

2025 SEMI-ANNUAL GROUNDWATER MONITORING REPORT NIAGARA WIND POWER, LLC STEEL WINDS I Facility (Site ID # C915205) LACKAWANNA, NEW YORK

May 2025 File No. 03.0033579.18

PREPARED FOR:

Niagara Wind Power, LLC 200 Liberty Street, 14th Floor, New York, NY 10281

GZA GeoEnvironmental of New York

300 Pearl Street, Suite 700 | Buffalo, NY 14202 716-685-2300

Offices Nationwide www.gza.com

Copyright© 2025 GZA GeoEnvironmental, Inc.

May 30, 2025, Revised June 23, 2025 GZA Project 03.0033579.18

Niagara Wind Power, LLC 200 Liberty Street, 14th Floor New York, NY 10281

Via: steelwinds@brookfieldrenewable.com

Attn: Dara Morin

Re: 2025 Semi-Annual Groundwater Monitoring Revised Report

Steel Winds I Site ID# C915205

Lackawanna, NY

Dear Dara:

GZA GeoEnvironmental of New York (GZA) submits this semi-annual groundwater monitoring report to Niagara Wind Power, LLC, (NWP) summarizing the analytical results of the groundwater monitoring event conducted in March 2025 at the above referenced Site. The objective of the monitoring event was to collect and analyze groundwater samples from the on-site monitoring wells in accordance with the Site Management Plan, dated September 2007, prepared by Benchmark Environmental Engineering and Science, PLLC (Benchmark) and approved by the New York State Department of Environmental Conservation (NYSDEC).

Should you have any questions or require additional information following your review, please contact Daniel Troy at (716) 570-6673 or Ed Summerly at (401) 427-2707.

Sincerely,

GZA GEOENVIRONMENTAL OF NEW YORK

Senior Project Manager

Richard A. Carlone, P.E Consultant Reviewer

Edward A. Summerly, P.G.KY

District Office Manager / Sr. Principal

cc: Ms. Megan Kuczka (NYSDEC)

Attachments: Report

TABLE OF CONTENTS

CTION2								
ACKGROUND AND SITE HISTORY2								
AND SCOPE OF WORK3								
JDIES4								
3.10 GROUNDWATER COLLECTION4								
.00 ANALYTICAL LABORATORY TESTING5								
CAL TEST RESULTS5								
5.10 SEMI-ANNUAL WT-1 VICINITY MONITORING WELLS6								
AVERAGE TREND ANALYSIS8								
Y9								
ANALYTICAL TESTING PROGRAM SUMMARY MARCH 2025 SEMI-ANNUAL GROUNDWATER ANALYTICAL DATA SUMMARY								
WARCH 2023 SEIVII ANNOAL GROONDWATER ANALTHOAL DATA SOMINART								
LOCUS PLAN SITE PLAN								
SITE PLAIN								
LIMITATIONS ANALYTICAL TEST RESULTS TIME SERIES PLOTS WELL DEVELOPMENT FORMS								

1.00 INTRODUCTION

In accordance with our March 24, 2025 proposal, GZA GeoEnvironmental, Inc. (GZA) collected and analyzed groundwater samples at the six (6) semi-annual WT-1 vicinity groundwater monitoring wells located at the Steel Winds I facility in Lackawanna, New York (site). A *Locus Plan* and *Site Plan* are attached as **Figures 1** and **2**, respectively.

1.10 BACKGROUND AND SITE HISTORY

Tecumseh Redevelopment, Inc. (Tecumseh) owns approximately 1,100 acres of land at 1951 Hamburg Turnpike, as shown on attached **Figure 1**. The property was formerly used for the production of steel, coke, and related products by Bethlehem Steel Corporation (BSC). Steel production on the Tecumseh property was discontinued in 1983 and the coke ovens ceased activity in 2000. Tecumseh acquired the property, along with other BSC assets, out of bankruptcy, in 2003.

In September 2006, BQ Energy entered into a long-term lease agreement with Tecumseh to construct and operate wind turbines and supporting power generation equipment and infrastructure on an approximately 29-acre parcel of the Tecumseh property, referred to as the Steel Winds I site. BQ energy and NYSDEC also entered into a Brownfield Cleanup Agreement for the Steel Winds Site. The Site is wholly contained within the Slag Fill Area (SFA) Zones 3 and 4 of the Tecumseh property bordered by Lake Erie to the west, Smoke Creek to the south, and former industrial lands of BSC to the north and east. Niagara Wind Power, LLC (NWP), an affiliate of Brookfield Renewables, Inc., currently operates the eight wind turbines installed at the Site.

The Brownfield Cleanup Program (BCP) was successful in achieving the remedial objectives for the Steel Winds Site. The Site Management Plan (SMP) and Final Engineering Report (FER) were approved by NYSDEC in December 2007. NYSDEC issued a Certificate of Completion (COC) for the site on December 18, 2007.

The remedial activities conducted at the site include:

- Excavation and off-site disposal of impacted slag fill from the eight wind turbine foundations and interconnecting utility trenches;
- In-situ enhanced biodegradation of residual volatile organic compounds (VOCs), including benzene, toluene, total xylenes, and naphthalene, using oxygen release compound (ORC°) socks within the saturated soil and groundwater in the vicinity of WT-01 and associated monitoring; and,
- Completion of a soil cover system.

As a requirement of the SMP, Long-Term Groundwater Monitoring (LTGWM) is being performed at nine (9) wells across the Site. Additional groundwater monitoring was also performed to monitor the effectiveness of the ORC in-situ treatment in the vicinity of wind turbine WT-01. During 2011, both the LTGWM and WT-01 vicinity groundwater monitoring programs were performed on an annual basis and were done on July 13 and 14, 2011. The five (5) ORC in-situ treatment wells were to be monitored semi-annually, in accordance with the SMP. However, only one ORC monitoring event (on May 4, 2011) was conducted because of the ineffectiveness of this aspect of the remedy.

An Operation, Monitoring and Maintenance Request for Modification report, dated November 2011, was submitted to NYSDEC by Benchmark. This report proposed ceasing operation of the ORC® groundwater remedy for the WT-01 vicinity because the remedy was not effective in reducing VOC concentrations, due primarily to the geochemical conditions (i.e., high baseline chemical oxygen demand, highly negative oxidation reduction potential and high pH) of the Site. NYSDEC provided comments to this report on April 10, 2012 and GZA provided a response letter on May 9, 2012. Based on this letter and subsequent correspondence with NYSDEC, the ORC® remedy has been terminated (i.e., the ORC socks have been removed from the five treatment wells and disposed of as solid waste).

On September 30, 2013, GZA submitted a *Technical Impracticability Waiver Supplemental Field Studies Work Plan* for the Site, detailing sampling, laboratory analysis, data evaluation and reporting to be conducted in support of a Technical Impracticability Waiver request for the Site. This Work Plan was approved by NYSDEC on February 24, 2014. Sampling and analysis described in the Work Plan was conducted by GZA in summer 2014 and a Technical Impracticability Waiver application was submitted to NYSDEC on November 5, 2014, with a supplemental Endangered Species Review letter submitted to NYSDEC on January 28, 2015. Based on the remedial evaluation presented in the application, it is GZA's opinion that active remediation is not warranted or feasible, would not result in significant benefit to the environment relative to the cost, and is technically impracticable. The application recommended limited additional sampling to evaluate risk to ecological receptors. NYSDEC verbally approved the additional recommended field work on April 27, 2015. GZA submitted a Work Plan to NYSDEC on August 5, 2015 describing the proposed additional field work, which was implemented in September 2015. A Supplement TI Waiver Report was submitted to NYSDEC on April 24, 2018.

Due to the length of cold days experienced during the winter of 2015 the semi-annual sampling event, originally scheduled for January 2015, was not able to be completed until March 2015. In order to reduce negative impacts and delays associated from freezing weather conditions, the NYSDEC has approved rescheduling of semi-annual and annual sampling events to occur during the months of March and September, respectively.

A January 19, 2021 letter submitted to the Chief, Site Control Section of the NYSDEC was received indicating that BQ Energy, LLC and Steel Winds Project, LLC, the prior remedial parties for the Steel Winds I Site have transferred the Certificate of Completion (COC) to Niagara Wind Power, and Niagara Wind Power, LLC has assumed Remedial Party status for the Site. The Notice of transfer was recorded with the Erie County Clerk's Office on January 13, 2021.

2.00 PURPOSE AND SCOPE OF WORK

The purpose of the 2025 semi-annual monitoring event was to collect groundwater samples from the six (6) semi-annual WT-1 vicinity groundwater monitoring wells in accordance with the routine monitoring program described in the September 2007 SMP. To accomplish this, GZA completed the following activities:

 Collected one (1) groundwater sample from each semi-annual well location for laboratory analysis conducted by Pace Analytical of Westborough, Massachusetts, in accordance with the analytical testing summary provided in **Table 1**. Test parameters included the following:

- O Stars list (or CP-51) VOCs via EPA Method 8260D; and
- O Base-Neutral semi-volatile organic compounds (SVOCs) via EPA Method 8270E.
- Prepared this report, which summarizes the data collected during the sampling event and compared it to historic results and assessed contaminant concentration trends, if any.

This report presents GZA's field observations, results, and opinions and is subject to the limitations presented in **Appendix A**.

3.10 Groundwater Data Collection

GZA collected groundwater samples from the six (6) WT-1 vicinity semi-annual monitoring wells (MWN-01, MWN-01B, WT1-02, WT1-04, WT1-05, and BCP-ORC-1). Samples were collected on March 31, 2025. Well development forms for each monitoring well sampled are included in **Appendix D**.

The following tables show the volume of water purged and the number of well volumes removed from the respective well after a constant head was established. In general, groundwater purge rates were about 500(±) milliliters per minute (ml/min). Purging continued until field parameters stabilized within acceptable limits established in EPA's low flow sampling SOP. Stabilized field screening parameter readings are presented in **Table 2**, attached.

WT-1 Vicinity Semi-Annual Monitoring Well ID	Cumulative Volume Purged (gallons)	Approximate Well Volumes (#)
MWN-01	7	3.5
MWN-01B	5.5	2.2
WT1-02	10	2.2
WT1-04	5.75	3.2
WT1-05	4	2.5
BCP-ORC-1	17	7.0

As part of the semi-annual groundwater monitoring, static groundwater level measurements were made from top of riser of the monitoring wells listed in the table below prior to purging. With the exception of WT1-05 (replaced in May 2012 and surveyed by GZA), monitoring point elevation data was available from previous groundwater monitoring reports completed by Benchmark. From the elevation and depth to groundwater data, groundwater flow directions were estimated and are

shown on **Figure 2**. Based on the available information, groundwater flow is generally in a southwesterly direction towards Smoke Creek and Lake Erie.

Monitoring Well Location	Top of Riser Elevation (ft.)	Groundwater Depth (ft.)	Groundwater Elevation (ft.)
MWN-01	585.14	16.14	569.00
MWN-01B	587.03	16.90	570.13
WT1-02	600.78	30.72	570.05
WT1-04	586.45	14.31	572.14
WT1-05	584.41	13.25	571.16
BCP-ORC-1	591.97	19.74	572.23

4.00 ANALYTICAL LABORATORY TESTING

Six (6) semi-annual groundwater samples were submitted for analytical testing as part of the 2025 Semi-Annual monitoring event. The samples were packed in an ice-filled cooler and, following typical chain-of-custody procedures and sent to Pace for analysis. **Table 1** presents a summary of the samples collected and the analyses completed.

5.00 ANALYTICAL TEST RESULTS

A discussion of the laboratory results for the groundwater samples is presented below. The laboratory reports are provided in **Appendix B** and the analytical test results are summarized on **Table 2**.

The analytical test results for the groundwater samples were compared to NYSDEC Class GA criteria presented in the *Division of Water Technical and Operational Guidance Series* (TOGS 1.1.1), dated October 1993, revised June 1998, errata January 1999 and amended April 2000.

The analytical data generated as part of this monitoring event was electronically submitted to NYSDEC via their EQuIStm Data Processor (EDP) as part of their Environmental Information Management System (EIMS) on April 6, 2025. The data was prepared by Pace in a standardized electronic data deliverable (EDD) format that is used by the database software application EQuIStm (EQuIS) from Earthsoft Inc.

5.10 Semi-Annual WT-1 Vicinity Monitoring Wells

<u>MWN-01</u>: Eight (8) VOCs were detected above laboratory method detection limits (MDLs) of which four (4) were identified at concentrations exceeding their respective NYSDEC Class GA criteria, as follows:

- o Benzene at 12 parts per billion (ppb);
- m,p-Xylene at 7.1 ppb;
- o total xylene at 12 ppb; and
- Naphthalene at 280 ppb.

Twelve (12) SVOCs were detected above MDLs of which four (4) exceeded their respective NYSDEC Class GA criteria, as follows:

- o Biphenyl at 10.2 ppb;
- Fluorene at 71.7 ppb;
- O Naphthalene at 186 ppb; and
- O Phenanthrene at 113 ppb

<u>MWN-01B</u>: Six (6) VOCs were detected above MDLs of which six (6) were identified at concentrations exceeding their respective NYSDEC Class GA criteria, as follows.

- O Benzene at 50 ppb;
- O Toluene at 14 J¹ ppb;
- O m,p-Xylene at 11 J ppb;
- O o-xylene at 8.4 J ppb;
- O total xylene at 19 J; and
- O Naphthalene at 1,600 ppb.

Ten (10) SVOCs were detected above MDLs of which three (3) exceeded their respective NYSDEC Class GA criteria, as follows.

- O Naphthalene at 1,100 ppb;
- o Phenanthrene at 56.2 ppb; and
- o Biphenyl at 6.8 J ppb.

<u>WT1-02:</u> Eight (8) VOCs were detected above MDLs of which two (2) exceeded their respective NYSDEC Class GA criteria, as follows.

- O Benzene at 8.0 ppb; and
- O Naphthalene at 47 ppb.

¹ "J" indicates that the concentration is estimated.

Twelve (12) SVOCs were detected at concentrations exceeding the MDL, of which one (1) exceeded its NYSDEC Class GA criteria, as follows.

O Naphthalene at 34.5 ppb;

<u>WT1-04</u>: Eight (8) VOCs were detected above MDLs of which two (2) exceed their respective NYSDEC Class GA criteria, as follows.

- O Benzene at 7.6 ppb; and
- O Naphthalene at 66 ppb.

Thirteen (13) SVOCs were detected above MDLs, of which two (2) exceeded their respective NYSDEC Class GA criteria, as follows.

- O Naphthalene at 44.4 ppb; and
- O Benzo [b] Fluoranthene at 0.337 J ppb.

<u>WT1-05</u>: Eight (8) VOCs were detected above MDLs of which four (4) exceeded their respective NYSDEC Class GA criteria, as follows.

- O Benzene at 6.2 ppb;
- O m,p-Xylene at 5.2 ppb;
- O Total Xylene at 8.9 J; and
- O Naphthalene at 190 ppb.

Twelve (12) SVOCs were detected above MDLs of which two (2) exceeded their NYSDEC Class GA criteria, as follows.

- O Naphthalene at 148 ppb; and
- O Biphenyl at 7.08 ppb.

<u>BCP-ORC-1</u>: Eight (8) VOCs, were detected above MDLs of which five (5) exceeded their respective NYSDEC Class GA criteria, as follows.

- O Benzene at 23 ppb;
- O m,p-Xylene at 6.0 J ppb;
- O o-Xylene at 6.6 ppb;
- O Total Xylene at 13.0 J ppb; and
- O Naphthalene at 380 ppb.

Twelve (12) SVOCs were detected above MDLs of which two (2) exceeded their respective NYSDEC Class GA criteria, as follows.

- o Naphthalene at 188 ppb; and
- o Phenanthrene at 60.5 ppb.

A discussion of the data trend analysis is provided in **Section 6.00** of this report.

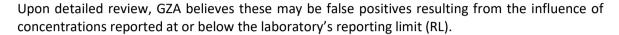
As stated in Section 2.4 of Attachment A4 (LTGWM Plan) of the September 2007 Site Management Plan, a statistical analysis is required for all detected constituents (in groundwater) that are observed at concentrations above NYSDEC Class GA criteria or guidance values. In lieu of performing moving trend analysis, as described in the LTGWM Plan, GZA generated time series plots for parameters which exceeded the NYSDEC Class GA criteria, either during this monitoring round or in previous routine monitoring rounds (routine monitoring started in 2008). These plots were evaluated for trends over a 10 year monitoring period (March 31, 2015 to March 31, 2025) at a 95% confidence interval and were also evaluated for outliers. Mann-Kendall Trend Test for trends were performed to evaluate statistically significant trends in the data with respect to time. Time series plots were generated on a well-by-well basis and are presented in Appendix D.

Thirty-two statistically significant decreasing trends in contaminant concentrations were identified by the Mann-Kendall Trend Tests:

- BCP-ORC-1 Benzene, biphenyl and toluene;
- MWN-01 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene, benzene, m,p-xylene, o-xylene, toluene and total xylenes;
- MWN-01B Benzene, m,p-xylene, toluene, and total xylenes;
- WT1-02 1,3,5-trimethylbenzene, benzene, m,p-xylene, o-xylenes, toluene and total xylenes;
- WT1-04 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene, benzene, m,p-xylene, o-xylene, toluene and total xylenes.
- WT1-05 Benzene, m,p-xylene, o-xylenes, toluene, and total xylenes.

One statistically significant increasing trend in contaminant concentrations were identified by the Mann-Kendall Trend Tests:

WT1-05 –Phenanthrene


Time series plots were also evaluated for seasonal fluctuations and outliers. There appear to be seasonal fluctuation of contaminant concentrations in samples from the following wells:

- BCP-ORC-1 m,p-xylenes, naphthalene, o-xylene, phenanthrene, and total xylenes;
- WT1-02 Naphthalene;
- WT1-04- Benzene, naphthalene and phenanthrene; and
- WT1-05- Biphenyl, phenanthrene, and naphthalene

No outliers were identified in the current data set.

In addition to the statistically increasing and decreasing trends described above, the Mann-Kendall trend analysis identified the following (3) apparent upward trends and (4) apparent downward trends:

- BCP-ORC-1(apparent upward trend): Benzo(b)fluoranthene;
- MWN-01(apparent upward trends): Benzo(a)pyrene and Benzo(b)fluoranthene);
- WT1-02(apparent downward trends): Benzo(b)fluoranthene, Benzo(k)fluoranthene, and Chrysene; and
- WT1-04(apparent downward trend): Benzo(k)fluoranthene

The Mann-Kendall (MK) test is a non-parametric method commonly used to assess monotonic trends in environmental data over time. While robust in many applications, this test can be sensitive to the handling of censored data (i.e., non-detects), particularly when a substantial portion of values are reported as estimates below the RL or as "<RL" values.

In our dataset, a significant number of reported values for certain compounds are either qualified non-detects or estimated detects below the RL. When non-detects are substituted with fixed values (e.g., half the RL is EPA's recommended practice), this can skew the analysis, in these instances resulting in erroneous upward/downward trends, especially over long monitoring periods.

Additionally, the laboratory reporting limits themselves have decreased over time due to improved analytical methods. As a result, earlier datasets may show predominantly non-detects at higher RLs, while more recent data reflect quantifiable concentrations at lower levels. This shift in detection capability over time can be interpreted by the MK method as an erroneous declining trend, when in reality the observed change is a product of enhanced measurement sensitivity, not a true decrease in environmental concentrations.

7.00 SUMMARY

GZA was retained to collect and analyze groundwater samples from six (6) semi-annual monitoring wells at the Steel Winds I facility in accordance with the Site Management Plan. A summary of our findings follows.

- Select VOCs were detected at concentrations above NYSDEC Class GA criteria in the groundwater samples collected from each of the six semi-annual WT1 vicinity wells tested (BCP-ORC-1, MWN-01, MWN-01B, WT1-02, WT1-04 and WT1-05).
- Select SVOCs were also detected at concentrations above NYSDEC Class GA or their respective guidance criteria in each of the six groundwater samples collected from the semi-annual WT1 vicinity wells (BCP-ORC-1, MWN-01, MWN-01B, WT1-02, WT1-04 and WT-05).

In general, results of the 2025 sampling event exhibited no significant change in their respective concentrations when compared with historical data collected during previous sampling events. Statistically significant downward trends in contaminant concentrations were identified in sample results from each well for one or more of the following compounds: 1,2,4-trimethylbenzene, 1,3,5-

trimethylbenzene, benzene, biphenyl, m,p-xylene, o-xylene, toluene or total xylenes. A Statistically significant upward trend was identified in samples from well WTI-05 for phenanthrene.

TABLES

TABLE 1

Analytical Testing Program Summary March 2025 Semi-Annual Groundwater Monitoring Report Steel Winds I Facility Lackawanna, New York

Well Designation	Sample ID	. (TOR)		STARS VOCs	SVOCs (BN)					
Semi-Annual Monitoring Well Sample Locations (WT-1 Vicinity Network)										
MWN-01	MWN-01-033124	3/31/2025	9.2 - 19.2	X	X					
MWN-01B	MWN-01B-033124	3/31/2025	22.2 - 32.2	X	Х					
WT1-02	WT1-02-033124	3/31/2025	27.8 - 37.8	Х	Х					
WT1-04	WT1-04-033124	3/31/2025	15.5 - 25.5	X	Х					
WT1-05	WT1-05-033124	3/31/2025	13.3 - 23.3	X	X					
BCP-ORC-1	BCP-ORC-1-033124	3/31/2025	24.7 - 34.7	Х	X					

Notes:

- 1. VOCs = Volatile Organic Compounds NY CP-51 Fuel Oil Cont. (STARS) via EPA 8260D.
- 2. SVOCs (BN) = Semi-Volatile Organic Compounds Base-Neutrals list via EPA Method 8270E.
- 3. "WT", "MWN", and "BCP-ORC" monitoring well information provided in Table 1 was referenced from Benchmark Environmental Engineering & Science, PLLC., 2009 Annual LTGWM & First Semi-Annual WT-1 Vicinity Monitoring Report.
- 4. TOR = measurement recorded in feet below top-of-well riser.

Table 2

March 2025 Semi-Annual Groundwater Analytical Data Summary Steel Winds I Facility Lackawanna, New York

	NYSDEC MWN-01]	MWN-011	3		WT1-02					
Parameter	Class GA	4/26/2023	9/5/2023	3/29/2024	9/12/2024	3/31/2025	4/26/2023	9/5/2023	3/29/2024	9/12/2024	3/31/2025	4/26/2023	9/5/2023	3/29/2024	9/12/2024	3/31/2025
	Criteria	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result
Water Quality Field Measuremen	nts															
pH (units)	6.5 - 8.5	11.93	11.92	11.94	11.85	11.79	11.50	11.55	11.46	11.36	11.33	12.2	12.32	12.17	12.07	11.94
Temperature (°C)	NV	10.2	12.2	11.1	12.3	10.2	10.7	12.2	11	11.7	9.8	12.4	12.9	12.2	13	12
Specific Conductance (mS/cm)	NV	1.229	1.217	1.237	1.219	1.701	0.834	0.799	0.791	0.792	0.987	1.753	1.833	1.774	1.705	1.990
Turbidity (NTU)	5	9.84	4.40	0.5	0.57	6.1	42.12	24.36	22.7	16.23	5.4	2.44	7.11	1.7	1.90	5.9
Dissolved Oxygen (mg/L)	NV	5.4	0.4	6.5	2.5	0.76	22.4	5	6	2.3	0.78	7.2	14.6	9.3	14.1	0.88
Oxygen Reduction Potential (mV)	NV	-265.1	-285.6	-307.5	-211.7	-264.3	-217.3	-249.6	-332.2	-279.4	-265.4	-225.4	-101.3	-230.5	-74.8	-224.7
Volatile Organic Compounds - E	PA Method 8	3260D (ug/L)														
Benzene	1	15	15	13	14	12	50	55	46	43	50	9.2	7.3	6.8	4.5	8.0
Toluene	5	3.1 J	3.2 J	3.1 J	2.9 J	3.1 J	15 J	16 J	15 J	13 J	14 J	1.8 J	1.5 J	1.3 J	0.88 J	1.6 J
m,p-Xylene	5	7.0	6.4	6.7	5.7	7.1	11 J	9.9 J	11 J	8.0 J	11 J	3.6	2.4 J	2.4 J	1.2 J	2.6
o-Xylene	5	5.1	4.5 J	4.7 J	4.0 J	5	7.7 J	<	7.6 J	<	8.4 J	2.6	1.6 J	1.6 J	0.87 J	1.7 J
Xylene (Total)	5	12.1	10.9	11 J	9.7 J	12	18.7	9.9 J	19 J	8.0 J	19 J	6.2	4.0	4.0 J	2.1 J	4.3 J
1,3,5-Trimethylbenzene	5	3.1 J	2.8 J	3.4 J	3.0 J	3.5 J	<	<	<	<	<	1.5 J	1.1 J	1.4 J	0.74 J	1.4 J
1,2,4-Trimethylbenzene	5	3.0 J	2.8 J	3.6 J	3.3 J	3.6 J	<	<	<	<	<	1.0 J	0.84 J	0.97 J	<	1.0 J
Naphthalene*	10	220	230	260	300	280	1,400	1,500	1,600	1,600	1,600	34	34	33	26	47
Semi-Volatile Organic Compoun	ds - EPA Me	thod 8270E ((ug/L)													
Acetophenone	NV	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<
Acenaphthylene	NV	22.4	20.1	24.8	31.8	36.0	24.1	23.4 J	37.4	24.9	37.3	1.02 J	1.04	1.13	0.799	2.04 J
Naphthalene*	10	96.7	108	106	203	186	715	876	913	923	1,100	15.8	13.2	15.7	9.71	34.5
2-Methylnaphthalene	NV	25.0	26.6	25.9	29.9	39.5	25.0	33.7	35.5	32.3	39.9	3.71	3.68	3.71	2.53	7.48
Acenaphthene*	20	9.08	9.51	9.89	13.10	13.2	7.86 J	8.97 J	9.43 J	9.69 J	10.1 J	1.26 J	1.17	1.39	0.96	2.35 J
Dibenzofuran	NV	30.3	34.7	36.4	44.2	47.8	19.5	22.6 J	23.8	22.1	24.8	4.49	3.35	4.70	2.74	8.48
Fluorene*	50	48.7	52.4	53.5	60.3	71.7	29.7	32.4	35.0	30.0	36.0	6.76	6.79	7.37	4.75	12.9
Phenanthrene*	50	76.5	86.6	87.1	120.0	113	48.0	51.3	57.8	58.5	56.2	12.4	11.4	15.9	8.7	28.7
Carbazole	NV	21.8	19.6	21.3	29.1	26.9	49.4	46.1	50.8	63.6	57.1	4.59	3.88	4.72	2.99	7.12
Anthracene*	50	8.16	13.3	10.2	10.8	16.4	5.05 J	<	7.97 J	4.98 J	<	1.91	2.35	2.89	1.96	4.90
Fluoranthene*	50	9.11	12.3	10.9	12.8	15.5	7.98 J	8.28 J	8.35 J	9.10 J	8.72 J	3.88	4.63	6.01	3.01	9.63
Biphenyl	5	6.03	6.49	7.39	9.10	10.2	4.78 J	<	6.42 J	6.27 J	6.80 J	1.01 J	0.86	1.10	0.616	1.80 J
Pyrene*	50	5.33	7.22	5.55	6.75	7.51	6.8 J	<	<	5.20 J	<	2.83	4.56	4.31	2.72	6.09
Butyl benzyl phthalate*	50	<	<	<	<	<	<	<	<	<	<	<	<	<	0.114 J	<
Benz [a] Anthracene*	0.002	<	<	<	<	<	<	<	<	<	<	<	0.209 J	0.274 J	<	<
Benzo [b] Fluoranthene*	0.002	<	<	<	<	<	1.32 J	<	<	<	<	<	<	<	<	<
Chrysene*	0.002	<	<	<	<	<	<	<	<	<	<	<	0.168 J	0.206 J	<	<

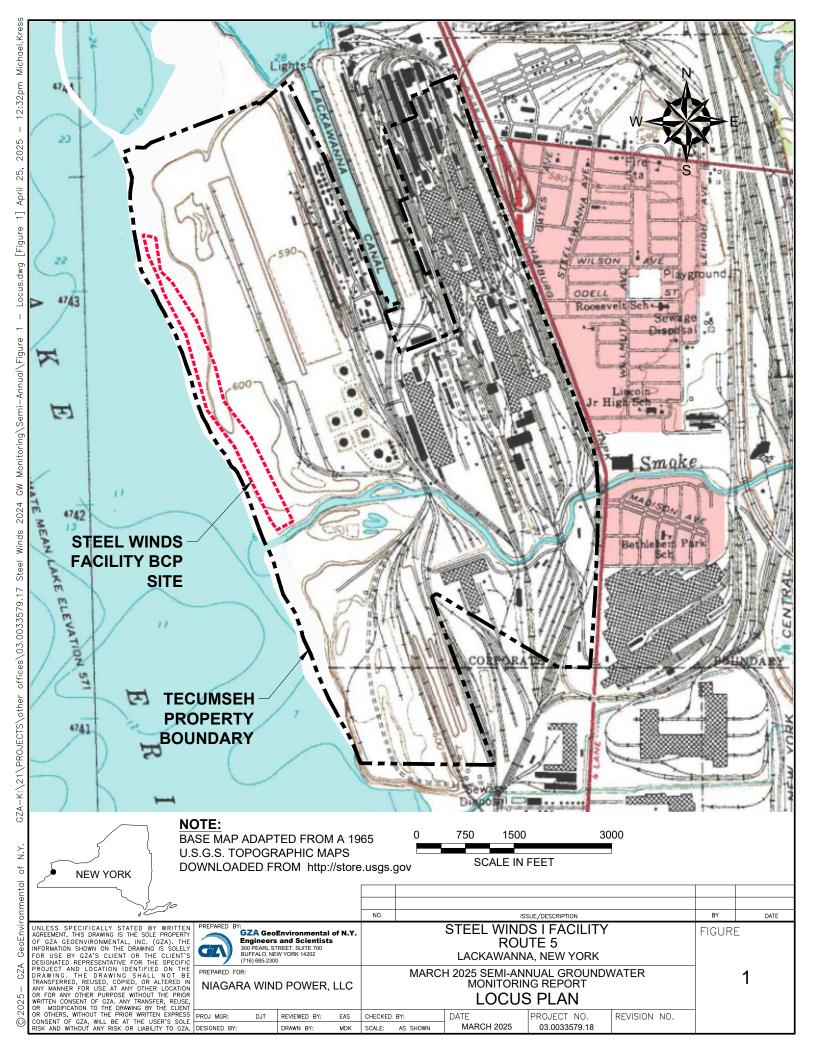
Notes:

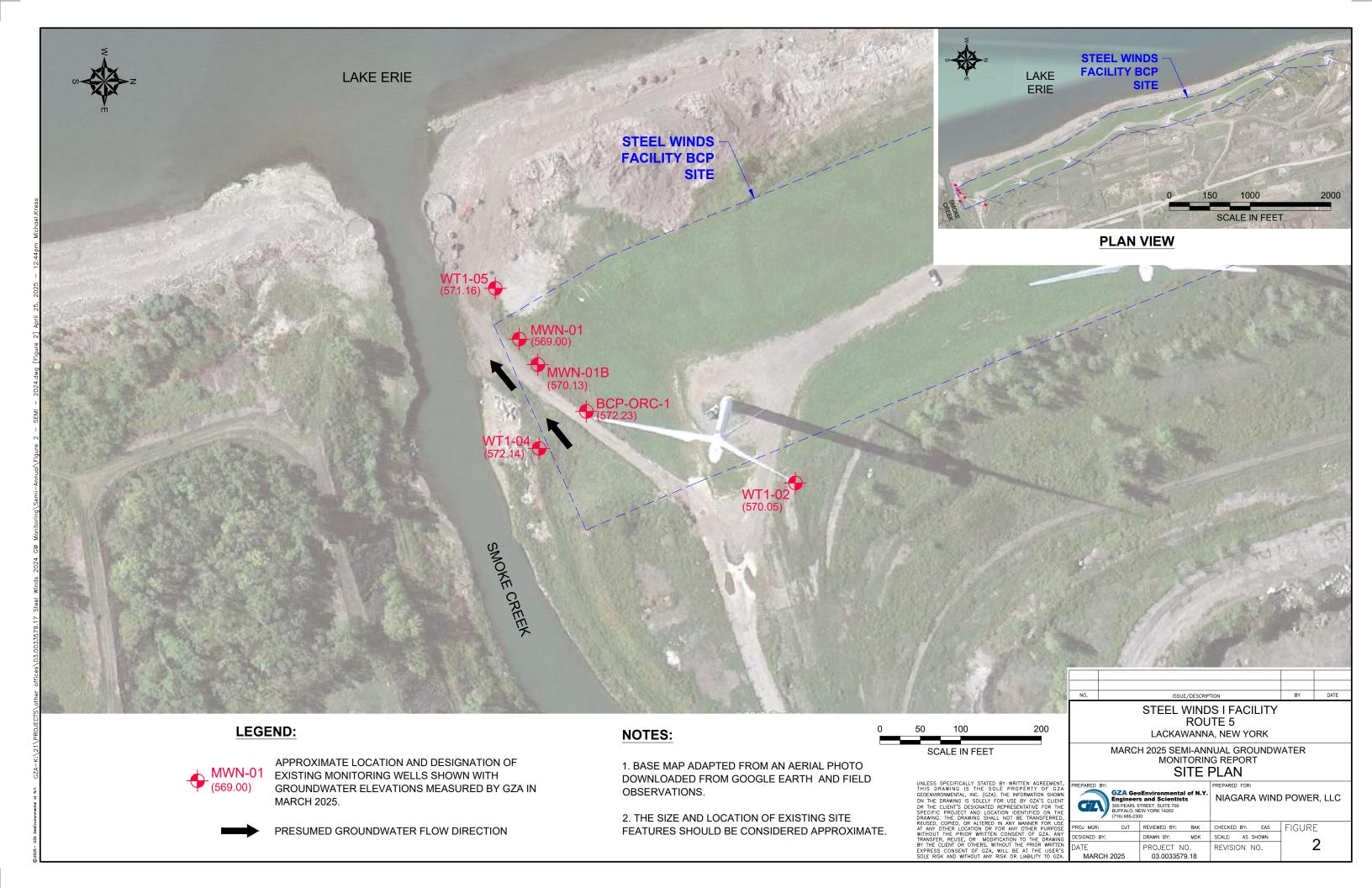
- 1. Compounds detected in one or more sample for the past five sampling events are presented on this table. Refer to **Appendix B** for list of all compounds included in analysis.
- 2. Analytical testing completed by Pace Analytical Services in Westborough, MA.
- 3. NYSDEC Groundwater Class GA criteria obtained from Division of Water Technical and Operational Guidance Series (TOGS 1.1.1), dated October 1993, revised June 1998, errata January 1999 and amended April 2000 (Class GA).
- 4. ug/L = part per billion (ppb).
- 5. < indicates compound was not detected above method detection limits.
- 6. "J" qualifier = Analyte detected below quantitation limits.
- 7. Value shown in **bold** indicates exceedance of respective Class GA Criteria or guidance value.
- 8. NV = no value, NT = not tested, ND = Not detected above method detection limit
- 9. * = value shown is a guidance value rather than a groundwater standard.
- 10. The equipment used to collect water quality data was calibrated prior to and during use in accordance with the manufacturer's recommendations.

Table 2

March 2025 Semi-Annual Groundwater Analytical Data Summary Steel Winds I Facility Lackawanna, New York

	NYSDEC			WT1-04					WT1-05				В	CP-ORC	-1	
Parameter	Class GA	4/26/2023	9/5/2023	3/29/2024	9/12/2024	3/31/2025	4/26/2023	9/5/2023	3/29/2024	9/12/2024	3/31/2025	4/26/2023	9/5/2023	3/29/2024	9/12/2024	3/31/2025
	Criteria	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result
Water Quality Field Measurements																
pH (units)	6.5 - 8.5	12.05	11.97	12.97	11.82	11.85	11.83	11.78	11.84	11.77	11.83	11.64	11.74	11.61	11.62	11.44
Temperature (°C)	NV	10.0	15.1	9.4	14.2	8.5	9.6	12.9	10.5	14	9.2	10.8	12.7	10.8	12.8	11.4
Specific Conductance (mS/cm)	NV	1.302	1.218	1.301	1.257	1.613	1.195	1.254	1.217	1.262	1.803	0.961	0.995	0.942	1.002	1.021
Turbidity (NTU)	5	4.34	44.32	1.7	47.74	2.4	2.09	68.32	8.2	41.05	5.9	2.66	5.12	1	1.28	6.0
Dissolved Oxygen (mg/L)	NV	5.4	0.3	6.4	2.7	0.81	5.3	1.6	6.2	2.9	0.76	20.6	2.2	19.7	3.0	0.76
Oxygen Reduction Potential (mV)	NV	-271.4	-280.2	-267.4	-201.7	-265.4	-282.8	-241.6	-295.2	-190.9	-278.0	-203.6	-210.4	-194.8	-95.4	-264.1
Volatile Organic Compounds - E	PA Method 8	8260D (ug/L)														
Benzene	1	9.8	13	7.3	9.4	7.6	13	16	12	9.6	6.2	21	28	17	5.0	23
Toluene	5	1.7 J	2.4 J	1.5 J	1.6 J	1.4 J	2.7	3.6	2.9 J	2.4 J	2.0 J	2.6 J	3.5 J	2.3 J	<	3.7 J
Ethylbenzene	5	<	<	<	<	<	<	0.74 J	<	<	<	<	<	<	<	<
m,p-Xylene	5	3.5	3.6	2.8	2.4 J	2.9	6.6	8.2	6.5	5.4	5.2	2.9 J	<	2.3 J	0.71 J	6.0 J
o-Xylene	5	2.5	2.4 J	2.0 J	1.7 J	2.0 J	4.8	5.6	4.4 J	3.8	3.7 J	4.7 J	5.3 J	3.7 J	0.99 J	6.6
Xylene (Total)	5	6.0	6.0	4.8 J	4.1 J	4.9 J	11.4	13.8	11 J	9.2	8.9 J	7.6	5.3 J	6.0 J	1.7 J	13 J
1,3,5-Trimethylbenzene	5	1.6 J	1.4 J	1.7 J	1.4 J	1.6 J	2.8	3.0	2.9 J	2.8	2.6 J	1.5 J	<	<	<	2.6 J
1,2,4-Trimethylbenzene	5	1.2 J	1.1 J	1.4 J	1.2 J	1.3 J	2.8	3.2	3.2 J	3.1	2.8 J	1.8 J	<	1.8 J	<	2.8 J
Naphthalene*	10	45	57	63	61	66	180	260	220	190	190	320	430	320	63	380
Semi-Volatile Organic Compoun	ds - EPA Me	thod 8270E ((ug/L)													
Acetophenone	NV	<	<	<	<	<	<	<	<	0.532 J	<	<	<	<	<	<
Acenaphthylene	NV	2.24	2.64	3.04	3.08	3.44	16.0	26.0	19.4	27.9	29.3	14.0	16.1	16.4	3.35	25.4
Naphthalene*	10	25.4	28.3	26.2	38.1	44.4	79.1	138	101	157	148	136	216	148	7.71	188
2-Methylnaphthalene	NV	5.38	5.88	6.36	6.69	9.21	17.0	29.3	20.7	24.8	29.7	12.9	22.7	14.3	3.24	23.5
Acenaphthene*	20	2.39	2.73	3.57	3.66	4.33	5.96	8.92	7.63	10.80	10.1	3.50	6.20	4.24	1.39	7.88
Dibenzofuran	NV	7.58	8.61	8.98	10.20	11.4	18.5	31.5	24.6	33.0	31.2	8.03	13.4	9.02	3.62	22.2
Fluorene*	50	12.2	14.0	14.8	15.7	19.2	28.5	42.3	37.0	47.2	48.0	13.8	22.5	15.2	6.25	37.7
Phenanthrene*	50	33.2	39.4	36.4	49.0	41.1	26.7	43.4	37.0	50.9	45.9	18.5	29.5	19.4	7.15	60.5
Carbazole	NV	6.15	7.05	5.85	7.44	7.12	13.0	20.2	15.8	22.0	18.4	20.7	31.3	21.7	7.40	29.6
Anthracene*	50	4.65	5.85	5.66	5.82	6.24	2.89	4.52	4.05	4.76	6.71	1.87	2.63	2.31 J	1.89	7.40
Fluoranthene*	50	7.61	10.1	8.63	10.3	10.6	2.14	3.70	2.91	3.80	4.02 J	3.67	5.66	4.21	2.75	11.4
Biphenyl	5	1.44 J	1.54	1.85	1.86	2.29 J	4.05	6.70	5.32	6.79	7.08	1.96	3.24	2.27 J	0.804	4.59 J
Pyrene*	50	4.72	6.54	5.16	5.89	5.96	1.96	2.87	2.24 J	2.85	2.80 J	2.67	4.25	2.90	1.66	6.20
Butyl benzyl phthalate*	50	<	<	<	0.101 J	<	<	<	<	<	<	<	<	<	0.134 J	<
Benz [a] Anthracene*	0.002	<	0.367 J	0.371 J	0.363 J	<	<	<	<	<	<	<	<	<	<	<
Benzo [b] Fluoranthene*	0.002	<	<	0.106 J	<	0.337 J	<	<	<	<	<	<	<	<	<	<
Benzo [a] Pyrene	ND	<	<	0.075 J	<	<	<	<	<	<	<	<	<	<	<	<
Chrysene*	0.002	<	0.339 J	0.287 J	0.315 J	<	<	<	<	<	<	<	<	<	<	<
bis(2-Ethylhexyl)Phthalate	5	<	<	<	0.270 J	<	<	<	<	0.212 J	<	<	<	<	<	<


Notes:


- 1. Compounds detected in one or more sample for the past five sampling events are presented on this table. Refer to **Appendix B** for list of all compounds included in analysis.
- 2. Analytical testing completed by Pace Analytical Services in Westborough, MA.
- 3. NYSDEC Groundwater Class GA criteria obtained from Division of Water Technical and Operational Guidance Series (TOGS 1.1.1), dated October 1993, revised June 1998, errata January 1999 and amended April 2000 (Class GA).
- 4. ug/L = part per billion (ppb).
- 5. < indicates compound was not detected above method detection limits.
- 6. "J" qualifier = Analyte detected below quantitation limits.
- 7. Value shown in **bold** indicates exceedance of respective Class GA Criteria or guidance value.
- 8. NV = no value, NT = not tested, ND = Not detected above method detection limit
- 9. * = value shown is a guidance value rather than a groundwater standard.
- 10. The equipment used to collect water quality data was calibrated prior to and during use in accordance with the manufacturer's recommendations.

03.0033579.18

FIGURES

APPENDIX A

LIMITATIONS

GZN

GEOHYDROLOGICAL LIMITATIONS

Use of Report

1. GZA GeoEnvironmental, Inc. (GZA) prepared this report on behalf of, and for the exclusive use of our Client for the stated purpose(s) and location(s) identified in the Proposal for Services and/or Report. Use of this report, in whole or in part, at other locations, or for other purposes, may lead to inappropriate conclusions; and we do not accept any responsibility for the consequences of such use(s). Further, reliance by any party not expressly identified in the agreement, for any use, without our prior written permission, shall be at that party's sole risk, and without any liability to GZA.

Standard of Care

- 2. GZA's findings and conclusions are based on the work conducted as part of the Scope of Services set forth in the Proposal for Services and/or Report and reflect our professional judgment. These findings and conclusions must be considered not as scientific or engineering certainties, but rather as our professional opinions concerning the limited data gathered during the course of our work. Conditions other than described in this report may be found at the subject location(s).
- 3. GZA's services were performed using the degree of skill and care ordinarily exercised by qualified professionals performing the same type of services, at the same time, under similar conditions, at the same or a similar property. No warranty, expressed or implied, is made. Specifically, GZA does not and cannot represent that the Site contains no hazardous material, oil, or other latent condition beyond that observed by GZA during its study. Additionally, GZA makes no warranty that any response action or recommended action will achieve all of its objectives or that the findings of this study will be upheld by a local, state or federal agency.
- 4. In conducting our work, GZA relied upon certain information made available by public agencies, Client and/or others. GZA did not attempt to independently verify the accuracy or completeness of that information. Inconsistencies in this information which we have noted, if any, are discussed in the Report.

Subsurface Conditions

5. The generalized soil profile(s) provided in our Report are based on widely-spaced subsurface explorations and are intended only to convey trends in subsurface conditions. The boundaries between strata are approximate and idealized, and were based on our assessment of subsurface conditions. The composition of strata, and the transitions between strata, may be more variable and more complex than indicated. For more specific information on soil conditions at a specific location refer to the exploration logs. The nature and extent of variations between these explorations may not become evident until further exploration or construction. If variations or other latent conditions then become evident, it will be necessary to reevaluate the conclusions and recommendations of this report.

May 2025 PAGE 1

6. Water level readings have been made, as described in this Report, in and monitoring wells at the specified times and under the stated conditions. These data have been reviewed and interpretations have been made in this report. Fluctuations in the level of the groundwater however occur due to temporal or spatial variations in areal recharge rates, soil heterogeneities, the presence of subsurface utilities, and/or natural or artificially induced perturbations. The observed water table may be other than indicated in the Report.

Compliance with Codes and Regulations

7. We used reasonable care in identifying and interpreting applicable codes and regulations necessary to execute our scope of work. These codes and regulations are subject to various, and possibly contradictory, interpretations. Interpretations and compliance with codes and regulations by other parties is beyond our control.

Screening and Analytical Testing

- 8. GZA collected environmental samples at the locations identified in the Report. These samples were analyzed for the specific parameters identified in the report. Additional constituents, for which analyses were not conducted, may be present in soil, groundwater, surface water, sediment and/or air. Future Site activities and uses may result in a requirement for additional testing.
- 9. Our interpretation of field screening and laboratory data is presented in the Report. Unless otherwise noted, we relied upon the laboratory's QA/QC program to validate these data.
- 10. Variations in the types and concentrations of contaminants observed at a given location or time may occur due to release mechanisms, disposal practices, changes in flow paths, and/or the influence of various physical, chemical, biological or radiological processes. Subsequently observed concentrations may be other than indicated in the Report.

Interpretation of Data

11. Our opinions are based on available information as described in the Report, and on our professional judgment. Additional observations made over time, and/or space, may not support the opinions provided in the Report.

Additional Information

12. In the event that the Client or others authorized to use this report obtain additional information on environmental or hazardous waste issues at the Site not contained in this report, such information shall be brought to GZA's attention forthwith. GZA will evaluate such information and, on the basis of this evaluation, may modify the conclusions stated in this report.

May 2025 PAGE 2

Additional Services

13. GZA recommends that we be retained to provide services during any future investigations, design, implementation activities, construction, and/or property development/ redevelopment at the Site. This will allow us the opportunity to: i) observe conditions and compliance with our design concepts and opinions; ii) allow for changes in the event that conditions are other than anticipated; iii) provide modifications to our design; and iv) assess the consequences of changes in technologies and/or regulations.

May 2025 PAGE 3

APPENDIX B ANALYTICAL TEST RESULTS

ANALYTICAL REPORT

Lab Number: L2519135

Client: GZA GeoEnvironmental of New York

300 Pearl Street

Suite 700

Buffalo, NY 14202

ATTN: Dan Troy

Phone: (716) 844-7050
Project Name: STEEL WINDS
Project Number: 03.0033579.18

Report Date: 04/14/25

The original project report/data package is held by Pace Analytical Services. This report/data package is paginated and should be reproduced only in its entirety. Pace Analytical Services holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0826), IL (200077), IN (C-MA-03), KY (KY98045), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), OR (MA-1316), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #525-23-122-91930A1).

Project Name:STEEL WINDSLab NProject Number:03.0033579.18Report

Lab Number: L2519135 **Report Date:** 04/14/25

Lab Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2519135-01	WT1-02-033125	WATER	LACKAWANNA, NY	03/31/25 11:45	03/31/25
L2519135-02	WT1-04-033125	WATER	LACKAWANNA, NY	03/31/25 13:00	03/31/25
L2519135-03	BCP-ORC-1-033125	WATER	LACKAWANNA, NY	03/31/25 14:15	03/31/25
L2519135-04	MWN-01B-033125	WATER	LACKAWANNA, NY	03/31/25 15:00	03/31/25
L2519135-05	MWN-01-033125	WATER	LACKAWANNA, NY	03/31/25 15:45	03/31/25
L2519135-06	WT1-05-03125	WATER	LACKAWANNA, NY	03/31/25 16:30	03/31/25
L2519135-07	TRIP BLANK	WATER	LACKAWANNA, NY	03/31/25 00:00	03/31/25

Project Name:STEEL WINDSLab Number:L2519135Project Number:03.0033579.18Report Date:04/14/25

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Pace Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments and solids are reported on a dry weight basis unless otherwise noted. Tissues are reported "as received" or on a wet weight basis, unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Pace's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Pace Project Manager and made arrangements for Pace to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.

Project Name:STEEL WINDSLab Number:L2519135Project Number:03.0033579.18Report Date:04/14/25

Case Narrative (continued)

Report Submission

April 14, 2025: This final report includes the results of all requested analyses.

April 08, 2025: This is a preliminary report.

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Semivolatile Organics

L2519135-01D, -02D, -03D, -04D, -05D, and -06D: The sample has elevated detection limits due to the dilution required by the sample matrix.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Jufani Morrissey-Tiffani Morrissey

Authorized Signature:

Title: Technical Director/Representative

Pace

Date: 04/14/25

ORGANICS

VOLATILES

Project Name: STEEL WINDS Lab Number: L2519135

Project Number: 03.0033579.18 **Report Date:** 04/14/25

SAMPLE RESULTS

Lab ID: L2519135-01 Date Collected: 03/31/25 11:45

Client ID: WT1-02-033125 Date Received: 03/31/25
Sample Location: LACKAWANNA, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 1,8260D
Analytical Date: 04/07/25 14:36

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
Volatile Organics by GC/MS - Westborough Lab									
Benzene	8.0		ug/l	0.50	0.16	1			
Toluene	1.6	J	ug/l	2.5	0.70	1			
Ethylbenzene	ND		ug/l	2.5	0.70	1			
Methyl tert butyl ether	ND		ug/l	2.5	0.17	1			
p/m-Xylene	2.6		ug/l	2.5	0.70	1			
o-Xylene	1.7	J	ug/l	2.5	0.70	1			
Xylenes, Total	4.3	J	ug/l	2.5	0.70	1			
n-Butylbenzene	ND		ug/l	2.5	0.70	1			
sec-Butylbenzene	ND		ug/l	2.5	0.70	1			
Isopropylbenzene	ND		ug/l	2.5	0.70	1			
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1			
Naphthalene	47		ug/l	2.5	0.70	1			
n-Propylbenzene	ND		ug/l	2.5	0.70	1			
1,3,5-Trimethylbenzene	1.4	J	ug/l	2.5	0.70	1			
1,2,4-Trimethylbenzene	1.0	J	ug/l	2.5	0.70	1			

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	104	70-130	
Toluene-d8	101	70-130	
4-Bromofluorobenzene	98	70-130	
Dibromofluoromethane	108	70-130	

Project Name: STEEL WINDS Lab Number: L2519135

Project Number: 03.0033579.18 **Report Date:** 04/14/25

SAMPLE RESULTS

Lab ID: L2519135-02 Date Collected: 03/31/25 13:00

Client ID: WT1-04-033125 Date Received: 03/31/25
Sample Location: LACKAWANNA, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 1,8260D
Analytical Date: 04/07/25 14:58

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
Volatile Organics by GC/MS - Westboro	Volatile Organics by GC/MS - Westborough Lab								
Benzene	7.6		ua/l	0.50	0.16	1			
			ug/l			· · · · · · · · · · · · · · · · · · ·			
Toluene	1.4	J	ug/l	2.5	0.70	1			
Ethylbenzene	ND		ug/l	2.5	0.70	1			
Methyl tert butyl ether	ND		ug/l	2.5	0.17	1			
p/m-Xylene	2.9		ug/l	2.5	0.70	1			
o-Xylene	2.0	J	ug/l	2.5	0.70	1			
Xylenes, Total	4.9	J	ug/l	2.5	0.70	1			
n-Butylbenzene	ND		ug/l	2.5	0.70	1			
sec-Butylbenzene	ND		ug/l	2.5	0.70	1			
Isopropylbenzene	ND		ug/l	2.5	0.70	1			
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1			
Naphthalene	66		ug/l	2.5	0.70	1			
n-Propylbenzene	ND		ug/l	2.5	0.70	1			
1,3,5-Trimethylbenzene	1.6	J	ug/l	2.5	0.70	1			
1,2,4-Trimethylbenzene	1.3	J	ug/l	2.5	0.70	1			

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	104	70-130	
Toluene-d8	98	70-130	
4-Bromofluorobenzene	98	70-130	
Dibromofluoromethane	111	70-130	

Project Name: STEEL WINDS Lab Number: L2519135

Project Number: 03.0033579.18 **Report Date:** 04/14/25

SAMPLE RESULTS

Lab ID: L2519135-03 D Date Collected: 03/31/25 14:15

Client ID: BCP-ORC-1-033125 Date Received: 03/31/25 Sample Location: LACKAWANNA, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 1,8260D
Analytical Date: 04/07/25 15:21

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor				
Volatile Organics by GC/MS - Westbo	Volatile Organics by GC/MS - Westborough Lab									
Benzene	23		ug/l	1.2	0.40	2.5				
Toluene	3.7	J	ug/l	6.2	1.8	2.5				
Ethylbenzene	ND		ug/l	6.2	1.8	2.5				
Methyl tert butyl ether	ND		ug/l	6.2	0.42	2.5				
p/m-Xylene	6.0	J	ug/l	6.2	1.8	2.5				
o-Xylene	6.6		ug/l	6.2	1.8	2.5				
Xylenes, Total	13	J	ug/l	6.2	1.8	2.5				
n-Butylbenzene	ND		ug/l	6.2	1.8	2.5				
sec-Butylbenzene	ND		ug/l	6.2	1.8	2.5				
Isopropylbenzene	ND		ug/l	6.2	1.8	2.5				
p-Isopropyltoluene	ND		ug/l	6.2	1.8	2.5				
Naphthalene	380		ug/l	6.2	1.8	2.5				
n-Propylbenzene	ND		ug/l	6.2	1.8	2.5				
1,3,5-Trimethylbenzene	2.6	J	ug/l	6.2	1.8	2.5				
1,2,4-Trimethylbenzene	2.8	J	ug/l	6.2	1.8	2.5				

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	105	70-130	
Toluene-d8	101	70-130	
4-Bromofluorobenzene	95	70-130	
Dibromofluoromethane	109	70-130	

Project Name: STEEL WINDS Lab Number: L2519135

Project Number: 03.0033579.18 **Report Date:** 04/14/25

SAMPLE RESULTS

Lab ID: L2519135-04 D Date Collected: 03/31/25 15:00

Client ID: MWN-01B-033125 Date Received: 03/31/25 Sample Location: LACKAWANNA, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 1,8260D
Analytical Date: 04/07/25 15:43

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough Lab						
Benzene	50		ug/l	5.0	1.6	10
Toluene	14	J	ug/l	25	7.0	10
Ethylbenzene	ND		ug/l	25	7.0	10
Methyl tert butyl ether	ND		ug/l	25	1.7	10
p/m-Xylene	11	J	ug/l	25	7.0	10
o-Xylene	8.4	J	ug/l	25	7.0	10
Xylenes, Total	19	J	ug/l	25	7.0	10
n-Butylbenzene	ND		ug/l	25	7.0	10
sec-Butylbenzene	ND		ug/l	25	7.0	10
Isopropylbenzene	ND		ug/l	25	7.0	10
p-Isopropyltoluene	ND		ug/l	25	7.0	10
Naphthalene	1600		ug/l	25	7.0	10
n-Propylbenzene	ND		ug/l	25	7.0	10
1,3,5-Trimethylbenzene	ND		ug/l	25	7.0	10
1,2,4-Trimethylbenzene	ND		ug/l	25	7.0	10

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	102	70-130	
Toluene-d8	98	70-130	
4-Bromofluorobenzene	95	70-130	
Dibromofluoromethane	109	70-130	

Project Name: STEEL WINDS Lab Number: L2519135

Project Number: 03.0033579.18 **Report Date:** 04/14/25

SAMPLE RESULTS

Lab ID: L2519135-05 D Date Collected: 03/31/25 15:45

Client ID: MWN-01-033125 Date Received: 03/31/25 Sample Location: LACKAWANNA, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 1,8260D
Analytical Date: 04/07/25 16:05

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westborough Lab							
Benzene	12		ug/l	1.0	0.32	2	
Toluene	3.1	J	ug/l	5.0	1.4	2	
Ethylbenzene	ND		ug/l	5.0	1.4	2	
Methyl tert butyl ether	ND		ug/l	5.0	0.33	2	
p/m-Xylene	7.1		ug/l	5.0	1.4	2	
o-Xylene	5.0		ug/l	5.0	1.4	2	
Xylenes, Total	12		ug/l	5.0	1.4	2	
n-Butylbenzene	ND		ug/l	5.0	1.4	2	
sec-Butylbenzene	ND		ug/l	5.0	1.4	2	
Isopropylbenzene	ND		ug/l	5.0	1.4	2	
p-Isopropyltoluene	ND		ug/l	5.0	1.4	2	
Naphthalene	280		ug/l	5.0	1.4	2	
n-Propylbenzene	ND		ug/l	5.0	1.4	2	
1,3,5-Trimethylbenzene	3.5	J	ug/l	5.0	1.4	2	
1,2,4-Trimethylbenzene	3.6	J	ug/l	5.0	1.4	2	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	108	70-130	
Toluene-d8	100	70-130	
4-Bromofluorobenzene	92	70-130	
Dibromofluoromethane	112	70-130	

Project Name: STEEL WINDS Lab Number: L2519135

Project Number: 03.0033579.18 **Report Date:** 04/14/25

SAMPLE RESULTS

Lab ID: L2519135-06 D Date Collected: 03/31/25 16:30

Client ID: WT1-05-03125 Date Received: 03/31/25 Sample Location: LACKAWANNA, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 1,8260D
Analytical Date: 04/07/25 16:28

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough Lab						
Benzene	6.2		ug/l	1.0	0.32	2
Toluene	2.0	J	ug/l	5.0	1.4	2
Ethylbenzene	ND		ug/l	5.0	1.4	2
Methyl tert butyl ether	ND		ug/l	5.0	0.33	2
p/m-Xylene	5.2		ug/l	5.0	1.4	2
o-Xylene	3.7	J	ug/l	5.0	1.4	2
Xylenes, Total	8.9	J	ug/l	5.0	1.4	2
n-Butylbenzene	ND		ug/l	5.0	1.4	2
sec-Butylbenzene	ND		ug/l	5.0	1.4	2
Isopropylbenzene	ND		ug/l	5.0	1.4	2
p-Isopropyltoluene	ND		ug/l	5.0	1.4	2
Naphthalene	190		ug/l	5.0	1.4	2
n-Propylbenzene	ND		ug/l	5.0	1.4	2
1,3,5-Trimethylbenzene	2.6	J	ug/l	5.0	1.4	2
1,2,4-Trimethylbenzene	2.8	J	ug/l	5.0	1.4	2

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	104	70-130	
Toluene-d8	100	70-130	
4-Bromofluorobenzene	96	70-130	
Dibromofluoromethane	110	70-130	

Project Name: STEEL WINDS Lab Number: L2519135

Project Number: 03.0033579.18 **Report Date:** 04/14/25

SAMPLE RESULTS

Lab ID: L2519135-07 Date Collected: 03/31/25 00:00

Client ID: TRIP BLANK Date Received: 03/31/25
Sample Location: LACKAWANNA, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 1,8260D
Analytical Date: 04/07/25 14:14

Analyst: MJV

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	tborough Lab					
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	
Ethylbenzene	ND		ug/l	2.5	0.70	 1
Methyl tert butyl ether	ND		ug/l	2.5	0.17	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
Xylenes, Total	ND		ug/l	2.5	0.70	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1
n-Propylbenzene	ND		ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	102	70-130	
Toluene-d8	97	70-130	
4-Bromofluorobenzene	102	70-130	
Dibromofluoromethane	109	70-130	

Project Name: STEEL WINDS Lab Number: L2519135

Project Number: 03.0033579.18 **Report Date:** 04/14/25

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 04/07/25 08:16

Analyst: PID

Parameter	Result 0	Qualifier Units	RL	MDL
Volatile Organics by GC/MS - We	stborough Lab fo	or sample(s): 01-07	Batch:	WG2050934-5
Benzene	ND	ug/l	0.50	0.16
Toluene	ND	ug/l	2.5	0.70
Ethylbenzene	ND	ug/l	2.5	0.70
Methyl tert butyl ether	ND	ug/l	2.5	0.17
p/m-Xylene	ND	ug/l	2.5	0.70
o-Xylene	ND	ug/l	2.5	0.70
Xylenes, Total	ND	ug/l	2.5	0.70
n-Butylbenzene	ND	ug/l	2.5	0.70
sec-Butylbenzene	ND	ug/l	2.5	0.70
Isopropylbenzene	ND	ug/l	2.5	0.70
p-Isopropyltoluene	ND	ug/l	2.5	0.70
Naphthalene	ND	ug/l	2.5	0.70
n-Propylbenzene	ND	ug/l	2.5	0.70
1,3,5-Trimethylbenzene	ND	ug/l	2.5	0.70
1,2,4-Trimethylbenzene	ND	ug/l	2.5	0.70

		Acceptance	
Surrogate	%Recovery Qualific	er Criteria	
1,2-Dichloroethane-d4	106	70-130	
Toluene-d8	100	70-130	
4-Bromofluorobenzene	100	70-130	
Dibromofluoromethane	113	70-130	

Project Name: STEEL WINDS
Project Number: 03.0033579.18

Lab Number: L25

L2519135

Report Date:

04/14/25

arameter	LCS %Recovery	Qual	LCSD %Recovery		%Recovery Limits	RPD	Qual	RPD Limits	
olatile Organics by GC/MS - Westborou	gh Lab Associat	ted sample(s):	01-07 Ba	tch: WG20509	934-3 WG205	0934-4			
Benzene	120		96		70-130	22	Q	20	
Toluene	110		95		70-130	15		20	
Ethylbenzene	110		98		70-130	12		20	
Methyl tert butyl ether	100		89		63-130	12		20	
p/m-Xylene	115		100		70-130	14		20	
o-Xylene	115		100		70-130	14		20	
n-Butylbenzene	120		93		53-136	25	Q	20	
sec-Butylbenzene	120		97		70-130	21	Q	20	
Isopropylbenzene	110		94		70-130	16		20	
p-Isopropyltoluene	120		95		70-130	23	Q	20	
Naphthalene	110		93		70-130	17		20	
n-Propylbenzene	120		96		69-130	22	Q	20	
1,3,5-Trimethylbenzene	110		87		64-130	23	Q	20	
1,2,4-Trimethylbenzene	110		87		70-130	23	Q	20	

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	98	103	70-130
Toluene-d8	98	99	70-130
4-Bromofluorobenzene	98	97	70-130
Dibromofluoromethane	97	104	70-130

SEMIVOLATILES

Project Name: STEEL WINDS Lab Number: L2519135

Project Number: 03.0033579.18 **Report Date:** 04/14/25

SAMPLE RESULTS

Lab ID: L2519135-01 D Date Collected: 03/31/25 11:45

Client ID: WT1-02-033125 Date Received: 03/31/25
Sample Location: LACKAWANNA, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 3510C
Analytical Method: 1.8270E Extraction Date: 04/02/25 17:30

Analytical Method: 1,8270E Extraction Date: 04/02/25 17:30

Analytical Date: 04/14/25 13:55

Analyst: DB

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS -	Mansfield Lab						
bis(2-Chloroethyl)ether	ND		ug/l	2.52	0.469	5	
1,3-Dichlorobenzene	ND		ug/l	2.52	0.395	5	
1,4-Dichlorobenzene	ND		ug/l	2.52	0.418	5	
1,2-Dichlorobenzene	ND		ug/l	2.52	0.343	5	
Benzyl alcohol	ND		ug/l	2.52	0.621	5	
bis(2-chloroisopropyl)ether	ND		ug/l	2.52	0.545	5	
Acetophenone	ND		ug/l	5.05	1.04	5	
Hexachloroethane	ND		ug/l	2.52	0.515	5	
Nitrobenzene	ND		ug/l	2.52	0.515	5	
Isophorone	ND		ug/l	2.52	0.636	5	
bis(2-Chloroethoxy)methane	ND		ug/l	2.52	0.431	5	
1,2,4-Trichlorobenzene	ND		ug/l	2.52	0.485	5	
Naphthalene	34.5		ug/l	2.52	0.442	5	
4-Chloroaniline	ND		ug/l	2.52	0.646	5	
Hexachlorobutadiene	ND		ug/l	2.52	0.432	5	
2-Methylnaphthalene	7.48		ug/l	2.52	0.460	5	
1,2,4,5-Tetrachlorobenzene	ND		ug/l	2.52	0.402	5	
Hexachlorocyclopentadiene	ND		ug/l	2.52	0.773	5	
Biphenyl	1.80	J	ug/l	2.52	0.561	5	
2-Chloronaphthalene	ND		ug/l	2.52	0.454	5	
2-Nitroaniline	ND		ug/l	2.52	0.697	5	
Acenaphthylene	2.04	J	ug/l	2.52	0.566	5	
Dimethylphthalate	ND		ug/l	2.52	0.591	5	
2,6-Dinitrotoluene	ND		ug/l	2.52	0.848	5	
Acenaphthene	2.35	J	ug/l	2.52	0.482	5	
3-Nitroaniline	ND		ug/l	2.52	0.561	5	
Dibenzofuran	8.48		ug/l	2.52	0.460	5	
2,4-Dinitrotoluene	ND		ug/l	2.52	0.823	5	

MDL

Dilution Factor

RL

Project Name: STEEL WINDS Lab Number: L2519135

Project Number: 03.0033579.18 **Report Date:** 04/14/25

SAMPLE RESULTS

Lab ID: L2519135-01 D Date Collected: 03/31/25 11:45

Client ID: WT1-02-033125 Date Received: 03/31/25 Sample Location: LACKAWANNA, NY Field Prep: Not Specified

Result

Qualifier

Units

Sample Depth:

Parameter

i arameter	Nesun	Qualifier	Offics	IXL	MIDE	Dilution ractor
Semivolatile Organics by GC/MS	- Mansfield Lab					
Fluorene	12.9		ug/l	2.52	0.525	5
Diethylphthalate	ND		ug/l	2.52	0.909	5
4-Nitroaniline	ND		ug/l	2.52	0.566	5
n-Nitrosodiphenylamine	ND		ug/l	2.52	0.364	5
Hexachlorobenzene	ND		ug/l	2.52	0.616	5
Phenanthrene	28.7		ug/l	2.52	0.561	5
Anthracene	4.90		ug/l	2.52	0.692	5
Carbazole	7.12		ug/l	2.52	0.722	5
Di-n-butylphthalate	ND		ug/l	2.52	0.503	5
Fluoranthene	9.63		ug/l	2.52	0.788	5
Pyrene	6.09		ug/l	2.52	0.858	5
Butylbenzylphthalate	ND		ug/l	2.52	0.428	5
3,3'-Dichlorobenzidine	ND		ug/l	2.52	0.975	5
Benz(a)anthracene	ND		ug/l	2.52	0.929	5
Chrysene	ND		ug/l	2.52	0.717	5
bis(2-Ethylhexyl)phthalate	ND		ug/l	2.52	0.408	5
Di-n-octylphthalate	ND		ug/l	5.05	0.397	5
Benzo(b)fluoranthene	ND		ug/l	2.52	0.331	5
Benzo(k)fluoranthene	ND		ug/l	2.52	0.813	5
Benzo(a)pyrene	ND		ug/l	2.52	0.304	5
Indeno(1,2,3-cd)pyrene	ND		ug/l	2.52	0.452	5
Dibenz(a,h)anthracene	ND		ug/l	2.52	0.324	5
Benzo(g,h,i)perylene	ND		ug/l	2.52	0.550	5

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
2-Fluorophenol	55		15-115	
Phenol-d5	35		15-115	
Nitrobenzene-d5	96		30-130	
2-Fluorobiphenyl	90		30-130	
2,4,6-Tribromophenol	135	Q	15-115	
Terphenyl-d14	94		30-130	

Project Name: STEEL WINDS Lab Number: L2519135

Project Number: 03.0033579.18 **Report Date:** 04/14/25

SAMPLE RESULTS

Lab ID: L2519135-02 D Date Collected: 03/31/25 13:00

Client ID: WT1-04-033125 Date Received: 03/31/25 Sample Location: LACKAWANNA, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 3510C
Analytical Method: 1.8270E Extraction Date: 04/02/25 17:30

Analytical Method: 1,8270E Extraction Date: 04/02/25 17:30

Analytical Date: 04/14/25 14:25

Analyst: DB

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS -	Mansfield Lab						
bis(2-Chloroethyl)ether	ND		ug/l	2.48	0.460	5	
1,3-Dichlorobenzene	ND		ug/l	2.48	0.388	5	
1,4-Dichlorobenzene	ND		ug/l	2.48	0.410	5	
1,2-Dichlorobenzene	ND		ug/l	2.48	0.337	5	
Benzyl alcohol	ND		ug/l	2.48	0.609	5	
bis(2-chloroisopropyl)ether	ND		ug/l	2.48	0.535	5	
Acetophenone	ND		ug/l	4.95	1.02	5	
Hexachloroethane	ND		ug/l	2.48	0.505	5	
Nitrobenzene	ND		ug/l	2.48	0.505	5	
Isophorone	ND		ug/l	2.48	0.624	5	
bis(2-Chloroethoxy)methane	ND		ug/l	2.48	0.423	5	
1,2,4-Trichlorobenzene	ND		ug/l	2.48	0.476	5	
Naphthalene	44.4		ug/l	2.48	0.434	5	
4-Chloroaniline	ND		ug/l	2.48	0.634	5	
Hexachlorobutadiene	ND		ug/l	2.48	0.423	5	
2-Methylnaphthalene	9.21		ug/l	2.48	0.451	5	
1,2,4,5-Tetrachlorobenzene	ND		ug/l	2.48	0.394	5	
Hexachlorocyclopentadiene	ND		ug/l	2.48	0.757	5	
Biphenyl	2.29	J	ug/l	2.48	0.550	5	
2-Chloronaphthalene	ND		ug/l	2.48	0.445	5	
2-Nitroaniline	ND		ug/l	2.48	0.683	5	
Acenaphthylene	3.44		ug/l	2.48	0.554	5	
Dimethylphthalate	ND		ug/l	2.48	0.579	5	
2,6-Dinitrotoluene	ND		ug/l	2.48	0.832	5	
Acenaphthene	4.33		ug/l	2.48	0.473	5	
3-Nitroaniline	ND		ug/l	2.48	0.550	5	
Dibenzofuran	11.4		ug/l	2.48	0.450	5	
2,4-Dinitrotoluene	ND		ug/l	2.48	0.807	5	

MDL

Dilution Factor

RL

Project Name: STEEL WINDS Lab Number: L2519135

Project Number: 03.0033579.18 **Report Date:** 04/14/25

SAMPLE RESULTS

Lab ID: L2519135-02 D Date Collected: 03/31/25 13:00

Client ID: WT1-04-033125 Date Received: 03/31/25 Sample Location: LACKAWANNA, NY Field Prep: Not Specified

Result

Qualifier

Units

Sample Depth:

Parameter

i arameter	Nesun	Qualifici	Ullita	IV.L	IVIDE	Dilution ractor	
Semivolatile Organics by GC/MS	- Mansfield Lab						
Fluorene	19.2		ug/l	2.48	0.515	5	
Diethylphthalate	ND		ug/l	2.48	0.891	5	
4-Nitroaniline	ND		ug/l	2.48	0.554	5	
n-Nitrosodiphenylamine	ND		ug/l	2.48	0.356	5	
Hexachlorobenzene	ND		ug/l	2.48	0.604	5	
Phenanthrene	41.1		ug/l	2.48	0.550	5	
Anthracene	6.24		ug/l	2.48	0.678	5	
Carbazole	7.12		ug/l	2.48	0.708	5	
Di-n-butylphthalate	ND		ug/l	2.48	0.493	5	
Fluoranthene	10.6		ug/l	2.48	0.772	5	
Pyrene	5.96		ug/l	2.48	0.842	5	
Butylbenzylphthalate	ND		ug/l	2.48	0.420	5	
3,3'-Dichlorobenzidine	ND		ug/l	2.48	0.955	5	
Benz(a)anthracene	ND		ug/l	2.48	0.911	5	
Chrysene	ND		ug/l	2.48	0.703	5	
bis(2-Ethylhexyl)phthalate	ND		ug/l	2.48	0.400	5	
Di-n-octylphthalate	ND		ug/l	4.95	0.389	5	
Benzo(b)fluoranthene	0.337	J	ug/l	2.48	0.324	5	
Benzo(k)fluoranthene	ND		ug/l	2.48	0.797	5	
Benzo(a)pyrene	ND		ug/l	2.48	0.298	5	
Indeno(1,2,3-cd)pyrene	ND		ug/l	2.48	0.444	5	
Dibenz(a,h)anthracene	ND		ug/l	2.48	0.317	5	
Benzo(g,h,i)perylene	ND		ug/l	2.48	0.540	5	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
2-Fluorophenol	50		15-115	
Phenol-d5	34		15-115	
Nitrobenzene-d5	90		30-130	
2-Fluorobiphenyl	85		30-130	
2,4,6-Tribromophenol	119	Q	15-115	
Terphenyl-d14	87		30-130	

Project Name: Lab Number: STEEL WINDS L2519135

Project Number: Report Date: 03.0033579.18 04/14/25

SAMPLE RESULTS

Lab ID: L2519135-03 D Date Collected: 03/31/25 14:15

Date Received: Client ID: BCP-ORC-1-033125 03/31/25 Sample Location: Field Prep: LACKAWANNA, NY Not Specified

Sample Depth:

Extraction Method: EPA 3510C Matrix: Water

Extraction Date: 04/02/25 17:30 Analytical Method: 1,8270E Analytical Date:

Analyst: DB

04/14/25 14:55

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS -	Mansfield Lab						
bis(2-Chloroethyl)ether	ND		ug/l	4.95	0.920	10	
1,3-Dichlorobenzene	ND		ug/l	4.95	0.775	10	
1,4-Dichlorobenzene	ND		ug/l	4.95	0.820	10	
1,2-Dichlorobenzene	ND		ug/l	4.95	0.673	10	
Benzyl alcohol	ND		ug/l	4.95	1.22	10	
bis(2-chloroisopropyl)ether	ND		ug/l	4.95	1.07	10	
Acetophenone	ND		ug/l	9.90	2.05	10	
Hexachloroethane	ND		ug/l	4.95	1.01	10	
Nitrobenzene	ND		ug/l	4.95	1.01	10	
Isophorone	ND		ug/l	4.95	1.25	10	
bis(2-Chloroethoxy)methane	ND		ug/l	4.95	0.846	10	
1,2,4-Trichlorobenzene	ND		ug/l	4.95	0.951	10	
Naphthalene	188		ug/l	4.95	0.867	10	
4-Chloroaniline	ND		ug/l	4.95	1.27	10	
Hexachlorobutadiene	ND		ug/l	4.95	0.846	10	
2-Methylnaphthalene	23.5		ug/l	4.95	0.902	10	
1,2,4,5-Tetrachlorobenzene	ND		ug/l	4.95	0.789	10	
Hexachlorocyclopentadiene	ND		ug/l	4.95	1.51	10	
Biphenyl	4.59	J	ug/l	4.95	1.10	10	
2-Chloronaphthalene	ND		ug/l	4.95	0.890	10	
2-Nitroaniline	ND		ug/l	4.95	1.37	10	
Acenaphthylene	25.4		ug/l	4.95	1.11	10	
Dimethylphthalate	ND		ug/l	4.95	1.16	10	
2,6-Dinitrotoluene	ND		ug/l	4.95	1.66	10	
Acenaphthene	7.88		ug/l	4.95	0.946	10	
3-Nitroaniline	ND		ug/l	4.95	1.10	10	
Dibenzofuran	22.2		ug/l	4.95	0.901	10	
2,4-Dinitrotoluene	ND		ug/l	4.95	1.61	10	

Project Name: STEEL WINDS Lab Number: L2519135

Project Number: 03.0033579.18 **Report Date:** 04/14/25

SAMPLE RESULTS

Lab ID: L2519135-03 D Date Collected: 03/31/25 14:15

Client ID: BCP-ORC-1-033125 Date Received: 03/31/25 Sample Location: LACKAWANNA, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - I	Mansfield Lab					
Fluorene	37.7		ug/l	4.95	1.03	10
Diethylphthalate	ND		ug/l	4.95	1.78	10
4-Nitroaniline	ND		ug/l	4.95	1.11	10
n-Nitrosodiphenylamine	ND		ug/l	4.95	0.713	10
Hexachlorobenzene	ND		ug/l	4.95	1.21	10
Phenanthrene	60.5		ug/l	4.95	1.10	10
Anthracene	7.40		ug/l	4.95	1.36	10
Carbazole	29.6		ug/l	4.95	1.42	10
Di-n-butylphthalate	ND		ug/l	4.95	0.986	10
Fluoranthene	11.4		ug/l	4.95	1.54	10
Pyrene	6.20		ug/l	4.95	1.68	10
Butylbenzylphthalate	ND		ug/l	4.95	0.840	10
3,3'-Dichlorobenzidine	ND		ug/l	4.95	1.91	10
Benz(a)anthracene	ND		ug/l	4.95	1.82	10
Chrysene	ND		ug/l	4.95	1.40	10
bis(2-Ethylhexyl)phthalate	ND		ug/l	4.95	0.801	10
Di-n-octylphthalate	ND		ug/l	9.90	0.778	10
Benzo(b)fluoranthene	ND		ug/l	4.95	0.648	10
Benzo(k)fluoranthene	ND		ug/l	4.95	1.59	10
Benzo(a)pyrene	ND		ug/l	4.95	0.596	10
Indeno(1,2,3-cd)pyrene	ND		ug/l	4.95	0.887	10
Dibenz(a,h)anthracene	ND		ug/l	4.95	0.635	10
Benzo(g,h,i)perylene	ND		ug/l	4.95	1.08	10

Surrogate	% Recovery	Acceptance Qualifier Criteria	
2-Fluorophenol	42	15-115	
Phenol-d5	29	15-115	
Nitrobenzene-d5	74	30-130	
2-Fluorobiphenyl	74	30-130	
2,4,6-Tribromophenol	113	15-115	
Terphenyl-d14	82	30-130	

Project Name: STEEL WINDS Lab Number: L2519135

Project Number: 03.0033579.18 **Report Date:** 04/14/25

SAMPLE RESULTS

Lab ID: L2519135-04 D Date Collected: 03/31/25 15:00

Client ID: MWN-01B-033125 Date Received: 03/31/25
Sample Location: LACKAWANNA, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 3510C
Analytical Method: 1.8270E Extraction Date: 04/02/25 17:30

Analytical Method: 1,8270E Extraction Date: 04/02/25 17:30

Analytical Date: 04/14/25 15:26

Analyst: DB

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS - N	Mansfield Lab						
bis(2-Chloroethyl)ether	ND		ug/l	24.6	4.58	50	
1,3-Dichlorobenzene	ND		ug/l	24.6	3.86	50	
1,4-Dichlorobenzene	ND		ug/l	24.6	4.08	50	
1,2-Dichlorobenzene	ND		ug/l	24.6	3.35	50	
Benzyl alcohol	ND		ug/l	24.6	6.06	50	
bis(2-chloroisopropyl)ether	ND		ug/l	24.6	5.32	50	
Acetophenone	ND		ug/l	49.3	10.2	50	
Hexachloroethane	ND		ug/l	24.6	5.02	50	
Nitrobenzene	ND		ug/l	24.6	5.02	50	
Isophorone	ND		ug/l	24.6	6.21	50	
bis(2-Chloroethoxy)methane	ND		ug/l	24.6	4.21	50	
1,2,4-Trichlorobenzene	ND		ug/l	24.6	4.73	50	
Naphthalene	1100		ug/l	24.6	4.32	50	
4-Chloroaniline	ND		ug/l	24.6	6.30	50	
Hexachlorobutadiene	ND		ug/l	24.6	4.21	50	
2-Methylnaphthalene	39.9		ug/l	24.6	4.49	50	
1,2,4,5-Tetrachlorobenzene	ND		ug/l	24.6	3.93	50	
Hexachlorocyclopentadiene	ND		ug/l	24.6	7.54	50	
Biphenyl	6.80	J	ug/l	24.6	5.47	50	
2-Chloronaphthalene	ND		ug/l	24.6	4.43	50	
2-Nitroaniline	ND		ug/l	24.6	6.80	50	
Acenaphthylene	37.3		ug/l	24.6	5.52	50	
Dimethylphthalate	ND		ug/l	24.6	5.76	50	
2,6-Dinitrotoluene	ND		ug/l	24.6	8.28	50	
Acenaphthene	10.1	J	ug/l	24.6	4.70	50	
3-Nitroaniline	ND		ug/l	24.6	5.47	50	
Dibenzofuran	24.8		ug/l	24.6	4.48	50	
2,4-Dinitrotoluene	ND		ug/l	24.6	8.03	50	

Project Name: STEEL WINDS Lab Number: L2519135

Project Number: 03.0033579.18 **Report Date:** 04/14/25

SAMPLE RESULTS

Lab ID: L2519135-04 D Date Collected: 03/31/25 15:00

Client ID: MWN-01B-033125 Date Received: 03/31/25 Sample Location: LACKAWANNA, NY Field Prep: Not Specified

Sample Depth:

Semivolatile Organics by GC/MS - Mansfi	eld Lab 36.0					
	36.0					
Fluorene			ug/l	24.6	5.12	50
Diethylphthalate	ND		ug/l	24.6	8.87	50
4-Nitroaniline	ND		ug/l	24.6	5.52	50
n-Nitrosodiphenylamine	ND		ug/l	24.6	3.55	50
Hexachlorobenzene	ND		ug/l	24.6	6.01	50
Phenanthrene	56.2		ug/l	24.6	5.47	50
Anthracene	ND		ug/l	24.6	6.75	50
Carbazole	57.1		ug/l	24.6	7.04	50
Di-n-butylphthalate	ND		ug/l	24.6	4.91	50
Fluoranthene	8.72	J	ug/l	24.6	7.68	50
Pyrene	ND		ug/l	24.6	8.37	50
Butylbenzylphthalate	ND		ug/l	24.6	4.18	50
3,3'-Dichlorobenzidine	ND		ug/l	24.6	9.51	50
Benz(a)anthracene	ND		ug/l	24.6	9.06	50
Chrysene	ND		ug/l	24.6	7.00	50
bis(2-Ethylhexyl)phthalate	ND		ug/l	24.6	3.98	50
Di-n-octylphthalate	ND		ug/l	49.3	3.87	50
Benzo(b)fluoranthene	ND		ug/l	24.6	3.23	50
Benzo(k)fluoranthene	ND		ug/l	24.6	7.93	50
Benzo(a)pyrene	ND		ug/l	24.6	2.96	50
Indeno(1,2,3-cd)pyrene	ND		ug/l	24.6	4.41	50
Dibenz(a,h)anthracene	ND		ug/l	24.6	3.16	50
Benzo(g,h,i)perylene	ND		ug/l	24.6	5.37	50

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	47	15-115
Phenol-d5	32	15-115
Nitrobenzene-d5	81	30-130
2-Fluorobiphenyl	81	30-130
2,4,6-Tribromophenol	98	15-115
Terphenyl-d14	80	30-130

Project Name: STEEL WINDS Lab Number: L2519135

Project Number: 03.0033579.18 **Report Date:** 04/14/25

SAMPLE RESULTS

Lab ID: L2519135-05 D Date Collected: 03/31/25 15:45

Client ID: MWN-01-033125 Date Received: 03/31/25
Sample Location: LACKAWANNA, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 3510C
Analytical Method: 1.8270E Extraction Date: 04/02/25 17:30

Analytical Method: 1,8270E Extraction Date: 04/02/25 17:30

Analytical Date: 04/14/25 15:56

Analyst: DB

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS -	Mansfield Lab						
bis(2-Chloroethyl)ether	ND		ug/l	4.98	0.924	10	
1,3-Dichlorobenzene	ND		ug/l	4.98	0.779	10	
1,4-Dichlorobenzene	ND		ug/l	4.98	0.824	10	
1,2-Dichlorobenzene	ND		ug/l	4.98	0.677	10	
Benzyl alcohol	ND		ug/l	4.98	1.22	10	
bis(2-chloroisopropyl)ether	ND		ug/l	4.98	1.07	10	
Acetophenone	ND		ug/l	9.95	2.06	10	
Hexachloroethane	ND		ug/l	4.98	1.01	10	
Nitrobenzene	ND		ug/l	4.98	1.01	10	
Isophorone	ND		ug/l	4.98	1.25	10	
bis(2-Chloroethoxy)methane	ND		ug/l	4.98	0.850	10	
1,2,4-Trichlorobenzene	ND		ug/l	4.98	0.956	10	
Naphthalene	186		ug/l	4.98	0.872	10	
4-Chloroaniline	ND		ug/l	4.98	1.27	10	
Hexachlorobutadiene	ND		ug/l	4.98	0.851	10	
2-Methylnaphthalene	39.5		ug/l	4.98	0.906	10	
1,2,4,5-Tetrachlorobenzene	ND		ug/l	4.98	0.793	10	
Hexachlorocyclopentadiene	ND		ug/l	4.98	1.52	10	
Biphenyl	10.2		ug/l	4.98	1.10	10	
2-Chloronaphthalene	ND		ug/l	4.98	0.894	10	
2-Nitroaniline	ND		ug/l	4.98	1.37	10	
Acenaphthylene	36.0		ug/l	4.98	1.11	10	
Dimethylphthalate	ND		ug/l	4.98	1.16	10	
2,6-Dinitrotoluene	ND		ug/l	4.98	1.67	10	
Acenaphthene	13.2		ug/l	4.98	0.950	10	
3-Nitroaniline	ND		ug/l	4.98	1.10	10	
Dibenzofuran	47.8		ug/l	4.98	0.905	10	
2,4-Dinitrotoluene	ND		ug/l	4.98	1.62	10	

Project Name: STEEL WINDS Lab Number: L2519135

Project Number: 03.0033579.18 **Report Date:** 04/14/25

SAMPLE RESULTS

Lab ID: L2519135-05 D Date Collected: 03/31/25 15:45

Client ID: MWN-01-033125 Date Received: 03/31/25 Sample Location: LACKAWANNA, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier Un	its RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS -	Mansfield Lab				
Fluorene	71.7	ug	ı/l 4.98	1.03	10
Diethylphthalate	ND	ug		1.79	10
4-Nitroaniline	ND	ug	·	1.11	10
n-Nitrosodiphenylamine	ND	ug		0.716	10
Hexachlorobenzene	ND	ug	<u></u>	1.21	10
Phenanthrene	113	ug		1.10	10
Anthracene	16.4	ug		1.36	10
Carbazole	26.9	ug		1.42	10
Di-n-butylphthalate	ND	ug	ı/l 4.98	0.991	10
Fluoranthene	15.5	ug	y/I 4.98	1.55	10
Pyrene	7.51	ug	ı/l 4.98	1.69	10
Butylbenzylphthalate	ND	ug	ı/l 4.98	0.844	10
3,3'-Dichlorobenzidine	ND	ug	ı/l 4.98	1.92	10
Benz(a)anthracene	ND	ug	ı/l 4.98	1.83	10
Chrysene	ND	ug	ı/l 4.98	1.41	10
bis(2-Ethylhexyl)phthalate	ND	ug	ı/l 4.98	0.805	10
Di-n-octylphthalate	ND	ug	y/I 9.95	0.782	10
Benzo(b)fluoranthene	ND	ug	y/I 4.98	0.652	10
Benzo(k)fluoranthene	ND	ug	y/I 4.98	1.60	10
Benzo(a)pyrene	ND	ug	ı/l 4.98	0.599	10
Indeno(1,2,3-cd)pyrene	ND	ug	y/I 4.98	0.892	10
Dibenz(a,h)anthracene	ND	ug	y/I 4.98	0.638	10
Benzo(g,h,i)perylene	ND	ug	y/I 4.98	1.08	10

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	49	15-115
Phenol-d5	31	15-115
Nitrobenzene-d5	88	30-130
2-Fluorobiphenyl	85	30-130
2,4,6-Tribromophenol	115	15-115
Terphenyl-d14	89	30-130

Project Name: STEEL WINDS Lab Number: L2519135

Project Number: 03.0033579.18 **Report Date:** 04/14/25

SAMPLE RESULTS

Lab ID: L2519135-06 D Date Collected: 03/31/25 16:30

Client ID: WT1-05-03125 Date Received: 03/31/25
Sample Location: LACKAWANNA, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 3510C
Analytical Method: 1.8270E Extraction Date: 04/02/25 17:30

Analytical Method: 1,8270E Extraction Date: 04/02/25 17:30

Analytical Date: 04/14/25 16:26

Analyst: DB

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS -	Mansfield Lab						
bis(2-Chloroethyl)ether	ND		ug/l	4.88	0.906	10	
1,3-Dichlorobenzene	ND		ug/l	4.88	0.764	10	
1,4-Dichlorobenzene	ND		ug/l	4.88	0.808	10	
1,2-Dichlorobenzene	ND		ug/l	4.88	0.663	10	
Benzyl alcohol	ND		ug/l	4.88	1.20	10	
bis(2-chloroisopropyl)ether	ND		ug/l	4.88	1.05	10	
Acetophenone	ND		ug/l	9.76	2.02	10	
Hexachloroethane	ND		ug/l	4.88	0.995	10	
Nitrobenzene	ND		ug/l	4.88	0.995	10	
Isophorone	ND		ug/l	4.88	1.23	10	
bis(2-Chloroethoxy)methane	ND		ug/l	4.88	0.833	10	
1,2,4-Trichlorobenzene	ND		ug/l	4.88	0.938	10	
Naphthalene	148		ug/l	4.88	0.855	10	
4-Chloroaniline	ND		ug/l	4.88	1.25	10	
Hexachlorobutadiene	ND		ug/l	4.88	0.834	10	
2-Methylnaphthalene	29.7		ug/l	4.88	0.889	10	
1,2,4,5-Tetrachlorobenzene	ND		ug/l	4.88	0.778	10	
Hexachlorocyclopentadiene	ND		ug/l	4.88	1.49	10	
Biphenyl	7.08		ug/l	4.88	1.08	10	
2-Chloronaphthalene	ND		ug/l	4.88	0.877	10	
2-Nitroaniline	ND		ug/l	4.88	1.35	10	
Acenaphthylene	29.3		ug/l	4.88	1.09	10	
Dimethylphthalate	ND		ug/l	4.88	1.14	10	
2,6-Dinitrotoluene	ND		ug/l	4.88	1.64	10	
Acenaphthene	10.1		ug/l	4.88	0.932	10	
3-Nitroaniline	ND		ug/l	4.88	1.08	10	
Dibenzofuran	31.2		ug/l	4.88	0.888	10	
2,4-Dinitrotoluene	ND		ug/l	4.88	1.59	10	

MDL

Dilution Factor

RL

Project Name: STEEL WINDS Lab Number: L2519135

Project Number: 03.0033579.18 **Report Date:** 04/14/25

SAMPLE RESULTS

Lab ID: L2519135-06 D Date Collected: 03/31/25 16:30

Client ID: WT1-05-03125 Date Received: 03/31/25 Sample Location: LACKAWANNA, NY Field Prep: Not Specified

Result

Qualifier

Units

Sample Depth:

Parameter

i arameter	Nesuit	Qualifier	Offics	IV.L	IVIDE	Dilution i actor	
Semivolatile Organics by GC/MS	- Mansfield Lab						
Fluorene	48.0		ug/l	4.88	1.01	10	
Diethylphthalate	ND		ug/l	4.88	1.76	10	
4-Nitroaniline	ND		ug/l	4.88	1.09	10	
n-Nitrosodiphenylamine	ND		ug/l	4.88	0.702	10	
Hexachlorobenzene	ND		ug/l	4.88	1.19	10	
Phenanthrene	45.9		ug/l	4.88	1.08	10	
Anthracene	6.71		ug/l	4.88	1.34	10	
Carbazole	18.4		ug/l	4.88	1.40	10	
Di-n-butylphthalate	ND		ug/l	4.88	0.972	10	
Fluoranthene	4.02	J	ug/l	4.88	1.52	10	
Pyrene	2.80	J	ug/l	4.88	1.66	10	
Butylbenzylphthalate	ND		ug/l	4.88	0.827	10	
3,3'-Dichlorobenzidine	ND		ug/l	4.88	1.88	10	
Benz(a)anthracene	ND		ug/l	4.88	1.80	10	
Chrysene	ND		ug/l	4.88	1.38	10	
bis(2-Ethylhexyl)phthalate	ND		ug/l	4.88	0.789	10	
Di-n-octylphthalate	ND		ug/l	9.76	0.767	10	
Benzo(b)fluoranthene	ND		ug/l	4.88	0.639	10	
Benzo(k)fluoranthene	ND		ug/l	4.88	1.57	10	
Benzo(a)pyrene	ND		ug/l	4.88	0.587	10	
Indeno(1,2,3-cd)pyrene	ND		ug/l	4.88	0.874	10	
Dibenz(a,h)anthracene	ND		ug/l	4.88	0.625	10	
Benzo(g,h,i)perylene	ND		ug/l	4.88	1.06	10	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
2-Fluorophenol	47	15-115	
Phenol-d5	31	15-115	
Nitrobenzene-d5	84	30-130	
2-Fluorobiphenyl	85	30-130	
2,4,6-Tribromophenol	115	15-115	
Terphenyl-d14	86	30-130	

Project Name: Lab Number: STEEL WINDS L2519135 **Project Number:** 03.0033579.18

Report Date: 04/14/25

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270E Extraction Method: EPA 3510C Analytical Date: 04/10/25 14:42 04/02/25 17:30 **Extraction Date:**

Analyst: DB

Parameter	Result	Qualifier Unit	s RI	MDL	
Semivolatile Organics by GC/MS	- Mansfield La	ab for sample(s)	01-06 B	atch: WG2048697	7-1
bis(2-Chloroethyl)ether	ND	ug/	0.50	0.093	
1,3-Dichlorobenzene	ND	ug/	0.50	0.078	
1,4-Dichlorobenzene	ND	ug/	0.50	0.083	
1,2-Dichlorobenzene	ND	ug/	0.50	0.068	
Benzyl alcohol	ND	ug/	0.50	00 0.123	
bis(2-chloroisopropyl)ether	ND	ug/	0.50	0.108	
Acetophenone	ND	ug/	1.0	0 0.207	
Hexachloroethane	ND	ug/	0.50	0.102	
Nitrobenzene	ND	ug/	0.50	0.102	
Isophorone	ND	ug/	0.50	00 0.126	
bis(2-Chloroethoxy)methane	ND	ug/	0.50	0.085	
1,2,4-Trichlorobenzene	ND	ug/	0.50	0.096	
Naphthalene	ND	ug/	0.50	0.088	
4-Chloroaniline	ND	ug/	0.50	00 0.128	
Hexachlorobutadiene	ND	ug/	0.50	0.086	
2-Methylnaphthalene	ND	ug/	0.50	0.091	
1,2,4,5-Tetrachlorobenzene	ND	ug/	0.50	0.080	
Hexachlorocyclopentadiene	ND	ug/	0.50	00 0.153	
Biphenyl	ND	ug/	0.50	0.111	
2-Chloronaphthalene	ND	ug/	0.50	0.090	
2-Nitroaniline	ND	ug/	0.50	00 0.138	
Acenaphthylene	ND	ug/	0.50	00 0.112	
Dimethylphthalate	ND	ug/	0.50	00 0.117	
2,6-Dinitrotoluene	ND	ug/	0.50	0.168	
Acenaphthene	ND	ug/	0.50	0.096	
3-Nitroaniline	ND	ug/	0.50	0.111	
Dibenzofuran	ND	ug/	0.50	0.091	
2,4-Dinitrotoluene	ND	ug/	0.50	0.163	
Fluorene	ND	ug/	0.50	0.104	

L2519135

Project Name: STEEL WINDS Lab Number:

Project Number: 03.0033579.18 **Report Date:** 04/14/25

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270E Extraction Method: EPA 3510C
Analytical Date: 04/10/25 14:42 Extraction Date: 04/02/25 17:30

Analyst: DB

Semivolatile Organics by GC/MS Diethylphthalate	ND ND	ug/l	01-06 Batch: 0.500	WG2048697-1	
Diethylphthalate	ND		0.500	0.100	
				0.160	
4-Nitroaniline		ug/l	0.500	0.112	
n-Nitrosodiphenylamine	ND	ug/l	0.500	0.072	
Hexachlorobenzene	ND	ug/l	0.500	0.122	
Phenanthrene	ND	ug/l	0.500	0.111	
Anthracene	ND	ug/l	0.500	0.137	
Carbazole	ND	ug/l	0.500	0.143	
Di-n-butylphthalate	ND	ug/l	0.500	0.100	
Fluoranthene	ND	ug/l	0.500	0.156	
Pyrene	ND	ug/l	0.500	0.170	
Butylbenzylphthalate	ND	ug/l	0.500	0.085	
3,3'-Dichlorobenzidine	ND	ug/l	0.500	0.193	
Benz(a)anthracene	ND	ug/l	0.500	0.184	
Chrysene	ND	ug/l	0.500	0.142	
bis(2-Ethylhexyl)phthalate	ND	ug/l	0.500	0.081	
Di-n-octylphthalate	ND	ug/l	1.00	0.079	
Benzo(b)fluoranthene	ND	ug/l	0.500	0.066	
Benzo(k)fluoranthene	ND	ug/l	0.500	0.161	
Benzo(a)pyrene	ND	ug/l	0.500	0.060	
Indeno(1,2,3-cd)pyrene	ND	ug/l	0.500	0.090	
Dibenz(a,h)anthracene	ND	ug/l	0.500	0.064	
Benzo(g,h,i)perylene	ND	ug/l	0.500	0.109	

Project Name: STEEL WINDS Lab Number: L2519135

Project Number: 03.0033579.18 **Report Date:** 04/14/25

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8270E Extraction Method: EPA 3510C
Analytical Date: 04/10/25 14:42 Extraction Date: 04/02/25 17:30

Analyst: DB

Parameter Result Qualifier Units RL MDL

Semivolatile Organics by GC/MS - Mansfield Lab for sample(s): 01-06 Batch: WG2048697-1

Surrogate	%Recovery	<i>,</i> Qualifier	Acceptance Criteria	
2-Fluorophenol	59		15-115	
Phenol-d5	37		15-115	
Nitrobenzene-d5	94		30-130	
2-Fluorobiphenyl	86		30-130	
2,4,6-Tribromophenol	118	Q	15-115	
Terphenyl-d14	97		30-130	

Project Name: STEEL WINDS
Project Number: 03.0033579.18

Lab Number:

L2519135

Report Date:

04/14/25

rameter	LCS %Recovery	LCSD Qual %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
mivolatile Organics by GC/MS - Mar	nsfield Lab Associat	ed sample(s): 01-06 B	atch: WG2048697-2 WG20	48697-3	
bis(2-Chloroethyl)ether	77	73	40-140	5	20
1,3-Dichlorobenzene	55	54	40-140	2	20
1,4-Dichlorobenzene	55	55	40-140	0	20
1,2-Dichlorobenzene	56	56	40-140	0	20
bis(2-chloroisopropyl)ether	75	77	40-140	3	20
Acetophenone	80	86	40-140	7	20
Hexachloroethane	51	50	10-97	2	20
Nitrobenzene	75	78	40-140	4	20
Isophorone	82	87	40-140	6	20
bis(2-Chloroethoxy)methane	82	85	40-140	4	20
1,2,4-Trichlorobenzene	58	58	40-140	0	20
Naphthalene	64	65	40-140	2	20
4-Chloroaniline	69	69	40-140	0	20
Hexachlorobutadiene	54	53	40-140	2	20
2-Methylnaphthalene	69	69	40-140	0	20
1,2,4,5-Tetrachlorobenzene	64	65	40-140	2	20
Hexachlorocyclopentadiene	53	49	10-109	8	20
Biphenyl	73	77	40-140	5	20
2-Chloronaphthalene	65	68	40-140	5	20
2-Nitroaniline	89	96	40-140	8	20
Acenaphthylene	78	81	40-140	4	20
Dimethylphthalate	80	83	40-140	4	20
2,6-Dinitrotoluene	93	100	40-140	7	20

Project Name: STEEL WINDS
Project Number: 03.0033579.18

Lab Number:

L2519135

Report Date:

04/14/25

arameter	LCS %Recovery	LCSD Qual %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Semivolatile Organics by GC/MS - Ma	ansfield Lab Associate	ed sample(s): 01-06 Ba	tch: WG2048697-2 WG204	48697-3	
Acenaphthene	75	80	40-140	6	20
3-Nitroaniline	86	88	40-140	2	20
Dibenzofuran	78	84	40-140	7	20
2,4-Dinitrotoluene	96	103	40-140	7	20
Fluorene	82	88	40-140	7	20
Diethylphthalate	86	93	40-140	8	20
4-Nitroaniline	95	99	40-140	4	20
n-Nitrosodiphenylamine	88	94	40-140	7	20
Hexachlorobenzene	86	89	40-140	3	20
Phenanthrene	86	89	40-140	3	20
Anthracene	85	89	40-140	5	20
Carbazole	90	96	40-140	6	20
Di-n-butylphthalate	96	100	40-140	4	20
Fluoranthene	98	101	40-140	3	20
Pyrene	87	93	40-140	7	20
Butylbenzylphthalate	97	100	40-140	3	20
3,3'-Dichlorobenzidine	83	76	40-140	9	20
Benz(a)anthracene	92	96	40-140	4	20
Chrysene	87	91	40-140	4	20
bis(2-Ethylhexyl)phthalate	96	101	40-140	5	20
Di-n-octylphthalate	99	102	40-140	3	20
Benzo(b)fluoranthene	89	95	40-140	7	20
Benzo(k)fluoranthene	87	98	40-140	12	20
* * *					

Project Name: STEEL WINDS
Project Number: 03.0033579.18

Lab Number:

L2519135

04/14/25

Report Date:

Parameter	LCS %Recovery			% Qual	Recovery Limits	RPD Qual		RPD Limits
Semivolatile Organics by GC/MS - Mansfie	eld Lab Associa	ated sample(s): 01-06 Bato	ch: WG20486	697-2 WG204	48697-3		
Benzo(a)pyrene	94		97		40-140	3		20
Indeno(1,2,3-cd)pyrene	96		97		40-140	1		20
Dibenz(a,h)anthracene	97		97		40-140	0		20
Benzo(g,h,i)perylene	95		96		40-140	1		20

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
2-Fluorophenol	56	51	15-115
Phenol-d5	35	34	15-115
Nitrobenzene-d5	77	81	30-130
2-Fluorobiphenyl	72	81	30-130
2,4,6-Tribromophenol	107	113	15-115
Terphenyl-d14	85	90	30-130

Project Name: STEEL WINDS
Project Number: 03.0033579.18

Lab Number: L2519135
Report Date: 04/14/25

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information

Cooler Custody Seal

A Absent B Absent

Container Information				Initial	Final	Temp			Frozen		
	Container ID	Container Type	Cooler pH F	рН		Pres	Seal	Date/Time	Analysis(*)		
	L2519135-01A	Vial HCl preserved	Α	NA		4.4	Υ	Absent		NYSTARS-8260-G(14)	
	L2519135-01B	Vial HCI preserved	Α	NA		4.4	Υ	Absent		NYSTARS-8260-G(14)	
	L2519135-01C	Vial HCI preserved	Α	NA		4.4	Υ	Absent		NYSTARS-8260-G(14)	
	L2519135-01D	Amber 1L unpreserved	Α	12	12	4.4	Υ	Absent		A2-SVOC-8270(7)	
	L2519135-01E	Amber 1L unpreserved	Α	12	12	4.4	Υ	Absent		A2-SVOC-8270(7)	
	L2519135-02A	Vial HCI preserved	В	NA		4.0	Υ	Absent		NYSTARS-8260-G(14)	
	L2519135-02B	Vial HCl preserved	В	NA		4.0	Υ	Absent		NYSTARS-8260-G(14)	
	L2519135-02C	Vial HCI preserved	В	NA		4.0	Υ	Absent		NYSTARS-8260-G(14)	
	L2519135-02D	Amber 1L unpreserved	В	12	12	4.0	Υ	Absent		A2-SVOC-8270(7)	
	L2519135-02E	Amber 1L unpreserved	В	12	12	4.0	Υ	Absent		A2-SVOC-8270(7)	
	L2519135-03A	Vial HCl preserved	В	NA		4.0	Υ	Absent		NYSTARS-8260-G(14)	
	L2519135-03B	Vial HCI preserved	В	NA		4.0	Υ	Absent		NYSTARS-8260-G(14)	
	L2519135-03C	Vial HCI preserved	В	NA		4.0	Υ	Absent		NYSTARS-8260-G(14)	
	L2519135-03D	Amber 1L unpreserved	В	12	12	4.0	Υ	Absent		A2-SVOC-8270(7)	
	L2519135-03E	Amber 1L unpreserved	В	12	12	4.0	Υ	Absent		A2-SVOC-8270(7)	
	L2519135-04A	Vial HCI preserved	В	NA		4.0	Υ	Absent		NYSTARS-8260-G(14)	
	L2519135-04B	Vial HCI preserved	В	NA		4.0	Υ	Absent		NYSTARS-8260-G(14)	
	L2519135-04C	Vial HCI preserved	В	NA		4.0	Υ	Absent		NYSTARS-8260-G(14)	
	L2519135-04D	Amber 1L unpreserved	В	12	12	4.0	Υ	Absent		A2-SVOC-8270(7)	
	L2519135-04E	Amber 1L unpreserved	В	12	12	4.0	Υ	Absent		A2-SVOC-8270(7)	
	L2519135-05A	Vial HCl preserved	В	NA		4.0	Υ	Absent		NYSTARS-8260-G(14)	
	L2519135-05B	Vial HCl preserved	В	NA		4.0	Υ	Absent		NYSTARS-8260-G(14)	

Lab Number: L2519135

Report Date: 04/14/25

Project Name: STEEL WINDS
Project Number: 03.0033579.18

Container Information			Initial	Final	Temp			Frozen		
(Container ID	Container Type	Cooler I	рН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L	_2519135-05C	Vial HCl preserved	В	NA		4.0	Υ	Absent		NYSTARS-8260-G(14)
L	_2519135-05D	Amber 1L unpreserved	В	12	12	4.0	Υ	Absent		A2-SVOC-8270(7)
L	_2519135-05E	Amber 1L unpreserved	В	12	12	4.0	Υ	Absent		A2-SVOC-8270(7)
L	_2519135-06A	Vial HCl preserved	Α	NA		4.4	Υ	Absent		NYSTARS-8260-G(14)
L	_2519135-06B	Vial HCl preserved	Α	NA		4.4	Υ	Absent		NYSTARS-8260-G(14)
L	_2519135-06C	Vial HCl preserved	Α	NA		4.4	Υ	Absent		NYSTARS-8260-G(14)
L	_2519135-06D	Amber 1L unpreserved	Α	12	12	4.4	Υ	Absent		A2-SVOC-8270(7)
L	_2519135-06E	Amber 1L unpreserved	Α	12	12	4.4	Υ	Absent		A2-SVOC-8270(7)
L	_2519135-07A	Vial HCl preserved	В	NA		4.0	Υ	Absent		NYSTARS-8260-G(14)
L	_2519135-07B	Vial HCl preserved	В	NA		4.0	Υ	Absent		NYSTARS-8260-G(14)

Project Name: Lab Number: STEEL WINDS L2519135 03.0033579.18 **Report Date: Project Number:** 04/14/25

GLOSSARY

Acronyms

LOQ

MS

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments

from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case

estimate of the concentration. **EPA** Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LOD - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

MDI - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

> - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

NR - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile

Organic TIC only requests.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEO - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF

and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: DU Report with 'J' Qualifiers

Project Name:STEEL WINDSLab Number:L2519135Project Number:03.0033579.18Report Date:04/14/25

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Chlordane: The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA,this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'. Gasoline Range Organics (GRO): Gasoline Range Organics (GRO) results include all chromatographic peaks eluting from Methyl tert butyl ether through Naphthalene, with the exception of GRO analysis in support of State of Ohio programs, which includes all chromatographic

peaks eluting from Hexane through Dodecane.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benz(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a "Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A -Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit
 (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively

Report Format: DU Report with 'J' Qualifiers

Project Name:STEEL WINDSLab Number:L2519135Project Number:03.0033579.18Report Date:04/14/25

Data Qualifiers

Identified Compounds (TICs). For calculated parameters, this represents that one or more values used in the calculation were estimated.

- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.
- **NJ** Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- V The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- Z The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)

Report Format: DU Report with 'J' Qualifiers

Project Name:STEEL WINDSLab Number:L2519135Project Number:03.0033579.18Report Date:04/14/25

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - VI, 2018.

LIMITATION OF LIABILITIES

Pace Analytical Services performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Pace Analytical Services shall be to re-perform the work at it's own expense. In no event shall Pace Analytical Services be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Pace Analytical Services.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Pace Analytical Services LLC

Facility: Northeast

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:**17873** Revision 27

Published Date: 01/24/2025

Page 1 of 2

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility - 8 Walkup Dr. Westborough, MA 01581

EPA 624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625.1: alpha-Terpineol

EPA 8260D: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene; SCM: lodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene. **EPA 8270E:** NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol, Azobenzene; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility - 320 Forbes Blvd. Mansfield, MA 02048

SM 2540D: TSS.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

MADEP-APH.

Nonpotable Water: EPA RSK-175 Dissolved Gases

Biological Tissue Matrix: EPA 3050B

Mansfield Facility - 120 Forbes Blvd. Mansfield, MA 02048

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Nonpotable Water: EPA RSK-175 Dissolved Gases

The following test method is not included in our New Jersey Secondary NELAP Scope of Accreditation:

Mansfield Facility - 320 Forbes Blvd. Mansfield, MA 02048

Determination of Selected Perfluorinated Alkyl Substances by Solid Phase Extraction and Liquid Chromatography/Tandem Mass Spectrometry Isotope Dilution (via Alpha SOP 23528)

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility - 8 Walkup Dr. Westborough, MA 01581

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

 ${\sf EPA~180.1, SM2130B, SM4500Cl-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B}$

EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT, SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables)

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility - 320 Forbes Blvd. Mansfield, MA 02048

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg.

SM2340B

Document Type: Form Pre-Qualtrax Document ID: 08-113

Pace Analytical Services LLC

Facility: Northeast

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:**17873** Revision 27

Published Date: 01/24/2025

Page 2 of 2

Certification IDs:

Westborough Facility - 8 Walkup Dr. Westborough, MA 01581

CT PH-0826, IL 200077, IN C-MA-03, KY JY98045, ME MA00086, MD 348, MA M-MA086, NH 2064, NJ MA935, NY 11148, NC (DW) 25700, NC (NPW/SCM) 666, OR MA-1316, PA 68-03671, RI LAO00065, TX T104704476, VT VT-0935, VA 460195

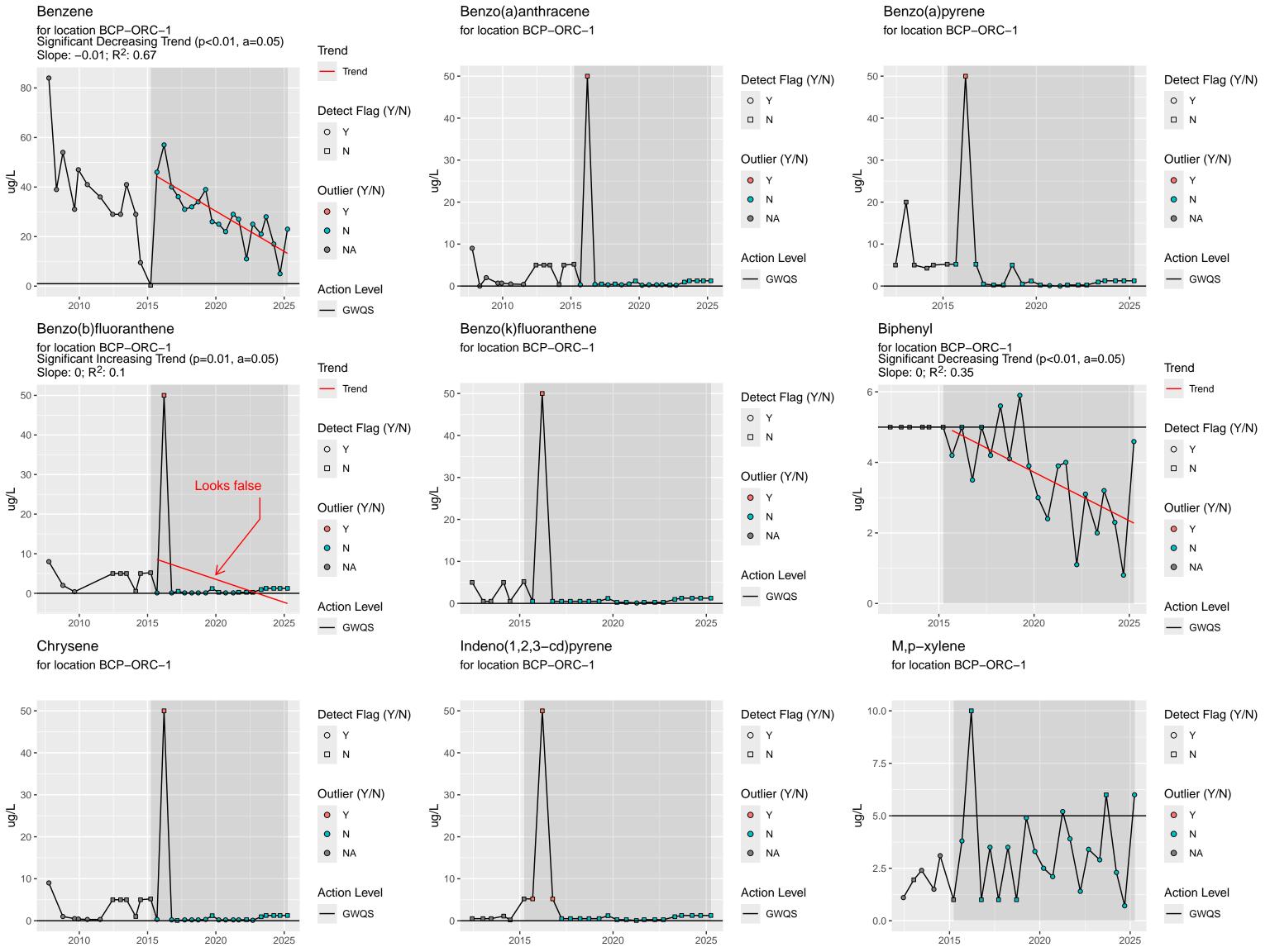
Mansfield Facility - 320 Forbes Blvd. Mansfield, MA 02048

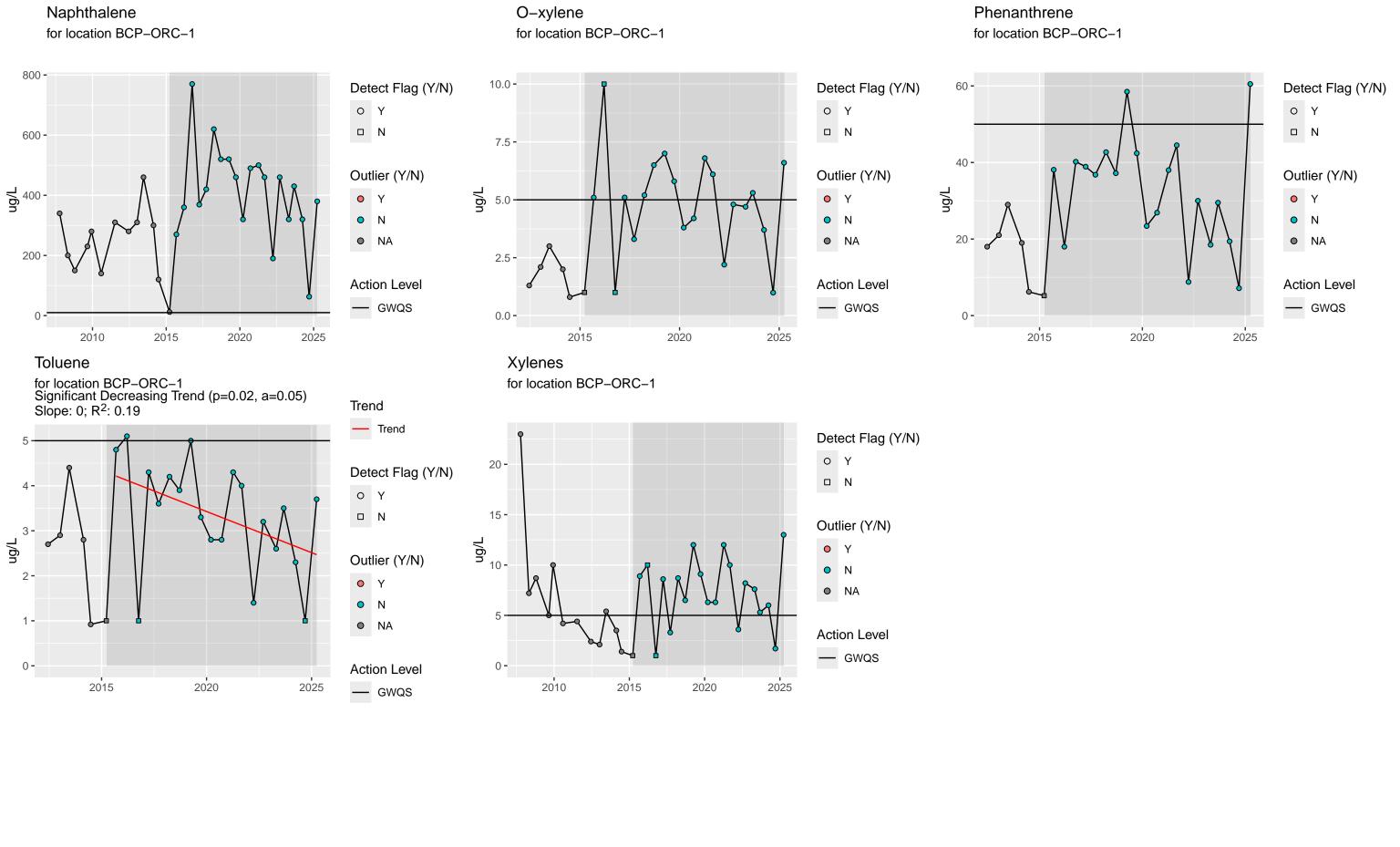
CT PH-0825, ANAB/DoD L2474, IL 200081, IN C-MA-04, KY KY98046, LA 3090, ME MA00030, MI 9110, MN 025-999-495, NH 2062, NJ MA015, NY 11627, NC (NPW/SCM) 685, OR MA-0262, PA 68-02089, RI LAO00299, TX T-104704419, VT VT-0015, VA 460194, WA C954

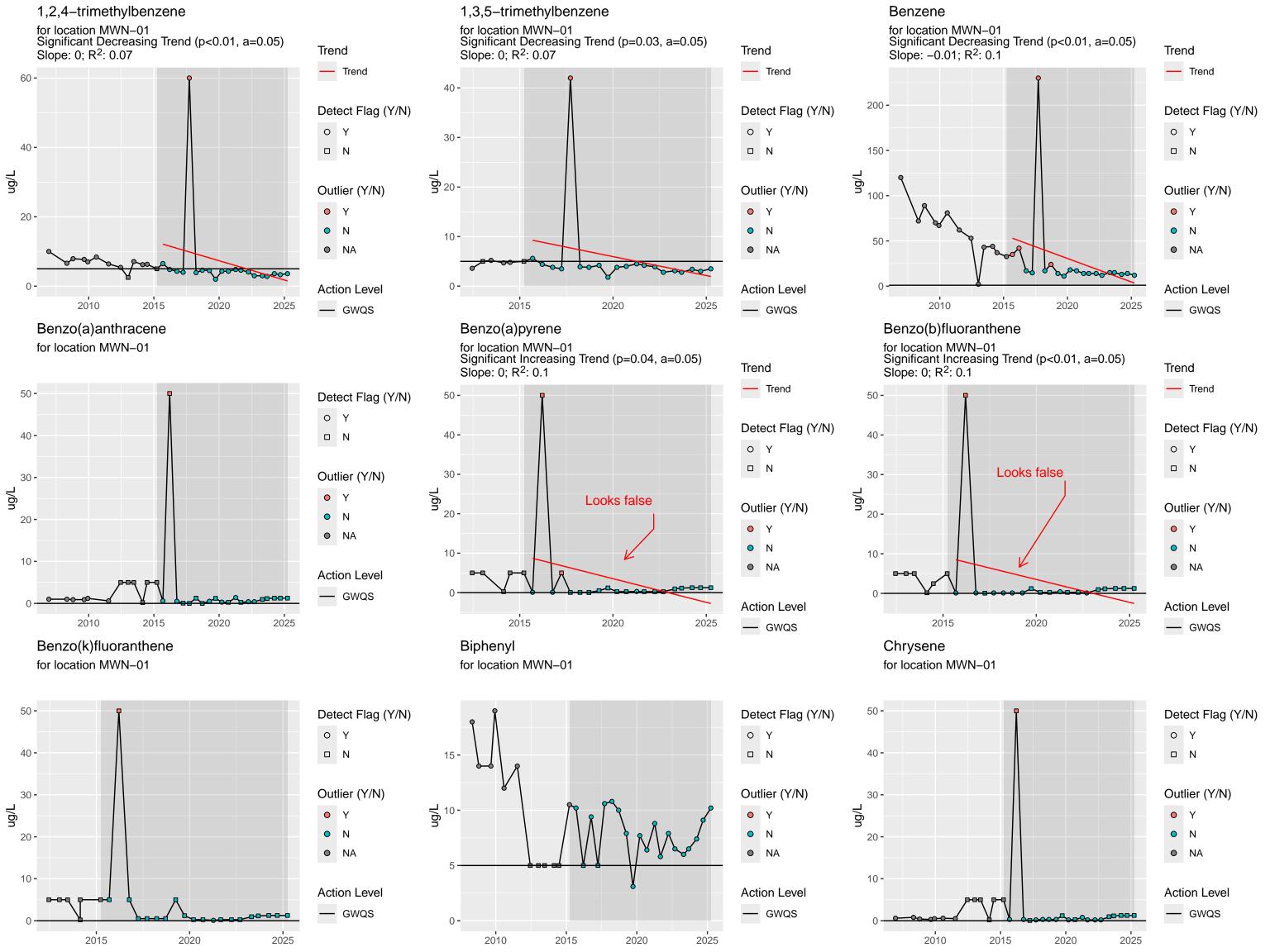
Mansfield Facility - 120 Forbes Blvd. Mansfield, MA 02048

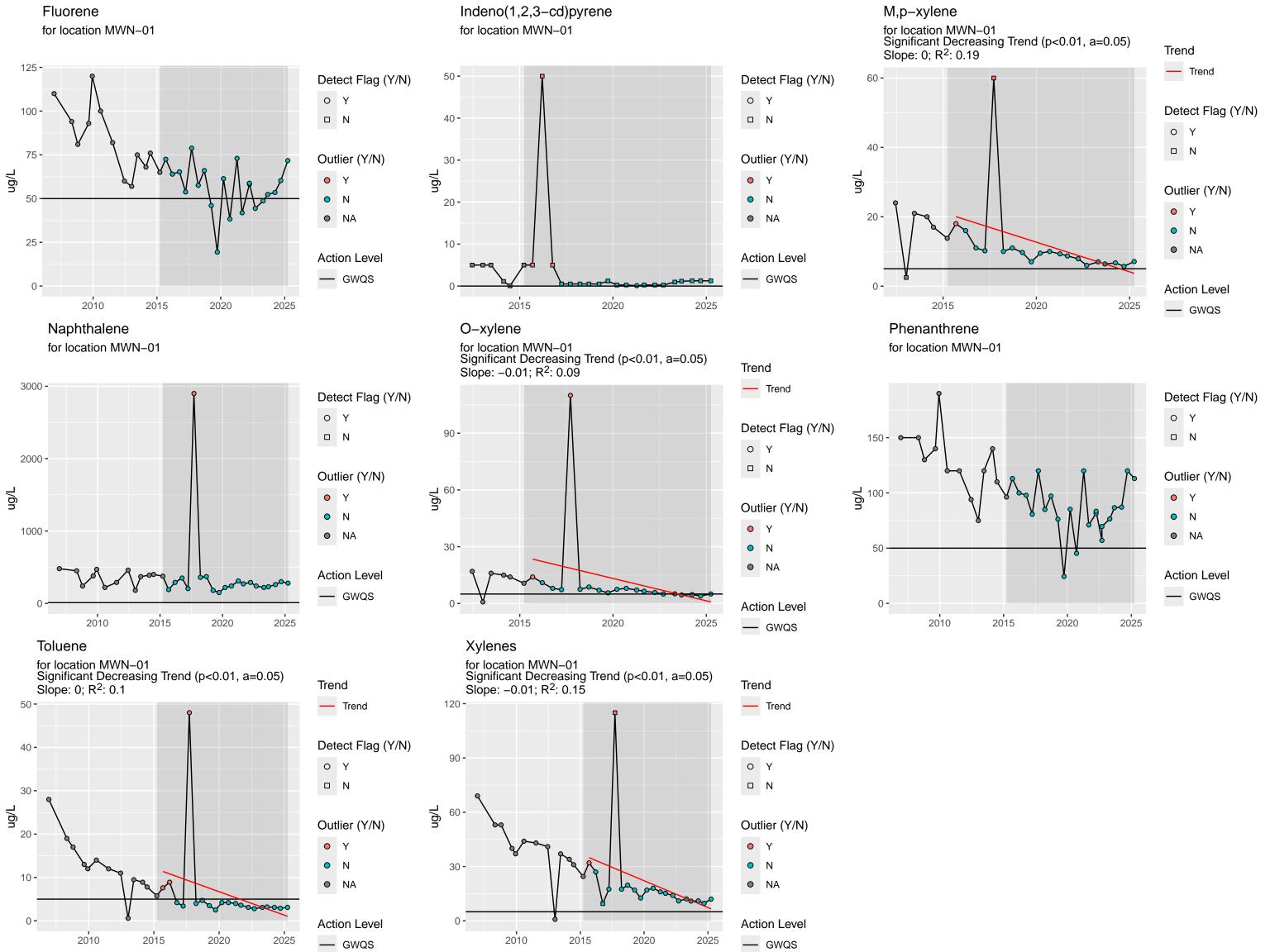
ANAB/DoD L2474, ME MA01156, MN 025-999-498, NH 2249, NJ MA025, NY 12191, OR 4203, TX T104704583, VA 460311, WA C1104.

For a complete listing of analytes and methods, please contact your Project Manager.

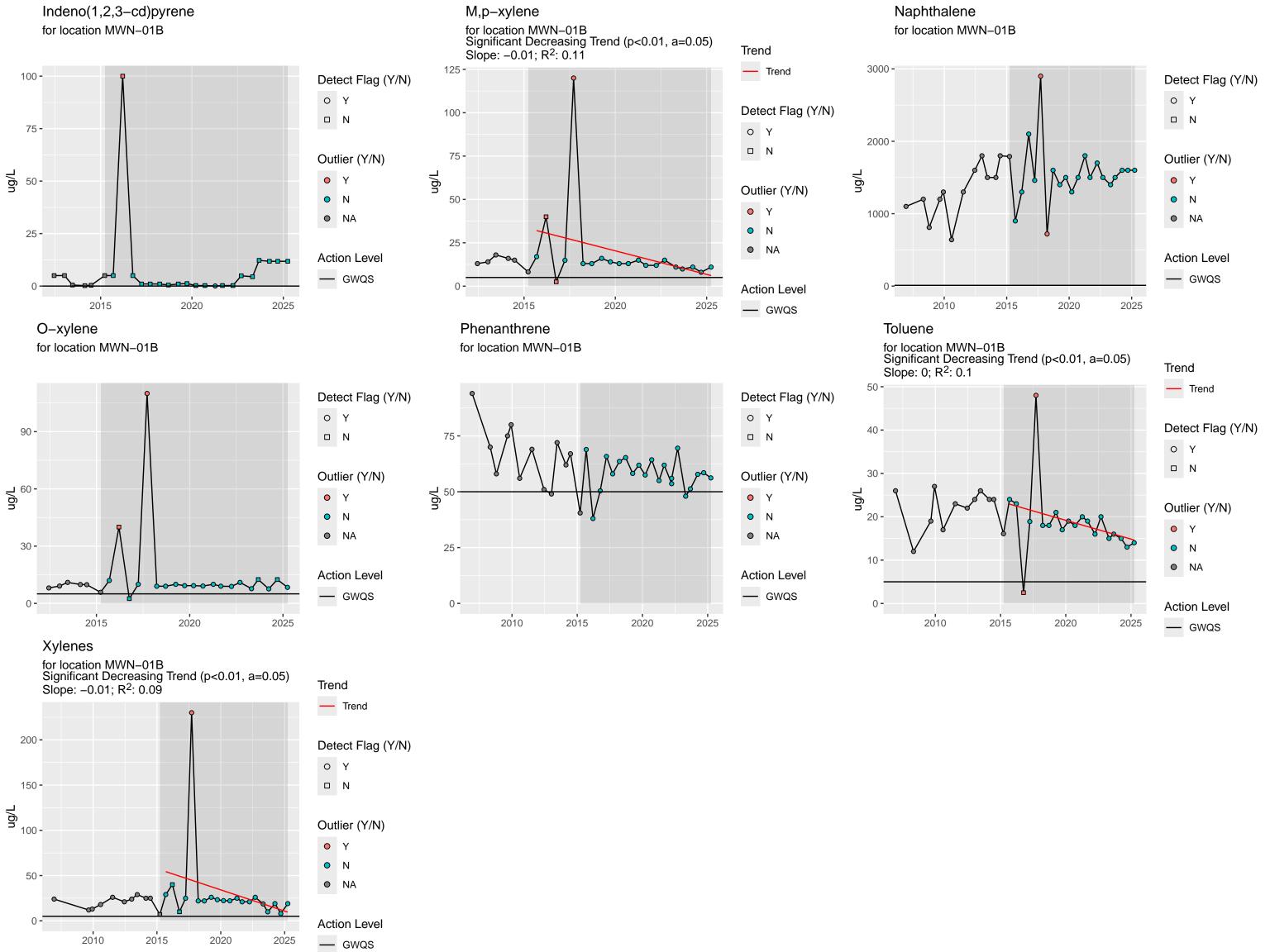

Document Type: Form

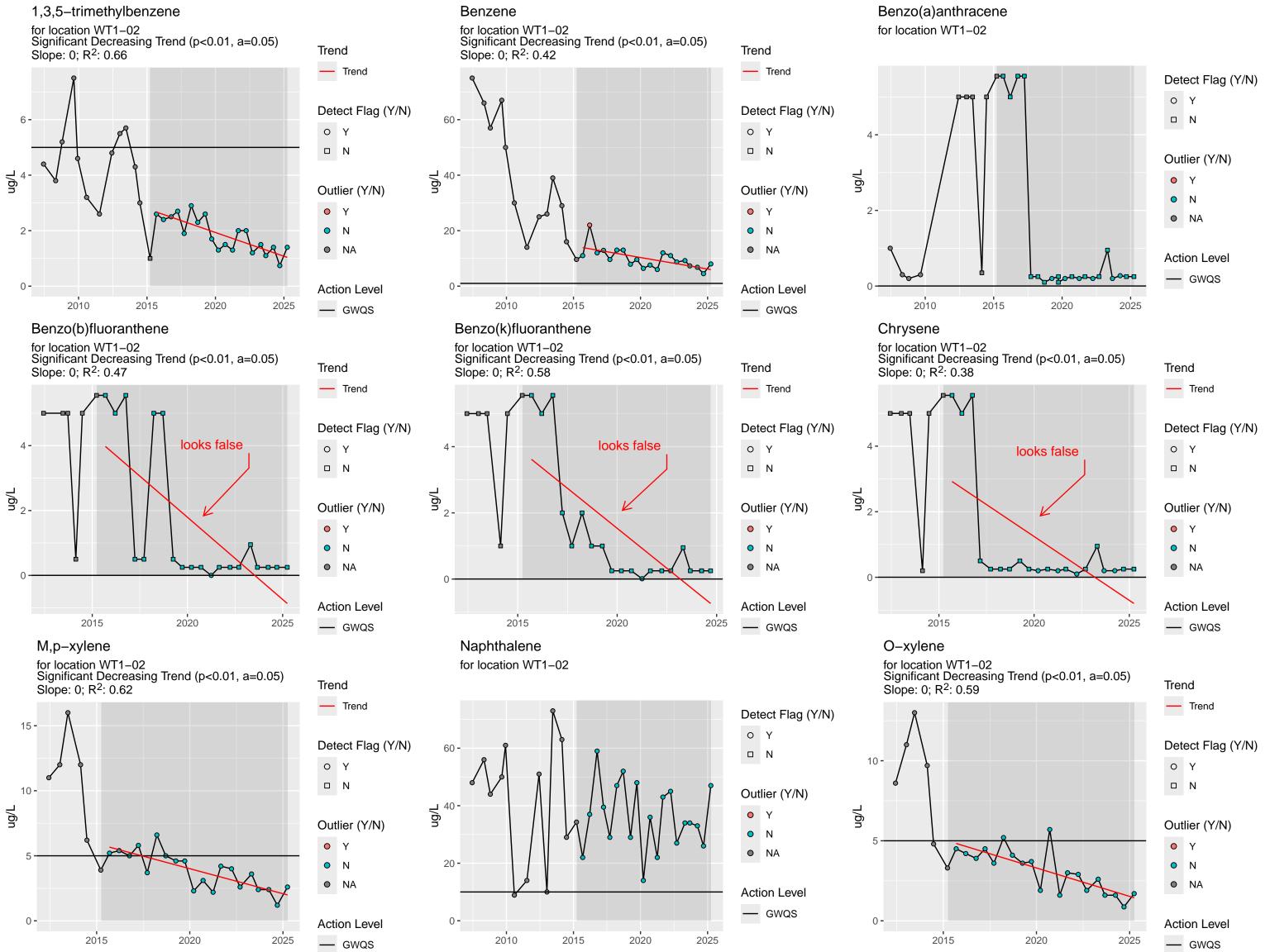

Pre-Qualtrax Document ID: 08-113

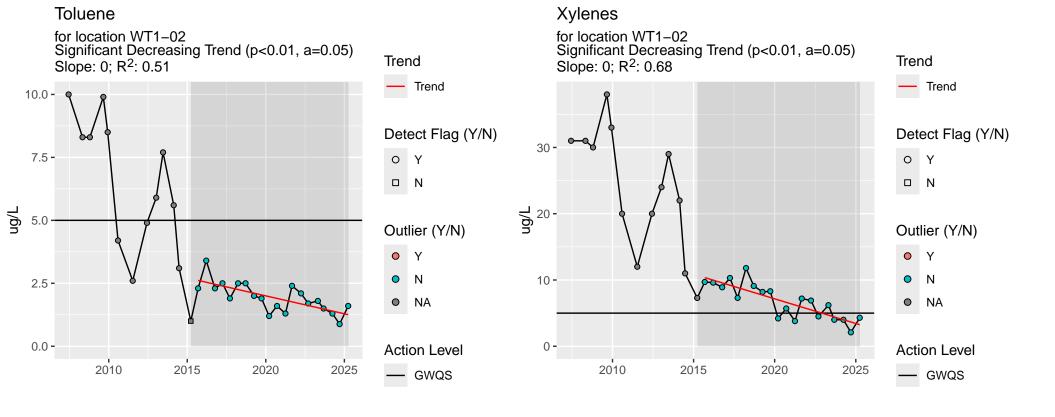

		5 5 6	A								Seri	al_No:04142519:07	
ll-	NEW YORK	Service Centers Mahwah, NJ 07430: 35 Whitner			Page	1	1 2	W/100 N	9000	1000	TDC		
ΔLPHA	CHAIN OF	Albany, NY 12205: 14 Walker Way				1	100	Date Rec'	'd 0	100			
ATTENDED	CUSTODY	Tonawanda, NY 14150: 275 Co	oper Ave, Suite 1	05				III Lab	410	123		AHAHA	
Westborough, MA 01581 8 Walkup Dr.	Mansfield, MA 02048 320 Forbes Blvd	Project Information					Deliv	erables					
TEL: 508-898-9220 FAX: 508-898-9193	TEL: 508-822-9300 FAX: 508-822-3288	Project Name: STEE	L WIT	SQU				ASP-A		ASP.	ь	Same as Client Into	
	1751, 505 022 0200	Project Location: / A	KAWAN	WA , NY	1			EQuIS (1 I	File)	X EQui	S (4 File)	PO#	
Client Information		Project # 03.00	33579	1.18				Other					
Client: 300 G7		(Use Project name as P					Regu	ilatory Requ	uiremen		-	Disposal Site Information	
Address: 300 R	act St. Suk 10	Project Manager: Da	niel I	roy				NY TOGS		NY Pa	art 375	Please identify below location of	
	JY 14202	ALPHAQuote #:		,				AWQ Standa	ards	NY C	P-51	applicable disposal facilities.	
Phone: 7/6 - 517	-5708	Turn-Around Time						NY Restricte	ed Use	Other		Disposal Facility:	******
Fax:		Standard		Due Date	4			NY Unrestric	cted Use			□ NJ □ NY	
Email: Dunich Tre	by @gza.com	Rush (only if pre approved	1)	# of Days				NYC Sewer	Discharg	e		Other:	
These samples have b							ANA	LYSIS		- nv - v		Sample Filtration	T
Other project specific	requirements/comn	nents:					10		\Box			Done	0
				7.			ي و					Lab to do	В
							F		1 1			Preservation	
Please specify Metals	or TAL.						(0)		1 1			Lab to do	В
				- too			0	O				(Please Specify below)	0
ALPHA Lab ID	Sa	ample ID	Colle	ection	Sample	Sampler's	37	2					t
(Lab Use Only)	-	anipro no	Date	Time	Matrix	Initials	80	8				Sample Specific Comments	e
14135-01		-033125	3/31/25	1145	GW	MR	×	×					
-02		-033125		1300	1	1	×	×					
704	BCP-ORC-	1-033125		1415			1	X					
-03	MWN-01B			1500			X	X					Г
706	MWN -01 -	033125		1545			X	×					
07	WT1-05-	033125		16 30			×	X					
80-	TRIP BLAN	1K	T	_	T	T	X						
		Annual Contract of the Contrac											
		TATPELIA) Sel	STY										
		wirtig Ban											
Preservative Code: A = None	Container Code P = Plastic	Westboro: Certification N	lo: MA935					Δ				Please print clearly, legibly	
B = HCI	A = Amber Glass	Mansfield: Certification N	lo: MA015		Con	tainer Type	V	A				and completely. Samples	
$C = HNO_3$ $D = H_2SO_4$	V = Vial G = Glass						0					not be logged in and	
E = NaOH	B = Bacteria Cup				P	reservative	B	A				turnaround time clock will a start until any ambiguities	
F = MeOH	C = Cube O = Other	Relinquished	By:	Date/	Time		Receiv	ved By:	\vdash	Date	/Time	resolved, BY EXECUTING	
$G = NaHSO_4$ $H = Na_2S_2O_3$	E = Encore	Many		3/31/25	1800	Olan	_	Stee	\neg	3/31/2		THIS COC, THE CLIENT HAS READ AND AGREES	
K/E = Zn Ac/NaOH	D = BOD Bottle	Out PACE	2	3/31/25		BUF	_	ic .		3/31/20	The second secon		
O = Other		Rendl B. B.		4-1-25	5140	100	>		7	al a ci a	1,000	TO BE BOUND BY ALPHA TERMS & CONDITIONS.	13
Form No: 01-25 HC (rev. 30	0-Sept-2013)	1		4/2/25	0130	1	1			4/20	0130	(See reverse side.)	

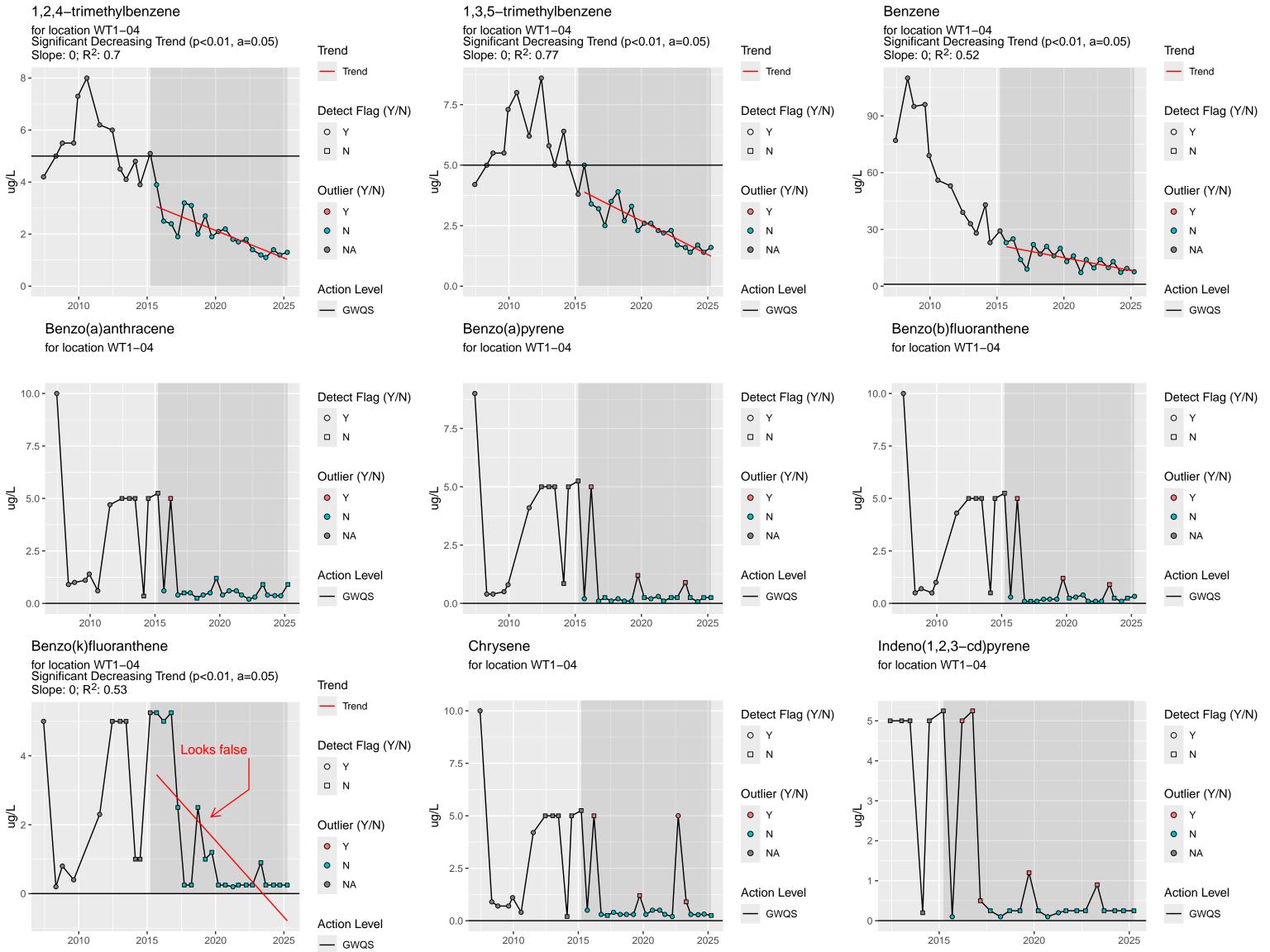


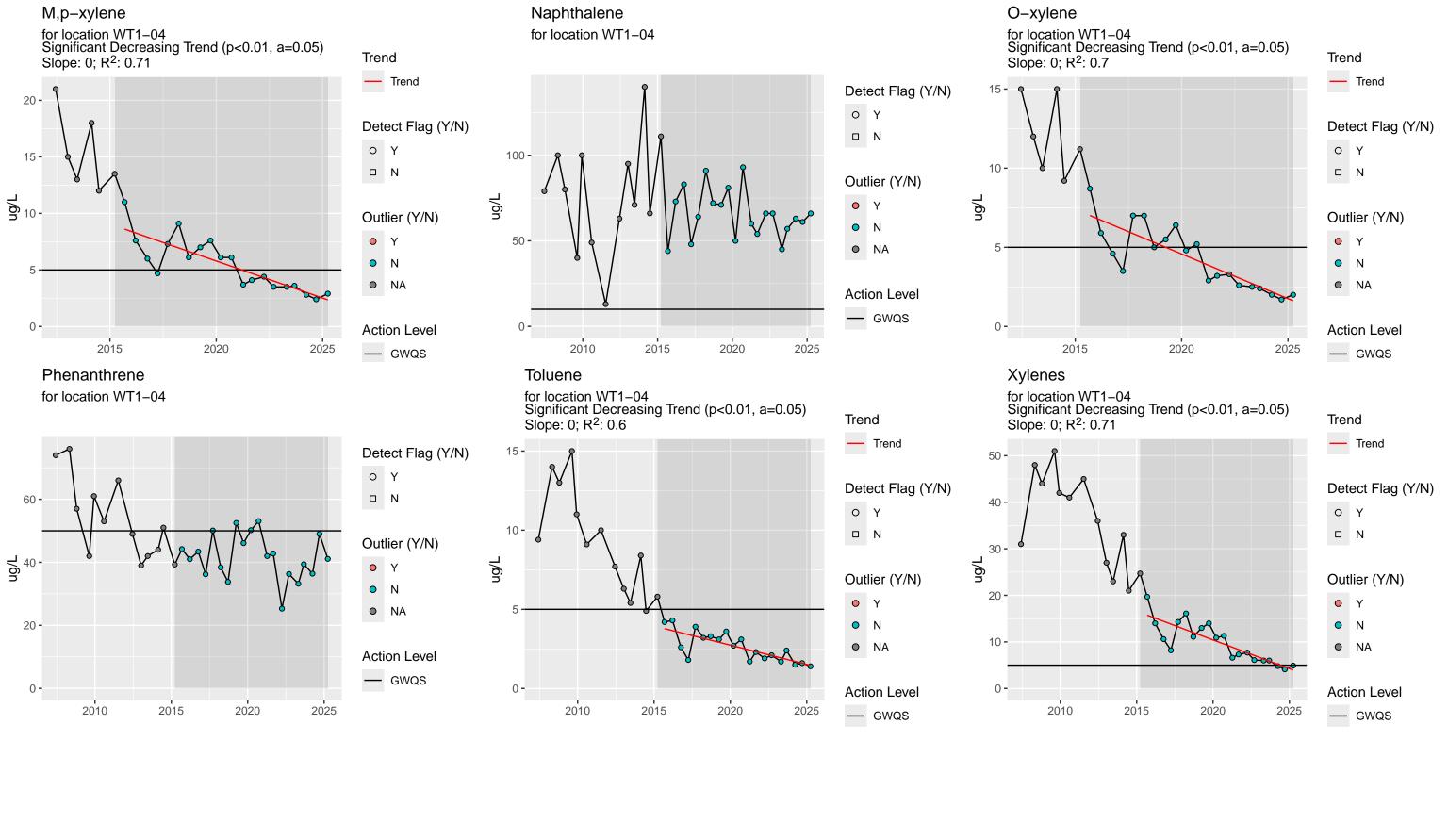
APPENDIX C TIME SERIES PLOTS

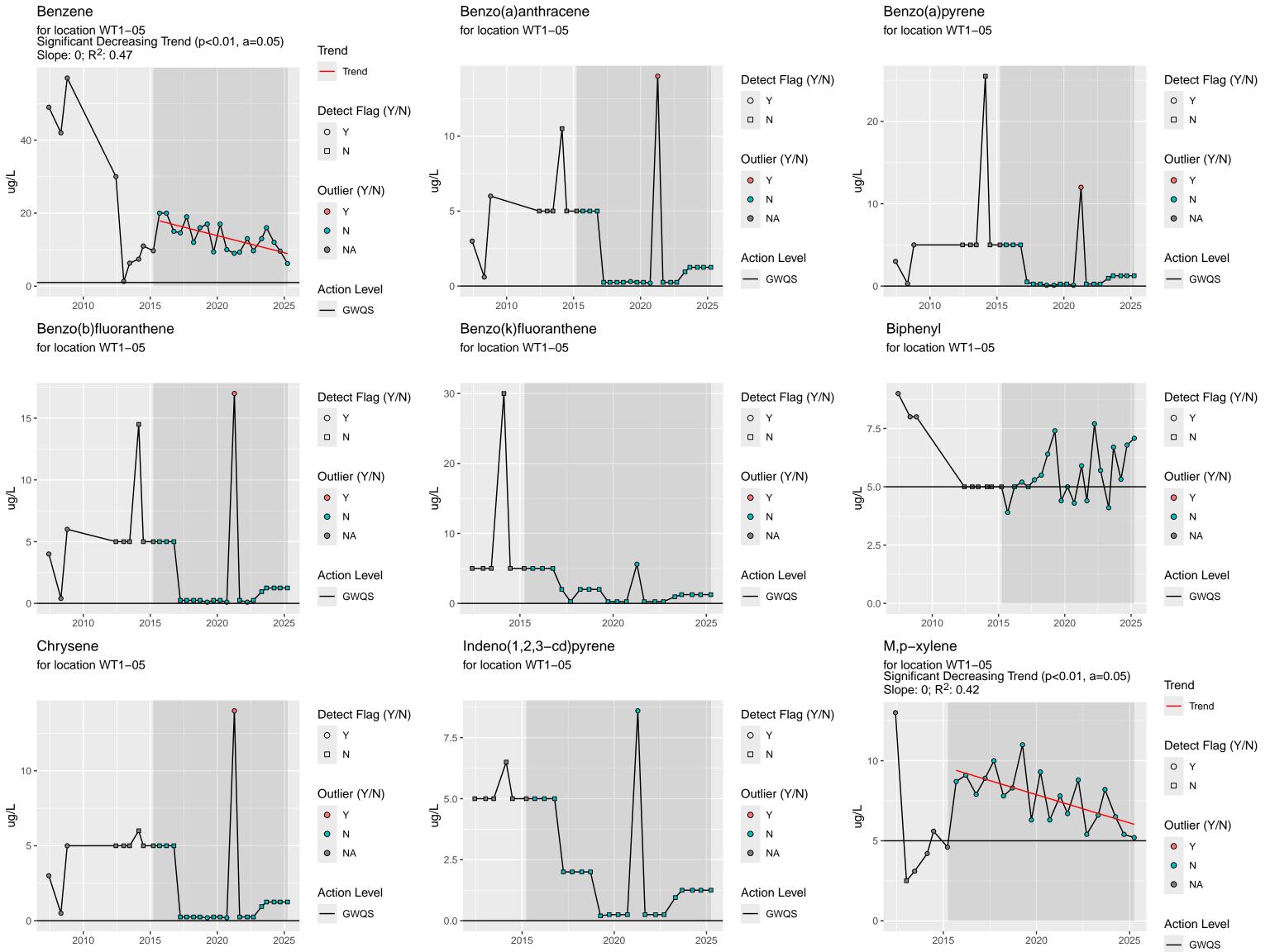


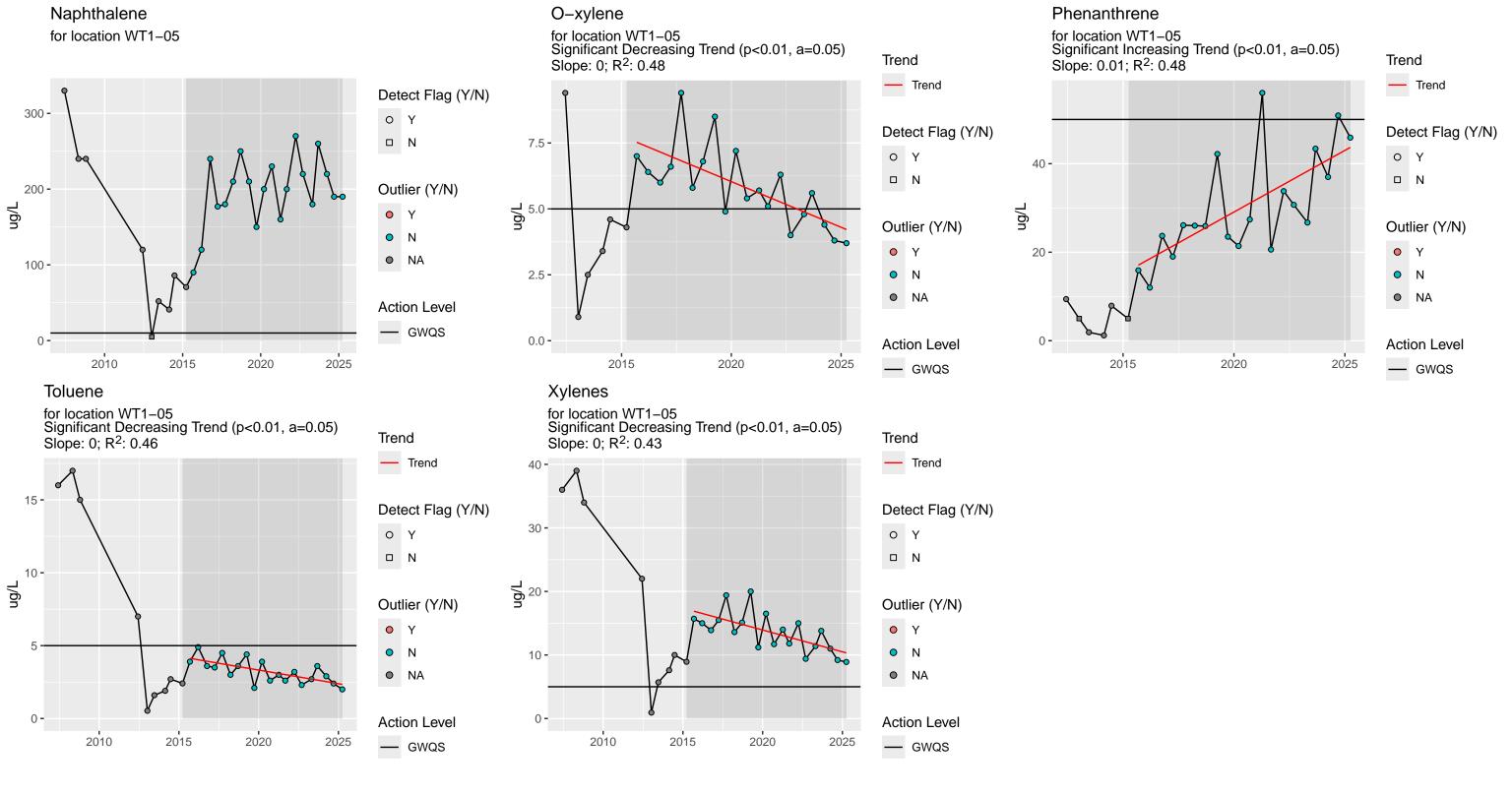







1,2,4-trimethylbenzene 1,3,5-trimethylbenzene Benzene for location MWN-01B Significant Decreasing Trend (p<0.01, a=0.05) Slope: -0.02; R²: 0.24 for location MWN-01B for location MWN-01B **Trend** — Trend 40 -Detect Flag (Y/N) Detect Flag (Y/N) 0 Y 0 Y 200 Detect Flag (Y/N) □ N □ N 30 -30 -0 Y 150 □ N Outlier (Y/N) Outlier (Y/N) 7/gn -7/gn Y Y Outlier (Y/N) N N Y NA NA N 10 -50 -NA **Action Level Action Level** — GWQS — GWQS 0 -Action Level 2015 2025 2010 2020 2025 2015 2020 2010 2015 2020 2025 - GWQS Benzo(a)pyrene Benzo(b)fluoranthene Benzo(a)anthracene for location MWN-01B for location MWN-01B for location MWN-01B 100 -100 -100 -Detect Flag (Y/N) Detect Flag (Y/N) Detect Flag (Y/N) 0 Y 0 Y 0 Y □ N □ N □ N 75 -75 -75 -Outlier (Y/N) Outlier (Y/N) Outlier (Y/N) 7/gn 7/gn Y Y Y NA NA 25 -25 -25 -**Action Level Action Level Action Level** — GWQS — GWQS — GWQS 2015 2010 2010 2010 2020 2015 2015 2025 2020 2025 2020 2025 Benzo(k)fluoranthene Biphenyl Chrysene for location MWN-01B for location MWN-01B for location MWN-01B 12.5 **-**100 -100 Detect Flag (Y/N) Detect Flag (Y/N) Detect Flag (Y/N) 0 Y 0 Y 0 Y 10.0 -□ N □ N □ N 75 -75 -Outlier (Y/N) Outlier (Y/N) Outlier (Y/N) 7/bn Y Y Y N 0 N N 5.0 NA NA NA 25 -25 -2.5 -**Action Level Action Level Action Level** — GWQS — GWQS — GWQS 0.0 -2020 2010 2015 2020 2025 2015 2025 2010 2015 2020 2025





APPENDIX D WELL DEVELOPMENT FORMS

						Historic Inf	ormation				
Boring Log A	Available (y	/es /no/attac	ched):								
nstallation L	₋og Availal	ole (yes /no/a	attached)								
			Í			Summ	nary				
Monitoring V	Vell :	MWN-01		Ground Su	rface Elevation			Riser/Sc	reen Materi	al: PVC	
Installation [8/30/90			Casing Elevation			Top of S	creen Depth	n:	9.15
nstalled By:	i i	Turnkey		•	Point Elevation				of Screen De		19.15
•				Elevation D	Datum:						
Previous Fie	eld measur	ement Infor	mation Availa	ole (yes/ no /	attached)						
					Р	revious Field N	/leasureme	nts			
Depth to	Water		рН	Specific	Conductance	Tempera	ature	Tu	rbidity		Color
(ft			ard Units)		hos/cm)	O°C)			NTU)		
15.1		,	1.94	`	.237	11.1		`	0.50		Clear
Notes:	· ·				·	1	=	· `		!	
10100.											
			Fi	eld Observa	tions				Param	eters +/-	Sampling Information
Exterior Obs	ervations:	Good	1 10	old Objective	tion io				рН	+/- 0.1	Sample ID: MWN-01-033125
-Atorioi Obs	oci valionis.	<u> </u>							Conductivi		Sample Time: 15:45
nterior Obse	ervations	Good								re +/- 10%	# of Sample Containers: 5
	or valiono								Turbidity	+/- 10%	Duplicate Sample ID: None
									ORP		Sample Analysis: VOCs STARS 8260
Signs of Dar	mage/Tam	pering:								+/- 10%	SVOCs 8270 BN
Locked (ap (yes /no)	Surfa	ace Seal Intact	(yes/no)	PID Meas	urement:	0.0 ppm	Odors:	None
``			,			Well Qual				•	
Date	Time	Depth to	Cumulative	рН	Specific	Temperature	Turbidity	Color	Dissolved	Oxygen	Notes
		Water	Volume	(Standard	Conductance	(°C)	(NTU)		Oxygen	Reduction	
		ft BTOC	Purged	Units)	(mS/cm)					Potential	
3/31/2025	15:15	16.14	0 gal	11.74	1.687	10.2	3	clear	1.43	-161.2	Depth of Water: 16.14
	15:25	16.09	4 gal	11.79	1.701	10.2	5.5	clear	0.85	-233.4	Length of Water Column: 3.01
	15:35	16.08	5.5 gal	11.79	1.704	10.2	6.1	clear	0.77	-271.2	Depth of Well: 19.15
	15:40	16.09	7 gal	11.79	1.701	10.2	6.1	clear	0.8	-264.3	Sheen Observed: Y N
											DNAPL Observed: Y N
							ļ				Did Well Go Dry: Y N
											Other: One well volume = 2 gallons
							ļ				
			1-								Dage: 4

						Historic Inf	ormation				
Boring Log A	vailable (v	es/no/attac	hed).			Thotono Inii	o.madon				
Installation L	1.5		,								
motanation E	og / tvallak	710 (y c 3 /110/6	attaorica)			Summ	narv				
Monitoring W	Summary toring Well: MWN-01B Ground Surface Elevation 583.79 Riser/Screen Material: PVC										
Installation D		11/2/92		r	Casing Elevation			_	creen Depth		
Installed By:	ato.	Turnkey			Point Elevation				of Screen De		4
motanoa by:		Turrinoy		Elevation D		. 007.00		_ Bottom c	7 0010011 00	ptii. 02.2	
Previous Fiel	ld measur	ement Infori	mation Availal								
				() 00/110/	,	s of Previous F	ield Measu	rements			
Depth to	Water		pН	Specific (Conductance	Tempera			rbidity		Color
(ft)			ard Units)	•	hos/cm)	(°C			NTU)		30101
16.0		`	1.46	,).791	11.0			2.70		Clear
	'	<u>'</u>	110		7.131	11.0	,		2.10	<u> </u>	Oleai
Notes:											
			Ei/	eld Observa	tions				Param	eters +/-	Sampling Information
Exterior Obs	orvations:	Good	F-16	eiu Obseiva	110115				pH	+/- 0.1	Sample ID: MWN-01B-033125
Exterior Obse	ervalions.	Good							Conductivi		Sample Time: 15:00
nterior Obse	rvations	Good								# of Sample Containers: 5	
interior Obse	i valions	<u> </u>						Turbidity		Duplicate Sample ID: None	
									ORP		Sample Analysis: VOCs STARS 8260,
Signs of Dan	nage/Tam	pering:	None						DO	+/- 10%	SVOCs 8270 BN
Locked (y			p (yes /no)							Odors: Non	
	,		1 (3)			Well Qual					
Date	Time	Depth to	Cumulative	рН	Specific	Temperature	Turbidity	Color	Dissolved	Oxygen	Notes
		Water	Volume	(Standard	Conductance	(°C)	(NTU)		Oxygen	Reduction	
		ft BTOC	Purged	Units)	(mS/cm)	,				Potential	
3/31/2025	14:35	17.5	0 gal	11.17	0.860	9.7	1.9	clear	1.3	-191.9	Depth of Water: 16.90
	14:40	18.8	2 gal	11.27	0.949	9.9	5.4	clear	0.9	-261.7	Length of Water Column: 15.34
	14:45	17.2	3 gal	11.30	0.966	9.8	5.3	clear	0.82	-286.1	Depth of Well: 32.24
	14:55	17.2	5 gal	11.32	0.979	9.8	5.0	clear	0.77	-318.7	Sheen Observed: Y N
	15:00	17.15	5.5 gal	11.33	0.987	9.8	5.4	clear	0.78	-265.4	DNAPL Observed: Y N
											Did Well Go Dry: Y N
									ļ		Other: One well volume = 2.5 gallons

						Historic Inf	ormation						
Boring Log A	vailable (v	/ps /no/attac	hed).			Thistoric init	Ullialion						
Installation Log	1.5		,										
IIIStaliation Lt	og Avallat	ne (yes /110/	allacrieu)			Cumm	On.						
N / = := :+ = ::- =: \	Summary Yell: WT1-02 Ground Surface Elevation 598.5 Riser/Screen Material: PVC												
Monitoring W													
Installation D	ate:	6/11/07			Casing Elevation				creen Depth				
Installed By:	talled By: Turnkey Monitoring Point Elevation: 600.78 Bottom of Screen Depth: 37.78 Elevation Datum:												
D : E: I			A										
Previous Fiel	d measur	ement Infori	mation Availal	ole (yes/ no /									
		•				s of Previous F				•			
Depth to	Water		рН	•	Conductance	Tempera			rbidity		Color		
(ft)		(Standa	ard Units)		hos/cm)	(°C)	(1)	NTU)				
27.6	<u></u>	1:	2.17	1	.774	12.2	<u></u>		1.7				
Notes:		,				-		.		.			
			Fie	eld Observa	tions				Param	eters +/-	Sampling Information		
Exterior Obse	ervations:	Good							рН	+/- 0.1	Sample ID: WT1-02-033125		
									Conductivi	ty +/- 3%	Sample Time: 11:45		
nterior Obse	rvations	Good								re +/- 10%	# of Sample Containers: 5		
									Turbidity	+/- 10%	Duplicate Sample ID: None		
									ORP	+/- 10mV	Sample Analysis: VOCs STARS 8260,		
Signs of Dam	nage/Tam	pering:	None						DO	+/- 10%	SVOCs 8270 BN		
Locked (y	es/ no)	Well Ca	p (yes /no)	Surfa	ace Seal Intact	(yes/no)	PID Meas	urement:	0.0 ppm	Odors:	None		
						Well Qual	ity Data						
,													
Date	Time	Depth to	Cumulative	рН	Specific	Temperature	Turbidity	Color	Dissolved	Oxygen	Notes		
		Water	Volume	(Standard	Conductance	(°C)	(NTU)		Oxygen	Reduction			
		ft BTOC	Purged	Units)	(mS/cm)	, ,				Potential			
3/31/2025	11:00	29.94	4.5 gal	11.89	1.992	11.9	5.4	clear	0.9	-202.1	Depth of Water: 30.73		
	11:20	29.78	6 gal	11.92	1.997	11.9	5.6	clear	0.85	-222.5	Length of Water Column: 7.05		
	11:30	29.6	8 gal	11.93	1.987	12.0	5.8	clear	0.88	-223.0	Depth of Well: 37.78		
	11:40	29.55	10 gal	11.94	1.99	12.0	5.9	clear	0.88	-224.7	Sheen Observed: Y N		
											DNAPL Observed: Y N		
											Did Well Go Dry: Y N		
											Other: One well volume = 4.6 gallons		

						Historic Inf	ormation						
Boring Log A	vailable (y	/es /no/attac	:hed):										
nstallation L	og Availab	ole (yes /no/a	attached)										
		.,,	,			Summ	nary						
Monitoring W	/ell :	WT1-04		Ground Su	rface Elevation			Riser/Sci	reen Materia	al: PVC			
Installation D		5/21/07			Casing Elevation			-	creen Depth				
Installed By:		Turnkey			Point Elevation				•	epth: 25.52			
•				Elevation D				•					
Previous Fiel	d measur	ement Infori	mation Availal	ole (yes/ no /	attached)								
					Range	s of Previous F	ield Measu	rements					
Depth to	Depth to Water pH Specific Conductance Temperature Turbidity Color												
(ft)			ard Units)		hos/cm)	O°C)			NTU)				
12.9		`	2.05	`	.302	10.0		`	1.34		Clear		
Notes:						1							
13100.													
			Fie	eld Observa	tions				Param	eters +/-	Sampling Information		
Exterior Obse	ervations:	Good							рН	+/- 0.1	Sample ID: WT1-04-033125		
									Conductivi		Sample Time: 13:00		
nterior Obse	rvations	Good							•	# of Sample Containers: 5			
									Turbidity		Duplicate Sample ID: None		
										+/- 10mV	Sample Analysis: VOCs STARS 8260		
Signs of Dam	nage/Tam	pering:	None						DO	+/- 10%	SVOCs 8270 BN		
Locked (y	res/ no)	Well Ca	np (yes /no)	Surfa	ace Seal Intact	(yes/no)	PID Meas	urement: (0.0 ppm	Odors: Non	ne		
						Well Qual	ity Data						
_										_			
Date	Time	Depth to	Cumulative	рН	Specific	Temperature	,	Color	Dissolved	Oxygen	Notes		
		Water	Volume	(Standard		(°C)	(NTU)		Oxygen	Reduction			
		ft BTOC	Purged	Units)	(mS/cm)					Potential			
3/31/2025	12:25	14.31		11.98	1.765	9.5	360.2	Greyish	1.22	-179.2	Depth of Water: 14.31		
	12:35	14.36	2 gal	11.99	1.739	8.0	44.7	clear	0.98	-218	Length of Water Column: 11.21		
	12:40	14.45	3.25 gal	11.9	1.668	8.4	20.3	clear	0.87	-239.9	Depth of Well: 25.52		
	12:45	14.45	4.5 gal	11.87	1.637	8.5	9.4	clear	0.84	-251.3	Sheen Observed: Y N		
	12:50	14.44	5 gal	11.85	1.619	8.5	3.4	clear	0.82	-261	DNAPL Observed: Y N		
	12:55	14.44	5.75 gal	11.85	1.613	8.5	2.4	clear	0.81	-265.4	Did Well Go Dry: Y N		
											Other: One well volume = 1.8 gallons		
									-				
											ļ		
													

						Historic Info	ormation					
Boring Log A	vailable (v	ves/no/attac	.peq).			THISTOTIC ITH	omation					
nstallation L			,									
ristaliation L	og Avallat	ole (yes /110/	attacried)			Summ	on/					
Monitoring \	Summary g Well: WT1-05 Ground Surface Elevation 581.66 Riser/Screen Material: PVC											
Monitoring W nstallation D		5/29/07						-				
Installed By:	ale.				Casing Elevation				creen Depth			
ristalled by.		Turnkey		Elevation D	Point Elevation	. 364.41		DOLLOIII O	or Screen De	epth: 23.30		
Draviava Fial	d		mation Availal									
Previous Fiel	a measur	ement inion	mation Availal	oie (yes/ no /		<u> </u>						
						s of Previous F						
Depth to			pН	•	Conductance	Tempera			rbidity		Color	
(ft)		`	ard Units)		hos/cm)	(°C)		(N	NTU)			
12.4	5	1	1.84	1	.217	10.5	5		8.2		Clear	
Notes:				· · · · · · · · · · · · · · · · · · ·								
			Fie	eld Observa	tions				Param	eters +/-	Sampling Information	
Exterior Obse	ervations:	Riser latch	broken						рН	+/- 0.1	Sample ID: WT1-05-033125	
									Conductivi		Sample Time: 16:30	
nterior Obse	rvations	Good							Temperatu	re +/- 10%	# of Sample Containers: 5	
									Turbidity	+/- 10%	Duplicate Sample ID: None	
									ORP		Sample Analysis: VOCs STARS 8260,	
Signs of Dam	nage/Tam	pering:							DO		SVOCs 8270 BN	
Locked (y	es/ no)	Well Ca	ap (yes /no)	Surface Seal Intact (yes/no) PID Measureme					0.0 ppm	Odors:	None	
						Well Qual	ity Data					
Date	Time	Depth to	Cumulative	рН	Specific	Temperature	Turbidity	Color	Dissolved	Oxygen	Notes	
		Water	Volume	(Standard	Conductance	(°C)	(NTU)		Oxygen	Reduction		
		ft BTOC	Purged	Units)	(mS/cm)					Potential		
3/31/2025	16:00	13.28	0 gal	11.74	1.805	10.0	7	clear	2.99	-99.4	Depth of Water: 13.25	
	16:05	13.29	1.5 gal	11.80	1.834	9.9	5.7	clear	0.9	-205.2	Length of Water Column: 10.05	
	16:15	13.29	3 gal	11.80	1.825	10	5.6	clear	0.78	-255.6	Depth of Well: 23.30	
	16:20	13.29	3.5 gal	11.80	1.808	9.9	5.8	clear	0.76	-270.0	Sheen Observed: Y N	
	16:25	13.29	4 gal	11.83	1.803	9.2	5.9	clear	0.76	-278.0	DNAPL Observed: Y N	
											Did Well Go Dry: Y N	
											Other: One well volume = 1.6 gallons	

						Historic Inf	ormation					
Boring Log A	vailable (v	ves/no/attac	:hed):			Thotono IIII	Officialion					
Installation L		•	,									
motanation E	og / tvallak	510 (ycs /110/0	attaorica)			Summ	narv					
Monitoring W	/oll·	Summary BCP-ORC-1 Ground Surface Elevation 589.47 Riser/Screen Material: PVC										
Installation D		10/03/07	- 1	-	Casing Elevation	1			creen Depth			
Installed By:	ale.	Turnkey			Point Elevation				of Screen Depti			
mistanca by.		Turricy		Elevation D		1. 001.07		_ Dottom c	or ourcen be	рии. 04.00		
Previous Fiel	ld measur	ement Infor	mation Availal									
1 10 110 00 1 101	ia measar	CITICITE IIIIOII	Tration / (Valia	510 (yC5/110/	,	s of Previous F	iold Moscu	iromonte				
Donth to	Motor		pН	Specific (Conductance				rhidity.		Color	
Depth to			•	•		Tempera			rbidity		Coloi	
(ft)		`	ard Units)		hos/cm)	(°C		(1)	NTU)		Ola a r	
18.8	54	1	1.61	().942	10.8	5		1		Clear	
Notes:												
				1101								
		-	Fie	eld Observa	tions					eters +/-	Sampling Information	
Exterior Obse	ervations:	Good							pH	+/- 0.1	Sample ID: MWN-01-033125	
		<u> </u>							Conductivi		Sample Time: 14:15	
Interior Obse	ervations	Good									# of Sample Containers: 5	
									Turbidity			
O' (D	/T		Maria						ORP DO		Sample Analysis: VOCs STARS 8260,	
Signs of Dam			None	0(0	1 1>	IDID M			+/- 10%	SVOCs 8270 BN	
Locked (y	/es/ no)	well Ca	p (yes /no)	es/no) Surface Seal Intact (yes/no) PID Measurement: 0.0 ppm Odors: None Well Quality Data								
1						well Qual	ity Data	ı				
Doto	Time	Donth to	Cumulativa	لام	Chasifia	Tomporeture	Turbiditu	Color	Dissolved	Overgen	Notes	
Date	Time	Depth to	Cumulative	pH (Otanalana)	Specific	Temperature	,	Color	Dissolved	Oxygen	Notes	
		Water	Volume	`	Conductance	(°C)	(NTU)		Oxygen	Reduction		
2/24/2025	40.40	ft bgs	Purged	Units)	(mS/cm)	44	4.0	alaa:	2.0	Potential	Donth of Motors 40.74	
3/31/2025	13:10	21.1	0 gal	14.4	1.084	11 11.2	4.9	clear	3.0	-13.1	Depth of Water: 19.74	
	13:20	23.05	4 gal	11.42	1.086		5.1	clear	2.07	-101.1	Length of Water Column: 14.94	
	13:30 13:40	23.84 22.52	8 gal 11 gal	11.40 11.37	1.035 0.996	11.3 11.4	5.4 5.3	clear clear	1.1 0.77	-200.0 -246.6	Depth of Well: 34.68 Sheen Observed: Y N	
	13:50	22.32	14 gal	11.37	0.998	11.4	6	clear	0.77	-246.6 -259.4	DNAPL Observed: Y N	
	14:00	22.20	14 gai 17 gal	11.44	1.019	11.4	6.1	clear	0.74	-260.5	Did Well Go Dry: Y N	
	17.00	22.0	i i yai	11.77	1.019	11.7	0.1	Cicai	0.73	200.0	Other: One well volume = 2.4 gallons	
							 	 	 		Other. One well volume – 2.4 gallons	
			L	I	1	·	1		1	L		

GZA GeoEnvironmental, Inc.