

September 2021 ANNUAL/SEMI-ANNUAL GROUNDWATER MONITORING REPORT NIAGARA WIND POWER, LLC STEEL WINDS I FACILITY (Site No. C915205) LACKAWANNA, NEW YORK

November 2021 (Revised December 2021) File No. 03.0033579.14

PREPARED FOR:

Niagara Wind Power, LLC 200 Liberty Street, 14th Fl. NY, NY 10281

GZA GeoEnvironmental of New York

300 Pearl Street Suite 700 | Buffalo, NY 14202 716-685-2300

31 Offices Nationwide www.gza.com Copyright© 2021 GZA GeoEnvironmental, Inc.

November 10, 2021, Revised December 8, 2021 File No. 03.0033579.14

Mr. Jonathan Kirby **Brookfield Renewable** c/o Niagara Wind Power, LLC 200 Liberty Street, 14th Floor New York, NY 10281

Re: September 2021 Annual/Semi-Annual Groundwater Monitoring Report (Revised)

Steel Winds I Site (Site No. C915205)

Lackawanna, NY

Dear Mr. Kirby:

GZA GeoEnvironmental (GZA) is pleased to submit this annual/semi-annual groundwater monitoring report to Niagara Wind Power, LLC (NWP) summarizing the analytical results of the groundwater sampling event conducted in September 2021 at the above referenced Site. The objective of the sampling event was to collect and analyze groundwater samples from the on-site monitoring wells in accordance with the Site Management Plan, dated September 2007, prepared by Benchmark Environmental Engineering and Science, PLLC (Benchmark) and approved by the New York State Department of Environmental Conservation (NYSDEC).

Should you have any questions or require additional information following your review, please contact Ed Summerly at (401) 427-2707.

Richard A. Carlone, P.E.

Consultant Reviewer

Sincerely,

GZA GEOENVIRONMENTAL OF NEW YORK

Senior Project Manager

Edward A. Summerly, P.G.

Principal / District Office Manager

Matt Carson (Brookfield Renewable) cc:

Cris Basden (Brookfield Renewable)

Megan Kuczka (NYSDEC)

Attachments: Report

TABLE OF CONTENTS

1.00 INTRODU	JCTION2
1.10 B	ACKGROUND AND SITE HISTORY2
2.00 PURPOSI	E AND SCOPE OF WORK4
3.00 FIELD ST	UDIES4
3.10 G	ROUNDWATER COLLECTION4
4.00 ANALYTI	CAL LABORATORY TESTING6
5.00 ANALYTI	CAL TEST RESULTS6
5.10 A	NNUAL SITE-WIDE MONITORING WELLS7
5.20 S	SEMI-ANNUAL WT-1 VICINITY MONITORING WELLS9
6.00 MOVING	AVERAGE TREND ANALYSIS11
7.00 SUMMAR	RY12
TABLES	
TABLE 1 TABLE 2 TABLE 3	SEPTEMBER 2021 ANALYTICAL TESTING PROGRAM SUMMARY SEPTEMBER 2021 ANNUAL GROUNDWATER ANALYTICAL DATA SUMMARY SEPTEMBER 2021 SEMI-ANNUAL GROUNDWATER ANALYTICAL DATA SUMMARY
FIGURES	
FIGURE 1 FIGURE 2	LOCUS PLAN SITE PLAN
APPENDICES	
APPENDIX A APPENDIX B APPENDIX C APPENDIX D	LIMITATIONS ANALYTICAL TEST RESULTS TIME SERIES PLOTS WELL DEVELOPMENT FORMS

1.00 INTRODUCTION

In accordance with our February 19, 2021 proposal, GZA GeoEnvironmental, Inc. (GZA) collected and analyzed groundwater samples at the nine (9) annual site-wide groundwater monitoring well locations (designated the Long-Term Groundwater Monitoring Plan (LTGWM)) and the six (6) semi-annual WT-1 vicinity groundwater monitoring well locations at the Steel Winds I facility located in Lackawanna, New York (Site). A Locus Plan and Site Plan are attached as **Figures 1** and **2**, respectively.

1.10 BACKGROUND AND SITE HISTORY

Tecumseh Redevelopment, Inc. (Tecumseh) owns approximately 1,100 acres of land at 1951 Hamburg Turnpike, as shown on attached **Figure 1**. The property was formerly used for the production of steel, coke and related products by Bethlehem Steel Corporation (BSC). Steel production on the Tecumseh property was discontinued in 1983 and the coke ovens ceased activity in 2000. Tecumseh acquired the property, along with other BSC assets, out of bankruptcy in 2003.

In September 2006, BQ Energy entered into a long-term lease agreement with Tecumseh to construct and operate wind turbines and supporting power generation equipment and infrastructure on an approximately 29-acre parcel of the Tecumseh property, referred to as the Steel Winds I Site. BQ Energy and the NYSDEC also entered into a Brownfield Cleanup Agreement for the Steel Winds Site. The Site is wholly contained within the Slag Fill Area (SFA) Zones 3 and 4 of the Tecumseh property bordered by Lake Erie to the west, Smoke Creek to the south, and former industrial lands of BSC to the north and east. Niagara Wind Power, LLC (NWP) an affiliate of Brookfield Renewable, operates the eight wind turbines installed at the Site. In accordance with an October 30, 2020 letter to NYSDEC, Niagara Wind Power, LLC assumed the Remedial Party status for the Site.

The Brownfield Cleanup Program (BCP) was successful in achieving the remedial objectives for the Steel Winds Site. The Site Management Plan (SMP) and Final Engineering Report (FER) were approved by NYSDEC in December 2007. NYSDEC issued a Certificate of Completion (COC) for the Site on December 18, 2007.

The remedial activities conducted at the Site include:

- Excavation and off-site disposal of impacted slag fill from the eight wind turbine foundations and interconnecting utility trenches;
- In-situ enhanced biodegradation of residual volatile organic compounds (VOCs), including benzene, toluene, total xylenes, and naphthalene, using oxygen release compound (ORC®) socks within the saturated soil and groundwater in the vicinity of monitoring well WT-01 and associated groundwater monitoring; and,
- Completion of a soil cover system (cap).

As a requirement of the SMP, LTGWM is being performed at nine (9) wells across the Site. Additional groundwater monitoring was also performed to monitor the effectiveness of the ORC in-situ treatment in the vicinity of wind turbine WT-01. During 2011, both the LTGWM and WT-01 vicinity groundwater monitoring programs were performed on an annual basis and were done on July 13 and 14, 2011. The five ORC in-situ treatment wells were to be monitored semi-annually, in accordance with the SMP. However, only one ORC monitoring event (on May 4, 2011) was conducted because of the ineffectiveness of the remedy.

An *Operation, Monitoring and Maintenance Request for Modification* report, dated November 2011, was submitted to NYSDEC by Benchmark. This report proposed ceasing operation of ORC® groundwater remedy for the WT-01 Vicinity because the remedy was not effective in reducing VOC concentrations, due primarily to the geochemical conditions (i.e., high baseline chemical oxygen demand, highly negative oxidation reduction potential and high pH) of the Site. NYSDEC provided comments to this report on April 10, 2012 and GZA provided a response letter on May 9, 2012. Based on this letter and correspondence with NYSDEC, the ORC® remedy has been terminated (i.e., the ORC socks have been removed from the five treatment wells and disposed of as a solid waste).

In accordance with a letter from GZA to NYSDEC, dated June 22, 2012¹, semi-annual/annual groundwater monitoring will continue at the Site until a Technical Impracticability Waiver (TI Waiver) for groundwater treatment at the Site is submitted to, and approved by NYSDEC.

On September 30, 2013, GZA submitted a *Technical Impracticability Waiver Supplemental Field Studies Work Plan* for the Site, detailing sampling, laboratory analysis, data evaluation and reporting to be conducted in support of a TI Waiver request for the Site. This *Work Plan* was approved by NYSDEC on February 24, 2014. Sampling and analysis described in the *Work Plan* was conducted by GZA in summer 2014 and a TI Waiver application was submitted to NYSDEC on November 5, 2014, with a supplemental *Endangered Species Review* letter submitted to NYSDEC on January 28, 2015. Based on the remedial evaluation presented in the application, it is GZA's opinion that active remediation is not warranted or feasible, would not result in significant benefit to the environment relative to the cost, and is technically impracticable. The application recommended limited additional sampling to evaluate risk to ecological receptors. NYSDEC verbally approved the additional recommended field work on April 27, 2015. GZA submitted a *Work Plan* to NYSDEC on August 5, 2015 describing the proposed additional field work, which was implemented in September 2015. The *TI Waiver Supplemental Report* was submitted to NYSDEC on April 24, 2018.

Due to the length of cold days experienced during the winter of 2014-2015 the semi-annual sampling event, originally scheduled for January 2015, was not able to be completed until March 2015. In order to reduce negative impacts and delays associated from freezing weather conditions, NYSDEC approved rescheduling the future semi-annual and annual sampling events to occur during the months of March and September, respectively.

¹GZA's June 22, 2012 letter was prepared in response to NYSDEC's comments on GZA's May 9, 2012 Responses to NYSDEC's April 10, 2012 Comments on the November 2011 *Operation, Monitoring and Maintenance Request for Modification*, prepared by Benchmark.

2.00 PURPOSE AND SCOPE OF WORK

The purpose of the September 2021 annual/semi-annual sampling event was to collect groundwater samples from the nine (9) annual site-wide and six (6) semi-annual WT-1 vicinity groundwater monitoring wells, respectively, in accordance with the routine monitoring protocol described in the September 2007 SMP. To accomplish this, the following activities were completed by GZA:

- Collected one (1) groundwater sample from each annual/semi-annual monitoring well location for laboratory analysis (conducted by Alpha Analytical of Westborough, Massachusetts) in accordance with the analytical testing summary provided in **Table 1**. Test parameters included the following:
 - STARS list VOCs via EPA Method 8260B;
 - o Base-Neutral semi-volatile organic compounds (SVOCs) via EPA Method 8270C; and
 - Arsenic, barium, chromium, and/or manganese via EPA Method 6010B (select annual groundwater monitoring wells only).
- Prepared this report, which summarizes the data collected during each sampling event and compared the current results to historic data and assessed contaminant concentration trends.

This report presents GZA's field observations, results, and opinions and is subject to the limitations presented in **Appendix A** and modifications if subsequent information is developed by GZA or any other party.

3.00 FIELD STUDIES

This section describes the field studies conducted as part of GZA's groundwater annual/semi-annual sampling event.

3.10 GROUNDWATER DATA COLLECTION

GZA collected groundwater samples from the nine (9) annual Site-wide monitoring wells (MWN-01, MWN-01B, MWN-02, MWN-02B, MWN-02D, MWN-03, MWN-03B, MWN-03D, and MWN-04), and six (6) WT-1 vicinity semi-annual monitoring wells (MWN-01, MWN-01B, WT1-02, WT1-04, WT1-05, and BCP-ORC-1). Samples were collected on September 2 and 3, 2021. Note, when the two monitoring programs included the same wells, only one sample was collected, and that analysis was used for both programs.

The following tables show the volume of water purged in gallons and the number of well volumes removed from the respective well after a constant head was established. In general, groundwater purge rates were 500(±) millimeter per minute (ml/min). Due to complications experienced with the downhole pump equipment in MWN-03D, alternative sampling methods using a dedicated bailer to remove one well volume and for sample collection were employed. The groundwater samples collected using this method were observed to have an increased turbidity which required laboratory filtration prior to inorganic analysis. Well development forms for each monitoring well sampled are included in **Appendix D**.

Annual Site-Wide Monitoring Well ID	Cumulative Volume Purged (gallons)	Well Volumes (#)
MWN-01	8	1.6
MWN-01B	8	3.0
MWN-02	4	1.0
MWN-02B	6	1.3
MWN-02D	6	0.7
MWN-03	6	0.9
MWN-03B	1.5	0.3
MWN-03D	13	1.0
MWN-04	3	0.6

WT-1 Vicinity Semi-Annual Monitoring Well ID	Cumulative Volume Purged (gallons)	Well Volumes (#)
MWN-01	8	1.6
MWN-01B	8	3.0
WT1-02	6	0.9
WT1-04	6	3.0
WT1-05	15	8.3
BCP-ORC-1	8	4.0

Note: wells highlighted in yellow are included in both programs.

As part of the Annual/Semi-annual groundwater monitoring round, static groundwater level measurements were made from top of riser of the monitoring wells listed in the table below prior to purging. Monitoring point elevation data was available from previous groundwater monitoring reports completed by Benchmark, and/or field survey work conducted by GZA. From this data, groundwater flow directions were estimated and are shown on **Figure 2**. Based on the available information, groundwater flow is generally in a westerly direction towards Lake Erie or south toward Smoke Creek (in the immediate vicinity of Smoke Creek only).

Monitoring Well	Top of Riser	Groundwater Depth	Groundwater
Location	Elevation (ft.)	(ft.)	Elevation (ft.)
MWN-01	585.14	11.59	573.55
MWN-01B	587.03	15.50	571.53
MWN-02	601.01	27.70	573.31
MWN-02B	601.28	28.05	573.23
MWN-02D	602.95	28.83	574.12
MWN-03	611.96	38.89	573.07
MWN-03B	612.29	39.45	572.84
MWN-03D	613.51	41.70	571.81
MWN-04	623.45	50.61	572.84
WT1-02	600.78	26.91	573.87
WT1-04	586.45	12.91	573.54
WT1-05	584.41	11.85	572.56
BCP-ORC-1	591.97	18.30	573.67

4.00 ANALYTICAL LABORATORY TESTING

Thirteen (13) annual/semi-annual groundwater samples were submitted for analytical testing as part of the September 2021 sampling event. The samples were packed in an ice-filled cooler and, following chain-of-custody procedures, sent to Alpha Analytical for analysis. **Table 1** presents a summary of the samples collected and the analyses completed. As noted above, the sample from MWN-03D required laboratory filtering prior to analysis due to elevated turbidity and samples from MWN-01 and MWN-01B were included for both semi-annual and annual monitoring programs.

5.00 ANALYTICAL TEST RESULTS

A discussion of the laboratory results for the groundwater samples is presented below. The laboratory reports are provided in **Appendix B** and the analytical test results are summarized on **Tables 2 and 3**.

The analytical test results for the groundwater samples were compared to NYSDEC Class GA criteria presented in the *Division of Water Technical and Operational Guidance Series* (TOGS 1.1.1), dated October 1993, revised June 1998, errata January 1999 and amended April 2000.

The analytical data generated as part of this sampling event has also been provided to NYSDEC electronically for their Environmental Information Management System (EIMS). The data was provided in a standardized electronic data deliverable (EDD) format that uses the database software application EQuIS[™] (EQuIS) from EarthSoft® Inc. The laboratory data and required information were imported into the EQuIS Data Processor (EDP) and submitted to NYSDEC on October 27, 2021.

5.10 ANNUAL SITE-WIDE MONITORING WELLS

- o <u>MWN-01 (screen depth: 9.2' 19.2')</u>: Eight (8) VOCs were detected above method reporting limits of which five (5) exceeded their respective NYSDEC Class GA criteria and guidance values, as follows.
 - Benzene at 14 parts per billion (ppb);
 - o m,p-Xylene at 8.7 ppb;
 - o o-Xylene at 6.5 ppb;
 - o Total Xylene at 15.2 ppb; and

Naphthalene was detected as a VOC at a concentration of 270 ppb, which exceeds its guidance value of 10 ppb.

Fourteen (14) SVOCs were detected above their method reporting limits of which four (4) exceeded their respective NYSDEC Class GA criteria and guidance values, as follows.

- Naphthalene at 96.2 ppb;
- o Phenanthrene at 71 ppb;
- o Biphenyl at 5.85 ppb; and
- o Chrysene at 0.216 ppb (estimated value, i.e., J detect).
- o <u>MWN-01B</u> (screen depth: 22.2' 32.2'): Seven (7) VOCs were detected above method reporting limits, of which seven (7) exceeded their respective NYSDEC Class GA criteria and guidance values, as follows.
 - Benzene at 55 ppb;
 - Toluene at 19 ppb (estimated value, i.e., J detect);
 - o m,p-Xylene at 12 ppb (estimated value, i.e., J detect);
 - o o-Xylene at 9.0 ppb (estimated value, i.e., J detect);
 - o Total Xylene at 21 ppb; and
 - o 1,2,4-Trimethylbenzene at 7.1 ppb (estimated value, i.e., J detect).

Naphthalene was detected at a concentration of 1,500 ppb, which exceeds its guidance value of 10 ppb.

Sixteen (16) SVOCs were detected above method reporting limits of which seven (7) exceeded their respective NYSDEC Class GA criteria and guidance values, as follows

- Naphthalene at 962 ppb;
- Phenanthrene at 61.9 ppb;
- Biphenyl at 7.45 ppb;
- o Benzo [a] Anthracene at 0.461 ppb (estimated value, i.e., J detect);
- o Benzo [b] Fluoranthene at 0.105 ppb (estimated value, i.e., J detect);
- o Benzo [a] Pyrene at 0.072 ppb (estimated value, i.e., J detect); and
- o Chrysene at 0.256 ppb (estimated value, i.e., J detect).

- o <u>MWN-02</u> (screen depth: 23.6' 33.6'): Eight (8) VOCs were detected above method reporting limits of which two (2) exceeded their respective NYSDEC Class GA criteria and guidance values, as follows.
 - o Benzene at 5.1 ppb.

Naphthalene was detected at a concentration of 20 ppb, which exceeds its guidance value of 10 ppb.

Thirteen (13) SVOCs were detected above method reporting limits, but all below their respective NYSDEC Class GA criteria or guidance values.

- o <u>MWN-02B (screen depth: 46.3' 56.3')</u>: Eight (8) VOCs were detected above method reporting limits of which six (6) exceeded their respective NYSDEC Class GA criteria and guidance values, as follows.
 - o Benzene at 61 ppb;
 - Toluene at 11 ppb;
 - o m,p-Xylene at 9.2 ppb;
 - o o-Xylene at 13 ppb; and
 - o Total Xylene at 22.2 ppb.

Naphthalene was detected at a concentration of 280 ppb, which exceeds its guidance value of 10 ppb.

Fourteen (14) SVOCs were detected above method reporting limits, but below their respective NYSDEC Class GA criteria or guidance values, except for Naphthalene. Naphthalene was detected at a concentration of 183 ppb, which exceeds its guidance value of 10 ppb.

One (1) metal, arsenic, was detected at a concentration of 27.68 ppb, which exceeds its Class GA criteria of 25 ppb.

- o <u>MWN-02D (screen depth: 74.3' 79.3')</u>: Three (3) metals were detected above method reporting limits, but below their respective NYSDEC Class GA criteria.
- MWN-03 (screen depth: 39.2' 49.2'): Seven (7) VOCs were detected above method reporting limits of which two (2) exceeded their respective NYSDEC Class GA criteria and guidance value, as follows.
 - o Benzene at 7.1 ppb.

Naphthalene was detected at a concentration of 19 ppb, which exceeds its guidance value of 10 ppb.

Thirteen (13) SVOCs were detected above method reporting limits, but below their respective NYSDEC Class GA criteria or guidance values, except for Naphthalene. Naphthalene was detected at a concentration of 11.2 ppb, which exceeds its guidance value of 10 ppb.

- MWN-03B (screen depth: 60.7' 70.7'): Four (4) metals were detected above method reporting limits of which three (3) exceeded their respective NYSDEC Class GA criteria, as follows.
 - Arsenic at 86.97 ppb;
 - o Barium at 1,049 ppb; and
 - o Manganese at 400.2 ppb.
- MWN-03D (screen depth: 111.3' 121.3'): No VOCs were detected above method reporting limits.
 Four (4) SVOCs were detected above method reporting limits of which one (1) exceeded its respective NYSDEC Class GA criteria, as follows.
 - o bis(2-Ethylhexyl)Phthalate at 7.15 ppb.

Two (2) metals were detected above method reporting limits of which one (1) exceeded its respective NYSDEC Class GA criteria, as follows.

o Barium at 1,318 ppb.

Note: Monitoring well MWN-03D was unable to be low-flow sampled with a submersible pump and the sample was collected via bailing. Due to high turbidity resulting from the sampling technique, metal samples were filtered using a 0.45-micron filter by the laboratory.

o <u>MWN-04 (screen depth: 48.5' - 58.5')</u>: One (1) SVOCs was detected above method reporting limits for this sample, but below the respective NYSDEC Class GA guidance value.

In general, contaminant concentrations were consistent with historical data collected during previous sampling events completed at the Site. A more detailed discussion, including trend analysis, is provided in Section 6.00 of this report. Bis(2-Ethylhexyl)Phthalate was detected in MWN-03D at 44.9 ug/l in 2020 and was significantly lower in 2021 (7.15 ug/l) and this trend will continue to be evaluated.

5.20 SEMI-ANNUAL WT-1 VICINITY MONITORING WELLS

Monitoring well locations MWN-01 and MWN-01B are included in both annual and semi-annual sampling schedules. The analytical results for these monitoring locations are discussed above in Section 5.10. Results from the remaining semi-annual wells are discussed below.

- <u>WT1-02 (screen depth: 27.8' 37.8')</u>: Eight (8) VOCs were detected above method reporting limits of which two (2) exceeded their respective NYSDEC Class GA criteria and guidance values, as follows.
 - o Benzene at 12.0 ppb.

Naphthalene was detected at a concentration of 43 ppb, which exceeds its respective guidance value of 10 ppb.

Twelve (12) SVOCs were detected above their method reporting limits, but below their respective NYSDEC Class GA criteria or guidance values.

- o <u>WT1-04 (screen depth: 15.5' 25.5')</u>: Eight (8) VOCs were detected above method reporting limits of which two (2) exceeded their respective NYSDEC Class GA criteria and guidance values, as follows.
 - o Benzene at 14 ppb.

Naphthalene was detected at a concentration of 54 ppb, which exceeds its respective guidance value of 10 ppb.

Seventeen (17) SVOCs were detected above their method reporting limits and five (5) exceeded their respective NYSDEC Class GA guidance values, as follows.

- o Naphthalene at 31.1 ppb;
- o Benzo [a] Anthracene at 0.402 ppb (estimated value, i.e., J detect);
- o Benzo [b] Fluoranthene at 0.136 ppb (estimated value, i.e., J detect);
- o Benzo [a] Pyrene at 0.091 ppb (estimated value, i.e., J detect); and
- Chrysene at 0.331 ppb (estimated value, i.e., J detect).
- o <u>WT1-05 (screen depth: 13.3' 23.3')</u>: Eight (8) VOCs were detected above method reporting limits of which four (4) exceeded their respective NYSDEC Class GA criteria and guidance values, as follows.
 - o Benzene at 9.3 ppb; and
 - o m,p-Xylene at 6.7 ppb; and
 - o o-Xylene at 5.1 ppb.

Naphthalene was detected at a concentration of 200 ppb which exceeds its respective guidance value of 10 ppb.

Twelve (12) SVOCs were detected above method reporting limits, of which one (1) exceeded their respective NYSDEC Class GA guidance values as follows.

- o Naphthalene at 111 ppb.
- o <u>BCP-ORC-1</u> (screen depth: 24.7′ 34.7′): Seven (7) VOCs were detected above method reporting limits of which three (3) exceeded their respective NYSDEC Class GA criteria and guidance values, as follows.
 - Benzene at 27 ppb;
 - o o-Xylene at 6.1 ppb (estimated value, i.e., J detect).

Naphthalene was detected at a concentration of 460 ppb, which exceeds its respective guidance value of 10 ppb.

Fourteen (14) SVOCs were detected above method reporting limits, of which three (3) exceeded their respective NYSDEC Class GA guidance values as follows.

- o Naphthalene at 246 ppb;
- o Benzo [a] Anthracene at 0.295 ppb (estimated value, i.e., J detect); and
- o Chrysene at 0.225 ppb (estimated value, i.e., J detect).

In general, VOC and SVOC concentrations were consistent with historical data collected during previous sampling events. A more detailed discussion, including a trend analysis, is provided in Section 6.00 of this report.

6.00 STATISTICAL ANALYSIS

As stated in Section 2.4 of Attachment A4 (LTGWM Plan) of the September 2007 *Site Management Plan*, a statistical analysis is required for all detected constituents (in groundwater) that are observed at concentrations above NYSDEC Class GA criteria or guidance values. In lieu of performing moving trend analysis, as described in the LTGWM Plan, GZA generated time series plots for parameters which exceeded the NYSDEC Class GA criteria, either during this monitoring round or in previous routine monitoring rounds (routine monitoring started in 2008). These plots were evaluated for trends over the routine monitoring period time, which started in 2008 (approximately 13 years) at a 95% confidence interval and outliers. Sen's Test for trends were performed to evaluate statistically significant trends in the data with respect to time. Time series plots were generated on a well-by-well basis and are presented in Appendix C. During future monitoring rounds, the time series plots may be evaluated over the most recent five-year period, rather than the entire routine monitoring period.

Twenty-five statistically significantly decreasing trends in contaminant concentrations were identified by the Sen's Tests:

- BCP-ORC-1: benzene;
- MWN-01: 1,2,4-trimethylbenzene, benzene, biphenyl, fluorene, o-xylene, phenanthrene, toluene and xylenes;
- MWN-02: benzene and xylenes;
- MWN-02B: benzene;
- MWN-03B: manganese;
- WT1-02: 1,3,5-trimethylbenzene, benzene, m,p-xylene, toluene and xylenes; and
- WT1-04: 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene, benzene, m, p-xylene, o-xylene, toluene and xylenes.

The Sen's Tests also identified three statistically significant increasing trends:

- BCP-ORC-1: naphthalene and o-xylene; and
- WT1-05: phenanthrene.

Time series plots were also evaluated for seasonality and outliers. There does not appear to be seasonal fluctuations of contaminant concentrations or outliers in the monitoring data.

7.00 SUMMARY

GZA was retained to collect and analyze groundwater samples from thirteen (13) annual/semi-annual monitoring wells at the Steel Winds I facility in accordance with the *Site Management Plan*. A summary of our findings follows.

Annual Well Locations

- Static groundwater level measurements indicate that groundwater flows predominantly in a westerly direction at the Site, toward Lake Erie. Groundwater in the vicinity of WT-01 was observed to flow south-southwesterly towards Smoke Creek and Lake Erie.
- VOCs were detected at concentrations above NYSDEC Class GA criteria in the groundwater samples collected from LTGWM wells MWN-01, MWN-01B, MWN-02, MWN-02B, and MWN-03.
- VOCs were not detected above method reporting limits (and therefore not above NYSDEC Class GA criteria) in LTGWM monitoring well locations MWN-03D and MWN-04.
- SVOCs were detected at concentrations above NYSDEC Class GA or their respective guidance criteria in the groundwater samples collected from LTGWM wells MWN-01, MWN-01B, MWN-02B, MWN-03, and MWN-03D.
- Arsenic was detected at concentrations above NYSDEC Class GA criteria in LTGWM wells MWN-02B and MWN-03B.
- Barium was detected at concentrations above NYSDEC Class GA criteria in LTGWM wells MWN-03B and MWN-03D.
- Manganese detected at concentrations above NYSDEC Class GA criteria in LTGWM well MWN-03B.

Semi-Annual Well Locations

- VOCs were detected at concentrations above NYSDEC Class GA criteria in the groundwater samples collected from the semi-annual WT1 vicinity wells MWN-01, MWN-01B, WT1-02, WT1-04, WT1-05 and BCP-ORC-1.
- SVOCs were detected at concentrations above NYSDEC Class GA or their respective guidance criteria in the groundwater samples collected from the semi-annual WT1 vicinity wells MWN-01, MWN-01B, WT1-04, WT1-05, and BCP-ORC-1.
- Based on our review of the historic and current analytical data, the analytical test results from the September 2021 round of sampling are generally consistent with historical data. Statistically significant trends in contaminant concentrations were identified as noted in Section 6.00.

TABLES

TABLE 1

September 2021 Analytical Testing Program Summary Steel Winds I Facility Lackawanna, New York

				1	•	1	•							
Well Designation	Sample ID	Date Collected	Screened	STARS VOCs	SVOCs (BN)	Total Arsenic	Total Barium	Total Chromium	Total Manganasa					
Well Designation	Sample ID	Date Collected	Interval	STARS VOCS	3 VOCS (BIV)	Total Arsenic	TOLAL DATIUM	Total Chromium	Total Manganese					
			(TOR)											
Annual Monitoring	nual Monitoring Well Sample Locations (LTGWM Network)													
MWN-01	MWN-01-090221	9/2/2021	9.2 - 19.2	X	X									
MWN-01B	MWN-01B-090221	9/2/2021	22.2 - 32.2	X	X									
MWN-02	MWN-02-090321	9/3/2021	23.6 - 33.6	X	X									
MWN-02B	MWN-02B-090321	9/3/2021	46.3 - 56.3	X	X	X								
MWN-02D	MWN-02D-090321	9/3/2021	74.3 - 79.3			X	X	X						
MWN-03	MWN-03-090221	9/2/2021	39.2 - 49.2	Х	X									
MWN-03B	MWN-03B-090321	9/3/2021	60.7 - 70.7			Х	Х	Х	X					
MWN-03D	MWN-03D-090321	9/3/2021	111.3 - 121.3	X	X		X		Χ					
MWN-04	MWN-04-090221	9/2/2021	48.5 - 58.5	X	X									
Semi-Annual Mon	itoring Well Sample Lo	cations (WT-1 Vid	cinity Network)											
MWN-01	MWN-01-090221	9/2/2021	9.2 - 19.2	X	X									
MWN-01B	MWN-01B-090221	9/2/2021	22.2 - 32.2	X	X									
WT1-02	WT1-02-090221	9/2/2021	27.8 - 37.8	X	X									
WT1-04	WT1-04-090221	9/2/2021	15.5 - 25.5	X	Х									
WT1-05	WT1-05-090221	9/2/2021	13.3 - 23.3	Х	Х									
BCP-ORC-1	BCP-ORC-1-090221	9/2/2021	24.7 - 34.7	Х	Х									

Notes:

- 1. VOCs = Volatile Organic Compounds STARS list via EPA Method 8260B.
- 2. SVOCs = Semi-Volatile Organic Compounds Base-Neutrals list via EPA Method 8270C.
- 3. Arsenic, Barium, Chromium, and Manganese via EPA Method 6010B.
- 4. "WT", "MWN", and "BCP-ORC" monitoring well information provided in Table 1 was referenced from Turnkey Environmental Restoration, LLC's 2009 Annual LTGWM & First Semi-Annual WT-1 Vicinity Monitoring Report.
- 5. TOR = measurement recorded in feet below top-of-well riser.

Table 2

September 2021 Annual Groundwater Analytical Data Summary Steel Winds I Facility Lackawanna, New York

	NYSDEC			MWN-01					MWN-01B					MWN-02		
Parameter	Class GA	9/24/2019	3/18/2020	9/17/2020	4/2/2021	9/2/2021	9/24/2019	3/18/2020	9/17/2020	4/2/2021	9/2/2021	9/20/2017	9/18/2018	9/25/2019	9/17/2020	9/3/2021
	Criteria	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result
Water Quality Field Measurements				•					•							
pH (units)	6.5 - 8.5	11.59	11.75	7.81	7.66	11.53	11.29	11.40	7.83	8.01	11.1	12.31	12.28	11.94	8.31	11.7
Temperature (°C)	NV	13.4	10.4	14.4	10.5	10.8	10.7	11.3	10.9	11	9.8	13.0	12.6	11.3	12.35	12.6
Specific Conductance (mS/cm)	NV	1.051	1.150	1.450	1.380	1.212	0.921	0.902	0.991	1.010	0.831	2.06	1.886	1.763	2.04	1.776
Turbidity (NTU)	5	2.4	1.23	2.9	2.4	2.61	5.7	1.20	7.3	5.4	7.67	1.89	3.0	38.6	6.8	2.51
Dissolved Oxygen (mg/L)	NV	0.30	1.32	116.7	132.3	1.2	0.09	0.68	134.7	115.9	0.8	0.55	1.51	0.060	97.2	2.8
Oxygen Reduction Potential (mV)	NV	-211.1	-262.8	-237	-231	-159.2	-325.3	-388.8	-247	-204	-214.2	-164.6	-87.2	-121.0	-281	-115.1
Volatile Organic Compounds - EPA	Method 8260 (ug/	L)														
Benzene	1	11	18	17	14	14	53	68	59	57	55	7.9	2.5	2.2	1	5.1
Toluene	5	2.5	4.2 J	4.2	4.0 J	3.6 J	17 J	19 J	18 J	20 J	19 J	2.2 J	<	<	<	1.4 J
Ethylbenzene	5	<	<	0.98 J	<	<	<	<	<	<	<	<	<	<	<	<
m,p-Xylene	5	7.0	9.5	10	9.3	8.7	14 J	13 J	13 J	15 J	12 J	4.1	1.3 J	1.1 J	0.76 J	2.4 J
o-Xylene	5	5.6	7.5	8	7.1	6.5	9.3 J	9.3 J	9.1 J	10 J	9.0 J	4.4	1.2 J	1.1 J	<	2.1 J
Xylene (Total)	15	12.6	17.0	18.0	16.0	15.2	23.3	22.3 J	22.1	25 J	21 J	8.5	2.5	2.2	0.76 J	4.5 J
1,3,5-Trimethylbenzene	5	1.8 J	3.8 J	4	4.5 J	4.2 J	<	<	<	<	<	2.8	1.8 J	1.4 J	0.91 J	1.8 J
1,2,4-Trimethylbenzene	5	2.0 J	4.3 J	4.3	4.8 J	4.6 J	<	<	<	7.6 J	7.1 J	1.4 J	<	<	<	1.2 J
Naphthalene*	10	150	220	240	310	270	1,500	1,300	1,500	1,800	1,500	36	7.3	9.4	20	20
Semi-Volatile Organic Compounds -	EPA Method 827	0 (ug/L)		•					•							
Acetophenone	NV	<	<	<	<	<	<	<	<	<	<	<	0.368 J	<	<	<
Acenaphthylene	NV	12.0	30.3	22.4	34	22.3	50.0	44.6	54.6	44	44.0	2.73	0.815	1.36	0.727	1.98
Naphthalene*	10	46.6	178	139.0	140	96.2	1010	1,210	1,030	910	962	11.2	1.19	2.87	2.38	5.23
2-Methylnaphthalene	NV	12.9	36.9	27.1	35	21.9	43.3	40.3	48.0	41	35.8	3.06	0.302 J	1.02	0.552	1.78
Acenaphthene*	20	4.14	10.4	8.34	13	8.66	10.0	10.4	11.2	10	12.0	1.50	0.538	0.758	0.431 J	1.20
Dibenzofuran	NV	13.6	37.5	25.9	44	28.9	27.5	24.7	29.4	23	30.3	2.74	0.156J	0.922	0.584	2.35
Fluorene*	50	19.4	61.4	38.3	70	41.9	38.2	34.7	43.9	38	43.7	5.98	0.92	2.98	1.52	4.76
Phenanthrene*	50	24.4	85.2	45.3	110	71.0	61.9	57.5	64.3	55	61.9	2.02	<	2.55	1.46	4.14
Dibenzo (a,h)Anthracene	NV	<	<	<	0.05 J	<	<	<	<	<	<	<	<	<	<	<
Carbazole	NV	11.1	26.5	20.30	26	19.6	59.9	63.9	62.4	52	60.0	3.45	0.598	1.34	0.702	3.67
Anthracene*	50	4.18	8.96	5.81	19	7.74	9.04	8.68	11.00	5.3	8.19	0.941	0.212J	0.635	0.467 J	0.983
Fluoranthene*	50	4.34	10.5	5.72	24	9.44	9.16	9.19	10.3	10	8.97	1.72	1.86	1.4	1.14	1.56
Biphenyl	5	3.07	7.71	6.41	8.8	5.85	8.20	6.89	8.19	6.5	7.45	1.06	0.199 J	0.412 J	0.198 J	0.732
Pyrene*	50	3.73	6.30	4.47	14	6.16	5.86	5.32	6.62	5.9	6.44	1.24	1.28	1.26	1.41	1.56
Butyl benzyl phthalate*	50	<	<	<	<	0.104 J	<	<	<	<	<	<	<	<	<	0.093 J
Benzo [a] Anthracene	0.002	<	0.299 J	<	1.4	<	<	0.362 J	<	0.38	0.461 J	<	<	<	<	<
Benzo [b] Fluoranthene*	0.002	<	<	<	0.4	<	<	<	<	0.10 J	0.105 J	<	<	<	<	<
Benzo [k] Fluoranthene*	0.002	<	<	<	0.14	<	<	<	<	0.04 J	<	<	<	<	<	<
Benzo [a] Pyrene	ND	<	<	<	0.26	<	<	<	<	0.05 J	0.072 J	<	<	<	<	<
Indeno [1,2,3-cd] Pyrene*	0.002	<	<	<	0.11	<	<	<	<	0.04 J	<	<	<	<	<	<
Benzo (g,h,i) Perylene	NV	<	<	<	0.09 J	<	<	<	<	0.03 J	<	<	<	<	<	<
Chrysene	0.002	<	0.206 J	<	0.82	0.216 J	<	0.218 J	<	0.22	0.256 J	<	<	<	<	<
bis(2-Ethylhexyl)Phthalate	5	<	<	0.456 J	<	<	<	0.182 J	1.10	<	<	0.396	<	0.098 J	0.602	<
Metals - EPA Method 6010/7470 (ug	/L)															
Arsenic	25	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Barium	1,000	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Chromium	50	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Manganese	300	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Notes:																

- 1. Compounds detected in one or more sample are presented on this table. Refer to Appendix B for list of all compounds included in analysis.
- 2. Analytical testing completed by Alpha Analytical, Westborough, Massachusetts.
- 3. NYSDEC Groundwater Class GA criteria obtained from Division of Water Technical and Operational Guidance Series (TOGS 1.1.1),
- dated October 1993, revised June 1998, errata January 1999 and amended April 2000 (Class GA).
- 4. ug/L = part per billion (ppb).

- 5. < indicates compound was not detected above method detection limits.
 6. "J" qualifier = Analyte detected below quantitation limits.
 7. Value shown in **bold** indicate exceedance of respective Class GA Criteria or guidance value.
 8. NV = no value, NT = not tested, ND = Not detected above method detection limit

- 9. * = value shown is a guidance value rather than a groundwater standard.
 10. The equipment used to collect water quality data was calibrated prior to and during use in accordance with the manufacturer's recommendations.
 11. DO and pH measurements are routinely made using the same model water quality meter, however the measurements made on 9/2020 and 4/2021 appear erroneous.

Table 2

September 2021 Annual Groundwater Analytical Data Summary Steel Winds I Facility Lackawanna, New York

	NYSDEC			MWN-02B					MWN-02D					MWN-03		
Parameter	Class GA	9/20/2017	9/17/2018	9/25/2019	9/17/2020	9/3/2021	9/20/2017	9/18/2018	9/24/2019	9/18/2020	9/3/2021	9/20/2017	9/18/2018	9/25/2019	9/17/2020	9/2/2021
	Criteria	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result
Water Quality Field Measurements	S															
pH (units)	6.5 - 8.5	11.75	11.57	11.34	8.21	11.30	7.42	7.10	7.00	6.99	6.61	12.51	12.39	12.32	8.53	12.00
Temperature (°C)	NV	13.4	13.1	12.1	12.92	12.6	13.1	13.7	12.6	13.61	12.9	15.2	13.5	12.8	13.57	13.3
Specific Conductance (mS/cm)	NV	1.04	0.942	0.958	1.13	0.910	2.08	1.864	1.890	1.970	1.354	3.04	2.825	2.724	2.89	2.729
Turbidity (NTU)	5	1.76	2.8	1.9	6.9	2.52	1.61	3.8	15.1	7.2	5.15	8.41	3.1	3.9	3.9	4.82
Dissolved Oxygen (mg/L)	NV	0.08	0.14	0.15	95.5	1.2	0.14	0.15	0.09	6.1	1.5	0.30	0.17	0.11	115.2	2.1
Oxygen Reduction Potential (mV)	NV	-284.7	-284.9	-220.6	-256	-202.6	-142.6	-70.5	-96.3	-72	-51.6	-301.8	-352.6	-412.1	-361	-267.3
Volatile Organic Compounds - EPA	A Method 8260 (ug/	L)														
Benzene	1	71	71	64	69	61	NT	NT	NT	NT	NT	6.4	12	8.0	10	7.1
Toluene	5	12	12	11	11	11	NT	NT	NT	NT	NT	1.6 J	2.7	2.0 J	2.2 J	1.8 J
Ethylbenzene	5	<	<	0.76 J	<	<	NT	NT	NT	NT	NT	<	<	<	<	<
m,p-Xylene	5	7.8 J	8.2	8.2	8.5	9.2	NT	NT	NT	NT	NT	1.4 J	2.4 J	1.4 J	1.5 J	1.3 J
o-Xylene	5	13	12	12	13.0	13	NT	NT	NT	NT	NT	1.7 J	2.7	1.5 J	1.8 J	1.4 J
Xylene (Total)	15	20.8	20.2	20.2	21.5	22.2	NT	NT	NT	NT	NT	3.1	5.1	2.9	3.3	2.7 J
1,3,5-Trimethylbenzene	5	<	<	1.5 J	1.5 J	2.0 J	NT	NT	NT	NT	NT	1.1 J	1.4 J	0.90 J	0.97 J	0.93 J
1,2,4-Trimethylbenzene	5	3.2 J	2.8 J	2.5	2.6 J	3.5 J	NT	NT	NT	NT	NT	<	<	<	<	<
Naphthalene*	10	260	340	240	270	280	NT	NT	NT	NT	NT	16	20	23	26	19
Semi-Volatile Organic Compounds	s - EPA Method 827	0 (ug/L)													•	
Acetophenone	NV	<	0.451 J	<	<	<	NT	NT	NT	NT	NT	<	0.271 J	<	<	<
Acenaphthylene	NV	2.71	3.77	4.58	3.90	3.18	NT	NT	NT	NT	NT	1.42	1.78	1.73	0.980	1.23
1,2-Dichlorobenzene	3	0.176 J	0.178J	0.171 J	0.168 J	0.162 J	NT	NT	NT	NT	NT	0.089 J	0.104 J	0.099 J	0.121 J	0.102 J
Di-n-butylphthalate	NV	<	<	<	<	<	NT	NT	NT	NT	NT	<	<	<	<	<
Naphthalene*	10	171 D	150	217	205	183	NT	NT	NT	NT	NT	11.6	16.5	17.1	18.1	11.2
2-Methylnaphthalene	NV	7.66	9.6	8.05	8.83	6.89	NT	NT	NT	NT	NT	2.25	3.26	2.7	3.10	1.93
Acenaphthene*	20	6.17	7.39	7.09	7.47	7.46	NT	NT	NT	NT	NT	1.22	1.63	1.3	1.45	1.11
Dibenzofuran	NV	4.90	5.58	5.76	6.24	6.32	NT	NT	NT	NT	NT	2.21	3.12	2.34	2.81	1.99
Fluorene*	50	8.85	8.44	10.7	11.40	10.2	NT	NT	NT	NT	NT	4.33	5.47	4.5	4.82	3.48
Phenanthrene*	50	14.7	15.4	17.5	18.30	18.0	NT	NT	NT	NT	NT	7.71	8.69	8.23	8.29	7.54
Carbazole	NV	21.3	21.9	23.2	24.40	23.1	NT	NT	NT	NT	NT	3.52	4.88	4.30	4.58	3.26
Anthracene*	50	1.80	2.33	2.32	2.35	1.67	NT	NT	NT	NT	NT	0.877	0.86	1.00	0.612	0.884
Fluoranthene*	50	3.68	3.96	3.32	4.13	3.34	NT	NT	NT	NT	NT	2.85	2.48	2.7	2.53	2.18
Biphenyl	5	1.26	1.41	1.64	1.62	1.52	NT	NT	NT	NT	NT	0.621	0.868	0.707	0.792	0.512
Pyrene*	50	2.28	2.5	2.22	2.82	2.49	NT	NT	NT	NT	NT	1.93	1.76	1.66	1.63	1.78
Butylbenzylphthalate*	50	<	<	<	<	0.124 J	NT	NT	NT	NT	NT	<	<	<	<	<
bis(2-Ethylhexyl)Phthalate	5	0.341 J	<	<	<	<	NT	NT	NT	NT	NT	0.327 J	<	<	0.336 J	<
n-Nitrosodiphenylamine	50	0.426 J	<	<	<	<	NT	NT	NT	NT	NT	0.327 J	<	<	<	<
Benzo [b] Fluoranthene	0.002	<	<	<	<	<	NT	NT	NT	NT	NT	<	0.171J	<	<	<
Metals - EPA Method 6010/7470 (1	ug/L)		·		·			·	·		·		·			
Arsenic	25	34.82	30.81	32	28.44	27.68	0.62	0.72	0.60	0.63	0.62	NT	NT	NT	NT	NT
Barium	1,000	NT	NT	NT	NT	NT	898.5	957	931.9	912.8	922.5	NT	NT	NT	NT	NT
Chromium	50	NT	NT	NT	NT	NT	0.27 J	0.19 J	<	0.30 J	0.60 J	NT	NT	NT	NT	NT
Manganese	300	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT

- 1. Compounds detected in one or more sample are presented on this table. Refer to Appendix B for list of all compounds included in analysis.

 2. Analytical testing completed by Alpha Analytical, Westborough, Massachusetts.
- 3. NYSDEC Groundwater Class GA criteria obtained from Division of Water Technical and Operational Guidance Series (TOGS 1.1.1),
- dated October 1993, revised June 1998, errata January 1999 and amended April 2000 (Class GA).
- 4. ug/L = part per billion (ppb).
- 5. < indicates compound was not detected above method detection limits.
- 6. "J" qualifier = Analyte detected below quantitation limits.
- 7. Value shown in **bold** indicate exceedance of respective Class GA Criteria or guidance value.
- 8. NV = no value, NT = not tested, ND = Not detected above method detection limit
- 9. * = value shown is a guidance value rather than a groundwater standard.
- 10. The equipment used to collect water quality data was calibrated prior to and during use in accordance with the manufacturer's recommendations.

 11. DO and pH measurements are routinely made using the same model water quality meter, however the measurements made on 9/2020 and 4/2021 appear erroneous.

Table 2

September 2021 Annual Groundwater Analytical Data Summary Steel Winds I Facility Lackawanna, New York

	NYSDEC			MWN-3B					MWN-03D					MWN-04		
Parameter	Class GA	9/20/2017	9/18/2018	9/25/2019	10/1/2020	9/3/2021	9/20/2017	9/18/2018	9/25/2019	9/24/2020	9/3/2021	9/20/2017	9/18/2018	9/25/2019	9/17/2020	9/2/2021
	Criteria	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result ¹¹	Result	Result	Result	Result	Result
Water Quality Field Measurements	•	•					•							•	•	
pH (units)	6.5 - 8.5	7.24	7.21	7.80	7.2	7.29	6.52	6.52	6.17	6.25	7.31	11.79	11.71	12.05	7.98	11.57
Temperature (°C)	NV	13.2	14.3	13.7	13.9	14.7	13.7	13.5	12.9	14.4	13.5	16.7	16.7	16.0	15.97	15.7
Specific Conductance (mS/cm)	NV	2.69	3.126	3.139	2.413	2.586	26.20	26.69	24.662	25.881	24.410	2.72	2.490	2.311	2.35	2.313
Turbidity (NTU)	5	3.85	6.2	25.6	38.04	16.44	1.97	4.4	29.4	14.31	35.83	2.36	2.2	2.6	2.4	1.98
Dissolved Oxygen (mg/L)	NV	0.15	0.17	0.15	49.7	2.9	0.18	0.12	0.56	36.5	5.5	4.8	4.11	5.56	107.4	3.0
Oxygen Reduction Potential (mV)	NV	-177.9	-188.8	-188.8	-63.7	-146.7	-33.8	-32.0	-32.4	-45.3	41.6	-83.1	-101.3	-99.7	-65	-81.2
Volatile Organic Compounds - EPA N	Method 8260 (ug/	L)														
Benzene	1	NT	NT	NT	NT	NT	<	<	<	<	<	<	<	<	<	<
Toluene	5	NT	NT	NT	NT	NT	<	<	<	<	<	<	<	<	<	<
Ethylbenzene	5	NT	NT	NT	NT	NT	0.91 J	<	<	<	<	<	<	<	<	<
m,p-Xylene	5	NT	NT	NT	NT	NT	1.8 J	1.1 J	<	<	<	<	<	<	<	<
o-Xylene	5	NT	NT	NT	NT	NT	<	<	<	<	<	<	<	<	<	<
Xylene (Total)	15	NT	NT	NT	NT	NT	1.8	1.1	<	<	<	<	<	<	<	<
1,3,5-Trimethylbenzene	5	NT	NT	NT	NT	NT	1.4 J	<	<	0.73 J	<	<	<	<	<	<
1,2,4-Trimethylbenzene	5	NT	NT	NT	NT	NT	2.0 J	0.74 J	<	<	<	<	<	<	<	<
Naphthalene*	10	NT	NT	NT	NT	NT	<	<	<	<	<	<	1.0 J	<	1.4 J	<
Semi-Volatile Organic Compounds -	EPA Method 827	0 (ug/L)														
Naphthalene*	10	NT	NT	NT	NT	NT	0.182 J	0.420 J	0.196 J	<	0.121 J	0.953	0.090 J	<	0.163 J	<
2-Methylnaphthalene	NV	NT	NT	NT	NT	NT	<	<	<	<	<	0.171 J	<	<	<	<
Acenaphthene*	20	NT	NT	NT	NT	NT	<	<	<	<	<	0.417 J	<	<	0.377 J	<
Dibenzofuran	NV	NT	NT	NT	NT	NT	<	<	<	<	<	0.136 J	<	<	0.107 J	<
Fluorene*	50	NT	NT	NT	NT	NT	<	<	<	<	<	0.256 J	<	<	0.304 J	<
Phenanthrene*	50	NT	NT	NT	NT	NT	<	<	<	<	<	0.267 J	0.212 J	<	0.302 J	<
Carbazole	NV	NT	NT	NT	NT	NT	<	<	<	<	<	0.728	<	<	<	<
Anthracene*	50	NT	NT	NT	NT	NT	<	<	<	<	<	<	0.156 J	<	<	<
Fluoranthene*	50	NT	NT	NT	NT	NT	<	<	<	<	<	<	<	<	0.168 J	<
Biphenyl	5	NT	NT	NT	NT	NT	<	<	<	<	<	<	<	<	<	<
Pyrene*	50	NT	NT	NT	NT	NT	<	<	<	<	<	0.402 J	0.536	0.640	0.447 J	0.459 J
Di-n-octylphthalate*	50	NT	NT	NT	NT	NT	<	<	<	0.690 J	<	<	<	<	<	<
Butylbenzylphthalate*	50	NT	NT	NT	NT	NT	<	<	0.211 J	0.091 J	0.137 J	<	<	<	<	<
Diethylphthalate*	50	NT	NT	NT	NT	NT	<	<	<	0.518	0.549	<	<	<	<	<
bis(2-Ethylhexyl)Phthalate	5	NT	NT	NT	NT	NT	0.800	0.232 J	0.514	44.9	7.15	0.323 J	0.083J	0.123 J	0.342 J	<
Metals - EPA Method 6010/7470 (ug/	L)															
Arsenic	25	36.85	38	36.12	2.73	86.97	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Barium	1,000	1,176	1,348	1,291	837.3	1,049	1,284	1,404	1,286	1,234	1,318	NT	NT	NT	NT	NT
Chromium	50	1.57	1.89	1.74	0.28 J	5.10	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Manganese	300	426.4	471.8	267.4	336.7	400.2	181.7	245.6	38.19	41.49	24.52	NT	NT	NT	NT	NT

- 1. Compounds detected in one or more sample are presented on this table. Refer to Appendix B for list of all compounds included in analysis.
- 2. Analytical testing completed by Alpha Analytical, Westborough, Massachusetts.
- 3. NYSDEC Groundwater Class GA criteria obtained from Division of Water Technical and Operational Guidance Series (TOGS 1.1.1),
- dated October 1993, revised June 1998, errata January 1999 and amended April 2000 (Class GA).
- 4. ug/L = part per billion (ppb).
- 5. < indicates compound was not detected above method detection limits.
- 6. "J" qualifier = Analyte detected below quantitation limits.
 7. Value shown in **bold** indicate exceedance of respective Class GA Criteria or guidance value.
- 8. NV = no value, NT = not tested, ND = Not detected above method detection limit
- 9. * = value shown is a guidance value rather than a groundwater standard.
- 10. The equipment used to collect water quality data was calibrated prior to and during use in accordance with the manufacturer's recommendations.

 11. DO and pH measurements are routinely made using the same model water quality meter, however the measurements made on 9/2020 and 4/2021 appear erroneous.
- 12. Well MWN-03D was unable to be low flow sampled. Hand bailing techniques were required. Metals analysis required laboratory filtration.

Table 3

September 2021 Semi-Annual Groundwater Analytical Data Summary Steel Winds I Facility Lackawanna, New York

	NYSDEC			MWN-01					MWN-01B					WT1-02		
Parameter	Class GA	9/24/2019	3/18/2020	9/17/2020	4/2/2021	9/2/2021	9/24/2019	3/18/2020	9/17/2020	4/2/2021	9/2/2021	9/24/2019	3/18/2020	9/18/2020	4/2/2021	9/2/2021
	Criteria	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result
Water Quality Field Measurements																
pH (units)	6.5 - 8.5	11.59	11.75	7.81	7.66	11.53	11.29	11.40	7.83	8.01	11.1	12.18	12.19	9.07	7.68	11.85
Temperature (°C)	NV	13.4	10.4	14.4	10.5	10.8	10.7	11.3	10.9	11.0	9.8	12.4	12.1	13.08	11.5	12.3
Specific Conductance (mS/cm)	NV	1.051	1.150	1.450	1.380	1.212	0.921	0.902	0.991	1.01	0.831	2.116	2.110	2.090	1.84	1.770
Turbidity (NTU)	5	2.4	1.23	2.9	2.4	2.61	5.7	1.20	7.30	5.4	7.67	4.5	1.67	16	8.6	2.7
Dissolved Oxygen (mg/L)	NV	0.30	1.32	116.7	132.3	1.2	0.09	0.68	134.7	115.9	0.8	2.28	1.24	28.3	33.6	4.7
Oxygen Reduction Potential (mV)	NV	-211.1	-262.8	-237	-231	-159.2	-325.3	-388.8	-247	-204	-214.2	-137.8	-238.1	-200	-177	-160.7
Volatile Organic Compounds - EPA	Method 8260 (ug/L)															
Benzene	1	11	18	17	14	14	53	68	59	57	55	9.6	6.4	7.6	6.0	12
Toluene	5	2.5	4.2 J	4.2	4.0 J	3.6 J	17 J	19 J	18 J	20 J	19 J	1.9 J	1.2 J	1.6 J	1.3 J	2.4 J
Ethylbenzene	5	<	<	0.98 J	<	<	<	<	<	<	<	<	<	<	<	<
m,p-Xylene	5	7.0	9.5	10	9.3	8.7	14 J	13 J	13 J	15 J	12 J	4.6	2.3 J	3.1	2.2 J	4.2
o-Xylene	5	5.6	7.5	8	7.1	6.5	9.3 J	9.3 J	9.1 J	10 J	9.0 J	3.7	1.9 J	2.6	1.6 J	3.0
Xylene (Total)	15	12.6	17.0	18.0	16	15.2	23.3 J	22.3 J	22.1	25 J	21 J	8.3	4.2 J	5.7	3.8 J	7.2
1,3,5-Trimethylbenzene	5	1.8 J	3.8 J	4	4.5 J	4.2 J	<	<	<	<	<	1.7 J	1.3 J	1.5 J	1.3 J	2.0 J
1,2,4-Trimethylbenzene	5	2.0 J	4.3 J	4.3	4.8 J	4.6 J	<	<	<	7.6 J	7.1 J	1.2 J	0.80 J	1.1 J	0.86 J	1.5 J
Naphthalene*	10	150	220	240	310	270	1,500	1,300	1,500	1,800	1,500	48	14	36	22	43
Semi-Volatile Organic Compounds -	EPA Method 8270 (ug	<u>;/L)</u>						·		·	·					
Acetophenone	NV	<	<	<	<	<	<	<	<	<	<	<	0.297 J	<	<	<
Acenaphthylene	NV	12.0	30.3	22.4	34	22.3	50.0	44.6	54.6	44	44.0	0.969	0.847	1.08	1.1	0.651
Naphthalene*	10	46.6	178	139.0	140	96.2	1010	1,210	1,030	910	962	17.6	4.95	16.90	14	9.38
2-Methylnaphthalene	NV	12.9	36.9	27.1	35	21.9	43.3	40.3	48.0	41	35.8	3.70	2.21	3.57	3.3	2.11
Acenaphthene*	20	4.14	10.4	8.34	13	8.66	10.0	10.4	11.2	10	12.0	0.994	1.06	1.08	1.3	0.710
Dibenzofuran	NV	13.6	37.5	25.9	44	28.9	27.5	24.7	29.4	23.0	30.3	2.33	2.06	3.94	3.7	2.47
Fluorene*	50	19.4	61.4	38.30	70	41.9	38.2	34.7	43.9	38	43.7	5.58	4.44	6.14	7.3	3.50
Phenanthrene*	50	24.4	85.2	45.30	110	71.0	61.9	57.5	64.3	55	61.9	4.88	7.39	13.30	17	8.10
Dibenzo (a,h)Anthracene	NV	<	<	<	0.05 J	<	<	<	<	<	<	<	<	<	<	<
Carbazole	NV	11.1	26.5	20.30	26	19.6	59.9	63.9	62.4	52.0	60.0	4.02	2.84	3.75	2.9	2.88
Anthracene*	50	4.18	8.96	5.81	19	7.74	9.04	8.68	11.00	5.3	8.19	1.85	1.95	2.40	2.8	1.44
Fluoranthene*	50	4.34	10.5	5.72	24	9.44	9.16	9.19	10.3	10	8.97	3.42	4.60	4.02	6.6	3.18
Biphenyl	5	3.07	7.71	6.41	8.8	5.85	8.20	6.89	8.19	6.50	7.45	0.902	0.695	0.99	0.82 J	0.548
Pyrene*	50	3.73	6.30	4.47	14	6.16	5.86	5.32	6.62	5.90	6.44	2.91	3.35	3.45	4.8	2.39
Butyl benzyl phthalate*	50	<	<	<	<	0.104 J	<	<	<	<	<	<	<	<	<	<
Benz [a] Anthracene*	0.002	<	0.299 J	<	1.4	<	<	0.362 J	<	0.38	0.461 J	<	0.186 J	<	0.24	<
Benzo [b] Fluoranthene*	0.002	<	<	<	0.40	<	<	<	<	0.10 J	0.105 J	<	<	<	0.03 J	<
Benzo [k] Fluoranthene*	0.002	<	<	<	0.14	<	<	<	<	0.04 J	<	<	<	<	0.01 J	<
Benzo [a] Pyrene	ND	<	<	<	0.26	<	<	<	<	0.05 J	0.072 J	<	<	<	<	<
Indeno [1,2,3-cd] Pyrene*	0.002	<	<	<	0.11	<	<	·	<	0.04 J	<	<	<	<	<	<
Benzo (g,h,i) Perylene	NV	<	<	<	0.09 J	<	<	<u> </u>	<	0.03 J	<	<	<u> </u>	<	<	<
Chrysene*	0.002	<	0.206 J	<	0.82	0.216 J	<	0.218 J	<	0.22	0.256 J	<	0.150 J	<	0.17	<
bis(2-Ethylhexyl)phthalate	5	<	<	0.456 J	<	<	<	0.182 J	1.10	<	<	0.231 J	0.195 J	0.334 JB	<	<
Metals - EPA Method 6010/7470 (ug	č		` `	5.1500		` `	`	J.102 3	1.10		`	5.2513	5.175 5	0.55 i 1	`	
Arsenic	25	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Barium	1,000	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Chromium	50	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
	300	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Manganese	300	IN I	11/1	11/1	INI	IN I	1 1 1	1 1 1	1 1/1	1N I	1 1 1	TN T	1N 1	1 1 1	1 1 1	111

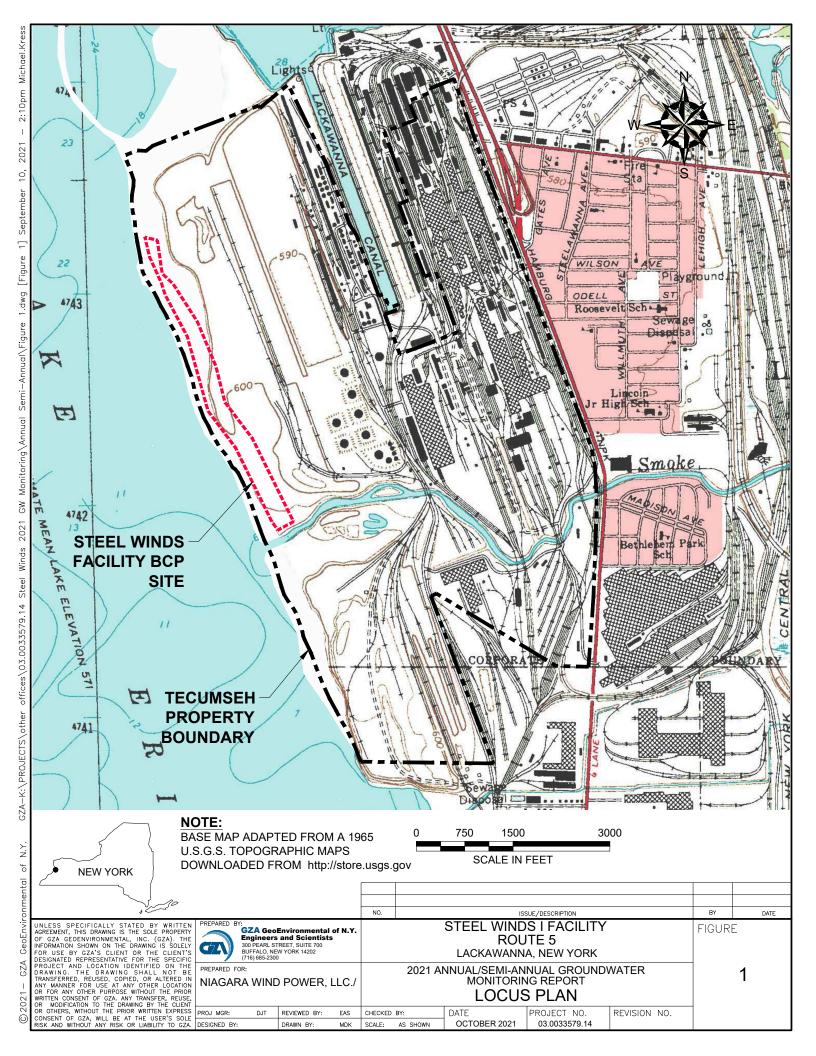
Notes:

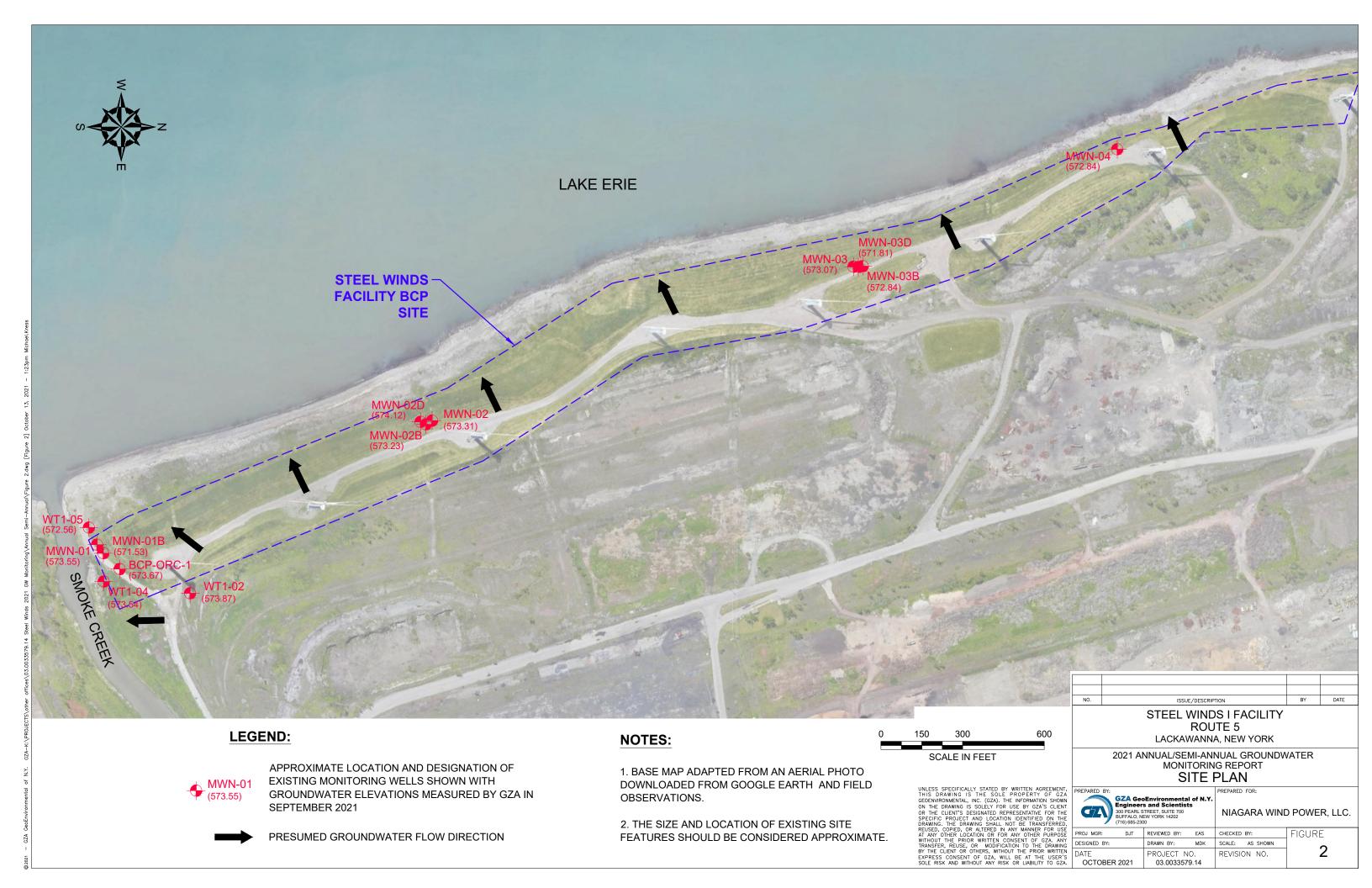
- 1. Compounds detected in one or more sample for the past five sampling events are presented on this table. Refer to Appendix B for list of all compounds included in analysis.
- 2. Analytical testing completed by Alpha Analytical in Westborough, MA.
- 3. NYSDEC Groundwater Class GA criteria obtained from Division of Water Technical and Operational Guidance Series (TOGS 1.1.1), dated October 1993, revised June 1998, errata January 1999 and amended April 2000 (Class GA).
- 4. ug/L = part per billion (ppb).
- 5. < indicates compound was not detected above method detection limits.
- 6. "J" qualifier = Analyte detected below quantitation limits.
- 7. "B" qualifier = indicates compound was detected in the method blank sample.
- 8. "D" qualifier = indicates the compound concentration was obtained from a secondary dilution analysis.
- 7. Value shown in **bold** indicates exceedance of respective Class GA Criteria or guidance value. 8. NV = no value, NT = not tested, ND = Not detected above method detection limit
- 9. * = value shown is a guidance value rather than a groundwater standard.
- 10. The equipment used to collect water quality data was calibrated prior to and during use in accordance with the manufacturer's recommendations.
- 11. DO and pH measurements are routinely made using the same model water quality meter, however the measurements made on 9/2020 and 4/2021 appear erroneous.

03.0033579.14

Table 3

September 2021 Semi-Annual Groundwater Analytical Data Summary Steel Winds I Facility Lackawanna, New York


	NYSDEC	WT1-04							WT1-05		BCP-ORC-1					
Parameter	Class GA	9/24/2019	3/18/2020	9/18/2020	4/2/2021	9/2/2021	9/24/2019	3/18/2020	9/18/2020	4/2/2021	9/2/2021	9/24/2019	3/18/2020	9/18/2020	4/2/2021	9/2/2021
	Criteria	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result
Water Quality Field Measurements			•						•							
pH (units)	6.5 - 8.5	11.89	11.99	8.28	8.27	11.51	11.35	11.93	8.6	7.83	11.46	11.57	11.4	8.64	7.85	11.21
Temperature (°C)	NV	12.1	10.2	13.27	10.8	11.1	11.9	10.4	12.57	10.9	11.2	11.7	11.5	12.02	11.1	10.0
Specific Conductance (mS/cm)	NV	1.353	1.500	1.410	1.550	1.326	1.200	1.340	1.340	1.490	1.200	1.007	0.990	1.230	1.360	0.957
Turbidity (NTU)	5	3.0	1.31	8.3	6.1	3.76	2.8	3.02	4.6	5.3	1.74	2.6	11.4	2.1	6.1	2.17
Dissolved Oxygen (mg/L)	NV	0.07	0.77	1.9	4.3	1.0	0.16	0.72	100.90	77.30	1.2	0.29	3.16	4.2	16.5	4.7
Oxygen Reduction Potential (mV)	NV	-292.2	-267.7	-288	-223	-172.4	-209.6	-298.4	-190	-175	-157.2	-209.7	-228.3	-248	-207	-188.1
Volatile Organic Compounds - EPA	Method 8260 (ug/L)															
Benzene	1	20	13	16	7.2	14	9.4	17	10	9.0	9.3	26	25	22	29	27
Toluene	5	3.6	2.7	3.1	1.7 J	2.3 J	2.1 J	3.9	2.6	3.0	2.6 J	3.3 J	2.8 J	2.8 J	4.3 J	4.0 J
Ethylbenzene	5	0.72 J	<	<	<	<	<	0.0 J	<	0.78 J	<	<	<	<	<	<
m,p-Xylene	5	7.6	6.1	6.1	3.7	4.1	6.3	9.3	6.3	7.8	6.7	3.3 J	2.5 J	2.1 J	5.2 J	3.9 J
o-Xylene	5	6.4	4.8	5.2	2.9	3.2	4.9	7.2	5.4	5.7	5.1	5.8 J	3.8 J	4.2 J	6.8 J	6.1 J
Xylene (Total)	15	14.0	10.9	11.3	6.6	7.3	11.2	16.5	11.7	14.0	11.8	9.1	6.3 J	6.3	12 J	10.0 J
1,3,5-Trimethylbenzene	5	2.3 J	2.6	2.6	2.3 J	2.2 J	1.8 J	3.1	2.4 J	3.1	3.1 J	1.8 J	<	1.8 J	<	<
1,2,4-Trimethylbenzene	5	1.9 J	2.1 J	2.2 J	1.8 J	1.7 J	2.1 J	3.6	2.8	3.6	3.5 J	2.2 J	2.1 J	2.4 J	3.4 J	3.0 J
Naphthalene*	10	81	50	93	60	54	150	200	230	160	200	460	320	490	500	460
Semi-Volatile Organic Compounds	1	<u>(/L)</u>														
Acetophenone	NV	<	0.466 J	<	<	<	<	0.540 J	<	0.58 J	<	<	0.602 J	<	<	<
Acenaphthylene	NV	3.08	3.65	3.28	3.50	2.66	17.4	21.4	20.4	30.0	19.8	25.2	15.3	15.7	26	19.3
Naphthalene*	10	49.3	43.9	43.6	36.00	31.1	107	143	108	150	111	309	211	198	240	246
2-Methylnaphthalene	NV	8.29	9.44	7.04	8.50	6.14	20.0	24.0	17.4	29.0	18.2	23.4	19.4	14.9	24	22.7
Acenaphthene*	20	3.53	3.90	3.58	3.90	3.24	5.29	6.87	6.04	8.80	6.44	6.26	5.1	4.83	6.5	7.06
Dibenzofuran	NV	10.5	10.5	10.9	9.40	9.20	18.0	20.2	20.1	28.0	19.7	16.3	10.8	9.82	16	18.2
Fluorene*	50	16.0	16.6	17.2	19.00	14.3	25.7	27.2	27.3	42.0	27.0	26.6	17.4	17.7	30	29.0
Phenanthrene*	50	46.1	50.2	53.1	42.00	42.8	23.5	21.4	27.4	56.0	20.6	42.4	23.4	26.9	38	44.5
Dibenzo (a,h)Anthracene*	NV	<	<	<	0.04 J	<	<	<	<	1.6	<	<	<	<	<	<
Carbazole	NV	8.87	8.36	8.82	5.60	6.64	15.9	19.1	18.7	20.0	15.9	34.7	27.8	29.1	31	37.6
Anthracene*	50	5.69	7.50	6.19	6.00	5.10	2.82	2.37	2.47	13.00	2.44	5.60	2.56	1.91	3.8	3.59
Fluoranthene*	50	10.2	11.2	11.6	11.00	9.41	1.92	2.20	2.63	39.00	2.03	6.48	5.39	4.69	7.3	5.95
Biphenyl	50	2.2 J	2.20	1.86	1.9 J	1.67	4.35	4.98	4.31	5.90	4.39	3.93	2.95	2.42	3.9	4.03
Pyrene*	50	6.61	6.28	8.10	7.00	6.28	1.82	1.97	2.50	33.00	1.90	4.77	3.69	4.02	4.9	4.90
Butyl benzyl phthalate*	50 0.002	<	< 0.259 T	0.590	0.61	0.083 J 0.402 J	<	<	0.242 J		<	<	< 0.201 T	0.298 J	0.28	0.295 J
Benz [a] Anthracene*		<	0.358 J				<	<			<	<	0.201 J			
Benzo [b] Fluoranthene*	0.002 0.002	<	<	0.255 J	0.37 0.15	0.136 J	<	<	0.140 J	17 5.6	<	<	<	0.111 J	0.06 J 0.01 J	<
Benzo [k] Fluoranthene*	ND	<u> </u>	<	0.156 J	0.15	0.091 J	<	<	0.092 J		<	<	<	0.065 J	0.01 J 0.02 J	<u> </u>
Benzo [a] Pyrene	0.002	<	<	0.156 J 0.110 J	0.27	†	<	<		12 8.6	<	<	<			<
Indeno [1,2,3-cd] Pyrene	NV	<	<	0.110 J 0.114 J	0.19	<	<	<	<	7.6	<	<	<	<	<	<
Benzo (g,h,i) Perylene	0.002	<	0.314 J	0.114 J 0.461 J	0.17	() 331 I	<	<	0.198 J		<	<	0.156 J	0.208 J	0.19	0.225 J
Chrysene*	5	<	U.314 J			0.331 J	`	0.400		14	<	<				U.225 J
bis(2-Ethylhexyl)Phthalate	J 3	<	_ <	0.086 JB	<	<	<	0.499	0.094 JB	4.0	<	<	0.089 J	<	<	<


Notes:

- 1. Compounds detected in one or more sample for the past five sampling events are presented on this table. Refer to Appendix B for list of all compounds included in analysis.
- 2. Analytical testing completed by Alpha Analytical in Westborough, MA.
- 3. NYSDEC Groundwater Class GA criteria obtained from Division of Water Technical and Operational Guidance Series (TOGS 1.1.1), dated October 1993, revised June 1998, errata January 1999 and amended April 2000 (Class GA).
- 4. ug/L = part per billion (ppb).
- 5. < indicates compound was not detected above method detection limits.
- 6. "J" qualifier = Analyte detected below quantitation limits.
- 7. "B" qualifier = indicates compound was detected in the method blank sample.
- 8. "D" qualifier = indicates the compound concentration was obtained from a secondary dilution analysis.
- 7. Value shown in **bold** indicates exceedance of respective Class GA Criteria or guidance value.
- 8. NV = no value, NT = not tested, ND = Not detected above method detection limit
- 9. * = value shown is a guidance value rather than a groundwater standard.
- 10. The equipment used to collect water quality data was calibrated prior to and during use in accordance with the manufacturer's recommendations.
- 11. DO and pH measurements are routinely made using the same model water quality meter, however the measurements made on 9/2020 and 4/2021 appear erroneous.

FIGURES

APPENDIX A

LIMITATIONS

GZN

GEOHYDROLOGICAL LIMITATIONS

Use of Report

1. GZA GeoEnvironmental, Inc. (GZA) prepared this report on behalf of, and for the exclusive use of our Client for the stated purpose(s) and location(s) identified in the Proposal for Services and/or Report. Use of this report, in whole or in part, at other locations, or for other purposes, may lead to inappropriate conclusions; and we do not accept any responsibility for the consequences of such use(s). Further, reliance by any party not expressly identified in the agreement, for any use, without our prior written permission, shall be at that party's sole risk, and without any liability to GZA.

Standard of Care

- 2. GZA's findings and conclusions are based on the work conducted as part of the Scope of Services set forth in the Proposal for Services and/or Report and reflect our professional judgment. These findings and conclusions must be considered not as scientific or engineering certainties, but rather as our professional opinions concerning the limited data gathered during the course of our work. Conditions other than described in this report may be found at the subject location(s).
- 3. GZA's services were performed using the degree of skill and care ordinarily exercised by qualified professionals performing the same type of services, at the same time, under similar conditions, at the same or a similar property. No warranty, expressed or implied, is made. Specifically, GZA does not and cannot represent that the Site contains no hazardous material, oil, or other latent condition beyond that observed by GZA during its study. Additionally, GZA makes no warranty that any response action or recommended action will achieve all of its objectives or that the findings of this study will be upheld by a local, state or federal agency.
- 4. In conducting our work, GZA relied upon certain information made available by public agencies, Client and/or others. GZA did not attempt to independently verify the accuracy or completeness of that information. Inconsistencies in this information which we have noted, if any, are discussed in the Report.

Subsurface Conditions

5. The generalized soil profile(s) provided in our Report are based on widely-spaced subsurface explorations and are intended only to convey trends in subsurface conditions. The boundaries between strata are approximate and idealized, and were based on our assessment of subsurface conditions. The composition of strata, and the transitions between strata, may be more variable and more complex than indicated. For more specific information on soil conditions at a specific location refer to the exploration logs. The nature and extent of variations between these explorations may not become evident until further exploration or construction. If variations or other latent conditions then become evident, it will be necessary to reevaluate the conclusions and recommendations of this report.

November 2021 PAGE 1

6. Water level readings have been made, as described in this Report, in and monitoring wells at the specified times and under the stated conditions. These data have been reviewed and interpretations have been made in this report. Fluctuations in the level of the groundwater however occur due to temporal or spatial variations in areal recharge rates, soil heterogeneities, the presence of subsurface utilities, and/or natural or artificially induced perturbations. The observed water table may be other than indicated in the Report.

Compliance with Codes and Regulations

7. We used reasonable care in identifying and interpreting applicable codes and regulations necessary to execute our scope of work. These codes and regulations are subject to various, and possibly contradictory, interpretations. Interpretations and compliance with codes and regulations by other parties is beyond our control.

Screening and Analytical Testing

- 8. GZA collected environmental samples at the locations identified in the Report. These samples were analyzed for the specific parameters identified in the report. Additional constituents, for which analyses were not conducted, may be present in soil, groundwater, surface water, sediment and/or air. Future Site activities and uses may result in a requirement for additional testing.
- 9. Our interpretation of field screening and laboratory data is presented in the Report. Unless otherwise noted, we relied upon the laboratory's QA/QC program to validate these data.
- 10. Variations in the types and concentrations of contaminants observed at a given location or time may occur due to release mechanisms, disposal practices, changes in flow paths, and/or the influence of various physical, chemical, biological or radiological processes. Subsequently observed concentrations may be other than indicated in the Report.

<u>Interpretation of Data</u>

11. Our opinions are based on available information as described in the Report, and on our professional judgment. Additional observations made over time, and/or space, may not support the opinions provided in the Report.

Additional Information

12. In the event that the Client or others authorized to use this report obtain additional information on environmental or hazardous waste issues at the Site not contained in this report, such information shall be brought to GZA's attention forthwith. GZA will evaluate such information and, on the basis of this evaluation, may modify the conclusions stated in this report.

November 2021 PAGE 2

Additional Services

13. GZA recommends that we be retained to provide services during any future investigations, design, implementation activities, construction, and/or property development/ redevelopment at the Site. This will allow us the opportunity to: i) observe conditions and compliance with our design concepts and opinions; ii) allow for changes in the event that conditions are other than anticipated; iii) provide modifications to our design; and iv) assess the consequences of changes in technologies and/or regulations.

November 2021 PAGE 3

APPENDIX B ANALYTICAL TEST RESULTS

ANALYTICAL REPORT

Lab Number: L2147480

Client: GZA GeoEnvironmental of New York

300 Pearl Street

Suite 700

Buffalo, NY 14202

ATTN: Dan Troy

Phone: (716) 844-7050

Project Name: STEEL WINDS ANNUAL/SEMI ANNUAL

Project Number: 03.0033579.14

Report Date: 10/06/21

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: STEEL WINDS ANNUAL/SEMI ANNUAL

Project Number: 03.0033579.14

Lab Number: L2147480 **Report Date:** 10/06/21

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2147480-01	WT1-05-090221	WATER	LACKAWANNA, NY	09/02/21 08:17	09/02/21
L2147480-02	MWN-01-090221	WATER	LACKAWANNA, NY	09/02/21 09:15	09/02/21
L2147480-03	MWN-01B-090221	WATER	LACKAWANNA, NY	09/02/21 10:20	09/02/21
L2147480-04	WT1-04-090221	WATER	LACKAWANNA, NY	09/02/21 11:10	09/02/21
L2147480-05	BCP-ORC-1-090221	WATER	LACKAWANNA, NY	09/02/21 12:10	09/02/21
L2147480-06	WT1-02-090221	WATER	LACKAWANNA, NY	09/02/21 12:55	09/02/21
L2147480-07	MWN-03-090221	WATER	LACKAWANNA, NY	09/02/21 15:05	09/02/21
L2147480-08	TRIP BLANK	WATER	LACKAWANNA, NY	09/02/21 00:00	09/02/21
L2147480-09	MWN-04-090221	WATER	LACKAWANNA, NY	09/02/21 15:55	09/02/21

Serial No:10062113:56

L2147480

Project Name: STEEL WINDS ANNUAL/SEMI ANNUAL Lab Number:

Project Number: 03.0033579.14 **Report Date:** 10/06/21

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

Serial_No:10062113:56

Project Name:STEEL WINDS ANNUAL/SEMI ANNUALLab Number:L2147480Project Number:03.0033579.14Report Date:10/06/21

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Semivolatile Organics

L2147480-03RE/D: The sample has elevated detection limits due to the dilution required by the sample matrix. The WG1543557-3 LCSD recoveries, associated with L2147480-01 through -07 and -09, were below the acceptance criteria for 1,3-dichlorobenzene (10%), 1,4-dichlorobenzene (10%), 1,2-dichlorobenzene (13%), hexachloroethane (5%), 1,2,4-trichlorobenzene (13%), naphthalene (31%), hexachlorobutadiene (5%), 2-methylnaphthalene (29%), 1,2,4,5-tetrachlorobenzene (21%), hexachlorocyclopentadiene (3%), and 2-chloronaphthalene (35%); however, the criteria were achieved upon re-extraction outside of holding time. The results of both extractions are reported.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 10/06/21

600, Sew on Kelly Stenstrom

ALPHA

ORGANICS

VOLATILES

L2147480

10/06/21

Project Name: STEEL WINDS ANNUAL/SEMI ANNUAL

Project Number: 03.0033579.14

SAMPLE RESULTS

Data Callactad: 00/02/24 00:47

Lab Number:

Report Date:

Lab ID: L2147480-01 D Date Collected: 09/02/21 08:17

Client ID: WT1-05-090221 Date Received: 09/02/21 Sample Location: LACKAWANNA, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 09/13/21 17:23

Analyst: PD

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - W	estborough Lab						
Benzene	9.3		ug/l	1.0	0.32	2	
Toluene	2.6	J	ug/l	5.0	1.4	2	
Ethylbenzene	ND		ug/l	5.0	1.4	2	
Methyl tert butyl ether	ND		ug/l	5.0	1.4	2	
p/m-Xylene	6.7		ug/l	5.0	1.4	2	
o-Xylene	5.1		ug/l	5.0	1.4	2	
n-Butylbenzene	ND		ug/l	5.0	1.4	2	
sec-Butylbenzene	ND		ug/l	5.0	1.4	2	
tert-Butylbenzene	ND		ug/l	5.0	1.4	2	
Isopropylbenzene	ND		ug/l	5.0	1.4	2	
p-Isopropyltoluene	ND		ug/l	5.0	1.4	2	
Naphthalene	200		ug/l	5.0	1.4	2	
n-Propylbenzene	ND		ug/l	5.0	1.4	2	
1,3,5-Trimethylbenzene	3.1	J	ug/l	5.0	1.4	2	
1,2,4-Trimethylbenzene	3.5	J	ug/l	5.0	1.4	2	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	104	70-130	
Toluene-d8	102	70-130	
4-Bromofluorobenzene	109	70-130	
Dibromofluoromethane	105	70-130	

L2147480

10/06/21

Project Name: STEEL WINDS ANNUAL/SEMI ANNUAL

D

L2147480-02

MWN-01-090221

LACKAWANNA, NY

Project Number: 03.0033579.14

SAMPLE RESULTS

Date Collected: 09/02/21 09:15

Lab Number:

Report Date:

Date Received: 09/02/21
Field Prep: Not Specified

Sample Depth:

Sample Location:

Lab ID:

Client ID:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 09/13/21 16:42

Analyst: PD

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westbo	rough Lab					
Benzene	14		ug/l	1.0	0.32	2
Toluene	3.6	J	ug/l	5.0	1.4	2
Ethylbenzene	ND		ug/l	5.0	1.4	2
Methyl tert butyl ether	ND		ug/l	5.0	1.4	2
p/m-Xylene	8.7		ug/l	5.0	1.4	2
o-Xylene	6.5		ug/l	5.0	1.4	2
n-Butylbenzene	ND		ug/l	5.0	1.4	2
sec-Butylbenzene	ND		ug/l	5.0	1.4	2
tert-Butylbenzene	ND		ug/l	5.0	1.4	2
Isopropylbenzene	ND		ug/l	5.0	1.4	2
p-Isopropyltoluene	ND		ug/l	5.0	1.4	2
Naphthalene	270		ug/l	5.0	1.4	2
n-Propylbenzene	ND		ug/l	5.0	1.4	2
1,3,5-Trimethylbenzene	4.2	J	ug/l	5.0	1.4	2
1,2,4-Trimethylbenzene	4.6	J	ug/l	5.0	1.4	2

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	105	70-130	
Toluene-d8	102	70-130	
4-Bromofluorobenzene	111	70-130	
Dibromofluoromethane	105	70-130	

L2147480

09/02/21 10:20

Project Name: STEEL WINDS ANNUAL/SEMI ANNUAL

Project Number: 03.0033579.14

Lab Number:

Report Date: 10/06/21

SAMPLE RESULTS

Lab ID: L2147480-03 D Date Collected:

Client ID: Date Received: 09/02/21 MWN-01B-090221 Field Prep: Sample Location: Not Specified LACKAWANNA, NY

Sample Depth:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 09/13/21 17:02

Analyst: PD

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westbo	rough Lab					
Benzene	55		ug/l	5.0	1.6	10
Toluene	19	J	ug/l	25	7.0	10
Ethylbenzene	ND		ug/l	25	7.0	10
Methyl tert butyl ether	ND		ug/l	25	7.0	10
p/m-Xylene	12	J	ug/l	25	7.0	10
o-Xylene	9.0	J	ug/l	25	7.0	10
n-Butylbenzene	ND		ug/l	25	7.0	10
sec-Butylbenzene	ND		ug/l	25	7.0	10
tert-Butylbenzene	ND		ug/l	25	7.0	10
Isopropylbenzene	ND		ug/l	25	7.0	10
p-Isopropyltoluene	ND		ug/l	25	7.0	10
Naphthalene	1500		ug/l	25	7.0	10
n-Propylbenzene	ND		ug/l	25	7.0	10
1,3,5-Trimethylbenzene	ND		ug/l	25	7.0	10
1,2,4-Trimethylbenzene	7.1	J	ug/l	25	7.0	10

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	104	70-130	
Toluene-d8	101	70-130	
4-Bromofluorobenzene	111	70-130	
Dibromofluoromethane	105	70-130	

Project Name: STEEL WINDS ANNUAL/SEMI ANNUAL

Project Number: 03.0033579.14

SAMPLE RESULTS

Lab Number: L2147480

Report Date: 10/06/21

Lab ID: L2147480-04

Client ID: WT1-04-090221 Sample Location: LACKAWANNA, NY

Date Received:

09/02/21 11:10 09/02/21

Field Prep:

Date Collected:

Not Specified

Sample Depth:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 09/13/21 15:41

Analyst: PD

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	tborough Lab					
Benzene	14		ug/l	0.50	0.16	1
Toluene	2.3	J	ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	4.1		ug/l	2.5	0.70	1
o-Xylene	3.2		ug/l	2.5	0.70	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	54		ug/l	2.5	0.70	1
n-Propylbenzene	ND		ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene	2.2	J	ug/l	2.5	0.70	1
1,2,4-Trimethylbenzene	1.7	J	ug/l	2.5	0.70	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	105	70-130	
Toluene-d8	103	70-130	
4-Bromofluorobenzene	109	70-130	
Dibromofluoromethane	104	70-130	

09/02/21 12:10

Project Name: STEEL WINDS ANNUAL/SEMI ANNUAL

Project Number: 03.0033579.14

SAMPLE RESULTS

Lab Number: L2147480

Date Collected:

Report Date: 10/06/21

SAMPLE RESUL

Lab ID:L2147480-05DClient ID:BCP-ORC-1-090221Sample Location:LACKAWANNA, NY

Date Received: 09/02/21
Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 09/13/21 17:43

Analyst: PD

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Wes	stborough Lab						
Benzene	27		ug/l	2.0	0.64	4	
Toluene	4.0	J	ug/l	10	2.8	4	
Ethylbenzene	ND		ug/l	10	2.8	4	
Methyl tert butyl ether	ND		ug/l	10	2.8	4	
p/m-Xylene	3.9	J	ug/l	10	2.8	4	
o-Xylene	6.1	J	ug/l	10	2.8	4	
n-Butylbenzene	ND		ug/l	10	2.8	4	
sec-Butylbenzene	ND		ug/l	10	2.8	4	
tert-Butylbenzene	ND		ug/l	10	2.8	4	
Isopropylbenzene	ND		ug/l	10	2.8	4	
p-Isopropyltoluene	ND		ug/l	10	2.8	4	
Naphthalene	460		ug/l	10	2.8	4	
n-Propylbenzene	ND		ug/l	10	2.8	4	
1,3,5-Trimethylbenzene	ND		ug/l	10	2.8	4	
1,2,4-Trimethylbenzene	3.0	J	ug/l	10	2.8	4	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	104	70-130	
Toluene-d8	102	70-130	
4-Bromofluorobenzene	110	70-130	
Dibromofluoromethane	105	70-130	

Project Name: STEEL WINDS ANNUAL/SEMI ANNUAL

Project Number: 03.0033579.14

SAMPLE RESULTS

Lab Number: L2147480

Report Date: 10/06/21

Lab ID: L2147480-06 Date Collected: 09/02/21 12:55

Client ID: Date Received: 09/02/21 WT1-02-090221 Field Prep: Sample Location: Not Specified LACKAWANNA, NY

Sample Depth:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 09/13/21 16:01

Analyst: PD

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westbore	ough Lab					
Benzene	12		ug/l	0.50	0.16	1
Toluene	2.4	J	ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	4.2		ug/l	2.5	0.70	1
o-Xylene	3.0		ug/l	2.5	0.70	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	43		ug/l	2.5	0.70	1
n-Propylbenzene	ND		ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene	2.0	J	ug/l	2.5	0.70	1
1,2,4-Trimethylbenzene	1.5	J	ug/l	2.5	0.70	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	104	70-130	
Toluene-d8	101	70-130	
4-Bromofluorobenzene	112	70-130	
Dibromofluoromethane	106	70-130	

L2147480

Project Name: STEEL WINDS ANNUAL/SEMI ANNUAL

Project Number: 03.0033579.14

SAMPLE RESULTS

Lab Number:

Report Date: 10/06/21

Lab ID: L2147480-07 Date Collected: 09/02/21 15:05

Client ID: Date Received: 09/02/21 MWN-03-090221 Field Prep: Sample Location: LACKAWANNA, NY Not Specified

Sample Depth:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 09/13/21 16:22

Analyst: PD

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor				
Volatile Organics by GC/MS - Westborough Lab										
Benzene	7.1		ug/l	0.50	0.16	1				
Toluene	1.8	J	ug/l	2.5	0.70	1				
Ethylbenzene	ND		ug/l	2.5	0.70	1				
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1				
p/m-Xylene	1.3	J	ug/l	2.5	0.70	1				
o-Xylene	1.4	J	ug/l	2.5	0.70	1				
n-Butylbenzene	ND		ug/l	2.5	0.70	1				
sec-Butylbenzene	ND		ug/l	2.5	0.70	1				
tert-Butylbenzene	ND		ug/l	2.5	0.70	1				
Isopropylbenzene	ND		ug/l	2.5	0.70	1				
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1				
Naphthalene	19		ug/l	2.5	0.70	1				
n-Propylbenzene	ND		ug/l	2.5	0.70	1				
1,3,5-Trimethylbenzene	0.93	J	ug/l	2.5	0.70	1				
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1				

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	104	70-130	
Toluene-d8	102	70-130	
4-Bromofluorobenzene	113	70-130	
Dibromofluoromethane	104	70-130	

09/02/21 00:00

Not Specified

09/02/21

Project Name: STEEL WINDS ANNUAL/SEMI ANNUAL

Project Number: 03.0033579.14

SAMPLE RESULTS

Lab Number: L2147480

Date Collected:

Date Received:

Field Prep:

Report Date: 10/06/21

SAMIFEE RESUL

Lab ID: L2147480-08
Client ID: TRIP BLANK

Sample Location: LACKAWANNA, NY

Sample Depth:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 09/13/21 15:00

Analyst: PD

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor				
Volatile Organics by GC/MS - Westborough Lab										
Benzene	ND		ug/l	0.50	0.16	1				
Toluene	ND		ug/l	2.5	0.70	1				
Ethylbenzene	ND		ug/l	2.5	0.70	1				
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1				
p/m-Xylene	ND		ug/l	2.5	0.70	1				
o-Xylene	ND		ug/l	2.5	0.70	1				
n-Butylbenzene	ND		ug/l	2.5	0.70	1				
sec-Butylbenzene	ND		ug/l	2.5	0.70	1				
tert-Butylbenzene	ND		ug/l	2.5	0.70	1				
Isopropylbenzene	ND		ug/l	2.5	0.70	1				
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1				
Naphthalene	ND		ug/l	2.5	0.70	1				
n-Propylbenzene	ND		ug/l	2.5	0.70	1				
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1				
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1				

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	106	70-130	
Toluene-d8	101	70-130	
4-Bromofluorobenzene	108	70-130	
Dibromofluoromethane	106	70-130	

L2147480

09/02/21 15:55

Project Name: STEEL WINDS ANNUAL/SEMI ANNUAL

Project Number: 03.0033579.14

SAMPLE RESULTS

Report Date: 10/06/21

Lab Number:

Date Collected:

Lab ID: L2147480-09 Client ID: MWN-04-090221 Sample Location: LACKAWANNA, NY

Date Received: 09/02/21 Field Prep: Not Specified

Sample Depth:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 09/13/21 15:20

Analyst: PD

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor				
Volatile Organics by GC/MS - Westborough Lab										
Benzene	ND		ug/l	0.50	0.16	1				
Toluene	ND		ug/l	2.5	0.70	1				
Ethylbenzene	ND		ug/l	2.5	0.70	1				
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1				
p/m-Xylene	ND		ug/l	2.5	0.70	1				
o-Xylene	ND		ug/l	2.5	0.70	1				
n-Butylbenzene	ND		ug/l	2.5	0.70	1				
sec-Butylbenzene	ND		ug/l	2.5	0.70	1				
tert-Butylbenzene	ND		ug/l	2.5	0.70	1				
Isopropylbenzene	ND		ug/l	2.5	0.70	1				
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1				
Naphthalene	ND		ug/l	2.5	0.70	1				
n-Propylbenzene	ND		ug/l	2.5	0.70	1				
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1				
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1				

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	106	70-130	
Toluene-d8	103	70-130	
4-Bromofluorobenzene	109	70-130	
Dibromofluoromethane	109	70-130	

Project Name: STEEL WINDS ANNUAL/SEMI ANNUAL Lab Number: L2147480

Project Number: 03.0033579.14 **Report Date:** 10/06/21

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 09/13/21 10:56

Analyst: PD

Parameter	Result	Qualifier Units	s RL	MDL	
Volatile Organics by GC/MS - We	stborough Lab	for sample(s):	01-09 Batch:	WG1546223-5	
Benzene	ND	ug/l	0.50	0.16	
Toluene	ND	ug/l	2.5	0.70	_
Ethylbenzene	ND	ug/l	2.5	0.70	
Methyl tert butyl ether	ND	ug/l	2.5	0.70	_
p/m-Xylene	ND	ug/l	2.5	0.70	
o-Xylene	ND	ug/l	2.5	0.70	
n-Butylbenzene	ND	ug/l	2.5	0.70	
sec-Butylbenzene	ND	ug/l	2.5	0.70	
tert-Butylbenzene	ND	ug/l	2.5	0.70	
Isopropylbenzene	ND	ug/l	2.5	0.70	
p-Isopropyltoluene	ND	ug/l	2.5	0.70	
Naphthalene	ND	ug/l	2.5	0.70	
n-Propylbenzene	ND	ug/l	2.5	0.70	
1,3,5-Trimethylbenzene	ND	ug/l	2.5	0.70	
1,2,4-Trimethylbenzene	ND	ug/l	2.5	0.70	

	Acceptance					
Surrogate	%Recovery Qualifie	er Criteria				
1,2-Dichloroethane-d4	103	70-130				
Toluene-d8	102	70-130				
4-Bromofluorobenzene	112	70-130				
Dibromofluoromethane	103	70-130				

Lab Control Sample Analysis Batch Quality Control

Project Name: STEEL WINDS ANNUAL/SEMI ANNUAL

Project Number: 03.0033579.14

Lab Number: L2147480

Report Date: 10/06/21

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
olatile Organics by GC/MS - Westborough L	ab Associated	sample(s):	01-09 Batch:	WG1546223-3	WG1546223-4			
Benzene	100		99		70-130	1	ı	20
Toluene	100		100		70-130	0		20
Ethylbenzene	100		100		70-130	0		20
Methyl tert butyl ether	67		68		63-130	1		20
p/m-Xylene	100		100		70-130	0		20
o-Xylene	100		100		70-130	0		20
n-Butylbenzene	110		110		53-136	0		20
sec-Butylbenzene	110		110		70-130	0		20
tert-Butylbenzene	100		110		70-130	10		20
Isopropylbenzene	110		110		70-130	0		20
p-Isopropyltoluene	110		110		70-130	0		20
Naphthalene	98		100		70-130	2		20
n-Propylbenzene	110		120		69-130	9		20
1,3,5-Trimethylbenzene	110		110		64-130	0		20
1,2,4-Trimethylbenzene	110		110		70-130	0		20

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	104	104	70-130
Toluene-d8	105	104	70-130
4-Bromofluorobenzene	114	113	70-130
Dibromofluoromethane	100	101	70-130

SEMIVOLATILES

Project Name: STEEL WINDS ANNUAL/SEMI ANNUAL

Project Number: 03.0033579.14

SAMPLE RESULTS

Report Date:

10/06/21

Lab ID: L2147480-01 Client ID: WT1-05-090221

Sample Location: LACKAWANNA, NY

Sample Depth:

Matrix: Water Analytical Method: 1,8270D Analytical Date: 09/25/21 23:13

Analyst: PS Date Collected:

Lab Number:

09/02/21 08:17

L2147480

Date Received:

09/02/21

Field Prep:

Not Specified

Extraction Method: EPA 3510C **Extraction Date:** 09/07/21 14:00

Semivolatile Organics by GC/MS - Mansfield Lab bis(2-Chloroethyl)ether ND 1,3-Dichlorobenzene ND 1,4-Dichlorobenzene ND 1,2-Dichlorobenzene ND Benzyl alcohol ND bis(2-chloroisopropyl)ether ND	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	0.495 0.495 0.495 0.495 0.495 0.495 0.990	0.092 0.078 0.082 0.067 0.122 0.107 0.205	1 1 1 1 1 1 1
1,3-Dichlorobenzene ND 1,4-Dichlorobenzene ND 1,2-Dichlorobenzene ND Benzyl alcohol ND bis(2-chloroisopropyl)ether ND	ug/l ug/l ug/l ug/l ug/l ug/l	0.495 0.495 0.495 0.495 0.495 0.990	0.078 0.082 0.067 0.122 0.107 0.205	1 1 1 1 1 1
1,4-DichlorobenzeneND1,2-DichlorobenzeneNDBenzyl alcoholNDbis(2-chloroisopropyl)etherND	ug/l ug/l ug/l ug/l ug/l	0.495 0.495 0.495 0.495 0.990	0.082 0.067 0.122 0.107 0.205	1 1 1 1
1,2-Dichlorobenzene ND Benzyl alcohol ND bis(2-chloroisopropyl)ether ND	ug/l ug/l ug/l ug/l	0.495 0.495 0.495 0.990	0.067 0.122 0.107 0.205	1 1 1 1
Benzyl alcohol ND bis(2-chloroisopropyl)ether ND	ug/l ug/l ug/l ug/l	0.495 0.495 0.990	0.122 0.107 0.205	1 1 1
bis(2-chloroisopropyl)ether ND	ug/l ug/l	0.495 0.990	0.107 0.205	1
	ug/l ug/l	0.990	0.205	1
Andrehouse	ug/l			
Acetophenone ND		0.495	0.101	
Hexachloroethane ND	ug/l			1
Nitrobenzene ND		0.495	0.101	1
Isophorone ND	ug/l	0.495	0.125	1
bis(2-Chloroethoxy)methane ND	ug/l	0.495	0.085	1
1,2,4-Trichlorobenzene ND	ug/l	0.495	0.095	1
Naphthalene 72.7	E ug/l	0.495	0.087	1
4-Chloroaniline ND	ug/l	0.495	0.127	1
Hexachlorobutadiene ND	ug/l	0.495	0.085	1
2-Methylnaphthalene 18.2	ug/l	0.495	0.090	1
1,2,4,5-Tetrachlorobenzene ND	ug/l	0.495	0.079	1
Hexachlorocyclopentadiene ND	ug/l	0.495	0.151	1
Biphenyl 4.39	ug/l	0.495	0.110	1
2-Chloronaphthalene ND	ug/l	0.495	0.089	1
2-Nitroaniline ND	ug/l	0.495	0.137	1
Acenaphthylene 19.8	ug/l	0.495	0.111	1
Dimethylphthalate ND	ug/l	0.495	0.116	1
2,6-Dinitrotoluene ND	ug/l	0.495	0.166	1
Acenaphthene 6.44	ug/l	0.495	0.095	1
3-Nitroaniline ND	ug/l	0.495	0.110	1
Dibenzofuran 19.7	ug/l	0.495	0.090	1
2,4-Dinitrotoluene ND	ug/l	0.495	0.161	1

10/06/21

Project Name: Lab Number: STEEL WINDS ANNUAL/SEMI ANNUAL L2147480

Project Number: 03.0033579.14

L2147480-01

SAMPLE RESULTS

Date Collected: 09/02/21 08:17

Report Date:

Date Received: Client ID: 09/02/21 WT1-05-090221 Sample Location: Field Prep: LACKAWANNA, NY Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor				
Semivolatile Organics by GC/MS - Mansfield Lab										
Fluorene	27.1	E	ug/l	0.495	0.103	1				
Diethylphthalate	ND		ug/l	0.495	0.178	1				
4-Nitroaniline	ND		ug/l	0.495	0.111	1				
n-Nitrosodiphenylamine	ND		ug/l	0.495	0.071	1				
Hexachlorobenzene	ND		ug/l	0.495	0.121	1				
Phenanthrene	20.6		ug/l	0.495	0.110	1				
Anthracene	2.44		ug/l	0.495	0.136	1				
Carbazole	15.9		ug/l	0.495	0.142	1				
Di-n-butylphthalate	ND		ug/l	0.495	0.099	1				
Fluoranthene	2.03		ug/l	0.495	0.154	1				
Pyrene	1.90		ug/l	0.495	0.168	1				
Butylbenzylphthalate	ND		ug/l	0.495	0.084	1				
3,3'-Dichlorobenzidine	ND		ug/l	0.495	0.191	1				
Benz(a)anthracene	ND		ug/l	0.495	0.182	1				
Chrysene	ND		ug/l	0.495	0.140	1				
bis(2-Ethylhexyl)phthalate	ND		ug/l	0.495	0.080	1				
Di-n-octylphthalate	ND		ug/l	0.990	0.078	1				
Benzo(b)fluoranthene	ND		ug/l	0.495	0.065	1				
Benzo(k)fluoranthene	ND		ug/l	0.495	0.159	1				
Benzo(a)pyrene	ND		ug/l	0.495	0.060	1				
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.495	0.089	1				
Dibenz(a,h)anthracene	ND		ug/l	0.495	0.064	1				
Benzo(g,h,i)perylene	ND		ug/l	0.495	0.108	1				

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	47	15-115
Phenol-d5	32	15-115
Nitrobenzene-d5	67	30-130
2-Fluorobiphenyl	72	30-130
2,4,6-Tribromophenol	82	15-115
Terphenyl-d14	84	30-130

Project Name: Lab Number: STEEL WINDS ANNUAL/SEMI ANNUAL L2147480

Project Number: Report Date: 03.0033579.14 10/06/21

SAMPLE RESULTS

Lab ID: RE Date Collected: 09/02/21 08:17 L2147480-01

Date Received: Client ID: 09/02/21 WT1-05-090221 Sample Location: Field Prep: LACKAWANNA, NY Not Specified

Sample Depth:

Extraction Method: EPA 3510C Matrix: Water **Extraction Date:** 09/28/21 18:00 Analytical Method: 1,8270D

Analytical Date: 10/01/21 11:30

GP Analyst:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - Mans	field Lab					
bis(2-Chloroethyl)ether	ND		ug/l	0.495	0.092	1
1,3-Dichlorobenzene	ND		ug/l	0.495	0.078	1
1,4-Dichlorobenzene	ND		ug/l	0.495	0.082	1
1,2-Dichlorobenzene	ND		ug/l	0.495	0.067	1
Benzyl alcohol	ND		ug/l	0.495	0.122	1
bis(2-chloroisopropyl)ether	ND		ug/l	0.495	0.107	1
Acetophenone	0.496	J	ug/l	0.990	0.205	1
Hexachloroethane	ND		ug/l	0.495	0.101	1
Nitrobenzene	ND		ug/l	0.495	0.101	1
Isophorone	ND		ug/l	0.495	0.125	1
bis(2-Chloroethoxy)methane	ND		ug/l	0.495	0.085	1
1,2,4-Trichlorobenzene	ND		ug/l	0.495	0.095	1
Naphthalene	23.3		ug/l	0.495	0.087	1
4-Chloroaniline	ND		ug/l	0.495	0.127	1
Hexachlorobutadiene	ND		ug/l	0.495	0.085	1
2-Methylnaphthalene	9.71		ug/l	0.495	0.090	1
1,2,4,5-Tetrachlorobenzene	ND		ug/l	0.495	0.079	1
Hexachlorocyclopentadiene	ND		ug/l	0.495	0.151	1
Biphenyl	ND		ug/l	0.495	0.110	1
2-Chloronaphthalene	ND		ug/l	0.495	0.089	1
2-Nitroaniline	ND		ug/l	0.495	0.137	1
Acenaphthylene	12.7		ug/l	0.495	0.111	1
Dimethylphthalate	ND		ug/l	0.495	0.116	1
2,6-Dinitrotoluene	ND		ug/l	0.495	0.166	1
Acenaphthene	5.42		ug/l	0.495	0.095	1
3-Nitroaniline	ND		ug/l	0.495	0.110	1
Dibenzofuran	0.316	J	ug/l	0.495	0.090	1
2,4-Dinitrotoluene	ND		ug/l	0.495	0.161	1

10/06/21

Project Name: STEEL WINDS ANNUAL/SEMI ANNUAL Lab Number: L2147480

Project Number: 03.0033579.14

L2147480-01

SAMPLE RESULTS

RE Date Collected: 09/02/21 08:17

Report Date:

Client ID: WT1-05-090221 Date Received: 09/02/21 Sample Location: LACKAWANNA, NY Field Prep: Not Specified

Sample Depth:

Pluorene 17.8 ug/l 0.495 0.103 1	Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
Diethylphthalate ND	Semivolatile Organics by GC/MS - Mansfield Lab									
Diethylphthalaite ND	Fluorene	17.8		ug/l	0.495	0.103	1			
A-Nitroaniline ND ug/l 0.495 0.111 1 1 1 1 1 1 1 1 1	Diethylphthalate	ND			0.495	0.178	1			
ND	4-Nitroaniline	ND			0.495	0.111	1			
Phenanthrene 1.92 ug/l 0.495 0.110 1	n-Nitrosodiphenylamine	ND		ug/l	0.495	0.071	1			
Anthracene 0.727 ug/l 0.495 0.136 1 Carbazole 2.01 ug/l 0.495 0.142 1 Di-n-butylphthalate ND ug/l 0.495 0.099 1 Fluoranthene 2.12 ug/l 0.495 0.154 1 Pyrene 2.05 ug/l 0.495 0.084 1 Butylbenzylphthalate ND ug/l 0.495 0.084 1 3,3'-Dichlorobenzidine ND ug/l 0.495 0.182 1 Chrysene ND ug/l 0.495 0.100 1 Di-n-octylphthalate ND ug/l 0.495 0.080 1 Di-n-octylphthalate ND ug/l 0.495 0.080 1 Di-n-octylphthalate ND ug/l 0.495 0.080 1 Di-n-octylphthalate ND ug/l 0.495 0.065 1 Benzo(k)fluoranthene ND ug/l 0.495 0.065 1 Benzo(k)fluoranthene ND ug/l 0.495 0.060 1 Indeno(1,2,3-cd)pyrene ND ug/l 0.495 0.089 1 Dibenz(a,h)anthracene ND ug/l 0.495 0.089 1	Hexachlorobenzene	ND		ug/l	0.495	0.121	1			
Carbazole 2.01 ug/l 0.495 0.142 1 Di-n-butylphthalate ND ug/l 0.495 0.099 1 Fluoranthene 2.12 ug/l 0.495 0.154 1 Pyrene 2.05 ug/l 0.495 0.168 1 Butylbenzylphthalate ND ug/l 0.495 0.084 1 Benza(a)anthracene ND ug/l 0.495 0.191 1 Chrysene ND ug/l 0.495 0.182 1 Chrysene ND ug/l 0.495 0.140 1 bis(2-Ethylhexyl)phthalate ND ug/l 0.495 0.080 1 Di-n-octylphthalate ND ug/l 0.495 0.080 1 Di-n-octylphthalate ND ug/l 0.495 0.065 1 Benzo(k)fluoranthene ND ug/l 0.495 0.065 1 Benzo(a)pyrene ND ug/l 0.495 0.060 <td>Phenanthrene</td> <td>1.92</td> <td></td> <td>ug/l</td> <td>0.495</td> <td>0.110</td> <td>1</td> <td></td>	Phenanthrene	1.92		ug/l	0.495	0.110	1			
Di-n-butylphthalate	Anthracene	0.727		ug/l	0.495	0.136	1			
Pyrene 2.12 ug/l 0.495 0.154 1	Carbazole	2.01		ug/l	0.495	0.142	1			
Pyrene 2.05 ug/l 0.495 0.168 1 Butylbenzylphthalate ND ug/l 0.495 0.084 1 3,3'-Dichlorobenzidine ND ug/l 0.495 0.191 1 Benz(a)anthracene ND ug/l 0.495 0.182 1 Chrysene ND ug/l 0.495 0.140 1 bis(2-Ethylhexyl)phthalate ND ug/l 0.495 0.080 1 Di-n-octylphthalate ND ug/l 0.990 0.078 1 Benzo(b)fluoranthene ND ug/l 0.495 0.065 1 Benzo(k)fluoranthene ND ug/l 0.495 0.159 1 Benzo(a)pyrene ND ug/l 0.495 0.060 1 Indeno(1,2,3-cd)pyrene ND ug/l 0.495 0.089 1 Dibenz(a,h)anthracene ND ug/l 0.495 0.064 1	Di-n-butylphthalate	ND		ug/l	0.495	0.099	1			
Butylbenzylphthalate ND ug/l 0.495 0.084 1 3,3'-Dichlorobenzidine ND ug/l 0.495 0.191 1 Benz(a)anthracene ND ug/l 0.495 0.182 1 Chrysene ND ug/l 0.495 0.182 1 Chrysene ND ug/l 0.495 0.080 1 Di-n-octylphthalate ND ug/l 0.495 0.080 1 Di-n-octylphthalate ND ug/l 0.495 0.080 1 Benzo(b)fluoranthene ND ug/l 0.495 0.065 1 Benzo(k)fluoranthene ND ug/l 0.495 0.065 1 Benzo(a)pyrene ND ug/l 0.495 0.060 1 Indeno(1,2,3-cd)pyrene ND ug/l 0.495 0.089 1 Dibenz(a,h)anthracene ND ug/l 0.495 0.089 1	Fluoranthene	2.12		ug/l	0.495	0.154	1			
ND	Pyrene	2.05		ug/l	0.495	0.168	1			
Benz(a)anthracene ND ug/l 0.495 0.182 1	Butylbenzylphthalate	ND		ug/l	0.495	0.084	1			
Chrysene ND ug/l 0.495 0.140 1 bis(2-Ethylhexyl)phthalate ND ug/l 0.495 0.080 1 Di-n-octylphthalate ND ug/l 0.990 0.078 1 Benzo(b)fluoranthene ND ug/l 0.495 0.065 1 Benzo(k)fluoranthene ND ug/l 0.495 0.159 1 Benzo(a)pyrene ND ug/l 0.495 0.060 1 Indeno(1,2,3-cd)pyrene ND ug/l 0.495 0.089 1 Dibenz(a,h)anthracene ND ug/l 0.495 0.064 1	3,3'-Dichlorobenzidine	ND		ug/l	0.495	0.191	1			
bis(2-Ethylhexyl)phthalate ND ug/l 0.495 0.080 1 Di-n-octylphthalate ND ug/l 0.990 0.078 1 Benzo(b)fluoranthene ND ug/l 0.495 0.065 1 Benzo(k)fluoranthene ND ug/l 0.495 0.159 1 Benzo(a)pyrene ND ug/l 0.495 0.060 1 Indeno(1,2,3-cd)pyrene ND ug/l 0.495 0.089 1 Dibenz(a,h)anthracene ND ug/l 0.495 0.064 1	Benz(a)anthracene	ND		ug/l	0.495	0.182	1			
Di-n-octylphthalate ND ug/l 0.990 0.078 1 Benzo(b)fluoranthene ND ug/l 0.495 0.065 1 Benzo(k)fluoranthene ND ug/l 0.495 0.159 1 Benzo(a)pyrene ND ug/l 0.495 0.060 1 Indeno(1,2,3-cd)pyrene ND ug/l 0.495 0.089 1 Dibenz(a,h)anthracene ND ug/l 0.495 0.064 1	Chrysene	ND		ug/l	0.495	0.140	1			
ND ug/l 0.495 0.065 1	bis(2-Ethylhexyl)phthalate	ND		ug/l	0.495	0.080	1			
Benzo(k)fluoranthene ND ug/l 0.495 0.159 1 Benzo(a)pyrene ND ug/l 0.495 0.060 1 Indeno(1,2,3-cd)pyrene ND ug/l 0.495 0.089 1 Dibenz(a,h)anthracene ND ug/l 0.495 0.064 1	Di-n-octylphthalate	ND		ug/l	0.990	0.078	1			
Benzo(a)pyrene ND ug/l 0.495 0.060 1 Indeno(1,2,3-cd)pyrene ND ug/l 0.495 0.089 1 Dibenz(a,h)anthracene ND ug/l 0.495 0.064 1	Benzo(b)fluoranthene	ND		ug/l	0.495	0.065	1			
Indeno(1,2,3-cd)pyrene ND ug/l 0.495 0.089 1 Dibenz(a,h)anthracene ND ug/l 0.495 0.064 1	Benzo(k)fluoranthene	ND		ug/l	0.495	0.159	1			
Dibenz(a,h)anthracene ND ug/l 0.495 0.064 1	Benzo(a)pyrene	ND		ug/l	0.495	0.060	1			
	Indeno(1,2,3-cd)pyrene	ND		ug/l	0.495	0.089	1			
Benzo(g,h,i)perylene ND ug/l 0.495 0.108 1	Dibenz(a,h)anthracene	ND		ug/l	0.495	0.064	1			
	Benzo(g,h,i)perylene	ND		ug/l	0.495	0.108	1			

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	53	15-115
Phenol-d5	33	15-115
Nitrobenzene-d5	83	30-130
2-Fluorobiphenyl	76	30-130
2,4,6-Tribromophenol	92	15-115
Terphenyl-d14	87	30-130

10/06/21

Project Name: STEEL WINDS ANNUAL/SEMI ANNUAL Lab Number: L2147480

Project Number: 03.0033579.14

09/27/21 22:44

CAMDI E DECIII

SAMPLE RESULTS

Report Date:

Lab ID: L2147480-01 D Date Collected: 09/02/21 08:17

Client ID: WT1-05-090221 Date Received: 09/02/21 Sample Location: LACKAWANNA, NY Field Prep: Not Specified

Sample Depth:

Analytical Date:

Matrix: Water Extraction Method: EPA 3510C
Analytical Method: 1,8270D Extraction Date: 09/07/21 14:00

Analyst: PS

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Semivolatile Organics by GC/MS - Mansfield Lab								
Naphthalene	111		ug/l	2.48	0.434	5		
Fluorene	27.0		ug/l	2.48	0.515	5		

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	49	15-115
Phenol-d5	32	15-115
Nitrobenzene-d5	76	30-130
2-Fluorobiphenyl	73	30-130
2,4,6-Tribromophenol	78	15-115
Terphenyl-d14	87	30-130

L2147480

Project Name: STEEL WINDS ANNUAL/SEMI ANNUAL

Project Number: 03.0033579.14

SAMPLE RESULTS

Report Date: 10/06/21

Lab Number:

Lab ID: L2147480-02 Date Collected: 09/02/21 09:15 Date Received: Client ID: 09/02/21 MWN-01-090221

Sample Location: Field Prep: LACKAWANNA, NY Not Specified

Sample Depth:

Extraction Method: EPA 3510C Matrix: Water **Extraction Date:** 09/07/21 14:00 Analytical Method: 1,8270D

Analytical Date: 09/25/21 23:46

Analyst: PS

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS -	Mansfield Lab						
bis(2-Chloroethyl)ether	ND		ug/l	0.495	0.092	1	
1,3-Dichlorobenzene	ND		ug/l	0.495	0.078	1	
1,4-Dichlorobenzene	ND		ug/l	0.495	0.082	1	
1,2-Dichlorobenzene	ND		ug/l	0.495	0.067	1	
Benzyl alcohol	ND		ug/l	0.495	0.122	1	
bis(2-chloroisopropyl)ether	ND		ug/l	0.495	0.107	1	
Acetophenone	ND		ug/l	0.990	0.205	1	
Hexachloroethane	ND		ug/l	0.495	0.101	1	
Nitrobenzene	ND		ug/l	0.495	0.101	1	
Isophorone	ND		ug/l	0.495	0.125	1	
bis(2-Chloroethoxy)methane	ND		ug/l	0.495	0.085	1	
1,2,4-Trichlorobenzene	ND		ug/l	0.495	0.095	1	
Naphthalene	72.8	E	ug/l	0.495	0.087	1	
4-Chloroaniline	ND		ug/l	0.495	0.127	1	
Hexachlorobutadiene	ND		ug/l	0.495	0.085	1	
2-Methylnaphthalene	21.9		ug/l	0.495	0.090	1	
1,2,4,5-Tetrachlorobenzene	ND		ug/l	0.495	0.079	1	
Hexachlorocyclopentadiene	ND		ug/l	0.495	0.151	1	
Biphenyl	5.85		ug/l	0.495	0.110	1	
2-Chloronaphthalene	ND		ug/l	0.495	0.089	1	
2-Nitroaniline	ND		ug/l	0.495	0.137	1	
Acenaphthylene	22.3		ug/l	0.495	0.111	1	
Dimethylphthalate	ND		ug/l	0.495	0.116	1	
2,6-Dinitrotoluene	ND		ug/l	0.495	0.166	1	
Acenaphthene	8.66		ug/l	0.495	0.095	1	
3-Nitroaniline	ND		ug/l	0.495	0.110	1	
Dibenzofuran	33.1	E	ug/l	0.495	0.090	1	
2,4-Dinitrotoluene	ND		ug/l	0.495	0.161	1	

10/06/21

Project Name: Lab Number: STEEL WINDS ANNUAL/SEMI ANNUAL L2147480

Project Number: 03.0033579.14

SAMPLE RESULTS

Date Collected: 09/02/21 09:15

Report Date:

Lab ID: L2147480-02 Client ID: Date Received: 09/02/21 MWN-01-090221

Sample Location: Field Prep: LACKAWANNA, NY Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Semivolatile Organics by GC/MS - Mansfield Lab								
Fluorene	50.1	E	ug/l	0.495	0.103	1		
Diethylphthalate	ND		ug/l	0.495	0.178	1		
4-Nitroaniline	ND		ug/l	0.495	0.111	1		
n-Nitrosodiphenylamine	ND		ug/l	0.495	0.071	1		
Hexachlorobenzene	ND		ug/l	0.495	0.121	1		
Phenanthrene	82.3	E	ug/l	0.495	0.110	1		
Anthracene	7.74		ug/l	0.495	0.136	1		
Carbazole	19.6		ug/l	0.495	0.142	1		
Di-n-butylphthalate	ND		ug/l	0.495	0.099	1		
Fluoranthene	9.44		ug/l	0.495	0.154	1		
Pyrene	6.16		ug/l	0.495	0.168	1		
Butylbenzylphthalate	0.104	J	ug/l	0.495	0.084	1		
3,3'-Dichlorobenzidine	ND		ug/l	0.495	0.191	1		
Benz(a)anthracene	ND		ug/l	0.495	0.182	1		
Chrysene	0.216	J	ug/l	0.495	0.140	1		
bis(2-Ethylhexyl)phthalate	ND		ug/l	0.495	0.080	1		
Di-n-octylphthalate	ND		ug/l	0.990	0.078	1		
Benzo(b)fluoranthene	ND		ug/l	0.495	0.065	1		
Benzo(k)fluoranthene	ND		ug/l	0.495	0.159	1		
Benzo(a)pyrene	ND		ug/l	0.495	0.060	1		
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.495	0.089	1		
Dibenz(a,h)anthracene	ND		ug/l	0.495	0.064	1		
Benzo(g,h,i)perylene	ND		ug/l	0.495	0.108	1		

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	56	15-115
Phenol-d5	41	15-115
Nitrobenzene-d5	73	30-130
2-Fluorobiphenyl	76	30-130
2,4,6-Tribromophenol	89	15-115
Terphenyl-d14	91	30-130

10/06/21

Project Name: Lab Number: STEEL WINDS ANNUAL/SEMI ANNUAL L2147480

Project Number: 03.0033579.14

10/04/21 16:16

SAMPLE RESULTS

Report Date:

Lab ID: RE/D Date Collected: 09/02/21 09:15 L2147480-02

Date Received: Client ID: 09/02/21 MWN-01-090221 Sample Location: Field Prep: LACKAWANNA, NY Not Specified

Sample Depth:

Extraction Method: EPA 3510C Matrix: Water **Extraction Date:** 09/28/21 18:00 Analytical Method: 1,8270D Analytical Date:

Analyst: GP

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Semivolatile Organics by GC/MS - Mansfield Lab								
Fluorene	34.6		ug/l	2.45	0.510	5		
Phenanthrene	94.0		ug/l	2.45	0.544	5		

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	61	15-115
Phenol-d5	41	15-115
Nitrobenzene-d5	106	30-130
2-Fluorobiphenyl	89	30-130
2,4,6-Tribromophenol	102	15-115
Terphenyl-d14	92	30-130

L2147480

10/06/21

09/28/21 18:00

Project Name: STEEL WINDS ANNUAL/SEMI ANNUAL

Project Number: 03.0033579.14

SAMPLE RESULTS

Date Collected: 09/02/21 09:15

Extraction Method: EPA 3510C

Lab Number:

Report Date:

Extraction Date:

Lab ID: RE L2147480-02 Date Received: Client ID: 09/02/21 MWN-01-090221 Sample Location: Field Prep: LACKAWANNA, NY Not Specified

Sample Depth:

Matrix: Water Analytical Method: 1,8270D Analytical Date: 10/01/21 12:01

GΡ Analyst:

1,3-Dichlorobenzene ND ug/l 0.490 0.077 1 1,4-Dichlorobenzene ND ug/l 0.490 0.081 1 1,2-Dichlorobenzene ND ug/l 0.490 0.067 1 Benzyl alcohol ND ug/l 0.490 0.120 1 Sic(2-chloroisopropyl)ether ND ug/l 0.490 0.100 1 Acetophenone 0.462 J ug/l 0.490 0.100 1 Hexachloroethane ND ug/l 0.490 0.100 1 Nitrobenzene ND ug/l 0.490 0.100 1 Isophorone ND ug/l 0.490 0.100 1 Isophorone ND ug/l 0.490 0.084 1 Isophorone ND ug/l 0.490 0.084 1 Isophorone ND ug/l 0.490 0.084 1 Isophorone ND ug/l 0.490 0.	Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
1,3-Dichlorobenzene ND ug/l 0.490 0.077 1 1,4-Dichlorobenzene ND ug/l 0.490 0.081 1 1,2-Dichlorobenzene ND ug/l 0.490 0.067 1 Benzyl alcohol ND ug/l 0.490 0.120 1 Sic(2-chloroisopropyl)ether ND ug/l 0.490 0.100 1 Acetophenone 0.462 J ug/l 0.490 0.100 1 Hexachloroethane ND ug/l 0.490 0.100 1 Nitrobenzene ND ug/l 0.490 0.100 1 Isophoroe ND ug/l 0.490 0.100 1 Isophoroe ND ug/l 0.490 0.100 1 Isophoroe ND ug/l 0.490 0.084 1 Isophoroe ND ug/l 0.490 0.084 1 Isophoroe ND ug/l 0.490 0.086 </td <td>Semivolatile Organics by GC/MS - M</td> <td>ansfield Lab</td> <td></td> <td></td> <td></td> <td></td> <td></td>	Semivolatile Organics by GC/MS - M	ansfield Lab					
1,4-Dichlorobenzene ND ug/l 0,490 0,081 1 1 1,2-Dichlorobenzene ND ug/l 0,490 0,067 1 1 1,2-Dichlorobenzene ND ug/l 0,490 0,120 1 1 1,2-Dichlorobenzene ND ug/l 0,490 0,120 1 1 1 1 1 1 1 1 1	bis(2-Chloroethyl)ether	ND		ug/l	0.490	0.091	1
1,2-Dichlorobenzene ND ug/l 0,490 0,067 1	1,3-Dichlorobenzene	ND		ug/l	0.490	0.077	1
Benzyl alcohol ND ug/l 0.490 0.120 1 bis(2-chloroisopropyl)ether ND ug/l 0.490 0.106 1 Acetophenone 0.462 J ug/l 0.980 0.203 1 Hexachloroethane ND ug/l 0.490 0.100 1 Nitrobenzene ND ug/l 0.490 0.100 1 Isophorone ND ug/l 0.490 0.100 1 Isophorone ND ug/l 0.490 0.104 1 Isophorone ND ug/l 0.490 0.084 1 Isophorone ND ug/l 0.490 0.084 1 1,2,4-Trichlorobenzene ND ug/l 0.490 0.084 1 1,2,4-Trichlorobenzene ND ug/l 0.490 0.086 1 4-Chloroaniline ND ug/l 0.490 0.084 1 Hexachlorobutadiene ND ug/l 0.490	1,4-Dichlorobenzene	ND		ug/l	0.490	0.081	1
ND Ug/l 0.490 0.106 1	1,2-Dichlorobenzene	ND		ug/l	0.490	0.067	1
Acetophenone 0.462 J ug/l 0.980 0.203 1 Hexachloroethane ND ug/l 0.490 0.100 1 Nitrobenzene ND ug/l 0.490 0.100 1 Isophorone ND ug/l 0.490 0.124 1 bis(2-Chloroethoxy)methane ND ug/l 0.490 0.084 1 1,2,4-Trichlorobenzene ND ug/l 0.490 0.094 1 Naphthalene ND ug/l 0.490 0.094 1 4-Chloroaniline ND ug/l 0.490 0.086 1 Hexachlorobularine ND ug/l 0.490 0.084 1 Hexachlorobularine ND ug/l 0.490 0.084 1 1,2,4,5-Tetrachlorobularine ND ug/l 0.490 0.089 1 Hexachlorocyclopentadiene ND ug/l 0.490 0.078 1 Biphenyl ND ug/l	Benzyl alcohol	ND		ug/l	0.490	0.120	1
Hexachloroethane ND ug/l 0.490 0.100 1 Nitrobenzene ND ug/l 0.490 0.100 1 Nitrobenzene ND ug/l 0.490 0.100 1 Nitrobenzene ND ug/l 0.490 0.124 1 Nitrobenzene ND ug/l 0.490 0.084 1 Nitrobenzene ND ug/l 0.490 0.084 1 Nitrobenzene ND ug/l 0.490 0.094 1 Nitrobenzene ND ug/l 0.490 0.086 1 Nitrobenzene ND ug/l 0.490 0.086 1 Nitrobenzene ND ug/l 0.490 0.125 1 Nitrobenzene ND ug/l 0.490 0.084 1 Nitrobenzene ND ug/l 0.490 0.084 1 Nitrobenzene ND ug/l 0.490 0.084 1 Nitrobenzene ND ug/l 0.490 0.089 1 Nitrobenzene ND ug/l 0.490 0.078 1 Nitrobenzene ND ug/l 0.490 0.150 1 Nitrobenzene ND ug/l 0.490 0.150 1 Nitrobenzene ND ug/l 0.490 0.109 1 Nitrobenzene ND ug/l 0.490 0.109 1 Nitrobenzene ND ug/l 0.490 0.135 1 Nitrobenzene ND ug/l 0.490 0.135 1 Nitrobenzene ND ug/l 0.490 0.110 1 Nitrobenzene ND ug/l 0.490 0.110 1 Nitrobenzene ND ug/l 0.490 0.115 1 Nitrobenzene ND ug/l 0.490 0.115 1 Nitrobenzene ND ug/l 0.490 0.115 1 Nitrobenzene ND ug/l 0.490 0.165 1 Nitrobenzene ND ug/l 0.490 0.165 1 Nitrobenzene ND ug/l 0.490 0.165 1 Nitrobenzene ND ug/l 0.490 0.109 1 Nitrobenzene ND	bis(2-chloroisopropyl)ether	ND		ug/l	0.490	0.106	1
Nitrobenzene ND ug/l 0.490 0.100 1 Isophorone ND ug/l 0.490 0.124 1 Isophorone ND ug/l 0.490 0.124 1 Isophorone ND ug/l 0.490 0.084 1 I.2,4-Trichlorobenzene ND ug/l 0.490 0.094 1 Naphthalene ND ug/l 0.490 0.086 1 I.2,4-Trichlorobutadiene ND ug/l 0.490 0.086 1 I.2,4-S-Tetrachlorobutadiene ND ug/l 0.490 0.084 1 I.2,4,5-Tetrachlorobenzene ND ug/l 0.490 0.089 1 I.2,4,5-Tetrachlorobenzene ND ug/l 0.490 0.089 1 I.2,4,5-Tetrachlorobenzene ND ug/l 0.490 0.078 1 I.2,4,5-Tetrachlorobenzene ND ug/l 0.490 0.078 1 I.2,4,5-Tetrachlorobenzene ND ug/l 0.490 0.078 1 I.2,4,5-Tetrachlorobenzene ND ug/l 0.490 0.150 1 Isophenyl ND ug/l 0.490 0.150 1 Isophenyl ND ug/l 0.490 0.109 1 I.2-Chloronaphthalene ND ug/l 0.490 0.088 1 I.2-Nitroaniline ND ug/l 0.490 0.135 1 I.2-Nitroaniline ND ug/l 0.490 0.110 1 Interthylphthalate ND ug/l 0.490 0.115 1 I.2,6-Dinitrotoluene ND ug/l 0.490 0.115 1 I.2,6-Dinitrotoluene ND ug/l 0.490 0.094 1	Acetophenone	0.462	J	ug/l	0.980	0.203	1
Sephorone ND ug/l 0.490 0.124 1	Hexachloroethane	ND		ug/l	0.490	0.100	1
bis(2-Chloroethoxy)methane ND ug/l 0.490 0.084 1 1,2,4-Trichlorobenzene ND ug/l 0.490 0.094 1 Naphthalene ND ug/l 0.490 0.086 1 4-Chloroaniline ND ug/l 0.490 0.125 1 4-Chloroaniline ND ug/l 0.490 0.086 1 1.2,4-5-Tetrachlorobutadiene ND ug/l 0.490 0.084 1 1.2,4-5-Tetrachlorobenzene ND ug/l 0.490 0.089 1 1,2,4-5-Tetrachlorobenzene ND ug/l 0.490 0.078 1 1-2-Methylnaphthalene ND ug/l 0.490 0.078 1 1-2-Chloroaphthalene ND ug/l 0.490 0.150 1 1-2-Chloroaphthalene ND ug/l 0.490 0.150 1 1-2-Chloroaphthalene ND ug/l 0.490 0.109 1 2-Chloroaphthalene ND ug/l 0.490 0.109 1 2-Nitroaniline ND ug/l 0.490 0.135 1 Acenaphthylene 3.94 ug/l 0.490 0.110 1 Dimethylphthalate ND ug/l 0.490 0.115 1 2,6-Dinitrotoluene ND ug/l 0.490 0.165 1 Acenaphthene 8.54 ug/l 0.490 0.094 1 3-Nitroaniline ND ug/l 0.490 0.094 1 3-Nitroaniline ND ug/l 0.490 0.009 1	Nitrobenzene	ND		ug/l	0.490	0.100	1
1,2,4-Trichlorobenzene ND ug/l 0.490 0.094 1	Isophorone	ND		ug/l	0.490	0.124	1
Naphthalene ND ug/l 0.490 0.086 1 4-Chloroaniline ND ug/l 0.490 0.125 1 Hexachlorobutadiene ND ug/l 0.490 0.084 1 2-Methylnaphthalene ND ug/l 0.490 0.089 1 1,2,4,5-Tetrachlorobenzene ND ug/l 0.490 0.078 1 Hexachlorocyclopentadiene ND ug/l 0.490 0.150 1 Biphenyl ND ug/l 0.490 0.109 1 2-Chloronaphthalene ND ug/l 0.490 0.088 1 2-Nitroaniline ND ug/l 0.490 0.135 1 Acenaphthylene 3.94 ug/l 0.490 0.110 1 Dimethylphthalate ND ug/l 0.490 0.115 1 2,6-Dinitrotoluene ND ug/l 0.490 0.165 1 Acenaphthene 8.54 ug/l 0.490	bis(2-Chloroethoxy)methane	ND		ug/l	0.490	0.084	1
A-Chloroaniline	1,2,4-Trichlorobenzene	ND		ug/l	0.490	0.094	1
Hexachlorobutadiene ND	Naphthalene	ND		ug/l	0.490	0.086	1
2-Methylnaphthalene ND ug/l 0.490 0.089 1 1,2,4,5-Tetrachlorobenzene ND ug/l 0.490 0.078 1 Hexachlorocyclopentadiene ND ug/l 0.490 0.150 1 Biphenyl ND ug/l 0.490 0.109 1 2-Chloronaphthalene ND ug/l 0.490 0.088 1 2-Nitroaniline ND ug/l 0.490 0.135 1 Acenaphthylene 3.94 ug/l 0.490 0.110 1 Dimethylphthalate ND ug/l 0.490 0.115 1 2,6-Dinitrotoluene ND ug/l 0.490 0.165 1 Acenaphthene 8.54 ug/l 0.490 0.165 1 3-Nitroaniline ND ug/l 0.490 0.094 1 3-Nitroaniline ND ug/l 0.490 0.094 1 3-Nitroaniline ND ug/l 0.490 0.109 1	4-Chloroaniline	ND		ug/l	0.490	0.125	1
1,2,4,5-Tetrachlorobenzene ND ug/l 0.490 0.078 1 Hexachlorocyclopentadiene ND ug/l 0.490 0.150 1 Biphenyl ND ug/l 0.490 0.109 1 2-Chloronaphthalene ND ug/l 0.490 0.088 1 2-Nitroaniline ND ug/l 0.490 0.135 1 Acenaphthylene 3.94 ug/l 0.490 0.110 1 Dimethylphthalate ND ug/l 0.490 0.115 1 2,6-Dinitrotoluene ND ug/l 0.490 0.165 1 Acenaphthene 8.54 ug/l 0.490 0.094 1 3-Nitroaniline ND ug/l 0.490 0.109 1 Dibenzofuran ND ug/l 0.490 0.089 1	Hexachlorobutadiene	ND		ug/l	0.490	0.084	1
Hexachlorocyclopentadiene ND ug/l 0.490 0.150 1	2-Methylnaphthalene	ND		ug/l	0.490	0.089	1
Biphenyl ND ug/l 0.490 0.109 1	1,2,4,5-Tetrachlorobenzene	ND		ug/l	0.490	0.078	1
2-Chloronaphthalene ND ug/l 0.490 0.088 1 2-Nitroaniline ND ug/l 0.490 0.135 1 Acenaphthylene 3.94 ug/l 0.490 0.110 1 Dimethylphthalate ND ug/l 0.490 0.115 1 2,6-Dinitrotoluene ND ug/l 0.490 0.165 1 Acenaphthene 8.54 ug/l 0.490 0.094 1 3-Nitroaniline ND ug/l 0.490 0.109 1 Dibenzofuran ND ug/l 0.490 0.089 1	Hexachlorocyclopentadiene	ND		ug/l	0.490	0.150	1
2-Nitroaniline ND ug/l 0.490 0.135 1 Acenaphthylene 3.94 ug/l 0.490 0.110 1 Dimethylphthalate ND ug/l 0.490 0.115 1 2,6-Dinitrotoluene ND ug/l 0.490 0.165 1 Acenaphthene 8.54 ug/l 0.490 0.094 1 3-Nitroaniline ND ug/l 0.490 0.109 1 Dibenzofuran ND ug/l 0.490 0.009 1	Biphenyl	ND		ug/l	0.490	0.109	1
Acenaphthylene 3.94 ug/l 0.490 0.110 1 Dimethylphthalate ND ug/l 0.490 0.115 1 2,6-Dinitrotoluene ND ug/l 0.490 0.165 1 Acenaphthene 8.54 ug/l 0.490 0.094 1 3-Nitroaniline ND ug/l 0.490 0.109 1 Dibenzofuran ND ug/l 0.490 0.089 1	2-Chloronaphthalene	ND		ug/l	0.490	0.088	1
Dimethylphthalate ND ug/l 0.490 0.115 1 2,6-Dinitrotoluene ND ug/l 0.490 0.165 1 Acenaphthene 8.54 ug/l 0.490 0.094 1 3-Nitroaniline ND ug/l 0.490 0.109 1 Dibenzofuran ND ug/l 0.490 0.089 1	2-Nitroaniline	ND		ug/l	0.490	0.135	1
2,6-Dinitrotoluene ND ug/l 0.490 0.165 1 Acenaphthene 8.54 ug/l 0.490 0.094 1 3-Nitroaniline ND ug/l 0.490 0.109 1 Dibenzofuran ND ug/l 0.490 0.089 1	Acenaphthylene	3.94		ug/l	0.490	0.110	1
Acenaphthene 8.54 ug/l 0.490 0.094 1 3-Nitroaniline ND ug/l 0.490 0.109 1 Dibenzofuran ND ug/l 0.490 0.089 1	Dimethylphthalate	ND		ug/l	0.490	0.115	1
3-Nitroaniline ND ug/l 0.490 0.109 1 Dibenzofuran ND ug/l 0.490 0.089 1	2,6-Dinitrotoluene	ND		ug/l	0.490	0.165	1
Dibenzofuran ND ug/l 0.490 0.089 1	Acenaphthene	8.54		ug/l	0.490	0.094	1
-9-	3-Nitroaniline	ND		ug/l	0.490	0.109	1
2,4-Dinitrotoluene ND ug/l 0.490 0.160 1	Dibenzofuran	ND		ug/l	0.490	0.089	1
	2,4-Dinitrotoluene	ND		ug/l	0.490	0.160	1

10/06/21

Project Name: STEEL WINDS ANNUAL/SEMI ANNUAL Lab Number: L2147480

RE

Project Number: 03.0033579.14

L2147480-02

SAMPLE RESULTS

Date Collected: 09/02/21 09:15

Report Date:

Client ID: MWN-01-090221 Date Received: 09/02/21 Sample Location: LACKAWANNA, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - Mansfie	eld Lab					
Fluorene	33.8	E	ug/l	0.490	0.102	1
Diethylphthalate	ND		ug/l	0.490	0.176	1
4-Nitroaniline	ND		ug/l	0.490	0.110	1
n-Nitrosodiphenylamine	ND		ug/l	0.490	0.071	1
Hexachlorobenzene	ND		ug/l	0.490	0.120	1
Phenanthrene	86.9	Е	ug/l	0.490	0.109	1
Anthracene	1.68		ug/l	0.490	0.134	1
Carbazole	0.210	J	ug/l	0.490	0.140	1
Di-n-butylphthalate	ND		ug/l	0.490	0.098	1
Fluoranthene	11.8		ug/l	0.490	0.153	1
Pyrene	7.38		ug/l	0.490	0.167	1
Butylbenzylphthalate	0.107	J	ug/l	0.490	0.083	1
3,3'-Dichlorobenzidine	ND		ug/l	0.490	0.189	1
Benz(a)anthracene	0.393	J	ug/l	0.490	0.180	1
Chrysene	0.277	J	ug/l	0.490	0.139	1
bis(2-Ethylhexyl)phthalate	ND		ug/l	0.490	0.079	1
Di-n-octylphthalate	ND		ug/l	0.980	0.077	1
Benzo(b)fluoranthene	ND		ug/l	0.490	0.064	1
Benzo(k)fluoranthene	ND		ug/l	0.490	0.158	1
Benzo(a)pyrene	ND		ug/l	0.490	0.059	1
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.490	0.088	1
Dibenz(a,h)anthracene	ND		ug/l	0.490	0.063	1
Benzo(g,h,i)perylene	ND		ug/l	0.490	0.107	1

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	56	15-115
Phenol-d5	37	15-115
Nitrobenzene-d5	91	30-130
2-Fluorobiphenyl	82	30-130
2,4,6-Tribromophenol	83	15-115
Terphenyl-d14	84	30-130

10/06/21

Project Name: STEEL WINDS ANNUAL/SEMI ANNUAL Lab Number: L2147480

Project Number: 03.0033579.14

09/27/21 23:17

CAMDI E DECIII

SAMPLE RESULTS

Report Date:

Lab ID: L2147480-02 D Date Collected: 09/02/21 09:15

Client ID: MWN-01-090221 Date Received: 09/02/21 Sample Location: LACKAWANNA, NY Field Prep: Not Specified

Sample Depth:

Analytical Date:

Matrix: Water Extraction Method: EPA 3510C
Analytical Method: 1,8270D Extraction Date: 09/07/21 14:00

Analyst: PS

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - Mansi	field Lab					
Naphthalene	96.2		ug/l	2.48	0.434	5
Dibenzofuran	28.9		ug/l	2.48	0.450	5
Fluorene	41.9		ug/l	2.48	0.515	5
Phenanthrene	71.0		ug/l	2.48	0.550	5

% Recovery	Acceptance Qualifier Criteria
52	15-115
38	15-115
75	30-130
69	30-130
77	15-115
87	30-130
	52 38 75 69 77

L2147480

10/06/21

Project Name: STEEL WINDS ANNUAL/SEMI ANNUAL

Project Number: 03.0033579.14

L2147480-03

MWN-01B-090221

LACKAWANNA, NY

SAMPLE RESULTS

Date Collected: 09/02/21 10:20

Date Received: 09/02/21

Lab Number:

Report Date:

Field Prep: Not Specified

Sample Depth:

Sample Location:

Lab ID:

Client ID:

Matrix: Water Analytical Method: 1,8270D Analytical Date: 09/26/21 05:16

PS Analyst:

Extraction Method: EPA 3510C **Extraction Date:** 09/07/21 14:00

1.3-Dichlorobenzene ND ug/l 0.485 0.076 1 1.4-Dichlorobenzene ND ug/l 0.485 0.080 1 1.2-Dichlorobenzene ND ug/l 0.485 0.066 1 Benzyl alcohol ND ug/l 0.485 0.119 1 bis(2-chlorospropyl)ether ND ug/l 0.485 0.119 1 Acetophenone ND ug/l 0.485 0.099 1 Hexachloroethane ND ug/l 0.485 0.099 1 Nitrobenzene ND ug/l 0.485 0.099 1 lsophrone ND ug/l 0.485 0.099 1 lsophrone ND ug/l 0.485 0.099 1 lsophrone ND ug/l 0.485 0.083 1 lsophrone ND ug/l 0.485 0.083 1 lsophrone ND ug/l 0.485 0.083 1	Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
1.3-Dichlorobenzene ND ug/l 0.485 0.076 1 1.4-Dichlorobenzene ND ug/l 0.485 0.080 1 1.2-Dichlorobenzene ND ug/l 0.485 0.080 1 1.2-Dichlorobenzene ND ug/l 0.485 0.066 1 Benzyl alcohol ND ug/l 0.485 0.119 1 bis(2-chlorosporpyl)ether ND ug/l 0.485 0.119 1 bis(2-chlorosporpyl)ether ND ug/l 0.485 0.095 1 Acetophenone ND ug/l 0.485 0.099 1 Hexachloroethane ND ug/l 0.485 0.099 1 Bisphronne ND ug/l 0.485 0.099 1 Bisphronne ND ug/l 0.485 0.099 1 bis(2-Chloroethoxy)methane ND ug/l 0.485 0.083 1 1.2-4-Trichlorobenzene ND ug/l 0.485 0.083 1 1.2-4-Trichlorobenzene ND ug/l 0.485 0.085 1 4-Chloroahline ND ug/l 0.485 0.085 1 4-Chloroahline ND ug/l 0.485 0.085 1 4-Chlorobentadiene ND ug/l 0.485 0.083 1 4-Chlorophitalene ND ug/l 0.485 0.083 1 4-Chlorophitalene ND ug/l 0.485 0.088 1 4-Chlorophitalene ND ug/l 0.485 0.088 1 4-Chlorophitalene ND ug/l 0.485 0.087 1 4-Chlorophitalene ND ug/l 0.485 0.093 1 4-Chlorophitalene ND ug/l	Semivolatile Organics by GC/MS - Ma	ansfield Lab					
1,4-Dichlorobenzene ND ug/l 0,485 0,080 1 1,2-Dichlorobenzene ND ug/l 0,485 0,066 1 1,2-Dichlorobenzene ND ug/l 0,485 0,119 1 1 1 1 1 1 1 1 1	bis(2-Chloroethyl)ether	ND		ug/l	0.485	0.090	1
1,2-Dichlorobenzene ND ug/l 0.485 0.066 1	1,3-Dichlorobenzene	ND		ug/l	0.485	0.076	1
Benzyl alcohol ND ug/l 0.485 0.119 1 bis(2-chloroisopropyl)ether ND ug/l 0.485 0.105 1 Acetophenone ND ug/l 0.971 0.201 1 Hexachloroethane ND ug/l 0.485 0.099 1 Nitrobenzene ND ug/l 0.485 0.099 1 Isophorone ND ug/l 0.485 0.099 1 Isophorone ND ug/l 0.485 0.099 1 Isophorone ND ug/l 0.485 0.093 1 Isophorone ND ug/l 0.485 0.083 1 1,2.4-Trichlorobenzene ND ug/l 0.485 0.093 1 Naphthalene 415 E ug/l 0.485 0.085 1 4-Chloroaniline ND ug/l 0.485 0.083 1 Hexachlorobutadiene ND ug/l 0.485 0.08	1,4-Dichlorobenzene	ND		ug/l	0.485	0.080	1
Dis(2-chloroispropyl)ether ND	1,2-Dichlorobenzene	ND		ug/l	0.485	0.066	1
Acetophenone ND ug/l 0.971 0.201 1 Hexachloroethane ND ug/l 0.485 0.099 1 Nitrobenzene ND ug/l 0.485 0.099 1 Isophorone ND ug/l 0.485 0.122 1 bis(2-Chloroethoxy)methane ND ug/l 0.485 0.083 1 1,2,4-Trichlorobenzene ND ug/l 0.485 0.093 1 Naphthalene 415 E ug/l 0.485 0.093 1 4-Chloroanliine ND ug/l 0.485 0.085 1 4-Chloroanliine ND ug/l 0.485 0.083 1 Hexachlorobutadiene ND ug/l 0.485 0.083 1 1,2,4,5-Tetrachlorobenzene ND ug/l 0.485 0.088 1 1,2,4,5-Tetrachlorobenzene ND ug/l 0.485 0.077 1 Hexachlorocyclopentadiene ND ug	Benzyl alcohol	ND		ug/l	0.485	0.119	1
Hexachloroethane ND ug/l 0.485 0.099 1	bis(2-chloroisopropyl)ether	ND		ug/l	0.485	0.105	1
NItrobenzene ND ug/l 0.485 0.099 1 Isophorone ND ug/l 0.485 0.122 1 bis(2-Chloroethoxy)methane ND ug/l 0.485 0.083 1 1,2,4-Trichlorobenzene ND ug/l 0.485 0.093 1 Naphthalene 415 E ug/l 0.485 0.085 1 4-Chloroaniline ND ug/l 0.485 0.085 1 Hexachlorobutadiene ND ug/l 0.485 0.083 1 2-Methylnaphthalene 77.7 E ug/l 0.485 0.083 1 2-Methylnaphthalene 77.7 E ug/l 0.485 0.088 1 1,2,4,5-Tetrachlorobenzene ND ug/l 0.485 0.077 1 Hexachlorocyclopentadiene ND ug/l 0.485 0.108 1 2-Chloronaphthalene ND ug/l 0.485 0.108 1 2-Nitroani	Acetophenone	ND		ug/l	0.971	0.201	1
Sophorone ND	Hexachloroethane	ND		ug/l	0.485	0.099	1
bis(2-Chloroethoxy)methane ND ug/l 0.485 0.083 1 1,2,4-Trichlorobenzene ND ug/l 0.485 0.093 1 Naphthalene 415 E ug/l 0.485 0.085 1 4-Chloroaniline ND ug/l 0.485 0.124 1 Hexachlorobutadiene ND ug/l 0.485 0.083 1 2-Methylnaphthalene 77.7 E ug/l 0.485 0.083 1 1,2,4,5-Tetrachlorobenzene ND ug/l 0.485 0.093 1 Hexachlorocyclopentadiene ND ug/l 0.485 0.077 1 Biphenyl 7.45 ug/l 0.485 0.108 1 2-Chloroaphthalene ND ug/l 0.485 0.108 1 2-Nitroaniline ND ug/l 0.485 0.109 1 Dimethylphthalate ND ug/l 0.485 0.114 1 2,6-Dinitrotoluene	Nitrobenzene	ND		ug/l	0.485	0.099	1
1,2,4-Trichlorobenzene ND ug/l 0.485 0.093 1 Naphthalene 415 E ug/l 0.485 0.085 1 4-Chloroaniline ND ug/l 0.485 0.124 1 Hexachlorobutadiene ND ug/l 0.485 0.083 1 2-Methylnaphthalene 77.7 E ug/l 0.485 0.088 1 1,2,4,5-Tetrachlorobenzene ND ug/l 0.485 0.077 1 Hexachlorocyclopentadiene ND ug/l 0.485 0.148 1 Biphenyl 7.45 ug/l 0.485 0.108 1 2-Chloronaphthalene ND ug/l 0.485 0.087 1 2-Nitroaniline ND ug/l 0.485 0.134 1 Acenaphthylene 44.0 ug/l 0.485 0.114 1 2,6-Dinitrotoluene ND ug/l 0.485 0.163 1 Acenaphthene 12.0	Isophorone	ND		ug/l	0.485	0.122	1
Naphthalene 415 E ug/l 0.485 0.085 1 4-Chloroaniline ND ug/l 0.485 0.124 1 Hexachlorobutadiene ND ug/l 0.485 0.083 1 2-Methylnaphthalene 77.7 E ug/l 0.485 0.098 1 1,2,4,5-Tetrachlorobenzene ND ug/l 0.485 0.077 1 Hexachlorocyclopentadiene ND ug/l 0.485 0.148 1 Biphenyl 7.45 ug/l 0.485 0.108 1 2-Chloronaphthalene ND ug/l 0.485 0.087 1 2-Nitroaniline ND ug/l 0.485 0.134 1 Acenaphthylene 44.0 ug/l 0.485 0.109 1 Dimethylphthalate ND ug/l 0.485 0.163 1 2,6-Dinitrotoluene ND ug/l 0.485 0.163 1 Acenaphthene 12.0	bis(2-Chloroethoxy)methane	ND		ug/l	0.485	0.083	1
A-Chloroaniline ND ug/l 0.485 0.124 1	1,2,4-Trichlorobenzene	ND		ug/l	0.485	0.093	1
Hexachlorobutadiene ND	Naphthalene	415	E	ug/l	0.485	0.085	1
2-Methylnaphthalene 77.7 E ug/l 0.485 0.088 1 1,2,4,5-Tetrachlorobenzene ND ug/l 0.485 0.077 1 Hexachlorocyclopentadiene ND ug/l 0.485 0.148 1 Biphenyl 7.45 ug/l 0.485 0.108 1 2-Chloronaphthalene ND ug/l 0.485 0.087 1 2-Nitroaniline ND ug/l 0.485 0.134 1 Acenaphthylene 44.0 ug/l 0.485 0.109 1 Dimethylphthalate ND ug/l 0.485 0.114 1 2,6-Dinitrotoluene ND ug/l 0.485 0.163 1 Acenaphthene 12.0 ug/l 0.485 0.093 1 3-Nitroaniline ND ug/l 0.485 0.108 1 Dibenzofuran 30.3 ug/l 0.485 0.008 1	4-Chloroaniline	ND		ug/l	0.485	0.124	1
1,2,4,5-Tetrachlorobenzene ND ug/l 0.485 0.077 1 Hexachlorocyclopentadiene ND ug/l 0.485 0.148 1 Biphenyl 7.45 ug/l 0.485 0.108 1 2-Chloronaphthalene ND ug/l 0.485 0.087 1 2-Nitroaniline ND ug/l 0.485 0.134 1 Acenaphthylene 44.0 ug/l 0.485 0.109 1 Dimethylphthalate ND ug/l 0.485 0.114 1 2,6-Dinitrotoluene ND ug/l 0.485 0.163 1 Acenaphthene 12.0 ug/l 0.485 0.093 1 3-Nitroaniline ND ug/l 0.485 0.108 1 Dibenzofuran 30.3 ug/l 0.485 0.008 1	Hexachlorobutadiene	ND		ug/l	0.485	0.083	1
Hexachlorocyclopentadiene ND ug/l 0.485 0.148 1	2-Methylnaphthalene	77.7	Е	ug/l	0.485	0.088	1
Biphenyl 7.45 ug/l 0.485 0.108 1	1,2,4,5-Tetrachlorobenzene	ND		ug/l	0.485	0.077	1
2-Chloronaphthalene ND ug/l 0.485 0.087 1 2-Nitroaniline ND ug/l 0.485 0.134 1 Acenaphthylene 44.0 ug/l 0.485 0.109 1 Dimethylphthalate ND ug/l 0.485 0.114 1 2,6-Dinitrotoluene ND ug/l 0.485 0.163 1 Acenaphthene 12.0 ug/l 0.485 0.093 1 3-Nitroaniline ND ug/l 0.485 0.108 1 Dibenzofuran 30.3 ug/l 0.485 0.088 1	Hexachlorocyclopentadiene	ND		ug/l	0.485	0.148	1
2-Nitroaniline ND ug/l 0.485 0.134 1 Acenaphthylene 44.0 ug/l 0.485 0.109 1 Dimethylphthalate ND ug/l 0.485 0.114 1 2,6-Dinitrotoluene ND ug/l 0.485 0.163 1 Acenaphthene 12.0 ug/l 0.485 0.093 1 3-Nitroaniline ND ug/l 0.485 0.108 1 Dibenzofuran 30.3 ug/l 0.485 0.088 1	Biphenyl	7.45		ug/l	0.485	0.108	1
Acenaphthylene 44.0 ug/l 0.485 0.109 1 Dimethylphthalate ND ug/l 0.485 0.114 1 2,6-Dinitrotoluene ND ug/l 0.485 0.163 1 Acenaphthene 12.0 ug/l 0.485 0.093 1 3-Nitroaniline ND ug/l 0.485 0.108 1 Dibenzofuran 30.3 ug/l 0.485 0.088 1	2-Chloronaphthalene	ND		ug/l	0.485	0.087	1
Dimethylphthalate ND ug/l 0.485 0.114 1 2,6-Dinitrotoluene ND ug/l 0.485 0.163 1 Acenaphthene 12.0 ug/l 0.485 0.093 1 3-Nitroaniline ND ug/l 0.485 0.108 1 Dibenzofuran 30.3 ug/l 0.485 0.088 1	2-Nitroaniline	ND		ug/l	0.485	0.134	1
2,6-Dinitrotoluene ND ug/l 0.485 0.163 1 Acenaphthene 12.0 ug/l 0.485 0.093 1 3-Nitroaniline ND ug/l 0.485 0.108 1 Dibenzofuran 30.3 ug/l 0.485 0.088 1	Acenaphthylene	44.0		ug/l	0.485	0.109	1
Acenaphthene 12.0 ug/l 0.485 0.093 1 3-Nitroaniline ND ug/l 0.485 0.108 1 Dibenzofuran 30.3 ug/l 0.485 0.088 1	Dimethylphthalate	ND		ug/l	0.485	0.114	1
3-Nitroaniline ND ug/l 0.485 0.108 1 Dibenzofuran 30.3 ug/l 0.485 0.088 1	2,6-Dinitrotoluene	ND		ug/l	0.485	0.163	1
Dibenzofuran 30.3 ug/l 0.485 0.088 1	Acenaphthene	12.0		ug/l	0.485	0.093	1
-9-	3-Nitroaniline	ND		ug/l	0.485	0.108	1
2,4-Dinitrotoluene ND ug/l 0.485 0.158 1	Dibenzofuran	30.3		ug/l	0.485	0.088	1
	2,4-Dinitrotoluene	ND		ug/l	0.485	0.158	1

10/06/21

Project Name: Lab Number: STEEL WINDS ANNUAL/SEMI ANNUAL L2147480

Project Number: 03.0033579.14

L2147480-03

SAMPLE RESULTS

Date Collected: 09/02/21 10:20

Report Date:

Date Received: Client ID: 09/02/21 MWN-01B-090221 Sample Location: Field Prep: LACKAWANNA, NY Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS	- Mansfield Lab					
Fluorene	43.7		ug/l	0.485	0.101	1
Diethylphthalate	ND		ug/l	0.485	0.175	1
4-Nitroaniline	ND		ug/l	0.485	0.109	1
n-Nitrosodiphenylamine	ND		ug/l	0.485	0.070	1
Hexachlorobenzene	ND		ug/l	0.485	0.118	1
Phenanthrene	73.8	E	ug/l	0.485	0.108	1
Anthracene	8.19		ug/l	0.485	0.133	1
Carbazole	67.6	E	ug/l	0.485	0.139	1
Di-n-butylphthalate	ND		ug/l	0.485	0.097	1
Fluoranthene	8.97		ug/l	0.485	0.151	1
Pyrene	6.44		ug/l	0.485	0.165	1
Butylbenzylphthalate	ND		ug/l	0.485	0.082	1
3,3'-Dichlorobenzidine	ND		ug/l	0.485	0.187	1
Benz(a)anthracene	0.461	J	ug/l	0.485	0.179	1
Chrysene	0.256	J	ug/l	0.485	0.138	1
bis(2-Ethylhexyl)phthalate	ND		ug/l	0.485	0.079	1
Di-n-octylphthalate	ND		ug/l	0.971	0.076	1
Benzo(b)fluoranthene	0.105	J	ug/l	0.485	0.064	1
Benzo(k)fluoranthene	ND		ug/l	0.485	0.156	1
Benzo(a)pyrene	0.072	J	ug/l	0.485	0.058	1
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.485	0.087	1
Dibenz(a,h)anthracene	ND		ug/l	0.485	0.062	1
Benzo(g,h,i)perylene	ND		ug/l	0.485	0.106	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
2-Fluorophenol	56		15-115	
Phenol-d5	38		15-115	
Nitrobenzene-d5	147	Q	30-130	
2-Fluorobiphenyl	84		30-130	
2,4,6-Tribromophenol	91		15-115	
Terphenyl-d14	90		30-130	

10/06/21

Report Date:

Project Name: Lab Number: STEEL WINDS ANNUAL/SEMI ANNUAL L2147480

Project Number: 03.0033579.14

10/04/21 16:47

SAMPLE RESULTS

Lab ID: RE/D Date Collected: 09/02/21 10:20 L2147480-03

Date Received: Client ID: 09/02/21 MWN-01B-090221 Sample Location: Field Prep: LACKAWANNA, NY Not Specified

Sample Depth:

Analytical Date:

Extraction Method: EPA 3510C Matrix: Water **Extraction Date:** 09/28/21 18:00 Analytical Method: 1,8270D

Analyst: GP

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - M	ansfield Lab					
bis(2-Chloroethyl)ether	ND		ug/l	24.3	4.51	50
1,3-Dichlorobenzene	ND		ug/l	24.3	3.80	50
1,4-Dichlorobenzene	ND		ug/l	24.3	4.02	50
1,2-Dichlorobenzene	ND		ug/l	24.3	3.30	50
Benzyl alcohol	ND		ug/l	24.3	5.97	50
bis(2-chloroisopropyl)ether	ND		ug/l	24.3	5.24	50
Acetophenone	ND		ug/l	48.5	10.0	50
Hexachloroethane	ND		ug/l	24.3	4.95	50
Nitrobenzene	ND		ug/l	24.3	4.95	50
Isophorone	ND		ug/l	24.3	6.12	50
bis(2-Chloroethoxy)methane	ND		ug/l	24.3	4.14	50
1,2,4-Trichlorobenzene	ND		ug/l	24.3	4.66	50
Naphthalene	970		ug/l	24.3	4.25	50
4-Chloroaniline	ND		ug/l	24.3	6.21	50
Hexachlorobutadiene	ND		ug/l	24.3	4.15	50
2-Methylnaphthalene	31.6		ug/l	24.3	4.42	50
1,2,4,5-Tetrachlorobenzene	ND		ug/l	24.3	3.87	50
Hexachlorocyclopentadiene	ND		ug/l	24.3	7.43	50
Biphenyl	5.87	J	ug/l	24.3	5.39	50
2-Chloronaphthalene	ND		ug/l	24.3	4.36	50
2-Nitroaniline	ND		ug/l	24.3	6.70	50
Acenaphthylene	33.0		ug/l	24.3	5.44	50
Dimethylphthalate	ND		ug/l	24.3	5.68	50
2,6-Dinitrotoluene	ND		ug/l	24.3	8.16	50
Acenaphthene	12.1	J	ug/l	24.3	4.64	50
3-Nitroaniline	ND		ug/l	24.3	5.39	50
Dibenzofuran	23.3	J	ug/l	24.3	4.42	50
2,4-Dinitrotoluene	ND		ug/l	24.3	7.91	50

10/06/21

Report Date:

Project Name: STEEL WINDS ANNUAL/SEMI ANNUAL Lab Number: L2147480

Project Number: 03.0033579.14

L2147480-03

SAMPLE RESULTS

RE/D Date Collected: 09/02/21 10:20

Client ID: MWN-01B-090221 Date Received: 09/02/21 Sample Location: LACKAWANNA, NY Field Prep: Not Specified

Sample Depth:

			Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - Mans	field Lab					
Fluorene	42.6		ug/l	24.3	5.05	50
Diethylphthalate	ND		ug/l	24.3	8.74	50
4-Nitroaniline	ND		ug/l	24.3	5.44	50
n-Nitrosodiphenylamine	ND		ug/l	24.3	3.50	50
Hexachlorobenzene	ND		ug/l	24.3	5.92	50
Phenanthrene	82.8		ug/l	24.3	5.39	50
Anthracene	8.06	J	ug/l	24.3	6.65	50
Carbazole	52.0		ug/l	24.3	6.94	50
Di-n-butylphthalate	ND		ug/l	24.3	4.83	50
Fluoranthene	12.5	J	ug/l	24.3	7.57	50
Pyrene	ND		ug/l	24.3	8.25	50
Butylbenzylphthalate	ND		ug/l	24.3	4.12	50
3,3'-Dichlorobenzidine	ND		ug/l	24.3	9.37	50
Benz(a)anthracene	ND		ug/l	24.3	8.93	50
Chrysene	ND		ug/l	24.3	6.89	50
bis(2-Ethylhexyl)phthalate	ND		ug/l	24.3	3.93	50
Di-n-octylphthalate	ND		ug/l	48.5	3.82	50
Benzo(b)fluoranthene	ND		ug/l	24.3	3.18	50
Benzo(k)fluoranthene	ND		ug/l	24.3	7.82	50
Benzo(a)pyrene	ND		ug/l	24.3	2.92	50
Indeno(1,2,3-cd)pyrene	ND		ug/l	24.3	4.35	50
Dibenz(a,h)anthracene	ND		ug/l	24.3	3.11	50
Benzo(g,h,i)perylene	ND		ug/l	24.3	5.29	50

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	64	15-115
Phenol-d5	43	15-115
Nitrobenzene-d5	115	30-130
2-Fluorobiphenyl	98	30-130
2,4,6-Tribromophenol	108	15-115
Terphenyl-d14	101	30-130

Project Name: STEEL WINDS ANNUAL/SEMI ANNUAL Lab Number: L2147480

Project Number: 03.0033579.14

09/28/21 00:23

SAMPLE RESULTS

Report Date: 10/06/21

SAMIFEE RESULT

 Lab ID:
 L2147480-03
 D
 Date Collected:
 09/02/21 10:20

 Client ID:
 MWN-01B-090221
 Date Received:
 09/02/21

Sample Location: LACKAWANNA, NY Field Prep: Not Specified

Sample Depth:

Analytical Date:

Matrix: Water Extraction Method: EPA 3510C
Analytical Method: 1,8270D Extraction Date: 09/07/21 14:00

Analyst: PS

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS -	Mansfield Lab					
Naphthalene	962		ug/l	12.1	2.13	25
2-Methylnaphthalene	35.8		ug/l	12.1	2.21	25
Phenanthrene	61.9		ug/l	12.1	2.69	25
Carbazole	60.0		ug/l	12.1	3.47	25

% Recovery	Acceptance Qualifier Criteria
47	15-115
32	15-115
81	30-130
76	30-130
75	15-115
88	30-130
	47 32 81 76 75

L2147480

10/06/21

Project Name: STEEL WINDS ANNUAL/SEMI ANNUAL

Project Number: 03.0033579.14

L2147480-04

WT1-04-090221

LACKAWANNA, NY

SAMPLE RESULTS

Date Collected: 09/02/21 11:10

Date Received: 09/02/21

Lab Number:

Report Date:

Field Prep: Not Specified

Sample Depth:

Sample Location:

Lab ID:

Client ID:

Matrix: Water Analytical Method: 1,8270D Analytical Date: 09/26/21 03:03

PS Analyst:

Extraction Method: EPA 3510C **Extraction Date:** 09/07/21 14:00

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - Man	sfield Lab					
bis(2-Chloroethyl)ether	ND		ug/l	0.485	0.090	1
1,3-Dichlorobenzene	ND		ug/l	0.485	0.076	1
1,4-Dichlorobenzene	ND		ug/l	0.485	0.080	1
1,2-Dichlorobenzene	ND		ug/l	0.485	0.066	1
Benzyl alcohol	ND		ug/l	0.485	0.119	1
bis(2-chloroisopropyl)ether	ND		ug/l	0.485	0.105	1
Acetophenone	ND		ug/l	0.971	0.201	1
Hexachloroethane	ND		ug/l	0.485	0.099	1
Nitrobenzene	ND		ug/l	0.485	0.099	1
Isophorone	ND		ug/l	0.485	0.122	1
bis(2-Chloroethoxy)methane	ND		ug/l	0.485	0.083	1
1,2,4-Trichlorobenzene	ND		ug/l	0.485	0.093	1
Naphthalene	31.1		ug/l	0.485	0.085	1
4-Chloroaniline	ND		ug/l	0.485	0.124	1
Hexachlorobutadiene	ND		ug/l	0.485	0.083	1
2-Methylnaphthalene	6.14		ug/l	0.485	0.088	1
1,2,4,5-Tetrachlorobenzene	ND		ug/l	0.485	0.077	1
Hexachlorocyclopentadiene	ND		ug/l	0.485	0.148	1
Biphenyl	1.67		ug/l	0.485	0.108	1
2-Chloronaphthalene	ND		ug/l	0.485	0.087	1
2-Nitroaniline	ND		ug/l	0.485	0.134	1
Acenaphthylene	2.66		ug/l	0.485	0.109	1
Dimethylphthalate	ND		ug/l	0.485	0.114	1
2,6-Dinitrotoluene	ND		ug/l	0.485	0.163	1
Acenaphthene	3.24		ug/l	0.485	0.093	1
3-Nitroaniline	ND		ug/l	0.485	0.108	1
Dibenzofuran	9.20		ug/l	0.485	0.088	1
2,4-Dinitrotoluene	ND		ug/l	0.485	0.158	1

10/06/21

Project Name: Lab Number: STEEL WINDS ANNUAL/SEMI ANNUAL L2147480

Project Number: 03.0033579.14

SAMPLE RESULTS

Date Collected: 09/02/21 11:10

Report Date:

Lab ID: L2147480-04 Date Received: Client ID: 09/02/21 WT1-04-090221

Sample Location: Field Prep: LACKAWANNA, NY Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - Mans	field Lab					
Fluorene	14.3		ug/l	0.485	0.101	1
Diethylphthalate	ND		ug/l	0.485	0.175	1
4-Nitroaniline	ND		ug/l	0.485	0.109	1
n-Nitrosodiphenylamine	ND		ug/l	0.485	0.070	1
Hexachlorobenzene	ND		ug/l	0.485	0.118	1
Phenanthrene	42.8		ug/l	0.485	0.108	1
Anthracene	5.10		ug/l	0.485	0.133	1
Carbazole	6.64		ug/l	0.485	0.139	1
Di-n-butylphthalate	ND		ug/l	0.485	0.097	1
Fluoranthene	9.41		ug/l	0.485	0.151	1
Pyrene	6.28		ug/l	0.485	0.165	1
Butylbenzylphthalate	0.083	J	ug/l	0.485	0.082	1
3,3'-Dichlorobenzidine	ND		ug/l	0.485	0.187	1
Benz(a)anthracene	0.402	J	ug/l	0.485	0.179	1
Chrysene	0.331	J	ug/l	0.485	0.138	1
bis(2-Ethylhexyl)phthalate	ND		ug/l	0.485	0.079	1
Di-n-octylphthalate	ND		ug/l	0.971	0.076	1
Benzo(b)fluoranthene	0.136	J	ug/l	0.485	0.064	1
Benzo(k)fluoranthene	ND		ug/l	0.485	0.156	1
Benzo(a)pyrene	0.091	J	ug/l	0.485	0.058	1
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.485	0.087	1
Dibenz(a,h)anthracene	ND		ug/l	0.485	0.062	1
Benzo(g,h,i)perylene	ND		ug/l	0.485	0.106	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
2-Fluorophenol	51	15-115	
Phenol-d5	34	15-115	
Nitrobenzene-d5	84	30-130	
2-Fluorobiphenyl	77	30-130	
2,4,6-Tribromophenol	85	15-115	
Terphenyl-d14	88	30-130	

L2147480

10/06/21

09/28/21 18:00

Project Name: STEEL WINDS ANNUAL/SEMI ANNUAL

RE

L2147480-04

WT1-04-090221

LACKAWANNA, NY

Project Number: 03.0033579.14

SAMPLE RESULTS

Date Collected: 09/02/21 11:10

Date Received: 09/02/21

Lab Number:

Report Date:

Extraction Date:

Field Prep: Not Specified

Extraction Method: EPA 3510C

Sample Depth:

Sample Location:

Lab ID:

Client ID:

Matrix: Water Analytical Method: 1,8270D

Analytical Date: 10/01/21 13:05

Analyst: GP

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - N	Mansfield Lab					
bis(2-Chloroethyl)ether	ND		ug/l	0.485	0.090	1
1,3-Dichlorobenzene	ND		ug/l	0.485	0.076	1
1,4-Dichlorobenzene	ND		ug/l	0.485	0.080	1
1,2-Dichlorobenzene	ND		ug/l	0.485	0.066	1
Benzyl alcohol	ND		ug/l	0.485	0.119	1
bis(2-chloroisopropyl)ether	ND		ug/l	0.485	0.105	1
Acetophenone	0.401	J	ug/l	0.971	0.201	1
Hexachloroethane	ND		ug/l	0.485	0.099	1
Nitrobenzene	ND		ug/l	0.485	0.099	1
Isophorone	ND		ug/l	0.485	0.122	1
bis(2-Chloroethoxy)methane	ND		ug/l	0.485	0.083	1
1,2,4-Trichlorobenzene	ND		ug/l	0.485	0.093	1
Naphthalene	ND		ug/l	0.485	0.085	1
4-Chloroaniline	ND		ug/l	0.485	0.124	1
Hexachlorobutadiene	ND		ug/l	0.485	0.083	1
2-Methylnaphthalene	ND		ug/l	0.485	0.088	1
1,2,4,5-Tetrachlorobenzene	ND		ug/l	0.485	0.077	1
Hexachlorocyclopentadiene	ND		ug/l	0.485	0.148	1
Biphenyl	ND		ug/l	0.485	0.108	1
2-Chloronaphthalene	ND		ug/l	0.485	0.087	1
2-Nitroaniline	ND		ug/l	0.485	0.134	1
Acenaphthylene	1.42		ug/l	0.485	0.109	1
Dimethylphthalate	ND		ug/l	0.485	0.114	1
2,6-Dinitrotoluene	ND		ug/l	0.485	0.163	1
Acenaphthene	2.59		ug/l	0.485	0.093	1
3-Nitroaniline	ND		ug/l	0.485	0.108	1
Dibenzofuran	0.412	J	ug/l	0.485	0.088	1
2,4-Dinitrotoluene	ND		ug/l	0.485	0.158	1

10/06/21

Project Name: STEEL WINDS ANNUAL/SEMI ANNUAL Lab Number: L2147480

Project Number: 03.0033579.14

L2147480-04

SAMPLE RESULTS

Date Collected: 09/02/21 11:10

Report Date:

Client ID: WT1-04-090221 Date Received: 09/02/21 Sample Location: LACKAWANNA, NY Field Prep: Not Specified

RE

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - N	Mansfield Lab					
Fluorene	11.6		ug/l	0.485	0.101	1
Diethylphthalate	ND		ug/l	0.485	0.175	1
4-Nitroaniline	ND		ug/l	0.485	0.109	1
n-Nitrosodiphenylamine	ND		ug/l	0.485	0.070	1
Hexachlorobenzene	ND		ug/l	0.485	0.118	1
Phenanthrene	22.3		ug/l	0.485	0.108	1
Anthracene	2.80		ug/l	0.485	0.133	1
Carbazole	ND		ug/l	0.485	0.139	1
Di-n-butylphthalate	ND		ug/l	0.485	0.097	1
Fluoranthene	10.0		ug/l	0.485	0.151	1
Pyrene	6.70		ug/l	0.485	0.165	1
Butylbenzylphthalate	0.114	J	ug/l	0.485	0.082	1
3,3'-Dichlorobenzidine	ND		ug/l	0.485	0.187	1
Benz(a)anthracene	0.376	J	ug/l	0.485	0.179	1
Chrysene	0.358	J	ug/l	0.485	0.138	1
bis(2-Ethylhexyl)phthalate	0.135	J	ug/l	0.485	0.079	1
Di-n-octylphthalate	ND		ug/l	0.971	0.076	1
Benzo(b)fluoranthene	0.165	J	ug/l	0.485	0.064	1
Benzo(k)fluoranthene	ND		ug/l	0.485	0.156	1
Benzo(a)pyrene	0.113	J	ug/l	0.485	0.058	1
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.485	0.087	1
Dibenz(a,h)anthracene	ND		ug/l	0.485	0.062	1
Benzo(g,h,i)perylene	ND		ug/l	0.485	0.106	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
2-Fluorophenol	43	15-115	
Phenol-d5	31	15-115	
Nitrobenzene-d5	81	30-130	
2-Fluorobiphenyl	69	30-130	
2,4,6-Tribromophenol	93	15-115	
Terphenyl-d14	93	30-130	

L2147480

10/06/21

09/07/21 14:00

Project Name: STEEL WINDS ANNUAL/SEMI ANNUAL

L2147480-05

BCP-ORC-1-090221

LACKAWANNA, NY

Project Number: 03.0033579.14

SAMPLE RESULTS

Date Collected: 09/02/21 12:10

Date Received: 09/02/21

Extraction Method: EPA 3510C

Lab Number:

Report Date:

Extraction Date:

Field Prep: Not Specified

Sample Depth:

Sample Location:

Lab ID:

Client ID:

Matrix: Water
Analytical Method: 1,8270D

Analytical Date: 09/26/21 03:37

Analyst: PS

Hexachloroethane ND ug/l 0.485 0.099 1 Nitrobenzene ND ug/l 0.485 0.099 1 Isophorone ND ug/l 0.485 0.099 1 bis(2-Chloroethoxy)methane ND ug/l 0.485 0.083 1 1,2,4-Trichlorobenzene ND ug/l 0.485 0.093 1 Naphthalene 122 E ug/l 0.485 0.093 1 4-Chloroaniline ND ug/l 0.485 0.085 1 4-Chloroaniline ND ug/l 0.485 0.083 1 4-Wethylnaphthalene 22.7 ug/l 0.485 0.083 1 1,2,4,5-Tetrachlorobenzene ND ug/l 0.485 0.088 1 Hexachlorocyclopentadiene ND ug/l 0.485 0.148 1 Biphenyl 4.03 ug/l 0.485 0.108 1 2-Chloronaphthalene ND ug/l	Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
1.3-Dichlorobenzene ND ug/l 0.485 0.076 1 1.4-Dichlorobenzene ND ug/l 0.485 0.080 1 1.2-Dichlorobenzene ND ug/l 0.485 0.080 1 1.2-Dichlorobenzene ND ug/l 0.485 0.066 1 Benzyl alcohol ND ug/l 0.485 0.119 1 bis(2-chlorosporpyl)ether ND ug/l 0.485 0.119 1 bis(2-chlorosporpyl)ether ND ug/l 0.485 0.095 1 Hexachloroethane ND ug/l 0.485 0.099 1 Hexachloroethane ND ug/l 0.485 0.099 1 Bisphrone ND ug/l 0.485 0.099 1 bis(2-Chloroethoxy)methane ND ug/l 0.485 0.099 1 bis(2-Chloroethoxy)methane ND ug/l 0.485 0.083 1 1.2-4-Trichlorobenzene ND ug/l 0.485 0.083 1 1.2-4-Trichlorobenzene ND ug/l 0.485 0.083 1 1.2-4-Trichlorobenzene ND ug/l 0.485 0.083 1 4-Chloroahiline ND ug/l 0.485 0.083 1 4-Chloroethoxylmathalene 22.7 ug/l 0.485 0.083 1 2-Methyinaphthalene 22.7 ug/l 0.485 0.083 1 2-Methyinaphthalene ND ug/l 0.485 0.087 1 2-Methyinaphthalene ND ug/l 0.485 0.083 1 3-Methyinaphthalene ND ug/l 0.485 0.083 1 3-Methyinaphthalene ND ug/l 0.485 0.083 1 3-Methyin	Semivolatile Organics by GC/MS - Mai	nsfield Lab					
1,4-Dichlorobenzene ND ug/l 0,485 0,080 1 1,2-Dichlorobenzene ND ug/l 0,485 0,066 1 1,2-Dichlorobenzene ND ug/l 0,485 0,119 1 1 1 1 1 1 1 1 1	bis(2-Chloroethyl)ether	ND		ug/l	0.485	0.090	1
1,2-Dichlorobenzene ND ug/l 0,485 0,666 1	1,3-Dichlorobenzene	ND		ug/l	0.485	0.076	1
Benzyl alcohol ND ug/l 0.485 0.119 1 bis(2-chloroisopropyl)ether ND ug/l 0.485 0.105 1 Acetophenone ND ug/l 0.971 0.201 1 Hexachloroethane ND ug/l 0.485 0.099 1 Nitrobenzene ND ug/l 0.485 0.099 1 Isophorone ND ug/l 0.485 0.099 1 Isophorone ND ug/l 0.485 0.099 1 Isophorone ND ug/l 0.485 0.093 1 Isophorone ND ug/l 0.485 0.083 1 1sophorone ND ug/l 0.485 0.093 1 1sophorone ND ug/l 0.485 0.093 1 1sophorone ND ug/l 0.485 0.085 1 1sophorone ND ug/l 0.485 0.085 1	1,4-Dichlorobenzene	ND		ug/l	0.485	0.080	1
Dis(2-chloroispropyl)ether ND	1,2-Dichlorobenzene	ND		ug/l	0.485	0.066	1
Acetophenone ND ug/l 0.971 0.201 1 Hexachloroethane ND ug/l 0.485 0.099 1 Nitrobenzene ND ug/l 0.485 0.099 1 Isophorone ND ug/l 0.485 0.099 1 Isophorone ND ug/l 0.485 0.093 1 bis(2-Chloroethoxy)methane ND ug/l 0.485 0.083 1 1,2.4-Trichlorobenzene ND ug/l 0.485 0.093 1 Naphthalene 122 E ug/l 0.485 0.085 1 4-Chloroanliine ND ug/l 0.485 0.085 1 Hexachlorobutadiene ND ug/l 0.485 0.083 1 1,2.4,5-Tetrachlorobenzene ND ug/l 0.485 0.083 1 1,2.4,5-Tetrachlorobenzene ND ug/l 0.485 0.088 1 1,2.4,5-Tetrachlorobenzene ND ug/l </td <td>Benzyl alcohol</td> <td>ND</td> <td></td> <td>ug/l</td> <td>0.485</td> <td>0.119</td> <td>1</td>	Benzyl alcohol	ND		ug/l	0.485	0.119	1
Hexachloroethane ND	bis(2-chloroisopropyl)ether	ND		ug/l	0.485	0.105	1
Ntrobenzene ND ug/l 0.485 0.099 1 Isophorone ND ug/l 0.485 0.122 1 Isophorone ND ug/l 0.485 0.083 1 1.2,4-Trichlorobenzene ND ug/l 0.485 0.093 1 Naphthalene 122 E ug/l 0.485 0.085 1 4-Chloroaniline ND ug/l 0.485 0.085 1 4-Chloroaniline ND ug/l 0.485 0.085 1 1.2,4,5-Tetrachlorobutadiene ND ug/l 0.485 0.083 1 1.2,4,5-Tetrachlorobenzene ND ug/l 0.485 0.077 1 Hexachlorocyclopentadiene ND ug/l 0.485 0.148 1 Isiphenyl 4.03 ug/l 0.485 0.108 1 2-Chloronaphthalene ND ug/l 0.485 0.108 1 2-Chloronaphthalene ND ug/l 0.485 0.109 1 2-Nitroaniline ND ug/l 0.485 0.109 1 Dimethylphthalate ND ug/l 0.485 0.114 1 2,6-Dinitrotoluene ND ug/l 0.485 0.103 1 2,6-Dinitrotoluene ND ug/l 0.485 0.093 1 3-Nitroaniline ND ug/l 0.485 0.093 1	Acetophenone	ND		ug/l	0.971	0.201	1
Sophorone ND Ug/l 0.485 0.122 1	Hexachloroethane	ND		ug/l	0.485	0.099	1
bis(2-Chloroethoxy)methane	Nitrobenzene	ND		ug/l	0.485	0.099	1
1,2,4-Trichlorobenzene ND ug/l 0.485 0.093 1 Naphthalene 122 E ug/l 0.485 0.085 1 4-Chloroaniline ND ug/l 0.485 0.124 1 Hexachlorobutadiene ND ug/l 0.485 0.083 1 2-Methylnaphthalene 22.7 ug/l 0.485 0.088 1 1,2,4,5-Tetrachlorobenzene ND ug/l 0.485 0.077 1 Hexachlorocyclopentadiene ND ug/l 0.485 0.148 1 Biphenyl 4.03 ug/l 0.485 0.108 1 2-Chloronaphthalene ND ug/l 0.485 0.108 1 2-Nitroaniline ND ug/l 0.485 0.134 1 Acenaphthylpene 19.3 ug/l 0.485 0.114 1 2,6-Dinitrotoluene ND ug/l 0.485 0.163 1 Acenaphthene 7.06 ug/l </td <td>Isophorone</td> <td>ND</td> <td></td> <td>ug/l</td> <td>0.485</td> <td>0.122</td> <td>1</td>	Isophorone	ND		ug/l	0.485	0.122	1
Naphthalene 122 E ug/l 0.485 0.085 1	bis(2-Chloroethoxy)methane	ND		ug/l	0.485	0.083	1
A-Chloroaniline ND ug/l 0.485 0.124 1	1,2,4-Trichlorobenzene	ND		ug/l	0.485	0.093	1
Hexachlorobutadiene ND	Naphthalene	122	E	ug/l	0.485	0.085	1
2-Methylnaphthalene 22.7 ug/l 0.485 0.088 1 1,2,4,5-Tetrachlorobenzene ND ug/l 0.485 0.077 1 Hexachlorocyclopentadiene ND ug/l 0.485 0.148 1 Biphenyl 4.03 ug/l 0.485 0.108 1 2-Chloronaphthalene ND ug/l 0.485 0.087 1 2-Nitroaniline ND ug/l 0.485 0.134 1 Acenaphthylene 19.3 ug/l 0.485 0.109 1 Dimethylphthalate ND ug/l 0.485 0.114 1 2,6-Dinitrotoluene ND ug/l 0.485 0.163 1 Acenaphthene 7.06 ug/l 0.485 0.093 1 3-Nitroaniline ND ug/l 0.485 0.108 1 Dibenzofuran 18.2 ug/l 0.485 0.088 1	4-Chloroaniline	ND		ug/l	0.485	0.124	1
1,2,4,5-Tetrachlorobenzene ND ug/l 0.485 0.077 1 Hexachlorocyclopentadiene ND ug/l 0.485 0.148 1 Biphenyl 4.03 ug/l 0.485 0.108 1 2-Chloronaphthalene ND ug/l 0.485 0.087 1 2-Nitroaniline ND ug/l 0.485 0.134 1 Acenaphthylene 19.3 ug/l 0.485 0.109 1 Dimethylphthalate ND ug/l 0.485 0.114 1 2,6-Dinitrotoluene ND ug/l 0.485 0.163 1 Acenaphthene 7.06 ug/l 0.485 0.093 1 3-Nitroaniline ND ug/l 0.485 0.108 1 Dibenzofuran 18.2 ug/l 0.485 0.008 1	Hexachlorobutadiene	ND		ug/l	0.485	0.083	1
Hexachlorocyclopentadiene ND ug/l 0.485 0.148 1	2-Methylnaphthalene	22.7		ug/l	0.485	0.088	1
Biphenyl 4.03 ug/l 0.485 0.108 1 2-Chloronaphthalene ND ug/l 0.485 0.087 1 2-Nitroaniline ND ug/l 0.485 0.134 1 Acenaphthylene 19.3 ug/l 0.485 0.109 1 Dimethylphthalate ND ug/l 0.485 0.114 1 2,6-Dinitrotoluene ND ug/l 0.485 0.163 1 Acenaphthene 7.06 ug/l 0.485 0.093 1 3-Nitroaniline ND ug/l 0.485 0.108 1 Dibenzofuran 18.2 ug/l 0.485 0.088 1	1,2,4,5-Tetrachlorobenzene	ND		ug/l	0.485	0.077	1
2-Chloronaphthalene ND ug/l 0.485 0.087 1 2-Nitroaniline ND ug/l 0.485 0.134 1 Acenaphthylene 19.3 ug/l 0.485 0.109 1 Dimethylphthalate ND ug/l 0.485 0.114 1 2,6-Dinitrotoluene ND ug/l 0.485 0.163 1 Acenaphthene 7.06 ug/l 0.485 0.093 1 3-Nitroaniline ND ug/l 0.485 0.108 1 Dibenzofuran 18.2 ug/l 0.485 0.088 1	Hexachlorocyclopentadiene	ND		ug/l	0.485	0.148	1
2-Nitroaniline ND ug/l 0.485 0.134 1 Acenaphthylene 19.3 ug/l 0.485 0.109 1 Dimethylphthalate ND ug/l 0.485 0.114 1 2,6-Dinitrotoluene ND ug/l 0.485 0.163 1 Acenaphthene 7.06 ug/l 0.485 0.093 1 3-Nitroaniline ND ug/l 0.485 0.108 1 Dibenzofuran 18.2 ug/l 0.485 0.088 1	Biphenyl	4.03		ug/l	0.485	0.108	1
Acenaphthylene 19.3 ug/l 0.485 0.109 1 Dimethylphthalate ND ug/l 0.485 0.114 1 2,6-Dinitrotoluene ND ug/l 0.485 0.163 1 Acenaphthene 7.06 ug/l 0.485 0.093 1 3-Nitroaniline ND ug/l 0.485 0.108 1 Dibenzofuran 18.2 ug/l 0.485 0.088 1	2-Chloronaphthalene	ND		ug/l	0.485	0.087	1
Dimethylphthalate ND ug/l 0.485 0.114 1 2,6-Dinitrotoluene ND ug/l 0.485 0.163 1 Acenaphthene 7.06 ug/l 0.485 0.093 1 3-Nitroaniline ND ug/l 0.485 0.108 1 Dibenzofuran 18.2 ug/l 0.485 0.088 1	2-Nitroaniline	ND		ug/l	0.485	0.134	1
2,6-Dinitrotoluene ND ug/l 0.485 0.163 1 Acenaphthene 7.06 ug/l 0.485 0.093 1 3-Nitroaniline ND ug/l 0.485 0.108 1 Dibenzofuran 18.2 ug/l 0.485 0.088 1	Acenaphthylene	19.3		ug/l	0.485	0.109	1
Acenaphthene 7.06 ug/l 0.485 0.093 1 3-Nitroaniline ND ug/l 0.485 0.108 1 Dibenzofuran 18.2 ug/l 0.485 0.088 1	Dimethylphthalate	ND		ug/l	0.485	0.114	1
3-Nitroaniline ND ug/l 0.485 0.108 1 Dibenzofuran 18.2 ug/l 0.485 0.088 1	2,6-Dinitrotoluene	ND		ug/l	0.485	0.163	1
Dibenzofuran 18.2 ug/l 0.485 0.088 1	Acenaphthene	7.06		ug/l	0.485	0.093	1
	3-Nitroaniline	ND		ug/l	0.485	0.108	1
2,4-Dinitrotoluene ND ug/l 0.485 0.158 1	Dibenzofuran	18.2		ug/l	0.485	0.088	1
	2,4-Dinitrotoluene	ND		ug/l	0.485	0.158	1

10/06/21

Project Name: Lab Number: STEEL WINDS ANNUAL/SEMI ANNUAL L2147480

Project Number: 03.0033579.14

L2147480-05

SAMPLE RESULTS

Date Collected: 09/02/21 12:10

Report Date:

BCP-ORC-1-090221 Date Received: Client ID: 09/02/21

Sample Location: Field Prep: LACKAWANNA, NY Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS	- Mansfield Lab					
Fluorene	29.0		ug/l	0.485	0.101	1
Diethylphthalate	ND		ug/l	0.485	0.175	1
4-Nitroaniline	ND		ug/l	0.485	0.109	1
n-Nitrosodiphenylamine	ND		ug/l	0.485	0.070	1
Hexachlorobenzene	ND		ug/l	0.485	0.118	1
Phenanthrene	44.5		ug/l	0.485	0.108	1
Anthracene	3.59		ug/l	0.485	0.133	1
Carbazole	37.6		ug/l	0.485	0.139	1
Di-n-butylphthalate	ND		ug/l	0.485	0.097	1
Fluoranthene	5.95		ug/l	0.485	0.151	1
Pyrene	4.90		ug/l	0.485	0.165	1
Butylbenzylphthalate	ND		ug/l	0.485	0.082	1
3,3'-Dichlorobenzidine	ND		ug/l	0.485	0.187	1
Benz(a)anthracene	0.295	J	ug/l	0.485	0.179	1
Chrysene	0.225	J	ug/l	0.485	0.138	1
bis(2-Ethylhexyl)phthalate	ND		ug/l	0.485	0.079	1
Di-n-octylphthalate	ND		ug/l	0.971	0.076	1
Benzo(b)fluoranthene	ND		ug/l	0.485	0.064	1
Benzo(k)fluoranthene	ND		ug/l	0.485	0.156	1
Benzo(a)pyrene	ND		ug/l	0.485	0.058	1
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.485	0.087	1
Dibenz(a,h)anthracene	ND		ug/l	0.485	0.062	1
Benzo(g,h,i)perylene	ND		ug/l	0.485	0.106	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
2-Fluorophenol	52	15-115	
Phenol-d5	35	15-115	
Nitrobenzene-d5	75	30-130	
2-Fluorobiphenyl	78	30-130	
2,4,6-Tribromophenol	90	15-115	
Terphenyl-d14	90	30-130	

Project Name: STEEL WINDS ANNUAL/SEMI ANNUAL Lab Number: L2147480

Project Number: 03.0033579.14 **Report Date:** 10/06/21

SAMPLE RESULTS

Lab ID: L2147480-05 RE/D Date Collected: 09/02/21 12:10

Client ID: BCP-ORC-1-090221 Date Received: 09/02/21 Sample Location: LACKAWANNA, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 3510C
Analytical Method: 1,8270D Extraction Date: 09/28/21 18:00

Analytical Date: 10/04/21 17:19

Analyst: GP

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS -	Mansfield Lab						
bis(2-Chloroethyl)ether	ND		ug/l	4.90	0.911	10	
1,3-Dichlorobenzene	ND		ug/l	4.90	0.768	10	
1,4-Dichlorobenzene	ND		ug/l	4.90	0.812	10	
1,2-Dichlorobenzene	ND		ug/l	4.90	0.667	10	
Benzyl alcohol	ND		ug/l	4.90	1.20	10	
bis(2-chloroisopropyl)ether	ND		ug/l	4.90	1.06	10	
Acetophenone	ND		ug/l	9.80	2.03	10	
Hexachloroethane	ND		ug/l	4.90	1.00	10	
Nitrobenzene	ND		ug/l	4.90	1.00	10	
Isophorone	ND		ug/l	4.90	1.24	10	
bis(2-Chloroethoxy)methane	ND		ug/l	4.90	0.837	10	
1,2,4-Trichlorobenzene	ND		ug/l	4.90	0.942	10	
Naphthalene	265		ug/l	4.90	0.859	10	
4-Chloroaniline	ND		ug/l	4.90	1.25	10	
Hexachlorobutadiene	ND		ug/l	4.90	0.838	10	
2-Methylnaphthalene	23.0		ug/l	4.90	0.893	10	
1,2,4,5-Tetrachlorobenzene	ND		ug/l	4.90	0.781	10	
Hexachlorocyclopentadiene	ND		ug/l	4.90	1.50	10	
Biphenyl	4.00	J	ug/l	4.90	1.09	10	
2-Chloronaphthalene	ND		ug/l	4.90	0.881	10	
2-Nitroaniline	ND		ug/l	4.90	1.35	10	
Acenaphthylene	14.6		ug/l	4.90	1.10	10	
Dimethylphthalate	ND		ug/l	4.90	1.15	10	
2,6-Dinitrotoluene	ND		ug/l	4.90	1.65	10	
Acenaphthene	6.99		ug/l	4.90	0.936	10	
3-Nitroaniline	ND		ug/l	4.90	1.09	10	
Dibenzofuran	18.1		ug/l	4.90	0.892	10	
2,4-Dinitrotoluene	ND		ug/l	4.90	1.60	10	

10/06/21

Project Name: Lab Number: STEEL WINDS ANNUAL/SEMI ANNUAL L2147480

Project Number: 03.0033579.14

L2147480-05

SAMPLE RESULTS

Date Collected: 09/02/21 12:10

Report Date:

Date Received: Client ID: 09/02/21 BCP-ORC-1-090221

RE/D

Sample Location: Field Prep: LACKAWANNA, NY Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS	- Mansfield Lab						
Fluorene	28.1		ug/l	4.90	1.02	10	
Diethylphthalate	ND		ug/l	4.90	1.76	10	
4-Nitroaniline	ND		ug/l	4.90	1.10	10	
n-Nitrosodiphenylamine	ND		ug/l	4.90	0.706	10	
Hexachlorobenzene	ND		ug/l	4.90	1.20	10	
Phenanthrene	43.4		ug/l	4.90	1.09	10	
Anthracene	3.44	J	ug/l	4.90	1.34	10	
Carbazole	40.0		ug/l	4.90	1.40	10	
Di-n-butylphthalate	ND		ug/l	4.90	0.976	10	
Fluoranthene	7.34		ug/l	4.90	1.53	10	
Pyrene	5.07		ug/l	4.90	1.67	10	
Butylbenzylphthalate	ND		ug/l	4.90	0.831	10	
3,3'-Dichlorobenzidine	ND		ug/l	4.90	1.89	10	
Benz(a)anthracene	ND		ug/l	4.90	1.80	10	
Chrysene	ND		ug/l	4.90	1.39	10	
bis(2-Ethylhexyl)phthalate	ND		ug/l	4.90	0.793	10	
Di-n-octylphthalate	ND		ug/l	9.80	0.770	10	
Benzo(b)fluoranthene	ND		ug/l	4.90	0.642	10	
Benzo(k)fluoranthene	ND		ug/l	4.90	1.58	10	
Benzo(a)pyrene	ND		ug/l	4.90	0.590	10	
Indeno(1,2,3-cd)pyrene	ND		ug/l	4.90	0.878	10	
Dibenz(a,h)anthracene	ND		ug/l	4.90	0.628	10	
Benzo(g,h,i)perylene	ND		ug/l	4.90	1.07	10	

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	45	15-115
Phenol-d5	31	15-115
Nitrobenzene-d5	93	30-130
2-Fluorobiphenyl	77	30-130
2,4,6-Tribromophenol	102	15-115
Terphenyl-d14	94	30-130

10/06/21

Report Date:

Project Name: Lab Number: STEEL WINDS ANNUAL/SEMI ANNUAL L2147480

Project Number: 03.0033579.14

SAMPLE RESULTS

Lab ID: D Date Collected: 09/02/21 12:10 L2147480-05

Date Received: Client ID: BCP-ORC-1-090221 09/02/21 Sample Location: Field Prep: LACKAWANNA, NY Not Specified

Sample Depth:

Extraction Method: EPA 3510C Matrix: Water **Extraction Date:** 09/07/21 14:00 Analytical Method: 1,8270D Analytical Date: 09/27/21 23:50

Analyst: PS

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - Mansfield Lab						
Naphthalene	246		ug/l	4.85	0.850	10

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	46	15-115
Phenol-d5	30	15-115
Nitrobenzene-d5	73	30-130
2-Fluorobiphenyl	68	30-130
2,4,6-Tribromophenol	72	15-115
Terphenyl-d14	82	30-130

L2147480

10/06/21

Project Name: Lab Number: STEEL WINDS ANNUAL/SEMI ANNUAL

Project Number: 03.0033579.14

SAMPLE RESULTS

Date Collected: 09/02/21 12:55

Lab ID: L2147480-06 Date Received: Client ID: WT1-02-090221 09/02/21 Sample Location: LACKAWANNA, NY Not Specified

Field Prep:

Report Date:

Sample Depth:

Matrix: Water Analytical Method: 1,8270D Analytical Date: 09/26/21 00:19

Extraction Date: 09/07/21 14:00

Extraction Method: EPA 3510C

Analyst: PS

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS	- Mansfield Lab						
bis(2-Chloroethyl)ether	ND		ug/l	0.485	0.090	1	
1,3-Dichlorobenzene	ND		ug/l	0.485	0.076	1	
1,4-Dichlorobenzene	ND		ug/l	0.485	0.080	1	
1,2-Dichlorobenzene	ND		ug/l	0.485	0.066	1	
Benzyl alcohol	ND		ug/l	0.485	0.119	1	
bis(2-chloroisopropyl)ether	ND		ug/l	0.485	0.105	1	
Acetophenone	ND		ug/l	0.971	0.201	1	
Hexachloroethane	ND		ug/l	0.485	0.099	1	
Nitrobenzene	ND		ug/l	0.485	0.099	1	
Isophorone	ND		ug/l	0.485	0.122	1	
bis(2-Chloroethoxy)methane	ND		ug/l	0.485	0.083	1	
1,2,4-Trichlorobenzene	ND		ug/l	0.485	0.093	1	
Naphthalene	9.38		ug/l	0.485	0.085	1	
4-Chloroaniline	ND		ug/l	0.485	0.124	1	
Hexachlorobutadiene	ND		ug/l	0.485	0.083	1	
2-Methylnaphthalene	2.11		ug/l	0.485	0.088	1	
1,2,4,5-Tetrachlorobenzene	ND		ug/l	0.485	0.077	1	
Hexachlorocyclopentadiene	ND		ug/l	0.485	0.148	1	
Biphenyl	0.548		ug/l	0.485	0.108	1	
2-Chloronaphthalene	ND		ug/l	0.485	0.087	1	
2-Nitroaniline	ND		ug/l	0.485	0.134	1	
Acenaphthylene	0.651		ug/l	0.485	0.109	1	
Dimethylphthalate	ND		ug/l	0.485	0.114	1	
2,6-Dinitrotoluene	ND		ug/l	0.485	0.163	1	
Acenaphthene	0.710		ug/l	0.485	0.093	1	
3-Nitroaniline	ND		ug/l	0.485	0.108	1	
Dibenzofuran	2.47		ug/l	0.485	0.088	1	
2,4-Dinitrotoluene	ND		ug/l	0.485	0.158	1	

10/06/21

Project Name: STEEL WINDS ANNUAL/SEMI ANNUAL Lab Number: L2147480

Project Number: 03.0033579.14

SAMPLE RESULTS

Date Collected: 09/02/21 12:55

Date Received: 09/02/21
Field Prep: Not Specified

Report Date:

Client ID: WT1-02-090221 Sample Location: LACKAWANNA, NY

L2147480-06

Sample Depth:

Lab ID:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/N	MS - Mansfield Lab					
Fluorene	3.50		ug/l	0.485	0.101	1
Diethylphthalate	ND		ug/l	0.485	0.175	1
4-Nitroaniline	ND		ug/l	0.485	0.109	1
n-Nitrosodiphenylamine	ND		ug/l	0.485	0.070	1
Hexachlorobenzene	ND		ug/l	0.485	0.118	1
Phenanthrene	8.10		ug/l	0.485	0.108	1
Anthracene	1.44		ug/l	0.485	0.133	1
Carbazole	2.88		ug/l	0.485	0.139	1
Di-n-butylphthalate	ND		ug/l	0.485	0.097	1
Fluoranthene	3.18		ug/l	0.485	0.151	1
Pyrene	2.39		ug/l	0.485	0.165	1
Butylbenzylphthalate	ND		ug/l	0.485	0.082	1
3,3'-Dichlorobenzidine	ND		ug/l	0.485	0.187	1
Benz(a)anthracene	ND		ug/l	0.485	0.179	1
Chrysene	ND		ug/l	0.485	0.138	1
bis(2-Ethylhexyl)phthalate	ND		ug/l	0.485	0.079	1
Di-n-octylphthalate	ND		ug/l	0.971	0.076	1
Benzo(b)fluoranthene	ND		ug/l	0.485	0.064	1
Benzo(k)fluoranthene	ND		ug/l	0.485	0.156	1
Benzo(a)pyrene	ND		ug/l	0.485	0.058	1
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.485	0.087	1
Dibenz(a,h)anthracene	ND		ug/l	0.485	0.062	1
Benzo(g,h,i)perylene	ND		ug/l	0.485	0.106	1

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	23	15-115
Phenol-d5	15	15-115
Nitrobenzene-d5	41	30-130
2-Fluorobiphenyl	38	30-130
2,4,6-Tribromophenol	40	15-115
Terphenyl-d14	42	30-130

10/06/21

Report Date:

Project Name: STEEL WINDS ANNUAL/SEMI ANNUAL Lab Number: L2147480

Project Number: 03.0033579.14

10/01/21 14:09

SAMPLE RESULTS

Lab ID: L2147480-06 RE Date Collected: 09/02/21 12:55

Client ID: WT1-02-090221 Date Received: 09/02/21 Sample Location: LACKAWANNA, NY Field Prep: Not Specified

Sample Depth:

Analytical Date:

Matrix: Water Extraction Method: EPA 3510C
Analytical Method: 1,8270D Extraction Date: 09/28/21 18:00

Analyst: GP

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS - I	Mansfield Lab						
bis(2-Chloroethyl)ether	ND		ug/l	0.490	0.091	1	
1,3-Dichlorobenzene	ND		ug/l	0.490	0.077	1	
1,4-Dichlorobenzene	ND		ug/l	0.490	0.081	1	
1,2-Dichlorobenzene	ND		ug/l	0.490	0.067	1	
Benzyl alcohol	ND		ug/l	0.490	0.120	1	
bis(2-chloroisopropyl)ether	ND		ug/l	0.490	0.106	1	
Acetophenone	0.247	J	ug/l	0.980	0.203	1	
Hexachloroethane	ND		ug/l	0.490	0.100	1	
Nitrobenzene	ND		ug/l	0.490	0.100	1	
Isophorone	ND		ug/l	0.490	0.124	1	
bis(2-Chloroethoxy)methane	ND		ug/l	0.490	0.084	1	
1,2,4-Trichlorobenzene	ND		ug/l	0.490	0.094	1	
Naphthalene	ND		ug/l	0.490	0.086	1	
4-Chloroaniline	ND		ug/l	0.490	0.125	1	
Hexachlorobutadiene	ND		ug/l	0.490	0.084	1	
2-Methylnaphthalene	ND		ug/l	0.490	0.089	1	
1,2,4,5-Tetrachlorobenzene	ND		ug/l	0.490	0.078	1	
Hexachlorocyclopentadiene	ND		ug/l	0.490	0.150	1	
Biphenyl	0.555		ug/l	0.490	0.109	1	
2-Chloronaphthalene	ND		ug/l	0.490	0.088	1	
2-Nitroaniline	ND		ug/l	0.490	0.135	1	
Acenaphthylene	0.372	J	ug/l	0.490	0.110	1	
Dimethylphthalate	ND		ug/l	0.490	0.115	1	
2,6-Dinitrotoluene	ND		ug/l	0.490	0.165	1	
Acenaphthene	1.17		ug/l	0.490	0.094	1	
3-Nitroaniline	ND		ug/l	0.490	0.109	1	
Dibenzofuran	1.76		ug/l	0.490	0.089	1	
2,4-Dinitrotoluene	ND		ug/l	0.490	0.160	1	

10/06/21

Project Name: Lab Number: STEEL WINDS ANNUAL/SEMI ANNUAL L2147480

Project Number: 03.0033579.14

L2147480-06

SAMPLE RESULTS

Date Collected: 09/02/21 12:55

Date Received: Client ID: 09/02/21 WT1-02-090221 Sample Location: LACKAWANNA, NY Not Specified

RE

Field Prep:

Report Date:

Sample Depth:

Lab ID:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - Mans	sfield Lab					
Fluorene	6.39		ug/l	0.490	0.102	1
Diethylphthalate	ND		ug/l	0.490	0.176	1
4-Nitroaniline	ND		ug/l	0.490	0.110	1
n-Nitrosodiphenylamine	ND		ug/l	0.490	0.071	1
Hexachlorobenzene	ND		ug/l	0.490	0.120	1
Phenanthrene	13.1		ug/l	0.490	0.109	1
Anthracene	2.01		ug/l	0.490	0.134	1
Carbazole	1.49		ug/l	0.490	0.140	1
Di-n-butylphthalate	ND		ug/l	0.490	0.098	1
Fluoranthene	6.54		ug/l	0.490	0.153	1
Pyrene	4.93		ug/l	0.490	0.167	1
Butylbenzylphthalate	0.130	J	ug/l	0.490	0.083	1
3,3'-Dichlorobenzidine	ND		ug/l	0.490	0.189	1
Benz(a)anthracene	0.295	J	ug/l	0.490	0.180	1
Chrysene	0.215	J	ug/l	0.490	0.139	1
bis(2-Ethylhexyl)phthalate	ND		ug/l	0.490	0.079	1
Di-n-octylphthalate	ND		ug/l	0.980	0.077	1
Benzo(b)fluoranthene	ND		ug/l	0.490	0.064	1
Benzo(k)fluoranthene	ND		ug/l	0.490	0.158	1
Benzo(a)pyrene	ND		ug/l	0.490	0.059	1
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.490	0.088	1
Dibenz(a,h)anthracene	ND		ug/l	0.490	0.063	1
Benzo(g,h,i)perylene	ND		ug/l	0.490	0.107	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
2-Fluorophenol	41	15-115	
Phenol-d5	28	15-115	
Nitrobenzene-d5	81	30-130	
2-Fluorobiphenyl	71	30-130	
2,4,6-Tribromophenol	89	15-115	
Terphenyl-d14	88	30-130	

L2147480

10/06/21

Project Name: Lab Number: STEEL WINDS ANNUAL/SEMI ANNUAL

Project Number: 03.0033579.14

L2147480-07

MWN-03-090221

LACKAWANNA, NY

SAMPLE RESULTS

Date Collected: 09/02/21 15:05

Date Received: 09/02/21

Field Prep: Not Specified

Sample Depth:

Sample Location:

Lab ID:

Client ID:

Matrix: Water Analytical Method: 1,8270D Analytical Date: 09/26/21 00:52

PS Analyst:

Extraction Method: EPA 3510C **Extraction Date:** 09/07/21 14:00

Report Date:

Semivolatile Organics by GC/MS - Mansfield Lab bis(2-Chloroethyl)ether ND 1,3-Dichlorobenzene ND 1,4-Dichlorobenzene 0.102 Benzyl alcohol ND bis(2-chloroisopropyl)ether ND Acetophenone ND Hexachloroethane ND Nitrobenzene ND Isophorone ND bis(2-Chloroethoxy)methane ND 1,2,4-Trichlorobenzene ND Naphthalene 11.2		ug/l	0.495		
1,3-Dichlorobenzene ND 1,4-Dichlorobenzene ND 1,2-Dichlorobenzene 0.102 Benzyl alcohol ND bis(2-chloroisopropyl)ether ND Acetophenone ND Hexachloroethane ND Nitrobenzene ND Isophorone ND bis(2-Chloroethoxy)methane ND 1,2,4-Trichlorobenzene ND Naphthalene 11.2		ug/l	0.405		
1,4-Dichlorobenzene ND 1,2-Dichlorobenzene 0.102 Benzyl alcohol ND bis(2-chloroisopropyl)ether ND Acetophenone ND Hexachloroethane ND Nitrobenzene ND Isophorone ND bis(2-Chloroethoxy)methane ND 1,2,4-Trichlorobenzene ND Naphthalene 11.2			0.485	0.090	1
1,2-Dichlorobenzene 0.102 Benzyl alcohol ND bis(2-chloroisopropyl)ether ND Acetophenone ND Hexachloroethane ND Nitrobenzene ND Isophorone ND bis(2-Chloroethoxy)methane ND 1,2,4-Trichlorobenzene ND Naphthalene 11.2		ug/l	0.485	0.076	1
Benzyl alcohol ND bis(2-chloroisopropyl)ether ND Acetophenone ND Hexachloroethane ND Nitrobenzene ND Isophorone ND bis(2-Chloroethoxy)methane ND 1,2,4-Trichlorobenzene ND Naphthalene 11.2		ug/l	0.485	0.080	1
bis(2-chloroisopropyl)ether ND Acetophenone ND Hexachloroethane ND Nitrobenzene ND Isophorone ND bis(2-Chloroethoxy)methane ND 1,2,4-Trichlorobenzene ND Naphthalene 11.2	J	ug/l	0.485	0.066	1
Acetophenone ND Hexachloroethane ND Nitrobenzene ND Isophorone ND bis(2-Chloroethoxy)methane ND 1,2,4-Trichlorobenzene ND Naphthalene 11.2		ug/l	0.485	0.119	1
Hexachloroethane ND Nitrobenzene ND Isophorone ND bis(2-Chloroethoxy)methane ND 1,2,4-Trichlorobenzene ND Naphthalene 11.2		ug/l	0.485	0.105	1
Nitrobenzene ND Isophorone ND bis(2-Chloroethoxy)methane ND 1,2,4-Trichlorobenzene ND Naphthalene 11.2		ug/l	0.971	0.201	1
Isophorone ND bis(2-Chloroethoxy)methane ND 1,2,4-Trichlorobenzene ND Naphthalene 11.2		ug/l	0.485	0.099	1
bis(2-Chloroethoxy)methane ND 1,2,4-Trichlorobenzene ND Naphthalene 11.2		ug/l	0.485	0.099	1
1,2,4-Trichlorobenzene ND Naphthalene 11.2		ug/l	0.485	0.122	1
Naphthalene 11.2		ug/l	0.485	0.083	1
'		ug/l	0.485	0.093	1
		ug/l	0.485	0.085	1
4-Chloroaniline ND		ug/l	0.485	0.124	1
Hexachlorobutadiene ND		ug/l	0.485	0.083	1
2-Methylnaphthalene 1.93		ug/l	0.485	0.088	1
1,2,4,5-Tetrachlorobenzene ND		ug/l	0.485	0.077	1
Hexachlorocyclopentadiene ND		ug/l	0.485	0.148	1
Biphenyl 0.512		ug/l	0.485	0.108	1
2-Chloronaphthalene ND		ug/l	0.485	0.087	1
2-Nitroaniline ND		ug/l	0.485	0.134	1
Acenaphthylene 1.23		ug/l	0.485	0.109	1
Dimethylphthalate ND		ug/l	0.485	0.114	1
2,6-Dinitrotoluene ND		ug/l	0.485	0.163	1
Acenaphthene 1.11		ug/l	0.485	0.093	1
3-Nitroaniline ND		ug/l	0.485	0.108	1
Dibenzofuran 1.99		ug/l	0.485	0.088	1
2,4-Dinitrotoluene ND		~ g, .	0.400	2.000	

10/06/21

Project Name: STEEL WINDS ANNUAL/SEMI ANNUAL Lab Number: L2147480

Project Number: 03.0033579.14

SAMPLE RESULTS

Date Collected: 09/02/21 15:05

Date Received: 09/02/21
Field Prep: Not Specified

Report Date:

Client ID: MWN-03-090221 Sample Location: LACKAWANNA, NY

L2147480-07

Sample Depth:

Lab ID:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS	S - Mansfield Lab					
Fluorene	3.48		ug/l	0.485	0.101	1
Diethylphthalate	ND		ug/l	0.485	0.175	1
4-Nitroaniline	ND		ug/l	0.485	0.109	1
n-Nitrosodiphenylamine	ND		ug/l	0.485	0.070	1
Hexachlorobenzene	ND		ug/l	0.485	0.118	1
Phenanthrene	7.54		ug/l	0.485	0.108	1
Anthracene	0.884		ug/l	0.485	0.133	1
Carbazole	3.26		ug/l	0.485	0.139	1
Di-n-butylphthalate	ND		ug/l	0.485	0.097	1
Fluoranthene	2.18		ug/l	0.485	0.151	1
Pyrene	1.78		ug/l	0.485	0.165	1
Butylbenzylphthalate	ND		ug/l	0.485	0.082	1
3,3'-Dichlorobenzidine	ND		ug/l	0.485	0.187	1
Benz(a)anthracene	ND		ug/l	0.485	0.179	1
Chrysene	ND		ug/l	0.485	0.138	1
bis(2-Ethylhexyl)phthalate	ND		ug/l	0.485	0.079	1
Di-n-octylphthalate	ND		ug/l	0.971	0.076	1
Benzo(b)fluoranthene	ND		ug/l	0.485	0.064	1
Benzo(k)fluoranthene	ND		ug/l	0.485	0.156	1
Benzo(a)pyrene	ND		ug/l	0.485	0.058	1
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.485	0.087	1
Dibenz(a,h)anthracene	ND		ug/l	0.485	0.062	1
Benzo(g,h,i)perylene	ND		ug/l	0.485	0.106	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
2-Fluorophenol	48	15-115	
Phenol-d5	31	15-115	
Nitrobenzene-d5	82	30-130	
2-Fluorobiphenyl	77	30-130	
2,4,6-Tribromophenol	98	15-115	
Terphenyl-d14	95	30-130	

10/06/21

Project Name: Lab Number: STEEL WINDS ANNUAL/SEMI ANNUAL L2147480

Project Number: 03.0033579.14

SAMPLE RESULTS

Date Collected: 09/02/21 15:05

Report Date:

Lab ID: RE L2147480-07 Date Received: Client ID: 09/02/21 MWN-03-090221

Sample Location: Field Prep: LACKAWANNA, NY Not Specified

Sample Depth:

Extraction Method: EPA 3510C Matrix: Water **Extraction Date:** 09/28/21 18:00 Analytical Method: 1,8270D

Analytical Date: 10/01/21 14:40

Analyst: GP

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS -	Mansfield Lab						
bis(2-Chloroethyl)ether	ND		ug/l	0.485	0.090	1	
1,3-Dichlorobenzene	ND		ug/l	0.485	0.076	1	
1,4-Dichlorobenzene	ND		ug/l	0.485	0.080	1	
1,2-Dichlorobenzene	0.090	J	ug/l	0.485	0.066	1	
Benzyl alcohol	ND		ug/l	0.485	0.119	1	
bis(2-chloroisopropyl)ether	ND		ug/l	0.485	0.105	1	
Acetophenone	0.248	J	ug/l	0.971	0.201	1	
Hexachloroethane	ND		ug/l	0.485	0.099	1	
Nitrobenzene	ND		ug/l	0.485	0.099	1	
Isophorone	ND		ug/l	0.485	0.122	1	
bis(2-Chloroethoxy)methane	ND		ug/l	0.485	0.083	1	
1,2,4-Trichlorobenzene	ND		ug/l	0.485	0.093	1	
Naphthalene	10.7		ug/l	0.485	0.085	1	
4-Chloroaniline	ND		ug/l	0.485	0.124	1	
Hexachlorobutadiene	ND		ug/l	0.485	0.083	1	
2-Methylnaphthalene	1.76		ug/l	0.485	0.088	1	
1,2,4,5-Tetrachlorobenzene	ND		ug/l	0.485	0.077	1	
Hexachlorocyclopentadiene	ND		ug/l	0.485	0.148	1	
Biphenyl	0.468	J	ug/l	0.485	0.108	1	
2-Chloronaphthalene	ND		ug/l	0.485	0.087	1	
2-Nitroaniline	ND		ug/l	0.485	0.134	1	
Acenaphthylene	0.880		ug/l	0.485	0.109	1	
Dimethylphthalate	ND		ug/l	0.485	0.114	1	
2,6-Dinitrotoluene	ND		ug/l	0.485	0.163	1	
Acenaphthene	1.03		ug/l	0.485	0.093	1	
3-Nitroaniline	ND		ug/l	0.485	0.108	1	
Dibenzofuran	1.86		ug/l	0.485	0.088	1	
2,4-Dinitrotoluene	ND		ug/l	0.485	0.158	1	

10/06/21

Project Name: Lab Number: STEEL WINDS ANNUAL/SEMI ANNUAL L2147480

Project Number: 03.0033579.14

SAMPLE RESULTS

Date Collected: 09/02/21 15:05

Report Date:

Lab ID: RE L2147480-07

Date Received: Client ID: 09/02/21 MWN-03-090221 Sample Location: Field Prep: LACKAWANNA, NY Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS	6 - Mansfield Lab					
Fluorene	3.20		ug/l	0.485	0.101	1
Diethylphthalate	ND		ug/l	0.485	0.175	1
4-Nitroaniline	ND		ug/l	0.485	0.109	1
n-Nitrosodiphenylamine	0.119	J	ug/l	0.485	0.070	1
Hexachlorobenzene	ND		ug/l	0.485	0.118	1
Phenanthrene	6.71		ug/l	0.485	0.108	1
Anthracene	0.939		ug/l	0.485	0.133	1
Carbazole	2.88		ug/l	0.485	0.139	1
Di-n-butylphthalate	ND		ug/l	0.485	0.097	1
Fluoranthene	2.16		ug/l	0.485	0.151	1
Pyrene	1.55		ug/l	0.485	0.165	1
Butylbenzylphthalate	0.091	J	ug/l	0.485	0.082	1
3,3'-Dichlorobenzidine	ND		ug/l	0.485	0.187	1
Benz(a)anthracene	ND		ug/l	0.485	0.179	1
Chrysene	ND		ug/l	0.485	0.138	1
bis(2-Ethylhexyl)phthalate	ND		ug/l	0.485	0.079	1
Di-n-octylphthalate	ND		ug/l	0.971	0.076	1
Benzo(b)fluoranthene	ND		ug/l	0.485	0.064	1
Benzo(k)fluoranthene	ND		ug/l	0.485	0.156	1
Benzo(a)pyrene	ND		ug/l	0.485	0.058	1
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.485	0.087	1
Dibenz(a,h)anthracene	ND		ug/l	0.485	0.062	1
Benzo(g,h,i)perylene	ND		ug/l	0.485	0.106	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
2-Fluorophenol	34	15-115	
Phenol-d5	25	15-115	
Nitrobenzene-d5	81	30-130	
2-Fluorobiphenyl	69	30-130	
2,4,6-Tribromophenol	80	15-115	
Terphenyl-d14	80	30-130	

L2147480

09/02/21 15:55

09/07/21 14:00

Project Name: STEEL WINDS ANNUAL/SEMI ANNUAL

Project Number: 03.0033579.14

SAMPLE RESULTS

Report Date: 10/06/21

Lab Number:

Date Collected:

Extraction Date:

Lab ID: L2147480-09 Client ID: MWN-04-090221 Sample Location: LACKAWANNA, NY

Date Received: 09/02/21 Field Prep: Not Specified

Extraction Method: EPA 3510C

Sample Depth:

Matrix: Water Analytical Method: 1,8270D

Analytical Date: 09/26/21 01:25

Analyst: PS

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - M	/lansfield Lab					
bis(2-Chloroethyl)ether	ND		ug/l	0.485	0.090	1
1,3-Dichlorobenzene	ND		ug/l	0.485	0.076	1
1,4-Dichlorobenzene	ND		ug/l	0.485	0.080	1
1,2-Dichlorobenzene	ND		ug/l	0.485	0.066	1
Benzyl alcohol	ND		ug/l	0.485	0.119	1
bis(2-chloroisopropyl)ether	ND		ug/l	0.485	0.105	1
Acetophenone	ND		ug/l	0.971	0.201	1
Hexachloroethane	ND		ug/l	0.485	0.099	1
Nitrobenzene	ND		ug/l	0.485	0.099	1
Isophorone	ND		ug/l	0.485	0.122	1
bis(2-Chloroethoxy)methane	ND		ug/l	0.485	0.083	1
1,2,4-Trichlorobenzene	ND		ug/l	0.485	0.093	1
Naphthalene	ND		ug/l	0.485	0.085	1
4-Chloroaniline	ND		ug/l	0.485	0.124	1
Hexachlorobutadiene	ND		ug/l	0.485	0.083	1
2-Methylnaphthalene	ND		ug/l	0.485	0.088	1
1,2,4,5-Tetrachlorobenzene	ND		ug/l	0.485	0.077	1
Hexachlorocyclopentadiene	ND		ug/l	0.485	0.148	1
Biphenyl	ND		ug/l	0.485	0.108	1
2-Chloronaphthalene	ND		ug/l	0.485	0.087	1
2-Nitroaniline	ND		ug/l	0.485	0.134	1
Acenaphthylene	ND		ug/l	0.485	0.109	1
Dimethylphthalate	ND		ug/l	0.485	0.114	1
2,6-Dinitrotoluene	ND		ug/l	0.485	0.163	1
Acenaphthene	ND		ug/l	0.485	0.093	1
3-Nitroaniline	ND		ug/l	0.485	0.108	1
Dibenzofuran	ND		ug/l	0.485	0.088	1
2,4-Dinitrotoluene	ND		ug/l	0.485	0.158	1

L2147480

10/06/21

Dilution Factor

Project Name: STEEL WINDS ANNUAL/SEMI ANNUAL Lab Number:

Result

Project Number: 03.0033579.14

L2147480-09

MWN-04-090221

LACKAWANNA, NY

SAMPLE RESULTS

Qualifier

Units

Date Collected: 09/02/21 15:55

Date Received: 09/02/21

Report Date:

RL

Field Prep: Not Specified

MDL

Sample Depth:

Sample Location:

Lab ID:

Client ID:

Parameter

i arameter	rtosuit	Qualifici	Omis			Dilation Lactor	
Semivolatile Organics by GC/MS	- Mansfield Lab						
Fluorene	ND		ug/l	0.485	0.101	1	
Diethylphthalate	ND		ug/l	0.485	0.175	1	
4-Nitroaniline	ND		ug/l	0.485	0.109	1	
n-Nitrosodiphenylamine	ND		ug/l	0.485	0.070	1	
Hexachlorobenzene	ND		ug/l	0.485	0.118	1	
Phenanthrene	ND		ug/l	0.485	0.108	1	
Anthracene	ND		ug/l	0.485	0.133	1	
Carbazole	ND		ug/l	0.485	0.139	1	
Di-n-butylphthalate	ND		ug/l	0.485	0.097	1	
Fluoranthene	ND		ug/l	0.485	0.151	1	
Pyrene	0.459	J	ug/l	0.485	0.165	1	
Butylbenzylphthalate	ND		ug/l	0.485	0.082	1	
3,3'-Dichlorobenzidine	ND		ug/l	0.485	0.187	1	
Benz(a)anthracene	ND		ug/l	0.485	0.179	1	
Chrysene	ND		ug/l	0.485	0.138	1	
bis(2-Ethylhexyl)phthalate	ND		ug/l	0.485	0.079	1	
Di-n-octylphthalate	ND		ug/l	0.971	0.076	1	
Benzo(b)fluoranthene	ND		ug/l	0.485	0.064	1	
Benzo(k)fluoranthene	ND		ug/l	0.485	0.156	1	
Benzo(a)pyrene	ND		ug/l	0.485	0.058	1	
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.485	0.087	1	
Dibenz(a,h)anthracene	ND		ug/l	0.485	0.062	1	
Benzo(g,h,i)perylene	ND		ug/l	0.485	0.106	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
2-Fluorophenol	43	15-115	
Phenol-d5	31	15-115	
Nitrobenzene-d5	88	30-130	
2-Fluorobiphenyl	82	30-130	
2,4,6-Tribromophenol	83	15-115	
Terphenyl-d14	94	30-130	

L2147480

10/06/21

Project Name: Lab Number: STEEL WINDS ANNUAL/SEMI ANNUAL

RE

Project Number: 03.0033579.14

L2147480-09

10/01/21 15:12

SAMPLE RESULTS

Date Collected: 09/02/21 15:55

Report Date:

Date Received: 09/02/21 MWN-04-090221 Sample Location: Field Prep: LACKAWANNA, NY Not Specified

Sample Depth:

Analytical Date:

Lab ID:

Client ID:

Extraction Method: EPA 3510C Matrix: Water **Extraction Date:** 09/28/21 18:00 Analytical Method: 1,8270D

Analyst: GP

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - M	lansfield Lab					
bis(2-Chloroethyl)ether	ND		ug/l	0.485	0.090	1
1,3-Dichlorobenzene	ND		ug/l	0.485	0.076	1
1,4-Dichlorobenzene	ND		ug/l	0.485	0.080	1
1,2-Dichlorobenzene	ND		ug/l	0.485	0.066	1
Benzyl alcohol	ND		ug/l	0.485	0.119	1
bis(2-chloroisopropyl)ether	ND		ug/l	0.485	0.105	1
Acetophenone	ND		ug/l	0.971	0.201	1
Hexachloroethane	ND		ug/l	0.485	0.099	1
Nitrobenzene	ND		ug/l	0.485	0.099	1
Isophorone	ND		ug/l	0.485	0.122	1
bis(2-Chloroethoxy)methane	ND		ug/l	0.485	0.083	1
1,2,4-Trichlorobenzene	ND		ug/l	0.485	0.093	1
Naphthalene	ND		ug/l	0.485	0.085	1
4-Chloroaniline	ND		ug/l	0.485	0.124	1
Hexachlorobutadiene	ND		ug/l	0.485	0.083	1
2-Methylnaphthalene	ND		ug/l	0.485	0.088	1
1,2,4,5-Tetrachlorobenzene	ND		ug/l	0.485	0.077	1
Hexachlorocyclopentadiene	ND		ug/l	0.485	0.148	1
Biphenyl	ND		ug/l	0.485	0.108	1
2-Chloronaphthalene	ND		ug/l	0.485	0.087	1
2-Nitroaniline	ND		ug/l	0.485	0.134	1
Acenaphthylene	ND		ug/l	0.485	0.109	1
Dimethylphthalate	ND		ug/l	0.485	0.114	1
2,6-Dinitrotoluene	ND		ug/l	0.485	0.163	1
Acenaphthene	ND		ug/l	0.485	0.093	1
3-Nitroaniline	ND		ug/l	0.485	0.108	1
Dibenzofuran	ND		ug/l	0.485	0.088	1
2,4-Dinitrotoluene	ND		ug/l	0.485	0.158	1

10/06/21

Project Name: Lab Number: STEEL WINDS ANNUAL/SEMI ANNUAL L2147480

Project Number: 03.0033579.14

SAMPLE RESULTS

Date Collected:

Report Date:

Lab ID: RE L2147480-09 09/02/21 15:55

Date Received: Client ID: 09/02/21 MWN-04-090221 Sample Location: Field Prep: LACKAWANNA, NY Not Specified

Sample Depth:

Semivolatile Organics by GC/MS - Mansfiel Fluorene Diethylphthalate 4-Nitroaniline n-Nitrosodiphenylamine Hexachlorobenzene	ND		ug/l ug/l ug/l ug/l	0.485 0.485 0.485 0.485	0.101 0.175 0.109 0.070	1 1 1
Diethylphthalate 4-Nitroaniline n-Nitrosodiphenylamine	ND ND ND		ug/l ug/l	0.485 0.485	0.175 0.109	1
4-Nitroaniline n-Nitrosodiphenylamine	ND ND ND		ug/l ug/l	0.485	0.109	
n-Nitrosodiphenylamine	ND ND		-			1
	ND		ug/l	0.485	0.070	
Heyachlorohenzene						1
Tiexadillorobelizatio	ND		ug/l	0.485	0.118	1
Phenanthrene	טא		ug/l	0.485	0.108	1
Anthracene	ND		ug/l	0.485	0.133	1
Carbazole	ND		ug/l	0.485	0.139	1
Di-n-butylphthalate	ND		ug/l	0.485	0.097	1
Fluoranthene	ND		ug/l	0.485	0.151	1
Pyrene	0.470	J	ug/l	0.485	0.165	1
Butylbenzylphthalate	0.091	J	ug/l	0.485	0.082	1
3,3'-Dichlorobenzidine	ND		ug/l	0.485	0.187	1
Benz(a)anthracene	ND		ug/l	0.485	0.179	1
Chrysene	ND		ug/l	0.485	0.138	1
bis(2-Ethylhexyl)phthalate	ND		ug/l	0.485	0.079	1
Di-n-octylphthalate	ND		ug/l	0.971	0.076	1
Benzo(b)fluoranthene	ND		ug/l	0.485	0.064	1
Benzo(k)fluoranthene	ND		ug/l	0.485	0.156	1
Benzo(a)pyrene	ND		ug/l	0.485	0.058	1
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.485	0.087	1
Dibenz(a,h)anthracene	ND		ug/l	0.485	0.062	1
Benzo(g,h,i)perylene	ND		ug/l	0.485	0.106	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
2-Fluorophenol	37	15-115	
Phenol-d5	27	15-115	
Nitrobenzene-d5	87	30-130	
2-Fluorobiphenyl	72	30-130	
2,4,6-Tribromophenol	76	15-115	
Terphenyl-d14	85	30-130	

Project Name: STEEL WINDS ANNUAL/SEMI ANNUAL Lab Number: L2147480

Project Number: 03.0033579.14 **Report Date:** 10/06/21

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D Extraction Method: EPA 3510C
Analytical Date: 09/25/21 12:36 Extraction Date: 09/07/21 14:00

Analyst: PS

arameter	Result	Qualifier	Units	RL		MDL
emivolatile Organics by GC/MS	- Mansfield La	ab for sampl	e(s):	01-07,09	Batch:	WG1543557-1
bis(2-Chloroethyl)ether	ND		ug/l	0.500)	0.093
1,3-Dichlorobenzene	ND		ug/l	0.500		0.078
1,4-Dichlorobenzene	ND		ug/l	0.500		0.083
1,2-Dichlorobenzene	ND		ug/l	0.500	1	0.068
Benzyl alcohol	ND		ug/l	0.500	1	0.123
bis(2-chloroisopropyl)ether	ND		ug/l	0.500		0.108
Acetophenone	ND		ug/l	1.00		0.207
Hexachloroethane	ND		ug/l	0.500		0.102
Nitrobenzene	ND		ug/l	0.500		0.102
Isophorone	ND		ug/l	0.500		0.126
bis(2-Chloroethoxy)methane	ND		ug/l	0.500		0.085
1,2,4-Trichlorobenzene	ND		ug/l	0.500		0.096
Naphthalene	ND		ug/l	0.500		0.088
4-Chloroaniline	ND		ug/l	0.500		0.128
Hexachlorobutadiene	ND		ug/l	0.500		0.086
2-Methylnaphthalene	ND		ug/l	0.500		0.091
1,2,4,5-Tetrachlorobenzene	ND		ug/l	0.500		0.080
Hexachlorocyclopentadiene	ND		ug/l	0.500		0.153
Biphenyl	ND		ug/l	0.500		0.111
2-Chloronaphthalene	ND		ug/l	0.500		0.090
2-Nitroaniline	ND		ug/l	0.500		0.138
Acenaphthylene	ND		ug/l	0.500		0.112
Dimethylphthalate	ND		ug/l	0.500		0.117
2,6-Dinitrotoluene	ND		ug/l	0.500		0.168
Acenaphthene	ND		ug/l	0.500		0.096
3-Nitroaniline	ND		ug/l	0.500		0.111
Dibenzofuran	ND		ug/l	0.500		0.091
2,4-Dinitrotoluene	ND		ug/l	0.500		0.163
Fluorene	ND		ug/l	0.500		0.104

Project Name: STEEL WINDS ANNUAL/SEMI ANNUAL Lab Number: L2147480

Project Number: 03.0033579.14 **Report Date:** 10/06/21

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D Extraction Method: EPA 3510C
Analytical Date: 09/25/21 12:36 Extraction Date: 09/07/21 14:00

Analyst: PS

Parameter	Result	Qualifier	Units	RL		MDL	
Semivolatile Organics by GC/MS	- Mansfield La	ab for samp	ole(s):	01-07,09	Batch:	WG1543557-1	
Diethylphthalate	ND		ug/l	0.500)	0.180	
4-Nitroaniline	ND		ug/l	0.500)	0.112	
n-Nitrosodiphenylamine	ND		ug/l	0.500)	0.072	
Hexachlorobenzene	ND		ug/l	0.500)	0.122	
Phenanthrene	ND		ug/l	0.500)	0.111	
Anthracene	ND		ug/l	0.500)	0.137	
Carbazole	ND		ug/l	0.500)	0.143	
Di-n-butylphthalate	ND		ug/l	0.500)	0.100	
Fluoranthene	ND		ug/l	0.500		0.156	
Pyrene	ND		ug/l	0.500		0.170	
Butylbenzylphthalate	ND		ug/l	0.500)	0.085	
3,3'-Dichlorobenzidine	ND		ug/l	0.500)	0.193	
Benz(a)anthracene	ND		ug/l	0.500)	0.184	
Chrysene	ND		ug/l	0.500)	0.142	
bis(2-Ethylhexyl)phthalate	ND		ug/l	0.500)	0.081	
Di-n-octylphthalate	ND		ug/l	1.00		0.079	
Benzo(b)fluoranthene	ND		ug/l	0.500)	0.066	
Benzo(k)fluoranthene	ND		ug/l	0.500)	0.161	
Benzo(a)pyrene	ND		ug/l	0.500)	0.060	
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.500)	0.090	
Dibenz(a,h)anthracene	ND		ug/l	0.500)	0.064	
Benzo(g,h,i)perylene	ND		ug/l	0.500)	0.109	

Project Name: STEEL WINDS ANNUAL/SEMI ANNUAL Lab Number: L2147480

Project Number: 03.0033579.14 **Report Date:** 10/06/21

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8270D Extraction Method: EPA 3510C
Analytical Date: 09/25/21 12:36 Extraction Date: 09/07/21 14:00

Analyst: PS

Parameter Result Qualifier Units RL MDL

Semivolatile Organics by GC/MS - Mansfield Lab for sample(s): 01-07,09 Batch: WG1543557-1

			Acceptance	
Surrogate	%Recovery	Qualifier	Criteria	
2-Fluorophenol	50		15-115	
Phenol-d5	33		15-115	
Nitrobenzene-d5	95		30-130	
2-Fluorobiphenyl	86		30-130	
2,4,6-Tribromophenol	70		15-115	
Terphenyl-d14	105		30-130	

Project Name: STEEL WINDS ANNUAL/SEMI ANNUAL Lab Number: L2147480

Project Number: 03.0033579.14 **Report Date:** 10/06/21

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D Extraction Method: EPA 3510C
Analytical Date: 10/01/21 08:41 Extraction Date: 09/28/21 18:00

Analyst: GP

arameter	Result	Qualifier	Units	RL		MDL
emivolatile Organics by GC/M	S - Mansfield La	ab for samp	ole(s):	01-07,09	Batch:	WG1551897-1
bis(2-Chloroethyl)ether	ND		ug/l	0.500)	0.093
1,3-Dichlorobenzene	ND		ug/l	0.500)	0.078
1,4-Dichlorobenzene	ND		ug/l	0.500)	0.083
1,2-Dichlorobenzene	ND		ug/l	0.500)	0.068
Benzyl alcohol	ND		ug/l	0.500)	0.123
bis(2-chloroisopropyl)ether	ND		ug/l	0.500)	0.108
Acetophenone	ND		ug/l	1.00		0.207
Hexachloroethane	ND		ug/l	0.500)	0.102
Nitrobenzene	ND		ug/l	0.500)	0.102
Isophorone	ND		ug/l	0.500)	0.126
bis(2-Chloroethoxy)methane	ND		ug/l	0.500)	0.085
1,2,4-Trichlorobenzene	ND		ug/l	0.500)	0.096
Naphthalene	ND		ug/l	0.500)	0.088
4-Chloroaniline	ND		ug/l	0.500)	0.128
Hexachlorobutadiene	ND		ug/l	0.500)	0.086
2-Methylnaphthalene	ND		ug/l	0.500)	0.091
1,2,4,5-Tetrachlorobenzene	ND		ug/l	0.500)	0.080
Hexachlorocyclopentadiene	ND		ug/l	0.500)	0.153
Biphenyl	ND		ug/l	0.500)	0.111
2-Chloronaphthalene	ND		ug/l	0.500)	0.090
2-Nitroaniline	ND		ug/l	0.500)	0.138
Acenaphthylene	ND		ug/l	0.500)	0.112
Dimethylphthalate	ND		ug/l	0.500)	0.117
2,6-Dinitrotoluene	ND		ug/l	0.500)	0.168
Acenaphthene	ND		ug/l	0.500)	0.096
3-Nitroaniline	ND		ug/l	0.500)	0.111
Dibenzofuran	ND		ug/l	0.500)	0.091
2,4-Dinitrotoluene	ND		ug/l	0.500)	0.163
Fluorene	ND		ug/l	0.500)	0.104

Project Name: STEEL WINDS ANNUAL/SEMI ANNUAL Lab Number: L2147480

Project Number: 03.0033579.14 **Report Date:** 10/06/21

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D Extraction Method: EPA 3510C
Analytical Date: 10/01/21 08:41 Extraction Date: 09/28/21 18:00

Analyst: GP

Parameter	Result	Qualifier	Units	RL		MDL	
Semivolatile Organics by GC/MS - M	/lansfield La	b for samp	le(s):	01-07,09	Batch:	WG1551897-1	
Diethylphthalate	ND		ug/l	0.500)	0.180	
4-Nitroaniline	ND		ug/l	0.500)	0.112	-
n-Nitrosodiphenylamine	ND		ug/l	0.500)	0.072	
Hexachlorobenzene	ND		ug/l	0.500)	0.122	
Phenanthrene	ND		ug/l	0.500)	0.111	
Anthracene	ND		ug/l	0.500)	0.137	
Carbazole	ND		ug/l	0.500)	0.143	
Di-n-butylphthalate	ND		ug/l	0.500)	0.100	
Fluoranthene	ND		ug/l	0.500)	0.156	
Pyrene	ND		ug/l	0.500)	0.170	
Butylbenzylphthalate	ND		ug/l	0.500)	0.085	
3,3'-Dichlorobenzidine	ND		ug/l	0.500)	0.193	
Benz(a)anthracene	ND		ug/l	0.500)	0.184	
Chrysene	ND		ug/l	0.500)	0.142	
bis(2-Ethylhexyl)phthalate	ND		ug/l	0.500)	0.081	
Di-n-octylphthalate	ND		ug/l	1.00		0.079	
Benzo(b)fluoranthene	ND		ug/l	0.500)	0.066	
Benzo(k)fluoranthene	ND		ug/l	0.500)	0.161	
Benzo(a)pyrene	ND		ug/l	0.500)	0.060	
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.500)	0.090	
Dibenz(a,h)anthracene	ND		ug/l	0.500)	0.064	
Benzo(g,h,i)perylene	ND		ug/l	0.500)	0.109	

Project Name: STEEL WINDS ANNUAL/SEMI ANNUAL Lab Number: L2147480

Project Number: 03.0033579.14 **Report Date:** 10/06/21

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8270D Extraction Method: EPA 3510C
Analytical Date: 10/01/21 08:41 Extraction Date: 09/28/21 18:00

Analyst: GP

Parameter Result Qualifier Units RL MDL

Semivolatile Organics by GC/MS - Mansfield Lab for sample(s): 01-07,09 Batch: WG1551897-1

Surrogate	%Recovery Qualifie	Acceptance r Criteria
2-Fluorophenol	57	15-115
Phenol-d5	37	15-115
Nitrobenzene-d5	98	30-130
2-Fluorobiphenyl	83	30-130
2,4,6-Tribromophenol	87	15-115
Terphenyl-d14	92	30-130

Project Name: STEEL WINDS ANNUAL/SEMI ANNUAL

Project Number: 03.0033579.14

Lab Number: L2147480

Report Date: 10/06/21

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
emivolatile Organics by GC/MS - Mansfield	d Lab Associate	d sample(s):	01-07,09 Batch	: WG1543	3557-2 WG15435	57-3		
bis(2-Chloroethyl)ether	83		78		40-140	6		20
1,3-Dichlorobenzene	17	Q	10	Q	40-140	55	Q	20
1,4-Dichlorobenzene	18	Q	10	Q	40-140	57	Q	20
1,2-Dichlorobenzene	22	Q	13	Q	40-140	51	Q	20
bis(2-chloroisopropyl)ether	77		68		40-140	12		20
Acetophenone	76		84		40-140	10		20
Hexachloroethane	11		5	Q	10-97	70	Q	20
Nitrobenzene	84		78		40-140	7		20
Isophorone	89		87		40-140	2		20
bis(2-Chloroethoxy)methane	83		78		40-140	6		20
1,2,4-Trichlorobenzene	26	Q	13	Q	40-140	67	Q	20
Naphthalene	47		31	Q	40-140	41	Q	20
4-Chloroaniline	84		81		40-140	4		20
Hexachlorobutadiene	14	Q	5	Q	40-140	101	Q	20
2-Methylnaphthalene	46		29	Q	40-140	45	Q	20
1,2,4,5-Tetrachlorobenzene	40		21	Q	40-140	62	Q	20
Hexachlorocyclopentadiene	11		3	Q	10-109	126	Q	20
Biphenyl	56		65		40-140	15		20
2-Chloronaphthalene	50		35	Q	40-140	35	Q	20
2-Nitroaniline	122		122		40-140	0		20
Acenaphthylene	71		63		40-140	12		20
Dimethylphthalate	71		64		40-140	10		20
2,6-Dinitrotoluene	85		86		40-140	1		20

Project Name: STEEL WINDS ANNUAL/SEMI ANNUAL

Project Number: 03.0033579.14

Lab Number: L2147480

Report Date: 10/06/21

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Semivolatile Organics by GC/MS - Mansfield	Lab Associate	d sample(s):	01-07,09 Batch:	WG1543557-2 WG15435	57-3	
Acenaphthene	68		58	40-140	16	20
3-Nitroaniline	99		102	40-140	3	20
Dibenzofuran	73		66	40-140	10	20
2,4-Dinitrotoluene	99		101	40-140	2	20
Fluorene	79		76	40-140	4	20
Diethylphthalate	84		82	40-140	2	20
4-Nitroaniline	106		104	40-140	2	20
n-Nitrosodiphenylamine	87		90	40-140	3	20
Hexachlorobenzene	75		78	40-140	4	20
Phenanthrene	90		92	40-140	2	20
Anthracene	90		93	40-140	3	20
Carbazole	96		97	40-140	1	20
Di-n-butylphthalate	93		95	40-140	2	20
Fluoranthene	95		98	40-140	3	20
Pyrene	93		97	40-140	4	20
Butylbenzylphthalate	105		107	40-140	2	20
3,3'-Dichlorobenzidine	88		92	40-140	4	20
Benz(a)anthracene	98		100	40-140	2	20
Chrysene	90		94	40-140	4	20
bis(2-Ethylhexyl)phthalate	107		110	40-140	3	20
Di-n-octylphthalate	90		94	40-140	4	20
Benzo(b)fluoranthene	89		94	40-140	5	20
Benzo(k)fluoranthene	93		98	40-140	5	20

Project Name: STEEL WINDS ANNUAL/SEMI ANNUAL

Project Number: 03.0033579.14 Lab Number:

L2147480

Report Date: 10/06/21

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits		
Semivolatile Organics by GC/MS - Mansfield Lab Associated sample(s): 01-07,09 Batch: WG1543557-2 WG1543557-3										
Benzo(a)pyrene	90		94		40-140	4		20		
Indeno(1,2,3-cd)pyrene	97		100		40-140	3		20		
Dibenz(a,h)anthracene	93		98		40-140	5		20		
Benzo(g,h,i)perylene	100		105		40-140	5		20		

	LCS	LCSD	Acceptance
Surrogate	%Recovery Qua	l %Recovery Qual	Criteria
2-Fluorophenol	57	50	15-115
Phenol-d5	41	35	15-115
Nitrobenzene-d5	98	91	30-130
2-Fluorobiphenyl	86	81	30-130
2,4,6-Tribromophenol	85	87	15-115
Terphenyl-d14	88	89	30-130

Project Name: STEEL WINDS ANNUAL/SEMI ANNUAL

Project Number: 03.0033579.14

Lab Number: L2147480

Report Date: 10/06/21

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	Qual	RPD Limits
Semivolatile Organics by GC/MS - Mansfield	d Lab Associated	d sample(s):	01-07,09 Batch	: WG1551897-2 WG155189	97-3		
bis(2-Chloroethyl)ether	73		72	40-140	1		20
1,3-Dichlorobenzene	32	Q	41	40-140	25	Q	20
1,4-Dichlorobenzene	31	Q	42	40-140	30	Q	20
1,2-Dichlorobenzene	34	Q	43	40-140	23	Q	20
bis(2-chloroisopropyl)ether	64		65	40-140	2		20
Acetophenone	81		79	40-140	3		20
Hexachloroethane	29		38	10-97	27	Q	20
Nitrobenzene	75		74	40-140	1		20
Isophorone	76		76	40-140	0		20
bis(2-Chloroethoxy)methane	71		70	40-140	1		20
1,2,4-Trichlorobenzene	36	Q	43	40-140	18		20
Naphthalene	46		52	40-140	12		20
4-Chloroaniline	76		75	40-140	1		20
Hexachlorobutadiene	32	Q	42	40-140	27	Q	20
2-Methylnaphthalene	45		52	40-140	14		20
1,2,4,5-Tetrachlorobenzene	42		48	40-140	13		20
Hexachlorocyclopentadiene	15		20	10-109	29	Q	20
Biphenyl	68		66	40-140	3		20
2-Chloronaphthalene	47		53	40-140	12		20
2-Nitroaniline	112		115	40-140	3		20
Acenaphthylene	63		67	40-140	6		20
Dimethylphthalate	54		59	40-140	9		20
2,6-Dinitrotoluene	81		83	40-140	2		20

Project Name: STEEL WINDS ANNUAL/SEMI ANNUAL

Project Number: 03.0033579.14

Lab Number: L2147480

Report Date: 10/06/21

arameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Semivolatile Organics by GC/MS	- Mansfield Lab Associate	d sample(s):	01-07,09 Batch:	WG1551897-2 WG155189	7-3	
Acenaphthene	61		65	40-140	6	20
3-Nitroaniline	96		99	40-140	3	20
Dibenzofuran	69		73	40-140	6	20
2,4-Dinitrotoluene	98		105	40-140	7	20
Fluorene	73		77	40-140	5	20
Diethylphthalate	74		80	40-140	8	20
4-Nitroaniline	99		107	40-140	8	20
n-Nitrosodiphenylamine	81		87	40-140	7	20
Hexachlorobenzene	76		80	40-140	5	20
Phenanthrene	80		87	40-140	8	20
Anthracene	84		89	40-140	6	20
Carbazole	86		94	40-140	9	20
Di-n-butylphthalate	84		91	40-140	8	20
Fluoranthene	87		95	40-140	9	20
Pyrene	81		90	40-140	11	20
Butylbenzylphthalate	85		95	40-140	11	20
3,3'-Dichlorobenzidine	91		98	40-140	7	20
Benz(a)anthracene	88		97	40-140	10	20
Chrysene	81		89	40-140	9	20
bis(2-Ethylhexyl)phthalate	90		101	40-140	12	20
Di-n-octylphthalate	80		90	40-140	12	20
Benzo(b)fluoranthene	85		98	40-140	14	20
Benzo(k)fluoranthene	82		92	40-140	11	20

Project Name: STEEL WINDS ANNUAL/SEMI ANNUAL

Project Number: 03.0033579.14 Lab Number:

L2147480

Report Date:

10/06/21

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits		
Semivolatile Organics by GC/MS - Mansfield Lab Associated sample(s): 01-07,09 Batch: WG1551897-2 WG1551897-3										
Benzo(a)pyrene	83		93		40-140	11		20		
Indeno(1,2,3-cd)pyrene	84		96		40-140	13		20		
Dibenz(a,h)anthracene	82		94		40-140	14		20		
Benzo(g,h,i)perylene	87		99		40-140	13		20		

	LCS	LCSD	Acceptance
Surrogate	%Recovery Qua	al %Recovery Qual	Criteria
2-Fluorophenol	52	51	15-115
Phenol-d5	34	33	15-115
Nitrobenzene-d5	90	87	30-130
2-Fluorobiphenyl	79	73	30-130
2,4,6-Tribromophenol	94	98	15-115
Terphenyl-d14	82	89	30-130

Serial_No:10062113:56 *Lab Number:* L2147480

Project Name: STEEL WINDS ANNUAL/SEMI ANNUAL

Project Number: 03.0033579.14 **Report Date:** 10/06/21

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information

Container Information

Cooler Custody Seal

A Absent

rmation		Initial	Final	Temp			Frozen	
Container Type	Cooler	рН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
Vial HCl preserved	Α	NA		3.1	Υ	Absent		NYCP51-8260(14)
Vial HCl preserved	Α	NA		3.1	Υ	Absent		NYCP51-8260(14)
Vial HCl preserved	Α	NA		3.1	Υ	Absent		NYCP51-8260(14)
Amber 1000ml unpreserved	Α	11	11	3.1	Υ	Absent		A2-SVOC-8270(7)
Amber 1000ml unpreserved	Α	11	11	3.1	Υ	Absent		A2-SVOC-8270(7)
Vial HCl preserved	Α	NA		3.1	Υ	Absent		NYCP51-8260(14)
Vial HCl preserved	Α	NA		3.1	Υ	Absent		NYCP51-8260(14)
Vial HCl preserved	Α	NA		3.1	Υ	Absent		NYCP51-8260(14)
Amber 1000ml unpreserved	Α	11	11	3.1	Υ	Absent		A2-SVOC-8270(7)
Amber 1000ml unpreserved	Α	11	11	3.1	Υ	Absent		A2-SVOC-8270(7)
Vial HCl preserved	Α	NA		3.1	Υ	Absent		NYCP51-8260(14)
Vial HCl preserved	Α	NA		3.1	Υ	Absent		NYCP51-8260(14)
Vial HCl preserved	Α	NA		3.1	Υ	Absent		NYCP51-8260(14)
Amber 1000ml unpreserved	Α	11	11	3.1	Υ	Absent		A2-SVOC-8270(7)
Amber 1000ml unpreserved	Α	11	11	3.1	Υ	Absent		A2-SVOC-8270(7)
Vial HCl preserved	Α	NA		3.1	Υ	Absent		NYCP51-8260(14)
Vial HCl preserved	Α	NA		3.1	Υ	Absent		NYCP51-8260(14)
Vial HCl preserved	Α	NA		3.1	Υ	Absent		NYCP51-8260(14)
Amber 1000ml unpreserved	Α	11	11	3.1	Υ	Absent		A2-SVOC-8270(7)
Amber 1000ml unpreserved	Α	11	11	3.1	Υ	Absent		A2-SVOC-8270(7)
Vial HCl preserved	Α	NA		3.1	Υ	Absent		NYCP51-8260(14)
Vial HCl preserved	Α	NA		3.1	Υ	Absent		NYCP51-8260(14)
Vial HCl preserved	Α	NA		3.1	Υ	Absent		NYCP51-8260(14)
	Vial HCl preserved Vial HCl preserved Vial HCl preserved Amber 1000ml unpreserved Amber 1000ml unpreserved Vial HCl preserved Vial HCl preserved Vial HCl preserved Vial HCl preserved Amber 1000ml unpreserved Amber 1000ml unpreserved Vial HCl preserved Amber 1000ml unpreserved Vial HCl preserved	Container TypeCoolerVial HCl preservedAVial HCl preservedAAmber 1000ml unpreservedAAmber 1000ml unpreservedAAmber 1000ml unpreservedAVial HCl preservedAVial HCl preservedAAmber 1000ml unpreservedAAmber 1000ml unpreservedAVial HCl preservedAVial HCl preservedAVial HCl preservedAAmber 1000ml unpreservedAAmber 1000ml unpreservedAVial HCl preservedAVial HCl preservedAVial HCl preservedAVial HCl preservedAVial HCl preservedAAmber 1000ml unpreservedAAmber 1000ml unpreservedAAmber 1000ml unpreservedAAmber 1000ml unpreservedAVial HCl preservedAVial HCl preservedAVial HCl preservedAVial HCl preservedAVial HCl preservedA	Container Type Cooler PH Vial HCl preserved A NA Vial HCl preserved A NA Amber 1000ml unpreserved A 11 Amber 1000ml unpreserved A NA Vial HCl preserved A NA Amber 1000ml unpreserved A NA Vial HCl preserved A NA Amber 1000ml unpreserved A NA Vial HCl preserved A NA Amber 1000ml unpreserved A NA Vial HCl preserved A NA	Container Type Cooler pH Initial pH Vial HCl preserved A NA Vial HCl preserved A NA Amber 1000ml unpreserved A 11 11 Amber 1000ml unpreserved A 11 11 Amber 1000ml unpreserved A NA NA Vial HCl preserved A NA NA Vial HCl preserved A 11 11 Amber 1000ml unpreserved A 11 11 Vial HCl preserved A NA Vial HCl preserved A NA Vial HCl preserved A 11 11 Amber 1000ml unpreserved A 11 11 Amber 1000ml unpreserved A NA NA Vial HCl preserved A NA NA Vial HCl preserved	Container Type Cooler PH Hear deg C Vial HCl preserved A NA 3.1 Vial HCl preserved A NA 3.1 Vial HCl preserved A NA 3.1 Amber 1000ml unpreserved A 11 11 3.1 Amber 1000ml unpreserved A NA 3.1 Vial HCl preserved A NA 3.1 Vial HCl preserved A NA 3.1 Amber 1000ml unpreserved A 11 11 3.1 Amber 1000ml unpreserved A 11 11 3.1 Vial HCl preserved A NA 3.1 Vial HCl preserved A NA 3.1 Vial HCl preserved A NA 3.1 Amber 1000ml unpreserved A 11 11 3.1 Vial HCl preserved A NA 3.1 Vial HCl preserved A NA 3.1 Vial HCl preserved A NA	Container Type Cooler PH PH refinity deg C Pres Vial HCl preserved A NA 3.1 Y Vial HCl preserved A NA 3.1 Y Vial HCl preserved A NA 3.1 Y Amber 1000ml unpreserved A 11 11 3.1 Y Amber 1000ml unpreserved A NA 3.1 Y Vial HCl preserved A NA 3.1 Y Amber 1000ml unpreserved A 11 11 3.1 Y Amber 1000ml unpreserved A NA 3.1 Y Vial HCl preserved A NA 3.1 Y Vial HCl preserved A NA 3.1 Y Amber 1000ml unpreserved A NA 3.1 Y Amber 1000ml unpreserved A NA 3.1 Y Amber 1000ml unpreserved A NA 3.1 Y Vial HCl preserved	Container Type Cooler PH PH deg C Pres Seal Vial HCI preserved A NA 3.1 Y Absent Vial HCI preserved A NA 3.1 Y Absent Amber 1000ml unpreserved A 11 11 3.1 Y Absent Amber 1000ml unpreserved A 11 11 3.1 Y Absent Vial HCI preserved A NA 3.1 Y Absent Amber 1000ml unpreserved A 11 11 3.1 Y Absent Vial HCI preserved A NA 3.1 Y Absent Vial HCI preserved A NA 3.1 Y Absent Amber 1000ml unpreserved<	Container Type Cooler pH PH deg C Pres deg C Pres Seal Seal Date/Time Vial HCl preserved A NA 3.1 Y Absent Vial HCl preserved A NA 3.1 Y Absent Amber 1000ml unpreserved A 11 11 3.1 Y Absent Amber 1000ml unpreserved A 11 11 3.1 Y Absent Vial HCl preserved A NA 3.1 Y Absent Vial HCl preserved A NA 3.1 Y Absent Vial HCl preserved A NA 3.1 Y Absent Amber 1000ml unpreserved A 11 11 3.1 Y Absent Vial HCl preserved A NA 3.1 Y Absent Vial HCl preserved A NA 3.1 Y Absent Amber 1000ml unpreserved A 11 11 3.1 Y Absent

Lab Number: L2147480

Report Date: 10/06/21

Project Name: STEEL WINDS ANNUAL/SEMI ANNUAL

Project Number: 03.0033579.14

Container Info	rmation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2147480-05D	Amber 1000ml unpreserved	Α	11	11	3.1	Υ	Absent		A2-SVOC-8270(7)
L2147480-05E	Amber 1000ml unpreserved	Α	11	11	3.1	Υ	Absent		A2-SVOC-8270(7)
L2147480-06A	Vial HCl preserved	Α	NA		3.1	Υ	Absent		NYCP51-8260(14)
L2147480-06B	Vial HCl preserved	Α	NA		3.1	Υ	Absent		NYCP51-8260(14)
L2147480-06C	Vial HCl preserved	Α	NA		3.1	Υ	Absent		NYCP51-8260(14)
L2147480-06D	Amber 1000ml unpreserved	Α	11	11	3.1	Υ	Absent		A2-SVOC-8270(7)
L2147480-06E	Amber 1000ml unpreserved	Α	11	11	3.1	Υ	Absent		A2-SVOC-8270(7)
L2147480-07A	Vial HCl preserved	Α	NA		3.1	Υ	Absent		NYCP51-8260(14)
L2147480-07B	Vial HCl preserved	Α	NA		3.1	Υ	Absent		NYCP51-8260(14)
L2147480-07C	Vial HCl preserved	Α	NA		3.1	Υ	Absent		NYCP51-8260(14)
L2147480-07D	Amber 1000ml unpreserved	Α	11	11	3.1	Υ	Absent		A2-SVOC-8270(7)
L2147480-07E	Amber 1000ml unpreserved	Α	11	11	3.1	Υ	Absent		A2-SVOC-8270(7)
L2147480-08A	Vial HCl preserved	Α	NA		3.1	Υ	Absent		NYCP51-8260(14)
L2147480-08B	Vial HCl preserved	NA	NA			Υ	Absent		-
L2147480-08C	Vial HCl preserved	NA	NA			Υ	Absent		-
L2147480-09A	Vial HCl preserved	Α	NA		3.1	Υ	Absent		NYCP51-8260(14)
L2147480-09B	Vial HCl preserved	Α	NA		3.1	Υ	Absent		NYCP51-8260(14)
L2147480-09C	Vial HCl preserved	Α	NA		3.1	Υ	Absent		NYCP51-8260(14)
L2147480-09D	Amber 1000ml unpreserved	Α	11	11	3.1	Υ	Absent		A2-SVOC-8270(7)
L2147480-09E	Amber 1000ml unpreserved	Α	11	11	3.1	Υ	Absent		A2-SVOC-8270(7)

Project Name: Lab Number: STEEL WINDS ANNUAL/SEMI ANNUAL L2147480 03.0033579.14 **Report Date: Project Number:** 10/06/21

GLOSSARY

Acronyms

LOQ

MS

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments

from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case

estimate of the concentration. **EPA**

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD Laboratory Control Sample Duplicate: Refer to LCS.

Environmental Protection Agency.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LOD - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

MDI - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

- No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile NR

Organic TIC only requests.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEO - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF

and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: DU Report with 'J' Qualifiers

Project Name: STEEL WINDS ANNUAL/SEMI ANNUAL Lab Number: L2147480

Project Number: 03.0033579.14 Report Date: 10/06/21

Footnotes

 The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

1

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benzo(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA, this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A -Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- The lower value for the two columns has been reported due to obvious interference.
- Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- $\label{eq:main_equation} \textbf{M} \qquad \text{-Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.}$
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.

Report Format: DU Report with 'J' Qualifiers

Project Name:STEEL WINDS ANNUAL/SEMI ANNUALLab Number:L2147480Project Number:03.0033579.14Report Date:10/06/21

Data Qualifiers

- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q -The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- V The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits.
 (Applicable to MassDEP DW Compliance samples only.)

Report Format: DU Report with 'J' Qualifiers

Project Name:STEEL WINDS ANNUAL/SEMI ANNUALLab Number:L2147480Project Number:03.0033579.14Report Date:10/06/21

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - VI, 2018.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

Serial_No:10062113:56

ID No.:17873 Revision 19

Published Date: 4/2/2021 1:14:23 PM

Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625/625.1: alpha-Terpineol

EPA 8260C/8260D: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene;

EPA 8270D/8270E: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Pre-Qualtrax Document ID: 08-113 Document Type: Form

Westborough, MA 01581 8 Walkup Dr. TEL: 508-898-9220 FAX: 508-898-9193 NEW YORK CHAIN OF CUSTODY Mansfield, MA 02048 320 Forbes Bivd TEL: 508-822-9300 FAX: 508-822-3288		Service Centers Mahwah, NJ 07430: 35 Whitney Rd, Suite 5 Albany, NY 12205: 14 Walker Way Tonawanda, NY 14150: 275 Cooper Ave, Suite 105 Project Information Project Name: STEEL WINDS ANNUAL SEMI ANNUAL CHA						Date Rec'd 9/3/2 Deliverables ASP-B				ALPHA Job # L2147480 Billing Information Same as Client Info					
		Project Location: / ACNAWAVA, NY					1 =	EQuIS (1 File) EQUIS (4 File) POW									
Client Information	THE STATE OF	Project # 03.003	3570	3.14	1, 10/			_		1 =	Other	and an eventage	0				
Client: GZA	(Use Project name as Project #)						☐ Other ★ CAT B★ Regulatory Requirement				Disposal Site Information						
Address: 300 PEA	Project Manager: DANIEL TROY						NY TOGS NY Part 375 AWQ Standards NY CP-51 NY Restricted Use Other NY Unrestricted Use				art 375	Please identify below location	4				
Buffalo Ny	ALPHAQuote #:											applicable disposal facilities.					
Phone: 716-517	Turn-Around Time										Disposal Facility:						
Fax:	Standard Due Date:					□ NJ □ NY											
Email: DANTEL .T	Rush (only if pre approved) # of Days:						NYC Sewer Discharge				Other:						
These samples have b		ed by Alpha						_	_	ANALYSIS					Sample Filtration	T	
Other project specific	requirements/comm	ents:							-		Т		T	Т		Done	- 0
Please specify Metals	s or TAL.									O STARS	DAH SIM					Lab to do Preservation Lab to do (Please Specify below)	a I B o t
(Lab Use Only)		mple ID	Collection Date T		lection	Time Sample Matrix		Sam	pler's	26	8270					48 120 1300	1
		7 - M - M - M - M - M - M - M - M - M -			Time			Initials		30	ω					Sample Specific Comments	- e
47480-01	WT1-05-0		9/2	-121	0817	6	w	PS	2	×	X						T
02	MWN-01-0		1		0915			1		X	X						
03	MWN-018-				1020					×	×						
04	WT1-04-0				1110					×	x						
05	BCP-BRC-1				1210					Х	×						
06	WT1-02-0	90221	\perp		1255					*	×						
07	MWN-03-0	90221			1505	1	1	1		×	×						
08 TRIP BLANK			1			W		V		×	×						
09	MWN-04-0	90221	9/2	1/21	1555	6	W	PSA	J	×	X						
	Contribution																
Preservative Code: A = None B = HCI C = HNO ₃ D = H ₂ SO ₄ E = NaOH F = MeOH G = NaHSO ₄ H = Na ₂ S ₂ O ₃ K/E = Zn Ac/NaOH	Container Code P = Plastic A = Amber Glass V = Vial G = Glass B = Bacteria Cup C = Cube O = Other E = Encore D = BOD Bottle	Westboro: Certification No: MA935 Mansfield: Certification No: MA015 Belinquished By:			Date/Time 9/2/21/1635 9/02/2, 17:00		P	JIM A		teceiv	ved By:			2/21	Time /6:35	Please print clearly, legibly and completely. Samples can not be logged in and turnaround time clock will not start until any ambiguities are resolved. BY EXECUTING THIS COC, THE CLIENT HAS READ AND AGREES	
O = Other Form No: 01-25 HC (rev. 3	O. M. A.	1/02/2/		17.	11,00			general de la constante de la			9/3/2(0/30		0130	TO BE BOUND BY ALPHA'S TERMS & CONDITIONS. (See reverse side.)			

ANALYTICAL REPORT

Lab Number: L2147600

Client: GZA GeoEnvironmental of New York

300 Pearl Street

Suite 700

Buffalo, NY 14202

ATTN: Dan Troy

Phone: (716) 844-7050

Project Name: STEELWINDS ANNUAL/SEMI-ANNUAL

Project Number: 03.0033579.14

Report Date: 10/13/21

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: STEELWINDS ANNUAL/SEMI-ANNUAL

Project Number: 03.0033579.14

Lab Number: L2147600 **Report Date:** 10/13/21

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2147600-01	MWN-02D-090321	WATER	LACKAWANNA, NY	09/03/21 07:25	09/03/21
L2147600-02	MWN-02B-090321	WATER	LACKAWANNA, NY	09/03/21 08:00	09/03/21
L2147600-03	MWN-02-090321	WATER	LACKAWANNA, NY	09/03/21 08:35	09/03/21
L2147600-04	MWN-03B-090321	WATER	LACKAWANNA, NY	09/03/21 09:55	09/03/21
L2147600-05	MWN-03D-090321	WATER	LACKAWANNA, NY	09/03/21 10:05	09/03/21
L2147600-06	TRIP BLANK	WATER	LACKAWANNA, NY	09/03/21 00:00	09/03/21

Serial No:10132110:22

L2147600

Project Name: STEELWINDS ANNUAL/SEMI-ANNUAL Lab Number:

Project Number: 03.0033579.14 **Report Date:** 10/13/21

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.										

Project Name: STEELWINDS ANNUAL/SEMI-ANNUAL Lab Number: L2147600

Project Number: 03.0033579.14 Report Date: 10/13/21

Case Narrative (continued)

Report Revision

October 13, 2021: The Metals element lists have been amended on L2147600-04 and -05 to remove Magnesium and to include Manganese.

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Semivolatile Organics

L2147600-02D: The sample has an elevated detection limit due to the dilution required by the sample matrix. The WG1543557-3 LCSD recoveries, associated with L2147600-02, -03, and -05, were below the acceptance criteria for 1,3-dichlorobenzene (10%), 1,4-dichlorobenzene (10%), 1,2-dichlorobenzene (13%), hexachloroethane (5%), 1,2,4-trichlorobenzene (13%), hexachlorobutadiene (5%), 2-methylnaphthalene (29%), 1,2,4,5-tetrachlorobenzene (21%), hexachlorocyclopentadiene (3%), and 2-chloronaphthalene (35%); however, the criteria were achieved upon re-extraction outside of holding time. The results of both extractions are reported.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 10/13/21

Melissa Sturgis Melissa Sturgis

ORGANICS

VOLATILES

L2147600

09/03/21 08:00

Project Name: STEELWINDS ANNUAL/SEMI-ANNUAL

Project Number: 03.0033579.14

SAMPLE RESULTS

Report Date: 10/13/21

Lab Number:

Date Collected:

Lab ID: L2147600-02 D Client ID: MWN-02B-090321 Sample Location: LACKAWANNA, NY

Date Received: 09/03/21 Field Prep: Not Specified

Sample Depth:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 09/14/21 16:41

Analyst: PD

Parameter	Result	Result Qualifier		RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Wes	stborough Lab						
Benzene	61		ug/l	1.0	0.32	2	
Toluene	11		ug/l	5.0	1.4	2	
Ethylbenzene	ND		ug/l	5.0	1.4	2	
Methyl tert butyl ether	ND		ug/l	5.0	1.4	2	
p/m-Xylene	9.2		ug/l	5.0	1.4	2	
o-Xylene	13		ug/l	5.0	1.4	2	
n-Butylbenzene	ND		ug/l	5.0	1.4	2	
sec-Butylbenzene	ND		ug/l	5.0	1.4	2	
tert-Butylbenzene	ND		ug/l	5.0	1.4	2	
Isopropylbenzene	ND		ug/l	5.0	1.4	2	
p-Isopropyltoluene	ND		ug/l	5.0	1.4	2	
Naphthalene	280		ug/l	5.0	1.4	2	
n-Propylbenzene	ND		ug/l	5.0	1.4	2	
1,3,5-Trimethylbenzene	2.0	J	ug/l	5.0	1.4	2	
1,2,4-Trimethylbenzene	3.5	J	ug/l	5.0	1.4	2	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	99	70-130	
Toluene-d8	100	70-130	
4-Bromofluorobenzene	112	70-130	
Dibromofluoromethane	94	70-130	

Project Name: STEELWINDS ANNUAL/SEMI-ANNUAL

Project Number: 03.0033579.14

SAMPLE RESULTS

Lab Number: L2147600

Report Date: 10/13/21

Lab ID: L2147600-03

Client ID: MWN-02-090321

Sample Location: LACKAWANNA, NY

Sample Depth:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 09/14/21 15:55

Analyst: PD

Date Collected: 09/03/21 08:35
Date Received: 09/03/21
Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborou	ıgh Lab					
Benzene	5.1		ug/l	0.50	0.16	1
Toluene	1.4	J	ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	2.4	J	ug/l	2.5	0.70	1
o-Xylene	2.1	J	ug/l	2.5	0.70	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	20		ug/l	2.5	0.70	1
n-Propylbenzene	ND		ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene	1.8	J	ug/l	2.5	0.70	1
1,2,4-Trimethylbenzene	1.2	J	ug/l	2.5	0.70	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	102	70-130	
Toluene-d8	99	70-130	
4-Bromofluorobenzene	112	70-130	
Dibromofluoromethane	99	70-130	

L2147600

Project Name: STEELWINDS ANNUAL/SEMI-ANNUAL

Project Number: 03.0033579.14

SAMPLE RESULTS

10/13/21

Report Date:

Lab Number:

Lab ID: L2147600-05

Client ID: MWN-03D-090321 Sample Location: LACKAWANNA, NY Date Collected: 09/03/21 10:05 Date Received: 09/03/21 Field Prep: Not Specified

Sample Depth:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 09/16/21 01:01

Analyst: MKS

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westborough Lab							
Benzene	ND		ug/l	0.50	0.16	1	
Toluene	ND		ug/l	2.5	0.70	1	
Ethylbenzene	ND		ug/l	2.5	0.70	1	
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1	
p/m-Xylene	ND		ug/l	2.5	0.70	1	
o-Xylene	ND		ug/l	2.5	0.70	1	
n-Butylbenzene	ND		ug/l	2.5	0.70	1	
sec-Butylbenzene	ND		ug/l	2.5	0.70	1	
tert-Butylbenzene	ND		ug/l	2.5	0.70	1	
Isopropylbenzene	ND		ug/l	2.5	0.70	1	
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1	
Naphthalene	ND		ug/l	2.5	0.70	1	
n-Propylbenzene	ND		ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	107	70-130	
Toluene-d8	96	70-130	
4-Bromofluorobenzene	103	70-130	
Dibromofluoromethane	102	70-130	

L2147600

09/03/21 00:00

Not Specified

09/03/21

Project Name: STEELWINDS ANNUAL/SEMI-ANNUAL

Project Number: 03.0033579.14

SAMPLE RESULTS

Report Date: 10/13/21

Lab Number:

Date Collected:

Date Received:

Field Prep:

Lab ID: L2147600-06 Client ID: TRIP BLANK

Sample Location: LACKAWANNA, NY

Sample Depth:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 09/14/21 15:31

Analyst: PD

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Wes	stborough Lab						
Benzene	ND		ug/l	0.50	0.16	1	
Toluene	ND		ug/l	2.5	0.70	1	
Ethylbenzene	ND		ug/l	2.5	0.70	1	
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1	
p/m-Xylene	ND		ug/l	2.5	0.70	1	
o-Xylene	ND		ug/l	2.5	0.70	1	
n-Butylbenzene	ND		ug/l	2.5	0.70	1	
sec-Butylbenzene	ND		ug/l	2.5	0.70	1	
tert-Butylbenzene	ND		ug/l	2.5	0.70	1	
Isopropylbenzene	ND		ug/l	2.5	0.70	1	
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1	
Naphthalene	ND		ug/l	2.5	0.70	1	
n-Propylbenzene	ND		ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	102	70-130	
Toluene-d8	98	70-130	
4-Bromofluorobenzene	112	70-130	
Dibromofluoromethane	99	70-130	

Project Name: STEELWINDS ANNUAL/SEMI-ANNUAL Lab Number: L2147600

Project Number: 03.0033579.14 **Report Date:** 10/13/21

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 09/14/21 08:32

Analyst: PD

Parameter	Result	Qualifier Units	RL.	MDL	
/olatile Organics by GC/MS - W	estborough Lab	for sample(s):	02-03,06 E	Batch: WG1546	688-5
Benzene	ND	ug/l	0.50	0.16	
Toluene	ND	ug/l	2.5	0.70	
Ethylbenzene	ND	ug/l	2.5	0.70	
Methyl tert butyl ether	ND	ug/l	2.5	0.70	
p/m-Xylene	ND	ug/l	2.5	0.70	
o-Xylene	ND	ug/l	2.5	0.70	
n-Butylbenzene	ND	ug/l	2.5	0.70	
sec-Butylbenzene	ND	ug/l	2.5	0.70	
tert-Butylbenzene	ND	ug/l	2.5	0.70	
Isopropylbenzene	ND	ug/l	2.5	0.70	
p-Isopropyltoluene	ND	ug/l	2.5	0.70	
Naphthalene	ND	ug/l	2.5	0.70	
n-Propylbenzene	ND	ug/l	2.5	0.70	
1,3,5-Trimethylbenzene	ND	ug/l	2.5	0.70	
1,2,4-Trimethylbenzene	ND	ug/l	2.5	0.70	

		Acceptance		
Surrogate	%Recovery Qualifi	er Criteria		
1,2-Dichloroethane-d4	104	70-130		
Toluene-d8	98	70-130		
4-Bromofluorobenzene	106	70-130		
Dibromofluoromethane	102	70-130		

Project Name: STEELWINDS ANNUAL/SEMI-ANNUAL Lab Number: L2147600

Project Number: 03.0033579.14 **Report Date:** 10/13/21

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 09/15/21 19:52

Analyst: MKS

Parameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS	- Westborough Lab	for sample(s): 05	Batch:	WG1547196-5
Benzene	ND	ug/l	0.50	0.16
Toluene	ND	ug/l	2.5	0.70
Ethylbenzene	ND	ug/l	2.5	0.70
Methyl tert butyl ether	ND	ug/l	2.5	0.70
p/m-Xylene	ND	ug/l	2.5	0.70
o-Xylene	ND	ug/l	2.5	0.70
n-Butylbenzene	ND	ug/l	2.5	0.70
sec-Butylbenzene	ND	ug/l	2.5	0.70
tert-Butylbenzene	ND	ug/l	2.5	0.70
Isopropylbenzene	ND	ug/l	2.5	0.70
p-Isopropyltoluene	ND	ug/l	2.5	0.70
Naphthalene	ND	ug/l	2.5	0.70
n-Propylbenzene	ND	ug/l	2.5	0.70
1,3,5-Trimethylbenzene	ND	ug/l	2.5	0.70
1,2,4-Trimethylbenzene	ND	ug/l	2.5	0.70

	Acceptance				
Surrogate	%Recovery Qualifi	er Criteria			
1,2-Dichloroethane-d4	108	70-130			
Toluene-d8	98	70-130			
4-Bromofluorobenzene	104	70-130			
Dibromofluoromethane	100	70-130			

Project Name: STEELWINDS ANNUAL/SEMI-ANNUAL

Project Number: 03.0033579.14

Lab Number: L2147600

Report Date: 10/13/21

Parameter	LCS %Recovery	Qual	LCSD %Recovery		Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - Westborough I	_ab Associated	sample(s):	02-03,06 Bato	ch: WG1546688-	3 WG1546688-4			
Benzene	98		96		70-130	2		20
Toluene	100		100		70-130	0		20
Ethylbenzene	100		97		70-130	3		20
Methyl tert butyl ether	80		80		63-130	0		20
p/m-Xylene	105		100		70-130	5		20
o-Xylene	100		100		70-130	0		20
n-Butylbenzene	100		100		53-136	0		20
sec-Butylbenzene	110		110		70-130	0		20
tert-Butylbenzene	100		100		70-130	0		20
Isopropylbenzene	110		110		70-130	0		20
p-Isopropyltoluene	100		100		70-130	0		20
Naphthalene	98		97		70-130	1		20
n-Propylbenzene	110		100		69-130	10		20
1,3,5-Trimethylbenzene	100		100		64-130	0		20
1,2,4-Trimethylbenzene	110		100		70-130	10		20

Surrogate	LCS %Recovery Qua	LCSD I %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	99	99	70-130
Toluene-d8	101	99	70-130
4-Bromofluorobenzene	102	103	70-130
Dibromofluoromethane	93	93	70-130

Project Name: STEELWINDS ANNUAL/SEMI-ANNUAL

Project Number: 03.0033579.14

Lab Number: L2147600

Report Date: 10/13/21

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
platile Organics by GC/MS - Westborough L	•		•		WG1547196-4			
3 ,		1 ()						
Benzene	100		100		70-130	0		20
Toluene	100		110		70-130	10		20
Ethylbenzene	100		100		70-130	0		20
Methyl tert butyl ether	100		100		63-130	0		20
p/m-Xylene	105		105		70-130	0		20
o-Xylene	105		105		70-130	0		20
n-Butylbenzene	110		110		53-136	0		20
sec-Butylbenzene	110		110		70-130	0		20
tert-Butylbenzene	100		110		70-130	10		20
Isopropylbenzene	110		110		70-130	0		20
p-Isopropyltoluene	110		110		70-130	0		20
Naphthalene	110		120		70-130	9		20
n-Propylbenzene	110		110		69-130	0		20
1,3,5-Trimethylbenzene	110		110		64-130	0		20
1,2,4-Trimethylbenzene	110		110		70-130	0		20

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	107	105	70-130
Toluene-d8	101	99	70-130
4-Bromofluorobenzene	101	99	70-130
Dibromofluoromethane	92	93	70-130

SEMIVOLATILES

L2147600

10/13/21

Project Name: STEELWINDS ANNUAL/SEMI-ANNUAL

L2147600-02

MWN-02B-090321

LACKAWANNA, NY

Project Number: 03.0033579.14

SAMPLE RESULTS

Date Collected: 09/03/21 08:00

Lab Number:

Report Date:

Date Received: 09/03/21
Field Prep: Not Specified

Sample Depth:

Sample Location:

Lab ID:

Client ID:

Matrix: Water
Analytical Method: 1,8270D
Analytical Date: 09/26/21 04:43

Analyst: PS

Extraction	Method:	EPA 3510C
Extraction	Date:	09/07/21 14:00

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - Ma	nsfield Lab					
bis(2-Chloroethyl)ether	ND		ug/l	0.495	0.092	1
1,3-Dichlorobenzene	ND		ug/l	0.495	0.078	1
1,4-Dichlorobenzene	ND		ug/l	0.495	0.082	1
1,2-Dichlorobenzene	0.162	J	ug/l	0.495	0.067	1
Benzyl alcohol	ND		ug/l	0.495	0.122	1
bis(2-chloroisopropyl)ether	ND		ug/l	0.495	0.107	1
Acetophenone	ND		ug/l	0.990	0.205	1
Hexachloroethane	ND		ug/l	0.495	0.101	1
Nitrobenzene	ND		ug/l	0.495	0.101	1
Isophorone	ND		ug/l	0.495	0.125	1
bis(2-Chloroethoxy)methane	ND		ug/l	0.495	0.085	1
1,2,4-Trichlorobenzene	ND		ug/l	0.495	0.095	1
Naphthalene	102	E	ug/l	0.495	0.087	1
4-Chloroaniline	ND		ug/l	0.495	0.127	1
Hexachlorobutadiene	ND		ug/l	0.495	0.085	1
2-Methylnaphthalene	6.89		ug/l	0.495	0.090	1
1,2,4,5-Tetrachlorobenzene	ND		ug/l	0.495	0.079	1
Hexachlorocyclopentadiene	ND		ug/l	0.495	0.151	1
Biphenyl	1.52		ug/l	0.495	0.110	1
2-Chloronaphthalene	ND		ug/l	0.495	0.089	1
2-Nitroaniline	ND		ug/l	0.495	0.137	1
Acenaphthylene	3.18		ug/l	0.495	0.111	1
Dimethylphthalate	ND		ug/l	0.495	0.116	1
2,6-Dinitrotoluene	ND		ug/l	0.495	0.166	1
Acenaphthene	7.46		ug/l	0.495	0.095	1
3-Nitroaniline	ND		ug/l	0.495	0.110	1
Dibenzofuran	6.32		ug/l	0.495	0.090	1
2,4-Dinitrotoluene	ND		ug/l	0.495	0.161	1

10/13/21

Project Name: Lab Number: STEELWINDS ANNUAL/SEMI-ANNUAL L2147600

Project Number: 03.0033579.14

SAMPLE RESULTS

Date Collected: 09/03/21 08:00

Report Date:

Lab ID: L2147600-02 Client ID: Date Received: 09/03/21 MWN-02B-090321 Sample Location: LACKAWANNA, NY

Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS -	Mansfield Lab					
Fluorene	10.2		ug/l	0.495	0.103	1
Diethylphthalate	ND		ug/l	0.495	0.178	1
4-Nitroaniline	ND		ug/l	0.495	0.111	1
n-Nitrosodiphenylamine	ND		ug/l	0.495	0.071	1
Hexachlorobenzene	ND		ug/l	0.495	0.121	1
Phenanthrene	18.0		ug/l	0.495	0.110	1
Anthracene	1.67		ug/l	0.495	0.136	1
Carbazole	23.1		ug/l	0.495	0.142	1
Di-n-butylphthalate	ND		ug/l	0.495	0.099	1
Fluoranthene	3.34		ug/l	0.495	0.154	1
Pyrene	2.49		ug/l	0.495	0.168	1
Butylbenzylphthalate	0.124	J	ug/l	0.495	0.084	1
3,3'-Dichlorobenzidine	ND		ug/l	0.495	0.191	1
Benz(a)anthracene	ND		ug/l	0.495	0.182	1
Chrysene	ND		ug/l	0.495	0.140	1
bis(2-Ethylhexyl)phthalate	ND		ug/l	0.495	0.080	1
Di-n-octylphthalate	ND		ug/l	0.990	0.078	1
Benzo(b)fluoranthene	ND		ug/l	0.495	0.065	1
Benzo(k)fluoranthene	ND		ug/l	0.495	0.159	1
Benzo(a)pyrene	ND		ug/l	0.495	0.060	1
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.495	0.089	1
Dibenz(a,h)anthracene	ND		ug/l	0.495	0.064	1
Benzo(g,h,i)perylene	ND		ug/l	0.495	0.108	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
2-Fluorophenol	49	15-115	
Phenol-d5	35	15-115	
Nitrobenzene-d5	74	30-130	
2-Fluorobiphenyl	84	30-130	
2,4,6-Tribromophenol	88	15-115	
Terphenyl-d14	92	30-130	

30-130

15-115

30-130

10/13/21

Project Name: Lab Number: STEELWINDS ANNUAL/SEMI-ANNUAL L2147600

Project Number: 03.0033579.14

10/04/21 17:50

SAMPLE RESULTS

Date Collected: 09/03/21 08:00

Report Date:

Lab ID: RE/D L2147600-02 Client ID: Date Received: 09/03/21 MWN-02B-090321

Sample Location: Field Prep: LACKAWANNA, NY Not Specified

Sample Depth:

Analytical Date:

Extraction Method: EPA 3510C Matrix: Water **Extraction Date:** 09/28/21 18:00 1,8270D Analytical Method:

Analyst: GP

2-Fluorobiphenyl

2,4,6-Tribromophenol Terphenyl-d14

Pai	rameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Se	mivolatile Organics by GC/MS - Mansfield	Lab					
Nap	ohthalene	206		ug/l	4.90	0.859	10
	Surrogate			% Recovery	Qualifier	Accep Crite	
	2-Fluorophenol			53		15	-115
	Phenol-d5			36		15	-115
	Nitrobenzene-d5			100		30	-130

80

108

94

L2147600

10/13/21

Project Name: Lab Number: STEELWINDS ANNUAL/SEMI-ANNUAL

Project Number: 03.0033579.14

SAMPLE RESULTS

Date Collected: 09/03/21 08:00

Report Date:

Lab ID: RE L2147600-02 Date Received: Client ID: 09/03/21 MWN-02B-090321

Sample Location: Field Prep: LACKAWANNA, NY Not Specified

Sample Depth:

Extraction Method: EPA 3510C Matrix: Water **Extraction Date:** 09/28/21 18:00 Analytical Method: 1,8270D

Analytical Date: 10/01/21 15:44

GΡ Analyst:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS - Ma	ansfield Lab						
bis(2-Chloroethyl)ether	ND		ug/l	0.490	0.091	1	
1,3-Dichlorobenzene	ND		ug/l	0.490	0.077	1	
1,4-Dichlorobenzene	ND		ug/l	0.490	0.081	1	
1,2-Dichlorobenzene	0.142	J	ug/l	0.490	0.067	1	
Benzyl alcohol	ND		ug/l	0.490	0.120	1	
bis(2-chloroisopropyl)ether	ND		ug/l	0.490	0.106	1	
Acetophenone	0.553	J	ug/l	0.980	0.203	1	
Hexachloroethane	ND		ug/l	0.490	0.100	1	
Nitrobenzene	ND		ug/l	0.490	0.100	1	
Isophorone	ND		ug/l	0.490	0.124	1	
bis(2-Chloroethoxy)methane	ND		ug/l	0.490	0.084	1	
1,2,4-Trichlorobenzene	ND		ug/l	0.490	0.094	1	
Naphthalene	98.1	E	ug/l	0.490	0.086	1	
4-Chloroaniline	ND		ug/l	0.490	0.125	1	
Hexachlorobutadiene	ND		ug/l	0.490	0.084	1	
2-Methylnaphthalene	5.74		ug/l	0.490	0.089	1	
1,2,4,5-Tetrachlorobenzene	ND		ug/l	0.490	0.078	1	
Hexachlorocyclopentadiene	ND		ug/l	0.490	0.150	1	
Biphenyl	1.30		ug/l	0.490	0.109	1	
2-Chloronaphthalene	ND		ug/l	0.490	0.088	1	
2-Nitroaniline	ND		ug/l	0.490	0.135	1	
Acenaphthylene	2.10		ug/l	0.490	0.110	1	
Dimethylphthalate	ND		ug/l	0.490	0.115	1	
2,6-Dinitrotoluene	ND		ug/l	0.490	0.165	1	
Acenaphthene	6.29		ug/l	0.490	0.094	1	
3-Nitroaniline	ND		ug/l	0.490	0.109	1	
Dibenzofuran	5.78		ug/l	0.490	0.089	1	
2,4-Dinitrotoluene	ND		ug/l	0.490	0.160	1	

10/13/21

Project Name: STEELWINDS ANNUAL/SEMI-ANNUAL Lab Number: L2147600

Project Number: 03.0033579.14

L2147600-02

SAMPLE RESULTS

Date Collected: 09/03/21 08:00

Report Date:

Client ID: MWN-02B-090321 Date Received: 09/03/21 Sample Location: LACKAWANNA, NY Field Prep: Not Specified

RE

Sample Depth:

Lab ID:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS	- Mansfield Lab					
Fluorene	9.46		ug/l	0.490	0.102	1
Diethylphthalate	ND		ug/l	0.490	0.176	1
4-Nitroaniline	ND		ug/l	0.490	0.110	1
n-Nitrosodiphenylamine	0.362	J	ug/l	0.490	0.071	1
Hexachlorobenzene	ND		ug/l	0.490	0.120	1
Phenanthrene	17.0		ug/l	0.490	0.109	1
Anthracene	1.18		ug/l	0.490	0.134	1
Carbazole	22.6		ug/l	0.490	0.140	1
Di-n-butylphthalate	ND		ug/l	0.490	0.098	1
Fluoranthene	3.32		ug/l	0.490	0.153	1
Pyrene	2.30		ug/l	0.490	0.167	1
Butylbenzylphthalate	0.093	J	ug/l	0.490	0.083	1
3,3'-Dichlorobenzidine	ND		ug/l	0.490	0.189	1
Benz(a)anthracene	ND		ug/l	0.490	0.180	1
Chrysene	ND		ug/l	0.490	0.139	1
bis(2-Ethylhexyl)phthalate	ND		ug/l	0.490	0.079	1
Di-n-octylphthalate	ND		ug/l	0.980	0.077	1
Benzo(b)fluoranthene	ND		ug/l	0.490	0.064	1
Benzo(k)fluoranthene	ND		ug/l	0.490	0.158	1
Benzo(a)pyrene	ND		ug/l	0.490	0.059	1
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.490	0.088	1
Dibenz(a,h)anthracene	ND		ug/l	0.490	0.063	1
Benzo(g,h,i)perylene	ND		ug/l	0.490	0.107	1

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	51	15-115
Phenol-d5	35	15-115
Nitrobenzene-d5	70	30-130
2-Fluorobiphenyl	74	30-130
2,4,6-Tribromophenol	92	15-115
Terphenyl-d14	89	30-130

10/13/21

Report Date:

Project Name: Lab Number: STEELWINDS ANNUAL/SEMI-ANNUAL L2147600

Project Number: 03.0033579.14

09/28/21 00:56

SAMPLE RESULTS

Lab ID: D Date Collected: 09/03/21 08:00 L2147600-02

Date Received: Client ID: 09/03/21 MWN-02B-090321 Sample Location: Field Prep: LACKAWANNA, NY Not Specified

Sample Depth:

Extraction Method: EPA 3510C Matrix: Water **Extraction Date:** 09/07/21 14:00 Analytical Method: 1,8270D Analytical Date:

PS Analyst:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - Mansfield	Lab					
Naphthalene	183		ug/l	4.95	0.867	10
Surrogate			% Recovery	Qualifier		ptance iteria

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	42	15-115
Phenol-d5	32	15-115
Nitrobenzene-d5	82	30-130
2-Fluorobiphenyl	76	30-130
2,4,6-Tribromophenol	79	15-115
Terphenyl-d14	87	30-130

L2147600

Project Name: STEELWINDS ANNUAL/SEMI-ANNUAL

09/26/21 02:31

Project Number: 03.0033579.14

SAMPLE RESULTS

10/13/21

Report Date: 10/13/21

Lab Number:

 Lab ID:
 L2147600-03
 Date Collected:
 09/03/21 08:35

 Client ID:
 MWN-02-090321
 Date Received:
 09/03/21

Sample Location: LACKAWANNA, NY Field Prep: Not Specified

Sample Depth:

Analytical Date:

Matrix: Water Extraction Method: EPA 3510C
Analytical Method: 1,8270D Extraction Date: 09/07/21 14:00

Analyst: PS

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS -	Mansfield Lab						
bis(2-Chloroethyl)ether	ND		ug/l	0.495	0.092	1	
1,3-Dichlorobenzene	ND		ug/l	0.495	0.078	1	
1,4-Dichlorobenzene	ND		ug/l	0.495	0.082	1	
1,2-Dichlorobenzene	ND		ug/l	0.495	0.067	1	
Benzyl alcohol	ND		ug/l	0.495	0.122	1	
bis(2-chloroisopropyl)ether	ND		ug/l	0.495	0.107	1	
Acetophenone	ND		ug/l	0.990	0.205	1	
Hexachloroethane	ND		ug/l	0.495	0.101	1	
Nitrobenzene	ND		ug/l	0.495	0.101	1	
Isophorone	ND		ug/l	0.495	0.125	1	
bis(2-Chloroethoxy)methane	ND		ug/l	0.495	0.085	1	
1,2,4-Trichlorobenzene	ND		ug/l	0.495	0.095	1	
Naphthalene	5.23		ug/l	0.495	0.087	1	
4-Chloroaniline	ND		ug/l	0.495	0.127	1	
Hexachlorobutadiene	ND		ug/l	0.495	0.085	1	
2-Methylnaphthalene	1.78		ug/l	0.495	0.090	1	
1,2,4,5-Tetrachlorobenzene	ND		ug/l	0.495	0.079	1	
Hexachlorocyclopentadiene	ND		ug/l	0.495	0.151	1	
Biphenyl	0.732		ug/l	0.495	0.110	1	
2-Chloronaphthalene	ND		ug/l	0.495	0.089	1	
2-Nitroaniline	ND		ug/l	0.495	0.137	1	
Acenaphthylene	1.98		ug/l	0.495	0.111	1	
Dimethylphthalate	ND		ug/l	0.495	0.116	1	
2,6-Dinitrotoluene	ND		ug/l	0.495	0.166	1	
Acenaphthene	1.20		ug/l	0.495	0.095	1	
3-Nitroaniline	ND		ug/l	0.495	0.110	1	
Dibenzofuran	2.35		ug/l	0.495	0.090	1	
2,4-Dinitrotoluene	ND		ug/l	0.495	0.161	1	

L2147600

10/13/21

Project Name: Lab Number: STEELWINDS ANNUAL/SEMI-ANNUAL

Project Number: 03.0033579.14

L2147600-03

MWN-02-090321

LACKAWANNA, NY

SAMPLE RESULTS

Report Date:

Date Collected: 09/03/21 08:35 Date Received: 09/03/21

Field Prep: Not Specified

Sample Depth:

Sample Location:

Lab ID:

Client ID:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS	- Mansfield Lab					
Fluorene	4.76		ug/l	0.495	0.103	1
Diethylphthalate	ND		ug/l	0.495	0.178	1
4-Nitroaniline	ND		ug/l	0.495	0.111	1
n-Nitrosodiphenylamine	ND		ug/l	0.495	0.071	1
Hexachlorobenzene	ND		ug/l	0.495	0.121	1
Phenanthrene	4.14		ug/l	0.495	0.110	1
Anthracene	0.983		ug/l	0.495	0.136	1
Carbazole	3.67		ug/l	0.495	0.142	1
Di-n-butylphthalate	ND		ug/l	0.495	0.099	1
Fluoranthene	1.56		ug/l	0.495	0.154	1
Pyrene	1.56		ug/l	0.495	0.168	1
Butylbenzylphthalate	0.093	J	ug/l	0.495	0.084	1
3,3'-Dichlorobenzidine	ND		ug/l	0.495	0.191	1
Benz(a)anthracene	ND		ug/l	0.495	0.182	1
Chrysene	ND		ug/l	0.495	0.140	1
bis(2-Ethylhexyl)phthalate	ND		ug/l	0.495	0.080	1
Di-n-octylphthalate	ND		ug/l	0.990	0.078	1
Benzo(b)fluoranthene	ND		ug/l	0.495	0.065	1
Benzo(k)fluoranthene	ND		ug/l	0.495	0.159	1
Benzo(a)pyrene	ND		ug/l	0.495	0.060	1
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.495	0.089	1
Dibenz(a,h)anthracene	ND		ug/l	0.495	0.064	1
Benzo(g,h,i)perylene	ND		ug/l	0.495	0.108	1

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	24	15-115
Phenol-d5	20	15-115
Nitrobenzene-d5	81	30-130
2-Fluorobiphenyl	78	30-130
2,4,6-Tribromophenol	58	15-115
Terphenyl-d14	85	30-130

10/13/21

Project Name: STEELWINDS ANNUAL/SEMI-ANNUAL Lab Number: L2147600

RE

Project Number: 03.0033579.14

L2147600-03

10/01/21 16:16

SAMPLE RESULTS

Date Collected: 09/03/21 08:35

Report Date:

Client ID: MWN-02-090321 Date Received: 09/03/21 Sample Location: LACKAWANNA, NY Field Prep: Not Specified

Sample Depth:

Analytical Date:

Lab ID:

Matrix: Water Extraction Method: EPA 3510C
Analytical Method: 1,8270D Extraction Date: 09/28/21 18:00

Analyst: GP

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS	- Mansfield Lab						
bis(2-Chloroethyl)ether	ND		ug/l	0.495	0.092	1	
1,3-Dichlorobenzene	ND		ug/l	0.495	0.078	1	
1,4-Dichlorobenzene	ND		ug/l	0.495	0.082	1	
1,2-Dichlorobenzene	ND		ug/l	0.495	0.067	1	
Benzyl alcohol	ND		ug/l	0.495	0.122	1	
bis(2-chloroisopropyl)ether	ND		ug/l	0.495	0.107	1	
Acetophenone	0.301	J	ug/l	0.990	0.205	1	
Hexachloroethane	ND		ug/l	0.495	0.101	1	
Nitrobenzene	ND		ug/l	0.495	0.101	1	
Isophorone	ND		ug/l	0.495	0.125	1	
bis(2-Chloroethoxy)methane	ND		ug/l	0.495	0.085	1	
1,2,4-Trichlorobenzene	ND		ug/l	0.495	0.095	1	
Naphthalene	2.04		ug/l	0.495	0.087	1	
4-Chloroaniline	ND		ug/l	0.495	0.127	1	
Hexachlorobutadiene	ND		ug/l	0.495	0.085	1	
2-Methylnaphthalene	1.23		ug/l	0.495	0.090	1	
1,2,4,5-Tetrachlorobenzene	ND		ug/l	0.495	0.079	1	
Hexachlorocyclopentadiene	ND		ug/l	0.495	0.151	1	
Biphenyl	0.629		ug/l	0.495	0.110	1	
2-Chloronaphthalene	ND		ug/l	0.495	0.089	1	
2-Nitroaniline	ND		ug/l	0.495	0.137	1	
Acenaphthylene	1.60		ug/l	0.495	0.111	1	
Dimethylphthalate	ND		ug/l	0.495	0.116	1	
2,6-Dinitrotoluene	ND		ug/l	0.495	0.166	1	
Acenaphthene	1.02		ug/l	0.495	0.095	1	
3-Nitroaniline	ND		ug/l	0.495	0.110	1	
Dibenzofuran	1.88		ug/l	0.495	0.090	1	
2,4-Dinitrotoluene	ND		ug/l	0.495	0.161	1	

10/13/21

Project Name: Lab Number: STEELWINDS ANNUAL/SEMI-ANNUAL L2147600

Project Number: 03.0033579.14

L2147600-03

SAMPLE RESULTS

Date Collected: 09/03/21 08:35

Report Date:

Date Received: Client ID: 09/03/21 MWN-02-090321 Sample Location: Field Prep: LACKAWANNA, NY Not Specified

RE

Sample Depth:

Lab ID:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS	- Mansfield Lab					
Fluorene	4.21		ug/l	0.495	0.103	1
Diethylphthalate	ND		ug/l	0.495	0.178	1
4-Nitroaniline	ND		ug/l	0.495	0.111	1
n-Nitrosodiphenylamine	ND		ug/l	0.495	0.071	1
Hexachlorobenzene	ND		ug/l	0.495	0.121	1
Phenanthrene	3.30		ug/l	0.495	0.110	1
Anthracene	0.951		ug/l	0.495	0.136	1
Carbazole	3.31		ug/l	0.495	0.142	1
Di-n-butylphthalate	ND		ug/l	0.495	0.099	1
Fluoranthene	1.47		ug/l	0.495	0.154	1
Pyrene	1.53		ug/l	0.495	0.168	1
Butylbenzylphthalate	0.089	J	ug/l	0.495	0.084	1
3,3'-Dichlorobenzidine	ND		ug/l	0.495	0.191	1
Benz(a)anthracene	ND		ug/l	0.495	0.182	1
Chrysene	ND		ug/l	0.495	0.140	1
bis(2-Ethylhexyl)phthalate	ND		ug/l	0.495	0.080	1
Di-n-octylphthalate	ND		ug/l	0.990	0.078	1
Benzo(b)fluoranthene	ND		ug/l	0.495	0.065	1
Benzo(k)fluoranthene	ND		ug/l	0.495	0.159	1
Benzo(a)pyrene	ND		ug/l	0.495	0.060	1
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.495	0.089	1
Dibenz(a,h)anthracene	ND		ug/l	0.495	0.064	1
Benzo(g,h,i)perylene	ND		ug/l	0.495	0.108	1

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	45	15-115
Phenol-d5	29	15-115
Nitrobenzene-d5	86	30-130
2-Fluorobiphenyl	72	30-130
2,4,6-Tribromophenol	89	15-115
Terphenyl-d14	92	30-130

L2147600

10/13/21

09/07/21 14:00

Project Name: STEELWINDS ANNUAL/SEMI-ANNUAL

L2147600-05

MWN-03D-090321

LACKAWANNA, NY

Project Number: 03.0033579.14

SAMPLE RESULTS

Date Collected: 09/03/21 10:05

Date Received: 09/03/21

Extraction Method: EPA 3510C

Lab Number:

Report Date:

Extraction Date:

Field Prep: Not Specified

Sample Depth:

Sample Location:

Lab ID:

Client ID:

Matrix: Water Analytical Method: 1,8270D 09/26/21 01:58

Analytical Date:

Analyst: PS

Semivolatile Organics by GC/MS - Mansfield Labrian	Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
1,3-Dichlorobenzene ND ug/l 0,500 0,078 1 1,4-Dichlorobenzene ND ug/l 0,500 0,083 1 1,2-Dichlorobenzene ND ug/l 0,500 0,088 1 1,2-Dichlorobenzene ND ug/l 0,500 0,088 1 Benzyl alcohol ND ug/l 0,500 0,123 1 bls(2-chlorolsopropyl)ether ND ug/l 0,500 0,102 1 Disc(2-chlorolsopropyl)ether ND ug/l 0,500 0,102 1 Hexachloroethane ND ug/l 0,500 0,102 1 Hexachloroethane ND ug/l 0,500 0,102 1 Isophorone ND ug/l 0,500 0,102 1 Isophorone ND ug/l 0,500 0,102 1 Isophorone ND ug/l 0,500 0,126 1 Isophorone ND ug/l 0,500 0,085 1 Isophorone ND ug/l 0,500 0,085 1 Isophorone ND ug/l 0,500 0,086 1 Isophorone ND ug/l 0,500 0,111 1 Isophorone ND ug/l 0,500 0,112 1 Isophorone ND ug/l 0,500 0,111 1 Isophorone ND ug/l 0,500	Semivolatile Organics by GC/MS -	Mansfield Lab					
1.4-Dichlorobenzene ND ug/l 0.500 0.083 1 1.2-Dichlorobenzene ND ug/l 0.500 0.068 1 Benzyl alcohol ND ug/l 0.500 0.123 1 bis(2-chloroisopropyl)ether ND ug/l 0.500 0.108 1 Acetophenone ND ug/l 0.500 0.102 1 Hexachloroethane ND ug/l 0.500 0.102 1 Wittobenzene ND ug/l 0.500 0.102 1 Isophorone ND ug/l 0.500 0.102 1 Isophorone ND ug/l 0.500 0.022 1 Isophorone ND ug/l 0.500 0.085 1 Isophorone ND ug/l 0.500 0.085 1 Isophorone ND ug/l 0.500 0.085 1 Ly2,4-Tickhlorobenzene ND ug/l 0.500 0.088 <t< td=""><td>bis(2-Chloroethyl)ether</td><td>ND</td><td></td><td>ug/l</td><td>0.500</td><td>0.093</td><td>1</td></t<>	bis(2-Chloroethyl)ether	ND		ug/l	0.500	0.093	1
1,2-Dichlorobenzene ND	1,3-Dichlorobenzene	ND		ug/l	0.500	0.078	1
Benzyl alcohol ND ug/l 0.500 0.123 1	1,4-Dichlorobenzene	ND		ug/l	0.500	0.083	1
bis(2-chloroisopropyl)ether ND ug/l 0.500 0.108 1 Acetophenone ND ug/l 1.00 0.207 1 Hexachloroethane ND ug/l 0.500 0.102 1 Nitrobenzene ND ug/l 0.500 0.102 1 Isophorone ND ug/l 0.500 0.126 1 bis(2-Chloroethoxy)methane ND ug/l 0.500 0.085 1 1,2,4-Trichlorobenzene ND ug/l 0.500 0.085 1 Naphthalene 0.121 J ug/l 0.500 0.086 1 4-Chloroanlline ND ug/l 0.500 0.088 1 Hexachlorobutadiene ND ug/l 0.500 0.086 1 2-Methylnaphthalene ND ug/l 0.500 0.080 1 1,2,4,5-Tetrachlorobenzene ND ug/l 0.500 0.0153 1 Biphenyl ND ug/l	1,2-Dichlorobenzene	ND		ug/l	0.500	0.068	1
Acetophenone ND ug/l 1.00 0.207 1 Hexachloroethane ND ug/l 0.500 0.102 1 Nitrobenzene ND ug/l 0.500 0.102 1 Isophorone ND ug/l 0.500 0.126 1 bis(2-Chloroethoxy)methane ND ug/l 0.500 0.085 1 1,2,4-Trichlorobenzene ND ug/l 0.500 0.096 1 Naphthalene 0.121 J ug/l 0.500 0.088 1 4-Chloroaniline ND ug/l 0.500 0.088 1 Hexachlorobutadiene ND ug/l 0.500 0.086 1 2-Methylnaphthalene ND ug/l 0.500 0.086 1 1,2,4,5-Tetrachlorobenzene ND ug/l 0.500 0.080 1 Hexachlorocyclopentadiene ND ug/l 0.500 0.1153 1 Biphenyl ND ug/l	Benzyl alcohol	ND		ug/l	0.500	0.123	1
Hexachloroethane ND Ug/l 0.500 0.102 1	bis(2-chloroisopropyl)ether	ND		ug/l	0.500	0.108	1
Nitrobenzene ND ug/l 0.500 0.102 1 Isophorone ND ug/l 0.500 0.126 1 bis(2-Chloroethoxy)methane ND ug/l 0.500 0.085 1 1,2,4-Trichlorobenzene ND ug/l 0.500 0.096 1 Naphthalene 0.121 J ug/l 0.500 0.088 1 4-Chloroaniline ND ug/l 0.500 0.088 1 Hexachlorobutadiene ND ug/l 0.500 0.086 1 2-Methylnaphthalene ND ug/l 0.500 0.086 1 1,2,4,5-Tetrachlorobenzene ND ug/l 0.500 0.091 1 Hexachlorocyclopentadiene ND ug/l 0.500 0.080 1 Biphenyl ND ug/l 0.500 0.111 1 2-Chloronaphthalene ND ug/l 0.500 0.138 1 2-Nitroaniline ND ug/l	Acetophenone	ND		ug/l	1.00	0.207	1
Sophorone ND ug/l 0.500 0.126 1	Hexachloroethane	ND		ug/l	0.500	0.102	1
Discretion Dis	Nitrobenzene	ND		ug/l	0.500	0.102	1
1,2,4-Trichlorobenzene ND ug/l 0.500 0.096 1 Naphthalene 0.121 J ug/l 0.500 0.088 1 4-Chloroaniline ND ug/l 0.500 0.128 1 Hexachlorobutadiene ND ug/l 0.500 0.086 1 2-Methylnaphthalene ND ug/l 0.500 0.091 1 1,2,4,5-Tetrachlorobenzene ND ug/l 0.500 0.080 1 Hexachlorocyclopentadiene ND ug/l 0.500 0.153 1 Biphenyl ND ug/l 0.500 0.111 1 2-Chloronaphthalene ND ug/l 0.500 0.111 1 2-Nitroaniline ND ug/l 0.500 0.138 1 Acenaphthylene ND ug/l 0.500 0.112 1 Dimethylphthalate ND ug/l 0.500 0.1168 1 2,6-Dinitrotoluene ND ug/l <td>Isophorone</td> <td>ND</td> <td></td> <td>ug/l</td> <td>0.500</td> <td>0.126</td> <td>1</td>	Isophorone	ND		ug/l	0.500	0.126	1
Naphthalene 0.121 J ug/l 0.500 0.088 1 4-Chloroaniline ND ug/l 0.500 0.128 1 Hexachlorobutadiene ND ug/l 0.500 0.086 1 2-Methylnaphthalene ND ug/l 0.500 0.091 1 1,2,4,5-Tetrachlorobenzene ND ug/l 0.500 0.080 1 Hexachlorocyclopentadiene ND ug/l 0.500 0.153 1 Biphenyl ND ug/l 0.500 0.111 1 2-Chloronaphthalene ND ug/l 0.500 0.111 1 2-Nitroaniline ND ug/l 0.500 0.138 1 Acenaphthylene ND ug/l 0.500 0.112 1 Dimethylphthalate ND ug/l 0.500 0.117 1 2,6-Dinitrotoluene ND ug/l 0.500 0.168 1 3-Nitroaniline ND ug/l	bis(2-Chloroethoxy)methane	ND		ug/l	0.500	0.085	1
4-Chloroaniline ND ug/l 0.500 0.128 1 Hexachlorobutadiene ND ug/l 0.500 0.086 1 2-Methylnaphthalene ND ug/l 0.500 0.091 1 1,2,4,5-Tetrachlorobenzene ND ug/l 0.500 0.080 1 Hexachlorocyclopentadiene ND ug/l 0.500 0.153 1 Biphenyl ND ug/l 0.500 0.111 1 2-Chloronaphthalene ND ug/l 0.500 0.111 1 2-Nitroaniline ND ug/l 0.500 0.138 1 Acenaphthylene ND ug/l 0.500 0.112 1 Dimethylphthalate ND ug/l 0.500 0.117 1 2,6-Dinitrotoluene ND ug/l 0.500 0.168 1 Acenaphthene ND ug/l 0.500 0.111 1 3-Nitroaniline ND ug/l 0.500	1,2,4-Trichlorobenzene	ND		ug/l	0.500	0.096	1
Hexachlorobutadiene ND ug/l 0.500 0.086 1 2-Methylnaphthalene ND ug/l 0.500 0.091 1 1,2,4,5-Tetrachlorobenzene ND ug/l 0.500 0.080 1 Hexachlorocyclopentadiene ND ug/l 0.500 0.153 1 Biphenyl ND ug/l 0.500 0.111 1 2-Chloronaphthalene ND ug/l 0.500 0.111 1 2-Nitroaniline ND ug/l 0.500 0.138 1 Acenaphthylene ND ug/l 0.500 0.112 1 Dimethylphthalate ND ug/l 0.500 0.117 1 2,6-Dinitrotoluene ND ug/l 0.500 0.168 1 Acenaphthene ND ug/l 0.500 0.096 1 3-Nitroaniline ND ug/l 0.500 0.0111 1 Dibenzofuran ND ug/l 0.500	Naphthalene	0.121	J	ug/l	0.500	0.088	1
2-Methylnaphthalene ND ug/l 0.500 0.091 1 1,2,4,5-Tetrachlorobenzene ND ug/l 0.500 0.080 1 Hexachlorocyclopentadiene ND ug/l 0.500 0.153 1 Biphenyl ND ug/l 0.500 0.111 1 2-Chloronaphthalene ND ug/l 0.500 0.090 1 2-Nitroaniline ND ug/l 0.500 0.138 1 Acenaphthylene ND ug/l 0.500 0.112 1 Dimethylphthalate ND ug/l 0.500 0.117 1 2,6-Dinitrotoluene ND ug/l 0.500 0.068 1 Acenaphthene ND ug/l 0.500 0.096 1 3-Nitroaniline ND ug/l 0.500 0.0111 1 Dibenzofuran ND ug/l 0.500 0.091 1	4-Chloroaniline	ND		ug/l	0.500	0.128	1
1,2,4,5-Tetrachlorobenzene ND ug/l 0.500 0.080 1 Hexachlorocyclopentadiene ND ug/l 0.500 0.153 1 Biphenyl ND ug/l 0.500 0.111 1 2-Chloronaphthalene ND ug/l 0.500 0.090 1 2-Nitroaniline ND ug/l 0.500 0.138 1 Acenaphthylene ND ug/l 0.500 0.112 1 Dimethylphthalate ND ug/l 0.500 0.117 1 2,6-Dinitrotoluene ND ug/l 0.500 0.168 1 Acenaphthene ND ug/l 0.500 0.096 1 3-Nitroaniline ND ug/l 0.500 0.111 1 Dibenzofuran ND ug/l 0.500 0.091 1	Hexachlorobutadiene	ND		ug/l	0.500	0.086	1
Hexachlorocyclopentadiene ND ug/l 0.500 0.153 1 Biphenyl ND ug/l 0.500 0.111 1 2-Chloronaphthalene ND ug/l 0.500 0.090 1 2-Nitroaniline ND ug/l 0.500 0.138 1 Acenaphthylene ND ug/l 0.500 0.112 1 Dimethylphthalate ND ug/l 0.500 0.117 1 2,6-Dinitrotoluene ND ug/l 0.500 0.168 1 Acenaphthene ND ug/l 0.500 0.096 1 3-Nitroaniline ND ug/l 0.500 0.111 1 Dibenzofuran ND ug/l 0.500 0.091 1	2-Methylnaphthalene	ND		ug/l	0.500	0.091	1
Biphenyl ND ug/l 0.500 0.111 1 2-Chloronaphthalene ND ug/l 0.500 0.090 1 2-Nitroaniline ND ug/l 0.500 0.138 1 Acenaphthylene ND ug/l 0.500 0.112 1 Dimethylphthalate ND ug/l 0.500 0.117 1 2,6-Dinitrotoluene ND ug/l 0.500 0.168 1 Acenaphthene ND ug/l 0.500 0.096 1 3-Nitroaniline ND ug/l 0.500 0.111 1 Dibenzofuran ND ug/l 0.500 0.091 1	1,2,4,5-Tetrachlorobenzene	ND		ug/l	0.500	0.080	1
2-Chloronaphthalene ND ug/l 0.500 0.090 1 2-Nitroaniline ND ug/l 0.500 0.138 1 Acenaphthylene ND ug/l 0.500 0.112 1 Dimethylphthalate ND ug/l 0.500 0.117 1 2,6-Dinitrotoluene ND ug/l 0.500 0.168 1 Acenaphthene ND ug/l 0.500 0.096 1 3-Nitroaniline ND ug/l 0.500 0.111 1 Dibenzofuran ND ug/l 0.500 0.091 1	Hexachlorocyclopentadiene	ND		ug/l	0.500	0.153	1
2-Nitroaniline ND ug/l 0.500 0.138 1 Acenaphthylene ND ug/l 0.500 0.112 1 Dimethylphthalate ND ug/l 0.500 0.117 1 2,6-Dinitrotoluene ND ug/l 0.500 0.168 1 Acenaphthene ND ug/l 0.500 0.096 1 3-Nitroaniline ND ug/l 0.500 0.111 1 Dibenzofuran ND ug/l 0.500 0.091 1	Biphenyl	ND		ug/l	0.500	0.111	1
Acenaphthylene ND ug/l 0.500 0.112 1 Dimethylphthalate ND ug/l 0.500 0.117 1 2,6-Dinitrotoluene ND ug/l 0.500 0.168 1 Acenaphthene ND ug/l 0.500 0.096 1 3-Nitroaniline ND ug/l 0.500 0.111 1 Dibenzofuran ND ug/l 0.500 0.091 1	2-Chloronaphthalene	ND		ug/l	0.500	0.090	1
Dimethylphthalate ND ug/l 0.500 0.117 1 2,6-Dinitrotoluene ND ug/l 0.500 0.168 1 Acenaphthene ND ug/l 0.500 0.096 1 3-Nitroaniline ND ug/l 0.500 0.111 1 Dibenzofuran ND ug/l 0.500 0.091 1	2-Nitroaniline	ND		ug/l	0.500	0.138	1
2,6-Dinitrotoluene ND ug/l 0.500 0.168 1 Acenaphthene ND ug/l 0.500 0.096 1 3-Nitroaniline ND ug/l 0.500 0.111 1 Dibenzofuran ND ug/l 0.500 0.091 1	Acenaphthylene	ND		ug/l	0.500	0.112	1
Acenaphthene ND ug/l 0.500 0.096 1 3-Nitroaniline ND ug/l 0.500 0.111 1 Dibenzofuran ND ug/l 0.500 0.091 1	Dimethylphthalate	ND		ug/l	0.500	0.117	1
3-Nitroaniline ND ug/l 0.500 0.111 1 Dibenzofuran ND ug/l 0.500 0.091 1	2,6-Dinitrotoluene	ND		ug/l	0.500	0.168	1
Dibenzofuran ND ug/l 0.500 0.091 1	Acenaphthene	ND		ug/l	0.500	0.096	1
	3-Nitroaniline	ND		ug/l	0.500	0.111	1
ND # 0.500	Dibenzofuran	ND		ug/l	0.500	0.091	1
2,4-Dinitrotoluene ND ug/l 0.500 0.163 1	2,4-Dinitrotoluene	ND		ug/l	0.500	0.163	1

10/13/21

Project Name: STEELWINDS ANNUAL/SEMI-ANNUAL Lab Number: L2147600

Project Number: 03.0033579.14

L2147600-05

SAMPLE RESULTS

Date Collected: 09/03/21 10:05

Report Date:

Client ID: MWN-03D-090321 Date Received: 09/03/21 Sample Location: LACKAWANNA, NY Field Prep: Not Specified

Sample Depth:

Lab ID:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - Mar	nsfield Lab					
Fluorene	ND		ug/l	0.500	0.104	1
Diethylphthalate	0.549		ug/l	0.500	0.180	1
4-Nitroaniline	ND		ug/l	0.500	0.112	1
n-Nitrosodiphenylamine	ND		ug/l	0.500	0.072	1
Hexachlorobenzene	ND		ug/l	0.500	0.122	1
Phenanthrene	ND		ug/l	0.500	0.111	1
Anthracene	ND		ug/l	0.500	0.137	1
Carbazole	ND		ug/l	0.500	0.143	1
Di-n-butylphthalate	ND		ug/l	0.500	0.100	1
Fluoranthene	ND		ug/l	0.500	0.156	1
Pyrene	ND		ug/l	0.500	0.170	1
Butylbenzylphthalate	0.137	J	ug/l	0.500	0.085	1
3,3'-Dichlorobenzidine	ND		ug/l	0.500	0.193	1
Benz(a)anthracene	ND		ug/l	0.500	0.184	1
Chrysene	ND		ug/l	0.500	0.142	1
bis(2-Ethylhexyl)phthalate	7.15		ug/l	0.500	0.081	1
Di-n-octylphthalate	ND		ug/l	1.00	0.079	1
Benzo(b)fluoranthene	ND		ug/l	0.500	0.066	1
Benzo(k)fluoranthene	ND		ug/l	0.500	0.161	1
Benzo(a)pyrene	ND		ug/l	0.500	0.060	1
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.500	0.090	1
Dibenz(a,h)anthracene	ND		ug/l	0.500	0.064	1
Benzo(g,h,i)perylene	ND		ug/l	0.500	0.109	1

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	41	15-115
Phenol-d5	33	15-115
Nitrobenzene-d5	83	30-130
2-Fluorobiphenyl	70	30-130
2,4,6-Tribromophenol	62	15-115
Terphenyl-d14	45	30-130

10/13/21

Report Date:

Project Name: STEELWINDS ANNUAL/SEMI-ANNUAL Lab Number: L2147600

Project Number: 03.0033579.14

10/01/21 16:48

SAMPLE RESULTS

Lab ID: L2147600-05 RE Date Collected: 09/03/21 10:05

Client ID: MWN-03D-090321 Date Received: 09/03/21 Sample Location: LACKAWANNA, NY Field Prep: Not Specified

Sample Depth:

Analytical Date:

Matrix: Water Extraction Method: EPA 3510C
Analytical Method: 1,8270D Extraction Date: 09/28/21 18:00

Analyst: GP

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS -	Mansfield Lab						
bis(2-Chloroethyl)ether	ND		ug/l	0.500	0.093	1	
1,3-Dichlorobenzene	ND		ug/l	0.500	0.078	1	
1,4-Dichlorobenzene	ND		ug/l	0.500	0.083	1	
1,2-Dichlorobenzene	ND		ug/l	0.500	0.068	1	
Benzyl alcohol	ND		ug/l	0.500	0.123	1	
bis(2-chloroisopropyl)ether	ND		ug/l	0.500	0.108	1	
Acetophenone	ND		ug/l	1.00	0.207	1	
Hexachloroethane	ND		ug/l	0.500	0.102	1	
Nitrobenzene	ND		ug/l	0.500	0.102	1	
Isophorone	ND		ug/l	0.500	0.126	1	
bis(2-Chloroethoxy)methane	ND		ug/l	0.500	0.085	1	
1,2,4-Trichlorobenzene	ND		ug/l	0.500	0.096	1	
Naphthalene	ND		ug/l	0.500	0.088	1	
4-Chloroaniline	ND		ug/l	0.500	0.128	1	
Hexachlorobutadiene	ND		ug/l	0.500	0.086	1	
2-Methylnaphthalene	ND		ug/l	0.500	0.091	1	
1,2,4,5-Tetrachlorobenzene	ND		ug/l	0.500	0.080	1	
Hexachlorocyclopentadiene	ND		ug/l	0.500	0.153	1	
Biphenyl	ND		ug/l	0.500	0.111	1	
2-Chloronaphthalene	ND		ug/l	0.500	0.090	1	
2-Nitroaniline	ND		ug/l	0.500	0.138	1	
Acenaphthylene	ND		ug/l	0.500	0.112	1	
Dimethylphthalate	ND		ug/l	0.500	0.117	1	
2,6-Dinitrotoluene	ND		ug/l	0.500	0.168	1	
Acenaphthene	ND		ug/l	0.500	0.096	1	
3-Nitroaniline	ND		ug/l	0.500	0.111	1	
Dibenzofuran	ND		ug/l	0.500	0.091	1	
2,4-Dinitrotoluene	ND		ug/l	0.500	0.163	1	

10/13/21

Project Name: Lab Number: STEELWINDS ANNUAL/SEMI-ANNUAL L2147600

Project Number: 03.0033579.14

L2147600-05

SAMPLE RESULTS

Date Collected: 09/03/21 10:05

Report Date:

Date Received: Client ID: 09/03/21 MWN-03D-090321 Sample Location: Field Prep: LACKAWANNA, NY Not Specified

RE

Sample Depth:

Lab ID:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor				
Semivolatile Organics by GC/MS - Mansfield Lab										
Fluorene	ND		ug/l	0.500	0.104	1				
Diethylphthalate	0.513		ug/l	0.500	0.180	1				
4-Nitroaniline	ND		ug/l	0.500	0.112	1				
n-Nitrosodiphenylamine	ND		ug/l	0.500	0.072	1				
Hexachlorobenzene	ND		ug/l	0.500	0.122	1				
Phenanthrene	ND		ug/l	0.500	0.111	1				
Anthracene	ND		ug/l	0.500	0.137	1				
Carbazole	ND		ug/l	0.500	0.143	1				
Di-n-butylphthalate	ND		ug/l	0.500	0.100	1				
Fluoranthene	ND		ug/l	0.500	0.156	1				
Pyrene	ND		ug/l	0.500	0.170	1				
Butylbenzylphthalate	0.142	J	ug/l	0.500	0.085	1				
3,3'-Dichlorobenzidine	ND		ug/l	0.500	0.193	1				
Benz(a)anthracene	ND		ug/l	0.500	0.184	1				
Chrysene	ND		ug/l	0.500	0.142	1				
bis(2-Ethylhexyl)phthalate	12.2		ug/l	0.500	0.081	1				
Di-n-octylphthalate	0.924	J	ug/l	1.00	0.079	1				
Benzo(b)fluoranthene	ND		ug/l	0.500	0.066	1				
Benzo(k)fluoranthene	ND		ug/l	0.500	0.161	1				
Benzo(a)pyrene	ND		ug/l	0.500	0.060	1				
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.500	0.090	1				
Dibenz(a,h)anthracene	ND		ug/l	0.500	0.064	1				
Benzo(g,h,i)perylene	ND		ug/l	0.500	0.109	1				

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	55	15-115
Phenol-d5	36	15-115
Nitrobenzene-d5	81	30-130
2-Fluorobiphenyl	66	30-130
2,4,6-Tribromophenol	73	15-115
Terphenyl-d14	63	30-130

L2147600

Project Name: STEELWINDS ANNUAL/SEMI-ANNUAL Lab Number:

Project Number: 03.0033579.14 **Report Date:** 10/13/21

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D Extraction Method: EPA 3510C
Analytical Date: 09/25/21 12:36 Extraction Date: 09/07/21 14:00

Analyst: PS

arameter	Result	Qualifier	Units	RL		MDL
semivolatile Organics by GC/MS	S - Mansfield La	ab for samp	ole(s):	02-03,05	Batch:	WG1543557-1
bis(2-Chloroethyl)ether	ND		ug/l	0.500)	0.093
1,3-Dichlorobenzene	ND		ug/l	0.500)	0.078
1,4-Dichlorobenzene	ND		ug/l	0.500)	0.083
1,2-Dichlorobenzene	ND		ug/l	0.500)	0.068
Benzyl alcohol	ND		ug/l	0.500)	0.123
bis(2-chloroisopropyl)ether	ND		ug/l	0.500)	0.108
Acetophenone	ND		ug/l	1.00		0.207
Hexachloroethane	ND		ug/l	0.500)	0.102
Nitrobenzene	ND		ug/l	0.500)	0.102
Isophorone	ND		ug/l	0.500)	0.126
bis(2-Chloroethoxy)methane	ND		ug/l	0.500)	0.085
1,2,4-Trichlorobenzene	ND		ug/l	0.500)	0.096
Naphthalene	ND		ug/l	0.500)	0.088
4-Chloroaniline	ND		ug/l	0.500)	0.128
Hexachlorobutadiene	ND		ug/l	0.500)	0.086
2-Methylnaphthalene	ND		ug/l	0.500)	0.091
1,2,4,5-Tetrachlorobenzene	ND		ug/l	0.500)	0.080
Hexachlorocyclopentadiene	ND		ug/l	0.500)	0.153
Biphenyl	ND		ug/l	0.500)	0.111
2-Chloronaphthalene	ND		ug/l	0.500)	0.090
2-Nitroaniline	ND		ug/l	0.500)	0.138
Acenaphthylene	ND		ug/l	0.500)	0.112
Dimethylphthalate	ND		ug/l	0.500)	0.117
2,6-Dinitrotoluene	ND		ug/l	0.500)	0.168
Acenaphthene	ND		ug/l	0.500)	0.096
3-Nitroaniline	ND		ug/l	0.500)	0.111
Dibenzofuran	ND		ug/l	0.500)	0.091
2,4-Dinitrotoluene	ND		ug/l	0.500)	0.163
Fluorene	ND		ug/l	0.500)	0.104

Project Name: STEELWINDS ANNUAL/SEMI-ANNUAL Lab Number: L2147600

Project Number: 03.0033579.14 **Report Date:** 10/13/21

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D Extraction Method: EPA 3510C
Analytical Date: 09/25/21 12:36 Extraction Date: 09/07/21 14:00

Analyst: PS

Parameter	Result	Qualifier	Units	RL		MDL	
Semivolatile Organics by GC/MS - M	/lansfield La	b for samp	ole(s):	02-03,05	Batch:	WG1543557-1	
Diethylphthalate	ND		ug/l	0.500)	0.180	
4-Nitroaniline	ND		ug/l	0.500)	0.112	
n-Nitrosodiphenylamine	ND		ug/l	0.500)	0.072	
Hexachlorobenzene	ND		ug/l	0.500)	0.122	
Phenanthrene	ND		ug/l	0.500)	0.111	
Anthracene	ND		ug/l	0.500)	0.137	
Carbazole	ND		ug/l	0.500)	0.143	
Di-n-butylphthalate	ND		ug/l	0.500		0.100	
Fluoranthene	ND		ug/l	0.500		0.156	
Pyrene	ND		ug/l	0.500		0.170	
Butylbenzylphthalate	ND		ug/l	0.500		0.085	
3,3'-Dichlorobenzidine	ND		ug/l	0.500		0.193	
Benz(a)anthracene	ND		ug/l	0.500		0.184	
Chrysene	ND		ug/l	0.500		0.142	
bis(2-Ethylhexyl)phthalate	ND		ug/l	0.500		0.081	
Di-n-octylphthalate	ND		ug/l	1.00		0.079	
Benzo(b)fluoranthene	ND		ug/l	0.500)	0.066	
Benzo(k)fluoranthene	ND		ug/l	0.500)	0.161	
Benzo(a)pyrene	ND		ug/l	0.500)	0.060	
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.500)	0.090	
Dibenz(a,h)anthracene	ND		ug/l	0.500)	0.064	
Benzo(g,h,i)perylene	ND		ug/l	0.500)	0.109	

Project Name: STEELWINDS ANNUAL/SEMI-ANNUAL Lab Number: L2147600

Project Number: 03.0033579.14 **Report Date:** 10/13/21

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8270D Extraction Method: EPA 3510C
Analytical Date: 09/25/21 12:36 Extraction Date: 09/07/21 14:00

Analyst: PS

Parameter Result Qualifier Units RL MDL

Semivolatile Organics by GC/MS - Mansfield Lab for sample(s): 02-03,05 Batch: WG1543557-1

Surrogate	%Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	50	15-115
Phenol-d5	33	15-115
Nitrobenzene-d5	95	30-130
2-Fluorobiphenyl	86	30-130
2,4,6-Tribromophenol	70	15-115
Terphenyl-d14	105	30-130

L2147600

Project Name: STEELWINDS ANNUAL/SEMI-ANNUAL Lab Number:

Project Number: 03.0033579.14 **Report Date:** 10/13/21

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D Extraction Method: EPA 3510C
Analytical Date: 10/01/21 08:41 Extraction Date: 09/28/21 18:00

Analyst: GP

Semivolatile Organics by GC/MS - Mansfield Lab for sample(s): 02-03,05 Batch: WG1551897-1	arameter	Result	Qualifier	Units	RL		MDL
1,3-Dichlorobenzene ND ug/l 0.500 0.078 1,4-Dichlorobenzene ND ug/l 0.500 0.083 1,2-Dichlorobenzene ND ug/l 0.500 0.068 Benzyl alcohol ND ug/l 0.500 0.123 bis(2-chloroisopropyl)ether ND ug/l 0.500 0.108 Acetophenone ND ug/l 1.00 0.207 Hexachloroethane ND ug/l 0.500 0.102 Nitrobenzene ND ug/l 0.500 0.102 Isophorone ND ug/l 0.500 0.126 bis(2-Chloroethoxy)methane ND ug/l 0.500 0.085 1,2,4-Trichlorobenzene ND ug/l 0.500 0.085 1,2,4-Trichlorobenzene ND ug/l 0.500 0.096 Naphthalene ND ug/l 0.500 0.088 4-Chloroaniline ND ug/l 0.500 0.086 Hexachlorobutadiene	Semivolatile Organics by GC/MS	- Mansfield La	ab for samp	le(s):	02-03,05	Batch:	WG1551897-1
1,4-Dichlorobenzene ND ug/l 0.500 0.083 1,2-Dichlorobenzene ND ug/l 0.500 0.068 Benzyl alcohol ND ug/l 0.500 0.123 bis(2-chloroisopropyl)ether ND ug/l 0.500 0.108 Acetophenone ND ug/l 1.00 0.207 Hexachloroethane ND ug/l 0.500 0.102 Nitrobenzene ND ug/l 0.500 0.102 Isophorone ND ug/l 0.500 0.102 Isophorone ND ug/l 0.500 0.126 bis(2-Chloroethoxy)methane ND ug/l 0.500 0.085 12,4-Trichlorobenzene ND ug/l 0.500 0.085 12,4-Trichlorobenzene ND ug/l 0.500 0.096 Naphthalene ND ug/l 0.500 0.088 4-Chloroanliine ND ug/l 0.500 0.086 2-Methylnaphthalene ND </td <td>bis(2-Chloroethyl)ether</td> <td>ND</td> <td></td> <td>ug/l</td> <td>0.500</td> <td>)</td> <td>0.093</td>	bis(2-Chloroethyl)ether	ND		ug/l	0.500)	0.093
1,2-Dichlorobenzene ND ug/l 0.500 0.068 Benzyl alcohol ND ug/l 0.500 0.123 bis(2-chloroisopropyl)ether ND ug/l 0.500 0.108 Acetophenone ND ug/l 1.00 0.207 Hexachloroethane ND ug/l 0.500 0.102 Nitrobenzene ND ug/l 0.500 0.102 Isophorone ND ug/l 0.500 0.126 bis(2-Chloroethoxy)methane ND ug/l 0.500 0.085 1,2,4-Trichlorobenzene ND ug/l 0.500 0.085 1,2,4-Trichlorobenzene ND ug/l 0.500 0.085 1,2,4-Trichlorobenzene ND ug/l 0.500 0.088 4-Chloroaniline ND ug/l 0.500 0.088 4-Chloroaniline ND ug/l 0.500 0.086 2-Methylnaphthalene ND ug/l 0.500 0.080 2-Methylnaphthalene <td>1,3-Dichlorobenzene</td> <td>ND</td> <td></td> <td>ug/l</td> <td>0.500</td> <td>)</td> <td>0.078</td>	1,3-Dichlorobenzene	ND		ug/l	0.500)	0.078
Benzyl alcohol ND ug/l 0.500 0.123	1,4-Dichlorobenzene	ND		ug/l	0.500)	0.083
bis(2-chloroisopropyl)ether ND ug/l 0.500 0.108 Acetophenone ND ug/l 1.00 0.207 Hexachloroethane ND ug/l 0.500 0.102 Nitrobenzene ND ug/l 0.500 0.102 Isophorone ND ug/l 0.500 0.126 bis(2-Chloroethoxy)methane ND ug/l 0.500 0.085 1,2,4-Trichlorobenzene ND ug/l 0.500 0.096 Naphthalene ND ug/l 0.500 0.088 4-Chloroaniline ND ug/l 0.500 0.088 4-Chloroaniline ND ug/l 0.500 0.086 2-Methylnaphthalene ND ug/l 0.500 0.091 1,2,4,5-Tetrachlorobenzene ND ug/l 0.500 0.080 Hexachlorocyclopentadiene ND ug/l 0.500 0.153 Biphenyl ND ug/l 0.500 0.111 2-Chloronaphthalene	1,2-Dichlorobenzene	ND		ug/l	0.500		0.068
Acetophenone ND ug/l 1.00 0.207 Hexachloroethane ND ug/l 0.500 0.102 Nitrobenzene ND ug/l 0.500 0.102 Isophorone ND ug/l 0.500 0.126 bis(2-Chloroethoxy)methane ND ug/l 0.500 0.085 1,2,4-Trichlorobenzene ND ug/l 0.500 0.096 Naphthalene ND ug/l 0.500 0.098 4-Chloroaniline ND ug/l 0.500 0.088 4-Chloroaniline ND ug/l 0.500 0.086 2-Methylnaphthalene ND ug/l 0.500 0.096 1,2,4,5-Tetrachlorobenzene ND ug/l 0.500 0.091 1,2,4,5-Tetrachlorobenzene ND ug/l 0.500 0.080 Hexachlorocyclopentadiene ND ug/l 0.500 0.113 Biphenyl ND ug/l 0.500 0.111 2-Chloronaphthalene	Benzyl alcohol	ND		ug/l	0.500		0.123
Hexachloroethane ND ug/l 0.500 0.102 Nitrobenzene ND ug/l 0.500 0.102 Isophorone ND ug/l 0.500 0.126 bis(2-Chloroethoxy)methane ND ug/l 0.500 0.085 1,2,4-Trichlorobenzene ND ug/l 0.500 0.096 Naphthalene ND ug/l 0.500 0.088 4-Chloroaniline ND ug/l 0.500 0.088 4-Chloroaniline ND ug/l 0.500 0.086 2-Methylnaphthalene ND ug/l 0.500 0.091 1,2,4,5-Tetrachlorobenzene ND ug/l 0.500 0.090 Hexachlorocyclopentadiene ND ug/l 0.500 0.153 Biphenyl ND ug/l 0.500 0.111 2-Chloronaphthalene ND ug/l 0.500 0.138 Acenaphthylene ND ug/l 0.500 0.112 Dimethylphthalate	bis(2-chloroisopropyl)ether	ND		ug/l	0.500		0.108
Nitrobenzene ND ug/l 0.500 0.102 Isophorone ND ug/l 0.500 0.126 bis(2-Chloroethoxy)methane ND ug/l 0.500 0.085 1,2,4-Trichlorobenzene ND ug/l 0.500 0.096 Naphthalene ND ug/l 0.500 0.088 4-Chloroaniline ND ug/l 0.500 0.128 Hexachlorobutadiene ND ug/l 0.500 0.086 2-Methylnaphthalene ND ug/l 0.500 0.091 1,2,4,5-Tetrachlorobenzene ND ug/l 0.500 0.080 Hexachlorocyclopentadiene ND ug/l 0.500 0.153 Biphenyl ND ug/l 0.500 0.111 2-Chloronaphthalene ND ug/l 0.500 0.138 Acenaphthylene ND ug/l 0.500 0.112 Dimethylphthalate ND ug/l 0.500 0.168 Acenaphthene	Acetophenone	ND		ug/l	1.00		0.207
Sophorone ND	Hexachloroethane	ND		ug/l	0.500		0.102
bis(2-Chloroethoxy)methane ND ug/l 0.500 0.085 1,2,4-Trichlorobenzene ND ug/l 0.500 0.096 Naphthalene ND ug/l 0.500 0.088 4-Chloroaniline ND ug/l 0.500 0.128 Hexachlorobutadiene ND ug/l 0.500 0.086 2-Methylnaphthalene ND ug/l 0.500 0.091 1,2,4,5-Tetrachlorobenzene ND ug/l 0.500 0.080 Hexachlorocyclopentadiene ND ug/l 0.500 0.153 Biphenyl ND ug/l 0.500 0.111 2-Chloronaphthalene ND ug/l 0.500 0.111 2-Chloronaphthalene ND ug/l 0.500 0.138 Acenaphthylene ND ug/l 0.500 0.112 Dimethylphthalate ND ug/l 0.500 0.117 2,6-Dinitrotoluene ND ug/l 0.500 0.168 Acenaphthene <td>Nitrobenzene</td> <td>ND</td> <td></td> <td>ug/l</td> <td>0.500</td> <td></td> <td>0.102</td>	Nitrobenzene	ND		ug/l	0.500		0.102
1,2,4-Trichlorobenzene ND ug/l 0.500 0.096 Naphthalene ND ug/l 0.500 0.088 4-Chloroaniline ND ug/l 0.500 0.128 Hexachlorobutadiene ND ug/l 0.500 0.086 2-Methylnaphthalene ND ug/l 0.500 0.091 1,2,4,5-Tetrachlorobenzene ND ug/l 0.500 0.080 Hexachlorocyclopentadiene ND ug/l 0.500 0.153 Biphenyl ND ug/l 0.500 0.111 2-Chloronaphthalene ND ug/l 0.500 0.111 2-Chloronaphthylene ND ug/l 0.500 0.113 Acenaphthylene ND ug/l 0.500 0.112 Dimethylphthalate ND ug/l 0.500 0.117 2,6-Dinitrotoluene ND ug/l 0.500 0.168 Acenaphthene ND ug/l 0.500 0.111 Dibenzofuran <td< td=""><td>Isophorone</td><td>ND</td><td></td><td>ug/l</td><td>0.500</td><td></td><td>0.126</td></td<>	Isophorone	ND		ug/l	0.500		0.126
Naphthalene ND ug/l 0.500 0.088 4-Chloroaniline ND ug/l 0.500 0.128 Hexachlorobutadiene ND ug/l 0.500 0.086 2-Methylnaphthalene ND ug/l 0.500 0.091 1,2,4,5-Tetrachlorobenzene ND ug/l 0.500 0.080 Hexachlorocyclopentadiene ND ug/l 0.500 0.153 Biphenyl ND ug/l 0.500 0.111 2-Chloronaphthalene ND ug/l 0.500 0.111 2-Chloronaphthylene ND ug/l 0.500 0.138 Acenaphthylene ND ug/l 0.500 0.112 Dimethylphthalate ND ug/l 0.500 0.117 2,6-Dinitrotoluene ND ug/l 0.500 0.168 Acenaphthene ND ug/l 0.500 0.111 Dibenzofuran ND ug/l 0.500 0.091 2,4-Dinitrotoluene ND<	bis(2-Chloroethoxy)methane	ND		ug/l	0.500		0.085
4-Chloroaniline ND ug/l 0.500 0.128 Hexachlorobutadiene ND ug/l 0.500 0.086 2-Methylnaphthalene ND ug/l 0.500 0.091 1,2,4,5-Tetrachlorobenzene ND ug/l 0.500 0.080 Hexachlorocyclopentadiene ND ug/l 0.500 0.153 Biphenyl ND ug/l 0.500 0.111 2-Chloronaphthalene ND ug/l 0.500 0.090 2-Nitroaniline ND ug/l 0.500 0.113 Acenaphthylene ND ug/l 0.500 0.112 Dimethylphthalate ND ug/l 0.500 0.117 2,6-Dinitrotoluene ND ug/l 0.500 0.168 Acenaphthene ND ug/l 0.500 0.111 Dibenzofuran ND ug/l 0.500 0.111 Dibenzofuran ND ug/l 0.500 0.091 2,4-Dinitrotoluene ND	1,2,4-Trichlorobenzene	ND		ug/l	0.500		0.096
Hexachlorobutadiene ND ug/l 0.500 0.086 2-Methylnaphthalene ND ug/l 0.500 0.091 1,2,4,5-Tetrachlorobenzene ND ug/l 0.500 0.080 Hexachlorocyclopentadiene ND ug/l 0.500 0.153 Biphenyl ND ug/l 0.500 0.111 2-Chloronaphthalene ND ug/l 0.500 0.090 2-Nitroaniline ND ug/l 0.500 0.1138 Acenaphthylene ND ug/l 0.500 0.112 Dimethylphthalate ND ug/l 0.500 0.117 2,6-Dinitrotoluene ND ug/l 0.500 0.168 Acenaphthene ND ug/l 0.500 0.111 3-Nitroaniline ND ug/l 0.500 0.111 Dibenzofuran ND ug/l 0.500 0.091 2,4-Dinitrotoluene ND ug/l 0.500 0.163	Naphthalene	ND		ug/l	0.500		0.088
2-Methylnaphthalene ND ug/l 0.500 0.091 1,2,4,5-Tetrachlorobenzene ND ug/l 0.500 0.080 Hexachlorocyclopentadiene ND ug/l 0.500 0.153 Biphenyl ND ug/l 0.500 0.111 2-Chloronaphthalene ND ug/l 0.500 0.090 2-Nitroaniline ND ug/l 0.500 0.138 Acenaphthylene ND ug/l 0.500 0.112 Dimethylphthalate ND ug/l 0.500 0.117 2,6-Dinitrotoluene ND ug/l 0.500 0.168 Acenaphthene ND ug/l 0.500 0.111 Dibenzofuran ND ug/l 0.500 0.111 Dibenzofuran ND ug/l 0.500 0.091 2,4-Dinitrotoluene ND ug/l 0.500 0.091	4-Chloroaniline	ND		ug/l	0.500		0.128
1,2,4,5-Tetrachlorobenzene ND ug/l 0.500 0.080 Hexachlorocyclopentadiene ND ug/l 0.500 0.153 Biphenyl ND ug/l 0.500 0.111 2-Chloronaphthalene ND ug/l 0.500 0.090 2-Nitroaniline ND ug/l 0.500 0.138 Acenaphthylene ND ug/l 0.500 0.112 Dimethylphthalate ND ug/l 0.500 0.117 2,6-Dinitrotoluene ND ug/l 0.500 0.168 Acenaphthene ND ug/l 0.500 0.111 Dibenzofuran ND ug/l 0.500 0.111 Dibenzofuran ND ug/l 0.500 0.091 2,4-Dinitrotoluene ND ug/l 0.500 0.163	Hexachlorobutadiene	ND		ug/l	0.500		0.086
Hexachlorocyclopentadiene ND ug/l 0.500 0.153 Biphenyl ND ug/l 0.500 0.111 2-Chloronaphthalene ND ug/l 0.500 0.090 2-Nitroaniline ND ug/l 0.500 0.138 Acenaphthylene ND ug/l 0.500 0.112 Dimethylphthalate ND ug/l 0.500 0.117 2,6-Dinitrotoluene ND ug/l 0.500 0.168 Acenaphthene ND ug/l 0.500 0.096 3-Nitroaniline ND ug/l 0.500 0.111 Dibenzofuran ND ug/l 0.500 0.091 2,4-Dinitrotoluene ND ug/l 0.500 0.163	2-Methylnaphthalene	ND		ug/l	0.500		0.091
Biphenyl ND ug/l 0.500 0.111 2-Chloronaphthalene ND ug/l 0.500 0.090 2-Nitroaniline ND ug/l 0.500 0.138 Acenaphthylene ND ug/l 0.500 0.112 Dimethylphthalate ND ug/l 0.500 0.117 2,6-Dinitrotoluene ND ug/l 0.500 0.168 Acenaphthene ND ug/l 0.500 0.096 3-Nitroaniline ND ug/l 0.500 0.111 Dibenzofuran ND ug/l 0.500 0.091 2,4-Dinitrotoluene ND ug/l 0.500 0.163	1,2,4,5-Tetrachlorobenzene	ND		ug/l	0.500		0.080
2-Chloronaphthalene ND ug/l 0.500 0.090 2-Nitroaniline ND ug/l 0.500 0.138 Acenaphthylene ND ug/l 0.500 0.112 Dimethylphthalate ND ug/l 0.500 0.117 2,6-Dinitrotoluene ND ug/l 0.500 0.168 Acenaphthene ND ug/l 0.500 0.096 3-Nitroaniline ND ug/l 0.500 0.111 Dibenzofuran ND ug/l 0.500 0.091 2,4-Dinitrotoluene ND ug/l 0.500 0.163	Hexachlorocyclopentadiene	ND		ug/l	0.500	1	0.153
2-Nitroaniline ND ug/l 0.500 0.138 Acenaphthylene ND ug/l 0.500 0.112 Dimethylphthalate ND ug/l 0.500 0.117 2,6-Dinitrotoluene ND ug/l 0.500 0.168 Acenaphthene ND ug/l 0.500 0.096 3-Nitroaniline ND ug/l 0.500 0.111 Dibenzofuran ND ug/l 0.500 0.091 2,4-Dinitrotoluene ND ug/l 0.500 0.091	Biphenyl	ND		ug/l	0.500	1	0.111
Acenaphthylene ND ug/l 0.500 0.112 Dimethylphthalate ND ug/l 0.500 0.117 2,6-Dinitrotoluene ND ug/l 0.500 0.168 Acenaphthene ND ug/l 0.500 0.096 3-Nitroaniline ND ug/l 0.500 0.111 Dibenzofuran ND ug/l 0.500 0.091 2,4-Dinitrotoluene ND ug/l 0.500 0.163	2-Chloronaphthalene	ND		ug/l	0.500		0.090
Dimethylphthalate ND ug/l 0.500 0.117 2,6-Dinitrotoluene ND ug/l 0.500 0.168 Acenaphthene ND ug/l 0.500 0.096 3-Nitroaniline ND ug/l 0.500 0.111 Dibenzofuran ND ug/l 0.500 0.091 2,4-Dinitrotoluene ND ug/l 0.500 0.163	2-Nitroaniline	ND		ug/l	0.500		0.138
2,6-Dinitrotoluene ND ug/l 0.500 0.168 Acenaphthene ND ug/l 0.500 0.096 3-Nitroaniline ND ug/l 0.500 0.111 Dibenzofuran ND ug/l 0.500 0.091 2,4-Dinitrotoluene ND ug/l 0.500 0.163	Acenaphthylene	ND		ug/l	0.500		0.112
Acenaphthene ND ug/l 0.500 0.096 3-Nitroaniline ND ug/l 0.500 0.111 Dibenzofuran ND ug/l 0.500 0.091 2,4-Dinitrotoluene ND ug/l 0.500 0.163	Dimethylphthalate	ND		ug/l	0.500		0.117
3-Nitroaniline ND ug/l 0.500 0.111 Dibenzofuran ND ug/l 0.500 0.091 2,4-Dinitrotoluene ND ug/l 0.500 0.163	2,6-Dinitrotoluene	ND		ug/l	0.500		0.168
Dibenzofuran ND ug/l 0.500 0.091 2,4-Dinitrotoluene ND ug/l 0.500 0.163	Acenaphthene	ND		ug/l	0.500		0.096
2,4-Dinitrotoluene ND ug/l 0.500 0.163	3-Nitroaniline	ND		ug/l	0.500		0.111
·	Dibenzofuran	ND		ug/l	0.500		0.091
Fluorene ND ug/l 0.500 0.104	2,4-Dinitrotoluene	ND		ug/l	0.500		0.163
	Fluorene	ND		ug/l	0.500		0.104

Project Name: STEELWINDS ANNUAL/SEMI-ANNUAL Lab Number: L2147600

Project Number: 03.0033579.14 **Report Date:** 10/13/21

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D Extraction Method: EPA 3510C
Analytical Date: 10/01/21 08:41 Extraction Date: 09/28/21 18:00

Analyst: GP

Parameter	Result	Qualifier	Units	RL		MDL	
Semivolatile Organics by GC/MS - I	Mansfield La	b for samp	ole(s):	02-03,05	Batch:	WG1551897-1	
Diethylphthalate	ND		ug/l	0.500)	0.180	
4-Nitroaniline	ND		ug/l	0.500)	0.112	
n-Nitrosodiphenylamine	ND		ug/l	0.500)	0.072	
Hexachlorobenzene	ND		ug/l	0.500)	0.122	
Phenanthrene	ND		ug/l	0.500)	0.111	
Anthracene	ND		ug/l	0.500)	0.137	
Carbazole	ND		ug/l	0.500)	0.143	
Di-n-butylphthalate	ND		ug/l	0.500)	0.100	
Fluoranthene	ND		ug/l	0.500)	0.156	
Pyrene	ND		ug/l	0.500)	0.170	
Butylbenzylphthalate	ND		ug/l	0.500)	0.085	
3,3'-Dichlorobenzidine	ND		ug/l	0.500)	0.193	
Benz(a)anthracene	ND		ug/l	0.500)	0.184	
Chrysene	ND		ug/l	0.500)	0.142	
bis(2-Ethylhexyl)phthalate	ND		ug/l	0.500)	0.081	
Di-n-octylphthalate	ND		ug/l	1.00		0.079	
Benzo(b)fluoranthene	ND		ug/l	0.500)	0.066	
Benzo(k)fluoranthene	ND		ug/l	0.500)	0.161	
Benzo(a)pyrene	ND		ug/l	0.500)	0.060	
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.500)	0.090	
Dibenz(a,h)anthracene	ND		ug/l	0.500)	0.064	
Benzo(g,h,i)perylene	ND		ug/l	0.500)	0.109	

Project Name: STEELWINDS ANNUAL/SEMI-ANNUAL Lab Number: L2147600

Project Number: 03.0033579.14 **Report Date:** 10/13/21

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8270D Extraction Method: EPA 3510C
Analytical Date: 10/01/21 08:41 Extraction Date: 09/28/21 18:00

Analyst: GP

Parameter Result Qualifier Units RL MDL

Semivolatile Organics by GC/MS - Mansfield Lab for sample(s): 02-03,05 Batch: WG1551897-1

Surrogate	%Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	57	15-115
Phenol-d5	37	15-115
Nitrobenzene-d5	98	30-130
2-Fluorobiphenyl	83	30-130
2,4,6-Tribromophenol	87	15-115
Terphenyl-d14	92	30-130

Project Name: STEELWINDS ANNUAL/SEMI-ANNUAL

Project Number: 03.0033579.14

Lab Number: L2147600

Report Date: 10/13/21

arameter		CS covery	Qual	LCS %Reco		Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Semivolatile Organics by GC/MS	- Mansfield Lab As	sociated	d sample(s):	02-03,05	Batch:	WG1543	3557-2 WG15435	57-3			
bis(2-Chloroethyl)ether		83		78			40-140	6		20	
1,3-Dichlorobenzene		17	Q	10		Q	40-140	55	Q	20	
1,4-Dichlorobenzene		18	Q	10		Q	40-140	57	Q	20	
1,2-Dichlorobenzene		22	Q	13		Q	40-140	51	Q	20	
bis(2-chloroisopropyl)ether		77		68			40-140	12		20	
Acetophenone		76		84			40-140	10		20	
Hexachloroethane		11		5		Q	10-97	70	Q	20	
Nitrobenzene		84		78			40-140	7		20	
Isophorone		89		87			40-140	2		20	
bis(2-Chloroethoxy)methane		83		78			40-140	6		20	
1,2,4-Trichlorobenzene		26	Q	13		Q	40-140	67	Q	20	
Naphthalene		47		31		Q	40-140	41	Q	20	
4-Chloroaniline		84		81			40-140	4		20	
Hexachlorobutadiene		14	Q	5		Q	40-140	101	Q	20	
2-Methylnaphthalene		46		29		Q	40-140	45	Q	20	
1,2,4,5-Tetrachlorobenzene		40		21		Q	40-140	62	Q	20	
Hexachlorocyclopentadiene		11		3		Q	10-109	126	Q	20	
Biphenyl		56		65			40-140	15		20	
2-Chloronaphthalene		50		35		Q	40-140	35	Q	20	
2-Nitroaniline	1	22		122	2		40-140	0		20	
Acenaphthylene		71		63			40-140	12		20	
Dimethylphthalate		71		64			40-140	10		20	
2,6-Dinitrotoluene		85		86			40-140	1		20	

Project Name: STEELWINDS ANNUAL/SEMI-ANNUAL

Project Number: 03.0033579.14

Lab Number: L2147600

Report Date: 10/13/21

arameter	LCS %Recovery	Qual	LCSD %Recovery	%Recove Qual Limits		RPD Qual Limits	
emivolatile Organics by GC/MS - Mansfiel	d Lab Associated	sample(s):	02-03,05 Batch:	WG1543557-2 WG	1543557-3		
Acenaphthene	68		58	40-140	16	20	
3-Nitroaniline	99		102	40-140	3	20	
Dibenzofuran	73		66	40-140	10	20	
2,4-Dinitrotoluene	99		101	40-140	2	20	
Fluorene	79		76	40-140	4	20	
Diethylphthalate	84		82	40-140	2	20	
4-Nitroaniline	106		104	40-140	2	20	
n-Nitrosodiphenylamine	87		90	40-140	3	20	
Hexachlorobenzene	75		78	40-140	4	20	
Phenanthrene	90		92	40-140	2	20	
Anthracene	90		93	40-140	3	20	
Carbazole	96		97	40-140	1	20	
Di-n-butylphthalate	93		95	40-140	2	20	
Fluoranthene	95		98	40-140	3	20	
Pyrene	93		97	40-140	4	20	
Butylbenzylphthalate	105		107	40-140	2	20	
3,3'-Dichlorobenzidine	88		92	40-140	4	20	
Benz(a)anthracene	98		100	40-140	2	20	
Chrysene	90		94	40-140	4	20	
bis(2-Ethylhexyl)phthalate	107		110	40-140	3	20	
Di-n-octylphthalate	90		94	40-140	4	20	
Benzo(b)fluoranthene	89		94	40-140	5	20	
Benzo(k)fluoranthene	93		98	40-140	5	20	

Project Name: STEELWINDS ANNUAL/SEMI-ANNUAL

Project Number: 03.0033579.14

Lab Number: L2147600

Report Date: 10/13/21

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Semivolatile Organics by GC/MS - Mansfield	d Lab Associated	sample(s):	02-03,05 Batch	: WG15435	57-2 WG154355	7-3		
Benzo(a)pyrene	90		94		40-140	4		20
Indeno(1,2,3-cd)pyrene	97		100		40-140	3		20
Dibenz(a,h)anthracene	93		98		40-140	5		20
Benzo(g,h,i)perylene	100		105		40-140	5		20

	LCS	LCSD	Acceptance
Surrogate	%Recovery Qu	al %Recovery Qual	Criteria
2-Fluorophenol	57	50	15-115
Phenol-d5	41	35	15-115
Nitrobenzene-d5	98	91	30-130
2-Fluorobiphenyl	86	81	30-130
2,4,6-Tribromophenol	85	87	15-115
Terphenyl-d14	88	89	30-130

Project Name: STEELWINDS ANNUAL/SEMI-ANNUAL

Project Number: 03.0033579.14

Lab Number: L2147600

Report Date: 10/13/21

arameter	LCS %Recover	y Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	Qual	RPD Limits
Semivolatile Organics by GC/MS	- Mansfield Lab Associa	ated sample(s):	02-03,05 Batch:	WG1551897-2 WG155189	97-3		
bis(2-Chloroethyl)ether	73		72	40-140	1		20
1,3-Dichlorobenzene	32	Q	41	40-140	25	Q	20
1,4-Dichlorobenzene	31	Q	42	40-140	30	Q	20
1,2-Dichlorobenzene	34	Q	43	40-140	23	Q	20
bis(2-chloroisopropyl)ether	64		65	40-140	2		20
Acetophenone	81		79	40-140	3		20
Hexachloroethane	29		38	10-97	27	Q	20
Nitrobenzene	75		74	40-140	1		20
Isophorone	76		76	40-140	0		20
bis(2-Chloroethoxy)methane	71		70	40-140	1		20
1,2,4-Trichlorobenzene	36	Q	43	40-140	18		20
Naphthalene	46		52	40-140	12		20
4-Chloroaniline	76		75	40-140	1		20
Hexachlorobutadiene	32	Q	42	40-140	27	Q	20
2-Methylnaphthalene	45		52	40-140	14		20
1,2,4,5-Tetrachlorobenzene	42		48	40-140	13		20
Hexachlorocyclopentadiene	15		20	10-109	29	Q	20
Biphenyl	68		66	40-140	3		20
2-Chloronaphthalene	47		53	40-140	12		20
2-Nitroaniline	112		115	40-140	3		20
Acenaphthylene	63		67	40-140	6		20
Dimethylphthalate	54		59	40-140	9		20
2,6-Dinitrotoluene	81		83	40-140	2		20

Lab Control Sample Analysis Batch Quality Control

Project Name: STEELWINDS ANNUAL/SEMI-ANNUAL

Project Number: 03.0033579.14

Lab Number: L2147600

Report Date: 10/13/21

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Semivolatile Organics by GC/MS - Mansfield	Lab Associate	d sample(s):	02-03,05 Batch:	WG1551897-2 WG15518	97-3	
Acenaphthene	61		65	40-140	6	20
3-Nitroaniline	96		99	40-140	3	20
Dibenzofuran	69		73	40-140	6	20
2,4-Dinitrotoluene	98		105	40-140	7	20
Fluorene	73		77	40-140	5	20
Diethylphthalate	74		80	40-140	8	20
4-Nitroaniline	99		107	40-140	8	20
n-Nitrosodiphenylamine	81		87	40-140	7	20
Hexachlorobenzene	76		80	40-140	5	20
Phenanthrene	80		87	40-140	8	20
Anthracene	84		89	40-140	6	20
Carbazole	86		94	40-140	9	20
Di-n-butylphthalate	84		91	40-140	8	20
Fluoranthene	87		95	40-140	9	20
Pyrene	81		90	40-140	11	20
Butylbenzylphthalate	85		95	40-140	11	20
3,3'-Dichlorobenzidine	91		98	40-140	7	20
Benz(a)anthracene	88		97	40-140	10	20
Chrysene	81		89	40-140	9	20
bis(2-Ethylhexyl)phthalate	90		101	40-140	12	20
Di-n-octylphthalate	80		90	40-140	12	20
Benzo(b)fluoranthene	85		98	40-140	14	20
Benzo(k)fluoranthene	82		92	40-140	11	20

Lab Control Sample Analysis Batch Quality Control

Project Name: STEELWINDS ANNUAL/SEMI-ANNUAL

Lab Number: L2147600

Project Number: 03.0033579.14

Report Date: 10/13/21

Parameter	LCS %Recovery	Qual	LCSD %Recove		Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Semivolatile Organics by GC/MS - Mansfield	Lab Associated	d sample(s):	02-03,05 E	Batch:	WG155189	7-2 WG155189	97-3			
Benzo(a)pyrene	83		93			40-140	11		20	
Indeno(1,2,3-cd)pyrene	84		96			40-140	13		20	
Dibenz(a,h)anthracene	82		94			40-140	14		20	
Benzo(g,h,i)perylene	87		99			40-140	13		20	

Course state	LCS	LCSD	Acceptance Criteria
Surrogate	%Recovery Qu	ıal %Recovery Qual	Criteria
2-Fluorophenol	52	51	15-115
Phenol-d5	34	33	15-115
Nitrobenzene-d5	90	87	30-130
2-Fluorobiphenyl	79	73	30-130
2,4,6-Tribromophenol	94	98	15-115
Terphenyl-d14	82	89	30-130

METALS

Project Name: STEELWINDS ANNUAL/SEMI-ANNUAL Lab Number: L2147600

Project Number: 03.0033579.14 **Report Date:** 10/13/21

SAMPLE RESULTS

 Lab ID:
 L2147600-01
 Date Collected:
 09/03/21 07:25

 Client ID:
 MWN-02D-090321
 Date Received:
 09/03/21

Sample Location: LACKAWANNA, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Man	sfield Lab										
Arsenic, Total	0.00062		mg/l	0.00050	0.00016	1	09/07/21 19:06	6 09/08/21 01:09	EPA 3005A	1,6020B	CD
Barium, Total	0.9225		mg/l	0.00050	0.00017	1	09/07/21 19:06	6 09/08/21 01:09	EPA 3005A	1,6020B	CD
Chromium, Total	0.00060	J	mg/l	0.00100	0.00017	1	09/07/21 19:06	6 09/08/21 01:09	EPA 3005A	1,6020B	CD

Project Name: STEELWINDS ANNUAL/SEMI-ANNUAL Lab Number: L2147600

Project Number: 03.0033579.14 **Report Date:** 10/13/21

SAMPLE RESULTS

 Lab ID:
 L2147600-02
 Date Collected:
 09/03/21 08:00

 Client ID:
 MWN-02B-090321
 Date Received:
 09/03/21

Sample Location: LACKAWANNA, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Ma	ansfield Lab										
Arsenic, Total	0.02768		mg/l	0.00050	0.00016	5 1	09/07/21 19:0	06 09/08/21 01:14	EPA 3005A	1,6020B	CD

Project Name: STEELWINDS ANNUAL/SEMI-ANNUAL Lab Number: L2147600

Project Number: 03.0033579.14 **Report Date:** 10/13/21

SAMPLE RESULTS

 Lab ID:
 L2147600-04
 Date Collected:
 09/03/21 09:55

 Client ID:
 MWN-03B-090321
 Date Received:
 09/03/21

Sample Location: LACKAWANNA, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	field Lab										
Arsenic, Total	0.08697		mg/l	0.00050	0.00016	1	09/07/21 19:06	09/08/21 00:16	EPA 3005A	1,6020B	CD
Barium, Total	1.049		mg/l	0.00050	0.00017	1	09/07/21 19:06	09/08/21 00:16	EPA 3005A	1,6020B	CD
Chromium, Total	0.00510		mg/l	0.00100	0.00017	1	09/07/21 19:06	09/08/21 00:16	EPA 3005A	1,6020B	CD
Manganese, Total	0.4002		mg/l	0.00100	0.00044	1	09/07/21 19:06	09/08/21 00:16	EPA 3005A	1,6020B	CD

Project Name: STEELWINDS ANNUAL/SEMI-ANNUAL Lab Number: L2147600

Project Number: 03.0033579.14 **Report Date:** 10/13/21

SAMPLE RESULTS

 Lab ID:
 L2147600-05
 Date Collected:
 09/03/21 10:05

 Client ID:
 MWN-03D-090321
 Date Received:
 09/03/21

Sample Location: LACKAWANNA, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Dissolved Metals - N	Mansfield	Lab									
Barium, Dissolved	1.318		mg/l	0.00050	0.00017	' 1	09/09/21 16:4	3 09/10/21 00:40	EPA 3005A	1,6020B	PS
Manganese, Dissolved	0.02452		mg/l	0.00100	0.00044	1	09/09/21 16:4	3 09/10/21 00:40	EPA 3005A	1,6020B	PS

Project Name: STEELWINDS ANNUAL/SEMI-ANNUAL

Project Number: 03.0033579.14

Lab Number:

L2147600

Report Date: 10/13/21

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mansfield	Lab for sample(s):	01-02,04	Batch:	WG154	13548-1				
Arsenic, Total	ND	mg/l	0.00050	0.00016	5 1	09/07/21 19:06	09/08/21 00:35	5 1,6020B	CD
Barium, Total	ND	mg/l	0.00050	0.00017	7 1	09/07/21 19:06	09/08/21 00:35	5 1,6020B	CD
Chromium, Total	ND	mg/l	0.00100	0.00017	7 1	09/07/21 19:06	09/08/21 00:35	5 1,6020B	CD
Manganese, Total	ND	mg/l	0.00100	0.00044	1 1	09/07/21 19:06	09/08/21 00:35	5 1,6020B	CD

Prep Information

Digestion Method: EPA 3005A

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Dissolved Metals - Ma	nsfield Lab	for sample	e(s): 05	Batch: V	/G1544	413-1				
Barium, Dissolved	ND		mg/l	0.00050	0.00017	1	09/09/21 16:43	09/10/21 00:06	1,6020B	PS
Manganese, Dissolved	ND		mg/l	0.00100	0.00044	1	09/09/21 16:43	09/10/21 00:06	1,6020B	PS

Prep Information

Digestion Method: EPA 3005A

Lab Control Sample Analysis Batch Quality Control

Project Name: STEELWINDS ANNUAL/SEMI-ANNUAL

Project Number: 03.0033579.14

Lab Number: L2147600

Report Date: 10/13/21

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample	e(s): 01-02,04	Batch: WG	1543548-2					
Arsenic, Total	103		-		80-120	-		
Barium, Total	93		-		80-120	-		
Chromium, Total	96		-		80-120	-		
Manganese, Total	94		-		80-120	-		
Dissolved Metals - Mansfield Lab Associated sa	mple(s): 05 Ba	atch: WG1	544413-2					
Barium, Dissolved	96		-		80-120	-		
Manganese, Dissolved	94		-		80-120	-		

Matrix Spike Analysis Batch Quality Control

Project Name: STEELWINDS ANNUAL/SEMI-ANNUAL

Project Number: 03.0033579.14

Lab Number:

L2147600

Report Date: 10/13/21

Parameter	Native Sample	MS Added	MS Found	MS %Recovery		MSD Found	MSD %Recovery Qual	Recovery Limits	RPD Qual	RPD Limits
Total Metals - Mansfield Lal	b Associated sam	ple(s): 01-0	2,04 QC B	atch ID: WG1	543548-3	QC S	Sample: L2146884-01	Client ID:	MS Sample	
Arsenic, Total	0.01047	0.12	0.1341	103		-	-	75-125	-	20
Barium, Total	0.5554	2	2.428	94		-	-	75-125	-	20
Chromium, Total	0.03241	0.2	0.2334	100		-	-	75-125	-	20
Manganese, Total	15.75	0.5	15.49	0	Q	-	-	75-125	-	20
Dissolved Metals - Mansfiel	ld Lab Associated	sample(s):	05 QC Ba	tch ID: WG15	44413-3	QC Sa	imple: L2147925-01	Client ID: N	/IS Sample	
Barium, Dissolved	0.0081	2	1.910	95		-	-	75-125	-	20
Manganese, Dissolved	0.0437	0.5	0.5331	98		-	-	75-125	-	20

Lab Duplicate Analysis Batch Quality Control

Project Name: STEELWINDS ANNUAL/SEMI-ANNUAL

03.0033579.14

Project Number:

Lab Number:

L2147600

Report Date:

10/13/21

Parameter	eter Nat		Duplicate Sample	Units	RPD	Qual RPD	Limits
Total Metals - Mansfield Lab Association	ciated sample(s): 01-02,04	QC Batch ID:	WG1543548-4 QC Sample	: L2146884-01	Client ID	: DUP Sample	
Arsenic, Total		0.01047	0.01118	mg/l	7		20
Barium, Total		0.5554	0.5651	mg/l	2		20
Chromium, Total		0.03241	0.03560	mg/l	9		20
Total Metals - Mansfield Lab Association	ciated sample(s): 01-02,04	QC Batch ID:	WG1543548-4 QC Sample	: L2146884-01	Client ID	: DUP Sample	
Manganese, Total		15.75	16.35	mg/l	4		20

Project Name: STEELWINDS ANNUAL/SEMI-ANNUAL

Project Number: 03.0033579.14

Lab Serial Dilution Analysis Batch Quality Control

Lab Number:

L2147600

Report Date:

10/13/21

Parameter	Nati	ve Sample	Serial D	ilution	Units	% D	Qual RPD	Limits	
Total Metals - Mansfield Lab	Associated sample(s):	01-02,04	QC Batch ID:	WG1543548-6	QC Sample	: L2146884-0°	1 Client II	D: DUP Sample	
Barium, Total			0.5554	0.57	11	mg/l	3		20
Chromium, Total			0.03241	0.033	303	mg/l	2		20
Total Metals - Mansfield Lab	Associated sample(s):	01-02,04	QC Batch ID:	WG1543548-6	QC Sample	: L2146884-01	1 Client II	D: DUP Sample	
Manganese, Total			15.75	16.4	18	mg/l	5		20

Project Name: STEELWINDS ANNUAL/SEMI-ANNUAL

Project Number: 03.0033579.14

Lab Number: L2147600 Report Date: 10/13/21

Sample Receipt and Container Information

YES Were project specific reporting limits specified?

Cooler Information

Custody Seal Cooler

Α Absent

Container Information		Initial	Final	Temp			Frozen		
Container ID	Container Type	Cooler	рН	pН	•	Pres	Seal	Date/Time	Analysis(*)
L2147600-01A	Plastic 250ml HNO3 preserved	Α	<2	<2	4.2	Υ	Absent		BA-6020T(180),CR-6020T(180),AS-6020T(180)
L2147600-02A	Vial HCl preserved	Α	NA		4.2	Υ	Absent		NYCP51-8260(14)
L2147600-02B	Vial HCl preserved	Α	NA		4.2	Υ	Absent		NYCP51-8260(14)
L2147600-02C	Vial HCl preserved	Α	NA		4.2	Υ	Absent		NYCP51-8260(14)
L2147600-02D	Plastic 250ml HNO3 preserved	Α	<2	<2	4.2	Υ	Absent		AS-6020T(180)
L2147600-02E	Amber 1000ml unpreserved	Α	11	11	4.2	Υ	Absent		A2-SVOC-8270(7)
L2147600-02F	Amber 1000ml unpreserved	Α	11	11	4.2	Υ	Absent		A2-SVOC-8270(7)
L2147600-03A	Vial HCl preserved	Α	NA		4.2	Υ	Absent		NYCP51-8260(14)
L2147600-03B	Vial HCl preserved	Α	NA		4.2	Υ	Absent		NYCP51-8260(14)
L2147600-03C	Vial HCl preserved	Α	NA		4.2	Υ	Absent		NYCP51-8260(14)
L2147600-03D	Amber 1000ml unpreserved	Α	11	11	4.2	Υ	Absent		A2-SVOC-8270(7)
L2147600-03E	Amber 1000ml unpreserved	Α	11	11	4.2	Υ	Absent		A2-SVOC-8270(7)
L2147600-04A	Plastic 250ml HNO3 preserved	Α	<2	<2	4.2	Υ	Absent		BA-6020T(180),CR-6020T(180),MN-6020T(180),AS-6020T(180)
L2147600-05A	Vial HCl preserved	Α	NA		4.2	Υ	Absent		NYCP51-8260(14)
L2147600-05B	Vial HCl preserved	Α	NA		4.2	Υ	Absent		NYCP51-8260(14)
L2147600-05C	Vial HCl preserved	Α	NA		4.2	Υ	Absent		NYCP51-8260(14)
L2147600-05D	Plastic 250ml unpreserved	Α	7	7	4.2	Υ	Absent		-
L2147600-05E	Amber 1000ml unpreserved	Α	7	7	4.2	Υ	Absent		A2-SVOC-8270(7)
L2147600-05F	Amber 1000ml unpreserved	Α	7	7	4.2	Υ	Absent		A2-SVOC-8270(7)
L2147600-05X	Plastic 120ml HNO3 preserved Filtrates	Α	NA		4.2	Υ	Absent		MN-6020S(180),BA-6020S(180)
L2147600-06A	Vial HCl preserved	Α	NA		4.2	Υ	Absent		NYCP51-8260(14)

Project Name: Lab Number: STEELWINDS ANNUAL/SEMI-ANNUAL L2147600 03.0033579.14 **Report Date: Project Number:** 10/13/21

GLOSSARY

Acronyms

LOQ

MS

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments

from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.

EPA Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LCSD Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LOD - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

MDI - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

> - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

- No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile NR

Organic TIC only requests.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEO - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: DU Report with 'J' Qualifiers

Project Name:STEELWINDS ANNUAL/SEMI-ANNUALLab Number:L2147600Project Number:03.0033579.14Report Date:10/13/21

Footnotes

 The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

1

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benza(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA, this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A -Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- $\label{eq:main_equation} \textbf{M} \qquad \text{-Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.}$
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.

Report Format: DU Report with 'J' Qualifiers

Project Name:STEELWINDS ANNUAL/SEMI-ANNUALLab Number:L2147600Project Number:03.0033579.14Report Date:10/13/21

Data Qualifiers

- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- Z The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)

Report Format: DU Report with 'J' Qualifiers

Project Name: STEELWINDS ANNUAL/SEMI-ANNUAL Lab Number: L2147600

Project Number: 03.0033579.14 **Report Date:** 10/13/21

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - VI, 2018.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873 Revision 19

Page 1 of 1

Published Date: 4/2/2021 1:14:23 PM

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625/625.1: alpha-Terpineol

EPA 8260C/8260D: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene;

EPA 8270D/8270E: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

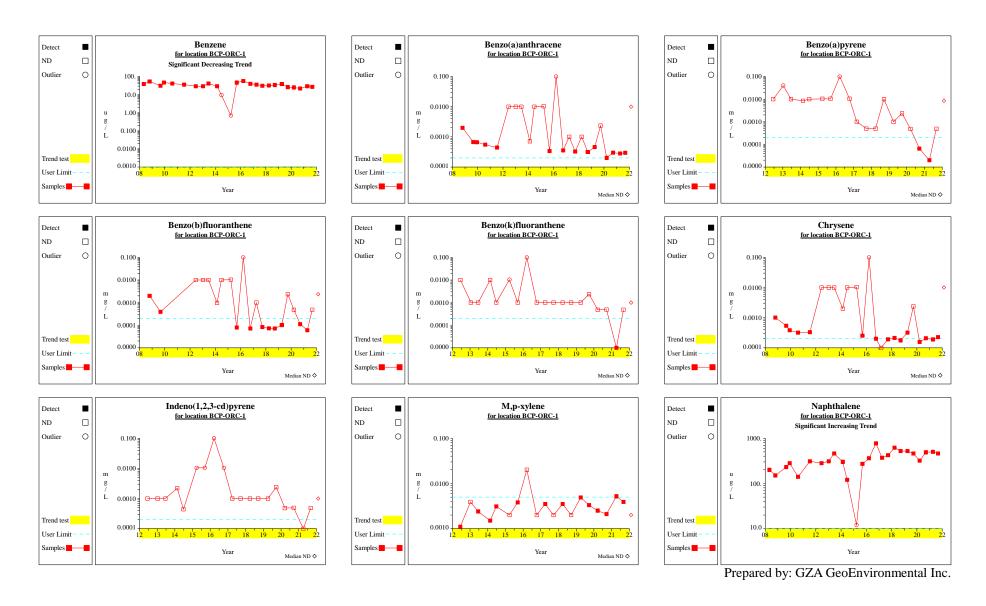
Non-Potable Water

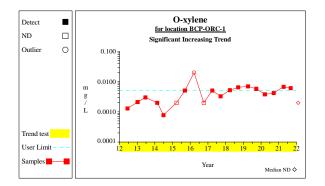
EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

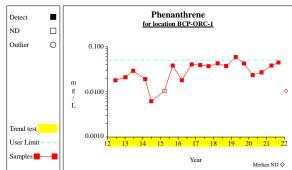
EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

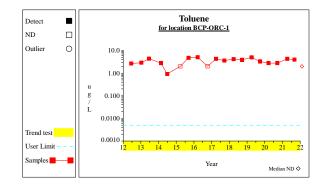
EPA 245.1 Hg

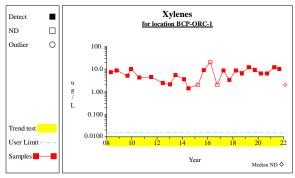
SM2340B

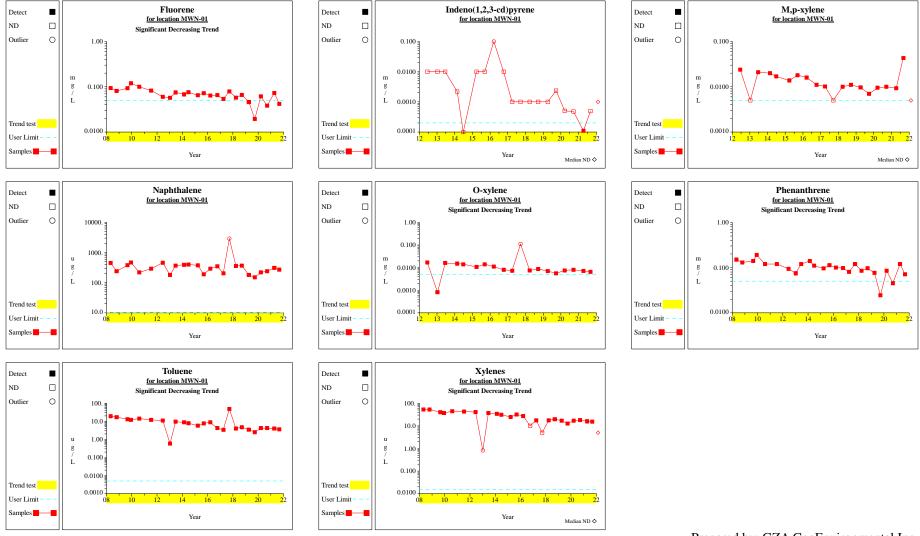

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

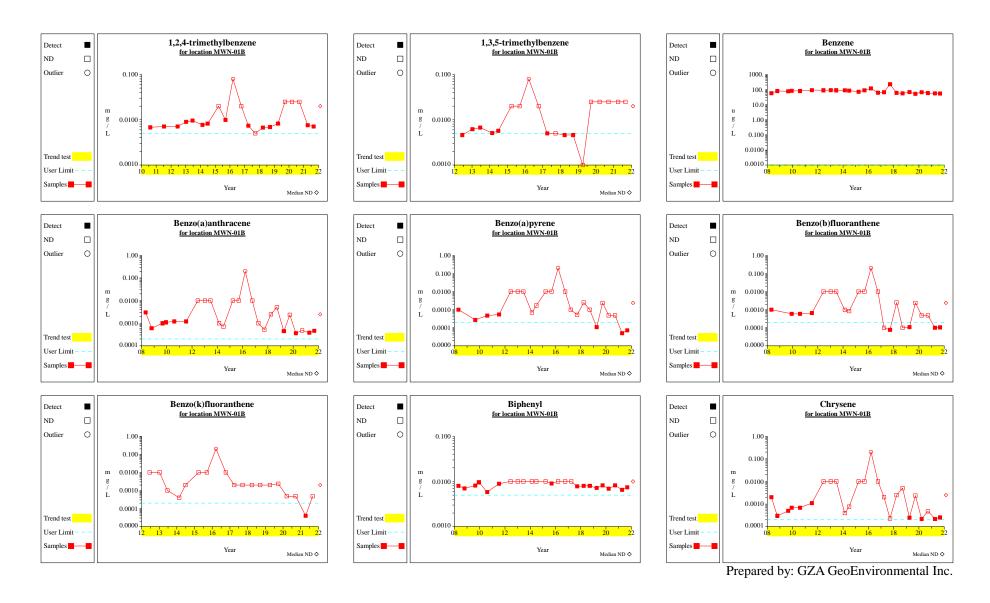

Pre-Qualtrax Document ID: 08-113 Document Type: Form

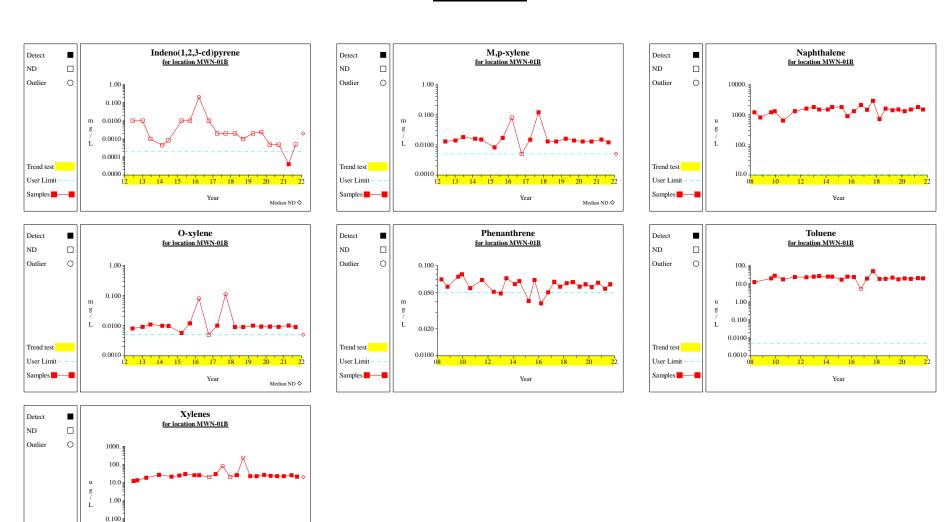

Westborough, MA 01581	NEW YORK CHAIN OF CUSTODY Mansfield, MA 02048	Mahwah, NJ 07430: 35 Whitney Rd, Suite 5 Albany, NY 12205: 14 Walker Way Tonawanda, NY 14150: 275 Cooper Ave, Suite 105				1	1	Date Rec'd a lul							ALPHA JOB# 22147600
8 Walkup Dr.	320 Forbes Blvd	Project Information							14				Billing Information		
TEL: 508-898-9220 FAX: 508-898-9193	TEL: 508-822-9300 FAX: 508-822-3288	Project Name: STEEL WINDS ANNUAL SENT ANNUAL GW						ASP-A ASP-B							Same as Client Info
		Project Location: LACKAWANA NÝ						EQuIS (1 File)							PO#
Client Information Project # 03.0033579.14								Other	_	_	CA		900777777		
Client: GZA (Use Project name as Project #)								latory	Requi	remer	nt		Disposal Site Information		
Address: 300 Pacri St Suite 700 Project Manager: DANIEL TROY							NY TOGS NY Part 375								Please identify below location of
Buffalo NY	14202	ALPHAQuote #:					AWQ Standards NY CP-51 appl							applicable disposal facilities.	
Phone: 716 - 51	7-5708	Turn-Around Time	urn-Around Time						stricte	d Use			Disposal Facility:		
Fax:		Standa		Due Date			NY Unrestricted Use NJ							□ NJ □ NY	
Email: DANIEL.	TROY @GZA.CO	Rush (only if pre approve	ed)	# of Days	9.		NYC Sewer Discharge								Other:
These samples have b	een previously analyze	ed by Alpha					ANA	YSIS							Sample Filtration
Other project specific requirements/comments: Please specify Metals or TAL.						STARS	PAH /SIMS	AR, BR, CR	D, Arsenic	S	, Mea			Done Lab to do Preservation Lab to do (Please Specify below)	
ALPHA Lab ID		mple ID	Sample Sampler's	00	2	00	60100	G0109	00100	6010D		5)			
(Lab Use Only)	Sa.	mpie ID	Date Time		Matrix Initials	82	- 4	6010	3	9	9	9		Sample Specific Comments	
47600-01	MWN-02D-	090321	9/3/21	0725	GW	PN			×						
-02	MWN-OZB-	15 50 70	177	0800		,	×	4		×					
-03	MWN - 02 -0			0835			X	×							
-04	MWN-0313		4	0955	1	4	1			×	V	×	x		
							-	_	_		×	v	×	PN	9-3-21
-05	MWN-03D	7-070321	9/3/21	1005	ow	PN	×	×			X	X			* LAB FILLER
-06	TRIP BLAN	h	1		w	1									Metal Sample
															bottlesk
															can use succ
															bothe is need more
Preservative Code: A = None B = HCI C = HNO ₃ D = H ₂ SO ₄ E = NaOH	Container Code P = Plastic A = Amber Glass V = Vial G = Glass B = Bacteria Cup	Westboro: Certification Mansfield: Certification	Container Type Preservative										Please print clearly, legibly and completely. Samples can not be logged in and turnaround time clock will not start until any ambiguities are		
E = NaOH		Relinquished By: Date/T			Time	Received By:				Date/Time 9/2/21 11/7 9/4/21 5/736				resolved. BY EXECUTING THIS COC, THE CLIENT	

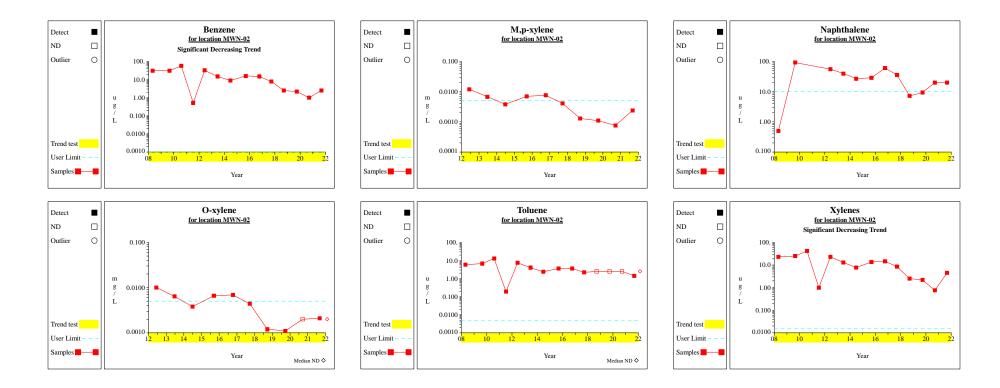


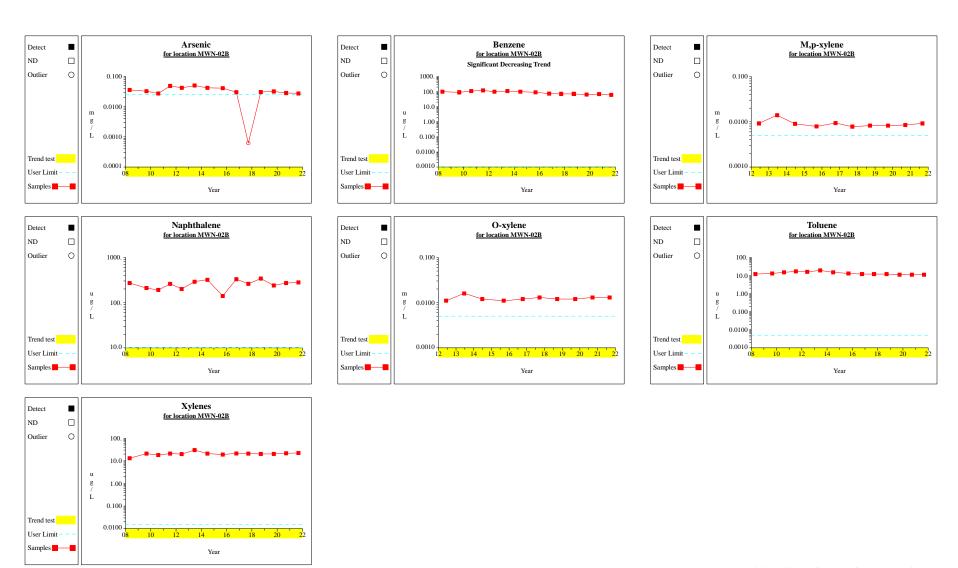

APPENDIX C TIME SERIES PLOTS



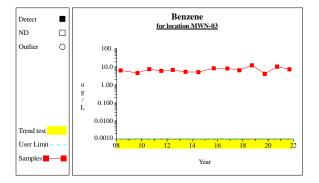


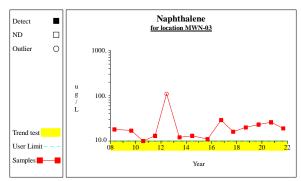

Prepared by: GZA GeoEnvironmental Inc.

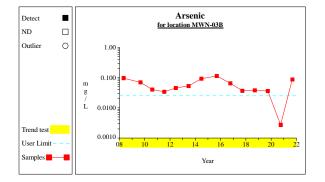


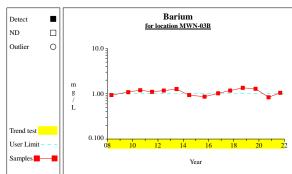

Trend test

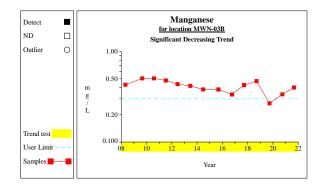
Year

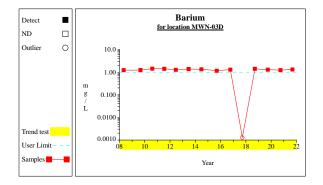

Median ND ♦

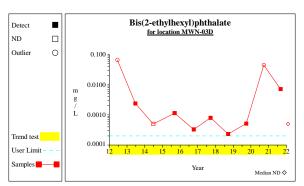


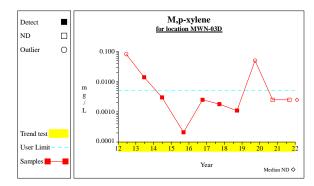


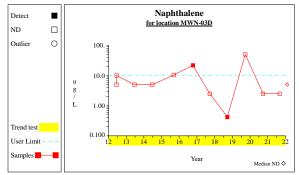


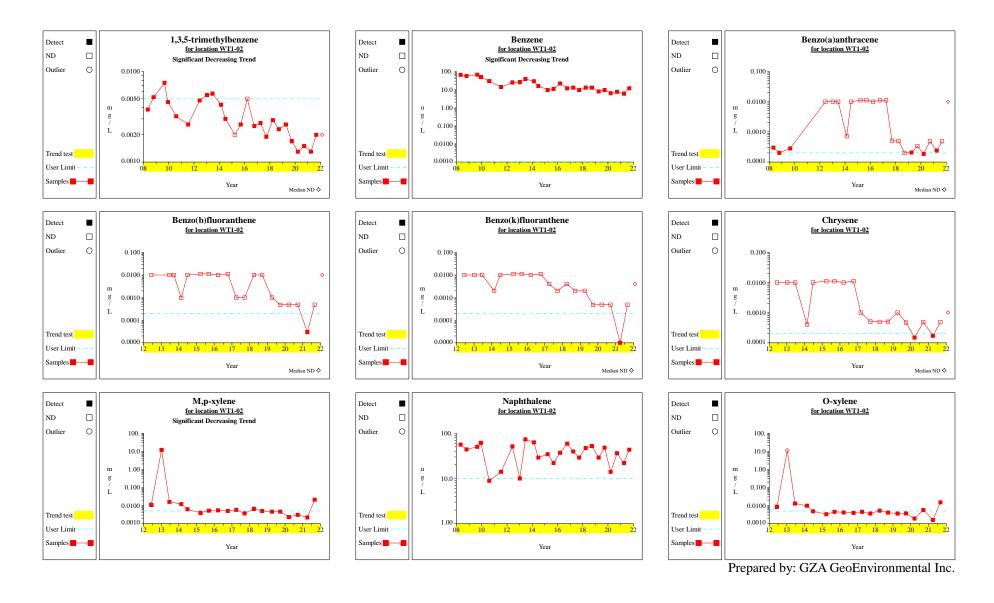

Prepared by: GZA GeoEnvironmental Inc.

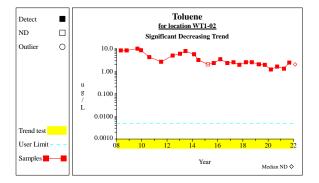


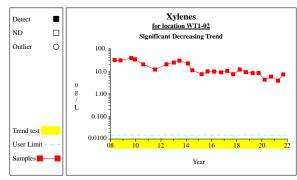


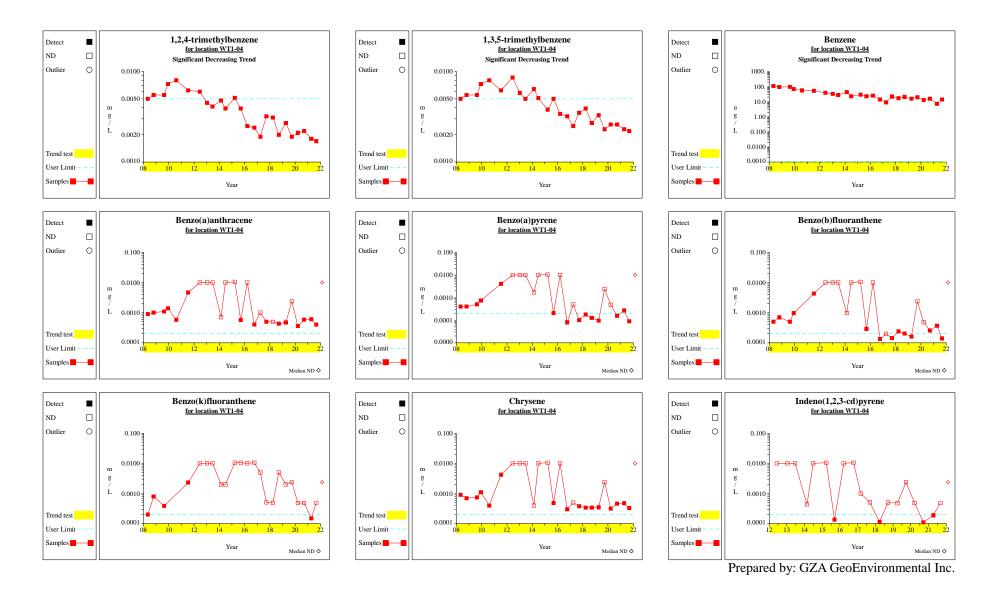


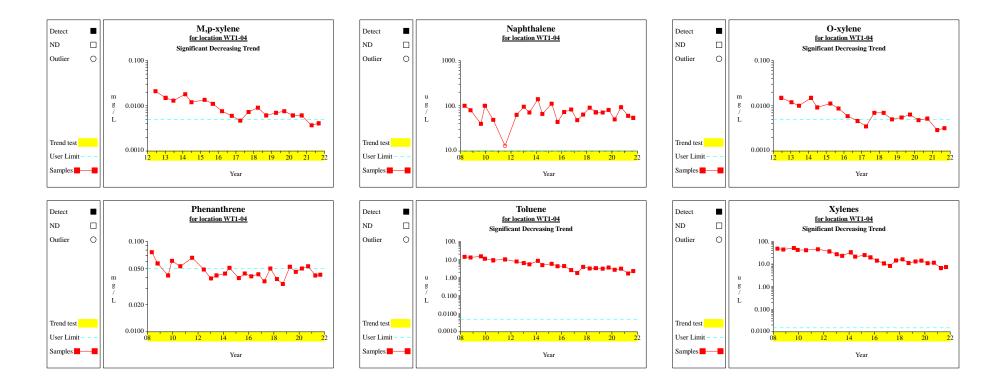


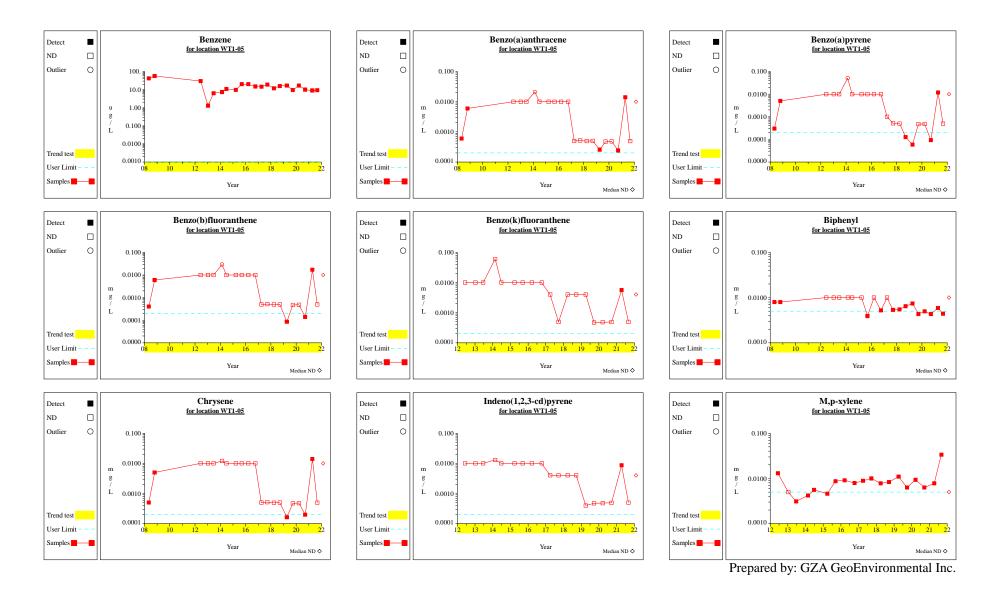


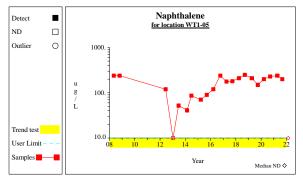


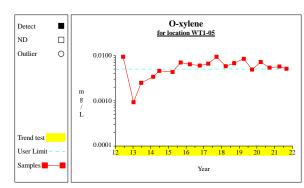


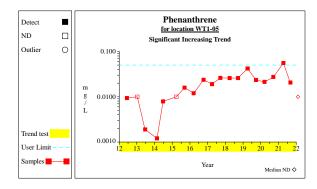


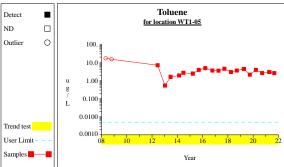


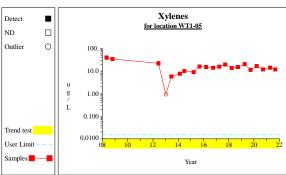











Time Series

APPENDIX D WELL DEVELOPMENT FORMS

						Historic Info	ormation				
Boring Log A	vailable (y	/es /no/attac	:hed):								
Installation Lo	og Availab	ole (yes /no/a	attached)								
			,			Summ	ary				
Monitoring W	/ell :	MWN-01		Ground Su	rface Elevation:	582.99		Riser/Sc	reen Material	: PVC	
Installation D	ate:	8/30/90		Groundwat	er Elevation:	573.55		Top of So	creen Depth:	9.15	
Installed By:		Turnkey		Monitoring	Point Elevation:	585.14		Bottom o	of Screen Dep	th: 19.15	
				Elevation D				•			
Previous Fiel	d measur	ement Infor	mation Availal	ole (yes/ no /	attached)						
					Ranges	s of Previous Fi	ield Measu	rements			
Depth to	Water		рН		Conductance	Tempera	ature	Τι	ırbidity		Color
(ft)			ard Units)	(r	mS/cm)	(°C)	(NTU)		
13.5	4	11.59	9 - 11.75	1.0	51 -1.450	10.4 -1	4.4	1.2	23 - 2.9		Clear
Notes:											
DO and pH m	neasurem	ents are rou	ıtinely made u	sing the sar	me model water o	juality meter, he	owever the	measure	ments made	on 9/2020 ar	nd 4/2021 appear erroneous.
			F	ield Observ	ations				Parame	eters +/-	Sampling Information
Exterior Obse	ervations:	No change	s from last sa	mpling perio	od				рН	+/- 0.1	Sample ID: MWN-01 -090221
									Conductivity		Sample Time: 09:15
Interior Obse	rvations	No change	s from last sa	mpling perio	od				Temperature		# of Sample Containers: Five
									Turbidity	+/- 10%	Duplicate Sample ID: NA
									ORP		Sample Analysis:
Signs of Dam			None						DO	+/- 10%	VOC STARS List via EPA 8260B
Locked (y	es/ no)	Well Ca	p (yes /no)	Sur	face Seal Intact (PID Meas	urement:	ND	Odors:	SVOC B/N Via EPA 8270C
		ı		I		Well Quali	ty Data	ı		I	
Doto	T:	Donth to	Cumulativa	ml I	Cassifia	Taman a rati	Tumbialitus	Color	Discolused	0	Notes
Date	Time	Depth to	Cumulative	pH (Ctondord	Specific	Temperature	Turbidity	Color	Dissolved	Oxygen	Notes
		Water	Volume	(Standard	Conductance	(°C)	(NTU)		Oxygen	Reduction	
0/0/0004	0.55		Purged (Gal)		(mS/cm)	40.0	7.00	Clara.	%	Potential	Donth of Water, 44 50
9/2/2021	8:55 9:00	14.64 14.67	2	11.67	1.219	10.0 10.3	7.66 3.84	Clear	3.0 1.6		Depth of Water: 11.59
	9:00	14.67	4	11.57 11.55	1.216 1.216	10.3	3.84	Clear Clear	1.6	-144.5 -150.4	Length of Water Column: 7.56 Depth of Well: 19.15
	9:05	14.67	6	11.55	1.213	10.5	2.77	Clear	1.7	-150.4 -155.8	Sheen Observed: Y N
	9:15	14.67	8	11.53	1.212	10.8	2.77	Clear	1.2	-155.6	DNAPL Observed: Y N
	J. 1J	17.07	U	11.00	1.414	10.0	۷.01	Cicai	1.2	-103.2	Did Well Go Dry: Y N
											Other: Sulfur odor.
									 		purged from well early.
											1 Well Volume = 4.9 gal
		 								-	

						Historic Inf	ormation				
Boring Log A			,								
Installation L	og Availab	ole (yes /no/a	attached)								
						Summ	nary				
Monitoring W	/ell :	MWN-01B		Ground Sui	rface Elevation:			Riser/Sc	reen Material	: PVC	
Installation D	ate:	11/2/92		Groundwat	er Elevation:	571.53			creen Depth:	22.24	
Installed By:		Turnkey		Monitoring	Point Elevation:	587.03		Bottom o	of Screen Dep	th: 32.24	
				Elevation D	atum:						
Previous Fie	ld measure	ement Infori	mation Availal	ble (yes/ no /	attached)						
					Range	s of Previous F	ield Measu	ırements			
Depth to	Water		рН	Specific	Conductance	Tempera	ature	Τι	ırbidity		Color
(ft)			ard Units)	•	nS/cm)	(°C)			NTU)		
14.4			9 -11.40	`	02 - 1.01	10.7 - 1		,	0 - 7.30		Clear
Notes:								•		•	
	neasurem	ents are rou	utinely made u	sing the sar	me model water	guality meter. h	nowever the	e measure	ements made	on 9/2020 a	and 4/2021 appear erroneous.
2	,			eld Observa		,,,			Parame		Sampling Information
exterior Obs	ervations:	No change	s from last sa						рН	+/- 0.1	Sample ID: MWN-01B -090221
				g p					Conductivity		Sample Time: 10:20
nterior Obse	ervations	No change	s from last sa	mplina perio	od				Temperature		# of Sample Containers: Five
				1 31	-			Turbidity	+/- 10%	Duplicate Sample ID: NA	
									ORP	+/- 10mV	Sample Analysis:
Signs of Dan	nage/Tami	pering:	None						DO	+/- 10%	VOC STARS List via EPA 8260B
Locked (y			p (yes /no)	Surf	ace Seal Intact ((yes/no)	PID Measi	urement:	•	Odors:	SVOC B/N Via EPA 8270C
×	,					Well Qual	ity Data				
Date	Time	Depth to	Cumulative	рН	Specific	Temperature	Turbidity	Color	Dissolved	Oxygen	Notes
		Water	Volume	(Standard	Conductance	(°C)	(NTU)		Oxygen	Reduction	
		ft bgs	Purged (Gal)	` Units)	(mS/cm)	(- /	, ,		%	Potential	
9/2/2021	10:00	16.0	0	10.9	0.684	10.0	32.12	Clear	5.1	-105.9	Depth of Water: 15.50
	10:05	16.2	2	11.1	0.802	9.8	24.09	Clear	1.3	-185.1	Length of Water Column: 16.74
	10:10	16.2	4	11.1	0.808	9.8	8.73	Clear	1.0	-199.5	Depth of Well: 32.24
	10:15	16.2	6	11.1	0.828	9.8	8.12	Clear	0.9	-206.4	Sheen Observed: Y N
	10:20	16.2	8	11.1	0.831	9.8	7.67	Clear	0.8	-214.2	DNAPL Observed: Y N
											Did Well Go Dry: Y N
											Other: Sulfur odor.
											1 Well Volume = 2.7 gal

						Historic Info	armation				
Boring Log A	Vailable (1	/os/no/attac	had):			THOUTIC ITH	JilliallUll				
	1.5		,								
nstallation L	.og Avallat	ne (yes /no/a	attached)			C					
N 4 '1' \ \	V - II	WT4 00		0	·(El	Summ		D'/O		L DV(0	
Monitoring V		WT1-02			rface Elevation:	598.5		-	reen Materia		
nstallation E		6/11/07		•	er Elevation:	573.87			creen Depth:		
nstalled By:		Turnkey			Point Elevation:	600.78		Bottom o	f Screen De _l	oth: 37.78	
				Elevation D							
Previous Fie	ld measur	ement Infori	mation Availal	ole (yes/ no /							
						s of Previous F					
Depth to	Water		pН		Conductance	Tempera	ature		rbidity		Color
(ft)			ard Units)	(n	nS/cm)	(°C)			NTU)		
26.0)7	12.19	9 - 12.19	1.84	4 - 2.116	11.5 - 1	3.08	1.6	67 - 16		Clear
Notes:		7		-		-		-		-	
	measurem	ents are rou	utinely made u	sing the sar	ne model water	quality meter. h	nowever the	e measure	ements made	on 9/2020 a	and 4/2021 appear erroneous.
				eld Observa		, , , .				eters +/-	Sampling Information
xterior Obs	ervations:	No change	s from last sa	mplina perio	od				рH	+/- 0.1	Sample ID: WT1-02 -090221
				g p					Conductivity		Sample Time: 12:55
nterior Obse	ervations	No change	s from last sa	mplina perio	od				Temperatur		# of Sample Containers: Five
				g p					Turbidity		Duplicate Sample ID: NA
		•							ORP		Sample Analysis:
Signs of Dar	mage/Tami	perina:	None						DO	+/- 10%	VOC STARS List via EPA 8260B
Locked (ap (yes /no)	Surf	ace Seal Intact ((ves/no)	PID Meas	urement:	I	Odors:	SVOC B/N Via EPA 8270C
	,		.p () = 5,115,			Well Quali					
			l								
Date	Time	Depth to	Cumulative	рН	Specific	Temperature	Turbidity	Color	Dissolved	Oxygen	Notes
_ =•		Water	Volume	(Standard	Conductance	(°C)	(NTU)	- 3.3.	Oxygen	Reduction	
			Purged (Gal)	`	(mS/cm)	(0)	()		%	Potential	
9/2/2021	12:40	27.52	0	11.98	1.808	12.7	2.9	clear	4.8		Depth of Water: 26.91
31212021	12:45	28.06	2	11.89	1.792	12.7	2.9	clear	3.9		Length of Water Column: 10.87
	12:50	28.06	4	11.87	1.788	12.3	2.8	clear	4.3		Depth of Well: 37.78
	12:55	28.06	6	11.85	1.77	12.3	2.7	clear	4.7		Sheen Observed: Y N
	12.00	20.00	<u> </u>	11.00	1.77	12.0	۷.۱	Cicai	7.7	100.1	DNAPL Observed: Y N
											Did Well Go Dry: Y N
											Other: Sulfur odor.
											1 Well Volume = 7.0 gal
											1 Well volume – 1.0 gai
									I 		
								1			

						Historic Info	ormation					
Daring Lag A	ا مامادات	/ /	الم مال			HISTORIC INIC	ormation					
Boring Log A	\ <u>-</u>	•	,									
Installation L	og Avallar	ole (yes /no/a	attached)									
						Summ	nary	-· /a		. =:/-		
Monitoring W		WT1-04			rface Elevation			_	reen Materi			
Installation D	oate:	5/21/07			er Elevation:	573.54			creen Depth			
nstalled By:		Turnkey			Point Elevation	586.45		_Bottom c	of Screen De	epth: 25.52		
				Elevation D								
Previous Fiel	ld measur	ement Infori	mation Availal	ole (yes/ no /								
						s of Previous F						
Depth to	Water		pН		Conductance	Tempera	ature	Tui	rbidity		Color	
(ft)			ard Units)	(m	S/cm)	(°C)		,	NTU)			
11.9)2	11.89	9 - 11.99	1.353	3 - 1.550	10.2 -13	3.27	1.3	1 - 8.3		Clear	
Notes:		.				-		-		-		
OO and pH n	neasurem	ents are rou	ıtinely made u	sing the sar	me model wate	r quality meter.	however t	he measu	rements ma	ade on 9/202	20 and 4/2021 appear erroneous.	
				eld Observa						eters +/-	Sampling Information	
Exterior Obs	ervations:	No change	s from last sa	mplina perio	od				pН	+/- 0.1	Sample ID: WT1-04 -090221	
				1 31	-				Conductivi		Sample Time: 11:10	
nterior Obse	ervations	No change	s from last sa	mplina perio	od						# of Sample Containers: Five	
									Turbidity		Duplicate Sample ID: NA	
		•							ORP		Sample Analysis:	
Signs of Dan	nage/Tam	pering:	None						DO		VOC STARS List via EPA 8260B	
Locked (y			ıp (yes /no)	Surfa	ace Seal Intact	(ves/no)	PID Meas	urement:	•	Odors:	SVOC B/N Via EPA 8270C	
		•	,			Well Quali						
Date	Time	Depth to	Cumulative	рН	Specific	Temperature	Turbidity	Color	Dissolved	Oxygen	Notes	
		Water	Volume	•	Conductance	(°C)	(NTU)		Oxygen	Reduction		
			Purged (Gal)	`	(mS/cm)	(),	(**** - /		%	Potential		
9/2/2021	10:55	13.13	0	11.74	1.637	11.4	116.4	grey	70		Depth of Water: 12.91	
01 L1 L0 L 1	11:00	13.13	2	11.57	1.369	11.2	4.2	clear	1.4		Length of Water Column: 12.61	
	11:05	13.13	4	11.56	1.351	11.1	3.9	clear	1.2		Depth of Well: 25.52	
	11:10	13.13	6	11.51	1.326	11.1	3.76	clear	1.0	-172.4	Sheen Observed: Y N	
		10110	Ü	11101			00	O.O.A.	110		DNAPL Observed: Y N	
											Did Well Go Dry: Y N	
											Other: Sulfur odor.	
											1 Well Volume = 2.0 gal	
											2.0 gai	
		I					l				<u> </u>	

						Lietoria Infe	armation				
		/ /	la a al\.			Historic Info	ormation				
Boring Log A	(•		,								
nstallation L	og Availat	ole (yes /no/a	attached)								
						Summ	ary				
Monitoring W		WT1-05			rface Elevation			-	reen Materi		
nstallation D	ate:	5/29/07			er Elevation:	572.56			creen Depth		
nstalled By:		Turnkey			Point Elevation	584.41		Bottom o	f Screen De	epth: 23.30	
				Elevation D							
Previous Fie	ld measur	ement Infori	mation Availal	ole (yes/ no /							
					Range	s of Previous F	ield Measu	irements			
Depth to	Water		рН	Specific (Conductance	Tempera	ature	Tur	bidity		Color
(ft)		(Standa	ard Units)	(uMl	nos/cm)	(°C) (N			ITU)		
10.8			i - 11.93		- 1.490	10.4 - 12			5 - 5.3		Clear
Notes:										•	
	neasurem	ents are rou	ıtinely made u	sing the sar	ne model wate	r quality meter	however t	he measu	rements ma	ade on 9/202	20 and 4/2021 appear erroneous.
J and pill		5.115 are 100		eld Observa		quality illottor,				eters +/-	Sampling Information
vterior Ohs	ervations:	No change	s from last sa						рН		Sample ID: WT1-05 -090221
Attende Obs	ci valions.	140 Change	3 110111 1431 34	mping pene	Ju				Conductivi		Sample Time: 08:17
nterior Obse	rvations	No change	s from last sa	mnling neric	nd						# of Sample Containers: Five
interior Obse	rations	140 Change	3 HOIII last sa	Sampling period							Duplicate Sample ID: NA
									Turbidity ORP		Sample Analysis:
Signs of Dan	nane/Tam	nering:	None						DO		VOC STARS List via EPA 8260B
Locked (y			p (yes /no)	Surfa	ace Seal Intact	(ves /no)	PID Meas	urement:		Odors:	SVOC B/N Via EPA 8270C
Locked ()	(63/110)	vven Ca	φ (yes /110)	Suria	ice Seal Illiaci	(yes /110) Well Quali		urement.		Odors.	SVOC B/IN VIA EFA 8270C
						Well Quali	ily Dala	ı		_	
Date	Time	Depth to	Cumulative	рН	Specific	Temperature	Turbidity	Color	Dissolved	Oxygen	Notes
Dale	TITLE		Volume	•	•	•	,	COIOI			Notes
		Water		`	Conductance	(°C)	(NTU)		Oxygen	Reduction	
0/0/555			Purged (Gal)		(mS/cm)	44.5	0.4 ===		%	Potential	D 4 600 4 6 5
9/2/2021	8:02	11.92	0	11.41	1.296	11.0		brownish		16.1	Depth of Water: 11.85
	8:07	11.92	5	11.46	1.280	11.0	3.82	clear	1.8		Length of Water Column: 11.45
	8:12	11.92	10	11.46	1.203	11.2	2.12	clear	1.4		Depth of Well: 23.3
	8:17	11.92	15	11.46	1.200	11.2	1.74	clear	1.2	-157.2	Sheen Observed: Y N
											DNAPL Observed: Y N
											Did Well Go Dry: Y N
											Other: Sulfur odor.
											1 Well Volume = 1.8 gal

						Historic Info	ormation				
Boring Log A	vailable (v	/es /no/attac	:hed):								
Installation L	\ <u>-</u>	•	,								
	- g ranak	(3.5/110/1				Summ	narv				
Monitoring W	/ell :	BCP-ORC	-1	Ground Su	rface Elevation		/	Riser/Sc	reen Materi	al: PVC	
Installation D		10/3/07	-		er Elevation:	573.67		_	creen Depth		
Installed By:		Turnkey			Point Elevation				of Screen De		
,				Elevation D				=			
Previous Fie	ld measur	ement Infor	mation Availal	ole (yes/ no /	attached)						
				V		s of Previous F	ield Measu	ırements			
Depth to	Water		pН	Specific (Conductance	Tempera			rbidity		Color
(ft)			ard Units)	•	S/cm)	· · · · · · · · · · · · · · · · · · ·			NTU)		
17.7		`	- 11.57	•	0 - 1.360	11.1 - 1			- 11.4		Clear
Notes:					-					ļ	
	neasurem	ents are rou	ıtinelv made u	sing the sar	me model wate	r quality meter.	however t	he measu	rements ma	ade on 9/202	20 and 4/2021 appear erroneous.
p. 11	2 2			eld Observa		12.2	23.3.			eters +/-	Sampling Information
Exterior Obs	ervations:	No change	s from last sa	mplina perio	od				рН	+/- 0.1	Sample ID: BCP-ORC-090221
			10.01	1 31					Conductivi		Sample Time: 12:10
Interior Obse	ervations	No change	s from last sa	mpling perio	od						# of Sample Containers: Five
				<u>. J.</u>					Turbidity		Duplicate Sample ID: NA
									ORP	+/- 10mV	Sample Analysis:
Signs of Dan	nage/Tam	pering:	None						DO	+/- 10%	VOC STARS List via EPA 8260B
Locked (y	/es/ no)	Well Ca	ıp (yes /no)	Surfa	ace Seal Intact	(yes/no)	PID Meas	urement:		Odors:	SVOC B/N Via EPA 8270C
						Well Quali	ity Data				
Date	Time	Depth to	Cumulative	рН	Specific	Temperature	,	Color	Dissolved	Oxygen	Notes
		Water	Volume	`	Conductance	(°C)	(NTU)		Oxygen	Reduction	
			Purged (Gal)		(mS/cm)				%	Potential	
9/2/2021	11:50	19.31	0	11.45	1.099	9.8	3.05	clear	2.99	-44.4	Depth of Water: 18.30
	11:55	19.56	2	11.29	0.988	9.9	2.39	clear	6.4	-143.7	Length of Water Column: 16.38
<u> </u>	12:00	19.56	4	11.27	0.967	10.0	2.23	clear	5.2	-174.0	Depth of Well: 34.68
	12:05	19.56	6	11.25	0.960	10.0	2.3	clear	4.9	-180.7	Sheen Observed: Y N
	12:10	19.56	8	11.21	0.957	10.0	2.17	clear	4.7	-188.1	DNAPL Observed: Y N
											Did Well Go Dry: Y N
											Other:
											1 Well Volume = 2.0 gal

						Historic Info	ormation				
Boring Log A	vailable (v	ves/no/attac	:hed):			Thomas Inc	omation				
nstallation L	(•	•	,								
mstallation L	og Avallat) (y c 3 /110/6	attacrieu)			Summ	narv				
Monitoring W	اما ·	MWN-02		Ground Su	rface Elevation		iary	Riser/Sc	reen Materi	al· P\/C	
Installation D		9/10/90			er Elevation:	573.31		-	creen Depth		
Installed By:	ato.	Turnkey			Point Elevation				of Screen De		
motanou by:		Turritoy		Elevation D		301101			00.00 2	94.11 00102	
Previous Fiel	ld measur	ement Infor	mation Availal								
	ia inicacai	01110111011	Tradion / (varia)	310 (y 00/11 0 /		s of Previous F	ield Measu	ırements			
Depth to	Water		pН	Specific (Conductance	Tempera			rbidity		Color
(ft)			ard Units)	•	iS/cm)	· · · · · · · · · · · · · · · · · · ·			NTU)		00.0.
27.2		`	l - 12.31	`	3 - 2.06	11.3 - 1		`) - 38.6		Clear
Notes:	.0	11.34	12.01	1.70	2.00	11.5-1	10.0	1.03	, 50.0		Olodi
	magguram	ente are roi	ıtinely made u	eina the car	me model wata	r quality meter	however t	ha massu	ramante me	ada on 0/202	20 appear erroneous.
	ncasurelli	cins are ruc		eld Observa		quality frieter,	HOWEVEI L	ne measu		eters +/-	Sampling Information
Exterior Obse	ervations:	No change	s from last sa						рН	+/- 0.1	Sample ID: MWN-02-090321
Exterior Obs	ervalions.	140 change	3 110111 1831 38	mpiling pend	<u> </u>				Conductivi		Sample 15: WWN-02 -090321
Interior Obse	ervations	No change	s from last sa	mpling perio	nd						# of Sample Containers: Five
micrioi Obse	71 Valions	140 onlange	5 110111 1451 54	mpining pond	<u> </u>				Turbidity		Duplicate Sample ID: NA
									ORP		Sample Analysis:
Signs of Dan	nage/Tam	pering:	None						DO		VOC STARS List via EPA 8260B
Locked (y			p (yes /no)	Surfa	ace Seal Intact	(ves/no)	PID Meas	urement:		Odors:	SVOC B/N Via EPA 8270C
	, , , , ,		.p () = 2,1115)			Well Quali				10000	
								I			
Date	Time	Depth to	Cumulative	рН	Specific	Temperature	Turbidity	Color	Dissolved	Oxygen	Notes
		Water	Volume	(Standard	Conductance	(°C)	(NTU)		Oxygen	Reduction	
		ft bgs	Purged (Gal)	`	(mS/cm)	(- /	` ′		%	Potential	
9/3/2021	8:20	29.01	0	11.69	1.775	12.4	2.97	clear	3.5	-105.1	Depth of Water: 27.70
	8:25	29.02	1	11.72	1.778	12.6	2.85	clear	3.4	-107.2	Length of Water Column: 5.92
	8:30	29.02	2	11.70	1.778	12.6	2.68	clear	3	-112.8	Depth of Well: 33.62
	8:35	29.02	4	11.70	1.776	12.6	2.51	clear	2.8	-115.1	Sheen Observed: Y N
											DNAPL Observed: Y N
											Did Well Go Dry: Y N
											Other: Sulfur odor.
											1 Well Volume = 3.9 gal

						Historia Infe	ormotion				
Doring Log A	ا ماماده، ۱		الم مال			Historic Info	ormation				
Boring Log A	,	•	,								
nstallation L	.og Avalla	bie (yes /no/a	attached)								
						Summ	nary	-· /a		. =:/-	
Monitoring W		MWN-02B			rface Elevation			_	reen Materi		
Installation D		11/2/92		1	er Elevation:	573.23			creen Depth		
nstalled By:		Turnkey			Point Elevation	601.28		_Bottom c	of Screen Do	epth: 56.28	
				Elevation D							
Previous Fiel	ld measu	rement Infori	mation Availal	ole (yes/ no /							
						s of Previous F					
Depth to	Water		рН	•	Conductance	Tempera	ature	Tui	rbidity		Color
(ft)			ard Units)	•	S/cm)	(°C)		,	NTU)		
27.5	55	11.34	- 11.75	0.94	2 - 1.13	12.1 - 1	13.4	1.70	6 - 6.9		Clear
Notes:											
OO and pH n	neasuren	nents are rou	itinely made u	sing the sar	ne model wate	r quality meter.	however t	he measu	rements ma	ade on 9/202	20 appear erroneous.
				eld Observa						eters +/-	Sampling Information
xterior Obs	ervations	: No change	s from last sa	mplina perio	od				рН	+/- 0.1	Sample ID: MWN-02B -090321
				1 31 -	-				Conductivi		Sample Time: 08:00
nterior Obse	ervations	No change	s from last sa	mpling perio	od						# of Sample Containers: Six
				1 51					Turbidity		Duplicate Sample ID: NA
		-							ORP		Sample Analysis: Arsenic
Signs of Dan	nage/Tam	pering:	None						DO		VOC STARS List via EPA 8260B
Locked (y			p (yes /no)	Surfa	ace Seal Intact	(ves/no)	PID Meas	urement:	1.	Odors:	SVOC B/N Via EPA 8270C, arsenic
						Well Quali					·
Date	Time	Depth to	Cumulative	рН	Specific	Temperature	Turbidity	Color	Dissolved	Oxygen	Notes
		Water	Volume	•	Conductance	(°C)	(NTU)		Oxygen	Reduction	
			Purged (Gal)	`	(uMhos/cm)	(),	(**** - /		%	Potential	
9/3/2021	7:45	29.60	0	10.75	0.857	12.6	3.26	clear	4.0		Depth of Water: 28.05
5/ 5/ Z0Z 1	7:50	29.81	2	11.28	0.918	12.6	3.00	clear	1.7		Length of Water Column: 28.23
	7:55	29.81	4	11.29	0.912	12.6	2.76	clear	1.4		Depth of Well: 56.28
	8:00	29.81	6	11.30	0.910	12.6	2.52	clear	1.2	-202.6	Sheen Observed: Y N
	0.00	25.01	<u> </u>		0.010	.2.0		5.541	12	202.0	DNAPL Observed: Y N
											Did Well Go Dry: Y N
											Other: Sulfur odor.
											1 Well Volume = 4.5 gal
		I					I	I	I	l	<u> </u>

						Historic Info	ormation				
Boring Log A	vailable (yes/no/attac	ched):								
Installation L	\•	-	,								
	- <u>G</u>					Summ	narv				
Monitoring W	/ell: N	/IWN-02D		Ground Su	rface Elevation		· · · · · ·	Riser/Sc	reen Materi	al: PVC	
Installation D		8/4/95			er Elevation:	574.12		_	creen Depth		
Installed By:		Turnkey		Monitoring	Point Elevation			- '	of Screen De		
,				Elevation D				_			
Previous Fiel	ld measur	ement Infor	mation Availal	ole (yes/ no /	attached)						
				V		s of Previous F	ield Measu	ırements			
Depth to	Water		pН	Specific (Conductance	Tempera			rbidity		Color
(ft)			ard Units)		S/cm)	(°C			NTU)		
28.5		,) - 7.42	•	4 - 2.08	12.6 - 1		,	I - 15.1		Clear
Notes:		•						•			
	neasurem	ents are rou	utinely made u	sing the sar	me model wate	r quality meter.	however t	he measu	rements ma	ade on 9/202	0 appear erroneous.
				eld Observa		,				eters +/-	Sampling Information
Exterior Obse	ervations:	No change	s from last sa	mpling perio	od				рН	+/- 0.1	Sample ID: MWN-02D -090321
									Conductivi		Sample Time: 07:25
Interior Obse	ervations	No change	s from last sa	mpling perio	od				Temperatu	re +/- 10%	# of Sample Containers: One
									Turbidity	+/- 10%	Duplicate Sample ID: NA
									ORP		Sample Analysis: Barium, Arsenic
Signs of Dan			None						DO		Chromium
Locked (y	/es/ no)	Well Ca	ap (yes /no)	Surfa	ace Seal Intact		PID Meas	urement:		Odors:	
						Well Quali	ity Data				
_						_				_	
Date	Time	Depth to	Cumulative	pН	Specific	Temperature	,	Color	Dissolved	Oxygen	Notes
		Water	Volume	`	Conductance	(°C)	(NTU)		Oxygen	Reduction	
			Purged (Gal)		(mS/cm)				%	Potential	
9/3/2021	7:10	28.93	0	6.93	1.847	12.8	6.23	clear	3.4		Depth of Water: 28.83
	7:15	28.93	2	6.66	1.429	12.8	5.35	clear	1.7	-45.4	Length of Water Column: 50.51
	7:20	28.93	4	6.64	1.396	12.9	5.22	clear	1.5		Depth of Well: 79.34
	7:25	28.93	6	6.61	1.354	12.9	5.15	clear	1.5	-51.6	Sheen Observed: Y N
											DNAPL Observed: Y N Did Well Go Drv: Y N
											Did Well Go Dry: Y N Other: Sulfur odor.
		1									1 Well Volume = 8.1 gal
											i well volume = 6.1 gai
											i vveii voiume = 6.1 gai

						Historic Info	ormation				
Doring Log A	voilable (saa/no/ottoo	bod).			HISTORIC INIC	ormation				
Boring Log A	\•	•	,								
Installation L	og Avallar	ole (yes /no/a	attacned)								
						Summ	ary	/-		. =:/-	
Monitoring W		MWN-03			rface Elevation			_	reen Materi		
Installation D	ate:	9/6/90			er Elevation:	573.07			creen Depth		
Installed By:		Turnkey			Point Elevation	611.96		_Bottom o	of Screen De	epth: 49.17	
				Elevation D							
Previous Fiel	ld measur	ement Infori	mation Availal	ole (yes/ no /							
					Range	s of Previous F	ield Measu	ırements			
Depth to	Water		рН	Specific (Conductance	Tempera	ature	Tui	rbidity		Color
(ft)		(Standa	ard Units)	(m	S/cm)	(°C))	(N	NTU)		
38.3			? - 12.51	2.72	4 - 3.04	12.8 - 1			- 8.41		Clear
Notes:											
	neasurem	ents are rou	ıtinely made u	sing the sar	ne model wate	r quality meter	however t	he measu	rements ma	ade on 9/202	20 appear erroneous.
- J and pill		2.10 010 100		eld Observa						eters +/-	Sampling Information
Exterior Obs	ervations:	No change	s from last sa						рН		Sample ID: MWN-03 -090221
ALCHOI ODS	ci valions.	140 change	3 110111 1431 34	mping pene	Ju				Conductivi		Sample Time: 15:05
nterior Obse	rvations	No change	s from last sa	mnling neric	nd .						# of Sample Containers:
interior Obse	i valions	140 change	3 110111 1431 34	mpling pene	Ju				Turbidity		Duplicate Sample ID: NA
		-							ORP		Sample Analysis:
Signs of Dan	nane/Tam	nering:	None						DO		VOC STARS List via EPA 8260B
Locked (y			p (yes /no)	Surfa	ace Seal Intact	(ves /no)	PID Meas	urement.		Odors:	SVOC B/N Via EPA 8270C
Locked (y	(63/110)	vven Ca	φ (yes /110)	Suria	ice Seal Illiaci	(yes /110) Well Quali		urement.		Odors.	SVOC B/IN VIA EFA 8270C
						Well Quali	lly Dala	1	1		
Date	Time	Depth to	Cumulative	рН	Specific	Temperature	Turbidity	Color	Dissolved	Oxygen	Notes
Dale	rime			•	•	•	•	COIOI			Notes
		Water	Volume	`	Conductance	(°C)	(NTU)		Oxygen	Reduction	
- /- / :			Purged (Gal)		(mS/cm)			<u> </u>	%	Potential	
9/2/2021	14:50	39.10	0	13.05	2.726	13.5	7.14	clear	5.4	-81.4	Depth of Water: 38.89
	14:55	39.76	2	12.00	2.729	13.3	5.12	clear	4.1		Length of Water Column: 10.28
	15:00	39.76	4	12.01	2.729	13.3	4.97	clear	3.6		Depth of Well: 49.17
	15:05	39.76	6	12.00	2.729	13.3	4.82	clear	2.1	-267.3	Sheen Observed: Y N
											DNAPL Observed: Y N
											Did Well Go Dry: Y N
											Other: Sulfur odor.
											1 Well Volume = 6.8 gal

						Historic Info	ormation					
Boring Log A	Available (/es /no/attac	ched):									
Installation L	.og Availal	ole (yes /no/	attached)									
						Summ	ary					
Monitoring V	Vell: I	MWN-03B		Ground Su	rface Elevation	: 609.57		Riser/Sc	reen Materia	al: PVC		
Installation D	Date:	11/5/92		Groundwat	er Elevation:	572.84		Top of S	creen Depth	n: 60.72		
Installed By:		Turnkey		_	Point Elevation	612.29		Bottom o	of Screen De	epth: 70.72		
				Elevation D	Datum:							
Previous Fie	ld measur	ement Infor	mation Availat	ole (yes/ no /								
					Range	s of Previous F	ield Measu	rements				
Depth to	Water		рН	Specific (Conductance	Temperature		Tu	rbidity		Color	
(ft))	(Stand	ard Units)	(m	iS/cm)	(°C))	(1)	(NTU)			
38.6	68	7.21	1 - 7.80	2.413	3 - 3.139	13.2 - 1	4.3	3.85	- 38.04		Clear	
Notes:	Difficulty	with downho	ole pump om 9	9/02/21. Ha	d to return the	next day (9/03/2	21) with as	sistance o	of second fie	eld sampler	to help with sampling.	
	Turbidity	samples we	re acceptable	and no labo	oratory filtration	was required.	DO and ph	l measure	ements are i	routinely ma	de using the same model water quality	
	meter, ho	wever the n	neasurements	made on 9/	/2020 appear e	rroneous.						
			Fi∈	eld Observa	tions				Param	eters +/-	Sampling Information	
Exterior Obs	ervations:	No change	es from last sa	mpling perio	od				рН	+/- 0.1	Sample ID: MWN-03B -090321	
									Conductivit		Sample Time: 09:55	
Interior Obse	ervations	No change	es from last sa	mpling perio	od						# of Sample Containers: One	
									Turbidity		Duplicate Sample ID: NA	
	_								ORP		Sample Analysis: Arsenic, Barium	
Signs of Dar			None					DO +/- 10% Chromium, Manganese				
Locked (y	/es/ no)	Well Ca	ap (yes /no)	Surfa	ace Seal Intact		PID Meas	urement:		Odors:		
	Г	1				Well Quali	ity Data	1	1			
Data	T '	Destile to	0		0	T	-	0.1	D'and al	0	Notes	
Date	Time	Depth to	Cumulative	pН	Specific	Temperature	Turbidity	Color	Dissolved	Oxygen	Notes	
		Water	Volume	`	Conductance	(°C)	(NTU)		Oxygen	Reduction		
		ft bgs	Purged (Gal)		(mS/cm)				%	Potential		
9/3/2021	9:45	41.49	0.0	8.00	3.063	15.1	13.44	clear	15.9		Depth of Water: 39.45	
	9:45	42.90	0.5	7.33	2.594	14.5	16.26	clear	3.1		Length of Water Column: 31.27	
	9:50	42.90	1.0	7.29	2.586	14.7	16.36	clear	2.9		Depth of Well: 70.72	
	9:55	42.90	1.5	7.29	2.586	14.7	16.44	clear	2.9	-146.7	Sheen Observed: Y N DNAPL Observed: Y N	
											Did Well Go Dry: Y N	
											Other: Sulfur odor.	
											1 Well Volume = 5.0 gal	
											1 vvcii voidilie – 5.0 gai	
	٠	<u>L </u>	L								<u> </u>	

						Historic Inf	ormation				
Boring Log A			,								
Installation L	.og Availa	ble (yes /no/	attached)								
						Summ	nary				
Monitoring W		MWN-03D			rface Elevation				reen Materi		
Installation D		7/29/94			er Elevation:	571.81			creen Depth		
Installed By:		Turnkey		_	Point Elevation	613.51		Bottom o	of Screen De	epth: 121.26	
				Elevation D							
Previous Fie	ld measu	rement Infor	mation Availat	ole (yes/ no /							
					Range	s of Previous F	ield Measu	rements			
Depth to	Water		рН	Specific (Conductance	Tempera	ature	Tu	rbidity		Color
(ft)		(Stand	ard Units)	· (m	S/cm)	, (°C)	(1)	NTU)		
37.4			7 - 6.52	24.66	2 - 26.69	12.9 - 1			7 - 29.4		Clear
Notes:	Difficulty	with downho	ole pump simil	ar to the pre	evious year. H	ad to bail the w	ell using a	disposabl	le bailer.		
						tory that they v				sample.	
											ade on 9/2020 appear erroneous.
				eld Observa			,,	,		eters +/-	Sampling Information
Exterior Obs	ervations	: No change	s from last sa						рН		Sample ID: MWN-03D -090321
				1 31					Conductivi		Sample Time: 10:05
Interior Obse	ervations	No change	s from last sa	mpling perio	od						# of Sample Containers: Six
									Turbidity		Duplicate Sample ID: NA
									ORP	+/- 10mV	Sample Analysis: Barium, Manganese
Signs of Dan	mage/Tan		None						DO		VOC STARS List via EPA 8260B
Locked (y			ap (yes /no)	Surfa	ace Seal Intact	(yes/no)	PID Measi	urement:		Odors:	SVOC B/N Via EPA 8270C, Barium. Manganese
						Well Qual					
Date	Time	Depth to	Cumulative	рН	Specific	Temperature	Turbidity	Color	Dissolved	Oxygen	Notes
		Water	Volume	(Standard	Conductance	(°C)	(NTU)		Oxygen	Reduction	
		ft bgs	Purged (Gal)	` Units)	(mS/cm)	(- /			%	Potential	
9/3/2021	8:55	45.17	13.0	7.31	24.41	13.5	35.83	clear	5.5		Depth of Water: 41.70
		1									Length of Water Column: 79.56
		Ī									Depth of Well: 121.26
											Sheen Observed: Y N
											DNAPL Observed: Y N
											Did Well Go Dry: Y N
											Other:
											1 Well Volume = 12.7 gal

						Historic Info	ormation				
Boring Log A	vailable (voc/no/ottoo	hod):			HISTORIC INIC	JillallOII				
	\•	£	,								
nstallation L	og Avallar	ole (yes /no/a	attached)			0					
	,				. =	Summ	ary	D: (0	• • • • •	1 5) (0	
	itoring Well : MWN-04			Ground Surface Elevation: 621.02				_	reen Material: PVC		
Installation Date:		9/12/90		Groundwater Elevation:		572.84		Top of Screen Depth: 48.53			
Installed By:		Turnkey		Monitoring Point Elevation Elevation Datum:		623.45		Bottom of Screen Depth: 58.53			
Previous Fiel	ld measur	ement Infori	mation Availal	ole (yes/ no /							
						s of Previous F	ield Measu	irements			
Depth to Water		рН		Specific Conductance		Temperature		Turbidity		Color	
(ft)		(Standard Units)		(mS/cm)		(°C)		(NTU)			
49.92		11.71	- 12.05	2.311 - 2.72		15.97 - 16.7		2.2 - 2.6		Clear	
Notes:		•									
	DO and n	H measurer	nents are rou	tinely made	using the same	e model water o	uality met	er. howev	er the meas	surements m	nade on 9/2020 appear erroneous.
				eld Observa			15.5	,		eters +/-	Sampling Information
Exterior Observations: No changes from last									рН	+/- 0.1	Sample ID: MWN-04 -090221
Exterior Observations. 140 onlyinges from last s				anpling period					Conductivi		Sample Time: 15:55
nterior Obse	rvations	No changes from last sampling period								# of Sample Containers: Five	
interior obec	rationo	The changes from last sampling period							Turbidity		Duplicate Sample ID: NA
									ORP		Sample Analysis:
Signs of Dan	nage/Tam	pering:									VOC STARS List via EPA 8260B
Locked (yes/ no)		Well Cap (yes /no) Surface Seal Intact (yes /no) PID Measurement:			DO	Odors:	SVOC B/N Via EPA 8270C
Looked (y	03/110)	Well Go	(yes /110)	Carre	de Cear Iritaet	Well Quali		arcinont.		Odoro:	0 V 0 0 B/1 V VIII E1 /
		I				Wen Quan	ty Data	ı	Ī	I	I
Date	Time	Depth to	Cumulative	рН	Specific	Temperature	Turbidity	Color	Dissolved	Oxygen	Notes
Dale	111116	Water	Volume	•	Conductance	•	(NTU)			Reduction	110163
				`		(°C)	(1410)		Oxygen		
0/0/000	45.40	ft bgs	Purged	Units)	(mS/cm)	45.0	0.05		%	Potential	Death of Water 50.04
9/2/2021	15:40	51.45	0	11.58	2.331	15.8	2.25	clear	14.6	-96.1	Depth of Water: 50.61
	15:45	51.82	1	11.57	2.313	15.7	2.02	clear	3.8	-75.6	Length of Water Column: 7.92
	15:50	51.82	2	11.57	2.313	15.7	2.00	clear	3.2	-77.8	Depth of Well: 58.53
	15:55	51.82	3	11.57	2.313	15.7	1.98	clear	3.0	-81.2	Sheen Observed: Y N
											DNAPL Observed: Y N
											Did Well Go Dry: Y N
											Other: Sulfur odor.
											1 Well Volume = 5.2 gal

GZA GeoEnvironmental, Inc.