



# September 2023 ANNUAL/SEMI-ANNUAL GROUNDWATER MONITORING REPORT NIAGARA WIND POWER, LLC STEEL WINDS I FACILITY (Site No. C915205) LACKAWANNA, NEW YORK

November 2023 File No. 03.0033579.16



#### **PREPARED FOR:**

Niagara Wind Power, LLC 200 Liberty Street, 14<sup>th</sup> Fl. NY, NY 10281

#### **GZA GeoEnvironmental of New York**

300 Pearl Street Suite 700 | Buffalo, NY 14202 716-685-2300

31 Offices Nationwide www.gza.com
Copyright© 2023 GZA GeoEnvironmental, Inc.



November 27, 2023 File No. 03.0033579.16

Niagara Wind Power, LLC 200 Liberty Street, 14th Floor New York, NY 10281

Via: steelwinds@brookfieldrenewable.com Attn: Mr. Jonathan Kirby and Mr. Scott Rotman

2023 Annual/Semi-Annual Groundwater Monitoring Report Re:

Steel Winds I Site (Site No. C915205)

Lackawanna, NY

Dear Mr. Kirby and Mr. Rotman:

GZA GeoEnvironmental (GZA) is pleased to submit this annual/semi-annual groundwater monitoring report to Niagara Wind Power, LLC (NWP) summarizing the analytical results of the groundwater sampling event conducted in September 2023 at the above referenced Site. The objective of the sampling event was to collect and analyze groundwater samples from the on-site monitoring wells in accordance with the Site Management Plan, dated September 2007, prepared by Benchmark Environmental Engineering and Science, PLLC (Benchmark) and approved by the New York State Department of Environmental Conservation (NYSDEC).

Should you have any questions or require additional information following your review, please contact Daniel Troy at (716) 570-6673 or Ed Summerly at (401) 427-2707.

Richard A. Carlone, P.E.

Consultant Reviewer

Sincerely,

GZA GEOENVIRONMENTAL OF NEW YORK

Daniel J. Troy, P.E. Senior Project Manager

Edward A. Summerly, P.G.

Sr. Principal / District Office Manager

cc: Megan Kuczka (NYSDEC)

Attachments: Report



#### **TABLE OF CONTENTS**

| 1.00 INTRODU                                | JCTION2                                                                                                                                                                    |
|---------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.10 B                                      | ACKGROUND AND SITE HISTORY                                                                                                                                                 |
| 2.00 PURPOSE                                | E AND SCOPE OF WORK4                                                                                                                                                       |
| 3.00 FIELD STU                              | JDIES4                                                                                                                                                                     |
| 3.10 G                                      | ROUNDWATER COLLECTION4                                                                                                                                                     |
| 4.00 ANALYTI                                | CAL LABORATORY TESTING6                                                                                                                                                    |
| 5.00 ANALYTIC                               | CAL TEST RESULTS6                                                                                                                                                          |
| 5.10 A                                      | NNUAL SITE-WIDE MONITORING WELLS7                                                                                                                                          |
| 5.20 S                                      | EMI-ANNUAL WT-1 VICINITY MONITORING WELLS9                                                                                                                                 |
| 6.00 MOVING                                 | AVERAGE TREND ANALYSIS11                                                                                                                                                   |
| 7.00 SUMMAR                                 |                                                                                                                                                                            |
|                                             |                                                                                                                                                                            |
| TABLES                                      |                                                                                                                                                                            |
| TABLE 1<br>TABLE 2<br>TABLE 3               | SEPTEMBER 2023 ANALYTICAL TESTING PROGRAM SUMMARY SEPTEMBER 2023 ANNUAL GROUNDWATER ANALYTICAL DATA SUMMARY SEPTEMBER 2023 SEMI-ANNUAL GROUNDWATER ANALYTICAL DATA SUMMARY |
| FIGURES                                     |                                                                                                                                                                            |
| FIGURE 1<br>FIGURE 2                        | LOCUS PLAN<br>SITE PLAN                                                                                                                                                    |
| APPENDICES                                  |                                                                                                                                                                            |
| APPENDIX A APPENDIX B APPENDIX C APPENDIX D | LIMITATIONS ANALYTICAL TEST RESULTS TIME SERIES PLOTS WELL DEVELOPMENT FORMS                                                                                               |



#### 1.00 INTRODUCTION

In accordance with our March 20, 2023 proposal, GZA GeoEnvironmental, Inc. (GZA) collected and analyzed groundwater samples at the nine (9) annual site-wide groundwater monitoring well locations (designated the Long-Term Groundwater Monitoring Plan (LTGWM)) and the six (6) semi-annual WT-1 vicinity groundwater monitoring well locations at the Steel Winds I facility located in Lackawanna, New York (Site). A Locus Plan and Site Plan are attached as **Figures 1** and **2**, respectively.

#### 1.10 BACKGROUND AND SITE HISTORY

Tecumseh Redevelopment, Inc. (Tecumseh) owns approximately 1,100 acres of land at 1951 Hamburg Turnpike, as shown on attached **Figure 1**. The property was formerly used for the production of steel, coke and related products by Bethlehem Steel Corporation (BSC). Steel production on the Tecumseh property was discontinued in 1983 and the coke ovens ceased activity in 2000. Tecumseh acquired the property, along with other BSC assets, out of bankruptcy in 2003.

In September 2006, BQ Energy entered into a long-term lease agreement with Tecumseh to construct and operate wind turbines and supporting power generation equipment and infrastructure on an approximately 29-acre parcel of the Tecumseh property, referred to as the Steel Winds I Site. BQ Energy and the NYSDEC also entered into a Brownfield Cleanup Agreement for the Steel Winds Site. The Site is wholly contained within the Slag Fill Area (SFA) Zones 3 and 4 of the Tecumseh property bordered by Lake Erie to the west, Smoke Creek to the south, and former industrial lands of BSC to the north and east. Niagara Wind Power, LLC (NWP) an affiliate of Brookfield Renewable, operates the eight wind turbines installed at the Site. In accordance with an October 30, 2020 letter to NYSDEC, Niagara Wind Power, LLC assumed the Remedial Party status for the Site.

The Brownfield Cleanup Program (BCP) was successful in achieving the remedial objectives for the Steel Winds Site. The Site Management Plan (SMP) and Final Engineering Report (FER) were approved by NYSDEC in December 2007. NYSDEC issued a Certificate of Completion (COC) for the Site on December 18, 2007.

The remedial activities conducted at the Site include:

- Excavation and off-site disposal of impacted slag fill from the eight wind turbine foundations and interconnecting utility trenches;
- In-situ enhanced biodegradation of residual volatile organic compounds (VOCs), including benzene, toluene, total xylenes, and naphthalene, using oxygen release compound (ORC®) socks within the saturated soil and groundwater in the vicinity of monitoring well WT-01 and associated groundwater monitoring; and,
- Completion of a soil cover system (cap).



As a requirement of the SMP, LTGWM is being performed at nine (9) wells across the Site. Additional groundwater monitoring was also performed to monitor the effectiveness of the ORC in-situ treatment in the vicinity of wind turbine WT-01. During 2011, both the LTGWM and WT-01 vicinity groundwater monitoring programs were performed on an annual basis and were done on July 13 and 14, 2011. The five ORC in-situ treatment wells were to be monitored semi-annually, in accordance with the SMP. However, only one ORC monitoring event (on May 4, 2011) was conducted because of the ineffectiveness of the remedy.

An *Operation, Monitoring and Maintenance Request for Modification* report, dated November 2011, was submitted to NYSDEC by Benchmark. This report proposed ceasing operation of ORC® groundwater remedy for the WT-01 Vicinity because the remedy was not effective in reducing VOC concentrations, due primarily to the geochemical conditions (i.e., high baseline chemical oxygen demand, highly negative oxidation reduction potential and high pH) of the Site. NYSDEC provided comments to this report on April 10, 2012 and GZA provided a response letter on May 9, 2012. Based on this letter and correspondence with NYSDEC, the ORC® remedy has been terminated (i.e., the ORC socks have been removed from the five treatment wells and disposed of as a solid waste).

In accordance with a letter from GZA to NYSDEC, dated June 22, 2012<sup>1</sup>, semi-annual/annual groundwater monitoring will continue at the Site until a Technical Impracticability Waiver (TI Waiver) for groundwater treatment at the Site is submitted to, and approved by NYSDEC.

On September 30, 2013, GZA submitted a *Technical Impracticability Waiver Supplemental Field Studies Work Plan* for the Site, detailing sampling, laboratory analysis, data evaluation and reporting to be conducted in support of a TI Waiver request for the Site. This *Work Plan* was approved by NYSDEC on February 24, 2014. Sampling and analysis described in the *Work Plan* was conducted by GZA in summer 2014 and a TI Waiver application was submitted to NYSDEC on November 5, 2014, with a supplemental *Endangered Species Review* letter submitted to NYSDEC on January 28, 2015. Based on the remedial evaluation presented in the application, it is GZA's opinion that active remediation is not warranted or feasible, would not result in significant benefit to the environment relative to the cost, and is technically impracticable. The application recommended limited additional sampling to evaluate risk to ecological receptors. NYSDEC verbally approved the additional recommended field work on April 27, 2015. GZA submitted a *Work Plan* to NYSDEC on August 5, 2015 describing the proposed additional field work, which was implemented in September 2015. The *TI Waiver Supplemental Report* was submitted to NYSDEC on April 24, 2018.

Due to the length of cold days experienced during the winter of 2014-2015 the semi-annual sampling event, originally scheduled for January 2015, was not able to be completed until March 2015. In order to reduce negative impacts and delays associated from freezing weather conditions, NYSDEC approved rescheduling the future semi-annual and annual sampling events to occur during the months of March and September, respectively.

<sup>&</sup>lt;sup>1</sup>GZA's June 22, 2012 letter was prepared in response to NYSDEC's comments on GZA's May 9, 2012 Responses to NYSDEC's April 10, 2012 Comments on the November 2011 *Operation, Monitoring and Maintenance Request for Modification*, prepared by Benchmark.



#### 2.00 PURPOSE AND SCOPE OF WORK

The purpose of the September 2023 annual/semi-annual sampling event was to collect groundwater samples from the nine (9) annual site-wide and six (6) semi-annual WT-1 vicinity groundwater monitoring wells, respectively, in accordance with the routine monitoring protocol described in the September 2007 SMP. To accomplish this, the following activities were completed by GZA:

- Collected one (1) groundwater sample from each annual/semi-annual monitoring well location for laboratory analysis (conducted by Alpha Analytical of Westborough, Massachusetts) in accordance with the analytical testing summary provided in **Table 1**. Test parameters included the following:
  - STARS list VOCs via EPA Method 8260D;
  - Base-Neutral semi-volatile organic compounds (SVOCs) via EPA Method 8270E; and
  - Arsenic, barium, chromium, and/or manganese via EPA Method 6020B (select annual groundwater monitoring wells only).
- Prepared this report, which summarizes the data collected during each sampling event and compared the current results to historic data and assessed contaminant concentration trends.

This report presents GZA's field observations, results, and opinions and is subject to the limitations presented in **Appendix A** and modifications if subsequent information is developed by GZA or any other party.

#### 3.00 FIELD STUDIES

This section describes the field studies conducted as part of GZA's groundwater annual/semi-annual sampling event.

#### 3.10 GROUNDWATER DATA COLLECTION

GZA collected groundwater samples from the nine (9) annual Site-wide monitoring wells (MWN-01, MWN-01B, MWN-02, MWN-02B, MWN-02D, MWN-03, MWN-03B, MWN-03D, and MWN-04), and six (6) WT-1 vicinity semi-annual monitoring wells (MWN-01, MWN-01B, WT1-02, WT1-04, WT1-05, and BCP-ORC-1). Samples were collected on September 5<sup>th</sup> and September 6<sup>th</sup>, 2023. Note, when the two monitoring programs included the same wells, only one sample was collected, and that analysis was used for both programs.



The following tables show the volume of water purged in gallons and the number of well volumes removed from the respective well after a constant head was established. In general, groundwater purge rates were 500(±) millimeter per minute (ml/min). We note that due to complications experienced with the downhole pump in monitoring wells MW-3B, MWN-03D and MWN-4, alternative sampling methods using a dedicated bailer to remove three well volumes were required for sample collection. The groundwater samples collected using this method were generally observed to have increased turbidity, which required laboratory filtration (from unpreserved samples) prior to inorganic analysis. Well development forms for each monitoring well sampled are included in **Appendix D**.

| Annual Site-Wide   | Cumulative Volume Purged | Well Volumes |
|--------------------|--------------------------|--------------|
| Monitoring Well ID | (gallons)                | (#)          |
| MWN-01             | 8                        | 2.9          |
| MWN-01B            | 8                        | 3.1          |
| MWN-02             | 4                        | 1.1          |
| MWN-02B            | 8                        | 1.8          |
| MWN-02D            | 2                        | 0.2          |
| MWN-03             | 2                        | 0.3          |
| MWN-03B            | 15*                      | 3.1          |
| MWN-03D            | 39*                      | 3.0          |
| MWN-04             | 6**                      | 1.2          |

| WT-1 Vicinity Semi-Annual | Cumulative Volume Purged | Well Volumes |
|---------------------------|--------------------------|--------------|
| Monitoring Well ID        | (gallons)                | (#)          |
| MWN-01                    | 8                        | 2.9          |
| MWN-01B                   | 8                        | 3.1          |
| WT1-02                    | 4                        | 0.6          |
| WT1-04                    | 2.5                      | 1.3          |
| WT1-05                    | 16                       | 8.9          |
| BCP-ORC-1                 | 2.0                      | 0.2          |

Note: wells highlighted in yellow are included in both programs.

As part of the annual/semi-annual groundwater monitoring round, static groundwater level measurements were made from top of riser prior to purging, as listed in the below table. Monitoring point elevation data was available from previous groundwater monitoring reports completed by Benchmark, and/or field survey work conducted by GZA. From this data, groundwater flow directions were estimated and are shown on **Figure 2**. Based on the available information, groundwater flow is generally in a westerly direction towards Lake Erie or south toward Smoke Creek (in the immediate vicinity of Smoke Creek only).

<sup>\*</sup>Well was unable to be purged via low flow methods and 3 well volumes removed with a dedicated bailer.

<sup>\*\*</sup>Well bailed dry and allowed to recharge for 1 hour prior to sample collection.



| Monitoring Well Location | Top of Riser<br>Elevation (ft.) | Groundwater Depth<br>(ft.) | Groundwater<br>Elevation (ft.) |
|--------------------------|---------------------------------|----------------------------|--------------------------------|
| MWN-01                   | 585.14                          | 14.77                      | 570.37                         |
| MWN-01B                  | 587.03                          | 15.72                      | 571.31                         |
| MWN-02                   | 601.01                          | 28.08                      | 572.93                         |
| MWN-02B                  | 601.28                          | 28.39                      | 572.89                         |
| MWN-02D                  | 602.95                          | 29.00                      | 573.95                         |
| MWN-03                   | 611.96                          | 39.25                      | 572.71                         |
| MWN-03B                  | 612.29                          | 40.12                      | 572.17                         |
| MWN-03D                  | 613.51                          | 39.37                      | 574.14                         |
| MWN-04                   | 623.45                          | 50.99                      | 572.46                         |
| WT1-02                   | 600.78                          | 27.38                      | 573.4                          |
| WT1-04                   | 586.45                          | 13.21                      | 573.24                         |
| WT1-05                   | 584.41                          | 12.04                      | 572.37                         |
| BCP-ORC-1                | 591.97                          | 18.73                      | 573.24                         |

#### 4.00 ANALYTICAL LABORATORY TESTING

Thirteen (13) annual/semi-annual groundwater samples were submitted for analytical testing as part of the September 2023 sampling event. The samples were packed in an ice-filled cooler and, following chain-of-custody procedures, sent to Alpha Analytical for analysis. **Table 1** presents a summary of the samples collected and the analyses completed. As noted above, the samples from monitoring wells MWN-3B, MWN-03D and MWN-04 required laboratory filtering prior to metals analysis as samples were collected with a dedicated bailer and samples from MWN-01 and MWN-01B were included for both semi-annual and annual monitoring programs.

#### **5.00 ANALYTICAL TEST RESULTS**

A discussion of the laboratory results for the groundwater samples is presented below. The laboratory reports are provided in **Appendix B** and the analytical test results are summarized on **Tables 2 and 3**.

The analytical test results for the groundwater samples were compared to NYSDEC Class GA criteria presented in the *Division of Water Technical and Operational Guidance Series* (TOGS 1.1.1), dated October 1993, revised June 1998, errata January 1999 and amended April 2000.

The analytical data generated as part of this sampling event has also been provided to NYSDEC electronically for their Environmental Information Management System (EIMS). The data was provided in a standardized electronic data deliverable (EDD) format that uses the database software application EQuIS<sup>™</sup> (EQuIS) from EarthSoft® Inc. The laboratory data and required information were imported into the EQuIS Data Processor (EDP) and submitted to NYSDEC on November 15, 2023.



#### 5.10 ANNUAL SITE-WIDE MONITORING WELLS

- o <u>MWN-01 (screen depth: 9.2' 19.2')</u>: Eight (8) VOCs were detected above method reporting limits of which four (4) exceeded their respective NYSDEC Class GA criteria and guidance values, as follows.
  - Benzene at 15 parts per billion (ppb);
  - o m,p-Xylene at 6.4 ppb;
  - o Total Xylene at 10.9 ppb; and

Naphthalene was detected as a VOC at a concentration of 230 ppb, which exceeds its guidance value of 10 ppb.

Twelve (12) SVOCs were detected above their method reporting limits of which four (4) exceeded their respective NYSDEC Class GA criteria and guidance values, as follows.

- Naphthalene at 108 ppb;
- Fluorene at 52.4 ppb;
- o Phenanthrene at 86.6 ppb; and
- o Biphenyl at 6.49 ppb.
- MWN-01B (screen depth: 22.2' 32.2'): Five (5) VOCs were detected above method reporting limits, of which five (5) exceeded their respective NYSDEC Class GA criteria and guidance values, as follows.
  - Benzene at 55 ppb;
  - Toluene at 16 ppb (estimated value, i.e., J detect);
  - o m,p-Xylene at 9.9 ppb (estimated value, i.e., J detect); and
  - o Total Xylene at 9.9 ppb (estimated value, i.e., J detect).

Naphthalene was detected at a concentration of 1,500 ppb, which exceeds its guidance value of 10 ppb.

Nine (9) SVOCs were detected above their method reporting limits of which two (2) exceeded their respective NYSDEC Class GA criteria and guidance values, as follows.

- Naphthalene at 876 ppb; and
- Phenanthrene at 51.3 ppb.
- MWN-02 (screen depth: 23.6' 33.6'): Eight (8) VOCs were detected above method reporting limits of which three (3) exceeded its respective NYSDEC Class GA criteria and guidance values, as follows.
  - o Benzene at 10 ppb; and
  - Total Xylene at 6.1 ppb.

Naphthalene was detected at a concentration of 43 ppb, which exceeds its guidance value of 10 ppb.



Fourteen (14) SVOCs were detected above method reporting limits, but below their respective NYSDEC Class GA criteria or guidance values, except for Naphthalene. Naphthalene was detected at a concentration of 23.3 ppb, which exceeds its guidance value of 10 ppb.

- MWN-02B (screen depth: 46.3' 56.3'): Seven (7) VOCs were detected above method reporting limits of which six (6) exceeded their respective NYSDEC Class GA criteria and guidance values, as follows.
  - Benzene at 67 ppb;
  - Toluene at 12 ppb;
  - o m,p-Xylene at 9.2 ppb;
  - o o-Xylene at 13 ppb; and
  - Total Xylene at 22.2 ppb.

Naphthalene was detected at a concentration of 400 ppb, which exceeds its guidance value of 10 ppb.

Thirteen (13) SVOCs were detected above method reporting limits, but below their respective NYSDEC Class GA criteria or guidance values, except for Naphthalene. Naphthalene was detected at a concentration of 194 ppb, which exceeds its guidance value of 10 ppb.

One (1) metal, arsenic, was detected at a concentration of 26.74 ppb, which exceeds its Class GA criteria of 25 ppb.

- o <u>MWN-02D (screen depth: 74.3′ 79.3′)</u>: Three (3) metals were detected above their respective method reporting limits, but below their respective NYSDEC Class GA criteria.
- MWN-03 (screen depth: 39.2' 49.2'): Seven (7) VOCs were detected above method reporting limits of which two (2) exceeded their respective NYSDEC Class GA criteria and guidance value, as follows.
  - Benzene at 8.3 ppb.

Naphthalene was detected at a concentration of 27 ppb, which exceeds its guidance value of 10 ppb.

Fourteen (14) SVOCs were detected above method reporting limits, but below their respective NYSDEC Class GA criteria or guidance values, except for Naphthalene. Naphthalene was detected at a concentration of 13.8 ppb, which exceeds its guidance value of 10 ppb.

- MWN-03B (screen depth: 60.7' 70.7'): Three (3) metals were detected above method reporting limits of which one (1) exceeded its respective NYSDEC Class GA criteria, as follows.
  - o Barium at 1,388 ppb.



Note: Monitoring well MWN-03B was unable to be low-flow sampled with a submersible pump and the sample was collected via a dedicated bailer. Due to potentially elevated turbidity resulting from the sampling technique, metal samples were filtered using a 0.45-micron filter by the laboratory.

MWN-03D (screen depth: 111.3' - 121.3'): No VOCs were detected above method reporting limits.
 Eight (8)) SVOCs were detected above method reporting limits all of which were below their respective NYSDEC Class GA criteria.

Two (2) metals were detected above method reporting limits of which one (1) exceeded its respective NYSDEC Class GA criteria, as follows.

Manganese at 351.2 ppb.

Note: Monitoring well MWN-03D was unable to be low-flow sampled with a submersible pump and the sample was collected via a dedicated bailer. Due to potentially elevated turbidity resulting from the sampling technique, metal samples were filtered using a 0.45-micron filter by the laboratory.

o <u>MWN-04 (screen depth: 48.5' - 58.5')</u>: Two (2) VOCs were detected above method reporting limits of which only naphthalene was detected at 12.0 ppb which exceeds its guidance value of 10 ppb.

Fourteen (14) SVOCs were detected above method reporting limits all of which were below their respective NYSDEC Class GA criteria.

Note: Monitoring well MWN-04 was unable to be low-flow sampled with a submersible pump and the sample was collected via a dedicated bailer. Due to potentially elevated turbidity resulting from the sampling technique, metal samples were filtered using a 0.45-micron filter by the laboratory.

In general, contaminant concentrations were consistent with historical data collected during previous sampling events completed at the Site. A more detailed discussion, including trend analysis, is provided in Section 6.00 of this report. Bis(2-Ethylhexyl)Phthalate was detected in MWN-03D at 44.9 ug/l in 2020 and was significantly lower in 2021 (7.15 ug/l) and below 0.50 ug/L for both 2022 and 2023.

#### 5.20 SEMI-ANNUAL WT-1 VICINITY MONITORING WELLS

Monitoring well locations MWN-01 and MWN-01B are included in both annual and semi-annual sampling schedules. The analytical results for these monitoring locations are discussed above in Section 5.10. Results from the remaining semi-annual wells are discussed below.

- o <u>WT1-02 (screen depth: 27.8' 37.8'):</u> Eight (8) VOCs were detected above method reporting limits of which two (2) exceeded their respective NYSDEC Class GA criteria and guidance values, as follows.
  - Benzene at 7.3 ppb.



Naphthalene was detected at a concentration of 34 ppb, which exceeds its guidance value of 10 ppb.

Fourteen (14) SVOCs were detected above their method reporting limits of which three (3) exceeded their respective NYSDEC Class GA criteria and guidance values, as follows.

- Naphthalene at 13.2 ppb;
- o Benzo [a] Anthracene at 0.209 ppb (estimated value, i.e., J detect); and
- Chrysene at 0.168 ppb (estimated value, i.e., J detect).
- WT1-04 (screen depth: 15.5' 25.5'): Eight (8) VOCs were detected above method reporting limits of which three (3) exceeded their respective NYSDEC Class GA criteria and guidance values, as follows.
  - o Benzene at 13 ppb; and
  - Total Xylene at 6.0 ppb.

Naphthalene was detected at a concentration of 57 ppb, which exceeds its respective guidance value of 10 ppb.

Fourteen (14) SVOCs were detected above their method reporting limits and three (3) exceeded their respective NYSDEC Class GA guidance values, as follows.

- Naphthalene at 28.3 ppb;
- o Benzo [a] Anthracene at 0.367 ppb (estimated value, i.e., J detect); and
- Chrysene at 0.339 ppb (estimated value, i.e., J detect).
- WT1-05 (screen depth: 13.3' 23.3'): Nine (9) VOCs were detected above method reporting limits of which five (5) exceeded their respective NYSDEC Class GA criteria and guidance values, as follows.
  - Benzene at 16 ppb;
  - o m,p-Xylene at 8.2 ppb;
  - o o-Xylene at 5.6 ppb; and
  - Total Xylene at 13.8 ppb.

Naphthalene was detected at a concentration of 260 ppb which exceeds its guidance value of 10 ppb.

Twelve (12) SVOCs were detected above method reporting limits, of which two (2) exceeded their respective NYSDEC Class GA guidance values as follows.

- Naphthalene at 138 ppb; and
- o Biphenyl at 6.70 ppb.
- BCP-ORC-1 (screen depth: 24.7' 34.7'): Five (5) VOCs were detected above method reporting limits of which four (4) exceeded their respective NYSDEC Class GA criteria and guidance values, as follows.



- Benzene at 28 ppb;
- O-Xylene at 5.3 ppb (estimated value, i.e., J detect); and
- o Total Xylene at 5.3 ppb (estimated value, i.e., J detect).

Naphthalene was detected at a concentration of 430 ppb, which exceeds its guidance value of 10 ppb.

Twelve (12) SVOCs were detected above method reporting limits, of which only naphthalene was detected at 216 ppb which exceeded its respective NYSDEC Class GA guidance values of 10 ppb.

In general, VOC and SVOC concentrations were consistent with historical data collected during previous sampling events. A more detailed discussion, including a trend analysis, is provided in Section 6.00 of this report.

#### **6.00 STATISTICAL ANALYSIS**

As stated in Section 2.4 of Attachment A4 (LTGWM Plan) of the September 2007 *Site Management Plan*, a statistical analysis is required for all detected constituents (in groundwater) that are observed at concentrations above NYSDEC Class GA criteria or guidance values. In lieu of performing moving trend analysis, as described in the LTGWM Plan, GZA generated time series plots for parameters which exceeded the NYSDEC Class GA criteria, either during this monitoring round or in previous routine monitoring rounds (routine monitoring started in 2008). These plots were evaluated for trends over the routine monitoring period time, which started in 2008 (approximately 15 years) at a 95% confidence interval, and outliers. Sen's Test for trends were performed to evaluate statistically significant trends in the data with respect to time. Time series plots were generated on a well-by-well basis and are presented in **Appendix C**. During future monitoring rounds, the time series plots may be evaluated over the most recent five-year period, rather than the entire routine monitoring period.

Thirty statistically significantly decreasing trends in contaminant concentrations were identified by the Sen's Tests:

- BCP-ORC-1: benzene and biphenyl;
- MWN-01: 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene, benzene, biphenyl, fluorene, m, p-xylene, o-xylene, phenanthrene, toluene and xylenes;
- MWN-01B: benzene;
- MWN-02: benzene and xylenes;
- MWN-02B: benzene;
- MWN-03B: manganese;
- WT1-02: 1,3,5-trimethylbenzene, benzene, m,p-xylene, o-xylene, toluene and xylenes; and
- WT1-04: 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene, benzene, m, p-xylene, o-xylene, toluene, xylenes and phenanthrene.



The Sen's Tests also identified three statistically significant increasing trends:

- BCP-ORC-1: o-xylene and Naphthalene; and
- WT1-05: phenanthrene.

Time series plots were also evaluated for seasonality and outliers. There does not appear to be significant seasonal fluctuations of contaminant concentrations or outliers in the current monitoring data.

#### **7.00 SUMMARY**

GZA was retained to collect and analyze groundwater samples from thirteen (13) annual/semi-annual monitoring wells at the Steel Winds I facility in accordance with the *Site Management Plan*. A summary of our findings follows.

#### **Annual Well Locations**

- Static groundwater level measurements indicate that groundwater flows predominantly in a westerly
  direction at the Site, toward Lake Erie. Groundwater in the vicinity of WT-01 was observed to flow southsouthwesterly towards Smoke Creek and Lake Erie.
- VOCs were detected at concentrations above NYSDEC Class GA criteria in the groundwater samples collected from LTGWM wells MWN-01, MWN-01B, MWN-02, MWN-02B, MWN-03 and MWN-04.
- SVOCs were detected at concentrations above NYSDEC Class GA or their respective guidance criteria in the groundwater samples collected from LTGWM wells MWN-01, MWN-01B, MNW-02, MWN-02B, and MWN-03.
- Arsenic was detected at concentrations above NYSDEC Class GA criteria in LTGWM well MWN-02B.
- Barium was detected at concentrations above NYSDEC Class GA criteria in LTGWM well MWN-03B.
- Manganese detected at concentrations above NYSDEC Class GA criteria in LTGWM well MWN-03D.

#### <u>Semi-Annual Well Locations</u>

- VOCs were detected at concentrations above NYSDEC Class GA criteria in the groundwater samples collected from the semi-annual WT1 vicinity wells MWN-01, MWN-01B, WT1-02, WT1-04, WT1-05 and BCP-ORC-1.
- SVOCs were detected at concentrations above NYSDEC Class GA or their respective guidance criteria in the groundwater samples collected from the semi-annual WT1 vicinity wells MWN-01, MWN-01B, WT1-02, WT1-04, WT1-05, and BCP-ORC-1.



• Based on our review of the historic and current analytical data, the analytical test results from the September 2023 round of sampling are generally consistent with historical data. Statistically significant trends in contaminant concentrations were identified as noted in Section 6.00.



**TABLES** 

#### TABLE 1

#### September 2023 Analytical Testing Program Summary Steel Winds I Facility Lackawanna, New York

|                   |                        | 1                 |                 |            |             |               |              | 1              |                 |
|-------------------|------------------------|-------------------|-----------------|------------|-------------|---------------|--------------|----------------|-----------------|
|                   |                        |                   | Screened        | 074501/00  | 0.400 (0.1) |               |              |                |                 |
| Well Designation  | Sample ID              | Date Collected    | Interval        | STARS VOCs | SVOCs (BN)  | Total Arsenic | Total Barium | Total Chromium | Total Manganese |
|                   |                        |                   | (TOR)           |            |             |               |              |                |                 |
| Annual Monitoring | Well Sample Location   | s (LTGWM Netwo    | ork)            |            |             |               |              |                |                 |
| MWN-01            | MWN-01-090523          | 9/5/2023          | 9.2 - 19.2      | X          | X           |               |              |                |                 |
| MWN-01B           | MWN-01B-090523         | 9/5/2023          | 22.2 - 32.2     | Х          | Х           |               |              |                |                 |
| MWN-02            | MWN-02-090523          | 9/5/2023          | 23.6 - 33.6     | X          | X           |               |              |                |                 |
| MWN-02B           | MWN-02B-090623         | 9/6/2023          | 46.3 - 56.3     | X          | Х           | X             |              |                |                 |
| MWN-02D           | MWN-02D-090623         | 9/6/2023          | 74.3 - 79.3     |            |             | X             | X            | X              |                 |
| MWN-03            | MWN-03-090623          | 9/6/2023          | 39.2 - 49.2     | Х          | Х           |               |              |                |                 |
| MWN-03B           | MWN-03B-090623         | 9/6/2023          | 60.7 - 70.7     |            |             | X             | X            | X              | Х               |
| MWN-03D           | MWN-03D-090623         | 9/6/2023          | 111.3 - 121.3   | Х          | Х           |               | Х            |                | X               |
| MWN-04            | MWN-04-090623          | 9/6/2023          | 48.5 - 58.5     | Х          | Х           |               |              |                |                 |
| Semi-Annual Mon   | itoring Well Sample Lo | cations (WT-1 Vid | cinity Network) |            |             |               |              |                |                 |
| MWN-01            | MWN-01-090523          | 9/5/2023          | 9.2 - 19.2      | Х          | Х           |               |              |                |                 |
| MWN-01B           | MWN-01B-090523         | 9/5/2023          | 22.2 - 32.2     | X          | Х           |               |              |                |                 |
| WT1-02            | WT1-02-090523          | 9/5/2023          | 27.8 - 37.8     | Х          | Х           |               |              |                |                 |
| WT1-04            | WT1-04-090523          | 9/5/2023          | 15.5 - 25.5     | Х          | Х           |               |              |                |                 |
| WT1-05            | WT1-05-090523          | 9/5/2023          | 13.3 - 23.3     | Х          | Х           |               |              |                |                 |
| BCP-ORC-1         | BCP-ORC-1-090523       | 9/5/2023          | 24.7 - 34.7     | Х          | Х           |               |              |                |                 |

#### Notes:

- 1. VOCs = Volatile Organic Compounds STARS list via EPA Method 8260D.
- 2. SVOCs = Semi-Volatile Organic Compounds Base-Neutrals list via EPA Method 8270E.
- 3. Arsenic, Barium, Chromium, and Manganese via EPA Method 6020B.
- 4. "WT", "MWN", and "BCP-ORC" monitoring well information provided in Table 1 was referenced from Turnkey Environmental Restoration, LLC's 2009 Annual LTGWM & First Semi-Annual WT-1 Vicinity Monitoring Report.
- 5. TOR = measurement recorded in feet below top-of-well riser.

Table 2

#### September 2023 Annual Groundwater Analytical Data Summary Steel Winds I Facility Lackawanna, New York

|                                  | NYSDEC MWN-01   |             |           |           |           |          | MWN-01B  |           |           |           |          | MWN-02    |           |          |           |          |  |
|----------------------------------|-----------------|-------------|-----------|-----------|-----------|----------|----------|-----------|-----------|-----------|----------|-----------|-----------|----------|-----------|----------|--|
| Parameter                        | Class GA        | 9/2/2021    | 3/30/2022 | 9/13/2022 | 4/26/2022 | 9/5/2023 | 9/2/2021 | 3/30/2022 | 9/13/2022 | 4/26/2022 | 9/5/2023 | 9/25/2019 | 9/17/2020 | 9/3/2021 | 9/14/2022 | 9/5/2023 |  |
| Taraneer                         | Criteria        | Result      | Result    | Result    | Result    | Result   | Result   | Result    | Result    | Result    | Result   | Result    | Result    | Result   | Result    | Result   |  |
| Water Quality Field Measurements |                 |             |           |           |           |          |          |           |           |           |          |           |           |          |           |          |  |
| pH (units)                       | 6.5 - 8.5       | 11.53       | 13.19     | 11.81     | 11.93     | 11.92    | 11.1     | 13.03     | 11.46     | 11.50     | 11.55    | 11.94     | 8.31      | 11.7     | 11.85     | 12.35    |  |
| Temperature (*C)                 | NV              | 10.8        | 9.6       | 12.0      | 10.2      | 12.2     | 9.8      | 9.4       | 10.6      | 10.7      | 12.2     | 11.3      | 12.35     | 12.6     | 12.6      | 12.7     |  |
| Specific Conductance (mS/cm)     | NV              | 1.212       | 1.170     | 1.258     | 1.229     | 1.217    | 0.831    | 0.808     | 0.891     | 0.834     | 0.799    | 1.763     | 2.04      | 1.776    | 1.965     | 1.89     |  |
| Turbidity (NTU)                  | 5               | 2.61        | 1.08      | 2.80      | 9.84      | 4.40     | 7.67     | 22.3      | 22.18     | 42.1      | 24.36    | 38.6      | 6.8       | 2.51     | 2.54      | 4.5      |  |
| Dissolved Oxygen (mg/L)          | NV              | 1.2         | 2.2       | 5.9       | 5.4       | 0.4      | 0.8      | 20.7      | 11.3      | 22.4      | 5        | 0.060     | 97.2      | 2.8      | 13.6      | 8.2      |  |
| Oxygen Reduction Potential (mV)  | NV              | -159.2      | -347.1    | -104.5    | -265.1    | -285.6   | -214.2   | -244.3    | -118.8    | -217.3    | -249.6   | -121.0    | -281      | -115.1   | 137.8     | -80.9    |  |
| Volatile Organic Compounds - EPA | Method 8260C    | (ug/L)      |           |           |           |          |          |           |           |           |          |           |           |          |           |          |  |
| Benzene                          | 1               | 14          | 14        | 12        | 15        | 15       | 55       | 54        | 55        | 50        | 55       | 2.2       | 1         | 5.1      | 1.5       | 10       |  |
| Toluene                          | 5               | 3.6 J       | 3.1 J     | 2.8 J     | 3.1 J     | 3.2 J    | 19 J     | 16 J      | 20        | 15 J      | 16 J     | <         | <         | 1.4 J    | <         | 2.3 J    |  |
| Ethylbenzene                     | 5               | <           | <         | <         | <         | <        | <        | <         | 0.95 J    | <         | <        | <         | <         | <        | <         | <        |  |
| m,p-Xylene                       | 5               | 8.7         | 7.9       | 6.0       | 7.0       | 6.4      | 12 J     | 12 J      | 15        | 11 J      | 9.9 J    | 1.1 J     | 0.76 J    | 2.4 J    | <         | 3.4      |  |
| o-Xylene                         | 5               | 6.5         | 5.8       | 5.0       | 5.1       | 4.5 J    | 9.0 J    | 8.9 J     | 11        | 7.7 J     | <        | 1.1 J     | <         | 2.1 J    | <         | 2.7      |  |
| Xylene (Total)                   | 5               | 15.2        | 14        | 11.0      | 12.1      | 10.9     | 21 J     | 21 J      | 26        | 18.7      | 9.9 J    | 2.2       | 0.76 J    | 4.5 J    | <         | 6.1      |  |
| Isopropylbenzene                 | 5               | <           | <         | <         | <         | <        | <        | <         | 1.4 J     | <         | <        | <         | <         | <        | <         | <        |  |
| 1,3,5-Trimethylbenzene           | 5               | 4.2 J       | 3.9 J     | 2.8 J     | 3.1 J     | 2.8 J    | <        | <         | 5.2       | <         | <        | 1.4 J     | 0.91 J    | 1.8 J    | <         | 1.3 J    |  |
| 1,2,4-Trimethylbenzene           | 5               | 4.6 J       | 4.1 J     | 3.0 J     | 3.0 J     | 2.8 J    | 7.1 J    | <         | 7.4       | <         | <        | <         | <         | 1.2 J    | <         | 0.80 J   |  |
| Naphthalene*                     | 10              | 270         | 290       | 240       | 220       | 230      | 1,500    | 1,700     | 1,500     | 1,400     | 1,500    | 9.4       | 20        | 20       | 4.2       | 43       |  |
| Semi-Volatile Organic Compounds  | - EPA Method 82 | 270D (ug/L) |           |           |           |          |          |           |           |           |          |           |           |          |           |          |  |
| Acetophenone                     | NV              | <           | <         | 0.570 J   | <         | <        | <        | <         | <         | <         | <        | <         | <         | <        | 0.246 J   | 0.265 J  |  |
| Acenaphthylene                   | NV              | 22.3        | 30.3      | 23.5      | 22.4      | 20.1     | 44.0     | 33.8      | 54.3      | 24.1      | 23.4 J   | 1.36      | 0.727     | 1.98     | 1.03      | 3.14     |  |
| Naphthalene*                     | 10              | 96.2        | 141       | 91.9      | 96.7      | 108      | 962      | 970       | 742       | 715       | 876      | 2.87      | 2.38      | 5.23     | 3.44      | 23.3     |  |
| 2-Methylnaphthalene              | NV              | 21.9        | 40.0      | 27.8      | 25.0      | 26.6     | 35.8     | 46.2      | 52.4      | 25.0      | 33.7     | 1.02      | 0.552     | 1.78     | 1.01      | 3.90     |  |
| Acenaphthene*                    | 20              | 8.66        | 11.9      | 10.1      | 9.08      | 9.51     | 12.0     | 10.5      | 11.8      | 7.86 J    | 8.97 J   | 0.758     | 0.431 J   | 1.20     | 0.603     | 1.46     |  |
| Dibenzofuran                     | NV              | 28.9        | 39.6      | 29.7      | 30.3      | 34.7     | 30.3     | 24.8      | 30.6      | 19.5      | 22.6 J   | 0.922     | 0.584     | 2.35     | 0.967     | 3.85     |  |
| Fluorene*                        | 50              | 41.9        | 58.8      | 44.4      | 48.7      | 52.4     | 43.7     | 35.7      | 42.3      | 29.7      | 32.4     | 2.98      | 1.52      | 4.76     | 2.26      | 5.84     |  |
| Phenanthrene*                    | 50              | 71.0        | 81.5      | 69.9      | 76.5      | 86.6     | 61.9     | 53.6      | 69.5      | 48.0      | 51.3     | 2.55      | 1.46      | 4.14     | 1.76      | 5.72     |  |
| Carbazole                        | NV              | 19.6        | 24.1      | 19.7      | 21.8      | 19.6     | 60.0     | 55.4      | 61.3      | 49.4      | 46.1     | 1.34      | 0.702     | 3.67     | 1.28      | 4.37     |  |
| Anthracene*                      | 50              | 7.74        | 11.9      | 12.2      | 8.16      | 13.3     | 8.19     | 6.46      | 11.8      | 5.05 J    | <        | 0.635     | 0.467 J   | 0.983    | 0.588     | 0.986    |  |
| Fluoranthene*                    | 50              | 9.44        | 10.6      | 12.3      | 9.11      | 12.3     | 8.97     | 8.33      | 10.8      | 7.98 J    | 8.28 J   | 1.4       | 1.14      | 1.56     | 0.971     | 0.857    |  |
| Biphenyl                         | 5               | 5.85        | 7.86      | 6.48      | 6.03      | 6.49     | 7.45     | 6.09      | 7.84 J    | 4.78 J    | <        | 0.412 J   | 0.198 J   | 0.732    | 0.332 J   | 1.00     |  |
| Pyrene*                          | 50              | 6.16        | 6.38      | 6.81      | 5.33      | 7.22     | 6.44     | 4.95      | 5.57 J    | 6.8 J     | <        | 1.26      | 1.41      | 1.56     | 1.70      | 1.86     |  |
| Butyl benzyl phthalate*          | 50              | 0.104 J     | <         | <         | <         | <        | <        | <         | <         | <         | <        | <         | <         | 0.093 J  | <         | 0.113 J  |  |
| Benzo [a] Anthracene             | 0.002           | <           | 0.372 J   | 0.380 J   | <         | <        | 0.461 J  | 0.316 J   | <         | <         | <        | <         | <         | <        | <         | <        |  |
| Benzo [b] Fluoranthene*          | 0.002           | <           | <         | 0.079 J   | <         | <        | 0.105 J  | 0.105 J   | <         | 1.32 J    | <        | <         | <         | <        | <         | <        |  |
| Benzo [a] Pyrene                 | ND              | <           | <         | <         | <         | <        | 0.072 J  | 0.079 J   | <         | <         | <        | <         | <         | <        | <         | <        |  |
| Chrysene                         | 0.002           | 0.216 J     | 0.187 J   | 0.214 J   | <         | <        | 0.256 J  | 0.180 J   | <         | <         | <        | <         | <         | <        | <         | <        |  |
| bis(2-Ethylhexyl)Phthalate       | 5               | <           | <         | <         | <         | <        | <        | <         | <         | <         | <        | 0.098 J   | 0.602     | <        | <         | <        |  |
| Metals - EPA Method 6010D (ug/L) |                 |             |           |           |           |          |          |           |           |           |          |           |           |          |           |          |  |
| Arsenic                          | 25              | NT          | NT        | NT        | NT        | NT       | NT       | NT        | NT        | NT        | NT       | NT        | NT        | NT       | NT        | NT       |  |
| Barium                           | 1,000           | NT          | NT        | NT        | NT        | NT       | NT       | NT        | NT        | NT        | NT       | NT        | NT        | NT       | NT        | NT       |  |
| Chromium                         | 50              | NT          | NT        | NT        | NT        | NT       | NT       | NT        | NT        | NT        | NT       | NT        | NT        | NT       | NT        | NT       |  |
| Manganese                        | 300             | NT          | NT        | NT        | NT        | NT       | NT       | NT        | NT        | NT        | NT       | NT        | NT        | NT       | NT        | NT       |  |

Notes

- 1. Compounds detected in one or more sample are presented on this table. Refer to Appendix B for list of all compounds included in analysis.
- 2. Analytical testing completed by Alpha Analytical, Westborough, Massachusetts.
- 3. NYSDEC Groundwater Class GA criteria obtained from Division of Water Technical and Operational Guidance Series (TOGS 1.1.1),
- dated October 1993, revised June 1998, errata January 1999 and amended April 2000 (Class GA).
- 4. ug/L = part per billion (ppb).
- 5. < indicates compound was not detected above method detection limits.
- 6. "J" qualifier = Analyte detected below quantitation limits.
- 7. Value shown in **bold** indicate exceedance of respective Class GA Criteria or guidance value.
- 8. NV = no value, NT = not tested, ND = Not detected above method detection limit
- 9. \* = value shown is a guidance value rather than a groundwater standard.
- 10. The equipment used to collect water quality data was calibrated prior to and during use in accordance with the manufacturer's recommendations.

Table 2

September 2023 Annual Groundwater Analytical Data Summary

Steel Winds I Facility

Lackawanna, New York

|                                  | NYSDEC         |             |           | MWN-02B  |           |          |           |           | MWN-02D  |           |          |           |           | MWN-03   |           |          |
|----------------------------------|----------------|-------------|-----------|----------|-----------|----------|-----------|-----------|----------|-----------|----------|-----------|-----------|----------|-----------|----------|
| Parameter                        | Class GA       | 9/25/2019   | 9/17/2020 | 9/3/2021 | 9/14/2022 | 9/6/2023 | 9/24/2019 | 9/18/2020 | 9/3/2021 | 9/15/2022 | 9/6/2023 | 9/25/2019 | 9/17/2020 | 9/2/2021 | 9/15/2022 | 9/6/2023 |
|                                  | Criteria       | Result      | Result    | Result   | Result    | Result   | Result    | Result    | Result   | Result    | Result   | Result    | Result    | Result   | Result    | Result   |
| Water Quality Field Measurements |                |             |           |          |           |          |           |           |          |           |          |           |           |          |           |          |
| pH (units)                       | 6.5 - 8.5      | 11.34       | 8.21      | 11.30    | 11.17     | 11.45    | 7.00      | 6.99      | 6.61     | 7.86      | 7.01     | 12.32     | 8.53      | 12.00    | 12.49     | 12.42    |
| Temperature (*C)                 | NV             | 12.1        | 12.92     | 12.6     | 13.9      | 13.2     | 12.6      | 13.61     | 12.9     | 13.8      | 14       | 12.8      | 13.57     | 13.3     | 14.3      | 14.2     |
| Specific Conductance (mS/cm)     | NV             | 0.958       | 1.13      | 0.910    | 0.902     | 0.89     | 1.890     | 1.970     | 1.354    | 2.027     | 1.971    | 2.724     | 2.89      | 2.729    | 3.058     | 2.87     |
| Turbidity (NTU)                  | 5              | 1.9         | 6.9       | 2.52     | 2.57      | 38.32    | 15.1      | 7.2       | 5.15     | 189.3     | 26.22    | 3.9       | 3.9       | 4.82     | 4.06      | 16.27    |
| Dissolved Oxygen (mg/L)          | NV             | 0.15        | 95.5      | 1.2      | 6.5       | 1.9      | 0.09      | 6.1       | 1.5      | 29.9      | 0.8      | 0.11      | 115.2     | 2.1      | 43.0      | 0.3      |
| Oxygen Reduction Potential (mV)  | NV             | -220.6      | -256      | -202.6   | -56.1     | -269.4   | -96.3     | -72       | -51.6    | 49.8      | -63.8    | -412.1    | -361      | -267.3   | -39.3     | -411.1   |
| Volatile Organic Compounds - EPA | Method 8260C   | (ug/L)      |           |          |           |          |           |           |          |           |          |           |           |          |           |          |
| Benzene                          | 1              | 64          | 69        | 61       | 62        | 67       | NT        | NT        | NT       | NT        | NT       | 8.0       | 10        | 7.1      | 11        | 8.3      |
| Toluene                          | 5              | 11          | 11        | 11       | 10        | 12       | NT        | NT        | NT       | NT        | NT       | 2.0 J     | 2.2 J     | 1.8 J    | 2.4 J     | 2.0 J    |
| Ethylbenzene                     | 5              | 0.76 J      | <         | <        | <         | <        | NT        | NT        | NT       | NT        | NT       | <         | <         | <        | <         | <        |
| m,p-Xylene                       | 5              | 8.2         | 8.5       | 9.2      | 7.2       | 9.2      | NT        | NT        | NT       | NT        | NT       | 1.4 J     | 1.5 J     | 1.3 J    | 1.6 J     | 1.2 J    |
| o-Xylene                         | 5              | 12          | 13.0      | 13       | 10        | 13       | NT        | NT        | NT       | NT        | NT       | 1.5 J     | 1.8 J     | 1.4 J    | 1.7 J     | 1.2 J    |
| Xylene (Total)                   | 5              | 20.2        | 21.5      | 22.2     | 17.2      | 22.2     | NT        | NT        | NT       | NT        | NT       | 2.9       | 3.3       | 2.7 J    | 3.3 J     | 2.4 J    |
| 1,3,5-Trimethylbenzene           | 5              | 1.5 J       | 1.5 J     | 2.0 J    | <         | <        | NT        | NT        | NT       | NT        | NT       | 0.90 J    | 0.97 J    | 0.93 J   | 0.97 J    | 0.84 J   |
| 1,2,4-Trimethylbenzene           | 5              | 2.5         | 2.6 J     | 3.5 J    | 1.9 J     | 2.5 J    | NT        | NT        | NT       | NT        | NT       | <         | <         | <        | <         | <        |
| Naphthalene*                     | 10             | 240         | 270       | 280      | 320       | 400      | NT        | NT        | NT       | NT        | NT       | 23        | 26        | 19       | 25        | 27       |
| Semi-Volatile Organic Compounds  | - EPA Method 8 | 270D (ug/L) |           |          |           |          |           |           |          |           |          |           |           |          |           |          |
| Acetophenone                     | NV             | <           | <         | <        | 0.770 J   | <        | NT        | NT        | NT       | NT        | NT       | <         | <         | <        | 0.308 J   | <        |
| Acenaphthylene                   | NV             | 4.58        | 3.90      | 3.18     | 2.83      | 4.03     | NT        | NT        | NT       | NT        | NT       | 1.73      | 0.980     | 1.23     | 2.70      | 1.29     |
| 1,2-Dichlorobenzene              | 3              | 0.171 J     | 0.168 J   | 0.162 J  | 0.200 J   | <        | NT        | NT        | NT       | NT        | NT       | 0.099 J   | 0.121 J   | 0.102 J  | 0.115 J   | 0.122 J  |
| Naphthalene*                     | 10             | 217         | 205       | 183      | 146       | 194      | NT        | NT        | NT       | NT        | NT       | 17.1      | 18.1      | 11.2     | 15.0      | 13.8     |
| 2-Methylnaphthalene              | NV             | 8.05        | 8.83      | 6.89     | 8.48      | 7.70     | NT        | NT        | NT       | NT        | NT       | 2.7       | 3.10      | 1.93     | 3.03      | 2.55     |
| Acenaphthene*                    | 20             | 7.09        | 7.47      | 7.46     | 6.20      | 7.02     | NT        | NT        | NT       | NT        | NT       | 1.3       | 1.45      | 1.11     | 1.54      | 1.33     |
| Dibenzofuran                     | NV             | 5.76        | 6.24      | 6.32     | 4.50      | 5.42     | NT        | NT        | NT       | NT        | NT       | 2.34      | 2.81      | 1.99     | 2.92      | 2.37     |
| Fluorene*                        | 50             | 10.7        | 11.40     | 10.2     | 7.72      | 9.24     | NT        | NT        | NT       | NT        | NT       | 4.5       | 4.82      | 3.48     | 5.10      | 4.28     |
| Phenanthrene*                    | 50             | 17.5        | 18.30     | 18.0     | 13.7      | 14.9     | NT        | NT        | NT       | NT        | NT       | 8.23      | 8.29      | 7.54     | 9.37      | 7.86     |
| Carbazole                        | NV             | 23.2        | 24.40     | 23.1     | 21.2      | 20.0     | NT        | NT        | NT       | NT        | NT       | 4.30      | 4.58      | 3.26     | 5.17      | 3.40     |
| Anthracene*                      | 50             | 2.32        | 2.35      | 1.67     | 1.88      | 2.41     | NT        | NT        | NT       | NT        | NT       | 1.00      | 0.612     | 0.884    | 1.38      | 0.848    |
| Fluoranthene*                    | 50             | 3.32        | 4.13      | 3.34     | 3.51      | 3.62     | NT        | NT        | NT       | NT        | NT       | 2.7       | 2.53      | 2.18     | 3.19      | 2.56     |
| Biphenyl                         | 5              | 1.64        | 1.62      | 1.52     | 1.11      | 1.31 J   | NT        | NT        | NT       | NT        | NT       | 0.707     | 0.792     | 0.512    | 0.715     | 0.617    |
| Pyrene*                          | 50             | 2.22        | 2.82      | 2.49     | 2.00      | 2.35     | NT        | NT        | NT       | NT        | NT       | 1.66      | 1.63      | 1.78     | 1.91      | 1.69     |
| Butylbenzylphthalate*            | 50             | <           | <         | 0.124 J  | <         | <        | NT        | NT        | NT       | NT        | NT       | <         | <         | <        | <         | <        |
| bis(2-Ethylhexyl)Phthalate       | 5              | <           | <         | <        | <         | <        | NT        | NT        | NT       | NT        | NT       | <         | 0.336 J   | <        | <         | <        |
| n-Nitrosodiphenylamine           | 50             | <           | <         | <        | <         | 0.477 J  | NT        | NT        | NT       | NT        | NT       | <         | <         | <        | <         | 0.097 J  |
| Metals - EPA Method 6010D (ug/L) |                |             |           |          |           |          |           |           |          |           |          |           |           |          |           |          |
| Arsenic                          | 25             | 32          | 28.44     | 27.68    | 37.9      | 26.74    | 0.60      | 0.63      | 0.62     | <         | 0.75     | NT        | NT        | NT       | NT        | NT       |
| Barium                           | 1,000          | NT          | NT        | NT       | NT        | NT       | 931.9     | 912.8     | 922.5    | 860       | 958.3    | NT        | NT        | NT       | NT        | NT       |
| Chromium                         | 50             | NT          | NT        | NT       | NT        | NT       | <         | 0.30 J    | 0.60 J   | <         | 0.37 J   | NT        | NT        | NT       | NT        | NT       |
| Manganese                        | 300            | NT          | NT        | NT       | NT        | NT       | NT        | NT        | NT       | NT        | NT       | NT        | NT        | NT       | NT        | NT       |

#### Notes:

- 1. Compounds detected in one or more sample are presented on this table. Refer to Appendix B for list of all compounds included in analysis.
- Analytical testing completed by Alpha Analytical, Westborough, Massachusetts.
- 3. NYSDEC Groundwater Class GA criteria obtained from Division of Water Technical and Operational Guidance Series (TOGS 1.1.1), dated October 1993, revised June 1998, errata January 1999 and amended April 2000 (Class GA).
- 4. ug/L = part per billion (ppb).
- 5. < indicates compound was not detected above method detection limits.
- 6. "J" qualifier = Analyte detected below quantitation limits.
- 7. Value shown in **bold** indicate exceedance of respective Class GA Criteria or guidance value.
- 8. NV = no value, NT = not tested, ND = Not detected above method detection limit
- 9. \* = value shown is a guidance value rather than a groundwater standard.
- 10. The equipment used to collect water quality data was calibrated prior to and during use in accordance with the manufacturer's recommendations.

Table 2

#### September 2023 Annual Groundwater Analytical Data Summary Steel Winds I Facility Lackawanna, New York

|                                  | NYSDEC       |             |           | MWN-3B   |           |          |           |           | MWN-03D              |              |                     |           |             | MWN-04       |                    |                    |
|----------------------------------|--------------|-------------|-----------|----------|-----------|----------|-----------|-----------|----------------------|--------------|---------------------|-----------|-------------|--------------|--------------------|--------------------|
| Parameter                        | Class GA     | 9/25/2019   | 10/1/2020 | 9/3/2021 | 9/15/2022 | 9/6/2023 | 9/25/2019 | 9/24/2020 | 9/3/2021             | 9/15/2022    | 9/6/2023            | 9/25/2019 | 9/17/2020   | 9/2/2021     | 9/15/2022          | 9/6/2023           |
|                                  | Criteria     | Result      | Result    | Result   | Result    | Result   | Result    | Result    | Result <sup>11</sup> | Result       | Result              | Result    | Result      | Result       | Result             | Result             |
| Water Quality Field Measurements |              |             |           |          |           |          |           |           |                      |              |                     |           |             |              |                    |                    |
| pH (units)                       | 6.5 - 8.5    | 7.80        | 7.2       | 7.29     | 6.62      | 7.3      | 6.17      | 6.25      | 7.31                 | 7.26         | 7.64                | 12.05     | 7.98        | 11.57        | 11.35              | 11.52              |
| Temperature (*C)                 | NV           | 13.7        | 13.9      | 14.7     | 14.2      | 16       | 12.9      | 14.4      | 13.5                 | 13.5         | 16.7                | 16.0      | 15.97       | 15.7         | 17.3               | 17.2               |
| Specific Conductance (mS/cm)     | NV           | 3.139       | 2.413     | 2.586    | 27.710    | 27.35    | 24.662    | 25.881    | 24.410               | 26.110       | 3.129               | 2.311     | 2.35        | 2.313        | 3.540              | 3.525              |
| Turbidity (NTU)                  | 5            | 25.6        | 38.04     | 16.44    | 40.12     | 131.28   | 29.4      | 14.31     | 35.83                | 165.2        | 53.3                | 2.6       | 2.4         | 1.98         | 33.47              | 12.95              |
| Dissolved Oxygen (mg/L)          | NV           | 0.15        | 49.7      | 2.9      | 25.3      | 27       | 0.56      | 36.5      | 5.5                  | 16.2         | 25.1                | 5.56      | 107.4       | 3.0          | 69.6               | 48.9               |
| Oxygen Reduction Potential (mV)  | NV           | -188.8      | -63.7     | -146.7   | 97.7      | -19.2    | -32.4     | -45.3     | 41.6                 | 50.8         | -105.1              | -99.7     | -65         | -81.2        | 35.4               | -25.3              |
| Volatile Organic Compounds - EPA | Method 8260C | (ug/L)      |           |          |           |          |           |           |                      |              |                     |           |             |              |                    |                    |
| Benzene                          | 1            | NT          | NT        | NT       | NT        | NT       | <         | <         | <                    | <            | <                   | <         | <           | <            | 0.51               | 0.48 J             |
| Toluene                          | 5            | NT          | NT        | NT       | NT        | NT       | <         | <         | <                    | <            | <                   | <         | <           | <            | <                  | <                  |
| Ethylbenzene                     | 5            | NT          | NT        | NT       | NT        | NT       | <         | <         | <                    | <            | <                   | <         | <           | <            | <                  | <                  |
| m,p-Xylene                       | 5            | NT          | NT        | NT       | NT        | NT       | <         | <         | <                    | <            | <                   | <         | <           | <            | <                  | <                  |
| o-Xylene                         | 5            | NT          | NT        | NT       | NT        | NT       | <         | <         | <                    | <            | <                   | <         | <           | <            | <                  | <                  |
| Xylene (Total)                   | 5            | NT          | NT        | NT       | NT        | NT       | <         | <         | <                    | <            | <                   | <         | <           | <            | <                  | <                  |
| 1,3,5-Trimethylbenzene           | 5            | NT          | NT        | NT       | NT        | NT       | <         | 0.73 J    | <                    | <            | <                   | <         | <           | <            | <                  | <                  |
| 1,2,4-Trimethylbenzene           | 5            | NT          | NT        | NT       | NT        | NT       | <         | <         | <                    | <            | <                   | <         | <           | <            | <                  | <                  |
| Naphthalene*                     | 10           | NT          | NT        | NT       | NT        | NT       | <         | <         | <                    | <            | <                   | <         | 1.4 J       | <            | 16                 | 12                 |
| Semi-Volatile Organic Compounds  | _            | 270D (ug/L) |           |          |           |          |           |           |                      |              |                     |           |             |              |                    |                    |
| Acetophenone                     | NV           | NT          | NT        | NT       | NT        | NT       | <         | <         | <                    | <            | <                   | <         | <           | <            | 0.967 J            | 0.674 J            |
| Acenaphthylene                   | NV           | NT          | NT        | NT       | NT        | NT       | <         | <         | <                    | <            | <                   | <         | <           | <            | 0.167 J            | <                  |
| 2,6 Dinitrotoluene               | 5            | NT          | NT        | NT       | NT        | NT       | <         | <         | <                    | <            | <                   | <         | <           | <            | <                  | 1.13               |
| Naphthalene*                     | 10           | NT          | NT        | NT       | NT        | NT       | 0.196 J   | <         | 0.121 J              | <            | <                   | <         | 0.163 J     | <            | 11.2               | 6.09               |
| 2-Methylnaphthalene              | NV           | NT          | NT        | NT       | NT        | NT       | <         | <         | <                    | <            | <                   | <         | <           | <            | 2.49               | 0.900              |
| Acenaphthene*                    | 20           | NT          | NT        | NT       | NT        | NT       | <         | <         | <                    | 0.536        | 2.00                | <         | 0.377 J     | <            | 5.26               | 2.06               |
| Dibenzofuran                     | NV           | NT          | NT        | NT       | NT        | NT       | <         | <         | <                    | <            | <                   | <         | 0.107 J     | <            | 2.54               | 0.780              |
| Fluorene*                        | 50           | NT          | NT        | NT       | NT        | NT       | <         | <         | <                    | 0.187 J      | 0.686               | <         | 0.304 J     | <            | 4.37               | 1.33               |
| Phenanthrene*                    | 50<br>NV     | NT          | NT        | NT<br>NT | NT<br>NT  | NT       | <         | <         | <                    | 0.434 J<br>< | 1.77                | < <       | 0.302 J     | <            | 7.31<br>8.59       | 1.63<br>2.58       |
| Carbazole                        | 50           | NT          | NT        | NT<br>NT | NT<br>NT  | NT       | <         | < <       | <                    | <            | 0.347 J             | <         | <           | <            | 1.39               | 0.334 J            |
| Anthracene*                      | 50           | NT<br>NT    | NT<br>NT  | NT<br>NT | NT<br>NT  | NT<br>NT | < <       | <         | <                    | <            | 0.34 / J<br>0.313 J | <         | 0.168 J     | <            | 1.39               | 0.334 J<br>0.405 J |
| Fluoranthene*                    | 5            | NT<br>NT    | NT<br>NT  | NT<br>NT | NT<br>NT  |          | <         | <         | <                    | <            | 0.313 J             | <         | 0.168 J     | <            | 0.394 J            | 0.403 J<br>0.167 J |
| Biphenyl<br>Pyrene*              | 50           | NT<br>NT    | NT<br>NT  | NT<br>NT | NT<br>NT  | NT<br>NT | <         | <         | <                    | <            | 0.208 J             | 0,640     | 0.447 J     | 0.459 J      | 1.90               | 1.16               |
| Benzo [b] Fluoranthene*          | 0.002        | NT          | NT        | NT       | NT        | NT       | <         | <         | <                    | <            | 0.208 J<br><        | < 0.040   | 0.44/J<br>< | 0.439 J<br>< | 0.125 J            | < 1.16             |
| Benzo [a] Pyrene*                | 0.002        | NT          | NT        | NT       | NT        | NT       | <         | -         | <                    | <            | <                   | ~         | <           | <            | 0.123 J<br>0.076 J | <                  |
| Di-n-octylphthalate*             | 50           | NT          | NT        | NT       | NT        | NT       | <         | 0.690 J   | <                    | <            | <                   | <         | <           | <            | <                  | <                  |
| Butylbenzylphthalate*            | 50           | NT          | NT        | NT       | NT        | NT       | 0.211 J   | 0.090 J   | 0.137 J              | <            | <                   | <         | <           | <            | <                  | <                  |
| Diethylphthalate*                | 50           | NT          | NT        | NT       | NT        | NT       | < 0.2113  | 0.518     | 0.1373               | <            | <                   | <         | <           | <            | <                  | <                  |
| bis(2-Ethylhexyl)Phthalate       | 5            | NT          | NT        | NT       | NT        | NT       | 0.514     | 44.9      | 7.15                 | 0.376 J      | 0.450 J             | 0.123 J   | 0.342 J     | <            | <                  | 0.264 J            |
| n-Nitrosodiphenylamine           | 5            | NT          | NT        | NT       | NT        | NT       | < 0.514   | <         | < .13                | < 0.3703     | 0.358 J             | < 0.1233  | < 0.542 3   | <            | <                  | < <                |
| Metals - EPA Method 6010D (ug/L) |              |             |           |          |           |          | •         |           |                      | •            |                     | •         |             |              |                    |                    |
| Arsenic                          | 25           | 36.12       | 2.73      | 86.97    | <         | 3.78 J   | NT        | NT        | NT                   | NT           | NT                  | NT        | NT          | NT           | NT                 | NT                 |
| Barium                           | 1,000        | 1,291       | 837.3     | 1,049    | 1,320     | 1,388    | 1,286     | 1,234     | 1,318                | 779          | 967.2               | NT        | NT          | NT           | NT                 | NT                 |
| Chromium                         | 50           | 1.74        | 0.28 J    | 5.10     | 3.2 J     | <        | NT        | NT        | NT                   | NT           | NT                  | NT        | NT          | NT           | NT                 | NT                 |
| Manganese                        | 300          | 267.4       | 336.7     | 400.2    | 178       | 50.38    | 38.19     | 41.49     | 24.52                | 333          | 351.2               | NT        | NT          | NT           | NT                 | NT                 |
|                                  | •            |             |           |          |           |          | -         |           |                      | •            |                     | -         |             |              |                    |                    |

- 1. Compounds detected in one or more sample are presented on this table. Refer to Appendix B for list of all compounds included in analysis.
- 2. Analytical testing completed by Alpha Analytical, Westborough, Massachusetts.
- 3. NYSDEC Groundwater Class GA criteria obtained from Division of Water Technical and Operational Guidance Series (TOGS 1.1.1),
- dated October 1993, revised June 1998, errata January 1999 and amended April 2000 (Class GA).
- 4. ug/L = part per billion (ppb).
- 5. < indicates compound was not detected above method detection limits.
- 6. "J" qualifier = Analyte detected below quantitation limits.
- 7. Value shown in **bold** indicate exceedance of respective Class GA Criteria or guidance value.
- 8. NV = no value, NT = not tested, ND = Not detected above method detection limit
- 9. \* = value shown is a guidance value rather than a groundwater standard.
- 10. The equipment used to collect water quality data was calibrated prior to and during use in accordance with the manufacturer's recommendations.

  11.0 WellS MWN-03B, MWN-03D and MWN-04 were unable to be low flow sampled. Hand bailing techniques were required. Metals analysis required laboratory filtration.

#### Table 3

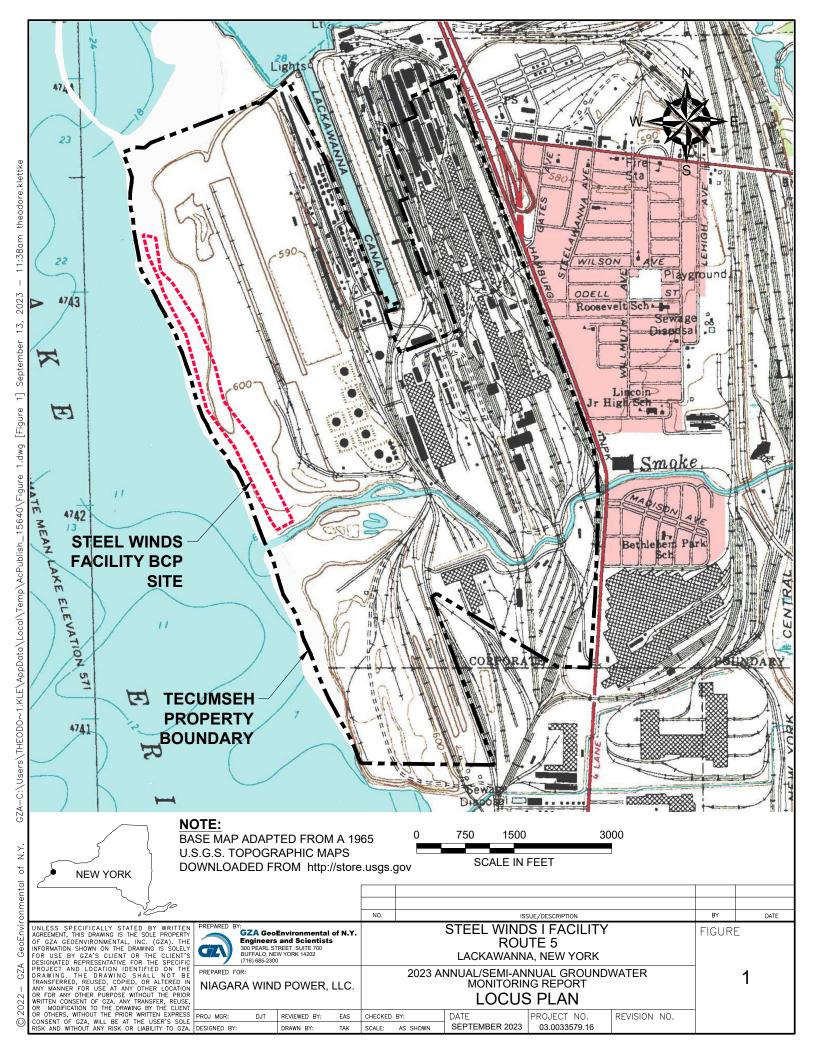
#### September 2023 Semi-Annual Groundwater Analytical Data Summary Steel Winds I Facility Lackawanna, New York

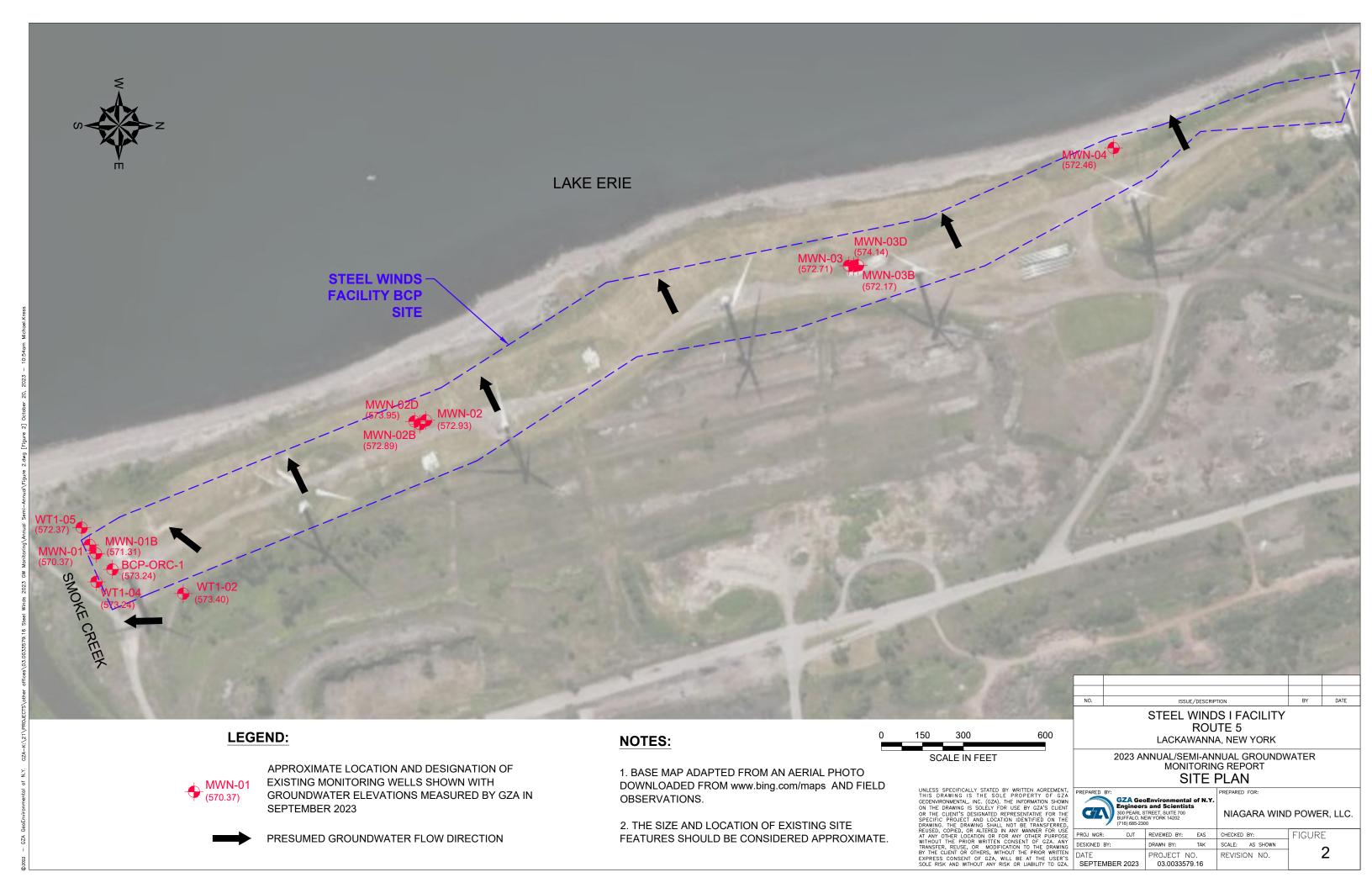
|                                   | NYSDEC              |          |           | MWN-01    |           |          |          |           | MWN-01B   |           |          |          |           | WT1-02    |           |          |
|-----------------------------------|---------------------|----------|-----------|-----------|-----------|----------|----------|-----------|-----------|-----------|----------|----------|-----------|-----------|-----------|----------|
| Parameter                         | Class GA            | 9/2/2021 | 3/30/2022 | 9/13/2022 | 4/26/2022 | 9/5/2023 | 9/2/2021 | 3/30/2022 | 9/13/2022 | 4/26/2022 | 9/5/2023 | 9/2/2021 | 3/30/2022 | 9/14/2022 | 4/26/2022 | 9/5/2023 |
|                                   | Criteria            | Result   | Result    | Result    | Result    | Result   | Result   | Result    | Result    | Result    | Result   | Result   | Result    | Result    | Result    | Result   |
| Water Quality Field Measurements  |                     |          | •         |           |           |          |          | •         |           |           |          |          |           |           | •         |          |
| pH (units)                        | 6.5 - 8.5           | 11.53    | 13.19     | 11.81     | 11.93     | 11.92    | 11.1     | 13.03     | 11.46     | 11.50     | 11.55    | 11.85    | 13.45     | 11.98     | 12.2      | 12.32    |
| Temperature (*C)                  | NV                  | 10.8     | 9.6       | 12.0      | 10.2      | 12.2     | 9.8      | 9.4       | 10.6      | 10.7      | 12.2     | 12.3     | 11.6      | 13.1      | 12.4      | 12.9     |
| Specific Conductance (mS/cm)      | NV                  | 1.212    | 1.170     | 1.258     | 1.229     | 1.217    | 0.831    | 0.808     | 0.891     | 0.834     | 0.799    | 1.770    | 1.746     | 1.592     | 1.753     | 1.833    |
| Turbidity (NTU)                   | 5                   | 2.61     | 1.08      | 2.80      | 9.84      | 4.40     | 7.67     | 22.3      | 22.18     | 42.12     | 24.36    | 2.7      | 1.37      | 1.43      | 2.44      | 7.11     |
| Dissolved Oxygen (mg/L)           | NV                  | 1.2      | 2.2       | 5.9       | 5.4       | 0.4      | 0.8      | 20.7      | 11.3      | 22.4      | 5        | 4.7      | 3.9       | 7.6       | 7.2       | 14.6     |
| Oxygen Reduction Potential (mV)   | NV                  | -159.2   | -347.1    | -104.5    | -265.1    | -285.6   | -214.2   | -244.3    | -118.8    | -217.3    | -249.6   | -160.7   | -271.7    | -41.2     | -225.4    | -101.3   |
| Volatile Organic Compounds - EPA  | Method 8260C (ug/L) |          |           |           |           |          |          |           |           |           |          |          |           |           |           |          |
| Benzene                           | 1                   | 14       | 14        | 12        | 15        | 15       | 55       | 54        | 55        | 50        | 55       | 12       | 11.0      | 8.7       | 9.2       | 7.3      |
| Toluene                           | 5                   | 3.6 J    | 3.1 J     | 2.8 J     | 3.1 J     | 3.2 J    | 19 J     | 16 J      | 20        | 15 J      | 16 J     | 2.4 J    | 2.1 J     | 1.7 J     | 1.8 J     | 1.5 J    |
| Ethylbenzene                      | 5                   | <        | <         | <         | <         | <        | <        | <         | 0.95 J    | <         | <        | <        | <         | <         | <         | <        |
| m,p-Xylene                        | 5                   | 8.7      | 7.9       | 6.0       | 7.0       | 6.4      | 12 J     | 12 J      | 15        | 11 J      | 9.9 J    | 4.2      | 4         | 2.6       | 3.6       | 2.4 J    |
| o-Xylene                          | 5                   | 6.5      | 5.8       | 5.0       | 5.1       | 4.5 J    | 9.0 J    | 8.9 J     | 11        | 7.7 J     | <        | 3.0      | 2.9       | 1.9 J     | 2.6       | 1.6 J    |
| Xylene (Total)                    | 5                   | 15.2     | 14        | 11.0      | 12.1      | 10.9     | 21 J     | 21 J      | 26        | 18.7      | 9.9      | 7.2      | 6.9       | 4.5 J     | 6.2       | 4.0      |
| Isopropylbenzene                  | 5                   | <        | <         | <         | <         | <        | <        | <         | 1.4 J     | <         | <        | <        | <         | <         | <         | <        |
| 1,3,5-Trimethylbenzene            | 5                   | 4.2 J    | 3.9 J     | 2.8 J     | 3.1 J     | 2.8 J    | <        | <         | 5.2       | <         | <        | 2.0 J    | 2.0 J     | 1.2 J     | 1.5 J     | 1.1 J    |
| 1,2,4-Trimethylbenzene            | 5                   | 4.6 J    | 4.1 J     | 3.0 J     | 3.0 J     | 2.8 J    | 7.1 J    | <         | 7.4       | <         | <        | 1.5 J    | 1.5 J     | 0.84 J    | 1.0 J     | 0.84 J   |
| Naphthalene*                      | 10                  | 270      | 290       | 240       | 220       | 230      | 1,500    | 1,700     | 1,500     | 1,400     | 1,500    | 43       | 45        | 27        | 34        | 34       |
| Semi-Volatile Organic Compounds - | EPA Method 8270D (u | ıg/L)    |           |           |           |          |          |           |           |           |          |          |           |           |           |          |
| Acetophenone                      | NV                  | <        | <         | 0.570 J   | <         | <        | <        | <         | <         | <         | <        | <        | <         | 0.317 J   | <         | <        |
| Acenaphthylene                    | NV                  | 22.3     | 30.3      | 23.5      | 22.4      | 20.1     | 44.0     | 33.8      | 54.3      | 24.1      | 23.4 J   | 0.651    | 1.30      | 1.16      | 1.02 J    | 1.04     |
| Naphthalene*                      | 10                  | 96.2     | 141       | 91.9      | 96.7      | 108      | 962      | 970       | 742       | 715       | 876      | 9.38     | 16.8      | 17.2      | 15.8      | 13.2     |
| 2-Methylnaphthalene               | NV                  | 21.9     | 40.0      | 27.8      | 25.0      | 26.6     | 35.8     | 46.2      | 52.4      | 25.0      | 33.7     | 2.11     | 4.05      | 4.62      | 3.71      | 3.68     |
| Acenaphthene*                     | 20                  | 8.66     | 11.9      | 10.1      | 9.1       | 9.51     | 12.0     | 10.5      | 11.8      | 7.86 J    | 8.97 J   | 0.710    | 1.51      | 1.47      | 1.26 J    | 1.17     |
| Dibenzofuran                      | NV                  | 28.9     | 39.6      | 29.7      | 30.3      | 34.7     | 30.3     | 24.8      | 30.6      | 19.5      | 22.6 J   | 2.47     | 4.92      | 4.92      | 4.49      | 3.35     |
| Fluorene*                         | 50                  | 41.9     | 58.8      | 44.4      | 48.7      | 52.4     | 43.7     | 35.7      | 42.3      | 29.7      | 32.4     | 3.50     | 7.51      | 7.48      | 6.76      | 6.79     |
| Phenanthrene*                     | 50                  | 71.0     | 81.5      | 69.9      | 76.5      | 86.6     | 61.9     | 53.6      | 69.5      | 48.0      | 51.3     | 8.10     | 14.1      | 13.7      | 12.4      | 11.4     |
| Dibenzo (a,h)Anthracene           | NV                  | <        | <         | <         | <         | <        | <        | <         | <         | <         | <        | <        | <         | <         | <         | <        |
| Carbazole                         | NV                  | 19.6     | 24.1      | 19.7      | 21.8      | 19.6     | 60.0     | 55.4      | 61.3      | 49.4      | 46.1     | 2.88     | 4.80      | 6.02      | 4.59      | 3.88     |
| Anthracene*                       | 50                  | 7.74     | 11.9      | 12.2      | 8.2       | 13.3     | 8.19     | 6.46      | 11.8      | 5.05 J    | <        | 1.44     | 2.52      | 2.74      | 1.91      | 2.35     |
| Fluoranthene*                     | 50                  | 9.44     | 10.6      | 12.3      | 9.1       | 12.3     | 8.97     | 8.33      | 10.8      | 7.98 J    | 8.28 J   | 3.18     | 5.42      | 4.61      | 3.88      | 4.63     |
| Biphenyl                          | 5                   | 5.85     | 7.86      | 6.48      | 6.03      | 6.49     | 7.45     | 6.09      | 7.84 J    | 4.78 J    | <        | 0.548    | 1.02      | 1.13      | 1.01 J    | 0.86     |
| Pyrene*                           | 50                  | 6.16     | 6.38      | 6.81      | 5.33      | 7.22     | 6.44     | 4.95      | 5.57 J    | 6.8 J     | <        | 2.39     | 3.57      | 2.93      | 2.83      | 4.56     |
| Butyl benzyl phthalate*           | 50                  | 0.104 J  | <         | <         | <         | <        | <        | <         | <         | <         | <        | <        | <         | <         | <         | <        |
| Benz [a] Anthracene*              | 0.002               | <        | 0.372 J   | 0.380 J   | <         | <        | 0.461 J  | 0.316 J   | <         | <         | <        | <        | 0.202 J   | <         | <         | 0.209 J  |
| Benzo [b] Fluoranthene*           | 0.002               | <        | <         | 0.079 J   | <         | <        | 0.105 J  | 0.105 J   | <         | 1.32 J    | <        | <        | <         | <         | <         | <        |
| Benzo [a] Pyrene                  | ND                  | <        | <         | <         | <         | <        | 0.072 J  | 0.079 J   | <         | <         | <        | <        | <         | <         | <         | <        |
| Chrysene*                         | 0.002               | 0.216 J  | 0.187 J   | 0.214 J   | <         | <        | 0.256 J  | 0.180 J   | <         | <         | <        | <        | 0.146 J   | <         | <         | 0.168 J  |

#### Notes:

- 1. Compounds detected in one or more sample for the past five sampling events are presented on this table. Refer to Appendix B for list of all compounds included in analysis.
- 2. Analytical testing completed by Alpha Analytical in Westborough, MA.
- 3. NYSDEC Groundwater Class GA criteria obtained from Division of Water Technical and Operational Guidance Series (TOGS 1.1.1), dated October 1993, revised June 1998, errata January 1999 and amended April 2000 (Class GA).
- ug/L = part per billion (ppb).
- 5. < indicates compound was not detected above method detection limits.
- "J" qualifier = Analyte detected below quantitation limits.
- 7. "B" qualifier = indicates compound was detected in the method blank sample.
- 8. "D" qualifier = indicates the compound concentration was obtained from a secondary dilution analysis.
- 7. Value shown in **bold** indicates exceedance of respective Class GA Criteria or guidance value.
- 8. NV = no value, NT = not tested, ND = Not detected above method detection limit
- 9. \* = value shown is a guidance value rather than a groundwater standard.
- 10. The equipment used to collect water quality data was calibrated prior to and during use in accordance with the manufacturer's recommendations.

#### Table 3


#### September 2023 Semi-Annual Groundwater Analytical Data Summary Steel Winds I Facility Lackawanna, New York


| Nation   Criteria   Result   |                                    | NYSDEC              |          |           | WT1-04    |           |          |          |           | WT1-05    |           |          |          |           | BCP-ORC-1 |           |          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|---------------------|----------|-----------|-----------|-----------|----------|----------|-----------|-----------|-----------|----------|----------|-----------|-----------|-----------|----------|
| Water Quality Field Measurements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Parameter                          | Class GA            | 9/2/2021 | 3/30/2022 | 9/13/2022 | 4/26/2022 | 9/5/2023 | 9/2/2021 | 3/30/2022 | 9/13/2022 | 4/26/2022 | 9/5/2023 | 9/2/2021 | 3/30/2022 | 9/13/2022 | 4/26/2022 | 9/5/2023 |
| Hf (units)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                    | Criteria            | Result   | Result    | Result    | Result    | Result   | Result   | Result    | Result    | Result    | Result   | Result   | Result    | Result    | Result    | Result   |
| Femperature (**\text{C})                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Water Quality Field Measurements   |                     |          |           |           |           |          |          |           |           |           |          |          |           |           |           |          |
| Specific Conductance (mSCm)   NV   1.326   1.294   1.326   1.302   1.18   1.200   1.182   1.292   1.195   1.254   0.987   1.00   1.050   0.961   1.77   1.76   1.77   1.87   1.77   1.87   1.47   1.27   1.17   1.87   1.17   1.87   1.17   1.87   1.17   1.87   1.17   1.87   1.17   1.87   1.17   1.87   1.17   1.87   1.17   1.87   1.17   1.87   1.17   1.87   1.17   1.87   1.17   1.87   1.18   1.292   1.195   1.294   0.987   1.00   1.050   0.961   1.77   1.87   1.18   1.20   0.961   1.18   1.18   0.98   0.98   0.99   68.32   0.21   0.11   1.56   0.66   0.961   1.18   0.98   0.98   0.99   68.32   0.21   0.11   1.55   0.66   0.961   0.961   1.18   0.98   0.98   0.99   0.98   0.99   0.98   0.99   0.98   0.99   0.98   0.99   0.98   0.99   0.98   0.99   0.98   0.99   0.98   0.99   0.98   0.99   0.98   0.99   0.98   0.99   0.98   0.99   0.98   0.99   0.98   0.99   0.98   0.99   0.98   0.99   0.98   0.99   0.98   0.99   0.98   0.99   0.98   0.99   0.98   0.99   0.98   0.99   0.98   0.99   0.98   0.99   0.98   0.99   0.98   0.99   0.98   0.99   0.98   0.99   0.98   0.99   0.98   0.99   0.98   0.99   0.98   0.99   0.98   0.99   0.98   0.99   0.98   0.99   0.98   0.99   0.98   0.99   0.98   0.99   0.98   0.99   0.98   0.99   0.98   0.99   0.98   0.99   0.98   0.99   0.98   0.99   0.98   0.99   0.98   0.99   0.98   0.99   0.98   0.99   0.98   0.99   0.98   0.99   0.98   0.99   0.98   0.99   0.98   0.99   0.98   0.99   0.98   0.99   0.98   0.99   0.98   0.99   0.98   0.99   0.98   0.99   0.98   0.99   0.98   0.99   0.98   0.99   0.98   0.99   0.98   0.99   0.98   0.99   0.98   0.99   0.98   0.99   0.98   0.99   0.98   0.99   0.98   0.99   0.98   0.99   0.98   0.99   0.98   0.99   0.98   0.99   0.98   0.99   0.98   0.99   0.98   0.99   0.98   0.99   0.98   0.99   0.98   0.99   0.98   0.99   0.98   0.99   0.98   0.99   0.98   0.99   0.98   0.99   0.98   0.99   0.98   0.99   0.98   0.99   0.98   0.99   0.98   0.99   0.98   0.99   0.98   0.99   0.98   0.99   0.98   0.99   0.98   0.99   0.98   0.99   0.98   0.99   0.98   0.99   0.98 | pH (units)                         | 6.5 - 8.5           | 11.51    | 13.81     | 11.75     | 12.05     | 11.97    | 11.46    | 12.99     | 11.61     | 11.83     | 11.78    | 11.21    | 13.47     | 11.6      | 11.64     | 11.74    |
| Turbidity (NTU)   5   3.76   0.41   3.8   4.34   44.32   1.74   2.48   0.98   2.09   68.32   2.17   0.11   1.56   2.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Temperature (°C)                   | NV                  | 11.1     | 8.4       | 13.3      | 10.0      | 15.1     | 11.2     | 9.2       | 13.0      | 9.6       | 12.9     | 10.0     | 9.0       | 11.5      | 10.8      | 12.7     |
| Dissolved Oxygen (mg/L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Specific Conductance (mS/cm)       | NV                  | 1.326    | 1.294     | 1.326     | 1.302     | 1.218    | 1.200    | 1.182     | 1.292     | 1.195     | 1.254    | 0.957    | 1.00      | 1.060     | 0.961     | 0.995    |
| Oxygen Reduction Potential (mV)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Turbidity (NTU)                    | 5                   | 3.76     | 0.41      | 3.8       | 4.34      | 44.32    | 1.74     | 2.48      | 0.98      | 2.09      | 68.32    | 2.17     | 0.11      | 1.56      | 2.66      | 5.12     |
| Volatile Organic Compounds - EPA Method 8260C (ug/L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Dissolved Oxygen (mg/L)            | NV                  | 1.0      | 1.5       | 5.5       | 5.4       | 0.3      | 1.2      | 10.3      | 5.7       | 5.3       | 1.6      | 4.7      | 36.2      | 11.0      | 20.6      | 2.2      |
| Benzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Oxygen Reduction Potential (mV)    | NV                  | -172.4   | -327.3    | -118.5    | -271.4    | -280.2   | -157.2   | -261.8    | -68.7     | -282.8    | -241.6   | -188.1   | -181.1    | 20.7      | -203.6    | -210.4   |
| Toluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Volatile Organic Compounds - EPA ! | Method 8260C (ug/L) |          |           |           |           |          |          |           |           |           |          |          |           |           |           |          |
| Ethylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Benzene                            | 1                   | 14       | 9.6       | 14        | 9.8       | 13       | 9.3      | 13        | 9.7       | 13        | 16       | 27       | 11        | 25        | 21        | 28       |
| mp-Xylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Toluene                            | 5                   | 2.3 J    | 1.9 J     | 2.1 J     | 1.7 J     | 2.4 J    | 2.6 J    | 3.2 J     | 2.3 J     | 2.7       | 3.6      | 4.0 J    | 1.4 J     | 3.2 J     | 2.6 J     | 3.5 J    |
| C-Xylen   S   3.2   3.3   2.6   2.5   2.4   5.1   6.3   4.0   4.8   5.6   6.1   2.2   4.8   4.7   5.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Ethylbenzene                       | 5                   | <        | <         | <         | <         | <        | <        | <         | <         | <         | 0.74 J   | <        | <         | <         | <         | <        |
| Xylene (Total)   5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | m,p-Xylene                         | 5                   | 4.1      | 4.4       | 3.5       | 3.5       | 3.6      | 6.7      | 8.8       | 5.4       | 6.6       | 8.2      | 3.9 J    | 1.4 J     | 3.4 J     | 2.9 J     | <        |
| 1.35-Trimethylbenzene   5   2.2 J   2.3 J   1.7 J   1.6 J   1.4 J   3.1 J   3.8 J   2.7 J   2.8   3.0   <   1.1 J   <   1.5 J       1.24-Trimethylbenzene   5   1.7 J   1.8 J   1.4 J   1.2 J   1.1 J   3.5 J   4.3 J   2.7 J   2.8   3.2   3.0 J   1.2 J   <   1.8 J       Naphthalene*   10   54   66   66   45   57   200   270   220   180   260   460   190   460   320     Semi-Volatile Organic Compounds - EPA Method 8270D (ug/L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | o-Xylene                           | 5                   | 3.2      | 3.3       | 2.6       | 2.5       | 2.4 J    | 5.1      | 6.3       | 4.0 J     | 4.8       | 5.6      | 6.1 J    | 2.2 J     | 4.8 J     | 4.7 J     | 5.3 J    |
| 1.24-Trimethylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Xylene (Total)                     | 5                   | 7.3      | 7.7       | 6.1       | 6         | 6.0      | 11.8     | 15        | 9.4 J     | 11.4      | 13.8     | 10.0 J   | 3.6 J     | 8.2 J     | 7.6       | 5.3 J    |
| Naphthalene*   10   54   66   66   45   57   200   270   220   180   260   460   190   460   320                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1,3,5-Trimethylbenzene             | 5                   | 2.2 J    | 2.3 J     | 1.7 J     | 1.6 J     | 1.4 J    | 3.1 J    | 3.8 J     | 2.7 J     | 2.8       | 3.0      | <        | 1.1 J     | <         | 1.5 J     | <        |
| Semi-Volatile Organic Compounds - EPA Method 8270D (ug/L)   Acetophenone   NV   <   <   0.413 J   <   <   <   <   <   <   <   <   <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1,2,4-Trimethylbenzene             | 5                   | 1.7 J    | 1.8 J     | 1.4 J     | 1.2 J     | 1.1 J    | 3.5 J    | 4.3 J     | 2.7 J     | 2.8       | 3.2      | 3.0 J    | 1.2 J     | <         | 1.8 J     | <        |
| Acetophenone         NV           0.413 J <td>Naphthalene*</td> <td>10</td> <td>54</td> <td>66</td> <td>66</td> <td>45</td> <td>57</td> <td>200</td> <td>270</td> <td>220</td> <td>180</td> <td>260</td> <td>460</td> <td>190</td> <td>460</td> <td>320</td> <td>430</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Naphthalene*                       | 10                  | 54       | 66        | 66        | 45        | 57       | 200      | 270       | 220       | 180       | 260      | 460      | 190       | 460       | 320       | 430      |
| Acenaphthylene   NV   2.66   1.95   3.24   2.24   2.64   19.8   28.4   22.1   16.0   26.0   19.3   7.61   17.0   14.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Semi-Volatile Organic Compounds -  | EPA Method 8270D (u | ıg/L)    |           |           |           |          |          |           |           |           |          |          |           |           |           |          |
| Naphthalene*   10   31.1   21.8   32.6   25.4   28.3   111   141   106   79   138   246   63.3   198   136                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Acetophenone                       |                     | <        | <         | 0.413 J   |           | <        | <        | <         | 0.561 J   | <         | <        | <        | <         | 0.492 J   | <         | <        |
| 2-Methylnaphthalene         NV         6.14         6.77         8.39         5.38         5.88         18.2         30.8         27.0         17.0         29.3         22.7         6.86         23.2         12.9           Acenaphthene*         20         3.24         2.39         3.42         2.39         2.73         6.44         10.2         8.69         6.0         8.92         7.06         2.21         5.68         3.50           Dibenzofuran         NV         9.20         6.80         10.1         7.6         8.61         19.7         32.0         24.5         18.5         31.5         18.2         4.24         13.8         8.03           Fluorene*         50         14.3         10.4         15.2         12.2         14.0         27.0         46.7         34.7         28.5         42.3         29.0         7.45         21.4         13.8           Phenanthrene*         50         42.8         25.3         36.3         33.2         39.4         20.6         33.8         30.7         26.7         43.4         44.5         8.84         30.0         18.5           Carbazole         NV         6.64         4.44         8.48         6.15 <td< td=""><td>Acenaphthylene</td><td>NV</td><td>2.66</td><td>1.95</td><td></td><td></td><td>2.64</td><td>19.8</td><td>28.4</td><td>22.1</td><td>16.0</td><td>26.0</td><td>19.3</td><td>7.61</td><td>17.0</td><td>14.0</td><td>16.1</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Acenaphthylene                     | NV                  | 2.66     | 1.95      |           |           | 2.64     | 19.8     | 28.4      | 22.1      | 16.0      | 26.0     | 19.3     | 7.61      | 17.0      | 14.0      | 16.1     |
| Acenaphthene*         20         3.24         2.39         3.42         2.39         2.73         6.44         10.2         8.69         6.0         8.92         7.06         2.21         5.68         3.50           Dibenzofuran         NV         9.20         6.80         10.1         7.6         8.61         19.7         32.0         24.5         18.5         31.5         118.2         4.24         13.8         8.03           Fluorene*         50         14.3         10.4         15.2         12.2         14.0         27.0         46.7         34.7         28.5         42.3         29.0         7.45         21.4         13.8         Phenanthrene*           50         42.8         25.3         36.3         33.2         39.4         20.6         33.8         30.7         26.7         43.4         44.5         8.84         30.0         18.5           Carbazole         NV         6.64         4.44         8.48         6.15         7.05         15.9         18.8         19.8         13.0         20.2         37.6         9.37         26.2         20.7           Anthracene*         50         5.10         4.04         7.70         4.65         5.85 </td <td>Naphthalene*</td> <td></td> <td>31.1</td> <td>21.8</td> <td>32.6</td> <td></td> <td>28.3</td> <td>111</td> <td>141</td> <td>106</td> <td>79</td> <td>138</td> <td>246</td> <td>63.3</td> <td>198</td> <td>136</td> <td>216</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Naphthalene*                       |                     | 31.1     | 21.8      | 32.6      |           | 28.3     | 111      | 141       | 106       | 79        | 138      | 246      | 63.3      | 198       | 136       | 216      |
| Dibenzofuran         NV         9.20         6.80         10.1         7.6         8.61         19.7         32.0         24.5         18.5         31.5         18.2         4.24         13.8         8.03           Fluorene*         50         14.3         10.4         15.2         12.2         14.0         27.0         46.7         34.7         28.5         42.3         29.0         7.45         21.4         13.8           Phenanthrene*         50         42.8         25.3         36.3         33.2         39.4         20.6         33.8         30.7         26.7         43.4         44.5         8.84         30.0         18.5           Carbazole         NV         6.64         4.44         8.48         6.15         7.05         15.9         18.8         19.8         13.0         20.2         37.6         9.37         26.2         20.7           Anthracene*         50         5.10         4.04         7.70         4.65         5.85         2.44         4.46         4.93         2.89         4.52         3.59         1.56         3.76         1.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2-Methylnaphthalene                | NV                  | 6.14     |           | 8.39      |           | 5.88     | 18.2     | 30.8      | 27.0      | 17.0      | 29.3     | 22.7     | 6.86      | 23.2      | 12.9      | 22.7     |
| Fluorene* 50 14.3 10.4 15.2 12.2 14.0 27.0 46.7 34.7 28.5 42.3 29.0 7.45 21.4 13.8 Phenanthrene* 50 42.8 25.3 36.3 33.2 39.4 20.6 33.8 30.7 26.7 43.4 44.5 8.84 30.0 18.5 Carbazole NV 6.64 4.44 8.48 6.15 7.05 15.9 18.8 19.8 13.0 20.2 37.6 9.37 26.2 20.7 Anthracene* 50 5.10 4.04 7.70 4.65 5.85 2.44 4.46 4.93 2.89 4.52 3.59 1.56 3.76 1.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Acenaphthene*                      |                     |          |           | 3.42      |           | 2.73     | 6.44     |           | 8.69      | 6.0       | 8.92     | 7.06     | 2.21      | 5.68      | 3.50      | 6.20     |
| Phenanthrene*         50         42.8         25.3         36.3         33.2         39.4         20.6         33.8         30.7         26.7         43.4         44.5         8.84         30.0         18.5           Carbazole         NV         6.64         4.44         8.48         6.15         7.05         15.9         18.8         19.8         13.0         20.2         37.6         9.37         26.2         20.7           Anthracene*         50         5.10         4.04         7.70         4.65         5.85         2.44         4.46         4.93         2.89         4.52         3.59         1.56         3.76         1.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Dibenzofuran                       | NV                  | 9.20     | 6.80      |           |           | 8.61     |          | 32.0      | 24.5      |           | 31.5     | 18.2     | 4.24      | 13.8      | 8.03      | 13.4     |
| Carbazole NV 6.64 4.44 8.48 6.15 7.05 15.9 18.8 19.8 13.0 20.2 37.6 9.37 26.2 20.7 Anthracene* 50 5.10 4.04 7.70 4.65 5.85 2.44 4.46 4.93 2.89 4.52 3.59 1.56 3.76 1.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Fluorene*                          |                     | 14.3     |           |           |           | 14.0     |          | 46.7      |           | 28.5      | 42.3     | 29.0     | 7.45      | 21.4      | 13.8      | 22.5     |
| Anthracene* 50 5.10 4.04 7.70 4.65 5.85 2.44 4.46 4.93 2.89 4.52 3.59 1.56 3.76 1.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Phenanthrene*                      |                     | 42.8     | 25.3      | 36.3      | 33.2      | 39.4     | 20.6     | 33.8      | 30.7      | 26.7      | 43.4     | 44.5     | 8.84      | 30.0      | 18.5      | 29.5     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Carbazole                          | NV                  |          |           |           |           | 7.05     | 15.9     | 18.8      | 19.8      |           | 20.2     | 37.6     | 9.37      | 26.2      |           | 31.3     |
| Fig. 101 202 270 270 270 270 270 270 270 270 270                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                    |                     |          |           |           |           |          |          |           |           |           |          |          |           |           |           | 2.63     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Fluoranthene*                      | 50                  | 9.41     | 5.78      | 10.9      | 7.6       | 10.1     | 2.03     | 2.78      | 3.38      | 2.14      | 3.70     | 5.95     | 2.44      | 6.32      | 3.67      | 5.66     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                    |                     |          |           |           |           |          |          |           |           |           |          |          |           |           |           | 3.24     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                    |                     |          | 3.51      | 6.39      | 4.72      | 6.54     | 1.90     | 2.64      | 2.59      | 1.96      | 2.87     | 4.90     | 1.84      | 4.06      | 2.67      | 4.25     |
| Butyl benzyl phthalate* 50 0.083 J < < < < < < < < < < < < < < < < < <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Butyl benzyl phthalate*            |                     |          |           |           | <         |          | <        | <         | <         | <         | <        |          | <         |           | <         | <        |
| Benz [a] Anthracene* 0.002 0.402 J 0.226 J 0.342 J < 0.367 J < < < < < < 0.295 J < 0.214 J <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                    |                     |          |           |           | <         | 0.367 J  | <        |           | <         | <         | <        | 0.295 J  | <         | 0.214 J   | <         | <        |
| Benzo [b] Fluoranthene* 0.002 0.136 J 0.073 J 0.093 J < < < 0.076 J < < < < < < < <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                    |                     |          | 0.073 J   | 0.093 J   | <         | <        | <        | 0.076 J   | <         | <         | <        | <        | <         | <         | <         | <        |
| Benzo [a] Pyrene ND 0.091 J < < < < < < < < < < < < < < < < <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                     |          | `         |           | <         |          | <        | <         | <         | <         | <        |          |           |           | <         | <        |
| Chrysene* 0.002 0.331 J 0.166 J 0.250 J < 0.339 J < < < < < 0.225 J < 0.145 J <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Chrysene*                          | 0.002               | 0.331 J  | 0.166 J   | 0.250 J   | <         | 0.339 J  | <        | <         | <         | <         | <        | 0.225 J  | <         | 0.145 J   | <         | <        |

- 1. Compounds detected in one or more sample for the past five sampling events are presented on this table. Refer to Appendix B for list of all compounds included in analysis.
- 2. Analytical testing completed by Alpha Analytical in Westborough, MA.
  3. NYSDEC Groundwater Class GA criteria obtained from Division of Water Technical and Operational Guidance Series (TOGS 1.1.1), dated October 1993, revised June 1998, errata January 1999 and amended April 2000 (Class GA).
- ug/L = part per billion (ppb).
- 5. < indicates compound was not detected above method detection limits.
- 6. "J" qualifier = Analyte detected below quantitation limits.
- 7. "B" qualifier = indicates compound was detected in the method blank sample.
- 8. "D" qualifier = indicates the compound concentration was obtained from a secondary dilution analysis.
- 7. Value shown in **bold** indicates exceedance of respective Class GA Criteria or guidance value.
- 8. NV = no value, NT = not tested, ND = Not detected above method detection limit
- 9. \* = value shown is a guidance value rather than a groundwater standard.
- 10. The equipment used to collect water quality data was calibrated prior to and during use in accordance with the manufacturer's recommendations.



#### **FIGURES**







**APPENDIX A** 

**LIMITATIONS** 

# GZN

#### GEOHYDROLOGICAL LIMITATIONS

#### Use of Report

1. GZA GeoEnvironmental, Inc. (GZA) prepared this report on behalf of, and for the exclusive use of our Client for the stated purpose(s) and location(s) identified in the Proposal for Services and/or Report. Use of this report, in whole or in part, at other locations, or for other purposes, may lead to inappropriate conclusions; and we do not accept any responsibility for the consequences of such use(s). Further, reliance by any party not expressly identified in the agreement, for any use, without our prior written permission, shall be at that party's sole risk, and without any liability to GZA.

#### Standard of Care

- 2. GZA's findings and conclusions are based on the work conducted as part of the Scope of Services set forth in the Proposal for Services and/or Report and reflect our professional judgment. These findings and conclusions must be considered not as scientific or engineering certainties, but rather as our professional opinions concerning the limited data gathered during the course of our work. Conditions other than described in this report may be found at the subject location(s).
- 3. GZA's services were performed using the degree of skill and care ordinarily exercised by qualified professionals performing the same type of services, at the same time, under similar conditions, at the same or a similar property. No warranty, expressed or implied, is made. Specifically, GZA does not and cannot represent that the Site contains no hazardous material, oil, or other latent condition beyond that observed by GZA during its study. Additionally, GZA makes no warranty that any response action or recommended action will achieve all of its objectives or that the findings of this study will be upheld by a local, state or federal agency.
- 4. In conducting our work, GZA relied upon certain information made available by public agencies, Client and/or others. GZA did not attempt to independently verify the accuracy or completeness of that information. Inconsistencies in this information which we have noted, if any, are discussed in the Report.

#### **Subsurface Conditions**

5. The generalized soil profile(s) provided in our Report are based on widely-spaced subsurface explorations and are intended only to convey trends in subsurface conditions. The boundaries between strata are approximate and idealized, and were based on our assessment of subsurface conditions. The composition of strata, and the transitions between strata, may be more variable and more complex than indicated. For more specific information on soil conditions at a specific location refer to the exploration logs. The nature and extent of variations between these explorations may not become evident until further exploration or construction. If variations or other latent conditions then become evident, it will be necessary to reevaluate the conclusions and recommendations of this report.

November 2023 PAGE 1

6. Water level readings have been made, as described in this Report, in and monitoring wells at the specified times and under the stated conditions. These data have been reviewed and interpretations have been made in this report. Fluctuations in the level of the groundwater however occur due to temporal or spatial variations in areal recharge rates, soil heterogeneities, the presence of subsurface utilities, and/or natural or artificially induced perturbations. The observed water table may be other than indicated in the Report.

#### Compliance with Codes and Regulations

7. We used reasonable care in identifying and interpreting applicable codes and regulations necessary to execute our scope of work. These codes and regulations are subject to various, and possibly contradictory, interpretations. Interpretations and compliance with codes and regulations by other parties is beyond our control.

#### Screening and Analytical Testing

- 8. GZA collected environmental samples at the locations identified in the Report. These samples were analyzed for the specific parameters identified in the report. Additional constituents, for which analyses were not conducted, may be present in soil, groundwater, surface water, sediment and/or air. Future Site activities and uses may result in a requirement for additional testing.
- 9. Our interpretation of field screening and laboratory data is presented in the Report. Unless otherwise noted, we relied upon the laboratory's QA/QC program to validate these data.
- 10. Variations in the types and concentrations of contaminants observed at a given location or time may occur due to release mechanisms, disposal practices, changes in flow paths, and/or the influence of various physical, chemical, biological or radiological processes. Subsequently observed concentrations may be other than indicated in the Report.

#### <u>Interpretation of Data</u>

11. Our opinions are based on available information as described in the Report, and on our professional judgment. Additional observations made over time, and/or space, may not support the opinions provided in the Report.

#### Additional Information

12. In the event that the Client or others authorized to use this report obtain additional information on environmental or hazardous waste issues at the Site not contained in this report, such information shall be brought to GZA's attention forthwith. GZA will evaluate such information and, on the basis of this evaluation, may modify the conclusions stated in this report.

November 2023 PAGE 2

#### Additional Services

13. GZA recommends that we be retained to provide services during any future investigations, design, implementation activities, construction, and/or property development/ redevelopment at the Site. This will allow us the opportunity to: i) observe conditions and compliance with our design concepts and opinions; ii) allow for changes in the event that conditions are other than anticipated; iii) provide modifications to our design; and iv) assess the consequences of changes in technologies and/or regulations.

November 2023 PAGE 3



# APPENDIX B ANALYTICAL TEST RESULTS



#### ANALYTICAL REPORT

Lab Number: L2351364

Client: GZA GeoEnvironmental of New York

300 Pearl Street

STEEL WINDS

Suite 700

Buffalo, NY 14202

ATTN: Dan Troy

Phone: (716) 844-7050

Project Number: 03.0033579.16

Report Date: 10/13/23

Project Name:

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0826), IL (200077), IN (C-MA-03), KY (KY98045), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), OH (CL108), OR (MA-1316), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #525-23-122-91930).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com



**Project Name:** STEEL WINDS **Project Number:** 03.0033579.16

**Lab Number:** L2351364 **Report Date:** 10/13/23

| Alpha<br>Sample ID | Client ID        | Matrix | Sample<br>Location | Collection<br>Date/Time | Receive Date |
|--------------------|------------------|--------|--------------------|-------------------------|--------------|
| L2351364-01        | WT1-05-090523    | WATER  | LACKAWANNA, NY     | 09/05/23 07:50          | 09/05/23     |
| L2351364-02        | MWN-01-090523    | WATER  | LACKAWANNA, NY     | 09/05/23 08:45          | 09/05/23     |
| L2351364-03        | WT1-04-090523    | WATER  | LACKAWANNA, NY     | 09/05/23 09:35          | 09/05/23     |
| L2351364-04        | BCP-ORC-1-090523 | WATER  | LACKAWANNA, NY     | 09/05/23 10:25          | 09/05/23     |
| L2351364-05        | WT1-02-090523    | WATER  | LACKAWANNA, NY     | 09/05/23 11:25          | 09/05/23     |
| L2351364-06        | MWN-02-090523    | WATER  | LACKAWANNA, NY     | 09/05/23 13:05          | 09/05/23     |
| L2351364-07        | MWN-01B-090523   | WATER  | LACKAWANNA, NY     | 09/05/23 14:05          | 09/05/23     |
| L2351364-08        | TRIP BLANK-1     | WATER  | LACKAWANNA, NY     | 09/05/23 00:00          | 09/05/23     |



Serial No:10132317:47

Project Name:STEEL WINDSLab Number:L2351364Project Number:03.0033579.16Report Date:10/13/23

#### **Case Narrative**

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

| Please contact Project Management at 800-624-9220 with any questions. |  |
|-----------------------------------------------------------------------|--|
|                                                                       |  |



Serial\_No:10132317:47

Project Name:STEEL WINDSLab Number:L2351364Project Number:03.0033579.16Report Date:10/13/23

#### **Case Narrative (continued)**

Report Submission

October 13, 2023: This final report includes the results of all requested analyses.

September 18, 2023: This is a preliminary report.

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Semivolatile Organics

L2351364-01D, -02D, -04D, and -07D: The sample has elevated detection limits due to the dilution required by the sample matrix.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Jufani Morrissey-Tiffani Morrissey

Authorized Signature:

Title: Technical Director/Representative

Date: 10/13/23

## **ORGANICS**



### **VOLATILES**



Project Name: STEEL WINDS Lab Number: L2351364

**Project Number:** 03.0033579.16 **Report Date:** 10/13/23

**SAMPLE RESULTS** 

Lab ID: L2351364-01 Date Collected: 09/05/23 07:50

Client ID: WT1-05-090523 Date Received: 09/05/23 Sample Location: LACKAWANNA, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 1,8260D
Analytical Date: 09/13/23 15:54

| Parameter                             | Result   | Qualifier | Units | RL   | MDL  | Dilution Factor |
|---------------------------------------|----------|-----------|-------|------|------|-----------------|
| Volatile Organics by GC/MS - Westbook | ough Lab |           |       |      |      |                 |
| Benzene                               | 16       |           | ug/l  | 0.50 | 0.16 | 1               |
| Toluene                               | 3.6      |           | ug/l  | 2.5  | 0.70 | 1               |
| Ethylbenzene                          | 0.74     | J         | ug/l  | 2.5  | 0.70 | 1               |
| Methyl tert butyl ether               | ND       |           | ug/l  | 2.5  | 0.70 | 1               |
| p/m-Xylene                            | 8.2      |           | ug/l  | 2.5  | 0.70 | 1               |
| o-Xylene                              | 5.6      |           | ug/l  | 2.5  | 0.70 | 1               |
| n-Butylbenzene                        | ND       |           | ug/l  | 2.5  | 0.70 | 1               |
| sec-Butylbenzene                      | ND       |           | ug/l  | 2.5  | 0.70 | 1               |
| tert-Butylbenzene                     | ND       |           | ug/l  | 2.5  | 0.70 | 1               |
| Isopropylbenzene                      | ND       |           | ug/l  | 2.5  | 0.70 | 1               |
| p-Isopropyltoluene                    | ND       |           | ug/l  | 2.5  | 0.70 | 1               |
| Naphthalene                           | 260      | E         | ug/l  | 2.5  | 0.70 | 1               |
| n-Propylbenzene                       | ND       |           | ug/l  | 2.5  | 0.70 | 1               |
| 1,3,5-Trimethylbenzene                | 3.0      |           | ug/l  | 2.5  | 0.70 | 1               |
| 1,2,4-Trimethylbenzene                | 3.2      |           | ug/l  | 2.5  | 0.70 | 1               |

| Surrogate             | % Recovery | Acceptance<br>Qualifier Criteria |  |
|-----------------------|------------|----------------------------------|--|
| 1,2-Dichloroethane-d4 | 96         | 70-130                           |  |
| Toluene-d8            | 102        | 70-130                           |  |
| 4-Bromofluorobenzene  | 81         | 70-130                           |  |
| Dibromofluoromethane  | 114        | 70-130                           |  |

Project Name: STEEL WINDS Lab Number: L2351364

**Project Number:** 03.0033579.16 **Report Date:** 10/13/23

**SAMPLE RESULTS** 

Lab ID: L2351364-01 D Date Collected: 09/05/23 07:50

Client ID: WT1-05-090523 Date Received: 09/05/23 Sample Location: LACKAWANNA, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 1,8260D
Analytical Date: 09/14/23 11:14

Analyst: PID

| Parameter                                  | Result | Qualifier | Units | RL | MDL | Dilution Factor |
|--------------------------------------------|--------|-----------|-------|----|-----|-----------------|
| Volatile Organics by GC/MS - Westborough L | .ab    |           |       |    |     |                 |
| Naphthalene                                | 260    |           | ug/l  | 12 | 3.5 | 5               |

| Surrogate             | % Recovery | Qualifier | Acceptance<br>Criteria |  |
|-----------------------|------------|-----------|------------------------|--|
| 1,2-Dichloroethane-d4 | 115        |           | 70-130                 |  |
| Toluene-d8            | 102        |           | 70-130                 |  |
| 4-Bromofluorobenzene  | 96         |           | 70-130                 |  |
| Dibromofluoromethane  | 111        |           | 70-130                 |  |



Project Name: STEEL WINDS Lab Number: L2351364

**Project Number:** 03.0033579.16 **Report Date:** 10/13/23

**SAMPLE RESULTS** 

Lab ID: L2351364-02 D Date Collected: 09/05/23 08:45

Client ID: MWN-01-090523 Date Received: 09/05/23 Sample Location: LACKAWANNA, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 1,8260D
Analytical Date: 09/13/23 16:19

| Parameter                             | Result   | Qualifier | Units | RL  | MDL  | Dilution Factor |
|---------------------------------------|----------|-----------|-------|-----|------|-----------------|
| Volatile Organics by GC/MS - Westbord | ough Lab |           |       |     |      |                 |
| Benzene                               | 15       |           | ug/l  | 1.0 | 0.32 | 2               |
| Toluene                               | 3.2      | J         | ug/l  | 5.0 | 1.4  | 2               |
| Ethylbenzene                          | ND       |           | ug/l  | 5.0 | 1.4  | 2               |
| Methyl tert butyl ether               | ND       |           | ug/l  | 5.0 | 1.4  | 2               |
| p/m-Xylene                            | 6.4      |           | ug/l  | 5.0 | 1.4  | 2               |
| o-Xylene                              | 4.5      | J         | ug/l  | 5.0 | 1.4  | 2               |
| n-Butylbenzene                        | ND       |           | ug/l  | 5.0 | 1.4  | 2               |
| sec-Butylbenzene                      | ND       |           | ug/l  | 5.0 | 1.4  | 2               |
| tert-Butylbenzene                     | ND       |           | ug/l  | 5.0 | 1.4  | 2               |
| Isopropylbenzene                      | ND       |           | ug/l  | 5.0 | 1.4  | 2               |
| p-Isopropyltoluene                    | ND       |           | ug/l  | 5.0 | 1.4  | 2               |
| Naphthalene                           | 230      |           | ug/l  | 5.0 | 1.4  | 2               |
| n-Propylbenzene                       | ND       |           | ug/l  | 5.0 | 1.4  | 2               |
| 1,3,5-Trimethylbenzene                | 2.8      | J         | ug/l  | 5.0 | 1.4  | 2               |
| 1,2,4-Trimethylbenzene                | 2.8      | J         | ug/l  | 5.0 | 1.4  | 2               |

| Surrogate             | % Recovery | Acceptance<br>Qualifier Criteria |  |
|-----------------------|------------|----------------------------------|--|
| 1,2-Dichloroethane-d4 | 91         | 70-130                           |  |
| Toluene-d8            | 101        | 70-130                           |  |
| 4-Bromofluorobenzene  | 83         | 70-130                           |  |
| Dibromofluoromethane  | 110        | 70-130                           |  |



Project Name: STEEL WINDS Lab Number: L2351364

**Project Number:** 03.0033579.16 **Report Date:** 10/13/23

**SAMPLE RESULTS** 

Lab ID: L2351364-03 Date Collected: 09/05/23 09:35

Client ID: WT1-04-090523 Date Received: 09/05/23 Sample Location: LACKAWANNA, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 1,8260D
Analytical Date: 09/13/23 14:40

| Parameter                          | Result     | Qualifier | Units | RL   | MDL  | Dilution Factor |
|------------------------------------|------------|-----------|-------|------|------|-----------------|
| Volatile Organics by GC/MS - Westb | orough Lab |           |       |      |      |                 |
| Benzene                            | 13         |           | ug/l  | 0.50 | 0.16 | 1               |
| Toluene                            | 2.4        | J         | ug/l  | 2.5  | 0.70 | 1               |
| Ethylbenzene                       | ND         |           | ug/l  | 2.5  | 0.70 | 1               |
| Methyl tert butyl ether            | ND         |           | ug/l  | 2.5  | 0.70 | 1               |
| p/m-Xylene                         | 3.6        |           | ug/l  | 2.5  | 0.70 | 1               |
| o-Xylene                           | 2.4        | J         | ug/l  | 2.5  | 0.70 | 1               |
| n-Butylbenzene                     | ND         |           | ug/l  | 2.5  | 0.70 | 1               |
| sec-Butylbenzene                   | ND         |           | ug/l  | 2.5  | 0.70 | 1               |
| tert-Butylbenzene                  | ND         |           | ug/l  | 2.5  | 0.70 | 1               |
| Isopropylbenzene                   | ND         |           | ug/l  | 2.5  | 0.70 | 1               |
| p-Isopropyltoluene                 | ND         |           | ug/l  | 2.5  | 0.70 | 1               |
| Naphthalene                        | 57         |           | ug/l  | 2.5  | 0.70 | 1               |
| n-Propylbenzene                    | ND         |           | ug/l  | 2.5  | 0.70 | 1               |
| 1,3,5-Trimethylbenzene             | 1.4        | J         | ug/l  | 2.5  | 0.70 | 1               |
| 1,2,4-Trimethylbenzene             | 1.1        | J         | ug/l  | 2.5  | 0.70 | 1               |

| Surrogate             | % Recovery | Acceptance<br>Qualifier Criteria |  |
|-----------------------|------------|----------------------------------|--|
| 1,2-Dichloroethane-d4 | 97         | 70-130                           |  |
| Toluene-d8            | 101        | 70-130                           |  |
| 4-Bromofluorobenzene  | 80         | 70-130                           |  |
| Dibromofluoromethane  | 116        | 70-130                           |  |

Project Name: STEEL WINDS Lab Number: L2351364

**Project Number:** 03.0033579.16 **Report Date:** 10/13/23

**SAMPLE RESULTS** 

Lab ID: L2351364-04 D Date Collected: 09/05/23 10:25

Client ID: BCP-ORC-1-090523 Date Received: 09/05/23 Sample Location: LACKAWANNA, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 1,8260D
Analytical Date: 09/13/23 16:43

| Parameter                       | Result        | Qualifier | Units | RL  | MDL  | Dilution Factor |
|---------------------------------|---------------|-----------|-------|-----|------|-----------------|
| Volatile Organics by GC/MS - We | stborough Lab |           |       |     |      |                 |
| Benzene                         | 28            |           | ug/l  | 2.5 | 0.80 | 5               |
| Toluene                         | 3.5           | J         | ug/l  | 12  | 3.5  | 5               |
| Ethylbenzene                    | ND            |           | ug/l  | 12  | 3.5  | 5               |
| Methyl tert butyl ether         | ND            |           | ug/l  | 12  | 3.5  | 5               |
| p/m-Xylene                      | ND            |           | ug/l  | 12  | 3.5  | 5               |
| o-Xylene                        | 5.3           | J         | ug/l  | 12  | 3.5  | 5               |
| n-Butylbenzene                  | ND            |           | ug/l  | 12  | 3.5  | 5               |
| sec-Butylbenzene                | ND            |           | ug/l  | 12  | 3.5  | 5               |
| tert-Butylbenzene               | ND            |           | ug/l  | 12  | 3.5  | 5               |
| Isopropylbenzene                | ND            |           | ug/l  | 12  | 3.5  | 5               |
| p-Isopropyltoluene              | ND            |           | ug/l  | 12  | 3.5  | 5               |
| Naphthalene                     | 430           |           | ug/l  | 12  | 3.5  | 5               |
| n-Propylbenzene                 | ND            |           | ug/l  | 12  | 3.5  | 5               |
| 1,3,5-Trimethylbenzene          | ND            |           | ug/l  | 12  | 3.5  | 5               |
| 1,2,4-Trimethylbenzene          | ND            |           | ug/l  | 12  | 3.5  | 5               |

| Surrogate             | % Recovery | Acceptance<br>Qualifier Criteria |  |
|-----------------------|------------|----------------------------------|--|
| 1,2-Dichloroethane-d4 | 94         | 70-130                           |  |
| Toluene-d8            | 99         | 70-130                           |  |
| 4-Bromofluorobenzene  | 84         | 70-130                           |  |
| Dibromofluoromethane  | 111        | 70-130                           |  |



Project Name: STEEL WINDS Lab Number: L2351364

**Project Number:** 03.0033579.16 **Report Date:** 10/13/23

**SAMPLE RESULTS** 

Lab ID: L2351364-05 Date Collected: 09/05/23 11:25

Client ID: WT1-02-090523 Date Received: 09/05/23 Sample Location: LACKAWANNA, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 1,8260D
Analytical Date: 09/13/23 15:05

| Parameter                          | Result     | Qualifier | Units | RL   | MDL  | Dilution Factor |
|------------------------------------|------------|-----------|-------|------|------|-----------------|
| Volatile Organics by GC/MS - Westb | orough Lab |           |       |      |      |                 |
| Benzene                            | 7.3        |           | ug/l  | 0.50 | 0.16 | 1               |
| Toluene                            | 1.5        | J         | ug/l  | 2.5  | 0.70 | 1               |
| Ethylbenzene                       | ND         |           | ug/l  | 2.5  | 0.70 | 1               |
| Methyl tert butyl ether            | ND         |           | ug/l  | 2.5  | 0.70 | 1               |
| p/m-Xylene                         | 2.4        | J         | ug/l  | 2.5  | 0.70 | 1               |
| o-Xylene                           | 1.6        | J         | ug/l  | 2.5  | 0.70 | 1               |
| n-Butylbenzene                     | ND         |           | ug/l  | 2.5  | 0.70 | 1               |
| sec-Butylbenzene                   | ND         |           | ug/l  | 2.5  | 0.70 | 1               |
| tert-Butylbenzene                  | ND         |           | ug/l  | 2.5  | 0.70 | 1               |
| Isopropylbenzene                   | ND         |           | ug/l  | 2.5  | 0.70 | 1               |
| p-Isopropyltoluene                 | ND         |           | ug/l  | 2.5  | 0.70 | 1               |
| Naphthalene                        | 34         |           | ug/l  | 2.5  | 0.70 | 1               |
| n-Propylbenzene                    | ND         |           | ug/l  | 2.5  | 0.70 | 1               |
| 1,3,5-Trimethylbenzene             | 1.1        | J         | ug/l  | 2.5  | 0.70 | 1               |
| 1,2,4-Trimethylbenzene             | 0.84       | J         | ug/l  | 2.5  | 0.70 | 1               |

| Surrogate             | % Recovery | Qualifier | Acceptance<br>Criteria |  |
|-----------------------|------------|-----------|------------------------|--|
| 1,2-Dichloroethane-d4 | 94         |           | 70-130                 |  |
| Toluene-d8            | 103        |           | 70-130                 |  |
| 4-Bromofluorobenzene  | 81         |           | 70-130                 |  |
| Dibromofluoromethane  | 113        |           | 70-130                 |  |

Project Name: STEEL WINDS Lab Number: L2351364

**Project Number:** 03.0033579.16 **Report Date:** 10/13/23

**SAMPLE RESULTS** 

Lab ID: L2351364-06 Date Collected: 09/05/23 13:05

Client ID: MWN-02-090523 Date Received: 09/05/23 Sample Location: LACKAWANNA, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 1,8260D
Analytical Date: 09/13/23 15:29

| Parameter                             | Result    | Qualifier | Units | RL   | MDL  | Dilution Factor |
|---------------------------------------|-----------|-----------|-------|------|------|-----------------|
| Volatile Organics by GC/MS - Westbook | rough Lab |           |       |      |      |                 |
| Benzene                               | 10        |           | ug/l  | 0.50 | 0.16 | 1               |
| Toluene                               | 2.3       | J         | ug/l  | 2.5  | 0.70 | 1               |
| Ethylbenzene                          | ND        |           | ug/l  | 2.5  | 0.70 | 1               |
| Methyl tert butyl ether               | ND        |           | ug/l  | 2.5  | 0.70 | 1               |
| p/m-Xylene                            | 3.4       |           | ug/l  | 2.5  | 0.70 | 1               |
| o-Xylene                              | 2.7       |           | ug/l  | 2.5  | 0.70 | 1               |
| n-Butylbenzene                        | ND        |           | ug/l  | 2.5  | 0.70 | 1               |
| sec-Butylbenzene                      | ND        |           | ug/l  | 2.5  | 0.70 | 1               |
| tert-Butylbenzene                     | ND        |           | ug/l  | 2.5  | 0.70 | 1               |
| Isopropylbenzene                      | ND        |           | ug/l  | 2.5  | 0.70 | 1               |
| p-Isopropyltoluene                    | ND        |           | ug/l  | 2.5  | 0.70 | 1               |
| Naphthalene                           | 43        |           | ug/l  | 2.5  | 0.70 | 1               |
| n-Propylbenzene                       | ND        |           | ug/l  | 2.5  | 0.70 | 1               |
| 1,3,5-Trimethylbenzene                | 1.3       | J         | ug/l  | 2.5  | 0.70 | 1               |
| 1,2,4-Trimethylbenzene                | 0.80      | J         | ug/l  | 2.5  | 0.70 | 1               |

| Surrogate             | % Recovery | Acceptanc<br>Qualifier Criteria | e |
|-----------------------|------------|---------------------------------|---|
| 1,2-Dichloroethane-d4 | 94         | 70-130                          |   |
| Toluene-d8            | 101        | 70-130                          |   |
| 4-Bromofluorobenzene  | 81         | 70-130                          |   |
| Dibromofluoromethane  | 116        | 70-130                          |   |

Project Name: STEEL WINDS Lab Number: L2351364

**Project Number:** 03.0033579.16 **Report Date:** 10/13/23

**SAMPLE RESULTS** 

Lab ID: L2351364-07 D Date Collected: 09/05/23 14:05

Client ID: MWN-01B-090523 Date Received: 09/05/23 Sample Location: LACKAWANNA, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 1,8260D
Analytical Date: 09/13/23 17:08

| Parameter                           | Result     | Qualifier | Units | RL  | MDL | Dilution Factor |
|-------------------------------------|------------|-----------|-------|-----|-----|-----------------|
| Volatile Organics by GC/MS - Westbo | orough Lab |           |       |     |     |                 |
| Benzene                             | 55         |           | ug/l  | 5.0 | 1.6 | 10              |
| Toluene                             | 16         | J         | ug/l  | 25  | 7.0 | 10              |
| Ethylbenzene                        | ND         |           | ug/l  | 25  | 7.0 | 10              |
| Methyl tert butyl ether             | ND         |           | ug/l  | 25  | 7.0 | 10              |
| p/m-Xylene                          | 9.9        | J         | ug/l  | 25  | 7.0 | 10              |
| o-Xylene                            | ND         |           | ug/l  | 25  | 7.0 | 10              |
| n-Butylbenzene                      | ND         |           | ug/l  | 25  | 7.0 | 10              |
| sec-Butylbenzene                    | ND         |           | ug/l  | 25  | 7.0 | 10              |
| tert-Butylbenzene                   | ND         |           | ug/l  | 25  | 7.0 | 10              |
| Isopropylbenzene                    | ND         |           | ug/l  | 25  | 7.0 | 10              |
| p-Isopropyltoluene                  | ND         |           | ug/l  | 25  | 7.0 | 10              |
| Naphthalene                         | 1500       |           | ug/l  | 25  | 7.0 | 10              |
| n-Propylbenzene                     | ND         |           | ug/l  | 25  | 7.0 | 10              |
| 1,3,5-Trimethylbenzene              | ND         |           | ug/l  | 25  | 7.0 | 10              |
| 1,2,4-Trimethylbenzene              | ND         |           | ug/l  | 25  | 7.0 | 10              |

| Surrogate             | % Recovery | Acceptance<br>Qualifier Criteria |  |
|-----------------------|------------|----------------------------------|--|
| 1,2-Dichloroethane-d4 | 95         | 70-130                           |  |
| Toluene-d8            | 101        | 70-130                           |  |
| 4-Bromofluorobenzene  | 82         | 70-130                           |  |
| Dibromofluoromethane  | 109        | 70-130                           |  |



Project Name: STEEL WINDS Lab Number: L2351364

**Project Number:** 03.0033579.16 **Report Date:** 10/13/23

**SAMPLE RESULTS** 

Lab ID: L2351364-08 Date Collected: 09/05/23 00:00

Client ID: TRIP BLANK-1 Date Received: 09/05/23
Sample Location: LACKAWANNA, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 1,8260D
Analytical Date: 09/13/23 14:15

| Parameter                           | Result    | Qualifier | Units | RL   | MDL  | Dilution Factor |
|-------------------------------------|-----------|-----------|-------|------|------|-----------------|
| Volatile Organics by GC/MS - Westbo | rough Lab |           |       |      |      |                 |
| Benzene                             | ND        |           | ug/l  | 0.50 | 0.16 | 1               |
| Toluene                             | ND        |           | ug/l  | 2.5  | 0.70 | <br>1           |
| Ethylbenzene                        | ND        |           | ug/l  | 2.5  | 0.70 | 1               |
| Methyl tert butyl ether             | ND        |           | ug/l  | 2.5  | 0.70 | 1               |
| p/m-Xylene                          | ND        |           | ug/l  | 2.5  | 0.70 | 1               |
| o-Xylene                            | ND        |           | ug/l  | 2.5  | 0.70 | 1               |
| n-Butylbenzene                      | ND        |           | ug/l  | 2.5  | 0.70 | 1               |
| sec-Butylbenzene                    | ND        |           | ug/l  | 2.5  | 0.70 | 1               |
| tert-Butylbenzene                   | ND        |           | ug/l  | 2.5  | 0.70 | 1               |
| Isopropylbenzene                    | ND        |           | ug/l  | 2.5  | 0.70 | 1               |
| p-Isopropyltoluene                  | ND        |           | ug/l  | 2.5  | 0.70 | 1               |
| Naphthalene                         | ND        |           | ug/l  | 2.5  | 0.70 | 1               |
| n-Propylbenzene                     | ND        |           | ug/l  | 2.5  | 0.70 | 1               |
| 1,3,5-Trimethylbenzene              | ND        |           | ug/l  | 2.5  | 0.70 | 1               |
| 1,2,4-Trimethylbenzene              | ND        |           | ug/l  | 2.5  | 0.70 | 1               |

| Surrogate             | % Recovery | Qualifier | Acceptance<br>Criteria |  |
|-----------------------|------------|-----------|------------------------|--|
| 1,2-Dichloroethane-d4 | 101        |           | 70-130                 |  |
| Toluene-d8            | 98         |           | 70-130                 |  |
| 4-Bromofluorobenzene  | 83         |           | 70-130                 |  |
| Dibromofluoromethane  | 124        |           | 70-130                 |  |



Project Name:STEEL WINDSLab Number:L2351364

**Project Number:** 03.0033579.16 **Report Date:** 10/13/23

### Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 09/13/23 08:31

Analyst: PID

| arameter                  | Result            | Qualifier Units | RL           | MDL         |  |
|---------------------------|-------------------|-----------------|--------------|-------------|--|
| olatile Organics by GC/MS | - Westborough Lab | for sample(s):  | 01-08 Batch: | WG1826961-5 |  |
| Benzene                   | ND                | ug/l            | 0.50         | 0.16        |  |
| Toluene                   | ND                | ug/l            | 2.5          | 0.70        |  |
| Ethylbenzene              | ND                | ug/l            | 2.5          | 0.70        |  |
| Methyl tert butyl ether   | ND                | ug/l            | 2.5          | 0.70        |  |
| p/m-Xylene                | ND                | ug/l            | 2.5          | 0.70        |  |
| o-Xylene                  | ND                | ug/l            | 2.5          | 0.70        |  |
| n-Butylbenzene            | ND                | ug/l            | 2.5          | 0.70        |  |
| sec-Butylbenzene          | ND                | ug/l            | 2.5          | 0.70        |  |
| tert-Butylbenzene         | ND                | ug/l            | 2.5          | 0.70        |  |
| Isopropylbenzene          | ND                | ug/l            | 2.5          | 0.70        |  |
| p-Isopropyltoluene        | ND                | ug/l            | 2.5          | 0.70        |  |
| Naphthalene               | ND                | ug/l            | 2.5          | 0.70        |  |
| n-Propylbenzene           | ND                | ug/l            | 2.5          | 0.70        |  |
| 1,3,5-Trimethylbenzene    | ND                | ug/l            | 2.5          | 0.70        |  |
| 1,2,4-Trimethylbenzene    | ND                | ug/l            | 2.5          | 0.70        |  |

|                       | Acceptance     |                |  |  |  |  |
|-----------------------|----------------|----------------|--|--|--|--|
| Surrogate             | %Recovery Qual | ifier Criteria |  |  |  |  |
| 1,2-Dichloroethane-d4 | 90             | 70-130         |  |  |  |  |
| Toluene-d8            | 100            | 70-130         |  |  |  |  |
| 4-Bromofluorobenzene  | 86             | 70-130         |  |  |  |  |
| Dibromofluoromethane  | 113            | 70-130         |  |  |  |  |



Project Name:STEEL WINDSLab Number:L2351364

**Project Number:** 03.0033579.16 **Report Date:** 10/13/23

### Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 09/14/23 09:07

Analyst: PID

| Parameter                 | Result            | Qualifier Units   | RL     | MDL         |
|---------------------------|-------------------|-------------------|--------|-------------|
| olatile Organics by GC/MS | - Westborough Lab | for sample(s): 01 | Batch: | WG1827692-5 |
| Benzene                   | ND                | ug/l              | 0.50   | 0.16        |
| Toluene                   | ND                | ug/l              | 2.5    | 0.70        |
| Ethylbenzene              | ND                | ug/l              | 2.5    | 0.70        |
| Methyl tert butyl ether   | ND                | ug/l              | 2.5    | 0.70        |
| p/m-Xylene                | ND                | ug/l              | 2.5    | 0.70        |
| o-Xylene                  | ND                | ug/l              | 2.5    | 0.70        |
| n-Butylbenzene            | ND                | ug/l              | 2.5    | 0.70        |
| sec-Butylbenzene          | ND                | ug/l              | 2.5    | 0.70        |
| tert-Butylbenzene         | ND                | ug/l              | 2.5    | 0.70        |
| Isopropylbenzene          | ND                | ug/l              | 2.5    | 0.70        |
| p-Isopropyltoluene        | ND                | ug/l              | 2.5    | 0.70        |
| Naphthalene               | ND                | ug/l              | 2.5    | 0.70        |
| n-Propylbenzene           | ND                | ug/l              | 2.5    | 0.70        |
| 1,3,5-Trimethylbenzene    | ND                | ug/l              | 2.5    | 0.70        |
| 1,2,4-Trimethylbenzene    | ND                | ug/l              | 2.5    | 0.70        |

|                       | Acceptance        |             |  |  |  |  |  |
|-----------------------|-------------------|-------------|--|--|--|--|--|
| Surrogate             | %Recovery Qualifi | er Criteria |  |  |  |  |  |
| 1,2-Dichloroethane-d4 | 117               | 70-130      |  |  |  |  |  |
| Toluene-d8            | 100               | 70-130      |  |  |  |  |  |
| 4-Bromofluorobenzene  | 97                | 70-130      |  |  |  |  |  |
| Dibromofluoromethane  | 113               | 70-130      |  |  |  |  |  |



Project Name: STEEL WINDS
Project Number: 03.0033579.16

Lab Number: L2351364

**Report Date:** 10/13/23

| Parameter                                  | LCS<br>%Recovery | Qual       |       | LCSD<br>Recovery | Qual        | %Recovery<br>Limits | RPD | Qual | RPD<br>Limits |
|--------------------------------------------|------------------|------------|-------|------------------|-------------|---------------------|-----|------|---------------|
| Volatile Organics by GC/MS - Westborough L | ab Associated    | sample(s): | 01-08 | Batch:           | WG1826961-3 | WG1826961-4         |     |      |               |
| Benzene                                    | 100              |            |       | 100              |             | 70-130              | 0   |      | 20            |
| Toluene                                    | 110              |            |       | 100              |             | 70-130              | 10  |      | 20            |
| Ethylbenzene                               | 99               |            |       | 100              |             | 70-130              | 1   |      | 20            |
| Methyl tert butyl ether                    | 77               |            |       | 78               |             | 63-130              | 1   |      | 20            |
| p/m-Xylene                                 | 105              |            |       | 105              |             | 70-130              | 0   |      | 20            |
| o-Xylene                                   | 100              |            |       | 100              |             | 70-130              | 0   |      | 20            |
| n-Butylbenzene                             | 89               |            |       | 90               |             | 53-136              | 1   |      | 20            |
| sec-Butylbenzene                           | 88               |            |       | 89               |             | 70-130              | 1   |      | 20            |
| tert-Butylbenzene                          | 86               |            |       | 89               |             | 70-130              | 3   |      | 20            |
| Isopropylbenzene                           | 86               |            |       | 87               |             | 70-130              | 1   |      | 20            |
| p-Isopropyltoluene                         | 86               |            |       | 89               |             | 70-130              | 3   |      | 20            |
| Naphthalene                                | 67               | Q          |       | 72               |             | 70-130              | 7   |      | 20            |
| n-Propylbenzene                            | 89               |            |       | 90               |             | 69-130              | 1   |      | 20            |
| 1,3,5-Trimethylbenzene                     | 90               |            |       | 90               |             | 64-130              | 0   |      | 20            |
| 1,2,4-Trimethylbenzene                     | 89               |            |       | 90               |             | 70-130              | 1   |      | 20            |

| Surrogate             | LCS            | LCSD           | Acceptance |
|-----------------------|----------------|----------------|------------|
|                       | %Recovery Qual | %Recovery Qual | Criteria   |
| 1,2-Dichloroethane-d4 | 84             | 85             | 70-130     |
| Toluene-d8            | 106            | 104            | 70-130     |
| 4-Bromofluorobenzene  | 81             | 83             | 70-130     |
| Dibromofluoromethane  | 106            | 108            | 70-130     |



Project Name: STEEL WINDS
Project Number: 03.0033579.16

Lab Number: L2351364

**Report Date:** 10/13/23

| Parameter                                 | LCS<br>%Recovery | Qual         | LCSD<br>%Recovery | Qual    | %Recovery<br>Limits | RPD | Qual | RPD<br>Limits |
|-------------------------------------------|------------------|--------------|-------------------|---------|---------------------|-----|------|---------------|
| olatile Organics by GC/MS - Westborough L | ab Associated    | sample(s): 0 | 1 Batch: WG18     | 27692-3 | WG1827692-4         |     |      |               |
| Benzene                                   | 110              |              | 100               |         | 70-130              | 10  |      | 20            |
| Toluene                                   | 110              |              | 100               |         | 70-130              | 10  |      | 20            |
| Ethylbenzene                              | 110              |              | 110               |         | 70-130              | 0   |      | 20            |
| Methyl tert butyl ether                   | 89               |              | 80                |         | 63-130              | 11  |      | 20            |
| p/m-Xylene                                | 110              |              | 110               |         | 70-130              | 0   |      | 20            |
| o-Xylene                                  | 105              |              | 105               |         | 70-130              | 0   |      | 20            |
| n-Butylbenzene                            | 100              |              | 100               |         | 53-136              | 0   |      | 20            |
| sec-Butylbenzene                          | 110              |              | 110               |         | 70-130              | 0   |      | 20            |
| tert-Butylbenzene                         | 110              |              | 110               |         | 70-130              | 0   |      | 20            |
| Isopropylbenzene                          | 100              |              | 100               |         | 70-130              | 0   |      | 20            |
| p-Isopropyltoluene                        | 110              |              | 110               |         | 70-130              | 0   |      | 20            |
| Naphthalene                               | 89               |              | 87                |         | 70-130              | 2   |      | 20            |
| n-Propylbenzene                           | 110              |              | 110               |         | 69-130              | 0   |      | 20            |
| 1,3,5-Trimethylbenzene                    | 100              |              | 100               |         | 64-130              | 0   |      | 20            |
| 1,2,4-Trimethylbenzene                    | 100              |              | 100               |         | 70-130              | 0   |      | 20            |

|                       | LCS            | LCSD           | Acceptance |
|-----------------------|----------------|----------------|------------|
| Surrogate             | %Recovery Qual | %Recovery Qual | Criteria   |
| 1,2-Dichloroethane-d4 | 115            | 114            | 70-130     |
| Toluene-d8            | 101            | 103            | 70-130     |
| 4-Bromofluorobenzene  | 98             | 99             | 70-130     |
| Dibromofluoromethane  | 106            | 103            | 70-130     |



### **SEMIVOLATILES**



Project Name: STEEL WINDS Lab Number: L2351364

**Project Number:** 03.0033579.16 **Report Date:** 10/13/23

**SAMPLE RESULTS** 

Lab ID: L2351364-01 D Date Collected: 09/05/23 07:50

Client ID: WT1-05-090523 Date Received: 09/05/23 Sample Location: LACKAWANNA, NY Field Prep: Not Specified

Sample Depth:

Analytical Date:

Matrix: Water Extraction Method: EPA 3510C
Analytical Method: 1,8270E Extraction Date: 09/12/23 13:47

Analyst: DB

09/20/23 19:01

| Parameter                                  | Result | Qualifier | Units | RL   | MDL   | Dilution Factor |
|--------------------------------------------|--------|-----------|-------|------|-------|-----------------|
| Semivolatile Organics by GC/MS - Mansfield | l Lab  |           |       |      |       |                 |
| bis(2-Chloroethyl)ether                    | ND     |           | ug/l  | 2.45 | 0.455 | 5               |
| 1,3-Dichlorobenzene                        | ND     |           | ug/l  | 2.45 | 0.384 | 5               |
| 1,4-Dichlorobenzene                        | ND     |           | ug/l  | 2.45 | 0.406 | 5               |
| 1,2-Dichlorobenzene                        | ND     |           | ug/l  | 2.45 | 0.333 | 5               |
| Benzyl alcohol                             | ND     |           | ug/l  | 2.45 | 0.603 | 5               |
| bis(2-chloroisopropyl)ether                | ND     |           | ug/l  | 2.45 | 0.529 | 5               |
| Acetophenone                               | ND     |           | ug/l  | 4.90 | 1.01  | 5               |
| Hexachloroethane                           | ND     |           | ug/l  | 2.45 | 0.500 | 5               |
| Nitrobenzene                               | ND     |           | ug/l  | 2.45 | 0.500 | 5               |
| Isophorone                                 | ND     |           | ug/l  | 2.45 | 0.618 | 5               |
| bis(2-Chloroethoxy)methane                 | ND     |           | ug/l  | 2.45 | 0.419 | 5               |
| 1,2,4-Trichlorobenzene                     | ND     |           | ug/l  | 2.45 | 0.471 | 5               |
| Naphthalene                                | 138    |           | ug/l  | 2.45 | 0.429 | 5               |
| 4-Chloroaniline                            | ND     |           | ug/l  | 2.45 | 0.627 | 5               |
| Hexachlorobutadiene                        | ND     |           | ug/l  | 2.45 | 0.419 | 5               |
| 2-Methylnaphthalene                        | 29.3   |           | ug/l  | 2.45 | 0.446 | 5               |
| 1,2,4,5-Tetrachlorobenzene                 | ND     |           | ug/l  | 2.45 | 0.391 | 5               |
| Hexachlorocyclopentadiene                  | ND     |           | ug/l  | 2.45 | 0.750 | 5               |
| Biphenyl                                   | 6.70   |           | ug/l  | 2.45 | 0.544 | 5               |
| 2-Chloronaphthalene                        | ND     |           | ug/l  | 2.45 | 0.441 | 5               |
| 2-Nitroaniline                             | ND     |           | ug/l  | 2.45 | 0.676 | 5               |
| Acenaphthylene                             | 26.0   |           | ug/l  | 2.45 | 0.549 | 5               |
| Dimethylphthalate                          | ND     |           | ug/l  | 2.45 | 0.574 | 5               |
| 2,6-Dinitrotoluene                         | ND     |           | ug/l  | 2.45 | 0.824 | 5               |
| Acenaphthene                               | 8.92   |           | ug/l  | 2.45 | 0.468 | 5               |
| 3-Nitroaniline                             | ND     |           | ug/l  | 2.45 | 0.544 | 5               |
| Dibenzofuran                               | 31.5   |           | ug/l  | 2.45 | 0.446 | 5               |
| 2,4-Dinitrotoluene                         | ND     |           | ug/l  | 2.45 | 0.799 | 5               |



**Project Name:** Lab Number: STEEL WINDS L2351364

**Project Number:** Report Date: 03.0033579.1610/13/23

**SAMPLE RESULTS** 

Lab ID: D Date Collected: 09/05/23 07:50 L2351364-01

Date Received: Client ID: 09/05/23 WT1-05-090523 Sample Location: Field Prep: LACKAWANNA, NY Not Specified

Sample Depth:

| Parameter                                | Result                                         | Qualifier | Units | RL   | MDL   | Dilution Factor |  |  |  |
|------------------------------------------|------------------------------------------------|-----------|-------|------|-------|-----------------|--|--|--|
| Semivolatile Organics by GC/MS - Mansfid | Semivolatile Organics by GC/MS - Mansfield Lab |           |       |      |       |                 |  |  |  |
| Fluorene                                 | 42.3                                           |           | ug/l  | 2.45 | 0.510 | 5               |  |  |  |
| Diethylphthalate                         | ND                                             |           | ug/l  | 2.45 | 0.882 | 5               |  |  |  |
| 4-Nitroaniline                           | ND                                             |           | ug/l  | 2.45 | 0.549 | 5               |  |  |  |
| n-Nitrosodiphenylamine                   | ND                                             |           | ug/l  | 2.45 | 0.353 | 5               |  |  |  |
| Hexachlorobenzene                        | ND                                             |           | ug/l  | 2.45 | 0.598 | 5               |  |  |  |
| Phenanthrene                             | 43.4                                           |           | ug/l  | 2.45 | 0.544 | 5               |  |  |  |
| Anthracene                               | 4.52                                           |           | ug/l  | 2.45 | 0.672 | 5               |  |  |  |
| Carbazole                                | 20.2                                           |           | ug/l  | 2.45 | 0.701 | 5               |  |  |  |
| Di-n-butylphthalate                      | ND                                             |           | ug/l  | 2.45 | 0.488 | 5               |  |  |  |
| Fluoranthene                             | 3.70                                           |           | ug/l  | 2.45 | 0.765 | 5               |  |  |  |
| Pyrene                                   | 2.87                                           |           | ug/l  | 2.45 | 0.833 | 5               |  |  |  |
| Butylbenzylphthalate                     | ND                                             |           | ug/l  | 2.45 | 0.416 | 5               |  |  |  |
| 3,3'-Dichlorobenzidine                   | ND                                             |           | ug/l  | 2.45 | 0.946 | 5               |  |  |  |
| Benz(a)anthracene                        | ND                                             |           | ug/l  | 2.45 | 0.902 | 5               |  |  |  |
| Chrysene                                 | ND                                             |           | ug/l  | 2.45 | 0.696 | 5               |  |  |  |
| bis(2-Ethylhexyl)phthalate               | ND                                             |           | ug/l  | 2.45 | 0.396 | 5               |  |  |  |
| Di-n-octylphthalate                      | ND                                             |           | ug/l  | 4.90 | 0.385 | 5               |  |  |  |
| Benzo(b)fluoranthene                     | ND                                             |           | ug/l  | 2.45 | 0.321 | 5               |  |  |  |
| Benzo(k)fluoranthene                     | ND                                             |           | ug/l  | 2.45 | 0.789 | 5               |  |  |  |
| Benzo(a)pyrene                           | ND                                             |           | ug/l  | 2.45 | 0.295 | 5               |  |  |  |
| Indeno(1,2,3-cd)pyrene                   | ND                                             |           | ug/l  | 2.45 | 0.439 | 5               |  |  |  |
| Dibenz(a,h)anthracene                    | ND                                             |           | ug/l  | 2.45 | 0.314 | 5               |  |  |  |
| Benzo(g,h,i)perylene                     | ND                                             |           | ug/l  | 2.45 | 0.534 | 5               |  |  |  |

| Surrogate        | % Recovery | Qualifier | Acceptance<br>Criteria |  |
|------------------|------------|-----------|------------------------|--|
| Nitrobenzene-d5  | 79         |           | 30-130                 |  |
| 2-Fluorobiphenyl | 80         |           | 30-130                 |  |
| Terphenyl-d14    | 88         |           | 30-130                 |  |



Project Name: STEEL WINDS Lab Number: L2351364

**Project Number:** 03.0033579.16 **Report Date:** 10/13/23

**SAMPLE RESULTS** 

Lab ID: L2351364-02 D Date Collected: 09/05/23 08:45

Client ID: MWN-01-090523 Date Received: 09/05/23 Sample Location: LACKAWANNA, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 3510C
Analytical Method: 1.8270E Extraction Date: 09/12/23 13:47

Analytical Method: 1,8270E Extraction Date: 09/12/23 13:47

Analytical Date: 09/20/23 19:30

| 1.3-Dichlorobenzene         ND         ug/l         2.27         0.356         5           1,4-Dichlorobenzene         ND         ug/l         2.27         0.376         5           1.2-Dichlorobenzene         ND         ug/l         2.27         0.399         5           Benzyl alcohol         ND         ug/l         2.27         0.559         5           bis(2-chlorospropyl)ether         ND         ug/l         2.27         0.559         5           Acetophenone         ND         ug/l         2.27         0.464         5           Hexachloroethane         ND         ug/l         2.27         0.464         5           Nitrobenzene         ND         ug/l         2.27         0.464         5           slosphrone         ND         ug/l         2.27         0.464         5           slosphrone         ND         ug/l         2.27         0.484         5           slosphrone         ND         ug/l         2.27         0.388         5           slosphrone         ND         ug/l         2.27         0.388         5           slosphrone         ND         ug/l         2.27         0.388         5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Parameter                          | Result        | Qualifier | Units | RL   | MDL   | Dilution Factor |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|---------------|-----------|-------|------|-------|-----------------|
| 1.3-Dichlorobenzene   ND   ug/l   2.27   0.356   5   1.4-Dichlorobenzene   ND   ug/l   2.27   0.376   5   1.4-Dichlorobenzene   ND   ug/l   2.27   0.376   5   1.4-Dichlorobenzene   ND   ug/l   2.27   0.399   5   1.4-Dichlorobenzene   ND   ug/l   2.27   0.559   5   1.4-Dichlorobenzene   ND   ug/l   2.27   0.559   5   1.4-Dichlorobenzene   ND   ug/l   2.27   0.559   5   1.4-Dichlorobenzene   ND   ug/l   2.27   0.491   5   1.4-Dichlorobenzene   ND   ug/l   2.27   0.464   5   1.4-Dichlorobenzene   ND   ug/l   2.27   0.464   5   1.4-Dichlorobenzene   ND   ug/l   2.27   0.464   5   1.4-Dichlorobenzene   ND   ug/l   2.27   0.573   5   1.4-Dichlorobenzene   ND   ug/l   2.27   0.573   5   1.4-Dichlorobenzene   ND   ug/l   2.27   0.388   5   1.2-Dichlorobenzene   ND   ug/l   2.27   0.389   5   1.2-Dichlorobenzene   ND   ug/l   2.27   0.389   5   1.2-Dichlorobenzene   ND   ug/l   2.27   0.362   5   1.2-Dichlorobenzene   ND   ug/l   2.27   0.362   5   1.2-Dichlorobenzene   ND   ug/l   2.27   0.504   5   1.2-Dichlorobenzene   ND   ug/l   2.27   0.504   5   1.2-Dichlorobenzene   ND   ug/l   2.27   0.509   5   1.2-Dichlorobenzene   ND   ug/ | Semivolatile Organics by GC/MS - M | Mansfield Lab |           |       |      |       |                 |
| 1,4-Dichlorobenzene   ND   ug/l   2,27   0,376   5   1,2-Dichlorobenzene   ND   ug/l   2,27   0,309   5   5   5   5   5   5   5   5   5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | bis(2-Chloroethyl)ether            | ND            |           | ug/l  | 2.27 | 0.422 | 5               |
| 1,2-Dichlorobenzene   ND   ug/l   2,27   0,309   5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1,3-Dichlorobenzene                | ND            |           | ug/l  | 2.27 | 0.356 | 5               |
| Benzyl alcohol         ND         ug/l         2.27         0.559         5           bis(2-chloroisopropyl)ether         ND         ug/l         2.27         0.491         5           Acetophenone         ND         ug/l         4.54         0.941         5           Hexachloroethane         ND         ug/l         2.27         0.464         5           Nitrobenzene         ND         ug/l         2.27         0.464         5           Isophorone         ND         ug/l         2.27         0.464         5           Isophorone         ND         ug/l         2.27         0.464         5           Isophorone         ND         ug/l         2.27         0.573         5           Isophorone         ND         ug/l         2.27         0.388         5           1,2.4-Trichlorobenzene         ND         ug/l         2.27         0.388         5           1,2.4-Trichlorobenzene         ND         ug/l         2.27         0.399         5           4-Chloroaniline         ND         ug/l         2.27         0.582         5           Hexachlorobutadiene         ND         ug/l         2.27         0.695         5 </td <td>1,4-Dichlorobenzene</td> <td>ND</td> <td></td> <td>ug/l</td> <td>2.27</td> <td>0.376</td> <td>5</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1,4-Dichlorobenzene                | ND            |           | ug/l  | 2.27 | 0.376 | 5               |
| Discomposition   ND   Ug/l   2.27   0.491   5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1,2-Dichlorobenzene                | ND            |           | ug/l  | 2.27 | 0.309 | 5               |
| Acetophenone         ND         ug/l         4.54         0.941         5           Hexachloroethane         ND         ug/l         2.27         0.464         5           Nitrobenzene         ND         ug/l         2.27         0.464         5           Isophorone         ND         ug/l         2.27         0.573         5           bis(2-Chloroethoxy)methane         ND         ug/l         2.27         0.388         5           1,2.4-Trichlorobenzene         ND         ug/l         2.27         0.437         5           Naphthalene         108         ug/l         2.27         0.398         5           4-Chloroaniline         ND         ug/l         2.27         0.582         5           Hexachlorobutadiene         ND         ug/l         2.27         0.582         5           Hexachlorobutadiene         ND         ug/l         2.27         0.582         5           Hexachlorobenzene         ND         ug/l         2.27         0.414         5           1,2.4,5-Tetrachlorobenzene         ND         ug/l         2.27         0.504         5           Bilphenyl         6.49         ug/l         2.27         0.504 <td>Benzyl alcohol</td> <td>ND</td> <td></td> <td>ug/l</td> <td>2.27</td> <td>0.559</td> <td>5</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Benzyl alcohol                     | ND            |           | ug/l  | 2.27 | 0.559 | 5               |
| Hexachloroethane   ND   Ug/l   2.27   0.464   5     Nitrobenzene   ND   Ug/l   2.27   0.464   5     Isophorone   ND   Ug/l   2.27   0.573   5     Isophorone   ND   Ug/l   2.27   0.573   5     Isophorone   ND   Ug/l   2.27   0.388   5     1,2,4-Trichlorobenzene   ND   Ug/l   2.27   0.437   5     Naphthalene   108   Ug/l   2.27   0.398   5     4-Chloroaniline   ND   Ug/l   2.27   0.398   5     4-Chloroaniline   ND   Ug/l   2.27   0.389   5     Hexachlorobutadiene   ND   Ug/l   2.27   0.389   5     2-Methylnaphthalene   26.6   Ug/l   2.27   0.389   5     1,2,4,5-Tetrachlorobenzene   ND   Ug/l   2.27   0.362   5     Hexachlorocyclopentadiene   ND   Ug/l   2.27   0.504   5     Siphenyl   6.49   Ug/l   2.27   0.504   5     2-Chloronaphthalene   ND   Ug/l   2.27   0.627   5     Acenaphthylene   20.1   Ug/l   2.27   0.509   5     Dimethylphthalate   ND   Ug/l   2.27   0.509   5     Dimethylphthalate   ND   Ug/l   2.27   0.504   5     2,6-Dinitrotoluene   ND   Ug/l   2.27   0.504   5     Acenaphthene   9.51   Ug/l   2.27   0.434   5     3-Nitroaniline   ND   Ug/l   2.27   0.504   5     Dibenzofuran   34.7   Ug/l   2.27   0.504   5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | bis(2-chloroisopropyl)ether        | ND            |           | ug/l  | 2.27 | 0.491 | 5               |
| Ntrobenzene ND ug/l 2.27 0.464 5 Isophorone ND ug/l 2.27 0.573 5 Isophorone ND ug/l 2.27 0.573 5 Isophorone ND ug/l 2.27 0.388 5 I.2,4-Trichlorobenzene ND ug/l 2.27 0.437 5 Naphthalene 108 ug/l 2.27 0.398 5 4-Chloroaniline ND ug/l 2.27 0.582 5 Hexachlorobutadiene ND ug/l 2.27 0.389 5 2-Methylnaphthalene 26.6 ug/l 2.27 0.389 5 I.2,4,5-Tetrachlorobenzene ND ug/l 2.27 0.414 5 I.2,4,5-Tetrachlorobenzene ND ug/l 2.27 0.662 5 Ihexachlorocyclopentadiene ND ug/l 2.27 0.414 5 I.2,4,5-Tetrachlorobenzene ND ug/l 2.27 0.695 5 Isphenyl 6.49 ug/l 2.27 0.695 5 Isphenyl 6.49 ug/l 2.27 0.504 5 2-Chloronaphthalene ND ug/l 2.27 0.607 5 Acenaphthylene DND ug/l 2.27 0.607 5 Acenaphthylene DND ug/l 2.27 0.509 5 Dimethylphthalate ND ug/l 2.27 0.509 5 Dimethylphthalate ND ug/l 2.27 0.504 5 Acenaphthylene 9.51 ug/l 2.27 0.764 5 Acenaphthene 9.51 ug/l 2.27 0.434 5 3-Nitroaniline ND ug/l 2.27 0.434 5 3-Nitroaniline ND ug/l 2.27 0.504 5 Dibenzofuran 34.7 ug/l 2.27 0.504 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Acetophenone                       | ND            |           | ug/l  | 4.54 | 0.941 | 5               |
| Sophorone   ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Hexachloroethane                   | ND            |           | ug/l  | 2.27 | 0.464 | 5               |
| bis(2-Chloroethoxy)methane         ND         ug/l         2.27         0.388         5           1,2,4-Trichlorobenzene         ND         ug/l         2.27         0.437         5           Naphthalene         108         ug/l         2.27         0.398         5           4-Chloroaniline         ND         ug/l         2.27         0.582         5           Hexachlorobutadiene         ND         ug/l         2.27         0.389         5           2-Methylnaphthalene         26.6         ug/l         2.27         0.414         5           1,2,4,5-Tetrachlorobenzene         ND         ug/l         2.27         0.362         5           Hexachlorocyclopentadiene         ND         ug/l         2.27         0.695         5           Biphenyl         6.49         ug/l         2.27         0.504         5           2-Chloroaphthalene         ND         ug/l         2.27         0.607         5           2-Nitroaniline         ND         ug/l         2.27         0.609         5           Acenaphthylene         ND         ug/l         2.27         0.532         5           Dimethylphthalate         ND         ug/l         2.27 <td>Nitrobenzene</td> <td>ND</td> <td></td> <td>ug/l</td> <td>2.27</td> <td>0.464</td> <td>5</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Nitrobenzene                       | ND            |           | ug/l  | 2.27 | 0.464 | 5               |
| 1,2,4-Trichlorobenzene         ND         ug/l         2.27         0.437         5           Naphthalene         108         ug/l         2.27         0.398         5           4-Chloroaniline         ND         ug/l         2.27         0.582         5           Hexachlorobutadiene         ND         ug/l         2.27         0.389         5           2-Methylnaphthalene         26.6         ug/l         2.27         0.414         5           1,2,4,5-Tetrachlorobenzene         ND         ug/l         2.27         0.362         5           Hexachlorocyclopentadiene         ND         ug/l         2.27         0.695         5           Biphenyl         6.49         ug/l         2.27         0.504         5           2-Chloronaphthalene         ND         ug/l         2.27         0.409         5           2-Nitroaniline         ND         ug/l         2.27         0.504         5           Acenaphthylene         20.1         ug/l         2.27         0.509         5           Dimethylphthalate         ND         ug/l         2.27         0.532         5           2,6-Dinitrotoluene         ND         ug/l         2.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Isophorone                         | ND            |           | ug/l  | 2.27 | 0.573 | 5               |
| Naphthalene         108         ug/l         2.27         0.398         5           4-Chloroaniline         ND         ug/l         2.27         0.582         5           Hexachlorobutadiene         ND         ug/l         2.27         0.389         5           2-Methylnaphthalene         26.6         ug/l         2.27         0.414         5           1,2,4,5-Tetrachlorobenzene         ND         ug/l         2.27         0.362         5           Hexachlorocyclopentadiene         ND         ug/l         2.27         0.695         5           Biphenyl         6.49         ug/l         2.27         0.504         5           2-Chloronaphthalene         ND         ug/l         2.27         0.409         5           2-Nitroaniline         ND         ug/l         2.27         0.627         5           Acenaphthylene         20.1         ug/l         2.27         0.509         5           Dimethylphthalate         ND         ug/l         2.27         0.532         5           2,6-Dinitrotoluene         ND         ug/l         2.27         0.764         5           Acenaphthene         9.51         ug/l         2.27 <td< td=""><td>bis(2-Chloroethoxy)methane</td><td>ND</td><td></td><td>ug/l</td><td>2.27</td><td>0.388</td><td>5</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | bis(2-Chloroethoxy)methane         | ND            |           | ug/l  | 2.27 | 0.388 | 5               |
| 4-Chloroaniline         ND         ug/l         2.27         0.582         5           Hexachlorobutadiene         ND         ug/l         2.27         0.389         5           2-Methylnaphthalene         26.6         ug/l         2.27         0.414         5           1,2,4,5-Tetrachlorobenzene         ND         ug/l         2.27         0.362         5           Hexachlorocyclopentadiene         ND         ug/l         2.27         0.695         5           Biphenyl         6.49         ug/l         2.27         0.504         5           2-Chloronaphthalene         ND         ug/l         2.27         0.409         5           2-Nitroaniline         ND         ug/l         2.27         0.627         5           Acenaphthylene         20.1         ug/l         2.27         0.509         5           Dimethylphthalate         ND         ug/l         2.27         0.532         5           2,6-Dinitrotoluene         ND         ug/l         2.27         0.764         5           Acenaphthene         9.51         ug/l         2.27         0.434         5           3-Nitroaniline         ND         ug/l         2.27         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1,2,4-Trichlorobenzene             | ND            |           | ug/l  | 2.27 | 0.437 | 5               |
| Hexachlorobutadiene   ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Naphthalene                        | 108           |           | ug/l  | 2.27 | 0.398 | 5               |
| 2-Methylnaphthalene       26.6       ug/l       2.27       0.414       5         1,2,4,5-Tetrachlorobenzene       ND       ug/l       2.27       0.362       5         Hexachlorocyclopentadiene       ND       ug/l       2.27       0.695       5         Biphenyl       6.49       ug/l       2.27       0.504       5         2-Chloronaphthalene       ND       ug/l       2.27       0.409       5         2-Nitroaniline       ND       ug/l       2.27       0.627       5         Acenaphthylene       20.1       ug/l       2.27       0.509       5         Dimethylphthalate       ND       ug/l       2.27       0.532       5         2,6-Dinitrotoluene       ND       ug/l       2.27       0.764       5         Acenaphthene       9.51       ug/l       2.27       0.434       5         3-Nitroaniline       ND       ug/l       2.27       0.504       5         Dibenzofuran       34.7       ug/l       2.27       0.414       5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4-Chloroaniline                    | ND            |           | ug/l  | 2.27 | 0.582 | 5               |
| 1,2,4,5-Tetrachlorobenzene       ND       ug/l       2.27       0.362       5         Hexachlorocyclopentadiene       ND       ug/l       2.27       0.695       5         Biphenyl       6.49       ug/l       2.27       0.504       5         2-Chloronaphthalene       ND       ug/l       2.27       0.409       5         2-Nitroaniline       ND       ug/l       2.27       0.502       5         Acenaphthylene       20.1       ug/l       2.27       0.509       5         Dimethylphthalate       ND       ug/l       2.27       0.532       5         2,6-Dinitrotoluene       ND       ug/l       2.27       0.434       5         3-Nitroaniline       ND       ug/l       2.27       0.504       5         Dibenzofuran       34.7       ug/l       2.27       0.414       5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Hexachlorobutadiene                | ND            |           | ug/l  | 2.27 | 0.389 | 5               |
| Hexachlorocyclopentadiene   ND   ug/l   2.27   0.695   5     Biphenyl   6.49   ug/l   2.27   0.504   5     2-Chloronaphthalene   ND   ug/l   2.27   0.409   5     2-Nitroaniline   ND   ug/l   2.27   0.627   5     Acenaphthylene   20.1   ug/l   2.27   0.509   5     Dimethylphthalate   ND   ug/l   2.27   0.532   5     2,6-Dinitrotoluene   ND   ug/l   2.27   0.764   5     Acenaphthene   9.51   ug/l   2.27   0.434   5     3-Nitroaniline   ND   ug/l   2.27   0.504   5     Dibenzofuran   34.7   ug/l   2.27   0.414   5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2-Methylnaphthalene                | 26.6          |           | ug/l  | 2.27 | 0.414 | 5               |
| Biphenyl         6.49         ug/l         2.27         0.504         5           2-Chloronaphthalene         ND         ug/l         2.27         0.409         5           2-Nitroaniline         ND         ug/l         2.27         0.627         5           Acenaphthylene         20.1         ug/l         2.27         0.509         5           Dimethylphthalate         ND         ug/l         2.27         0.532         5           2,6-Dinitrotoluene         ND         ug/l         2.27         0.764         5           Acenaphthene         9.51         ug/l         2.27         0.434         5           3-Nitroaniline         ND         ug/l         2.27         0.504         5           Dibenzofuran         34.7         ug/l         2.27         0.414         5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1,2,4,5-Tetrachlorobenzene         | ND            |           | ug/l  | 2.27 | 0.362 | 5               |
| 2-Chloronaphthalene ND ug/l 2.27 0.409 5 2-Nitroaniline ND ug/l 2.27 0.627 5 Acenaphthylene 20.1 ug/l 2.27 0.509 5 Dimethylphthalate ND ug/l 2.27 0.532 5 2,6-Dinitrotoluene ND ug/l 2.27 0.764 5 Acenaphthene 9.51 ug/l 2.27 0.434 5 3-Nitroaniline ND ug/l 2.27 0.504 5 Dibenzofuran 34.7 ug/l 2.27 0.414 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Hexachlorocyclopentadiene          | ND            |           | ug/l  | 2.27 | 0.695 | 5               |
| 2-Nitroaniline ND ug/l 2.27 0.627 5 Acenaphthylene 20.1 ug/l 2.27 0.509 5 Dimethylphthalate ND ug/l 2.27 0.532 5 2,6-Dinitrotoluene ND ug/l 2.27 0.764 5 Acenaphthene 9.51 ug/l 2.27 0.434 5 3-Nitroaniline ND ug/l 2.27 0.504 5 Dibenzofuran 34.7 ug/l 2.27 0.414 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Biphenyl                           | 6.49          |           | ug/l  | 2.27 | 0.504 | 5               |
| Acenaphthylene       20.1       ug/l       2.27       0.509       5         Dimethylphthalate       ND       ug/l       2.27       0.532       5         2,6-Dinitrotoluene       ND       ug/l       2.27       0.764       5         Acenaphthene       9.51       ug/l       2.27       0.434       5         3-Nitroaniline       ND       ug/l       2.27       0.504       5         Dibenzofuran       34.7       ug/l       2.27       0.414       5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2-Chloronaphthalene                | ND            |           | ug/l  | 2.27 | 0.409 | 5               |
| Dimethylphthalate         ND         ug/l         2.27         0.532         5           2,6-Dinitrotoluene         ND         ug/l         2.27         0.764         5           Acenaphthene         9.51         ug/l         2.27         0.434         5           3-Nitroaniline         ND         ug/l         2.27         0.504         5           Dibenzofuran         34.7         ug/l         2.27         0.414         5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2-Nitroaniline                     | ND            |           | ug/l  | 2.27 | 0.627 | 5               |
| 2,6-Dinitrotoluene ND ug/l 2.27 0.764 5 Acenaphthene 9.51 ug/l 2.27 0.434 5 3-Nitroaniline ND ug/l 2.27 0.504 5 Dibenzofuran 34.7 ug/l 2.27 0.414 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Acenaphthylene                     | 20.1          |           | ug/l  | 2.27 | 0.509 | 5               |
| Acenaphthene 9.51 ug/l 2.27 0.434 5 3-Nitroaniline ND ug/l 2.27 0.504 5 Dibenzofuran 34.7 ug/l 2.27 0.414 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Dimethylphthalate                  | ND            |           | ug/l  | 2.27 | 0.532 | 5               |
| 3-Nitroaniline ND ug/l 2.27 0.504 5 Dibenzofuran 34.7 ug/l 2.27 0.414 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2,6-Dinitrotoluene                 | ND            |           | ug/l  | 2.27 | 0.764 | 5               |
| Dibenzofuran 34.7 ug/l 2.27 0.414 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Acenaphthene                       | 9.51          |           | ug/l  | 2.27 | 0.434 | 5               |
| -5.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3-Nitroaniline                     | ND            |           | ug/l  | 2.27 | 0.504 | 5               |
| 2,4-Dinitrotoluene ND ug/l 2.27 0.741 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Dibenzofuran                       | 34.7          |           | ug/l  | 2.27 | 0.414 | 5               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2,4-Dinitrotoluene                 | ND            |           | ug/l  | 2.27 | 0.741 | 5               |



Project Name: STEEL WINDS Lab Number: L2351364

**Project Number:** 03.0033579.16 **Report Date:** 10/13/23

**SAMPLE RESULTS** 

Lab ID: L2351364-02 D Date Collected: 09/05/23 08:45

Client ID: MWN-01-090523 Date Received: 09/05/23 Sample Location: LACKAWANNA, NY Field Prep: Not Specified

Sample Depth:

| Parameter                           | Result      | Qualifier | Units | RL   | MDL   | Dilution Factor |
|-------------------------------------|-------------|-----------|-------|------|-------|-----------------|
| Semivolatile Organics by GC/MS - Ma | nsfield Lab |           |       |      |       |                 |
| Fluorene                            | 52.4        |           | ug/l  | 2.27 | 0.473 | 5               |
| Diethylphthalate                    | ND          |           | ug/l  | 2.27 | 0.818 | 5               |
| 4-Nitroaniline                      | ND          |           | ug/l  | 2.27 | 0.509 | 5               |
| n-Nitrosodiphenylamine              | ND          |           | ug/l  | 2.27 | 0.327 | 5               |
| Hexachlorobenzene                   | ND          |           | ug/l  | 2.27 | 0.554 | 5               |
| Phenanthrene                        | 86.6        |           | ug/l  | 2.27 | 0.504 | 5               |
| Anthracene                          | 13.3        |           | ug/l  | 2.27 | 0.623 | 5               |
| Carbazole                           | 19.6        |           | ug/l  | 2.27 | 0.650 | 5               |
| Di-n-butylphthalate                 | ND          |           | ug/l  | 2.27 | 0.453 | 5               |
| Fluoranthene                        | 12.3        |           | ug/l  | 2.27 | 0.709 | 5               |
| Pyrene                              | 7.22        |           | ug/l  | 2.27 | 0.773 | 5               |
| Butylbenzylphthalate                | ND          |           | ug/l  | 2.27 | 0.385 | 5               |
| 3,3'-Dichlorobenzidine              | ND          |           | ug/l  | 2.27 | 0.877 | 5               |
| Benz(a)anthracene                   | ND          |           | ug/l  | 2.27 | 0.836 | 5               |
| Chrysene                            | ND          |           | ug/l  | 2.27 | 0.645 | 5               |
| bis(2-Ethylhexyl)phthalate          | ND          |           | ug/l  | 2.27 | 0.368 | 5               |
| Di-n-octylphthalate                 | ND          |           | ug/l  | 4.54 | 0.357 | 5               |
| Benzo(b)fluoranthene                | ND          |           | ug/l  | 2.27 | 0.298 | 5               |
| Benzo(k)fluoranthene                | ND          |           | ug/l  | 2.27 | 0.732 | 5               |
| Benzo(a)pyrene                      | ND          |           | ug/l  | 2.27 | 0.274 | 5               |
| Indeno(1,2,3-cd)pyrene              | ND          |           | ug/l  | 2.27 | 0.407 | 5               |
| Dibenz(a,h)anthracene               | ND          |           | ug/l  | 2.27 | 0.291 | 5               |
| Benzo(g,h,i)perylene                | ND          |           | ug/l  | 2.27 | 0.495 | 5               |

| Surrogate        | % Recovery | Qualifier | Acceptance<br>Criteria |  |
|------------------|------------|-----------|------------------------|--|
| Nitrobenzene-d5  | 77         |           | 30-130                 |  |
| 2-Fluorobiphenyl | 75         |           | 30-130                 |  |
| Terphenyl-d14    | 92         |           | 30-130                 |  |



Project Name: STEEL WINDS Lab Number: L2351364

**Project Number:** 03.0033579.16 **Report Date:** 10/13/23

**SAMPLE RESULTS** 

Lab ID: L2351364-03 Date Collected: 09/05/23 09:35

Client ID: WT1-04-090523 Date Received: 09/05/23 Sample Location: LACKAWANNA, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 3510C
Analytical Method: 1.8270E Extraction Date: 09/12/23 13:47

Analytical Method: 1,8270E Extraction Date: 09/12/23 13:47

Analytical Date: 09/14/23 21:10

| Parameter                        | Result        | Qualifier | Units | RL    | MDL   | Dilution Factor |  |
|----------------------------------|---------------|-----------|-------|-------|-------|-----------------|--|
| Semivolatile Organics by GC/MS - | Mansfield Lab |           |       |       |       |                 |  |
| bis(2-Chloroethyl)ether          | ND            |           | ug/l  | 0.500 | 0.093 | 1               |  |
| 1,3-Dichlorobenzene              | ND            |           | ug/l  | 0.500 | 0.078 | 1               |  |
| 1,4-Dichlorobenzene              | ND            |           | ug/l  | 0.500 | 0.083 | 1               |  |
| 1,2-Dichlorobenzene              | ND            |           | ug/l  | 0.500 | 0.068 | 1               |  |
| Benzyl alcohol                   | ND            |           | ug/l  | 0.500 | 0.123 | 1               |  |
| bis(2-chloroisopropyl)ether      | ND            |           | ug/l  | 0.500 | 0.108 | 1               |  |
| Acetophenone                     | ND            |           | ug/l  | 1.00  | 0.207 | 1               |  |
| Hexachloroethane                 | ND            |           | ug/l  | 0.500 | 0.102 | 1               |  |
| Nitrobenzene                     | ND            |           | ug/l  | 0.500 | 0.102 | 1               |  |
| Isophorone                       | ND            |           | ug/l  | 0.500 | 0.126 | 1               |  |
| bis(2-Chloroethoxy)methane       | ND            |           | ug/l  | 0.500 | 0.085 | 1               |  |
| 1,2,4-Trichlorobenzene           | ND            |           | ug/l  | 0.500 | 0.096 | 1               |  |
| Naphthalene                      | 28.3          |           | ug/l  | 0.500 | 0.088 | 1               |  |
| 4-Chloroaniline                  | ND            |           | ug/l  | 0.500 | 0.128 | 1               |  |
| Hexachlorobutadiene              | ND            |           | ug/l  | 0.500 | 0.086 | 1               |  |
| 2-Methylnaphthalene              | 5.88          |           | ug/l  | 0.500 | 0.091 | 1               |  |
| 1,2,4,5-Tetrachlorobenzene       | ND            |           | ug/l  | 0.500 | 0.080 | 1               |  |
| Hexachlorocyclopentadiene        | ND            |           | ug/l  | 0.500 | 0.153 | 1               |  |
| Biphenyl                         | 1.54          |           | ug/l  | 0.500 | 0.111 | 1               |  |
| 2-Chloronaphthalene              | ND            |           | ug/l  | 0.500 | 0.090 | 1               |  |
| 2-Nitroaniline                   | ND            |           | ug/l  | 0.500 | 0.138 | 1               |  |
| Acenaphthylene                   | 2.64          |           | ug/l  | 0.500 | 0.112 | 1               |  |
| Dimethylphthalate                | ND            |           | ug/l  | 0.500 | 0.117 | 1               |  |
| 2,6-Dinitrotoluene               | ND            |           | ug/l  | 0.500 | 0.168 | 1               |  |
| Acenaphthene                     | 2.73          |           | ug/l  | 0.500 | 0.096 | 1               |  |
| 3-Nitroaniline                   | ND            |           | ug/l  | 0.500 | 0.111 | 1               |  |
| Dibenzofuran                     | 8.61          |           | ug/l  | 0.500 | 0.091 | 1               |  |
| 2,4-Dinitrotoluene               | ND            |           | ug/l  | 0.500 | 0.163 | 1               |  |
|                                  |               |           |       |       |       |                 |  |



**Project Name:** Lab Number: STEEL WINDS L2351364

**Project Number:** Report Date: 03.0033579.1610/13/23

**SAMPLE RESULTS** 

Lab ID: Date Collected: 09/05/23 09:35 L2351364-03

Date Received: Client ID: 09/05/23 WT1-04-090523 Sample Location: Field Prep: LACKAWANNA, NY Not Specified

Sample Depth:

| Parameter                                      | Result | Qualifier | Units | RL    | MDL   | Dilution Factor |  |  |
|------------------------------------------------|--------|-----------|-------|-------|-------|-----------------|--|--|
| Semivolatile Organics by GC/MS - Mansfield Lab |        |           |       |       |       |                 |  |  |
| Fluorene                                       | 14.0   |           | ug/l  | 0.500 | 0.104 | 1               |  |  |
| Diethylphthalate                               | ND     |           | ug/l  | 0.500 | 0.180 | 1               |  |  |
| 4-Nitroaniline                                 | ND     |           | ug/l  | 0.500 | 0.112 | 1               |  |  |
| n-Nitrosodiphenylamine                         | ND     |           | ug/l  | 0.500 | 0.072 | 1               |  |  |
| Hexachlorobenzene                              | ND     |           | ug/l  | 0.500 | 0.122 | 1               |  |  |
| Phenanthrene                                   | 39.4   |           | ug/l  | 0.500 | 0.111 | 1               |  |  |
| Anthracene                                     | 5.85   |           | ug/l  | 0.500 | 0.137 | 1               |  |  |
| Carbazole                                      | 7.05   |           | ug/l  | 0.500 | 0.143 | 1               |  |  |
| Di-n-butylphthalate                            | ND     |           | ug/l  | 0.500 | 0.100 | 1               |  |  |
| Fluoranthene                                   | 10.1   |           | ug/l  | 0.500 | 0.156 | 1               |  |  |
| Pyrene                                         | 6.54   |           | ug/l  | 0.500 | 0.170 | 1               |  |  |
| Butylbenzylphthalate                           | ND     |           | ug/l  | 0.500 | 0.085 | 1               |  |  |
| 3,3'-Dichlorobenzidine                         | ND     |           | ug/l  | 0.500 | 0.193 | 1               |  |  |
| Benz(a)anthracene                              | 0.367  | J         | ug/l  | 0.500 | 0.184 | 1               |  |  |
| Chrysene                                       | 0.339  | J         | ug/l  | 0.500 | 0.142 | 1               |  |  |
| bis(2-Ethylhexyl)phthalate                     | ND     |           | ug/l  | 0.500 | 0.081 | 1               |  |  |
| Di-n-octylphthalate                            | ND     |           | ug/l  | 1.00  | 0.079 | 1               |  |  |
| Benzo(b)fluoranthene                           | ND     |           | ug/l  | 0.500 | 0.066 | 1               |  |  |
| Benzo(k)fluoranthene                           | ND     |           | ug/l  | 0.500 | 0.161 | 1               |  |  |
| Benzo(a)pyrene                                 | ND     |           | ug/l  | 0.500 | 0.060 | 1               |  |  |
| Indeno(1,2,3-cd)pyrene                         | ND     |           | ug/l  | 0.500 | 0.090 | 1               |  |  |
| Dibenz(a,h)anthracene                          | ND     |           | ug/l  | 0.500 | 0.064 | 1               |  |  |
| Benzo(g,h,i)perylene                           | ND     |           | ug/l  | 0.500 | 0.109 | 1               |  |  |

| Surrogate        | % Recovery | Acceptance<br>Qualifier Criteria |  |
|------------------|------------|----------------------------------|--|
| Nitrobenzene-d5  | 64         | 30-130                           |  |
| 2-Fluorobiphenyl | 67         | 30-130                           |  |
| Terphenyl-d14    | 97         | 30-130                           |  |



Project Name: STEEL WINDS Lab Number: L2351364

**Project Number:** 03.0033579.16 **Report Date:** 10/13/23

**SAMPLE RESULTS** 

Lab ID: L2351364-04 D Date Collected: 09/05/23 10:25

Client ID: BCP-ORC-1-090523 Date Received: 09/05/23 Sample Location: LACKAWANNA, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 3510C
Analytical Method: 1.8270E Extraction Date: 09/12/23 13:47

Analytical Method: 1,8270E Extraction Date: 09/12/23 13:47

Analytical Date: 09/20/23 20:00

| Parameter                          | Result        | Qualifier | Units | RL   | MDL   | Dilution Factor |
|------------------------------------|---------------|-----------|-------|------|-------|-----------------|
| Semivolatile Organics by GC/MS - N | Mansfield Lab |           |       |      |       |                 |
| bis(2-Chloroethyl)ether            | ND            |           | ug/l  | 2.45 | 0.455 | 5               |
| 1,3-Dichlorobenzene                | ND            |           | ug/l  | 2.45 | 0.384 | 5               |
| 1,4-Dichlorobenzene                | ND            |           | ug/l  | 2.45 | 0.406 | 5               |
| 1,2-Dichlorobenzene                | ND            |           | ug/l  | 2.45 | 0.333 | 5               |
| Benzyl alcohol                     | ND            |           | ug/l  | 2.45 | 0.603 | 5               |
| bis(2-chloroisopropyl)ether        | ND            |           | ug/l  | 2.45 | 0.529 | 5               |
| Acetophenone                       | ND            |           | ug/l  | 4.90 | 1.01  | 5               |
| Hexachloroethane                   | ND            |           | ug/l  | 2.45 | 0.500 | 5               |
| Nitrobenzene                       | ND            |           | ug/l  | 2.45 | 0.500 | 5               |
| Isophorone                         | ND            |           | ug/l  | 2.45 | 0.618 | 5               |
| bis(2-Chloroethoxy)methane         | ND            |           | ug/l  | 2.45 | 0.419 | 5               |
| 1,2,4-Trichlorobenzene             | ND            |           | ug/l  | 2.45 | 0.471 | 5               |
| Naphthalene                        | 216           |           | ug/l  | 2.45 | 0.429 | 5               |
| 4-Chloroaniline                    | ND            |           | ug/l  | 2.45 | 0.627 | 5               |
| Hexachlorobutadiene                | ND            |           | ug/l  | 2.45 | 0.419 | 5               |
| 2-Methylnaphthalene                | 22.7          |           | ug/l  | 2.45 | 0.446 | 5               |
| 1,2,4,5-Tetrachlorobenzene         | ND            |           | ug/l  | 2.45 | 0.391 | 5               |
| Hexachlorocyclopentadiene          | ND            |           | ug/l  | 2.45 | 0.750 | 5               |
| Biphenyl                           | 3.24          |           | ug/l  | 2.45 | 0.544 | 5               |
| 2-Chloronaphthalene                | ND            |           | ug/l  | 2.45 | 0.441 | 5               |
| 2-Nitroaniline                     | ND            |           | ug/l  | 2.45 | 0.676 | 5               |
| Acenaphthylene                     | 16.1          |           | ug/l  | 2.45 | 0.549 | 5               |
| Dimethylphthalate                  | ND            |           | ug/l  | 2.45 | 0.574 | 5               |
| 2,6-Dinitrotoluene                 | ND            |           | ug/l  | 2.45 | 0.824 | 5               |
| Acenaphthene                       | 6.20          |           | ug/l  | 2.45 | 0.468 | 5               |
| 3-Nitroaniline                     | ND            |           | ug/l  | 2.45 | 0.544 | 5               |
| Dibenzofuran                       | 13.4          |           | ug/l  | 2.45 | 0.446 | 5               |
| 2,4-Dinitrotoluene                 | ND            |           | ug/l  | 2.45 | 0.799 | 5               |
|                                    |               |           |       |      |       |                 |



**Project Name:** Lab Number: STEEL WINDS L2351364

**Project Number:** Report Date: 03.0033579.1610/13/23

**SAMPLE RESULTS** 

Lab ID: D Date Collected: 09/05/23 10:25 L2351364-04

Date Received: Client ID: BCP-ORC-1-090523 09/05/23 Sample Location: Field Prep: LACKAWANNA, NY Not Specified

Sample Depth:

| Parameter                              | Result   | Qualifier | Units | RL   | MDL   | Dilution Factor |
|----------------------------------------|----------|-----------|-------|------|-------|-----------------|
| Semivolatile Organics by GC/MS - Mansf | ield Lab |           |       |      |       |                 |
| Fluorene                               | 22.5     |           | ug/l  | 2.45 | 0.510 | 5               |
| Diethylphthalate                       | ND       |           | ug/l  | 2.45 | 0.882 | 5               |
| 4-Nitroaniline                         | ND       |           | ug/l  | 2.45 | 0.549 | 5               |
| n-Nitrosodiphenylamine                 | ND       |           | ug/l  | 2.45 | 0.353 | 5               |
| Hexachlorobenzene                      | ND       |           | ug/l  | 2.45 | 0.598 | 5               |
| Phenanthrene                           | 29.5     |           | ug/l  | 2.45 | 0.544 | 5               |
| Anthracene                             | 2.63     |           | ug/l  | 2.45 | 0.672 | 5               |
| Carbazole                              | 31.3     |           | ug/l  | 2.45 | 0.701 | 5               |
| Di-n-butylphthalate                    | ND       |           | ug/l  | 2.45 | 0.488 | 5               |
| Fluoranthene                           | 5.66     |           | ug/l  | 2.45 | 0.765 | 5               |
| Pyrene                                 | 4.25     |           | ug/l  | 2.45 | 0.833 | 5               |
| Butylbenzylphthalate                   | ND       |           | ug/l  | 2.45 | 0.416 | 5               |
| 3,3'-Dichlorobenzidine                 | ND       |           | ug/l  | 2.45 | 0.946 | 5               |
| Benz(a)anthracene                      | ND       |           | ug/l  | 2.45 | 0.902 | 5               |
| Chrysene                               | ND       |           | ug/l  | 2.45 | 0.696 | 5               |
| bis(2-Ethylhexyl)phthalate             | ND       |           | ug/l  | 2.45 | 0.396 | 5               |
| Di-n-octylphthalate                    | ND       |           | ug/l  | 4.90 | 0.385 | 5               |
| Benzo(b)fluoranthene                   | ND       |           | ug/l  | 2.45 | 0.321 | 5               |
| Benzo(k)fluoranthene                   | ND       |           | ug/l  | 2.45 | 0.789 | 5               |
| Benzo(a)pyrene                         | ND       |           | ug/l  | 2.45 | 0.295 | 5               |
| Indeno(1,2,3-cd)pyrene                 | ND       |           | ug/l  | 2.45 | 0.439 | 5               |
| Dibenz(a,h)anthracene                  | ND       |           | ug/l  | 2.45 | 0.314 | 5               |
| Benzo(g,h,i)perylene                   | ND       |           | ug/l  | 2.45 | 0.534 | 5               |

| Surrogate        | % Recovery | Acceptance<br>Qualifier Criteria |  |
|------------------|------------|----------------------------------|--|
| Nitrobenzene-d5  | 75         | 30-130                           |  |
| 2-Fluorobiphenyl | 74         | 30-130                           |  |
| Terphenyl-d14    | 88         | 30-130                           |  |



Project Name: STEEL WINDS Lab Number: L2351364

**Project Number:** 03.0033579.16 **Report Date:** 10/13/23

**SAMPLE RESULTS** 

Lab ID: L2351364-05 Date Collected: 09/05/23 11:25

Client ID: WT1-02-090523 Date Received: 09/05/23 Sample Location: LACKAWANNA, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 3510C
Analytical Method: 1.8270E Extraction Date: 09/12/23 13:47

Analytical Method: 1,8270E Extraction Date: 09/12/23 13:47

Analytical Date: 09/14/23 22:10

| Parameter                          | Result        | Qualifier | Units | RL    | MDL   | Dilution Factor |
|------------------------------------|---------------|-----------|-------|-------|-------|-----------------|
| Semivolatile Organics by GC/MS - I | Mansfield Lab |           |       |       |       |                 |
| bis(2-Chloroethyl)ether            | ND            |           | ug/l  | 0.500 | 0.093 | 1               |
| 1,3-Dichlorobenzene                | ND            |           | ug/l  | 0.500 | 0.078 | 1               |
| 1,4-Dichlorobenzene                | ND            |           | ug/l  | 0.500 | 0.083 | 1               |
| 1,2-Dichlorobenzene                | ND            |           | ug/l  | 0.500 | 0.068 | 1               |
| Benzyl alcohol                     | ND            |           | ug/l  | 0.500 | 0.123 | 1               |
| bis(2-chloroisopropyl)ether        | ND            |           | ug/l  | 0.500 | 0.108 | 1               |
| Acetophenone                       | ND            |           | ug/l  | 1.00  | 0.207 | 1               |
| Hexachloroethane                   | ND            |           | ug/l  | 0.500 | 0.102 | 1               |
| Nitrobenzene                       | ND            |           | ug/l  | 0.500 | 0.102 | 1               |
| Isophorone                         | ND            |           | ug/l  | 0.500 | 0.126 | 1               |
| bis(2-Chloroethoxy)methane         | ND            |           | ug/l  | 0.500 | 0.085 | 1               |
| 1,2,4-Trichlorobenzene             | ND            |           | ug/l  | 0.500 | 0.096 | 1               |
| Naphthalene                        | 13.2          |           | ug/l  | 0.500 | 0.088 | 1               |
| 4-Chloroaniline                    | ND            |           | ug/l  | 0.500 | 0.128 | 1               |
| Hexachlorobutadiene                | ND            |           | ug/l  | 0.500 | 0.086 | 1               |
| 2-Methylnaphthalene                | 3.68          |           | ug/l  | 0.500 | 0.091 | 1               |
| 1,2,4,5-Tetrachlorobenzene         | ND            |           | ug/l  | 0.500 | 0.080 | 1               |
| Hexachlorocyclopentadiene          | ND            |           | ug/l  | 0.500 | 0.153 | 1               |
| Biphenyl                           | 0.855         |           | ug/l  | 0.500 | 0.111 | 1               |
| 2-Chloronaphthalene                | ND            |           | ug/l  | 0.500 | 0.090 | 1               |
| 2-Nitroaniline                     | ND            |           | ug/l  | 0.500 | 0.138 | 1               |
| Acenaphthylene                     | 1.04          |           | ug/l  | 0.500 | 0.112 | 1               |
| Dimethylphthalate                  | ND            |           | ug/l  | 0.500 | 0.117 | 1               |
| 2,6-Dinitrotoluene                 | ND            |           | ug/l  | 0.500 | 0.168 | 1               |
| Acenaphthene                       | 1.17          |           | ug/l  | 0.500 | 0.096 | 1               |
| 3-Nitroaniline                     | ND            |           | ug/l  | 0.500 | 0.111 | 1               |
| Dibenzofuran                       | 3.35          |           | ug/l  | 0.500 | 0.091 | 1               |
| 2,4-Dinitrotoluene                 | ND            |           | ug/l  | 0.500 | 0.163 | 1               |
|                                    |               |           |       |       |       |                 |



MDL

**Dilution Factor** 

Project Name: STEEL WINDS Lab Number: L2351364

**Project Number:** 03.0033579.16 **Report Date:** 10/13/23

**SAMPLE RESULTS** 

Lab ID: L2351364-05 Date Collected: 09/05/23 11:25

Client ID: WT1-02-090523 Date Received: 09/05/23 Sample Location: LACKAWANNA, NY Field Prep: Not Specified

Qualifier

Units

RL

Result

Sample Depth:

Parameter

| i didilictoi                   |                 |   | ••   |       |       | 2 |  |
|--------------------------------|-----------------|---|------|-------|-------|---|--|
| Semivolatile Organics by GC/MS | - Mansfield Lab |   |      |       |       |   |  |
| Fluorene                       | 6.79            |   | ug/l | 0.500 | 0.104 | 1 |  |
| Diethylphthalate               | ND              |   | ug/l | 0.500 | 0.180 | 1 |  |
| 4-Nitroaniline                 | ND              |   | ug/l | 0.500 | 0.112 | 1 |  |
| n-Nitrosodiphenylamine         | ND              |   | ug/l | 0.500 | 0.072 | 1 |  |
| Hexachlorobenzene              | ND              |   | ug/l | 0.500 | 0.122 | 1 |  |
| Phenanthrene                   | 11.4            |   | ug/l | 0.500 | 0.111 | 1 |  |
| Anthracene                     | 2.35            |   | ug/l | 0.500 | 0.137 | 1 |  |
| Carbazole                      | 3.88            |   | ug/l | 0.500 | 0.143 | 1 |  |
| Di-n-butylphthalate            | ND              |   | ug/l | 0.500 | 0.100 | 1 |  |
| Fluoranthene                   | 4.63            |   | ug/l | 0.500 | 0.156 | 1 |  |
| Pyrene                         | 4.56            |   | ug/l | 0.500 | 0.170 | 1 |  |
| Butylbenzylphthalate           | ND              |   | ug/l | 0.500 | 0.085 | 1 |  |
| 3,3'-Dichlorobenzidine         | ND              |   | ug/l | 0.500 | 0.193 | 1 |  |
| Benz(a)anthracene              | 0.209           | J | ug/l | 0.500 | 0.184 | 1 |  |
| Chrysene                       | 0.168           | J | ug/l | 0.500 | 0.142 | 1 |  |
| bis(2-Ethylhexyl)phthalate     | ND              |   | ug/l | 0.500 | 0.081 | 1 |  |
| Di-n-octylphthalate            | ND              |   | ug/l | 1.00  | 0.079 | 1 |  |
| Benzo(b)fluoranthene           | ND              |   | ug/l | 0.500 | 0.066 | 1 |  |
| Benzo(k)fluoranthene           | ND              |   | ug/l | 0.500 | 0.161 | 1 |  |
| Benzo(a)pyrene                 | ND              |   | ug/l | 0.500 | 0.060 | 1 |  |
| Indeno(1,2,3-cd)pyrene         | ND              |   | ug/l | 0.500 | 0.090 | 1 |  |
| Dibenz(a,h)anthracene          | ND              |   | ug/l | 0.500 | 0.064 | 1 |  |
| Benzo(g,h,i)perylene           | ND              |   | ug/l | 0.500 | 0.109 | 1 |  |
|                                |                 |   |      |       |       |   |  |

| Surrogate            | % Recovery | Qualifier | Acceptance<br>Criteria |  |
|----------------------|------------|-----------|------------------------|--|
| Nitrobenzene-d5      | 64         |           | 30-130                 |  |
| 2,4,6-Tribromophenol | 100        |           | 15-115                 |  |
| Terphenyl-d14        | 99         |           | 30-130                 |  |



Project Name: STEEL WINDS Lab Number: L2351364

**Project Number:** 03.0033579.16 **Report Date:** 10/13/23

**SAMPLE RESULTS** 

Lab ID: L2351364-06 Date Collected: 09/05/23 13:05

Client ID: MWN-02-090523 Date Received: 09/05/23 Sample Location: LACKAWANNA, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 3510C
Analytical Method: 1,8270E Extraction Date: 09/12/23 13:48

Analytical Date: 09/20/23 20:29

| Parameter                        | Result        | Qualifier | Units | RL    | MDL   | Dilution Factor |  |
|----------------------------------|---------------|-----------|-------|-------|-------|-----------------|--|
| Semivolatile Organics by GC/MS - | Mansfield Lab |           |       |       |       |                 |  |
| bis(2-Chloroethyl)ether          | ND            |           | ug/l  | 0.485 | 0.090 | 1               |  |
| 1,3-Dichlorobenzene              | ND            |           | ug/l  | 0.485 | 0.076 | 1               |  |
| 1,4-Dichlorobenzene              | ND            |           | ug/l  | 0.485 | 0.080 | 1               |  |
| 1,2-Dichlorobenzene              | ND            |           | ug/l  | 0.485 | 0.066 | 1               |  |
| Benzyl alcohol                   | ND            |           | ug/l  | 0.485 | 0.119 | 1               |  |
| bis(2-chloroisopropyl)ether      | ND            |           | ug/l  | 0.485 | 0.105 | 1               |  |
| Acetophenone                     | 0.265         | J         | ug/l  | 0.971 | 0.201 | 1               |  |
| Hexachloroethane                 | ND            |           | ug/l  | 0.485 | 0.099 | 1               |  |
| Nitrobenzene                     | ND            |           | ug/l  | 0.485 | 0.099 | 1               |  |
| Isophorone                       | ND            |           | ug/l  | 0.485 | 0.122 | 1               |  |
| bis(2-Chloroethoxy)methane       | ND            |           | ug/l  | 0.485 | 0.083 | 1               |  |
| 1,2,4-Trichlorobenzene           | ND            |           | ug/l  | 0.485 | 0.093 | 1               |  |
| Naphthalene                      | 23.3          |           | ug/l  | 0.485 | 0.085 | 1               |  |
| 4-Chloroaniline                  | ND            |           | ug/l  | 0.485 | 0.124 | 1               |  |
| Hexachlorobutadiene              | ND            |           | ug/l  | 0.485 | 0.083 | 1               |  |
| 2-Methylnaphthalene              | 3.90          |           | ug/l  | 0.485 | 0.088 | 1               |  |
| 1,2,4,5-Tetrachlorobenzene       | ND            |           | ug/l  | 0.485 | 0.077 | 1               |  |
| Hexachlorocyclopentadiene        | ND            |           | ug/l  | 0.485 | 0.148 | 1               |  |
| Biphenyl                         | 1.00          |           | ug/l  | 0.485 | 0.108 | 1               |  |
| 2-Chloronaphthalene              | ND            |           | ug/l  | 0.485 | 0.087 | 1               |  |
| 2-Nitroaniline                   | ND            |           | ug/l  | 0.485 | 0.134 | 1               |  |
| Acenaphthylene                   | 3.14          |           | ug/l  | 0.485 | 0.109 | 1               |  |
| Dimethylphthalate                | ND            |           | ug/l  | 0.485 | 0.114 | 1               |  |
| 2,6-Dinitrotoluene               | ND            |           | ug/l  | 0.485 | 0.163 | 1               |  |
| Acenaphthene                     | 1.46          |           | ug/l  | 0.485 | 0.093 | 1               |  |
| 3-Nitroaniline                   | ND            |           | ug/l  | 0.485 | 0.108 | 1               |  |
| Dibenzofuran                     | 3.85          |           | ug/l  | 0.485 | 0.088 | 1               |  |
| 2,4-Dinitrotoluene               | ND            |           | ug/l  | 0.485 | 0.158 | 1               |  |
|                                  |               |           |       |       |       |                 |  |



MDL

**Dilution Factor** 

Project Name: STEEL WINDS Lab Number: L2351364

**Project Number:** 03.0033579.16 **Report Date:** 10/13/23

**SAMPLE RESULTS** 

Lab ID: L2351364-06 Date Collected: 09/05/23 13:05

Client ID: MWN-02-090523 Date Received: 09/05/23 Sample Location: LACKAWANNA, NY Field Prep: Not Specified

Qualifier

Units

RL

Result

Sample Depth:

Parameter

| i arameter                   | rtcount             | Qualifici | Omis |       |       | Dilution i dotoi |  |
|------------------------------|---------------------|-----------|------|-------|-------|------------------|--|
| Semivolatile Organics by GC/ | /MS - Mansfield Lab |           |      |       |       |                  |  |
| Fluorene                     | 5.84                |           | ug/l | 0.485 | 0.101 | 1                |  |
| Diethylphthalate             | ND                  |           | ug/l | 0.485 | 0.175 | 1                |  |
| 4-Nitroaniline               | ND                  |           | ug/l | 0.485 | 0.109 | 1                |  |
| n-Nitrosodiphenylamine       | ND                  |           | ug/l | 0.485 | 0.070 | 1                |  |
| Hexachlorobenzene            | ND                  |           | ug/l | 0.485 | 0.118 | 1                |  |
| Phenanthrene                 | 5.72                |           | ug/l | 0.485 | 0.108 | 1                |  |
| Anthracene                   | 0.986               |           | ug/l | 0.485 | 0.133 | 1                |  |
| Carbazole                    | 4.37                |           | ug/l | 0.485 | 0.139 | 1                |  |
| Di-n-butylphthalate          | ND                  |           | ug/l | 0.485 | 0.097 | 1                |  |
| Fluoranthene                 | 0.857               |           | ug/l | 0.485 | 0.151 | 1                |  |
| Pyrene                       | 1.86                |           | ug/l | 0.485 | 0.165 | 1                |  |
| Butylbenzylphthalate         | 0.113               | J         | ug/l | 0.485 | 0.082 | 1                |  |
| 3,3'-Dichlorobenzidine       | ND                  |           | ug/l | 0.485 | 0.187 | 1                |  |
| Benz(a)anthracene            | ND                  |           | ug/l | 0.485 | 0.179 | 1                |  |
| Chrysene                     | ND                  |           | ug/l | 0.485 | 0.138 | 1                |  |
| bis(2-Ethylhexyl)phthalate   | ND                  |           | ug/l | 0.485 | 0.079 | 1                |  |
| Di-n-octylphthalate          | ND                  |           | ug/l | 0.971 | 0.076 | 1                |  |
| Benzo(b)fluoranthene         | ND                  |           | ug/l | 0.485 | 0.064 | 1                |  |
| Benzo(k)fluoranthene         | ND                  |           | ug/l | 0.485 | 0.156 | 1                |  |
| Benzo(a)pyrene               | ND                  |           | ug/l | 0.485 | 0.058 | 1                |  |
| Indeno(1,2,3-cd)pyrene       | ND                  |           | ug/l | 0.485 | 0.087 | 1                |  |
| Dibenz(a,h)anthracene        | ND                  |           | ug/l | 0.485 | 0.062 | 1                |  |
| Benzo(g,h,i)perylene         | ND                  |           | ug/l | 0.485 | 0.106 | 1                |  |
|                              |                     |           |      |       |       |                  |  |

| Surrogate        | % Recovery | Qualifier | Acceptance<br>Criteria |  |
|------------------|------------|-----------|------------------------|--|
| Nitrobenzene-d5  | 70         |           | 30-130                 |  |
| 2-Fluorobiphenyl | 70         |           | 30-130                 |  |
| Terphenyl-d14    | 92         |           | 30-130                 |  |



Project Name: STEEL WINDS Lab Number: L2351364

**Project Number:** 03.0033579.16 **Report Date:** 10/13/23

**SAMPLE RESULTS** 

Lab ID: L2351364-07 D Date Collected: 09/05/23 14:05

Client ID: MWN-01B-090523 Date Received: 09/05/23 Sample Location: LACKAWANNA, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 3510C
Analytical Method: 1.8270E Extraction Date: 09/12/23 13:48

Analytical Method: 1,8270E Extraction Date: 09/12/23 13:48
Analytical Date: 09/20/23 20:59

| Parameter                        | Result        | Qualifier | Units | RL   | MDL  | Dilution Factor |  |
|----------------------------------|---------------|-----------|-------|------|------|-----------------|--|
| Semivolatile Organics by GC/MS - | Mansfield Lab |           |       |      |      |                 |  |
| bis(2-Chloroethyl)ether          | ND            |           | ug/l  | 24.5 | 4.55 | 50              |  |
| 1,3-Dichlorobenzene              | ND            |           | ug/l  | 24.5 | 3.84 | 50              |  |
| 1,4-Dichlorobenzene              | ND            |           | ug/l  | 24.5 | 4.06 | 50              |  |
| 1,2-Dichlorobenzene              | ND            |           | ug/l  | 24.5 | 3.33 | 50              |  |
| Benzyl alcohol                   | ND            |           | ug/l  | 24.5 | 6.03 | 50              |  |
| bis(2-chloroisopropyl)ether      | ND            |           | ug/l  | 24.5 | 5.29 | 50              |  |
| Acetophenone                     | ND            |           | ug/l  | 49.0 | 10.1 | 50              |  |
| Hexachloroethane                 | ND            |           | ug/l  | 24.5 | 5.00 | 50              |  |
| Nitrobenzene                     | ND            |           | ug/l  | 24.5 | 5.00 | 50              |  |
| Isophorone                       | ND            |           | ug/l  | 24.5 | 6.18 | 50              |  |
| bis(2-Chloroethoxy)methane       | ND            |           | ug/l  | 24.5 | 4.19 | 50              |  |
| 1,2,4-Trichlorobenzene           | ND            |           | ug/l  | 24.5 | 4.71 | 50              |  |
| Naphthalene                      | 876           |           | ug/l  | 24.5 | 4.29 | 50              |  |
| 4-Chloroaniline                  | ND            |           | ug/l  | 24.5 | 6.27 | 50              |  |
| Hexachlorobutadiene              | ND            |           | ug/l  | 24.5 | 4.19 | 50              |  |
| 2-Methylnaphthalene              | 33.7          |           | ug/l  | 24.5 | 4.46 | 50              |  |
| 1,2,4,5-Tetrachlorobenzene       | ND            |           | ug/l  | 24.5 | 3.91 | 50              |  |
| Hexachlorocyclopentadiene        | ND            |           | ug/l  | 24.5 | 7.50 | 50              |  |
| Biphenyl                         | ND            |           | ug/l  | 24.5 | 5.44 | 50              |  |
| 2-Chloronaphthalene              | ND            |           | ug/l  | 24.5 | 4.41 | 50              |  |
| 2-Nitroaniline                   | ND            |           | ug/l  | 24.5 | 6.76 | 50              |  |
| Acenaphthylene                   | 23.4          | J         | ug/l  | 24.5 | 5.49 | 50              |  |
| Dimethylphthalate                | ND            |           | ug/l  | 24.5 | 5.74 | 50              |  |
| 2,6-Dinitrotoluene               | ND            |           | ug/l  | 24.5 | 8.24 | 50              |  |
| Acenaphthene                     | 8.97          | J         | ug/l  | 24.5 | 4.68 | 50              |  |
| 3-Nitroaniline                   | ND            |           | ug/l  | 24.5 | 5.44 | 50              |  |
| Dibenzofuran                     | 22.6          | J         | ug/l  | 24.5 | 4.46 | 50              |  |
| 2,4-Dinitrotoluene               | ND            |           | ug/l  | 24.5 | 7.99 | 50              |  |
|                                  |               |           |       |      |      |                 |  |



Project Name: STEEL WINDS Lab Number: L2351364

**Project Number:** 03.0033579.16 **Report Date:** 10/13/23

**SAMPLE RESULTS** 

Lab ID: L2351364-07 D Date Collected: 09/05/23 14:05

Client ID: MWN-01B-090523 Date Received: 09/05/23 Sample Location: LACKAWANNA, NY Field Prep: Not Specified

Sample Depth:

| Parameter                      | Result            | Qualifier | Units | RL   | MDL  | Dilution Factor |  |
|--------------------------------|-------------------|-----------|-------|------|------|-----------------|--|
| Semivolatile Organics by GC/MS | S - Mansfield Lab |           |       |      |      |                 |  |
| Fluorene                       | 32.4              |           | ug/l  | 24.5 | 5.10 | 50              |  |
| Diethylphthalate               | ND                |           | ug/l  | 24.5 | 8.82 | 50              |  |
| 4-Nitroaniline                 | ND                |           | ug/l  | 24.5 | 5.49 | 50              |  |
| n-Nitrosodiphenylamine         | ND                |           | ug/l  | 24.5 | 3.53 | 50              |  |
| Hexachlorobenzene              | ND                |           | ug/l  | 24.5 | 5.98 | 50              |  |
| Phenanthrene                   | 51.3              |           | ug/l  | 24.5 | 5.44 | 50              |  |
| Anthracene                     | ND                |           | ug/l  | 24.5 | 6.72 | 50              |  |
| Carbazole                      | 46.1              |           | ug/l  | 24.5 | 7.01 | 50              |  |
| Di-n-butylphthalate            | ND                |           | ug/l  | 24.5 | 4.88 | 50              |  |
| Fluoranthene                   | 8.28              | J         | ug/l  | 24.5 | 7.65 | 50              |  |
| Pyrene                         | ND                |           | ug/l  | 24.5 | 8.33 | 50              |  |
| Butylbenzylphthalate           | ND                |           | ug/l  | 24.5 | 4.16 | 50              |  |
| 3,3'-Dichlorobenzidine         | ND                |           | ug/l  | 24.5 | 9.46 | 50              |  |
| Benz(a)anthracene              | ND                |           | ug/l  | 24.5 | 9.02 | 50              |  |
| Chrysene                       | ND                |           | ug/l  | 24.5 | 6.96 | 50              |  |
| bis(2-Ethylhexyl)phthalate     | ND                |           | ug/l  | 24.5 | 3.96 | 50              |  |
| Di-n-octylphthalate            | ND                |           | ug/l  | 49.0 | 3.85 | 50              |  |
| Benzo(b)fluoranthene           | ND                |           | ug/l  | 24.5 | 3.21 | 50              |  |
| Benzo(k)fluoranthene           | ND                |           | ug/l  | 24.5 | 7.89 | 50              |  |
| Benzo(a)pyrene                 | ND                |           | ug/l  | 24.5 | 2.95 | 50              |  |
| Indeno(1,2,3-cd)pyrene         | ND                |           | ug/l  | 24.5 | 4.39 | 50              |  |
| Dibenz(a,h)anthracene          | ND                |           | ug/l  | 24.5 | 3.14 | 50              |  |
| Benzo(g,h,i)perylene           | ND                |           | ug/l  | 24.5 | 5.34 | 50              |  |
|                                |                   |           |       |      |      |                 |  |

| Surrogate        | % Recovery | Qualifier | Acceptance<br>Criteria |  |
|------------------|------------|-----------|------------------------|--|
| Nitrobenzene-d5  | 74         |           | 30-130                 |  |
| 2-Fluorobiphenyl | 76         |           | 30-130                 |  |
| Terphenyl-d14    | 81         |           | 30-130                 |  |



Project Name: STEEL WINDS Lab Number: L2351364

**Project Number:** 03.0033579.16 **Report Date:** 10/13/23

### Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270E Extraction Method: EPA 3510C
Analytical Date: 09/14/23 16:15 Extraction Date: 09/12/23 13:47

| Parameter                      | Result         | Qualifier Uni   | its | R       | L      | MDL         |  |
|--------------------------------|----------------|-----------------|-----|---------|--------|-------------|--|
| Semivolatile Organics by GC/MS | - Mansfield La | ab for sample(s | ):  | 01-07 E | Batch: | WG1826460-1 |  |
| bis(2-Chloroethyl)ether        | ND             | uç              | g/l | 0.5     | 00     | 0.093       |  |
| 1,3-Dichlorobenzene            | ND             | uç              | g/l | 0.5     | 00     | 0.078       |  |
| 1,4-Dichlorobenzene            | ND             | uç              | g/l | 0.5     | 00     | 0.083       |  |
| 1,2-Dichlorobenzene            | ND             | uç              | g/l | 0.5     | 00     | 0.068       |  |
| Benzyl alcohol                 | ND             | uç              | g/l | 0.5     | 00     | 0.123       |  |
| bis(2-chloroisopropyl)ether    | ND             | uç              | g/l | 0.5     | 00     | 0.108       |  |
| Acetophenone                   | ND             | uç              | g/l | 1.0     | 00     | 0.207       |  |
| Hexachloroethane               | ND             | uç              | g/l | 0.5     | 00     | 0.102       |  |
| Nitrobenzene                   | ND             | uç              | g/l | 0.5     | 00     | 0.102       |  |
| Isophorone                     | ND             | uç              | g/l | 0.5     | 00     | 0.126       |  |
| bis(2-Chloroethoxy)methane     | ND             | uç              | g/l | 0.5     | 00     | 0.085       |  |
| 1,2,4-Trichlorobenzene         | ND             | uç              | g/l | 0.5     | 00     | 0.096       |  |
| Naphthalene                    | ND             | uç              | g/l | 0.5     | 00     | 0.088       |  |
| 4-Chloroaniline                | ND             | uç              | g/l | 0.5     | 00     | 0.128       |  |
| Hexachlorobutadiene            | ND             | uç              | g/l | 0.5     | 00     | 0.086       |  |
| 2-Methylnaphthalene            | ND             | uç              | g/l | 0.5     | 00     | 0.091       |  |
| 1,2,4,5-Tetrachlorobenzene     | ND             | uç              | g/l | 0.5     | 00     | 0.080       |  |
| Hexachlorocyclopentadiene      | ND             | uç              | g/l | 0.5     | 00     | 0.153       |  |
| Biphenyl                       | ND             | uç              | g/l | 0.5     | 00     | 0.111       |  |
| 2-Chloronaphthalene            | ND             | uç              | g/l | 0.5     | 00     | 0.090       |  |
| 2-Nitroaniline                 | ND             | uç              | g/l | 0.5     | 00     | 0.138       |  |
| Acenaphthylene                 | ND             | uç              | g/l | 0.5     | 00     | 0.112       |  |
| Dimethylphthalate              | ND             | uç              | g/l | 0.5     | 00     | 0.117       |  |
| 2,6-Dinitrotoluene             | ND             | uç              | g/l | 0.5     | 00     | 0.168       |  |
| Acenaphthene                   | ND             | uç              | g/l | 0.5     | 00     | 0.096       |  |
| 3-Nitroaniline                 | ND             | uç              | g/l | 0.5     | 00     | 0.111       |  |
| Dibenzofuran                   | ND             | uç              | g/l | 0.5     | 00     | 0.091       |  |
| 2,4-Dinitrotoluene             | ND             | uç              | g/l | 0.5     | 00     | 0.163       |  |
| Fluorene                       | ND             | uç              | g/l | 0.5     | 00     | 0.104       |  |
|                                |                |                 |     |         |        |             |  |



Project Name:STEEL WINDSLab Number:L2351364

**Project Number:** 03.0033579.16 **Report Date:** 10/13/23

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270E Extraction Method: EPA 3510C
Analytical Date: 09/14/23 16:15 Extraction Date: 09/12/23 13:47

| Parameter                        | Result       | Qualifier Units   | RL RL        | MDL         |
|----------------------------------|--------------|-------------------|--------------|-------------|
| Semivolatile Organics by GC/MS - | Mansfield La | ab for sample(s): | 01-07 Batch: | WG1826460-1 |
| Diethylphthalate                 | ND           | ug/               | 0.500        | 0.180       |
| 4-Nitroaniline                   | ND           | ug/               | 0.500        | 0.112       |
| n-Nitrosodiphenylamine           | ND           | ug/               | 0.500        | 0.072       |
| Hexachlorobenzene                | ND           | ug/               | 0.500        | 0.122       |
| Phenanthrene                     | ND           | ug/               | 0.500        | 0.111       |
| Anthracene                       | ND           | ug/               | 0.500        | 0.137       |
| Carbazole                        | ND           | ug/               | 0.500        | 0.143       |
| Di-n-butylphthalate              | ND           | ug/               | 0.500        | 0.100       |
| Fluoranthene                     | ND           | ug/               | 0.500        | 0.156       |
| Pyrene                           | ND           | ug/               | 0.500        | 0.170       |
| Butylbenzylphthalate             | ND           | ug/               | 0.500        | 0.085       |
| 3,3'-Dichlorobenzidine           | ND           | ug/               | 0.500        | 0.193       |
| Benz(a)anthracene                | ND           | ug/               | 0.500        | 0.184       |
| Chrysene                         | ND           | ug/               | 0.500        | 0.142       |
| bis(2-Ethylhexyl)phthalate       | ND           | ug/               | 0.500        | 0.081       |
| Di-n-octylphthalate              | ND           | ug/               | 1.00         | 0.079       |
| Benzo(b)fluoranthene             | ND           | ug/               | 0.500        | 0.066       |
| Benzo(k)fluoranthene             | ND           | ug/               | 0.500        | 0.161       |
| Benzo(a)pyrene                   | ND           | ug/               | 0.500        | 0.060       |
| Indeno(1,2,3-cd)pyrene           | ND           | ug/               | 0.500        | 0.090       |
| Dibenz(a,h)anthracene            | ND           | ug/               | 0.500        | 0.064       |
| Benzo(g,h,i)perylene             | ND           | ug/               | 0.500        | 0.109       |
|                                  |              |                   |              |             |



Project Name: STEEL WINDS Lab Number: L2351364

**Project Number:** 03.0033579.16 **Report Date:** 10/13/23

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8270E Extraction Method: EPA 3510C
Analytical Date: 09/14/23 16:15 Extraction Date: 09/12/23 13:47

Analyst: DB

Parameter Result Qualifier Units RL MDL

Semivolatile Organics by GC/MS - Mansfield Lab for sample(s): 01-07 Batch: WG1826460-1

| Surrogate            | %Recovery Qualif | Acceptance<br>ier Criteria |
|----------------------|------------------|----------------------------|
| 2 Elugraphonel       | 41               | 15-115                     |
| 2-Fluorophenol       | 41               |                            |
| Phenol-d5            | 29               | 15-115                     |
| Nitrobenzene-d5      | 84               | 30-130                     |
| 2-Fluorobiphenyl     | 76               | 30-130                     |
| 2,4,6-Tribromophenol | 93               | 15-115                     |
| Terphenyl-d14        | 93               | 30-130                     |



Project Name: STEEL WINDS
Project Number: 03.0033579.16

Lab Number: L2351364

**Report Date:** 10/13/23

| arameter                                  | LCS<br>%Recovery | Qual       | LCSD<br>%Recovery | Qual       | %Recovery<br>Limits | RPD | RPD<br>Qual Limits |
|-------------------------------------------|------------------|------------|-------------------|------------|---------------------|-----|--------------------|
| emivolatile Organics by GC/MS - Mansfield | Lab Associated   | sample(s): | 01-07 Batch:      | WG1826460- | 2 WG1826460-3       |     |                    |
| bis(2-Chloroethyl)ether                   | 62               |            | 63                |            | 40-140              | 2   | 20                 |
| 1,3-Dichlorobenzene                       | 45               |            | 45                |            | 40-140              | 0   | 20                 |
| 1,4-Dichlorobenzene                       | 46               |            | 46                |            | 40-140              | 0   | 20                 |
| 1,2-Dichlorobenzene                       | 47               |            | 47                |            | 40-140              | 0   | 20                 |
| bis(2-chloroisopropyl)ether               | 61               |            | 64                |            | 40-140              | 5   | 20                 |
| Acetophenone                              | 68               |            | 72                |            | 40-140              | 6   | 20                 |
| Hexachloroethane                          | 44               |            | 44                |            | 10-97               | 0   | 20                 |
| Nitrobenzene                              | 66               |            | 69                |            | 40-140              | 4   | 20                 |
| Isophorone                                | 71               |            | 76                |            | 40-140              | 7   | 20                 |
| bis(2-Chloroethoxy)methane                | 67               |            | 72                |            | 40-140              | 7   | 20                 |
| 1,2,4-Trichlorobenzene                    | 48               |            | 48                |            | 40-140              | 0   | 20                 |
| Naphthalene                               | 58               |            | 59                |            | 40-140              | 2   | 20                 |
| 4-Chloroaniline                           | 72               |            | 77                |            | 40-140              | 7   | 20                 |
| Hexachlorobutadiene                       | 45               |            | 46                |            | 40-140              | 2   | 20                 |
| 2-Methylnaphthalene                       | 57               |            | 59                |            | 40-140              | 3   | 20                 |
| 1,2,4,5-Tetrachlorobenzene                | 52               |            | 54                |            | 40-140              | 4   | 20                 |
| Hexachlorocyclopentadiene                 | 40               |            | 42                |            | 10-109              | 5   | 20                 |
| Biphenyl                                  | 66               |            | 71                |            | 40-140              | 7   | 20                 |
| 2-Chloronaphthalene                       | 54               |            | 55                |            | 40-140              | 2   | 20                 |
| 2-Nitroaniline                            | 91               |            | 93                |            | 40-140              | 2   | 20                 |
| Acenaphthylene                            | 71               |            | 73                |            | 40-140              | 3   | 20                 |
| Dimethylphthalate                         | 78               |            | 79                |            | 40-140              | 1   | 20                 |
| 2,6-Dinitrotoluene                        | 81               |            | 82                |            | 40-140              | 1   | 20                 |



Project Name: STEEL WINDS
Project Number: 03.0033579.16

Lab Number:

L2351364

03.0033579.16

**Report Date:** 10/13/23

| Parameter                                  | LCS<br>%Recovery | Qual         |       | CSD<br>covery | Qual        | %Recovery<br>Limits | RPD | Qual | RPD<br>Limits |  |
|--------------------------------------------|------------------|--------------|-------|---------------|-------------|---------------------|-----|------|---------------|--|
| Semivolatile Organics by GC/MS - Mansfield | Lab Associated   | d sample(s): | 01-07 | Batch:        | WG1826460-2 | 2 WG1826460-3       |     |      |               |  |
| Acenaphthene                               | 67               |              |       | 70            |             | 40-140              | 4   |      | 20            |  |
| 3-Nitroaniline                             | 88               |              |       | 89            |             | 40-140              | 1   |      | 20            |  |
| Dibenzofuran                               | 71               |              |       | 72            |             | 40-140              | 1   |      | 20            |  |
| 2,4-Dinitrotoluene                         | 83               |              |       | 84            |             | 40-140              | 1   |      | 20            |  |
| Fluorene                                   | 77               |              |       | 78            |             | 40-140              | 1   |      | 20            |  |
| Diethylphthalate                           | 79               |              |       | 82            |             | 40-140              | 4   |      | 20            |  |
| 4-Nitroaniline                             | 97               |              |       | 99            |             | 40-140              | 2   |      | 20            |  |
| n-Nitrosodiphenylamine                     | 56               |              |       | 60            |             | 40-140              | 7   |      | 20            |  |
| Hexachlorobenzene                          | 73               |              |       | 76            |             | 40-140              | 4   |      | 20            |  |
| Phenanthrene                               | 81               |              |       | 84            |             | 40-140              | 4   |      | 20            |  |
| Anthracene                                 | 84               |              |       | 88            |             | 40-140              | 5   |      | 20            |  |
| Carbazole                                  | 79               |              |       | 82            |             | 40-140              | 4   |      | 20            |  |
| Di-n-butylphthalate                        | 82               |              |       | 84            |             | 40-140              | 2   |      | 20            |  |
| Fluoranthene                               | 87               |              |       | 91            |             | 40-140              | 4   |      | 20            |  |
| Pyrene                                     | 91               |              |       | 97            |             | 40-140              | 6   |      | 20            |  |
| Butylbenzylphthalate                       | 89               |              |       | 93            |             | 40-140              | 4   |      | 20            |  |
| 3,3'-Dichlorobenzidine                     | 64               |              |       | 71            |             | 40-140              | 10  |      | 20            |  |
| Benz(a)anthracene                          | 93               |              |       | 96            |             | 40-140              | 3   |      | 20            |  |
| Chrysene                                   | 89               |              |       | 93            |             | 40-140              | 4   |      | 20            |  |
| bis(2-Ethylhexyl)phthalate                 | 82               |              |       | 86            |             | 40-140              | 5   |      | 20            |  |
| Di-n-octylphthalate                        | 74               |              |       | 78            |             | 40-140              | 5   |      | 20            |  |
| Benzo(b)fluoranthene                       | 87               |              |       | 92            |             | 40-140              | 6   |      | 20            |  |
| Benzo(k)fluoranthene                       | 85               |              |       | 87            |             | 40-140              | 2   |      | 20            |  |

Project Name: STEEL WINDS
Project Number: 03.0033579.16

Lab Number: L2351364

Report Date:

10/13/23

| Parameter                                  | LCS<br>%Recovery | Qual         |       | CSD<br>covery | Qual        | %Recovery<br>Limits | RPD | Qual | RPD<br>Limits |  |
|--------------------------------------------|------------------|--------------|-------|---------------|-------------|---------------------|-----|------|---------------|--|
| Semivolatile Organics by GC/MS - Mansfield | Lab Associated   | d sample(s): | 01-07 | Batch:        | WG1826460-2 | 2 WG1826460-3       |     |      |               |  |
| Benzo(a)pyrene                             | 86               |              |       | 89            |             | 40-140              | 3   |      | 20            |  |
| Indeno(1,2,3-cd)pyrene                     | 92               |              |       | 97            |             | 40-140              | 5   |      | 20            |  |
| Dibenz(a,h)anthracene                      | 87               |              |       | 90            |             | 40-140              | 3   |      | 20            |  |
| Benzo(g,h,i)perylene                       | 91               |              |       | 94            |             | 40-140              | 3   |      | 20            |  |

| Surrogate            | LCS<br>%Recovery Qu | LCSD<br>al %Recovery Qual | Acceptance<br>Criteria |
|----------------------|---------------------|---------------------------|------------------------|
|                      | 70                  |                           |                        |
| 2-Fluorophenol       | 39                  | 41                        | 15-115                 |
| Phenol-d5            | 28                  | 27                        | 15-115                 |
| Nitrobenzene-d5      | 77                  | 81                        | 30-130                 |
| 2-Fluorobiphenyl     | 77                  | 82                        | 30-130                 |
| 2,4,6-Tribromophenol | 91                  | 96                        | 15-115                 |
| Terphenyl-d14        | 94                  | 97                        | 30-130                 |



Lab Number: L2351364

Report Date: 10/13/23

#### Sample Receipt and Container Information

Were project specific reporting limits specified?

STEEL WINDS

**Cooler Information** 

Container Information

Project Name:

Cooler Custody Seal

A Absent

**Project Number:** 03.0033579.16

| Container Information    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Initial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Final                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Temp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Frozen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Container Type           | Cooler                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | pН                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | рН                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | deg C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Pres                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Seal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Date/Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Analysis(*)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Vial HCl preserved       | Α                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Υ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Absent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NYCP51-8260(14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Vial HCl preserved       | Α                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Υ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Absent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NYCP51-8260(14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Vial HCl preserved       | Α                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Υ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Absent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NYCP51-8260(14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Amber 1000ml unpreserved | Α                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Υ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Absent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | A2-SVOC-8270(7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Amber 1000ml unpreserved | Α                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Υ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Absent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | A2-SVOC-8270(7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Vial HCl preserved       | Α                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Υ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Absent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NYCP51-8260(14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Vial HCl preserved       | Α                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Υ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Absent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NYCP51-8260(14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Vial HCl preserved       | Α                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Υ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Absent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NYCP51-8260(14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Amber 1000ml unpreserved | Α                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Υ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Absent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | A2-SVOC-8270(7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Amber 1000ml unpreserved | Α                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Υ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Absent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | A2-SVOC-8270(7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Vial HCl preserved       | Α                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Υ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Absent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NYCP51-8260(14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Vial HCl preserved       | Α                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Υ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Absent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NYCP51-8260(14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Vial HCl preserved       | Α                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Υ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Absent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NYCP51-8260(14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Amber 1000ml unpreserved | Α                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Υ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Absent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | A2-SVOC-8270(7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Amber 1000ml unpreserved | Α                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Υ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Absent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | A2-SVOC-8270(7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Vial HCl preserved       | Α                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Υ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Absent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NYCP51-8260(14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Vial HCl preserved       | Α                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Υ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Absent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NYCP51-8260(14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Vial HCl preserved       | Α                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Υ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Absent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NYCP51-8260(14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Amber 1000ml unpreserved | Α                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Υ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Absent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | A2-SVOC-8270(7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Amber 1000ml unpreserved | Α                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Υ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Absent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | A2-SVOC-8270(7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Vial HCI preserved       | Α                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Υ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Absent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NYCP51-8260(14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Vial HCI preserved       | Α                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Υ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Absent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NYCP51-8260(14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Vial HCI preserved       | Α                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Υ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Absent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NYCP51-8260(14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                          | Container Type  Vial HCl preserved  Vial HCl preserved  Vial HCl preserved  Amber 1000ml unpreserved  Amber 1000ml unpreserved  Vial HCl preserved  Vial HCl preserved  Vial HCl preserved  Amber 1000ml unpreserved  Amber 1000ml unpreserved  Vial HCl preserved  Amber 1000ml unpreserved  Amber 1000ml unpreserved  Vial HCl preserved  Vial HCl preserved | Container TypeCoolerVial HCl preservedAVial HCl preservedAAmber 1000ml unpreservedAAmber 1000ml unpreservedAVial HCl preservedAVial HCl preservedAVial HCl preservedAAmber 1000ml unpreservedAAmber 1000ml unpreservedAVial HCl preservedAVial HCl preservedAVial HCl preservedAAmber 1000ml unpreservedAAmber 1000ml unpreservedAVial HCl preservedAVial HCl preservedAVial HCl preservedAVial HCl preservedAVial HCl preservedAAmber 1000ml unpreservedAAmber 1000ml unpreservedAAmber 1000ml unpreservedAVial HCl preservedAVial HCl preservedAVial HCl preservedAVial HCl preservedAVial HCl preservedAVial HCl preservedAVial HCl preservedA | Container Type  Cooler pH  Vial HCl preserved  A NA  Vial HCl preserved  A NA  Amber 1000ml unpreserved  A NA  Vial HCl preserved  A NA  Amber 1000ml unpreserved  A NA  Vial HCl preserved  A NA  Amber 1000ml unpreserved  A NA  Vial HCl preserved  A NA  Amber 1000ml unpreserved  A NA  Vial HCl preserved  A NA | Container Type  Cooler pH  Vial HCl preserved A NA  Vial HCl preserved A NA  Amber 1000ml unpreserved A NA  Vial HCl preserved A A NA  Amber 1000ml unpreserved A NA  Vial HCl preserved A NA  Amber 1000ml unpreserved A A Amber 1000ml unpreserved A A Amber 1000ml unpreserved A A NA  Vial HCl preserved A NA  Amber 1000ml unpreserved A A NA  Vial HCl preserved A NA  Amber 1000ml unpreserved A NA  Vial HCl preserved A NA  Vial HCl preserved A NA  Vial HCl preserved A NA  Amber 1000ml unpreserved A NA  NA  Vial HCl preserved A NA  NA  Vial HCl preserved A NA  NA  Vial HCl preserved A NA  NA  NA  Vial HCl preserved A NA  NA  Vial HCl preserved A NA  NA  NA  Vial HCl preserved A NA  NA  NA  NA  NA  NA  NA  NA  NA | Container Type         Cooler         PH         Theil deg C           Vial HCl preserved         A         NA         2.1           Vial HCl preserved         A         NA         2.1           Vial HCl preserved         A         NA         2.1           Amber 1000ml unpreserved         A         7         7         2.1           Amber 1000ml unpreserved         A         NA         2.1           Vial HCl preserved         A         NA         2.1           Vial HCl preserved         A         NA         2.1           Amber 1000ml unpreserved         A         7         7         2.1           Amber 1000ml unpreserved         A         7         7         2.1           Vial HCl preserved         A         NA         2.1           Vial HCl preserved         A         NA         2.1           Vial HCl preserved         A         NA         2.1           Amber 1000ml unpreserved         A         7         7         2.1           Amber 1000ml unpreserved         A         7         7         2.1           Vial HCl preserved         A         NA         2.1           Vial HCl preserved         A | Container Type         Cooler         pH         rimital PH         refine deg C         Pres           Vial HCl preserved         A         NA         2.1         Y           Vial HCl preserved         A         NA         2.1         Y           Vial HCl preserved         A         NA         2.1         Y           Amber 1000ml unpreserved         A         7         7         2.1         Y           Vial HCl preserved         A         NA         2.1         Y           Vial HCl preserved         A         NA         2.1         Y           Amber 1000ml unpreserved         A         7         7         2.1         Y           Amber 1000ml unpreserved         A         NA         2.1         Y           Vial HCl preserved         A         NA         2.1         Y           Vial HCl preserved         A         NA         2.1         Y           Amber 1000ml unpreserved         A         NA         2.1         Y           Amber 1000ml unpreserved         A         7         7         2.1         Y           Amber 1000ml unpreserved         A         NA         2.1         Y           Vial HCl preserv | Container Type         Cooler         PH         Tellip deg C         Pres         Seal           Vial HCl preserved         A         NA         2.1         Y         Absent           Vial HCl preserved         A         NA         2.1         Y         Absent           Amber 1000ml unpreserved         A         7         7         2.1         Y         Absent           Amber 1000ml unpreserved         A         7         7         2.1         Y         Absent           Vial HCl preserved         A         NA         2.1         Y         Absent           Amber 1000ml unpreserved         A         7         7         2.1         Y         Absent           Vial HCl preserved         A         NA         2.1         Y         Absent           Vial HCl preserved         A         NA         2.1         Y         Absent           Vial HCl preserved         A | Container Type         Cooler pH         PH         deg C Pres PH         Seal         Plate/Time           Vial HCl preserved         A         NA         2.1         Y         Absent           Vial HCl preserved         A         NA         2.1         Y         Absent           Vial HCl preserved         A         NA         2.1         Y         Absent           Amber 1000ml unpreserved         A         7         7         2.1         Y         Absent           Vial HCl preserved         A         NA         2.1         Y         Absent           Vial HCl preserved         A         NA         2.1         Y         Absent           Vial HCl preserved         A         NA         2.1         Y         Absent           Amber 1000ml unpreserved         A         NA         2.1         Y         Absent           Vial HCl preserved         A         NA         2.1         Y         Absent           Vial HCl preserved         A         NA         2.1         Y         Absent           Vial HCl preserved         A         NA         2.1         Y         Absent           Amber 1000ml unpreserved         A         NA |



Lab Number: L2351364

Report Date: 10/13/23

NYCP51-8260(14)

A2-SVOC-8270(7)

A2-SVOC-8270(7)

NYCP51-8260(14)

| Container Information |                          |        |    | Final | Temp  |      |        | Frozen    |                 |  |
|-----------------------|--------------------------|--------|----|-------|-------|------|--------|-----------|-----------------|--|
| Container ID          | Container Type           | Cooler | pН | рH    | deg C | Pres | Seal   | Date/Time | Analysis(*)     |  |
| L2351364-05D          | Amber 1000ml unpreserved | Α      | 7  | 7     | 2.1   | Υ    | Absent |           | A2-SVOC-8270(7) |  |
| L2351364-05E          | Amber 1000ml unpreserved | Α      | 7  | 7     | 2.1   | Υ    | Absent |           | A2-SVOC-8270(7) |  |
| L2351364-06A          | Vial HCl preserved       | Α      | NA |       | 2.1   | Υ    | Absent |           | NYCP51-8260(14) |  |
| L2351364-06B          | Vial HCl preserved       | Α      | NA |       | 2.1   | Υ    | Absent |           | NYCP51-8260(14) |  |
| L2351364-06C          | Vial HCl preserved       | Α      | NA |       | 2.1   | Υ    | Absent |           | NYCP51-8260(14) |  |
| L2351364-06D          | Amber 1000ml unpreserved | Α      | 7  | 7     | 2.1   | Υ    | Absent |           | A2-SVOC-8270(7) |  |
| L2351364-06E          | Amber 1000ml unpreserved | Α      | 7  | 7     | 2.1   | Υ    | Absent |           | A2-SVOC-8270(7) |  |
| L2351364-07A          | Vial HCl preserved       | Α      | NA |       | 2.1   | Υ    | Absent |           | NYCP51-8260(14) |  |
| L2351364-07B          | Vial HCl preserved       | Α      | NA |       | 2.1   | Υ    | Absent |           | NYCP51-8260(14) |  |

NA

7

7

NA

Α



2.1

2.1

2.1

2.1

Υ

Υ

Υ

Absent

Absent

Absent

Absent

Project Name:

L2351364-07C

L2351364-07D

L2351364-07E

L2351364-08A

**Project Number:** 03.0033579.16

STEEL WINDS

Vial HCl preserved

Vial HCl preserved

Amber 1000ml unpreserved

Amber 1000ml unpreserved

Project Name:STEEL WINDSLab Number:L2351364Project Number:03.0033579.16Report Date:10/13/23

#### **GLOSSARY**

#### **Acronyms**

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable (DoD report formats only)

from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case

estimate of the concentration.

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LOD - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content,

where applicable. (DoD report formats only.)

LOQ - Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

only.)

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

only.)

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated

using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

NR - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile

Organic TIC only requests.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less

than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEQ - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF

and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: DU Report with 'J' Qualifiers



Project Name:STEEL WINDSLab Number:L2351364Project Number:03.0033579.16Report Date:10/13/23

#### **Footnotes**

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

#### **Terms**

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Chlordane: The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA,this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Gasoline Range Organics (GRO): Gasoline Range Organics (GRO) results include all chromatographic peaks eluting from Methyl tert butyl ether through Naphthalene, with the exception of GRO analysis in support of State of Ohio programs, which includes all chromatographic peaks eluting from Hexane through Dodecane.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benza(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

#### Data Qualifiers

- A -Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- J Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively

Report Format: DU Report with 'J' Qualifiers



Project Name:STEEL WINDSLab Number:L2351364Project Number:03.0033579.16Report Date:10/13/23

#### **Data Qualifiers**

Identified Compounds (TICs). For calculated parameters, this represents that one or more values used in the calculation were estimated.

- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.
- **NJ** Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- Z The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)

Report Format: DU Report with 'J' Qualifiers



Project Name:STEEL WINDSLab Number:L2351364Project Number:03.0033579.16Report Date:10/13/23

#### REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - VI, 2018.

#### **LIMITATION OF LIABILITIES**

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.



Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873

Revision 20

Page 1 of 1

Published Date: 6/16/2023 4:52:28 PM

#### Certification Information

#### The following analytes are not included in our Primary NELAP Scope of Accreditation:

#### Westborough Facility

EPA 624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625.1: alpha-Terpineol

EPA 8260D: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; 4-Ethyltoluene, Az

EPA 8270E: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

### **Mansfield Facility**

SM 2540D: TSS.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

#### The following analytes are included in our Massachusetts DEP Scope of Accreditation

#### Westborough Facility:

#### **Drinking Water**

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

#### Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kieldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables).

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

#### **Mansfield Facility:**

#### Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

#### Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

**EPA 200.8:** Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Pre-Qualtrax Document ID: 08-113 Document Type: Form

| Westborough, MA 01581 Mansfield,<br>8 Walkup Dr. 320 Forb<br>TEL: 508-898-9220 TEL: 508-8<br>FAX: 508-898-9193 FAX: 508-8                                                                                 | Project Name: STEE Project Location: Lac Project # 03.00 (Use Project name as F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 33579      | a, NY            |        |             | 1000000 | erables           |            |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Billing Information                                                                                                                     |                |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------------|--------|-------------|---------|-------------------|------------|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|----------------|
| Client Information                                                                                                                                                                                        | (Use Project name as F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | T          | . 16             |        |             | 16      | ASP-A<br>EQuIS (1 | File)      | ☐ ASP         | -B<br>IS (4 File)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Same as Client Info                                                                                                                     |                |
| a strategical and an analysis and a second                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Project #\ |                  |        |             |         | Other             | J. Company |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Disposal Site Information                                                                                                               |                |
| Client: GZA                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | Troy             |        |             | Regu    | latory Requ       | irement    | NYP           | art 375                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Please identify below location of                                                                                                       |                |
| Address: 300 Poort St. 50<br>Bufforto NY 14                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | aniel      | 1709             |        |             | 15      | AWQ Stand         | ards       | NYC           | P-51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | applicable disposal facilities.                                                                                                         |                |
| Phone: (116) 517-5208                                                                                                                                                                                     | The second secon | ME DE      |                  | 1000   | 516-5       |         | NY Restricte      | ed Use     | Othe          | r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Disposal Facility:                                                                                                                      |                |
| Fax:                                                                                                                                                                                                      | Standa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | rd.        | Due Date:        | :      |             | 7 🗆     | NY Unrestri       | ted Use    |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | □ NJ □ NY                                                                                                                               |                |
| Email: Daniel. Troy @CZA                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | # of Days:       |        |             |         | NYC Sewer         | Discharge  |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Other:                                                                                                                                  |                |
| These samples have been previous                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                  |        |             | ANA     | LYSIS             |            |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Sample Filtration                                                                                                                       | T              |
| Other project specific requirements  Please specify Metals or TAL.                                                                                                                                        | ts/comments:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |                  |        |             | STARS   | PAH/SIM           |            |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Done Lab to do Preservation Lab to do  (Please Specify below)                                                                           | t 8 1 B 0 .    |
| ALPHA Lab ID                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | ollection        | Sample | Sampler'    | 8260    | 270               | 11         |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (Frease openly balon)                                                                                                                   | 10             |
| (Lab Use Only)                                                                                                                                                                                            | Sample ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Date       | Time             | Matrix | Initials    | 80      | 8                 |            |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Sample Specific Comments                                                                                                                | В              |
| 51364 -01 WTI                                                                                                                                                                                             | -05-090523                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9/5/2      | 7:50             | Gw     | PSN         | ×       | X                 |            |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                         | _              |
| -02 MWN.                                                                                                                                                                                                  | 01-090523                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1          | 8:45             | 1      |             | X       | Х                 | $\vdash$   |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                         | -              |
|                                                                                                                                                                                                           | -04-090523                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            | 9:35             |        |             | V       | X                 | -          | _             | $\vdash$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                         | ⊢              |
|                                                                                                                                                                                                           | ORC-1-090523                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | +          | 10;25            |        |             | X       | X                 | -          | _             | $\vdash$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                         | ⊢              |
|                                                                                                                                                                                                           | -02-090523                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | +          | 11:25            |        |             | ×       | X                 | +          |               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                         | $\vdash$       |
|                                                                                                                                                                                                           | 1-02-090523                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -          | 13:05            |        | $\vdash$    | X       | ×                 | +          | _             | <del>                                     </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                         | $\vdash$       |
| - 7                                                                                                                                                                                                       | -018-090523                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1 1        | 14:05            | w      |             | ×       |                   | +          | +             | ++-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                         |                |
| -08 TRIP                                                                                                                                                                                                  | BLANK-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | V          | _                | - 00   | -           | + ·     |                   | +          | +             | $\vdash$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                         |                |
|                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | +          |                  |        |             | +       |                   | +          |               | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                         | $\vdash$       |
| Preservative Code: Container Cod A = None P = Plastic B = HCl A = Amber Gli C = HNO <sub>3</sub> V = Vial D = H <sub>2</sub> SO <sub>4</sub> G = Glass B = Becteria G                                     | Mansfield: Certification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |                  |        | tainer Typo |         |                   |            |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Please print clearly, legibly and completely. Samples of not be logged in and turnaround time clock will restart until any ambiguities. | can            |
| E = NaOH B = Bacteria C F = MeOH C = Cube G = NaHSO <sub>4</sub> O = Other H = Na <sub>2</sub> S <sub>2</sub> O <sub>3</sub> E = Encore K/E = Zn Ac/NaOH O = Other  Form No: 01-25 HC (rev. 30-Sept-2013) | Relinquished                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2          | 9 5 23<br>9 5 23 | 1505   |             | Receiv  | red By:           |            | Date   5   22 | over the state of | resolved. BY EXECUTING THIS COC, THE CLIENT HAS READ AND AGREES TO BE BOUND BY ALPHA TERMS & CONDITIONS. (See reverse side.)            | S<br>S<br>IA'S |



#### ANALYTICAL REPORT

Lab Number: L2351602

Client: GZA GeoEnvironmental of New York

300 Pearl Street

STEEL WINDS

Suite 700

Buffalo, NY 14202

ATTN: Dan Troy

Phone: (716) 844-7050

Project Number: 03.0033579.16

Report Date: 10/13/23

Project Name:

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0826), IL (200077), IN (C-MA-03), KY (KY98045), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), OH (CL108), OR (MA-1316), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #525-23-122-91930).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com



Project Name: STEEL WINDS
Project Number: 03.0033579.16

**Lab Number:** L2351602 **Report Date:** 10/13/23

| Alpha<br>Sample ID | Client ID      | Matrix | Sample<br>Location | Collection Date/Time | Receive Date |
|--------------------|----------------|--------|--------------------|----------------------|--------------|
| L2351602-01        | MWN-02B-090623 | WATER  | LACKAWANNA, NY     | 09/06/23 08:55       | 09/06/23     |
| L2351602-02        | MWN-02D-090623 | WATER  | LACKAWANNA, NY     | 09/06/23 09:50       | 09/06/23     |
| L2351602-03        | MWN-03-090623  | WATER  | LACKAWANNA, NY     | 09/06/23 10:45       | 09/06/23     |
| L2351602-04        | MWN-03B-090623 | WATER  | LACKAWANNA, NY     | 09/06/23 11:55       | 09/06/23     |
| L2351602-05        | MWN-03D-090623 | WATER  | LACKAWANNA, NY     | 09/06/23 12:55       | 09/06/23     |
| L2351602-06        | MWN-04-090623  | WATER  | LACKAWANNA, NY     | 09/06/23 13:30       | 09/06/23     |
| L2351602-07        | TRIP BLANK-2   | WATER  | LACKAWANNA, NY     | 09/06/23 00:00       | 09/06/23     |



Project Name:STEEL WINDSLab Number:L2351602Project Number:03.0033579.16Report Date:10/13/23

#### **Case Narrative**

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

| Please contact Project Management at 800-624-9220 with any questions. |  |  |  |  |  |
|-----------------------------------------------------------------------|--|--|--|--|--|
|                                                                       |  |  |  |  |  |



Project Name:STEEL WINDSLab Number:L2351602Project Number:03.0033579.16Report Date:10/13/23

#### **Case Narrative (continued)**

Report Submission

October 13, 2023: This final report includes the results of all requested analyses.

September 20, 2023: This is a preliminary report.

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Volatile Organics

L2351602-07: Headspace was noted in the sample container utilized for analysis.

**Dissolved Metals** 

L2351602-04: The sample has elevated detection limits for all elements due to the dilution required by the sample matrix.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Custen Walker Cristin Walker

Authorized Signature:

Title: Technical Director/Representative

Date: 10/13/23



### **ORGANICS**



### **VOLATILES**



Project Name: STEEL WINDS Lab Number: L2351602

**Project Number:** 03.0033579.16 **Report Date:** 10/13/23

**SAMPLE RESULTS** 

Lab ID: L2351602-01 D Date Collected: 09/06/23 08:55

Client ID: MWN-02B-090623 Date Received: 09/06/23 Sample Location: LACKAWANNA, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 1,8260D
Analytical Date: 09/14/23 16:09

| Parameter                       | Result         | Qualifier | Units | RL  | MDL  | Dilution Factor |  |
|---------------------------------|----------------|-----------|-------|-----|------|-----------------|--|
| Volatile Organics by GC/MS - We | estborough Lab |           |       |     |      |                 |  |
| Benzene                         | 67             |           | ug/l  | 1.2 | 0.40 | 2.5             |  |
| Toluene                         | 12             |           | ug/l  | 6.2 | 1.8  | 2.5             |  |
| Ethylbenzene                    | ND             |           | ug/l  | 6.2 | 1.8  | 2.5             |  |
| Methyl tert butyl ether         | ND             |           | ug/l  | 6.2 | 1.8  | 2.5             |  |
| p/m-Xylene                      | 9.2            |           | ug/l  | 6.2 | 1.8  | 2.5             |  |
| o-Xylene                        | 13             |           | ug/l  | 6.2 | 1.8  | 2.5             |  |
| n-Butylbenzene                  | ND             |           | ug/l  | 6.2 | 1.8  | 2.5             |  |
| sec-Butylbenzene                | ND             |           | ug/l  | 6.2 | 1.8  | 2.5             |  |
| tert-Butylbenzene               | ND             |           | ug/l  | 6.2 | 1.8  | 2.5             |  |
| Isopropylbenzene                | ND             |           | ug/l  | 6.2 | 1.8  | 2.5             |  |
| p-Isopropyltoluene              | ND             |           | ug/l  | 6.2 | 1.8  | 2.5             |  |
| Naphthalene                     | 400            |           | ug/l  | 6.2 | 1.8  | 2.5             |  |
| n-Propylbenzene                 | ND             |           | ug/l  | 6.2 | 1.8  | 2.5             |  |
| 1,3,5-Trimethylbenzene          | ND             |           | ug/l  | 6.2 | 1.8  | 2.5             |  |
| 1,2,4-Trimethylbenzene          | 2.5            | J         | ug/l  | 6.2 | 1.8  | 2.5             |  |

| Surrogate             | % Recovery | Acceptance<br>Qualifier Criteria |  |
|-----------------------|------------|----------------------------------|--|
| 1,2-Dichloroethane-d4 | 91         | 70-130                           |  |
| Toluene-d8            | 102        | 70-130                           |  |
| 4-Bromofluorobenzene  | 103        | 70-130                           |  |
| Dibromofluoromethane  | 98         | 70-130                           |  |



Project Name: STEEL WINDS Lab Number: L2351602

**Project Number:** 03.0033579.16 **Report Date:** 10/13/23

**SAMPLE RESULTS** 

Lab ID: L2351602-03 Date Collected: 09/06/23 10:45

Client ID: MWN-03-090623 Date Received: 09/06/23 Sample Location: LACKAWANNA, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 1,8260D
Analytical Date: 09/14/23 15:03

| Parameter                          | Result     | Qualifier | Units | RL   | MDL  | Dilution Factor |
|------------------------------------|------------|-----------|-------|------|------|-----------------|
| Volatile Organics by GC/MS - Westb | orough Lab |           |       |      |      |                 |
| Benzene                            | 8.3        |           | ug/l  | 0.50 | 0.16 | 1               |
| Toluene                            | 2.0        | J         | ug/l  | 2.5  | 0.70 | 1               |
| Ethylbenzene                       | ND         |           | ug/l  | 2.5  | 0.70 | 1               |
| Methyl tert butyl ether            | ND         |           | ug/l  | 2.5  | 0.70 | 1               |
| p/m-Xylene                         | 1.2        | J         | ug/l  | 2.5  | 0.70 | 1               |
| o-Xylene                           | 1.2        | J         | ug/l  | 2.5  | 0.70 | 1               |
| n-Butylbenzene                     | ND         |           | ug/l  | 2.5  | 0.70 | 1               |
| sec-Butylbenzene                   | ND         |           | ug/l  | 2.5  | 0.70 | 1               |
| tert-Butylbenzene                  | ND         |           | ug/l  | 2.5  | 0.70 | 1               |
| Isopropylbenzene                   | ND         |           | ug/l  | 2.5  | 0.70 | 1               |
| p-Isopropyltoluene                 | ND         |           | ug/l  | 2.5  | 0.70 | 1               |
| Naphthalene                        | 27         |           | ug/l  | 2.5  | 0.70 | 1               |
| n-Propylbenzene                    | ND         |           | ug/l  | 2.5  | 0.70 | 1               |
| 1,3,5-Trimethylbenzene             | 0.84       | J         | ug/l  | 2.5  | 0.70 | 1               |
| 1,2,4-Trimethylbenzene             | ND         |           | ug/l  | 2.5  | 0.70 | 1               |

| Surrogate             | % Recovery | Acceptance<br>Qualifier Criteria |  |
|-----------------------|------------|----------------------------------|--|
| 1,2-Dichloroethane-d4 | 93         | 70-130                           |  |
| Toluene-d8            | 101        | 70-130                           |  |
| 4-Bromofluorobenzene  | 105        | 70-130                           |  |
| Dibromofluoromethane  | 103        | 70-130                           |  |



Project Name: STEEL WINDS Lab Number: L2351602

**Project Number:** 03.0033579.16 **Report Date:** 10/13/23

**SAMPLE RESULTS** 

Lab ID: L2351602-05 Date Collected: 09/06/23 12:55

Client ID: MWN-03D-090623 Date Received: 09/06/23 Sample Location: LACKAWANNA, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 1,8260D
Analytical Date: 09/14/23 15:25

| Parameter                         | Result      | Qualifier | Units | RL   | MDL  | Dilution Factor |
|-----------------------------------|-------------|-----------|-------|------|------|-----------------|
| Volatile Organics by GC/MS - West | oorough Lab |           |       |      |      |                 |
| Benzene                           | ND          |           | ug/l  | 0.50 | 0.16 | 1               |
| Toluene                           | ND          |           | ug/l  | 2.5  | 0.70 | 1               |
| Ethylbenzene                      | ND          |           | ug/l  | 2.5  | 0.70 | 1               |
| Methyl tert butyl ether           | ND          |           | ug/l  | 2.5  | 0.70 | 1               |
| p/m-Xylene                        | ND          |           | ug/l  | 2.5  | 0.70 | 1               |
| o-Xylene                          | ND          |           | ug/l  | 2.5  | 0.70 | 1               |
| n-Butylbenzene                    | ND          |           | ug/l  | 2.5  | 0.70 | 1               |
| sec-Butylbenzene                  | ND          |           | ug/l  | 2.5  | 0.70 | 1               |
| tert-Butylbenzene                 | ND          |           | ug/l  | 2.5  | 0.70 | 1               |
| Isopropylbenzene                  | ND          |           | ug/l  | 2.5  | 0.70 | 1               |
| p-Isopropyltoluene                | ND          |           | ug/l  | 2.5  | 0.70 | 1               |
| Naphthalene                       | ND          |           | ug/l  | 2.5  | 0.70 | 1               |
| n-Propylbenzene                   | ND          |           | ug/l  | 2.5  | 0.70 | 1               |
| 1,3,5-Trimethylbenzene            | ND          |           | ug/l  | 2.5  | 0.70 | 1               |
| 1,2,4-Trimethylbenzene            | ND          |           | ug/l  | 2.5  | 0.70 | 1               |

| Surrogate             | % Recovery | Qualifier | Acceptance<br>Criteria |  |
|-----------------------|------------|-----------|------------------------|--|
| 1,2-Dichloroethane-d4 | 89         |           | 70-130                 |  |
| Toluene-d8            | 102        |           | 70-130                 |  |
| 4-Bromofluorobenzene  | 105        |           | 70-130                 |  |
| Dibromofluoromethane  | 101        |           | 70-130                 |  |



Project Name: STEEL WINDS Lab Number: L2351602

**Project Number:** 03.0033579.16 **Report Date:** 10/13/23

**SAMPLE RESULTS** 

Lab ID: L2351602-06 Date Collected: 09/06/23 13:30

Client ID: MWN-04-090623 Date Received: 09/06/23 Sample Location: LACKAWANNA, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 1,8260D
Analytical Date: 09/14/23 15:47

| Parameter                        | Result        | Qualifier | Units | RL   | MDL  | Dilution Factor |
|----------------------------------|---------------|-----------|-------|------|------|-----------------|
| Volatile Organics by GC/MS - Wes | stborough Lab |           |       |      |      |                 |
| Benzene                          | 0.48          | J         | ug/l  | 0.50 | 0.16 | 1               |
| Toluene                          | ND            |           | ug/l  | 2.5  | 0.70 | 1               |
| Ethylbenzene                     | ND            |           | ug/l  | 2.5  | 0.70 | 1               |
| Methyl tert butyl ether          | ND            |           | ug/l  | 2.5  | 0.70 | 1               |
| p/m-Xylene                       | ND            |           | ug/l  | 2.5  | 0.70 | 1               |
| o-Xylene                         | ND            |           | ug/l  | 2.5  | 0.70 | 1               |
| n-Butylbenzene                   | ND            |           | ug/l  | 2.5  | 0.70 | 1               |
| sec-Butylbenzene                 | ND            |           | ug/l  | 2.5  | 0.70 | 1               |
| tert-Butylbenzene                | ND            |           | ug/l  | 2.5  | 0.70 | 1               |
| Isopropylbenzene                 | ND            |           | ug/l  | 2.5  | 0.70 | 1               |
| p-Isopropyltoluene               | ND            |           | ug/l  | 2.5  | 0.70 | 1               |
| Naphthalene                      | 12            |           | ug/l  | 2.5  | 0.70 | 1               |
| n-Propylbenzene                  | ND            |           | ug/l  | 2.5  | 0.70 | 1               |
| 1,3,5-Trimethylbenzene           | ND            |           | ug/l  | 2.5  | 0.70 | 1               |
| 1,2,4-Trimethylbenzene           | ND            |           | ug/l  | 2.5  | 0.70 | 1               |

| Surrogate             | % Recovery | Acceptance<br>Qualifier Criteria |  |
|-----------------------|------------|----------------------------------|--|
| 1,2-Dichloroethane-d4 | 93         | 70-130                           |  |
| Toluene-d8            | 103        | 70-130                           |  |
| 4-Bromofluorobenzene  | 105        | 70-130                           |  |
| Dibromofluoromethane  | 102        | 70-130                           |  |



Project Name: STEEL WINDS Lab Number: L2351602

**Project Number:** 03.0033579.16 **Report Date:** 10/13/23

**SAMPLE RESULTS** 

Lab ID: L2351602-07 Date Collected: 09/06/23 00:00

Client ID: TRIP BLANK-2 Date Received: 09/06/23 Sample Location: LACKAWANNA, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 1,8260D
Analytical Date: 09/14/23 13:34

| Parameter                      | Result         | Qualifier | Units | RL   | MDL  | Dilution Factor |  |
|--------------------------------|----------------|-----------|-------|------|------|-----------------|--|
| Volatile Organics by GC/MS - W | estborough Lab |           |       |      |      |                 |  |
| Benzene                        | ND             |           | ug/l  | 0.50 | 0.16 | 1               |  |
| Toluene                        | ND             |           | ug/l  | 2.5  | 0.70 | 1               |  |
| Ethylbenzene                   | ND             |           | ug/l  | 2.5  | 0.70 | 1               |  |
| Methyl tert butyl ether        | ND             |           | ug/l  | 2.5  | 0.70 | 1               |  |
| p/m-Xylene                     | ND             |           | ug/l  | 2.5  | 0.70 | 1               |  |
| o-Xylene                       | ND             |           | ug/l  | 2.5  | 0.70 | 1               |  |
| n-Butylbenzene                 | ND             |           | ug/l  | 2.5  | 0.70 | 1               |  |
| sec-Butylbenzene               | ND             |           | ug/l  | 2.5  | 0.70 | 1               |  |
| tert-Butylbenzene              | ND             |           | ug/l  | 2.5  | 0.70 | 1               |  |
| Isopropylbenzene               | ND             |           | ug/l  | 2.5  | 0.70 | 1               |  |
| p-Isopropyltoluene             | ND             |           | ug/l  | 2.5  | 0.70 | 1               |  |
| Naphthalene                    | ND             |           | ug/l  | 2.5  | 0.70 | 1               |  |
| n-Propylbenzene                | ND             |           | ug/l  | 2.5  | 0.70 | 1               |  |
| 1,3,5-Trimethylbenzene         | ND             |           | ug/l  | 2.5  | 0.70 | 1               |  |
| 1,2,4-Trimethylbenzene         | ND             |           | ug/l  | 2.5  | 0.70 | 1               |  |

| Surrogate             | % Recovery | Acceptance<br>Qualifier Criteria |  |
|-----------------------|------------|----------------------------------|--|
| 1,2-Dichloroethane-d4 | 92         | 70-130                           |  |
| Toluene-d8            | 101        | 70-130                           |  |
| 4-Bromofluorobenzene  | 106        | 70-130                           |  |
| Dibromofluoromethane  | 103        | 70-130                           |  |



Project Name:STEEL WINDSLab Number:L2351602

**Project Number:** 03.0033579.16 **Report Date:** 10/13/23

### Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 09/14/23 08:20

Analyst: PID

| Parameter                     | Result         | Qualifier Units | RL RL       | MDL                |
|-------------------------------|----------------|-----------------|-------------|--------------------|
| olatile Organics by GC/MS - W | estborough Lab | for sample(s):  | 01,03,05-07 | Batch: WG1827500-5 |
| Benzene                       | ND             | ug/l            | 0.50        | 0.16               |
| Toluene                       | ND             | ug/l            | 2.5         | 0.70               |
| Ethylbenzene                  | ND             | ug/l            | 2.5         | 0.70               |
| Methyl tert butyl ether       | ND             | ug/l            | 2.5         | 0.70               |
| p/m-Xylene                    | ND             | ug/l            | 2.5         | 0.70               |
| o-Xylene                      | ND             | ug/l            | 2.5         | 0.70               |
| n-Butylbenzene                | ND             | ug/l            | 2.5         | 0.70               |
| sec-Butylbenzene              | ND             | ug/l            | 2.5         | 0.70               |
| tert-Butylbenzene             | ND             | ug/l            | 2.5         | 0.70               |
| Isopropylbenzene              | ND             | ug/l            | 2.5         | 0.70               |
| p-Isopropyltoluene            | ND             | ug/l            | 2.5         | 0.70               |
| Naphthalene                   | ND             | ug/l            | 2.5         | 0.70               |
| n-Propylbenzene               | ND             | ug/l            | 2.5         | 0.70               |
| 1,3,5-Trimethylbenzene        | ND             | ug/l            | 2.5         | 0.70               |
| 1,2,4-Trimethylbenzene        | ND             | ug/l            | 2.5         | 0.70               |

|                       |                 | Acceptance    |
|-----------------------|-----------------|---------------|
| Surrogate             | %Recovery Quali | fier Criteria |
| 1,2-Dichloroethane-d4 | 92              | 70-130        |
| Toluene-d8            | 102             | 70-130        |
| 4-Bromofluorobenzene  | 107             | 70-130        |
| Dibromofluoromethane  | 102             | 70-130        |



**Project Name:** STEEL WINDS **Project Number:** 

Lab Number:

L2351602

03.0033579.16

Report Date:

10/13/23

| arameter                                | LCS<br>%Recovery   | LCS<br>Qual %Reco   | , , , ,              | covery<br>mits RPD | RF<br>Qual Lin |   |
|-----------------------------------------|--------------------|---------------------|----------------------|--------------------|----------------|---|
| olatile Organics by GC/MS - Westborough | Lab Associated sar | mple(s): 01,03,05-0 | 7 Batch: WG1827500-3 | 3 WG1827500-4      |                |   |
| Benzene                                 | 100                | 98                  | 3 70-                | -130 2             | 2              | 0 |
| Toluene                                 | 100                | 10                  | 0 70-                | -130 0             | 2              | 0 |
| Ethylbenzene                            | 99                 | 93                  | 3 70-                | -130 6             | 2              | 0 |
| Methyl tert butyl ether                 | 84                 | 83                  | 3 63-                | -130 1             | 2              | 0 |
| p/m-Xylene                              | 100                | 90                  | 70-                  | -130 11            | 2              | 0 |
| o-Xylene                                | 95                 | 90                  | 70-                  | -130 5             | 2              | 0 |
| n-Butylbenzene                          | 97                 | 88                  | 3 53-                | -136 10            | 2              | 0 |
| sec-Butylbenzene                        | 99                 | 91                  | 70-                  | -130 8             | 2              | 0 |
| tert-Butylbenzene                       | 100                | 93                  | 3 70-                | -130 7             | 2              | 0 |
| Isopropylbenzene                        | 100                | 92                  | 2 70-                | -130 8             | 2              | 0 |
| p-Isopropyltoluene                      | 99                 | 92                  | 2 70-                | -130 7             | 2              | 0 |
| Naphthalene                             | 94                 | 91                  | 70-                  | -130 3             | 2              | 0 |
| n-Propylbenzene                         | 98                 | 93                  | 3 69-                | -130 5             | 2              | 0 |
| 1,3,5-Trimethylbenzene                  | 100                | 94                  | 4 64-                | -130 6             | 2              | 0 |
| 1,2,4-Trimethylbenzene                  | 100                | 93                  | 3 70-                | -130 7             | 2              | 0 |

| Surrogate             | LCS<br>%Recovery Qual | LCSD<br>%Recovery Qual | Acceptance<br>Criteria |
|-----------------------|-----------------------|------------------------|------------------------|
| 1,2-Dichloroethane-d4 | 93                    | 88                     | 70-130                 |
| Toluene-d8            | 103                   | 102                    | 70-130                 |
| 4-Bromofluorobenzene  | 101                   | 102                    | 70-130                 |
| Dibromofluoromethane  | 99                    | 99                     | 70-130                 |



### **SEMIVOLATILES**



Project Name: STEEL WINDS Lab Number: L2351602

**Project Number:** 03.0033579.16 **Report Date:** 10/13/23

**SAMPLE RESULTS** 

Lab ID: L2351602-01 D Date Collected: 09/06/23 08:55

Client ID: MWN-02B-090623 Date Received: 09/06/23 Sample Location: LACKAWANNA, NY Field Prep: Not Specified

Sample Depth:

Analytical Date:

Matrix: Water Extraction Method: EPA 3510C
Analytical Method: 1,8270E Extraction Date: 09/12/23 13:49

Analyst: DB

09/20/23 18:01

| Parameter                                  | Result | Qualifier | Units | RL   | MDL   | Dilution Factor |
|--------------------------------------------|--------|-----------|-------|------|-------|-----------------|
| Semivolatile Organics by GC/MS - Mansfield | d Lab  |           |       |      |       |                 |
| bis(2-Chloroethyl)ether                    | ND     |           | ug/l  | 2.27 | 0.422 | 5               |
| 1,3-Dichlorobenzene                        | ND     |           | ug/l  | 2.27 | 0.356 | 5               |
| 1,4-Dichlorobenzene                        | ND     |           | ug/l  | 2.27 | 0.376 | 5               |
| 1,2-Dichlorobenzene                        | ND     |           | ug/l  | 2.27 | 0.309 | 5               |
| Benzyl alcohol                             | ND     |           | ug/l  | 2.27 | 0.559 | 5               |
| bis(2-chloroisopropyl)ether                | ND     |           | ug/l  | 2.27 | 0.491 | 5               |
| Acetophenone                               | ND     |           | ug/l  | 4.54 | 0.941 | 5               |
| Hexachloroethane                           | ND     |           | ug/l  | 2.27 | 0.464 | 5               |
| Nitrobenzene                               | ND     |           | ug/l  | 2.27 | 0.464 | 5               |
| Isophorone                                 | ND     |           | ug/l  | 2.27 | 0.573 | 5               |
| bis(2-Chloroethoxy)methane                 | ND     |           | ug/l  | 2.27 | 0.388 | 5               |
| 1,2,4-Trichlorobenzene                     | ND     |           | ug/l  | 2.27 | 0.437 | 5               |
| Naphthalene                                | 194    |           | ug/l  | 2.27 | 0.398 | 5               |
| 4-Chloroaniline                            | ND     |           | ug/l  | 2.27 | 0.582 | 5               |
| Hexachlorobutadiene                        | ND     |           | ug/l  | 2.27 | 0.389 | 5               |
| 2-Methylnaphthalene                        | 7.70   |           | ug/l  | 2.27 | 0.414 | 5               |
| 1,2,4,5-Tetrachlorobenzene                 | ND     |           | ug/l  | 2.27 | 0.362 | 5               |
| Hexachlorocyclopentadiene                  | ND     |           | ug/l  | 2.27 | 0.695 | 5               |
| Biphenyl                                   | 1.31   | J         | ug/l  | 2.27 | 0.504 | 5               |
| 2-Chloronaphthalene                        | ND     |           | ug/l  | 2.27 | 0.409 | 5               |
| 2-Nitroaniline                             | ND     |           | ug/l  | 2.27 | 0.627 | 5               |
| Acenaphthylene                             | 4.03   |           | ug/l  | 2.27 | 0.509 | 5               |
| Dimethylphthalate                          | ND     |           | ug/l  | 2.27 | 0.532 | 5               |
| 2,6-Dinitrotoluene                         | ND     |           | ug/l  | 2.27 | 0.764 | 5               |
| Acenaphthene                               | 7.02   |           | ug/l  | 2.27 | 0.434 | 5               |
| 3-Nitroaniline                             | ND     |           | ug/l  | 2.27 | 0.504 | 5               |
| Dibenzofuran                               | 5.42   |           | ug/l  | 2.27 | 0.414 | 5               |
| 2,4-Dinitrotoluene                         | ND     |           | ug/l  | 2.27 | 0.741 | 5               |



**Project Name:** Lab Number: STEEL WINDS L2351602

**Project Number:** Report Date: 03.0033579.1610/13/23

**SAMPLE RESULTS** 

Lab ID: D Date Collected: 09/06/23 08:55 L2351602-01

Date Received: Client ID: 09/06/23 MWN-02B-090623 Sample Location: Field Prep: LACKAWANNA, NY Not Specified

Sample Depth:

| Parameter                            | Result      | Qualifier | Units | RL   | MDL   | Dilution Factor |
|--------------------------------------|-------------|-----------|-------|------|-------|-----------------|
| Semivolatile Organics by GC/MS - Mar | nsfield Lab |           |       |      |       |                 |
| Fluorene                             | 9.24        |           | ug/l  | 2.27 | 0.473 | 5               |
| Diethylphthalate                     | ND          |           | ug/l  | 2.27 | 0.818 | 5               |
| 4-Nitroaniline                       | ND          |           | ug/l  | 2.27 | 0.509 | 5               |
| n-Nitrosodiphenylamine               | 0.477       | J         | ug/l  | 2.27 | 0.327 | 5               |
| Hexachlorobenzene                    | ND          |           | ug/l  | 2.27 | 0.554 | 5               |
| Phenanthrene                         | 14.9        |           | ug/l  | 2.27 | 0.504 | 5               |
| Anthracene                           | 2.41        |           | ug/l  | 2.27 | 0.623 | 5               |
| Carbazole                            | 20.0        |           | ug/l  | 2.27 | 0.650 | 5               |
| Di-n-butylphthalate                  | ND          |           | ug/l  | 2.27 | 0.453 | 5               |
| Fluoranthene                         | 3.62        |           | ug/l  | 2.27 | 0.709 | 5               |
| Pyrene                               | 2.35        |           | ug/l  | 2.27 | 0.773 | 5               |
| Butylbenzylphthalate                 | ND          |           | ug/l  | 2.27 | 0.385 | 5               |
| 3,3'-Dichlorobenzidine               | ND          |           | ug/l  | 2.27 | 0.877 | 5               |
| Benz(a)anthracene                    | ND          |           | ug/l  | 2.27 | 0.836 | 5               |
| Chrysene                             | ND          |           | ug/l  | 2.27 | 0.645 | 5               |
| bis(2-Ethylhexyl)phthalate           | ND          |           | ug/l  | 2.27 | 0.368 | 5               |
| Di-n-octylphthalate                  | ND          |           | ug/l  | 4.54 | 0.357 | 5               |
| Benzo(b)fluoranthene                 | ND          |           | ug/l  | 2.27 | 0.298 | 5               |
| Benzo(k)fluoranthene                 | ND          |           | ug/l  | 2.27 | 0.732 | 5               |
| Benzo(a)pyrene                       | ND          |           | ug/l  | 2.27 | 0.274 | 5               |
| Indeno(1,2,3-cd)pyrene               | ND          |           | ug/l  | 2.27 | 0.407 | 5               |
| Dibenz(a,h)anthracene                | ND          |           | ug/l  | 2.27 | 0.291 | 5               |
| Benzo(g,h,i)perylene                 | ND          |           | ug/l  | 2.27 | 0.495 | 5               |

| Surrogate        | % Recovery | Acceptance<br>Qualifier Criteria |  |
|------------------|------------|----------------------------------|--|
| Nitrobenzene-d5  | 88         | 30-130                           |  |
| 2-Fluorobiphenyl | 88         | 30-130                           |  |
| Terphenyl-d14    | 96         | 30-130                           |  |



Project Name: STEEL WINDS Lab Number: L2351602

**Project Number:** 03.0033579.16 **Report Date:** 10/13/23

**SAMPLE RESULTS** 

Lab ID: L2351602-03 Date Collected: 09/06/23 10:45

Client ID: MWN-03-090623 Date Received: 09/06/23 Sample Location: LACKAWANNA, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 3510C
Analytical Method: 1.8270E Extraction Date: 09/12/23 13:49

Analytical Method: 1,8270E Extraction Date: 09/12/23 13:49
Analytical Date: 09/14/23 18:42

Analyst: DB

| Parameter                        | Result        | Qualifier | Units | RL    | MDL   | Dilution Factor |
|----------------------------------|---------------|-----------|-------|-------|-------|-----------------|
| Semivolatile Organics by GC/MS - | Mansfield Lab |           |       |       |       |                 |
| bis(2-Chloroethyl)ether          | ND            |           | ug/l  | 0.485 | 0.090 | 1               |
| 1,3-Dichlorobenzene              | ND            |           | ug/l  | 0.485 | 0.076 | 1               |
| 1,4-Dichlorobenzene              | ND            |           | ug/l  | 0.485 | 0.080 | 1               |
| 1,2-Dichlorobenzene              | 0.112         | J         | ug/l  | 0.485 | 0.066 | 1               |
| Benzyl alcohol                   | ND            |           | ug/l  | 0.485 | 0.119 | 1               |
| bis(2-chloroisopropyl)ether      | ND            |           | ug/l  | 0.485 | 0.105 | 1               |
| Acetophenone                     | ND            |           | ug/l  | 0.971 | 0.201 | 1               |
| Hexachloroethane                 | ND            |           | ug/l  | 0.485 | 0.099 | 1               |
| Nitrobenzene                     | ND            |           | ug/l  | 0.485 | 0.099 | 1               |
| Isophorone                       | ND            |           | ug/l  | 0.485 | 0.122 | 1               |
| bis(2-Chloroethoxy)methane       | ND            |           | ug/l  | 0.485 | 0.083 | 1               |
| 1,2,4-Trichlorobenzene           | ND            |           | ug/l  | 0.485 | 0.093 | 1               |
| Naphthalene                      | 13.8          |           | ug/l  | 0.485 | 0.085 | 1               |
| 4-Chloroaniline                  | ND            |           | ug/l  | 0.485 | 0.124 | 1               |
| Hexachlorobutadiene              | ND            |           | ug/l  | 0.485 | 0.083 | 1               |
| 2-Methylnaphthalene              | 2.55          |           | ug/l  | 0.485 | 0.088 | 1               |
| 1,2,4,5-Tetrachlorobenzene       | ND            |           | ug/l  | 0.485 | 0.077 | 1               |
| Hexachlorocyclopentadiene        | ND            |           | ug/l  | 0.485 | 0.148 | 1               |
| Biphenyl                         | 0.617         |           | ug/l  | 0.485 | 0.108 | 1               |
| 2-Chloronaphthalene              | ND            |           | ug/l  | 0.485 | 0.087 | 1               |
| 2-Nitroaniline                   | ND            |           | ug/l  | 0.485 | 0.134 | 1               |
| Acenaphthylene                   | 1.29          |           | ug/l  | 0.485 | 0.109 | 1               |
| Dimethylphthalate                | ND            |           | ug/l  | 0.485 | 0.114 | 1               |
| 2,6-Dinitrotoluene               | ND            |           | ug/l  | 0.485 | 0.163 | 1               |
| Acenaphthene                     | 1.33          |           | ug/l  | 0.485 | 0.093 | 1               |
| 3-Nitroaniline                   | ND            |           | ug/l  | 0.485 | 0.108 | 1               |
| Dibenzofuran                     | 2.37          |           | ug/l  | 0.485 | 0.088 | 1               |
| 2,4-Dinitrotoluene               | ND            |           | ug/l  | 0.485 | 0.158 | 1               |
|                                  |               |           |       |       |       |                 |



Project Name: STEEL WINDS Lab Number: L2351602

**Project Number:** 03.0033579.16 **Report Date:** 10/13/23

**SAMPLE RESULTS** 

Lab ID: L2351602-03 Date Collected: 09/06/23 10:45

Client ID: MWN-03-090623 Date Received: 09/06/23 Sample Location: LACKAWANNA, NY Field Prep: Not Specified

Sample Depth:

| Parameter                      | Result            | Qualifier | Units | RL    | MDL   | Dilution Factor |
|--------------------------------|-------------------|-----------|-------|-------|-------|-----------------|
| Semivolatile Organics by GC/MS | G - Mansfield Lab |           |       |       |       |                 |
| Fluorene                       | 4.28              |           | ug/l  | 0.485 | 0.101 | 1               |
| Diethylphthalate               | ND                |           | ug/l  | 0.485 | 0.175 | 1               |
| 4-Nitroaniline                 | ND                |           | ug/l  | 0.485 | 0.109 | 1               |
| n-Nitrosodiphenylamine         | 0.097             | J         | ug/l  | 0.485 | 0.070 | 1               |
| Hexachlorobenzene              | ND                |           | ug/l  | 0.485 | 0.118 | 1               |
| Phenanthrene                   | 7.86              |           | ug/l  | 0.485 | 0.108 | 1               |
| Anthracene                     | 0.848             |           | ug/l  | 0.485 | 0.133 | 1               |
| Carbazole                      | 3.40              |           | ug/l  | 0.485 | 0.139 | 1               |
| Di-n-butylphthalate            | ND                |           | ug/l  | 0.485 | 0.097 | 1               |
| Fluoranthene                   | 2.56              |           | ug/l  | 0.485 | 0.151 | 1               |
| Pyrene                         | 1.69              |           | ug/l  | 0.485 | 0.165 | 1               |
| Butylbenzylphthalate           | ND                |           | ug/l  | 0.485 | 0.082 | 1               |
| 3,3'-Dichlorobenzidine         | ND                |           | ug/l  | 0.485 | 0.187 | 1               |
| Benz(a)anthracene              | ND                |           | ug/l  | 0.485 | 0.179 | 1               |
| Chrysene                       | ND                |           | ug/l  | 0.485 | 0.138 | 1               |
| bis(2-Ethylhexyl)phthalate     | ND                |           | ug/l  | 0.485 | 0.079 | 1               |
| Di-n-octylphthalate            | ND                |           | ug/l  | 0.971 | 0.076 | 1               |
| Benzo(b)fluoranthene           | ND                |           | ug/l  | 0.485 | 0.064 | 1               |
| Benzo(k)fluoranthene           | ND                |           | ug/l  | 0.485 | 0.156 | 1               |
| Benzo(a)pyrene                 | ND                |           | ug/l  | 0.485 | 0.058 | 1               |
| Indeno(1,2,3-cd)pyrene         | ND                |           | ug/l  | 0.485 | 0.087 | 1               |
| Dibenz(a,h)anthracene          | ND                |           | ug/l  | 0.485 | 0.062 | 1               |
| Benzo(g,h,i)perylene           | ND                |           | ug/l  | 0.485 | 0.106 | 1               |
|                                |                   |           |       |       |       |                 |

| Surrogate        | % Recovery | Qualifier | Acceptance<br>Criteria |  |
|------------------|------------|-----------|------------------------|--|
| Nitrobenzene-d5  | 73         |           | 30-130                 |  |
| 2-Fluorobiphenyl | 75         |           | 30-130                 |  |
| Terphenyl-d14    | 93         |           | 30-130                 |  |



Project Name: STEEL WINDS Lab Number: L2351602

**Project Number:** 03.0033579.16 **Report Date:** 10/13/23

**SAMPLE RESULTS** 

Lab ID: L2351602-05 Date Collected: 09/06/23 12:55

Client ID: MWN-03D-090623 Date Received: 09/06/23 Sample Location: LACKAWANNA, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 3510C
Analytical Method: 1.8270E Extraction Date: 09/12/23 13:49

Analytical Method: 1,8270E Extraction Date: 09/12/23 13:49
Analytical Date: 09/14/23 19:12

Analyst: DB

| Parameter                        | Result        | Qualifier | Units | RL    | MDL   | Dilution Factor |  |
|----------------------------------|---------------|-----------|-------|-------|-------|-----------------|--|
| Semivolatile Organics by GC/MS - | Mansfield Lab |           |       |       |       |                 |  |
| bis(2-Chloroethyl)ether          | ND            |           | ug/l  | 0.485 | 0.090 | 1               |  |
| 1,3-Dichlorobenzene              | ND            |           | ug/l  | 0.485 | 0.076 | 1               |  |
| 1,4-Dichlorobenzene              | ND            |           | ug/l  | 0.485 | 0.080 | 1               |  |
| 1,2-Dichlorobenzene              | ND            |           | ug/l  | 0.485 | 0.066 | 1               |  |
| Benzyl alcohol                   | ND            |           | ug/l  | 0.485 | 0.119 | 1               |  |
| bis(2-chloroisopropyl)ether      | ND            |           | ug/l  | 0.485 | 0.105 | 1               |  |
| Acetophenone                     | ND            |           | ug/l  | 0.971 | 0.201 | 1               |  |
| Hexachloroethane                 | ND            |           | ug/l  | 0.485 | 0.099 | 1               |  |
| Nitrobenzene                     | ND            |           | ug/l  | 0.485 | 0.099 | 1               |  |
| Isophorone                       | ND            |           | ug/l  | 0.485 | 0.122 | 1               |  |
| bis(2-Chloroethoxy)methane       | ND            |           | ug/l  | 0.485 | 0.083 | 1               |  |
| 1,2,4-Trichlorobenzene           | ND            |           | ug/l  | 0.485 | 0.093 | 1               |  |
| Naphthalene                      | ND            |           | ug/l  | 0.485 | 0.085 | 1               |  |
| 4-Chloroaniline                  | ND            |           | ug/l  | 0.485 | 0.124 | 1               |  |
| Hexachlorobutadiene              | ND            |           | ug/l  | 0.485 | 0.083 | 1               |  |
| 2-Methylnaphthalene              | ND            |           | ug/l  | 0.485 | 0.088 | 1               |  |
| 1,2,4,5-Tetrachlorobenzene       | ND            |           | ug/l  | 0.485 | 0.077 | 1               |  |
| Hexachlorocyclopentadiene        | ND            |           | ug/l  | 0.485 | 0.148 | 1               |  |
| Biphenyl                         | ND            |           | ug/l  | 0.485 | 0.108 | 1               |  |
| 2-Chloronaphthalene              | ND            |           | ug/l  | 0.485 | 0.087 | 1               |  |
| 2-Nitroaniline                   | ND            |           | ug/l  | 0.485 | 0.134 | 1               |  |
| Acenaphthylene                   | ND            |           | ug/l  | 0.485 | 0.109 | 1               |  |
| Dimethylphthalate                | ND            |           | ug/l  | 0.485 | 0.114 | 1               |  |
| 2,6-Dinitrotoluene               | ND            |           | ug/l  | 0.485 | 0.163 | 1               |  |
| Acenaphthene                     | 2.00          |           | ug/l  | 0.485 | 0.093 | 1               |  |
| 3-Nitroaniline                   | ND            |           | ug/l  | 0.485 | 0.108 | 1               |  |
| Dibenzofuran                     | ND            |           | ug/l  | 0.485 | 0.088 | 1               |  |
| 2,4-Dinitrotoluene               | ND            |           | ug/l  | 0.485 | 0.158 | 1               |  |
|                                  |               |           |       |       |       |                 |  |



MDL

**Dilution Factor** 

Project Name: STEEL WINDS Lab Number: L2351602

**Project Number:** 03.0033579.16 **Report Date:** 10/13/23

**SAMPLE RESULTS** 

Lab ID: L2351602-05 Date Collected: 09/06/23 12:55

Client ID: MWN-03D-090623 Date Received: 09/06/23 Sample Location: LACKAWANNA, NY Field Prep: Not Specified

Qualifier

Units

RL

Result

Sample Depth:

Parameter

| i arameter                       | resuit          | Qualifici | Offics |       |       | Dilation Lactor |  |
|----------------------------------|-----------------|-----------|--------|-------|-------|-----------------|--|
| Semivolatile Organics by GC/MS - | - Mansfield Lab |           |        |       |       |                 |  |
| Fluorene                         | 0.686           |           | ug/l   | 0.485 | 0.101 | 1               |  |
| Diethylphthalate                 | ND              |           | ug/l   | 0.485 | 0.175 | 1               |  |
| 4-Nitroaniline                   | ND              |           | ug/l   | 0.485 | 0.109 | 1               |  |
| n-Nitrosodiphenylamine           | 0.358           | J         | ug/l   | 0.485 | 0.070 | 1               |  |
| Hexachlorobenzene                | ND              |           | ug/l   | 0.485 | 0.118 | 1               |  |
| Phenanthrene                     | 1.77            |           | ug/l   | 0.485 | 0.108 | 1               |  |
| Anthracene                       | 0.347           | J         | ug/l   | 0.485 | 0.133 | 1               |  |
| Carbazole                        | ND              |           | ug/l   | 0.485 | 0.139 | 1               |  |
| Di-n-butylphthalate              | ND              |           | ug/l   | 0.485 | 0.097 | 1               |  |
| Fluoranthene                     | 0.313           | J         | ug/l   | 0.485 | 0.151 | 1               |  |
| Pyrene                           | 0.208           | J         | ug/l   | 0.485 | 0.165 | 1               |  |
| Butylbenzylphthalate             | ND              |           | ug/l   | 0.485 | 0.082 | 1               |  |
| 3,3'-Dichlorobenzidine           | ND              |           | ug/l   | 0.485 | 0.187 | 1               |  |
| Benz(a)anthracene                | ND              |           | ug/l   | 0.485 | 0.179 | 1               |  |
| Chrysene                         | ND              |           | ug/l   | 0.485 | 0.138 | 1               |  |
| bis(2-Ethylhexyl)phthalate       | 0.450           | J         | ug/l   | 0.485 | 0.079 | 1               |  |
| Di-n-octylphthalate              | ND              |           | ug/l   | 0.971 | 0.076 | 1               |  |
| Benzo(b)fluoranthene             | ND              |           | ug/l   | 0.485 | 0.064 | 1               |  |
| Benzo(k)fluoranthene             | ND              |           | ug/l   | 0.485 | 0.156 | 1               |  |
| Benzo(a)pyrene                   | ND              |           | ug/l   | 0.485 | 0.058 | 1               |  |
| Indeno(1,2,3-cd)pyrene           | ND              |           | ug/l   | 0.485 | 0.087 | 1               |  |
| Dibenz(a,h)anthracene            | ND              |           | ug/l   | 0.485 | 0.062 | 1               |  |
| Benzo(g,h,i)perylene             | ND              |           | ug/l   | 0.485 | 0.106 | 1               |  |
|                                  |                 |           |        |       |       |                 |  |

| Surrogate        | % Recovery | Acceptan<br>Qualifier Criteria |   |
|------------------|------------|--------------------------------|---|
| Nitrobenzene-d5  | 70         | 30-13                          | 0 |
| 2-Fluorobiphenyl | 71         | 30-13                          | 0 |
| Terphenyl-d14    | 61         | 30-13                          | 0 |



Project Name: STEEL WINDS Lab Number: L2351602

**Project Number:** 03.0033579.16 **Report Date:** 10/13/23

**SAMPLE RESULTS** 

Lab ID: L2351602-06 Date Collected: 09/06/23 13:30

Client ID: MWN-04-090623 Date Received: 09/06/23 Sample Location: LACKAWANNA, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 3510C
Analytical Method: 1,8270E Extraction Date: 09/12/23 13:49

Analytical Date: 09/20/23 18:31

Analyst: DB

| Parameter                                      | Result | Qualifier | Units | RL    | MDL   | Dilution Factor |  |  |  |  |  |
|------------------------------------------------|--------|-----------|-------|-------|-------|-----------------|--|--|--|--|--|
| Semivolatile Organics by GC/MS - Mansfield Lab |        |           |       |       |       |                 |  |  |  |  |  |
| bis(2-Chloroethyl)ether                        | ND     |           | ug/l  | 0.454 | 0.084 | 1               |  |  |  |  |  |
| 1,3-Dichlorobenzene                            | ND     |           | ug/l  | 0.454 | 0.071 | 1               |  |  |  |  |  |
| 1,4-Dichlorobenzene                            | ND     |           | ug/l  | 0.454 | 0.075 | 1               |  |  |  |  |  |
| 1,2-Dichlorobenzene                            | ND     |           | ug/l  | 0.454 | 0.062 | 1               |  |  |  |  |  |
| Benzyl alcohol                                 | ND     |           | ug/l  | 0.454 | 0.112 | 1               |  |  |  |  |  |
| bis(2-chloroisopropyl)ether                    | ND     |           | ug/l  | 0.454 | 0.098 | 1               |  |  |  |  |  |
| Acetophenone                                   | 0.674  | J         | ug/l  | 0.909 | 0.188 | 1               |  |  |  |  |  |
| Hexachloroethane                               | ND     |           | ug/l  | 0.454 | 0.093 | 1               |  |  |  |  |  |
| Nitrobenzene                                   | ND     |           | ug/l  | 0.454 | 0.093 | 1               |  |  |  |  |  |
| Isophorone                                     | ND     |           | ug/l  | 0.454 | 0.114 | 1               |  |  |  |  |  |
| bis(2-Chloroethoxy)methane                     | ND     |           | ug/l  | 0.454 | 0.078 | 1               |  |  |  |  |  |
| 1,2,4-Trichlorobenzene                         | ND     |           | ug/l  | 0.454 | 0.087 | 1               |  |  |  |  |  |
| Naphthalene                                    | 6.09   |           | ug/l  | 0.454 | 0.080 | 1               |  |  |  |  |  |
| 4-Chloroaniline                                | ND     |           | ug/l  | 0.454 | 0.116 | 1               |  |  |  |  |  |
| Hexachlorobutadiene                            | ND     |           | ug/l  | 0.454 | 0.078 | 1               |  |  |  |  |  |
| 2-Methylnaphthalene                            | 0.900  |           | ug/l  | 0.454 | 0.083 | 1               |  |  |  |  |  |
| 1,2,4,5-Tetrachlorobenzene                     | ND     |           | ug/l  | 0.454 | 0.072 | 1               |  |  |  |  |  |
| Hexachlorocyclopentadiene                      | ND     |           | ug/l  | 0.454 | 0.139 | 1               |  |  |  |  |  |
| Biphenyl                                       | 0.167  | J         | ug/l  | 0.454 | 0.101 | 1               |  |  |  |  |  |
| 2-Chloronaphthalene                            | ND     |           | ug/l  | 0.454 | 0.082 | 1               |  |  |  |  |  |
| 2-Nitroaniline                                 | ND     |           | ug/l  | 0.454 | 0.125 | 1               |  |  |  |  |  |
| Acenaphthylene                                 | ND     |           | ug/l  | 0.454 | 0.102 | 1               |  |  |  |  |  |
| Dimethylphthalate                              | ND     |           | ug/l  | 0.454 | 0.106 | 1               |  |  |  |  |  |
| 2,6-Dinitrotoluene                             | 1.13   |           | ug/l  | 0.454 | 0.153 | 1               |  |  |  |  |  |
| Acenaphthene                                   | 2.06   |           | ug/l  | 0.454 | 0.087 | 1               |  |  |  |  |  |
| 3-Nitroaniline                                 | ND     |           | ug/l  | 0.454 | 0.101 | 1               |  |  |  |  |  |
| Dibenzofuran                                   | 0.780  |           | ug/l  | 0.454 | 0.083 | 1               |  |  |  |  |  |
| 2,4-Dinitrotoluene                             | ND     |           | ug/l  | 0.454 | 0.148 | 1               |  |  |  |  |  |
|                                                |        |           |       |       |       |                 |  |  |  |  |  |



MDL

**Dilution Factor** 

Project Name: STEEL WINDS Lab Number: L2351602

**Project Number:** 03.0033579.16 **Report Date:** 10/13/23

**SAMPLE RESULTS** 

Lab ID: L2351602-06 Date Collected: 09/06/23 13:30

Client ID: MWN-04-090623 Date Received: 09/06/23 Sample Location: LACKAWANNA, NY Field Prep: Not Specified

Qualifier

Units

RL

Result

Sample Depth:

Parameter

| i arameter                     | resure            | Qualifici | Omis |       |       | Dilation Lactor |  |
|--------------------------------|-------------------|-----------|------|-------|-------|-----------------|--|
| Semivolatile Organics by GC/MS | 3 - Mansfield Lab |           |      |       |       |                 |  |
| Fluorene                       | 1.33              |           | ug/l | 0.454 | 0.095 | 1               |  |
| Diethylphthalate               | ND                |           | ug/l | 0.454 | 0.164 | 1               |  |
| 4-Nitroaniline                 | ND                |           | ug/l | 0.454 | 0.102 | 1               |  |
| n-Nitrosodiphenylamine         | ND                |           | ug/l | 0.454 | 0.065 | 1               |  |
| Hexachlorobenzene              | ND                |           | ug/l | 0.454 | 0.111 | 1               |  |
| Phenanthrene                   | 1.63              |           | ug/l | 0.454 | 0.101 | 1               |  |
| Anthracene                     | 0.334             | J         | ug/l | 0.454 | 0.124 | 1               |  |
| Carbazole                      | 2.58              |           | ug/l | 0.454 | 0.130 | 1               |  |
| Di-n-butylphthalate            | ND                |           | ug/l | 0.454 | 0.091 | 1               |  |
| Fluoranthene                   | 0.405             | J         | ug/l | 0.454 | 0.142 | 1               |  |
| Pyrene                         | 1.16              |           | ug/l | 0.454 | 0.154 | 1               |  |
| Butylbenzylphthalate           | ND                |           | ug/l | 0.454 | 0.077 | 1               |  |
| 3,3'-Dichlorobenzidine         | ND                |           | ug/l | 0.454 | 0.175 | 1               |  |
| Benz(a)anthracene              | ND                |           | ug/l | 0.454 | 0.167 | 1               |  |
| Chrysene                       | ND                |           | ug/l | 0.454 | 0.129 | 1               |  |
| bis(2-Ethylhexyl)phthalate     | 0.264             | J         | ug/l | 0.454 | 0.074 | 1               |  |
| Di-n-octylphthalate            | ND                |           | ug/l | 0.909 | 0.071 | 1               |  |
| Benzo(b)fluoranthene           | ND                |           | ug/l | 0.454 | 0.060 | 1               |  |
| Benzo(k)fluoranthene           | ND                |           | ug/l | 0.454 | 0.146 | 1               |  |
| Benzo(a)pyrene                 | ND                |           | ug/l | 0.454 | 0.055 | 1               |  |
| Indeno(1,2,3-cd)pyrene         | ND                |           | ug/l | 0.454 | 0.081 | 1               |  |
| Dibenz(a,h)anthracene          | ND                |           | ug/l | 0.454 | 0.058 | 1               |  |
| Benzo(g,h,i)perylene           | ND                |           | ug/l | 0.454 | 0.099 | 1               |  |
|                                |                   |           |      |       |       |                 |  |

| Surrogate        | % Recovery | Acceptance<br>Qualifier Criteria |  |
|------------------|------------|----------------------------------|--|
| Nitrobenzene-d5  | 80         | 30-130                           |  |
| 2-Fluorobiphenyl | 80         | 30-130                           |  |
| Terphenyl-d14    | 94         | 30-130                           |  |



Project Name: STEEL WINDS Lab Number: L2351602

**Project Number:** 03.0033579.16 **Report Date:** 10/13/23

### Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270E Extraction Method: EPA 3510C
Analytical Date: 09/14/23 16:15 Extraction Date: 09/12/23 13:47

Analyst: DB

| arameter                      | Result         | Qualifier Units   | RL          | MDL                |
|-------------------------------|----------------|-------------------|-------------|--------------------|
| emivolatile Organics by GC/MS | - Mansfield La | ab for sample(s): | 01,03,05-06 | Batch: WG1826460-1 |
| bis(2-Chloroethyl)ether       | ND             | ug/l              | 0.500       | 0.093              |
| 1,3-Dichlorobenzene           | ND             | ug/l              | 0.500       | 0.078              |
| 1,4-Dichlorobenzene           | ND             | ug/l              | 0.500       | 0.083              |
| 1,2-Dichlorobenzene           | ND             | ug/l              | 0.500       | 0.068              |
| Benzyl alcohol                | ND             | ug/l              | 0.500       | 0.123              |
| bis(2-chloroisopropyl)ether   | ND             | ug/l              | 0.500       | 0.108              |
| Acetophenone                  | ND             | ug/l              | 1.00        | 0.207              |
| Hexachloroethane              | ND             | ug/l              | 0.500       | 0.102              |
| Nitrobenzene                  | ND             | ug/l              | 0.500       | 0.102              |
| Isophorone                    | ND             | ug/l              | 0.500       | 0.126              |
| bis(2-Chloroethoxy)methane    | ND             | ug/l              | 0.500       | 0.085              |
| 1,2,4-Trichlorobenzene        | ND             | ug/l              | 0.500       | 0.096              |
| Naphthalene                   | ND             | ug/l              | 0.500       | 0.088              |
| 4-Chloroaniline               | ND             | ug/l              | 0.500       | 0.128              |
| Hexachlorobutadiene           | ND             | ug/l              | 0.500       | 0.086              |
| 2-Methylnaphthalene           | ND             | ug/l              | 0.500       | 0.091              |
| 1,2,4,5-Tetrachlorobenzene    | ND             | ug/l              | 0.500       | 0.080              |
| Hexachlorocyclopentadiene     | ND             | ug/l              | 0.500       | 0.153              |
| Biphenyl                      | ND             | ug/l              | 0.500       | 0.111              |
| 2-Chloronaphthalene           | ND             | ug/l              | 0.500       | 0.090              |
| 2-Nitroaniline                | ND             | ug/l              | 0.500       | 0.138              |
| Acenaphthylene                | ND             | ug/l              | 0.500       | 0.112              |
| Dimethylphthalate             | ND             | ug/l              | 0.500       | 0.117              |
| 2,6-Dinitrotoluene            | ND             | ug/l              | 0.500       | 0.168              |
| Acenaphthene                  | ND             | ug/l              | 0.500       | 0.096              |
| 3-Nitroaniline                | ND             | ug/l              | 0.500       | 0.111              |
| Dibenzofuran                  | ND             | ug/l              | 0.500       | 0.091              |
| 2,4-Dinitrotoluene            | ND             | ug/l              | 0.500       | 0.163              |
| Fluorene                      | ND             | ug/l              | 0.500       | 0.104              |



Project Name:STEEL WINDSLab Number:L2351602

**Project Number:** 03.0033579.16 **Report Date:** 10/13/23

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270E Extraction Method: EPA 3510C
Analytical Date: 09/14/23 16:15 Extraction Date: 09/12/23 13:47

Analyst: DB

| Parameter                     | Result            | Qualifier Units   | RL          | MDL                |
|-------------------------------|-------------------|-------------------|-------------|--------------------|
| Semivolatile Organics by GC/N | MS - Mansfield La | ab for sample(s): | 01,03,05-06 | Batch: WG1826460-1 |
| Diethylphthalate              | ND                | ug/l              | 0.500       | 0.180              |
| 4-Nitroaniline                | ND                | ug/l              | 0.500       | 0.112              |
| n-Nitrosodiphenylamine        | ND                | ug/l              | 0.500       | 0.072              |
| Hexachlorobenzene             | ND                | ug/l              | 0.500       | 0.122              |
| Phenanthrene                  | ND                | ug/l              | 0.500       | 0.111              |
| Anthracene                    | ND                | ug/l              | 0.500       | 0.137              |
| Carbazole                     | ND                | ug/l              | 0.500       | 0.143              |
| Di-n-butylphthalate           | ND                | ug/l              | 0.500       | 0.100              |
| Fluoranthene                  | ND                | ug/l              | 0.500       | 0.156              |
| Pyrene                        | ND                | ug/l              | 0.500       | 0.170              |
| Butylbenzylphthalate          | ND                | ug/l              | 0.500       | 0.085              |
| 3,3'-Dichlorobenzidine        | ND                | ug/l              | 0.500       | 0.193              |
| Benz(a)anthracene             | ND                | ug/l              | 0.500       | 0.184              |
| Chrysene                      | ND                | ug/l              | 0.500       | 0.142              |
| bis(2-Ethylhexyl)phthalate    | ND                | ug/l              | 0.500       | 0.081              |
| Di-n-octylphthalate           | ND                | ug/l              | 1.00        | 0.079              |
| Benzo(b)fluoranthene          | ND                | ug/l              | 0.500       | 0.066              |
| Benzo(k)fluoranthene          | ND                | ug/l              | 0.500       | 0.161              |
| Benzo(a)pyrene                | ND                | ug/l              | 0.500       | 0.060              |
| Indeno(1,2,3-cd)pyrene        | ND                | ug/l              | 0.500       | 0.090              |
| Dibenz(a,h)anthracene         | ND                | ug/l              | 0.500       | 0.064              |
| Benzo(g,h,i)perylene          | ND                | ug/l              | 0.500       | 0.109              |
|                               |                   |                   |             |                    |



Project Name: STEEL WINDS Lab Number: L2351602

**Project Number:** 03.0033579.16 **Report Date:** 10/13/23

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8270E Extraction Method: EPA 3510C
Analytical Date: 09/14/23 16:15 Extraction Date: 09/12/23 13:47

Analyst: DB

Parameter Result Qualifier Units RL MDL

Semivolatile Organics by GC/MS - Mansfield Lab for sample(s): 01,03,05-06 Batch: WG1826460-1

| Surrogate            | %Recovery Qualifi | Acceptance<br>er Criteria |
|----------------------|-------------------|---------------------------|
| 2-Fluorophenol       | 41                | 15-115                    |
| Phenol-d5            | 29                | 15-115                    |
| Nitrobenzene-d5      | 84                | 30-130                    |
| 2-Fluorobiphenyl     | 76                | 30-130                    |
| 2,4,6-Tribromophenol | 93                | 15-115                    |
| Terphenyl-d14        | 93                | 30-130                    |



Project Name: STEEL WINDS
Project Number: 03.0033579.16

Lab Number: L2351602

**Report Date:** 10/13/23

| Parameter                           | LCS<br>%Recovery Qual           | LCSD<br>%Recovery | %Recovery<br>Qual Limits | RPD    | RPD<br>Qual Limits |
|-------------------------------------|---------------------------------|-------------------|--------------------------|--------|--------------------|
| Semivolatile Organics by GC/MS - Ma | nsfield Lab Associated sample(s | ): 01,03,05-06 Ba | atch: WG1826460-2 WG182  | 6460-3 |                    |
| bis(2-Chloroethyl)ether             | 62                              | 63                | 40-140                   | 2      | 20                 |
| 1,3-Dichlorobenzene                 | 45                              | 45                | 40-140                   | 0      | 20                 |
| 1,4-Dichlorobenzene                 | 46                              | 46                | 40-140                   | 0      | 20                 |
| 1,2-Dichlorobenzene                 | 47                              | 47                | 40-140                   | 0      | 20                 |
| bis(2-chloroisopropyl)ether         | 61                              | 64                | 40-140                   | 5      | 20                 |
| Acetophenone                        | 68                              | 72                | 40-140                   | 6      | 20                 |
| Hexachloroethane                    | 44                              | 44                | 10-97                    | 0      | 20                 |
| Nitrobenzene                        | 66                              | 69                | 40-140                   | 4      | 20                 |
| Isophorone                          | 71                              | 76                | 40-140                   | 7      | 20                 |
| bis(2-Chloroethoxy)methane          | 67                              | 72                | 40-140                   | 7      | 20                 |
| 1,2,4-Trichlorobenzene              | 48                              | 48                | 40-140                   | 0      | 20                 |
| Naphthalene                         | 58                              | 59                | 40-140                   | 2      | 20                 |
| 4-Chloroaniline                     | 72                              | 77                | 40-140                   | 7      | 20                 |
| Hexachlorobutadiene                 | 45                              | 46                | 40-140                   | 2      | 20                 |
| 2-Methylnaphthalene                 | 57                              | 59                | 40-140                   | 3      | 20                 |
| 1,2,4,5-Tetrachlorobenzene          | 52                              | 54                | 40-140                   | 4      | 20                 |
| Hexachlorocyclopentadiene           | 40                              | 42                | 10-109                   | 5      | 20                 |
| Biphenyl                            | 66                              | 71                | 40-140                   | 7      | 20                 |
| 2-Chloronaphthalene                 | 54                              | 55                | 40-140                   | 2      | 20                 |
| 2-Nitroaniline                      | 91                              | 93                | 40-140                   | 2      | 20                 |
| Acenaphthylene                      | 71                              | 73                | 40-140                   | 3      | 20                 |
| Dimethylphthalate                   | 78                              | 79                | 40-140                   | 1      | 20                 |
| 2,6-Dinitrotoluene                  | 81                              | 82                | 40-140                   | 1      | 20                 |



Project Name: STEEL WINDS
Project Number: 03.0033579.16

Lab Number: L2351602

**Report Date:** 10/13/23

| arameter                                   | LCS<br>%Recovery | Qual         | LCSD<br>%Recovery |               | Recovery<br>Limits | RPD    | Qual | RPD<br>Limits |
|--------------------------------------------|------------------|--------------|-------------------|---------------|--------------------|--------|------|---------------|
| semivolatile Organics by GC/MS - Mansfield | Lab Associate    | d sample(s): | 01,03,05-06 Bat   | tch: WG182646 | 60-2 WG1826        | 6460-3 |      |               |
| Acenaphthene                               | 67               |              | 70                |               | 40-140             | 4      |      | 20            |
| 3-Nitroaniline                             | 88               |              | 89                |               | 40-140             | 1      |      | 20            |
| Dibenzofuran                               | 71               |              | 72                |               | 40-140             | 1      |      | 20            |
| 2,4-Dinitrotoluene                         | 83               |              | 84                |               | 40-140             | 1      |      | 20            |
| Fluorene                                   | 77               |              | 78                |               | 40-140             | 1      |      | 20            |
| Diethylphthalate                           | 79               |              | 82                |               | 40-140             | 4      |      | 20            |
| 4-Nitroaniline                             | 97               |              | 99                |               | 40-140             | 2      |      | 20            |
| n-Nitrosodiphenylamine                     | 56               |              | 60                |               | 40-140             | 7      |      | 20            |
| Hexachlorobenzene                          | 73               |              | 76                |               | 40-140             | 4      |      | 20            |
| Phenanthrene                               | 81               |              | 84                |               | 40-140             | 4      |      | 20            |
| Anthracene                                 | 84               |              | 88                |               | 40-140             | 5      |      | 20            |
| Carbazole                                  | 79               |              | 82                |               | 40-140             | 4      |      | 20            |
| Di-n-butylphthalate                        | 82               |              | 84                |               | 40-140             | 2      |      | 20            |
| Fluoranthene                               | 87               |              | 91                |               | 40-140             | 4      |      | 20            |
| Pyrene                                     | 91               |              | 97                |               | 40-140             | 6      |      | 20            |
| Butylbenzylphthalate                       | 89               |              | 93                |               | 40-140             | 4      |      | 20            |
| 3,3'-Dichlorobenzidine                     | 64               |              | 71                |               | 40-140             | 10     |      | 20            |
| Benz(a)anthracene                          | 93               |              | 96                |               | 40-140             | 3      |      | 20            |
| Chrysene                                   | 89               |              | 93                |               | 40-140             | 4      |      | 20            |
| bis(2-Ethylhexyl)phthalate                 | 82               |              | 86                |               | 40-140             | 5      |      | 20            |
| Di-n-octylphthalate                        | 74               |              | 78                |               | 40-140             | 5      |      | 20            |
| Benzo(b)fluoranthene                       | 87               |              | 92                |               | 40-140             | 6      |      | 20            |
| Benzo(k)fluoranthene                       | 85               |              | 87                |               | 40-140             | 2      |      | 20            |
|                                            |                  |              |                   |               |                    |        |      |               |



Project Name: STEEL WINDS
Project Number: 03.0033579.16

Lab Number: L2351602

Report Date:

10/13/23

| Parameter                            | LCS<br>%Recovery       | Qual       | LCSD<br>%Recovery | Qual       | %Recovery<br>Limits | RPD    | Qual | RPD<br>Limits |  |
|--------------------------------------|------------------------|------------|-------------------|------------|---------------------|--------|------|---------------|--|
| Semivolatile Organics by GC/MS - Mar | nsfield Lab Associated | sample(s): | 01,03,05-06 Ba    | itch: WG18 | 26460-2 WG182       | 6460-3 |      |               |  |
| Benzo(a)pyrene                       | 86                     |            | 89                |            | 40-140              | 3      |      | 20            |  |
| Indeno(1,2,3-cd)pyrene               | 92                     |            | 97                |            | 40-140              | 5      |      | 20            |  |
| Dibenz(a,h)anthracene                | 87                     |            | 90                |            | 40-140              | 3      |      | 20            |  |
| Benzo(g,h,i)perylene                 | 91                     |            | 94                |            | 40-140              | 3      |      | 20            |  |

| Surrogate            | LCS<br>%Recovery Qual | LCSD<br>%Recovery Qual | Acceptance<br>Criteria |
|----------------------|-----------------------|------------------------|------------------------|
| 2-Fluorophenol       | 39                    | 41                     | 15-115                 |
| Phenol-d5            | 28                    | 27                     | 15-115                 |
| Nitrobenzene-d5      | 77                    | 81                     | 30-130                 |
| 2-Fluorobiphenyl     | 77                    | 82                     | 30-130                 |
| 2,4,6-Tribromophenol | 91                    | 96                     | 15-115                 |
| Terphenyl-d14        | 94                    | 97                     | 30-130                 |



### **METALS**



Project Name:STEEL WINDSLab Number:L2351602Project Number:03.0033579.16Report Date:10/13/23

**SAMPLE RESULTS** 

Lab ID:L2351602-01Date Collected:09/06/23 08:55Client ID:MWN-02B-090623Date Received:09/06/23Sample Location:LACKAWANNA, NYField Prep:Not Specified

Sample Depth:

Matrix: Water

| Parameter         | Result      | Qualifier | Units | RL      | MDL     | Dilution<br>Factor | Date<br>Prepared | Date<br>Analyzed | Prep<br>Method | Analytical<br>Method | Analyst |
|-------------------|-------------|-----------|-------|---------|---------|--------------------|------------------|------------------|----------------|----------------------|---------|
| Total Metals - Ma | nsfield Lab |           |       |         |         |                    |                  |                  |                |                      |         |
| Arsenic, Total    | 0.02674     |           | mg/l  | 0.00050 | 0.00016 | 5 1                | 09/08/23 09:5    | 5 09/13/23 18:37 | EPA 3005A      | 1,6020B              | WKP     |



Project Name:STEEL WINDSLab Number:L2351602Project Number:03.0033579.16Report Date:10/13/23

**SAMPLE RESULTS** 

Lab ID:L2351602-02Date Collected:09/06/23 09:50Client ID:MWN-02D-090623Date Received:09/06/23Sample Location:LACKAWANNA, NYField Prep:Not Specified

Sample Depth:

Matrix: Water

| Parameter            | Result     | Qualifier | Units | RL      | MDL     | Dilution<br>Factor | Date<br>Prepared | Date<br>Analyzed | Prep<br>Method | Analytical<br>Method | Analyst |
|----------------------|------------|-----------|-------|---------|---------|--------------------|------------------|------------------|----------------|----------------------|---------|
| Total Metals - Mans  | ofiold Lob |           |       |         |         |                    |                  |                  |                |                      |         |
| Total Metals - Maris | sileiu Lab |           |       |         |         |                    |                  |                  |                |                      |         |
| Arsenic, Total       | 0.00075    |           | mg/l  | 0.00050 | 0.00016 | 1                  | 09/08/23 09:5    | 5 09/13/23 18:06 | EPA 3005A      | 1,6020B              | WKP     |
| Barium, Total        | 0.9583     |           | mg/l  | 0.00050 | 0.00017 | 1                  | 09/08/23 09:5    | 5 09/13/23 18:06 | EPA 3005A      | 1,6020B              | WKP     |
| Chromium, Total      | 0.00037    | J         | mg/l  | 0.00100 | 0.00017 | 1                  | 09/08/23 09:5    | 5 09/13/23 18:06 | EPA 3005A      | 1,6020B              | WKP     |



Project Name:STEEL WINDSLab Number:L2351602Project Number:03.0033579.16Report Date:10/13/23

**SAMPLE RESULTS** 

Lab ID:L2351602-04Date Collected:09/06/23 11:55Client ID:MWN-03B-090623Date Received:09/06/23Sample Location:LACKAWANNA, NYField Prep:Not Specified

Sample Depth:

Matrix: Water

| Parameter            | Result       | Qualifier | Units | RL      | MDL     | Dilution<br>Factor | Date<br>Prepared | Date<br>Analyzed | Prep<br>Method | Analytical<br>Method | Analyst |
|----------------------|--------------|-----------|-------|---------|---------|--------------------|------------------|------------------|----------------|----------------------|---------|
| Dissolved Metals - N | /lansfield l | Lab       |       |         |         |                    |                  |                  |                |                      |         |
| Arsenic, Dissolved   | 0.00378      | J         | mg/l  | 0.00500 | 0.00165 | 10                 | 09/11/23 11:50   | 0 09/14/23 09:45 | EPA 3005A      | 1,6020B              | EJF     |
| Barium, Dissolved    | 1.388        |           | mg/l  | 0.00500 | 0.00173 | 10                 | 09/11/23 11:50   | 0 09/14/23 09:45 | EPA 3005A      | 1,6020B              | EJF     |
| Chromium, Dissolved  | ND           |           | mg/l  | 0.01000 | 0.00178 | 10                 | 09/11/23 11:50   | 0 09/14/23 09:45 | EPA 3005A      | 1,6020B              | EJF     |
| Manganese, Dissolved | 0.05038      |           | mg/l  | 0.01000 | 0.00440 | 10                 | 09/11/23 11:50   | 0 09/14/23 09:45 | EPA 3005A      | 1,6020B              | EJF     |



Project Name:STEEL WINDSLab Number:L2351602Project Number:03.0033579.16Report Date:10/13/23

**SAMPLE RESULTS** 

Lab ID:L2351602-05Date Collected:09/06/23 12:55Client ID:MWN-03D-090623Date Received:09/06/23Sample Location:LACKAWANNA, NYField Prep:Not Specified

Sample Depth:

Matrix: Water

| Parameter            | Result    | Qualifier | Units | RL      | MDL     | Dilution<br>Factor | Date<br>Prepared | Date<br>Analyzed | Prep<br>Method | Analytical<br>Method | Analyst |
|----------------------|-----------|-----------|-------|---------|---------|--------------------|------------------|------------------|----------------|----------------------|---------|
| Dissolved Metals - N | Mansfield | Lab       |       |         |         |                    |                  |                  |                |                      |         |
| Barium, Dissolved    | 0.9672    |           | mg/l  | 0.00050 | 0.00017 | 1                  | 09/11/23 11:5    | 0 09/14/23 00:30 | EPA 3005A      | 1,6020B              | WKP     |
| Manganese, Dissolved | 0.3512    |           | mg/l  | 0.00100 | 0.00044 | . 1                | 09/11/23 11:5    | 0 09/14/23 00:30 | EPA 3005A      | 1,6020B              | WKP     |



Project Name: STEEL WINDS
Project Number: 03.0033579.16

**Lab Number:** L2351602 **Report Date:** 10/13/23

# Method Blank Analysis Batch Quality Control

| Parameter              | Result Qualifier       | Units   | RL       | MDL     | Dilution<br>Factor | Date<br>Prepared | Date<br>Analyzed | Analytica<br>Method | l<br>Analyst |
|------------------------|------------------------|---------|----------|---------|--------------------|------------------|------------------|---------------------|--------------|
| Total Metals - Mansfie | eld Lab for sample(s): | 01-02 B | atch: Wo | G18248  | 37-1               |                  |                  |                     |              |
| Arsenic, Total         | ND                     | mg/l    | 0.00050  | 0.00016 | 5 1                | 09/08/23 09:55   | 09/13/23 17:31   | 1 1,6020B           | WKP          |
| Barium, Total          | ND                     | mg/l    | 0.00050  | 0.00017 | 1                  | 09/08/23 09:55   | 09/13/23 17:3    | 1 1,6020B           | WKP          |
| Chromium, Total        | ND                     | mg/l    | 0.00100  | 0.00017 | 1                  | 09/08/23 09:55   | 09/13/23 17:3    | 1 1,6020B           | WKP          |

**Prep Information** 

Digestion Method: EPA 3005A

| Parameter             | Result      | Qualifier  | Units      | RL      | MDL     | Dilution<br>Factor | Date<br>Prepared | Date<br>Analyzed | Analytica<br>Method | l<br>Analyst |
|-----------------------|-------------|------------|------------|---------|---------|--------------------|------------------|------------------|---------------------|--------------|
| Dissolved Metals - Ma | nsfield Lab | for sample | e(s): 04-0 | 5 Batch | : WG18  | 325154-1           |                  |                  |                     |              |
| Arsenic, Dissolved    | ND          |            | mg/l       | 0.00050 | 0.00016 | 5 1                | 09/11/23 11:50   | 09/13/23 17:5    | 1 1,6020B           | WKP          |
| Barium, Dissolved     | ND          |            | mg/l       | 0.00050 | 0.00017 | 1                  | 09/11/23 11:50   | 09/13/23 17:5    | 1 1,6020B           | WKP          |
| Chromium, Dissolved   | ND          |            | mg/l       | 0.00100 | 0.00017 | 1                  | 09/11/23 11:50   | 09/13/23 17:5    | 1 1,6020B           | WKP          |
| Manganese, Dissolved  | ND          |            | mg/l       | 0.00100 | 0.00044 | 1                  | 09/11/23 11:50   | 09/13/23 17:5    | 1 1,6020B           | WKP          |

**Prep Information** 

Digestion Method: EPA 3005A



10/13/23

# Lab Control Sample Analysis Batch Quality Control

Project Name: STEEL WINDS
Project Number: 03.0033579.16

Lab Number: L2351602

Report Date:

| Parameter                                     | LCS<br>%Recovery  | Qual     | LCSD<br>%Recovery | Qual | %Recovery<br>Limits | RPD | Qual | RPD Limits |
|-----------------------------------------------|-------------------|----------|-------------------|------|---------------------|-----|------|------------|
| Total Metals - Mansfield Lab Associated samp  | le(s): 01-02 Bate | ch: WG18 | 24837-2           |      |                     |     |      |            |
| Arsenic, Total                                | 100               |          | -                 |      | 80-120              | -   |      |            |
| Barium, Total                                 | 102               |          | -                 |      | 80-120              | -   |      |            |
| Chromium, Total                               | 99                |          | -                 |      | 80-120              | -   |      |            |
| Dissolved Metals - Mansfield Lab Associated s | sample(s): 04-05  | Batch: W | /G1825154-2       |      |                     |     |      |            |
| Arsenic, Dissolved                            | 103               |          | -                 |      | 80-120              | -   |      |            |
| Barium, Dissolved                             | 98                |          | -                 |      | 80-120              | -   |      |            |
| Chromium, Dissolved                           | 93                |          | -                 |      | 80-120              | -   |      |            |
| Manganese, Dissolved                          | 93                |          | -                 |      | 80-120              | -   |      |            |

# Matrix Spike Analysis Batch Quality Control

**Project Name:** STEEL WINDS **Project Number:** 03.0033579.16

Lab Number: L2351602

**Report Date:** 10/13/23

| Parameter                    | Native<br>Sample | MS<br>Added    | MS<br>Found | MS<br>%Recovery | Qual    | MSD<br>Found | MSD<br>%Recovery Q | Recovery<br>ual Limits | RPD Qual    | RPD<br>Limits |
|------------------------------|------------------|----------------|-------------|-----------------|---------|--------------|--------------------|------------------------|-------------|---------------|
| Total Metals - Mansfield Lab | Associated sam   | nple(s): 01-02 | QC Bat      | ch ID: WG182    | 4837-3  | QC Sam       | ple: L2351602-01   | Client ID: MV          | VN-02B-0906 | 23            |
| Arsenic, Total               | 0.02674          | 0.12           | 0.1457      | 99              |         | -            | -                  | 75-125                 | -           | 20            |
| Barium, Total                | 0.0518           | 2              | 2.038       | 99              |         | -            | -                  | 75-125                 | -           | 20            |
| Chromium, Total              | 0.0004J          | 0.2            | 0.1972      | 99              |         | -            | -                  | 75-125                 | -           | 20            |
| Dissolved Metals - Mansfield | Lab Associated   | I sample(s): 0 | 04-05 QC    | C Batch ID: WG  | G182515 | 54-3 QC      | Sample: L235175    | 56-09 Client ID        | : MS Sample | )             |
| Arsenic, Dissolved           | 0.00120          | 0.12           | 0.1269      | 105             |         | -            | -                  | 75-125                 | -           | 20            |
| Barium, Dissolved            | 1.730            | 2              | 3.544       | 91              |         | -            | -                  | 75-125                 | -           | 20            |
| Chromium, Dissolved          | 0.00128          | 0.2            | 0.1857      | 92              |         | -            | -                  | 75-125                 | -           | 20            |
| Manganese, Dissolved         | 0.1166           | 0.5            | 0.6039      | 97              |         | -            | -                  | 75-125                 | -           | 20            |

# Lab Duplicate Analysis Batch Quality Control

**Project Name:** STEEL WINDS **Project Number:** 03.0033579.16

Lab Number:

L2351602

Report Date:

10/13/23

| Parameter                                    | Native Sample                        | Duplicate Sample    | Units           | RPD        | Qual RPD Limits   |
|----------------------------------------------|--------------------------------------|---------------------|-----------------|------------|-------------------|
| Total Metals - Mansfield Lab Associated      | d sample(s): 01-02 QC Batch ID: WG   | 1824837-4 QC Sample | e: L2351602-01  | Client ID: | MWN-02B-090623    |
| Arsenic, Total                               | 0.02674                              | 0.02674             | mg/l            | 0          | 20                |
| Dissolved Metals - Mansfield Lab Association | ciated sample(s): 04-05 QC Batch ID: | WG1825154-4 QC Sa   | ample: L2351756 | 6-09 Clier | nt ID: DUP Sample |
| Arsenic, Dissolved                           | 0.00120                              | 0.00117             | mg/l            | 2          | 20                |
| Barium, Dissolved                            | 1.730                                | 1.672               | mg/l            | 3          | 20                |
| Chromium, Dissolved                          | 0.00128                              | 0.00132             | mg/l            | 3          | 20                |
| Manganese, Dissolved                         | 0.1166                               | 0.1235              | 5 mg/l          |            | 20                |

Project Name:STEEL WINDSProject Number:03.0033579.16

**Lab Number:** L2351602 **Report Date:** 10/13/23

### Sample Receipt and Container Information

Were project specific reporting limits specified?

**Cooler Information** 

Cooler Custody Seal

A Absent

| Container Info | ormation                               |        | Initial | Final | Temp  |      |        | Frozen    |                                                         |
|----------------|----------------------------------------|--------|---------|-------|-------|------|--------|-----------|---------------------------------------------------------|
| Container ID   | Container Type                         | Cooler | pН      | рН    | deg C | Pres | Seal   | Date/Time | Analysis(*)                                             |
| L2351602-01A   | Vial HCl preserved                     | Α      | NA      |       | 2.0   | Υ    | Absent |           | NYCP51-8260(14)                                         |
| L2351602-01B   | Vial HCl preserved                     | Α      | NA      |       | 2.0   | Υ    | Absent |           | NYCP51-8260(14)                                         |
| L2351602-01C   | Vial HCl preserved                     | Α      | NA      |       | 2.0   | Υ    | Absent |           | NYCP51-8260(14)                                         |
| L2351602-01D   | Plastic 250ml HNO3 preserved           | Α      | <2      | <2    | 2.0   | Υ    | Absent |           | AS-6020T(180)                                           |
| L2351602-01E   | Amber 1000ml unpreserved               | Α      | >12     | >12   | 2.0   | Υ    | Absent |           | A2-SVOC-8270(7)                                         |
| L2351602-01F   | Amber 1000ml unpreserved               | Α      | >12     | >12   | 2.0   | Υ    | Absent |           | A2-SVOC-8270(7)                                         |
| L2351602-02A   | Plastic 250ml HNO3 preserved           | Α      | 7       | 7     | 2.0   | Υ    | Absent |           | BA-6020T(180),CR-6020T(180),AS-6020T(180)               |
| L2351602-03A   | Vial HCl preserved                     | Α      | NA      |       | 2.0   | Υ    | Absent |           | NYCP51-8260(14)                                         |
| L2351602-03B   | Vial HCI preserved                     | Α      | NA      |       | 2.0   | Υ    | Absent |           | NYCP51-8260(14)                                         |
| L2351602-03C   | Vial HCl preserved                     | Α      | NA      |       | 2.0   | Υ    | Absent |           | NYCP51-8260(14)                                         |
| L2351602-03D   | Amber 1000ml unpreserved               | Α      | >12     | >12   | 2.0   | Υ    | Absent |           | A2-SVOC-8270(7)                                         |
| L2351602-03E   | Amber 1000ml unpreserved               | Α      | >12     | >12   | 2.0   | Υ    | Absent |           | A2-SVOC-8270(7)                                         |
| L2351602-04A   | Plastic 250ml unpreserved              | Α      | 7       | 7     | 2.0   | Υ    | Absent |           | -                                                       |
| L2351602-04X   | Plastic 120ml HNO3 preserved Filtrates | Α      | NA      |       | 2.0   | Υ    | Absent |           | MN-6020S(180),CR-6020S(180),BA-6020S(180),AS-6020S(180) |
| L2351602-05A   | Vial HCl preserved                     | Α      | NA      |       | 2.0   | Υ    | Absent |           | NYCP51-8260(14)                                         |
| L2351602-05B   | Vial HCl preserved                     | Α      | NA      |       | 2.0   | Υ    | Absent |           | NYCP51-8260(14)                                         |
| L2351602-05C   | Vial HCl preserved                     | Α      | NA      |       | 2.0   | Υ    | Absent |           | NYCP51-8260(14)                                         |
| L2351602-05D   | Plastic 250ml unpreserved              | Α      | 7       | 7     | 2.0   | Υ    | Absent |           | -                                                       |
| L2351602-05E   | Amber 1000ml unpreserved               | Α      | 7       | 7     | 2.0   | Υ    | Absent |           | A2-SVOC-8270(7)                                         |
| L2351602-05F   | Amber 1000ml unpreserved               | Α      | 7       | 7     | 2.0   | Υ    | Absent |           | A2-SVOC-8270(7)                                         |
| L2351602-05X   | Plastic 120ml HNO3 preserved Filtrates | Α      | NA      |       | 2.0   | Υ    | Absent |           | MN-6020S(180),BA-6020S(180)                             |
| L2351602-06A   | Vial HCI preserved                     | Α      | NA      |       | 2.0   | Υ    | Absent |           | NYCP51-8260(14)                                         |
| L2351602-06B   | Vial HCl preserved                     | Α      | NA      |       | 2.0   | Υ    | Absent |           | NYCP51-8260(14)                                         |



*Lab Number:* L2351602

**Report Date:** 10/13/23

| Container Info | ormation                 |        | Initial | Final | Temp  |      |        | Frozen    |                 |
|----------------|--------------------------|--------|---------|-------|-------|------|--------|-----------|-----------------|
| Container ID   | Container Type           | Cooler | рН      | pН    | deg C | Pres | Seal   | Date/Time | Analysis(*)     |
| L2351602-06C   | Vial HCI preserved       | Α      | NA      |       | 2.0   | Υ    | Absent |           | NYCP51-8260(14) |
| L2351602-06D   | Amber 1000ml unpreserved | Α      | >12     | >12   | 2.0   | Υ    | Absent |           | A2-SVOC-8270(7) |
| L2351602-06E   | Amber 1000ml unpreserved | Α      | >12     | >12   | 2.0   | Υ    | Absent |           | A2-SVOC-8270(7) |
| L2351602-07A   | Vial HCI preserved       | Α      | NA      |       | 2.0   | Υ    | Absent |           | NYCP51-8260(14) |



Project Name:

**Project Number:** 03.0033579.16

STEEL WINDS

**Project Name:** Lab Number: STEEL WINDS L2351602 **Project Number:** 03.0033579.16 **Report Date:** 10/13/23

### GLOSSARY

### **Acronyms**

**EDL** 

LOQ

MS

RPD

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).

**EMPC** - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.

**EPA** Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LCSD Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LOD - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

MDI - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

NR - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile Organic TIC only requests.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEO - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: DU Report with 'J' Qualifiers



Project Name:STEEL WINDSLab Number:L2351602Project Number:03.0033579.16Report Date:10/13/23

#### **Footnotes**

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

### **Terms**

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Chlordane: The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA,this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Gasoline Range Organics (GRO): Gasoline Range Organics (GRO) results include all chromatographic peaks eluting from Methyl tert butyl ether through Naphthalene, with the exception of GRO analysis in support of State of Ohio programs, which includes all chromatographic peaks eluting from Hexane through Dodecane.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benza(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

### Data Qualifiers

- A Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit
   (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively

Report Format: DU Report with 'J' Qualifiers



Project Name:STEEL WINDSLab Number:L2351602Project Number:03.0033579.16Report Date:10/13/23

### **Data Qualifiers**

Identified Compounds (TICs). For calculated parameters, this represents that one or more values used in the calculation were estimated.

- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- Z The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)

Report Format: DU Report with 'J' Qualifiers



Project Name:STEEL WINDSLab Number:L2351602Project Number:03.0033579.16Report Date:10/13/23

### **REFERENCES**

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - VI, 2018.

### **LIMITATION OF LIABILITIES**

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.



Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873

Revision 20

Published Date: 6/16/2023 4:52:28 PM

### Page 1 of 1

### Certification Information

### The following analytes are not included in our Primary NELAP Scope of Accreditation:

### Westborough Facility

EPA 624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625.1: alpha-Terpineol

EPA 8260D: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; 4-Ethyltoluene, Az

EPA 8270E: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

### **Mansfield Facility**

SM 2540D: TSS.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

### The following analytes are included in our Massachusetts DEP Scope of Accreditation

### Westborough Facility:

### **Drinking Water**

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

### Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kieldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables).

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

### **Mansfield Facility:**

### Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

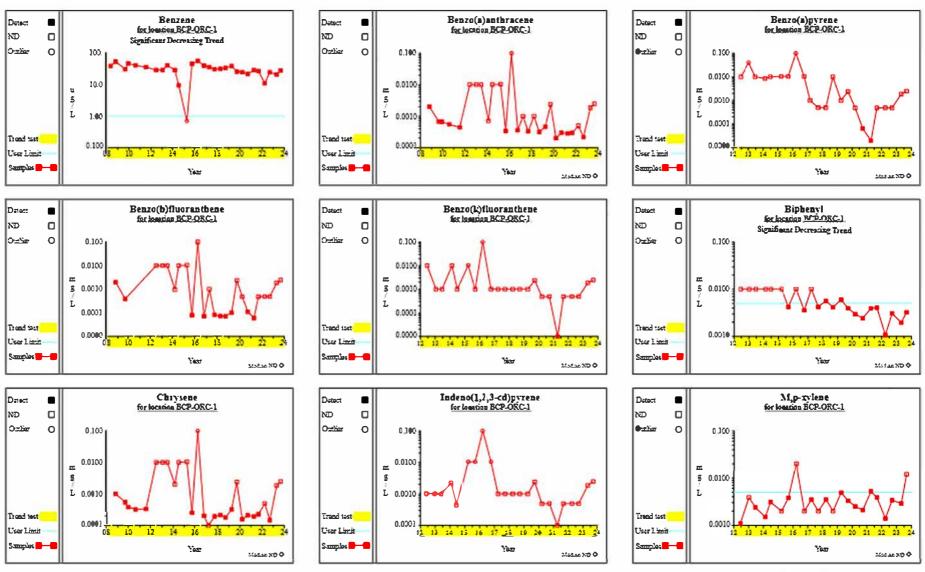
### Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

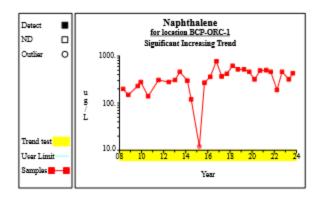
**EPA 200.8:** Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

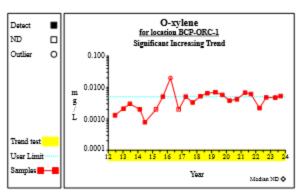
EPA 245.1 Hg.

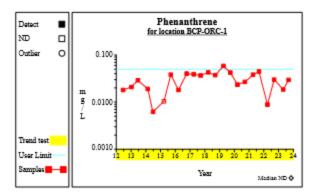
SM2340B

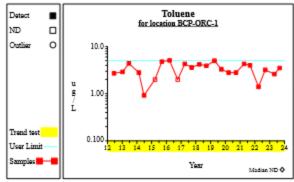

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

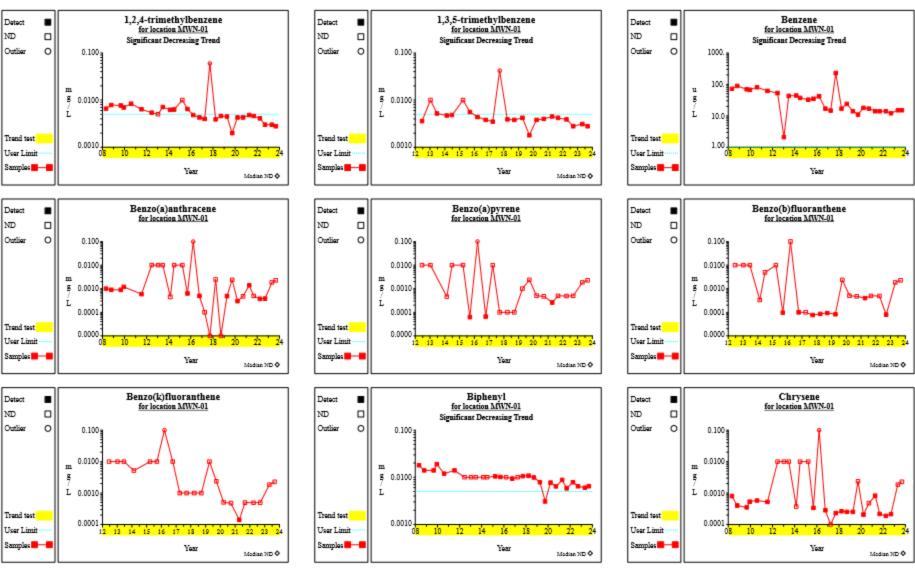
Pre-Qualtrax Document ID: 08-113 Document Type: Form


| ALPHA                                                                              | NEW YORK<br>CHAIN OF<br>CUSTODY                     | Service Centers<br>Mahwah, NJ 07430: 35 Whitn<br>Albany, NY 12205: 14 Walker<br>Tonawanda, NY 14150: 275 C | Way             |            | 105       | j o         | e<br>of /   |       | Date        | Rec'     | 9       | 171.      | 23           |            | ALPHA Job #<br>L23516                               |                                  |          |
|------------------------------------------------------------------------------------|-----------------------------------------------------|------------------------------------------------------------------------------------------------------------|-----------------|------------|-----------|-------------|-------------|-------|-------------|----------|---------|-----------|--------------|------------|-----------------------------------------------------|----------------------------------|----------|
| Westborough, MA 01581<br>8 Walkup Dr.                                              | Mansfield, MA 02048<br>320 Forbes Blvd              | Project Information                                                                                        | MA              | 2.16       |           |             |             | Deli  | verable     | s        | me      | 330       | 670          | HVEDO      | Billing Information                                 |                                  |          |
| TEL: 508-898-9220<br>FAX: 508-898-9193                                             | TEL: 508-822-9300<br>FAX: 508-822-3288              | Project Name: 54e2                                                                                         | 1 W             | rds        |           |             |             |       | ASP.        |          |         |           | ASP-         |            | Same as C                                           | lient Info                       |          |
| 1700, 200-020-0100                                                                 | 1 7911 000 002 0000                                 | Project Location: La                                                                                       |                 |            |           |             |             |       | EQui        | S (1 F   | ile)    |           | -EQui        | S (4 File) | PO#                                                 |                                  |          |
| Client Information                                                                 | THE LABOR                                           | Project # 03.00                                                                                            | 335             | 579        | .16       |             |             |       | Othe        | r        |         |           |              |            |                                                     |                                  |          |
| Client: C2A                                                                        |                                                     | (Use Project name as F                                                                                     | roject#         | )          |           |             |             | Reg   | ulatory     | Requ     | iremer  | nt        | 14           | MARIE      | Disposal Site Inf                                   | formation                        |          |
| Address: 360 Per                                                                   | or 1 St. Suite 700                                  | Project Manager: D                                                                                         | anie            | 1 7        | 104       |             |             |       | NY TO       | ogs      |         |           | NY Pa        | ert 375    | Please identify belo                                |                                  |          |
| BUFF.10, N                                                                         | Y 14202                                             | ALPHAQuote #:                                                                                              |                 |            |           |             |             |       | AWQ         | Standa   | ards    |           | NY CF        | 2-51       | applicable disposal facilities.                     |                                  |          |
| Phone: 716- 5                                                                      | 17-5708                                             | Turn-Around Time                                                                                           |                 |            |           |             |             |       | NY R        | estricte | d Use   |           | Other        |            | Disposal Facility:                                  |                                  |          |
| Fax:                                                                               |                                                     | Standar                                                                                                    | rd 🔯            |            | Due Date  | e:          |             | 7 0   | NY U        | nrestric | ted Use |           |              |            | □ NJ                                                | ☐ NY                             |          |
| Email: Daniel. T                                                                   | TOY @GZA, COM                                       | Rush (only if pre approve                                                                                  | d) 🔲            |            | # of Days | k:          |             |       | NYC         | Sewer    | Dischar | ge        |              | Other:     |                                                     |                                  |          |
| These samples have b                                                               |                                                     |                                                                                                            |                 |            |           |             |             | ANA   | LYSIS       |          |         |           |              |            | Sample Filtration                                   | on                               | Т        |
| Other project specific                                                             |                                                     | ents:                                                                                                      |                 |            |           |             |             | STARS | PAH SIM     | As       | 36      | Mn        | Cr           |            | □ Done □ Lab to do Preservation □ Lab to do         |                                  | o tal Bo |
| ALPHA Lab ID                                                                       |                                                     | male ID                                                                                                    | e ID Collection |            |           |             | Sampler     | - 0   | 6270 }      | 60109    | C0100   | 1 2 2 2 3 | (0100)       |            | (Please Specify                                     | below)                           | 1        |
| (Lab Use Only)                                                                     | Sa                                                  | mpie ID                                                                                                    | le ID Colle     |            |           | Time Matrix |             | 80    | 62          | 03       | 3       | 3         | 3            |            | Sample Specific C                                   | Comments                         | 8        |
| 51607-01                                                                           | MWN-02B                                             | -090623                                                                                                    | 9-6             | -23        | 8:55      | GW          | DIN         | K     | X           | X        |         |           |              |            |                                                     |                                  |          |
| - 03                                                                               | MWN-025                                             |                                                                                                            | 1               |            | 9:50      |             |             |       |             | ×        | ×       |           | X            |            |                                                     |                                  |          |
| -03                                                                                | MWN-03-                                             |                                                                                                            |                 |            | 10:45     |             |             | ×     | ×           |          |         |           |              |            |                                                     |                                  |          |
| - 84                                                                               | MWN-03B                                             |                                                                                                            |                 |            | 11:55     |             |             | 1     |             | ×        | ×       | ×         | ×            |            | -LAB FIL                                            | Ler Me                           | al       |
| -05                                                                                | MWN-03D                                             |                                                                                                            |                 |            | 12:55     |             |             | ×     | ×           |          | ×       | ×         |              |            | -LAB FILL                                           |                                  |          |
| -06                                                                                | MWN-04-                                             |                                                                                                            |                 |            | 13:30     | 1           |             | X     | X           |          |         |           |              |            |                                                     |                                  |          |
| 70-                                                                                | TRIP BLANK                                          |                                                                                                            |                 | ,          | /         | w           | N.          | ×     |             |          |         |           |              |            |                                                     | - 7                              |          |
|                                                                                    |                                                     |                                                                                                            |                 |            |           |             | 1           |       |             |          |         |           |              |            |                                                     |                                  |          |
| Preservative Code:<br>A = None<br>B = HCI<br>C = HNO <sub>3</sub>                  | Container Code P = Plastic A = Amber Glass V = Vial | Westboro: Certification N                                                                                  | 0.000           | 000000     |           | Cor         | ntainer Typ | 9     |             |          |         |           |              |            | Please print cl<br>and completel<br>not be logged   | y. Samples of                    |          |
| D = H <sub>2</sub> SO <sub>4</sub><br>E = NaOH                                     | G = Glass<br>B = Bacteria Cup<br>C = Cube           | Dellamilehad                                                                                               | D               | But Date/I |           |             | Preservativ | 2     | and Da      |          |         |           | Date         | Time       | turnaround tim<br>start until any<br>resolved. BY E | ne clock will r<br>ambiguities a | are      |
| me en                                                                              | O = Other                                           | Relinquished                                                                                               |                 |            |           | Recei       | ved By      | *     | 9/(/23 /400 |          |         |           | THIS COC, TH |            |                                                     |                                  |          |
| H = Na <sub>2</sub> S <sub>2</sub> O <sub>3</sub><br>K/E = Zn Ac/NaOH<br>D = Other | E = Encore<br>D = BOD Bottle                        | MUNICIAL                                                                                                   |                 |            |           |             | 14:00 MM    |       |             | MIL MANC |         |           |              | 00 CD      | TO BE BOUNI<br>TERMS & CO                           | ND AGREES<br>D BY ALPHA          |          |
| Form No: 01-25 HC (rev. 30                                                         | )-Sept-2013)                                        |                                                                                                            |                 |            |           |             |             |       |             |          |         |           |              |            | (See reverse s                                      | iide.)                           |          |

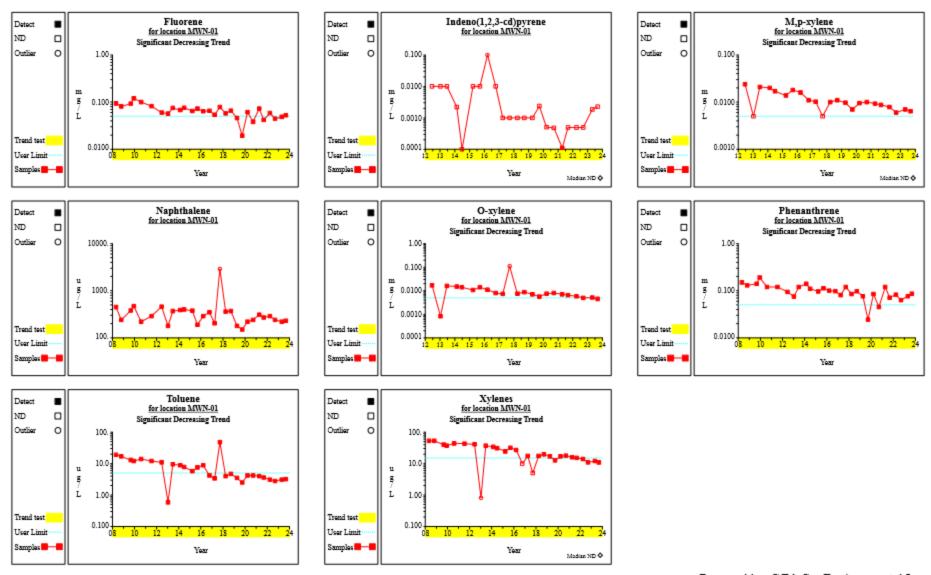




# APPENDIX C TIME SERIES PLOTS



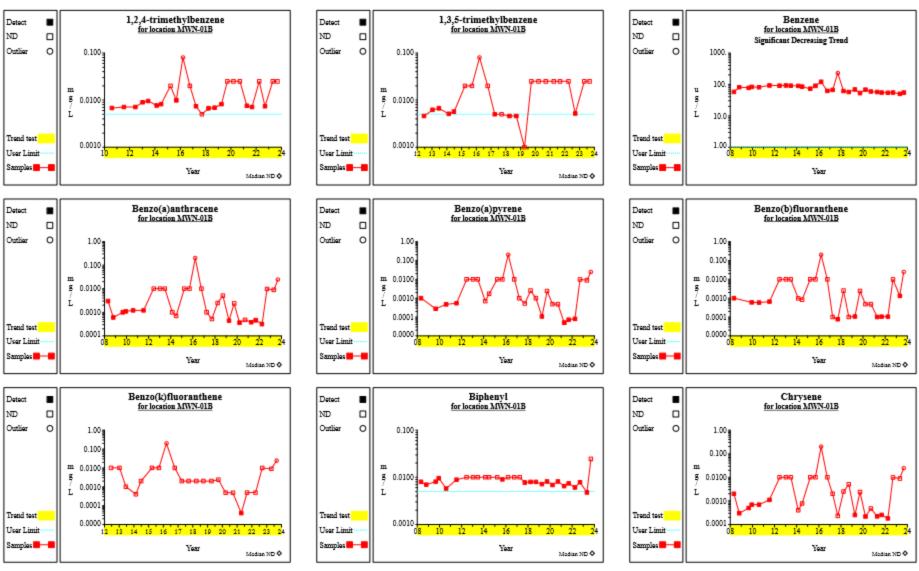


Prepared by: GZA GeoEnvironmental Inc.







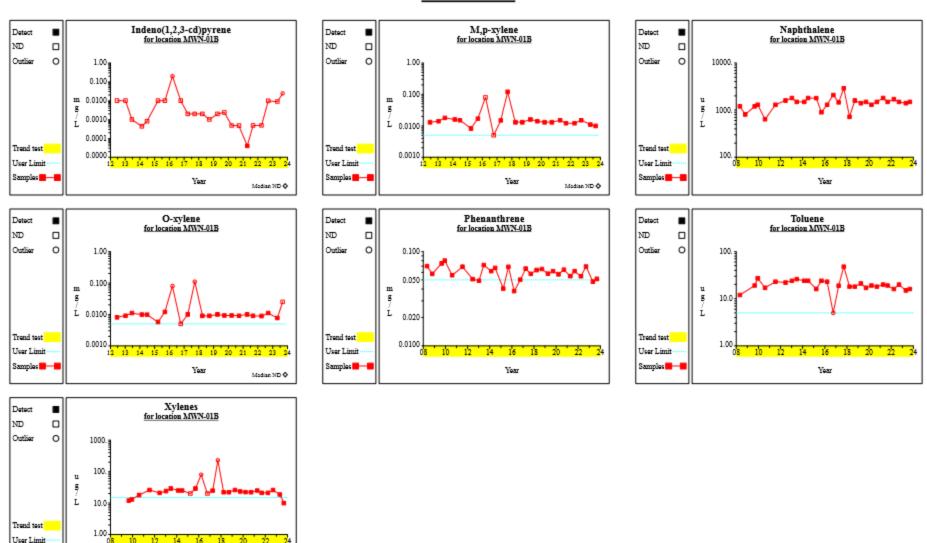


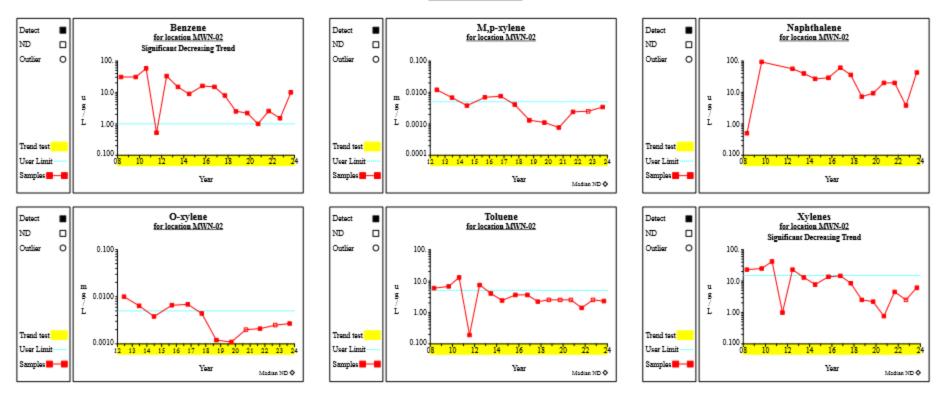



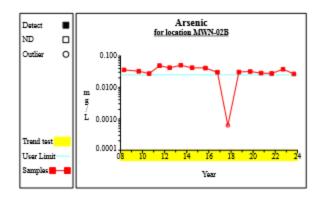

Prepared by: GZA GeoEnvironmental Inc.

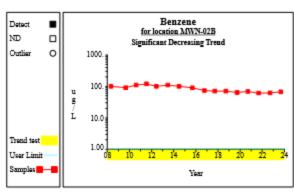


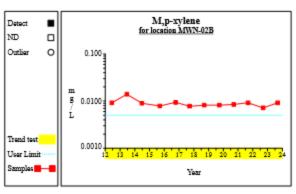
Prepared by: GZA GeoEnvironmental Inc.

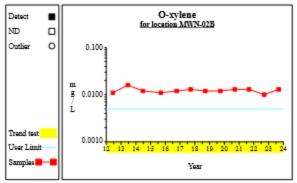

### Analysis prepared on: 11/2/2023

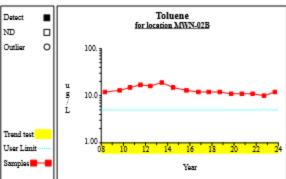


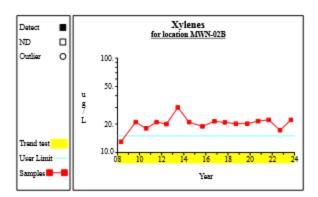


Prepared by: GZA GeoEnvironmental Inc.


Samples =


Year

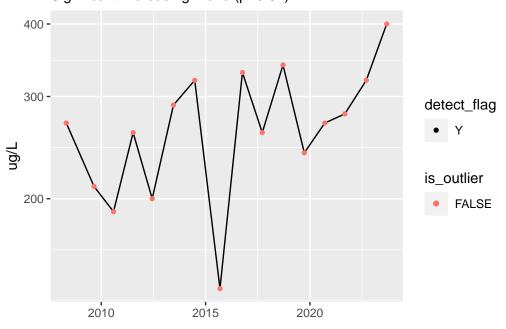


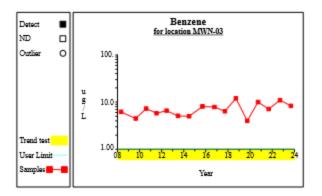



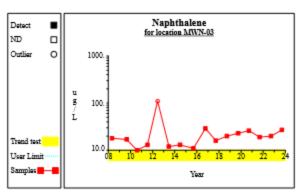



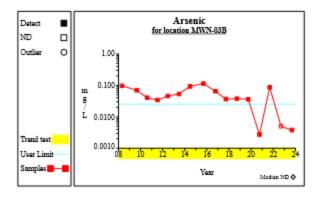


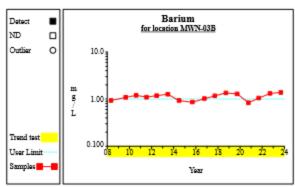


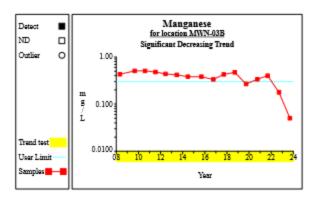



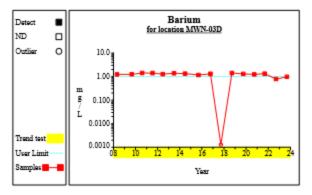



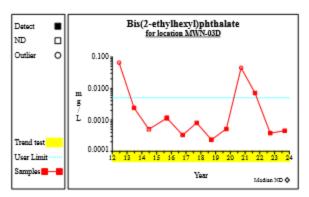



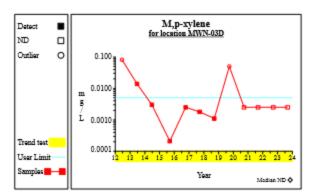


# Naphthalene

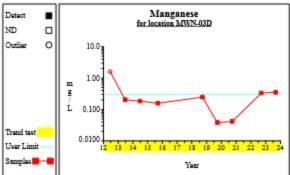

for location MWN-02B Significant Increasing Trend (p=0.04)

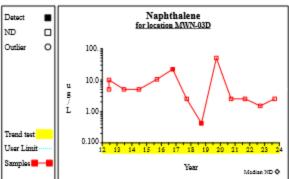


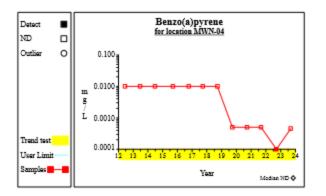



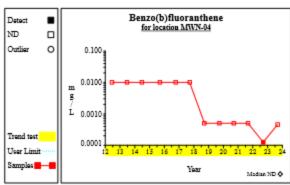



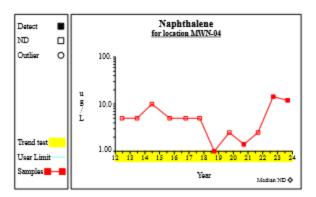



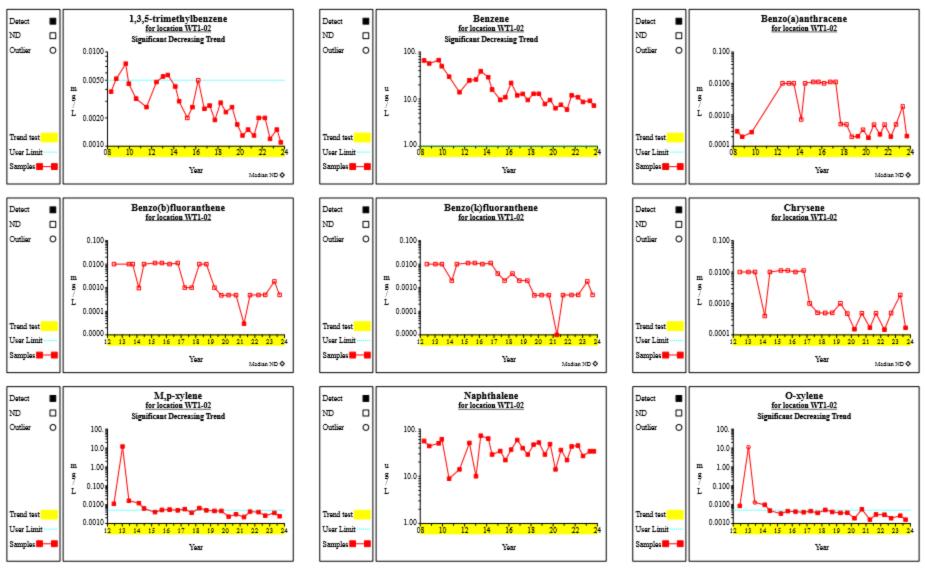



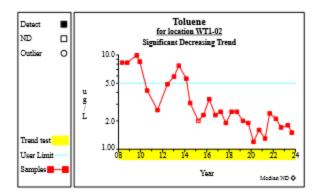



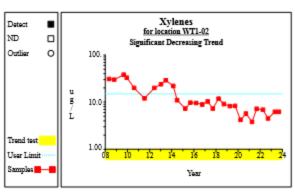



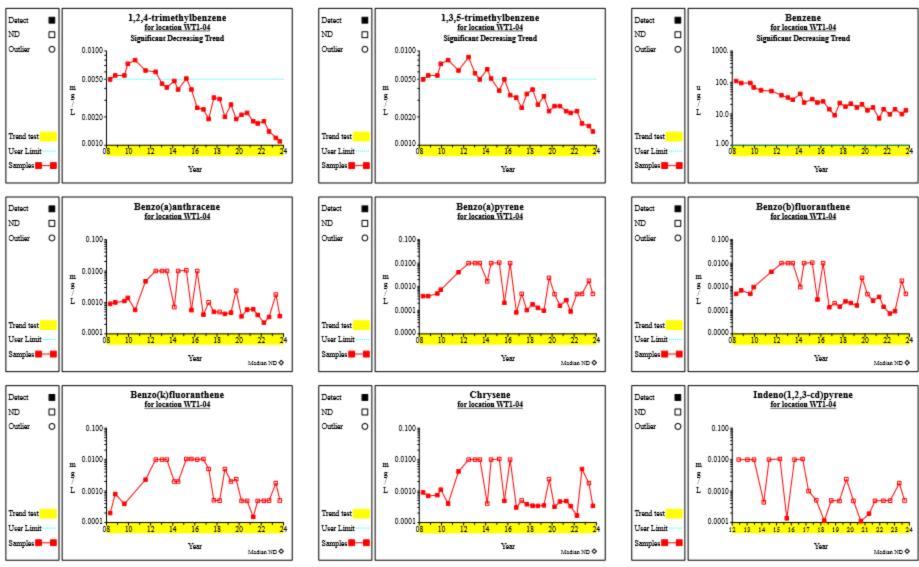



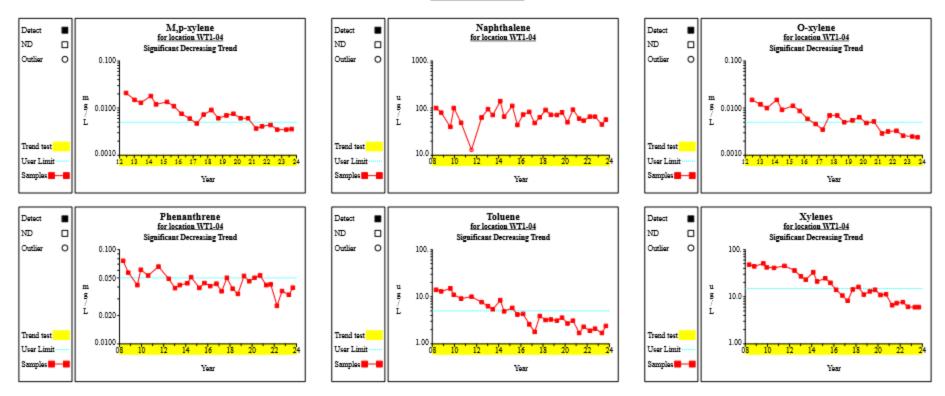


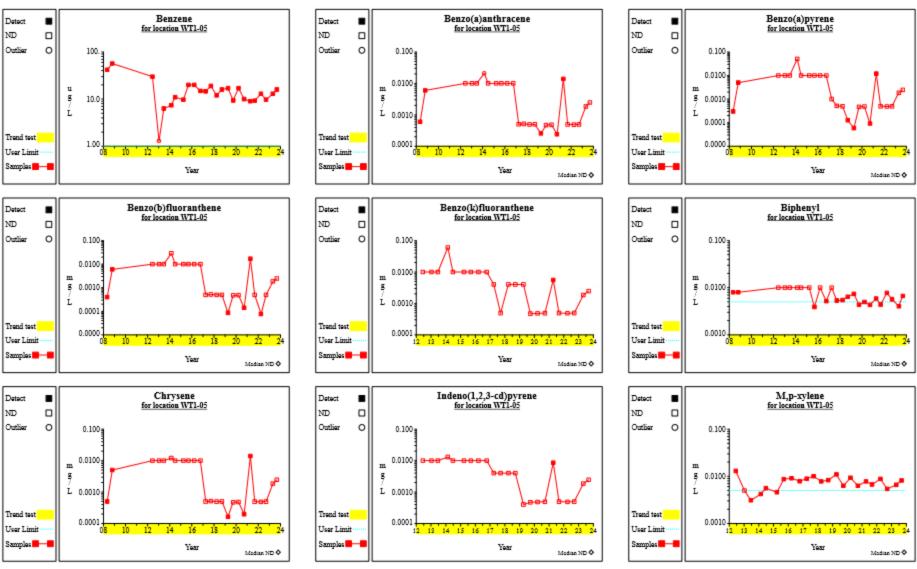







Prepared by: GZA GeoEnvironmental Inc.





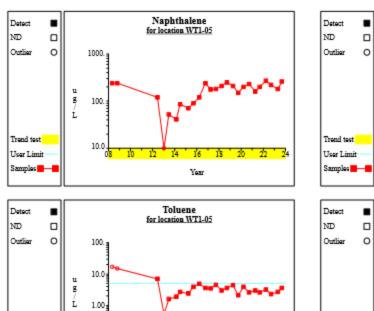



Prepared by: GZA GeoEnvironmental Inc.

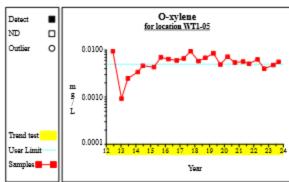


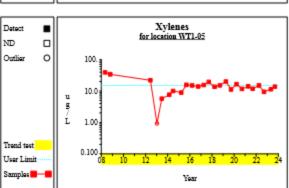


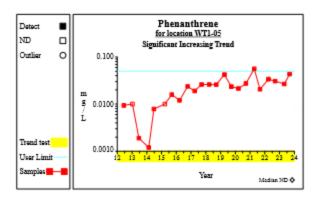
Prepared by: GZA GeoEnvironmental Inc.


Trend test

User Limit


Samples ==


0.100


# **Time Series**



Year









# APPENDIX D WELL DEVELOPMENT FORMS

|               |                     |                        |                     |                       | LF                 | icka wanna,                 | NEW TOR    | (K       |               |           |                                  |
|---------------|---------------------|------------------------|---------------------|-----------------------|--------------------|-----------------------------|------------|----------|---------------|-----------|----------------------------------|
|               |                     |                        |                     |                       |                    | Historic Info               | ormation   |          |               |           |                                  |
| oring Log A   | vailable ( <b>)</b> | <b>/es</b> /no/attac   | hed):               |                       |                    |                             |            |          |               |           |                                  |
| stallation L  | .og Availab         | ole ( <b>yes</b> /no/a | attached)           |                       |                    |                             |            |          |               |           |                                  |
|               |                     |                        |                     |                       |                    | Summ                        | ary        |          |               |           |                                  |
| Ionitoring V  | Vell:               | MWN-01                 |                     | Ground Su             | rface Elevation:   | 582.99                      |            | Riser/Sc | reen Material | : PVC     |                                  |
| nstallation D | Date:               | 8/30/90                |                     |                       | er Elevation:      | 570.37                      |            |          | creen Depth:  | 9.15      |                                  |
| stalled By:   |                     | Turnkey                |                     |                       | Point Elevation:   | 585.14                      |            | Bottom o | of Screen Dep | th: 19.15 |                                  |
|               |                     |                        |                     | Elevation D           |                    |                             |            |          |               |           |                                  |
| revious Fie   | ld measur           | ement Inforr           | mation Availal      | ole (yes/ <b>no</b> / | attached)          |                             |            |          |               |           |                                  |
|               |                     |                        |                     |                       | Ranges             | s of Previous Fi            | eld Measur | ements   |               |           |                                  |
| Depth to      | Water               |                        | pН                  |                       | Conductance        | Tempera                     | ature      | Τι       | urbidity      |           | Color                            |
| (ft)          |                     | (Standa                | ard Units)          | 1)                    | mS/cm)             | (°C)                        | )          | (        | NTU)          |           |                                  |
| 15.2          | 22                  | 11.7                   | 1-11.81             | 1.2                   | 44-1.258           | 11.5 - 12.0 2.80-3.48 Clear |            |          |               |           | Clear                            |
| lotes:        |                     |                        |                     |                       |                    |                             |            |          |               |           |                                  |
|               |                     |                        |                     |                       |                    |                             |            |          |               |           |                                  |
|               |                     |                        | F                   | ield Observ           | ations             |                             |            |          | Parame        | eters +/- | Sampling Information             |
| xterior Obs   | ervations:          | ok                     |                     |                       |                    |                             |            |          | pН            | +/- 0.1   | Sample ID: <b>MWN-01</b> -090523 |
|               |                     |                        |                     |                       |                    |                             |            |          | Conductivity  |           | Sample Time: 8:45                |
| iterior Obse  | ervations           | ok                     |                     |                       |                    |                             |            |          | Temperature   |           | # of Sample Containers: Five     |
|               |                     |                        |                     |                       |                    |                             |            |          | Turbidity     | +/- 10%   | Duplicate Sample ID: NA          |
|               | -                   |                        |                     |                       |                    |                             |            |          | ORP           | +/- 10mV  | Sample Analysis:                 |
| igns of Dan   |                     |                        | None                |                       |                    |                             | DID 14     |          | DO            | +/- 10%   | VOC STARS List via EPA 8260B     |
| Locked ()     | yes/ <b>no</b> )    | Well Ca                | p ( <b>yes</b> /no) | Sur                   | face Seal Intact ( |                             | PID Measu  | urement: | ND            | Odors:    | SVOC B/N Via EPA 8270C           |
|               | ı                   | ı                      | I                   |                       |                    | Well Quali                  | ty Data    |          | Ī             | ı         | I                                |
| Date          | Time                | Depth to               | Cumulative          | pН                    | Specific           | Temperature                 | Turbidity  | Color    | Dissolved     | Oxygen    | Notes                            |
| Date          | Tille               | Water                  | Volume              | ρ⊓<br>(Standard       | Conductance        |                             | (NTU)      | COIOI    |               | Reduction | NOICS                            |
|               |                     |                        | Purged (Gal)        |                       | (mS/cm)            | (°C)                        | (1410)     |          | Oxygen<br>%   | Potential |                                  |
| 9/5/2023      | 8:25                | 14.85                  | 0                   | 11.92                 | 1.237              | 11.7                        | 10.41      | None     | 4.8           | -189.9    | Depth of Water: 14.77            |
| 31312323      | 8:35                | 14.85                  | 4                   | 11.93                 | 1.223              | 12.2                        | 5.31       | None     | 0.5           | -280.4    | Length of Water Column: 4.38     |
|               | 8:40                | 14.85                  | 6                   | 11.92                 | 1.221              | 12.2                        | 4.98       | None     | 0.4           | -282      | Depth of Well: 19.15             |
|               | 8:45                | 14.85                  | 8                   | 11.92                 | 1.217              | 12.2                        | 4.4        | None     | 0.4           | -285.6    | Sheen Observed: Y N              |
|               |                     |                        |                     |                       |                    |                             |            |          |               |           | DNAPL Observed: Y N              |
|               |                     |                        |                     |                       |                    |                             |            |          |               |           | Did Well Go Dry: Y N             |
|               |                     |                        |                     |                       |                    |                             |            |          |               |           | Other: 4" diameter well          |
|               |                     |                        |                     |                       |                    |                             |            |          |               |           |                                  |
|               |                     |                        |                     |                       |                    |                             |            |          |               |           | 1 Well Volume = 2.8 gal          |
|               |                     |                        |                     |                       |                    |                             |            |          |               |           |                                  |
|               |                     |                        |                     |                       |                    |                             |            |          |               |           |                                  |

|               |                      |                                                  |                     |                       | L                  | ACKAWANNA       | , NEW YO   | KK        |                 |           |                                   |  |
|---------------|----------------------|--------------------------------------------------|---------------------|-----------------------|--------------------|-----------------|------------|-----------|-----------------|-----------|-----------------------------------|--|
|               |                      |                                                  |                     |                       |                    | Historic Info   | ormation   |           |                 |           |                                   |  |
| 3oring Log A  | Available ( <b>y</b> | <b>/es</b> /no/attac                             | hed):               |                       |                    |                 |            |           |                 |           |                                   |  |
| nstallation L | Log Availab          | ole ( <b>yes</b> /no/a                           | attached)           |                       |                    |                 |            |           |                 |           |                                   |  |
|               |                      |                                                  |                     |                       |                    | Summ            | nary       |           |                 |           |                                   |  |
| Nonitoring V  | Well:                | MWN-01B                                          |                     | Ground Su             | rface Elevation:   | 583.79          |            | Riser/Sc  | reen Material   | : PVC     |                                   |  |
| nstallation [ | Date:                | 11/2/92                                          |                     | Groundwat             | er Elevation:      | 571.31          |            | Top of So | creen Depth:    | 22.24     |                                   |  |
| nstalled By:  | :                    | Turnkey                                          |                     | Monitoring            | Point Elevation:   | 587.03          |            | Bottom o  | f Screen Dep    | th: 32.24 |                                   |  |
|               |                      |                                                  |                     | Elevation D           | )atum:             |                 |            |           |                 |           |                                   |  |
| revious Fie   | eld measur           | ement Inforr                                     | mation Availat      | ole (yes/ <b>no</b> / | attached)          |                 |            |           |                 |           |                                   |  |
|               |                      |                                                  |                     |                       | Range              | s of Previous F | ield Measu | rements   |                 |           |                                   |  |
| Depth to      | Water                |                                                  | pН                  | Specific              | Conductance        | Tempera         |            |           | ırbidity        |           | Color                             |  |
| (ft           |                      |                                                  | ard Units)          |                       | nS/cm)             | (°C)            |            |           | NTU)            |           |                                   |  |
| 15.2          |                      | `                                                | -11.46              | 0.7                   | 76-0.891           | 10.6-1          |            |           | 2.18-78.2 Clear |           |                                   |  |
| Notes:        |                      |                                                  | -                   |                       |                    |                 |            |           | -               | <u> </u>  | -                                 |  |
| 10100.        |                      |                                                  |                     |                       |                    |                 |            |           |                 |           |                                   |  |
|               |                      |                                                  | Fi                  | ield Observa          | ations             |                 |            |           | Parame          | eters +/- | Sampling Information              |  |
| xterior Obs   | servations:          | ok                                               |                     |                       |                    |                 |            |           | рН              | +/- 0.1   | Sample ID: <b>MWN-01B</b> -090523 |  |
|               |                      |                                                  |                     |                       |                    |                 |            |           | Conductivity    |           | Sample Time: 14:05                |  |
| nterior Obs   | ervations            | ok                                               |                     |                       |                    |                 |            |           | Temperature     | e +/- 10% | # of Sample Containers: Five      |  |
|               |                      |                                                  |                     |                       |                    |                 |            |           | Turbidity       | +/- 10%   | Duplicate Sample ID: NA           |  |
|               |                      |                                                  |                     |                       |                    |                 |            |           | ORP             | +/- 10mV  | Sample Analysis:                  |  |
| igns of Dar   |                      |                                                  | None                |                       |                    |                 |            |           | DO              | +/- 10%   | VOC STARS List via EPA 8260B      |  |
| Locked (      | yes/ <b>no</b> )     | Well Ca                                          | p ( <b>yes</b> /no) | Surf                  | face Seal Intact ( | _               | PID Measu  | urement:  | ND              | Odors:    | SVOC B/N Via EPA 8270C            |  |
|               |                      |                                                  |                     |                       |                    | Well Qual       | ity Data   |           |                 |           |                                   |  |
| _             |                      |                                                  |                     |                       |                    |                 |            |           |                 | _         |                                   |  |
| Date          | Time                 | Depth to                                         | Cumulative          | pН                    | Specific           | Temperature     | Turbidity  | Color     | Dissolved       | Oxygen    | Notes                             |  |
|               |                      | Water                                            | Volume              | (Standard             | Conductance        | (°C)            | (NTU)      |           | Oxygen          | Reduction |                                   |  |
|               |                      |                                                  | Purged (Gal)        |                       | (mS/cm)            |                 |            |           | %               | Potential |                                   |  |
| 9/5/2023      | 13:45                | 15.79                                            | 0                   | 11.03                 | 0.686              | 12.8            | 43.7       | None      | 7.5             | -182.1    | Depth of Water: 15.72             |  |
|               | 13:55                | 15.79                                            | 4                   | 11.52                 | 0.786              | 12.2            | 27.71      | None      | 4.8             | -235.5    | Length of Water Column: 16.52     |  |
|               | 14:00                | 15.79                                            | 6                   | 11.55                 | 0.797              | 12.2            | 26.12      | None      | 5.4             | -242.8    | Depth of Well: 32.24              |  |
|               | 14:05                | 15.79                                            | 8                   | 11.55                 | 0.799              | 12.2            | 24.36      | None      | 5               | -249.6    | Sheen Observed: Y N               |  |
|               |                      |                                                  |                     |                       |                    |                 |            |           |                 |           | DNAPL Observed: Y N               |  |
|               |                      |                                                  |                     |                       |                    |                 |            |           |                 |           | Did Well Go Dry: Y N              |  |
|               |                      |                                                  |                     |                       |                    |                 |            |           |                 |           | Other: 2" diameter well           |  |
|               |                      |                                                  |                     |                       |                    |                 |            |           |                 |           | 1 Well Volume = 2.6 gal           |  |
|               |                      | 1                                                |                     |                       |                    |                 |            |           |                 |           |                                   |  |
|               |                      | <del>                                     </del> |                     |                       |                    |                 |            |           | <del> </del>    |           |                                   |  |
|               |                      |                                                  |                     |                       |                    |                 |            |           | <u> </u>        |           |                                   |  |

|                |                     |                        |                     |                       | L                 | ACKAWANNA         | , NEW YOR  | KK           |              |                 |                              |
|----------------|---------------------|------------------------|---------------------|-----------------------|-------------------|-------------------|------------|--------------|--------------|-----------------|------------------------------|
|                |                     |                        |                     |                       |                   | Historic Info     | ormation   |              |              |                 |                              |
| Boring Log A   | vailable ( <b>y</b> | <b>/es</b> /no/attac   | hed):               |                       |                   |                   |            |              |              |                 |                              |
| Installation L | og Availab          | ole ( <b>yes</b> /no/a | attached)           |                       |                   |                   |            |              |              |                 |                              |
|                |                     |                        |                     |                       |                   | Summ              | ary        |              |              |                 |                              |
| Monitoring W   |                     | WT1-02                 |                     |                       | rface Elevation:  | 598.5             |            |              | reen Materia |                 |                              |
| Installation D |                     | 6/11/07                |                     |                       | er Elevation:     | 573.4             |            |              | creen Depth: |                 |                              |
| Installed By:  |                     | Turnkey                |                     |                       | Point Elevation:  | 600.78            |            | Bottom o     | of Screen De | oth: 37.78      |                              |
|                |                     |                        |                     | Elevation D           |                   |                   |            |              |              |                 |                              |
| Previous Fiel  | ld measure          | ement Inforr           | mation Availat      | ole (yes/ <b>no</b> / |                   |                   |            |              |              |                 |                              |
|                |                     |                        |                     |                       |                   | s of Previous F   | ield Measu | rements      |              |                 |                              |
| Depth to       | Water               |                        | рН                  | Specific              | Conductance       | Tempera           | ature      | Tu           | ırbidity     |                 | Color                        |
| (ft)           |                     | (Standa                | ard Units)          | (n                    | nS/cm)            | (°C               | )          | (1           | NTU)         | <u> </u>        |                              |
| 27.8           | 32                  | 11.93                  | 3-11.98             | 1.58                  | 88-1.605          | 13-13.1 1.40-1.75 |            |              |              |                 | Clear                        |
| Notes:         |                     |                        |                     |                       |                   |                   |            |              |              |                 |                              |
|                |                     |                        |                     |                       |                   |                   |            |              |              |                 |                              |
|                |                     |                        | Fi                  | eld Observa           | ations            |                   |            |              | Parame       | eters +/-       | Sampling Information         |
| Exterior Obs   | ervations:          | ok                     |                     |                       |                   |                   |            |              | рН           | +/- 0.1         | Sample ID: WT1-02-090523     |
|                |                     |                        |                     |                       |                   |                   |            |              | Conductivity |                 | Sample Time: 11:25           |
| nterior Obse   | ervations           | ok                     |                     |                       |                   |                   |            |              | Temperatur   |                 | # of Sample Containers: Five |
|                |                     | -                      |                     |                       |                   |                   |            |              | Turbidity    | +/- 10%         | Duplicate Sample ID: NA      |
|                |                     |                        |                     |                       |                   |                   |            |              | ORP          | +/- 10mV        | Sample Analysis:             |
| Signs of Dan   |                     |                        | None                | 1                     |                   |                   | I          |              | DO           | +/- 10%         | VOC STARS List via EPA 8260B |
| Locked (y      | /es/ <b>no</b> )    | Well Ca                | p ( <b>yes</b> /no) | Surf                  | ace Seal Intact ( |                   | PID Measu  | urement:     | ND           | Odors:          | SVOC B/N Via EPA 8270C       |
| 1              |                     | 1                      |                     |                       |                   | Well Quali        | ty Data    | ı            |              | 1               |                              |
| D-4-           | T:                  | D = = 41= 4 =          | 0                   | -11                   | 0:6-              | T                 | Tl. : .1:4 | 0-1          | Discolus     | 0               | Nata                         |
| Date           | Time                | Depth to               | Cumulative          | pH<br>(Otamalana)     | Specific          | Temperature       | Turbidity  | Color        | Dissolved    | Oxygen          | Notes                        |
|                |                     | Water                  | Volume              | (Standard             | Conductance       | (°C)              | (NTU)      |              | Oxygen       | Reduction       |                              |
| 9/5/2023       | 11:05               | ft bgs<br>27.85        | Purged (Gal)<br>0   | Units)<br>12.22       | (mS/cm)<br>1.858  | 12.9              | 7.69       | None         | %<br>38.9    | Potential -50.2 | Depth of Water: 27.38        |
| 9/3/2023       | 11:05               | 27.85                  | 2                   | 12.22                 | 1.858             | 12.9              | 7.69       | None<br>None | 38.9<br>17.7 | -50.2<br>-88.8  | Length of Water Column: 10.4 |
|                | 11:13               | 27.85                  | 3                   | 12.31                 | 1.836             | 12.0              | 6.98       | None         | 15.7         | -00.0<br>-96.7  | Depth of Well: 37.78         |
|                | 11:25               | 27.85                  | 4                   | 12.32                 | 1.833             | 12.9              | 7.11       | None         | 14.6         | -101.3          | Sheen Observed: Y N          |
|                | 11.20               | 21.00                  | т -                 | 12.02                 | 1.000             | 12.0              | 7.11       | 140116       | 17.0         | -101.0          | DNAPL Observed: Y N          |
|                |                     |                        |                     |                       |                   |                   |            |              |              |                 | Did Well Go Dry: Y N         |
|                |                     |                        |                     |                       |                   |                   |            |              |              |                 | Other: 4" diameter well      |
|                |                     |                        |                     |                       |                   |                   |            |              |              |                 | 1 Well Volume = 6.8 gal      |
|                |                     |                        |                     |                       |                   |                   |            |              |              |                 | Ţ.                           |
|                |                     |                        |                     |                       |                   |                   |            |              |              |                 |                              |
|                |                     |                        |                     |                       |                   |                   |            |              |              |                 |                              |

|                |                  |                       |                      |                     |                 |                 | ,              |              |              |                  |                                          |
|----------------|------------------|-----------------------|----------------------|---------------------|-----------------|-----------------|----------------|--------------|--------------|------------------|------------------------------------------|
|                |                  |                       |                      |                     |                 | Historic Info   | ormation       |              |              |                  |                                          |
| Boring Log A   | إ) Available     | <b>yes</b> /no/attad  | ched):               |                     |                 |                 |                |              |              |                  |                                          |
| Installation L | og Availab       | ble ( <b>yes</b> /no/ | attached)            |                     |                 |                 |                |              |              |                  |                                          |
|                |                  |                       |                      |                     |                 | Summ            | nary           |              |              |                  |                                          |
| Monitoring V   | Vell :           | WT1-04                |                      | Ground Su           | rface Elevation | n: 584.43       |                | Riser/Sc     | reen Materi  | al: PVC          |                                          |
| Installation D | Date:            | 5/21/07               |                      |                     | ter Elevation:  | 573.24          |                |              | creen Depth  |                  |                                          |
| Installed By:  |                  | Turnkey               |                      | Monitoring          | Point Elevation | 586.45          |                | Bottom o     | of Screen De | epth: 25.52      |                                          |
|                |                  |                       |                      | Elevation D         |                 |                 |                |              |              |                  |                                          |
| Previous Fie   | ld measur        | ement Infor           | mation Availa        | ble (yes/ <b>no</b> | /attached)      |                 |                |              |              |                  |                                          |
|                |                  |                       |                      |                     | Range           | s of Previous F | ield Measu     | irements     |              |                  |                                          |
| Depth to       | Water            |                       | рН                   | Specific (          | Conductance     | Tempera         | ature          | Tui          | rbidity      |                  | Color                                    |
| (ft)           | )                | (Stand                | ard Units)           | (m                  | S/cm)           | (°C             | )              | (N           | NTU)         |                  |                                          |
| 13.7           |                  | 11.7                  | 3-11.78              | 1.32                | .6-1.682        | 13.0-1          |                | 2.62         | 2-4.50       |                  | Clear                                    |
| Notes:         |                  |                       |                      |                     |                 |                 |                |              |              | <u> </u>         |                                          |
|                |                  |                       |                      |                     |                 |                 |                |              |              |                  |                                          |
|                |                  |                       | Fie                  | eld Observa         | tions           |                 |                |              | Param        | eters +/-        | Sampling Information                     |
| Exterior Obs   | ervations:       | ok                    |                      |                     |                 |                 |                |              | рН           | +/- 0.1          | Sample ID: <b>WT1-04</b> -090523         |
|                |                  |                       |                      |                     |                 |                 |                |              | Conductivi   | ty +/- 3%        | Sample Time: 9:35                        |
| nterior Obse   | ervations        | ok                    |                      |                     |                 |                 |                |              | Temperatu    | re +/- 10%       | # of Sample Containers: Five             |
|                |                  |                       |                      |                     |                 |                 |                |              | Turbidity    |                  | Duplicate Sample ID: NA                  |
|                |                  |                       |                      |                     |                 |                 |                |              | ORP          |                  | Sample Analysis:                         |
| Signs of Dar   |                  |                       | None                 | _                   |                 |                 |                |              | DO           |                  | VOC STARS List via EPA 8260B             |
| Locked (y      | yes/ <b>no</b> ) | Well Ca               | ap ( <b>yes</b> /no) | Surfa               | ace Seal Intact |                 | PID Meas       | urement:     | ND           | Odors:           | SVOC B/N Via EPA 8270C                   |
|                |                  |                       |                      |                     |                 | Well Qual       | ity Data       |              |              |                  |                                          |
| <u>.</u>       |                  |                       |                      |                     |                 |                 | _ ,            |              |              |                  |                                          |
| Date           | Time             | Depth to              | Cumulative           | pH                  | Specific        | Temperature     | Turbidity      | Color        | Dissolved    | Oxygen           | Notes                                    |
|                |                  | Water                 | Volume               | `                   | Conductance     | (°C)            | (NTU)          |              | Oxygen       | Reduction        |                                          |
| 0/5/0000       | 0.40             | ft bgs                | Purged (Gal)         |                     | (mS/cm)         |                 | 22.24          |              | %            | Potential        |                                          |
| 9/5/2023       | 9:10             | 14.12                 | 0                    | 12.03               | 1.391           | 14.9            | 32.91          | None         | 3.2          |                  | Depth of Water: 13.21                    |
|                | 9:20             | 14.12                 | 1 1                  | 11.97               | 1.22            | 15              | 45.56          | None         | 0.6          | -258.9           | Length of Water Column: 12.31            |
|                | 9:25<br>9:30     | 14.12<br>14.12        | 1.5<br>2             | 11.97<br>11.97      | 1.224<br>1.22   | 15.1<br>15.1    | 44.82<br>42.16 | None         | 0.4          | -264.7<br>-272.4 | Depth of Well: 25.52                     |
|                | 9:30             | 14.12                 | 2.5                  | 11.97               | 1.22            | 15.1            | 44.32          | None<br>None | 0.3          | -272.4<br>-280.2 | Sheen Observed: Y N  DNAPL Observed: Y N |
|                | ყ.აა             | 14.12                 | ۷.5                  | 11.91               | 1.210           | 13.1            | 44.32          | None         | 0.3          | -200.2           | Did Well Go Dry: Y N                     |
|                |                  |                       | <del> </del>         |                     |                 |                 |                |              |              |                  | Other: 2" diameter well                  |
|                |                  |                       |                      |                     |                 |                 |                |              |              |                  | 1 Well Volume = 1.9 gal                  |
|                |                  |                       | 1                    | <u> </u>            |                 |                 |                |              |              |                  | 1 11011 Volume – 1.9 gai                 |
|                |                  |                       | <u> </u>             |                     |                 |                 |                |              |              |                  |                                          |
|                |                  |                       |                      | 1                   |                 |                 |                |              |              |                  |                                          |

|               |                  |                       |                      |                     |                 |                 | ,          |          |                |             |                                  |  |
|---------------|------------------|-----------------------|----------------------|---------------------|-----------------|-----------------|------------|----------|----------------|-------------|----------------------------------|--|
|               |                  |                       |                      |                     |                 | Historic Info   | ormation   |          |                |             |                                  |  |
| Boring Log A  | Available (      | <b>yes</b> /no/attac  | ched):               | 16                  |                 |                 |            |          |                |             |                                  |  |
| nstallation L | _og Availal      | ble ( <b>yes</b> /no/ | attached)            |                     |                 |                 |            |          |                |             |                                  |  |
|               |                  |                       | ·                    |                     |                 | Summ            | nary       |          |                |             |                                  |  |
| Monitoring V  | Vell :           | WT1-05                |                      | Ground Su           | rface Elevation |                 | ,          | Riser/Sc | reen Materi    | al: PVC     |                                  |  |
| nstallation [ |                  | 5/29/07               |                      | Groundwat           | er Elevation:   | 572.37          |            | Top of S | creen Deptl    | n: 13.30    |                                  |  |
| nstalled By:  |                  | Turnkey               |                      | Monitoring          | Point Elevation | 584.41          |            | Bottom o | of Screen De   | epth: 23.30 |                                  |  |
| •             |                  |                       |                      | Elevation [         | Datum:          |                 |            | _!       |                |             |                                  |  |
| revious Fie   | eld measur       | ement Infor           | mation Availa        | ble (yes/ <b>no</b> | /attached)      |                 |            |          |                |             |                                  |  |
|               |                  |                       |                      | 19                  | Range           | s of Previous F | ield Measu | rements  |                |             |                                  |  |
| Depth to      | Water            |                       | pН                   | Specific (          | Conductance     | Tempera         |            |          | rbidity        |             | Color                            |  |
| (ft           |                  |                       | ard Units)           |                     | hos/cm)         | °C°             |            |          | NTU)           |             | 2 2.2.                           |  |
| 12.4          |                  | ,                     | 1-11.61              | `                   | 2-1.347         | 12.8-1          |            | `        | .98-1.52 Clear |             |                                  |  |
| lotes:        | 10               | 1 11.0                |                      | 1.20                | 2 1.0-17        | 12.0-1          | 0.0        | 0.0      | 0 1.02         |             | Oldai.                           |  |
| 10103.        |                  |                       |                      |                     |                 |                 |            |          |                |             |                                  |  |
|               |                  |                       | Fie                  | eld Observa         | tions           |                 |            |          | Param          | eters +/-   | Sampling Information             |  |
| xterior Obs   | servations:      | ok                    | 1 10                 | 7,G 0,D00,17G       |                 |                 |            |          | рН             | +/- 0.1     | Sample ID: <b>WT1-05</b> -090523 |  |
| Alonor Obc    | or valiono.      | <u>ok</u>             |                      |                     |                 |                 |            |          | Conductivi     |             | Sample Time: 7:50                |  |
| nterior Obse  | ervations        | ok                    |                      |                     |                 |                 |            |          |                |             | # of Sample Containers: Five     |  |
|               |                  |                       |                      |                     |                 |                 |            |          | Turbidity      |             | Duplicate Sample ID: NA          |  |
|               |                  |                       |                      |                     |                 |                 |            |          | ORP            |             | Sample Analysis:                 |  |
| igns of Dar   | mage/Tam         | pering:               | None                 |                     |                 |                 |            |          | DO             |             | VOC STARS List via EPA 8260B     |  |
| Locked (      | yes/ <b>no</b> ) | Well Ca               | ıp ( <b>yes</b> /no) | Surfa               | ace Seal Intact | (yes/no)        | PID Measi  | urement: | ND             | Odors:      | SVOC B/N Via EPA 8270C           |  |
|               |                  |                       |                      |                     |                 | Well Qual       | ity Data   |          |                |             |                                  |  |
|               |                  |                       |                      |                     |                 |                 |            |          |                |             |                                  |  |
| Date          | Time             | Depth to              | Cumulative           | рН                  | Specific        | Temperature     | Turbidity  | Color    | Dissolved      | Oxygen      | Notes                            |  |
|               |                  | Water                 | Volume               | (Standard           | Conductance     | (°C)            | (NTU)      |          | Oxygen         | Reduction   |                                  |  |
|               |                  | ft bgs                | Purged (Gal)         | Units)              | (mS/cm)         |                 |            |          | %              | Potential   |                                  |  |
| 9/5/2023      | 7:30             | 12.04                 | 0                    | 11.71               | 1.237           | 12.9            | 213        | None     | 26.2           |             | Depth of Water: 12.04            |  |
|               | 7:40             | 12.04                 | 8                    | 11.82               | 1.277           | 12.9            | 62.82      | None     | 2.3            | -227.8      | Length of Water Column: 11.26    |  |
|               | 7:45             | 12.04                 | 12                   | 11.8                | 1.269           | 12.9            | 70.12      | None     | 1.9            |             | Depth of Well: 23.3              |  |
|               | 7:50             | 12.04                 | 16                   | 11.78               | 1.254           | 12.9            | 68.32      | None     | 1.6            | -241.6      | Sheen Observed: Y N              |  |
|               |                  |                       |                      |                     |                 |                 |            |          |                |             | DNAPL Observed: Y N              |  |
|               |                  |                       |                      |                     |                 |                 |            |          |                |             | Did Well Go Dry: Y N             |  |
|               |                  |                       |                      |                     |                 |                 |            |          |                |             | Other: 2" diameter well          |  |
|               |                  |                       |                      |                     |                 |                 |            |          |                |             | 1 Well Volume = 1.8 gal          |  |
|               |                  |                       |                      |                     |                 |                 |            |          |                |             |                                  |  |
|               |                  |                       |                      |                     |                 |                 |            |          |                |             |                                  |  |
|               |                  |                       |                      |                     |                 |                 |            |          |                |             |                                  |  |

|               |                  |                       |                      |                     |                 | Historic Info   | ormation   |          |              |             |                                  |
|---------------|------------------|-----------------------|----------------------|---------------------|-----------------|-----------------|------------|----------|--------------|-------------|----------------------------------|
| Boring Log A  | \vailable (      | yes/no/atta           | ched):               |                     |                 |                 |            |          |              |             |                                  |
| nstallation L | ₋og Availat      | ole ( <b>yes</b> /no/ | attached)            |                     |                 |                 |            |          |              |             |                                  |
|               |                  |                       |                      |                     |                 | Summ            | nary       |          |              |             |                                  |
| Monitoring V  | Vell:            | BCP-ORC               | -1                   | Ground Su           | rface Elevation |                 |            |          | reen Materia |             |                                  |
| nstallation D | Date:            | 10/3/07               |                      |                     | ter Elevation:  | 573.24          |            |          | creen Depth  |             |                                  |
| nstalled By:  |                  | Turnkey               |                      |                     | Point Elevation | 591.97          |            | Bottom o | of Screen De | epth: 34.68 |                                  |
|               |                  |                       |                      | Elevation [         |                 |                 |            |          |              |             |                                  |
| Previous Fie  | ld measur        | ement Infor           | mation Availa        | ble (yes/ <b>no</b> | /attached)      |                 |            |          |              |             |                                  |
|               |                  |                       |                      |                     | Range           | s of Previous F | ield Measu | rements  |              |             |                                  |
| Depth to      | Water            |                       | рН                   | Specific (          | Conductance     | Tempera         | ature      | Tui      | rbidity      |             | Color                            |
| (ft)          | )                | (Stand                | ard Units)           | (m                  | S/cm)           | (°C             | )          | (N       | NTU)         |             |                                  |
| 19.2          |                  | 11.6                  | 0-11.78              | 1.04                | 1-1.105         | 11.5-1          |            | 1.12     | 2-1.74       |             | Clear                            |
| Notes:        |                  |                       |                      |                     |                 | 1               |            |          |              |             |                                  |
|               |                  |                       |                      |                     |                 |                 |            |          |              |             |                                  |
|               |                  |                       | Fie                  | eld Observa         | tions           |                 |            |          | Param        | eters +/-   | Sampling Information             |
| Exterior Obs  | ervations:       | ok                    |                      |                     |                 |                 |            |          | рН           | +/- 0.1     | Sample ID: BCP-ORC-090523        |
|               |                  |                       |                      |                     |                 |                 |            |          | Conductivi   |             | Sample Time: 10:25               |
| nterior Obse  | ervations        | ok                    |                      |                     |                 |                 |            |          |              |             | # of Sample Containers: Five     |
|               |                  |                       |                      |                     |                 |                 |            |          | Turbidity    | +/- 10%     | Duplicate Sample ID: NA          |
|               |                  |                       |                      |                     |                 |                 |            |          | ORP          |             | Sample Analysis:                 |
| Signs of Dar  | nage/Tam         |                       | None                 |                     |                 |                 |            |          | DO           | +/- 10%     | VOC STARS List via EPA 8260B     |
| Locked ()     | yes/ <b>no</b> ) | Well Ca               | ap ( <b>yes</b> /no) | Surfa               | ace Seal Intact |                 | PID Measi  | urement: | ND           | Odors:      | SVOC B/N Via EPA 8270C           |
|               |                  |                       |                      |                     |                 | Well Qual       | ity Data   |          |              |             |                                  |
|               |                  |                       |                      |                     |                 |                 |            |          |              |             |                                  |
| Date          | Time             | Depth to              | Cumulative           | pН                  | Specific        | Temperature     | Turbidity  | Color    | Dissolved    | Oxygen      | Notes                            |
|               |                  | Water                 | Volume               | `                   | Conductance     | (°C)            | (NTU)      |          | Oxygen       | Reduction   |                                  |
|               |                  | ft bgs                | Purged (Gal)         |                     | (mS/cm)         |                 |            |          | %            | Potential   |                                  |
| 9/5/2023      | 10:05            | 19.1                  | 0                    | 11.84               | 1.119           | 12.3            | 6.3        | None     | 15.9         |             | Depth of Water: 18.73            |
|               | 10:15            | 19.18                 | 1                    | 11.76               | 1.007           | 12.6            | 5.59       | None     | 3.2          | -197.8      | Length of Water Column: 15.95    |
|               | 10:20            | 19.18                 | 1.5                  | 11.74               | 0.999           | 12.7            | 5.09       | None     | 2.6          | -205.2      | Depth of Well: 34.68             |
| 1             | 10:25            | 19.18                 | 2                    | 11.74               | 0.995           | 12.7            | 5.12       | None     | 2.2          | -210.4      | Sheen Observed: Y N              |
|               |                  |                       | 1                    |                     |                 |                 |            |          |              |             | DNAPL Observed: Y N              |
|               |                  |                       |                      |                     |                 |                 |            |          |              |             |                                  |
|               |                  |                       |                      |                     |                 |                 |            |          |              |             | Did Well Go Dry: Y N             |
|               |                  |                       |                      |                     |                 |                 |            |          |              |             | Other: 4" diameter, Sulfur odor. |
|               |                  |                       |                      |                     |                 |                 |            |          |              |             |                                  |
|               |                  |                       |                      |                     |                 |                 |            |          |              |             | Other: 4" diameter, Sulfur odor. |

|                |                                                  |                       |                      |                       |                 |                 | ,          |              |              |                |                                                       |
|----------------|--------------------------------------------------|-----------------------|----------------------|-----------------------|-----------------|-----------------|------------|--------------|--------------|----------------|-------------------------------------------------------|
|                |                                                  |                       |                      |                       |                 | Historic Info   | ormation   |              |              |                |                                                       |
| Boring Log A   | Available (                                      | yes/no/atta           | ched):               |                       |                 |                 |            |              |              |                |                                                       |
| Installation L | _og Availal                                      | ble ( <b>yes</b> /no/ | /attached)           |                       |                 |                 |            |              |              |                |                                                       |
|                |                                                  |                       |                      |                       |                 | Summ            | nary       |              |              |                |                                                       |
| Monitoring V   | Vell :                                           | MWN-02                |                      | Ground Su             | rface Elevation | n: 598.89       |            | Riser/Sc     | reen Materia | al: PVC        |                                                       |
| Installation D | Date:                                            | 9/10/90               |                      |                       | ter Elevation:  | 572.93          |            |              | creen Depth  |                |                                                       |
| Installed By:  |                                                  | Turnkey               |                      | Monitoring            | Point Elevation | 601.01          |            | Bottom o     | of Screen De | epth: 33.62    |                                                       |
|                |                                                  |                       |                      | Elevation D           |                 |                 |            |              |              |                |                                                       |
| Previous Fie   | eld measur                                       | ement Infor           | mation Availa        | ble (yes/ <b>no</b> / | /attached)      |                 |            |              |              |                |                                                       |
|                |                                                  |                       |                      |                       | Range           | s of Previous F | ield Measu | ırements     |              |                |                                                       |
| Depth to       | Water                                            |                       | рН                   | Specific (            | Conductance     | Tempera         | ature      | Tui          | rbidity      |                | Color                                                 |
| (ft)           | )                                                | (Stand                | ard Units)           | (m                    | nS/cm)          | (°C             | )          | (N           | NTU)         |                |                                                       |
| 28.4           |                                                  | 11.7                  | 1-11.85              | 1.85                  | 3-1.965         | 12.5-1          |            | 2.10         | 6-2.62       |                | Clear                                                 |
| Notes:         |                                                  | •                     |                      |                       |                 | •               |            | •            |              |                |                                                       |
|                |                                                  |                       |                      |                       |                 |                 |            |              |              |                |                                                       |
|                |                                                  |                       | Fie                  | eld Observa           | tions           |                 |            |              | Param        | eters +/-      | Sampling Information                                  |
| Exterior Obs   | ervations:                                       | ok                    |                      |                       |                 |                 |            |              | рН           | +/- 0.1        | Sample ID: <b>MWN-02</b> -090523                      |
|                |                                                  |                       |                      |                       |                 |                 |            |              | Conductivi   | ty +/- 3%      | Sample Time: 13:05                                    |
| nterior Obse   | ervations                                        | ok                    |                      |                       |                 |                 |            |              |              |                | # of Sample Containers: Five                          |
|                |                                                  |                       |                      |                       |                 |                 |            |              | Turbidity    |                | Duplicate Sample ID: NA                               |
|                |                                                  |                       |                      |                       |                 |                 |            |              | ORP          |                | Sample Analysis:                                      |
| Signs of Dar   |                                                  |                       | None                 | T                     |                 |                 |            |              | DO           |                | VOC STARS List via EPA 8260B                          |
| Locked (       | yes/ <b>no</b> )                                 | Well Ca               | ap ( <b>yes</b> /no) | Surfa                 | ace Seal Intact |                 | PID Measi  | urement:     | ND           | Odors:         | SVOC B/N Via EPA 8270C                                |
|                | •                                                | •                     | •                    | ı                     |                 | Well Qual       | ity Data   | ı            | 1            |                |                                                       |
| D - 4 -        | T:                                               | D 41 . 1              | 0                    |                       | 0               |                 | T          | 0.1.         | Diameter 1   | 0              | Netes                                                 |
| Date           | Time                                             | Depth to              | Cumulative           | pH<br>(Otamaland      | Specific        | Temperature     | Turbidity  | Color        | Dissolved    | Oxygen         | Notes                                                 |
|                |                                                  | Water                 | Volume               | `                     | Conductance     | (°C)            | (NTU)      |              | Oxygen       | Reduction      |                                                       |
| 0/5/0000       | 10.15                                            | ft bgs                | Purged (Gal)         |                       | (mS/cm)         | 40.0            |            | Nanc         | %            | Potential      | Danish of Water 20 00                                 |
| 9/5/2023       | 12:45<br>12:55                                   | 28.17<br>28.17        | 0 2                  | 12.19<br>12.34        | 1.802<br>1.866  | 12.8<br>12.7    | 6<br>4.58  | None<br>None | 27.2<br>9    | -19.8<br>-64.2 | Depth of Water: 28.08<br>Length of Water Column: 5.54 |
|                | 13:00                                            | 28.17                 |                      | 12.34                 | 1.882           | 12.7            | 4.58       | None         | 8.8          | -64.2<br>-72.2 | Depth of Well: 33.62                                  |
|                | 13:05                                            | 28.17                 | 3 4                  | 12.35                 | 1.89            | 12.7            | 4.52       | None         | 8.2          | -72.2<br>-80.9 | Sheen Observed: Y N                                   |
|                | 10.00                                            | 20.17                 | +                    | 12.00                 | 1.09            | 12.1            | 7.0        | INOILE       | 0.2          | -00.8          | DNAPL Observed: Y N                                   |
|                | <del>                                     </del> |                       | +                    |                       |                 |                 |            |              |              |                | Did Well Go Dry: Y N                                  |
|                |                                                  |                       |                      |                       |                 |                 |            |              |              |                | Other: 4" diameter well                               |
|                | 1                                                |                       |                      |                       |                 |                 |            |              |              |                | 1 Well Volume = 3.6 gal                               |
|                | 1                                                |                       |                      |                       |                 |                 |            |              |              |                | 0.0 5                                                 |
|                |                                                  |                       | +                    | <b>.</b>              | t               | t               |            | <b>-</b>     | 1            |                |                                                       |
|                |                                                  |                       |                      |                       |                 |                 |            |              |              |                |                                                       |

|               |                  |                       |                     |                     |                 |                 | ,          |           |              |             |                                       |
|---------------|------------------|-----------------------|---------------------|---------------------|-----------------|-----------------|------------|-----------|--------------|-------------|---------------------------------------|
|               |                  |                       |                     |                     |                 | Historic Info   | ormation   |           |              |             |                                       |
|               |                  | ( <b>yes</b> /no/atta | ,                   |                     |                 |                 |            |           |              |             |                                       |
| nstallation L | ₋og Availa       | ble ( <b>yes</b> /no/ | attached)           |                     |                 |                 |            |           |              |             |                                       |
|               |                  |                       |                     |                     |                 | Summ            | nary       |           |              |             |                                       |
| Nonitoring V  | Vell:            | MWN-02B               |                     | Ground Su           | rface Elevation | n: 599.00       |            | Riser/Sci | reen Materi  | al: PVC     |                                       |
| nstallation [ | Date:            | 11/2/92               |                     |                     | ter Elevation:  | 572.89          |            |           | creen Depth  |             |                                       |
| nstalled By:  |                  | Turnkey               |                     | Monitoring          | Point Elevation | 601.28          |            | Bottom o  | of Screen De | epth: 56.28 |                                       |
|               |                  |                       |                     | Elevation D         | Datum:          |                 |            |           |              |             |                                       |
| revious Fie   | eld measu        | rement Infor          | mation Availa       | ble (yes/ <b>no</b> | /attached)      |                 |            |           |              |             |                                       |
|               |                  |                       |                     |                     | Range           | s of Previous F | ield Measu | rements   |              |             |                                       |
| Depth to      | Water            |                       | рН                  | Specific (          | Conductance     | Tempera         | ature      | Tur       | rbidity      |             | Color                                 |
| ' (ft         |                  |                       | ard Units)          |                     | S/cm)           | (°C             |            |           | NTU)         |             |                                       |
| 28.7          |                  | `                     | 7-11.18             | `                   | 3-0.902         | 13.2-1          |            | `         | 8-2.88       |             | Clear                                 |
| Notes:        | -                |                       |                     | 1.00                |                 |                 |            |           |              | <u> </u>    |                                       |
|               |                  |                       |                     |                     |                 |                 |            |           |              |             |                                       |
|               |                  |                       | Fie                 | eld Observa         | tions           |                 |            |           | Param        | eters +/-   | Sampling Information                  |
| xterior Obs   | servations       | : ok                  |                     | -                   |                 |                 |            |           | рН           | +/- 0.1     | Sample ID: <b>MWN-02B-</b> 090623     |
|               |                  | ·                     |                     |                     |                 |                 |            |           | Conductivi   |             | Sample Time: 8:55                     |
| nterior Obse  | ervations        | ok                    |                     |                     |                 |                 |            |           |              | ,           | # of Sample Containers: Six           |
|               |                  | 1                     |                     |                     |                 |                 |            |           | Turbidity    |             | Duplicate Sample ID: NA               |
|               |                  |                       |                     |                     |                 |                 |            |           | ORP          |             | Sample Analysis: Arsenic              |
| igns of Dar   | mage/Tan         | npering:              | None                |                     |                 |                 |            |           | DO           |             | VOC STARS List via EPA 8260B          |
| Locked (      | yes/ <b>no</b> ) | Well Ca               | p ( <b>yes</b> /no) | Surfa               | ace Seal Intact | (yes/no)        | PID Measi  | urement:  | ND           | Odors:      | SVOC B/N Via EPA 8270C, arsenic       |
|               |                  |                       |                     |                     |                 | Well Qual       | ity Data   |           |              |             |                                       |
|               |                  |                       |                     |                     |                 |                 |            |           |              |             |                                       |
| Date          | Time             | Depth to              | Cumulative          | pН                  | Specific        | Temperature     | Turbidity  | Color     | Dissolved    | Oxygen      | Notes                                 |
|               |                  | Water                 | Volume              | (Standard           | Conductance     | ( °C)           | (NTU)      |           | Oxygen       | Reduction   |                                       |
|               |                  | ft bgs                | Purged (Gal)        |                     | (uMhos/cm)      |                 |            |           | %            | Potential   |                                       |
| 9/6/2023      | 8:35             | 29.72                 | 0                   | 11.43               | 0.875           | 13.2            | 4.33       | None      | 3            |             | Depth of Water: 28.39                 |
|               | 8:45             | 29.72                 | 4                   | 11.46               | 0.884           | 13.2            | 33.12      | None      | 2.3          | -256.7      | Length of Water Column: 27.89         |
|               | 8:50             | 29.72                 | 6                   | 11.45               | 0.891           | 13.2            | 37.27      | None      | 2            | -262.9      | Depth of Well: 56.28                  |
|               | 8:55             | 29.72                 | 8                   | 11.45               | 0.89            | 13.2            | 38.32      | None      | 1.9          | -269.4      | Sheen Observed: Y N                   |
|               |                  |                       |                     |                     |                 |                 |            |           |              |             | DNAPL Observed: Y N                   |
|               |                  |                       |                     |                     |                 |                 |            |           |              |             | Did Well Go Dry: Y N                  |
|               |                  |                       |                     |                     |                 |                 |            |           |              |             | Other: 2" diameter well, Sulfur odor. |
|               | 1                |                       |                     |                     |                 |                 |            |           |              |             | 1 Well Volume = 4.5 gal               |
|               |                  |                       |                     |                     |                 |                 |            |           |              |             |                                       |
|               |                  | 1                     |                     |                     |                 |                 |            |           |              |             |                                       |
|               |                  |                       |                     |                     |                 |                 |            |           |              |             |                                       |

|               |                  |                       |                      |                       | <b>L</b> 1      |                   | ,          |          |              |             |                                                                   |
|---------------|------------------|-----------------------|----------------------|-----------------------|-----------------|-------------------|------------|----------|--------------|-------------|-------------------------------------------------------------------|
|               |                  |                       |                      |                       |                 | Historic Info     | ormation   |          |              |             |                                                                   |
| oring Log /   | Available (      | yes/no/attac          | ched):               |                       |                 |                   |            |          |              |             |                                                                   |
| าstallation L | Log Availa       | ble ( <b>yes</b> /no/ | attached)            |                       |                 |                   |            |          |              |             |                                                                   |
|               |                  |                       |                      |                       |                 | Summ              | ary        |          |              |             |                                                                   |
| 1onitoring V  | Well: N          | /IWN-02D              |                      | Ground Su             | rface Elevation | : 600.61          |            | Riser/Sc | reen Materia | al: PVC     |                                                                   |
| nstallation [ |                  | 8/4/95                |                      | _                     | er Elevation:   | 573.95            |            |          | creen Depth  |             |                                                                   |
| nstalled By:  | :                | Turnkey               |                      | Monitoring            | Point Elevation | 602.95            |            | Bottom o | f Screen De  | epth: 79.34 |                                                                   |
|               |                  |                       |                      | Elevation D           |                 |                   |            |          |              |             |                                                                   |
| revious Fie   | eld measui       | rement Infor          | mation Availa        | ble (yes/ <b>no</b> / | /attached)      |                   |            |          |              |             |                                                                   |
|               |                  |                       |                      |                       | Ranges          | s of Previous F   | ield Measu | rements  |              |             |                                                                   |
| Depth to      | Water            |                       | рН                   | Specific (            | Conductance     | Tempera           | ature      | Tui      | rbidity      |             | Color                                                             |
| · (ft         | :)               | (Stand                | ard Units)           | (m                    | S/cm)           | ( °C)             | )          | (N       | NTU)         |             |                                                                   |
| 29.           |                  | 7                     | 7.86                 |                       | 2.027           | 13.8              |            | _        | 89.3         |             | Clear                                                             |
| lotes:        |                  | •                     |                      |                       |                 |                   |            |          |              |             |                                                                   |
|               |                  |                       |                      |                       |                 |                   |            |          |              |             |                                                                   |
|               |                  |                       | Fie                  | eld Observa           | tions           |                   |            |          | Param        | eters +/-   | Sampling Information                                              |
| xterior Obs   | servations       | : ok                  |                      |                       |                 |                   |            |          | рН           | +/- 0.1     | Sample ID: <b>MWN-02D</b> -090623                                 |
|               |                  |                       |                      |                       |                 |                   |            |          | Conductivi   | ty +/- 3%   | Sample Time: 9:50                                                 |
| nterior Obs   | ervations        | ok                    |                      |                       |                 |                   |            |          |              |             | # of Sample Containers: One                                       |
|               |                  |                       |                      |                       |                 |                   |            |          | Turbidity    | +/- 10%     | Duplicate Sample ID: NA                                           |
|               |                  |                       |                      |                       |                 |                   |            |          | ORP          | +/- 10mV    | Sample Analysis: Barium, Arsenic                                  |
| Signs of Dai  | mage/Tam         |                       | None                 |                       |                 |                   |            |          | DO           |             | Chromium                                                          |
| Locked (      | yes/ <b>no</b> ) | Well Ca               | ap ( <b>yes</b> /no) | Surfa                 | ace Seal Intact | ( <b>yes</b> /no) | PID Measu  | urement: | ND           | Odors:      |                                                                   |
|               |                  |                       |                      |                       |                 | Well Quali        | ity Data   |          |              |             |                                                                   |
|               |                  |                       |                      |                       |                 |                   |            |          |              |             |                                                                   |
| Date          | Time             | Depth to              | Cumulative           | pН                    | Specific        | Temperature       | Turbidity  | Color    | Dissolved    | Oxygen      | Notes                                                             |
|               |                  | Water                 | Volume               | `                     | Conductance     | (°C)              | (NTU)      |          | Oxygen       | Reduction   |                                                                   |
|               |                  | ft bgs                | Purged (Gal)         |                       | (mS/cm)         |                   |            |          | %            | Potential   |                                                                   |
| 9/6/2023      | 9:30             | 29.12                 | 0                    | 7.53                  | 1.937           | 14.6              | 80.92      | None     | 8            | -11.2       | Depth of Water: 29.0                                              |
|               | 9:40             | 29.12                 | 1                    | 7.03                  | 1.962           | 14                | 28.72      | None     | 1.2          | -53.7       | Length of Water Column: 50.34                                     |
|               | 9:45             | 29.12                 | 1.5                  | 7.03                  | 1.969           | 14                | 29.4       | None     | 1            | -59.2       | Depth of Well: 79.34                                              |
|               | 9:50             | 29.12                 | 2                    | 7.01                  | 1.971           | 14                | 26.22      | None     | 8.0          | -63.8       | Sheen Observed: Y N                                               |
|               |                  |                       | -                    |                       |                 |                   |            |          |              |             | DNAPL Observed: Y N Did Well Go Dry: Y N                          |
|               |                  |                       |                      |                       |                 |                   |            |          |              |             | Did Well Go Dry: Y <b>N</b> Other: 2" diameter well, Sulfur odor. |
|               |                  | +                     | <del> </del>         |                       |                 |                   |            |          |              |             | 1 Well Volume = 8.1 gal                                           |
|               |                  |                       |                      |                       |                 |                   |            |          |              |             | i vveli voluffle – o. i gai                                       |
|               |                  |                       | <del> </del>         |                       |                 |                   |            |          |              |             |                                                                   |
|               |                  | 1                     | <del> </del>         |                       |                 |                   |            |          |              |             |                                                                   |
|               |                  |                       | 1                    |                       |                 |                   |            |          | I .          |             |                                                                   |

|                |                  |                       |                      |                       |                 | Historic Info   | ormation   |          |              |             |                                          |
|----------------|------------------|-----------------------|----------------------|-----------------------|-----------------|-----------------|------------|----------|--------------|-------------|------------------------------------------|
| Boring Log A   | Available (      | <b>yes</b> /no/attad  | ched):               |                       |                 |                 |            |          |              |             |                                          |
| nstallation L  | ₋og Availal      | ble ( <b>yes</b> /no/ | attached)            |                       |                 |                 |            |          |              |             |                                          |
|                |                  |                       |                      |                       |                 | Summ            | ary        |          |              |             |                                          |
| Monitoring V   | Vell:            | MWN-03                |                      | Ground Su             | rface Elevation |                 |            | Riser/Sc | reen Materia | al: PVC     |                                          |
| Installation D | Date:            | 9/6/90                |                      |                       | ter Elevation:  | 572.71          |            |          | creen Depth  |             |                                          |
| Installed By:  |                  | Turnkey               |                      | Monitoring            | Point Elevation | 611.96          |            | Bottom o | of Screen De | epth: 49.17 |                                          |
|                |                  |                       |                      | Elevation D           |                 |                 |            |          |              |             |                                          |
| Previous Fie   | eld measur       | ement Infor           | mation Availa        | ble (yes/ <b>no</b> / | /attached)      |                 |            |          |              |             |                                          |
|                |                  |                       |                      |                       | Range           | s of Previous F | ield Measu | rements  |              |             |                                          |
| Depth to       | Water            |                       | рН                   | Specific (            | Conductance     | Tempera         | ature      | Tui      | rbidity      |             | Color                                    |
| (ft)           | )                | (Stand                | ard Units)           | (m                    | S/cm)           | (°C)            | )          | (N       | NTU)         |             |                                          |
| 39.4           |                  | 1                     | 2.49                 | . 3                   | 3.058           | 14.3            |            | `4       | 1.06         |             | Clear                                    |
| Notes:         |                  |                       |                      |                       |                 |                 |            |          |              |             |                                          |
|                |                  |                       |                      |                       |                 |                 |            |          |              |             |                                          |
|                |                  |                       | Fie                  | eld Observa           | tions           |                 |            |          | Param        | eters +/-   | Sampling Information                     |
| Exterior Obs   | servations:      | ok                    |                      |                       |                 |                 |            |          | рН           | +/- 0.1     | Sample ID: <b>MWN-03</b> -090623         |
|                |                  |                       |                      |                       |                 |                 |            |          | Conductivi   |             | Sample Time: 10:45                       |
| nterior Obse   | ervations        | ok                    |                      |                       |                 |                 |            |          | Temperatu    | re +/- 10%  | # of Sample Containers: Five             |
|                |                  |                       |                      |                       |                 |                 |            |          | Turbidity    | +/- 10%     | Duplicate Sample ID: NA                  |
|                |                  |                       |                      |                       |                 |                 |            |          | ORP          |             | Sample Analysis:                         |
| Signs of Dar   | mage/Tam         |                       | None                 |                       |                 |                 |            |          | DO           |             | VOC STARS List via EPA 8260B             |
| Locked (       | yes/ <b>no</b> ) | Well Ca               | ap ( <b>yes</b> /no) | Surfa                 | ace Seal Intact |                 | PID Measu  | urement: | ND           | Odors:      | SVOC B/N Via EPA 8270C                   |
|                |                  |                       |                      |                       |                 | Well Quali      | ity Data   |          |              |             |                                          |
|                |                  |                       |                      |                       |                 |                 |            |          |              |             |                                          |
| Date           | Time             | Depth to              | Cumulative           | pН                    | Specific        | Temperature     | Turbidity  | Color    | Dissolved    | Oxygen      | Notes                                    |
|                |                  | Water                 | Volume               | `                     | Conductance     | (°C)            | (NTU)      |          | Oxygen       | Reduction   |                                          |
|                |                  | ft bgs                | Purged (Gal)         |                       | (mS/cm)         |                 |            |          | %            | Potential   |                                          |
| 9/6/2023       | 10:25            | 40.06                 | 0                    | 12.21                 | 2.866           | 14.2            | 116.7      | None     | 6.3          |             | Depth of Water: 39.25                    |
|                | 10:35            | 40.06                 | 1                    | 12.42                 | 2.873           | 14              | 21.55      | None     | 0.6          | -395.7      | Length of Water Column: 9.92             |
|                | 10:40            | 40.06                 | 1.5                  | 12.42                 | 2.87            | 14.1            | 18.91      | None     | 0.4          | -402.5      | Depth of Well: 49.17                     |
|                | 10:45            | 40.06                 | 2                    | 12.42                 | 2.87            | 14.2            | 16.27      | None     | 0.3          | -411.1      | Sheen Observed: Y N                      |
|                |                  |                       |                      |                       |                 |                 |            |          |              |             | DNAPL Observed: Y N Did Well Go Dry: Y N |
|                |                  |                       |                      |                       |                 |                 |            |          |              |             | Other: 4" diameter well                  |
|                |                  |                       | <del> </del>         |                       |                 |                 |            |          |              |             | 1 Well Volume = 6.4 gal                  |
|                |                  | 1                     |                      | ľ                     | ľ               |                 |            |          |              |             | i vveli volulile – 0.4 gai               |
|                |                  |                       |                      |                       |                 |                 |            |          |              |             |                                          |
|                |                  |                       |                      |                       |                 |                 |            |          |              |             |                                          |

|               |                  |                        |                                      |                       |                        | Historic Info        | ormation           |          |                          |                                           |                                                                                                                                                                                                                                      |  |
|---------------|------------------|------------------------|--------------------------------------|-----------------------|------------------------|----------------------|--------------------|----------|--------------------------|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 3oring Log A  | إ. Available     | <b>yes</b> /no/attac   | ched):                               |                       |                        |                      |                    |          |                          |                                           |                                                                                                                                                                                                                                      |  |
| nstallation L | ₋og Availal      | ble ( <b>yes</b> /no/a | attached)                            |                       |                        |                      |                    |          |                          |                                           |                                                                                                                                                                                                                                      |  |
|               |                  |                        |                                      |                       |                        | Summ                 | ary                |          |                          |                                           |                                                                                                                                                                                                                                      |  |
| Monitoring V  |                  | MWN-03B                |                                      |                       | rface Elevation        |                      |                    |          | reen Materia             |                                           |                                                                                                                                                                                                                                      |  |
| nstallation [ |                  | 11/5/92                |                                      |                       | er Elevation:          | 572.17               |                    |          | creen Depth              |                                           |                                                                                                                                                                                                                                      |  |
| nstalled By:  |                  | Turnkey                |                                      |                       | Point Elevation        | 612.29               |                    | Bottom o | f Screen De              | epth: 70.72                               |                                                                                                                                                                                                                                      |  |
|               |                  |                        |                                      | Elevation D           |                        |                      |                    |          |                          |                                           |                                                                                                                                                                                                                                      |  |
| Previous Fie  | eld measur       | ement Infor            | mation Availa                        | ble (yes/ <b>no</b> / |                        |                      |                    |          |                          |                                           |                                                                                                                                                                                                                                      |  |
|               |                  |                        |                                      |                       | Range                  | s of Previous F      | ield Measu         | rements  |                          |                                           |                                                                                                                                                                                                                                      |  |
| Depth to      | Water            |                        | рН                                   | Specific (            | Conductance            | Tempera              | ature              | Tur      | rbidity                  |                                           | Color                                                                                                                                                                                                                                |  |
| (ft           | )                | (Standa                | ard Units)                           | (m                    | S/cm)                  | ( °C)                |                    | (N       | ITU)                     |                                           |                                                                                                                                                                                                                                      |  |
| 39.6          |                  | 6                      | 5.62                                 | 2                     | 7.71                   | 14.2                 |                    |          | 0.12                     |                                           | Clear                                                                                                                                                                                                                                |  |
| Notes:        |                  | •                      |                                      |                       |                        | -                    |                    |          |                          |                                           |                                                                                                                                                                                                                                      |  |
|               |                  |                        |                                      |                       |                        |                      |                    |          |                          |                                           |                                                                                                                                                                                                                                      |  |
|               |                  |                        | Fie                                  | eld Observa           | tions                  |                      |                    |          | Parame                   | eters +/-                                 | Sampling Information                                                                                                                                                                                                                 |  |
| xterior Obs   | servations:      | ok                     |                                      |                       |                        |                      |                    |          | рН                       | +/- 0.1                                   | Sample ID: <b>MWN-03B</b> -090623                                                                                                                                                                                                    |  |
|               |                  |                        |                                      |                       |                        |                      |                    |          | Conductivit              |                                           | Sample Time: 11:55                                                                                                                                                                                                                   |  |
| nterior Obse  | ervations        | ok                     |                                      |                       |                        |                      |                    |          | Temperatu                | re +/- 10%                                | # of Sample Containers: One                                                                                                                                                                                                          |  |
|               |                  |                        |                                      |                       |                        |                      |                    |          | Turbidity                |                                           | Duplicate Sample ID: NA                                                                                                                                                                                                              |  |
|               |                  |                        |                                      |                       |                        |                      |                    |          | ORP                      |                                           | Sample Analysis: Arsenic, Barium                                                                                                                                                                                                     |  |
| Signs of Dar  |                  |                        | None                                 |                       |                        |                      |                    |          | DO                       |                                           | Chromium, Manganese                                                                                                                                                                                                                  |  |
| Locked (      | yes/ <b>no</b> ) | Well Ca                | p ( <b>yes</b> /no)                  | Surfa                 | ace Seal Intact        | ( <b>yes</b> /no)    | PID Measu          | urement: | ND                       | O-I                                       |                                                                                                                                                                                                                                      |  |
|               |                  |                        |                                      |                       |                        |                      |                    |          | טוו                      | Odors:                                    |                                                                                                                                                                                                                                      |  |
|               |                  |                        |                                      |                       |                        | Well Quali           | ty Data            |          | ND                       | Odors:                                    |                                                                                                                                                                                                                                      |  |
| _             |                  |                        |                                      |                       |                        |                      | •                  |          |                          |                                           |                                                                                                                                                                                                                                      |  |
| Date          | Time             | Depth to               | Cumulative                           | рН                    | Specific               | Temperature          | Turbidity          | Color    | Dissolved                | Oxygen                                    | Notes                                                                                                                                                                                                                                |  |
| Date          | Time             | Water                  | Cumulative<br>Volume                 | (Standard             | Conductance            | Temperature          | •                  | Color    | Dissolved<br>Oxygen      | Oxygen<br>Reduction                       | Notes                                                                                                                                                                                                                                |  |
|               |                  | Water<br>ft bgs        | Cumulative<br>Volume<br>Purged (Gal) | (Standard<br>Units)   | Conductance<br>(mS/cm) | Temperature<br>( °C) | Turbidity<br>(NTU) |          | Dissolved<br>Oxygen<br>% | Oxygen<br>Reduction<br>Potential          |                                                                                                                                                                                                                                      |  |
| Date 9/6/2023 | Time             | Water                  | Cumulative<br>Volume                 | (Standard             | Conductance            | Temperature          | Turbidity          | Color    | Dissolved<br>Oxygen      | Oxygen<br>Reduction<br>Potential          | Depth of Water: 40.12                                                                                                                                                                                                                |  |
|               |                  | Water<br>ft bgs        | Cumulative<br>Volume<br>Purged (Gal) | (Standard<br>Units)   | Conductance<br>(mS/cm) | Temperature<br>( °C) | Turbidity<br>(NTU) |          | Dissolved<br>Oxygen<br>% | Oxygen<br>Reduction<br>Potential<br>-19.2 | Depth of Water: 40.12<br>Length of Water Column: 30.6                                                                                                                                                                                |  |
|               |                  | Water<br>ft bgs        | Cumulative<br>Volume<br>Purged (Gal) | (Standard<br>Units)   | Conductance<br>(mS/cm) | Temperature<br>( °C) | Turbidity<br>(NTU) |          | Dissolved<br>Oxygen<br>% | Oxygen<br>Reduction<br>Potential<br>-19.2 | Depth of Water: 40.12<br>Length of Water Column: 30.6<br>Depth of Well: 70.72                                                                                                                                                        |  |
|               |                  | Water<br>ft bgs        | Cumulative<br>Volume<br>Purged (Gal) | (Standard<br>Units)   | Conductance<br>(mS/cm) | Temperature<br>( °C) | Turbidity<br>(NTU) |          | Dissolved<br>Oxygen<br>% | Oxygen<br>Reduction<br>Potential<br>-19.2 | Depth of Water: 40.12 Length of Water Column: 30.6 Depth of Well: 70.72 Sheen Observed: Y N                                                                                                                                          |  |
|               |                  | Water<br>ft bgs        | Cumulative<br>Volume<br>Purged (Gal) | (Standard<br>Units)   | Conductance<br>(mS/cm) | Temperature<br>( °C) | Turbidity<br>(NTU) |          | Dissolved<br>Oxygen<br>% | Oxygen<br>Reduction<br>Potential<br>-19.2 | Depth of Water: 40.12 Length of Water Column: 30.6 Depth of Well: 70.72 Sheen Observed: Y N DNAPL Observed: Y N                                                                                                                      |  |
|               |                  | Water<br>ft bgs        | Cumulative<br>Volume<br>Purged (Gal) | (Standard<br>Units)   | Conductance<br>(mS/cm) | Temperature<br>( °C) | Turbidity<br>(NTU) |          | Dissolved<br>Oxygen<br>% | Oxygen<br>Reduction<br>Potential<br>-19.2 | Depth of Water: 40.12 Length of Water Column: 30.6 Depth of Well: 70.72 Sheen Observed: Y N DNAPL Observed: Y N Did Well Go Dry: Y N                                                                                                 |  |
|               |                  | Water<br>ft bgs        | Cumulative<br>Volume<br>Purged (Gal) | (Standard<br>Units)   | Conductance<br>(mS/cm) | Temperature<br>( °C) | Turbidity<br>(NTU) |          | Dissolved<br>Oxygen<br>% | Oxygen<br>Reduction<br>Potential<br>-19.2 | Depth of Water: 40.12 Length of Water Column: 30.6 Depth of Well: 70.72 Sheen Observed: Y N DNAPL Observed: Y N Did Well Go Dry: Y N Other: GZA purged three well volume                                                             |  |
|               |                  | Water<br>ft bgs        | Cumulative<br>Volume<br>Purged (Gal) | (Standard<br>Units)   | Conductance<br>(mS/cm) | Temperature<br>( °C) | Turbidity<br>(NTU) |          | Dissolved<br>Oxygen<br>% | Oxygen<br>Reduction<br>Potential<br>-19.2 | Depth of Water: 40.12 Length of Water Column: 30.6 Depth of Well: 70.72 Sheen Observed: Y N DNAPL Observed: Y N Did Well Go Dry: Y N Other: GZA purged three well volume (15 gallons) with bailer.                                   |  |
|               |                  | Water<br>ft bgs        | Cumulative<br>Volume<br>Purged (Gal) | (Standard<br>Units)   | Conductance<br>(mS/cm) | Temperature<br>( °C) | Turbidity<br>(NTU) |          | Dissolved<br>Oxygen<br>% | Oxygen<br>Reduction<br>Potential<br>-19.2 | Depth of Water: 40.12 Length of Water Column: 30.6 Depth of Well: 70.72 Sheen Observed: Y N DNAPL Observed: Y N Did Well Go Dry: Y N Other: GZA purged three well volume (15 gallons) with bailer. Sample was collected with bailer. |  |
|               |                  | Water<br>ft bgs        | Cumulative<br>Volume<br>Purged (Gal) | (Standard<br>Units)   | Conductance<br>(mS/cm) | Temperature<br>( °C) | Turbidity<br>(NTU) |          | Dissolved<br>Oxygen<br>% | Oxygen<br>Reduction<br>Potential<br>-19.2 | Depth of Water: 40.12 Length of Water Column: 30.6 Depth of Well: 70.72 Sheen Observed: Y N DNAPL Observed: Y N Did Well Go Dry: Y N Other: GZA purged three well volume (15 gallons) with bailer.                                   |  |

|                |                  |                       |                      |                       |                    |                 | ,          |           |              |              |                                                             |
|----------------|------------------|-----------------------|----------------------|-----------------------|--------------------|-----------------|------------|-----------|--------------|--------------|-------------------------------------------------------------|
|                |                  |                       |                      |                       |                    | Historic Info   | ormation   |           |              |              |                                                             |
| Boring Log A   | Available (      | <b>yes</b> /no/attac  | ched):               |                       |                    |                 |            |           |              |              |                                                             |
| Installation L | ₋og Availa       | ble ( <b>yes</b> /no/ | attached)            |                       |                    |                 |            |           |              |              |                                                             |
|                |                  |                       |                      |                       |                    | Summ            | nary       |           |              |              |                                                             |
| Monitoring V   | Vell: N          | /WN-03D               |                      | Ground Su             | rface Elevation    | : 610.75        |            | Riser/Sci | reen Materia | al: PVC      |                                                             |
| nstallation [  | Date:            | 7/29/94               |                      |                       | er Elevation:      | 574.14          |            |           | creen Depth  |              |                                                             |
| nstalled By:   |                  | Turnkey               |                      | Monitoring            | Point Elevation    | 613.51          |            | Bottom o  | f Screen De  | epth: 121.26 |                                                             |
|                |                  |                       |                      | Elevation D           |                    |                 |            |           |              |              |                                                             |
| Previous Fie   | eld measu        | rement Infor          | mation Availa        | ble (yes/ <b>no</b> / | /attached)         |                 |            |           |              |              |                                                             |
|                |                  |                       |                      |                       | Range              | s of Previous F | ield Measu | ırements  |              |              |                                                             |
| Depth to       | Water            |                       | рН                   | Specific (            | Conductance        | Tempera         | ature      | Tur       | rbidity      |              | Color                                                       |
| · (ft)         | )                | (Standa               | ard Units)           | . (m                  | S/cm)              | ( °C)           | )          | (N        | ITU)         |              |                                                             |
| 39.4           |                  | 7                     | 7.26                 | 2                     | .6.11 <sup>′</sup> | 13.5            |            | `         | 65.2         |              | Clear                                                       |
| Notes:         |                  |                       |                      |                       |                    |                 |            |           |              |              |                                                             |
|                |                  |                       |                      |                       |                    |                 |            |           |              |              |                                                             |
|                |                  |                       | Fie                  | eld Observa           | tions              |                 |            |           | Param        | eters +/-    | Sampling Information                                        |
| xterior Obs    | ervations        | ok                    |                      |                       |                    |                 |            |           | рН           | +/- 0.1      | Sample ID: <b>MWN-03D</b> -090623                           |
|                |                  |                       |                      |                       |                    |                 |            |           | Conductivi   |              | Sample Time: 12:55                                          |
| nterior Obse   | ervations        | ok                    |                      |                       |                    |                 |            |           |              |              | # of Sample Containers: Six                                 |
|                |                  | •                     |                      |                       |                    |                 |            |           | Turbidity    | +/- 10%      | Duplicate Sample ID: NA                                     |
|                |                  |                       |                      |                       |                    |                 |            |           | ORP          |              | Sample Analysis: Barium, Manganese                          |
| Signs of Dar   | mage/Tam         |                       | None                 |                       |                    |                 |            |           | DO           | +/- 10%      | VOC STARS List via EPA 8260B                                |
| Locked (y      | yes/ <b>no</b> ) | Well Ca               | ıp ( <b>yes</b> /no) | Surfa                 | ace Seal Intact    |                 | PID Measi  | urement:  | ND           | Odors:       |                                                             |
|                |                  |                       |                      |                       |                    | Well Qual       | ity Data   |           |              |              |                                                             |
|                |                  |                       |                      |                       |                    |                 |            |           |              |              |                                                             |
| Date           | Time             | Depth to              | Cumulative           | рН                    | Specific           | Temperature     | Turbidity  | Color     | Dissolved    | Oxygen       | Notes                                                       |
|                |                  | Water                 | Volume               | `                     | Conductance        | (°C)            | (NTU)      |           | Oxygen       | Reduction    |                                                             |
|                |                  |                       | Purged (Gal)         |                       | (mS/cm)            |                 |            |           | %            | Potential    |                                                             |
| 9/6/2023       | 12:55            | 40.97                 | 39                   | 7.64                  | 3.129              | 16.7            | 53.3       | None      | 25.1         | -105.1       | Depth of Water: 39.37                                       |
|                |                  |                       |                      |                       |                    |                 |            | ļ         |              |              | Length of Water Column: 81.89                               |
|                | ļ                |                       |                      |                       |                    |                 |            |           |              |              | Depth of Well: 121.26                                       |
|                |                  |                       |                      |                       |                    |                 |            |           |              |              | Sheen Observed: Y N                                         |
|                |                  |                       |                      |                       |                    |                 |            |           |              |              | DNAPL Observed: Y N                                         |
|                |                  |                       |                      |                       |                    |                 |            |           |              |              | Did Well Go Dry: Y N                                        |
|                |                  |                       |                      |                       |                    |                 |            |           |              |              | Other: GZA purged three well volumes                        |
|                |                  |                       |                      |                       |                    |                 |            |           |              |              | (39 gallons) with bailer.                                   |
|                |                  |                       |                      |                       |                    |                 |            |           |              |              | Samples were collected with bailer.  1 Well Volume=13.1 gal |
|                |                  |                       |                      |                       |                    |                 |            |           |              |              | 2" diameter well                                            |
|                |                  |                       |                      |                       |                    |                 |            |           |              |              | Z ulametel well                                             |

|                           |                    |                        |                                  |                            |                 |                 | ,                          |                               |                     |                    |                                                       |  |
|---------------------------|--------------------|------------------------|----------------------------------|----------------------------|-----------------|-----------------|----------------------------|-------------------------------|---------------------|--------------------|-------------------------------------------------------|--|
|                           |                    |                        |                                  |                            |                 | Historic Info   | ormation                   |                               |                     |                    |                                                       |  |
| Boring Log Ava            | ailable ( <b>y</b> | <b>/es</b> /no/attac   | hed):                            |                            |                 |                 |                            |                               |                     |                    |                                                       |  |
| Installation Log          | , Availab          | ole ( <b>yes</b> /no/a | attached)                        |                            |                 |                 |                            |                               |                     |                    |                                                       |  |
| Summary                   |                    |                        |                                  |                            |                 |                 |                            |                               |                     |                    |                                                       |  |
| Monitoring Well: MWN-04   |                    |                        | Ground Surface Elevation: 621.02 |                            |                 |                 | Riser/Screen Material: PVC |                               |                     |                    |                                                       |  |
| Installation Date:        |                    | 9/12/90                |                                  | Groundwat                  | ter Elevation:  |                 |                            |                               | Screen Depth: 48.53 |                    |                                                       |  |
| Installed By:             |                    | Turnkey                |                                  | Monitoring Point Elevation |                 | 623.45          |                            | Bottom of Screen Depth: 58.53 |                     |                    |                                                       |  |
|                           |                    |                        |                                  | Elevation D                |                 |                 |                            |                               |                     |                    |                                                       |  |
| Previous Field ı          | measure            | ement Infori           | mation Availa                    | ble (yes/ <b>no</b> /      | /attached)      |                 |                            |                               |                     |                    |                                                       |  |
|                           |                    |                        |                                  |                            | Range           | s of Previous F | ield Measu                 | rements                       |                     |                    |                                                       |  |
| Depth to Water            |                    | рН                     |                                  | Specific (                 | Conductance     | Temperature     |                            | Tui                           | rbidity             | Color              |                                                       |  |
| (ft)                      |                    | (Standard Units)       |                                  | (mS/cm)                    |                 | ( °C)           |                            | (NTU)                         |                     |                    |                                                       |  |
| 51.36                     |                    | 11.35                  |                                  | 3.54                       |                 | 17.3            |                            | 33.47                         |                     | Clear              |                                                       |  |
| Notes:                    |                    |                        |                                  | 1                          |                 |                 |                            |                               |                     |                    |                                                       |  |
|                           |                    |                        |                                  |                            |                 |                 |                            |                               |                     |                    |                                                       |  |
| Field Observations        |                    |                        |                                  |                            |                 |                 |                            |                               | Parameters +/-      |                    | Sampling Information                                  |  |
| Exterior Observations: ok |                    |                        |                                  |                            |                 |                 |                            |                               | рН                  | +/- 0.1            | Sample ID: <b>MWN-04</b> -090623                      |  |
|                           |                    |                        |                                  |                            |                 |                 |                            | Conductivi                    | ty +/- 3%           | Sample Time: 13:30 |                                                       |  |
| Interior Observa          | ations             | ok                     |                                  |                            |                 |                 |                            |                               |                     |                    | # of Sample Containers: Five                          |  |
|                           |                    |                        |                                  |                            |                 |                 |                            |                               | Turbidity           | +/- 10%            | Duplicate Sample ID: NA                               |  |
|                           |                    |                        |                                  |                            |                 |                 |                            |                               | ORP                 |                    | Sample Analysis:                                      |  |
| Signs of Damag            | _                  |                        |                                  |                            |                 |                 |                            |                               | DO                  |                    | VOC STARS List via EPA 8260B                          |  |
| Locked (yes               | s/no)              | Well Ca                | p ( <b>yes</b> /no)              | Surfa                      | ace Seal Intact |                 | PID Meas                   | urement:                      | ND                  | Odors:             | SVOC B/N Via EPA 8270C                                |  |
|                           |                    |                        |                                  | T                          | 1               | Well Qual       | ity Data                   |                               | 1                   |                    |                                                       |  |
| Dete                      | T:                 | D 41- 4 -              | 0                                |                            | 0               | T 4             | T                          | 0.1                           | Discolar            | 0                  | No.4.                                                 |  |
| Date                      | Time               | Depth to               | Cumulative                       | pH                         | Specific        | Temperature     | Turbidity                  | Color                         | Dissolved           | Oxygen             | Notes                                                 |  |
|                           |                    | Water                  | Volume                           |                            | Conductance     | (°C)            | (NTU)                      |                               | Oxygen              | Reduction          |                                                       |  |
| 0/0/0000                  | 40.00              | ft bgs                 | Purged<br>6                      | Units)                     | (mS/cm)         | 47.0            | 40.05                      | NI                            | %                   | Potential          | D - 11                                                |  |
| 9/6/2023                  | 13:30              | 53.68                  | 0                                | 11.52                      | 3.525           | 17.2            | 12.95                      | None                          | 48.9                | -25.3              | Depth of Water: 50.99<br>Length of Water Column: 7.54 |  |
|                           |                    |                        |                                  |                            |                 |                 |                            |                               |                     |                    | Depth of Well: 58.53                                  |  |
|                           |                    |                        |                                  |                            |                 |                 |                            |                               |                     |                    | Sheen Observed: Y N                                   |  |
|                           |                    |                        |                                  |                            |                 |                 |                            |                               |                     |                    | DNAPL Observed: Y N                                   |  |
| +                         |                    |                        |                                  |                            |                 |                 |                            |                               |                     |                    | Did Well Go Dry: Y N                                  |  |
|                           |                    |                        |                                  |                            |                 |                 |                            |                               |                     |                    | Other: GZA purged 6 gallons to dry with               |  |
|                           |                    |                        |                                  |                            |                 |                 |                            |                               |                     |                    | bailer                                                |  |
| 1                         |                    |                        |                                  |                            |                 |                 |                            |                               |                     |                    | 1 well volume=4.9 gal                                 |  |
|                           |                    |                        |                                  |                            |                 |                 |                            |                               |                     |                    | 4" diameter well                                      |  |
|                           |                    |                        |                                  |                            |                 |                 |                            |                               |                     |                    |                                                       |  |



GZA GeoEnvironmental, Inc.