles and boulders, generally with low hydraulic conductivity). In summary, the soil strata observed at borehole MWN-01 are:
  - Fill/slag from 0 to 25 feet below grade
  - Sand/sandy silt from approximately 25 feet to 35 feet below grade
  - Silty clay, approximately 35 to 40 feet below grade
  - Glacial Till, approximately 40 to 50 feet below grade (terminating at bedrock)
- As described in the GQA, the silty clay and glacial till layers generally act as an aquitard and the shallow overburden aquifer is made up of the fill/slag and sand/sandy silt units.

The large percentages of fines (*i.e.*, silt and clay) present in subsurface fill and soils significantly limit the effectiveness of some remedial options. In the *Site Investigation/Remedial Alternatives Report/Interim Remedial Measures Report*, Benchmark notes that subsurface drilling was difficult using a hollow stem auger and that boreholes took approximately double the normal time to drill; this increased effort required for drilling was accounted for in GZA's remedial cost estimates presented in Section 7, where applicable.

Based on our understanding of the Site, non-aqueous phase coal tar wastes are likely present in the vadose zone within the AOC (due to the placement of coal-tar impacted

sediments from Smokes Creek within the area of concern) and are leaching contaminants (primarily benzene and naphthalene) to the groundwater. This represents a diffuse and recalcitrant source, distributed over a large geographic area (the WT-1 area is approximately 1.3 acres).

#### 5.20 GEOCHEMICAL EVALUATION



As described in the OM&M Request and GZA's May 2, 2012 letter, the ORC® sock remedy has not been effective in reducing VOC concentrations in groundwater in the vicinity of WT-01. Based on GZA's evaluation of observed Site conditions, the ORC® remedy was likely unsuccessful due to the following Site specific geochemical factors:

- Oxidation-Reduction potential (ORP) data collected from the WT-01 vicinity is strongly electronegative (baseline readings generally less than -200 mV). Following ORC® sock deployment, ORP performance data did not demonstrate a significant, persistent increase in ORP values as typically occurs when an oxygen releasing compound is used, i.e., ORP values remained strongly electronegative following ORC® sock deployment. This persistently low ORP data are not encouraging, as they suggest that a significant sink for oxidants (high natural or anthropogenic soil and groundwater oxygen demand), such as organic laden dredge materials (which were reportedly used as fill in this area from dredging of Smokes Creek), persists at the AOC. Typically, the ORC® amendment results in an increase in ORP values, as conditions shift from chemically reducing to chemically oxidizing. The fact that ORP values were not significantly and consistently increased by the ORC® amendment indicates that it is unlikely to result in the desired aerobic mineralization.
- Baseline Chemical Oxygen Demand (COD) data collected from ORC® sock deployment locations ranged from about 23 milligrams per liter (mg/L, BCP-ORC-2) to about 47 mg/L (BCP-ORC-1). COD performance data for these well locations did not demonstrate a significant, persistent decrease in these values. The fact that concentrations did not decrease suggests that the ORC® socks may not have sufficient oxygen loading to satisfy the natural oxygen demand of the subsurface materials.
- The baseline pH values at the ORC® sock deployment locations ranged from about 11.0 S.U. (BCP-ORC-1) to 11.3 S.U. (WT1-02). Given that most soil bacteria prefer pH ranges closer to neutrality, the caustic nature of the groundwater likely is inhibitory to indigenous soil bacteria. Aerobic mineralization using oxidants is a microbially mediated process. Importantly, ORC® is alkaline and resulted in an even further increase in pH (up to a full pH unit, which is equivalent to a 10X increase in alkalinity) at all sock well deployment locations, further exacerbating the caustic groundwater condition; and
- The subsurface geology of the area is extremely heterogeneous, i.e. is made up of a mixture of granular fill, steel slag debris and dredge spoils, which likely leads to preferential pathways for groundwater and contaminant movement in the subsurface, leading to a low area of influence for the ORC® wells.

Field screening results from the supplement groundwater sampling described in Section 3, are consistent with the historical data described above.

The presence of methane<sup>2</sup> in groundwater may suggest modest petroleum hydrocarbon biodegradation by alkaline-tolerant microbes. However, it is more likely that AOC methane is predominantly due to organic carbon (TOC) fermentation and carbon dioxide reduction. Monitoring well MWN-01B, with the lowest alkalinity (150 mg/L) and highest TOC (9.0 mg/L), also has the highest methane concentration (2.3-3.5 mg/L). TOC groundwater concentrations at the Site are elevated (4.8-9.0 mg/L) compared to typical background TOC for western New York (median values < 1 mg/L)<sup>3</sup>. This is likely due to dredge spoils mixed with the slag fill. The elevated naphthalene (1,200 ppb) at MWN-01B is further evidence suggesting dredge spoil in this vicinity.

The total alkalinity of a groundwater system indicates the water's capacity to neutralize acid. High alkalinity is typical of groundwater at sites filled with steel slag waste. Weathering of calcium silicates within the slag result in groundwater dominated by calcium and carbonate or hydroxide ions in equilibrium with precipitated calcium carbonate. This results in elevated alkalinity, stabilized high pH, and resistance to neutralization. Alkalinity concentrations above 150 mg/L are common at slag-fill sites, exacerbating attempts to reduce groundwater pH.

The oxidation/reduction potential (a.k.a. redox, ORP, pE, or Eh) of groundwater is a measure of electron activity and indicates the relative tendency of groundwater to accept or transfer electrons. Depletion of electron acceptors oxygen, nitrate, and sulfate, and increased dissolved iron (water-soluble ferrous iron, Fe<sup>2+</sup>, indicating reduction of the electron acceptor ferric iron, Fe<sup>3+</sup>) indicate progressively lower redox conditions. In nearneutral pH groundwater, these analyses correspond to decreasing bio-availability of electron acceptors, with a corresponding decrease in petroleum hydrocarbon biodegradation. Due to the high pH, high alkalinity, and low redox potentials, groundwater concentrations of nitrate, sulfate, and dissolved iron are unlikely to correspond to microbial-mediated electron transfer. Instead, these analytes are controlled by pH and ORP. Under Site conditions, nitrogen is expected to exist as dissolved nitrogen gas or ammonia, with anticipated low nitrate levels. Low levels of dissolved iron are likely due to groundwater dominated by iron hydroxide and oxyhydroxide species, which have very low aqueous solubility at high pH. Conversely, the elevated sulfate levels seen in Site monitoring wells are likely due to the fact that sulfate is the dominant sulfur species at high pH.

\_

<sup>&</sup>lt;sup>2</sup> Ethene, which is reported as part of the RSK-175 dissolved gases SOP, is not an important marker for petroleum hydrocarbon biodegradation. Ethane can be an indicator for moderate petroleum hydrocarbon biodegradation. However, the ppb ethane concentrations seen at the Site are unlikely to indicate significant biodegradation.

<sup>&</sup>lt;sup>3</sup> Eckhardt, D.A.V., Reddy, J.E., and Tamulonis, K.L., 2008. Ground-water quality in western New York, 2006: U.S. Geological Survey Open-File Report 2008-1140, <a href="http://pubs.usgs.gov/ofr/2008/1140">http://pubs.usgs.gov/ofr/2008/1140</a>

# 5.30 GROUNDWATER FLOW

Based on groundwater elevation data from the June 2014 monitoring round, groundwater in the vicinity of WT-1 flows in a south-southwesterly direction toward Smokes Creek and Lake Erie. Inferred groundwater flow directions from the Steel Winds Site as a whole is shown on Figure 3. Depth to groundwater in the WT-01 AOC was approximately 15 to 20 feet below grade in June 2014.



# 5.40 HYDRAULIC CONDUCTIVITY TESTING

On July 15, 2014, GZA conducted hydraulic conductivity testing on four overburden wells within the WT-01 AOC (BCP-ORC-1, MWN-01B, WT01-04 and WT01-05). Rising head tests were conducting using a solid 1.5-inch diameter 5-foot long rod Teflon slug and a programmable In-Situ Troll data logger. Note that in the Work Plan, we anticipated conducting pneumatic hydraulic conductivity testing. However, on the test day, the pneumatic hydraulic conductivity test apparatus did not function correctly and a Teflon slug was substituted. Data collected from rising head slug tests was analyzed using the Bower & Rice Method. Hydraulic conductivity test calculations are provided in Appendix D and are summarized in the below table. As shown multiple tests were performed in each borehole:

| Well      | Screen Depth<br>(Feet bgs) | Geologic Unit   | Estimated<br>Hydraulic<br>Conductivity<br>(Feet/Day) | Average<br>Hydraulic<br>Conductivity<br>(Feet/Day) |
|-----------|----------------------------|-----------------|------------------------------------------------------|----------------------------------------------------|
| BCP-ORC-1 | 22-32                      | Sand/Silty Sand | 1.5                                                  | 1.45                                               |
|           |                            |                 | 1.4                                                  |                                                    |
| MWN-01B   | 22.24-32.24                | Sand/Silty Sand | 9.0                                                  | 9.05                                               |
|           |                            |                 | 9.1                                                  |                                                    |
| WT01-04   | 14-24                      | Sand/Silty Sand | 5.2                                                  | 4.8                                                |
|           |                            |                 | 4.4                                                  |                                                    |
| WT01-05   | 10-20                      | Fill/Slag       | 53                                                   | 45.7                                               |
|           |                            |                 | 48                                                   |                                                    |
|           |                            |                 | 36                                                   |                                                    |

The above results indicate that the fill/slag has a hydraulic conductivity approximately one order of magnitude higher than the underlying sand/silty sand unit, which is consistent with the hydraulic conductivity results presented by Benchmark in the GQA Report.

#### 5.50 WT-01 AOC NAPTHALENE MASS LOADING EVALUATION

GZA evaluated the naphthalene mass loading from the WT-01 vicinity. Mass Loading calculations are provided in Appendix E and are summarized below.

| Geologic<br>Unit  | Hydraulic<br>Conductivity<br>(Feet/Day) | Hydraulic<br>Gradient <sup>c</sup><br>(Feet/Feet) | Discharge<br>Zone<br>Length <sup>d</sup><br>(Feet) | Aquifer Thickne ss (Feet) | Naphthalene<br>Concentration<br>(mg/L) | Naphthalene<br>Loading<br>(lb/Year) |
|-------------------|-----------------------------------------|---------------------------------------------------|----------------------------------------------------|---------------------------|----------------------------------------|-------------------------------------|
| Fill/Slag         | 46 <sup>a</sup>                         | 0.0018                                            | 350                                                | 10                        | $0.3^{\rm e}$                          | 2.0                                 |
| Sand/Silty        | 5 <sup>b</sup>                          | 0.0016                                            | 350                                                | 10                        | 1.2 <sup>f</sup>                       | 0.8                                 |
| Sand              |                                         |                                                   |                                                    |                           |                                        |                                     |
| Total from        | WT-01 AOC                               | _                                                 | 2.8                                                |                           |                                        |                                     |
| <b>Total Fron</b> | n Tecumseh Si                           |                                                   | 234                                                |                           |                                        |                                     |
| WT-01 AC          | OC Percent of                           |                                                   | 1.2%                                               |                           |                                        |                                     |



Notes:

a-Average hydraulic conductivity of WT01-05

b-Average hydraulic conductivity of WT01-04, BCP-ORC-1 and MWN-01B

c-From hydraulic gradient segment 6 presented in Appendix B of GQA Report

d-Combined discharge length to Smokes Creek and Lake Erie

e-Maximum June 2014 concentration from fill/slag geologic unit wells (from MWN-01)

f- Maximum June 2014 concentration from sand/silty sand unit wells (from MWN-01B)

As shown, naphthalene mass loadings represent 1.2% of the Site-wide total and are deemed insignificant, compared to the remainder of the Site. Note that GZA used conservative values (maximum detected concentrations from June 2014, etc.) for each of the two geologic units evaluated (fill/slag and sand/silty sand). Similar to Benchmark's approach in the GQA Report, we have assumed that the underlying silty clay geologic unit forms an aquitard and only the shallow aquifer mass loadings were evaluated.

GZA also evaluated the anticipated pore water naphthalene concentration taking into account groundwater concentrations and dilution between the WT-01 vicinity and the discharge zone to Smokes Creek and compared these values to actual pore water concentrations. This calculation is provided in Appendix E.

The calculated pore water concentration of approximately 0.31 mg/L was approximately 1.75 times higher than the maximum actual naphthalene concentration in pore water (0.18 mg/L). Given the large number of assumptions used to develop this estimate, we believe the estimated and actual pore water concentrations are in good agreement and the pore water samples collected are likely representative of actual pore water conditions.

#### 6.00 FISH AND WILDLIFE RESOURCES IMPACT ANALYSIS

GZA performed a Fish and Wildlife Resource Impact Analysis (FWRIA) in accordance with DER 10 (Technical Guidance for Site Investigation and Remediation, dated May 2010) Ch. 3.10.1. The historical use (until 1983) of the Site for steel plant operations has eliminated the majority of native species and the Site has been developed as a wind energy facility. The surrounding property is vacant, and the surface contains slag/fill, residual demolition debris, and is mainly populated by low-lying vegetation and small stature early successional trees (e.g., eastern cottonwood and poplar), providing little or no wildlife

habitat or food value. As stated above, the banks of both Lake Erie and Smokes Creek have historically been filled with slag debris which has consolidated into a solid slag shelf in many places, especially in Lake Erie. Steel mill debris, including slag, concrete and rebar are present on the banks of Smokes Creek/Lake Erie and a steel cofferdam forms part of the Smokes Creek bank adjacent to the WT-01 AOC. Smokes Creek is generally turbid and of poor quality. Representative photographs of Smokes Creek and Lake Erie in the vicinity to the AOC are provided in Appendix F. This FWRIA focuses on potential exposure of ecological receptors to groundwater contaminants discharging to the shore of Lake Erie and Smoke Creek.



# 6.10 AQUATIC HABITAT CHARACTERIZATION

Based on information provided by the DEC Environmental Resource Mapper (ERM), the near-shore (within one-quarter mile) portion of Lake Erie<sup>4</sup> and the lower reach of Smokes Creek<sup>5</sup> are classified as Class C freshwater. Class C waters have a best use designation for primary and secondary contact recreation (although other factors may limit the use for these purposes), fishing, and propagation and survival of fish and wildlife.

GZA reviewed the 2012 Section 305b Water Quality Reports for Niagara River/Lake Erie Basin prepared by the NYS DEC (available at: <a href="http://www.dec.ny.gov/chemical/36738.html">http://www.dec.ny.gov/chemical/36738.html</a>). The status of water quality of Lake Erie and Smokes Creek proximate to the Site is summarized below.

- Water quality of the portion of Lake Erie adjacent to the Site is considered impaired due to polychlorinated biphenyls (PCBs) in sediment, which have resulted in a fish consumption advisory which is more stringent for some human receptors than statewide advisories. The potential for resolving the PCB issue for this portion of Lake Erie is considered to be low.
- Aquatic life, recreational uses and aesthetics are stressed in this section of Smokes
  Creek due to presence of sludge banks, nutrient, silt and pathogen inputs, and
  possible low dissolved oxygen and high metals concentrations in sediment. These
  stresses notwithstanding, aquatic life and recreation are considered to be fully
  supported by water quality conditions in this portion of Smoke Creek. Resolution
  potential is considered moderate for these water quality issues.
- The ERM also shows habitat of Rare Plants or Animals on and adjacent to the Site. The ERM rare species polygon covers roughly 25 square miles of the northeastern corner of Lake Erie and extends northward on the Niagara River. The rare habitat polygon extends one-half mile landward from the shore of Lake Erie, and thus encompasses the entire Steel Winds I property. GZA submitted a rare species information request to the New York Natural Heritage program on October 17, 2014. Typical response time for information requests is two to four weeks and we

.

<sup>&</sup>lt;sup>4</sup> Lake Erie Northeast Shoreline segment 0104-0035.

<sup>&</sup>lt;sup>5</sup> Smokes Creek, Lower and Minor Tribs, segment 0101-0007

expect a response from the Natural Heritage Program in early to mid-November 2014. Relevant information from this request, if any, will be submitted to the Department as a supplement to this TI Waiver Application.

• Habitat characteristics of Smokes Creek adjacent to the Site, and the affected groundwater discharge zone of Lake Erie have been significantly degraded due to historic and on-going human activities. The shoreline of Lake Erie and the bank of Smokes Creek along the discharge zone were used historically as a dumping site for iron slag from the steel mill operation. As a result of this dumping the littoral zone is dominated by a nearly continuous layer of consolidated, hardened slag. Cobbles and gravel have migrated onto this layer by wave action, and there are pockets of fine sediment in between masses of slag, or in depressions in the slag. The presence of this hardened slag layer limits the aerial extent and depth of habitat for infaunal organisms in the littoral zone. In areas where fine or granular sediments have not accumulated, benthic habitat is limited to epilithic or epiphytic species.

In addition, conditions within Smokes Creek and the proximal portion of Lake Erie have been degraded by contaminants from other sources. PCBs are a known problem for this portion of Lake Erie, and metals in sediment of Smoke Creek may be partially responsible for a stressed aquatic community. Lastly, elevated concentrations of benzene discharge to Smokes Creek with groundwater from the south of the creek, across from the Steel Winds I property.

# <u>6.20 POTENTIAL EXPOSURE AND SCREENING-LEVEL ASSESSMENT FOR AQUATIC RECEPTORS</u>

As discussed above, contaminated groundwater from the Steel Winds I property is expected to flow west and south and discharge to Smokes Creek just before is flows into Lake Erie, and to Lake Erie north of the mouth of Smokes Creek. Aquatic receptors may be exposed to groundwater contaminants after discharge has occurred and groundwater has been mixed with surface water. Furthermore, benthic organisms may be exposed to groundwater contaminants that have adsorbed to sediment particulates, and infaunal benthic species<sup>6</sup> may be exposed to dissolved contaminants in sediment pore water prior to significant dilution of the groundwater contaminant concentration by surface water. The depth and area over which exposure to sediment pore water can occur might be limited due to the layer of hardened slag; however, GZA was able to collect sediment and pore water samples from pockets of sediment deposited above or between the slag layers. Therefore, there is some potential for infauna to be exposed to sediment pore water.

A screening level evaluation of potential risk was performed by comparing analytical results to regulatory standards or guidance values intended to be protective of aquatic receptors. Data usability considerations addressed in this assessment are: 1) whether reporting limits (RLs) for non-detect results were low enough to evaluate whether the

.

<sup>&</sup>lt;sup>6</sup> That is, benthic species that burrow below the sediment/surface water interface.

contaminant was present at potentially harmful levels, and 2) the proportion of analytes for which a screening value is not available. For risk assessment, one half of the RL is commonly used to represent estimated contaminant concentrations for non-detect results. For this screening assessment, non-detect results with reporting limits RL that are less than or equal to two times the screening value are considered sufficient to evaluate potential toxicity.



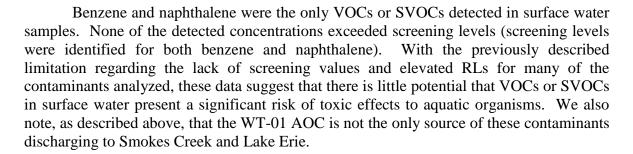
The assessment below discusses the proportion of chemical analyzed for which screening levels were not identified. Qualitative judgments are presented as to whether the lack of screening levels for certain contaminants introduce significant uncertainty into the conclusions drawn from the data.

# 6.20.01 Surface Water

Table 3 presents surface water analytical results. As described above, among the 59<sup>7</sup> VOCs or SVOCs analyzed, benzene and naphthalene were the only chemicals detected; benzene was detected once (in sample SW-4) and naphthalene was detected in four of the eight sample locations.

Potential toxicity of VOCs and SVOCs in surface water was evaluated by comparing analytical results to New York State Ambient Water Quality Standards and Guidance Values (AWQC) presented in TOGS 1.1.1. If an AWQC was not presented for an analyte, GZA used surface water screening benchmarks available from other widely used sources of ecological benchmarks. Sources of other benchmarks used are presented in the notes for Table 3. For purposes of this report the term "screening value" refers collectively to AWQC and Screening Benchmarks from other sources.

For some contaminants both an AWQC value and a Surface Water Screening Value are presented in Table 5. In those cases the AWQC values were used preferentially in our evaluation of whether contaminant concentrations are high enough to present a potentially significant exposure.


#### Data Usability

\_

Among the 59 VOCs and SVOCs analyzed, screening values were identified for 35 of the analytes. Among the 35 analytes with available screening levels, 18 were not detected, but had RLs of more than double their benchmark. A moderate degree of uncertainty is introduced to this evaluation because 38 of the 59 chemicals analyzed either did not have an identified screening value, or were non-detect at an elevated RL.

<sup>&</sup>lt;sup>7</sup> Sixty analytes were reported, however, naphthalene was analyzed as both a VOC and an SVOC, and therefore the total number on chemical analyzed was 59.

# Surface Water Screening Assessment





#### 6.20.02 Sediment Pore Water

Table 4 presents analytical results for VOCs in pore water samples. As described above, among the 14 VOCs analyzed, seven were detected in samples PZ-3 and PZ-4 (benzene, ethylbenzene, naphthalene, toluene, 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene, and total xylenes). No VOCS were detected in sample PZ-2.

Contaminants bound to sediment particulates, organic carbon, or complexed with sulfides or other ligands are generally not bioavailable, and therefore, not toxic to organisms exposed to the sediment. Dissolved concentrations of contaminants in pore water are considered a good representation of the degree of exposure, and potential risks from such exposures can be evaluated by comparing dissolved concentrations to surface water screening levels. Therefore, pore water screening was performed by comparing analytical results to the surface water AWQC (use of Surface Water Screening Benchmarks would also be appropriate; however, no Screening Benchmarks were available for those VOCs that did not have AWQC values).

#### Data Usability

Screening values were not available for six of the 14 VOCs analyzed. The lack of screening values introduces a moderate degree of uncertainty into this assessment. Among the eight VOCs for which screening levels were identified, none had elevated RLs compared to the screening values.

#### Pore water Screening Assessment

Screening levels were available for all of the seven VOCs detected, as shown in Table 4. Naphthalene was the only contaminant with concentrations above the screening value. Based on these data, naphthalene concentrations in pore water may be high enough to cause toxic effects to exposed sensitive benthic organisms. Note that the pore water samples were heavily sediment laden when purging commenced. The samples visually cleared during purging and likely retained some level of turbidity (water quality readings were not collected as part of pore water sampling). A sheen was also present on the purge

water. This indicates that a portion of the detected naphthalene concentration is likely particulate bound and not bioavailable.

# 6.20.03 Sediment (Bulk Concentrations)



The screening-level assessment for contaminants in sediment was performed in accordance with the DEC "Screening and Assessment of Contaminated Sediment" dated June 24, 2014, referred to herein as the DEC screening guidance. This document presents a list of Sediment Guidance Values (SGVs) in three ranges: Class A, Class B, and Class C.

According to the DEC screening guidance, freshwater sediment contaminants are categorized as

- Class A if they are below conservative, threshold-effect screening values thus presenting little risk of causing toxic effect, and therefore no further assessment is warranted;
- Class B if the detected concentration falls between conservative, threshold-effect screening values and higher probable effect screening values, therefore additional assessment would be needed to characterize whether toxic effects are likely; and
- Class C if the concentrations exceed the probable effects concentrations, and therefore, there is a higher probability that toxic effects would occur.

As with surface water, if a guidance value was not presented, GZA attempted to identify a Sediment Screening Benchmark from alternative sources of widely used lists of sediment screening values. The Sediment Screening Benchmarks identified were limited to conservative threshold-effect type benchmarks, therefore, these alternate Sediment Screening Benchmarks were considered to be analogous to Class A SGVs. The notes in Table 5 present the sources of the Sediment Screening Benchmark concentrations used.

Table 5 presents results for VOC and SVOC analyses performed on sediment samples. Of the 59 chemicals analyzed, 25 were detected. Samples collected from Smoke Creek (SED-2, SED-3 and SED-4) contained more contaminants with detectable concentrations, at higher concentration than in samples collected from the shore of Lake Erie (SED-6 and SED-7). In addition to evaluating individual PAHs, total PAHs<sup>8</sup> were evaluated in accordance with the DEC guidance. The samples collected from Smokes Creek (SED-2, SED-3 and SED-4) had total PAHs above the Class A SGV; total PAH concentrations in the Lake Erie sediment samples were below the Class A SGV.

#### Data Usability

them. This introduces a moderate degree of uncertainty into this assessment. Elevated RLs were generally not a significant concern for this data set, as there are reported estimated concentrations (i.e., "J" qualified results) for a sub-set of samples (predominately

Of the 59 VOCs and SVOCs analyzed, screening values were identified for 34 of

<sup>&</sup>lt;sup>8</sup> Calculated as the sum of detected concentrations and one-half the RLs for non-detect results.

in Smokes Creek samples) which are below the screening levels. Therefore, the samples for which results were reported as non-detects (predominately the Lake Erie samples) likely did not have concentrations approaching the screening level. Note that this is not the case for two compounds, dibenzo(a,h)anthracene and hexachlorobenzene, which were not detected in all samples with RLs above their respective benchmarks. However, this does not introduce significant uncertainty into the assessment.



# Sediment Screening Assessment

Among the 25 chemicals detected, screening levels were identified for 21, and only four detected contaminants did not have screening levels. Most of the contaminants that exceeded screening values were individual PAHs. In addition, total PAH concentrations in Smokes Creek exceeded the DEC guidance Class A values. As such, total PAH concentrations indicate that Smokes Creek sediments are Class B sediments. The only non-PAH that exceeded a screening level was dibenzofuran; the screening value for dibenzofuran is not a DEC SGV.

For the Lake Erie samples (SED-6 and SED-7), only a few individual PAH compounds exceed the Class A screening levels. However, the total PAH concentrations are below the Class A threshold. The DEC screening guidance presents SGVs for total PAHs, but does not present bulk sediment SGVs for individual PAH compounds; the screening levels for individual PAH compounds presented on Table 5 are Sediment Screening Benchmarks from other sources. In accordance with the DEC sediment guidance, because none of the contaminants detected in SED-6 and SED-7 exceed the Class A limits (including total PAHs), Lake Erie sediment represented by these sample are unlikely to be toxic to aquatic organisms due to these VOCs and SVOCs, and no further action is necessary.

In accordance with the DEC sediment guidance, if total PAH concentrations exceed the Class A threshold, potential risk due to PAHs can be further evaluated using organic carbon normalized concentrations. As discussed, only the portion of the contaminant load dissolved in sediment pore water is bioavailable to exposed benthic organisms, and therefore potential toxic effects are limited to the dissolved portion. PAHs, like most non-polar organic contaminants, have a high affinity for adsorbing to organic carbon in the sediment, and the proportion adsorbed to organic carbon is not bioavailable, and therefore is not toxic.

The equilibrium partitioning evaluation uses the Toxic Unit (TU) approach for PAHs. For this approach a TU for each PAH compound (TU<sub>i</sub>) is calculated by dividing the organic carbon normalized SGV (units in ug/g OC) by the organic carbon normalized concentration in the sediment sample. Then, because individual PAH concentrations have the same mode of toxicity, the  $TU_i$  values are summed to calculate the TU for total PAHs ( $TU_t$ ). If the  $TU_t$  is less than or equal to 1, that PAHs in that sample are considered to have a low potential for toxicity. If the  $TU_t$  is greater than one, PAHs in that sample are considered to be potentially toxic.

The Toxic Unit approach for PAHs is intended to be used for a suite of 34 PAHs. Because only 17 of those PAH compounds were analyzed for this data set, the final  $TU_t$  was calculated by multiplying the sum of  $TU_i$  values by 7.87.



Table 6 presents organic carbon normalized SGVs for individual PAH compounds developed based on organic carbon partitioning coefficients and water-only toxicity information for each PAH. Table 6 also presents organic carbon normalized PAH concentrations for SED-2, SED-3 and SED-4 using the total organic carbon (TOC) content measured for each sample. Table 6 also presents the TU<sub>t</sub> values for each sample. All three Smokes Creek samples have TU<sub>t</sub> values greater than 1, therefore, PAH concentrations may be toxic to expose benthic organisms.

### 6.20.04 Bioaccumulation and Food Web Concerns

Contaminants associated with groundwater from the WT-01 AOC are not bioaccumulative and persistent (e.g., the DEC sediment guidance does not present bioaccumulation-based SGVs). In addition, the portions of Smokes Creek and Lake Erie potentially affected by groundwater discharge are relatively small, and have degraded physical habitat conditions, which are likely to limit the abundance of prey organisms living in sediment.

Based on these considerations, it is GZA's opinion that groundwater contaminants discharging to Smokes Creek and Lake Erie from the WT-01 AOC are not a significant concern for the food web and higher trophic level receptors.

#### 6.30 CONCLUSIONS AND RECOMMENDATIONS

PAHs in sediment and one VOC in pore water (naphthalene), within Smokes Creek, were detected at concentrations that may be harmful to exposed benthic organisms. Naphthalene was detected in pore water above the DEC guidance value and total PAH  $TU_t$  values greater than 1 were observed in Smokes Creek sediments. In addition, dibenzofuran was detected in Smokes Creek sediment samples above the screening level.

Although a few individual PAH concentrations in Lake Erie sediment samples exceed screening levels (screening levels for individual PAHs are not included in DEC's guidance) total PAH concentrations in these samples were below the Class A SGV, and no other contaminants exceeded screening levels. As described above, sediment pore water samples could not be collected from the shore of Lake Erie due to consolidated slag material.

Benzene and naphthalene were detected in surface water samples from Smokes Creek at concentrations below the screening levels. None of the contaminants analyzed for were detected in Lake Erie surface water samples.

The physical conditions of the benthic habitat potentially impacted by discharge of groundwater from the WT-01 AOC have been significantly degraded by historic filling and disposal of iron slag and other debris. The nearby portion of Lake Erie has known PCB contamination resulting in fish ingestion advisories. Nutrient and sediment inputs from the Smokes Creek watershed result in a stressed aquatic community, and other sites are known to contribute chemical contaminants to the Creek; in particular high benzene levels that discharge to Smokes Creek from the portion of the Tecumseh property south of Smokes Creek, across from the Steel Winds I Site.



Additional sampling of sediment and sediment pore water from Smokes Creek would allow a better characterization of the magnitude of potential risk posed by groundwater contaminants migrating from the WT-01 AOC. Benthic habitat within the zone of discharge for groundwater from the WT-01 AOC receives contaminants from sources other than WT-01. GZA recommends that additional sediment and sediment pore water samples be collected upstream of the discharge zone and from the discharge zone so that we can characterize the relative contributions of contaminants from WT-01 groundwater and from upstream sources.

Based on the data collected to date, PAHs in sediment and sediment pore water appear to present the greatest potential for risk (among the contaminants of concern for WT-01 pore water). The TU<sub>t</sub> values estimated for PAHs in sediment incorporated a conservative adjustment factor of 7.87 because only 17 of the 34 PAHs required for the toxic unit evaluation were analyzed. In GZA's experience, application of such adjustment factors results in conservative estimates of the TU<sub>t</sub>. GZA recommends analyses of additional sediment samples for the 34 PAHs to more accurately estimate potential risk using TU<sub>t</sub> values.

Naphthalene was the only VOC detected in pore water, and it was detected at concentrations exceeding the screening level. The pore water samples were highly turbid, and it is likely that most of the naphthalene detected was associated with suspended particulates, and thus not bioavailable to exposed benthic organisms. GZA recommends collection of additional pore water samples, and centrifugation to remove particulates prior to chemical analyses of the supernatant.

If DEC agrees that additional sampling is warranted, GZA will prepare a brief supplemental sampling plan for that work and present it to DEC on behalf of our Client.

As discussed above, the DEC ERM indicates that rare species habitat is present in the adjacent portion of Lake Erie and over a one-half mile, landward offset from the shore of Lake Erie (and thus encompassing the Steel Winds I Site). GZA submitted a rare species information request to the New York Natural Heritage Program; a response to that request is expected by mid-November. Once we know which species are associated with the rare species habitat, GZA will prepare a letter report which considers whether the rare species associated with this portion of Lake Erie have territorial or feeding habits that might concentrate their activities at, and exposure to, the Site groundwater discharge zone. If this

is the case, additional work may be warranted to better characterize potential exposure and risk to the rare species.

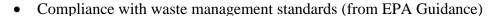
Assuming that DEC agrees that additional sediment and sediment pore water sampling is warranted as outlined above; the rare species evaluation will be included with the sampling work plan. If warranted, the work plan will include any additional work to better evaluate risk to the rare species.



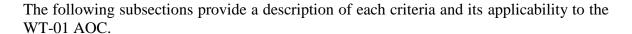
#### 7.00 REMEDIAL ALTERNATIVE EVALUATION

As described in Section 5.00 the ORC remedy at the WT-01 AOC did not have a significant beneficial effect on groundwater contamination. The Site characterization data indicates that the poor performance of the remedy is primarily due to: 1) the difficult hydrogeologic conditions (e.g., heterogeneous aquifer materials, elevated pH, low Redox conditions, numerous subsurface obstructions, etc.); and 2) the likely presence of non-aqueous phase source material within the sediment/slag matrix, in particular coal tar in dredge spoils from Smokes Creek, which were historically deposited in the area.

This section provides an evaluation of the feasibility of five other remedial approaches that were identified as potentially applicable to the identified Site contaminants in groundwater. To provide a consistent platform for this evaluation we employed the criteria described in DEC's DER-10 (Technical Guidance for Site Investigation and Remediation, dated May 3, 2010) Section 4.2 to evaluate the following five remedial alternatives:


- Monitored Natural Attenuation (MNA);
- Air Sparge Curtain-Well Points with Enhanced Denitrification System;
- Air Sparge Curtain Continuous Trench with Enhanced Denitrification System;
- In-situ Chemical Oxidation (ISCO); and
- Hydrodynamic Groundwater Containment (HGC).

Where applicable, we also utilized guidance provided in EPA's "Guidance for Evaluating the Technical Impracticability of Ground-Water Restoration", dated September 1993.


# 7.10 DESCRIPTION OF EVALUATION CRITERIA

In evaluating the five alternatives listed above, the following 10 criteria, taken from the above guidance documents, were used:

- Overall protection of human health and the environment
- Conformance with promulgated standards, criteria and guidance
- Source control (from EPA Guidance)



- Long-term effectiveness and permanence
- Reduction of waste toxicity, mobility, or volume
- Short-term impact and effectiveness
- Implementability;
- Landuse; and
- Cost Effectiveness



# 7.10.01 Overall Protection of Human Health and the Environment

Overall protection of human health and the environment is evaluated based on a composite of factors assessed under other evaluation criteria. Those specifically considered are short-term effectiveness, long-term effectiveness and permanence, and compliance with media cleanup standards. For each alternative, it includes:

- How the remedy will eliminate, reduce or control through removal, treatment, containment, engineering controls or institutional controls, any existing or potential human exposures or environmental impacts;
- The ability of each alternative to achieve the remedial objectives;
- How the groundwater contamination is to be eliminated, reduced or controlled;
- How site risks are to be eliminated, reduced or controlled; and
- Consideration of whether an alternative poses any unacceptable short-term risks or cross-media impacts.

The ICs/ECs currently in place mitigate impacts to human health. As such, human health exposure in not discussed further in this evaluation.

# 7.10.02 Conformance with Promulgated Standards, Criteria and Guidance

An evaluation with respect to the attainability of media cleanup goals is performed to assess how each alternative complies with the applicable cleanup standards, in this case NYDEC's Class GA Groundwater Quality Standards. Our evaluation was limited to groundwater, because that is the primary media of concern within the AOC and the transport mechanism of any potential ongoing release to adjacent surface water and/or sediment.



# 7.10.03 Source Control (From EPA Guidance)

An evaluation with respect to source control is performed to assess if the alternatives under consideration: 1) directly remediate the contaminant source; or 2) isolate the source from impacting surrounding areas/media. In this case, the source is VOC and naphthalene contaminated dredge spoils from Smokes Creek that were previously deposited in the WT-01 area comingled with slag resulting from the former foundry operations. Monitoring data also demonstrate that contaminated upgradient groundwater is migrating onto the WT-01 Site which is a further source of contaminant input.



Based on our understanding of the Site, non-aqueous phase coal tar wastes are present in the vadose zone within the area of concern and are leaching contaminants to the groundwater. As stated above, this represents a diffuse and recalcitrant source, distributed over a large geographic area (the WT-01 area is approximately 1.3 acres). Given the type of contaminant sources, the physical constraints posed by current Site operations (e.g., wind towers, transformers, high voltage lines and controls, etc.), and difficult subsurface conditions (i.e., slag, kettle bottoms, low permeability dredge spoils), we believe that source control in the unsaturated zone is impractical. However, engineered controls consisting of a 1 foot thick soil cap have been placed to prevent direct exposure to contaminated media. As such, our technology specific evaluation of Source Control provided below focuses on the proposed remedy's ability to isolate the source from impacting surrounding areas/media.

# 7.10.04 Compliance with Waste Management Standards (From EPA Guidance)

RCRA regulations include provisions for the proper handling and disposal of waste, including remediation wastes. For all alternatives in this evaluation, we have assumed that all remediation derived waste will be handled and disposed of in proper accordance with the RCRA regulations. As such, this criterion is not discussed further in this evaluation.

#### 7.10.05 Long Term Effectiveness and Permanence

Evaluation of long-term effectiveness is made by considering the risks remaining at the Site after the remedy has been implemented, the long term reliability of the remedy, and long term maintainability of the implemented alternative. If contamination will remain on- or off-site after the selected remedy has been implemented, this evaluation will assess the impact of the remaining contamination on any of the following:

- i. human exposures;
- ii. ecological receptors; or
- iii. impacts to the environment.

# 7.10.06 Reduction of Toxicity, Mobility and Volume

This criterion is an evaluation of the ability of an alternative or remedy to reduce the toxicity, mobility and volume (TMV) of site contamination. Preference should be given to remedies that permanently or significantly reduce the TMV of the contamination at the Site.

# 7.10.07 Short-Term Impact and Effectiveness

The short-term impact and effectiveness of a remedial alternative is evaluated relative to its effect on human health and the environment during construction and implementation of the remedial action including:

- Risk to the community during implementation of the subject remedial action;
- Risk to workers during implementation of the remedial action;
- Potential for occurrence of adverse environmental impacts as a result of implementation of the remedial action;
- Efficacy of mitigation techniques to be employed, if applicable; and
- Time until remedial response objectives are achieved.

# 7.10.08 Implementability

The implementability criterion is used to address the technical and administrative feasibility of implementing an alternative, and the availability of various materials and services required during its implementation. The following factors are considered during the implementability analysis:

<u>Technical Feasibility</u> - The relative ease or difficulty of implementing an action. The following items are considered:

- Ability to construct the alternative as a whole (constructability).
- Reliability, or the ability of a technology to meet specified process efficiencies or performance goals without major schedule delays;
- Ease of undertaking future remedial actions that may be required; and
- Ability to monitor the effectiveness of the remedy.

<u>Administrative Feasibility</u> - Activities needed to coordinate with other offices and agencies (e.g., obtaining permits for work in wetlands, off-site activities or rights-of-way for construction).

<u>Availability of Services and Materials</u> - The local availability of the technologies (materials or services) required to implement an alternative. The following items are considered:

- Availability of adequate off-site treatment, storage capacity, and disposal services;
- Availability of necessary equipment and specialists and provisions to ensure any necessary additional resources;
- Availability of technologies under consideration; and



 Availability of services and materials, plus the potential for obtaining competitive bids, which may be particularly important for innovative technologies.

## 7.10.09 Cost Effectiveness



A remedy is cost effective if its costs are proportional to its overall effectiveness. To evaluate cost effectiveness:

- The overall effectiveness of an alternative or remedy is evaluated according to the above criteria;
- A comparison of the overall effectiveness is then made to the cost of the alternative or remedy; and
- An evaluation is made as to whether the cost is proportional to the overall effectiveness

Cost estimates for each alternative are based on conceptual engineering and analyses, and are expressed in terms of 2014 dollars. The cost estimate for a remedial alternative consists of four principal elements:

- Capital costs Capital costs consist of direct (construction) and indirect (non-construction and overhead) costs. Direct costs include costs for equipment, labor, and materials incurred to develop, construct and implement a remedial action. Indirect costs are expenditures for engineering, financial, and other services that are not actually a part of construction, but are required to implement a remedial alternative. These items are included in the detailed cost analysis as separate line items. Additionally, a 10% construction contingency has been included in the cost estimates to account for factors that cannot be anticipated or estimated.
- Operation and Maintenance (O&M) Costs O&M costs refer to post-construction
  costs necessary to ensure the continued effectiveness of a remedial action. They
  typically refer to long-term power and material costs (such as the operational costs
  of a groundwater treatment facility), equipment replacement costs, and long-term
  monitoring costs.
- Analysis of Present Worth This assessment is used to evaluate the capital and O&M costs of a remedial alternative on a present worth basis (in today's dollars). This analysis allows the comparison of remedial alternatives on the basis of a single cost representing an amount that, if invested in the base year and disbursed as needed, would be sufficient to cover all costs associated with the remedial action over its planned life. A 7 percent discount rate and a 30-year performance period are assumed for present worth analyses. This allows the user to evaluate the relative costs of various alternatives that may differ significantly in their

capitol and O&M costs, such as comparing the cost of a source control remedy compared with long-term pump and treat remedy.

For the purposes of the present worth analysis year 0 will be considered to be 2014, groundwater collection/treatment/ disposal will be assumed to begin in 2015 and will be fully implemented in the year 2016. The cost estimates for each remedial alternative considered as part of this evaluation are presented on Table 7.



## 7.10.10 Landuse

This criterion is an evaluation of the current, intended and reasonably anticipated future use of the Site and its surroundings, as it relates to an alternative or remedy, when unrestricted levels would not be achieved. Each alterative assumes that landuse will be unchanged in the future as the wind farm is expected to operate for the forseeable future. As such, this criterion is not discussed further in this evaluation.

## 7.20 EVALUATION OF ALTERNATIVES

The following subsections provide a brief description of each alternative considered. A comparison of the present worth of each alternative is provided in Table 7.

Note, as discussed above, institutional and engineering controls (a deed restriction and a soil cap) which limit current and future Site use to industrial activities and prohibit groundwater use and prevent direct contact with contaminated media, have already been implemented for the Site and remain in effect. In developing and evaluating remedial alternatives, we have assumed that institutional and engineering controls will remain in effect indefinitely.

## 7.20.01 Evaluation Criteria Common to all Alternatives

To simplify the alternatives evaluation, the criteria which are substantially similar for all alternatives are grouped together below. Any critical differences between the alternatives are noted.

## 7.20.01.1 Conformance with Promulgated Standards, Criteria and Guidance

Based on the diffuse and recalcitrant nature of the contamination source, it will be difficult for any technology to remediate groundwater to the DEC Class GA Groundwater Quality Standards throughout the WT-01 AOC. Additionally, there is the possibility that WT-01 is, at least in-part, a downgradient receptor of off-Site contamination from other Solid Waste Management Units (SWMUs) on the Tecumseh property. Because of this, and the fact that existing ICs/ECs prevent on-Site contaminant exposures; we have generally focused on remedial alternatives that control the release of contaminants beyond the downgradient property boundary. During their operation, each alternative, except monitored natural attention, may be able to meet the media cleanup standards at the groundwater

discharge point (i.e., the groundwater aquifer just prior to discharge into Smokes Creek and Lake Erie); however, once each active remedy is terminated, groundwater contaminants will likely rebound to similar concentrations because little reduction in contaminate source mass will have been achieved.

## 7.20.01.2 Implementibility



All alternatives evaluated are both technically and administratively feasible. While construction of some of the alternatives may be difficult due to the large amount of subsurface debris (steel slag, etc.), we feel that each alternative can be constructed. In addition, each alterative has been implemented at other Sites. All are generally well accepted technologies. Note that the enhanced denitrification systems are innovative; however, they have been implemented successfully at other Sites with aromatic hydrocarbon contaminants and it is GZA's opinion they could be implemented at Steel Winds.

## 7.20.02 Alternative 1: Monitored Natural Attenuation

This alternative involves the treatment of the groundwater contamination by natural mechanisms over time, i.e., involves no active remediation. Based on the location of the contamination and the low risk to potential receptors, it is our opinion that this is a viable remedial alterative. Under this alternative, monitoring would continue at the Site to ensure that groundwater contamination does not increase over time.

## 7.20.02.1 Overall Protection of Human Health and the Environment

As stated earlier, based on the existing EC/IC, and the findings of the Fish and Wildlife Resources Impact Analysis presented in Section 6, there is no significant risk posed to humans or the environment of the current groundwater contaminant levels, as long as the ECs/ICs remain in place. Monitoring will continue to ensure that groundwater contamination does not increase significantly over time.

## 7.20.02.2 Source Control

As stated above, we believe treatment of contaminant source materials in the unsaturated zone is impractical. As such, our evaluation of source control focuses on the proposed remedy's ability to isolate the source from impacting surrounding areas/media. With respect to this criterion, monitored natural attenuation provides no additional controls of the sources of contaminants over those provided by the ECs and ICs already in place at the Site. However, as stated above, under current and anticipated future conditions, the

November 2014 – File No. 33579.07 – Page 33

<sup>&</sup>lt;sup>9</sup> This statement is based on our current evaluation and understanding of the Site data with respect to ecological screening benchmarks and potential receptors. This opinion is subject to modification based on the results of the proposed supplemental sampling and analysis, and/or the finding of the rare species information request.

existing sources of contaminants do not pose a significant risk to human health or the environment.

## 7.20.02.3 Long Term Effectiveness and Permanence

Over long periods of time, natural processes are anticipated to reduce contamination levels thru processes such as biodegradation and dilution.

## 7.20.02.4 Reduction of Waste Toxicity, Mobility, or Volume

Natural processes will reduce contaminant concentrations and mass over time. And since we believe that non-aqueous phase coal tar waste is present, none of the remedies evaluated will be significantly more effective in this category.

## 7.20.02.5 Short-Term Impact and Effectiveness

This alternative is largely implemented (as a groundwater monitoring program is already in place); as such, short-term effectiveness is high.

## 7.20.02.6 Cost Effectiveness

A conceptual cost estimate for this alternative is provided in Table 7: note that no capital costs are included in this alternative. The only costs applicable to this alternative are annual groundwater sampling, analysis and reporting, to be conducted for thirty years. The total present worth cost for this alternative is approximately \$157,200, as shown in Table 7. Note that this cost will also be incurred for the other alternatives in addition to various forms of performance monitoring which are also included in the other alternatives.

## 7.20.03 Alternative 2: Air Sparge Curtain Well Points with Enhanced Denitrification System

This alternative involves installation of an approximately 600 feet long air sparge curtain along the groundwater discharge area from the WT-01 AOC, proximate to Smokes Creek and Lake Erie. For the purposes of this evaluation we assumed the air sparge curtain will consist of 20 wells spaced 30 feet apart, each attaining a 15 foot radius of influence. The purpose of the sparge curtain would be to treat groundwater for VOCs and naphthalene prior to its discharge into Smokes Creek and Lake Erie. The air sparge remedial technology uses pressurized air released into the subsurface to: 1) directly volatilize contaminants, 2) reduce groundwater pH<sup>10</sup>, and 3) promote aerobic biodegradation (biosparge).

.

<sup>&</sup>lt;sup>10</sup> Theoretically, carbon dioxide can accumulate in air-sparged water until it is in equilibrium with the atmosphere. While this pH is not low enough to dissolve calcite and decrease alkalinity, groundwater pH could, theoretically and eventually, approach 8.1 S.U. However, due to the high alkalinity at the Site, pH reduction due to air sparging is unlikely to reach the theoretical 8.1 S.U. within 30 years. The activity of

In addition, a contingency enhanced denitrification system, consisting of periodic injections of aqueous potassium nitrate into the air sparge wells, has been included in this alternative. Many VOC-degrading bacteria can use nitrate as an electron acceptor when oxygen is depleted. As such, an enhanced denitrification system complements a biosparge system. Note that the biological component of this remedy may also be inhibited by the extreme aquifer conditions that inhibited the effectiveness of the ORC program. This may be mitigated by the inclusion of a pH modifier with the denitrification injections. Nitrate injections will also need to be carefully controlled to avoid impacts to the adjacent surface water bodies.



## 7.20.03.1 Overall Protection of Human Health and the Environment

As stated earlier, based on the existing ECs/ICs and the Fish, and Wildlife Resources Impact Analysis presented in Section 6, there is no significant risk posed to humans or the environment for the current groundwater contaminant levels, if the ECs/ICs remain in place. As the air sparge system would further reduce concentrations migrating from the WT-1 area this would not change. Impacts to air quality or the buildup/migration of vapors from air sparge system are unlikely given the current Site use.

The denitrification system could result in a nitrogen discharge to Lake Erie and Smokes Creek if a large amount of excess chemical is injected into the subsurface. Proper dosing and a spill prevention plan should be in place to prevent direct chemical discharges to Smokes Creek and Lake Erie.

## 7.20.03.2 Source Control

As stated above, we believe treatment of contaminant source materials in the unsaturated zone is impractical. As such, our evaluation of source control focuses on the proposed remedy's ability to isolate the source from impacting surrounding areas/media. With respect to this criterion, the air sparge could potentially mitigate VOC and naphthalene discharges to the adjacent surface water bodies.

## 7.20.03.3 Long-Term Effectiveness and Permanence

Because the mass of suspected source material is not reduced by this approach, and no action is taken to limit contaminant migration onto the Site, once the remedial system operation stops (assumed to be 30 years) groundwater conditions will likely return to their present levels.

This alternative may not be fully effective in remediating all aqueous phase contamination passing from the Site to the adjacent surface water bodies. The heterogeneity of the subsurface will likely cause both air and aqueous potassium nitrate to follow preferential pathways, which may leave isolated areas untreated, especially those

aerobic and facultative aerobic (denitrifying) bacteria does not increase significantly until pH is below  $\sim$ 8.5 S.U.

November 2014 – File No. 33579.07 – Page 35

areas furthest away from well points. In addition, the high oxidant demand of the subsurface will need to be overcome, if significant contaminant mass is to be remediated. The biological treatment element of this remedy may be impeded by the elevated pH as the ongoing ORC remedy has.

## 7.20.03.4 Reduction of Waste Toxicity, Mobility, or Volume



The contaminant mass to be treated by this alternative is limited to aqueous phase contamination. The treatment process (both the biosparge system and the denitrification system) will irreversibly treat VOCs and naphthalene resulting in non-toxic end products (carbon dioxide and water). The contingency denitrification system will produce some residual potassium nitrate, both in the subsurface and on fouled equipment; any residuals on field equipment would have to be managed properly.

## 7.20.03.5 Short-Term Impact and Effectiveness

Implementation of this alternative would have limited risks to the community, as ICs are already in place to restrict groundwater use. However, implementation of the denitrification system could produce a significant nitrate loading in Smokes Creek and Lake Erie, which could negatively impact these water bodies. General construction and drilling safety procedures must be observed during implementation, to ensure worker protection. The drilling spoils, compressed air equipment and potassium nitrate could pose a risk to onsite workers, if they are not handled appropriately. Following the start of construction, the remedy could be effective at reducing contaminant concentrations in groundwater discharge to the receiving surface water bodies within approximately 6 months.

## 7.20.03.6 Cost Effectiveness

A conceptual cost estimate for this alternative is provided in Table 7; as shown, the total present value for this alternative is approximately \$2,100,000. This includes capital costs, O&M costs and contingency denitrification system operation costs over a thirty year remedial period.

## 7.20.04 Alternative 3: Air Sparge Curtain Continuous Trench with Enhanced Denitrification System

This alternative is similar to the air sparge curtain described above, except that sparging will be conducted through a continuous stone trench, which will function as a reactive barrier. This approach has a higher level of certainty in meeting the groundwater discharge standards in that it significantly reduces the potential that contaminated groundwater will pass through the system untreated. This alternative also includes a contingency enhanced denitrification system. Note that the biological component of this remedy may also be inhibited by the extreme aquifer conditions that inhibited the

effectiveness of the ORC program. This may be mitigated by the inclusion of a pH modifier with the denitrification injections.

## 7.20.04.1 Overall Protection of Human Health and the Environment



As stated earlier, based on the existing ECs/ICs and the Fish and Wildlife Resources Impact Analysis presented in Section 6 there is no significant risk posed to humans or the environment for the current groundwater contaminant levels, if the ECs/ICs remain in place. As the air sparge system would further reduce concentrations migrating from the WT-1 area this would not change. Impacts to air quality or the buildup/migration of vapors from air sparge system are unlikely given the current Site use.

The denitrification system could result in a nitrogen discharge to Lake Erie and Smokes Creek if a large amount of excess chemical is injected into the subsurface. Proper dosing and a spill prevention plan should be in place to prevent direct chemical discharges to Smokes Creek and Lake Erie.

## 7.20.04.2 Source Control

As with the air sparge curtain, the reactive barrier should effectively mitigate VOC and naphthalene discharges to the adjacent surface water bodies. This approach will have a relatively higher degree of certainty as compared to the air sparge curtain evaluated in Section 7.20.3.

## 7.20.04.3 Long Term Effectiveness and Permanence

Similar to the sparge curtain technology described above, once the remedial system operation stops (assumed to be 30 years) groundwater conditions will like return to their present levels.

## 7.20.04.4 Reduction of Waste Toxicity, Mobility, or Volume

Again treatment using this technology is limited to dissolved phase contamination. These processes will irreversibly treat the VOCs and naphthalene, ultimately yielding non-toxic end products (carbon dioxide and water). The contingency denitrification system may produce some residual potassium nitrate, both in the subsurface and on fouled equipment; any residuals on field equipment would have to be managed properly.

## 7.20.04.5 Short-Term Impact and Effectiveness

Implementation of this alternative would have limited risks to the community, as ICs are already in place to restrict groundwater use. However, implementation of the denitrification system could produce significant nitrate loading in Smokes Creek and Lake Erie, which could negatively impact these water bodies. General

construction safety procedures must be observed during implementation, to ensure worker protection. The trench spoils, compressed air equipment and potassium nitrate could pose a risk to onsite works, if they are not handled appropriately. Following the start of construction, the remedy should be effective at reducing contaminant concentrations in groundwater discharge to the receiving surface water bodies within approximately 6 months.



## 7.20.04.6 Cost Effectiveness

A conceptual cost estimate for this alternative is provided on Table 7; as shown, the total present value for this alternative is \$2,700,000. This includes capital costs, O&M costs and contingency denitrification system operation costs over a thirty year remedial period.

## 7.20.05 Alternative 4: In-situ Chemical Oxidation

In-situ chemical oxidation (ISCO) consists of injecting chemical oxidants, typically permanganate or Fenton's Reagent (hydrogen peroxide with an iron catalyst), into the subsurface to promote direct oxidative destruction of organic contaminants into non-toxic end products (carbon dioxide, water, chloride, etc.). For this alternative, we have assumed that Fenton's Reagent will be used, based on the contaminants of concern and the subsurface (both soil and groundwater) chemistry. Although in practice, pilot testing of a number of oxidant mixtures would be conducted to select the optimal agent. This alternative assumes a one-time injection program, with 68 injection points, 30 feet on center, with the total injection mass of at least 100,000 pounds of oxidant over the approximately 1.3 acre area.

## 7.20.05.1 Overall Protection of Human Health and the Environment

As stated earlier, based on the existing ECs/ICs and the Fish and Wildlife Resources Impact Analysis presented in Section 6 there is no significant risk posed to humans or the environment for the current groundwater contaminant levels, if the ECs/ICs remain in place. As ISCO would further reduce concentrations migrating from the WT-01 AOC this would not change. Injection chemicals must be handled properly to ensure worker safety. Due to Fenton's Reagents short half-life, it is unlikely that a significant mass of Fenton's Reagent will be discharged through groundwater to Smokes Creek or Lake Erie. Proper spill prevention controls should be in place to prevent direct chemical discharges to Smokes Creek and Lake Erie.

## 7.20.05.2 Source Control

Since ISCO is an aqueous phase remedial technology, none of the existing source mass located above the water table will be reduced, and any non-aqueous contaminants below the water table will not be directly oxidized. However, ISCO may effectively mitigate VOC and naphthalene discharges to the adjacent surface water bodies for

a period of time following its application. We believe this approach will have a lower degree of certainty in achieving this reduction as compared to the air sparge curtain trench evaluated above because of heterogeneities in the Site aquifer materials and the development of preferential flow patterns during and following the chemical injections.

## 7.20.05.3 Long Term Effectiveness and Permanence



Injection of Fenton's reagent will remediate aqueous phase contamination; however, it is not effective in remediating residual non-aqueous phase contaminants below the water table and will not address conditions within the vadose zone. As such, while injections will be performed in the source area, it is unlikely that a significant mass of source material will be removed. Temporary reductions in aqueous phase contaminations will likely be seen; however, contaminant concentrations will likely rebound to current levels as new contaminants dissolve and leach into the aqueous phase from the remaining sources. The heterogeneity of the subsurface will likely cause the injected material to follow preferential pathways, which may leave areas untreated, especially areas furthest away from injection points. In addition the high oxidant demand of the subsurface will need to be overcome if significant reductions in dissolved phase contaminant levels are to be achieved.

## 7.20.05.4 Reduction of Waste Toxicity, Mobility, or Volume

The total amount of contaminant mass to be treated by this alternative is limited to that which is in the aqueous phase during the relatively short half-life of the injectate. The treatment process will provide permanent destruction of VOCs and naphthalene into nontoxic compounds (carbon dioxide, water, chloride, etc.). Residual Fenton's Reagent on field equipment must be managed properly. As stated earlier, due to Fenton's Reagents short half-life, it is unlikely that residual will persist in the subsurface or be discharged through groundwater into Smokes Creek or Lake Erie.

## 7.20.05.5 Short-Term Impact and Effectiveness

Implementation of this alternative would have limited risks to the community, as ICs are already in place to restrict groundwater use. The injections must be managed properly, as Fenton's Reagent is highly reactive and could pose a risk to onsite workers. In addition, the reaction of Fenton's Reagent has the potential to produce a large amount of heat in the subsurface, which could also pose a temporary risk to onsite works. General construction and drilling safety procedures must also be observed during implementation, to ensure worker safety.

## 7.20.05.6 Cost Effectiveness

A conceptual cost estimate for this alternative is provided in Table 7; as shown, total present worth for this alternative is approximately \$868,000. This includes capital costs and O&M costs over a thirty year remedial period. Note that this cost

estimate assumes that one round of chemical injections will be sufficient to remediate groundwater to the applicable regulatory standards. As described above, we do not feel that this will be the case, and we believe that this alternative will be ineffective in providing long-term groundwater contaminant reductions.

## 7.20.06 Alternative 5: Hydrodynamic Groundwater Containment



Hydrodynamic groundwater containment (HGC - commonly referred to as pump and treat) involves the extraction of groundwater, its treatment and discharge of treated water. The treated water is typically discharged back to groundwater, to a surface water body or to a publicly owned wastewater treatment works (POTW). In this case, we have assumed that four perimeter extraction wells installed adjacent to Smokes Creek and Lake Erie, with a combined flow of 40 gallons per minute (GPM), will be sufficient to capture the WT-1 vicinity groundwater plume. For the purposes of this assessment we assumed the groundwater would then be treated with an air stripper and discharged to a POTW. Note, although naphthalene is a semi-volatile compound that is not particularly well suited to air stripping we have assumed that it can be air stripped down to POTW discharge standards.

## 7.20.06.1 Overall Protection of Human Health and the Environment

As stated earlier, based on the existing ECs/ICs and the Fish and Wildlife Resources Impact Analysis presented in Section 6 there is no significant risk posed to humans or the environment for the current groundwater contaminant levels, if the ECs/ICs remain in place. During operation, the HGC system will prevent, through groundwater capture, the discharge of contaminants to Smokes Creek and Lake Erie. The air stripping process proposed for water treatment does have the potential to release contamination to ambient air. However, if necessary, air controls such as vapor phase activated carbon could be used to prevent discharges over regulatory limits.

## 7.20.06.2 Source Control

Again a HGC system addresses only aqueous phase contaminants; as such none of the existing source mass located above the water table will be reduced. As with the other active technologies evaluated, the HGC system should effectively mitigate VOC and naphthalene discharges to the adjacent surface water bodies during its operation. We believe this approach will have a high degree of certainty in preventing contaminant discharges to the surface water bodies while it is operated.

## 7.20.06.3 Long-Term Effectiveness and Permanence

As stated earlier, source remediation and source control are not being implemented as part of this alternative (or any other alternative). As such, once the remedial time frame (assumed to be 30 years) has passed and the system use discontinued, residual contamination, likely similar in magnitude to what exists on site now, will remain.

In this alternative, contaminated groundwater would be extracted from the area of concern, treated with an air stripper and discharge to a POTW. During operation, the system will prevent, through hydrodynamic containment, the discharge of contaminated groundwater to Smokes Creek and Lake Erie.

## 7.20.06.4 Reduction of Waste Toxicity, Mobility, or Volume



The total amount of contaminant mass to be treated by this alternative is limited to aqueous phase contamination present in extracted groundwater. The HGC system technology will permanently remove contaminants from the environment. Air stripping is a separation technology which does not destroy the contaminants. This treatment process may produce some air contamination, which would be treated should it be shown to have a significant effect on air quality. In addition, treated groundwater, which will contain some residual contamination, will be discharged to a POTW where it will receive additional treatment.

## 7.20.06.5 Short-Term Impact and Effectiveness

Implementation of this alternative would have limited risks to the community, as institutional controls are already in place to restrict groundwater use. General construction and drilling safety procedures must be observed during implementation, to ensure worker protection. Extracted groundwater and discharged air must also be handled properly to ensure worker safety.

## 7.20.06.6 Cost Effectiveness

A conceptual cost estimate for this alternative is provided in Table 7; as shown, the total present worth for this alternative is approximately \$2,200,000. This includes capital costs and O&M costs over a 30 year remedial period.

## 7.30 COMPARISON OF ALTERNATIVES

As described above, current Site conditions pose no significant risk to human health or the environment with the existing ECs/ICs in place. As such, it is GZA's opinion that each alternative is equally protective of human health and the environment.

The short-term effectiveness of each alternative evaluated is comparable. Alternatives 2, 3 and 5 (air sparge curtain, air sparge trench, and hydrodynamic groundwater containment) temporarily reduce the discharge of contaminants to the adjacent surface water bodies more than the other alternatives (MNA and ISCO); though they do not reduce the contaminant source mass any more effectively. Once operation of these active remedial systems stops groundwater contaminant levels will likely rebound to current levels.

The long-term effectiveness of alternatives 2, 3 and 5 are similar. During operation of the systems, contaminant concentrations discharged to Smokes Creek and Lake Erie will be

reduced; however, as stated above, once the systems are decommissioned, contaminant levels will rebound. Alternative 4 (ISCO) is unlikely to be significantly effective at reducing discharges from the WT-01 AOC to adjacent surface waters, due to the heterogeneous subsurface geology and geochemistry, as described above. Alternative 1 (MNA) does not reduce contaminant discharges from the WT-01 AOC below their current levels.



The present worth of Alternative 1 is less than one fifth the present worth of the next lowest cost alternative, as shown in the below table.

| Remedial Alternative                                | <b>Estimated Present Worth</b> |
|-----------------------------------------------------|--------------------------------|
| Alternative 1: Monitored Natural Attenuation        | \$157,200                      |
| Alternative 2: Air Sparge Curtain Well Points with  | \$2,100,000                    |
| Enhanced Denitrification System                     |                                |
| Alternative 3: Air Sparge Curtain Continuous Trench | \$2,700,000                    |
| with Enhanced Denitrification System                |                                |
| Alternative 4: ISCO                                 | \$868,000                      |
| Alternative 5: Hydrodynamic Containment             | \$2,200,000                    |

As stated in Section 4.1.2 of EPA's "Guidance for Evaluating the Technical Impracticability of Ground-Water Restoration", dated September 1993, the following three conditions should be met for Sites where attainment of media cleanup standards may not be required and a TI waiver is appropriate:

- 1. Remediation of the release would provide no significant reduction in risks to actual or potential receptors;
- 2. The release does not occur in, or threaten, current or potential sources of drinking water; and
- 3. Remediation of the release to media cleanup standards is technically impracticable.

We believe that the WT-01 vicinity Site, meets these three conditions; as such, based on the evaluation criteria and the remedial alternatives feasibility analysis, we believe that MNA coupled with the existing ECs/ICs is the most appropriate option for long-term management of Site conditions. We recommend that the currently semi-annual groundwater monitoring program continue for a period of 2 additional years (i.e., thru June 2016), at which point the frequency should be revaluated.

## 8.00 SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

GZA, in accordance with a DEC approved Work Plan, dated September 30, 2013, completed the above described supplemental groundwater, surface water, sediment and pore water sampling and TI Waiver evaluation. Based on the studies and evaluation

described above, the following summary, conclusions and recommendations have been developed.

- The WT-01 Area of Concern (AOC) is an approximately 1.3 acre portion of the approximately 1,100 Tecumseh Redevelopment CMS Property and a portion of the 29 acre Steel Winds BCA Site.
- Previously implemented Institutional and Engineering Controls (IC/ECs) voluntarily implemented at the Steel Winds Site under the Brownfield Cleanup Program (BCP), including a soil cap and offsite disposal of displaced soil and activity and use limitations, have effectively mitigated potential risks to human health.
- The ORC remedy previously implemented in the WT-01 AOC was not effective in treating VOCs (including naphthalene) contamination in the area, due primarily to the geochemical conditions, i.e., high pH, strongly negative ORP and high COD, as well as the heterogeneous geology (slag fill intermixed with dredge spoils).
- The supplemental field investigations completed by GZA as part of this TI Waiver application process showed a number of compounds above DEC's Class GA groundwater standards in the WT-01 AOC, in particular benzene and naphthalene. Note that other parameters were generally detected at low levels and/or were consistent with observed background levels from the Tecumseh Site. Groundwater results from GZA's supplemental sampling round were generally consistent with prior routine monitoring rounds. Elevated VOC levels (primarily benzene and naphthalene) were also observed in pore-water samples collected from Smokes Creek.. VOCs and SVOCs (primarily benzene, naphthalene and PAHs) were detected in sediment samples collected from Smokes Creek and Lake Erie at concentrations above conservative screening benchmarks. VOCs and SVOCs were not detected in surface water samples collected from Smokes Creek and Lake Erie above applicable water quality standards.
- A Comprehensive Groundwater Quality Assessment Report (GQA Report) recently completed by Benchmark showed that benzene concentrations over significant portions of the Tecumseh Property are approximately three orders of magnitude higher than concentrations observed in the WT-01 AOC. The GQA Report also showed that benzene mass discharge to the receiving surface water bodies (i.e., Smokes Creek and Lake Erie) from the watersheds that include the WT-01 AOC were approximately 0.9% of the Site wide total and not considered significant when compared to the Tecumseh Property's mass discharge as a whole.
- The GQA Report shows that naphthalene levels in the WT-01 AOC were generally comparable to the Tecumseh Property, except for the 1,200 ppb



concentration observed in recent samples from monitoring well MW-01B. However, loading calculations prepared by GZA, showed that WT-01 AOC was the source of approximately 1.2% of the Site wide naphthalene mass discharge to the receiving surface water bodies presented by Benchmark in the GQA Report, and again it is GZA's opinion that this is not significant when compared to the Tecumseh Property's total mass discharge.

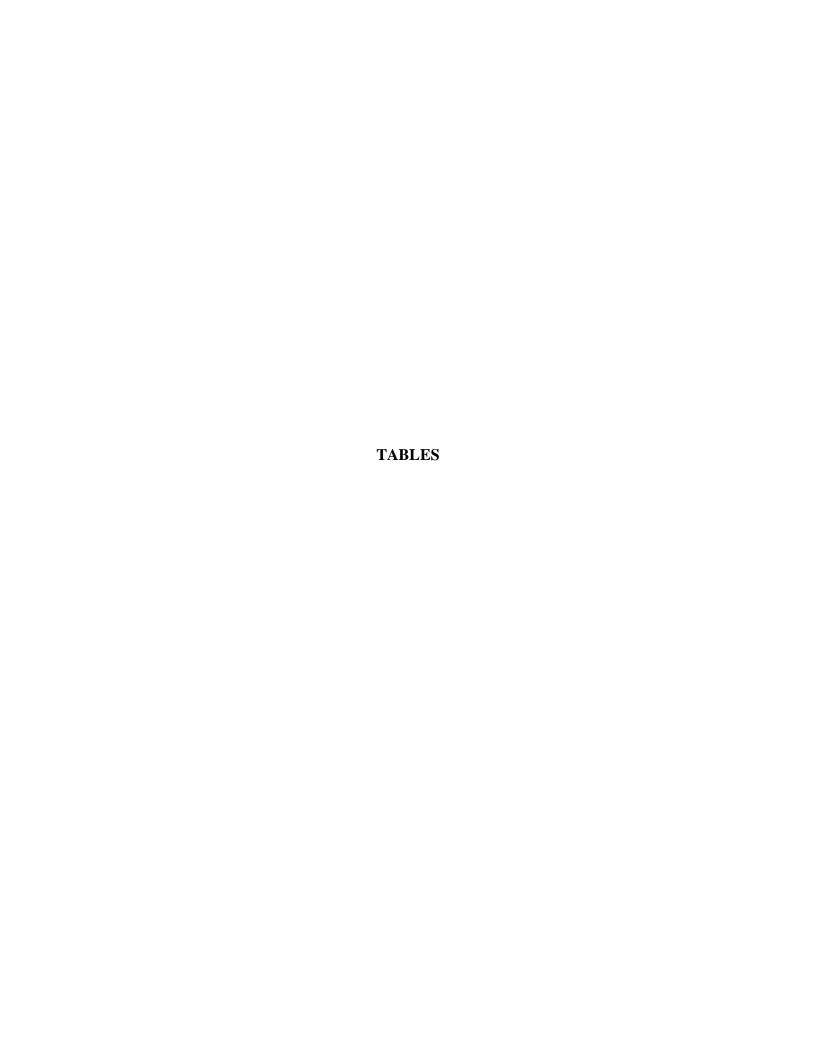


- Groundwater and soil conditions at the WT-01 AOC are not amenable to remediation generally due to:
  - Strongly electronegative (less than -200 mV) ORP levels;
  - High COD levels in groundwater (generally 20 to 50 mg/L);
  - Elevated pH levels (above 11 S.U);
  - Alkalinity above 150 mg/L;
  - The subsurface geology of the area which is extremely heterogeneous, i.e. is made up of a mixture of granular fill, steel slag debris and dredge spoils, which likely leads to preferential pathways for groundwater and contaminants moving in the subsurface;,; and
  - The presence of non-aqueous phase coal tar wastes in the vadose zone within the WT-01 AOC (due to the placement of coal-tar impacted sediments from Smokes Creek within the AOC) and are leaching contaminants to the groundwater. This represents a diffuse and recalcitrant source, distributed over a large geographic area (the 1.3 acre WT-01 AOC).
- A Fish and Wildlife Resource Impact Analysis (FWRIA) prepared by GZA identified PAHs in sediment, and certain VOCs in pore water within Smokes Creek, at concentrations that may potentially be harmful to exposed aquatic/benthic organisms. Inputs from sources other than the WT-01 pore water likely contributed to the concentrations of PAHs and VOCs measured. Furthermore, comparisons of sediment and pore water data to screening levels likely resulted in a conservative assessment because of the limited number of PAHs reported, and suspended particulates in the pore water samples. For this reason, GZA recommends additional sampling to evaluate the relative contribution from other sources, and to collect data more representative of potential bioavailability and risk. If DEC agrees, GZA will prepare a brief sampling plan for submittal to DEC.

Also note that an information request has been submitted to the New York Natural Heritage program, as the DEC ERM indicates that rare species habitat is present in Lake Erie adjacent to the Site and over a one-half mile, landward offset from the shore of Lake Erie. The results of this inquiry will be reported to DEC, and if warranted the sampling plan will include additional work to better evaluate potential exposure and risk to the rare species.

• GZA evaluated five potential remedies for the WT-01 AOC using criteria described in DEC's DER-10 (Technical Guidance for Site Investigation and Remediation,

dated May 3, 2010) and EPA's "Guidance for Evaluating Guidance for Evaluating the Technical Impracticability of Ground-Water Restoration", dated September 1993.


- Monitored Natural Attenuation (MNA);
- Air Sparge/biosparge with a contingency enhanced denitrification system;
- Reactive Barrier (Air-sparge/biosparge curtain using a continuous stone trench with a contingency enhanced denitrification injection system);
- In-situ Chemical Oxidation (ISCO); and
- Hydrodynamic Groundwater Containment (HGC).

Based on this evaluation, it is GZA's opinion that active remediation is not warranted or feasible, would not result in significant benefit to the environment relative to the cost, and is technically impracticable.

As described above, the WT-01 vicinity AOC meets the requirements for a Technical Impracticability Waiver and MNA coupled with the existing institutional controls and engineered controls (i.e., gravel surface cap) is the most appropriate currently available option for long-term management of Site conditions. We recommend that the current semi-annual groundwater monitoring program continue for a period of 2 years (thru June of 2016), at which point the frequency should be revaluated.

J:\ENV\33579.07.rac\Report\33579.07-TI Waiver Application Final.docx





## Table 1 Groundwater Field Screening Results Technical Impracticability Waiver Work Plan Steel Winds I Lackawanna, New York

| Parameter                       | MWN-01<br>6/26/2014<br>Result | MWN-01B<br>6/26/2014<br>Result | BCP-ORC-01<br>6/26/2014<br>Result | BCP-ORC-02<br>6/26/2014<br>Result | WT1-02<br>6/25/2014<br>Result | WT1-04<br>6/26/2014<br>Result | WT1-05<br>6/25/2014<br>Result | WT1-06<br>6/25/2014<br>Result |
|---------------------------------|-------------------------------|--------------------------------|-----------------------------------|-----------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|
| pH (units)                      | 9.9                           | 9.8                            | 10.0                              | 9.1                               | 12.0                          | 9.2                           | 11.7                          | 9.6                           |
| Temperature (°C)                | 11.8                          | 12.2                           | 14.3                              | 15.3                              | 13.4                          | 11.9                          | 11.0                          | 14.7                          |
| Specific Conductance (mMhos/cm) | 1.3                           | 0.9                            | 1.1                               | 1.6                               | 2.2                           | 1.5                           | 1.1                           | 1.2                           |
| Turbidity (NTU)                 | 4.8                           | 5.9                            | 9.7                               | 3.7                               | 4.4                           | 2.4                           | 1.6                           | 4.7                           |
| Dissolved Oxygen                | 0.0                           | 0.0                            | 4.9                               | 1.35                              | 0.1                           | 0.0                           | 1.1                           | 0.0                           |
| Oxygen Reduction Potential (mV) | -231.4                        | -328.9                         | -126.8                            | -157.8                            | -263.0                        | -251.3                        | -205.7                        | -252.4                        |

## Notes:

<sup>1.</sup> The above readings were collected using a YSI Pro Series with a flow-through cell and represent readings collected immediately prior to well sampling, i.e. were collected when well purging was complete. Depth to water readings show are initial readings, i.e. were collected before well purging began.

## Table 2 Groundwater Analytical Results Technical Impracticability Waiver Work Plan Steel Winds I Lackawanna, New York

|                    |                                      |              |                                   | WI        | Γ1-02     | WT               | 1-05      | W               | Γ1-06     | BCP-       | ORC-2     | BCP-0  | ORC-1     | MW              | VN-01     | MW     | N-01B     | MWN-   | 01B Dup                              | W      | Γ1-04     | Trip B | Blank 001 | Trip BI | lank 002     |
|--------------------|--------------------------------------|--------------|-----------------------------------|-----------|-----------|------------------|-----------|-----------------|-----------|------------|-----------|--------|-----------|-----------------|-----------|--------|-----------|--------|--------------------------------------|--------|-----------|--------|-----------|---------|--------------|
| Chemical<br>Family | Analyte                              | Units        | Regulatory<br>Criteria Class      |           | 25, 2014  |                  | 25, 2014  |                 | 26, 2014  |            | 26, 2014  |        | 6, 2014   |                 | 26, 2014  |        | 26, 2014  |        | 26, 2014                             |        | 26, 2014  |        | 25, 2014  |         | 25, 2014     |
| ·                  |                                      |              | GA groundwater                    | Result    | Qualifier | Result           | Qualifier | Result          | Qualifier | Result     | Qualifier | Result | Qualifier | Result          | Qualifier | Result | Qualifier | Result | Qualifier                            | Result | Qualifier | Result | Qualifier | Result  | Qualifier    |
| VOCs               | Methyl tert-butyl ether              | ug/L         | NC                                | 5.0       | U         | 5.0              | U         | 5.0             | U         | 5.0        | U         | 5.0    | U         | 5.0             | U         | 5.0    | U         | 5.0    | U                                    | 5.0    | U         | 5.0    | U         | 5.0     | U            |
| VOCs               | Benzene                              | ug/L         | 1 <sup>s</sup>                    | 16        |           | 11               |           | 42              |           | 9.3        |           | 9.5    |           | 37              |           | 85     |           | 88     |                                      | 23     |           | 5.0    | U         | 5.0     | U            |
| VOCs               | Toluene                              | ug/L         | 5*                                | 3.1       | J         | 2.7              | J         | 8.3             |           | 1.7        | J         | 0.92   | J         | 7.8             |           | 24     |           | 24     |                                      | 4.9    | J         | 5.0    | U         | 5.0     | U            |
| VOCs               | Ethylbenzene                         | ug/L         | 5*                                | 0.91      | J         | 0.60             | J         | 1.7             | J         | 5.0        | U         | 5.0    | U         | 1.6             | J         | 1.0    | J         | 1.0    | J                                    | 1.1    | J         | 5.0    | U         | 5.0     | U            |
| VOCs               | m,p-Xylene                           | ug/L         | 5*                                | 6.2       |           | 5.6              |           | 17              |           | 3.1        | J         | 5.0    | U         | 17              |           | 15     |           | 16     |                                      | 12     |           | 5.0    | U         | 5.0     | U            |
| VOCs<br>VOCs       | o-Xylene<br>Xylene (Total)           | ug/L<br>ug/L | 5*<br>5*                          | 4.8<br>11 | J         | 4.6<br><b>10</b> | J         | 13<br><b>31</b> |           | 5.0<br>3.1 | U         | 0.78   | J<br>J    | 14<br><b>31</b> |           | 9.8    |           | 9.9    |                                      | 9.2    |           | 5.0    | U         | 5.0     | U            |
| VOCs               | Isopropylbenzene                     | ug/L<br>ug/L | 5*                                | 5.0       | II        | 5.0              | IJ        | 5.0             | U         | 5.0        | U         | 5.0    | U         | 5.0             | U         | 1.8    | ĭ         | 1.7    | Ĭ                                    | 5.0    | II        | 5.0    | IJ        | 5.0     | U            |
| VOCs               | n-Propylbenzene                      | ug/L         | 5*                                | 5.0       | U         | 5.0              | U         | 5.0             | U         | 5.0        | U         | 5.0    | U         | 5.0             | U         | 5.0    | U         | 5.0    | U                                    | 5.0    | U         | 5.0    | U         | 5.0     | U            |
| VOCs               | 1,3,5-Trimethylbenzene               | ug/L         | 5*                                | 3.0       | J         | 1.7              | J         | 4.6             | J         | 1.0        | J         | 0.73   | J         | 4.8             | J         | 5.7    |           | 5.4    |                                      | 5.1    |           | 5.0    | Ü         | 5.0     | U            |
| VOCs               | tert-Butylbenzene                    | ug/L         | 5*                                | 5.0       | U         | 5.0              | U         | 5.0             | U         | 5.0        | U         | 5.0    | U         | 5.0             | U         | 5.0    | U         | 5.0    | U                                    | 5.0    | U         | 5.0    | U         | 5.0     | U            |
| VOCs               | 1,2,4-Trimethylbenzene               | ug/L         | 5*                                | 1.9       | J         | 1.6              | J         | 4.5             | J         | 0.89       | J         | 0.78   | J         | 6.3             |           | 8.2    |           | 7.9    |                                      | 3.9    | J         | 5.0    | U         | 5.0     | U            |
| VOCs               | sec-Butylbenzene                     | ug/L         | 5*                                | 5.0       | U         | 5.0              | U         | 5.0             | U         | 5.0        | U         | 5.0    | U         | 5.0             | U         | 5.0    | U         | 5.0    | U                                    | 5.0    | U         | 5.0    | U         | 5.0     | U            |
| VOCs<br>VOCs       | 4-Isopropyltoluene<br>n-Butylbenzene | ug/L<br>ug/L | 5*<br>5*                          | 5.0       | U<br>U    | 5.0              | U         | 5.0             | U         | 5.0        | U         | 5.0    | U         | 5.0             | U         | 5.0    | U         | 5.0    | U                                    | 5.0    | U         | 5.0    | U         | 5.0     | U            |
|                    | Naphthalene                          | ug/L<br>ug/L |                                   | 29.0      | U         | 86               | U         | 200             | D         | 48         | U         | 120    | U         | 310             | D         | 1,200  | $DJ^1$    | 750    |                                      | 61     | U         | 5.0    | U         | 5.0     | U            |
| VOCs<br>Other      | Methane                              | ug/L<br>ug/L | 10<br>NC                          | 36        |           | 260              |           | 490             | D         | 190        |           | 310    |           | 670             | D         | 3,500  | DJ        | 2,300  | $\mathrm{DJ}^{\scriptscriptstyle 1}$ | 98     |           | -      | 0         | -       | U            |
| Other              | Ethane                               | ug/L<br>ug/L | NC<br>NC                          | 0.61      | U         | 1.3              | U         | 4.1             |           | 1.3        | U         | 1.2    | U         | 4.3             |           | 2.9    |           | 2,300  |                                      | 1.2    |           |        | _         | _       | _            |
| Other              | Ethene                               | ug/L         | NC                                | 1.6       | U         | 1.6              | U         | 1.5             | U         | 1.6        | U         | 1.5    | U         | 1.5             | U         | 1.5    | U         | 1.5    | U                                    | 1.5    | U         | _      | _         | _       | _            |
| SVOCs              | Bis(2-chloroethyl)ether              | ug/L         | 1.0°                              | 10        | U         | 10               | U         | 10              | U         | 10         | U         | 10     | U         | 10              | U         | 10     | U         | 10     | U                                    | 10     | U         | _      | _         | _       | _            |
|                    | 1,3-Dichlorobenzene                  | ug/L<br>ug/L | 3 <sup>s</sup>                    | 10        | U         | 10               | U         | 10              | U         | 10         | U         | 10     | U         | 10              | U         | 10     | U         | 10     | U                                    | 10     | II.       | _      | _         | _       |              |
| SVOCs              |                                      | — ·          | 3 <sup>s</sup>                    | 10        | II.       | 10               | U         | 10              | U         | 10         | U         | 10     | U         | 10              | U         | 10     |           | 10     | U                                    | 10     | II.       |        | _         |         |              |
| SVOCs              | 1,4-Dichlorobenzene                  | ug/L         |                                   |           |           |                  | Ü         |                 |           |            |           |        |           |                 |           |        | U         |        | -                                    |        |           | -      | -         | -       | <del>-</del> |
| SVOCs              | 1,2-Dichlorobenzene                  | ug/L         | 3 <sup>s</sup><br>5* <sup>s</sup> | 10        | U         | 10               | U         | 10              | U         | 10         | U         | 10     | U         | 10              | U         | 10     | U         | 10     | U                                    | 10     | U         | -      | -         | -       | -            |
| SVOCs              | 2,2'-oxybis(1-Chloropropane)         | ug/L         |                                   | 10        | U         | 10               | U         | 10              | U         | 10         | U         | 10     | U         | 10              | U         | 10     | U         | 10     | U                                    | 10     | U         | -      | -         | -       | -            |
| SVOCs<br>SVOCs     | Hexachloroethane                     | ug/L         | 5* <sup>s</sup> 0.4               | 10        | II O      | 10               | U         | 10              | U         | 10         | U         | 10     | U<br>U    | 10              | U         | 10     | U         | 10     | U                                    | 10     | II O      | -      | -         | -       | -            |
| SVOCs              | Nitrobenzene<br>Isophorone           | ug/L<br>ug/L | 50                                | 10        | II        | 10               | U         | 10              | U         | 10         | U         | 10     | U         | 10              | U         | 10     | U         | 10     | II                                   | 10     | II        | -      | -         | -       | -            |
| SVOCs              | 1,2,4-Trichlorobenzene               | ug/L<br>ug/L | 5* <sup>s</sup>                   | 10        | IJ        | 10               | U         | 10              | U         | 10         | U         | 10     | U         | 10              | U         | 10     | U         | 10     | U                                    | 10     | II        | _      | _         | _       | _            |
| SVOCs              | Naphthalene                          | ug/L<br>ug/L | 10                                | 9.0       | I         | 54               | 0         | 130             | D         | 49         | 0         | 74     | O         | 230             | D         | 970    | D         | 1,200  | D                                    | 66     |           | _      | _         | _       | _            |
| SVOCs              | 4-Chloroaniline                      | ug/L         | 5*s                               | 10        | U         | 10               | U         | 10              | U         | 10         | U         | 10     | U         | 10              | U         | 10     | U         | 10     | U                                    | 10     | U         | _      | -         | -       | -            |
| SVOCs              | Bis(2-chloroethoxy)methane           | ug/L         | 5*s                               | 10        | U         | 10               | Ü         | 10              | U         | 10         | U         | 10     | U         | 10              | U         | 10     | U         | 10     | U                                    | 10     | U         | -      | -         | -       | -            |
| SVOCs              | Hexachlorobutadiene                  | ug/L         | 0.5 <sup>s</sup>                  | 10        | U         | 10               | U         | 10              | U         | 10         | U         | 10     | U         | 10              | U         | 10     | U         | 10     | U                                    | 10     | U         | -      | -         | -       | -            |
| SVOCs              | 2-Methylnaphthalene                  | ug/L         | NE                                | 4.5       | J         | 9.9              | J         | 35              |           | 9.6        | J         | 5.9    | J         | 59              |           | 60     |           | 60     |                                      | 16     |           | -      | -         | -       | -            |
| SVOCs              | Hexachlorocyclopentadiene            | ug/L         | 5* <sup>s</sup>                   | 10        | U         | 10               | U         | 10              | U         | 10         | U         | 10     | U         | 10              | U         | 10     | U         | 10     | U                                    | 10     | U         | -      | -         | -       | -            |
| SVOCs              | 2-Chloronaphthalene                  | ug/L         | 10                                | 10        | U         | 10               | U         | 10              | U         | 10         | U         | 10     | U         | 10              | U         | 10     | U         | 10     | U                                    | 10     | U         | -      |           |         | -            |
| SVOCs              | 2-Nitroaniline                       | ug/L         | 5* <sup>s</sup>                   | 20        | U         | 20               | U         | 20              | U         | 20         | U         | 20     | U         | 20              | U         | 20     | U         | 20     | U                                    | 20     | U         | -      | -         | -       | -            |
| SVOCs              | Dimethylphthalate                    | ug/L         | 50                                | 10        | U         | 10               | U         | 10              | U         | 10         | U         | 10     | U         | 10              | U         | 10     | U         | 10     | U                                    | 10     | U         | -      | -         | -       | -            |
| SVOCs              | Acenaphthylene                       | ug/L         | NC                                | 1.3       | J         | 9.4              | J         | 23              |           | 7.0        | J         | 4.7    | J         | 47              |           | 62     |           | 62     |                                      | 5.1    | J         | -      | -         | -       | -            |
| SVOCs              | 2,6-Dinitrotoluene                   | ug/L         | 5* <sup>s</sup>                   | 10        | U         | 10               | U         | 10              | U         | 10         | U         | 10     | U         | 10              | U         | 10     | U         | 10     | U                                    | 10     | U         | -      | -         | -       | -            |
| SVOCs              | 3-Nitroaniline                       | ug/L         | 5* <sup>s</sup>                   | 20        | U         | 20               | U         | 20              | U         | 20         | U         | 20     | U         | 20              | U         | 20     | U         | 20     | U                                    | 20     | U         | -      | -         | -       | -            |
| SVOCs              | Acenaphthene                         | ug/L         | 20                                | 1.4       | J         | 2.8              | J         | 9.0             | J         | 2.7        | J         | 1.4    | J         | 17              |           | 12     | $J^1$     | 19     | $J^1$                                | 4.9    | J         | -      | -         | -       | -            |
| SVOCs              | Dibenzofuran                         | ug/L         | NC                                | 2.2       | J         | 6.3              | J         | 32              |           | 9.2        | J         | 3.0    | J         | 58              |           | 32     |           | 32     |                                      | 16     |           | -      | -         | -       | -            |
| SVOCs              | 2,4-Dinitrotoluene                   | ug/L         | 5* <sup>s</sup>                   | 10        | U         | 10               | U         | 10              | U         | 10         | U         | 10     | U         | 10              | U         | 10     | U         | 10     | U                                    | 10     | U         | -      | -         | -       | -            |
| SVOCs              | Diethylphthalate                     | ug/L         | 50                                | 10        | U         | 10               | U         | 10              | U         | 10         | U         | 10     | U         | 10              | U         | 10     | U         | 10     | U                                    | 10     | U         | -      | -         | -       | -            |
|                    | 4-Chlorophenyl-phenylether           | ug/L         | NC                                | 10        | U         | 10               | U         | 10              | U         | 10         | U         | 10     | U         | 10              | U         | 10     | U         | 10     | U                                    | 10     | U         | -      | -         | -       | -            |
| SVOCs              | Fluorene                             | ug/L         | 50                                | 7.1       | J         | 11               |           | 46              |           | 13         |           | 5.0    | J         | 76              |           | 44     |           | 44     |                                      | 23     | <u> </u>  | -      | -         | -       | -            |
| SVOCs              | 4-Nitroaniline                       | ug/L         | 5* <sup>s</sup>                   | 20        | U         | 20               | U         | 20              | U         | 20         | U         | 20     | U         | 20              | U         | 20     | U         | 20     | U                                    | 20     | U         | -      | -         | -       | -            |
| SVOCs              | 4-Bromophenyl-phenylether            | ug/L         | NC                                | 10        | U         | 10               | U         | 10              | U         | 10         | U         | 10     | U         | 10              | U         | 10     | U         | 10     | U                                    | 10     | U         | -      | -         | -       | -            |
| SVOCs              | Hexachlorobenzene                    | ug/L         | 0.04 <sup>s</sup>                 | 10        | U         | 10               | U         | 10              | U         | 10         | U         | 10     | U         | 10              | U         | 10     | U         | 10     | U                                    | 10     | U         | -      | -         | -       | -            |
| SVOCs              | Phenanthrene                         | ug/L         | 50                                | 8.5       | J         | 7.9              | J         | 70              |           | 20         |           | 6.2    | J         | 99              | D         | 67     |           | 68     |                                      | 51     |           | -      | -         | -       | -            |

## Table 2 **Groundwater Analytical Results** Technical Impracticability Waiver Work Plan Steel Winds I Lackawanna, New York

|                    |                            |       |                                                | WT     | 1-02      | W      | Γ1-05     | wt     | 1-06      | RCP.   | ORC-2     | RCP.   | ORC-1     | MV     | VN-01     | MW     | N-01B     | MWN-   | 01B Dup   | W      | Γ1-04     | Trin R | lank 001  | Trin R | lank 002  |
|--------------------|----------------------------|-------|------------------------------------------------|--------|-----------|--------|-----------|--------|-----------|--------|-----------|--------|-----------|--------|-----------|--------|-----------|--------|-----------|--------|-----------|--------|-----------|--------|-----------|
| Chemical<br>Family | Analyte                    | Units | Regulatory<br>Criteria Class<br>GA groundwater |        | 25, 2014  |        | 25, 2014  |        | 6, 2014   |        | 26, 2014  |        | 6, 2014   |        | 26, 2014  |        | 26, 2014  |        | 26, 2014  |        | 26, 2014  | •      | 25, 2014  | •      | 25, 2014  |
|                    |                            |       | GA groundwater                                 | Result | Qualifier |
| SVOCs              | Anthracene                 | ug/L  | 50                                             | 2.2    | J         | 2.0    | J         | 10     |           | 2.8    | J         | 10     | U         | 18     |           | 13     |           | 13     |           | 8.3    | J         | -      | -         | -      | -         |
| SVOCs              | Carbazole                  | ug/L  | NC                                             | 3.6    | J         | 7.4    | J         | 25     |           | 9.3    | J         | 8.1    | J         | 37     |           | 68     |           | 68     |           | 12     |           | -      | -         | -      | -         |
| SVOCs              | Fluoranthene               | ug/L  | 50                                             | 5.3    | J         | 2.2    | J         | 9.2    | J         | 3.4    | J         | 1.4    | J         | 16     |           | 13     |           | 13     |           | 12     |           | -      | -         | -      | -         |
| SVOCs              | Pyrene                     | ug/L  | 50                                             | 3.3    | J         | 1.9    | J         | 4.8    | J         | 2.2    | J         | 10     | U         | 8.3    | J         | 6.6    | J         | 7.1    | J         | 6.7    | J         | -      | -         | -      | -         |
| SVOCs              | Butylbenzylphthalate       | ug/L  | 50                                             | 10     | U         | -      | -         | -      | -         |
| SVOCs              | 3,3´-Dichlorobenzidine     | ug/L  | 5*s                                            | 10     | U         | -      | -         | -      | -         |
| SVOCs              | Benzo(a)anthracene         | ug/L  | 0.002                                          | 10     | U         | -      | -         | -      | -         |
| SVOCs              | Chrysene                   | ug/L  | 0.002                                          | 10     | U         | -      | -         | -      | -         |
| SVOCs              | Bis(2-ethylhexyl)phthalate | ug/L  | 5.0 <sup>s</sup>                               | 10     | U         | -      | -         | -      | -         |
| SVOCs              | Benzo(b)fluoranthene       | ug/L  | 0.002                                          | 10     | U         | -      | -         | -      | -         |
| SVOCs              | Benzo(k)fluoranthene       | ug/L  | 0.002                                          | 10     | U         | -      | -         | -      | -         |
| SVOCs              | Benzo(a)pyrene             | ug/L  | $ND^{s}$                                       | 10     | U         | -      | -         | -      | -         |
| SVOCs              | Indeno(1,2,3-cd)pyrene     | ug/L  | 0.002                                          | 10     | U         | -      | -         | -      | -         |
| SVOCs              | Dibenzo(a,h)anthracene     | ug/L  | NC                                             | 10     | U         | -      | -         | -      | -         |
| SVOCs              | Benzo(g,h,i)perylene       | ug/L  | NC                                             | 10     | U         | -      | -         | -      | -         |
| Other              | Iron                       | ug/L  | 300                                            | 49.7   |           | 31     |           | 33.1   |           | 35.4   |           | 55.1   |           | 31.9   |           | 48.7   |           | 48.1   |           | 33.1   |           | -      | -         | -      | -         |
| Other              | Nitrate (As N)             | mg/L  | 10                                             | 0.13   | U         | 0.39   | В         | 0.13   | U         | -      | -         | -      | -         |
| Other              | Sulfate                    | mg/L  | 250 <sup>s</sup>                               | 170    | В         | 170    | В         | 190    | В         | 220    | В         | 150    | В         | 200    | В         | 130    | В         | 130    | В         | 130    | В         | -      | -         | -      | -         |
| Other              | Total Alkalinity(As CaCO3) | mg/L  | NC                                             | 370    |           | 190    |           | 200    |           | 280    |           | 220    |           | 190    |           | 150    |           | 150    |           | 260    |           | -      | -         | -      | -         |
| Other              | Total Organic Carbon       | mg/L  | NC                                             | 5.8    | J         | 5.5    | J         | 7.3    | J         | 6.4    | J         | 8      | J         | 6.8    | J         | 9      | J         | 9      | J         | 4.8    | J         | -      | -         | -      | -         |

## General Notes:

- $\ensuremath{^{*}}$  Principle organic contaminant standard of 5 ug/L applies to this compound.
- s Limits are regulatory standards as opposed to guidance value.

  NC No ambient water quality standards have been established for any class of water for this compound.
- NE The compound is regulated, however there is no criteria established for this class of groundwater water.
- "U" Indicates compound was not detected
- "B" Indicates compound detected in associated method blank
- "D" Indicates sample was analyzed using a dilution
- "J" Indicates an estimated value detected below the reporting limit.
- "J<sup>1"</sup> Result flagged as estimated due to high relative percent difference value with field duplicate sample.

Indicates exceedence of GA Groundwater Criteria

J:\ENV\33579.07.rac\Report\Tables\33579.07 table 2.xlsx Page 2 of 2 10/31/2014

## Table 3 Surface Water Analytical Results Technical Impracticability Waiver Work Plan Steel Winds I Lackawanna, New York

| Chemical<br>Family | Analyte                        | NYS Ambient Water<br>Quality Standard or<br>Guidance Values <sup>1</sup> | Surface Water<br>Screening<br>Benchmarks <sup>2</sup> | SV  | W-1  | SW              | -2     | sv  | W-3   |     | uplicate of<br>V-3 | sv  | W-4   | S   | W-5   | SV  | W-6   | SV  | W-7   | sv             | V-8    | Trip     | Blank                                            | Equipmen | ent Blank         |
|--------------------|--------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------|-----|------|-----------------|--------|-----|-------|-----|--------------------|-----|-------|-----|-------|-----|-------|-----|-------|----------------|--------|----------|--------------------------------------------------|----------|-------------------|
|                    |                                | (ug/L)                                                                   | (ug/L)                                                |     | 2014 | 8/6/2<br>Result | -      |     | /2014 |     | 2014               |     | /2014 |     | /2014 |     | /2014 |     | /2014 | 8/6/<br>Result | 2014   |          | 2014                                             |          | 2014<br>Oualifier |
| VOCs               | Benzene                        | 210                                                                      | 130 <sup>d</sup>                                      | 5.0 | U    | 5.0             | Uaimer | 5.0 | U     | 5.0 | U                  | 1.1 | J     | 5.0 | U     | 5.0 | U     | 5.0 | U     | 5.0            | U      | 5.0      | U                                                | 5.0      | U                 |
| VOCs               | n-Butylbenzene                 | NE                                                                       | NA                                                    | 5.0 | U    | 5.0             | U      | 5.0 | U     | 5.0 | U                  | 5.0 | U     | 5.0 | U     | 5.0 | U     | 5.0 | U     | 5.0            | U      | 5.0      | U                                                | 5.0      | U                 |
| VOCs               | sec-Butylbenzene               | NE                                                                       | NA                                                    | 5.0 | U    | 5.0             | U      | 5.0 | U     | 5.0 | U                  | 5.0 | U     | 5.0 | U     | 5.0 | U     | 5.0 | U     | 5.0            | U      | 5.0      | U                                                | 5.0      | U                 |
| VOCs               | Ethylbenzene                   | 17                                                                       | 7.3 <sup>d</sup>                                      | 5.0 | U    | 5.0             | U      | 5.0 | U     | 5.0 | U                  | 5.0 | U     | 5.0 | U     | 5.0 | U     | 5.0 | U     | 5.0            | U      | 5.0      | U                                                | 5.0      | U                 |
| VOCs               | Isopropylbenzene               | 2.6                                                                      | NA                                                    | 5.0 | U    | 5.0             | U      | 5.0 | U     | 5.0 | U                  | 5.0 | U     | 5.0 | U     | 5.0 | U     | 5.0 | U     | 5.0            | U      | 5.0      | U                                                | 5.0      | U                 |
| VOCs               | p-Isopropyltoluene             | NE                                                                       | NA                                                    | 5.0 | U    | 5.0             | U      | 5.0 | U     | 5.0 | U                  | 5.0 | U     | 5.0 | U     | 5.0 | U     | 5.0 | U     | 5.0            | U      | 5.0      | U                                                | 5.0      | U                 |
| VOCs               | Methyl-Tert-Butyl-Ether        | NC                                                                       | NA                                                    | 5.0 | U    | 5.0             | U      | 5.0 | U     | 5.0 | U                  | 5.0 | U     | 5.0 | U     | 5.0 | U     | 5.0 | U     | 5.0            | U      | 5.0      | U                                                | 5.0      | U                 |
| VOCs               | Naphthalene                    | 13                                                                       | 193 <sup>e</sup>                                      | 12  |      | 5.0             | U      | 1.8 | J     | 1.6 | J                  | 1.5 | J     | 1.7 | J     | 5.0 | U     | 5.0 | U     | 5.0            | U      | 5.0      | U                                                | 5.0      | U                 |
| VOCs               | n-Propylbenzene                | NE                                                                       | NA                                                    | 5.0 | U    | 5.0             | U      | 5.0 | U     | 5.0 | U                  | 5.0 | U     | 5.0 | U     | 5.0 | U     | 5.0 | U     | 5.0            | U      | 5.0      | U                                                | 5.0      | U                 |
| VOCs               | Tert-Butylbenzene              | NE                                                                       | NA                                                    | 5.0 | U    | 5.0             | U      | 5.0 | U     | 5.0 | U                  | 5.0 | U     | 5.0 | U     | 5.0 | U     | 5.0 | U     | 5.0            | U      | 5.0      | U                                                | 5.0      | U                 |
| VOCs               | Toluene                        | 100                                                                      | 9.8 <sup>d</sup>                                      | 5.0 | U    | 5.0             | U      | 5.0 | U     | 5.0 | U                  | 5.0 | U     | 5.0 | U     | 5.0 | U     | 5.0 | U     | 5.0            | U      | 5.0      | U                                                | 5.0      | U                 |
| VOCs               | 1,2,4-Trimethylbenzene         | 33                                                                       | NA                                                    | 5.0 | U    | 5.0             | U      | 5.0 | U     | 5.0 | U                  | 5.0 | U     | 5.0 | U     | 5.0 | U     | 5.0 | U     | 5.0            | U      | 5.0      | U                                                | 5.0      | U                 |
| VOCs               | 1,3,5-Trimethylbenzene         | NE                                                                       | NA                                                    | 5.0 | U    | 5.0             | U      | 5.0 | U     | 5.0 | U                  | 5.0 | U     | 5.0 | U     | 5.0 | U     | 5.0 | U     | 5.0            | U      | 5.0      | U                                                | 5.0      | U                 |
| VOCs               | Xylene (mixed)                 | 65                                                                       | 13                                                    | 5.0 | U    | 5.0             | U      | 5.0 | U     | 5.0 | U                  | 5.0 | U     | 5.0 | U     | 5.0 | U     | 5.0 | U     | 5.0            | U      | 5.0      | U                                                | 5.0      | U                 |
| SVOCs              | 1,2,4-Trichlorobenzene         | 5 s                                                                      | NA                                                    | 10  | U    | 10              | U      | 10  | U     | 10  | U                  | 10  | U     | 10  | U     | 10  | U     | 10  | U     | 10             | U      | NA       |                                                  | 10       | U                 |
| SVOCs              | 1,2-Dichlorobenzene            | 5 s                                                                      | 14 <sup>d</sup>                                       | 10  | U    | 10              | U      | 10  | U     | 10  | U                  | 10  | U     | 10  | U     | 10  | U     | 10  | U     | 10             | U      | NA       |                                                  | 10       | U                 |
| SVOCs              | 1,3-Dichlorobenzene            | 5 s                                                                      | 71 <sup>d</sup>                                       | 10  | U    | 10              | U      | 10  | U     | 10  | U                  | 10  | U     | 10  | U     | 10  | U     | 10  | U     | 10             | U      | NA       |                                                  | 10       | U                 |
| SVOCs              | 1,4-Dichlorobenzene            | 5 s                                                                      | 15 <sup>d</sup>                                       | 10  | U    | 10              | U      | 10  | U     | 10  | U                  | 10  | U     | 10  | U     | 10  | U     | 10  | U     | 10             | U      | NA       |                                                  | 10       | U                 |
| SVOCs              | 2,2'-oxybis(1-Chloropropane)   | NE                                                                       | NA                                                    | 10  | U    | 10              | U      | 10  | U     | 10  | U                  | 10  | U     | 10  | U     | 10  | U     | 10  | U     | 10             | U      | NA       |                                                  | 10       | U                 |
| SVOCs              | 2,4-Dinitrotoluene             | NE                                                                       | NA                                                    | 10  | U    | 10              | U      | 10  | U     | 10  | U                  | 10  | U     | 10  | U     | 10  | U     | 10  | U     | 10             | U      | NA       |                                                  | 10       | U                 |
| SVOCs              | 2,6-Dinitrotoluene             | NE                                                                       | NA                                                    | 10  | U    | 10              | U      | 10  | U     | 10  | U                  | 10  | U     | 10  | U     | 10  | U     | 10  | U     | 10             | U      | NA       |                                                  | 10       | U                 |
| SVOCs              | 2-Chloronaphthalene            | NE                                                                       | NA                                                    | 10  | U    | 10              | U      | 10  | U     | 10  | U                  | 10  | U     | 10  | U     | 10  | U     | 10  | U     | 10             | U      | NA       |                                                  | 10       | U                 |
| SVOCs              | 2-Methylnaphthalene            | 4.7                                                                      | 72 <sup>e</sup>                                       | 10  | U    | 10              | U      | 10  | U     | 10  | U                  | 10  | U     | 10  | U     | 10  | U     | 10  | U     | 10             | U      | NA       |                                                  | 10       | U                 |
| SVOCs              | 2-Nitroaniline                 | NE                                                                       | NA                                                    | 20  | U    | 20              | U      | 20  | U     | 20  | U                  | 20  | U     | 20  | U     | 20  | U     | 20  | U     | 20             | U      | NA       |                                                  | 20       | U                 |
| SVOCs              | 3,3´-Dichlorobenzidine         | NE                                                                       | NA                                                    | 10  | U    | 10              | U      | 10  | U     | 10  | U                  | 10  | U     | 10  | U     | 10  | U     | 10  | U     | 10             | U      | NA       |                                                  | 10       | U                 |
| SVOCs              | 3-Nitroaniline                 | NE                                                                       | NA                                                    | 20  | U    | 20              | U      | 20  | U     | 20  | U                  | 20  | U     | 20  | U     | 20  | U     | 20  | U     | 20             | U      | NA       |                                                  | 20       | U                 |
| SVOCs              | 4-Bromophenyl-phenylether      | NC                                                                       | NA                                                    | 10  | U    | 10              | U      | 10  | U     | 10  | U                  | 10  | U     | 10  | U     | 10  | U     | 10  | U     | 10             | U      | NA       |                                                  | 10       | U                 |
| SVOCs              | 4-Chloroaniline                | NE                                                                       | NA                                                    | 10  | U    | 10              | U      | 10  | U     | 10  | U                  | 10  | U     | 10  | U     | 10  | U     | 10  | U     | 10             | U      | NA       |                                                  | 10       | U                 |
| SVOCs              | 4-Chlorophenyl-phenylether     | NC                                                                       | NA                                                    | 10  | U    | 10              | U      | 10  | U     | 10  | U                  | 10  | U     | 10  | U     | 10  | U     | 10  | U     | 10             | U      | NA       |                                                  | 10       | U                 |
| SVOCs              | 4-Nitroaniline                 | NE<br>5.2                                                                | NA                                                    | 20  | U    | 20              | U      | 20  | U     | 20  | U                  | 20  | U     | 20  | U     | 20  | U     | 20  | U     | 20             | U      | NA       |                                                  | 20       | U                 |
| SVOCs              | Acenaphthene<br>Acenaphthylene | 5.3                                                                      | 55.85 ° 306.9 °                                       | 10  | U    | 10              | U<br>U | 10  | U     | 10  | U<br>U             | 10  | U     | 10  | U     | 10  | U     | 10  | U     | 10             | U<br>U | NA       |                                                  | 10       | U<br>U            |
| SVOCs              | Anthracene                     | NC<br>3.8                                                                | 20.73 <sup>e</sup>                                    | 10  | U    | 10              | U      | 10  | U     | 10  | U                  | 10  | U     | 10  | U     | 10  | U     | 10  | U     | 10             | U      | NA<br>NA |                                                  | 10       | U                 |
| SVOCs              | Benzo(a)Anthracene             | 0.03                                                                     | 20.73 e                                               | 10  | U    | 10              | U      | 10  | U     | 10  | U                  | 10  | U     | 10  | U     | 10  | U     | 10  | U     | 10             | U      | NA<br>NA |                                                  | 10       | U                 |
| SVOCs<br>SVOCs     | Benzo(a)Pyrene                 | NE                                                                       | 0.9573 <sup>e</sup>                                   | 10  | U    | 10              | U      | 10  | U     | 10  | U                  | 10  | U     | 10  | U     | 10  | U     | 10  | U     | 10             | U      | NA<br>NA |                                                  | 10       | U                 |
|                    | Benzo(b)Fluoranthene           |                                                                          | 0.9373                                                | 10  | U    | 10              | U      | 10  | U     | 10  | U                  | 10  | U     | 10  | U     | 10  | U     | 10  | U     | 10             | U      |          |                                                  | 10       | U                 |
| SVOCs<br>SVOCs     | Benzo(g,h,i)perylene           | NE<br>NC                                                                 | 0.6774<br>0.4391 <sup>e</sup>                         | 10  | U    | 10              | U      | 10  | U     | 10  | U                  | 10  | U     | 10  | U     | 10  | U     | 10  | U     | 10             | U      | NA<br>NA | <del>                                     </del> | 10       | U                 |
| SVOCs              | Benzo(k)Fluoranthene           | NE<br>NE                                                                 | 0.4391<br>0.6415 <sup>e</sup>                         | 10  | U    | 10              | U      | 10  | U     | 10  | U                  | 10  | U     | 10  | U     | 10  | U     | 10  | U     | 10             | U      | NA<br>NA |                                                  | 10       | U                 |
| SVOCs              | Bis(2-chloroethoxy)methane     | NE<br>NE                                                                 | 0.6415<br>NA                                          | 10  | U    | 10              | U      | 10  | U     | 10  | U                  | 10  | U     | 10  | II.   | 10  | U     | 10  | U     | 10             | U      | NA<br>NA |                                                  | 10       | U                 |
| SVOCs              | Bis(2-chloroethyl)ether        | NE<br>NE                                                                 | NA<br>NA                                              | 10  | U    | 10              | U      | 10  | U     | 10  | U                  | 10  | U     | 10  | U     | 10  | U     | 10  | U     | 10             | U      | NA<br>NA |                                                  | 10       | U                 |
| SVOCs              | Bis(2-ethylhexyl)phthalate     | 0.6 s                                                                    | 3 <sup>d</sup>                                        | 10  | U    | 10              | U      | 10  | U     | 10  | U                  | 10  | U     | 10  | U     | 10  | U     | 10  | U     | 10             | U      | NA<br>NA | <del>                                     </del> | 10       | U                 |
| SVOCs              | Butylbenzylphthalate           | NE                                                                       | 19 <sup>d</sup>                                       | 10  | U    | 10              | U      | 10  | U     | 10  | U                  | 10  | U     | 10  | U     | 10  | U     | 10  | U     | 10             | U      | NA<br>NA | <u> </u>                                         | 10       | U                 |

### Table 3 **Surface Water Analytical Results** Technical Impracticability Waiver Work Plan Steel Winds I Lackawanna, New York

| Chemical<br>Family | Analyte                   | NYS Ambient Water<br>Quality Standard or<br>Guidance Values <sup>1</sup> | Surface Water<br>Screening<br>Benchmarks <sup>2</sup> | SV | W-1 | SV | V-2 | sv | V-3 |    | plicate of<br>V-3 | sv | V-4 | SV | W-5 | sv | V-6 | SV | V-7 | sw | 7-8 | Trip Blank | Equipme | nt Blank |
|--------------------|---------------------------|--------------------------------------------------------------------------|-------------------------------------------------------|----|-----|----|-----|----|-----|----|-------------------|----|-----|----|-----|----|-----|----|-----|----|-----|------------|---------|----------|
| SVOCs              | Carbazole                 | NC                                                                       | 4 <sup>t</sup>                                        | 10 | U   | 10 | U   | 10 | U   | 10 | U                 | 10 | U   | 10 | U   | 10 | U   | 10 | U   | 10 | U   | NA         | 10      | U        |
| SVOCs              | Chrysene                  | NE                                                                       | 2.042 <sup>e</sup>                                    | 10 | U   | 10 | U   | 10 | U   | 10 | U                 | 10 | U   | 10 | U   | 10 | U   | 10 | U   | 10 | U   | NA         | 10      | U        |
| SVOCs              | Dibenzo(a,h)Anthracene    | NC                                                                       | 0.2825 <sup>e</sup>                                   | 10 | U   | 10 | U   | 10 | U   | 10 | U                 | 10 | U   | 10 | U   | 10 | U   | 10 | U   | 10 | U   | NA         | 10      | U        |
| SVOCs              | Dibenzofuran              | NC                                                                       | 4 <sup>p</sup>                                        | 10 | U   | 10 | U   | 10 | U   | 10 | U                 | 10 | U   | 10 | U   | 10 | U   | 10 | U   | 10 | U   | NA         | 10      | U        |
| SVOCs              | Diethylphthalate          | NE                                                                       | 210 <sup>d</sup>                                      | 10 | U   | 10 | U   | 10 | U   | 10 | U                 | 10 | U   | 10 | U   | 10 | U   | 10 | U   | 10 | U   | NA         | 10      | U        |
| SVOCs              | Dimethylphthalate         | NE                                                                       | NA                                                    | 10 | U   | 10 | U   | 10 | U   | 10 | U                 | 10 | U   | 10 | U   | 10 | U   | 10 | U   | 10 | U   | NA         | 10      | U        |
| SVOCs              | Fluoranthene              | NE                                                                       | 7.109 <sup>e</sup>                                    | 10 | U   | 10 | U   | 10 | U   | 10 | U                 | 10 | U   | 10 | U   | 10 | U   | 10 | U   | 10 | U   | NA         | 10      | U        |
| SVOCs              | Fluorene                  | 0.54                                                                     | 39.3 <sup>e</sup>                                     | 10 | U   | 10 | U   | 10 | U   | 10 | U                 | 10 | U   | 10 | U   | 10 | U   | 10 | U   | 10 | U   | NA         | 10      | U        |
| SVOCs              | Hexachlorobenzene         | NE                                                                       | NA                                                    | 10 | U   | 10 | U   | 10 | U   | 10 | U                 | 10 | U   | 10 | U   | 10 | U   | 10 | U   | 10 | U   | NA         | 10      | U        |
| SVOCs              | Hexachlorobutadiene       | 1 s                                                                      | NA                                                    | 10 | U   | 10 | U   | 10 | U   | 10 | U                 | 10 | U   | 10 | U   | 10 | U   | 10 | U   | 10 | U   | NA         | 10      | U        |
| SVOCs              | Hexachlorocyclopentadiene | 0.45 s                                                                   | NA                                                    | 10 | U   | 10 | U   | 10 | U   | 10 | U                 | 10 | U   | 10 | U   | 10 | U   | 10 | U   | 10 | U   | NA         | 10      | U        |
| SVOCs              | Hexachloroethane          | NE                                                                       | NA                                                    | 10 | U   | 10 | U   | 10 | U   | 10 | U                 | 10 | U   | 10 | U   | 10 | U   | 10 | U   | 10 | U   | NA         | 10      | U        |
| SVOCs              | Indeno(1,2,3-cd)Pyrene    | NE                                                                       | 0.275 <sup>e</sup>                                    | 10 | U   | 10 | U   | 10 | U   | 10 | U                 | 10 | U   | 10 | U   | 10 | U   | 10 | U   | 10 | U   | NA         | 10      | U        |
| SVOCs              | Isophorone                | NE                                                                       | NA                                                    | 10 | U   | 10 | U   | 10 | U   | 10 | U                 | 10 | U   | 10 | U   | 10 | U   | 10 | U   | 10 | U   | NA         | 10      | U        |
| SVOCs              | Naphthalene               | 13                                                                       | 193 <sup>e</sup>                                      | 10 | U   | 10 | U   | 10 | U   | 10 | U                 | 10 | U   | 10 | U   | 10 | U   | 10 | U   | 10 | U   | NA         | 10      | U        |
| SVOCs              | Nitrobenzene              | NE                                                                       | NA                                                    | 10 | U   | 10 | U   | 10 | U   | 10 | U                 | 10 | U   | 10 | U   | 10 | U   | 10 | U   | 10 | U   | NA         | 10      | U        |
| SVOCs              | Phenanthrene              | 5                                                                        | 19.13 <sup>e</sup>                                    | 10 | U   | 10 | U   | 10 | U   | 10 | U                 | 10 | U   | 10 | U   | 10 | U   | 10 | U   | 10 | U   | NA         | 10      | U        |
| SVOCs              | Pyrene                    | 4.6                                                                      | 10.11 <sup>e</sup>                                    | 10 | U   | 10 | U   | 10 | U   | 10 | U                 | 10 | U   | 10 | U   | 10 | U   | 10 | U   | 10 | U   | NA         | 10      | U        |

### Notes:

- Indicate New York State Department of Conservation Class C Waterbody Fish Propagation Ambient Water Quality Criteria for freshwater. When available, these values are used preferentially over Surface Water Screening Benchmarks from other sources.
- Indicate chronic exposure, threshold-effect type screening benchmarks from other widely cited sources of surface water screening values. The sources of these benchmarks are included in the notes below.
- The compound is regulated, however there is no criteria established for this class of surface water. NE
- There are no ambient water quality criteria for any class of water for this compound. NC
- The limits are regulatory standards as opposed to guidelines.
- Tier II, Secondary Chronic value from Suter & Tsao, 1996. These surface water screening benchmarks are from a list of screening values used by the US Environmental Protection Agency (EPA) Region 5. These screening values are intended to be protective of
- sensitive ecological receptors. The EPA Region 5 screening level document can be found at: http://www.epa.gov/reg5rcra/ca/edql.htm.
  Final Chronic Value (FCV) developed in Procedures for the Derivation of Equilibrium Partitioning Sediment Benchmarks (ESBs) for the Protection of Benthic Organisms: PAH Mixtures. US
- Environmental Protection Agency, Office of Research and Development. EPA-600-R-02-013.
- Michigan Water Quality Value, Final Chronic Value for the protection of aquatic life. Available at: http://www.michigan.gov/deq/0,1607,7-135-3313\_3686\_3728-11383--,00.html
- Indicates compound was not detected
- Indicates an estimated value detected below the reporting limit.

## **BOLD** Detected results are shown in bold font

Shading indicates that a screening level was not identified for this analyte.

Shading indicates that the Reporting Limit for the non-detect result is more than two times higher than the screening level.

10/30/2014

## Table 4 Pore Water Analytical Results Technical Impracticability Waiver Work Plan Steel Winds I

### Lackawanna, New York

| Chemical<br>Family | Analyte                 | NYS Ambient Water<br>Quality Guidance | P      | Z-2       | P      | Z-3       | (Blind D | Z-31<br>uplicate of<br>le PZ-3) | P <sup>2</sup> | Z-4       | Trip   | Blank     | Equipme | ent Blank |
|--------------------|-------------------------|---------------------------------------|--------|-----------|--------|-----------|----------|---------------------------------|----------------|-----------|--------|-----------|---------|-----------|
|                    |                         | Values <sup>1</sup>                   | 8/6/   | 2014      | 8/6/   | 2014      | 8/6/     | 2014                            | 8/6/           | 2014      | 8/6    | /2014     | 8/6/    | /2014     |
|                    |                         |                                       | Result | Oualifier | Result | Oualifier | Result   | Oualifier                       | Result         | Oualifier | Result | Oualifier | Result  | Oualifier |
| VOCs               | Benzene                 | 210                                   | 5.0    | U         | 31     |           | 32       |                                 | 30             |           | 5.0    | U         | 5.0     | U         |
| VOCs               | n-Butylbenzene          | NC                                    | 5.0    | U         | 5.0    | U         | 5.0      | U                               | 5.0            | U         | 5.0    | U         | 5.0     | U         |
| VOCs               | sec-Butylbenzene        | NC                                    | 5.0    | U         | 5.0    | U         | 5.0      | U                               | 5.0            | U         | 5.0    | U         | 5.0     | U         |
| VOCs               | Ethylbenzene            | 17                                    | 5.0    | U         | 1.3    | J         | 1.4      | J                               | 1.0            | J         | 5.0    | U         | 5.0     | U         |
| VOCs               | Isopropylbenzene        | 2.6                                   | 5.0    | U         | 5.0    | U         | 5.0      | U                               | 5.0            | U         | 5.0    | U         | 5.0     | U         |
| VOCs               | p-Isopropyltoluene      | NC                                    | 5.0    | U         | 5.0    | U         | 5.0      | U                               | 5.0            | U         | 5.0    | U         | 5.0     | U         |
| VOCs               | Methyl-Tert-Butyl-Ether | NC                                    | 5.0    | U         | 5.0    | U         | 5.0      | U                               | 5.0            | U         | 5.0    | U         | 5.0     | U         |
| VOCs               | Naphthalene             | 13                                    | 5.0    | U         | 95     |           | 100      |                                 | 180            |           | 5.0    | U         | 5.0     | U         |
| VOCs               | n-Propylbenzene         | NC                                    | 5.0    | U         | 5.0    | U         | 5.0      | U                               | 5.0            | U         | 5.0    | U         | 5.0     | U         |
| VOCs               | Tert-Butylbenzene       | NC                                    | 5.0    | U         | 5.0    | U         | 5.0      | U                               | 5.0            | U         | 5.0    | U         | 5.0     | U         |
| VOCs               | Toluene                 | 100                                   | 5.0    | U         | 6.2    |           | 6.4      |                                 | 5.3            |           | 5.0    | U         | 5.0     | U         |
| VOCs               | 1,2,4-Trimethylbenzene  | 33                                    | 5.0    | U         | 3.9    | J         | 4.2      | J                               | 3.1            | J         | 5.0    | U         | 5.0     | U         |
| VOCs               | 1,3,5-Trimethylbenzene* | 33                                    | 5.0    | U         | 4.9    | J         | 5.0      | J                               | 3.4            | J         | 5.0    | U         | 5.0     | U         |
| VOCs               | Xylene (mixed)          | 65                                    | 5.0    | U         | 24     |           | 25       |                                 | 21             |           | 5.0    | U         | 5.0     | U         |

### Notes:

- 1 Indicate New York State Department of Conservation Class C Waterbody Fish Propagation Ambient Water Quality Criteria for freshwater.
- NC There are no ambient water quality criteria for any class of water for this compound.
- \* Guidance value for 1,2,4-trimethylbenzene.
- U Indicates compound was not detected
- J Indicates an estimated value detected below the reporting limit.
- **BOLD** Detected results are shown in bold font.
  - Shading indicates that a screening level was not identified for this analyte.
  - Shading indicates that the detected concentration exceeds the screening level.

## Table 5 Sediment Analytical Results Technical Impracticability Waiver Work Plan Steel Winds I Lackawanna, New York

| Chemical<br>Family | Analyte                                       | Class A Freshwater<br>Sediment Guidance<br>Values <sup>1</sup> | Class B Freshwater<br>Sediment Guidance<br>Values <sup>1</sup> | Class C Freshwater<br>Sediment Guidance<br>Values <sup>1</sup> | Sediment<br>Screening<br>Benchmarks <sup>2</sup> | SE    | D-2       | SE    | CD-3   | (Blind D | D-31<br>uplicate of<br>e SED-3) | SE    | D-4       | S   | ED-6      | SE  | ED-7  | Trip : | Blank  | Equipm | ent Blank |
|--------------------|-----------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------|-------|-----------|-------|--------|----------|---------------------------------|-------|-----------|-----|-----------|-----|-------|--------|--------|--------|-----------|
|                    |                                               | (ug/kg)                                                        | (ug/kg)                                                        | (ug/kg)                                                        | (ug/kg)                                          |       | 2014      |       | /2014  |          | 5/2014                          |       | /2014     |     | 6/2014    |     | /2014 |        | /2014  |        | 5/2014    |
| ****               |                                               |                                                                |                                                                |                                                                |                                                  | ii    | Oualifier | 7     | _      | ii —     | Oualifier                       |       | Oualifier |     | Oualifier |     |       | ir -   |        | Result | 1         |
| VOCs               | Benzene                                       | < 530                                                          | 530 - 1,900                                                    | > 1,900                                                        | 142 <sup>n</sup>                                 | 7.3   | **        | 1.7   | J      | 3.5      | J                               | 10.0  | •         | 3.5 | U         | 3.4 | U     | 5.0    | U      | 5.0    | U         |
| VOCs               | n-Butylbenzene                                | NC<br>NG                                                       | NC<br>NC                                                       | NC<br>NG                                                       | NA NA                                            | 3.0   | U         | 5.0   | U      | 4.3      | U                               | 5.4   | U         | 3.5 | U         | 3.4 | U     | 5.0    | U      | 5.0    | U         |
| VOCs               | sec-Butylbenzene                              | NC                                                             | NC                                                             | NC                                                             | NA                                               | 3.0   | U         | 5.0   | U      | 4.3      | U                               | 5.4   | U         | 3.5 | U         | 3.4 | U     | 5.0    | U      | 5.0    | U         |
| VOCs               | Ethylbenzene                                  | < 430                                                          | 430 - 3,700                                                    | > 3,700                                                        | 175 <sup>n</sup>                                 | 3.0   | U         | 5.0   | J<br>U | 0.7      | J<br>U                          | 1.4   | U         | 3.5 | U         | 3.4 | U     | 5.0    | U<br>U | 5.0    | U         |
| VOCs               | Isopropylbenzene                              | < 210<br>NC                                                    | 210 - 1,800<br>NC                                              | > 1,800<br>NC                                                  | NA<br>NA                                         | 3.0   | U         | 5.0   | U      | 4.3      | U                               | 5.4   | U         | 3.5 | U         | 3.4 | U     |        | U      | 5.0    | U         |
| VOCs<br>VOCs       | p-Isopropyltoluene<br>Methyl-Tert-Butyl-Ether | NC<br>NC                                                       | NC<br>NC                                                       | NC<br>NC                                                       | NA NA                                            | 3.0   | U         | 5.0   | U      | 4.3      | U                               | 5.4   | U         | 3.5 | U         | 3.4 | U     | 5.0    | U      | 5.0    | U         |
| VOCs               | Naphthalene                                   | NC<br>NC                                                       | NC<br>NC                                                       | NC<br>NC                                                       | 176 <sup>g</sup>                                 | 1,500 | U         | 5.0   | $J^1$  | 31.0     | $J^1$                           | 2,200 | U         | 3.5 | U         | 3.4 | U     | 5.0    | U      | 5.0    | U         |
| VOCs               | n-Propylbenzene                               | NC<br>NC                                                       | NC<br>NC                                                       | NC<br>NC                                                       | NA                                               | 3.0   | U         | 5.0   | U      | 4.3      | U                               | 5.4   | U         | 3.5 | U         | 3.4 | U     | 5.0    | U      | 5.0    | U         |
| VOCs               | Tert-Butylbenzene                             | NC<br>NC                                                       | NC<br>NC                                                       | NC<br>NC                                                       | NA<br>NA                                         | 3.0   | IJ        | 5.0   | 0      | 4.3      | U                               | 5.4   | U         | 3.5 | U         | 3.4 | U     | 5.0    | U      | 5.0    | U         |
| VOCs               | Toluene                                       | < 930                                                          | 930 - 4,500                                                    | > 4,500                                                        | 1,220 <sup>n</sup>                               | 3.1   | - 0       | 1.0   | ī      | 1.6      | ī                               | 3.1   | ī         | 3.5 | U         | 3.4 | U     | 5.0    | U      | 5.0    | U         |
| VOCs               | 1,2,4-Trimethylbenzene                        | < 3,400                                                        | 3.400 - 30.000                                                 | > 30,000                                                       | NA                                               | 6.5   |           | 3.1   | I      | 3.9      | I                               | 4.3   | ı         | 3.5 | U         | 3.4 | U     | 5.0    | U      | 5.0    | U         |
| VOCs               | 1,3,5-Trimethylbenzene                        | NC                                                             | NC                                                             | NC                                                             | NA                                               | 7.9   |           | 5.6   | ,      | 5.2      | ,                               | 53.9  | I         | 3.5 | U         | 3.4 | U     | 5.0    | U      | 5.0    | U         |
| VOCs               | Xylene (mixed)                                | < 590                                                          | 590 - 5,200                                                    | > 5,200                                                        | NA                                               | 20.0  |           | 9.4   |        | 11.0     |                                 | 17.0  | ,         | 3.5 | U         | 3.4 | U     | 5.0    | U      | 5.0    | U         |
| SVOCs              | 1.2.4-Trichlorobenzene                        | < 35,000                                                       | 35,00 - 55,000                                                 | > 55,000                                                       | 5,062 n                                          | 370   | U         | 510   | U      | 400      | U                               | 540   | U         | 420 | U         | 410 | U     | NA     |        | 10     | U         |
| SVOCs              | 1,2-Dichlorobenzene                           | < 280                                                          | 280 - 2,500                                                    | > 2,500                                                        | 294 <sup>n</sup>                                 | 370   | U         | 510   | U      | 400      | U                               | 540   | U         | 420 | U         | 410 | U     | NA     |        | 10     | U         |
| SVOCs              | 1,3-Dichlorobenzene                           | < 1,800                                                        | 1,800 - 7,100                                                  | > 7,100                                                        | 1,315 <sup>n</sup>                               | 370   | U         | 510   | U      | 400      | U                               | 540   | U         | 420 | U         | 410 | U     | NA     |        | 10     | U         |
| SVOCs              | 1,4-Dichlorobenzene                           | < 720                                                          | 720 - 3,300                                                    | > 3,300                                                        | 318 <sup>n</sup>                                 | 370   | U         | 510   | U      | 400      | U                               | 540   | U         | 420 | U         | 410 | U     | NA     |        | 10     | U         |
| SVOCs              | 2,2'-oxybis(1-Chloropropane)                  | NC                                                             | NC                                                             | NC                                                             | NA                                               | 370   | U         | 510   | U      | 400      | U                               | 540   | U         | 420 | U         | 410 | U     | NA     |        | 10     | U         |
| SVOCs              | 2,4-Dinitrotoluene                            | NC                                                             | NC                                                             | NC                                                             | NA                                               | 370   | U         | 510   | U      | 400      | U                               | 540   | U         | 420 | U         | 410 | U     | NA     |        | 10     | U         |
| SVOCs              | 2,6-Dinitrotoluene                            | NC                                                             | NC                                                             | NC                                                             | NA                                               | 370   | U         | 510   | U      | 400      | U                               | 540   | U         | 420 | U         | 410 | U     | NA     |        | 10     | U         |
| SVOCs              | 2-Chloronaphthalene                           | NC                                                             | NC                                                             | NC                                                             | NA                                               | 370   | U         | 510   | U      | 400      | U                               | 540   | U         | 420 | U         | 410 | U     | NA     |        | 10     | U         |
| SVOCs              | 2-Methylnaphthalene                           | NC                                                             | NC                                                             | NC                                                             | NA                                               | 520   |           | 180   | J      | 120      | J                               | 880   |           | 420 | U         | 410 | U     | NA     |        | 10     | U         |
| SVOCs              | 2-Nitroaniline                                | NC                                                             | NC                                                             | NC                                                             | NA                                               | 750   | U         | 1,000 | U      | 820      | U                               | 1,100 | U         | 860 | U         | 840 | U     | NA     |        | 20     | U         |
| SVOCs              | 3,3´-Dichlorobenzidine                        | NC                                                             | NC                                                             | NC                                                             | NA                                               | 370   | U         | 510   | U      | 400      | U                               | 540   | U         | 420 | U         | 410 | U     | NA     |        | 10     | U         |
| SVOCs              | 3-Nitroaniline                                | NC                                                             | NC                                                             | NC                                                             | NA                                               | 750   | U         | 1,000 | U      | 820      | U                               | 1,100 | U         | 860 | U         | 840 | U     | NA     |        | 20     | U         |
| SVOCs              | 4-Bromophenyl-phenylether                     | NC                                                             | NC                                                             | NC                                                             | NA                                               | 370   | U         | 510   | U      | 400      | U                               | 540   | U         | 420 | U         | 410 | U     | NA     |        | 10     | U         |
| SVOCs              | 4-Chloroaniline                               | NC                                                             | NC                                                             | NC                                                             | NA                                               | 370   | U         | 510   | U      | 400      | U                               | 540   | U         | 420 | U         | 410 | U     | NA     |        | 10     | U         |
| SVOCs              | 4-Chlorophenyl-phenylether                    | NC                                                             | NC                                                             | NC                                                             | NA                                               | 370   | U         | 510   | U      | 400      | U                               | 540   | U         | 420 | U         | 410 | U     | NA     |        | 10     | U         |
| SVOCs              | 4-Nitroaniline                                | NC                                                             | NC                                                             | NC                                                             | NA                                               | 750   | U         | 1,000 | U      | 820      | U                               | 1,100 | U         | 860 | U         | 840 | U     | NA     |        | 20     | U         |
| SVOCs              | Acenaphthene                                  | NC                                                             | NC                                                             | NC                                                             | 6.71 <sup>n</sup>                                | 270   | J         | 140   | J      | 85       | J                               | 860   |           | 420 | U         | 410 | U     | NA     |        | 10     | U         |
| SVOCs              | Acenaphthylene                                | NC                                                             | NC                                                             | NC                                                             | 5.87 <sup>n</sup>                                | 230   | J         | 110   | J      | 400      | U                               | 310   | J         | 420 | U         | 410 | U     | NA     |        | 10     | U         |
| SVOCs              | Anthracene                                    | NC                                                             | NC                                                             | NC                                                             | 57.20 g                                          | 1,300 |           | 730   |        | 660      |                                 | 850   |           | 420 | U         | 410 | U     | NA     |        | 10     | U         |
| SVOCs              | Benzo(a)Anthracene                            | NC                                                             | NC                                                             | NC                                                             | 108 h                                            | 310   | J         | 300   | J      | 300      | J                               | 520   | J         | 88  | J         | 410 | U     | NA     |        | 10     | U         |
| SVOCs              | Benzo(a)Pyrene                                | NC                                                             | NC                                                             | NC                                                             | 150 h                                            | 290   | J         | 300   | J      | 320      | J                               | 570   |           | 420 | U         | 410 | U     | NA     |        | 10     | U         |
| SVOCs              | Benzo(b)Fluoranthene                          | NC                                                             | NC                                                             | NC                                                             | 10,400 <sup>n</sup>                              | 470   |           | 430   | J      | 430      |                                 | 820   |           | 100 | J         | 410 | U     | NA     |        | 10     | U         |
| SVOCs              | Benzo(g,h,i)perylene                          | NC                                                             | NC                                                             | NC                                                             | 170 <sup>n</sup>                                 | 250   | J         | 270   | J      | 250      | J                               | 510   | J         | 420 | U         | 410 | U     | NA     |        | 10     | U         |
| SVOCs              | Benzo(k)Fluoranthene                          | NC                                                             | NC                                                             | NC                                                             | 240 n                                            | 170   | J         | 170   | J      | 160      | J                               | 330   | J         | 420 | U         | 410 | U     | NA     |        | 10     | U         |
| SVOCs              | Bis(2-chloroethoxy)methane                    | NC                                                             | NC                                                             | NC                                                             | NA                                               | 370   | U         | 510   | U      | 400      | U                               | 540   | U         | 420 | U         | 410 | U     | NA     |        | 10     | U         |
| SVOCs              | Bis(2-chloroethyl)ether                       | NC                                                             | NC                                                             | NC                                                             | NA                                               | 370   | U         | 510   | U      | 400      | U                               | 540   | U         | 420 | U         | 410 | U     | NA     |        | 10     | U         |
| SVOCs              | Bis(2-ethylhexyl)phthalate                    | < 360,000                                                      | > 360,000                                                      |                                                                | 182 n                                            | 220   | J         | 510   | U      | 400      | U                               | 420   | J         | 420 | U         | 410 | U     | NA     |        | 1.4    | J         |
| SVOCs              | Butylbenzylphthalate                          | NC                                                             | NC                                                             | NC                                                             | 1,970 <sup>n</sup>                               | 370   | U         | 510   | U      | 400      | U                               | 540   | U         | 420 | U         | 410 | U     | NA     |        | 10     | U         |

## Table 5 Sediment Analytical Results Technical Impracticability Waiver Work Plan Steel Winds I Lackawanna, New York

| Chemical<br>Family | Analyte                   |         |                | Class C Freshwater<br>Sediment Guidance<br>Values <sup>1</sup> | Sediment<br>Screening<br>Benchmarks <sup>2</sup> | SE     | D-2 | SE     | D-3 | 1      | D-31<br>uplicate of<br>SED-3) | SEI    | D-4 | SE   | D-6 | SEI   | D-7                                   | Trip I | Blank | Equipme | ent Blank |
|--------------------|---------------------------|---------|----------------|----------------------------------------------------------------|--------------------------------------------------|--------|-----|--------|-----|--------|-------------------------------|--------|-----|------|-----|-------|---------------------------------------|--------|-------|---------|-----------|
| SVOCs              | Carbazole                 | NC      | NC             | NC                                                             | NA                                               | 310    | J   | 510    | U   | 82     | J                             | 790    |     | 420  | U   | 410   | U                                     | NA     |       | 10      | U         |
| SVOCs              | Chrysene                  | NC      | NC             | NC                                                             | 166 <sup>g</sup>                                 | 400    |     | 300    | J   | 310    | J                             | 620    |     | 88   | J   | 410   | U                                     | NA     |       | 10      | U         |
| SVOCs              | Dibenzo(a,h)Anthracene    | NC      | NC             | NC                                                             | 33 <sup>g</sup>                                  | 370    | U   | 510    | U   | 400    | U                             | 540    | U   | 420  | U   | 410   | U                                     | NA     |       | 10      | U         |
| SVOCs              | Dibenzofuran              | NC      | NC             | NC                                                             | 449 <sup>n</sup>                                 | 1,100  |     | 450    | J   | 310    | J                             | 1,700  |     | 420  | U   | 410   | U                                     | NA     |       | 10      | U         |
| SVOCs              | Diethylphthalate          | NC      | NC             | NC                                                             | 295 <sup>n</sup>                                 | 370    | U   | 510    | U   | 400    | U                             | 540    | U   | 420  | U   | 410   | U                                     | NA     |       | 10      | U         |
| SVOCs              | Dimethylphthalate         | NC      | NC             | NC                                                             | NA                                               | 370    | U   | 510    | U   | 400    | U                             | 540    | U   | 420  | U   | 410   | U                                     | NA     |       | 10      | U         |
| SVOCs              | Fluoranthene              | NC      | NC             | NC                                                             | 423 <sup>g</sup>                                 | 1,400  |     | 1,400  |     | 1,400  |                               | 1,400  |     | 150  | J   | 86    | J                                     | NA     |       | 10      | U         |
| SVOCs              | Fluorene                  | NC      | NC             | NC                                                             | 77 <sup>g</sup>                                  | 1,600  |     | 740    |     | 500    |                               | 2,300  |     | 420  | U   | 410   | U                                     | NA     |       | 10      | U         |
| SVOCs              | Hexachlorobenzene         | NC      | NC             | NC                                                             | 20 <sup>n</sup>                                  | 370    | U   | 510    | U   | 400    | U                             | 540    | U   | 420  | U   | 410   | U                                     | NA     |       | 10      | U         |
| SVOCs              | Hexachlorobutadiene       | < 1,200 | 1,200 - 12,000 | > 12,000                                                       | NA                                               | 370    | U   | 510    | U   | 400    | U                             | 540    | U   | 420  | U   | 410   | U                                     | NA     |       | 10      | U         |
| SVOCs              | Hexachlorocyclopentadiene | < 810   | 810 - 8,100    | > 8,100                                                        | 26.5 n                                           | 370    | U   | 510    | U   | 400    | U                             | 540    | U   | 420  | U   | 410   | U                                     | NA     |       | 10      | U         |
| SVOCs              | Hexachloroethane          | NC      | NC             | NC                                                             | NA                                               | 370    | U   | 510    | U   | 400    | U                             | 540    | U   | 420  | U   | 410   | U                                     | NA     |       | 10      | U         |
| SVOCs              | Indeno(1,2,3-cd)Pyrene    | NC      | NC             | NC                                                             | 200 <sup>n</sup>                                 | 250    | J   | 250    | J   | 240    | J                             | 520    | J   | 420  | U   | 410   | U                                     | NA     |       | 10      | U         |
| SVOCs              | Isophorone                | NC      | NC             | NC                                                             | NA                                               | 370    | U   | 510    | U   | 400    | U                             | 540    | U   | 420  | U   | 410   | U                                     | NA     |       | 10      | U         |
| SVOCs              | Naphthalene               | NC      | NC             | NC                                                             | 176 <sup>g</sup>                                 | 790    |     | 220    | J   | 140    | J                             | 1,700  |     | 420  | U   | 410   | U                                     | NA     |       | 10      | U         |
| SVOCs              | Nitrobenzene              | NC      | NC             | NC                                                             | NA                                               | 370    | U   | 510    | U   | 400    | U                             | 540    | U   | 420  | U   | 410   | U                                     | NA     |       | 10      | U         |
| SVOCs              | Phenanthrene              | NC      | NC             | NC                                                             | 204 <sup>g</sup>                                 | 6,600  | Е   | 3,400  |     | 3,000  |                               | 5,400  |     | 110  | J   | 410   | U                                     | NA     |       | 10      | U         |
| SVOCs              | Pyrene                    | NC      | NC             | NC                                                             | 195 <sup>g</sup>                                 | 980    |     | 980    |     | 990    |                               | 1,100  |     | 160  | J   | 93    | J                                     | NA     |       | 10      | U         |
| SVOCs              | Total PAHs                | < 4,000 | 4,000 - 35,000 | > 35,000                                                       | 1,610 s                                          | 16,577 |     | 9,971  |     | 8,965  |                               | 18,744 |     | 948  |     | 507   | · · · · · · · · · · · · · · · · · · · |        |       |         |           |
| Other              | Total Organic Carbon      | NA      | NA             | NA                                                             | NA                                               | 29,500 | Е   | 30,600 | Е   | 30,200 | Е                             | 36,700 | Е   | 2370 |     | 10220 | •                                     | NA     | •     | NA      |           |

### Notes:

NC No Criteria established

NA Not Applicable

Taken from Table 5 of NYSDEC's "Screening and Assessment of Contaminated Sediments", dated June 24, 2014. When available the Class A Sediment values were used preferentially as the screening values for this assessment.

Conservative, threshold-effect type sediment screening benchmarks from other widely used sources of screening values. These threshold-effect vales are analogous to the Class A Sediment threshold. Sources of these screening values are presented in the notes

below

Benchmarks taken from a compilation of ecological screening benchmarks from U.S. EPA Region 5, available at http://www.epa.gov/reg5rcra/ca/ESL.pdf.

Threshold Effect Concentrations (TECs) presented in MacDonald et al. 2000.

U Indicates compound was not detected

J Indicates an estimated value detected below the reporting limit.

J<sup>1</sup> Result flagged as estimated due to high relative percent difference value with field duplicate sample.

Indicates the compound concentration exceeded the Calibration Range.

**BOLD** Detected results are shown in bold font.

Shading indicates that a screening level was not identified for this analyte.

Shading indicates that the Reporting Limit for the non-detect result is more than two times higher than the screening level.

Shading indicates that the detected concentration exceeds the Class A Sediment threshold value, or if not available, the Sediment Screening Benchmark.

## Table 6 Toxicity Unit Evalution PAHs in Sediment

## **Techncial Impracticability Waiver Work Plan**

## Steel Winds I

### Lackawanna, New York

| Chemical<br>Family | Analyte                | Organic Carbon Normalized<br>Sediment Guidance Values <sup>1</sup> |        | SE     | D-2      |           |        | SED-3     |                |        | (Blind Duj |           |        | SED-4     |           |
|--------------------|------------------------|--------------------------------------------------------------------|--------|--------|----------|-----------|--------|-----------|----------------|--------|------------|-----------|--------|-----------|-----------|
|                    |                        | ug/gOC                                                             |        | 6/16/  |          |           |        | 6/16/2014 |                |        | 6/16/2014  |           |        | 6/16/2014 |           |
|                    |                        |                                                                    | Result |        | $TU_{i}$ | Qualifier | Result | $TU_{i}$  | Qualifier      | Result | TUi        | Qualifier |        | $TU_{i}$  | Qualifier |
| VOCs               | Naphthalene            | 385                                                                | 1,500  | 11,358 | 0.132    |           | 5.0    | 0.0004    | J <sup>1</sup> | 31.0   | 0.003      | $J^1$     | 2,200  | 0.156     |           |
| SVOCs              | 2-Chloronaphthalene    | 385                                                                | 370    | 5679   | 0.065    | U         | 510    | 0.087     | U              | 400    | 0.069      | U         | 540    | 0.076     | U         |
| SVOCs              | 2-Methylnaphthalene    | 447                                                                | 520    | 13187  | 0.039    |           | 180    | 0.013     | J              | 120    | 0.009      | J         | 880    | 0.054     |           |
| SVOCs              | Acenaphthene           | 491                                                                | 270    | 14485  | 0.019    | J         | 140    | 0.009     | J              | 85     | 0.006      | J         | 860    | 0.048     |           |
| SVOCs              | Acenaphthylene         | 452                                                                | 230    | 13334  | 0.017    | J         | 110    | 0.008     | J              | 400    | 0.059      | U         | 310    | 0.019     | J         |
| SVOCs              | Anthracene             | 594                                                                | 1300   | 17523  | 0.074    |           | 730    | 0.040     |                | 660    | 0.037      |           | 850    | 0.039     |           |
| SVOCs              | Benzo(a)Anthracene     | 841                                                                | 310    | 24810  | 0.012    | J         | 300    | 0.012     | J              | 300    | 0.012      | J         | 520    | 0.017     | J         |
| SVOCs              | Benzo(a)Pyrene         | 964                                                                | 290    | 28438  | 0.010    | J         | 300    | 0.010     | J              | 320    | 0.011      | J         | 570    | 0.016     |           |
| SVOCs              | Benzo(b)Fluoranthene   | 980                                                                | 470    | 28910  | 0.016    |           | 430    | 0.014     | J              | 430    | 0.015      |           | 820    | 0.023     |           |
| SVOCs              | Benzo(g,h,i)perylene   | 1095                                                               | 250    | 32303  | 0.008    | J         | 270    | 0.008     | J              | 250    | 0.008      | J         | 510    | 0.013     | J         |
| SVOCs              | Benzo(k)Fluoranthene   | 980                                                                | 170    | 28910  | 0.006    | J         | 170    | 0.006     | J              | 160    | 0.005      | J         | 330    | 0.009     | J         |
| SVOCs              | Chrysene               | 843                                                                | 400    | 24869  | 0.016    |           | 300    | 0.012     | J              | 310    | 0.012      | J         | 620    | 0.020     |           |
| SVOCs              | Fluoranthene           | 708                                                                | 1400   | 20886  | 0.067    |           | 1400   | 0.065     |                | 1400   | 0.065      |           | 1400   | 0.054     |           |
| SVOCs              | Fluorene               | 539                                                                | 1600   | 15901  | 0.101    |           | 740    | 0.045     |                | 500    | 0.031      |           | 2300   | 0.116     |           |
| SVOCs              | Indeno(1,2,3-cd)Pyrene | 1115                                                               | 250    | 32893  | 0.008    | J         | 250    | 0.007     | J              | 240    | 0.007      | J         | 520    | 0.013     | J         |
| SVOCs              | Naphthalene            | 385                                                                | 790    | 11358  | 0.070    |           | 220    | 0.019     | J              | 140    | 0.012      | J         | 1700   | 0.120     |           |
| SVOCs              | Phenanthrene           | 597                                                                | 6600   | 17612  | 0.375    | Е         | 3400   | 0.186     |                | 3000   | 0.166      |           | 5400   | 0.246     |           |
| SVOCs              | Pyrene                 | 698                                                                | 980    | 20591  | 0.048    |           | 980    | 0.046     |                | 990    | 0.047      |           | 1100   | 0.043     |           |
| SVOCs              | Total PAHs             | NA                                                                 | 15830  |        |          |           | 9920   |           |                | 8905   |            |           | 18690  |           |           |
|                    | $TU_t$                 |                                                                    |        |        | 8.1      |           |        | 4.8       |                |        | 4.7        |           |        | 7.5       |           |
| Other              | Total Organic Carbon   |                                                                    | 29,500 |        |          | Е         | 30,600 |           | Е              | 30,200 |            | Е         | 36,700 |           | Е         |

## Notes:


- These area organic carbon normalized screening values for PAHs from NYSDEC's "Screening and Assessment of Contaminated Sediments", dated June 24, 2014.
- $TU_i$  Toxic Unit for individual PAH compounds. Calculated as the organic carbon normalize SGV / organic carbon normalize concentration detected in the sediment sample. The organic carbon normalize concentrations were calculated as bulk concentration (ug/kg) \* Total Organic Carbon (mg/kg) \*0.001. For non-detect results, the organic carbon normalize concentration was estimated using one-half the Reporting Limit.
- Toxic Unit for total PAHs. Calculated as the sum of Tui values \* 7.87. The adjustment factor of 7.87 was included because the Toxic Unit approach is intended for use with a suite of 34 PAH compounds; this adjustment is to account for the fact that only 17 PAHs were analyzed for this data set. A TU<sub>t</sub> greater than 1 indicates that the PAHs may be toxic to exposed benthic organisms.
- U Indicates compound was not detected
- J Indicates an estimated value detected below the reporting limit.
- J<sup>1</sup> Result flagged as estimated due to high relative percent difference value with field duplicate sample.
- E Indicates the compound concentration exceeded the Calibration Range.
- **BOLD** Detected results are shown in bold font
  - Shading indicates that the Reporting Limit for the non-detect result is more than two times higher than the screening level.

## Table 7 Conceptual Remedial Cost Estimates Technical Impracticability Waiver Work Plan Steel Winds I Lackawanna, New York

| Remedial Alternative                                                 | Alternative 1:<br>Monitored<br>Natural<br>Attenuation | Alternative 2: Air Sparge Curtain-Well Points with Enhanced Denitrification System | Alternative 3: Air<br>Sparge Curtain<br>Continuous Trench<br>with Enhanced<br>Denitrification<br>System | Alternative 4:<br>Insitu Chemical<br>Oxidation | Alternative 5:<br>Hydrodynamic<br>Groundwater<br>Containment |
|----------------------------------------------------------------------|-------------------------------------------------------|------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|------------------------------------------------|--------------------------------------------------------------|
| Capital Costs                                                        | \$0                                                   | \$254,051                                                                          | \$672,929                                                                                               | \$533,500                                      | \$531,564                                                    |
|                                                                      |                                                       |                                                                                    |                                                                                                         | \$60,000 first five                            |                                                              |
|                                                                      |                                                       |                                                                                    |                                                                                                         | years, \$13,700                                |                                                              |
| Annual Operation and Maintenance Costs                               | \$13,700                                              | \$81,800                                                                           | \$93,800                                                                                                | thereafter                                     | \$175,000                                                    |
| Annual Contingency System Operation Costs                            | NA                                                    | \$82,500                                                                           | \$82,500                                                                                                | NA                                             | NA                                                           |
| Net Present Worth of Operation and Maintenance Costs <sup>1</sup>    | \$157,200                                             | \$938,611                                                                          | \$1,076,305                                                                                             | \$334,620                                      | \$1,690,401                                                  |
| Net Present Worth of Contingency System Operation Costs <sup>1</sup> | NA                                                    | \$946,643                                                                          | \$946,643                                                                                               | NA                                             | NA                                                           |
| Total Present Worth <sup>2</sup>                                     | \$157,200                                             | \$2,139,305                                                                        | \$2,695,876                                                                                             | \$868,120                                      | \$2,221,965                                                  |

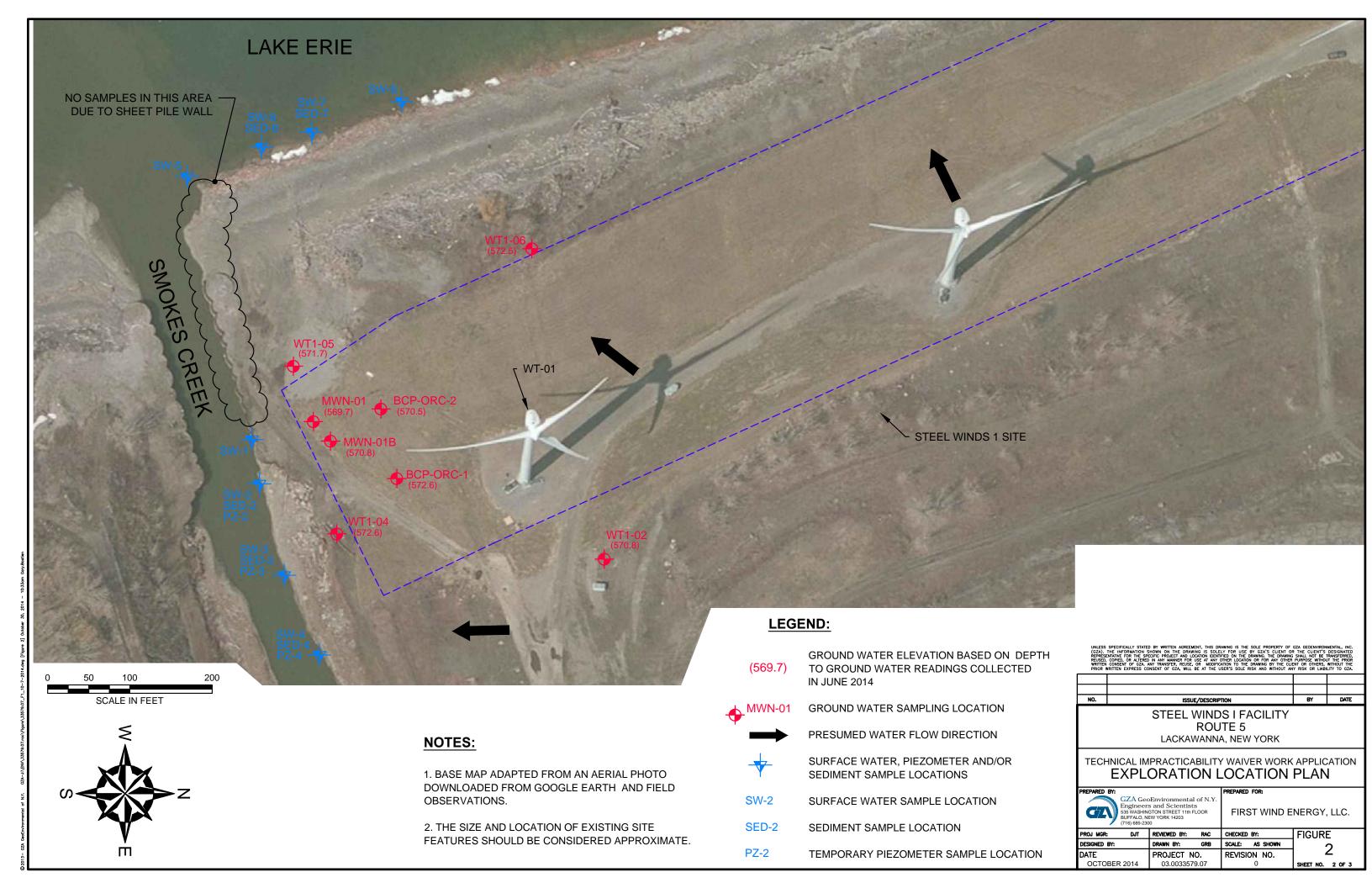
<sup>1.</sup> Assumes 30-year operation/monitoring period and discount rate of 7%.

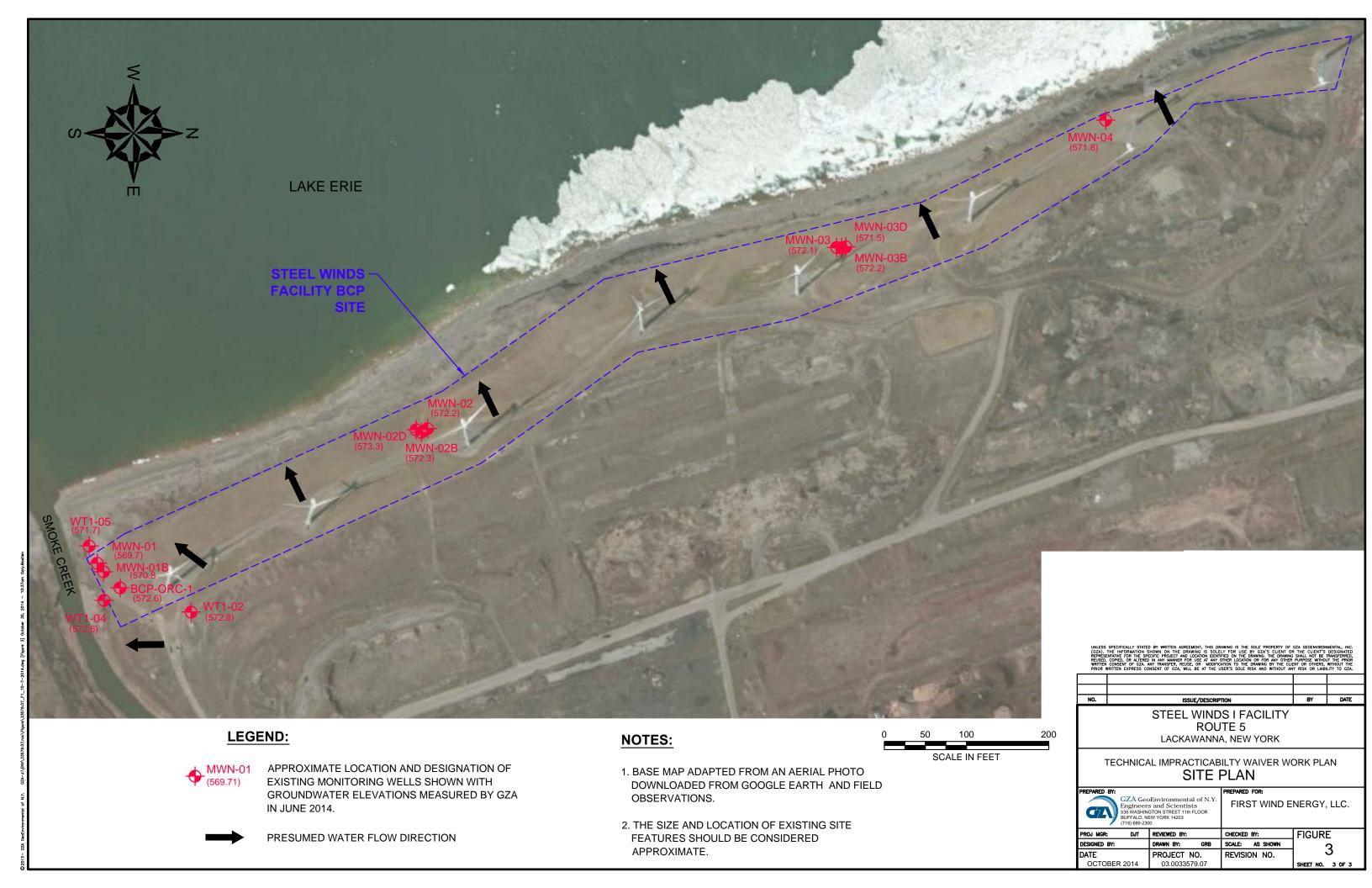
<sup>2.</sup> Includes capital costs, net present worth of operation and maintenance costs, and net present worth of contingency system operation costs.



# NEW YORK QUADRANGLE LOCATION

## SOURCE:


## BASE MAP FROM THE FOLLOWING USGS QUADRANGLE MAP: BUFFALO SE TOPO (2013)


DIGITAL TOPOGRAPHIC MAPS PROVIDED BY USGSSTORE.GOV.

CONTOUR ELEVATIONS REFERENCE NAVD 88, CONTOURS ARE SHOWN IN FEET AT 10' INTERVALS

UNLESS SPECIFICALLY STATED BY WRITTEN AGREEMENT, THIS DRAWING IS THE SOLE PROPERTY OF GZA GEOENVIRONMENTAL, INC. (GZA). THE INFORMATION SHOWN ON THE DRAWING IS SOLELY FOR USE BY GZA'S CLIENT OR THE CLIENT'S DESIGNATED REPRESENTATIVE FOR THE SPECIFIC PROJECT AND LOCATION IDENTIFIED ON THE DRAWING. THE DRAWING SHALL NOT BE TRANSFERRED, REUSED, COPIED, OR ALTREED IN ANY WANNER FOR USE AT ANY OTHER LOCATION OR FOR ANY OTHER PURPOSE WITHOUT THE PROF WRITTEN CONSENT OF GZA, ANY TRANSFER, REUSE, OR MODIFICATION TO THE DRAWING BY THE CLIENT OR OTHERS, WITHOUT THE PRIOR WRITTEN EXPRESS CONSENT OF GZA, WILL BE AT THE USER'S SOLE RISK AND WITHOUT ANY RISK OR LIABILITY TO GZA.

| ı | STEEL WINDS I FACILITY                        | PREPARED BY:  |                                                        | PREPARED FOR:   |                  |
|---|-----------------------------------------------|---------------|--------------------------------------------------------|-----------------|------------------|
|   | ROUTE 5<br>LACKAWANNA, NEW YORK               | Enginee       | Environmental, Inc.<br>rs and Scientists<br>ww.gza.com | FIRST WIND I    | ENERGY, LLC.     |
|   |                                               | PROJ MGR: DJY | REVIEWED BY: RAC                                       | CHECKED BY:     | FIGURE           |
| ۱ | TECHNICAL I IMPRACTICABILITY WAIVER WORK PLAN | DESIGNED BY:  | DRAWN BY: GRB                                          | SCALE: AS SHOWN | 4                |
| ı | LOCUS PLAN                                    | DATE:         | PROJECT NO.                                            | REVISION NO.    |                  |
| Į |                                               | OCTOBER, 2014 | 03.0033579.07                                          | 0               | SHEET NO. 1 of 3 |





## APPENDIX A

LIMITATIONS

## GZN

## GEOHYDROLOGICAL LIMITATIONS

## Use of Report

1. GZA GeoEnvironmental, Inc. (GZA) prepared this report on behalf of, and for the exclusive use of our Client for the stated purpose(s) and location(s) identified in the Proposal for Services and/or Report. Use of this report, in whole or in part, at other locations, or for other purposes, may lead to inappropriate conclusions; and we do not accept any responsibility for the consequences of such use(s). Further, reliance by any party not expressly identified in the agreement, for any use, without our prior written permission, shall be at that party's sole risk, and without any liability to GZA.

## Standard of Care

- 2. GZA's findings and conclusions are based on the work conducted as part of the Scope of Services set forth in the Proposal for Services and/or Report and reflect our professional judgment. These findings and conclusions must be considered not as scientific or engineering certainties, but rather as our professional opinions concerning the limited data gathered during the course of our work. Conditions other than described in this report may be found at the subject location(s).
- 3. GZA's services were performed using the degree of skill and care ordinarily exercised by qualified professionals performing the same type of services, at the same time, under similar conditions, at the same or a similar property. No warranty, expressed or implied, is made. Specifically, GZA does not and cannot represent that the Site contains no hazardous material, oil, or other latent condition beyond that observed by GZA during its study. Additionally, GZA makes no warranty that any response action or recommended action will achieve all of its objectives or that the findings of this study will be upheld by a local, state or federal agency.
- 4. In conducting our work, GZA relied upon certain information made available by public agencies, Client and/or others. GZA did not attempt to independently verify the accuracy or completeness of that information. Inconsistencies in this information which we have noted, if any, are discussed in the Report.

## **Subsurface Conditions**

5. The generalized soil profile(s) provided in our Report are based on widely-spaced subsurface explorations and are intended only to convey trends in subsurface conditions. The boundaries between strata are approximate and idealized, and were based on our assessment of subsurface conditions. The composition of strata, and the transitions between strata, may be more variable and more complex than indicated. For more specific information on soil conditions at a specific location refer to the exploration logs. The nature and extent of variations between these explorations may not become evident until further exploration or construction. If variations or other latent conditions then become evident, it will be necessary to reevaluate the conclusions and recommendations of this report.

April 2012 PAGE 1

6. Water level readings have been made, as described in this Report, in and monitoring wells at the specified times and under the stated conditions. These data have been reviewed and interpretations have been made in this report. Fluctuations in the level of the groundwater however occur due to temporal or spatial variations in areal recharge rates, soil heterogeneities, the presence of subsurface utilities, and/or natural or artificially induced perturbations. The observed water table may be other than indicated in the Report.

## Compliance with Codes and Regulations

7. We used reasonable care in identifying and interpreting applicable codes and regulations necessary to execute our scope of work. These codes and regulations are subject to various, and possibly contradictory, interpretations. Interpretations and compliance with codes and regulations by other parties is beyond our control.

## Screening and Analytical Testing

- 8. GZA collected environmental samples at the locations identified in the Report. These samples were analyzed for the specific parameters identified in the report. Additional constituents, for which analyses were not conducted, may be present in soil, groundwater, surface water, sediment and/or air. Future Site activities and uses may result in a requirement for additional testing.
- 9. Our interpretation of field screening and laboratory data is presented in the Report. Unless otherwise noted, we relied upon the laboratory's QA/QC program to validate these data.
- 10. Variations in the types and concentrations of contaminants observed at a given location or time may occur due to release mechanisms, disposal practices, changes in flow paths, and/or the influence of various physical, chemical, biological or radiological processes. Subsequently observed concentrations may be other than indicated in the Report.

## Interpretation of Data

11. Our opinions are based on available information as described in the Report, and on our professional judgment. Additional observations made over time, and/or space, may not support the opinions provided in the Report.

## Additional Information

12. In the event that the Client or others authorized to use this report obtain additional information on environmental or hazardous waste issues at the Site not contained in this report, such information shall be brought to GZA's attention forthwith. GZA will evaluate such information and, on the basis of this evaluation, may modify the conclusions stated in this report.

## **Additional Services**

April 2012 PAGE 2

13. GZA recommends that we be retained to provide services during any future investigations, design, implementation activities, construction, and/or property development/ redevelopment at the Site. This will allow us the opportunity to: i) observe conditions and compliance with our design concepts and opinions; ii) allow for changes in the event that conditions are other than anticipated; iii) provide modifications to our design; and iv) assess the consequences of changes in technologies and/or regulations.

April 2012 PAGE 3

## APPENDIX B

DATA USABILITY REPORT

Project No: Steel Winds

Lab Name: Spectrum Analytical, North Kingstown, Rhode Island

Site Name: Steel Winds – Lackawanna, New York

Samples Collected: 8/6/14, 7/17/14, 6/24/14, 6/25/14, and 6/26/14

22 samples

Data packages: N1104, N1400, and N1243

Matrix: Sediment/Aqueous

## **Semi Volatile Organic Compounds -- Method 8270**

Samples Collected (Client IDs):

Data Package N1104 (sample dates: 6/24/14, 6/25/14, and 6/26/14)

| WTI-02    | WTI-05    | WTI-06 |
|-----------|-----------|--------|
| BCP-ORC-2 | BCP-ORC-1 | MWN-01 |
| MWN-01B   | WTI-04    |        |

Data Package N1243 (sample dates: 7/17/14)

| SED-2  | SED-3 | SED-4 |
|--------|-------|-------|
| SED-31 |       |       |

Data Package N1400 (sample dates: 8/6/14)

| SUR-2 | SUR-3 | SUR-4 |
|-------|-------|-------|
| SUR-1 | SUR-5 | SUR-6 |
| SED-6 | SUR-7 | SED-7 |
| SUR-8 |       |       |

A modified Tier I/Tier II data validation was performed on the semi volatile organic compounds (SVOCs) analytical data for the aqueous samples collected at the Steel Winds Site in Lackawanna, New York. The laboratory, Spectrum Analytical, North Kingstown prepared and analyzed the samples in accordance with Method 8270.

The data validation was conducted in accordance with Region I, EPA-New England Environmental Data Review Supplement (April 2013), the National Functional Guidelines (October 2013).

The following items were evaluated:

- Chain of custody documents\*
- Sample log in documents \*
- Preservation and Technical Holding Times\*
- GC/MS Tuning NA
- Initial and Continuing Calibration\*
- Laboratory Blank Analyses\*
- Field Blank Analysis NA
- Matrix Spike/Matrix Spike Duplicate Results\*
- Field Duplicate Results\*
- Lab Control Samples/Duplicates\*

- Internal Standards Performance (Surrogate Recovery)\*
- TCL Compound Identification NA
- Compound Quantitation and Reported Quantitation Limits
- Tentatively Identified Compounds NA
- System Performance NA
- Data Completeness\*
  - \* All criteria met for all data packages NA – Not Applicable/Not Available

# **Overall Evaluation of Data and Potential Usability Issues**

No samples were qualified due to documentation, preservation methods or holding times.

Method blank analysis was provided for each data set. All analytes were non-detect.

Trip blanks were prepared and analyzed along with the samples submitted under each chain of custody. Equipment blanks were prepared and analyzed along with the sediment, surface water and pore water samples.

Matrix spike/matrix spike duplicates (MS/MSD) were not prepared or analyzed.

Two samples were qualified due to results associated with field duplicate analyses.

Lab control samples and duplicates (LCS/LCSD) were prepared and analyzed for all data sets. No results required qualification.

The laboratory's reporting limits (RLs) did not meet the project quantitation limit (PQL) requirements for some of the target analytes. Some samples did not meet the quantitation limits due to dilution.

A review of the chain of custody and laboratory certificates for required parameters and analytes indicates that project-required data completeness has been achieved.

### **Chain of Custody Documents**

The sampling chain of custody documents were properly signed and dated. As reported on the chains of custody, cooler temperatures upon receipt at the laboratory were as follows:

|                                                            | Cooler Temp. |  |
|------------------------------------------------------------|--------------|--|
| Samples collected 8/6/2014<br>Received 8/8/2014 at 10:30   | 2.6° C       |  |
| Samples collected 7/17/2014 Received 7/18/2014 at 12:10    | 4.2 C        |  |
| Samples collected 6/24/2014<br>Received 6/25/2014 at 10:17 | 0.4° C       |  |
| Samples collected 6/25/2014<br>Received 6/26/2014 at 10:10 | 2.8° C       |  |
| Samples collected 6/26/2014<br>Received 6/27/2014 at 09:55 | 3.8° C       |  |

Samples were transported by mail courier to the lab after each sampling round. No results were qualified based upon the cooler temperatures.

# Sample Log-in Documents

The project narrative for data package N1400 and N1243 indicate that there were no issues with the sample log in.

The project narrative for data package N1104 indicates that the chain of custody did not contain a bottle count for sample WTI-05. No results required qualification.

# **Preservation and Technical Holding Times**

Samples were collected in non-preserved bottles, as required. No results were qualified. All samples were prepared and analyzed within the method holding time.

# **GC/MS Tuning**

GC/MS instrument performance is checked and adjusted by Spectrum Analytical as part of its QA/QC plan and therefore is not included in this validation report.

# **Continuing Calibration**

The project narratives indicate that continuing calibrations were within QC limits. Forms documenting continuing calibration were not included in the data packages. No results were qualified.

### **Laboratory and Field Blank Analyses**

Method blank analysis was provided for each data set. All analytes were non-detect. No results required qualification.

Equipment blanks were provided with the sediment samples. Bis(2-ethylhexyl)phthalate was detected below the quantitation limit in the equipment blank for samples SED-2, SED-3, SED-4 and SED-31. The results for Bis(20ethylhexyl)phthalate were above the equipment blank result and above the quantitation limit for samples SED-2 and SED-4. The result for sample SED-3 was non-detect. No results required qualification.

# Field Duplicates

Data Package N1400: Field Duplicate is the duplicate of SUR-3. All of the results were non-detect in both samples. Therefore, no results required qualification.

Data Package N1104: Field Duplicate is the duplicate of MWN-01B. The results with differing values are listed in the table below

| Parameter    | MWN-01B | Field Duplicate | %RPD |
|--------------|---------|-----------------|------|
| Naphthalene  | 700     | 590             | 17   |
| Acenaphthene | 12      | 19              | 45   |
| Phenanthrene | 67      | 68              | 1.5  |
| Pyrene       | 6.6     | 7.1             | 7    |

The RPD for acenaphthene was greater than 30% in the field duplicate samples. Therefore, the positive result in both samples were qualified as estimated J.

Data Package N1243: SED-31 is the duplicate of SED-3. The results with differing values are listed in the table below

| Parameter              | SED-3 | SED-31 | %RPD |
|------------------------|-------|--------|------|
| Naphthalene            | 220   | 140    | 44   |
| 2-methylnaphthalene    | 180   | 120    | 40   |
| Acenaphthylene         | 110   | ND     | NA   |
| Acenaphthene           | 140   | 85     | 48   |
| Dibenzofuran           | 450   | 310    | 37   |
| Fluorene               | 740   | 500    | 38   |
| Phenanthrene           | 3400  | 3000   | 13   |
| Anthracene             | 730   | 660    | 10   |
| Carbazole              | ND    | 82     | NA   |
| Pyrene                 | 980   | 990    | 1    |
| Chrysene               | 300   | 310    | 3    |
| Benzo(k)fluoranthene   | 170   | 160    | 6    |
| Benzo(a)pyrene         | 300   | 320    | 6    |
| Indeno(1,2,3-cd)pyrene | 250   | 240    | 4    |
| Benzo(g,h,i)perylene   | 270   | 250    | 7    |

All of the RPD for the field duplicates were below 50%. Therefore no results required qualification. The positive detect for Acenaphthylene in sample SED-3 was less than twice the quantitation limit, therefore the result did not require qualification. The positive detect for Carbazole in sample SED-31 was less than twice the quantitation limit, therefore the result did not require qualification.

### **Lab Control Samples/Duplicates**

LCS/LCSD analysis was completed for all data sets. None of the analytes had %R values outside QC limits. No results required qualification.

# **Internal Standards Performance (Surrogate Recovery)**

The project narratives for data packages N1400 and N1243 indicate that the surrogate recoveries were all within QC limits. Forms documenting internal standard area and retention time were included with each data package. All of the internal standards were within QC criteria. No results were qualified.

The project narrative for data package N1104 indicates that the surrogate recovery was below QC criteria for Terphenyl-d14. Due to the fact that only one surrogate result wa outside QC limits, no sample results were qualified. Forms documenting internal standard area and retention time were included with each data package. All of the internal standards were within QC criteria. No results were qualified.

# **Compound Quantitation and Reported Quantitation Limits**

The laboratory's reporting limits (RLs) did not meet the project quantitation limit (PQL) requirements for target analytes in sediment samples and for certain analytes in surface water and groundwater. In general, elevated RLs appear attributable to observed contamination and we do not believe the elevated RLs are a QA/QC issue. The following samples did not meet the quantitation limits due to dilution: SED-2, WTI-06, MWN-01, and MWN-01B.

# **Data Completeness**

A review of the chain of custody and laboratory certificates for required parameters and analytes indicates that 90 percent project-required data completeness has been achieved.

Table 1 – SVOC Recommendations Summary

| Sample ID | Matrix   | Action |
|-----------|----------|--------|
| WTI-02    | Aqueous  | Α      |
| WTI-05    | Aqueous  | Α      |
| WTI-06    | Aqueous  | А      |
| BCP-ORC-2 | Aqueous  | А      |
| BCP-ORC-1 | Aqueous  | А      |
| MWN-01    | Aqueous  | А      |
| MWN-01B   | Aqueous  | J      |
| WTI-04    | Aqueous  | Α      |
| SED-2     | Sediment | A      |
| SED-3     | Sediment | Α      |
| SED-4     | Sediment | Α      |
| SED-31    | Sediment | Α      |
| SUR-2     | Aqueous  | A      |
| SUR-3     | Aqueous  | Α      |
| SUR-4     | Aqueous  | Α      |
| SUR-1     | Aqueous  | A      |
| SUR-5     | Aqueous  | A      |
| SUR-6     | Aqueous  | A      |
| SED-6     | Sediment | A      |
| SUR-7     | Aqueous  | A      |
| SED-7     | Sediment | A      |
| SUR-8     | Aqueous  | A      |

A Accept all results

J Qualify results for Acenaphthene as estimated J due to high RPD in field duplicates

Project No: Steel Winds

Lab Name: Spectrum Analytical, North Kingstown, Rhode Island

Site Name: Steel Winds – Lackawanna, New York

Samples Collected: 8/6/14, 7/17/14, 6/24/14, 6/25/14, and 6/26/14

25 samples

Data packages: N1104, N1400, and N1243

Matrix: Aqueous

# **Volatile Organic Compounds -- Method 8260**

Samples Collected (Client IDs):

Data Package N1104 (sample dates: 6/24/14, 6/25/14, and 6/26/14)

| WTI-02    | WTI-05    | WTI-06 |
|-----------|-----------|--------|
| BCP-ORC-2 | BCP-ORC-1 | MWN-01 |
| MWN-01B   | WTI-04    |        |

Data Package N1243 (sample dates: 7/17/14)

| SED-2  | SED-3 | SED-4 |
|--------|-------|-------|
| SED-31 |       |       |

Data Package N1400 (sample dates: 8/6/14)

| SUR-2 | SUR-3 | SUR-4 |
|-------|-------|-------|
| SUR-1 | SUR-5 | SUR-6 |
| SED-6 | SUR-7 | SED-7 |
| SUR-8 | PW-2  | PW-3  |
| PW-4  |       |       |

A modified Tier I/Tier II data validation was performed on the semi volatile organic compounds (SVOCs) analytical data for the aqueous samples collected at the Steel Winds Site in Lackawanna, New York. The laboratory, Spectrum Analytical, North Kingstown prepared and analyzed the samples in accordance with Method 8270.

The data validation was conducted in accordance with Region I, EPA-New England Environmental Data Review Supplement (April 2013), and the National Functional Guidelines (October 2013).

The following items were evaluated:

- Chain of custody documents \*
- Sample log in documents\*
- Preservation and Technical Holding Times\*
- GC/MS Tuning NA
- Initial and Continuing Calibration\*
- Laboratory Blank Analyses\*
- Field Blank Analysis
- Matrix spike/Matrix Spike Duplicate Results
- Laboratory Duplicate Analysis NA

- Field Duplicate Results
- Lab Control Samples/Duplicates
- Internal Standards Performance (Surrogate Recovery)\*
- TCL Compound Identification NA
- Compound Quantitation and Reported Quantitation Limits\*
- Tentatively Identified Compounds NA
- System Performance NA
- Data Completeness\*
  - \* All criteria met for all data packages NA – Not Applicable/Not Available

# Overall Evaluation of Data and Potential Usability Issues

No samples were qualified due to documentation, preservation methods or holding times.

Method blank analysis was provided at the required frequency. No analytes were detected in any laboratory blank samples.

Trip blanks were prepared and analyzed along with the samples submitted under each chain of custody. Equipment blanks were prepared and analyzed along with the sediment, surface water and pore water samples.

Matrix spike/matrix spike duplicates was not performed.

Field duplicates were prepared and analyzed, none of the results required qualification.

Lab control samples and duplicates (LCS/LCSD) were prepared and analyzed at the required frequency. None of the results required qualification.

%R values for all surrogates were inside QC limits for all data packages.

Project quantitation limits were satisfied for all analytes.

A review of the laboratory certificates for required parameters and analytes indicates that project-required completeness has been achieved.

### **Chain of Custody Documents**

The sampling chain of custody documents were properly signed and dated. As reported on the chains of custody, cooler temperatures upon receipt at the laboratory were as follows:

|                                                            | Cooler Temp. |
|------------------------------------------------------------|--------------|
| Samples collected 8/6/2014<br>Received 8/8/2014 at 10:30   | 2.6° C       |
| Samples collected 7/17/2014<br>Received 7/18/2014 at 12:10 | 4.2 C        |
| Samples collected 6/24/2014<br>Received 6/25/2014 at 10:17 | 0.4° C       |
| Samples collected 6/25/2014                                | 2.8° C       |

| Received 6/26/2014 at 10:10                                |        |
|------------------------------------------------------------|--------|
| Samples collected 6/26/2014<br>Received 6/27/2014 at 09:55 | 3.8° C |

Samples were transported by mail courier to the lab after each sampling round. No results were qualified based upon the cooler temperatures.

# **Sample Log-in Documents**

The project narrative for data package N1400 and N1243 indicate that there were no issues with the sample log in.

The project narrative for data package N1104 indicates that the chain of custody did not contain a bottle count for sample WTI-05. No results required qualification.

# **Preservation and Technical Holding Times**

VOC samples were collected as required per the methods used. All samples were prepared and analyzed within the method holding time.

# **Initial and Continuing Calibration**

The project narratives indicate that continuing calibrations were within QC limits. Forms documenting continuing calibration were not included in the data packages. No results were qualified.

# **Laboratory Blank Analyses**

Method blank analyses was performed. No analytes were detected in any laboratory blank samples.

### Field Blank Analyses

A trip blank was prepared and analyzed along with the samples submitted under each chain of custody. All of the results in the trip blanks were non-detect. Equipment blanks were also prepared and analyzed for the sediment, surface water and pore water samples. All of the results were non-detect. No results required qualification.

# **Laboratory Duplicates**

Lab control sample duplicates were prepared and analyzed. All of the RPD results were within quality control criteria. No results required qualification.

# **Field Duplicates**

Data Package N1400: Field Duplicate is the duplicate of SUR-3. The results with differing values are listed in the table below

| Parameter   | SUR-3 | Field Duplicate | %RPD |
|-------------|-------|-----------------|------|
| Naphthalene | 1.8   | 1.6             | 12   |

The RPD was less than 30% therefore the results did not require qualification.

Data Package N1400: Field Duplicate2 is the duplicate of PW-3. The results with differing values are listed in the table below

| Parameter              | PW-3 | Field Duplicate | %RPD |
|------------------------|------|-----------------|------|
| Benzene                | 31   | 32              | 3    |
| Toluene                | 6.2  | 6.4             | 3    |
| Ethylbenzene           | 1.3  | 1.4             | 7    |
| m,p-Xylene             | 13   | 14              | 7    |
| Xylene Total           | 24   | 25              | 4    |
| 1,3,5-Trimethylbenzene | 4.9  | 5.0             | 2    |
| 1,2,4-Trimethylbenzene | 3.9  | 4.2             | 7    |
| Naphthalene            | 95   | 100             | 5    |

All of the RPDs were less than 30% therefore, none of the results required qualification.

Data Package N1104: Field Duplicate is the duplicate of MWN-01B. The results with differing values are listed in the table below

| Parameter              | MWN-01B | Field Duplicate | %RPD |
|------------------------|---------|-----------------|------|
| Benzene                | 85      | 88              | 3    |
| m,p-Xylene             | 15      | 16              | 6    |
| o-Xylene               | 9.8     | 9.9             | 1    |
| Xylene total           | 25      | 26              | 4    |
| Isopropylbenzene       | 1.8     | 1.7             | 6    |
| 1,3,5-Trimethylbenzene | 5.7     | 5.4             | 5    |
| 1,2,4-Trimethylbenzene | 8.2     | 7.9             | 4    |
| Naphthalene            | 1800    | 1200            | 40   |

The RPD for naphthalene was greater than 30% therefore the positive results in the associated samples were qualified as estimated J.

Data Package N1243: SED-31 is the duplicate of SED-3. The results with differing values are listed in the table below

| Parameter              | SED-3 | SED-31 | %RPD |
|------------------------|-------|--------|------|
| Benzene                | 1.7   | 3.5    | 69   |
| Toluene                | 1.0   | 1.6    | 46   |
| Ethylbenzene           | 0.67  | 0.71   | 6    |
| m,p-Xylene             | 5.3   | 6.5    | 20   |
| o-Xylene               | 4.2   | 4.8    | 13   |
| Xylene total           | 9.4   | 11     | 16   |
| 1,3,5-Trimethylbenzene | 5.6   | 5.2    | 7    |
| 1,2,4-Trimethylbenzene | 3.1   | 3.9    | 23   |
| Naphthalene            | ND    | 31     | NA   |

The result for Naphthalene in sample SED-3 was qualified as estimated UJ due to the difference between field duplicates. The result in sample SED-31 was qualified as estimated J due to the difference between field duplicates. The positive results for benzene in the associated samples were qualified as estimated J due to High RPD in the field duplicates.

# **Lab Control Samples/Duplicates**

LCS/LCSD analysis was completed for all data sets. Analytes with %R and %RPD values outside QC limits were as follows:

# Data packages N1400:

# LCS/LCSD:

| Compound    | %R  | Qualifier for<br>Positive<br>Results | Qualifier<br>for Non-<br>detects | Samples<br>Associated with<br>LCS/LCSD |
|-------------|-----|--------------------------------------|----------------------------------|----------------------------------------|
| Naphthalene | 127 | J                                    | А                                | SED-6<br>SED-7                         |

The results in the associated samples were non-detect and were accepted.

# **Internal Standards Performance (Surrogate Recovery)**

The project narrative indicates that all of the surrogate recoveries were within QC limits. No results required qualification.

# Compound Quantitation and Reported Quantitation Limits

Project quantitation limits were satisfied for all analytes except for the following samples which did not meet the project quantitation limits due to dilution: WTI-06, MWN-01, and MWN-01B.

### **Data Completeness**

A review of the chain of custody and laboratory certificates for required parameters and analytes indicates that the project-required completeness of 90% has been achieved.

Table 1 - VOC Recommendations Summary

| Sample ID | Matrix   | Action |
|-----------|----------|--------|
| WTI-02    | Aqueous  | A      |
| WTI-05    | Aqueous  | A      |
| WTI-06    | Aqueous  | A      |
| BCP-ORC-2 | Aqueous  | A      |
| BCP-ORC-1 | Aqueous  | A      |
| MWN-01    | Aqueous  | A      |
| MWN-01B   | Aqueous  | J      |
| WTI-04    | Aqueous  | A      |
| SED-2     | Sediment | A      |
| SED-3     | Sediment | UJ     |
| SED-4     | Sediment | A      |
| SED-31    | Sediment | J      |
| SUR-2     | Aqueous  | А      |
| SUR-3     | Aqueous  | А      |
| SUR-4     | Aqueous  | A      |
| SUR-1     | Aqueous  | А      |
| SUR-5     | Aqueous  | A      |
| SUR-6     | Aqueous  | A      |
| SED-6     | Sediment | А      |
| SUR-7     | Aqueous  | A      |
| SED-7     | Sediment | A      |
| SUR-8     | Aqueous  | A      |
| PW-2      | Aqueous  | A      |
| PW-3      | Aqueous  | A      |
| PW-4      | Aqueous  | A      |

# A Accept all results

- $\begin{array}{ll} \textbf{J} & \textbf{Qualify as estimated for naphthalene due to high RPD in field duplicates.} \\ \textbf{UJ} & \textbf{Qualify as estimated for naphthalene due to high RPD in field duplicates.} \\ \textbf{J}^1 & \textbf{Qualify as estimated for benzene due to high RPD in field duplicates.} \\ \end{array}$

# APPENDIX C

LABORATORY CERTIFICATES



| ✓ Final Report | ort    |
|----------------|--------|
| Re-Issued      | Report |
| Revised R      | eport  |

# Laboratory Report

GZA GeoEnvironmental, Inc. 535 Washington Street, 11th Floor

Buffalo, NY 14203

Attn: John Beninati

Work Order: N1104 Project: Steelwinds 1

Project #:

| I shamtama ID        | Client Councils ID     | Manda         | Data Camalad    | Data Danaina d  |
|----------------------|------------------------|---------------|-----------------|-----------------|
| <u>Laboratory ID</u> | Client Sample ID       | <u>Matrix</u> | Date Sampled    | Date Received   |
| N1104-01             | MWN-04-062414          | Aqueous       | 24-Jun-14 10:10 | 25-Jun-14 10:17 |
| N1104-02             | MWN-03B-062414         | Aqueous       | 24-Jun-14 11:50 | 25-Jun-14 10:17 |
| N1104-03             | MWN-03D-062414         | Aqueous       | 24-Jun-14 15:05 | 25-Jun-14 10:17 |
| N1104-04             | MWN-03-062414          | Aqueous       | 24-Jun-14 17:00 | 25-Jun-14 10:17 |
| N1104-05             | TRIP BLANK 001         | Aqueous       | 24-Jun-14 00:00 | 25-Jun-14 10:17 |
| N1104-06             | MWM-02-062514          | Aqueous       | 25-Jun-14 09:25 | 26-Jun-14 10:10 |
| N1104-07             | MWN-02B-062514         | Aqueous       | 25-Jun-14 10:30 | 26-Jun-14 10:10 |
| N1104-08             | MWN-02D-062514         | Aqueous       | 25-Jun-14 11:35 | 26-Jun-14 10:10 |
| N1104-09             | WT1-02-062514          | Aqueous       | 25-Jun-14 13:40 | 26-Jun-14 10:10 |
| N1104-10             | WT1-05-062514          | Aqueous       | 25-Jun-14 15:20 | 26-Jun-14 10:10 |
| N1104-11             | TRIP BLANK 2           | Aqueous       | 25-Jun-14 00:00 | 26-Jun-14 10:10 |
| N1104-12             | WT1-06-062614          | Aqueous       | 26-Jun-14 17:20 | 27-Jun-14 09:55 |
| N1104-13             | BCP-ORC-2-062614       | Aqueous       | 26-Jun-14 16:05 | 27-Jun-14 09:55 |
| N1104-14             | BCP-ORC-1-062614       | Aqueous       | 26-Jun-14 14:50 | 27-Jun-14 09:55 |
| N1104-15             | MWN-01-062614          | Aqueous       | 26-Jun-14 08:35 | 27-Jun-14 09:55 |
| N1104-16             | MWN-01B-062614         | Aqueous       | 26-Jun-14 09:55 | 27-Jun-14 09:55 |
| N1104-17             | WT1-04-062614          | Aqueous       | 26-Jun-14 11:40 | 27-Jun-14 09:55 |
| N1104-18             | FIELD DUPLICATE 062614 | Aqueous       | 26-Jun-14 00:00 | 27-Jun-14 09:55 |

I attest that the information contained within the report has been reviewed for accuracy and checked against the quality control requirements for each method. The results relate only to the samples(s) as received. This report may not be reproduced, except in full, without written approval from Spectrum Analytical.

All applicable NELAC or USEPA CLP requirments have been meet.

Spectrum Analytical (Rhode Island) is accredited under the National Environmental Laboratory Approval Program (NELAP) and DoD Environmental Laboratory Accreditation Program (ELAP), holds Organic and Inorganic contracts under the USEPA CLP Program and is certified under several states. The current list of our laboratory approvals and certifications is available on the Certifications page on our web site at www.spectrum-analytical.com.

Please contact the Laboratory or Technical Director at 401-732-3400 with any questions regarding the data contained in the laboratory report.

Department of Defense PH-0153 Connecticut Delaware N/A Florida E87664 Maine 2007037 Massachusetts M-RI907 New Hampshire 2631 New Jersey RI001 New York 11522 Rhode Island LAI00301 USDA P330-08-00023 USEPA - ISM EP-W-09-039 USEPA - SOM EP-W-11-033





Authorized by:

Yihai Ding Laboratory Director



\* Data Summary Pack \*

# **New York State Department of Environmental Conservation Sample Identification and Analytical Requirements Summary**

Project Name: Steelwinds 1 SDG: N1104

|                       |                         |                   | Analy              | tical Requirement | ts       |          |
|-----------------------|-------------------------|-------------------|--------------------|-------------------|----------|----------|
| Customer<br>Sample ID | Laboratory<br>Sample ID | MSVOA<br>Method # | MSSEMI<br>Method # | GC* Method #      | ME       | Other    |
| MWN-04-062414         | N1104-01                | SW8260_W          | SW8270_W           |                   |          |          |
| MWN-03B-062414        | N1104-02                |                   |                    |                   | SW6010_W |          |
| MWN-03D-062414        | N1104-03                | SW8260_W          | SW8270_W           |                   | SW6010_W |          |
| MWN-03-062414         | N1104-04                | SW8260_W          | SW8270_W           |                   |          |          |
| TRIP BLANK 001        | N1104-05                | SW8260_W          |                    |                   |          |          |
| MWM-02-062514         | N1104-06                | SW8260_W          | SW8270_W           |                   |          |          |
| MWN-02B-062514        | N1104-07                | SW8260_W          | SW8270_W           |                   | SW6010_W |          |
| MWN-02D-062514        | N1104-08                |                   |                    |                   | SW6010_W |          |
| WT1-02-062514         | N1104-09                | SW8260_W          | SW8270_W           |                   | SW6010_W | SEE DATA |
| WT1-05-062514         | N1104-10                | SW8260_W          | SW8270_W           |                   | SW6010_W | SEE DATA |
| TRIP BLANK 2          | N1104-11                | SW8260_W          |                    |                   |          |          |
| WT1-06-062614         | N1104-12                | SW8260_W          | SW8270_W           |                   | SW6010_W | SEE DATA |
| BCP-ORC-2-062614      | N1104-13                | SW8260_W          | SW8270_W           |                   | SW6010_W | SEE DATA |
| BCP-ORC-1-062614      | N1104-14                | SW8260_W          | SW8270_W           |                   | SW6010_W | SEE DATA |
| MWN-01-062614         | N1104-15                | SW8260_W          | SW8270_W           |                   | SW6010_W | SEE DATA |
| MWN-01B-062614        | N1104-16                | SW8260_W          | SW8270_W           |                   | SW6010_W | SEE DATA |
| WT1-04-062614         | N1104-17                | SW8260_W          | SW8270_W           |                   | SW6010_W | SEE DATA |
| FIELD DUPLICATE 0620  | 614 N1104-18            | SW8260_W          | SW8270_W           |                   | SW6010_W | SEE DATA |

**Page 1** 07/21/2014 13:06

# New York State Department of Environmental Conservation Sample Preparation and Analysis Summary MSVOA

Project Name: Steelwinds 1 SDG: N1104

| Laboratory  |        | Date      | Date Received | Date      | Date     |
|-------------|--------|-----------|---------------|-----------|----------|
| Sample ID   | Matrix | Collected | By Lab        | Extracted | Analyzed |
| SW8260_W    |        |           |               |           |          |
| N1104-01A   | AQ     | 6/24/2014 | 6/25/2014     | NA        | 7/2/2014 |
| N1104-03A   | AQ     | 6/24/2014 | 6/25/2014     | NA        | 7/2/2014 |
| N1104-04A   | AQ     | 6/24/2014 | 6/25/2014     | NA        | 7/2/2014 |
| N1104-05A   | AQ     | 6/24/2014 | 6/25/2014     | NA        | 7/2/2014 |
| N1104-06A   | AQ     | 6/25/2014 | 6/26/2014     | NA        | 7/2/2014 |
| N1104-07A   | AQ     | 6/25/2014 | 6/26/2014     | NA        | 7/2/2014 |
| N1104-07ADL | AQ     | 6/25/2014 | 6/26/2014     | NA        | 7/3/2014 |
| N1104-09A   | AQ     | 6/25/2014 | 6/26/2014     | NA        | 7/3/2014 |
| N1104-10A   | AQ     | 6/25/2014 | 6/26/2014     | NA        | 7/2/2014 |
| N1104-11A   | AQ     | 6/25/2014 | 6/26/2014     | NA        | 7/2/2014 |
| N1104-12A   | AQ     | 6/26/2014 | 6/27/2014     | NA        | 7/2/2014 |
| N1104-12ADL | AQ     | 6/26/2014 | 6/27/2014     | NA        | 7/3/2014 |
| N1104-13A   | AQ     | 6/26/2014 | 6/27/2014     | NA        | 7/3/2014 |
| N1104-14A   | AQ     | 6/26/2014 | 6/27/2014     | NA        | 7/2/2014 |
| N1104-15A   | AQ     | 6/26/2014 | 6/27/2014     | NA        | 7/2/2014 |
| N1104-15ADL | AQ     | 6/26/2014 | 6/27/2014     | NA        | 7/3/2014 |
| N1104-16A   | AQ     | 6/26/2014 | 6/27/2014     | NA        | 7/2/2014 |
| N1104-16ADL | AQ     | 6/26/2014 | 6/27/2014     | NA        | 7/3/2014 |
| N1104-17A   | AQ     | 6/26/2014 | 6/27/2014     | NA        | 7/8/2014 |
| N1104-18A   | AQ     | 6/26/2014 | 6/27/2014     | NA        | 7/3/2014 |
| N1104-18ADL | AQ     | 6/26/2014 | 6/27/2014     | NA        | 7/8/2014 |

Page 2 07/21/2014 13:06

# New York State Department of Environmental Conservation Sample Preparation and Analysis Summary MSSEMI

Project Name: Steelwinds 1 SDG: N1104

| Laboratory  |        | Date      | Date Received | Date      | Date      |
|-------------|--------|-----------|---------------|-----------|-----------|
| Sample ID   | Matrix | Collected | By Lab        | Extracted | Analyzed  |
| SW8270_W    |        |           |               |           |           |
| N1104-01B   | AQ     | 6/24/2014 | 6/25/2014     | 6/27/2014 | 7/11/2014 |
| N1104-03B   | AQ     | 6/24/2014 | 6/25/2014     | 6/27/2014 | 7/11/2014 |
| N1104-04B   | AQ     | 6/24/2014 | 6/25/2014     | 6/27/2014 | 7/11/2014 |
| N1104-06B   | AQ     | 6/25/2014 | 6/26/2014     | 6/27/2014 | 7/11/2014 |
| N1104-07B   | AQ     | 6/25/2014 | 6/26/2014     | 6/27/2014 | 7/11/2014 |
| N1104-07BDL | AQ     | 6/25/2014 | 6/26/2014     | 6/27/2014 | 7/13/2014 |
| N1104-09F   | AQ     | 6/25/2014 | 6/26/2014     | 6/27/2014 | 7/11/2014 |
| N1104-10F   | AQ     | 6/25/2014 | 6/26/2014     | 6/27/2014 | 7/11/2014 |
| N1104-12E   | AQ     | 6/26/2014 | 6/27/2014     | 6/27/2014 | 7/11/2014 |
| N1104-12EDL | AQ     | 6/26/2014 | 6/27/2014     | 6/27/2014 | 7/13/2014 |
| N1104-13E   | AQ     | 6/26/2014 | 6/27/2014     | 6/27/2014 | 7/11/2014 |
| N1104-14E   | AQ     | 6/26/2014 | 6/27/2014     | 6/27/2014 | 7/11/2014 |
| N1104-15E   | AQ     | 6/26/2014 | 6/27/2014     | 6/27/2014 | 7/11/2014 |
| N1104-15EDL | AQ     | 6/26/2014 | 6/27/2014     | 6/27/2014 | 7/13/2014 |
| N1104-16E   | AQ     | 6/26/2014 | 6/27/2014     | 6/27/2014 | 7/11/2014 |
| N1104-16EDL | AQ     | 6/26/2014 | 6/27/2014     | 6/27/2014 | 7/13/2014 |
| N1104-17E   | AQ     | 6/26/2014 | 6/27/2014     | 6/27/2014 | 7/11/2014 |
| N1104-18E   | AQ     | 6/26/2014 | 6/27/2014     | 6/27/2014 | 7/11/2014 |
| N1104-18EDL | AQ     | 6/26/2014 | 6/27/2014     | 6/27/2014 | 7/13/2014 |

**Page 3** 07/21/2014 13:06

# New York State Department of Environmental Conservation Sample Preparation and Analysis Summary MSVOA

Project Name: Steelwinds 1 SDG: N1104

| Laboratory  |        | Analytical | Extraction | Low/Medium | Dil/Conc |
|-------------|--------|------------|------------|------------|----------|
| Sample ID   | Matrix | Protocol   | Method     | Level      | Factor   |
| SW8260_W    |        |            |            | -          |          |
| N1104-01A   | AQ     | SW8260_W   | NA         | LOW        | 1        |
| N1104-03A   | AQ     | SW8260_W   | NA         | LOW        | 1        |
| N1104-04A   | AQ     | SW8260_W   | NA         | LOW        | 1        |
| N1104-05A   | AQ     | SW8260_W   | NA         | LOW        | 1        |
| N1104-06A   | AQ     | SW8260_W   | NA         | LOW        | 1        |
| N1104-07A   | AQ     | SW8260_W   | NA         | LOW        | 1        |
| N1104-07ADL | AQ     | SW8260_W   | NA         | LOW        | 4        |
| N1104-09A   | AQ     | SW8260_W   | NA         | LOW        | 1        |
| N1104-10A   | AQ     | SW8260_W   | NA         | LOW        | 1        |
| N1104-11A   | AQ     | SW8260_W   | NA         | LOW        | 1        |
| N1104-12A   | AQ     | SW8260_W   | NA         | LOW        | 1        |
| N1104-12ADL | AQ     | SW8260_W   | NA         | LOW        | 2        |
| N1104-13A   | AQ     | SW8260_W   | NA         | LOW        | 1        |
| N1104-14A   | AQ     | SW8260_W   | NA         | LOW        | 1        |
| N1104-15A   | AQ     | SW8260_W   | NA         | LOW        | 1        |
| N1104-15ADL | AQ     | SW8260_W   | NA         | LOW        | 4        |
| N1104-16A   | AQ     | SW8260_W   | NA         | LOW        | 1        |
| N1104-16ADL | AQ     | SW8260_W   | NA         | LOW        | 20       |
| N1104-17A   | AQ     | SW8260_W   | NA         | LOW        | 1        |
| N1104-18A   | AQ     | SW8260_W   | NA         | LOW        | 1        |
| N1104-18ADL | AQ     | SW8260_W   | NA         | LOW        | 50       |

**Page 5** 07/21/2014 13:06

# New York State Department of Environmental Conservation Sample Preparation and Analysis Summary MSSEMI

Project Name: Steelwinds 1 SDG: N1104

| Laboratory  |        | Analytical | Extraction | Auxiliary | Dil/Conc |
|-------------|--------|------------|------------|-----------|----------|
| Sample ID   | Matrix | Protocol   | Method     | Cleanup   | Factor   |
| SW8270_W    |        |            |            |           | •        |
| N1104-01B   | AQ     | SW8270_W   | 3550C      | N/A       | 1        |
| N1104-03B   | AQ     | SW8270_W   | 3550C      | N/A       | 1        |
| N1104-04B   | AQ     | SW8270_W   | 3550C      | N/A       | 1        |
| N1104-06B   | AQ     | SW8270_W   | 3550C      | N/A       | 1        |
| N1104-07B   | AQ     | SW8270_W   | 3550C      | N/A       | 1        |
| N1104-07BDL | AQ     | SW8270_W   | 3550C      | N/A       | 5        |
| N1104-09F   | AQ     | SW8270_W   | 3550C      | N/A       | 1        |
| N1104-10F   | AQ     | SW8270_W   | 3550C      | N/A       | 1        |
| N1104-12E   | AQ     | SW8270_W   | 3550C      | N/A       | 1        |
| N1104-12EDL | AQ     | SW8270_W   | 3550C      | N/A       | 4        |
| N1104-13E   | AQ     | SW8270_W   | 3550C      | N/A       | 1        |
| N1104-14E   | AQ     | SW8270_W   | 3550C      | N/A       | 1        |
| N1104-15E   | AQ     | SW8270_W   | 3550C      | N/A       | 1        |
| N1104-15EDL | AQ     | SW8270_W   | 3550C      | N/A       | 5        |
| N1104-16E   | AQ     | SW8270_W   | 3550C      | N/A       | 1        |
| N1104-16EDL | AQ     | SW8270_W   | 3550C      | N/A       | 20       |
| N1104-17E   | AQ     | SW8270_W   | 3550C      | N/A       | 1        |
| N1104-18E   | AQ     | SW8270_W   | 3550C      | N/A       | 1        |
| N1104-18EDL | AQ     | SW8270_W   | 3550C      | N/A       | 20       |

**Page 6** 07/21/2014 13:06

# New York State Department of Environmental Conservation Sample Preparation and Analysis Summary ME

Project Name: Steelwinds 1 SDG: N1104

| Laboratory |        | Metals    | Date Received | Date      |
|------------|--------|-----------|---------------|-----------|
| Sample ID  | Matrix | Requested | By Lab        | Analyzed  |
| SW6010_W   |        |           |               |           |
| N1104-02A  | AQ     | SW6010_W  | 6/25/2014     | 6/27/2014 |
| N1104-03C  | AQ     | SW6010_W  | 6/25/2014     | 6/27/2014 |
| N1104-07C  | AQ     | SW6010_W  | 6/26/2014     | 6/27/2014 |
| N1104-08A  | AQ     | SW6010_W  | 6/26/2014     | 6/27/2014 |
| N1104-09D  | AQ     | SW6010_W  | 6/26/2014     | 6/27/2014 |
| N1104-10D  | AQ     | SW6010_W  | 6/26/2014     | 6/27/2014 |
| N1104-12C  | AQ     | SW6010_W  | 6/27/2014     | 7/2/2014  |
| N1104-13C  | AQ     | SW6010_W  | 6/27/2014     | 7/2/2014  |
| N1104-14C  | AQ     | SW6010_W  | 6/27/2014     | 7/2/2014  |
| N1104-15C  | AQ     | SW6010_W  | 6/27/2014     | 7/2/2014  |
| N1104-16C  | AQ     | SW6010_W  | 6/27/2014     | 7/2/2014  |
| N1104-17C  | AQ     | SW6010_W  | 6/27/2014     | 7/2/2014  |
| N1104-18C  | AQ     | SW6010_W  | 6/27/2014     | 7/2/2014  |

**Page 8** 07/21/2014 13:06

WorkOrder: N1104

EDD: EQuIS\_4\_NYSDEC\_v3

Fax Report: Fax Due:

Report Level: ASP-B Special Program: HC Due: 07/16/14 Case: SDG: O Client ID: GZA\_BUFFALO **Project:** Steelwinds 1

Location: GZA\_STEELWINDS,

WO Name: Steelwinds 1

Comments: N/A

**PO:** 03.0033579.40

| Lab Samp IL                                                         | Lab Samp ID Client Sample ID                                                | Collection Date     | Date Recv'd | Matrix  | Test Code    | Samp / Lab Test Comments | HF HT MS SEL Storage                            |
|---------------------------------------------------------------------|-----------------------------------------------------------------------------|---------------------|-------------|---------|--------------|--------------------------|-------------------------------------------------|
| N1104-01A                                                           | MWN-04-062414                                                               | 06/24/2014 10:10    | 06/25/2014  | Aqueous | SW8260_W     | / 8260_STARS/CP-51       | Y VOA                                           |
| N1104-01B                                                           | MWN-04-062414                                                               | 06/24/2014 10:10    | 06/25/2014  | Aqueous | SW8270_W     | /8270_BN,                | γ ν2                                            |
| N1104-02A                                                           | MWN-03B-062414                                                              | 06/24/2014 11:50    | 06/25/2014  | Aqueous | SW6010_W     | / As,Ba,Cr,Mn            | Y M2                                            |
| N1104-03A                                                           | MWN-03D-062414                                                              | 06/24/2014 15:05    | 06/25/2014  | Aqueous | SW8260_W     | / 8260_STARS/CP-51       | Y VOA                                           |
| N1104-03B                                                           | MWN-03D-062414                                                              | 06/24/2014 15:05    | 06/25/2014  | Aqueous | SW8270_W     | /8270_BN,                | γ ν2                                            |
| N1104-03C                                                           | MWN-03D-062414                                                              | 06/24/2014 15:05    | 06/25/2014  | Aqueous | SW6010_W     | / Ba,Mn                  | Y M2                                            |
| N1104-04A                                                           | MWN-03-062414                                                               | 06/24/2014 17:00    | 06/25/2014  | Aqueous | SW8260_W     | / 8260_STARS/CP-51       | Y VOA                                           |
| N1104-04B                                                           | MWN-03-062414                                                               | 06/24/2014 17:00    | 06/25/2014  | Aqueous | SW8270_W     | /8270_BN,                | γ ν2                                            |
| N1104-05A                                                           | TRIP BLANK 001                                                              | 06/24/2014 00:00    | 06/25/2014  | Aqueous | SW8260_W     | /8260_STARS/CP-51        | Y VOA                                           |
| N1104-06A                                                           | MWM-02-062514                                                               | 06/25/2014 09:25    | 06/26/2014  | Aqueous | SW8260_W     | / 8260_STARS/CP-51       | Y VOA                                           |
| N1104-06B                                                           | MWM-02-062514                                                               | 06/25/2014 09:25    | 06/26/2014  | Aqueous | SW8270_W     | /8270_BN,                | γ ν2                                            |
| N1104-07A                                                           | MWN-02B-062514                                                              | 06/25/2014 10:30    | 06/26/2014  | Aqueous | SW8260_W     | /8260_STARS/CP-51        | Y VOA                                           |
| N1104-07B                                                           | MWN-02B-062514                                                              | 06/25/2014 10:30    | 06/26/2014  | Aqueous | SW8270_W     | /8270_BN,                | γ ν2                                            |
| N1104-07C                                                           | MWN-02B-062514                                                              | 06/25/2014 10:30    | 06/26/2014  | Aqueous | SW6010_W     | / As only                | Y M2                                            |
| N1104-08A                                                           | MWN-02D-062514                                                              | 06/25/2014 11:35    | 06/26/2014  | Aqueous | SW6010_W     | / As,Ba,Cr               | Y M2                                            |
| N1104-09A                                                           | WT1-02-062514                                                               | 06/25/2014 13:40    | 06/26/2014  | Aqueous | SW8260_W     | / 8260_STARS/CP-51       | Y VOA                                           |
| N1104-09B                                                           | WT1-02-062514                                                               | 06/25/2014 13:40    | 06/26/2014  | Aqueous | RSK175       | /                        | VOA                                             |
| Na04-09C                                                            | WT1-02-062514                                                               | 06/25/2014 13:40    | 06/26/2014  | Aqueous | SW9060_TOC_W | /                        | R22                                             |
| $\frac{\mathbf{\Phi}}{\mathbf{H}\mathbf{F}} = \mathbf{F}\mathbf{r}$ | $\overline{HF}$ = Fraction logged in but all tests have been placed on hold | ve been placed on ] | hold        |         |              | HT = Test logged         | HT = Test logged in but has been placed on hold |

WorkOrder: N1104

EDD: EQuIS\_4\_NYSDEC\_v3

Report Level: ASP-B Special Program: HC Due: 07/16/14 Case: O Client ID: GZA\_BUFFALO **Project:** Steelwinds 1

Location: GZA\_STEELWINDS,

WO Name: Steelwinds 1

Comments: N/A

Fax Report: Fax Due: SDG:

**PO:** 03.0033579.40

| Lab Samp ID            | D Client Sample ID             | Collection Date                      | Date Recv'd              | Matrix  | Test Code            | Samp / Lab Test Comments | HF HT MS SEL Storage |
|------------------------|--------------------------------|--------------------------------------|--------------------------|---------|----------------------|--------------------------|----------------------|
| N1104-09D              | WT1-02-062514                  | 06/25/2014 13:40                     | 06/26/2014               | Aqueous | SW6010_W             | / Dissolved Fe only      | Y M2                 |
| N1104-09E              | WT1-02-062514                  | 06/25/2014 13:40                     | 06/26/2014               | Aqueous | E300IC_W             | / NO3,SO4                | Y V2                 |
| N1104-09F              | WT1-02-062514                  | 06/25/2014 13:40                     | 06/26/2014               | Aqueous | SW8270_W             | / 8270_BN,               | \ \ \ \ \ \          |
| N1104-10A              | WT1-05-062514                  | 06/25/2014 15:20                     | 06/26/2014               | Aqueous | SW8260_W             | / 8260_STARS/CP-51       | Y VOA                |
| N1104-10B              | WT1-05-062514                  | 06/25/2014 15:20                     | 06/26/2014               | Aqueous | RSK175               |                          | VOA                  |
| N1104-10C              | WT1-05-062514                  | 06/25/2014 15:20                     | 06/26/2014               | Aqueous | SW9060_TOC_W         |                          | R22                  |
| N1104-10D              | WT1-05-062514                  | 06/25/2014 15:20                     | 06/26/2014               | Aqueous | SW6010_W             | / Dissolved Fe only      | Y M2                 |
| N1104-10E<br>N1104-10E | WT1-05-062514<br>WT1-05-062514 | 06/25/2014 15:20<br>06/25/2014 15:20 | 06/26/2014<br>06/26/2014 | Aqueous | E300IC_W<br>SM2320_W | / NO3,SO4                | Y V2 V2              |
| N1104-10F              | WT1-05-062514                  | 06/25/2014 15:20                     | 06/26/2014               | Aqueous | SW8270_W             | / 8270_BN,               | γ ν2                 |
| N1104-11A              | TRIP BLANK 2                   | 06/25/2014 00:00                     | 06/26/2014               | Aqueous | SW8260_W             | / 8260_STARS/CP-51       | Y VOA                |
| N1104-12A<br>N1104-12A | WT1-06-062614<br>WT1-06-062614 | 06/26/2014 17:20<br>06/26/2014 17:20 | 06/27/2014<br>06/27/2014 | Aqueous | RSK175<br>SW8260_W   | /<br>/ 8260_STARS/CP-51  | VOA Y                |
| N1104-12B              | WT1-06-062614                  | 06/26/2014 17:20                     | 06/27/2014               | Aqueous | SW9060_TOC_W         |                          | R22                  |
| N1104-12C              | WT1-06-062614                  | 06/26/2014 17:20                     | 06/27/2014               | Aqueous | SW6010_W             | / Dissolved Fe only      | Y M2                 |
| N1104-12D<br>N1104-12D | WT1-06-062614<br>WT1-06-062614 | 06/26/2014 17:20<br>06/26/2014 17:20 | 06/27/2014<br>06/27/2014 | Aqueous | E300IC_W<br>SM2320_W | / NO3,SO4                | Y V2<br>V2           |
| N7 <b>6</b> 04-12E     | WT1-06-062614                  | 06/26/2014 17:20                     | 06/27/2014               | Aqueous | SW8270_W             | /8270_BN,                | ۲ ۷۷                 |
| jє                     |                                |                                      |                          |         |                      |                          |                      |

HF = Fraction logged in but all tests have been placed on hold of the state of the

Lab Client Rep: Agnes R Huntley

Page 02 of 05

HT = Test logged in but has been placed on hold

WorkOrder: N1104

EDD: EQuIS\_4\_NYSDEC\_v3

Fax Report:

**PO:** 03.0033579.40

Report Level: ASP-B Special Program: HC Due: 07/16/14 Fax Due: Case: SDG: O Client ID: GZA\_BUFFALO **Project:** Steelwinds 1

Location: GZA\_STEELWINDS,

WO Name: Steelwinds 1

Comments: N/A

| Lab Samp ID                                             | Client Sample ID                                                                | Collection Date     | Date Recv'd                     | Matrix  | Test Code    | Samp / Lab Test Comments | HF HT MS SEL                                    | SEL Storage   |
|---------------------------------------------------------|---------------------------------------------------------------------------------|---------------------|---------------------------------|---------|--------------|--------------------------|-------------------------------------------------|---------------|
| N1104-13A                                               | BCP-ORC-2-062614                                                                | 06/26/2014 16:05    | 06/27/2014                      | Aqueous | RSK175       | 1                        | 1                                               | VOA           |
| N1104-13A                                               | BCP-ORC-2-062614                                                                | 06/26/2014 16:05    | 06/27/2014                      | Aqueous | SW8260_W     | / 8260_STARS/CP-51       | <i>&gt;</i>                                     | VOA           |
| N1104-13B                                               | BCP-ORC-2-062614                                                                | 06/26/2014 16:05    | 06/27/2014                      | Aqueous | SW9060_TOC_W | 1                        | т.                                              | R22           |
| N1104-13C                                               | BCP-ORC-2-062614                                                                | 06/26/2014 16:05    | 06/27/2014                      | Aqueous | SW6010_W     | / Dissolved Fe only      | >                                               | M2            |
| N1104-13D                                               | BCP-ORC-2-062614                                                                | 06/26/2014 16:05    | 06/27/2014                      | Aqueous | E300IC_W     | / NO3,SO4                | <b>&gt;</b>                                     | /2            |
| N1104-13D                                               | BCP-ORC-2-062614                                                                | 06/26/2014 16:05    | 06/27/2014                      | Aqueous | SM2320_W     | ,                        |                                                 | ٧2            |
| N1104-13E                                               | BCP-ORC-2-062614                                                                | 06/26/2014 16:05    | 06/27/2014                      | Aqueous | SW8270_W     | /8270_BN,                | >                                               | V2            |
| N1104-14A                                               | BCP-ORC-1-062614                                                                | 06/26/2014 14:50    | 06/27/2014                      | Aqueous | RSK175       | 1                        |                                                 | VOA           |
| N1104-14A                                               | BCP-ORC-1-062614                                                                | 06/26/2014 14:50    | 06/27/2014                      | Aqueous | SW8260_W     | / 8260_STARS/CP-51       | <i>&gt;</i>                                     | VOA           |
| N1104-14B                                               | BCP-ORC-1-062614                                                                | 06/26/2014 14:50    | 06/27/2014                      | Aqueous | SW9060_TOC_W | /                        | т.                                              | R22           |
| N1104-14C                                               | BCP-ORC-1-062614                                                                | 06/26/2014 14:50    | 06/27/2014                      | Aqueous | SW6010_W     | / Dissolved Fe only      | >                                               | M2            |
| N1104-14D                                               | BCP-ORC-1-062614                                                                | 06/26/2014 14:50    | 06/27/2014                      | Aqueous | E300IC_W     | / NO3,S04                | <i>&gt;</i>                                     | ٧2            |
| N1104-14D                                               | BCP-ORC-1-062614                                                                | 06/26/2014 14:50    | 06/27/2014                      | Aqueous | SM2320_W     | ,                        |                                                 | ٧2            |
| N1104-14E                                               | BCP-ORC-1-062614                                                                | 06/26/2014 14:50    | 06/27/2014                      | Aqueous | SW8270_W     | / 8270_BN,               | >                                               | V2            |
| N1104-15A                                               | MWN-01-062614                                                                   | 06/26/2014 08:35    | 06/27/2014                      | Aqueous | RSK175       | /                        |                                                 | VOA           |
| N1104-15A                                               | MWN-01-062614                                                                   | 06/26/2014 08:35    | 06/27/2014                      | Aqueous | SW8260_W     | /8260_STARS/CP-51        | <i>&gt;</i>                                     | VOA           |
| N1104-15B                                               | MWN-01-062614                                                                   | 06/26/2014 08:35    | 06/27/2014                      | Aqueous | SW9060_TOC_W | 1                        | ш                                               | R22           |
| N1104-15C                                               | MWN-01-062614                                                                   | 06/26/2014 08:35    | 06/27/2014                      | Aqueous | SW6010_W     | / Dissolved Fe only      | >                                               | M2            |
| N1104-15D                                               | MWN-01-062614                                                                   | 06/26/2014 08:35    | 06/27/2014                      | Aqueous | E300IC_W     | / NO3,SO4                | <b>&gt;</b>                                     | V2            |
| NB 04-15D                                               | MWN-01-062614                                                                   | 06/26/2014 08:35    | 06/27/2014                      | Aqueous | SM2320_W     | ,                        |                                                 | ٧2            |
| $\mathbf{A}^{\mathbf{A}}_{\mathbf{F}} = \mathrm{Fract}$ | $\Phi_{ m LF} = { m Fraction}$ logged in but all tests have been placed on hold | ve been placed on ! | plor                            |         |              | HT = Test logged i       | HT = Test logged in but has been placed on hold | ploq u        |
| of 1                                                    |                                                                                 |                     |                                 |         |              |                          |                                                 |               |
| 189                                                     | 07/21/2014 12:54                                                                | Lab Client          | Lab Client Rep: Agnes R Huntley | Huntley |              |                          | Page (                                          | Page 03 of 05 |

WorkOrder: N1104

EDD: EQuIS\_4\_NYSDEC\_v3 Report Level: ASP-B Special Program: HC Due: 07/16/14 Fax Due: Case: SDG: Client ID: GZA\_BUFFALO **Project:** Steelwinds 1

Fax Report:

**PO:** 03.0033579.40

Location: GZA\_STEELWINDS,

WO Name: Steelwinds 1

Comments: N/A

MS SEL Storage VOA VOA VOA VOA VOA VOA R22 R22 **R**22 <u>M</u>2 72 M272 2 72 72 72 72 > > HI Ħ Samp / Lab Test Comments /8260\_STARS/CP-51 / 8260\_STARS/CP-51 / 8260\_STARS/CP-51 / Dissolved Fe only / Dissolved Fe only /8270\_BN, / NO3,SO4 /8270\_BN, / NO3,SO4 /8270\_BN W\_000\_T000WS SW9060\_TOC\_W SW9060\_TOC\_W SW8260\_W SW8260\_W SW8270\_W SW8260\_W SW6010\_W SW8270\_W SM2320\_W SW8270\_W SW6010\_W SM2320\_W E300IC\_W E300IC\_W Test Code **RSK175 RSK175 RSK175** Aqueous Matrix Date Recv'd 06/27/2014 06/27/2014 06/27/2014 06/27/2014 06/27/2014 06/27/2014 06/27/2014 06/27/2014 06/27/2014 06/27/2014 06/27/2014 06/27/2014 06/27/2014 06/27/2014 06/27/2014 06/27/2014 06/27/2014 06/27/2014 NTED 4-18C FIELD DUPLICATE 062614 06/26/2014 00:00 06/20/2014 00:00 06/20/2014 00:00 06/20/2014 00:00 06/20/2014 00:00 06/20/2014 00:00 06/20/2014 00:00 06/20/2014 00:00 06/20/2014 00:00 06/20/2014 00:00 06/20/2014 00:00 06/20/2014 00:00 06/20/2014 00:00 06/20/2014 00:00 06/20/2014 00:00 06/20/2014 00:00 06/20/2014 00:00 06/20/2014 00:00 06/20/2014 00:00 06/20/2014 00:00 06/20/2014 00:00 06/20/2014 00:00 06/20/2014 00:00 06/20/2014 00:00 06/20/2014 00:00 06/20/2014 00:00 06/20/2014 00:00 06/20/2014 00:00 06/20/2014 00:00 06/20/2014 00:00 06/20/2014 00:00 06/20/2014 00:00 06/20/2014 00:00 06/20/2014 00:00 06/20/2014 00:00 06/20/2014 00:00 06/20/2014 00:00 06/20/2014 00:00 06/20/2014 00:00 06/20/2014 00:00 06/20/2014 00:00 06/20/2014 00:00 06/20/2014 00:00 06/20/2014 00:00 06/20/2014 00:00 06/20/2014 00:00 06/20/2014 00:00 06/20/2014 00:00 06/20/2014 00:00 06/20/2014 00:00 06/20/2014 00:00 06/20/2014 00:00 06/20/2014 00:00 06/20/2014 00:00 06/20/2014 00:00 06/20/2014 00:00 06/20/2014 00:00 06/20/2014 00:00 06/20/2014 00:00 06/20/2014 00:00 06/20/2014 00:00 06/20/2014 00:00 06/20/2014 00:00 06/20/2014 00:00 06/20/2014 00:00 06/20/2014 00:00 06/20/2014 00:00 06/20/2014 00:00 06/20/2014 00:00 06/20/2014 00:00 06/20/2014 00:00 06/20/2014 00:00 06/20/2014 00:00 06/20/2014 00:00 06/20/2014 00:00 06/20/2014 00:00 06/20/2014 00:00 06/20/2014 00:00 06/20/2014 00:00 06/20/2014 00:00 06/20/2014 00:00 06/20/2014 00:00 06/20/2014 00:00 06/20/2014 00:00 06/20/2014 00:00 06/20/2014 00:00 06/20/2014 00:00 06/20/2014 00:00 06/20/2014 00:00 06/20/2014 00:00 06/20/2014 00:00 06/2014 00:00 06/2014 00:00 06/2014 00:00 06/2014 00:00 06/2014 00:00 06/2014 00:00 06/2014 00:00 06/2014 00:00 06/2014 00:00 06/2014 00:00 06/2014 00:00 06/2014 00:00 06/2014 00:00 06/2014 00:00 06/2014 00:00 06/2014 00:00 06/2014 00:00 06/2014 00:00 06/2014 00:00 06/2014 00:00 06/2014 00:00 06/2014 00:00 06/2014 00:00 06/2014 00:00 06/2014 00:00 06/2014 00:00 06/2014 00:00 06/2014 00:00 06/2014 00:00 06/2014 00:00 06/2014 00:00 06/2014 00:00 06/2014 00:00 06/ 06/26/2014 11:40 06/26/2014 11:40 06/26/2014 11:40 06/26/2014 09:55 06/26/2014 09:55 06/26/2014 11:40 06/26/2014 11:40 06/26/2014 11:40 06/26/2014 00:00 06/26/2014 08:35 06/26/2014 09:55 06/26/2014 09:55 06/26/2014 09:55 06/26/2014 11:40 06/26/2014 00:00 06/26/2014 00:00 06/26/2014 09:55 06/26/2014 09:55 Collection Date FIELD DUPLICATE 062614 FIELD DUPLICATE 062614 FIELD DUPLICATE 062614 Lab Samp ID Client Sample ID MWN-01B-062614 MWN-01B-062614 MWN-01B-062614 MWN-01B-062614 MWN-01B-062614 MWN-01B-062614 MWN-01B-062614 MWN-01-062614 WT1-04-062614 WT1-04-062614 WT1-04-062614 WT1-04-062614 WT1-04-062614 WT1-04-062614 WT1-04-062614 N1104-16C N1104-17D N1104-17E V1104-15E N1104-16A N1104-16B N1104-16D N1104-16D N1104-16E N1104-17A V1104-17A V1104-17B N1104-17C V1104-17D N1104-18A N1104-18B N1104-16A N1104-18A

Lab Client Rep: Agnes R Huntley

Page 04 of 05

HT = Test logged in but has been placed on hold

MZ

/ Dissolved Fe only

SW6010\_W

Aqueous

06/26/2014 00:00 06/27/2014

HT = Test logged in but has been placed on hold

Page 05 of 05

Spectrum Analytical Inc. - North Kingstown RI -- Rhode Island Division

WorkOrder: N1104

EDD: EQuIS\_4\_NYSDEC\_v3

HC Due: 07/16/14 Case:

Report Level: ASP-B Special Program: Fax Report: Fax Due: SDG:

**PO:** 03.0033579.40

Comments: N/A

Location: GZA\_STEELWINDS,

O Client ID: GZA\_BUFFALO

**Project:** Steelwinds 1 WO Name: Steelwinds 1

| Lab Samp ID | Lab Samp ID Client Sample ID | Collection Date Date Recv'd Matrix Test Code | Date Recv'd | Matrix  | Test Code        | Samp / Lab Test Comments | HF HT MS SEL Storage | orage |
|-------------|------------------------------|----------------------------------------------|-------------|---------|------------------|--------------------------|----------------------|-------|
| N1104-18D   | FIELD DUPLICATE 062614       | 06/26/2014 00:00 06/27/2014                  | 06/27/2014  | Aqueous | E300IC_W         | / NO3,SO4                | γ ν2                 |       |
| N1104-18D   | FIELD DUPLICATE 062614       | 06/26/2014 00:00 06/27/2014                  | 06/27/2014  | Aqueous | Aqueous SM2320_W | ,                        | ٧2                   |       |
| N1104-18E   | FIELD DUPLICATE 062614       | 06/26/2014 00:00 06/27/2014                  | 06/27/2014  | Aqueous | Aqueous SW8270_W | / 8270_BN,               | γ ν2                 |       |



SPECTRUM ANALYTICAL, INC.
Featuring
HANIBAL TECHNOLOGY

\* Volatiles \*

# REPORT NARRATIVE

Spectrum Analytical, Inc. Featuring Hanibal Technology, RI Division.

Client: GZA GeoEnvironmental, Inc.

**Project: Steelwinds 1** 

Laboratory Workorder / SDG #: N1104

SW846 8260C, VOC by GC-MS

### I. SAMPLE RECEIPT

No exceptions or unusual conditions were encountered unless a Sample Condition Notification Form, or other record of communication is included with the Sample Receipt Documentation.

# II. HOLDING TIMES

# A. Sample Preparation:

All samples were prepared within the method-specified holding times.

# B. Sample Analysis:

All samples were analyzed within the method-specified holding times.

# III. METHODS

Samples were analyzed following procedures in laboratory test code: SW846 8260C

### IV. PREPARATION

Aqueous Samples were prepared following procedures in laboratory test code: SW5030B

# V. INSTRUMENTATION

The following instrumentation was used

Instrument Code: V1

Instrument Type: GCMS-VOA

N1104 Page 7 of 189

Description: HP5890 II / HP5972 Manufacturer: Hewlett-Packard

Model: 5890 / 5972

GC Column used: 30 m X 0.25 mm ID [1.40 um thickness] DB-624

capillary column.

Instrument Code: V10

Instrument Type: GCMS-VOA

Description: HP7890A Manufacturer: Agilent Model: 7890A / 5975C

GC Column used: 30 m X 0.25 mm ID [1.40 um thickness] DB-624

capillary column.

# VI. ANALYSIS

# A. Calibration:

Calibrations met the method/SOP acceptance criteria.

### B. Blanks:

All method blanks were within the acceptance criteria.

# C. Surrogates:

Surrogate standard percent recoveries were within the QC limits.

# D. Spikes:

# 1. Laboratory Control Spikes (LCS):

Percent recoveries for lab control samples were within the QC limits.

# 2. Matrix Spike / Matrix Spike Duplicate (MS/MSD):

No client-requested MS/MSD analyses were included in this SDG.

# E. Internal Standards:

Internal standard peak areas were within the QC limits.

# F. Dilutions:

The following samples were analyzed at dilution:

N1104 Page 8 of 189

MWN-02B-062514 (N1104-07ADL) : Dilution Factor: 4 WT1-06-062614 (N1104-12ADL) : Dilution Factor: 2 MWN-01-062614 (N1104-15ADL) : Dilution Factor: 4 MWN-01B-062614 (N1104-16ADL) : Dilution Factor: 20 FIELD DUPLICATE 062614 (N1104-18ADL) : Dilution Factor: 50

# G. Samples:

No other unusual occurrences were noted during sample analysis.

# H. Manual Integration

No manual integrations were performed on any sample or standard.

I certify that this data package is in compliance with the terms and conditions agreed to by the client and Spectrum, both technically and for completeness, except for the conditions noted above. Release of the data contained in this hardcopy data package has been authorized by the Laboratory Manager or designated person, as verified by the following signature.

| \$\int \int \int \int \int \int \int \int | J-4-V     |  |
|-------------------------------------------|-----------|--|
| Dato                                      | 7/17/2014 |  |

N1104 Page 9 of 189



SPECTRUM ANALYTICAL, INC.
Featuring
HANIBAL TECHNOLOGY

# Data Flag/Qualifiers (Page 1 of 2):

- U Not Detected. This compound was analyzed-for but not detected. For most analyses the reporting limit (lowest standard concentration) is the value listed. For Department of Defense programs, this is the Limit of Detection (LOD).
- J This flag indicates an estimated value due to either
  - the compound was detected below the reporting limit, or
  - estimated concentration for Tentatively Identified Compound
- B This flag indicates the compound was also detected in the associated Method Blank. The B flag has an alternative meaning for Inorganics analyses reported using CLP ILM-type metals forms, indicating a "trace" concentration below the reporting limit and equal to or above the detection limit.
- D For Organics analysis, this flag indicates the compound concentration was obtained from a secondary dilution analysis
- E This flag indicates the compound concentration exceeded the Calibration Range. The E flag has an alternative meaning for Inorganics analyses reported using CLP metals forms, indicating an estimated concentration due to the presence of interferences, as determined by the serial dilution analysis.
- P This flag is used for pesticides/PCB/herbicide compound when there is a greater than 40% difference for detected concentration between the two GC columns used for primary and confirmation analyses. This difference typically indicates interference, causing one value to be unusually high. The **lower** of the two values is generally reported on the Form 1, and both values reported on the Form 10.
- A Used to flag semivolatile organic Tentatively Identified Compound library search results for compounds identified as an aldol condensation by-product.



SPECTRUM ANALYTICAL, INC.
Featuring
HANIBAL TECHNOLOGY

# Data Flag/Qualifiers (Page 2 of 2):

- N Used to flag results for volatile and semivolatile Organics analysis Tentatively Identified Compounds where an analyte has passed the identification criteria, and is considered to be positively identified. For Inorganics analysis the N flag indicates the matrix spike recovery falls outside of the control limit.
- \* For Inorganics analysis the \* flag indicates Relative Percent Difference for duplicate analyses is outside of the control limit.
- L NYSDEC qualifier: Result is biased low due to the sample not being collected according to 5035-L/5035A-L low-level specifications.



# **Sample ID Suffixes**

- DL Diluted analysis. The sample was diluted and reanalyzed. The DL may be followed by a digit if more than one diluted reanalysis is provided. The DL suffix is not attached to an analysis initially performed at dilution, only to reanalyses performed at dilution
- RE Reanalysis. Appended to the client sample ID to indicate a reextraction and reanalysis or a reanalysis of the original sample extract.
- RA Reanalysis. Appended to the laboratory sample ID indicates a reanalysis of the original sample extract.
- RX Reextraction. Appended to the laboratory sample ID indicates a reextraction of the sample.
- MS Matrix Spike.
- MSD Matrix Spike Duplicate
- DUP Duplicate analysis
- SD Serial Dilution
- PS Post-digestion or Post-distillation spike. For metals or inorganic analyses

EPA SAMPLE NO.
MWN-04-062414

| Lab Name: SPECTRUM ANALYT | CICAL, IN | C.    |                    | Contract:        |                 |      |
|---------------------------|-----------|-------|--------------------|------------------|-----------------|------|
| Lab Code: MITKEM Ca       | ase No.:  | N1104 |                    | Mod. Ref No.:    | SDG No.: SN1104 |      |
| Matrix: (SOIL/SED/WATER)  | WATER     |       |                    | Lab Sample ID:   | N1104-01A       |      |
| Sample wt/vol: 5.00       | (g/mL)    | ML    |                    | Lab File ID:     | V1N0054.D       |      |
| Level: (TRACE/LOW/MED) LO | DW        |       |                    | Date Received:   | 06/25/2014      |      |
| % Moisture: not dec.      |           |       |                    | Date Analyzed:   | 07/02/2014      |      |
| GC Column: DB-624         | ID:       | 0.25  | (mm)               | Dilution Factor: | 1.0             |      |
| Soil Extract Volume:      |           |       | (uL)               | Soil Aliquot Vol | ume:            | (uL) |
| Purge Volume: 5 0         |           |       | (mT <sub>1</sub> ) |                  |                 |      |

| CAS NO.     | COMPOUND                | CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L | Q |
|-------------|-------------------------|-------------------------------------------|---|
| 1634-04-4   | Methyl tert-butyl ether | 5.0                                       | U |
| 71-43-2     | Benzene                 | 5.0                                       | U |
| 108-88-3    | Toluene                 | 5.0                                       | U |
| 100-41-4    | Ethylbenzene            | 5.0                                       | U |
| 179601-23-1 | m,p-Xylene              | 5.0                                       | U |
| 95-47-6     | o-Xylene                | 5.0                                       | U |
| 1330-20-7   | Xylene (Total)          | 5.0                                       | U |
| 98-82-8     | Isopropylbenzene        | 5.0                                       | U |
| 103-65-1    | n-Propylbenzene         | 5.0                                       | U |
| 108-67-8    | 1,3,5-Trimethylbenzene  | 5.0                                       | U |
| 98-06-6     | tert-Butylbenzene       | 5.0                                       | U |
| 95-63-6     | 1,2,4-Trimethylbenzene  | 5.0                                       | U |
| 135-98-8    | sec-Butylbenzene        | 5.0                                       | U |
| 99-87-6     | 4-Isopropyltoluene      | 5.0                                       | U |
| 104-51-8    | n-Butylbenzene          | 5.0                                       | U |
| 91-20-3     | Naphthalene             | 5.0                                       | U |

EPA SAMPLE NO.

MWN-03D-062414

| Lab Name: SPECTRUM ANA  | LYTICAL, IN | C.    |      | Contract:        |                 |      |
|-------------------------|-------------|-------|------|------------------|-----------------|------|
| Lab Code: MITKEM        | Case No.:   | N1104 |      | Mod. Ref No.:    | SDG No.: SN1104 |      |
| Matrix: (SOIL/SED/WATER | MATER       |       |      | Lab Sample ID:   | N1104-03A       |      |
| Sample wt/vol: 5.       | 00 (g/mL)   | ML    |      | Lab File ID:     | V1N0055.D       |      |
| Level: (TRACE/LOW/MED)  | LOW         |       |      | Date Received:   | 06/25/2014      |      |
| % Moisture: not dec.    |             |       |      | Date Analyzed:   | 07/02/2014      |      |
| GC Column: DB-624       | ID:         | 0.25  | (mm) | Dilution Factor: | 1.0             |      |
| Soil Extract Volume:    |             |       | (uL) | Soil Aliquot Vol | ume:            | (uL) |
| Purge Volume: 5.0       |             |       | (mL) |                  |                 |      |

| CAS NO.     | COMPOUND                | CONCENTRATION UNITS: (ug/L or ug/Kg) ug/L | Q |
|-------------|-------------------------|-------------------------------------------|---|
| 1634-04-4   | Methyl tert-butyl ether | 5.0                                       | U |
| 71-43-2     | Benzene                 | 5.0                                       | U |
| 108-88-3    | Toluene                 | 5.0                                       | U |
| 100-41-4    | Ethylbenzene            | 0.96                                      | J |
| 179601-23-1 | m,p-Xylene              | 3.0                                       | J |
| 95-47-6     | o-Xylene                | 5.0                                       | U |
| 1330-20-7   | Xylene (Total)          | 3.0                                       | J |
| 98-82-8     | Isopropylbenzene        | 5.0                                       | U |
| 103-65-1    | n-Propylbenzene         | 5.0                                       | U |
| 108-67-8    | 1,3,5-Trimethylbenzene  | 1.6                                       | J |
| 98-06-6     | tert-Butylbenzene       | 5.0                                       | U |
| 95-63-6     | 1,2,4-Trimethylbenzene  | 1.4                                       | J |
| 135-98-8    | sec-Butylbenzene        | 5.0                                       | U |
| 99-87-6     | 4-Isopropyltoluene      | 5.0                                       | U |
| 104-51-8    | n-Butylbenzene          | 5.0                                       | U |
| 91-20-3     | Naphthalene             | 5.0                                       | U |

EPA SAMPLE NO.
MWN-03-062414

| Lab Name:   | SPECTRUM ANA  | LYTICAL, IN | IC.   |      | Contract:        |                        |      |
|-------------|---------------|-------------|-------|------|------------------|------------------------|------|
| Lab Code:   | MITKEM        | Case No.:   | N1104 |      | Mod. Ref No.:    | SDG No.: <u>SN1104</u> |      |
| Matrix: (So | OIL/SED/WATER | MATER       |       |      | Lab Sample ID:   | N1104-04A              |      |
| Sample wt/v | vol:5.        | 00 (g/mL)   | ML    |      | Lab File ID:     | V1N0056.D              |      |
| Level: (TR  | ACE/LOW/MED)  | LOW         |       |      | Date Received:   | 06/25/2014             |      |
| % Moisture  | : not dec.    |             |       |      | Date Analyzed:   | 07/02/2014             |      |
| GC Column:  | DB-624        | ID:         | 0.25  | (mm) | Dilution Factor: | 1.0                    |      |
| Soil Extra  | ct Volume:    |             |       | (uL) | Soil Aliquot Vol | ume:                   | (uL) |
| Purge Volum | me: 5.0       |             |       | (mL) |                  |                        |      |

| CAS NO.     | COMPOUND                | CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L | Q |
|-------------|-------------------------|-------------------------------------------|---|
| 1634-04-4   | Methyl tert-butyl ether | 5.0                                       |   |
| 71-43-2     | Benzene                 | 5.0                                       |   |
| 108-88-3    | Toluene                 | 1.5                                       | J |
| 100-41-4    | Ethylbenzene            | 5.0                                       | U |
| 179601-23-1 | m,p-Xylene              | 1.7                                       | J |
| 95-47-6     | o-Xylene                | 1.9                                       | J |
| 1330-20-7   | Xylene (Total)          | 3.7                                       | J |
| 98-82-8     | Isopropylbenzene        | 5.0                                       | U |
| 103-65-1    | n-Propylbenzene         | 5.0                                       | U |
| 108-67-8    | 1,3,5-Trimethylbenzene  | 1.3                                       | J |
| 98-06-6     | tert-Butylbenzene       | 5.0                                       | U |
| 95-63-6     | 1,2,4-Trimethylbenzene  | 0.51                                      | J |
| 135-98-8    | sec-Butylbenzene        | 5.0                                       | U |
| 99-87-6     | 4-Isopropyltoluene      | 5.0                                       | U |
| 104-51-8    | n-Butylbenzene          | 5.0                                       | U |
| 91-20-3     | Naphthalene             | 9.9                                       |   |

EPA SAMPLE NO.
TRIP BLANK 001

| Lab Name: SPECTRUM ANA | ALYTICAL, IN | īC.   | Contract:            |                 |
|------------------------|--------------|-------|----------------------|-----------------|
| Lab Code: MITKEM       | Case No.:    | N1104 | Mod. Ref No.:        | SDG No.: SN1104 |
| Matrix: (SOIL/SED/WATE | R) WATER     |       | Lab Sample ID:       | N1104-05A       |
| Sample wt/vol: 5       | .00 (g/mL)   | ML    | Lab File ID:         | V1N0053.D       |
| Level: (TRACE/LOW/MED) | LOW          |       | Date Received:       | 06/25/2014      |
| % Moisture: not dec.   |              |       | Date Analyzed:       | 07/02/2014      |
| GC Column: DB-624      | ID:          | 0.25  | mm) Dilution Factor: | 1.0             |
| Soil Extract Volume:   |              | ( :   | uL) Soil Aliquot Vol | .ume: (uL)      |
| Purge Volume: 5.0      |              | (1    | mL)                  |                 |

| CAS NO.     | COMPOUND                | CONCENTRATION UNITS: (ug/L or ug/Kg) ug/L | Q |
|-------------|-------------------------|-------------------------------------------|---|
| 1634-04-4   | Methyl tert-butyl ether | 5.0                                       | U |
| 71-43-2     | Benzene                 | 5.0                                       | U |
| 108-88-3    | Toluene                 | 5.0                                       | U |
| 100-41-4    | Ethylbenzene            | 5.0                                       | U |
| L79601-23-1 | m,p-Xylene              | 5.0                                       | U |
| 95-47-6     | o-Xylene                | 5.0                                       | U |
| 1330-20-7   | Xylene (Total)          | 5.0                                       | U |
| 98-82-8     | Isopropylbenzene        | 5.0                                       | Ū |
| 103-65-1    | n-Propylbenzene         | 5.0                                       | U |
| 108-67-8    | 1,3,5-Trimethylbenzene  | 5.0                                       | U |
| 98-06-6     | tert-Butylbenzene       | 5.0                                       | U |
| 95-63-6     | 1,2,4-Trimethylbenzene  | 5.0                                       | U |
| 135-98-8    | sec-Butylbenzene        | 5.0                                       | U |
| 99-87-6     | 4-Isopropyltoluene      | 5.0                                       | U |
| 104-51-8    | n-Butylbenzene          | 5.0                                       | U |
| 91-20-3     | Naphthalene             | 5.0                                       | U |

EPA SAMPLE NO.

MWM-02-062514

| Lab Name: SPECTRUM ANAL  | YTICAL, IN | C.    |       | Contract:        |                 |
|--------------------------|------------|-------|-------|------------------|-----------------|
| Lab Code: MITKEM         | Case No.:  | N1104 |       | Mod. Ref No.:    | SDG No.: SN1104 |
| Matrix: (SOIL/SED/WATER) | WATER      |       |       | Lab Sample ID:   | N1104-06A       |
| Sample wt/vol: 5.0       | 00 (g/mL)  | ML    |       | Lab File ID:     | V1N0057.D       |
| Level: (TRACE/LOW/MED)   | LOW        |       |       | Date Received:   | 06/26/2014      |
| % Moisture: not dec.     |            |       |       | Date Analyzed:   | 07/02/2014      |
| GC Column: DB-624        | ID:        | 0.25  | (mm)  | Dilution Factor: | 1.0             |
| Soil Extract Volume:     |            |       | (uL)  | Soil Aliquot Vol | ume: (uL        |
| Purge Volume: 5 0        |            |       | (mT.) |                  |                 |

| CAS NO.     | COMPOUND                | CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L | Q |
|-------------|-------------------------|-------------------------------------------|---|
| 1634-04-4   | Methyl tert-butyl ether | 5.0                                       | U |
| 71-43-2     | Benzene                 | 8.9                                       |   |
| 108-88-3    | Toluene                 | 2.4                                       | J |
| 100-41-4    | Ethylbenzene            | 5.0                                       | U |
| 179601-23-1 | m,p-Xylene              | 3.8                                       | J |
| 95-47-6     | o-Xylene                | 3.8                                       | J |
| 1330-20-7   | Xylene (Total)          | 7.7                                       |   |
| 98-82-8     | Isopropylbenzene        | 5.0                                       | U |
| 103-65-1    | n-Propylbenzene         | 5.0                                       | U |
| 108-67-8    | 1,3,5-Trimethylbenzene  | 1.9                                       | J |
| 98-06-6     | tert-Butylbenzene       | 5.0                                       | U |
| 95-63-6     | 1,2,4-Trimethylbenzene  | 1.0                                       | J |
| 135-98-8    | sec-Butylbenzene        | 5.0                                       | U |
| 99-87-6     | 4-Isopropyltoluene      | 5.0                                       | U |
| 104-51-8    | n-Butylbenzene          | 5.0                                       | U |
| 91-20-3     | Naphthalene             | 27                                        |   |

EPA SAMPLE NO. MWN-02B-062514

Lab Name: SPECTRUM ANALYTICAL, INC. Contract: SDG No.: SN1104 Lab Code: MITKEM Case No.: N1104 Mod. Ref No.: Matrix: (SOIL/SED/WATER) WATER Lab Sample ID: N1104-07A Sample wt/vol: 5.00 (g/mL) ML Lab File ID: V1N0058.D Date Received: 06/26/2014 Level: (TRACE/LOW/MED) LOW Date Analyzed: 07/02/2014 % Moisture: not dec. GC Column: DB-624 ID: 0.25 (mm) Dilution Factor: 1.0 (uL) Soil Extract Volume: (uL) Soil Aliquot Volume: Purge Volume: 5.0 (mL)

| CAS NO.     | COMPOUND                | CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L | Q |
|-------------|-------------------------|-------------------------------------------|---|
| 1634-04-4   | Methyl tert-butyl ether | 5.0                                       | U |
| 71-43-2     | Benzene                 | 100                                       |   |
| 108-88-3    | Toluene                 | 15                                        |   |
| 100-41-4    | Ethylbenzene            | 0.74                                      | J |
| 179601-23-1 | m,p-Xylene              | 9.0                                       |   |
| 95-47-6     | o-Xylene                | 12                                        |   |
| 1330-20-7   | Xylene (Total)          | 21                                        |   |
| 98-82-8     | Isopropylbenzene        | 5.0                                       | U |
| 103-65-1    | n-Propylbenzene         | 5.0                                       | U |
| 108-67-8    | 1,3,5-Trimethylbenzene  | 1.9                                       | J |
| 98-06-6     | tert-Butylbenzene       | 5.0                                       | U |
| 95-63-6     | 1,2,4-Trimethylbenzene  | 3.3                                       | J |
| 135-98-8    | sec-Butylbenzene        | 5.0                                       | U |
| 99-87-6     | 4-Isopropyltoluene      | 5.0                                       | U |
| 104-51-8    | n-Butylbenzene          | 5.0                                       | U |
| 91-20-3     | Naphthalene             | 320                                       | E |

EPA SAMPLE NO.

MWN-02B-062514DL

| Lab Name: SPECTRUM ANA  | LYTICAL, IN | C.       | <u></u> | Contract:        |                 |
|-------------------------|-------------|----------|---------|------------------|-----------------|
| Lab Code: MITKEM        | Case No.:   | N1104    |         | Mod. Ref No.:    | SDG No.: SN1104 |
| Matrix: (SOIL/SED/WATER | MATER       |          |         | Lab Sample ID:   | N1104-07ADL     |
| Sample wt/vol: 5.       | 00 (g/mL)   | ML       |         | Lab File ID:     | V8D6004.D       |
| Level: (TRACE/LOW/MED)  | LOW         |          |         | Date Received:   | 06/26/2014      |
| % Moisture: not dec.    |             |          |         | Date Analyzed:   | 07/03/2014      |
| GC Column: DB-624       | ID:         | 0.25     | (mm)    | Dilution Factor: | 4.0             |
| Soil Extract Volume:    |             |          | (uL)    | Soil Aliquot Vol | ume: (uL)       |
| Purge Volume: 5.0       |             | <u> </u> | (mL)    |                  | <del></del>     |

| CAS NO.     | COMPOUND                | CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L | Q  |
|-------------|-------------------------|-------------------------------------------|----|
| 1634-04-4   | Methyl tert-butyl ether | 20                                        | U  |
| 71-43-2     | Benzene                 | 98                                        | D  |
| 108-88-3    | Toluene                 | 14                                        | DJ |
| 100-41-4    | Ethylbenzene            | 20                                        | U  |
| 179601-23-1 | m,p-Xylene              | 8.5                                       | DJ |
| 95-47-6     | o-Xylene                | 10                                        | DJ |
| 1330-20-7   | Xylene (Total)          | 19                                        | DJ |
| 98-82-8     | Isopropylbenzene        | 20                                        | U  |
| 103-65-1    | n-Propylbenzene         | 20                                        | U  |
| 108-67-8    | 1,3,5-Trimethylbenzene  | 20                                        | U  |
| 98-06-6     | tert-Butylbenzene       | 20                                        | U  |
| 95-63-6     | 1,2,4-Trimethylbenzene  | 3.2                                       | DJ |
| 135-98-8    | sec-Butylbenzene        | 20                                        | U  |
| 99-87-6     | 4-Isopropyltoluene      | 20                                        | U  |
| 104-51-8    | n-Butylbenzene          | 20                                        | U  |
| 91-20-3     | Naphthalene             | 230                                       | D  |

EPA SAMPLE NO. WT1-02-062514

| Lab Name:   | SPECTRUM ANA    | LYTICAL, IN | IC.   |      | Contract:        |                 |      |
|-------------|-----------------|-------------|-------|------|------------------|-----------------|------|
| Lab Code:   | MITKEM          | Case No.:   | N1104 |      | Mod. Ref No.:    | SDG No.: SN1104 |      |
| Matrix: (SC | DIL/SED/WATER   | WATER       |       |      | Lab Sample ID:   | N1104-09A       |      |
| Sample wt/v | 701: <u>5</u> . | 00 (g/mL)   | ML    |      | Lab File ID:     | V8D6005.D       |      |
| Level: (TRA | ACE/LOW/MED)    | LOW         |       |      | Date Received:   | 06/26/2014      |      |
| % Moisture: | : not dec.      |             |       |      | Date Analyzed:   | 07/03/2014      |      |
| GC Column:  | DB-624          | ID:         | 0.25  | (mm) | Dilution Factor: | 1.0             |      |
| Soil Extra  | ct Volume:      |             |       | (uL) | Soil Aliquot Vol | ume:            | (uL) |
| Purge Volum | me: 5.0         |             |       | (mL) |                  |                 |      |

|             |                         | CONCENTRATION UNITS: |   |
|-------------|-------------------------|----------------------|---|
| CAS NO.     | COMPOUND                | (ug/L or ug/Kg) UG/L | Q |
| 1634-04-4   | Methyl tert-butyl ether | 5.0                  | U |
| 71-43-2     | Benzene                 | 16                   |   |
| 108-88-3    | Toluene                 | 3.1                  | J |
| 100-41-4    | Ethylbenzene            | 0.91                 | J |
| 179601-23-1 | m,p-Xylene              | 6.2                  |   |
| 95-47-6     | o-Xylene                | 4.8                  | J |
| 1330-20-7   | Xylene (Total)          | 11                   |   |
| 98-82-8     | Isopropylbenzene        | 5.0                  | U |
| 103-65-1    | n-Propylbenzene         | 5.0                  | U |
| 108-67-8    | 1,3,5-Trimethylbenzene  | 3.0                  | J |
| 98-06-6     | tert-Butylbenzene       | 5.0                  | U |
| 95-63-6     | 1,2,4-Trimethylbenzene  | 1.9                  | J |
| 135-98-8    | sec-Butylbenzene        | 5.0                  | U |
| 99-87-6     | 4-Isopropyltoluene      | 5.0                  | U |
| 104-51-8    | n-Butylbenzene          | 5.0                  | U |
| 91-20-3     | Naphthalene             | 29                   |   |

EPA SAMPLE NO. WT1-05-062514

| Lab Name: SPECTRUM AN  | ALYTICAL, IN | ic.   |      | Contract:        |                 |
|------------------------|--------------|-------|------|------------------|-----------------|
| Lab Code: MITKEM       | Case No.:    | N1104 |      | Mod. Ref No.:    | SDG No.: SN1104 |
| Matrix: (SOIL/SED/WATE | CR) WATER    |       |      | Lab Sample ID:   | N1104-10A       |
| Sample wt/vol:         | 5.00 (g/mL)  | ML    |      | Lab File ID:     | V1N0060.D       |
| Level: (TRACE/LOW/MED) | LOW          |       |      | Date Received:   | 06/26/2014      |
| % Moisture: not dec.   |              |       |      | Date Analyzed:   | 07/02/2014      |
| GC Column: DB-624      | ID:          | 0.25  | (mm) | Dilution Factor: | 1.0             |
| Soil Extract Volume:   |              |       | (uL) | Soil Aliquot Vol | ume: (uL)       |
| Purge Volume: 5.0      |              |       | (mL) |                  |                 |

| CAS NO.     | COMPOUND                | CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L | Q |
|-------------|-------------------------|-------------------------------------------|---|
| 1634-04-4   | Methyl tert-butyl ether | 5.0                                       | U |
| 71-43-2     | Benzene                 | 11                                        |   |
| 108-88-3    | Toluene                 | 2.7                                       | J |
| 100-41-4    | Ethylbenzene            | 0.60                                      | J |
| 179601-23-1 | m,p-Xylene              | 5.6                                       |   |
| 95-47-6     | o-Xylene                | 4.6                                       | J |
| 1330-20-7   | Xylene (Total)          | 10                                        |   |
| 98-82-8     | Isopropylbenzene        | 5.0                                       | U |
| 103-65-1    | n-Propylbenzene         | 5.0                                       | U |
| 108-67-8    | 1,3,5-Trimethylbenzene  | 1.7                                       | J |
| 98-06-6     | tert-Butylbenzene       | 5.0                                       | U |
| 95-63-6     | 1,2,4-Trimethylbenzene  | 1.6                                       | J |
| 135-98-8    | sec-Butylbenzene        | 5.0                                       | U |
| 99-87-6     | 4-Isopropyltoluene      | 5.0                                       | U |
| 104-51-8    | n-Butylbenzene          | 5.0                                       | U |
| 91-20-3     | Naphthalene             | 86                                        |   |

|   | EPA  | SAMPL | E 1 | 10. |  |
|---|------|-------|-----|-----|--|
|   | TRIP | BLANK | 2   |     |  |
| ı |      |       |     |     |  |

| Lab Name: SPECTRUM ANAL  | YTICAL, IN | C.    |                    | Contract:        |                 |      |
|--------------------------|------------|-------|--------------------|------------------|-----------------|------|
| Lab Code: MITKEM         | Case No.:  | N1104 |                    | Mod. Ref No.:    | SDG No.: SN1104 |      |
| Matrix: (SOIL/SED/WATER) | WATER      |       |                    | Lab Sample ID:   | N1104-11A       |      |
| Sample wt/vol: 5.0       | 0 (g/mL)   | ML    |                    | Lab File ID:     | V1N0052.D       |      |
| Level: (TRACE/LOW/MED)   | LOW        |       |                    | Date Received:   | 06/26/2014      |      |
| % Moisture: not dec.     |            |       |                    | Date Analyzed:   | 07/02/2014      |      |
| GC Column: DB-624        | ID:        | 0.25  | (mm)               | Dilution Factor: | 1.0             |      |
| Soil Extract Volume:     |            |       | (uL)               | Soil Aliquot Vol | ume:            | (uL) |
| Purge Volume: 5.0        |            |       | (mT <sub>1</sub> ) |                  |                 |      |

| CAS NO.     | COMPOUND                | CONCENTRATION UNITS: (ug/L or ug/Kg) ug/L | Q |
|-------------|-------------------------|-------------------------------------------|---|
| 1634-04-4   | Methyl tert-butyl ether | 5.0                                       | U |
| 71-43-2     | Benzene                 | 5.0                                       | U |
| 108-88-3    | Toluene                 | 5.0                                       | U |
| 100-41-4    | Ethylbenzene            | 5.0                                       | U |
| L79601-23-1 | m,p-Xylene              | 5.0                                       | U |
| 95-47-6     | o-Xylene                | 5.0                                       | U |
| 1330-20-7   | Xylene (Total)          | 5.0                                       | U |
| 98-82-8     | Isopropylbenzene        | 5.0                                       | Ū |
| 103-65-1    | n-Propylbenzene         | 5.0                                       | U |
| 108-67-8    | 1,3,5-Trimethylbenzene  | 5.0                                       | U |
| 98-06-6     | tert-Butylbenzene       | 5.0                                       | U |
| 95-63-6     | 1,2,4-Trimethylbenzene  | 5.0                                       | U |
| 135-98-8    | sec-Butylbenzene        | 5.0                                       | U |
| 99-87-6     | 4-Isopropyltoluene      | 5.0                                       | U |
| 104-51-8    | n-Butylbenzene          | 5.0                                       | U |
| 91-20-3     | Naphthalene             | 5.0                                       | U |

EPA SAMPLE NO. WT1-06-062614

| Lab Name: SPECTRUM A  | NALYTICAL, I | NC.   |      | Contract:        |                 |
|-----------------------|--------------|-------|------|------------------|-----------------|
| Lab Code: MITKEM      | Case No.:    | N1104 |      | Mod. Ref No.:    | SDG No.: SN1104 |
| Matrix: (SOIL/SED/WAT | ER) WATER    |       |      | Lab Sample ID:   | N1104-12A       |
| Sample wt/vol:        | 5.00 (g/mL)  | ML    |      | Lab File ID:     | V1N0061.D       |
| Level: (TRACE/LOW/MED | ) LOW        |       |      | Date Received:   | 06/27/2014      |
| % Moisture: not dec.  |              |       |      | Date Analyzed:   | 07/02/2014      |
| GC Column: DB-624     | ID:          | 0.25  | (mm) | Dilution Factor: | 1.0             |
| Soil Extract Volume:  |              |       | (uL) | Soil Aliquot Vol | ume: (uL)       |
| Purge Volume: 5.0     |              |       | (mL) |                  |                 |

| CAS NO.     | COMPOUND                | CONCENTRATION UNITS: (ug/L or ug/Kg) ug/L | Q |
|-------------|-------------------------|-------------------------------------------|---|
| 1634-04-4   | Methyl tert-butyl ether | 5.0                                       | U |
| 71-43-2     | Benzene                 | 42                                        |   |
| 108-88-3    | Toluene                 | 8.3                                       |   |
| 100-41-4    | Ethylbenzene            | 1.7                                       | J |
| L79601-23-1 | m,p-Xylene              | 17                                        |   |
| 95-47-6     | o-Xylene                | 13                                        |   |
| 1330-20-7   | Xylene (Total)          | 31                                        |   |
| 98-82-8     | Isopropylbenzene        | 5.0                                       | U |
| 103-65-1    | n-Propylbenzene         | 5.0                                       | U |
| 108-67-8    | 1,3,5-Trimethylbenzene  | 4.6                                       | J |
| 98-06-6     | tert-Butylbenzene       | 5.0                                       | U |
| 95-63-6     | 1,2,4-Trimethylbenzene  | 4.5                                       | J |
| 135-98-8    | sec-Butylbenzene        | 5.0                                       | U |
| 99-87-6     | 4-Isopropyltoluene      | 5.0                                       | U |
| 104-51-8    | n-Butylbenzene          | 5.0                                       | U |
| 91-20-3     | Naphthalene             | 240                                       | E |

EPA SAMPLE NO. WT1-06-062614DL

| Lab Name: SPECTRUM ANAL  | YTICAL, IN | C.    |       | Contract:        |                 |     |
|--------------------------|------------|-------|-------|------------------|-----------------|-----|
| Lab Code: MITKEM         | Case No.:  | N1104 |       | Mod. Ref No.:    | SDG No.: SN1104 |     |
| Matrix: (SOIL/SED/WATER) | WATER      |       |       | Lab Sample ID:   | N1104-12ADL     |     |
| Sample wt/vol: 5.0       | 0 (g/mL)   | ML    |       | Lab File ID:     | V8D6006.D       |     |
| Level: (TRACE/LOW/MED)   | LOW        |       |       | Date Received:   | 06/27/2014      |     |
| % Moisture: not dec.     |            |       |       | Date Analyzed:   | 07/03/2014      |     |
| GC Column: DB-624        | ID:        | 0.25  | (mm)  | Dilution Factor: | 2.0             |     |
| Soil Extract Volume:     |            |       | (uL)  | Soil Aliquot Vol | ume:(           | uL) |
| Purge Volume: 5 0        |            |       | (mT,) |                  |                 |     |

| CAS NO.     | COMPOUND                | CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L | Q  |
|-------------|-------------------------|-------------------------------------------|----|
| 1634-04-4   | Methyl tert-butyl ether | 10                                        | U  |
| 71-43-2     | Benzene                 | 43                                        | D  |
| 108-88-3    | Toluene                 | 8.0                                       | DJ |
| 100-41-4    | Ethylbenzene            | 1.7                                       | DJ |
| 179601-23-1 | m,p-Xylene              | 17                                        | D  |
| 95-47-6     | o-Xylene                | 13                                        | D  |
| 1330-20-7   | Xylene (Total)          | 30                                        | D  |
| 98-82-8     | Isopropylbenzene        | 10                                        | U  |
| 103-65-1    | n-Propylbenzene         | 10                                        | U  |
| 108-67-8    | 1,3,5-Trimethylbenzene  | 4.4                                       | DJ |
| 98-06-6     | tert-Butylbenzene       | 10                                        | U  |
| 95-63-6     | 1,2,4-Trimethylbenzene  | 4.5                                       | DJ |
| 135-98-8    | sec-Butylbenzene        | 10                                        | U  |
| 99-87-6     | 4-Isopropyltoluene      | 10                                        | U  |
| 104-51-8    | n-Butylbenzene          | 10                                        | U  |
| 91-20-3     | Naphthalene             | 200                                       | D  |

EPA SAMPLE NO.
BCP-ORC-2-062614

| Lab Name: SPECTRUM ANALY | TICAL, IN | C.    |       | Contract:        |                 |     |
|--------------------------|-----------|-------|-------|------------------|-----------------|-----|
| Lab Code: MITKEM (       | Case No.: | N1104 |       | Mod. Ref No.:    | SDG No.: SN1104 |     |
| Matrix: (SOIL/SED/WATER) | WATER     |       |       | Lab Sample ID:   | N1104-13A       |     |
| Sample wt/vol: 5.00      | ) (g/mL)  | ML    |       | Lab File ID:     | V8D6007.D       |     |
| Level: (TRACE/LOW/MED) I | MOr       |       |       | Date Received:   | 06/27/2014      |     |
| % Moisture: not dec.     |           |       |       | Date Analyzed:   | 07/03/2014      |     |
| GC Column: DB-624        | ID:       | 0.25  | (mm)  | Dilution Factor: | 1.0             |     |
| Soil Extract Volume:     |           |       | (uL)  | Soil Aliquot Vol | ume: (u         | ıL) |
| Purge Volume: 5 0        |           |       | (mT.) |                  |                 |     |

| CAS NO.    | COMPOUND                | CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L | Q |
|------------|-------------------------|-------------------------------------------|---|
| 1634-04-4  | Methyl tert-butyl ether | 5.0                                       | U |
| 71-43-2    | Benzene                 | 9.3                                       |   |
| 108-88-3   | Toluene                 | 1.7                                       | J |
| 100-41-4   | Ethylbenzene            | 5.0                                       | U |
| 79601-23-1 | m,p-Xylene              | 3.1                                       | J |
| 95-47-6    | o-Xylene                | 5.0                                       | U |
| 1330-20-7  | Xylene (Total)          | 3.1                                       | J |
| 98-82-8    | Isopropylbenzene        | 5.0                                       | U |
| 103-65-1   | n-Propylbenzene         | 5.0                                       | U |
| 108-67-8   | 1,3,5-Trimethylbenzene  | 1.0                                       | J |
| 98-06-6    | tert-Butylbenzene       | 5.0                                       | U |
| 95-63-6    | 1,2,4-Trimethylbenzene  | 0.89                                      | J |
| 135-98-8   | sec-Butylbenzene        | 5.0                                       | U |
| 99-87-6    | 4-Isopropyltoluene      | 5.0                                       | U |
| 104-51-8   | n-Butylbenzene          | 5.0                                       | U |
| 91-20-3    | Naphthalene             | 48                                        |   |

EPA SAMPLE NO.
BCP-ORC-1-062614

| Lab Name: SPECTRUM ANA  | LYTICAL, IN | C.    |      | Contract:        |                 |      |
|-------------------------|-------------|-------|------|------------------|-----------------|------|
| Lab Code: MITKEM        | Case No.:   | N1104 |      | Mod. Ref No.:    | SDG No.: SN1104 |      |
| Matrix: (SOIL/SED/WATER | .) WATER    |       |      | Lab Sample ID:   | N1104-14A       |      |
| Sample wt/vol: 5.       | 00 (g/mL)   | ML    |      | Lab File ID:     | V1N0063.D       |      |
| Level: (TRACE/LOW/MED)  | LOW         |       |      | Date Received:   | 06/27/2014      |      |
| % Moisture: not dec.    |             |       |      | Date Analyzed:   | 07/02/2014      |      |
| GC Column: DB-624       | ID:         | 0.25  | (mm) | Dilution Factor: | 1.0             |      |
| Soil Extract Volume:    |             |       | (uL) | Soil Aliquot Vol | ume:            | (uL) |
| Purge Volume: 5.0       |             |       | (mL) |                  |                 |      |

| CAS NO.     | COMPOUND                | CONCENTRATION UNITS:<br>(ug/L or ug/Kg) ug/L | Q |
|-------------|-------------------------|----------------------------------------------|---|
| 1634-04-4   | Methyl tert-butyl ether | 5.0                                          | U |
| 71-43-2     | Benzene                 | 9.5                                          |   |
| 108-88-3    | Toluene                 | 0.92                                         | J |
| 100-41-4    | Ethylbenzene            | 5.0                                          | U |
| L79601-23-1 | m,p-Xylene              | 5.0                                          | U |
| 95-47-6     | o-Xylene                | 0.78                                         | J |
| 1330-20-7   | Xylene (Total)          | 1.4                                          | J |
| 98-82-8     | Isopropylbenzene        | 5.0                                          | U |
| 103-65-1    | n-Propylbenzene         | 5.0                                          | U |
| 108-67-8    | 1,3,5-Trimethylbenzene  | 0.73                                         | J |
| 98-06-6     | tert-Butylbenzene       | 5.0                                          | U |
| 95-63-6     | 1,2,4-Trimethylbenzene  | 0.78                                         | J |
| 135-98-8    | sec-Butylbenzene        | 5.0                                          | U |
| 99-87-6     | 4-Isopropyltoluene      | 5.0                                          | U |
| 104-51-8    | n-Butylbenzene          | 5.0                                          | U |
| 91-20-3     | Naphthalene             | 120                                          |   |

EPA SAMPLE NO.

MWN-01-062614

| Lab Name: SPECTRUM ANAI  | YTICAL, IN | C.    |       | Contract:        |                 |
|--------------------------|------------|-------|-------|------------------|-----------------|
| Lab Code: MITKEM         | Case No.:  | N1104 |       | Mod. Ref No.:    | SDG No.: SN1104 |
| Matrix: (SOIL/SED/WATER) | ) WATER    |       |       | Lab Sample ID:   | N1104-15A       |
| Sample wt/vol: 5.0       | 00 (g/mL)  | ML    |       | Lab File ID:     | V1N0064.D       |
| Level: (TRACE/LOW/MED)   | LOW        |       |       | Date Received:   | 06/27/2014      |
| % Moisture: not dec.     |            |       |       | Date Analyzed:   | 07/02/2014      |
| GC Column: DB-624        | ID:        | 0.25  | (mm)  | Dilution Factor: | 1.0             |
| Soil Extract Volume:     |            |       | (uL)  | Soil Aliquot Vol | ume: (ul        |
| Purge Volume: 5 0        |            |       | (mT.) |                  |                 |

| CAS NO.     | COMPOUND                | CONCENTRATION UNITS: (ug/L or ug/Kg) ug/L | Q |
|-------------|-------------------------|-------------------------------------------|---|
| 1634-04-4   | Methyl tert-butyl ether | 5.0                                       | U |
| 71-43-2     | Benzene                 | 37                                        |   |
| 108-88-3    | Toluene                 | 7.8                                       |   |
| 100-41-4    | Ethylbenzene            | 1.6                                       | J |
| 179601-23-1 | m,p-Xylene              | 17                                        |   |
| 95-47-6     | o-Xylene                | 14                                        |   |
| 1330-20-7   | Xylene (Total)          | 31                                        |   |
| 98-82-8     | Isopropylbenzene        | 5.0                                       | U |
| 103-65-1    | n-Propylbenzene         | 5.0                                       | U |
| 108-67-8    | 1,3,5-Trimethylbenzene  | 4.8                                       | J |
| 98-06-6     | tert-Butylbenzene       | 5.0                                       | U |
| 95-63-6     | 1,2,4-Trimethylbenzene  | 6.3                                       |   |
| 135-98-8    | sec-Butylbenzene        | 5.0                                       | U |
| 99-87-6     | 4-Isopropyltoluene      | 5.0                                       | U |
| 104-51-8    | n-Butylbenzene          | 5.0                                       | U |
| 91-20-3     | Naphthalene             | 400                                       | E |

EPA SAMPLE NO.
MWN-01-062614DL

| Lab Name: SPECTRU  | M ANAL | YTICAL, IN | C.    |       | Contract:        |                 |     |
|--------------------|--------|------------|-------|-------|------------------|-----------------|-----|
| Lab Code: MITKEM   |        | Case No.:  | N1104 |       | Mod. Ref No.:    | SDG No.: SN1104 |     |
| Matrix: (SOIL/SED  | /WATER | ) WATER    |       |       | Lab Sample ID:   | N1104-15ADL     |     |
| Sample wt/vol:     | 5.0    | 00 (g/mL)  | ML    |       | Lab File ID:     | V8D6008.D       |     |
| Level: (TRACE/LOW, | /MED)  | LOW        |       |       | Date Received:   | 06/27/2014      |     |
| % Moisture: not de | ec.    |            |       |       | Date Analyzed:   | 07/03/2014      |     |
| GC Column: DB-624  | ł      | ID:        | 0.25  | (mm)  | Dilution Factor: | 4.0             |     |
| Soil Extract Volum | ne:    |            |       | (uL)  | Soil Aliquot Vol | ume:(1          | uL) |
| Purae Volume: 5.0  | )      |            |       | (mT.) |                  |                 |     |

| CAS NO.     | COMPOUND                | CONCENTRATION UNITS: (ug/L or ug/Kg) ug/L | Q  |
|-------------|-------------------------|-------------------------------------------|----|
| 1634-04-4   | Methyl tert-butyl ether | 20                                        | U  |
| 71-43-2     | Benzene                 | 36                                        | D  |
| 108-88-3    | Toluene                 | 7.5                                       | DJ |
| 100-41-4    | Ethylbenzene            | 20                                        | U  |
| 179601-23-1 | m,p-Xylene              | 15                                        | DJ |
| 95-47-6     | o-Xylene                | 12                                        | DJ |
| 1330-20-7   | Xylene (Total)          | 27                                        | D  |
| 98-82-8     | Isopropylbenzene        | 20                                        | U  |
| 103-65-1    | n-Propylbenzene         | 20                                        | U  |
| 108-67-8    | 1,3,5-Trimethylbenzene  | 4.6                                       | DJ |
| 98-06-6     | tert-Butylbenzene       | 20                                        | U  |
| 95-63-6     | 1,2,4-Trimethylbenzene  | 5.6                                       | DJ |
| 135-98-8    | sec-Butylbenzene        | 20                                        | U  |
| 99-87-6     | 4-Isopropyltoluene      | 20                                        | U  |
| 104-51-8    | n-Butylbenzene          | 20                                        | U  |
| 91-20-3     | Naphthalene             | 310                                       | D  |

EPA SAMPLE NO. MWN-01B-062614

| Lab Name: SPECTRUM ANA  | LLYTICAL, IN | C.    |       | Contract:        |                 |
|-------------------------|--------------|-------|-------|------------------|-----------------|
| Lab Code: MITKEM        | Case No.:    | N1104 |       | Mod. Ref No.:    | SDG No.: SN1104 |
| Matrix: (SOIL/SED/WATER | R) WATER     |       |       | Lab Sample ID:   | N1104-16A       |
| Sample wt/vol: 5.       | 00 (g/mL)    | ML    |       | Lab File ID:     | V1N0065.D       |
| Level: (TRACE/LOW/MED)  | LOW          |       |       | Date Received:   | 06/27/2014      |
| % Moisture: not dec.    |              |       |       | Date Analyzed:   | 07/02/2014      |
| GC Column: DB-624       | ID:          | 0.25  | (mm)  | Dilution Factor: | 1.0             |
| Soil Extract Volume:    |              |       | (uL)  | Soil Aliquot Vol | ume:(uL         |
| Purge Volume: 5 0       |              |       | (mT.) |                  |                 |

| CAS NO.     | COMPOUND                | CONCENTRATION UNITS: (ug/L or ug/Kg) ug/L | Q |
|-------------|-------------------------|-------------------------------------------|---|
| 1634-04-4   | Methyl tert-butyl ether | 5.0                                       | U |
| 71-43-2     | Benzene                 | 85                                        |   |
| 108-88-3    | Toluene                 | 24                                        |   |
| 100-41-4    | Ethylbenzene            | 1.0                                       | J |
| 179601-23-1 | m,p-Xylene              | 15                                        |   |
| 95-47-6     | o-Xylene                | 9.8                                       |   |
| 1330-20-7   | Xylene (Total)          | 25                                        |   |
| 98-82-8     | Isopropylbenzene        | 1.8                                       | J |
| 103-65-1    | n-Propylbenzene         | 5.0                                       | U |
| 108-67-8    | 1,3,5-Trimethylbenzene  | 5.7                                       |   |
| 98-06-6     | tert-Butylbenzene       | 5.0                                       | U |
| 95-63-6     | 1,2,4-Trimethylbenzene  | 8.2                                       |   |
| 135-98-8    | sec-Butylbenzene        | 5.0                                       | U |
| 99-87-6     | 4-Isopropyltoluene      | 5.0                                       | U |
| 104-51-8    | n-Butylbenzene          | 5.0                                       | U |
| 91-20-3     | Naphthalene             | 1800                                      | E |

EPA SAMPLE NO.

MWN-01B-062614DL

| Lab Name: SPECTRUM  | ANALYTICAL, IN | IC.     | Contract:            |                 |
|---------------------|----------------|---------|----------------------|-----------------|
| Lab Code: MITKEM    | Case No.:      | N1104   | Mod. Ref No.:        | SDG No.: SN1104 |
| Matrix: (SOIL/SED/W | ATER) WATER    |         | Lab Sample ID:       | N1104-16ADL     |
| Sample wt/vol:      | 5.00 (g/mL)    | ML      | Lab File ID:         | V8D6009.D       |
| Level: (TRACE/LOW/M | ED) LOW        |         | Date Received:       | 06/27/2014      |
| % Moisture: not dec | •              |         | Date Analyzed:       | 07/03/2014      |
| GC Column: DB-624   | ID:            | 0.25 (n | nm) Dilution Factor: | 20.0            |
| Soil Extract Volume | :              | (ı      | ıL) Soil Aliquot Vol | .ume: (uL       |
| Purge Volume: 5.0   |                | (n      | nL)                  |                 |

| CAS NO.    | COMPOUND                | CONCENTRATION UNITS: (ug/L or ug/Kg) ug/L | Q  |  |
|------------|-------------------------|-------------------------------------------|----|--|
| 1634-04-4  | Methyl tert-butyl ether | 100                                       | U  |  |
| 71-43-2    | Benzene                 | 74                                        | DJ |  |
| 108-88-3   | Toluene                 | 22                                        | DJ |  |
| 100-41-4   | Ethylbenzene            | 100                                       | U  |  |
| 79601-23-1 | m,p-Xylene              | 100                                       | U  |  |
| 95-47-6    | o-Xylene                | 100                                       | U  |  |
| 1330-20-7  | Xylene (Total)          | 100                                       | U  |  |
| 98-82-8    | Isopropylbenzene        | 100                                       | U  |  |
| 103-65-1   | n-Propylbenzene         | 100                                       | U  |  |
| 108-67-8   | 1,3,5-Trimethylbenzene  | 100                                       | U  |  |
| 98-06-6    | tert-Butylbenzene       | 100                                       | U  |  |
| 95-63-6    | 1,2,4-Trimethylbenzene  | 100 U                                     |    |  |
| 135-98-8   | sec-Butylbenzene        | 100                                       | U  |  |
| 99-87-6    | 4-Isopropyltoluene      | 100                                       | U  |  |
| 104-51-8   | n-Butylbenzene          | 100                                       | U  |  |
| 91-20-3    | Naphthalene             | 1200                                      | D  |  |

EPA SAMPLE NO. WT1-04-062614

| Lab Name: SPECTRUM ANAI | YTICAL, IN | C.    |      | Contract:        |                 |
|-------------------------|------------|-------|------|------------------|-----------------|
| Lab Code: MITKEM        | Case No.:  | N1104 |      | Mod. Ref No.:    | SDG No.: SN1104 |
| Matrix: (SOIL/SED/WATER | ) WATER    |       |      | Lab Sample ID:   | N1104-17A       |
| Sample wt/vol: 5.0      | 00 (g/mL)  | ML    |      | Lab File ID:     | V8D6051.D       |
| Level: (TRACE/LOW/MED)  | LOW        |       |      | Date Received:   | 06/27/2014      |
| % Moisture: not dec.    |            |       |      | Date Analyzed:   | 07/08/2014      |
| GC Column: DB-624       | ID:        | 0.25  | (mm) | Dilution Factor: | 1.0             |
| Soil Extract Volume:    |            |       | (uL) | Soil Aliquot Vol | ume: (uL        |
| Purge Volume: 5.0       |            |       | (mL) |                  |                 |

| CAS NO.     | COMPOUND                | CONCENTRATION UNITS: (ug/L or ug/Kg)ug/L | Q |
|-------------|-------------------------|------------------------------------------|---|
| 1634-04-4   | Methyl tert-butyl ether | 5.0                                      | U |
| 71-43-2     | Benzene                 | 23                                       |   |
| 108-88-3    | Toluene                 | 4.9                                      | J |
| 100-41-4    | Ethylbenzene            | 1.1                                      | J |
| L79601-23-1 | m,p-Xylene              | 12                                       |   |
| 95-47-6     | o-Xylene                | 9.2                                      |   |
| 1330-20-7   | Xylene (Total)          | 21                                       |   |
| 98-82-8     | Isopropylbenzene        | 5.0                                      | U |
| 103-65-1    | n-Propylbenzene         | 5.0                                      | U |
| 108-67-8    | 1,3,5-Trimethylbenzene  | 5.1                                      |   |
| 98-06-6     | tert-Butylbenzene       | 5.0                                      | U |
| 95-63-6     | 1,2,4-Trimethylbenzene  | 3.9                                      | J |
| 135-98-8    | sec-Butylbenzene        | 5.0                                      | U |
| 99-87-6     | 4-Isopropyltoluene      | 5.0                                      | U |
| 104-51-8    | n-Butylbenzene          | 5.0                                      | U |
| 91-20-3     | Naphthalene             | 61                                       |   |

EPA SAMPLE NO.

FIELD DUPLICATE 062614

| Lab Name: SPECTRUM ANA  | LYTICAL, IN | C.    |      | Contract:         |                 |     |
|-------------------------|-------------|-------|------|-------------------|-----------------|-----|
| Lab Code: MITKEM        | Case No.:   | N1104 |      | Mod. Ref No.:     | SDG No.: SN1104 |     |
| Matrix: (SOIL/SED/WATER | R) WATER    |       |      | Lab Sample ID:    | N1104-18A       |     |
| Sample wt/vol: 5.       | 00 (g/mL)   | ML    |      | Lab File ID:      | V8D6011.D       |     |
| Level: (TRACE/LOW/MED)  | LOW         |       |      | Date Received:    | 06/27/2014      |     |
| % Moisture: not dec.    |             |       |      | Date Analyzed:    | 07/03/2014      |     |
| GC Column: DB-624       | ID:         | 0.25  | (mm) | Dilution Factor:  | 1.0             |     |
| Soil Extract Volume: _  |             |       | (uL) | Soil Aliquot Volu | ume: (uI        | ( د |
| Purge Volume: 5.0       |             |       | (mL) |                   |                 |     |

| CAS NO.     | COMPOUND                | CONCENTRATION UNITS: (ug/L or ug/Kg) ug/L | Q |
|-------------|-------------------------|-------------------------------------------|---|
| 1634-04-4   | Methyl tert-butyl ether | 5.0                                       | U |
| 71-43-2     | Benzene                 | 88                                        |   |
| 108-88-3    | Toluene                 | 24                                        |   |
| 100-41-4    | Ethylbenzene            | 1.0                                       | J |
| L79601-23-1 | m,p-Xylene              | 16                                        |   |
| 95-47-6     | o-Xylene                | 9.9                                       |   |
| 1330-20-7   | Xylene (Total)          | 26                                        |   |
| 98-82-8     | Isopropylbenzene        | 1.7                                       | J |
| 103-65-1    | n-Propylbenzene         | 5.0                                       | U |
| 108-67-8    | 1,3,5-Trimethylbenzene  | 5.4                                       |   |
| 98-06-6     | tert-Butylbenzene       | 5.0                                       | U |
| 95-63-6     | 1,2,4-Trimethylbenzene  | 7.9                                       |   |
| 135-98-8    | sec-Butylbenzene        | 5.0                                       | U |
| 99-87-6     | 4-Isopropyltoluene      | 5.0                                       | U |
| 104-51-8    | n-Butylbenzene          | 5.0                                       | U |
| 91-20-3     | Naphthalene             | 1200                                      | E |

EPA SAMPLE NO.

FIELD DUPLICATE 062614DL

| Lab Name: SPECTRUM ANALYTICAL, INC. |      | Contract:        |                 |
|-------------------------------------|------|------------------|-----------------|
| Lab Code: MITKEM Case No.: N110     | 4    | Mod. Ref No.:    | SDG No.: SN1104 |
| Matrix: (SOIL/SED/WATER) WATER      |      | Lab Sample ID:   | N1104-18ADL     |
| Sample wt/vol:5.00 (g/mL) ML        |      | Lab File ID:     | V8D6052.D       |
| Level: (TRACE/LOW/MED) LOW          |      | Date Received:   | 06/27/2014      |
| % Moisture: not dec.                |      | Date Analyzed:   | 07/08/2014      |
| GC Column: DB-624 ID: 0.25          | (mm) | Dilution Factor: | 50.0            |
| Soil Extract Volume:                | (uL) | Soil Aliquot Vol | ume:(uL         |
| Purge Volume: 5.0                   | (mL) |                  |                 |

| CAS NO.    | COMPOUND                | CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L | Q  |
|------------|-------------------------|-------------------------------------------|----|
| 1634-04-4  | Methyl tert-butyl ether | 250                                       | U  |
| 71-43-2    | Benzene                 | 110                                       | DJ |
| 108-88-3   | Toluene                 | 250                                       | U  |
| 100-41-4   | Ethylbenzene            | 250                                       | U  |
| 79601-23-1 | m,p-Xylene              | 250                                       | U  |
| 95-47-6    | o-Xylene                | 250                                       | U  |
| 1330-20-7  | Xylene (Total)          | 250                                       | U  |
| 98-82-8    | Isopropylbenzene        | 250                                       | U  |
| 103-65-1   | n-Propylbenzene         | 250                                       | U  |
| 108-67-8   | 1,3,5-Trimethylbenzene  | 250                                       | U  |
| 98-06-6    | tert-Butylbenzene       | 250                                       | U  |
| 95-63-6    | 1,2,4-Trimethylbenzene  | 250                                       | U  |
| 135-98-8   | sec-Butylbenzene        | 250                                       | U  |
| 99-87-6    | 4-Isopropyltoluene      | 250                                       | U  |
| 104-51-8   | n-Butylbenzene          | 250                                       | U  |
| 91-20-3    | Naphthalene             | 750                                       | D  |

| EPA   | SAMPLE | NO. |
|-------|--------|-----|
| MB-77 | 913    |     |
|       |        |     |
|       |        |     |

| Lab Name:  | SPECTRUM ANA  | LYTICAL, | INC.        |      |      | Contract:        |           |          |        |
|------------|---------------|----------|-------------|------|------|------------------|-----------|----------|--------|
| Lab Code:  | MITKEM        | Case No  | .: <u>N</u> | 1104 |      | Mod. Ref No.:    |           | SDG No.: | SN1104 |
| Matrix: (S | OIL/SED/WATEF | WATER    | 3           |      |      | Lab Sample ID:   | MB-77913  |          |        |
| Sample wt/ | vol:5.        | 00 (g/ml | L) M        | L    |      | Lab File ID:     | V1N0047.D |          |        |
| Level: (TR | ACE/LOW/MED)  | LOW      |             |      |      | Date Received:   |           |          |        |
| % Moisture | : not dec.    |          |             |      |      | Date Analyzed:   | 07/02/201 | 4        |        |
| GC Column: | DB-624        | I        | D: 0        | .25  | (mm) | Dilution Factor: | 1.0       |          |        |
| Soil Extra | ct Volume:    |          |             |      | (uL) | Soil Aliquot Vol | ume:      |          | (uL)   |
| Purge Volu | me: 5.0       |          |             |      | (mL) |                  |           |          |        |

| CAS NO.     | COMPOUND                | CONCENTRATION UNITS: (ug/L or ug/Kg) ug/L | Q |  |
|-------------|-------------------------|-------------------------------------------|---|--|
| 1634-04-4   | Methyl tert-butyl ether | 5.0                                       | U |  |
| 71-43-2     | Benzene                 | 5.0                                       | U |  |
| 108-88-3    | Toluene                 | 5.0                                       | U |  |
| 100-41-4    | Ethylbenzene            | 5.0                                       | U |  |
| 179601-23-1 | m,p-Xylene              | 5.0                                       | U |  |
| 95-47-6     | o-Xylene                | 5.0                                       | U |  |
| 1330-20-7   | Xylene (Total)          | 5.0                                       | U |  |
| 98-82-8     | Isopropylbenzene        | 5.0                                       | U |  |
| 103-65-1    | n-Propylbenzene         | 5.0                                       | U |  |
| 108-67-8    | 1,3,5-Trimethylbenzene  | 5.0                                       | U |  |
| 98-06-6     | tert-Butylbenzene       | 5.0                                       | U |  |
| 95-63-6     | 1,2,4-Trimethylbenzene  | 5.0 U                                     |   |  |
| 135-98-8    | sec-Butylbenzene        | 5.0                                       | U |  |
| 99-87-6     | 4-Isopropyltoluene      | 5.0                                       | U |  |
| 104-51-8    | n-Butylbenzene          | 5.0                                       | U |  |
| 91-20-3     | Naphthalene             | 5.0                                       | U |  |

| EPA   | SAMPLE | NO. |
|-------|--------|-----|
| MB-77 | 934    |     |
|       |        |     |
|       |        |     |

| Lab Name: SI  | PECTRUM ANAL | YTICAL, IN | C.    |       | Contract:        |                 |
|---------------|--------------|------------|-------|-------|------------------|-----------------|
| Lab Code: MI  | ITKEM        | Case No.:  | N1104 |       | Mod. Ref No.:    | SDG No.: SN1104 |
| Matrix: (SOI  | L/SED/WATER) | WATER      |       |       | Lab Sample ID:   | MB-77934        |
| Sample wt/vo  | 1: 5.0       | 0 (g/mL)   | ML    |       | Lab File ID:     | V8D5997.D       |
| Level: (TRAC) | E/LOW/MED)   | LOW        |       |       | Date Received:   |                 |
| % Moisture: 1 | not dec.     |            |       |       | Date Analyzed:   | 07/03/2014      |
| GC Column: 1  | DB-624       | ID:        | 0.25  | (mm)  | Dilution Factor: | 1.0             |
| Soil Extract  | Volume:      |            |       | (uL)  | Soil Aliquot Vol | ume: (uL)       |
| Purae Volume  | : 5.0        |            |       | (mT.) |                  |                 |

| CAS NO.     | COMPOUND                | CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L | Q |
|-------------|-------------------------|-------------------------------------------|---|
| 1634-04-4   | Methyl tert-butyl ether | 5.0                                       | U |
| 71-43-2     | Benzene                 | 1.0                                       | U |
| 108-88-3    | Toluene                 | 1.0                                       | U |
| 100-41-4    | Ethylbenzene            | 1.0                                       | U |
| 179601-23-1 | m,p-Xylene              | 1.0                                       | U |
| 95-47-6     | o-Xylene                | 1.0                                       | U |
| 1330-20-7   | Xylene (Total)          | 5.0                                       | U |
| 98-82-8     | Isopropylbenzene        | 5.0                                       | U |
| 103-65-1    | n-Propylbenzene         | 5.0                                       | U |
| 108-67-8    | 1,3,5-Trimethylbenzene  | 5.0                                       | U |
| 98-06-6     | tert-Butylbenzene       | 5.0                                       | U |
| 95-63-6     | 1,2,4-Trimethylbenzene  | 5.0                                       | U |
| 135-98-8    | sec-Butylbenzene        | 5.0                                       | U |
| 99-87-6     | 4-Isopropyltoluene      | 5.0                                       | U |
| 104-51-8    | n-Butylbenzene          | 5.0                                       | U |
| 91-20-3     | Naphthalene             | 5.0                                       | U |

| EP <i>P</i> | SAMPLI | E NO. |
|-------------|--------|-------|
| MB-7        | 7977   |       |
|             |        |       |
|             |        |       |

| Lab Name: SPECTRU  | M ANALYTIC | CAL, IN | С.    |       | Contract:        |                 |
|--------------------|------------|---------|-------|-------|------------------|-----------------|
| Lab Code: MITKEM   | Case       | e No.:  | N1104 |       | Mod. Ref No.:    | SDG No.: SN1104 |
| Matrix: (SOIL/SED  | /WATER) W  | ATER    |       |       | Lab Sample ID:   | MB-77977        |
| Sample wt/vol:     | 5.00 (     | g/mL)   | ML    |       | Lab File ID:     | V8D6048.D       |
| Level: (TRACE/LOW  | MED) LOW   |         |       |       | Date Received:   |                 |
| % Moisture: not d  | ec.        |         |       |       | Date Analyzed:   | 07/08/2014      |
| GC Column: DB-62   | 1          | ID:     | 0.25  | (mm)  | Dilution Factor: | 1.0             |
| Soil Extract Volum | me:        |         |       | (uL)  | Soil Aliquot Vol | ume: (uL)       |
| Purge Volume: 5    | )          |         |       | (mT.) |                  |                 |

| CAS NO.     | COMPOUND                | CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L | Q |
|-------------|-------------------------|-------------------------------------------|---|
| 1634-04-4   | Methyl tert-butyl ether | 5.0                                       | U |
| 71-43-2     | Benzene                 | 5.0                                       | U |
| 108-88-3    | Toluene                 | 5.0                                       | U |
| 100-41-4    | Ethylbenzene            | 5.0                                       | U |
| 179601-23-1 | m,p-Xylene              | 5.0                                       | U |
| 95-47-6     | o-Xylene                | 5.0                                       | U |
| 1330-20-7   | Xylene (Total)          | 5.0                                       | U |
| 98-82-8     | Isopropylbenzene        | 5.0                                       | U |
| 103-65-1    | n-Propylbenzene         | 5.0                                       | U |
| 108-67-8    | 1,3,5-Trimethylbenzene  | 5.0                                       | U |
| 98-06-6     | tert-Butylbenzene       | 5.0                                       | U |
| 95-63-6     | 1,2,4-Trimethylbenzene  | 5.0                                       | U |
| 135-98-8    | sec-Butylbenzene        | 5.0                                       | U |
| 99-87-6     | 4-Isopropyltoluene      | 5.0                                       | U |
| 104-51-8    | n-Butylbenzene          | 5.0                                       | U |
| 91-20-3     | Naphthalene             | 5.0                                       | U |

| EPA  | SAMPLE | NO. |
|------|--------|-----|
| LCS- | 77913  |     |
|      |        |     |
|      |        |     |

| Lab Name:  | SPECTRUM ANA  | LYTICAL, IN | iC.   |      | Contract:        |                 |     |
|------------|---------------|-------------|-------|------|------------------|-----------------|-----|
| Lab Code:  | MITKEM        | Case No.:   | N1104 |      | Mod. Ref No.:    | SDG No.: SN1104 |     |
| Matrix: (S | OIL/SED/WATER | R) WATER    |       |      | Lab Sample ID:   | LCS-77913       |     |
| Sample wt/ | vol:5.        | 00 (g/mL)   | ML    |      | Lab File ID:     | V1N0043.D       |     |
| Level: (TR | ACE/LOW/MED)  | LOW         |       |      | Date Received:   |                 |     |
| % Moisture | : not dec.    |             |       |      | Date Analyzed:   | 07/02/2014      |     |
| GC Column: | DB-624        | ID:         | 0.25  | (mm) | Dilution Factor: | 1.0             |     |
| Soil Extra | ct Volume:    |             |       | (uL) | Soil Aliquot Vol | ume:(           | uL) |
| Purge Volu | me: 5.0       |             |       | (mL) |                  |                 |     |

| CAS NO.     | COMPOUND                | CONCENTRATION UNITS:<br>(ug/L or ug/Kg) UG/L | Q |
|-------------|-------------------------|----------------------------------------------|---|
| 1634-04-4   | Methyl tert-butyl ether | 53                                           |   |
| 71-43-2     | Benzene                 | 52                                           |   |
| 108-88-3    | Toluene                 | 53                                           |   |
| 100-41-4    | Ethylbenzene            | 51                                           |   |
| 179601-23-1 | m,p-Xylene              | 100                                          |   |
| 95-47-6     | o-Xylene                | 50                                           |   |
| 1330-20-7   | Xylene (Total)          | 150                                          |   |
| 98-82-8     | Isopropylbenzene        | 52                                           |   |
| 103-65-1    | n-Propylbenzene         | 50                                           |   |
| 108-67-8    | 1,3,5-Trimethylbenzene  | 51                                           |   |
| 98-06-6     | tert-Butylbenzene       | 50                                           |   |
| 95-63-6     | 1,2,4-Trimethylbenzene  | 52                                           |   |
| 135-98-8    | sec-Butylbenzene        | 51                                           |   |
| 99-87-6     | 4-Isopropyltoluene      | 52                                           |   |
| 104-51-8    | n-Butylbenzene          | 53                                           |   |
| 91-20-3     | Naphthalene             | 46                                           |   |

| EPA   | SAMPLE | NO. |
|-------|--------|-----|
| LCS-7 | 77934  |     |
|       |        |     |

| Lab Name: SPECTRUM ANALY | FICAL, IN | С.    |      | Contract:        |                 |      |
|--------------------------|-----------|-------|------|------------------|-----------------|------|
| Lab Code: MITKEM C       | ase No.:  | N1104 |      | Mod. Ref No.:    | SDG No.: SN1104 |      |
| Matrix: (SOIL/SED/WATER) | WATER     |       |      | Lab Sample ID:   | LCS-77934       |      |
| Sample wt/vol: 5.00      | (g/mL)    | ML    |      | Lab File ID:     | V8D5993.D       |      |
| Level: (TRACE/LOW/MED) L | WO        |       |      | Date Received:   |                 |      |
| % Moisture: not dec.     |           |       |      | Date Analyzed:   | 07/03/2014      |      |
| GC Column: DB-624        | ID:       | 0.25  | (mm) | Dilution Factor: | 1.0             |      |
| Soil Extract Volume:     |           |       | (uL) | Soil Aliquot Vol | ume:            | (uL) |
| Purge Volume: 5.0        |           |       | (mL) |                  |                 |      |

| CAS NO.     | COMPOUND                | CONCENTRATION UNITS:<br>(ug/L or ug/Kg) ug/L | Q |
|-------------|-------------------------|----------------------------------------------|---|
| 1634-04-4   | Methyl tert-butyl ether | 45                                           |   |
| 71-43-2     | Benzene                 | 51                                           |   |
| 108-88-3    | Toluene                 | 50                                           |   |
| 100-41-4    | Ethylbenzene            | 51                                           |   |
| L79601-23-1 | m,p-Xylene              | 100                                          |   |
| 95-47-6     | o-Xylene                | 49                                           |   |
| 1330-20-7   | Xylene (Total)          | 150                                          |   |
| 98-82-8     | Isopropylbenzene        | 50                                           |   |
| 103-65-1    | n-Propylbenzene         | 50                                           |   |
| 108-67-8    | 1,3,5-Trimethylbenzene  | 50                                           |   |
| 98-06-6     | tert-Butylbenzene       | 48                                           |   |
| 95-63-6     | 1,2,4-Trimethylbenzene  | 48                                           |   |
| 135-98-8    | sec-Butylbenzene        | 50                                           |   |
| 99-87-6     | 4-Isopropyltoluene      | 50                                           |   |
| 104-51-8    | n-Butylbenzene          | 51                                           |   |
| 91-20-3     | Naphthalene             | 43                                           |   |

| EPA   | SAMPLE | NO. |
|-------|--------|-----|
| LCS-7 | 77977  |     |
|       |        |     |
|       |        |     |

| Lab Name: SPECTRUM ANALYTICAL, INC. |               |           |       |      | Contract:        |                 |    |
|-------------------------------------|---------------|-----------|-------|------|------------------|-----------------|----|
| Lab Code:                           | MITKEM        | Case No.: | N1104 |      | Mod. Ref No.:    | SDG No.: SN1104 |    |
| Matrix: (SO                         | OIL/SED/WATER | MATER     |       |      | Lab Sample ID:   | LCS-77977       |    |
| Sample wt/v                         | vol: 5.       | 00 (g/mL) | ML    |      | Lab File ID:     | V8D6044.D       |    |
| Level: (TRA                         | ACE/LOW/MED)  | LOW       |       |      | Date Received:   |                 |    |
| % Moisture                          | : not dec.    |           |       |      | Date Analyzed:   | 07/08/2014      |    |
| GC Column:                          | DB-624        | ID:       | 0.25  | (mm) | Dilution Factor: | 1.0             |    |
| Soil Extra                          | ct Volume:    |           |       | (uL) | Soil Aliquot Vol | ume: (ul        | L) |
| Purge Volur                         | me: 5.0       |           |       | (mL) |                  |                 |    |

| CAS NO.    | COMPOUND                | CONCENTRATION UNITS: (ug/L or ug/Kg) ug/L | Q |
|------------|-------------------------|-------------------------------------------|---|
| 1634-04-4  | Methyl tert-butyl ether | 45                                        |   |
| 71-43-2    | Benzene                 | 47                                        |   |
| 108-88-3   | Toluene                 | 46                                        |   |
| 100-41-4   | Ethylbenzene            | 47                                        |   |
| 79601-23-1 | m,p-Xylene              | 93                                        |   |
| 95-47-6    | o-Xylene                | 47                                        |   |
| 1330-20-7  | Xylene (Total)          | 140                                       |   |
| 98-82-8    | Isopropylbenzene        | 45                                        |   |
| 103-65-1   | n-Propylbenzene         | 45                                        |   |
| 108-67-8   | 1,3,5-Trimethylbenzene  | 46                                        |   |
| 98-06-6    | tert-Butylbenzene       | 44                                        |   |
| 95-63-6    | 1,2,4-Trimethylbenzene  | 45                                        |   |
| 135-98-8   | sec-Butylbenzene        | 45                                        |   |
| 99-87-6    | 4-Isopropyltoluene      | 46                                        |   |
| 104-51-8   | n-Butylbenzene          | 47                                        |   |
| 91-20-3    | Naphthalene             | 34                                        |   |

| EF  | PΑ | SAMPLE | NO. |
|-----|----|--------|-----|
| LCS | D- | 77913  |     |
|     |    |        |     |

| Lab Name: SPECTRUM ANALYTICAL, INC. |               |           | C.    |       | Contract:        |                 |
|-------------------------------------|---------------|-----------|-------|-------|------------------|-----------------|
| Lab Code:                           | MITKEM        | Case No.: | N1104 |       | Mod. Ref No.:    | SDG No.: SN1104 |
| Matrix: (S                          | OIL/SED/WATER | WATER     |       |       | Lab Sample ID:   | LCSD-77913      |
| Sample wt/                          | vol:5.        | 00 (g/mL) | ML    |       | Lab File ID:     | V1N0044.D       |
| Level: (TR                          | ACE/LOW/MED)  | LOW       |       |       | Date Received:   |                 |
| % Moisture                          | : not dec.    |           |       |       | Date Analyzed:   | 07/02/2014      |
| GC Column:                          | DB-624        | ID:       | 0.25  | (mm)  | Dilution Factor: | 1.0             |
| Soil Extra                          | ct Volume:    |           |       | (uL)  | Soil Aliquot Vol | ume:(uL)        |
| Purae Volu                          | me: 5 0       |           |       | (mT.) |                  |                 |

| CAS NO.     | COMPOUND                | CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L | Q |  |  |  |  |
|-------------|-------------------------|-------------------------------------------|---|--|--|--|--|
| 1634-04-4   | Methyl tert-butyl ether | 48                                        |   |  |  |  |  |
| 71-43-2     | Benzene                 | 46                                        |   |  |  |  |  |
| 108-88-3    | Toluene                 | 46                                        |   |  |  |  |  |
| 100-41-4    | Ethylbenzene            | 46                                        |   |  |  |  |  |
| 179601-23-1 | m,p-Xylene              | 90                                        |   |  |  |  |  |
| 95-47-6     | o-Xylene                | 45                                        |   |  |  |  |  |
| 1330-20-7   | Xylene (Total)          | 140                                       |   |  |  |  |  |
| 98-82-8     | Isopropylbenzene        | 48                                        |   |  |  |  |  |
| 103-65-1    | n-Propylbenzene         | 46                                        |   |  |  |  |  |
| 108-67-8    | 1,3,5-Trimethylbenzene  | 48                                        |   |  |  |  |  |
| 98-06-6     | tert-Butylbenzene       | 47                                        |   |  |  |  |  |
| 95-63-6     | 1,2,4-Trimethylbenzene  | 49                                        |   |  |  |  |  |
| 135-98-8    | sec-Butylbenzene        | 48                                        |   |  |  |  |  |
| 99-87-6     | 4-Isopropyltoluene      | 48                                        |   |  |  |  |  |
| 104-51-8    | n-Butylbenzene 49       |                                           |   |  |  |  |  |
| 91-20-3     | Naphthalene             | 47                                        |   |  |  |  |  |

| EPA   | SAMPLE | NO. |
|-------|--------|-----|
| LCSD- | 77977  |     |
|       |        |     |

| Lab Name:  | SPECTRUM ANA  | LLYTICAL, IN | C.    |                    | Contract:        |                 |
|------------|---------------|--------------|-------|--------------------|------------------|-----------------|
| Lab Code:  | MITKEM        | Case No.:    | N1104 |                    | Mod. Ref No.:    | SDG No.: SN1104 |
| Matrix: (S | OIL/SED/WATER | R) WATER     |       |                    | Lab Sample ID:   | LCSD-77977      |
| Sample wt/ | vol: 5.       | .00 (g/mL)   | ML    |                    | Lab File ID:     | V8D6045.D       |
| Level: (TR | ACE/LOW/MED)  | LOW          |       |                    | Date Received:   |                 |
| % Moisture | : not dec.    |              |       |                    | Date Analyzed:   | 07/08/2014      |
| GC Column: | DB-624        | ID:          | 0.25  | (mm)               | Dilution Factor: | 1.0             |
| Soil Extra | ct Volume: _  |              | (     | (uL)               | Soil Aliquot Vol | ume:(uL         |
| Purge Volu | me: 5.0       |              | (     | (mT <sub>1</sub> ) |                  |                 |

| CAS NO.     | COMPOUND                | CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L | Q |  |  |  |  |
|-------------|-------------------------|-------------------------------------------|---|--|--|--|--|
| 1634-04-4   | Methyl tert-butyl ether | 48                                        | ľ |  |  |  |  |
| 71-43-2     | Benzene                 | 47                                        |   |  |  |  |  |
| 108-88-3    | Toluene                 | 46                                        |   |  |  |  |  |
| 100-41-4    | Ethylbenzene            | 46                                        |   |  |  |  |  |
| 179601-23-1 | m,p-Xylene              | 92                                        | ľ |  |  |  |  |
| 95-47-6     | o-Xylene                | 47                                        | ľ |  |  |  |  |
| 1330-20-7   | Xylene (Total)          | 140                                       |   |  |  |  |  |
| 98-82-8     | Isopropylbenzene        | 46                                        | ľ |  |  |  |  |
| 103-65-1    | n-Propylbenzene         | 44                                        |   |  |  |  |  |
| 108-67-8    | 1,3,5-Trimethylbenzene  | 46                                        |   |  |  |  |  |
| 98-06-6     | tert-Butylbenzene       | 43                                        | ľ |  |  |  |  |
| 95-63-6     | 1,2,4-Trimethylbenzene  | 45                                        |   |  |  |  |  |
| 135-98-8    | sec-Butylbenzene        | 43                                        |   |  |  |  |  |
| 99-87-6     | 4-Isopropyltoluene      | 44                                        |   |  |  |  |  |
| 104-51-8    | n-Butylbenzene 46       |                                           |   |  |  |  |  |
| 91-20-3     | Naphthalene             | 39                                        |   |  |  |  |  |

#### 2B - FORM II VOA-2

#### WATER VOLATILE DEUTERATED MONITORING COMPOUND RECOVERY

Lab Name: SPECTRUM ANALYTICAL, INC. Contract:

Lab Code: MITKEM Case No.: N1104 Mod. Ref No.: SDG No.: SN1104

Level: (TRACE or LOW) LOW

|    | EPA                  | VDMC1    | VDMC2   | VDMC3   | VDMC4   | Т | ТОТ |
|----|----------------------|----------|---------|---------|---------|---|-----|
|    | SAMPLE NO.           | (DBFM) # | (DCE) # | (TOL) # | (BFB) # | 0 | TUC |
| 01 | LCS-77913            | 102      | 107     | 98      | 102     |   | 0   |
| 02 | LCSD-77913           | 101      | 108     | 98      | 99      |   | 0   |
| 03 | MB-77913             | 101      | 97      | 100     | 95      |   | 0   |
| 04 | TRIP BLANK 2         | 101      | 103     | 100     | 95      |   | 0   |
| 05 | TRIP BLANK<br>001    | 102      | 101     | 99      | 96      |   | 0   |
| 06 | MWN-04-06241<br>4    | 102      | 102     | 99      | 94      |   | 0   |
| 07 | MWN-03D-0624<br>14   | 102      | 103     | 100     | 98      |   | 0   |
| 08 | MWN-03-06241<br>4    | 102      | 96      | 99      | 97      |   | 0   |
| 09 | MWM-02-06251<br>4    | 98       | 101     | 99      | 94      |   | 0   |
| 10 | MWN-02B-0625<br>14   | 98       | 100     | 99      | 100     |   | 0   |
| 11 | WT1-05-06251         | 99       | 101     | 100     | 99      |   | 0   |
| 12 | WT1-06-06261<br>4    | 101      | 103     | 98      | 98      |   | 0   |
| 13 | BCP-ORC-1-06<br>2614 | 101      | 103     | 100     | 98      |   | 0   |
| 14 | MWN-01-06261<br>4    | 102      | 102     | 98      | 98      |   | 0   |
|    | MWN-01B-0626<br>14   | 102      | 99      | 96      | 100     |   | 0   |
| 16 | LCS-77934            | 97       | 98      | 99      | 95      |   | 0   |
| 17 | MB-77934             | 96       | 99      | 97      | 89      |   | 0   |
| 18 | MWN-02B-0625<br>14DL | 97       | 106     | 95      | 93      |   | 0   |
| 19 | WT1-02-06251<br>4    | 100      | 105     | 95      | 92      |   | 0   |

|       |                               | QC LIMITS |
|-------|-------------------------------|-----------|
| VDMC1 | (DBFM) Dibromofluoromethane   | (85-115)  |
| VDMC2 | (DCE) = 1,2-Dichloroethane-d4 | (70-120)  |
| VDMC3 | (TOL) = Toluene-d8            | (85-120)  |
| VDMC4 | (BFB) = Bromofluorobenzene    | (75-120)  |

<sup>#</sup> Column to be used to flag recovery values

som14.07.15.0901

Page 1 of 2 SW846

N1104 Page 42 of 189

<sup>\*</sup> Values outside of contract required QC limits

#### 2B - FORM II VOA-2

#### WATER VOLATILE DEUTERATED MONITORING COMPOUND RECOVERY

Lab Name: SPECTRUM ANALYTICAL, INC. Contract:

Lab Code: MITKEM Case No.: N1104 Mod. Ref No.: SDG No.: SN1104

Level: (TRACE or LOW) LOW

|    | EPA                            | VDMC1    | VDMC   | !2   | VDMC3 |   | VDMC4 |   |  | 1 | TOT |
|----|--------------------------------|----------|--------|------|-------|---|-------|---|--|---|-----|
|    | SAMPLE NO.                     | (DBFM) : | # (DCH | :) # | (TOL) | # | (BFB) | # |  | 4 | OUT |
| 20 | WT1-06-06261<br>4DL            | 95       | 1      | 00   | 97    |   | 92    |   |  |   | 0   |
| 21 | BCP-ORC-2-06<br>2614           | 99       | 1      | 8    | 95    |   | 93    |   |  |   | 0   |
| 22 | MWN-01-06261<br>4DL            | 97       |        | 97   | 96    |   | 92    |   |  |   | 0   |
| 23 | MWN-01B-0626<br>14DL           | 99       | 1      | )5   | 95    |   | 92    |   |  |   | 0   |
|    | FIELD<br>DUPLICATE<br>062614   | 98       | 1      | )1   | 96    |   | 94    |   |  |   | 0   |
| 25 | LCS-77977                      | 99       |        | 96   | 100   |   | 101   |   |  |   | 0   |
| 26 | LCSD-77977                     | 102      | 1      | )4   | 98    |   | 103   |   |  |   | 0   |
| 27 | MB-77977                       | 101      | 1      | )4   | 97    |   | 91    |   |  |   | 0   |
| 28 | WT1-04-06261<br>4              | 103      | 1      | )6   | 97    |   | 95    |   |  |   | 0   |
| 29 | FIELD<br>DUPLICATE<br>062614DL | 103      | 1      | )5   | 98    |   | 96    |   |  |   | 0   |

|       |                               | QC LIMITS |
|-------|-------------------------------|-----------|
| VDMC1 | (DBFM) Dibromofluoromethane   | (85-115)  |
| VDMC2 | (DCE) = 1,2-Dichloroethane-d4 | (70-120)  |
| VDMC3 | (TOL) = Toluene-d8            | (85-120)  |
| VDMC4 | (BFB) = Bromofluorobenzene    | (75-120)  |

<sup>#</sup> Column to be used to flag recovery values

som14.07.15.0901

Page 2 of 2 SW846

N1104 Page 43 of 189

<sup>\*</sup> Values outside of contract required QC limits

# 3 - FORM III WATER LABORATORY CONTROL SAMPLE RECOVERY

EPA SAMPLE NO.

LCS-77913

| Lab Name: S | SPECTRUM ANALYTICAL, INC. |           |       | Contract:          |                 |  |
|-------------|---------------------------|-----------|-------|--------------------|-----------------|--|
| Lab Code: 1 | MITKEM                    | Case No.: | N1104 | Mod. Ref No.:      | SDG No.: SN1104 |  |
| Lab Sample  | ID: LCS-77                | 913       |       | LCS Lot No.:       |                 |  |
| Date Extrac | ted: <u>07/02/</u>        | 2014      |       | Date Analyzed (1): | 07/02/2014      |  |

|                         | SPIKE    | SAMPLE        | LCS           |          |   | QC.      |
|-------------------------|----------|---------------|---------------|----------|---|----------|
| COMPOUND                | ADDED    | CONCENTRATION | CONCENTRATION | LCS %REC | # | LIMITS   |
|                         |          |               |               |          |   | REC.     |
| Methyl tert-butyl ether | 50.0000  | 0.0000        | 52.9409       | 106      |   | 65 - 125 |
| Benzene                 | 50.0000  | 0.0000        | 52.3732       | 105      |   | 80 - 120 |
| Toluene                 | 50.0000  | 0.0000        | 53.1145       | 106      |   | 75 - 120 |
| Ethylbenzene            | 50.0000  | 0.0000        | 50.7627       | 102      |   | 75 - 125 |
| m,p-Xylene              | 100.0000 | 0.0000        | 101.6516      | 102      |   | 75 - 130 |
| o-Xylene                | 50.0000  | 0.0000        | 50.3796       | 101      |   | 80 - 120 |
| Xylene (Total)          | 150.0000 | 0.0000        | 152.0312      | 101      |   | 81 - 121 |
| Isopropylbenzene        | 50.0000  | 0.0000        | 52.2291       | 104      |   | 75 - 125 |
| n-Propylbenzene         | 50.0000  | 0.0000        | 49.7709       | 100      |   | 70 - 130 |
| 1,3,5-Trimethylbenzene  | 50.0000  | 0.0000        | 51.2926       | 103      |   | 75 - 130 |
| tert-Butylbenzene       | 50.0000  | 0.0000        | 50.0603       | 100      |   | 70 - 130 |
| 1,2,4-Trimethylbenzene  | 50.0000  | 0.0000        | 51.7792       | 104      |   | 75 - 130 |
| sec-Butylbenzene        | 50.0000  | 0.0000        | 51.2105       | 102      |   | 70 - 125 |
| 4-Isopropyltoluene      | 50.0000  | 0.0000        | 51.5059       | 103      |   | 75 - 130 |
| n-Butylbenzene          | 50.0000  | 0.0000        | 52.6576       | 105      |   | 70 - 135 |
| Naphthalene             | 50.0000  | 0.0000        | 46.1138       | 92       |   | 55 - 140 |

 $\ensuremath{\text{\#}}$  Column to be used to flag recovery and RPD values with an asterisk

| * Values out | side of QC | limits |    |                |  |
|--------------|------------|--------|----|----------------|--|
| Spike Recove | ry: 0      | out of | 16 | outside limits |  |
| COMMENTS:    |            |        |    |                |  |

# 3 - FORM III WATER LABORATORY CONTROL SAMPLE RECOVERY

EPA SAMPLE NO.

LCS-77934

| Lab Name: S | SPECTRUM ANALYTICAL, INC. |           |       | Contract:          |                 |  |
|-------------|---------------------------|-----------|-------|--------------------|-----------------|--|
| Lab Code: 1 | MITKEM                    | Case No.: | N1104 | Mod. Ref No.:      | SDG No.: SN1104 |  |
| Lab Sample  | ID: LCS-77                | 934       |       | LCS Lot No.:       |                 |  |
| Date Extrac | ted: <u>07/03/</u>        | 2014      |       | Date Analyzed (1): | 07/03/2014      |  |

|                         | SPIKE    | SAMPLE        | LCS           |          |   | QC.      |
|-------------------------|----------|---------------|---------------|----------|---|----------|
| COMPOUND                | ADDED    | CONCENTRATION | CONCENTRATION | LCS %REC | # | LIMITS   |
|                         |          | •             |               |          |   | REC.     |
| Methyl tert-butyl ether | 50.0000  | 0.0000        | 44.8154       | 90       |   | 65 - 125 |
| Benzene                 | 50.0000  | 0.0000        | 50.7968       | 102      |   | 80 - 120 |
| Toluene                 | 50.0000  | 0.0000        | 50.3769       | 101      |   | 75 - 120 |
| Ethylbenzene            | 50.0000  | 0.0000        | 50.7146       | 101      |   | 75 - 125 |
| m,p-Xylene              | 100.0000 | 0.0000        | 102.4659      | 102      |   | 75 - 130 |
| o-Xylene                | 50.0000  | 0.0000        | 49.1332       | 98       |   | 80 - 120 |
| Xylene (Total)          | 150.0000 | 0.0000        | 151.5991      | 101      |   | 81 - 121 |
| Isopropylbenzene        | 50.0000  | 0.0000        | 50.0729       | 100      |   | 75 - 125 |
| n-Propylbenzene         | 50.0000  | 0.0000        | 49.6578       | 99       |   | 70 - 130 |
| 1,3,5-Trimethylbenzene  | 50.0000  | 0.0000        | 49.5210       | 99       |   | 75 - 130 |
| tert-Butylbenzene       | 50.0000  | 0.0000        | 47.5311       | 95       |   | 70 - 130 |
| 1,2,4-Trimethylbenzene  | 50.0000  | 0.0000        | 48.3884       | 97       |   | 75 - 130 |
| sec-Butylbenzene        | 50.0000  | 0.0000        | 50.2922       | 101      |   | 70 - 125 |
| 4-Isopropyltoluene      | 50.0000  | 0.0000        | 49.8456       | 100      |   | 75 - 130 |
| n-Butylbenzene          | 50.0000  | 0.0000        | 50.6658       | 101      |   | 70 - 135 |
| Naphthalene             | 50.0000  | 0.0000        | 42.9921       | 86       |   | 55 - 140 |

 $\ensuremath{\text{\#}}$  Column to be used to flag recovery and RPD values with an asterisk

| * Values outside | of QC limits |                |
|------------------|--------------|----------------|
| Spike Recovery:  | 0 out of     | outside limits |
| COMMENTS:        |              |                |
|                  |              |                |

# 3 - FORM III WATER LABORATORY CONTROL SAMPLE RECOVERY

EPA SAMPLE NO.

LCS-77977

| Lab Name:  | Name: SPECTRUM ANALYTICAL, INC. |         |           | C.    | Contract:          |            |      |        |
|------------|---------------------------------|---------|-----------|-------|--------------------|------------|------|--------|
| Lab Code:  | MITKEN                          | N       | Case No.: | N1104 | Mod. Ref No.:      | SDG I      | No.: | SN1104 |
| Lab Sample | ID:                             | LCS-779 | 77        |       | LCS Lot No.:       |            |      |        |
| Date Extra | cted:                           | 07/08/2 | 2014      |       | Date Analyzed (1): | 07/08/2014 |      |        |

|                         | SPIKE    | SAMPLE        | LCS           |          |   | QC.      |
|-------------------------|----------|---------------|---------------|----------|---|----------|
| COMPOUND                | ADDED    | CONCENTRATION | CONCENTRATION | LCS %REC | # | LIMITS   |
|                         |          | '             |               |          |   | REC.     |
| Methyl tert-butyl ether | 50.0000  | 0.0000        | 44.7243       | 89       |   | 65 - 125 |
| Benzene                 | 50.0000  | 0.0000        | 47.0001       | 94       |   | 80 - 120 |
| Toluene                 | 50.0000  | 0.0000        | 45.7086       | 91       |   | 75 - 120 |
| Ethylbenzene            | 50.0000  | 0.0000        | 46.9579       | 94       |   | 75 - 125 |
| m,p-Xylene              | 100.0000 | 0.0000        | 92.9346       | 93       |   | 75 - 130 |
| o-Xylene                | 50.0000  | 0.0000        | 46.6243       | 93       |   | 80 - 120 |
| Xylene (Total)          | 150.0000 | 0.0000        | 139.5589      | 93       |   | 81 - 121 |
| Isopropylbenzene        | 50.0000  | 0.0000        | 45.4955       | 91       |   | 75 - 125 |
| n-Propylbenzene         | 50.0000  | 0.0000        | 44.5258       | 89       |   | 70 - 130 |
| 1,3,5-Trimethylbenzene  | 50.0000  | 0.0000        | 45.9601       | 92       |   | 75 - 130 |
| tert-Butylbenzene       | 50.0000  | 0.0000        | 44.1184       | 88       |   | 70 - 130 |
| 1,2,4-Trimethylbenzene  | 50.0000  | 0.0000        | 44.9443       | 90       |   | 75 - 130 |
| sec-Butylbenzene        | 50.0000  | 0.0000        | 44.9953       | 90       |   | 70 - 125 |
| 4-Isopropyltoluene      | 50.0000  | 0.0000        | 45.8681       | 92       |   | 75 - 130 |
| n-Butylbenzene          | 50.0000  | 0.0000        | 46.5004       | 93       |   | 70 - 135 |
| Naphthalene             | 50.0000  | 0.0000        | 34.2620       | 69       |   | 55 - 140 |

 $\ensuremath{\text{\#}}$  Column to be used to flag recovery and RPD values with an asterisk

| * Values out | side of QC limit | S              |               |  |
|--------------|------------------|----------------|---------------|--|
| Spike Recove | ry: 0 out        | of <u>16</u> 0 | utside limits |  |
| COMMENTS:    |                  |                |               |  |
| _            |                  |                |               |  |

# 3 - FORM III WATER LABORATORY CONTROL SAMPLE DUPLICATE RECOVERY

EPA SAMPLE NO.

LCSD-77913

| Lab | Name:  | SPECTR | UM ANALYTICAL, INC. | Contract:     |          |        |  |
|-----|--------|--------|---------------------|---------------|----------|--------|--|
| Lab | Code:  | MITKEM | Case No.: N1104     | Mod. Ref No.: | SDG No.: | SN1104 |  |
| Lab | Sample | ID:    | LCSD-77913          | LCS Lot No.:  |          |        |  |

|                         | SPIKE    | LCSD          |           |   |        | ~          | LIMITS   |
|-------------------------|----------|---------------|-----------|---|--------|------------|----------|
|                         | ADDED    | CONCENTRATION | LCSD %REC | # | %RPD ‡ | ‡ <u> </u> |          |
| COMPOUND                |          |               |           |   |        | RPD        | REC.     |
| Methyl tert-butyl ether | 50.0000  | 47.9739       | 96        |   | 10     | 40         | 65 - 125 |
| Benzene                 | 50.0000  | 45.8976       | 92        |   | 13     | 40         | 80 - 120 |
| Toluene                 | 50.0000  | 46.1212       | 92        |   | 14     | 40         | 75 - 120 |
| Ethylbenzene            | 50.0000  | 45.7228       | 91        |   | 11     | 40         | 75 - 125 |
| m,p-Xylene              | 100.0000 | 90.2933       | 90        |   | 13     | 40         | 75 - 130 |
| o-Xylene                | 50.0000  | 45.3602       | 91        |   | 10     | 40         | 80 - 120 |
| Xylene (Total)          | 150.0000 | 135.6535      | 90        |   | 12     | 40         | 81 - 121 |
| Isopropylbenzene        | 50.0000  | 47.7246       | 95        |   | 9      | 40         | 75 - 125 |
| n-Propylbenzene         | 50.0000  | 46.3910       | 93        |   | 7      | 40         | 70 - 130 |
| 1,3,5-Trimethylbenzene  | 50.0000  | 48.1729       | 96        |   | 7      | 40         | 75 - 130 |
| tert-Butylbenzene       | 50.0000  | 46.5296       | 93        |   | 7      | 40         | 70 - 130 |
| 1,2,4-Trimethylbenzene  | 50.0000  | 48.7214       | 97        |   | 7      | 40         | 75 - 130 |
| sec-Butylbenzene        | 50.0000  | 47.8805       | 96        |   | 6      | 40         | 70 - 125 |
| 4-Isopropyltoluene      | 50.0000  | 48.2534       | 97        |   | 6      | 40         | 75 - 130 |
| n-Butylbenzene          | 50.0000  | 49.2454       | 98        |   | 7      | 40         | 70 - 135 |
| Naphthalene             | 50.0000  | 46.7094       | 93        |   | 1      | 40         | 55 - 140 |

# Column to be used to flag recovery and RPD values with an asterisk

| * Values outside of QC limits |                            |  |  |  |  |
|-------------------------------|----------------------------|--|--|--|--|
| RPD:out of                    | outside limits             |  |  |  |  |
| Spike Recovery:               | 0 out of 16 outside limits |  |  |  |  |
| COMMENTS:                     |                            |  |  |  |  |
|                               |                            |  |  |  |  |

# 3 - FORM III WATER LABORATORY CONTROL SAMPLE DUPLICATE RECOVERY

EPA SAMPLE NO.

LCSD-77977

| Lab | Name:  | SPECTR | UM ANALYTICAL, INC. | Contract:     |          |        |
|-----|--------|--------|---------------------|---------------|----------|--------|
| Lab | Code:  | MITKEM | Case No.: N1104     | Mod. Ref No.: | SDG No.: | SN1104 |
| Lab | Sample | ID:    | LCSD-77977          | LCS Lot No.:  |          |        |

|                         | SPIKE<br>ADDED | LCSD<br>CONCENTRATION | LCSD %REC  | # | %RPD | ~   | LIMITS   |
|-------------------------|----------------|-----------------------|------------|---|------|-----|----------|
| COMPOUND                | ADDED          | CONCENTION            | LCDD WILLE | π | OKID | RPD | REC.     |
| Methyl tert-butyl ether | 50.0000        | 48.0317               | 96         |   | 8    | 40  | 65 - 125 |
| Benzene                 | 50.0000        | 47.1989               | 94         |   | 0    | 40  | 80 - 120 |
| Toluene                 | 50.0000        | 46.1718               | 92         |   | 1    | 40  | 75 - 120 |
| Ethylbenzene            | 50.0000        | 46.2170               | 92         |   | 2    | 40  | 75 - 125 |
| m,p-Xylene              | 100.0000       | 92.2073               | 92         |   | 1    | 40  | 75 - 130 |
| o-Xylene                | 50.0000        | 47.3591               | 95         |   | 2    | 40  | 80 - 120 |
| Xylene (Total)          | 150.0000       | 139.5664              | 93         |   | 0    | 40  | 81 - 121 |
| Isopropylbenzene        | 50.0000        | 45.6608               | 91         |   | 0    | 40  | 75 - 125 |
| n-Propylbenzene         | 50.0000        | 44.3690               | 89         |   | 0    | 40  | 70 - 130 |
| 1,3,5-Trimethylbenzene  | 50.0000        | 45.5655               | 91         |   | 1    | 40  | 75 - 130 |
| tert-Butylbenzene       | 50.0000        | 42.8985               | 86         |   | 2    | 40  | 70 - 130 |
| 1,2,4-Trimethylbenzene  | 50.0000        | 45.2389               | 90         |   | 0    | 40  | 75 - 130 |
| sec-Butylbenzene        | 50.0000        | 43.2897               | 87         |   | 3    | 40  | 70 - 125 |
| 4-Isopropyltoluene      | 50.0000        | 44.3735               | 89         |   | 3    | 40  | 75 - 130 |
| n-Butylbenzene          | 50.0000        | 45.7800               | 92         |   | 1    | 40  | 70 - 135 |
| Naphthalene             | 50.0000        | 38.5606               | 77         |   | 11   | 40  | 55 - 140 |

 $\ensuremath{\mathtt{\#}}$  Column to be used to flag recovery and RPD values with an asterisk

| * | Values | outside | of | QC | limits |
|---|--------|---------|----|----|--------|
|   |        |         |    |    |        |

| RPD:   | 0     | out of | 16          | _outside | e lim | nits            |
|--------|-------|--------|-------------|----------|-------|-----------------|
| Spike  | Recov | ery:   | <u>0</u> oı | ıt of _  | 16    | _outside limits |
| COMMEN | NTS:  |        |             |          |       |                 |

#### 4A - FORM IV VOA VOLATILE METHOD BLANK SUMMARY

EPA SAMPLE NO.
MB-77913

|    | EPA                  | LAB        | LAB       | TIME     |
|----|----------------------|------------|-----------|----------|
|    | SAMPLE NO.           | SAMPLE ID  | FILE ID   | ANALYZED |
| 01 | LCS-77913            | LCS-77913  | V1N0043.D | 9:10     |
| 02 | LCSD-77913           | LCSD-77913 | V1N0044.D | 9:36     |
| 03 | TRIP BLANK 2         | N1104-11A  | V1N0052.D | 12:57    |
| 04 | TRIP BLANK<br>001    | N1104-05A  | V1N0053.D | 13:22    |
| 05 | MWN-04-06241<br>4    | N1104-01A  | V1N0054.D | 13:47    |
| 06 | MWN-03D-0624<br>14   | N1104-03A  | V1N0055.D | 14:12    |
| 07 | MWN-03-06241<br>4    | N1104-04A  | V1N0056.D | 14:37    |
| 08 | MWM-02-06251<br>4    | N1104-06A  | V1N0057.D | 15:01    |
| 09 | MWN-02B-0625<br>14   | N1104-07A  | V1N0058.D | 15:26    |
| 10 | WT1-05-06251<br>4    | N1104-10A  | V1N0060.D | 16:16    |
| 11 | WT1-06-06261<br>4    | N1104-12A  | V1N0061.D | 16:41    |
| 12 | BCP-ORC-1-06<br>2614 | N1104-14A  | V1N0063.D | 17:30    |
| 13 | MWN-01-06261<br>4    | N1104-15A  | V1N0064.D | 17:55    |
| 14 | MWN-01B-0626<br>14   | N1104-16A  | V1N0065.D | 18:20    |

| COMMENTS: |  |  |  |
|-----------|--|--|--|
|           |  |  |  |
|           |  |  |  |

SW846

# 4A - FORM IV VOA VOLATILE METHOD BLANK SUMMARY

EPA SAMPLE NO.
MB-77934

|    | EPA                          | LAB         | LAB       | TIME     |
|----|------------------------------|-------------|-----------|----------|
|    | SAMPLE NO.                   | SAMPLE ID   | FILE ID   | ANALYZED |
| 01 | LCS-77934                    | LCS-77934   | V8D5993.D | 7:29     |
|    | MWN-02B-0625<br>14DL         | N1104-07ADL | V8D6004.D | 12:30    |
| 03 | WT1-02-06251<br>4            | N1104-09A   | V8D6005.D | 12:57    |
| 04 | WT1-06-06261<br>4DL          | N1104-12ADL | V8D6006.D | 13:25    |
| 05 | BCP-ORC-2-06<br>2614         | N1104-13A   | V8D6007.D | 13:52    |
| 06 | MWN-01-06261<br>4DL          | N1104-15ADL | V8D6008.D | 14:19    |
| _  | MWN-01B-0626<br>14DL         | N1104-16ADL | V8D6009.D | 14:47    |
|    | FIELD<br>DUPLICATE<br>062614 | N1104-18A   | V8D6011.D | 15:42    |

| COMMENTS: |  |  |  |
|-----------|--|--|--|
|           |  |  |  |
|           |  |  |  |

# 4A - FORM IV VOA VOLATILE METHOD BLANK SUMMARY

MB-77977

| Lab Name: S  | SPECTRUM ANA   | LYTICAL, INC.   | Contract:          |                        |
|--------------|----------------|-----------------|--------------------|------------------------|
| Lab Code: M  | /ITKEM         | Case No.: N1104 | Mod. Ref No.:      | SDG No.: <u>SN1104</u> |
| Lab File ID: | v8D604         | 8.D             | Lab Sample ID:     | MB-77977               |
| Instrument 1 | ID: <u>V10</u> |                 | <u></u>            |                        |
| Matrix: (SO  | IL/SED/WATER   | WATER           | Date Analyzed:     | 07/08/2014             |
| Level: (TRAC | CE or LOW/ME   | D) LOW          | Time Analyzed:     | 9:35                   |
| GC Column:   | DB-624         | ID: 0.25 (m     | m) Heated Purge: ( | Y/N) N                 |

|    | EPA                            | LAB         | LAB       | TIME     |
|----|--------------------------------|-------------|-----------|----------|
|    | SAMPLE NO.                     | SAMPLE ID   | FILE ID   | ANALYZED |
| 01 | LCS-77977                      | LCS-77977   | V8D6044.D | 8:13     |
| 02 | LCSD-77977                     | LCSD-77977  | V8D6045.D | 8:40     |
| 03 | WT1-04-06261<br>4              | N1104-17A   | V8D6051.D | 10:57    |
| _  | FIELD<br>DUPLICATE<br>062614DL | N1104-18ADL | V8D6052.D | 11:23    |

COMMENTS:

#### 8A - FORM VIII VOA

#### VOLATILE INTERNAL STANDARD AREA AND RETENTION TIME SUMMARY

Lab Name: SPECTRUM ANALYTICAL, INC. Contract:

Lab Code: MITKEM Case No.: N1104 Mod. Ref No.: SDG No.: SN1104

GC Column: DB-624 ID: 0.25 (mm) Init. Calib. Date(s): 06/26/2014 06/26/2014

EPA Sample No.(VSTD#####): VSTD0501Q Date Analyzed: 07/02/2014

Lab File ID (Standard): V1N0042.D Time Analyzed: 8:28

Instrument ID: V1 Heated Purge: (Y/N) N

|    |                    | IS1 (S1 ) |       | IS2 (S2 ) |       | IS3 (S3 ) |        |
|----|--------------------|-----------|-------|-----------|-------|-----------|--------|
|    |                    | AREA #    | RT #  | AREA #    | RT #  | AREA #    | RT #   |
|    | 12 HOUR STD        | 632860    | 4.386 | 457562    | 7.242 | 179029    | 9.821  |
|    | UPPER LIMIT        | 1265720   | 4.886 | 915124    | 7.742 | 358058    | 10.321 |
|    | LOWER LIMIT        | 316430    | 3.886 | 228781    | 6.742 | 89515     | 9.321  |
|    | EPA SAMPLE NO.     |           |       |           |       |           |        |
| 01 | LCS-77913          | 628787    | 4.384 | 457883    | 7.249 | 186477    | 9.819  |
| 02 | LCSD-77913         | 639094    | 4.389 | 458036    | 7.245 | 184436    | 9.815  |
| 03 | MB-77913           | 567748    | 4.389 | 410924    | 7.245 | 150090    | 9.814  |
| 04 | TRIP BLANK 2       | 570362    | 4.384 | 405601    | 7.240 | 151401    | 9.819  |
| 05 | TRIP BLANK<br>001  | 539643    | 4.395 | 388246    | 7.240 | 142992    | 9.820  |
| 06 | MWN-04-06241<br>4  | 582569    | 4.390 | 422946    | 7.255 | 155635    | 9.825  |
| 07 | MWN-03D-0624<br>14 | 592389    | 4.389 | 425565    | 7.244 | 162167    | 9.814  |
| 80 | MWN-03-06241<br>4  | 591386    | 4.389 | 429649    | 7.244 | 160815    | 9.824  |
| 09 | MWM-02-06251<br>4  | 559442    | 4.390 | 399649    | 7.245 | 150458    | 9.825  |
| 10 | MWN-02B-0625<br>14 | 590958    | 4.395 | 417463    | 7.250 | 171487    | 9.820  |
| 11 | WT1-05-06251<br>4  | 562809    | 4.404 | 406389    | 7.260 | 160357    | 9.840  |

IS1 () = Fluorobenzene

IS2 () = Chlorobenzene-d5

IS3 () = 1,4-Dichlorobenzene-d4

AREA UPPER LIMIT = 200% (Low-Medium Volatiles) and 140% (Trace Volatiles) of

internal standard area

AREA LOWER LIMIT = 50% (Low-Medium Volatiles) and 60% (Trace Volatiles) of

internal standard area

RT UPPER LIMIT = +0.50 (Low-Medium Volatiles) and +0.33 (Trace Volatiles)

minutes of internal standard RT

RT LOWER LIMIT = -0.50 (Low-Medium Volatiles) and -0.33 (Trace Volatiles)

minutes of internal standard RT

# Column used to flag values outside contract required QC limits with an asterisk.

#### som14.07.15.0901

#### 8A - FORM VIII VOA

#### VOLATILE INTERNAL STANDARD AREA AND RETENTION TIME SUMMARY

Lab Name: SPECTRUM ANALYTICAL, INC. Contract:

Lab Code: MITKEM Case No.: N1104 Mod. Ref No.: SDG No.: SN1104

GC Column: DB-624 ID: 0.25 (mm) Init. Calib. Date(s): 06/26/2014 06/26/2014

EPA Sample No.(VSTD#####): VSTD0501Q Date Analyzed: 07/02/2014

Lab File ID (Standard): V1N0042.D Time Analyzed: 8:28

Instrument ID: V1 Heated Purge: (Y/N) N

|    |                      | IS1 (S1 ) |       | IS2 (S2 ) |       | IS3 (S3 ) |        |
|----|----------------------|-----------|-------|-----------|-------|-----------|--------|
|    |                      | AREA #    | RT #  | AREA #    | RT #  | AREA #    | RT #   |
|    | 12 HOUR STD          | 632860    | 4.386 | 457562    | 7.242 | 179029    | 9.821  |
|    | UPPER LIMIT          | 1265720   | 4.886 | 915124    | 7.742 | 358058    | 10.321 |
|    | LOWER LIMIT          | 316430    | 3.886 | 228781    | 6.742 | 89515     | 9.321  |
|    | EPA SAMPLE NO.       |           |       |           |       |           |        |
| 12 | WT1-06-06261<br>4    | 581546    | 4.393 | 426256    | 7.248 | 168297    | 9.818  |
| 13 | BCP-ORC-1-06<br>2614 | 609069    | 4.399 | 427521    | 7.245 | 164607    | 9.815  |
| 14 | MWN-01-06261<br>4    | 585041    | 4.389 | 425093    | 7.244 | 169807    | 9.814  |
| 15 | MWN-01B-0626<br>14   | 606510    | 4.394 | 442699    | 7.250 | 184861    | 9.819  |

IS1 () = Fluorobenzene

IS2 () = Chlorobenzene-d5

IS3 () = 1,4-Dichlorobenzene-d4

AREA UPPER LIMIT = 200% (Low-Medium Volatiles) and 140% (Trace Volatiles) of

internal standard area

AREA LOWER LIMIT = 50% (Low-Medium Volatiles) and 60% (Trace Volatiles) of

internal standard area

RT UPPER LIMIT = +0.50 (Low-Medium Volatiles) and +0.33 (Trace Volatiles)

minutes of internal standard RT

RT LOWER LIMIT = -0.50 (Low-Medium Volatiles) and -0.33 (Trace Volatiles)

minutes of internal standard RT

# Column used to flag values outside contract required QC limits with an asterisk.

#### som14.07.15.0901

#### 8A - FORM VIII VOA

#### VOLATILE INTERNAL STANDARD AREA AND RETENTION TIME SUMMARY

Lab Name: SPECTRUM ANALYTICAL, INC. Contract:

Lab Code: MITKEM Case No.: N1104 Mod. Ref No.: SDG No.: SN1104

GC Column: DB-624 ID: 0.25 (mm) Init. Calib. Date(s): 07/01/2014 07/01/2014

EPA Sample No.(VSTD#####): VSTD05010H Date Analyzed: 07/03/2014

Lab File ID (Standard): V8D5992.D Time Analyzed: 6:51

Instrument ID: V10 Heated Purge: (Y/N) N

|    |                              |           | - |       |   |           |   |       |   |           | - |        |   |
|----|------------------------------|-----------|---|-------|---|-----------|---|-------|---|-----------|---|--------|---|
|    |                              | IS1 (S1 ) |   |       |   | IS2 (S2 ) |   |       |   | IS3 (S3 ) |   |        |   |
|    |                              | AREA      | # | RT    | # | AREA      | # | RT    | # | AREA      | # | RT     | # |
|    | 12 HOUR STD                  | 1158830   |   | 5.236 |   | 902359    |   | 8.223 |   | 446104    |   | 10.725 |   |
|    | UPPER LIMIT                  | 2317660   |   | 5.736 |   | 1804718   |   | 8.723 |   | 892208    |   | 11.225 |   |
|    | LOWER LIMIT                  | 579415    |   | 4.736 |   | 451180    |   | 7.723 |   | 223052    |   | 10.225 |   |
|    | EPA SAMPLE NO.               |           |   |       |   |           |   |       |   |           |   |        |   |
| 01 | LCS-77934                    | 1108650   |   | 5.236 |   | 825922    |   | 8.226 |   | 402140    |   | 10.725 |   |
| 02 | MB-77934                     | 1117426   |   | 5.239 |   | 849923    |   | 8.226 |   | 332984    |   | 10.728 |   |
| 03 | MWN-02B-0625<br>14DL         | 1115341   |   | 5.239 |   | 859731    |   | 8.223 |   | 374687    |   | 10.728 |   |
| 04 | WT1-02-06251<br>4            | 1102277   |   | 5.239 |   | 861950    |   | 8.226 |   | 366791    |   | 10.728 |   |
| 05 | WT1-06-06261<br>4DL          | 1035397   |   | 5.236 |   | 774639    |   | 8.223 |   | 343328    |   | 10.725 |   |
| 06 | BCP-ORC-2-06<br>2614         | 1096098   |   | 5.236 |   | 848657    |   | 8.223 |   | 371960    |   | 10.728 |   |
| 07 | MWN-01-06261<br>4DL          | 1070469   |   | 5.239 |   | 818776    |   | 8.223 |   | 353833    |   | 10.728 |   |
| 80 | MWN-01B-0626<br>14DL         | 1095165   |   | 5.236 |   | 853880    |   | 8.223 |   | 374113    |   | 10.728 |   |
| 09 | FIELD<br>DUPLICATE<br>062614 | 1038239   |   | 5.239 |   | 798852    |   | 8.223 |   | 383262    |   | 10.725 |   |

IS1 () = Fluorobenzene

IS2 () = Chlorobenzene-d5

IS3 () = 1,4-Dichlorobenzene-d4

AREA UPPER LIMIT = 200% (Low-Medium Volatiles) and 140% (Trace Volatiles) of

internal standard area

AREA LOWER LIMIT = 50% (Low-Medium Volatiles) and 60% (Trace Volatiles) of

internal standard area

RT UPPER LIMIT = +0.50 (Low-Medium Volatiles) and +0.33 (Trace Volatiles)

minutes of internal standard RT

RT LOWER LIMIT = -0.50 (Low-Medium Volatiles) and -0.33 (Trace Volatiles)

minutes of internal standard RT

# Column used to flag values outside contract required QC limits with an asterisk.

#### som14.07.15.0901

#### 8A - FORM VIII VOA

#### VOLATILE INTERNAL STANDARD AREA AND RETENTION TIME SUMMARY

Lab Name: SPECTRUM ANALYTICAL, INC. Contract:

Lab Code: MITKEM Case No.: N1104 Mod. Ref No.: SDG No.: SN1104

GC Column: DB-624 ID: 0.25 (mm) Init. Calib. Date(s): 07/07/2014 07/07/2014

EPA Sample No.(VSTD#####): VSTD05010J Date Analyzed: 07/08/2014

Lab File ID (Standard): V8D6043.D Time Analyzed: 7:22

Instrument ID: V10 Heated Purge: (Y/N) N

|    |                                | IS1 (S1 ) |       | IS2 (S2 ) |       | IS3 (S3 ) |        |
|----|--------------------------------|-----------|-------|-----------|-------|-----------|--------|
|    |                                | AREA #    | RT #  | AREA #    | RT #  | AREA #    | RT #   |
|    | 12 HOUR STD                    | 1109482   | 5.239 | 889784    | 8.226 | 445622    | 10.725 |
|    | UPPER LIMIT                    | 2218964   | 5.739 | 1779568   | 8.726 | 891244    | 11.225 |
|    | LOWER LIMIT                    | 554741    | 4.739 | 444892    | 7.726 | 222811    | 10.225 |
|    | EPA SAMPLE NO.                 |           |       |           |       |           |        |
| 01 | LCS-77977                      | 1137094   | 5.239 | 867692    | 8.223 | 413187    | 10.728 |
| 02 | LCSD-77977                     | 1161303   | 5.239 | 908440    | 8.223 | 442009    | 10.728 |
| 03 | MB-77977                       | 1138684   | 5.239 | 891521    | 8.226 | 328156    | 10.731 |
| 04 | WT1-04-06261<br>4              | 1111930   | 5.239 | 877994    | 8.223 | 380372    | 10.728 |
| 05 | FIELD<br>DUPLICATE<br>062614DL | 1103269   | 5.236 | 855342    | 8.226 | 353882    | 10.728 |

IS1 () = Fluorobenzene

IS2 () = Chlorobenzene-d5

IS3 () = 1,4-Dichlorobenzene-d4

AREA UPPER LIMIT = 200% (Low-Medium Volatiles) and 140% (Trace Volatiles) of

internal standard area

AREA LOWER LIMIT = 50% (Low-Medium Volatiles) and 60% (Trace Volatiles) of

internal standard area

RT UPPER LIMIT = +0.50 (Low-Medium Volatiles) and +0.33 (Trace Volatiles)

minutes of internal standard RT

RT LOWER LIMIT = -0.50 (Low-Medium Volatiles) and -0.33 (Trace Volatiles)

minutes of internal standard RT

# Column used to flag values outside contract required QC limits with an asterisk.

#### som14.07.15.0901



SPECTRUM ANALYTICAL, INC Featuring HANIBAL TECHNOLOGY

\* Volatiles \*

## REPORT NARRATIVE

Spectrum Analytical, Inc. Featuring Hanibal Technology, RI Division.

Client: GZA GeoEnvironmental, Inc.

**Project: Steelwinds 1** 

Laboratory Workorder / SDG #: N1104

RSK175, Dissolved Gases by GC-FID

#### I. SAMPLE RECEIPT

No exceptions or unusual conditions were encountered unless a Sample Condition Notification Form, or other record of communication is included with the Sample Receipt Documentation.

## II. HOLDING TIMES

## A. Sample Preparation:

All samples were prepared within the method-specified holding times.

## B. Sample Analysis:

All samples were analyzed within the method-specified holding times.

## III. METHODS

Samples were analyzed following procedures in laboratory test code: RSK175

# IV. PREPARATION

Aqueous Samples were prepared following procedures in laboratory test code: SW5030B

## V. INSTRUMENTATION

The following instrumentation was used to perform

Instrument Code: V7
Instrument Type: GC-FID

N1104 Page 57 of 189

Description: HP5890 II

Manufacturer: Hewlett-Packard

Model: 5890

## VI. ANALYSIS

## A. Calibration:

Calibrations met the method/SOP acceptance criteria.

## B. Blanks:

All method blanks were within the acceptance criteria.

## C. Surrogates:

N/A.

## D. Spikes:

## 1. Laboratory Control Spikes (LCS):

Percent recoveries for lab control samples were within the QC limits.

# 2. Matrix Spike / Matrix Spike Duplicate (MS/MSD):

No client-requested MS/MSD analyses were included in this SDG.

## E. Internal Standards:

NA.

## F. Dilutions:

The following samples were analyzed at dilution:

```
MWN-01B-062614 (N1104-16ADL) : Dilution Factor: 4 FIELD DUPLICATE 062614 (N1104-18ADL) : Dilution Factor: 4
```

# G. Samples:

No other unusual occurrences were noted during sample analysis.

# H. Manual Integration

Where needed, manual integrations were performed to improve data

N1104 Page 58 of 189

quality. The corrections were reviewed and associated hardcopies generated and reported as required. Manual integrations are coded to provide the data reviewer justification for such action. The codes are labeled on the ion chromatogram signal (GC/MS signal) and chromatogram for GC based analysis as follows:

- M1 peak tailing or fronting
- · M2 peak co-elution
- M3 rising or falling baseline
- · M4 retention time shift
- $\cdot$  M5 miscellaneous under this category, the justification is explained
- M6 software did not integrate peak
- M7 partial peak integration

The following samples were manually integrated:

LCS-77979 Ethene due to M1

LCSD-77979 Ethene due to M1

WT1-02-062514 (N1104-09B) Methane due to M6

WT1-05-062514 (N1104-10B) Methane due to M6

BCP-ORC-1-062614 (N1104-14A) Methane due to M6

MWN-01-062614 (N1104-15A) Methane due to M6

MWN-01B-062614 (N1104-16A) Methane due to M6

WT1-04-062614 (N1104-17A) Methane due to M6

VSTD005I7 Methane due to M7

I certify that this data package is in compliance with the terms and conditions agreed to by the client and Spectrum, both technically and for completeness, except for the conditions noted above. Release of the data contained in this hardcopy data package has been authorized by the Laboratory Manager or designated person, as verified by the following signature.

N1104 Page 59 of 189

| Signed: | T-LY      |         |
|---------|-----------|---------|
| Date:   | 7/17/2014 | <u></u> |

N1104 Page 60 of 189



SPECTRUM ANALYTICAL, INC.
Featuring
HANIBAL TECHNOLOGY

# Data Flag/Qualifiers (Page 1 of 2):

- U Not Detected. This compound was analyzed-for but not detected. For most analyses the reporting limit (lowest standard concentration) is the value listed. For Department of Defense programs, this is the Limit of Detection (LOD).
- J This flag indicates an estimated value due to either
  - the compound was detected below the reporting limit, or
  - estimated concentration for Tentatively Identified Compound
- B This flag indicates the compound was also detected in the associated Method Blank. The B flag has an alternative meaning for Inorganics analyses reported using CLP ILM-type metals forms, indicating a "trace" concentration below the reporting limit and equal to or above the detection limit.
- D For Organics analysis, this flag indicates the compound concentration was obtained from a secondary dilution analysis
- E This flag indicates the compound concentration exceeded the Calibration Range. The E flag has an alternative meaning for Inorganics analyses reported using CLP metals forms, indicating an estimated concentration due to the presence of interferences, as determined by the serial dilution analysis.
- P This flag is used for pesticides/PCB/herbicide compound when there is a greater than 40% difference for detected concentration between the two GC columns used for primary and confirmation analyses. This difference typically indicates interference, causing one value to be unusually high. The **lower** of the two values is generally reported on the Form 1, and both values reported on the Form 10.
- A Used to flag semivolatile organic Tentatively Identified Compound library search results for compounds identified as an aldol condensation by-product.



SPECTRUM ANALYTICAL, INC.
Featuring
HANIBAL TECHNOLOGY

# Data Flag/Qualifiers (Page 2 of 2):

- N Used to flag results for volatile and semivolatile Organics analysis Tentatively Identified Compounds where an analyte has passed the identification criteria, and is considered to be positively identified. For Inorganics analysis the N flag indicates the matrix spike recovery falls outside of the control limit.
- \* For Inorganics analysis the \* flag indicates Relative Percent Difference for duplicate analyses is outside of the control limit.
- L NYSDEC qualifier: Result is biased low due to the sample not being collected according to 5035-L/5035A-L low-level specifications.



# **Sample ID Suffixes**

- DL Diluted analysis. The sample was diluted and reanalyzed. The DL may be followed by a digit if more than one diluted reanalysis is provided. The DL suffix is not attached to an analysis initially performed at dilution, only to reanalyses performed at dilution
- RE Reanalysis. Appended to the client sample ID to indicate a reextraction and reanalysis or a reanalysis of the original sample extract.
- RA Reanalysis. Appended to the laboratory sample ID indicates a reanalysis of the original sample extract.
- RX Reextraction. Appended to the laboratory sample ID indicates a reextraction of the sample.
- MS Matrix Spike.
- MSD Matrix Spike Duplicate
- DUP Duplicate analysis
- SD Serial Dilution
- PS Post-digestion or Post-distillation spike. For metals or inorganic analyses

07/17/2014

Client: GZA GeoEnvironmental, Inc.

Client Sample ID: WT1-02-062514 Project: Steelwinds 1

Lab ID: N1104-09 Collection Date: 06/25/14 13:40

| Analyses                         | Result Qual | RL Units  | DF Date Analyzed   | Batch ID |
|----------------------------------|-------------|-----------|--------------------|----------|
| RSK175 Dissolved Gases by GC-FID |             |           |                    | RSK175   |
| Methane                          | 36          | 0.61 μg/L | 1 07/07/2014 10:03 | 77979    |
| Ethane                           | ND          | 1.3 μg/L  | 1 07/07/2014 10:03 | 77979    |
| Ethene                           | ND          | 1.6 μg/L  | 1 07/07/2014 10:03 | 77979    |

Qualifiers: ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

**DF** - Dilution Factor

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

07/17/2014

Client: GZA GeoEnvironmental, Inc.

Client Sample ID: WT1-05-062514 Project: Steelwinds 1

Lab ID: N1104-10 Collection Date: 06/25/14 15:20

| Analyses                         | Result Qual | RL Units  | DF Date Analyzed   | Batch ID |
|----------------------------------|-------------|-----------|--------------------|----------|
| RSK175 Dissolved Gases by GC-FID |             |           |                    | RSK175   |
| Methane                          | 260         | 0.61 μg/L | 1 07/07/2014 10:10 | 77979    |
| Ethane                           | ND          | 1.3 μg/L  | 1 07/07/2014 10:10 | 77979    |
| Ethene                           | ND          | 1.6 μg/L  | 1 07/07/2014 10:10 | 77979    |

Qualifiers: ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

**DF** - Dilution Factor

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

07/17/2014

Client: GZA GeoEnvironmental, Inc.

Client Sample ID: WT1-06-062614 Project: Steelwinds 1

Lab ID: N1104-12 Collection Date: 06/26/14 17:20

| Analyses                         | Result Qual | RL Units  | DF Date Analyzed   | Batch ID |
|----------------------------------|-------------|-----------|--------------------|----------|
| RSK175 Dissolved Gases by GC-FID |             |           |                    | RSK175   |
| Methane                          | 490         | 0.60 μg/L | 1 07/07/2014 10:17 | 77979    |
| Ethane                           | 4.1         | 1.2 μg/L  | 1 07/07/2014 10:17 | 77979    |
| Ethene                           | ND          | 1.5 µg/L  | 1 07/07/2014 10:17 | 77979    |

Qualifiers: ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

 $\boldsymbol{B}$  - Analyte detected in the associated Method Blank

**DF** - Dilution Factor

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

07/17/2014

Client: GZA GeoEnvironmental, Inc.

Client Sample ID: BCP-ORC-2-062614 Project: Steelwinds 1

Lab ID: N1104-13 Collection Date: 06/26/14 16:05

| Analyses                         | Result Qual | RL Units  | DF Date Analyzed   | Batch ID |
|----------------------------------|-------------|-----------|--------------------|----------|
| RSK175 Dissolved Gases by GC-FID |             |           |                    | RSK175   |
| Methane                          | 190         | 0.61 μg/L | 1 07/07/2014 10:24 | 77979    |
| Ethane                           | ND          | 1.3 μg/L  | 1 07/07/2014 10:24 | 77979    |
| Ethene                           | ND          | 1.6 μg/L  | 1 07/07/2014 10:24 | 77979    |

Qualifiers: ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

 $\boldsymbol{B}$  - Analyte detected in the associated Method Blank

**DF** - Dilution Factor

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

07/17/2014

Client: GZA GeoEnvironmental, Inc.

Client Sample ID: BCP-ORC-1-062614 Project: Steelwinds 1

Lab ID: N1104-14 Collection Date: 06/26/14 14:50

| Analyses                         | Result Qual | RL Units  | DF Date Analyzed   | Batch ID |
|----------------------------------|-------------|-----------|--------------------|----------|
| RSK175 Dissolved Gases by GC-FID |             |           |                    | RSK175   |
| Methane                          | 310         | 0.60 μg/L | 1 07/07/2014 10:33 | 77979    |
| Ethane                           | ND          | 1.2 μg/L  | 1 07/07/2014 10:33 | 77979    |
| Ethene                           | ND          | 1.5 µg/L  | 1 07/07/2014 10:33 | 77979    |

Qualifiers: ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

 $\boldsymbol{B}$  - Analyte detected in the associated Method Blank

**DF** - Dilution Factor

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

07/17/2014

Client: GZA GeoEnvironmental, Inc.

Client Sample ID: MWN-01-062614 Project: Steelwinds 1

Lab ID: N1104-15 Collection Date: 06/26/14 8:35

| Analyses                         | Result Qual | RL Units  | DF Date Analyzed   | Batch ID |
|----------------------------------|-------------|-----------|--------------------|----------|
| RSK175 Dissolved Gases by GC-FID |             |           |                    | RSK175   |
| Methane                          | 670         | 0.60 μg/L | 1 07/07/2014 10:40 | 77979    |
| Ethane                           | 4.3         | 1.2 µg/L  | 1 07/07/2014 10:40 | 77979    |
| Ethene                           | ND          | 1.5 µg/L  | 1 07/07/2014 10:40 | 77979    |

Qualifiers: ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

**DF** - Dilution Factor

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

07/17/2014

Client: GZA GeoEnvironmental, Inc.

Client Sample ID: MWN-01B-062614 Project: Steelwinds 1

Lab ID: N1104-16 Collection Date: 06/26/14 9:55

| Analyses                         | Result Qual | RL Units  | DF Date Analyzed   | Batch ID |
|----------------------------------|-------------|-----------|--------------------|----------|
| RSK175 Dissolved Gases by GC-FID |             |           |                    | RSK175   |
| Methane                          | 2400 E      | 0.60 μg/L | 1 07/07/2014 10:48 | 77979    |
| Ethane                           | 2.9         | 1.2 μg/L  | 1 07/07/2014 10:48 | 77979    |
| Ethene                           | ND          | 1.5 μg/L  | 1 07/07/2014 10:48 | 77979    |

Qualifiers: ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

**DF** - Dilution Factor

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

07/17/2014

Client: GZA GeoEnvironmental, Inc.

Client Sample ID: MWN-01B-062614 Project: Steelwinds 1

Lab ID: N1104-16 Collection Date: 06/26/14 9:55

| Analyses                         | Result Qual | RL Units | DF Date Analyzed   | Batch ID |
|----------------------------------|-------------|----------|--------------------|----------|
| RSK175 Dissolved Gases by GC-FID |             |          |                    | RSK175   |
| Methane                          | 3500        | 2.4 μg/L | 4 07/07/2014 12:26 | 77979    |
| Ethane                           | ND          | 4.9 μg/L | 4 07/07/2014 12:26 | 77979    |
| Ethene                           | ND          | 6.2 μg/L | 4 07/07/2014 12:26 | 77979    |

Qualifiers: ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

 $\boldsymbol{B}$  - Analyte detected in the associated Method Blank

**DF** - Dilution Factor

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

07/17/2014

Client: GZA GeoEnvironmental, Inc.

Client Sample ID: WT1-04-062614 Project: Steelwinds 1

Lab ID: N1104-17 Collection Date: 06/26/14 11:40

| Analyses                         | Result Qual | RL Units  | DF Date Analyzed   | Batch ID |
|----------------------------------|-------------|-----------|--------------------|----------|
| RSK175 Dissolved Gases by GC-FID |             |           |                    | RSK175   |
| Methane                          | 98          | 0.60 μg/L | 1 07/07/2014 10:55 | 77979    |
| Ethane                           | 1.2         | 1.2 μg/L  | 1 07/07/2014 10:55 | 77979    |
| Ethene                           | ND          | 1.5 μg/L  | 1 07/07/2014 10:55 | 77979    |

Qualifiers: ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

**DF** - Dilution Factor

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

07/17/2014

Client: GZA GeoEnvironmental, Inc.

Client Sample ID: FIELD DUPLICATE 062614 Project: Steelwinds 1

Lab ID: N1104-18 Collection Date: 06/26/14 0:00

| Analyses                         | Result Qual | RL Units  | DF Date Analyzed   | Batch ID |
|----------------------------------|-------------|-----------|--------------------|----------|
| RSK175 Dissolved Gases by GC-FID |             |           |                    | RSK175   |
| Methane                          | 2000 E      | 0.60 μg/L | 1 07/07/2014 11:03 | 77979    |
| Ethane                           | 2.9         | 1.2 μg/L  | 1 07/07/2014 11:03 | 77979    |
| Ethene                           | ND          | 1.5 μg/L  | 1 07/07/2014 11:03 | 77979    |

Qualifiers: ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

 $\boldsymbol{B}$  - Analyte detected in the associated Method Blank

**DF** - Dilution Factor

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

07/17/2014

Client: GZA GeoEnvironmental, Inc.

Client Sample ID: FIELD DUPLICATE 062614 Project: Steelwinds 1

Lab ID: N1104-18 Collection Date: 06/26/14 0:00

| Analyses                         | Result Qual | RL Units | DF Date Analyzed   | Batch ID |
|----------------------------------|-------------|----------|--------------------|----------|
| RSK175 Dissolved Gases by GC-FID |             |          |                    | RSK175   |
| Methane                          | 2300        | 2.4 μg/L | 4 07/07/2014 13:04 | 77979    |
| Ethane                           | ND          | 4.9 μg/L | 4 07/07/2014 13:04 | 77979    |
| Ethene                           | ND          | 6.2 µg/L | 4 07/07/2014 13:04 | 77979    |

Qualifiers: ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

 $\boldsymbol{B}$  - Analyte detected in the associated Method Blank

**DF** - Dilution Factor

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

# Spectrum Analytical Inc. - North Kingstown RI --

| 1                                              | ,            |                                   |                      |                                 |                                  |                                                                        |                                                        |                                        |                                      |                               |      |
|------------------------------------------------|--------------|-----------------------------------|----------------------|---------------------------------|----------------------------------|------------------------------------------------------------------------|--------------------------------------------------------|----------------------------------------|--------------------------------------|-------------------------------|------|
|                                                | GZA GeoEnvi  | GZA GeoEnvironmental, Inc.        |                      |                                 | ANALY                            | ANALYTICAL QC SUMMARY REPORT                                           | SUM                                                    | MARY R                                 | <b>EPORT</b>                         |                               |      |
| Work Order:                                    | N1104        |                                   |                      | Ţ                               | RSK175                           |                                                                        |                                                        |                                        |                                      |                               |      |
| Project:                                       | Steelwinds 1 |                                   |                      |                                 | RSK175 Dissolved Gases by GC-FID | ed Gases by G                                                          | C-FID                                                  |                                        |                                      |                               |      |
| Sample ID: MB-77979<br>Client ID: MB-77979     |              | SampType: MBLK<br>Batch ID: 77979 | TestCode<br>Units    | TestCode: RSK175<br>Units: µg/L |                                  | Prep Date:<br>Analysis Date:                                           | Prep Date: 07/07/14 8:00<br>ilysis Date: 07/07/14 8:38 | 00:<br>38:                             | Run ID: V7_140707A<br>SeqNo: 2120545 |                               |      |
| Analyte                                        |              | Result                            | MDL                  | RL                              | SPK value                        | SPK Ref Val                                                            | %REC Lo                                                | %REC LowLimit HighLimit                | it RPD Ref Val                       | %RPD RPDLimit                 | Qual |
| Methane<br>Ethane<br>Ethene                    |              | ND<br>ND<br>ND                    | 0.35<br>0.50<br>0.69 | 0.58<br>1.2<br>1.5              | 0 0                              | 0 0 0                                                                  | 0 0 0                                                  | 0 0                                    | 0 0                                  |                               |      |
| Sample ID: LCS-77979                           |              | SampType: LCS                     | TestCode             | TestCode: RSK175                |                                  | Prep Date: <b>07/07/14 8:00</b>                                        | Prep Date: 07/07/14 8:00                               | 00:                                    | Run ID: V7_140707A                   |                               |      |
| Analyte                                        |              | Result                            | MDL                  | r ggr                           | SPK value                        | SPK Ref Val                                                            | %REC Lo                                                | ************************************** | Seque. 2 120333                      | %RPD RPDLimit                 | Oual |
| Methane<br>Ethane<br>Ethene                    |              | 39.01<br>69.75<br>81.77           | 0.35<br>0.50<br>0.69 | 0.58<br>1.2<br>1.5              | 45.00<br>85.00<br>79.00          | 0 0                                                                    | 86.7<br>82.1<br>104                                    | 75 125<br>75 125<br>75 125             | 0                                    |                               |      |
| Sample ID: LCSD-77979<br>Client ID: LCSD-77979 |              | SampType: LCSD<br>Batch ID: 77979 | TestCode<br>Units    | TestCode: RSK175<br>Units: µg/L |                                  | Prep Date: <b>07/07/14 8:00</b><br>Analysis Date: <b>07/07/14 8:21</b> | 07/07/14 8:00<br>07/07/14 8:21                         | :00<br>:21                             | Run ID: V7_140707A<br>SeqNo: 2120594 |                               |      |
| Analyte                                        |              | Result                            | MDL                  | R                               | SPK value                        | SPK Ref Val                                                            | %REC Lo                                                | %REC LowLimit HighLimit                | it RPD Ref Val                       | %RPD RPDLimit                 | Qual |
| Methane<br>Ethane<br>Ethene                    |              | 43.90<br>79.06<br>92.67           | 0.35<br>0.50<br>0.69 | 0.58<br>1.2<br>1.5              | 45.00<br>85.00<br>79.00          | 0 0 0                                                                  | 97.6<br>93.0<br>117                                    | 75 125<br>75 125<br>75 125             | 39.01<br>69.75<br>81.77              | 11.8 30<br>12.5 30<br>12.5 30 |      |

Page 75 of 1889



\* Semivolatile Organics \*

## REPORT NARRATIVE

Spectrum Analytical, Inc. Featuring Hanibal Technology, RI Division.

Client: GZA GeoEnvironmental, Inc.

**Project: Steelwinds 1** 

Laboratory Workorder / SDG #: N1104

**SW846 8270D, SVOA by GC-MS** 

#### I. SAMPLE RECEIPT

No exceptions or unusual conditions were encountered unless a Sample Condition Notification Form, or other record of communication is included with the Sample Receipt Documentation.

## II. HOLDING TIMES

## A. Sample Preparation:

All samples were prepared within the method-specified holding times.

## B. Sample Analysis:

All samples were analyzed within the method-specified holding times.

## III. METHODS

Samples were analyzed following procedures in laboratory test code: SW846 8270D

#### IV. PREPARATION

Aqueous Samples were prepared following procedures in laboratory test code: SW3510C

## V. INSTRUMENTATION

The following instrumentation was used

Instrument Code: S6

Instrument Type: GCMS-Semi

N1104 Page 77 of 189

Description: HP7890A Manufacturer: Agilent Model: 7890A/5973

GC Column used: 30 m X 0.25 mm ID [0.25 um thickness] Rxi-5sil MS

capillary column.

## VI. ANALYSIS

#### A. Calibration:

Calibrations met the method/SOP acceptance criteria.

## B. Blanks:

All method blanks were within the acceptance criteria.

# C. Surrogates:

Surrogate standard percent recoveries were within the QC limits with the following exceptions. Please note that the acceptance criteria allow one surrogate recovery outside of the QC limits per fraction.

MWN-03D-062414 (N1104-03B), recovery is below criteria for Terphenyl-d14 at 21% with criteria of (50-135).

# D. Spikes:

## 1. Laboratory Control Spikes (LCS):

Percent recoveries for lab control samples were within the QC limits.

## 2. Matrix Spike / Matrix Spike Duplicate (MS/MSD):

No client-requested MS/MSD analyses were included in this SDG.

#### E. Internal Standards:

Internal standard peak areas were within the QC limits.

## F. Dilutions:

The following samples were analyzed at dilution:

MWN-02B-062514 (N1104-07BDL) : Dilution Factor: 5 WT1-06-062614 (N1104-12EDL) : Dilution Factor: 4 MWN-01-062614 (N1104-15EDL) : Dilution Factor: 5

N1104 Page 78 of 189

MWN-01B-062614 (N1104-16EDL) : Dilution Factor: 20 FIELD DUPLICATE 062614 (N1104-18EDL) : Dilution Factor: 20

## G. Samples:

No other unusual occurrences were noted during sample analysis.

## H. Manual Integration

Where needed, manual integrations were performed to improve data quality. The corrections were reviewed and associated hardcopies generated and reported as required. Manual integrations are coded to provide the data reviewer justification for such action. The codes are labeled on the ion chromatogram signal (GC/MS signal) and chromatogram for GC based analysis as follows:

- M1 peak tailing or fronting
- · M2 peak co-elution
- · M3 rising or falling baseline
- · M4 retention time shift
- · M5 miscellaneous under this category, the justification is explained
- · M6 software did not integrate peak
- · M7 partial peak integration

Manual integrations were performed on the following:

LCS-77823 Benzo(a)pyrene due to M6

MWN-01B-062614 (N1104-16E) Naphthalene due to M6

FIELD DUPLICATE 062614 (N1104-18E) Naphthalene due to M6

I certify that this data package is in compliance with the terms and conditions agreed to by the client and Spectrum, both technically and for completeness, except for the conditions noted above. Release of the data contained in this hardcopy data package has been authorized by the Laboratory Manager or designated person, as verified by the following signature.

N1104 Page 79 of 189

| Signed: |           |  |
|---------|-----------|--|
| Date:   | 7/21/2014 |  |

N1104 Page 80 of 189



SPECTRUM ANALYTICAL, INC.
Featuring
HANIBAL TECHNOLOGY

# Data Flag/Qualifiers (Page 1 of 2):

- U Not Detected. This compound was analyzed-for but not detected. For most analyses the reporting limit (lowest standard concentration) is the value listed. For Department of Defense programs, this is the Limit of Detection (LOD).
- J This flag indicates an estimated value due to either
  - the compound was detected below the reporting limit, or
  - estimated concentration for Tentatively Identified Compound
- B This flag indicates the compound was also detected in the associated Method Blank. The B flag has an alternative meaning for Inorganics analyses reported using CLP ILM-type metals forms, indicating a "trace" concentration below the reporting limit and equal to or above the detection limit.
- D For Organics analysis, this flag indicates the compound concentration was obtained from a secondary dilution analysis
- E This flag indicates the compound concentration exceeded the Calibration Range. The E flag has an alternative meaning for Inorganics analyses reported using CLP metals forms, indicating an estimated concentration due to the presence of interferences, as determined by the serial dilution analysis.
- P This flag is used for pesticides/PCB/herbicide compound when there is a greater than 40% difference for detected concentration between the two GC columns used for primary and confirmation analyses. This difference typically indicates interference, causing one value to be unusually high. The **lower** of the two values is generally reported on the Form 1, and both values reported on the Form 10.
- A Used to flag semivolatile organic Tentatively Identified Compound library search results for compounds identified as an aldol condensation by-product.



SPECTRUM ANALYTICAL, INC.
Featuring
HANIBAL TECHNOLOGY

# Data Flag/Qualifiers (Page 2 of 2):

- N Used to flag results for volatile and semivolatile Organics analysis Tentatively Identified Compounds where an analyte has passed the identification criteria, and is considered to be positively identified. For Inorganics analysis the N flag indicates the matrix spike recovery falls outside of the control limit.
- \* For Inorganics analysis the \* flag indicates Relative Percent Difference for duplicate analyses is outside of the control limit.
- L NYSDEC qualifier: Result is biased low due to the sample not being collected according to 5035-L/5035A-L low-level specifications.



# **Sample ID Suffixes**

- DL Diluted analysis. The sample was diluted and reanalyzed. The DL may be followed by a digit if more than one diluted reanalysis is provided. The DL suffix is not attached to an analysis initially performed at dilution, only to reanalyses performed at dilution
- RE Reanalysis. Appended to the client sample ID to indicate a reextraction and reanalysis or a reanalysis of the original sample extract.
- RA Reanalysis. Appended to the laboratory sample ID indicates a reanalysis of the original sample extract.
- RX Reextraction. Appended to the laboratory sample ID indicates a reextraction of the sample.
- MS Matrix Spike.
- MSD Matrix Spike Duplicate
- DUP Duplicate analysis
- SD Serial Dilution
- PS Post-digestion or Post-distillation spike. For metals or inorganic analyses

# 1D - FORM I SV-1 SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.
MWN-04-062414

| Lab Name: SPECTRUM ANALYTICAL, INC.       | Contract:                     |
|-------------------------------------------|-------------------------------|
| Lab Code: MITKEM Case No.: N1104          | Mod. Ref No.: SDG No.: SN1104 |
| Matrix: (SOIL/SED/WATER) WATER            | Lab Sample ID: N1104-01B      |
| Sample wt/vol:1000 (g/mL) ML              | Lab File ID: S6B8438.D        |
| Level: (LOW/MED) LOW                      | Extraction: (Type) SEPF       |
| % Moisture: Decanted: (Y/N)               | Date Received: 06/25/2014     |
| Concentrated Extract Volume:1000 (uL)     | Date Extracted: 06/27/2014    |
| Injection Volume:1.0 (uL) GPC Factor:1.00 | Date Analyzed: 07/11/2014     |
| GPC Cleanup:(Y/N) N pH:                   | Dilution Factor: 1.0          |

|           |                              | CONCENTRATION UNITS: |   |
|-----------|------------------------------|----------------------|---|
| CAS NO.   | COMPOUND                     | (ug/L or ug/Kg) UG/L | Q |
| 111-44-4  | Bis(2-chloroethyl)ether      | 10                   | U |
| 541-73-1  |                              | 10                   | U |
| 106-46-7  | 1,4-Dichlorobenzene          | 10                   | U |
| 95-50-1   | 1,2-Dichlorobenzene          | 10                   | U |
| 108-60-1  | 2,2'-oxybis(1-Chloropropane) | 10                   | U |
| 67-72-1   | Hexachloroethane             | 10                   | Ū |
| 98-95-3   | Nitrobenzene                 | 10                   | U |
| 78-59-1   | Isophorone                   | 10                   | Ū |
| 120-82-1  | 1,2,4-Trichlorobenzene       | 10                   | Ū |
| 91-20-3   | Naphthalene                  | 10                   | Ū |
| 106-47-8  | 4-Chloroaniline              | 10                   | Ū |
| 111-91-1  | Bis(2-chloroethoxy)methane   | 10                   | Ū |
| 87-68-3   | Hexachlorobutadiene          | 10                   | U |
| 91-57-6   | 2-Methylnaphthalene          | 10                   | Ū |
| 77-47-4   | Hexachlorocyclopentadiene    | 10                   | U |
| 91-58-7   | 2-Chloronaphthalene          | 10                   | U |
| 88-74-4   | 2-Nitroaniline               | 20                   | U |
| 131-11-3  | Dimethylphthalate            | 10                   | U |
| 208-96-8  | Acenaphthylene               | 10                   | U |
| 606-20-2  | 2,6-Dinitrotoluene           | 10                   | U |
| 99-09-2   | 3-Nitroaniline               | 20                   | U |
| 83-32-9   | Acenaphthene                 | 10                   | U |
| 132-64-9  | Dibenzofuran                 | 10                   | U |
| 121-14-2  | 2,4-Dinitrotoluene           | 10                   | U |
| 84-66-2   | Diethylphthalate             | 10                   | U |
| 7005-72-3 | 4-Chlorophenyl-phenylether   | 10                   | U |
| 86-73-7   | Fluorene                     | 10                   | U |
| 100-01-6  | 4-Nitroaniline               | 20                   | U |
| 101-55-3  | 4-Bromophenyl-phenylether    | 10                   | U |
| 118-74-1  | Hexachlorobenzene            | 10                   | U |
| 85-01-8   | Phenanthrene                 | 10                   | U |
| 120-12-7  | Anthracene                   | 10                   | U |
| 86-74-8   | Carbazole                    | 10                   | U |
| 206-44-0  | Fluoranthene                 | 10                   | U |
| 129-00-0  | Pyrene                       | 10                   | U |
| 85-68-7   | Butylbenzylphthalate         | 10                   | U |

# 1E - FORM I SV-2 SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.
MWN-04-062414

| Lab Name: SPECTRUM ANALYTICAL, INC.         | Contract:                     |
|---------------------------------------------|-------------------------------|
| Lab Code: MITKEM Case No.: N1104            | Mod. Ref No.: SDG No.: SN1104 |
| Matrix: (SOIL/SED/WATER) WATER              | Lab Sample ID: N1104-01B      |
| Sample wt/vol:1000 (g/mL) ML                | Lab File ID: S6B8438.D        |
| Level: (LOW/MED) LOW                        | Extraction: (Type) SEPF       |
| % Moisture: Decanted: (Y/N)                 | Date Received: 06/25/2014     |
| Concentrated Extract Volume:1000 (uL)       | Date Extracted: 06/27/2014    |
| Injection Volume: 1.0 (uL) GPC Factor: 1.00 | Date Analyzed: 07/11/2014     |
| GPC Cleanup:(Y/N) N pH:                     | Dilution Factor: 1.0          |

|          |                            | CONCENTRATION UNITS: |     |
|----------|----------------------------|----------------------|-----|
| CAS NO.  | COMPOUND                   | (ug/L or ug/Kg) UG/L | _ Q |
| 91-94-1  | 3,3´-Dichlorobenzidine     | 10                   | U   |
| 56-55-3  | Benzo(a)anthracene         | 10                   | U   |
| 218-01-9 | Chrysene                   | 10                   | U   |
| 117-81-7 | Bis(2-ethylhexyl)phthalate | 10                   | U   |
| 205-99-2 | Benzo(b)fluoranthene       | 10                   | U   |
| 207-08-9 | Benzo(k)fluoranthene       | 10                   | U   |
| 50-32-8  | Benzo(a)pyrene             | 10                   | U   |
| 193-39-5 | Indeno(1,2,3-cd)pyrene     | 10                   | U   |
| 53-70-3  | Dibenzo(a,h)anthracene     | 10                   | U   |
| 191-24-2 | Benzo(g,h,i)perylene       | 10                   | U   |

# 1D - FORM I SV-1 SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

MWN-03D-062414

| Lab Name: SPECTRUM ANALYTICAL, INC.       | Contract:                     |
|-------------------------------------------|-------------------------------|
| Lab Code: MITKEM Case No.: N1104          | Mod. Ref No.: SDG No.: SN1104 |
| Matrix: (SOIL/SED/WATER) WATER            | Lab Sample ID: N1104-03B      |
| Sample wt/vol:1000 (g/mL) ML              | Lab File ID: S6B8439.D        |
| Level: (LOW/MED) LOW                      | Extraction: (Type) SEPF       |
| % Moisture: Decanted: (Y/N)               | Date Received: 06/25/2014     |
| Concentrated Extract Volume: 1000 (uL)    | Date Extracted: 06/27/2014    |
| Injection Volume:1.0 (uL) GPC Factor:1.00 | Date Analyzed: 07/11/2014     |
| GPC Cleanup:(Y/N) N pH:                   | Dilution Factor: 1.0          |

|           |                              | CONCENTRATION UNITS: |   |
|-----------|------------------------------|----------------------|---|
| CAS NO.   | COMPOUND                     | (ug/L or ug/Kg) UG/L | Q |
| 111-44-4  | Bis(2-chloroethyl)ether      | 10                   | U |
| 541-73-1  | 1,3-Dichlorobenzene          | 10                   | U |
| 106-46-7  | 1,4-Dichlorobenzene          | 10                   | U |
| 95-50-1   | 1,2-Dichlorobenzene          | 10                   | U |
| 108-60-1  | 2,2'-oxybis(1-Chloropropane) | 10                   | U |
| 67-72-1   | Hexachloroethane             | 10                   | U |
| 98-95-3   | Nitrobenzene                 | 10                   | U |
| 78-59-1   | Isophorone                   | 10                   | U |
| 120-82-1  | 1,2,4-Trichlorobenzene       | 10                   | U |
| 91-20-3   | Naphthalene                  | 10                   | U |
| 106-47-8  | 4-Chloroaniline              | 10                   | U |
| 111-91-1  | Bis(2-chloroethoxy)methane   | 10                   | U |
| 87-68-3   |                              | 10                   | U |
| 91-57-6   | 2-Methylnaphthalene          | 10                   | U |
| 77-47-4   |                              | 10                   | U |
| 91-58-7   | 2-Chloronaphthalene          | 10                   | U |
| 88-74-4   | 2-Nitroaniline               | 20                   | Ū |
| 131-11-3  | Dimethylphthalate            | 10                   | U |
| 208-96-8  | Acenaphthylene               | 10                   | U |
| 606-20-2  | 2,6-Dinitrotoluene           | 10                   | U |
| 99-09-2   | 3-Nitroaniline               | 20                   | U |
| 83-32-9   | Acenaphthene                 | 10                   | Ū |
| 132-64-9  | Dibenzofuran                 | 10                   | U |
| 121-14-2  | 2,4-Dinitrotoluene           | 10                   | Ū |
| 84-66-2   |                              | 10                   | U |
| 7005-72-3 | 4-Chlorophenyl-phenylether   | 10                   | U |
| 86-73-7   | Fluorene                     | 10                   | U |
| 100-01-6  | 4-Nitroaniline               | 20                   | U |
| 101-55-3  | 4-Bromophenyl-phenylether    | 10                   | U |
| 118-74-1  |                              | 10                   | U |
| 85-01-8   | Phenanthrene                 | 10                   | U |
| 120-12-7  | Anthracene                   | 10                   | U |
| 86-74-8   | Carbazole                    | 10                   | U |
| 206-44-0  | Fluoranthene                 | 10                   | U |
| 129-00-0  | Pyrene                       | 10                   | U |
| 85-68-7   | Butylbenzylphthalate         | 10                   | U |

# 1E - FORM I SV-2 SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

MWN-03D-062414

| Lab Name: SPECTRU  | UM ANALYTICAL, INC.      | Contract:         |                 |
|--------------------|--------------------------|-------------------|-----------------|
| Lab Code: MITKEM   | Case No.: N1104          | Mod. Ref No.:     | SDG No.: SN1104 |
| Matrix: (SOIL/SED  | /WATER) WATER            | Lab Sample ID:    | N1104-03B       |
| Sample wt/vol:     | 1000 (g/mL) ML           | Lab File ID:      | S6B8439.D       |
| Level: (LOW/MED)   | LOW                      | Extraction: (Type | e) SEPF         |
| % Moisture:        | Decanted: (Y/N)          | Date Received:    | 06/25/2014      |
| Concentrated Extra | act Volume:1000 (uL)     | Date Extracted:   | 06/27/2014      |
| Injection Volume:  | 1.0 (uL) GPC Factor:1.00 | Date Analyzed:    | 07/11/2014      |
| GPC Cleanup:(Y/N)  | М рн:                    | Dilution Factor:  | 1.0             |
|                    |                          |                   |                 |

| CAS NO.  | COMPOUND                   | CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L | Q |
|----------|----------------------------|-------------------------------------------|---|
| 91-94-1  | 3,3´-Dichlorobenzidine     | 10                                        | U |
| 56-55-3  | Benzo(a)anthracene         | 10                                        | U |
| 218-01-9 | Chrysene                   | 10                                        | U |
| 117-81-7 | Bis(2-ethylhexyl)phthalate | 10                                        | U |
| 205-99-2 | Benzo(b)fluoranthene       | 10                                        | U |
| 207-08-9 | Benzo(k)fluoranthene       | 10                                        | U |
| 50-32-8  | Benzo(a)pyrene             | 10                                        | U |
| 193-39-5 | Indeno(1,2,3-cd)pyrene     | 10                                        | U |
| 53-70-3  | Dibenzo(a,h)anthracene     | 10                                        | U |
| 191-24-2 | Benzo(g,h,i)perylene       | 10                                        | U |

# 1D - FORM I SV-1 SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.
MWN-03-062414

| Lab Name: SPECTRUM ANALYTICAL, INC.       | Contract:                     |
|-------------------------------------------|-------------------------------|
| Lab Code: MITKEM Case No.: N1104          | Mod. Ref No.: SDG No.: SN1104 |
| Matrix: (SOIL/SED/WATER) WATER            | Lab Sample ID: N1104-04B      |
| Sample wt/vol:1000 (g/mL) ML              | Lab File ID: S6B8440.D        |
| Level: (LOW/MED) LOW                      | Extraction: (Type) SEPF       |
| % Moisture: Decanted: (Y/N)               | Date Received: 06/25/2014     |
| Concentrated Extract Volume:1000 (uL)     | Date Extracted: 06/27/2014    |
| Injection Volume:1.0 (uL) GPC Factor:1.00 | Date Analyzed: 07/11/2014     |
| GPC Cleanup:(Y/N) N pH:                   | Dilution Factor: 1.0          |

|           |                              | CONCENTRATION UNITS: |   |
|-----------|------------------------------|----------------------|---|
| CAS NO.   | COMPOUND                     | (ug/L or ug/Kg) UG/L | Q |
| 111-44-4  | Bis(2-chloroethyl)ether      | 10                   | U |
| 541-73-1  |                              | 10                   | U |
| 106-46-7  | 1,4-Dichlorobenzene          | 10                   | U |
| 95-50-1   | 1,2-Dichlorobenzene          | 10                   | U |
| 108-60-1  | 2,2'-oxybis(1-Chloropropane) | 10                   | U |
| 67-72-1   | Hexachloroethane             | 10                   | U |
| 98-95-3   | Nitrobenzene                 | 10                   | U |
| 78-59-1   | Isophorone                   | 10                   | U |
| 120-82-1  | 1,2,4-Trichlorobenzene       | 10                   | U |
| 91-20-3   | Naphthalene                  | 13                   |   |
| 106-47-8  | 4-Chloroaniline              | 10                   | U |
| 111-91-1  | Bis(2-chloroethoxy)methane   | 10                   | U |
| 87-68-3   | Hexachlorobutadiene          | 10                   | U |
| 91-57-6   | 2-Methylnaphthalene          | 2.9                  | J |
| 77-47-4   | Hexachlorocyclopentadiene    | 10                   | U |
| 91-58-7   | 2-Chloronaphthalene          | 10                   | U |
| 88-74-4   | 2-Nitroaniline               | 20                   | U |
| 131-11-3  | Dimethylphthalate            | 10                   | U |
| 208-96-8  | Acenaphthylene               | 2.2                  | J |
| 606-20-2  | 2,6-Dinitrotoluene           | 10                   | U |
| 99-09-2   | 3-Nitroaniline               | 20                   | U |
| 83-32-9   | <u> </u>                     | 1.6                  | J |
| 132-64-9  | Dibenzofuran                 | 2.1                  | J |
| 121-14-2  | 2,4-Dinitrotoluene           | 10                   | U |
| 84-66-2   | Diethylphthalate             | 10                   | U |
| 7005-72-3 | 4-Chlorophenyl-phenylether   | 10                   | U |
| 86-73-7   | Fluorene                     | 4.2                  | J |
| 100-01-6  | 4-Nitroaniline               | 20                   | U |
| 101-55-3  | 4-Bromophenyl-phenylether    | 10                   | U |
| 118-74-1  | Hexachlorobenzene            | 10                   | U |
| 85-01-8   | Phenanthrene                 | 7.8                  | J |
| 120-12-7  |                              | 1.2                  | J |
| 86-74-8   | Carbazole                    | 3.1                  | J |
| 206-44-0  | Fluoranthene                 | 3.2                  | J |
| 129-00-0  | Pyrene                       | 1.7                  | J |
| 85-68-7   | Butylbenzylphthalate         | 10                   | U |

# 1E - FORM I SV-2 SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.
MWN-03-062414

| Lab Name: SPECTRUM ANALYTICAL, INC.         | Contract:                     |
|---------------------------------------------|-------------------------------|
| Lab Code: MITKEM Case No.: N1104            | Mod. Ref No.: SDG No.: SN1104 |
| Matrix: (SOIL/SED/WATER) WATER              | Lab Sample ID: N1104-04B      |
| Sample wt/vol:1000 (g/mL) ML                | Lab File ID: S6B8440.D        |
| Level: (LOW/MED) LOW                        | Extraction: (Type) SEPF       |
| % Moisture: Decanted: (Y/N)                 | Date Received: 06/25/2014     |
| Concentrated Extract Volume: 1000 (uL)      | Date Extracted: 06/27/2014    |
| Injection Volume: 1.0 (uL) GPC Factor: 1.00 | Date Analyzed: 07/11/2014     |
| GPC Cleanup:(Y/N) N pH:                     | Dilution Factor: 1.0          |

| CAS NO.  | COMPOUND                   | CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L | 0 |
|----------|----------------------------|-------------------------------------------|---|
| CAS NO.  | COMPOUND                   | (ug/L 01 ug/kg) 0G/L                      | Q |
| 91-94-1  | 3,3´-Dichlorobenzidine     | 10                                        | U |
| 56-55-3  | Benzo(a)anthracene         | 10                                        | U |
| 218-01-9 | Chrysene                   | 10                                        | U |
| 117-81-7 | Bis(2-ethylhexyl)phthalate | 10                                        | U |
| 205-99-2 | Benzo(b)fluoranthene       | 10                                        | U |
| 207-08-9 | Benzo(k)fluoranthene       | 10                                        | U |
| 50-32-8  | Benzo(a)pyrene             | 10                                        | U |
| 193-39-5 | Indeno(1,2,3-cd)pyrene     | 10                                        | U |
| 53-70-3  | Dibenzo(a,h)anthracene     | 10                                        | U |
| 191-24-2 | Benzo(g,h,i)perylene       | 10                                        | U |

EPA SAMPLE NO.
MWM-02-062514

| Lab Name: SPECTRUM ANALYTICAL, INC.       | Contract:                     |
|-------------------------------------------|-------------------------------|
| Lab Code: MITKEM Case No.: N1104          | Mod. Ref No.: SDG No.: SN1104 |
| Matrix: (SOIL/SED/WATER) WATER            | Lab Sample ID: N1104-06B      |
| Sample wt/vol:1000 (g/mL) ML              | Lab File ID: S6B8441.D        |
| Level: (LOW/MED) LOW                      | Extraction: (Type) SEPF       |
| % Moisture: Decanted: (Y/N)               | Date Received: 06/26/2014     |
| Concentrated Extract Volume:1000 (uL)     | Date Extracted: 06/27/2014    |
| Injection Volume:1.0 (uL) GPC Factor:1.00 | Date Analyzed: 07/11/2014     |
| GPC Cleanup:(Y/N) N pH:                   | Dilution Factor: 1.0          |

|           |                              | CONCENTRATION UNITS: |   |
|-----------|------------------------------|----------------------|---|
| CAS NO.   | COMPOUND                     | (ug/L or ug/Kg) UG/L | Q |
| 111-44-4  | Bis(2-chloroethyl)ether      | 10                   | U |
| 541-73-1  |                              | 10                   | U |
| 106-46-7  | 1,4-Dichlorobenzene          | 10                   | U |
| 95-50-1   | 1,2-Dichlorobenzene          | 10                   | U |
| 108-60-1  | 2,2'-oxybis(1-Chloropropane) | 10                   | U |
| 67-72-1   | Hexachloroethane             | 10                   | U |
| 98-95-3   | Nitrobenzene                 | 10                   | U |
| 78-59-1   | Isophorone                   | 10                   | U |
| 120-82-1  | 1,2,4-Trichlorobenzene       | 10                   | U |
| 91-20-3   | Naphthalene                  | 21                   |   |
| 106-47-8  | 4-Chloroaniline              | 10                   | U |
| 111-91-1  | Bis(2-chloroethoxy)methane   | 10                   | U |
| 87-68-3   | Hexachlorobutadiene          | 10                   | U |
| 91-57-6   | 2-Methylnaphthalene          | 3.6                  | J |
| 77-47-4   | Hexachlorocyclopentadiene    | 10                   | U |
| 91-58-7   | 2-Chloronaphthalene          | 10                   | U |
| 88-74-4   | 2-Nitroaniline               | 20                   | U |
| 131-11-3  | Dimethylphthalate            | 10                   | U |
| 208-96-8  | Acenaphthylene               | 2.6                  | J |
| 606-20-2  | 2,6-Dinitrotoluene           | 10                   | U |
| 99-09-2   | 3-Nitroaniline               | 20                   | U |
| 83-32-9   | Acenaphthene                 | 1.7                  | J |
| 132-64-9  | Dibenzofuran                 | 3.1                  | J |
| 121-14-2  | 2,4-Dinitrotoluene           | 10                   | U |
| 84-66-2   | Diethylphthalate             | 10                   | U |
| 7005-72-3 | 4-Chlorophenyl-phenylether   | 10                   | U |
| 86-73-7   | Fluorene                     | 4.8                  | J |
| 100-01-6  | 4-Nitroaniline               | 20                   | U |
| 101-55-3  | 4-Bromophenyl-phenylether    | 10                   | U |
| 118-74-1  | Hexachlorobenzene            | 10                   | U |
| 85-01-8   | Phenanthrene                 | 5.4                  | J |
| 120-12-7  | Anthracene                   | 10                   | U |
| 86-74-8   | Carbazole                    | 4.1                  | J |
| 206-44-0  | Fluoranthene                 | 1.4                  | J |
| 129-00-0  | Pyrene                       | 1.2                  | J |
| 85-68-7   | Butylbenzylphthalate         | 10                   | U |

EPA SAMPLE NO.
MWM-02-062514

| Lab Name: SPECTRUM ANALYTICAL, INC.         | Contract:                     |
|---------------------------------------------|-------------------------------|
| Lab Code: MITKEM Case No.: N1104            | Mod. Ref No.: SDG No.: SN1104 |
| Matrix: (SOIL/SED/WATER) WATER              | Lab Sample ID: N1104-06B      |
| Sample wt/vol:1000 (g/mL) ML                | Lab File ID: S6B8441.D        |
| Level: (LOW/MED) LOW                        | Extraction: (Type) SEPF       |
| % Moisture: Decanted: (Y/N)                 | Date Received: 06/26/2014     |
| Concentrated Extract Volume:1000 (uL)       | Date Extracted: 06/27/2014    |
| Injection Volume: 1.0 (uL) GPC Factor: 1.00 | Date Analyzed: 07/11/2014     |
| GPC Cleanup:(Y/N) N pH:                     | Dilution Factor: 1.0          |

|          |                            | CONCENTRATION UNITS: |     |
|----------|----------------------------|----------------------|-----|
| CAS NO.  | COMPOUND                   | (ug/L or ug/Kg) UG/L | _ Q |
| 91-94-1  | 3,3´-Dichlorobenzidine     | 10                   | U   |
| 56-55-3  | Benzo(a)anthracene         | 10                   | U   |
| 218-01-9 | Chrysene                   | 10                   | U   |
| 117-81-7 | Bis(2-ethylhexyl)phthalate | 10                   | U   |
| 205-99-2 | Benzo(b)fluoranthene       | 10                   | U   |
| 207-08-9 | Benzo(k)fluoranthene       | 10                   | U   |
| 50-32-8  | Benzo(a)pyrene             | 10                   | U   |
| 193-39-5 | Indeno(1,2,3-cd)pyrene     | 10                   | U   |
| 53-70-3  | Dibenzo(a,h)anthracene     | 10                   | U   |
| 191-24-2 | Benzo(g,h,i)perylene       | 10                   | U   |

EPA SAMPLE NO.

MWN-02B-062514

| Lab Name: SPECTRUM ANALYTICAL, INC.       | Contract:                     |
|-------------------------------------------|-------------------------------|
| Lab Code: MITKEM Case No.: N1104          | Mod. Ref No.: SDG No.: SN1104 |
| Matrix: (SOIL/SED/WATER) WATER            | Lab Sample ID: N1104-07B      |
| Sample wt/vol:1000 (g/mL) ML              | Lab File ID: S6B8442.D        |
| Level: (LOW/MED) LOW                      | Extraction: (Type) SEPF       |
| % Moisture: Decanted: (Y/N)               | Date Received: 06/26/2014     |
| Concentrated Extract Volume:1000 (uL)     | Date Extracted: 06/27/2014    |
| Injection Volume:1.0 (uL) GPC Factor:1.00 | Date Analyzed: 07/11/2014     |
| GPC Cleanup:(Y/N) N pH:                   | Dilution Factor: 1.0          |

| CAS NO.   COMPOUND   Cug/L or ug/Kg   Ug/L   Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           | Т                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CONCENTRATION UNITS: | 1   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-----|
| 111-44-4   Bis(2-chloroethyl)ether   10   U   541-73-1   1,3-Dichlorobenzene   10   U   U   106-46-7   1,4-Dichlorobenzene   10   U   U   U   U   U   U   U   U   U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CAS NO.   | COMPOUND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                      | 0   |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 111 44 4  | District of the second |                      | . ~ |
| 106-46-7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      |     |
| 95-50-1   1,2-Dichlorobenzene   10   U   108-60-1   2,2 '-oxybis(1-Chloropropane)   10   U   67-72-1   Hexachloroethane   10   U   98-95-3   Nitrobenzene   10   U   10   U   10   U   10   10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      | -   |
| 108-60-1   2,2'-oxybis(1-Chloropropane)   10   U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      |     |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      |     |
| 98-95-3   Nitrobenzene   10   U   78-59-1   Isophorone   10   U   120-82-1   1,2,4-Trichlorobenzene   10   U   120-82-1   1,2,4-Trichlorobenzene   10   U   110-91-3   Naphthalene   220   E   106-47-8   4-Chloroaniline   10   U   111-91-1   Bis(2-chloroethoxy)methane   10   U   87-68-3   Hexachlorobutadiene   10   U   91-57-6   2-Methylnaphthalene   11   T   11   T   11   T   11   T   12   T   T   T   T   T   T   T   T   T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      |     |
| 78-59-1       Isophorone       10       U         120-82-1       1,2,4-Trichlorobenzene       10       U         91-20-3       Naphthalene       220       E         106-47-8       4-Chloroaniline       10       U         111-91-1       Bis(2-chloroethoxy)methane       10       U         87-68-3       Hexachlorobutadiene       10       U         91-57-6       2-Methylnaphthalene       11       V         77-47-4       Hexachlorocyclopentadiene       10       U         91-58-7       2-Chloronaphthalene       10       U         88-74-4       2-Nitroaniline       20       U         131-11-3       Dimethylphthalate       10       U         208-96-8       Acenaphthylene       5.6       J         606-20-2       2,6-Dinitrotoluene       10       U         99-09-2       3-Nitroaniline       20       U         83-32-9       Acenaphthene       8.1       J         132-64-9       Dibenzofuran       6.7       J         121-14-2       2,4-Dinitrotoluene       8.1       J         84-66-2       Diethylphthalate       10       U         7005-72-3       4-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      | -   |
| 120-82-1   1,2,4-Trichlorobenzene   10   U   91-20-3   Naphthalene   220   E   106-47-8   4-Chloroaniline   10   U   111-91-1   Bis(2-chloroethoxy)methane   10   U   111-91-1   Bis(2-chloroethoxy)methane   10   U   91-57-6   2-Methylnaphthalene   11   U   91-57-6   2-Methylnaphthalene   11   U   91-58-7   2-Chloronaphthalene   10   U   91-58-7   2-Chloronaphthalene   10   U   91-58-7   2-Chloronaphthalene   10   U   131-11-3   Dimethylphthalate   10   U   208-96-8   Acenaphthylene   5.6   J   606-20-2   2,6-Dinitrotoluene   10   U   99-09-2   3-Nitroaniline   20   U   83-32-9   Acenaphthene   8.1   J   132-64-9   Dibenzofuran   6.7   J   121-14-2   2,4-Dinitrotoluene   10   U   84-66-2   Diethylphthalate   10   U   84-66-2   Diethylphthalate   10   U   86-73-7   Fluorene   11   100-01-6   4-Nitroaniline   20   U   101-55-3   4-Bromophenyl-phenylether   10   U   118-74-1   Hexachlorobenzene   10   U   118-74-1   Hexachlorobenzene   10   U   85-01-8   Phenanthrene   2.8   J   2.6-44-0   Fluoranthene   4.3   J   212-00-0   Pyrene   2.7   J   129-00-0   Pyrene   2.7   J   129-00-0   Pyrene   2.7   J   129-00-0   Pyrene   2.7   J   129-00-0   Pyrene   2.7   J   120-0-0-0   Pyrene   2.7   J   2 |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      |     |
| 91-20-3   Naphthalene   220   E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      |     |
| 106-47-8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      | _   |
| 111-91-1       Bis(2-chloroethoxy)methane       10       U         87-68-3       Hexachlorobutadiene       10       U         91-57-6       2-Methylnaphthalene       11       U         77-47-4       Hexachlorocyclopentadiene       10       U         91-58-7       2-Chloronaphthalene       10       U         88-74-4       2-Nitroaniline       20       U         88-74-4       2-Nitroaniline       20       U         131-11-3       Dimethylphthalate       10       U         208-96-8       Acenaphthylene       5.6       J         606-20-2       2,6-Dinitrotoluene       10       U         99-09-2       3-Nitroaniline       20       U         83-32-9       Acenaphthene       8.1       J         132-64-9       Dibenzofuran       6.7       J         121-14-2       2,4-Dinitrotoluene       10       U         84-66-2       Diethylphthalate       10       U         7005-72-3       4-Chlorophenyl-phenylether       10       U         10-00-6       4-Nitroaniline       20       U         100-01-6       4-Nitroaniline       20       U         118-74-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      |     |
| 87-68-3       Hexachlorobutadiene       10       U         91-57-6       2-Methylnaphthalene       11       U         77-47-4       Hexachlorocyclopentadiene       10       U         91-58-7       2-Chloronaphthalene       10       U         88-74-4       2-Nitroaniline       20       U         131-11-3       Dimethylphthalate       10       U         208-96-8       Acenaphthylene       5.6       J         606-20-2       2,6-Dinitrotoluene       10       U         99-09-2       3-Nitroaniline       20       U         83-32-9       Acenaphthene       8.1       J         132-64-9       Dibenzofuran       6.7       J         121-14-2       2,4-Dinitrotoluene       10       U         84-66-2       Diethylphthalate       10       U         7005-72-3       4-Chlorophenyl-phenylether       10       U         86-73-7       Fluorene       11       10       U         100-01-6       4-Nitroaniline       20       U         101-55-3       4-Bromophenyl-phenylether       10       U         118-74-1       Hexachlorobenzene       10       U         85-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | = -                  | _   |
| 91-57-6       2-Methylnaphthalene       11         77-47-4       Hexachlorocyclopentadiene       10       U         91-58-7       2-Chloronaphthalene       10       U         88-74-4       2-Nitroaniline       20       U         131-11-3       Dimethylphthalate       10       U         208-96-8       Acenaphthylene       5.6       J         606-20-2       2,6-Dinitrotoluene       10       U         99-09-2       3-Nitroaniline       20       U         8.3-32-9       Acenaphthene       8.1       J         132-64-9       Dibenzofuran       6.7       J         121-14-2       2,4-Dinitrotoluene       10       U         84-66-2       Diethylphthalate       10       U         7005-72-3       4-Chlorophenyl-phenylether       10       U         86-73-7       Fluorene       11       U         100-01-6       4-Nitroaniline       20       U         101-55-3       4-Bromophenyl-phenylether       10       U         118-74-1       Hexachlorobenzene       10       U         85-01-8       Phenanthrene       17         120-12-7       Anthracene       2.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      |     |
| 77-47-4       Hexachlorocyclopentadiene       10       U         91-58-7       2-Chloronaphthalene       10       U         88-74-4       2-Nitroaniline       20       U         131-11-3       Dimethylphthalate       10       U         208-96-8       Acenaphthylene       5.6       J         606-20-2       2,6-Dinitrotoluene       10       U         99-09-2       3-Nitroaniline       20       U         83-32-9       Acenaphthene       8.1       J         132-64-9       Dibenzofuran       6.7       J         121-14-2       2,4-Dinitrotoluene       10       U         84-66-2       Diethylphthalate       10       U         7005-72-3       4-Chlorophenyl-phenylether       10       U         86-73-7       Fluorene       11       0         10-01-6       4-Nitroaniline       20       U         118-74-1       Hexachlorobenzene       10       U         85-01-8       Phenanthrene       17       0         120-12-7       Anthracene       2.8       J         86-74-8       Carbazole       23         206-44-0       Fluoranthene       4.3 <td< td=""><td></td><td></td><td></td><td>U</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      | U   |
| 91-58-7       2-Chloronaphthalene       10       U         88-74-4       2-Nitroaniline       20       U         131-11-3       Dimethylphthalate       10       U         208-96-8       Acenaphthylene       5.6       J         606-20-2       2,6-Dinitrotoluene       10       U         99-09-2       3-Nitroaniline       20       U         83-32-9       Acenaphthene       8.1       J         132-64-9       Dibenzofuran       6.7       J         121-14-2       2,4-Dinitrotoluene       10       U         84-66-2       Diethylphthalate       10       U         7005-72-3       4-Chlorophenyl-phenylether       10       U         100-01-6       4-Nitroaniline       20       U         100-01-6       4-Nitroaniline       20       U         11x-74-1       Hexachlorobenzene       10       U         85-01-8       Phenanthrene       17       120-12-7       Anthracene       2.8       J         86-74-8       Carbazole       23       206-44-0       Fluoranthene       4.3       J         129-00-0       Pyrene       2.7       J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      |     |
| 88-74-4       2-Nitroaniline       20       U         131-11-3       Dimethylphthalate       10       U         208-96-8       Acenaphthylene       5.6       J         606-20-2       2,6-Dinitrotoluene       10       U         99-09-2       3-Nitroaniline       20       U         83-32-9       Acenaphthene       8.1       J         132-64-9       Dibenzofuran       6.7       J         121-14-2       2,4-Dinitrotoluene       10       U         84-66-2       Diethylphthalate       10       U         7005-72-3       4-Chlorophenyl-phenylether       10       U         86-73-7       Fluorene       11       10         100-01-6       4-Nitroaniline       20       U         118-74-1       Hexachlorobenzene       10       U         85-01-8       Phenanthrene       17       120-12-7       Anthracene       2.8       J         86-74-8       Carbazole       23       206-44-0       Fluoranthene       4.3       J         129-00-0       Pyrene       2.7       J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      | _   |
| 131-11-3       Dimethylphthalate       10       U         208-96-8       Acenaphthylene       5.6       J         606-20-2       2,6-Dinitrotoluene       10       U         99-09-2       3-Nitroaniline       20       U         83-32-9       Acenaphthene       8.1       J         132-64-9       Dibenzofuran       6.7       J         121-14-2       2,4-Dinitrotoluene       10       U         84-66-2       Diethylphthalate       10       U         7005-72-3       4-Chlorophenyl-phenylether       10       U         86-73-7       Fluorene       11       U         100-01-6       4-Nitroaniline       20       U         101-55-3       4-Bromophenyl-phenylether       10       U         118-74-1       Hexachlorobenzene       10       U         85-01-8       Phenanthrene       17       120-12-7       Anthracene       2.8       J         86-74-8       Carbazole       23       206-44-0       Fluoranthene       4.3       J         129-00-0       Pyrene       2.7       J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10                   | U   |
| 208-96-8       Acenaphthylene       5.6       J         606-20-2       2,6-Dinitrotoluene       10       U         99-09-2       3-Nitroaniline       20       U         83-32-9       Acenaphthene       8.1       J         132-64-9       Dibenzofuran       6.7       J         121-14-2       2,4-Dinitrotoluene       10       U         84-66-2       Diethylphthalate       10       U         7005-72-3       4-Chlorophenyl-phenylether       10       U         86-73-7       Fluorene       11       U         100-01-6       4-Nitroaniline       20       U         101-55-3       4-Bromophenyl-phenylether       10       U         118-74-1       Hexachlorobenzene       10       U         85-01-8       Phenanthrene       17       120-12-7       Anthracene       2.8       J         86-74-8       Carbazole       23       23       206-44-0       Fluoranthene       4.3       J         129-00-0       Pyrene       2.7       J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 88-74-4   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20                   | -   |
| 606-20-2       2,6-Dinitrotoluene       10       U         99-09-2       3-Nitroaniline       20       U         83-32-9       Acenaphthene       8.1       J         132-64-9       Dibenzofuran       6.7       J         121-14-2       2,4-Dinitrotoluene       10       U         84-66-2       Diethylphthalate       10       U         7005-72-3       4-Chlorophenyl-phenylether       10       U         86-73-7       Fluorene       11       20       U         100-01-6       4-Nitroaniline       20       U         101-55-3       4-Bromophenyl-phenylether       10       U         118-74-1       Hexachlorobenzene       10       U         85-01-8       Phenanthrene       17       120-12-7       Anthracene       2.8       J         86-74-8       Carbazole       23       23       206-44-0       Fluoranthene       4.3       J         129-00-0       Pyrene       2.7       J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 131-11-3  | Dimethylphthalate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10                   | U   |
| 99-09-2       3-Nitroaniline       20       U         83-32-9       Acenaphthene       8.1       J         132-64-9       Dibenzofuran       6.7       J         121-14-2       2,4-Dinitrotoluene       10       U         84-66-2       Diethylphthalate       10       U         7005-72-3       4-Chlorophenyl-phenylether       10       U         86-73-7       Fluorene       11       20       U         100-01-6       4-Nitroaniline       20       U         101-55-3       4-Bromophenyl-phenylether       10       U         118-74-1       Hexachlorobenzene       10       U         85-01-8       Phenanthrene       17       120-12-7       Anthracene       2.8       J         86-74-8       Carbazole       23       206-44-0       Fluoranthene       4.3       J         129-00-0       Pyrene       2.7       J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 208-96-8  | Acenaphthylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5.6                  | J   |
| 83-32-9       Acenaphthene       8.1       J         132-64-9       Dibenzofuran       6.7       J         121-14-2       2,4-Dinitrotoluene       10       U         84-66-2       Diethylphthalate       10       U         7005-72-3       4-Chlorophenyl-phenylether       10       U         86-73-7       Fluorene       11       I         100-01-6       4-Nitroaniline       20       U         101-55-3       4-Bromophenyl-phenylether       10       U         118-74-1       Hexachlorobenzene       10       U         85-01-8       Phenanthrene       17       I         120-12-7       Anthracene       2.8       J         86-74-8       Carbazole       23       I         206-44-0       Fluoranthene       4.3       J         129-00-0       Pyrene       2.7       J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 606-20-2  | 2,6-Dinitrotoluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10                   | U   |
| 132-64-9       Dibenzofuran       6.7       J         121-14-2       2,4-Dinitrotoluene       10       U         84-66-2       Diethylphthalate       10       U         7005-72-3       4-Chlorophenyl-phenylether       10       U         86-73-7       Fluorene       11       I         100-01-6       4-Nitroaniline       20       U         101-55-3       4-Bromophenyl-phenylether       10       U         118-74-1       Hexachlorobenzene       10       U         85-01-8       Phenanthrene       17       I         120-12-7       Anthracene       2.8       J         86-74-8       Carbazole       23       I         206-44-0       Fluoranthene       4.3       J         129-00-0       Pyrene       2.7       J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 99-09-2   | 3-Nitroaniline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20                   | U   |
| 121-14-2       2,4-Dinitrotoluene       10       U         84-66-2       Diethylphthalate       10       U         7005-72-3       4-Chlorophenyl-phenylether       10       U         86-73-7       Fluorene       11       I         100-01-6       4-Nitroaniline       20       U         101-55-3       4-Bromophenyl-phenylether       10       U         118-74-1       Hexachlorobenzene       10       U         85-01-8       Phenanthrene       17       I         120-12-7       Anthracene       2.8       J         86-74-8       Carbazole       23       I         206-44-0       Fluoranthene       4.3       J         129-00-0       Pyrene       2.7       J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 83-32-9   | Acenaphthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8.1                  | J   |
| 84-66-2       Diethylphthalate       10       U         7005-72-3       4-Chlorophenyl-phenylether       10       U         86-73-7       Fluorene       11       I         100-01-6       4-Nitroaniline       20       U         101-55-3       4-Bromophenyl-phenylether       10       U         118-74-1       Hexachlorobenzene       10       U         85-01-8       Phenanthrene       17       I         120-12-7       Anthracene       2.8       J         86-74-8       Carbazole       23       I         206-44-0       Fluoranthene       4.3       J         129-00-0       Pyrene       2.7       J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 132-64-9  | Dibenzofuran                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6.7                  | J   |
| 7005-72-3       4-Chlorophenyl-phenylether       10       U         86-73-7       Fluorene       11       I         100-01-6       4-Nitroaniline       20       U         101-55-3       4-Bromophenyl-phenylether       10       U         118-74-1       Hexachlorobenzene       10       U         85-01-8       Phenanthrene       17       I         120-12-7       Anthracene       2.8       J         86-74-8       Carbazole       23       I         206-44-0       Fluoranthene       4.3       J         129-00-0       Pyrene       2.7       J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 121-14-2  | 2,4-Dinitrotoluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10                   | U   |
| 86-73-7       Fluorene       11         100-01-6       4-Nitroaniline       20       U         101-55-3       4-Bromophenyl-phenylether       10       U         118-74-1       Hexachlorobenzene       10       U         85-01-8       Phenanthrene       17       I         120-12-7       Anthracene       2.8       J         86-74-8       Carbazole       23       I         206-44-0       Fluoranthene       4.3       J         129-00-0       Pyrene       2.7       J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 84-66-2   | Diethylphthalate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10                   | U   |
| 100-01-6       4-Nitroaniline       20       U         101-55-3       4-Bromophenyl-phenylether       10       U         118-74-1       Hexachlorobenzene       10       U         85-01-8       Phenanthrene       17         120-12-7       Anthracene       2.8       J         86-74-8       Carbazole       23         206-44-0       Fluoranthene       4.3       J         129-00-0       Pyrene       2.7       J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7005-72-3 | 4-Chlorophenyl-phenylether                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10                   | U   |
| 100-01-6       4-Nitroaniline       20       U         101-55-3       4-Bromophenyl-phenylether       10       U         118-74-1       Hexachlorobenzene       10       U         85-01-8       Phenanthrene       17         120-12-7       Anthracene       2.8       J         86-74-8       Carbazole       23         206-44-0       Fluoranthene       4.3       J         129-00-0       Pyrene       2.7       J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 86-73-7   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 11                   |     |
| 118-74-1       Hexachlorobenzene       10       U         85-01-8       Phenanthrene       17         120-12-7       Anthracene       2.8       J         86-74-8       Carbazole       23         206-44-0       Fluoranthene       4.3       J         129-00-0       Pyrene       2.7       J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           | 4-Nitroaniline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20                   | U   |
| 118-74-1       Hexachlorobenzene       10       U         85-01-8       Phenanthrene       17         120-12-7       Anthracene       2.8       J         86-74-8       Carbazole       23         206-44-0       Fluoranthene       4.3       J         129-00-0       Pyrene       2.7       J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           | 4-Bromophenyl-phenylether                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                      | U   |
| 85-01-8       Phenanthrene       17         120-12-7       Anthracene       2.8       J         86-74-8       Carbazole       23       23         206-44-0       Fluoranthene       4.3       J         129-00-0       Pyrene       2.7       J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10                   | Ū   |
| 120-12-7       Anthracene       2.8       J         86-74-8       Carbazole       23         206-44-0       Fluoranthene       4.3       J         129-00-0       Pyrene       2.7       J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           | Phenanthrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 17                   |     |
| 86-74-8       Carbazole       23         206-44-0       Fluoranthene       4.3       J         129-00-0       Pyrene       2.7       J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |           | Anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.8                  | J   |
| 206-44-0       Fluoranthene       4.3       J         129-00-0       Pyrene       2.7       J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      |     |
| 129-00-0 Pyrene 2.7 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      | J   |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      |     |

EPA SAMPLE NO.
MWN-02B-062514

| Lab Name: SPECTRU  | M ANALYTICAL, IN | C.          | Contract:         |                 |
|--------------------|------------------|-------------|-------------------|-----------------|
| Lab Code: MITKEM   | Case No.:        | N1104       | Mod. Ref No.:     | SDG No.: SN1104 |
| Matrix: (SOIL/SED/ | WATER) WATER     |             | Lab Sample ID:    | N1104-07B       |
| Sample wt/vol:     | 1000 (g/mL)      | ML          | Lab File ID:      | S6B8442.D       |
| Level: (LOW/MED)   | LOW              |             | Extraction: (Type | e) SEPF         |
| % Moisture:        | Decanted: (      | Y/N)        | Date Received:    | 06/26/2014      |
| Concentrated Extra | ct Volume:       | 1000 (uL)   | Date Extracted:   | 06/27/2014      |
| Injection Volume:  | 1.0 (uL) GPC Fa  | actor: 1.00 | Date Analyzed:    | 07/11/2014      |
| GPC Cleanup:(Y/N)  | Hq M             |             | Dilution Factor:  | 1.0             |
|                    |                  |             |                   |                 |

| CAS NO.  | COMPOUND                   | CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L | Q      |
|----------|----------------------------|-------------------------------------------|--------|
| 91-94-1  | 3,3'-Dichlorobenzidine     | 10                                        | U<br>U |
| 56-55-3  | Benzo(a)anthracene         | 10                                        | U      |
| 218-01-9 | Chrysene                   | 10                                        | U      |
| 117-81-7 | Bis(2-ethylhexyl)phthalate | 10                                        | U      |
| 205-99-2 | Benzo(b)fluoranthene       | 10                                        | U      |
| 207-08-9 | Benzo(k)fluoranthene       | 10                                        | U      |
| 50-32-8  | Benzo(a)pyrene             | 10                                        | U      |
| 193-39-5 | Indeno(1,2,3-cd)pyrene     | 10                                        | U      |
| 53-70-3  | Dibenzo(a,h)anthracene     | 10                                        | U      |
| 191-24-2 | Benzo(g,h,i)perylene       | 10                                        | U      |

EPA SAMPLE NO.

MWN-02B-062514DL

| Lab Name: SPECTRUM ANALYTICAL, INC.       | Contract:                     |
|-------------------------------------------|-------------------------------|
| Lab Code: MITKEM Case No.: N1104          | Mod. Ref No.: SDG No.: SN1104 |
| Matrix: (SOIL/SED/WATER) WATER            | Lab Sample ID: N1104-07BDL    |
| Sample wt/vol:1000 (g/mL) ML              | Lab File ID: S6B8465.D        |
| Level: (LOW/MED) LOW                      | Extraction: (Type) SEPF       |
| % Moisture: Decanted: (Y/N)               | Date Received: 06/26/2014     |
| Concentrated Extract Volume:1000 (uL)     | Date Extracted: 06/27/2014    |
| Injection Volume:1.0 (uL) GPC Factor:1.00 | Date Analyzed: 07/13/2014     |
| GPC Cleanup:(Y/N) N pH:                   | Dilution Factor: 5.0          |

|           |                              | CONCENTRATION UNITS: | 1  |
|-----------|------------------------------|----------------------|----|
| CAS NO.   | COMPOUND                     | (ug/L or ug/Kg) UG/L | Q  |
| 111-44-4  | Bis(2-chloroethyl)ether      | 50                   | U  |
| 541-73-1  | 1,3-Dichlorobenzene          | 50                   | U  |
| 106-46-7  | 1,4-Dichlorobenzene          | 50                   | U  |
| 95-50-1   | 1,2-Dichlorobenzene          | 50                   | U  |
| 108-60-1  | 2,2'-oxybis(1-Chloropropane) | 50                   | U  |
| 67-72-1   | Hexachloroethane             | 50                   | U  |
| 98-95-3   | Nitrobenzene                 | 50                   | U  |
| 78-59-1   | Isophorone                   | 50                   | U  |
| 120-82-1  | 1,2,4-Trichlorobenzene       | 50                   | U  |
| 91-20-3   | Naphthalene                  | 220                  | D  |
| 106-47-8  | 4-Chloroaniline              | 50                   | U  |
| 111-91-1  | Bis(2-chloroethoxy)methane   | 50                   | U  |
| 87-68-3   | Hexachlorobutadiene          | 50                   | U  |
| 91-57-6   | 2-Methylnaphthalene          | 9.2                  | DJ |
| 77-47-4   | Hexachlorocyclopentadiene    | 50                   | U  |
| 91-58-7   | 2-Chloronaphthalene          | 50                   | U  |
| 88-74-4   | 2-Nitroaniline               | 100                  | U  |
| 131-11-3  | Dimethylphthalate            | 50                   | U  |
| 208-96-8  | Acenaphthylene               | 50                   | U  |
| 606-20-2  | 2,6-Dinitrotoluene           | 50                   | U  |
| 99-09-2   | 3-Nitroaniline               | 100                  | U  |
| 83-32-9   | Acenaphthene                 | 9.0                  | DJ |
| 132-64-9  | Dibenzofuran                 | 5.7                  | DJ |
| 121-14-2  | 2,4-Dinitrotoluene           | 50                   | U  |
| 84-66-2   | Diethylphthalate             | 50                   | U  |
| 7005-72-3 | 4-Chlorophenyl-phenylether   | 50                   | U  |
| 86-73-7   | Fluorene                     | 8.7                  | DJ |
| 100-01-6  | 4-Nitroaniline               | 100                  | U  |
| 101-55-3  | 4-Bromophenyl-phenylether    | 50                   | U  |
| 118-74-1  | Hexachlorobenzene            | 50                   | U  |
| 85-01-8   | Phenanthrene                 | 15                   | DJ |
| 120-12-7  | Anthracene                   | 50                   | U  |
| 86-74-8   | Carbazole                    | 19                   | DJ |
| 206-44-0  | Fluoranthene                 | 50                   | U  |
| 129-00-0  | Pyrene                       | 50                   | U  |
| 85-68-7   | Butylbenzylphthalate         | 50                   | U  |

EPA SAMPLE NO.
MWN-02B-062514DL

| Lab Name: SPECTE | RUM ANALYTICAL, INC.      | Contract:         |                 |
|------------------|---------------------------|-------------------|-----------------|
| Lab Code: MITKEN | M Case No.: N1104         | Mod. Ref No.:     | SDG No.: SN1104 |
| Matrix: (SOIL/SE | D/WATER) WATER            | Lab Sample ID:    | N1104-07BDL     |
| Sample wt/vol:   | 1000 (g/mL) ML            | Lab File ID:      | S6B8465.D       |
| Level: (LOW/MED) | LOW                       | Extraction: (Type | e) SEPF         |
| % Moisture:      | Decanted: (Y/N)           | Date Received:    | 06/26/2014      |
| Concentrated Ext | ract Volume:1000 (uL)     | Date Extracted:   | 06/27/2014      |
| Injection Volume | :1.0 (uL) GPC Factor:1.00 | Date Analyzed:    | 07/13/2014      |
| GPC Cleanup:(Y/N | ) N pH:                   | Dilution Factor:  | 5.0             |

| CAS NO.  | COMPOUND                   | CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L | Q |
|----------|----------------------------|-------------------------------------------|---|
| 91-94-1  | 3,3´-Dichlorobenzidine     | 50                                        | U |
| 56-55-3  | Benzo(a)anthracene         | 50                                        | U |
| 218-01-9 | Chrysene                   | 50                                        | U |
| 117-81-7 | Bis(2-ethylhexyl)phthalate | 50                                        | U |
| 205-99-2 | Benzo(b)fluoranthene       | 50                                        | U |
| 207-08-9 | Benzo(k)fluoranthene       | 50                                        | U |
| 50-32-8  | Benzo(a)pyrene             | 50                                        | U |
| 193-39-5 | Indeno(1,2,3-cd)pyrene     | 50                                        | U |
| 53-70-3  | Dibenzo(a,h)anthracene     | 50                                        | U |
| 191-24-2 | Benzo(g,h,i)perylene       | 50                                        | U |

EPA SAMPLE NO. WT1-02-062514

| Lab Name: SPECTRUM ANALYTICAL, INC.       | Contract:                     |
|-------------------------------------------|-------------------------------|
| Lab Code: MITKEM Case No.: N1104          | Mod. Ref No.: SDG No.: SN1104 |
| Matrix: (SOIL/SED/WATER) WATER            | Lab Sample ID: N1104-09F      |
| Sample wt/vol:1000 (g/mL) ML              | Lab File ID: S6B8443.D        |
| Level: (LOW/MED) LOW                      | Extraction: (Type) SEPF       |
| % Moisture: Decanted: (Y/N)               | Date Received: 06/26/2014     |
| Concentrated Extract Volume:1000 (uL)     | Date Extracted: 06/27/2014    |
| Injection Volume:1.0 (uL) GPC Factor:1.00 | Date Analyzed: 07/11/2014     |
| GPC Cleanup:(Y/N) N pH:                   | Dilution Factor: 1.0          |

|           |                              | CONCENTRATION UNITS: |   |
|-----------|------------------------------|----------------------|---|
| CAS NO.   | COMPOUND                     | (ug/L or ug/Kg) UG/L | Q |
| 111-44-4  | Bis(2-chloroethyl)ether      | 10                   | U |
| 541-73-1  | 1,3-Dichlorobenzene          | 10                   | U |
| 106-46-7  | 1,4-Dichlorobenzene          | 10                   | U |
| 95-50-1   | 1,2-Dichlorobenzene          | 10                   | U |
| 108-60-1  | 2,2'-oxybis(1-Chloropropane) | 10                   | U |
| 67-72-1   | Hexachloroethane             | 10                   | U |
| 98-95-3   | Nitrobenzene                 | 10                   | U |
| 78-59-1   | Isophorone                   | 10                   | U |
| 120-82-1  | 1,2,4-Trichlorobenzene       | 10                   | U |
| 91-20-3   | Naphthalene                  | 9.0                  | J |
| 106-47-8  | 4-Chloroaniline              | 10                   | U |
| 111-91-1  | Bis(2-chloroethoxy)methane   | 10                   | U |
| 87-68-3   | Hexachlorobutadiene          | 10                   | U |
| 91-57-6   | 2-Methylnaphthalene          | 4.5                  | J |
| 77-47-4   | Hexachlorocyclopentadiene    | 10                   | U |
| 91-58-7   | 2-Chloronaphthalene          | 10                   | U |
| 88-74-4   | 2-Nitroaniline               | 20                   | U |
| 131-11-3  | Dimethylphthalate            | 10                   | U |
| 208-96-8  | Acenaphthylene               | 1.3                  | J |
| 606-20-2  | 2,6-Dinitrotoluene           | 10                   | U |
| 99-09-2   | 3-Nitroaniline               | 20                   | U |
| 83-32-9   | Acenaphthene                 | 1.4                  | J |
| 132-64-9  | Dibenzofuran                 | 2.2                  | J |
| 121-14-2  | 2,4-Dinitrotoluene           | 10                   | U |
| 84-66-2   | Diethylphthalate             | 10                   | U |
| 7005-72-3 | 4-Chlorophenyl-phenylether   | 10                   | U |
| 86-73-7   | Fluorene                     | 7.1                  | J |
| 100-01-6  | 4-Nitroaniline               | 20                   | U |
| 101-55-3  | 4-Bromophenyl-phenylether    | 10                   | U |
| 118-74-1  | Hexachlorobenzene            | 10                   | U |
| 85-01-8   | Phenanthrene                 | 8.5                  | J |
| 120-12-7  | Anthracene                   | 2.2                  | J |
| 86-74-8   | Carbazole                    | 3.6                  | J |
| 206-44-0  | Fluoranthene                 | 5.3                  | J |
| 129-00-0  | Pyrene                       | 3.3                  | J |
| 85-68-7   | Butylbenzylphthalate         | 10                   | U |

EPA SAMPLE NO. WT1-02-062514

| Lab Name: SI | PECTRUM ANALY | CICAL, INC | C          | Contract:         |                 |
|--------------|---------------|------------|------------|-------------------|-----------------|
| Lab Code: M  | ITKEM Ca      | ase No.:   | N1104      | Mod. Ref No.:     | SDG No.: SN1104 |
| Matrix: (SOI | L/SED/WATER)  | WATER      |            | Lab Sample ID:    | N1104-09F       |
| Sample wt/vo | 1:1000        | (g/mL)     | ML         | Lab File ID:      | S6B8443.D       |
| Level: (LOW/ | MED) LOW      |            |            | Extraction: (Type | e) SEPF         |
| % Moisture:  | Dec           | canted: (  | Y/N)       | Date Received:    | 06/26/2014      |
| Concentrated | Extract Volum | me:        | 1000 (uL)  | Date Extracted:   | 06/27/2014      |
| Injection Vo | lume:(ı       | ıL) GPC Fa | ctor: 1.00 | Date Analyzed:    | 07/11/2014      |
| GPC Cleanup: | (Y/N) N       | pH:        |            | Dilution Factor:  | 1.0             |

| CAS NO.  | COMPOUND                   | CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L | Q |
|----------|----------------------------|-------------------------------------------|---|
| 91-94-1  | 3,3'-Dichlorobenzidine     | 10                                        | U |
| 56-55-3  | Benzo(a)anthracene         | 10                                        | U |
| 218-01-9 | Chrysene                   | 10                                        | U |
| 117-81-7 | Bis(2-ethylhexyl)phthalate | 10                                        | U |
| 205-99-2 | Benzo(b)fluoranthene       | 10                                        | U |
| 207-08-9 | Benzo(k)fluoranthene       | 10                                        | U |
| 50-32-8  | Benzo(a)pyrene             | 10                                        | U |
| 193-39-5 | Indeno(1,2,3-cd)pyrene     | 10                                        | U |
| 53-70-3  | Dibenzo(a,h)anthracene     | 10                                        | U |
| 191-24-2 | Benzo(g,h,i)perylene       | 10                                        | U |

EPA SAMPLE NO. WT1-05-062514

| Lab Name: SPECTRUM ANALYTICAL, INC.       | Contract:                     |
|-------------------------------------------|-------------------------------|
| Lab Code: MITKEM Case No.: N1104          | Mod. Ref No.: SDG No.: SN1104 |
| Matrix: (SOIL/SED/WATER) WATER            | Lab Sample ID: N1104-10F      |
| Sample wt/vol:1000 (g/mL) ML              | Lab File ID: S6B8444.D        |
| Level: (LOW/MED) LOW                      | Extraction: (Type) SEPF       |
| % Moisture: Decanted: (Y/N)               | Date Received: 06/26/2014     |
| Concentrated Extract Volume:1000 (uL)     | Date Extracted: 06/27/2014    |
| Injection Volume:1.0 (uL) GPC Factor:1.00 | Date Analyzed: 07/11/2014     |
| GPC Cleanup:(Y/N) N pH:                   | Dilution Factor: 1.0          |

|           |                              | CONCENTRATION UNITS: |   |
|-----------|------------------------------|----------------------|---|
| CAS NO.   | COMPOUND                     | (ug/L or ug/Kg) UG/L | Q |
| 111-44-4  | Bis(2-chloroethyl)ether      | 10                   | U |
| 541-73-1  |                              | 10                   | U |
| 106-46-7  | 1,4-Dichlorobenzene          | 10                   | U |
| 95-50-1   | 1,2-Dichlorobenzene          | 10                   | U |
| 108-60-1  | 2,2'-oxybis(1-Chloropropane) | 10                   | U |
| 67-72-1   | Hexachloroethane             | 10                   | U |
| 98-95-3   | Nitrobenzene                 | 10                   | U |
| 78-59-1   | Isophorone                   | 10                   | U |
| 120-82-1  | 1,2,4-Trichlorobenzene       | 10                   | U |
| 91-20-3   | Naphthalene                  | 54                   |   |
| 106-47-8  | 4-Chloroaniline              | 10                   | U |
| 111-91-1  | Bis(2-chloroethoxy)methane   | 10                   | U |
| 87-68-3   | Hexachlorobutadiene          | 10                   | U |
| 91-57-6   | 2-Methylnaphthalene          | 9.9                  | J |
| 77-47-4   | Hexachlorocyclopentadiene    | 10                   | U |
| 91-58-7   | 2-Chloronaphthalene          | 10                   | U |
| 88-74-4   | 2-Nitroaniline               | 20                   | U |
| 131-11-3  | Dimethylphthalate            | 10                   | U |
| 208-96-8  | Acenaphthylene               | 9.4                  | J |
| 606-20-2  | 2,6-Dinitrotoluene           | 10                   | U |
| 99-09-2   | 3-Nitroaniline               | 20                   | U |
| 83-32-9   | Acenaphthene                 | 2.8                  | J |
| 132-64-9  | Dibenzofuran                 | 6.3                  | J |
| 121-14-2  | 2,4-Dinitrotoluene           | 10                   | U |
| 84-66-2   | Diethylphthalate             | 10                   | U |
| 7005-72-3 | 4-Chlorophenyl-phenylether   | 10                   | U |
| 86-73-7   | Fluorene                     | 11                   |   |
| 100-01-6  | 4-Nitroaniline               | 20                   | U |
| 101-55-3  | 4-Bromophenyl-phenylether    | 10                   | U |
| 118-74-1  | Hexachlorobenzene            | 10                   | U |
| 85-01-8   | Phenanthrene                 | 7.9                  | J |
| 120-12-7  | Anthracene                   | 2.0                  | J |
| 86-74-8   | Carbazole                    | 7.4                  | J |
| 206-44-0  | Fluoranthene                 | 2.2                  | J |
| 129-00-0  | Pyrene                       | 1.9                  | J |
| 85-68-7   | Butylbenzylphthalate         | 10                   | U |

EPA SAMPLE NO. WT1-05-062514

| Lab Name: S  | PECTRUM ANALY  | rical, inc | C          | Contract:         |                 |
|--------------|----------------|------------|------------|-------------------|-----------------|
| Lab Code: M  | ITKEM C        | ase No.:   | N1104      | Mod. Ref No.:     | SDG No.: SN1104 |
| Matrix: (SOI | L/SED/WATER)   | WATER      |            | Lab Sample ID:    | N1104-10F       |
| Sample wt/vo | 1000           | (g/mL)     | ML         | Lab File ID:      | S6B8444.D       |
| Level: (LOW/ | MED) LOW       |            |            | Extraction: (Type | e) SEPF         |
| % Moisture:  | Dec            | canted: (  | Y/N)       | Date Received:    | 06/26/2014      |
| Concentrated | l Extract Volu | me:        | 1000 (uL)  | Date Extracted:   | 06/27/2014      |
| Injection Vo | olume:(1.0 (1  | ıL) GPC Fa | ctor: 1.00 | Date Analyzed:    | 07/11/2014      |
| GPC Cleanup: | (Y/N) N        | pH:        |            | Dilution Factor:  | 1.0             |

| CAS NO.  | COMPOUND                   | CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L | Q |
|----------|----------------------------|-------------------------------------------|---|
| 91-94-1  | 3,3´-Dichlorobenzidine     | 10                                        | U |
| 56-55-3  | Benzo(a)anthracene         | 10                                        | U |
| 218-01-9 | Chrysene                   | 10                                        | U |
| 117-81-7 | Bis(2-ethylhexyl)phthalate | 10                                        | U |
| 205-99-2 | Benzo(b)fluoranthene       | 10                                        | U |
| 207-08-9 | Benzo(k)fluoranthene       | 10                                        | U |
| 50-32-8  | Benzo(a)pyrene             | 10                                        | U |
| 193-39-5 | Indeno(1,2,3-cd)pyrene     | 10                                        | U |
| 53-70-3  | Dibenzo(a,h)anthracene     | 10                                        | U |
| 191-24-2 | Benzo(g,h,i)perylene       | 10                                        | U |

EPA SAMPLE NO.

WT1-06-062614

| Lab Name: SPECTRUM  | I ANALYTICAL, INC.        | Contract:         |                 |
|---------------------|---------------------------|-------------------|-----------------|
| Lab Code: MITKEM    | Case No.: N1104           | Mod. Ref No.:     | SDG No.: SN1104 |
| Matrix: (SOIL/SED/W | WATER) WATER              | Lab Sample ID:    | N1104-12E       |
| Sample wt/vol:      | 1000 (g/mL) <u>M</u> L    | Lab File ID:      | S6B8445.D       |
| Level: (LOW/MED) I  | LOW                       | Extraction: (Type | e) SEPF         |
| % Moisture:         | Decanted: (Y/N)           | Date Received:    | 06/27/2014      |
| Concentrated Extra  | ct Volume:1000 (uL)       | Date Extracted:   | 06/27/2014      |
| Injection Volume:   | 1.0 (uL) GPC Factor: 1.00 | Date Analyzed:    | 07/11/2014      |
| GPC Cleanup:(Y/N)   | N pH:                     | Dilution Factor:  | 1.0             |

|           |                              | CONCENTRATION UNITS: |   |
|-----------|------------------------------|----------------------|---|
| CAS NO.   | COMPOUND                     | (ug/L or ug/Kg) UG/L | Q |
| 111-44-4  | Bis(2-chloroethyl)ether      | 10                   | U |
| 541-73-1  |                              | 10                   | U |
| 106-46-7  | 1,4-Dichlorobenzene          | 10                   | U |
| 95-50-1   | 1,2-Dichlorobenzene          | 10                   | U |
| 108-60-1  | 2,2'-oxybis(1-Chloropropane) | 10                   | U |
| 67-72-1   | Hexachloroethane             | 10                   | U |
| 98-95-3   | Nitrobenzene                 | 10                   | U |
| 78-59-1   | Isophorone                   | 10                   | U |
| 120-82-1  | 1,2,4-Trichlorobenzene       | 10                   | U |
| 91-20-3   | Naphthalene                  | 150                  | E |
| 106-47-8  | 4-Chloroaniline              | 10                   | U |
| 111-91-1  | Bis(2-chloroethoxy)methane   | 10                   | U |
| 87-68-3   | Hexachlorobutadiene          | 10                   | U |
| 91-57-6   | 2-Methylnaphthalene          | 35                   |   |
| 77-47-4   | Hexachlorocyclopentadiene    | 10                   | U |
| 91-58-7   | 2-Chloronaphthalene          | 10                   | U |
| 88-74-4   | 2-Nitroaniline               | 20                   | U |
| 131-11-3  | Dimethylphthalate            | 10                   | U |
| 208-96-8  | Acenaphthylene               | 23                   |   |
| 606-20-2  | 2,6-Dinitrotoluene           | 10                   | U |
| 99-09-2   | 3-Nitroaniline               | 20                   | U |
| 83-32-9   | Acenaphthene                 | 9.0                  | J |
| 132-64-9  | Dibenzofuran                 | 32                   |   |
| 121-14-2  | 2,4-Dinitrotoluene           | 10                   | U |
| 84-66-2   | Diethylphthalate             | 10                   | U |
| 7005-72-3 | 4-Chlorophenyl-phenylether   | 10                   | U |
| 86-73-7   | Fluorene                     | 46                   |   |
| 100-01-6  | 4-Nitroaniline               | 20                   | U |
| 101-55-3  | 4-Bromophenyl-phenylether    | 10                   | U |
| 118-74-1  | Hexachlorobenzene            | 10                   | U |
| 85-01-8   | Phenanthrene                 | 70                   |   |
| 120-12-7  | Anthracene                   | 10                   |   |
| 86-74-8   | Carbazole                    | 25                   |   |
| 206-44-0  | Fluoranthene                 | 9.2                  | J |
| 129-00-0  | Pyrene                       | 4.8                  | J |
| 85-68-7   | Butylbenzylphthalate         | 10                   | U |

EPA SAMPLE NO. WT1-06-062614

| Lab Name: SPECTRUM ANALYTICAL, INC.       | Contract:                     |
|-------------------------------------------|-------------------------------|
| Lab Code: MITKEM Case No.: N1104          | Mod. Ref No.: SDG No.: SN1104 |
| Matrix: (SOIL/SED/WATER) WATER            | Lab Sample ID: N1104-12E      |
| Sample wt/vol:1000 (g/mL) ML              | Lab File ID: S6B8445.D        |
| Level: (LOW/MED) LOW                      | Extraction: (Type) SEPF       |
| % Moisture: Decanted: (Y/N)               | Date Received: 06/27/2014     |
| Concentrated Extract Volume:1000 (uL)     | Date Extracted: 06/27/2014    |
| Injection Volume:1.0 (uL) GPC Factor:1.00 | Date Analyzed: 07/11/2014     |
| GPC Cleanup:(Y/N) N pH:                   | Dilution Factor: 1.0          |

|          |                            | CONCENTRATION UNITS: |   |
|----------|----------------------------|----------------------|---|
| CAS NO.  | COMPOUND                   | (ug/L or ug/Kg) UG/L | Q |
| 91-94-1  | 3,3´-Dichlorobenzidine     | 10                   | U |
| 56-55-3  | Benzo(a)anthracene         | 10                   | U |
| 218-01-9 | Chrysene                   | 10                   | U |
| 117-81-7 | Bis(2-ethylhexyl)phthalate | 10                   | U |
| 205-99-2 | Benzo(b)fluoranthene       | 10                   | U |
| 207-08-9 | Benzo(k)fluoranthene       | 10                   | U |
| 50-32-8  | Benzo(a)pyrene             | 10                   | U |
| 193-39-5 | Indeno(1,2,3-cd)pyrene     | 10                   | U |
| 53-70-3  | Dibenzo(a,h)anthracene     | 10                   | U |
| 191-24-2 | Benzo(g,h,i)perylene       | 10                   | U |

EPA SAMPLE NO.

WT1-06-062614DL

| Lab Name: SPECTRUM ANALYTICAL, INC.       | Contract:                     |
|-------------------------------------------|-------------------------------|
| Lab Code: MITKEM Case No.: N1104          | Mod. Ref No.: SDG No.: SN1104 |
| Matrix: (SOIL/SED/WATER) WATER            | Lab Sample ID: N1104-12EDL    |
| Sample wt/vol:1000 (g/mL) ML              | Lab File ID: S6B8466.D        |
| Level: (LOW/MED) LOW                      | Extraction: (Type) SEPF       |
| % Moisture: Decanted: (Y/N)               | Date Received: 06/27/2014     |
| Concentrated Extract Volume:1000 (uL)     | Date Extracted: 06/27/2014    |
| Injection Volume:1.0 (uL) GPC Factor:1.00 | Date Analyzed: 07/13/2014     |
| GPC Cleanup:(Y/N) N pH:                   | Dilution Factor: 4.0          |

|           |                              | CONCENTRATION UNITS: |    |
|-----------|------------------------------|----------------------|----|
| CAS NO.   | COMPOUND                     | (ug/L or ug/Kg) UG/L | Q  |
| 111-44-4  | Bis(2-chloroethyl)ether      | 40                   | U  |
| 541-73-1  |                              | 40                   | U  |
| 106-46-7  | 1,4-Dichlorobenzene          | 40                   | U  |
| 95-50-1   | 1,2-Dichlorobenzene          | 40                   | U  |
| 108-60-1  | 2,2'-oxybis(1-Chloropropane) | 40                   | U  |
| 67-72-1   | Hexachloroethane             | 40                   | U  |
| 98-95-3   | Nitrobenzene                 | 40                   | U  |
| 78-59-1   | Isophorone                   | 40                   | U  |
| 120-82-1  | 1,2,4-Trichlorobenzene       | 40                   | U  |
| 91-20-3   | Naphthalene                  | 130                  | D  |
| 106-47-8  | 4-Chloroaniline              | 40                   | U  |
| 111-91-1  | Bis(2-chloroethoxy)methane   | 40                   | U  |
| 87-68-3   | Hexachlorobutadiene          | 40                   | U  |
| 91-57-6   | 2-Methylnaphthalene          | 29                   | DJ |
| 77-47-4   | Hexachlorocyclopentadiene    | 40                   | U  |
| 91-58-7   | 2-Chloronaphthalene          | 40                   | U  |
| 88-74-4   | 2-Nitroaniline               | 80                   | U  |
| 131-11-3  | Dimethylphthalate            | 40                   | U  |
| 208-96-8  | Acenaphthylene               | 19                   | DJ |
| 606-20-2  | 2,6-Dinitrotoluene           | 40                   | U  |
| 99-09-2   | 3-Nitroaniline               | 80                   | U  |
| 83-32-9   | Acenaphthene                 | 9.3                  | DJ |
| 132-64-9  | Dibenzofuran                 | 27                   | DJ |
| 121-14-2  | 2,4-Dinitrotoluene           | 40                   | U  |
| 84-66-2   | Diethylphthalate             | 40                   | U  |
| 7005-72-3 | 4-Chlorophenyl-phenylether   | 40                   | U  |
| 86-73-7   | Fluorene                     | 38                   | DJ |
| 100-01-6  | 4-Nitroaniline               | 80                   | U  |
| 101-55-3  | 4-Bromophenyl-phenylether    | 40                   | U  |
| 118-74-1  | Hexachlorobenzene            | 40                   | U  |
| 85-01-8   | Phenanthrene                 | 62                   | D  |
| 120-12-7  | Anthracene                   | 8.1                  | DJ |
| 86-74-8   | Carbazole                    | 21                   | DJ |
| 206-44-0  | Fluoranthene                 | 7.7                  | DJ |
| 129-00-0  | Pyrene                       | 4.0                  | DJ |
| 85-68-7   | Butylbenzylphthalate         | 40                   | U  |

EPA SAMPLE NO. WT1-06-062614DL

| Lab Name: SPECTRUM ANALYTICAL, INC.    | Contract:                     |
|----------------------------------------|-------------------------------|
| Lab Code: MITKEM Case No.: N1104       | Mod. Ref No.: SDG No.: SN1104 |
| Matrix: (SOIL/SED/WATER) WATER         | Lab Sample ID: N1104-12EDL    |
| Sample wt/vol:1000 (g/mL) ML           | Lab File ID: S6B8466.D        |
| Level: (LOW/MED) LOW                   | Extraction: (Type) SEPF       |
| % Moisture: Decanted: (Y/N)            | Date Received: 06/27/2014     |
| Concentrated Extract Volume: 1000 (u   | Date Extracted: 06/27/2014    |
| Injection Volume: 1.0 (uL) GPC Factor: | 0 Date Analyzed: 07/13/2014   |
| GPC Cleanup:(Y/N) N pH:                | Dilution Factor: 4.0          |

| CAS NO.  | COMPOUND                   | CONCENTRATION UNITS:<br>(ug/L or ug/Kg) UG/L | Q |
|----------|----------------------------|----------------------------------------------|---|
| 91-94-1  | 3,3'-Dichlorobenzidine     | 40                                           | U |
| 56-55-3  | Benzo(a)anthracene         | 40                                           | U |
| 218-01-9 | Chrysene                   | 40                                           | U |
| 117-81-7 | Bis(2-ethylhexyl)phthalate | 40                                           | U |
| 205-99-2 | Benzo(b)fluoranthene       | 40                                           | U |
| 207-08-9 | Benzo(k)fluoranthene       | 40                                           | U |
| 50-32-8  | Benzo(a)pyrene             | 40                                           | U |
| 193-39-5 | Indeno(1,2,3-cd)pyrene     | 40                                           | U |
| 53-70-3  | Dibenzo(a,h)anthracene     | 40                                           | U |
| 191-24-2 | Benzo(g,h,i)perylene       | 40                                           | U |

EPA SAMPLE NO.

BCP-ORC-2-062614

| Lab Name: SPECTRUM ANALYTICAL, INC.       | Contract:                     |
|-------------------------------------------|-------------------------------|
| Lab Code: MITKEM Case No.: N1104          | Mod. Ref No.: SDG No.: SN1104 |
| Matrix: (SOIL/SED/WATER) WATER            | Lab Sample ID: N1104-13E      |
| Sample wt/vol:1000 (g/mL) ML              | Lab File ID: S6B8446.D        |
| Level: (LOW/MED) LOW                      | Extraction: (Type) SEPF       |
| % Moisture: Decanted: (Y/N)               | Date Received: 06/27/2014     |
| Concentrated Extract Volume:1000 (uL)     | Date Extracted: 06/27/2014    |
| Injection Volume:1.0 (uL) GPC Factor:1.00 | Date Analyzed: 07/11/2014     |
| GPC Cleanup:(Y/N) N pH:                   | Dilution Factor: 1.0          |

|           |                              | CONCENTRATION UNITS: |   |
|-----------|------------------------------|----------------------|---|
| CAS NO.   | COMPOUND                     | (ug/L or ug/Kg) UG/L | Q |
| 111-44-4  | Bis(2-chloroethyl)ether      | 10                   | U |
| 541-73-1  |                              | 10                   | U |
| 106-46-7  | 1,4-Dichlorobenzene          | 10                   | U |
| 95-50-1   | 1,2-Dichlorobenzene          | 10                   | U |
| 108-60-1  | 2,2'-oxybis(1-Chloropropane) | 10                   | U |
| 67-72-1   | Hexachloroethane             | 10                   | U |
| 98-95-3   | Nitrobenzene                 | 10                   | U |
| 78-59-1   | Isophorone                   | 10                   | U |
| 120-82-1  | 1,2,4-Trichlorobenzene       | 10                   | U |
| 91-20-3   | Naphthalene                  | 49                   |   |
| 106-47-8  | 4-Chloroaniline              | 10                   | U |
| 111-91-1  | Bis(2-chloroethoxy)methane   | 10                   | U |
| 87-68-3   | Hexachlorobutadiene          | 10                   | U |
| 91-57-6   | 2-Methylnaphthalene          | 9.6                  | J |
| 77-47-4   | Hexachlorocyclopentadiene    | 10                   | U |
| 91-58-7   | 2-Chloronaphthalene          | 10                   | U |
| 88-74-4   | 2-Nitroaniline               | 20                   | U |
| 131-11-3  | Dimethylphthalate            | 10                   | U |
| 208-96-8  | Acenaphthylene               | 7.0                  | J |
| 606-20-2  | 2,6-Dinitrotoluene           | 10                   | U |
| 99-09-2   | 3-Nitroaniline               | 20                   | U |
| 83-32-9   | Acenaphthene                 | 2.7                  | J |
| 132-64-9  | Dibenzofuran                 | 9.2                  | J |
| 121-14-2  | 2,4-Dinitrotoluene           | 10                   | U |
| 84-66-2   | Diethylphthalate             | 10                   | U |
| 7005-72-3 | 4-Chlorophenyl-phenylether   | 10                   | U |
| 86-73-7   | Fluorene                     | 13                   |   |
| 100-01-6  | 4-Nitroaniline               | 20                   | U |
| 101-55-3  | 4-Bromophenyl-phenylether    | 10                   | U |
| 118-74-1  | Hexachlorobenzene            | 10                   | U |
| 85-01-8   | Phenanthrene                 | 20                   |   |
| 120-12-7  | Anthracene                   | 2.8                  | J |
| 86-74-8   | Carbazole                    | 9.3                  | J |
| 206-44-0  | Fluoranthene                 | 3.4                  | J |
| 129-00-0  | Pyrene                       | 2.2                  | J |
| 85-68-7   | Butylbenzylphthalate         | 10                   | U |

EPA SAMPLE NO.

BCP-ORC-2-062614

| Lab Name: SPECTRUM A | ANALYTICAL, INC.          | Contract:         |                 |
|----------------------|---------------------------|-------------------|-----------------|
| Lab Code: MITKEM     | Case No.: N1104           | Mod. Ref No.:     | SDG No.: SN1104 |
| Matrix: (SOIL/SED/WA | TER) WATER                | Lab Sample ID:    | N1104-13E       |
| Sample wt/vol:       | 1000 (g/mL) <u>ML</u>     | Lab File ID:      | S6B8446.D       |
| Level: (LOW/MED) LO  | W                         | Extraction: (Type | e) SEPF         |
| % Moisture:          | Decanted: (Y/N)           | Date Received:    | 06/27/2014      |
| Concentrated Extract | Volume:1000 (uL)          | Date Extracted:   | 06/27/2014      |
| Injection Volume:    | 1.0 (uL) GPC Factor: 1.00 | Date Analyzed:    | 07/11/2014      |
| GPC Cleanup:(Y/N) N  | Hd                        | Dilution Factor:  | 1.0             |
|                      |                           |                   |                 |

| CAS NO.  | COMPOUND                   | CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L | Q |
|----------|----------------------------|-------------------------------------------|---|
| 91-94-1  | 3,3'-Dichlorobenzidine     | 10                                        | U |
| 56-55-3  | Benzo(a)anthracene         | 10                                        | U |
| 218-01-9 | Chrysene                   | 10                                        | U |
| 117-81-7 | Bis(2-ethylhexyl)phthalate | 10                                        | U |
| 205-99-2 | Benzo(b)fluoranthene       | 10                                        | U |
| 207-08-9 | Benzo(k)fluoranthene       | 10                                        | U |
| 50-32-8  | Benzo(a)pyrene             | 10                                        | U |
| 193-39-5 | Indeno(1,2,3-cd)pyrene     | 10                                        | U |
| 53-70-3  | Dibenzo(a,h)anthracene     | 10                                        | U |
| 191-24-2 | Benzo(g,h,i)perylene       | 10                                        | U |

EPA SAMPLE NO.

BCP-ORC-1-062614

| Lab Name: SPECTRUM | M ANALYTICAL, INC.        | Contract:         |                 |
|--------------------|---------------------------|-------------------|-----------------|
| Lab Code: MITKEM   | Case No.: N1104           | Mod. Ref No.:     | SDG No.: SN1104 |
| Matrix: (SOIL/SED/ | WATER) WATER              | Lab Sample ID:    | N1104-14E       |
| Sample wt/vol:     | 1000 (g/mL) ML            | Lab File ID:      | S6B8447.D       |
| Level: (LOW/MED)   | LOW                       | Extraction: (Type | e) SEPF         |
| % Moisture:        | Decanted: (Y/N)           | Date Received:    | 06/27/2014      |
| Concentrated Extra | ct Volume:1000 (uL)       | Date Extracted:   | 06/27/2014      |
| Injection Volume:  | 1.0 (uL) GPC Factor: 1.00 | Date Analyzed:    | 07/11/2014      |
| GPC Cleanup:(Y/N)  | N pH:                     | Dilution Factor:  | 1.0             |

|           |                              | CONCENTRATION UNITS: |   |
|-----------|------------------------------|----------------------|---|
| CAS NO.   | COMPOUND                     | (ug/L or ug/Kg) UG/L | Q |
| 111-44-4  | Bis(2-chloroethyl)ether      | 10                   | U |
| 541-73-1  | 1,3-Dichlorobenzene          | 10                   | U |
| 106-46-7  | 1,4-Dichlorobenzene          | 10                   | U |
| 95-50-1   | 1,2-Dichlorobenzene          | 10                   | U |
| 108-60-1  | 2,2'-oxybis(1-Chloropropane) | 10                   | U |
| 67-72-1   | Hexachloroethane             | 10                   | U |
| 98-95-3   | Nitrobenzene                 | 10                   | U |
| 78-59-1   | Isophorone                   | 10                   | U |
| 120-82-1  | 1,2,4-Trichlorobenzene       | 10                   | U |
| 91-20-3   | Naphthalene                  | 74                   |   |
| 106-47-8  | 4-Chloroaniline              | 10                   | U |
| 111-91-1  | Bis(2-chloroethoxy)methane   | 10                   | U |
| 87-68-3   | Hexachlorobutadiene          | 10                   | U |
| 91-57-6   | 2-Methylnaphthalene          | 5.9                  | J |
| 77-47-4   | Hexachlorocyclopentadiene    | 10                   | U |
| 91-58-7   | 2-Chloronaphthalene          | 10                   | U |
| 88-74-4   | 2-Nitroaniline               | 20                   | U |
| 131-11-3  | Dimethylphthalate            | 10                   | U |
| 208-96-8  | Acenaphthylene               | 4.7                  | J |
| 606-20-2  | 2,6-Dinitrotoluene           | 10                   | U |
| 99-09-2   | 3-Nitroaniline               | 20                   | U |
| 83-32-9   | Acenaphthene                 | 1.4                  | J |
| 132-64-9  | Dibenzofuran                 | 3.0                  | J |
| 121-14-2  | 2,4-Dinitrotoluene           | 10                   | U |
| 84-66-2   | Diethylphthalate             | 10                   | U |
| 7005-72-3 | 4-Chlorophenyl-phenylether   | 10                   | U |
| 86-73-7   | Fluorene                     | 5.0                  | J |
| 100-01-6  | 4-Nitroaniline               | 20                   | U |
| 101-55-3  | 4-Bromophenyl-phenylether    | 10                   | U |
| 118-74-1  | Hexachlorobenzene            | 10                   | U |
| 85-01-8   | Phenanthrene                 | 6.2                  | J |
| 120-12-7  | Anthracene                   | 10                   | U |
| 86-74-8   | Carbazole                    | 8.1                  | J |
| 206-44-0  | Fluoranthene                 | 1.4                  | J |
| 129-00-0  | Pyrene                       | 10                   | U |
| 85-68-7   | Butylbenzylphthalate         | 10                   | U |

EPA SAMPLE NO.

BCP-ORC-1-062614

| Lab Name: SPECTRU  | M ANALYTICAL, INC.        | Contract:         |                 |
|--------------------|---------------------------|-------------------|-----------------|
| Lab Code: MITKEM   | Case No.: N1104           | Mod. Ref No.:     | SDG No.: SN1104 |
| Matrix: (SOIL/SED/ | WATER) WATER              | Lab Sample ID:    | N1104-14E       |
| Sample wt/vol:     | 1000 (g/mL) ML            | Lab File ID:      | S6B8447.D       |
| Level: (LOW/MED)   | LOW                       | Extraction: (Type | e) SEPF         |
| % Moisture:        | Decanted: (Y/N)           | Date Received:    | 06/27/2014      |
| Concentrated Extra | ct Volume:1000 (uL)       | Date Extracted:   | 06/27/2014      |
| Injection Volume:  | 1.0 (uL) GPC Factor: 1.00 | Date Analyzed:    | 07/11/2014      |
| GPC Cleanup:(Y/N)  | N                         | Dilution Factor:  | 1.0             |
|                    |                           |                   |                 |

|          |                            | CONCENTRATION UNITS: |   |
|----------|----------------------------|----------------------|---|
| CAS NO.  | COMPOUND                   | (ug/L or ug/Kg) UG/L | Q |
| 91-94-1  | 3,3´-Dichlorobenzidine     | 10                   | U |
| 56-55-3  | Benzo(a)anthracene         | 10                   | U |
| 218-01-9 | Chrysene                   | 10                   | U |
| 117-81-7 | Bis(2-ethylhexyl)phthalate | 10                   | U |
| 205-99-2 | Benzo(b)fluoranthene       | 10                   | U |
| 207-08-9 | Benzo(k)fluoranthene       | 10                   | U |
| 50-32-8  | Benzo(a)pyrene             | 10                   | U |
| 193-39-5 | Indeno(1,2,3-cd)pyrene     | 10                   | U |
| 53-70-3  | Dibenzo(a,h)anthracene     | 10                   | U |
| 191-24-2 | Benzo(g,h,i)perylene       | 10                   | U |

EPA SAMPLE NO.

MWN-01-062614

| Lab Name: SPECTRUM ANALYTICAL, INC.       | Contract:                     |
|-------------------------------------------|-------------------------------|
| Lab Code: MITKEM Case No.: N1104          | Mod. Ref No.: SDG No.: SN1104 |
| Matrix: (SOIL/SED/WATER) WATER            | Lab Sample ID: N1104-15E      |
| Sample wt/vol:1000 (g/mL) ML              | Lab File ID: S6B8448.D        |
| Level: (LOW/MED) LOW                      | Extraction: (Type) SEPF       |
| % Moisture: Decanted: (Y/N)               | Date Received: 06/27/2014     |
| Concentrated Extract Volume: 1000 (uL)    | Date Extracted: 06/27/2014    |
| Injection Volume:1.0 (uL) GPC Factor:1.00 | Date Analyzed: 07/11/2014     |
| GPC Cleanup:(Y/N) N pH:                   | Dilution Factor: 1.0          |

|           | Τ                            | CONCENTRATION UNITS: |   |
|-----------|------------------------------|----------------------|---|
| CAS NO.   | COMPOUND                     | (ug/L or ug/Kg) UG/L | Q |
| 111-44-4  | Bis(2-chloroethyl)ether      | 10                   | U |
| 541-73-1  |                              | 10                   | U |
| 106-46-7  | 1,4-Dichlorobenzene          | 10                   | Ū |
| 95-50-1   | 1,2-Dichlorobenzene          | 10                   | U |
| 108-60-1  | 2,2'-oxybis(1-Chloropropane) | 10                   | Ū |
| 67-72-1   | Hexachloroethane             | 10                   | U |
| 98-95-3   | Nitrobenzene                 | 10                   | U |
| 78-59-1   | Isophorone                   | 10                   | U |
| 120-82-1  | 1,2,4-Trichlorobenzene       | 10                   | U |
| 91-20-3   | Naphthalene                  | 240                  | E |
| 106-47-8  | 4-Chloroaniline              | 10                   | U |
| 111-91-1  | Bis(2-chloroethoxy)methane   | 10                   | U |
| 87-68-3   | Hexachlorobutadiene          | 10                   | U |
| 91-57-6   | 2-Methylnaphthalene          | 59                   |   |
| 77-47-4   | Hexachlorocyclopentadiene    | 10                   | U |
| 91-58-7   | 2-Chloronaphthalene          | 10                   | U |
| 88-74-4   | 2-Nitroaniline               | 20                   | U |
| 131-11-3  | Dimethylphthalate            | 10                   | U |
| 208-96-8  |                              | 47                   |   |
| 606-20-2  | 2,6-Dinitrotoluene           | 10                   | U |
| 99-09-2   | 3-Nitroaniline               | 20                   | U |
| 83-32-9   | Acenaphthene                 | 17                   |   |
| 132-64-9  | Dibenzofuran                 | 58                   |   |
| 121-14-2  | 2,4-Dinitrotoluene           | 10                   | U |
| 84-66-2   | Diethylphthalate             | 10                   | U |
| 7005-72-3 | 4-Chlorophenyl-phenylether   | 10                   | U |
| 86-73-7   | Fluorene                     | 76                   |   |
| 100-01-6  | 4-Nitroaniline               | 20                   | U |
| 101-55-3  | 4-Bromophenyl-phenylether    | 10                   | U |
| 118-74-1  | Hexachlorobenzene            | 10                   | U |
| 85-01-8   | Phenanthrene                 | 110                  | E |
| 120-12-7  | Anthracene                   | 18                   |   |
| 86-74-8   | Carbazole                    | 37                   |   |
| 206-44-0  | Fluoranthene                 | 16                   |   |
| 129-00-0  | Pyrene                       | 8.3                  | J |
| 85-68-7   | Butylbenzylphthalate         | 10                   | U |

EPA SAMPLE NO.
MWN-01-062614

| Lab Name: SI  | PECTRUM ANALYI | CICAL, INC | Ξ          | Contract:         |                 |
|---------------|----------------|------------|------------|-------------------|-----------------|
| Lab Code: MI  | ITKEM Ca       | ase No.:   | N1104      | Mod. Ref No.:     | SDG No.: SN1104 |
| Matrix: (SOI  | L/SED/WATER)   | WATER      |            | Lab Sample ID:    | N1104-15E       |
| Sample wt/vo  | 1: 1000        | (g/mL)     | ML         | Lab File ID:      | S6B8448.D       |
| Level: (LOW/  | MED) LOW       |            |            | Extraction: (Type | e) SEPF         |
| % Moisture:   | Dec            | canted: (Y | //N)       | Date Received:    | 06/27/2014      |
| Concentrated  | Extract Volum  | me:        | 1000 (uL)  | Date Extracted:   | 06/27/2014      |
| Injection Vol | lume:1.0 (u    | ıL) GPC Fa | ctor: 1.00 | Date Analyzed:    | 07/11/2014      |
| GPC Cleanup:  | (Y/N) N        | pH:        |            | Dilution Factor:  | 1.0             |

| CAS NO.  | COMPOUND                   | CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L | Q |
|----------|----------------------------|-------------------------------------------|---|
| 91-94-1  | 3,3'-Dichlorobenzidine     | 10                                        | U |
| 56-55-3  | Benzo(a)anthracene         | 10                                        | U |
| 218-01-9 | Chrysene                   | 10                                        | U |
| 117-81-7 | Bis(2-ethylhexyl)phthalate | 10                                        | U |
| 205-99-2 | Benzo(b)fluoranthene       | 10                                        | U |
| 207-08-9 | Benzo(k)fluoranthene       | 10                                        | U |
| 50-32-8  | Benzo(a)pyrene             | 10                                        | U |
| 193-39-5 | Indeno(1,2,3-cd)pyrene     | 10                                        | U |
| 53-70-3  | Dibenzo(a,h)anthracene     | 10                                        | U |
| 191-24-2 | Benzo(g,h,i)perylene       | 10                                        | U |

EPA SAMPLE NO.

MWN-01-062614DL

| Lab Name: SPECTRUM  | M ANALYTICAL, INC.        | Contract:         |                 |
|---------------------|---------------------------|-------------------|-----------------|
| Lab Code: MITKEM    | Case No.: N1104           | Mod. Ref No.:     | SDG No.: SN1104 |
| Matrix: (SOIL/SED/W | WATER) WATER              | Lab Sample ID:    | N1104-15EDL     |
| Sample wt/vol:      | 1000 (g/mL) <u>ML</u>     | Lab File ID:      | S6B8467.D       |
| Level: (LOW/MED) I  | LOW                       | Extraction: (Type | e) SEPF         |
| % Moisture:         | Decanted: (Y/N)           | Date Received:    | 06/27/2014      |
| Concentrated Extra  | ct Volume:1000 (uL)       | Date Extracted:   | 06/27/2014      |
| Injection Volume:   | 1.0 (uL) GPC Factor: 1.00 | Date Analyzed:    | 07/13/2014      |
| GPC Cleanup:(Y/N)   | N pH:                     | Dilution Factor:  | 5.0             |

|           |                              | CONCENTRATION UNITS: | Ī  |
|-----------|------------------------------|----------------------|----|
| CAS NO.   | COMPOUND                     | (ug/L or ug/Kg) UG/L | Q  |
| 111-44-4  | Bis(2-chloroethyl)ether      | 50                   | U  |
| 541-73-1  |                              | 50                   | U  |
| 106-46-7  | 1,4-Dichlorobenzene          | 50                   | U  |
| 95-50-1   | 1,2-Dichlorobenzene          | 50                   | U  |
| 108-60-1  | 2,2'-oxybis(1-Chloropropane) | 50                   | U  |
| 67-72-1   | Hexachloroethane             | 50                   | U  |
| 98-95-3   | Nitrobenzene                 | 50                   | U  |
| 78-59-1   | Isophorone                   | 50                   | U  |
| 120-82-1  | 1,2,4-Trichlorobenzene       | 50                   | U  |
| 91-20-3   | Naphthalene                  | 230                  | D  |
| 106-47-8  | 4-Chloroaniline              | 50                   | U  |
| 111-91-1  | Bis(2-chloroethoxy)methane   | 50                   | U  |
| 87-68-3   | Hexachlorobutadiene          | 50                   | U  |
| 91-57-6   | 2-Methylnaphthalene          | 52                   | D  |
| 77-47-4   | Hexachlorocyclopentadiene    | 50                   | U  |
| 91-58-7   | 2-Chloronaphthalene          | 50                   | U  |
| 88-74-4   | 2-Nitroaniline               | 100                  | U  |
| 131-11-3  | Dimethylphthalate            | 50                   | U  |
| 208-96-8  | Acenaphthylene               | 39                   | DJ |
| 606-20-2  | 2,6-Dinitrotoluene           | 50                   | U  |
| 99-09-2   | 3-Nitroaniline               | 100                  | U  |
| 83-32-9   | Acenaphthene                 | 16                   | DJ |
| 132-64-9  | Dibenzofuran                 | 50                   | D  |
| 121-14-2  | 2,4-Dinitrotoluene           | 50                   | U  |
| 84-66-2   | Diethylphthalate             | 50                   | U  |
| 7005-72-3 | 4-Chlorophenyl-phenylether   | 50                   | U  |
| 86-73-7   | Fluorene                     | 65                   | D  |
| 100-01-6  | 4-Nitroaniline               | 100                  | U  |
| 101-55-3  | 4-Bromophenyl-phenylether    | 50                   | U  |
| 118-74-1  | Hexachlorobenzene            | 50                   | U  |
| 85-01-8   | Phenanthrene                 | 99                   | D  |
| 120-12-7  | Anthracene                   | 13                   | DJ |
| 86-74-8   | Carbazole                    | 32                   | DJ |
| 206-44-0  | Fluoranthene                 | 13                   | DJ |
| 129-00-0  | Pyrene                       | 6.7                  | DJ |
| 85-68-7   | Butylbenzylphthalate         | 50                   | U  |

EPA SAMPLE NO.
MWN-01-062614DL

| Lab Name: SPECTRU  | JM ANALYTICAL, INC.   | Contract:         |                 |
|--------------------|-----------------------|-------------------|-----------------|
| Lab Code: MITKEM   | Case No.: N1104       | Mod. Ref No.:     | SDG No.: SN1104 |
| Matrix: (SOIL/SED  | /WATER) WATER         | Lab Sample ID:    | N1104-15EDL     |
| Sample wt/vol:     | 1000 (g/mL) ML        | Lab File ID:      | S6B8467.D       |
| Level: (LOW/MED)   | LOW                   | Extraction: (Type | e) SEPF         |
| % Moisture:        | Decanted: (Y/N)       | Date Received:    | 06/27/2014      |
| Concentrated Extra | act Volume:1000 (uL)  | Date Extracted:   | 06/27/2014      |
| Injection Volume:  | (uL) GPC Factor: 1.00 | Date Analyzed:    | 07/13/2014      |
| GPC Cleanup:(Y/N)  | рН:                   | Dilution Factor:  | 5.0             |
|                    |                       |                   |                 |

| CAC NO   | GOMDOINE                   | CONCENTRATION UNITS: |   |
|----------|----------------------------|----------------------|---|
| CAS NO.  | COMPOUND                   | (ug/L or ug/Kg) UG/L | Q |
| 91-94-1  | 3,3´-Dichlorobenzidine     | 50                   | U |
| 56-55-3  | Benzo(a)anthracene         | 50                   | U |
| 218-01-9 | Chrysene                   | 50                   | U |
| 117-81-7 | Bis(2-ethylhexyl)phthalate | 50                   | U |
| 205-99-2 | Benzo(b)fluoranthene       | 50                   | U |
| 207-08-9 | Benzo(k)fluoranthene       | 50                   | U |
| 50-32-8  | Benzo(a)pyrene             | 50                   | U |
| 193-39-5 | Indeno(1,2,3-cd)pyrene     | 50                   | U |
| 53-70-3  | Dibenzo(a,h)anthracene     | 50                   | U |
| 191-24-2 | Benzo(g,h,i)perylene       | 50                   | U |

EPA SAMPLE NO.

MWN-01B-062614

| Lab Name: SPECTRU  | M ANALYTICAL, INC.        | Contract:         |                 |
|--------------------|---------------------------|-------------------|-----------------|
| Lab Code: MITKEM   | Case No.: <u>N1104</u>    | Mod. Ref No.:     | SDG No.: SN1104 |
| Matrix: (SOIL/SED/ | WATER) WATER              | Lab Sample ID:    | N1104-16E       |
| Sample wt/vol:     | 1000 (g/mL) ML            | Lab File ID:      | S6B8449.D       |
| Level: (LOW/MED)   | LOW                       | Extraction: (Type | e) SEPF         |
| % Moisture:        | Decanted: (Y/N)           | Date Received:    | 06/27/2014      |
| Concentrated Extra | ct Volume:1000 (uL)       | Date Extracted:   | 06/27/2014      |
| Injection Volume:  | 1.0 (uL) GPC Factor: 1.00 | Date Analyzed:    | 07/11/2014      |
| GPC Cleanup:(Y/N)  | N pH:                     | Dilution Factor:  | 1.0             |

|           |                              | CONCENTRATION UNITS: |   |
|-----------|------------------------------|----------------------|---|
| CAS NO.   | COMPOUND                     | (ug/L or ug/Kg) UG/L | Q |
| 111-44-4  | Bis(2-chloroethyl)ether      | 10                   | U |
| 541-73-1  | 1,3-Dichlorobenzene          | 10                   | U |
| 106-46-7  | 1,4-Dichlorobenzene          | 10                   | U |
| 95-50-1   | 1,2-Dichlorobenzene          | 10                   | U |
| 108-60-1  | 2,2'-oxybis(1-Chloropropane) | 10                   | U |
| 67-72-1   | Hexachloroethane             | 10                   | U |
| 98-95-3   | Nitrobenzene                 | 10                   | U |
| 78-59-1   | Isophorone                   | 10                   | U |
| 120-82-1  | 1,2,4-Trichlorobenzene       | 10                   | U |
| 91-20-3   | Naphthalene                  | 700                  | E |
| 106-47-8  | 4-Chloroaniline              | 10                   | U |
| 111-91-1  | Bis(2-chloroethoxy)methane   | 10                   | U |
| 87-68-3   | Hexachlorobutadiene          | 10                   | U |
| 91-57-6   | 2-Methylnaphthalene          | 60                   |   |
| 77-47-4   | Hexachlorocyclopentadiene    | 10                   | U |
| 91-58-7   | 2-Chloronaphthalene          | 10                   | U |
| 88-74-4   | 2-Nitroaniline               | 20                   | U |
| 131-11-3  | Dimethylphthalate            | 10                   | U |
| 208-96-8  | Acenaphthylene               | 62                   |   |
| 606-20-2  | 2,6-Dinitrotoluene           | 10                   | U |
| 99-09-2   | 3-Nitroaniline               | 20                   | U |
| 83-32-9   | Acenaphthene                 | 12                   |   |
| 132-64-9  | Dibenzofuran                 | 32                   |   |
| 121-14-2  | 2,4-Dinitrotoluene           | 10                   | U |
| 84-66-2   | Diethylphthalate             | 10                   | U |
| 7005-72-3 | 4-Chlorophenyl-phenylether   | 10                   | U |
| 86-73-7   | Fluorene                     | 44                   |   |
| 100-01-6  | 4-Nitroaniline               | 20                   | U |
| 101-55-3  | 4-Bromophenyl-phenylether    | 10                   | U |
| 118-74-1  | Hexachlorobenzene            | 10                   | U |
| 85-01-8   | Phenanthrene                 | 67                   |   |
| 120-12-7  | Anthracene                   | 13                   |   |
| 86-74-8   | Carbazole                    | 68                   |   |
| 206-44-0  | Fluoranthene                 | 13                   |   |
| 129-00-0  | Pyrene                       | 6.6                  | J |
| 85-68-7   | Butylbenzylphthalate         | 10                   | U |

EPA SAMPLE NO.
MWN-01B-062614

| Lab Name: SPECTRU  | JM ANALYTICAL, INC.   | Contract:         |                 |
|--------------------|-----------------------|-------------------|-----------------|
| Lab Code: MITKEM   | Case No.: N1104       | Mod. Ref No.:     | SDG No.: SN1104 |
| Matrix: (SOIL/SED  | /WATER) WATER         | Lab Sample ID:    | N1104-16E       |
| Sample wt/vol:     | 1000 (g/mL) ML        | Lab File ID:      | S6B8449.D       |
| Level: (LOW/MED)   | LOW                   | Extraction: (Type | e) <u>SEPF</u>  |
| % Moisture:        | Decanted: (Y/N)       | Date Received:    | 06/27/2014      |
| Concentrated Extra | act Volume:1000 (uL)  | Date Extracted:   | 06/27/2014      |
| Injection Volume:  | (uL) GPC Factor: 1.00 | Date Analyzed:    | 07/11/2014      |
| GPC Cleanup:(Y/N)  | N pH:                 | Dilution Factor:  | 1.0             |
|                    |                       |                   |                 |

| CAS NO.  | COMPOUND                   | CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L | 0 |
|----------|----------------------------|-------------------------------------------|---|
| CAS NO.  | COMPOUND                   | (ug/L 01 ug/kg) 0G/L                      | Q |
| 91-94-1  | 3,3´-Dichlorobenzidine     | 10                                        | U |
| 56-55-3  | Benzo(a)anthracene         | 10                                        | U |
| 218-01-9 | Chrysene                   | 10                                        | U |
| 117-81-7 | Bis(2-ethylhexyl)phthalate | 10                                        | U |
| 205-99-2 | Benzo(b)fluoranthene       | 10                                        | U |
| 207-08-9 | Benzo(k)fluoranthene       | 10                                        | U |
| 50-32-8  | Benzo(a)pyrene             | 10                                        | U |
| 193-39-5 | Indeno(1,2,3-cd)pyrene     | 10                                        | U |
| 53-70-3  | Dibenzo(a,h)anthracene     | 10                                        | U |
| 191-24-2 | Benzo(g,h,i)perylene       | 10                                        | U |

EPA SAMPLE NO.

MWN-01B-062614DL

| Lab Name: SPECTRUM ANALYTICAL, INC.       | Contract:                     |
|-------------------------------------------|-------------------------------|
| Lab Code: MITKEM Case No.: N1104          | Mod. Ref No.: SDG No.: SN1104 |
| Matrix: (SOIL/SED/WATER) WATER            | Lab Sample ID: N1104-16EDL    |
| Sample wt/vol:1000 (g/mL) ML              | Lab File ID: S6B8468.D        |
| Level: (LOW/MED) LOW                      | Extraction: (Type) SEPF       |
| % Moisture: Decanted: (Y/N)               | Date Received: 06/27/2014     |
| Concentrated Extract Volume:1000 (uL)     | Date Extracted: 06/27/2014    |
| Injection Volume:1.0 (uL) GPC Factor:1.00 | Date Analyzed: 07/13/2014     |
| GPC Cleanup:(Y/N) N pH:                   | Dilution Factor: 20.0         |

|           |                              | CONCENTRATION UNITS: |    |
|-----------|------------------------------|----------------------|----|
| CAS NO.   | COMPOUND                     | (ug/L or ug/Kg) UG/L | Q  |
| 111-44-4  | Bis(2-chloroethyl)ether      | 200                  | U  |
| 541-73-1  |                              | 200                  | U  |
| 106-46-7  | 1,4-Dichlorobenzene          | 200                  | U  |
| 95-50-1   | 1,2-Dichlorobenzene          | 200                  | U  |
| 108-60-1  | 2,2'-oxybis(1-Chloropropane) | 200                  | U  |
| 67-72-1   | Hexachloroethane             | 200                  | U  |
| 98-95-3   | Nitrobenzene                 | 200                  | U  |
| 78-59-1   | Isophorone                   | 200                  | U  |
| 120-82-1  | 1,2,4-Trichlorobenzene       | 200                  | U  |
| 91-20-3   | Naphthalene                  | 970                  | D  |
| 106-47-8  | 4-Chloroaniline              | 200                  | U  |
| 111-91-1  | Bis(2-chloroethoxy)methane   | 200                  | U  |
| 87-68-3   | Hexachlorobutadiene          | 200                  | U  |
| 91-57-6   | 2-Methylnaphthalene          | 46                   | DJ |
| 77-47-4   | Hexachlorocyclopentadiene    | 200                  | U  |
| 91-58-7   | 2-Chloronaphthalene          | 200                  | U  |
| 88-74-4   | 2-Nitroaniline               | 400                  | U  |
| 131-11-3  | Dimethylphthalate            | 200                  | U  |
| 208-96-8  | Acenaphthylene               | 48                   | DJ |
| 606-20-2  | 2,6-Dinitrotoluene           | 200                  | U  |
| 99-09-2   | 3-Nitroaniline               | 400                  | U  |
| 83-32-9   | Acenaphthene                 | 200                  | U  |
| 132-64-9  | Dibenzofuran                 | 24                   | DJ |
| 121-14-2  | 2,4-Dinitrotoluene           | 200                  | U  |
| 84-66-2   | Diethylphthalate             | 200                  | U  |
| 7005-72-3 | 4-Chlorophenyl-phenylether   | 200                  | U  |
| 86-73-7   | Fluorene                     | 35                   | DJ |
| 100-01-6  | 4-Nitroaniline               | 400                  | U  |
| 101-55-3  | 4-Bromophenyl-phenylether    | 200                  | U  |
| 118-74-1  | Hexachlorobenzene            | 200                  | U  |
| 85-01-8   | Phenanthrene                 | 55                   | DJ |
| 120-12-7  | Anthracene                   | 200                  | U  |
| 86-74-8   | Carbazole                    | 55                   | DJ |
| 206-44-0  | Fluoranthene                 | 200                  | U  |
| 129-00-0  | Pyrene                       | 200                  | U  |
| 85-68-7   | Butylbenzylphthalate         | 200                  | U  |

EPA SAMPLE NO.

MWN-01B-062614DL

| Lab Name: SPECTRUM | M ANALYTICAL, INC.        | Contract:         |                 |
|--------------------|---------------------------|-------------------|-----------------|
| Lab Code: MITKEM   | Case No.: N1104           | Mod. Ref No.:     | SDG No.: SN1104 |
| Matrix: (SOIL/SED/ | WATER) WATER              | Lab Sample ID:    | N1104-16EDL     |
| Sample wt/vol:     | 1000 (g/mL) ML            | Lab File ID:      | S6B8468.D       |
| Level: (LOW/MED)   | LOW                       | Extraction: (Type | e) SEPF         |
| % Moisture:        | Decanted: (Y/N)           | Date Received:    | 06/27/2014      |
| Concentrated Extra | ct Volume:1000 (uL)       | Date Extracted:   | 06/27/2014      |
| Injection Volume:  | 1.0 (uL) GPC Factor: 1.00 | Date Analyzed:    | 07/13/2014      |
| GPC Cleanup:(Y/N)  | N pH:                     | Dilution Factor:  | 20.0            |

| CAS NO.  | COMPOUND                   | CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L | Q |
|----------|----------------------------|-------------------------------------------|---|
| 91-94-1  | 3,3´-Dichlorobenzidine     | 200                                       | U |
| 56-55-3  | Benzo(a)anthracene         | 200                                       | U |
| 218-01-9 | Chrysene                   | 200                                       | U |
| 117-81-7 | Bis(2-ethylhexyl)phthalate | 200                                       | U |
| 205-99-2 | Benzo(b)fluoranthene       | 200                                       | U |
| 207-08-9 | Benzo(k)fluoranthene       | 200                                       | U |
| 50-32-8  | Benzo(a)pyrene             | 200                                       | U |
| 193-39-5 | Indeno(1,2,3-cd)pyrene     | 200                                       | U |
| 53-70-3  | Dibenzo(a,h)anthracene     | 200                                       | U |
| 191-24-2 | Benzo(g,h,i)perylene       | 200                                       | U |

EPA SAMPLE NO. WT1-04-062614

| Lab Name: SPECTRUM ANALYTICAL, INC.       | Contract:                     |
|-------------------------------------------|-------------------------------|
| Lab Code: MITKEM Case No.: N1104          | Mod. Ref No.: SDG No.: SN1104 |
| Matrix: (SOIL/SED/WATER) WATER            | Lab Sample ID: N1104-17E      |
| Sample wt/vol:1000 (g/mL) ML              | Lab File ID: S6B8450.D        |
| Level: (LOW/MED) LOW                      | Extraction: (Type) SEPF       |
| % Moisture: Decanted: (Y/N)               | Date Received: 06/27/2014     |
| Concentrated Extract Volume:1000 (uL)     | Date Extracted: 06/27/2014    |
| Injection Volume:1.0 (uL) GPC Factor:1.00 | Date Analyzed: 07/11/2014     |
| GPC Cleanup:(Y/N) N pH:                   | Dilution Factor: 1.0          |

|           |                              | CONCENTRATION UNITS: |   |
|-----------|------------------------------|----------------------|---|
| CAS NO.   | COMPOUND                     | (ug/L or ug/Kg) UG/L | Q |
| 111-44-4  | Bis(2-chloroethyl)ether      | 10                   | U |
| 541-73-1  |                              | 10                   | U |
| 106-46-7  | 1,4-Dichlorobenzene          | 10                   | U |
| 95-50-1   | 1,2-Dichlorobenzene          | 10                   | U |
| 108-60-1  | 2,2'-oxybis(1-Chloropropane) | 10                   | U |
| 67-72-1   | Hexachloroethane             | 10                   | U |
| 98-95-3   | Nitrobenzene                 | 10                   | U |
| 78-59-1   | Isophorone                   | 10                   | U |
| 120-82-1  | 1,2,4-Trichlorobenzene       | 10                   | U |
| 91-20-3   | Naphthalene                  | 66                   |   |
| 106-47-8  | 4-Chloroaniline              | 10                   | U |
| 111-91-1  | Bis(2-chloroethoxy)methane   | 10                   | U |
| 87-68-3   | Hexachlorobutadiene          | 10                   | U |
| 91-57-6   | 2-Methylnaphthalene          | 16                   |   |
| 77-47-4   | Hexachlorocyclopentadiene    | 10                   | U |
| 91-58-7   | 2-Chloronaphthalene          | 10                   | U |
| 88-74-4   | 2-Nitroaniline               | 20                   | U |
| 131-11-3  | Dimethylphthalate            | 10                   | U |
| 208-96-8  | Acenaphthylene               | 5.1                  | J |
| 606-20-2  | 2,6-Dinitrotoluene           | 10                   | U |
| 99-09-2   | 3-Nitroaniline               | 20                   | U |
| 83-32-9   | <u> </u>                     | 4.9                  | J |
| 132-64-9  | Dibenzofuran                 | 16                   |   |
| 121-14-2  | 2,4-Dinitrotoluene           | 10                   | U |
| 84-66-2   | Diethylphthalate             | 10                   | U |
| 7005-72-3 | 4-Chlorophenyl-phenylether   | 10                   | U |
| 86-73-7   | Fluorene                     | 23                   |   |
| 100-01-6  | 4-Nitroaniline               | 20                   | U |
| 101-55-3  | 4-Bromophenyl-phenylether    | 10                   | U |
| 118-74-1  | Hexachlorobenzene            | 10                   | U |
| 85-01-8   | Phenanthrene                 | 51                   |   |
| 120-12-7  |                              | 8.3                  | J |
| 86-74-8   | Carbazole                    | 12                   |   |
| 206-44-0  | Fluoranthene                 | 12                   |   |
| 129-00-0  | Pyrene                       | 6.7                  | J |
| 85-68-7   | Butylbenzylphthalate         | 10                   | U |

EPA SAMPLE NO. WT1-04-062614

| Lab Name: SPECTRUM ANALYTICAL, INC.         | Contract:                     |
|---------------------------------------------|-------------------------------|
| Lab Code: MITKEM Case No.: N1104            | Mod. Ref No.: SDG No.: SN1104 |
| Matrix: (SOIL/SED/WATER) WATER              | Lab Sample ID: N1104-17E      |
| Sample wt/vol:1000 (g/mL) ML                | Lab File ID: S6B8450.D        |
| Level: (LOW/MED) LOW                        | Extraction: (Type) SEPF       |
| % Moisture: Decanted: (Y/N)                 | Date Received: 06/27/2014     |
| Concentrated Extract Volume:1000 (uL)       | Date Extracted: 06/27/2014    |
| Injection Volume: 1.0 (uL) GPC Factor: 1.00 | Date Analyzed: 07/11/2014     |
| GPC Cleanup:(Y/N) N pH:                     | Dilution Factor: 1.0          |

| CAS NO.  | COMPOUND                   | CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L | 0 |
|----------|----------------------------|-------------------------------------------|---|
| CAS NO.  | COMPOUND                   | (ug/L 01 ug/kg) 0G/L                      | Q |
| 91-94-1  | 3,3´-Dichlorobenzidine     | 10                                        | U |
| 56-55-3  | Benzo(a)anthracene         | 10                                        | U |
| 218-01-9 | Chrysene                   | 10                                        | U |
| 117-81-7 | Bis(2-ethylhexyl)phthalate | 10                                        | U |
| 205-99-2 | Benzo(b)fluoranthene       | 10                                        | U |
| 207-08-9 | Benzo(k)fluoranthene       | 10                                        | U |
| 50-32-8  | Benzo(a)pyrene             | 10                                        | U |
| 193-39-5 | Indeno(1,2,3-cd)pyrene     | 10                                        | U |
| 53-70-3  | Dibenzo(a,h)anthracene     | 10                                        | U |
| 191-24-2 | Benzo(g,h,i)perylene       | 10                                        | U |

EPA SAMPLE NO.

FIELD DUPLICATE 062614

| Lab Name: SPECTRUM ANALYTICAL, INC.       | Contract:                     |
|-------------------------------------------|-------------------------------|
| Lab Code: MITKEM Case No.: N1104          | Mod. Ref No.: SDG No.: SN1104 |
| Matrix: (SOIL/SED/WATER) WATER            | Lab Sample ID: N1104-18E      |
| Sample wt/vol:1000 (g/mL) ML              | Lab File ID: S6B8451.D        |
| Level: (LOW/MED) LOW                      | Extraction: (Type) SEPF       |
| % Moisture: Decanted: (Y/N)               | Date Received: 06/27/2014     |
| Concentrated Extract Volume:1000 (uL)     | Date Extracted: 06/27/2014    |
| Injection Volume:1.0 (uL) GPC Factor:1.00 | Date Analyzed: 07/11/2014     |
| GPC Cleanup:(Y/N) N pH:                   | Dilution Factor: 1.0          |

|           |                              | CONCENTRATION UNITS: |   |
|-----------|------------------------------|----------------------|---|
| CAS NO.   | COMPOUND                     | (ug/L or ug/Kg) UG/L | Q |
| 111-44-4  | Bis(2-chloroethyl)ether      | 10                   | U |
| 541-73-1  |                              | 10                   | U |
| 106-46-7  | 1,4-Dichlorobenzene          | 10                   | U |
| 95-50-1   | 1,2-Dichlorobenzene          | 10                   | U |
| 108-60-1  | 2,2'-oxybis(1-Chloropropane) | 10                   | U |
| 67-72-1   | Hexachloroethane             | 10                   | U |
| 98-95-3   | Nitrobenzene                 | 10                   | U |
| 78-59-1   | Isophorone                   | 10                   | U |
| 120-82-1  | 1,2,4-Trichlorobenzene       | 10                   | U |
| 91-20-3   | Naphthalene                  | 590                  | E |
| 106-47-8  | 4-Chloroaniline              | 10                   | U |
| 111-91-1  | Bis(2-chloroethoxy)methane   | 10                   | U |
| 87-68-3   | Hexachlorobutadiene          | 10                   | U |
| 91-57-6   | 2-Methylnaphthalene          | 60                   |   |
| 77-47-4   | Hexachlorocyclopentadiene    | 10                   | U |
| 91-58-7   | 2-Chloronaphthalene          | 10                   | U |
| 88-74-4   | 2-Nitroaniline               | 20                   | U |
| 131-11-3  | Dimethylphthalate            | 10                   | U |
| 208-96-8  | Acenaphthylene               | 62                   |   |
| 606-20-2  | 2,6-Dinitrotoluene           | 10                   | U |
| 99-09-2   | 3-Nitroaniline               | 20                   | U |
| 83-32-9   | Acenaphthene                 | 19                   |   |
| 132-64-9  | Dibenzofuran                 | 32                   |   |
| 121-14-2  | 2,4-Dinitrotoluene           | 10                   | U |
| 84-66-2   | Diethylphthalate             | 10                   | U |
| 7005-72-3 | 4-Chlorophenyl-phenylether   | 10                   | U |
| 86-73-7   | Fluorene                     | 44                   |   |
| 100-01-6  | 4-Nitroaniline               | 20                   | U |
| 101-55-3  | 4-Bromophenyl-phenylether    | 10                   | U |
| 118-74-1  | Hexachlorobenzene            | 10                   | U |
| 85-01-8   | Phenanthrene                 | 68                   |   |
| 120-12-7  | Anthracene                   | 13                   |   |
| 86-74-8   | Carbazole                    | 68                   | 1 |
| 206-44-0  | Fluoranthene                 | 13                   |   |
| 129-00-0  | Pyrene                       | 7.1                  | J |
| 85-68-7   | Butylbenzylphthalate         | 10                   | U |

EPA SAMPLE NO.

FIELD DUPLICATE 062614

| Lab Name: SPECTRUM  | M ANALYTICAL, INC.        | Contract:         |                 |
|---------------------|---------------------------|-------------------|-----------------|
| Lab Code: MITKEM    | Case No.: <u>N1104</u>    | Mod. Ref No.:     | SDG No.: SN1104 |
| Matrix: (SOIL/SED/W | WATER) WATER              | Lab Sample ID:    | N1104-18E       |
| Sample wt/vol:      | 1000 (g/mL) ML            | Lab File ID:      | S6B8451.D       |
| Level: (LOW/MED) I  | LOW                       | Extraction: (Type | SEPF            |
| % Moisture:         | Decanted: (Y/N)           | Date Received:    | 06/27/2014      |
| Concentrated Extrac | ct Volume: 1000 (uL)      | Date Extracted:   | 06/27/2014      |
| Injection Volume:   | 1.0 (uL) GPC Factor: 1.00 | Date Analyzed:    | 07/11/2014      |
| GPC Cleanup:(Y/N)   | N pH:                     | Dilution Factor:  | 1.0             |

| CAS NO.  | COMPOUND                   | CONCENTRATION UNITS: |     |
|----------|----------------------------|----------------------|-----|
| CAS NO.  | COMPOUND                   | (ug/L or ug/Kg) UG/L | _ Q |
| 91-94-1  | 3,3´-Dichlorobenzidine     | 10                   | U   |
| 56-55-3  | Benzo(a)anthracene         | 10                   | U   |
| 218-01-9 | Chrysene                   | 10                   | U   |
| 117-81-7 | Bis(2-ethylhexyl)phthalate | 10                   | U   |
| 205-99-2 | Benzo(b)fluoranthene       | 10                   | U   |
| 207-08-9 | Benzo(k)fluoranthene       | 10                   | U   |
| 50-32-8  | Benzo(a)pyrene             | 10                   | U   |
| 193-39-5 | Indeno(1,2,3-cd)pyrene     | 10                   | U   |
| 53-70-3  | Dibenzo(a,h)anthracene     | 10                   | U   |
| 191-24-2 | Benzo(g,h,i)perylene       | 10                   | U   |

EPA SAMPLE NO.

FIELD DUPLICATE 062614DL

| Lab Name: SPECTRUM  | ANALYTICAL, INC.          | Contract:         |                 |
|---------------------|---------------------------|-------------------|-----------------|
| Lab Code: MITKEM    | Case No.: N1104           | Mod. Ref No.:     | SDG No.: SN1104 |
| Matrix: (SOIL/SED/W | MATER) WATER              | Lab Sample ID:    | N1104-18EDL     |
| Sample wt/vol:      | 1000 (g/mL) <u>ML</u>     | Lab File ID:      | S6B8469.D       |
| Level: (LOW/MED) L  | OW                        | Extraction: (Type | e) SEPF         |
| % Moisture:         | Decanted: (Y/N)           | Date Received:    | 06/27/2014      |
| Concentrated Extrac | t Volume:1000 (uL)        | Date Extracted:   | 06/27/2014      |
| Injection Volume:   | 1.0 (uL) GPC Factor: 1.00 | Date Analyzed:    | 07/13/2014      |
| GPC Cleanup:(Y/N)   | и                         | Dilution Factor:  | 20.0            |

| CAS NO.   | COMPOUND                     | CONCENTRATION UNITS: (ug/L or ug/Kg) ug/L | Q      |
|-----------|------------------------------|-------------------------------------------|--------|
| 111-44-4  | Bis(2-chloroethyl)ether      | 200                                       | _<br>U |
| 541-73-1  | 1,3-Dichlorobenzene          | 200                                       | U      |
| 106-46-7  | 1,4-Dichlorobenzene          | 200                                       | U      |
| 95-50-1   | 1,2-Dichlorobenzene          | 200                                       | U      |
| 108-60-1  | 2,2'-oxybis(1-Chloropropane) | 200                                       | U      |
| 67-72-1   | Hexachloroethane             | 200                                       | U      |
| 98-95-3   | Nitrobenzene                 | 200                                       | U      |
| 78-59-1   | Isophorone                   | 200                                       | U      |
| 120-82-1  | 1,2,4-Trichlorobenzene       | 200                                       | U      |
| 91-20-3   | Naphthalene                  | 1200                                      | D      |
| 106-47-8  | 4-Chloroaniline              | 200                                       | U      |
| 111-91-1  | Bis(2-chloroethoxy)methane   | 200                                       | U      |
| 87-68-3   | Hexachlorobutadiene          | 200                                       | U      |
| 91-57-6   | 2-Methylnaphthalene          | 55                                        | DJ     |
| 77-47-4   | Hexachlorocyclopentadiene    | 200                                       | U      |
| 91-58-7   | 2-Chloronaphthalene          | 200                                       | U      |
| 88-74-4   | 2-Nitroaniline               | 400                                       | U      |
| 131-11-3  | Dimethylphthalate            | 200                                       | U      |
| 208-96-8  | Acenaphthylene               | 59                                        | DJ     |
| 606-20-2  | 2,6-Dinitrotoluene           | 200                                       | U      |
| 99-09-2   | 3-Nitroaniline               | 400                                       | U      |
| 83-32-9   | Acenaphthene                 | 200                                       | U      |
| 132-64-9  | Dibenzofuran                 | 31                                        | DJ     |
| 121-14-2  | 2,4-Dinitrotoluene           | 200                                       | U      |
| 84-66-2   | Diethylphthalate             | 200                                       | U      |
| 7005-72-3 | 4-Chlorophenyl-phenylether   | 200                                       | U      |
| 86-73-7   | Fluorene                     | 41                                        | DJ     |
| 100-01-6  | 4-Nitroaniline               | 400                                       | U      |
| 101-55-3  | 4-Bromophenyl-phenylether    | 200                                       | U      |
| 118-74-1  | Hexachlorobenzene            | 200                                       | U      |
| 85-01-8   | Phenanthrene                 | 67                                        | DJ     |
| 120-12-7  | Anthracene                   | 200                                       | U      |
| 86-74-8   | Carbazole                    | 67                                        | DJ     |
| 206-44-0  | Fluoranthene                 | 200                                       | U      |
| 129-00-0  | Pyrene                       | 200                                       | U      |
| 85-68-7   | Butylbenzylphthalate         | 200                                       | U      |

EPA SAMPLE NO.

FIELD DUPLICATE 062614DL

| Lab Name: SPECTRUI | M ANALYTICAL, INC.        | Contract:         |                 |
|--------------------|---------------------------|-------------------|-----------------|
| Lab Code: MITKEM   | Case No.: N1104           | Mod. Ref No.:     | SDG No.: SN1104 |
| Matrix: (SOIL/SED/ | WATER) WATER              | Lab Sample ID:    | N1104-18EDL     |
| Sample wt/vol:     | 1000 (g/mL) ML            | Lab File ID:      | S6B8469.D       |
| Level: (LOW/MED)   | LOW                       | Extraction: (Type | e) SEPF         |
| % Moisture:        | Decanted: (Y/N)           | Date Received:    | 06/27/2014      |
| Concentrated Extra | ct Volume: 1000 (uL)      | Date Extracted:   | 06/27/2014      |
| Injection Volume:  | 1.0 (uL) GPC Factor: 1.00 | Date Analyzed:    | 07/13/2014      |
| GPC Cleanup:(Y/N)  | N pH:                     | Dilution Factor:  | 20.0            |

|          |                            | CONCENTRATION UNITS: |   |
|----------|----------------------------|----------------------|---|
| CAS NO.  | COMPOUND                   | (ug/L or ug/Kg) UG/L | Q |
| 91-94-1  | 3,3´-Dichlorobenzidine     | 200                  | U |
| 56-55-3  | Benzo(a)anthracene         | 200                  | U |
| 218-01-9 | Chrysene                   | 200                  | U |
| 117-81-7 | Bis(2-ethylhexyl)phthalate | 200                  | U |
| 205-99-2 | Benzo(b)fluoranthene       | 200                  | U |
| 207-08-9 | Benzo(k)fluoranthene       | 200                  | U |
| 50-32-8  | Benzo(a)pyrene             | 200                  | U |
| 193-39-5 | Indeno(1,2,3-cd)pyrene     | 200                  | U |
| 53-70-3  | Dibenzo(a,h)anthracene     | 200                  | U |
| 191-24-2 | Benzo(g,h,i)perylene       | 200                  | U |

| EPA | SAMPLE | NO. |  |
|-----|--------|-----|--|
| MB- | 77823  |     |  |
|     |        |     |  |
|     |        |     |  |

| Lab Name: SPECTRUM ANALYTICAL, INC.         | Contract:                     |
|---------------------------------------------|-------------------------------|
| Lab Code: MITKEM Case No.: N1104            | Mod. Ref No.: SDG No.: SN1104 |
| Matrix: (SOIL/SED/WATER) WATER              | Lab Sample ID: MB-77823       |
| Sample wt/vol:1000 (g/mL) ML                | Lab File ID: S6B8421A.D       |
| Level: (LOW/MED) LOW                        | Extraction: (Type) SEPF       |
| % Moisture: Decanted: (Y/N)                 | Date Received:                |
| Concentrated Extract Volume:1000 (uL)       | Date Extracted: 06/27/2014    |
| Injection Volume:1.0 (uL) GPC Factor: _1.00 | Date Analyzed: 07/11/2014     |
| GPC Cleanup:(Y/N) N pH:                     | Dilution Factor: 1.0          |

|           |                              | CONCENTRATION UNITS: |   |
|-----------|------------------------------|----------------------|---|
| CAS NO.   | COMPOUND                     | (ug/L or ug/Kg) UG/L | Q |
| 111-44-4  | Bis(2-chloroethyl)ether      | 10                   | U |
| 541-73-1  |                              | 10                   | U |
| 106-46-7  | 1,4-Dichlorobenzene          | 10                   | U |
| 95-50-1   | 1,2-Dichlorobenzene          | 10                   | U |
| 108-60-1  | 2,2'-oxybis(1-Chloropropane) | 10                   | U |
| 67-72-1   | Hexachloroethane             | 10                   | U |
| 98-95-3   | Nitrobenzene                 | 10                   | U |
| 78-59-1   | Isophorone                   | 10                   | U |
| 120-82-1  | 1,2,4-Trichlorobenzene       | 10                   | U |
| 91-20-3   | Naphthalene                  | 10                   | U |
| 106-47-8  | 4-Chloroaniline              | 10                   | U |
| 111-91-1  | Bis(2-chloroethoxy)methane   | 10                   | U |
| 87-68-3   | Hexachlorobutadiene          | 10                   | U |
| 91-57-6   | 2-Methylnaphthalene          | 10                   | Ū |
| 77-47-4   | Hexachlorocyclopentadiene    | 10                   | Ū |
| 91-58-7   | 2-Chloronaphthalene          | 10                   | U |
| 88-74-4   | 2-Nitroaniline               | 20                   | Ū |
| 131-11-3  | Dimethylphthalate            | 10                   | U |
| 208-96-8  | Acenaphthylene               | 10                   | Ū |
| 606-20-2  | 2,6-Dinitrotoluene           | 10                   | U |
| 99-09-2   | 3-Nitroaniline               | 20                   | U |
| 83-32-9   | Acenaphthene                 | 10                   | U |
| 132-64-9  | Dibenzofuran                 | 10                   | U |
| 121-14-2  | 2,4-Dinitrotoluene           | 10                   | U |
| 84-66-2   | Diethylphthalate             | 10                   | U |
| 7005-72-3 | 4-Chlorophenyl-phenylether   | 10                   | U |
| 86-73-7   | Fluorene                     | 10                   | U |
| 100-01-6  | 4-Nitroaniline               | 20                   | U |
| 101-55-3  | 4-Bromophenyl-phenylether    | 10                   | U |
| 118-74-1  | Hexachlorobenzene            | 10                   | Ū |
| 85-01-8   | Phenanthrene                 | 10                   | U |
| 120-12-7  | Anthracene                   | 10                   | U |
| 86-74-8   | Carbazole                    | 10                   | U |
| 206-44-0  | Fluoranthene                 | 10                   | U |
| 129-00-0  | Pyrene                       | 10                   | U |
| 85-68-7   | Butylbenzylphthalate         | 10                   | Ū |

| EPA | SAMPLE | NO. |
|-----|--------|-----|
| MB- | 77823  |     |
|     |        |     |
|     |        |     |

| Lab Name: SPECTRUM ANALYTICAL, INC.        | Contract:                      |
|--------------------------------------------|--------------------------------|
| Lab Code: MITKEM Case No.: N1104           | Mod. Ref No.: SDG No.: _SN1104 |
| Matrix: (SOIL/SED/WATER) WATER             | Lab Sample ID: MB-77823        |
| Sample wt/vol: 1000 (g/mL) ML              | Lab File ID: S6B8421A.D        |
| Level: (LOW/MED) LOW                       | Extraction: (Type) SEPF        |
| % Moisture: Decanted: (Y/N)                | Date Received:                 |
| Concentrated Extract Volume: 1000 (u       | L) Date Extracted: 06/27/2014  |
| Injection Volume: 1.0 (uL) GPC Factor: 1.0 | 0 Date Analyzed: 07/11/2014    |
| GPC Cleanup:(Y/N) N pH:                    | Dilution Factor: 1.0           |

| CAS NO.  | COMPOUND                   | CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L | 0 |
|----------|----------------------------|-------------------------------------------|---|
|          |                            |                                           |   |
| 91-94-1  | 3,3´-Dichlorobenzidine     | 10                                        | Ū |
| 56-55-3  | Benzo(a)anthracene         | 10                                        | U |
| 218-01-9 | Chrysene                   | 10                                        | U |
| 117-81-7 | Bis(2-ethylhexyl)phthalate | 10                                        | U |
| 205-99-2 | Benzo(b)fluoranthene       | 10                                        | U |
| 207-08-9 | Benzo(k)fluoranthene       | 10                                        | U |
| 50-32-8  | Benzo(a)pyrene             | 10                                        | U |
| 193-39-5 | Indeno(1,2,3-cd)pyrene     | 10                                        | U |
| 53-70-3  | Dibenzo(a,h)anthracene     | 10                                        | U |
| 191-24-2 | Benzo(g,h,i)perylene       | 10                                        | U |

| EPA | SAMPLE | NO. |  |
|-----|--------|-----|--|
| LCS | -77823 |     |  |
|     |        |     |  |

| Lab Name: SPECTRUM ANALYTICAL, INC. | Contract:                       |
|-------------------------------------|---------------------------------|
| Lab Code: MITKEM Case No.: N1104    | Mod. Ref No.: SDG No.: SN1104   |
| Matrix: (SOIL/SED/WATER) WATER      | Lab Sample ID: LCS-77823        |
| Sample wt/vol: (g/mL) ML            | Lab File ID: S6B8419.D          |
| Level: (LOW/MED) LOW                | Extraction: (Type) SEPF         |
| % Moisture: Decanted: (Y/N)         | Date Received:                  |
| Concentrated Extract Volume: 1000   | (uL) Date Extracted: 06/27/2014 |
| Injection Volume: (uL) GPC Factor:  | 1.00 Date Analyzed: 07/11/2014  |
| GPC Cleanup:(Y/N) N pH:             | Dilution Factor: 1.0            |

|           |                              | CONCENTRATION UNITS: |   |
|-----------|------------------------------|----------------------|---|
| CAS NO.   | COMPOUND                     | (ug/L or ug/Kg) UG/L | Q |
| 111-44-4  | Bis(2-chloroethyl)ether      | 35                   |   |
| 541-73-1  | 1,3-Dichlorobenzene          | 33                   |   |
| 106-46-7  | 1,4-Dichlorobenzene          | 33                   |   |
| 95-50-1   | 1,2-Dichlorobenzene          | 34                   |   |
| 108-60-1  | 2,2'-oxybis(1-Chloropropane) | 36                   |   |
| 67-72-1   | Hexachloroethane             | 33                   |   |
| 98-95-3   | Nitrobenzene                 | 37                   |   |
| 78-59-1   | Isophorone                   | 38                   |   |
| 120-82-1  | 1,2,4-Trichlorobenzene       | 36                   |   |
| 91-20-3   | Naphthalene                  | 37                   |   |
| 106-47-8  | 4-Chloroaniline              | 36                   |   |
| 111-91-1  | Bis(2-chloroethoxy)methane   | 37                   |   |
| 87-68-3   | Hexachlorobutadiene          | 36                   |   |
| 91-57-6   | 2-Methylnaphthalene          | 40                   |   |
| 77-47-4   | Hexachlorocyclopentadiene    | 23                   |   |
| 91-58-7   | 2-Chloronaphthalene          | 33                   |   |
| 88-74-4   | 2-Nitroaniline               | 34                   |   |
| 131-11-3  | Dimethylphthalate            | 36                   |   |
| 208-96-8  | Acenaphthylene               | 35                   |   |
| 606-20-2  | 2,6-Dinitrotoluene           | 36                   |   |
| 99-09-2   | 3-Nitroaniline               | 33                   |   |
| 83-32-9   | Acenaphthene                 | 34                   |   |
| 132-64-9  | Dibenzofuran                 | 35                   |   |
| 121-14-2  | 2,4-Dinitrotoluene           | 36                   |   |
| 84-66-2   | Diethylphthalate             | 36                   |   |
| 7005-72-3 | 4-Chlorophenyl-phenylether   | 35                   |   |
| 86-73-7   | Fluorene                     | 35                   |   |
| 100-01-6  | 4-Nitroaniline               | 27                   |   |
| 101-55-3  | 4-Bromophenyl-phenylether    | 35                   |   |
| 118-74-1  | Hexachlorobenzene            | 36                   |   |
| 85-01-8   | Phenanthrene                 | 35                   |   |
| 120-12-7  | Anthracene                   | 34                   |   |
| 86-74-8   | Carbazole                    | 33                   |   |
| 206-44-0  | Fluoranthene                 | 36                   |   |
| 129-00-0  | Pyrene                       | 35                   |   |
| 85-68-7   | Butylbenzylphthalate         | 35                   |   |

| EPA | SAMPLE | NO. |
|-----|--------|-----|
| LCS | -77823 |     |
|     |        |     |

| Lab Name: SPECTRUM ANALYTICAL, INC.       | Contract:                     |
|-------------------------------------------|-------------------------------|
| Lab Code: MITKEM Case No.: N1104          | Mod. Ref No.: SDG No.: SN1104 |
| Matrix: (SOIL/SED/WATER) WATER            | Lab Sample ID: LCS-77823      |
| Sample wt/vol:1000 (g/mL) ML              | Lab File ID: S6B8419.D        |
| Level: (LOW/MED) LOW                      | Extraction: (Type) SEPF       |
| % Moisture: Decanted: (Y/N)               | Date Received:                |
| Concentrated Extract Volume: 1000 (uL)    | Date Extracted: 06/27/2014    |
| Injection Volume:1.0 (uL) GPC Factor:1.00 | Date Analyzed: 07/11/2014     |
| GPC Cleanup:(Y/N) N pH:                   | Dilution Factor: 1.0          |

| CAS NO.  | COMPOUND                   | CONCENTRATION UNITS:<br>(ug/L or ug/Kg) UG/L | Q |
|----------|----------------------------|----------------------------------------------|---|
| 91-94-1  | 3,3´-Dichlorobenzidine     | 27                                           |   |
| 56-55-3  | Benzo(a)anthracene         | 36                                           |   |
| 218-01-9 | Chrysene                   | 36                                           |   |
| 117-81-7 | Bis(2-ethylhexyl)phthalate | 35                                           |   |
| 205-99-2 | Benzo(b)fluoranthene       | 36                                           |   |
| 207-08-9 | Benzo(k)fluoranthene       | 36                                           |   |
| 50-32-8  | Benzo(a)pyrene             | 36                                           |   |
| 193-39-5 | Indeno(1,2,3-cd)pyrene     | 37                                           |   |
| 53-70-3  | Dibenzo(a,h)anthracene     | 37                                           |   |
| 191-24-2 | Benzo(g,h,i)perylene       | 37                                           |   |

## 1D - FORM I SV-1 SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

| EPA | SAMPLE  | NO. |
|-----|---------|-----|
| LCS | D-77823 |     |
|     |         |     |

| Lab Name: SPECTRUM ANALYTICAL, INC.     | Contract:                     |
|-----------------------------------------|-------------------------------|
| Lab Code: MITKEM Case No.: N1104        | Mod. Ref No.: SDG No.: SN1104 |
| Matrix: (SOIL/SED/WATER) WATER          | Lab Sample ID: LCSD-77823     |
| Sample wt/vol: 1000 (g/mL) ML           | Lab File ID: S6B8420.D        |
| Level: (LOW/MED) LOW                    | Extraction: (Type) SEPF       |
| % Moisture: Decanted: (Y/N)             | Date Received:                |
| Concentrated Extract Volume: 1000 (uL)  | Date Extracted: 06/27/2014    |
| Injection Volume: (uL) GPC Factor: 1.00 | Date Analyzed: 07/11/2014     |
| GPC Cleanup:(Y/N) N pH:                 | Dilution Factor: 1.0          |

|           |                              | CONCENTRATION UNITS: |   |
|-----------|------------------------------|----------------------|---|
| CAS NO.   | COMPOUND                     | (ug/L or ug/Kg) UG/L | Q |
| 111-44-4  | Bis(2-chloroethyl)ether      | 36                   |   |
| 541-73-1  | 1,3-Dichlorobenzene          | 34                   |   |
| 106-46-7  | 1,4-Dichlorobenzene          | 33                   |   |
| 95-50-1   | 1,2-Dichlorobenzene          | 34                   |   |
| 108-60-1  | 2,2'-oxybis(1-Chloropropane) | 36                   |   |
| 67-72-1   | Hexachloroethane             | 33                   |   |
| 98-95-3   | Nitrobenzene                 | 38                   |   |
| 78-59-1   | Isophorone                   | 39                   |   |
| 120-82-1  | 1,2,4-Trichlorobenzene       | 38                   |   |
| 91-20-3   | Naphthalene                  | 38                   |   |
| 106-47-8  | 4-Chloroaniline              | 37                   |   |
| 111-91-1  | Bis(2-chloroethoxy)methane   | 38                   |   |
| 87-68-3   | Hexachlorobutadiene          | 37                   |   |
| 91-57-6   | 2-Methylnaphthalene          | 42                   |   |
| 77-47-4   | Hexachlorocyclopentadiene    | 31                   |   |
| 91-58-7   | 2-Chloronaphthalene          | 34                   |   |
| 88-74-4   | 2-Nitroaniline               | 36                   |   |
| 131-11-3  | Dimethylphthalate            | 38                   |   |
| 208-96-8  | Acenaphthylene               | 36                   |   |
| 606-20-2  | 2,6-Dinitrotoluene           | 37                   |   |
| 99-09-2   | 3-Nitroaniline               | 34                   |   |
| 83-32-9   | Acenaphthene                 | 36                   |   |
| 132-64-9  | Dibenzofuran                 | 36                   |   |
| 121-14-2  | 2,4-Dinitrotoluene           | 38                   |   |
| 84-66-2   | Diethylphthalate             | 38                   |   |
| 7005-72-3 | 4-Chlorophenyl-phenylether   | 37                   |   |
| 86-73-7   | Fluorene                     | 36                   |   |
| 100-01-6  | 4-Nitroaniline               | 29                   |   |
| 101-55-3  | 4-Bromophenyl-phenylether    | 36                   |   |
| 118-74-1  | Hexachlorobenzene            | 38                   |   |
| 85-01-8   | Phenanthrene                 | 36                   |   |
| 120-12-7  | Anthracene                   | 35                   |   |
| 86-74-8   | Carbazole                    | 34                   |   |
| 206-44-0  | Fluoranthene                 | 37                   |   |
| 129-00-0  | Pyrene                       | 36                   |   |
| 85-68-7   | Butylbenzylphthalate         | 36                   |   |

## 1E - FORM I SV-2 SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

| EPA | SAMPLE  | NO. |
|-----|---------|-----|
| LCS | D-77823 |     |
|     |         |     |

| Lab Name: SPECTRUM ANALYTICAL, INC.       | Contract:                     |
|-------------------------------------------|-------------------------------|
| Lab Code: MITKEM Case No.: N1104          | Mod. Ref No.: SDG No.: SN1104 |
| Matrix: (SOIL/SED/WATER) WATER            | Lab Sample ID: LCSD-77823     |
| Sample wt/vol: (g/mL) ML                  | Lab File ID: S6B8420.D        |
| Level: (LOW/MED) LOW                      | Extraction: (Type) SEPF       |
| % Moisture: Decanted: (Y/N)               | Date Received:                |
| Concentrated Extract Volume: 1000 (uL)    | Date Extracted: 06/27/2014    |
| Injection Volume:1.0 (uL) GPC Factor:1.00 | Date Analyzed: 07/11/2014     |
| GPC Cleanup:(Y/N) N pH:                   | Dilution Factor: 1.0          |

| CAS NO.  | COMPOUND                   | CONCENTRATION UNITS:<br>(ug/L or ug/Kg) UG/L | Q |
|----------|----------------------------|----------------------------------------------|---|
| 91-94-1  | 3,3´-Dichlorobenzidine     | 31                                           |   |
| 56-55-3  | Benzo(a)anthracene         | 38                                           |   |
| 218-01-9 | Chrysene                   | 38                                           |   |
| 117-81-7 | Bis(2-ethylhexyl)phthalate | 36                                           |   |
| 205-99-2 | Benzo(b)fluoranthene       | 38                                           |   |
| 207-08-9 | Benzo(k)fluoranthene       | 38                                           |   |
| 50-32-8  | Benzo(a)pyrene             | 38                                           |   |
| 193-39-5 | Indeno(1,2,3-cd)pyrene     | 39                                           |   |
| 53-70-3  | Dibenzo(a,h)anthracene     | 40                                           |   |
| 191-24-2 | Benzo(g,h,i)perylene       | 38                                           |   |

## 2H - FORM II SV-2

#### WATER SEMIVOLATILE DEUTERATED MONITORING COMPOUND RECOVERY

Lab Name: SPECTRUM ANALYTICAL, INC. Contract:

Lab Code: MITKEM Case No.: N1104 Mod. Ref No.: SDG No.: SN1104

| EPA                     | SDMC1   | SDMC2   | SDMC3   | SDMC4   | SDMC5   | SDMC6   | TOT |
|-------------------------|---------|---------|---------|---------|---------|---------|-----|
| SAMPLE NO.              | (NBZ) # | (FBP) # | (TPH) # | (PHL) # | (2FP) # | (TBP) # | OUT |
| 01 LCS-77823            | 76      | 68      | 70      | 68      | 62      | 70      | 0   |
| 02 LCSD-77823           | 77      | 71      | 75      | 70      | 62      | 72      | 0   |
| 03 MB-77823             | 74      | 69      | 73      | 67      | 62      | 72      | 0   |
| 04 MWN-04-06241<br>4    | 100     | 94      | 80      |         |         |         | 0   |
| 05 MWN-03D-0624<br>14   | 78      | 57      | 21 *    |         |         |         | 1   |
| 06 MWN-03-06241<br>4    | 92      | 84      | 79      |         |         |         | 0   |
| 07 MWM-02-06251<br>4    | 108     | 97      | 87      |         |         |         | 0   |
| 08 MWN-02B-0625<br>14   | 101     | 95      | 89      |         |         |         | 0   |
| 09 WT1-02-06251<br>4    | 96      | 87      | 80      |         |         |         | 0   |
| 10 WT1-05-06251<br>4    | 98      | 89      | 84      |         |         |         | 0   |
| 11 WT1-06-06261<br>4    | 91      | 83      | 77      |         |         |         | 0   |
| 12 BCP-ORC-2-06<br>2614 | 99      | 90      | 80      |         |         |         | 0   |
| 13 BCP-ORC-1-06<br>2614 | 90      | 82      | 73      |         |         |         | 0   |
| 14 MWN-01-06261<br>4    | 104     | 95      | 90      |         |         |         | 0   |
| 15 MWN-01B-0626<br>14   | 98      | 89      | 79      |         |         |         | 0   |
| 16 WT1-04-06261         | 101     | 92      | 94      |         |         |         | 0   |

|       |       |                        | QC LIMITS |
|-------|-------|------------------------|-----------|
| SDMC1 | (NBZ) | = Nitrobenzene-d5      | (40-110)  |
| SDMC2 | (FBP) | = 2-Fluorobiphenyl     | (50-110)  |
| SDMC3 | (TPH) | = Terphenyl-d14        | (50-135)  |
| SDMC4 | (PHL) | = Phenol-d5            | (10-115)  |
| SDMC5 | (2FP) | = 2-Fluorophenol       | (20-110)  |
| SDMC6 | (TBP) | = 2,4,6-Tribromophenol | (40-125)  |

#### som14.07.15.0901

 $<sup>\</sup>mbox{\tt\#}$  Column to be used to flag recovery values

<sup>\*</sup> Values outside of contract required QC limits

D DMC diluted out

## 2H - FORM II SV-2

#### WATER SEMIVOLATILE DEUTERATED MONITORING COMPOUND RECOVERY

Lab Name: SPECTRUM ANALYTICAL, INC. Contract:

Lab Code: MITKEM Case No.: N1104 Mod. Ref No.: SDG No.: SN1104

|    | EPA                            | SDMC1 |   | SDMC2 |   | SDMC3 |   | SDMC4 |   | SDMC5 |   | SDMC6 |   |  | TOT |
|----|--------------------------------|-------|---|-------|---|-------|---|-------|---|-------|---|-------|---|--|-----|
|    | SAMPLE NO.                     | (NBZ) | # | (FBP) | # | (TPH) | # | (PHL) | # | (2FP) | # | (TBP) | # |  | OUT |
|    | FIELD<br>DUPLICATE<br>062614   | 101   |   | 88    |   | 76    |   |       |   |       |   |       |   |  | 0   |
| 18 | MWN-02B-0625<br>14DL           | 87    |   | 85    |   | 78    |   |       |   |       |   |       |   |  | 0   |
| 19 | WT1-06-06261<br>4DL            | 76    |   | 73    |   | 67    |   |       |   |       |   |       |   |  | 0   |
| 20 | MWN-01-06261<br>4DL            | 82    |   | 79    |   | 73    |   |       |   |       |   |       |   |  | 0   |
| 21 | MWN-01B-0626<br>14DL           | 72    |   | 67    |   | 63    |   |       |   |       |   |       |   |  | 0   |
|    | FIELD<br>DUPLICATE<br>062614DL | 86    |   | 83    |   | 70    |   |       |   |       |   |       |   |  | 0   |

|       |                              | OC LIMITS |
|-------|------------------------------|-----------|
|       |                              | QC HIMITD |
| SDMC1 | (NBZ) = Nitrobenzene-d5      | (40-110)  |
| SDMC2 | (FBP) = 2-Fluorobiphenyl     | (50-110)  |
| SDMC3 | (TPH) = Terphenyl-d14        | (50-135)  |
| SDMC4 | (PHL) = Phenol-d5            | (10-115)  |
| SDMC5 | (2FP) = 2-Fluorophenol       | (20-110)  |
| SDMC6 | (TBP) = 2,4,6-Tribromophenol | (40-125)  |

#### som14.07.15.0901

 $<sup>\</sup>mbox{\tt\#}$  Column to be used to flag recovery values

<sup>\*</sup> Values outside of contract required QC limits

D DMC diluted out

# 3 - FORM III WATER LABORATORY CONTROL SAMPLE RECOVERY

EPA SAMPLE NO.

LCS-77823

| Lab | Name:   | SPECTRUM | ANALYTICAL,             | TNC.  | Contract: |
|-----|---------|----------|-------------------------|-------|-----------|
| цар | manic • | DIECTION | $A_{11}A_{11} + A_{11}$ | T11C. | concract. |

Lab Code: MITKEM Case No.: N1104 Mod. Ref No.: SDG No.: SN1104

Lab Sample ID: LCS-77823 LCS Lot No.: A0101343

Date Extracted: 06/27/2014 Date Analyzed (1): 07/11/2014

|                                     | SPIKE   | SAMPLE        | LCS           |          |   | QC.                  |
|-------------------------------------|---------|---------------|---------------|----------|---|----------------------|
| COMPOUND                            | ADDED   | CONCENTRATION | CONCENTRATION | LCS %REC | # | LIMITS               |
|                                     |         |               |               |          |   | REC.                 |
| Bis(2-chloroethyl)ether             | 50.0000 | 0.0000        | 35.4379       | 71       |   | 35 - 110             |
| 1,3-Dichlorobenzene                 | 50.0000 | 0.0000        | 32.6253       | 65       |   | 30 - 100             |
| 1,4-Dichlorobenzene                 | 50.0000 | 0.0000        | 32.8434       | 66       |   | 30 - 100             |
| 1,2-Dichlorobenzene                 | 50.0000 | 0.0000        | 33.7056       | 67       |   | 35 - 100             |
| 2,2'-oxybis(1-Chloropropan          | 50.0000 | 0.0000        | 35.7866       | 72       |   | 30 - 123             |
| Hexachloroethane                    | 50.0000 | 0.0000        | 32.5833       | 65       |   | 30 - 95              |
| Nitrobenzene                        | 50.0000 | 0.0000        | 37.3178       | 75       |   | 45 - 110             |
| Isophorone                          | 50.0000 | 0.0000        | 38.1445       | 76       |   | 50 - 110             |
| 1,2,4-Trichlorobenzene              | 50.0000 | 0.0000        | 36.3950       |          |   | 35 - 105             |
| Naphthalene                         | 50.0000 | 0.0000        |               |          |   | 40 - 100             |
| 4-Chloroaniline                     | 50.0000 | 0.0000        |               |          |   | 15 - 110             |
| Bis(2-chloroethoxy)methane          | 50.0000 | 0.0000        |               |          |   | 45 - 105             |
| Hexachlorobutadiene                 | 50.0000 | 0.0000        |               |          |   | 25 - 105             |
| 2-Methylnaphthalene                 | 50.0000 | 0.0000        |               |          |   | 45 - 105             |
| Hexachlorocyclopentadiene           | 50.0000 | 0.0000        |               |          |   | 27 - 147             |
| 2-Chloronaphthalene                 | 50.0000 | 0.0000        |               |          |   | 50 - 105             |
| 2-Nitroaniline                      | 50.0000 | 0.0000        |               |          |   | 50 - 115             |
| Dimethylphthalate                   | 50.0000 | 0.0000        |               |          |   | 25 - 125             |
| Acenaphthylene                      | 50.0000 | 0.0000        |               |          |   | 50 - 105             |
| 2,6-Dinitrotoluene                  | 50.0000 | 0.0000        |               |          |   | 50 - 115             |
| 3-Nitroaniline                      | 50.0000 | 0.0000        |               |          |   | 20 - 125             |
| Acenaphthene                        | 50.0000 | 0.0000        |               |          |   | 45 - 110             |
| Dibenzofuran                        | 50.0000 | 0.0000        |               |          |   | 55 - 105             |
| 2,4-Dinitrotoluene                  | 50.0000 | 0.0000        |               |          |   | 50 - 120             |
| Diethylphthalate                    | 50.0000 | 0.0000        |               |          |   | 40 - 120<br>50 - 110 |
| 4-Chlorophenyl-phenylether Fluorene | 50.0000 | 0.0000        |               |          |   | 50 - 110             |
| 4-Nitroaniline                      | 50.0000 | 0.0000        |               |          |   | 35 - 120             |
| 4-Bromophenyl-phenylether           | 50.0000 | 0.0000        |               |          |   | 50 - 115             |
| Hexachlorobenzene                   | 50.0000 | 0.0000        |               |          |   | 50 - 110             |
| Phenanthrene                        | 50.0000 |               |               |          |   | 50 - 115             |
| Anthracene                          | 50.0000 | 0.0000        |               |          |   | 55 - 110             |
| Carbazole                           | 50.0000 | 0.0000        |               |          |   | 50 - 115             |
| Fluoranthene                        | 50.0000 |               |               |          |   | 55 - 115             |
| Pyrene                              | 50.0000 |               |               |          |   | 50 - 130             |
| Butylbenzylphthalate                | 50.0000 |               |               |          |   | 45 - 115             |
| 3,3'-Dichlorobenzidine              | 50.0000 |               |               |          |   | 20 - 110             |
| Benzo(a)anthracene                  | 50.0000 |               |               |          |   | 55 - 110             |
| Chrysene                            | 50.0000 |               |               |          |   | 55 - 110             |
| Bis(2-ethylhexyl)phthalate          | 50.0000 |               |               |          |   | 40 - 125             |
| Benzo(b)fluoranthene                | 50.0000 | 0.0000        | 35.7716       | 72       |   | 45 - 120             |
| Benzo(k)fluoranthene                | 50.0000 | 0.0000        |               |          |   | 45 - 125             |
| Benzo(a)pyrene                      | 50.0000 | 0.0000        | 35.5073       | 71       |   | 55 - 110             |
| Indeno(1,2,3-cd)pyrene              | 50.0000 | 0.0000        | 36.8723       | 74       |   | 45 - 125             |

## 3 - FORM III WATER LABORATORY CONTROL SAMPLE RECOVERY

EPA SAMPLE NO.

| Lab 1 | Name:    | SPECT                  | RUM ANA  | LYTICAL                | , INC.     |        | Contract      | :         |          |       |       |            |       |       |
|-------|----------|------------------------|----------|------------------------|------------|--------|---------------|-----------|----------|-------|-------|------------|-------|-------|
| Lab ( | Code:    | Code: MITKEM Case I    |          | MITKEM Case No.: N1104 |            |        | Mod. Ref No.: |           |          | SDG I | No.   | : <u>s</u> | N1104 |       |
| Lab S | Sample   | ID:                    | LCS-77   | 823                    |            |        | LCS Lot I     | No.:      | A0101    | L343  |       |            |       |       |
| Date  | Extra    | cted:                  | 06/27/   | 2014                   |            |        | Date Ana      | lyzed (1) | ): 0     | 7/11  | /2014 |            |       |       |
|       |          |                        |          |                        | SPIKE      |        | SAMPLE        | LCS       |          |       |       |            | (     | QC.   |
|       | COMPOUND |                        |          | MPOUND ADDED CO        |            |        | ENTRATION     | CONCENTR  | LCS %REC | %REC  | #     | LI         | MITS  |       |
|       |          | Dibenzo(a,h)anthracene |          |                        |            |        |               |           |          |       |       | R          | EC.   |       |
|       | Diben    |                        |          | 50.0000                |            | 0.0000 | 37            | 7.1464    |          | 74    |       | 40         | - 125 |       |
|       | Benzo    | Benzo(g,h,i)perylene   |          |                        | 50.0000    |        | 0.0000        | 36        | .9897    |       | 74    |            | 40    | - 125 |
|       | Benzo    | be use                 | peryler  | ne<br>.ag recov        |            |        | 0.0000        | 36        |          |       |       |            |       |       |
| * Val | ues ou   | tside (                | of QC li | mits.                  |            |        |               |           |          |       |       |            |       |       |
| Spike | e Recov  | ery:                   | 0 0      | ut of _                | 46 outside | limi   | ts            |           |          |       |       |            |       |       |
| COMME | ENTS:    |                        |          |                        |            |        |               |           |          |       |       |            |       |       |

## 3 - FORM III

## WATER LABORATORY CONTROL SAMPLE DUPLICATE RECOVERY

EPA SAMPLE NO.

LCSD-77823

Lab Name: SPECTRUM ANALYTICAL, INC. Contract:

Lab Code: MITKEM Case No.: N1104 Mod. Ref No.: SDG No.: SN1104

Lab Sample ID: LCSD-77823 LCS Lot No.: A0101343

|                            | SPIKE<br>ADDED | LCSD<br>CONCENTRATION | I.CSD %REC | # | %RPD : | _   | LIMITS   |
|----------------------------|----------------|-----------------------|------------|---|--------|-----|----------|
| COMPOUND                   | 110000         | CONCENTION            | LCSD VILLE | " | 0101 1 | RPD | REC.     |
| Bis(2-chloroethyl)ether    | 50.0000        | 36.2091               | 72         |   | 1      | 40  | 35 - 110 |
| 1,3-Dichlorobenzene        | 50.0000        |                       | 67         |   | 3      | 40  | 30 - 100 |
| 1,4-Dichlorobenzene        | 50.0000        | 32.6751               | 65         |   | 2      | 40  | 30 - 100 |
| 1,2-Dichlorobenzene        | 50.0000        |                       | 68         |   | 1      | 40  | 35 - 100 |
| 2,2'-oxybis(1-Chloropropan | 50.0000        |                       | 72         |   | 0      | 40  | 30 - 123 |
| Hexachloroethane           | 50.0000        |                       | 66         |   | 2      | 40  | 30 - 95  |
| Nitrobenzene               | 50.0000        |                       | 76         |   | 1      | 40  | 45 - 110 |
| Isophorone                 | 50.0000        |                       | 78         |   | 3      | 40  | 50 - 110 |
| 1,2,4-Trichlorobenzene     | 50.0000        |                       | 75         |   | 3      | 40  | 35 - 105 |
| Naphthalene                | 50.0000        |                       |            |   | 3      | 40  | 40 - 100 |
| 4-Chloroaniline            | 50.0000        |                       |            |   | 4      | 40  | 15 - 110 |
| Bis(2-chloroethoxy)methane | 50.0000        | 37.8705               | 76         |   | 1      | 40  | 45 - 105 |
| Hexachlorobutadiene        | 50.0000        | 37.2545               | 75         |   | 4      | 40  | 25 - 105 |
| 2-Methylnaphthalene        | 50.0000        | 41.7121               | 83         |   | 2      | 40  | 45 - 105 |
| Hexachlorocyclopentadiene  | 50.0000        | 31.2860               | 63         |   | 31     | 40  | 27 - 147 |
| 2-Chloronaphthalene        | 50.0000        | 34.2147               | 68         |   | 1      | 40  | 50 - 105 |
| 2-Nitroaniline             | 50.0000        |                       | 73         |   | 6      | 40  | 50 - 115 |
| Dimethylphthalate          | 50.0000        | 37.7885               | 76         |   | 5      | 40  | 25 - 125 |
| Acenaphthylene             | 50.0000        |                       |            |   | 4      | 40  | 50 - 105 |
| 2,6-Dinitrotoluene         | 50.0000        |                       |            |   | 3      | 40  | 50 - 115 |
| 3-Nitroaniline             | 50.0000        |                       |            |   | 2      | 40  | 20 - 125 |
| Acenaphthene               | 50.0000        |                       |            |   | 4      | 40  | 45 - 110 |
| Dibenzofuran               | 50.0000        | 35.9196               | 72         |   | 3      | 40  | 55 - 105 |
| 2,4-Dinitrotoluene         | 50.0000        |                       |            |   | 4      | 40  | 50 - 120 |
| Diethylphthalate           | 50.0000        |                       |            |   | 5      | 40  | 40 - 120 |
| 4-Chlorophenyl-phenylether | 50.0000        |                       |            |   | 4      | 40  | 50 - 110 |
| Fluorene                   | 50.0000        | 36.4374               | 73         |   | 4      | 40  | 50 - 110 |
| 4-Nitroaniline             | 50.0000        | 29.1849               | 58         |   | 7      | 40  | 35 - 120 |
| 4-Bromophenyl-phenylether  | 50.0000        | 35.8443               | 72         |   | 3      | 40  | 50 - 115 |
| Hexachlorobenzene          | 50.0000        | 37.7075               | 75         |   | 4      | 40  | 50 - 110 |
| Phenanthrene               | 50.0000        | 36.0466               | 72         |   | 3      | 40  | 50 - 115 |
| Anthracene                 | 50.0000        | 35.3349               | 71         |   | 6      | 40  | 55 - 110 |
| Carbazole                  | 50.0000        | 34.1094               | 68         |   | 3      | 40  | 50 - 115 |
| Fluoranthene               | 50.0000        | 37.3611               | 75         |   | 4      | 40  | 55 - 115 |
| Pyrene                     | 50.0000        |                       |            |   | 3      | 40  | 50 - 130 |
| Butylbenzylphthalate       | 50.0000        |                       | 73         |   | 4      | 40  | 45 - 115 |
| 3,3'-Dichlorobenzidine     | 50.0000        | 31.2711               | 63         |   | 15     | 40  | 20 - 110 |
| Benzo(a)anthracene         | 50.0000        |                       |            |   | 4      | 40  | 55 - 110 |
| Chrysene                   | 50.0000        |                       |            |   | 3      | 40  | 55 - 110 |
| Bis(2-ethylhexyl)phthalate | 50.0000        |                       | 73         |   | 6      | 40  | 40 - 125 |
| Benzo(b)fluoranthene       | 50.0000        |                       |            |   | 5      | 40  | 45 - 120 |
| Benzo(k)fluoranthene       | 50.0000        |                       |            |   | 5      | 40  | 45 - 125 |
| Benzo(a)pyrene             | 50.0000        |                       |            |   | 7      | 40  | 55 - 110 |
| Indeno(1,2,3-cd)pyrene     | 50.0000        |                       |            |   | 5      | 40  | 45 - 125 |
| Dibenzo(a,h)anthracene     | 50.0000        |                       |            |   | 7      | 40  | 40 - 125 |
| Benzo(g,h,i)perylene       | 50.0000        |                       |            |   | 4      | 40  | 40 - 125 |

## 3 - FORM III WATER LABORATORY CONTROL SAMPLE DUPLICATE RECOVERY

EPA SAMPLE NO.
LCSD-77823

COMMENTS:

## 4C - FORM IV SV SEMIVOLATILE METHOD BLANK SUMMARY

EPA SAMPLE NO.

MB-77823

| Lab Name: SP  | ECTRUM ANA    | LYTICAL, INC.          | Contract:        |           |          |        |
|---------------|---------------|------------------------|------------------|-----------|----------|--------|
| Lab Code: MI  | TKEM          | Case No.: <u>N1104</u> | Mod. Ref No.:    |           | SDG No.: | SN1104 |
| Lab File ID:  | S6B842        | lA.D                   | Lab Sample ID:   | MB-77823  |          |        |
| Instrument II | o: <u>s</u> 6 |                        | Date Extracted:  | 06/27/201 | .4       |        |
| Matrix: (SOII | L/SED/WATER   | ) WATER                | Date Analyzed:   | 07/11/201 | .4       |        |
| Level: (LOW/N | MED) LOW      |                        | Time Analyzed:   | 12:04     |          |        |
| Extraction: ( | (Type) SE     | ΣF                     | GPC Cleanup: (Y/ | N) N      |          |        |

|    | EPA                          | LAB        | LAB       | DATE       |
|----|------------------------------|------------|-----------|------------|
|    | SAMPLE NO.                   | SAMPLE ID  | FILE ID   | ANALYZED   |
| 01 | LCS-77823                    | LCS-77823  | S6B8419.D | 07/11/2014 |
| 02 | LCSD-77823                   | LCSD-77823 | S6B8420.D | 07/11/2014 |
| 03 | MWN-04-<br>062414            | N1104-01B  | S6B8438.D | 07/11/2014 |
| 04 | MWN-03D-<br>062414           | N1104-03B  | S6B8439.D | 07/11/2014 |
| 05 | MWN-03-<br>062414            | N1104-04B  | S6B8440.D | 07/11/2014 |
| 06 | MWM-02-<br>062514            | N1104-06B  | S6B8441.D | 07/11/2014 |
| 07 | MWN-02B-<br>062514           | N1104-07B  | S6B8442.D | 07/11/2014 |
| 08 | WT1-02-<br>062514            | N1104-09F  | S6B8443.D | 07/11/2014 |
| 09 | WT1-05-<br>062514            | N1104-10F  | S6B8444.D | 07/11/2014 |
| 10 | WT1-06-<br>062614            | N1104-12E  | S6B8445.D | 07/11/2014 |
| 11 | BCP-ORC-2-<br>062614         | N1104-13E  | S6B8446.D | 07/11/2014 |
| 12 | BCP-ORC-1-<br>062614         | N1104-14E  | S6B8447.D | 07/11/2014 |
| 13 | MWN-01-<br>062614            | N1104-15E  | S6B8448.D | 07/11/2014 |
| 14 | MWN-01B-<br>062614           | N1104-16E  | S6B8449.D | 07/11/2014 |
| 15 | WT1-04-<br>062614            | N1104-17E  | S6B8450.D | 07/11/2014 |
| 16 | FIELD<br>DUPLICATE<br>062614 | N1104-18E  | S6B8451.D | 07/11/2014 |

| COMMENTS: |  |  |  |
|-----------|--|--|--|
|           |  |  |  |

som14.07.15.0901 Page 1 of 2 SW846

## 4C - FORM IV SV SEMIVOLATILE METHOD BLANK SUMMARY

EPA SAMPLE NO.

MB-77823

| Lab Name: SPE  | CTRUM AN | ALYTICAL, IN                    | rc.        | Contract:        |                 |
|----------------|----------|---------------------------------|------------|------------------|-----------------|
| Lab Code: MITI | KEM      | Case No.:                       | N1104      | Mod. Ref No.:    | SDG No.: SN1104 |
| Lab File ID:   | S6B84    | 21A.D                           |            | Lab Sample ID:   | MB-77823        |
| Instrument ID: | S6       |                                 |            | Date Extracted:  | 06/27/2014      |
| Matrix: (SOIL/ | SED/WATE | R) WATER                        |            | Date Analyzed:   | 07/11/2014      |
| Level: (LOW/ME | D) LOW   |                                 |            | Time Analyzed:   | 12:04           |
| Extraction: (T | ype) SI  | PF                              |            | GPC Cleanup: (Y/ | /N) N           |
|                | 1'       | 7 MWN-02B-<br>062514DL          | N1104-07BD | L S6B8465.D      | 07/13/2014      |
|                | 18       | BWT1-06-<br>062614DL            | N1104-12ED | L S6B8466.D      | 07/13/2014      |
|                | 19       | 9MWN-01-<br>062614DL            | N1104-15ED | L S6B8467.D      | 07/13/2014      |
|                | 20       | 0MWN-01B-<br>062614DL           | N1104-16ED | L S6B8468.D      | 07/13/2014      |
|                | 2:       | LFIELD<br>DUPLICATE<br>062614DL | N1104-18ED | L S6B8469.D      | 07/13/2014      |

| COMMENTS: |  |  |  |
|-----------|--|--|--|
|           |  |  |  |

som14.07.15.0901 Page 2 of 2

#### 8C - FORM VIII SV-1

#### SEMIVOLATILE INTERNAL STANDARD AREA AND RETENTION TIME SUMMARY

Lab Name: SPECTRUM ANALYTICAL, INC. Contract:

Lab Code: MITKEM Case No.: N1104 Mod. Ref No.: SDG No.: SN1104

GC Column: Rxi-5sil MS ID: 0.25 (mm) Init. Calib. Date(s): 07/10/2014 07/10/2014

EPA Sample No.(SSTD020##) SSTD0256B Date Analyzed: 07/11/2014

Lab File ID (Standard): S6B8417.D Time Analyzed: 9:58

Instrument ID: S6

|    |                | IS1 (DCB) |   |       | IS2 (NPT) |       | IS3 (ANT) |       |
|----|----------------|-----------|---|-------|-----------|-------|-----------|-------|
|    |                | AREA      | # | RT #  | AREA #    | RT #  | AREA #    | RT #  |
|    | 12 HOUR STD    | 415784    |   | 5.072 | 1689844   | 6.147 | 1116048   | 7.61  |
|    | UPPER LIMIT    | 831568    |   | 5.572 | 3379688   | 6.647 | 2232096   | 8.11  |
|    | LOWER LIMIT    | 207892    |   | 4.572 | 844922    | 5.647 | 558024    | 7.11  |
|    | EPA SAMPLE NO. |           |   |       |           |       |           |       |
| 01 | LCS-77823      | 419152    |   | 5.072 | 1569106   | 6.148 | 1090176   | 7.611 |
| 02 | LCSD-77823     | 440718    |   | 5.072 | 1659068   | 6.147 | 1157239   | 7.610 |
| 03 | MB-77823       | 405944    |   | 5.072 | 1507979   | 6.148 | 1065306   | 7.605 |

IS1 (DCB) = 1,4-Dichlorobenzene-d4

IS2 (NPT) = Naphthalene-d8

IS3 (ANT) = Acenaphthene-d10

AREA UPPER LIMIT = 200% of internal standard area

AREA LOWER LIMIT = 50% of internal standard area

RT UPPER LIMIT = +0.50 minutes of internal standard RT

RT LOWER LIMIT = -0.50 minutes of internal standard RT

# Column used to flag values outside contract required QC limits with an asterisk.

som14.07.15.0901 Page 1 of 1

#### 8D - FORM VIII SV-2

#### SEMIVOLATILE INTERNAL STANDARD AREA AND RETENTION TIME SUMMARY

Lab Name: SPECTRUM ANALYTICAL, INC. Contract:

Lab Code: MITKEM Case No.: N1104 Mod. Ref No.: SDG No.: SN1104

EPA Sample No.(SSTD020##) SSTD0256B Date Analyzed: 07/11/2014

Lab File ID (Standard): S6B8417.D Time Analyzed: 9:58

Instrument ID: S6 GC Column: Rxi-5sil MS ID: 0.25 (mm)

|    |                | IS4 (PHN) |   |       | IS5 (CRY) |   |        |   | IS6 (PRY) |   |        |   |
|----|----------------|-----------|---|-------|-----------|---|--------|---|-----------|---|--------|---|
|    |                | AREA      | # | RT #  | AREA :    | # | RT     | # | AREA      | # | RT     | # |
|    | 12 HOUR STD    | 2289254   |   | 8.838 | 2415072   |   | 11.253 |   | 2251198   |   | 13.656 |   |
|    | UPPER LIMIT    | 4578508   |   | 9.338 | 4830144   |   | 11.753 |   | 4502396   |   | 14.156 |   |
|    | LOWER LIMIT    | 1144627   |   | 8.338 | 1207536   |   | 10.753 |   | 1125599   |   | 13.156 |   |
|    | EPA SAMPLE NO. |           |   |       |           |   |        |   |           |   |        |   |
| 01 | LCS-77823      | 2221091   |   | 8.839 | 2368410   |   | 11.259 |   | 2201308   |   | 13.662 |   |
| 02 | LCSD-77823     | 2380847   |   | 8.838 | 2541797   |   | 11.259 |   | 2350237   |   | 13.662 |   |
| 03 | MB-77823       | 2204471   |   | 8.839 | 2365357   |   | 11.242 |   | 2100978   |   | 13.639 |   |

IS4 (PHN) = Phenanthrene-d10

IS5 (CRY) = Chrysene-d12

IS6 (PRY) = Perylene-d12

AREA UPPER LIMIT = 200% of internal standard area

AREA LOWER LIMIT = 50% of internal standard area

RT UPPER LIMIT = +0.50 minutes of internal standard RT

RT LOWER LIMIT = -0.50 minutes of internal standard RT

# Column used to flag values outside contract required QC limits with an asterisk.

som14.07.15.0901 Page 1 of 1 SW846

#### 8C - FORM VIII SV-1

#### SEMIVOLATILE INTERNAL STANDARD AREA AND RETENTION TIME SUMMARY

Lab Name: SPECTRUM ANALYTICAL, INC. Contract:

Lab Code: MITKEM Case No.: N1104 Mod. Ref No.: SDG No.: SN1104

EPA Sample No.(SSTD020##) SSTD0256C Date Analyzed: 07/11/2014

Lab File ID (Standard): S6B8435.D Time Analyzed: 17:37

Instrument ID: S6

|                         | IS1 (DCB) |       | IS2 (NPT) |       | IS3 (ANT) |       |
|-------------------------|-----------|-------|-----------|-------|-----------|-------|
|                         | AREA #    | RT #  | AREA #    | RT #  | AREA #    | RT #  |
| 12 HOUR STD             | 377184    | 5.072 | 1524447   | 6.148 | 1003170   | 7.611 |
| UPPER LIMIT             | 754368    | 5.572 | 3048894   | 6.648 | 2006340   | 8.111 |
| LOWER LIMIT             | 188592    | 4.572 | 762224    | 5.648 | 501585    | 7.111 |
| EPA SAMPLE NO.          |           |       |           |       |           |       |
| 01 MWN-04-06241<br>4    | 272684    | 5.066 | 1054453   | 6.147 | 738734    | 7.605 |
| 02 MWN-03D-0624<br>14   | 261897    | 5.066 | 1039541   | 6.147 | 737175    | 7.605 |
| 03 MWN-03-06241<br>4    | 213558    | 5.066 | 901710    | 6.148 | 644986    | 7.605 |
| 04 MWM-02-06251<br>4    | 254568    | 5.066 | 1023573   | 6.148 | 736249    | 7.605 |
| 05 MWN-02B-0625<br>14   | 359641    | 5.072 | 1297310   | 6.148 | 852001    | 7.605 |
| 06 WT1-02-06251<br>4    | 365235    | 5.066 | 1372162   | 6.147 | 931852    | 7.605 |
| 07 WT1-05-06251<br>4    | 268421    | 5.066 | 1072073   | 6.147 | 748081    | 7.604 |
| 08 WT1-06-06261<br>4    | 212539    | 5.066 | 837988    | 6.147 | 601665    | 7.605 |
| 09 BCP-ORC-2-06<br>2614 | 328717    | 5.066 | 1225209   | 6.148 | 832497    | 7.605 |

IS1 (DCB) = 1,4-Dichlorobenzene-d4

IS2 (NPT) = Naphthalene-d8

IS3 (ANT) = Acenaphthene-d10

AREA UPPER LIMIT = 200% of internal standard area

AREA LOWER LIMIT = 50% of internal standard area

RT UPPER LIMIT = +0.50 minutes of internal standard RT

RT LOWER LIMIT = -0.50 minutes of internal standard RT

<sup>#</sup> Column used to flag values outside contract required QC limits with an asterisk.

#### 8C - FORM VIII SV-1

#### SEMIVOLATILE INTERNAL STANDARD AREA AND RETENTION TIME SUMMARY

Lab Name: SPECTRUM ANALYTICAL, INC. Contract:

Lab Code: MITKEM Case No.: N1104 Mod. Ref No.: SDG No.: SN1104

EPA Sample No.(SSTD020##) SSTD0256C Date Analyzed: 07/11/2014

Lab File ID (Standard): S6B8435.D Time Analyzed: 17:37

Instrument ID: S6

|    |                              | IS1 (DCB) |   |       |   | IS2 (NPT) |   |       |   | IS3 (ANT) |   |       |   |
|----|------------------------------|-----------|---|-------|---|-----------|---|-------|---|-----------|---|-------|---|
|    |                              | AREA      | # | RT    | # | AREA      | # | RT    | # | AREA      | # | RT    | # |
|    | 12 HOUR STD                  | 377184    |   | 5.072 |   | 1524447   |   | 6.148 |   | 1003170   |   | 7.611 |   |
|    | UPPER LIMIT                  | 754368    |   | 5.572 |   | 3048894   |   | 6.648 |   | 2006340   |   | 8.111 |   |
|    | LOWER LIMIT                  | 188592    |   | 4.572 |   | 762224    |   | 5.648 |   | 501585    |   | 7.111 |   |
|    | EPA SAMPLE NO.               |           |   |       |   |           |   |       |   |           |   |       |   |
| 10 | BCP-ORC-1-06<br>2614         | 272200    |   | 5.066 |   | 1064581   |   | 6.147 |   | 740222    |   | 7.605 |   |
| 11 | MWN-01-06261<br>4            | 294125    |   | 5.066 |   | 1133383   |   | 6.147 |   | 766308    |   | 7.604 |   |
| 12 | MWN-01B-0626<br>14           | 244614    |   | 5.066 |   | 949754    |   | 6.153 |   | 685093    |   | 7.605 |   |
| 13 | WT1-04-06261<br>4            | 299997    |   | 5.072 |   | 1169965   |   | 6.147 |   | 823407    |   | 7.605 |   |
| 14 | FIELD<br>DUPLICATE<br>062614 | 374246    |   | 5.066 |   | 1381207   |   | 6.165 |   | 959511    |   | 7.611 |   |

IS1 (DCB) = 1,4-Dichlorobenzene-d4

IS2 (NPT) = Naphthalene-d8

IS3 (ANT) = Acenaphthene-d10

AREA UPPER LIMIT = 200% of internal standard area

AREA LOWER LIMIT = 50% of internal standard area

RT UPPER LIMIT = +0.50 minutes of internal standard RT

RT LOWER LIMIT = -0.50 minutes of internal standard RT

# Column used to flag values outside contract required QC limits with an asterisk.

som14.07.15.0901 Page 2 of 2

#### 8D - FORM VIII SV-2

#### SEMIVOLATILE INTERNAL STANDARD AREA AND RETENTION TIME SUMMARY

Lab Name: SPECTRUM ANALYTICAL, INC. Contract:

Lab Code: MITKEM Case No.: N1104 Mod. Ref No.: SDG No.: SN1104

EPA Sample No.(SSTD020##) SSTD0256C Date Analyzed: 07/11/2014

Lab File ID (Standard): S6B8435.D Time Analyzed: 17:37

Instrument ID: S6 GC Column: Rxi-5sil MS ID: 0.25 (mm)

|                        | IS4 (PH | HN) |       |   | IS5 (CRY) |   |        |   | IS6 (PRY) |   |        |   |
|------------------------|---------|-----|-------|---|-----------|---|--------|---|-----------|---|--------|---|
|                        | AREA    | . # | RT    | # | AREA      | # | RT     | # | AREA      | # | RT     | # |
| 12 HOUR STD            | 2069    | 859 | 8.839 |   | 2179343   |   | 11.242 |   | 2079999   |   | 13.633 |   |
| UPPER LIMIT            | 4139    | 718 | 9.339 |   | 4358686   |   | 11.742 |   | 4159998   |   | 14.133 |   |
| LOWER LIMIT            | 1034    | 930 | 8.339 |   | 1089672   |   | 10.742 |   | 1040000   |   | 13.133 |   |
| EPA SAMPLE N           | 0.      |     |       |   |           |   |        |   |           |   |        |   |
| 01 MWN-04-0624<br>4    | 1 1553' | 779 | 8.838 |   | 1691793   |   | 11.230 |   | 1441849   |   | 13.621 |   |
| 02 MWN-03D-062<br>14   | 4 1533  | 841 | 8.833 |   | 1650124   |   | 11.230 |   | 1516665   |   | 13.621 |   |
| 03 MWN-03-0624<br>4    | 1 1353  | 569 | 8.839 |   | 1513691   |   | 11.230 |   | 1422646   |   | 13.621 |   |
| 04 MWM-02-0625<br>4    | 1 1503  | 527 | 8.839 |   | 1663324   |   | 11.230 |   | 1517490   |   | 13.621 |   |
| 05 MWN-02B-062<br>14   | 5 1675  | 183 | 8.839 |   | 1719576   |   | 11.230 |   | 1464010   |   | 13.615 |   |
| 06 WT1-02-0625<br>4    | 1 1901: | 261 | 8.838 |   | 2022378   |   | 11.230 |   | 1876532   |   | 13.621 |   |
| 07 WT1-05-0625         | 1 1541  | 512 | 8.838 |   | 1643375   |   | 11.224 |   | 1524750   |   | 13.615 |   |
| 08 WT1-06-0626         | 1 1283  | 237 | 8.838 |   | 1436102   |   | 11.224 |   | 1351921   |   | 13.615 |   |
| 09 BCP-ORC-2-0<br>2614 | 6 1687  | 763 | 8.838 |   | 1846305   |   | 11.236 |   | 1660249   |   | 13.627 |   |

IS4 (PHN) = Phenanthrene-d10

IS5 (CRY) = Chrysene-d12

IS6 (PRY) = Perylene-d12

AREA UPPER LIMIT = 200% of internal standard area

AREA LOWER LIMIT = 50% of internal standard area

RT UPPER LIMIT = +0.50 minutes of internal standard RT

RT LOWER LIMIT = -0.50 minutes of internal standard RT

<sup>#</sup> Column used to flag values outside contract required QC limits with an asterisk.

#### 8D - FORM VIII SV-2

#### SEMIVOLATILE INTERNAL STANDARD AREA AND RETENTION TIME SUMMARY

Lab Name: SPECTRUM ANALYTICAL, INC. Contract:

Lab Code: MITKEM Case No.: N1104 Mod. Ref No.: SDG No.: SN1104

EPA Sample No.(SSTD020##) SSTD0256C Date Analyzed: 07/11/2014

Lab File ID (Standard): S6B8435.D Time Analyzed: 17:37

Instrument ID: S6 GC Column: Rxi-5sil MS ID: 0.25 (mm)

|    |                              | IS4 (PHN) |   |       |   | IS5 (CRY) |   |        |   | IS6 (PRY) |   |        |   |
|----|------------------------------|-----------|---|-------|---|-----------|---|--------|---|-----------|---|--------|---|
|    |                              | AREA      | # | RT    | # | AREA      | # | RT     | # | AREA      | # | RT     | # |
|    | 12 HOUR STD                  | 2069859   |   | 8.839 |   | 2179343   |   | 11.242 |   | 2079999   |   | 13.633 |   |
|    | UPPER LIMIT                  | 4139718   |   | 9.339 |   | 4358686   |   | 11.742 |   | 4159998   |   | 14.133 |   |
|    | LOWER LIMIT                  | 1034930   |   | 8.339 |   | 1089672   |   | 10.742 |   | 1040000   |   | 13.133 |   |
|    | EPA SAMPLE NO.               |           |   |       |   |           |   |        |   |           |   |        |   |
| 10 | BCP-ORC-1-06<br>2614         | 1505670   |   | 8.838 |   | 1663723   |   | 11.224 |   | 1482240   |   | 13.615 |   |
| 11 | MWN-01-06261<br>4            | 1562100   |   | 8.838 |   | 1701433   |   | 11.224 |   | 1593934   |   | 13.615 |   |
| 12 | MWN-01B-0626<br>14           | 1411565   |   | 8.838 |   | 1562726   |   | 11.242 |   | 1458828   |   | 13.633 |   |
| 13 | WT1-04-06261<br>4            | 1720978   |   | 8.838 |   | 1868634   |   | 11.230 |   | 1713324   |   | 13.627 |   |
| 14 | FIELD<br>DUPLICATE<br>062614 | 2005061   |   | 8.839 |   | 2170538   |   | 11.236 |   | 1997163   |   | 13.633 |   |

IS4 (PHN) = Phenanthrene-d10

IS5 (CRY) = Chrysene-d12

IS6 (PRY) = Perylene-d12

AREA UPPER LIMIT = 200% of internal standard area

AREA LOWER LIMIT = 50% of internal standard area

RT UPPER LIMIT = +0.50 minutes of internal standard RT

RT LOWER LIMIT = -0.50 minutes of internal standard RT

<sup>#</sup> Column used to flag values outside contract required QC limits with an asterisk.

#### 8C - FORM VIII SV-1

#### SEMIVOLATILE INTERNAL STANDARD AREA AND RETENTION TIME SUMMARY

Lab Name: SPECTRUM ANALYTICAL, INC. Contract:

Lab Code: MITKEM Case No.: N1104 Mod. Ref No.: SDG No.: SN1104

EPA Sample No.(SSTD020##) SSTD0256D Date Analyzed: 07/13/2014

Lab File ID (Standard): S6B8455.D Time Analyzed: 13:54

Instrument ID: S6

|    |                                | IS1 (DCB) |   |       |   | IS2 (NPT) |   |       |   | IS3 (ANT) |   |       |   |
|----|--------------------------------|-----------|---|-------|---|-----------|---|-------|---|-----------|---|-------|---|
|    |                                | AREA      | # | RT    | # | AREA      | # | RT    | # | AREA      | # | RT    | # |
|    | 12 HOUR STD                    | 425514    |   | 5.072 |   | 1714602   |   | 6.147 |   | 1125238   |   | 7.61  |   |
|    | UPPER LIMIT                    | 851028    |   | 5.572 |   | 3429204   |   | 6.647 |   | 2250476   |   | 8.11  |   |
|    | LOWER LIMIT                    | 212757    |   | 4.572 |   | 857301    |   | 5.647 |   | 562619    |   | 7.11  |   |
|    | EPA SAMPLE NO.                 |           |   |       |   |           |   |       |   |           |   |       |   |
| 01 | MWN-02B-0625<br>14DL           | 424474    |   | 5.072 |   | 1535366   |   | 6.147 |   | 1039573   |   | 7.604 |   |
| 02 | WT1-06-06261<br>4DL            | 360048    |   | 5.072 |   | 1437345   |   | 6.147 |   | 1001156   |   | 7.605 |   |
| 03 | MWN-01-06261<br>4DL            | 377044    |   | 5.072 |   | 1426301   |   | 6.147 |   | 1015276   |   | 7.605 |   |
| 04 | MWN-01B-0626<br>14DL           | 457888    |   | 5.072 |   | 1704829   |   | 6.147 |   | 1180772   |   | 7.604 |   |
| 05 | FIELD<br>DUPLICATE<br>062614DL | 362690    |   | 5.066 |   | 1400830   |   | 6.147 |   | 1009280   |   | 7.605 |   |

IS1 (DCB) = 1,4-Dichlorobenzene-d4

IS2 (NPT) = Naphthalene-d8

IS3 (ANT) = Acenaphthene-d10

AREA UPPER LIMIT = 200% of internal standard area

AREA LOWER LIMIT = 50% of internal standard area

RT UPPER LIMIT = +0.50 minutes of internal standard RT

RT LOWER LIMIT = -0.50 minutes of internal standard RT

# Column used to flag values outside contract required QC limits with an asterisk.

som14.07.15.0901 Page 1 of 1

#### 8D - FORM VIII SV-2

#### SEMIVOLATILE INTERNAL STANDARD AREA AND RETENTION TIME SUMMARY

Lab Name: SPECTRUM ANALYTICAL, INC. Contract:

Lab Code: MITKEM Case No.: N1104 Mod. Ref No.: SDG No.: SN1104

EPA Sample No.(SSTD020##) SSTD0256D Date Analyzed: 07/13/2014

Lab File ID (Standard): S6B8455.D Time Analyzed: 13:54

Instrument ID: S6 GC Column: Rxi-5sil MS ID: 0.25 (mm)

|    |                                | IS4 (PHN) |   |       |   | IS5 (CRY) |   |        |   | IS6 (PRY) |   |        |   |
|----|--------------------------------|-----------|---|-------|---|-----------|---|--------|---|-----------|---|--------|---|
|    |                                | AREA      | # | RT    | # | AREA      | # | RT     | # | AREA      | # | RT     | # |
|    | 12 HOUR STD                    | 2308094   |   | 8.838 |   | 2417859   |   | 11.247 |   | 2227513   |   | 13.65  |   |
|    | UPPER LIMIT                    | 4616188   |   | 9.338 |   | 4835718   |   | 11.747 |   | 4455026   |   | 14.15  |   |
|    | LOWER LIMIT                    | 1154047   |   | 8.338 |   | 1208930   |   | 10.747 |   | 1113757   |   | 13.15  |   |
|    | EPA SAMPLE NO.                 |           |   |       |   |           |   |        |   |           |   |        |   |
| 01 | MWN-02B-0625<br>14DL           | 2102652   |   | 8.838 |   | 2162812   |   | 11.236 |   | 1787062   |   | 13.633 |   |
| 02 | WT1-06-06261<br>4DL            | 2013813   |   | 8.838 |   | 2157026   |   | 11.236 |   | 1947327   |   | 13.627 |   |
| 03 | MWN-01-06261<br>4DL            | 2106893   |   | 8.838 |   | 2332611   |   | 11.236 |   | 2134629   |   | 13.633 |   |
| 04 | MWN-01B-0626<br>14DL           | 2458470   |   | 8.838 |   | 2617904   |   | 11.236 |   | 2210426   |   | 13.633 |   |
| 05 | FIELD<br>DUPLICATE<br>062614DL | 2073285   |   | 8.838 |   | 2249373   |   | 11.236 |   | 1992604   |   | 13.639 |   |

som14.07.15.0901 Page 1 of 1 SW846

IS4 (PHN) = Phenanthrene-d10

IS5 (CRY) = Chrysene-d12

IS6 (PRY) = Perylene-d12

AREA UPPER LIMIT = 200% of internal standard area

AREA LOWER LIMIT = 50% of internal standard area

RT UPPER LIMIT = +0.50 minutes of internal standard RT

RT LOWER LIMIT = -0.50 minutes of internal standard RT

<sup>#</sup> Column used to flag values outside contract required QC limits with an asterisk.



SPECTRUM ANALYTICAL, INC.
Featuring
HANIBAL TECHNOLOGY

\* Metals \*

## REPORT NARRATIVE

Spectrum Analytical, Inc. Featuring Hanibal Technology, RI Division.

Client: GZA GeoEnvironmental, Inc.

**Project: Steelwinds 1** 

Laboratory Workorder / SDG #: N1104

## SW846 6010C

#### I. SAMPLE RECEIPT

No exceptions or unusual conditions were encountered unless a Sample Condition Notification Form, or other record of communication is included with the Sample Receipt Documentation.

## II. HOLDING TIMES

## A. Sample Preparation:

All samples were prepared within the method-specified holding times.

## B. Sample Analysis:

All samples were analyzed within the method-specified holding times.

## III. METHODS

Samples were analyzed following procedures in laboratory test code: SW846 6010C

#### IV. PREPARATION

Aqueous Samples were prepared following procedures in laboratory test code: SW3005A

## V. INSTRUMENTATION

The following instrumentation was used:

Instrument Code: OPTIMA2

Instrument Type: ICP

N1104 Page 145 of 189

Description: Optima 3100 XL Manufacturer: Perkin-Elmer

Model: 3100 XL

Instrument Code: OPTIMA3

Instrument Type: ICP

Description: Optima ICP-OES Manufacturer: Perkin-Elmer

Model: 4300 DV

## VI. ANALYSIS

## A. Calibration:

Calibrations met the method/SOP acceptance criteria.

## B. Blanks:

All method blanks were within the acceptance criteria.

## C. Spikes:

## 1. Laboratory Control Spikes (LCS):

Percent recoveries for laboratory control samples were within the QC limits.

## 2. Matrix spike (MS):

A matrix spike was not performed on any sample in this SDG.

## D. Post Digestion Spike (PDS):

A post-digestion spike was not performed on any sample in this SDG.

## E. Duplicate sample:

A duplicate analysis was not performed on any sample in this SDG.

## F. Serial Dilution (SD):

A serial dilution was not performed on any sample in this SDG.

## G. Samples:

No other unusual occurrences were noted during sample analysis.

N1104 Page 146 of 189

I certify that this data package is in compliance with the terms and conditions agreed to by the client and Spectrum, both technically and for completeness, except for the conditions noted above. Release of the data contained in this hardcopy data package has been authorized by the Laboratory Manager or designated person, as verified by the following signature.

Shann B Lan le

Signed:

Date: <u>07/14/2014</u>

N1104 Page 147 of 189



SPECTRUM ANALYTICAL, INC.
Featuring
HANIBAL TECHNOLOGY

## Data Flag/Qualifiers (Page 1 of 2):

- U Not Detected. This compound was analyzed-for but not detected. For most analyses the reporting limit (lowest standard concentration) is the value listed. For Department of Defense programs, this is the Limit of Detection (LOD).
- J This flag indicates an estimated value due to either
  - the compound was detected below the reporting limit, or
  - estimated concentration for Tentatively Identified Compound
- B This flag indicates the compound was also detected in the associated Method Blank. The B flag has an alternative meaning for Inorganics analyses reported using CLP ILM-type metals forms, indicating a "trace" concentration below the reporting limit and equal to or above the detection limit.
- D For Organics analysis, this flag indicates the compound concentration was obtained from a secondary dilution analysis
- E This flag indicates the compound concentration exceeded the Calibration Range. The E flag has an alternative meaning for Inorganics analyses reported using CLP metals forms, indicating an estimated concentration due to the presence of interferences, as determined by the serial dilution analysis.
- P This flag is used for pesticides/PCB/herbicide compound when there is a greater than 40% difference for detected concentration between the two GC columns used for primary and confirmation analyses. This difference typically indicates interference, causing one value to be unusually high. The **lower** of the two values is generally reported on the Form 1, and both values reported on the Form 10.
- A Used to flag semivolatile organic Tentatively Identified Compound library search results for compounds identified as an aldol condensation by-product.



SPECTRUM ANALYTICAL, INC.
Featuring
HANIBAL TECHNOLOGY

## Data Flag/Qualifiers (Page 2 of 2):

- N Used to flag results for volatile and semivolatile Organics analysis Tentatively Identified Compounds where an analyte has passed the identification criteria, and is considered to be positively identified. For Inorganics analysis the N flag indicates the matrix spike recovery falls outside of the control limit.
- \* For Inorganics analysis the \* flag indicates Relative Percent Difference for duplicate analyses is outside of the control limit.
- L NYSDEC qualifier: Result is biased low due to the sample not being collected according to 5035-L/5035A-L low-level specifications.



## **Sample ID Suffixes**

- DL Diluted analysis. The sample was diluted and reanalyzed. The DL may be followed by a digit if more than one diluted reanalysis is provided. The DL suffix is not attached to an analysis initially performed at dilution, only to reanalyses performed at dilution
- RE Reanalysis. Appended to the client sample ID to indicate a reextraction and reanalysis or a reanalysis of the original sample extract.
- RA Reanalysis. Appended to the laboratory sample ID indicates a reanalysis of the original sample extract.
- RX Reextraction. Appended to the laboratory sample ID indicates a reextraction of the sample.
- MS Matrix Spike.
- MSD Matrix Spike Duplicate
- DUP Duplicate analysis
- SD Serial Dilution
- PS Post-digestion or Post-distillation spike. For metals or inorganic analyses

EPA SAMPLE NO.

| INORGANIC | ANALYSIS | DATA | SHEET |  |
|-----------|----------|------|-------|--|
|           |          |      |       |  |

BCP-ORC-1-062614

Lab Name: Spectrum Analytical, Inc. Contract: 03.0033579.

Lab Code: MITKEM Case No.: SAS No.:

SDG No.: SN1104

Matrix (soil/water): WATER Lab Sample ID: N1104-14

Level (low/med): MED Date Received: 06/27/2014

% Solids: 0.0

Concentration Units (ug/L or mg/kg dry weight): ug/L

| CAS No.   | Analyte | Concentration | С | Q | М |
|-----------|---------|---------------|---|---|---|
| 7439-89-6 | Iron    | 55.1          | В |   | P |

| Comments | • |
|----------|---|
|          |   |

ilm14.04.17.1043

FORM I - IN SW846 N1104 Page 151 of 189

1

EPA SAMPLE NO.

| INORGANIC ANADIDID DAIA DIBBI | INORGANIC | ANALYSIS | DATA | SHEET |  |
|-------------------------------|-----------|----------|------|-------|--|
|-------------------------------|-----------|----------|------|-------|--|

BCP-ORC-2-062614

Lab Name: Spectrum Analytical, Inc. Contract: 03.0033579.

Lab Code: MITKEM Case No.: SDG No.: SN1104 SAS No.:

Matrix (soil/water): WATER Lab Sample ID: N1104-13

Level (low/med): MED Date Received: 06/27/2014

% Solids: 0.0

Concentration Units (ug/L or mg/kg dry weight): ug/L

| CAS No.   | Analyte | Concentration | С | Q | M |
|-----------|---------|---------------|---|---|---|
| 7439-89-6 | Iron    | 35.4          | В |   | P |

| Comments | • |
|----------|---|
|          |   |

ilm14.04.17.1043

FORM I - IN

SW846

N1104 Page 152 of 189

EPA SAMPLE NO.

|  | INORGANIC | ANALYSIS | DATA | SHEET |  |
|--|-----------|----------|------|-------|--|
|--|-----------|----------|------|-------|--|

FIELD DUPLICATE 062614

Lab Name: Spectrum Analytical, Inc. Contract: 03.0033579.

SDG No.: SN1104 Lab Code: MITKEM Case No.: SAS No.:

Matrix (soil/water): WATER Lab Sample ID: N1104-18

Level (low/med): MED Date Received: 06/27/2014

% Solids: 0.0

Concentration Units (ug/L or mg/kg dry weight): ug/L

| CAS No.   | Analyte | Concentration | С | Q | M |
|-----------|---------|---------------|---|---|---|
| 7439-89-6 | Iron    | 48.1          | В |   | P |

| Comments | • |
|----------|---|
|          |   |

ilm14.04.17.1043

FORM I - IN

SW846

N1104 Page 153 of 189

EPA SAMPLE NO.

INORGANIC ANALYSIS DATA SHEET

MWN-01-062614

Lab Name: Spectrum Analytical, Inc. Contract: 03.0033579.

SDG No.: SN1104 Lab Code: MITKEM Case No.: SAS No.:

Lab Sample ID: N1104-15 Matrix (soil/water): WATER

Date Received: 06/27/2014 Level (low/med): MED

% Solids: 0.0

Concentration Units (ug/L or mg/kg dry weight): ug/L

| CAS No | э.    | Analyte | Concentration | С | Q | M |
|--------|-------|---------|---------------|---|---|---|
| 7439-8 | 9-6 I | ron     | 31.9          | В |   | P |

| Comments | • |
|----------|---|
|          |   |

ilm14.04.17.1043

FORM I - IN SW846 N1104

EPA SAMPLE NO.

| RGANIC ANALYSIS DATA SHEET |
|----------------------------|
|----------------------------|

MWN-01B-062614

Lab Name: Spectrum Analytical, Inc. Contract: 03.0033579.

SDG No.: SN1104 Lab Code: MITKEM Case No.: SAS No.:

Lab Sample ID: N1104-16 Matrix (soil/water): WATER

Date Received: 06/27/2014 Level (low/med): MED

% Solids: 0.0

Concentration Units (ug/L or mg/kg dry weight): ug/L

| CAS No.   | Analyte | Concentration | С | Q | M |
|-----------|---------|---------------|---|---|---|
| 7439-89-6 | Iron    | 48.7          | В |   | P |

| COUNTED . | mments: |
|-----------|---------|
|-----------|---------|

ilm14.04.17.1043

FORM I - IN

SW846

N1104 Page 155 of 189

EPA SAMPLE NO.

| ANALYSIS DATA SHEET | INORGANIC |
|---------------------|-----------|
|---------------------|-----------|

MWN-02B-062514

Lab Name: Spectrum Analytical, Inc. Contract: 03.0033579.

SDG No.: SN1104

Lab Code: MITKEM Case No.: SAS No.:

Matrix (soil/water): WATER

Lab Sample ID: N1104-07

Level (low/med): MED

Date Received: 06/26/2014

% Solids: 0.0

Concentration Units (ug/L or mg/kg dry weight): ug/L

| CAS No.   | Analyte | Concentration | С | Q | M |
|-----------|---------|---------------|---|---|---|
| 7440-38-2 | Arsenic | 42.1          |   |   | P |

Comments:

ilm14.04.17.1043

FORM I - IN

N1104

EPA SAMPLE NO.

| INORGANIC AN | ALYSIS | DATA | SHEET |  |
|--------------|--------|------|-------|--|
|--------------|--------|------|-------|--|

A SHEET MWN-02D-062514

Lab Name: Spectrum Analytical, Inc. Contract: 03.0033579.

Lab Code: MITKEM Case No.: SAS No.: SDG No.: SN1104

Matrix (soil/water): WATER Lab Sample ID: N1104-08

Level (low/med): MED Date Received: 06/26/2014

% Solids: 0.0

Concentration Units (ug/L or mg/kg dry weight): ug/L

| CAS No.   | Analyte  | Concentration | С | Q | M |
|-----------|----------|---------------|---|---|---|
| 7440-38-2 | Arsenic  | 4.3           | U |   | P |
| 7440-39-3 | Barium   | 885           |   |   | P |
| 7440-47-3 | Chromium | 4.0           | В |   | P |

| Comments | • |
|----------|---|
|          |   |

ilm14.04.17.1043

PA-17-1043 FORM I - IN SW846 Page 157 of 189

1

EPA SAMPLE NO.

MWN-03B-062414

| INORGANIC ANAI | IYSIS DA | TA SHEET |
|----------------|----------|----------|
|----------------|----------|----------|

Lab Name: Spectrum Analytical, Inc. Contract: 03.0033579.

Lab Code: MITKEM Case No.: SAS No.: SDG No.: SN1104

Matrix (soil/water): WATER Lab Sample ID: N1104-02

Level (low/med): MED Date Received: 06/25/2014

% Solids: 0.0

Comments:

Concentration Units (ug/L or mg/kg dry weight): ug/L

| CAS No.   | Analyte   | Concentration | С | Q | М |
|-----------|-----------|---------------|---|---|---|
| 7440-38-2 | Arsenic   | 93.1          |   |   | P |
| 7440-39-3 | Barium    | 933           |   |   | P |
| 7440-47-3 | Chromium  | 5.3           | В |   | P |
| 7439-96-5 | Manganese | 382           |   |   | P |

| • |  |  |  |
|---|--|--|--|
|   |  |  |  |
|   |  |  |  |
|   |  |  |  |

ilm14.04.17.1043 FORM I - IN SW846

1

EPA SAMPLE NO.

|  | INORGAN | VIC ANAI | LYSIS I | ATAC | SHEET |
|--|---------|----------|---------|------|-------|
|--|---------|----------|---------|------|-------|

MWN-03D-062414

| Lab Name: Spectrum Analytical, | Inc. | Contract: | 03.0033579. |
|--------------------------------|------|-----------|-------------|
|--------------------------------|------|-----------|-------------|

Lab Code: MITKEM Case No.: SAS No.: SDG No.: SN1104

Matrix (soil/water): WATER Lab Sample ID: N1104-03

Level (low/med): MED Date Received: 06/25/2014

% Solids: 0.0

Concentration Units (ug/L or mg/kg dry weight): ug/L

| CAS No.   | Analyte   | Concentration | С | Q | M |
|-----------|-----------|---------------|---|---|---|
| 7440-39-3 | Barium    | 1330          |   |   | Р |
| 7439-96-5 | Manganese | 183           |   |   | Р |

| Comments: |  |
|-----------|--|
|-----------|--|

ilm14.04.17.1043

Page 159 of 189 N1104

FORM I - IN

EPA SAMPLE NO. WT1-02-062514

INORGANIC ANALYSIS DATA SHEET

Lab Name: Spectrum Analytical, Inc. Contract: 03.0033579.

Lab Code: MITKEM Case No.: SAS No.:

SDG No.: SN1104

Lab Sample ID: N1104-09 Matrix (soil/water): WATER

Date Received: 06/26/2014 Level (low/med): MED

% Solids: 0.0

Concentration Units (ug/L or mg/kg dry weight): ug/L

| CAS No.   | Analyte | Concentration | С | Q | M |
|-----------|---------|---------------|---|---|---|
| 7439-89-6 | Iron    | 49.7          | В |   | P |

| Comments |
|----------|
|          |

ilm14.04.17.1043

FORM I - IN SW846 Page 160 of 189 N1104

EPA SAMPLE NO. WT1-04-062614

| INORGANIC | ANALISIS | DATA | SHEET |
|-----------|----------|------|-------|
|           |          |      |       |

Lab Name: Spectrum Analytical, Inc. Contract: 03.0033579.

Lab Code: MITKEM Case No.: SAS No.: SDG No.: SN1104

Lab Sample ID: N1104-17 Matrix (soil/water): WATER

Date Received: 06/27/2014 Level (low/med): MED

% Solids: 0.0

Concentration Units (ug/L or mg/kg dry weight): ug/L

| CAS No.   | Analyte | Concentration | С | Q | M |
|-----------|---------|---------------|---|---|---|
| 7439-89-6 | Iron    | 33.1          | В |   | P |

| Comments |
|----------|
|          |

ilm14.04.17.1043

FORM I - IN SW846 N1104

EPA SAMPLE NO. WT1-05-062514

| NALYSIS DATA SHEE | ORGANIC ANALYSIS |
|-------------------|------------------|
|-------------------|------------------|

Lab Name: Spectrum Analytical, Inc. Contract: 03.0033579.

SDG No.: SN1104

Matrix (soil/water): WATER Lab Sample ID: N1104-10

Level (low/med): MED Date Received: 06/26/2014

% Solids: 0.0

Concentration Units (ug/L or mg/kg dry weight): ug/L

| CAS No.   | Analyte | Concentration | С | Q | M |
|-----------|---------|---------------|---|---|---|
| 7439-89-6 | Iron    | 31.0          | U |   | Р |

Lab Code: MITKEM Case No.: SAS No.:

| Comments: |  |
|-----------|--|
|-----------|--|

ilm14.04.17.1043 FORM I - IN SW846 N1104

EPA SAMPLE NO. WT1-06-062614

| ET | SHEET | DATA | ANALYSIS | INORGANIC |
|----|-------|------|----------|-----------|
|----|-------|------|----------|-----------|

Lab Name: Spectrum Analytical, Inc. Contract: 03.0033579.

Lab Code: MITKEM Case No.: SAS No.:

SDG No.: SN1104

Lab Sample ID: N1104-12 Matrix (soil/water): WATER

Date Received: 06/27/2014 Level (low/med): MED

% Solids: 0.0

Concentration Units (ug/L or mg/kg dry weight): ug/L

| CAS No.   | Analyte | Concentration | С | Q | M |
|-----------|---------|---------------|---|---|---|
| 7439-89-6 | Iron    | 33.1          | В |   | P |

| Comments | • |
|----------|---|
|          |   |

ilm14.04.17.1043 FORM I - IN SW846 N1104

7

| Lab Name: Spectrum Analytical, Inc.  Lab Code: MITKEM Case No.:  Solid LCS Source: | Contract:  | 03.0033579.40 |          |  |            |        |
|------------------------------------------------------------------------------------|------------|---------------|----------|--|------------|--------|
| Lab Code:                                                                          | MITKEM     | Case No.:     | SAS No.: |  | SDG No.:   | SN1104 |
| Solid LCS                                                                          | Source:    |               |          |  | LCS(D) ID: |        |
| Aqueous LO                                                                         | CS Source: |               |          |  | LCS-77803  |        |

|           | Aqueous (ug/L) |         |       |      | Soli  | d ( | mg/Kg) |    |
|-----------|----------------|---------|-------|------|-------|-----|--------|----|
| Analyte   | True           | Found   | %R    | True | Found | С   | Limits | %R |
| Arsenic   | 455.0          | 496.25  | 109.1 |      |       |     |        |    |
| Barium    | 9100.0         | 9638.90 | 105.9 |      |       |     |        |    |
| Chromium  | 910.0          | 971.29  | 106.7 |      |       |     |        |    |
| Iron      | 4550.0         | 5003.04 | 110.0 |      |       |     |        |    |
| Manganese | 2270.0         | 2423.38 | 106.8 |      |       |     |        |    |

7

| Lab Name:  | Spectrum Ana | alytical, Inc. | Contract: | 03.0033579. | 40         |        |
|------------|--------------|----------------|-----------|-------------|------------|--------|
| Lab Code:  | MITKEM       | Case No.:      | SAS No.:  |             | SDG No.:   | SN1104 |
| Solid LCS  | Source:      |                |           |             | LCS(D) ID: |        |
| Aqueous LO | CS Source:   |                |           |             | LCS-77888  |        |

|         | Aque   | eous (ug/L | 1)    |      | Sol   | id ( | mg/Kg) |    |
|---------|--------|------------|-------|------|-------|------|--------|----|
| Analyte | True   | Found      | %R    | True | Found | С    | Limits | %R |
| Arsenic | 455.0  | 471.78     | 103.7 |      |       |      |        |    |
| Iron    | 4550.0 | 4999.83    | 109.9 |      |       |      |        |    |

7

| Lab Name: Spectrum Analytical, Inc. |            | Contract: | 03.0033579.4 | 10 |            |        |
|-------------------------------------|------------|-----------|--------------|----|------------|--------|
| Lab Code:                           | MITKEM     | Case No.: | SAS No.:     |    | SDG No.:   | SN1104 |
| Solid LCS                           | Source:    |           |              |    | LCS(D) ID: |        |
| Aqueous LO                          | CS Source: |           |              |    | LCSD-77803 |        |

|           | Aqueous (ug/L) |         |       |      | Soli  | .d ( | mg/Kg) |    |
|-----------|----------------|---------|-------|------|-------|------|--------|----|
| Analyte   | True           | Found   | %R    | True | Found | С    | Limits | %R |
| Arsenic   | 455.0          | 488.37  | 107.3 |      |       |      |        |    |
| Barium    | 9100.0         | 9560.74 | 105.1 |      |       |      |        |    |
| Chromium  | 910.0          | 948.57  | 104.2 |      |       |      |        |    |
| Iron      | 4550.0         | 4884.18 | 107.3 |      |       |      |        |    |
| Manganese | 2270.0         | 2404.49 | 105.9 |      |       |      |        |    |

7

| Lab Name:  | Spectrum Anal | ytical, Inc. | Contract:    | 03.0033579.4 | 0          |        |
|------------|---------------|--------------|--------------|--------------|------------|--------|
| Lab Code:  | MITKEM        | Case No.:    | <br>SAS No.: |              | SDG No.:   | SN1104 |
| Solid LCS  | Source:       |              |              |              | LCS(D) ID: |        |
| Aqueous LO | CS Source:    |              |              |              | LCSD-77888 |        |

|         | Aque   | ous (ug/L | )     |      |       |   |        |    |
|---------|--------|-----------|-------|------|-------|---|--------|----|
| Analyte | True   | Found     | %R    | True | Found | С | Limits | %R |
| Arsenic | 455.0  | 459.96    | 101.1 |      |       |   |        |    |
| Iron    | 4550.0 | 4754.15   | 104.5 |      |       |   |        |    |

3

BLANKS

| Lab Name: |        | Spectrum Analy  | tical, Inc.        | Contract: | 03.0033579.40 |          |           |  |  |
|-----------|--------|-----------------|--------------------|-----------|---------------|----------|-----------|--|--|
| Lab       | Code:  | MITKEM          | Case No.:          | SAS No.:  | S:            | DG No.:  | SN1104    |  |  |
| Prep      | aratio | on Blank Matrix | (soil/water): WATE | ER        |               | Method E | Blank ID: |  |  |

Preparation Blank Concentration Units (ug/L or mg/kg): ug/L

#### OPTIMA2\_140702A

MB-77888

|         | Initial     |   |               |                        |               |   |                |             |        |   |   |
|---------|-------------|---|---------------|------------------------|---------------|---|----------------|-------------|--------|---|---|
|         | Calibration | ı | Co            | Continuing Calibration |               |   |                | Preparation |        |   |   |
|         | Blank (ug/L | ) | Blank (ug/L)  |                        |               |   |                | Blank       |        |   |   |
| Analyte |             | С | 07/02/14 9:16 | С                      | 07/02/14 9:42 | С | 07/02/14 10:16 | С           |        | С | M |
| Iron    | 31.0        | U | 31.0          | U                      | 31.0          | U | 31.0           | U           | 31.000 | U | Р |

N1104 Page 168 of 189

3

BLANKS

Lab Name: Spectrum Analytical, Inc. Contract: 03.0033579.40

Lab Code: MITKEM Case No.: SAS No.: SDG No.: SN1104

Preparation Blank Matrix (soil/water): WATER

Method Blank ID:

MB-77803

Preparation Blank Concentration Units (ug/L or mg/kg): ug/L

#### OPTIMA3\_140627B

|           | Initial     |   |                |              |                |    |                |   |             |       |   |
|-----------|-------------|---|----------------|--------------|----------------|----|----------------|---|-------------|-------|---|
|           | Calibration | ı | Co             | ont          | inuing Calib   | ra | tion           |   | Preparation |       |   |
|           | Blank (ug/L | ) |                | Blank (ug/L) |                |    |                |   |             | Blank |   |
| Analyte   |             | С | 06/27/14 12:32 | С            | 06/27/14 13:01 | С  | 06/27/14 13:39 | С |             | С     | М |
| Arsenic   | 4.3         | U | 4.3            | U            | 4.3            | U  | 4.3            | U | 4.300       | U     | Р |
| Barium    | 1.1         | U | 1.1            | U            | 1.5            | В  | 1.3            | В | 1.100       | U     | Р |
| Chromium  | 0.6         | U | 0.6            | U            | 0.6            | U  | 0.6            | U | 0.640       | U     | Р |
| Iron      | 31.0        | U | 31.0           | U            | 31.0           | U  | 31.0           | U | 31.000      | U     | Р |
| Manganese | 10.0        | U | 10.0           | U            | 10.0           | U  | 10.0           | U | 10.000      | U     | Р |

3

BLANKS

| Lab Name:  | Name: Spectrum Analytical, Inc.                        |               | Contract: | 03.0033579.40 |          |           |  |  |  |  |  |
|------------|--------------------------------------------------------|---------------|-----------|---------------|----------|-----------|--|--|--|--|--|
| Lab Code:  | MITKEM                                                 | Case No.:     | SAS No.:  |               | SDG No.: | SN1104    |  |  |  |  |  |
| Preparatio | on Blank Matrix                                        | (soil/water): |           |               | Method   | Blank ID: |  |  |  |  |  |
| Preparatio | Preparation Blank Concentration Units (ug/L or mg/kg): |               |           |               |          |           |  |  |  |  |  |

#### OPTIMA3\_140627B

|           | Initial      |                |                        |  |   |  |             |       |   |   |
|-----------|--------------|----------------|------------------------|--|---|--|-------------|-------|---|---|
|           | Calibration  | C              | Continuing Calibration |  |   |  | Preparation |       |   |   |
|           | Blank (ug/L) |                | Blank (ug/L)           |  |   |  |             | Blank |   |   |
| Analyte   | C            | 06/27/14 14:16 | С                      |  | С |  | С           |       | С | М |
| Arsenic   |              | 4.3            | U                      |  |   |  |             |       |   | P |
| Barium    |              | 1.2            | В                      |  |   |  |             |       |   | P |
| Chromium  |              | 0.6            | U                      |  |   |  |             |       |   | Р |
| Iron      |              | 31.0           | U                      |  |   |  |             |       |   | P |
| Manganese |              | 10.0           | U                      |  |   |  |             |       |   | P |

N1104 Page 170 of 189



\* Wet Chemistry \*

#### REPORT NARRATIVE

Spectrum Analytical, Inc. Featuring Hanibal Technology, RI Division.

Client: GZA GeoEnvironmental, Inc.

**Project: Steelwinds 1** 

Laboratory Workorder / SDG #: N1104

EPA 300.0, SM 2320B, SW846 9060A

#### I. SAMPLE RECEIPT

No exceptions or unusual conditions were encountered unless a Sample Condition Notification Form, or other record of communication is included with the Sample Receipt Documentation.

#### II. HOLDING TIMES

#### A. Sample Preparation:

All samples were prepared within the method-specified holding times.

#### B. Sample Analysis:

All samples were analyzed within the method-specified holding times.

#### III. METHODS

Samples were analyzed following procedures in laboratory test code: EPA 300.0, SM 2320B, SW846 9060A

#### IV. PREPARATION

Samples were prepared following procedures in laboratory test code: EPA 300.0, SM 2320B, SW846 9060A

#### V. INSTRUMENTATION

The following instrumentation was used:

Instrument Code: IC1 Instrument Type: IC

N1104 Page 172 of 189

Description: DX-500 Manufacturer: Dionex

Model: DX-500

GC Column used: 0.25 m X 4 mm ID [ um thickness] AS14A-7 capillary

column.

Instrument Code: TOC1
Instrument Type: TOC
Description: TOC

Manufacturer: Tekmar Dohrman

Model: Apollo 9000

#### VI. ANALYSIS

#### A. Calibration:

Calibrations met the method/SOP acceptance criteria.

#### B. Blanks:

All method blanks were within the acceptance criteria.

#### C. Spikes:

### 1. Laboratory Control Spikes (LCS):

Percent recoveries for lab control samples were within the QC limits.

#### 2. Matrix Spike / Matrix Spike Duplicate (MS/MSD):

No client-requested MS/MSD analyses were included in this SDG.

#### D. Duplicate sample:

No client-requested laboratory duplicate analyses were included in this SDG.

#### E. Dilutions:

The following samples were analyzed at dilution:

WT1-02-062514 (N1104-09E), dilution factor: 2 for Sulfate WT1-05-062514 (N1104-10E), dilution factor: 2 for Sulfate WT1-06-062614 (N1104-12D), dilution factor: 2 for Sulfate BCP-ORC-2-062614 (N1104-13D), dilution factor: 2 for Sulfate MWN-01-062614 (N1104-15D), dilution factor: 2 for Sulfate

N1104 Page 173 of 189

#### F. Samples:

No other unusual occurrences were noted during sample analysis.

I certify that this data package is in compliance with the terms and conditions agreed to by the client and Spectrum, both technically and for completeness, except for the conditions noted above. Release of the data contained in this hardcopy data package has been authorized by the Laboratory Manager or designated person, as verified by the following signature.

Shann B Lan le

Signed:

Date: <u>07/16/2014</u>

N1104 Page 174 of 189



SPECTRUM ANALYTICAL, INC.
Featuring
HANIBAL TECHNOLOGY

#### Data Flag/Qualifiers (Page 1 of 2):

- U Not Detected. This compound was analyzed-for but not detected. For most analyses the reporting limit (lowest standard concentration) is the value listed. For Department of Defense programs, this is the Limit of Detection (LOD).
- J This flag indicates an estimated value due to either
  - the compound was detected below the reporting limit, or
  - estimated concentration for Tentatively Identified Compound
- B This flag indicates the compound was also detected in the associated Method Blank. The B flag has an alternative meaning for Inorganics analyses reported using CLP ILM-type metals forms, indicating a "trace" concentration below the reporting limit and equal to or above the detection limit.
- D For Organics analysis, this flag indicates the compound concentration was obtained from a secondary dilution analysis
- E This flag indicates the compound concentration exceeded the Calibration Range. The E flag has an alternative meaning for Inorganics analyses reported using CLP metals forms, indicating an estimated concentration due to the presence of interferences, as determined by the serial dilution analysis.
- P This flag is used for pesticides/PCB/herbicide compound when there is a greater than 40% difference for detected concentration between the two GC columns used for primary and confirmation analyses. This difference typically indicates interference, causing one value to be unusually high. The **lower** of the two values is generally reported on the Form 1, and both values reported on the Form 10.
- A Used to flag semivolatile organic Tentatively Identified Compound library search results for compounds identified as an aldol condensation by-product.



SPECTRUM ANALYTICAL, INC.
Featuring
HANIBAL TECHNOLOGY

## Data Flag/Qualifiers (Page 2 of 2):

- N Used to flag results for volatile and semivolatile Organics analysis Tentatively Identified Compounds where an analyte has passed the identification criteria, and is considered to be positively identified. For Inorganics analysis the N flag indicates the matrix spike recovery falls outside of the control limit.
- \* For Inorganics analysis the \* flag indicates Relative Percent Difference for duplicate analyses is outside of the control limit.
- L NYSDEC qualifier: Result is biased low due to the sample not being collected according to 5035-L/5035A-L low-level specifications.



## **Sample ID Suffixes**

- DL Diluted analysis. The sample was diluted and reanalyzed. The DL may be followed by a digit if more than one diluted reanalysis is provided. The DL suffix is not attached to an analysis initially performed at dilution, only to reanalyses performed at dilution
- RE Reanalysis. Appended to the client sample ID to indicate a reextraction and reanalysis or a reanalysis of the original sample extract.
- RA Reanalysis. Appended to the laboratory sample ID indicates a reanalysis of the original sample extract.
- RX Reextraction. Appended to the laboratory sample ID indicates a reextraction of the sample.
- MS Matrix Spike.
- MSD Matrix Spike Duplicate
- DUP Duplicate analysis
- SD Serial Dilution
- PS Post-digestion or Post-distillation spike. For metals or inorganic analyses

07/16/2014

Client: GZA GeoEnvironmental, Inc.

Client Sample ID: WT1-02-062514 Project: Steelwinds 1

**Lab ID:** N1104-09 **Collection Date:** 06/25/14 13:40

| Analyses                                       | Result Qual | RL Units      | DF Date Analyzed   | Batch ID   |
|------------------------------------------------|-------------|---------------|--------------------|------------|
| EPA 300.0 Anions by Ion Chromotography (LOW)   |             |               |                    | E300IC_W   |
| Nitrogen, Nitrate (As N)                       | ND          | 0.13 mg/L     | 1 06/26/2014 11:54 | 77809      |
| Sulfate                                        | 170 B       | 10 mg/L       | 2 06/26/2014 12:42 | 77809      |
| SM 2320B Alkalinity (Total)                    |             |               |                    | SM2320_W   |
| Alkalinity, Total (As CaCO3)                   | 370         | 20 mg/L CaCO3 | 1 06/27/2014 8:33  | 77825      |
| SW846 9060A Total Organic Carbon by combustion |             |               | SWS                | 9060_TOC_W |
| Organic Carbon, Total                          | 5.8 J       | 10 mg/L       | 1 06/27/2014 12:56 | 77826      |

Qualifiers: ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

DF - Dilution Factor

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

07/16/2014

Client: GZA GeoEnvironmental, Inc.

Client Sample ID: WT1-05-062514 Project: Steelwinds 1

**Lab ID:** N1104-10 **Collection Date:** 06/25/14 15:20

| Analyses                                       | Result Qual | RL Units      | DF Date Analyzed   | Batch ID   |
|------------------------------------------------|-------------|---------------|--------------------|------------|
| EPA 300.0 Anions by Ion Chromotography (LOW)   |             |               |                    | E300IC_W   |
| Nitrogen, Nitrate (As N)                       | 0.39 B      | 0.13 mg/L     | 1 06/26/2014 12:06 | 77809      |
| Sulfate                                        | 170 B       | 10 mg/L       | 2 06/26/2014 12:54 | 77809      |
| SM 2320B Alkalinity (Total)                    |             |               |                    | SM2320_W   |
| Alkalinity, Total (As CaCO3)                   | 190         | 20 mg/L CaCO3 | 1 06/27/2014 8:39  | 77825      |
| SW846 9060A Total Organic Carbon by combustion |             |               | SWS                | 9060_TOC_W |
| Organic Carbon, Total                          | 5.5 J       | 10 mg/L       | 1 06/27/2014 13:15 | 77826      |

Qualifiers: ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

DF - Dilution Factor

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

07/16/2014

Client: GZA GeoEnvironmental, Inc.

Client Sample ID: WT1-06-062614 Project: Steelwinds 1

**Lab ID:** N1104-12 **Collection Date:** 06/26/14 17:20

| Analyses                                       | Result Qual | RL Units      | DF Date Analyzed   | Batch ID   |
|------------------------------------------------|-------------|---------------|--------------------|------------|
| EPA 300.0 Anions by Ion Chromotography (LOW)   |             |               |                    | E300IC_W   |
| Nitrogen, Nitrate (As N)                       | ND          | 0.13 mg/L     | 1 06/27/2014 15:28 | 77842      |
| Sulfate                                        | 190 B       | 10 mg/L       | 2 06/28/2014 8:16  | 77842      |
| SM 2320B Alkalinity (Total)                    |             |               |                    | SM2320_W   |
| Alkalinity, Total (As CaCO3)                   | 200         | 20 mg/L CaCO3 | 1 06/30/2014 10:45 | 77864      |
| SW846 9060A Total Organic Carbon by combustion |             |               | SWS                | 9060_TOC_W |
| Organic Carbon, Total                          | 7.3 J       | 10 mg/L       | 1 07/15/2014 12:12 | 78078      |

Qualifiers: ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

DF - Dilution Factor

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

07/16/2014

Client: GZA GeoEnvironmental, Inc.

Client Sample ID: BCP-ORC-2-062614 Project: Steelwinds 1

**Lab ID:** N1104-13 **Collection Date:** 06/26/14 16:05

| Analyses                                       | Result Qual | RL Units      | DF Date Analyzed   | Batch ID   |
|------------------------------------------------|-------------|---------------|--------------------|------------|
| EPA 300.0 Anions by Ion Chromotography (LOW)   |             |               |                    | E300IC_W   |
| Nitrogen, Nitrate (As N)                       | ND          | 0.13 mg/L     | 1 06/27/2014 15:40 | 77842      |
| Sulfate                                        | 220 B       | 10 mg/L       | 2 06/28/2014 8:27  | 77842      |
| SM 2320B Alkalinity (Total)                    |             |               |                    | SM2320_W   |
| Alkalinity, Total (As CaCO3)                   | 280         | 20 mg/L CaCO3 | 1 06/30/2014 10:45 | 77864      |
| SW846 9060A Total Organic Carbon by combustion |             |               | SWS                | 9060_TOC_W |
| Organic Carbon, Total                          | 6.4 J       | 10 mg/L       | 1 07/15/2014 12:31 | 78078      |

Qualifiers: ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

DF - Dilution Factor

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

07/16/2014

Client: GZA GeoEnvironmental, Inc.

Client Sample ID: BCP-ORC-1-062614 Project: Steelwinds 1

**Lab ID:** N1104-14 **Collection Date:** 06/26/14 14:50

| Analyses                                       | Result Qual | RL Units      | DF Date Analyzed   | Batch ID   |
|------------------------------------------------|-------------|---------------|--------------------|------------|
| EPA 300.0 Anions by Ion Chromotography (LOW)   |             |               |                    | E300IC_W   |
| Nitrogen, Nitrate (As N)                       | ND          | 0.13 mg/L     | 1 06/27/2014 15:51 | 77842      |
| Sulfate                                        | 150 B       | 5.0 mg/L      | 1 06/27/2014 15:51 | 77842      |
| SM 2320B Alkalinity (Total)                    |             |               |                    | SM2320_W   |
| Alkalinity, Total (As CaCO3)                   | 220         | 20 mg/L CaCO3 | 1 06/30/2014 10:45 | 77864      |
| SW846 9060A Total Organic Carbon by combustion |             |               | SWS                | 0060_TOC_W |
| Organic Carbon, Total                          | 8.0 J       | 10 mg/L       | 1 07/15/2014 12:51 | 78078      |

Qualifiers: ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

DF - Dilution Factor

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

07/16/2014

Client: GZA GeoEnvironmental, Inc.

Client Sample ID: MWN-01-062614 Project: Steelwinds 1

**Lab ID:** N1104-15 **Collection Date:** 06/26/14 8:35

| Analyses                                       | Result Qual | RL Units      | DF Date Analyzed   | Batch ID   |
|------------------------------------------------|-------------|---------------|--------------------|------------|
| EPA 300.0 Anions by Ion Chromotography (LOW)   |             |               |                    | E300IC_W   |
| Nitrogen, Nitrate (As N)                       | ND          | 0.13 mg/L     | 1 06/27/2014 16:03 | 77842      |
| Sulfate                                        | 200 B       | 10 mg/L       | 2 06/28/2014 8:39  | 77842      |
| SM 2320B Alkalinity (Total)                    |             |               |                    | SM2320_W   |
| Alkalinity, Total (As CaCO3)                   | 190         | 20 mg/L CaCO3 | 1 06/30/2014 10:45 | 77864      |
| SW846 9060A Total Organic Carbon by combustion |             |               | SWS                | 9060_TOC_W |
| Organic Carbon, Total                          | 6.8 J       | 10 mg/L       | 1 07/15/2014 13:10 | 78078      |

Qualifiers: ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

DF - Dilution Factor

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

07/16/2014

Client: GZA GeoEnvironmental, Inc.

Client Sample ID: MWN-01B-062614 Project: Steelwinds 1

**Lab ID:** N1104-16 **Collection Date:** 06/26/14 9:55

| Analyses                                       | Result Qual | RL Units      | DF Date Analyzed   | Batch ID   |
|------------------------------------------------|-------------|---------------|--------------------|------------|
| EPA 300.0 Anions by Ion Chromotography (LOW)   |             |               |                    | E300IC_W   |
| Nitrogen, Nitrate (As N)                       | ND          | 0.13 mg/L     | 1 06/27/2014 16:15 | 77842      |
| Sulfate                                        | 130 B       | 5.0 mg/L      | 1 06/27/2014 16:15 | 77842      |
| SM 2320B Alkalinity (Total)                    |             |               |                    | SM2320_W   |
| Alkalinity, Total (As CaCO3)                   | 150         | 20 mg/L CaCO3 | 1 06/30/2014 10:45 | 77864      |
| SW846 9060A Total Organic Carbon by combustion |             |               | SWS                | 9060_TOC_W |
| Organic Carbon, Total                          | 9.0 J       | 10 mg/L       | 1 07/15/2014 13:29 | 78078      |

Qualifiers: ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

DF - Dilution Factor

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

07/16/2014

Client: GZA GeoEnvironmental, Inc.

Client Sample ID: WT1-04-062614 Project: Steelwinds 1

**Lab ID:** N1104-17 **Collection Date:** 06/26/14 11:40

| Analyses                                       | Result Qual | RL Units      | DF Date Analyzed   | Batch ID  |
|------------------------------------------------|-------------|---------------|--------------------|-----------|
| EPA 300.0 Anions by Ion Chromotography (LOW)   |             |               |                    | E300IC_W  |
| Nitrogen, Nitrate (As N)                       | ND          | 0.13 mg/L     | 1 06/27/2014 16:26 | 77842     |
| Sulfate                                        | 130 B       | 5.0 mg/L      | 1 06/27/2014 16:26 | 77842     |
| SM 2320B Alkalinity (Total)                    |             |               |                    | SM2320_W  |
| Alkalinity, Total (As CaCO3)                   | 260         | 20 mg/L CaCO3 | 1 06/30/2014 10:45 | 77864     |
| SW846 9060A Total Organic Carbon by combustion |             |               | SWS                | 060_TOC_W |
| Organic Carbon, Total                          | 4.8 J       | 10 mg/L       | 1 07/15/2014 13:49 | 78078     |

Qualifiers: ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

DF - Dilution Factor

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

07/16/2014

Client: GZA GeoEnvironmental, Inc.

Client Sample ID: FIELD DUPLICATE 062614 Project: Steelwinds 1

**Lab ID:** N1104-18 **Collection Date:** 06/26/14 0:00

| Analyses                                       | Result Qual | RL Units      | DF Date Analyzed   | Batch ID   |
|------------------------------------------------|-------------|---------------|--------------------|------------|
| EPA 300.0 Anions by Ion Chromotography (LOW)   |             |               |                    | E300IC_W   |
| Nitrogen, Nitrate (As N)                       | ND          | 0.13 mg/L     | 1 06/27/2014 16:38 | 77842      |
| Sulfate                                        | 130 B       | 5.0 mg/L      | 1 06/27/2014 16:38 | 77842      |
| SM 2320B Alkalinity (Total)                    |             |               |                    | SM2320_W   |
| Alkalinity, Total (As CaCO3)                   | 150         | 20 mg/L CaCO3 | 1 06/30/2014 11:30 | 77864      |
| SW846 9060A Total Organic Carbon by combustion |             |               | SWS                | 0060_TOC_W |
| Organic Carbon, Total                          | 9.0 J       | 10 mg/L       | 1 07/15/2014 14:08 | 78078      |

Qualifiers: ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

DF - Dilution Factor

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

| North Kingstown RI |
|--------------------|
| $\mathbf{C}$       |
| <sub>ブ</sub>       |
| ~                  |
| ١.                 |
| Analytical Inc.    |
|                    |
| ca                 |
| УÜ                 |
| a                  |
| Ţ                  |
| 4                  |
|                    |
| pectrum A          |

|                                                          | GZA GeoEnvironmental, Inc.                                     |                                  | ANALY                      | TICAL QC                     | ANALYTICAL QC SUMMARY REPORT                                           | EPORT                                               |               |      |
|----------------------------------------------------------|----------------------------------------------------------------|----------------------------------|----------------------------|------------------------------|------------------------------------------------------------------------|-----------------------------------------------------|---------------|------|
| Wark Order:                                              | N1104<br>Steelwinds 1                                          |                                  | E300IC_W<br>EPA 300.0 Anio | ns by Ion Chr                | E300IC_W<br>EPA 300.0 Anions by Ion Chromotography (LOW)               | 7)                                                  |               |      |
| Sample ID: <b>MB-77809</b><br>Client ID: <b>MB-77809</b> | 39 SampType: <b>MBLK</b><br>39 Batch ID: <b>77809</b>          | TestCode: E300IC_<br>Units: mg/L | W                          | Prep Date:<br>Analysis Date: | 06/26/14 8:45<br>06/26/14 8:58                                         | Run ID: <b>IC1_140626A</b><br>SeqNo: <b>2108908</b> |               |      |
| Analyte<br>Nitrogen, Nitrate (As N)                      | Result 0.1650                                                  | MDL RL 0.083 0.                  | SPK value                  | SPK Ref Val                  | %REC LowLimit HighLimit                                                | iit RPD Ref Val                                     | %RPD RPDLimit | Qual |
| Sulfate                                                  |                                                                | 0.15 5.                          | 0                          |                              |                                                                        |                                                     |               | þ    |
| Sample ID: <b>MB-77842</b><br>Client ID: <b>MB-77842</b> | <ul><li>12 SampType: MBLK</li><li>12 Batch ID: 77842</li></ul> | TestCode: E300IC_<br>Units: mg/L | M_                         | Prep Date:<br>Analysis Date: | Prep Date: <b>06/27/14 11:00</b><br>Ilysis Date: <b>06/27/14 13:02</b> | Run ID: IC1_140627A<br>SeqNo: 2110068               |               |      |
| Analyte                                                  | Result                                                         | RL                               | SPK value                  | SPK Ref Val                  | %REC LowLimit HighLimit                                                | iit RPD Ref Val                                     | %RPD RPDLimit | Qual |
| Sulfate                                                  | 0.2475                                                         | 0.15 5.                          | 0                          |                              |                                                                        |                                                     |               | b    |
| Sample ID: LCS-77809                                     | 609 SampType: LCS Batch ID: 77809                              | TestCode: E300IC_Units: ma/L     | M                          | Prep Date:<br>Analysis Date: | Prep Date: <b>06/26/14 8:45</b><br>Ivsis Date: <b>06/26/14 9:10</b>    | Run ID: IC1_140626A<br>SeaNo: 2108909               |               |      |
| Analyte                                                  |                                                                | MDL RL                           | SPK value                  | SPK Ref Val                  | %REC LowLimit HighLimit                                                | iit RPD Ref Val                                     | %RPD RPDLimit | Qual |
| Nitrogen, Nitrate (As N)<br>Sulfate                      | N) 0.9207<br>37.64                                             | 0.083 0.<br>0.15 5.              | 13 1.000<br>0 40.00        | 0                            | 92.1 90 110<br>94.1 90 110                                             | 0                                                   |               | д д  |
| Sample ID: LCS-77842                                     | .42 SampType: LCS                                              | TestCode: E300IC                 | Μ-                         | Prep Date:                   | Prep Date: <b>06/27/14 11:00</b>                                       | Run ID: IC1_140627A                                 |               |      |
| Client ID: LCS-77842                                     | H2 Batch ID: 77842                                             | Units: mg/L                      |                            | Analysis Date:               | 06/27/14 13:13                                                         | SeqNo: <b>2110069</b>                               |               |      |
| Analyte                                                  | Result                                                         | MDL RL                           | SPK value                  | SPK Ref Val                  | %REC LowLimit HighLimit                                                | iit RPD Ref Val                                     | %RPD RPDLimit | Qual |
| Sulfate                                                  | 36.81                                                          | 0.15 5.                          | 0 40.00                    | 0                            | 92.0 90 110                                                            | 0                                                   |               | В    |
|                                                          |                                                                |                                  |                            |                              |                                                                        |                                                     |               |      |

ND - Not Detected at the MDL

B - Analyte detected in the associated Method Blank

| ANALYTICAL QC SUMMARY REPORT | $SM2320_{-}W$ | CM 2320B - Alledinity (Total) |
|------------------------------|---------------|-------------------------------|
| GZA GeoEnvironmental, Inc.   | N1104         | Steelwinds 1                  |
|                              | ::            |                               |

CLIENT: Werk Order: Preject:

|                                                          | 1 (                               |      | MIC                                     | SIVI <i>2</i> 320D AIKA | AIRAIIIILY (10tal)           |                                |                                          |                    |     |
|----------------------------------------------------------|-----------------------------------|------|-----------------------------------------|-------------------------|------------------------------|--------------------------------|------------------------------------------|--------------------|-----|
| Sample ID: <b>MB-77825</b><br>Client ID: <b>MB-77825</b> | SampType: MBLK<br>Batch ID: 77825 | Test | TestCode: SM2320_W<br>Units: mg/L CaCO3 |                         | Prep Date:<br>Analysis Date: | 06/27/14 8:15<br>06/27/14 8:15 | Run ID: MANUAL_140627A<br>SeqNo: 2109198 | 0627A              |     |
| Analyte                                                  | Result                            | MDL  | RL                                      | SPK value               | SPK Ref Val                  | %REC LowLimit HighLimit        | Limit RPD Ref Val                        | %RPD RPDLimit Qual |     |
| Alkalinity, Total (As CaCO3)                             | ND                                | 20   | 20                                      |                         |                              |                                |                                          |                    | I   |
| Sample ID: <b>MB-77864</b>                               | SampType: MBLK                    | Test | TestCode: SM2320_W                      |                         | Prep Date:                   | 06/30/14 10:45                 | Run ID: MANUAL_140630A                   | 0630A              |     |
| Client ID: MB-77864                                      | Batch ID: <b>77864</b>            |      | Units: mg/L CaCO3                       |                         | Analysis Date:               | 06/30/14 10:45                 | SeqNo: 2110887                           |                    |     |
| Analyte                                                  | Result                            | MDL  | RL                                      | SPK value               | SPK Ref Val                  | %REC LowLimit HighLimit        | Limit RPD Ref Val                        | %RPD RPDLimit Qual |     |
| Alkalinity, Total (As CaCO3)                             | QN                                | 20   | 20                                      |                         |                              |                                |                                          |                    | 1 [ |
| Sample ID: LCS-77825                                     | SampType: LCS                     | Test | TestCode: SM2320_W                      |                         | Prep Date:                   | 06/27/14 8:15                  | Run ID: MANUAL_140627A                   | 0627A              |     |
| Client ID: LCS-77825                                     | Batch ID: <b>77825</b>            |      | Units: mg/L CaCO3                       |                         | Analysis Date:               | 06/27/14 8:21                  | SeqNo: <b>2109200</b>                    |                    |     |
| Analyte                                                  | Result                            | MDL  | RL                                      | SPK value               | SPK Ref Val                  | %REC LowLimit HighLimit        | Limit RPD Ref Val                        | %RPD RPDLimit Qual |     |
| Alkalinity, Total (As CaCO3)                             | 102.0                             | 20   | 20                                      | 100.0                   | 0                            | 102 80                         | 120 0                                    |                    | ] [ |
| Sample ID: LCS-77864                                     | SampType: LCS                     | Test | TestCode: SM2320_W                      |                         | Prep Date:                   | 06/30/14 10:45                 | Run ID: MANUAL_140630A                   | 0630A              |     |
| Client ID: LCS-77864                                     | Batch ID: 77864                   |      | Units: mg/L CaCO3                       |                         | Analysis Date:               | 06/30/14 10:45                 | SeqNo: <b>2110888</b>                    |                    |     |
| Analyte                                                  | Result                            | MDL  | RL                                      | SPK value               | SPK Ref Val                  | %REC LowLimit HighLimit        | Limit RPD Ref Val                        | %RPD RPDLimit Qual |     |
| Alkalinity, Total (As CaCO3)                             | 101.0                             | 20   | 20                                      | 100.0                   | 0                            | 101 80                         | 120 0                                    |                    | 1 [ |
| Sample ID: LCSD-77825                                    | SampType: LCSD                    | Test | TestCode: SM2320_W                      |                         | Prep Date:                   | 06/27/14 8:15                  | Run ID: MANUAL_140627A                   | 0627A              |     |
| Client ID: LCSD-77825                                    | Batch ID: <b>77825</b>            |      | Units: mg/L CaCO3                       |                         | Analysis Date:               | 06/27/14 8:27                  | SeqNo: <b>2109201</b>                    |                    |     |
| Analyte                                                  | Result                            | MDL  | RL                                      | SPK value               | SPK Ref Val                  | %REC LowLimit HighLimit        | Limit RPD Ref Val                        | %RPD RPDLimit Qual |     |
| Alkalinity, Total (As CaCO3)                             | 101.0                             | 20   | 20                                      | 100.0                   | 0                            | 101 80                         | 120 102.0                                | 0.985 20           | T   |
| Sample ID: LCSD-77864                                    | SampType: LCSD                    | Test | TestCode: SM2320_W                      |                         | Prep Date:                   | 06/30/14 10:45                 | Run ID: MANUAL_140630A                   | 0630A              |     |
| Client ID: LCSD-77864                                    | Batch ID: 77864                   |      | Units: mg/L CaCO3                       |                         | Analysis Date:               | 06/30/14 10:45                 | SeqNo: <b>2110889</b>                    |                    |     |
| Analyte                                                  | Result                            | MDL  | RL                                      | SPK value               | SPK Ref Val                  | %REC LowLimit HighLimit        | Limit RPD Ref Val                        | %RPD RPDLimit Qual |     |
| Alkalinity, Total (As CaCO3)                             | 102.0                             | 20   | 20                                      | 100.0                   | 0                            | 102 80                         | 120 101.0                                | 0.985 20           |     |

age 188 of 1

J - Analyte detected below quanititation limits ND - Not Detected at the MDL

S - Recovery outside accepted recovery limits R - RPD outside accepted recovery limits

RL - Reporting Limit

MDL - Method Detection Limit

B - Analyte detected in the associated Method Blank

GZA GeoEnvironmental, Inc. N1104 Werk Order: P∰ject: CLIENT:

Steelwinds 1

ANALYTICAL QC SUMMARY REPORT M\_OOT\_0906WS

SW846 9060A -- Total Organic Carbon by combustion

| Sample ID: <b>MB-77826</b>      | SampType: MBLK         | TestCode | TestCode: SW9060_TOC_W |           | Prep Date:     | 06/27/14 9:58           | Run ID: TOC1_140627B        | 40627B            |      |
|---------------------------------|------------------------|----------|------------------------|-----------|----------------|-------------------------|-----------------------------|-------------------|------|
| Client ID: <b>MB-77826</b>      | Batch ID: <b>77826</b> | Units    | Units: mg/L            |           | Analysis Date: | 06/27/14 10:50          | SeqNo: <b>2119955</b>       |                   |      |
| Analyte                         | Result                 | MDL      | RL                     | SPK value | SPK Ref Val    | %REC LowLimit HighLimit | ighLimit RPD Ref Val        | Val %RPD RPDLimit | Qual |
| Organic Carbon, Total           | ND                     | 2.0      | 10                     |           |                |                         |                             |                   |      |
| Sample ID: <b>MB-78078</b>      | SampType: MBLK         | TestCod  | TestCode: SW9060_TOC_W |           | Prep Date:     | 07/15/14 9:11           | Run ID: TOC1_140715A        | 40715A            |      |
| Client ID: <b>MB-78078</b>      | Batch ID: <b>78078</b> | Units    | Units: mg/L            |           | Analysis Date: | 07/15/14 11:08          | SeqNo: 2119929              |                   |      |
| Analyte                         | Result                 | MDL      | RL                     | SPK value | SPK Ref Val    | %REC LowLimit HighLimit | ighLimit RPD Ref Val        | Val %RPD RPDLimit | Qual |
| Organic Carbon, Total           | ND                     | 2.0      | 10                     |           |                |                         |                             |                   |      |
| Sample ID: <b>LCS-77826</b>     | SampType: LCS          | TestCode | TestCode: SW9060_TOC_W |           | Prep Date:     | 06/27/14 9:58           | Run ID: <b>TOC1_140627B</b> | 40627B            |      |
| Client ID: LCS-77826            | Batch ID: <b>77826</b> | Units    | Units: mg/L            |           | Analysis Date: | 06/27/14 11:12          | SeqNo: 2119956              |                   |      |
| Analyte                         | Result                 | MDL      | RL                     | SPK value | SPK Ref Val    | %REC LowLimit HighLimit | ighLimit RPD Ref Val        | Val %RPD RPDLimit | Qual |
| Organic Carbon, Total           | 65.16                  | 2.0      | 10                     | 60.00     | 0              | 109 80                  | 120 0                       |                   |      |
| Sample ID: LCS-78078            | SampType: LCS          | TestCode | TestCode: SW9060_TOC_W |           | Prep Date:     | 07/15/14 9:11           | Run ID: <b>TOC1_140715A</b> | 40715A            |      |
| Client ID: LCS-78078            | Batch ID: <b>78078</b> | Units    | Units: mg/L            |           | Analysis Date: | 07/15/14 11:30          | SeqNo: <b>2119930</b>       |                   |      |
| Analyte                         | Result                 | MDL      | RL                     | SPK value | SPK Ref Val    | %REC LowLimit HighLimit | ighLimit RPD Ref Val        | Val %RPD RPDLimit | Qual |
| Organic Carbon, Total           | 58.09                  | 2.0      | 10                     | 00.09     | 0              | 96.8 80                 | 120 0                       |                   |      |
| Sample ID: LCSD-77826           | SampType: LCSD         | TestCode | TestCode: SW9060_TOC_W |           | Prep Date:     | 06/27/14 9:58           | Run ID: <b>TOC1_140627B</b> | 40627B            |      |
| Client ID: LCSD-77826           | Batch ID: 77826        | Units    | Units: mg/L            |           | Analysis Date: | 06/27/14 11:34          | SeqNo: 2119957              |                   |      |
| Analyte                         | Result                 | MDL      | RL                     | SPK value | SPK Ref Val    | %REC LowLimit HighLimit | ighLimit RPD Ref Val        | Val %RPD RPDLimit | Qual |
| Organic Carbon, Total           | 62.91                  | 2.0      | 10                     | 60.00     | 0              | 105 80                  | 120 65.16                   | 5 3.52 20         |      |
| Sample ID: LCSD-78078           | SampType: LCSD         | TestCode | TestCode: SW9060_TOC_W |           | Prep Date:     | 07/15/14 9:11           | Run ID: TOC1_140715A        | 40715A            |      |
| Client ID: LCSD-78078           | Batch ID: <b>78078</b> | Units    | Units: mg/L            |           | Analysis Date: | 07/15/14 11:51          | SeqNo: <b>2119931</b>       |                   |      |
| Analyte                         | Result                 | MDL      | RL                     | SPK value | SPK Ref Val    | %REC LowLimit HighLimit | ighLimit RPD Ref Val        | Val %RPD RPDLimit | Qual |
| Organic Carbon, Total<br>J<br>S | 58.86                  | 2.0      | 10                     | 00.09     | 0              | 98.1 80                 | 120 58.09                   | 9 1.32 20         |      |

age 189 of

J - Analyte detected below quanititation limits ND - Not Detected at the MDL %1 m14.07.01.1307

MDL - Method Detection Limit S - Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

RL - Reporting Limit

B - Analyte detected in the associated Method Blank

Report Date: 08-Aug-14 10:26



| <b>~</b> | Final Repo | ort    |
|----------|------------|--------|
|          | Re-Issued  | Report |
|          | Revised R  | eport  |

### Laboratory Report

Work Order: N1243

GZA GeoEnvironmental, Inc. 535 Washington Street, 11th Floor

Project : Steelwinds 1 Project #:

Buffalo, NY 14203

Attn: Daniel Troy

| Laboratory ID | Client Sample ID | <u>Matrix</u> | Date Sampled    | Date Received   |
|---------------|------------------|---------------|-----------------|-----------------|
| N1243-01      | SED-2            | Soil          | 17-Jul-14 11:45 | 18-Jul-14 12:10 |
| N1243-02      | SED-3            | Soil          | 17-Jul-14 14:45 | 18-Jul-14 12:10 |
| N1243-03      | SED-4            | Soil          | 17-Jul-14 15:45 | 18-Jul-14 12:10 |
| N1243-04      | SED-31           | Soil          | 17-Jul-14 14:45 | 18-Jul-14 12:10 |
| N1243-05      | TRIP BLANK       | Aqueous       | 17-Jul-14 16:15 | 18-Jul-14 12:10 |
| N1243-06      | EQUIP BLANK      | Aqueous       | 17-Jul-14 16:15 | 18-Jul-14 12:10 |

I attest that the information contained within the report has been reviewed for accuracy and checked against the quality control requirements for each method. The results relate only to the samples(s) as received. This report may not be reproduced, except in full, without written approval from Spectrum Analytical.

All applicable NELAC or USEPA CLP requirments have been meet.

Spectrum Analytical (Rhode Island) is accredited under the National Environmental Laboratory Approval Program (NELAP) and DoD Environmental Laboratory Accreditation Program (ELAP), holds Organic and Inorganic contracts under the USEPA CLP Program and is certified under several states. The current list of our laboratory approvals and certifications is available on the Certifications page on our web site at www.spectrum-analytical.com.

Please contact the Laboratory or Technical Director at 401-732-3400 with any questions regarding the data contained in the laboratory report.

Department of Defense Connecticut PH-0153 Delaware N/AFlorida E87664 2007037 Maine M-RI907 Massachusetts New Hampshire 2631 New Jersey RI001 New York 11522 Rhode Island LAI00301 USDA P330-08-00023 USEPA - ISM EP-W-09-039 USEPA - SOM EP-W-11-033





Authorized by:

Yihai Ding Laboratory Director



\* Data Summary Pack \*

# **New York State Department of Environmental Conservation Sample Identification and Analytical Requirements Summary**

Project Name: Steelwinds 1 SDG: N1243

|                       |                         |                   | Analy              | tical Requirements |    |          |
|-----------------------|-------------------------|-------------------|--------------------|--------------------|----|----------|
| Customer<br>Sample ID | Laboratory<br>Sample ID | MSVOA<br>Method # | MSSEMI<br>Method # | GC*<br>Method #    | ME | Other    |
| SED-2                 | N1243-01                | SW8260_LOW_S      | SW8270_S           |                    |    | SEE DATA |
| SED-2                 | N1243-01                | SW8260_MED_S      |                    |                    |    |          |
| SED-3                 | N1243-02                | SW8260_LOW_S      | SW8270_S           |                    |    | SEE DATA |
| SED-4                 | N1243-03                | SW8260_LOW_S      | SW8270_S           |                    |    | SEE DATA |
| SED-4                 | N1243-03                | SW8260_MED_S      |                    |                    |    |          |
| SED-31                | N1243-04                | SW8260_LOW_S      | SW8270_S           |                    |    | SEE DATA |
| TRIP BLANK            | N1243-05                | SW8260_W          |                    |                    |    |          |
| EQUIP BLANK           | N1243-06                | SW8260_W          | SW8270_W           |                    |    |          |

**Page 1** 08/08/2014 10:34

## New York State Department of Environmental Conservation Sample Preparation and Analysis Summary MSVOA

Project Name: Steelwinds 1 SDG: N1243

| Laboratory   |        | Date      | Date Received | Date      | Date      |
|--------------|--------|-----------|---------------|-----------|-----------|
| Sample ID    | Matrix | Collected | By Lab        | Extracted | Analyzed  |
| SW8260_LOW_S |        |           |               |           | l         |
| N1243-01C    | SL     | 7/17/2014 | 7/18/2014     | NA        | 7/23/2014 |
| N1243-02C    | SL     | 7/17/2014 | 7/18/2014     | NA        | 7/30/2014 |
| N1243-03C    | SL     | 7/17/2014 | 7/18/2014     | NA        | 7/23/2014 |
| N1243-04C    | SL     | 7/17/2014 | 7/18/2014     | NA        | 7/30/2014 |
| SW8260_MED_S |        |           |               |           | •         |
| N1243-01D    | SL     | 7/17/2014 | 7/18/2014     | 7/28/2014 | 7/28/2014 |
| N1243-03D    | SL     | 7/17/2014 | 7/18/2014     | 7/28/2014 | 7/28/2014 |
| SW8260_W     |        |           |               |           |           |
| N1243-05A    | AQ     | 7/17/2014 | 7/18/2014     | NA        | 7/25/2014 |
| N1243-06A    | AQ     | 7/17/2014 | 7/18/2014     | NA        | 7/26/2014 |

Page 2 08/08/2014 10:34

## New York State Department of Environmental Conservation Sample Preparation and Analysis Summary MSSEMI

Project Name: Steelwinds 1 SDG: N1243

| Laboratory  |        | Date      | Date Received | Date      | Date      |
|-------------|--------|-----------|---------------|-----------|-----------|
| Sample ID   | Matrix | Collected | By Lab        | Extracted | Analyzed  |
| SW8270_S    | •      |           | •             |           | •         |
| N1243-01B   | SL     | 7/17/2014 | 7/18/2014     | 7/25/2014 | 7/28/2014 |
| N1243-01BDL | SL     | 7/17/2014 | 7/18/2014     | 7/25/2014 | 7/29/2014 |
| N1243-02B   | SL     | 7/17/2014 | 7/18/2014     | 7/25/2014 | 7/28/2014 |
| N1243-03B   | SL     | 7/17/2014 | 7/18/2014     | 7/25/2014 | 7/28/2014 |
| N1243-04B   | SL     | 7/17/2014 | 7/18/2014     | 7/25/2014 | 7/28/2014 |
| SW8270_W    | •      |           |               |           | •         |
| N1243-06B   | AQ     | 7/17/2014 | 7/18/2014     | 7/24/2014 | 7/28/2014 |

Page 3 08/08/2014 10:34

## New York State Department of Environmental Conservation Sample Preparation and Analysis Summary MSVOA

Project Name: Steelwinds 1 SDG: N1243

| Laboratory   |        | Analytical   | Extraction    | Low/Medium | Dil/Conc |
|--------------|--------|--------------|---------------|------------|----------|
| Sample ID    | Matrix | Protocol     | Method        | Level      | Factor   |
| SW8260_LOW_S |        |              |               |            |          |
| N1243-01C    | SL     | SW8260_LOW_S | NA            | LOW        | 1        |
| N1243-02C    | SL     | SW8260_LOW_S | NA            | LOW        | 1        |
| N1243-03C    | SL     | SW8260_LOW_S | NA            | LOW        | 1        |
| N1243-04C    | SL     | SW8260_LOW_S | NA            | LOW        | 1        |
| SW8260_MED_S |        |              |               |            |          |
| N1243-01D    | SL     | SW8260_MED_S | SW5035_MED_PR | MED        | 1        |
| N1243-03D    | SL     | SW8260_MED_S | SW5035_MED_PR | MED        | 1        |
| SW8260_W     |        |              |               |            |          |
| N1243-05A    | AQ     | SW8260_W     | NA            | LOW        | 1        |
| N1243-06A    | AQ     | SW8260_W     | NA            | LOW        | 1        |

Page 5 08/08/2014 10:34

## New York State Department of Environmental Conservation Sample Preparation and Analysis Summary MSSEMI

Project Name: Steelwinds 1 SDG: N1243

| Laboratory  |        | Analytical | Extraction | Auxiliary | Dil/Conc |
|-------------|--------|------------|------------|-----------|----------|
| Sample ID   | Matrix | Protocol   | Method     | Cleanup   | Factor   |
| SW8270_S    | •      |            |            |           |          |
| N1243-01B   | SL     | SW8270_S   | 3550B      | NA        | 1        |
| N1243-01BDL | SL     | SW8270_S   | 3550B      | NA        | 2        |
| N1243-02B   | SL     | SW8270_S   | 3550B      | NA        | 1        |
| N1243-03B   | SL     | SW8270_S   | 3550B      | NA        | 1        |
| N1243-04B   | SL     | SW8270_S   | 3550B      | NA        | 1        |
| SW8270_W    |        |            |            |           |          |
| N1243-06B   | AQ     | SW8270_W   | 3510C      | NA        | 1        |

**Page 6** 08/08/2014 10:34

WorkOrder: N1243

EDD: EQuIS\_4\_NYSDEC\_v3

Special Program:

Fax Report: Fax Due:

PO: NEEDS PO

Report Level: ASP-B HC Due: 08/06/14 Case: Ö Client ID: GZA\_BUFFALO **Project:** Steelwinds 1

SDG:

Location: GZA\_STEELWINDS,

WO Name: Steelwinds 1

Comments: N/A

| Lab Samp ID                                   | Lab Samp ID Client Sample ID                                                                 | Collection Date    | Date Recv'd | Matrix | Test Code    | Samp / Lab Test Comments | HF HT MS SEL Storage                            | rage |
|-----------------------------------------------|----------------------------------------------------------------------------------------------|--------------------|-------------|--------|--------------|--------------------------|-------------------------------------------------|------|
| N1243-01A                                     | SED-2                                                                                        | 07/17/2014 11:45   | 07/18/2014  | Soil   | PMoist       | /                        | S2                                              |      |
| N1243-01B                                     | SED-2                                                                                        | 07/17/2014 11:45   | 07/18/2014  | Soil   | SW8270_S     | / 8270_BN,               | Y S2                                            |      |
| N1243-01C                                     | SED-2                                                                                        | 07/17/2014 11:45   | 07/18/2014  | Soil   | SW8260_LOW_S | / 8260_STARS/CP-51       | Y VOA                                           | 4    |
| N1243-01D                                     | SED-2                                                                                        | 07/17/2014 11:45   | 07/18/2014  | Soil   | SW8260_MED_S | / 8260_STARS/CP-51       | Y VOA                                           | 4    |
| N1243-01E                                     | SED-2                                                                                        | 07/17/2014 11:45   | 07/18/2014  | Soil   | SW9060_TOC_S | / SPECTRUM               | SUB                                             | _    |
| N1243-02A                                     | SED-3                                                                                        | 07/17/2014 14:45   | 07/18/2014  | Soil   | PMoist       | ,                        | S2                                              |      |
| N1243-02B                                     | SED-3                                                                                        | 07/17/2014 14:45   | 07/18/2014  | Soil   | SW8270_S     | / 8270_BN,               | Υ \$2                                           |      |
| N1243-02C                                     | SED-3                                                                                        | 07/17/2014 14:45   | 07/18/2014  | Soil   | SW8260_LOW_S | / 8260_STARS/CP-51       | Y VOA                                           | 4    |
| N1243-02D                                     | SED-3                                                                                        | 07/17/2014 14:45   | 07/18/2014  | Soil   | SW8260_MED_S | / 8260_STARS/CP-51       | Y VOA                                           | 4    |
| N1243-02E                                     | SED-3                                                                                        | 07/17/2014 14:45   | 07/18/2014  | Soil   | SW9060_TOC_S | / SPECTRUM               | SUB                                             | _    |
| N1243-03A                                     | SED-4                                                                                        | 07/17/2014 15:45   | 07/18/2014  | Soil   | PMoist       | 1                        | S2                                              |      |
| N1243-03B                                     | SED-4                                                                                        | 07/17/2014 15:45   | 07/18/2014  | Soil   | SW8270_S     | / 8270_BN,               | Υ \$2                                           |      |
| N1243-03C                                     | SED-4                                                                                        | 07/17/2014 15:45   | 07/18/2014  | Soil   | SW8260_LOW_S | / 8260_STARS/CP-51       | Y VOA                                           | 4    |
| N1243-03D                                     | SED-4                                                                                        | 07/17/2014 15:45   | 07/18/2014  | Soil   | SW8260_MED_S | / 8260_STARS/CP-51       | Y VOA                                           | 4    |
| N1243-03E                                     | SED-4                                                                                        | 07/17/2014 15:45   | 07/18/2014  | Soil   | SW9060_TOC_S | / SPECTRUM               | SUB                                             |      |
| N1243-04A                                     | SED-31                                                                                       | 07/17/2014 14:45   | 07/18/2014  | Soil   | PMoist       | 1                        | S2                                              |      |
| N1243-04B                                     | SED-31                                                                                       | 07/17/2014 14:45   | 07/18/2014  | Soil   | SW8270_S     | / 8270_BN,               | Y \$2                                           |      |
| N <b>62</b> 43-04C                            | SED-31                                                                                       | 07/17/2014 14:45   | 07/18/2014  | Soil   | SW8260_LOW_S | / 8260_STARS/CP-51       | Y VOA                                           | 4    |
| $\mathbf{H}^{\mathbf{\Phi}} = \mathrm{Fract}$ | $\frac{0}{\mathbf{H}\mathbf{F}}$ = Fraction logged in but all tests have been placed on hold | e been placed on t | ploi        |        |              | HT = Test logged in      | HT = Test logged in but has been placed on hold | ploi |

Lab Client Rep: Agnes R Huntley

07/31/2014 10:12

of 103

Page 01 of 02

Spectrum Analytical Inc. - North Kingstown RI -- Rhode Island Division

HC Due: 08/06/14 Case:

EDD: EQuIS\_4\_NYSDEC\_v3 Report Level: ASP-B Special Program: Fax Report: Fax Due: SDG:

WorkOrder: N1243

Location: GZA\_STEELWINDS,

PO: NEEDS PO

Comments: N/A

ά Client ID: GZA\_BUFFALO

**Project:** Steelwinds 1 WO Name: Steelwinds 1

| Lab Samp ID      | Lab Samp ID Client Sample ID | Collection Date Date Recv'd M | Date Recv'd | Matrix  | fatrix Test Code | Samp / Lab Test Comments H | HF HT MS SEL Storage |
|------------------|------------------------------|-------------------------------|-------------|---------|------------------|----------------------------|----------------------|
| N1243-04D        | SED-31                       | 07/17/2014 14:45 07/18/2014   | 07/18/2014  | Soil    | SW8260_MED_S     | / 8260_STARS/CP-51         | Y Y VOA              |
| N1243-04E SED-31 | SED-31                       | 07/17/2014 14:45 07/18/2014   | 07/18/2014  | Soil    | SW9060_TOC_S     | /SPECTRUM                  | SUB                  |
| N1243-05A        | V1243-05A TRIP BLANK         | 07/17/2014 16:15 07/18/2014   | 07/18/2014  | Aqueous | queous SW8260_W  | / 8260_STARS/CP-51         | Y VOA                |
| N1243-06A        | EQUIP BLANK                  | 07/17/2014 16:15 07/18/2014   | 07/18/2014  | Aqueous | dueous SW8260_W  | / 8260_STARS/CP-51         | Y VOA                |
| N1243-06B        | EQUIP BLANK                  | 07/17/2014 16:15 07/18/2014   | 07/18/2014  | Aqueous | queous SW8270_W  | /8270_BN,                  | γ \$2                |

HT = Test logged in but has been placed on hold

Lab Client Rep: Agnes R Huntley



\* Volatiles \*

#### REPORT NARRATIVE

Spectrum Analytical, Inc. Featuring Hanibal Technology, RI Division.

Client: GZA GeoEnvironmental, Inc.

**Project: Steelwinds 1** 

Laboratory Workorder / SDG #: N1243

SW846 8260C, VOC by GC-MS

#### I. SAMPLE RECEIPT

No exceptions or unusual conditions were encountered unless a Sample Condition Notification Form, or other record of communication is included with the Sample Receipt Documentation.

#### II. HOLDING TIMES

#### A. Sample Preparation:

All samples were prepared within the method-specified holding times.

#### B. Sample Analysis:

All samples were analyzed within the method-specified holding times.

#### III. METHODS

Samples were analyzed following procedures in laboratory test code: SW846 8260C

#### IV. PREPARATION

Aqueous Samples were prepared following procedures in laboratory test

code: SW5030B

Soil Samples were prepared following procedures in laboratory test

code: SW5035

#### V. INSTRUMENTATION

The following instrumentation was used

N1243 Page 4 of 103

Instrument Code: V1

Instrument Type: GCMS-VOA
Description: HP5890 II / HP5972
Manufacturer: Hewlett-Packard

Model: 5890 / 5972

GC Column used: 30 m X 0.25 mm ID [1.40 um thickness] DB-624

capillary column.

Instrument Code: V10

Instrument Type: GCMS-VOA

Description: HP7890A Manufacturer: Agilent Model: 7890A / 5975C

GC Column used: 30 m X 0.25 mm ID [1.40 um thickness] DB-624

capillary column.

#### VI. ANALYSIS

#### A. Calibration:

Calibrations met the method/SOP acceptance criteria.

#### B. Blanks:

All method blanks were within the acceptance criteria.

#### C. Surrogates:

Surrogate standard percent recoveries were within the QC limits.

#### D. Spikes:

#### 1. Laboratory Control Spikes (LCS):

Percent recoveries for lab control samples were within the QC limits.

#### Matrix Spike / Matrix Spike Duplicate (MS/MSD):

No client-requested MS/MSD analyses were included in this SDG.

#### E. Internal Standards:

Internal standard peak areas were within the QC limits.

#### F. Dilutions:

N1243 Page 5 of 103

No sample in this SDG required analysis at dilution.

# G. Samples:

No other unusual occurrences were noted during sample analysis.

#### H. Manual Integration

No manual integrations were performed on any sample or standard.

I certify that this data package is in compliance with the terms and conditions agreed to by the client and Spectrum, both technically and for completeness, except for the conditions noted above. Release of the data contained in this hardcopy data package has been authorized by the Laboratory Manager or designated person, as verified by the following signature.

| Signed: |          |  |
|---------|----------|--|
| Date:   | 8/7/2014 |  |

N1243 Page 6 of 103



SPECTRUM ANALYTICAL, INC.
Featuring
HANIBAL TECHNOLOGY

### Data Flag/Qualifiers (Page 1 of 2):

- U Not Detected. This compound was analyzed-for but not detected. For most analyses the reporting limit (lowest standard concentration) is the value listed. For Department of Defense programs, this is the Limit of Detection (LOD).
- J This flag indicates an estimated value due to either
  - the compound was detected below the reporting limit, or
  - estimated concentration for Tentatively Identified Compound
- B This flag indicates the compound was also detected in the associated Method Blank. The B flag has an alternative meaning for Inorganics analyses reported using CLP ILM-type metals forms, indicating a "trace" concentration below the reporting limit and equal to or above the detection limit.
- D For Organics analysis, this flag indicates the compound concentration was obtained from a secondary dilution analysis
- E This flag indicates the compound concentration exceeded the Calibration Range. The E flag has an alternative meaning for Inorganics analyses reported using CLP metals forms, indicating an estimated concentration due to the presence of interferences, as determined by the serial dilution analysis.
- P This flag is used for pesticides/PCB/herbicide compound when there is a greater than 40% difference for detected concentration between the two GC columns used for primary and confirmation analyses. This difference typically indicates interference, causing one value to be unusually high. The **lower** of the two values is generally reported on the Form 1, and both values reported on the Form 10.
- A Used to flag semivolatile organic Tentatively Identified Compound library search results for compounds identified as an aldol condensation by-product.



SPECTRUM ANALYTICAL, INC.
Featuring
HANIBAL TECHNOLOGY

# Data Flag/Qualifiers (Page 2 of 2):

- N Used to flag results for volatile and semivolatile Organics analysis Tentatively Identified Compounds where an analyte has passed the identification criteria, and is considered to be positively identified. For Inorganics analysis the N flag indicates the matrix spike recovery falls outside of the control limit.
- \* For Inorganics analysis the \* flag indicates Relative Percent Difference for duplicate analyses is outside of the control limit.
- L NYSDEC qualifier: Result is biased low due to the sample not being collected according to 5035-L/5035A-L low-level specifications.



# **Sample ID Suffixes**

- DL Diluted analysis. The sample was diluted and reanalyzed. The DL may be followed by a digit if more than one diluted reanalysis is provided. The DL suffix is not attached to an analysis initially performed at dilution, only to reanalyses performed at dilution
- RE Reanalysis. Appended to the client sample ID to indicate a reextraction and reanalysis or a reanalysis of the original sample extract.
- RA Reanalysis. Appended to the laboratory sample ID indicates a reanalysis of the original sample extract.
- RX Reextraction. Appended to the laboratory sample ID indicates a reextraction of the sample.
- MS Matrix Spike.
- MSD Matrix Spike Duplicate
- DUP Duplicate analysis
- SD Serial Dilution
- PS Post-digestion or Post-distillation spike. For metals or inorganic analyses

|   | EPA  | SAMPLE | NO. |
|---|------|--------|-----|
| S | ED-2 |        |     |
|   |      |        |     |
|   |      |        |     |

| Lab Name: SPECTRUM ANA  | LYTICAL, IN | С.                 | Contract:        |                 |
|-------------------------|-------------|--------------------|------------------|-----------------|
| Lab Code: MITKEM        | Case No.:   | N1243              | Mod. Ref No.:    | SDG No.: SN1243 |
| Matrix: (SOIL/SED/WATER | SOIL        |                    | Lab Sample ID:   | N1243-01C       |
| Sample wt/vol: 9.       | 20 (g/mL)   | G                  | Lab File ID:     | V1N0299.D       |
| Level: (TRACE/LOW/MED)  | LOW         |                    | Date Received:   | 07/18/2014      |
| % Moisture: not dec.    | 11          |                    | Date Analyzed:   | 07/23/2014      |
| GC Column: DB-624       | ID:         | 0.25 (mm)          | Dilution Factor: | 1.0             |
| Soil Extract Volume:    |             | (uL)               | Soil Aliquot Vol | ume: (uL)       |
| Purge Volume: 10.0      |             | (mT <sub>1</sub> ) |                  |                 |

| CAS NO.     | COMPOUND                | CONCENTRATION UNITS: (ug/L or ug/Kg) ug/kg | Q |
|-------------|-------------------------|--------------------------------------------|---|
| 1634-04-4   | Methyl tert-butyl ether | 3.0                                        | U |
| 71-43-2     | Benzene                 | 7.3                                        |   |
| 108-88-3    | Toluene                 | 3.1                                        |   |
| 100-41-4    | Ethylbenzene            | 1.2                                        | J |
| 179601-23-1 | m,p-Xylene              | 12                                         |   |
| 95-47-6     | o-Xylene                | 8.4                                        |   |
| 1330-20-7   | Xylene (Total)          | 20                                         |   |
| 98-82-8     | Isopropylbenzene        | 3.0                                        | U |
| 103-65-1    | n-Propylbenzene         | 3.0                                        | U |
| 108-67-8    | 1,3,5-Trimethylbenzene  | 7.9                                        |   |
| 98-06-6     | tert-Butylbenzene       | 3.0                                        | U |
| 95-63-6     | 1,2,4-Trimethylbenzene  | 6.5                                        |   |
| 135-98-8    | sec-Butylbenzene        | 3.0                                        | U |
| 99-87-6     | 4-Isopropyltoluene      | 3.0                                        | U |
| 104-51-8    | n-Butylbenzene          | 3.0                                        | U |
| 91-20-3     | Naphthalene             | 200                                        | E |

| EPA  | SAMPLE | NO. |
|------|--------|-----|
| SED- | 2ME    |     |
|      |        |     |
|      |        |     |

| Lab Name: SPECTRUM ANAL | LYTICAL, IN | · .     | Contract:           |                  |
|-------------------------|-------------|---------|---------------------|------------------|
| Lab Code: MITKEM        | Case No.:   | N1243   | Mod. Ref No.:       | SDG No.: SN1243  |
| Matrix: (SOIL/SED/WATER | ) SOIL      |         | Lab Sample ID:      | N1243-01D        |
| Sample wt/vol: 7.       | 00 (g/mL)   | G       | Lab File ID:        | V8D6427.D        |
| Level: (TRACE/LOW/MED)  | MED         |         | Date Received:      | 07/18/2014       |
| % Moisture: not dec.    | 11          |         | Date Analyzed:      | 07/28/2014       |
| GC Column: DB-624       | ID:         | 0.25 (m | m) Dilution Factor: | 1.0              |
| Soil Extract Volume: 50 | 000         | (u      | L) Soil Aliquot Vol | lume: 100.00 (uL |
| Purge Volume: 5.0       |             | (m      | Τ.)                 |                  |

| CAS NO.    | COMPOUND                | CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG | Q |
|------------|-------------------------|--------------------------------------------|---|
| 1634-04-4  | Methyl tert-butyl ether | 230                                        | U |
| 71-43-2    | Benzene                 | 34                                         | J |
| 108-88-3   | Toluene                 | 31                                         | J |
| 100-41-4   | Ethylbenzene            | 230                                        | U |
| 79601-23-1 | m,p-Xylene              | 85                                         | J |
| 95-47-6    | o-Xylene                | 54                                         | J |
| 1330-20-7  | Xylene (Total)          | 140                                        | J |
| 98-82-8    | Isopropylbenzene        | 230                                        | U |
| 103-65-1   | n-Propylbenzene         | 230                                        | U |
| 108-67-8   | 1,3,5-Trimethylbenzene  | 86                                         | J |
| 98-06-6    | tert-Butylbenzene       | 230                                        | U |
| 95-63-6    | 1,2,4-Trimethylbenzene  | 68                                         | J |
| 135-98-8   | sec-Butylbenzene        | 230                                        | U |
| 99-87-6    | 4-Isopropyltoluene      | 230                                        | U |
| 104-51-8   | n-Butylbenzene          | 230                                        | U |
| 91-20-3    | Naphthalene             | 1500                                       |   |

| EPA   | SAMPLE | NO. |  |
|-------|--------|-----|--|
| SED-3 | 3      |     |  |
|       |        |     |  |
|       |        |     |  |

| Lab Name: Si  | PECTRUM ANAL | YTTCAL, IN | C.    |      | Contract:         |                 |      |
|---------------|--------------|------------|-------|------|-------------------|-----------------|------|
| Lab Code: MI  | ITKEM        | Case No.:  | N1243 |      | Mod. Ref No.:     | SDG No.: SN1243 |      |
| Matrix: (SOII | L/SED/WATER) | SOIL       |       |      | Lab Sample ID:    | N1243-02C       |      |
| Sample wt/vo  | 1: 7.7       | 70 (g/mL)  | G     |      | Lab File ID:      | V1N0410.D       |      |
| Level: (TRAC) | E/LOW/MED)   | LOW        |       |      | Date Received:    | 07/18/2014      |      |
| % Moisture: 1 | not dec.     | 35         |       |      | Date Analyzed:    | 07/30/2014      |      |
| GC Column: 1  | DB-624       | ID:        | 0.25  | mm)  | Dilution Factor:  | 1.0             |      |
| Soil Extract  | Volume:      |            | (     | uL)  | Soil Aliquot Volu | ume:            | (uL) |
| Purae Volume  | : 10 0       |            | (-    | mT.\ |                   |                 |      |

| CAS NO.     | COMPOUND                | CONCENTRATION UNITS: (ug/L or ug/Kg) ug/Kg | Q |
|-------------|-------------------------|--------------------------------------------|---|
| 1634-04-4   | Methyl tert-butyl ether | 5.0                                        | U |
| 71-43-2     | Benzene                 | 1.7                                        | J |
| 108-88-3    | Toluene                 | 1.0                                        | J |
| 100-41-4    | Ethylbenzene            | 0.67                                       | J |
| 179601-23-1 | m,p-Xylene              | 5.3                                        |   |
| 95-47-6     | o-Xylene                | 4.2                                        | J |
| 1330-20-7   | Xylene (Total)          | 9.4                                        |   |
| 98-82-8     | Isopropylbenzene        | 5.0                                        | U |
| 103-65-1    | n-Propylbenzene         | 5.0                                        | U |
| 108-67-8    | 1,3,5-Trimethylbenzene  | 5.6                                        |   |
| 98-06-6     | tert-Butylbenzene       | 5.0                                        | U |
| 95-63-6     | 1,2,4-Trimethylbenzene  | 3.1                                        | J |
| 135-98-8    | sec-Butylbenzene        | 5.0                                        | U |
| 99-87-6     | 4-Isopropyltoluene      | 5.0                                        | U |
| 104-51-8    | n-Butylbenzene          | 5.0                                        | U |
| 91-20-3     | Naphthalene             | 5.0                                        | J |

| EPA  | SAMPLE | NO. |
|------|--------|-----|
| SED- | 4      |     |
|      |        |     |
|      |        |     |

| Lab Name: SPECTRUM ANA  | LYTICAL, IN | C.      | Contract:            |                 |
|-------------------------|-------------|---------|----------------------|-----------------|
| Lab Code: MITKEM        | Case No.:   | N1243   | Mod. Ref No.:        | SDG No.: SN1243 |
| Matrix: (SOIL/SED/WATER | ) SOIL      |         | Lab Sample ID:       | N1243-03C       |
| Sample wt/vol: 7.       | 60 (g/mL)   | G       | Lab File ID:         | V1N0301.D       |
| Level: (TRACE/LOW/MED)  | LOW         |         | Date Received:       | 07/18/2014      |
| % Moisture: not dec.    | 39          |         | Date Analyzed:       | 07/23/2014      |
| GC Column: DB-624       | ID:         | 0.25 (m | nm) Dilution Factor: | 1.0             |
| Soil Extract Volume:    |             | (u      | ıL) Soil Aliquot Vol | ume: (uL)       |
| Purge Volume: 10 0      |             | (m      | nT.)                 |                 |

| CAS NO.    | COMPOUND                | CONCENTRATION UNITS: (ug/L or ug/Kg) ug/kg | Q |
|------------|-------------------------|--------------------------------------------|---|
| 1634-04-4  | Methyl tert-butyl ether | 5.4                                        | U |
| 71-43-2    | Benzene                 | 10                                         |   |
| 108-88-3   | Toluene                 | 3.1                                        | J |
| 100-41-4   | Ethylbenzene            | 1.4                                        | J |
| 79601-23-1 | m,p-Xylene              | 9.9                                        |   |
| 95-47-6    | o-Xylene                | 7.4                                        |   |
| 1330-20-7  | Xylene (Total)          | 17                                         |   |
| 98-82-8    | Isopropylbenzene        | 5.4                                        | U |
| 103-65-1   | n-Propylbenzene         | 5.4                                        | U |
| 108-67-8   | 1,3,5-Trimethylbenzene  | 3.9                                        | J |
| 98-06-6    | tert-Butylbenzene       | 5.4                                        | U |
| 95-63-6    | 1,2,4-Trimethylbenzene  | 4.3                                        | J |
| 135-98-8   | sec-Butylbenzene        | 5.4                                        | U |
| 99-87-6    | 4-Isopropyltoluene      | 5.4                                        | U |
| 104-51-8   | n-Butylbenzene          | 5.4                                        | U |
| 91-20-3    | Naphthalene             | 360                                        | E |

| EPA   | SAMPLE | NO. |
|-------|--------|-----|
| SED-4 | ME     |     |
|       |        |     |
|       |        |     |

| Lab Name: SPECTRUM ANAI | LYTICAL, IN | С.    |       | Contract:        |                 |
|-------------------------|-------------|-------|-------|------------------|-----------------|
| Lab Code: MITKEM        | Case No.:   | N1243 |       | Mod. Ref No.:    | SDG No.: SN1243 |
| Matrix: (SOIL/SED/WATER | ) SOIL      |       |       | Lab Sample ID:   | N1243-03D       |
| Sample wt/vol: 7.       | 70 (g/mL)   | G     |       | Lab File ID:     | V8D6428.D       |
| Level: (TRACE/LOW/MED)  | MED         |       |       | Date Received:   | 07/18/2014      |
| % Moisture: not dec.    | 39          |       |       | Date Analyzed:   | 07/28/2014      |
| GC Column: DB-624       | ID:         | 0.25  | (mm)  | Dilution Factor: | 1.0             |
| Soil Extract Volume: 50 | 000         |       | (uL)  | Soil Aliquot Vol | ume: 100.00 (uL |
| Purge Volume: 5 0       |             |       | (mT.) |                  |                 |

| CAS NO.     | COMPOUND                | CONCENTRATION UNITS: (ug/L or ug/Kg) ug/Kg | Q |
|-------------|-------------------------|--------------------------------------------|---|
| 1634-04-4   | Methyl tert-butyl ether | 430                                        | U |
| 71-43-2     | Benzene                 | 430                                        | U |
| 108-88-3    | Toluene                 | 430                                        | U |
| 100-41-4    | Ethylbenzene            | 430                                        | U |
| .79601-23-1 | m,p-Xylene              | 430                                        | U |
| 95-47-6     | o-Xylene                | 430                                        | U |
| 1330-20-7   | Xylene (Total)          | 430                                        | U |
| 98-82-8     | Isopropylbenzene        | 430                                        | U |
| 103-65-1    | n-Propylbenzene         | 430                                        | U |
| 108-67-8    | 1,3,5-Trimethylbenzene  | 430                                        | U |
| 98-06-6     | tert-Butylbenzene       | 430                                        | U |
| 95-63-6     | 1,2,4-Trimethylbenzene  | 430                                        | U |
| 135-98-8    | sec-Butylbenzene        | 430                                        | U |
| 99-87-6     | 4-Isopropyltoluene      | 430                                        | U |
| 104-51-8    | n-Butylbenzene          | 430                                        | U |
| 91-20-3     | Naphthalene             | 2200                                       |   |

|   | EPA  | SAMPLE | NO. |
|---|------|--------|-----|
| S | ED-3 | 1      |     |
|   |      |        |     |
|   |      |        |     |

| Lab Name:   | SPECTRUM ANA  | LYTICAL, IN | C.      | Contract:            |                 |
|-------------|---------------|-------------|---------|----------------------|-----------------|
| Lab Code:   | MITKEM        | Case No.:   | N1243   | Mod. Ref No.:        | SDG No.: SN1243 |
| Matrix: (So | OIL/SED/WATER | ) SOIL      |         | Lab Sample ID:       | N1243-04C       |
| Sample wt/v | vol: 7.       | 10 (g/mL)   | G       | Lab File ID:         | V1N0411.D       |
| Level: (TR  | ACE/LOW/MED)  | LOW         |         | Date Received:       | 07/18/2014      |
| % Moisture  | : not dec.    | 18          |         | Date Analyzed:       | 07/30/2014      |
| GC Column:  | DB-624        | ID:         | 0.25 (r | mm) Dilution Factor: | 1.0             |
| Soil Extra  | ct Volume:    |             | (1      | ıL) Soil Aliquot Vol | ume: (uL)       |
| Purge Volum | me: 10.0      |             | (r      | nL)                  |                 |

| CAS NO.     | COMPOUND                | CONCENTRATION UNITS: (ug/L or ug/Kg) ug/Kg | Q |
|-------------|-------------------------|--------------------------------------------|---|
| 1634-04-4   | Methyl tert-butyl ether | 4.3                                        | U |
| 71-43-2     | Benzene                 | 3.5                                        | J |
| 108-88-3    | Toluene                 | 1.6                                        | J |
| 100-41-4    | Ethylbenzene            | 0.71                                       | J |
| 179601-23-1 | m,p-Xylene              | 6.5                                        |   |
| 95-47-6     | o-Xylene                | 4.8                                        |   |
| 1330-20-7   | Xylene (Total)          | 11                                         |   |
| 98-82-8     | Isopropylbenzene        | 4.3                                        | U |
| 103-65-1    | n-Propylbenzene         | 4.3                                        | U |
| 108-67-8    | 1,3,5-Trimethylbenzene  | 5.2                                        |   |
| 98-06-6     | tert-Butylbenzene       | 4.3                                        | U |
| 95-63-6     | 1,2,4-Trimethylbenzene  | 3.9                                        | J |
| 135-98-8    | sec-Butylbenzene        | 4.3                                        | U |
| 99-87-6     | 4-Isopropyltoluene      | 4.3                                        | U |
| 104-51-8    | n-Butylbenzene          | 4.3                                        | U |
| 91-20-3     | Naphthalene             | 31                                         |   |

| EPA  | SAMPLE | NO. |
|------|--------|-----|
| TRIP | BLANK  |     |
|      |        |     |

| Lab Name: SPECTRUM ANALY | TICAL, IN | C.    |       | Contract:        |                 |    |
|--------------------------|-----------|-------|-------|------------------|-----------------|----|
| Lab Code: MITKEM         | Case No.: | N1243 |       | Mod. Ref No.:    | SDG No.: SN1243 |    |
| Matrix: (SOIL/SED/WATER) | WATER     |       |       | Lab Sample ID:   | N1243-05A       |    |
| Sample wt/vol: 5.0       | 0 (g/mL)  | ML    |       | Lab File ID:     | V8D6390.D       |    |
| Level: (TRACE/LOW/MED)   | LOW       |       |       | Date Received:   | 07/18/2014      |    |
| % Moisture: not dec.     |           |       |       | Date Analyzed:   | 07/25/2014      |    |
| GC Column: DB-624        | ID:       | 0.25  | (mm)  | Dilution Factor: | 1.0             |    |
| Soil Extract Volume:     |           |       | (uL)  | Soil Aliquot Vol | ume: (u:        | L) |
| Purge Volume: 5 0        |           |       | (mT.) |                  |                 |    |

| CAS NO.     | COMPOUND                | CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L | Q |
|-------------|-------------------------|-------------------------------------------|---|
| 1634-04-4   | Methyl tert-butyl ether | 5.0                                       | U |
| 71-43-2     | Benzene                 | 5.0                                       | U |
| 108-88-3    | Toluene                 | 5.0                                       | U |
| 100-41-4    | Ethylbenzene            | 5.0                                       | U |
| 179601-23-1 | m,p-Xylene              | 5.0                                       | U |
| 95-47-6     | o-Xylene                | 5.0                                       | U |
| 1330-20-7   | Xylene (Total)          | 5.0                                       | U |
| 98-82-8     | Isopropylbenzene        | 5.0                                       | U |
| 103-65-1    | n-Propylbenzene         | 5.0                                       | U |
| 108-67-8    | 1,3,5-Trimethylbenzene  | 5.0                                       | U |
| 98-06-6     | tert-Butylbenzene       | 5.0                                       | U |
| 95-63-6     | 1,2,4-Trimethylbenzene  | 5.0                                       | U |
| 135-98-8    | sec-Butylbenzene        | 5.0                                       | U |
| 99-87-6     | 4-Isopropyltoluene      | 5.0                                       | U |
| 104-51-8    | n-Butylbenzene          | 5.0                                       | U |
| 91-20-3     | Naphthalene             | 5.0                                       | U |

EPA SAMPLE NO.

| Lab Name: SPECTRUM ANAL  | YTICAL, IN | C.    |                    | Contract:        |                 |      |
|--------------------------|------------|-------|--------------------|------------------|-----------------|------|
| Lab Code: MITKEM         | Case No.:  | N1243 |                    | Mod. Ref No.:    | SDG No.: SN1243 |      |
| Matrix: (SOIL/SED/WATER) | WATER      |       |                    | Lab Sample ID:   | N1243-06A       |      |
| Sample wt/vol: 5.0       | 0 (g/mL)   | ML    |                    | Lab File ID:     | V8D6403.D       |      |
| Level: (TRACE/LOW/MED)   | LOW        |       |                    | Date Received:   | 07/18/2014      |      |
| % Moisture: not dec.     |            |       |                    | Date Analyzed:   | 07/26/2014      |      |
| GC Column: DB-624        | ID:        | 0.25  | (mm)               | Dilution Factor: | 1.0             |      |
| Soil Extract Volume:     |            |       | (uL)               | Soil Aliquot Vol | ume:            | (uL) |
| Purge Volume: 5.0        |            |       | (mT <sub>1</sub> ) |                  |                 |      |

| CAS NO.     | COMPOUND                | CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L | Q |
|-------------|-------------------------|-------------------------------------------|---|
| 1634-04-4   | Methyl tert-butyl ether | 5.0                                       | U |
| 71-43-2     | Benzene                 | 5.0                                       | U |
| 108-88-3    | Toluene                 | 5.0                                       | U |
| 100-41-4    | Ethylbenzene            | 5.0                                       | U |
| 179601-23-1 | m,p-Xylene              | 5.0                                       | U |
| 95-47-6     | o-Xylene                | 5.0                                       | U |
| 1330-20-7   | Xylene (Total)          | 5.0                                       | U |
| 98-82-8     | Isopropylbenzene        | 5.0                                       | U |
| 103-65-1    | n-Propylbenzene         | 5.0                                       | U |
| 108-67-8    | 1,3,5-Trimethylbenzene  | 5.0                                       | U |
| 98-06-6     | tert-Butylbenzene       | 5.0                                       | U |
| 95-63-6     | 1,2,4-Trimethylbenzene  | 5.0                                       | U |
| 135-98-8    | sec-Butylbenzene        | 5.0                                       | U |
| 99-87-6     | 4-Isopropyltoluene      | 5.0                                       | U |
| 104-51-8    | n-Butylbenzene          | 5.0                                       | U |
| 91-20-3     | Naphthalene             | 5.0                                       | U |

| EPA   | SAMPLE | NO. |
|-------|--------|-----|
| MB-78 | 201    |     |
|       |        |     |
|       |        |     |

| Lab Name: SPECTRUM ANA  | LYTICAL, INC. |           | Contract:         |                 |     |
|-------------------------|---------------|-----------|-------------------|-----------------|-----|
| Lab Code: MITKEM        | Case No.: N   | 11243     | Mod. Ref No.:     | SDG No.: SN1243 |     |
| Matrix: (SOIL/SED/WATER | ) SOIL        |           | Lab Sample ID:    | MB-78201        |     |
| Sample wt/vol: 5.       | 00 (g/mL) G   | 3         | Lab File ID:      | V1N0296.D       |     |
| Level: (TRACE/LOW/MED)  | LOW           |           | Date Received:    |                 |     |
| % Moisture: not dec.    | 0.0           |           | Date Analyzed:    | 07/23/2014      |     |
| GC Column: DB-624       | ID: 0         | ).25 (mm) | Dilution Factor:  | 1.0             |     |
| Soil Extract Volume:    |               | (uL)      | Soil Aliquot Volu | ume:(           | uL) |
| Purge Volume: 10.0      |               | (mL)      |                   |                 |     |

| CAS NO.     | COMPOUND                | CONCENTRATION UNITS: (ug/L or ug/Kg) ug/kg | Q |
|-------------|-------------------------|--------------------------------------------|---|
| 1634-04-4   | Methyl tert-butyl ether | 5.0                                        | U |
| 71-43-2     | Benzene                 | 5.0                                        | U |
| 108-88-3    | Toluene                 | 5.0                                        | U |
| 100-41-4    | Ethylbenzene            | 5.0                                        | U |
| 179601-23-1 | m,p-Xylene              | 5.0                                        | U |
| 95-47-6     | o-Xylene                | 5.0                                        | U |
| 1330-20-7   | Xylene (Total)          | 5.0                                        | U |
| 98-82-8     | Isopropylbenzene        | 5.0                                        | U |
| 103-65-1    | n-Propylbenzene         | 5.0                                        | U |
| 108-67-8    | 1,3,5-Trimethylbenzene  | 5.0                                        | U |
| 98-06-6     | tert-Butylbenzene       | 5.0                                        | U |
| 95-63-6     | 1,2,4-Trimethylbenzene  | 5.0                                        | U |
| 135-98-8    | sec-Butylbenzene        | 5.0                                        | U |
| 99-87-6     | 4-Isopropyltoluene      | 5.0                                        | U |
| 104-51-8    | n-Butylbenzene          | 5.0                                        | U |
| 91-20-3     | Naphthalene             | 5.0                                        | U |

| EPA   | SAMPLE | NO. |
|-------|--------|-----|
| MB-78 | 3256   |     |
|       |        |     |
|       |        |     |

| Lab Name: SPECTRUM ANA  | LYTICAL, IN | С.    |                    | Contract:        |                 |     |
|-------------------------|-------------|-------|--------------------|------------------|-----------------|-----|
| Lab Code: MITKEM        | Case No.:   | N1243 |                    | Mod. Ref No.:    | SDG No.: SN1243 |     |
| Matrix: (SOIL/SED/WATER | WATER       |       |                    | Lab Sample ID:   | MB-78256        |     |
| Sample wt/vol: 5.       | 00 (g/mL)   | ML    |                    | Lab File ID:     | V8D6388.D       |     |
| Level: (TRACE/LOW/MED)  | LOW         |       |                    | Date Received:   |                 |     |
| % Moisture: not dec.    |             |       |                    | Date Analyzed:   | 07/25/2014      |     |
| GC Column: DB-624       | ID:         | 0.25  | (mm)               | Dilution Factor: | 1.0             |     |
| Soil Extract Volume:    |             |       | (uL)               | Soil Aliquot Vol | ume: (uI        | ( ت |
| Purge Volume: 5.0       |             |       | (mT <sub>1</sub> ) |                  |                 |     |

| CAS NO.     | COMPOUND                | CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L | Q |
|-------------|-------------------------|-------------------------------------------|---|
| 1634-04-4   | Methyl tert-butyl ether | 1.0                                       | U |
| 71-43-2     | Benzene                 | 1.0                                       | U |
| 108-88-3    | Toluene                 | 1.0                                       | U |
| 100-41-4    | Ethylbenzene            | 1.0                                       | U |
| 179601-23-1 | m,p-Xylene              | 1.0                                       | U |
| 95-47-6     | o-Xylene                | 1.0                                       | U |
| 1330-20-7   | Xylene (Total)          | 1.0                                       | U |
| 98-82-8     | Isopropylbenzene        | 1.0                                       | U |
| 103-65-1    | n-Propylbenzene         | 1.0                                       | U |
| 108-67-8    | 1,3,5-Trimethylbenzene  | 1.0                                       | U |
| 98-06-6     | tert-Butylbenzene       | 1.0                                       | U |
| 95-63-6     | 1,2,4-Trimethylbenzene  | 1.0                                       | U |
| 135-98-8    | sec-Butylbenzene        | 1.0                                       | U |
| 99-87-6     | 4-Isopropyltoluene      | 1.0                                       | U |
| 104-51-8    | n-Butylbenzene          | 1.0                                       | U |
| 91-20-3     | Naphthalene             | 1.0                                       | U |

| EPA   | SAMPLE | NO. |
|-------|--------|-----|
| MB-78 | 272    |     |
|       |        |     |
|       |        |     |

| Lab Name: SPECTRUM ANAL  | YTICAL, IN | C.      | Contract:           |                 |
|--------------------------|------------|---------|---------------------|-----------------|
| Lab Code: MITKEM         | Case No.:  | N1243   | Mod. Ref No.:       | SDG No.: SN1243 |
| Matrix: (SOIL/SED/WATER) | SOIL       |         | Lab Sample ID:      | MB-78272        |
| Sample wt/vol: 5.0       | 00 (g/mL)  | G       | Lab File ID:        | V8D6418.D       |
| Level: (TRACE/LOW/MED)   | MED        |         | Date Received:      |                 |
| % Moisture: not dec.     | 0.0        |         | Date Analyzed:      | 07/28/2014      |
| GC Column: DB-624        | ID:        | 0.25 (m | m) Dilution Factor: | 1.0             |
| Soil Extract Volume: 50  | 00         | (u      | L) Soil Aliquot Vol | ume: 100.00 (uL |
| Purge Volume: 5 0        |            | (m      | Τ.)                 |                 |

| CAS NO.    | COMPOUND                | CONCENTRATION UNITS: (ug/L or ug/Kg) ug/kg | Q |
|------------|-------------------------|--------------------------------------------|---|
| 1634-04-4  | Methyl tert-butyl ether | 250                                        | U |
| 71-43-2    | Benzene                 | 250                                        | U |
| 108-88-3   | Toluene                 | 250                                        | U |
| 100-41-4   | Ethylbenzene            | 250                                        | U |
| 79601-23-1 | m,p-Xylene              | 250                                        | U |
| 95-47-6    | o-Xylene                | 250                                        | U |
| 1330-20-7  | Xylene (Total)          | 250                                        | U |
| 98-82-8    | Isopropylbenzene        | 250                                        | U |
| 103-65-1   | n-Propylbenzene         | 250                                        | U |
| 108-67-8   | 1,3,5-Trimethylbenzene  | 250                                        | U |
| 98-06-6    | tert-Butylbenzene       | 250                                        | U |
| 95-63-6    | 1,2,4-Trimethylbenzene  | 250                                        | U |
| 135-98-8   | sec-Butylbenzene        | 250                                        | U |
| 99-87-6    | 4-Isopropyltoluene      | 250                                        | U |
| 104-51-8   | n-Butylbenzene          | 250                                        | U |
| 91-20-3    | Naphthalene             | 250                                        | U |

| EPA   | SAMPLE | NO. |
|-------|--------|-----|
| MB-78 | 324    |     |
|       |        |     |
|       |        |     |

| Lab Name: SPECTRUM ANAI | LYTICAL, INC | 2.        | Contract:        |                 |
|-------------------------|--------------|-----------|------------------|-----------------|
| Lab Code: MITKEM        | Case No.:    | N1243     | Mod. Ref No.:    | SDG No.: SN1243 |
| Matrix: (SOIL/SED/WATER | ) SOIL       |           | Lab Sample ID:   | MB-78324        |
| Sample wt/vol: 5.0      | 00 (g/mL)    | G         | Lab File ID:     | V1N0408.D       |
| Level: (TRACE/LOW/MED)  | LOW          |           | Date Received:   |                 |
| % Moisture: not dec.    | 0.0          |           | Date Analyzed:   | 07/30/2014      |
| GC Column: DB-624       | ID:          | 0.25 (mm) | Dilution Factor: | 1.0             |
| Soil Extract Volume:    |              | (uL)      | Soil Aliquot Vol | ume: (uL        |
| Purge Volume: 10.0      |              | (mL)      |                  |                 |

| CAS NO.     | COMPOUND                | CONCENTRATION UNITS: (ug/L or ug/Kg) ug/Kg | Q |
|-------------|-------------------------|--------------------------------------------|---|
| 1634-04-4   | Methyl tert-butyl ether | 5.0                                        | U |
| 71-43-2     | Benzene                 | 5.0                                        | U |
| 108-88-3    | Toluene                 | 5.0                                        | U |
| 100-41-4    | Ethylbenzene            | 5.0                                        | U |
| 179601-23-1 | m,p-Xylene              | 5.0                                        | U |
| 95-47-6     | o-Xylene                | 5.0                                        | U |
| 1330-20-7   | Xylene (Total)          | 5.0                                        | U |
| 98-82-8     | Isopropylbenzene        | 5.0                                        | U |
| 103-65-1    | n-Propylbenzene         | 5.0                                        | U |
| 108-67-8    | 1,3,5-Trimethylbenzene  | 5.0                                        | U |
| 98-06-6     | tert-Butylbenzene       | 5.0                                        | U |
| 95-63-6     | 1,2,4-Trimethylbenzene  | 5.0                                        | U |
| 135-98-8    | sec-Butylbenzene        | 5.0                                        | U |
| 99-87-6     | 4-Isopropyltoluene      | 5.0                                        | U |
| 104-51-8    | n-Butylbenzene          | 5.0                                        | U |
| 91-20-3     | Naphthalene             | 5.0                                        | U |

| EPA   | SAMPLE | NO. |
|-------|--------|-----|
| LCS-7 | 8201   |     |
|       |        |     |

| Lab Name: SPECTRUM ANA  | LYTICAL, IN | С.       | Contract:          |                 |
|-------------------------|-------------|----------|--------------------|-----------------|
| Lab Code: MITKEM        | Case No.:   | N1243    | Mod. Ref No.:      | SDG No.: SN1243 |
| Matrix: (SOIL/SED/WATER | SOIL        |          | Lab Sample ID:     | LCS-78201       |
| Sample wt/vol: 5.       | 00 (g/mL)   | G        | Lab File ID:       | V1N0293.D       |
| Level: (TRACE/LOW/MED)  | LOW         |          | Date Received:     |                 |
| % Moisture: not dec.    | 0.0         |          | Date Analyzed:     | 07/23/2014      |
| GC Column: DB-624       | ID:         | 0.25 (mm | ) Dilution Factor: | 1.0             |
| Soil Extract Volume:    |             | (uL      | ) Soil Aliquot Vol | ume: (uL)       |
| Purge Volume: 10 0      |             | (mT.     | )                  |                 |

| CAS NO.     | COMPOUND                | CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG | Q |  |
|-------------|-------------------------|--------------------------------------------|---|--|
| 1634-04-4   | Methyl tert-butyl ether | 58                                         | ľ |  |
| 71-43-2     | Benzene                 | 56                                         | ľ |  |
| 108-88-3    | Toluene                 | 56                                         |   |  |
| 100-41-4    | Ethylbenzene            | 56                                         |   |  |
| 179601-23-1 | m,p-Xylene              | 110                                        |   |  |
| 95-47-6     | o-Xylene                | 56                                         |   |  |
| 1330-20-7   | Xylene (Total)          | 170                                        |   |  |
| 98-82-8     | Isopropylbenzene        | 58                                         |   |  |
| 103-65-1    | n-Propylbenzene         | 58                                         |   |  |
| 108-67-8    | 1,3,5-Trimethylbenzene  | 58                                         |   |  |
| 98-06-6     | tert-Butylbenzene       | 56                                         |   |  |
| 95-63-6     | 1,2,4-Trimethylbenzene  | 58                                         |   |  |
| 135-98-8    | sec-Butylbenzene        | 58                                         |   |  |
| 99-87-6     | 4-Isopropyltoluene      | 57                                         |   |  |
| 104-51-8    | n-Butylbenzene          | 58                                         |   |  |
| 91-20-3     | Naphthalene             | 53                                         |   |  |

| EPA   | SAMPLE | NO. |
|-------|--------|-----|
| LCS-7 | 8256   |     |
|       |        |     |
|       |        |     |

| Lab Name: SPECTRUM ANA  | LYTICAL, IN | С.    |       | Contract:        |                 |     |
|-------------------------|-------------|-------|-------|------------------|-----------------|-----|
| Lab Code: MITKEM        | Case No.:   | N1243 |       | Mod. Ref No.:    | SDG No.: SN1243 |     |
| Matrix: (SOIL/SED/WATER | WATER       |       |       | Lab Sample ID:   | LCS-78256       |     |
| Sample wt/vol: 5.       | 00 (g/mL)   | ML    |       | Lab File ID:     | V8D6385.D       |     |
| Level: (TRACE/LOW/MED)  | LOW         |       |       | Date Received:   |                 |     |
| % Moisture: not dec.    |             |       |       | Date Analyzed:   | 07/25/2014      |     |
| GC Column: DB-624       | ID:         | 0.25  | (mm)  | Dilution Factor: | 1.0             |     |
| Soil Extract Volume: _  |             |       | (uL)  | Soil Aliquot Vol | ume: (uI        | ( د |
| Purge Volume: 5 0       |             |       | (mT.) |                  |                 |     |

| CAS NO.     | COMPOUND                | CONCENTRATION UNITS: (ug/L or ug/Kg) ug/L | Q |  |
|-------------|-------------------------|-------------------------------------------|---|--|
| 1634-04-4   | Methyl tert-butyl ether | 49                                        |   |  |
| 71-43-2     | Benzene                 | 47                                        |   |  |
| 108-88-3    | Toluene                 | 47                                        |   |  |
| 100-41-4    | Ethylbenzene            | 50                                        |   |  |
| 179601-23-1 | m,p-Xylene              | 100                                       |   |  |
| 95-47-6     | o-Xylene                | 50                                        |   |  |
| 1330-20-7   | Xylene (Total)          | 150                                       |   |  |
| 98-82-8     | Isopropylbenzene        | 47                                        |   |  |
| 103-65-1    | n-Propylbenzene         | 50                                        |   |  |
| 108-67-8    | 1,3,5-Trimethylbenzene  | 48                                        |   |  |
| 98-06-6     | tert-Butylbenzene       | 45                                        |   |  |
| 95-63-6     | 1,2,4-Trimethylbenzene  | 50                                        |   |  |
| 135-98-8    | sec-Butylbenzene        | 49                                        |   |  |
| 99-87-6     | 4-Isopropyltoluene      | 51                                        |   |  |
| 104-51-8    | n-Butylbenzene          | 47                                        |   |  |
| 91-20-3     | Naphthalene             | 40                                        |   |  |

| EPA   | SAMPLE | NO. |
|-------|--------|-----|
| LCS-7 | 8272   |     |
|       |        |     |

| Lab Name: SPECTRUM ANAL | LYTICAL, IN | C.      | Contract:           |                 |
|-------------------------|-------------|---------|---------------------|-----------------|
| Lab Code: MITKEM        | Case No.:   | N1243   | Mod. Ref No.:       | SDG No.: SN1243 |
| Matrix: (SOIL/SED/WATER | ) SOIL      |         | Lab Sample ID:      | LCS-78272       |
| Sample wt/vol: 5.       | 00 (g/mL)   | G       | Lab File ID:        | V8D6414.D       |
| Level: (TRACE/LOW/MED)  | MED         |         | Date Received:      |                 |
| % Moisture: not dec.    | 0.0         |         | Date Analyzed:      | 07/28/2014      |
| GC Column: DB-624       | ID:         | 0.25 (m | m) Dilution Factor: | 1.0             |
| Soil Extract Volume: 50 | 000         | (u      | L) Soil Aliquot Vol | ume: 100.00 (uL |
| Purge Volume: 5.0       |             | (m      | L)                  |                 |

| CAS NO.     | COMPOUND                | CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG | Q |  |
|-------------|-------------------------|--------------------------------------------|---|--|
| 1634-04-4   | Methyl tert-butyl ether | 2400                                       |   |  |
| 71-43-2     | Benzene                 | 2500                                       |   |  |
| 108-88-3    | Toluene                 | 2500                                       |   |  |
| 100-41-4    | Ethylbenzene            | 2700                                       |   |  |
| 179601-23-1 | m,p-Xylene              | 5300                                       |   |  |
| 95-47-6     | o-Xylene                | 2600                                       |   |  |
| 1330-20-7   | Xylene (Total)          | 8000                                       |   |  |
| 98-82-8     | Isopropylbenzene        | 2500                                       |   |  |
| 103-65-1    | n-Propylbenzene         | 2600                                       |   |  |
| 108-67-8    | 1,3,5-Trimethylbenzene  | 2600                                       |   |  |
| 98-06-6     | tert-Butylbenzene       | 2700                                       |   |  |
| 95-63-6     | 1,2,4-Trimethylbenzene  | 2600                                       |   |  |
| 135-98-8    | sec-Butylbenzene        | 2700                                       |   |  |
| 99-87-6     | 4-Isopropyltoluene      | 2800                                       |   |  |
| 104-51-8    | n-Butylbenzene          | 2600                                       |   |  |
| 91-20-3     | Naphthalene             | 2000                                       |   |  |

| EPA   | SAMPLE | NO. |
|-------|--------|-----|
| LCS-7 | 8324   |     |
|       |        |     |

| Lab Name: SPECTRUM ANA  | LYTICAL, IN | С.        | Contract:        |                 |
|-------------------------|-------------|-----------|------------------|-----------------|
| Lab Code: MITKEM        | Case No.:   | N1243     | Mod. Ref No.:    | SDG No.: SN1243 |
| Matrix: (SOIL/SED/WATER | ) SOIL      |           | Lab Sample ID:   | LCS-78324       |
| Sample wt/vol: 5.       | 00 (g/mL)   | G         | Lab File ID:     | V1N0405.D       |
| Level: (TRACE/LOW/MED)  | LOW         |           | Date Received:   |                 |
| % Moisture: not dec.    | 0.0         |           | Date Analyzed:   | 07/30/2014      |
| GC Column: DB-624       | ID:         | 0.25 (mm) | Dilution Factor: | 1.0             |
| Soil Extract Volume:    |             | (uL)      | Soil Aliquot Vol | ume: (uL)       |
| Purge Volume: 10 0      |             | (mT,)     |                  |                 |

| CAS NO.     | COMPOUND                | CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG | Q |
|-------------|-------------------------|--------------------------------------------|---|
| 1634-04-4   | Methyl tert-butyl ether | 52                                         | ľ |
| 71-43-2     | Benzene                 | 52                                         |   |
| 108-88-3    | Toluene                 | 52                                         | ľ |
| 100-41-4    | Ethylbenzene            | 52                                         | ľ |
| 179601-23-1 | m,p-Xylene              | 100                                        |   |
| 95-47-6     | o-Xylene                | 51                                         | ľ |
| 1330-20-7   | Xylene (Total)          | 150                                        |   |
| 98-82-8     | Isopropylbenzene        | 52                                         |   |
| 103-65-1    | n-Propylbenzene         | 53                                         | ľ |
| 108-67-8    | 1,3,5-Trimethylbenzene  | 53                                         | ľ |
| 98-06-6     | tert-Butylbenzene       | 51                                         | ľ |
| 95-63-6     | 1,2,4-Trimethylbenzene  | 53                                         | ľ |
| 135-98-8    | sec-Butylbenzene        | 53                                         |   |
| 99-87-6     | 4-Isopropyltoluene      | 51                                         |   |
| 104-51-8    | n-Butylbenzene          | 53                                         |   |
| 91-20-3     | Naphthalene             | 48                                         |   |

| EPA   | SAMPLE | NO. |
|-------|--------|-----|
| LCSD- | 78256  |     |
|       |        |     |

| Lab Name: SPECT  | RUM ANALY  | TICAL, IN | С.    |      | Contract:        |           |          |        |
|------------------|------------|-----------|-------|------|------------------|-----------|----------|--------|
| Lab Code: MITKE  | <u>M</u> C | ase No.:  | N1243 |      | Mod. Ref No.:    |           | SDG No.: | SN1243 |
| Matrix: (SOIL/SE | D/WATER)   | WATER     |       |      | Lab Sample ID:   | LCSD-7825 | 6        |        |
| Sample wt/vol:   | 5.00       | (g/mL)    | ML    |      | Lab File ID:     | V8D6386.D | ı        |        |
| Level: (TRACE/LO | W/MED) I   | WO        |       |      | Date Received:   |           |          |        |
| % Moisture: not  | dec.       |           |       |      | Date Analyzed:   | 07/25/201 | 4        |        |
| GC Column: DB-6  | 24         | ID:       | 0.25  | (mm) | Dilution Factor: | 1.0       |          |        |
| Soil Extract Vol | .ume:      |           |       | (uL) | Soil Aliquot Vol | ume:      |          | (uL)   |
| Purge Volume: 5  | 5.0        |           |       | (mL) |                  |           |          |        |

| CAS NO.     | COMPOUND                | CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L | Q |
|-------------|-------------------------|-------------------------------------------|---|
| 1634-04-4   | Methyl tert-butyl ether | 51                                        |   |
| 71-43-2     | Benzene                 | 49                                        |   |
| 108-88-3    | Toluene                 | 48                                        |   |
| 100-41-4    | Ethylbenzene            | 51                                        |   |
| 179601-23-1 | m,p-Xylene              | 100                                       |   |
| 95-47-6     | o-Xylene                | 51                                        |   |
| 1330-20-7   | Xylene (Total)          | 150                                       |   |
| 98-82-8     | Isopropylbenzene        | 47                                        |   |
| 103-65-1    | n-Propylbenzene         | 47                                        |   |
| 108-67-8    | 1,3,5-Trimethylbenzene  | 47                                        |   |
| 98-06-6     | tert-Butylbenzene       | 45                                        |   |
| 95-63-6     | 1,2,4-Trimethylbenzene  | 49                                        |   |
| 135-98-8    | sec-Butylbenzene        | 48                                        |   |
| 99-87-6     | 4-Isopropyltoluene      | 50                                        |   |
| 104-51-8    | n-Butylbenzene          | 46                                        |   |
| 91-20-3     | Naphthalene             | 39                                        |   |

| EPA  | SAMPLE | NO. |
|------|--------|-----|
| LCSD | -78324 |     |
|      |        |     |

| Lab Name: SPECTRUM ANA  | LYTICAL, IN | C.        | Contract:        |                 |
|-------------------------|-------------|-----------|------------------|-----------------|
| Lab Code: MITKEM        | Case No.:   | N1243     | Mod. Ref No.:    | SDG No.: SN1243 |
| Matrix: (SOIL/SED/WATER | SOIL        |           | Lab Sample ID:   | LCSD-78324      |
| Sample wt/vol: 5.       | 00 (g/mL)   | G         | Lab File ID:     | V1N0406.D       |
| Level: (TRACE/LOW/MED)  | LOW         |           | Date Received:   |                 |
| % Moisture: not dec.    | 0.0         |           | Date Analyzed:   | 07/30/2014      |
| GC Column: DB-624       | ID:         | 0.25 (mm) | Dilution Factor: | 1.0             |
| Soil Extract Volume:    |             | (uL)      | Soil Aliquot Vol | ume: (uL)       |
| Purge Volume: 10.0      |             | (mL       | )                |                 |

| CAS NO.     | COMPOUND                | CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG | Q |
|-------------|-------------------------|--------------------------------------------|---|
| 1634-04-4   | Methyl tert-butyl ether | 55                                         |   |
| 71-43-2     | Benzene                 | 55                                         |   |
| 108-88-3    | Toluene                 | 56                                         |   |
| 100-41-4    | Ethylbenzene            | 54                                         |   |
| 179601-23-1 | m,p-Xylene              | 110                                        |   |
| 95-47-6     | o-Xylene                | 53                                         |   |
| 1330-20-7   | Xylene (Total)          | 160                                        |   |
| 98-82-8     | Isopropylbenzene        | 56                                         |   |
| 103-65-1    | n-Propylbenzene         | 54                                         |   |
| 108-67-8    | 1,3,5-Trimethylbenzene  | 57                                         |   |
| 98-06-6     | tert-Butylbenzene       | 54                                         |   |
| 95-63-6     | 1,2,4-Trimethylbenzene  | 56                                         |   |
| 135-98-8    | sec-Butylbenzene        | 55                                         |   |
| 99-87-6     | 4-Isopropyltoluene      | 53                                         |   |
| 104-51-8    | n-Butylbenzene          | 56                                         |   |
| 91-20-3     | Naphthalene             | 47                                         |   |

#### 2B - FORM II VOA-2

#### WATER VOLATILE DEUTERATED MONITORING COMPOUND RECOVERY

Lab Name: SPECTRUM ANALYTICAL, INC. Contract:

Lab Code: MITKEM Case No.: N1243 Mod. Ref No.: SDG No.: SN1243

Level: (TRACE or LOW) LOW

|    | EPA         | VDMC1    | VDMC2   | VDMC3   | VDMC4   |    | ОТ  |
|----|-------------|----------|---------|---------|---------|----|-----|
|    | SAMPLE NO.  | (DBFM) # | (DCE) # | (TOL) # | (BFB) # | OT | IJΤ |
| 01 | LCS-78256   | 100      | 99      | 101     | 99      |    | 0   |
| 02 | LCSD-78256  | 102      | 101     | 100     | 104     |    | 0   |
| 03 | MB-78256    | 105      | 106     | 100     | 89      |    | 0   |
| 04 | TRIP BLANK  | 103      | 105     | 101     | 85      |    | 0   |
| 05 | EQUIP BLANK | 108      | 108     | 98      | 87      |    | 0   |

|       |                               | QC LIMITS |
|-------|-------------------------------|-----------|
| VDMC1 | (DBFM) Dibromofluoromethane   | (85-115)  |
| VDMC2 | (DCE) = 1,2-Dichloroethane-d4 | (70-120)  |
| VDMC3 | (TOL) = Toluene-d8            | (85-120)  |
| VDMC4 | (BFB) = Bromofluorobenzene    | (75-120)  |

<sup>#</sup> Column to be used to flag recovery values

som14.07.15.0901

Page 1 of 1 SW846

N1243 Page 28 of 103

<sup>\*</sup> Values outside of contract required QC limits

#### 2D - FORM II VOA-4

#### SOIL VOLATILE DEUTERATED MONITORING COMPOUND RECOVERY

Lab Name: SPECTRUM ANALYTICAL, INC. Contract:

Lab Code: MITKEM Case No.: N1243 Mod. Ref No.: SDG No.: SN1243

Level: (LOW/MED) LOW

|    | EPA        | VDMC1    | VDMC2   | VDMC3   | VDMC4   | TOT |
|----|------------|----------|---------|---------|---------|-----|
|    | SAMPLE NO. | (DBFM) # | (DCE) # | (TOL) # | (BFB) # | OUT |
| 01 | LCS-78201  | 106      | 103     | 101     | 101     | 0   |
| 02 | MB-78201   | 109      | 103     | 104     | 96      | 0   |
| 03 | SED-2      | 102      | 108     | 100     | 100     | 0   |
| 04 | SED-4      | 116      | 110     | 100     | 104     | 0   |
| 05 | LCS-78324  | 107      | 100     | 103     | 103     | 0   |
| 06 | LCSD-78324 | 108      | 101     | 102     | 103     | 0   |
| 07 | MB-78324   | 107      | 92      | 105     | 99      | 0   |
| 08 | SED-3      | 110      | 107     | 106     | 100     | 0   |
| 09 | SED-31     | 94       | 102     | 105     | 103     | 0   |

|       |                               | QC LIMITS |
|-------|-------------------------------|-----------|
| VDMC1 | (DBFM) Dibromofluoromethane   | (76-128)  |
| VDMC2 | (DCE) = 1,2-Dichloroethane-d4 | (88-110)  |
| VDMC3 | (TOL) = Toluene-d8            | (85-115)  |
| VDMC4 | (BFB) = Bromofluorobenzene    | (85-120)  |

<sup>#</sup> Column to be used to flag recovery values

som14.07.15.0901

Page 1 of 1 SW846

N1243 Page 29 of 103

<sup>\*</sup> Values outside of contract required QC limits

#### 2D - FORM II VOA-4

#### SOIL VOLATILE DEUTERATED MONITORING COMPOUND RECOVERY

Lab Name: SPECTRUM ANALYTICAL, INC. Contract:

Lab Code: MITKEM Case No.: N1243 Mod. Ref No.: SDG No.: SN1243

Level: (LOW/MED) MED

|    | EPA        | VDMC1    | VDMC2   | VDMC3   | VDMC4   |   | TOT |
|----|------------|----------|---------|---------|---------|---|-----|
|    | SAMPLE NO. | (DBFM) # | (DCE) # | (TOL) # | (BFB) # | : | OUT |
| 01 | LCS-78272  | 101      | 94      | 100     | 102     |   | 0   |
| 02 | MB-78272   | 105      | 101     | 100     | 88      |   | (   |
| 03 | SED-2ME    | 100      | 90      | 106     | 90      |   | (   |
| 04 | SED-4ME    | 104      | 100     | 100     | 93      |   | (   |

|       |                               | QC LIMITS |
|-------|-------------------------------|-----------|
| VDMC1 | (DBFM) Dibromofluoromethane   | (76-128)  |
| VDMC2 | (DCE) = 1,2-Dichloroethane-d4 | (88-110)  |
| VDMC3 | (TOL) = Toluene-d8            | (85-115)  |
| VDMC4 | (BFB) = Bromofluorobenzene    | (85-120)  |

# Column to be used to flag recovery values

\* Values outside of contract required QC limits

som14.07.15.0901

Page 1 of 1 SW846

N1243 Page 30 of 103

# 3 - FORM III SOIL LABORATORY CONTROL SAMPLE RECOVERY

EPA SAMPLE NO.

LCS-78201

| Lab Name:  | SPECTRUM A | ANALYTICAL, IN | C.    | Contract:          |            |        |
|------------|------------|----------------|-------|--------------------|------------|--------|
| Lab Code:  | MITKEM     | Case No.:      | N1243 | Mod. Ref No.:      | SDG No.:   | SN1243 |
| Lab Sample | ID: LCS    | -78201         |       | LCS Lot No.:       |            |        |
| Date Extra | cted: 07/2 | 23/2014        |       | Date Analyzed (1): | 07/23/2014 |        |

|                         | SPIKE    | SAMPLE        | LCS           |          |   | QC.      |
|-------------------------|----------|---------------|---------------|----------|---|----------|
| COMPOUND                | ADDED    | CONCENTRATION | CONCENTRATION | LCS %REC | # | LIMITS   |
|                         |          | '             |               |          |   | REC.     |
| Methyl tert-butyl ether | 50.0000  | 0.0000        | 58.0314       | 116      |   | 75 - 126 |
| Benzene                 | 50.0000  | 0.0000        | 55.9449       | 112      |   | 75 - 125 |
| Toluene                 | 50.0000  | 0.0000        | 56.4418       | 113      |   | 70 - 125 |
| Ethylbenzene            | 50.0000  | 0.0000        | 55.5464       | 111      |   | 75 - 125 |
| m,p-Xylene              | 100.0000 | 0.0000        | 111.3677      | 111      |   | 80 - 125 |
| o-Xylene                | 50.0000  | 0.0000        | 56.1203       | 112      |   | 75 - 125 |
| Xylene (Total)          | 150.0000 | 0.0000        | 167.4880      | 112      |   | 83 - 125 |
| Isopropylbenzene        | 50.0000  | 0.0000        | 57.5275       | 115      |   | 75 - 130 |
| n-Propylbenzene         | 50.0000  | 0.0000        | 57.9570       | 116      |   | 65 - 135 |
| 1,3,5-Trimethylbenzene  | 50.0000  | 0.0000        | 57.6067       | 115      |   | 65 - 135 |
| tert-Butylbenzene       | 50.0000  | 0.0000        | 55.8053       | 112      |   | 65 - 130 |
| 1,2,4-Trimethylbenzene  | 50.0000  | 0.0000        | 57.7798       | 116      |   | 65 - 135 |
| sec-Butylbenzene        | 50.0000  | 0.0000        | 57.8134       | 116      |   | 65 - 130 |
| 4-Isopropyltoluene      | 50.0000  | 0.0000        | 56.5779       | 113      |   | 75 - 135 |
| n-Butylbenzene          | 50.0000  | 0.0000        | 58.1539       | 116      |   | 65 - 140 |
| Naphthalene             | 50.0000  | 0.0000        | 52.8467       | 106      |   | 40 - 125 |

| Spike Recovery: 0 out of 16 outside limits  COMMENTS: | * Values outside | of QC limits |                |  |
|-------------------------------------------------------|------------------|--------------|----------------|--|
| COMMENTS:                                             | Spike Recovery:  | out of       | outside limits |  |
|                                                       | COMMENTS:        |              |                |  |

# 3 - FORM III WATER LABORATORY CONTROL SAMPLE RECOVERY

EPA SAMPLE NO.

LCS-78256

| Lab  | Name:   | SPECTR | RUM ANALYTICAL, IN | IC.   | Contract:          |            |        |
|------|---------|--------|--------------------|-------|--------------------|------------|--------|
| Lab  | Code:   | MITKEM | Case No.:          | N1243 | Mod. Ref No.:      | SDG No.:   | SN1243 |
| Lab  | Sample  | ID:    | LCS-78256          |       | LCS Lot No.:       |            |        |
| Date | e Extra | cted:  | 07/25/2014         |       | Date Analyzed (1): | 07/25/2014 |        |

|                         | SPIKE    | SAMPLE        | LCS           |          |   | QC.      |
|-------------------------|----------|---------------|---------------|----------|---|----------|
| COMPOUND                | ADDED    | CONCENTRATION | CONCENTRATION | LCS %REC | # | LIMITS   |
|                         |          | '             |               |          |   | REC.     |
| Methyl tert-butyl ether | 50.0000  | 0.0000        | 48.7973       | 98       |   | 65 - 125 |
| Benzene                 | 50.0000  | 0.0000        | 46.7525       | 94       |   | 80 - 120 |
| Toluene                 | 50.0000  | 0.0000        | 46.5610       | 93       |   | 75 - 120 |
| Ethylbenzene            | 50.0000  | 0.0000        | 49.8761       | 100      |   | 75 - 125 |
| m,p-Xylene              | 100.0000 | 0.0000        | 101.0517      | 101      |   | 75 - 130 |
| o-Xylene                | 50.0000  | 0.0000        | 50.1188       | 100      |   | 80 - 120 |
| Xylene (Total)          | 150.0000 | 0.0000        | 151.1705      | 101      |   | 81 - 121 |
| Isopropylbenzene        | 50.0000  | 0.0000        | 47.4057       | 95       |   | 75 - 125 |
| n-Propylbenzene         | 50.0000  | 0.0000        | 49.7582       | 100      |   | 70 - 130 |
| 1,3,5-Trimethylbenzene  | 50.0000  | 0.0000        | 48.2398       | 96       |   | 75 - 130 |
| tert-Butylbenzene       | 50.0000  | 0.0000        | 45.3777       | 91       |   | 70 - 130 |
| 1,2,4-Trimethylbenzene  | 50.0000  | 0.0000        | 50.0519       | 100      |   | 75 - 130 |
| sec-Butylbenzene        | 50.0000  | 0.0000        | 49.2025       | 98       |   | 70 - 125 |
| 4-Isopropyltoluene      | 50.0000  | 0.0000        | 51.2153       | 102      |   | 75 - 130 |
| n-Butylbenzene          | 50.0000  | 0.0000        | 47.3397       | 95       |   | 70 - 135 |
| Naphthalene             | 50.0000  | 0.0000        | 40.0176       | 80       |   | 55 - 140 |

| Spike Recovery:0 out of16 outside limits  COMMENTS: | * Values outside | of QC limits |                |  |
|-----------------------------------------------------|------------------|--------------|----------------|--|
| COMMENTS:                                           | Spike Recovery:  | out of       | 0utside limits |  |
|                                                     | COMMENTS:        |              |                |  |

# 3 - FORM III SOIL LABORATORY CONTROL SAMPLE RECOVERY

EPA SAMPLE NO.

LCS-78272

| Lab Name:  | SPECTRUM A | ANALYTICAL, INC | C.    | Contract:          |            |        |
|------------|------------|-----------------|-------|--------------------|------------|--------|
| Lab Code:  | MITKEM     | Case No.:       | N1243 | Mod. Ref No.:      | SDG No.:   | SN1243 |
| Lab Sample | ID: LCS-   | -78272          |       | LCS Lot No.:       |            |        |
| Date Extra | cted: 07/2 | 28/2014         |       | Date Analyzed (1): | 07/28/2014 |        |

|                         | SPIKE     | SAMPLE        | LCS           |          |   | QC.      |
|-------------------------|-----------|---------------|---------------|----------|---|----------|
| COMPOUND                | ADDED     | CONCENTRATION | CONCENTRATION | LCS %REC | # | LIMITS   |
|                         |           | '             |               |          |   | REC.     |
| Methyl tert-butyl ether | 2500.0000 | 0.0000        | 2393.1155     | 96       |   | 75 - 126 |
| Benzene                 | 2500.0000 | 0.0000        | 2501.9311     | 100      |   | 75 - 125 |
| Toluene                 | 2500.0000 | 0.0000        | 2518.8018     | 101      |   | 70 - 125 |
| Ethylbenzene            | 2500.0000 | 0.0000        | 2664.5805     | 107      |   | 75 - 125 |
| m,p-Xylene              | 5000.0000 | 0.0000        | 5321.6044     | 106      |   | 80 - 125 |
| o-Xylene                | 2500.0000 | 0.0000        | 2642.1588     | 106      |   | 75 - 125 |
| Xylene (Total)          | 7500.0000 | 0.0000        | 7963.7632     | 106      |   | 75 - 125 |
| Isopropylbenzene        | 2500.0000 | 0.0000        | 2543.2892     | 102      |   | 75 - 130 |
| n-Propylbenzene         | 2500.0000 | 0.0000        | 2619.7011     | 105      |   | 65 - 135 |
| 1,3,5-Trimethylbenzene  | 2500.0000 | 0.0000        | 2568.4448     | 103      |   | 65 - 135 |
| tert-Butylbenzene       | 2500.0000 | 0.0000        | 2748.9400     | 110      |   | 65 - 130 |
| 1,2,4-Trimethylbenzene  | 2500.0000 | 0.0000        | 2643.7014     | 106      |   | 65 - 135 |
| sec-Butylbenzene        | 2500.0000 | 0.0000        | 2681.7959     | 107      |   | 65 - 130 |
| 4-Isopropyltoluene      | 2500.0000 | 0.0000        | 2756.3524     | 110      |   | 75 - 135 |
| n-Butylbenzene          | 2500.0000 | 0.0000        | 2571.9656     | 103      |   | 65 - 140 |
| Naphthalene             | 2500.0000 | 0.0000        | 1961.9411     | 78       |   | 40 - 125 |

| Spike Recovery:0 out of16 outside limits  COMMENTS: | * Values outside | of QC limits |                |  |
|-----------------------------------------------------|------------------|--------------|----------------|--|
| COMMENTS:                                           | Spike Recovery:  | out of       | 0utside limits |  |
|                                                     | COMMENTS:        |              |                |  |

# 3 - FORM III SOIL LABORATORY CONTROL SAMPLE RECOVERY

EPA SAMPLE NO.

LCS-78324

| Lab Name:  | SPECTRUM ANA | ALYTICAL, IN | C.    | Contract:          |            |        |
|------------|--------------|--------------|-------|--------------------|------------|--------|
| Lab Code:  | MITKEM       | Case No.:    | N1243 | Mod. Ref No.:      | SDG No.:   | SN1243 |
| Lab Sample | ID: LCS-78   | 3324         |       | LCS Lot No.:       |            |        |
| Date Extra | cted: 07/30/ | 2014         |       | Date Analyzed (1): | 07/30/2014 |        |

|                         | SPIKE    | SAMPLE        | LCS           |          |   | QC.      |
|-------------------------|----------|---------------|---------------|----------|---|----------|
| COMPOUND                | ADDED    | CONCENTRATION | CONCENTRATION | LCS %REC | # | LIMITS   |
|                         |          |               |               |          |   | REC.     |
| Methyl tert-butyl ether | 50.0000  | 0.0000        | 52.4975       | 105      |   | 75 - 126 |
| Benzene                 | 50.0000  | 0.0000        | 52.4628       | 105      |   | 75 - 125 |
| Toluene                 | 50.0000  | 0.0000        | 52.2846       | 105      |   | 70 - 125 |
| Ethylbenzene            | 50.0000  | 0.0000        | 51.9597       | 104      |   | 75 - 125 |
| m,p-Xylene              | 100.0000 | 0.0000        | 102.2617      | 102      |   | 80 - 125 |
| o-Xylene                | 50.0000  | 0.0000        | 50.6956       | 101      |   | 75 - 125 |
| Xylene (Total)          | 150.0000 | 0.0000        | 152.9573      | 102      |   | 83 - 125 |
| Isopropylbenzene        | 50.0000  | 0.0000        | 52.1751       | 104      |   | 75 - 130 |
| n-Propylbenzene         | 50.0000  | 0.0000        | 52.6146       | 105      |   | 65 - 135 |
| 1,3,5-Trimethylbenzene  | 50.0000  | 0.0000        | 53.4885       | 107      |   | 65 - 135 |
| tert-Butylbenzene       | 50.0000  | 0.0000        | 51.3732       | 103      |   | 65 - 130 |
| 1,2,4-Trimethylbenzene  | 50.0000  | 0.0000        | 52.8362       | 106      |   | 65 - 135 |
| sec-Butylbenzene        | 50.0000  | 0.0000        | 53.4225       | 107      |   | 65 - 130 |
| 4-Isopropyltoluene      | 50.0000  | 0.0000        | 51.3014       | 103      |   | 75 - 135 |
| n-Butylbenzene          | 50.0000  | 0.0000        | 52.6106       | 105      |   | 65 - 140 |
| Naphthalene             | 50.0000  | 0.0000        | 47.7051       | 95       |   | 40 - 125 |

| * Values outside | of QC limits |                |  |
|------------------|--------------|----------------|--|
| Spike Recovery:  | out of       | 0utside limits |  |
| COMMENTS:        |              |                |  |
|                  |              |                |  |

# 3 - FORM III WATER LABORATORY CONTROL SAMPLE DUPLICATE RECOVERY

EPA SAMPLE NO.

LCSD-78256

| Lab | Name:  | SPECTRU | M ANALYTICAL, INC. | Contract:     |          |        |
|-----|--------|---------|--------------------|---------------|----------|--------|
| Lab | Code:  | MITKEM  | Case No.: N1243    | Mod. Ref No.: | SDG No.: | SN1243 |
| Lab | Sample | ID: Lo  | CSD-78256          | LCS Lot No.:  |          |        |

|                         | SPIKE    | LCSD          |           |   |      |   | QC  | LIMITS   |
|-------------------------|----------|---------------|-----------|---|------|---|-----|----------|
|                         | ADDED    | CONCENTRATION | LCSD %REC | # | %RPD | # |     |          |
| COMPOUND                |          |               |           |   |      |   | RPD | REC.     |
| Methyl tert-butyl ether | 50.0000  | 50.6699       | 101       |   | 3    |   | 40  | 65 - 125 |
| Benzene                 | 50.0000  | 49.3138       | 99        |   | 5    |   | 40  | 80 - 120 |
| Toluene                 | 50.0000  | 48.3884       | 97        |   | 4    |   | 40  | 75 - 120 |
| Ethylbenzene            | 50.0000  | 50.6660       | 101       |   | 1    |   | 40  | 75 - 125 |
| m,p-Xylene              | 100.0000 | 101.9429      | 102       |   | 1    |   | 40  | 75 - 130 |
| o-Xylene                | 50.0000  | 51.3702       | 103       |   | 3    |   | 40  | 80 - 120 |
| Xylene (Total)          | 150.0000 | 153.3131      | 102       |   | 1    |   | 40  | 81 - 121 |
| Isopropylbenzene        | 50.0000  | 47.2297       | 94        |   | 1    |   | 40  | 75 - 125 |
| n-Propylbenzene         | 50.0000  | 46.9787       | 94        |   | 6    |   | 40  | 70 - 130 |
| 1,3,5-Trimethylbenzene  | 50.0000  | 47.3315       | 95        |   | 1    |   | 40  | 75 - 130 |
| tert-Butylbenzene       | 50.0000  | 45.4902       | 91        |   | 0    |   | 40  | 70 - 130 |
| 1,2,4-Trimethylbenzene  | 50.0000  | 49.3607       | 99        |   | 1    |   | 40  | 75 - 130 |
| sec-Butylbenzene        | 50.0000  | 47.7858       | 96        |   | 2    |   | 40  | 70 - 125 |
| 4-Isopropyltoluene      | 50.0000  | 49.5587       | 99        |   | 3    |   | 40  | 75 - 130 |
| n-Butylbenzene          | 50.0000  | 45.7066       | 91        |   | 4    |   | 40  | 70 - 135 |
| Naphthalene             | 50.0000  | 39.4217       | 79        |   | 1    |   | 40  | 55 - 140 |

 $\mbox{\tt\#}$  Column to be used to flag recovery and RPD values with an asterisk

| RPD:  | 0     | out  | of |   | 16 ( | outs: | ide | lim | its     |        |
|-------|-------|------|----|---|------|-------|-----|-----|---------|--------|
| Spike | Recov | ery: |    | 0 | out  | of    |     | 16  | outside | limits |

\* Values outside of QC limits

som14.07.15.0901

COMMENTS:

# 3 - FORM III SOIL LABORATORY CONTROL SAMPLE DUPLICATE RECOVERY

EPA SAMPLE NO.

LCSD-78324

| Lab | Name:  | SPECTE | RUM ANALYTICAL, INC | С.    | Contract:     |        |           |
|-----|--------|--------|---------------------|-------|---------------|--------|-----------|
| Lab | Code:  | MITKEN | Case No.:           | N1243 | Mod. Ref No.: | SDG No | .: SN1243 |
| Lab | Sample | ID:    | LCSD-78324          |       | LCS Lot No.:  |        |           |

|                         | SPIKE<br>ADDED | LCSD<br>CONCENTRATION | LCSD %REC  | # | %RPD = | ~   | LIMITS   |  |
|-------------------------|----------------|-----------------------|------------|---|--------|-----|----------|--|
| COMPOUND                | 112222         |                       | 2002 11120 | " | 01(12) | RPD | RPD REC. |  |
| Methyl tert-butyl ether | 50.0000        | 55.2073               | 110        |   | 5      | 40  | 75 - 126 |  |
| Benzene                 | 50.0000        | 54.7701               | 110        |   | 5      | 40  | 75 - 125 |  |
| Toluene                 | 50.0000        | 55.6975               | 111        |   | 6      | 40  | 70 - 125 |  |
| Ethylbenzene            | 50.0000        | 54.4101               | 109        |   | 5      | 40  | 75 - 125 |  |
| m,p-Xylene              | 100.0000       | 108.1744              | 108        |   | 6      | 40  | 80 - 125 |  |
| o-Xylene                | 50.0000        | 53.4062               | 107        |   | 6      | 40  | 75 - 125 |  |
| Xylene (Total)          | 150.0000       | 161.5806              | 108        |   | 6      | 40  | 83 - 125 |  |
| Isopropylbenzene        | 50.0000        | 56.2510               | 113        |   | 8      | 40  | 75 - 130 |  |
| n-Propylbenzene         | 50.0000        | 54.2693               | 109        |   | 4      | 40  | 65 - 135 |  |
| 1,3,5-Trimethylbenzene  | 50.0000        | 57.4656               | 115        |   | 7      | 40  | 65 - 135 |  |
| tert-Butylbenzene       | 50.0000        | 53.5849               | 107        |   | 4      | 40  | 65 - 130 |  |
| 1,2,4-Trimethylbenzene  | 50.0000        | 55.8537               | 112        |   | 6      | 40  | 65 - 135 |  |
| sec-Butylbenzene        | 50.0000        | 55.3657               | 111        |   | 4      | 40  | 65 - 130 |  |
| 4-Isopropyltoluene      | 50.0000        | 53.0717               | 106        |   | 3      | 40  | 75 - 135 |  |
| n-Butylbenzene          | 50.0000        | 56.3507               | 113        |   | 7      | 40  | 65 - 140 |  |
| Naphthalene             | 50.0000        | 47.4442               | 95         |   | 0      | 40  | 40 - 125 |  |

| * Values outside of QC limits            |
|------------------------------------------|
| RPD:out of16outside limits               |
| Spike Recovery: out of 16 outside limits |
| COMMENTS:                                |

# 4A - FORM IV VOA VOLATILE METHOD BLANK SUMMARY

EPA SAMPLE NO.
MB-78201

|    | EPA        | LAB       | LAB       | TIME     |
|----|------------|-----------|-----------|----------|
|    | SAMPLE NO. | SAMPLE ID | FILE ID   | ANALYZED |
| 01 | LCS-78201  | LCS-78201 | V1N0293.D | 7:56     |
| 02 | SED-2      | N1243-01C | V1N0299.D | 11:34    |
| 03 | SED-4      | N1243-03C | V1N0301.D | 12:29    |

COMMENTS:

## 4A - FORM IV VOA VOLATILE METHOD BLANK SUMMARY

EPA SAMPLE NO. MB-78324

Lab Name: SPECTRUM ANALYTICAL, INC. Contract: Lab Code: MITKEM Case No.: N1243 SDG No.: SN1243 Mod. Ref No.: Lab File ID: V1N0408.D Lab Sample ID: MB-78324 Instrument ID: V1 Matrix: (SOIL/SED/WATER) SOIL Date Analyzed: 07/30/2014 Time Analyzed: 15:14 Level: (TRACE or LOW/MED) LOW GC Column: DB-624 ID: 0.25 (mm) Heated Purge: (Y/N) Y

|    | EPA        | LAB        | LAB       | TIME     |
|----|------------|------------|-----------|----------|
|    | SAMPLE NO. | SAMPLE ID  | FILE ID   | ANALYZED |
| 01 | LCS-78324  | LCS-78324  | V1N0405.D | 13:39    |
| 02 | LCSD-78324 | LCSD-78324 | V1N0406.D | 14:07    |
| 03 | SED-3      | N1243-02C  | V1N0410.D | 16:09    |
| 04 | SED-31     | N1243-04C  | V1N0411.D | 16:37    |

COMMENTS:

## 4A - FORM IV VOA VOLATILE METHOD BLANK SUMMARY

EPA SAMPLE NO. MB-78256

Lab Name: SPECTRUM ANALYTICAL, INC. Contract: Lab Code: MITKEM Case No.: N1243 SDG No.: SN1243 Mod. Ref No.: Lab File ID: V8D6388.D Lab Sample ID: MB-78256 Instrument ID: V10 Matrix: (SOIL/SED/WATER) WATER Date Analyzed: 07/25/2014 Time Analyzed: 18:42 Level: (TRACE or LOW/MED) LOW GC Column: DB-624 ID: 0.25 (mm) Heated Purge: (Y/N) N

|    | EPA         | LAB        | LAB       | TIME     |
|----|-------------|------------|-----------|----------|
|    | SAMPLE NO.  | SAMPLE ID  | FILE ID   | ANALYZED |
| 01 | LCS-78256   | LCS-78256  | V8D6385.D | 17:19    |
| 02 | LCSD-78256  | LCSD-78256 | V8D6386.D | 17:47    |
| 03 | TRIP BLANK  | N1243-05A  | V8D6390.D | 19:37    |
| 04 | EQUIP BLANK | N1243-06A  | V8D6403.D | 1:35     |

COMMENTS:

# 4A - FORM IV VOA VOLATILE METHOD BLANK SUMMARY

EPA SAMPLE NO.
MB-78272

|    | EPA        | LAB       | LAB       | TIME     |
|----|------------|-----------|-----------|----------|
|    | SAMPLE NO. | SAMPLE ID | FILE ID   | ANALYZED |
| 01 | LCS-78272  | LCS-78272 | V8D6414.D | 11:44    |
| 02 | SED-2ME    | N1243-01D | V8D6427.D | 18:08    |
| 03 | SED-4ME    | N1243-03D | V8D6428.D | 18:35    |

COMMENTS:

#### VOLATILE INTERNAL STANDARD AREA AND RETENTION TIME SUMMARY

Lab Name: SPECTRUM ANALYTICAL, INC. Contract:

Lab Code: MITKEM Case No.: N1243 Mod. Ref No.: SDG No.: SN1243

GC Column: DB-624 ID: 0.25 (mm) Init. Calib. Date(s): 07/21/2014 07/21/2014

EPA Sample No.(VSTD#####): VSTD0501D Date Analyzed: 07/23/2014

Lab File ID (Standard): V1N0292.D Time Analyzed: 7:18

Instrument ID: V1 Heated Purge: (Y/N) Y

|    |                | IS1 (S1 ) |       | IS2 (S2 ) |       | IS3 (S3 ) |        |
|----|----------------|-----------|-------|-----------|-------|-----------|--------|
|    |                | AREA #    | RT #  | AREA #    | RT #  | AREA #    | RT #   |
|    | 12 HOUR STD    | 532462    | 4.387 | 362278    | 7.242 | 142129    | 9.822  |
|    | UPPER LIMIT    | 1064924   | 4.887 | 724556    | 7.742 | 284258    | 10.322 |
|    | LOWER LIMIT    | 266231    | 3.887 | 181139    | 6.742 | 71065     | 9.322  |
|    | EPA SAMPLE NO. |           |       |           |       |           |        |
| 01 | LCS-78201      | 536670    | 4.399 | 353842    | 7.254 | 136485    | 9.814  |
| 02 | MB-78201       | 484486    | 4.395 | 314876    | 7.251 | 107768    | 9.820  |
| 03 | SED-2          | 480818    | 4.386 | 326609    | 7.241 | 126791    | 9.811  |
| 04 | SED-4          | 459162    | 4.399 | 313460    | 7.245 | 121498    | 9.825  |

IS1 () = Fluorobenzene

IS2 () = Chlorobenzene-d5

IS3 () = 1,4-Dichlorobenzene-d4

AREA UPPER LIMIT = 200% (Low-Medium Volatiles) and 140% (Trace Volatiles) of

internal standard area

AREA LOWER LIMIT = 50% (Low-Medium Volatiles) and 60% (Trace Volatiles) of

internal standard area

RT UPPER LIMIT = +0.50 (Low-Medium Volatiles) and +0.33 (Trace Volatiles)

minutes of internal standard RT

RT LOWER LIMIT = -0.50 (Low-Medium Volatiles) and -0.33 (Trace Volatiles)

minutes of internal standard RT

# Column used to flag values outside contract required QC limits with an asterisk.

#### VOLATILE INTERNAL STANDARD AREA AND RETENTION TIME SUMMARY

Lab Name: SPECTRUM ANALYTICAL, INC. Contract:

Lab Code: MITKEM Case No.: N1243 Mod. Ref No.: SDG No.: SN1243

GC Column: DB-624 ID: 0.25 (mm) Init. Calib. Date(s): 07/21/2014 07/21/2014

EPA Sample No.(VSTD#####): VSTD0501I Date Analyzed: 07/30/2014

Lab File ID (Standard): V1N0404.D Time Analyzed: 12:59

Instrument ID: V1 Heated Purge: (Y/N) Y

|    |                | IS1 (S1 ) |       | IS2 (S2 ) |       | IS3 (S3 ) |        |
|----|----------------|-----------|-------|-----------|-------|-----------|--------|
|    |                | AREA #    | RT #  | AREA #    | RT #  | AREA #    | RT #   |
|    | 12 HOUR STD    | 527707    | 4.384 | 352785    | 7.229 | 137679    | 9.799  |
|    | UPPER LIMIT    | 1055414   | 4.884 | 705570    | 7.729 | 275358    | 10.299 |
|    | LOWER LIMIT    | 263854    | 3.884 | 176393    | 6.729 | 68840     | 9.299  |
|    | EPA SAMPLE NO. |           |       |           |       |           |        |
| 01 | LCS-78324      | 536398    | 4.390 | 352259    | 7.245 | 134595    | 9.805  |
| 02 | LCSD-78324     | 513251    | 4.384 | 338979    | 7.239 | 131405    | 9.799  |
| 03 | MB-78324       | 526979    | 4.383 | 328660    | 7.229 | 107158    | 9.809  |
| 04 | SED-3          | 471320    | 4.393 | 330988    | 7.229 | 117659    | 9.798  |
| 05 | SED-31         | 507977    | 4.399 | 326401    | 7.235 | 118682    | 9.805  |

IS1 () = Fluorobenzene

IS2 () = Chlorobenzene-d5

IS3 () = 1,4-Dichlorobenzene-d4

AREA UPPER LIMIT = 200% (Low-Medium Volatiles) and 140% (Trace Volatiles) of

internal standard area

AREA LOWER LIMIT = 50% (Low-Medium Volatiles) and 60% (Trace Volatiles) of

internal standard area

RT UPPER LIMIT = +0.50 (Low-Medium Volatiles) and +0.33 (Trace Volatiles)

minutes of internal standard RT

RT LOWER LIMIT = -0.50 (Low-Medium Volatiles) and -0.33 (Trace Volatiles)

minutes of internal standard RT

# Column used to flag values outside contract required QC limits with an asterisk.

#### VOLATILE INTERNAL STANDARD AREA AND RETENTION TIME SUMMARY

Lab Name: SPECTRUM ANALYTICAL, INC. Contract:

Lab Code: MITKEM Case No.: N1243 Mod. Ref No.: SDG No.: SN1243

GC Column: DB-624 ID: 0.25 (mm) Init. Calib. Date(s): 07/25/2014 07/25/2014

EPA Sample No.(VSTD#####): VSTD05010V Date Analyzed: 07/25/2014

Lab File ID (Standard): V8D6384.D Time Analyzed: 16:52

Instrument ID: V10 Heated Purge: (Y/N) N

|    |                | IS1 (S1 ) |       | IS2 (S2 ) |       | IS3 (S3 ) |        |
|----|----------------|-----------|-------|-----------|-------|-----------|--------|
|    |                | AREA #    | RT #  | AREA #    | RT #  | AREA #    | RT #   |
|    | 12 HOUR STD    | 674139    | 5.239 | 656043    | 8.226 | 334418    | 10.728 |
|    | UPPER LIMIT    | 1348278   | 5.739 | 1312086   | 8.726 | 668836    | 11.228 |
|    | LOWER LIMIT    | 337070    | 4.739 | 328022    | 7.726 | 167209    | 10.228 |
|    | EPA SAMPLE NO. |           |       |           |       |           |        |
| 01 | LCS-78256      | 567138    | 5.239 | 524602    | 8.223 | 262368    | 10.728 |
| 02 | LCSD-78256     | 672775    | 5.239 | 646253    | 8.223 | 331065    | 10.728 |
| 03 | MB-78256       | 623153    | 5.239 | 592180    | 8.226 | 205078    | 10.731 |
| 04 | TRIP BLANK     | 611079    | 5.239 | 562723    | 8.226 | 174491    | 10.731 |
| 05 | EQUIP BLANK    | 546090    | 5.239 | 527160    | 8.226 | 179725    | 10.734 |

IS1 () = Fluorobenzene

IS2 () = Chlorobenzene-d5

IS3 () = 1,4-Dichlorobenzene-d4

AREA UPPER LIMIT = 200% (Low-Medium Volatiles) and 140% (Trace Volatiles) of

internal standard area

AREA LOWER LIMIT = 50% (Low-Medium Volatiles) and 60% (Trace Volatiles) of

internal standard area

RT UPPER LIMIT = +0.50 (Low-Medium Volatiles) and +0.33 (Trace Volatiles)

minutes of internal standard RT

RT LOWER LIMIT = -0.50 (Low-Medium Volatiles) and -0.33 (Trace Volatiles)

minutes of internal standard RT

# Column used to flag values outside contract required QC limits with an asterisk.

#### VOLATILE INTERNAL STANDARD AREA AND RETENTION TIME SUMMARY

Lab Name: SPECTRUM ANALYTICAL, INC. Contract:

Lab Code: MITKEM Case No.: N1243 Mod. Ref No.: SDG No.: SN1243

GC Column: DB-624 ID: 0.25 (mm) Init. Calib. Date(s): 07/25/2014 07/25/2014

EPA Sample No.(VSTD#####): VSTD05010W Date Analyzed: 07/28/2014

Lab File ID (Standard): V8D6413.D Time Analyzed: 11:16

Instrument ID: V10 Heated Purge: (Y/N) N

|    |                | IS1 (S1 ) |       | IS2 (S2 ) |       | IS3 (S3 ) |        |
|----|----------------|-----------|-------|-----------|-------|-----------|--------|
|    |                | AREA #    | RT #  | AREA #    | RT #  | AREA #    | RT #   |
|    | 12 HOUR STD    | 586890    | 5.239 | 553238    | 8.226 | 275273    | 10.728 |
|    | UPPER LIMIT    | 1173780   | 5.739 | 1106476   | 8.726 | 550546    | 11.228 |
|    | LOWER LIMIT    | 293445    | 4.739 | 276619    | 7.726 | 137637    | 10.228 |
|    | EPA SAMPLE NO. |           |       |           |       |           |        |
| 01 | LCS-78272      | 585434    | 5.239 | 552816    | 8.223 | 275123    | 10.728 |
| 02 | MB-78272       | 576924    | 5.239 | 553766    | 8.226 | 190416    | 10.731 |
| 03 | SED-2ME        | 371515    | 5.239 | 350646    | 8.226 | 142077    | 10.731 |
| 04 | SED-4ME        | 471827    | 5.239 | 460791    | 8.226 | 187155    | 10.731 |

IS1 () = Fluorobenzene

IS2 () = Chlorobenzene-d5

IS3 () = 1,4-Dichlorobenzene-d4

AREA UPPER LIMIT = 200% (Low-Medium Volatiles) and 140% (Trace Volatiles) of

internal standard area

AREA LOWER LIMIT = 50% (Low-Medium Volatiles) and 60% (Trace Volatiles) of

internal standard area

RT UPPER LIMIT = +0.50 (Low-Medium Volatiles) and +0.33 (Trace Volatiles)

minutes of internal standard RT

RT LOWER LIMIT = -0.50 (Low-Medium Volatiles) and -0.33 (Trace Volatiles)

minutes of internal standard RT

# Column used to flag values outside contract required QC limits with an asterisk.

#### VOLATILE INTERNAL STANDARD AREA AND RETENTION TIME SUMMARY

Lab Name: SPECTRUM ANALYTICAL, INC. Contract:

Lab Code: MITKEM Case No.: N1243 Mod. Ref No.: SDG No.: SN1243

GC Column: DB-624 ID: 0.25 (mm) Init. Calib. Date(s): 07/25/2014 07/25/2014

EPA Sample No.(VSTD#####): VSTD05010W Date Analyzed: 07/28/2014

Lab File ID (Standard): V8D6413.D Time Analyzed: 11:16

Instrument ID: V10 Heated Purge: (Y/N) N

|    |                | IS1 (S1 ) |       | IS2 (S2 ) |       | IS3 (S3 ) |        |
|----|----------------|-----------|-------|-----------|-------|-----------|--------|
|    |                | AREA #    | RT #  | AREA #    | RT #  | AREA #    | RT #   |
|    | 12 HOUR STD    | 586890    | 5.239 | 553238    | 8.226 | 275273    | 10.728 |
|    | UPPER LIMIT    | 1173780   | 5.739 | 1106476   | 8.726 | 550546    | 11.228 |
|    | LOWER LIMIT    | 293445    | 4.739 | 276619    | 7.726 | 137637    | 10.228 |
|    | EPA SAMPLE NO. |           |       |           |       |           |        |
| 01 | LCS-78272      | 585434    | 5.239 | 552816    | 8.223 | 275123    | 10.728 |
| 02 | MB-78272       | 576924    | 5.239 | 553766    | 8.226 | 190416    | 10.731 |
| 03 | SED-2ME        | 371515    | 5.239 | 350646    | 8.226 | 142077    | 10.731 |
| 04 | SED-4ME        | 471827    | 5.239 | 460791    | 8.226 | 187155    | 10.731 |

IS1 () = Fluorobenzene

IS2 () = Chlorobenzene-d5

IS3 () = 1,4-Dichlorobenzene-d4

AREA UPPER LIMIT = 200% (Low-Medium Volatiles) and 140% (Trace Volatiles) of

internal standard area

AREA LOWER LIMIT = 50% (Low-Medium Volatiles) and 60% (Trace Volatiles) of

internal standard area

RT UPPER LIMIT = +0.50 (Low-Medium Volatiles) and +0.33 (Trace Volatiles)

minutes of internal standard RT

RT LOWER LIMIT = -0.50 (Low-Medium Volatiles) and -0.33 (Trace Volatiles)

minutes of internal standard RT

# Column used to flag values outside contract required QC limits with an asterisk.



\* Semivolatile Organics \*

## REPORT NARRATIVE

Spectrum Analytical, Inc. Featuring Hanibal Technology, RI Division.

Client: GZA GeoEnvironmental, Inc.

**Project: Steelwinds 1** 

Laboratory Workorder / SDG #: N1243

**SW846 8270D, SVOA by GC-MS** 

### I. SAMPLE RECEIPT

No exceptions or unusual conditions were encountered unless a Sample Condition Notification Form, or other record of communication is included with the Sample Receipt Documentation.

## II. HOLDING TIMES

## A. Sample Preparation:

All samples were prepared within the method-specified holding times.

## B. Sample Analysis:

All samples were analyzed within the method-specified holding times.

## III. METHODS

Samples were analyzed following procedures in laboratory test code: SW846 8270D

### IV. PREPARATION

Aqueous Samples were prepared following procedures in laboratory test

code: SW3510C

Soil Samples were prepared following procedures in laboratory test

code: SW3550B

## V. INSTRUMENTATION

The following instrumentation was used

N1243 Page 47 of 103

Instrument Code: S6

Instrument Type: GCMS-Semi

Description: HP7890A Manufacturer: Agilent Model: 7890A/5973

GC Column used: 30 m X 0.25 mm ID [0.25 um thickness] Rxi-5sil MS

capillary column.

## VI. ANALYSIS

## A. Calibration:

Calibrations met the method/SOP acceptance criteria.

## B. Blanks:

All method blanks were within the acceptance criteria.

## C. Surrogates:

Surrogate standard percent recoveries were within the QC limits.

# D. Spikes:

## 1. Laboratory Control Spikes (LCS):

Percent recoveries for lab control samples were within the QC limits.

## 2. Matrix Spike / Matrix Spike Duplicate (MS/MSD):

No client-requested MS/MSD analyses were included in this SDG.

## E. Internal Standards:

Internal standard peak areas were within the QC limits.

### F. Dilutions:

The following samples were analyzed at dilution:

SED-2 (N1243-01BDL): Dilution Factor: 2

## G. Samples:

No other unusual occurrences were noted during sample analysis.

N1243 Page 48 of 103

## H. Manual Integration

Where needed, manual integrations were performed to improve data quality. The corrections were reviewed and associated hardcopies generated and reported as required. Manual integrations are coded to provide the data reviewer justification for such action. The codes are labeled on the ion chromatogram signal (GC/MS signal) and chromatogram for GC based analysis as follows:

- M1 peak tailing or fronting
- · M2 peak co-elution
- · M3 rising or falling baseline
- · M4 retention time shift
- · M5 miscellaneous under this category, the justification is explained
- · M6 software did not integrate peak
- M7 partial peak integration

Manual integrations were performed on the following:

SED-3 (N1243-02B) Indeno(1,2,3-cd)pyrene due to M6

I certify that this data package is in compliance with the terms and conditions agreed to by the client and Spectrum, both technically and for completeness, except for the conditions noted above. Release of the data contained in this hardcopy data package has been authorized by the Laboratory Manager or designated person, as verified by the following signature.

| Signed: | The tree to the second |  |
|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Date:   | 8/8/2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |

N1243 Page 49 of 103



SPECTRUM ANALYTICAL, INC.
Featuring
HANIBAL TECHNOLOGY

# Data Flag/Qualifiers (Page 1 of 2):

- U Not Detected. This compound was analyzed-for but not detected. For most analyses the reporting limit (lowest standard concentration) is the value listed. For Department of Defense programs, this is the Limit of Detection (LOD).
- J This flag indicates an estimated value due to either
  - the compound was detected below the reporting limit, or
  - estimated concentration for Tentatively Identified Compound
- B This flag indicates the compound was also detected in the associated Method Blank. The B flag has an alternative meaning for Inorganics analyses reported using CLP ILM-type metals forms, indicating a "trace" concentration below the reporting limit and equal to or above the detection limit.
- D For Organics analysis, this flag indicates the compound concentration was obtained from a secondary dilution analysis
- E This flag indicates the compound concentration exceeded the Calibration Range. The E flag has an alternative meaning for Inorganics analyses reported using CLP metals forms, indicating an estimated concentration due to the presence of interferences, as determined by the serial dilution analysis.
- P This flag is used for pesticides/PCB/herbicide compound when there is a greater than 40% difference for detected concentration between the two GC columns used for primary and confirmation analyses. This difference typically indicates interference, causing one value to be unusually high. The **lower** of the two values is generally reported on the Form 1, and both values reported on the Form 10.
- A Used to flag semivolatile organic Tentatively Identified Compound library search results for compounds identified as an aldol condensation by-product.



SPECTRUM ANALYTICAL, INC.
Featuring
HANIBAL TECHNOLOGY

# Data Flag/Qualifiers (Page 2 of 2):

- N Used to flag results for volatile and semivolatile Organics analysis Tentatively Identified Compounds where an analyte has passed the identification criteria, and is considered to be positively identified. For Inorganics analysis the N flag indicates the matrix spike recovery falls outside of the control limit.
- \* For Inorganics analysis the \* flag indicates Relative Percent Difference for duplicate analyses is outside of the control limit.
- L NYSDEC qualifier: Result is biased low due to the sample not being collected according to 5035-L/5035A-L low-level specifications.



# **Sample ID Suffixes**

- DL Diluted analysis. The sample was diluted and reanalyzed. The DL may be followed by a digit if more than one diluted reanalysis is provided. The DL suffix is not attached to an analysis initially performed at dilution, only to reanalyses performed at dilution
- RE Reanalysis. Appended to the client sample ID to indicate a reextraction and reanalysis or a reanalysis of the original sample extract.
- RA Reanalysis. Appended to the laboratory sample ID indicates a reanalysis of the original sample extract.
- RX Reextraction. Appended to the laboratory sample ID indicates a reextraction of the sample.
- MS Matrix Spike.
- MSD Matrix Spike Duplicate
- DUP Duplicate analysis
- SD Serial Dilution
- PS Post-digestion or Post-distillation spike. For metals or inorganic analyses

| EPA | SAMPLE | NO. |  |
|-----|--------|-----|--|
| SED | -2     |     |  |
|     |        |     |  |
|     |        |     |  |

| Lab Name: SPECTRUM ANALYTICAL, INC.       | Contract:                     |
|-------------------------------------------|-------------------------------|
| Lab Code: MITKEM Case No.: N1243          | Mod. Ref No.: SDG No.: SN1243 |
| Matrix: (SOIL/SED/WATER) SOIL             | Lab Sample ID: N1243-01B      |
| Sample wt/vol:15.0 (g/mL) G               | Lab File ID: S6B8880.D        |
| Level: (LOW/MED) LOW                      | Extraction: (Type) SONC       |
| % Moisture: Decanted: (Y/N) N             | Date Received: 07/18/2014     |
| Concentrated Extract Volume:1000 (uL)     | Date Extracted: 07/25/2014    |
| Injection Volume:1.0 (uL) GPC Factor:1.00 | Date Analyzed: 07/28/2014     |
| GPC Cleanup:(Y/N) N pH:                   | Dilution Factor: 1.0          |

|           |                              | CONCENTRATION UNITS:  |   |
|-----------|------------------------------|-----------------------|---|
| CAS NO.   | COMPOUND                     | (ug/L or ug/Kg) UG/KG | Q |
| 111-44-4  | Bis(2-chloroethyl)ether      | 370                   | U |
| 541-73-1  |                              | 370                   | U |
| 106-46-7  | 1,4-Dichlorobenzene          | 370                   | U |
| 95-50-1   | 1,2-Dichlorobenzene          | 370                   | U |
| 108-60-1  | 2,2'-oxybis(1-Chloropropane) | 370                   | U |
| 67-72-1   | Hexachloroethane             | 370                   | U |
| 98-95-3   | Nitrobenzene                 | 370                   | U |
| 78-59-1   | Isophorone                   | 370                   | U |
| 120-82-1  | 1,2,4-Trichlorobenzene       | 370                   | U |
| 91-20-3   | Naphthalene                  | 790                   |   |
| 106-47-8  | 4-Chloroaniline              | 370                   | U |
| 111-91-1  | Bis(2-chloroethoxy)methane   | 370                   | U |
| 87-68-3   | Hexachlorobutadiene          | 370                   | U |
| 91-57-6   | 2-Methylnaphthalene          | 520                   |   |
| 77-47-4   | Hexachlorocyclopentadiene    | 370                   | U |
| 91-58-7   | 2-Chloronaphthalene          | 370                   | U |
| 88-74-4   | 2-Nitroaniline               | 750                   | U |
| 131-11-3  | Dimethylphthalate            | 370                   | U |
| 208-96-8  | Acenaphthylene               | 230                   | J |
| 606-20-2  | 2,6-Dinitrotoluene           | 370                   | U |
| 99-09-2   | 3-Nitroaniline               | 750                   | U |
| 83-32-9   | Acenaphthene                 | 270                   | J |
| 132-64-9  | Dibenzofuran                 | 1100                  |   |
| 121-14-2  | 2,4-Dinitrotoluene           | 370                   | U |
| 84-66-2   | Diethylphthalate             | 370                   | U |
| 7005-72-3 | 4-Chlorophenyl-phenylether   | 370                   | U |
| 86-73-7   | Fluorene                     | 1600                  |   |
| 100-01-6  | 4-Nitroaniline               | 750                   | U |
| 101-55-3  | 4-Bromophenyl-phenylether    | 370                   | U |
| 118-74-1  | Hexachlorobenzene            | 370                   | U |
| 85-01-8   | Phenanthrene                 | 6600                  | E |
| 120-12-7  | Anthracene                   | 1300                  |   |
| 86-74-8   | Carbazole                    | 310                   | J |
| 206-44-0  | Fluoranthene                 | 1400                  |   |
| 129-00-0  | Pyrene                       | 980                   |   |
| 85-68-7   | Butylbenzylphthalate         | 370                   | U |

| EPA | SAMPLE | NO. |  |
|-----|--------|-----|--|
| SED | -2     |     |  |
|     |        |     |  |
|     |        |     |  |

| Lab Name: SPECTRUM ANALYTICAL, INC.       | Contract:                     |
|-------------------------------------------|-------------------------------|
| Lab Code: MITKEM Case No.: N1243          | Mod. Ref No.: SDG No.: SN1243 |
| Matrix: (SOIL/SED/WATER) SOIL             | Lab Sample ID: N1243-01B      |
| Sample wt/vol:15.0 (g/mL) G               | Lab File ID: S6B8880.D        |
| Level: (LOW/MED) LOW                      | Extraction: (Type) SONC       |
| % Moisture: Decanted: (Y/N) N             | Date Received: 07/18/2014     |
| Concentrated Extract Volume:1000 (uL)     | Date Extracted: 07/25/2014    |
| Injection Volume:1.0 (uL) GPC Factor:1.00 | Date Analyzed: 07/28/2014     |
| GPC Cleanup:(Y/N) N pH:                   | Dilution Factor: 1.0          |

| CAS NO.  | COMPOUND                   | CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG | Q |
|----------|----------------------------|--------------------------------------------|---|
| 91-94-1  | 3,3´-Dichlorobenzidine     | 370                                        | U |
| 56-55-3  | Benzo(a)anthracene         | 310                                        | J |
| 218-01-9 | Chrysene                   | 400                                        |   |
| 117-81-7 | Bis(2-ethylhexyl)phthalate | 220                                        | J |
| 205-99-2 | Benzo(b)fluoranthene       | 470                                        |   |
| 207-08-9 | Benzo(k)fluoranthene       | 170                                        | J |
| 50-32-8  | Benzo(a)pyrene             | 290                                        | J |
| 193-39-5 | Indeno(1,2,3-cd)pyrene     | 250                                        | J |
| 53-70-3  | Dibenzo(a,h)anthracene     | 370                                        | U |
| 191-24-2 | Benzo(g,h,i)perylene       | 250                                        | J |

| EPA | SAMPLE | NO. |  |
|-----|--------|-----|--|
| SED | -2DL   |     |  |
|     |        |     |  |
|     |        |     |  |

| Lab Name: SPECTRUM ANALYTICAL, INC.       | Contract:                     |
|-------------------------------------------|-------------------------------|
| Lab Code: MITKEM Case No.: N1243          | Mod. Ref No.: SDG No.: SN1243 |
| Matrix: (SOIL/SED/WATER) SOIL             | Lab Sample ID: N1243-01BDL    |
| Sample wt/vol:15.0 (g/mL) G               | Lab File ID: S6B8895.D        |
| Level: (LOW/MED) LOW                      | Extraction: (Type) SONC       |
| % Moisture: Decanted: (Y/N) N             | Date Received: 07/18/2014     |
| Concentrated Extract Volume: 1000 (uL)    | Date Extracted: 07/25/2014    |
| Injection Volume:1.0 (uL) GPC Factor:1.00 | Date Analyzed: 07/29/2014     |
| GPC Cleanup:(Y/N) N pH:                   | Dilution Factor: 2.0          |

|           |                              | CONCENTRATION UNITS:  |    |
|-----------|------------------------------|-----------------------|----|
| CAS NO.   | COMPOUND                     | (ug/L or ug/Kg) UG/KG | Q  |
| 111-44-4  | Bis(2-chloroethyl)ether      | 740                   | U  |
| 541-73-1  |                              | 740                   | U  |
| 106-46-7  | 1,4-Dichlorobenzene          | 740                   | U  |
| 95-50-1   | 1,2-Dichlorobenzene          | 740                   | U  |
| 108-60-1  | 2,2'-oxybis(1-Chloropropane) | 740                   | U  |
| 67-72-1   | Hexachloroethane             | 740                   | U  |
| 98-95-3   | Nitrobenzene                 | 740                   | U  |
| 78-59-1   | Isophorone                   | 740                   | U  |
| 120-82-1  | 1,2,4-Trichlorobenzene       | 740                   | U  |
| 91-20-3   | Naphthalene                  | 740                   | DJ |
| 106-47-8  | 4-Chloroaniline              | 740                   | U  |
| 111-91-1  | Bis(2-chloroethoxy)methane   | 740                   | U  |
| 87-68-3   | Hexachlorobutadiene          | 740                   | U  |
| 91-57-6   | 2-Methylnaphthalene          | 500                   | DJ |
| 77-47-4   | Hexachlorocyclopentadiene    | 740                   | U  |
| 91-58-7   | 2-Chloronaphthalene          | 740                   | U  |
| 88-74-4   | 2-Nitroaniline               | 1500                  | U  |
| 131-11-3  | Dimethylphthalate            | 740                   | U  |
| 208-96-8  | Acenaphthylene               | 210                   | DJ |
| 606-20-2  | 2,6-Dinitrotoluene           | 740                   | U  |
| 99-09-2   | 3-Nitroaniline               | 1500                  | U  |
| 83-32-9   | Acenaphthene                 | 250                   | DJ |
| 132-64-9  | Dibenzofuran                 | 1100                  | D  |
| 121-14-2  | 2,4-Dinitrotoluene           | 740                   | U  |
| 84-66-2   | Diethylphthalate             | 740                   | Ū  |
| 7005-72-3 | 4-Chlorophenyl-phenylether   | 740                   | U  |
| 86-73-7   | Fluorene                     | 1600                  | D  |
| 100-01-6  | 4-Nitroaniline               | 1500                  | Ū  |
| 101-55-3  | 4-Bromophenyl-phenylether    | 740                   | Ū  |
| 118-74-1  | Hexachlorobenzene            | 740                   | U  |
| 85-01-8   | Phenanthrene                 | 6400                  | D  |
| 120-12-7  | Anthracene                   | 1200                  | D  |
| 86-74-8   | Carbazole                    | 300                   | DJ |
| 206-44-0  | Fluoranthene                 | 1500                  | D  |
| 129-00-0  | Pyrene                       | 790                   | D  |
| 85-68-7   | Butylbenzylphthalate         | 740                   | U  |

| EPA | SAMPLE | NO. |
|-----|--------|-----|
| SED | -2DL   |     |
|     |        |     |

| Lab Name: SPECTRUM ANALYTICAL, INC.       | Contract:                     |
|-------------------------------------------|-------------------------------|
| Lab Code: MITKEM Case No.: N1243          | Mod. Ref No.: SDG No.: SN1243 |
| Matrix: (SOIL/SED/WATER) SOIL             | Lab Sample ID: N1243-01BDL    |
| Sample wt/vol:15.0 (g/mL) G               | Lab File ID: S6B8895.D        |
| Level: (LOW/MED) LOW                      | Extraction: (Type) SONC       |
| % Moisture: 11 Decanted: (Y/N) N          | Date Received: 07/18/2014     |
| Concentrated Extract Volume: 1000 (uL)    | Date Extracted: 07/25/2014    |
| Injection Volume:1.0 (uL) GPC Factor:1.00 | Date Analyzed: 07/29/2014     |
| GPC Cleanup:(Y/N) N pH:                   | Dilution Factor: 2.0          |

| CAS NO.  | COMPOUND                   | CONCENTRATION UNITS:<br>(ug/L or ug/Kg) UG/KG | Q  |
|----------|----------------------------|-----------------------------------------------|----|
| 91-94-1  | 3,3'-Dichlorobenzidine     | 740                                           | U  |
| 56-55-3  | Benzo(a)anthracene         | 280                                           | DJ |
| 218-01-9 | Chrysene                   | 340                                           | DJ |
| 117-81-7 | Bis(2-ethylhexyl)phthalate | 160                                           | DJ |
| 205-99-2 | Benzo(b)fluoranthene       | 420                                           | DJ |
| 207-08-9 | Benzo(k)fluoranthene       | 170                                           | DJ |
| 50-32-8  | Benzo(a)pyrene             | 260                                           | DJ |
| 193-39-5 | Indeno(1,2,3-cd)pyrene     | 200                                           | DJ |
| 53-70-3  | Dibenzo(a,h)anthracene     | 740                                           | U  |
| 191-24-2 | Benzo(g,h,i)perylene       | 230                                           | DJ |

| EPA | SAMPLE | NO. |  |
|-----|--------|-----|--|
| SED | -3     |     |  |
|     |        |     |  |
|     |        |     |  |

| Lab Name: SPECTRUM ANALYTICAL, INC.       | Contract:                     |
|-------------------------------------------|-------------------------------|
| Lab Code: MITKEM Case No.: N1243          | Mod. Ref No.: SDG No.: SN1243 |
| Matrix: (SOIL/SED/WATER) SOIL             | Lab Sample ID: N1243-02B      |
| Sample wt/vol:15.0 (g/mL) G               | Lab File ID: S6B8881.D        |
| Level: (LOW/MED) LOW                      | Extraction: (Type) SONC       |
| % Moisture: Decanted: (Y/N) N             | Date Received: 07/18/2014     |
| Concentrated Extract Volume: 1000 (uL)    | Date Extracted: 07/25/2014    |
| Injection Volume:1.0 (uL) GPC Factor:1.00 | Date Analyzed: 07/28/2014     |
| GPC Cleanup:(Y/N) N pH:                   | Dilution Factor: 1.0          |

| CAS NO.   | COMPOUND                     | CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG | Q   |
|-----------|------------------------------|--------------------------------------------|-----|
|           |                              | (dg/L OI dg/kg) OG/kg                      | . Q |
| 111-44-4  |                              | 510                                        | U   |
| 541-73-1  | ·                            | 510                                        | U   |
| 106-46-7  | 1,4-Dichlorobenzene          | 510                                        | U   |
| 95-50-1   | 1,2-Dichlorobenzene          | 510                                        | U   |
| 108-60-1  | 2,2'-oxybis(1-Chloropropane) | 510                                        | U   |
| 67-72-1   | Hexachloroethane             | 510                                        | U   |
| 98-95-3   | Nitrobenzene                 | 510                                        | U   |
| 78-59-1   | Isophorone                   | 510                                        | U   |
| 120-82-1  | 1,2,4-Trichlorobenzene       | 510                                        | U   |
| 91-20-3   | Naphthalene                  | 220                                        | J   |
| 106-47-8  | 4-Chloroaniline              | 510                                        | U   |
| 111-91-1  | Bis(2-chloroethoxy)methane   | 510                                        | U   |
| 87-68-3   | Hexachlorobutadiene          | 510                                        | U   |
| 91-57-6   | 2-Methylnaphthalene          | 180                                        | J   |
| 77-47-4   | Hexachlorocyclopentadiene    | 510                                        | U   |
| 91-58-7   | 2-Chloronaphthalene          | 510                                        | U   |
| 88-74-4   | 2-Nitroaniline               | 1000                                       | U   |
| 131-11-3  | Dimethylphthalate            | 510                                        | U   |
| 208-96-8  | Acenaphthylene               | 110                                        | J   |
| 606-20-2  | 2,6-Dinitrotoluene           | 510                                        | U   |
| 99-09-2   | 3-Nitroaniline               | 1000                                       | U   |
| 83-32-9   | Acenaphthene                 | 140                                        | J   |
| 132-64-9  | Dibenzofuran                 | 450                                        | J   |
| 121-14-2  | 2,4-Dinitrotoluene           | 510                                        | U   |
| 84-66-2   | Diethylphthalate             | 510                                        | U   |
| 7005-72-3 | 4-Chlorophenyl-phenylether   | 510                                        | U   |
| 86-73-7   | Fluorene                     | 740                                        |     |
| 100-01-6  | 4-Nitroaniline               | 1000                                       | U   |
| 101-55-3  | 4-Bromophenyl-phenylether    | 510                                        | U   |
| 118-74-1  | Hexachlorobenzene            | 510                                        | U   |
| 85-01-8   | Phenanthrene                 | 3400                                       |     |
| 120-12-7  | Anthracene                   | 730                                        |     |
| 86-74-8   | Carbazole                    | 510                                        | U   |
| 206-44-0  | Fluoranthene                 | 1400                                       |     |
| 129-00-0  | Pyrene                       | 980                                        |     |
| 85-68-7   | Butylbenzylphthalate         | 510                                        | U   |

| EPA | SAMPLE | NO. |  |
|-----|--------|-----|--|
| SED | -3     |     |  |
|     |        |     |  |

| Lab Name: SPECTRUM ANALYTICAL, INC.       | Contract:                     |
|-------------------------------------------|-------------------------------|
| Lab Code: MITKEM Case No.: N1243          | Mod. Ref No.: SDG No.: SN1243 |
| Matrix: (SOIL/SED/WATER) SOIL             | Lab Sample ID: N1243-02B      |
| Sample wt/vol:15.0 (g/mL) G               | Lab File ID: S6B8881.D        |
| Level: (LOW/MED) LOW                      | Extraction: (Type) SONC       |
| % Moisture: Decanted: (Y/N) N             | Date Received: 07/18/2014     |
| Concentrated Extract Volume: 1000 (uL)    | Date Extracted: 07/25/2014    |
| Injection Volume:1.0 (uL) GPC Factor:1.00 | Date Analyzed: 07/28/2014     |
| GPC Cleanup:(Y/N) N pH:                   | Dilution Factor: 1.0          |

| CAS NO.  | COMPOUND                   | CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG | Q |
|----------|----------------------------|--------------------------------------------|---|
| 91-94-1  | 3,3´-Dichlorobenzidine     | 510                                        | U |
| 56-55-3  | Benzo(a)anthracene         | 300                                        | J |
| 218-01-9 | Chrysene                   | 300                                        | J |
| 117-81-7 | Bis(2-ethylhexyl)phthalate | 510                                        | U |
| 205-99-2 | Benzo(b)fluoranthene       | 430                                        | J |
| 207-08-9 | Benzo(k)fluoranthene       | 170                                        | J |
| 50-32-8  | Benzo(a)pyrene             | 300                                        | J |
| 193-39-5 | Indeno(1,2,3-cd)pyrene     | 250                                        | J |
| 53-70-3  | Dibenzo(a,h)anthracene     | 510                                        | U |
| 191-24-2 | Benzo(g,h,i)perylene       | 270                                        | J |

| EPA | SAMPLE | NO. |  |
|-----|--------|-----|--|
| SED | -4     |     |  |
|     |        |     |  |
|     |        |     |  |

| Lab Name: SPECTRUM ANALYTICAL, INC.       | Contract:                     |
|-------------------------------------------|-------------------------------|
| Lab Code: MITKEM Case No.: N1243          | Mod. Ref No.: SDG No.: SN1243 |
| Matrix: (SOIL/SED/WATER) SOIL             | Lab Sample ID: N1243-03B      |
| Sample wt/vol:15.0 (g/mL) G               | Lab File ID: S6B8882.D        |
| Level: (LOW/MED) LOW                      | Extraction: (Type) SONC       |
| % Moisture: Decanted: (Y/N) N             | Date Received: 07/18/2014     |
| Concentrated Extract Volume:1000 (uL)     | Date Extracted: 07/25/2014    |
| Injection Volume:1.0 (uL) GPC Factor:1.00 | Date Analyzed: 07/28/2014     |
| GPC Cleanup:(Y/N) N pH:                   | Dilution Factor: 1.0          |

| GD G DIG  | GOMPONIE                     | CONCENTRATION UNITS:  |   |
|-----------|------------------------------|-----------------------|---|
| CAS NO.   | COMPOUND                     | (ug/L or ug/Kg) UG/KG | Q |
| 111-44-4  | Bis(2-chloroethyl)ether      | 540                   | U |
| 541-73-1  | 1,3-Dichlorobenzene          | 540                   | U |
| 106-46-7  | 1,4-Dichlorobenzene          | 540                   | U |
| 95-50-1   | 1,2-Dichlorobenzene          | 540                   | U |
| 108-60-1  | 2,2'-oxybis(1-Chloropropane) | 540                   | U |
| 67-72-1   | Hexachloroethane             | 540                   | U |
| 98-95-3   | Nitrobenzene                 | 540                   | U |
| 78-59-1   | Isophorone                   | 540                   | U |
| 120-82-1  | 1,2,4-Trichlorobenzene       | 540                   | U |
| 91-20-3   | Naphthalene                  | 1700                  |   |
| 106-47-8  |                              | 540                   | U |
| 111-91-1  | Bis(2-chloroethoxy)methane   | 540                   | U |
| 87-68-3   |                              | 540                   | U |
| 91-57-6   |                              | 880                   |   |
| 77-47-4   |                              | 540                   | U |
| 91-58-7   | 2-Chloronaphthalene          | 540                   | U |
| 88-74-4   | 2-Nitroaniline               | 1100                  | U |
| 131-11-3  | Dimethylphthalate            | 540                   | U |
| 208-96-8  | Acenaphthylene               | 310                   | J |
| 606-20-2  | 2,6-Dinitrotoluene           | 540                   | U |
| 99-09-2   | 3-Nitroaniline               | 1100                  | U |
| 83-32-9   | Acenaphthene                 | 860                   |   |
| 132-64-9  | Dibenzofuran                 | 1700                  |   |
| 121-14-2  | 2,4-Dinitrotoluene           | 540                   | U |
| 84-66-2   |                              | 540                   | U |
| 7005-72-3 | 4-Chlorophenyl-phenylether   | 540                   | U |
| 86-73-7   | Fluorene                     | 2300                  |   |
| 100-01-6  | 4-Nitroaniline               | 1100                  | U |
| 101-55-3  | 4-Bromophenyl-phenylether    | 540                   | U |
| 118-74-1  |                              | 540                   | U |
| 85-01-8   | Phenanthrene                 | 5400                  |   |
| 120-12-7  | Anthracene                   | 850                   |   |
| 86-74-8   | Carbazole                    | 790                   |   |
| 206-44-0  | Fluoranthene                 | 1400                  | 1 |
| 129-00-0  | Pyrene                       | 1100                  |   |
| 85-68-7   | Butylbenzylphthalate         | 540                   | U |

| EPA | SAMPLE | NO. |  |
|-----|--------|-----|--|
| SED | -4     |     |  |
|     |        |     |  |

| Lab Name: SPECTRUM ANALYTICAL, INC.         | Contract:                     |
|---------------------------------------------|-------------------------------|
| Lab Code: MITKEM Case No.: N1243            | Mod. Ref No.: SDG No.: SN1243 |
| Matrix: (SOIL/SED/WATER) SOIL               | Lab Sample ID: N1243-03B      |
| Sample wt/vol:15.0 (g/mL) G                 | Lab File ID: S6B8882.D        |
| Level: (LOW/MED) LOW                        | Extraction: (Type) SONC       |
| % Moisture: 39 Decanted: (Y/N) N            | Date Received: 07/18/2014     |
| Concentrated Extract Volume: 1000 (uL)      | Date Extracted: 07/25/2014    |
| Injection Volume: 1.0 (uL) GPC Factor: 1.00 | Date Analyzed: 07/28/2014     |
| GPC Cleanup:(Y/N) N pH:                     | Dilution Factor: 1.0          |

| CAS NO.  | COMPOUND                   | CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG | Q |
|----------|----------------------------|--------------------------------------------|---|
| 91-94-1  | 3,3´-Dichlorobenzidine     | 540                                        | U |
| 56-55-3  | Benzo(a)anthracene         | 520                                        | J |
| 218-01-9 | Chrysene                   | 620                                        |   |
| 117-81-7 | Bis(2-ethylhexyl)phthalate | 420                                        | J |
| 205-99-2 | Benzo(b)fluoranthene       | 820                                        |   |
| 207-08-9 | Benzo(k)fluoranthene       | 330                                        | J |
| 50-32-8  | Benzo(a)pyrene             | 570                                        |   |
| 193-39-5 | Indeno(1,2,3-cd)pyrene     | 520                                        | J |
| 53-70-3  | Dibenzo(a,h)anthracene     | 540                                        | U |
| 191-24-2 | Benzo(g,h,i)perylene       | 510                                        | J |

| EPA | SAMPLE | NO. |  |
|-----|--------|-----|--|
| SED | -31    |     |  |
|     |        |     |  |
|     |        |     |  |

| Lab Name: SPECTRUM ANALYTICAL, INC.         | Contract:                     |
|---------------------------------------------|-------------------------------|
| Lab Code: MITKEM Case No.: N1243            | Mod. Ref No.: SDG No.: SN1243 |
| Matrix: (SOIL/SED/WATER) SOIL               | Lab Sample ID: N1243-04B      |
| Sample wt/vol:15.0 (g/mL) G                 | Lab File ID: S6B8883.D        |
| Level: (LOW/MED) LOW                        | Extraction: (Type) SONC       |
| % Moisture: 18 Decanted: (Y/N) N            | Date Received: 07/18/2014     |
| Concentrated Extract Volume: 1000 (uL)      | Date Extracted: 07/25/2014    |
| Injection Volume: 1.0 (uL) GPC Factor: 1.00 | Date Analyzed: 07/28/2014     |
| GPC Cleanup:(Y/N) N pH:                     | Dilution Factor: 1.0          |

|           |                              | CONCENTRATION UNITS:  |   |
|-----------|------------------------------|-----------------------|---|
| CAS NO.   | COMPOUND                     | (ug/L or ug/Kg) UG/KG | Q |
| 111-44-4  | Bis(2-chloroethyl)ether      | 400                   | U |
| 541-73-1  | 1,3-Dichlorobenzene          | 400                   | U |
| 106-46-7  | 1,4-Dichlorobenzene          | 400                   | U |
| 95-50-1   | 1,2-Dichlorobenzene          | 400                   | U |
| 108-60-1  | 2,2'-oxybis(1-Chloropropane) | 400                   | U |
| 67-72-1   | Hexachloroethane             | 400                   | U |
| 98-95-3   | Nitrobenzene                 | 400                   | U |
| 78-59-1   | Isophorone                   | 400                   | U |
| 120-82-1  | 1,2,4-Trichlorobenzene       | 400                   | U |
| 91-20-3   | Naphthalene                  | 140                   | J |
| 106-47-8  | 4-Chloroaniline              | 400                   | U |
| 111-91-1  | Bis(2-chloroethoxy)methane   | 400                   | U |
| 87-68-3   | Hexachlorobutadiene          | 400                   | U |
| 91-57-6   | 2-Methylnaphthalene          | 120                   | J |
| 77-47-4   | Hexachlorocyclopentadiene    | 400                   | U |
| 91-58-7   | 2-Chloronaphthalene          | 400                   | U |
| 88-74-4   | 2-Nitroaniline               | 820                   | U |
| 131-11-3  | Dimethylphthalate            | 400                   | U |
| 208-96-8  | Acenaphthylene               | 400                   | U |
| 606-20-2  | 2,6-Dinitrotoluene           | 400                   | U |
| 99-09-2   | 3-Nitroaniline               | 820                   | U |
| 83-32-9   | Acenaphthene                 | 85                    | J |
| 132-64-9  | Dibenzofuran                 | 310                   | J |
| 121-14-2  | 2,4-Dinitrotoluene           | 400                   | U |
| 84-66-2   | Diethylphthalate             | 400                   | U |
| 7005-72-3 | 4-Chlorophenyl-phenylether   | 400                   | U |
| 86-73-7   | Fluorene                     | 500                   |   |
| 100-01-6  | 4-Nitroaniline               | 820                   | U |
| 101-55-3  | 4-Bromophenyl-phenylether    | 400                   | U |
| 118-74-1  | Hexachlorobenzene            | 400                   | U |
| 85-01-8   | Phenanthrene                 | 3000                  |   |
| 120-12-7  | Anthracene                   | 660                   |   |
| 86-74-8   | Carbazole                    | 82                    | J |
| 206-44-0  | Fluoranthene                 | 1400                  |   |
| 129-00-0  | Pyrene                       | 990                   |   |
| 85-68-7   | Butylbenzylphthalate         | 400                   | U |

| EPA | SAMPLE | NO. |  |
|-----|--------|-----|--|
| SED | -31    |     |  |
|     |        |     |  |

| Lab Name: SPECTRUM ANALYTICAL, INC.         | Contract:                     |
|---------------------------------------------|-------------------------------|
| Lab Code: MITKEM Case No.: N1243            | Mod. Ref No.: SDG No.: SN1243 |
| Matrix: (SOIL/SED/WATER) SOIL               | Lab Sample ID: N1243-04B      |
| Sample wt/vol:15.0 (g/mL) G                 | Lab File ID: S6B8883.D        |
| Level: (LOW/MED) LOW                        | Extraction: (Type) SONC       |
| % Moisture: Decanted: (Y/N) N               | Date Received: 07/18/2014     |
| Concentrated Extract Volume: 1000 (uL)      | Date Extracted: 07/25/2014    |
| Injection Volume: 1.0 (uL) GPC Factor: 1.00 | Date Analyzed: 07/28/2014     |
| GPC Cleanup:(Y/N) N pH:                     | Dilution Factor: 1.0          |

| CAS NO.  | COMPOUND                   | CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG | Q |
|----------|----------------------------|--------------------------------------------|---|
| 91-94-1  | 3,3'-Dichlorobenzidine     | 400                                        | U |
| 56-55-3  | Benzo(a)anthracene         | 300                                        | J |
| 218-01-9 | Chrysene                   | 310                                        | J |
| 117-81-7 | Bis(2-ethylhexyl)phthalate | 400                                        | U |
| 205-99-2 | Benzo(b)fluoranthene       | 430                                        |   |
| 207-08-9 | Benzo(k)fluoranthene       | 160                                        | J |
| 50-32-8  | Benzo(a)pyrene             | 320                                        | J |
| 193-39-5 | Indeno(1,2,3-cd)pyrene     | 240                                        | J |
| 53-70-3  | Dibenzo(a,h)anthracene     | 400                                        | U |
| 191-24-2 | Benzo(g,h,i)perylene       | 250                                        | J |

| EPA | SA | MPLE | NO. |  |
|-----|----|------|-----|--|
| EQU | ΊP | BLAN | ΙK  |  |

| Lab Name: SPECTR  | UM ANALYTI | CAL, INC | C          | Contract:         |                 |
|-------------------|------------|----------|------------|-------------------|-----------------|
| Lab Code: MITKEM  | Cas        | se No.:  | N1243      | Mod. Ref No.:     | SDG No.: SN1243 |
| Matrix: (SOIL/SED | /WATER) V  | WATER    |            | Lab Sample ID:    | N1243-06B       |
| Sample wt/vol:    | 1000       | (g/mL)   | ML         | Lab File ID:      | S6B8879.D       |
| Level: (LOW/MED)  | LOW        |          |            | Extraction: (Type | e) SEPF         |
| % Moisture:       | Deca       | nted: () | //N)       | Date Received:    | 07/18/2014      |
| Concentrated Extr | act Volume | ·        | 1000 (uL)  | Date Extracted:   | 07/24/2014      |
| Injection Volume: | 1.0 (uL    | ) GPC Fa | ctor: 1.00 | Date Analyzed:    | 07/28/2014      |
| GPC Cleanup:(Y/N) | N          | pH:      |            | Dilution Factor:  | 1.0             |

|           |                              | CONCENTRATION UNITS: |   |
|-----------|------------------------------|----------------------|---|
| CAS NO.   | COMPOUND                     | (ug/L or ug/Kg) UG/L | Q |
| 111-44-4  | Bis(2-chloroethyl)ether      | 10                   | U |
| 541-73-1  |                              | 10                   | U |
| 106-46-7  | 1,4-Dichlorobenzene          | 10                   | U |
| 95-50-1   | 1,2-Dichlorobenzene          | 10                   | U |
| 108-60-1  | 2,2'-oxybis(1-Chloropropane) | 10                   | U |
| 67-72-1   | Hexachloroethane             | 10                   | Ū |
| 98-95-3   | Nitrobenzene                 | 10                   | U |
| 78-59-1   | Isophorone                   | 10                   | Ū |
| 120-82-1  | 1,2,4-Trichlorobenzene       | 10                   | Ū |
| 91-20-3   | Naphthalene                  | 10                   | Ū |
| 106-47-8  | 4-Chloroaniline              | 10                   | Ū |
| 111-91-1  | Bis(2-chloroethoxy)methane   | 10                   | Ū |
| 87-68-3   | Hexachlorobutadiene          | 10                   | U |
| 91-57-6   | 2-Methylnaphthalene          | 10                   | Ū |
| 77-47-4   | Hexachlorocyclopentadiene    | 10                   | U |
| 91-58-7   | 2-Chloronaphthalene          | 10                   | U |
| 88-74-4   | 2-Nitroaniline               | 20                   | U |
| 131-11-3  | Dimethylphthalate            | 10                   | U |
| 208-96-8  | Acenaphthylene               | 10                   | U |
| 606-20-2  | 2,6-Dinitrotoluene           | 10                   | U |
| 99-09-2   | 3-Nitroaniline               | 20                   | U |
| 83-32-9   | Acenaphthene                 | 10                   | U |
| 132-64-9  | Dibenzofuran                 | 10                   | U |
| 121-14-2  | 2,4-Dinitrotoluene           | 10                   | U |
| 84-66-2   | Diethylphthalate             | 10                   | U |
| 7005-72-3 | 4-Chlorophenyl-phenylether   | 10                   | U |
| 86-73-7   | Fluorene                     | 10                   | U |
| 100-01-6  | 4-Nitroaniline               | 20                   | U |
| 101-55-3  | 4-Bromophenyl-phenylether    | 10                   | U |
| 118-74-1  | Hexachlorobenzene            | 10                   | U |
| 85-01-8   | Phenanthrene                 | 10                   | U |
| 120-12-7  | Anthracene                   | 10                   | U |
| 86-74-8   | Carbazole                    | 10                   | U |
| 206-44-0  | Fluoranthene                 | 10                   | U |
| 129-00-0  | Pyrene                       | 10                   | U |
| 85-68-7   | Butylbenzylphthalate         | 10                   | U |

EPA SAMPLE NO.

EQUIP BLANK

| Lab Name: SPECTRU  | M ANALYTICAL, INC.        | Contract:         |                 |
|--------------------|---------------------------|-------------------|-----------------|
| Lab Code: MITKEM   | Case No.: N1243           | Mod. Ref No.:     | SDG No.: SN1243 |
| Matrix: (SOIL/SED/ | WATER) WATER              | Lab Sample ID:    | N1243-06B       |
| Sample wt/vol:     | 1000 (g/mL) ML            | Lab File ID:      | S6B8879.D       |
| Level: (LOW/MED)   | LOW                       | Extraction: (Type | e) SEPF         |
| % Moisture:        | Decanted: (Y/N)           | Date Received:    | 07/18/2014      |
| Concentrated Extra | ct Volume:1000 (uL)       | Date Extracted:   | 07/24/2014      |
| Injection Volume:  | 1.0 (uL) GPC Factor: 1.00 | Date Analyzed:    | 07/28/2014      |
| GPC Cleanup:(Y/N)  | N pH:                     | Dilution Factor:  | 1.0             |

|          |                            | CONCENTRATION UNITS: |   |
|----------|----------------------------|----------------------|---|
| CAS NO.  | COMPOUND                   | (ug/L or ug/Kg) UG/L | Q |
| 91-94-1  | 3,3´-Dichlorobenzidine     | 10                   | U |
| 56-55-3  | Benzo(a)anthracene         | 10                   | U |
| 218-01-9 | Chrysene                   | 10                   | U |
| 117-81-7 | Bis(2-ethylhexyl)phthalate | 1.4                  | J |
| 205-99-2 | Benzo(b)fluoranthene       | 10                   | U |
| 207-08-9 | Benzo(k)fluoranthene       | 10                   | U |
| 50-32-8  | Benzo(a)pyrene             | 10                   | U |
| 193-39-5 | Indeno(1,2,3-cd)pyrene     | 10                   | U |
| 53-70-3  | Dibenzo(a,h)anthracene     | 10                   | U |
| 191-24-2 | Benzo(g,h,i)perylene       | 10                   | U |

| EPA | SAMPLE | NO. |  |
|-----|--------|-----|--|
| MB- | 78224  |     |  |
|     |        |     |  |
|     |        |     |  |

| Lab Name: SPECTRUM ANALYTICAL, INC.         | Contract:                     |
|---------------------------------------------|-------------------------------|
| Lab Code: MITKEM Case No.: N1243            | Mod. Ref No.: SDG No.: SN1243 |
| Matrix: (SOIL/SED/WATER) WATER              | Lab Sample ID: MB-78224       |
| Sample wt/vol:1000 (g/mL) ML                | Lab File ID: S6B8876.D        |
| Level: (LOW/MED) LOW                        | Extraction: (Type) SEPF       |
| % Moisture: Decanted: (Y/N)                 | Date Received:                |
| Concentrated Extract Volume: 1000 (uL)      | Date Extracted: 07/24/2014    |
| Injection Volume: 1.0 (uL) GPC Factor: 1.00 | Date Analyzed: 07/28/2014     |
| GPC Cleanup:(Y/N) N pH:                     | Dilution Factor: 1.0          |

|           |                              | CONCENTRATION UNITS: |   |
|-----------|------------------------------|----------------------|---|
| CAS NO.   | COMPOUND                     | (ug/L or ug/Kg) UG/L | Q |
| 111-44-4  | Bis(2-chloroethyl)ether      | 10                   | U |
| 541-73-1  | 1,3-Dichlorobenzene          | 10                   | U |
| 106-46-7  | 1,4-Dichlorobenzene          | 10                   | U |
| 95-50-1   | 1,2-Dichlorobenzene          | 10                   | U |
| 108-60-1  | 2,2'-oxybis(1-Chloropropane) | 10                   | U |
| 67-72-1   | Hexachloroethane             | 10                   | U |
| 98-95-3   | Nitrobenzene                 | 10                   | U |
| 78-59-1   | Isophorone                   | 10                   | U |
| 120-82-1  | 1,2,4-Trichlorobenzene       | 10                   | U |
| 91-20-3   | Naphthalene                  | 10                   | U |
| 106-47-8  | 4-Chloroaniline              | 10                   | U |
| 111-91-1  | Bis(2-chloroethoxy)methane   | 10                   | U |
| 87-68-3   | Hexachlorobutadiene          | 10                   | U |
| 91-57-6   | 2-Methylnaphthalene          | 10                   | U |
| 77-47-4   | Hexachlorocyclopentadiene    | 10                   | U |
| 91-58-7   | 2-Chloronaphthalene          | 10                   | U |
| 88-74-4   | 2-Nitroaniline               | 20                   | U |
| 131-11-3  | Dimethylphthalate            | 10                   | U |
| 208-96-8  | Acenaphthylene               | 10                   | U |
| 606-20-2  | 2,6-Dinitrotoluene           | 10                   | U |
| 99-09-2   | 3-Nitroaniline               | 20                   | U |
| 83-32-9   | Acenaphthene                 | 10                   | U |
| 132-64-9  | Dibenzofuran                 | 10                   | U |
| 121-14-2  | 2,4-Dinitrotoluene           | 10                   | U |
| 84-66-2   | Diethylphthalate             | 10                   | U |
| 7005-72-3 | 4-Chlorophenyl-phenylether   | 10                   | U |
| 86-73-7   | Fluorene                     | 10                   | U |
| 100-01-6  | 4-Nitroaniline               | 20                   | U |
| 101-55-3  | 4-Bromophenyl-phenylether    | 10                   | U |
| 118-74-1  | Hexachlorobenzene            | 10                   | U |
| 85-01-8   | Phenanthrene                 | 10                   | U |
| 120-12-7  | Anthracene                   | 10                   | U |
| 86-74-8   | Carbazole                    | 10                   | U |
| 206-44-0  | Fluoranthene                 | 10                   | U |
| 129-00-0  | Pyrene                       | 10                   | U |
| 85-68-7   | Butylbenzylphthalate         | 10                   | U |

| EPA | SAMPLE | NO. |  |
|-----|--------|-----|--|
| MB- | 78224  |     |  |
|     |        |     |  |
|     |        |     |  |

| Lab Name: SPECTRUI | M ANALYTICAL, INC.        | Contract:         |                 |
|--------------------|---------------------------|-------------------|-----------------|
| Lab Code: MITKEM   | Case No.: N1243           | Mod. Ref No.:     | SDG No.: SN1243 |
| Matrix: (SOIL/SED/ | WATER) WATER              | Lab Sample ID:    | MB-78224        |
| Sample wt/vol:     | 1000 (g/mL) ML            | Lab File ID:      | S6B8876.D       |
| Level: (LOW/MED)   | LOW                       | Extraction: (Type | e) SEPF         |
| % Moisture:        | Decanted: (Y/N)           | Date Received:    |                 |
| Concentrated Extra | ct Volume:1000 (uL)       | Date Extracted:   | 07/24/2014      |
| Injection Volume:  | 1.0 (uL) GPC Factor: 1.00 | Date Analyzed:    | 07/28/2014      |
| GPC Cleanup:(Y/N)  | N pH:                     | Dilution Factor:  | 1.0             |

| CAS NO.  | COMPOUND                   | CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L | 0 |
|----------|----------------------------|-------------------------------------------|---|
|          |                            | (ug/1 of ug/1ig/ oc/1                     | ~ |
| 91-94-1  | 3,3´-Dichlorobenzidine     | 10                                        | U |
| 56-55-3  | Benzo(a)anthracene         | 10                                        | U |
| 218-01-9 | Chrysene                   | 10                                        | U |
| 117-81-7 | Bis(2-ethylhexyl)phthalate | 10                                        | U |
| 205-99-2 | Benzo(b)fluoranthene       | 10                                        | U |
| 207-08-9 | Benzo(k)fluoranthene       | 10                                        | U |
| 50-32-8  | Benzo(a)pyrene             | 10                                        | U |
| 193-39-5 | Indeno(1,2,3-cd)pyrene     | 10                                        | U |
| 53-70-3  | Dibenzo(a,h)anthracene     | 10                                        | U |
| 191-24-2 | Benzo(g,h,i)perylene       | 10                                        | U |

| EPA | SAMPLE | NO. |  |
|-----|--------|-----|--|
| MB- | 78243  |     |  |
|     |        |     |  |
| l   |        |     |  |

| Lab Name: SPECTRUM ANALYTICAL, INC.       | Contract:                     |
|-------------------------------------------|-------------------------------|
| Lab Code: MITKEM Case No.: N1243          | Mod. Ref No.: SDG No.: SN1243 |
| Matrix: (SOIL/SED/WATER) SOIL             | Lab Sample ID: MB-78243       |
| Sample wt/vol:15.0 (g/mL) G               | Lab File ID: S6B8873.D        |
| Level: (LOW/MED) LOW                      | Extraction: (Type) SONC       |
| % Moisture: Decanted: (Y/N)               | Date Received:                |
| Concentrated Extract Volume:1000 (uL)     | Date Extracted: 07/25/2014    |
| Injection Volume:1.0 (uL) GPC Factor:1.00 | Date Analyzed: 07/28/2014     |
| GPC Cleanup:(Y/N) N pH:                   | Dilution Factor: 1.0          |

|           | <u> </u>                     | CONCENTRATION UNITS:  |   |
|-----------|------------------------------|-----------------------|---|
| CAS NO.   | COMPOUND                     | (ug/L or ug/Kg) UG/KG | Q |
| 111-44-4  | Bis(2-chloroethyl)ether      | 330                   | U |
| 541-73-1  | 1,3-Dichlorobenzene          | 330                   | U |
| 106-46-7  | 1,4-Dichlorobenzene          | 330                   | U |
| 95-50-1   | 1,2-Dichlorobenzene          | 330                   | U |
| 108-60-1  | 2,2'-oxybis(1-Chloropropane) | 330                   | U |
| 67-72-1   | Hexachloroethane             | 330                   | U |
| 98-95-3   | Nitrobenzene                 | 330                   | U |
| 78-59-1   | Isophorone                   | 330                   | U |
| 120-82-1  | 1,2,4-Trichlorobenzene       | 330                   | U |
| 91-20-3   | Naphthalene                  | 330                   | U |
| 106-47-8  | 4-Chloroaniline              | 330                   | U |
| 111-91-1  | Bis(2-chloroethoxy)methane   | 330                   | U |
| 87-68-3   | Hexachlorobutadiene          | 330                   | U |
| 91-57-6   | 2-Methylnaphthalene          | 330                   | U |
| 77-47-4   | Hexachlorocyclopentadiene    | 330                   | U |
| 91-58-7   | 2-Chloronaphthalene          | 330                   | U |
| 88-74-4   | 2-Nitroaniline               | 670                   | U |
| 131-11-3  | Dimethylphthalate            | 330                   | U |
| 208-96-8  | Acenaphthylene               | 330                   | U |
| 606-20-2  | 2,6-Dinitrotoluene           | 330                   | U |
| 99-09-2   | 3-Nitroaniline               | 670                   | U |
| 83-32-9   | Acenaphthene                 | 330                   | U |
| 132-64-9  | Dibenzofuran                 | 330                   | U |
| 121-14-2  | 2,4-Dinitrotoluene           | 330                   | U |
| 84-66-2   | Diethylphthalate             | 330                   | U |
| 7005-72-3 | 4-Chlorophenyl-phenylether   | 330                   | U |
| 86-73-7   | Fluorene                     | 330                   | U |
| 100-01-6  | 4-Nitroaniline               | 670                   | U |
| 101-55-3  | 4-Bromophenyl-phenylether    | 330                   | U |
| 118-74-1  | Hexachlorobenzene            | 330                   | U |
| 85-01-8   | Phenanthrene                 | 330                   | U |
| 120-12-7  | Anthracene                   | 330                   | U |
| 86-74-8   | Carbazole                    | 330                   | U |
| 206-44-0  | Fluoranthene                 | 330                   | U |
| 129-00-0  | Pyrene                       | 330                   | U |
| 85-68-7   | Butylbenzylphthalate         | 330                   | U |

| EPA | SAMPLE | NO. |  |
|-----|--------|-----|--|
| MB- | 78243  |     |  |
|     |        |     |  |

| Lab Name: SPECTRUM ANALYTICAL, INC.   | (        | Contract:         |                 |
|---------------------------------------|----------|-------------------|-----------------|
| Lab Code: MITKEM Case No.: N1243      | 1        | Mod. Ref No.:     | SDG No.: SN1243 |
| Matrix: (SOIL/SED/WATER) SOIL         |          | Lab Sample ID:    | MB-78243        |
| Sample wt/vol:15.0 (g/mL) G           |          | Lab File ID:      | S6B8873.D       |
| Level: (LOW/MED) LOW                  |          | Extraction: (Type | SONC SONC       |
| % Moisture: Decanted: (Y/N) _         | I        | Date Received:    |                 |
| Concentrated Extract Volume: 1000     | ) (uL) I | Date Extracted:   | 07/25/2014      |
| Injection Volume:1.0 (uL) GPC Factor: | 1.00 I   | Date Analyzed:    | 07/28/2014      |
| GPC Cleanup:(Y/N) N pH:               |          | Dilution Factor:  | 1.0             |

| CAS NO.  | COMPOUND                   | CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG | Q |
|----------|----------------------------|--------------------------------------------|---|
| 91-94-1  | 3,3´-Dichlorobenzidine     | 330                                        | U |
| 56-55-3  | Benzo(a)anthracene         | 330                                        | U |
| 218-01-9 | Chrysene                   | 330                                        | U |
| 117-81-7 | Bis(2-ethylhexyl)phthalate | 330                                        | U |
| 205-99-2 | Benzo(b)fluoranthene       | 330                                        | U |
| 207-08-9 | Benzo(k)fluoranthene       | 330                                        | U |
| 50-32-8  | Benzo(a)pyrene             | 330                                        | U |
| 193-39-5 | Indeno(1,2,3-cd)pyrene     | 330                                        | U |
| 53-70-3  | Dibenzo(a,h)anthracene     | 330                                        | U |
| 191-24-2 | Benzo(g,h,i)perylene       | 330                                        | U |

| EPA | SAMPLE | NO. |  |
|-----|--------|-----|--|
| LCS | -78224 |     |  |
|     |        |     |  |

| Lab Name: SPECTRU  | JM ANALYTICAL, INC.    | Contract:         |                 |
|--------------------|------------------------|-------------------|-----------------|
| Lab Code: MITKEM   | Case No.: <u>N1243</u> | Mod. Ref No.:     | SDG No.: SN1243 |
| Matrix: (SOIL/SED/ | /WATER) WATER          | Lab Sample ID:    | LCS-78224       |
| Sample wt/vol:     | 1000 (g/mL) ML         | Lab File ID:      | S6B8877.D       |
| Level: (LOW/MED)   | LOW                    | Extraction: (Type | SEPF            |
| % Moisture:        | Decanted: (Y/N)        | Date Received:    |                 |
| Concentrated Extra | act Volume:1000 (uL)   | Date Extracted:   | 07/24/2014      |
| Injection Volume:  |                        | Date Analyzed:    | 07/28/2014      |
| GPC Cleanup:(Y/N)  | N pH:                  | Dilution Factor:  | 1.0             |

| CAS NO.   | COMPOUND                     | CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L | 0                                                |
|-----------|------------------------------|-------------------------------------------|--------------------------------------------------|
|           |                              |                                           | ~                                                |
| 111-44-4  |                              | 44                                        |                                                  |
|           | 1,3-Dichlorobenzene          | 43                                        |                                                  |
| 106-46-7  | 1,4-Dichlorobenzene          | 42                                        |                                                  |
| 95-50-1   | 1,2-Dichlorobenzene          | 43                                        |                                                  |
|           | 2,2'-oxybis(1-Chloropropane) | 41                                        |                                                  |
| 67-72-1   | Hexachloroethane             | 46                                        |                                                  |
| 98-95-3   |                              | 50                                        |                                                  |
| 78-59-1   | Isophorone                   | 48                                        |                                                  |
| 120-82-1  | 1,2,4-Trichlorobenzene       | 48                                        |                                                  |
| 91-20-3   | Naphthalene                  | 47                                        |                                                  |
| 106-47-8  | 4-Chloroaniline              | 41                                        |                                                  |
| 111-91-1  | Bis(2-chloroethoxy)methane   | 47                                        |                                                  |
| 87-68-3   | Hexachlorobutadiene          | 51                                        |                                                  |
| 91-57-6   | 2-Methylnaphthalene          | 50                                        |                                                  |
| 77-47-4   | Hexachlorocyclopentadiene    | 37                                        |                                                  |
| 91-58-7   | 2-Chloronaphthalene          | 43                                        |                                                  |
| 88-74-4   | 2-Nitroaniline               | 45                                        |                                                  |
| 131-11-3  | Dimethylphthalate            | 47                                        |                                                  |
| 208-96-8  | Acenaphthylene               | 45                                        |                                                  |
| 606-20-2  | 2,6-Dinitrotoluene           | 47                                        |                                                  |
| 99-09-2   | 3-Nitroaniline               | 38                                        |                                                  |
| 83-32-9   | Acenaphthene                 | 44                                        |                                                  |
| 132-64-9  | Dibenzofuran                 | 44                                        |                                                  |
| 121-14-2  | 2,4-Dinitrotoluene           | 47                                        |                                                  |
| 84-66-2   | Diethylphthalate             | 47                                        |                                                  |
| 7005-72-3 | 4-Chlorophenyl-phenylether   | 46                                        |                                                  |
| 86-73-7   | Fluorene                     | 46                                        |                                                  |
| 100-01-6  | 4-Nitroaniline               | 36                                        |                                                  |
| 101-55-3  | 4-Bromophenyl-phenylether    | 44                                        |                                                  |
| 118-74-1  | Hexachlorobenzene            | 47                                        | <u> </u>                                         |
| 85-01-8   | Phenanthrene                 | 43                                        | <u> </u>                                         |
| 120-12-7  | Anthracene                   | 43                                        |                                                  |
| 86-74-8   | Carbazole                    | 44                                        |                                                  |
| 206-44-0  | Fluoranthene                 | 47                                        |                                                  |
| 129-00-0  | Pyrene                       | 43                                        |                                                  |
| 85-68-7   | Butylbenzylphthalate         | 43                                        | <del>                                     </del> |

| EPA | SAMPLE | NO. |
|-----|--------|-----|
| LCS | -78224 |     |
|     |        |     |

| Lab Code: MITKEM Case No.: N1243 Mod. Ref No.: SDG No.: SN12       | 43 |
|--------------------------------------------------------------------|----|
|                                                                    | -  |
| Matrix: (SOIL/SED/WATER) WATER Lab Sample ID: LCS-78224            |    |
| Sample wt/vol: (g/mL) ML Lab File ID: S6B8877.D                    |    |
| Level: (LOW/MED) LOW Extraction: (Type) SEPF                       |    |
| % Moisture: Decanted: (Y/N) Date Received:                         |    |
| Concentrated Extract Volume:1000 (uL) Date Extracted: 07/24/2014   |    |
| Injection Volume:1.0 (uL) GPC Factor:1.00 Date Analyzed:07/28/2014 |    |
| GPC Cleanup:(Y/N) N pH: Dilution Factor: 1.0                       |    |

| CAS NO.  | COMPOUND                   | CONCENTRATION UNITS:<br>(ug/L or ug/Kg) UG/L | Q |
|----------|----------------------------|----------------------------------------------|---|
| 91-94-1  | 3,3'-Dichlorobenzidine     | 44                                           |   |
| 56-55-3  | Benzo(a)anthracene         | 46                                           |   |
| 218-01-9 | Chrysene                   | 46                                           |   |
| 117-81-7 | Bis(2-ethylhexyl)phthalate | 42                                           |   |
| 205-99-2 | Benzo(b)fluoranthene       | 48                                           |   |
| 207-08-9 | Benzo(k)fluoranthene       | 46                                           |   |
| 50-32-8  | Benzo(a)pyrene             | 47                                           |   |
| 193-39-5 | Indeno(1,2,3-cd)pyrene     | 50                                           |   |
| 53-70-3  | Dibenzo(a,h)anthracene     | 51                                           | · |
| 191-24-2 | Benzo(g,h,i)perylene       | 50                                           | · |

| EPA | SAMPLE | NO. |
|-----|--------|-----|
| LCS | -78243 |     |
|     |        |     |

| Lab Name: SPECTRUM ANALYTICAL, INC.       | Contract:                     |
|-------------------------------------------|-------------------------------|
| Lab Code: MITKEM Case No.: N1243          | Mod. Ref No.: SDG No.: SN1243 |
| Matrix: (SOIL/SED/WATER) SOIL             | Lab Sample ID: LCS-78243      |
| Sample wt/vol:15.0 (g/mL) G               | Lab File ID: S6B8874.D        |
| Level: (LOW/MED) LOW                      | Extraction: (Type) SONC       |
| % Moisture: Decanted: (Y/N)               | Date Received:                |
| Concentrated Extract Volume:1000 (uL)     | Date Extracted: 07/25/2014    |
| Injection Volume:1.0 (uL) GPC Factor:1.00 | Date Analyzed: 07/28/2014     |
| GPC Cleanup:(Y/N) N pH:                   | Dilution Factor: 1.0          |

|           |                            | CONCENTRATION UNITS:  |   |
|-----------|----------------------------|-----------------------|---|
| CAS NO.   | COMPOUND                   | (ug/L or ug/Kg) UG/KG | Q |
| 111-44-4  | Bis(2-chloroethyl)ether    | 2400                  |   |
| 541-73-1  |                            | 2300                  |   |
| 106-46-7  | 1,4-Dichlorobenzene        | 2300                  |   |
| 95-50-1   | 1,2-Dichlorobenzene        | 2300                  |   |
| 108-60-1  |                            | 2300                  |   |
| 67-72-1   |                            | 2500                  |   |
| 98-95-3   | Nitrobenzene               | 2700                  |   |
| 78-59-1   | Isophorone                 | 2600                  |   |
| 120-82-1  | _                          | 2700                  |   |
| 91-20-3   | Naphthalene                | 2600                  |   |
| 106-47-8  | 4-Chloroaniline            | 970                   |   |
| 111-91-1  | Bis(2-chloroethoxy)methane | 2600                  |   |
| 87-68-3   | Hexachlorobutadiene        | 2900                  |   |
| 91-57-6   | 2-Methylnaphthalene        | 2700                  |   |
| 77-47-4   |                            | 2400                  |   |
| 91-58-7   |                            | 2400                  |   |
| 88-74-4   | _                          | 2400                  |   |
| 131-11-3  | Dimethylphthalate          | 2400                  |   |
| 208-96-8  |                            | 2400                  |   |
| 606-20-2  | 2,6-Dinitrotoluene         | 2400                  |   |
| 99-09-2   | 3-Nitroaniline             | 1300                  |   |
| 83-32-9   | Acenaphthene               | 2300                  |   |
| 132-64-9  | Dibenzofuran               | 2300                  |   |
| 121-14-2  | 2,4-Dinitrotoluene         | 2300                  |   |
| 84-66-2   | Diethylphthalate           | 2400                  |   |
| 7005-72-3 | 4-Chlorophenyl-phenylether | 2400                  |   |
| 86-73-7   | Fluorene                   | 2400                  |   |
| 100-01-6  | 4-Nitroaniline             | 1800                  |   |
| 101-55-3  | 4-Bromophenyl-phenylether  | 2500                  |   |
| 118-74-1  | Hexachlorobenzene          | 2600                  |   |
| 85-01-8   | Phenanthrene               | 2300                  |   |
| 120-12-7  | Anthracene                 | 2300                  |   |
| 86-74-8   | Carbazole                  | 2200                  |   |
| 206-44-0  | Fluoranthene               | 2300                  |   |
| 129-00-0  | Pyrene                     | 2500                  |   |
| 85-68-7   | Butylbenzylphthalate       | 2300                  |   |

| EPA | SAMPLE | NO. |
|-----|--------|-----|
| LCS | -78243 |     |
|     |        |     |

| Lab Name:   | SPECTRUM AN. | ALYTICAL, IN  | C           | Contract:         |                 |
|-------------|--------------|---------------|-------------|-------------------|-----------------|
| Lab Code:   | MITKEM       | Case No.:     | N1243       | Mod. Ref No.:     | SDG No.: SN1243 |
| Matrix: (SO | OIL/SED/WATE | R) SOIL       |             | Lab Sample ID:    | LCS-78243       |
| Sample wt/v | vol:1        | 5.0 (g/mL)    | <u>G</u>    | Lab File ID:      | S6B8874.D       |
| Level: (LOW | N/MED) LOW   |               |             | Extraction: (Type | e) <u>SONC</u>  |
| % Moisture: |              | Decanted: (   | Y/N)        | Date Received:    |                 |
| Concentrate | ed Extract V | olume:        | 1000 (uL)   | Date Extracted:   | 07/25/2014      |
| Injection V | Volume: 1.   | 0 (uL) GPC Fa | actor: 1.00 | Date Analyzed:    | 07/28/2014      |
| GPC Cleanup | o:(Y/N) N    | pH:           |             | Dilution Factor:  | 1.0             |

| CAS NO.  | COMPOUND                   | CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG Q |
|----------|----------------------------|----------------------------------------------|
| 91-94-1  | 3,3'-Dichlorobenzidine     | 1500                                         |
| 56-55-3  | Benzo(a)anthracene         | 2400                                         |
| 218-01-9 | Chrysene                   | 2400                                         |
| 117-81-7 | Bis(2-ethylhexyl)phthalate | 2400                                         |
| 205-99-2 | Benzo(b)fluoranthene       | 2600                                         |
| 207-08-9 | Benzo(k)fluoranthene       | 2500                                         |
| 50-32-8  | Benzo(a)pyrene             | 2500                                         |
| 193-39-5 | Indeno(1,2,3-cd)pyrene     | 2500                                         |
| 53-70-3  | Dibenzo(a,h)anthracene     | 2500                                         |
| 191-24-2 | Benzo(g,h,i)perylene       | 2500                                         |

| EPA | SAMPLE  | NO. |
|-----|---------|-----|
| LCS | D-78224 |     |
|     |         |     |

| Lab Name: SPECTRUM ANALYTICAL, INC.         | Contract:                     |
|---------------------------------------------|-------------------------------|
| Lab Code: MITKEM Case No.: N1243            | Mod. Ref No.: SDG No.: SN1243 |
| Matrix: (SOIL/SED/WATER) WATER              | Lab Sample ID: LCSD-78224     |
| Sample wt/vol:1000 (g/mL) ML                | Lab File ID: S6B8878.D        |
| Level: (LOW/MED) LOW                        | Extraction: (Type) SEPF       |
| % Moisture: Decanted: (Y/N)                 | Date Received:                |
| Concentrated Extract Volume: 1000 (uL)      | Date Extracted: 07/24/2014    |
| Injection Volume: 1.0 (uL) GPC Factor: 1.00 | Date Analyzed: 07/28/2014     |
| GPC Cleanup:(Y/N) N pH:                     | Dilution Factor: 1.0          |

|           |                              | CONCENTRATION UNITS: |   |
|-----------|------------------------------|----------------------|---|
| CAS NO.   | COMPOUND                     | (ug/L or ug/Kg) UG/L | Q |
| 111-44-4  | Bis(2-chloroethyl)ether      | 41                   |   |
| 541-73-1  | 1,3-Dichlorobenzene          | 39                   |   |
| 106-46-7  | 1,4-Dichlorobenzene          | 39                   |   |
| 95-50-1   | 1,2-Dichlorobenzene          | 39                   |   |
| 108-60-1  | 2,2'-oxybis(1-Chloropropane) | 38                   |   |
| 67-72-1   | Hexachloroethane             | 41                   |   |
| 98-95-3   | Nitrobenzene                 | 47                   |   |
| 78-59-1   | Isophorone                   | 47                   |   |
| 120-82-1  | 1,2,4-Trichlorobenzene       | 47                   |   |
| 91-20-3   | Naphthalene                  | 45                   |   |
| 106-47-8  | 4-Chloroaniline              | 40                   |   |
| 111-91-1  | Bis(2-chloroethoxy)methane   | 46                   |   |
| 87-68-3   | Hexachlorobutadiene          | 50                   |   |
| 91-57-6   | 2-Methylnaphthalene          | 50                   |   |
| 77-47-4   | Hexachlorocyclopentadiene    | 35                   |   |
| 91-58-7   | 2-Chloronaphthalene          | 42                   |   |
| 88-74-4   | 2-Nitroaniline               | 44                   |   |
| 131-11-3  | Dimethylphthalate            | 47                   |   |
| 208-96-8  | Acenaphthylene               | 45                   |   |
| 606-20-2  | 2,6-Dinitrotoluene           | 48                   |   |
| 99-09-2   | 3-Nitroaniline               | 39                   |   |
| 83-32-9   | Acenaphthene                 | 44                   |   |
| 132-64-9  | Dibenzofuran                 | 45                   |   |
| 121-14-2  | 2,4-Dinitrotoluene           | 48                   |   |
| 84-66-2   | Diethylphthalate             | 47                   |   |
| 7005-72-3 | 4-Chlorophenyl-phenylether   | 46                   |   |
| 86-73-7   | Fluorene                     | 46                   |   |
| 100-01-6  | 4-Nitroaniline               | 34                   |   |
| 101-55-3  | 4-Bromophenyl-phenylether    | 46                   |   |
| 118-74-1  | Hexachlorobenzene            | 48                   |   |
| 85-01-8   | Phenanthrene                 | 45                   |   |
| 120-12-7  | Anthracene                   | 44                   |   |
| 86-74-8   | Carbazole                    | 46                   |   |
| 206-44-0  | Fluoranthene 49              |                      |   |
| 129-00-0  | Pyrene                       | 44                   |   |
| 85-68-7   | Butylbenzylphthalate         | 43                   |   |

## 1E - FORM I SV-2 SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

| EPA | SAMPLE  | NO. |
|-----|---------|-----|
| LCS | D-78224 |     |
|     |         |     |

| Lab Name: SPECTRU  | JM ANALYTICAL, INC.   | Contract:         |                 |
|--------------------|-----------------------|-------------------|-----------------|
| Lab Code: MITKEM   | Case No.: N1243       | Mod. Ref No.:     | SDG No.: SN1243 |
| Matrix: (SOIL/SED  | /WATER) WATER         | Lab Sample ID:    | LCSD-78224      |
| Sample wt/vol:     | 1000 (g/mL) <u>ML</u> | Lab File ID:      | S6B8878.D       |
| Level: (LOW/MED)   | LOW                   | Extraction: (Type | e) SEPF         |
| % Moisture:        | Decanted: (Y/N)       | Date Received:    |                 |
| Concentrated Extra | act Volume:1000 (uL)  | Date Extracted:   | 07/24/2014      |
| Injection Volume:  | (uL) GPC Factor: 1.00 | Date Analyzed:    | 07/28/2014      |
| GPC Cleanup:(Y/N)  | рН:                   | Dilution Factor:  | 1.0             |
|                    |                       |                   |                 |

| CAS NO.  | COMPOUND                   | CONCENTRATION UNITS:<br>(ug/L or ug/Kg) UG/L | Q |
|----------|----------------------------|----------------------------------------------|---|
| 91-94-1  | 3,3'-Dichlorobenzidine     | 44                                           |   |
| 56-55-3  | Benzo(a)anthracene         | 47                                           |   |
| 218-01-9 | Chrysene                   | 47                                           |   |
| 117-81-7 | Bis(2-ethylhexyl)phthalate | 43                                           |   |
| 205-99-2 | Benzo(b)fluoranthene       | 47                                           |   |
| 207-08-9 | Benzo(k)fluoranthene       | 47                                           |   |
| 50-32-8  | Benzo(a)pyrene             | 48                                           |   |
| 193-39-5 | Indeno(1,2,3-cd)pyrene     | 52                                           |   |
| 53-70-3  | Dibenzo(a,h)anthracene     | 54                                           |   |
| 191-24-2 | Benzo(g,h,i)perylene       | 51                                           |   |

## 1D - FORM I SV-1 SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

| EPA | SAMPLE  | NO. |
|-----|---------|-----|
| LCS | D-78243 |     |
|     |         |     |

| Lab Name: SPECTRUM ANALYTICAL, INC.       | Contract:                     |
|-------------------------------------------|-------------------------------|
| Lab Code: MITKEM Case No.: N1243          | Mod. Ref No.: SDG No.: SN1243 |
| Matrix: (SOIL/SED/WATER) SOIL             | Lab Sample ID: LCSD-78243     |
| Sample wt/vol:15.0 (g/mL) G               | Lab File ID: S6B8875.D        |
| Level: (LOW/MED) LOW                      | Extraction: (Type) SONC       |
| % Moisture: Decanted: (Y/N)               | Date Received:                |
| Concentrated Extract Volume:1000 (uL)     | Date Extracted: 07/25/2014    |
| Injection Volume:1.0 (uL) GPC Factor:1.00 | Date Analyzed: 07/28/2014     |
| GPC Cleanup:(Y/N) N pH:                   | Dilution Factor: 1.0          |

|           |                            | CONCENTRATION UNITS:  |   |
|-----------|----------------------------|-----------------------|---|
| CAS NO.   | COMPOUND                   | (ug/L or ug/Kg) UG/KG | Q |
| 111-44-4  | Bis(2-chloroethyl)ether    | 2400                  |   |
| 541-73-1  |                            | 2300                  |   |
| 106-46-7  | 1,4-Dichlorobenzene        | 2300                  |   |
| 95-50-1   | 1,2-Dichlorobenzene        | 2400                  |   |
| 108-60-1  |                            | 2300                  |   |
| 67-72-1   |                            | 2500                  |   |
| 98-95-3   | Nitrobenzene               | 2800                  |   |
| 78-59-1   | Isophorone                 | 2700                  |   |
| 120-82-1  | _                          | 2900                  |   |
| 91-20-3   | Naphthalene                | 2700                  |   |
| 106-47-8  | 4-Chloroaniline            | 1300                  |   |
| 111-91-1  | Bis(2-chloroethoxy)methane | 2700                  |   |
| 87-68-3   | Hexachlorobutadiene        | 3000                  |   |
| 91-57-6   | 2-Methylnaphthalene        | 2900                  |   |
| 77-47-4   | 1 1                        | 2500                  |   |
| 91-58-7   |                            | 2500                  |   |
| 88-74-4   |                            | 2400                  |   |
| 131-11-3  | Dimethylphthalate          | 2500                  |   |
| 208-96-8  |                            | 2500                  |   |
| 606-20-2  | 2,6-Dinitrotoluene         | 2500                  |   |
| 99-09-2   | 3-Nitroaniline             | 1500                  |   |
| 83-32-9   | Acenaphthene               | 2500                  |   |
| 132-64-9  | Dibenzofuran               | 2500                  |   |
| 121-14-2  | 2,4-Dinitrotoluene         | 2400                  |   |
| 84-66-2   | Diethylphthalate           | 2500                  |   |
| 7005-72-3 | 4-Chlorophenyl-phenylether | 2500                  |   |
| 86-73-7   |                            | 2500                  |   |
| 100-01-6  | 4-Nitroaniline             | 1800                  |   |
| 101-55-3  | 4-Bromophenyl-phenylether  | 2600                  |   |
| 118-74-1  | Hexachlorobenzene          | 2700                  |   |
| 85-01-8   | Phenanthrene               | 2400                  |   |
| 120-12-7  | Anthracene                 | 2400                  |   |
| 86-74-8   | Carbazole                  | 2300                  |   |
| 206-44-0  | Fluoranthene               | 2400                  |   |
| 129-00-0  | Pyrene                     | 2700                  |   |
| 85-68-7   | Butylbenzylphthalate       | 2500                  |   |

## 1E - FORM I SV-2 SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

| EPA | SAMPLE  | NO. |
|-----|---------|-----|
| LCS | D-78243 |     |
|     |         |     |

| Lab Name:   | SPECTRUM ANA | LYTICAL, IN   | C.          | Contract:        |                 |
|-------------|--------------|---------------|-------------|------------------|-----------------|
| Lab Code: 1 | MITKEM       | Case No.:     | N1243       | Mod. Ref No.:    | SDG No.: SN1243 |
| Matrix: (SO | OIL/SED/WATE | R) SOIL       |             | Lab Sample ID:   | LCSD-78243      |
| Sample wt/v | rol:15       | 0.0 (g/mL)    | G           | Lab File ID:     | S6B8875.D       |
| Level: (LOW | /MED) LOW    |               |             | Extraction: (Typ | e) SONC         |
| % Moisture: |              | Decanted: (   | Y/N)        | Date Received:   |                 |
| Concentrate | d Extract Vo | olume:        | 1000 (uL)   | Date Extracted:  | 07/25/2014      |
| Injection V | olume: 1.    | O (uL) GPC Fa | actor: 1.00 | Date Analyzed:   | 07/28/2014      |
| GPC Cleanup | ):(Y/N) N    | pH:           |             | Dilution Factor: | 1.0             |

| CAS NO.  | COMPOUND                        | CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG | Q    |  |  |
|----------|---------------------------------|--------------------------------------------|------|--|--|
| 91-94-1  | 3,3´-Dichlorobenzidine          | 1900                                       |      |  |  |
| 56-55-3  | 56-55-3 Benzo(a)anthracene 2600 |                                            |      |  |  |
| 218-01-9 | 218-01-9 Chrysene 2600          |                                            |      |  |  |
| 117-81-7 | Bis(2-ethylhexyl)phthalate      | 2600                                       |      |  |  |
| 205-99-2 | Benzo(b)fluoranthene            | 2800                                       | 2800 |  |  |
| 207-08-9 | Benzo(k)fluoranthene 2600       |                                            |      |  |  |
| 50-32-8  | Benzo(a)pyrene 2600             |                                            |      |  |  |
| 193-39-5 |                                 |                                            |      |  |  |
| 53-70-3  | Dibenzo(a,h)anthracene          | 2700                                       |      |  |  |
| 191-24-2 | Benzo(g,h,i)perylene            | 2600                                       |      |  |  |

#### 2H - FORM II SV-2

#### WATER SEMIVOLATILE DEUTERATED MONITORING COMPOUND RECOVERY

Lab Name: SPECTRUM ANALYTICAL, INC. Contract:

Lab Code: MITKEM Case No.: N1243 Mod. Ref No.: SDG No.: SN1243

|    | EPA         | SDMC1   | SDMC2   | SDMC3   | SDMC4   | SDMC5   | SDMC6   | TOT |
|----|-------------|---------|---------|---------|---------|---------|---------|-----|
|    | SAMPLE NO.  | (NBZ) # | (FBP) # | (TPH) # | (PHL) # | (2FP) # | (TBP) # | OUT |
| 01 | MB-78224    | 80      | 70      | 83      | 13      | 24      | 78      | 0   |
| 02 | LCS-78224   | 100     | 91      | 88      | 19      | 32      | 84      | 0   |
| 03 | LCSD-78224  | 95      | 86      | 85      | 14      | 25      | 90      | 0   |
| 04 | EQUIP BLANK | 94      | 85      | 80      |         |         |         | 0   |

|       |                              | OC LIMITS    |
|-------|------------------------------|--------------|
| ana1  | (277.5)                      | <del>~</del> |
| SDMC1 | (NBZ) = Nitrobenzene-d5      | (40-110)     |
| SDMC2 | (FBP) = 2-Fluorobiphenyl     | (50-110)     |
| SDMC3 | (TPH) = Terphenyl-d14        | (50-135)     |
| SDMC4 | (PHL) = Phenol-d5            | (10-115)     |
| SDMC5 | (2FP) = 2-Fluorophenol       | (20-110)     |
| SDMC6 | (TBP) = 2,4,6-Tribromophenol | (40-125)     |

#### som14.07.15.0901

 $<sup>\</sup>mbox{\tt\#}$  Column to be used to flag recovery values

<sup>\*</sup> Values outside of contract required QC limits

D DMC diluted out

#### 2K - FORM II SV-4

#### SOIL SEMIVOLATILE DEUTERATED MONITORING COMPOUND RECOVERY

Lab Name: SPECTRUM ANALYTICAL, INC. Contract:

Lab Code: MITKEM Case No.: N1243 Mod. Ref No.: SDG No.: SN1243

Level: (LOW/MED) LOW

|    | EPA        | SDMC1   | SDMC2   | SDMC3   | SDMC4   | SDMC5   | SDMC6   | TOT |
|----|------------|---------|---------|---------|---------|---------|---------|-----|
|    | SAMPLE NO. | (NBZ) # | (FBP) # | (TPH) # | (PHL) # | (2FP) # | (TBP) # | OUT |
| 01 | MB-78243   | 89      | 84      | 90      | 74      | 77      | 84      | 0   |
| 02 | LCS-78243  | 84      | 75      | 79      | 71      | 71      | 75      | 0   |
| 03 | LCSD-78243 | 86      | 76      | 86      | 69      | 71      | 77      | 0   |
| 04 | SED-2      | 75      | 68      | 75      |         |         |         | 0   |
| 05 | SED-3      | 73      | 66      | 75      |         |         |         | 0   |
| 06 | SED-4      | 74      | 68      | 73      |         |         |         | 0   |
| 07 | SED-31     | 82      | 77      | 90      |         |         |         | 0   |
| 08 | SED-2DL    | 66      | 59      | 60      |         |         |         | 0   |

|       |                              | QC LIMITS |
|-------|------------------------------|-----------|
| SDMC1 | (NBZ) = Nitrobenzene-d5      | (35-100)  |
| SDMC2 | (FBP) = 2-Fluorobiphenyl     | (45-105)  |
| SDMC3 | (TPH) = Terphenyl-d14        | (30-125)  |
| SDMC4 | (PHL) = Phenol-d5            | (40-100)  |
| SDMC5 | (2FP) = 2-Fluorophenol       | (35-105)  |
| SDMC6 | (TBP) = 2,4,6-Tribromophenol | (35-125)  |

#### som14.07.15.0901

 $<sup>\</sup>mbox{\tt\#}$  Column to be used to flag recovery values

<sup>\*</sup> Values outside of contract required QC limits

D DMC diluted out

# 3 - FORM III WATER LABORATORY CONTROL SAMPLE RECOVERY

EPA SAMPLE NO.

LCS-78224

| Lab Name: | SPECTRUM | ANALYTICAL, | INC. | Contract: |
|-----------|----------|-------------|------|-----------|
|-----------|----------|-------------|------|-----------|

Lab Code: MITKEM Case No.: N1243 Mod. Ref No.: SDG No.: SN1243

Lab Sample ID: LCS-78224 LCS Lot No.: A0101343

Date Extracted: 07/24/2014 Date Analyzed (1): 07/28/2014

|                            |         |               | _             |          |   |          |
|----------------------------|---------|---------------|---------------|----------|---|----------|
|                            | SPIKE   | SAMPLE        | LCS           |          |   | QC.      |
| COMPOUND                   | ADDED   | CONCENTRATION | CONCENTRATION | LCS %REC | # | LIMITS   |
|                            |         | !             |               |          |   | REC.     |
| Bis(2-chloroethyl)ether    | 50.0000 | 0.0000        | 43.5343       | 87       |   | 35 - 110 |
| 1,3-Dichlorobenzene        | 50.0000 |               |               | 86       |   | 30 - 100 |
| 1,4-Dichlorobenzene        | 50.0000 | 0.0000        | 41.8168       | 84       |   | 30 - 100 |
| 1,2-Dichlorobenzene        | 50.0000 |               |               | 85       |   | 35 - 100 |
| 2,2'-oxybis(1-Chloropropan | 50.0000 | 0.0000        | 40.9101       | 82       |   | 30 - 123 |
| Hexachloroethane           | 50.0000 | 0.0000        | 45.7381       | 91       |   | 30 - 95  |
| Nitrobenzene               | 50.0000 |               |               | 99       |   | 45 - 110 |
| Isophorone                 | 50.0000 | 0.0000        | 47.6316       | 95       |   | 50 - 110 |
| 1,2,4-Trichlorobenzene     | 50.0000 | 0.0000        | 47.8955       | 96       |   | 35 - 105 |
| Naphthalene                | 50.0000 | 0.0000        | 46.7087       | 93       |   | 40 - 100 |
| 4-Chloroaniline            | 50.0000 |               |               | 82       |   | 15 - 110 |
| Bis(2-chloroethoxy)methane | 50.0000 |               |               |          |   | 45 - 105 |
| Hexachlorobutadiene        | 50.0000 |               |               | 103      |   | 25 - 105 |
| 2-Methylnaphthalene        | 50.0000 |               |               | 101      |   | 45 - 105 |
| Hexachlorocyclopentadiene  | 50.0000 |               |               |          |   | 27 - 147 |
| 2-Chloronaphthalene        | 50.0000 |               |               |          |   | 50 - 105 |
| 2-Nitroaniline             | 50.0000 |               |               |          |   | 50 - 115 |
| Dimethylphthalate          | 50.0000 |               |               |          |   | 25 - 125 |
| Acenaphthylene             | 50.0000 |               |               |          |   | 50 - 105 |
| 2,6-Dinitrotoluene         | 50.0000 |               |               |          |   | 50 - 115 |
| 3-Nitroaniline             | 50.0000 |               |               |          |   | 20 - 125 |
| Acenaphthene               | 50.0000 |               |               | 89       |   | 45 - 110 |
| Dibenzofuran               | 50.0000 |               |               |          |   | 55 - 105 |
| 2,4-Dinitrotoluene         | 50.0000 |               |               |          |   | 50 - 120 |
| Diethylphthalate           | 50.0000 |               |               |          |   | 40 - 120 |
| 4-Chlorophenyl-phenylether | 50.0000 |               |               |          |   | 50 - 110 |
| Fluorene                   | 50.0000 |               |               |          |   | 50 - 110 |
| 4-Nitroaniline             | 50.0000 |               |               |          |   | 35 - 120 |
| 4-Bromophenyl-phenylether  | 50.0000 |               |               |          |   | 50 - 115 |
| Hexachlorobenzene          | 50.0000 |               |               |          |   | 50 - 110 |
| Phenanthrene               | 50.0000 |               |               |          |   | 50 - 115 |
| Anthracene                 | 50.0000 |               |               |          |   | 55 - 110 |
| Carbazole                  | 50.0000 |               |               |          |   | 50 - 115 |
| Fluoranthene               | 50.0000 |               |               |          |   | 55 - 115 |
| Pyrene                     | 50.0000 |               |               |          |   | 50 - 130 |
| Butylbenzylphthalate       | 50.0000 |               |               |          |   | 45 - 115 |
| 3,3´-Dichlorobenzidine     | 50.0000 |               |               |          |   | 20 - 110 |
| Benzo(a)anthracene         | 50.0000 |               |               |          |   | 55 - 110 |
| Chrysene                   | 50.0000 |               |               |          |   | 55 - 110 |
| Bis(2-ethylhexyl)phthalate | 50.0000 |               |               |          |   | 40 - 125 |
| Benzo(b)fluoranthene       | 50.0000 |               |               |          |   | 45 - 120 |
| Benzo(k)fluoranthene       | 50.0000 |               |               |          |   | 45 - 125 |
| Benzo(a)pyrene             | 50.0000 |               |               |          |   | 55 - 110 |
| Indeno(1,2,3-cd)pyrene     | 50.0000 |               |               |          |   | 45 - 125 |
|                            |         |               |               | I        | 1 | 1        |

## 3 - FORM III WATER LABORATORY CONTROL SAMPLE RECOVERY

| EPA | SAMPLE | NO. |
|-----|--------|-----|
| LCS | -78224 |     |

| Lab Name: SPECTR |                            | RUM ANA                                 | LYTICAL  | , INC.  | Contract              | :              |               |          |   |          |
|------------------|----------------------------|-----------------------------------------|----------|---------|-----------------------|----------------|---------------|----------|---|----------|
| Lab C            | ode:                       | e: MITKEM Case No.: N1243 Mod. Ref No.: |          | SDG     | No.                   | : SN1243       |               |          |   |          |
| Lab S            | Lab Sample ID: LCS-78224   |                                         |          |         |                       | 1343           |               |          |   |          |
| Date             | Date Extracted: 07/24/2014 |                                         |          |         | Date Analyzed (1): 07 |                |               |          | Ł |          |
|                  |                            |                                         |          |         | SPIKE                 | SAMPLE         | LCS           |          |   | QC.      |
|                  |                            | CON                                     | IPOUND   |         | ADDED                 | CONCENTRATION  | CONCENTRATION | LCS %REC | # | LIMITS   |
|                  |                            |                                         |          |         |                       |                |               |          |   | REC.     |
|                  | Diben                      | zo(a,h                                  | )anthrac | cene    | 50.0000               | 0.0000         | 51.4147       | 103      |   | 40 - 125 |
|                  | Benzo                      | (g,h,i                                  | )peryler | ne      | 50.0000               | 0.0000         | 50.2240       | 100      |   | 40 - 125 |
|                  |                            |                                         | ed to fl |         | very and RPD v        | values with an | asterisk      |          |   |          |
| Vai              | acb oa                     | CDIGC (                                 | JI QC II |         |                       |                |               |          |   |          |
| Spike            | Recov                      | ery:                                    | 0 0      | ut of _ | 46 outside            | limits         |               |          |   |          |
| COMME            | NTS:                       |                                         |          |         |                       |                |               |          |   |          |

# 3 - FORM III SOIL LABORATORY CONTROL SAMPLE RECOVERY

EPA SAMPLE NO.

LCS-78243

| Lab 1 | Name: | SPECTRUM | ANALYTICAL, | INC. | Contract: |
|-------|-------|----------|-------------|------|-----------|

Lab Code: MITKEM Case No.: N1243 Mod. Ref No.: SDG No.: SN1243

Lab Sample ID: LCS-78243 LCS Lot No.: A0101343

Date Extracted: 07/25/2014 Date Analyzed (1): 07/28/2014

|                            | SPIKE     | SAMPLE        | LCS           |          |   | QC.            |
|----------------------------|-----------|---------------|---------------|----------|---|----------------|
| GOVEOVE                    |           |               |               | raa Appa | ш |                |
| COMPOUND                   | ADDED     | CONCENTRATION | CONCENTRATION | LCS &REC | # | LIMITS<br>REC. |
| Bis(2-chloroethyl)ether    | 3333.0000 | 0.0000        | 2371.0377     | 71       |   | 40 - 105       |
| 1,3-Dichlorobenzene        | 3333.0000 |               | 2349.6377     | 70       |   | 40 - 100       |
| 1,4-Dichlorobenzene        | 3333.0000 |               |               | 69       |   | 35 - 105       |
| 1,2-Dichlorobenzene        | 3333.0000 | 0.0000        | 2341.0105     | 70       |   | 45 - 95        |
| 2,2'-oxybis(1-Chloropropan | 3333.0000 | 0.0000        | 2290.3822     | 69       |   | 20 - 115       |
| Hexachloroethane           | 3333.0000 | 0.0000        | 2508.7396     | 75       |   | 35 - 110       |
| Nitrobenzene               | 3333.0000 | 0.0000        | 2709.0575     | 81       |   | 40 - 115       |
| Isophorone                 | 3333.0000 | 0.0000        | 2601.1800     | 78       |   | 45 - 110       |
| 1,2,4-Trichlorobenzene     | 3333.0000 | 0.0000        | 2695.3145     | 81       |   | 45 - 110       |
| Naphthalene                | 3333.0000 | 0.0000        | 2559.4681     | 77       |   | 40 - 105       |
| 4-Chloroaniline            | 3333.0000 | 0.0000        | 971.2248      | 29       |   | 10 - 100       |
| Bis(2-chloroethoxy)methane | 3333.0000 | 0.0000        | 2567.6555     | 77       |   | 45 - 110       |
| Hexachlorobutadiene        | 3333.0000 | 0.0000        | 2891.3240     | 87       |   | 40 - 115       |
| 2-Methylnaphthalene        | 3333.0000 | 0.0000        | 2748.1307     | 82       |   | 45 - 105       |
| Hexachlorocyclopentadiene  | 3333.0000 | 0.0000        | 2428.1485     | 73       |   | 8 - 148        |
| 2-Chloronaphthalene        | 3333.0000 | 0.0000        | 2373.3759     | 71       |   | 45 - 105       |
| 2-Nitroaniline             | 3333.0000 | 0.0000        | 2362.9235     | 71       |   | 45 - 120       |
| Dimethylphthalate          | 3333.0000 | 0.0000        | 2440.9481     | 73       |   | 50 - 110       |
| Acenaphthylene             | 3333.0000 | 0.0000        | 2367.1139     | 71       |   | 45 - 105       |
| 2,6-Dinitrotoluene         | 3333.0000 | 0.0000        | 2378.9548     | 71       |   | 50 - 110       |
| 3-Nitroaniline             | 3333.0000 | 0.0000        | 1342.0626     | 40       |   | 25 - 110       |
| Acenaphthene               | 3333.0000 |               | 2342.2346     | 70       |   | 45 - 110       |
| Dibenzofuran               | 3333.0000 | 0.0000        | 2344.6233     | 70       |   | 50 - 105       |
| 2,4-Dinitrotoluene         | 3333.0000 |               | 2344.4012     | 70       |   | 50 - 115       |
| Diethylphthalate           | 3333.0000 | 0.0000        | 2423.0509     | 73       |   | 50 - 115       |
| 4-Chlorophenyl-phenylether | 3333.0000 | 0.0000        | 2445.8950     | 73       |   | 45 - 110       |
| Fluorene                   | 3333.0000 | 0.0000        | 2397.5686     |          |   | 50 - 110       |
| 4-Nitroaniline             | 3333.0000 |               |               |          |   | 35 - 115       |
| 4-Bromophenyl-phenylether  | 3333.0000 |               |               |          |   | 45 - 115       |
| Hexachlorobenzene          | 3333.0000 |               |               |          |   | 45 - 120       |
| Phenanthrene               | 3333.0000 |               |               |          |   | 50 - 110       |
| Anthracene                 | 3333.0000 |               |               |          |   | 55 - 105       |
| Carbazole                  | 3333.0000 |               |               |          |   | 45 - 115       |
| Fluoranthene               | 3333.0000 |               |               |          |   | 55 - 115       |
| Pyrene                     | 3333.0000 |               |               |          |   | 45 - 125       |
| Butylbenzylphthalate       | 3333.0000 |               |               |          |   | 50 - 125       |
| 3,3´-Dichlorobenzidine     | 3333.0000 |               |               |          |   | 10 - 130       |
| Benzo(a)anthracene         | 3333.0000 |               |               |          |   | 50 - 110       |
| Chrysene                   | 3333.0000 |               |               |          |   | 55 - 110       |
| Bis(2-ethylhexyl)phthalate | 3333.0000 |               |               |          |   | 45 - 125       |
| Benzo(b)fluoranthene       | 3333.0000 |               |               |          |   | 45 - 115       |
| Benzo(k)fluoranthene       | 3333.0000 |               |               |          |   | 45 - 125       |
| Benzo(a)pyrene             | 3333.0000 |               |               |          |   | 50 - 110       |
| Indeno(1,2,3-cd)pyrene     | 3333.0000 | 0.0000        | 2497.9346     | 75       |   | 40 - 120       |

## 3 - FORM III SOIL LABORATORY CONTROL SAMPLE RECOVERY

EPA SAMPLE NO.
LCS-78243

| Lab Name: SPECTRUM ANALYTICAL |                           |        |          |                | INC.                    | Contract             | :                     |                     |                       |          |  |  |
|-------------------------------|---------------------------|--------|----------|----------------|-------------------------|----------------------|-----------------------|---------------------|-----------------------|----------|--|--|
| Lab (                         | Lab Code: MITKEM Case No. |        | N1243    | Mod. Ref       | No.:                    | SDG I                | No.                   | SN1243              |                       |          |  |  |
| Lab S                         | Lab Sample ID: LCS-78243  |        |          |                |                         |                      | LCS Lot No.: A0101343 |                     |                       |          |  |  |
| Date                          | Extra                     | cted:  | 07/25/   | 2014           |                         | Date Ana             | lyzed (1): $0$        | zed (1): 07/28/2014 |                       |          |  |  |
| СОМРОИ                        |                           | IPOUND |          | SPIKE<br>ADDED | SAMPLE<br>CONCENTRATION | LCS<br>CONCENTRATION | LCS %REC              | #                   | QC.<br>LIMITS<br>REC. |          |  |  |
|                               | Dibenzo(a,h)anthracene    |        |          |                | 3333.0000               | 0.0000               | 2536.5534             | . 76                |                       | 40 - 125 |  |  |
|                               | Benzo                     | (g,h,i | )peryler | ie             | 3333.0000               | 0.0000               | 2461.9399             | 74                  |                       | 40 - 125 |  |  |
|                               |                           |        | ed to fl |                | ery and RPD v           | values with an       | asterisk              |                     |                       |          |  |  |
| Spike                         | Recov                     | ery:   | 0 0      | ut of          | 46 outside              | limits               |                       |                     |                       |          |  |  |
| COMME                         | ENTS:                     |        |          |                |                         |                      |                       |                     |                       |          |  |  |

#### 3 - FORM III

# WATER LABORATORY CONTROL SAMPLE DUPLICATE RECOVERY

EPA SAMPLE NO.

LCSD-78224

Lab Name: SPECTRUM ANALYTICAL, INC. Contract:

Lab Code: MITKEM Case No.: N1243 Mod. Ref No.: SDG No.: SN1243

Lab Sample ID: LCSD-78224 LCS Lot No.: A0101343

|                            | SPIKE<br>ADDED | LCSD<br>CONCENTRATION | LCSD %REC  | # | %RPD # | QC LIMITS |          |  |
|----------------------------|----------------|-----------------------|------------|---|--------|-----------|----------|--|
| COMPOUND                   | 112222         |                       | 2002 11120 | " | 01112  | RPD       | REC.     |  |
| Bis(2-chloroethyl)ether    | 50.0000        | 40.5443               | 81         |   | 7      | 40        | 35 - 110 |  |
| 1,3-Dichlorobenzene        | 50.0000        |                       | 79         |   | 8      | 40        | 30 - 100 |  |
| 1,4-Dichlorobenzene        | 50.0000        | 38.6280               | 77         |   | 9      | 40        | 30 - 100 |  |
| 1,2-Dichlorobenzene        | 50.0000        |                       |            |   | 7      | 40        | 35 - 100 |  |
| 2,2'-oxybis(1-Chloropropan | 50.0000        |                       | 75         |   | 9      | 40        | 30 - 123 |  |
| Hexachloroethane           | 50.0000        |                       |            |   | 10     | 40        | 30 - 95  |  |
| Nitrobenzene               | 50.0000        |                       | 95         |   | 4      | 40        | 45 - 110 |  |
| Isophorone                 | 50.0000        | 46.8087               | 94         |   | 1      | 40        | 50 - 110 |  |
| 1,2,4-Trichlorobenzene     | 50.0000        | 47.2055               | 94         |   | 2      | 40        | 35 - 105 |  |
| Naphthalene                | 50.0000        | 44.5596               | 89         |   | 4      | 40        | 40 - 100 |  |
| 4-Chloroaniline            | 50.0000        | 39.8070               | 80         |   | 2      | 40        | 15 - 110 |  |
| Bis(2-chloroethoxy)methane | 50.0000        | 45.8802               | 92         |   | 3      | 40        | 45 - 105 |  |
| Hexachlorobutadiene        | 50.0000        |                       |            |   | 3      | 40        | 25 - 105 |  |
| 2-Methylnaphthalene        | 50.0000        |                       |            |   | 2      | 40        | 45 - 105 |  |
| Hexachlorocyclopentadiene  | 50.0000        | 35.1073               | 70         |   | 4      | 40        | 27 - 147 |  |
| 2-Chloronaphthalene        | 50.0000        | 41.8331               | 84         |   | 2      | 40        | 50 - 105 |  |
| 2-Nitroaniline             | 50.0000        | 44.1550               | 88         |   | 1      | 40        | 50 - 115 |  |
| Dimethylphthalate          | 50.0000        | 46.7630               | 94         |   | 0      | 40        | 25 - 125 |  |
| Acenaphthylene             | 50.0000        | 44.8240               | 90         |   | 1      | 40        | 50 - 105 |  |
| 2,6-Dinitrotoluene         | 50.0000        | 48.2290               | 96         |   | 1      | 40        | 50 - 115 |  |
| 3-Nitroaniline             | 50.0000        | 38.7122               | 77         |   | 3      | 40        | 20 - 125 |  |
| Acenaphthene               | 50.0000        | 43.9433               | 88         |   | 1      | 40        | 45 - 110 |  |
| Dibenzofuran               | 50.0000        | 44.6988               | 89         |   | 0      | 40        | 55 - 105 |  |
| 2,4-Dinitrotoluene         | 50.0000        | 48.3129               | 97         |   | 2      | 40        | 50 - 120 |  |
| Diethylphthalate           | 50.0000        | 47.2951               | 95         |   | 1      | 40        | 40 - 120 |  |
| 4-Chlorophenyl-phenylether | 50.0000        | 46.0646               | 92         |   | 1      | 40        | 50 - 110 |  |
| Fluorene                   | 50.0000        | 46.1769               | 92         |   | 1      | 40        | 50 - 110 |  |
| 4-Nitroaniline             | 50.0000        | 34.3304               | 69         |   | 4      | 40        | 35 - 120 |  |
| 4-Bromophenyl-phenylether  | 50.0000        | 45.7493               | 91         |   | 4      | 40        | 50 - 115 |  |
| Hexachlorobenzene          | 50.0000        | 47.7279               | 95         |   | 1      | 40        | 50 - 110 |  |
| Phenanthrene               | 50.0000        | 44.9692               | 90         |   | 5      | 40        | 50 - 115 |  |
| Anthracene                 | 50.0000        | 44.0572               | 88         |   | 3      | 40        | 55 - 110 |  |
| Carbazole                  | 50.0000        | 45.6836               | 91         |   | 4      | 40        | 50 - 115 |  |
| Fluoranthene               | 50.0000        | 48.8414               | 98         |   | 5      | 40        | 55 - 115 |  |
| Pyrene                     | 50.0000        | 43.9326               | 88         |   | 2      | 40        | 50 - 130 |  |
| Butylbenzylphthalate       | 50.0000        | 43.1729               | 86         |   | 1      | 40        | 45 - 115 |  |
| 3,3´-Dichlorobenzidine     | 50.0000        | 44.2684               | 89         |   | 1      | 40        | 20 - 110 |  |
| Benzo(a)anthracene         | 50.0000        | 46.6836               | 93         |   | 0      | 40        | 55 - 110 |  |
| Chrysene                   | 50.0000        | 46.8610               | 94         |   | 3      | 40        | 55 - 110 |  |
| Bis(2-ethylhexyl)phthalate | 50.0000        | 42.6266               | 85         |   | 0      | 40        | 40 - 125 |  |
| Benzo(b)fluoranthene       | 50.0000        | 47.1043               | 94         |   | 1      | 40        | 45 - 120 |  |
| Benzo(k)fluoranthene       | 50.0000        | 47.0396               | 94         |   | 2      | 40        | 45 - 125 |  |
| Benzo(a)pyrene             | 50.0000        | 47.7103               | 95         |   | 2      | 40        | 55 - 110 |  |
| Indeno(1,2,3-cd)pyrene     | 50.0000        | 52.1195               | 104        |   | 3      | 40        | 45 - 125 |  |
| Dibenzo(a,h)anthracene     | 50.0000        | 53.5389               | 107        |   | 4      | 40        | 40 - 125 |  |
| Benzo(g,h,i)perylene       | 50.0000        | 50.8632               | 102        |   | 2      | 40        | 40 - 125 |  |

# 3 - FORM III WATER LABORATORY CONTROL SAMPLE DUPLICATE RECOVERY

LCSD-78224

| Lab Name:                | SPECT  | RUM ANAL | 'A.I.TCAT | , INC. Contract: |                |              |     |          |         |        |  |
|--------------------------|--------|----------|-----------|------------------|----------------|--------------|-----|----------|---------|--------|--|
| Lab Code:                | MITKE  | M        | Case N    | o.: <u>N1243</u> | Mod. Ref       | No.:         |     | S        | DG No.: | SN1243 |  |
| Lab Sample               | ID:    | LCSD-78  | 3224      |                  | LCS Lot        | LCS Lot No.: |     | A0101343 |         |        |  |
|                          |        |          |           | SPIKE            | LCSD           |              |     |          | QC L    | IMITS  |  |
|                          |        |          |           | ADDED            | CONCENTRATION  | LCSD %RE     | C # | %RPD #   |         |        |  |
|                          | CON    | MPOUND   |           |                  |                |              |     |          | RPD     | REC.   |  |
| # Column to  * Values ou |        |          |           | ery and RPD      | values with an | asterisk     |     |          |         |        |  |
| RPD: 0                   | out of | E 46     | outside   | e limits         |                |              |     |          |         |        |  |
| Spike Recov              | ery:   | 0 ou     | it of _   | 46 outside       | limits         |              |     |          |         |        |  |
| COMMENTS:                |        |          |           |                  |                |              |     |          | _       |        |  |

## 3 - FORM III SOIL LABORATORY CONTROL SAMPLE DUPLICATE RECOVERY

EPA SAMPLE NO.

LCSD-78243

Lab Name: SPECTRUM ANALYTICAL, INC. Contract:

Case No.: N1243 Mod. Ref No.: SDG No.: SN1243 Lab Code: MITKEM

Lab Sample ID: LCSD-78243 LCS Lot No.: A0101343

|                                             | SPIKE     | LCSD          | _         |   |        |     | LIMITS   |
|---------------------------------------------|-----------|---------------|-----------|---|--------|-----|----------|
| COMPOUND                                    | ADDED     | CONCENTRATION | LCSD %REC | # | %RPD # | RPD | REC.     |
|                                             | 2222 0000 | 2416.1685     | 7.0       |   | 1      |     |          |
| Bis(2-chloroethyl)ether 1,3-Dichlorobenzene | 3333.0000 |               |           |   | 0      | 40  | 40 - 105 |
| '                                           |           |               | -         |   | -      | 40  | 40 - 100 |
| 1,4-Dichlorobenzene                         | 3333.0000 |               |           |   | 1      | 40  | 35 - 105 |
| 1,2-Dichlorobenzene                         | 3333.0000 |               |           |   | 1      | 40  | 45 - 95  |
| 2,2'-oxybis(1-Chloropropan                  | 3333.0000 |               |           |   | 0      | 40  | 20 - 115 |
| Hexachloroethane                            | 3333.0000 |               |           |   | 1      | 40  | 35 - 110 |
| Nitrobenzene                                | 3333.0000 |               |           |   | 5      | 40  | 40 - 115 |
| Isophorone                                  | 3333.0000 |               |           |   | 3      | 40  | 45 - 110 |
| 1,2,4-Trichlorobenzene                      | 3333.0000 |               |           |   | 6      | 40  | 45 - 110 |
| Naphthalene                                 | 3333.0000 |               |           |   | 5      | 40  | 40 - 105 |
| 4-Chloroaniline                             | 3333.0000 |               |           |   | 32     | 40  | 10 - 100 |
| Bis(2-chloroethoxy)methane                  | 3333.0000 |               |           |   | 5      | 40  | 45 - 110 |
| Hexachlorobutadiene                         | 3333.0000 |               |           |   | 4      | 40  | 40 - 115 |
| 2-Methylnaphthalene                         | 3333.0000 |               |           |   | 5      | 40  | 45 - 105 |
| Hexachlorocyclopentadiene                   | 3333.0000 |               |           |   | 1      | 40  | 8 - 148  |
| 2-Chloronaphthalene                         | 3333.0000 |               |           |   | 4      | 40  | 45 - 105 |
| 2-Nitroaniline                              | 3333.0000 |               |           |   | 1      | 40  | 45 - 120 |
| Dimethylphthalate                           | 3333.0000 |               |           |   | 4      | 40  | 50 - 110 |
| Acenaphthylene                              | 3333.0000 |               |           |   | 4      | 40  | 45 - 105 |
| 2,6-Dinitrotoluene                          | 3333.0000 |               |           |   | 5      | 40  | 50 - 110 |
| 3-Nitroaniline                              | 3333.0000 |               |           |   | 14     | 40  | 25 - 110 |
| Acenaphthene                                | 3333.0000 |               |           |   | 7      | 40  | 45 - 110 |
| Dibenzofuran                                | 3333.0000 |               |           |   | 6      | 40  | 50 - 105 |
| 2,4-Dinitrotoluene                          | 3333.0000 |               |           |   | 3      | 40  | 50 - 115 |
| Diethylphthalate                            | 3333.0000 | 2469.7739     | 74        |   | 1      | 40  | 50 - 115 |
| 4-Chlorophenyl-phenylether                  | 3333.0000 | 2521.6324     | 76        |   | 4      | 40  | 45 - 110 |
| Fluorene                                    | 3333.0000 | 2492.0868     | 75        |   | 4      | 40  | 50 - 110 |
| 4-Nitroaniline                              | 3333.0000 | 1843.4851     | 55        |   | 0      | 40  | 35 - 115 |
| 4-Bromophenyl-phenylether                   | 3333.0000 | 2641.9733     | 79        |   | 5      | 40  | 45 - 115 |
| Hexachlorobenzene                           | 3333.0000 | 2694.8050     | 81        |   | 5      | 40  | 45 - 120 |
| Phenanthrene                                | 3333.0000 | 2419.1050     | 73        |   | 4      | 40  | 50 - 110 |
| Anthracene                                  | 3333.0000 | 2375.1495     | 71        |   | 3      | 40  | 55 - 105 |
| Carbazole                                   | 3333.0000 | 2281.5021     | 68        |   | 3      | 40  | 45 - 115 |
| Fluoranthene                                | 3333.0000 | 2360.3220     | 71        |   | 1      | 40  | 55 - 115 |
| Pyrene                                      | 3333.0000 | 2732.9682     | 82        |   | 10     | 40  | 45 - 125 |
| Butylbenzylphthalate                        | 3333.0000 | 2541.9133     | 76        |   | 8      | 40  | 50 - 125 |
| 3,3'-Dichlorobenzidine                      | 3333.0000 | 1890.2140     | 57        |   | 21     | 40  | 10 - 130 |
| Benzo(a)anthracene                          | 3333.0000 | 2610.9312     | 78        |   | 7      | 40  | 50 - 110 |
| Chrysene                                    | 3333.0000 | 2590.8871     | 78        |   | 7      | 40  | 55 - 110 |
| Bis(2-ethylhexyl)phthalate                  | 3333.0000 | 2607.9164     | 78        |   | 8      | 40  | 45 - 125 |
| Benzo(b)fluoranthene                        | 3333.0000 | 2771.4447     | 83        |   | 6      | 40  | 45 - 115 |
| Benzo(k)fluoranthene                        | 3333.0000 | 2616.8771     | 79        |   | 7      | 40  | 45 - 125 |
| Benzo(a)pyrene                              | 3333.0000 |               |           |   | 5      | 40  | 50 - 110 |
|                                             | 3333.0000 |               |           |   | 5      | 40  | 40 - 120 |
| Indeno(1,2,3-cd)pyrene                      | 3333.0000 |               |           |   |        |     |          |
| Dibenzo(a,h)anthracene                      | 3333.0000 |               |           |   | 6      | 40  | 40 - 125 |

# 3 - FORM III SOIL LABORATORY CONTROL SAMPLE DUPLICATE RECOVERY

EPA SAMPLE NO.
LCSD-78243

| Lab Name: SPECTRUM ANALYTICAL, INC. Contract: |         |                |                   |                |              |   |       |          |        |
|-----------------------------------------------|---------|----------------|-------------------|----------------|--------------|---|-------|----------|--------|
| Lab Code:                                     | MITKE   | M Case         | No.: <u>N1243</u> | Mod. Ref       | No.:         |   |       | SDG No.: | SN1243 |
| Lab Sample                                    | ID:     | LCSD-78243     |                   | LCS Lot I      | LCS Lot No.: |   | 01343 |          |        |
|                                               |         |                | SPIKE             | LCSD           |              |   |       | QC L     | IMITS  |
|                                               |         |                | ADDED             | CONCENTRATION  | LCSD %REC    | # | %RPD  | #        |        |
|                                               | COM     | POUND          |                   |                |              |   |       | RPD      | REC.   |
| # Column to                                   | be use  | ed to flag rec | overy and RPD     | values with an | asterisk     |   |       |          |        |
| * Values ou                                   | tside o | of QC limits   |                   |                |              |   |       |          |        |
| RPD: 0                                        | out of  | 46 outsi       | de limits         |                |              |   |       |          |        |
| Spike Recov                                   | ery:    | 0 out of       | 46 outside        | limits         |              |   |       |          |        |
| COMMENTS:                                     |         |                |                   |                |              |   |       |          |        |

## 4C - FORM IV SV SEMIVOLATILE METHOD BLANK SUMMARY

EPA SAMPLE NO.

MB-78243

| Lab Name: SPEC  | FRUM ANALYTICAL, INC. | Contract:        |                 |
|-----------------|-----------------------|------------------|-----------------|
| Lab Code: MITK  | EM Case No.: N1243    | Mod. Ref No.:    | SDG No.: SN1243 |
| Lab File ID:    | S6B8873.D             | Lab Sample ID:   | MB-78243        |
| Instrument ID:  | S6                    | Date Extracted:  | 07/25/2014      |
| Matrix: (SOIL/S | ED/WATER) SOIL        | Date Analyzed:   | 07/28/2014      |
| Level: (LOW/MED | ) LOW                 | Time Analyzed:   | 12:12           |
| Extraction: (Ty | pe) SONC              | GPC Cleanup: (Y/ | N) N            |

|    | EPA        | LAB         | LAB       | DATE       |
|----|------------|-------------|-----------|------------|
|    | SAMPLE NO. | SAMPLE ID   | FILE ID   | ANALYZED   |
| 01 | LCS-78243  | LCS-78243   | S6B8874.D | 07/28/2014 |
| 02 | LCSD-78243 | LCSD-78243  | S6B8875.D | 07/28/2014 |
| 03 | SED-2      | N1243-01B   | S6B8880.D | 07/28/2014 |
| 04 | SED-3      | N1243-02B   | S6B8881.D | 07/28/2014 |
| 05 | SED-4      | N1243-03B   | S6B8882.D | 07/28/2014 |
| 06 | SED-31     | N1243-04B   | S6B8883.D | 07/28/2014 |
| 07 | SED-2DL    | N1243-01BDL | S6B8895.D | 07/29/2014 |

| COMMENTS: |  |
|-----------|--|
|           |  |

som14.07.15.0901 Page 1 of 1

SW846

## 4C - FORM IV SV SEMIVOLATILE METHOD BLANK SUMMARY

EPA SAMPLE NO.

MB-78224

SW846

| Lab Name: SPECT  | RUM ANALYTICAL, INC. | Contract:        |                 |
|------------------|----------------------|------------------|-----------------|
| Lab Code: MITKE  | M Case No.: N1243    | Mod. Ref No.:    | SDG No.: SN1243 |
| Lab File ID:     | S6B8876.D            | Lab Sample ID:   | MB-78224        |
| Instrument ID:   | S6                   | Date Extracted:  | 07/24/2014      |
| Matrix: (SOIL/SE | D/WATER) WATER       | Date Analyzed:   | 07/28/2014      |
| Level: (LOW/MED) | LOW                  | Time Analyzed:   | 13:22           |
| Extraction: (Typ | e) SEPF              | GPC Cleanup: (Y/ | 'N) N           |

|    | EPA         | LAB        | LAB       | DATE       |
|----|-------------|------------|-----------|------------|
|    | SAMPLE NO.  | SAMPLE ID  | FILE ID   | ANALYZED   |
| 01 | LCS-78224   | LCS-78224  | S6B8877.D | 07/28/2014 |
| 02 | LCSD-78224  | LCSD-78224 | S6B8878.D | 07/28/2014 |
| 03 | EQUIP BLANK | N1243-06B  | S6B8879.D | 07/28/2014 |

| COMMENTS: |  |  |  |
|-----------|--|--|--|
|           |  |  |  |

som14.07.15.0901 Page 1 of 1

N1243 Page 88 of 103

#### 8C - FORM VIII SV-1

#### SEMIVOLATILE INTERNAL STANDARD AREA AND RETENTION TIME SUMMARY

Lab Name: SPECTRUM ANALYTICAL, INC. Contract:

Lab Code: MITKEM Case No.: N1243 Mod. Ref No.: SDG No.: SN1243

EPA Sample No.(SSTD020##) SSTD0256S Date Analyzed: 07/28/2014

Lab File ID (Standard): S6B8871.D Time Analyzed: 11:07

Instrument ID: S6

|    |                | IS1 (DCB) |   |       |   | IS2 (NPT) |   |       |   | IS3 (ANT) |   |       |   |
|----|----------------|-----------|---|-------|---|-----------|---|-------|---|-----------|---|-------|---|
|    |                | AREA      | # | RT    | # | AREA      | # | RT    | # | AREA      | # | RT    | # |
|    | 12 HOUR STD    | 230747    |   | 4.796 |   | 835950    |   | 5.871 |   | 564888    |   | 7.334 |   |
|    | UPPER LIMIT    | 461494    |   | 5.296 |   | 1671900   |   | 6.371 |   | 1129776   |   | 7.834 |   |
|    | LOWER LIMIT    | 115374    |   | 4.296 |   | 417975    |   | 5.371 |   | 282444    |   | 6.834 |   |
|    | EPA SAMPLE NO. |           |   |       |   |           |   |       |   |           |   |       |   |
| 01 | MB-78243       | 273187    |   | 4.796 |   | 962430    |   | 5.871 |   | 624687    |   | 7.328 |   |
| 02 | LCS-78243      | 288554    |   | 4.796 |   | 1023858   |   | 5.871 |   | 676902    |   | 7.334 |   |
| 03 | LCSD-78243     | 317841    |   | 4.796 |   | 1096924   |   | 5.871 |   | 725601    |   | 7.334 |   |
| 04 | MB-78224       | 190475    |   | 4.790 |   | 679488    |   | 5.871 |   | 472585    |   | 7.328 |   |
| 05 | LCS-78224      | 186510    |   | 4.796 |   | 672114    |   | 5.871 |   | 461266    |   | 7.328 |   |
| 06 | LCSD-78224     | 204967    |   | 4.796 |   | 713078    |   | 5.871 |   | 490049    |   | 7.328 |   |
| 07 | EQUIP BLANK    | 186245    |   | 4.790 |   | 675216    |   | 5.871 |   | 462983    |   | 7.328 |   |
| 08 | SED-2          | 301034    |   | 4.796 |   | 1068349   |   | 5.871 |   | 696508    |   | 7.328 |   |
| 09 | SED-3          | 301967    |   | 4.796 |   | 1034671   |   | 5.871 |   | 678601    |   | 7.328 |   |
| 10 | SED-4          | 284238    |   | 4.796 |   | 973246    |   | 5.871 |   | 630002    |   | 7.328 |   |
| 11 | SED-31         | 294694    |   | 4.796 |   | 1021617   |   | 5.871 |   | 664358    |   | 7.328 |   |

IS1 (DCB) = 1,4-Dichlorobenzene-d4

IS2 (NPT) = Naphthalene-d8

IS3 (ANT) = Acenaphthene-d10

AREA UPPER LIMIT = 200% of internal standard area

AREA LOWER LIMIT = 50% of internal standard area

RT UPPER LIMIT = +0.50 minutes of internal standard RT

RT LOWER LIMIT = -0.50 minutes of internal standard RT

# Column used to flag values outside contract required QC limits with an asterisk.

som14.07.15.0901 Page 1 of 1

SW846

#### 8D - FORM VIII SV-2

#### SEMIVOLATILE INTERNAL STANDARD AREA AND RETENTION TIME SUMMARY

Lab Name: SPECTRUM ANALYTICAL, INC. Contract:

Lab Code: MITKEM Case No.: N1243 Mod. Ref No.: SDG No.: SN1243

EPA Sample No.(SSTD020##) SSTD0256S Date Analyzed: 07/28/2014

Lab File ID (Standard): S6B8871.D Time Analyzed: 11:07

Instrument ID: S6 GC Column: Rxi-5sil MS ID: 0.25 (mm)

|    |                | IS4 (PHN) |   |       |   | IS5 (CRY) |   |        |   | IS6 (PRY) |   |        |   |
|----|----------------|-----------|---|-------|---|-----------|---|--------|---|-----------|---|--------|---|
|    |                | AREA      | # | RT    | # | AREA      | # | RT     | # | AREA      | # | RT     | # |
|    | 12 HOUR STD    | 1181553   |   | 8.562 |   | 1335297   |   | 10.889 |   | 1273538   |   | 13.033 |   |
|    | UPPER LIMIT    | 2363106   |   | 9.062 |   | 2670594   |   | 11.389 |   | 2547076   |   | 13.533 |   |
|    | LOWER LIMIT    | 590777    |   | 8.062 |   | 667649    |   | 10.389 |   | 636769    |   | 12.533 |   |
|    | EPA SAMPLE NO. |           |   |       |   |           |   |        |   |           |   |        |   |
| 01 | MB-78243       | 1261806   |   | 8.562 |   | 1244731   |   | 10.930 |   | 1046953   |   | 13.086 |   |
| 02 | LCS-78243      | 1372362   |   | 8.562 |   | 1311332   |   | 10.895 |   | 1091462   |   | 13.039 |   |
| 03 | LCSD-78243     | 1423049   |   | 8.562 |   | 1261766   |   | 10.889 |   | 1046965   |   | 13.028 |   |
| 04 | MB-78224       | 980921    |   | 8.556 |   | 1107765   |   | 10.877 |   | 1048010   |   | 13.022 |   |
| 05 | LCS-78224      | 998668    |   | 8.562 |   | 1122381   |   | 10.889 |   | 1054755   |   | 13.027 |   |
| 06 | LCSD-78224     | 1036647   |   | 8.562 |   | 1196461   |   | 10.889 |   | 1127603   |   | 13.027 |   |
| 07 | EQUIP BLANK    | 974154    |   | 8.556 |   | 1134178   |   | 10.877 |   | 1067396   |   | 13.016 |   |
| 08 | SED-2          | 1343122   |   | 8.562 |   | 1149684   |   | 10.889 |   | 942453    |   | 13.033 |   |
| 09 | SED-3          | 1289747   |   | 8.562 |   | 1132999   |   | 10.883 |   | 931813    |   | 13.022 |   |
| 10 | SED-4          | 1199606   |   | 8.562 |   | 1050641   |   | 10.883 |   | 957720    |   | 13.028 |   |
| 11 | SED-31         | 1303559   |   | 8.562 |   | 1119327   |   | 10.889 |   | 921498    |   | 13.033 |   |

som14.07.15.0901 Page 1 of 1 SW846

IS4 (PHN) = Phenanthrene-d10

IS5 (CRY) = Chrysene-d12

IS6 (PRY) = Perylene-d12

AREA UPPER LIMIT = 200% of internal standard area

AREA LOWER LIMIT = 50% of internal standard area

RT UPPER LIMIT = +0.50 minutes of internal standard RT

RT LOWER LIMIT = -0.50 minutes of internal standard RT

<sup>#</sup> Column used to flag values outside contract required QC limits with an asterisk.

#### 8C - FORM VIII SV-1

#### SEMIVOLATILE INTERNAL STANDARD AREA AND RETENTION TIME SUMMARY

Lab Name: SPECTRUM ANALYTICAL, INC. Contract:

Lab Code: MITKEM Case No.: N1243 Mod. Ref No.: SDG No.: SN1243

EPA Sample No.(SSTD020##) SSTD0256T Date Analyzed: 07/29/2014

Lab File ID (Standard): S6B8891.D Time Analyzed: 11:24

Instrument ID: S6

|    |                | IS1 (DCB) |   |       |   | IS2 (NPT) |   |       |   | IS3 (ANT) |   |       |   |
|----|----------------|-----------|---|-------|---|-----------|---|-------|---|-----------|---|-------|---|
|    |                | AREA      | # | RT    | # | AREA      | # | RT    | # | AREA      | # | RT    | # |
|    | 12 HOUR STD    | 201719    |   | 4.772 |   | 740199    |   | 5.853 |   | 508269    |   | 7.311 |   |
|    | UPPER LIMIT    | 403438    |   | 5.272 |   | 1480398   |   | 6.353 |   | 1016538   |   | 7.811 |   |
|    | LOWER LIMIT    | 100860    |   | 4.272 |   | 370100    |   | 5.353 |   | 254135    |   | 6.811 |   |
|    | EPA SAMPLE NO. |           |   |       |   |           |   |       |   |           |   |       |   |
| 01 | SED-2DL        | 200925    |   | 4.772 |   | 754566    |   | 5.847 |   | 547392    |   | 7.305 |   |

IS1 (DCB) = 1,4-Dichlorobenzene-d4

IS2 (NPT) = Naphthalene-d8

IS3 (ANT) = Acenaphthene-d10

AREA UPPER LIMIT = 200% of internal standard area

AREA LOWER LIMIT = 50% of internal standard area

RT UPPER LIMIT = +0.50 minutes of internal standard RT

RT LOWER LIMIT = -0.50 minutes of internal standard RT

# Column used to flag values outside contract required QC limits with an asterisk.

som14.07.15.0901 Page 1 of 1

SW846

#### 8D - FORM VIII SV-2

#### SEMIVOLATILE INTERNAL STANDARD AREA AND RETENTION TIME SUMMARY

Lab Name: SPECTRUM ANALYTICAL, INC. Contract: Lab Code: MITKEM Case No.: N1243 Mod. Ref No.: SDG No.: SN1243 EPA Sample No.(SSTD020##) SSTD0256T

Date Analyzed: 07/29/2014

Lab File ID (Standard): S6B8891.D Time Analyzed: 11:24

Instrument ID: S6 GC Column: Rxi-5sil MS ID: 0.25 (mm)

|    |                | IS4 (PHN) |       | IS5 (CRY) |        | IS6 (PRY) |        |
|----|----------------|-----------|-------|-----------|--------|-----------|--------|
|    |                | AREA #    | RT #  | AREA #    | RT #   | AREA #    | RT #   |
|    | 12 HOUR STD    | 1081411   | 8.539 | 1277022   | 10.901 | 1241448   | 13.039 |
|    | UPPER LIMIT    | 2162822   | 9.039 | 2554044   | 11.401 | 2482896   | 13.539 |
|    | LOWER LIMIT    | 540706    | 8.039 | 638511    | 10.401 | 620724    | 12.539 |
|    | EPA SAMPLE NO. |           |       |           |        |           |        |
| 01 | SED-2DL        | 1175425   | 8.538 | 1356956   | 10.865 | 1278190   | 12.992 |

IS4 (PHN) = Phenanthrene-d10

IS5 (CRY) = Chrysene-d12

IS6 (PRY) = Perylene-d12

AREA UPPER LIMIT = 200% of internal standard area

AREA LOWER LIMIT = 50% of internal standard area

RT UPPER LIMIT = +0.50 minutes of internal standard RT

RT LOWER LIMIT = -0.50 minutes of internal standard RT

# Column used to flag values outside contract required QC limits with an asterisk.

som14.07.15.0901 SW846 Page 1 of 1



\* Wet Chemistry \*

#### **CASE NARRATIVE**

#### Spectrum Analytical, Inc. Lab Reference No. SB93478

Client: Spectrum Analytical, Inc. - North Kingstown, RI

**Project: Steelwinds 1 / N1243** 

SDG #: 93478

#### I. RECEIPT

No exceptions were encountered unless a Sample Receipt Exception or a communication form is included in the addendum with this package.

#### II. HOLDING TIMES

All samples were prepared and analyzed within the method-specific holding time.

#### III. METHODS

Analyses were performed according to Lloyd Kahn.

#### IV. PREPARATION

Soil/Sediment samples were prepared according to General Preparation.

#### V. INSTRUMENTATION

The following equipment was used to analyze Lloyd Kahn:

TOC2 details: Teledyne Tekmar Apollo 9000 / TOC Boat Sampler Model 183

#### VI. ANALYSIS

#### A. Calibration:

All quality control samples were within the acceptance criteria.

#### B. Blanks:

All blanks were within the acceptance criteria.

#### C. Spikes:

#### 1. Laboratory Control Samples (LCS):

All method criteria were met.

#### 2. Matrix Spike / Matrix Spike Duplicate Samples (MS/MSD):

No matrix spike or matrix spike duplicates were analyzed.

#### 3. Reference:

All method criteria were met.

N1243 Page 94 of 103

#### **D.** Duplicates:

A duplicate was analyzed.

In batch 1417783 from source sample SED-2 (SB93478-01).

All method criteria were met with the following exceptions:

Total Organic Carbon in batch 1417783, sample 1417783-DUP2 from source sample SED-2 (SB93478-01): This flag indicates the concentration for this analyte is an estimated value due to exceeding the calibration range or interferences resulting in a biased final concentration.

#### E. Samples:

All method criteria were met with the following exceptions:

Total Organic Carbon in batch 1417783, samples SED-2 (SB93478-01), SED-3 (SB93478-02), SED-31 (SB93478-04), SED-4 (SB93478-03): This flag indicates the concentration for this analyte is an estimated value due to exceeding the calibration range or interferences resulting in a biased final concentration. The TOC value is initially measured in ug (microgram) of carbon but converts to ppm in the software program used for this purpose. The initial ug of carbon reading for this sample fell within range of the calibration curve of the instrumentation; however the limited sample weight used elevated the ppm value above the maximum value listed in Element. The sample value is not over the calibration range of the instrument and was not reanalyzed as a result.

Total Organic Carbon in batch 1417783, sample SED-2 (SB93478-01): This sample was analyzed in quadruplicate. The % RSD is 18.827.

N1243 Page 95 of 103

SED-2

Laboratory: Spectrum Analytical, Inc. - Agawam, MA SDG: 93478

Client: <u>Spectrum Analytical, Inc. - North Kingstown, RI</u> Project: <u>Steelwinds 1</u>

Project Number: <u>N1243</u> Received: <u>07/24/14 15:27</u>

Matrix: Soil Laboratory ID: SB93478-01 File ID: 07301302

Sampled: <u>07/17/14 11:45</u> Prepared: <u>07/30/14 10:17</u> Analyzed: <u>07/30/14 13:10</u>

% Solids: Preparation: <u>General Preparation</u> Initial/Final: <u>10 g / 10 ml</u>

Batch: <u>1417783</u> Sequence: <u>S408664</u> Calibration: <u>1407011</u>

Instrument: <u>TOC2</u>

Reported to: MRL

| CAS NO. | Analyte              | Result<br>(mg/kg) | Dilution<br>Factor | MDL  | MRL  | Q |
|---------|----------------------|-------------------|--------------------|------|------|---|
| NA      | Total Organic Carbon | 29500             | 1                  | 44.9 | 1000 | Е |

SED-3

Laboratory: Spectrum Analytical, Inc. - Agawam, MA SDG: 93478

Client: Spectrum Analytical, Inc. - North Kingstown, RI Project: Steelwinds 1

Project Number: <u>N1243</u> Received: <u>07/24/14 15:27</u>

Matrix: Soil Laboratory ID: SB93478-02 File ID: 07301405

Sampled: <u>07/17/14 14:45</u> Prepared: <u>07/30/14 10:17</u> Analyzed: <u>07/30/14 14:20</u>

% Solids: Preparation: <u>General Preparation</u> Initial/Final: <u>10 g / 10 ml</u>

Batch: <u>1417783</u> Sequence: <u>S408664</u> Calibration: <u>1407011</u>

Instrument: TOC2

Reported to: MRL

| CAS NO. | Analyte              | Result<br>(mg/kg) | Dilution<br>Factor | MDL  | MRL  | Q |
|---------|----------------------|-------------------|--------------------|------|------|---|
| NA      | Total Organic Carbon | 30600             | 1                  | 44.9 | 1000 | Е |

SED-4

Laboratory: Spectrum Analytical, Inc. - Agawam, MA SDG: 93478

Client: <u>Spectrum Analytical, Inc. - North Kingstown, RI</u> Project: <u>Steelwinds 1</u>

Project Number: <u>N1243</u> Received: <u>07/24/14 15:27</u>

Matrix: Soil Laboratory ID: SB93478-03 File ID: 07301422

Sampled: <u>07/17/14 15:45</u> Prepared: <u>07/30/14 10:17</u> Analyzed: <u>07/30/14 14:30</u>

% Solids: Preparation: <u>General Preparation</u> Initial/Final: <u>10 g / 10 ml</u>

Batch: <u>1417783</u> Sequence: <u>S408664</u> Calibration: <u>1407011</u>

Instrument: <u>TOC2</u>

Reported to: MRL

| CAS NO. | Analyte              | Result<br>(mg/kg) | Dilution<br>Factor | MDL  | MRL  | Q |
|---------|----------------------|-------------------|--------------------|------|------|---|
| NA      | Total Organic Carbon | 36700             | 1                  | 44.9 | 1000 | Е |

SED-31

Laboratory: Spectrum Analytical, Inc. - Agawam, MA SDG: 93478

Client: Spectrum Analytical, Inc. - North Kingstown, RI Project: Steelwinds 1

Project Number: <u>N1243</u> Received: <u>07/24/14 15:27</u>

Matrix: Soil Laboratory ID: SB93478-04 File ID: 07301529

Sampled: <u>07/17/14 14:45</u> Prepared: <u>07/30/14 10:17</u> Analyzed: <u>07/30/14 15:39</u>

% Solids: Preparation: <u>General Preparation</u> Initial/Final: <u>10 g / 10 ml</u>

Batch: <u>1417783</u> Sequence: <u>S408664</u> Calibration: <u>1407011</u>

Instrument:  $\underline{TOC2}$ Reported to:  $\underline{MRL}$ 

| CAS NO. | Analyte              | Result<br>(mg/kg) | Dilution<br>Factor | MDL  | MRL  | Q |
|---------|----------------------|-------------------|--------------------|------|------|---|
| NA      | Total Organic Carbon | 30200             | 1                  | 44.9 | 1000 | Е |

## **FORM IIIc - DUPLICATES**

## Lloyd Kahn

Laboratory: Spectrum Analytical, Inc. - Agawam, MA SDG: 93478

Client: Spectrum Analytical, Inc. - North Kingstown, RI Project: Steelwinds 1

Matrix: Soil/Sediment Laboratory ID: 1417783-DUP2

Batch: <u>1417783</u> Lab Source ID: <u>SB93478-01</u>

Preparation: General Preparation Initial/Final: 10 g / 10 ml

Source Sample Name: <u>SED-2</u> % Solids:

File ID: <u>07301311</u>

| ANALYTE              | CONTROL<br>LIMIT | SAMPLE<br>CONCENTRATION<br>(mg/kg) | С | DUPLICATE<br>CONCENTRATION<br>(mg/kg) | С | RPD<br>% | Q | МЕТНОО     |
|----------------------|------------------|------------------------------------|---|---------------------------------------|---|----------|---|------------|
| Total Organic Carbon | 20               | 29500                              |   | 33000                                 |   | 11       |   | Lloyd Kahn |

<sup>\*</sup> Values outside of QC limits

Individual peaks for multi-component analytes are indicated by a number in parentheses

## FORM IIIa - LCS / LCS DUPLICATE RECOVERY

## Lloyd Kahn

Laboratory: Spectrum Analytical, Inc. - Agawam, MA SDG: 93478

Client: Spectrum Analytical, Inc. - North Kingstown, RI Project: Steelwinds 1

Matrix: Soil/Sediment TOC2

Batch: <u>1417783</u> Laboratory ID: <u>1417783-BS1</u>

<u>07/30/14 11:17</u> Spike ID: 14C0939

File ID: <u>07301110</u>

|                      | SPIKE<br>ADDED | LCS<br>CONCENTRATION | LCS<br>% | QC<br>LIMITS |
|----------------------|----------------|----------------------|----------|--------------|
| COMPOUND             | (mg/kg)        | (mg/kg)              | REC.#    | REC.         |
| Total Organic Carbon | 8000           | 7940                 | 99       | 75 - 125     |

<sup>#</sup> Column to be used to flag recovery and RPD values with an asterisk

Analyzed:

Individual peaks for multi-component analytes are indicated by a number in parentheses

N1243 SDG 93478 Page 24 / 56

<sup>\*</sup> Values outside of QC limits

## FORM III - BLANKS Lloyd Kahn

Laboratory: Spectrum Analytical, Inc. - Agawam, MA SDG: 93478

Client: <u>Spectrum Analytical, Inc. - North Kingstown, RI</u> Project: <u>Steelwinds 1</u>

Instrument ID: TOC2 Calibration: 1407011

Sequence: S408664 Matrix: Soil/Sediment

| Lab Sample ID | Analyte              | Found    | MRL  | Units | C | Method     |
|---------------|----------------------|----------|------|-------|---|------------|
| 1417783-CCB1  | Total Organic Carbon | 88.1585  | 100  | mg/kg | J | Lloyd Kahn |
| 1417783-BLK1  | Total Organic Carbon | 62.3     | 1000 | mg/kg | J | Lloyd Kahn |
| 1417783-CCB2  | Total Organic Carbon | 98.834   | 100  | mg/kg | J | Lloyd Kahn |
| 1417783-CCB3  | Total Organic Carbon | 88.7686  | 100  | mg/kg | J | Lloyd Kahn |
| 1417783-CCB4  | Total Organic Carbon | 104.5074 | 100  | mg/kg |   | Lloyd Kahn |
| 1417783-CCB5  | Total Organic Carbon | 121.6474 | 100  | mg/kg |   | Lloyd Kahn |
| 1417783-CCB6  | Total Organic Carbon | 50.9372  | 100  | mg/kg | J | Lloyd Kahn |

N1243 Page 102 of 103

## FORM VIIb(Inorganics) - STANDARD REFERENCE MATERIAL RECOVERY

## Lloyd Kahn

**SDG:** <u>93478</u>

Laboratory: Spectrum Analytical, Inc. - Agawam, MA

Client: Spectrum Analytical, Inc. - North Kingstown, RI Project: Steelwinds 1

Matrix: Soil/Sediment Spike ID: 14A1386

**Batch:** <u>1417783</u> **Laboratory ID:** <u>1417783-SRM1</u>

Preparation: General Preparation Initial/Final: 10 g / 10 ml

| ANALYTE              | TRUE<br>(mg/kg) | FOUND<br>(mg/kg) | SRM<br>%<br>REC. | QC<br>LIMITS<br>REC. |
|----------------------|-----------------|------------------|------------------|----------------------|
| Total Organic Carbon | 3470            | 3920             | 113              | 49 - 151             |

<sup>\*</sup> Values outside of QC limits

N1243 Page 103 of 103



| <b>V</b> | Final Repo | ort    |
|----------|------------|--------|
|          | Re-Issued  | Report |
|          | Revised R  | eport  |

## Laboratory Report

GZA GeoEnvironmental, Inc. 535 Washington Street, 11th Floor

Project : Steelwinds 1
Project #:

Work Order: N1400

Buffalo, NY 14203

Attn: John Beninati

| Laboratory ID | Client Sample ID | <u>Matrix</u> | Date Sampled    | Date Received   |
|---------------|------------------|---------------|-----------------|-----------------|
| N1400-01      | SUR-2            | Aqueous       | 06-Aug-14 09:10 | 08-Aug-14 10:30 |
| N1400-02      | PW-2             | Aqueous       | 06-Aug-14 09:15 | 08-Aug-14 10:30 |
| N1400-03      | SUR-3            | Aqueous       | 06-Aug-14 09:50 | 08-Aug-14 10:30 |
| N1400-04      | FIELD DUPLICATE  | Aqueous       | 06-Aug-14 09:55 | 08-Aug-14 10:30 |
| N1400-05      | SUR-4            | Aqueous       | 06-Aug-14 10:35 | 08-Aug-14 10:30 |
| N1400-06      | PW-3             | Aqueous       | 06-Aug-14 12:55 | 08-Aug-14 10:30 |
| N1400-07      | FIELD DUPLICATE2 | Aqueous       | 06-Aug-14 13:00 | 08-Aug-14 10:30 |
| N1400-08      | PW-4             | Aqueous       | 06-Aug-14 13:10 | 08-Aug-14 10:30 |
| N1400-09      | SUR 1            | Aqueous       | 06-Aug-14 13:30 | 08-Aug-14 10:30 |
| N1400-10      | SUR 5            | Aqueous       | 06-Aug-14 13:55 | 08-Aug-14 10:30 |
| N1400-11      | SUR-6            | Aqueous       | 06-Aug-14 14:10 | 08-Aug-14 10:30 |
| N1400-12      | SED-6            | Soil          | 06-Aug-14 14:35 | 08-Aug-14 10:30 |
| N1400-13      | SUR-7            | Aqueous       | 06-Aug-14 15:05 | 08-Aug-14 10:30 |
| N1400-14      | SED-7            | Soil          | 06-Aug-14 15:15 | 08-Aug-14 10:30 |
| N1400-15      | SUR-8            | Aqueous       | 06-Aug-14 15:40 | 08-Aug-14 10:30 |
| N1400-16      | EQUIP.BLANK      | Aqueous       | 06-Aug-14 15:55 | 08-Aug-14 10:30 |
| N1400-17      | TRIP BLANK       | Aqueous       | 06-Aug-14 00:00 | 08-Aug-14 10:30 |

I attest that the information contained within the report has been reviewed for accuracy and checked against the quality control requirements for each method. The results relate only to the samples(s) as received. This report may not be reproduced, except in full, without written approval from Spectrum Analytical.

All applicable NELAC or USEPA CLP requirments have been meet.

Spectrum Analytical (Rhode Island) is accredited under the National Environmental Laboratory Approval Program (NELAP) and DoD Environmental Laboratory Accreditation Program (ELAP), holds Organic and Inorganic contracts under the USEPA CLP Program and is certified under several states. The current list of our laboratory approvals and certifications is available on the Certifications page on our web site at www.spectrum-analytical.com.

Please contact the Laboratory or Technical Director at 401-732-3400 with any questions regarding the data contained in the laboratory report.

Department of Defense N/A Connecticut PH-0153 Delaware N/A E87664 Florida Maine 2007037 Massachusetts M-RI907 New Hampshire 2631 New Jersey RI001 New York 11522 LAI00301 Rhode Island USDA P330-08-00023 USEPA - ISM EP-W-09-039 USEPA - SOM EP-W-11-033





Authorized by:

Yihai Ding Laboratory Director



\* Data Summary Pack \*

# **New York State Department of Environmental Conservation Sample Identification and Analytical Requirements Summary**

Project Name: Steelwinds 1 SDG: M1400

|                       |                         |                   | Analy              | tical Requirements |    |          |
|-----------------------|-------------------------|-------------------|--------------------|--------------------|----|----------|
| Customer<br>Sample ID | Laboratory<br>Sample ID | MSVOA<br>Method # | MSSEMI<br>Method # | GC* Method #       | ME | Other    |
| SUR-2                 | N1400-01                | SW8260_W          | SW8270_W           |                    |    |          |
| PW-2                  | N1400-02                | SW8260_W          |                    |                    |    |          |
| SUR-3                 | N1400-03                | SW8260_W          | SW8270_W           |                    |    |          |
| FIELD DUPLICATE       | N1400-04                | SW8260_W          | SW8270_W           |                    |    |          |
| SUR-4                 | N1400-05                | SW8260_W          | SW8270_W           |                    |    |          |
| PW-3                  | N1400-06                | SW8260_W          |                    |                    |    |          |
| FIELD DUPLICATE2      | N1400-07                | SW8260_W          |                    |                    |    |          |
| PW-4                  | N1400-08                | SW8260_W          |                    |                    |    |          |
| SUR 1                 | N1400-09                | SW8260_W          | SW8270_W           |                    |    |          |
| SUR 5                 | N1400-10                | SW8260_W          | SW8270_W           |                    |    |          |
| SUR-6                 | N1400-11                | SW8260_W          | SW8270_W           |                    |    |          |
| SED-6                 | N1400-12                | SW8260_LOW_S      | SW8270_S           |                    |    | SEE DATA |
| SUR-7                 | N1400-13                | SW8260_W          | SW8270_W           |                    |    |          |
| SED-7                 | N1400-14                | SW8260_LOW_S      | SW8270_S           |                    |    | SEE DATA |
| SUR-8                 | N1400-15                | SW8260_W          | SW8270_W           |                    |    |          |
| EQUIP.BLANK           | N1400-16                | SW8260_W          | SW8270_W           |                    |    |          |
| TRIP BLANK            | N1400-17                | SW8260_W          |                    |                    |    |          |

**Page 1** 08/28/2014 14:11

## New York State Department of Environmental Conservation Sample Preparation and Analysis Summary MSVOA

Project Name: Steelwinds 1 SDG: N1400

| Laboratory   |        | Date      | Date Received | Date      | Date      |
|--------------|--------|-----------|---------------|-----------|-----------|
| Sample ID    | Matrix | Collected | By Lab        | Extracted | Analyzed  |
| SW8260_LOW_S |        |           | •             |           |           |
| N1400-12C    | SL     | 8/6/2014  | 8/8/2014      | NA        | 8/13/2014 |
| N1400-14C    | SL     | 8/6/2014  | 8/8/2014      | NA        | 8/13/2014 |
| SW8260_W     |        |           | •             |           | •         |
| N1400-01A    | AQ     | 8/6/2014  | 8/8/2014      | NA        | 8/17/2014 |
| N1400-02A    | AQ     | 8/6/2014  | 8/8/2014      | NA        | 8/17/2014 |
| N1400-03A    | AQ     | 8/6/2014  | 8/8/2014      | NA        | 8/17/2014 |
| N1400-04A    | AQ     | 8/6/2014  | 8/8/2014      | NA        | 8/17/2014 |
| N1400-05A    | AQ     | 8/6/2014  | 8/8/2014      | NA        | 8/17/2014 |
| N1400-06A    | AQ     | 8/6/2014  | 8/8/2014      | NA        | 8/17/2014 |
| N1400-07A    | AQ     | 8/6/2014  | 8/8/2014      | NA        | 8/17/2014 |
| N1400-08A    | AQ     | 8/6/2014  | 8/8/2014      | NA        | 8/17/2014 |
| N1400-09A    | AQ     | 8/6/2014  | 8/8/2014      | NA        | 8/17/2014 |
| N1400-10A    | AQ     | 8/6/2014  | 8/8/2014      | NA        | 8/17/2014 |
| N1400-11A    | AQ     | 8/6/2014  | 8/8/2014      | NA        | 8/17/2014 |
| N1400-13A    | AQ     | 8/6/2014  | 8/8/2014      | NA        | 8/18/2014 |
| N1400-15A    | AQ     | 8/6/2014  | 8/8/2014      | NA        | 8/18/2014 |
| N1400-16A    | AQ     | 8/6/2014  | 8/8/2014      | NA        | 8/18/2014 |
| N1400-17A    | AQ     | 8/6/2014  | 8/8/2014      | NA        | 8/17/2014 |

Page 2 08/28/2014 14:11

## New York State Department of Environmental Conservation Sample Preparation and Analysis Summary MSSEMI

Project Name: Steelwinds 1 SDG: N1400

| Laboratory |        | Date      | Date Received | Date      | Date      |
|------------|--------|-----------|---------------|-----------|-----------|
| Sample ID  | Matrix | Collected | By Lab        | Extracted | Analyzed  |
| SW8270_S   |        |           |               |           | .1        |
| N1400-12B  | SL     | 8/6/2014  | 8/8/2014      | 8/19/2014 | 8/26/2014 |
| N1400-14B  | SL     | 8/6/2014  | 8/8/2014      | 8/19/2014 | 8/26/2014 |
| SW8270_W   |        |           |               |           |           |
| N1400-01B  | AQ     | 8/6/2014  | 8/8/2014      | 8/12/2014 | 8/26/2014 |
| N1400-03B  | AQ     | 8/6/2014  | 8/8/2014      | 8/12/2014 | 8/26/2014 |
| N1400-04B  | AQ     | 8/6/2014  | 8/8/2014      | 8/12/2014 | 8/26/2014 |
| N1400-05B  | AQ     | 8/6/2014  | 8/8/2014      | 8/12/2014 | 8/26/2014 |
| N1400-09B  | AQ     | 8/6/2014  | 8/8/2014      | 8/12/2014 | 8/26/2014 |
| N1400-10B  | AQ     | 8/6/2014  | 8/8/2014      | 8/12/2014 | 8/26/2014 |
| N1400-11B  | AQ     | 8/6/2014  | 8/8/2014      | 8/12/2014 | 8/26/2014 |
| N1400-13B  | AQ     | 8/6/2014  | 8/8/2014      | 8/12/2014 | 8/26/2014 |
| N1400-15B  | AQ     | 8/6/2014  | 8/8/2014      | 8/12/2014 | 8/26/2014 |
| N1400-16B  | AQ     | 8/6/2014  | 8/8/2014      | 8/12/2014 | 8/26/2014 |

Page 3 08/28/2014 14:11

## New York State Department of Environmental Conservation Sample Preparation and Analysis Summary MSVOA

Project Name: Steelwinds 1 SDG: N1400

| Laboratory   |        | Analytical   | Extraction | Low/Medium | Dil/Conc |
|--------------|--------|--------------|------------|------------|----------|
| Sample ID    | Matrix | Protocol     | Method     | Level      | Factor   |
| SW8260_LOW_S |        |              |            | •          |          |
| N1400-12C    | SL     | SW8260_LOW_S | NA         | LOW        | 1        |
| N1400-14C    | SL     | SW8260_LOW_S | NA         | LOW        | 1        |
| SW8260_W     |        | ·            |            |            |          |
| N1400-01A    | AQ     | SW8260_W     | NA         | LOW        | 1        |
| N1400-02A    | AQ     | SW8260_W     | NA         | LOW        | 1        |
| N1400-03A    | AQ     | SW8260_W     | NA         | LOW        | 1        |
| N1400-04A    | AQ     | SW8260_W     | NA         | LOW        | 1        |
| N1400-05A    | AQ     | SW8260_W     | NA         | LOW        | 1        |
| N1400-06A    | AQ     | SW8260_W     | NA         | LOW        | 1        |
| N1400-07A    | AQ     | SW8260_W     | NA         | LOW        | 1        |
| N1400-08A    | AQ     | SW8260_W     | NA         | LOW        | 1        |
| N1400-09A    | AQ     | SW8260_W     | NA         | LOW        | 1        |
| N1400-10A    | AQ     | SW8260_W     | NA         | LOW        | 1        |
| N1400-11A    | AQ     | SW8260_W     | NA         | LOW        | 1        |
| N1400-13A    | AQ     | SW8260_W     | NA         | LOW        | 1        |
| N1400-15A    | AQ     | SW8260_W     | NA         | LOW        | 1        |
| N1400-16A    | AQ     | SW8260_W     | NA         | LOW        | 1        |
| N1400-17A    | AQ     | SW8260_W     | NA         | LOW        | 1        |

Page 5 08/28/2014 14:11

# Spectrum Analytical Inc. - North Kingstown RI -- Rhode Island Division

# New York State Department of Environmental Conservation Sample Preparation and Analysis Summary MSSEMI

Project Name: Steelwinds 1 SDG: N1400

| Laboratory |        | Analytical | Extraction | Auxiliary | Dil/Conc |
|------------|--------|------------|------------|-----------|----------|
| Sample ID  | Matrix | Protocol   | Method     | Cleanup   | Factor   |
| SW8270_S   |        |            |            |           |          |
| N1400-12B  | SL     | SW8270_S   | 3550B      | NA        | 1        |
| N1400-14B  | SL     | SW8270_S   | 3550B      | NA        | 1        |
| SW8270_W   |        |            |            |           | -        |
| N1400-01B  | AQ     | SW8270_W   | 3510C      | NA        | 1        |
| N1400-03B  | AQ     | SW8270_W   | 3510C      | NA        | 1        |
| N1400-04B  | AQ     | SW8270_W   | 3510C      | NA        | 1        |
| N1400-05B  | AQ     | SW8270_W   | 3510C      | NA        | 1        |
| N1400-09B  | AQ     | SW8270_W   | 3510C      | NA        | 1        |
| N1400-10B  | AQ     | SW8270_W   | 3510C      | NA        | 1        |
| N1400-11B  | AQ     | SW8270_W   | 3510C      | NA        | 1        |
| N1400-13B  | AQ     | SW8270_W   | 3510C      | NA        | 1        |
| N1400-15B  | AQ     | SW8270_W   | 3510C      | NA        | 1        |
| N1400-16B  | AQ     | SW8270_W   | 3510C      | NA        | 1        |

**Page 6** 08/28/2014 14:11

# Spectrum Analytical Inc. - North Kingstown RI -- Rhode Island Division

WorkOrder: N1400

EDD: EQuIS\_4\_NYSDEC\_v3

Report Level: ASP-B Special Program: HC Due: 08/27/14 Fax Due: Fax Report: Case: SDG: OClient ID: GZA\_BUFFALO **Project:** Steelwinds 1

Location: GZA\_STEELWINDS,

WO Name: Steelwinds 1

Comments: N/A

PO: NEEDS PO

| Lab Samp ID                                | Client Sample ID                                                                     | Collection Date    | Date Recv'd | Matrix  | Test Code | Samp / Lab Test Comments | HF HT MS SEL Storage                            |
|--------------------------------------------|--------------------------------------------------------------------------------------|--------------------|-------------|---------|-----------|--------------------------|-------------------------------------------------|
| N1400-01A                                  | SUR-2                                                                                | 08/06/2014 09:10   | 08/08/2014  | Aqueous | SW8260_W  | / 8260_STARS/CP-51       | Y VOA                                           |
| N1400-01B                                  | SUR-2                                                                                | 08/06/2014 09:10   | 08/08/2014  | Aqueous | SW8270_W  | /8270_BN,                | Υ F2                                            |
| N1400-02A                                  | PW-2                                                                                 | 08/06/2014 09:15   | 08/08/2014  | Aqueous | SW8260_W  | / 8260_STARS/CP-51       | Y VOA                                           |
| N1400-03A                                  | SUR-3                                                                                | 08/06/2014 09:50   | 08/08/2014  | Aqueous | SW8260_W  | / 8260_STARS/CP-51       | Y VOA                                           |
| N1400-03B                                  | SUR-3                                                                                | 08/06/2014 09:50   | 08/08/2014  | Aqueous | SW8270_W  | /8270_BN,                | Υ F2                                            |
| N1400-04A                                  | FIELD DUPLICATE                                                                      | 08/06/2014 09:55   | 08/08/2014  | Aqueous | SW8260_W  | /8260_STARS/CP-51        | Y VOA                                           |
| N1400-04B                                  | FIELD DUPLICATE                                                                      | 08/06/2014 09:55   | 08/08/2014  | Aqueous | SW8270_W  | /8270_BN,                | γ F2                                            |
| N1400-05A                                  | SUR-4                                                                                | 08/06/2014 10:35   | 08/08/2014  | Aqueous | SW8260_W  | / 8260_STARS/CP-51       | Y VOA                                           |
| N1400-05B                                  | SUR-4                                                                                | 08/06/2014 10:35   | 08/08/2014  | Aqueous | SW8270_W  | /8270_BN,                | Υ F2                                            |
| N1400-06A                                  | PW-3                                                                                 | 08/06/2014 12:55   | 08/08/2014  | Aqueous | SW8260_W  | / 8260_STARS/CP-51       | Y VOA                                           |
| N1400-07A                                  | FIELD DUPLICATE2                                                                     | 08/06/2014 13:00   | 08/08/2014  | Aqueous | SW8260_W  | /8260_STARS/CP-51        | Y VOA                                           |
| N1400-08A                                  | PW-4                                                                                 | 08/06/2014 13:10   | 08/08/2014  | Aqueous | SW8260_W  | /8260_STARS/CP-51        | Y VOA                                           |
| N1400-09A                                  | SUR 1                                                                                | 08/06/2014 13:30   | 08/08/2014  | Aqueous | SW8260_W  | / 8260_STARS/CP-51       | Y VOA                                           |
| N1400-09B                                  | SUR 1                                                                                | 08/06/2014 13:30   | 08/08/2014  | Aqueous | SW8270_W  | /8270_BN,                | Υ F2                                            |
| N1400-10A                                  | SUR 5                                                                                | 08/06/2014 13:55   | 08/08/2014  | Aqueous | SW8260_W  | / 8260_STARS/CP-51       | Y VOA                                           |
| N1400-10B                                  | SUR 5                                                                                | 08/06/2014 13:55   | 08/08/2014  | Aqueous | SW8270_W  | /8270_BN,                | γ F2                                            |
| N1400-11A                                  | SUR-6                                                                                | 08/06/2014 14:10   | 08/08/2014  | Aqueous | SW8260_W  | / 8260_STARS/CP-51       | Y VOA                                           |
| N <b>8</b> 00-11B                          | SUR-6                                                                                | 08/06/2014 14:10   | 08/08/2014  | Aqueous | SW8270_W  | / 8270_BN,               | Υ F2                                            |
| $\mathbf{H}^{\mathbf{F}} = \mathrm{Fract}$ | $\frac{0}{\mathbf{H}}$ F = Fraction logged in but all tests have been placed on hold | e been placed on ! | plot        |         |           | HT = Test logged i       | HT = Test logged in but has been placed on hold |

08/12/2014 14:48 of 105

Lab Client Rep: Agnes R Huntley

Page 01 of 02

Spectrum Analytical Inc. - North Kingstown RI -- Rhode Island Division

WorkOrder: N1400

EDD: EQuIS\_4\_NYSDEC\_v3

Report Level: ASP-B

Special Program:

Fax Due:

SDG:

HC Due: 08/27/14 Case: OClient ID: GZA\_BUFFALO

Location: GZA\_STEELWINDS,

**Project:** Steelwinds 1 WO Name: Steelwinds 1

Comments: N/A

Fax Report: PO: NEEDS PO

| Lab Samp ID | Client Sample ID | Collection Date  | Date Recv'd | Matrix  | Test Code    | Samp / Lab Test Comments | HF HT MS SEL Storage |
|-------------|------------------|------------------|-------------|---------|--------------|--------------------------|----------------------|
| N1400-12A   | SED-6            | 08/06/2014 14:35 | 08/08/2014  | Soil    | PMoist       | 1                        | F2                   |
| N1400-12B   | SED-6            | 08/06/2014 14:35 | 08/08/2014  | Soil    | SW8270_S     | / 8270_BN,               | γ F2                 |
| N1400-12C   | SED-6            | 08/06/2014 14:35 | 08/08/2014  | Soil    | SW8260_LOW_S | / 8260_STARS/CP-51       | Y VOA                |
| N1400-12D   | SED-6            | 08/06/2014 14:35 | 08/08/2014  | Soil    | SW8260_MED_S | / 8260_STARS/CP-51       | Y Y VOA              |
| N1400-12E   | SED-6            | 08/06/2014 14:35 | 08/08/2014  | Soil    | SW9060_TOC_S | / SPECTRUM               | SUB                  |
| N1400-13A   | SUR-7            | 08/06/2014 15:05 | 08/08/2014  | Aqueous | SW8260_W     | / 8260_STARS/CP-51       | Y VOA                |
| N1400-13B   | SUR-7            | 08/06/2014 15:05 | 08/08/2014  | Aqueous | SW8270_W     | / 8270_BN,               | γ F2                 |
| N1400-14A   | SED-7            | 08/06/2014 15:15 | 08/08/2014  | Soil    | PMoist       | /                        | F2                   |
| N1400-14B   | SED-7            | 08/06/2014 15:15 | 08/08/2014  | Soil    | SW8270_S     | / 8270_BN,               | Υ F2                 |
| N1400-14C   | SED-7            | 08/06/2014 15:15 | 08/08/2014  | Soil    | SW8260_LOW_S | / 8260_STARS/CP-51       | Y VOA                |
| N1400-14D   | SED-7            | 08/06/2014 15:15 | 08/08/2014  | Soil    | SW8260_MED_S | / 8260_STARS/CP-51       | Y Y VOA              |
| N1400-14E   | SED-7            | 08/06/2014 15:15 | 08/08/2014  | Soil    | SW9060_TOC_S | / SPECTRUM               | SUB                  |
| N1400-15A   | SUR-8            | 08/06/2014 15:40 | 08/08/2014  | Aqueous | SW8260_W     | / 8260_STARS/CP-51       | Y VOA                |
| N1400-15B   | SUR-8            | 08/06/2014 15:40 | 08/08/2014  | Aqueous | SW8270_W     | / 8270_BN,               | γ F2                 |
| N1400-16A   | EQUIP.BLANK      | 08/06/2014 15:55 | 08/08/2014  | Aqueous | SW8260_W     | / 8260_STARS/CP-51       | Y VOA                |
| N1400-16B   | EQUIP.BLANK      | 08/06/2014 15:55 | 08/08/2014  | Aqueous | SW8270_W     | / 8270_BN,               | γ F2                 |
| N1400-17A   | TRIP BLANK       | 08/06/2014 00:00 | 08/08/2014  | Aqueous | SW8260_W     | / 8260_STARS/CP-51       | Y VOA                |
| Pa          |                  |                  |             |         |              |                          |                      |

HF = Fraction logged in but all tests have been placed on hold of 08/12/2014 14:48

Lab Client Rep

Lab Client Rep: Agnes R Huntley

Page 02 of 02

HT = Test logged in but has been placed on hold



SPECTRUM ANALYTICAL, INC.
Featuring
HANIBAL TECHNOLOGY

\* Volatiles \*

#### REPORT NARRATIVE

Spectrum Analytical, Inc. Featuring Hanibal Technology, RI Division.

Client: GZA GeoEnvironmental, Inc.

**Project: Steelwinds 1** 

Laboratory Workorder / SDG #: N1400

SW846 8260C, VOC by GC-MS

#### I. SAMPLE RECEIPT

No exceptions or unusual conditions were encountered unless a Sample Condition Notification Form, or other record of communication is included with the Sample Receipt Documentation.

#### II. HOLDING TIMES

#### A. Sample Preparation:

All samples were prepared within the method-specified holding times.

#### B. Sample Analysis:

All samples were analyzed within the method-specified holding times.

#### III. METHODS

Samples were analyzed following procedures in laboratory test code: SW846 8260C

#### IV. PREPARATION

Aqueous Samples were prepared following procedures in laboratory test

code: SW5030B

Soil Samples were prepared following procedures in laboratory test

code: SW5035

#### V. INSTRUMENTATION

The following instrumentation was used

N1400 Page 4 of 105

Instrument Code: V1

Instrument Type: GCMS-VOA
Description: HP5890 II / HP5972
Manufacturer: Hewlett-Packard

Model: 5890 / 5972

GC Column used: 30 m X 0.25 mm ID [1.40 um thickness] DB-624

capillary column.

Instrument Code: V5

Instrument Type: GCMS-VOA Description: HP6890 / HP6890 Manufacturer: Hewlett-Packard

Model: 6890 / 6890

GC Column used: 30 m X 0.25 mm ID [1.40 um thickness] DB-624

capillary column.

#### VI. ANALYSIS

#### A. Calibration:

Calibrations met the method/SOP acceptance criteria.

#### B. Blanks:

All method blanks were within the acceptance criteria.

#### C. Surrogates:

Surrogate standard percent recoveries were within the QC limits.

#### D. Spikes:

#### 1. Laboratory Control Spikes (LCS):

Percent recoveries for lab control samples were within the QC limits with the following exceptions. Please note that most test procedures allow for several compounds outside of the QC limits for the LCS, although this may indicate a bias for this specific compound.

LCS-78536 in batch 78536, recovery is above criteria for Naphthalene at 127% with criteria of (40-125).

#### 2. Matrix Spike / Matrix Spike Duplicate (MS/MSD):

No client-requested MS/MSD analyses were included in this SDG.

N1400 Page 5 of 105

#### E. Internal Standards:

Internal standard peak areas were within the QC limits.

#### F. Dilutions:

No sample in this SDG required analysis at dilution.

# G. Samples:

No other unusual occurrences were noted during sample analysis.

#### H. Manual Integration

No manual integrations were performed on any sample or standard.

I certify that this data package is in compliance with the terms and conditions agreed to by the client and Spectrum, both technically and for completeness, except for the conditions noted above. Release of the data contained in this hardcopy data package has been authorized by the Laboratory Manager or designated person, as verified by the following signature.

| Signed: |           |  |
|---------|-----------|--|
| Date:   | 8/27/2014 |  |

N1400 Page 6 of 105



# SPECTRUM ANALYTICAL, INC. Featuring HANIBAL TECHNOLOGY

#### Data Flag/Qualifiers (Page 1 of 2):

- U Not Detected. This compound was analyzed-for but not detected. For most analyses the reporting limit (lowest standard concentration) is the value listed. For Department of Defense programs, this is the Limit of Detection (LOD).
- J This flag indicates an estimated value due to either
  - the compound was detected below the reporting limit, or
  - estimated concentration for Tentatively Identified Compound
- B This flag indicates the compound was also detected in the associated Method Blank. The B flag has an alternative meaning for Inorganics analyses reported using CLP ILM-type metals forms, indicating a "trace" concentration below the reporting limit and equal to or above the detection limit.
- D For Organics analysis, this flag indicates the compound concentration was obtained from a secondary dilution analysis
- E This flag indicates the compound concentration exceeded the Calibration Range. The E flag has an alternative meaning for Inorganics analyses reported using CLP metals forms, indicating an estimated concentration due to the presence of interferences, as determined by the serial dilution analysis.
- P This flag is used for pesticides/PCB/herbicide compound when there is a greater than 40% difference for detected concentration between the two GC columns used for primary and confirmation analyses. This difference typically indicates interference, causing one value to be unusually high. The **lower** of the two values is generally reported on the Form 1, and both values reported on the Form 10.
- A Used to flag semivolatile organic Tentatively Identified Compound library search results for compounds identified as an aldol condensation by-product.



SPECTRUM ANALYTICAL, INC.
Featuring
HANIBAL TECHNOLOGY

# Data Flag/Qualifiers (Page 2 of 2):

- N Used to flag results for volatile and semivolatile Organics analysis Tentatively Identified Compounds where an analyte has passed the identification criteria, and is considered to be positively identified. For Inorganics analysis the N flag indicates the matrix spike recovery falls outside of the control limit.
- \* For Inorganics analysis the \* flag indicates Relative Percent Difference for duplicate analyses is outside of the control limit.
- L NYSDEC qualifier: Result is biased low due to the sample not being collected according to 5035-L/5035A-L low-level specifications.



# **Sample ID Suffixes**

- DL Diluted analysis. The sample was diluted and reanalyzed. The DL may be followed by a digit if more than one diluted reanalysis is provided. The DL suffix is not attached to an analysis initially performed at dilution, only to reanalyses performed at dilution
- RE Reanalysis. Appended to the client sample ID to indicate a reextraction and reanalysis or a reanalysis of the original sample extract.
- RA Reanalysis. Appended to the laboratory sample ID indicates a reanalysis of the original sample extract.
- RX Reextraction. Appended to the laboratory sample ID indicates a reextraction of the sample.
- MS Matrix Spike.
- MSD Matrix Spike Duplicate
- DUP Duplicate analysis
- SD Serial Dilution
- PS Post-digestion or Post-distillation spike. For metals or inorganic analyses

| EPZ  | A SA | AMPL | E N | 10. |
|------|------|------|-----|-----|
| SUR- | - 2  |      |     |     |
|      |      |      |     |     |
|      |      |      |     |     |

| Lab Name: SPECTRUM ANA  | LYTICAL, IN | C.     |      | Contract:        |                 |
|-------------------------|-------------|--------|------|------------------|-----------------|
| Lab Code: MITKEM        | Case No.:   | N1400  |      | Mod. Ref No.:    | SDG No.: SN1400 |
| Matrix: (SOIL/SED/WATER | ) WATER     |        |      | Lab Sample ID:   | N1400-01A       |
| Sample wt/vol: 5.       | 00 (g/mL)   | ML     |      | Lab File ID:     | V5P3969.D       |
| Level: (TRACE/LOW/MED)  | LOW         |        |      | Date Received:   | 08/08/2014      |
| % Moisture: not dec.    |             |        |      | Date Analyzed:   | 08/17/2014      |
| GC Column: DB-624       | ID:         | 0.25 ( | (mm) | Dilution Factor: | 1.0             |
| Soil Extract Volume:    |             | (      | (uL) | Soil Aliquot Vol | ume: (uL)       |
| Purge Volume: 5.0       |             | (      | (mL) |                  |                 |

| CAS NO.     | COMPOUND                | CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L | Q |
|-------------|-------------------------|-------------------------------------------|---|
| 1634-04-4   | Methyl tert-butyl ether | 5.0                                       | U |
| 71-43-2     | Benzene                 | 5.0                                       | U |
| 108-88-3    | Toluene                 | 5.0                                       | U |
| 100-41-4    | Ethylbenzene            | 5.0                                       | U |
| 179601-23-1 | m,p-Xylene              | 5.0                                       | U |
| 95-47-6     | o-Xylene                | 5.0                                       | U |
| 1330-20-7   | Xylene (Total)          | 5.0                                       | U |
| 98-82-8     | Isopropylbenzene        | 5.0                                       | U |
| 103-65-1    | n-Propylbenzene         | 5.0                                       | U |
| 108-67-8    | 1,3,5-Trimethylbenzene  | 5.0                                       | U |
| 98-06-6     | tert-Butylbenzene       | 5.0                                       | U |
| 95-63-6     | 1,2,4-Trimethylbenzene  | 5.0                                       | U |
| 135-98-8    | sec-Butylbenzene        | 5.0                                       | U |
| 99-87-6     | 4-Isopropyltoluene      | 5.0                                       | U |
| 104-51-8    | n-Butylbenzene          | 5.0                                       | U |
| 91-20-3     | Naphthalene             | 5.0                                       | U |

| EPA  | SAMPLE | NO. |
|------|--------|-----|
| PW-2 |        |     |
|      |        |     |
|      |        |     |

| Lab Name: SPECTRUM ANA  | LYTICAL, IN | C.               | Contract:          |                 |
|-------------------------|-------------|------------------|--------------------|-----------------|
| Lab Code: MITKEM        | Case No.:   | N1400            | Mod. Ref No.:      | SDG No.: SN1400 |
| Matrix: (SOIL/SED/WATER | WATER       |                  | Lab Sample ID:     | N1400-02A       |
| Sample wt/vol: 5.       | 00 (g/mL)   | ML               | Lab File ID:       | V5P3970.D       |
| Level: (TRACE/LOW/MED)  | LOW         |                  | Date Received:     | 08/08/2014      |
| % Moisture: not dec.    |             |                  | Date Analyzed:     | 08/17/2014      |
| GC Column: DB-624       | ID:         | 0.25 (mm         | ) Dilution Factor: | 1.0             |
| Soil Extract Volume:    |             | (uL              | ) Soil Aliquot Vol | ume: (uL)       |
| Purge Volume: 5.0       |             | (mT <sub>i</sub> | )                  |                 |

| CAS NO.     | COMPOUND                | CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L | Q |
|-------------|-------------------------|-------------------------------------------|---|
| 1634-04-4   | Methyl tert-butyl ether | 5.0                                       | U |
| 71-43-2     | Benzene                 | 5.0                                       | U |
| 108-88-3    | Toluene                 | 5.0                                       | U |
| 100-41-4    | Ethylbenzene            | 5.0                                       | U |
| 179601-23-1 | m,p-Xylene              | 5.0                                       | U |
| 95-47-6     | o-Xylene                | 5.0                                       | U |
| 1330-20-7   | Xylene (Total)          | 5.0                                       | U |
| 98-82-8     | Isopropylbenzene        | 5.0                                       | U |
| 103-65-1    | n-Propylbenzene         | 5.0                                       | U |
| 108-67-8    | 1,3,5-Trimethylbenzene  | 5.0                                       | U |
| 98-06-6     | tert-Butylbenzene       | 5.0                                       | U |
| 95-63-6     | 1,2,4-Trimethylbenzene  | 5.0                                       | U |
| 135-98-8    | sec-Butylbenzene        | 5.0                                       | U |
| 99-87-6     | 4-Isopropyltoluene      | 5.0                                       | U |
| 104-51-8    | n-Butylbenzene          | 5.0                                       | U |
| 91-20-3     | Naphthalene             | 5.0                                       | U |

|   | EPA  | SAMPLE | NO. |  |
|---|------|--------|-----|--|
| S | UR-3 |        |     |  |
|   |      |        |     |  |
|   |      |        |     |  |

| Lab Name: SPECTRUM ANAI | JYTICAL, IN | C.    |                    | Contract:        |                 |
|-------------------------|-------------|-------|--------------------|------------------|-----------------|
| Lab Code: MITKEM        | Case No.:   | N1400 |                    | Mod. Ref No.:    | SDG No.: SN1400 |
| Matrix: (SOIL/SED/WATER | ) WATER     |       |                    | Lab Sample ID:   | N1400-03A       |
| Sample wt/vol: 5.0      | 00 (g/mL)   | ML    |                    | Lab File ID:     | V5P3971.D       |
| Level: (TRACE/LOW/MED)  | LOW         |       |                    | Date Received:   | 08/08/2014      |
| % Moisture: not dec.    |             |       |                    | Date Analyzed:   | 08/17/2014      |
| GC Column: DB-624       | ID:         | 0.25  | (mm)               | Dilution Factor: | 1.0             |
| Soil Extract Volume:    |             |       | (uL)               | Soil Aliquot Vol | ume: (uL        |
| Purge Volume: 5.0       |             |       | (mT <sub>1</sub> ) |                  |                 |

| CAS NO.     | COMPOUND                | CONCENTRATION UNITS: (ug/L or ug/Kg) ug/L | Q |
|-------------|-------------------------|-------------------------------------------|---|
| 1634-04-4   | Methyl tert-butyl ether | 5.0                                       | U |
| 71-43-2     | Benzene                 | 5.0                                       | U |
| 108-88-3    | Toluene                 | 5.0                                       | U |
| 100-41-4    | Ethylbenzene            | 5.0                                       | U |
| 179601-23-1 | m,p-Xylene              | 5.0                                       | U |
| 95-47-6     | o-Xylene                | 5.0                                       | U |
| 1330-20-7   | Xylene (Total)          | 5.0                                       | U |
| 98-82-8     | Isopropylbenzene        | 5.0                                       | U |
| 103-65-1    | n-Propylbenzene         | 5.0                                       | U |
| 108-67-8    | 1,3,5-Trimethylbenzene  | 5.0                                       | U |
| 98-06-6     | tert-Butylbenzene       | 5.0                                       | U |
| 95-63-6     | 1,2,4-Trimethylbenzene  | 5.0                                       | U |
| 135-98-8    | sec-Butylbenzene        | 5.0                                       | U |
| 99-87-6     | 4-Isopropyltoluene      | 5.0                                       | U |
| 104-51-8    | n-Butylbenzene          | 5.0                                       | U |
| 91-20-3     | Naphthalene             | 1.8                                       | J |

EPA SAMPLE NO.
FIELD DUPLICATE

| Lab Name: SPECTRUM ANAL | JYTICAL, IN | ic.   |      | Contract:        |                 |     |
|-------------------------|-------------|-------|------|------------------|-----------------|-----|
| Lab Code: MITKEM        | Case No.:   | N1400 |      | Mod. Ref No.:    | SDG No.: SN1400 |     |
| Matrix: (SOIL/SED/WATER | ) WATER     |       |      | Lab Sample ID:   | N1400-04A       |     |
| Sample wt/vol: 5.       | 00 (g/mL)   | ML    |      | Lab File ID:     | V5P3972.D       |     |
| Level: (TRACE/LOW/MED)  | LOW         |       |      | Date Received:   | 08/08/2014      |     |
| % Moisture: not dec.    |             |       |      | Date Analyzed:   | 08/17/2014      |     |
| GC Column: DB-624       | ID:         | 0.25  | (mm) | Dilution Factor: | 1.0             |     |
| Soil Extract Volume:    |             |       | (uL) | Soil Aliquot Vol | ume:            | (uL |
| Purge Volume: 5.0       |             |       | (mL) |                  |                 |     |

| CAS NO.     | COMPOUND                | CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L | Q |
|-------------|-------------------------|-------------------------------------------|---|
| 1634-04-4   | Methyl tert-butyl ether | 5.0                                       | U |
| 71-43-2     | Benzene                 | 5.0                                       | U |
| 108-88-3    | Toluene                 | 5.0                                       | U |
| 100-41-4    | Ethylbenzene            | 5.0                                       | U |
| 179601-23-1 | m,p-Xylene              | 5.0                                       | U |
| 95-47-6     | o-Xylene                | 5.0                                       | U |
| 1330-20-7   | Xylene (Total)          | 5.0                                       | U |
| 98-82-8     | Isopropylbenzene        | 5.0                                       | U |
| 103-65-1    | n-Propylbenzene         | 5.0                                       | U |
| 108-67-8    | 1,3,5-Trimethylbenzene  | 5.0                                       | U |
| 98-06-6     | tert-Butylbenzene       | 5.0                                       | U |
| 95-63-6     | 1,2,4-Trimethylbenzene  | 5.0                                       | U |
| 135-98-8    | sec-Butylbenzene        | 5.0                                       | U |
| 99-87-6     | 4-Isopropyltoluene      | 5.0                                       | U |
| 104-51-8    | n-Butylbenzene          | 5.0                                       | U |
| 91-20-3     | Naphthalene             | 1.6                                       | J |

| Ι  | EPA  | SAMPLE | NO. |  |
|----|------|--------|-----|--|
| SU | JR-4 |        |     |  |
|    |      |        |     |  |
|    |      |        |     |  |

| Lab Name: SPECTRUM ANA  | LYTICAL, IN | C.       | Contract:          |                 |
|-------------------------|-------------|----------|--------------------|-----------------|
| Lab Code: MITKEM        | Case No.:   | N1400    | Mod. Ref No.:      | SDG No.: SN1400 |
| Matrix: (SOIL/SED/WATER | WATER       |          | Lab Sample ID:     | N1400-05A       |
| Sample wt/vol: 5.       | 00 (g/mL)   | ML       | Lab File ID:       | V5P3973.D       |
| Level: (TRACE/LOW/MED)  | LOW         |          | Date Received:     | 08/08/2014      |
| % Moisture: not dec.    |             |          | Date Analyzed:     | 08/17/2014      |
| GC Column: DB-624       | ID:         | 0.25 (mm | ) Dilution Factor: | 1.0             |
| Soil Extract Volume:    |             | (uL      | ) Soil Aliquot Vol | ume: (uL)       |
| Purge Volume: 5.0       |             | (mT      | )                  |                 |

| CAS NO.     | COMPOUND                | CONCENTRATION UNITS: (ug/L or ug/Kg) ug/L | Q |
|-------------|-------------------------|-------------------------------------------|---|
| 1634-04-4   | Methyl tert-butyl ether | 5.0                                       | U |
| 71-43-2     | Benzene                 | 1.1                                       | J |
| 108-88-3    | Toluene                 | 5.0                                       | U |
| 100-41-4    | Ethylbenzene            | 5.0                                       | U |
| 179601-23-1 | m,p-Xylene              | 5.0                                       | U |
| 95-47-6     | o-Xylene                | 5.0                                       | U |
| 1330-20-7   | Xylene (Total)          | 5.0                                       | U |
| 98-82-8     | Isopropylbenzene        | 5.0                                       | U |
| 103-65-1    | n-Propylbenzene         | 5.0                                       | U |
| 108-67-8    | 1,3,5-Trimethylbenzene  | 5.0                                       | U |
| 98-06-6     | tert-Butylbenzene       | 5.0                                       | U |
| 95-63-6     | 1,2,4-Trimethylbenzene  | 5.0                                       | U |
| 135-98-8    | sec-Butylbenzene        | 5.0                                       | U |
| 99-87-6     | 4-Isopropyltoluene      | 5.0                                       | U |
| 104-51-8    | n-Butylbenzene          | 5.0                                       | U |
| 91-20-3     | Naphthalene             | 1.5                                       | J |

| EPA  | SAMPLE | NO. |  |
|------|--------|-----|--|
| PW-3 |        |     |  |
|      |        |     |  |
|      |        |     |  |

| Lab Name: SPECTRUM ANAI | YTTCAL, IN | C.    |                    | Contract:        |                 |
|-------------------------|------------|-------|--------------------|------------------|-----------------|
| Lab Code: MITKEM        | Case No.:  | N1400 |                    | Mod. Ref No.:    | SDG No.: SN1400 |
| Matrix: (SOIL/SED/WATER | ) WATER    |       |                    | Lab Sample ID:   | N1400-06A       |
| Sample wt/vol: 5.0      | 00 (g/mL)  | ML    |                    | Lab File ID:     | V5P3974.D       |
| Level: (TRACE/LOW/MED)  | LOW        |       |                    | Date Received:   | 08/08/2014      |
| % Moisture: not dec.    |            |       |                    | Date Analyzed:   | 08/17/2014      |
| GC Column: DB-624       | ID:        | 0.25  | (mm)               | Dilution Factor: | 1.0             |
| Soil Extract Volume:    |            |       | (uL)               | Soil Aliquot Vol | ume: (uL        |
| Purge Volume: 5.0       |            |       | (mT <sub>1</sub> ) |                  |                 |

| CAS NO.     | COMPOUND                | CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L | Q |
|-------------|-------------------------|-------------------------------------------|---|
| 1634-04-4   | Methyl tert-butyl ether | 5.0                                       | U |
| 71-43-2     | Benzene                 | 31                                        |   |
| 108-88-3    | Toluene                 | 6.2                                       |   |
| 100-41-4    | Ethylbenzene            | 1.3                                       | J |
| 179601-23-1 | m,p-Xylene              | 13                                        |   |
| 95-47-6     | o-Xylene                | 11                                        |   |
| 1330-20-7   | Xylene (Total)          | 24                                        |   |
| 98-82-8     | Isopropylbenzene        | 5.0                                       | U |
| 103-65-1    | n-Propylbenzene         | 5.0                                       | U |
| 108-67-8    | 1,3,5-Trimethylbenzene  | 4.9                                       | J |
| 98-06-6     | tert-Butylbenzene       | 5.0                                       | U |
| 95-63-6     | 1,2,4-Trimethylbenzene  | 3.9                                       | J |
| 135-98-8    | sec-Butylbenzene        | 5.0                                       | U |
| 99-87-6     | 4-Isopropyltoluene      | 5.0                                       | U |
| 104-51-8    | n-Butylbenzene          | 5.0                                       | U |
| 91-20-3     | Naphthalene             | 95                                        |   |

EPA SAMPLE NO.
FIELD DUPLICATE2

| Lab Name: SPECTRUM ANAL  | YTICAL, IN | iC.   |                    | Contract:        |                 |     |
|--------------------------|------------|-------|--------------------|------------------|-----------------|-----|
| Lab Code: MITKEM         | Case No.:  | N1400 |                    | Mod. Ref No.:    | SDG No.: SN1400 |     |
| Matrix: (SOIL/SED/WATER) | WATER      |       |                    | Lab Sample ID:   | N1400-07A       |     |
| Sample wt/vol: 5.0       | 0 (g/mL)   | ML    |                    | Lab File ID:     | V5P3975.D       |     |
| Level: (TRACE/LOW/MED)   | LOW        |       |                    | Date Received:   | 08/08/2014      |     |
| % Moisture: not dec.     |            |       |                    | Date Analyzed:   | 08/17/2014      |     |
| GC Column: DB-624        | ID:        | 0.25  | (mm)               | Dilution Factor: | 1.0             |     |
| Soil Extract Volume:     |            |       | (uL)               | Soil Aliquot Vol | ume:            | (uL |
| Purge Volume: 5.0        |            |       | (mT <sub>1</sub> ) |                  |                 |     |

| CAS NO.     | COMPOUND                | CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L | Q |
|-------------|-------------------------|-------------------------------------------|---|
| 1634-04-4   | Methyl tert-butyl ether | 5.0                                       | U |
| 71-43-2     | Benzene                 | 32                                        |   |
| 108-88-3    | Toluene                 | 6.4                                       |   |
| 100-41-4    | Ethylbenzene            | 1.4                                       | J |
| 179601-23-1 | m,p-Xylene              | 14                                        |   |
| 95-47-6     | o-Xylene                | 11                                        |   |
| 1330-20-7   | Xylene (Total)          | 25                                        |   |
| 98-82-8     | Isopropylbenzene        | 5.0                                       | U |
| 103-65-1    | n-Propylbenzene         | 5.0                                       | U |
| 108-67-8    | 1,3,5-Trimethylbenzene  | 5.0                                       | J |
| 98-06-6     | tert-Butylbenzene       | 5.0                                       | U |
| 95-63-6     | 1,2,4-Trimethylbenzene  | 4.2                                       | J |
| 135-98-8    | sec-Butylbenzene        | 5.0                                       | U |
| 99-87-6     | 4-Isopropyltoluene      | 5.0                                       | U |
| 104-51-8    | n-Butylbenzene          | 5.0                                       | U |
| 91-20-3     | Naphthalene             | 100                                       |   |

| EPA  | SAMPLE | NO. |
|------|--------|-----|
| PW-4 |        |     |
|      |        |     |
|      |        |     |

| Lab Name: SPECTRUM ANA  | LYTICAL, IN | C.    |       | Contract:        |                 |     |
|-------------------------|-------------|-------|-------|------------------|-----------------|-----|
| Lab Code: MITKEM        | Case No.:   | N1400 |       | Mod. Ref No.:    | SDG No.: SN1400 |     |
| Matrix: (SOIL/SED/WATER | WATER       |       |       | Lab Sample ID:   | N1400-08A       |     |
| Sample wt/vol: 5.       | 00 (g/mL)   | ML    |       | Lab File ID:     | V5P3976.D       |     |
| Level: (TRACE/LOW/MED)  | LOW         |       |       | Date Received:   | 08/08/2014      |     |
| % Moisture: not dec.    |             |       |       | Date Analyzed:   | 08/17/2014      |     |
| GC Column: DB-624       | ID:         | 0.25  | (mm)  | Dilution Factor: | 1.0             |     |
| Soil Extract Volume:    |             |       | (uL)  | Soil Aliquot Vol | ume:(           | uL) |
| Purge Volume: 5 0       |             |       | (mT.) |                  |                 |     |

| CAS NO.    | COMPOUND                | CONCENTRATION UNITS: (ug/L or ug/Kg) ug/L | Q |
|------------|-------------------------|-------------------------------------------|---|
| 1634-04-4  | Methyl tert-butyl ether | 5.0                                       | U |
| 71-43-2    | Benzene                 | 30                                        |   |
| 108-88-3   | Toluene                 | 5.3                                       |   |
| 100-41-4   | Ethylbenzene            | 1.0                                       | J |
| 79601-23-1 | m,p-Xylene              | 11                                        |   |
| 95-47-6    | o-Xylene                | 9.7                                       |   |
| 1330-20-7  | Xylene (Total)          | 21                                        |   |
| 98-82-8    | Isopropylbenzene        | 5.0                                       | U |
| 103-65-1   | n-Propylbenzene         | 5.0                                       | U |
| 108-67-8   | 1,3,5-Trimethylbenzene  | 3.4                                       | J |
| 98-06-6    | tert-Butylbenzene       | 5.0                                       | U |
| 95-63-6    | 1,2,4-Trimethylbenzene  | 3.1                                       | J |
| 135-98-8   | sec-Butylbenzene        | 5.0                                       | U |
| 99-87-6    | 4-Isopropyltoluene      | 5.0                                       | U |
| 104-51-8   | n-Butylbenzene          | 5.0                                       | U |
| 91-20-3    | Naphthalene             | 180                                       |   |

|   | EP | A | SAMPLE | NO. |  |
|---|----|---|--------|-----|--|
| S | UR | 1 |        |     |  |
|   |    |   |        |     |  |
|   |    |   |        |     |  |

| Lab Name: SPECTRUM ANAI | JYTICAL, IN | C.    |                    | Contract:        |                 |
|-------------------------|-------------|-------|--------------------|------------------|-----------------|
| Lab Code: MITKEM        | Case No.:   | N1400 |                    | Mod. Ref No.:    | SDG No.: SN1400 |
| Matrix: (SOIL/SED/WATER | ) WATER     |       |                    | Lab Sample ID:   | N1400-09A       |
| Sample wt/vol: 5.0      | 00 (g/mL)   | ML    |                    | Lab File ID:     | V5P3977.D       |
| Level: (TRACE/LOW/MED)  | LOW         |       |                    | Date Received:   | 08/08/2014      |
| % Moisture: not dec.    |             |       |                    | Date Analyzed:   | 08/17/2014      |
| GC Column: DB-624       | ID:         | 0.25  | (mm)               | Dilution Factor: | 1.0             |
| Soil Extract Volume:    |             |       | (uL)               | Soil Aliquot Vol | ume: (uL        |
| Purge Volume: 5.0       |             |       | (mT <sub>1</sub> ) |                  |                 |

| CAS NO.     | COMPOUND                | CONCENTRATION UNITS:<br>(ug/L or ug/Kg) ug/L | Q |
|-------------|-------------------------|----------------------------------------------|---|
| 1634-04-4   | Methyl tert-butyl ether | 5.0                                          | U |
| 71-43-2     | Benzene                 | 5.0                                          | U |
| 108-88-3    | Toluene                 | 5.0                                          | U |
| 100-41-4    | Ethylbenzene            | 5.0                                          | U |
| 179601-23-1 | m,p-Xylene              | 5.0                                          | U |
| 95-47-6     | o-Xylene                | 5.0                                          | U |
| 1330-20-7   | Xylene (Total)          | 5.0                                          | U |
| 98-82-8     | Isopropylbenzene        | 5.0                                          | U |
| 103-65-1    | n-Propylbenzene         | 5.0                                          | U |
| 108-67-8    | 1,3,5-Trimethylbenzene  | 5.0                                          | U |
| 98-06-6     | tert-Butylbenzene       | 5.0                                          | U |
| 95-63-6     | 1,2,4-Trimethylbenzene  | 5.0                                          | U |
| 135-98-8    | sec-Butylbenzene        | 5.0                                          | U |
| 99-87-6     | 4-Isopropyltoluene      | 5.0                                          | U |
| 104-51-8    | n-Butylbenzene          | 5.0                                          | U |
| 91-20-3     | Naphthalene             | 12                                           |   |

| E   | PΑ  | SAMPLE | NO. |
|-----|-----|--------|-----|
| SUI | R 5 |        |     |
|     |     |        |     |
|     |     |        |     |

| Lab Name: SPECTRUM ANALYTICAL, | INC. Contract:                |                     |
|--------------------------------|-------------------------------|---------------------|
| Lab Code: MITKEM Case No       | o.: <u>N1400</u> Mod. Ref No. | .: SDG No.: _SN1400 |
| Matrix: (SOIL/SED/WATER) WATE  | R Lab Sample 1                | ID: N1400-10A       |
| Sample wt/vol:5.00 (g/m        | L) ML Lab File ID:            | v5p3978.D           |
| Level: (TRACE/LOW/MED) LOW     | Date Receive                  | ed: 08/08/2014      |
| % Moisture: not dec.           | Date Analyze                  | ed: 08/17/2014      |
| GC Column: DB-624              | D: 0.25 (mm) Dilution Fac     | ctor: 1.0           |
| Soil Extract Volume:           | (uL) Soil Aliquot             | Volume:(uL          |
| Purge Volume: 5.0              | (mL)                          |                     |

| CAS NO.     | COMPOUND                | CONCENTRATION UNITS: (ug/L or ug/Kg) ug/L | Q |
|-------------|-------------------------|-------------------------------------------|---|
| 1634-04-4   | Methyl tert-butyl ether | 5.0                                       | U |
| 71-43-2     | Benzene                 | 5.0                                       | U |
| 108-88-3    | Toluene                 | 5.0                                       | U |
| 100-41-4    | Ethylbenzene            | 5.0                                       | U |
| 179601-23-1 | m,p-Xylene              | 5.0                                       | U |
| 95-47-6     | o-Xylene                | 5.0                                       | U |
| 1330-20-7   | Xylene (Total)          | 5.0                                       | U |
| 98-82-8     | Isopropylbenzene        | 5.0                                       | U |
| 103-65-1    | n-Propylbenzene         | 5.0                                       | U |
| 108-67-8    | 1,3,5-Trimethylbenzene  | 5.0                                       | U |
| 98-06-6     | tert-Butylbenzene       | 5.0                                       | U |
| 95-63-6     | 1,2,4-Trimethylbenzene  | 5.0                                       | U |
| 135-98-8    | sec-Butylbenzene        | 5.0                                       | U |
| 99-87-6     | 4-Isopropyltoluene      | 5.0                                       | U |
| 104-51-8    | n-Butylbenzene          | 5.0                                       | U |
| 91-20-3     | Naphthalene             | 1.7                                       | J |

|   | EPA  | SAMPLE | NO. |  |
|---|------|--------|-----|--|
| S | UR-6 |        |     |  |
|   |      |        |     |  |
|   |      |        |     |  |

| Lab Name: SPECTRUM ANAI | JYTICAL, IN | C.    |                    | Contract:        |                 |
|-------------------------|-------------|-------|--------------------|------------------|-----------------|
| Lab Code: MITKEM        | Case No.:   | N1400 |                    | Mod. Ref No.:    | SDG No.: SN1400 |
| Matrix: (SOIL/SED/WATER | ) WATER     |       |                    | Lab Sample ID:   | N1400-11A       |
| Sample wt/vol: 5.0      | 00 (g/mL)   | ML    |                    | Lab File ID:     | V5P3979.D       |
| Level: (TRACE/LOW/MED)  | LOW         |       |                    | Date Received:   | 08/08/2014      |
| % Moisture: not dec.    |             |       |                    | Date Analyzed:   | 08/17/2014      |
| GC Column: DB-624       | ID:         | 0.25  | (mm)               | Dilution Factor: | 1.0             |
| Soil Extract Volume:    |             |       | (uL)               | Soil Aliquot Vol | ume: (uL        |
| Purge Volume: 5.0       |             |       | (mT <sub>1</sub> ) |                  |                 |

| CAS NO.     | COMPOUND                | CONCENTRATION UNITS: (ug/L or ug/Kg) ug/L | Q |
|-------------|-------------------------|-------------------------------------------|---|
| 1634-04-4   | Methyl tert-butyl ether | 5.0                                       | U |
| 71-43-2     | Benzene                 | 5.0                                       | U |
| 108-88-3    | Toluene                 | 5.0                                       | U |
| 100-41-4    | Ethylbenzene            | 5.0                                       | U |
| L79601-23-1 | m,p-Xylene              | 5.0                                       | U |
| 95-47-6     | o-Xylene                | 5.0                                       | U |
| 1330-20-7   | Xylene (Total)          | 5.0                                       | U |
| 98-82-8     | Isopropylbenzene        | 5.0                                       | Ū |
| 103-65-1    | n-Propylbenzene         | 5.0                                       | U |
| 108-67-8    | 1,3,5-Trimethylbenzene  | 5.0                                       | U |
| 98-06-6     | tert-Butylbenzene       | 5.0                                       | U |
| 95-63-6     | 1,2,4-Trimethylbenzene  | 5.0                                       | U |
| 135-98-8    | sec-Butylbenzene        | 5.0                                       | U |
| 99-87-6     | 4-Isopropyltoluene      | 5.0                                       | U |
| 104-51-8    | n-Butylbenzene          | 5.0                                       | U |
| 91-20-3     | Naphthalene             | 5.0                                       | U |

|   | EPA  | SAMPLE | NO. |  |
|---|------|--------|-----|--|
| S | ED-6 |        |     |  |
|   |      |        |     |  |
|   |      |        |     |  |

| Lab Name: SPECTRUM ANAI | YTICAL, IN | C.       | Contract:           |                 |
|-------------------------|------------|----------|---------------------|-----------------|
| Lab Code: MITKEM        | Case No.:  | N1400    | Mod. Ref No.:       | SDG No.: SN1400 |
| Matrix: (SOIL/SED/WATER | ) SOIL     |          | Lab Sample ID:      | N1400-12C       |
| Sample wt/vol: 9.3      | 20 (g/mL)  | G        | Lab File ID:        | V1N0739.D       |
| Level: (TRACE/LOW/MED)  | LOW        |          | Date Received:      | 08/08/2014      |
| % Moisture: not dec.    | 22         |          | Date Analyzed:      | 08/13/2014      |
| GC Column: DB-624       | ID:        | 0.25 (mm | n) Dilution Factor: | 1.0             |
| Soil Extract Volume:    |            | (uI      | ) Soil Aliquot Vol  | ume: (uL)       |
| Purge Volume: 10.0      |            | (mT      | ,)                  |                 |

| CAS NO.     | COMPOUND                | CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG | Q |
|-------------|-------------------------|--------------------------------------------|---|
| 1634-04-4   | Methyl tert-butyl ether | 3.5                                        | U |
| 71-43-2     | Benzene                 | 3.5                                        | U |
| 108-88-3    | Toluene                 | 3.5                                        | U |
| 100-41-4    | Ethylbenzene            | 3.5                                        | U |
| 179601-23-1 | m,p-Xylene              | 3.5                                        | U |
| 95-47-6     | o-Xylene                | 3.5                                        | U |
| 1330-20-7   | Xylene (Total)          | 3.5                                        | U |
| 98-82-8     | Isopropylbenzene        | 3.5                                        | U |
| 103-65-1    | n-Propylbenzene         | 3.5                                        | U |
| 108-67-8    | 1,3,5-Trimethylbenzene  | 3.5                                        | U |
| 98-06-6     | tert-Butylbenzene       | 3.5                                        | U |
| 95-63-6     | 1,2,4-Trimethylbenzene  | 3.5                                        | U |
| 135-98-8    | sec-Butylbenzene        | 3.5                                        | U |
| 99-87-6     | 4-Isopropyltoluene      | 3.5                                        | U |
| 104-51-8    | n-Butylbenzene          | 3.5                                        | U |
| 91-20-3     | Naphthalene             | 3.5                                        | U |

| Ε   | PΑ  | SAMPLE | NO. |  |
|-----|-----|--------|-----|--|
| SUI | R-7 |        |     |  |
|     |     |        |     |  |
|     |     |        |     |  |

| Lab Name: SPECTRUM ANAI | Lab Name: SPECTRUM ANALYTICAL, INC. |       |                    | Contract:        |                 |
|-------------------------|-------------------------------------|-------|--------------------|------------------|-----------------|
| Lab Code: MITKEM        | Case No.:                           | N1400 |                    | Mod. Ref No.:    | SDG No.: SN1400 |
| Matrix: (SOIL/SED/WATER | ) WATER                             |       |                    | Lab Sample ID:   | N1400-13A       |
| Sample wt/vol: 5.0      | 00 (g/mL)                           | ML    |                    | Lab File ID:     | V5P3980.D       |
| Level: (TRACE/LOW/MED)  | LOW                                 |       |                    | Date Received:   | 08/08/2014      |
| % Moisture: not dec.    |                                     |       |                    | Date Analyzed:   | 08/18/2014      |
| GC Column: DB-624       | ID:                                 | 0.25  | (mm)               | Dilution Factor: | 1.0             |
| Soil Extract Volume:    |                                     |       | (uL)               | Soil Aliquot Vol | ume: (uL        |
| Purge Volume: 5.0       |                                     |       | (mT <sub>1</sub> ) |                  |                 |

| CAS NO.     | COMPOUND                | CONCENTRATION UNITS: (ug/L or ug/Kg) ug/L | Q |
|-------------|-------------------------|-------------------------------------------|---|
| 1634-04-4   | Methyl tert-butyl ether | 5.0                                       | U |
| 71-43-2     | Benzene                 | 5.0                                       | U |
| 108-88-3    | Toluene                 | 5.0                                       | U |
| 100-41-4    | Ethylbenzene            | 5.0                                       | U |
| L79601-23-1 | m,p-Xylene              | 5.0                                       | U |
| 95-47-6     | o-Xylene                | 5.0                                       | U |
| 1330-20-7   | Xylene (Total)          | 5.0                                       | U |
| 98-82-8     | Isopropylbenzene        | 5.0                                       | Ū |
| 103-65-1    | n-Propylbenzene         | 5.0                                       | U |
| 108-67-8    | 1,3,5-Trimethylbenzene  | 5.0                                       | U |
| 98-06-6     | tert-Butylbenzene       | 5.0                                       | U |
| 95-63-6     | 1,2,4-Trimethylbenzene  | 5.0                                       | U |
| 135-98-8    | sec-Butylbenzene        | 5.0                                       | U |
| 99-87-6     | 4-Isopropyltoluene      | 5.0                                       | U |
| 104-51-8    | n-Butylbenzene          | 5.0                                       | U |
| 91-20-3     | Naphthalene             | 5.0                                       | U |

|   | EPA  | SAMPLE | NO. |
|---|------|--------|-----|
| S | ED-7 |        |     |
|   |      |        |     |
|   |      |        |     |

| Lab Name: SPECTRUM ANAI | LYTICAL, IN | C.      | Contract:           |                 |
|-------------------------|-------------|---------|---------------------|-----------------|
| Lab Code: MITKEM        | Case No.:   | N1400   | Mod. Ref No.:       | SDG No.: SN1400 |
| Matrix: (SOIL/SED/WATER | ) SOIL      |         | Lab Sample ID:      | N1400-14C       |
| Sample wt/vol: 9.3      | 10 (g/mL)   | G       | Lab File ID:        | V1N0740.D       |
| Level: (TRACE/LOW/MED)  | LOW         |         | Date Received:      | 08/08/2014      |
| % Moisture: not dec.    | 20          |         | Date Analyzed:      | 08/13/2014      |
| GC Column: DB-624       | ID:         | 0.25 (m | m) Dilution Factor: | 1.0             |
| Soil Extract Volume:    |             | (u      | L) Soil Aliquot Vol | ume: (uL)       |
| Purge Volume: 10.0      |             | (m      | L)                  |                 |

| CAS NO.     | COMPOUND                | CONCENTRATION UNITS: (ug/L or ug/Kg) ug/Kg | Q |
|-------------|-------------------------|--------------------------------------------|---|
| 1634-04-4   | Methyl tert-butyl ether | 3.4                                        | U |
| 71-43-2     | Benzene                 | 3.4                                        | U |
| 108-88-3    | Toluene                 | 3.4                                        | U |
| 100-41-4    | Ethylbenzene            | 3.4                                        | U |
| 179601-23-1 | m,p-Xylene              | 3.4                                        | U |
| 95-47-6     | o-Xylene                | 3.4                                        | U |
| 1330-20-7   | Xylene (Total)          | 3.4                                        | U |
| 98-82-8     | Isopropylbenzene        | 3.4                                        | U |
| 103-65-1    | n-Propylbenzene         | 3.4                                        | U |
| 108-67-8    | 1,3,5-Trimethylbenzene  | 3.4                                        | U |
| 98-06-6     | tert-Butylbenzene       | 3.4                                        | U |
| 95-63-6     | 1,2,4-Trimethylbenzene  | 3.4                                        | U |
| 135-98-8    | sec-Butylbenzene        | 3.4                                        | U |
| 99-87-6     | 4-Isopropyltoluene      | 3.4                                        | U |
| 104-51-8    | n-Butylbenzene          | 3.4                                        | U |
| 91-20-3     | Naphthalene             | 3.4                                        | U |

|   | EPA  | SAMPLE | NO. |  |
|---|------|--------|-----|--|
| S | UR-8 |        |     |  |
|   |      |        |     |  |
|   |      |        |     |  |

| Lab Name: SPECTRUM ANAI | Lab Name: SPECTRUM ANALYTICAL, INC. |       |                    | Contract:        |                        |
|-------------------------|-------------------------------------|-------|--------------------|------------------|------------------------|
| Lab Code: MITKEM        | Case No.:                           | N1400 |                    | Mod. Ref No.:    | SDG No.: <u>SN1400</u> |
| Matrix: (SOIL/SED/WATER | ) WATER                             |       |                    | Lab Sample ID:   | N1400-15A              |
| Sample wt/vol: 5.0      | 00 (g/mL)                           | ML    |                    | Lab File ID:     | V5P3981.D              |
| Level: (TRACE/LOW/MED)  | LOW                                 |       |                    | Date Received:   | 08/08/2014             |
| % Moisture: not dec.    |                                     |       |                    | Date Analyzed:   | 08/18/2014             |
| GC Column: DB-624       | ID:                                 | 0.25  | (mm)               | Dilution Factor: | 1.0                    |
| Soil Extract Volume:    |                                     |       | (uL)               | Soil Aliquot Vol | ume: (uL               |
| Purge Volume: 5.0       |                                     |       | (mT <sub>1</sub> ) |                  |                        |

| CAS NO.     | COMPOUND                | CONCENTRATION UNITS: (ug/L or ug/Kg) ug/L | Q |
|-------------|-------------------------|-------------------------------------------|---|
| 1634-04-4   | Methyl tert-butyl ether | 5.0                                       | U |
| 71-43-2     | Benzene                 | 5.0                                       | U |
| 108-88-3    | Toluene                 | 5.0                                       | U |
| 100-41-4    | Ethylbenzene            | 5.0                                       | U |
| L79601-23-1 | m,p-Xylene              | 5.0                                       | U |
| 95-47-6     | o-Xylene                | 5.0                                       | U |
| 1330-20-7   | Xylene (Total)          | 5.0                                       | U |
| 98-82-8     | Isopropylbenzene        | 5.0                                       | Ū |
| 103-65-1    | n-Propylbenzene         | 5.0                                       | U |
| 108-67-8    | 1,3,5-Trimethylbenzene  | 5.0                                       | U |
| 98-06-6     | tert-Butylbenzene       | 5.0                                       | U |
| 95-63-6     | 1,2,4-Trimethylbenzene  | 5.0                                       | U |
| 135-98-8    | sec-Butylbenzene        | 5.0                                       | U |
| 99-87-6     | 4-Isopropyltoluene      | 5.0                                       | U |
| 104-51-8    | n-Butylbenzene          | 5.0                                       | U |
| 91-20-3     | Naphthalene             | 5.0                                       | U |

EPA SAMPLE NO.
EQUIP.BLANK

| Lab Name: SPECTRUM ANALYTICAL, INC. |           |       |      | Contract:        |                 |     |
|-------------------------------------|-----------|-------|------|------------------|-----------------|-----|
| Lab Code: MITKEM                    | Case No.: | N1400 |      | Mod. Ref No.:    | SDG No.: SN1400 |     |
| Matrix: (SOIL/SED/WATER             | ) WATER   |       |      | Lab Sample ID:   | N1400-16A       |     |
| Sample wt/vol: 5.                   | 00 (g/mL) | ML    |      | Lab File ID:     | V5P3982.D       |     |
| Level: (TRACE/LOW/MED)              | LOW       |       |      | Date Received:   | 08/08/2014      |     |
| % Moisture: not dec.                |           |       |      | Date Analyzed:   | 08/18/2014      |     |
| GC Column: DB-624                   | ID:       | 0.25  | (mm) | Dilution Factor: | 1.0             |     |
| Soil Extract Volume:                |           |       | (uL) | Soil Aliquot Vol | ume:            | (uL |
| Purge Volume: 5.0                   |           |       | (mL) |                  |                 |     |

| CAS NO.     | COMPOUND                | CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L | Q |
|-------------|-------------------------|-------------------------------------------|---|
| 1634-04-4   | Methyl tert-butyl ether | 5.0                                       | U |
| 71-43-2     | Benzene                 | 5.0                                       | U |
| 108-88-3    | Toluene                 | 5.0                                       | U |
| 100-41-4    | Ethylbenzene            | 5.0                                       | U |
| 179601-23-1 | m,p-Xylene              | 5.0                                       | U |
| 95-47-6     | o-Xylene                | 5.0                                       | U |
| 1330-20-7   | Xylene (Total)          | 5.0                                       | U |
| 98-82-8     | Isopropylbenzene        | 5.0                                       | U |
| 103-65-1    | n-Propylbenzene         | 5.0                                       | U |
| 108-67-8    | 1,3,5-Trimethylbenzene  | 5.0                                       | U |
| 98-06-6     | tert-Butylbenzene       | 5.0                                       | U |
| 95-63-6     | 1,2,4-Trimethylbenzene  | 5.0                                       | U |
| 135-98-8    | sec-Butylbenzene        | 5.0                                       | U |
| 99-87-6     | 4-Isopropyltoluene      | 5.0                                       | U |
| 104-51-8    | n-Butylbenzene          | 5.0                                       | U |
| 91-20-3     | Naphthalene             | 5.0                                       | U |

| EPA  | SAMPLE | NO. |
|------|--------|-----|
| TRIP | BLANK  |     |
|      |        |     |

| Lab Name:   | SPECTRUM ANA  | TRUM ANALYTICAL, INC. |       | Contract: |                  |                 |
|-------------|---------------|-----------------------|-------|-----------|------------------|-----------------|
| Lab Code:   | MITKEM        | Case No.:             | N1400 |           | Mod. Ref No.:    | SDG No.: SN1400 |
| Matrix: (So | OIL/SED/WATER | WATER                 |       |           | Lab Sample ID:   | N1400-17A       |
| Sample wt/  | vol: 5.       | 00 (g/mL)             | ML    |           | Lab File ID:     | V5P3964.D       |
| Level: (TR  | ACE/LOW/MED)  | LOW                   |       |           | Date Received:   | 08/08/2014      |
| % Moisture  | : not dec.    |                       |       |           | Date Analyzed:   | 08/17/2014      |
| GC Column:  | DB-624        | ID:                   | 0.25  | (mm)      | Dilution Factor: | 1.0             |
| Soil Extra  | ct Volume:    |                       |       | (uL)      | Soil Aliquot Vol | ume:(uL)        |
| Purae Volu  | me: 5 0       |                       |       | (mT.)     |                  |                 |

| CAS NO.     | COMPOUND                | CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L | Q |
|-------------|-------------------------|-------------------------------------------|---|
| 1634-04-4   | Methyl tert-butyl ether | 5.0                                       | U |
| 71-43-2     | Benzene                 | 5.0                                       | U |
| 108-88-3    | Toluene                 | 5.0                                       | U |
| 100-41-4    | Ethylbenzene            | 5.0                                       | U |
| 179601-23-1 | m,p-Xylene              | 5.0                                       | U |
| 95-47-6     | o-Xylene                | 5.0                                       | U |
| 1330-20-7   | Xylene (Total)          | 5.0                                       | U |
| 98-82-8     | Isopropylbenzene        | 5.0                                       | U |
| 103-65-1    | n-Propylbenzene         | 5.0                                       | U |
| 108-67-8    | 1,3,5-Trimethylbenzene  | 5.0                                       | U |
| 98-06-6     | tert-Butylbenzene       | 5.0                                       | U |
| 95-63-6     | 1,2,4-Trimethylbenzene  | 5.0                                       | U |
| 135-98-8    | sec-Butylbenzene        | 5.0                                       | U |
| 99-87-6     | 4-Isopropyltoluene      | 5.0                                       | U |
| 104-51-8    | n-Butylbenzene          | 5.0                                       | U |
| 91-20-3     | Naphthalene             | 5.0                                       | U |

| EPA   | SAMPLE | NO. |
|-------|--------|-----|
| MB-78 | 536    |     |
|       |        |     |
|       |        |     |

| Lab Name:   | SPECTRUM ANA  | LYTICAL | ı, IN | J.    |                    | Contract:        |                        |     |
|-------------|---------------|---------|-------|-------|--------------------|------------------|------------------------|-----|
| Lab Code:   | MITKEM        | Case N  | 10.:  | N1400 |                    | Mod. Ref No.:    | SDG No.: <u>SN1400</u> |     |
| Matrix: (So | OIL/SED/WATER | soi:    | L     |       |                    | Lab Sample ID:   | MB-78536               |     |
| Sample wt/  | vol: 5.       | 00 (g/i | mL)   | G     |                    | Lab File ID:     | V1N0726.D              |     |
| Level: (TR  | ACE/LOW/MED)  | LOW     |       |       |                    | Date Received:   |                        |     |
| % Moisture  | : not dec.    | 0.0     |       |       |                    | Date Analyzed:   | 08/13/2014             |     |
| GC Column:  | DB-624        |         | ID:   | 0.25  | (mm)               | Dilution Factor: | 1.0                    |     |
| Soil Extra  | ct Volume:    |         |       |       | (uL)               | Soil Aliquot Vol | ume: (uI               | ( ۲ |
| Purge Volu  | me: 10.0      |         |       |       | (mT <sub>1</sub> ) |                  |                        |     |

| CAS NO.     | COMPOUND                | CONCENTRATION UNITS: (ug/L or ug/Kg) ug/Kg | Q |
|-------------|-------------------------|--------------------------------------------|---|
| 1634-04-4   | Methyl tert-butyl ether | 5.0                                        | U |
| 71-43-2     | Benzene                 | 5.0                                        | U |
| 108-88-3    | Toluene                 | 5.0                                        | U |
| 100-41-4    | Ethylbenzene            | 5.0                                        | U |
| 179601-23-1 | m,p-Xylene              | 5.0                                        | U |
| 95-47-6     | o-Xylene                | 5.0                                        | U |
| 1330-20-7   | Xylene (Total)          | 5.0                                        | Ū |
| 98-82-8     | Isopropylbenzene        | 5.0                                        | U |
| 103-65-1    | n-Propylbenzene         | 5.0                                        | U |
| 108-67-8    | 1,3,5-Trimethylbenzene  | 5.0                                        | U |
| 98-06-6     | tert-Butylbenzene       | 5.0                                        | U |
| 95-63-6     | 1,2,4-Trimethylbenzene  | 5.0                                        | U |
| 135-98-8    | sec-Butylbenzene        | 5.0                                        | U |
| 99-87-6     | 4-Isopropyltoluene      | 5.0                                        | U |
| 104-51-8    | n-Butylbenzene          | 5.0                                        | U |
| 91-20-3     | Naphthalene             | 5.0                                        | U |

| EPA   | SAMPLE | NO. |   |
|-------|--------|-----|---|
| MB-78 | 3581   |     | • |
|       |        |     |   |
|       |        |     |   |

| Lab Name: SPECTRUM ANA  | LYTICAL, IN | C.    |      | Contract:        |                 |     |
|-------------------------|-------------|-------|------|------------------|-----------------|-----|
| Lab Code: MITKEM        | Case No.:   | N1400 |      | Mod. Ref No.:    | SDG No.: SN1400 |     |
| Matrix: (SOIL/SED/WATER | ) WATER     |       |      | Lab Sample ID:   | MB-78581        |     |
| Sample wt/vol: 5.       | 00 (g/mL)   | ML    |      | Lab File ID:     | V5P3963.D       |     |
| Level: (TRACE/LOW/MED)  | LOW         |       |      | Date Received:   |                 |     |
| % Moisture: not dec.    |             |       |      | Date Analyzed:   | 08/17/2014      |     |
| GC Column: DB-624       | ID:         | 0.25  | (mm) | Dilution Factor: | 1.0             |     |
| Soil Extract Volume:    |             |       | (uL) | Soil Aliquot Vol | ume:            | (uL |
| Purge Volume: 5.0       |             |       | (mL) |                  |                 |     |

| CAS NO.     | COMPOUND                | CONCENTRATION UNITS: (ug/L or ug/Kg) ug/L | Q |
|-------------|-------------------------|-------------------------------------------|---|
| 1634-04-4   | Methyl tert-butyl ether | 5.0                                       | U |
| 71-43-2     | Benzene                 | 5.0                                       | U |
| 108-88-3    | Toluene                 | 5.0                                       | U |
| 100-41-4    | Ethylbenzene            | 5.0                                       | U |
| L79601-23-1 | m,p-Xylene              | 5.0                                       | U |
| 95-47-6     | o-Xylene                | 5.0                                       | U |
| 1330-20-7   | Xylene (Total)          | 5.0                                       | U |
| 98-82-8     | Isopropylbenzene        | 5.0                                       | Ū |
| 103-65-1    | n-Propylbenzene         | 5.0                                       | U |
| 108-67-8    | 1,3,5-Trimethylbenzene  | 5.0                                       | U |
| 98-06-6     | tert-Butylbenzene       | 5.0                                       | U |
| 95-63-6     | 1,2,4-Trimethylbenzene  | 5.0                                       | U |
| 135-98-8    | sec-Butylbenzene        | 5.0                                       | U |
| 99-87-6     | 4-Isopropyltoluene      | 5.0                                       | U |
| 104-51-8    | n-Butylbenzene          | 5.0                                       | U |
| 91-20-3     | Naphthalene             | 5.0                                       | U |

| EP   | A S | AMP: | LE | NO. |  |
|------|-----|------|----|-----|--|
| LCS- | -78 | 536  |    |     |  |
|      |     |      |    |     |  |
|      |     |      |    |     |  |

| Lab Name: SPECTRUM ANA  | SPECTRUM ANALYTICAL, INC. |           | Contract:        |                 |
|-------------------------|---------------------------|-----------|------------------|-----------------|
| Lab Code: MITKEM        | Case No.:                 | N1400     | Mod. Ref No.:    | SDG No.: SN1400 |
| Matrix: (SOIL/SED/WATER | ) SOIL                    |           | Lab Sample ID:   | LCS-78536       |
| Sample wt/vol: 5.       | 00 (g/mL)                 | G         | Lab File ID:     | V1N0724.D       |
| Level: (TRACE/LOW/MED)  | LOW                       |           | Date Received:   |                 |
| % Moisture: not dec.    | 0.0                       |           | Date Analyzed:   | 08/13/2014      |
| GC Column: DB-624       | ID:                       | 0.25 (mm) | Dilution Factor: | 1.0             |
| Soil Extract Volume:    |                           | (uL)      | Soil Aliquot Vol | ume: (uL)       |
| Purge Volume: 10.0      |                           | (mL)      |                  |                 |

| CAS NO.     | COMPOUND                | CONCENTRATION UNITS: (ug/L or ug/Kg) ug/kg | Q |
|-------------|-------------------------|--------------------------------------------|---|
| 1634-04-4   | Methyl tert-butyl ether | 44                                         |   |
| 71-43-2     | Benzene                 | 47                                         |   |
| 108-88-3    | Toluene                 | 51                                         |   |
| 100-41-4    | Ethylbenzene            | 56                                         |   |
| 179601-23-1 | m,p-Xylene              | 110                                        |   |
| 95-47-6     | o-Xylene                | 54                                         |   |
| 1330-20-7   | Xylene (Total)          | 160                                        |   |
| 98-82-8     | Isopropylbenzene        | 56                                         |   |
| 103-65-1    | n-Propylbenzene         | 58                                         |   |
| 108-67-8    | 1,3,5-Trimethylbenzene  | 57                                         |   |
| 98-06-6     | tert-Butylbenzene       | 54                                         |   |
| 95-63-6     | 1,2,4-Trimethylbenzene  | 57                                         |   |
| 135-98-8    | sec-Butylbenzene        | 57                                         |   |
| 99-87-6     | 4-Isopropyltoluene      | 56                                         |   |
| 104-51-8    | n-Butylbenzene          | 61                                         |   |
| 91-20-3     | Naphthalene             | 64                                         |   |

| EPA  | SAMPLE | NO. |  |
|------|--------|-----|--|
| LCS- | 78581  |     |  |
|      |        |     |  |
|      |        |     |  |

| Lab Name:  | SPECTRUM ANA  | LLYTICAL, IN | ic.            | Contract:           |                 |
|------------|---------------|--------------|----------------|---------------------|-----------------|
| Lab Code:  | MITKEM        | Case No.:    | N1400          | Mod. Ref No.:       | SDG No.: SN1400 |
| Matrix: (S | OIL/SED/WATER | R) WATER     |                | Lab Sample ID:      | LCS-78581       |
| Sample wt/ | vol:5.        | 00 (g/mL)    | ML             | Lab File ID:        | V5P3960.D       |
| Level: (TR | ACE/LOW/MED)  | LOW          |                | Date Received:      |                 |
| % Moisture | : not dec.    |              |                | Date Analyzed:      | 08/17/2014      |
| GC Column: | DB-624        | ID:          | <u>0.25</u> (m | m) Dilution Factor: | 1.0             |
| Soil Extra | ct Volume: _  |              | (u             | L) Soil Aliquot Vol | ume: (uL)       |
| Purge Volu | me: 5.0       |              | ( m            | nT.)                |                 |

| CAS NO.     | COMPOUND                | CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L | Q |  |  |
|-------------|-------------------------|-------------------------------------------|---|--|--|
| 1634-04-4   | Methyl tert-butyl ether | 50                                        | ľ |  |  |
| 71-43-2     | Benzene                 | 49                                        |   |  |  |
| 108-88-3    | Toluene                 | 50                                        | ľ |  |  |
| 100-41-4    | Ethylbenzene            | 49                                        |   |  |  |
| 179601-23-1 | m,p-Xylene              | 97                                        |   |  |  |
| 95-47-6     | o-Xylene                | 52                                        |   |  |  |
| 1330-20-7   | Xylene (Total)          | 150                                       |   |  |  |
| 98-82-8     | Isopropylbenzene        | 51                                        |   |  |  |
| 103-65-1    | n-Propylbenzene         | 51                                        |   |  |  |
| 108-67-8    | 1,3,5-Trimethylbenzene  | 51                                        |   |  |  |
| 98-06-6     | tert-Butylbenzene       | 49                                        |   |  |  |
| 95-63-6     | 1,2,4-Trimethylbenzene  | 49                                        |   |  |  |
| 135-98-8    | sec-Butylbenzene        | 49                                        |   |  |  |
| 99-87-6     | 4-Isopropyltoluene      | 50                                        |   |  |  |
| 104-51-8    | n-Butylbenzene 49       |                                           |   |  |  |
| 91-20-3     | Naphthalene             | 49                                        |   |  |  |

| EPA   | SAMPLE | NO. |
|-------|--------|-----|
| LCSD- | 78581  |     |
|       |        |     |

| Lab Name:  | SPECTRUM ANA  | LYTICAL, IN | iC.   |      | Contract:        |                 |    |
|------------|---------------|-------------|-------|------|------------------|-----------------|----|
| Lab Code:  | MITKEM        | Case No.:   | N1400 |      | Mod. Ref No.:    | SDG No.: SN1400 |    |
| Matrix: (S | OIL/SED/WATER | WATER       |       |      | Lab Sample ID:   | LCSD-78581      |    |
| Sample wt/ | vol: 5.       | 00 (g/mL)   | ML    |      | Lab File ID:     | V5P3961.D       |    |
| Level: (TR | ACE/LOW/MED)  | LOW         |       |      | Date Received:   |                 |    |
| % Moisture | : not dec.    |             |       |      | Date Analyzed:   | 08/17/2014      |    |
| GC Column: | DB-624        | ID:         | 0.25  | (mm) | Dilution Factor: | 1.0             |    |
| Soil Extra | ct Volume:    |             |       | (uL) | Soil Aliquot Vol | ume: (u         | L) |
| Purge Volu | me: 5.0       |             |       | (mL) |                  |                 |    |

| CAS NO.     | COMPOUND                | CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L | Q |
|-------------|-------------------------|-------------------------------------------|---|
| 1634-04-4   | Methyl tert-butyl ether | 53                                        |   |
| 71-43-2     | Benzene                 | 51                                        |   |
| 108-88-3    | Toluene                 | 54                                        |   |
| 100-41-4    | Ethylbenzene            | 51                                        |   |
| 179601-23-1 | m,p-Xylene              | 100                                       |   |
| 95-47-6     | o-Xylene                | 53                                        |   |
| 1330-20-7   | Xylene (Total)          | 150                                       |   |
| 98-82-8     | Isopropylbenzene        | 51                                        |   |
| 103-65-1    | n-Propylbenzene         | 51                                        |   |
| 108-67-8    | 1,3,5-Trimethylbenzene  | 50                                        |   |
| 98-06-6     | tert-Butylbenzene       | 49                                        |   |
| 95-63-6     | 1,2,4-Trimethylbenzene  | 50                                        |   |
| 135-98-8    | sec-Butylbenzene        | 49                                        |   |
| 99-87-6     | 4-Isopropyltoluene      | 50                                        |   |
| 104-51-8    | n-Butylbenzene          | 49                                        |   |
| 91-20-3     | Naphthalene             | 50                                        |   |

#### 2B - FORM II VOA-2

#### WATER VOLATILE DEUTERATED MONITORING COMPOUND RECOVERY

Lab Name: SPECTRUM ANALYTICAL, INC. Contract:

Lab Code: MITKEM Case No.: N1400 Mod. Ref No.: SDG No.: SN1400

Level: (TRACE or LOW) LOW

|    | EPA                 | VDMC1    | VDMC2   | VDMC3   | VDMC4   | TOT |
|----|---------------------|----------|---------|---------|---------|-----|
|    | SAMPLE NO.          | (DBFM) # | (DCE) # | (TOL) # | (BFB) # | OUT |
| 01 | LCS-78581           | 100      | 98      | 103     | 105     | 0   |
| 02 | LCSD-78581          | 101      | 103     | 102     | 102     | 0   |
| 03 | MB-78581            | 100      | 97      | 106     | 99      | 0   |
| 04 | TRIP BLANK          | 100      | 98      | 106     | 101     | 0   |
| 05 | SUR-2               | 103      | 100     | 103     | 96      | 0   |
| 06 | PW-2                | 100      | 98      | 102     | 102     | 0   |
| 07 | SUR-3               | 99       | 99      | 103     | 97      | 0   |
|    | FIELD<br>DUPLICATE  | 97       | 101     | 104     | 98      | 0   |
| 09 | SUR-4               | 101      | 100     | 104     | 100     | 0   |
| 10 | PW-3                | 98       | 100     | 102     | 95      | 0   |
|    | FIELD<br>DUPLICATE2 | 101      | 99      | 102     | 99      | 0   |
| 12 | PW-4                | 100      | 98      | 111     | 108     | 0   |
| 13 | SUR 1               | 102      | 100     | 104     | 98      | 0   |
| 14 | SUR 5               | 101      | 99      | 100     | 101     | 0   |
| 15 | SUR-6               | 104      | 100     | 101     | 100     | 0   |
| 16 | SUR-7               | 101      | 101     | 100     | 96      | 0   |
| 17 | SUR-8               | 103      | 100     | 101     | 102     | 0   |
| 18 | EQUIP.BLANK         | 102      | 97      | 98      | 100     | 0   |

|       |                               | QC LIMITS |
|-------|-------------------------------|-----------|
| VDMC1 | (DBFM) Dibromofluoromethane   | (85-115)  |
| VDMC2 | (DCE) = 1,2-Dichloroethane-d4 | (70-120)  |
| VDMC3 | (TOL) = Toluene-d8            | (85-120)  |
| VDMC4 | (BFB) = Bromofluorobenzene    | (75-120)  |

<sup>#</sup> Column to be used to flag recovery values

som14.07.15.0901

Page 1 of 1 SW846

N1400 Page 32 of 105

<sup>\*</sup> Values outside of contract required QC limits

#### 2D - FORM II VOA-4

#### SOIL VOLATILE DEUTERATED MONITORING COMPOUND RECOVERY

Lab Name: SPECTRUM ANALYTICAL, INC. Contract:

Lab Code: MITKEM Case No.: N1400 Mod. Ref No.: SDG No.: SN1400

Level: (LOW/MED) LOW

|    | EPA        | VDMC1    | VDMC2   | VDMC3   | VDMC4   | TOT |
|----|------------|----------|---------|---------|---------|-----|
|    | SAMPLE NO. | (DBFM) # | (DCE) # | (TOL) # | (BFB) # | OUT |
| 01 | LCS-78536  | 104      | 105     | 104     | 103     | 0   |
| 02 | MB-78536   | 109      | 98      | 103     | 97      | 0   |
| 03 | SED-6      | 117      | 106     | 100     | 98      | 0   |
| 04 | SED-7      | 118      | 109     | 99      | 94      | 0   |

|       |                               | QC LIMITS |
|-------|-------------------------------|-----------|
| VDMC1 | (DBFM) Dibromofluoromethane   | (76-128)  |
| VDMC2 | (DCE) = 1,2-Dichloroethane-d4 | (88-110)  |
| VDMC3 | (TOL) = Toluene-d8            | (85-115)  |
| VDMC4 | (BFB) = Bromofluorobenzene    | (85-120)  |

<sup>#</sup> Column to be used to flag recovery values

som14.07.15.0901

Page 1 of 1 SW846

N1400 Page 33 of 105

<sup>\*</sup> Values outside of contract required QC limits

# 3 - FORM III SOIL LABORATORY CONTROL SAMPLE RECOVERY

EPA SAMPLE NO.

LCS-78536

| Lab  | Name:  | SPECTRUM ANALYTICAL, INC. |         | Contract: |       |                    |            |        |
|------|--------|---------------------------|---------|-----------|-------|--------------------|------------|--------|
| Lab  | Code:  | MITKEM                    | 1       | Case No.: | N1400 | Mod. Ref No.:      | SDG No.:   | SN1400 |
| Lab  | Sample | ID:                       | LCS-785 | 36        |       | LCS Lot No.:       |            |        |
| Date | Extrac | cted:                     | 08/13/2 | 014       |       | Date Analyzed (1): | 08/13/2014 |        |

|                         | SPIKE    | SAMPLE        | LCS           |          |   | QC.      |
|-------------------------|----------|---------------|---------------|----------|---|----------|
| COMPOUND                | ADDED    | CONCENTRATION | CONCENTRATION | LCS %REC | # | LIMITS   |
|                         |          |               |               |          |   | REC.     |
| Methyl tert-butyl ether | 50.0000  | 0.0000        | 44.3532       | 89       |   | 75 - 126 |
| Benzene                 | 50.0000  | 0.0000        | 46.8621       | 94       |   | 75 - 125 |
| Toluene                 | 50.0000  | 0.0000        | 51.0942       | 102      |   | 70 - 125 |
| Ethylbenzene            | 50.0000  | 0.0000        | 55.8963       | 112      |   | 75 - 125 |
| m,p-Xylene              | 100.0000 | 0.0000        | 109.8268      | 110      |   | 80 - 125 |
| o-Xylene                | 50.0000  | 0.0000        | 54.3046       | 109      |   | 75 - 125 |
| Xylene (Total)          | 150.0000 | 0.0000        | 164.1314      | 109      |   | 83 - 125 |
| Isopropylbenzene        | 50.0000  | 0.0000        | 55.7064       | 111      |   | 75 - 130 |
| n-Propylbenzene         | 50.0000  | 0.0000        | 57.9359       | 116      |   | 65 - 135 |
| 1,3,5-Trimethylbenzene  | 50.0000  | 0.0000        | 56.8715       | 114      |   | 65 - 135 |
| tert-Butylbenzene       | 50.0000  | 0.0000        | 53.7015       | 107      |   | 65 - 130 |
| 1,2,4-Trimethylbenzene  | 50.0000  | 0.0000        | 56.7589       | 114      |   | 65 - 135 |
| sec-Butylbenzene        | 50.0000  | 0.0000        | 56.6409       | 113      |   | 65 - 130 |
| 4-Isopropyltoluene      | 50.0000  | 0.0000        | 55.5889       | 111      |   | 75 - 135 |
| n-Butylbenzene          | 50.0000  | 0.0000        | 61.1761       | 122      |   | 65 - 140 |
| Naphthalene             | 50.0000  | 0.0000        | 63.5726       | 127      | * | 40 - 125 |

 $\ensuremath{\text{\#}}$  Column to be used to flag recovery and RPD values with an asterisk

| * Values outside | e of QC limits |                  |  |
|------------------|----------------|------------------|--|
| Spike Recovery:  | out of         | 16outside limits |  |
| COMMENTS:        |                |                  |  |

# 3 - FORM III WATER LABORATORY CONTROL SAMPLE RECOVERY

| EPA SAMPLE N | JO. |
|--------------|-----|
|--------------|-----|

LCS-78581

| Lab Name: SP  | ECTRUM ANALYTICAL, INC. | Contract:                |                        |
|---------------|-------------------------|--------------------------|------------------------|
| Lab Code: MI  | TKEM Case No.: N1400    | Mod. Ref No.:            | SDG No.: <u>SN1400</u> |
| Lab Sample ID | LCS-78581               | LCS Lot No.:             |                        |
| Date Extracte | d: 08/17/2014           | Date Analyzed (1): 08/17 | /2014                  |

|                         | SPIKE    | SAMPLE        | LCS           |          |   | QC.      |
|-------------------------|----------|---------------|---------------|----------|---|----------|
| COMPOUND                | ADDED    | CONCENTRATION | CONCENTRATION | LCS %REC | # | LIMITS   |
|                         |          |               |               |          |   | REC.     |
| Methyl tert-butyl ether | 50.0000  | 0.0000        | 50.2147       | 100      |   | 65 - 125 |
| Benzene                 | 50.0000  | 0.0000        | 49.1228       | 98       |   | 80 - 120 |
| Toluene                 | 50.0000  | 0.0000        | 50.1450       | 100      |   | 75 - 120 |
| Ethylbenzene            | 50.0000  | 0.0000        | 49.1688       | 98       |   | 75 - 125 |
| m,p-Xylene              | 100.0000 | 0.0000        | 97.4723       | 97       |   | 75 - 130 |
| o-Xylene                | 50.0000  | 0.0000        | 51.5469       | 103      |   | 80 - 120 |
| Xylene (Total)          | 150.0000 | 0.0000        | 149.0192      | 99       |   | 81 - 121 |
| Isopropylbenzene        | 50.0000  | 0.0000        | 51.4794       | 103      |   | 75 - 125 |
| n-Propylbenzene         | 50.0000  | 0.0000        | 51.4327       | 103      |   | 70 - 130 |
| 1,3,5-Trimethylbenzene  | 50.0000  | 0.0000        | 51.4080       | 103      |   | 75 - 130 |
| tert-Butylbenzene       | 50.0000  | 0.0000        | 48.5829       | 97       |   | 70 - 130 |
| 1,2,4-Trimethylbenzene  | 50.0000  | 0.0000        | 49.0412       | 98       |   | 75 - 130 |
| sec-Butylbenzene        | 50.0000  | 0.0000        | 49.2547       | 99       |   | 70 - 125 |
| 4-Isopropyltoluene      | 50.0000  | 0.0000        | 50.2509       | 101      |   | 75 - 130 |
| n-Butylbenzene          | 50.0000  | 0.0000        | 49.1088       | 98       |   | 70 - 135 |
| Naphthalene             | 50.0000  | 0.0000        | 48.8562       | 98       |   | 55 - 140 |

 $\ensuremath{\text{\#}}$  Column to be used to flag recovery and RPD values with an asterisk

| * Values outs | side of QC limits |                |  |
|---------------|-------------------|----------------|--|
| Spike Recover | ry: out of        | outside limits |  |
| COMMENTS:     |                   |                |  |

# 3 - FORM III WATER LABORATORY CONTROL SAMPLE DUPLICATE RECOVERY

EPA SAMPLE NO.

LCSD-78581

| Lab | Name:  | SPECTE | RUM ANALYTICAL, IN | C.    | Contract:     |          |        |  |
|-----|--------|--------|--------------------|-------|---------------|----------|--------|--|
| Lab | Code:  | MITKEN | Case No.:          | N1400 | Mod. Ref No.: | SDG No.: | SN1400 |  |
| Lab | Sample | ID:    | LCSD-78581         |       | LCS Lot No.:  |          |        |  |

|                         | SPIKE    | LCSD          |           |   |      | _ ~ | LIMITS   |
|-------------------------|----------|---------------|-----------|---|------|-----|----------|
|                         | ADDED    | CONCENTRATION | LCSD %REC | # | %RPD | #   |          |
| COMPOUND                |          |               |           |   |      | RPD | REC.     |
| Methyl tert-butyl ether | 50.0000  | 53.1644       | 106       |   | 6    | 40  | 65 - 125 |
| Benzene                 | 50.0000  | 51.3266       | 103       |   | 5    | 40  | 80 - 120 |
| Toluene                 | 50.0000  | 53.5751       | 107       |   | 7    | 40  | 75 - 120 |
| Ethylbenzene            | 50.0000  | 50.8987       | 102       |   | 4    | 40  | 75 - 125 |
| m,p-Xylene              | 100.0000 | 100.0369      | 100       |   | 3    | 40  | 75 - 130 |
| o-Xylene                | 50.0000  | 52.8274       | 106       |   | 3    | 40  | 80 - 120 |
| Xylene (Total)          | 150.0000 | 152.8644      | 102       |   | 3    | 40  | 81 - 121 |
| Isopropylbenzene        | 50.0000  | 50.7986       | 102       |   | 1    | 40  | 75 - 125 |
| n-Propylbenzene         | 50.0000  | 50.7790       | 102       |   | 1    | 40  | 70 - 130 |
| 1,3,5-Trimethylbenzene  | 50.0000  | 49.6527       | 99        |   | 4    | 40  | 75 - 130 |
| tert-Butylbenzene       | 50.0000  | 49.3318       | 99        |   | 2    | 40  | 70 - 130 |
| 1,2,4-Trimethylbenzene  | 50.0000  | 50.0599       | 100       |   | 2    | 40  | 75 - 130 |
| sec-Butylbenzene        | 50.0000  | 49.4206       | 99        |   | 0    | 40  | 70 - 125 |
| 4-Isopropyltoluene      | 50.0000  | 50.2044       | 100       |   | 1    | 40  | 75 - 130 |
| n-Butylbenzene          | 50.0000  | 48.5951       | 97        |   | 1    | 40  | 70 - 135 |
| Naphthalene             | 50.0000  | 50.3184       | 101       |   | 3    | 40  | 55 - 140 |

# Column to be used to flag recovery and RPD values with an asterisk

| * Values outsid | de of QC limits          |
|-----------------|--------------------------|
| RPD:out         | c of0utside limits       |
| Spike Recovery  | :Oout of16outside limits |
| COMMENTS:       |                          |
| <u> </u>        |                          |

### 4A - FORM IV VOA VOLATILE METHOD BLANK SUMMARY

EPA SAMPLE NO. MB-78536

Lab Name: SPECTRUM ANALYTICAL, INC. Contract: Lab Code: MITKEM Case No.: N1400 SDG No.: SN1400 Mod. Ref No.: Lab File ID: V1N0726.D Lab Sample ID: MB-78536 Instrument ID: V1 Matrix: (SOIL/SED/WATER) SOIL Date Analyzed: 08/13/2014 Time Analyzed: 10:34 Level: (TRACE or LOW/MED) LOW GC Column: DB-624 ID: 0.25 (mm) Heated Purge: (Y/N) Y

|    | EPA        | LAB       | LAB       | TIME     |
|----|------------|-----------|-----------|----------|
|    | SAMPLE NO. | SAMPLE ID | FILE ID   | ANALYZED |
| 01 | LCS-78536  | LCS-78536 | V1N0724.D | 9:27     |
| 02 | SED-6      | N1400-12C | V1N0739.D | 16:45    |
| 03 | SED-7      | N1400-14C | V1N0740.D | 17:13    |

COMMENTS:

## 4A - FORM IV VOA VOLATILE METHOD BLANK SUMMARY

EPA SAMPLE NO.
MB-78581

|    | EPA                 | LAB        | LAB       | TIME     |
|----|---------------------|------------|-----------|----------|
|    | SAMPLE NO.          | SAMPLE ID  | FILE ID   | ANALYZED |
| 01 | LCS-78581           | LCS-78581  | V5P3960.D | 15:45    |
| 02 | LCSD-78581          | LCSD-78581 | V5P3961.D | 16:11    |
| 03 | TRIP BLANK          | N1400-17A  | V5P3964.D | 17:27    |
| 04 | SUR-2               | N1400-01A  | V5P3969.D | 19:34    |
| 05 | PW-2                | N1400-02A  | V5P3970.D | 19:59    |
| 06 | SUR-3               | N1400-03A  | V5P3971.D | 20:25    |
| -  | FIELD<br>DUPLICATE  | N1400-04A  | V5P3972.D | 20:51    |
| 08 | SUR-4               | N1400-05A  | V5P3973.D | 21:16    |
| 09 | PW-3                | N1400-06A  | V5P3974.D | 21:42    |
|    | FIELD<br>DUPLICATE2 | N1400-07A  | V5P3975.D | 22:07    |
| 11 | PW-4                | N1400-08A  | V5P3976.D | 22:33    |
| 12 | SUR 1               | N1400-09A  | V5P3977.D | 22:58    |
| 13 | SUR 5               | N1400-10A  | V5P3978.D | 23:23    |
| 14 | SUR-6               | N1400-11A  | V5P3979.D | 23:49    |
| 15 | SUR-7               | N1400-13A  | V5P3980.D | 0:14     |
| 16 | SUR-8               | N1400-15A  | V5P3981.D | 0:39     |
| 17 | EQUIP.BLANK         | N1400-16A  | V5P3982.D | 1:04     |

COMMENTS:

### 8A - FORM VIII VOA

### VOLATILE INTERNAL STANDARD AREA AND RETENTION TIME SUMMARY

Lab Name: SPECTRUM ANALYTICAL, INC. Contract:

Lab Code: MITKEM Case No.: N1400 Mod. Ref No.: SDG No.: SN1400

GC Column: DB-624 ID: 0.25 (mm) Init. Calib. Date(s): 07/21/2014 07/21/2014

EPA Sample No.(VSTD#####): VSTD0501X Date Analyzed: 08/13/2014

Lab File ID (Standard): V1N0723.D Time Analyzed: 8:44

Instrument ID: V1 Heated Purge: (Y/N) Y

|    |                | IS1 (S1 ) |       | IS2 (S2 ) |       | IS3 (S3 ) |        |
|----|----------------|-----------|-------|-----------|-------|-----------|--------|
|    |                | AREA #    | RT #  | AREA #    | RT #  | AREA #    | RT #   |
|    | 12 HOUR STD    | 575897    | 4.405 | 362701    | 7.241 | 150177    | 9.811  |
|    | UPPER LIMIT    | 1151794   | 4.905 | 725402    | 7.741 | 300354    | 10.311 |
|    | LOWER LIMIT    | 287949    | 3.905 | 181351    | 6.741 | 75089     | 9.311  |
|    | EPA SAMPLE NO. |           |       |           |       |           |        |
| 01 | LCS-78536      | 574046    | 4.394 | 359037    | 7.239 | 140024    | 9.809  |
| 02 | MB-78536       | 522122    | 4.400 | 336540    | 7.236 | 130416    | 9.805  |
| 03 | SED-6          | 475009    | 4.404 | 315061    | 7.250 | 118467    | 9.820  |
| 04 | SED-7          | 433153    | 4.403 | 297194    | 7.249 | 107893    | 9.809  |

IS1 () = Fluorobenzene

IS2 () = Chlorobenzene-d5

IS3 () = 1,4-Dichlorobenzene-d4

AREA UPPER LIMIT = 200% (Low-Medium Volatiles) and 140% (Trace Volatiles) of

internal standard area

AREA LOWER LIMIT = 50% (Low-Medium Volatiles) and 60% (Trace Volatiles) of

internal standard area

RT UPPER LIMIT = +0.50 (Low-Medium Volatiles) and +0.33 (Trace Volatiles)

minutes of internal standard RT

RT LOWER LIMIT = -0.50 (Low-Medium Volatiles) and -0.33 (Trace Volatiles)

minutes of internal standard RT

# Column used to flag values outside contract required QC limits with an asterisk.

### som14.07.15.0901

#### 8A - FORM VIII VOA

### VOLATILE INTERNAL STANDARD AREA AND RETENTION TIME SUMMARY

Lab Name: SPECTRUM ANALYTICAL, INC. Contract:

Lab Code: MITKEM Case No.: N1400 Mod. Ref No.: SDG No.: SN1400

GC Column: DB-624 ID: 0.25 (mm) Init. Calib. Date(s): 08/17/2014 08/17/2014

EPA Sample No.(VSTD#####): VSTD0505R Date Analyzed: 08/17/2014

Lab File ID (Standard): V5P3959.D Time Analyzed: 15:20

Instrument ID: V5 Heated Purge: (Y/N) N

|    |                     | IS1 (S1 ) |       |   | IS2 (S2 ) |   |       |   | IS3 (S3 ) |   |        |   |
|----|---------------------|-----------|-------|---|-----------|---|-------|---|-----------|---|--------|---|
|    |                     | AREA #    | RT    | # | AREA      | # | RT    | # | AREA      | # | RT     | # |
|    | 12 HOUR STD         | 392770    | 5.569 |   | 267211    |   | 9.04  |   | 120640    |   | 12.198 |   |
|    | UPPER LIMIT         | 785540    | 6.069 |   | 534422    |   | 9.54  |   | 241280    |   | 12.698 |   |
|    | LOWER LIMIT         | 196385    | 5.069 |   | 133606    |   | 8.54  |   | 60320     |   | 11.698 |   |
|    | EPA SAMPLE NO.      |           |       |   |           |   |       |   |           |   |        |   |
| 01 | LCS-78581           | 407065    | 5.565 |   | 273350    |   | 9.037 |   | 122733    |   | 12.206 |   |
| 02 | LCSD-78581          | 398163    | 5.577 |   | 275459    |   | 9.036 |   | 126092    |   | 12.206 |   |
| 03 | MB-78581            | 396676    | 5.577 |   | 265905    |   | 9.037 |   | 113250    |   | 12.194 |   |
| 04 | TRIP BLANK          | 406533    | 5.578 |   | 270024    |   | 9.037 |   | 114480    |   | 12.195 |   |
| 05 | SUR-2               | 416012    | 5.568 |   | 276438    |   | 9.040 |   | 117436    |   | 12.197 |   |
| 06 | PW-2                | 418357    | 5.565 |   | 274963    |   | 9.037 |   | 119892    |   | 12.206 |   |
| 07 | SUR-3               | 432095    | 5.568 |   | 282594    |   | 9.040 |   | 117275    |   | 12.197 |   |
| 08 | FIELD<br>DUPLICATE  | 442533    | 5.571 |   | 288369    |   | 9.042 |   | 123305    |   | 12.200 |   |
| 09 | SUR-4               | 426836    | 5.568 |   | 280669    |   | 9.040 |   | 119334    |   | 12.197 |   |
| 10 | PW-3                | 440593    | 5.571 |   | 290416    |   | 9.042 |   | 126447    |   | 12.200 |   |
| 11 | FIELD<br>DUPLICATE2 | 430262    | 5.569 |   | 290648    |   | 9.040 |   | 123780    |   | 12.198 |   |
| 12 | PW-4                | 444301    | 5.571 |   | 275695    |   | 9.042 |   | 125975    |   | 12.200 |   |
| 13 | SUR 1               | 435150    | 5.572 |   | 289984    |   | 9.043 |   | 125496    |   | 12.201 |   |
| 14 | SUR 5               | 440296    | 5.578 |   | 294467    |   | 9.038 |   | 131104    |   | 12.195 |   |

IS1 () = Fluorobenzene

IS2 () = Chlorobenzene-d5

IS3 () = 1,4-Dichlorobenzene-d4

AREA UPPER LIMIT = 200% (Low-Medium Volatiles) and 140% (Trace Volatiles) of

internal standard area

AREA LOWER LIMIT = 50% (Low-Medium Volatiles) and 60% (Trace Volatiles) of

internal standard area

RT UPPER LIMIT = +0.50 (Low-Medium Volatiles) and +0.33 (Trace Volatiles)

minutes of internal standard RT

RT LOWER LIMIT = -0.50 (Low-Medium Volatiles) and -0.33 (Trace Volatiles)

minutes of internal standard RT

# Column used to flag values outside contract required QC limits with an asterisk.

### som14.07.15.0901

### 8A - FORM VIII VOA

### VOLATILE INTERNAL STANDARD AREA AND RETENTION TIME SUMMARY

Lab Name: SPECTRUM ANALYTICAL, INC. Contract:

Lab Code: MITKEM Case No.: N1400 Mod. Ref No.: SDG No.: SN1400

GC Column: DB-624 ID: 0.25 (mm) Init. Calib. Date(s): 08/17/2014 08/17/2014

EPA Sample No.(VSTD#####): VSTD0505R Date Analyzed: 08/17/2014

Lab File ID (Standard): V5P3959.D Time Analyzed: 15:20

Instrument ID: V5 Heated Purge: (Y/N) N

|    |                | IS1 (S1 ) |       | IS2 (S2 ) |       | IS3 (S3 ) |        |
|----|----------------|-----------|-------|-----------|-------|-----------|--------|
|    |                | AREA #    | RT #  | AREA #    | RT #  | AREA #    | RT #   |
|    | 12 HOUR STD    | 392770    | 5.569 | 267211    | 9.04  | 120640    | 12.198 |
|    | UPPER LIMIT    | 785540    | 6.069 | 534422    | 9.54  | 241280    | 12.698 |
|    | LOWER LIMIT    | 196385    | 5.069 | 133606    | 8.54  | 60320     | 11.698 |
|    | EPA SAMPLE NO. |           |       |           |       |           |        |
| 15 | SUR-6          | 433820    | 5.566 | 294605    | 9.037 | 129201    | 12.207 |
| 16 | SUR-7          | 441014    | 5.565 | 301619    | 9.036 | 127794    | 12.205 |
| 17 | SUR-8          | 443953    | 5.576 | 298356    | 9.036 | 129796    | 12.205 |
| 18 | EQUIP.BLANK    | 440164    | 5.568 | 296646    | 9.039 | 128856    | 12.197 |

IS1 () = Fluorobenzene

IS2 () = Chlorobenzene-d5

IS3 () = 1,4-Dichlorobenzene-d4

AREA UPPER LIMIT = 200% (Low-Medium Volatiles) and 140% (Trace Volatiles) of

internal standard area

AREA LOWER LIMIT = 50% (Low-Medium Volatiles) and 60% (Trace Volatiles) of

internal standard area

RT UPPER LIMIT = +0.50 (Low-Medium Volatiles) and +0.33 (Trace Volatiles)

minutes of internal standard RT

RT LOWER LIMIT = -0.50 (Low-Medium Volatiles) and -0.33 (Trace Volatiles)

minutes of internal standard RT

# Column used to flag values outside contract required QC limits with an asterisk.

### som14.07.15.0901



\* Semivolatile Organics \*

### REPORT NARRATIVE

Spectrum Analytical, Inc. Featuring Hanibal Technology, RI Division.

Client: GZA GeoEnvironmental, Inc.

**Project: Steelwinds 1** 

Laboratory Workorder / SDG #: N1400

**SW846 8270D, SVOA by GC-MS** 

### I. SAMPLE RECEIPT

No exceptions or unusual conditions were encountered unless a Sample Condition Notification Form, or other record of communication is included with the Sample Receipt Documentation.

### II. HOLDING TIMES

### A. Sample Preparation:

All samples were prepared within the method-specified holding times.

### B. Sample Analysis:

All samples were analyzed within the method-specified holding times.

### III. METHODS

Samples were analyzed following procedures in laboratory test code: SW846 8270D

### IV. PREPARATION

Aqueous Samples were prepared following procedures in laboratory test

code: SW3510C

Soil Samples were prepared following procedures in laboratory test

code: SW3550B

### V. INSTRUMENTATION

The following instrumentation was used

N1400 Page 43 of 105

Instrument Code: S6

Instrument Type: GCMS-Semi

Description: HP7890A Manufacturer: Agilent Model: 7890A/5973

### VI. ANALYSIS

### A. Calibration:

Calibrations met the method/SOP acceptance criteria.

### B. Blanks:

All method blanks were within the acceptance criteria.

### C. Surrogates:

Surrogate standard percent recoveries were within the QC limits.

### D. Spikes:

### 1. Laboratory Control Spikes (LCS):

Percent recoveries for lab control samples were within the QC limits.

### 2. Matrix Spike / Matrix Spike Duplicate (MS/MSD):

No client-requested MS/MSD analyses were included in this SDG.

### E. Internal Standards:

Internal standard peak areas were within the QC limits.

### F. Dilutions:

No sample in this SDG required analysis at dilution.

### G. Samples:

No other unusual occurrences were noted during sample analysis.

### H. Manual Integration

Where needed, manual integrations were performed to improve data quality. The corrections were reviewed and associated hardcopies

N1400 Page 44 of 105

generated and reported as required. Manual integrations are coded to provide the data reviewer justification for such action. The codes are labeled on the ion chromatogram signal (GC/MS signal) and chromatogram for GC based analysis as follows:

- M1 peak tailing or fronting
- · M2 peak co-elution
- M3 rising or falling baseline
- · M4 retention time shift
- · M5 miscellaneous under this category, the justification is explained
- M6 software did not integrate peak
- · M7 partial peak integration

Manual integrations were performed on the following:

SSTD0256E 2,4-Dinitrotoluene due to M6

I certify that this data package is in compliance with the terms and conditions agreed to by the client and Spectrum, both technically and for completeness, except for the conditions noted above. Release of the data contained in this hardcopy data package has been authorized by the Laboratory Manager or designated person, as verified by the following signature.

| Signed: | The state of the s |  |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Date:   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |

N1400 Page 45 of 105



# SPECTRUM ANALYTICAL, INC. Featuring HANIBAL TECHNOLOGY

## Data Flag/Qualifiers (Page 1 of 2):

- U Not Detected. This compound was analyzed-for but not detected. For most analyses the reporting limit (lowest standard concentration) is the value listed. For Department of Defense programs, this is the Limit of Detection (LOD).
- J This flag indicates an estimated value due to either
  - the compound was detected below the reporting limit, or
  - estimated concentration for Tentatively Identified Compound
- B This flag indicates the compound was also detected in the associated Method Blank. The B flag has an alternative meaning for Inorganics analyses reported using CLP ILM-type metals forms, indicating a "trace" concentration below the reporting limit and equal to or above the detection limit.
- D For Organics analysis, this flag indicates the compound concentration was obtained from a secondary dilution analysis
- E This flag indicates the compound concentration exceeded the Calibration Range. The E flag has an alternative meaning for Inorganics analyses reported using CLP metals forms, indicating an estimated concentration due to the presence of interferences, as determined by the serial dilution analysis.
- P This flag is used for pesticides/PCB/herbicide compound when there is a greater than 40% difference for detected concentration between the two GC columns used for primary and confirmation analyses. This difference typically indicates interference, causing one value to be unusually high. The **lower** of the two values is generally reported on the Form 1, and both values reported on the Form 10.
- A Used to flag semivolatile organic Tentatively Identified Compound library search results for compounds identified as an aldol condensation by-product.



SPECTRUM ANALYTICAL, INC.
Featuring
HANIBAL TECHNOLOGY

## Data Flag/Qualifiers (Page 2 of 2):

- N Used to flag results for volatile and semivolatile Organics analysis Tentatively Identified Compounds where an analyte has passed the identification criteria, and is considered to be positively identified. For Inorganics analysis the N flag indicates the matrix spike recovery falls outside of the control limit.
- \* For Inorganics analysis the \* flag indicates Relative Percent Difference for duplicate analyses is outside of the control limit.
- L NYSDEC qualifier: Result is biased low due to the sample not being collected according to 5035-L/5035A-L low-level specifications.



## **Sample ID Suffixes**

- DL Diluted analysis. The sample was diluted and reanalyzed. The DL may be followed by a digit if more than one diluted reanalysis is provided. The DL suffix is not attached to an analysis initially performed at dilution, only to reanalyses performed at dilution
- RE Reanalysis. Appended to the client sample ID to indicate a reextraction and reanalysis or a reanalysis of the original sample extract.
- RA Reanalysis. Appended to the laboratory sample ID indicates a reanalysis of the original sample extract.
- RX Reextraction. Appended to the laboratory sample ID indicates a reextraction of the sample.
- MS Matrix Spike.
- MSD Matrix Spike Duplicate
- DUP Duplicate analysis
- SD Serial Dilution
- PS Post-digestion or Post-distillation spike. For metals or inorganic analyses

| EPA | SAMPLE | NO. |  |
|-----|--------|-----|--|
| SUR | 2      |     |  |
|     |        |     |  |
|     |        |     |  |

| Lab Name: SPECTRU  | M ANALYTICAL, INC.      | Contract:           |                 |
|--------------------|-------------------------|---------------------|-----------------|
| Lab Code: MITKEM   | Case No.: N1400         | Mod. Ref No.:       | SDG No.: SN1400 |
| Matrix: (SOIL/SED/ | WATER) WATER            | Lab Sample ID:      | N1400-01B       |
| Sample wt/vol:     | 1000 (g/mL) ML          | Lab File ID:        | S6B9186.D       |
| Level: (LOW/MED)   | LOW                     | Extraction: (Typ    | e) SEPF         |
| % Moisture:        | Decanted: (Y/N)         | Date Received:      | 08/08/2014      |
| Concentrated Extra | act Volume: 1000 (      | uL) Date Extracted: | 08/12/2014      |
| Injection Volume:  | 1.0 (uL) GPC Factor: 1. | 00 Date Analyzed:   | 08/26/2014      |
| GPC Cleanup:(Y/N)  | N pH:                   | Dilution Factor:    | 1.0             |

|           |                              | CONCENTRATION UNITS: | 1 |
|-----------|------------------------------|----------------------|---|
| CAS NO.   | COMPOUND                     | (ug/L or ug/Kg) UG/L | Q |
| 111-44-4  | Bis(2-chloroethyl)ether      | 10                   | U |
| 541-73-1  |                              | 10                   | U |
| 106-46-7  | 1,4-Dichlorobenzene          | 10                   | U |
| 95-50-1   | 1,2-Dichlorobenzene          | 10                   | U |
| 108-60-1  | 2,2'-oxybis(1-Chloropropane) | 10                   | U |
| 67-72-1   | Hexachloroethane             | 10                   | U |
| 98-95-3   | Nitrobenzene                 | 10                   | U |
| 78-59-1   | Isophorone                   | 10                   | U |
| 120-82-1  | 1,2,4-Trichlorobenzene       | 10                   | U |
| 91-20-3   | Naphthalene                  | 10                   | U |
| 106-47-8  | 4-Chloroaniline              | 10                   | U |
| 111-91-1  | Bis(2-chloroethoxy)methane   | 10                   | U |
| 87-68-3   | Hexachlorobutadiene          | 10                   | U |
| 91-57-6   | 2-Methylnaphthalene          | 10                   | U |
| 77-47-4   | Hexachlorocyclopentadiene    | 10                   | U |
| 91-58-7   | 2-Chloronaphthalene          | 10                   | U |
| 88-74-4   | 2-Nitroaniline               | 20                   | U |
| 131-11-3  | Dimethylphthalate            | 10                   | U |
| 208-96-8  | Acenaphthylene               | 10                   | U |
| 606-20-2  | 2,6-Dinitrotoluene           | 10                   | U |
| 99-09-2   | 3-Nitroaniline               | 20                   | U |
| 83-32-9   | Acenaphthene                 | 10                   | U |
| 132-64-9  | Dibenzofuran                 | 10                   | U |
| 121-14-2  | 2,4-Dinitrotoluene           | 10                   | U |
| 84-66-2   | Diethylphthalate             | 10                   | U |
| 7005-72-3 | 4-Chlorophenyl-phenylether   | 10                   | U |
| 86-73-7   | Fluorene                     | 10                   | U |
| 100-01-6  | 4-Nitroaniline               | 20                   | U |
| 101-55-3  | 4-Bromophenyl-phenylether    | 10                   | U |
| 118-74-1  | Hexachlorobenzene            | 10                   | U |
| 85-01-8   | Phenanthrene                 | 10                   | U |
| 120-12-7  | Anthracene                   | 10                   | U |
| 86-74-8   | Carbazole                    | 10                   | U |
| 206-44-0  | Fluoranthene                 | 10                   | U |
| 129-00-0  | Pyrene                       | 10                   | U |
| 85-68-7   | Butylbenzylphthalate         | 10                   | U |

som14.07.15.0901

| EPA | SAMPLE | NO. |  |
|-----|--------|-----|--|
| SUR | 2      |     |  |
|     |        |     |  |

| Lab Name: SPECTRU  | JM ANALYTICAL, INC.    | Contract:         |                 |
|--------------------|------------------------|-------------------|-----------------|
| Lab Code: MITKEM   | Case No.: <u>N1400</u> | Mod. Ref No.:     | SDG No.: SN1400 |
| Matrix: (SOIL/SED  | /WATER) WATER          | Lab Sample ID:    | N1400-01B       |
| Sample wt/vol:     | 1000 (g/mL) ML         | Lab File ID:      | S6B9186.D       |
| Level: (LOW/MED)   | LOW                    | Extraction: (Type | e) SEPF         |
| % Moisture:        | Decanted: (Y/N)        | Date Received:    | 08/08/2014      |
| Concentrated Extra | act Volume:1000 (uL)   | Date Extracted:   | 08/12/2014      |
| Injection Volume:  | (uL) GPC Factor: 1.00  | Date Analyzed:    | 08/26/2014      |
| GPC Cleanup:(Y/N)  | рН:                    | Dilution Factor:  | 1.0             |
|                    |                        |                   |                 |

| CAS NO.  | COMPOUND                   | CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L | Q |
|----------|----------------------------|-------------------------------------------|---|
| 91-94-1  | 3,3'-Dichlorobenzidine     | 10                                        | U |
| 56-55-3  | Benzo(a)anthracene         | 10                                        | U |
| 218-01-9 | Chrysene                   | 10                                        | U |
| 117-81-7 | Bis(2-ethylhexyl)phthalate | 10                                        | U |
| 205-99-2 | Benzo(b)fluoranthene       | 10                                        | U |
| 207-08-9 | Benzo(k)fluoranthene       | 10                                        | U |
| 50-32-8  | Benzo(a)pyrene             | 10                                        | U |
| 193-39-5 | Indeno(1,2,3-cd)pyrene     | 10                                        | U |
| 53-70-3  | Dibenzo(a,h)anthracene     | 10                                        | U |
| 191-24-2 | Benzo(g,h,i)perylene       | 10                                        | U |

| EPA | SAMPLE | NO. |  |
|-----|--------|-----|--|
| SUR | 3      |     |  |
|     |        |     |  |
|     |        |     |  |

| Lab Name: SPECTRUM ANALYTICAL, INC.         | Contract:                     |
|---------------------------------------------|-------------------------------|
| Lab Code: MITKEM Case No.: N1400            | Mod. Ref No.: SDG No.: SN1400 |
| Matrix: (SOIL/SED/WATER) WATER              | Lab Sample ID: N1400-03B      |
| Sample wt/vol:1000 (g/mL) ML                | Lab File ID: S6B9187.D        |
| Level: (LOW/MED) LOW                        | Extraction: (Type) SEPF       |
| % Moisture: Decanted: (Y/N)                 | Date Received: 08/08/2014     |
| Concentrated Extract Volume:1000 (uL)       | Date Extracted: 08/12/2014    |
| Injection Volume: 1.0 (uL) GPC Factor: 1.00 | Date Analyzed: 08/26/2014     |
| GPC Cleanup:(Y/N) N pH:                     | Dilution Factor: 1.0          |

|           |                              | CONCENTRATION UNITS: |   |
|-----------|------------------------------|----------------------|---|
| CAS NO.   | COMPOUND                     | (ug/L or ug/Kg) UG/L | Q |
| 111-44-4  | Bis(2-chloroethyl)ether      | 10                   | U |
| 541-73-1  | 1,3-Dichlorobenzene          | 10                   | U |
| 106-46-7  | 1,4-Dichlorobenzene          | 10                   | U |
| 95-50-1   | 1,2-Dichlorobenzene          | 10                   | U |
| 108-60-1  | 2,2'-oxybis(1-Chloropropane) | 10                   | U |
| 67-72-1   | Hexachloroethane             | 10                   | U |
| 98-95-3   | Nitrobenzene                 | 10                   | U |
| 78-59-1   | Isophorone                   | 10                   | U |
| 120-82-1  | 1,2,4-Trichlorobenzene       | 10                   | U |
| 91-20-3   | Naphthalene                  | 10                   | U |
| 106-47-8  | 4-Chloroaniline              | 10                   | U |
| 111-91-1  | Bis(2-chloroethoxy)methane   | 10                   | U |
| 87-68-3   | Hexachlorobutadiene          | 10                   | U |
| 91-57-6   | 2-Methylnaphthalene          | 10                   | U |
| 77-47-4   | Hexachlorocyclopentadiene    | 10                   | U |
| 91-58-7   | 2-Chloronaphthalene          | 10                   | U |
| 88-74-4   | 2-Nitroaniline               | 20                   | U |
| 131-11-3  | Dimethylphthalate            | 10                   | U |
| 208-96-8  | Acenaphthylene               | 10                   | U |
| 606-20-2  | 2,6-Dinitrotoluene           | 10                   | U |
| 99-09-2   | 3-Nitroaniline               | 20                   | U |
| 83-32-9   | Acenaphthene                 | 10                   | U |
| 132-64-9  | Dibenzofuran                 | 10                   | U |
| 121-14-2  | 2,4-Dinitrotoluene           | 10                   | U |
| 84-66-2   | Diethylphthalate             | 10                   | U |
| 7005-72-3 | 4-Chlorophenyl-phenylether   | 10                   | U |
| 86-73-7   | Fluorene                     | 10                   | U |
| 100-01-6  | 4-Nitroaniline               | 20                   | U |
| 101-55-3  | 4-Bromophenyl-phenylether    | 10                   | U |
| 118-74-1  | Hexachlorobenzene            | 10                   | U |
| 85-01-8   | Phenanthrene                 | 10                   | U |
| 120-12-7  | Anthracene                   | 10                   | U |
| 86-74-8   | Carbazole                    | 10                   | U |
| 206-44-0  | Fluoranthene                 | 10                   | U |
| 129-00-0  | Pyrene                       | 10                   | U |
| 85-68-7   | Butylbenzylphthalate         | 10                   | U |

som14.07.15.0901

| EPA | SAMPLE | NO. |  |
|-----|--------|-----|--|
| SUR | -3     |     |  |
|     |        |     |  |
|     |        |     |  |

| Lab Name: SPECTRUM  | ANALYTICAL, INC.          | Contract:         |                 |
|---------------------|---------------------------|-------------------|-----------------|
| Lab Code: MITKEM    | Case No.: N1400           | Mod. Ref No.:     | SDG No.: SN1400 |
| Matrix: (SOIL/SED/W | JATER) WATER              | Lab Sample ID:    | N1400-03B       |
| Sample wt/vol:      | 1000 (g/mL) <u>ML</u>     | Lab File ID:      | S6B9187.D       |
| Level: (LOW/MED) L  | MOM                       | Extraction: (Type | e) SEPF         |
| % Moisture:         | Decanted: (Y/N)           | Date Received:    | 08/08/2014      |
| Concentrated Extrac | et Volume:1000 (uL)       | Date Extracted:   | 08/12/2014      |
| Injection Volume: _ | 1.0 (uL) GPC Factor: 1.00 | Date Analyzed:    | 08/26/2014      |
| GPC Cleanup:(Y/N)   | рН:                       | Dilution Factor:  | 1.0             |

| CAS NO.  | COMPOUND                   | CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L | 0 |
|----------|----------------------------|-------------------------------------------|---|
| CAS NO.  | COMPOUND                   | (ug/L 01 ug/kg) 0G/L                      | Q |
| 91-94-1  | 3,3´-Dichlorobenzidine     | 10                                        | U |
| 56-55-3  | Benzo(a)anthracene         | 10                                        | U |
| 218-01-9 | Chrysene                   | 10                                        | U |
| 117-81-7 | Bis(2-ethylhexyl)phthalate | 10                                        | U |
| 205-99-2 | Benzo(b)fluoranthene       | 10                                        | U |
| 207-08-9 | Benzo(k)fluoranthene       | 10                                        | U |
| 50-32-8  | Benzo(a)pyrene             | 10                                        | U |
| 193-39-5 | Indeno(1,2,3-cd)pyrene     | 10                                        | U |
| 53-70-3  | Dibenzo(a,h)anthracene     | 10                                        | U |
| 191-24-2 | Benzo(g,h,i)perylene       | 10                                        | U |

EPA SAMPLE NO.

FIELD DUPLICATE

| Lab Name: SPECTRUM  | M ANALYTICAL, INC.        | Contract:         |                 |
|---------------------|---------------------------|-------------------|-----------------|
| Lab Code: MITKEM    | Case No.: N1400           | Mod. Ref No.:     | SDG No.: SN1400 |
| Matrix: (SOIL/SED/V | WATER) WATER              | Lab Sample ID:    | N1400-04B       |
| Sample wt/vol:      | 1000 (g/mL) <u>ML</u>     | Lab File ID:      | S6B9188.D       |
| Level: (LOW/MED)    | LOW                       | Extraction: (Type | e) SEPF         |
| % Moisture:         | Decanted: (Y/N)           | Date Received:    | 08/08/2014      |
| Concentrated Extra  | ct Volume:1000 (uL)       | Date Extracted:   | 08/12/2014      |
| Injection Volume:   | 1.0 (uL) GPC Factor: 1.00 | Date Analyzed:    | 08/26/2014      |
| GPC Cleanup:(Y/N)   | N                         | Dilution Factor:  | 1.0             |

| CAS NO.   | COMPOUND                     | CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L | Q      |
|-----------|------------------------------|-------------------------------------------|--------|
| 111-44-4  | Bis(2-chloroethyl)ether      | 10                                        | -<br>U |
| 541-73-1  | 1,3-Dichlorobenzene          | 10                                        | U      |
| 106-46-7  | 1,4-Dichlorobenzene          | 10                                        | U      |
| 95-50-1   | 1,2-Dichlorobenzene          | 10                                        | U      |
| 108-60-1  | 2,2'-oxybis(1-Chloropropane) | 10                                        | U      |
| 67-72-1   | Hexachloroethane             | 10                                        | U      |
| 98-95-3   | Nitrobenzene                 | 10                                        | U      |
| 78-59-1   | Isophorone                   | 10                                        | U      |
| 120-82-1  | 1,2,4-Trichlorobenzene       | 10                                        | U      |
| 91-20-3   | Naphthalene                  | 10                                        | U      |
| 106-47-8  | 4-Chloroaniline              | 10                                        | U      |
| 111-91-1  | Bis(2-chloroethoxy)methane   | 10                                        | U      |
| 87-68-3   | Hexachlorobutadiene          | 10                                        | U      |
| 91-57-6   | 2-Methylnaphthalene          | 10                                        | U      |
| 77-47-4   | Hexachlorocyclopentadiene    | 10                                        | U      |
| 91-58-7   | 2-Chloronaphthalene          | 10                                        | U      |
| 88-74-4   | 2-Nitroaniline               | 20                                        | U      |
| 131-11-3  | Dimethylphthalate            | 10                                        | U      |
| 208-96-8  | Acenaphthylene               | 10                                        | U      |
| 606-20-2  | 2,6-Dinitrotoluene           | 10                                        | U      |
| 99-09-2   | 3-Nitroaniline               | 20                                        | U      |
| 83-32-9   | Acenaphthene                 | 10                                        | U      |
| 132-64-9  | Dibenzofuran                 | 10                                        | U      |
| 121-14-2  | 2,4-Dinitrotoluene           | 10                                        | U      |
| 84-66-2   | Diethylphthalate             | 10                                        | U      |
| 7005-72-3 | 4-Chlorophenyl-phenylether   | 10                                        | U      |
| 86-73-7   | Fluorene                     | 10                                        | U      |
| 100-01-6  | 4-Nitroaniline               | 20                                        | U      |
| 101-55-3  | 4-Bromophenyl-phenylether    | 10                                        | U      |
| 118-74-1  | Hexachlorobenzene            | 10                                        | U      |
| 85-01-8   | Phenanthrene                 | 10                                        | U      |
| 120-12-7  | Anthracene                   | 10                                        | U      |
| 86-74-8   | Carbazole                    | 10                                        | U      |
| 206-44-0  | Fluoranthene                 | 10                                        | U      |
| 129-00-0  | Pyrene                       | 10                                        | U      |
| 85-68-7   | Butylbenzylphthalate         | 10                                        | U      |

EPA SAMPLE NO.
FIELD DUPLICATE

|          |                            | CONCENTRATION UNITS: |   |
|----------|----------------------------|----------------------|---|
| CAS NO.  | COMPOUND                   | (ug/L or ug/Kg) UG/L | Q |
| 91-94-1  | 3,3´-Dichlorobenzidine     | 10                   | U |
| 56-55-3  | Benzo(a)anthracene         | 10                   | U |
| 218-01-9 | Chrysene                   | 10                   | U |
| 117-81-7 | Bis(2-ethylhexyl)phthalate | 10                   | U |
| 205-99-2 | Benzo(b)fluoranthene       | 10                   | U |
| 207-08-9 | Benzo(k)fluoranthene       | 10                   | U |
| 50-32-8  | Benzo(a)pyrene             | 10                   | U |
| 193-39-5 | Indeno(1,2,3-cd)pyrene     | 10                   | U |
| 53-70-3  | Dibenzo(a,h)anthracene     | 10                   | U |
| 191-24-2 | Benzo(g,h,i)perylene       | 10                   | U |

GPC Cleanup:(Y/N) N pH: Dilution Factor: 1.0

| EPA | SAMPLE | NO. |  |
|-----|--------|-----|--|
| SUR | -4     |     |  |
|     |        |     |  |
|     |        |     |  |

| Lab Name: SPECTRU  | JM ANALYTICAL, INC.      | Contract:         |                 |
|--------------------|--------------------------|-------------------|-----------------|
| Lab Code: MITKEM   | Case No.: <u>N1400</u>   | Mod. Ref No.:     | SDG No.: SN1400 |
| Matrix: (SOIL/SED/ | /WATER) WATER            | Lab Sample ID:    | N1400-05B       |
| Sample wt/vol:     | 1000 (g/mL) ML           | Lab File ID:      | S6B9189.D       |
| Level: (LOW/MED)   | LOW                      | Extraction: (Type | SEPF            |
| % Moisture:        | Decanted: (Y/N)          | Date Received:    | 08/08/2014      |
| Concentrated Extra | act Volume:1000 (uL)     | Date Extracted:   | 08/12/2014      |
| Injection Volume:  | 1.0 (uL) GPC Factor:1.00 | Date Analyzed:    | 08/26/2014      |
| GPC Cleanup:(Y/N)  | N pH:                    | Dilution Factor:  | 1.0             |

|           |                              | CONCENTRATION UNITS: |   |
|-----------|------------------------------|----------------------|---|
| CAS NO.   | COMPOUND                     | (ug/L or ug/Kg) UG/L | Q |
| 111-44-4  | Bis(2-chloroethyl)ether      | 10                   | U |
| 541-73-1  |                              | 10                   | U |
| 106-46-7  | 1,4-Dichlorobenzene          | 10                   | U |
| 95-50-1   | 1,2-Dichlorobenzene          | 10                   | U |
| 108-60-1  | 2,2'-oxybis(1-Chloropropane) | 10                   | U |
| 67-72-1   | Hexachloroethane             | 10                   | Ū |
| 98-95-3   | Nitrobenzene                 | 10                   | U |
| 78-59-1   | Isophorone                   | 10                   | Ū |
| 120-82-1  | 1,2,4-Trichlorobenzene       | 10                   | Ū |
| 91-20-3   | Naphthalene                  | 10                   | Ū |
| 106-47-8  | 4-Chloroaniline              | 10                   | Ū |
| 111-91-1  | Bis(2-chloroethoxy)methane   | 10                   | Ū |
| 87-68-3   | Hexachlorobutadiene          | 10                   | U |
| 91-57-6   | 2-Methylnaphthalene          | 10                   | Ū |
| 77-47-4   | Hexachlorocyclopentadiene    | 10                   | U |
| 91-58-7   | 2-Chloronaphthalene          | 10                   | U |
| 88-74-4   | 2-Nitroaniline               | 20                   | U |
| 131-11-3  | Dimethylphthalate            | 10                   | U |
| 208-96-8  | Acenaphthylene               | 10                   | U |
| 606-20-2  | 2,6-Dinitrotoluene           | 10                   | U |
| 99-09-2   | 3-Nitroaniline               | 20                   | U |
| 83-32-9   | Acenaphthene                 | 10                   | U |
| 132-64-9  | Dibenzofuran                 | 10                   | U |
| 121-14-2  | 2,4-Dinitrotoluene           | 10                   | U |
| 84-66-2   | Diethylphthalate             | 10                   | U |
| 7005-72-3 | 4-Chlorophenyl-phenylether   | 10                   | U |
| 86-73-7   | Fluorene                     | 10                   | U |
| 100-01-6  | 4-Nitroaniline               | 20                   | U |
| 101-55-3  | 4-Bromophenyl-phenylether    | 10                   | U |
| 118-74-1  | Hexachlorobenzene            | 10                   | U |
| 85-01-8   | Phenanthrene                 | 10                   | U |
| 120-12-7  | Anthracene                   | 10                   | U |
| 86-74-8   | Carbazole                    | 10                   | U |
| 206-44-0  | Fluoranthene                 | 10                   | U |
| 129-00-0  | Pyrene                       | 10                   | U |
| 85-68-7   | Butylbenzylphthalate         | 10                   | U |

som14.07.15.0901

| EPA | SAMPLE | NO. |  |
|-----|--------|-----|--|
| SUR | -4     |     |  |
|     |        |     |  |
|     |        |     |  |

| Lab Name: SPECTRUM ANALYTICAL, INC.        | Contract:        |                 |
|--------------------------------------------|------------------|-----------------|
| Lab Code: MITKEM Case No.: N1400           | Mod. Ref No.:    | SDG No.: SN1400 |
| Matrix: (SOIL/SED/WATER) WATER             | Lab Sample ID:   | N1400-05B       |
| Sample wt/vol: 1000 (g/mL) ML              | Lab File ID:     | S6B9189.D       |
| Level: (LOW/MED) LOW                       | Extraction: (Typ | e) SEPF         |
| % Moisture: Decanted: (Y/N)                | Date Received:   | 08/08/2014      |
| Concentrated Extract Volume: 1000 (ul      | Date Extracted:  | 08/12/2014      |
| Injection Volume: 1.0 (uL) GPC Factor: 1.0 | Date Analyzed:   | 08/26/2014      |
| GPC Cleanup:(Y/N) N pH:                    | Dilution Factor: | 1.0             |

| CAS NO.  | COMPOUND                   | CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L | 0 |
|----------|----------------------------|-------------------------------------------|---|
| CAS NO.  | COMPOUND                   | (ug/L 01 ug/kg) 0G/L                      | Q |
| 91-94-1  | 3,3´-Dichlorobenzidine     | 10                                        | U |
| 56-55-3  | Benzo(a)anthracene         | 10                                        | U |
| 218-01-9 | Chrysene                   | 10                                        | U |
| 117-81-7 | Bis(2-ethylhexyl)phthalate | 10                                        | U |
| 205-99-2 | Benzo(b)fluoranthene       | 10                                        | U |
| 207-08-9 | Benzo(k)fluoranthene       | 10                                        | U |
| 50-32-8  | Benzo(a)pyrene             | 10                                        | U |
| 193-39-5 | Indeno(1,2,3-cd)pyrene     | 10                                        | U |
| 53-70-3  | Dibenzo(a,h)anthracene     | 10                                        | U |
| 191-24-2 | Benzo(g,h,i)perylene       | 10                                        | U |

| EPA | SAMPLE | NO. |  |
|-----|--------|-----|--|
| SUR | 1      |     |  |
|     |        |     |  |
|     |        |     |  |

| Lab Name: SPECTRUM ANALYTICAL, INC.       | Contract:                     |
|-------------------------------------------|-------------------------------|
| Lab Code: MITKEM Case No.: N1400          | Mod. Ref No.: SDG No.: SN1400 |
| Matrix: (SOIL/SED/WATER) WATER            | Lab Sample ID: N1400-09B      |
| Sample wt/vol:1000 (g/mL) ML              | Lab File ID: S6B9190.D        |
| Level: (LOW/MED) LOW                      | Extraction: (Type) SEPF       |
| % Moisture: Decanted: (Y/N)               | Date Received: 08/08/2014     |
| Concentrated Extract Volume:1000 (uL)     | Date Extracted: 08/12/2014    |
| Injection Volume:1.0 (uL) GPC Factor:1.00 | Date Analyzed: 08/26/2014     |
| GPC Cleanup:(Y/N) N pH:                   | Dilution Factor: 1.0          |

|           |                              | CONCENTRATION UNITS: |   |
|-----------|------------------------------|----------------------|---|
| CAS NO.   | COMPOUND                     | (ug/L or ug/Kg) UG/L | Q |
| 111-44-4  | Bis(2-chloroethyl)ether      | 10                   | U |
| 541-73-1  |                              | 10                   | U |
| 106-46-7  | 1,4-Dichlorobenzene          | 10                   | U |
| 95-50-1   | 1,2-Dichlorobenzene          | 10                   | U |
| 108-60-1  | 2,2'-oxybis(1-Chloropropane) | 10                   | U |
| 67-72-1   | Hexachloroethane             | 10                   | U |
| 98-95-3   | Nitrobenzene                 | 10                   | U |
| 78-59-1   | Isophorone                   | 10                   | U |
| 120-82-1  | 1,2,4-Trichlorobenzene       | 10                   | U |
| 91-20-3   | Naphthalene                  | 10                   | U |
| 106-47-8  | 4-Chloroaniline              | 10                   | U |
| 111-91-1  | Bis(2-chloroethoxy)methane   | 10                   | U |
| 87-68-3   | Hexachlorobutadiene          | 10                   | U |
| 91-57-6   | 2-Methylnaphthalene          | 10                   | Ū |
| 77-47-4   | Hexachlorocyclopentadiene    | 10                   | Ū |
| 91-58-7   | 2-Chloronaphthalene          | 10                   | U |
| 88-74-4   | 2-Nitroaniline               | 20                   | Ū |
| 131-11-3  | Dimethylphthalate            | 10                   | U |
| 208-96-8  | Acenaphthylene               | 10                   | Ū |
| 606-20-2  | 2,6-Dinitrotoluene           | 10                   | U |
| 99-09-2   | 3-Nitroaniline               | 20                   | U |
| 83-32-9   | Acenaphthene                 | 10                   | U |
| 132-64-9  | Dibenzofuran                 | 10                   | U |
| 121-14-2  | 2,4-Dinitrotoluene           | 10                   | U |
| 84-66-2   | Diethylphthalate             | 10                   | U |
| 7005-72-3 | 4-Chlorophenyl-phenylether   | 10                   | U |
| 86-73-7   | Fluorene                     | 10                   | U |
| 100-01-6  | 4-Nitroaniline               | 20                   | U |
| 101-55-3  | 4-Bromophenyl-phenylether    | 10                   | U |
| 118-74-1  | Hexachlorobenzene            | 10                   | Ū |
| 85-01-8   | Phenanthrene                 | 10                   | U |
| 120-12-7  | Anthracene                   | 10                   | U |
| 86-74-8   | Carbazole                    | 10                   | U |
| 206-44-0  | Fluoranthene                 | 10                   | U |
| 129-00-0  | Pyrene                       | 10                   | U |
| 85-68-7   | Butylbenzylphthalate         | 10                   | Ū |

som14.07.15.0901

| EPA | SAMPLE | NO. |
|-----|--------|-----|
| SUR | . 1    |     |
|     |        |     |

| Lab Name: SPECTRUM ANALYTICAL, INC.         | Contract:                           |
|---------------------------------------------|-------------------------------------|
| Lab Code: MITKEM Case No.: N1400            | Mod. Ref No.: SDG No.: SN1400       |
| Matrix: (SOIL/SED/WATER) WATER              | Lab Sample ID: N1400-09B            |
| Sample wt/vol: (g/mL) ML                    | Lab File ID: S6B9190.D              |
| Level: (LOW/MED) LOW                        | Extraction: (Type) SEPF             |
| % Moisture: Decanted: (Y/N)                 | Date Received: 08/08/2014           |
| Concentrated Extract Volume: 1000 (uL       | ) Date Extracted: <u>08/12/2014</u> |
| Injection Volume: 1.0 (uL) GPC Factor: 1.00 | Date Analyzed: 08/26/2014           |
| GPC Cleanup:(Y/N) N pH:                     | Dilution Factor: 1.0                |

|          |                            | CONCENTRATION UNITS: |   |
|----------|----------------------------|----------------------|---|
| CAS NO.  | COMPOUND                   | (ug/L or ug/Kg) UG/L | Q |
| 91-94-1  | 3,3´-Dichlorobenzidine     | 10                   | U |
| 56-55-3  | Benzo(a)anthracene         | 10                   | U |
| 218-01-9 | Chrysene                   | 10                   | U |
| 117-81-7 | Bis(2-ethylhexyl)phthalate | 10                   | U |
| 205-99-2 | Benzo(b)fluoranthene       | 10                   | U |
| 207-08-9 | Benzo(k)fluoranthene       | 10                   | U |
| 50-32-8  | Benzo(a)pyrene             | 10                   | U |
| 193-39-5 | Indeno(1,2,3-cd)pyrene     | 10                   | U |
| 53-70-3  | Dibenzo(a,h)anthracene     | 10                   | U |
| 191-24-2 | Benzo(g,h,i)perylene       | 10                   | U |

| EPA | SAMPLE | NO. |  |
|-----|--------|-----|--|
| SUR | 5      |     |  |
|     |        |     |  |
|     |        |     |  |

| Lab Name: SPECTRUM ANALYTICAL, INC.       | Contract:                     |
|-------------------------------------------|-------------------------------|
| Lab Code: MITKEM Case No.: N1400          | Mod. Ref No.: SDG No.: SN1400 |
| Matrix: (SOIL/SED/WATER) WATER            | Lab Sample ID: N1400-10B      |
| Sample wt/vol:1000 (g/mL) ML              | Lab File ID: S6B9191.D        |
| Level: (LOW/MED) LOW                      | Extraction: (Type) SEPF       |
| % Moisture: Decanted: (Y/N)               | Date Received: 08/08/2014     |
| Concentrated Extract Volume: 1000 (uL)    | Date Extracted: 08/12/2014    |
| Injection Volume:1.0 (uL) GPC Factor:1.00 | Date Analyzed: 08/26/2014     |
| GPC Cleanup:(Y/N) N pH:                   | Dilution Factor: 1.0          |

|           |                              | CONCENTRATION UNITS: |   |
|-----------|------------------------------|----------------------|---|
| CAS NO.   | COMPOUND                     | (ug/L or ug/Kg) UG/L | Q |
| 111-44-4  | Bis(2-chloroethyl)ether      | 10                   | U |
| 541-73-1  |                              | 10                   | U |
| 106-46-7  | 1,4-Dichlorobenzene          | 10                   | U |
| 95-50-1   | 1,2-Dichlorobenzene          | 10                   | U |
| 108-60-1  | 2,2'-oxybis(1-Chloropropane) | 10                   | U |
| 67-72-1   | Hexachloroethane             | 10                   | Ū |
| 98-95-3   | Nitrobenzene                 | 10                   | U |
| 78-59-1   | Isophorone                   | 10                   | Ū |
| 120-82-1  | 1,2,4-Trichlorobenzene       | 10                   | Ū |
| 91-20-3   | Naphthalene                  | 10                   | Ū |
| 106-47-8  | 4-Chloroaniline              | 10                   | Ū |
| 111-91-1  | Bis(2-chloroethoxy)methane   | 10                   | Ū |
| 87-68-3   | Hexachlorobutadiene          | 10                   | U |
| 91-57-6   | 2-Methylnaphthalene          | 10                   | Ū |
| 77-47-4   | Hexachlorocyclopentadiene    | 10                   | U |
| 91-58-7   | 2-Chloronaphthalene          | 10                   | U |
| 88-74-4   | 2-Nitroaniline               | 20                   | U |
| 131-11-3  | Dimethylphthalate            | 10                   | U |
| 208-96-8  | Acenaphthylene               | 10                   | U |
| 606-20-2  | 2,6-Dinitrotoluene           | 10                   | U |
| 99-09-2   | 3-Nitroaniline               | 20                   | U |
| 83-32-9   | Acenaphthene                 | 10                   | U |
| 132-64-9  | Dibenzofuran                 | 10                   | U |
| 121-14-2  | 2,4-Dinitrotoluene           | 10                   | U |
| 84-66-2   | Diethylphthalate             | 10                   | U |
| 7005-72-3 | 4-Chlorophenyl-phenylether   | 10                   | U |
| 86-73-7   | Fluorene                     | 10                   | U |
| 100-01-6  | 4-Nitroaniline               | 20                   | U |
| 101-55-3  | 4-Bromophenyl-phenylether    | 10                   | U |
| 118-74-1  | Hexachlorobenzene            | 10                   | U |
| 85-01-8   | Phenanthrene                 | 10                   | U |
| 120-12-7  | Anthracene                   | 10                   | U |
| 86-74-8   | Carbazole                    | 10                   | U |
| 206-44-0  | Fluoranthene                 | 10                   | U |
| 129-00-0  | Pyrene                       | 10                   | U |
| 85-68-7   | Butylbenzylphthalate         | 10                   | U |

som14.07.15.0901

| EPA | SAMPLE | NO. |
|-----|--------|-----|
| SUR | 5      |     |
|     |        |     |
|     |        |     |

| Lab Name: SPECTRUI | M ANALYTICAL, INC.        | Contract:         |                 |
|--------------------|---------------------------|-------------------|-----------------|
| Lab Code: MITKEM   | Case No.: N1400           | Mod. Ref No.:     | SDG No.: SN1400 |
| Matrix: (SOIL/SED/ | WATER) WATER              | Lab Sample ID:    | N1400-10B       |
| Sample wt/vol:     | 1000 (g/mL) ML            | Lab File ID:      | S6B9191.D       |
| Level: (LOW/MED)   | LOW                       | Extraction: (Type | e) SEPF         |
| % Moisture:        | Decanted: (Y/N)           | Date Received:    | 08/08/2014      |
| Concentrated Extra | ct Volume:1000 (uL)       | Date Extracted:   | 08/12/2014      |
| Injection Volume:  | 1.0 (uL) GPC Factor: 1.00 | Date Analyzed:    | 08/26/2014      |
| GPC Cleanup:(Y/N)  | N pH:                     | Dilution Factor:  | 1.0             |

| CAS NO.  | COMPOUND                   | CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L | Q |
|----------|----------------------------|-------------------------------------------|---|
| 91-94-1  | 3,3'-Dichlorobenzidine     | 10                                        | U |
| 56-55-3  | Benzo(a)anthracene         | 10                                        | U |
| 218-01-9 | Chrysene                   | 10                                        | U |
| 117-81-7 | Bis(2-ethylhexyl)phthalate | 10                                        | U |
| 205-99-2 | Benzo(b)fluoranthene       | 10                                        | U |
| 207-08-9 | Benzo(k)fluoranthene       | 10                                        | U |
| 50-32-8  | Benzo(a)pyrene             | 10                                        | U |
| 193-39-5 | Indeno(1,2,3-cd)pyrene     | 10                                        | U |
| 53-70-3  | Dibenzo(a,h)anthracene     | 10                                        | U |
| 191-24-2 | Benzo(g,h,i)perylene       | 10                                        | U |

| EPA | SAMPLE | NO. |  |
|-----|--------|-----|--|
| SUR | -6     |     |  |
|     |        |     |  |
|     |        |     |  |

| Lab Name: SPECTRUM ANALYTICAL, INC.         | Contract:                     |
|---------------------------------------------|-------------------------------|
| Lab Code: MITKEM Case No.: N1400            | Mod. Ref No.: SDG No.: SN1400 |
| Matrix: (SOIL/SED/WATER) WATER              | Lab Sample ID: N1400-11B      |
| Sample wt/vol:1000 (g/mL) ML                | Lab File ID: S6B9192.D        |
| Level: (LOW/MED) LOW                        | Extraction: (Type) SEPF       |
| % Moisture: Decanted: (Y/N)                 | Date Received: 08/08/2014     |
| Concentrated Extract Volume: 1000 (uL)      | Date Extracted: 08/12/2014    |
| Injection Volume: 1.0 (uL) GPC Factor: 1.00 | Date Analyzed: 08/26/2014     |
| GPC Cleanup:(Y/N) N pH:                     | Dilution Factor: 1.0          |

|           |                                 | CONCENTRATION UNITS: |   |  |  |
|-----------|---------------------------------|----------------------|---|--|--|
| CAS NO.   | COMPOUND                        | (ug/L or ug/Kg) UG/L | Q |  |  |
| 111-44-4  | Bis(2-chloroethyl)ether         | 10                   | U |  |  |
| 541-73-1  |                                 | 10                   | U |  |  |
| 106-46-7  | 1,4-Dichlorobenzene             | 10                   | U |  |  |
| 95-50-1   | 1,2-Dichlorobenzene             | 10                   | U |  |  |
| 108-60-1  | 2,2'-oxybis(1-Chloropropane) 10 |                      |   |  |  |
| 67-72-1   | Hexachloroethane                | 10                   | U |  |  |
| 98-95-3   | Nitrobenzene                    | 10                   | U |  |  |
| 78-59-1   | Isophorone                      | 10                   | U |  |  |
| 120-82-1  | 1,2,4-Trichlorobenzene          | 10                   | U |  |  |
| 91-20-3   | Naphthalene                     | 10                   | U |  |  |
| 106-47-8  | 4-Chloroaniline                 | 10                   | U |  |  |
| 111-91-1  | Bis(2-chloroethoxy)methane      | 10                   | U |  |  |
| 87-68-3   | Hexachlorobutadiene             | 10                   | U |  |  |
| 91-57-6   | 2-Methylnaphthalene             | 10                   | Ū |  |  |
| 77-47-4   | Hexachlorocyclopentadiene       | 10                   | Ū |  |  |
| 91-58-7   | 2-Chloronaphthalene             | 10                   | U |  |  |
| 88-74-4   | 2-Nitroaniline 20               |                      |   |  |  |
| 131-11-3  | Dimethylphthalate 10            |                      |   |  |  |
| 208-96-8  | Acenaphthylene                  | 10                   | Ū |  |  |
| 606-20-2  | 2,6-Dinitrotoluene              | 10                   | U |  |  |
| 99-09-2   | 3-Nitroaniline                  | 20                   | U |  |  |
| 83-32-9   | Acenaphthene                    | 10                   | U |  |  |
| 132-64-9  | Dibenzofuran                    | 10                   | U |  |  |
| 121-14-2  | 2,4-Dinitrotoluene              | 10                   | U |  |  |
| 84-66-2   | Diethylphthalate                | 10                   | U |  |  |
| 7005-72-3 | 4-Chlorophenyl-phenylether      | 10                   | U |  |  |
| 86-73-7   | Fluorene                        | 10                   | U |  |  |
| 100-01-6  | 4-Nitroaniline                  | 20                   | U |  |  |
| 101-55-3  | 4-Bromophenyl-phenylether       | 10                   | U |  |  |
| 118-74-1  | Hexachlorobenzene               | 10                   | Ū |  |  |
| 85-01-8   | Phenanthrene                    | 10                   | U |  |  |
| 120-12-7  | Anthracene                      | 10                   | U |  |  |
| 86-74-8   | Carbazole                       | 10                   | U |  |  |
| 206-44-0  | Fluoranthene                    | 10                   | U |  |  |
| 129-00-0  | Pyrene                          | 10                   | U |  |  |
| 85-68-7   | Butylbenzylphthalate            | 10                   | Ū |  |  |

som14.07.15.0901

| EPA | SAMPLE | NO. |  |
|-----|--------|-----|--|
| SUR | -6     |     |  |
|     |        |     |  |
|     |        |     |  |

| Lab Name: SPE  | CTRUM ANALY      | TICAL, IN  | C.          | Contract:         |                 |
|----------------|------------------|------------|-------------|-------------------|-----------------|
| Lab Code: MIT  | KEM C            | ase No.:   | N1400       | Mod. Ref No.:     | SDG No.: SN1400 |
| Matrix: (SOIL/ | SED/WATER)       | WATER      |             | Lab Sample ID:    | N1400-11B       |
| Sample wt/vol: | 1000             | (g/mL)     | ML          | Lab File ID:      | S6B9192.D       |
| Level: (LOW/ME | D) LOW           |            |             | Extraction: (Type | e) SEPF         |
| % Moisture:    | De               | canted: (  | Y/N)        | Date Received:    | 08/08/2014      |
| Concentrated E | xtract Volu      | me:        | 1000 (uL)   | Date Extracted:   | 08/12/2014      |
| Injection Volu | me: <u>1.0</u> ( | uL) GPC Fa | actor: 1.00 | Date Analyzed:    | 08/26/2014      |
| GPC Cleanup:(Y | /N) N            | pH:        |             | Dilution Factor:  | 1.0             |

| CAS NO.  | COMPOUND                   | CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L | 0 |
|----------|----------------------------|-------------------------------------------|---|
| CAS NO.  | COMPOUND                   | (ug/L 01 ug/kg) 0G/L                      | Q |
| 91-94-1  | 3,3´-Dichlorobenzidine     | 10                                        | U |
| 56-55-3  | Benzo(a)anthracene         | 10                                        | U |
| 218-01-9 | Chrysene                   | 10                                        | U |
| 117-81-7 | Bis(2-ethylhexyl)phthalate | 10                                        | U |
| 205-99-2 | Benzo(b)fluoranthene       | 10                                        | U |
| 207-08-9 | Benzo(k)fluoranthene       | 10                                        | U |
| 50-32-8  | Benzo(a)pyrene             | 10                                        | U |
| 193-39-5 | Indeno(1,2,3-cd)pyrene     | 10                                        | U |
| 53-70-3  | Dibenzo(a,h)anthracene     | 10                                        | U |
| 191-24-2 | Benzo(g,h,i)perylene       | 10                                        | U |

| EPA | SAMPLE | NO. |  |
|-----|--------|-----|--|
| SED | -6     |     |  |
|     |        |     |  |
|     |        |     |  |

| Lab Name: SPECTRUM ANALYTICAL, INC.       | Contract:                     |
|-------------------------------------------|-------------------------------|
| Lab Code: MITKEM Case No.: N1400          | Mod. Ref No.: SDG No.: SN1400 |
| Matrix: (SOIL/SED/WATER) SOIL             | Lab Sample ID: N1400-12B      |
| Sample wt/vol:15.0 (g/mL) G               | Lab File ID: S6B9199.D        |
| Level: (LOW/MED) LOW                      | Extraction: (Type) SONC       |
| % Moisture: Decanted: (Y/N) N             | Date Received: 08/08/2014     |
| Concentrated Extract Volume: 1000 (uL)    | Date Extracted: 08/19/2014    |
| Injection Volume:1.0 (uL) GPC Factor:1.00 | Date Analyzed: 08/26/2014     |
| GPC Cleanup:(Y/N) N pH:                   | Dilution Factor: 1.0          |

| CAS NO.   | COMPOUND                     | CONCENTRATION UNITS: (ug/L or ug/Kg) ug/KG | 0 |
|-----------|------------------------------|--------------------------------------------|---|
|           |                              |                                            | ~ |
| 111-44-4  |                              | 420                                        | U |
| 541-73-1  | 1,3-Dichlorobenzene          | 420                                        | U |
| 106-46-7  | •                            | 420                                        | U |
| 95-50-1   | 1,2-Dichlorobenzene          | 420                                        | U |
| 108-60-1  | 2,2'-oxybis(1-Chloropropane) | 420                                        | U |
| 67-72-1   | Hexachloroethane             | 420                                        | U |
| 98-95-3   | Nitrobenzene                 | 420                                        | U |
| 78-59-1   | Isophorone                   | 420                                        | U |
| 120-82-1  | 1,2,4-Trichlorobenzene       | 420                                        | U |
| 91-20-3   | Naphthalene                  | 420                                        | U |
| 106-47-8  | 4-Chloroaniline              | 420                                        | U |
| 111-91-1  | Bis(2-chloroethoxy)methane   | 420                                        | U |
| 87-68-3   | Hexachlorobutadiene          | 420                                        | U |
| 91-57-6   | 2-Methylnaphthalene          | 420                                        | U |
| 77-47-4   | Hexachlorocyclopentadiene    | 420                                        | U |
| 91-58-7   | 2-Chloronaphthalene          | 420                                        | U |
| 88-74-4   | 2-Nitroaniline               | 860                                        | U |
| 131-11-3  | Dimethylphthalate            | 420                                        | U |
| 208-96-8  | Acenaphthylene               | 420                                        | U |
| 606-20-2  | 2,6-Dinitrotoluene           | 420                                        | U |
| 99-09-2   | 3-Nitroaniline               | 860                                        | U |
| 83-32-9   | Acenaphthene                 | 420                                        | U |
| 132-64-9  | Dibenzofuran                 | 420                                        | U |
| 121-14-2  | 2,4-Dinitrotoluene           | 420                                        | U |
| 84-66-2   | Diethylphthalate             | 420                                        | U |
| 7005-72-3 | 4-Chlorophenyl-phenylether   | 420                                        | U |
| 86-73-7   | Fluorene                     | 420                                        | U |
| 100-01-6  | 4-Nitroaniline               | 860                                        | U |
| 101-55-3  | 4-Bromophenyl-phenylether    | 420                                        | U |
| 118-74-1  | Hexachlorobenzene            | 420                                        | U |
| 85-01-8   | Phenanthrene                 | 110                                        | J |
| 120-12-7  | Anthracene                   | 420                                        | U |
| 86-74-8   | Carbazole                    | 420                                        | U |
| 206-44-0  | Fluoranthene                 | 150                                        | J |
| 129-00-0  | Pyrene                       | 160                                        | J |
| 85-68-7   | Butylbenzylphthalate         | 420                                        | U |

som14.07.15.0901

| EPA | SAMPLE | NO. |  |
|-----|--------|-----|--|
| SED | -6     |     |  |
|     |        |     |  |

| Lab Name: SPECTRUM ANALYTICAL, INC.       | Contract:                     |
|-------------------------------------------|-------------------------------|
| Lab Code: MITKEM Case No.: N1400          | Mod. Ref No.: SDG No.: SN1400 |
| Matrix: (SOIL/SED/WATER) SOIL             | Lab Sample ID: N1400-12B      |
| Sample wt/vol:15.0 (g/mL) G               | Lab File ID: S6B9199.D        |
| Level: (LOW/MED) LOW                      | Extraction: (Type) SONC       |
| % Moisture: Decanted: (Y/N) N             | Date Received: 08/08/2014     |
| Concentrated Extract Volume:1000 (uL)     | Date Extracted: 08/19/2014    |
| Injection Volume:1.0 (uL) GPC Factor:1.00 | Date Analyzed: 08/26/2014     |
| GPC Cleanup:(Y/N) N pH:                   | Dilution Factor: 1.0          |

| CAS NO.  | COMPOUND                   | CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG | Q |
|----------|----------------------------|--------------------------------------------|---|
| 91-94-1  | 3,3´-Dichlorobenzidine     | 420                                        | U |
| 56-55-3  | Benzo(a)anthracene         | 88                                         | J |
| 218-01-9 | Chrysene                   | 88                                         | J |
| 117-81-7 | Bis(2-ethylhexyl)phthalate | 420                                        | U |
| 205-99-2 | Benzo(b)fluoranthene       | 100                                        | J |
| 207-08-9 | Benzo(k)fluoranthene       | 420                                        | U |
| 50-32-8  | Benzo(a)pyrene             | 420                                        | U |
| 193-39-5 | Indeno(1,2,3-cd)pyrene     | 420                                        | U |
| 53-70-3  | Dibenzo(a,h)anthracene     | 420                                        | U |
| 191-24-2 | Benzo(g,h,i)perylene       | 420                                        | U |

| EPA | SAMPLE | NO. |  |
|-----|--------|-----|--|
| SUR | -7     |     |  |
|     |        |     |  |
|     |        |     |  |

| Lab Name: SPECTRUM ANALY | TICAL, INC.            | Contract:        |                 |
|--------------------------|------------------------|------------------|-----------------|
| Lab Code: MITKEM         | Case No.: <u>N1400</u> | Mod. Ref No.:    | SDG No.: SN1400 |
| Matrix: (SOIL/SED/WATER) | WATER                  | Lab Sample ID:   | N1400-13B       |
| Sample wt/vol: 1000      | (g/mL) ML              | Lab File ID:     | S6B9193.D       |
| Level: (LOW/MED) LOW     |                        | Extraction: (Typ | e) SEPF         |
| % Moisture: De           | ecanted: (Y/N)         | Date Received:   | 08/08/2014      |
| Concentrated Extract Vol | ume: 1000 (uL)         | Date Extracted:  | 08/12/2014      |
| Injection Volume:1.0     | (uL) GPC Factor: 1.00  | Date Analyzed:   | 08/26/2014      |
| GPC Cleanup:(Y/N) N      | :Hq                    | Dilution Factor: | 1.0             |

|           |                              | CONCENTRATION UNITS: |   |
|-----------|------------------------------|----------------------|---|
| CAS NO.   | COMPOUND                     | (ug/L or ug/Kg) UG/L | Q |
| 111-44-4  | Bis(2-chloroethyl)ether      | 10                   | U |
| 541-73-1  |                              | 10                   | U |
| 106-46-7  | 1,4-Dichlorobenzene          | 10                   | U |
| 95-50-1   | 1,2-Dichlorobenzene          | 10                   | U |
| 108-60-1  | 2,2'-oxybis(1-Chloropropane) | 10                   | U |
| 67-72-1   | Hexachloroethane             | 10                   | U |
| 98-95-3   | Nitrobenzene                 | 10                   | U |
| 78-59-1   | Isophorone                   | 10                   | U |
| 120-82-1  | 1,2,4-Trichlorobenzene       | 10                   | U |
| 91-20-3   | Naphthalene                  | 10                   | U |
| 106-47-8  | 4-Chloroaniline              | 10                   | U |
| 111-91-1  | Bis(2-chloroethoxy)methane   | 10                   | U |
| 87-68-3   | Hexachlorobutadiene          | 10                   | U |
| 91-57-6   | 2-Methylnaphthalene          | 10                   | Ū |
| 77-47-4   | Hexachlorocyclopentadiene    | 10                   | Ū |
| 91-58-7   | 2-Chloronaphthalene          | 10                   | U |
| 88-74-4   | 2-Nitroaniline               | 20                   | Ū |
| 131-11-3  | Dimethylphthalate            | 10                   | U |
| 208-96-8  | Acenaphthylene               | 10                   | Ū |
| 606-20-2  | 2,6-Dinitrotoluene           | 10                   | U |
| 99-09-2   | 3-Nitroaniline               | 20                   | U |
| 83-32-9   | Acenaphthene                 | 10                   | U |
| 132-64-9  | Dibenzofuran                 | 10                   | U |
| 121-14-2  | 2,4-Dinitrotoluene           | 10                   | U |
| 84-66-2   | Diethylphthalate             | 10                   | U |
| 7005-72-3 | 4-Chlorophenyl-phenylether   | 10                   | U |
| 86-73-7   | Fluorene                     | 10                   | U |
| 100-01-6  | 4-Nitroaniline               | 20                   | U |
| 101-55-3  | 4-Bromophenyl-phenylether    | 10                   | U |
| 118-74-1  | Hexachlorobenzene            | 10                   | Ū |
| 85-01-8   | Phenanthrene                 | 10                   | U |
| 120-12-7  | Anthracene                   | 10                   | U |
| 86-74-8   | Carbazole                    | 10                   | U |
| 206-44-0  | Fluoranthene                 | 10                   | U |
| 129-00-0  | Pyrene                       | 10                   | U |
| 85-68-7   | Butylbenzylphthalate         | 10                   | Ū |

| EPA | SAMPLE | NO. |
|-----|--------|-----|
| SUR | -7     |     |
|     |        |     |
|     |        |     |

| Lab Name: SPECTRUM ANALYTICAL, INC.         | Contract:                     |
|---------------------------------------------|-------------------------------|
| Lab Code: MITKEM Case No.: N1400            | Mod. Ref No.: SDG No.: SN1400 |
| Matrix: (SOIL/SED/WATER) WATER              | Lab Sample ID: N1400-13B      |
| Sample wt/vol:1000 (g/mL) ML                | Lab File ID: S6B9193.D        |
| Level: (LOW/MED) LOW                        | Extraction: (Type) SEPF       |
| % Moisture: Decanted: (Y/N)                 | Date Received: 08/08/2014     |
| Concentrated Extract Volume: 1000 (uL)      | Date Extracted: 08/12/2014    |
| Injection Volume: 1.0 (uL) GPC Factor: 1.00 | Date Analyzed: 08/26/2014     |
| GPC Cleanup:(Y/N) N pH:                     | Dilution Factor: 1.0          |

| CAS NO.  | COMPOUND                   | CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L | Q |
|----------|----------------------------|-------------------------------------------|---|
| 91-94-1  | 3,3'-Dichlorobenzidine     | 10                                        | U |
| 56-55-3  | Benzo(a)anthracene         | 10                                        | U |
| 218-01-9 | Chrysene                   | 10                                        | U |
| 117-81-7 | Bis(2-ethylhexyl)phthalate | 10                                        | U |
| 205-99-2 | Benzo(b)fluoranthene       | 10                                        | U |
| 207-08-9 | Benzo(k)fluoranthene       | 10                                        | U |
| 50-32-8  | Benzo(a)pyrene             | 10                                        | U |
| 193-39-5 | Indeno(1,2,3-cd)pyrene     | 10                                        | U |
| 53-70-3  | Dibenzo(a,h)anthracene     | 10                                        | U |
| 191-24-2 | Benzo(g,h,i)perylene       | 10                                        | U |

| EPA | SAMPLE | NO. |  |
|-----|--------|-----|--|
| SED | -7     |     |  |
|     |        |     |  |
|     |        |     |  |

| Lab Name: SPECTRUM ANALYTICAL, INC.       | Contract:                     |
|-------------------------------------------|-------------------------------|
| Lab Code: MITKEM Case No.: N1400          | Mod. Ref No.: SDG No.: SN1400 |
| Matrix: (SOIL/SED/WATER) SOIL             | Lab Sample ID: N1400-14B      |
| Sample wt/vol:15.0 (g/mL) G               | Lab File ID: S6B9200.D        |
| Level: (LOW/MED) LOW                      | Extraction: (Type) SONC       |
| % Moisture: Decanted: (Y/N) N             | Date Received: 08/08/2014     |
| Concentrated Extract Volume:1000 (uL)     | Date Extracted: 08/19/2014    |
| Injection Volume:1.0 (uL) GPC Factor:1.00 | Date Analyzed: 08/26/2014     |
| GPC Cleanup:(Y/N) N pH:                   | Dilution Factor: 1.0          |

| CAC NO    | COMPOUND                     | CONCENTRATION UNITS:  |   |
|-----------|------------------------------|-----------------------|---|
| CAS NO.   | COMPOUND                     | (ug/L or ug/Kg) UG/KG | Q |
| 111-44-4  | Bis(2-chloroethyl)ether      | 410                   | U |
| 541-73-1  | 1,3-Dichlorobenzene          | 410                   | U |
| 106-46-7  | 1,4-Dichlorobenzene          | 410                   | U |
| 95-50-1   | 1,2-Dichlorobenzene          | 410                   | U |
| 108-60-1  | 2,2'-oxybis(1-Chloropropane) | 410                   | U |
| 67-72-1   | Hexachloroethane             | 410                   | U |
| 98-95-3   | Nitrobenzene                 | 410                   | U |
| 78-59-1   | Isophorone                   | 410                   | U |
| 120-82-1  | 1,2,4-Trichlorobenzene       | 410                   | U |
| 91-20-3   | Naphthalene                  | 410                   | U |
| 106-47-8  | 4-Chloroaniline              | 410                   | U |
| 111-91-1  | Bis(2-chloroethoxy)methane   | 410                   | U |
| 87-68-3   | Hexachlorobutadiene          | 410                   | U |
| 91-57-6   | 2-Methylnaphthalene          | 410                   | U |
| 77-47-4   | Hexachlorocyclopentadiene    | 410                   | U |
| 91-58-7   | 2-Chloronaphthalene          | 410                   | U |
| 88-74-4   | 2-Nitroaniline               | 840                   | U |
| 131-11-3  | Dimethylphthalate            | 410                   | U |
| 208-96-8  | Acenaphthylene               | 410                   | U |
| 606-20-2  | 2,6-Dinitrotoluene           | 410                   | U |
| 99-09-2   | 3-Nitroaniline               | 840                   | U |
| 83-32-9   | Acenaphthene                 | 410                   | U |
| 132-64-9  | Dibenzofuran                 | 410                   | U |
| 121-14-2  | 2,4-Dinitrotoluene           | 410                   | U |
| 84-66-2   | Diethylphthalate             | 410                   | U |
| 7005-72-3 | 4-Chlorophenyl-phenylether   | 410                   | U |
| 86-73-7   | Fluorene                     | 410                   | U |
| 100-01-6  | 4-Nitroaniline               | 840                   | U |
| 101-55-3  | 4-Bromophenyl-phenylether    | 410                   | U |
| 118-74-1  | Hexachlorobenzene            | 410                   | U |
| 85-01-8   | Phenanthrene                 | 410                   | U |
| 120-12-7  | Anthracene                   | 410                   | U |
| 86-74-8   | Carbazole                    | 410                   | U |
| 206-44-0  | Fluoranthene                 | 86                    | J |
| 129-00-0  | Pyrene                       | 93                    | J |
| 85-68-7   | Butylbenzylphthalate         | 410                   | U |

som14.07.15.0901

| EPA | SAMPLE | NO. |  |
|-----|--------|-----|--|
| SED | -7     |     |  |
|     |        |     |  |
|     |        |     |  |

| Lab Name: SPECTRUM ANALYTICAL, INC.         | Contract:                     |
|---------------------------------------------|-------------------------------|
| Lab Code: MITKEM Case No.: N1400            | Mod. Ref No.: SDG No.: SN1400 |
| Matrix: (SOIL/SED/WATER) SOIL               | Lab Sample ID: N1400-14B      |
| Sample wt/vol:15.0 (g/mL) G                 | Lab File ID: S6B9200.D        |
| Level: (LOW/MED) LOW                        | Extraction: (Type) SONC       |
| % Moisture: Decanted: (Y/N) N               | Date Received: 08/08/2014     |
| Concentrated Extract Volume: 1000 (uL)      | Date Extracted: 08/19/2014    |
| Injection Volume: 1.0 (uL) GPC Factor: 1.00 | Date Analyzed: 08/26/2014     |
| GPC Cleanup:(Y/N) N pH:                     | Dilution Factor: 1.0          |

| CAS NO.  | COMPOUND                   | CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG | Q |
|----------|----------------------------|--------------------------------------------|---|
| 91-94-1  | 3,3´-Dichlorobenzidine     | 410                                        | U |
| 56-55-3  | Benzo(a)anthracene         | 410                                        | U |
| 218-01-9 | Chrysene                   | 410                                        | U |
| 117-81-7 | Bis(2-ethylhexyl)phthalate | 410                                        | U |
| 205-99-2 | Benzo(b)fluoranthene       | 410                                        | U |
| 207-08-9 | Benzo(k)fluoranthene       | 410                                        | U |
| 50-32-8  | Benzo(a)pyrene             | 410                                        | U |
| 193-39-5 | Indeno(1,2,3-cd)pyrene     | 410                                        | U |
| 53-70-3  | Dibenzo(a,h)anthracene     | 410                                        | U |
| 191-24-2 | Benzo(g,h,i)perylene       | 410                                        | U |

| EPA | SAMPLE | NO. |  |
|-----|--------|-----|--|
| SUR | -8     |     |  |
|     |        |     |  |
|     |        |     |  |

| Lab Name: SPECTRU  | M ANALYTICAL, INC.       | Contract:          |                 |
|--------------------|--------------------------|--------------------|-----------------|
| Lab Code: MITKEM   | Case No.: <u>N1400</u>   | Mod. Ref No.:      | SDG No.: SN1400 |
| Matrix: (SOIL/SED/ | WATER) WATER             | Lab Sample ID:     | N1400-15B       |
| Sample wt/vol:     | 1000 (g/mL) ML           | Lab File ID:       | S6B9194.D       |
| Level: (LOW/MED)   | LOW                      | Extraction: (Typ   | e) SEPF         |
| % Moisture:        | Decanted: (Y/N)          | Date Received:     | 08/08/2014      |
| Concentrated Extra | act Volume:1000 (u       | L) Date Extracted: | 08/12/2014      |
| Injection Volume:  | 1.0 (uL) GPC Factor: 1.0 | O Date Analyzed:   | 08/26/2014      |
| GPC Cleanup:(Y/N)  | N pH:                    | Dilution Factor:   | 1.0             |

|           |                              | CONCENTRATION UNITS: | T |
|-----------|------------------------------|----------------------|---|
| CAS NO.   | COMPOUND                     | (ug/L or ug/Kg) UG/L | Q |
| 111-44-4  | Bis(2-chloroethyl)ether      | 10                   | U |
| 541-73-1  | 1,3-Dichlorobenzene          | 10                   | U |
| 106-46-7  | 1,4-Dichlorobenzene          | 10                   | U |
| 95-50-1   | 1,2-Dichlorobenzene          | 10                   | U |
| 108-60-1  | 2,2'-oxybis(1-Chloropropane) | 10                   | U |
| 67-72-1   | Hexachloroethane             | 10                   | U |
| 98-95-3   | Nitrobenzene                 | 10                   | U |
| 78-59-1   | Isophorone                   | 10                   | U |
| 120-82-1  | 1,2,4-Trichlorobenzene       | 10                   | U |
| 91-20-3   | Naphthalene                  | 10                   | U |
| 106-47-8  | 4-Chloroaniline              | 10                   | U |
| 111-91-1  | Bis(2-chloroethoxy)methane   | 10                   | U |
| 87-68-3   | Hexachlorobutadiene          | 10                   | U |
| 91-57-6   | 2-Methylnaphthalene          | 10                   | U |
| 77-47-4   | Hexachlorocyclopentadiene    | 10                   | U |
| 91-58-7   | 2-Chloronaphthalene          | 10                   | U |
| 88-74-4   | 2-Nitroaniline               | 20                   | U |
| 131-11-3  | Dimethylphthalate            | 10                   | U |
| 208-96-8  | Acenaphthylene               | 10                   | U |
| 606-20-2  | 2,6-Dinitrotoluene           | 10                   | U |
| 99-09-2   | 3-Nitroaniline               | 20                   | U |
| 83-32-9   | Acenaphthene                 | 10                   | U |
| 132-64-9  | Dibenzofuran                 | 10                   | U |
| 121-14-2  | 2,4-Dinitrotoluene           | 10                   | Ū |
| 84-66-2   | Diethylphthalate             | 10                   | U |
| 7005-72-3 | 4-Chlorophenyl-phenylether   | 10                   | U |
| 86-73-7   | Fluorene                     | 10                   | Ū |
| 100-01-6  | 4-Nitroaniline               | 20                   | U |
| 101-55-3  | 4-Bromophenyl-phenylether    | 10                   | U |
| 118-74-1  | Hexachlorobenzene            | 10                   | U |
| 85-01-8   | Phenanthrene                 | 10                   | U |
| 120-12-7  | Anthracene                   | 10                   | U |
| 86-74-8   | Carbazole                    | 10                   | U |
| 206-44-0  | Fluoranthene                 | 10                   | U |
| 129-00-0  | Pyrene                       | 10                   | U |
| 85-68-7   | Butylbenzylphthalate         | 10                   | U |

| EPA | SAMPLE | NO. |  |
|-----|--------|-----|--|
| SUR | -8     |     |  |
|     |        |     |  |
|     |        |     |  |

| Lab Name: SPECTRUM | M ANALYTICAL, INC.        | Contract:         |                 |
|--------------------|---------------------------|-------------------|-----------------|
| Lab Code: MITKEM   | Case No.: <u>N1400</u>    | Mod. Ref No.:     | SDG No.: SN1400 |
| Matrix: (SOIL/SED/ | WATER) WATER              | Lab Sample ID:    | N1400-15B       |
| Sample wt/vol:     | 1000 (g/mL) <u>ML</u>     | Lab File ID:      | S6B9194.D       |
| Level: (LOW/MED)   | LOW                       | Extraction: (Type | e) SEPF         |
| % Moisture:        | Decanted: (Y/N)           | Date Received:    | 08/08/2014      |
| Concentrated Extra | ct Volume:1000 (uL)       | Date Extracted:   | 08/12/2014      |
| Injection Volume:  | 1.0 (uL) GPC Factor: 1.00 | Date Analyzed:    | 08/26/2014      |
| GPC Cleanup:(Y/N)  | N pH:                     | Dilution Factor:  | 1.0             |

| CAS NO.  | COMPOUND                   | CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L | Q |
|----------|----------------------------|-------------------------------------------|---|
| 91-94-1  | 3,3'-Dichlorobenzidine     | 10                                        | U |
| 56-55-3  | Benzo(a)anthracene         | 10                                        | U |
| 218-01-9 | Chrysene                   | 10                                        | U |
| 117-81-7 | Bis(2-ethylhexyl)phthalate | 10                                        | U |
| 205-99-2 | Benzo(b)fluoranthene       | 10                                        | U |
| 207-08-9 | Benzo(k)fluoranthene       | 10                                        | U |
| 50-32-8  | Benzo(a)pyrene             | 10                                        | U |
| 193-39-5 | Indeno(1,2,3-cd)pyrene     | 10                                        | U |
| 53-70-3  | Dibenzo(a,h)anthracene     | 10                                        | U |
| 191-24-2 | Benzo(g,h,i)perylene       | 10                                        | U |

EPA SAMPLE NO.

| Lab Name: SPECTRUM | M ANALYTICAL, INC.        | Contract:         |                 |
|--------------------|---------------------------|-------------------|-----------------|
| Lab Code: MITKEM   | Case No.: N1400           | Mod. Ref No.:     | SDG No.: SN1400 |
| Matrix: (SOIL/SED/ | WATER) WATER              | Lab Sample ID:    | N1400-16B       |
| Sample wt/vol:     | 1000 (g/mL) ML            | Lab File ID:      | S6B9195.D       |
| Level: (LOW/MED)   | LOW                       | Extraction: (Type | e) SEPF         |
| % Moisture:        | Decanted: (Y/N)           | Date Received:    | 08/08/2014      |
| Concentrated Extra | ct Volume: 1000 (uL)      | Date Extracted:   | 08/12/2014      |
| Injection Volume:  | 1.0 (uL) GPC Factor: 1.00 | Date Analyzed:    | 08/26/2014      |
| GPC Cleanup:(Y/N)  | <br>N рН:                 | Dilution Factor:  | 1.0             |

|           |                              | CONCENTRATION UNITS: |   |
|-----------|------------------------------|----------------------|---|
| CAS NO.   | COMPOUND                     | (ug/L or ug/Kg) UG/L | Q |
| 111-44-4  | Bis(2-chloroethyl)ether      | 10                   | U |
| 541-73-1  |                              | 10                   | U |
| 106-46-7  | 1,4-Dichlorobenzene          | 10                   | U |
| 95-50-1   | 1,2-Dichlorobenzene          | 10                   | U |
| 108-60-1  | 2,2'-oxybis(1-Chloropropane) | 10                   | U |
| 67-72-1   | Hexachloroethane             | 10                   | U |
| 98-95-3   | Nitrobenzene                 | 10                   | U |
| 78-59-1   | Isophorone                   | 10                   | U |
| 120-82-1  | 1,2,4-Trichlorobenzene       | 10                   | U |
| 91-20-3   | Naphthalene                  | 10                   | U |
| 106-47-8  | 4-Chloroaniline              | 10                   | U |
| 111-91-1  | Bis(2-chloroethoxy)methane   | 10                   | U |
| 87-68-3   | Hexachlorobutadiene          | 10                   | U |
| 91-57-6   | 2-Methylnaphthalene          | 10                   | Ū |
| 77-47-4   | Hexachlorocyclopentadiene    | 10                   | Ū |
| 91-58-7   | 2-Chloronaphthalene          | 10                   | U |
| 88-74-4   | 2-Nitroaniline               | 20                   | Ū |
| 131-11-3  | Dimethylphthalate            | 10                   | U |
| 208-96-8  | Acenaphthylene               | 10                   | Ū |
| 606-20-2  | 2,6-Dinitrotoluene           | 10                   | U |
| 99-09-2   | 3-Nitroaniline               | 20                   | U |
| 83-32-9   | Acenaphthene                 | 10                   | U |
| 132-64-9  | Dibenzofuran                 | 10                   | U |
| 121-14-2  | 2,4-Dinitrotoluene           | 10                   | U |
| 84-66-2   | Diethylphthalate             | 10                   | U |
| 7005-72-3 | 4-Chlorophenyl-phenylether   | 10                   | U |
| 86-73-7   | Fluorene                     | 10                   | U |
| 100-01-6  | 4-Nitroaniline               | 20                   | U |
| 101-55-3  | 4-Bromophenyl-phenylether    | 10                   | U |
| 118-74-1  | Hexachlorobenzene            | 10                   | Ū |
| 85-01-8   | Phenanthrene                 | 10                   | U |
| 120-12-7  | Anthracene                   | 10                   | U |
| 86-74-8   | Carbazole                    | 10                   | U |
| 206-44-0  | Fluoranthene                 | 10                   | U |
| 129-00-0  | Pyrene                       | 10                   | U |
| 85-68-7   | Butylbenzylphthalate         | 10                   | Ū |

# 1E - FORM I SV-2 SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.
EQUIP.BLANK

| Lab Name: SPECTRUM ANALYTICAL, INC.       | Contract:                     |
|-------------------------------------------|-------------------------------|
| Lab Code: MITKEM Case No.: N1400          | Mod. Ref No.: SDG No.: SN1400 |
| Matrix: (SOIL/SED/WATER) WATER            | Lab Sample ID: N1400-16B      |
| Sample wt/vol:1000 (g/mL) ML              | Lab File ID: S6B9195.D        |
| Level: (LOW/MED) LOW                      | Extraction: (Type) SEPF       |
| % Moisture: Decanted: (Y/N)               | Date Received: 08/08/2014     |
| Concentrated Extract Volume:1000 (uL)     | Date Extracted: 08/12/2014    |
| Injection Volume:1.0 (uL) GPC Factor:1.00 | Date Analyzed: 08/26/2014     |
| GPC Cleanup:(Y/N) N pH:                   | Dilution Factor: 1.0          |

| CAS NO.  | COMPOUND                   | CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L | 0 |
|----------|----------------------------|-------------------------------------------|---|
| CAS NO.  | COMPOUND                   | (ug/L 01 ug/kg) 0G/L                      | Q |
| 91-94-1  | 3,3´-Dichlorobenzidine     | 10                                        | U |
| 56-55-3  | Benzo(a)anthracene         | 10                                        | U |
| 218-01-9 | Chrysene                   | 10                                        | U |
| 117-81-7 | Bis(2-ethylhexyl)phthalate | 10                                        | U |
| 205-99-2 | Benzo(b)fluoranthene       | 10                                        | U |
| 207-08-9 | Benzo(k)fluoranthene       | 10                                        | U |
| 50-32-8  | Benzo(a)pyrene             | 10                                        | U |
| 193-39-5 | Indeno(1,2,3-cd)pyrene     | 10                                        | U |
| 53-70-3  | Dibenzo(a,h)anthracene     | 10                                        | U |
| 191-24-2 | Benzo(g,h,i)perylene       | 10                                        | U |

## 1D - FORM I SV-1 SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

| EPA | SAMPLE | NO. |  |
|-----|--------|-----|--|
| MB- | 78523  |     |  |
|     |        |     |  |
|     |        |     |  |

| Lab Name: SPECTRUM ANALYTICAL, INC.         | Contract:                     |
|---------------------------------------------|-------------------------------|
| Lab Code: MITKEM Case No.: N1400            | Mod. Ref No.: SDG No.: SN1400 |
| Matrix: (SOIL/SED/WATER) WATER              | Lab Sample ID: MB-78523       |
| Sample wt/vol:1000 (g/mL) ML                | Lab File ID: S6B9183.D        |
| Level: (LOW/MED) LOW                        | Extraction: (Type) SEPF       |
| % Moisture: Decanted: (Y/N)                 | Date Received:                |
| Concentrated Extract Volume: 1000 (uL)      | Date Extracted: 08/12/2014    |
| Injection Volume: 1.0 (uL) GPC Factor: 1.00 | Date Analyzed: 08/26/2014     |
| GPC Cleanup:(Y/N) N pH:                     | Dilution Factor: 1.0          |

|           |                              | CONCENTRATION UNITS: |   |
|-----------|------------------------------|----------------------|---|
| CAS NO.   | COMPOUND                     | (ug/L or ug/Kg) UG/L | Q |
| 111-44-4  | Bis(2-chloroethyl)ether      | 10                   | U |
| 541-73-1  | 1,3-Dichlorobenzene          | 10                   | U |
| 106-46-7  | 1,4-Dichlorobenzene          | 10                   | U |
| 95-50-1   | 1,2-Dichlorobenzene          | 10                   | U |
| 108-60-1  | 2,2'-oxybis(1-Chloropropane) | 10                   | U |
| 67-72-1   | Hexachloroethane             | 10                   | U |
| 98-95-3   | Nitrobenzene                 | 10                   | U |
| 78-59-1   | Isophorone                   | 10                   | U |
| 120-82-1  | 1,2,4-Trichlorobenzene       | 10                   | U |
| 91-20-3   | Naphthalene                  | 10                   | U |
| 106-47-8  | 4-Chloroaniline              | 10                   | U |
| 111-91-1  | Bis(2-chloroethoxy)methane   | 10                   | U |
| 87-68-3   | Hexachlorobutadiene          | 10                   | U |
| 91-57-6   | 2-Methylnaphthalene          | 10                   | U |
| 77-47-4   | Hexachlorocyclopentadiene    | 10                   | U |
| 91-58-7   | 2-Chloronaphthalene          | 10                   | U |
| 88-74-4   | 2-Nitroaniline               | 20                   | U |
| 131-11-3  | Dimethylphthalate            | 10                   | U |
| 208-96-8  | Acenaphthylene               | 10                   | U |
| 606-20-2  | 2,6-Dinitrotoluene           | 10                   | U |
| 99-09-2   | 3-Nitroaniline               | 20                   | U |
| 83-32-9   | Acenaphthene                 | 10                   | U |
| 132-64-9  | Dibenzofuran                 | 10                   | U |
| 121-14-2  | 2,4-Dinitrotoluene           | 10                   | U |
| 84-66-2   | Diethylphthalate             | 10                   | U |
| 7005-72-3 | 4-Chlorophenyl-phenylether   | 10                   | U |
| 86-73-7   | Fluorene                     | 10                   | U |
| 100-01-6  | 4-Nitroaniline               | 20                   | U |
| 101-55-3  | 4-Bromophenyl-phenylether    | 10                   | U |
| 118-74-1  | Hexachlorobenzene            | 10                   | U |
| 85-01-8   | Phenanthrene                 | 10                   | U |
| 120-12-7  | Anthracene                   | 10                   | U |
| 86-74-8   | Carbazole                    | 10                   | U |
| 206-44-0  | Fluoranthene                 | 10                   | U |
| 129-00-0  | Pyrene                       | 10                   | U |
| 85-68-7   | Butylbenzylphthalate         | 10                   | U |

## 1E - FORM I SV-2 SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

| Lab Name: SPECTRUM ANALYTICAL, INC.       | Contract:                     |
|-------------------------------------------|-------------------------------|
| Lab Code: MITKEM Case No.: N1400          | Mod. Ref No.: SDG No.: SN1400 |
| Matrix: (SOIL/SED/WATER) WATER            | Lab Sample ID: MB-78523       |
| Sample wt/vol: 1000 (g/mL) ML             | Lab File ID: S6B9183.D        |
| Level: (LOW/MED) LOW                      | Extraction: (Type) SEPF       |
| % Moisture: Decanted: (Y/N)               | Date Received:                |
| Concentrated Extract Volume:1000 (uL)     | Date Extracted: 08/12/2014    |
| Injection Volume:1.0 (uL) GPC Factor:1.00 | Date Analyzed: 08/26/2014     |
| GPC Cleanup:(Y/N) N pH:                   | Dilution Factor: 1.0          |

|          |                            | CONCENTRATION UNITS: |   |
|----------|----------------------------|----------------------|---|
| CAS NO.  | COMPOUND                   | (ug/L or ug/Kg) UG/L | Q |
| 91-94-1  | 3,3´-Dichlorobenzidine     | 10                   | U |
| 56-55-3  | Benzo(a)anthracene         | 10                   | U |
| 218-01-9 | Chrysene                   | 10                   | U |
| 117-81-7 | Bis(2-ethylhexyl)phthalate | 10                   | U |
| 205-99-2 | Benzo(b)fluoranthene       | 10                   | U |
| 207-08-9 | Benzo(k)fluoranthene       | 10                   | U |
| 50-32-8  | Benzo(a)pyrene             | 10                   | U |
| 193-39-5 | Indeno(1,2,3-cd)pyrene     | 10                   | U |
| 53-70-3  | Dibenzo(a,h)anthracene     | 10                   | U |
| 191-24-2 | Benzo(g,h,i)perylene       | 10                   | U |

# 1D - FORM I SV-1 SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

| Lab Name: SPECTRUM ANALYTICAL, INC.    | Contract:                     |
|----------------------------------------|-------------------------------|
| Lab Code: MITKEM Case No.: N1400       | Mod. Ref No.: SDG No.: SN1400 |
| Matrix: (SOIL/SED/WATER) SOIL          | Lab Sample ID: MB-78617       |
| Sample wt/vol:15.0 (g/mL) G            | Lab File ID: S6B9196.D        |
| Level: (LOW/MED) LOW                   | Extraction: (Type) SONC       |
| % Moisture: Decanted: (Y/N)            | Date Received:                |
| Concentrated Extract Volume: 1000 (uL) | Date Extracted: 08/19/2014    |
| Injection Volume: (uL) GPC Factor:     | Date Analyzed: 08/26/2014     |
| GPC Cleanup:(Y/N) N pH:                | Dilution Factor: 1.0          |

| CAS NO.   | COMPOUND                     | CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG | 0   |
|-----------|------------------------------|--------------------------------------------|-----|
|           |                              |                                            | . ~ |
| 111-44-4  | Bis(2-chloroethyl)ether      | 330                                        | U   |
| 541-73-1  | 1,3-Dichlorobenzene          | 330                                        | U   |
| 106-46-7  | 1,4-Dichlorobenzene          | 330                                        | U   |
| 95-50-1   | 1,2-Dichlorobenzene          | 330                                        | U   |
| 108-60-1  | 2,2'-oxybis(1-Chloropropane) | 330                                        | U   |
| 67-72-1   | Hexachloroethane             | 330                                        | U   |
| 98-95-3   | Nitrobenzene                 | 330                                        | U   |
| 78-59-1   | Isophorone                   | 330                                        | U   |
| 120-82-1  | 1,2,4-Trichlorobenzene       | 330                                        | U   |
| 91-20-3   | Naphthalene                  | 330                                        | U   |
| 106-47-8  | 4-Chloroaniline              | 330                                        | U   |
| 111-91-1  | Bis(2-chloroethoxy)methane   | 330                                        | U   |
| 87-68-3   | Hexachlorobutadiene          | 330                                        | U   |
| 91-57-6   | 2-Methylnaphthalene          | 330                                        | U   |
| 77-47-4   | Hexachlorocyclopentadiene    | 330                                        | U   |
| 91-58-7   | 2-Chloronaphthalene          | 330                                        | U   |
| 88-74-4   | 2-Nitroaniline               | 670                                        | U   |
| 131-11-3  | Dimethylphthalate            | 330                                        | U   |
| 208-96-8  | Acenaphthylene               | 330                                        | U   |
| 606-20-2  | 2,6-Dinitrotoluene           | 330                                        | U   |
| 99-09-2   | 3-Nitroaniline               | 670                                        | U   |
| 83-32-9   | Acenaphthene                 | 330                                        | U   |
| 132-64-9  | Dibenzofuran                 | 330                                        | U   |
| 121-14-2  | 2,4-Dinitrotoluene           | 330                                        | U   |
| 84-66-2   | Diethylphthalate             | 330                                        | U   |
| 7005-72-3 | 4-Chlorophenyl-phenylether   | 330                                        | U   |
| 86-73-7   | Fluorene                     | 330                                        | U   |
| 100-01-6  | 4-Nitroaniline               | 670                                        | U   |
| 101-55-3  | 4-Bromophenyl-phenylether    | 330                                        | U   |
| 118-74-1  | Hexachlorobenzene            | 330                                        | U   |
| 85-01-8   | Phenanthrene                 | 330                                        | U   |
| 120-12-7  | Anthracene                   | 330                                        | U   |
| 86-74-8   | Carbazole                    | 330                                        | U   |
| 206-44-0  | Fluoranthene                 | 330                                        | U   |
| 129-00-0  | Pyrene                       | 330                                        | U   |
| 85-68-7   | Butylbenzylphthalate         | 330                                        | U   |

## 1E - FORM I SV-2 SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

| Lab Name: SPECTRUM ANALYTICAL, INC.       | Contract:                     |
|-------------------------------------------|-------------------------------|
| Lab Code: MITKEM Case No.: N1400          | Mod. Ref No.: SDG No.: SN1400 |
| Matrix: (SOIL/SED/WATER) SOIL             | Lab Sample ID: MB-78617       |
| Sample wt/vol:15.0 (g/mL) G               | Lab File ID: S6B9196.D        |
| Level: (LOW/MED) LOW                      | Extraction: (Type) SONC       |
| % Moisture: Decanted: (Y/N)               | Date Received:                |
| Concentrated Extract Volume:1000 (uL)     | Date Extracted: 08/19/2014    |
| Injection Volume:1.0 (uL) GPC Factor:1.00 | Date Analyzed: 08/26/2014     |
| GPC Cleanup:(Y/N) N pH:                   | Dilution Factor: 1.0          |

| CAS NO.  | COMPOUND                   | CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG | Q |
|----------|----------------------------|--------------------------------------------|---|
| 91-94-1  | 3,3´-Dichlorobenzidine     | 330                                        | U |
| 56-55-3  | Benzo(a)anthracene         | 330                                        | U |
| 218-01-9 | Chrysene                   | 330                                        | U |
| 117-81-7 | Bis(2-ethylhexyl)phthalate | 330                                        | U |
| 205-99-2 | Benzo(b)fluoranthene       | 330                                        | U |
| 207-08-9 | Benzo(k)fluoranthene       | 330                                        | U |
| 50-32-8  | Benzo(a)pyrene             | 330                                        | U |
| 193-39-5 | Indeno(1,2,3-cd)pyrene     | 330                                        | U |
| 53-70-3  | Dibenzo(a,h)anthracene     | 330                                        | U |
| 191-24-2 | Benzo(g,h,i)perylene       | 330                                        | U |

## 1D - FORM I SV-1 SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

| EPA | SAMPLE | NO. |  |
|-----|--------|-----|--|
| LCS | -78523 |     |  |
|     |        |     |  |

| Lab Name: SPECTRUM ANALYTICAL, INC.         | Contract:                     |
|---------------------------------------------|-------------------------------|
| Lab Code: MITKEM Case No.: N1400            | Mod. Ref No.: SDG No.: SN1400 |
| Matrix: (SOIL/SED/WATER) WATER              | Lab Sample ID: LCS-78523      |
| Sample wt/vol:1000 (g/mL) ML                | Lab File ID: S6B9184.D        |
| Level: (LOW/MED) LOW                        | Extraction: (Type) SEPF       |
| % Moisture: Decanted: (Y/N)                 | Date Received:                |
| Concentrated Extract Volume: 1000 (uL)      | Date Extracted: 08/12/2014    |
| Injection Volume: 1.0 (uL) GPC Factor: 1.00 | Date Analyzed: 08/26/2014     |
| GPC Cleanup:(Y/N) N pH:                     | Dilution Factor: 1.0          |

|           |                              | CONCENTRATION UNITS: |   |
|-----------|------------------------------|----------------------|---|
| CAS NO.   | COMPOUND                     | (ug/L or ug/Kg) UG/L | Q |
| 111-44-4  | Bis(2-chloroethyl)ether      | 36                   |   |
| 541-73-1  | 1,3-Dichlorobenzene          | 33                   |   |
| 106-46-7  | 1,4-Dichlorobenzene          | 33                   |   |
| 95-50-1   | 1,2-Dichlorobenzene          | 34                   |   |
| 108-60-1  | 2,2'-oxybis(1-Chloropropane) | 37                   |   |
| 67-72-1   |                              | 33                   |   |
| 98-95-3   | Nitrobenzene                 | 38                   |   |
| 78-59-1   | Isophorone                   | 39                   |   |
| 120-82-1  | 1,2,4-Trichlorobenzene       | 33                   |   |
| 91-20-3   | Naphthalene                  | 36                   |   |
| 106-47-8  | 4-Chloroaniline              | 32                   |   |
| 111-91-1  | Bis(2-chloroethoxy)methane   | 38                   |   |
| 87-68-3   | Hexachlorobutadiene          | 33                   |   |
| 91-57-6   | 2-Methylnaphthalene          | 36                   |   |
| 77-47-4   | Hexachlorocyclopentadiene    | 26                   |   |
| 91-58-7   | 2-Chloronaphthalene          | 37                   |   |
| 88-74-4   | 2-Nitroaniline               | 40                   |   |
| 131-11-3  | Dimethylphthalate            | 40                   |   |
| 208-96-8  | Acenaphthylene               | 38                   |   |
| 606-20-2  |                              | 40                   |   |
| 99-09-2   | 3-Nitroaniline               | 34                   |   |
| 83-32-9   | Acenaphthene                 | 39                   |   |
| 132-64-9  | Dibenzofuran                 | 39                   |   |
| 121-14-2  | 2,4-Dinitrotoluene           | 40                   |   |
| 84-66-2   | Diethylphthalate             | 41                   |   |
| 7005-72-3 | 4-Chlorophenyl-phenylether   | 40                   |   |
| 86-73-7   | Fluorene                     | 41                   |   |
| 100-01-6  | 4-Nitroaniline               | 35                   |   |
| 101-55-3  | 4-Bromophenyl-phenylether    | 40                   |   |
| 118-74-1  | Hexachlorobenzene            | 40                   |   |
| 85-01-8   | Phenanthrene                 | 42                   |   |
| 120-12-7  | Anthracene                   | 40                   |   |
| 86-74-8   | Carbazole                    | 41                   |   |
| 206-44-0  | Fluoranthene                 | 41                   |   |
| 129-00-0  | Pyrene                       | 41                   |   |
| 85-68-7   | Butylbenzylphthalate         | 42                   |   |

### 1E - FORM I SV-2 SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

| EPA | SAMPLE | NO. |
|-----|--------|-----|
| LCS | -78523 |     |
|     |        |     |

| Lab Name: SPECTRUM ANALYTICAL, INC.       | Contract:                     |
|-------------------------------------------|-------------------------------|
| Lab Code: MITKEM Case No.: N1400          | Mod. Ref No.: SDG No.: SN1400 |
| Matrix: (SOIL/SED/WATER) WATER            | Lab Sample ID: LCS-78523      |
| Sample wt/vol:1000 (g/mL) ML              | Lab File ID: S6B9184.D        |
| Level: (LOW/MED) LOW                      | Extraction: (Type) SEPF       |
| % Moisture: Decanted: (Y/N)               | Date Received:                |
| Concentrated Extract Volume:1000 (uL)     | Date Extracted: 08/12/2014    |
| Injection Volume:1.0 (uL) GPC Factor:1.00 | Date Analyzed: 08/26/2014     |
| GPC Cleanup:(Y/N) N pH:                   | Dilution Factor: 1.0          |

| CAS NO.  | COMPOUND                   | CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L | Q |
|----------|----------------------------|-------------------------------------------|---|
| 91-94-1  | 3,3´-Dichlorobenzidine     | 35                                        |   |
| 56-55-3  | Benzo(a)anthracene         | 40                                        |   |
| 218-01-9 | Chrysene                   | 41                                        |   |
| 117-81-7 | Bis(2-ethylhexyl)phthalate | 43                                        |   |
| 205-99-2 | Benzo(b)fluoranthene       | 44                                        |   |
| 207-08-9 | Benzo(k)fluoranthene       | 42                                        |   |
| 50-32-8  | Benzo(a)pyrene             | 40                                        |   |
| 193-39-5 | Indeno(1,2,3-cd)pyrene     | 40                                        |   |
| 53-70-3  | Dibenzo(a,h)anthracene     | 40                                        |   |
| 191-24-2 | Benzo(g,h,i)perylene       | 38                                        |   |

# 1D - FORM I SV-1 SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

| EPA | SAMPLE | NO. |  |
|-----|--------|-----|--|
| LCS | -78617 |     |  |
|     |        |     |  |

| Lab Name: SPECTRU  | JM ANALYTICAL, INC.       | Contract:         |                 |
|--------------------|---------------------------|-------------------|-----------------|
| Lab Code: MITKEM   | Case No.: <u>N1400</u>    | Mod. Ref No.:     | SDG No.: SN1400 |
| Matrix: (SOIL/SED/ | /WATER) SOIL              | Lab Sample ID:    | LCS-78617       |
| Sample wt/vol:     | 15.0 (g/mL) G             | Lab File ID:      | S6B9197.D       |
| Level: (LOW/MED)   | LOW                       | Extraction: (Type | SONC            |
| % Moisture:        | Decanted: (Y/N)           | Date Received:    |                 |
| Concentrated Extra | act Volume:1000 (uL)      | Date Extracted:   | 08/19/2014      |
| Injection Volume:  | 1.0 (uL) GPC Factor: 1.00 | Date Analyzed:    | 08/26/2014      |
| GPC Cleanup:(Y/N)  | N pH:                     | Dilution Factor:  | 1.0             |

| CAC NO    | COMPOUND                     | CONCENTRATION UNITS:  |   |
|-----------|------------------------------|-----------------------|---|
| CAS NO.   | COMPOUND                     | (ug/L or ug/Kg) UG/KG | Q |
| 111-44-4  | Bis(2-chloroethyl)ether      | 2300                  |   |
| 541-73-1  | 1,3-Dichlorobenzene          | 2400                  |   |
| 106-46-7  | 1,4-Dichlorobenzene          | 2400                  |   |
| 95-50-1   | 1,2-Dichlorobenzene          | 2400                  |   |
| 108-60-1  | 2,2'-oxybis(1-Chloropropane) | 2400                  |   |
| 67-72-1   | Hexachloroethane             | 2500                  |   |
| 98-95-3   | Nitrobenzene                 | 2500                  |   |
| 78-59-1   | Isophorone                   | 2400                  |   |
| 120-82-1  | 1,2,4-Trichlorobenzene       | 2400                  |   |
| 91-20-3   | Naphthalene                  | 2500                  |   |
| 106-47-8  | 4-Chloroaniline              | 1100                  |   |
| 111-91-1  | Bis(2-chloroethoxy)methane   | 2400                  |   |
| 87-68-3   | Hexachlorobutadiene          | 2500                  |   |
| 91-57-6   | 2-Methylnaphthalene          | 2400                  |   |
| 77-47-4   | Hexachlorocyclopentadiene    | 2800                  |   |
| 91-58-7   | 2-Chloronaphthalene          | 2500                  |   |
| 88-74-4   | 2-Nitroaniline               | 2500                  |   |
| 131-11-3  | Dimethylphthalate            | 2500                  |   |
| 208-96-8  | Acenaphthylene               | 2600                  |   |
| 606-20-2  | 2,6-Dinitrotoluene           | 2500                  |   |
| 99-09-2   | 3-Nitroaniline               | 1700                  |   |
| 83-32-9   | Acenaphthene                 | 2500                  |   |
| 132-64-9  | Dibenzofuran                 | 2500                  |   |
| 121-14-2  | 2,4-Dinitrotoluene           | 2500                  |   |
| 84-66-2   | Diethylphthalate             | 2500                  |   |
| 7005-72-3 | 4-Chlorophenyl-phenylether   | 2500                  |   |
| 86-73-7   | Fluorene                     | 2500                  |   |
| 100-01-6  | 4-Nitroaniline               | 2100                  |   |
| 101-55-3  | 4-Bromophenyl-phenylether    | 2700                  |   |
| 118-74-1  | Hexachlorobenzene            | 2600                  |   |
| 85-01-8   | Phenanthrene                 | 2700                  |   |
| 120-12-7  | Anthracene                   | 2600                  |   |
| 86-74-8   | Carbazole                    | 2400                  |   |
| 206-44-0  | Fluoranthene                 | 2500                  |   |
| 129-00-0  | Pyrene                       | 2900                  |   |
| 85-68-7   | Butylbenzylphthalate         | 2800                  |   |

## 1E - FORM I SV-2 SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

| EPA | SAMPLE | NO. |
|-----|--------|-----|
| LCS | -78617 |     |
|     |        |     |

| Lab Name:   | SPECTRUM AN  | NALYTICAL, IN  | С.          | Contract:         |                 |
|-------------|--------------|----------------|-------------|-------------------|-----------------|
| Lab Code:   | MITKEM       | Case No.:      | N1400       | Mod. Ref No.:     | SDG No.: SN1400 |
| Matrix: (SC | DIL/SED/WAT  | ER) SOIL       |             | Lab Sample ID:    | LCS-78617       |
| Sample wt/v | 701:1        | .5.0 (g/mL)    | G           | Lab File ID:      | S6B9197.D       |
| Level: (LOW | N/MED) LOW   |                |             | Extraction: (Type | e) <u>SONC</u>  |
| % Moisture: | :<br>        | Decanted: (    | Y/N)        | Date Received:    |                 |
| Concentrate | ed Extract ' | Volume:        | 1000 (uL)   | Date Extracted:   | 08/19/2014      |
| Injection V | Jolume: 1    | .0 (uL) GPC Fa | actor: 1.00 | Date Analyzed:    | 08/26/2014      |
| GPC Cleanup | p:(Y/N) N    | pH:            |             | Dilution Factor:  | 1.0             |

| CAS NO.  | COMPOUND                   | CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG Ç |
|----------|----------------------------|----------------------------------------------|
| 91-94-1  | 3,3´-Dichlorobenzidine     | 1600                                         |
| 56-55-3  | Benzo(a)anthracene         | 2600                                         |
| 218-01-9 | Chrysene                   | 2500                                         |
| 117-81-7 | Bis(2-ethylhexyl)phthalate | 2800                                         |
| 205-99-2 | Benzo(b)fluoranthene       | 2900                                         |
| 207-08-9 | Benzo(k)fluoranthene       | 2800                                         |
| 50-32-8  | Benzo(a)pyrene             | 2600                                         |
| 193-39-5 | Indeno(1,2,3-cd)pyrene     | 2400                                         |
| 53-70-3  | Dibenzo(a,h)anthracene     | 2400                                         |
| 191-24-2 | Benzo(g,h,i)perylene       | 2300                                         |

# 1D - FORM I SV-1 SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

| EPA | SAMPLE  | NO. |
|-----|---------|-----|
| LCS | D-78523 |     |
|     |         |     |

| Lab Name: SPECTRUM ANALYTICAL, INC.       | Contract:                     |
|-------------------------------------------|-------------------------------|
| Lab Code: MITKEM Case No.: N1400          | Mod. Ref No.: SDG No.: SN1400 |
| Matrix: (SOIL/SED/WATER) WATER            | Lab Sample ID: LCSD-78523     |
| Sample wt/vol:1000 (g/mL) ML              | Lab File ID: S6B9185.D        |
| Level: (LOW/MED) LOW                      | Extraction: (Type) SEPF       |
| % Moisture: Decanted: (Y/N)               | Date Received:                |
| Concentrated Extract Volume:1000 (uL)     | Date Extracted: 08/12/2014    |
| Injection Volume:1.0 (uL) GPC Factor:1.00 | Date Analyzed: 08/26/2014     |
| GPC Cleanup:(Y/N) N pH:                   | Dilution Factor: 1.0          |

|           |                              | CONCENTRATION UNITS: |   |
|-----------|------------------------------|----------------------|---|
| CAS NO.   | COMPOUND                     | (ug/L or ug/Kg) UG/L | Q |
| 111-44-4  | Bis(2-chloroethyl)ether      | 36                   |   |
| 541-73-1  | 1,3-Dichlorobenzene          | 33                   |   |
| 106-46-7  | 1,4-Dichlorobenzene          | 33                   |   |
| 95-50-1   | 1,2-Dichlorobenzene          | 33                   |   |
| 108-60-1  | 2,2'-oxybis(1-Chloropropane) | 37                   |   |
| 67-72-1   | Hexachloroethane             | 33                   |   |
| 98-95-3   | Nitrobenzene                 | 39                   |   |
| 78-59-1   | Isophorone                   | 40                   |   |
| 120-82-1  | 1,2,4-Trichlorobenzene       | 35                   |   |
| 91-20-3   | Naphthalene                  | 37                   |   |
| 106-47-8  | 4-Chloroaniline              | 33                   |   |
| 111-91-1  | Bis(2-chloroethoxy)methane   | 40                   |   |
| 87-68-3   | Hexachlorobutadiene          | 33                   |   |
| 91-57-6   | 2-Methylnaphthalene          | 36                   |   |
| 77-47-4   | Hexachlorocyclopentadiene    | 30                   |   |
| 91-58-7   | 2-Chloronaphthalene          | 37                   |   |
| 88-74-4   | 2-Nitroaniline               | 41                   |   |
| 131-11-3  | Dimethylphthalate            | 41                   |   |
| 208-96-8  | Acenaphthylene               | 40                   |   |
| 606-20-2  | 2,6-Dinitrotoluene           | 41                   |   |
| 99-09-2   | 3-Nitroaniline               | 35                   |   |
| 83-32-9   | Acenaphthene                 | 39                   |   |
| 132-64-9  | Dibenzofuran                 | 40                   |   |
| 121-14-2  | 2,4-Dinitrotoluene           | 42                   |   |
| 84-66-2   | Diethylphthalate             | 43                   |   |
| 7005-72-3 | 4-Chlorophenyl-phenylether   | 41                   |   |
| 86-73-7   | Fluorene                     | 42                   |   |
| 100-01-6  | 4-Nitroaniline               | 37                   |   |
| 101-55-3  | 4-Bromophenyl-phenylether    | 43                   |   |
| 118-74-1  | Hexachlorobenzene            | 43                   |   |
| 85-01-8   | Phenanthrene                 | 45                   |   |
| 120-12-7  | Anthracene                   | 44                   |   |
| 86-74-8   | Carbazole                    | 44                   |   |
| 206-44-0  | Fluoranthene                 | 44                   |   |
| 129-00-0  | Pyrene                       | 44                   |   |
| 85-68-7   | Butylbenzylphthalate         | 44                   |   |

## 1E - FORM I SV-2 SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

| EPA | SAMPLE  | NO. |
|-----|---------|-----|
| LCS | D-78523 |     |
|     |         |     |

| Lab Name: S  | SPECTRUM ANALY | TICAL, IN  | С.         | Contract:        |                 |
|--------------|----------------|------------|------------|------------------|-----------------|
| Lab Code: M  | MITKEM (       | Case No.:  | N1400      | Mod. Ref No.:    | SDG No.: SN1400 |
| Matrix: (SO  | IL/SED/WATER)  | WATER      |            | Lab Sample ID:   | LCSD-78523      |
| Sample wt/vo | ol: 1000       | (g/mL)     | ML         | Lab File ID:     | S6B9185.D       |
| Level: (LOW, | /MED) LOW      |            |            | Extraction: (Typ | e) SEPF         |
| % Moisture:  | De             | canted: (  | Y/N)       | Date Received:   |                 |
| Concentrated | d Extract Volu | ıme:       | 1000 (uL)  | Date Extracted:  | 08/12/2014      |
| Injection Vo | olume:(        | uL) GPC Fa | ctor: 1.00 | Date Analyzed:   | 08/26/2014      |
| GPC Cleanup  | :(Y/N) N       | pH:        |            | Dilution Factor: | 1.0             |

| CAS NO.  | COMPOUND                   | CONCENTRATION UNITS:<br>(ug/L or ug/Kg) UG/L | Q |
|----------|----------------------------|----------------------------------------------|---|
| 91-94-1  | 3,3´-Dichlorobenzidine     | 40                                           |   |
| 56-55-3  | Benzo(a)anthracene         | 43                                           |   |
| 218-01-9 | Chrysene                   | 43                                           |   |
| 117-81-7 | Bis(2-ethylhexyl)phthalate | 45                                           |   |
| 205-99-2 | Benzo(b)fluoranthene       | 47                                           |   |
| 207-08-9 | Benzo(k)fluoranthene       | 44                                           |   |
| 50-32-8  | Benzo(a)pyrene             | 43                                           |   |
| 193-39-5 | Indeno(1,2,3-cd)pyrene     | 41                                           |   |
| 53-70-3  | Dibenzo(a,h)anthracene     | 42                                           |   |
| 191-24-2 | Benzo(g,h,i)perylene       | 41                                           |   |

# 1D - FORM I SV-1 SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

| EPA | SAMPLE  | NO. |   |
|-----|---------|-----|---|
| LCS | D-78617 |     | • |
|     |         |     |   |

| Lab Name: SPECTRUM ANALYTICAL, INC.       | Contract:                     |
|-------------------------------------------|-------------------------------|
| Lab Code: MITKEM Case No.: N1400          | Mod. Ref No.: SDG No.: SN1400 |
| Matrix: (SOIL/SED/WATER) SOIL             | Lab Sample ID: LCSD-78617     |
| Sample wt/vol:15.0 (g/mL) G               | Lab File ID: S6B9198.D        |
| Level: (LOW/MED) LOW                      | Extraction: (Type) SONC       |
| % Moisture: Decanted: (Y/N)               | Date Received:                |
| Concentrated Extract Volume:1000 (uL)     | Date Extracted: 08/19/2014    |
| Injection Volume:1.0 (uL) GPC Factor:1.00 | Date Analyzed: 08/26/2014     |
| GPC Cleanup:(Y/N) N pH:                   | Dilution Factor: 1.0          |

|           |                              | CONCENTRATION UNITS:  |   |
|-----------|------------------------------|-----------------------|---|
| CAS NO.   | COMPOUND                     | (ug/L or ug/Kg) UG/KG | Q |
| 111-44-4  | Bis(2-chloroethyl)ether      | 2200                  |   |
| 541-73-1  | 1,3-Dichlorobenzene          | 2400                  |   |
| 106-46-7  | 1,4-Dichlorobenzene          | 2400                  |   |
| 95-50-1   | 1,2-Dichlorobenzene          | 2400                  |   |
| 108-60-1  | 2,2'-oxybis(1-Chloropropane) | 2400                  |   |
| 67-72-1   |                              | 2600                  |   |
| 98-95-3   | Nitrobenzene                 | 2600                  |   |
| 78-59-1   | Isophorone                   | 2500                  |   |
| 120-82-1  | 1,2,4-Trichlorobenzene       | 2500                  |   |
| 91-20-3   | Naphthalene                  | 2600                  |   |
| 106-47-8  | 4-Chloroaniline              | 1300                  |   |
| 111-91-1  | Bis(2-chloroethoxy)methane   | 2500                  |   |
| 87-68-3   | Hexachlorobutadiene          | 2600                  |   |
| 91-57-6   | 2-Methylnaphthalene          | 2400                  |   |
| 77-47-4   | Hexachlorocyclopentadiene    | 3200                  |   |
| 91-58-7   | 2-Chloronaphthalene          | 2600                  |   |
| 88-74-4   | 2-Nitroaniline               | 2400                  |   |
| 131-11-3  | Dimethylphthalate            | 2400                  |   |
| 208-96-8  | Acenaphthylene               | 2600                  |   |
| 606-20-2  | 2,6-Dinitrotoluene           | 2400                  |   |
| 99-09-2   | 3-Nitroaniline               | 1600                  |   |
| 83-32-9   | Acenaphthene                 | 2600                  |   |
| 132-64-9  | Dibenzofuran                 | 2500                  |   |
| 121-14-2  | 2,4-Dinitrotoluene           | 2200                  |   |
| 84-66-2   | Diethylphthalate             | 2300                  |   |
| 7005-72-3 | 4-Chlorophenyl-phenylether   | 2500                  |   |
| 86-73-7   | Fluorene                     | 2500                  |   |
| 100-01-6  | 4-Nitroaniline               | 1800                  |   |
| 101-55-3  | 4-Bromophenyl-phenylether    | 2800                  |   |
| 118-74-1  | Hexachlorobenzene            | 2600                  |   |
| 85-01-8   | Phenanthrene                 | 2700                  |   |
| 120-12-7  | Anthracene                   | 2500                  |   |
| 86-74-8   | Carbazole                    | 2200                  |   |
| 206-44-0  | Fluoranthene                 | 2200                  |   |
| 129-00-0  | Pyrene                       | 3100                  |   |
| 85-68-7   | Butylbenzylphthalate         | 2900                  |   |

# 1E - FORM I SV-2 SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.
LCSD-78617

| Lab Name: SPECTRU  | M ANALYTICAL, INC.        | Contract:         |                 |
|--------------------|---------------------------|-------------------|-----------------|
| Lab Code: MITKEM   | Case No.: N1400           | Mod. Ref No.:     | SDG No.: SN1400 |
| Matrix: (SOIL/SED/ | WATER) SOIL               | Lab Sample ID:    | LCSD-78617      |
| Sample wt/vol:     | 15.0 (g/mL) G             | Lab File ID:      | S6B9198.D       |
| Level: (LOW/MED)   | LOW                       | Extraction: (Type | e) SONC         |
| % Moisture:        | Decanted: (Y/N)           | Date Received:    |                 |
| Concentrated Extra | act Volume:1000 (uL)      | Date Extracted:   | 08/19/2014      |
| Injection Volume:  | 1.0 (uL) GPC Factor: 1.00 | Date Analyzed:    | 08/26/2014      |
| GPC Cleanup:(Y/N)  | м рн:                     | Dilution Factor:  | 1.0             |
|                    |                           |                   |                 |

| CAS NO.                        | COMPOUND                   | CONCENTRATION UNITS: (ug/L or ug/Kg) ug/Kg Q |  |  |  |  |  |
|--------------------------------|----------------------------|----------------------------------------------|--|--|--|--|--|
| 91-94-1                        | 3,3´-Dichlorobenzidine     | 1700                                         |  |  |  |  |  |
| 56-55-3                        | Benzo(a)anthracene         | 2600                                         |  |  |  |  |  |
| 218-01-9                       | Chrysene                   | 2600                                         |  |  |  |  |  |
| 117-81-7                       | Bis(2-ethylhexyl)phthalate | 2900                                         |  |  |  |  |  |
| 205-99-2                       | Benzo(b)fluoranthene       | 2700                                         |  |  |  |  |  |
| 207-08-9                       | Benzo(k)fluoranthene       | 2700                                         |  |  |  |  |  |
| 50-32-8                        | Benzo(a)pyrene             | 2600                                         |  |  |  |  |  |
| 193-39-5                       | Indeno(1,2,3-cd)pyrene     | 2500                                         |  |  |  |  |  |
| 53-70-3 Dibenzo(a,h)anthracene |                            | 2400                                         |  |  |  |  |  |
| 191-24-2                       | Benzo(g,h,i)perylene       | 2500                                         |  |  |  |  |  |

#### 2H - FORM II SV-2

#### WATER SEMIVOLATILE DEUTERATED MONITORING COMPOUND RECOVERY

Lab Name: SPECTRUM ANALYTICAL, INC. Contract:

Lab Code: MITKEM Case No.: N1400 Mod. Ref No.: SDG No.: SN1400

|    | EPA                | SDMC1   | SDMC2   | SDMC3   | SDMC4   | SDMC5   | SDMC6   | TOT |
|----|--------------------|---------|---------|---------|---------|---------|---------|-----|
|    | SAMPLE NO.         | (NBZ) # | (FBP) # | (TPH) # | (PHL) # | (2FP) # | (TBP) # | OUT |
| 01 | MB-78523           | 83      | 78      | 89      | 12      | 21      | 79      | 0   |
| 02 | LCS-78523          | 82      | 80      | 81      | 12      | 21      | 75      | 0   |
| 03 | LCSD-78523         | 82      | 78      | 82      | 13      | 23      | 82      | 0   |
| 04 | SUR-2              | 99      | 99      | 70      |         |         |         | 0   |
| 05 | SUR-3              | 96      | 93      | 77      |         |         |         | 0   |
|    | FIELD<br>DUPLICATE | 91      | 91      | 73      |         |         |         | 0   |
| 07 | SUR-4              | 93      | 91      | 61      |         |         |         | 0   |
| 08 | SUR 1              | 88      | 86      | 62      |         |         |         | 0   |
| 09 | SUR 5              | 88      | 84      | 65      |         |         |         | 0   |
| 10 | SUR-6              | 94      | 91      | 60      |         |         |         | 0   |
| 11 | SUR-7              | 93      | 90      | 66      |         |         |         | 0   |
| 12 | SUR-8              | 91      | 91      | 73      |         |         |         | 0   |
| 13 | EQUIP.BLANK        | 90      | 86      | 65      |         |         |         | 0   |

|       |                              | QC LIMITS |
|-------|------------------------------|-----------|
| SDMC1 | (NBZ) = Nitrobenzene-d5      | (40-110)  |
| SDMC2 | (FBP) = 2-Fluorobiphenyl     | (50-110)  |
| SDMC3 | (TPH) = Terphenyl-d14        | (50-135)  |
| SDMC4 | (PHL) = Phenol-d5            | (10-115)  |
| SDMC5 | (2FP) = 2-Fluorophenol       | (20-110)  |
| SDMC6 | (TBP) = 2,4,6-Tribromophenol | (40-125)  |

#### som14.07.15.0901

 $<sup>\</sup>mbox{\tt\#}$  Column to be used to flag recovery values

<sup>\*</sup> Values outside of contract required QC limits

D DMC diluted out

#### 2K - FORM II SV-4

#### SOIL SEMIVOLATILE DEUTERATED MONITORING COMPOUND RECOVERY

Lab Name: SPECTRUM ANALYTICAL, INC. Contract:

Lab Code: MITKEM Case No.: N1400 Mod. Ref No.: SDG No.: SN1400

Level: (LOW/MED) LOW

|    | EPA        | SDMC1   | SDMC2   | SDMC3   | SDMC4   | SDMC5   | SDMC6   | TOT |
|----|------------|---------|---------|---------|---------|---------|---------|-----|
|    | SAMPLE NO. | (NBZ) # | (FBP) # | (TPH) # | (PHL) # | (2FP) # | (TBP) # | OUT |
| 01 | MB-78617   | 88      | 88      | 104     | 79      | 83      | 84      | 0   |
| 02 | LCS-78617  | 79      | 79      | 90      | 73      | 76      | 78      | 0   |
| 03 | LCSD-78617 | 80      | 81      | 91      | 70      | 74      | 75      | 0   |
| 04 | SED-6      | 70      | 69      | 85      |         |         |         | 0   |
| 05 | SED-7      | 71      | 71      | 82      |         |         |         | 0   |

|       |                              | QC LIMITS |
|-------|------------------------------|-----------|
| SDMC1 | (NBZ) = Nitrobenzene-d5      | (35-100)  |
| SDMC2 | (FBP) = 2-Fluorobiphenyl     | (45-105)  |
| SDMC3 | (TPH) = Terphenyl-d14        | (30-125)  |
| SDMC4 | (PHL) = Phenol-d5            | (40-100)  |
| SDMC5 | (2FP) = 2-Fluorophenol       | (35-105)  |
| SDMC6 | (TBP) = 2,4,6-Tribromophenol | (35-125)  |

#### som14.07.15.0901

 $<sup>\</sup>mbox{\tt\#}$  Column to be used to flag recovery values

<sup>\*</sup> Values outside of contract required QC limits

D DMC diluted out

# 3 - FORM III WATER LABORATORY CONTROL SAMPLE RECOVERY

EPA SAMPLE NO.

LCS-78523

| Lab | Name:  | SPECTRUM | ANALYTICAL, | TNC   | Contract: |
|-----|--------|----------|-------------|-------|-----------|
| цар | manic. | DEFCIKON | MINDLITCHL, | TIVC. | Concract. |

Lab Code: MITKEM Case No.: N1400 Mod. Ref No.: SDG No.: SN1400

Lab Sample ID: LCS-78523 LCS Lot No.: A0101343

Date Extracted: 08/12/2014 Date Analyzed (1): 08/26/2014

| -                                         | SPIKE   | SAMPLE        | LCS           |           |   | QC.                  |
|-------------------------------------------|---------|---------------|---------------|-----------|---|----------------------|
| COMPOLIND                                 | ADDED   | CONCENTRATION | CONCENTRATION | T.CC &PFC | # | LIMITS               |
| COMPOUND                                  | ADDED   | CONCENTRATION | CONCENTRATION | LCS SKEC  | # | REC.                 |
| Bis(2-chloroethyl)ether                   | 50.0000 | 0.0000        | 35.8371       | . 72      |   | 35 - 110             |
| 1,3-Dichlorobenzene                       | 50.0000 | 0.0000        | 33.3076       | 67        |   | 30 - 100             |
| 1,4-Dichlorobenzene                       | 50.0000 | 0.0000        |               |           |   | 30 - 100             |
| 1,2-Dichlorobenzene                       | 50.0000 | 0.0000        | 33.8423       | 68        |   | 35 - 100             |
| 2,2'-oxybis(1-Chloropropan                | 50.0000 | 0.0000        | 36.5114       | . 73      |   | 30 - 123             |
| Hexachloroethane                          | 50.0000 | 0.0000        | 32.7365       | 65        |   | 30 - 95              |
| Nitrobenzene                              | 50.0000 | 0.0000        | 38.1701       | . 76      |   | 45 - 110             |
| Isophorone                                | 50.0000 | 0.0000        | 39.1761       | . 78      |   | 50 - 110             |
| 1,2,4-Trichlorobenzene                    | 50.0000 | 0.0000        | 32.8128       | 66        |   | 35 - 105             |
| Naphthalene                               | 50.0000 | 0.0000        | 35.9623       | 72        |   | 40 - 100             |
| 4-Chloroaniline                           | 50.0000 | 0.0000        | 32.4485       | 65        |   | 15 - 110             |
| Bis(2-chloroethoxy)methane                | 50.0000 | 0.0000        | 38.3174       | . 77      |   | 45 - 105             |
| Hexachlorobutadiene                       | 50.0000 | 0.0000        | 32.7891       | . 66      |   | 25 - 105             |
| 2-Methylnaphthalene                       | 50.0000 | 0.0000        | 35.6275       | 71        |   | 45 - 105             |
| Hexachlorocyclopentadiene                 | 50.0000 | 0.0000        | 25.5880       | 51        |   | 27 - 147             |
| 2-Chloronaphthalene                       | 50.0000 | 0.0000        | 37.4690       | 75        |   | 50 - 105             |
| 2-Nitroaniline                            | 50.0000 | 0.0000        |               |           |   | 50 - 115             |
| Dimethylphthalate                         | 50.0000 | 0.0000        |               |           |   | 25 - 125             |
| Acenaphthylene                            | 50.0000 |               |               |           |   | 50 - 105             |
| 2,6-Dinitrotoluene                        | 50.0000 |               |               |           |   | 50 - 115             |
| 3-Nitroaniline                            | 50.0000 |               |               |           |   | 20 - 125             |
| Acenaphthene                              | 50.0000 |               |               |           |   | 45 - 110             |
| Dibenzofuran                              | 50.0000 |               |               |           |   | 55 - 105             |
| 2,4-Dinitrotoluene                        | 50.0000 |               |               |           |   | 50 - 120             |
| Diethylphthalate                          | 50.0000 |               |               |           |   | 40 - 120             |
| 4-Chlorophenyl-phenylether                | 50.0000 |               |               |           |   | 50 - 110             |
| Fluorene                                  | 50.0000 |               |               |           |   | 50 - 110             |
| 4-Nitroaniline                            | 50.0000 |               |               |           |   | 35 - 120             |
| 4-Bromophenyl-phenylether                 | 50.0000 |               |               |           |   | 50 - 115             |
| Hexachlorobenzene                         | 50.0000 |               |               |           |   | 50 - 110             |
| Phenanthrene                              | 50.0000 |               |               |           |   | 50 - 115             |
| Anthracene                                | 50.0000 |               |               |           |   | 55 - 110             |
| Carbazole                                 | 50.0000 |               |               |           |   | 50 - 115             |
| Fluoranthene                              | 50.0000 |               |               |           |   | 55 - 115             |
| Pyrene                                    | 50.0000 |               |               |           |   | 50 - 130             |
| Butylbenzylphthalate                      | 50.0000 |               |               |           |   | 45 - 115             |
| 3,3´-Dichlorobenzidine                    | 50.0000 |               |               |           |   | 20 - 110             |
| Benzo(a)anthracene                        | 50.0000 |               |               |           |   | 55 - 110             |
| Chrysene                                  | 50.0000 |               |               |           |   | 55 - 110             |
| Bis(2-ethylhexyl)phthalate                | 50.0000 |               |               |           |   | 40 - 125<br>45 - 120 |
| Benzo(b)fluoranthene Benzo(k)fluoranthene | 50.0000 |               |               |           |   | 45 - 120             |
| Benzo(k):Iluoranthene Benzo(a):pyrene     | 50.0000 |               |               |           |   | 45 - 125<br>55 - 110 |
| Indeno(1,2,3-cd)pyrene                    | 50.0000 |               |               |           |   | 45 - 125             |
| Indeno(1,2,3-cd)pyrene                    | 50.0000 | 0.0000        | 40.1435       | 80        |   | 45 - 125             |

## 3 - FORM III WATER LABORATORY CONTROL SAMPLE RECOVERY

EPA SAMPLE NO.
LCS-78523

| Lab N | Lab Name: SPECTRUM ANALYTICAL, INC. |         |                 |                | Contract       | :                             |          |     |          |  |  |
|-------|-------------------------------------|---------|-----------------|----------------|----------------|-------------------------------|----------|-----|----------|--|--|
| Lab C | Code:                               | MITKE   | M Case N        | N1400          | Mod. Ref       | No.:                          | SDG 1    | No. | : SN1400 |  |  |
| Lab S | Lab Sample ID: LCS-78523            |         |                 |                |                | LCS Lot No.: A0101343         |          |     |          |  |  |
| Date  | Extra                               | cted:   | 08/12/2014      |                | Date Ana       | Date Analyzed (1): 08/26/2014 |          |     |          |  |  |
|       | COMPOUND                            |         |                 | SPIKE          | SAMPLE         | LCS                           |          |     | QC.      |  |  |
|       |                                     |         |                 | ADDED          | CONCENTRATION  | CONCENTRATION                 | LCS %REC | #   | LIMITS   |  |  |
|       |                                     |         |                 |                | •              |                               |          |     | REC.     |  |  |
|       | Diben                               | zo(a,h  | )anthracene     | 50.0000        | 0.0000         | 39.6178                       | 79       |     | 40 - 125 |  |  |
|       | Benzo                               | (g,h,i  | )perylene       | 50.0000        | 0.0000         | 38.3131                       | 77       |     | 40 - 125 |  |  |
|       |                                     |         | ed to flag reco | very and RPD v | values with an | asterisk                      |          |     |          |  |  |
| Vai   | acb ca                              | coluc ( | or go irmitob   |                |                |                               |          |     |          |  |  |
| Spike | Recov                               | ery:    | out of          | 46 outside     | limits         |                               |          |     |          |  |  |
| COMME | NTS:                                |         |                 |                |                |                               |          |     |          |  |  |

som14.07.15.0901 SW846

# 3 - FORM III SOIL LABORATORY CONTROL SAMPLE RECOVERY

EPA SAMPLE NO.

LCS-78617

Lab Name: SPECTRUM ANALYTICAL, INC. Contract:

Lab Code: MITKEM Case No.: N1400 Mod. Ref No.: SDG No.: SN1400

Lab Sample ID: LCS-78617 LCS Lot No.: A0100278

Date Extracted: 08/19/2014 Date Analyzed (1): 08/26/2014

| Extracted: 06/19/2014      |           |               | 1yzed (1). <u> </u> | 0/20/201- |   |          |
|----------------------------|-----------|---------------|---------------------|-----------|---|----------|
|                            | SPIKE     | SAMPLE        | LCS                 |           |   | QC.      |
| COMPOUND                   | ADDED     | CONCENTRATION | CONCENTRATION       | LCS %REC  | # | LIMITS   |
|                            |           | ı             |                     |           |   | REC.     |
| Bis(2-chloroethyl)ether    | 3333.0000 | 0.0000        | 2284.0599           | 69        |   | 40 - 105 |
| 1,3-Dichlorobenzene        | 3333.0000 |               |                     |           |   | 40 - 100 |
| 1,4-Dichlorobenzene        | 3333.0000 | 0.0000        | 2435.6149           | 73        |   | 35 - 105 |
| 1,2-Dichlorobenzene        | 3333.0000 | 0.0000        | 2402.8902           | 72        |   | 45 - 95  |
| 2,2'-oxybis(1-Chloropropan | 3333.0000 | 0.0000        | 2435.2038           | 73        |   | 20 - 115 |
| Hexachloroethane           | 3333.0000 | 0.0000        | 2477.3572           | 74        |   | 35 - 110 |
| Nitrobenzene               | 3333.0000 | 0.0000        | 2486.0626           | 75        |   | 40 - 115 |
| Isophorone                 | 3333.0000 | 0.0000        | 2422.3603           | 73        |   | 45 - 110 |
| 1,2,4-Trichlorobenzene     | 3333.0000 | 0.0000        | 2447.0223           | 73        |   | 45 - 110 |
| Naphthalene                | 3333.0000 | 0.0000        | 2493.0604           | 75        |   | 40 - 105 |
| 4-Chloroaniline            | 3333.0000 | 0.0000        | 1082.5902           | 32        |   | 10 - 100 |
| Bis(2-chloroethoxy)methane | 3333.0000 | 0.0000        | 2426.9051           | 73        |   | 45 - 110 |
| Hexachlorobutadiene        | 3333.0000 | 0.0000        | 2511.0267           | 75        |   | 40 - 115 |
| 2-Methylnaphthalene        | 3333.0000 | 0.0000        | 2394.0460           | 72        |   | 45 - 105 |
| Hexachlorocyclopentadiene  | 3333.0000 | 0.0000        | 2800.6269           | 84        |   | 8 - 148  |
| 2-Chloronaphthalene        | 3333.0000 | 0.0000        | 2527.2824           | 76        |   | 45 - 105 |
| 2-Nitroaniline             | 3333.0000 | 0.0000        | 2481.5649           | 74        |   | 45 - 120 |
| Dimethylphthalate          | 3333.0000 | 0.0000        | 2486.2657           | 75        |   | 50 - 110 |
| Acenaphthylene             | 3333.0000 | 0.0000        | 2584.1970           | 78        |   | 45 - 105 |
| 2,6-Dinitrotoluene         | 3333.0000 | 0.0000        | 2459.1814           | 74        |   | 50 - 110 |
| 3-Nitroaniline             | 3333.0000 | 0.0000        | 1662.9122           | 50        |   | 25 - 110 |
| Acenaphthene               | 3333.0000 | 0.0000        | 2494.4024           | 75        |   | 45 - 110 |
| Dibenzofuran               | 3333.0000 | 0.0000        | 2487.8849           | 75        |   | 50 - 105 |
| 2,4-Dinitrotoluene         | 3333.0000 | 0.0000        | 2463.4300           | 74        |   | 50 - 115 |
| Diethylphthalate           | 3333.0000 | 0.0000        | 2497.1070           | 75        |   | 50 - 115 |
| 4-Chlorophenyl-phenylether | 3333.0000 | 0.0000        | 2499.4214           | 75        |   | 45 - 110 |
| Fluorene                   | 3333.0000 | 0.0000        | 2528.0754           | 76        |   | 50 - 110 |
| 4-Nitroaniline             | 3333.0000 | 0.0000        | 2085.0292           | 63        |   | 35 - 115 |
| 4-Bromophenyl-phenylether  | 3333.0000 | 0.0000        | 2659.5692           | 80        |   | 45 - 115 |
| Hexachlorobenzene          | 3333.0000 | 0.0000        | 2618.6763           | 79        |   | 45 - 120 |
| Phenanthrene               | 3333.0000 | 0.0000        | 2685.5156           | 81        |   | 50 - 110 |
| Anthracene                 | 3333.0000 | 0.0000        | 2598.0920           | 78        |   | 55 - 105 |
| Carbazole                  | 3333.0000 | 0.0000        | 2393.9794           | 72        |   | 45 - 115 |
| Fluoranthene               | 3333.0000 | 0.0000        | 2451.7403           | 74        |   | 55 - 115 |
| Pyrene                     | 3333.0000 | 0.0000        | 2891.9947           | 87        |   | 45 - 125 |
| Butylbenzylphthalate       | 3333.0000 | 0.0000        | 2835.2274           | 85        |   | 50 - 125 |
| 3,3'-Dichlorobenzidine     | 3333.0000 | 0.0000        | 1611.0718           | 48        |   | 10 - 130 |
| Benzo(a)anthracene         | 3333.0000 | 0.0000        | 2589.7746           | 78        |   | 50 - 110 |
| Chrysene                   | 3333.0000 | 0.0000        | 2539.1297           | 76        |   | 55 - 110 |
| Bis(2-ethylhexyl)phthalate | 3333.0000 | 0.0000        | 2835.1748           | 85        |   | 45 - 125 |
| Benzo(b)fluoranthene       | 3333.0000 |               |                     | 86        |   | 45 - 115 |
| Benzo(k)fluoranthene       | 3333.0000 | 0.0000        | 2767.4625           | 83        |   | 45 - 125 |
| Benzo(a)pyrene             | 3333.0000 | 0.0000        | 2648.1375           | 79        |   | 50 - 110 |
| Indeno(1,2,3-cd)pyrene     | 3333.0000 | 0.0000        | 2397.1392           | 72        |   | 40 - 120 |
|                            |           |               |                     |           |   |          |

# 3 - FORM III SOIL LABORATORY CONTROL SAMPLE RECOVERY

LCS-78617

| Lab Name: SPECTRUM ANALYTICAL |                         |        |          | LYTICAL,        | INC.                    | Contract             | <u> </u>     |            |                       |          |  |  |
|-------------------------------|-------------------------|--------|----------|-----------------|-------------------------|----------------------|--------------|------------|-----------------------|----------|--|--|
| Lab (                         | Lab Code: MITKEM Case N |        | Case No  | .: <u>N1400</u> | Mod. Ref                | Mod. Ref No.:        |              | No.        | : SN1400              |          |  |  |
| Lab S                         | Sample                  | ID:    | LCS-78   | 617             |                         | LCS Lot              | No.: A010    | 0278       |                       |          |  |  |
| Date                          | Extracted: 08/19/2014   |        |          | 2014            | Date Analyzed (1)       |                      | lyzed (1): 0 | 08/26/2014 |                       |          |  |  |
| COMPOUN                       |                         | 1POUND |          | SPIKE<br>ADDED  | SAMPLE<br>CONCENTRATION | LCS<br>CONCENTRATION | LCS %REC     | #          | QC.<br>LIMITS<br>REC. |          |  |  |
|                               | Dibenzo(a,h)anthracene  |        | ene      | 3333.0000       | 0.0000                  | 2380.4103            | 71           |            | 40 - 125              |          |  |  |
|                               | Benzo                   | (g,h,i | )peryler | ne              | 3333.0000               | 0.0000               | 2344.4409    | 70         |                       | 40 - 125 |  |  |
|                               |                         |        | ed to fl |                 | ry and RPD v            | values with an       | asterisk     |            |                       |          |  |  |
| Spike                         | e Recov                 | ery:   | 0 0      | ut of           | 16 outside              | limits               |              |            |                       |          |  |  |
| COMME                         | ENTS:                   |        |          |                 |                         |                      |              |            |                       |          |  |  |

som14.07.15.0901 SW846

#### 3 - FORM III

# WATER LABORATORY CONTROL SAMPLE DUPLICATE RECOVERY

EPA SAMPLE NO.

LCSD-78523

Lab Name: SPECTRUM ANALYTICAL, INC. Contract:

Lab Code: MITKEM Case No.: N1400 Mod. Ref No.: SDG No.: SN1400

Lab Sample ID: LCSD-78523 LCS Lot No.: A0101343

| Fluoranthene       50.0000       43.8846       88       7       40       55 - 115         Pyrene       50.0000       43.7760       88       7       40       50 - 130         Butylbenzylphthalate       50.0000       44.0672       88       3       40       45 - 115         3,3'-Dichlorobenzidine       50.0000       40.3235       81       13       40       20 - 110         Benzo(a)anthracene       50.0000       43.4801       87       7       40       55 - 110         Chrysene       50.0000       43.3780       87       7       40       55 - 110         Bis(2-ethylhexyl)phthalate       50.0000       44.5894       89       2       40       40 - 125         Benzo(b)fluoranthene       50.0000       43.9745       88       3       40       45 - 125         Benzo(a)pyrene       50.0000       43.0186       86       6       40       55 - 110         Indeno(1,2,3-cd)pyrene       50.0000       41.8649       84       6       40       45 - 125         Dibenzo(a,h)anthracene       50.0000       41.8649       84       6       40       40 - 125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                            | SPIKE   | LCSD          | _         |   |      |   | QC  | LIMITS   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|---------|---------------|-----------|---|------|---|-----|----------|
| Bis(2-chloroethyl)ether                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | COMPOUND                   | ADDED   | CONCENTRATION | LCSD %REC | # | %RPD | # | RPD | REC.     |
| 1,3-Dichlorobenzene 50.0000 33.1878 66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                            | 50 0000 | 36 2309       | 72        |   | 0    |   |     |          |
| 1.4-Dichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | - 1                        |         |               |           |   |      |   |     |          |
| 1,2-pichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                            |         |               |           |   | ļ    |   |     |          |
| 2.2°-coxybis(1-Chloropropan   50.0000   36.8424   74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                            |         |               |           |   |      |   |     |          |
| Rexachloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                            |         |               |           |   | ļ    |   |     |          |
| Nitrobenzene 50.0000 39.2808 79 4 4 40 45 - 110 Isophorone 50.0000 40.3965 81 4 4 40 50 - 110 1.2,4-Trichlorobenzene 50.0000 34.6009 69 4 4 40 35 - 105 Naphthalene 50.0000 37.2860 75 4 4 40 40 - 100 4-Chloroaniline 50.0000 37.2860 75 4 4 40 40 - 100 4-Chloroaniline 50.0000 39.3629 66 2 40 15 - 110 18 18 18 18 18 18 18 18 18 18 18 18 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                            |         |               |           |   |      |   |     |          |
| Isophorone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                            |         |               |           |   |      |   |     |          |
| 1,2,4-Trichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                            |         |               |           |   |      |   |     |          |
| Naphthalene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | _                          |         |               |           |   | 4    |   |     |          |
| ## A-Chloroaniline   50.0000   32.8629   66   2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |         |               |           |   | 4    |   | 40  |          |
| Bis(2-chloroethoxy)methane   50.0000   39.9771   80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                            |         |               |           |   | 2    |   | 40  |          |
| Hexachlorobutadiene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                            |         |               |           |   | 4    |   | 40  |          |
| 2-Methylnaphthalene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | =                          |         |               |           |   | 0    |   | 40  |          |
| Hexachlorocyclopentadiene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                            |         |               |           |   | 1    |   | 40  | 45 - 105 |
| 2-Chloronaphthalene 50.0000 37.3265 75 0 0 40 50 - 105 2-Nitroaniline 50.0000 41.0711 82 4 4 40 50 - 115 Dimethylphthalate 50.0000 41.3515 83 4 4 0 25 - 125 Acenaphthylene 50.0000 40.3692 81 5 40 50 - 105 2,6-Dinitrotoluene 50.0000 40.5923 81 3 40 50 - 105 2,6-Dinitrotoluene 50.0000 34.8982 70 4 4 0 20 - 125 Acenaphthene 50.0000 34.8982 70 4 4 0 50 - 105 Dibenzofuran 50.0000 39.3152 79 0 0 40 45 - 110 Dibenzofuran 50.0000 39.8176 80 3 40 55 - 105 2,4-Dinitrotoluene 50.0000 42.1370 84 5 0 40 50 - 120 Diethylphthalate 50.0000 42.1370 84 5 0 40 50 - 120 Diethylphthalate 50.0000 42.9340 86 5 40 40 50 - 110 Pluorene 50.0000 41.5754 83 1 40 50 - 110 4-Nitroaniline 50.0000 36.9847 74 6 40 50 - 110 4-Ricroaniline 50.0000 42.8431 86 7 40 50 - 110 Hexachlorobenzene 50.0000 42.8431 86 7 40 50 - 110 Phenanthrene 50.0000 43.6473 87 10 40 50 - 110 Anthracene 50.0000 43.84673 87 10 40 50 - 110 Carbazole 50.0000 43.8846 88 7 40 50 - 115 Fluoranthene 50.0000 43.8846 88 7 40 50 - 115 Shuthracene 50.0000 43.8846 88 7 40 50 - 115 Shuthracene 50.0000 43.8846 88 7 40 55 - 110 Carbazole 50.0000 43.8846 88 7 40 50 - 115 Shuthracene 50.0000 43.8846 88 7 40 50 - 115 Shuthracene 50.0000 43.8846 88 7 40 55 - 115 Shuthracene 50.0000 43.8846 88 7 40 55 - 115 Shuthracene 50.0000 43.8846 88 7 40 55 - 115 Shuthracene 50.0000 43.8846 88 7 40 55 - 115 Shuthracene 50.0000 43.8846 88 7 40 55 - 115 Shuthracene 50.0000 43.8846 88 7 40 55 - 115 Shuthracene 50.0000 43.8846 88 7 40 55 - 115 Shuthracene 50.0000 43.8846 88 7 40 55 - 115 Shuthracene 50.0000 43.8846 88 7 40 55 - 115 Senzo(a)anthracene 50.0000 43.4801 87 7 40 55 - 115 Senzo(a)anthracene 50.0000 43.4801 87 7 40 55 - 115 Senzo(b)fluoranthene 50.0000 43.4801 87 7 40 55 - 115 Senzo(b)fluoranthene 50.0000 43.4801 87 7 40 55 - 115 Senzo(b)fluoranthene 50.0000 43.4801 87 7 40 55 - 115 Senzo(b)fluoranthene 50.0000 43.4801 87 7 40 55 - 115 Senzo(b)fluoranthene 50.0000 43.9745 88 3 40 45 - 125 Senzo(b)fluoranthene 50.0000 43.9745 88 3 40 45 - 125 Senzo(a)pyrene 50.0000 43.0705 82 2 40 45 - 125        | = =                        |         |               |           |   | 16   |   | 40  |          |
| 2-Nitroaniline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                            |         |               |           |   | 0    |   | 40  |          |
| Dimethylphthalate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _                          |         |               |           |   | 4    |   | 40  |          |
| Acenaphthylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                            |         |               |           |   | 4    |   | 40  | 25 - 125 |
| 2,6-Dinitrotoluene       50.0000       40.5923       81       3       40       50 - 115         3-Nitroaniline       50.0000       34.8982       70       4       40       20 - 125         Acenaphthene       50.0000       39.3352       79       0       40       45 - 110         Dibenzofuran       50.0000       39.8176       80       3       40       55 - 105         2,4-Dinitrotoluene       50.0000       42.1370       84       5       40       50 - 120         Diethylphthalate       50.0000       42.9340       86       5       40       40 - 120         4-Chlorophenyl-phenylether       50.0000       41.5754       83       1       40       50 - 110         Fluorene       50.0000       41.5754       83       1       40       50 - 110         4-Bromophenyl-phenylether       50.0000       42.8431       86       7       40       50 - 110         Hexachlorobenzene       50.0000       42.8431       86       7       40       50 - 110         Hexachlorobenzene       50.0000       43.6473       87       10       40       50 - 110         Phenanthracene       50.0000       43.6473       87 <td< td=""><td></td><td></td><td></td><td></td><td></td><td>5</td><td></td><td>40</td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            |         |               |           |   | 5    |   | 40  |          |
| 3-Nitroaniline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                            |         |               |           |   | 3    |   | 40  | 50 - 115 |
| Acenaphthene 50.0000 39.3352 79 0 40 45 - 110 Dibenzofuran 50.0000 39.8176 80 3 40 55 - 105 2,4-Dinitrotoluene 50.0000 42.1370 84 5 40 50 - 120 Diethylphthalate 50.0000 42.9340 86 5 40 40 - 120 4-Chlorophenyl-phenylether 50.0000 41.5754 83 1 40 50 - 110 Fluorene 50.0000 41.5754 83 1 40 50 - 110 4-Nitroaniline 50.0000 42.8431 86 7 40 50 - 110 4-Bromophenyl-phenylether 50.0000 42.8431 86 7 40 50 - 110 4-Bromophenyl-phenylether 50.0000 42.8431 86 7 40 50 - 110 Fluorene 50.0000 42.7244 85 6 40 50 - 110 Fluoranthene 50.0000 43.6473 87 10 40 50 - 110 Fluoranthene 50.0000 43.6473 87 10 40 50 - 115 Fluoranthene 50.0000 43.6473 87 10 40 55 - 115 Fluoranthene 50.0000 43.8846 88 7 40 50 - 115 Fluoranthene 50.0000 43.8846 88 7 40 50 - 115 Fluoranthene 50.0000 43.7760 88 7 40 55 - 115 Fluoranthene 50.0000 43.7760 88 7 40 50 - 130 Butylbenzylphthalate 50.0000 43.8846 88 7 40 50 - 130 Butylbenzylphthalate 50.0000 43.8806 88 7 40 50 - 130 Butylbenzylphthalate 50.0000 43.8806 88 7 40 50 - 130 Benzo(a)anthracene 50.0000 43.3780 87 7 40 55 - 110 Chrysene 50.0000 43.3780 87 7 40 55 - 110 Bis(2-ethylhexyl)phthalate 50.0000 43.3780 87 7 40 55 - 110 Bis(2-ethylhexyl)phthalate 50.0000 43.8804 89 2 40 40 - 125 Benzo(b)fluoranthene 50.0000 43.9745 88 3 40 45 - 125 Benzo(b)fluoranthene 50.0000 43.9745 88 3 40 45 - 125 Benzo(b)fluoranthene 50.0000 43.9745 88 3 40 45 - 125 Benzo(b)fluoranthene 50.0000 43.9745 88 3 40 45 - 125 Benzo(b)fluoranthene 50.0000 43.9745 88 3 40 45 - 125 Benzo(b)fluoranthene 50.0000 43.9745 88 3 40 45 - 125 Benzo(b)fluoranthene 50.0000 43.9745 88 3 40 45 - 125 Benzo(a)pyrene 50.0000 43.9745 88 3 40 45 - 125 Benzo(a)pyrene 50.0000 43.9745 88 3 40 40 45 - 125 Benzo(a)pyrene 50.0000 43.8649 84 66 60 40 45 - 125 Benzo(a)pyrene 50.0000 43.8649 84 66 60 40 45 - 125 Benzo(a)pyrene 50.0000 43.9745 88 3 40 40 40 - 125 Benzo(a)pyrene 50.0000 43.9745 88 3 40 40 40 - 125 Benzo(a)pyrene 50.0000 43.9745 88 66 60 40 45 - 125 Benzo(a)pyrene 50.0000 43.8649 84 66 60 40 40 - 125 Benzo(a)pyrene 50.0000 43.8649 84 66 60 40 40 40 - 125 |                            |         |               |           |   | 4    |   | 40  | 20 - 125 |
| Dibenzofuran         50.0000         39.8176         80         3         40         55         - 105           2,4-Dinitrotoluene         50.0000         42.1370         84         5         40         50         - 120           Diethylphthalate         50.0000         42.9340         86         5         40         40         - 120           4-Chlorophenyl-phenylether         50.0000         40.5961         81         1         40         50         - 110           Fluorene         50.0000         41.5754         83         1         40         50         - 110           Fluorene         50.0000         36.9847         74         6         40         35         - 120           4-Bromophenyl-phenylether         50.0000         42.8431         86         7         40         50         - 115           Hexachlorobenzene         50.0000         42.7244         85         6         40         50         - 115           Hexachlorobenzene         50.0000         43.6473         87         10         40         55         - 110           Phenanthrene         50.0000         43.6473         87         10         40         55         - 110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Acenaphthene               |         |               | 79        |   | 0    |   | 40  | 45 - 110 |
| 2,4-Dinitrotoluene       50.0000       42.1370       84       5       40       50 - 120         Diethylphthalate       50.0000       42.9340       86       5       40       40 - 120         4-Chlorophenyl-phenylether       50.0000       40.5961       81       1       40       50 - 110         Fluorene       50.0000       41.5754       83       1       40       50 - 110         4-Nitroaniline       50.0000       36.9847       74       6       40       35 - 120         4-Bromophenyl-phenylether       50.0000       42.8431       86       7       40       50 - 115         Hexachlorobenzene       50.0000       42.7244       85       6       40       50 - 115         Hexachlorobenzene       50.0000       45.0302       90       7       40       50 - 115         Hexachlorobenzene       50.0000       43.6473       87       10       40       55 - 115         Anthracene       50.0000       43.846       8       8       40       50 - 115         Fluoranthene       50.0000       43.7760       88       7       40       55 - 115         Pyrene       50.0000       43.3780       87       7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | _                          |         |               |           |   | 3    |   | 40  |          |
| Diethylphthalate         50.0000         42.9340         86         5         40         40 - 120           4-Chlorophenyl-phenylether         50.0000         40.5961         81         1         40         50 - 110           Fluorene         50.0000         41.5754         83         1         40         50 - 110           4-Nitroaniline         50.0000         36.9847         74         6         40         35 - 120           4-Bromophenyl-phenylether         50.0000         42.8431         86         7         40         50 - 115           Hexachlorobenzene         50.0000         42.7244         85         6         40         50 - 115           Hexachlorobenzene         50.0000         45.0302         90         7         40         50 - 115           Hexachlorobenzene         50.0000         43.6473         87         10         40         55 - 110           Anthracene         50.0000         43.84673         87         10         40         55 - 110           Carbazole         50.0000         43.8846         88         8         40         50 - 115           Fluoranthene         50.0000         43.7760         88         7         40         55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2,4-Dinitrotoluene         |         |               |           |   | 5    |   | 40  |          |
| 4-Chlorophenyl-phenylether       50.0000       40.5961       81       1       40       50 - 110         Fluorene       50.0000       41.5754       83       1       40       50 - 110         4-Nitroaniline       50.0000       36.9847       74       6       40       35 - 120         4-Bromophenyl-phenylether       50.0000       42.8431       86       7       40       50 - 115         Hexachlorobenzene       50.0000       42.7244       85       6       40       50 - 110         Phenanthrene       50.0000       45.0302       90       7       40       50 - 115         Anthracene       50.0000       43.6473       87       10       40       55 - 110         Carbazole       50.0000       43.6473       87       10       40       55 - 110         Carbazole       50.0000       43.8846       88       8       40       50 - 115         Fluoranthene       50.0000       43.8846       88       7       40       55 - 115         Pyrene       50.0000       43.7760       88       7       40       50 - 130         Butylbenzylphthalate       50.0000       40.3235       81       13       40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            | 50.0000 |               |           |   | 5    |   | 40  | 40 - 120 |
| Fluorene 50.0000 41.5754 83 1 40 50 - 110 4-Nitroaniline 50.0000 36.9847 74 6 40 35 - 120 4-Bromophenyl-phenylether 50.0000 42.8431 86 7 40 50 - 115 Hexachlorobenzene 50.0000 42.7244 85 6 40 50 - 115 Phenanthrene 50.0000 45.0302 90 7 40 50 - 115 Anthracene 50.0000 43.6473 87 10 40 55 - 110 Carbazole 50.0000 44.0407 88 8 8 40 50 - 115 Fluoranthene 50.0000 43.8846 88 7 40 55 - 115 Pyrene 50.0000 43.7760 88 7 40 55 - 115 Butylbenzylphthalate 50.0000 44.0672 88 3 40 45 - 115 3,3'-Dichlorobenzidine 50.0000 43.4801 87 7 40 55 - 110 Chrysene 50.0000 43.3780 87 7 40 55 - 110 Chrysene 50.0000 43.3780 87 7 40 55 - 110 Bis(2-ethylhexyl)phthalate 50.0000 44.5894 89 2 40 40 - 125 Benzo(b)fluoranthene 50.0000 43.9745 88 3 40 45 - 125 Benzo(a)pyrene 50.0000 43.0186 86 6 40 45 - 125 Dibenzo(a,h)anthracene 50.0000 41.8649 84 6 40 40 - 125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                            |         |               | 81        |   | 1    |   | 40  | 50 - 110 |
| 4-Bromophenyl-phenylether       50.0000       42.8431       86       7       40       50 - 115         Hexachlorobenzene       50.0000       42.7244       85       6       40       50 - 110         Phenanthrene       50.0000       45.0302       90       7       40       50 - 115         Anthracene       50.0000       43.6473       87       10       40       55 - 110         Carbazole       50.0000       44.0407       88       8       40       50 - 115         Fluoranthene       50.0000       43.8846       88       7       40       55 - 115         Pyrene       50.0000       43.7760       88       7       40       50 - 130         Butylbenzylphthalate       50.0000       44.0672       88       3       40       45 - 115         3,3'-Dichlorobenzidine       50.0000       40.3235       81       13       40       20 - 110         Benzo(a)anthracene       50.0000       43.4801       87       7       40       55 - 110         Chrysene       50.0000       43.3780       87       7       40       55 - 110         Bis(2-ethylhexyl)phthalate       50.0000       44.5894       89       2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                            | 50.0000 | 41.5754       | 83        |   | 1    |   | 40  | 50 - 110 |
| Hexachlorobenzene         50.0000         42.7244         85         6         40         50 - 110           Phenanthrene         50.0000         45.0302         90         7         40         50 - 115           Anthracene         50.0000         43.6473         87         10         40         55 - 110           Carbazole         50.0000         44.0407         88         8         40         50 - 115           Fluoranthene         50.0000         43.8846         88         7         40         55 - 115           Pyrene         50.0000         43.7760         88         7         40         50 - 130           Butylbenzylphthalate         50.0000         44.0672         88         3         40         45 - 115           3,3'-Dichlorobenzidine         50.0000         40.3235         81         13         40         20 - 110           Benzo(a)anthracene         50.0000         43.4801         87         7         40         55 - 110           Chrysene         50.0000         43.3780         87         7         40         55 - 110           Bis(2-ethylhexyl)phthalate         50.0000         44.5894         89         2         40         40 - 125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4-Nitroaniline             | 50.0000 | 36.9847       | 74        |   | 6    |   | 40  | 35 - 120 |
| Phenanthrene         50.0000         45.0302         90         7         40         50 - 115           Anthracene         50.0000         43.6473         87         10         40         55 - 110           Carbazole         50.0000         44.0407         88         8         40         50 - 115           Fluoranthene         50.0000         43.8846         88         7         40         55 - 115           Pyrene         50.0000         43.7760         88         7         40         50 - 130           Butylbenzylphthalate         50.0000         44.0672         88         3         40         45 - 115           3,3'-Dichlorobenzidine         50.0000         40.3235         81         13         40         20 - 110           Benzo(a)anthracene         50.0000         43.4801         87         7         40         55 - 110           Chrysene         50.0000         43.3780         87         7         40         55 - 110           Bis(2-ethylhexyl)phthalate         50.0000         44.5894         89         2         40         40 - 125           Benzo(b)fluoranthene         50.0000         43.9745         88         3         40         45 - 125 <td>4-Bromophenyl-phenylether</td> <td>50.0000</td> <td>42.8431</td> <td>86</td> <td></td> <td>7</td> <td></td> <td>40</td> <td>50 - 115</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4-Bromophenyl-phenylether  | 50.0000 | 42.8431       | 86        |   | 7    |   | 40  | 50 - 115 |
| Anthracene 50.0000 43.6473 87 10 40 55 - 110 Carbazole 50.0000 44.0407 88 8 40 50 - 115 Fluoranthene 50.0000 43.8846 88 7 40 55 - 115 Pyrene 50.0000 43.7760 88 7 40 50 - 130 Butylbenzylphthalate 50.0000 44.0672 88 3 40 45 - 115 3,3'-Dichlorobenzidine 50.0000 40.3235 81 13 40 20 - 110 Benzo(a)anthracene 50.0000 43.4801 87 7 40 55 - 110 Chrysene 50.0000 43.3780 87 7 40 55 - 110 Bis(2-ethylhexyl)phthalate 50.0000 44.5894 89 2 40 40 - 125 Benzo(b)fluoranthene 50.0000 43.9745 88 3 40 45 - 125 Benzo(a)pyrene 50.0000 43.0186 86 6 40 55 - 110 Indeno(1,2,3-cd)pyrene 50.0000 41.8649 84 6 40 40 - 125 Dibenzo(a,h)anthracene 50.0000 41.8649 84 6 40 40 - 125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Hexachlorobenzene          | 50.0000 | 42.7244       | 85        |   | 6    |   | 40  | 50 - 110 |
| Carbazole       50.0000       44.0407       88       8       40       50 - 115         Fluoranthene       50.0000       43.8846       88       7       40       55 - 115         Pyrene       50.0000       43.7760       88       7       40       50 - 130         Butylbenzylphthalate       50.0000       44.0672       88       3       40       45 - 115         3,3'-Dichlorobenzidine       50.0000       40.3235       81       13       40       20 - 110         Benzo(a)anthracene       50.0000       43.4801       87       7       40       55 - 110         Chrysene       50.0000       43.3780       87       7       40       55 - 110         Bis(2-ethylhexyl)phthalate       50.0000       44.5894       89       2       40       40 - 125         Benzo(b)fluoranthene       50.0000       46.5493       93       6       40       45 - 125         Benzo(a)pyrene       50.0000       43.9745       88       3       40       45 - 125         Benzo(a)pyrene       50.0000       43.0186       86       6       40       45 - 125         Dibenzo(a,h)anthracene       50.0000       41.8649       84       6 <td>Phenanthrene</td> <td>50.0000</td> <td>45.0302</td> <td>90</td> <td></td> <td>7</td> <td></td> <td>40</td> <td>50 - 115</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Phenanthrene               | 50.0000 | 45.0302       | 90        |   | 7    |   | 40  | 50 - 115 |
| Fluoranthene       50.0000       43.8846       88       7       40       55 - 115         Pyrene       50.0000       43.7760       88       7       40       50 - 130         Butylbenzylphthalate       50.0000       44.0672       88       3       40       45 - 115         3,3'-Dichlorobenzidine       50.0000       40.3235       81       13       40       20 - 110         Benzo(a)anthracene       50.0000       43.4801       87       7       40       55 - 110         Chrysene       50.0000       43.3780       87       7       40       55 - 110         Bis(2-ethylhexyl)phthalate       50.0000       44.5894       89       2       40       40 - 125         Benzo(b)fluoranthene       50.0000       43.9745       88       3       40       45 - 125         Benzo(a)pyrene       50.0000       43.0186       86       6       40       55 - 110         Indeno(1,2,3-cd)pyrene       50.0000       41.8649       84       6       40       45 - 125         Dibenzo(a,h)anthracene       50.0000       41.8649       84       6       40       40 - 125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Anthracene                 | 50.0000 | 43.6473       | 87        |   | 10   |   | 40  | 55 - 110 |
| Pyrene       50.0000       43.7760       88       7       40       50 - 130         Butylbenzylphthalate       50.0000       44.0672       88       3       40       45 - 115         3,3'-Dichlorobenzidine       50.0000       40.3235       81       13       40       20 - 110         Benzo(a)anthracene       50.0000       43.4801       87       7       40       55 - 110         Chrysene       50.0000       43.3780       87       7       40       55 - 110         Bis(2-ethylhexyl)phthalate       50.0000       44.5894       89       2       40       40 - 125         Benzo(b)fluoranthene       50.0000       46.5493       93       6       40       45 - 120         Benzo(k)fluoranthene       50.0000       43.9745       88       3       40       45 - 125         Benzo(a)pyrene       50.0000       43.0186       86       6       40       45 - 125         Dibenzo(a,h)anthracene       50.0000       41.8649       84       6       40       40 - 125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Carbazole                  | 50.0000 | 44.0407       | 88        |   | 8    |   | 40  | 50 - 115 |
| Butylbenzylphthalate 50.0000 44.0672 88 3 40 45 - 115 3,3'-Dichlorobenzidine 50.0000 40.3235 81 13 40 20 - 110 Benzo(a)anthracene 50.0000 43.4801 87 7 40 55 - 110 Chrysene 50.0000 43.3780 87 7 40 55 - 110 Bis(2-ethylhexyl)phthalate 50.0000 44.5894 89 2 40 40 - 125 Benzo(b)fluoranthene 50.0000 46.5493 93 6 40 45 - 120 Benzo(k)fluoranthene 50.0000 43.9745 88 3 40 45 - 125 Benzo(a)pyrene 50.0000 43.0186 86 6 40 55 - 110 Indeno(1,2,3-cd)pyrene 50.0000 41.0705 82 2 40 45 - 125 Dibenzo(a,h)anthracene 50.0000 41.8649 84 6 40 40 - 125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Fluoranthene               | 50.0000 | 43.8846       | 88        |   | 7    |   | 40  | 55 - 115 |
| 3,3'-Dichlorobenzidine       50.0000       40.3235       81       13       40       20 - 110         Benzo(a)anthracene       50.0000       43.4801       87       7       40       55 - 110         Chrysene       50.0000       43.3780       87       7       40       55 - 110         Bis(2-ethylhexyl)phthalate       50.0000       44.5894       89       2       40       40 - 125         Benzo(b)fluoranthene       50.0000       46.5493       93       6       40       45 - 120         Benzo(k)fluoranthene       50.0000       43.9745       88       3       40       45 - 125         Benzo(a)pyrene       50.0000       43.0186       86       6       40       55 - 110         Indeno(1,2,3-cd)pyrene       50.0000       41.0705       82       2       40       45 - 125         Dibenzo(a,h)anthracene       50.0000       41.8649       84       6       40       40 - 125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Pyrene                     | 50.0000 | 43.7760       | 88        |   | 7    |   | 40  | 50 - 130 |
| Benzo(a)anthracene       50.0000       43.4801       87       7       40       55 - 110         Chrysene       50.0000       43.3780       87       7       40       55 - 110         Bis(2-ethylhexyl)phthalate       50.0000       44.5894       89       2       40       40 - 125         Benzo(b)fluoranthene       50.0000       46.5493       93       6       40       45 - 120         Benzo(k)fluoranthene       50.0000       43.9745       88       3       40       45 - 125         Benzo(a)pyrene       50.0000       43.0186       86       6       40       55 - 110         Indeno(1,2,3-cd)pyrene       50.0000       41.0705       82       2       40       45 - 125         Dibenzo(a,h)anthracene       50.0000       41.8649       84       6       40       40 - 125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Butylbenzylphthalate       | 50.0000 | 44.0672       | 88        |   | 3    |   | 40  | 45 - 115 |
| Chrysene       50.0000       43.3780       87       7       40       55 - 110         Bis(2-ethylhexyl)phthalate       50.0000       44.5894       89       2       40       40 - 125         Benzo(b)fluoranthene       50.0000       46.5493       93       6       40       45 - 120         Benzo(k)fluoranthene       50.0000       43.9745       88       3       40       45 - 125         Benzo(a)pyrene       50.0000       43.0186       86       6       40       55 - 110         Indeno(1,2,3-cd)pyrene       50.0000       41.0705       82       2       40       45 - 125         Dibenzo(a,h)anthracene       50.0000       41.8649       84       6       40       40 - 125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                            |         |               |           |   | 13   |   | 40  | 20 - 110 |
| Chrysene       50.0000       43.3780       87       7       40       55 - 110         Bis(2-ethylhexyl)phthalate       50.0000       44.5894       89       2       40       40 - 125         Benzo(b)fluoranthene       50.0000       46.5493       93       6       40       45 - 120         Benzo(k)fluoranthene       50.0000       43.9745       88       3       40       45 - 125         Benzo(a)pyrene       50.0000       43.0186       86       6       40       55 - 110         Indeno(1,2,3-cd)pyrene       50.0000       41.0705       82       2       40       45 - 125         Dibenzo(a,h)anthracene       50.0000       41.8649       84       6       40       40 - 125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Benzo(a)anthracene         | 50.0000 | 43.4801       | 87        |   | 7    |   | 40  | 55 - 110 |
| Benzo(b)fluoranthene       50.0000       46.5493       93       6       40       45 - 120         Benzo(k)fluoranthene       50.0000       43.9745       88       3       40       45 - 125         Benzo(a)pyrene       50.0000       43.0186       86       6       40       55 - 110         Indeno(1,2,3-cd)pyrene       50.0000       41.0705       82       2       40       45 - 125         Dibenzo(a,h)anthracene       50.0000       41.8649       84       6       40       40 - 125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Chrysene                   | 50.0000 | 43.3780       | 87        |   | 7    |   | 40  | 55 - 110 |
| Benzo(k)fluoranthene       50.0000       43.9745       88       3       40       45 - 125         Benzo(a)pyrene       50.0000       43.0186       86       6       40       55 - 110         Indeno(1,2,3-cd)pyrene       50.0000       41.0705       82       2       40       45 - 125         Dibenzo(a,h)anthracene       50.0000       41.8649       84       6       40       40 - 125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Bis(2-ethylhexyl)phthalate | 50.0000 | 44.5894       | 89        |   | 2    |   | 40  | 40 - 125 |
| Benzo(a)pyrene       50.0000       43.0186       86       6       40       55 - 110         Indeno(1,2,3-cd)pyrene       50.0000       41.0705       82       2       40       45 - 125         Dibenzo(a,h)anthracene       50.0000       41.8649       84       6       40       40 - 125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Benzo(b)fluoranthene       | 50.0000 | 46.5493       | 93        |   | 6    |   | 40  | 45 - 120 |
| Indeno(1,2,3-cd)pyrene       50.0000       41.0705       82       2       40       45 - 125         Dibenzo(a,h)anthracene       50.0000       41.8649       84       6       40       40 - 125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Benzo(k)fluoranthene       | 50.0000 | 43.9745       | 88        |   | 3    |   | 40  | 45 - 125 |
| Dibenzo(a,h)anthracene 50.0000 41.8649 84 6 40 40 - 125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Benzo(a)pyrene             | 50.0000 | 43.0186       | 86        |   | 6    |   | 40  | 55 - 110 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Indeno(1,2,3-cd)pyrene     | 50.0000 | 41.0705       | 82        |   | 2    |   | 40  | 45 - 125 |
| Benzo(g,h,i)perylene 50.0000 40.5737 81 5 40 40 - 125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Dibenzo(a,h)anthracene     | 50.0000 | 41.8649       | 84        |   | 6    |   | 40  | 40 - 125 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Benzo(g,h,i)perylene       | 50.0000 | 40.5737       | 81        |   | 5    |   | 40  | 40 - 125 |

# 3 - FORM III WATER LABORATORY CONTROL SAMPLE DUPLICATE RECOVERY

EPA SAMPLE NO.
LCSD-78523

| Lab Name: SPECTRUM ANALYTIC                                             | Contract                                                                                            | :<br>                 |           |    |         |           |      |  |  |  |
|-------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-----------------------|-----------|----|---------|-----------|------|--|--|--|
| Lab Code: MITKEM Case                                                   | Lab Code: MITKEM Case No.: N1400 Mod. Ref No.:                                                      |                       |           | SI | OG No.: | SN1400    |      |  |  |  |
| Lab Sample ID: LCSD-78523                                               | LCS Lot 1                                                                                           | LCS Lot No.: A0101343 |           |    |         |           |      |  |  |  |
|                                                                         | SPIKE<br>ADDED                                                                                      | LCSD<br>CONCENTRATION | LCSD %REC | #  | %RPD #  | QC LIMITS |      |  |  |  |
| COMPOUND                                                                |                                                                                                     |                       |           |    |         | RPD       | REC. |  |  |  |
| <pre># Column to be used to flag re * Values outside of QC limits</pre> | # Column to be used to flag recovery and RPD values with an asterisk  * Values outside of QC limits |                       |           |    |         |           |      |  |  |  |
| RPD:out of46 outs                                                       | ide limits                                                                                          |                       |           |    |         |           |      |  |  |  |
| Spike Recovery:0_out of46_outside limits                                |                                                                                                     |                       |           |    |         |           |      |  |  |  |
| COMMENTS:                                                               |                                                                                                     |                       |           |    |         |           |      |  |  |  |

som14.07.15.0901 SW8 4 6

# 3 - FORM III SOIL LABORATORY CONTROL SAMPLE DUPLICATE RECOVERY

EPA SAMPLE NO.

LCSD-78617

Lab Name: SPECTRUM ANALYTICAL, INC. Contract:

Lab Code: MITKEM Case No.: N1400 Mod. Ref No.: SDG No.: SN1400

Lab Sample ID: LCSD-78617 LCS Lot No.: A0100278

|                            | SPIKE<br>ADDED | LCSD<br>CONCENTRATION | LCSD %REC | # | %RPI | ) # | QC  | LIMITS   |
|----------------------------|----------------|-----------------------|-----------|---|------|-----|-----|----------|
| COMPOUND                   |                |                       |           |   |      | •   | RPD | REC.     |
| Bis(2-chloroethyl)ether    | 3333.0000      | 2239.8452             | 67        |   | 3    |     | 40  | 40 - 105 |
| 1,3-Dichlorobenzene        | 3333.0000      | 2431.9935             | 73        |   | 1    |     | 40  | 40 - 100 |
| 1,4-Dichlorobenzene        | 3333.0000      | 2439.5603             | 73        |   | 0    |     | 40  | 35 - 105 |
| 1,2-Dichlorobenzene        | 3333.0000      | 2432.4544             | 73        |   | 1    |     | 40  | 45 - 95  |
| 2,2'-oxybis(1-Chloropropan | 3333.0000      | 2420.8707             | 73        |   | 0    |     | 40  | 20 - 115 |
| Hexachloroethane           | 3333.0000      | 2556.9428             | 77        |   | 4    |     | 40  | 35 - 110 |
| Nitrobenzene               | 3333.0000      | 2586.0403             | 78        |   | 4    |     | 40  | 40 - 115 |
| Isophorone                 | 3333.0000      | 2456.3938             | 74        |   | 1    |     | 40  | 45 - 110 |
| 1,2,4-Trichlorobenzene     | 3333.0000      | 2518.6676             | 76        |   | 4    |     | 40  | 45 - 110 |
| Naphthalene                | 3333.0000      | 2577.6848             | 77        |   | 3    |     | 40  | 40 - 105 |
| 4-Chloroaniline            | 3333.0000      | 1269.1931             | 38        |   | 17   |     | 40  | 10 - 100 |
| Bis(2-chloroethoxy)methane | 3333.0000      | 2502.0912             | 75        |   | 3    |     | 40  | 45 - 110 |
| Hexachlorobutadiene        | 3333.0000      | 2616.8467             | 79        |   | 5    |     | 40  | 40 - 115 |
| 2-Methylnaphthalene        | 3333.0000      | 2433.3232             | 73        |   | 1    |     | 40  | 45 - 105 |
| Hexachlorocyclopentadiene  | 3333.0000      | 3177.4738             | 95        |   | 12   |     | 40  | 8 - 148  |
| 2-Chloronaphthalene        | 3333.0000      | 2600.4635             | 78        |   | 3    |     | 40  | 45 - 105 |
| 2-Nitroaniline             | 3333.0000      | 2397.2236             | 72        |   | 3    |     | 40  | 45 - 120 |
| Dimethylphthalate          | 3333.0000      | 2407.0212             | 72        |   | 4    |     | 40  | 50 - 110 |
| Acenaphthylene             | 3333.0000      | 2602.4022             | 78        |   | 0    |     | 40  | 45 - 105 |
| 2,6-Dinitrotoluene         | 3333.0000      | 2377.8912             | 71        |   | 4    |     | 40  | 50 - 110 |
| 3-Nitroaniline             | 3333.0000      | 1640.3559             | 49        |   | 2    |     | 40  | 25 - 110 |
| Acenaphthene               | 3333.0000      | 2561.1900             | 77        |   | 3    |     | 40  | 45 - 110 |
| Dibenzofuran               | 3333.0000      | 2495.2499             | 75        |   | 0    |     | 40  | 50 - 105 |
| 2,4-Dinitrotoluene         | 3333.0000      | 2224.6481             | 67        |   | 10   |     | 40  | 50 - 115 |
| Diethylphthalate           | 3333.0000      | 2344.9041             | 70        |   | 7    |     | 40  | 50 - 115 |
| 4-Chlorophenyl-phenylether | 3333.0000      | 2476.3687             | 74        |   | 1    |     | 40  | 45 - 110 |
| Fluorene                   | 3333.0000      | 2476.9505             | 74        |   | 3    |     | 40  | 50 - 110 |
| 4-Nitroaniline             | 3333.0000      | 1832.6684             | 55        |   | 14   |     | 40  | 35 - 115 |
| 4-Bromophenyl-phenylether  | 3333.0000      | 2788.7904             | 84        |   | 5    |     | 40  | 45 - 115 |
| Hexachlorobenzene          | 3333.0000      | 2647.1092             | 79        |   | 0    |     | 40  | 45 - 120 |
| Phenanthrene               | 3333.0000      | 2664.3301             | 80        |   | 1    |     | 40  | 50 - 110 |
| Anthracene                 | 3333.0000      | 2544.4806             | 76        |   | 3    |     | 40  | 55 - 105 |
| Carbazole                  | 3333.0000      |                       |           |   | 9    |     | 40  | 45 - 115 |
| Fluoranthene               | 3333.0000      | 2243.6710             | 67        |   | 10   |     | 40  | 55 - 115 |
| Pyrene                     | 3333.0000      | 3061.2618             | 92        |   | 6    |     | 40  | 45 - 125 |
| Butylbenzylphthalate       | 3333.0000      | 2855.5038             | 86        |   | 1    |     | 40  | 50 - 125 |
| 3,3´-Dichlorobenzidine     | 3333.0000      | 1722.7151             | 52        |   | 8    |     | 40  | 10 - 130 |
| Benzo(a)anthracene         | 3333.0000      | 2583.9414             | 78        |   | 0    |     | 40  | 50 - 110 |
| Chrysene                   | 3333.0000      | 2591.2639             | 78        |   | 3    |     | 40  | 55 - 110 |
| Bis(2-ethylhexyl)phthalate | 3333.0000      |                       |           |   | 1    |     | 40  | 45 - 125 |
| Benzo(b)fluoranthene       | 3333.0000      |                       |           |   | 6    |     | 40  | 45 - 115 |
| Benzo(k)fluoranthene       | 3333.0000      | 2693.2680             | 81        |   | 2    |     | 40  | 45 - 125 |
| Benzo(a)pyrene             | 3333.0000      |                       |           |   | 1    |     | 40  | 50 - 110 |
| Indeno(1,2,3-cd)pyrene     | 3333.0000      |                       | 76        |   | 5    |     | 40  | 40 - 120 |
| Dibenzo(a,h)anthracene     | 3333.0000      |                       |           |   | 3    |     | 40  | 40 - 125 |
| Benzo(g,h,i)perylene       | 3333.0000      | 2486.7503             | 75        |   | 7    |     | 40  | 40 - 125 |

# 3 - FORM III SOIL LABORATORY CONTROL SAMPLE DUPLICATE RECOVERY

EPA SAMPLE NO.
LCSD-78617

| Lab Name: SPECTRUM ANALYTICAL                                                                                                                                                                              | , INC.           | Contract       | :<br>     |   |        |        |        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|----------------|-----------|---|--------|--------|--------|
| Lab Code: MITKEM Case N                                                                                                                                                                                    | o.: <u>N1400</u> | Mod. Ref       | No.:      |   | SI     | G No.: | SN1400 |
| Lab Sample ID: LCSD-78617 LCS Lot No.: A0100278  SPIKE LCSD CONCENTRATION LCSD %REC # %RPD # RPD REC.  # Column to be used to flag recovery and RPD values with an asterisk  * Values outside of QC limits |                  |                |           |   |        |        |        |
|                                                                                                                                                                                                            |                  |                | LCSD %REC | # | %RPD # | QC L   | IMITS  |
| COMPOUND                                                                                                                                                                                                   |                  |                |           |   |        | RPD    | REC.   |
| # Column to be used to flag recov                                                                                                                                                                          | very and RPD v   | values with an | asterisk  |   |        |        |        |
| * Values outside of QC limits                                                                                                                                                                              |                  |                |           |   |        |        |        |
| RPD:out of46_outside                                                                                                                                                                                       | e limits         |                |           |   |        |        |        |
| pike Recovery:0out of46outside limits                                                                                                                                                                      |                  |                |           |   |        |        |        |
| COMMENTS:                                                                                                                                                                                                  |                  |                |           |   |        |        |        |

### 4C - FORM IV SV SEMIVOLATILE METHOD BLANK SUMMARY

EPA SAMPLE NO.

MB-78523

| Lab Name: SPECT | TRUM ANALYTICAL, INC. | Contract:             |                 |
|-----------------|-----------------------|-----------------------|-----------------|
| Lab Code: MITK  | Case No.: N1400       | Mod. Ref No.:         | SDG No.: SN1400 |
| Lab File ID:    | S6B9183.D             | Lab Sample ID:        | MB-78523        |
| Instrument ID:  | S6                    | Date Extracted:       | 08/12/2014      |
| Matrix: (SOIL/S | ED/WATER) WATER       | Date Analyzed:        | 08/26/2014      |
| Level: (LOW/MED | ) LOW                 | Time Analyzed:        | 14:19           |
| Extraction: (Ty | oe) SEPF              | -<br>GPC Cleanup: (Y/ | 'N) N           |

|    | EPA                | LAB        | LAB       | DATE       |
|----|--------------------|------------|-----------|------------|
|    | SAMPLE NO.         | SAMPLE ID  | FILE ID   | ANALYZED   |
| 01 | LCS-78523          | LCS-78523  | S6B9184.D | 08/26/2014 |
| 02 | LCSD-78523         | LCSD-78523 | S6B9185.D | 08/26/2014 |
| 03 | SUR-2              | N1400-01B  | S6B9186.D | 08/26/2014 |
| 04 | SUR-3              | N1400-03B  | S6B9187.D | 08/26/2014 |
| 05 | FIELD<br>DUPLICATE | N1400-04B  | S6B9188.D | 08/26/2014 |
| 06 | SUR-4              | N1400-05B  | S6B9189.D | 08/26/2014 |
| 07 | SUR 1              | N1400-09B  | S6B9190.D | 08/26/2014 |
| 08 | SUR 5              | N1400-10B  | S6B9191.D | 08/26/2014 |
| 09 | SUR-6              | N1400-11B  | S6B9192.D | 08/26/2014 |
| 10 | SUR-7              | N1400-13B  | S6B9193.D | 08/26/2014 |
| 11 | SUR-8              | N1400-15B  | S6B9194.D | 08/26/2014 |
| 12 | EQUIP.BLANK        | N1400-16B  | S6B9195.D | 08/26/2014 |

| COMMENTS: |  |  |
|-----------|--|--|
|           |  |  |

som14.07.15.0901 Page 1 of 1

SW846

### 4C - FORM IV SV SEMIVOLATILE METHOD BLANK SUMMARY

EPA SAMPLE NO.

MB-78617

| Lab Name: SPEC  | TRUM ANALYT | ICAL, INC.           | Contract:        |                 |
|-----------------|-------------|----------------------|------------------|-----------------|
| Lab Code: MITK  | EM Ca       | se No.: <u>N1400</u> | Mod. Ref No.:    | SDG No.: SN1400 |
| Lab File ID:    | S6B9196.D   |                      | Lab Sample ID:   | MB-78617        |
| Instrument ID:  | S6          |                      | Date Extracted:  | 08/19/2014      |
| Matrix: (SOIL/S | SED/WATER)  | SOIL                 | Date Analyzed:   | 08/26/2014      |
| Level: (LOW/MED | ) LOW       |                      | Time Analyzed:   | 19:20           |
| Extraction: (Ty | pe) SONC    |                      | GPC Cleanup: (Y/ | N) N            |

|    | EPA        | LAB        | LAB       | DATE       |
|----|------------|------------|-----------|------------|
|    | SAMPLE NO. | SAMPLE ID  | FILE ID   | ANALYZED   |
| 01 | LCS-78617  | LCS-78617  | S6B9197.D | 08/26/2014 |
| 02 | LCSD-78617 | LCSD-78617 | S6B9198.D | 08/26/2014 |
| 03 | SED-6      | N1400-12B  | S6B9199.D | 08/26/2014 |
| 04 | SED-7      | N1400-14B  | S6B9200.D | 08/26/2014 |

| COMMENTS: |  |
|-----------|--|
|           |  |

som14.07.15.0901 Page 1 of 1

SW846

#### 8C - FORM VIII SV-1

#### SEMIVOLATILE INTERNAL STANDARD AREA AND RETENTION TIME SUMMARY

Lab Name: SPECTRUM ANALYTICAL, INC. Contract:

Lab Code: MITKEM Case No.: N1400 Mod. Ref No.: SDG No.: SN1400

EPA Sample No.(SSTD020##) SSTD0256R Date Analyzed: 08/26/2014

Lab File ID (Standard): S6B9175.D Time Analyzed: 10:59

Instrument ID: S6

|    |                    | IS1 (DCB) |   |       |   | IS2 (NPT) |   |       |   | IS3 (ANT) |   |       |   |
|----|--------------------|-----------|---|-------|---|-----------|---|-------|---|-----------|---|-------|---|
|    |                    | AREA      | # | RT    | # | AREA      | # | RT    | # | AREA      | # | RT    | # |
|    | 12 HOUR STD        | 252538    |   | 4.402 |   | 976362    |   | 5.483 |   | 708412    |   | 6.934 |   |
|    | UPPER LIMIT        | 505076    |   | 4.902 |   | 1952724   |   | 5.983 |   | 1416824   |   | 7.434 |   |
|    | LOWER LIMIT        | 126269    |   | 3.902 |   | 488181    |   | 4.983 |   | 354206    |   | 6.434 |   |
|    | EPA SAMPLE NO.     |           |   |       |   |           |   |       |   |           |   |       |   |
| 01 | MB-78523           | 262213    |   | 4.402 |   | 966484    |   | 5.483 |   | 699841    |   | 6.934 |   |
| 02 | LCS-78523          | 278072    |   | 4.402 |   | 1047093   |   | 5.483 |   | 742584    |   | 6.940 |   |
| 03 | LCSD-78523         | 288103    |   | 4.402 |   | 1060714   |   | 5.483 |   | 757954    |   | 6.940 |   |
| 04 | SUR-2              | 195820    |   | 4.402 |   | 748204    |   | 5.477 |   | 533315    |   | 6.934 |   |
| 05 | SUR-3              | 209022    |   | 4.402 |   | 779413    |   | 5.477 |   | 564083    |   | 6.934 |   |
| 06 | FIELD<br>DUPLICATE | 209022    |   | 4.402 |   | 799557    |   | 5.477 |   | 568602    |   | 6.934 |   |
| 07 | SUR-4              | 204469    |   | 4.402 |   | 776465    |   | 5.477 |   | 550868    |   | 6.934 |   |
| 08 | SUR 1              | 214637    |   | 4.402 |   | 836545    |   | 5.477 |   | 595168    |   | 6.934 |   |
| 09 | SUR 5              | 204479    |   | 4.402 |   | 738964    |   | 5.477 |   | 532222    |   | 6.934 |   |
| 10 | SUR-6              | 211428    |   | 4.402 |   | 804351    |   | 5.477 |   | 566152    |   | 6.934 |   |
| 11 | SUR-7              | 210923    |   | 4.402 |   | 776531    |   | 5.477 |   | 561290    |   | 6.934 |   |
| 12 | SUR-8              | 208826    |   | 4.402 |   | 776150    |   | 5.477 |   | 558474    |   | 6.934 |   |
| 13 | EQUIP.BLANK        | 213539    |   | 4.402 |   | 812387    |   | 5.477 |   | 573027    |   | 6.934 |   |
| 14 | MB-78617           | 343628    |   | 4.408 |   | 1258632   |   | 5.483 |   | 844177    |   | 6.934 |   |
| 15 | LCS-78617          | 368647    |   | 4.408 |   | 1363891   |   | 5.483 |   | 924376    |   | 6.940 |   |

IS1 (DCB) = 1,4-Dichlorobenzene-d4

som14.07.15.0901 Page 1 of 2

SW846

IS2 (NPT) = Naphthalene-d8

IS3 (ANT) = Acenaphthene-d10

AREA UPPER LIMIT = 200% of internal standard area

AREA LOWER LIMIT = 50% of internal standard area

RT UPPER LIMIT = +0.50 minutes of internal standard RT

RT LOWER LIMIT = -0.50 minutes of internal standard RT

<sup>#</sup> Column used to flag values outside contract required QC limits with an asterisk.

#### 8C - FORM VIII SV-1

#### SEMIVOLATILE INTERNAL STANDARD AREA AND RETENTION TIME SUMMARY

Lab Name: SPECTRUM ANALYTICAL, INC. Contract:

Lab Code: MITKEM Case No.: N1400 Mod. Ref No.: SDG No.: SN1400

GC Column: Rxi-5sil MS ID: 0.25 (mm) Init. Calib. Date(s): 08/06/2014 08/06/2014

EPA Sample No.(SSTD020##) SSTD0256R Date Analyzed: 08/26/2014

Lab File ID (Standard): S6B9175.D Time Analyzed: 10:59

Instrument ID: S6

|                | IS1 (DCB) |       | IS2 (NPT) |       | IS3 (ANT) |       |
|----------------|-----------|-------|-----------|-------|-----------|-------|
|                | AREA #    | RT #  | AREA #    | RT #  | AREA #    | RT #  |
| 12 HOUR STD    | 252538    | 4.402 | 976362    | 5.483 | 708412    | 6.934 |
| UPPER LIMIT    | 505076    | 4.902 | 1952724   | 5.983 | 1416824   | 7.434 |
| LOWER LIMIT    | 126269    | 3.902 | 488181    | 4.983 | 354206    | 6.434 |
| EPA SAMPLE NO. |           |       |           |       |           |       |
| LCSD-78617     | 407655    | 4.408 | 1436837   | 5.483 | 925126    | 6.940 |
| SED-6          | 396375    | 4.408 | 1416900   | 5.483 | 940400    | 6.934 |
| SED-7          | 378576    | 4.408 | 1383048   | 5.483 | 937678    | 6.934 |

IS1 (DCB) = 1,4-Dichlorobenzene-d4

IS2 (NPT) = Naphthalene-d8

IS3 (ANT) = Acenaphthene-d10

AREA UPPER LIMIT = 200% of internal standard area

AREA LOWER LIMIT = 50% of internal standard area

RT UPPER LIMIT = +0.50 minutes of internal standard RT

RT LOWER LIMIT = -0.50 minutes of internal standard RT

# Column used to flag values outside contract required QC limits with an asterisk.

som14.07.15.0901 Page 2 of 2

#### 8D - FORM VIII SV-2

#### SEMIVOLATILE INTERNAL STANDARD AREA AND RETENTION TIME SUMMARY

Lab Name: SPECTRUM ANALYTICAL, INC. Contract:

Lab Code: MITKEM Case No.: N1400 Mod. Ref No.: SDG No.: SN1400

EPA Sample No.(SSTD020##) SSTD0256R Date Analyzed: 08/26/2014

Lab File ID (Standard): S6B9175.D Time Analyzed: 10:59

Instrument ID: S6 GC Column: Rxi-5sil MS ID: 0.25 (mm)

|    |                    | IS4 (PHN) |       | IS5 (CRY) |        | IS6 (PRY) |        |
|----|--------------------|-----------|-------|-----------|--------|-----------|--------|
|    |                    | AREA #    | RT #  | AREA #    | RT #   | AREA #    | RT #   |
|    | 12 HOUR STD        | 1540093   | 8.162 | 1778943   | 10.383 | 1681229   | 12.152 |
|    | UPPER LIMIT        | 3080186   | 8.662 | 3557886   | 10.883 | 3362458   | 12.652 |
|    | LOWER LIMIT        | 770047    | 7.662 | 889472    | 9.883  | 840615    | 11.652 |
|    | EPA SAMPLE NO.     |           |       |           |        |           |        |
| 01 | MB-78523           | 1469653   | 8.156 | 1533786   | 10.377 | 1245040   | 12.140 |
| 02 | LCS-78523          | 1566527   | 8.156 | 1642736   | 10.383 | 1324050   | 12.140 |
| 03 | LCSD-78523         | 1554293   | 8.162 | 1644943   | 10.389 | 1310256   | 12.146 |
| 04 | SUR-2              | 1191938   | 8.157 | 1377289   | 10.372 | 1284766   | 12.134 |
| 05 | SUR-3              | 1195081   | 8.156 | 1334775   | 10.372 | 1105044   | 12.134 |
| 06 | FIELD<br>DUPLICATE | 1211838   | 8.156 | 1324736   | 10.372 | 1137672   | 12.134 |
| 07 | SUR-4              | 1194376   | 8.157 | 1305311   | 10.372 | 1144412   | 12.128 |
| 08 | SUR 1              | 1295869   | 8.157 | 1447089   | 10.372 | 1254541   | 12.134 |
| 09 | SUR 5              | 1145063   | 8.156 | 1314578   | 10.372 | 1154061   | 12.128 |
| 10 | SUR-6              | 1211780   | 8.156 | 1375297   | 10.371 | 1152241   | 12.128 |
| 11 | SUR-7              | 1215344   | 8.156 | 1335438   | 10.365 | 1131857   | 12.122 |
| 12 | SUR-8              | 1211824   | 8.156 | 1318944   | 10.366 | 1122676   | 12.122 |
| 13 | EQUIP.BLANK        | 1216520   | 8.156 | 1288703   | 10.366 | 1016108   | 12.122 |
| 14 | MB-78617           | 1627700   | 8.157 | 1271854   | 10.366 | 884077    | 12.117 |
| 15 | LCS-78617          | 1821316   | 8.162 | 1586319   | 10.372 | 1094622   | 12.123 |

IS4 (PHN) = Phenanthrene-d10

som14.07.15.0901 Page 1 of 2 SW846

IS5 (CRY) = Chrysene-d12

IS6 (PRY) = Perylene-d12

AREA UPPER LIMIT = 200% of internal standard area

AREA LOWER LIMIT = 50% of internal standard area

RT UPPER LIMIT = +0.50 minutes of internal standard RT

RT LOWER LIMIT = -0.50 minutes of internal standard RT

<sup>#</sup> Column used to flag values outside contract required QC limits with an asterisk.

#### 8D - FORM VIII SV-2

#### SEMIVOLATILE INTERNAL STANDARD AREA AND RETENTION TIME SUMMARY

Lab Name: SPECTRUM ANALYTICAL, INC. Contract:

Lab Code: MITKEM Case No.: N1400 Mod. Ref No.: SDG No.: SN1400

EPA Sample No.(SSTD020##) SSTD0256R Date Analyzed: 08/26/2014

Lab File ID (Standard): S6B9175.D Time Analyzed: 10:59

Instrument ID: S6 GC Column: Rxi-5sil MS ID: 0.25 (mm)

|    |                | IS4 (PHN) |   |       | IS5 (CRY) |        | IS6 (PRY) |        |
|----|----------------|-----------|---|-------|-----------|--------|-----------|--------|
|    |                | AREA ‡    | ‡ | RT #  | AREA #    | RT #   | AREA #    | RT #   |
|    | 12 HOUR STD    | 1540093   |   | 8.162 | 1778943   | 10.383 | 1681229   | 12.152 |
|    | UPPER LIMIT    | 3080186   |   | 8.662 | 3557886   | 10.883 | 3362458   | 12.652 |
|    | LOWER LIMIT    | 770047    |   | 7.662 | 889472    | 9.883  | 840615    | 11.652 |
|    | EPA SAMPLE NO. |           |   |       |           |        |           |        |
| 16 | LCSD-78617     | 1679681   |   | 8.156 | 1271700   | 10.366 | 929215    | 12.117 |
| 17 | SED-6          | 1745706   |   | 8.156 | 1265992   | 10.366 | 866846    | 12.117 |
| 18 | SED-7          | 1793216   |   | 8.156 | 1453446   | 10.366 | 1004360   | 12.116 |

IS4 (PHN) = Phenanthrene-d10

IS5 (CRY) = Chrysene-d12

IS6 (PRY) = Perylene-d12

AREA UPPER LIMIT = 200% of internal standard area

AREA LOWER LIMIT = 50% of internal standard area

RT UPPER LIMIT = +0.50 minutes of internal standard RT

RT LOWER LIMIT = -0.50 minutes of internal standard RT

# Column used to flag values outside contract required QC limits with an asterisk.

som14.07.15.0901 Page 2 of 2 SW846



\* Wet Chemistry \*

#### **CASE NARRATIVE**

#### Spectrum Analytical, Inc. Lab Reference No. SB94557

Client: Spectrum Analytical, Inc. - North Kingstown, RI

Project: Steelwinds 1 / N1400

SDG #: 94557

#### I. RECEIPT

No exceptions were encountered unless a Sample Receipt Exception or a communication form is included in the addendum with this package.

#### II. HOLDING TIMES

All samples were prepared and analyzed within the method-specific holding time.

#### III. METHODS

Analyses were performed according to Lloyd Kahn.

#### IV. PREPARATION

Soil/Sediment samples were prepared according to General Preparation.

#### V. INSTRUMENTATION

The following equipment was used to analyze Lloyd Kahn:

TOC2 details: Teledyne Tekmar Apollo 9000 / TOC Boat Sampler Model 183

#### VI. ANALYSIS

#### A. Calibration:

All quality control samples were within the acceptance criteria.

#### **B.** Blanks:

All blanks were within the acceptance criteria.

#### C. Spikes:

#### 1. Laboratory Control Samples (LCS):

All method criteria were met.

#### 2. Matrix Spike / Matrix Spike Duplicate Samples (MS/MSD):

No matrix spike or matrix spike duplicates were analyzed.

#### 3. Reference:

All method criteria were met.

# **D. Duplicates:**

No client requested duplicate. However, the method criteria may have been fulfilled with non-SDG source samples.

# E. Samples:

All method criteria were met.

# FORM I - INORGANIC ANALYSIS DATA SHEET Lloyd Kahn

SED-6

Laboratory: Spectrum Analytical, Inc. - Agawam, MA SDG: 94557

Client: Spectrum Analytical, Inc. - North Kingstown, RI Project: Steelwinds 1

Project Number: <u>N1400</u> Received: <u>08/13/14 17:18</u>

Matrix: Soil Laboratory ID: SB94557-01 File ID:

Sampled: <u>08/06/14 14:35</u> Prepared: <u>08/20/14 12:00</u> Analyzed: <u>08/20/14 17:17</u>

% Solids: Preparation: <u>General Preparation</u> Initial/Final: <u>10 g / 10 ml</u>

Batch: <u>1419600</u> Sequence: <u>S409434</u> Calibration: <u>1407011</u>

Instrument: TOC2

Reported to: MRL

CAS NO.AnalyteResult (mg/kg)Dilution FactorMDLMRLQNATotal Organic Carbon2370144.91000

# FORM I - INORGANIC ANALYSIS DATA SHEET Lloyd Kahn

SED-7

Laboratory: Spectrum Analytical, Inc. - Agawam, MA SDG: 94557

Client: Spectrum Analytical, Inc. - North Kingstown, RI Project: Steelwinds 1

Project Number: <u>N1400</u> Received: <u>08/13/14 17:18</u>

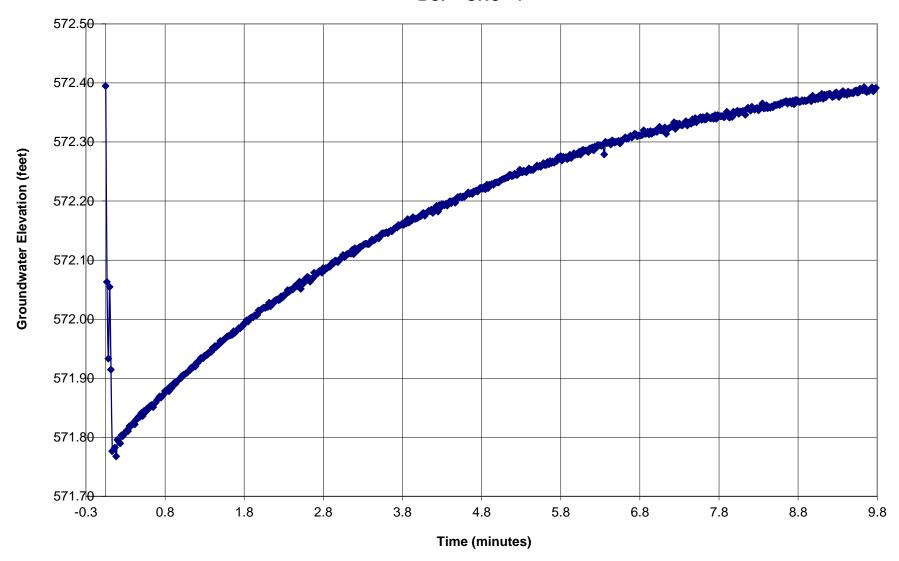
Matrix: Soil Laboratory ID: SB94557-02 File ID:

Sampled: <u>08/06/14 15:15</u> Prepared: <u>08/20/14 12:00</u> Analyzed: <u>08/20/14 17:39</u>

% Solids: Preparation: <u>General Preparation</u> Initial/Final: <u>10 g / 10 ml</u>

Batch: <u>1419600</u> Sequence: <u>S409434</u> Calibration: <u>1407011</u>

Instrument: TOC2


Reported to: MRL

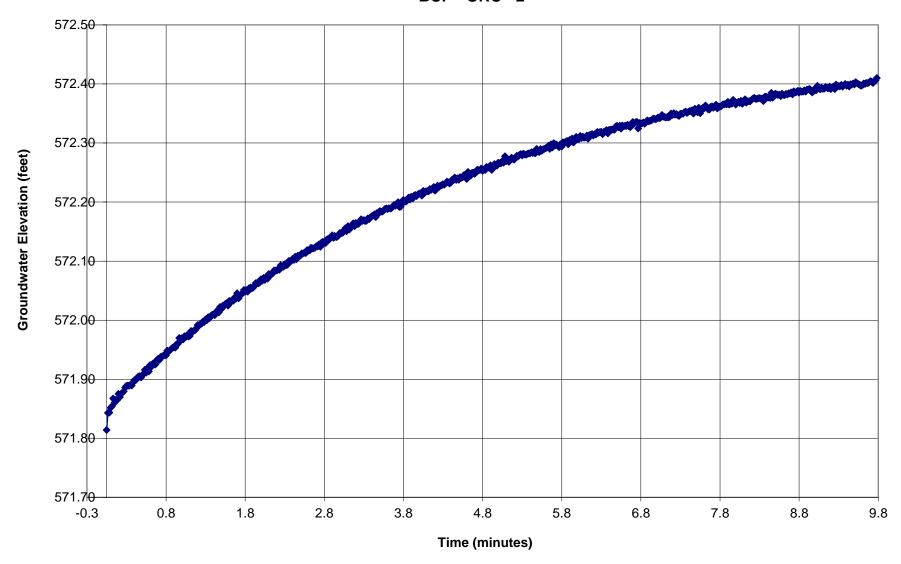
| CAS NO. | Analyte              | Result<br>(mg/kg) | Dilution<br>Factor | MDL  | MRL  | Q |
|---------|----------------------|-------------------|--------------------|------|------|---|
| NA      | Total Organic Carbon | 1020              | 1                  | 44.9 | 1000 |   |

# APPENDIX D

HYDRAULIC CONDUCTIVITY TEST CALCULATIONS

# Rising Head Permeability Test No. 1 BCP - ORC - 1




# Bouwer & Rice Slug Test Method Hydraulic Conductivity Calculation Worksheet Rising Head Test No. 1 Project: 03.0033579.06 Steel Winds

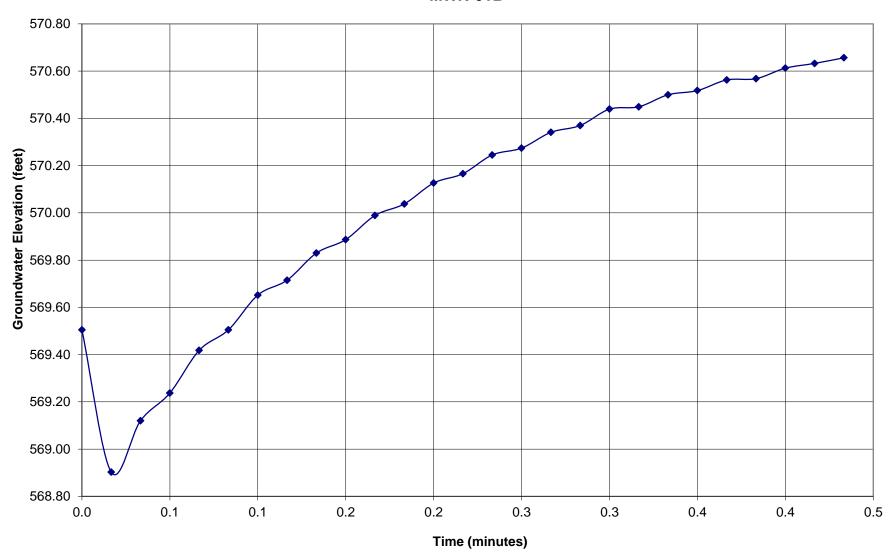
Date \_\_\_ 7/15/2014 Well No BCP - ORC -1

| H =    | 15.53 | feet             | (aquifer thickness)                                                             |
|--------|-------|------------------|---------------------------------------------------------------------------------|
| Le =   | 15.53 | feet             | (wetted screen length)                                                          |
| Lw =   | 15.53 | feet             | (length from bottom of well to static water table)                              |
| rw =   | 0.583 | feet             | (borehole radius)                                                               |
| rc =   | 0.167 | feet             | (well radius)                                                                   |
| n =    | 0.30  |                  | (porosity of gravel pack)                                                       |
|        |       |                  |                                                                                 |
| yo =   | 0.83  | feet             | (drawdown difference for initial reading at flat portion of curvesee log graph) |
| yt =   | 0.54  | feet             | (drawdown difference for end reading at flat portion of curvesee log graph)     |
| t =    | 4.32  | min              | (change in time from yo to yt)                                                  |
| Le/rw= | 26.6  | _                | (calculated ratio)                                                              |
| A =    | 2.36  | ft at Le/rw      | (from plotFig 2 in Bouwer and Rice)                                             |
| B =    | 0.37  | ft at Le/rw      | (from plotFig 2 in Bouwer and Rice)                                             |
| C =    | 1.82  | ft at Le/rw      | (from plotFig 2 in Bouwer and Rice)                                             |
| rc' =  | 0.349 |                  | (effective radius)                                                              |
|        |       |                  |                                                                                 |
|        |       | if well d = 2 i  | nch, $m = 0.163$                                                                |
| m =    | 0.653 | if $d = 4$ inch, | m = 0.653                                                                       |
|        |       | if $d = 6$ inch, | m = 1.469                                                                       |
|        |       |                  |                                                                                 |

| <br>940<br>959 feet | Κ=<br><b>Κ</b> =  | 9.65E-04<br><b>4.90E-04</b> | ft/min<br><b>cm/sec</b> | (hydraulic conductivity) (hydraulic conductivity) |
|---------------------|-------------------|-----------------------------|-------------------------|---------------------------------------------------|
|                     | K = _             | 1.39E+00                    | ft/day                  | (hydraulic conductivity)                          |
|                     | $T = \frac{1}{2}$ | 2.16E+01                    | ft²/day                 | (transmissivity)                                  |
|                     | T = _             | 161.44                      | gpd/ft                  | (transmissivity)                                  |
|                     | Q = _             | 0.0315                      | ft <sup>3</sup> /min    | (flowrate)                                        |
|                     | Q =               | 0.236                       | gpm                     | (flowrate)                                        |

### Rising Head Permeability Test No. 1 BCP - ORC - 2




# Bouwer & Rice Slug Test Method Hydraulic Conductivity Calculation Worksheet Rising Head Test No. 2 Project: 03.0033579.06 Steel Winds

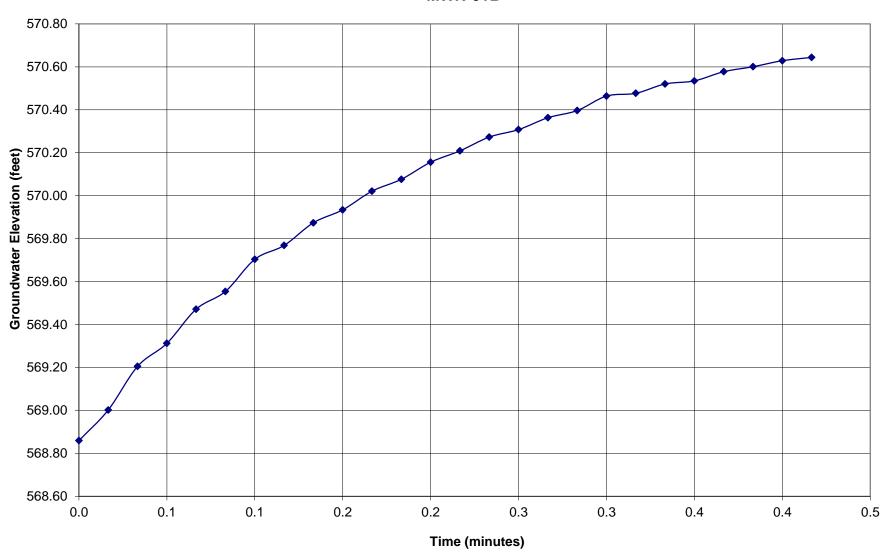
Date 7/15/2014 Well No BCP - ORC -1

| H =    | 15.53 | feet                                                 | (aquifer thickness)                                                             |
|--------|-------|------------------------------------------------------|---------------------------------------------------------------------------------|
| Le =   | 15.53 | feet                                                 | (wetted screen length)                                                          |
| Lw =   | 15.53 | feet                                                 | (length from bottom of well to static water table)                              |
| rw =   | 0.583 | feet                                                 | (borehole radius)                                                               |
| rc =   | 0.167 | feet                                                 | (well radius)                                                                   |
| n =    | 0.30  |                                                      | (porosity of gravel pack)                                                       |
|        |       |                                                      |                                                                                 |
| yo =   | 0.80  | feet                                                 | (drawdown difference for initial reading at flat portion of curvesee log graph) |
| yt =   | 0.55  | feet                                                 | (drawdown difference for end reading at flat portion of curvesee log graph)     |
| t =    | 3.60  | min                                                  | (change in time from yo to yt)                                                  |
| Le/rw= | 26.6  | _                                                    | (calculated ratio)                                                              |
| A =    | 2.36  | _ ft at Le/rw                                        | (from plotFig 2 in Bouwer and Rice)                                             |
| B =    | 0.37  | ft at Le/rw                                          | (from plotFig 2 in Bouwer and Rice)                                             |
| C =    | 1.82  | ft at Le/rw                                          | (from plotFig 2 in Bouwer and Rice)                                             |
| rc' =  | 0.349 | _                                                    | (effective radius)                                                              |
|        |       |                                                      |                                                                                 |
| m =    | 0.653 | if well d = 2 in<br>if d = 4 inch,<br>if d = 6 inch, |                                                                                 |
|        |       |                                                      |                                                                                 |

| In Re =<br>Re = | 1.940<br>6.959 |   | K =   | 1.01E-03<br><b>5.13E-04</b> | ft/min<br><b>cm/sec</b> | (hydraulic conductivity) (hydraulic conductivity) |
|-----------------|----------------|---|-------|-----------------------------|-------------------------|---------------------------------------------------|
| _               |                | _ | K = _ | 1.45E+00                    | ft/day                  | (hydraulic conductivity)                          |
|                 |                |   | T =   | 2.26E+01                    | ft²/day                 | (transmissivity)                                  |
|                 |                |   | T =   | 168.86                      | gpd/ft                  | (transmissivity)                                  |
|                 |                |   |       |                             |                         |                                                   |
|                 |                |   | Q =   | 0.0318                      | ft³/min                 | (flowrate)                                        |
|                 |                |   | Q =   | 0.238                       | gpm                     | (flowrate)                                        |

## Rising Head Permeability Test No. 1 MWN-01B




# Bouwer & Rice Slug Test Method Hydraulic Conductivity Calculation Worksheet Rising Head Test No. 1 Project: 03.0033579.06 Steel Winds

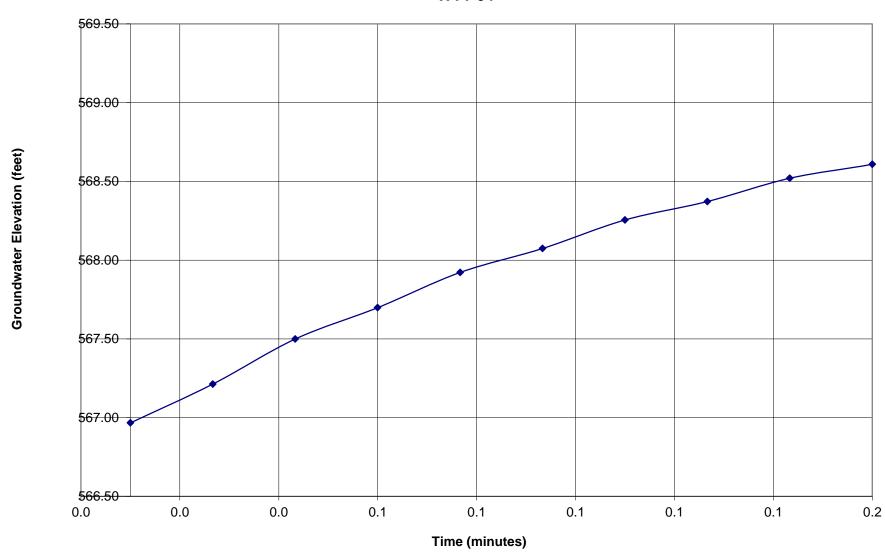
| Date    | 7/15/2014 |
|---------|-----------|
| Well No | MWN-01B   |

| 17.47 | feet                                                                                                       | (aquifer thickness)                                                                                                                            |
|-------|------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| 17.47 | feet                                                                                                       | (wetted screen length)                                                                                                                         |
| 17.47 | feet                                                                                                       | (length from bottom of well to static water table)                                                                                             |
| 0.161 | feet                                                                                                       | (borehole radius)                                                                                                                              |
| 0.083 | feet                                                                                                       | (well radius)                                                                                                                                  |
| 0.30  |                                                                                                            | (porosity of gravel pack)                                                                                                                      |
|       |                                                                                                            |                                                                                                                                                |
| 1.53  | feet                                                                                                       | (drawdown difference for initial reading at flat portion of curvesee log graph)                                                                |
| 0.51  | feet                                                                                                       | (drawdown difference for end reading at flat portion of curvesee log graph)                                                                    |
| 0.23  | min                                                                                                        | (change in time from yo to yt)                                                                                                                 |
| 108.5 | =                                                                                                          | (calculated ratio)                                                                                                                             |
| 4.47  | ft at Le/rw                                                                                                | (from plotFig 2 in Bouwer and Rice)                                                                                                            |
| 0.76  | ft at Le/rw                                                                                                | (from plotFig 2 in Bouwer and Rice)                                                                                                            |
| 4.50  | ft at Le/rw                                                                                                | (from plotFig 2 in Bouwer and Rice)                                                                                                            |
| 0.112 | =                                                                                                          | (effective radius)                                                                                                                             |
|       |                                                                                                            |                                                                                                                                                |
| 0.163 | if $d = 4$ inch,                                                                                           |                                                                                                                                                |
|       | 17.47<br>17.47<br>0.161<br>0.083<br>0.30<br>1.53<br>0.51<br>0.23<br>108.5<br>4.47<br>0.76<br>4.50<br>0.112 | 17.47 feet 17.47 feet 0.161 feet 0.083 feet 0.30  1.53 feet 0.51 feet 0.23 min 108.5 4.47 ft at Le/rw 4.50 ft at Le/rw 0.112  if well d = 2 in |

| In Re =<br>Re = | 1.795<br>6.020 | feet | K = <b>K</b> = | 6.24E-03<br><b>3.17E-03</b> | ft/min<br><b>cm/sec</b> | (hydraulic conductivity) (hydraulic conductivity) |
|-----------------|----------------|------|----------------|-----------------------------|-------------------------|---------------------------------------------------|
|                 |                | _    | K=             | 8.98E+00                    | ft/day                  | (hydraulic conductivity)                          |
|                 |                |      | T =            | 1.57E+02                    | ft²/day                 | (transmissivity)                                  |
|                 |                |      | T =            | 1173.67                     | gpd/ft                  | (transmissivity)                                  |
|                 |                |      |                |                             | •                       |                                                   |
|                 |                |      | Q =            | 0.2891                      | ft³/min                 | (flowrate)                                        |
|                 |                |      | Q =            | 2.163                       | gpm                     | (flowrate)                                        |

### Rising Head Permeability Test No. 1 MWN-01B




# Bouwer & Rice Slug Test Method Hydraulic Conductivity Calculation Worksheet Rising Head Test No. 2 Project: 03.0033579.06 Steel Winds

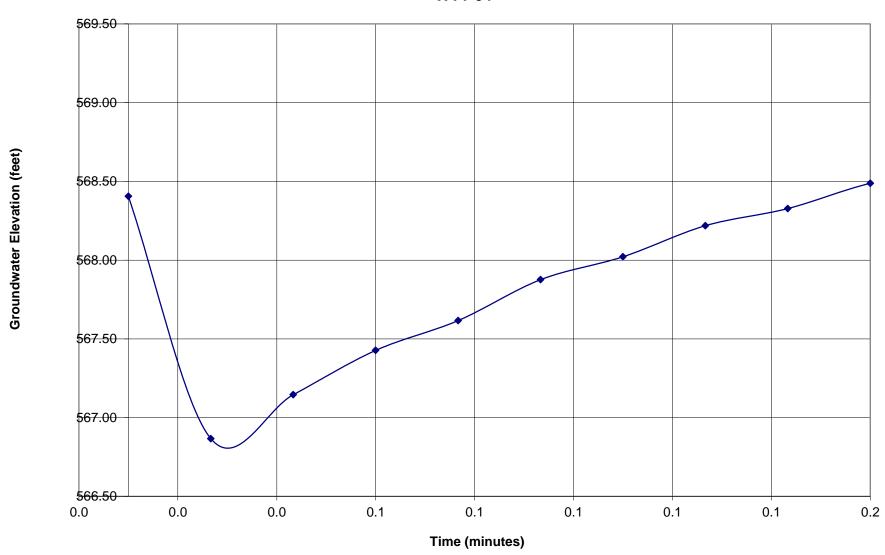
| Date    | 7/15/2014 |
|---------|-----------|
| Well No | MWN-01B   |

| H =    | 17.47 | feet                                                 | (aquifer thickness)                                                             |
|--------|-------|------------------------------------------------------|---------------------------------------------------------------------------------|
| Le =   | 17.47 | feet                                                 | (wetted screen length)                                                          |
| Lw =   | 17.47 | feet                                                 | (length from bottom of well to static water table)                              |
| rw =   | 0.161 | feet                                                 | (borehole radius)                                                               |
| rc =   | 0.083 | feet                                                 | (well radius)                                                                   |
| n =    | 0.30  |                                                      | (porosity of gravel pack)                                                       |
|        |       |                                                      |                                                                                 |
| yo =   | 1.64  | feet                                                 | (drawdown difference for initial reading at flat portion of curvesee log graph) |
| yt =   | 0.49  | feet                                                 | (drawdown difference for end reading at flat portion of curvesee log graph)     |
| t =    | 0.25  | min                                                  | (change in time from yo to yt)                                                  |
| Le/rw= | 108.5 | _                                                    | (calculated ratio)                                                              |
| A =    | 4.47  | ft at Le/rw                                          | (from plotFig 2 in Bouwer and Rice)                                             |
| B =    | 0.76  | ft at Le/rw                                          | (from plotFig 2 in Bouwer and Rice)                                             |
| C =    | 4.50  | ft at Le/rw                                          | (from plotFig 2 in Bouwer and Rice)                                             |
| rc' =  | 0.112 | _                                                    | (effective radius)                                                              |
|        |       |                                                      |                                                                                 |
| m =    | 0.163 | if well d = 2 in<br>if d = 4 inch,<br>if d = 6 inch, |                                                                                 |

| In Re = 1.795<br>Re = 6.020 fe | K =  eet $K =$ | 6.31E-03<br><b>3.21E-03</b> | ft/min<br><b>cm/sec</b> | (hydraulic conductivity) (hydraulic conductivity) |
|--------------------------------|----------------|-----------------------------|-------------------------|---------------------------------------------------|
|                                | K =            | 9.09E+00                    | ft/day                  | (hydraulic conductivity)                          |
|                                | <i>T</i> =     | 1.59E+02                    | ft²/day                 | (transmissivity)                                  |
|                                | T =            | 1187.33                     | gpd/ft                  | (transmissivity)                                  |
|                                |                |                             |                         |                                                   |
|                                | Q =            | 0.3135                      | ft³/min                 | (flowrate)                                        |
|                                | Q =            | 2.345                       | gpm                     | (flowrate)                                        |

### Rising Head Permeability Test No. 1 WT1-04




# Bouwer & Rice Slug Test Method Hydraulic Conductivity Calculation Worksheet Rising Head Test No. 1 Project: 03.0033579.06 Steel Winds

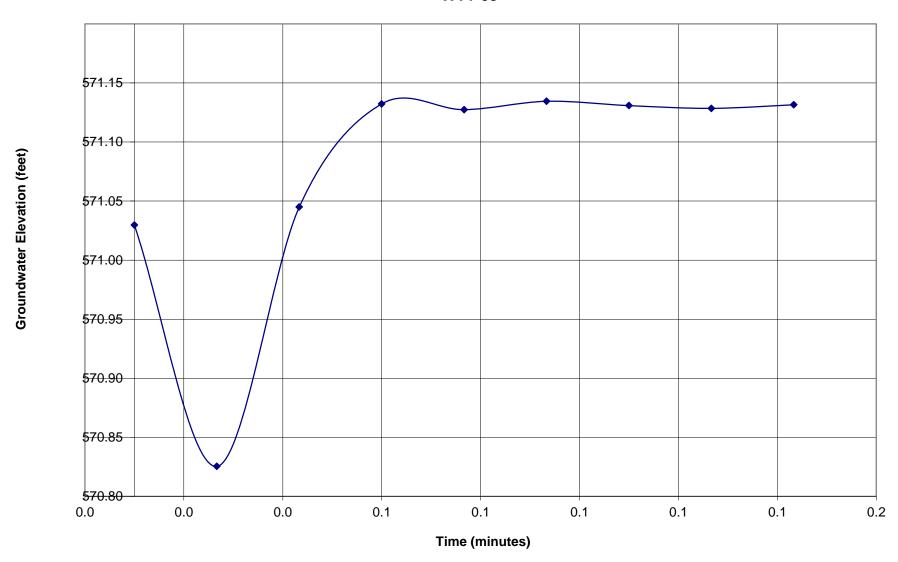
| Date    | 7/16/2014 |
|---------|-----------|
| Well No | WT1-04    |

| H =    | 11.92 | feet                                                 | (aquifer thickness)                                                             |
|--------|-------|------------------------------------------------------|---------------------------------------------------------------------------------|
| Le =   | 11.92 | feet                                                 | (wetted screen length)                                                          |
| Lw =   | 11.92 | feet                                                 | (length from bottom of well to static water table)                              |
| rw =   | 0.161 | feet                                                 | (borehole radius)                                                               |
| rc =   | 0.083 | feet                                                 | (well radius)                                                                   |
| n =    | 0.30  |                                                      | (porosity of gravel pack)                                                       |
|        |       |                                                      |                                                                                 |
| yo =   | 5.35  | feet                                                 | (drawdown difference for initial reading at flat portion of curvesee log graph) |
| yt =   | 4.93  | feet                                                 | (drawdown difference for end reading at flat portion of curvesee log graph)     |
| t =    | 0.04  | min                                                  | (change in time from yo to yt)                                                  |
| Le/rw= | 74.0  | _                                                    | (calculated ratio)                                                              |
| A =    | 3.68  | ft at Le/rw                                          | (from plotFig 2 in Bouwer and Rice)                                             |
| B =    | 0.60  | ft at Le/rw                                          | (from plotFig 2 in Bouwer and Rice)                                             |
| C =    | 3.45  | ft at Le/rw                                          | (from plotFig 2 in Bouwer and Rice)                                             |
| rc' =  | 0.112 | _                                                    | (effective radius)                                                              |
|        |       |                                                      |                                                                                 |
| m =    | 0.163 | if well $d = 2$ in if $d = 4$ inch, if $d = 6$ inch, |                                                                                 |
|        |       | -                                                    |                                                                                 |

| In Re = 1.484<br>Re = 4.408 | -<br>feet | K=<br><b>K</b> = | 3.58E-03<br><b>1.82E-03</b> | ft/min<br><b>cm/sec</b> | (hydraulic conductivity) (hydraulic conductivity) |
|-----------------------------|-----------|------------------|-----------------------------|-------------------------|---------------------------------------------------|
|                             | _         | K=               | 5.15E+00                    | ft/day                  | (hydraulic conductivity)                          |
|                             |           | T =              | 6.14E+01                    | ft²/day                 | (transmissivity)                                  |
|                             |           | T =              | 459.03                      | gpd/ft                  | (transmissivity)                                  |
|                             |           |                  |                             |                         |                                                   |
|                             |           | Q =              | <i>0.4</i> 326              | ft³/min                 | (flowrate)                                        |
|                             |           | Q =              | 3.236                       | gpm                     | (flowrate)                                        |

### Rising Head Permeability Test No. 2 WT1-04




# Bouwer & Rice Slug Test Method Hydraulic Conductivity Calculation Worksheet Rising Head Test No. 2 Project: 03.0033579.06 Steel Winds

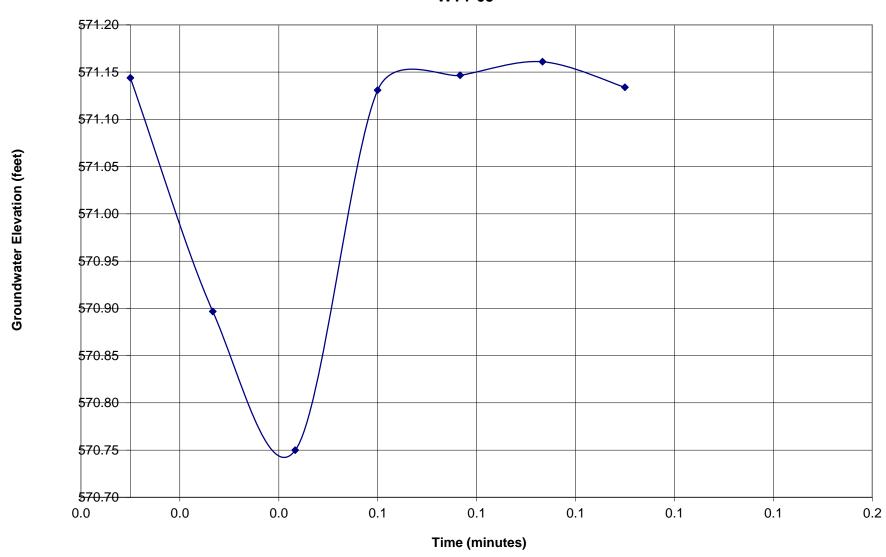
| Date    | 7/16/2014 |
|---------|-----------|
| Well No | WT1-04    |

| H =    | 11.92 | feet             | (aquifer thickness)                                                             |
|--------|-------|------------------|---------------------------------------------------------------------------------|
| Le =   | 11.92 | feet             | (wetted screen length)                                                          |
|        |       |                  | • ,                                                                             |
| Lw =   | 11.92 | feet             | (length from bottom of well to static water table)                              |
| rw =   | 0.161 | feet             | (borehole radius)                                                               |
| rc =   | 0.083 | feet             | (well radius)                                                                   |
| n =    | 0.30  |                  | (porosity of gravel pack)                                                       |
|        |       |                  |                                                                                 |
| yo =   | 5.70  | feet             | (drawdown difference for initial reading at flat portion of curvesee log graph) |
| yt =   | 5.23  | feet             | (drawdown difference for end reading at flat portion of curvesee log graph)     |
| t =    | 0.05  | min              | (change in time from yo to yt)                                                  |
| Le/rw= | 74.0  | <u>.</u>         | (calculated ratio)                                                              |
| A =    | 3.68  | ft at Le/rw      | (from plotFig 2 in Bouwer and Rice)                                             |
| B =    | 0.60  | ft at Le/rw      | (from plotFig 2 in Bouwer and Rice)                                             |
| C =    | 3.45  | ft at Le/rw      | (from plotFig 2 in Bouwer and Rice)                                             |
| rc' =  | 0.112 |                  | (effective radius)                                                              |
|        |       |                  |                                                                                 |
|        |       | if well d = 2 in | nch, $m = 0.163$                                                                |
| m =    | 0.163 | if $d = 4$ inch, | m = 0.653                                                                       |
|        |       | if $d = 6$ inch, | m = 1.469                                                                       |

| In Re =<br>Re = | 1.484<br>4.408 |   | K = <b>K</b> =    | 3.01E-03<br><b>1.53E-03</b> | ft/min<br><b>cm/sec</b> | (hydraulic conductivity) (hydraulic conductivity) |
|-----------------|----------------|---|-------------------|-----------------------------|-------------------------|---------------------------------------------------|
|                 |                | _ | K=                | 4.34E+00                    | ft/day                  | (hydraulic conductivity)                          |
|                 |                |   | $T = \frac{1}{2}$ | 5.17E+01                    | ft²/day                 | (transmissivity)                                  |
|                 |                |   | T=                | 386.52                      | gpd/ft                  | (transmissivity)                                  |
|                 |                |   |                   |                             | •                       |                                                   |
|                 |                |   | Q =               | 0.3881                      | ft³/min                 | (flowrate)                                        |
|                 |                |   | Q =               | 2.903                       | gpm                     | (flowrate)                                        |

## Rising Head Permeability Test No. 1 WT1-05




# Bouwer & Rice Slug Test Method Hydraulic Conductivity Calculation Worksheet Rising Head Test No. 1 Project: 03.0033579.06 Steel Winds

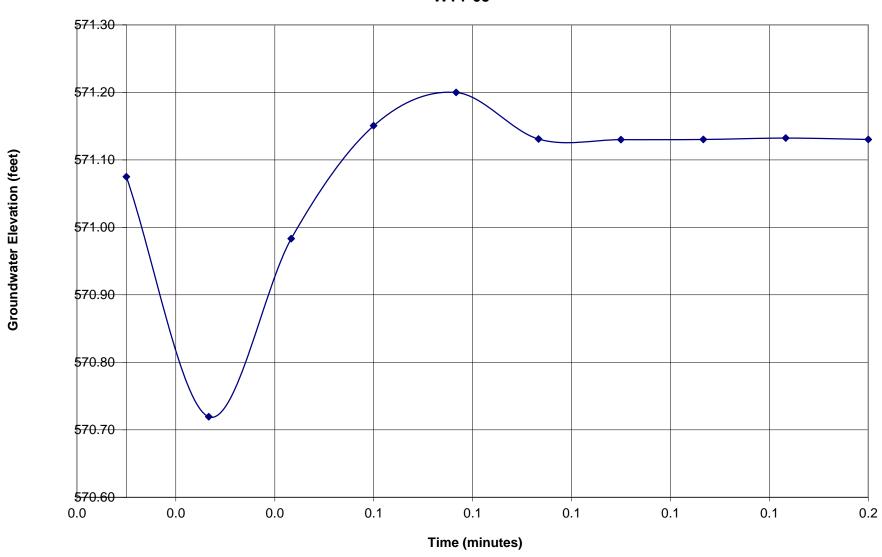
| Date    | 7/16/2014 |
|---------|-----------|
| Well No | WT1-05    |

| H =    | 10.08 | feet             | (aquifer thickness)                                                             |
|--------|-------|------------------|---------------------------------------------------------------------------------|
| Le =   | 10.08 | feet             | (wetted screen length)                                                          |
| Lw =   | 10.08 | feet             | (length from bottom of well to static water table)                              |
| rw =   | 0.161 | feet             | (borehole radius)                                                               |
| rc =   | 0.083 | feet             | (well radius)                                                                   |
| n =    | 0.30  |                  | (porosity of gravel pack)                                                       |
|        |       |                  |                                                                                 |
| yo =   | 1.26  | feet             | (drawdown difference for initial reading at flat portion of curvesee log graph) |
| yt =   | 1.05  | feet             | (drawdown difference for end reading at flat portion of curvesee log graph)     |
| t =    | 0.01  | min              | (change in time from yo to yt)                                                  |
| Le/rw= | 62.6  |                  | (calculated ratio)                                                              |
| A =    | 3.39  | ft at Le/rw      | (from plotFig 2 in Bouwer and Rice)                                             |
| B =    | 0.55  | ft at Le/rw      | (from plotFig 2 in Bouwer and Rice)                                             |
| C =    | 3.08  | ft at Le/rw      | (from plotFig 2 in Bouwer and Rice)                                             |
| rc' =  | 0.112 |                  | (effective radius)                                                              |
|        |       |                  |                                                                                 |
|        |       | if well d = 2 i  | nch, m = 0.163                                                                  |
| m =    | 0.163 | if $d = 4$ inch, |                                                                                 |
|        |       | if $d = 6$ inch, | m = 1.469                                                                       |

| In Re = 1.348 |      | K =   | 3.62E-02 | ft/min  | (hydraulic conductivity) |
|---------------|------|-------|----------|---------|--------------------------|
| Re = 3.849    | feet | K=    | 1.84E-02 | cm/sec  | (hydraulic conductivity) |
|               |      | K =   | 5.21E+01 | ft/day  | (hydraulic conductivity) |
|               |      | T = _ | 5.25E+02 | ft²/day | (transmissivity)         |
|               | •    | T =   | 3926.80  | gpd/ft  | (transmissivity)         |
|               |      |       |          | _       |                          |
|               | (    | Q =   | 0.9088   | ft³/min | (flowrate)               |
|               | (    | Q =   | 6.798    | gpm     | (flowrate)               |

### Rising Head Permeability Test No. 2 WT1-05




# Bouwer & Rice Slug Test Method Hydraulic Conductivity Calculation Worksheet Rising Head Test No. 2 Project: 03.0033579.06 Steel Winds

| Date    | 7/16/2014 |
|---------|-----------|
| Well No | WT1-05    |

| H =      | 10.08 | feet                                 | (aquifer thickness)                                                             |
|----------|-------|--------------------------------------|---------------------------------------------------------------------------------|
|          |       |                                      | • •                                                                             |
| Le =     | 10.08 | feet                                 | (wetted screen length)                                                          |
| Lw =     | 10.08 | feet                                 | (length from bottom of well to static water table)                              |
| rw =     | 0.161 | feet                                 | (borehole radius)                                                               |
| rc =     | 0.083 | feet                                 | (well radius)                                                                   |
| n =      | 0.30  |                                      | (porosity of gravel pack)                                                       |
|          |       |                                      |                                                                                 |
| yo =     | 1.34  | feet                                 | (drawdown difference for initial reading at flat portion of curvesee log graph) |
| yt =     | 0.96  | feet                                 | (drawdown difference for end reading at flat portion of curvesee log graph)     |
| t =      | 0.02  | min                                  | (change in time from yo to yt)                                                  |
| Le/rw=   | 62.6  | <u>.</u>                             | (calculated ratio)                                                              |
| A =      | 3.39  | ft at Le/rw                          | (from plotFig 2 in Bouwer and Rice)                                             |
| B =      | 0.55  | ft at Le/rw                          | (from plotFig 2 in Bouwer and Rice)                                             |
| C =      | 3.08  | ft at Le/rw                          | (from plotFig 2 in Bouwer and Rice)                                             |
| rc' =    | 0.112 | -                                    | (effective radius)                                                              |
|          |       |                                      |                                                                                 |
| <b>m</b> | 0.162 |                                      | nch, m = 0.163                                                                  |
| m =      | 0.163 | if $d = 4$ inch,<br>if $d = 6$ inch, |                                                                                 |
|          |       | • '                                  |                                                                                 |

| In Re = 1.34<br>Re = 3.84 |             | K=_<br><b>K=</b> _ | 3.31E-02<br><b>1.68E-02</b> | ft/min<br><b>cm/sec</b> | (hydraulic conductivity) (hydraulic conductivity) |
|---------------------------|-------------|--------------------|-----------------------------|-------------------------|---------------------------------------------------|
| -                         | <del></del> | K=                 | 4.76E+01                    | ft/day                  | (hydraulic conductivity)                          |
|                           |             | $T = \frac{1}{2}$  | 4.80E+02                    | ft²/day                 | (transmissivity)                                  |
|                           |             | $T = \frac{1}{2}$  | 3591.33                     | gpd/ft                  | (transmissivity)                                  |
|                           |             |                    |                             | 2                       |                                                   |
|                           |             | Q =                | 0.8839                      | ft³/min                 | (flowrate)                                        |
|                           |             | Q =                | 6.612                       | gpm                     | (flowrate)                                        |

## Rising Head Permeability Test No. 3 WT1-05



# Bouwer & Rice Slug Test Method Hydraulic Conductivity Calculation Worksheet Rising Head Test No. 3 Project: 03.0033579.06 Steel Winds

| Date    | 7/16/2014 |
|---------|-----------|
| Well No | WT1-05    |

| H =    | 10.08 | feet                                 | (aquifer thickness)                                                             |
|--------|-------|--------------------------------------|---------------------------------------------------------------------------------|
| Le =   | 10.08 | feet                                 | (wetted screen length)                                                          |
| Lw =   | 10.08 | feet                                 | (length from bottom of well to static water table)                              |
| rw =   | 0.161 | feet                                 | (borehole radius)                                                               |
| rc =   | 0.083 | feet                                 | (well radius)                                                                   |
| n =    | 0.30  |                                      | (porosity of gravel pack)                                                       |
|        |       |                                      |                                                                                 |
| yo =   | 1.37  | feet                                 | (drawdown difference for initial reading at flat portion of curvesee log graph) |
| yt =   | 0.94  | feet                                 | (drawdown difference for end reading at flat portion of curvesee log graph)     |
| t =    | 0.03  | min                                  | (change in time from yo to yt)                                                  |
| Le/rw= | 62.6  | -                                    | (calculated ratio)                                                              |
| A =    | 3.39  | ft at Le/rw                          | (from plotFig 2 in Bouwer and Rice)                                             |
| B =    | 0.55  | ft at Le/rw                          | (from plotFig 2 in Bouwer and Rice)                                             |
| C =    | 3.08  | ft at Le/rw                          | (from plotFig 2 in Bouwer and Rice)                                             |
| rc' =  | 0.112 | -                                    | (effective radius)                                                              |
|        |       |                                      |                                                                                 |
|        | 0.400 |                                      | nch, m = 0.163                                                                  |
| m =    | 0.163 | if $d = 4$ inch,<br>if $d = 6$ inch, |                                                                                 |
|        |       | ii u – 0 iii0ii,                     | III — 1.TOJ                                                                     |

| In Re =<br>Re = | 1.348<br>3.849 | -<br>feet | K=<br><b>K=</b> | 2.49E-02<br><b>1.27E-02</b> | ft/min<br><b>cm/sec</b> | (hydraulic conductivity) (hydraulic conductivity) |
|-----------------|----------------|-----------|-----------------|-----------------------------|-------------------------|---------------------------------------------------|
|                 |                | _         | K=              | 3.59E+01                    | ft/day                  | (hydraulic conductivity)                          |
|                 |                |           | T =             | 3.62E+02                    | ft²/day                 | (transmissivity)                                  |
|                 |                |           | T =             | 2704.33                     | gpd/ft                  | (transmissivity)                                  |
|                 |                |           |                 |                             | •                       |                                                   |
|                 |                |           | Q =             | 0.6805                      | ft³/min                 | (flowrate)                                        |
|                 |                |           | Q =             | 5.091                       | gpm                     | (flowrate)                                        |

### APPENDIX E

MASS LOADING CALCULATIONS

### WT-01 Area of Concern Naphthalene Mass Loading Calculations Technical Impracticability Waiver Application-Steel Winds I Lackawanna, New York

|                 |                        |                        |                       |                    |                      |                                               |                                   | Mass        |
|-----------------|------------------------|------------------------|-----------------------|--------------------|----------------------|-----------------------------------------------|-----------------------------------|-------------|
|                 | Hydraulic Conductivity |                        | Discharge Zone Length |                    | Hydraulic Gradient   | Groundwater                                   | Naphthalene Groundwater           | Loading     |
| Geologic Unit   | (ft/day) <sup>1</sup>  | Aquifer Thickness (ft) | (ft)                  | Aquifer Area (ft²) | (ft/ft) <sup>2</sup> | Discharge (ft <sup>3</sup> /day) <sup>3</sup> | Concentration (mg/l) <sup>4</sup> | $(lb/yr)^5$ |
| Fill/Slag       | 45.7                   | 10                     | 350                   | 3,500              | 0.0018               | 288                                           | 0.3                               | 1.97        |
| Sand/Silty Sand | 5.0                    | 10                     | 350                   | 3,500              | 0.0016               | 28                                            | 1.2                               | 0.77        |
| Total           |                        |                        |                       |                    |                      |                                               |                                   | 2.74        |

#### Notes:

- 1. Fill/slag hydraulic conductivity is the average from monitoring well WT01-05, based on field testing performed by GZA. The sand/silty sand hydraulic conductivity is the average from wells WT01-04, BCP-ORC-1 and MWN-01B, based on field testing performed by GZA.
- 2. From hydraulic gradient segments 6 (fill/slag) and 3 (sand/silty sand) presented in Appendix B of Benchmark's Comprehensive Groundwater Quality Assessment Report for the Tecumseh Redevelopment CMS Area, dated August 2013
- 3. Groundwater discharge calculated by the following formula- Groundwater Discharge (ft<sup>3</sup>/day) = Hydraulic conductivity (ft/day) x Hydraulic Gradient (ft/ft) x Aquifer Area (ft<sup>2</sup>).
- 4. Maximum June 2014 concentration from each geologic unit (MWN-01 concentration for fill/slag and MWN01B concentration for sand/silty sand).
- 5. Mass Loading calculated using the following formula: Mass Loading (lb/yr) = Groundwater Discharge (ft<sup>3</sup>/day) x Naphthalene Concentration (mg/l) x 365 (days/yr) x 1/453,592 (lb/mg Naphthalene) x 28.3168 (liters/ft<sup>3</sup>).

### WT-01 Area of Concern Estimated Naphthalene Pore Water Calculations Technical Impracticability Waiver Application-Steel Winds I Lackawanna, New York

| Geologic Unit          | Aquifer Flow (ft <sup>3</sup> /year) <sup>1</sup> | Estimated Precipitation Infiltration Rate (ft/yr) <sup>2</sup> | Downgradient Area<br>(ft²)³ | Precipitation Infiltration Volume (ft³/year)⁴ | , ,     | Naphthalene<br>Groundwater<br>Concentration (mg/l) <sup>6</sup> | Estimated Pore Water Concentration (mg/l) <sup>7</sup> |
|------------------------|---------------------------------------------------|----------------------------------------------------------------|-----------------------------|-----------------------------------------------|---------|-----------------------------------------------------------------|--------------------------------------------------------|
| Combined Fill/Slag and |                                                   |                                                                |                             |                                               |         |                                                                 |                                                        |
| Sand/Silty Sand        | 115,328                                           | 1.25                                                           | 20,000                      | 25,000                                        | 140,328 | 0.38                                                            | 0.31                                                   |

#### Notes:

- 1. Taken from above table.
- 2. From Benchmark's Comprehensive Groundwater Quality Assessment Report for the Tecumseh Redevelopment CMS Area, dated August 2013
- 3. Area between WT-01 Area of Concern and Smokes Creek, which is the assumed primary groundwater discharge point.
- 4. Equal to infiltration rate x downgradient area.
- 5. Equal to aquifer discharge + infiltration volume.
- 6. Weighted average based on above geologic unit flows and naphthalene concentrations.
- 7. Calculated using the following formula: estimated porewater concentration (mg/l) = (aquifer flow x naphthalene groundwater concentration)/total discharge volume.

### APPENDIX F

REPRESENTATIVE PHOTOGRAPHS

## STEEL WINDS I WIND FACILITY LACKAWANNA, NEW YORK

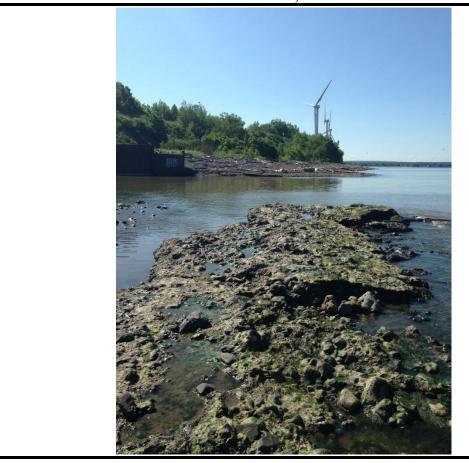



Photo No. 1: View of consolidated slag in Lake Erie adjacent to the Site.



Photo No. 2: Example of consolidated slag material.

## STEEL WINDS I WIND FACILITY LACKAWANNA, NEW YORK



Photo No. 3: Steel coffer dam at mouth of Smokes Creek



Photo No. 4: Northern bank of Smokes Creek adjacent to the Site.

## STEEL WINDS I WIND FACILITY LACKAWANNA, NEW YORK



Photo No. 5: Mouth of Smokes Creek



Photo No. 6: Consolidated slag material.