

INDEPENDENT ENVIRONMENTAL ENGINEERS, SCIENTISTS AND CONSULTANTS Malcolm Pirnie, Inc. 50 Fountain Plaza, Suite 600 Buffalo, NY 14202 T: 716.667.0900 F: 716.667.0279

.

December 24, 2008

Gene Melnyk Environmental Engineer II New York State Department of Environmental Conservation 270 Michigan Street Buffalo, New York 14203-2999

Re: Air Sampling Results – two events. 275 Franklin Street Site, Buffalo, New York Work Assignment # D004439-3

Dear Mr. Melnyk:

Malcolm Pirnie is please to provide the enclosed documentation and analytical results of two air-sampling events performed in relation to the 275 Franklin Street Immediate Investigation Work Assignment (IIWA) Site in Buffalo, New York. One data set pertains to air sampling performed on May 29, 2008 at the Insty-Prints commercial property located at 265 Franklin Street. The second data set pertains to air sampling performed on October 28 and 29, 2008 at the apartment building located at 267 Franklin Street.

This data submittal provides a brief summary of work performed and pertinent documentation of each of these sampling events. Analytical data provided is considered final by the laboratory and independent, third-party, data validation is pending. At completion of the project, a final report will be submitted which will contain a more detailed discussion of sampling procedures and validated results.

Air samples were collected in accordance with the procedures described in the, April 2008 NYSDEC-approved, Field Activities Plan. All air samples were collected using a 6-liter Summa canister sampling train, which consists of a Summa canister, flow controller, particulate filter, pressure gage, and fittings. All canisters were evacuated and certified as analyte-free by the analytical laboratory (Columbia Analytical Services Inc.) prior to use at the Site. Flow regulators supplied by the analytical laboratory were used to allow for continuous sampling over the two-hour period (May event) and 24-hour period (October event). Each flow regulator was equipped with a filter to prevent particulate matter from entering the canister.

Columbia Analytical Services, Inc. analyzed indoor air and ambient air samples for VOCs using modified EPA Method TO-15 with a gas chromatograph/mass spectrometer (GC/MS) in full-scan mode.

On May 29, 2008, four air samples were collected at the Insty-Prints shop at 265 Franklin Street. Samples were designated as follows:

- 275 Franklin FA: placed in a central location on the first floor of the print shop.
- 275 Franklin OA: placed outside in the street in front of 265 Franklin St.
- 275 Franklin CS: placed on the crawlspace floor near the access hatch.
- 275 Franklin DUP: placed on the crawlspace floor near the access hatch.

Low concentrations of VOCs were detected in each sample, none at levels above NYSDOH guidance values.

Attachment A contains the following items pertinent to the May 29, 2008 sampling event at 265 Franklin Street (Insty-Prints):

- Air Chain of Custody Record (1 page)
- Analytical Data Summary table and Laboratory Form 1s (5 pages).
- Indoor Air Questionnaire and Building Inventory (11 pages)
- Photo log (8 pages).
- Full analytical data package (177 pages).

On October 28 and 29, 2008, five air samples were collected at the apartment building at 267 Franklin Street. Samples were designated as follows:

- 267 Franklin SS: A sub-slab air sample from beneath the concrete floor of the boiler room
- 267 Franklin BA1: A basement air sample from the boiler room
- 267 Franklin BA2: A basement air sample from the bedroom of occupied apartment B2
- 267 Franklin BA3: A basement air sample from the kitchen of vacant apartment B1
- 267 Franklin OA: An ambient air sample from outside the west side of the building.

VOCs were detected in each sample, some at levels above NYSDOH guidance values.

Attachment B contains the following items pertinent to the October 28 and 29, 2008 sampling event at 267 Franklin Street (Apartment Building):

- Columbia Analytical Air Chain of Custody Record (1 page)
- Laboratory Form 1 data results (5 pages).
- Indoor Air Questionnaire and Building Inventory (8 pages)
- Photo Log (3 pages).
- Full Analytical Data Package (131 pages)

If you have any questions or require additional information, please call me at 716/667-6654.

Very truly yours,

MALCOLM PIRNIE, INC.

Aim Richert

James J. Richert Sr. Project Hydrogeologist

Attachments: File 0266377

ATTACHMENT A

265 Franklin St. Vapor Intrusion Investigation Data and Results

Analytical Services *c.	2655 Park Cer Simi Valley, Ca	nter Drive, S Ilifornia 93	Suite A			-		alytical Se		•			Page of
	Phone (805) 5 Fax (805) 526			1	Day (100%)	2 Day (75%) 3	Day (50%)	S Days (Surchar 4 Day (35%) 5	ges) p i Day (25	ease circle %) 10 Day	- Standard	CAS Pro	ect No.
	****					<u>.</u>		CAS Contact					
Company Name & Address (Pivule	Sac.	Project Na	ame 27	s fran	akling	×		nalysis	Method and	/or Analyte		-
50 faintan suit · 600 B	Plaza	Y ilszri	Project Nt		266 3	377					1999 - Jan Barrer (1999) (1999) (1999) (1999)		
Project Manager	4942	11100	P.O. # / Bi	lling Informat	ion	· · · · · · · · · · · · · · · · · · ·							Comments
Phone 716-667-0900 F	ax				•								e.g. Actual Preservativ or specific instruction
mail Address for Result Rep	orting	***********************		Print & Sign) Wt Synw	A 3		lad			-			
Client Sample ID	Laboratory ID Number	Date Collected	Time Collected	Sample Type (Air/Tube/ Solid)	Canister ID (Bar Code # - AC, SC, etc.)	Flow Controller (Bar Code - FC #)	Sample Volume	1		£ * · ·			
275 ANARIA OFT	······	5/29	1030	An	003493	FC00293	61	Landon .					***
275 Franklin NPA		}	1035	}	002659	Multipre Astronomic Station Constraints	}	Lune Martin			·····		
275 Frankelly CS			1040		003755	FC 00207		Lannakan					
275 Frankla Dug	2	V.	Chine Winstown	V	02235	FC00037	V.				······································		
1													
				· · ·				ļ					
					· · ·								an a
													*14 - 1 m.
								-					*
NA 141 MARTIN DA 141 MARTIN													
· ·													
an din kunan siyunda kunan cin ya kaka nainna ka casha casha da da an an an an an													
											A		294
port Tier Levels - please selec		<u> </u>			-							Project F	lequirements (MRLs, QAPP)
r I - (Results/Default if not specified) r II - (Results + QC)			a Validation Pac t specified)	xage) 10% Surcl	narge		DD required ` ype:		ED	D Units:		riujest r	equienens (WDLS, VAPP)
linquished by: (Signature)	Sprandel		Date 29	~~~ <u>~</u> ~~~~ <u>~</u> ~~~~						Date:	Tīme:		
linquished by: (Signature)	<u> </u>		Date: 1 Date:	Time: Time:	Received by: Received by:			a an		Date: Date:	Time: Time:	Cooler /	Blank »

Table 1Summary of Indoor Air Analytical Results275 Franklin Street SiteBuffalo, New York

		SAMPLE LOCATION						
Compound	NYSDOH Air Guidance Values ug/m ³	275 Franklin OA ⁽¹⁾ - 20080529 μg/m ³	275 Franklin FA⁽²⁾- 20080529 μg/m ³	275 Franklin CS⁽³⁾- 20080529 μg/m ³	275 Franklin 20080529-FD⁽⁴⁾ μg/m ³			
Vinyl Chloride					· · · · · · · · · · · · · · · · · · ·			
1,1-Dichloroethane					· · · · · · · · · · · · · · · · · · ·			
Methylene Chloride	60		28					
trans-1,2-Dichloroethene								
cis-1,2-Dichloroethene								
1,1,1-Trichloroethane								
Benzene			2.6					
Trichloroethene	5		1.1	0.26	0.25			
Toluene		1.1	29	0.97	1			
Tetrachloroethene	100		93	20	19			
Ethyl Benzene			16					
m,p-Xylene		-	47	1.1	1.4			
o-Xylene			110	1.6	1.8			
Notes:								
1) OA = Outdoor Am								
2) FF = First Floor Inc								
3) CS = Crawl Space 1								
4) Crawl Space Field	-							
Samples collected	May 29, 2008							
Blank - Not detected	above method report	ing limit.						

RESULTS OF ANALYSIS

Page 1 of 1

Client:	Malcolm Pirnie, Incorporated	
Client Sample ID:	275 Franklin OA	
Client Project ID:	275 Franklin St. / 0266 377	
Test Code:	EPA TO-15	
Instrument ID:	Tekmar AUTOCAN/Agilent 5975Cinert/6890N/MS16	
Analyst:	Wida Ang	
Sampling Media:	6.0 L Summa Canister	Vol
Test Notes:		

Container ID: AC01303

Initial Pressure (psig):

Final Pressure (psig):

CAS Project ID: P0801622 CAS Sample ID: P0801622-001

Date Collected: 5/29/08 Date Received: 5/30/08 Date Analyzed: 6/4/08 Volume(s) Analyzed: 1.00 Liter(s)

3.5

Canister Dilution Factor: 1.54

CAS #	Compound	Result µg/m³	MRL µg/m³	Result ppbV	MRL ppbV	Data Qualifier
75-01-4	Vinyl Chloride	ND	0.77	ND	0.30	
75-35-4	1,1-Dichloroethene	ND	0.77	ND	0.19	
75-09-2	Methylene Chloride	ND	0.77	ND	0.22	
156-60-5	trans-1,2-Dichloroethene	ND	0.77	ND	0.19	
156-59-2	cis-1,2-Dichloroethene	ND	0.77	ND	0.19	
71-55-6	1,1,1-Trichloroethane	ND	0.77	ND	0.14	
71-43-2	Benzene	ND	0.77	ND	0.24	
79-01-6	Trichloroethene	ND	0.15	ND	0.029	
108-88-3	Toluene	1.1	0.77	0.30	0.20	
127-18-4	Tetrachloroethene	ND	0.77	ND	0.11	
100-41-4	Ethylbenzene	ND	0.77	ND	0.18	
179601-23-1	m,p-Xylenes	ND	0.77	ND	0.18	
95-47-6	o-Xylene	ND	0.77	ND	0.18	

-2.9

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

RESULTS OF ANALYSIS

Page 1 of 1

Client: Client Sample ID:	Malcolm Pirnie, Incorporated 275 Franklin FA	CAS Project ID: PO	0801622
~	275 Franklin St. / 0266 377	CAS Sample ID: PO	
Test Code:	EPA TO-15	Date Collected: 5/	29/08
Instrument ID:	Tekmar AUTOCAN/Agilent 5975Cinert/6890N/MS16	Date Received: 5/30/08	
Analyst:	Wida Ang	Date Analyzed: 6/	4/08
Sampling Media: Test Notes:	6.0 L Summa Canister	Volume(s) Analyzed:	0.40 Liter(s)
Container ID:	AC00902		

-2.8

Initial Pressure (psig):

Final Pressure (psig):

3.5

Canister Dilution Factor: 1.53

CAS #	Compound	Result µg/m³	MRL µg/m³	Result ppbV	MRL ppbV	Data Qualifier
75-01-4	Vinyl Chloride	ND	1.9	ND	0.75	
75-35-4	1,1-Dichloroethene	ND	1.9	ND	0.48	
75-09-2	Methylene Chloride	28	1.9	8.0	0.55	
156-60-5	trans-1,2-Dichloroethene	ND	1.9	ND	0.48	
156-59-2	cis-1,2-Dichloroethene	ND	1.9	ND	0.48	
71-55-6	1,1,1-Trichloroethane	ND	1.9	ND	0.35	
71-43-2	Benzene	2.6	1.9	0.82	0.60	
79-01-6	Trichloroethene	1.1	0.38	0.21	0.071	
108-88-3	Toluene	29	1.9	7.7	0.51	
127-18-4	Tetrachloroethene	93	1.9	14	0.28	
100-41-4	Ethylbenzene	16	1.9	3.7	0.44	
179601-23-1	m,p-Xylenes	47	1.9	11	0.44	
95-47-6	o-Xylene	110	1.9	24	0.44	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

RESULTS OF ANALYSIS

Page 1 of 1

Client: Client Sample ID:	Malcolm Pirnie, Incorporated 275 Franklin CS	CAS Project ID: PO	0801622
Client Project ID:	275 Franklin St. / 0266 377	CAS Sample ID: PO	0801622-003
Test Code:	EPA TO-15	Date Collected: 5/2	29/08
Instrument ID:	Tekmar AUTOCAN/Agilent 5975Cinert/6890N/MS16	Date Received: 5/	30/08
Analyst:	Wida Ang	Date Analyzed: 6/4	4/08
Sampling Media: Test Notes:	6.0 L Summa Canister	Volume(s) Analyzed:	1.00 Liter(s)
Container ID:	AC01418		

-2.6

Initial Pressure (psig):

Final Pressure (psig):

3.6

Canister Dilution Factor: 1.51

CAS #	Compound	Result µg/m³	MRL µg/m³	Result ppbV	MRL ppbV	Data Qualifier
75-01-4	Vinyl Chloride	ND	0.76	ND	0.30	<u>×</u>
75-35-4	1,1-Dichloroethene	ND	0.76	ND	0.19	
75-09-2	Methylene Chloride	ND	0.76	ND	0.22	
156-60-5	trans-1,2-Dichloroethene	ND	0.76	ND	0.19	
156-59-2	cis-1,2-Dichloroethene	ND	0.76	ND	0.19	
71-55-6	1,1,1-Trichloroethane	ND	0.76	ND	0.14	
71-43-2	Benzene	ND	0.76	ND	0.24	
79-01-6	Trichloroethene	0.26	0.15	0,048	0.028	
108-88-3	Toluene	0.97	0.76	0.26	0.20	
127-18-4	Tetrachloroethene	20	0.76	2.9	0.11	
100-41-4	Ethylbenzene	ND	0.76	ND	0.17	
179601-23-1	m.p-Xylenes	1.1	0.76	0.24	0.17	
95-47-6	o-Xylene	1.6	0.76	0.37	0.17	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

RESULTS OF ANALYSIS

Page 1 of 1

Client:	Malcolm Pirnie, Incorporated		
Client Sample ID:	275 Franklin Dup	CAS Project ID: P0	0801622
Client Project ID:	275 Franklin St. / 0266 377	CAS Sample ID: P0	0801622-004
Test Code:	EPA TO-15	Date Collected: 5/	29/08
Instrument ID:	Tekmar AUTOCAN/Agilent 5975Cinert/6890N/MS16	Date Received: 5/30/08	
Analyst:	Wida Ang	Date Analyzed: 6/4	4/08
Sampling Media: Test Notes:	6.0 L Summa Canister	Volume(s) Analyzed:	1.00 Liter(s)
Container ID:	AC00686		

-2.5

Initial Pressure (psig):

Final Pressure (psig):

3.5

Canister Dilution Factor: 1.49

CAS #	Compound	Result	MRL	Result	MRL	Data
		μg/m³	μg/m³	ppbV	ppbV	Qualifier
75-01-4	Vinyl Chloride	ND	0.75	ND	0.29	······································
75-35-4	1,1-Dichloroethene	ND	0.75	ND	0.19	
75-09-2	Methylene Chloride	ND	0.75	ND	0.21	
156-60-5	trans-1,2-Dichloroethene	ND	0.75	ND	0.19	
156-59-2	cis-1,2-Dichloroethene	ND	0.75	ND	0.19	
71-55-6	1,1,1-Trichloroethane	ND	0.75	ND	0.14	
71-43-2	Benzene	ND	0.75	ND	0.23	
79-01-6	Trichloroethene	0.25	0.15	0.047	0.028	
108-88-3	Toluene	1.0	0.75	0.27	0.20	
127-18-4	Tetrachloroethene	19	0.75	2.8	0.11	
100-41-4	Ethylbenzene	ND	0.75	ND	0.17	
179601-23-1	m,p-Xylenes	1.4	0.75	0.32	0.17	
95-47-6	o-Xylene	1.8	0.75	0.42	0.17	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

NEW YORI	K STATE DEPARTMENT OF HEALTH
INDOOR AIR OHALITY	OUESTIONNAURE AND THEALTH
	QUESTIONNAIRE AND BUILDING INVENTORY
CENTER	FOR ENVIRONMENTAL HEALTH

This form must be completed for each residence involved in indoor air testing.

Preparer's Name Dwignt Symonds Date/Time Propaged #	-lacler	a. Å
Preparer's Name <u>Dwignt Symonds</u> Date/Time Prepared <u>Spectrum</u> Date/Time Prepared <u>Preparer's Affiliation Malculus Pivole</u> Phone No. <u>585-7</u>	77-771	llan
Purpose of Investigation AN Sampling		190 ⁷⁷
1. OCCUPANT:		
Interviewed: Y/N		
Last Name: Metz First Name: Nave		
Address:265 Franklin st		
County:		
Home Phone: Office Phone: <i>746-853-6483</i>		
Number of Occupants/persons at this location Age of Occupants		
2. OWNER OR LANDLORD: (Check if same as occupant)		
Interviewed: Y/N		
Last Name:First Name:		
Address:		
County:		
Home Phone: Office Phone:		
3. BUILDING CHARACTERISTICS		
Type of Building: (Circle appropriate response)		
Residential School Commercial/Multi-use Other:		

If the property is reside	tial, type? (Circle appropri	ate response)
Ranch Raised Ranch Cape Cod Duplex Modular	2-Family Split Level Contemporary Apartment House Log Home	3-Family Colonial Mobile Home Townhouses Condos Other: <u>Office Bldg</u>
If multiple units, how ma	my? 3 first	
If the property is comme	rcial, type? Second	Vour - print shep 1 flour - storage /office flaur - Appt.
Business Type(s)	Third	flaw-Appt.
Does it include resider	nces (i.e., multi-use)? Y / N	If yes, how many?
Other characteristics:		
Number of floors 3	Build	ing age Eurly 1900's
Is the building insulate	d Y N How	air tight? Tight / Average / Not Tight
4. AIRFLOW	partially - Back	ing age <u>Early</u> 1900's air tight? Tight / Average / Not Tight h area insulated / New Doors approx 50% bldg insulated rflow patterns and qualitatively describe:
Use air current tubes or t	racer smoke to evaluate ai	approx 50% bldg insulated rflow patterns and qualitatively describe:
		floor - Some Connection floor - Same Connection
	Zud e Third -	floor -same Connection
Airflow near source		
Outdoor air infiltration	front door,	1 Back Door
Infiltration into air ducts	Taped } Sea	led / fairly new - photo to ken

2

ز منع منعیم

5.	BASEMENT AND CONSTRU	CTION CHARA	ACTERISTICS (Circle all that a	apply)	enchave :-
	a. Above grade construction:	wood frame	concrete 🗸	stone	brick	Bachaveq is Block
	b. Basement type:	full	crawlspace	slab	other	
	c. Basement floor:	concrete	dirt	stone	other	
	d. Basement floor:	uncovered	covered	covered with		
	e. Concrete floor:	unsealed	sealed	sealed with		
	f. Foundation walls:	poured (Bach Recin	Brick	other	
	g. Foundation walls:	unsealed	sealed	sealed with	Thick	Brick 5 ause 18"-20" Thick
	h. The basement is:	wet	damp	dry	moldy	18"-20" Mick
	i. The basement is:	finished	unfinished	partially finis	hed	
	j. Sump present?	Y				
	k. Water in sump? Y / N	/ not applicable	2			
Bas	ement/Lowest level depth below	grade: <u> </u>	_(feet)			
Ide	ntify potential soil vapor entry p	oints and appro	ximate size (e.g.,	cracks, utility	ports, drai	ns)
		N/A				

3

6. HEATING, VENTING and AIR CONDITIONING (Circle all that apply)

Type of heating system(s) used in this building: (circle all that apply – note primary)

Hot air circulation Space Heaters Electric baseboard

Heat pump Stream radiation Wood stove Hot water baseboard Radiant floor Outdoor wood boiler

1st à Part 2nd floer DOOF top Unit 2nd à 3rd - Gas formace Other

The primary type of fuel used is:

Natural Gas Electric Wood	Fuel Oil Propane Coal	Kerosene Solar	
Domestic hot water tank fuel	ed by: Natoral	Gas Que	Hot water failer)
Boiler/furnace located in:	Basement Outdoor		Other
	and the second	or finace]	

Central Air

Air conditioning:

Window units Open Windows

None

4

Are there air distribution ducts present?

Describe the supply and cold air return ductwork, and its condition where visible, including whether there is a cold air return and the tightness of duct joints. Indicate the locations on the floor plan diagram.

(V) N

	Taped Joints - Ti	jut Joint.	photos tak	Sala Preser-
7. OCCUPANC	Y			
Is basement/lowes	st level occupied? Full-time	Occasionally Seldom	(Almost Never)	
Level G	eneral Use of Each Floor (e.g., famil	<u>vroom, bedroom, laun</u>		
Basement				
1 st Floor	Print shop loffrees 1 b	atumons 1 Br	ale soloce	
2 nd Floor	storage / office	MARRIEL, DU	ALL IN LAST	
3 rd Floor	Appt			
4 th Floor				
8. FACTORS TH	AT MAY INFLUENCE INDOOR AI	R QUALITY		
a. Is there an att	ached garage?	YN		
b. Does the gara	ge have a separate heating unit?	Y / N / N	A	
c. Are petroleum stored in the g	-powered machines or vehicles arage (e.g., lawnmower, atv, car)	Y / N /N Please sp	ecify	
d. Has the buildi	ng ever had a fire?	Y/ V	Vhen?	
e. Is a kerosene o	r unvented gas space heater present?	and the second s	Vhere?	
f. Is there a work	shop or hobby/craft area?		Type? N/A	
g. Is there smokin	ng in the building?	XI (XI) XX A	li de la companya de	
h. Have cleaning	products been used recently?	(\mathcal{Y}) N When & T	rype? Daily (Blarket	twest

i.	Have	cosmetic	products	been	used	recently?
----	------	----------	----------	------	------	-----------

i. Have cosmetic products been used recently?	Y When & Type?
5	
j. Has painting/staining been done in the last 6 months	S? Y Where & When?
k. Is there new carpet, drapes or other textiles?	Y Where & When?
I. Have air fresheners been used recently?	Y When & Type?
m. Is there a kitchen exhaust fan?	YN If yes, where vented? N/A
n. Is there a bathroom exhaust fan?	(V/N If yes, where vented? Vented to 3' space
o. Is there a clothes dryer? 2nd flow	DN If yes, where vented? <u>Vented</u> to 3'space DN If yes, is it vented outside DN N
p. Has there been a pesticide application?	Y(N) When & Type?
Are there odors in the building? If yes, please describe: $\frac{1}{\sqrt{10} h}$	S Cleuvers
Do any of the building occupants use solvents at work? (e.g., chemical manufacturing or laboratory, auto mechanic oboiler mechanic, pesticide application, cosmetologist	
If yes, what types of solvents are used?	t Wash
If yes, are their clothes washed at work?	Y /
Do any of the building occupants regularly use or work as response)	t a dry-cleaning service? (Circle appropriate
Yes, use dry-cleaning regularly (weekly) Yes, use dry-cleaning infrequently (monthly or less) Yes, work at a dry-cleaning service	No Unknown
Is there a radon mitigation system for the building/structu Is the system active or passive? Active/Passive	are? Y Date of Installation:
9. WATER AND SEWAGE	
Water Supply: Public Water Drilled Well Driv	en Well Dug Well Other:
Sewage Disposal: Public Sewer Septic Tank Leac	h Field Dry Well Other:
N. RELOCATION INFORMATION (for oil spill resident	
a. Provide reasons why relocation is recommended:	

b. Residents choose to: remain in home relocate to friends/family relocate to hotel/motel

. Responsibility for costs associated with reimbursement explained?	Y / N
A. Relocation package provided and explained to residents? 6	Y / N

11. FLOOR PLANS

nine (Musiki) wangi co kangano Musikani ang

Draw a plan view sketch of the basement and first floor of the building. Indicate air sampling locations, possible indoor air pollution sources and PID meter readings. If the building does not have a basement, please note.

	aulspace				_
		- choul space	hatch		
	- G				
	1	9			
					<u> </u>
	275 Fran	where cs/Dup			ĺ.
					<u> </u>
	·····				ette Societador Societador
					L
· · · · · · · · · · · · · · · · · · ·	n an far an ann an Anna an Anna an Anna Anna A				aller -
	الما بالمان الملك مي المان المانية المانية. ما يا مانية الملك المانية المان				
мя на					
			dan da ann ann a' dhada		
First Floor:					
				······································	
water and the second		- crawl space l	Nater		2751
Raim] - crawl space l	natch		2751
Ram	C] - crawl space l	hatch		2751
Ram	C] - crawl space l	natch		2751
Rum] - crawl space l	hatch		2751
Rum] - crawl space !	hatch		2758
Rum					2751
Rum					2751
Ram	275 free				2851
	ITS Frank				
Ram			hetch		
	ITS Frank				2751
	ITS Frank				2854

Draw a sketch of the area surrounding the building being sampled. If applicable, provide information on spill locations, potential air contamination sources (industries, gas stations, repair shops, landfills, etc.), outdoor air sampling location(s) and PID meter readings.

Also indicate compass direction, wind direction and speed during sampling, the locations of the well and septic system, if applicable, and a qualifying statement to help locate the site on a topographic map.

	•••••••••••••••••••••••••••••••••••••••	- F	ank lin -			
Diretin	ina wind	Nivection	ank lin i0A O			
	2		Ľ			na se
	· · · · · · · · · · · · · · · · · · · ·					
8						
			· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·
	Actor of an annual actor of the				·····	
· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·	V.		
					· · · · · · · · · · · · · · · · · · ·	€
					· · · · · · · · · · · · · · · · · · ·	an a
				· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	
			275 from	1.la		
		····	15 year	Maria and a second s		: • • • • • • • • • • • • • • • • • • •
	· · · · · · · · · · · · · · · · · · ·		17		· · · · · · · · · · · · · · · · · · ·	
				n nyana ara da ana ada Tana ara ara ara ara ara		here en an anna harainn a' bhailtean a' bhailtean an a
· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·				
		: ; ;	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		vers er en ser ser en ser er e
		····	· · · · · · · · · · · · · · · · · · ·			
			······································	n an		
	······································		ere de la companya de	·····	·····	

> North

Make & Model of field instrument used: ______ Ppb Rae

List specific products found in the residence that have the potential to affect indoor air quality.

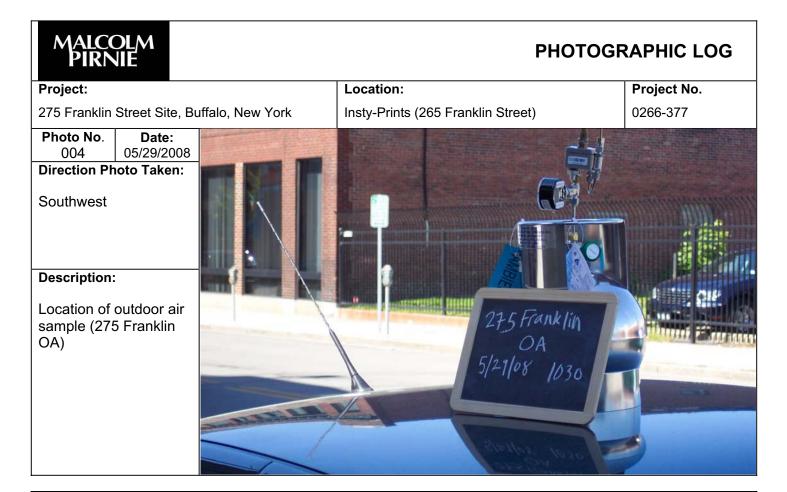
Location	Product Description	Size (units)	Condition*	Chemical Ingredients	Field Instrument Reading (units)	Photo ** <u>Y / N</u>
cluset on firstflus	Kohle Madden Ini	28 51bs	all caped nine logia Used	y Mod. Rosh Estor Resins	3560 pt	Yes
		cans	Used	vog. vils, hydrotheated	1	
				middle distillate, organi	e	
				pigments. Alkyd Resins		
	Braden stphin	20		-None listed		
	Ink	5165 Cans				
	Braden SUtphin	45		-None listed		
	Ich	coms	A Linear A Linear A			
	Unmarked In K Caus	io Sta	V	-None listed	\checkmark	
		Cans		Statement & Constant and Statement of the state of the statement of the statement of the statement of the state	ar 1990 (1977)	
sack [Blunketwash	5gal	good	Petroleun Naphtha	85 ppm	
lean	GE. Richards Graphic Supply		Used	Sorbitan Mune-Oleafr		
	when enested	(OPEN TOP			
	<u>uesh</u>					-
	Super Master/	2gal	good	- Water, PotAssium Hyp	lexide	
	set point plus		Used	Amino Erny lethans Lains		
				Putasalum sulfate		

oob Rae Make & Model of field instrument used:

List specific products found in the residence that have the potential to affect indoor air quality.

Location	Product Description -Color luk	Size (units)		Chemical ingrements	Field Instrument Reading (units)	Photo ' <u>Y / N</u>
buch has	Silver Plate Stubili	2 9 a	Used	- Water, Potessive Phos	phate	11.0
	Sour out stabill	i des		Sodirin Musphate	111.00	Yes
					4600 pp	<u>}</u>
	Chem Jucoks	1802	USrd.	Z-Butoxyethanol		
	Glass cleanor			12-130FOxyethanol		
				water, Isoputane,		
	No. + Las La		<u> </u>	Isopropanol		and the second second
	·Day Internation	<u> 19+</u>	Used -	Didnized water,		
1. + 1 440	SlipAgent6		· · · · · · · · · · · · · · · · · · ·	Polysiloxane	V	Jeferosoniae
	update	1602	Used -	- None listed	Olempi 1	
	Silkspray) - <u>(</u>		3600 pm	
1	WDYO	2 1262	USed	- None listed	+	
	3M clemer Conditioner	last	11Cad	- 10000e listen		
	Conditive	-12:1		-water. stoddard Solve	t.	alitic reasons and the second
				Ammonium Phosphate		Market Pertine Arcordin
				Amorphous Silica		
				Phusphunic Acty		
	Mobil			formalde hyde		
	spindle oil ignit	19a(Uspd -	none lister		_
	virgm Whe tragach ED 150			ILDIVE ILA M		
pg	+ragain ED isc	lgal	te A	nonplisted		the latter way being

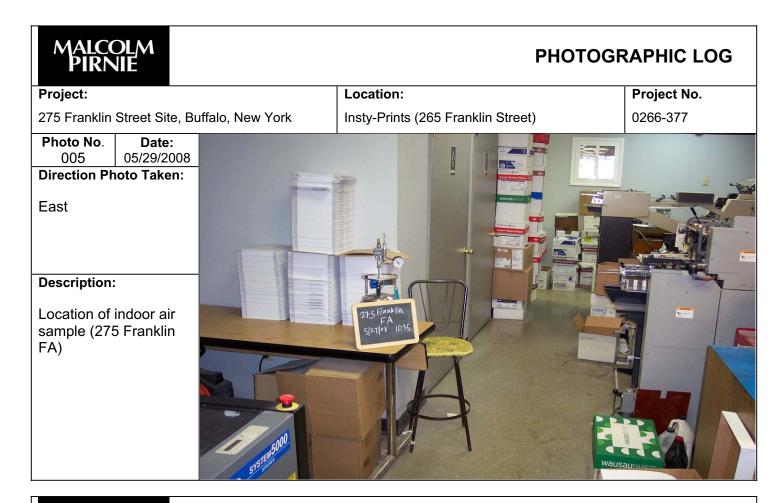
List specific products found in the residence that have the potential to affect indoor air quality.


Location	Product Description	Size (units)	Condition*	Chemical Ingredients	Field Instrument Reading (units)	Photo <u>Y / N</u>
	Day Futernatione Siper Ribber rejevenator				HOUUppi	Ye
	rejuvenator	tgai	vsed	the first first		<u> </u>
				Petroleem Naphtha		
				Dometry (Adipate		·····
	Plastic 1000	-100	1. e . l	Dimetury Succinate		
	Plastic cops half fill of Ink		User -	None	3300ppi	4-25
1	3 2 One	302	C i C a a l			
	A. A. K. I. I.	1302	Used	- Petroleum Distillate		
	Roller cleener		- sch	Hexytene Gycol		
				1- methoxy-2 propanol		
<u> </u>				The numerical		
	Clear to silicone	1602	used	Propere, Butana,		
			1	rev tanp.		
	3M How strength	16.602	used +	None Irstea		
	Holkestre			- conjeg	Y +	
	Raid 1	602	Used	Non-listed		
	uhite lithiun 1:	262 1	15-09-	None listed		
~ /				None listed	U	

ſ

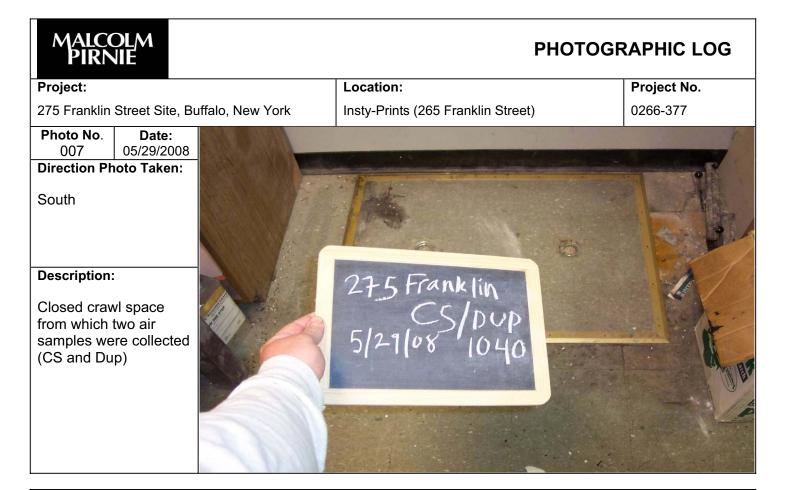
Make & Model of field instrument used:	Ppb	Rae

List specific products found in the residence that have the potential to affect indoor air quality.


Location	Product Description	Size (units)	Condition*	Chemical Ingredients	Field Instrument Reading (units)	Photo ** <u>Y/N</u>	
Innisco	Sprinks Jak Kwik n'Easy Poller & Blanket Pegiazer	1702	Used	-NJTSR# 80100143-5 HMIS - HO F-O R	KIP	and es	
	Gold Mivacle Starter Clemer & Canditioner	lpart	Used	-None list-ed			
	LA-CO zcom/sport oiler	Цог		None listed			
	Unigraph Inter. Olate clemer esensitzer à protector	lort		Gum Arabic Naphtha petroleum			
	protector			cignt Arcunatic solven prine oùl.			
					V	t	

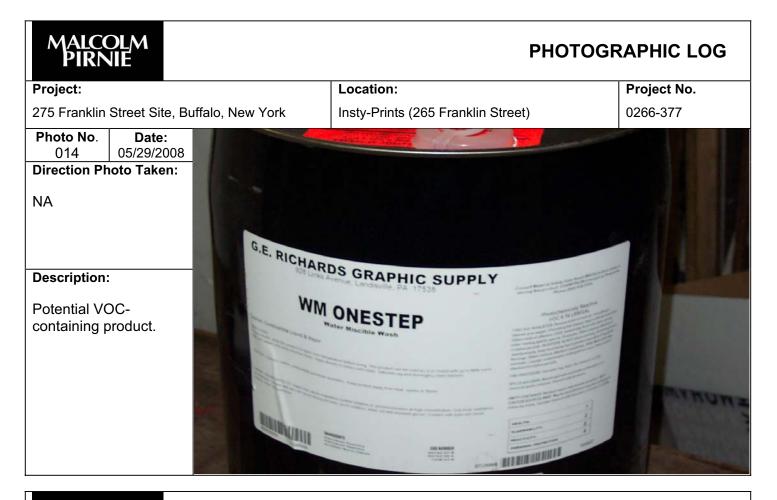
MALCOLM PIRNIE

PHOTOGRAPHIC LOG


Project:			Location:	Project No.
275 Franklin	Street Site, Bu	ıffalo, New York	Insty-Prints (265 Franklin Street)	0266-377
Photo No. 006 Direction Ph East	Date: 05/29/2008 noto Taken:			
Description: Location of sample (275 FA)	indoor air		275 Franklin 5/21/08 1035	

MALCOLM PIRNIE

PHOTOGRAPHIC LOG

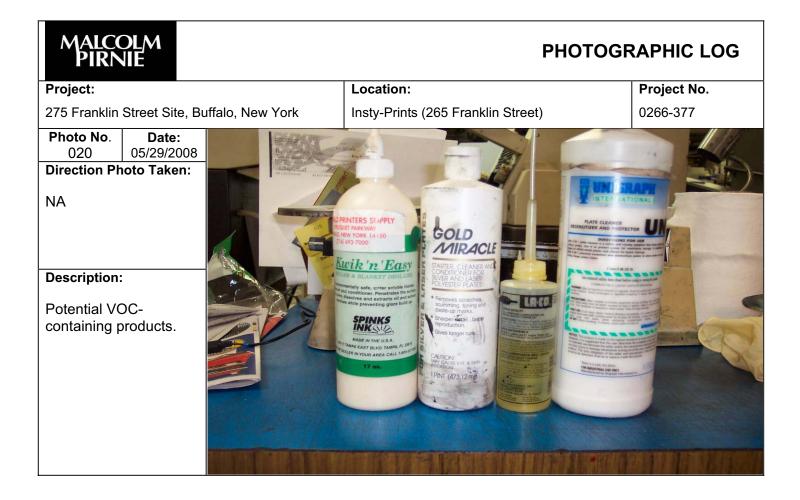

Project:			Location:	Project No.
275 Franklin	Street Site, Bu	ıffalo, New York	Insty-Prints (265 Franklin Street)	0266-377
Photo No . 001	Date: 05/29/2008		2 1	
Direction Ph	noto Taken:			and the second
Southeast				
Description	:		al and the second s	
Hatch door space.	to crawl			

MALCOLM PIRNIE **PHOTOGRAPHIC LOG** Project: Project No. Location: 275 Franklin Street Site, Buffalo, New York Insty-Prints (265 Franklin Street) 0266-377 Photo No. Date: 800 05/29/2008 **Direction Photo Taken:** South **Description:** Air sample (CS and Dup) canisters in crawl space.

MALCOLM PIRNIE	PHOTOGE	RAPHIC LOG
Project:	Location:	Project No.
275 Franklin Street Site, Buffalo, New York	Insty-Prints (265 Franklin Street)	0266-377
Photo No. Date: 009 05/29/2008 Direction Photo Taken: North North		
Potential VOC- containing products.		T.S.U.P.A.V.

MALCO PIRM	OLM NIE		PHO	OTOGRAPHIC LOG
Project:			Location:	Project No.
275 Franklin	Street Site, But	falo, New York	Insty-Prints (265 Franklin Street)	0266-377
Photo No . 010	Date: 05/29/2008	1000		
Northwest	hoto Taken:		AND	
Description	:			
Potential V containing				
		Hir Sector	alem Sull	

MALCOLM PIRNIE **PHOTOGRAPHIC LOG** Project No. **Project:** Location: 275 Franklin Street Site, Buffalo, New York Insty-Prints (265 Franklin Street) 0266-377 Photo No. Date: 015 05/29/2008 **Direction Photo Taken:** NA **Description:** Potential VOCcolorio containing products.


MALCOLM PIRNIE **PHOTOGRAPHIC LOG** Project: Project No. Location: 275 Franklin Street Site, Buffalo, New York Insty-Prints (265 Franklin Street) 0266-377 Photo No. Date: 017 05/29/2008 **Direction Photo Taken:** NA SUPER RUBBER **Description:** REJUVENATOR Potential VOCcontaining products.

MALCOLM PIRNIE		PHO	TOGRAPHIC LOG
Project:		Location:	Project No.
275 Franklin Street Site, Buffalo	, New York	Insty-Prints (265 Franklin Street)	0266-377
Photo No. Date: 018 05/29/2008 Direction Photo Taken: Southwest. Description: Potential VOC-containing products.			

MALCOLM PIRNIE

PHOTOGRAPHIC LOG

Project:	Location:	Project No.
275 Franklin Street Site, Buffalo, New York	Insty-Prints (265 Franklin Street)	0266-377
Photo No. Date: 019 05/29/2008 Direction Photo Taken: NA		
Description: Potential VOC- containing products.	CLEARCO 2000 SILCON SILCON Tod Craft	

(805) 526-7270 fax

LABORATORY REPORT

June 20, 2008

Mark Flusche Malcolm Pirnie, Incorporated 43 British American Blvd. Latham, NY 12110

RE: 275 Franklin St. / 0266 377

Dear Mark:

Enclosed are the results of the samples submitted to our laboratory on May 30, 2008. For your reference, these analyses have been assigned our service request number P0801622.

All analyses were performed in accordance with our laboratory's quality assurance program. Results are intended to be considered in their entirety and apply only to the samples analyzed and reported herein. Your report contains **111** pages.

Columbia Analytical Services, Inc. is certified by the California Department of Health Services, NELAP Laboratory Certificate No. 02115CA; Arizona Department of Health Services, Certificate No. AZ0694; Florida Department of Health, NELAP Certification E871020; New Jersey Department of Environmental Protection, NELAP Laboratory Certification ID #CA009; New York State Department of Health, NELAP NY Lab ID No: 11221; Oregon Environmental Laboratory Accreditation Program, NELAP ID: CA20007; The American Industrial Hygiene Association, Laboratory #101661; Department of the Navy (NFESC); Pennsylvania Registration No. 68-03307. Each of the certifications listed above have an explicit Scope of Accreditation that applies to specific matrices/methods/analytes; therefore, please contact me for information corresponding to a particular certification.

If you have any questions, please call me at (805) 526-7161.

Respectfully submitted,

Columbia Analytical Services, Inc.

Kate Aguilera

Kate Aguilera Project Manager

Page

1 of 1

NARRATIVE

Columbia Analytical Services MC

Client: M Project: 27

Malcolm Pirnie, Incorporated 275 Franklin St. / 0266 377

CAS Project No: New York Lab ID:

(805) 526-7270 fax

P0801622 11221

CASE NARRATIVE

The samples were received intact under chain of custody on May 30, 2008 and were stored in accordance with the analytical method requirements. Please refer to the sample acceptance check form for additional information. The results reported herein are applicable only to the condition of the samples at the time of sample receipt.

Volatile Organic Compound Analysis

The samples were analyzed for selected volatile organic compounds in accordance with EPA Method TO-15 from the Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air, Second Edition (EPA/625/R-96/010b), January, 1999. The analytical system was comprised of a gas chromatograph / mass spectrometer (GC/MS) interfaced to a whole-air preconcentrator.

The results of analyses are given in the attached laboratory report. All results are intended to be considered in their entirety, and Columbia Analytical Services, Inc. (CAS) is not responsible for utilization of less than the complete report.

Client: Malcolm Pirnie, Incorporated

Project: 275 Franklin St. 0266 377

Detailed Sample Information

CAS Sample ID Client Sample ID	Container Type	<u>Pi1</u> (Hg)	<u>Pi1</u> (psig)	Pf1	<u>Pi2</u> (Hg)	<u>Pi2</u> (psig)	<u>Pf2</u>	Cont ID	Order #	FC ID	Order #
P0801622-001.01 275 Franklin OA	6.0 L-Summa Canister Ambient	-6.0	-2.9	3.5				AC01303	8904	FC00293	8904
P0801622-002.01 275 Franklin FA	6.0 L-Summa Canister Ambient	-5.8	-2.8	3.5				AC00902	8904	FC00341	8904
P0801622-003.01 275 Franklin CS	6.0 L-Summa Canister Ambient	-5.2	-2.6	3.6				AC01418	8904	FC00207	8904
P0801622-004.01	6.0 L-Summa Canister Ambient	-5.1	-2.5	3.5	29 W 138 CH		1927) WA	AC00686	8904	FC00037	8904

Miscellaneous Items - received

AVG00799	
AVG00306	
AVG00810	
AVG00768	

Columbia Analytical Services, Inc.

Sample	Acceptance	Check	Form
--------	------------	-------	------

Client:	Malcolm Pirn	ie, Incorporated			-	Work order:	P0801622			
-	275 Franklin					<u></u>				
	s) received on:			-	Date opened:		by:	LKUK		
		l samples received by CAS							indicatio	n of
compliance	or nonconformity	. Thermal preservation and	l pH will only be	evaluated either a	t the request of the	e client and/or as re	equired by the meth	od/SOP. <u>Yes</u>	No	<u>N/A</u>
1	Were sample	containers properly 1	narked with cl	ient sample IE)?			\mathbf{X}		
2	-	supplied by CAS?		*				X		
3	• •	ontainers arrive in go	od condition?					X		
4	Were chain-o	f-custody papers used	and filled out	?				X		
5	Did sample c	ontainer labels and/o	r tags agree wi	ith custody pap	pers?			\mathbf{X}		
6	Was sample v	olume received adeq	uate for analys	is?				\times		
7	Are samples v	within specified holdin	g times?					\times		
8	Was proper te	emperature (thermal)	preservation) o	of cooler at rec	eipt adhered to)?				\mathbf{X}
	. C	looler Temperature		°C Blank	Temperature		_°C			
9	Was a trip bla	ank received?							\mathbf{X}	
	Trip blank s	upplied by CAS: Seria	al #		-TB					
10	Were custody	seals on outside of co	ooler/Box?						\boxtimes	
	Location of	seal(s)?			<u> </u>		_Sealing Lid?			X
	Were signat	ure and date included	?							X
	Were seals i	ntact?								\mathbf{X}
	Were custody	seals on outside of sa	mple containe	r?					X	
	Location of	seal(s)?					_Sealing Lid?			\mathbf{X}
	Were signat	ure and date included	?							\mathbf{X}
	Were seals i	ntact?								X
11	Do containers	have appropriate pre	servation, acc	ording to meth	hod/SOP or Cli	ent specified in	oformation?			X
	Is there a clie	nt indication that the s	ubmitted samp	ples are pH p	reserved?					X
	Were <u>VOA v</u>	ials checked for prese	nce/absence of	f air bubbles?						\mathbf{X}
	Does the clier	nt/method/SOP requir	e that the analy	yst check the s	ample pH and	if necessary al	ter it?			\mathbf{X}
12	Tubes:	Are the tubes cap	ped and intact	?						X
		Do they contain n	noisture?							X
13	Badges:	Are the badges p	roperly capped	d and intact?						\boxtimes
	-	Are dual bed bad	ges separated a	md individuall	y capped and i	ntact?				\mathbf{X}
Lab S	Sample ID	Container	Required	Received	Adjusted	VOA Headspace	e Receip	t / Press	ervation	
		Description	PH *	pН	pH	(Presence/Absence)	(C	ommen	its	
P0801622	-001.01	6.0 L Ambient Can								
P0801622		6.0 L Ambient Can			·				********	
P0801622		6.0 L Ambient Can								
P0801622	-004.01	6.0 L Ambient Can			-					
									<u> </u>	

Explain any discrepancies: (include lab sample ID numbers):

*Required pH: Phenols/COD/NH3/TOC/TOX/NO3+NO2/TKN/T.PHOS, H2SO4 (pH<2); Metals, HNO3 (pH<2); CN (NaOH or NaOH/Asc Acid) (pH>12);

5

NYSDEC DATA PACKAGE SUMMARY FORMS

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

SAMPLE IDENTIFICATION AND ANALYTICAL REQUIREMENT SUMMARY

Customer	Laboratory	Analytical							
Sample	Sample	*VOA	*BNA	*VOÁ	*Pest	*Metals	*Other		
Code	Code	GC/MS	GC/MS	GC	PCBs				
0000	0000	Method	Method	Method	Method				
		#	#	#	#				
275 Franklin OA	P0801622-001	EPA TO-15	13	71	11				
275 Franklin FA	P0801622-002	EPA TO-15							
275 Franklin CS	P0801622-002	EPA TO-15							
275 Franklin Dup	P0801622-003	EPA TO-15	·····						
	<u> </u>	EFA 10-13							
· · · · · · · · · · · · · · · · · · ·									
		ļ							
				1					
	<u> </u>								
۰ •									
							·····		
							i		
· · · · · · · · · · · · · · · · · · ·									
[

				l					
			· · · · · · · · · · · · · · · · · · ·						
· · · · · · · · · · · · · · · · · · ·				1					
	<u> </u>					<u> </u>			

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

SAMPLE PREPARATION AND ANALYSIS SUMMARY VOLATILE (VOA) ANALYSES

Laboratory		Date	Date Rec'd	Date	Date
Sample ID	Matrix	Collected	at Lab	Extracted	Analyzed
P0801622-001	Air	5/29/08	5/30/08	NA	6/4/08
P0801622-002	Air	5/29/08	5/30/08	NA	6/4/08
P0801622-003	Air	5/29/08	5/30/08	NA	6/4/08
P0801622-004	Air	5/29/08	5/30/08	NA	6/4/08
				<u> </u>	
	1				
2 					
					······································
· · · · · · · · · · · · · · · · · · ·					

· · · · · · · · · · · · · · · · · · ·					
					:
······································					
· · · · · · · · · · · · · · · · · · ·		1			
······································			1		
			<u> </u>		······································
				· · · · · · · · · · · · · · · · · · ·	
		L	L	ll	l

8

CHAIN OF CUSTODY FORMS

n Employee - Owned Company P	imi Valley, Ca hone (805) 5 ax (805) 526	26-7161	005	R 1	equested Tur Day (100%)	naround Time 2 Day (75%) 3	in Busines Day (50%)	s Days (Surcharg 4 Day (35%) 5 D	ges) please circ Day (25%) 10 D	le ay - Standard	CAS Pr	oject No.
		~					· · · · · ·	CAS Contact			X	
Company Name & Address (Fr	Porting Inform	nation) Inc-	Project Na	me 27.	5 Fran	iklins	rt.	A	nalysis Method a	nd/or Analytes	- 	
50 Fountaula suite 600 Bu	plaza Afalo N	1 14202	Project Nu		266 3	77						
Project Manager John 4	filton	1	P.O. # / Bil	ing Informa	tion							Comments e.g. Actual Preservative
^{hone} 716-667-0900 Fa	X .							- 15				or specific instructions
mail Address for Result Repo	rting			Print & Sign	A /	D-Spine	l	PP				
lient Sample ID	Laboratory ID Number	Date- Collected	T	Sample Type (Air/Tube/ Solid)		Flow Controller (Bar Code - FC #)	Sample Volume			-		
275 Franklin 017	1	5/29	1030	Air	003493	FC00293	61	V	م			-6.0"
275 Franklin FA	2		1035		002659	FC 00 341			Ŧ			-5.8"
275 Frankelin CS	3		1040		003754	FC00207	-					-5,2"
275 Franklin Dup	4	₩.		\checkmark		FC00037	V					-5.1"
·				·								
	· · ·											·
					~	25			······································			
							<u> </u>		······			
······				<u> </u>							······	
											· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
								-				
eport Tier Levels - please select er I - (Results/Default if not specified) _ er II - (Results + QC)		Tier III - (Dal Tier V - (clien	a Validation Pac	kage) 10% Sur	charge	•	EDD required	Yes / No	EDD Units:		Project	Requirements (MRLs, QAPP)
elinquished by: (Signature)	Amenil		Date:	Time:	PReceived by: Received by:		JEX ,	, <u>d_ 1</u>	Date: Data:			/ Blank

GC/MS VOLATILES DATA

QC Summary

12

SURROGATE SPIKE RECOVERY RESULTS

Page 1 of 1

Client: Malcolm Pirnie, Incorporated Client Project ID: 275 Franklin St. / 0266 377

CAS Project ID: P0801622

Fest Code: EPA TO-15 instrument ID: Tekmar AUTOCAN/Agilent 5975Cinert/6890N/MS16 Analyst: Wida Ang Sampling Media: 6.0 L Summa Canister(s) Fest Notes:

Date(s) Collected: 5/29/08 Date(s) Received: 5/30/08 Date(s) Analyzed: 6/3 - 6/4/08

		1,2-Dichlor	oethane-d4	Tolue	ene-d8	Bromofluo	robenzene	
Client Sample ID	CAS Sample ID	%	Acceptance	%	Acceptance	%	Acceptance	Data
•	-	Recovered	Limits	Recovered	Limits	Recovered	Limits	Qualifier
Method Blank	P080603-MB	96	70-130	99	70-130	83	70-130	
Lab Control Sample	P080603-LCS	96	70-130	98	70-130	82	70-130	
275 Franklin OA	P0801622-001	98	70-130	98	70-130	81	70-130	
275 Franklin FA	P0801622-002	98	70-130	98	70-130	82	70-130	
275 Franklin CS	P0801622-003	98	70-130	98	70-130	82	70-130	
275 Franklin Dup	P0801622-004	98	70-130	98	70-130	83	70-130	

Rc.

Date:

LABORATORY CONTROL SAMPLE SUMMARY

Page 1 of 1

Client:Malcolm Pirnie, IncorporatedClient Sample ID:Lab Control SampleCAClient Project ID:275 Franklin St. / 0266 377CATest Code:EPA TO-15DInstrument ID:Tekmar AUTOCAN/Agilent 5975Cinert/6890N/MS16DAnalyst:Wida AngDSampling Media:6.0 L Summa CanisterVolumed

CAS Project ID: P0801622 CAS Sample ID: P080603-LCS

Date Collected: NA Date Received: NA Date Analyzed: 6/03/08 Volume(s) Analyzed: NA Liter(s)

CAS #	Compound	Spike Amount ng	Result ng	% Recovery	CAS Acceptance Limits	Data Qualifier
75-01-4	Vinyl Chloride	24.8	24.1	97	61-127	
75-35-4	1,1-Dichloroethene	27.8	28.8	104	77-116	
75-09-2	Methylene Chloride	27.8	27.2	98	71-113	
156-60-5	trans-1,2-Dichloroethene	26.5	27.2	103	74-118	
156-59-2	cis-1,2-Dichloroethene	27.0	27.7	103	74-117	
71-55-6	1,1,1-Trichloroethane	26.8	27.7	103	78-114	
71-43-2	Benzene	27.0	25.0	93	73-111	
79-01-6	Trichloroethene	27.3	28.7	105	80-116	
108-88-3	Toluene	26.5	26.9	102	76-116	
127-18-4	Tetrachloroethene	26.0	27.6	106	77-118	
100-41-4	Ethylbenzene	26.3	27.3	104	79-116	
179601-23-1	m,p-Xylenes	62.5	64.4	103	80-117	
95-47-6	o-Xylene	29.8	30.7	103	80-116	

Test Notes:

Ru

RESULTS OF ANALYSIS

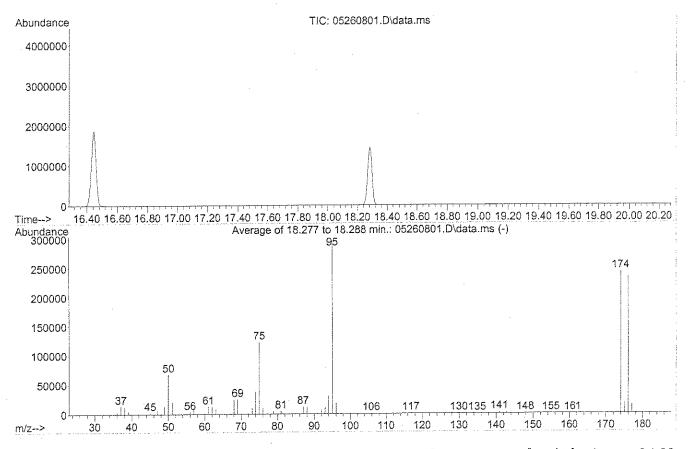
Page 1 of 1

Client:	Malcolm Pirnie, Incorporated	
Client Project ID:	275 Franklin St. / 0266 377	

CAS Project ID: P0801622

Method Blank Summary

Test Code: Instrument ID: Analyst: Sampling Media: Test Notes:	EPA TO-15 Tekmar AUTOCAN/Agilent 5975Cinert/6890N/MS16 Wida Ang 6.0 L Summa Canister(s)	Lab File II Date Analyze Time Analyze	
Client Sample ID	CAS Sample ID	Lab File ID	Time Analyzed

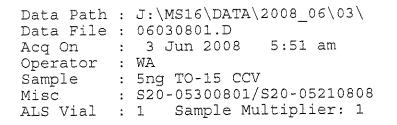

Lab Control Sample	 P080603-LCS	06030817.D	19:27
275 Franklin OA	P0801622-001	06030827.D	01:21
275 Franklin CS	P0801622-003	06030828.D	01:59
275 Franklin Dup	P0801622-004	06030829.D	02:36
275 Franklin FA	P0801622-002	06030831.D	04:16

15

Data Path : J:\MS16\DATA\2008_05\26\ Data File : 05260801.D Acq On : 26 May 2008 3:58 pm Operator : WA Sample : 25ng BFB Tune Misc : S20-05120801 ALS Vial : 1 Sample Multiplier: 1

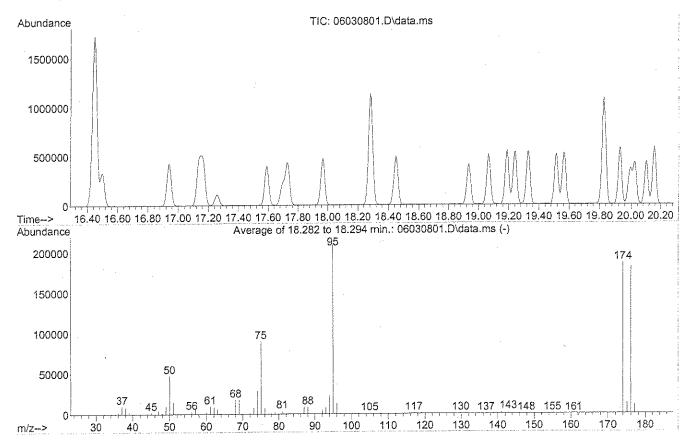
Integration File: RTEINT.P

Method : J:\MS16\METHODS\R16052608.M Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS) Last Update : Tue May 27 08:50:43 2008


سد بدمند

AutoFind: Scans 2479, 2480, 2481; Background Corrected with Scan 2469

Target	Rel. to	Lower	Upper	Rel.	Raw	Result
Mass	Mass	Limit%	Limit%	Abn%	Abn	Pass/Fail
50 75 95 96 173 174 175 176 177	95 95 95 174 95 174 174 174 176	8 30 100 5 0.00 50 4 93 5	40 66 100 9 2 120 9 101 9	23.5 42.6 100.0 6.5 0.8 83.9 7.4 96.6 6.2	68147 123432 289984 18763 2059 243179 18091 234901 14675	PASS PASS PASS PASS PASS PASS PASS PASS


R16052608.M Thu May 29 10:41:27 2008

B# 569/08

Integration File: RTEINT.P

Method : J:\MS16\METHODS\R16052608.M Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS) Last Update : Tue May 27 08:50:43 2008

AutoFind: Scans 2480, 2481, 2482; Background Corrected with Scan 2470

Target	Rel. to	Lower	Upper	Rel.	Raw	Result
Mass	Mass	Limit%	Limit%	Abn%	Abn	Pass/Fail
50 75 95 96 173 174 175 176 177	95 95 95 174 95 174 174 174 176	8 30 100 5 0.00 50 4 93 5	40 66 100 9 2 120 9 101 9	22.6 42.9 100.0 6.4 0.8 89.0 7.3 97.4 6.3	47448 90083 209792 13388 1582 186667 13620 181739 11359	PASS PASS PASS PASS PASS PASS PASS PASS

R16052608.M Thu Jun 05 16:36:19 2008

,04 6/5108

RESULTS OF ANALYSIS

Page 1 of 1

Client:	Malcolm Pirnie, Incorporated		CAS Project ID: P0801622	
Client Project ID:	275 Franklin St. / 0266 377	12		

Internal Standard Area and RT Summary

Test Code:	EPA TO-15	
Instrument ID:	Tekmar AUTOCAN/Agilent 5975Cinert/6890N/MS16	Lab File ID: 06030801.D
Analyst:	Wida Ang	Date Analyzed: 6/3/08
Sampling Media:	6.0 L Summa Canister(s)	Time Analyzed: 05:51
Test Notes:		

	IS1 (BCM)		IS2 (DFB)		IS3 (CBZ)	
	AREA #	RT #	AREA #	RT #	AREA #	RT #
24 Hour Standard	363875	9.20	1500112	11.35	574573	16.45
Upper Limit	509425	9.53	2100157	11.68	804402	16.78
Lower Limit	218325	8.87	900067	11.02	344744	16.12

	Client Sample ID						
01	Method Blank	352886	9.19	1448658	11.34	560317	16.44
02	Lab Control Sample	352094	9.23	1451764	11.37	563110	16.45
03	275 Franklin OA	325243	9.19	1349535	11.34	526941	16.45
04	275 Franklin CS	328702	9.19	1355237	11.34	528175	16.45
05	275 Franklin Dup	329793	9.19	1379796	11.34	534295	16.45
06	275 Franklin FA	334486	9.19	1385669	11.34	537051	16.45
07							

08

09

10

10

11 12

IS1 (BCM) = Bromochloromethane

IS2 (DFB) = 1,4-Difluorobenzene

IS3 (CBZ) = Chlorobenzene-d5

AREA UPPER LIMIT = 140% of internal standard area AREA LOWER LIMIT = 60% of internal standard area RT UPPER LIMIT = 0.33 minutes of internal standard RT RT LOWER LIMIT = 0.33 minutes of internal standard RT

Column used to flag values outside QC limits with an asterisk.

* Values outside of QC limits.

Verified By:____

Ker

MDLs for TO-15 (LOW LEVEL - SCAN)

· · · · · · · · · · · · · · · · · · ·	09/17/07	10/02/07	08/30/07	Ì				FI	NAL
	MS9	MS13	MS16	MAX		1	MW	MDLR	MDL _R
COMPOUND	MDL _R	MDL _R	MDL _R	MDL _R	µg/m³	ppbV	<u> </u>	µg/m³	ppbV
Propene	0.050	0.025	0.025	0.0500	0.050	0.02906	42.08	0.050	0.029
Dichlorodifluoromethane	0.050	0.025	0.027	0.0500	0.050	0.01012	120.90	0.050	0.010
Chloromethane	0.050	0.025	0.025	0.0500	0.050	0.02422	50.49	0.050	0.024
Freon 114	0.050	0.027	0.025	0.0500	0.050	0.00716	170.90	0.050	0.0072
Vinyl Chloride	0.050	0.025	0.029	0.0500	0.050	0.01957	62.50	0.050	0.020
1.3-Butadiene	0.050	0.025	0.026	0.0500	0.050	0.02261	54.09	0.050	0.023
Bromomethane	0.050	0.031	0.030	0.0500	0.050	0.01288	94.94	0.050	0.013
Chloroethane	0.050	0.033	0.032	0.0500	0.050	0.01896	64.52	0.050	0.019
Ethanol	0.050	0.050	0.050	0.0500	0.050	0.02655	46.07	0.050	0.027
Acetonitrile	0.050	0.025	0.025	0.0500	0.050	0.02979	41.05	0.050	0.030
Acrolein	0.063	0.025	0.044	0.0630	0.063	0.02749	56.06	0.063	0.027
Acetone	0.073	0.049	0.062	0.0730	0.073	0.03074	58.08	0.073	0.031
Trichlorofluoromethane	0.050	0.025	0.025	0.0500	0.050	0.00890	137.40	0.050	0.0089
Isopropanol	0.057	0.050	0.025	0.0570	0.057	0.02320	60.10	0.057	0.023
Acrylonitrile	0.070	0.025	0.025	0.0700	0.070	0.03227	53.06	0.070	0.032
1.1-Dichloroethene	0.050	0.046	0.045	0.0500	0.050	0.01262	96.94	0.050	0.013
tert-Butanol	0.074	0.050	0.050	0.0740	0.074	0.02442	74.12	0.074	0.024
Methylene Chloride	0.074	0.025	0.037	0.0500	0.050	0.01440	84.94	0.050	0.014
Allyl Chloride	0.050	0.025	0.037	0.0500	0.050	0.01598	76.53	0.050	0.014
Trichlorotrifluoroethane	0.056	0.025	0.028	0.0560	0.056	0.00731	187.38	0.056	0.0073
Carbon Disulfide	0.050	0.025	0.120	0.1200	0.120	0.03855	76.14	0.12	0.039
trans-1,2-Dichloroethene	0.050	0.025	0.025	0.0500	0.050	0.01262	96.94	0.050	0.013
1,1-Dichloroethane	0.050	0.025	0.025	0.0500	0.050	0.01236	98.96	0.050	0.012
Methyl tert-Butyl Ether	0.050	0.025	0.031	0.0500	0.050	0.01387	88.15	0.050	0.014
Vinyl Acetate	0.140	0.160	0.077	0.1600	0.160	0.04546	86.09	0.16	0.045
2-Butanone	0.050	0.041	0.026	0.0500	0.050	0.01696	72,11	0.050	0.017
cis-1,2-Dichloroethene	0.050	0.025	0.026	0.0500	0.050	0.01262	96.94	0.050	0.013
Diisopropyl Ether	0.059	0.025	0.032	0.0590	0.059	0.01412	102.18	0.059	0.014
Ethyl Acetate	0.050	0.046	0.061	0.0610	0.061	0.01693	88.11	0.061	0.017
n-Hexane	0.050	0.025	0.025	0.0500	0.050	0.01419	86,17	0.050	0.014
Chloroform	0.059	0.028	0.028	0.0590	0.059	0.01209	119.40	0.059	0.012
Tetrahydrofuran	0.053	0.051	0.029	0.0530	0.053	0.01798	72.11	0.053	0.018
Ethyl tert-Butyl Ether	0.051	0.025	0.027	0.0510	0.051	0.01221	102.18	0.051	0.012
1,2-Dichloroethane	0.050	0.025	0.030	0.0500	0.050	0.01236	98.96	0.050	0.012
1,1,1-Trichloroethane	0.050	0.025	0.025	0.0500	0.050	0.00917	133,40	0.050	0.0092
Isopropyl Acetate	0.066	0.029	0.041	0.0660	0.066	0.01581	102.13	0.066	0.016
1-Butanol	0.095	0.025	NA	0.0950	0.095	0.03135	74.12	0.095	0.031
Benzene	0.050	0.025	0.026	0.0500	0.050	0.01566	78.11	0.050	0.016
Carbon Tetrachloride	0.050	0.025	0.025	0.0500	0.050	0.00795	153.80	0.050	0.0080
Cvclohexane	0.050	0.025	0.025	0.0500	0.050	0.01453	84.16	0.050	0.015
tert-Amyl Methyl Ether	0.050	0.025	0.025	0.0500	0.050	0.01197	102,18	0.050	0.012
1,2-Dichloropropane	0.050	0.025	0.025	0.0500	0.050	0.01082	113.00	0.050	0.011
Bromodichloromethane	0.050	0.025	0.025	0.0500	0.050	0.00747	163.80	0.050	0.0075
Trichloroethene	0.050	0.032	0.025	0.0500	0.050	0.00931	131.40	0.050	0.0093
1,4-Dioxane	0.061	0.040	0.036	0.0610	0.061	0.01693	88.11	0.061	0.017
Isooctane	0.050	0.025	0.025	0.0500	0.050	0.01071	114.23	0.050	0.011
Methyl Methacrylate	0.075	0.050	0.025	0.0750	0.075	0.01832	100.12	0.075	0.018
n-Heptane	0.064	0.030	0.030	0.0640	0.064	0.01562	100.20	0.064	0.016
cis-1,3-Dichloropropene	0.052	0.030	0.025	0.0520	0.052	0.01146	111.00	0.052	0.011
4-Methyl-2-pentanone	0.056	0.026	0.034	0.0560	0.056	0.01367	100.20	0.056	0.014
trans-1,3-Dichloropropene	0.063	0.035	0.025	0.0630	0.063	0.01388	111.00	0.063	0.014
1,1,2-Trichloroethane	0.050	0.032	0.030	0.0500	0.050	0.00917	133.40	0.050	0.0092
Toluene	0.050	0.027	0.025	0.0500	0.050	0.01327	92.14	0.050	0.013
2-Hexanone	0.076	0.025	0.030	0.0760	0.076	0.01856	100.16	0.076	0.019
Dibromochloromethane	0.068	0.025	0.030	0.0680	0.068	0.00799	208.30	0.068	0.0080
	1 0.000	V.ULV	0.000						
1.2-Dibromoethane	0.054	0.031	0.025	0.0540	0.054	0.00703	187.90	0.054	0.0070

MDLs for TO-15 (LOW LEVEL - SCAN)

F	09/17/07	10/02/07	08/30/07					FII	NAL
	MS9	MS13	MS16	MAX			MW	MDL _R	MDL _R
COMPOUND	MDLR	MDL _R	MDL _R		µg/m³	ppbV		µg/m³	ppbV
n-Octane	0.050	0.029	0.035	0.0500	0.050	0.01071	114.23	0.050	0.011
Tetrachloroethene	0.050	0.031	0.029	0.0500	0.050	0.00738	165.80	0.050	0.0074
Chlorobenzene	0.051	0.025	0.025	0.0510	0.051	0.01108	112.60	0.051	0.011
Ethylbenzene	0.062	0.025	0.025	0.0620	0.062	0.01428	106.20	0.062	0.014
m- & p-Xylene	0.130	0.050	0.050	0.1300	0,130	0.02994	106.20	0.13	0.030
Bromoform	0.076	0.029	0.033	0.0760	0.076	0.00735	252.80	0.076	0.0074
Styrene	0.076	0.025	0.025	0.0760	0.076	0.01786	104.10	0.076	0.018
o-Xylene	0.063	0.025	0.036	0.0630	0.063	0.01451	106.20	0.063	0.015
n-Nonane	0.050	0.025	0.025	0.0500	0.050	0.00954	128.26	0.050	0.0095
1,1,2,2-Tetrachloroethane	0.064	0.025	0.025	0.0640	0.064	0.00932	167.90	0.064	0.0093
Cumene	0.056	0.025	0.025	0.0560	0.056	0.01140	120.20	0.056	0.011
alpha-Pinene	0.077	0.025	0.025	0.0770	0.077	0.01382	136.24	0.077	0.014
n-Propylbenzene	0.052	0.025	0.025	0.0520	0.052	0.01058	120.19	0.052	0.011
3-Ethyltoluene	0.057	0.025	0.025	0.0570	0.057	0.01160	120.20	0.057	0.012
4-Ethyltoluene	0.057	0.027	0.026	0.0570	0.057	0.01160	120.20	0.057	0.012
1.3,5-Trimethylbenzene	0.060	0.025	0.025	0.0600	0.060	0.01221	120.20	0.060	0.012
alpha-Methylstyrene	0.073	0.025	0.027	0.0730	0.073	0.01511	118.19	0.073	0.015
2-Ethyltoluene	0.053	0.025	0.027	0.0530	0.053	0.01079	120.20	0.053	0.011
1,2,4-Trimethylbenzene	0.069	0.025	0.025	0.0690	0.069	0.01404	120.20	0.069	0.014
n-Decane	0.064	0.025	0.025	0.0640	0.064	0.01100	142.28	0.064	0.011
Benzyl Chloride	0.086	0.025	0.025	0.0860	0.086	0.01662	126.59	0.086	0.017
1,3-Dichlorobenzene	0.062	0.025	0.025	0.0620	0.062	0.01032	147.00	0.062	0.010
1,4-Dichlorobenzene	0.056	0.025	0.025	0.0560	0.056	0.00932	147.00	0.056	0.0093
sec-Butylbenzene	0.058	0.025	0.025	0.0580	0.058	0.01057	134.22	0.058	0.011
p-Isopropyltoluene	0.065	0.025	0.029	0.0650	0.065	0.01185	134.22	0.065	0.012
1,2,3-Trimethylbenzene	0.064	0.025	0.025	0.0640	0.064	0.01302	120.19	0.064	0.013
1.2-Dichlorobenzene	0.066	0.025	0.032	0.0660	0.066	0.01098	147.00	0.066	0.011
d-Limonene	0.080	0.025	0.025	0.0800	0.080	0.01436	136.24	0.080	0.014
1.2-Dibromo-3-Chloropropan	0.076	0.025	0.027	0.0760	0.076	0.00787	236.33	0.076	0.0079
n-Undecane	0.090	0.025	0.025	0.0900	0.090	0.01408	156.31	0.090	0.014
1,2,4-Trichlorobenzene	0.076	0.025	0.049	0.0760	0.076	0.01024	181.50	0.076	0.010
Naphthalene	0.074	0.025	0.032	0.0740	0.074	0.01412	128.17	0.074	0.014
n-Dodecane	0.088	0.025	0.025	0.0880	0.088	0.01264	170.34	0.088	0.013
Hexachloro-1,3-butadiene	0.090	0.036	0.032	0.0900	0.090	0.00844	260.80	0.090	0.0084

Q:\\MDL_MRL\TO15(SCAN)\TO15LLMDL(101007).xls NOTE: NON-NAVY, AFCEE PROJECTS

Sample Data

RESULTS OF ANALYSIS

Page 1 of 1

Client:	Malcolm Pirnie, Incorporated		
Client Sample ID:		CAS Project ID: P0801622	
Client Project ID:	275 Franklin St. / 0266 377	CAS Sample ID: P0801622-001	
Fest Code:	EPA TO-15	Date Collected: 5/29/08	
instrument ID:	Tekmar AUTOCAN/Agilent 5975Cinert/6890N/MS16	Date Received: 5/30/08	
Analyst:	Wida Ang	Date Analyzed: 6/4/08	
Sampling Media:	6.0 L Summa Canister	Volume(s) Analyzed: 1.00 Liter(s))
Test Notes:			
Container ID:	AC01303		

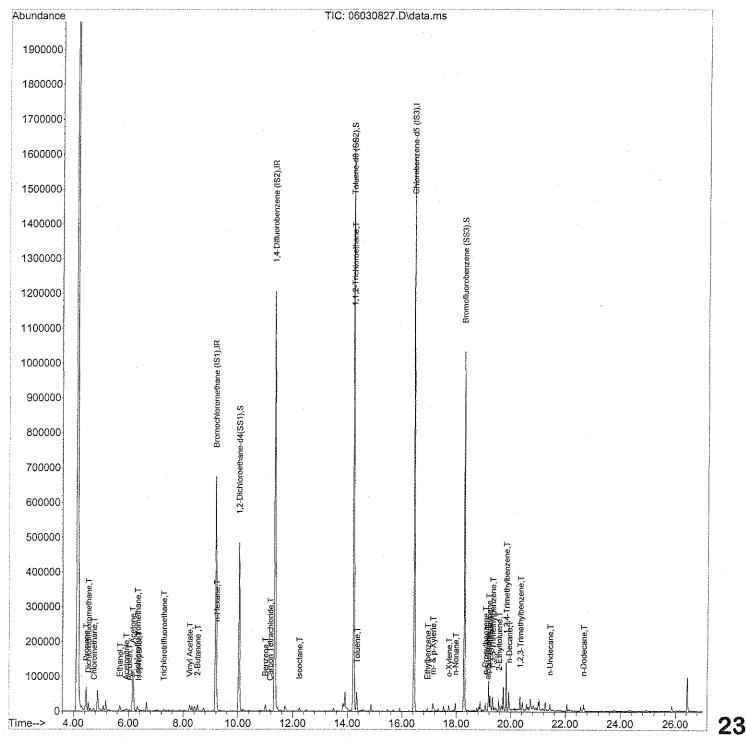
-2.9

Initial Pressure (psig):

Final Pressure (psig): 3.5

Canister Dilution Factor: 1.54

CAS #	Compound	Result µg/m³	MRL µg/m³	Result ppbV	MRL ppbV	Data Qualifier
75-01-4	Vinyl Chloride	ND	<u>0.77</u>	ND	0,30	
75-35-4	1,1-Dichloroethene	ND	0.77	ND	0.19	
75-09-2	Methylene Chloride	ND	0.77	ND	0.22	
156-60-5	trans-1,2-Dichloroethene	ND	0.77	ND	0.19	
156-59-2	cis-1,2-Dichloroethene	ND	0.77	ND	0.19	
7.1-55-6	1,1,1-Trichloroethane	ND	0.77	ND	0.14	
71-43-2	Benzene	ND	0.77	ND	0.24	
79-01-6	Trichloroethene	ND	0.15	ND	0.029	
108-88-3	Toluene	1.1	0.77	0.30	0.20	
127-18-4	Tetrachloroethene	ND	0.77	ND	0.11	
100-41-4	Ethylbenzene	ND	0.77	ND	0.18	
179601-23-1	m,p-Xylenes	ND	0.77	ND	0.18	
95-47-6	o-Xylene	ND	0.77	ND	0.18	


ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

P0801622_TO15_0806101533_SS.xis - Sample

Verified By: <u>R.</u>

Data Path	:	J:\MS16\DATA\2008_06\03\
Data File	:	06030827.D
Acq On	:	4 Jun 2008 1:21
Operator	:	AW
		P0801622-001 (1000ml)
Misc	:	Malcolm 275 Franklin OA (-2.9, 3.5) 🦯
ALS Vial	:	13 Sample Multiplier: 1

R16052608.M Tue Jun 10 09:38:38 2008

Data Path : J:\MS16\DATA\2008_06 Data File : 06030827.D Acq On : 4 Jun 2008 1:21 Operator : WA Sample : P0801622-001 (1000ml Misc : Malcolm 275 Franklin ALS Vial : 13 Sample Multiplic Quant Time: Jun 04 04:09:26 2008	·	.9, 3	.5)			
Quant Method : J:\MS16\METHODS\R Quant Title : EPA TO-15 per SOP QLast Update : Tue May 27 08:50:4 Response via : Initial Calibratio	VOA-TO 13 2008		ASS TO-15/0	GC-MS)		
Internal Standards	R.T.	QIon	Response	Conc Units	Dev(Min)
1) Bromochloromethane (IS1) 37) 1,4-Difluorobenzene (IS2) 56) Chlorobenzene-d5 (IS3)	9.19 11.34 16.45	130 114 82	325243 1349535 526941	25.000 ng 25.000 ng 25.000 ng	- 0 - 0 - 0	.05 .04 .01
System Monitoring Compounds 33) 1,2-Dichloroethane-d4(Spiked Amount 25.000 57) Toluene-d8 (SS2)			Recove 1331813	24.624 ng ery = 98 24.515 ng	.48% -0	
Spiked Amount 25.000 73) Bromofluorobenzene (SS3) Spiked Amount 25.000	18.28	174	367915	ery = 98 20.370 ng ery = 81	- 0	.01
<pre>Target Compounds 2) Propene 3) Dichlorodifluoromethane 4) Chloromethane 5) Freon 114 6) Vinyl Chloride 7) 1,3-Butadiene 8) Bromomethane 9) Chloroethane</pre>	4.46 4.55 4.75 4.87 0.00 5.08 0.00 0.00	42 85 50 135 62 54 94 64	9849 24535 9997 537 0 102 0 0	0.391 ng 0.806 ng 0.261 ng N.D. N.D. N.D. N.D. N.D. N.D. N.D.	Qva #	lue 51 98 98
 Ethanol Acetonitrile Acrolein Acetone Trichlorofluoromethane Isopropanol Acrylonitrile 1,1-Dichloroethene tert-Butanol Methylene Chloride 	5.70 5.92 6.04 6.16 6.33 6.37 6.65 0.00 6.98 7.03	45 41 56 58 101 45 53 96 59 84	24312 6123 4170 72925 12070 8479 94 0 1519 1290	1.423 ng 0.124 ng 0.339 ng 4.291 ng 0.423 ng 0.166 ng N.D. N.D. N.D. N.D.	#	100 72 94 72 97 63
 20) Allyl Chloride 21) Trichlorotrifluoroethane 22) Carbon Disulfide 23) trans-1,2-Dichloroethene 24) 1,1-Dichloroethane 25) Methyl tert-Butyl Ether 26) Vinyl Acetate 27) 2-Butanone 28) cis-1,2-Dichloroethene 	7.15 7.30 7.40 0.00 0.00 0.00 8.24 8.52 9.19	41 151 61 63 73 86 72 61	102 2700 3335 0 0 2007 4968 328	N.D. 0.195 ng N.D. N.D. N.D. 0.721 ng 0.559 ng N.D.	##	84 75 1
29) Diisopropyl Ether 30) Ethyl Acetate 31) n-Hexane	0.00 9.19 9.22	87 61 57	0 328 7034	N.D. N.D. 0.190 ng	#	65 24

RAT 6/10/08

Data Path : J:\MS16\DATA\2008 06\03\ Data File : 06030827.D Acq On : 4 Jun 2008 1:21 Operator : WA Sample<th:</th>: P0801622-001 (1000ml)Misc: Malcolm 275 Franklin OA (-2.9, 3.5) ALS Vial : 13 Sample Multiplier: 1 Quant Time: Jun 04 04:09:26 2008 Quant Method : J:\MS16\METHODS\R16052608.M Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS) QLast Update : Tue May 27 08:50:43 2008 Response via : Initial Calibration

 R.T. Qion Response Conc Units Dev(Min)

 32: Chloroform 9.33 83 531 N.D.

 32: Chloroform 0.00 72 0 N.D.

 33: Ethyl tert-Sutyl Ether 0.00 87 0 N.D.

 34: Tetrahydrofuran 0.00 72 0 N.D.

 35: Lthyl tert-Sutyl Ether 0.00 87 0 N.D.

 36: 1,2-Dichlorosthane 0.00 62 0 N.D.

 37: Stand
 0.00 62 0 N.D.

 38: Isingropyl Accate 0.00 61 0 N.D.

 40: 1-Sutanol 1.0.80 56 1275 N.D.

 41: Benzene 11.00 76 19237 0-338 ng 96

 42: Carbon Tetrachloride 11.17 117 4004 0.172 ng 95

 43: Cyclohexane 1.34 84 1412 N.D.

 44: tert-Amyl Methyl Ether 0.00 73 0 N.D.

 45: 1,2-Dichlorosthane 0.00 83 0 N.D.

 49: 1,4-Dicxane 0.00 83 0 N.D.

 49: 1,4-Dicxane 0.00 100 N.D.

 49: 1,50cctane 12.24 57 10981 0.121 ng 96

 50: Methyl Methacrylate 0.00 100 N.D.

 51: 1,1,2-Trichlorosthane 14.24 97 111510 S.OSB ng # 7

 53: 1,1,2-Trichlorosthane 14.24 97 111510 S.OSB ng # 7

 59: 2-Hexanone 14.59 43 5413 N.D.

 60: Dibromochloromethane 0.00 129 0 N.D.

 61: 1,2-Dichlorosthane 14.24 97 111510 S.OSB ng # 7

 59: 2-Hexanone 14.59 43 1567 N.D.

 61: 1,2-Dichlorosthane 14.24 97 111510 S.OSB ng # 7

 62: Dhlorobenethane 15.69 166 1576 N.D.

 Internal Standards R.T. QIon Response Conc Units Dev(Min) 87 6/10/08 Page: 2

16052608.M Tue Jun 10 09:38:37 2008

Data Path : J:\MS16\DATA\2008 06\03\ Data File : 06030827.D Acq On : 4 Jun 2008 1:21 Operator : WA Sample : P0801622-001 (1000ml) Misc : Malcolm 275 Franklin OA (-2.9, 3.5) ALS Vial : 13 Sample Multiplier: 1 Quant Time: Jun 04 04:09:26 2008 Ouant Method : J:\MS16\METHODS\R16052608.M Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS) QLast Update : Tue May 27 08:50:43 2008 Response via : Initial Calibration Internal Standards R.T. QION Response Conc Units Dev(Min)

 80) alpha-Methylstyrene
 19.72
 118
 434
 N.D.

 81) 2-Ethyltoluene
 19.56
 105
 24577
 0.320 ng

 82) 1,2,4-Trimethylbenzene
 19.83
 105
 83240
 1.296 ng

 83) n-Decane
 19.93
 57
 24311
 0.535 ng

 84) Benzyl Chloride
 20.11
 91
 1269
 N.D.

 85) 1,3-Dichlorobenzene
 20.10
 146
 716
 N.D.

 86) 1,4-Dichlorobenzene
 20.10
 146
 716
 N.D.

 87) sec-Butylbenzene
 20.34
 119
 3016
 N.D.

 88) p-Isopropyltoluene
 20.34
 119
 3016
 N.D.

 94 98 88

 80, p-isopropyicoluene
 20.34
 119
 3016
 N.D.

 89) 1,2,3-Trimethylbenzene
 20.34
 105
 15675
 0.254 ng

 90) 1,2-Dichlorobenzene
 0.00
 146
 0
 N.D.

 91) d-Limonene
 20.51
 68
 352
 N.D.

 92) 1,2-Dibromo-3-Chloropr...
 0.00
 157
 0
 N.D.

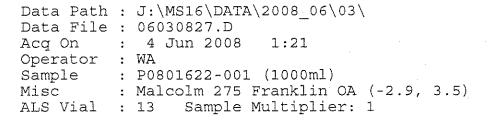
 93) n-Undecane
 21.44
 57
 7855
 0.165 ng

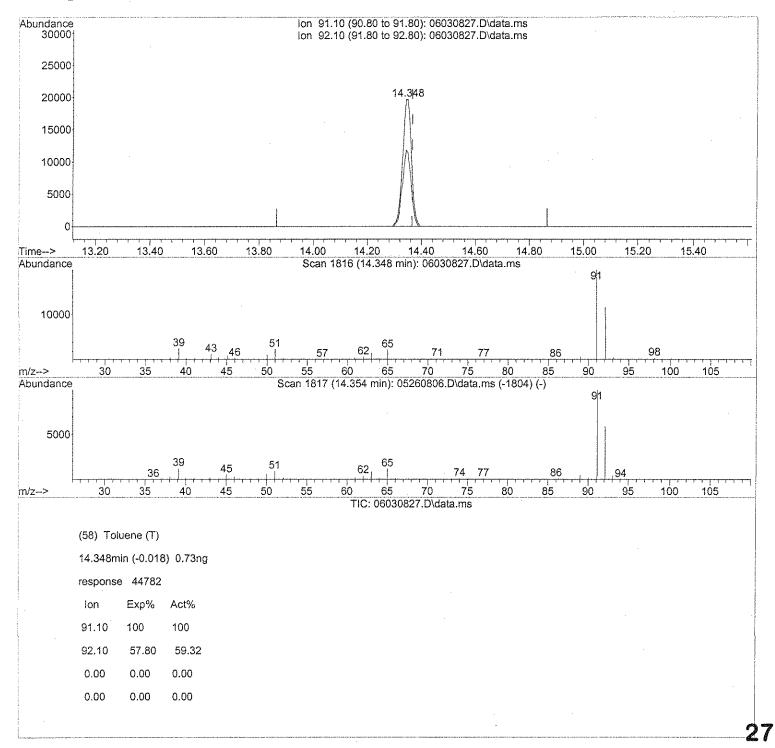
 94) 1,2,4-Trichlorobenzene
 0.00
 184
 0
 N.D.

 95) Naphthalene
 22.69
 128
 8594
 N.D.

 96) n-Dodecane
 22.66
 57
 7431
 0.160 ng

 97) Hexachloro-1
 3-butadiene
 0.00
 225
 0
 N.D.


 95 78 0.160 ng # 72


DA 6/10/08

97) Hexachloro-1,3-butadiene 0.00 225 0 N.D.

(#) = qualifier out of range (m) = manual integration (+) = signals summed

.16052608.M Tue Jun 10 09:38:37 2008

RESULTS OF ANALYSIS

Page 1 of 1

Client:	Malcolm Pirnie, Incorporated					
Client Sample ID:	275 Franklin FA	CAS Project ID: P08	01622			
-	275 Franklin St. / 0266 377	CAS Sample ID: P0801622-002				
Test Code:	EPA TO-15	Date Collected: 5/2	9/08			
Instrument ID:	Tekmar AUTOCAN/Agilent 5975Cinert/6890N/MS16	Date Received: 5/3	0/08			
Analyst:	Wida Ang	Date Analyzed: 6/4/	/08			
Sampling Media:	6.0 L Summa Canister	Volume(s) Analyzed:	0.40 Liter(s)			
Test Notes:						
Container ID:	AC00902					
	Initial Pressure (psig): -2.8 Final Pres	ssure (psig): 3.5				

Canister Dilution Factor: 1.53

CAS #	Compound	Result µg/m³	MRL µg/m³	Result ppbV	MRL ppbV	Data Qualifier
75-01-4	Vinyl Chloride	ND	1.9	ND	0.75	
75-35-4	1,1-Dichloroethene	ND	1.9	ND	0.48	
75-09-2	Methylene Chloride	28	1.9	8.0	0.55	
156-60-5	trans-1,2-Dichloroethene	ND	1.9	ND	0.48	
156-59-2	cis-1,2-Dichloroethene	ND	1.9	ND	0.48	
71-55-6	1,1,1-Trichloroethane	ND	1.9	ND	0.35	
71-43-2	Benzene	2.6	1.9	0.82	0.60	
79-01-6	Trichloroethene	1.1	0.38	0.21	0.071	
108-88-3	Toluene	29	1.9	7.7	0.51	
127-18-4	Tetrachloroethene	93	1.9	14	0.28	
100-41-4	Ethylbenzene	16	1.9	3.7	0.44	
179601-23-1	m,p-Xylenes	47	1.9	11	0.44	
95-47-6	o-Xylene	110	1.9	24	0.44	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

Verified By:_____

Re

(Not Reviewed)

Data Path : J:\MS16\DATA\2008_06\03\ Data File : 06030831.D Acq On : 4 Jun 2008 4:16 am Operator : WA Sample : P0801622-002 (400ml) Misc : Malcolm 275 Franklin FA (-2.8, 3.5) ALS Vial : 14 Sample Multiplier: 1

Quant Time: Jun 04 06:13:52 2008 Quant Method : J:\MS16\METHODS\R16052608.M Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS) QLast Update : Tue May 27 08:50:43 2008 Response via : Initial Calibration

Abundance	TIC: 06030831.D\data.ms	
4.4e+07		
4.2e+07		
4e+07		
3.8e+07		
	· · · · · · · · · · · · · · · · · · ·	
3.6e+07		
3.4e+07		
3.2e+07	e.T 1.9. 1.2.4 Trimethythemzene.T	
	L. are	
3e+07	β-Ethyltotuene. 1.2.	
2.8e+07		
2.6e+07		
2.4e+07	2.Ethyloluene, 1.3.5.Thiftelikiyheleteene.T 2.Ethyloluene, 1. Boirz/McDeneene.T Boirz/McDeneene.T	
	3.5.7.1指把把 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	
2.2e+07		
2e+07		
1.8e+07	2. Ethyliotuene, 1.3.5. Th 2. Ethyliotuene, 1.3.5. Th Béhzyi 1. 2.845 program Béhzyi	
1.6e+07	2.EE	
1.4e+07	D-Nonane,T	
1.2e+07	D-Propybenzene,T	
1e+07	Chude	
8000000	S1), ([S2]) [S3]	
8000000	hane, T ane, T ane, T ane, T P- d4(SS- fi2 fine (IS fi2 fine (IS fi2 fine (IS ane, T rzene (S rzene, T rzene, T rzene, T f	
6000000	Recursion in the second	
4000000	Chemonol Tan Chemonol Tan Ethanol Tan Chemonol Tan Chemonol Tan Chemonol Chemone, T Carbon Yoyi Unstee, thane, T Carbon Yoyi Unstee, thane, T Carbon Yoyi Unstee, thane, T Carbon Yoyi Unstee, thane, T Carbon Chemonol Chemone, T 1, 2, EhchelloBeneritharp, e. d4 (SS 1), S Leutanon Chemone, T 1, 2, EhchelloBeneritharp, e. d4 (SS 1), S Leutanon Chemone, T 1, 2, EhchelloBeneritharp, e. d4 (SS 1), S Leutanon Chemone, T 1, 2, EhchelloBeneritharp, e. d4 (SS 1), S Leutanon Chemone, T Public Activity Scherker, T 2, Herrin Scholer, T Public Activity Scherker, T 2, Herrin Section Chemone, T Buy Accelate, T Ethyle Scherker, T 2, Herrin Scholer, Chemone, T Buy Accelate, T Ethyle Scherker, T 2, Herrin Scholer, T Buy Accelate, T Anthreating Scholer, T Buy Accelate, T Buy Accelate, T Anthreater, T Anthreater, SS3), S Buy Accelate, T Authreater, T	
2000000		
	have a have been a have	
0⊢ Time> 4	4.00 6.00 8.00 10.00 12.00 14.00 16.00 18.00 20.00 22.00 24.00 26.00	29
	$Page \cdot 4$	

R16052608.M Wed Jun 04 06:13:54 2008

	¥ a a tro a o a o z o tr		(,			
Data Acq O Opera	Path : J:\MS16\DATA\2008_06 File : 06030831.D n : 4 Jun 2008 4:16 a tor : WA e : P0801622-002 (400ml) : Malcolm 275 Franklin ial : 14 Sample Multipli	m	.8, 3	.5)				·
Quant Quant QLast	Time: Jun 04 06:13:52 2008 Method : J:\MS16\METHODS\R Title : EPA TO-15 per SOP Update : Tue May 27 08:50: nse via : Initial Calibrati	1605260 VOA-TO 43 2008	8.M 15 (Ci	ASS TO-15/0	GC-MS)			
Inte	rnal Standards	R.T.	QIon	Response	Conc 1	Units	Dev ()	Min)
37)	Bromochloromethane (IS1) 1,4-Difluorobenzene (IS2) Chlorobenzene-d5 (IS3)	11.34	114	1385669	25.000	ng	- 0	.04
33) Sp 57)	em Monitoring Compounds 1,2-Dichloroethane-d4(iked Amount 25.000 Toluene-d8 (SS2)			1357289	ery = 24.514	98 ng	.04% -0	.02
73)	iked Amount 25.000 Bromofluorobenzene (SS3) iked Amount 25.000	18.29	174	375214	ery = 20.383 ery =	ng	0	.00
2) 3) 4) 5) 6) 7) 8) 9) 10) 12) 12) 13) 14) 15) 16) 17) 18) 19) 20) 21) 22)	et Compounds Propene Dichlorodifluoromethane Chloromethane Freon 114 Vinyl Chloride 1,3-Butadiene Bromomethane Chloroethane Ethanol Acetonitrile Acrolein Acetone Trichlorofluoromethane Isopropanol Acrylonitrile 1,1-Dichloroethene tert-Butanol Methylene Chloride Allyl Chloride Trichlorotrifluoroethane Carbon Disulfide	$\begin{array}{c} 4.74\\ 4.84\\ 0.00\\ 5.13\\ 0.00\\ 0.00\\ 5.74\\ 5.93\\ 6.04\\ 6.15\\ 6.32\\ 6.41\\ 6.66\\ 0.00\\ 7.00\\ \hline{7.02}\\ 7.15\\ 7.28\\ 7.39\end{array}$	50 135 624 94 45 40 45 101 581 536 994 411 56 151 76	$\begin{array}{r} 9049\\ 95\\ 0\\ 445\\ 0\\ 0\\ 365625\\ 7467\\ 8572\\ 197238\\ 14447\\ 2081742\\ 2047\\ 0\\ 8548\\ 97594\\ 191\\ 2035\\ 6986\end{array}$	0.230 N.D N.D N.D 20.812 0.147 0.677 11.285 0.493 39.542 0.064 N.D 0.174 V.240 N.D 0.143 0.129	ng ng ng 	#	98
23) 24) 25) 26) 27) 28)	trans-1,2-Dichloroethene 1,1-Dichloroethane Methyl tert-Butyl Ether Vinyl Acetate 2-Butanone cis-1,2-Dichloroethene Diisopropyl Ether	0.00	61 63 73 86 72 61 87	1135 0 2687 20568 7390 0	2.251 0 <u>.298</u> N.D	ng ng -ng-	# #	1 12 93
30)	Ethyl Acetate n-Hexane	9.17 9.23	61 57	1145 64406	0.180	ng	#	30 91 30
								_

10A 6/5/08

Data Path : J:\MS16\DATA\2008 06\03\ Data File : 06030831.D Acg On : 4 Jun 2008 4:16 am Operator : WA Sample : P0801622-002 (400ml) Misc : Malcolm 275 Franklin FA (-2.8, 3.5) ALS Vial : 14 Sample Multiplier: 1 Ouant Time: Jun 04 06:13:52 2008 Quant Method : J:\MS16\METHODS\R16052608.M Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS) QLast Update : Tue May 27 08:50:43 2008 Response via : Initial Calibration

 Internal Standards
 R.T. Qion Response Conc Units Dev(Min)

 321 Chloroform
 9.32
 83
 1824
 0.092 ng
 84

 341 Terrahydrofuran
 9.77
 72
 705C
 0.821 ng
 # 43

 351 Ethyl tert-Butyl Ether
 0.00
 87
 0
 N.D.
 84

 351 L,1,1-Trichloroethane
 10.17
 62
 1135
 0.050 ng
 # 42

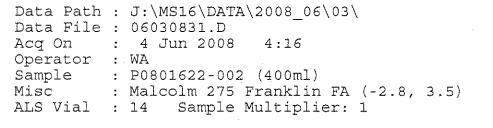
 361 L,2Dichloroethane
 10.48
 97
 674
 N.D.
 84

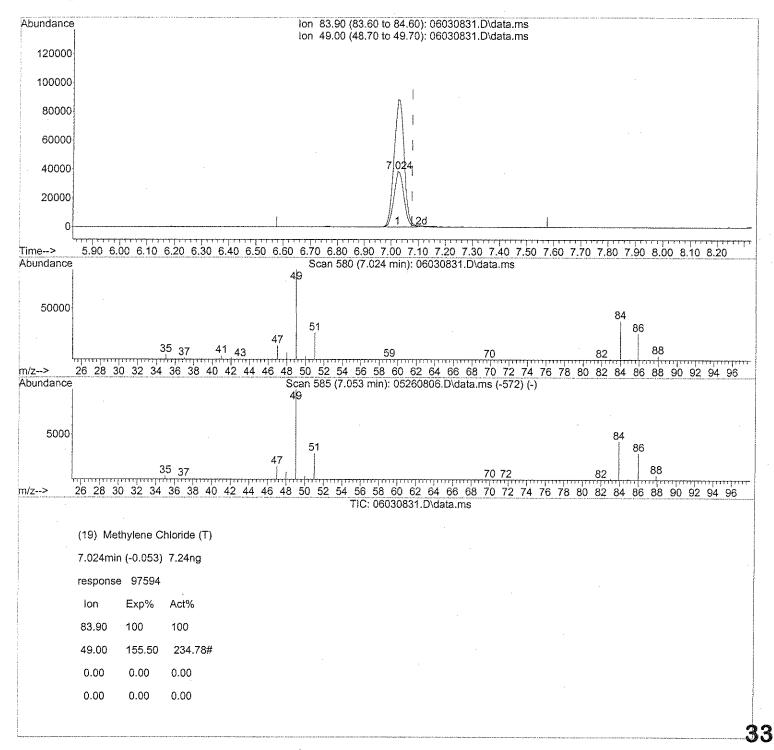
 361 L,2Dichloroethane
 10.79
 56
 34193
 1.499 ng
 # 69

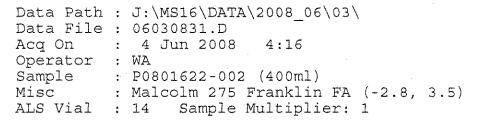
 401 I-Butanol
 10.79
 56
 34193
 1.499 ng
 # 10

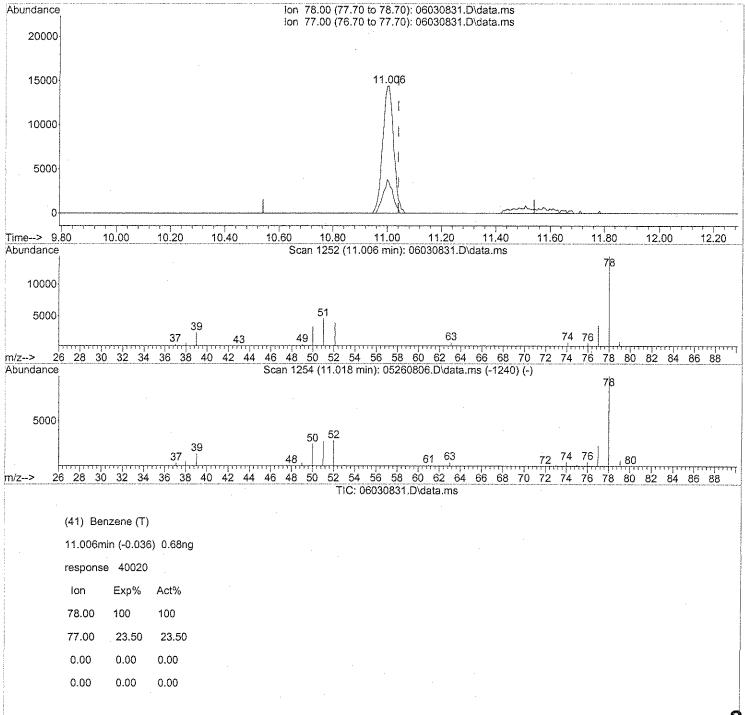
 41 tert-Amyl Methyl Ether
 0.00
 63
 0
 N.D.
 0

 42
 1.2-Dichloroptropane
 0.00
 80
 0
 N.D.
 0

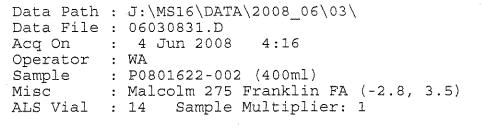

 42
 1.4-Dioxane
 0.00
 80
 0
 N.D.
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 R.T. QIon Response Conc Units Dev(Min) Internal Standards ______________________________

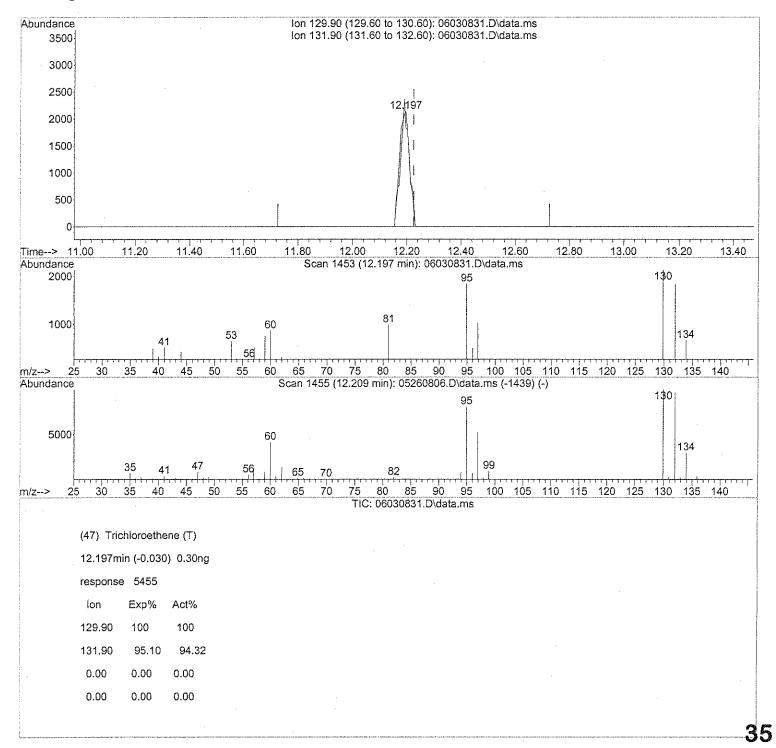

NA 615108

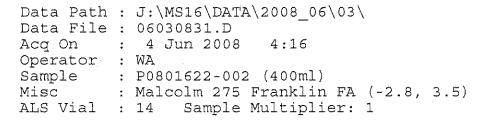

Data Path : J:\MS16\DATA\2008_0 Data File : 06030831.D Acq On : 4 Jun 2008 4:16 Operator : WA Sample : P0801622-002 (400ml Misc : Malcolm 275 Frankli ALS Vial : 14 Sample Multipl	am) n FA (-2	.8, 3	.5)				
Quant Time: Jun 04 06:13:52 2008 Quant Method : J:\MS16\METHODS\R16052608.M Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS) QLast Update : Tue May 27 08:50:43 2008 Response via : Initial Calibration							
Internal Standards	R.T.	QIon	Respons	e Conc (Units	Dev(Min)
81) 2-Ethyltoluene 82) 1,2,4-Trimethylbenzene		105 105	10091 11375095 27290030	145.103 416.778	ng ng		13 95 88
85) 1,3-Dichlorobenzene	19.95 20.04	91 146	9485865 15807 98	0.312 N.D.	ng	#	80 57
86) 1,4-Dichlorobenzene 87) sec-Butylbenzene	20.11 20.17	146 105	1474 878970 931662	N.D. 10.347	ng		95
 88) p-Isopropyltoluene 89) 1,2,3-Trimethylbenzene 90) 1,2-Dichlorobenzene 	20.36 20.36 0.00	105	931662 6394067 0		ng	#	48 96
91) d-Limonene 92) 1,2-Dibromo-3-Chloropr	20.52	68	88326 511	4.377	ng		93
93) n-Undecane	21.44	57	2960698	60.902	ng		78
94) 1,2,4-Trichlorobenzene 95) Naphthalene	22.69	128	132741	1.395	ng		90
96) n-Dodecane 97) Hexachloro-1,3-butadiene			961809 0	20.305 N.D.			76


(#) = qualifier out of range (m) = manual integration (+) = signals summed

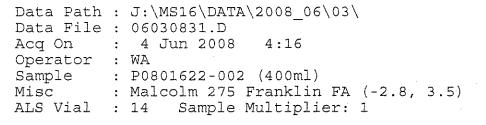
R16052608.M Wed Jun 04 06:13:53 2008

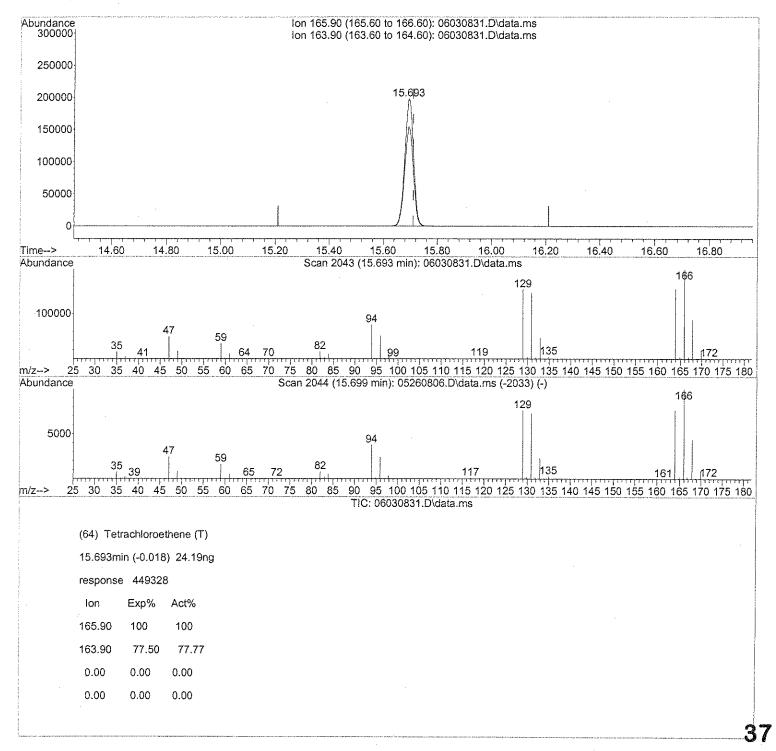


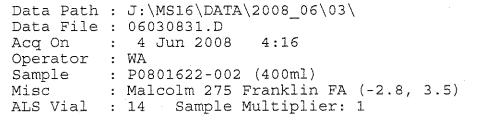


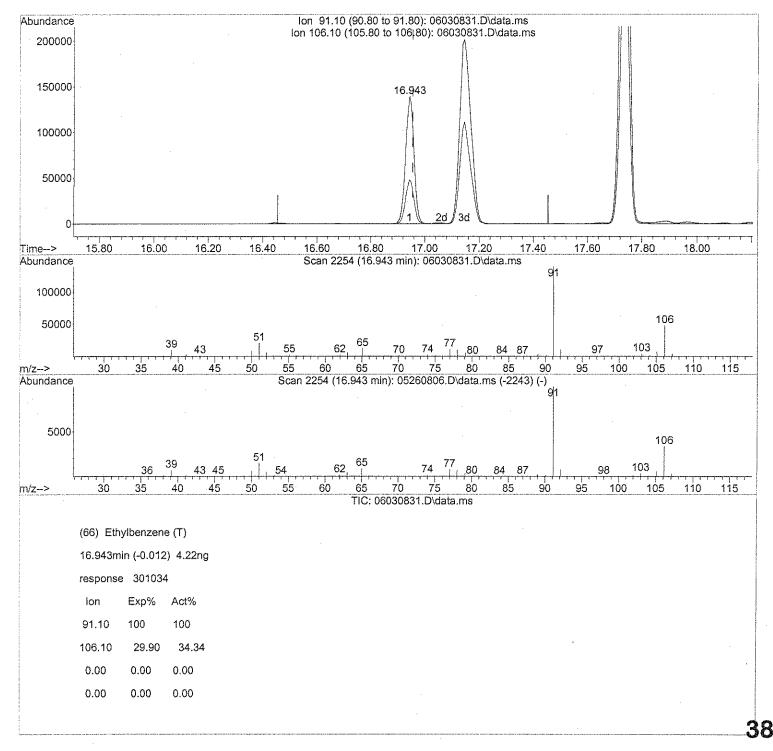


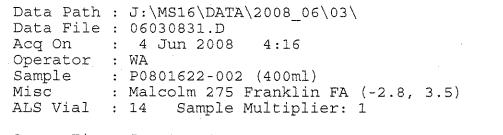
R16052608.M Tue Jun 10 13:45:40 2008

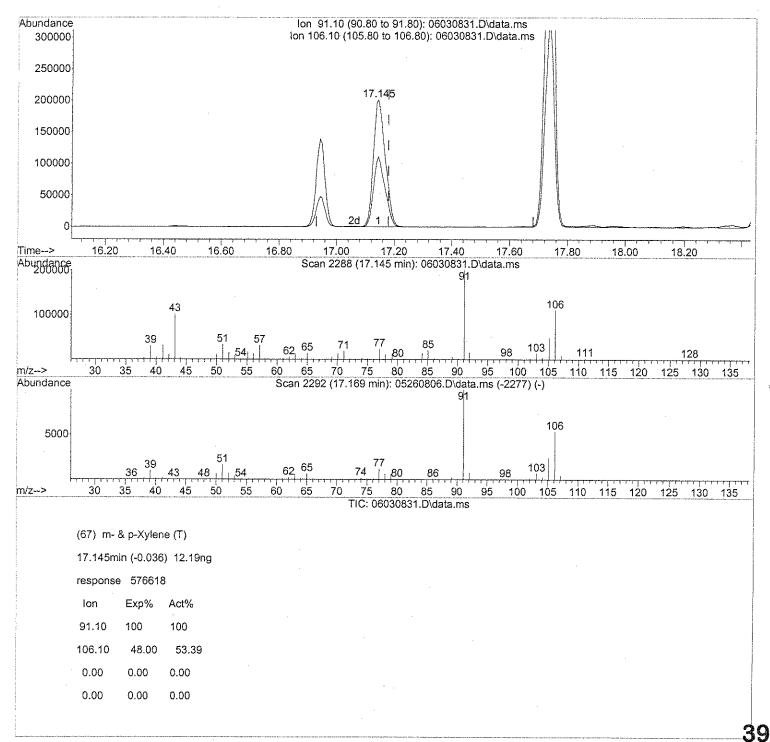

34

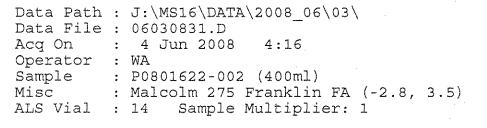


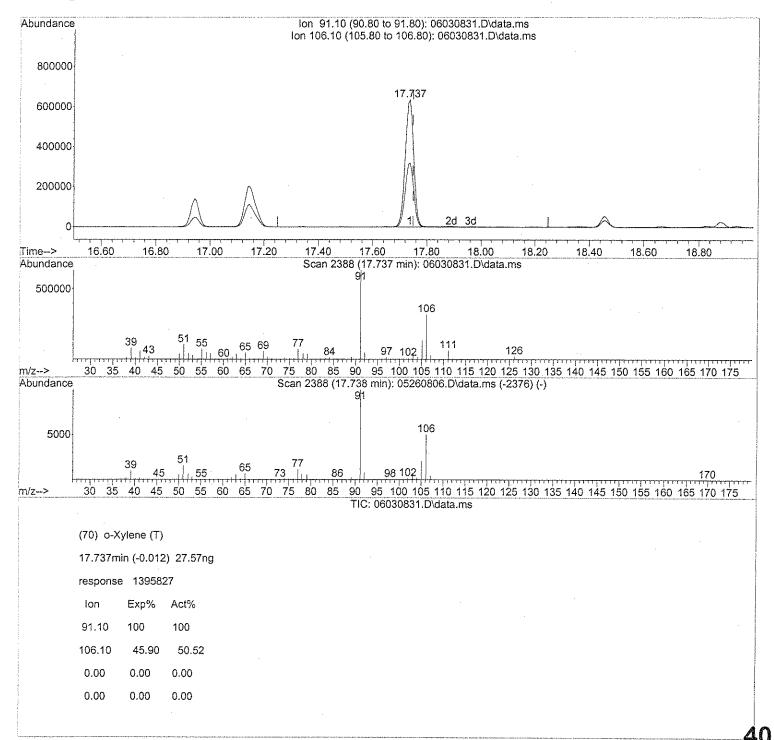







```
Quant Time: Jun 04 06:13:52 2008
Quant Method : J:\MS16\METHODS\R16052608.M
Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)
QLast Update : Tue May 27 08:50:43 2008
Response via : Initial Calibration
```






```
Quant Time: Jun 04 06:13:52 2008
Quant Method : J:\MS16\METHODS\R16052608.M
Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)
QLast Update : Tue May 27 08:50:43 2008
Response via : Initial Calibration
```


RESULTS OF ANALYSIS

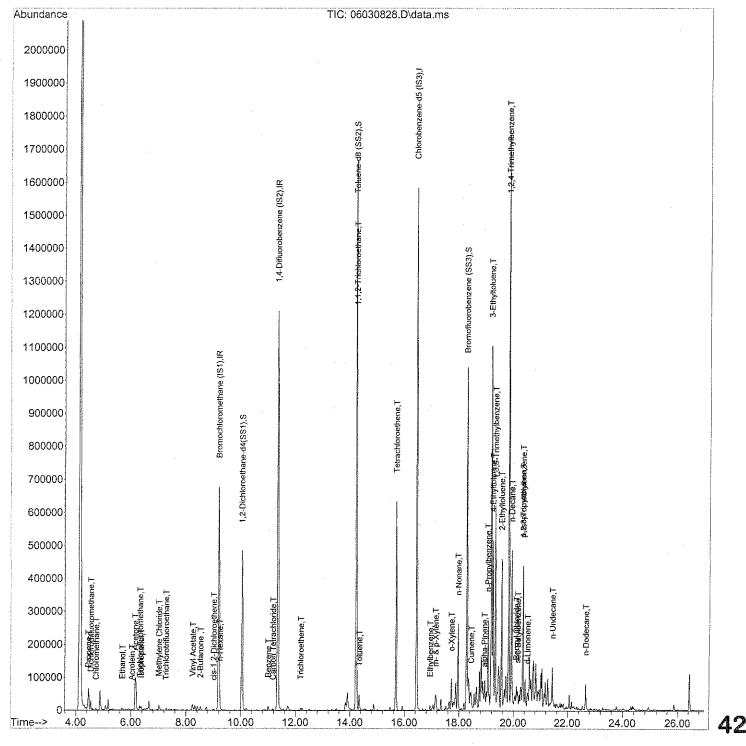
Page 1 of 1

Client: Client Sample ID: Client Project ID:	Malcolm Pirnie, Incorporated 275 Franklin CS 275 Franklin St. / 0266 377	CAS Project ID: P0801622 CAS Sample ID: P0801622-003
Fest Code: Instrument ID: Analyst:	EPA TO-15 Tekmar AUTOCAN/Agilent 5975Cinert/6890N/MS16 Wida Ang	Date Collected: 5/29/08 Date Received: 5/30/08 Date Analyzed: 6/4/08
Sampling Media: Fest Notes: Container ID:	6.0 L Summa Canister AC01418	Volume(s) Analyzed: 1.00 Liter(s)
	Initial Pressure (psig): -2.6 Final	Pressure (psig): 3.6

Canister Dilution Factor: 1.51

CAS #	Compound	Result µg/m³	MRL µg/m³	Result	MRL ppbV	Data Qualifier
75-01-4	Vinyl Chloride	ND	0.76	ND	0.30	
75-35-4	1,1-Dichloroethene	ND	0.76	ND	0.19	
75-09-2	Methylene Chloride	ND	0.76	ND	0.22	
156-60-5	trans-1,2-Dichloroethene	ND	0.76	ND	0.19	
156-59-2	cis-1,2-Dichloroethene	ND	0.76	ND	0.19	
71-55-6	1,1,1-Trichloroethane	ND	0.76	ND	0.14	
71-43-2	Benzene	ND	0.76	ND	0.24	
79-01-6	Trichloroethene	0.26	0.15	0.048	0.028	
108-88-3	Toluene	0.97	0.76	0.26	0.20	
127-18-4	Tetrachloroethene	20	0.76	2.9	0.11	
100-41-4	Ethylbenzene	ND	0.76	ND	0.17	
179601-23-1	m,p-Xylenes	1.1	0.76	0.24	0.17	
95-47-6	o-Xylene	1.6	0.76	0.37	0.17	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.


MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

Verified By:_

Ru

Data Path : J:\MS16\DATA\2008 06\03\ Data File : 06030828.D 4 Jun 2008 Acq On : 1:59 Operator WA : Sample : P0801622-003 (1000ml) : Malcolm 275 Franklin CS (-2.6, 3.6) Misc ALS Vial : 15 Sample Multiplier: 1

Quant Time: Jun 04 04:09:34 2008 Quant Method : J:\MS16\METHODS\R16052608.M Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS) QLast Update : Tue May 27 08:50:43 2008 Response via : Initial Calibration

R16052608.M Tue Jun 10 09:44:00 2008

Quantitation 3	Report	(Q'	I Reviewed)									
Data Path : J:\MS16\DATA\2008_06 Data File : 06030828.D Acq On : 4 Jun 2008 1:59 Operator : WA Sample : P0801622-003 (1000ml Misc : Malcolm 275 Franklin ALS Vial : 15 Sample Multipli)	.6, 3	.6)										
Quant Time: Jun 04 04:09:34 2008 Quant Method : J:\MS16\METHODS\R16052608.M Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS) QLast Update : Tue May 27 08:50:43 2008 Response via : Initial Calibration													
Internal Standards	R.T.	QIon	Response	Conc (Jnits	Dev (Min)						
1) Bromochloromethane (IS1) 37) 1,4-Difluorobenzene (IS2) 56) Chlorobenzene-d5 (IS3)	11.34	130 114	1355237	25.000 25.000	ng ng	- 0 - 0	.05 .04						
System Monitoring Compounds 33) 1,2-Dichloroethane-d4(Spiked Amount 25.000 57) Toluene-d8 (SS2) Spiked Amount 25.000 73) Bromofluorobenzene (SS3) Spiked Amount 25.000	14.23	98	1336760 Recove 370651	24.549 ery =	ng 98 ng	-0 20% 0	.02						
 6) Vinyl Chloride 7) 1,3-Butadiene 8) Bromomethane 9) Chloroethane 10) Ethanol 11) Acetonitrile 12) Acrolein 13) Acetone 14) Trichlorofluoromethane 15) Isopropanol 16) Acrylonitrile 17) 1,1-Dichloroethene 18) tert-Butanol 19) Methylene Chloride 20) Allyl Chloride 	$\begin{array}{c} 4.55\\ 4.74\\ 4.86\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 5.70\\ 5.92\\ 6.05\\ 6.16\\ 6.33\\ 6.59\\ 0.00\\ 6.98\\ 7.02\\ 7.14 \end{array}$		$\begin{array}{c} 25771 \\ 4833 \\ 631 \\ 0 \\ 0 \\ 0 \\ 11085 \\ 4577 \\ 3582 \\ 56469 \\ 12396 \\ 20280 \\ 90 \\ 0 \\ 1774 \\ 6297 \\ 347 \end{array}$	0.837 0.125 N.D. N.D. N.D. N.D. 0.642 N.D. 0.288 3.288 0.430 0.392 N.D. N.D. N.D. 0.475 N.D.	ng ng ng ng ng ng ng ng	#	55 99 98 94 98 82 96 73 41						
 Trichlorotrifluoroethane Carbon Disulfide trans-1,2-Dichloroethene 1,1-Dichloroethane Methyl tert-Butyl Ether Vinyl Acetate 27) 2-Butanone cis-1,2-Dichloroethene Diisopropyl Ether Ethyl Acetate 	7.28 7.40 0.00 0.00 8.25 8.53 9.01 0.00	151 76 61 63 73 86 72 61 87 61	2909 3226 0 0 1919 2721 2967 0 404	0.208 N.D. N.D. N.D. 0.682 0.303 0.122 N.D. N.D.	ng ng ng ng		77 99 1 89 78 43						

St Gliolos

Data Path : J:\MS16\DATA\2008 06\03\ Data File : 06030828.D Acq On : 4 Jun 2008 1:59 Operator : WA Sample : P0801622-003 (1000ml) Misc : Malcolm 275 Franklin CS (-2.6, 3.6) ALS Vial : 15 Sample Multiplier: 1 Quant Time: Jun 04 04:09:34 2008 Quant Method : J:\MS16\METHODS\R16052608.M Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS) QLast Update : Tue May 27 08:50:43 2008 🔹 🔹 Response via : Initial Calibration

 Internal Standards
 R.T. Qion Response Conc Units Dev(Min)

 32) Chloroform
 9.31
 83
 810
 N.D.

 33) Tetrahydrofuran
 0.00
 87
 0
 N.D.

 34) Tetrahydrofuran
 0.00
 87
 0
 N.D.

 35) Ethyl Tetr-Butyl Ether
 0.00
 87
 0
 N.D.

 38) I.j.,l-Trichloroethane
 10.48
 97
 114
 N.D.

 39) Isopropyl Acetate
 0.00
 61
 0
 N.D.

 41) Benzene
 11.01
 78
 12235
 0-2414 mg
 99

 42) Carbon Tetrachloride
 11.17
 117
 4466
 0.191 ng
 98

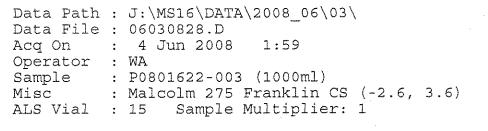
 43) Cyclohexane
 11.34
 84
 2091
 N.D.
 45

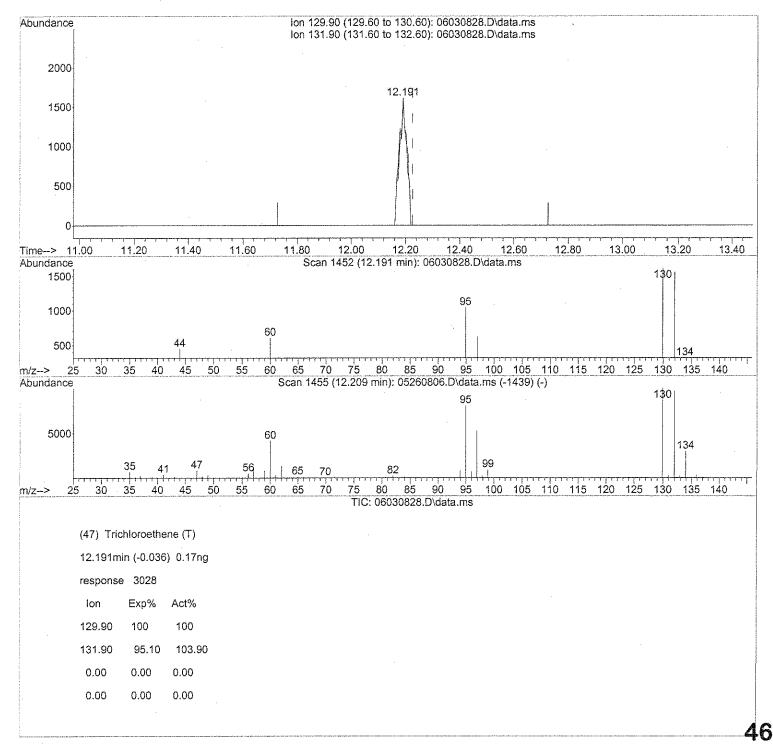
 44) tetr-Amyl Methyl Ether
 0.00
 63
 0
 N.D.
 45

 44) tetr-Amyl Methyl Ether
 0.00
 83
 0
 N.D.
 45

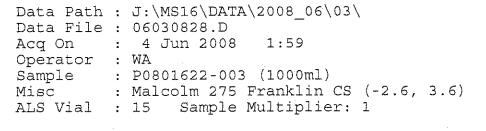
 47) Trichloroethane
 12.24
 57
 8055
 N.D.
 50

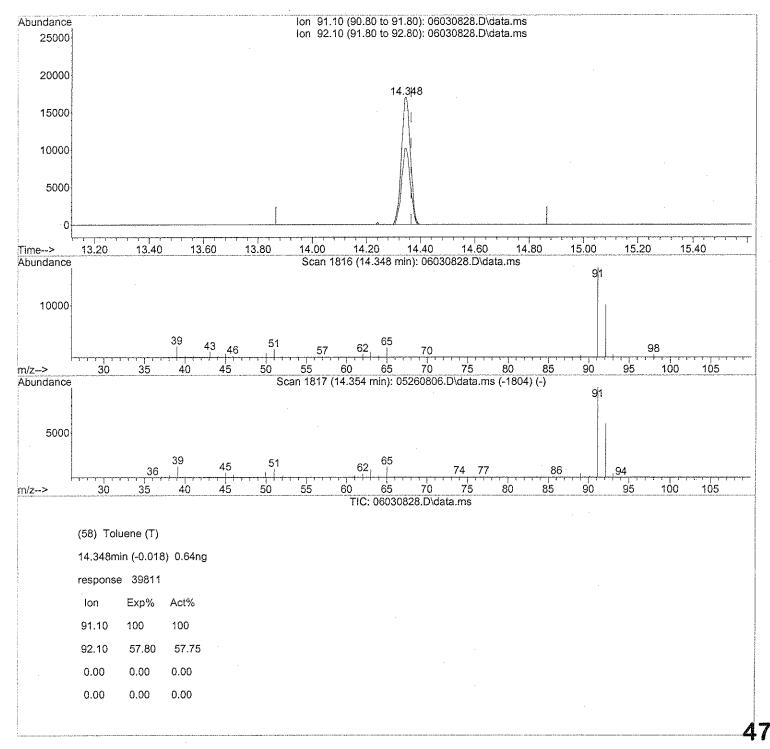
 51) r.Heptane
 12.24
 57
 0
 N.D.
 51
 1.14.70 non
 10

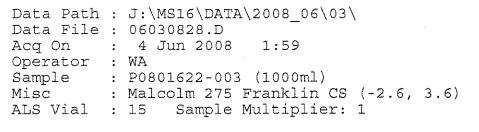

 52) cis-1,3-Dic Internal Standards R.T. QION Response Conc Units Dev(Min) Incernar scandards K.I. gron Response cone onres bev...... 92 **44**

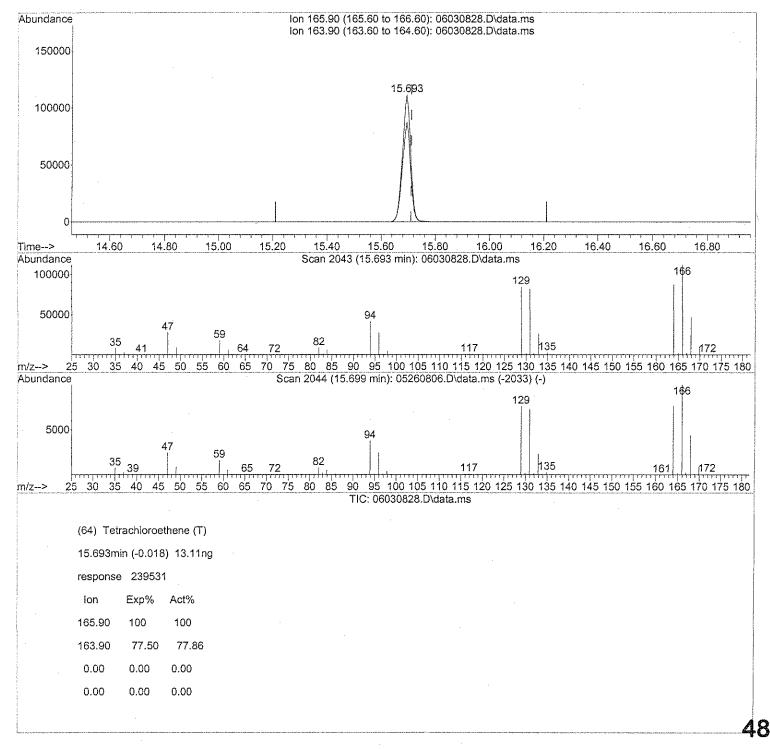

Quantitation Report (QT Reviewed)

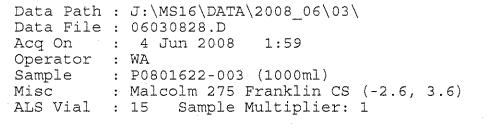
SA 6/10/08

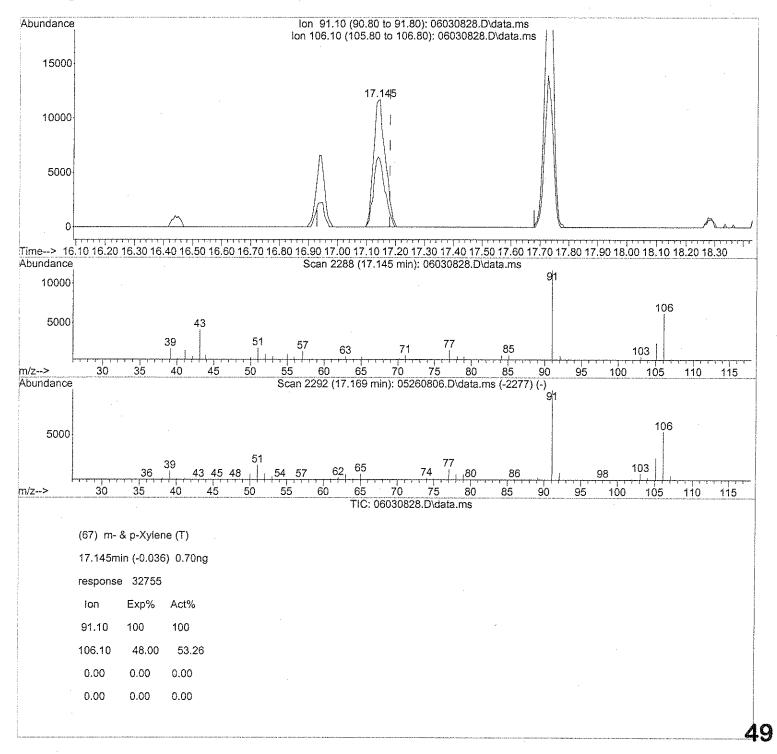

Data Path : J:\MS16\DATA\2008_06 Data File : 06030828.D Acq On : 4 Jun 2008 1:59 Operator : WA Sample : P0801622-003 (1000ml Misc : Malcolm 275 Franklin ALS Vial : 15 Sample Multiplie) CS (-2	.6, 3.	.6)			
Quant Time: Jun 04 04:09:34 2008 Quant Method : J:\MS16\METHODS\R Quant Title : EPA TO-15 per SOP QLast Update : Tue May 27 08:50:4 Response via : Initial Calibratio	VOA-TO 43 2008		ASS TO-15/G	C-MS)		
Internal Standards	R.T.	QIon	Response	Conc Units	Dev (N	Min)
80) alpha-Methylstyrene	19.52	118	445	N.D.	~ ~ ~ ~ ~ ~	
81) 2-Éthyltoluene 82) 1,2,4-Trimethylbenzene	19.56	105	335409	4.350 ng		93
82) 1,2,4-Trimethylbenzene	19.83	105	1002308	15.565 ng		97
83) n-Decane	19.93	57	188825	4.142 ng 0.284 ng		84
84) Benzyl Chloride	20.10	91	14116	0.284 ng	#	57
85) 1,3-Dichlorobenzene	20.11	146	710	N.D.		
86) 1,4-Dichlorobenzene	20.11	146	710	N.D.		
87) sec-Butylbenzene	20.16	105	20741	0.248 ng		93
	20.34			0.378 ng	#	45
89) 1,2,3-Trimethylbenzene			187682	3.035 ng		98
	0.00	146	0	N.D.		
91) d-Limonene	20.52	68	5829	0.294 ng		99
92) 1,2-Dibromo-3-Chloropr		157	0	N.D.		
93) n-Undecane	21.43	57	49509	1.036 ng		86
94) 1,2,4-Trichlorobenzene 95) Naphthalene	0.00	184	0	N.D.		
95) Naphthalene	22.70	128	8198	N.D.		
96) n-Dodecane	22.66	57	30413	0.653 ng	#	76
97) Hexachloro-1,3-butadiene	0.00	225	0	N.D.		

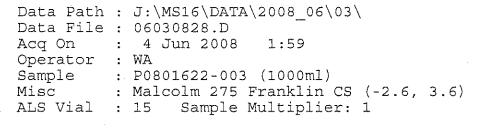

(#) = qualifier out of range (m) = manual integration (+) = signals summed

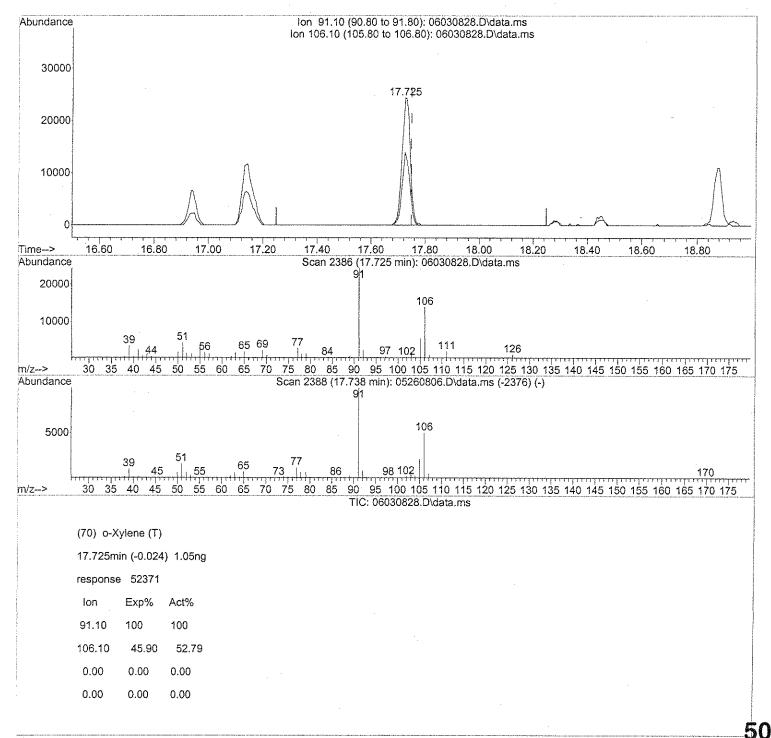



R16052608.M Tue Jun 10 09:43:22 2008






R16052608.M Tue Jun 10 09:43:28 2008




```
Quant Time: Jun 04 04:09:34 2008
Quant Method : J:\MS16\METHODS\R16052608.M
Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)
QLast Update : Tue May 27 08:50:43 2008
Response via : Initial Calibration
```


COLUMBIA ANALYTICAL SERVICES, INC.

RESULTS OF ANALYSIS

Page 1 of 1

Client:	Malcolm Pirnie, Incorporated
Client Sample ID:	275 Franklin Dup
Client Project ID:	275 Franklin St. / 0266 377

CAS Project ID: P0801622 CAS Sample ID: P0801622-004

Date Collected: 5/29/08 Date Received: 5/30/08 Date Analyzed: 6/4/08 Volume(s) Analyzed: 1.00 Liter(s)

Fest Code:EPA TO-15Instrument ID:Tekmar AUTOCAN/Agilent 5975Cinert/6890N/MS16Analyst:Wida AngSampling Media:6.0 L Summa CanisterFest Notes:Container ID:AC00686

Initial Pressure (psig):

Final Pressure (psig):

3.5

Canister Dilution Factor: 1.49

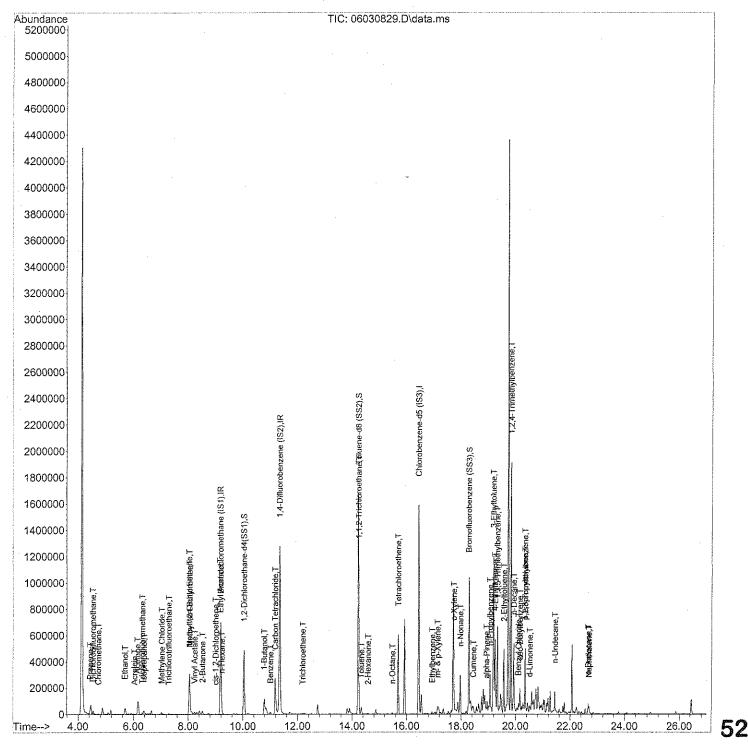
CAS #	Compound	Result µg/m³	MRL µg/m³	Result ppbV	MRL ppbV	Data Qualifier
75-01-4	Vinyl Chloride	ND	0.75	ND	0.29	
75-35-4	1,1-Dichloroethene	ND	0.75	ND	0.19	
75-09-2	Methylene Chloride	ND	0.75	ND	0.21	
156-60-5	trans-1,2-Dichloroethene	ND	0.75	ND	0.19	
156-59-2	cis-1,2-Dichloroethene	ND	0.75	ND	0.19	
71-55-6	1,1,1-Trichloroethane	ND	0.75	ND	0.14	
71-43-2	Benzene	ND	0.75	ND	0.23	
79-01-6	Trichloroethene	0.25	0.15	0.047	0.028	
108-88-3	Toluene	1.0	0.75	0.27	0.20	
127-18-4	Tetrachloroethene	19	0.75	2.8	0.11	
100-41-4	Ethylbenzene	ND	0.75	ND	0.17	
179601-23-1	m,p-Xylenes	1.4	0.75	0.32	0.17	
95-47-6	o-Xylene	1.8	0.75	0.42	0.17	

-2.5

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

P0801622_T015_0806101533_SS.xls - Sample (4)


Verified By:____

Ri

51

Data Path : J:\MS16\DATA\2008 06\03\ Data File : 06030829.D 4 Jun 2008 Acq On : 2:36 Operator : WA : P0801622-004 (1000ml) Sample : Malcolm 275 Franklin Dup (-2.5, 3.5) Misc ALS Vial : 16 Sample Multiplier: 1

Quant Time: Jun 04 04:09:40 2008 Quant Method : J:\MS16\METHODS\R16052608.M : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS) Quant Title QLast Update : Tue May 27 08:50:43 2008 Response via : Initial Calibration

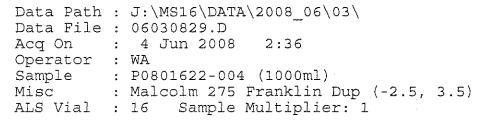
R16052608.M Tue Jun 10 10:44:07 2008

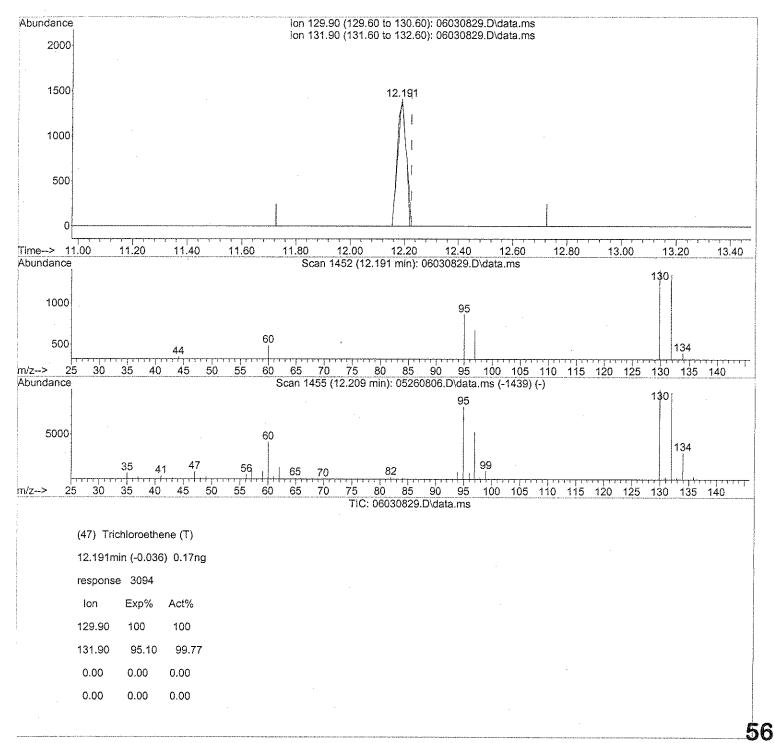
Data Path : J:\MS16\DATA\2008_06\03\ Data Pile : 0603023.D Acq Gn : 4 Cun 2008 2:36 Operator : WA Sample : P0801622-004 (1000m1) Misc : Xalcoln 275 Franklin Dup (-2.5, 3.5) ALS Vial : 16 Sample Miltplier: 1 Quant Time: Jun 04 04:09:40 2008 Quant Method : J:\MS16\WETHODS\X16052608.M Quant Time: Jun 04 04:09:40 2008 Quant Time: Jun 04 04:09:40 2008 Zesponse Vola: Initial Calibration System Monitoring Compounds 33) 1,2-Dichloroethane-d4(10:04 65 463136 24.560 ng -0.05 Spiked Amount 25.000 Recovery = 98.324 57) Toluene-d6 (S23) 14.23 98 1354115 24.563 ng -0.02 Spiked Amount 25.000 Target Compounds 2) Propene (S33) 18.29 174 378179 20.6550 ng 0.00 Farget Compounds 2) Propene 4.44 42 16633 0.652 ng # 1 3) Didhlorodifluoromethane 4.53 55 2583 0.637 ng 99 4) Chloromethane 4.54 55 5574 0.144 ng 87 5) Freon 114 4.85 135 647 N.D. 6) Vinyl Chloride 0.00 62 0 N.D. 7) 1, 3-butadiene 5.14 54 103 N.D. 8) Bromomethane 0.00 94 0 N.D. 9) Chloroethane 0.00 64 0 N.D. 9) Chloroethane 6.02 911 3238 0.458 ng 99 10) Acetone 5.16 453 95147 5.551 ng 98 11) Acetone 1.5 58 60357 3.303 ng # 74 14) Trichlorofluoromethane 6.32 101 13238 0.458 ng 99 15] Sacetone 6.01 53 120 N.D. 16] Methylene Chloride 7.03 84 5551 30 -458 ng 99 16] Acrylonitrile 5.96 573 4120 N.D. 18] terr-Butanol 6.39 75 9116 N.D. 19] Methylene Chloride 7.03 84 5551 30 -458 ng 99 10] Acetone Chloride 7.03 84 5551 30 -458 ng 99 20] Chloroe	Quantitation	Report	(Q	T Reviewed)		
Quant Method : J:\MS16\MMSTHDDSNR16052608.M Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS) QLast Update : Tue May 27 08:50:43 2008 Response via : Initial Calibration Internal Standards R.T. Qion Response Conc Units Dev(Min) 1) Bromochloromethane (IS1) 9.19 130 329793 25:000 ng -0.06 37) 1.4 - Difluorobenzene (IS2) 11.34 114 1379786 25:000 ng -0.04 56) Chlorobenzene-d5 (IS3) 16.45 82 534295 25:000 ng -0.05 Spiked Amount 25:000 Recovery = 98.24% 33) 1.2-Dichlorobethane-d4(10.04 65 463136 24.560 ng -0.05 Spiked Amount 25:000 Recovery = 98.32% 73) Bromofluorobenzene (SS3) 18.29 174 378179 20.650 ng 0.00 Spiked Amount 25:000 Recovery = 98.32% 73) Bromofluorobenzene (SS3) 18.29 174 378179 20.650 ng 0.00 Spiked Amount 25:000 Recovery = 82.60% Target Compounds Qvalue 2) Propene 4.44 42 16633 0.652 ng # 1 3) Dichlorodifluoromethane 4.53 85 25653 0.837 ng 99 4) Chloromethane 5.74 50 47 N.D. 6) Vinyl Chloride 0.00 62 0 N.D. 7) 1.3-Butadiene 5.14 54 103 N.D. 8) Bromomethane </td <td>Data File : 06030829.D Acq On : 4 Jun 2008 2:36 Operator : WA Sample : P0801622-004 (1000ml</td> <td>></td> <td>2.5,</td> <td>3.5)</td> <td></td> <td></td> <td></td>	Data File : 06030829.D Acq On : 4 Jun 2008 2:36 Operator : WA Sample : P0801622-004 (1000ml	>	2.5,	3.5)			
1) Bromochloromethane (IS1) 9.19 130 329793 25.000 ng -0.06 37) 1,4-Difluorobenzene (IS2) 11.34 114 1379796 25.000 ng -0.04 56) Chlorobenzene-d5 (IS3) 16.45 82 534295 25.000 ng -0.05 System Monitoring Compounds 33 1,2-Dichloroethane-d4(10.04 65 463136 24.560 ng -0.05 Spiked Amount 25.000 recovery = 98.24% - - - 57) Toluene-d8 (SS2) 14.23 98 1354116 24.560 ng -0.02 Spiked Amount 25.000 recovery = 98.24% - - 73) Bromofluorobenzene (SS3) 18.29 174 378179 20.650 ng 0.00 Spiked Amount 25.000 recovery = 92.32% - - - 73) Bromofluorobenzene (SS3) 18.29 174 378179 20.650 ng 0.00 80 Propene 4.44 16633 0.652 ng # 1 - - 91 Othoromethane 4.50 55 647 N.	Quant Method : J:\MS16\METHODS\R Quant Title : EPA TO-15 per SOP QLast Update : Tue May 27 08:50:	1605260 VOA-TO 43 2008	15 (C	ASS TO-15/0	GC-MS)		
1) Bromochloromethane (IS1) 9.19 130 329793 25.000 ng -0.06 37) 1,4-Difluorobenzene (IS2) 11.34 114 1379796 25.000 ng -0.01 System Monitoring Compounds 33) 1,2-Dichloroethane-d4(10.04 65 463136 24.560 ng -0.05 Spiked Amount 25.000 recovery = 98.24% - - 57) Toluene-d8 (SS2) 14.23 98 1354116 24.583 ng -0.02 Spiked Amount 25.000 recovery = 98.22% - - 73) Bromofluorobenzene (SS3) 18.29 174 378179 20.650 ng 0.00 Spiked Amount 25.000 recovery = 82.260% - - - 73) Bromofluorobenzene 4.44 42 16633 0.652 ng # 1 3) Dichlorodifluoromethane 4.74 50 5574 0.144 ng 87 5) Freen 114 4.85 135 647 N.D. - 6) Vinyl Chloride 0.00 64 0 N.D. - 9) Chloroethane	Internal Standards	R.T.	QIon	Response	Conc U		
33) 1,2-Dichloroethane-d4(10.04 65 463136 24.560 ng -0.05 Spiked Amount 25.000 Recovery 98.24% 73) Bromofluorobenzene (SS3) 18.29 174 378179 20.650 ng 0.00 Spiked Amount 25.000 Recovery 98.32% 73) Bromofluorobenzene (SS3) 18.29 174 378179 20.650 ng 0.00 Spiked Amount 25.000 Recovery 82.60% 7arget Compounds Qvalue 0.00 Recovery 82.60% 2) Propene 4.44 42 16633 0.652 ng # 1 3) Dichlorodifluoromethane 4.74 50 5574 0.144 ng 87 5) Freon 114 4.85 135 647 N.D. 8) Bromomethane 0.00 62 0 N.D. 9) Chloroethane 0.00 64 0 N.D. 9) Chloroethane 0.00 64 0 N.D. 10) Ethanol 5.70 45<	37) 1,4-Difluorobenzene (IS2)	11.34	114	1379796	25.000 1	ng	-0.06 -0.04
2) Propene 4.44 42 16633 0.652 ng # 1 3) Dichlorodifluoromethane 4.53 85 25853 0.837 ng 99 4) Chloromethane 4.74 50 5574 0.144 ng 87 5) Freon 114 4.85 135 647 N.D. 6) Vinyl Chloride 0.00 62 0 N.D. 7) 1,3-Butadiene 5.14 54 103 N.D. 8) Bromomethane 0.00 64 0 N.D. 9) Chloroethane 0.00 64 0 N.D. 10) Ethanol 5.70 45 96147 5.551 ng 98 11) Acetonitrile 5.92 41 4932 N.D. 12) Acrolein 6.04 56 2977 0.238 ng 98 13) Acetone 6.15 58 60357 3.503 ng # 74 14) Trichlorofluoromethane 6.32 101 13238 0.458 ng 99 15) Isopropanol 6.38 45 57288 1.104 ng 91 16) Acrylonitrile 0.00 </td <td><pre>33) 1,2-Dichloroethane-d4(Spiked Amount 25.000 57) Toluene-d8 (SS2) Spiked Amount 25.000 73) Bromofluorobenzene (SS3)</pre></td> <td>14.23</td> <td>98</td> <td>Recove 1354116 Recove 378179</td> <td>ery = 24.583 n ery = 20.650 n</td> <td>98.2 ng 98.3 ng</td> <td>4% -0.02 2% 0.00</td>	<pre>33) 1,2-Dichloroethane-d4(Spiked Amount 25.000 57) Toluene-d8 (SS2) Spiked Amount 25.000 73) Bromofluorobenzene (SS3)</pre>	14.23	98	Recove 1354116 Recove 378179	ery = 24.583 n ery = 20.650 n	98.2 ng 98.3 ng	4% -0.02 2% 0.00
29) Dilsopropyi Ether 0.00 87 0 N.D. 30) Ethyl Acetate 9.17 61 4903 0.780 ng 79 31) n-Hexane 9.23 57 6462 0.172 ng 81 53	<pre>Target Compounds 2) Propene 3) Dichlorodifluoromethane 4) Chloromethane 5) Freon 114 6) Vinyl Chloride 7) 1,3-Butadiene 8) Bromomethane 9) Chloroethane 10) Ethanol 11) Acetonitrile 12) Acrolein 13) Acetone 14) Trichlorofluoromethane 15) Isopropanol 16) Acrylonitrile 17) 1,1-Dichloroethene 18) tert-Butanol 19) Methylene Chloride 20) Allyl Chloride 21) Trichlorotrifluoroethane 22) Carbon Disulfide 23) trans-1,2-Dichloroethene 24) 1,1-Dichloroethane 25) Methyl tert-Butyl Ether 26) Vinyl Acetate 27) 2-Butanone 28) cis-1,2-Dichloroethene 29) Diisopropyl Ether 30) Ethyl Acetate</pre>	4.53 4.74 4.85 0.00 5.14 0.00 5.92 6.04 6.15 6.32 6.60 6.15 6.32 6.60 6.97 7.03 7.03 7.09 8.00 8.24 8.53 9.00 9.17	850 1352 544 455 105 56 45 56 45 56 45 56 45 56 58 45 67 67 87 67 67 67 61 87 61	$\begin{array}{c} 16633\\ 25853\\ 5574\\ 647\\ 0\\ 103\\ 0\\ 96147\\ 4932\\ 2977\\ 60357\\ 13238\\ 57288\\ 120\\ 0\\ 3186\\ 5951\\ 1038\\ 2817\\ 4032\\ 16196\\ 0\\ 4334\\ 745\\ 5777\\ 3060\\ 0\\ 4903 \end{array}$	0.652 r 0.837 r 0.144 r N.D. N.D. N.D. N.D. 5.551 r N.D. 0.238 r 1.104 r N.D. 0.458 r 1.104 r N.D. 0.458 r 1.104 r N.D. 0.201 r N.D. 0.200 r N.D. 0.200 r N.D. 0.		Qvalue 1 99 87 98 98 74 99 91 34 83 19 44 1 96 79

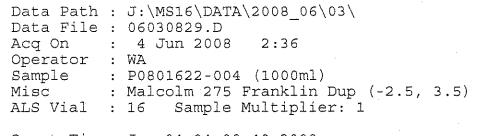
16052608.M Tue Jun 10 10:44:06 2008

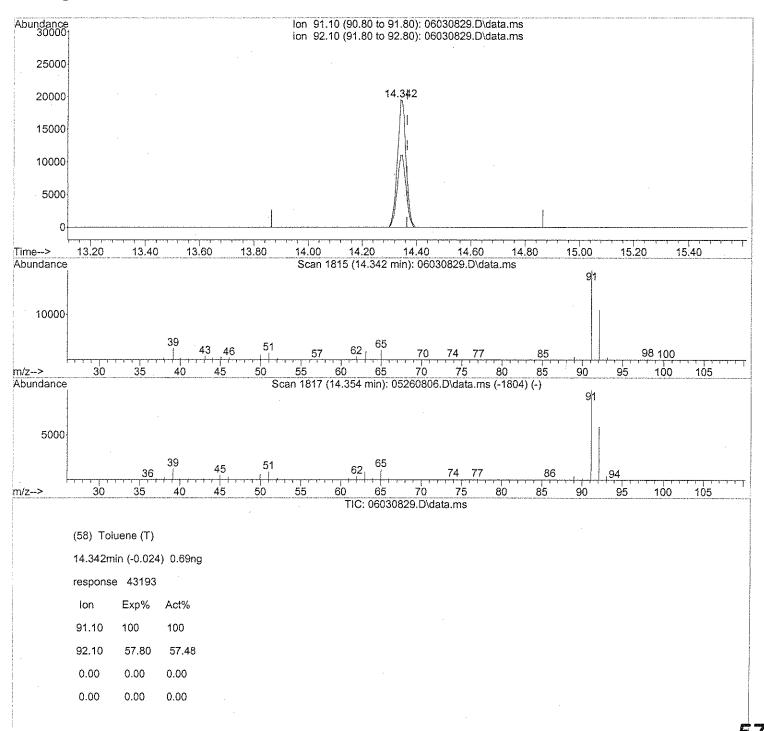
M 6110108

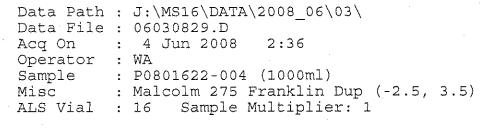
Page: 1

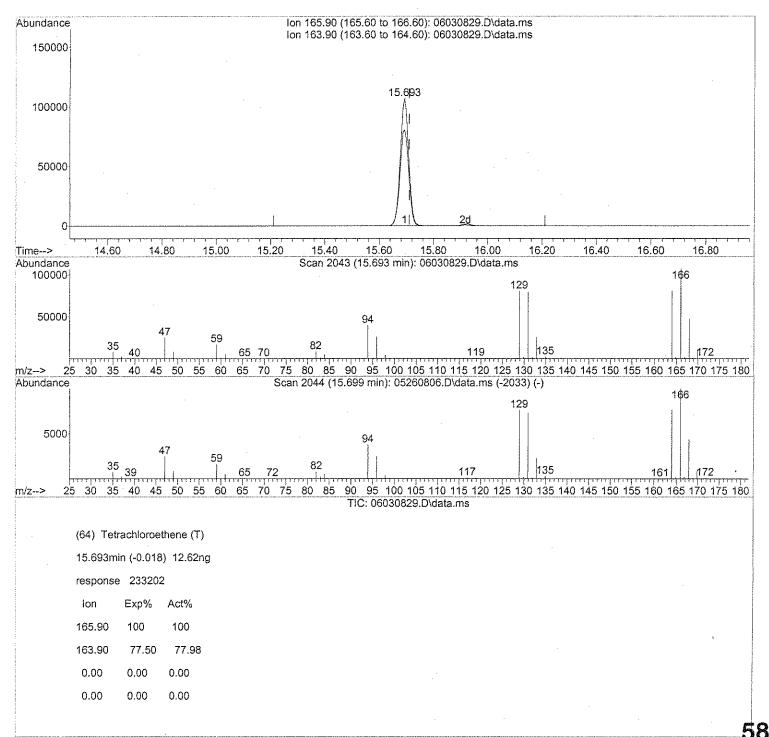

	Quantitation	Report	(QT Review	/ed)		
Data Acq O Opera Sampl Misc	Path : J:\MS16\DATA\2008_0 File : 06030829.D n : 4 Jun 2008 2:36 tor : WA e : P0801622-004 (1000m : Malcolm 275 Frankli ial : 16 Sample Multipl	1) n Dup (-2.	5, 3.5)			
Quant Quant QLast	Time: Jun 04 04:09:40 200 Method : J:\MS16\METHODS\ Title : EPA TO-15 per SO Update : Tue May 27 08:50 nse via : Initial Calibrat	R16052608. P VOA-TO15 :43 2008		5/GC-MS)		
Inte	rnal Standards	R.T. Q	Ion Respon	se Conc Units	Dev(Min)	
34) 35) 36) 38)	Tetrahydrofuran Ethyl tert-Butyl Ether 1,2-Dichloroethane 1,1,1-Trichloroethane	10.16	72 231 87 0 62 101 97 100	N.D. N.D. N.D. N.D.		
40) 41) 42) 43) 44)	Isopropyl Acetate 1-Butanol Benzene Carbon Tetrachloride Cyclohexane tert-Amyl Methyl Ether 1,2-Dichloropropane	10.78 11.01 11.18 1 11.33	56 149871 78 14242 17 4324 84 1746 73 0	0 .245 ng 0.181 ng N.D. N.D.		
46) 47) 48) 49) 50) 51) 52) 53)	Bromodichloromethane Trichloroethene 1,4-Dioxane Isooctane Methyl Methacrylate n-Heptane cis-1,3-Dichloropropene 4-Methyl-2-pentanone	$\begin{array}{r} 0.00 \\ 12.19 \\ 12.24 \\ 0.00 \\ 12.24 \\ 0.00 \\ 12.49 \\ 0.00 \\ 13.17 \end{array}$	83 0 30 3094 88 0 57 8733 00 0 71 857 75 0 58 1589	N.D. 0.171 ng N.D. N.D. N.D. N.D. N.D. N.D.	95	
55) 58) 59) 60) 61)	<pre>trans-1,3-Dichloropropene 1,1,2-Trichloroethane Toluene 2-Hexanone Dibromochloromethane 1,2-Dibromoethane Didenal</pre>	$\begin{array}{c} 14.24 \\ \hline 14.34 \\ 14.58 \\ 0.00 \\ 0.00 \\ 10 \\ \hline \end{array}$	97 113666 91 43193 43 6310 29 0 07 0	8.033 ng 0.691 ng 0.107 ng N.D. N.D.	# 7 100 78	
63) 64) 65) 66)	Butyl Acetate n-Octane Tetrachloroethene Chlorobenzene Ethylbenzene	$ \begin{array}{c} 15.48 \\ (15.69) \\ 16.53 \\ 16.94 \\ \end{array} $	56 - 233202 12 - 212 91 - 15801	0.113 ng (12.618 ng) N.D. 0 .222 ng	# 66 99 98	
68) 69) 70) 71) 72)	<pre>m- & p-Xylene Bromoform Styrene o-Xylene n-Nonane 1,1,2,2-Tetrachloroethane</pre>	17.59 17.73 17.97 17.72	73 0 04 3163 91 61871 43 146395 33 964	N.D. N.D. (1.228 ng) 2.945 ng N.D.	92 94 94	
75) 76) 77) 78)	Cumene alpha-Pinene n-Propylbenzene 3-Ethyltoluene 4-Ethyltoluene 1,3,5-Trimethylbenzene	19.06 19.19 10 19.24 10	9345079125062905834395	0.131 ng 2.942 ng 10.374 ng 4.861 ng	92 # 43 89 94 93 91 54	

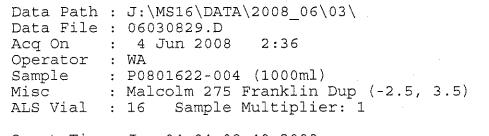

Data Path : J:\MS16\DATA\2008_06 Data File : 06030829.D Acq On : 4 Jun 2008 2:36 Operator : WA Sample : P0801622-004 (1000ml) Misc : Malcolm 275 Franklin ALS Vial : 16 Sample Multiplie	Dup (-:	2.5, 3	.5)	· .		
Quant Time: Jun 04 04:09:40 2008 Quant Method : J:\MS16\METHODS\R1 Quant Title : EPA TO-15 per SOP QLast Update : Tue May 27 08:50:4 Response via : Initial Calibratic	VOA-TO: 13 2008		SS TO-15/G	C-MS)		
Internal Standards	R.T.	QIon	Response	Conc Units	Dev (I	Min)
80) alpha-Methylstyrene	19.52	118	506	N.D.	14. 1927 BBC 2017 BBC	
81) 2-Ethyltoluene	19.57	105	357460	4.583 ng		
82) 1,2,4-Trimethylbenzene	19.83	105	1096611	16.834 ng		97
83) n-Decane	19.93	57	206981	4.488 ng		81
84) Benzyi Chioride	20.10	91	15/52	0.313 ng		62
85) 1,3-Dichlorobenzene	20.11	146	1513	N.D.		
86) 1,4-Dichlorobenzene	20.11	146	1513	N.D.		
87) sec-Butylbenzene		105	23996	0.284 ng		97
88) p-Isopropyltoluene	20.34	119		0.453 ng	#	49
89) 1,2,3-Trimethylbenzene			213364	3.411 ng		99
	0.00					
				0.344 ng		93
92) 1,2-Dibromo-3-Chloropr						
93) n-Undecane	21.43	57	64411	1.332 ng		84
94) 1,2,4-Trichlorobenzene	0.00	184	0			
95) Naphthalene	22.69	128	41830	0.442 ng		96
96) n-Dodecane 97) Hexachloro-1,3-butadiene	22.66	57	28725	0.610 ng	#	75
97) Hexachloro-1,3-butadiene	0.00	225	0	N.D.		
		~ ~ ~		~~~~~	· ·	


(#) = qualifier out of range (m) = manual integration (+) = signals summed

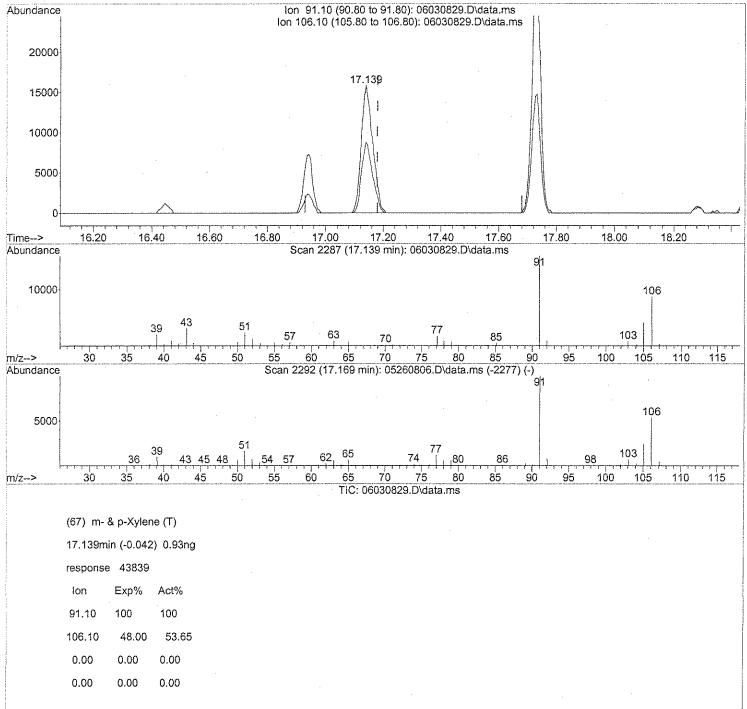

610/08


,SA



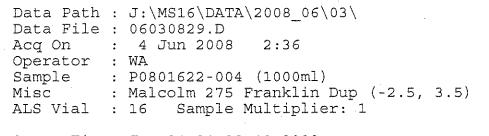


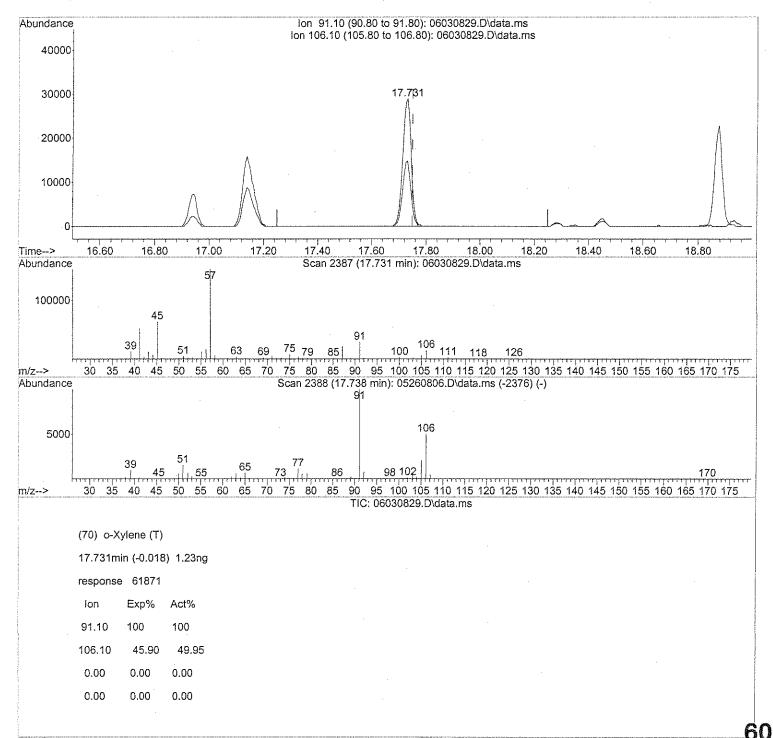

```
Quant Time: Jun 04 04:09:40 2008
Quant Method : J:\MS16\METHODS\R16052608.M
Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)
QLast Update : Tue May 27 08:50:43 2008
Response via : Initial Calibration
```



R16052608.M Tue Jun 10 09:45:54 2008

Quantitation Report (Qedit)




```
Quant Time: Jun 04 04:09:40 2008
Quant Method : J:\MS16\METHODS\R16052608.M
Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)
QLast Update : Tue May 27 08:50:43 2008
Response via : Initial Calibration
```


R16052608.M Tue Jun 10 09:46:04 2008

59

Standards Data

Method Path : J:\MS16\METHODS\ Method File : R16052608.M Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS) Last Update : Tue May 27 08:40:29 2008 Response Via : Initial Calibration

Calibration Files 0.1 =05260802.D 0.5 =05260803.D 1.0 =05260804.D 5.0 =05260805.D 25 =05260806.D 50 =05260807.D 100 =05260808.D

	(Compound		0.1	0.5	1.0	5.0	25	50	100	Avg	%RSD
		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~										
1)	IR	Bromochloromethane										
2)	Т	Propene	2.444	2.097	1.940	1.928	1.663	1.773	1.701	1.935	13.99	
3)	Т	Dichlorodifluo										
4)	Т	Chloromethane	4.012	3.745	3.438	2.716	2.621	2.315	1.740	2.941	27.86	
5)	Т	Freon 114										
6)	Т	Vinyl Chloride	2.224	2.268	1.999	1.846	1.583	1.613	1.578	1.873	15.94	
7)	T	1,3-Butadiene	1.944	1.968	1.749	1.614	1.529	1.588	1.559	1.707	10.75	
8)	Т	1,3-Butadiene Bromomethane Chloroethane Ethanol Acetonitrile Acrolein Acetone	1.225	1.182	1.083	0.849	0,840	0.831	0.750	0.965	19.92	
9)	Т	Chloroethane	1.200	1.100	1.063	0.944	0.813	0.832	0.823	0.968	16.01	
10)	Т	Ethanol	1.010	1.626	1.513	1.402	1.199	1.212	1.229	1.313	16.10	
11)	Т	Acetonitrile		4.677	4.201	3.811	3.336	3.350	3.336	3.785	14.77	
12)	Т	Acrolein		1.160	0.992	0.885	0.858	0.884	0.901	0.947	12.07	
13)	Т	Acetone			1.837	1.479	1.065	1.070	1.080	1.306	26.44	
14)	Т	Trichlorofluor	2.526	2.543	2.318	2.144	1.909	1.952	1.949	2.191	12.49	
15)	Т	Isopropanol Acrylonitrile		5.466	4.971	3.559	3.522	3.086	3.005	3.935	26.20	
16)	Т	Acrylonitrile	2.464	2.648	2.469	2.396	2.183	2.227	2.233	2.374	7.11	
17)	Т	1,1-Dichloroet	1.099	1.203	1.093	1.009	0.910	0.917	0.926	1.023	11.04	
18)	Т	tert-Butanol	4.544	4.581	4.131	3.794	3.354	3,352	1.924	3.669	25.06	
19)	Т	Methylene Chlo		1.283	1.125	1.008	0.877	0.873	0.878	1.008	16.72	
20)	Т	Allyl Chloride	2.410	2.579	2.365	2.406	2.122	2.176	2.199	2.322	7.02	
21)	Т	Trichlorotrifl	1.182	1.274	1.161	1.058	0.927	0.930	0.921	1.065	13.54	
22)	Т	Carbon Disulfide		4.991	4.319	3.940	3.651	3.695	3.719	4.053	12.89	
23)	Т	trans-1,2-Dich	2.334	2.294	2.105	1.981	1.783	1.793	1.808	2.014	11.72	
24)	Т	1,1-Dichloroet	2.310	2.391	2.329	2.147	1.911	1.935	1.948	2.139	9.72	
25)	Т	Methyl tert-Bu	3.576	3.611	3.308	3.092	2.728	2.769	2.774	3.123	12,27	
26)	T	Vinyl Acetate										
27)	T	2-Butanone	0.778	0.799	0.738	0.699	0.603	0.611	0.553	0.683	13.93	
28)	Т	cis-1,2-Dichlo										
29)	Т	Diisopropyl Ether										
30)	Т	Ethyl Acetate		0.552	0.508	0.496	0.434	0.441	0.428	0.477	10.44	
31)	Т	Ethyl Acetate n-Hexane	3.461	3.260	3.018	2.769	2.477	2.492	2.461	2.848	14.30	

R160 8608.M Tue May 27 08:50:21 2008

8 5/29/08

Page: 1

Method Path : J:\MS16\METHODS\ Method File : R16052608.M : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS) Title 1.667 1.699 1.588 1.456 1.294 1.304 1.319 1.475 32) T Chloroform 1,2-Dichloroet... 1.417 1.427 1.431 1.413 1.408 1.446 1.465 1.430 33) S Tetrahydrofuran 0.636 0.752 0.727 0.673 0.596 0.564 0.545 0.642 34) T Ethyl tert-But... 1.442 1.505 1.386 1.310 1.188 1.196 1.191 1.317 35) T 1,2-Dichloroet... 1.868 1.953 1.838 1.682 1.496 1.505 1.498 1.691 36) T 1,4-Difluorobenzen... 37) IR 1,1,1-Trichlor... 0.506 0.493 0.465 0.413 0.370 0.369 0.364 0.426 38) T Isopropyl Acetate 0.207 0.249 0.229 0.213 0.197 0.193 0.191 0.211 39) T 40) T 0.492 0.459 0.423 0.408 0.369 0.367 0.362 0.411 1-Butanol 1.572 1.222 1.099 0.961 0.853 0.837 0.834 1.054 41) T Benzene Carbon Tetrach... 0.481 0.494 0.462 0.428 0.389 0.386 0.386 0.432 42) T 0.590 0.475 0.444 0.382 0.338 0.330 0.326 0.412 43) T Cyclohexane tert-Amyl Meth... 0.790 0.779 0.752 0.698 0.637 0.630 0.627 0.702 44) T 1,2-Dichloropr... 0.363 0.352 0.339 0.312 0.274 0.271 0.268 0.311 45) T Bromodichlorom... 0.345 0.350 0.338 0.308 0.281 0.275 0.271 0.310 46) T Trichloroethene 0.385 0.373 0.356 0.325 0.292 0.285 0.281 0.328 47) T 0.211 0.228 0.212 0.203 0.180 0.175 0.170 0.197 48) T 1,4-Dioxane 1.893 1.963 1.815 1.643 1.520 1.483 1.479 1.685 Isooctane 49) T 0.119 0.121 0.117 0.109 0.107 0.105 0.113 50) T Methyl Methacr... n-Heptane 0.265 0.301 0.272 0.260 0.227 0.221 0.216 0.252 51) T cis-1,3-Dichlo... 0.417 0.444 0.417 0.397 0.363 0.357 0.351 0.392 52) T 53) T 4-Methvl-2-pen... 0.408 0.415 0.383 0.370 0.335 0.330 0.324 0.366 trans-1,3-Dich... 0.400 0.402 0.371 0.360 0.335 0.330 0.333 0.362 54) T 1,1,2-Trichlor... 0.289 0.296 0.273 0.255 0.231 0.227 0.225 0.256 55) T Chlorobenzene-d5 (... -----ISTD-----ISTD-----56) I Toluene-d8 (SS2) 2.647 2.610 2.596 2.564 2.537 2.557 2.531 2.577 57). S 58) T Toluene 3.867 3.439 3.121 2.811 2.452 2.424 2.352 2.924 3.643 3.252 2.862 2.682 2.367 2.323 2.198 2.761 59) T 2-Hexanone 60) T Dibromochlorom... 1.065 0.974 0.869 0.842 0.766 0.771 0.753 0.863 1,2-Dibromoethane 0.966 0.927 0.868 0.780 0.703 0.699 0.676 0.803 61) T 3.185 3.110 2.978 2.782 2.526 2.486 2.366 2.776 62) T Butyl Acetate 63) T n-Octane 0.969 1.069 0.956 0.888 0.787 0.775 0.744 0.884 64) T Tetrachloroethene 1.109 1.019 0.904 0.848 0.738 0.728 0.708 0.865 2.545 2.511 2.242 2.033 1.782 1.765 1.705 2.083 65) T Chlorobenzene 66) T Ethylbenzene 4.040 3.875 3.573 3.229 2.895 2.860 2.790 3.323 m- & p-Xylene 67) T 2.730 2.589 2.359 2.125 1.890 1.882 1.838 2.202 68) T Bromoform 0.525 0.556 0.522 0.502 0.470 0.470 0.461 0.501

R1602608.M Tue May 27 08:50:21 2008

Styrene

o-Xylene

69) T

70) T

15# 5/29/08

2.473 2.355 2.254 2.112 1.927 1.910 1.857 2.127

2.994 2.720 2.495 2.298 2.028 2.009 1.951 2.357

11.94

1.41

9.94

11.62

14.51

10.09

12.24

25.77

10.86

23.71

10.26

11.13

13.26

11.21

12.11

5.82

12.54

9.16

10.24

8.51

11.68

1.64

19.79 19.28

13.68

14.71

11.71

13.68

17.95

17.08

15.40

16.49

7.07

11.33

16.92

13.13

Page: 2

Method Path : J:\MS16\METHODS\

Method File : R16052608.M

Title	: EPA TO-15 per	SOP V	OA-TO1	.5 (CAS	S TO-1	5/GC-M	1S)				
71) T		2.773								16.02	
72) T	1,1,2,2-Tetrac									16.95	
73) S	Bromofluoroben	0.838	0.834	0.839	0.860	0.871	0.879	0.876	0.857	2.28	
74) T	Cumene	4.104	3.951	3.678	3.336	3.016	3.000	2.930	3.431	14.10	
75) T	alpha-Pinene	1.698	1.847	1.738	1.646	1.472	1.458	1.410	1.610	10.28	
76) T	n-Propylbenzene	4.743	4.567	4.278	3.896	3.518	3.505	3.401	3.987	13.73	
77) T	3-Ethyltoluene	4.606	4.309	4.000	3.583	3.282	3.318	3.248	3.764	14.52	
78) T	4-Ethyltoluene		4.046							14.88	
79) T	1,3,5-Trimethy									15.65	
80) T	alpha-Methylst									7.33	
81) T	2-Ethyltoluene		4.277							12.60	
82) T	1,2,4-Trimethy									16.31	
83) T		2.399								11.83	
84) T	Benzyl Chloride									8.65	
85) T	1,3-Dichlorobe									16.65	
86) T	1,4-Dichlorobe									15.92	
87) T	sec-Butylbenzene									12.97	
88) T	p-Isopropyltol									12.34	
89) T	1,2,3-Trimethy									12.96	
90) T	1,2-Dichlorobe									17.05	
91) T	d-Limonene	0.939	1.091	0.989	0.957	0.880	0.874	0.844	0.939	8.99	
92) T	1,2-Dibromo-3									4.74	
93) T		2.495								9.94	
94) T	1,2,4-Trichlor									11.41	
95) T	Naphthalene									15.89	
96) T	n-Dodecane									7.37	
97) T	Hexachloro-1,3	0.603	0.622	0.577	0.523	0.478	0.470	0.457	0.533	12.70	
			~ ~ ~ ~ .								

(#) = Out of Range

R160 2608.M Tue May 27 08:50:21 2008

10H S129108

Δ.

Primary Source Standards Concentrations (Working & Initial Calibration)

4ng/L Std. ID: S20:05210811 ... 20ng/L Std. ID: S20:052108081 200ng/L Std. ID: S20:05210802

200ng/L Std. ID: 200ng/L Std. ID:	S20-05210808			· .	ICAL Concentrations (Primary Source)							
2001.972 010. 10.	DE0-00241/00/201				Working STD		NOAL O	N CONSTRUCT			1.00)	
Dilution Factors:		5	50	250	Conc.(ng/L):	4 4	20:2	20	20	200	200	200
r	Source Std.		Vorking S		Injection (L):	Secol Manufacture and the secol	0.025	0.050	0.25	0.125	0.25	0.50
Compounds	mg/m ³	200ng/L	20ng/L	4ng/L	ICAL Points:	0.1ng	0.5ng	ing	5ng	25ng	50ng	100ng
Propene	1.08	216	21.6	4,32	AUTUUUUU	0.108	0.540	1.08	5.40	27.0	54.0	108
Dichlorodifluoromethane	1.04	208	20.8	4.16	AIIIIIIIIII	0.104	0.520	1.04	5.20	26.0	52.0	104
Chloromethane	1.02	204	20.4	4.08	XIIIIIIIIIII	0.102	0.510	1.02	5.10	25.5	51.0	102
Freon-114	1.07	214	21.4	4.28	χ	0.107	0.535	1.07	5.35	26.8	53.5	107
Vinyl Chloride	1.03	206	20.6	4.12		0.103	0.515	1.03	5,15	25.8	51.5	103
1,3-Butadiene	1.09	218	21.8	4.36		0.109	0.545	1.09	5.45	27.3	54.5	109
Bromomethane	1.05	210	21.0	4.20		0.105	0.525	1.05	5.25	26.3	52.5	105
Chioroethane	1.05	210	21.0	4.20	Λ	0.105	0.525	1.05	5.25	26.3	52.5	105
Ethanol	0.91	182	18.2	3.64		0.091	0.455	0.910	4.55	22.8	45.5	91.0 98.0
Acetonitrile	0.980	196	19.6	3.92 3.84	AIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	0.098	0.490	0.980	4.90	24.5 24.0	49.0 48.0	98.0 96.0
Acrolein	0.960	192 222	<u>19.2</u> 22.2	4,44		0.090	0.460	1.11	4.60 5.55	24.0	48.0 55.5	111
Acetone	1.04	208	20.8	4.44		0.104	0.535	1.04	5.20	26.0	52.0	104
Trichlorofluoromethane	1.04	208	20.8	4.12	AIIIIIIIIII	0.104	0.515	1.03	5.15	25.8	51.5	103
Acrylonitrile	1.010	200	20.2	4.04		0.101	0.505	1.01	5.05	25.3	50.5	101
1,1-Dichloroethene	1.13	202	22.6	4,52	VIIIIIIV	0.113	0.565	1,13	5.65	28.3	56.5	113
tert-Butanol	1,020	204	20.4	4.08	XIIIIIIIIIIX	0.102	0.510	1.02	5.10	25.5	51.0	102
Methylene Chloride	1.12	224	22.4	4.48	VIIIIIIIV	0.112	0.560	1.12	5.60	28.0	56.0	112
Allyl Chloride	1.05	210	21.0	4.20		0.105	0.525	1.05	5.25	26.3	52.5	105
Trichlorotrifluoroethane	1,14	228	22.8	4.56	XIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	0.114	0.570	1.14	5.70	28.5	57.0	114
Carbon Disulfide	1.00	200	20.0	4.00		0.100	0.500	1.00	5.00	25.0	50.0	100
trans-1,2-Dichloroethene	1.10	220	22.0	4.40		0.110	0.550	1.10	5.50	27.5	55.0	110
1,1-Dichloroethane	1,11	222	22.2	4.44		0.111	0.555	1.11	5.55	27.8	55.5	111
Methyl tert-Butyl Ether	1.11	222	22.2	4,44		0.111	0.555	1.11	5,55	27.8	55.5	111
Vinyl Acetate	0.98	196	19.6	3.92	21111111111	0.098	0.490	0.980	4.90	24.5	49.0	98.0
2-Butanone	1.12	224	22.4	4.48	61111111111	0.112	0.560	1.12	5.60	28.0	56.0	112
cis-1,2-Dichloroethene	1.11	222	22.2	4.44		0.111	0.555	1.11 1.03	5.55 5.15	27.8 25.8	55.5 51.5	111 103
Diisopropyl Ether	<u>1.03</u> 1.27	206 254	20.6 25.4	4.12 5.08		0.103	0.635	1.03	6.35	31.8	63.5	103
Ethyl Acetate n-Hexane	1.12	234	23.4	4.48		0.127	0.560	1.12	5.60	28.0	56.0	112
Chloroform	1.29	258	25.8	5.16	6111111111	0.129	0.645	1.29	6.45	32.3	64.5	129
Tetrahydrofuran	1.11	222	22.2	4,44		0.111	0.555	1.11	5.55	27.8	55.5	111
Ethyl tert-Butyl Ether	1.05	210	21.0	4.20	AIIIIIIIIIA	0.105	0.525	1.05	5.25	26.3	52.5	105
1,2-Dichloroethane	1.10	220	22.0	4,40		0.110	0.550	1.10	5.50	27.5	55.0	110
1,1,1-Trichloroethane	1,10	220	22.0	4.40		0.110	0.550	1.10	5.50	27.5	55.0	110
Isopropyl Acetate	1.010	202	20.2	4.04		0.101	0.505	1.01	5.05	25.3	50.5	101
1-Butanol	0.910	182	18,2	3.64		0.091	0.455	0.910	4.55	22.8	45,5	91.0
Benzene	1.10	220	22.0	4,40		0.110	0.550	1.10	5.50	27.5	55.0	110
Carbon Tetrachloride	1.07	214	21.4	4.28	())))))))))))))))))))))))))))))))))))))	0.107	0.535	1.07	5.35	26.8	53.5	107
Cyclohexane	1.11	222	22.2	4,44		0.111	0.555	1.11	5.55	27.8	55.5	111
tert-Amyl Methyl Ether	1.04	208 218	20.8 21.8	4.16 4.36		0.104	0.520	1.04	5.20 5.45	26.0 27.3	52.0 54.5	<u>104</u> 109
1,2-Dichloropropane	1.09	218	23.0	4.60	11111111111A	0.109	0.545	1.15	5.75	28.8	57.5	115
Bromodichloromethane Trichloroethene	1.15	230	23.0	4.56		0.114	0.570	1.14	5.70	28.5	57.0	114
1.4-Dioxane	1.15	230	23.0	4.60		0.115	0.575	1.15	5.75	28.8	57.5	115
Isooctane	1.04	208	20.8	4,16	<i>())))))))))))))))))))))))))))))))))))</i>	0.104	0.520	1.04	5.20	26.0	52.0	104
Methyl Methacrylate	1.06	212	21.2	4.24	2//////////	0.106	0.530	1.06	5.30	26.5	53.0	106
n-Heptane	1,11	222	22.2	4,44		0.111	0.555	1.11	5.55	27.8	55.5	111
cis-1.3-Dichloropropene	1.04	208	20.8	4.16		0.104	0.520	1.04	5.20	26.0	52.0	104
4-Methyl-2-pentanone	1.05	210	21.0	4.20		0.105	0.525	1.05	5.25	26.3	52.5	105
trans-1,3-Dichloropropene	1.16	232	23.2	4,64	AIIIIIIIIII	0.116	0.580	1.16	5.80	29.0	58.0	116
1,1,2-Trichloroethane	1.09	218	21.8	4.36	AIIIIIIIIIII	0.109	0.545	1.09	5.45	27.3	54.5	109
Toluene	1.10	220	22.0	4.40		0.110	0.550	1.10	5.50	27.5	55.0	110
2-Hexanone	1.02	204	20.4	4.08	AHHHHHH	0.102	0.510	1.02	5.10	25.5	51.0	102
Dibromochloromethane	1.11	222	22.2	4.44	unnnu an	0.111	0.555	1.11	5.55	27.8	55.5	111
1,2-Dibromoethane	1.09	218	21.8	4.36	AIIIIIIIIIA	0.109	0.545	1.09	5.45 5.25	27.3 26.3	54.5 52.5	<u>109</u> 105
n-Butyl Acetate	1.05	210 208	21.0 20.8	4.20	61111111111	0.105	0.525	1.05	5.25	26.3	52.5 52.0	105
n-Octane	<u> </u>	208	20.8	4.16	AIIIIIIIIIIA	0.104	0.520	1.04	5.45	27.3	54.5	104
Tetrachloroethene				***************************************	ann an			******************************	*****	*****		110
Chlorobenzene	1.10	220	22.0	4,411	VIIIIIIIII	0,110	0.550 1	1.10	0.50	1 27.5 1	55.0	110 1
Chlorobenzene Ethylbenzene	<u>1.10</u> 1.08	220 216	<u>22.0</u> 21.6	4.40 4.32		0.110	0.550	<u>1.10</u> 1.08	5.50 5.40	27.5 27.0	55.0 54.0	108

30/96/2 18,

Primary Source Standards Concentrations (Working & Initial Calibration)

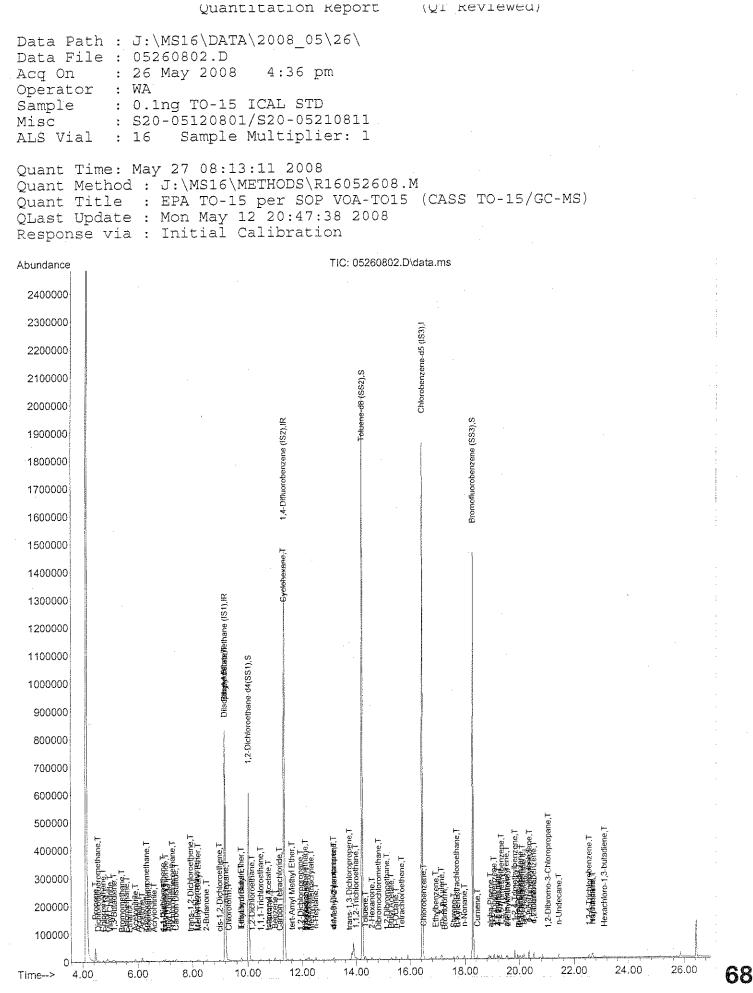
4ng/L Std. ID: S20-05210811 20ng/L Std. ID: S20-05210808 200ng/L Std. ID: S20-05210802

200ng/L Std. ID:	ICAL Concentrations (Primary Source)											
					Working STD							
Dilution Factors:		5	50	250	Conc.(ng/L):	4	20	20	20	200	200	200
	Source Std.	Primary V	Vorking S	tandards	Injection (L):	0.025	0.025	0.05	0.25	0.125	0.25	0.50
Compounds	mg/m ³	200ng/L	20ng/L	4ng/L	ICAL Points:	<u>0.1ng</u>	<u>0.5ng</u>	<u>1ng</u>	<u>5ng</u>	<u>25ng</u>	<u>50ng</u>	100ng
Bromoform	1.31	262	26.2	5.24	VIIIIIIIII	0.131	0.655	1.31	6.55	32.8	65.5	131
Styrene	1.08	216	21.6	4.32	AIIIIIIIIIIIIIII	0.108	0.540	1.08	5.40	27.0	54.0	108
o-Xylene	1.22	244	24.4	4.88		0.122	0.610	1.22	6.10	30.5	61.0	122
n-Nonane	1.03	206	20.6	4.12		0.103	0.515	1.03	5.15	25.8	51.5	103
1,1,2,2-Tetrachloroethane	1.23	246	24.6	4.92	VIIIIIIIIIIII	0.123	0.615	1.23	6.15	30.8	61.5	123
Cumene	1.08	216	21.6	4,32		0.108	0.540	1.08	5.40	27.0	54.0	108
alpha-Pinene	1.06	212	21.2	4.24	AHHHHHH	0.106	0.530	1.06	5.30	26.5	53.0	106
n-Propylbenzene	1.05	210	21.0	4.20		0.105	0.525	1.05	5.25	26.3	52.5	105
3-Ethyltoluene	1.02	204	20.4	4.08	AIIIIIIIIII	0.102	0.510	1.02	5.10	25.5	51.0	102
4-Ethyltoluene	1.11	222	22.2	4,44	<i>UIIIIIIIIII</i> IIII	0.111	0.555	1.11	5.55	27.8	55.5	111
1,3,5-Trimethylbenzene	1.08	216	21.6	4.32		0.108	0.540	1.08	5.40	27.0	54.0	108
alpha-Methvistyrene	1.02	204	20.4	4.08		0.102	0.510	1.02	5.10	25.5	51.0	102
2-Ethvitoluene	0.990	198	19.8	3.96	AIIIIIIIIIII	0.099	0.495	0.990	4.95	24.8	49.5	99.0
1,2,4-Trimethylbenzene	1.10	220	22.0	4.40		0.110	0.550	1.10	5.50	27.5	55.0	110
n-Decane	1.04	208	20.8	4.16		0.104	0.520	1.04	5.20	26.0	52.0	104
Benzyl Chioride	1.07	214	21.4	4.28		0.107	0.535	1,07	5.35	26.8	53.5	107
1.3-Dichlorobenzene	1.06	212	21.2	4.24		0.106	0.530	1.06	5.30	26.5	53.0	106
1,4-Dichlorobenzene	1.10	220	22.0	4.40		0.110	0.550	1.10	5.50	27.5	55.0	110
sec-Butylbenzene	1.07	214	21.4	4.28		0.107	0.535	1.07	5.35	26.8	53.5	107
p-isopropyttoluene	1.180	236	23.6	4.72	///////////////////////////////////////	0.118	0.590	1.18	5.90	29.5	59.0	118
1.2.3-Trimethylbenzene	1.10	220	22.0	4.40	41111111111	0.110	0.550	1.10	5.50	27.5	55.0	110
1,2-Dichlorobenzene	1.08	216	21.6	4.32		0.108	0.540	1.08	5.40	27.0	54.0	108
d-Limonene	1.06	212	21.2	4.24		0.106	0.530	1.06	5.30	26.5	53.0	106
1,2-Dibromo-3-chloropropane	1.04	208	20.8	4.16	11111111111	0.104	0.520	1.04	5.20	26.0	52.0	104
n-Undecane	1.05	210	21.0	4.20	<i>MIIIIIIII</i>	0.105	0.525	1.05	5.25	26.3	52.5	105
1,2,4-Trichlorobenzene	1.12	224	22.4	4.48		0.112	0.560	1.12	5.60	28.0	56.0	112
Naphthaiene	1.05	210	21.0	4.20		0.105	0.525	1.05	5.25	26.3	52.5	105
n-Dodecane	1.06	212	21,2	4.24	AHHHHHH	0.106	0.530	1.06	5.30	26.5	53.0	106
Hexachloro-1,3-butadiene	1.11	222	22.2	4.44	01111111111	0.111	0.555	1.11	5.55	27.8	55.5	111

*Enter information in the Solid Shaded Areas ONLY.

Q:\TO15 Std. Concentrations\MS16 Std. Conc\R16052608\\CAL Conc. (Primary Source)

Method Path : J:\MS16\METHODS\ Method File : R16052608.M Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS) Last Update : Tue May 27 08:50:43 2008 Response Via : Initial Calibration


#	ID	Conc	ISTD	Path\File
			Conc	
1	0.1	0	- 25	J:\MS16\DATA\2008_05\26\05260802.D
2	0.5	1	25	J:\MS16\DATA\2008_05\26\05260803.D
3	1.0	1	25	J:\MS16\DATA\2008_05\26\05260804.D
4	5.0	- 5	25	J:\MS16\DATA\2008_05\26\05260805.D
5	25	27	25	J:\MS16\DATA\2008_05\26\05260806.D
6	50	54	25	J:\MS16\DATA\2008_05\26\05260807.D
7	100	108	25	J:\MS16\DATA\2008_05\26\05260808.D

#	ID	Update Time	Quant Time	Acquisition Time				
1	0.1	May 27 08:39 2008	May 27 08:13 2008	26 May 2008 4:36 pm				
	0.5	May 27 08:39 2008	May 27 08:17 2008	26 May 2008 5:14 pm				
3	1.0	May 27 08:39 2008	May 27 08:21 2008	26 May 2008 5:51 pm				
	5.0	May 27 08:39 2008	May 27 08:23 2008	26 May 2008 6:36 pm				
	25	May 27 08:40 2008	May 27 08:25 2008	26 May 2008 7:14 pm				
	50	May 27 08:40 2008	May 27 08:35 2008	26 May 2008 7:52 pm				
	100	May 27 08:40 2008	May 27 08:38 2008	26 May 2008 8:30 pm				

16052608.M Thu May 29 11:50:14 2008

,Si shqloe

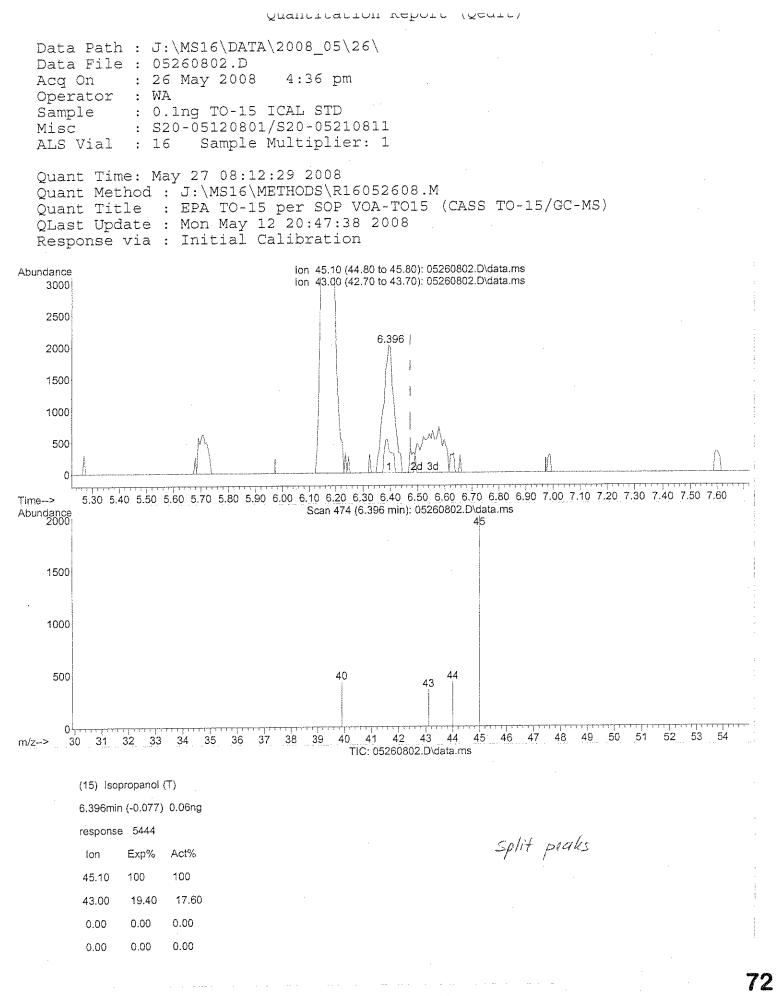
67

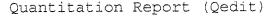
R16052608.M Tue May 27 08:16:00 2008

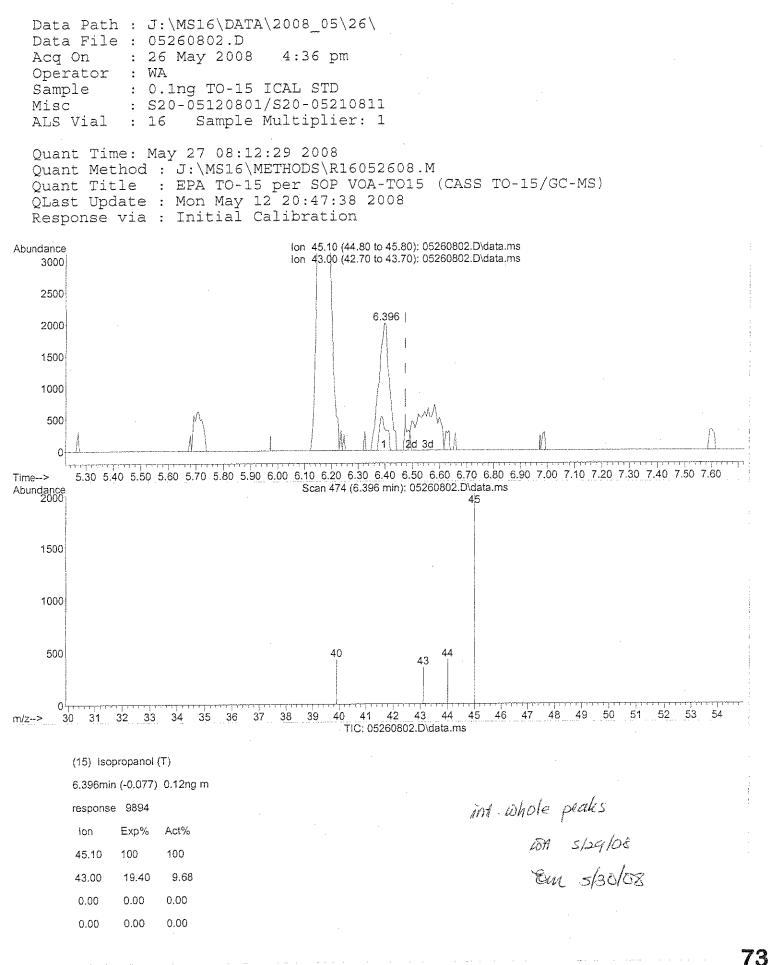
Quantitation	Report	(Q.	[Reviewed)			
Data Path : J:\MS16\DATA\2008_05 Data File : 05260802.D Acq On : 26 May 2008 4:36 pr Operator : WA Sample : 0.1ng TO-15 ICAL STD Misc : S20-05120801/S20-052 ALS Vial : 16 Sample Multiplic	m					
Quant Time: May 27 08:13:11 2008 Quant Method : J:\MS16\METHODS\R Quant Title : EPA TO-15 per SOP QLast Update : Mon May 12 20:47: Response via : Initial Calibratio	VOA-TO 38 2008	15 (CA	ASS TO-15/G	GC-MS)		
Internal Standards	R.T.	QIon	Response	Conc Unit:	s Dev(Min	.)
1) Bromochloromethane (IS1) 37) 1,4-Difluorobenzene (IS2) 56) Chlorobenzene-d5 (IS3)	9.19 11.34	130 114	400141 1673816	25.000 ng 25.000 ng	-0.07 -0.04	
System Monitoring Compounds 33) 1,2-Dichloroethane-d4(Spiked Amount 25.000 57) Toluene-d8 (SS2) Spiked Amount 25.000 73) Bromofluorobenzene (SS3) Spiked Amount 25.000	14.22	98	Recove 1661708 Recove 526226	20.091 ng ery = 80 26.885 ng ery = 10 32.713 ng ery = 130	0.36% -0.02 7.52% -0.01	
Target Compounds	م م د	4.0	4004	0.106 ng	Qvalue	
<pre>3) Dichlorodifluoromethane 4) Chloromethane 5) Freon 114 6) Vinyl Chloride 7) 1,3-Butadiene 8) Bromomethane 9) Chloroethane 10) Ethanol 11) Acetonitrile 12) Acrolein 13) Acetone 14) Trichlorofluoromethane 15) Isopropanol 16) Acrylonitrile 17) 1,1-Dichloroethene 18) tert-Butanol 19) Methylene Chloride 20) Allyl Chloride 21) Trichlorotrifluoroethane 22) Carbon Disulfide 23) trans-1,2-Dichloroethene 24) 1,1-Dichloroethane 25) Methyl tert-Butyl Ether 26) Vinyl Acetate</pre>	$\begin{array}{c} 4.56\\ 4.75\\ 4.80\\ 5.14\\ 5.60\\ 5.14\\ 5.60\\ 5.72\\ 5.92\\ 6.13\\ 6.99\\ 4.69\\ 8.40\\ 7.49\\ 6.99\\ 7.49\\ 8.23\\ 8.23\end{array}$	85 50 135	4829 6550 2475 3667 3391 2058 2016 1471 13158 2744 8349 4204 9894m 3984 1987 7419m 3045 4050	0.102 ng 0.112 ng 0.091 ng 0.090 ng 0.124 ng 0.124 ng 0.124 ng 0.124 ng 0.124 ng 0.140 ng 0.140 ng 0.140 ng 0.140 ng 0.140 ng 0.145 ng 0.107 ng 0.105 ng 0.104 ng 0.085 ng 0.104 ng 0.095 ng 0.146 ng 0.131 ng 0.163 ng 0.163 ng 0.100 ng 0.088 ng 0.101 ng N.D.	95 91 100 94 92 94 82 # 50 99 # 64 92 # 64 92 # 80 # 52 # 80 # 52 71 88 97 92	
 27) 2-Butanone 28) cis-1,2-Dichloroethene 29) Diisopropyl Ether 30) Ethyl Acetate 31) n-Hexane 	8.52 9.00 9.18 9.19 9.23	61	1394 3528 1644 737 6205	0.093 ng 0.095 ng 0.073 ng	98 # 13	

	Quantitation	Report	(QT	Reviewed)			
Data File : 05 Acq On : 26 Operator : WA	May 2008 4:36 p	m				·	
Quant Method : Quant Title : QLast Update :	Y 27 08:13:11 2008 J:\MS16\METHODS\R EPA TO-15 per SOP Mon May 12 20:47: Initial Calibrati	1605260 VOA-TO 38 2008	8.M 15 (CA	SS TO-15/G	C-MS)		
Internal Star	dards			Response	Conc Units	Dev(Min)	•
<pre>35) Ethyl te 36) 1,2-Dich 38) 1,1,1-Tr 39) Isopropy 40) 1-Butanc 41) Benzene 42) Carbon T 43) Cyclohex 44) tert-Amy 45) 1,2-Dich 46) Bromodic 47) Trichlor 48) 1,4-Diox 49) Isooctan 50) Methyl M 51) n-Heptan 50) Methyl M 51) n-Heptan 52) cis-1,3- 53) 4-Methyl 54) trans-1, 55) 1,1,2-Tr 58) Toluene 59) 2-Hexanc 60) Dibromoc 61) 1,2-Dibr 62) Butyl Ac 63) n-Octane 64) Tetrachl 65) Chlorobe 66) Ethylben 67) m- & p-X 68) Bromofor 69) Styrene 70) o-Xylene 71) n-Nonane 72) 1,1,2,2- 74) Cumene 75) alpha-Pi</pre>	rm rofuran rt-Butyl Ether loroethane ichloroethane l Acetate l etrachloride ane l Methyl Ether loropropane hloromethane oethene ane e ethacrylate e Dichloropropene -2-pentanone 3-Dichloropropene ichloroethane ne hloromethane omoethane etate oroethene nzene zene ylene m	9.32 9.77 9.77 10.16 10.48 10.77 10.80 11.01 11.18 11.33 11.63 12.13 12.13 12.13 12.14 12.13 12.14 12.13 12.16 13.16 13.79 14.34 14.59 14.39 14.39 14.39 14.39 14.39 14.59 15.15 15.47 15.69 16.50 17.26 17.26 17.59 17.70 18.45 18.93	$\begin{array}{c} 83\\72\\87\\62\\97\\62\\97\\10\\8\\73\\83\\13\\8\\50\\75\\85\\79\\12\\97\\10\\12\\91\\10\\1\\91\\3\\10\\93\\10\\10\\10\\10\\10\\10\\10\\10\\10\\10\\10\\10\\10\\$	$\begin{array}{c} 1130\\ 2423\\ 3289\\ 3727\\ 1401\\ 2998\\ 11577\\ 3444\\ 4388\\ 5499\\ 2646\\ 2654\\ 2936\\ 1628\\ 13181\\ 515\\ 1969\\ 2905\\ 2871\\ 3109\\ 2905\\ 2871\\ 3109\\ 2905\\ 2871\\ 3109\\ 2905\\ 2871\\ 3109\\ 2905\\ 2871\\ 3109\\ 2905\\ 28731\\ 2967\\ 2643\\ 8397\\ 2530\\ 3035\\ 7030\\ 10957\\ 17683\\ 1727\\ 6707\\ 9171\\ 7173\\ 3879\\ 11130\\ 4520\end{array}$	0.099 ng 0.092 ng 0.116 ng 0.095 ng 0.095 ng 0.141 ng 0.142 ng 0.135 ng 0.141 ng 0.135 ng 0.104 ng 0.109 ng 0.104 ng 0.106 ng 0.097 ng 0.064 ng 0.094 ng 0.094 ng 0.094 ng 0.096 ng 0.096 ng 0.106 ng 0.106 ng 0.106 ng 0.106 ng 0.107 ng 0.106 ng 0.108 ng 0.106 ng 0.141 ng 0.125 ng 0.125 ng 0.127 ng 0.127 ng 0.127 ng 0.127 ng 0.127 ng 0.128 ng	######################################	
76) n-Propyl 77) 3-Ethylt 78) 4-Ethylt 79) 1,3,5-Tr	oluene	19.19	105	12504 11797 11073 10140	0.118 ng 0.129 ng 0.133 ng 0.139 ng		70

.16052608.M Tue May 27 08:15:59 2008

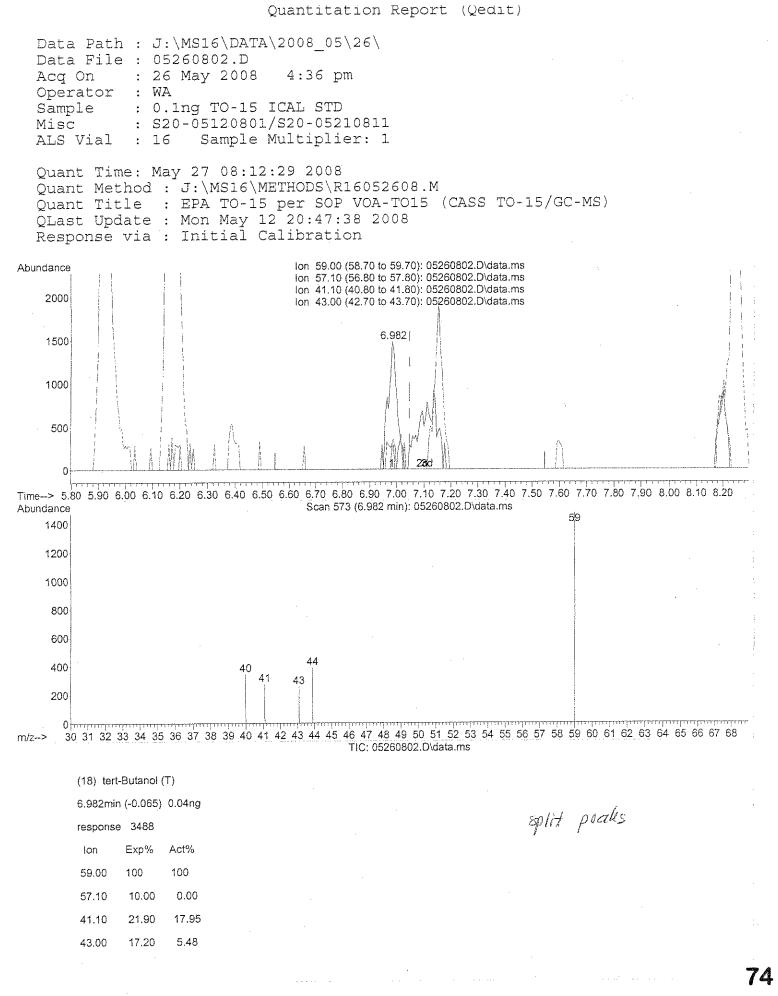

At 5/29/05


Data Path : J:\MS16\DATA\2008_05\26\ Data File : 05260802.D Acg On : 26 May 2008 4:36 pm Operator : WA Sample : 0.1ng TO-15 ICAL STD Misc : S20-05120801/S20-05210811 ALS Vial : 16 Sample Multiplier: 1 Quant Time: May 27 08:13:11 2008 Quant Method : J:\MS16\METHODS\R16052608.M Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS) QLast Update : Mon May 12 20:47:38 2008 Response via : Initial Calibration R.T. QIon Response Conc Units Dev(Min) Internal Standards 80) alpha-Methylstyrene19.5211845130.114 ng81) 2-Ethyltoluene19.56105102880.114 ng82) 1,2,4-Trimethylbenzene19.83105104550.138 ng83) n-Decane19.935762640.104 ng84) Benzyl Chloride19.999172690.115 ng85) 1,3-Dichlorobenzene20.0214664700.147 ng86) 1,4-Dichlorobenzene20.1014664210.153 ng87) sec-Butylbenzene20.16105121510.123 ng88) p-Isopropyltoluene20.34119113860.136 ng90) 1,2-Dichlorobenzene20.5214659140.145 ng91) d-Limonene20.516824990.092 ng92) 1,2-Dibromo-3-Chloropr...21.0415715520.121 ng93) n-Undecane21.5518410600.150 ng94) 1,2,4-Trichlorobenzene22.665762140.101 ng97) Hexachloro-1,3-butadiene23.1122516800.159 ng 98 92 92 80 84) Benzyl Chloride 85) 1,3-Dichlorobenzene 92 97 95 95 96 91 92 82 83 76 65 96 78 89

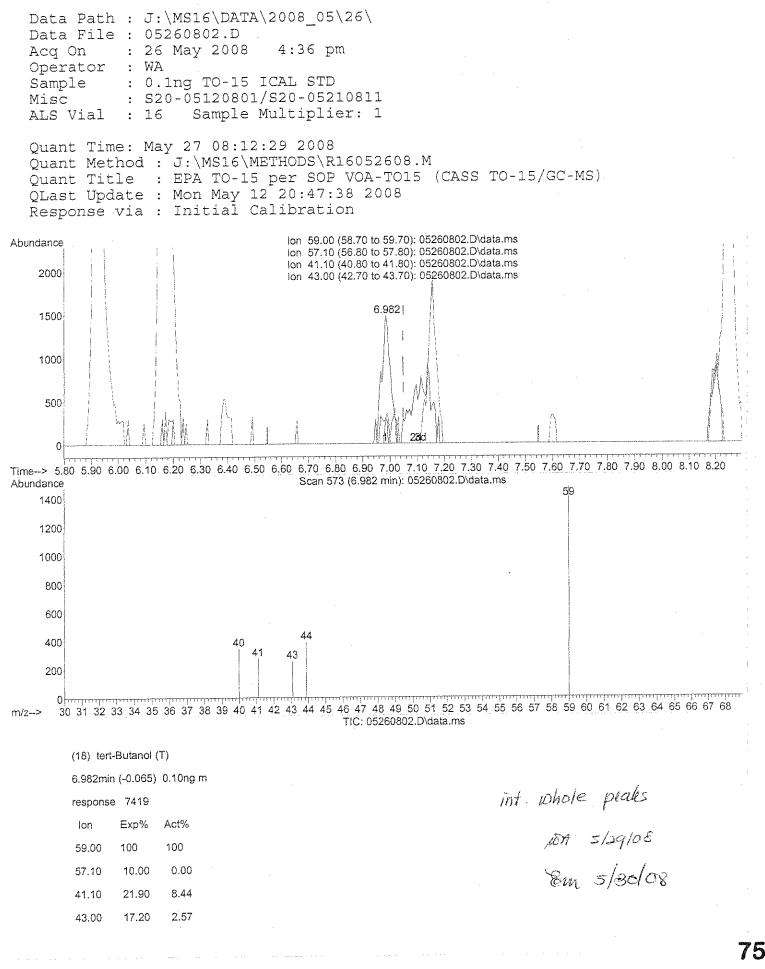

(#) = qualifier out of range (m) = manual integration (+) = signals summed

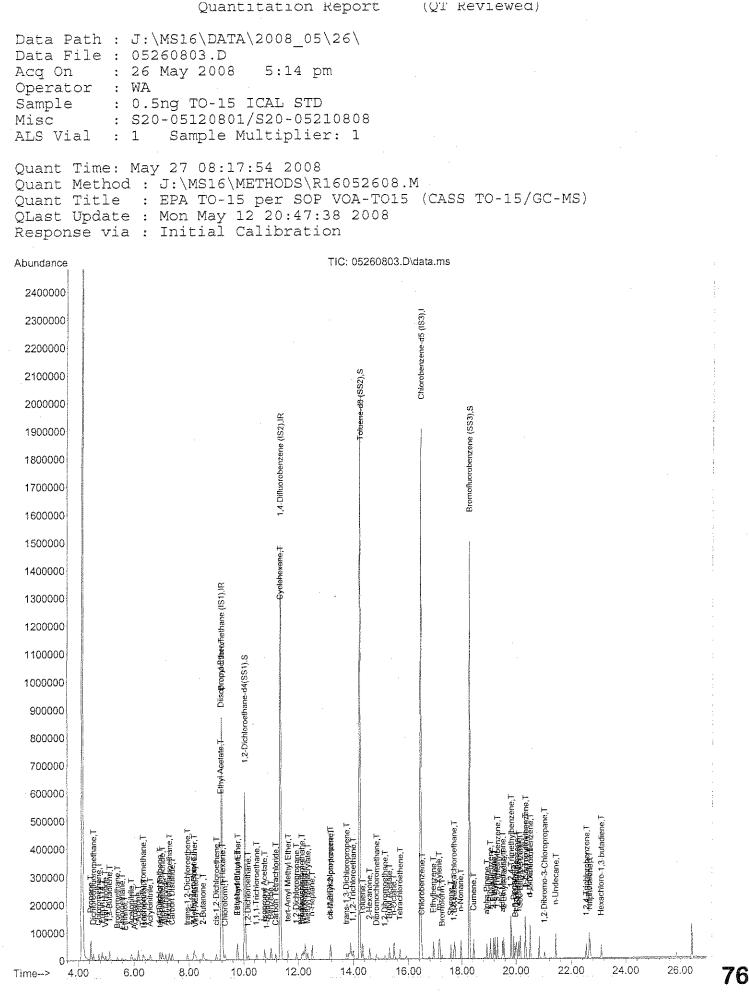
16052608.M Tue May 27 08:15:59 2008

AN 5/29/08








R16052608.M Tue May 27 08:13:01 2008

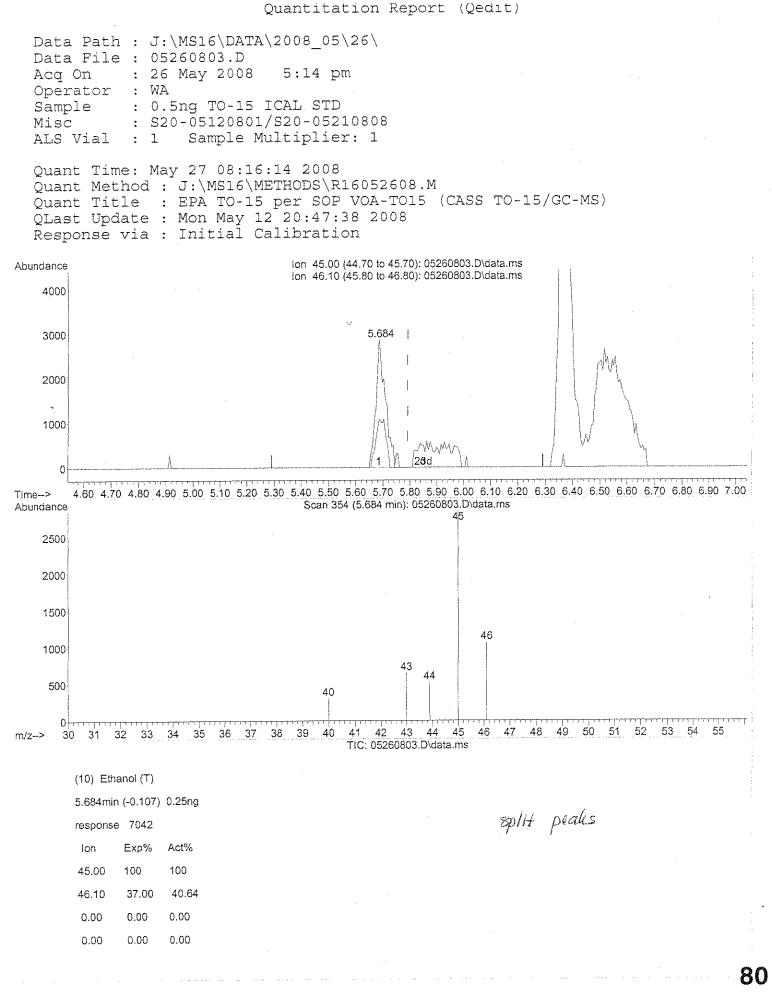
Page: 1

R16052608.M Tue May 27 08:19:19 2008

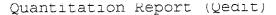
Quantitation H	Report	(Q1	[Reviewed))		
Data Path : J:\MS16\DATA\2008_05 Data File : 05260803.D Acq On : 26 May 2008 5:14 pr Operator : WA Sample : 0.5ng TO-15 ICAL STD Misc : S20-05120801/S20-0521 ALS Vial : 1 Sample Multiplier	n _0808					-
Quant Time: May 27 08:17:54 2008 Quant Method : J:\MS16\METHODS\R1 Quant Title : EPA TO-15 per SOP QLast Update : Mon May 12 20:47:3 Response via : Initial Calibratio	VOA-TO: 8 2008		ASS TO-15/0	GC-MS)		
Internal Standards	R.T.			Conc [·]	Units	Dev(Min)
1) Bromochloromethane (IS1) 37) 1,4-Difluorobenzene (IS2) 56) Chlorobenzene-d5 (IS3)	11.34	130 114	1681603	25.000	ng	-0.04
System Monitoring Compounds 33) 1,2-Dichloroethane-d4(Spiked Amount 25.000 57) Toluene-d8 (SS2) Spiked Amount 25.000 73) Bromofluorobenzene (SS3) Spiked Amount 25.000			538778	ery =	106. ng	.04% -0.01
<pre>10) Ethanol 11) Acetonitrile 12) Acrolein 13) Acetone 14) Trichlorofluoromethane 15) Isopropanol 16) Acrylonitrile 17) 1,1-Dichloroethene 18) tert-Butanol 19) Methylene Chloride 20) Allyl Chloride 21) Trichlorotrifluoroethane 22) Carbon Disulfide 23) trans-1,2-Dichloroethene 24) 1,1-Dichloroethane 25) Methyl tert-Butyl Ether 26) Vinyl Acetate 27) 2-Butanone 28) cis-1,2-Dichloroethene 29) Diisopropyl Ether 30) Ethyl Acetate</pre>	4.554 4.888 9.128 5.555 5.6924 6.33703 6.015894 6.015894 6.015894 8.1225 1.1237 7.394 8.2521 8.2521 9.117 1.17 9.117	85052444516815369411613362171 1459584116678762171	23186 30704 13598 18778 17240 9975 9285 11895m 36843 8955 20065 21258 45256m 21501 10929 37559m 11554 21772 11677 40121 20284 21332 32217 1989 7197 19695	0.483 0.593 0.4593 0.4597 0.5901 0.5901 0.5130 0.54561 0.5525 0.54561 0.5525 0.54561 0.5525 0.54561 0.55977 0.54560 0.55957 0.54510 0.559510 0.559510 0.559510 0.559510 0.55950 0.55950 0.559510 0.559500 0.55950 0.55950 0.559500 0.559500 0.559500 0.55950	ng n	98 98 98 98 98 95 # 86 100 89 97 # 67 97 97 97 97 99 97 # 43 74 86 99 97 # 43 74 86 99 95 94 # 1 7 4 81 # 1 7 92 # 22

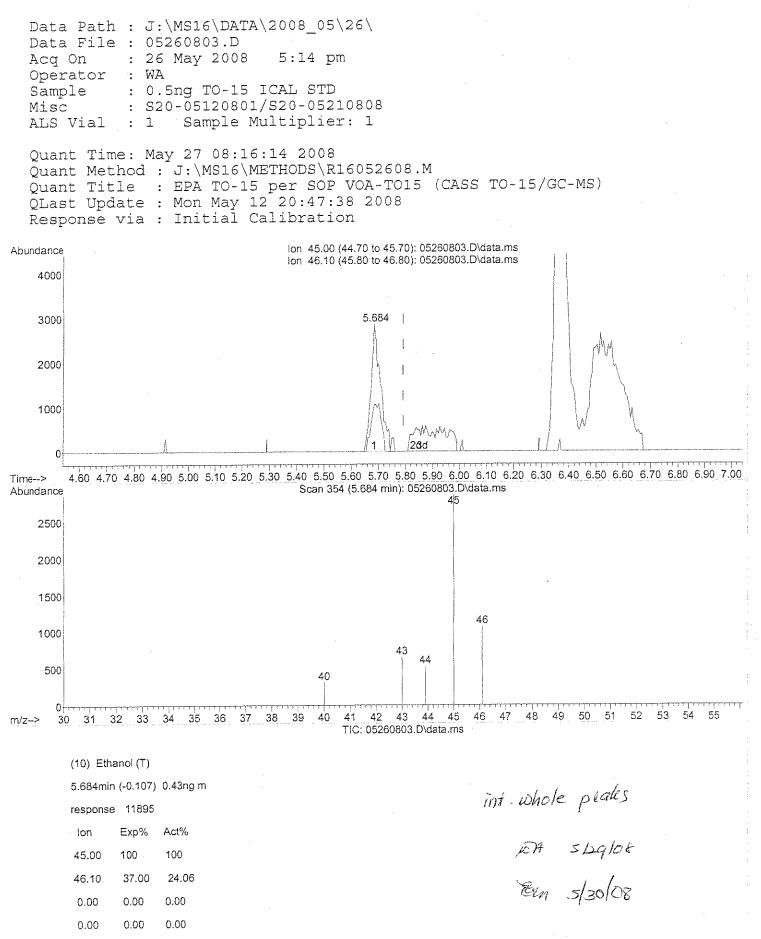
.16052608.M Tue May 27 08:19:18 2008

ba s/29/0€


Data Path : J:\MS16\DATA\2008_05 Data File : 05260803.D Acq On : 26 May 2008 5:14 p Operator : WA Sample : 0.5ng TO-15 ICAL STE Misc : S20-05120801/S20-052 ALS Vial : 1 Sample Multiplie	om				
Quant Time: May 27 08:17:54 2008 Quant Method : J:\MS16\METHODS\R Quant Title : EPA TO-15 per SOP QLast Update : Mon May 12 20:47: Response via : Initial Calibrati	1605260 VOA-TO 38 2008	15 (CA	ASS TO-15/G	C-MS)	
Internal Standards			-		
<pre>34) Tetrahydrofuran 35) Ethyl tert-Butyl Ether 36) 1,2-Dichloroethane 38) 1,1,1-Trichloroethane 39) Isopropyl Acetate 40) 1-Butanol 41) Benzene 42) Carbon Tetrachloride 43) Cyclohexane 44) tert-Amyl Methyl Ether 45) 1,2-Dichloropropane 46) Bromodichloromethane 47) Trichloroethene 48) 1,4-Dioxane 49) Isooctane 50) Methyl Methacrylate 51) n-Heptane 52) cis-1,3-Dichloropropene 53) 4-Methyl-2-pentanone 54) trans-1,3-Dichloropropene 55) 1,1,2-Trichloroethane 59) 2-Hexanone 60) Dibromochloromethane 61) 1,2-Dibromoethane 61) 1,2-Dibromoethane 62) Butyl Acetate 63) n-Octane 64) Tetrachloroethene 65) Chlorobenzene 66) Ethylbenzene 67) m- & p-Xylene 68) Bromoform 69) Styrene 70) o-Xylene 71) n-Nonane 72) 1,1,2,2-Tetrachloroethane 75) alpha-Pinene 76) n-Propylbenzene</pre>	9.32 9.77 9.78 10.16 10.47 10.77 10.85 11.01 11.18 11.33 12.13 12.13 12.14 12.31 12.31 12.31 12.31 12.31 13.79 14.58 14.58 14.58 14.58 14.58 15.47 15.47 15.47 15.47 15.47 15.47 17.79 17.90 18.45 19.00	83 72 87 87 87 87 87 87 87 87 87 83 87 83 87 83 87 10 75 87 91 10	17613 6712 12699 17268 18245 8471 14060 45203 17774 17716 27234 12919 13522 14284 8805 68671 4242 11249 15530 14645 15667 10839 48882 42868 13973 13056 42203 14371 14352 35691 54082 86302 9414 32872 42884 36634 17335 55143 25301 61972	0.588 ng 0.489 ng 0.514 ng 0.482 ng 0.482 ng 0.493 ng 0.493 ng 0.441 ng 0.548 ng 0.728 ng 0.543 ng 0.543 ng 0.505 ng 0.505 ng 0.502 ng 0.502 ng 0.521 ng 0.521 ng 0.522 ng 0.522 ng 0.522 ng 0.536 ng 0.472 ng 0.472 ng 0.472 ng 0.472 ng 0.539 ng 0.524 ng 0.520 ng 0.520 ng 0.522 ng 0.522 ng 0.522 ng 0.522 ng 0.524 ng 0.525 ng 0.527 ng 0.576 ng 0.608 ng 1.481 ng 0.609 ng 0.609 ng 0.633 ng 0.635 ng 0.635 ng 0.597 ng 0.569 ng	95 47 76 97 92 70 47 90 98 1 70 99 98 1 74 90 96 94 92 98 4 74 90 96 94 93 77 90 96 94 93 77 97 92 96 95 97 97 97 97 97 97 97 97 97 97 97 97 97
77) 3-Ethyltoluene 78) 4-Ethyltoluene 79) 1,3,5-Trimethylbenzene			56794 58033 48794		92 91 78

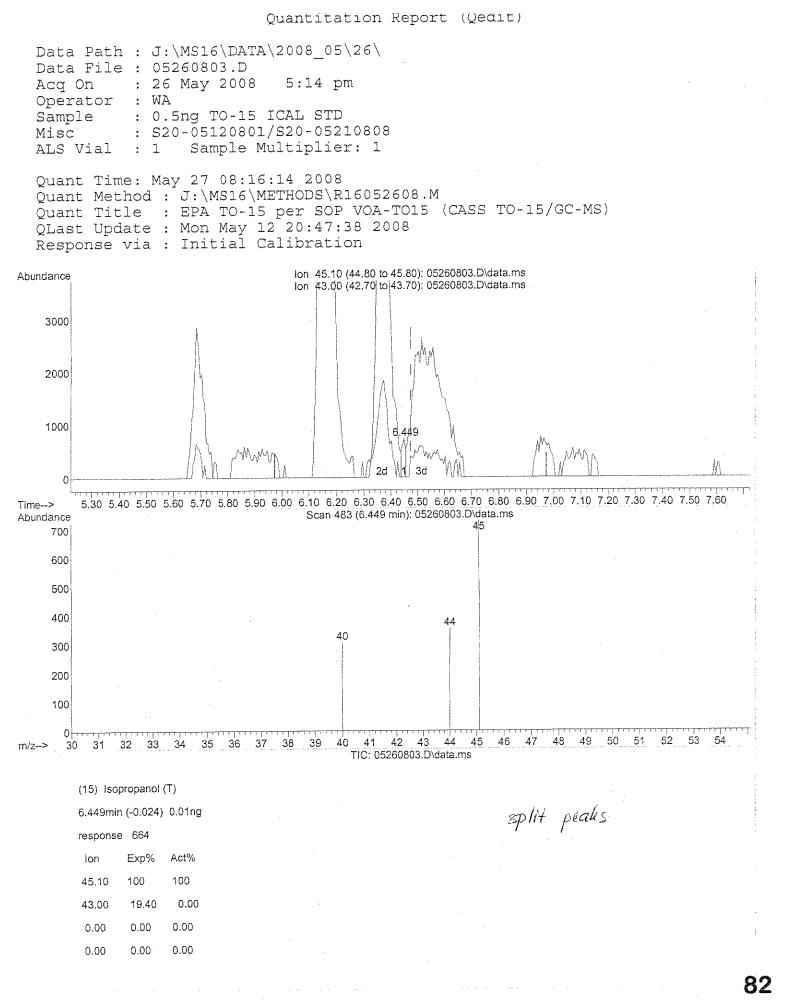
Data Path : J:\MS16\DATA\2008 05\26\ Data File : 05260803.D Acq On : 26 May 2008 5:14 pm Operator : WA Sample : 0.5ng TO-15 ICAL STD Misc : S20-05120801/S20-05210808 ALS Vial : 1 Sample Multiplier: 1 Quant Time: May 27 08:17:54 2008 Quant Method : J:\MS16\METHODS\R16052608.M Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS) QLast Update : Mon May 12 20:47:38 2008 Response via : Initial Calibration R.T. QIon Response Conc Units Dev(Min) Internal Standards 80) alpha-Methylstyrene19.51118248140.607ng81) 2-Ethyltoluene19.56105547130.587ng82) 1,2,4-Trimethylbenzene19.83105505500.649ng83) n-Decane19.9357336260.545ng84) Benzyl Chloride19.9991350070.539ng85) 1,3-Dichlorobenzene20.02146306330.678ng86) 1,4-Dichlorobenzene20.10146309460.717ng87) sec-Butylbenzene20.15105641320.632ng88) p-Isopropyltoluene20.34119622120.722ng89) 1,2,3-Trimethylbenzene20.52146297630.710ng91) d-Limonene20.5168149510.532ng92) 1,2-Dibromo-3-Chloropr...21.0315782480.625ng93) n-Undecane21.4357345580.532ng94) 1,2,4-Trichlorobenzene22.5518452200.716ng95) Naphthalene22.6657337350.533ng96) n-Dodecane22.6657337350.533ng97) Hexachloro-1,3-butadiene23.1122589180.818ng 99 91 90 79 89 100 98 95 94 88 100 92 89 79 88 98 77 93 _____

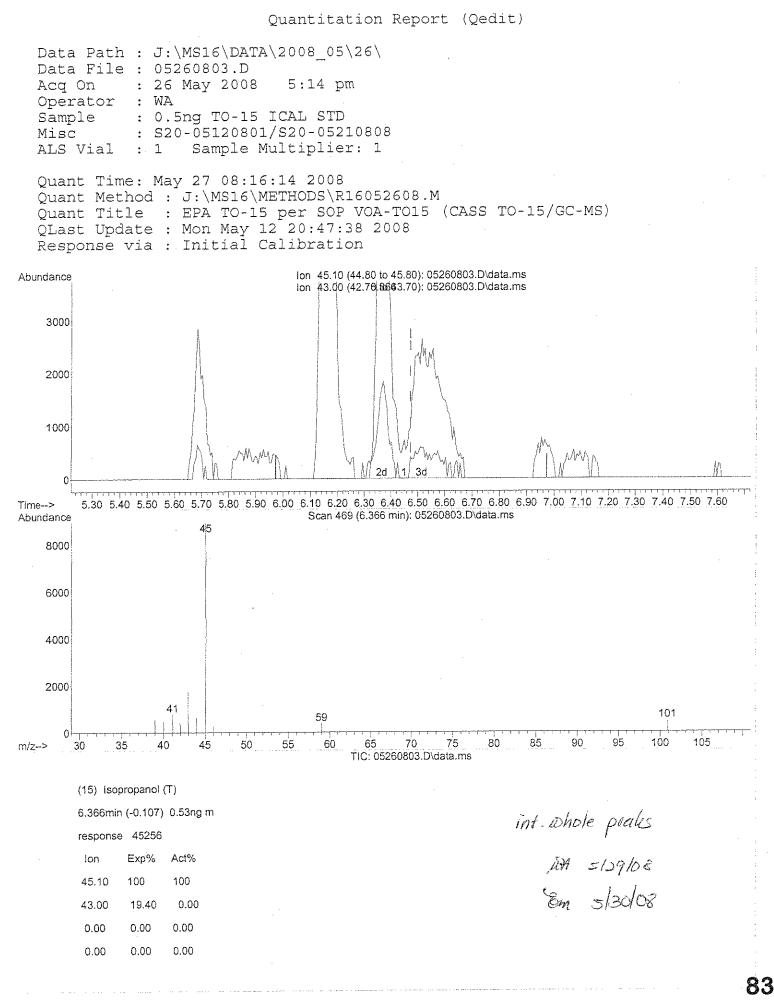

(#) = qualifier out of range (m) = manual integration (+) = signals summed

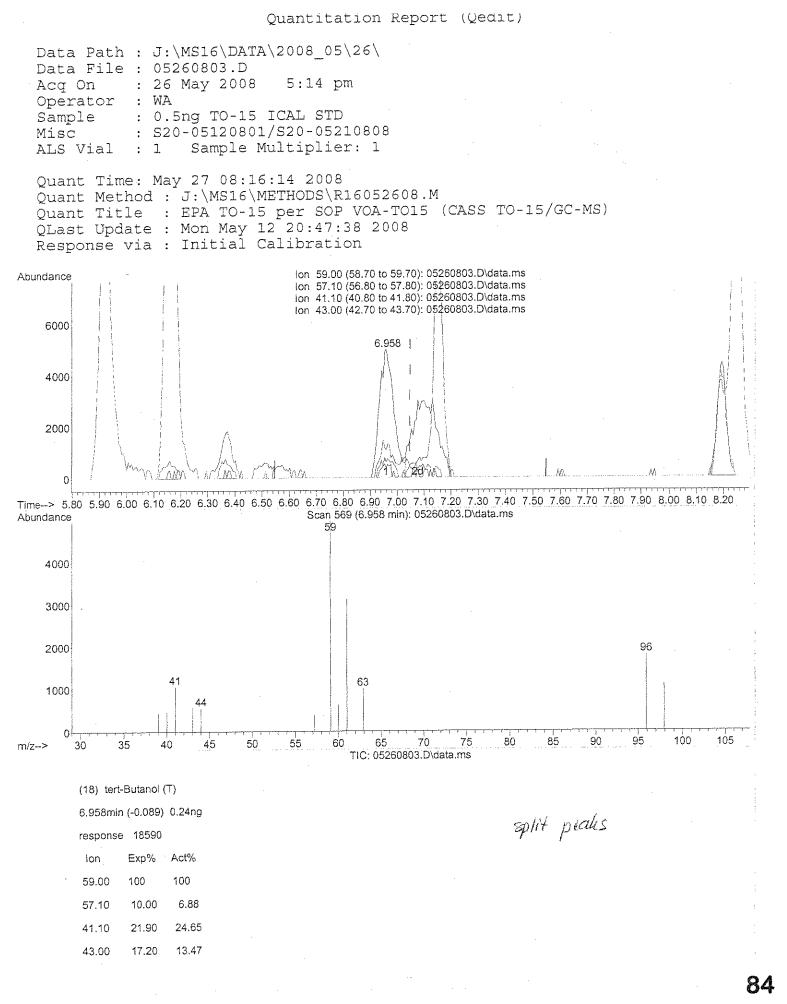

<16052608.M Tue May 27 08:19:18 2008</pre>

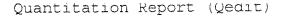
204 SLA/08

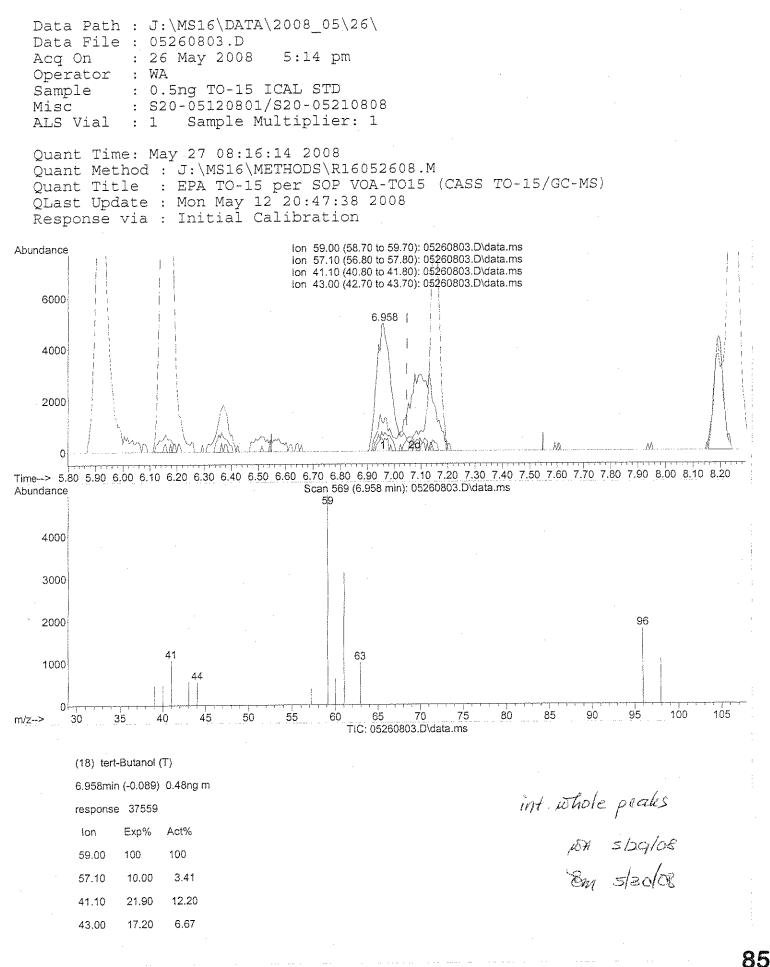
R16052608.M Tue May 27 08:16:52 2008

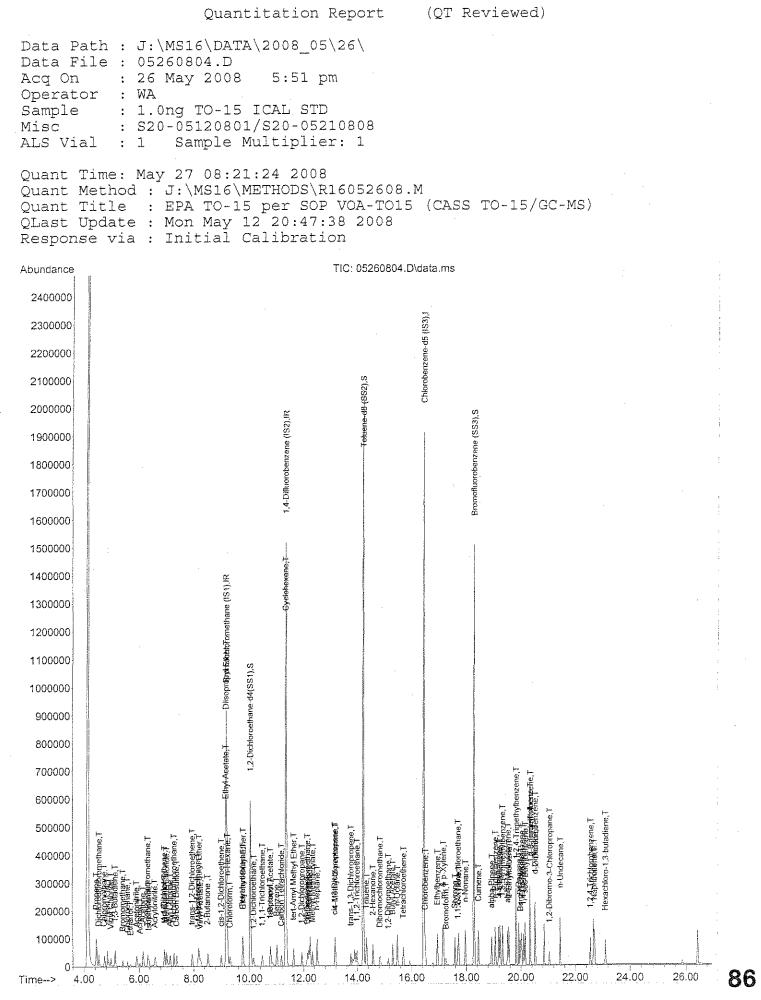





R16052608.M Tue May 27 08:16:57 2008


Page: 1


81



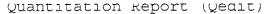
R16052608.M Tue May 27 08:17:57 2008

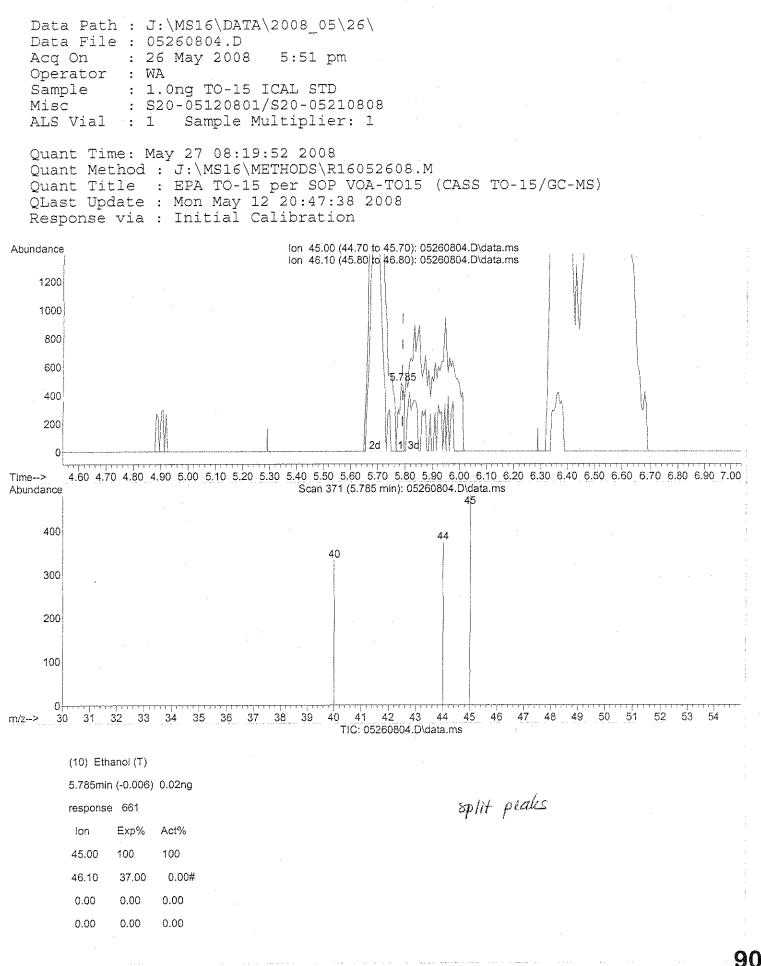
R16052608.M Tue May 27 08:22:19 2008

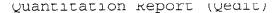
Quantitation	Report	(Q	1 Reviewed	.)			
Data Path : J:\MS16\DATA\2008_05\26\ Data File : 05260804.D Acq On : 26 May 2008 5:51 pm Operator : WA Sample : 1.0ng TO-15 ICAL STD Misc : S20-05120801/S20-05210808 ALS Vial : 1 Sample Multiplier: 1							
Quant Time: May 27 08:21:24 2008 Quant Method : J:\MS16\METHODS\R16052608.M Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS) QLast Update : Mon May 12 20:47:38 2008 Response via : Initial Calibration							
Internal Standards	R.T.	QIon	Response	Conc 1	Units	Dev(Min)	
1) Bromochloromethane (IS1) 37) 1,4-Difluorobenzene (IS2) 56) Chlorobenzene-d5 (IS3)	9.19 11.34	130 114	1674056	25.000 25.000	ng ng	-0.06 -0.04	
System Monitoring Compounds 33) 1,2-Dichloroethane-d4(Spiked Amount 25.000 57) Toluene-d8 (SS2) Spiked Amount 25.000 73) Bromofluorobenzene (SS3) Spiked Amount 25.000	10.04 14.22 18.28	工/4	573073 Recove 1679917 Recove 543013 Recove	32.749	ng	-0.01	
<pre>3) Dichlorodifluoromethane 4) Chloromethane 5) Freon 114 6) Vinyl Chloride 7) 1,3-Butadiene 8) Bromomethane 9) Chloroethane 10) Ethanol 11) Acetonitrile 12) Acrolein 13) Acetone 14) Trichlorofluoromethane 15) Isopropanol 16) Acrylonitrile 17) 1,1-Dichloroethene 18) tert-Butanol 19) Methylene Chloride 20) Allyl Chloride 21) Trichlorotrifluoroethane 22) Carbon Disulfide 23) trans-1,2-Dichloroethene 24) 1,1-Dichloroethane 25) Methyl tert-Butyl Ether 26) Vinyl Acetate 27) 2-Butanone 28) cis-1,2-Dichloroethene 29) Diisopropyl Ether 30) Ethyl Acetate</pre>	4.54 4.74 4.85 4.925 5.125.59 5.692 6.327 6.327 6.327 6.9952 6.9952 5.924 6.327 6.9352 7.2394 8.22521 8.2521 8.2521 8.2521 8.2521 8.2521 9.117	850 1352 544 4550 15369 4116 15613362 17613362 1763362 1775552 1775552 1775552 177555757 177555757 1775575757575757	56185 24123 32982 30538 18215 17881 22061m 65956 15251 32672 38614 82028m 39953 19791 67512m 20193 39791 21202 69199 37088 41421 58827 3910 13238 35017 15888 10329	0.865 0.960 1.056 0.816 0.93 0.968 0.922 0.778 1.235 0.926 0.956 0.956 0.956 0.956 0.956 0.966 0.966 0.908 1.288 0.966 0.908 1.288 0.966 0.908 1.288 0.905 0.905 0.936 0.926	ng ng ng ng ng ng n	98 98 94 93 89 99 94 96 99 94 96 99 94 95 # 70 100 98 95 # 43 * 78 # 83 100 94 92 79 # 19 # 92 79 # 19 # 97 # 25	

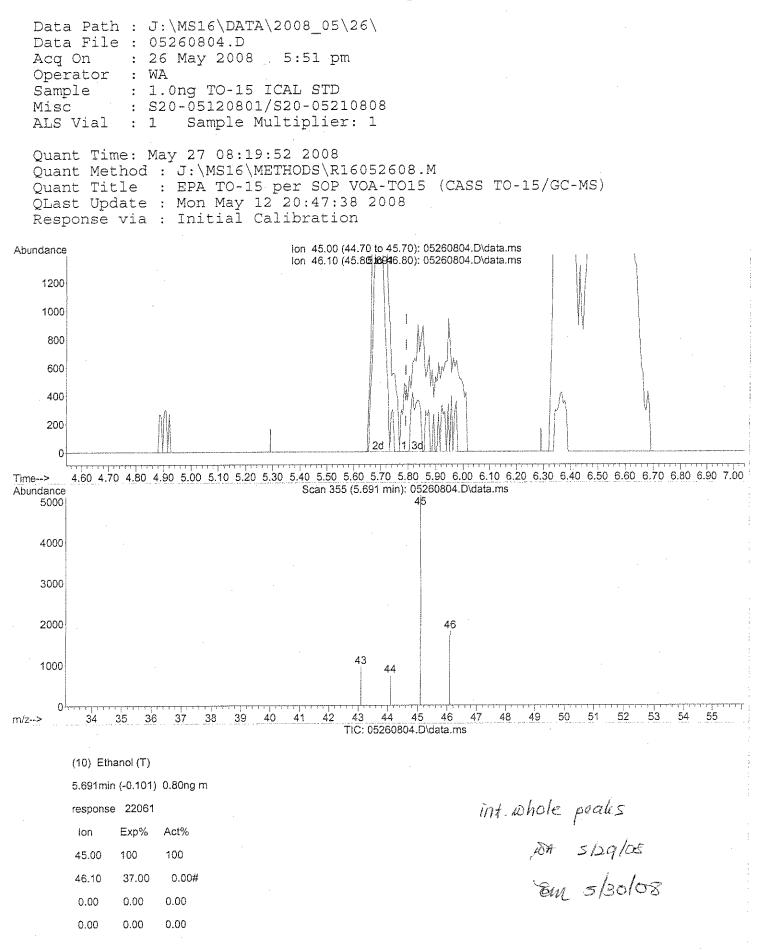
16052608.M Tue May 27 08:22:18 2008

5/29/05 RA

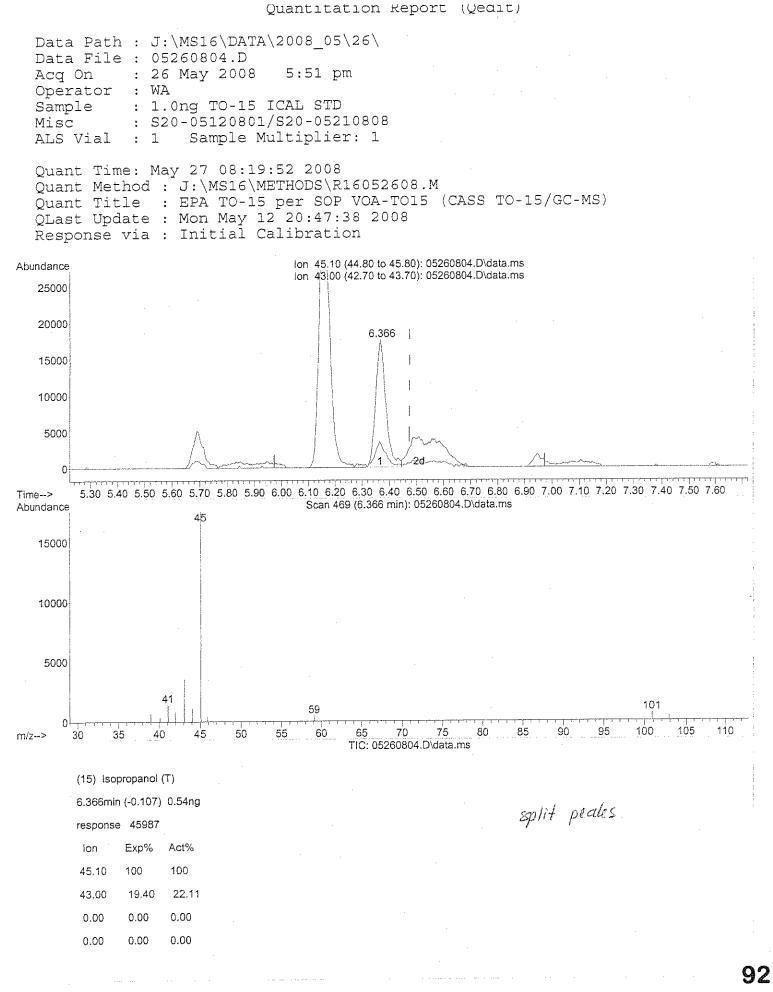

Quantitation	Report	(QI	Reviewed)			
Data Path : J:\MS16\DATA\2008_05 Data File : 05260804.D Acq On : 26 May 2008 5:51 p Operator : WA Sample : 1.0ng TO-15 ICAL STD Misc : S20-05120801/S20-052 ALS Vial : 1 Sample Multiplie	m					
Quant Time: May 27 08:21:24 2008 Quant Method : J:\MS16\METHODS\R16052608.M Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS) QLast Update : Mon May 12 20:47:38 2008 Response via : Initial Calibration						
				Conc Units		
<pre>32) Chloroform 34) Tetrahydrofuran 35) Ethyl tert-Butyl Ether 36) 1,2-Dichloroethane 38) 1,1,1-Trichloroethane 39) Isopropyl Acetate 40) 1-Butanol 41) Benzene 42) Carbon Tetrachloride 43) Cyclohexane 44) tert-Amyl Methyl Ether 45) 1,2-Dichloropropane 46) Bromodichloromethane 47) Trichloroethene 48) 1,4-Dioxane 49) Isooctane 50) Methyl Methacrylate 51) n-Heptane 52) cis-1,3-Dichloropropene 53) 4-Methyl-2-pentanone 54) trans-1,3-Dichloropropene 55) 1,1,2-Trichloroethane 58) Toluene 59) 2-Hexanone 60) Dibromochloromethane 61) 1,2-Dibromoethane 61) 1,2-Dibromoethane 62) Butyl Acetate 63) n-Octane 64) Tetrachloroethene 65) Chlorobenzene 66) Ethylbenzene 67) m- & p-Xylene 68) Bromoform 69) Styrene 70) o-Xylene</pre>	9.32 9.77 9.78 10.16 10.77 10.77 11.01 11.17 11.33 12.14 12.14 12.19 12.14 12.19 12.14 12.24 12.31 13.16 13.18 13.79 14.35 14.53 14.547 15.69 16.50 17.269 17.269 17.27 17.77 17.70 18.93 19.00	83 727 697 65787 433087 015857 99429737 6211934 13353 1093 1093 1093 1093 1093 1093 1093 109	32822 12922 23314 32391 34222 15493 25783m 80961 33137 32994 52381 24757 26064 27200 16333 126387 8581 20216 29028 26898 28839 19925 88851 75563 24973 24497 80934 25736 24973 24497 80934 25736 25493 63839 99869 157509 17692 63008 78792 63008 78792 67696 33312 102814 47668	1.099 ng 0.946 ng 0.947 ng 0.907 ng 1.063 ng 0.905 ng 0.813 ng 0.987 ng 1.364 ng 1.015 ng 0.906 ng 1.069 ng 1.069 ng 1.069 ng 1.069 ng 1.059 ng 0.927 ng 1.059 ng 0.927 ng 0.928 ng 0.928 ng 0.901 ng 0.908 ng 0.901 ng 0.998 ng 1.000 ng 1.138 ng 0.915 ng 1.226 ng 1.227 ng 1.226 ng 1.226 ng 1.226 ng 1.227 ng 1.226 ng	96 # 44 # 73 93 96 # 66 99 97 # 1 77 98 93 100 # 69 93 100 # 69 93 # 73 # 49	
79) 1,3,5-Trimethylbenzene	19.33	105	88320	1.170 ng	⁸⁸ 88	

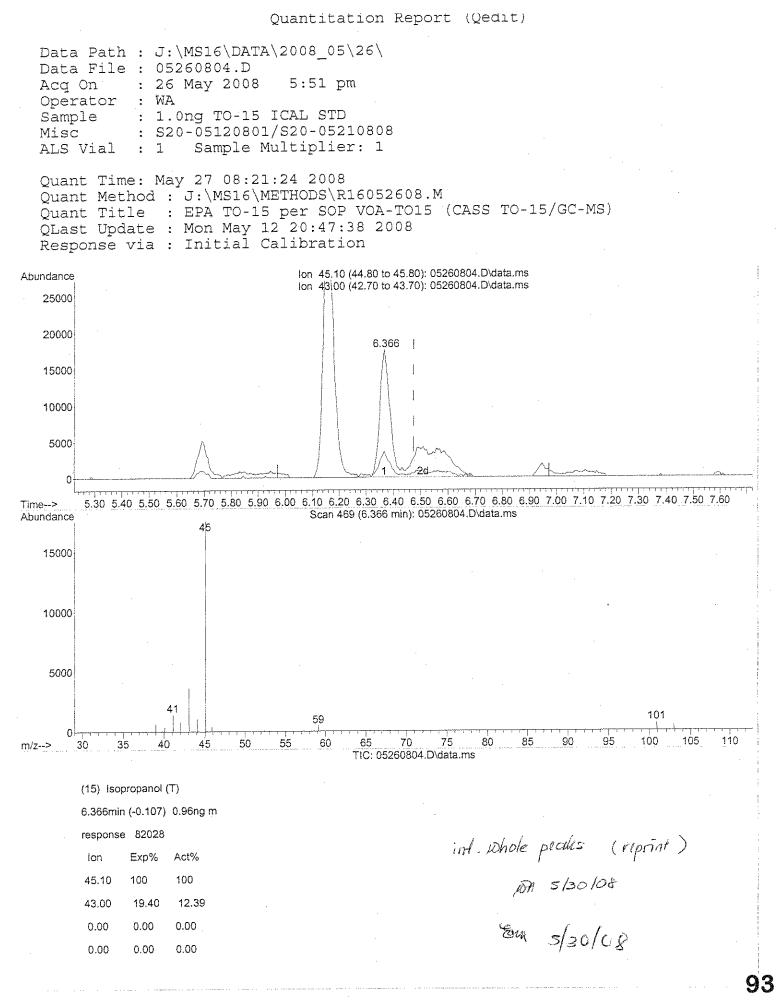

Quantitation	Keport	(QT	Reviewed)		
Data Path : J:\MS16\DATA\2008_05 Data File : 05260804.D Acq On : 26 May 2008 5:51 pr Operator : WA Sample : 1.0ng TO-15 ICAL STD Misc : S20-05120801/S20-052 ALS Vial : 1 Sample Multiplie:	m 10808	·			
Quant Time: May 27 08:21:24 2008 Quant Method : J:\MS16\METHODS\R16052608.M Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS) QLast Update : Mon May 12 20:47:38 2008 Response via : Initial Calibration					
Internal Standards	R.T.	QIon	Response	Conc Units	Dev(Min)
 84) Benzyl Chloride 85) 1,3-Dichlorobenzene 86) 1,4-Dichlorobenzene 87) sec-Butylbenzene 88) p-Isopropyltoluene 89) 1,2,3-Trimethylbenzene 90) 1,2-Dichlorobenzene 91) d-Limonene 92) 1,2-Dibromo-3-Chloropr 93) n-Undecane 94) 1,2,4-Trichlorobenzene 95) Naphthalene 	19.99 20.02 20.10 20.34 20.34 20.52 20.51 21.04 21.44 22.55 22.69 22.66	91 146 145 105 19 105 146 68 157 57 184 128 57	112983 88366 52899 27139 15605 65532	1.021 ng 1.256 ng 1.322 ng 1.152 ng 1.310 ng 1.164 ng 1.260 ng 0.965 ng 1.180 ng 1.008 ng 1.318 ng 1.041 ng 0.984 ng	98 92 91 80 90 97 99 95 94 86 99 85 86 79 89 100 77 100
	س من معد معد معد معد معد م	allen änne finte fren Value allen			

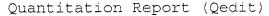

(#) = qualifier out of range (m) = manual integration (+) = signals summed

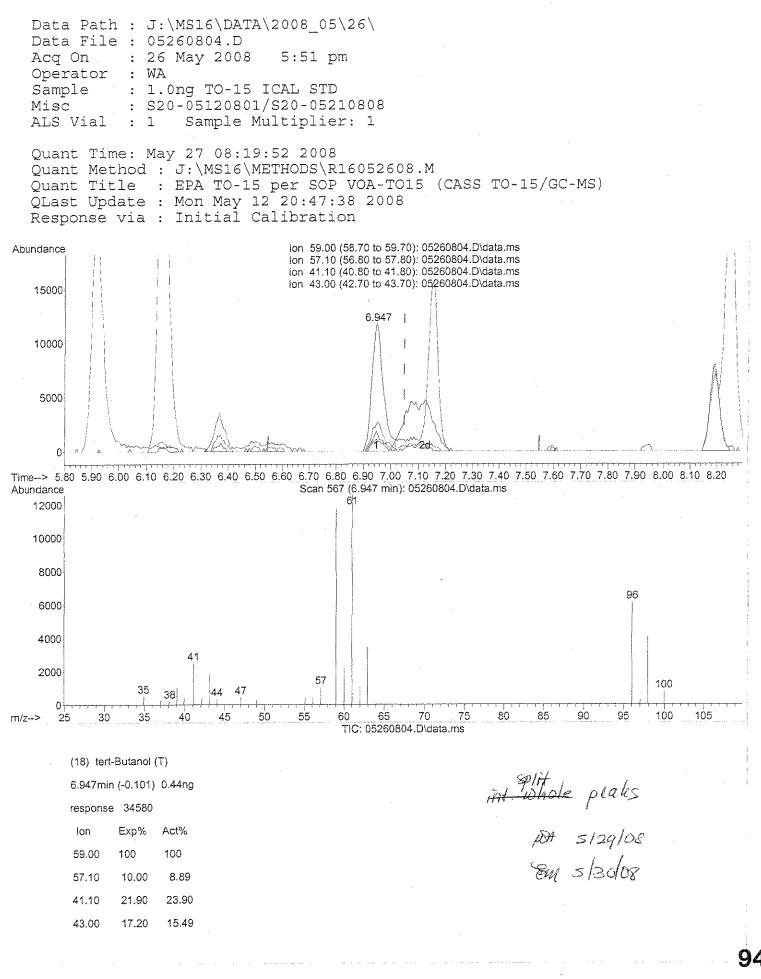

.16052608.M Tue May 27 08:22:18 2008

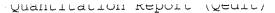
201922 BA

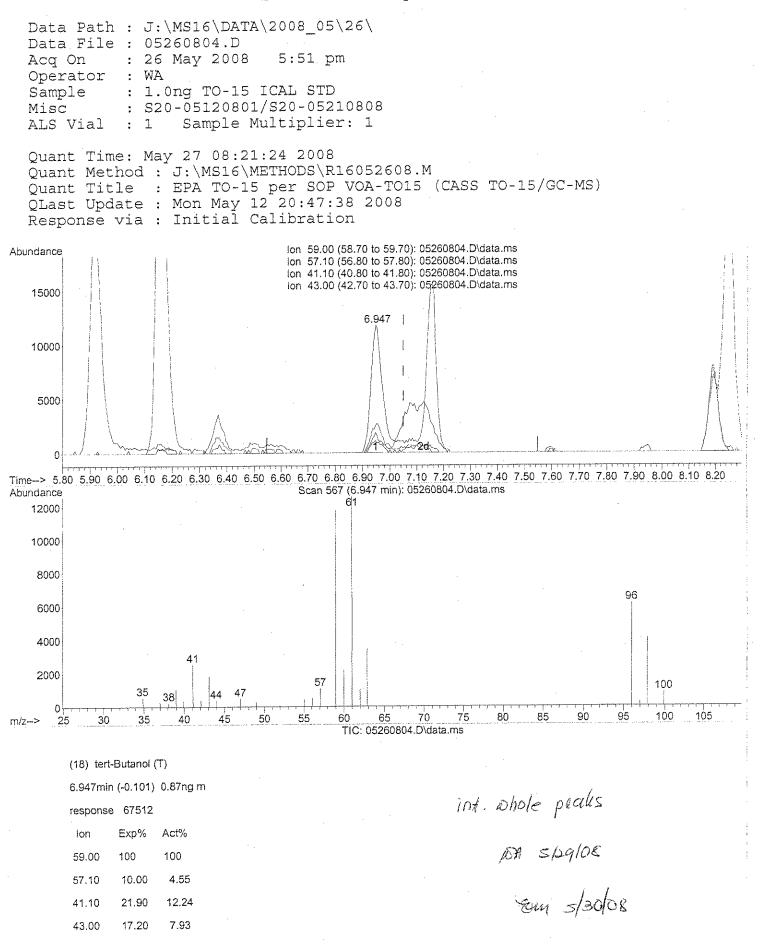


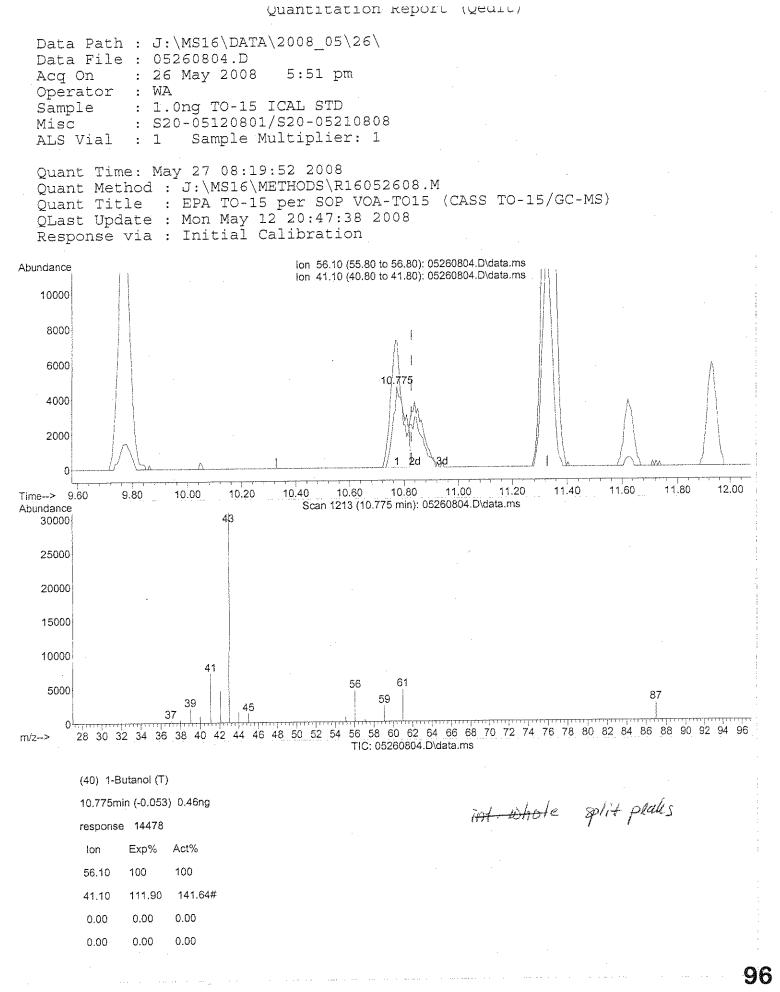


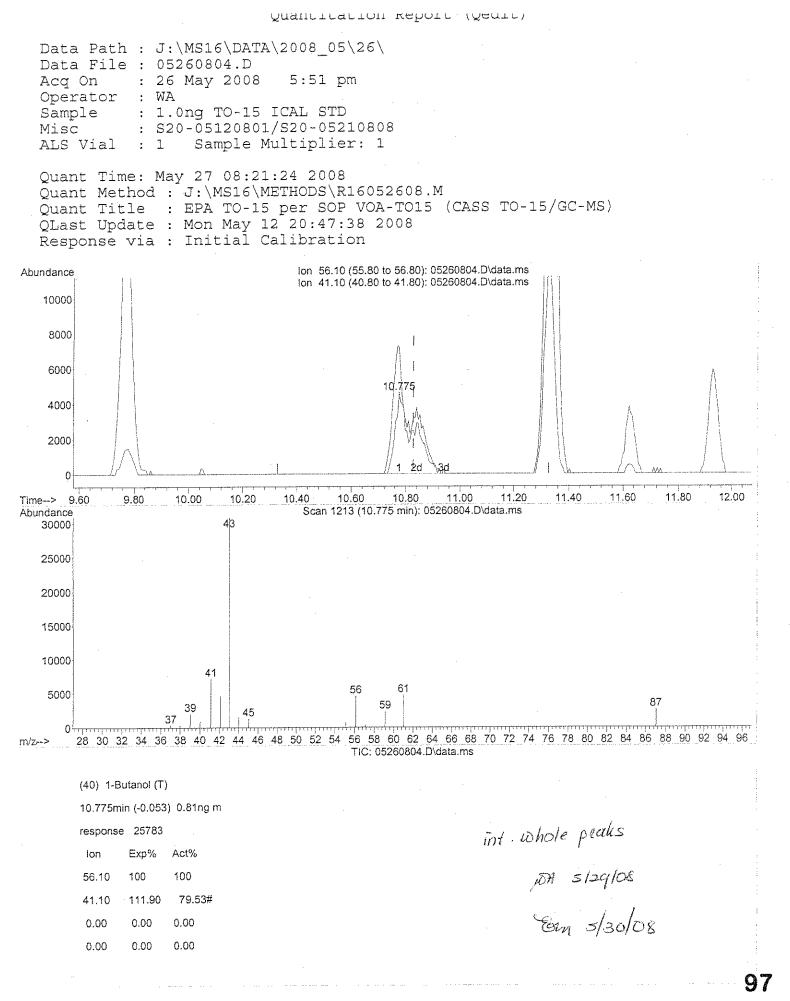


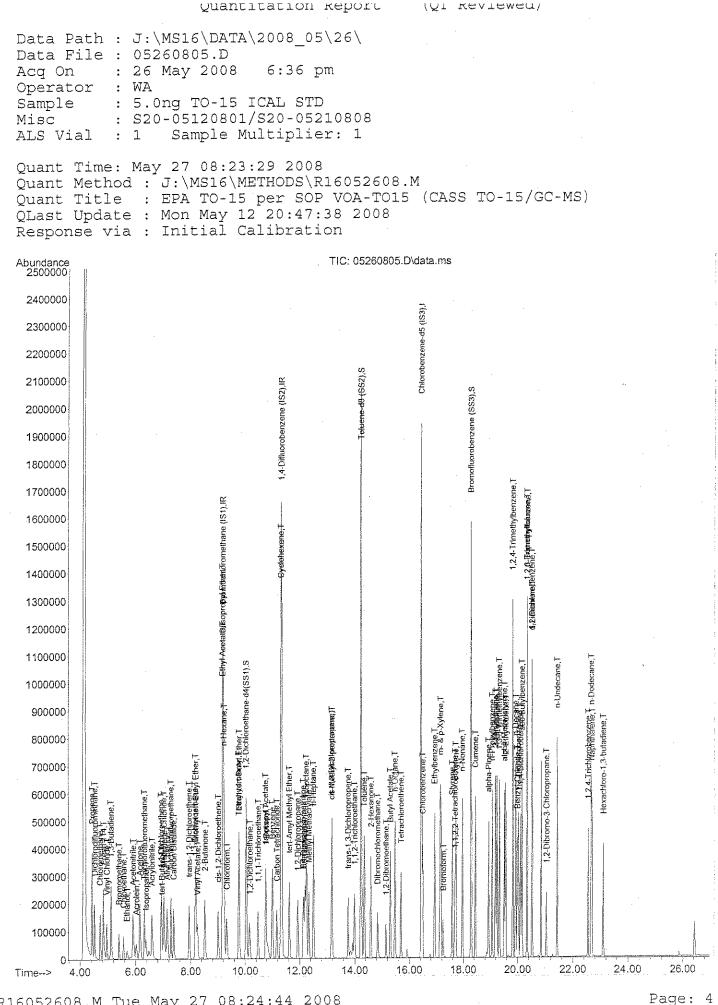



91








Page: 1

95

R16052608.M Thu May 29 11:33:03 2008

98

R16052608.M Tue May 27 08:24:44 2008

Quantitation	keport	(Ų1	. KEVIEWEU)				
Data Path : J:\MS16\DATA\2008_05 Data File : 05260805.D Acq On : 26 May 2008 6:36 pr Operator : WA Sample : 5.0ng TO-15 ICAL STD Misc : S20-05120801/S20-052 ALS Vial : 1 Sample Multiplie:	n 10808					х		
Quant Time: May 27 08:23:29 2008 Quant Method : J:\MS16\METHODS\R16052608.M Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS) QLast Update : Mon May 12 20:47:38 2008 Response via : Initial Calibration								
Internal Standards	R.T.	QIon	Response	Conc	Units	Dev(Min)		
1) Bromochloromethane (IS1) 37) 1,4-Difluorobenzene (IS2) 56) Chlorobenzene-d5 (IS3)	11.35	114	1672349	25.000	ng	-0.03		
System Monitoring Compounds 33) 1,2-Dichloroethane-d4(Spiked Amount 25.000 57) Toluene-d8 (SS2) Spiked Amount 25.000 73) Bromofluorobenzene (SS3) Spiked Amount 25.000	14.23	98	1682540 Recove 564532	ery = 26.037 ery =	80 ng 104 ng	.12% -0.02 .16% -0.01		
Target Compounds		4.0		4 1 5 5	~~~	Qvalue		
 2) Propene 3) Dichlorodifluoromethane 4) Chloromethane 5) Freon 114 6) Vinyl Chloride 7) 1, 3-Butadiene 8) Bromomethane 9) Chloroethane 10) Ethanol 11) Acetonitrile 12) Acrolein 13) Acetone 14) Trichlorofluoromethane 15) Isopropanol 16) Acrylonitrile 17) 1,1-Dichloroethene 18) tert-Butanol 	4.53 4.72 4.85 4.97 5.12 5.41 5.58 5.70 5.92 6.32 6.32 6.32 6.60 6.93 6.96		191797 220643 112151 151399 140094 70976 78983 101632m 297425 67672 130773 177575 291949m 192737 90816 308175m	$\begin{array}{c} 4.074\\ 3.790\\ 4.940\\ 3.767\\ 3.733\\ 4.286\\ 4.299\\ 3.712\\ 4.184\\ 3.471\\ 4.970\\ 4.560\\ 3.422\\ 4.119\\ 4.764\\ 3.972\end{array}$	ng ng ng ng ng ng ng ng ng ng ng ng ng	99 99 96 97 97 95 99 99 # 76 100 97 94		
<pre>19) Methylene Chloride 20) Allyl Chloride 21) Trichlorotrifluoroethane 22) Carbon Disulfide 23) trans-1,2-Dichloroethene 24) 1,1-Dichloroethane 25) Methyl tert-Butyl Ether 26) Vinyl Acetate 27) 2-Butanone 28) cis-1,2-Dichloroethene 29) Diisopropyl Ether 30) Ethyl Acetate</pre>	7.03 7.15 7.28 7.38 7.95 8.17 8.18 8.25 8.52 9.01 9.18 9.17	84 41 151 61 63 73 86 72 61 87 61	89954 201201 96040 313785 173593 189842 273332 17592 62378 163376	$\begin{array}{c} 4.328\\ 4.619\\ 5.869\\ 4.000\\ 4.259\\ 4.085\\ 4.375\\ 3.296\\ 4.602\\ 4.348\\ 4.347\\ 5.008\end{array}$	ng ng ng ng ng ng ng ng ng ng	87 100 94 94 80 # 22 # 18 94 # 31		

Data Path : J:\MS16\DATA\2008_05\26\ Data File : 05260805.D Acg On : 26 May 2008 6:36 pm Operator : WA

 Sample
 : 5.0ng TO-15 ICAL STD

 Misc
 : S20-05120801/S20-05210808

 ALS Vial
 : 1 Sample Multiplier: 1

 Quant Time: May 27 08:23:29 2008 Quant Method : J:\MS16\METHODS\R16052608.M Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS) QLast Update : Mon May 12 20:47:38 2008 Response via : Initial Calibration

 Internal Standards
 R.T. Qion Response Conc Units Dev(Min)

 32) Chloroform
 9.33
 83
 149573
 5.037 ng
 96

 34) Tetrahydrofuran
 9.76
 72
 59479
 4.378 ng
 # 47

 35) Ethyl tert-Butyl Ether
 9.78
 87
 109581
 4.478 ng
 # 75

 36) 1,1,1-Trichloroethane
 10.86
 2147356
 4.148 ng
 96

 39) Isopropyl Acetate
 10.76
 61
 71890
 4.206 ng
 # 64

 91) Benzene
 11.01
 78
 35647
 4.311 ng
 98

 40) Cyclohexane
 11.33
 84
 141740
 4.365 ng
 # 27

 41 tert-Amyl Methyl Ether
 11.63
 73
 242879
 4.207 ng
 76

 41, 4-10oxane
 12.14
 83
 118652
 4.87 ng
 93

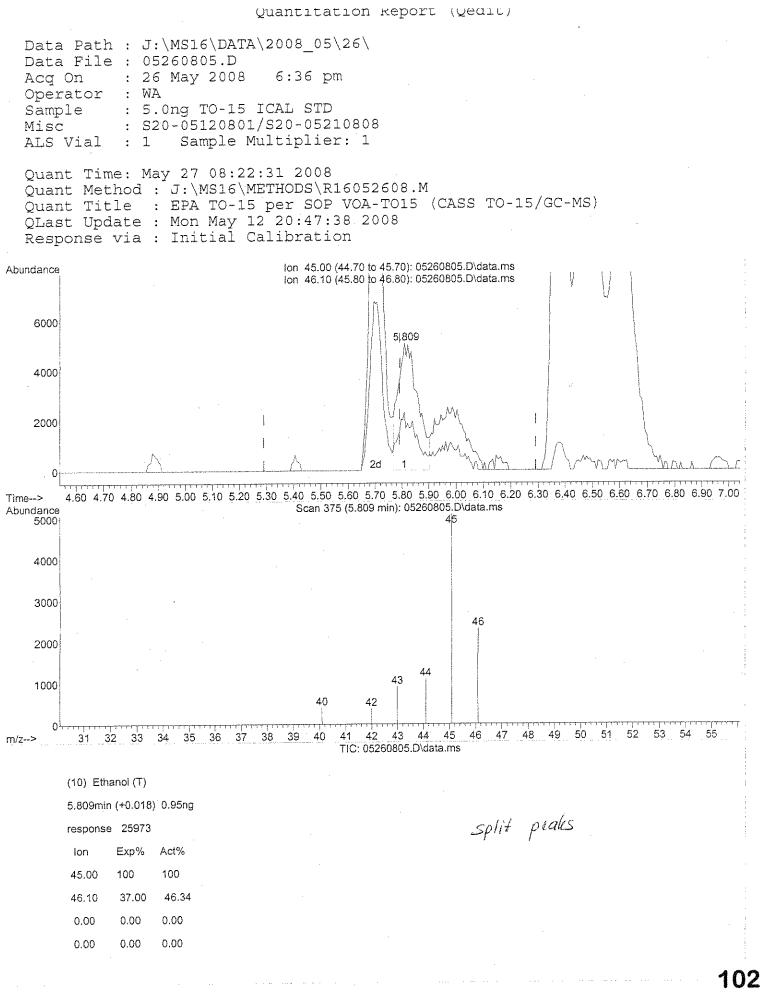
 71 Tichloroethane
 12.14
 88
 757496
 4.197 ng
 93

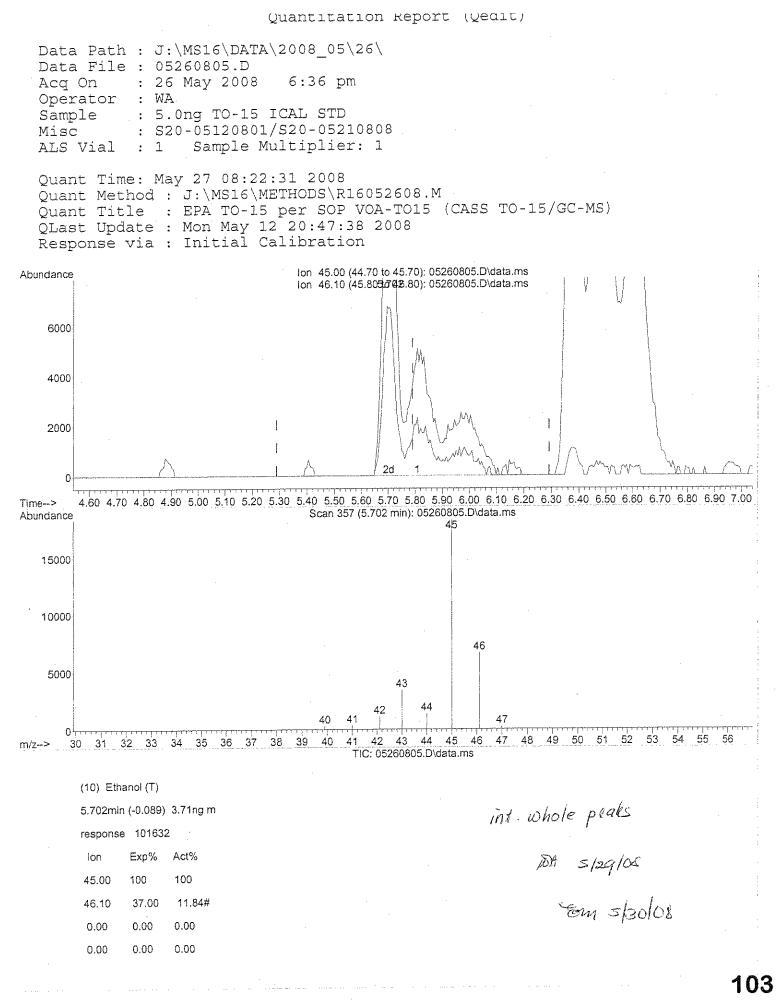
 70) Trichloroethane
 12.14
 87
 77530
 5.08 ng
 100

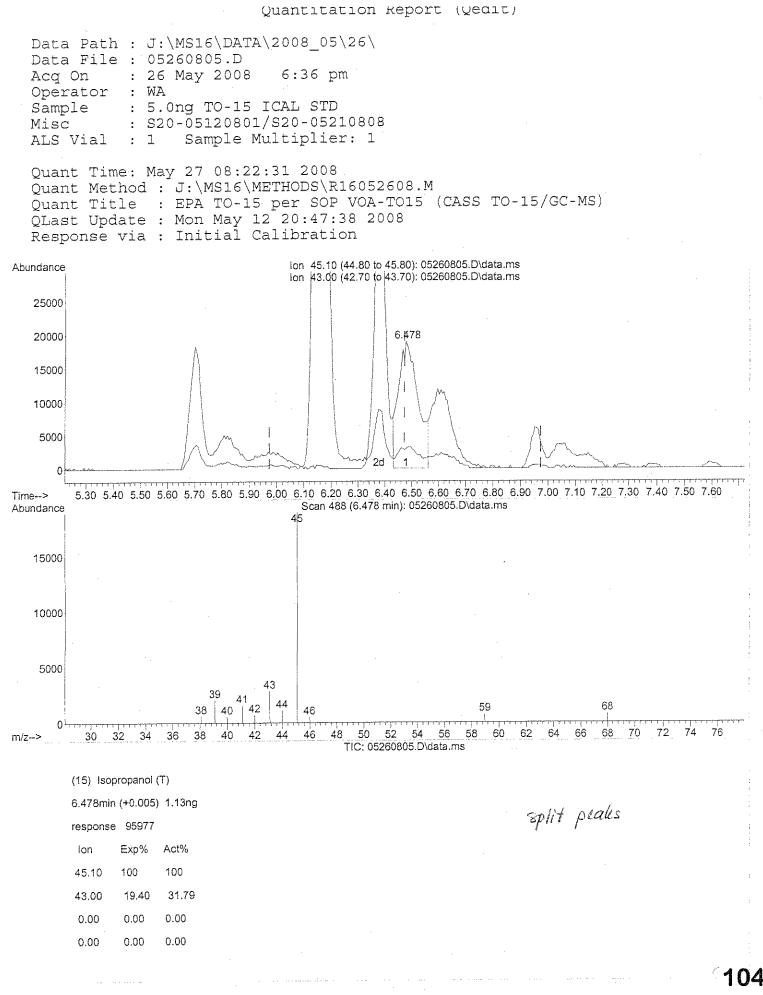
 41
 4.472 ng
 93
 77
 93
 77
 93
 93

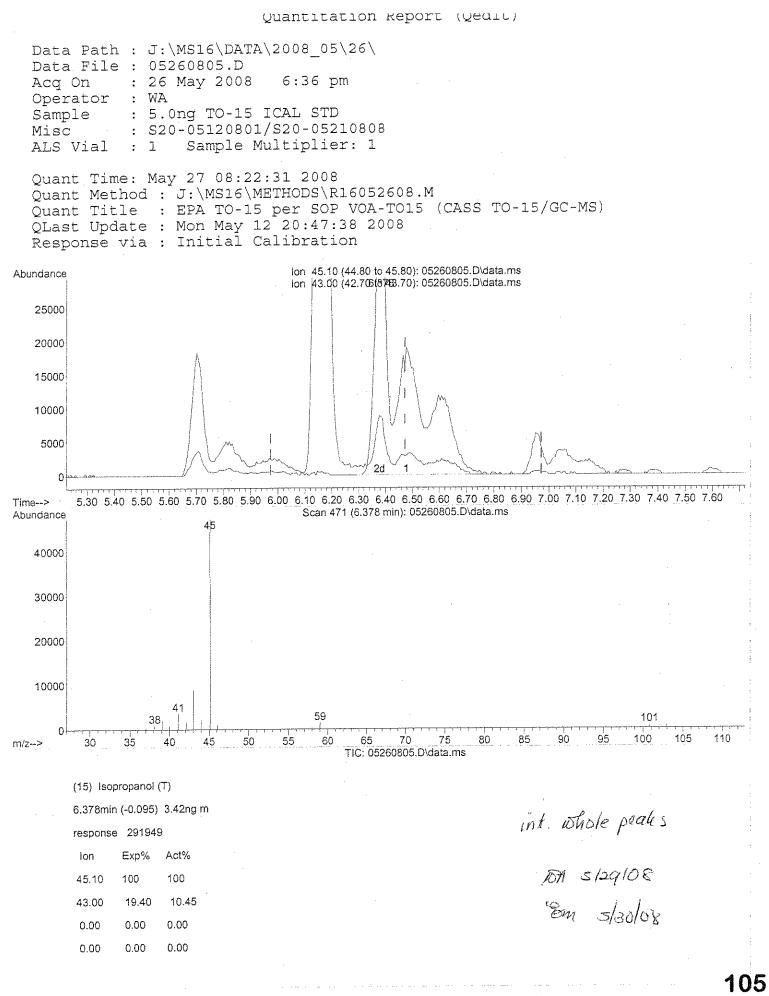
 71
 13625
 Internal Standards R.T. QIon Response Conc Units Dev(Min) ⁹¹100

16052608.M Tue May 27 08:24:42 2008 DH 5/29/08 Page: 2

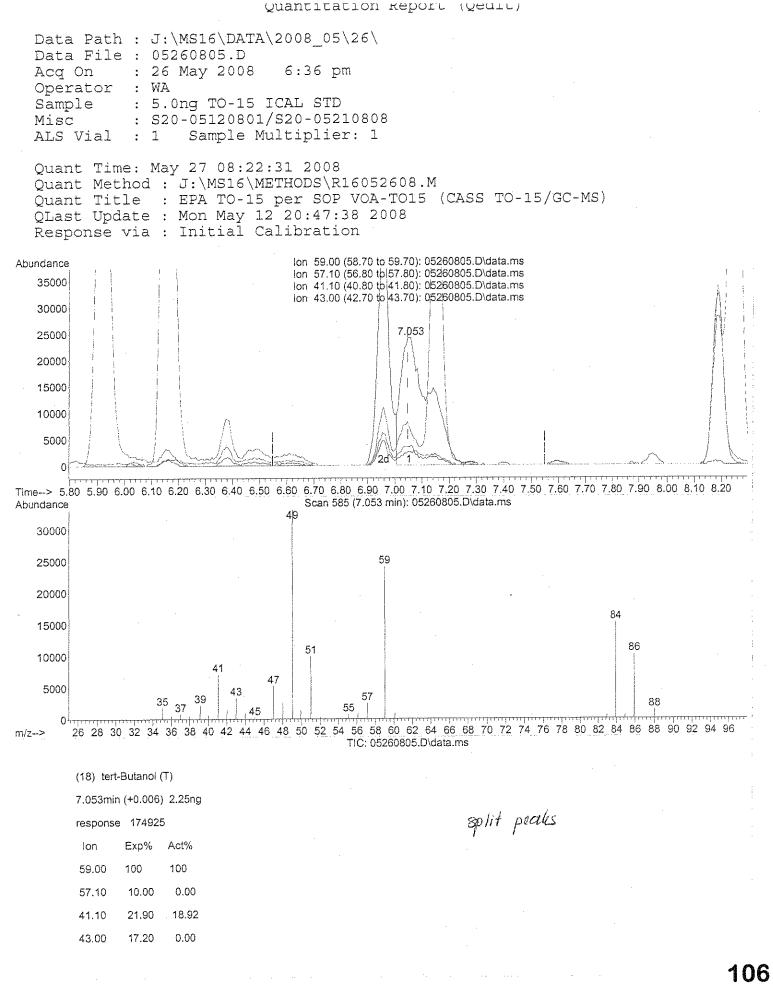

(VI VENTEMEN) Quantitation керогс Data Path : J:\MS16\DATA\2008 05\26\ Data File : 05260805.D Acq On : 26 May 2008 6:36 pm Operator : WA Sample : 5.0ng TO-15 ICAL STD Misc : S20-05120801/S20-05210808 ALS Vial : 1 Sample Multiplier: 1 Quant Time: May 27 08:23:29 2008 Ouant Method : J:\MS16\METHODS\R16052608.M Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS) QLast Update : Mon May 12 20:47:38 2008 Response via : Initial Calibration R.T. QIon Response Conc Units Dev(Min) Internal Standards 80) alpha-Methylstyrene19.511182266175.457 ng9781) 2-Ethyltoluene19.561054663084.923 ng9382) 1,2,4-Trimethylbenzene19.831054236455.356 ng9183) n-Decane19.93572928704.672 ng8184) Benzyl Chloride19.99913241014.917 ng8985) 1,3-Dichlorobenzene20.021462574355.608 ng9986) 1,4-Dichlorobenzene20.101462591295.910 ng9587) sec-Butylbenzene20.151055451185.290 ng9588) p-Isopropyltoluene20.341195257426.008 ng9389) 1,2,3-Trimethylbenzene20.521462427205.701 ng10091) d-Limonene20.521462427205.701 ng10091) d-Limonene21.04157760375.668 ng8393) n-Undecane21.43573088824.685 ng8094) 1,2,4-Trichlorobenzene22.69128529364.735 ng9995) Naphthalene22.66573008094.676 ng7897) Hexachloro-1,3-butadiene23.11225762106.883 ng98 ______ 97) Hexachloro-1,3-butadiene 23.11 225 76210 6.883 ng 98 _______

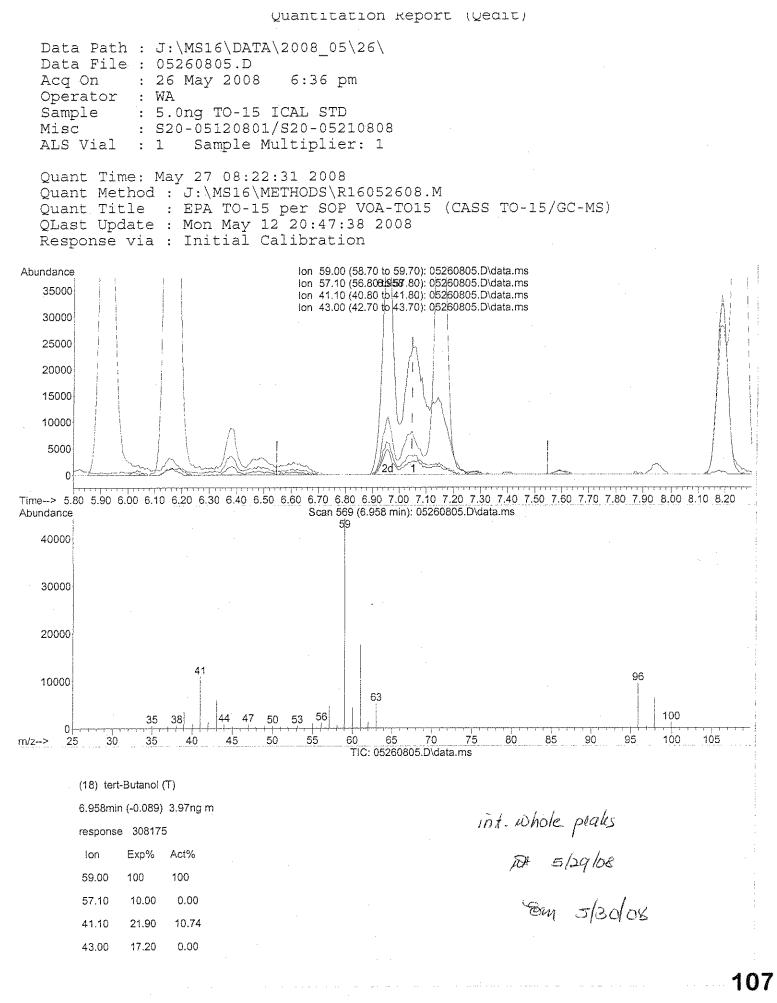

(#) = gualifier out of range (m) = manual integration (+) = signals summed


DA 5/29/05

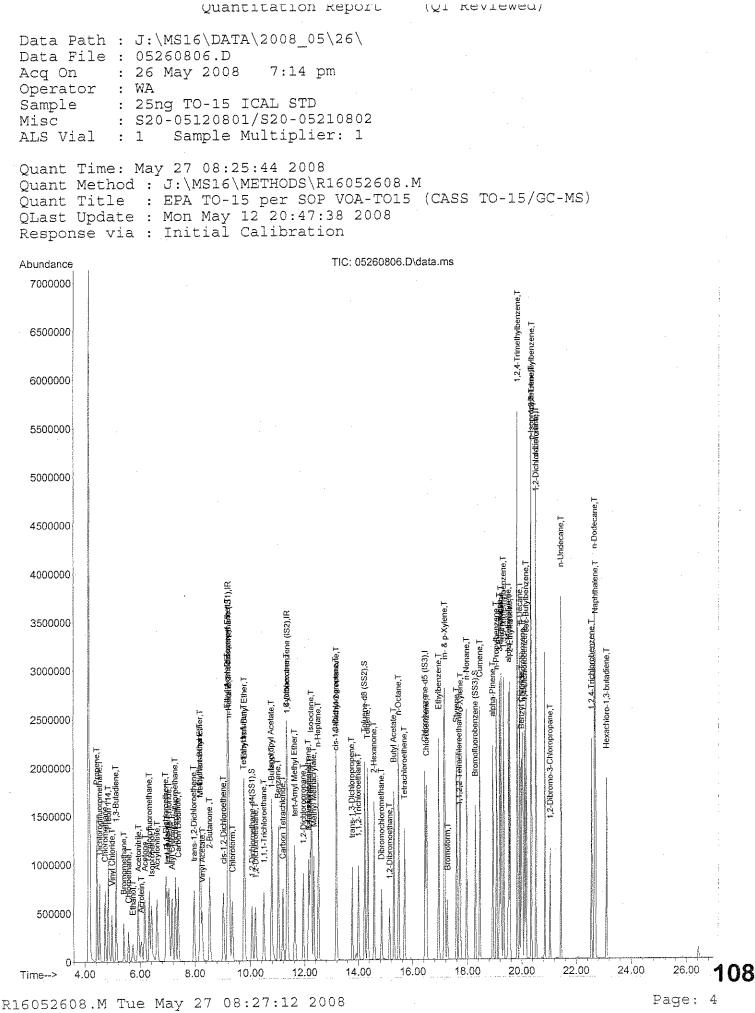

Page: 3

101





R16052608.M Tue May 27 08:23:20 2008



R16052608.M Tue May 27 08:23:27 2008

Page: 1

R16052608.M Tue May 27 08:23:32 2008

Data Path : J:\MS16\DATA\2008 05\26\ Data File : 05260806.D Acg On : 26 May 2008 7:14 pm Operator : WA Sample : 25ng TO-15 ICAL STD Misc : S20-05120801/S20-05210802 ALS Vial : 1 Sample Multiplier: 1 Quant Time: May 27 08:25:44 2008 Quant Method : J:\MS16\METHODS\R16052608.M Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS) QLast Update : Mon May 12 20:47:38 2008 Response via : Initial Calibration Internal Standards R.T. QIon Response Conc Units Dev(Min)

 1) Bromochloromethane (IS1)
 9.22
 130
 395887
 25.000 ng
 -0.03

 37)
 1,4-Difluorobenzene (IS2)
 11.36
 114
 1634987
 25.000 ng
 -0.02

 56)
 Chlorobenzene-d5 (IS3)
 16.45
 82
 654511
 25.000 ng
 0.00

 System Monitoring Compounds

 33) 1,2-Dichloroethane-d4(...
 10.06
 65
 557560
 19.972 ng
 -0.03

 Spiked Amount
 25.000
 Recovery =
 79.88%

 57) Toluene-d8 (SS2)
 14.24
 98
 1660168
 25.761 ng
 -0.01

 Spiked Amount
 25.000
 Recovery =
 103.04%

 73) Bromofluorobenzene (SS3)
 18.29
 174
 570371
 34.007 ng
 0.00

 Spiked Amount
 25.000
 Recovery =
 136.04%

 System Monitoring Compounds Recovery = 136.04% Spiked Amount 25.000 Target CompoundsQvalue2) Propene4.434271106617.962 ng933) Dichlorodifluoromethane4.548580703617.242 ng984) Chloromethane4.7350105834218.289 ng995) Freon 1144.8513548495021.486 ng976) Vinyl Chloride4.986264692416.191 ng957) 1,3-Butadiene5.135466098317.719 ng# 858) Bromomethane5.419434978421.245 ng989) Chloroethane5.586433852618.535 ng9610) Ethanol5.7445432975m15.907 ng1111) Acetonitrile5.9441129413518.311 ng98

 10) Ethanol
 5.74
 43
 432,75,75
 43,75,75

 11) Acetonitrile
 5.94
 41
 1294135
 18.311 ng
 98

 12) Acrolein
 6.05
 56
 326130
 16.827 ng
 97

 13) Acetone
 6.18
 58
 468682
 17.918 ng
 #
 79

 14) Trichlorofluoromethane
 6.34
 101
 785881
 20.301 ng
 100

 15) Isopropanol
 6.42
 45
 1438967m
 16.967 ng
 93

 16) Acrylonitrile
 6.62
 53
 874549
 18.799 ng
 98

 17) 1,-Dichloroethene
 6.95
 96
 407867
 21.523 ng
 93

 18) tert-Butanol
 6.99
 59
 1354362
 17.560 ng
 96

 19) Methylene Chloride
 7.05
 84
 38813
 18.816 ng
 #
 41

 20) Allyl Chloride
 7.17
 41
 883777
 20.409 ng
 82

 21) Trichlorotrifluoroethane
 7.97
 61
 47634
 19.165 ng
 93

 24) 1,1-Dichloroethane
 8.19
 63
 841365
 18.209 ng
 9 5.94 41 1294135 18.311 ng 11) Acetonitrile 12) Acrolein 13) Acetone ⁹²109

16052608.M Tue May 27 08:27:12 2008

107 512910E

Data Path : J:MS16DATA2008 0526Data File : 05260806.D Acq On : 26 May 2008 7:14 pm Operator : WA Sample : 25ng TO-15 ICAL STD Misc : S20-05120801/S20-05210802 ALS Vial : 1 Sample Multiplier: 1 Quant Time: May 27 08:25:44 2008 Quant Method : J:\MS16\METHODS\R16052608.M Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS) QLast Update : Mon May 12 20:47:38 2008 Response via : Initial Calibration

 Internal Standards
 R.T. Qion Response Conc Units Dev(Min)

 32) Chloroform
 9.35
 83
 661772
 22.417 ng
 96

 34) Tetrahydrofuran
 9.77
 72
 262536
 19.437 ng
 # 46

 35) Ethyl tert-Butyl Ether
 9.79
 87
 494673
 20.333 ng
 # 77

 36) 1.1.1-Trichloroethane
 10.50
 97
 664987
 21.151 ng
 93

 39) Isopropyl Acetate
 10.73
 55
 550712
 17.781 ng
 98

 41) Benzene
 11.02
 78
 1534046
 19.139 ng
 93

 42) Cyclohexane
 11.34
 84
 614898
 19.368 ng
 # 47

 43) Cyclohexane
 12.15
 83
 529636
 22.371 ng
 93

 43) Trichloropropane
 12.15
 83
 338329
 22.469 ng
 # 68

 44
 tert-Anyl Methyl Ether
 12.63
 73
 1082550
 19.408 ng
 92

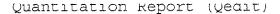
 43) I.4-Dioxane
 22.15
 88
 338329
 22.469 ng
 # 68

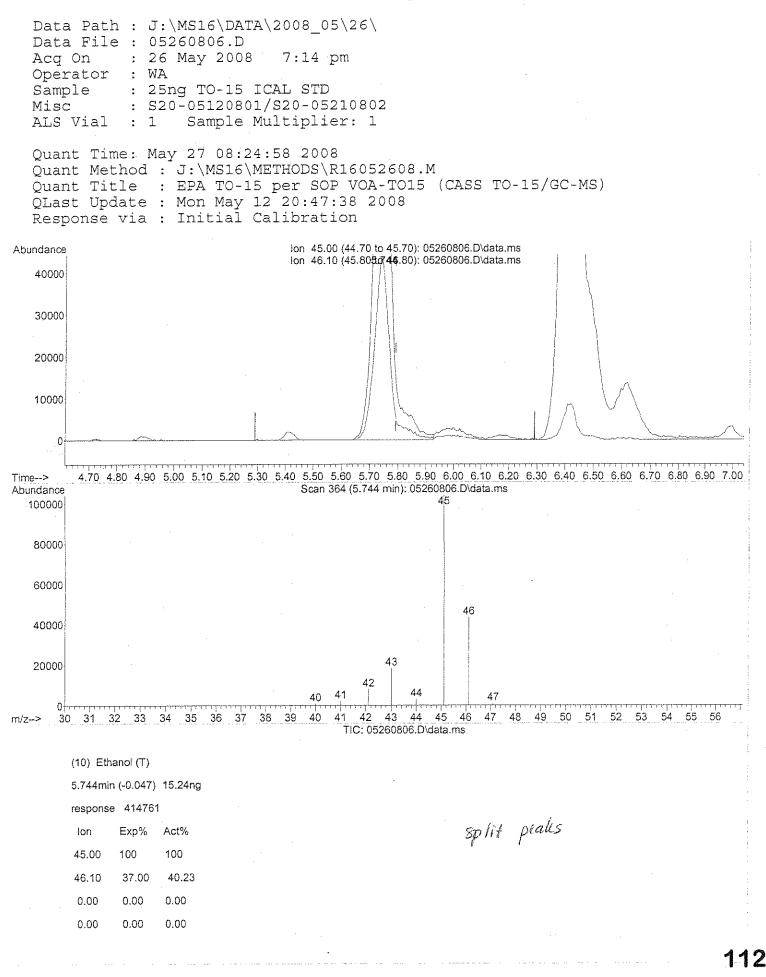
 50
 Methyl Methacrylate
 22.52
 71
 411960
 02.01 ng
 # 55
 Internal Standards R.T. QIon Response Conc Units Dev(Min) ⁹¹110

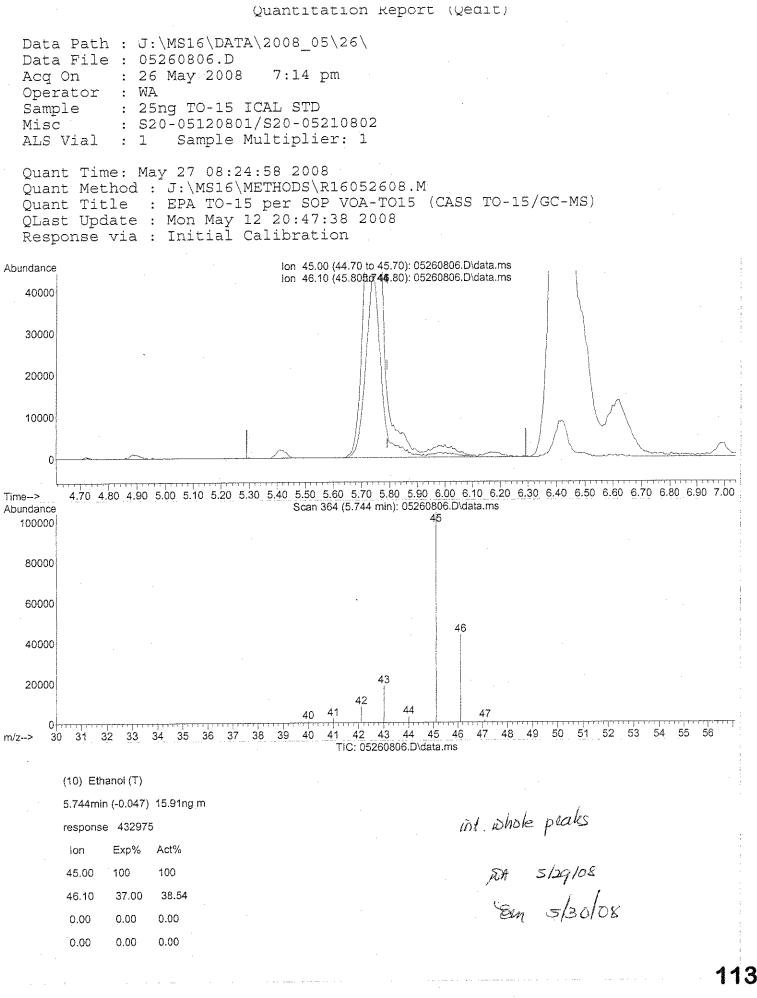
16052608.M Tue May 27 08:27:12 2008 Dt 5/29/08 Page: 2

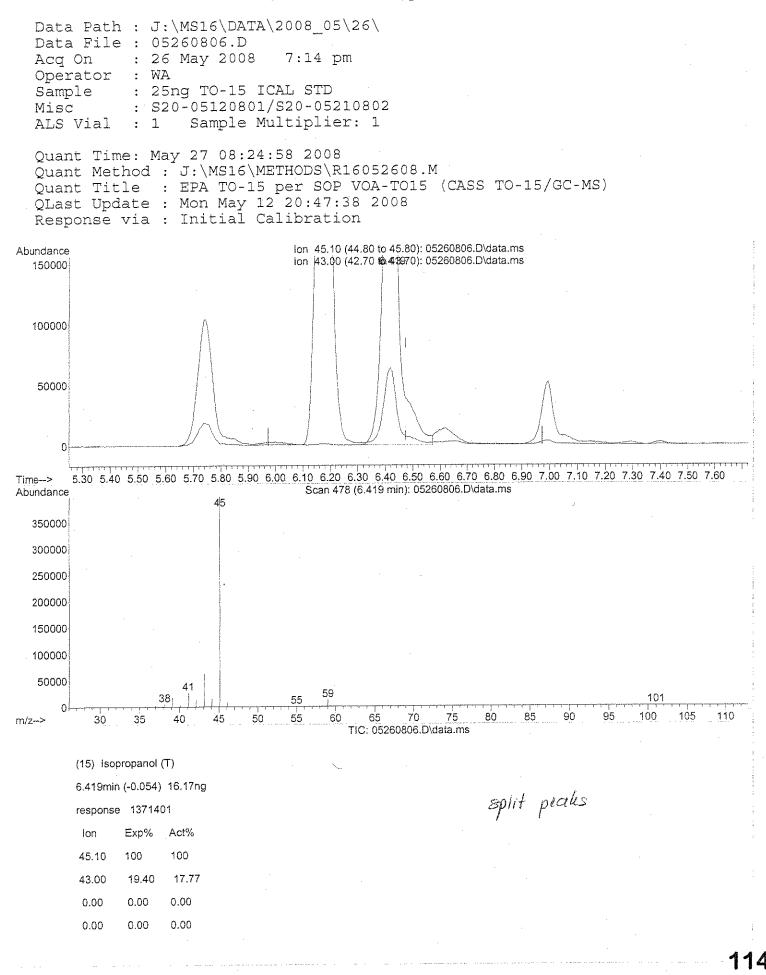
Data Path : J:\MS16\DATA\2008 05\26\ Data File : 05260806.D Acg On : 26 May 2008 7:14 pm Operator : WA Sample : 25ng TO-15 ICAL STD Misc : S20-05120801/S20-05210802 ALS Vial : 1 Sample Multiplier: 1 Quant Time: May 27 08:25:44 2008 Quant Method : J:\MS16\METHODS\R16052608.M Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS) QLast Update : Mon May 12 20:47:38 2008 Response via : Initial Calibration Internal Standards R.T. QIon Response Conc Units Dev(Min) 80) alpha-Methylstyrene19.52118106877325.806 ng81) 2-Ethyltoluene19.57105211310022.369 ng82) 1,2,4-Trimethylbenzene19.84105189129623.978 ng83) n-Decane19.9357132996121.273 ng84) Benzyl Chloride20.0091153789623.396 ng85) 1,3-Dichlorobenzene20.02146115726025.281 ng86) 1,4-Dichlorobenzene20.10146117317926.832 ng87) sec-Butylbenzene20.16105246703424.008 ng88) p-Isopropyltoluene20.34119239486027.443 ng89) 1,2,3-Trimethylbenzene20.52146109280325.741 ng90) 1,2-Dichlorobenzene20.526861087221.467 ng91) d-Limonene20.526861087221.467 ng92) 1,2-Dibromo-3-Chloropr...21.0415737727328.200 ng93) n-Undecane21.4457145029922.059 ng 98 93 91 80 89 99 99 95 93 88 100 88 82

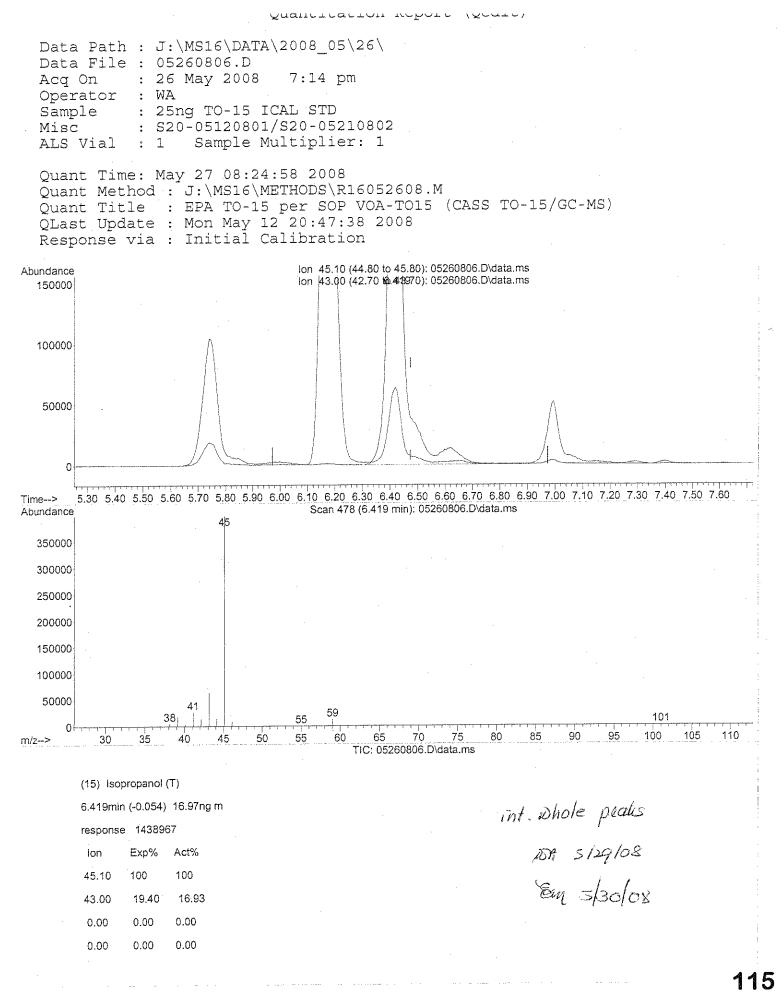
 93) n-Undecane
 21.44
 57
 1450299
 22.059 ng

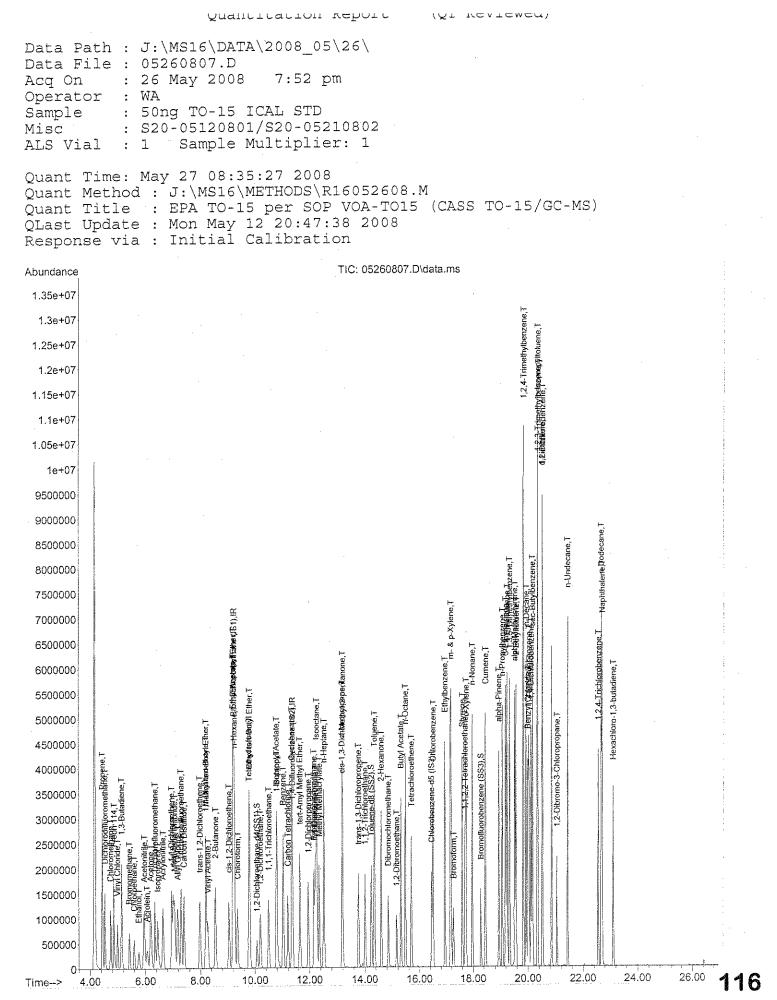

 94) 1,2,4-Trichlorobenzene
 22.55
 184
 218655
 29.607 ng
 #


 95) Naphthalene
 22.69
 128
 2867866
 25.695 ng


 78 # 86 99 95) Naphthalene22.69128286786625.695ng96) n-Dodecane22.6657147529722.995ng 77 97) Hexachloro-1,3-butadiene 23.11 225 348136 31.529 ng 100 _____


(#) = qualifier out of range (m) = manual integration (+) = signals summed


16052608.M Tue May 27 08:27:12 2008



R16052608.M Tue May 27 08:25:47 2008

R16052608.M Tue May 27 08:36:51 2008

· · · · · · · · · · · · · · · · · · ·	*					
Data Path : J:\MS16\DATA\2008_05	\26\					
Data File : 05260807.D	, i					
Acq On : 26 May 2008 7:52 pr	n					
Operator : WA						·
Sample · 50pg TO-15 ICAL STD						
Sample : 50ng TO-15 ICAL STD Misc : S20-05120801/S20-0523	10802					
ALS Vial : 1 Sample Multiplies	$r \cdot 1$					
ALS VIAI : 1 Dampie Muleipiie	* * -					-
Quant Time: May 27 08:35:27 2008						
Quant Method : J:\MS16\METHODS\R		8 M				
Quant Title : EPA TO-15 per SOP		15 (C)	ASS TO-15/0	GC-MS)		
QLast Update : Mon May 12 20:47:3	28 2008 107 70		100 10 10/	00 112,		
QLast update : Mon May 12 20:47:	50 2000 SS					
Response via : Initial Calibratio	<i>J</i> 11					
Internal Standards	יידי סי	OTOD	Peanonce	Conc	Imite	Dev(Min)
Internal Standards	R. I.	QTOT				
		120	200471	25 000	na	-0 02
1) Bromochloromethane (IS1) 37) 1,4-Difluorobenzene (IS2) 56) Chlorobenzene-d5 (IS3)	7.23 11 77	T T V T T V	3004/1 1 <i>CA</i> 7227	25.000	119 ng	0.02
37) 1,4-Difluorobenzene (152)	11.3/	114	1647237	25.000	ng	0.00
56) Chlorobenzene-d5 (183)	10.40	82	000200	25.000	шg	0.00
System Monitoring Compounds				00 511		0 00
33) 1,2-Dichloroethane-d4(10.08	65	201881	20.511	ng	-0.02
Spiked Amount 25.000			Recov 1683278	ery =	82	.046
57) Toluene-d8 (SS2)	14.24	98	1683278	25.970	ng	0.00
Spiked Amount 25.000			Recov	ery =	103	.88%
73) Bromofluorobenzene (SS3)	18.29	174	578716	34.307	ng	0.00
Spiked Amount 25.000			Recove	ery =	137	.248
						()
Target Compounds			1 4 9 9 5 9 5	~~ ~~~		Qvalue
2) Propene	4.44	42	1488105	38.309	ng	92
3) Dichlorodifluoromethane	4.54	85	1621133	35.296	ng	98
 4) Chloromethane 5) Freon 114 6) Vinyl Chloride 	4.74	50	1834813	32.312	ng	99
5) Freon 114	4.86	135	950822 1290533 1344963	42.931	ng	98
6) Vinyl Chloride	4.99	62	1290533	32.916	ng	94
7) 1,3-Butadiene	5.14	54	1344963	36.742	ng	# 85
8) Bromomethane	5.42	94	677693	41.946	ng	. 99
9) Chloroethane		64	678681	37.868	ng	96
10) Ethanol	5.77		856770m			
11) Acetonitrile	5.96			36.779		98
12) Acrolein	6.06			34.688		
13) Acetone	6.19			35.954		# 78
14) Trichlorofluoromethane	6.34			41.516	-	100
15) Isopropanol	6.44		2469895m			
16) Acrylonitrile	6.64			38.275	-	97
17) 1,1-Dichloroethene				43.310		91
18) tert-Butanol	7.02			35.096		96
19) Methylene Chloride	7.07		759421	37.452		# 40
20) Allyl Chloride	7.18			41.772		83
21) Trichlorotrifluoroethane	7.30			51.574		87
22) Carbon Disulfide	7.41			37.507	-	100
23) trans-1,2-Dichloroethene	7.98			38.542	~~~	93
24) 1,1-Dichloroethane	8.20			36.802		94
25) Methyl tert-Butyl Ether	8.21		2388378	39.186	-	79
26) Vinyl Acetate	8.29		147140	28.259		# 49
27) 2-Butanone	8.56			40.182		# 20
28) cis-1,2-Dichloroethene	9.05			38.950		94
29) Diisopropyl Ether	9.21	87		38.132	-	# 32
30) Ethyl Acetate	9.20	61	435021	44.476		83
31) n-Hexane	9.25	57	2168320	39.226	ng	⁹² 117

216052608.M Tue May 27 08:36:50 2008

RA 5129108

Data Path : J:\MS16\DATA\2008 05\26\ Data File : 05260807.D Acq On : 26 May 2008 7:52 pm Operator : WA Operator : WA Sample : 50ng TO-15 ICAL STD Misc : S20-05120801/S20-05210802 ALS Vial : 1 Sample Multiplier: 1 Quant Time: May 27 08:35:27 2008 Quant Method : J:\MS16\METHODS\R16052608.M Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS) QLast Update : Mon May 12 20:47:38 2008 Response via : Initial Calibration

 Internal Standards
 R.T. GIOn Response Conc Units Dev(Min)

 32) Chloroform
 9.37
 83
 1307274
 45.129
 ng
 95

 34) Tetrahydrofuran
 9.79
 72
 486473
 36.704
 ng
 #4

 35) Ethyl tert-Eutyl Ether
 9.80
 87
 973544
 40.865
 ng
 #76

 36) 1.1.1-Trichloroethane
 10.51
 97
 1337307
 42.219
 ng
 #66

 40) 1-Butanol
 10.80
 56
 1099028
 35.220
 ng
 #76

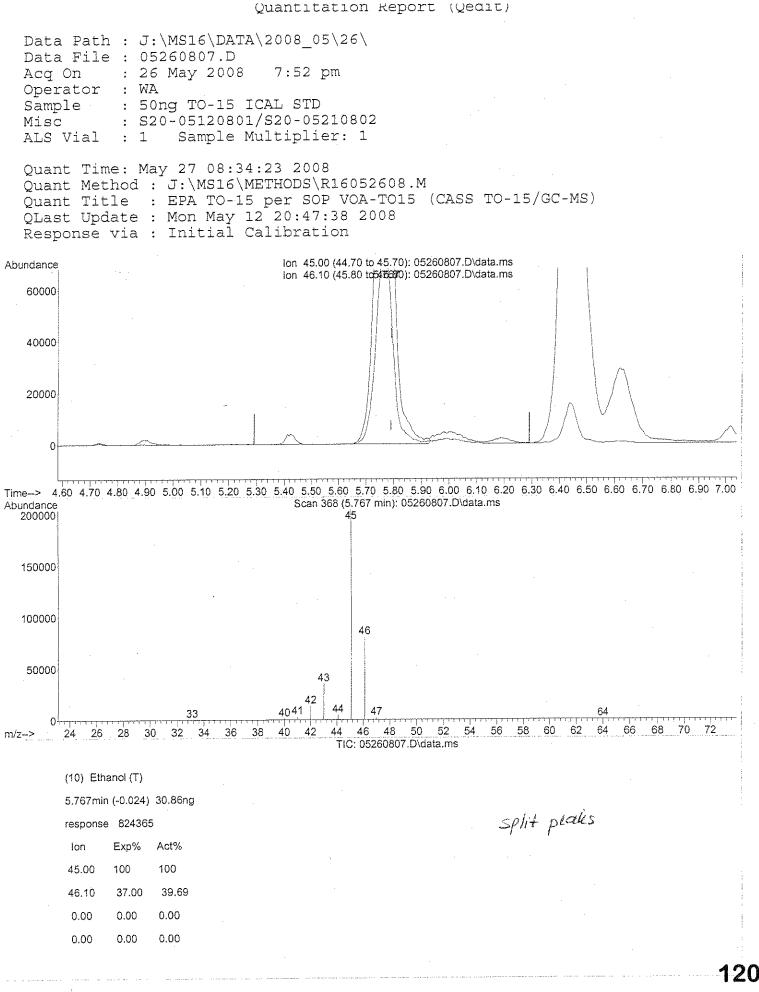
 41) Benzene
 11.30
 78
 304770
 37.581
 ng
 99

 42) Cyclohexane
 11.95
 64
 1207794
 37.760 ng
 # 48

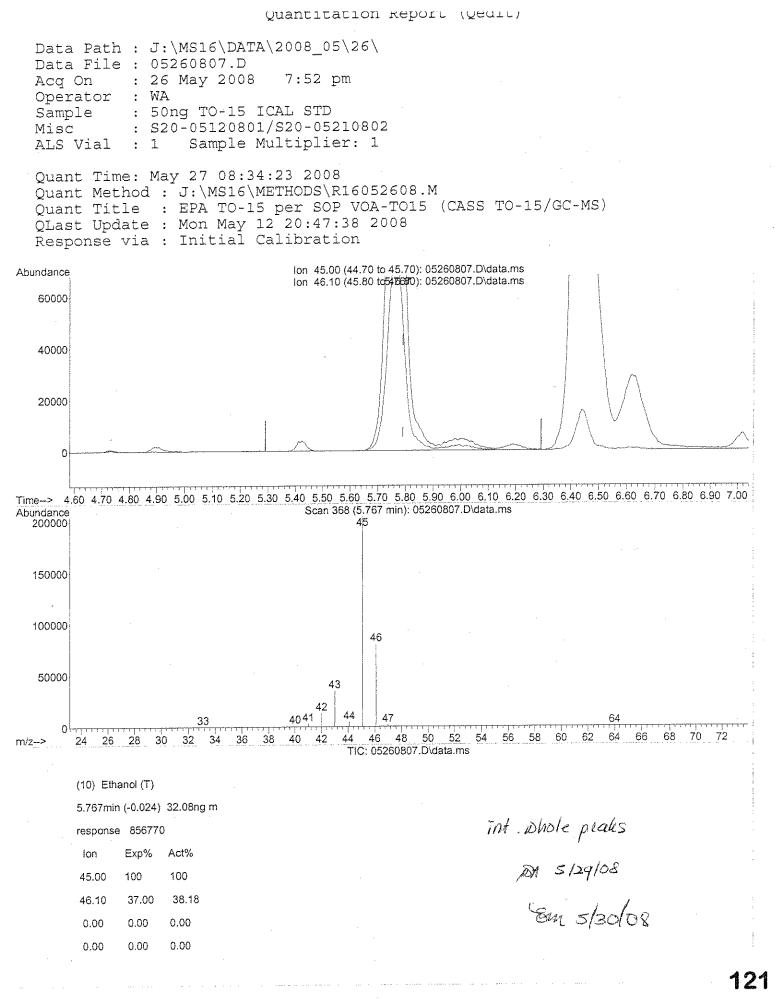
 45
 1.4-Diokane
 12.16
 83
 1042770
 48.456 ng
 93

 43) I.4-Diokane
 12.16
 83
 1042770
 48.162 ng
 93
 93

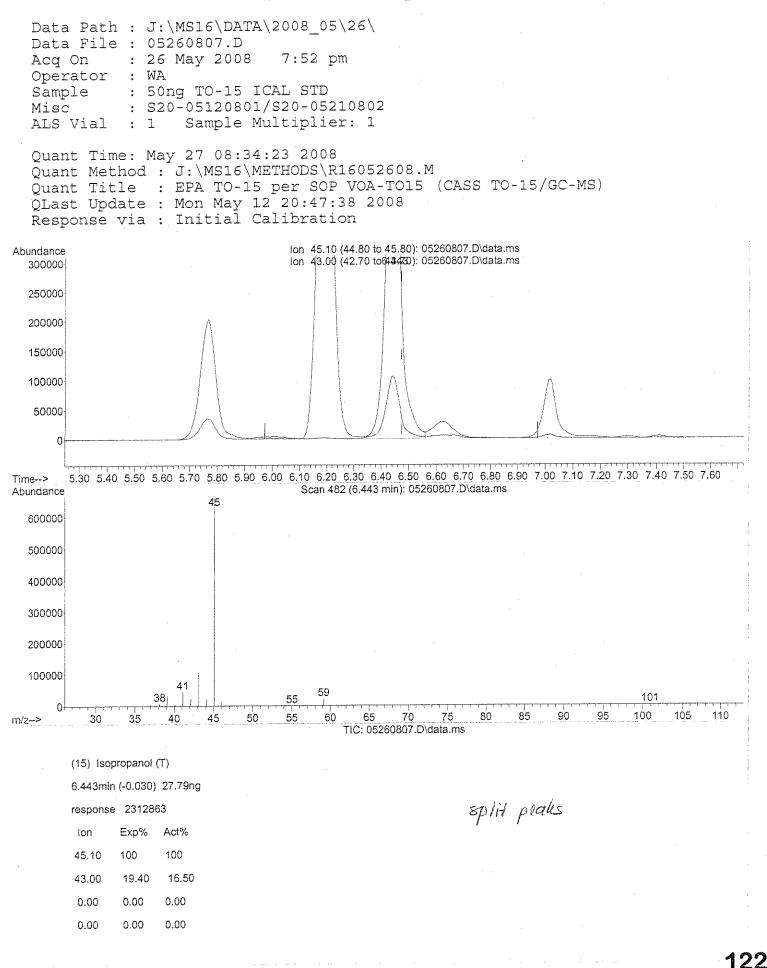
 46
 100
 97
 87.92 ng
 # 67
 14.92
 14.92
 14.93
 14.97
 14.93
 16.93
 199
 13

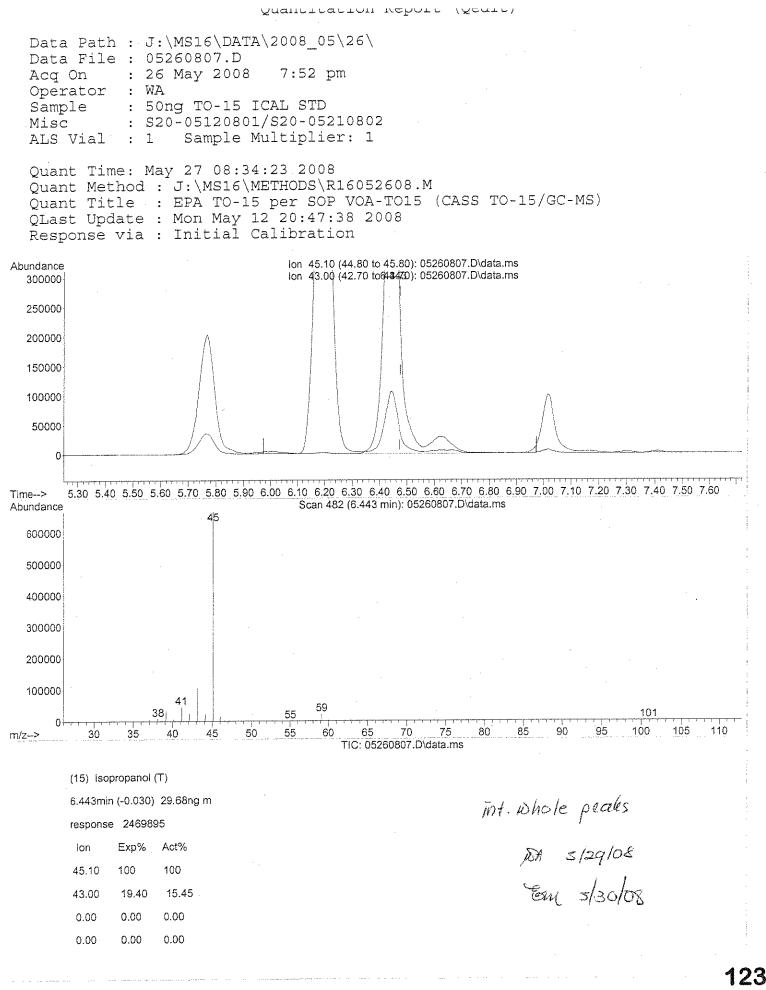

 42
 1.4-Diokane
 12.26
 1007999
 48.1 Internal Standards R.T. QIon Response Conc Units Dev(Min)

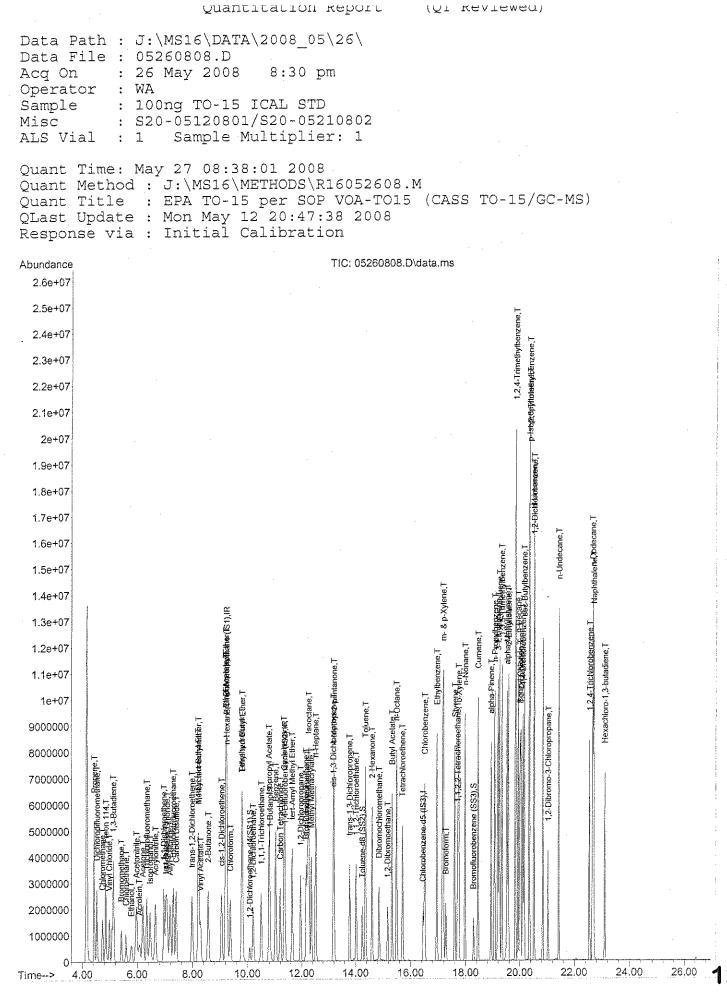
216052608.M Tue May 27 08:36:50 2008 De 3/29/08 Page: 2


Data Path : J:\MS16\DATA\2008_05\26\ Data File : 05260807.D Acg On : 26 May 2008 7:52 pm Operator : WA Sample : 50ng TO-15 ICAL STD Misc : S20-05120801/S20-05210802 ALS Vial : 1 Sample Multiplier: 1 Quant Time: May 27 08:35:27 2008 Quant Method : J:\MS16\METHODS\R16052608.M Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS) QLast Update : Mon May 12 20:47:38 2008 Response via : Initial Calibration R.T. QIon Response Conc Units Dev(Min) Internal Standards 80) alpha-Methylstyrene19.52118213273951.200 ng9881) 2-Ethyltoluene19.57105420958744.306 ng93 81)2-Ethyltoluene19.57105420958744.306 ng82)1,2,4-Trimethylbenzene19.84105378921447.764 ng83)n-Decane19.9457265125342.165 ng84)Benzyl Chloride20.0091309519946.818 ng85)1,3-Dichlorobenzene20.03146231382550.258 ng86)1,4-Dichlorobenzene20.11146234346953.292 ng87)sec-Butylbenzene20.16105491287447.536 ng88)p-Isopropyltoluene20.34119478814954.553 ng89)1,2,3-Trimethylbenzene20.52146214728250.289 ng90)1,2-Dichlorobenzene20.5268122030642.637 ng91)d-Limonene20.5268122030642.637 ng92)1,2-Dibromo-3-Chloropr...21.0415775626356.204 ng93)n-Undecane22.5518443205658.168 ng#94)1,2,4-Trichlorobenzene22.5518443205658.168 ng#95)Naphthalene22.70128573294151.070 ng96)n-Dodecane22.6657291633645.196 ng 92 79 89 100 99 95 93 89 100 88 81 78 # 86 99 95) Naphthalene22.70128573294151.070ng96) n-Dodecane22.6657291633645.196ng97) Hexachloro-1,3-butadiene23.1122568691661.855ng 77 99 _____

(#) = qualifier out of range (m) = manual integration (+) = signals summed


DA 5/29/08 Page: 3


R16052608.M Tue May 27 08:35:07 2008



R16052608.M Tue May 27 08:35:23 2008

R16052608.M Tue May 27 08:38:51 2008

Quantitation Report (QT Keviewed) Data Path : J:\MS16\DATA\2008_05\26\ Data File : 05260808.D Acg On : 26 May 2008 8:30 pm Operator : WA Sample : 100ng TO-15 ICAL STD Misc : S20-05120801/S20-05210802 ALS Vial : 1 Sample Multiplier: 1 Ouant Time: May 27 08:38:01 2008 Quant Method : J:\MS16\METHODS\R16052608.M Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS) QLast Update : Mon May 12 20:47:38 2008 Response via : Initial Calibration Internal Standards R.T. QIon Response Conc Units Dev(Min) _____ 1) Bromochloromethane (IS1) 9.25 130 386095 25.000 ng 0.00 37) 1,4-Difluorobenzene (IS2) 11.38 114 1653539 25.000 ng 0.00 56) Chlorobenzene-d5 (IS3) 16.46 82 678453 25.000 ng 0.00

 Bystem Monitoring Compounds
 33) 1,2-Dichloroethane-d4(... 10.09
 65
 565549
 20.772 ng
 0.00

 Spiked Amount
 25.000
 Recovery =
 83.08%

 57) Toluene-d8 (SS2)
 14.25
 98
 1717295
 25.707 ng
 0.00

 Spiked Amount
 25.000
 Recovery =
 102.84%

 73) Bromofluorobenzene (SS3)
 18.29
 174
 594590
 34.200 ng
 0.00

 Spiked Amount
 25.000
 Recovery =
 136.80%

 System Monitoring Compounds

 Spiked Amount
 25.000
 Recovery
 =
 136.80%

 Target Compounds
 Qvalue

 2) Propene
 4.44
 42
 2836829
 73.478 ng
 93

 3) Dichlorodifluoromethane
 4.54
 85
 3164778
 69.330 ng
 98

 4) Chloromethane
 4.74
 50
 2740968
 48.567 ng
 100

 5) Freen 114
 4.86
 135
 1854170
 84.233 ng
 97

 6) Vinyl Chloride
 4.99
 62
 2510365
 64.422 ng
 95

 7) 1, 3-Butadiene
 5.14
 54
 2625216
 72.158 ng
 94

 8) Bromomethane
 5.43
 94
 1215673
 75.708 ng
 98

 9) Chloroethane
 5.07
 41
 1246621
 73.246 ng
 98

 10) Ethanol
 5.79
 45
 1727283
 65.068 ng
 97

 13) Acetone
 6.21
 58
 1851795
 72.591 ng
 #
 77

 14) Trichlorofluoromethane
 6.35
 101
 3129612
 82.895 ng
 100

 15) Isopropanol
 6.47
 45
 476404000</td ⁹²125

16052608.M Tue May 27 08:38:50 2008

JOH 5129/08

Page: 1

Data Path : J:\MS16\DATA\2008 05\26\ Data File : 05260808.D Acq On : 26 May 2008 8:30 pm Opérator : WA Sample : 100ng TO-15 ICAL STD Misc : S20-05120801/S20-05210802 ALS Vial : 1 Sample Multiplier: 1 Ouant Time: May 27 08:38:01 2008 Quant Method : J:\MS16\METHODS\R16052608.M Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS) QLast Update : Mon May 12 20:47:38 2008 Response via : Initial Calibration

 Internal Standards
 R.T. Qion Response Conc Units Dev(Min)

 32) Chicoroform
 9.38
 83
 2628154
 91.286 ng
 95

 33) Tetrahydrofuran
 9.80
 73
 934904
 70.972 ng
 # 49

 35) Ethyl tert-Butyl Ether
 9.81
 87
 1330911
 81.381.381 ng
 # 75

 34) Tetrahydrofuran
 10.21
 62
 2544747
 73.889 ng
 96

 36) Light Trichloroethane
 10.51
 97
 2645547
 83.201 ng
 94

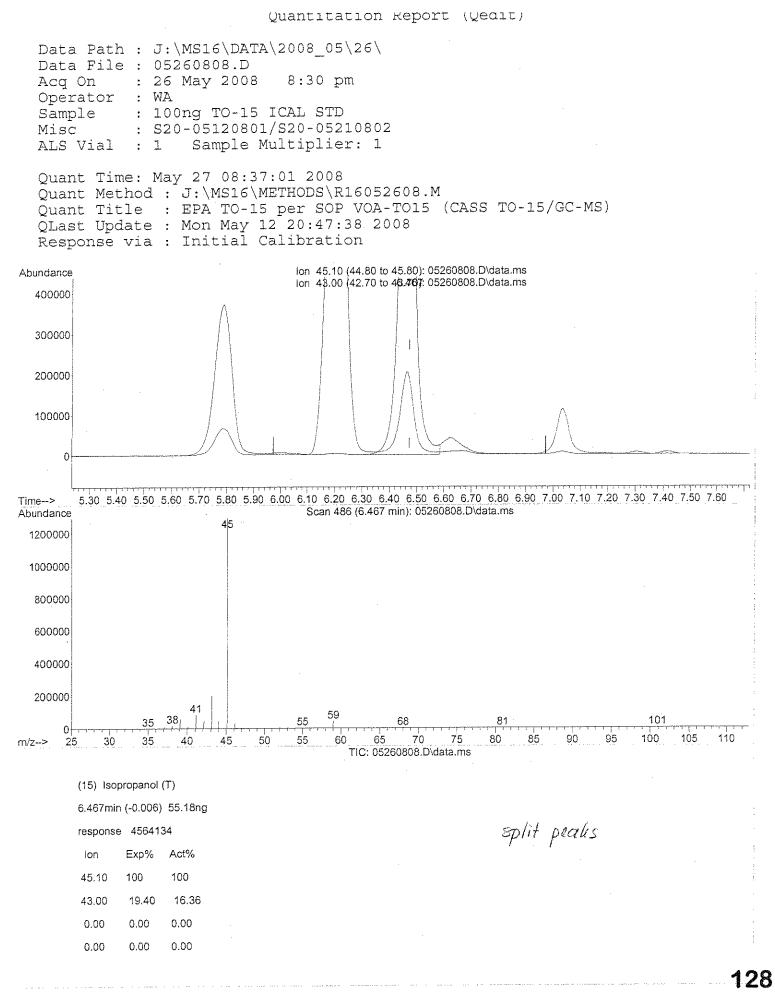
 35) Esporpyl Acctate
 10.86
 62
 2176266
 69.476 ng
 95

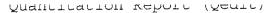
 41
 14
 76
 6068655
 74.864 ng
 99

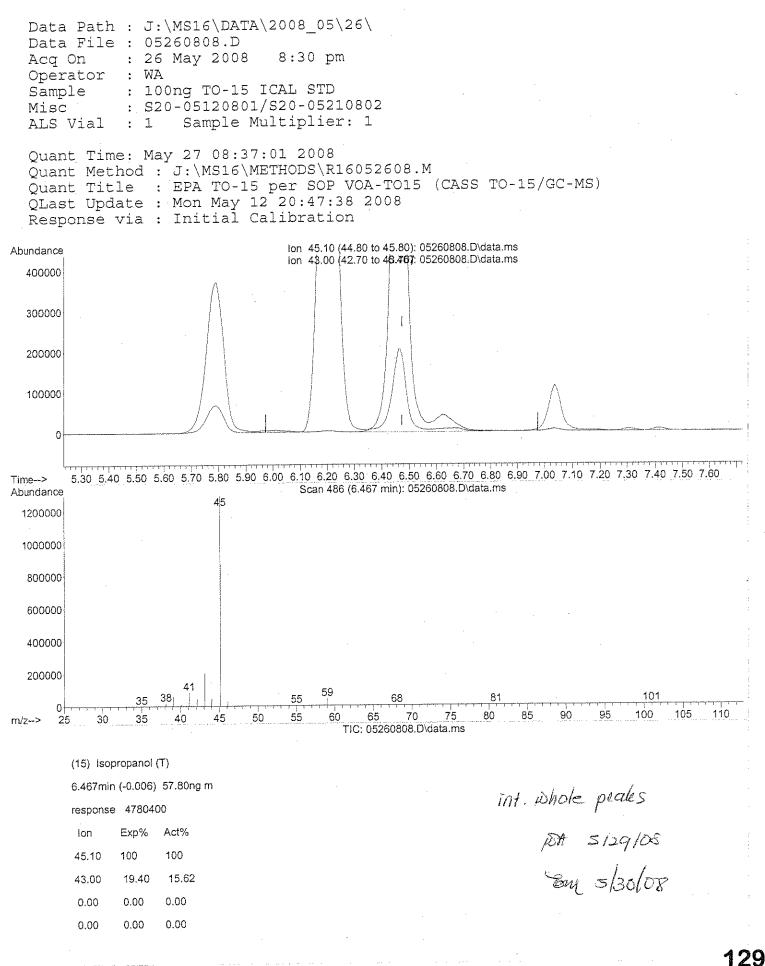
 42
 Carbon Tetrachloride
 11.21
 117
 2729404
 113.703 ng
 93

 43
 tetr-Amyl Methyl Ether
 11.65
 73
 4315624
 75.601 ng
 79

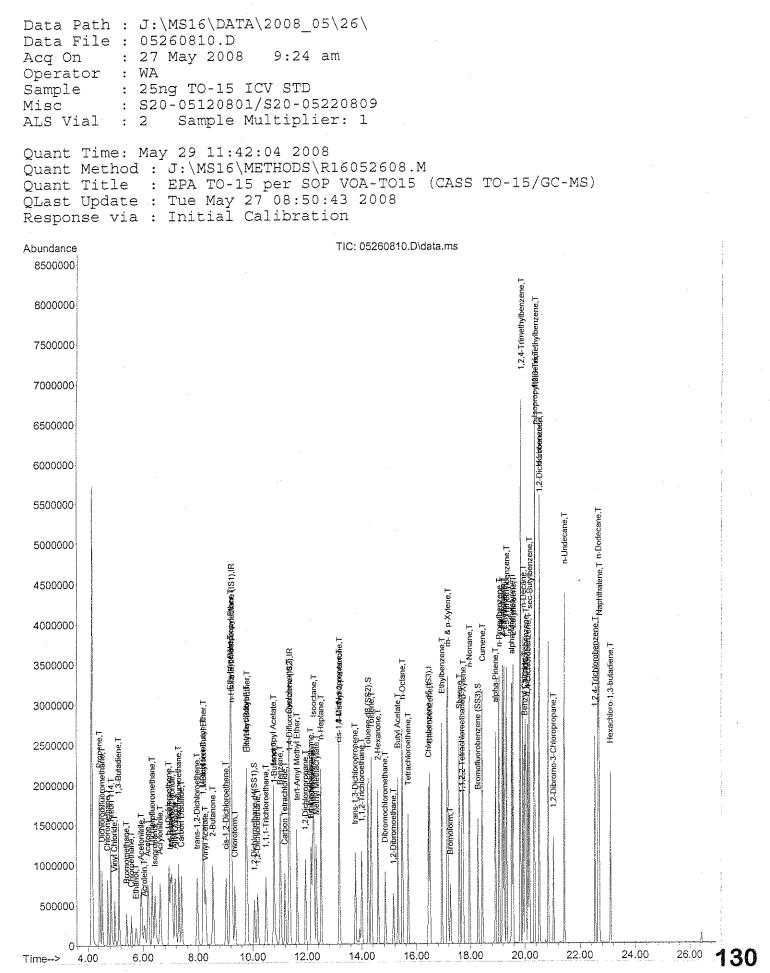
 44
 tetr-Amyl Methyl Ether
 11.65
 73
 431624
 78.563 ng
 90


 71
 Trichloroptropane
 12.17
 83
 1264622
 85.014 ng
 97


 51
 J.2-Dichloroptropane
 13.91
 75
 Internal Standards R.T. QIon Response Conc Units Dev(Min)


16052608.M Tue May 27 08:38:50 2008 Dr 5/29/02 Page: 2

80) alpha-Methylstyrene 19.53 118 4259512 99.217 ng 9	
	n)
81) 2-Ethyltoluene 19.58 105 8490812 86.710 ng 9	9
	4
	4
	9
	0
85) 1,3-Dichlorobenzene 20.04 146 4611892 97.195 ng 10	
	9
87) sec-Butylbenzene 20.17 105 9897976 92.924 ng 9	
88) p-Isopropyltoluene 20.36 119 9553769 105.614 ng 9	
89) 1,2,3-Trimethylbenzene 20.36 105 7531861 94.600 ng 9	
90) 1,2-Dichlorobenzene 20.53 146 4208026 95.621 ng 10	
91) d-Limonene 20.52 68 2427100 82.281 ng 8	
92) 1,2-Dibromo-3-Chloropr 21.05 157 1517346 109.413 ng 8	
93) n-Undecane 21.44 57 5629788 82.606 ng 7	
94) 1,2,4-Trichlorobenzene 22.56 184 854314 111.596 ng # 8	
	9
96) n-Dodecane 22.67 57 5705966 85.800 ng 7 97) Hexachloro-1,3-butadiene 23.11 225 1376955 120.304 ng 10	
97) Hexachloro-1,3-butadiene 23.11 225 1376955 120.304 ng 10	


(#) = qualifier out of range (m) = manual integration (+) = signals summed

R16052608.M Tue May 27 08:38:04 2008

R16052608.M Thu May 29 11:42:22 2008

Data Path : J:\MS16\DATA\2008_05 Data File : 05260810.D Acq On : 27 May 2008 9:24 an Operator : WA Sample : 25ng TO-15 ICV STD Misc : S20-05120801/S20-052 ALS Vial : 2 Sample Multiplie	m 20809 r: 1					
Quant Time: May 29 11:42:04 2008 Quant Method : J:\MS16\METHODS\R Quant Title : EPA TO-15 per SOP QLast Update : Tue May 27 08:50:4 Response via : Initial Calibratic	1605260 VOA-TO 43 2008		ASS TO-15/	GC-MS)		
Internal Standards	Ŕ.T.	QIon	Response	Conc	Units	Dev(Min)
1) Bromochloromethane (IS1) 37) 1,4-Difluorobenzene (IS2) 56) Chlorobenzene-d5 (IS3)	11.37	114	1689589	25.000	ng	-0.01
System Monitoring Compounds 33) 1,2-Dichloroethane-d4(Spiked Amount 25.000 57) Toluene-d8 (SS2) Spiked Amount 25.000	•		1713292	ery =	97. ng	.64% -0.01
73) Bromofluorobenzene (SS3) Spiked Amount 25.000	18.29	174	581376	25.427 ery =	ng	0.00
<pre>5) Freon 114 6) Vinyl Chloride 7) 1,3-Butadiene 8) Bromomethane 9) Chloroethane 10) Ethanol 11) Acetonitrile 12) Acrolein 13) Acetone 14) Trichlorofluoromethane 15) Isopropanol 16) Acrylonitrile 17) 1,1-Dichloroethene 18) tert-Butanol 19) Methylene Chloride 20) Allyl Chloride 21) Trichlorotrifluoroethane 22) Carbon Disulfide 23) trans-1,2-Dichloroethene 24) 1,1-Dichloroethane 25) Methyl tert-Butyl Ether 26) Vinyl Acetate 27) 2-Butanone 28) cis-1,2-Dichloroethene 29) Diisopropyl Ether 30) Ethyl Acetate</pre>	$\begin{array}{c} 4.53\\ 4.73\\ 4.85\\ 4.98\\ 5.13\\ 5.429\\ 5.79\\ 5.79\\ 5.79\\ 5.6.13\\ 4.33\\ 5.95\\ 5.79\\ 5.6.13\\ 4.33\\ 5.95\\ 1.34\\ 6.95\\ 1.34\\ 7.067\\ 7.30\\ 7.99\\ 8.27\\ 5.25\\ 9.29\\ 1.9\\ 9.19\\ 9.19\\ 9.19\\ 1.02\\ $	85052444516815369411613362171	1227596 586768 766426 924731 365175 408506 574235m 1528567 435174 597804 986041 1696236m 1098277 508940 1687948m 479985 1164762 509817 1682270	25.053 27.492 25.082 33.202 23.185 25.871 26.806 24.755 28.174 28.051 27.583 26.423 26.423 29.201 30.507 28.203 29.201 30.741 29.349 25.445 29.440 29.124 31.947 29.373 28.989 28.830 31.977	ng ng ng ng ng ng ng ng ng ng ng ng ng n	97 95 85 98 95 98 97 74 100 97 96 # 49 83 86 100

16052608.M Thu May 29 11:42:21 2008

5/29/05 Ð

Data Path : J:\MS16\DATA\2008_05\26\ Data File : 05260810.D Acq On : 27 May 2008 9:24 am Operator : WA Sample : 25ng TO-15 ICV STD Misc : S20-05120801/S20-05220809 ALS Vial : 2 Sample Multiplier: 1 Quant Time: May 29 11:42:04 2008 Quant Method : J:\MS16\METHODS\R16052608.M Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS) QLast Update : Tue May 27 08:50:43 2008 Response via : Initial Calibration

 Internal Standards
 R.T. Qion Response Conc Units Dev(Min)

 32) Chloroform
 9.36
 83
 803556
 33.367 ng
 \$6

 33) Tetrahydrofuran
 9.78
 72
 313496
 29.935 ng
 \$5

 34) Tetrahydrofuran
 9.78
 72
 313496
 29.935 ng
 \$5

 36) L.J.Dichloroethane
 10.50
 97
 813898
 28.294 ng
 \$9

 36) I.J.L.Trüchloroethane
 10.50
 97
 813898
 28.294 ng
 \$9

 37) Tetrachloroethane
 10.80
 56
 710564
 25.551 ng
 \$9

 40) 1-Butamol
 10.80
 56
 710564
 25.621 ng
 \$9

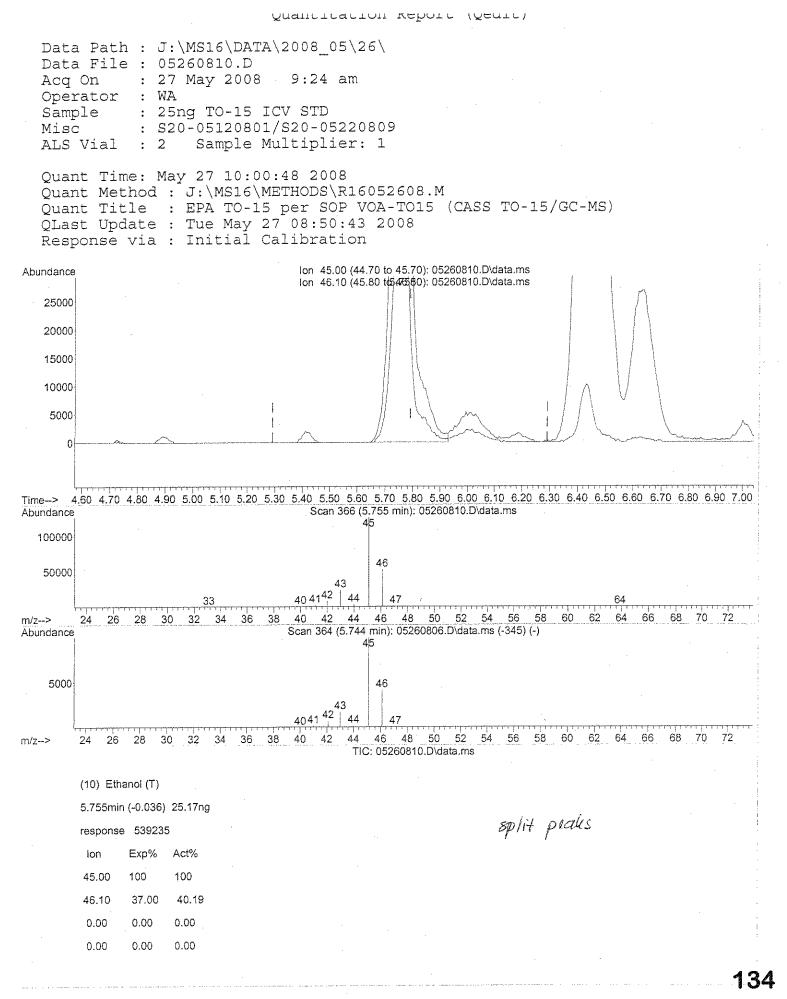
 43) Carbon Tetrachloride
 11.91
 17
 830520
 28.424 ng
 \$9

 41) tetr.Amyl Methyl Ether
 11.64
 73
 137043
 28.486 ng
 \$9

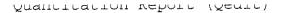
 43) Tetrichloroperpane
 12.21
 130
 65253
 29.436 ng
 \$9

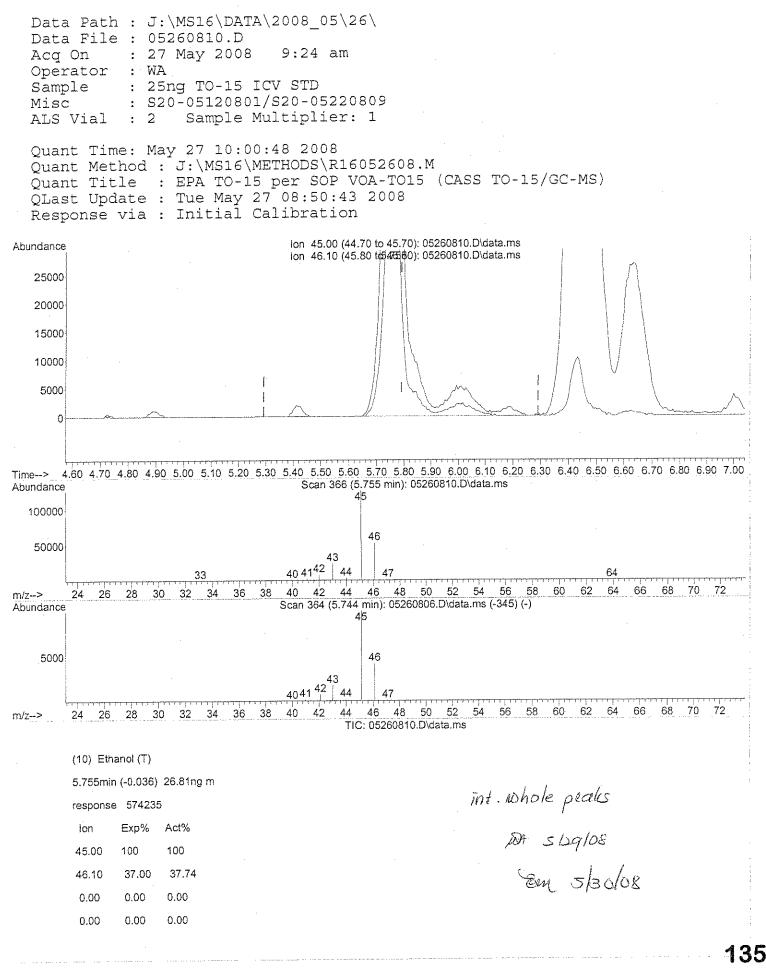
 43) I.A.Pioxane
 12.26
 57
 3206644
 28.174 ng
 \$9

 44) tetr.Amyl Metharylate
 12.35
 100
 23408
 30.538 ng
 \$9

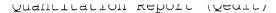

 Internal Standards R.T. QIon Response Conc Units Dev(Min)

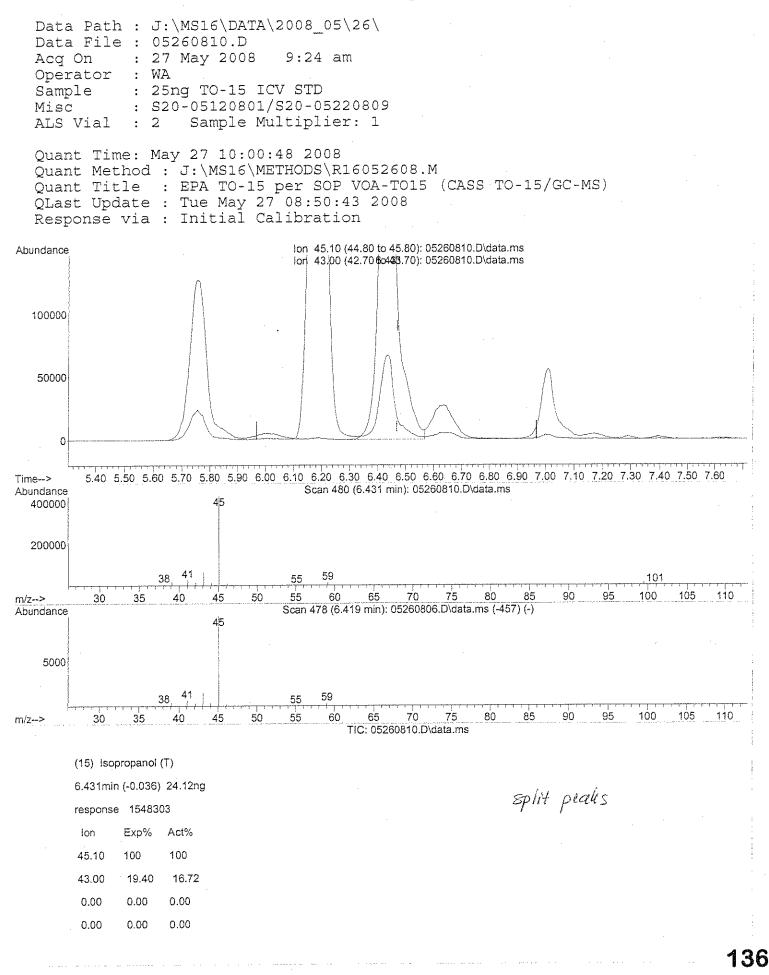
16052608.M Thu May 29 11:42:21 2008 At 5/29/08 Page: 2

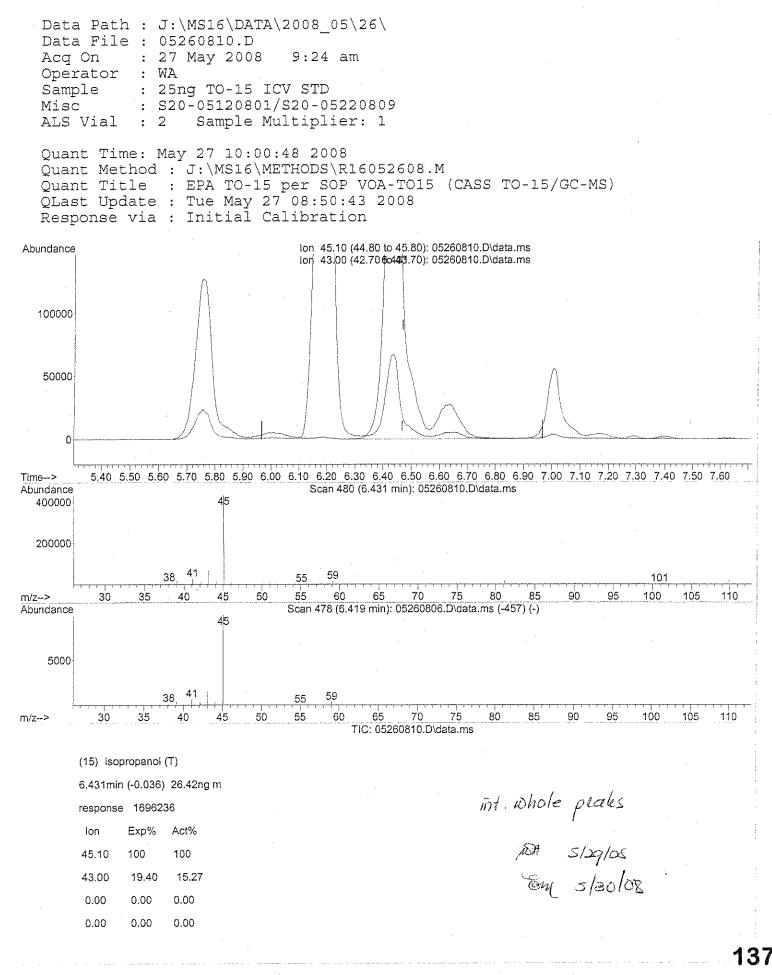

Data Path : J:\MS16\DATA\2008 05\26\ Data File : 05260810.D Acq On : 27 May 2008 9:24 am Opérator : WA Sample : 25ng TO-15 ICV STD Misc : S20-05120801/S20-05220809 ALS Vial : 2 Sample Multiplier: 1 Quant Time: May 29 11:42:04 2008 Quant Method : J:\MS16\METHODS\R16052608.M Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS) QLast Update : Tue May 27 08:50:43 2008 Response via : Initial Calibration Internal Standards R.T. QIon Response Conc Units Dev(Min) 80) alpha-Methylstyrene19.52118127974328.331ng9881) 2-Ethyltoluene19.57105259679326.669ng9382) 1,2,4-Trimethylbenzene19.83105223727127.509ng9183) n-Decane19.9357162191328.170ng8084) Benzyl Chloride19.9991186406529.664ng8985) 1,3-Dichlorobenzene20.02146139147927.002ng9986) 1,4-Dichlorobenzene20.11146140809228.147ng9987) sec-Butylbenzene20.16105301278728.555ng9588) p-Isopropyltoluene20.34119290525531.517ng9389) 1,2,3-Trimethylbenzene20.52146128577927.181ng10091) d-Limonene20.526871875728.679ng8792) 1,2-Dibromo-3-Chloropr.21.0415744716729.409ng8093) n-Undecane21.4357173327128.705ng7994) 1,2,4-Trichlorobenzene22.5518425402529.687ng8695) Naphthalene22.70128341422928.894ng9996) n-Dodecane22.6657171346129.123ng7897) Hexachloro-1,3-butadiene23.1122540476128.471ng99 97) Hexachloro-1,3-butadiene 23.11 225 404761 28.471 ng 99 _____


(#) = qualifier out of range (m) = manual integration (+) = signals summed

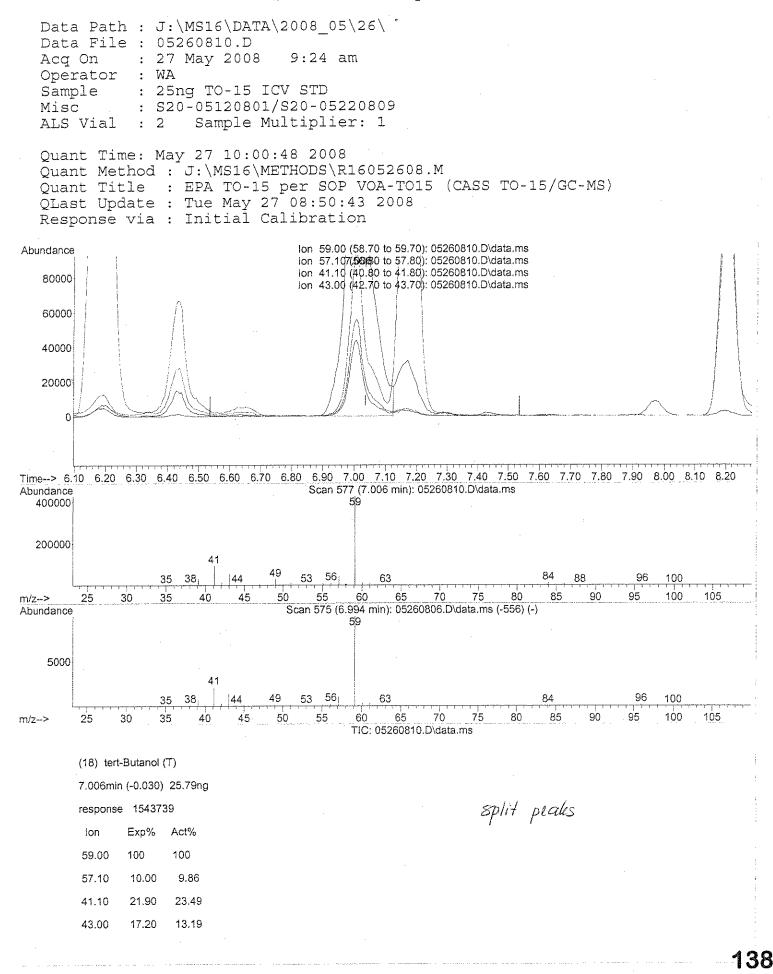
ACH.

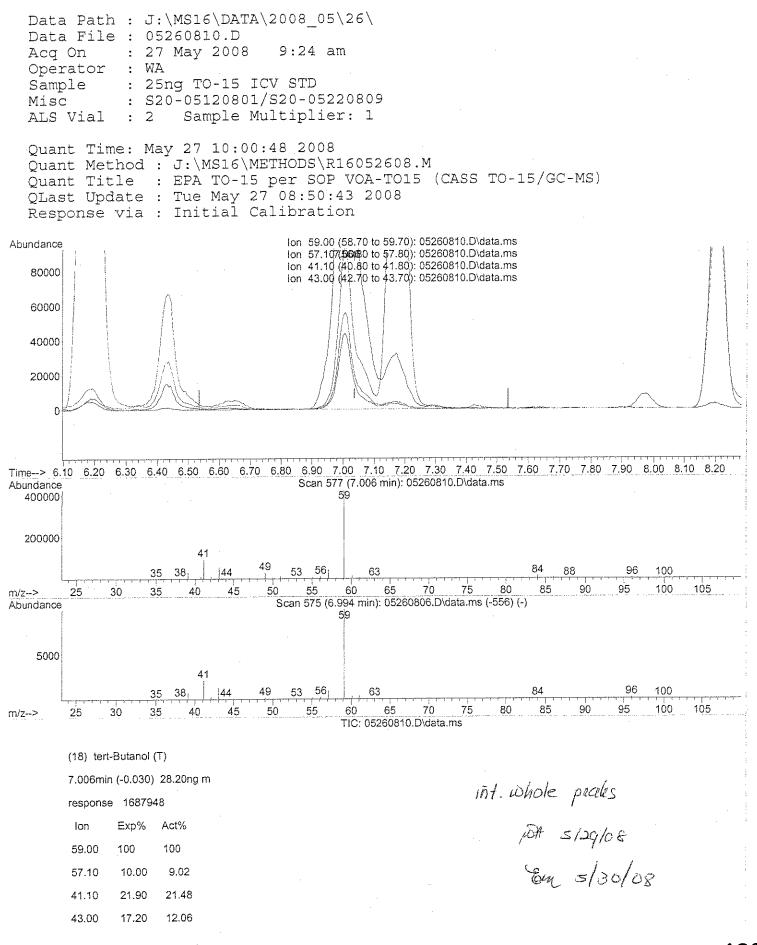



R16052608.M Thu May 29 11:41:29 2008



R16052608.M Thu May 29 11:41:35 2008




R16052608 M Thu May 29 11:41:44 2008

R16052608.M Thu May 29 11:41:49 2008

R16052608.M Thu May 29 11:42:00 2008

139

INITIAL CALIBRATION VERIFICATION CHECK SHEET

Data File Name: 05260810.D Data File Path: J:\MS16\DATA\2008_05\26\ Operator: WA Date Acquired: 5/27/08 9:24 Acq. Method File: TO15.M Sample Name: 25ng TO-15 ICV STD Misc Info: S20-05120801/S20-05220809 Instrument Name: GCMS-16

	Name	Ret.	Amt.	Spike	%	Lower	Upper	* OR	
<u>#</u>	Compound	<u>Time</u>	<u>(ng)</u>	<u>Amt.(ng)</u>	<u>Rec.</u>	<u>Limit</u>	<u>Limit</u>	<u>Fail</u>	
2)	Propene	4.43	27.59	26.3	104.9	70	130	*	
3)	Dichlorodifluoromethane	4.53	25.05	25.5	98.2	70	130	*	
4)	Chloromethane	4.73	25.59	24.5	104.4	70	130	*	
5)	Freon 114	4.85	27.49	26.0	105.7	70	130	*	
6)	Vinyl Chloride	4.98	25.08	24.8	101.1	70	130	*	
7)	1,3-Butadiene	5.13	33.20	30.0	110.7	70	130	*	
8)	Bromomethane	5.42	23.18	25.0	92.7	70	130	*	
9)	Chloroethane	5.59	25.87	25.0	103.5	70	130	*	
10)	Ethanol	5.76	26.81	23.8	112.6	70	130	*	
11)	Acetonitrile	5.95	24.75	25.3	97.8	70	130	*	
12)	Acrolein	6.05	28.17	24.8	113.6	70	130	*	
13)	Acetone	6.18	28.05	26.8	104.7	70	130	*	
14)	Trichlorofluoromethane	6.34	27.58	26.3	104.9	70	130	*	
15)	Isopropanol	6.43	26.42	25.8	102.4	70	130	*	
16)	Acrylonitrile	6.63	28.35	25.5	111.2	70	130	*	
17)	1,1-Dichloroethene	6.95	30.51	27.8	109.7	70	130	*	
· 18)	tert-Butanol	7.01	28.20	25.8	109.3	70	130	*	
19)	Methylene Chloride	7.06	29.20	27.8	105.0	70	130	*	
20)	Allyl Chloride	7.17	30.74	26.8	114.7	70	130	*	
21)	Trichlorotrifluoroethane	7.30	29.35	27.8	105.6	70	130	*	
22)	Carbon Disulfide	7.40	25.44	25.0	101.8	70	130	*	
23)	trans-1,2-Dichloroethene	7.97	28.74	26.5	108.5	70	130	*	
24)	1,1-Dichloroethane	8.19	29.44	26.8	109.9	70	130	*	
25)	Methyl tert-Butyl Ether	8.20	29.12	26.8	108.7	70	130	*	
26)	Vinyl Acetate	8.27	31.95	25.3	126.3	70	130	*	
27)	2-Butanone	8.55	29.37	27.0	108.8	70	130	*	
28)	cis-1,2-Dichloroethene	9.04	28.99	27.0	107.4	70	130	*	
29)	Diisopropyl Ether	9.20	28.83	26.3	109.6	70	130	*	
30)	Ethyl Acetate	9.19	31.98	29.3	109.1	70	130	*	
31)	n-Hexane	9.24	28.23	27.0	104.5	70	130	*	
32)	Chloroform	9.36	33.3 9	29.8	112.0	70	130	*	
34)	Tetrahydrofuran	9.78	29.93	26.8	111.7	70	130	*	
35)	Ethyl tert-Butyl Ether	9.80	28.73	26.0	110.5	70	130	*	
36)	1,2-Dichloroethane	10.19	27.97	26.3	106.3	70	130	*	
38)	1,1,1-Trichloroethane	10.50	28.29	26.8	105.6	70	130	*	
39)	Isopropyl Acetate	10.78	28.71	25.5	112.6	70	130	*	

Page 1 of 3

J:\MS16\ICV_0907.CRT

A 5/29/08

INITIAL CALIBRATION VERIFICATION CHECK SHEET

Data File Name: 05260810.D Data File Path: J:\MS16\DATA\2008_05\26\ Operator: WA Date Acquired: 5/27/08 9:24 Acq. Method File: TO15.M Sample Name: 25ng TO-15 ICV STD Misc Info: S20-05120801/S20-05220809 Instrument Name: GCMS-16

	Name	Ret.	Amt.	Spike	%	Lower	Upper	* OR
<u>#</u>	Compound	<u>Time</u>	<u>(ng)</u>	<u>Amt.(ng)</u>	<u>Rec.</u>	<u>Limit</u>	<u>Limit</u>	<u>Fail</u>
40)	1-Butanol	10.80	25.55	24.8	103.0	70	130	*
41)	Benzene	11.02	26.49	27.0	98.1	70	130	*
42)	Carbon Tetrachloride	11.19	28.42	26.0	109.3	70	130	*
43)	Cyclohexane	11.34	26.77	26.8	99.9	70	130	*
44)	tert-Amyl Methyl Ether	11.64	28.89	26.0	111.1	70	130	*
45)	1,2-Dichloropropane	11.95	28.42	26.5	107.2	70	130	*
46)	Bromodichloromethane	12.15	30.63	27.8	110.2	70	130	*
47)	Trichloroethene	12.21	29.43	27.3	107.8	70	130	*
48)	1,4-Dioxane	12.16	30.76	27.5	111.9	70	130	* _
49)	Isooctane	12.26	28.16	26.3	107.1	70	130	*
50)	Methyl Methacrylate	12.35	30.54	25.8	118.4	70	130	*
51)	n-Heptane	12.52	29.14	26.8	108.7	70	130	*
52)	cis-1,3-Dichloropropene	13.17	28.17	25.0	112.7	70	130	*
53)	4-Methyl-2-pentanone	13.19	28.02	27.5	101.9	70	130	*
54)	trans-1,3-Dichloropropene	13.77	31.27	28.0	111.7	70	130	*
55)	1,1,2-Trichloroethane	14.00	28.84	26.3	109.7	70	130	*
58)	Toluene	14.35	27.55	26.5	104.0	70	130	*
59)	2-Hexanone	14.59	25.15	26.3	95.6	70	130	*
60)	Dibromochloromethane	14.85	29.80	27.0	110.4	70	130	*
61)	1,2-Dibromoethane	15.15	28.20	26.3	107.2	70	130	*
62)	Butyl Acetate	15.31	27.92	26.3	106.2	70	130	*
63)	n-Octane	15.48	27.99	26.0	107.7	70	130	*
64)	Tetrachloroethene	15.70	27.94	26.0	107.5	70	130	*
65)	Chlorobenzene	16.50	27.87	26.5	105.2	70	130	*
66)	Ethylbenzene	16.94	27.77	26.3	105.6	70	130	*
67)	m- & p-Xylene	17.16	65.75	62.5	105.2	70	130	*
68)	Bromoform	17.26	37.36	31.3	119.4	70	130	*
69)	Styrene	17.60	29.09	26.3	110.6	70	130	*
70)	o-Xylene	17.74	31.02	29.8	104.1	70	130	*
71)	n-Nonane	17.97	26.58	26.0	102.2	70	130	*
72)	1,1,2,2-Tetrachloroethane	17.70	31.47	29.8	105.6	70	130	*
74)	Cumene	18.45	29.00	27.0	107.4	70	130	*
75)	alpha-Pinene	18.93	28.88	26.3	109.8	70	130	*
76)	n-Propylbenzene	19.07	28.04	26.3	106.6	70	130	*
77)	3-Ethyltoluene	19.19	26.73	25.5	104.8	70	130	*

Page 2 of 3

J:\MS16\ICV_0907.CRT

5/29/08 11:42 AM Tot slagloe

INITIAL CALIBRATION VERIFICATION CHECK SHEET

Data File Name: 05260810.D Data File Path: J:\MS16\DATA\2008_05\26\ Operator: WA Date Acquired: 5/27/08 9:24 Acq. Method File: TO15.M Sample Name: 25ng TO-15 ICV STD Misc Info: S20-05120801/S20-05220809 Instrument Name: GCMS-16

	Name	Ret.	Amt.	Spike	%	Lower	Upper	* OR
<u>#</u>	Compound	<u>Time</u>	<u>(ng)</u>	Amt.(ng)	<u>Rec.</u>	<u>Limit</u>	<u>Limit</u>	<u>Fail</u>
78)	4-Ethyltoluene	19.24	28.51	26.5	107.6	70	130	*
79)	1,3,5-Trimethylbenzene	19.33	27.62	26.0	106.2	70	130	*
80)	alpha-Methylstyrene	19.52	28.33	25.5	111.1	70	130	*
81)	2-Ethyltoluene	19.57	26.67	24.8	107.5	70	130	*
82)	1,2,4-Trimethylbenzene	19.83	27.51	26.0	105.8	70	130	*
83)	n-Decane	19.93	28.17	26.3	107.1	70	130	*
84)	Benzyl Chloride	19.99	29.66	25.8	115.0	70	130	*
85)	1,3-Dichlorobenzene	20.02	27.00	25.5	105.9	70	130	×
86)	1,4-Dichlorobenzene	20.11	28.15	26.3	107.0	70	130	*
87)	sec-Butylbenzene	20.16	28.55	26.8	106.5	70	130	*
88)	p-lsopropyltoluene	20.34	31.52	28.8	109.4	70	130	*
89)	1,2,3-Trimethylbenzene	20.35	30.03	28.5	105.4	70	130	*
90)	1,2-Dichlorobenzene	20.52	27.18	25.8	105.4	70	130	*
91)	d-Limonene	20.52	28.68	26.0	110.3	70	130	*
92)	1,2-Dibromo-3-Chloropropane	21.04	29.41	25.8	114.0	70	130	*
93)	n-Undecane	21.43	28.70	26.5	108.3	70	130	*
94)	1,2,4-Trichlorobenzene	22.55	29.69	26.0	114.2	70	130	*
95)	Naphthalene	22.70	28.89	26.3	109.9	70	130	· *
96)	n-Dodecane	22.66	29.12	26.5	109.9	70	130	*
97)	Hexachloro-1,3-butadiene	23.11	28.47	26.3	108.3	70	130	*

Bold = 67 Compound List

5/29/08 11:42 AM

5/29/08

R

Data File Acq On Operator Sample	:::::::::::::::::::::::::::::::::::::::	J:\MS16\DATA\2008_06\03\ 06030801.D 3 Jun 2008 5:51 am WA 5ng TO-15 CCV S20-05300801/S20-05210808
Misc ALS Vial		S20-05300801/S20-05210808 1 Sample Multiplier: 1
		4. -

Quant Time: Jun 05 16:35:21 2008 Quant Method : J:\MS16\METHODS\R16052608.M Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS) QLast Update : Tue May 27 08:50:43 2008 Response via : Initial Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.33min Max. RRF Dev : 30% Max. Rel. Area : 200%

	Compound	AvgRF	CCRF	%Dev Ar	ea%	Dev(min)
1 IR 1 TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	Compound Bromochloromethane (IS1) Propene Dichlorodifluoromethane Chloromethane Freon 114 Vinyl Chloride 1,3-Butadiene Bromomethane Chloroethane Ethanol Acetonitrile Acrolein Acetone Trichlorofluoromethane Isopropanol Acrylonitrile 1,1-Dichloroethene tert-Butanol Methylene Chloride Allyl Chloride Trichlorotrifluoroethane Carbon Disulfide trans-1,2-Dichloroethene 1,1-Dichloroethane Methyl tert-Butyl Ether Vinyl Acetate 2-Butanone cis-1,2-Dichloroethene Diisopropyl Ether Ethyl Acetate n-Hexane Chloroform 1,2-Dichloroethane-d4 (SS1) Tetrahydrofuran Ethyl tert-Butyl Ether	1.000 1.935 2.341 2.941 1.308 1.873 1.707 0.965 0.968 1.313 3.785 0.947 1.306 2.191 3.935 2.374 1.023 3.669 1.008 2.322	CCRF 1.000 1.532 2.007 2.628 1.144 1.599 1.569 0.860 0.822 1.207 3.233 0.843 1.103 1.945 4.035 2.146 0.941 3.342 0.941 3.342 0.941 3.342 0.953 3.691 1.761 1.923 2.742 0.195 0.595 1.645 0.827 0.438 2.471 1.343 1.382 0.589 1.195	0.0 20.8 14.3 10.6 12.5 14.6 8.1 10.9 15.1 8.1 14.6 11.0 15.5 11.2	91 73	$\begin{array}{c} -0.05\\ 0.00\\ 0.00\\ -0.01\\ -0.01\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.09\\ -0.06\\ -0.04\\ -0.05\\ -0.09\\ -0.06\\ -0.03\\ -0.08\\ -0.04\\ -0.02\\ -0.04\\ -0.02\\ -0.04\\ -0.02\\ -0.04\\ -0.05\\ -0.04\\ -0.05\\ -0.04\\ -0.05\\ -0.04\\ -0.05\\ -0.04\\ -0.05\\ -0.04\\ -0.05\\ -0.05\\ -0.05\\ -0.05\\ -0.05\\ -0.05\\ -0.05\\ -0.05\\ -0.05\\ -0.05\\ -0.05\\ -0.05\\ -0.05\\ -0.05\\ -0.04\\ -0.05\\ -0.0$
36 T 37 IR	1,2-Dichloroethane 1,4-Difluorobenzene (IS2)	1.691		11.0 0.0	82 90	-0.04
38 T	1,1,1-Trichloroethane	0.426	0.383	10.1	83	-0.04 1

R16052608.M Thu Jun 05 16:35:40 2008

Rat 6/5/08

Page: 1

<u>4</u>3

Data Path	:	J:\MS16\DATA\2008_06\03\
Data File	:	06030801.D
Acq On	:	3 Jun 2008 5:51 am
Operator	-	WA
Sample	:	5ng TO-15 CCV
Misc	:	S20-05300801/S20-05210808
ALS Vial	:	1 Sample Multiplier: 1

Quart Time: Jun 05 16:35:21 2008 Quant Method : J:\MS16\METHODS\R16052608.M Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS) QLast Update : Tue May 27 08:50:43 2008 Response via : Initial Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.33min Max. RRF Dev : 30% Max. Rel. Area : 200%

	Compound	AvgRF	CCRF	%Dev Area% Dev(min)
39 T 40 T 41 T 42 T 43 T 43 T 45 T 46 T 46 T 46 T 48 T 49 T 51 T 52 T 53 T 54 T 55 T	Isopropyl Acetate 1-Butanol Benzene Carbon Tetrachloride Cyclohexane tert-Amyl Methyl Ether 1,2-Dichloropropane Bromodichloromethane Trichloroethene 1,4-Dioxane Isooctane Methyl Methacrylate n-Heptane cis-1,3-Dichloropropene 4-Methyl-2-pentanone trans-1,3-Dichloropropene 1,1,2-Trichloroethane	0.211 0.411 1.054 0.432 0.412 0.702 0.311 0.310 0.328 0.197 1.685 0.113 0.252 0.392 0.366 0.362 0.256	0.194 0.358 0.858 0.391 0.349 0.631 0.278 0.287 0.302 0.184 1.516 0.108 0.229 0.363 0.334 0.328 0.235	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
55 56 57 57 57 57 57 57 57 57 57 57 57 57 57	Chlorobenzene-d5 (IS3) Toluene-d8 (SS2) Toluene 2-Hexanone Dibromochloromethane 1,2-Dibromoethane Butyl Acetate n-Octane Tetrachloroethene Chlorobenzene Ethylbenzene m- & p-Xylene Bromoform Styrene o-Xylene n-Nonane 1,1,2,2-Tetrachloroethane Bromofluorobenzene (SS3) Cumene alpha-Pinene n-Propylbenzene	1.000 2.577 2.924 2.761 0.863 0.803 2.776 0.884 0.865 2.083 3.323 2.202 0.501 2.127 2.357 2.326 0.976 0.857 3.431 1.610 3.987	1.000 2.554 2.628 2.386 0.797 0.743 2.512 0.813 0.799 1.906 3.068 2.005 0.490 2.011 2.147 2.098 0.711 3.208 1.558 3.721	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

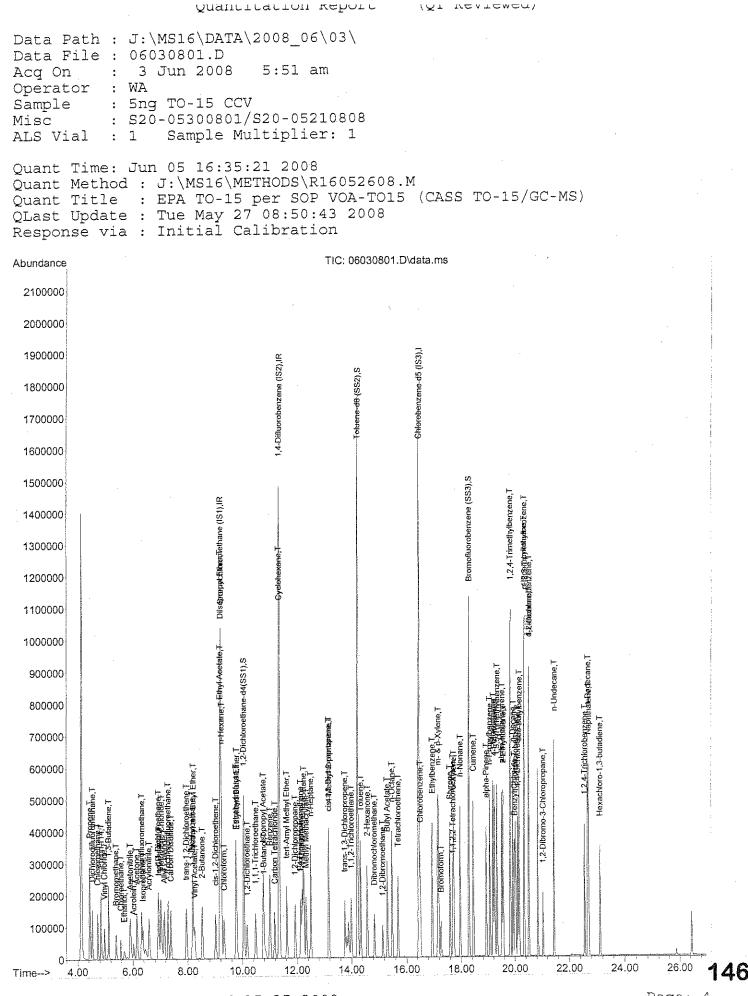
R16052608.M Thu Jun 05 16:35:40 2008

PS# 615/08

Evaluate Continuing Calibration Report

		J:\MS16\DATA\2008_06\03\
		06030801.D
		3 Jun 2008 5:51 am
Operator ·		
Sample		5ng TO-15 CCV
Misc		S20-05300801/S20-05210808
ALS Vial	:	1 Sample Multiplier: 1

Quant Time: Jun 05 16:35:21 2008 Quant Method : J:\MS16\METHODS\R16052608.M Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS) QLast Update : Tue May 27 08:50:43 2008 Response via : Initial Calibration


Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.33min Max. RRF Dev : 30% Max. Rel. Area : 200%

	Compound	AvgRF	CCRF	%Dev Area% Dev(min)
77 T	3-Ethyltoluene	3.764	3.433	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
78 T	4-Ethyltoluene	3.396	3.191	
79 T	1,3,5-Trimethylbenzene	3.011	2.751	
80 T	alpha-Methylstyrene	1.693	1.656	
81 T	2-Ethyltoluene	3.649	3.437	
82 T	1,2,4-Trimethylbenzene	3.048	2.781	
83 T	n-Decane	2.158	2.036	
84 T	Benzyl Chloride	2.355	2.232	
85 T	1,3-Dichlorobenzene	1.931	1.792	
86 T	1,4-Dichlorobenzene	1.875	1.740	
86 T	sec-Butylbenzene	3.954	3.706	
88 T	p-Isopropyltoluene	3.455	3.277	
86 T	1,2,3-Trimethylbenzene	2.927	2.758	
89 T	1,2-Dichlorobenzene	1.773	1.679	
91 T	d-Limonene	0.939	0.905	
92 T	1,2-Dibromo-3-Chloropropane	0.570	0.565	
92 T	n-Undecane	2.263	2.137	
93 T	1,2,4-Trichlorobenzene	0.321	0.320	
95 T	Naphthalene	4.428	4.385	1.0 100 -0.01
96 T	n-Dodecane	2.205	2.143	2.8 87 0.00
97 T	Hexachloro-1,3-butadiene	0.533	0.513	3.8 86 0.00

(#) = Out of Range

SPCC's out = 0 CCC's out = 0

145

R16052608.M Thu Jun 05 16:35:35 2008

Data Path : J:\MS16\DATA\2008_06\03\ Data File : 06030801.D Acq On : 3 Jun 2008 5:51 am Operator : WA Sample : 5ng TO-15 CCV Misc : S20-05300801/S20-05210808 ALS Vial : 1 Sample Multiplier: 1 Ouant Time: Jun 05 16:35:21 2008 Quant Method : J:\MS16\METHODS\R16052608.M Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS) QLast Update : Tue May 27 08:50:43 2008 Response via : Initial Calibration Internal Standards R.T. QIon Response Conc Units Dev(Min) 1) Bromochloromethane (IS1) 9.20 130 363875 25.000 ng -0.05 37) 1,4-Difluorobenzene (IS2) 11.35 114 1500112 25.000 ng -0.03 56) Chlorobenzene-d5 (IS3) 16.45 82 574573 25.000 ng -0.01 System Monitoring Compounds

 System Monitoring Compounds

 33) 1,2-Dichloroethane-d4(...
 10.05
 65
 502978
 24.174 ng
 -0.05

 Spiked Amount
 25.000
 Recovery = 96.68%

 57) Toluene-d8 (SS2)
 14.23
 98
 1467722
 24.778 ng
 -0.02

 Spiked Amount
 25.000
 Recovery = 99.12%

 73) Bromofluorobenzene (SS3)
 18.29
 174
 408786
 20.756 ng
 0.00

 Spiked Amount
 25.000
 Recovery = 83.04%
 0.00

 Spiked Amount
 25.000
 Recovery
 Covery

 Target Compounds
 Qvalue

 2) Propene
 4.44
 42
 120386
 4.274 ng
 93

 3) Dichlorodifluoromethane
 4.53
 55
 151912
 4.459 ng
 98

 4) Chloromethane
 4.73
 50
 195090
 4.557 ng
 99

 5) Freon 114
 4.85
 135
 89102
 4.679 ng
 99

 6) Vinyl Chloride
 4.97
 62
 119841
 4.396 ng
 94

 7) 1,3-Butadiene
 5.12
 54
 124485
 5.010 ng
 #
 86

 8) Bromomethane
 5.41
 94
 65706
 4.676 ng
 100

 9) Chloroethane
 5.58
 64
 62828
 4.60 ng
 95

 10) Ethanol
 5.70
 45
 79905m
 4.181 ng
 91

 11) Acetonitrile
 6.03
 56
 5887
 4.273 ng
 98

 13) Acetone
 6.15
 58
 89079
 4.685 ng
 #
 76

 14) Trichlorofluoromethane
 6.33
 101
 147199
 4.615 ng
 <t 92147

Data Path : J:\MS16\DATA\2008 06\03\ Data File : 06030801.D Acg On : 3 Jun 2008 5:51 am Operator : WA Sample: 5ng TO-15 CCVMisc: S20-05300801/S20-05210808 ALS Vial : 1 Sample Multiplier: 1 Ouant Time: Jun 05 16:35:21 2008 Quant Method : J:\MS16\METHODS\R16052608.M Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS) QLast Update : Tue May 27 08:50:43 2008 Response via : Initial Calibration

 Internal Standards
 R.T. QIon Response Conc Units Dev(Min)

 32) Chloroform
 9.33
 83
 126116
 5.873 rg
 96

 34) Tetrahydrofuran
 9.76
 72
 47563
 5.091 rg
 #
 51

 35) Ethyl tetr-Buryl Ether
 9.79
 87
 91284
 4.763 ng
 #
 78

 36) 1,1-InTrichloroethane
 10.48
 97
 126363
 4.948 ng
 97

 36) 1,1.J.-Trichloroethane
 10.79
 56
 97789
 3.961 ng
 98

 37
 Derzene
 11.01
 78
 283052
 4.475 ng
 99

 37
 Cyclohexane
 11.33
 84
 116159
 4.677 ng
 77

 40
 tetrachloride
 11.81
 117
 126643
 4.674 ng
 77

 41
 etrachloropropane
 11.94
 63
 9039
 4.664 ng
 75

 41
 pethane
 12.20
 130
 103425
 5.253 ng
 97
 71

 420
 beromodichloromethane
 12.24
 88
 63475
 5.372 ng
 # 71

 50
 Methyl Methaerylate
 Internal Standards R.T. QIon Response Conc Units Dev(Min) ⁹748

R16052608.M Thu Jun 05 16:35:34 2008

Page: 2

RA 6/5108

Data Path : J:\MS16\DATA\2008_06\03\ Data File : 06030801.D Acg On : 3 Jun 2008 5:51 am Operator : WA Sample : 5ng TO-15 CCV Misc : S20-05300801/S20-05210808 ALS Vial : 1 Sample Multiplier: 1 Quant Time: Jun 05 16:35:21 2008 Quant Method : J:\MS16\METHODS\R16052608.M Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS) QLast Update : Tue May 27 08:50:43 2008 Response via : Initial Calibration R.T. QIon Response Conc Units Dev(Min) Internal Standards 80) alpha-Methylstyrene19.521181941594.990ng81) 2-Ethyltoluene19.571053909674.662ng82) 1,2,4-Trimethylbenzene19.831053514985.018ng83) n-Decane19.93572433164.906ng84) Benzyl Chloride19.99912744145.070ng85) 1,3-Dichlorobenzene20.021462183244.919ng86) 1,4-Dichlorobenzene20.101462198935.103ng87) sec-Butylbenzene20.161054556845.014ng80) n-Teopropulteluene20.341194443555.597ng 95 91 90 80 88 99 98 95 87) sec-Butylbenzene88) p-Isopropyltoluene 93 20.34 119 444355 5.597 ng

 88)
 p-1sopropyltoluene
 20.34
 119
 444333
 5.397
 ng

 89)
 1,2,3-Trimethylbenzene
 20.34
 105
 348566
 5.182
 ng

 90)
 1,2-Dichlorobenzene
 20.52
 146
 208356
 5.114
 ng

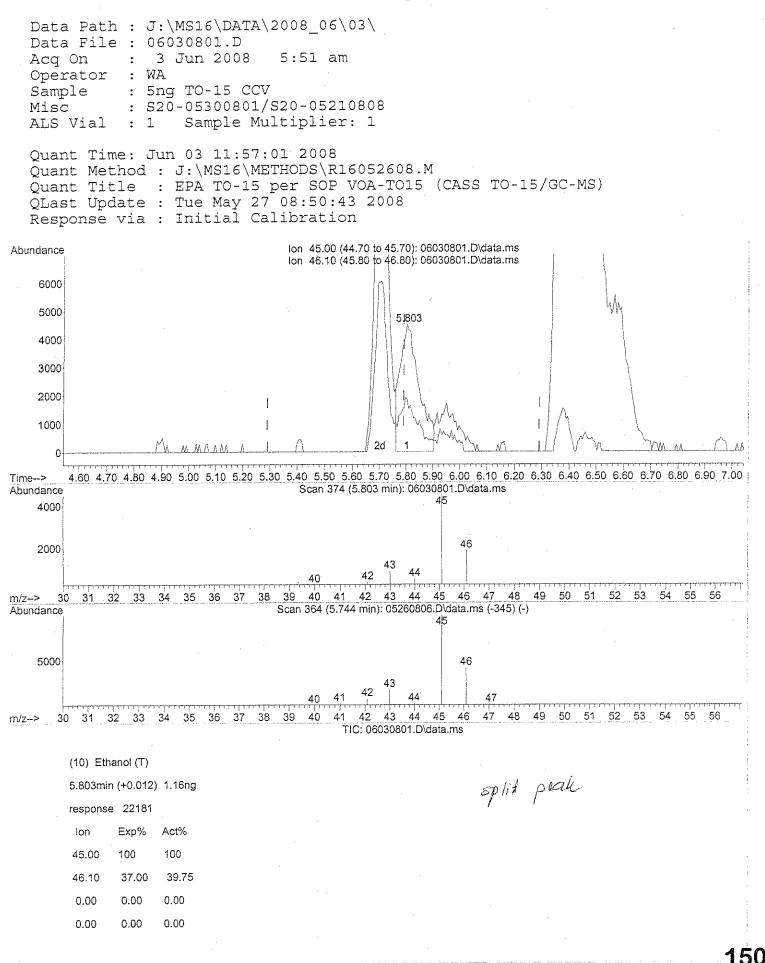
 91)
 d-Limonene
 20.52
 68
 110254
 5.107
 ng

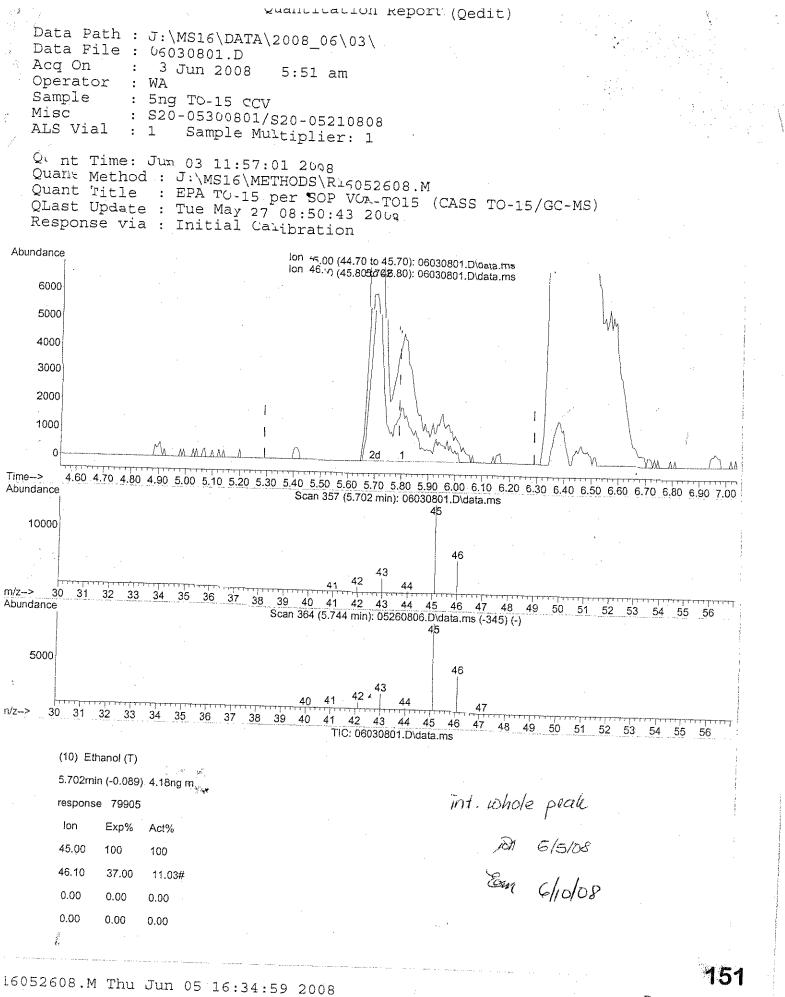
 92)
 1,2-Dibromo-3-Chloropr...
 21.04
 157
 67497
 5.154
 ng

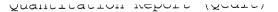
 93)
 n-Undecane
 21.43
 57
 257880
 4.958
 ng

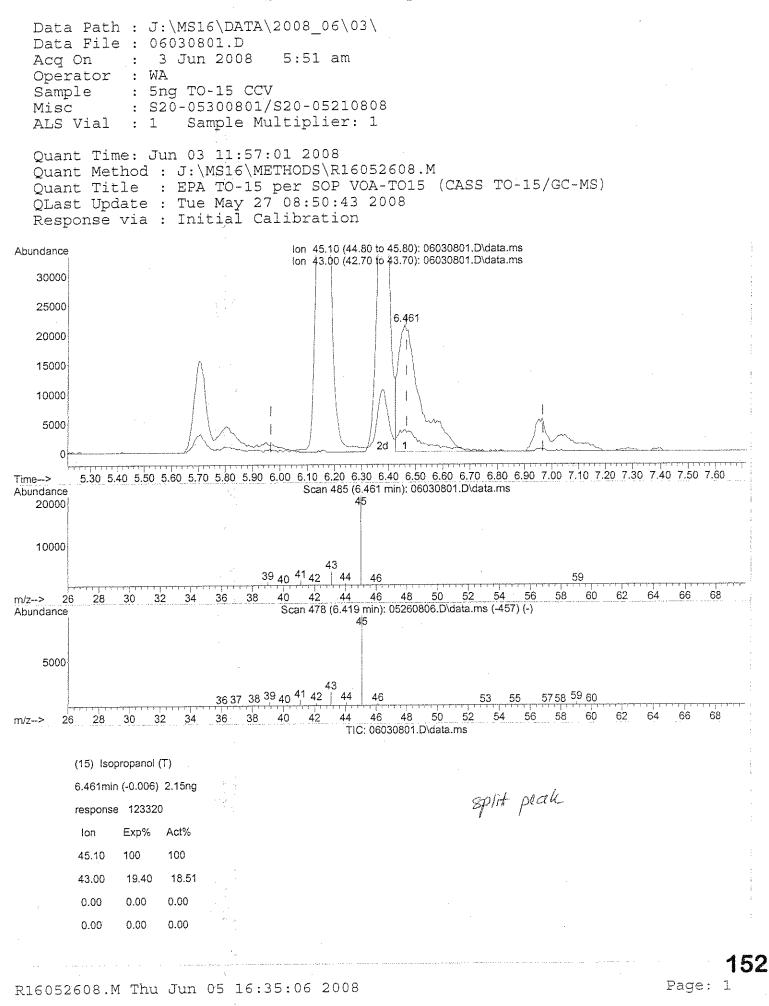
 94)
 1,2,4-Trichlorobenzene
 22.69
 128
 529051
 5.198
 ng

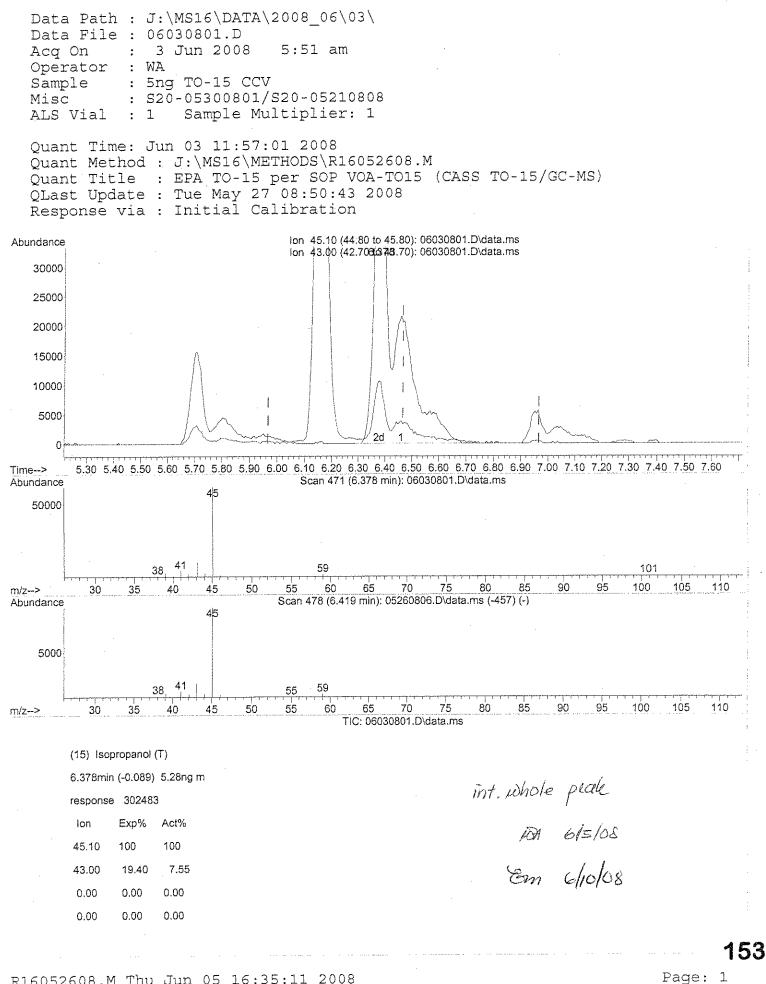

 95)
 Naphthalene
 22.69
 128
 529051
 5.198
 ng

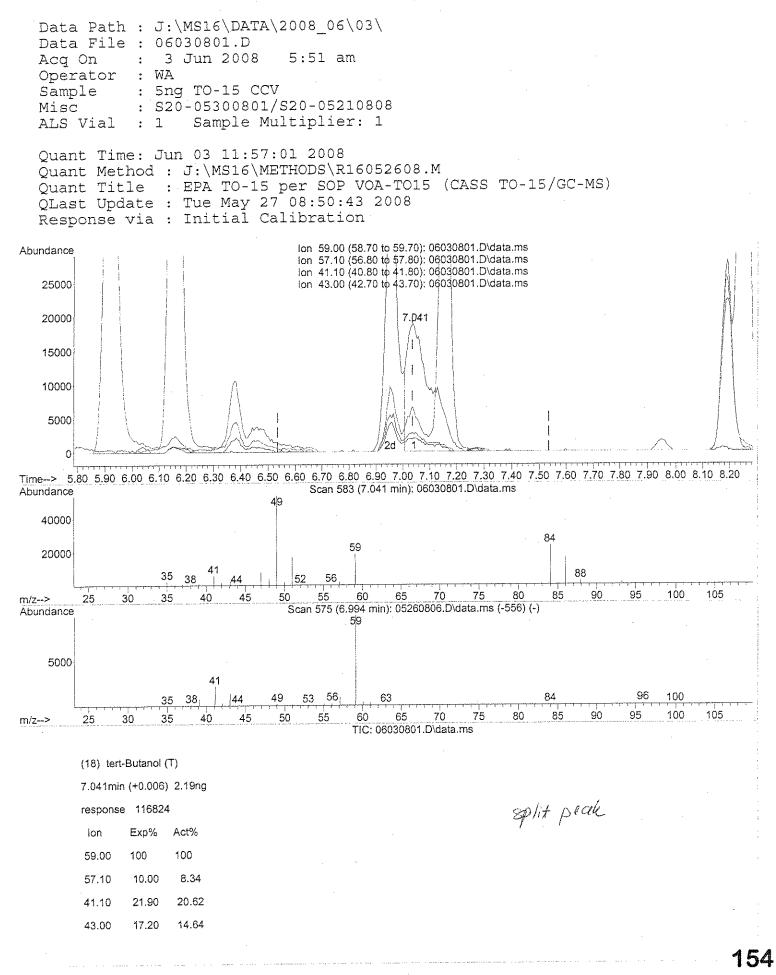

 87 99 85 81 80 # 86 98 95) Naphthalene 96) n-Dodecane 22.66 57 261068 5.152 ng 78 96) n-Dodecane 97) Hexachloro-1,3-butadiene 23.11 225 65484 5.348 ng 99

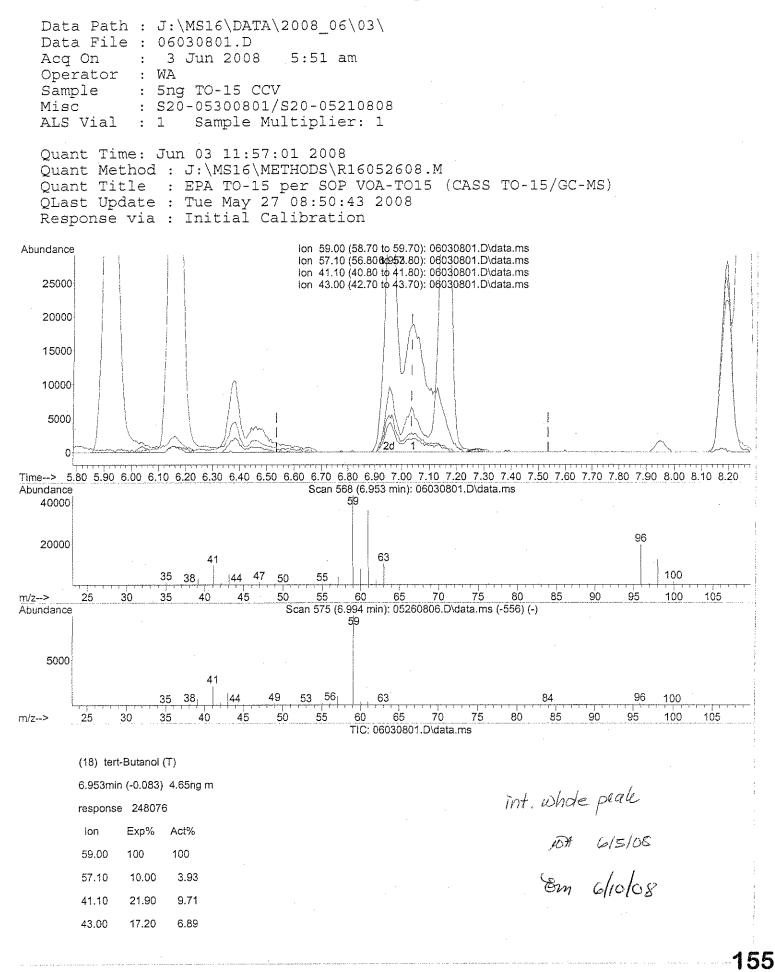

(#) = qualifier out of range (m) = manual integration (+) = signals summed


R16052608.M Thu Jun 05 16:35:34 2008


615108 Ð.







R16052608.M Thu Jun 05 16:35:11 2008

R16052608.M Thu Jun 05 16:35:25 2008

Page: 1

COLUMBIA ANALYTICAL SERVICES, INC.

RESULTS OF ANALYSIS

Page 1 of 1

	Client: Client Project ID:	Malcolm Pirnie, Incorpe 275 Franklin St. / 0266 377			CAS I	Project ID:	P0801622	
		Internal Sta	andard Area	and RT S	Summary			
	Test Code: Instrument ID: Analyst: Sampling Media: Test Notes:	EPA TO-15 Tekmar AUTOCAN/Agilent Wida Ang 6.0 L Summa Canister(s)	t 5975Cinert/68	90N/MS1(Date	ab File ID: Analyzed: Analyzed:	06030801.D 6/3/08 05:51	
			IS1 (BCM)		IS2 (DFB)		IS3 (CBZ)	
			AREA #	RT #	AREA #	RT #	AREA #	RT #
	24 Hour Standard	1	363875	9.20	1500112	11.35	574573	16.45
	Upper Limit		509425	9.53	2100157	11.68	804402	16.78
	Lower Limit		218325	8.87	900067	11.02	344744	16.12
	Client Sample ID							
01	Method Blank		352886	9.19	1448658	11.34	560317	16.44
02	Lab Control Sample	е .	352094	9.23	1451764	11.37	563110	16.45
03	275 Franklin OA		325243	9.19	1349535	11.34	526941	16.45
04	275 Franklin CS		328702	9.19	1355237	11.34	528175	16.45
05	275 Franklin Dup		329793	9.19	1379796	11.34	534295	16.45
06	275 Franklin FA		334486	9.19	1385669	11.34	537051	16.45
07								
08								
09								
10								
11								
12								
13								
14						. *		
15								
16								
17								
18								
19								
20								

IS2 (DFB) = 1,4-Difluorobenzene

IS3 (CBZ) = Chlorobenzene-d5

AREA UPPER LIMIT = 140% of internal standard area AREA LOWER LIMIT = 60% of internal standard area RT UPPER LIMIT = 0.33 minutes of internal standard RT RT LOWER LIMIT = 0.33 minutes of internal standard RT

Column used to flag values outside QC limits with an asterisk.

* Values outside of QC limits.

Verified By:____

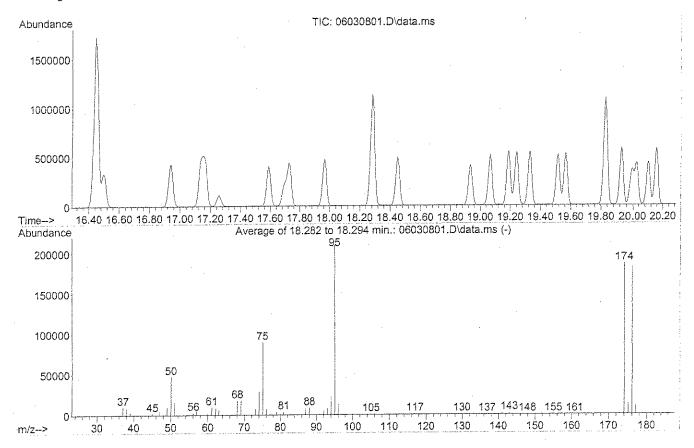
Ker

Raw QC Data

Data Path : J:\MS16\DATA\2008_05\26\ Data File : 05260801.D : 26 May 2008 3:58 pm Acq On : WA Operator Sample : 25ng BFB Tune : \$20-05120801 Misc Sample Multiplier: 1 ALS Vial : 1 Integration File: RTEINT.P : J:\MS16\METHODS\R16052608.M Method : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS) Title Last Update : Tue May 27 08:50:43 2008 TIC: 05260801.D\data.ms Abundance 4000000 3000000 2000000 1000000 0 16.40 16.60 16.80 17.00 17.20 17.40 17.60 17.80 18.00 18.20 18.40 18.60 18.80 19.00 19.20 19.40 19.60 19.80 20.00 20.20 Time---> Average of 18.277 to 18.288 min.: 05260801.D\data.ms (-) Abundance 300000 95 174 250000 200000 150000 75 100000 50 50000 69 61 87 81 106 117 130135 141 148 155 161 56 45 100 110 120 130 140 150 160 170 180 70 80 90 50 60 40 m/z--> 30 AutoFind: Scans 2479, 2480, 2481; Background Corrected with Scan 2469 Result Rel. Raw Target Rel. to Lower Upper Pass/Fail Abn Abn% Mass Limit% Limit & Mass

50	95	8	40	23.5	68147	PASS
75	95	30	66	42.6	123432	PASS
95	95	100	100	100.0	289984	PASS
96	95	5	9	6.5	18763	PASS
173	174	0.00	2	0.8	2059	PASS
174	95	50	120	83.9	243179	PASS
175	174	4	9	7.4	18091	PASS
176	174	93	101	96.6	234901	PASS
177	176	5	9	6.2	14675	PASS

569108 D


158

Page: 1

Data Path : J:\MS16\DATA\2008_06\03\ Data File : 06030801.D Acq On : 3 Jun 2008 5:51 am Operator : WA Sample : 5ng TO-15 CCV Misc : S20-05300801/S20-05210808 ALS Vial : 1 Sample Multiplier: 1

Integration File: RTEINT.P

Method : J:\MS16\METHODS\R16052608.M Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS) Last Update : Tue May 27 08:50:43 2008

ب الامر

AutoFind: Scans 2480, 2481, 2482; Background Corrected with Scan 2470

Target	Rel. to	Lower	Upper	Rel.	Raw	Result
Mass	Mass	Limit%	Limit%	Abn%	Abn	Pass/Fail
50 75 95 96 173 174 175 176 177	95 95 95 174 95 174 174 174	8 30 100 5 0.00 50 4 93 5	40 66 100 9 2 120 9 101 9	22.6 42.9 100.0 6.4 0.8 89.0 7.3 97.4 6.3	47448 90083 209792 13388 1582 186667 13620 181739 11359	PASS PASS PASS PASS PASS PASS PASS PASS

R16052608.M Thu Jun 05 16:36:19 2008

, CA 6/5/08

159

COLUMBIA ANALYTICAL SERVICES, INC.

RESULTS OF ANALYSIS Page 1 of 1

Client: Client Sample ID: Client Project ID:	Malcolm Pirnie, Incorporated Method Blank 275 Franklin St. / 0266 377	CAS Project ID: P0 CAS Sample ID: P0	
Гest Code: nstrument ID: Analyst: Sampling Media: Гest Notes:	EPA TO-15 Tekmar AUTOCAN/Agilent 5975Cinert/6890N/MS16 Wida Ang 6.0 L Summa Canister	Date Collected: NA Date Received: NA Date Analyzed: 6/3 Volume(s) Analyzed:	A

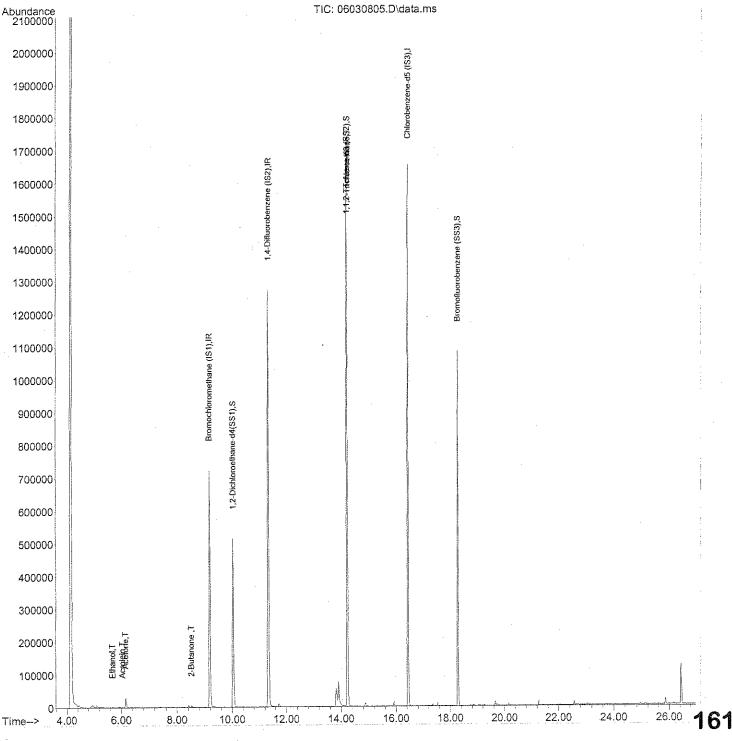
Canister Dilution Factor: 1.00

Date: 613/08 160

CAS #	Compound	Result µg/m³	MRL µg/m³	Result ppbV	MRL ppbV	Data Qualifier
75-01-4	Vinyl Chloride	ND	0.50	ND	0.20	
75-35-4	1,1-Dichloroethene	ND	0.50	ND	0.13	
75-09-2	Methylene Chloride	ND	0.50	ND	0.14	
156-60-5	trans-1,2-Dichloroethene	ND	0.50	ND	0.13	
156-59-2	cis-1,2-Dichloroethene	ND	0.50	ND	0.13	
71-55-6	1,1,1-Trichloroethane	ND	0.50	ND	0.092	
71-43-2	Benzene	ND	0.50	ND	0.16	
79-01-6	Trichloroethene	ND	0.10	ND	0.019	
108-88-3	Toluene	ND	0.50	ND	0.13	
127-18-4	Tetrachloroethene	ND	0.50	ND	0.074	
100-41-4	Ethylbenzene	ND	0.50	ND	0.12	
179601-23-1	m,p-Xylenes	ND	0.50	ND	0.12	
95-47-6	o-Xylene	ND	0.50	ND	0.12	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

VIRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.


RG

Verified By:____

P0801622_TO15_0806101533_SS.xls - MBlank

Data Path : J:\MS16\DATA\2008_06\03\ Data File : 06030805.D Acq On : 3 Jun 2008 9:23 am Operator : WA Sample : CAS CAN QC B# 1186 (1000ml) Misc : SC00897 as Method Blank ALS Vial : 13 Sample Multiplier: 1

Quant Time: Jun 03 10:07:12 2008 Quant Method : J:\MS16\METHODS\R16052608.M Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS) QLast Update : Tue May 27 08:50:43 2008 Response via : Initial Calibration

R16052608.M Thu Jun 05 16:38:39 2008

Quantitation	Report	(N	øt Reviewed	d)	
Data Path : J:\MS16\DATA\2008_06 Data File : 06030805.D Acq On : 3 Jun 2008 9:23 a Operator : WA Sample : CAS CAN QC B# 1186 (Misc : SC00897 as Method Bl ALS Vial : 13 Sample Multipli	m 1000ml) ank				
Quant Time: Jun 03 10:07:12 2008 Quant Method : J:\MS16\METHODS\R Quant Title : EPA TO-15 per SOP QLast Update : Tue May 27 08:50: Response via : Initial Calibrati	1605260 VOA-TO 43 2008	15 (C	ASS TO-15/0	GC-MS)	
Internal Standards	R.T.	QIon	Response	Conc Unit	s Dev(Min)
1) Bromochloromethane (IS1) 37) 1,4-Difluorobenzene (IS2) 56) Chlorobenzene-d5 (IS3)	9.19 11.34 16.44	130 114 82	352886 1448658 560317	25.000 ng 25.000 ng 25.000 ng	-0.06 -0.04 -0.02
System Monitoring Compounds 33) 1,2-Dichloroethane-d4(Spiked Amount 25.000 57) Toluene-d8 (SS2) Spiked Amount 25.000 73) Bromofluorobenzene (SS3) Spiked Amount 25.000	14.22	98	Recove 1422826 Recove 397124	24.113 ng ery = 9 24.631 ng ery = 9 20.677 ng ery = 8	6.44% -0.02 8.52% -0.01
Target Compounds					Qvalue
<pre>7) 1,3-Butadiene 8) Bromomethane 9) Chloroethane 10) Ethanol 11) Acetonitrile 12) Acrolein 13) Acetone 14) Trichlorofluoromethane 15) Isopropanol 16) Acrylonitrile 17) 1,1-Dichloroethene 18) tert-Butanol 19) Methylene Chloride 20) Allyl Chloride 21) Trichlorotrifluoroethane 22) Carbon Disulfide 23) trans-1,2-Dichloroethene 24) 1,1-Dichloroethane 25) Methyl tert-Butyl Ether</pre>	0.00 0.00 0.00 0.00 5.69 5.93 6.16 0.00 6.41 0.00 0.00 7.04 0.00 7.04 0.00 7.04 0.00 7.04 0.00 7.04 0.00 7.04 0.00 7.04 0.00 7.04 0.00 7.04 0.00 7.04 0.00 7.04 0.00 7.04 0.00 7.04 0.00 7.04 0.00 7.04 0.00 7.04 0.00 7.04 0.00 7.04 0.00 7.00 0.00 7.04 0.00 0.00 7.04 0.00 0.00 7.04 0.00 0.00 7.04 0.00 0.00 7.04 0.00 0.00 7.04 0.00 0.00 7.04 0.00 0.00 7.04 0.00 0.00 0.00 7.04 0.00	85 50	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 2440 \\ 3764 \\ 1900 \\ 20692 \\ 0 \\ 89 \\ 0 \\ 0 \\ 0 \\ 314 \\ 0 \\ 0 \\ 3948 \\ 0 \\ 0 \\ 3948 \\ 0 \\ 0 \\ 1724 \\ 0 \end{array}$	N.D.	
30) Ethyl Acetate 31) n-Hexane	0.00	61 57	0	N.D. N.D.	162

R16052608.M Thu Jun 05 16:38:38 2008

DH 615105

Page: 1

Quantitation Report (Not Reviewed) Data Path : J:\MS16\DATA\2008 06\03\ Data File : 06030805.D Acq On : 3 Jun 2008 9:23 am Operator : WA Sample : CAS CAN QC B# 1186 (1000ml) Misc : SC00897 as Method Blank ALS Vial : 13 Sample Multiplier: 1 Quant Time: Jun 03 10:07:12 2008 Quant Method : J:\MS16\METHODS\R16052608.M Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS) QLast Update : Tue May 27 08:50:43 2008 Response via : Initial Calibration

 Internal Standards
 R.T. QION Response Conc Units Dev(Min)

 22) Chloroform
 0.00
 83
 0
 N.D.

 34) Tetrahydrofuran
 0.00
 87
 0
 N.D.

 35) Ethyl tetr-Butyl Ether
 0.00
 87
 0
 N.D.

 36) 1,1-Dichloroethane
 0.00
 62
 0
 N.D.

 39) 1,1,1-Trichloroethane
 0.00
 56
 0
 N.D.

 39) 1,2-Dichloroethane
 0.00
 56
 0
 N.D.

 41) Eenzene
 1.1.01
 78
 1452
 N.D.

 42) Carthon Tetrachloride
 0.00
 63
 0
 N.D.

 43) Cyclohexane
 1.3.34
 84
 633
 N.D.

 44) tetr-Amyl Methyl Ether
 0.00
 63
 0
 N.D.

 45) 1,2-Dichloropropane
 0.00
 83
 0
 N.D.

 46) Eromodichloromethane
 12.19
 130
 91
 N.D.

 50) Methyl Methacrylate
 0.00
 75
 0
 N.D.

 51) n.Fleptane
 0.00
 75
 0
 N.D.

 53) tl,1,2-Trichloroethane
 14.44
 91</ R.T. QIon Response Conc Units Dev(Min) Internal Standards 163 Data Path : J:\MS16\DATA\2008 06\03\ Data File : 06030805.D Acg On : 3 Jun 2008 9:23 am Operator : WA Sample : CAS CAN QC B# 1186 (1000ml) Misc : SC00897 as Method Blank ALS Vial : 13 Sample Multiplier: 1 Quant Time: Jun 03 10:07:12 2008 Quant Method : J:\MS16\METHODS\R16052608.M Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS) OLast Update : Tue May 27 08:50:43 2008 Response via : Initial Calibration R.T. QIon Response Conc Units Dev(Min) Internal Standards 80) alpha-Methylstyrene0.001180N.D.81) 2-Ethyltoluene19.5710590N.D. N.D. N.D. N.D. N.D. 81)2-Echylcoluene19.8310537782)1,2,4-Trimethylbenzene19.8310537783)n-Decane20.1557441184)BenzylChloride0.00910

 83) n-Decane
 20.15
 57
 4411

 84) Benzyl Chloride
 0.00
 91
 0

 85) 1,3-Dichlorobenzene
 20.10
 146
 144

 86) 1,4-Dichlorobenzene
 20.10
 146
 144

 87) sec-Butylbenzene
 20.16
 105
 97

 88) p-Isopropyltoluene
 20.34
 119
 206

 89) 1,2,3-Trimethylbenzene
 20.16
 105
 97

 90) 1,2-Dichlorobenzene
 0.00
 146
 0

 91) d-Limonene
 0.00
 68
 0

 N.D. N.D. N.D. N.D. N.D.

 89) 1,2,3-TrimetnyiDenzene

 90) 1,2-Dichlorobenzene
 0.00
 146
 0

 91) d-Limonene
 0.00
 68
 0

 92) 1,2-Dibromo-3-Chloropr...
 0.00
 157
 0

 93) n-Undecane
 21.43
 57
 799

 94) 1,2,4-Trichlorobenzene
 0.00
 184
 0

 95) Naphthalene
 22.69
 128
 1508

 22.66
 57
 1503
 0

 N.D. N.D. N.D. N.D. N.D. N.D. N.D.

97) Hexachloro-1,3-butadiene 0.00 225 0 ______

(#) = qualifier out of range (m) = manual integration (+) = signals summed

N.D.

N.D.

{16052608.M Thu Jun 05 16:38:38 2008

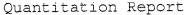
615/08 ЮĤ

164

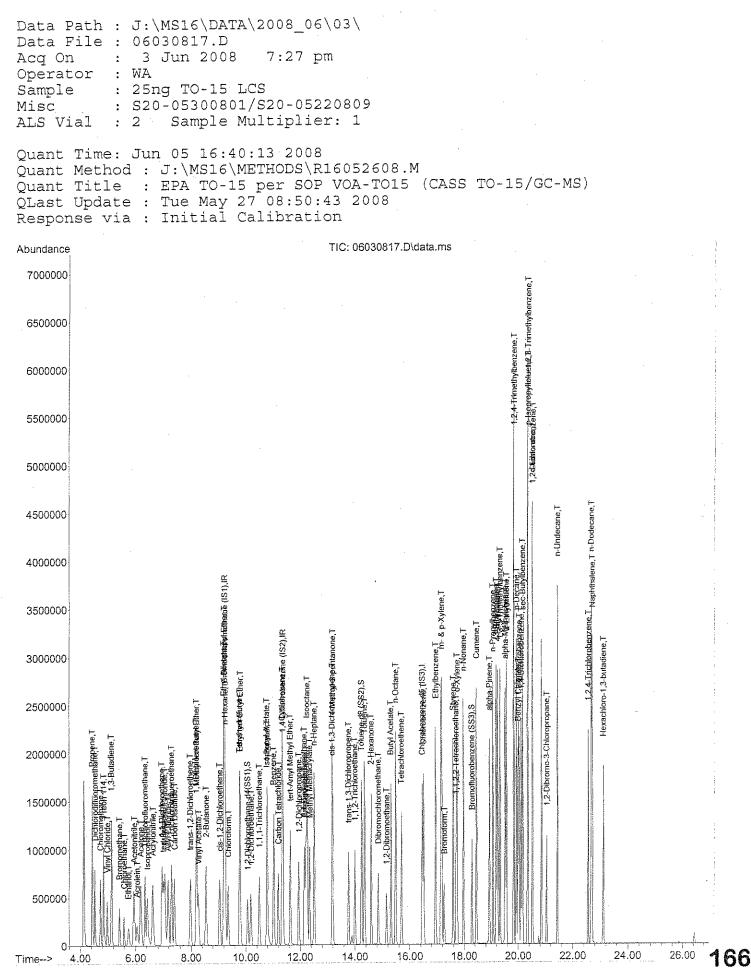
COLUMBIA ANALYTICAL SERVICES, INC.

LABORATORY CONTROL SAMPLE SUMMARY

Page 1 of 1


	Malcolm Pirnie, Incorporated Lab Control Sample 275 Franklin St. / 0266 377	CAS Project ID: PC CAS Sample ID: PC	
est Code: istrument ID: nalyst: ampling Media: est Notes:	EPA TO-15 Tekmar AUTOCAN/Agilent 5975Cinert/6890N/MS16 Wida Ang 6.0 L Summa Canister	Date Collected: N. Date Received: N. Date Analyzed: 6/ Volume(s) Analyzed:	4

CAS #	Compound	Spike Amount ng	Result	% Recovery	CAS Acceptance Limits	Data Qualifier
75-01-4	Vinyl Chloride	24.8	24.1	97	61-127	
75-35-4	1,1-Dichloroethene	27.8	28.8	104	77-116	н. Н
75-09-2	Methylene Chloride	27.8	27.2	98	71-113	
156-60-5	trans-1,2-Dichloroethene	26.5	27.2	103	74-118	
156-59-2	cis-1,2-Dichloroethene	27.0	27.7	103	74-117	
71-55-6	1,1,1-Trichloroethane	26.8	27.7	103	78-114	
71-43-2	Benzene	27.0	25.0	93	73-111	
79-01-6	Trichloroethene	27.3	28.7	105	80-116	
108-88-3	Toluene	26.5	26.9	102	76-116	
127-18-4	Tetrachloroethene	26.0	27.6	106	77-118	
100-41-4	Ethylbenzene	26.3	27.3	104	79-116	
179601-23-1	m,p-Xylenes	62.5	64.4	103	80-117	
95-47-6	o-Xylene	29.8	30.7	103	80-116	-,


Verified By:____

Ro

(QT Reviewed)

R16052608.M Thu Jun 05 16:40:27 2008

Data Path : J:\MS16\DATA\2008 06\03\ Data File : 06030817.D Acq On : 3 Jun 2008 7:27 pm Operator : WA Sample : 25ng TO-15 LCS Misc : S20-05300801/S20-05220809 ALS Vial : 2 Sample Multiplier: 1 Quant Time: Jun 05 16:40:13 2008 Quant Method : J:\MS16\METHODS\R16052608.M Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS) QLast Update : Tue May 27 08:50:43 2008 Response via : Initial Calibration R.T. QIon Response Conc Units Dev(Min) Internal Standards 1) Bromochloromethane (IS1) 9.23 130 352094 25.000 ng -0.02 37) 1,4-Difluorobenzene (IS2) 11.37 114 1451764 25.000 ng -0.01 56) Chlorobenzene-d5 (IS3) 16.45 82 563110 25.000 ng 0.00

 System Monitoring Compounds

 33) 1,2-Dichloroethane-d4(...
 10.07
 65
 485364
 24.108 ng
 -0.02

 Spiked Amount
 25.000
 Recovery =
 96.44%

 57) Toluene-d8 (SS2)
 14.24
 98
 1424611
 24.539 ng
 -0.01

 Spiked Amount
 25.000
 Recovery =
 98.16%

 73) Bromofluorobenzene (SS3)
 18.29
 174
 394112
 20.418 ng
 0.00

 Spiked Amount
 25.000
 Recovery =
 81.68%

 System Monitoring Compounds

 Spiked Amount
 25.000
 Recovery
 = 81.003

 Target Compounds
 Qvalue

 2) Propene
 4.43
 42
 737196
 27.048 ng
 93

 3) Dichlorodifluoromethane
 4.73
 50
 1015647
 24.155 ng
 97

 4) Chloromethane
 4.73
 50
 1015647
 24.084 ng
 95

 7) 1.3-Butadiene
 5.13
 54
 796027
 24.155 ng
 97

 9) Chloromethane
 5.13
 54
 794025
 31.024 ng
 # 84

 8) Bromomethane
 5.42
 94
 349934
 25.736 ng
 97

 9) Chloroethane
 5.59
 64
 329256
 24.154 ng
 96

 10) Ethanol
 5.75
 45
 473664m
 25.613 ng

 11) Acetonitrile
 6.05
 56
 349675
 26.224 ng
 96

 13) Acetone
 6.18
 58
 94298
 26.868 ng
 # 74

 14) Trichlorofluoromethane
 6.34
 51
 35374m
 24.096 ng

 15) Isopropanol
 6.43
 45
 135574m
 24.09 ng
 96

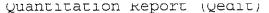
 17) 1 ⁹₹67

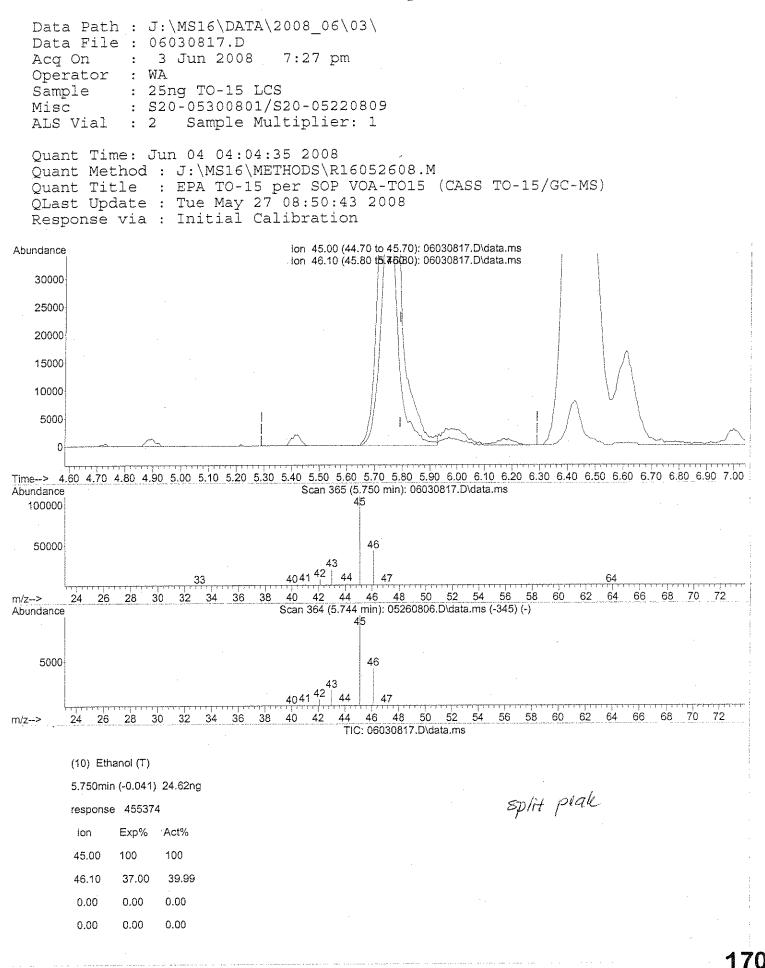
¿16052608.M Thu Jun 05 16:40:27 2008

, At GISTOS

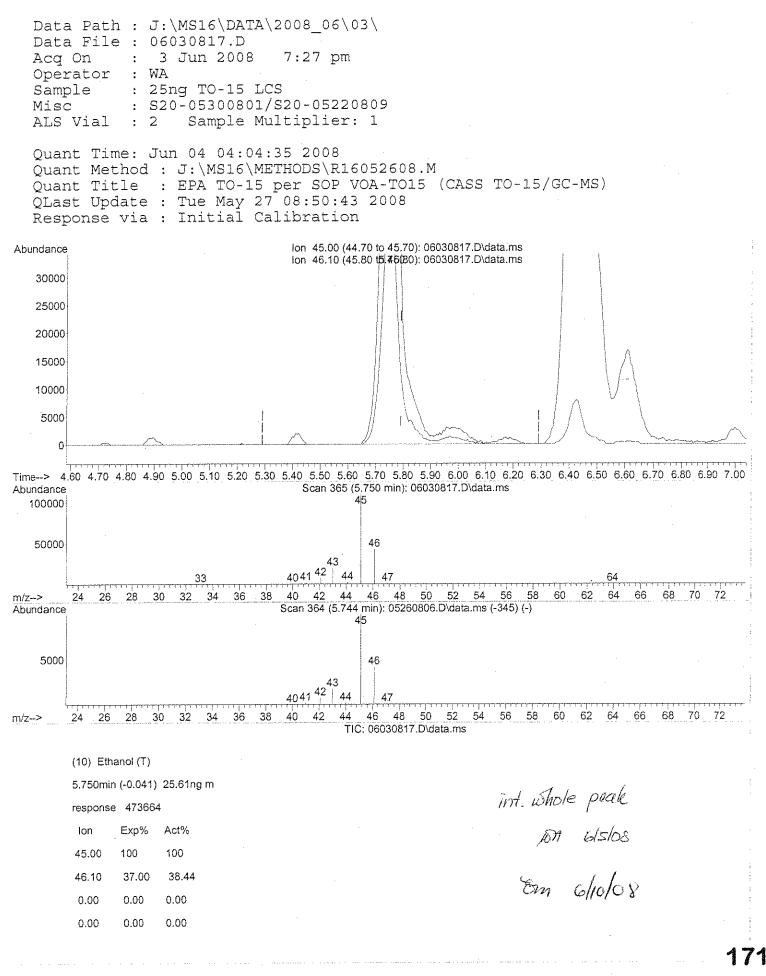
Data Path : J:\MS16\DATA\2008_06 Data File : 06030817.D Acq On : 3 Jun 2008 7:27 p Operator : WA Sample : 25ng TO-15 LCS Misc : S20-05300801/S20-052 ALS Vial : 2 Sample Multiplie	om 20809				·
Quant Time: Jun 05 16:40:13 2008 Quant Method : J:\MS16\METHODS\F Quant Title : EPA TO-15 per SOF QLast Update : Tue May 27 08:50: Response via : Initial Calibrati	21605260 > VOA-TO 43 2008 .on	15 (CA			Derr
Internal Standards	R.T.	Qion	Response	Conc Units	Dev(Min)
<pre>32) Chloroform 34) Tetrahydrofuran 35) Ethyl tert-Butyl Ether 36) 1,2-Dichloroethane 38) 1,1,1-Trichloroethane 39) Isopropyl Acetate 40) 1-Butanol 41) Benzene 42) Carbon Tetrachloride 43) Cyclohexane 44) tert-Amyl Methyl Ether 45) 1,2-Dichloropropane 46) Bromodichloromethane 47) Trichloroethene 48) 1,4-Dioxane 49) Isooctane 50) Methyl Methacrylate 51) n-Heptane 52) cis-1,3-Dichloropropene 53) 4-Methyl-2-pentanone 54) trans-1,3-Dichloropropene 55) 1,1,2-Trichloroethane 58) Toluene 59) 2-Hexanone 60) Dibromochloromethane 61) 1,2-Dibromoethane 62) Butyl Acetate 63) n-Octane 64) Tetrachloroethene 65) Chlorobenzene 66) Ethylbenzene 67) m- & p-Xylene 68) Bromoform 69) Styrene 71) n-Nonane 72) 1,1,2,2-Tetrachloroethane 73) alpha-Pinene</pre>	$\begin{array}{c} 10.78\\ 10.79\\ 11.20\\ 11.34\\ 11.64\\ 11.96\\ 12.16\\ 12.2.35\\ 12.2.35\\ 12.12\\ 12.35\\ 12.13\\ 13.70\\ 14.35\\ 15.49\\ 14.81\\ 15.39\\ 16.95\\ 17.60\\ 17.60\\ 17.60\\ 17.79\\ 17.79\\ 17.79\\ 18.94\end{array}$	56 78 117 63 83 138 50 75 85 79 139 107 57 57 913 107 162 91 104 133 105 93	561610 1531043 699286 611858 113169 491043 538458 547302 333640 2637265 188674 403925 614110 568472 635889 414943 1768946 1534917 574736 507633 1692116 547592 538190 1295035 2044876 3194355 421773 1360437 1630808 1386812 684268 2207413 1024264	27.402 ng 23.503 ng 25.012 ng 27.853 ng 27.313 ng 27.167 ng 29.927 ng 29.927 ng 28.726 ng 29.178 ng 26.950 ng 28.729 ng 26.957 ng 26.957 ng 26.712 ng 30.281 ng 26.862 ng 24.681 ng 26.862 ng 24.681 ng 27.575 ng 27.060 ng 27.500 ng 27.598 ng 27.631 ng 27.598 ng 27.318 ng 64.411 ng 37.383 ng 28.397 ng 30.724 ng 28.397 ng 30.724 ng 28.565 ng 28.250 ng	# 71 98 99 99 # 48 77 96 93 93 99 # 67 92 # 71 # 50 100
76) n-Propylbenzene 77) 3-Ethyltoluene 78) 4-Ethyltoluene 79) 1,3,5-Trimethylbenzene	19.19 19.25	105 105	2496414 2251379 2173366 1864343	27.800 ng 26.558 ng 28.416 ng 27.492 ng	95 94 9 2168

DH 6/5/08

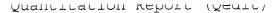

Page: 2

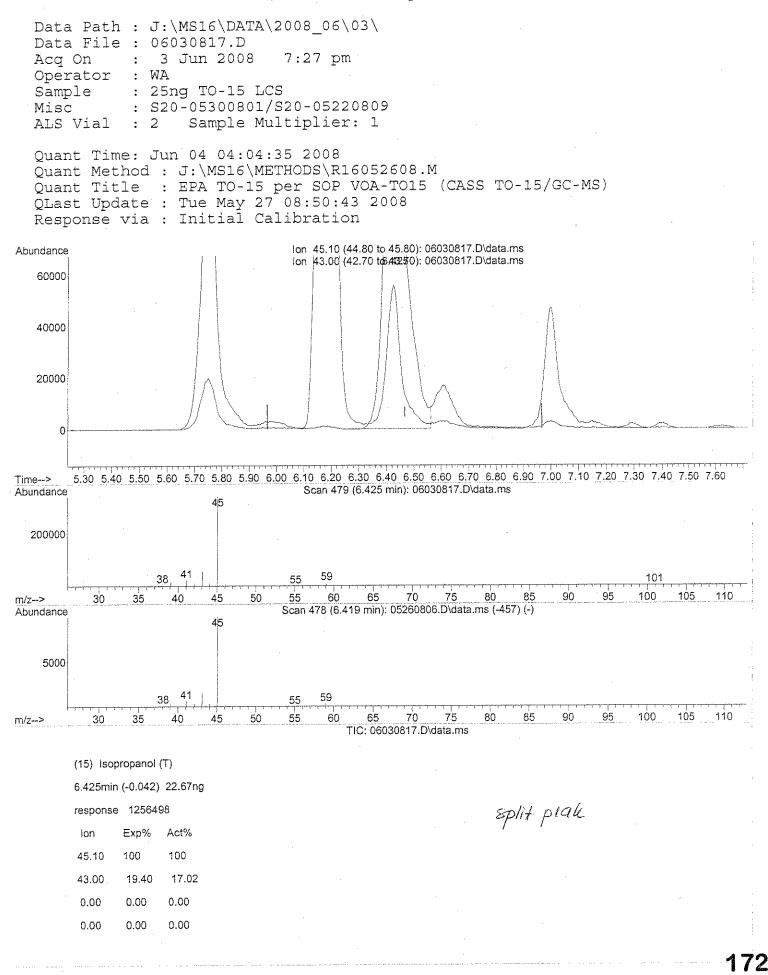

Data Path : J:\MS16\DATA\2008_06\03\ Data File : 06030817.D Acg On : 3 Jun 2008 7:27 pm Operator : WA Sample : 25ng TO-15 LCS Misc : S20-05300801/S20-05220809 ALS Vial : 2 Sample Multiplier: 1 Quant Time: Jun 05 16:40:13 2008 Quant Method : J:\MS16\METHODS\R16052608.M Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS) QLast Update : Tue May 27 08:50:43 2008 Response via : Initial Calibration R.T. QIon Response Conc Units Dev(Min) Internal Standards 80) alpha-Methylstyrene19.52118103931527.256ng9881) 2-Ethyltoluene19.57105218707526.608ng9282) 1,2,4-Trimethylbenzene19.83105189388927.585ng9183) n-Decane19.9457136268028.036ng8084) Benzyl Chloride19.9991154736729.170ng8985) 1,3-Dichlorobenzene20.03146118893827.331ng9986) 1,4-Dichlorobenzene20.11146119618628.325ng9587) sec-Butylbenzene20.34119245652731.569ng9389) 1,2,3-Trimethylbenzene20.35105197989330.035ng8890) 1,2-Dichlorobenzene20.526856901826.895ng8692) 1,2-Dibromo-3-Chloropr...21.0415738479629.979ng8093) n-Undecane21.4357146233928.689ng7994) 1,2,4-Trichlorobenzene22.5518422339330.927ng8795) Naphthalene22.5518422339330.927ng8796) n-Dodecane22.6657145307729.257ng77 95) Naphthalene 22.66 57 1453077 29.257 ng 77 96) n-Dodecane 97) Hexachloro-1,3-butadiene 23.11 225 354863 29.569 ng 99 _____

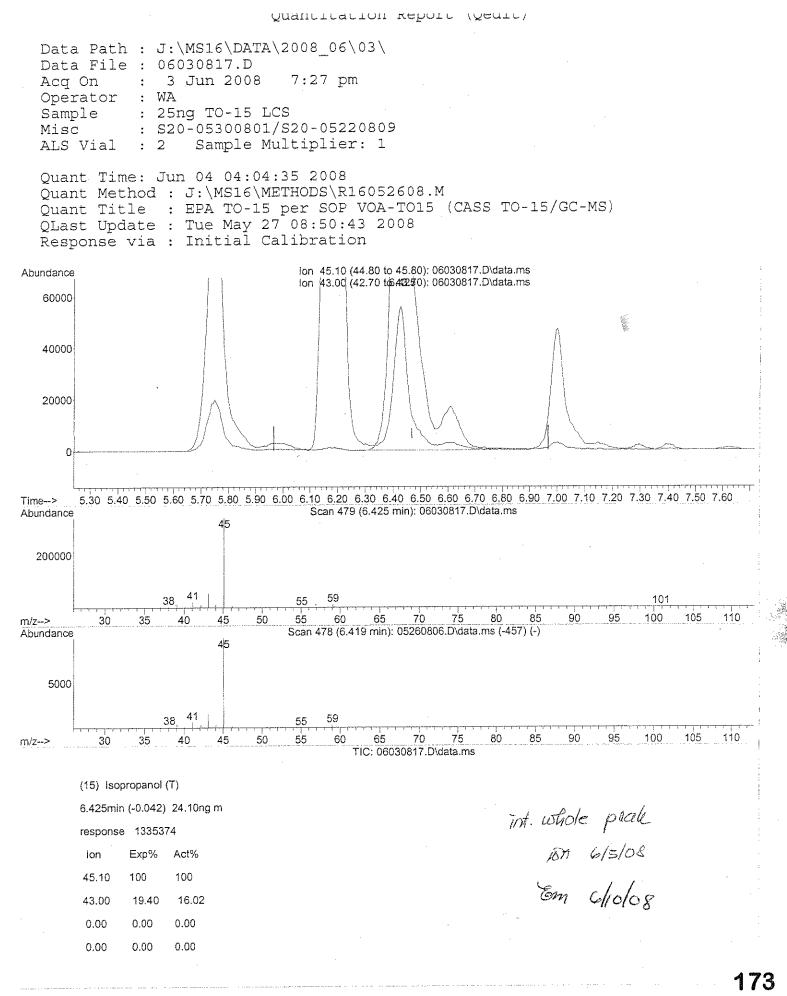
(#) = qualifier out of range (m) = manual integration (+) = signals summed


A 6/3/08

Page: 3







R16052608.M Thu Jun 05 16:40:01 2008

Page: 1

R16052608.M Thu Jun 05 16:40:15 2008

Copy of Calculations

Instructions for Data Validation-Method TO-15(SCAN)

1. Determination of Pressure Dilution Factor

Upon receipt at the laboratory the pressure or vacuum of the sample canisters is measured using a digital pressure gauge. The canisters are then pressurized with humidified zero air to approximately +3.5 psig (pounds per square inch gauge).

Pressure Dilution factor is calculated as:

$$PDF = \frac{P_f + 14.7}{P_i + 14.7}$$

 P_f final pressure in psig

 $\vec{P_i}$ initial pressure in psig

2. Validating Initial and Continuing Calibration Results

GC/MS target compound analysis is performed using internal standard quantitation. Three internal standard compounds (Bromochloromethane, 1,4-Difluorobenzene and Chlorobenzene-d5) are added to each aliquot of sample, blank, standard and duplicate at an amount of 25 nanograms(ng). Internal standard responses are used to calculate RRFs (relative response factors) as follows:

$$RRF = \frac{A_x C_{is}}{A_{is} C_x}$$

 A_x area response of the analyte quantitation ion

A_{is} area response of the corresponding internal standard quantitation ion

 C_{is} internal standard concentration, ng

 C_x analyte concentration, ng

The percent relative standard deviation (%RSD) for the five or six initial calibration points should be less than 30% (with a maximum of two analytes $\leq 40\%$) for the calibration to be considered valid and linear.

$$\% RSD = \frac{SD}{RRF} (100)$$

SD

standard deviation

RRF average or mean RRF (ICAL)

Revised 03/02/06

Instructions for Data Validation-Method TO-15(SCAN)

The initial calibration is verified once per twenty-four hour analytical sequence with the analysis of a continuing calibration standard at one of the initial calibration levels (actual analyte concentrations of the CCV are the same as the corresponding concentrations in the initial calibration). The relative response factor of each target analyte from the daily continuing calibration standard is compared to the average relative response factor from the initial multipoint calibration. The percent difference (%D) of the initial and continuing calibration relative response factors is calculated as follows:

$$\%D = \left(\frac{\overline{RRF} - RRF \ cont}{\overline{RRF}}\right)(100)$$

RRFaverage relative response factor from the initial calibrationRRF contrelative response factor from the daily continuing calibration standard

Note: the percent difference (%D) should be less than 30% for an acceptable continuing calibration standard.

3. Validating GC/MS Target Analyte Quantitation Results

Target analytes are measured in nanograms using internal standard quantitation as follows:

$$ng_x = \frac{A_x ng_{is}}{A_{is} RRF}$$

 ng_x nanogram concentration of analyte x

 A_x area response of the analyte's quantitation ion

A_{is} area response of the corresponding internal standard's quantitation ion

ngis internal standard amount, in nanograms

 \overline{RRF} average or mean RRFs (ICAL)

4. Calculation of $\mu g/m^3$ (microgram per cubic meter) Results

Target compound results reported on the "Results of Analysis" form in units of $\mu g/m^3$ are calculated as follows:

$$\mu g/m^3 = \frac{(ng)(PDF)}{L}$$

ng nanograms of analyte (measured on the GC/MS quantitation report) *PDF* pressure dilution factor (see equation 1)

L sample aliquot in Liters

Revised 03/02/06

Columbia Analytical Services™

Instructions for Data Validation-Method TO-15(SCAN)

5. Conversion to ppb (parts per billion) Volume

$$C_{ppbv} = C_x \left(\frac{24.46}{FW}\right)$$

FW formula weight of the target analytes (i.e. formula weight of Dichloromethane is 84.94; 1.2-Dichloropropane is 113)

24.46 molar volume of ideal gas at 25°C and 1 atmosphere

 C_x final analyte concentration calculated in equation 4 (µg/m³)

NEW YORK STATE DEPARTMENT OF HEALTH INDOOR AIR QUALITY QUESTIONNAIRE AND BUILDING INVENTORY CENTER FOR ENVIRONMENTAL HEALTH

This form must be completed for each residence involved in indoor air testing.

Preparer's Name Dwight Symonds Date/Time Prepared 5/29/08 llan Preparer's Affiliation Malcolm Pimie Phone No. 585-727-3710
Preparer's Affiliation Malcolm Pimie Phone No. 585-727-2710
Purpose of Investigation AN Sampling
1. OCCUPANT:
Interviewed: Y / N
Last Name: Metz First Name: Dave
Address:ZES Franklin st
County:
Home Phone: Office Phone: 746-553-6483
Number of Occupants/persons at this location Age of Occupants
2. OWNER OR LANDLORD: (Check if same as occupant)
Interviewed: Y/N
Last Name:First Name:
Address:
County:
Home Phone: Office Phone:
3. BUILDING CHARACTERISTICS
Type of Building: (Circle appropriate response)
Residential School Commercial/Multi-use Other:

If the property is residential, type? (Circle appropriate response)

Ranch Raised Ranch Cape Cod Duplex Modular	2-Family Split Level Contemporary Apartment House Log Home	3-Family Colonial Mobile Home Townhouses/Condos Other: <u>Office Bldg</u>	
If multiple units, how ma	any? <u>3</u> Gra	Him - no tot	
If the property is comme	rcial, type? Sea	nd flor - storage loffe	74
Business Type(s)	That	Henr - print shop and flow - storage loffe d flaw - Appt.	
	nces (i.e., multi-use)? Y	an and an	
Other characteristics:	· · ·	If yes, how many?	
Number of floors 2	Bı	uilding age Eurly 1900's	
Is the building insulated	KYN Ho	W air tight? Tight (Arrow ())	
4. AIRFLOW	Pourtially - Bo	wair tight? Tight / Average / Not uch ance insulated / A approx 50% & airflow patterns and qualitative	see Doers
Use air current tubes or tr	acer smoke to evaluate	airflow patterns and qualitative	olds insulated
Airflow but		floor - some (c floor - same C	
Airflow near source			
Outdoor air infiltration	front door	Back Door	
Infiltration into air ducts	taped 2 50	aled / fairly news	-phote-khan

Sarahara anda

3

5. BASEMENT AND CONSTRUCTION CHARACTERISTICS (Circle all that apply)

			and the second	Bachanes is
a. Above grade construction:	wood frame	concrete	(stone)	brick Block
b. Basement type:	full	(crawlspace)	slab	other
c. Basement floor:	concrete	(dirt)	stone	other
d. Basement floor:	uncovered	covered	covered with	
e. Concrete floor:	unsealed	sealed	sealed with	
f. Foundation walls:	poured	Back Recin (Brizk stone	oth
g. Foundation walls:	unsealed	sealed	sealed with	other Those & Brisk 5 array
h. The basement is:	wet	damp	dry	Thick Brick 5 auso moldy 18"-20" Thick
i. The basement is:	finished	unfinished	partially finish	monty
j. Sump present?	YO		1	
k. Water in sump? Y / N	/ not applicable	\geq		
Basement/Lowest level depth below	Contraction of the second s	(feet)		
Identify potential soil vapor entry po	N/A			
6. HEATING, VENTING and AIR Type of heating system(s) used in this				1st à Part 2nd floor 100 f top unit
Hot air circulation Space Heaters Electric baseboard	Heat pump Stream radiation Wood stove	Radiant		Znd & 3rd - Gas formace Other
The primary type of fuel used is:				
Wood	Fuel Oil Propane Coal	Kerosene Solar		đ
Domestic hot water tank fueled by:	·	Gas O	new Hota	satur faller)
Boiler/furnace located in: Basemen			or (Other

rootunit 2nd floor formace Air conditioning: Central Air Window units Open Windows

None

4

Are there air distribution ducts present?

Describe the supply and cold air return ductwork, and its condition where visible, including whether there is a cold air return and the tightness of duct joints. Indicate the locations on the floor plan diagram.

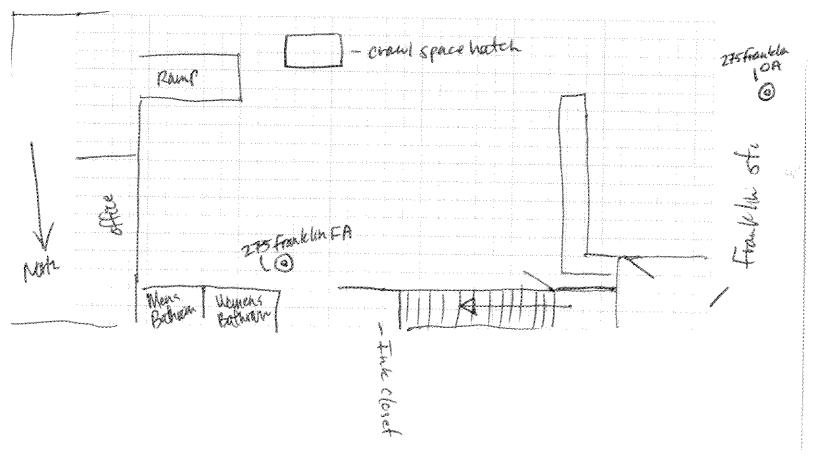
(X) N

	Taped Joints - T	Eart	Joint.	photos fakun
7.000				
7. OCCUP				
Is basement	/lowest level occupied? Full-time	Occasiona	lly Seldom	Almost Never
Level	<u>General Use of Each Floor (e.g., fami</u>			Annost Never
Basement			aunury,	<u>workshop, storage)</u>
1 st Floor	ONLY LAND	- 4		
	Print shop /offrees / 1	20 tomor	ns Braher	Um-
2 nd Floor	storage office		ş · · · · · · · · · · · · · · · · · · ·	
3 rd Floor	Appt			
4 th Floor			**************************************	
8. FACTORS	THAT MAY INFLUENCE INDOOR AI			-
a. Is there a	n attached garage?	IR QUALI	TY	
			Y(N)	
	garage have a separate heating unit?		Y/N/NA)	
c. Are petrol stored in t	leum-powered machines or vehicles the garage (e.g., lawnmower, atv, car)		Y/N/NA	
	allding ever had a fire?		Please specify_	
			Y / When?	
	ne or unvented gas space heater present?		Y Where?	
f. Is there a w	orkshop or hobby/craft area?	Y N	Where & Type?	NA
g. Is there sm	oking in the building?	V /N	How from the	
h. Have clean	ing products been used recently?	Ø N	When & Type?	Daily (Blacketwest
			78	source and the second concerns

i. Have cosmetic products been used recently?	Y When & Type?
5	
j. Has painting/staining been done in the last 6 months?	Y Where & When?
k. Is there new carpet, drapes or other textiles?	Y Where & When?
1. Have air fresheners been used recently?	Y When & Type?
m. Is there a kitchen exhaust fan?	Y \widehat{N} If yes, where vented? N/A
n. Is there a bathroom exhaust fan?	
o. Is there a clothes dryer? 2nd flow	(2) N If yes, where vented? <u>Vented</u> to 3' space (2) N If yes, is it vented outside (2) N
p. Has there been a pesticide application?	Y N When & Type?
Are there odors in the building? If yes, please describe:	D N Cleuvers
Do any of the building occupants use solvents at work? (e.g., chemical manufacturing or laboratory, auto mechanic or au boiler mechanic, pesticide application, cosmetologist	On - Blanket unsh to body shop, painting, fuel oil delivery,
If yes, what types of solvents are used?	Wash
If ves are their alother in the	YN
Do any of the building occupants regularly use or work at a dure response)	ry-cleaning service? (Circle appropriate
Yes, use dry-cleaning regularly (weekly) Yes, use dry-cleaning infrequently (monthly or less) Yes, work at a dry-cleaning service	No Unknown
Is there a radon mitigation system for the building/structure? Is the system active or passive? Active/Passive	Y Date of Installation:
9. WATER AND SEWAGE	
Water Supply: Public Water Drilled Well Driven W	ell Dug Well Other
Sewage Disposal: Public Sewer Septic Tank Leach Fiel	State Ould.
RELOCATION INFORMATION (for oil spill residential en	Official Official
a. Provide reasons why relocation is recommended:	nergency)
b. Residents choose to: remain in home relocate to friends/	

 \mathcal{L} . Responsibility for costs associated with reimbursement explained? Y / N

.d. Relocation package provided and explained to residents? Y / N


6

11. FLOOR PLANS

Draw a plan view sketch of the basement and first floor of the building. Indicate air sampling locations, possible indoor air pollution sources and PID meter readings. If the building does not have a basement, please note.

	در بند میش در ۲۰۰۰ د			-		t.L	•				District implicitle (mart
				- chowl	space	may					
	and the second	Ć	0		and the second	••••••••••••••••••••••••••••••••••••••	and a second sec				
			d					e source and the source of the		· · · · · · · · · · · ·	······
		ZAS FOR	aletita	$\overline{\epsilon s / n}$	mo			averal least of a second se	····i· · · · · · · · · · · · · · · · ·		
							and the second				······
					· · · · · · · · · · · · · · · · · · ·	۵۰ - ۱۰ - ۲۰ میلی میلی در ۲۰ - ۲۰ میلی - است. ۲۰ - ۲۰ - ۲۰ - ۲۰ - ۲۰ - ۲۰ - ۲۰ - ۲۰ -			······ · · · ···	·····	
				n an							. :
чүүсүн									· · · · · · · · · · · · · · · · · · ·		
	·····			and a second s	an a				······································	· · · ·	

First Floor:

12. OUTDOOR PLOT

Draw a sketch of the area surrounding the building being sampled. If applicable, provide information on spill locations, potential air contamination sources (industries, gas stations, repair shops, landfills, etc.), outdoor air sampling location(s) and PID meter readings.

Also indicate compass direction, wind direction and speed during sampling, the locations of the well and septic system, if applicable, and a qualifying statement to help locate the site on a topographic map.

	: 		1	fran	k lin	st	····	· · · · · · · · · · · ·		tat ta an	···· ·
Dreva	iting U	rived	Directo			1					· · · · · · · · · · · · · · · · · · ·
							and a second and a second				· · · · · · · · · · · · · · · · · · ·
		No. Alexandra	·····							·····	
							1		T		**************************************
					· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·				····	
	in an oraș anteriore a				······		V	· · · · · · · · · · · · · · · · · · ·		i i i i i i i i i i i i i i i i i i i i	· · · · · · · · · · · · · · · · · · ·
	······				e secondaria da calega e secondaria da calega					· · · · · · · · · · · · · · · · · · ·	
	· · · · · · · · · · · · · · · · · · ·	•••••••••••••••••••••••••••••••••••••••	: 6			······		····		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·					1	·····	· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·
					- fro	nlebr		· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
········				22	> 1	·····		•••••••••••••••		an a	
· · · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·	····		· . · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	
·····			• • • • • • • • • • • • • • • • • • •		····					<u>1.</u>	
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		ala ana ana ana ana ana ana ana ana ana							n an	
· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·			···· (·· ·· · ··· · ·
	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	: 		· · · · · · · · · · · · ·		•••••	۵۰ ۵۵ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰	<u>.</u>	•••••••••••••••••••••••••••••••••••••••	· · · · · · · · · · · · · · · · · · ·
·····			····	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · ·	··· ··· ·· ···	· ··· .	er e ser e		e	··· .

> North

13. PRODUCT INVENTORY FORM

List specific products found in the residence that have the potential to affect indoor air quality.

Location	Product Description	Size (units)		dition [*]	Chemical Ingredients	Field Instrument Reading (units)	Photo <u>Y / N</u>
Firsthu	Kohle Madda In	28	all nume	Capo legia	by Mad. Rosh Ester Resins	3560 p	pro Yes
		cans	US	ed	Voy. oils, Hydrotvented	r.	<u>n (cs</u>
					middle distillate, orami	e.	
					Pigments. Alkyd Resime		
	Braden Stphin Ink	20			- None listed		
	Ink	5165 Cans					
	Braden SUtphin	45			-None listed		
	The	cans					
	······································						
	Unmarked Ink Cans	10 57/2	J	1	-None listed		
		Cerni,				×	
ck Ti	slanketwash	59al	9 <i>8</i> 0	đ	Petrolem Naphtha		
on I,	MF. Richards Amount		Use	1	Sorbitan Mine - Oleafo	85 ppm	
t	WM chestep when miscible	T.	open				
la series	WRSN						-
S	oper Master/	Zgal	900	d	- Water, PotAssium Hyde		
	set print plus		Use		Amino Erny lethan & Launch		
			<u> </u>		Potasalo selfate	Seaso.	

* Describe the condition of the product containers as **Unopened (UO)**, **Used (U)**, or **Deteriorated (D)** ** Photographs of the **front and back** of product containers can replace the handwritten list of chemical ingredients. However, the photographs must be of good quality and ingredient labels must be legible.

BTSA\Sections\SIS\Oil Spills\Guidance Docs\Aiproto4.doc

8

13. PRODUCT INVENTORY FORM

Make & Model of field instrument used: _____ PPb Raz

List specific products found in the residence that have the potential to affect indoor air quality.

Location Buch Row	Product Description -Color luk	Size (units) 2.gal	Condition	Chemical Ingredients	Field Instrument Reading (units)	Photo [*] <u>Y / N</u>
	silver Plate Stubiliz	er		Sodium phosphete	mate	Yes
	Chem/works Glass cleaner	1802	Used		4600 pp	
	Glass cleaner		<u> </u>	2-Butoxyethanol water, Isoputare,		
)ay Internation Slip Agent 6	19+	Used -	Isopropanel Didnized water,		
intship,	Pdate	1602		Polysiloxane	V	approvide Contraction Contraction
	illesprany 1040 z	- 1262			3600 pp	
	Conditioner	last (sed !	- None listed water, stoddard Solvert		
				tommonium Phosphato morphous Silica		
	Mebil		P	husphiniz Actod		
	undle oil igne 19	alv		one lista		
	ign whe	nt US	ica - 1	rong Usted		

* Describe the condition of the product containers as **Unopened (UO)**, **Used (U)**, or **Deteriorated (D)** ** Photographs of the **front and back** of product containers can replace the handwritten list of chemical ingredients. However, the photographs must be of good quality and ingredient labels must be legible.

13. PRODUCT INVENTORY FORM

List specific products found in the residence that have the potential to affect indoor air quality.

	Location	Product Description Day Informations	Size (units)	Condition*	Chemical Ingredients	Field Instrument Reading (units)	Photo ** <u>Y / N</u>
t		Super Ribber Vesuvenator	1941	Used	Nº 1 Carl	Youuppi	Yes
		resuverator			Dimetry Glutanate Petroleen Naphtha	<u> </u>	¢
					Dimetry (Adipate		
		<u>N</u> /	i		Dimeting Succinate		
		Plastic cups . half fill of Ink	-100	Used -	Neine		
		in the second				3300ppi	Yes
		Martin Vals 1	302		none		
 ,		Martin Vale / 13 Reller Cleaner	302	Used -	Petroleum Distillate		
					texytene Glycol		
					- methoxy-2 propanol		
		lear to silicone 1	boz (used p	50 pripanol Vopine, Butane		
				1.			
		M Hynstrength 16 Adhestice	·602 1	used to	lone listed		
						<u>v</u>	
******	+ W		e U	sed fr	Initisted		
	- A	1,000	= U!	sed th	one lated		
		the condition of the	1941 V	15ed FR	one listed		

* Describe the condition of the product containers as **Unopened** (UO), **Used** (U), or **Deteriorated** (D) ** Photographs of the **front and back** of product containers can replace the handwritten list of chemical ingredients. However, the photographs must be of good quality and ingredient labels must be legible.

13. PRODUCT INVENTORY FORM

Make & Model of field instrument used: 6 Rae

List specific products found in the residence that have the potential to affect indoor air quality.

Location Printshep	Product Description Sprinks Jak	Size (units)	Condition*	Chemical Ingredients	Field Instrument Reading (units)	Photo * <u>Y / N</u>
	Kwik n'Easy Poller & Blanke A De Glazer			-NJTSR# 80100143-50 1+MIS - HO F-0 RC	01P 3800p	nyer
	Gold miracle starter clemer à conditioner	lput	Used	None listed		
	200m/sport	<u>402</u>		some listell		
	higraph Inter. 1 late cleaner sensitrzer & rotector	levt	-1	Sum Avabic Vaphtha petroleum ignt Arcmatic solvent		
			P	nneoil.		

Describe the condition of the product containers as Unopened (UO), Used (U), or Deteriorated (D) ** Photographs of the front and back of product containers can replace the handwritten list of chemical ingredients. However, the photographs must be of good quality and ingredient labels must be legible.

8

ATTACHMENT B

267 Franklin St. Vapor Intrusion Investigation Data and Results

1 e - 1 (1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	and and an and and and and and an and an	2019-107-00 - Mangara Vi	Air - Cha	ain of Cu	stody Re	cord & Ar	nalytical Se	ervice Re	quest		Page	of
Columbia	1 Mustard S Rochester,											
Analytical Services**	Phone (585) 288-5380			tequested Turnaround Time in Business Days From Re				circle	CAS Project	No.	
Art Employers - Owned Curryway	Fax (585) 2	88-8475		1 Day 2 Da	ay 3 Day 4	Day 5 Day 🤇	10 Day-Standard			<u> </u>		
Community Marine B. Address (Da				The fact Manage				CAS Contact				
Company Name & Address (Re		nation)		Project Name	Frankli	h		Analy	Analysis Method and/or Analytes			- `
Malcolm Pirnie			Project Numbe		-377							
Project Manager Tim R Phone 716-667-6654	ichu	. {		P.O. # / Billin	ng Information			1 6				
Phone 716-667-6654	Fax 716/6	67-02	279			1	C					Comments Specific Instructions
Email Address for Result Reporting				Sampler (Print		nonds I) Spice	12				
Client Sample ID	Laboratory ID Number	Date Collected	Time Collected	Canister ID	Flow Controller	Sample Final Vacuum		5				
267 Franklun SS		10/29	1120	4.654	3364143	-8.8		X				SUB-SIAB
267 Franklar BAI		N/29	1130	K767	14300	-7.9						BasementA
267 Frontin BA	E	10/29	1144	1	142250			\times				11
267 FLANHIN BA3		10/29	1140	1 · · · · · · · · · · · · · · · · · · ·	142254	-7.2		×				11
257 Franklin OA		10/29	1150	7	146810	- 7.9		X				outdoor Aik
A Track to Ch		101001	1.00	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	176010	<u> </u>						
	Marine Management of the State		. »	1								
		The second distance of	A CONTRACTOR OF			<u> </u>						
				Concernation and the second second	12		IN V					
		1	1				E	<u></u>			1	
			ļ				the t		4		ļ	
									<u> </u>	↓		
				1						The second secon	$ \mathbf{P} $	
			<u>.</u>	l			<u> </u>					
Report Tier Levels - please se	lect	1	1	l			1	<u> </u>	1	<u> </u>	Project Reg	uirements (MRLs, QAPP)
Tier I - (Results/Default if not specifie		Tier III (CLP	Forms Only)				EDD required	Yes / No				
Tier II (Results + QC)		Tier IV (Data					Туре:		EDD Units:			
Reliquisited by: (Signature)	rost	~	Datej	Time: 1110	Received by: (S	ignature)			Date:	Time:]	
Reliquished by: (Signature)	<u></u>		Date:	Time:	Received by: (S	ignature)			Date:	Time:		
Reliquished by: (Signature)			Date:	Time:	Received by: (S	ignature)			Date:	Time:	1	

-

COLUMBIA ANALYTICAL SERVICE	S				
	METHO	TILE ORGANIC DD TO-15 Ted: 12/01/	-		
Malcolm Pirnie, Inc. Project Reference: FRANKLIN Client Sample ID : 267 FRAN	PROJECT #0266-377 KLIN SS				
Date Sampled : 10/29/08 11:20 Date Received: 10/30/08 Subm	Order #: 1150195 ission #: R2846926	-	trix: AIR 1 Run 17022:	1	
DATE ANALYZED : 11/15/0	8	4,44			······
ANALYTICAL DILUTION: 5 CAN DILUTION : 1	.00 .81 Pi= -8.7	Pf= 8.4			
ANALYTE	MRL UG/M3	RESULT UG/M3	MRL PPBv	RESULT PPBv	
BENZENE		<u> </u>			
1,1-DICHLOROETHENE	0.35 0.44	2.3 J	0.11	0.72 J	
TRANS-1,2-DICHLOROETHENE	0.44	3.9 U	0.11	1.00 U	
CIS-1, 2-DICHLOROETHENE	0.44	3.9 U 0.81 J	0.11	1.00 U	
ETHYLBENZENE	0.95	0.81 J 2.1 J	0.11	0.20 J	
METHYLENE CHLORIDE	0.38	2.1 U 3.5 U	0.22	0.49 J	
TETRACHLOROETHENE	0.15	3.5 0	0.11 0.022	1.00 U	
TOLUENE	0.41	42	0.022	50	
1,1,1-TRICHLOROETHANE	0.60	5.4 U	0.11	11 1.00 U	
TRICHLOROETHENE	0.12	17	0.022	3.1	
VINYL CHLORIDE	0.28	2.5 U	0.11	1.00 U	
O-XYLENE	0.95	1.7 J	0.22	0.40 J	
M+P-XYLENE	1.9	6.2 J	0.44	1.4 J	
SURROGATE RECOVERIES	QC LIMITS				
BROMOFLUOROBENZENE	(70 - 130 %)	101	÷		

÷

COLUMBIA ANALYTICAL SERVICE	S				
		TILE ORGANIC:	5		
		rted: 12/01/0	80		
Malcolm Pirnie, Inc. Project Reference: FRANKLIN Client Sample ID : 267 FRAN	PROJECT #0266-377 KLIN BA1	7			
Date Sampled : 10/29/08 11:30 Date Received: 10/30/08 Subm:	Order #: 1150196 ission #: R2846926	Sample Mat Analytical	crix: AIR L Run 170223	L	
DATE ANALYZED : 11/15/08	В		*****		
	.00				
CAN DILUTION : 1	.72 Pi= -8.1	Pf= 7.5			
	MRL	RESULT	MRL	RESULT	
ANALYTE	UG/M3	UG/M3	PPBv	PPBv	
BENZENE	0.35	1.1 J	0.11	0.35 J	
1,1-DICHLOROETHENE	0.44	15 U	0.11	3.8 U	
TRANS-1,2-DICHLOROETHENE	0.44	15 U	0.11	3.8 U	
CIS-1,2-DICHLOROETHENE	0.44	20	0.11	5.1	
ETHYLBENZENE	0.95	33 U	0.22	7.6 U	
METHYLENE CHLORIDE	0.38	1.5 JB	0.11	0.44 JB	
TETRACHLOROETHENE	0.15	1200	0.022	170	
TOLUENE	0.41	4.1 J	0.11	1.1 J	
1,1,1-TRICHLOROETHANE	0.60	21 U	0.11	3.8 U	
TRICHLOROETHENE	0.12	13	0.022	2.5	
VINYL CHLORIDE	0.28	9.7 U	0.11	3.8 U	
O-XYLENE	0.95	33 U	0.22	7.6 U	
M+P-XYLENE	1.9	1.8 J	0.44	0.41 J	
SURROGATE RECOVERIES	QC LIMITS				
BROMOFLUOROBENZENE	(70 - 130 %)	99	0		

COLUMBIA ANALYTICAL SERVICES					
		ILE ORGANIC	CS		
		D TO-15 ted: 12/01/	/00		
	Kepor	teu: 12/01/	08		
Malcolm Pirnie, Inc. Project Reference: FRANKLIN PF Client Sample ID : 267 FRANKLIN	ROJECT #0266-377 N BA2				
Date Sampled : 10/29/08 11:44 Ord Date Received: 10/30/08 Submissi	ler #: 1150197 on #: R2846926	Sample Ma Analytica	atrix: AIR al Run 170221		
DATE ANALYZED : 11/15/08		******		****	
ANALYTICAL DILUTION: 10.00					
CAN DILUTION : 1.60	Pi= -6.5	Pf= 7.6			
	MRL	RESULT	MRL	RESULT	
ANALYTE	UG/M3	UG/M3	PPBv	PPBv	
BENZENE	0.35	0.76 J	0.11	0.24 J	
l, l-DICHLOROETHENE	0.44	7.0 U	0.11	1.8 U	
TRANS-1,2-DICHLOROETHENE	0.44	7.0 U	0.11	1.8 U	
CIS-1,2-DICHLOROETHENE	0.44	12	0.11	3.0	
ETHYLBENZENE	0.95	15 U	0.22	3.5 U	
METHYLENE CHLORIDE	0.38	6.1 U	0.11	1.8 U	
TETRACHLOROETHENE	0.15	670	0.022	99	
TOLUENE	0.41	1.8 J	0.11	0.49 J	
1,1,1-TRICHLOROETHANE	0.60	9.6 U	0.11	1.8 U	
TRICHLOROETHENE	0.12	7.0	0.022	1.3	
VINYL CHLORIDE	0.28	4.5 U	0.11		
O-XYLENE	0.95	15 U	0.22	3.5 U	
M+P-XYLENE	1.9	0.87 J	0.44		
SURROGATE RECOVERIES Q	C LIMITS				
BROMOFLUOROBENZENE (7	0 - 130 %)	97	25		

COLUMBIA ANALYTICAL SERVICES

.

2.1

VOLATILE ORGANICS METHOD TO-15 Reported: 12/01/08

Malcolm Pirnie, Inc. **Project Reference:** FRANKLIN PROJECT #0266-377 **Client Sample ID :** 267 FRANKLIN BA3

 Date Sampled : 10/29/08 11:40 Order #: 1150198
 Sample Matrix: AIR

 Date Received: 10/30/08
 Submission #: R2846926
 Analytical Run 170221

DATE ANALYZED : 11/15/08 ANALYTICAL DILUTION: 10.00 CAN DILUTION : 1.68 Pi= -7.7 Pf= 7.4

ANALYTE	MRL UG/M3	RESULT UG/M3	MRL PPBv	RESULT PPBV
BENZENE 1,1-DICHLOROETHENE TRANS-1,2-DICHLOROETHENE CIS-1,2-DICHLOROETHENE ETHYLBENZENE METHYLENE CHLORIDE TETRACHLOROETHENE 1,1,1-TRICHLOROETHANE TRICHLOROETHENE VINYL CHLORIDE O-XYLENE M+P-XYLENE	0.35 0.44 0.44 0.95 0.38 0.15 0.41 0.60 0.12 0.28 0.95 1.9	0.55 J 7.3 U 7.3 U 18 16 U 0.59 JB 900 1.6 J 10 U 11 4.7 U 16 U 32 U	0.11 0.11 0.11 0.22 0.11 0.022 0.11 0.022 0.11 0.022 0.11 0.22 0.11 0.22 0.44	0.17 J 1.8 U 1.8 U 4.4 3.7 U 0.17 JB 130 0.43 J 1.8 U 2.0 1.8 U 3.7 U 7.4 U
SURROGATE RECOVERIES	QC LIMITS			
BROMOFLUOROBENZENE	(70 - 130 %)	96 %	5	

COLUMBIA ANALYTICAL SERVICES

5

VOLATILE ORGANICS METHOD TO-15 Reported: 12/01/08

Malcolm Pirnie, Inc. Project Reference: FRANKLIN PROJECT #0266-377 Client Sample ID : 267 FRANKLIN OA

 Date Sampled : 10/29/08 11:50 Order #: 1150201
 Sample Matrix: AIR

 Date Received: 10/30/08
 Submission #: R2846926
 Analytical Run 170221

DATE ANALYZED	:	11/15/08				
ANALYTICAL DILUTION	:	1.00				
CAN DILUTION	;	1.60	Pi=	-6.5	Pf≂	7.5

ANALYTE	MRL UG/M3	RESULT UG/M3	MRL PPBv	RESULT PPBv	
1) 128 1 17 128 173					
BENZENE	0.35	0.46 J	0.11	0.15 J	
1, 1-DICHLOROETHENE	0.44	0.70 U	0.11	0.18 U	
TRANS-1,2-DICHLOROETHENE	0.44	0.70 U	0.11	0.18 U	
CIS-1,2-DICHLOROETHENE	0.44	0.70 U	0.11	0.18 U	
ETHYLBENZENE	0.95	0.26 J	0.22	0.059 J	
METHYLENE CHLORIDE	0.38	0.22 JB	0.11	0.062 JB	
TETRACHLOROETHENE	0.15	0.12 J	0.022	0.017 J	
TOLUENE	0.41	1.1	0.11	0.29	
1,1,1-TRICHLOROETHANE	0.60	0.96 U	0.11	0.18 U	
TRICHLOROETHENE	0.12	0.21	0.022	0.039	
VINYL CHLORIDE	0.28	0.45 U	0.11	0.18 U	
O-XYLENE	0.95	0.65 J	0.22	0.15 J	
M+P-XYLENE	1.9	0.98 J	0.44	0.23 J	
SURROGATE RECOVERIES	QC LIMITS				
BROMOFLUOROBENZENE	(70 - 130 %)	101 9	5		

267 Franklin St. a na harana na hirana na na na na hirana katalarina na hatara na hatara na hatara na hatara na hatara na hatar

NEW YORK STATE DEPARTMENT OF HEALTH INDOOR AIR QUALITY QUESTIONNAIRE AND BUILDING INVENTORY CENTER FOR ENVIRONMENTAL HEALTH

This form must be completed for each residence involved in indoor air testing.

Preparer's Name Duignt Smends Date/Time Prepared 10/28/05 1100 Preparer's Affiliation Malcolm Phynice Inc Phone No. 385-727-370
Preparer's Affiliation Malfolm Nivie Itc Phone No. 3355-727-370
Purpose of Investigation
1. OCCUPANT:
Interviewed: Y / N
Last Name: <u>MUSUCCI</u> First Name: <u>Awtonik</u> Address: <u>2007 Franklin St- Buffalo NY</u>
Address: 207 Franklin St. Butfalo NY
County:
Home Phone: Office Phone:
Home Phone: Office Phone: Age of Occupants $Mg = 351$ Number of Occupants/persons at this location 13 Age of Occupants $Mg = 351$ (25, 30, 35, 65)
2. OWNER OR LANDLORD: (Check if same as occupant)
Interviewed: Y / N
Last Name: First Name:
Address:
County:
Home Phone: Office Phone:
3. BUILDING CHARACTERISTICS

Type of Building: (Circle appropriate response)

Residential Industrial

School Church

Commercial/Multi-use Other:

Ļ.

If the property is residential,	type? (Circle app	propriate respons	se)
Ranch	2-Family	3-Fami	ly
Raised Ranch	Split Level	Colonia	al
Cape Cod	Contemporary	Mobile	Home
Duplex	Apartment Hou	se Townh	ouses/Condos
Modular	Log Home	Other:_	
If multiple units, how many?			
If the property is commercial	, type?		
Business Type(s)			
Does it include residences	(i.e., multi-use)?	Y / N	If yes, how many?
Other characteristics:			0
Number of floors \mathcal{U}		Building age	· (
Is the building insulated? Y	/N 7	How air tight?	Tight / Average / Not Tight

4. AIRFLOW

Use air current tubes or tracer smoke to evaluate airflow patterns and qualitatively describe:

Airflow between floors	Connection ul Hall waters & Darvaurs
Airflow near source	and the second
/	
Outdoor air infiltration	e fold Bldg.
Infiltration into air ducts	

5. **BASEMENT AND CONSTRUCTION CHARACTERISTICS** (Circle all that apply)

a. Above grade constructio	n: wood frame	concrete	stone	brick
b. Basement type:	full	crawlspace	slab	other
c. Basement floor:	concrete 2	dirt	stone	other other <u>Gb</u> weed-Alece <u>partnelly covered</u> <u>cavpet</u> .
d. Basement floor:	uncovered	covered	covered with	partially averal
e. Concrete floor:	unsealed	sealed	sealed with	callert.
f. Foundation walls:	poured	block	stone	other
g. Foundation walls:	unsealed	sealed	sealed with	paint.
h. The basement is:	wet	damp	dry	moldy
i. The basement is:	finished	unfinished	partially finis	hed
j. Sump present?	Y/S			
k. Water in sump?	Y / N / not applicable			

Basement/Lowest level depth below grade: _____(feet)

Identify potential soil vapor entry points and approximate size (e.g., cracks, utility ports, drains)

substab is irregularly poured - inequeness in flour - some cracting

6. **HEATING, VENTING and AIR CONDITIONING** (Circle all that apply)

Type of heating system(s) used in this building: (circle all that apply - note primary)

Hot air circulation Space Heaters Electric baseboard	Heat pump Stream radiation Wood stove	Hot water baseboard Radiant floor Outdoor wood boiler	Other
The primary type of fuel used is:			
Natural Gas Electric Wood	Fuel Oil Propane Coal	Kerosene Solar	
Domestic hot water tank fueled by:	Natural Gar		
Boiler/furnace located in: Baseme	Outdoors	Main Floor	Other

None

Air conditioning:

Are there air distribution ducts present?

Describe the supply and cold air return ductwork, and its condition where visible, including whether there is a cold air return and the tightness of duct joints. Indicate the locations on the floor plan diagram.

	and a second
	~
······································	
7. OCCUPANCY	
Is basement/lowest level occupied? Full-time Occ	asionally Seldom Almost Never
Level General Use of Each Floor (e.g., familyro	om, bedroom, laundry, workshop, storage)
Basement Utility Rearn / Boiler	Room Two appts.
1st Floor Uappts	-
2 nd Floor <u>Lappts</u>	
3rd Floor Lappts	
4 th Floor	
8. FACTORS THAT MAY INFLUENCE INDOOR AIR	QUALITY
a. Is there an attached garage?	Y/S
b. Does the garage have a separate heating unit?	Y/N/NA
c. Are petroleum-powered machines or vehicles stored in the garage (e.g., lawnmower, atv, car)	Y / N NA Please specify
d. Has the building ever had a fire?	Y N When?
e. Is a kerosene or unvented gas space heater present?	Y (N) Where?
f. Is there a workshop or hobby/craft area?	YN Where & Type?
g. Is there smoking in the building?	Y/N Where & Type? Y/N How frequently? 7 pessible
h. Have cleaning products been used recently?	Y N When & Type?

i. 1	Have	cosmetic	products	been	used	recently?
------	------	----------	----------	------	------	-----------

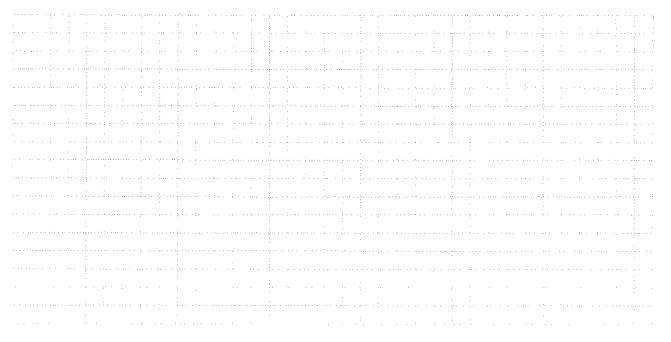
Y / N When & Type? _____

j. Has painting/stainii	ng been done in the last 6	months? Y N) Where & Wh	nen?	
k. Is there new carpet	, drapes or other textiles	 60.	Ma	ien?	
1. Have air fresheners	been used recently?	Y/9	When & Typ	e?	
m. Is there a kitchen	exhaust fan?	(y) N	If yes, where	vented?	
n. Is there a bathroom	n exhaust fan?	(Y)N	If yes, where	vented?	
o. Is there a clothes d	ryer?	(Y/N	If yes, is it ve	ented outside? Y N	
p. Has there been a pe	esticide application?	(y)/ N	When & Typ	e? Buic and	with
Are there odors in the If yes, please describe	e building? 	widy Y/N			
(e.g., chemical manufactu boiler mechanic, pesticid	ccupants use solvents at use solvents at use application, cosmetologis	echanic or auto bod			
If yes, what types of so	lvents are used?	use hold clean	ners pan	atthimar	
If yes, are their clothes		Y/N	<u>ور</u>		
Do any of the building o response)	ccupants regularly use of	r work at a dry-cle	aning service?	(Circle appropriate	
Yes, use dry-clea	ning regularly (weekly) ning infrequently (monthly y-cleaning service	y or less)	No Unknown		
Is there a radon mitigat Is the system active or p	ion system for the buildir assive? Active/Pas	ng/structure? Y	Bate of Instal	llation:	
9. WATER AND SEWA	GE				
Water Supply:	ublic Water Drilled We	ll Driven Well	Dug Well	Other:	
Sewage Disposal:	ublic Sewer / Septic Tanl	k Leach Field	Dry Well	Other:	
10. RELOCATION INF	ORMATION (for oil spil	ll residential emerg	gency)		
	hy relocation is recomm				
b. Residents choose	to: remain in home rel	locate to friends/fan	nily reloc	ate to hotel/motel	

c. Responsibility for costs associated with reimbursement explained? Y / W

d. Relocation package provided and explained to residents?

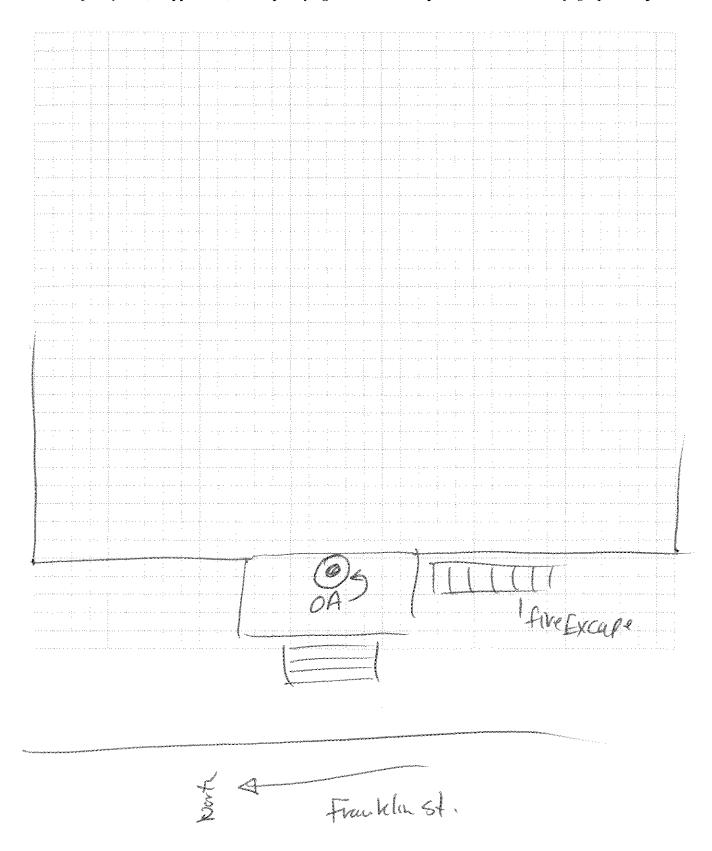
6


Y

11. FLOOR PLANS

Draw a plan view sketch of the basement and first floor of the building. Indicate air sampling locations, possible indoor air pollution sources and PID meter readings. If the building does not have a basement, please note.

N	Basement:	Bedroom							
Ń	occupied	24 -		6	AZ	unshreen			
S.X.	TITIS MUM								
7612	Inter	O-BA	Ha U 3		55F				
trail	unoccupi-4			Beiler Pour	BAI	utility Room paint & silver t storage			
					· · · · · · · · · · · · · · · · · · ·				


First Floor:

12. OUTDOOR PLOT

Draw a sketch of the area surrounding the building being sampled. If applicable, provide information on spill locations, potential air contamination sources (industries, gas stations, repair shops, landfills, etc.), outdoor air sampling location(s) and PID meter readings.

Also indicate compass direction, wind direction and speed during sampling, the locations of the well and septic system, if applicable, and a qualifying statement to help locate the site on a topographic map.

. *

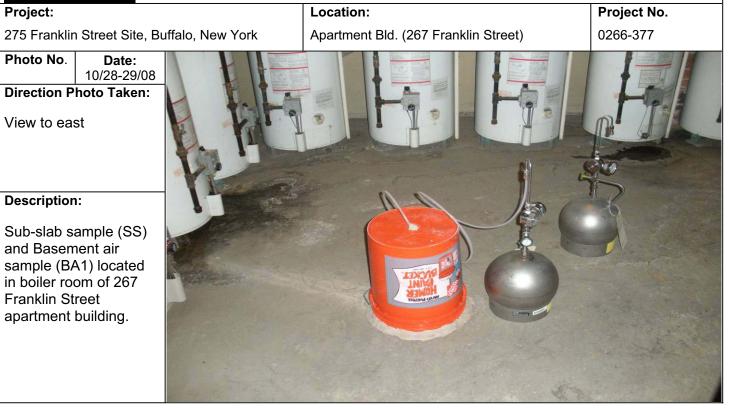
 8
 4

 13. PRODUCT INVENTORY FORM
 R 5920

 Make & Model of field instrument used:
 PH6 Page

List specific products found in the residence that have the potential to affect indoor air quality.

Location	Product Description	Size (units)	Condition [*]	Chemical Ingredients	Field Instrument Reading (units)	Photo ** <u>Y / N</u>
MAINT. CLOSET	LATER + OILBased laim		LESS TURG FU	Part / ofer capsting	3 90 m	864
# 1	OPEN CANES PRIMITIN	616 VZZ	used	SDAKING Paint Brugge	52 20 310 Mm	863
10	20 Mise. Concerts	902 164/	vsex	V M725055	5.7 110	861
VI	8 Great stuffer	CALIC TUBES	men 4 USER	unatas s	1.7 ppg	163
ų	13 CONT. SOAPS	13- 7542	used	VARIASS SOAPS SIL, Part PESTINES	1.7 Pla	859
*7	WP48, DV er clean 24 SPRY PANTS C	Elar	iscol	oil, lant vareis	1.1 114	£58


* Describe the condition of the product containers as Unopened (UO), Used (U), or Deteriorated (D)

** Photographs of the front and back of product containers can replace the handwritten list of chemical ingredients. However, the photographs must be of good quality and ingredient labels must be legible.

MALCOLM PIRNIE	РНОТОС	RAPHIC LOG
Project:	Location:	Project No.
275 Franklin Street Site, Buffalo, New York	Apartment Bld. (267 Franklin Street)	0266-377
Photo No. Date: 10/28-29/08 Direction Photo Taken: View to East		
Description: Sample canister on front fire escape for background outdoor air sample (267 Franklin –OA)		

MALCOLM PIRNIE

PHOTOGRAPHIC LOG

MALCOLM PIRNIE PHOTOGRAPHIC										
Project:	Location:	Project No.								
275 Franklin Street Site, Buffalo, New York	Apartment Bld. (267 Franklin Street)	0266-377								
Photo No. Date: 10/28-29/08 Direction Photo Taken: View to East inside. Description: Location of basement air sample BA-3 in the kitchen of apartment B- 1.										

MALCOLM PIRNIE

PHOTOGRAPHIC LOG

Project:			Location:	Project No.
275 Franklir	n Street Site, Bu	ıffalo, New York	Apartment Bld. (267 Franklin Street)	0266-377
Photo No.	Date: 10/28-29/08			
Direction P	hoto Taken:			
View to So	uth		ß	
			8	
Description	1:			
Location of air sample main bedro apartment	om of			

MALCOLM PIRNIE PHOTOGRAPHIC LOG Project No. Project: Location: 275 Franklin Street Site, Buffalo, New York Apartment Bld. (267 Franklin Street) 0266-377 Photo No. Date: 10/28-29/08 Je . **Direction Photo Taken:** View to the South **Description:** Maintenance shop in the Southeast of basement level of 267 Franklin St. Note the many sources of VOCs present.

MALCOLM PIRNIE	PHOTOGE	RAPHIC LOG
Project:	Location:	Project No.
275 Franklin Street Site, Buffalo, New York	Apartment Bld. (267 Franklin Street)	0266-377
Photo No.Date: 10/28-29/08Direction Photo Taken:View to the East.Description:Some of the many consumer sources of VOCs located in the 		

December 3, 2008

Mr. Jim Richert Malcolm Pirnie Inc. 50 Fountain Plaza Suite 600 Buffalo, NY 14202

Re: Franklin Project #0266-377 Submission #R2846926

Dear Mr. Richert:

Enclosed is an analytical data report for the above referenced facility. A total of five samples were received by our laboratory on October 30, 2008.

Any problems encountered with this project are addressed in a case narrative section which is presented later in this report.

This report consists of two (2) packages: the sample data package and the sample data summary package. A copy of the summary package has been sent to your attention, and the data package has been sent to Chris Taylor's attention. All data presented in this package has been reviewed prior to report submission. If you should have any questions or concerns, please contact me at (585) 288-5380.

Sincerely, COLUMBIA ANALYTICAL SERVICES

Janice M. Jaeger Project Chemist

enc.

This report contains a total of _________pages.

1 Mustard ST. Suite 250 Rochester, NY 14609 (585) 288-5380

THIS IS AN ANALYTICAL TEST REPORT FOR:

Client :	Malcolm Pirnie, Inc.				
Project Reference:	FRANKLIN PROJECT #0266-377				
Lab Submission $\#$:	R2846926				
Contact Person :	Janice Jaeger				
Phone Number :	(585) 288-5380				
Reported :	12/01/08				

The results reported herein relate only to the samples received by the laboratory. This report may not be reproduced except in full, without the approval of Columbia Analytical Services.

This package has been reviewed by Columbia Analytical Services' QA Department/Laboratory Director to comply with NELAC standards prior to report submittal.

SDG NARRATIVE

CASE NARRATIVE

COMPANY: Malcolm Pirnie Franklin Project #0266-377 SUBMISSION #: R2846926

Malcolm Pirnie samples were collected on 10/29/08 and received at CAS on 10/30/08 in good condition.

VOLATILE ORGANICS

Five air samples were analyzed for a site specific list of Volatiles by method TO-15.

All Tuning criteria were met.

All the initial and continuing calibration criteria were met for all analytes.

All internal standard areas were within QC limits.

All surrogate standard recoveries were within acceptance limits.

All Reference spike recoveries were within limits.

The Laboratory Blanks associated with these analyses were free of contamination except the 11/15/08 blank contained a low level hit for Methylene chloride. All affected data has been flagged with a "B".

All samples were analyzed within recommended holding times.

No other analytical or QC problems were encountered.

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the details conditioned above. Release of the data contained in this hard copy data package has been authorized by the Laboratory Manager or his designee, as verified by the following signature.

SDG#: 267 FF		BATCH	COMPLETE:yes		DATE REVISE			
SUBMISSION	R2846926	DISKETT	E REQUESTED: Y NX_		DATE DUE: 11			
	Malcolm Pirnie, Inc.	DATE: 11	/3/08		PROTOCOL: to			
CLIENT REP:			Y SEAL: PRESENT/ABSENT: P		SHIPPING No.	:		
PROJECT:	FRANKLIN PROJECT #0266-37	CHAIN O	F CUSTODY: PRESENT/ABSENT: F					
CAS JOB #	CLIENT/EPA ID	MATRIX	REQUESTED PARAMETERS	DATE	DATE	ρН	%	REMARKS
				SAMPLED	RECEIVED	(SOLIDS)	SOLIDS	AMPLE CONDITION
1150195	267 FRANKLIN SS	AIR	TO-15	10/29/2008	10/30/2008			
1150196	267 FRANKLIN BA1	AIR	TO-15	10/29/2008	10/30/2008			
1150197	267 FRANKLIN BA2	AIR	TO-15	10/29/2008	10/30/2008			
1150198	267 FRANKLIN BA3	AIR	TO-15	10/29/2008	10/30/2008			
1150201	267 FRANKLIN OA	AIR	TO-15	10/29/2008	10/30/2008			
······································								
							T	
							İ	
							1	
							<u>†</u>	
						+	<u> </u>	
	L	I		L	<u> </u>		1	

ORGANIC QUALIFIERS

- U Indicates compound was analyzed for but not detected. The sample quantitation limit must be corrected for dilution and for percent moisture.
- J Indicates an estimated value. The flag is used either when estimating a concentration for tentatively identified compounds, or when the data indicate the presence of a compound that meets the identification criteria but the result is less than the sample quantitation limit and greater than the MDL. This flag is also used for DoD instead of "P" as indicated below.
- N Indicates presumptive evidence of a compound. This flag is only used for tentatively identified compounds, where the identification is based on a mass spectral library search.
- P This flag is used for a pesticide/Aroclor target analyte when there is a greater than 40% (25% for CLP) difference for detected concentrations between the two GC columns. The concentration is reported on the Form I and flagged with a "P" ("J" for DoD).
- Q for DoD only indicates a pesticide/Aroclor target is not confirmed. This flag is used when there is ≥ 100% difference for the detected concentrations between the two GC columns.
- C This flag applies to pesticide results where the identification has been confirmed by GC/MS.
- B This flag is used when the analyte is found in the associated blank as well as in the sample.
- E This flag identifies compounds whose concentrations exceed the calibration range of the instrument for that specific analysis.
- D This flag identifies all compounds identified in an analysis at a secondary dilution factor. If a sample or extract is re-analyzed at a higher dilution factor, as in the "E" flag above, the "DL" suffix is appended to the sample number on the Form I for the diluted sample, and ALL concentration values reported on that Form I are flagged with the "D" flag.
- A This flag indicates that a TIC is a suspected aldol-condensation product.
- X As specified in Case Narrative.
- * This flag identifies compounds associated with a quality control parameter which exceeds laboratory limits.

CAS/Rochester Lab ID # for State Certifications¹

NELAP Accredited Delaware Accredited Connecticut ID # PH0556 Florida ID # E87674 Illinois ID #200047 Maine ID #NY0032 Massachusetts ID # M-NY032 Navy Facilities Engineering Service Center Approved Nebraska Accredited Nevada ID # NY-00032 New Jersey ID # NY004 New York ID # 10145 New Hampshire ID # 294100 A/B Pennsylvania ID# 68-786 Rhode Island ID # 158 West Virginia ID # 292

¹ Analyses were performed according to our laboratory's NELAP-approved quality assurance program. The test results meet requirements of the current NELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP-accredited analytes, refer to the certifications section at www.caslab.com.

CHAINS OF CUSTODY

INTERNAL CHAINS

· · · ·	and the second	A	ir - Cha	ain of Cu	stody Red	cord & An	alytical S	ervice Req	uest		Page	_of *
Columbia	1 Mustard St Rochester, N											
Analytical Services Inc	Phone (585)	288-5380						Receipt, please	circle	CAS Project	No.	
Arx Employase - Owned Company	Fax (585) 28	8-8475		1 Day 2 Da	ay 3 Day 4	Day 5 Day 🤆	0 Day-Standa	rd CAS Contact:				
ompany Name & Address (Re	menting lafors	nation)		Project Name	(1) I							
		nation)		rojectivanie	trankli	5		Analys	is Method	and/or An	alytes	
Malcolm Pirv	ll I			Project Numbe	frankli * 0266	-377						
roject Manager	licher	f		P.O. # / Billin	ng Information			5				
hone 716-667-6654	Fax 716/66	67-05	279			1	<i>(</i>	- <u>1</u>				Comments Specific Instructions
mail Address for Result Reporting				Sampler (Print	: & Sign) uyutSyu	nonds II)- Sprid	ZP				
Client Sample ID	Laboratory ID Number	Date	Time Collected	1	Flow Controller	Sample Final Vacuum		v				
267 Franklan SS		10/29	1120	1654	3364143			X				SUB-SIAB
267 FranklaBA	(11/29	1139	K767	143062	-7.9		\times				Besementh
267 Fronklin BA	1.0	11/29	1144	2802	142250	-72.0		\times				51
67 Franklin BAS		11/29	1140			-7.2		~				11
47 Franklin Oh		11/29	1150	K675	146810	- 7,9		\times				OUTdoor AIR
estimate an oral products and a second product products and a second product pro	No. Bardana and and an and											
		and the second se	Contraction of the local data and the same									
				New Color Co	1/2	2-2-	DI	s				
				Currenterenterenterenterenterenterenteren	and the second state of th		Yan -	1			1	
								127	and the second second			-
		1										
			<u> </u>	_					Contraction of the second		\bigcirc	
												P
												And the second sec
												and the second s
Report Tier Levels - please s				•							Project Req	uirements (MRLs, QAPI
Fier I - (Results/Default if not speci	fied)		Forms Only)				EDD require Type:	d Yes / No	EDD Units:			
Fier II (Results + QC)			a Validation) _		Doody-Aber (Signature	· JPS:		Date:	Time:	4	
Reliquished by: (Signature)	locat-	filego,	Date:	Time:	Received by		alt		10180108]	
Reliquished by: (Signature)	ver		Date:	Time:	Received by.		1		Date:	Time:		
Reliquished by: (Signature)			Date:	Time:	Received by: (Signature)			Date:	Time:	1	

	Cooler Receipt	And Pr	eservation (Check F	orm		
Project/Client		_Submi	ssion Numbe	er <u>R</u>	2846	926	
Cooler received on 10130/05							Y CLIENT
 Were custody seals of Were custody papers Did all bottles arrive Did any VOA vials b Were Ice or Ice pach Where did the bottle Temperature of cool Is the temperature were 	on outside of cooler? s properly filled out (in good condition (u have significant* air ks present? s originate? ler(s) upon receipt:	(ink, sigr inbroker	ned, etc.)? n)?		YES YES YES YES CASTRO 13°	NO NO NO CLIE Yes	$\frac{N42}{NT}$ $\frac{14^{\circ}}{Yes}$
lf No, Explain Belo		M	No	2 2	NO)	NO	No
Date/Time Tempera Thermometer ID: 1 If out of Temperature, no PC Secondary Review:	atures Taken: 61 / IR GUN#2 / ate packing/ice conc	I <u>R GUN</u> lition, C	I#3 Read	ov al to J			Sample Bottle
a Wore correct conta	s and tags agree with iners used for the tes settes / Tubes Intact	lysis, pr custody sts indica Car	ated?	etc.)?	YES YES Tedlar	NO NO NO Bags In	
pH Reagent	Lot Received	Exp	Sample ID	Vol. Added	Lot Adde	d Final pH	Yes = All samples OK
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							No = Samples were
Residual For-TCN Chlorine and (-) Phenol	If present, contact add ascorbic acid	PM to	*Not to be te	sted befo	re analysis	- р Н	preserved at lab as listed
$\frac{Na_2S_2O_3}{Zn Aceta} - \frac{1}{2}$			tested and re on a separate	corded by	VOAs or		PM OK to Adjust:

Bottle lot numbers:_ Other Comments:

MW 11 508 *significant air bubbles are greater than 5-6 mm 00009 ۰.

PC Secondary Review: _ HISMODOCS\Cooler Receipt 2.doc

Submission:	R2846926	Client: Malcolm Pi	irnie, Inc.		
Lab ID:	1150195	<i>Matrix</i> AIR			
Received into CA	S-Rochester Custo	ody: 10/30/08			
Container:	11501951				
Date of Custody	User	Dept	Storage Location	Purpose	Empty
11/03/08 13:35	ahentsch	Sample Management	Ambient 2	Storage	
11/03/08 15:09	twalton	GC/MS Volatiles	Analyst	Analysis	
Lab ID:	1150196	<i>Matrix</i> AIR			
Received into CA	S-Rochester Custo	ody: 10/30/08			
Container:	11501961				
Date of Custody	User	Dept	Storage Location	Purpose	Empty
11/03/08 13:35	ahentsch	Sample Management	Ambient 2	Storage	
11/03/08 15:09	twalton	GC/MS Volatiles	Analyst	Analysis	
Lab ID:	1150197	<i>Matrix</i> AIR			
Received into CA	S-Rochester Cust	ody: 10/30/08			
Container:	11501971				
Date of Custody	User	Dept	Storage Location	Purpose	Empty
11/03/08 13:35	ahentsch	Sample Management	Ambient 2	Storage	
11/03/08 13:35 11/03/08 15:09	ahentsch twalton	Sample Management GC/MS Volatiles	Ambient 2 Analyst	Storage Analysis	
11/03/08 15:09 Lab ID:	twalton	GC/MS Volatiles <i>Matrix</i> AIR			
11/03/08 15:09 Lab ID:	twalton 1150198	GC/MS Volatiles <i>Matrix</i> AIR			
11/03/08 15:09 <i>Lab ID:</i> Received into C/	twalton 1150198 AS-Rochester Cust	GC/MS Volatiles <i>Matrix</i> AIR			Empty

GC/MS Volatiles

Analyst

Analysis

11/03/08 15:09

twalton

Chain of (Custody					
Submission:	R2846926	Client:	Malcolm P	irnie, Inc.		
Lab ID:	1150201	Matrix	AIR			
Received into CA	S-Rochester Cust	ody: 10/3	0/08			
Container:	11502011					
Date of Custody	User	Dept		Storage Location	Purpose	Empty
11/03/08 13:35	ahentsch	Sample I	Management	Ambient 2	Storage	
11/03/08 15:09	twalton	GC/MS \	/olatiles	Analyst	Analysis	

VOLATILE ORGANICS

QC SUMMARY

A6082.D 11/14/08 23:12

LCS RECOVERY FOR SECOND SOURCE STANDARD

A6082.D				ide of 70 120%	racovary		
11/14/08 23:12	Co	mpounas	riagged out	side of 70-130%			· (].
				inj volume	250		AN LOD
LCS 1.0	DF 📉	100.00	non	ninal volume	1000		vecovery
	Stock				Target	LCS R	ecovery ', /
	ppm	ppb	MW	cas#	ppbv	ppbv	%
SS Stock 0-515-53A conc.===>	PP	ppo				2.5	
Internal standard	1.04	10.40	42.08	115-07-1	2.60	2.45	94.2
propylene	1.04	10.40	120.91	75-71-8	2.53	2.47	97.8
dichlorodifluoromethane		10.10	170.92	76-14-2	2.53	2.47	97.8
freon-114	1.01			74-87-3	2.53	2.47	97.8
chloromethane	1.01	10.10	50.49	75-01-4	2.53	2.5	99.0
vinyl chloride	1.01	10.10	62.5		2.73	2.69	98.7
1,3-butadiene	1.09	10.90	54.09	106-99-0	2.75	2.46	96.5
bromomethane	1.02	10.20	94.9	74-83-9		2.40	97.8
chloroethane	1.01	10.10	64.5	75-00-3	2.53	2.47	99.4 J
trichlorofluoromethane	0.99	9.90	137.37	75-69-4	2.48		
ethanol	1.03	10.30	46.07	64-17-5	2.58	1.59	61.7 # / ^v
freon-113	1.06	10.60	187.38	76-13-1	2.65	2.66	100.4
1,1-dichloroethene	1.08	10.80	96.94	75-35-4	2.70	2.76	102.2
acetone	1.03	10.30	58.08	67-64-1	2.58	2.49	96.7
isopropanol	1.10	11.00	60.1	67-63-0	2.75	1.49	54.2 # / ⁰⁷
carbon disulfide	1.04	10.40	76.14	75-15-0	2.60	2.44	93.8
methylene chloride	1.07	10.70	84.93	75-09-2	2.68	2.7	100.9
trans-1,2-dichloroethene	1.03	10.30	96.94	156-60-5	2.58	2.62	101.7
trans-1,2-dichloroculenc	1.05	10.50	88.15	1634-04-4	2.63	2.76	105.1
methyl tert butyl ether	1.05	10.50	86.18	110-54-3	2.63	2.76	105.1
hexane	1.06	10.60	98.96	107-06-2	2.65	2.73	103.0
1,1-dichloroethane	1.07	10.70	86.09	108-05-4	2.68	2.96	110.7
vinyl acetate	1.08	10.80	72.11	78-93-3	2.70	2.67	98.9
2-butanone	1.08	10.80	96.94	156-59-2	2.70	2.75	101.9
cis-1,2-dichloroethene	1.00	10.00	88.11	141-78-6	2.50	2.45	98.0
ethyl acetate	1.00	10.00	119.38	67-66-3	2.50	2.68	107.2
chloroform	1.06	10.60	72.11	109-99-9	2.65	2.77	104.5
tetrahydrofuran	1.00	10.00	72.11	10, ,, , ,	0.00	2.5	#DIV/0! ###
Internal standard	4.05	10.50	133.4	71-55-6	2.63	2.58	98.3
1,1,1-trichloroethane	1.05	10.50	84.16	110-82-7	2.65	2.64	99.6
cyclohexane	1.06	10.60		56-23-5	2.63	2.63	100.2
carbon tetrachloride	1.05	10.50	153.82		2.68	2.62	97.9
1.2-dichloroethane	1.07	10.70	98.96	107-06-2	2.68	2.65	99.1
benzene	1.07	10.70	78.11	71-43-2		2.67	100.8
heptane	1.06	10.60	100.2	142-82-5	2.65	2.87	94.1
trichloroethylene	1.05	10.50	131.39	79-01-6	2.63		101.9
1.2-dichloropropane	1.06	10.60	112.99	78-87-5	2.65	2.7	
1,4-dioxane	1.05	10.50	88.11	123-91-1	2.63	1.77	67.4 # № ′
bromodichloromethane	1.05	10.50	163.83	75-27-4	2.63	2.57	97.9
cis-1,3-dichloro-1-propene	1.04	10.40	110.97	10061-01-5	2.60	2.59	99.6
4-methyl-2-pentanone	1.08	10.80	100.16	108-10-1	2.70	2.57	95.2
toluene	1.08	10.80	92.14	108-88-3	2.70	2.78	103.0
trans-1,3-dichloro-1-propene	1.10	11.00	110.97	10061-02-6	2.75	2.88	104.7
1,1,2-trichloroethane	1.04	10.40	133.4	79-00-5	2.60	2.56	98.5
tetrachloroethene	1.05	10.50	165.83	127-18-4	2.63	2.47	94.1
	1.09	10.90	100.16	591-78-6	2.73	2.48	91.0
2-hexanone	1.04	10.40	208.28	124-48-1	2.60	2.58	99.2
dibromochloromethane	1.05	10.50	187.86	106-93-4	2.63	2.52	96.0
1,2-dibromoethane					0.00	2.5	#DIV/0! ###
Internal standard	1.07	10.70	112.56	108-90-7	2.68	2.6	97.2
chlorobenzene	1.07	10.70	106.17	100-41-4	2.68	2.68	100.2
ethylbenzene	2.10	21.00	106.17	1330-20-7	5.25	5.31	101.1
M+P xylene	1.05	10.50	106.17	95-47-6	2.63	2.62	99.8
O xylene		10.50	104.15	100-42-5	2.65	2.59	97.7
styrene	1.06		252.73	75-25-2	2.63	2.48	94.5
bromoform	1.05	10.50	232.15	15-25-2	0.00	2.55	#DIV/0! ###
Surrogate standard			1/7 05	79-34-5	2.63	2.25	85.7
1,1,2,2-tetrachloroethane	1.05	10.50	167.85		2.03	2.23	92.1
4-ethyltoluene	1.09	10.90	120.19	622-96-8	2.73	2.51	97.7
1,3,5-trimethylbenzene	1.06	10.60	120.19	108-67-8		2.59	
1,2,4-trimethylbenzene	1.04	10.40	120.19	95-63-6	2.60		
1,3-dichlorobenzene	1.06	10.60	147	541-73-1	2.65	2.42	
1,4-dichlorobenzene	1.05	10.50	147	106-46-7	2.63	2.48	
benzyl chloride	1.06	10.60	126.59	100-44-7	2.65	2.33	
1,2-dichlorobenzene	1.02	10.20	147	95-50-1	2.55	2.31	
1,2,4-trichlorobenzene	1.00	10.00	181.45	120-82-1	2.50	2.45	
hexachlorobutadiene	1.02	10.20	260.76	87-68-3	2.55	2.33	91.4
ICARCHOLODURALISTIC							

		4A			EPA S	AMPLE NO.
	VO	LATILE METHOD BLA	NK SUMMA	ARY		
Lab Name:	CAS/ROCH		Contract:	MAL		VBLK1
Lab Code:	10145	Case No.: R8-46926	SAS No	.: SI	DG No.:	R2846926
Lab File ID:	A6084.D		Lat	o Sample ID:	CLNBLI	< 1.0
Date Analyze	ed: 11/15/2008		Tin	ne Analyzed:	0:53	
GC Column:	DB-624 ID:	0.25 (mm)	He	eated Purge: (Y/N)	N
Instrument II	D: MS#9					

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS AND MSD:

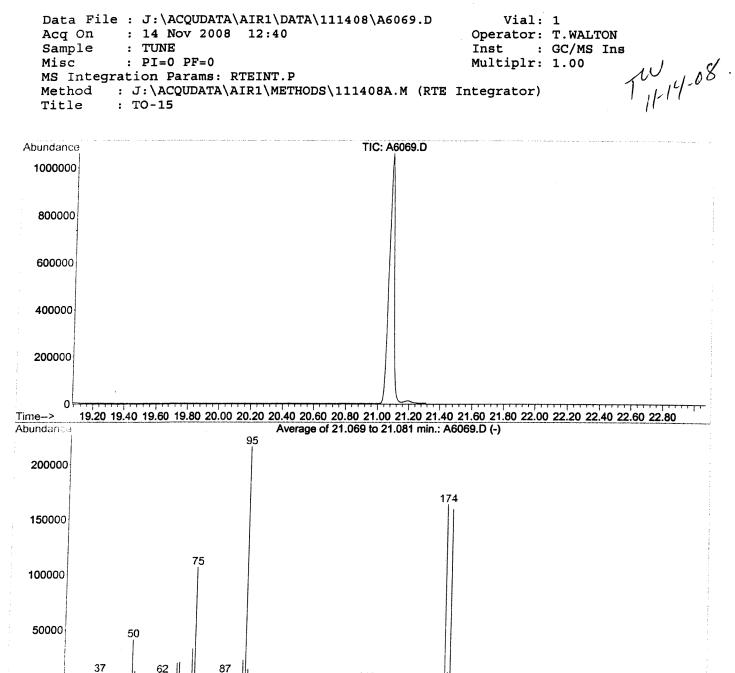
	EPA SAMPLE NO.	LAB SAMPLE ID	LAB FILE ID	TIME ANALYZED
01	LCS1	LCS 1.0	A6082.D	23:12
02	FRANKLIN OA	1150201 1.0	A6088.D	4:16
03	FRANKLIN SS	1150195 5.0	A6089.D	5:01
04	FRANKLIN BA1	1150196 20.0	A6090.D	5:47
05	FRANKLIN BA2	1150197 10.0	A6091.D	6:32
06	FRANKLIN BA3	1150198 10.0	A6092.D	7:17

COMMENTS:

VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

5A

Lab Name:	CAS/ROCH		Cont	ract: MAL		
Lab Code:	10145	Case No.: R8	3-46926 SA	AS No.:	SDG N	lo.: R2846926
Lab File ID:	A6069.D			BFB Injecti	ion Date:	11/14/2008
Instrument I	D: MS#9			BFB Injecti	ion Time:	12:40
GC Column:	DB-624	ID: 0.25 (mr	m)	Heated Pu	rge: (Y/N)	<u>N</u>
					%	RELATIVE
m/e ION ABUNDANCE CRITERIA					AE	SUNDANCE
50 8	.0 - 40.0% of m	nass 95			1	9.2


49.3 75 30.0 - 66.0% of mass 95 100.0 Base peak, 100% relative abundance 95 6.8 5.0 - 9.0% of mass 95 96 0.4 (0.5)1 Less than 2.0% of mass 174 173 75.7 50.0 - 120.0% of mass 95 174 7.2)1 5.4 (4.0 - 9.0% of mass 174 175 73.6 (97.3)1 93.0 - 101.0% of mass 174 176 4.9 (6.7)2 5.0 - 9.0% of mass 176 177

1-Value is % mass 174

2-Value is % mass 176

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

Γ	EPA	LAB	LAB	DATE	TIME
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED	ANALYZED
01	VBLK-CAL	METBLK 1.0	A6071.D	11/14/2008	14:45
02	0.02 PPB	0.02 PPB	A6072.D	11/14/2008	15:31
02	0.095 PPB	0.095 PPB	A6073.D	11/14/2008	16:16
03	0.20 PPB	0.20 PPB	A6074.D	11/14/2008	17:01
04	0.50 PPB	0.50 PPB	A6075.D	11/14/2008	17:46
06	1.0 PPB	1.0 PPB	A6076.D	11/14/2008	18:31
07	2.5 PPB	2.5 PPB	A6077.D	11/14/2008	19:16
08	5.0 PPB	5.0 PPB	A6078.D	11/14/2008	20:02
09	7.5 PPB	7.5 PPB	A6079.D	11/14/2008	20:50
10	10.0 PPB	10.0 PPB	A6080.D	11/14/2008	21:41
11	ICV	ICV	A6081.D	11/14/2008	22:26

143 155 106 117 128 191 253 2650 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 30 40 50 m/z-->

AutoFind: Scans 2649, 2650, 2651; Background Corrected with Scan 2637

Target Mass	Rel. to Mass	Lower Limit%	Upper Limit%	Rel. Abn%	Raw Abn	Result Pass/Fail
50	95	8	40	19.2	41519	PASS
75	95	30	66	49.3	106797	PASS
95	95	100	100	100.0	216683	PASS
96	95	5	9	6.8	14675	PASS
173	174	0.00	2	0.5	852	PASS
174	95	50	120	75.7	163989	PASS
175	174	4	9	7.2	11771	PASS
176	174	93	101	97.3	159531	PASS
177	176	5	9	6.7	10693	PASS
•	, , , , , , , , , , , , , , , , , , ,					

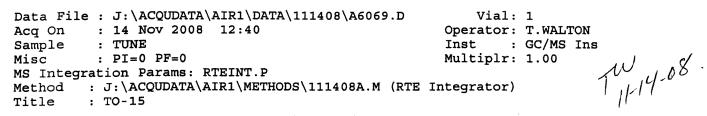
A6069.D 111408A.M

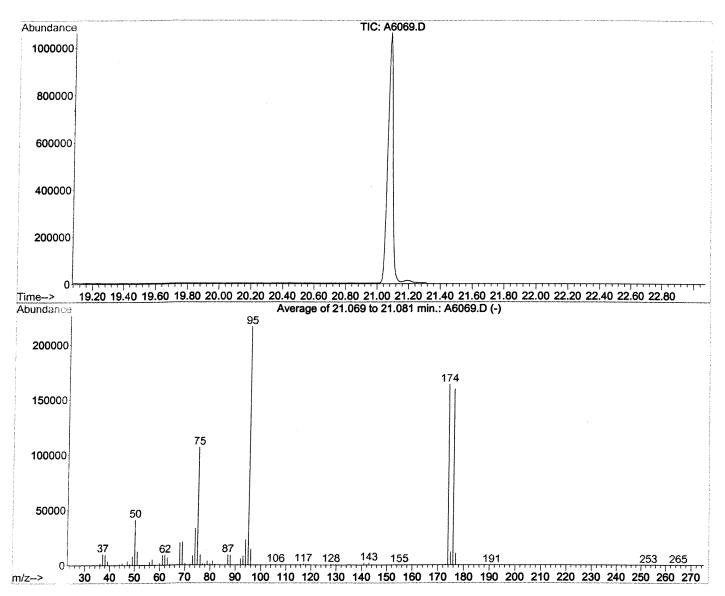
0

Fri Nov 14 13:02:09 2008 OFFLINE

VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

5A


Lab Code: 10145 Case No.: R8-46926 SAS No.: SDG No.: R284 Lab File ID: A6069.D BFB Injection Date: 11/14/200 Instrument ID: MS#9 BFB Injection Time: 12:40 GC Column: DB-624 ID: 0.25 (mm) Heated Purge: (Y/N) N	08
Instrument ID: MS#9 BFB Injection Time: 12:40	
Instrument ID: MS#9 BFB Injection Time: 12:40	
	_
% RELATIV	E
m/e ION ABUNDANCE CRITERIA ABUNDANC	E
50 8.0 - 40.0% of mass 95 19.2	
75 30.0 - 66.0% of mass 95 49.3	
95 Base peak, 100% relative abundance 100.0	
96 5.0 - 9.0% of mass 95 6.8	
173 Less than 2.0% of mass 174 0.4 (0.5)1
174 50.0 - 120.0% of mass 95 75.7	
175 4.0 - 9.0% of mass 174 5.4 (7.2)1
	97.3)1
177 5.0 - 9.0% of mass 176 4.9 (6.7)2


1-Value is % mass 174

2-Value is % mass 176

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

	EPA	LAB	LAB	DATE	TIME
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED	ANALYZED
01	CCV1	5.0 PPB	A6078.D	11/14/2008	20:02
01	LCS1	LCS 1.0	A6082.D	11/14/2008	23:12
02	VBLK1	CLNBLK 1.0	A6084.D	11/15/2008	0:53
03	FRANKLIN OA	1150201 1.0	A6088.D	11/15/2008	4:16
04	FRANKLIN SS	1150195 5.0	A6089.D	11/15/2008	5:01
05	FRANKLIN BA1	1150196 20.0	A6090.D	11/15/2008	5:47
	FRANKLIN BA2	1150197 10.0	A6091.D	11/15/2008	6:32
07 08	FRANKLIN BA3	1150198 10.0	A6092.D	11/15/2008	7:17

AutoFind: Scans 2649, 2650, 2651; Background Corrected with Scan 2637

Target Mass	Rel. to Mass	Lower Limit%	Upper Limit%	Rel. Abn%	Raw Abn	Result Pass/Fail	
50	95	8	40	19.2	41519	PASS	
75	95	30	66	49.3	106797	PASS	
95	95	100	100	100.0	216683	PASS	
96	95	5	9	6.8	14675	PASS	
173	174	0.00	2	0.5	852	PASS	
174	95	50	120	75.7	163989	PASS	
175	174	4	9	7.2	11771	PASS	
176	174	93	101	97.3	159531	PASS	
177	176	5	9	6.7	10693	PASS	

8A VOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab N	ame: CAS/ROCI	4		Contract: <u>N</u>	IAL	_	
Lab C		Case No.:	R8-46926	SAS No.:	SDG N	o.: R2846926	
	ile ID (Standard):	A6078.D			Date Analyzed:	11/14/2008	
	ment ID: MS#9				Time Analyzed:	20:02	
	olumn: DB-624	ID: 0.25	(mm)		Heated Purge: (Y/N) N	
ſ		IS1		IS2		IS3	
		AREA #	RT #	AREA #	RT #	AREA #	RT #
	12 HOUR STD	200909	12.24	773231	13.90	641830	18.98
	UPPER LIMIT	281273	12.74	1082523	14.40	898562	19.48
	LOWER LIMIT	120545	11.74	463939	13.40	385098	18.48
	EPA SAMPLE						
	NO.						
01	LCS1	205030	12.24	833045	13.90	701447	18.98
02	VBLK1	201122	12.24	816510	13.91	680797	18.98
03	FRANKLIN OA	198834	12.24	803646	13.91	677017	18.98
04	FRANKLIN SS	193881	12.24	789255	13.91	671242	18.98
05	FRANKLIN BA1	196469	12.24	784818	13.91	656253	18.98
06	FRANKLIN BA2	187036	12.26	732426	13.92	613671	18.98
07	FRANKLIN BA3	185640	12.24	723997	13.90	607203	18.98

- IS1 = bromochloromethane
- IS2 = 1,4-difluorobenzene
- IS3 = chlorobenzene-d5

AREA UPPER LIMIT = +40% of internal standard area AREA LOWER LIMIT = - 40% of internal standard area RT UPPER LIMIT = +0.50 minutes of internal standard RT RT LOWER LIMIT = -0.50 minutes of internal standard RT

Column to be used to flag values outside QC limit with an asterisk.

* Values outside of contract required QC limits

Method: EPA TO-15 Matrix: Air Instrument: GC/MS #9

Column: DB-624, 60m x 0.25mm x 1.4um Instrument Analyst: Tom Walton

Raw Data

Analyte	.	Spike			- Duu							1	N
	Date	ippavi 1	7 3	•	•	6 7 8	9 Avg (pphy)	Mean MeRec MaRSD 0	MDL. (ppby)	MRL (ppbv)	Eval		Y
bromochloromethane	4/25/2008	2.5000 2.500	2.5000 2.500	0 2.5000	2.5000	2.5000 2.5000	2.5000	100.00 0.00 0.0000				1	s #
propylene	4/25/2008	0.0208 0.000	0.0000 0.000	0 0.0000	0.0000	0.0000 0.0000	0.0000	0.00 #DIV/0! 0.0000	0.0000		re-check		
dichlorodifluoromethane	4/25/2008	0.0202 0.027	3 0.0287 0.030	8 0.0276	0.0283	0.0282 0.0282	0.0285	141.16 3.75 0.0011	0.0000	0.220	re-check	NT/NC	
freon-114	4/25/2008	0.0202 0.022	0.0220 0.023	9 0.0206	0.0217	0.0216 0.0216	0.0219	108.56 4.54 0.0010	0.0034	0.220		4	
chloromethane	4/25/2008	0.0202 0.024	5 0.0239 0.028	1 0.0245	0.0260	0.0249 0.0235	0.0251	124.12 6.19 0.0016	0.0032	0.220		4	
vinyl chloride	4/25/2008	0.0202 0.020	2 0.0197 0.023	7 0.0183	0.0213	0.0205 0.0203	0.0206	101.84 8.05 0.0017	0.0049	0.220]	
1,3-butadiene	4/25/2008	0.0218 0.021	7 0.0196 0.020	6 0.0191	0.0194	0.0199 0.0208	0.0202	92.46 4.55 0.0009	0.0032			4	
bromomethane	4/25/2008	0.0204 0.023	3 0.0245 0.025	8 0.0246	0.0250	0.0263 0.0248	0.0249	122.06 3.88 0.0010	0.0029	0.220		4	
chloroethane	4/25/2008	0.0202 0.022	5 0.0212 0.026	2 0.0220	0.0231	0.0228 0.0203	0.0226	111.81 8.26 0.0019	0.0031	0.110		4	
trichlorofluoromethane	4/25/2008	0.0198 0.023	1 0.0218 0.024	9 0.0226	0.0228	0.0229 0.0214	0.0228	115.08 4.91 0.0011	0.0039	0.110		-	
ethanol	4/25/2008	0.0206 0.000	0.0000 0.000	0 0.0000	0.0000	0.0000 0,0000	0.0000	0.00 #DIV/0! 0.0000	0.0000	0.110	ok re-check		
freon-113	4/25/2008	0.0212 0.022	2 0.0216 0.024	6 0.0212	0.0229	0.0225 0.0225	0.0225	106.13 4.86 0.0011	0.0000	0.022	and the second se		
1,1-dichloroethene	4/25/2008	0.0216 0.019	3 0.0205 0.020	8 0.0187	0.0193	0.0186 0.0200	0.0196	90.74 4.37 0.0009	0.0033	0.022		-	
acetone	4/25/2008	0.0206 0.153	4 0.1974 0.180	1 0.1781	0.1937	0.1534 0.1593	0.1736	842.86 10.65 0.0185	0.0586	0.550		-	
isopropanol	4/25/2008	0.0220 0.000	0.0000 0.000	0 0.0000	0.0000	0.0000 0.0000	0.0000	0.00 #DIV/0! 0.0000	0.0000	0.000	re-check		
carbon disulfide	4/25/2008	0.0208 0.020	8 0.0203 0.023	8 0.0208	0.0213	0.0219 0.0209	0.0214	102.88 5.46 0.0012	0.0037	0.110			
methylene chloride	4/25/2008	0.0214 0.027	9 0.0264 0.027	4 0.0274	0.0291	0.0280 0.0274	0.0277	129.24 2.97 0.0008	0.0026	0.110		-	
trans-1,2-dichloroethene	4/25/2008	0.0206 0.016	6 0.0156 0.017	1 0.0159	0.0153	0.0161 0.0159	0.0161	78.02 3.78 0.0006	0.0019		re-check	**	
methyl tert butyl ether	4/25/2008	0.0210 0.012	2 0.0111 0.012	0 0.0103	0.0110	0.0113 0.0112	0.0113	53.81 5.64 0.0006	0.0020	0.220		**	
hexane	4/25/2008	0.0210 0.013	1 0.0127 0.013	6 0.0118	0.0130	0.0132 0.0126	0.0129	61.22 4.44 0.0006	0.0018	0.220		**	
1,1-diclethane	4/25/2008	0.0212 0.022	1 0.0197 0.024	3 0.0201	0.0218	0.0207 0.0200	0.0212	100.20 7.67 0.0016	0.0052	0.110		1	
vinyl acetate	4/25/2008	0.0214 0.293	7 0.2917 0.293	4 0.2911	0.2935	0.2927 0.2930	0.2927	1367.89 0.34 0.0010	0.0031	0.550		4,	
2-butanone	4/25/2008	0.0216 0.177	0 0.1766 0.179	4 0.1814	0.1863	0.1812 0.1791	0.1801	833.99 1.82 0.0033	0.0104	0.220		1.	
cis-1,2-dichloroethene	4/25/2008	0.0216 0.014	4 0.0129 0.015	1 0.0142	0.0158	0.0144 0.0154	0.0146	67.59 6.53 0.0010	0.0030	0.110	the second se	15	
ethyl acetate	4/25/2008					0.0222 0.0216	0.0220	110.14 5.58 0.0012	0.0039	0.220		1	
chloroform	4/25/2008	0.0200 0.020				0.0202 0.0198	0.0207	103.50 5.61 0.0012	0.0037	0.110		1	
tetrahydrofuran	4/25/2008	0.0212 0.008	3 0.0044 0.004	2 0.0044	0.0051	0.0043 0.0044	0.0050	23.65 29.48 0.0015	0.0047	0.220	And the second sec	1	
1,4-difluorobenzene	4/25/2008	2.5000 2.500	0 2.5000 2.500	0 2.5000	2.5000	2.5000 2.5000	2.5000	100.00 0.00 0.0000	0.0000		re-check	INA	
1,1,1-trichloroethane	4/25/2008	0.0210 0.024	1 0.0214 0.024	8 0.0217	0.0234	0.0232 0.0230	0.0231	109.93 5.26 0.0012	0.0038	0.110		1	
cyclohexane	4/25/2008	0.0212 0.013	4 0.0130 0.013	9 0.0119	0.0124	0.0126 0.0112	0.0126	59.57 7.21 0.0009	0.0029	0.220		1	
carbon tetrachloride	4/25/2008	0.0210 0.021	0 0.0216 0.024	5 0.0206	0.0203	0.0215 0.0200	0.0214	101.70 7.05 0.0015	0.0048	0.022		1	
1,2-dichloroethane	4/25/2008					0.0200 0.0204	0.0212	99.27 7.72 0.0016	0.0052	0.110		1	
benzene	4/25/2008	0.0214 0.020	1 0.0193 0.021	0 0.0180	0.0195	0.0181 0.0189	0.0193	90.05 5.55 0.0011	0.0034	0.110		1	
heptane	4/25/2008	0.0212 0.009	0.0089 0.009	7 0.0076	0.0099	0.0091 0.0088	0.0090	42.45 8.27 0.0007	0.0024	0.220	ok	1	
trichloroethene	4/25/2008					0.0170 0.0176	0.0182	86.80 6.42 0.0012	0.0037	0.022		1	
1,2-diclpropane	4/25/2008					0.0188 0.0190	0.0201	94.68 6.69 0.0013	0.0043	0.110		1	
1,4-dioxane	4/25/2008					0.0000 0.0000	0.0000	0.00 #DIV/0! 0.0000	0.0000		re-check	INT/NC	
bromodichloromethane	4/25/2008					0.0210 0.0212	0.0216	102.86 4.38 0.0009	0.0030	0.022		1	
										1	L	1	

#

Method: EPA TO-15 Matrix: Air Instrument: GC/MS #9

Column: DB-624, 60m x 0.25mm x 1.4um Instrument Analyst: Tom Walton

Raw Data

																			N
Analyte	Date	Spike 1 (ppbv) 1	1		•	4	•	- 7	8 9	Ave (pph		Mean	MRSD		MDA	MRL	Eval		Ŷ
cis-1,3-dichloropropene	4/25/2008	0.0208 0.0130	0.0122	0.0126	0.04.04	0.04.04	0.04.00				፼ 8	Saffee		σ	(pphy)	(ppbv)	LNEI		S
4-methyl-2-pentanone	4/25/2008	0.0216 0.0202	0.0122	0.0130	0.0121	0.0121	0.0123	0.0113	F	0.0124		59.48	5.93	0.0007	0.0023	0.220	ok	l	
toluene	4/25/2008	0.0216 0.0146	0.0200	0.0219	0.0199	0.0185	0.0201	0.0206	L	0.0202		93.45	4.85	0.0010	0.0031	0.220	ok	L	
trans-1,3-dichloropropene	4/25/2008	0.0202 0.1011	0.0997	0.0145						0.013		62.43	5.94	0.0008	0.0025	0.110	ok		
1,1,2-trichloroethane	4/25/2008	0.0208 0.0174				0.0992				0.0999		494.41	0.75	0.0007	0.0024	0.110	ok	L	
tetrachloroethene	4/25/2008	0.0210 0.0183			0.0156	0.0100	0.0178	0.0175	ļ	0.017		85.03	7.86	0.0014	0.0044	0.110	ok	l	
2-hexanone	4/25/2008	0.0218 0.0654	0.0635	0.0109	0.0171	0.0171	0.0160	0.0166		0.017		81.43	6.79	0.0012	0.0037	0.022	ok	1	
dibromochloromethane	4/25/2008	0.0208 0.0180	0.0167	0.0000	0.0022	0.0010	0.0040	0.0642		0.063		292.14	2.57	0.0016	0.0052	0.110	ok	L	
1,2-dibromoethane	4/25/2008	0.0210 0.0162	0.0148	0.0200		0.0189				0.017		85.78	8.30	0.0015	0.0047	0.022	ok	1	
chlorobenzene-d5	4/25/2008	2.5000 2.5000	2,5000	2 5000	2 5000	2 5000	2 5000	2 5000	-	0.015		72.65	9.82	0.0015	0.0048	0.022	ok	ĺ	
chlorobenzene	4/25/2008	0.0214 0.0220	0.0203		0.0197				· -	2.500		100.00	0.00	0.0000	0.0000		re-check	NA	
ethylbenzene	4/25/2008		0.0128				0.0210			0.020		97.66	5.91	0.0012	0.0039	0.110	ok	1	
M+P xylene	4/25/2008		0.0226						-	0.013		61.88	8.33	0.0011	0.0035	0.220	ok	1	
O xylene	4/25/2008	0.0210 0.0123							-	0.023		55.95	6.98	0.0016	0.0052	0.440	ok	l	
styrene	4/25/2008	0.0212 0.0091	0.0087	0.0090	0.0085	0.0074	0.0082	0.0076	\vdash	0.008		<u>53.33</u> 39.42	8.09 7.90	0.0009	0.0029	0.220	ok	l	
bromoform	4/25/2008	0.0210 0.0180	0.0147	0.0182		0.0165			-					0.0007	0.0021	0.220	re-check		
surr 1, bromofluorobenzene	4/25/2008		2.0933						F	0.016		78.37	7.71	0.0013	0.0040	0.110			
1,1,2,2-tetrachloroethane	4/25/2008	0.0210 0.0256	0.0210	0.0232	0.0101	0.0216			-	2.097		83.89	0.87	0.0182	0.0577		re-check	NA	
4-ethyltoluene	4/25/2008	0.0218 0.0120			0.0087				-	0.022		104.69	9.22	0.0020	0.0064	0.022	ok	ĺ	
1,3,5-trimethylbenzene	4/25/2008		0.0093						ļ.,	0.009		45.48	11.87	0.0012	0.0037	0.220	ok	1	
1,2,4-trimethylbenzene	4/25/2008	0.0208 0.0112			0.0088				F	0.009		46.43	9.58	0.0009	0.0030	0.220	ok	1	
1,3-dclbenz	4/25/2008	0.0212 0.0147							- F	0.009		45.81	9.78	0.0009	0.0030	0.220	ok	1	
1,4-dclbenz									- F	0.012	╧┥┝╸	58.63	11.99	0.0015	0.0047	0.220	ok		
•	4/25/2008	0.0210 0.014								0.011		55.92	12.45	0.0015	0.0046	0.220	ok	Į	
benzyl chloride	4/25/2008	0.0212 0.000							Ļ	0.000		0.00	#DIV/0!	0.0000	0.0000		re-check	NT/NC	;
1,2-dclbenz	4/25/2008	0.0204 0.014				0.0092			Ļ	0.012	_ +	58.96	13.33	0.0016	0.0051	0.220		1	
1,2,4-trichlorobenzene	4/25/2008		0.0000						L	0.000	니니	0.00	#DIV/0!	0.0000	0.0000	0.220	re-check	NT/NC	;
hexachlorobutadiene	4/25/2008	0.0204 0.000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.000	0	0.00	#DIV/0!	0.0000	0.0000	0.220	re-check	NT/NC	;

Data Files

A4793 A4795 A4797 A4799 A4801 A4803 A4805

NA - Not applicable for internal or surrogate standards

NT/NC -compound is not a target compound and is not calibrated for this MDL study.

L - Compound is calibrated with a linear fit.

** The calculated MDL is below the instrument reporting limit of 0.01 ppb, the MDL study will not be repeated at a lower level.

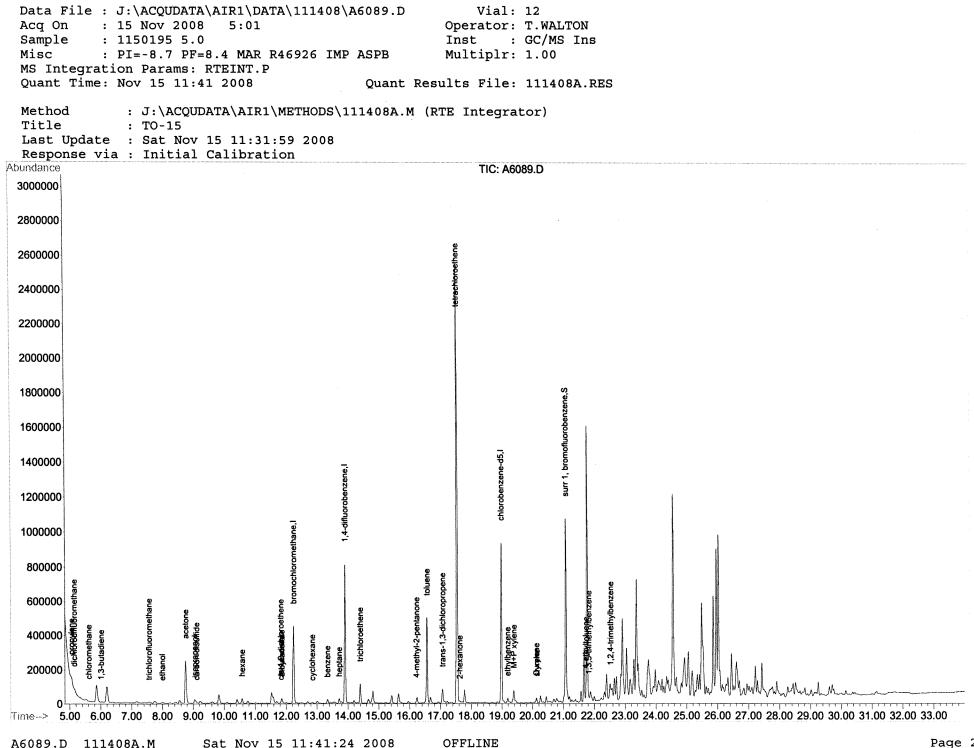
VOLATILE ORGANICS

SAMPLE DATA

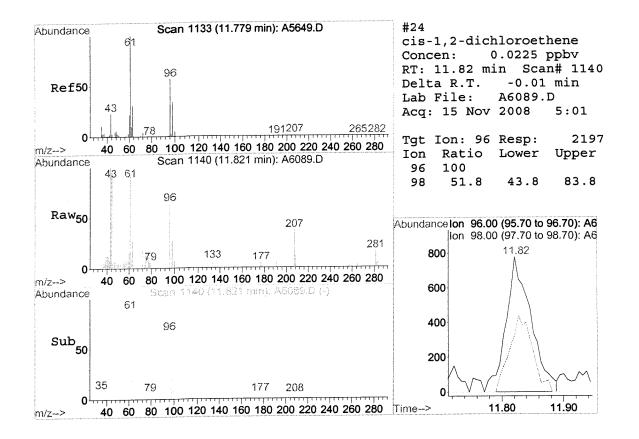
00022

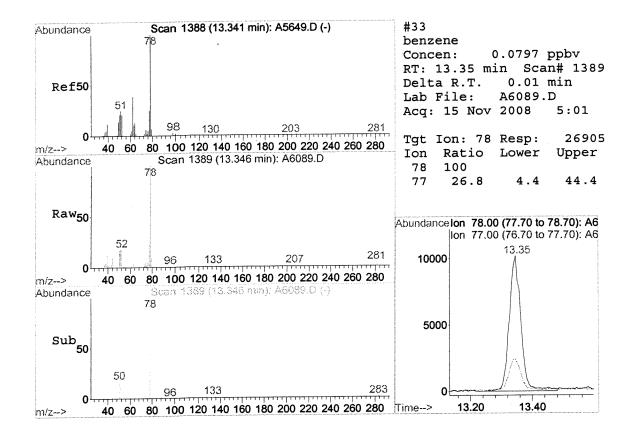
COLUMBIA ANALYTICAL SERVICES

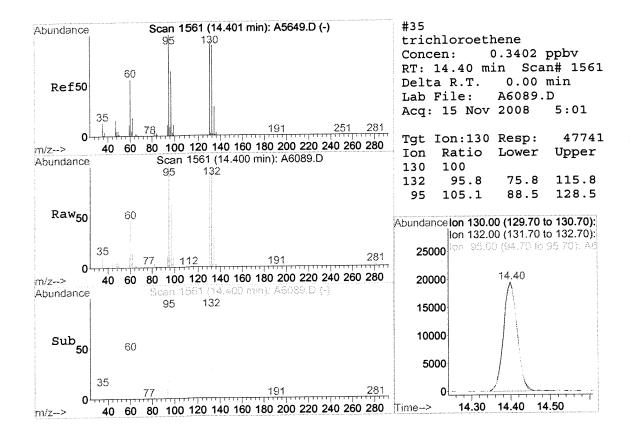
VOLATILE ORGANICS METHOD TO-15 Reported: 12/01/08

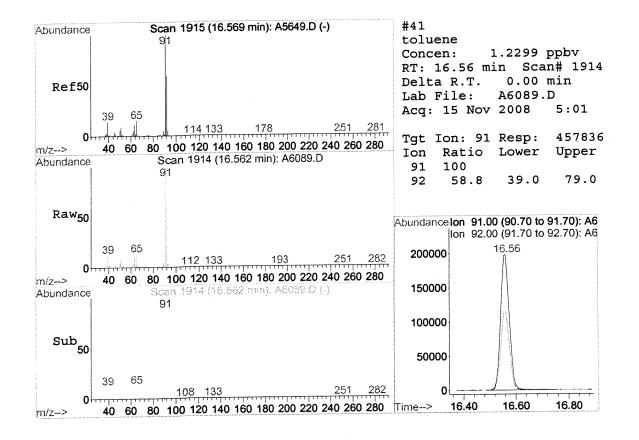

Malcolm Pirnie, Inc. Project Reference: FRANKLIN PROJECT #0266-377 Client Sample ID : 267 FRANKLIN SS

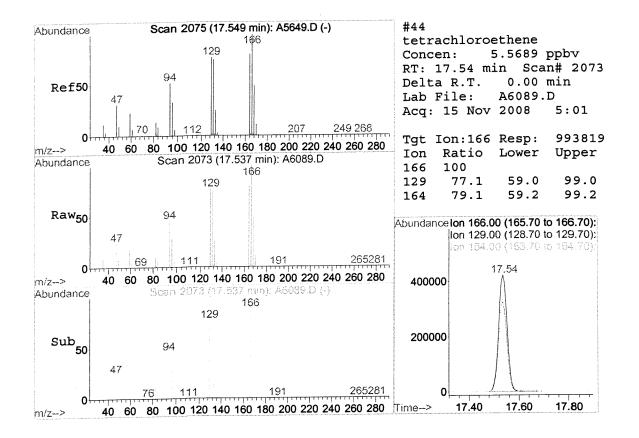
 Date Sampled : 10/29/08 11:20 Order #: 1150195
 Sample Matrix: AIR

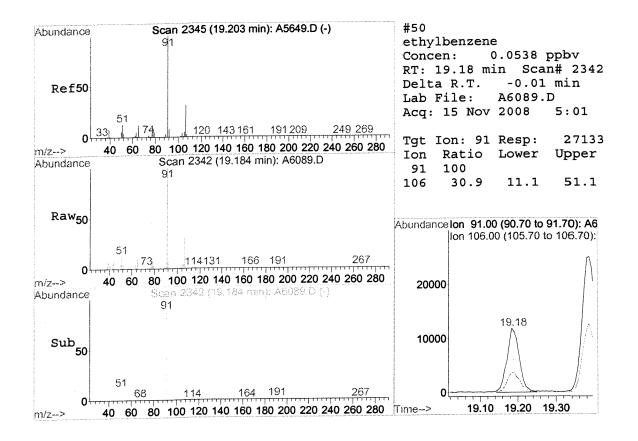

 Date Received: 10/30/08
 Submission #: R2846926
 Analytical Run 170221

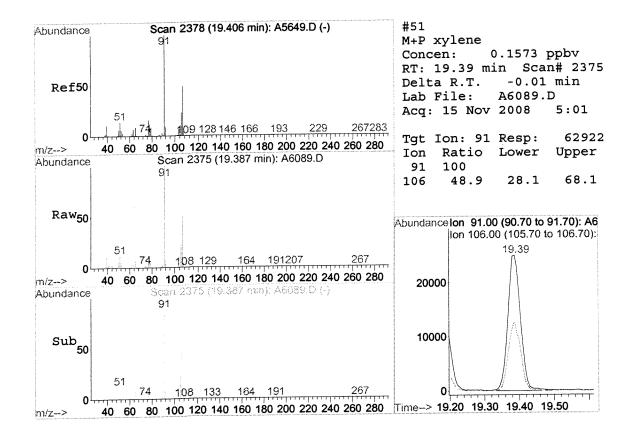

DATE ANALYZED : 11/15/0	8				
MMDIIICID DIDOILOIN		Pf= 8.4			
CAN DILUTION : 1		11- 0.1			
	MRL	RESULT	MRL	RESULT	
ANALYTE	UG/M3	UG/M3	PPBv	PPBv	
		<u> </u>			
BENZENE	0.35	2.3 J	0.11	0.72 J	
1,1-DICHLOROETHENE	0.44	3.9 U	0.11	1.00 U	
TRANS-1,2-DICHLOROETHENE	0.44	3.9 U	0.11	1.00 U	
CIS-1,2-DICHLOROETHENE	0.44	0.81 J	0.11	0.20 J	
ETHYLBENZENE	0.95	2.1 J	0.22	0.49 J	
METHYLENE CHLORIDE	0.38	3.5 U	0.11	1.00 U	
TETRACHLOROETHENE	0.15	340	0.022	50	
TOLUENE	0.41	42	0.11	11	
1,1,1-TRICHLOROETHANE	0.60	5.4 U	0.11	1.00 U	
TRICHLOROETHENE	0.12	17	0.022	3.1	
VINYL CHLORIDE	0.28	2.5 U	0.11	1.00 U	
O-XYLENE	0.95	1.7 J	0.22	0.40 J	
M+P-XYLENE	1.9	6.2 J	0.44	1.4 J	
SURROGATE RECOVERIES	QC LIMITS				
BROMOFLUOROBENZENE	(70 - 130 %)	101	90 10		

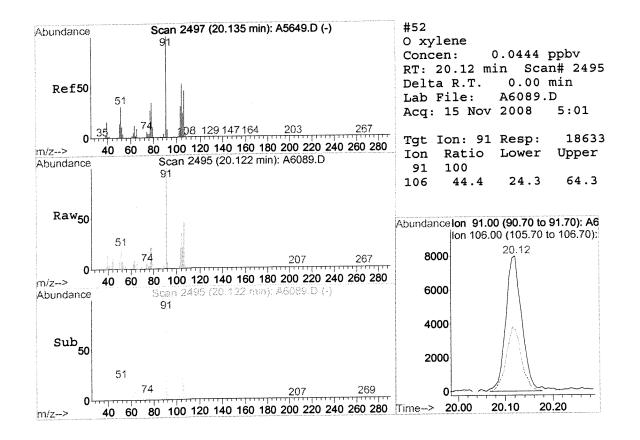

(Not Reviewed) Quantitation Report TW-17-08. Data File : J:\ACQUDATA\AIR1\DATA\111408\A6089.D Vial: 12 Operator: T.WALTON Acq On : 15 Nov 2008 5:01 Inst : GC/MS Ins : 1150195 5.0 Sample Misc : PI=-8.7 PF=8.4 MAR R46926 IMP ASPB Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Results File: 111408A.RES Quant Time: Nov 15 11:41 2008 Quant Method : J:\ACQUDATA\A...\111408A.M (RTE Integrator) Title : TO-15 Last Update : Sat Nov 15 11:31:59 2008 Response via : Initial Calibration DataAcq Meth : 111408A R.T. QIon Response Conc Units Dev(Min) Internal Standards 1) bromochloromethane12.241301938812.5000 ppbv0.0028) 1,4-difluorobenzene13.911147892552.5000 ppbv0.0048) chlorobenzene-d518.981176712422.5000 ppbv0.00 System Monitoring Compounds 55) surr 1, bromofluorobenzene 21.08 174 385393 2.53 ppbv 0.00 Spiked Amount 2.500 Range 70 - 130 Recovery = 101.07% Qvalue2) propylene5.0641314980.2759ppbv933) dichlorodifluoromethane5.1585202910.0737ppbv995) chloromethane5.625019450.0180ppbv# 427) 1,3-butadiene6.015428190.0301ppbv8810) trichlorofluoromethane7.56101106310.0392ppbv10011) ethanol7.9945189060.6751ppbv10014) acetone8.75435015002.6841ppbv9515) isopropanol9.0545494500.4359ppbv9616) carbon disulfide9.117675670.0259ppbv8820) hexane10.5857171680.0963ppbv9923) 2-butanone11.8643532900.2131ppbv9724) cis-1,2-dichloroethene11.829621970.0225ppbv85725) ethyl acetate11.8643534210.1742ppbv76 Qvalue Target Compounds >NT 24) C1S-1,2-G1CH10FORCHARE11.029021570.0225ppov8525) ethyl acetate11.8643534210.1742ppbv7630) cyclohexane12.855638000.0191ppbv#7933) benzene13.3578269050.0797ppbv95 $\sqrt{7}$ 34) heptane13.717171090.0579ppbv91 $\sqrt{7}$ 35) trichloroethene14.40130477410.3402ppbv9840) 4-methyl-2-pentanone16.2143113520.0355ppbv90 $\sqrt{7}$ 41) toluene16.56914578361.2299ppbv100 $\sqrt{7}$ 41) toluene16.56914578361.2299 ppbv100 J42) trans-1,3-dichloropropene17.07-7518780.0109 ppbv #6144) tetrachloroethene17.541669938195.5689 ppbv9945) 2-hexanone17.624365560.0212 ppbv86 MT50) ethylbenzene19.1891271330.0538 ppbv100 J51) M+P xylene19.3991629220.1573 ppbv99 J52) O xylene20.1291186330.0444 ppbv100 J53) styrene20.1310474560.0235 ppbv9557) 4-ethyltoluene21.72105112880.0194 ppbv100 J58) 1,3,5-trimethylbenzene21.8210574420.0156 ppbv94 (759) 1,2,4-trimethylbenzene22.54105245780.0526 ppbv100 J 86 MT 100 LNT 94 CNT

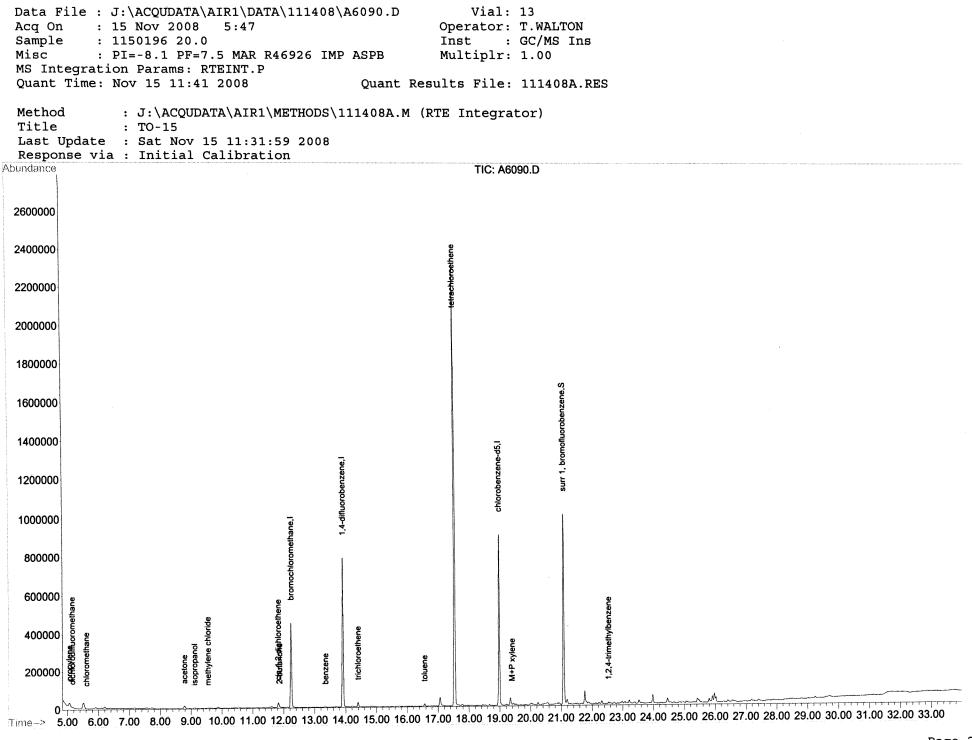



SSSS

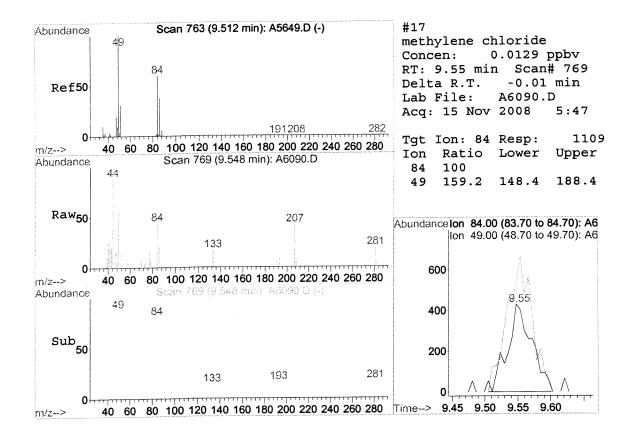




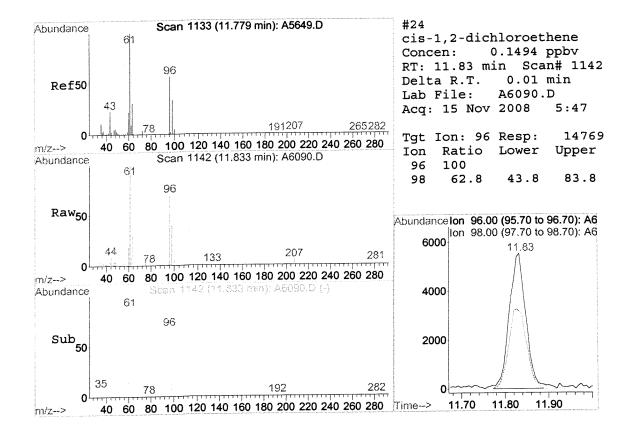


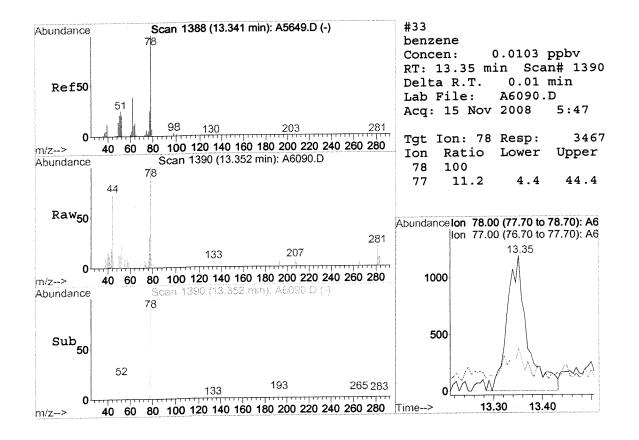

VOLATILE ORGANICS METHOD TO-15 Reported: 12/01/08

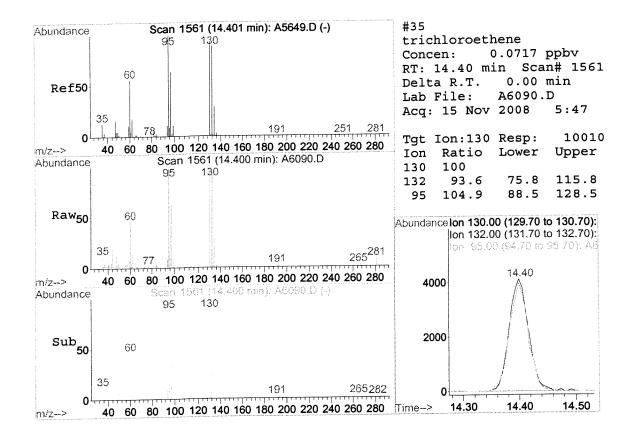
Malcolm Pirnie, Inc. Project Reference: FRANKLIN PROJECT #0266-377 Client Sample ID : 267 FRANKLIN BA1

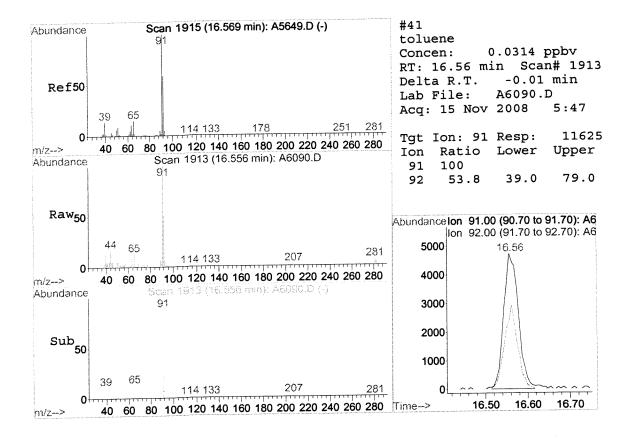

Date Sampled : 10/29/08 11:30 Order #: 1150196 Sample Matrix: AIR Date Received: 10/30/08 Submission #: R2846926 Analytical Run 170221

	08 0.00 1.72 Pi= -8.1	Pf= 7.5			
ANALYTE	MRL UG/M3	RESULT UG/M3	MRL PPBv	RESULT PPBv	
	0.25	1.1 J	0.11	0.35 J	
BENZENE	0.35 0.44	1.1 J 15 U	0.11	3.8 U	
1,1-DICHLOROETHENE	0.44	15 U	0.11	3.8 U	
TRANS-1, 2-DICHLOROETHENE		20	0.11	5.1	
CIS-1,2-DICHLOROETHENE	0.44				
ETHYLBENZENE	0.95	33 U	0.22	7.6 U	
METHYLENE CHLORIDE	0.38	1.5 JB	0.11	0.44 JB	
TETRACHLOROETHENE	0.15	1200	0.022	170	
TOLUENE	0.41	4.1 J	0.11	1.1 J	
1,1,1-TRICHLOROETHANE	0.60	21 U	0.11	3.8 U	
TRICHLOROETHENE	0.12	13	0.022	2.5	
VINYL CHLORIDE	0.28	9.7 U	0.11	3.8 U	
O-XYLENE	0.95	33 U	0.22	7.6 U	
M+P-XYLENE	1.9	1.8 J	0.44	0.41 J	
SURROGATE RECOVERIES	QC LIMITS				
BROMOFLUOROBENZENE	(70 - 130 %)	99	oto		

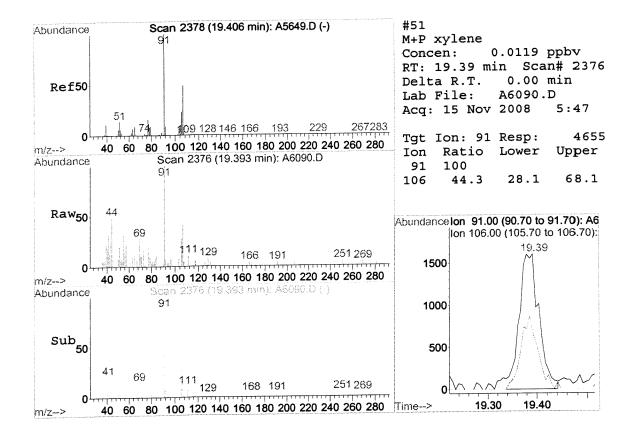

Quan	titatio	on Repo	ort (Not	Reviewed)	11-17-08.
Data File : J:\ACQUDATA\AIR1\DATA Acq On : 15 Nov 2008 5:47 Sample : 1150196 20.0 Misc : PI=-8.1 PF=7.5 MAR R4 MS Integration Params: RTEINT.P Quant Time: Nov 15 11:41 2008	6926 II	MP ASPI Qi	Upe Ins B Mul uant Result	Vial: 13 rator: T.WALTON t : GC/MS In tiplr: 1.00 s File: 111408A	I.S
Quant Method : J:\ACQUDATA\A\1 Title : TO-15 Last Update : Sat Nov 15 11:31:5 Response via : Initial Calibratic DataAcq Meth : 111408A	9 2008 m				
Internal Standards	R.T.	QIon	Response	Conc Units Dev	(Min)
 bromochloromethane 1,4-difluorobenzene chlorobenzene-d5 	13.91	114	196469 784818 656253	2.5000 ppbv	
System Monitoring Compounds 55) surr 1, bromofluorobenzene Spiked Amount 2.500 Ran	21.08 ge 70	174 - 130	368150 Recover	_	
Target Compounds				~	alue
2) propylene				0.0979 ppbv	# 64
3) dichlorodifluoromethane	5.16		5733		99
5) chloromethane	5.62		2845		$ \begin{array}{c} 81\\ 94\\ \end{array} \wedge \top $
14) acetone	8.78		29719	0.1570 ppbv 0.0580 ppbv	97
15) isopropanol	9.11		6664 1109		93 JB
17) methylene chloride	9.55 11.87		6093	0.0240 ppbv	95 NT
23) 2-butanone	11.87		14769		99
24) cis-1,2-dichloroethene	13.35		3467		73·J
33) benzene	14.40		10010	0.0717 ppbv	97
35) trichloroethene	16.56		11625	0.0314 ppbv	93 J
41) toluene 44) tetrachloroethene	17.54	166	893631	5.0358 ppbv	
51) M+P xylene	19.39		4655		
59) 1,2,4-trimethylbenzene	22.54	105	6122	0.0134 ppbv	96 NT

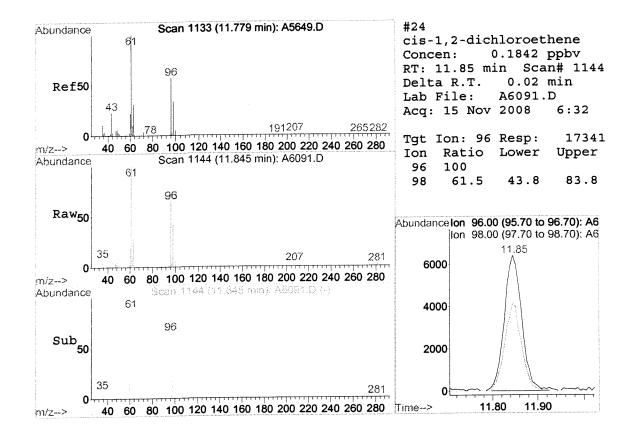


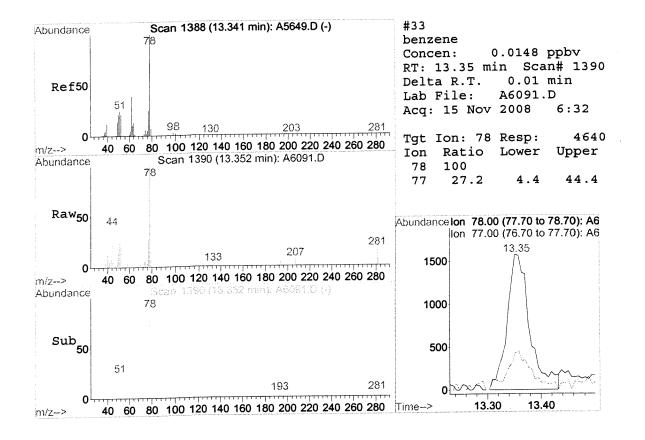

000000

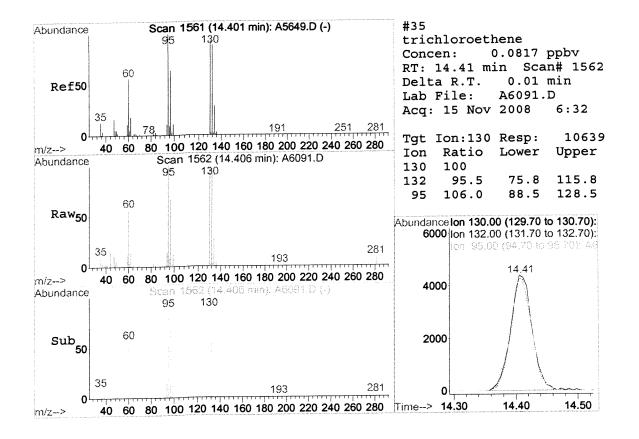


Mon Nov 17 10:49:04 2008

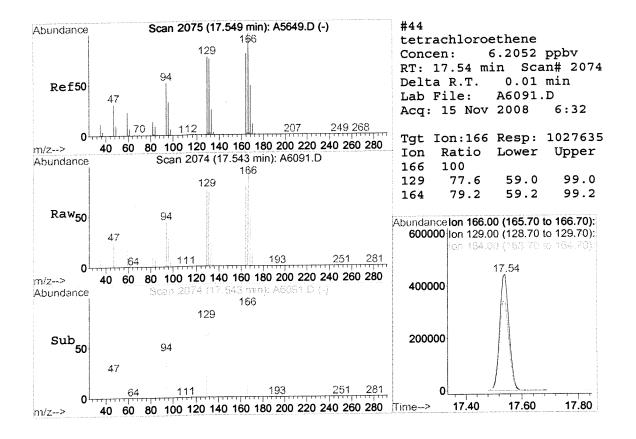


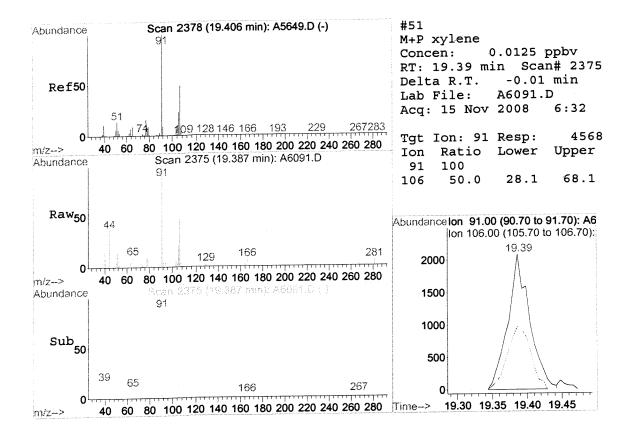

COLUMBIA ANALYTICAL SERVICES	METH	TILE ORGANIC: OD TO-15 rted: 12/01/			
Malcolm Pirnie, Inc. Project Reference: FRANKLIN PI Client Sample ID : 267 FRANKLII	ROJECT #0266-37 N BA2	7			
Date Sampled : 10/29/08 11:44 Or Date Received: 10/30/08 Submiss	der #: 1150197 ion #: R2846926	Sample Ma Analytica	trix: AIR 1 Run 170221	L	
DATE ANALYZED : 11/15/08					
ANALYTICAL DILUTION: 10.00 CAN DILUTION : 1.60	Pi= -6.5	Pf= 7.6			
ANALYTE	MRL UG/M3	RESULT UG/M3	MRL PPBv	RESULT PPBv	
BENZENE	0.35	0.76 J	0.11	0.24 J	
1,1-DICHLOROETHENE	0.44	7.0 U	0.11	1.8 U	
TRANS-1,2-DICHLOROETHENE	0.44	7.0 U	0.11	1.8 U	
CIS-1,2-DICHLOROETHENE	0.44	12 15 U	0.11 0.22	3.0 3.5 U	
ETHYLBENZENE	0.95	15 U 6.1 U	0.22	1.8 U	
METHYLENE CHLORIDE	0.38 0.15	670	0.022	99	
TETRACHLOROETHENE	0.13	1.8 J	0.11	0.49 J	
TOLUENE	0.41	9.6 U	0.11	1.8 U	
1, 1, 1-TRICHLOROETHANE	0.80	7.0	0.022	1.3	
TRICHLOROETHENE	0.28	4.5 U	0.11	1.8 U	
VINYL CHLORIDE	0.20	1.5 U	0.22	3.5 U	
O-XYLENE M+P-XYLENE	1.9	0.87 J	0.44	0.20 J	
SURROGATE RECOVERIES	QC LIMITS				
BROMOFLUOROBENZENE (*	70 - 130 %)	97	9 6		


. . . .


Qua	ntitation	Repo	ort (Not	(Reviewed)	
Data File : J:\ACQUDATA\AIR1\DAT Acq On : 15 Nov 2008 6:32 Sample : 1150197 10.0 Misc : PI=-6.5 PF=7.6 MAR R MS Integration Params: RTEINT.P Quant Time: Nov 15 11:41 2008	46926 IMP	ASPE Qu	Ins 3 Mul	ltiplr: 1.00 s File: 111408A.1	TV11-17-08 RES
Quant Method : J:\ACQUDATA\A\ Title : TO-15 Last Update : Sat Nov 15 11:31: Response via : Initial Calibrat DataAcq Meth : 111408A	59 2008 on				
Internal Standards	R.T. Q	Ion	Response	Conc Units Dev(M	1n)
 bromochloromethane 1,4-difluorobenzene chlorobenzene-d5 	13.92	114	187036 732426 613671	2.5000 ppbv 2.5000 ppbv 2.5000 ppbv	0.01
System Monitoring Compounds 55) surr 1, bromofluorobenzene Spiked Amount 2.500 Ra	21.08 nge 70 -	174 130	337583 Recove:	ry = 96.84%	.00
Target Compounds			0700	Qval 0.0797 ppbv #_	63
2) propylene	- 5.12	41 85	8780 10300		
3) dichlorodifluoromethane	5.21 5.59	65 50	1751	•••	98 N/ 71 NT-MISIC
5) chloromethane		101	5198	0.0199 ppby	967
10) trichlorofluoromethane	8.00	45	616596	22.8237 ppbv	996-NT
11) ethanol	8.78	43	114520	0.6353 ppbv	94 (
14) acetone	9.09	45	8345	0.0762 ppbv	78 🖌
15) isopropanol 23) 2-butanone	11.88	43	4176	0.0173 ppbv	87/
23) 2-butanone 24) cis-1,2-dichloroethene	11.85	96	17341	0.1842 ppbv	97 *
25) ethyl acetate	11.96	43	11130	0.0376 ppbv	99 ~7
26) chloroform	12.35	83	2463	0.0126 ppbv	99 NT
33) benzene	13.35	78	4640	0.0148 ppbv	94 5
35) trichloroethene	14.41	130	10639	0.0817 ppbv	99
41) toluene	20.00	91	10572		97 丁 99
44) tetrachloroethene		166	1027635	6.2052 ppbv	99 97 J
51) M+P xylene	19.39	91	4568	0.0125 ppbv	91 J


Acq Or Sample Misc MS Int	n : 15 e : 11 : PJ tegration	5 Nov 2008 L50197 10.0 L=-6.5 PF=7 n Params: F	.6 MAR R46926 TEINT.P	IMP ASPB	Or Ir Mu	nst : ultiplr:	r: T.WALTON : GC/MS Ins r: 1.00
Method Title Last Respo	d Update nse via	: TO-15 : Sat Nov 1	2008 ATA\AIR1\METHO 15 11:31:59 20 Calibration	DS\111408A		Integra	
Abundance 3000000						TIC: A60	A6091.D
2800000					9 10		
2600000					chioroeth U		
2400000							
2200000							
2000000						i	
1800000							e S
1600000 1400000						5,1	1. bromofluorobenzene.S
1200000				enzene,l		chlorobenzene-d5,	Jenzene-a t, bromol
1000000			ane, t	1,4-difluorobenzene,1		chlorot	chiocrot
800000	lethane		ochloromethane.	÷			
600000	methane 	thane	ethene bromocl				
400000		richlorofluoromethane ethanol acetone sopropanol	<u>o</u>	enzene trichloroethene	6)	viene	Xiene
200000	CHERRY COMP	trichlorofluo acetone isopropanol	สหมุษธิสน์หย่ะ อากดาดโดกา	benzene trichlore	toluene	× 4+ W	A h
0 Time> \$	5.00 6.00 7	.00 8.00 9.00	10.00 11.00 12.00 13.	.00 14.00 15.00	16.00 17.00	18.00 19.00	0.00 20.00 21.00 22.00 23.00 24.00 25.00 26.00 27.00 28.00 29.00 30.00 31.00 32.00 33.00


00040

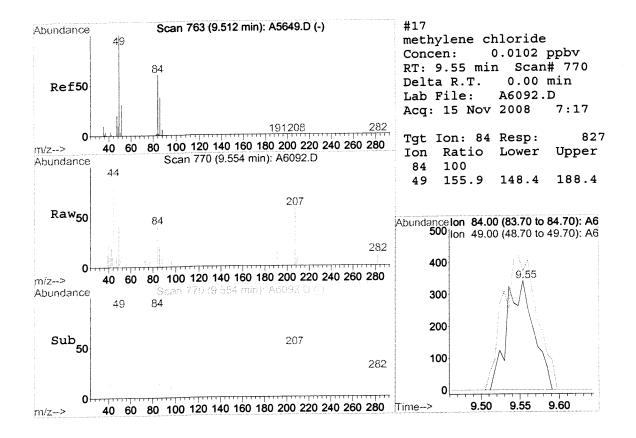


VOLATILE ORGANICS METHOD TO-15 Reported: 12/01/08

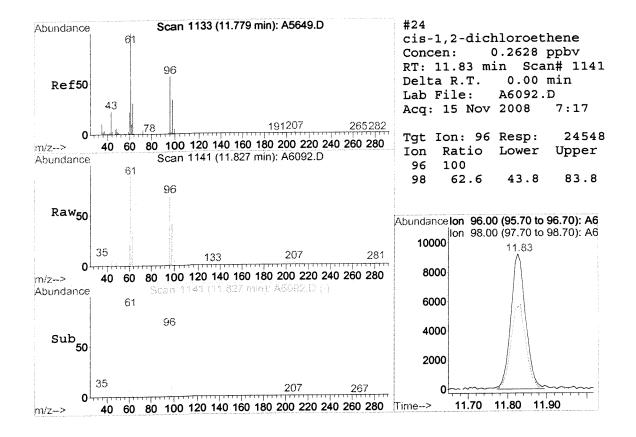
Malcolm Pirnie, Inc. Project Reference: FRANKLIN PROJECT #0266-377 Client Sample ID : 267 FRANKLIN BA3

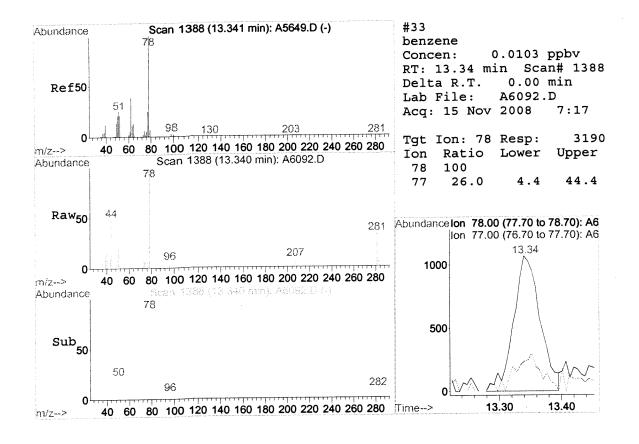
 Date Sampled : 10/29/08 11:40 Order #: 1150198
 Sample Matrix: AIR

 Date Received: 10/30/08
 Submission #: R2846926
 Analytical Run 170221

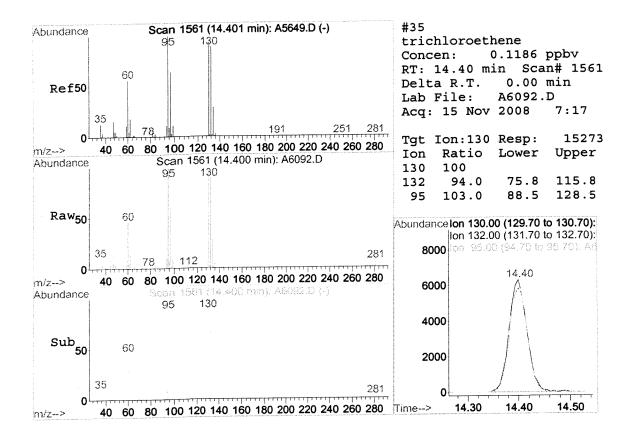

DATE ANALYZED : 11/15/08 ANALYTICAL DILUTION: 10.0 CAN DILUTION : 1.6		Pf= 7.4			
ANALYTE	MRL UG/M3	RESULT UG/M3	MRL PPBv	RESULT PPBv	
BENZENE	0.35	0.55 J	0.11	0.17 J	
1,1-DICHLOROETHENE	0.44	7.3 U	0.11	1.8 U	
TRANS-1, 2-DICHLOROETHENE	0.44	7.3 U	0.11	1.8 U	
CIS-1,2-DICHLOROETHENE	0.44	18	0.11	4.4	
ETHYLBENZENE	0.95	16 U	0.22	3.7 U	
METHYLENE CHLORIDE	0.38	0.59 JB	0.11	0.17 JB	
TETRACHLOROETHENE	0.15	900	0.022	130	
TOLUENE	0.41	1.6 J	0.11	0.43 J	
1,1,1-TRICHLOROETHANE	0.60	10 U	0.11	1.8 U	
TRICHLOROETHENE	0.12	11	0.022	2.0	
VINYL CHLORIDE	0.28	4.7 U	0.11	1.8 U	
O-XYLENE	0.95	16 U	0.22	3.7 U	
M+P-XYLENE	1.9	32 U	0.44	7.4 U	
SURROGATE RECOVERIES	QC LIMITS				
BROMOFLUOROBENZENE	(70 - 130 %)	96	00		

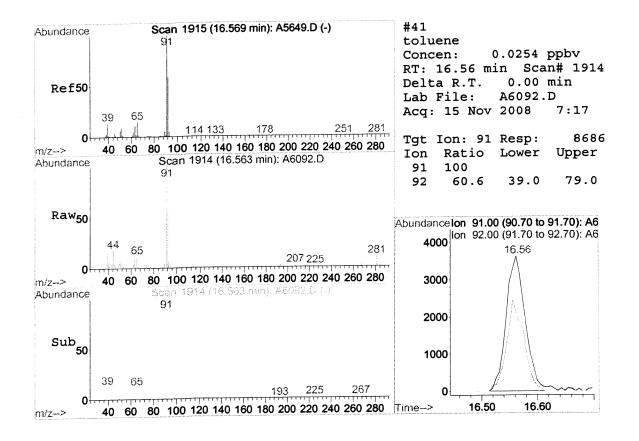
Qua	ntitatio	on Repo	ort (Not	Reviewed	1)					
Data File : J:\ACQUDATA\AIR1\DATA\111408\A6092.D Vial: 15 MOV 2008 7:17 Operator: T.WALTON Inst : GC/MS Ins II-100 Misc : PI=-7.7 PF=7.4 MAR R46926 IMP ASPB Multiplr: 1.00 MIS Integration Params: RTEINT.P Quant Time: Nov 15 11:41 2008 Quant Results File: 111408A.RES										
Quant Method : J:\ACQUDATA\A\111408A.M (RTE Integrator) Title : TO-15 Last Update : Sat Nov 15 11:31:59 2008 Response via : Initial Calibration DataAcq Meth : 111408A Internal Standards R.T. QIon Response Conc Units Dev(Min)										
Internal Standards	R.T.	QION	Response C	onc Unit	s Dev(M	1in)				
48) chlorobenzene-d5System Monitoring Compounds55) surr 1, bromofluorobenzene	13.90 18.98 21.08	114 117 174	185640 723997 607203 331696	2.5000 2.40 p	ppbv ppbv					
Spiked Amount 2.500 Ra	nge 70	- 130	Recovery	=						
Target Compounds					Qva]					
2) propylene			6730		ppbv #					
3) dichlorodifluoromethane	5.15		9911	0.0376		98) 88 (
5) chloromethane	5.62		2244	0.0217		90 SAT				
10) trichlorofluoromethane	7.56		4480	0.0173		98				
11) ethanol	7.98			0.8729		93)				
14) acetone	8.76			0.1478		99				
15) isopropanol	9.08			0.0391		91 JB				
17) methylene chloride	9.55	84	827 4667		ppbv	96 NT				
23) 2-butanone	11.88		24548		ppbv	99				
24) cis-1,2-dichloroethene	11.83				ppbv	97 T				
33) benzene	13.34				ppbv	96				
35) trichloroethene		130	15273		ppbv ppbv	98 丁				
41) toluene	16.56			7.9131		99 99				
44) tetrachloroethene	17.54	166	1295389	1.2121	5524	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~				

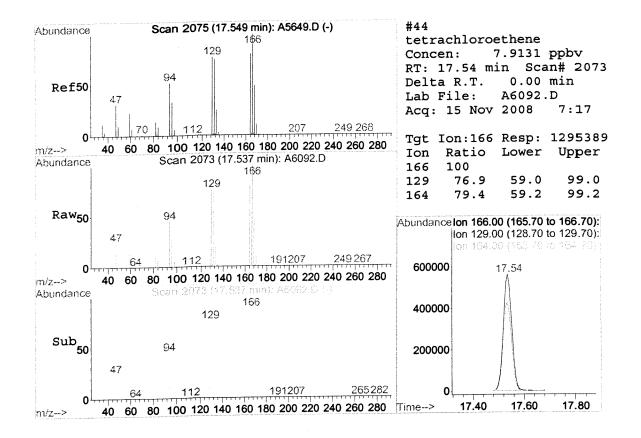

Acq Or Sample Misc MS Int	e egra	: 15 1 : 1150 : PI=- tion 1	Nov 2 0198 -7.7 Para	2008 10. PF= ms:		R469		IP ASPB	O] I1 M1	nst : ultiplr:	T.WALTON GC/MS Ins					
Respo	Updat	: ' .e : '	TO-1 Sat	5 Nov	ATA\AIR 15 11:3 Calibra	1:59		1114087	A.M (RTE	Integra TIC: A60						
4000000										TIC: AOL	J92.D					
3800000																
3600000																
3400000																
3200000																
3000000									1	100						
2800000																
2600000																
2400000																
2200000																
2000000																
1800000											zene,S					
1600000											oroben:					
1400000								izene, l		chlorobenzene-d5,l	1, bromaftuarabenzene,S					
1200000						je.		lorober		robenze	surr 1, br					
1000000						omethane, l		1,4-difluorobenzene,1		chlo	ភ					
800000	ane		ē			ē										
600000	ometh		methar		loride	loroethene bromochi		e								
400000	han		ofluoro	janol	lene chio	2 qistrårdotlis hloroethene bromoch	e	trichloroethen	õ							
200000	BICPRN Chloror		trichlorc	acetone isopropanol	methylene	2 dijertå	penzene	trich	toluene							
0				، ۲۰۰۰ ،			· 13 00 1	4 00 15 00	16.00 17 00	18.00 19.00	20.00 21.00 22	.00 23.00 24.0	0 25.00 26.00 2	7.00 28.00 29.0	00 30.00 31.00 3	2.00 33.00
					Sat Nov					FFLINE						Page 2


The second s

200000




OFFLINE



OFFLINE

COLUMBIA ANALYTICAL SERVICES	METHC	T LE ORGANICS D TO-15 Ted: 12/01/0			
Malcolm Pirnie, Inc. Project Reference: FRANKLIN PRO Client Sample ID : 267 FRANKLIN	DJECT #0266-377 OA				
Date Sampled : 10/29/08 11:50 Orde Date Received: 10/30/08 Submission	er #: 1150201 on #: R2846926	Sample Mat Analytical	rix: AIR . Run 170221	-	
DATE ANALYZED : 11/15/08 ANALYTICAL DILUTION: 1.00 CAN DILUTION : 1.60	Pi= -6.5	Pf= 7.5			
ANALYTE	MRL UG/M3	RESULT UG/M3	MRL PPBv	RESULT PPBv	
BENZENE	0.35	0.46 J	0.11	0.15 J	
1,1-DICHLOROETHENE	0.44	0.70 U	0.11	0.18 U	
TRANS-1,2-DICHLOROETHENE	0.44	0.70 U	0.11	0.18 U	
CIS-1,2-DICHLOROETHENE	0.44	0.70 U	0.11	0.18 U	
ETHYLBENZENE	0.95	0.26 J	0.22	0.059 J	
METHYLENE CHLORIDE	0.38	0.22 JB 0.12 J	0.11 0.022	0.062 JB 0.017 J	
TETRACHLOROETHENE	0.15	1.1	0.11	0.29	
TOLUENE	0.41 0.60	1.1 0.96 U	0.11	0.18 U	
1,1,1-TRICHLOROETHANE	0.60	0.21	0.022	0.039	
TRICHLOROETHENE	0.12	0.45 U	0.11	0.18 U	
VINYL CHLORIDE	0.28	0.65 J	0.22	0.15 J	
O-XYLENE M+P-XYLENE	1.9	0.98 J	0.44	0.23 J	
SURROGATE RECOVERIES QC	C LIMITS				
BROMOFLUOROBENZENE (70) - 130 %)	101	2		

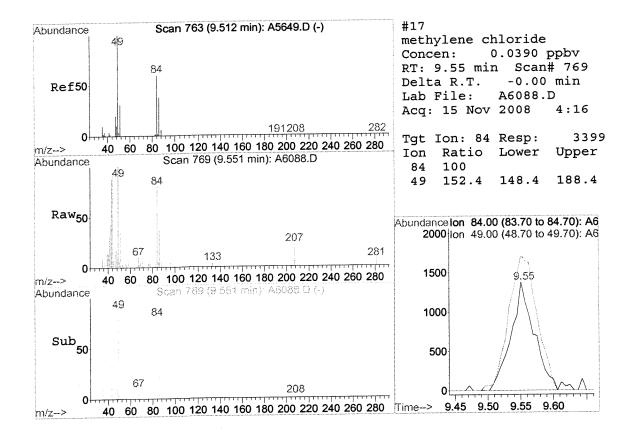
Quantitation Report (Not Reviewed) TW 17-08 Data File : J:\ACQUDATA\AIR1\DATA\111408\A6088.D Vial: 11 Operator: T.WALTON Vial: 11 Acq On : 15 Nov 2008 4:16 Sample : 1150201 1.0 Misc : PI=-6.5 PF=7.5 MAR R46926 IMP ASPB Inst : GC/MS Ins Multiplr: 1.00 Misc : FI-CO.S I MS Integration Params: RTEINT.P Quant Results File: 111408A.RES Ouant Time: Nov 15 11:41 2008 Quant Method : J:\ACQUDATA\A...\111408A.M (RTE Integrator) Title : TO-15 Last Update : Sat Nov 15 11:31:59 2008 Response via : Initial Calibration DataAcq Meth : 111408A R.T. QIon Response Conc Units Dev(Min) Internal Standards -1) bromochloromethane12.241301988342.5000 ppbv0.0028) 1,4-difluorobenzene13.911148036462.5000 ppbv0.0048) chlorobenzene-d518.981176770172.5000 ppbv0.00 System Monitoring Compounds 55) surr 1, bromofluorobenzene 21.07 174 387225 2.52 ppbv 0.00 Spiked Amount 2.500 Range 70 - 130 Recovery = 100.69%

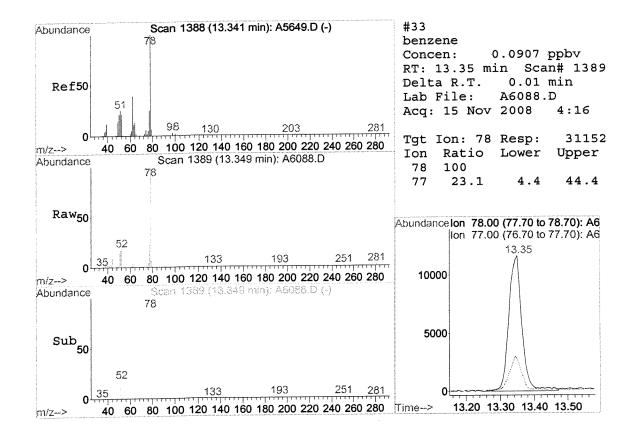
 Qvalue

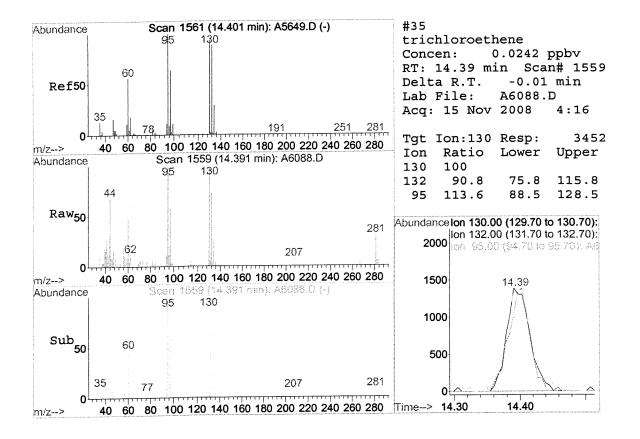
 2) propylene
 5.07
 41
 26736
 0.2283 ppbv
 83

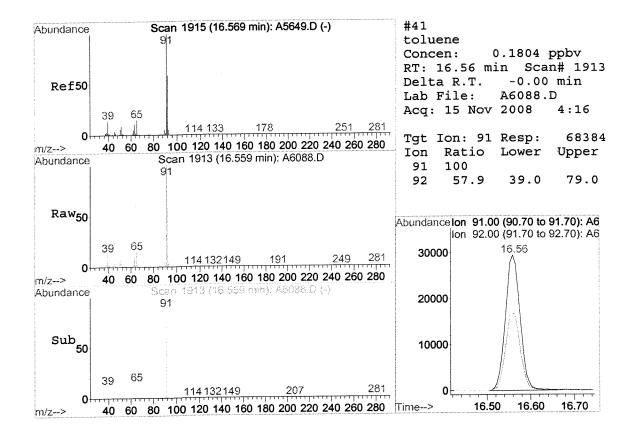
 3) dichlorodifluoromethane
 5.15
 85
 99213
 0.3515 ppbv
 100

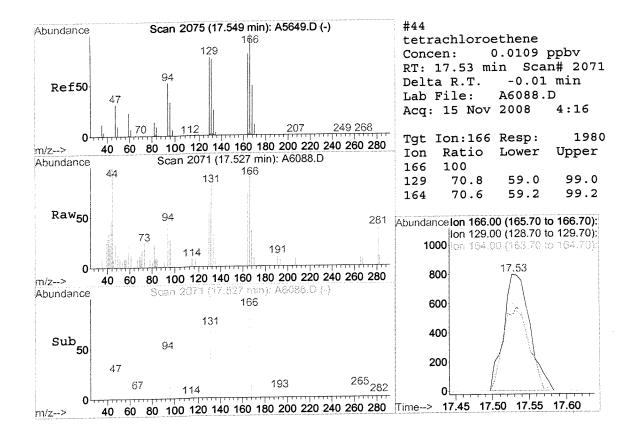
 4) freon-114
 5.51
 85
 4014
 0.0133 ppbv
 85

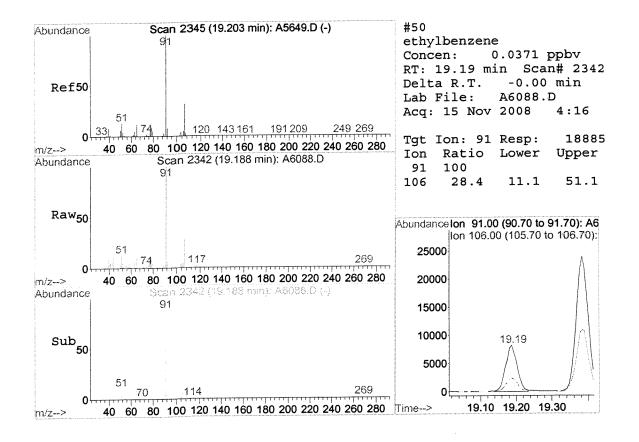

 5) chloromethane
 5.62
 50
 34056
 0.3079 ppbv
 98

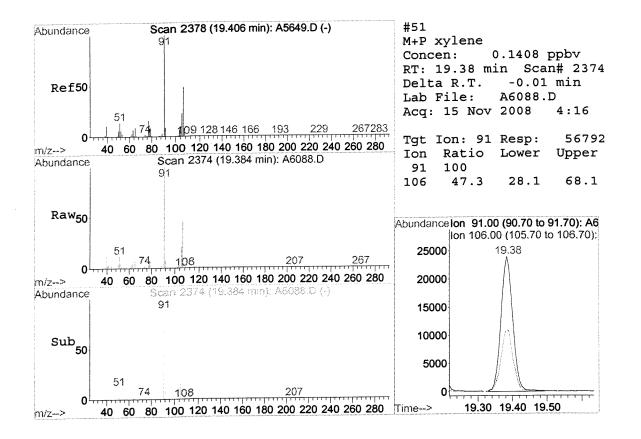

 7) 1,3-butadiene
 6.02
 54
 1581
 0.0164 ppbv #
 51

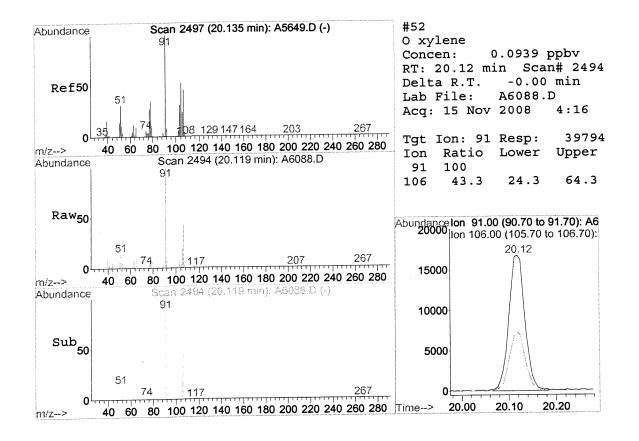

 Qvalue Target Compounds 4)freen-1145.518540140.0133 ppbv85MT5)chloromethane5.6250340560.3079 ppbv987)1,3-butadiene6.025415810.0164 ppbv #5110)trichlorofluoromethane7.55101413240.1487 ppbv9812)freon-1138.64101105800.0537 ppbv9414)acetone8.77433693981.9278 ppbv9517)methylene chloride9.558433990.0390 ppbv88TE20)hexane10.585773890.0404 ppbv99NT23)2-butanone11.8643958170.3109 ppbv96NTPcoRTTVT25)ethyl acetate11.8643977570.3109 ppbv9776NTmis I E/pcorn26)chloroform12.348324230.0117 ppbv97<math>7727)tetrahydrofuran12.41725580.0109 ppbv4231)carbon tetrachloride13.01117113110.0518 ppbv90NT33)benzene13.3578311520.0207 ppbv95NT34)heptane13.727120010.0160 ppbv98NT35)trichloroethene14.3913034520.0242 ppbv9534)heptane16.569168384</t NT


Data File : J:\ACQUDATA\AIR1\DATA\111408\A6088.D Vial: 11 Operator: T.WALTON Acq On : 15 Nov 2008 4:16 Sample : GC/MS Ins : 1150201 1.0 Inst Multiplr: 1.00 Misc : PI=-6.5 PF=7.5 MAR R46926 IMP ASPB MS Integration Params: RTEINT.P Quant Results File: 111408A.RES Ouant Time: Nov 15 11:41 2008 : J:\ACQUDATA\AIR1\METHODS\111408A.M (RTE Integrator) Method Title : TO-15 Last Update : Sat Nov 15 11:31:59 2008 Response via : Initial Calibration TIC: A6088.D Abundance 1200000 chlorobenzene-d5,1 1100000 1,4-difluorobenzene,1 1000000 900000 800000 bromochioromethane, I 700000 600000 500000 400000 hane 300000 acetone 2.4-trimethylbenzene cyclohexane carbon telrachloride sthylbenzene M+P xylene methytene chloride 200000 Rechinconther toluene O xylene ichlorofluoi **Ehergy**BFBhura ethyl-2-p son-113 eptane hexane 100000 Time-> 5.00 6.00 7.00 8.00 9.00 10.00 11.00 12.00 13.00 14.00 15.00 16.00 17.00 18.00 19.00 20.00 21.00 22.00 23.00 24.00 25.00 26.00 27.00 28.00 29.00 30.00 31.00 32.00 33.00 Page 2 OFFLINE Sat Nov 15 11:41:20 2008 A6088.D 111408A.M


SOODN







VOLATILE ORGANICS

STANDARDS DATA

		CA Response Fac	LRPT.TXT tor Report	GC/MS Ins	Ju	1-08.
Method Title Last Respor	d : J:\ACQUDATA : TO-15 Update : Sat Nov 15 nse via : Initial Ca	A\AIR1\METHO 11:31:59 20 libration	DS\111408A. 08	.M (RTE Integrator) //-/	5
0 02	ration Files =A6072.D 0.1 =A6075.D 1.0 =A6078.D 7.5 =	=A6073.D =A6076.D =A6079.D =	0.2 2.5 10.0	=A6074.D =A6077.D =A6080.D =		
	Compound Compound	0.02 0.1 5.0 7.5	0.2 0. 10.0	.5 1.0 2.5	Avg	%RSD
1) I 2)	bromochloromethane propylene	1.437 1.412	1.735 1.5	D 559 1.405 1.402	1.472	8.94
3)	dichlorodifluoromet	3.606 3.560 3.495	5 3.685 3.5 5 3.389	595 3.544 3.521	3.549	2.46
4)	freon-114	3.738 3.713 3.859 3.775	3.921 3.8 3.647	320 3.826 3.782	3.787	2.16
5)	chloromethane	1.361 1.413 1.391		95 1.385 1.394	1.391	2.88
6)	vinyl chloride	1.460 1.462 1.556 1.535	1.531 1.5 1.372	09 1.482 1.511	1.491	3.70
7)	1,3-butadiene	1.313 1.149 1.274 1.258) 1.178 1.1 3 1.091	90 1.200 1.227	1.209	5.60
8)	bromomethane	1.191 1.157 1.142		15 1.146 1.142	1.145	2.32
9)	chloroethane	0.809 0.707 0.744 0.739	0.735 0.7 0.710	21 0.697 0.736	0.733	4.47
.0)	trichlorofluorometh	3.531 3.325 3.580 3.494	3.640 3.4 3.335	25 3.578 3.541	3.494	3.17
.1)	ethanol	0.274 0.326	0.32	21 0.513 0.478	0.361	29.98
2)		2.682 2.376 2.521 2.491		62 2.289 2.466	2.476	4.53
.3)	1,1-dichloroethene	2.249 1.908 2.230 2.214	2.112 2.05 2.123	56 2.131 2.193	2.135	4.97
.4)	acetone	2.428 2.368		28 2.115 2.386	2.409	9.67
5)	isopropanol	1.010 1.367	1.13 1.120	36 2.185 1.960	1.463	33.60 NJ
6)		4.178 3.612 3.828 3.757		55 3.791 3.773	3.774	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
		Pa	age 1			2901

Page 1

		CAL DOT TYT	
17)	methylene chloride	CALRPT.TXT e 1.131 1.108 1.085 1.022 1.091 1.095 1.115 1.119 1.091	3.08
18)	trans-1,2-dichloro	e 2.196 1.947 2.074 2.048 1.945 2.106 2.075 2.160 2.132 2.069	4.18
19)	methyl tert butyl	e 4.081 3.609 3.472 3.619 3.092 3.744 3.700 3.948 3.899 3.831	8.01
20)	hexane	2.149 2.217 2.089 2.364 2.298 2.461 2.436 2.368	6.34
21)	1,1-diclethane	2.694 2.510 2.538 2.546 2.294 2.551 2.535 2.604 2.569 2.512	4.21
22)	vinyl acetate	4.3693.7313.6114.0153.2334.2124.0404.4604.4004.325	10.56
23)	2-butanone	3.4043.1783.2992.7993.2683.2253.3563.3263.170	5.90
24)	cis-1,2-dichloroeth	n 1.210 1.254 1.243 1.129 1.272 1.258 1.330 1.324 1.303	5.28
25)	ethyl acetate	3.9963.9014.0933.4804.0843.9544.1674.0133.895	5.39
26)	chloroform	2.640 2.642 2.625 2.377 2.639 2.612 2.696 2.666 2.611 2.625	3.76
27)	tetrahydrofuran	0.678 0.584 0.553 0.619 0.542 0.681 0.646 0.728 0.721 0.710	11.32
28) I 29)	1,4-difluorobenzene 1,1,1-trichloroetha	0.724 0.646 0.710 0.680 0.631 0.711 0.693 0.726 0.723 0.682	5.11
30)	cyclohexane	0.598 0.598 0.577 0.660 0.630 0.673 0.672 0.632	6.31
31)	carbon tetrachlorid	0.720 0.598 0.668 0.647 0.617 0.709 0.679 0.728 0.732 0.693	7.28
32)	1,2-dichloroethane	0.516 0.458 0.498 0.474 0.413 0.479 0.476 0.492 0.489 0.461	6.22
33)	benzene	1.072 1.099 1.065 0.933 1.096 1.069 1.126 1.112 1.049	5.67
34)	heptane	0.357 0.362 0.343 0.404 0.389 0.426 0.426 0.403	8.77
35)	trichloroethene	0.533 0.405 0.436 0.419 0.399 0.442 0.444 0.460 0.464 0.442	9.01
36)	1,2-diclpropane	0.399 0.416 0.413 0.347 0.424 0.413 0.443 0.441 0.421	7.38
37)	1,4-dioxane	0.105 0.145 0.108 0.176 0.173 0.132 0.111 0.138 0.096	23.70
38)	bromodichloromethan	0.822 0.643 0.693 0.689 0.638 0.736 0.718 Page 2	8.31

CALRPT.TXT 0.762 0.761 0.722

39)	cis-1,3-dichloropro	0.674	0.512 0.641	0.552	2 0.553	0.484	0.604	0.586	10.92
40)	4-methy1-2-pentanon	1.095	0.937 1.080	0.986	5 0.992)	0.949	1.078	1.013	6.14
41)	toluene	1.299		1.149		0.986	1.241	1.179	8.88
42)	trans-1,3-dichlorop	0.612	0.482 0.613	0.497 0.585	0.527	0.453	0.578	0.543	11.40
43)	1,1,2-trichloroetha			0.409 0.415	0.403	0.337	0.412	0.406	7.42
44)	tetrachloroethene			0.537 0.573		0.484	0.560	0.565	12.58
45)	2-hexanone	1.072		0.931 0.948	0.938	0.943	1.072	0.978	7.49
46)	dibromochloromethan	0.782 0.715	0.542 0.722	0.576 0.688	0.592	0.548	0.669	0.648	13.27
47)	1,2-dibromoethane	0.803 0.626	0.535 0.628	0.567 0.602	0.572	0.480	0.597	0.601	14.78
48) I 49)	chlorobenzene-d5 chlorobenzene	 1.204	1.060	1.121			1.148	1.108	7.66
50)	ethylbenzene	2.076	1.997		1.881	1.533	1.994	1.879	9.51
51)	M+P xylene	1.637	1.547		1.530	1.248	1.599	1.490	8.89
52)	0 xylene	1.752	1.696		1.535	1.270	1.662	1.564	10.60
53)	styrene	1.336 I	1.306	1.055 1.237	1.127	0.943	1.257	1.180	12.19
54)	bromoform	0.869 (0.869 (0.556 0.872	0.604 0.835	0.644	0.589	0.787	0.736	18.38
55) S	surr 1, bromofluoro	0.568 (0.569 ().568).582	0.551 0.590	0.557	0.567	0.560	0.568	2.12
56)	1,1,2,2-tetrachloro	1.809 1 1.216 1	L.098 L.189	1.133 1.117	1.142	0.945	1.164	1.202	20.02
57)		2.649 1 2.421 2			2.077	1.778	2.316	2.162	13.73
58)	1,3,5-trimethylbenz	2.146 1 1.981 1	. 490	1.565 1.792	1.721	1.473	1.902	1.777	13.17
59)	1,2,4-trimethylbenz	2.079 1 L.973 1	.924	1.517 1.779 ge 3	1.654	1.439	1.873	1.740	13.93

	CALRPT.TXT										
60)	1,3-dclbenz	1.513 0.960 1.008 1.039 0.886 1.168 1.137 16.6 1.245 1.239 1.174	5								
61)	1,4-dclbenz	1.438 0.933 0.993 1.022 0.877 1.164 1.122 16.0 1.251 1.244 1.180	3								
62)	benzyl chloride	1.325 1.183 1.631 1.543 15.2 1.760 1.739 1.620	3								
63)	1,2-dclbenz	1.479 0.898 0.950 0.990 0.831 1.096 1.079 17.9 1.179 1.170 1.115	1								
64)	1,2,4-trichlorobenz	0.995 0.659 0.670 0.723 0.551 0.720 0.754 17.0 0.808 0.828 0.827	2								
65)	hexachlorobutadiene	1.288 0.818 0.855 0.847 0.651 0.800 0.852 20.4 0.819 0.820 0.767	9								
(#) = Out of Range ### Number of calibration levels exceeded format ###											
	111408A.M	Sat Nov 15 11:37:21 2008 OFFLINE									

HP CHEMSTATION CUSTOM REPORT CALIBRATION SUMMARY

					Method File :		Calibration Title :		Last Calibration Update :						
Calibrat	tion Table Concentration	<u>s (Level</u>	<u>1-20)</u>		111408A		TO-15		Sat Nov 1	5 11:31:59	9 20	08			
file		A6072.D	A6073.D	A6074.D	A6075.D	A6076.D	A6077.D	A6078.D	A6079.D	A6080.D					
Level		1	2	3	4	5	6	7	8	9	#				
ID	Compound	0.02	0.1	0.2	0.5	1.0	2.5	5.0	7.5	10.0					
1)	bromochloromethane	2.5000	2.5000	2.5000	2.5000	2.5000	2.5000	2.5000	2.5000	2.5000	-11		Π	Π	Π
2)	propylene	0.0206	0.0979	0.2060	0.5150	1.0300	2.5750	5.1500	7.7250	10.3000	-1	itt	Ħ	Ħ	H
3)	dichlorodifluoromethane	0.0202	0.0960	0.2020	0.5050	1.0100	2.5250	5.0500	7.5750	10.1000	-1	Ht	++	Ħ	F
4)	freon-114	0.0200	0.0950	0.2000	0.5000	1.0000	2.5000	5.0000	7.5000	10.0000	-1	┝╋╋	₩	₩	ł
5)	chloromethane	0.0202	0.0960	0.2020	0.5050	1.0100	2.5250	5.0500	7.5750	10.0000	-1	₩	₩	₩	ł
6)	vinyl chloride	0.0200	0.0950	0.2000	0.5000	1.0000	2.5000	5.0000	7.5000	10.0000	-1	╫╢	₩	₩	╀
7)	1,3-butadiene	0.0216	0.1026	0.2160	0.5400	1.0800	2.7000	5.4000	8.1000	10.8000	-1	₩	╉	₩	ł
8)	bromomethane	0.0202	0.0960	0.2020	0.5050	1.0100	2.5250	5.0500	7.5750	10.0000		₩	₩	╢	╀
9)	chloroethane	0.0202	0.0960	0.2020	0.5050	1.0100	2.5250	5.0500	7.5750	10.1000	-1	₩	+++	╢	ł
10)	trichlorofluoromethane	0.0198	0.0941	0.1980	0.4950	0.9900	2.4750	4.9500	7.4250	9.9000	-1	╫╢	₩	₩	ł
11)	ethanol	0.0194	0.0922	0.1940	0.4850	0.9700	2.4250	4.8500	7.2750	9.7000		╫	╉	╫	ł
12)	freon-113	0.0214	0.1017	0.2140	0.5350	1.0700	2.6750	5.3500	8.0250	10.7000	-1	₩	╉	╢	ł
13)	1,1-dichloroethene	0.0218	0.1036	0.2180	0.5450	1.0900	2.7250	5.4500	8.1750	10.9000	-1 -1	╋╋	╉	₩	$\frac{1}{1}$
14)	acetone	0.0210	0.0998	0.2100	0.5250	1.0500	2.6250	5.2500	7.8750	10.5000	╞╌╢	+++	╫	₩	ł
15)	isopropanol	0.0222	0.1055	0.2220	0.5550	1.1100	2.7750	5.5500	8.3250	11.1000		╫╢	╉	╫	ł
16)	carbon disulfide	0.0208	0.0988	0.2080	0.5200	1.0400	2.6000	5.2000	7.8000	10.4000		╫╢	╓╫╋	╢	┨
17)	methylene chloride	0.0218	0.1036	0.2180	0.5450	1.0900	2.7250	5.4500	8.1750	10.9000		┼╫┦	┢╋	╢	+
18)	trans-1,2-dichloroethene	0.0210	0.0998	0.2100	0.5250	1.0500	2.6250	5.2500	7.8750	10.5000		┼┼┦	┢╋╋	╫	$\frac{1}{2}$
19)	methyl tert butyl ether	0.0212	0.1007	0.2120	0.5300	1.0600	2.6500	5.3000	7.9500	10.6000		╫╢	┢╋╋	╉	-
20)	hexane	0.0214	0.1017	0.2140	0.5350	1.0700	2.6750	5.3500	8.0250	10.7000		+++	┢╋╋	╉	┥
21)	1,1-diclethane	0.0212	0.1007	0.2120	0.5300	1.0600	2.6500	5.3000	7.9500	10.6000		+++	┢╋╋	╢	┥
22)	vinyl acetate	0.0198	0.0941	0.1980	0.4950	0.9900	2.4750	4.9500	7.4250	9.9000		╉╋┦	ŀĦ	╫	-
23)	2-butanone	0.0216	0.1026	0.2160	0.5400	1.0800	2.7000	5.4000		10.8000		╫┦	┢╫╉	+	-
24)	cis-1,2-dichloroethene	0.0214	0.1017	0.2140	0.5350	1.0700	2.6750	5.3500		10.7000	-1	╫┦	H	+	-
25)	ethyl acetate	0.0210	0.0998	0.2100	0.5250	1.0500	2.6250	5.2500	7.8750	10.5000	-1	╋╋	┢╋╋	+	-
26)	chloroform	0.0210	0.0998	0.2100	0.5250	1.0500	2.6250	5.2500	7.8750	10.5000		╉╋┩	┢╋╋	╫	-
27)	tetrahydrofuran	0.0210	0.1017	0.2100		1.0300		5.3500	8.0250	10.3000		╋╋┥	┢╋╋	+	-
28)	1,4-difluorobenzene	2.5000	2.5000	2.5000		2.5000		2.5000	2.5000	2.5000		╋╋┥	┢╫╉	+	-
29)	1,1,1-trichloroethane	0.0210	0.0998	0.2100	0.5250	1.0500		5.2500	7.8750	10.5000		╋╋	┢╋╋	+	-
30)	cyclohexane	0.0210	0.1017	0.2100	0.5350	1.0500	and the course and the second	5.3500		10.5000		╋╋┥	╟╢	+	-
31)	carbon tetrachloride	0.0214	0.0998	0.2140	0.5350	1.0700	and a second	5.2500		10.7000		╋╋	┟╂┨	\mathbb{H}	+
32)	1,2-dichloroethane	0.0210	0.1017	0.2100	0.5250	1.0500	2.6250	5.3500	8.0250	10.5000	╞╌╢	╇	H	+	-
33)	benzene	0.0214	0.1017	0.2140	0.5350	1.0700	2.6750	5.3500	8.0250	10.7000	-1	╫┤	H	+	-
33)	heptane	0.0214	0.1017	0.2140	0.5350	1.0700	2.6750	5.3500	8.0250	10.7000	╞╌╢	╇	┢╋╋┥	╢	┦

111408CAL.xis W 11-17-08

35)	trichloroethene	0.0208	0.0988	0.2080	0.5200	4.0400	0.0000	5 0000					· · · ·		
36)	1,2-diclpropane	0.0200	0.1007	0.2080	0.5200	1.0400	2.6000	5.2000	7.8000	10.4000 -	1	Ш	Щ.	Ш	Ш
37)	1,4-dioxane	0.0208	0.0988	0.2120	0.5300	1.0600	2.6500	5.3000	7.9500		.1	Ш	44-	Ш	Ш
38)	bromodichloromethane	0.0208	0.0988	0.2080	0.5200	1.0400	2.6000	5.2000	7.8000	10.4000 -	1	Ш	44	Ш	Ш
39)	cis-1,3-dichloropropene	0.0204	0.0969	0.2000	0.5200	1.0400	2.6000	5.2000	7.8000	10.4000 -	1	Ш	Щ.	Ш	Ш
40)	4-methyl-2-pentanone	0.0214	0.1017	0.2040			2.5500	5.1000	7.6500	10.2000	· <u>1</u>	Ш	Ш	Ш	Ш
41)	toluene	0.0214	0.1017	0.2140	0.5350	1.0700	2.6750	5.3500	8.0250	10.7000	·1	Ш	Ш	Ш	Ш
42)	trans-1,3-dichloropropene	0.0210	0.1020	0.2100	0.5400	1.0800	2.7000	5.4000	8.1000	10.8000	.1	Ш	Ш	Ш	Ш
43)	1,1,2-trichloroethane	0.0222	0.0988	0.2220	0.5550	1.1100	2.7750	5.5500	8.3250	11.1000	.1	Ш	Ш	Ш	Ш
44)	tetrachloroethene	0.0200	0.0988		0.5200	1.0400	2.6000	5.2000	7.8000	10.4000	.1	\prod			
45)	2-hexanone	0.0210	0.1017	0.2100	0.5250	1.0500	2.6250	5.2500	7.8750	10.5000	-1		T	Π	Π
46)	dibromochloromethane	0.0214		0.2140	0.5350	1.0700	2.6750	5.3500	8.0250	10.7000	-1	Π	T	Ħ	Ħ
47)	1,2-dibromoethane		0.0998	0.2100	0.5250	1.0500	2.6250	5.2500	7.8750	10.5000	-1	Ħ	Ħ	Ħ	Ħ
48)	chlorobenzene-d5	0.0210	0.0998	0.2100	0.5250	1.0500	2.6250	5.2500	7.8750	10.5000	-1	Ħ		Ħ	Ħ
49)	chlorobenzene	2.5000	2.5000	2.5000	2.5000	2.5000	2.5000	2.5000	2.5000	2.5000	-1	Ħ		Ħ	Ħ
50)	ethylbenzene		0.1007	0.2120	0.5300	1.0600	2.6500	5.3000	7.9500	10.6000	-1	Ħ	Ħ	Ħ	Ħ
51)	M+P xylene	0.0212	0.1007	0.2120	0.5300	1.0600	2.6500	5.3000	7.9500	10.6000	-1	Ш		Ħ	Ħ
52)	O xylene	0.0416	0.1976	0.4160	1.0400	2.0800	5.2000	10.4000	15.6000	20.8000	-1	Ħ	Ħ	Ħ	Ħ
53)	styrene	0.0210	0.0998	0.2100	0.5250	1.0500	2.6250	5.2500	7.8750	10.5000	-1	Ħ	Ħ	tt	Ħ
54)	bromoform	0.0210	0.0998	0.2100	0.5250	1.0500	2.6250	5.2500	7.8750	10.5000	-1	Ħ		Ħ	Ħ
55)	surr 1, bromofluorobenzene	0.0208	0.0988	0.2080	0.5200	1.0400	2.6000	5.2000	7.8000	10.4000	-1	Ħ	T	Ħ	Ħ
56)	1,1,2,2-tetrachloroethane	2.5000	2.5000	2.5000	2.5000	2.5000	2.5000	2.5000	2.5000	2.5000	-1	Ħ	Ħ	Ħ	Ħ
57)	4-ethyltoluene	0.0210	0.0998	0.2100	0.5250	1.0500	2.6250	5.2500	7.8750	10.5000	-1	Ħ	1	Ħ	Ħ
58)		0.0202	0.0960	0.2020	0.5050	1.0100	2.5250	5.0500	7.5750	10.1000	-1	Ħ	TT.	Ħ	Ħ
59)	1,3,5-trimethylbenzene	0.0212	0.1007	0.2120	0.5300	1.0600	2.6500	5.3000	7.9500	10.6000	-1	Ħ	itt.	Ħ	Ħ
60)	1,2,4-trimethylbenzene	0.0208	0.0988	0.2080	0.5200	1.0400	2.6000	5.2000	7.8000	10.4000	-1	Ħ	Ħ	Ħ	Ħ
the second se	1,3-dclbenz	0.0208	0.0988	0.2080	0.5200	1.0400	2.6000	5.2000	7.8000	10.4000	-1	Ħ	11	Ħ	
61)	1,4-dclbenz	0.0208	0.0988	0.2080	0.5200	1.0400	2.6000	5.2000	7.8000	10.4000	-1	Ħ	11	\ddagger	Ħ
62)	benzyl chloride	0.0208	0.0988	0.2080	0.5200	1.0400	2.6000	5.2000	7.8000	10.4000	-त	Ħ	11	†	H
63)	1,2-dclbenz	0.0202	0.0960	0.2020	0.5050	1.0100	2.5250	5.0500	7.5750	10.1000	. 十	††	11	++	H
64)	1,2,4-trichlorobenzene	0.0202	0.0960	0.2020	0.5050	1.0100	2.5250	5.0500	7.5750	10.1000	計	$^{++}$	++	++	H
65)	hexachlorobutadiene	0.0204	0.0969	0.2040	0.5100	1.0200	2.5500	5.1000	7.6500	10.2000	計	††	╓╫╋	++	╂╂┦

111408CAL.xis W11-17-08

TW 5-08 Data File : J:\ACQUDATA\AIR1\DATA\111408\A6072.D Vial: 2 Acq On : 14 Nov 2008 15:31 Operator: T.WALTON Sample : 0.02 PPB Misc : PI=0 PF=0 Inst : GC/MS Ins Misc : PI=0 Pr=0 MS Integration Params: RTEINT.P MS Integration Params: 8:54 2008 Quant Results File: 111408A.RES Multiplr: 1.00 Quant Method : J:\ACQUDATA\A...\111408A.M (RTE Integrator) Title : TO-15 Last Update : Sat Nov 15 08:27:05 2008 Response via : Initial Calibration DataAcq Meth : 111408A Internal Standards R.T. QIon Response Conc Units Dev(Min) -1) bromochloromethane12.241302132052.5000 ppbv0.0028) 1,4-difluorobenzene13.911148629192.5000 ppbv0.0048) chlorobenzene-d518.981177324792.5000 ppbv-0.03 System Monitoring Compounds 55) surr 1, bromofluorobenzene21.081744163082.50ppbv-0.02Spiked Amount2.500Range70- 130Recovery=100.10%
 Spiked Amount
 2.500
 Range
 70 - 130
 Recovery
 =
 100.10%

 Target Compounds
 Qvalue

 2) propylene
 5.06
 41
 7200
 0.0467
 ppbv
 66

 3) dichlorodifluoromethane
 5.16
 85
 7232
 0.0234
 ppbv
 96

 5) chloromethane
 5.62
 50
 2885m
 0.0237
 ppbv
 95

 6) vinyl chloride
 5.92
 62
 2491
 0.0196
 ppbv
 95

 9) chloroethane
 6.99
 64
 1333
 0.0223
 ppbv
 93

 11) ethanol
 0.00
 45
 0
 N.D. d
 92

 12) freon-113
 8.64
 101
 4894
 0.0232
 ppbv
 92

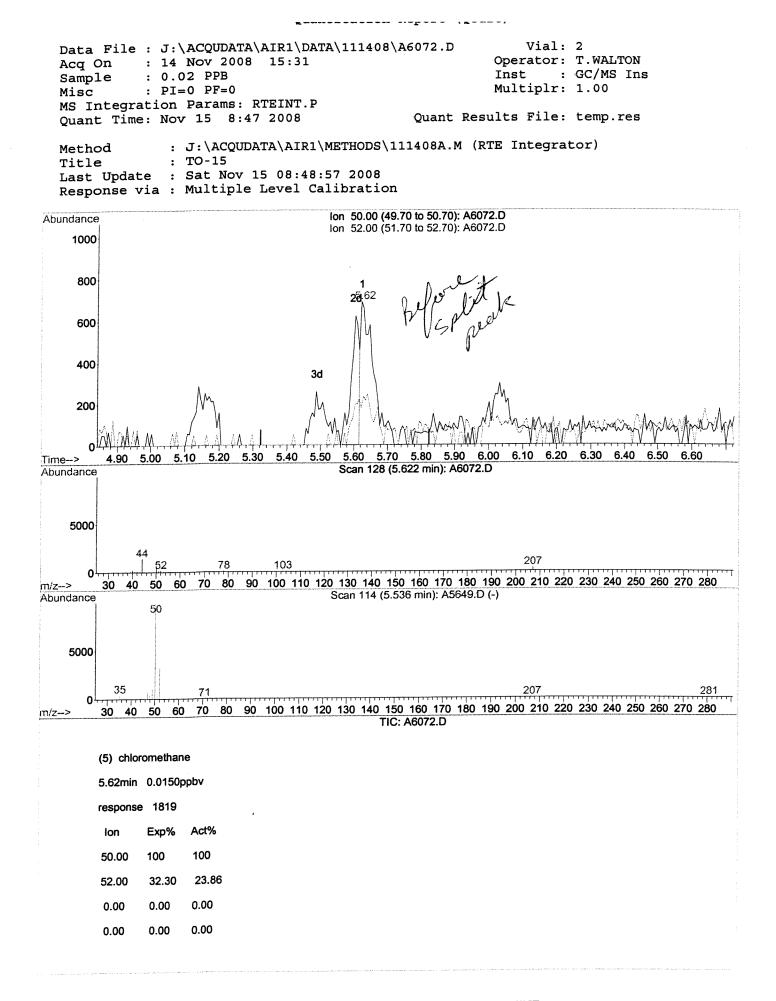
 13) 1.1-dichloroethene
 8.65
 61
 4182
 0.0230
 ppbv
 92

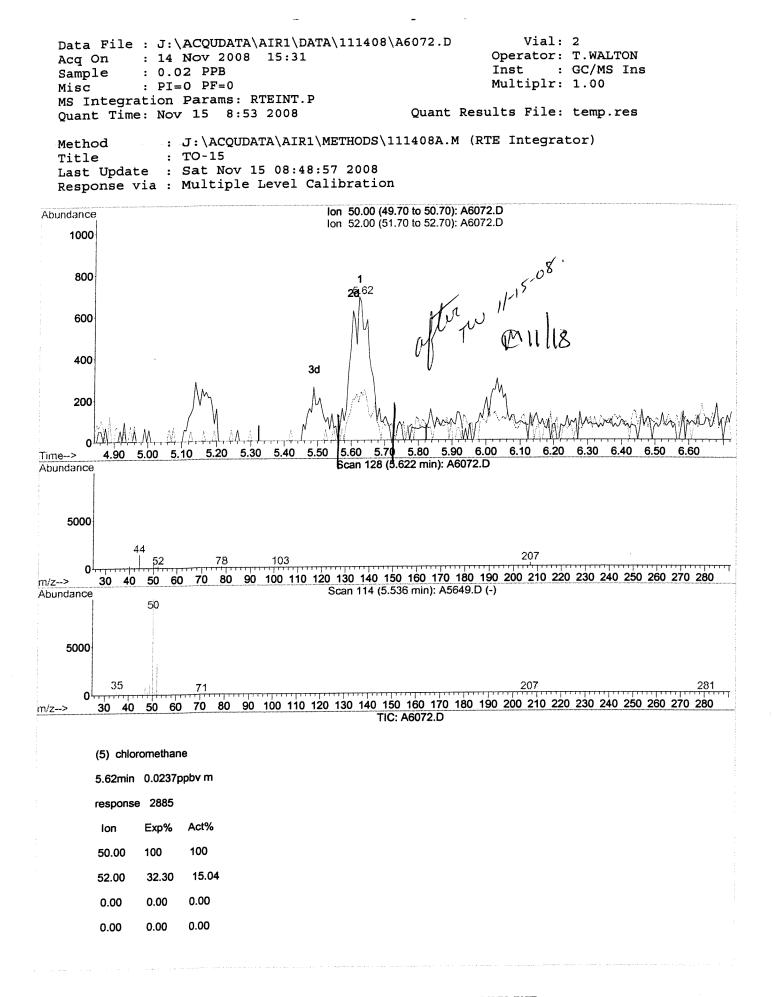
 15) isopropanol
 0.00
 45
 0
 N.D. d
 92

 16) carbon disulfide
 9.11
 76
 7379
 0.0233
 ppbv
 98</ Qvalue Target Compounds 95 TW 11-15-08. -----(#) = qualifier out of range (m) = manual integration

A6072.D 111408A.M Sat Nov 15 08:56:32 2008 OFFLINE

Data File : J:\ACQUDATA\AIR1\DATA\111408\A6072.DVial: 2Acq On : 14 Nov 2008 15:31Operator: T.WALTONSample : 0.02 PPBInst : GC/MS InsMisc : PI=0 PF=0Multiplr: 1.00MS Integration Params: RTEINT.PQuant Time: Nov 15 8:54 2008Quant Time: Nov 15 8:54 2008Quant Results File: 111408A.RES


. ~


-

Quant Method : J:\ACQUDATA\A...\111408A.M (RTE Integrator) Title : TO-15 Last Update : Sat Nov 15 08:27:05 2008 Response via : Initial Calibration DataAcq Meth : 111408A

	Compound	R.T.	QIon	Response	Conc Unit Qvalue	9
45)	2-hexanone	17.63	43	9229	0.0265 ppbv	- 96
46)		17.93	129	5665	0.0253 ppbv	99
47)	· · · · ·	18.18	107	5820	0.0281 ppbv	98
49)		19.04	112	9643	0.0284 ppbv	95
50)		19.19	91	15045	0.0268 ppbv	98
51)	M+P xylene	19.39	91	23217	0.0522 ppbv	97
52)		20.12	91	11760	0.0255 ppbv	97
53)	-	20.13	104	8264	0.0241 ppbv	98
54)	• _	20.50	173	5298	0.0246 ppbv	99
	1,1,2,2-tetrachloroethane	21.27	83	11132	0.0316 ppbv	99
	4-ethyltoluene	21.72	105	15679	0.0248 ppbv	98
	1,3,5-trimethylbenzene	21.83	105	13329	0.0256 ppbv	99
	1,2,4-trimethylbenzene	22.54	105	12667	0.0249 ppbv	99
60)	1,3-dclbenz	23.12	146	9222	0.0277 ppbv	97
61)	1,4-dclbenz	23.28	146	8763	0.0266 ppbv	98
62)	benzyl chloride	23.50	91	9889	0.0229 ppbv	98
	1,2-dclbenz	23.99	146	8751	0.0277 ppbv	98
	1,2,4-trichlorobenzene	27.01	180	5891	0.0267 ppbv	98
65)	hexachlorobutadiene	27.31	225	7698	0.0309 ppbv	93

(#) = qualifier out of range (m) = manual integration

Acq Or Sample Misc MS Int	e : 0.02 PPB : PI=0 PF=0 tegration Params: RTEINT.P	Vial: 2 Operator: T.WALTON Inst : GC/MS Ins Multiplr: 1.00 Results File: 111408A.RES
Method		(RTE Integrator)
Title Last I	: TO-15 Update : Sat Nov 15 08:48:57 2008	
Respon	nse via : Initial Calibration	
Abundance		TIC: A6072.D
1300000		
1200000		chlorobenzene-d5, l - bromofluorobenzene-d5, l
1100000	- a	
	u	
1000000	1,4-difluorobenzene, I	
900000	4. 4.	
800000		
000000		
700000	ane.	
700000	÷	
	bromochloromethane.	
600000	Še l	
	ă	
500000		
400000		
300000		
	the and the an	ane eithar Zene eithar Siene
200000	on the second se	butach butach
	ดหางหางหาง เป็ญชีวที่ได้หาง เป็ญชีวที่ได้หาง bromomethane bromomethane trichlorofluoromethan มีมีชัญชีชีชีชีชี เม่าย่ายกาง เม่าย่ายกาง เป็ญชีชีชีชีชีชีชีชีชีชีชีชีชีชีชีชีชี เป็ญชีชีชีชีชีชีชีชีชีชีชีชีชีชีชีชีชีชีชี	toluene trans-1.3-dichloropopen trans-1.3-dichloropopen 24/3-2-dichloropetine dibromochloromethane 1.2-dibromochlarene 1.1.2.2-tetrachloroethar 1.1.2.2-tetrachloroethar 1.2.4-trichlorobenzene hexachlorobutadiene hexachlorobutadiene
100000	ดหาญหาง เป็นชื่อให้เป็นคน เป็นชื่อให้เป็นคน เป็นชื่อให้เป็นคน เมาะก่างการแนนก เมาะก่างการเป็นขึ้นขึ้นขึ้น เป็นที่หมื่อให้เป็นการเป็น เป็นที่หมื่อให้เป็น เป็นที่หมื่อมีเป็น เป็นที่หมื่อมีเป็น เป็นที่หมื่อมีเป็น เป็นที่หมื่อมีเป็น เป็นที่หมื่อมีเป็น เป็นที่หมื่อมีเป็น เป็นที่หมื่อมีเป็น เป็นที่หมื่อมีเป็น เป็นที่หมื่อมีเป็น เป็นที่หมื่อมีเป็น เป็นที่หมื่อมีเป็น เป็นที่หมื่อมีเป็น เป็นที่หมื่อมีเป็น เป็นที่หมื่อมีเป็น เป็นที่หมื่อมีเป็น เป็นที่หมื่อมีเป็น เป็น เป็นที่หมื่อมีเป็น เป็น เป็น เป็น เป็น เป็น เป็น เป็น	toluene trans-1,3-dic 1,2-dibromocho dibromocho dibromocho 1,2-dibromoc 1,1,2,2-tetra 1,2,4-trimet 1,2,4-trimet 1,2,4-tricht hexachlou
100000	·思爱。 Stand Bank Bank Bank Bank Bank Bank Bank Bank	aēta steja das la tat ta tat ta tat ta
0	Land the second the second the second the second se	man lu 1 h m m m m
	5.00 6.00 7.00 8.00 9.00 10.00 11.00 12.00 13.00 14.00 15.00 16.00) 17.00 18.00 19.00 20.00 21.00 22.00 23.00 24.00 25.00 26.00 27.00 28.00 29.00 30.00 31.00 32.00 33.00

OFFLINE

x-----

00002

1-15-08 Data File : J:\ACQUDATA\AIR1\DATA\111408\A6073.D Vial: 3 Operator: T.WALTON Acq On : 14 Nov 2008 16:16 : 0.095 PPB Inst : GC/MS Ins Sample Multiplr: 1.00 Misc : FIEU FIEL MS Integration Params: RTEINT.P Quant Time: Nov 15 8:47 2008 Quant Results File: 111408A.RES Quant Method : J:\ACQUDATA\A...\111408A.M (RTE Integrator) Title : TO-15 Last Update : Sat Nov 15 08:27:05 2008 Response via : Initial Calibration DataAcg Meth : 111408A Internal Standards R.T. QIon Response Conc Units Dev(Min) _____ 1) bromochloromethane12.241302080262.5000 ppbv0.0028) 1,4-difluorobenzene13.901148380412.5000 ppbv-0.0148) chlorobenzene-d518.981177107362.5000 ppbv-0.02 System Monitoring Compounds 55) surr 1, bromofluorobenzene 21.08 174 403679 2.50 ppbv -0.02 Spiked Amount 2.500 Range 70 - 130 Recovery = 100.04%
 Spiked Amount
 2.500
 Range
 70 - 130
 Recovery
 =
 100.04%

 Target Compounds
 Cvalue

 2) propylene
 5.06
 41
 14859
 0.0987 ppbv
 87

 3) dichlorodifluoromethane
 5.16
 85
 28803
 0.0957 ppbv
 99

 4) frecon-114
 5.49
 85
 29354
 0.0931 ppbv
 99

 5) chloromethane
 6.62
 50
 10872
 0.0916 ppbv
 92

 6) vinyl chloride
 6.98
 64
 5644
 0.0926 ppbv
 91

 9) chloroethane
 6.98
 64
 5044
 0.0926 ppbv
 97

 10) trichlorofluoromethane
 7.56
 101
 26036
 0.0896 ppbv
 97

 110 ethanol
 7.97
 45
 3331
 0.0922 ppbv
 81

 12) frecon-113
 8.64
 101
 20110
 0.0977 ppbv
 96

 13) 1.1-dichloroethene
 8.65
 61
 16451
 0.0926 ppbv
 97

 13) tectohadisulfide
 9.11
 76
 Ovalue Target Compounds (#) = qualifier out of range (m) = manual integration

A6073.D 111408A.M Sat Nov 15 08:47:19 2008 OFFLINE

Page 1

Data File : J:\ACQUDATA\AIR1\DATA\111408\A6073.D Acq On : 14 Nov 2008 16:16 Sample : 0.095 PPB Misc : PI=0 PF=0 MS Integration Params: RTEINT.P Quant Time: Nov 15 8:47 2008 Quant

Operator: T.WALTON Inst : GC/MS Ins Multiplr: 1.00

Quant Results File: 111408A.RES

Vial: 3

Quant Method : J:\ACQUDATA\A...\111408A.M (RTE Integrator) Title : TO-15 Last Update : Sat Nov 15 08:27:05 2008 Response via : Initial Calibration DataAcq Meth : 111408A

Compour	nd	R.T.	QIon	Response	Conc Unit	: Qva	alue
45) 2-hexar	oone ochloromethane oromoethane enzene enzene ene	17.62 17.93 18.18 19.03 19.19 19.39 20.12	43 129 107 112 91 91 91	29974 18142 17895 30349 48333 74242 37304	0.0885 0.0835 0.0889 0.0923 0.0887 0.1721 0.0832	ppbv ppbv ppbv ppbv ppbv ppbv ppbv	99 97 100 98 98 100 100
57) 4-ethyl 58) 1,3,5-t	rm -tetrachloroethane toluene rimethylbenzene rimethylbenzene	20.13 20.51 21.26 21.72 21.83 22.54 23.12		26511 15612 31154 48890 42657 39979 26956	0.0797 0.0746 0.0912 0.0796 0.0843 0.0808 0.0835	ppbv ppbv ppbv ppbv ppbv	97 98 99 97 98 99 98
61) 1,4-dcl 62) benzyl 63) 1,2-dcl 64) 1,2,4-t	benz chloride	23.28	146 91	26215 31375 24504 17989 22524	0.0821 0.0750 0.0799 0.0839 0.0931	ppbv ppbv ppbv ppbv	98 99 98 97 98

(#) = qualifier out of range (m) = manual integration

------Anameterion rebore Data File : J:\ACQUDATA\AIR1\DATA\111408\A6073.D Vial: 3 Acq On : 14 Nov 2008 16:16 **Operator: T.WALTON** Sample : 0.095 PPB Inst : GC/MS Ins Misc : PI=0 PF=0 Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Time: Nov 15 8:47 2008 Quant Results File: 111408A.RES Method : J:\ACQUDATA\AIR1\METHODS\111408A.M (RTE Integrator) Title : TO-15 Last Update : Sat Nov 15 08:27:05 2008 Response via : Initial Calibration Abundance 1300000 TIC: A6073.D 1200000 chiorobenzene-d5.1 1100000 1,4-difluorobenzene,1 1000000 900000 800000 700000 600000 500000 400000 300000 1,2,2-tetrachloroethai -9:9440448HBhee envigeoperaene M+P xviene ABCER Proet 200000 ,2,4-trimeth 3-96lbenz izyl chloride romomethan And Reflect 2-dclbenz bromoform hichlorofluo 100000 Μ 01 Time-> 5.00 6.00 7.00 8.00 9.00 10.00 11.00 12.00 13.00 14.00 15.00 16.00 17.00 18.00 19.00 20.00 21.00 22.00 23.00 24.00 25.00 26.00 27.00 28.00 29.00 30.00 31.00 32.00 33.00

88885

Annotonoton vohoro (has voireated) Tu-15-08 Data File : J:\ACQUDATA\AIR1\DATA\111408\A6074.DVial: 3Acq On : 14 Nov 2008 17:01Operator: T.WALTON Inst : GC/MS Ins : 0.20 PPB Sample : 0.20 PPB Misc : PI=0 PF=0 Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Time: Nov 15 8:47 2008 Quant Results File: 111408A.RES Quant Method : J:\ACQUDATA\A...\111408A.M (RTE Integrator) Title: TO-15Last Update: Sat Nov 15 08:27:05 2008 Response via : Initial Calibration DataAcq Meth : 111408A Internal Standards R.T. QIon Response Conc Units Dev(Min) -1) bromochloromethane12.241302059212.5000 ppbv0.0028) 1,4-difluorobenzene13.911147806892.5000 ppbv-0.0148) chlorobenzene-d518.981176467532.5000 ppbv-0.02 System Monitoring Compounds 55) surr 1, bromofluorobenzene21.071743562932.43 ppbv-0.03Spiked Amount2.500Range70- 130Recovery=97.03%
 Spiked Amount
 2.500
 Range
 70 - 130
 Recovery
 =
 97.03%

 Target Compounds
 0
 Qualue
 Qualue

 2) propylene
 5.05
 41
 29435
 0.1975
 ppbv
 95

 3) dichlorodifluoromethane
 5.15
 85
 61317
 0.2058
 ppbv
 97

 6) vinyl chloride
 5.92
 62
 25213
 0.2072
 ppbv
 99

 7) 1,3-butadiene
 6.03
 54
 20966
 0.2107
 ppbv
 99

 9) chloroethane
 6.98
 64
 12233
 0.2025
 ppbv
 90

 10
 trichlorofluoromethane
 7.56
 101
 53370
 0.2065
 ppbv
 91

 11
 ethanol
 7.98
 45
 7490
 0.2129
 ppv
 910

 12) freon-113
 8.64
 61
 37928
 0.2159
 ppv
 91

 13) 1.1-dichorothene
 8.64
 61
 35867
 0.2101
 ppv
 92

 14) ectone</td Qvalue (#) = qualifier out of range (m) = manual integration A6074.D 111408A.M Sat Nov 15 08:47:23 2008 OFFLINE Page 1

Data File : J:\ACQUDATA\AIR1\DATA\111408\A6074.D Vial: 3 Acq On : 14 Nov 2008 17:01 Sample : 0.20 PPB Misc : PI=0 PF=0 Operator: T.WALTON MS Integration Params: RTEINT.P Quant Time: Nov 15 8:47 2008

~

Inst : GC/MS Ins Multiplr: 1.00

Quant Results File: 111408A.RES

Quant Method : J:\ACQUDATA\A...\111408A.M (RTE Integrator) Title : TO-15 Last Update : Sat Nov 15 08:27:05 2008 Response via : Initial Calibration DataAcq Meth : 111408A

	Compound	R.T.	QIon	Response	Conc Unit Qva	lue
45)	2-hexanone	17.62	43	62218	0.1971 ppbv	99
46)	dibromochloromethane	17.93	129	37783	0.1866 ppbv	100
	1,2-dibromoethane	18.18	107	37197	0.1983 ppbv	100
49)	chlorobenzene	19.03	112	61467	0.2054 ppbv	98
50)		19.19	91	98947	0.1996 ppbv	99
	M+P xylene	19.39	91	157215	0.4004 ppbv	99
52)	0 xylene	20.12	91	78392	0.1922 ppbv	100
53)	styrene	20.13	104	57320	0.1894 ppbv	96
54)	bromoform	20.51	173	32481	0.1707 ppbv	99
56)	1,1,2,2-tetrachloroethane	21.26	83	61555	0.1980 ppbv	100
	4-ethyltoluene	21.72	105	100892	0.1806 ppbv	100
58)	1,3,5-trimethylbenzene	21.83	105	85829	0.1865 ppbv	97
59)	1,2,4-trimethylbenzene	22.54	105	81651	0.1814 ppbv	99
	1,3-dclbenz	23.12	146	54214	0.1845 ppbv	97
61)	1,4-dclbenz	23.28	146	53412	0.1838 ppbv	98
62)	benzyl chloride	23.50	91	64875	0.1703 ppbv	99
63)	1,2-dclbenz	23.99	146	49626	0.1779 ppbv	98
64)	1,2,4-trichlorobenzene	27.02	180	35017	0.1795 ppbv	100
65)	hexachlorobutadiene	27.31	225	45116	0.2049 ppbv	96

------______ (#) = qualifier out of range (m) = manual integration

Acq (Samp] Misc MS In	ple : 0.20 PPB Inst · GC/MS In	IS
Metho Title Last	hod : J:\ACQUDATA\AIR1\METHODS\111408A.M (RTE Integrator) le : TO-15 t Update : Sat Nov 15 08:27:05 2008 ponse via : Initial Calibration	
1100000	11C: A6074.D	
1000000	ood benzene-d5, modfuorobenzene-d5, modfuorobenzene-d5, modfuorobenzene, m	
900000	000	
800000		
700000		
500000	or and the second se	
400000		9
300000	and the second	hythenzene benzene achitorobutadier
200000	000 REPROPRIMATION REPROPRIMATION REPROPRIMATION Chloroethane trichlorofluoromethane chloroethane trichlorofluoromethane trichlorofluoromethane trichloroethane trichloroethane trichloroethane 1,4,1,0,2,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0	1,2,4-trimethylbenzene 1,2,4-trichlorobenzz 1,2-dclbenz 1,2-dclbenz 1,2-dclbenz
100000	000 Alternation of the second	ž
Time>	5.00 6.00 7.00 8.00 9.00 10.00 11.00 12.00 13.00 14.00 15.00 16.00 17.00 18.00 19.00 20.00 21.00 22	2.00 23.00 24.00 25.00 26.00 27.00 28.00 29.00 30.00 31.00 32.00 33.00
A6074.1	.D 111408A.M Sat Nov 15 08:47:24 2008 OFFLINE	Page 3

00000

Vial: 3 /// 5.00 Operator: T Mart Data File : J:\ACQUDATA\AIR1\DATA\111408\A6075.D Acq On : 14 Nov 2008 17:46 Sample : 0.50 PPB Operator: T.WALTON Inst : GC/MS Ins Misc : PI=0 PF=0 Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Time: Nov 15 9:05 2008 Quant Results File: 111408A.RES Quant Method : J:\ACQUDATA\A...\111408A.M (RTE Integrator) Title : TO-15 Last Update : Sat Nov 15 08:27:05 2008 Response via : Initial Calibration DataAcq Meth : 111408A R.T. QIon Response Conc Units Dev(Min) Internal Standards _____ 1) bromochloromethane12.241302075992.5000 ppbv0.0028) 1,4-difluorobenzene13.901148193032.5000 ppbv-0.0148) chlorobenzene-d518.981176854002.5000 ppbv-0.02 System Monitoring Compounds 55) surr 1, bromofluorobenzene 21.07 174 381536 2.45 ppbv -0.03 Spiked Amount 2.500 Range 70 - 130 Recovery = 98.04%
 Spiked Amount
 2.500
 Range
 70 - 130
 Recovery
 =
 98.04%

 Target Compounds
 Cvalue

 2) propylene
 5.05
 41
 66658
 0.43436
 ppbv
 100

 3) dichlorodifluoromethane
 5.15
 85
 150750
 0.5018
 ppbv
 100

 4) freon-114
 5.49
 85
 158616
 0.6041
 ppbv
 98

 5) chloromethane
 6.62
 50
 5449
 0.4941
 ppbv
 98

 7) 1,3-butadiene
 6.74
 94
 46763
 0.4671
 ppbv
 98

 10 trichlorofluoromethane
 7.56
 101
 140770
 0.4857
 ppbv
 98

 11 ethanol
 7.98
 45
 12339
 0.4125
 ppbv
 100

 13) 1.1-dichloroethene
 8.65
 61
 93050
 0.5232
 ppbv
 100

 14) acetone
 9.05
 44
 9096
 0.5137
 ppbv
 100

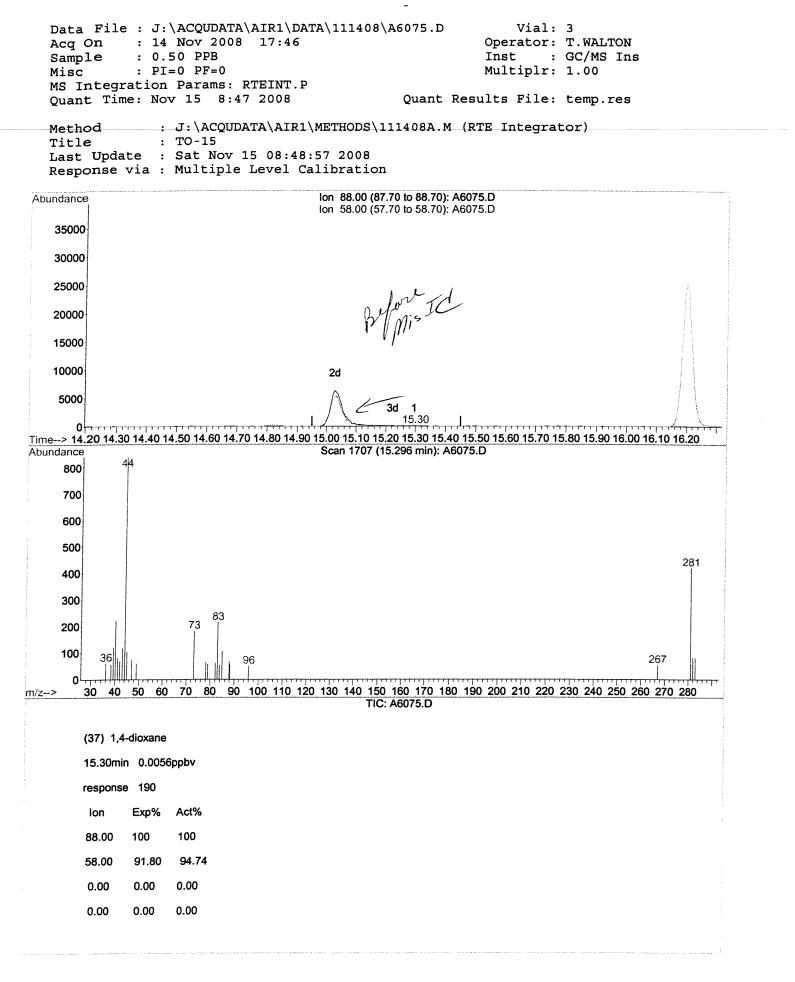
 16) carbon disulfide
 9.11
 76
 15784 Qvalue) TW 11-15-08 98 (#) = qualifier out of range (m) = manual integration

A6075.D 111408A.M Sat Nov 15 09:06:08 2008 OFFLINE

Page 1

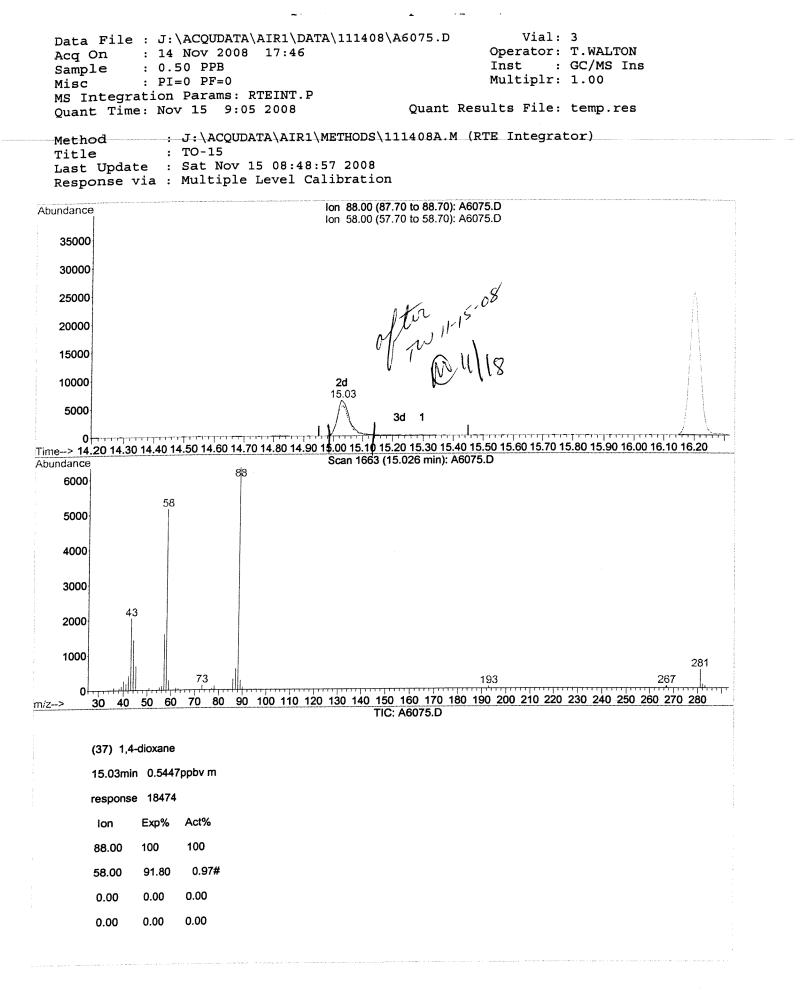
Data File : J:\ACQUDATA\AIR1\DATA\111408\A6075.D Acq On : 14 Nov 2008 17:46 Sample : 0.50 PPB Misc : PI=0 PF=0 MS Integration Params: RTEINT.P Quant Time: Nov 15 9:05 2008 Quant

Operator: T.WALTON Inst : GC/MS Ins Multiplr: 1.00


Quant Results File: 111408A.RES

Vial: 3

Quant Method : J:\ACQUDATA\A...\111408A.M (RTE Integrator) Title : TO-15 Last Update : Sat Nov 15 08:27:05 2008 Response via : Initial Calibration DataAcq Meth : 111408A


	Compound	R.T.	QIon	Response	Conc Unit Qva	lue
46) 47) 50) 51) 52) 53) 54) 57) 58) 59) 60) 61) 62) 63)	2-hexanone dibromochloromethane 1,2-dibromoethane chlorobenzene ethylbenzene M+P xylene O xylene styrene bromoform 1,1,2,2-tetrachloroethane 4-ethyltoluene 1,3,5-trimethylbenzene 1,2,4-trimethylbenzene 1,3-dclbenz 1,4-dclbenz benzyl chloride 1,2-dclbenz	17.62 17.93 18.17 19.03 19.19 19.39 20.12 20.13 20.51 21.26 21.72 21.83 22.54 23.12 23.28	43 129 107 112 91 91 91 104	Response 164492 101926 98445 162325 273381 436292 220942 162217 91816 164378 287529 250071 235778 148125 145646 188907 137067 100156	Conc Onit Qva. 0.4966 ppbv 0.4797 ppbv 0.5000 ppbv 0.5118 ppbv 0.5203 ppbv 1.0486 ppbv 0.5112 ppbv 0.5057 ppbv 0.4552 ppbv 0.4552 ppbv 0.4856 ppbv 0.4856 ppbv 0.5127 ppbv 0.4943 ppbv 0.4757 ppbv 0.4757 ppbv 0.4680 ppbv 0.4635 ppbv 0.4845 ppbv	100 97 100 98 99 100 100 98 98 98 100 98 99 97 99 100 98 99
64) 65)	hexachlorobutadiene	27.31	225	118382	0.5072 ppbv	97

(#) = qualifier out of range (m) = manual integration

Sat Nov 15 09:05:29 2008

OFFLINE

A6075.D 111408A.M

Sat Nov 15 09:05:42 2008

OFFLINE

					******		-			
Acq O Sampl Misc MS In		2008 17:46 PB P=0 Mms: RTEINT.E			D Via Operato Inst Multipl t Results Fil	: GC/M r: 1.00	S Ins	ł		
Metho	d : J:\A	COUDATA\ATR1			.M (RTE Integ					
Title	: TO-1	15		LIHUOM	.M (RIE INCEG	rator)				
Respo	Update : Sat nse via : Init	Nov 15 08:48 ial Calibrat	B:57 2008 tion							
Abundance					TIC:	A6075.D			August 1997 - 1997 - 1998 - 1998 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	lar adamban pana ang kanana na kana ang kanana kana k
1200000										
					đSil		ene,S			
1100000			_		izene- izene-		obenz			
			izene,		chlorobenzen e-d5.		offuor			
1000000			orober		ŧ		, bron			
			4-diflu				- mue			
900000			÷							
000000										
800000										
700000			ē							
70000			Tethan			e				
600000			bromochloromethane.			M+P xylene o e			idiene	
00000			omoc			M+ Byrgebere	are		robuta	
500000			ă			â	lbenze		achio	
							rachloroethane 1,5,5 %ମାନ ାଣ ୀମ୍ମbe 1,2,4-trimethylbenz		ene	
400000		thene	thane		e e e	ifizene	loroett StStA	2 VZ	opeus	
		90 100 100	e e e e e e e e e e e e e e e e e e e	hane	entanc entanc sthane oroeth thane		etrach	1,345806nz 1,345806nz chloride ,2-dclbenz	Lichio	
300000	thane	r stadict 10 19 states	loroethene roethane chiloride behaterteor heptane	ethene pane oromethan	ropropen vi-2-pent vial-2-pent inloroptro birachlorc birachlorc birachlorc birachlorc birachlorc birachlorc birachlorc birachlorc	einyibertzene	1,1,2,2-tetrachloroethane 4,5,5,5,4,4,1,4,4,4,4,4,4,4,4,4,4,4,4,4,	1,2-dc	1,2,4-trichlorobenzene	
	ome ome	ane orige	8. 289		dichlo to to t,2-tric hexaft noetha	E D	-	penzy		
200000	PGBR/BFBLittuor Tormethaftgon-1 A. 92-B018Blene A. 92-B018Blene A. 92-B018Blene A. 92-B018Blene Trichloroftuo trichloroftuo	acelone isopregatoski disultide methylene chloi tramethyg-téte tramethyg-téte	eur fyrattenstreb in erhyserkeura n 1.1.1.1.tytigtigt carbón teira	trichlorc 1,2-diclproj bromodichl	cis-1,3-dichtk 4-mett trans-1,3-di trans-1,3-di 1,1,2-tri 2-hexal dibromoch ,2-dibromoch	bromoform				
and the second se	 PGBENBREutin Chlorownethahlæor vinyl gbB01898 vinyl gbB01898 vinyl gbB01898 vinyl gbB0188 vi	acetone Beasish methyr trage trage	te et	xane						
100000	chlord chlord chloro chloro chloro	a isopra		1,4-dio						
0 Time> 5		<u>- بالإلبالياليان</u> 0.0.10.00.11.00								30.00 31.00 32.00 33.00
						0 20.00 21	.00 22.00 2	23.00 24.00 25.00 26	.00 27.00 28.00 29.00 3	
A6075.E) 111408A.M	Sat Nov	15 09:06:09	2008	OFFLINE					Page 3

T.-15-08. /---Data File : J:\ACQUDATA\AIR1\DATA\111408\A6076.D Vial: 4 Data File : J:\ACQUDATA\AIR1\DATA\111408\A6076.D Operator: T.WALTON Acq On : 14 Nov 2008 18:31 Sample : 1.0 PPB Misc : PI=0 PF=0 Inst : GC/MS Ins Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Time: Nov 15 8:47 2008 Quant Results File: 111408A.RES Quant Method : J:\ACQUDATA\A...\111408A.M (RTE Integrator) Title : TO-15 Last Update : Sat Nov 15 08:27:05 2008 Response via : Initial Calibration DataAcq Meth : 111408A Internal Standards R.T. QIon Response Conc Units Dev(Min) _____ 1) bromochloromethane12.241302045442.5000 ppbv0.0028) 1,4-difluorobenzene13.911147876392.5000 ppbv0.0048) chlorobenzene-d518.981176640842.5000 ppbv-0.02 System Monitoring Compounds 55) surr 1, bromofluorobenzene 21.08 174 376680 2.50 ppbv -0.02 Spiked Amount 2.500 Range 70 - 130 Recovery = 99.90%
 Spiked Amount
 2.500
 Range
 70 - 130
 Recovery
 =
 99.90%

 Target Compounds
 Cvalue

 2) propylene
 5.05
 41
 118394
 0.7996 ppbv
 99

 3) dichlorodifluoromethane
 5.15
 85
 292870
 0.9994 ppbv
 99

 4) freon-114
 5.49
 85
 313051
 1.0097 ppbv
 98

 5) chloromethane
 6.62
 1014446
 0.9912 ppbv
 99

 6) vinyl chloride
 5.92
 62
 121242
 0.9948 ppbv
 100

 7) 1, 3-butadiene
 6.03
 54
 10607
 1.0730 ppbv
 98

 6) bromomethane
 6.98
 64
 57564
 0.9603 ppbv
 90

 101 trichlorothene
 6.86
 61
 100050
 1.099 ppbv
 98

 11) t-dichlorothene
 8.65
 61
 190050
 1.990 ppbv
 93

 12) freon-113
 8.64
 101
 200412
 0.990 ppbv
 93

 13) 1,1-dichlorocthene
 8.65
 1180769
 0.985 Ovalue (#) = qualifier out of range (m) = manual integration A6076.D 111408A.M Sat Nov 15 08:47:31 2008 OFFLINE

Kammananan matera

Data File : J:\ACQUDATA\AIR1\DATA\111408\A6076.D Acq On : 14 Nov 2008 18:31 Sample : 1.0 PPB Misc : PI=0 PF=0 MS Integration Params: RTEINT.P Quant Time: Nov 15 8:47 2008 Quant Re

Inst : GC/MS Ins Multiplr: 1.00

Operator: T.WALTON

Quant Results File: 111408A.RES

Vial: 4

Quant Method : J:\ACQUDATA\A...\111408A.M (RTE Integrator)

~

٠

Title : TO-15 Last Update : Sat Nov 15 08:27:05 2008 Response via : Initial Calibration DataAcq Meth : 111408A

Compound	R.T.	QION	Response	Conc Unit Qval	lue
45) 2-hexanone	17.62	43	317903	0.9983 ppbv	96
46) dibromochloromethane	17.93	129	181269	0.8874 ppbv	99
47) 1,2-dibromoethane	18.18	107	158800	0.8389 ppbv	99
49) chlorobenzene	19.03	112	261262	0.8501 ppbv	99
50) ethylbenzene	19.18	91	431518	0.8476 ppbv	100
51) M+P xylene	19.39	91	689344	1.7100 ppbv	100
52) O xylene	20.12	91	354254	0.8460 ppbv	98
53) styrene	20.13	104	262878	0.8458 ppbv	94
54) bromoform	20.51	173	162722	0.8327 ppbv	99
56) 1,1,2,2-tetrachloroethane	21.26	83	263554	0.8256 ppbv	99
57) 4-ethyltoluene	21.73	105	476982	0.8314 ppbv	100
58) 1,3,5-trimethylbenzene	21.82	105	414895	0.8779 ppbv	98
59) 1,2,4-trimethylbenzene	22.54	105	397401	0.8599 ppbv	99
60) 1,3-dclbenz	23.12	146	244775	0.8113 ppbv	98
61) 1,4-dclbenz	23.28	146	242262	0.8120 ppbv	98
62) benzyl chloride	23.50	91	326879	0.8357 ppbv	98
63) 1,2-dclbenz	23.99	146	223065	0.7786 ppbv	98
64) 1,2,4-trichlorobenzene	27.01	180	147704	0.7375 ppbv	99
65) hexachlorobutadiene	27.31	225	176356	0.7799 ppbv	96

(#) = qualifier out of range (m) = manual integration

Acq O Sampl Misc MS In	e : 1.0 PPB : PI=0 PF=0 tegration Params: RTEINT.P	Operator Inst Multiplr	: T.WALTON : GC/MS Ins : 1.00	
Metho	C C C C C C C C C C C C C C C C C C C	Quant Results File		
Title Last Respo Abundance	: TO-15 Update : Sat Nov 15 08:27:05 2008 nse via : Initial Calibration			
		TIC: A	6076.D	
1100000		ene-d5,l	S.	
1000000		chlorobenz	e e	
900000	4.4 diffuorobe		Biyyphone M+P xylen Surf-1-1 surf-1-1 lene	
800000			Eene Byr	
700000	et taa 		ne 1.3(5) - 4(1) - 1.5(1) - 4 - 1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1	
600000	dottBroethene bromochioromethane.	oethene Marzene		
500000	hene hender Bebättstoo	ethene athane hiyt-2-pentanone istrate cethane ethane ethane ethane	1,1,2,2-tetrachloroethane 1,1,2,2-tetrachloroethane 1,2,4-tr 1,2-dclbenz 1,2,4-trichlorobenzene	
400000	odifluoromethane freon-114 liene freon-114 disuffice disuffice ene chlorodiuoromethane ene chloride ranet/J.Q.settbliggeetheene ethee ranet/J.Q.settbliggeetheene frant/J.g.settbliggeetheene frant/J.g.settbliggeetheene frant/J.g.settbliggeetheene frant/J.g.settbliggeetheene frant/J.g.settbliggeetheene frant/J.g.settbliggeetheene frant/J.g.settbliggeetheene carbon terrachionoethe carbon terrachionoethe beene			
300000	rrodin diene e trichlo fene tene transt	trichlor 1,2-dictpropare bromodichloron cis-1,3-dicthoropro 4-m. 1,1,2-trichlor 1,1,2-trichlor 2,4ibromochloro		
200000	Propy/960%order Viny/ chipgdouac Viny chipgdouac the the the the the the the the the the			
100000	chio	÷.		
Time> 5	00 6.00 7.00 8.00 9.00 10.00 11.00 12.00 13.00 14		0 20.00 21.00 22.00 23.00 24.00 25.00 26.00 27.00 28.00 2	9.00 30.00 31 00 32.00 33.00
A6076.D				Page

+

OFFLINE

vial: 4 Operator: T.WALTON Inst : GC/MS Ins 11^{-1} Multiplr: 1 00 Data File : J:\ACQUDATA\AIR1\DATA\111408\A6077.D Acq On : 14 Nov 2008 19:16 : 2.5 PPB Sample Misc : PI=0 PF=0 MS Integration Params: RTEINT.P Quant Time: Nov 15 8:47 2008 Quant Results File: 111408A.RES Quant Method : J:\ACQUDATA\A...\111408A.M (RTE Integrator) Title : TO-15 Last Update : Sat Nov 15 08:27:05 2008 Response via : Initial Calibration DataAcq Meth : 111408A R.T. QIon Response Conc Units Dev(Min) Internal Standards 1) bromochloromethane12.241302063872.5000 ppbv0.0028) 1,4-difluorobenzene13.911147866962.5000 ppbv0.0048) chlorobenzene-d518.981176559932.5000 ppbv-0.02 System Monitoring Compounds 55) surr 1, bromofluorobenzene 21.08 174 367473 2.47 ppbv -0.03 Spiked Amount 2.500 Range 70 - 130 Recovery = 98.66%
 Spiked Amount
 2.500
 Range
 70 - 130
 Recovery
 =
 98.66%

 Target Compounds
 Qvalue

 2) propylene
 5.06
 41
 298118
 1.9554 ppbv
 97

 3) dichlorodifluoromethane
 5.15
 85
 733965
 2.4575 ppbv
 100

 4) freon-114
 5.50
 85
 780587
 2.4552 ppbv
 97

 5) chloromethane
 6.92
 62
 311758
 2.5352 ppbv
 98

 6) vinyl chloride
 6.74
 94
 238111
 2.3325 ppbv
 99

 10) trichlorofluoromethane
 6.86
 64
 101
 74573
 2.6621 ppbv
 100

 12) freon-113
 8.64
 101
 544573
 2.6621 ppbv
 100

 13) 1.1-dichloroethene
 8.65
 61
 433427
 2.8022 ppbv
 92

 16) carbon disulfide
 9.12
 76
 609800
 2.5999 ppbv
 100

 13) 1.1-dichloroethene
 10.88
 63
 5504
 245530
 2.6142 ppbv
 92

 1 Ovalue Target Compounds (#) = qualifier out of range (m) = manual integration

A6077.D 111408A.M Sat Nov 15 08:47:35 2008 OFFLINE

_____ Data File : J:\ACQUDATA\AIR1\DATA\111408\A6077.D Vial: 4 Acq On : 14 Nov 2008 19:16 Operator: T.WALTON : 2.5 PPB Inst : GC/MS Ins Sample : 2.5 PPB Misc : PI=0 PF=0 Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Results File: 111408A.RES Quant Time: Nov 15 8:47 2008 Quant Method : J:\ACQUDATA\A...\111408A.M (RTE Integrator) Title : TO-15 Last Update : Sat Nov 15 08:27:05 2008 Response via : Initial Calibration DataAcq Meth : 111408A R.T. QIon Response Conc Unit Qvalue Compound CompoundR.1. 0101ResponseConc onicOvalue45)2-hexanone17.61439019582.8358ppbv9546)dibromochloromethane17.931295527772.7094ppbv10047)1,2-dibromoethane18.181074933872.6097ppbv10049)chlorobenzene19.041127983512.6298ppbv10050)ethylbenzene19.199113867132.7576ppbv9951)M+Pxylene19.389121823255.4804ppbv9952)0xylene20.129111447702.7677ppbv9753)styrene20.511735371282.7824ppbv9956)1,1,2,2-tetrachloroethane21.26838017492.5427ppbv9958)1,3,5-trimethylbenzene21.8310513223462.8326ppbv9759)1,2,4-trimethylbenzene23.50911128052.8802ppbv9760)1,3-dclbenz23.509111128052.8802ppbv9862)benzylchloride23.50911128052.8602ppbv9864)1,2,4-trichlorobenzene27.011804770872.4115ppbv9965)hexachlorobutadiene27.312255352972.3963ppbv97

Acq O Sample Misc MS In	n : 14 Nov 2008 19:16 Operato e : 2.5 PPB Inst	l: 4 r: T.WALTON : GC/MS Ins r: 1.00 e: 111408A.RES
Metho Title Last Respo Abundance	d : J:\ACQUDATA\AIR1\METHODS\111408A.M (RTE Integ : TO-15 Update : Sat Nov 15 08:27:05 2008 nnse via : Initial Calibration	
3000000 2800000		
2600000 2400000		e Je
2200000		MichtingDEnzene Altrinylbenzene hexachlorobutadiene
2000000 1800000		e - 1.34 年前 2.4 年前 1.4 年前
1600000	roethene roethene roethene	urr 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 2, 2, 1, 1, 1, 2, 2, 2, 1, 1, 1, 2, 2, 4, 1, 1, 1, 1, 2, 4, 1, 1, 1, 1, 2, 4, 1, 1, 1, 2, 4, 1, 1, 1, 2, 4, 1, 1, 1, 2, 4, 1, 1, 1, 1, 2, 4, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1400000 1200000	fradodichta tradod	benzyl chlorobenzene 1,2,4-trichlorobenzene 1,2,4-trichlorobenzene
1000000		
800000 600000		
400000	Tropy (active character active childron character active childron character active childron character active childron children ch	
0		00 20.00 21.00 22.00 23.00 24.00 25.00 26.00 27.00 28.00 29.00 30.00 31.00 32.00 33.00

Data File : J:\ACQUDATA\AIR1\DATA\111408\A6078.D Vial: 4 Acq On : 14 Nov 2008 20:02 Operator: T.WALTON Sample : 5.0 PPB Inst : GC/MS Ins Misc : PI=0 PF=0 Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Time: Nov 15 9:08 2008 Quant Results File: 111408A.RES Quant Method : J:\ACQUDATA\A...\111408A.M (RTE Integrator) Multiplr: 1.00 Title : TO-15 Last Update : Sat Nov 15 08:27:05 2008 Response via : Initial Calibration Quant Method : J:\ACQUDATA\A...\111408A.M (RTE Integrator) Response via : Initial Calibration DataAcq Meth : 111408A Internal Standards R.T. QIon Response Conc Units Dev(Min) _____ 1) bromochloromethane12.241302009092.5000 ppbv0.0028) 1,4-difluorobenzene13.901147732312.5000 ppbv-0.0148) chlorobenzene-d518.981176418302.5000 ppbv-0.02 System Monitoring Compounds 55) surr 1, bromofluorobenzene 21.08 174 365403 2.51 ppbv -0.02 Spiked Amount 2.500 Range 70 - 130 Recovery = 100.27%
 Spiked Amount
 2.500
 Range
 70 - 130
 Recovery
 =
 100.27%

 Target Compounds
 CValue

 2) proplene
 5.06
 41
 594738
 4.0894 ppbv
 97

 3) dichlorodifluoromethane
 5.16
 85
 1444892
 4.0694 ppbv
 97

 5) chloromethane
 5.63
 50
 573624
 5.0068 ppbv
 90

 6) vinyl chloride
 5.92
 62
 62525
 5.2322 ppbv
 90

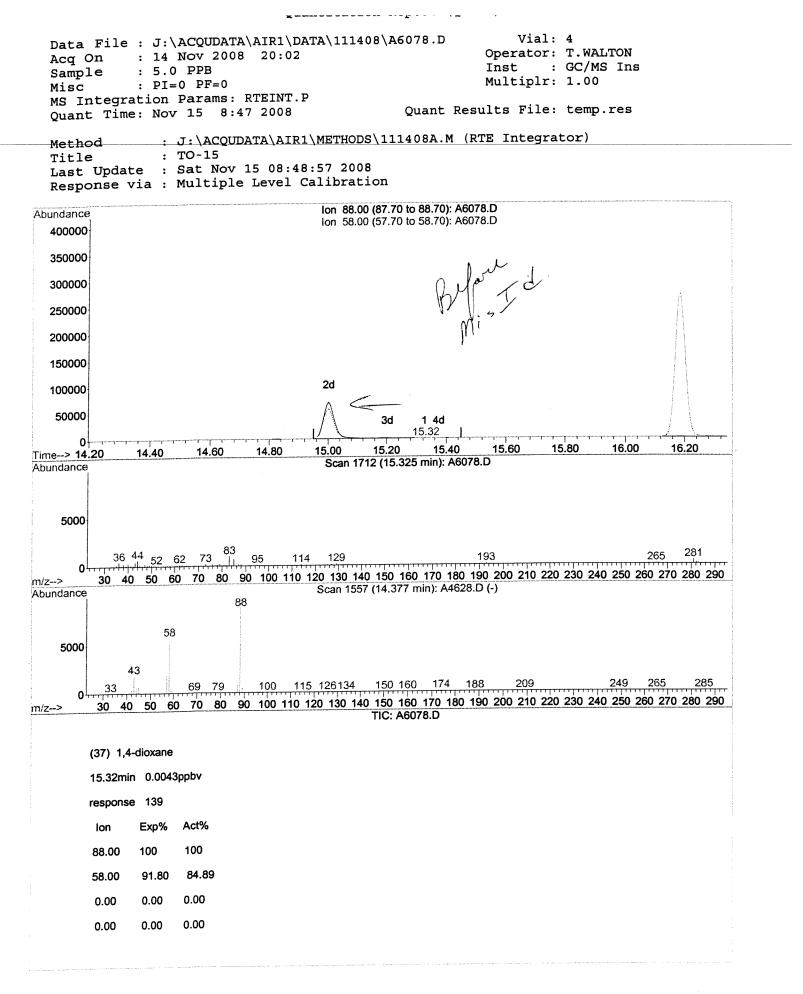
 7) 1,3-butadlene
 6.03
 54
 552662
 5.6314 ppbv
 96

 7) browneethane
 7.56
 101
 142412
 5.0773 ppbv
 99

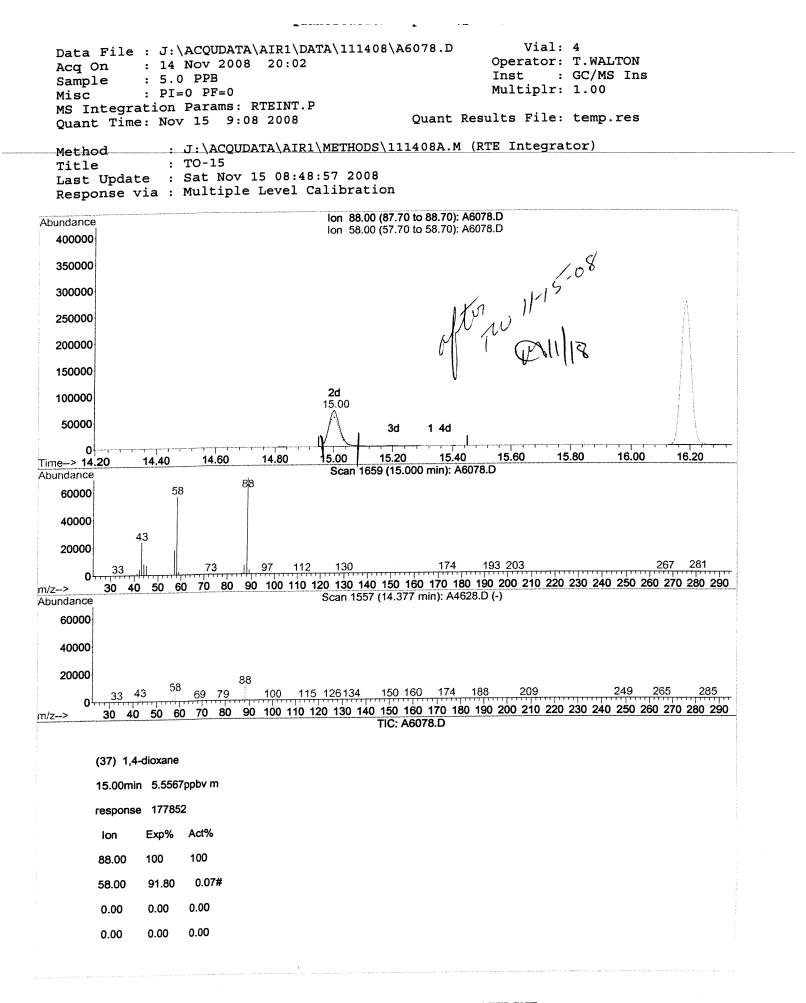
 10
 trichlorocthane
 7.56
 101
 142415
 5.0773 ppbv
 99

 11
 ftcon-113
 8.64
 101
 163790
 5.4566
 90 ppbv
 90

 13
 1,1-dichlorocthene
 8.64
 101
 8390 ppbv
 90


 14) acetone
 8.73
 43
 1024405
 3.5565 ppbv
 94

 15
 i (#) = qualifier out of range (m) = manual integration A6078.D 111408A.M Sat Nov 15 09:09:20 2008 OFFLINE Page 1


_____ Data File : J:\ACQUDATA\AIR1\DATA\111408\A6078.D Vial: 4 Acq On : 14 Nov 2008 20:02 Operator: T.WALTON Inst : GC/MS Ins Sample : 5.0 PPB Misc : PI=0 PF=0 Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Results File: 111408A.RES Quant Time: Nov 15 9:08 2008 Quant Method : J:\ACQUDATA\A...\111408A.M (RTE Integrator) Title : TO-15 Last Update : Sat Nov 15 08:27:05 2008 Response via : Initial Calibration DataAcq Meth : 111408A Compound R.T. QIon Response Conc Unit Qvalue R.T. QIon Response Conc Unit Qvalue CompoundR.1. (101)ResponseConc onicOverage45)2-hexanone17.604317733965.6728 ppbv9346)dibromochloromethane17.9312911603965.7866 ppbv9947)1,2-dibromoethane18.1810710167575.4717 ppbv10049)chlorobenzene19.0311216383095.5158 ppbv10050)ethylbenzene19.199128247895.7412 ppbv9851)M+P xylene19.3991437171711.2207 ppbv9652)0 xylene20.129123608895.8338 ppbv9653)styrene20.1310418003695.9935 ppbv9454)bromoform20.5117311603766.1436 ppbv9956)1,1,2,2-tetrachloroethane21.268316388335.3121 ppbv10057)4-ethyltoluene21.7310531388125.6608 ppbv9758)1,3,5-trimethylbenzene21.831052695985.9017 ppbv9660)1,3-dclbenz23.1214616621895.7000 ppbv9861)1,4-dclbenz23.509123495436.2154 ppbv9862)benzyl chloride23.509123495436.2154 ppbv9863)1,2,4-trichlorobenzene27.0118010479085.4137 ppbv9864)1,2,4-trichlorobenzene27.31225</td

.

-----(#) = qualifier out of range (m) = manual integration

Sat Nov 15 09:08:48 2008

Acq (Samp] Misc MS In Quant Metho Title Last	le : 5.0 PPB Inst : GC/MS Ins : PI=0 PF=0 Multiplr: 1.00 ntegration Params: RTEINT.P t Time: Nov 15 9:08 2008 Quant Results File: 111408A.RES od : J:\ACQUDATA\AIR1\METHODS\111408A.M (RTE Integrator) e : TO-15 Update : Sat Nov 15 08:48:57 2008	
Abundance	onse via : Initial Calibration	
6000000		
5500000	O	
5000000		
4500000	0 0 0 0 0 0 0 0 0 0 0 0 0 0	
4000000	0 1.3.5 ethinticity 0 1.3.5 ethinticity 0 1.2.4-trimethylbenzene hexachlorobutadi 1.2.4-trimethylbenzene	
3500000		
3000000	0 0 0 1,2,2-letrachioroethane 1,2,2-letrachioroethane 1,2,4-trichloroethane 1,2,4-trichloroethane	
250000	0 trabodid tra	
200000	anare 1.14 here 1.13 here 1.14 here	
150000	O O AffAhlorodifluorometha AffAhlorodifluorometha AffAhlorodifluorometha AffAhlorodifluorometha Intrichlorofluorometha Intrintrichlorometha <	
1000000 500000	no contractive co	
(Time>	04949497497497497497497497497497497497497	1.00 32.00 33.00
A6078.		Page 3

<u>2010</u>4

vial: 4 Operator: T.WALTON Inst : GC/MS Tro Multiple Data File : J:\ACQUDATA\AIR1\DATA\111408\A6079.D Acq On : 14 Nov 2008 20:50 Sample : 7.5 PPB Misc : PI=0 PF=0 Misc : PI=0 Pr=0 MS Integration Params: RTEINT.P Multiplr: 1.00 Ouant Results File: 111408A.RES Quant Method : J:\ACQUDATA\A...\111408A.M (RTE Integrator) Title : TO-15 Last Update : Sat Nov 15 08:27:05 2008 Response via : Initial Calibration DataAcq Meth : 111408A R.T. QIon Response Conc Units Dev(Min) Internal Standards 1) bromochloromethane12.241302036312.5000 ppbv0.0028) 1,4-difluorobenzene13.911147774742.5000 ppbv0.0048) chlorobenzene-d518.981176574642.5000 ppbv-0.02 System Monitoring Compounds 55) surr 1, bromofluorobenzene 21.07 174 382580 2.56 ppbv -0.03 Spiked Amount 2.500 Range 70 - 130 Recovery = 102.49%
 Spiked Amount
 2.500
 Range
 70 - 130
 Recovery
 =
 102.49%

 Target Compounds
 Cvalue

 2) propylene
 5.05
 41
 888654
 6.0266 ppbv
 99

 3) dichlorodifluoromethane
 5.15
 85
 2156474
 7.3182 ppbv
 99

 4) freon-114
 5.50
 85
 2306292
 7.4720 ppbv
 96

 vinyl chloride
 5.92
 62
 937718
 7.7286 ppbv
 100

 71
 3-butadiene
 6.03
 54
 829673
 8.4299 ppbv
 97

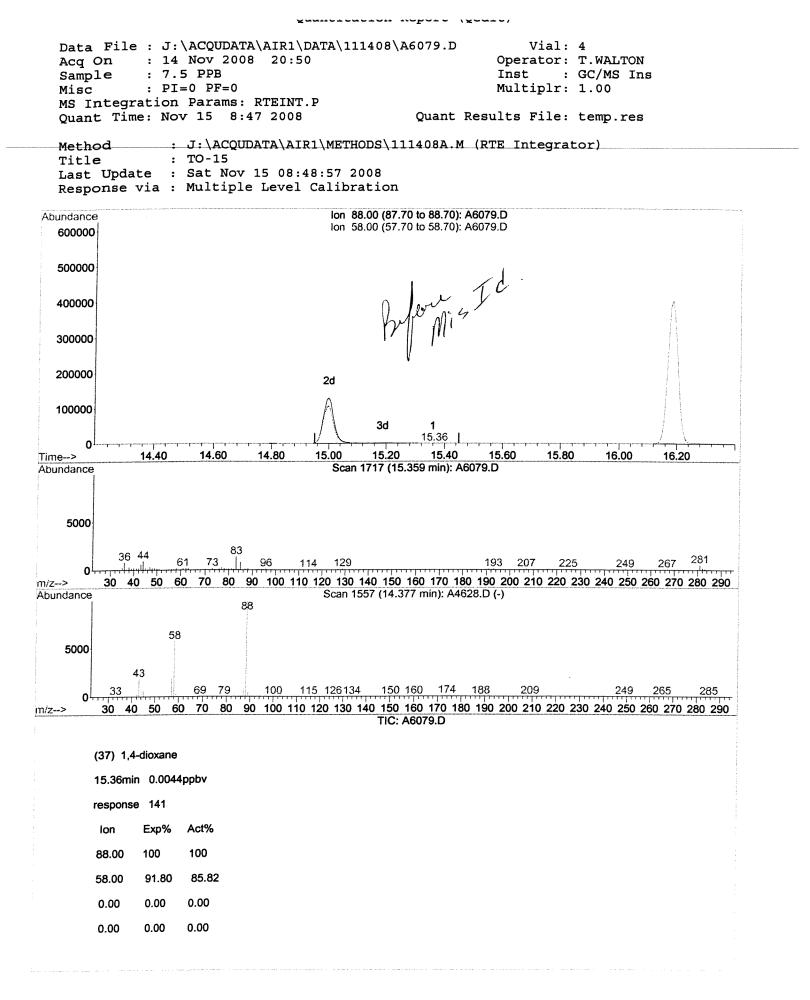
 8) bromomethane
 6.98
 64
 45054
 7.6448 ppbv
 100

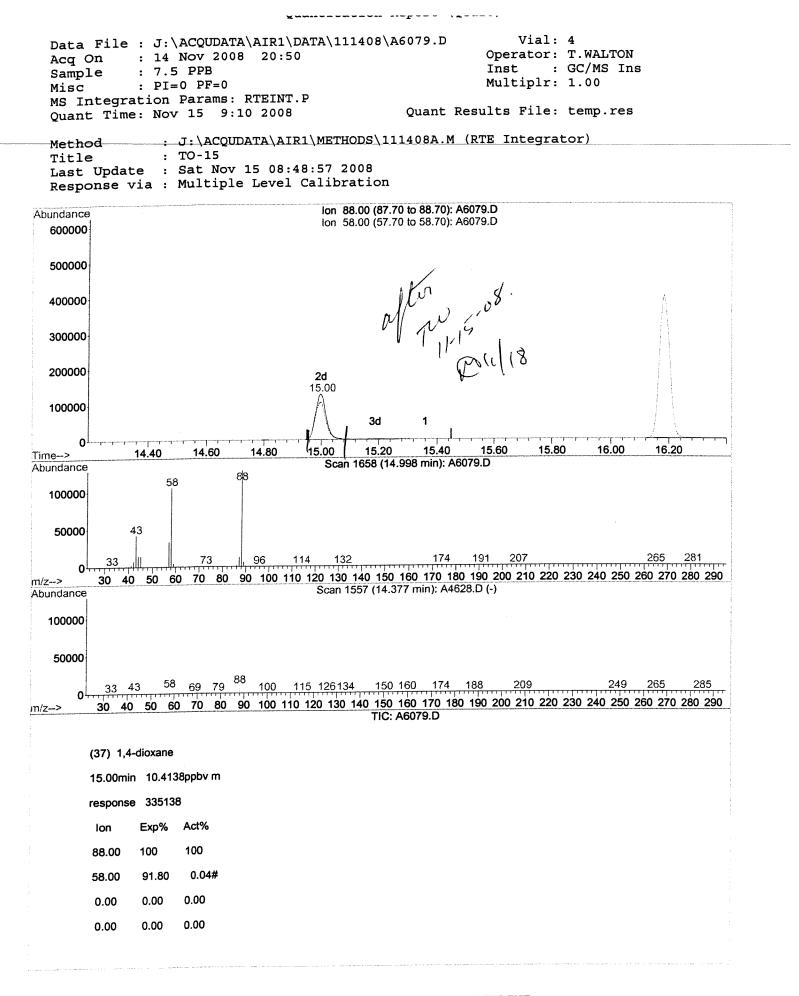
 10
 trichloroethane
 7.56
 101
 2113406
 7.4349
 99

 11
 ethanol
 7.964
 193140
 5.2037
 ppbv
 93

 11.1-dichloroethene
 8.64
 101
 1627935
 8.0777
 ppbv
 93

 15) isopropanol
 9.01
 45
 2367015
 7.7672
 ppbv
 92


 Qvalue D TW 11-15-08 (#) = qualifier out of range (m) = manual integration A6079.D 111408A.M Sat Nov 15 09:10:27 2008 OFFLINE Page 1


Data File : J:\ACQUDATA\AIR1\DATA\111408\A6079.DVial: 4Acq On : 14 Nov 2008 20:50Operator: T.WALTONSample : 7.5 PPBInst : GC/MS InsMisc : PI=0 PF=0Multiplr: 1.00MS Integration Params: RTEINT.PQuant Time: Nov 15 9:10 2008Quant Results File: 111408A.RESQuant Method : J:\ACQUDATA\A...\111408A.M (RTE Integrator)

Title : TO-15 Last Update : Sat Nov 15 08:27:05 2008 Response via : Initial Calibration DataAcq Meth : 111408A

(#) = qualifier out of range (m) = manual integration

ACQ Samp Misc MS I Quar	Ole: 7.5 PPBInst: GC/MS Ins: PI=0 PF=0Multiplr: 1.00Integration Params: RTEINT.PMultiplr: 1.00Inter: Nov 15 9:10 2008Quant Results File: 111408A.RES	
Meth Tit] Last Resp Abundand	le : TO-15 Update : Sat Nov 15 08:48:57 2008 ponse via : Initial Calibration	
900000 850000		
800000		
750000	နိုင်္စ စ	
700000		
650000		
600000	e e for a construction of the state of the s	
550000		
500000	00 00 00 00 00 Instant Instant Instant Instant	
450000	00 00 00 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2	
400000	1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2	
350000	00 000 000 000 000 000 000 000 000 000	
300000	00 00 00 00 00 00 00 00 00 00 00 00 00	
250000	90 월 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	
200000		
150000	00 00 oromethane oromethane oromethane oroethane oromethane oroethane oroethane oroethane	
100000		
50000		
Time>	5.00 6.00 7.00 8.00 9.00 10.00 11.00 12.00 13.00 14.00 15.00 16.00 17.00 18.00 19.00 20.00 21.00 22.00 23.00 24.00 25.00 26.00 27.00 28.00 29.00 30.00 31	.00 32.00 33.00
A6079		Page 3

TN 5.00 Data File : J:\ACQUDATA\AIR1\DATA\111408\A6080.D Vial: 4 Acq On : 14 Nov 2008 21:41 Operator: T.WALTON Sample : 10.0 PPB Misc : PI=0 PF=0 Inst : GC/MS Ins Multiplr: 1.00 MS Integration Params: RTEINT.P Ouant Results File: 111408A.RES Quant Time: Nov 15 8:47 2008 Ouant Method : J:\ACQUDATA\A...\111408A.M (RTE Integrator) Title : TO-15 Last Update : Sat Nov 15 08:27:05 2008 Response via : Initial Calibration DataAcq Meth : 111408A Internal Standards R.T. QIon Response Conc Units Dev(Min) 1) bromochloromethane12.241302095172.5000ppbv0.0028) 1,4-difluorobenzene13.911148286892.5000ppbv-0.0148) chlorobenzene-d518.981177022962.5000ppbv-0.02 System Monitoring Compounds 55) surr 1, bromofluorobenzene 21.07 174 414387 2.60 ppbv -0.03 Spiked Amount 2.500 Range 70 - 130 Recovery = 103.92%
 Spiked Amount
 2.500
 Range
 70 - 130
 Recovery
 =
 103.92%

 Target Compounds
 Qvalue

 2) propylene
 5.06
 41
 1170866
 7.7200
 ppbv
 97

 3) dichlorodifluoromethane
 5.16
 85
 2868277
 9.4603
 ppbv
 99

 4) freon-114
 5.50
 85
 3056376
 9.6239
 ppbv
 99

 6) vinyl chloride
 5.91
 62
 1150024
 9.2122
 ppbv
 99

 6) vinyl chlorodethane
 6.73
 94
 935001
 9.2633
 ppbv
 99

 10 trichlorothane
 6.75
 101
 2767220
 9.4598
 ppbv
 99

 11 ethanol
 8.03
 45
 206458
 5.6978
 ppbv
 98

 11, 1-dichloroethene
 8.64
 61
 193274
 10.4477
 p84

 42 acctone
 8.75
 43
 2050171
 6.8234
 ppbv
 98

 15
 isopropanol
 9.06
 45
 10411423< Ovalue (#) = qualifier out of range (m) = manual integration

A6080.D 111408A.M Sat Nov 15 08:47:48 2008 OFFLINE

Page 1

Data File : J:\ACQUDATA\AIR1\DATA\111408\A6080.D Vial: 4 Acq On : 14 Nov 2008 21:41 Operator: T.WALTON Sample : 10.0 PPB Misc : PI=0 PF=0 Inst : GC/MS Ins Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Results File: 111408A.RES Quant Time: Nov 15 8:47 2008 Quant Method : J:\ACQUDATA\A...\111408A.M (RTE Integrator) Title : TO-15 Last Update : Sat Nov 15 08:27:05 2008 Response via : Initial Calibration DataAcq Meth : 111408A R.T. QIon Response Conc Unit Qvalue CompoundR.1. QionResponseConc UnitQvalue45)2-hexanone17.6143336126810.0325 ppbv9046)dibromochloromethane17.93129239525211.1452 ppbv9947)1,2-dibromoethane18.18107209387110.5140 ppbv10049)chlorobenzene19.03112330956310.1832 ppbv9850)ethylbenzene19.1991556095610.3292 ppbv9451)M+P xylene19.4091820890019.2554 ppbv9152)0 xylene20.1291469547310.6037 ppbv9453)styrene20.13104364939111.1029 ppbv9654)bromoform20.51173243923011.8026 ppbv9956)1,1,2,2-tetrachloroethane21.268332962159.7644 ppbv9857)4-ethyltoluene21.73105611771410.0832 ppbv9358)1,3,5-trimethylbenzene22.54105513874310.6737 ppbv9259)1,2,4-trimethylbenzene23.13146344081410.7521 ppbv9860)1,3-dclbenz23.5091473412311.4452 ppbv9861)1,4-dclbenz23.5091473412311.4452 ppbv9862)benzyl chloride23.5091473412311.4452 ppbv9863)1,2,4-trichlorobenzene27.02< Compound

Method : J:\ACQUDATA\AIRI\METHODS\III408A.M (RTE Integrator) Title : TO-15 Last Update : Sat Nov 15 08:27:05 2006 Medmane via : Initial Calibration TIC:A6080.D 12e+07 Initial Calibration 12e+07 Initial Calibration 9000000 Initial Calibration 90000000 Initial Calibration 9000000 Initial Calibration 90000000 Initia	Acq Samp Misc MS I	On : 14 Nov le : 10.0 PP	2008 21:41 PB F=0 Mms: RTEINT.P	TA\111408\A6080.D Quant	Vial: Operator: Inst : Multiplr: Results File:	T.WALTON GC/MS Ins 1.00	
1.1e+07 10+007 <t< th=""><th>Titl Last Resp Abundand</th><th>e : TO-1 Update : Sat ponse via : Init</th><th>Nov 15 08:27</th><th>\METHODS\111408A.M</th><th>4 (RTE Integrat</th><th>tor)</th><th></th></t<>	Titl Last Resp Abundand	e : TO-1 Update : Sat ponse via : Init	Nov 15 08:27	\METHODS\111408A.M	4 (RTE Integrat	tor)	
0000000 0000000 0000000 0000000 000000						00.0	
000000 0000000 0000000 0000000 000000	1e+0	7			xytene		ien
0000000 0000000 0000000 0000000 000000	900000	0			¥	2. Mighenzene Ibenzene	0
20000000 0000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 000000000 00000000 000000000 00000000 0000000000000 000000000000000 000000000000000000000000000000000000					a a	1.2.4-trimethy 5enz	_
0 0 0 0 0 0 0 0 0 0 0 0 0 0	700000	0	9 9	ě	ethene iyibenzen		
2000000 0 0 0 0 0 0 0 0 0 0 0	600000	00	di d tb roet	a and a conception	none ne e tetrachloro ne ne eterachloro	2-tetrachio	
0 0 0 0 0 0 0 0 0 0 0 0 0 0	500000	00	f de Lange timee	iteration contraction of the second s			
0 0000000 1000000 0000000 0000000 0000000 000000	400000	methane reon-114 romethane	a ide	Reference Reference Reference Carbon Telefor carbon Telefor trich trich trich trich trich carbon Celefor bromodichio cis-1,3-dicht cisht cisht	4-rr trans-1,3-0 1,1,2- 2-ht dibromc dibromc romoethane	bror	
	300000	thiorafic 00		albertary	8	11 1 5 1 11 11 11 11 11 11 11 11 11 11 11 11 1	
		92 50	acetone leopropandartu met	bromochlorome 1,4-difuorol	Chloroban	sur 1, b	
	Time>					20.00 21.00 22.00 23.00 24.00 25.00 26.00 27.	00 28.00 29.00 30.00 31.00 32.00 33.00 Page

	Data File : J:\ACQUDATA\AIR1\DAT Acq On : 14 Nov 2008 20:02 Sample : 5.0 PPB Misc : PI=0 PF=0 MS Integration Params: RTEINT.P	_	Vial: 4 Operator: T.WALTON Inst : GC/MS Ins Multiplr: 1.00 (RTE Integrator)	5-08
	Method : J:\ACQUDATA\AIR1\ Title : TO-15		(RTE Integrator)	
	Last Update : Sat Nov 15 11:31: Response via : Multiple Level Ca	59 2008 libration	• 7•	
			. R.T. Dev 0.33min	
1		. Area : 200% AvgRF CCRF	<pre>%Dev Area% Dev(min)</pre>	
-	Compound			
1		1.000 1.000		
2	propylene dichlorodifluoromethane	1.472 1.437 3.549 3.560	2.4 100 0.00 -0.3 100 0.00	
3 4	freon-114	3.787 3.859	-1.9 100 0.00	
5		1.391 1.413		
6		1.491 1.556		
7	1,3-butadiene	1.209 1.274	-5.4 100 0.00	
8	bromomethane	1.145 1.157		
9	chloroethane	0.733 0.744		
10		3.494 3.580	-2.5 100 0.00	
11	ethanol	0.361 0.274		
12	freon-113 1,1-dichloroethene	2.476 2.521 2.135 2.230	-1.8 100 0.00 -4.4 100 0.00	
13 14	acetone	2.409 2.428	-0.8 100 0.00	
15	isopropanol	1.463 1.010	31.0# 100 0.00 V	
16	carbon disulfide	3.774 3.828	-1.4 100 0.00	
17	methylene chloride	1.095 1.115	-1.8 100 0.00	
18	trans-1.2-dichloroethene	2.075 2.160	-4.1 100 0.00	
19	methyl tert butyl ether	3.700 3.948	-6.7 100 0.00	
20	hexane	2.298 2.461	-7.1 100 0.00	
21	•	2.535 $2.6044.040$ 4.460	-2.7 100 0.00 -10.4 100 0.00	
22 23	2-butanone	3.225 3.356	-4.1 100 0.00	
24	cis-1,2-dichloroethene	1.258 1.330	-5.7 100 0.00	
25	ethyl acetate	3.954 4.167	-5.4 100 0.00	
26	chloroform	2.612 2.696	-3.2 100 0.00	
27	tetrahydrofuran	0.646 0.728	-12.7 100 0.00	
28 I		1.000 1.000	0.0 100 0.00	
29	1,1,1-trichloroethane	0.693 0.726	-4.8 100 0.00	
30	cyclohexane	0.630 0.673	-6.8 100 0.00	
31	carbon tetrachloride 1,2-dichloroethane	0.679 0.728 0.476 0.492	-7.2 100 0.00 -3.4 100 0.00	
32 33	benzene	1.069 1.126	-5.3 100 0.00	
34	heptane	0.389 0.426	-9.5 100 0.00	
35	trichloroethene	0.444 0.460	-3.6 100 0.00	
36	1,2-diclpropane	0.413 0.443	-7.3 100 0.00	
37	1,4-dioxane	0.132 0.111	15.9 100 0.00	
38	bromodichloromethane	0.718 0.762	-6.1 100 0.00	
39	cis-1,3-dichloropropene	0.586 0.640	-9.2 100 0.00	
40	4-methyl-2-pentanone	1.013 1.095	-8.1 100 0.00 -10.2 100 0.00	
41 42	toluene trans-1,3-dichloropropene	1.179 1.299 0.543 0.612	-10.2 100 0.00 -12.7 100 0.00	
42 43	1,1,2-trichloroethane	0.406 0.433	-6.7 100 0.00	
44	tetrachloroethene	0.565 0.591	-4.6 100 0.00	
45	2-hexanone	0.978 1.072	-9.6 100 0.00	
46	dibromochloromethane	0.648 0.715	-10.3 100 0.00	
47	1,2-dibromoethane	0.601 0.626	-4.2 100 0.00	
48 I	chlorobenzene-d5	1.000 1.000	0.0 100 0.00	
	= Out of Range 78.D 111408A.M Sat Nov 15 1	1:35:34 2008	OFFLINE Page	1

- -

-------Data File : J:\ACQUDATA\AIR1\DATA\111408\A6078.D Vial: 4 14 Nov 2008 20:02 Operator: T.WALTON Acq On : 14 Nov 2008 20:02 Sample : 5.0 PPB Sample Inst : GC/MS Ins Misc : PI=0 PF=0Multiplr: 1.00 MS Integration Params: RTEINT.P Method : J:\ACQUDATA\AIR1\METHODS\111408A.M (RTE Integrator) Title : TO-15 Last Update : Sat Nov 15 11:31:59 2008 Response via : Multiple Level Calibration Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.33min Max. RRF Dev : 30% Max. Rel. Area : 200% AvgRF CCRF %Dev Area% Dev(min) Compound

 49
 chlorobenzene
 1.108
 1.204
 -8.7
 100
 0.00

 50
 ethylbenzene
 1.879
 2.076
 -10.5
 100
 0.00

 51
 M+P xylene
 1.490
 1.637
 -9.9
 100
 0.00

 52
 O xylene
 1.564
 1.752
 -12.0
 100
 0.00

 53
 styrene
 1.180
 1.336
 -13.2
 100
 0.00

 54
 bromoform
 0.736
 0.869
 -18.1
 100
 0.00

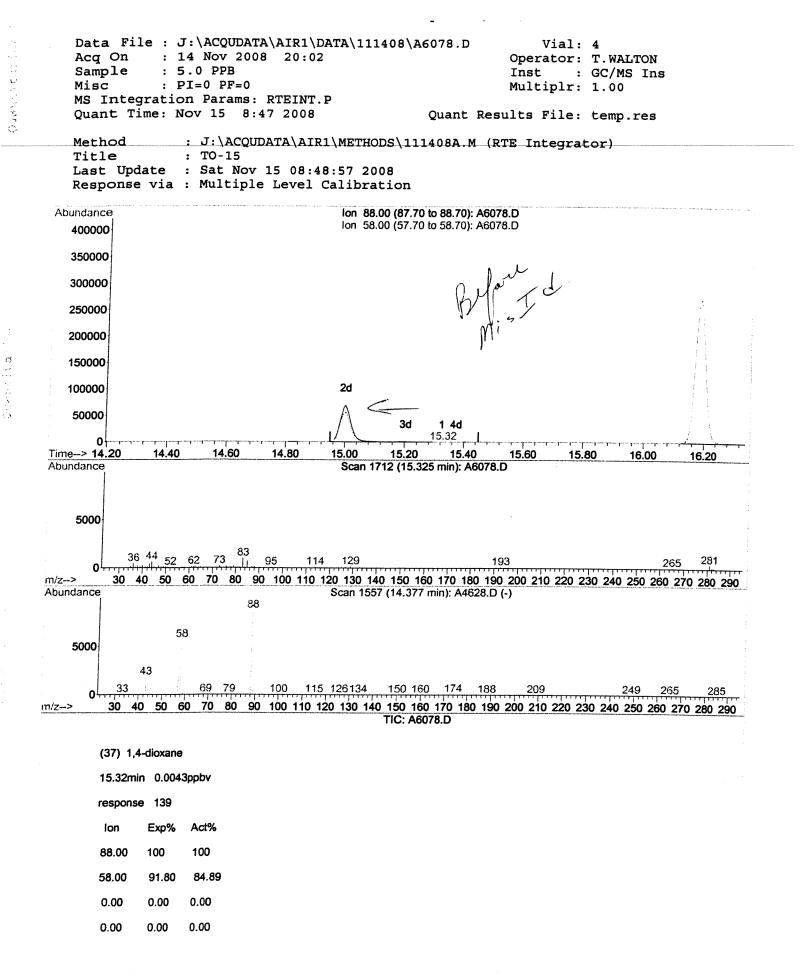
 55
 surr 1, bromofluorobenzene
 0.568
 0.569
 -0.2
 100
 0.00

 56
 1,1,2,2-tetrachloroethane
 1.202
 1.216
 -1.2
 100
 0.00

 57
 4-ethyltoluene
 2.162
 2.421
 -12.0
 100
 0.00

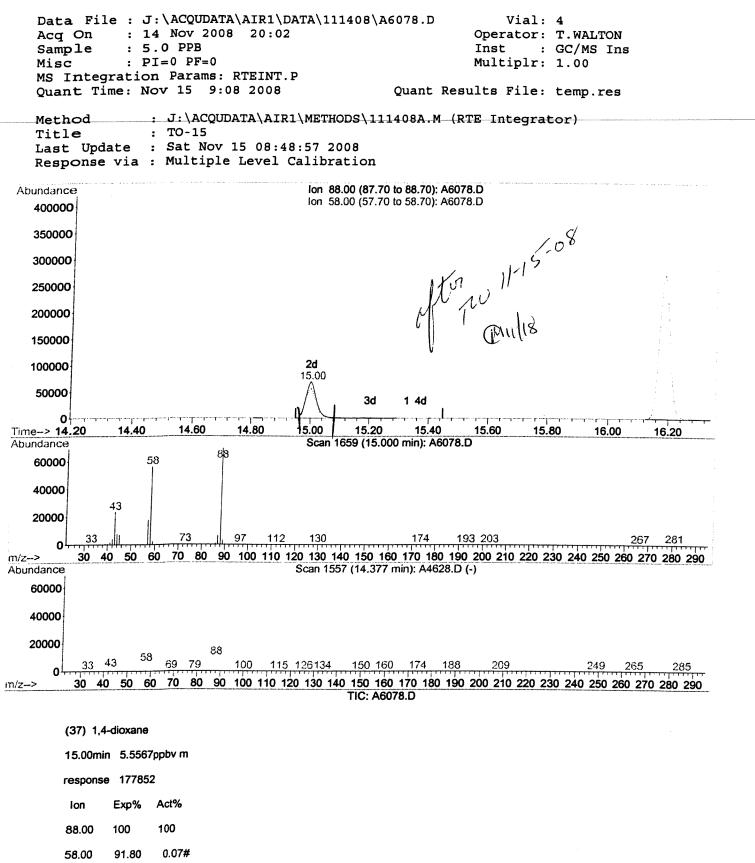
 58
 1,3,5-trimethylbenzene
 1.777
 1.981
 -11.5
 100
 0.00

 59
 1,2,4-trimethylbenzene
 1.740
 1.973
 -13.4
 100
 0.00

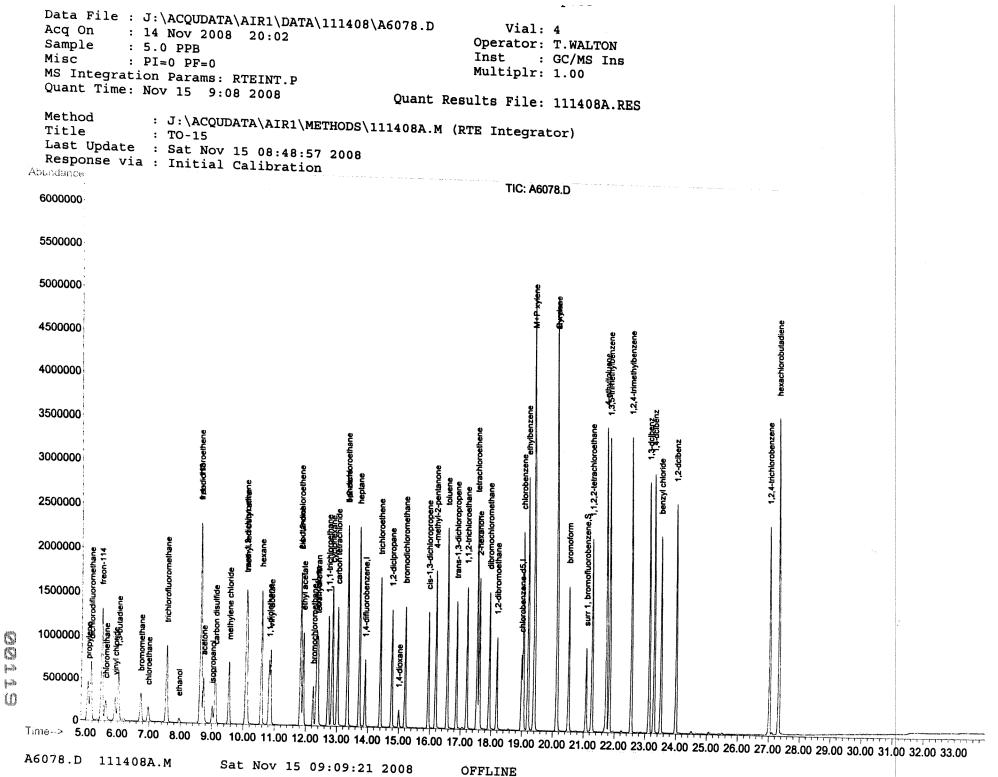

 61
 1,4-dclbenz
 1.122
 1.251
 -11.5
 100
 0.00

(#) = Out of Range SPCC's out = 0 CCC's out = 0 A6078.D 111408A.M Sat Nov 15 11:35:35 2008 OFFLINE

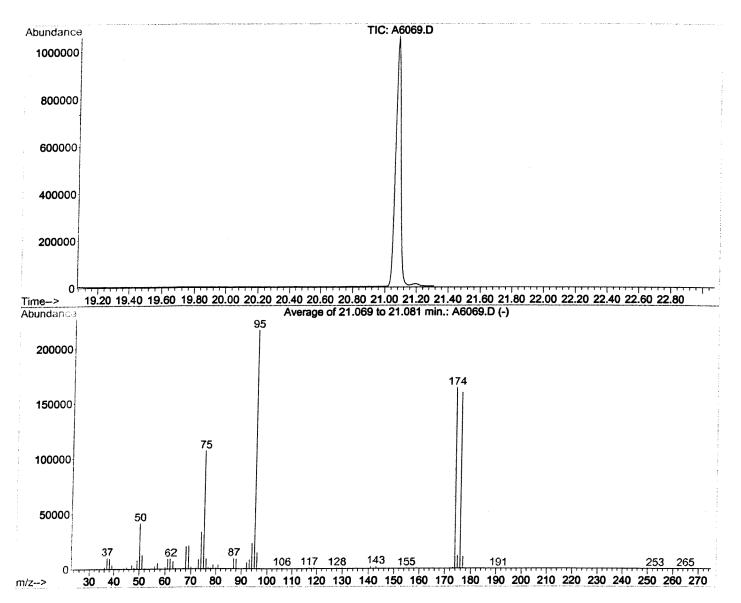
-	-				
Data File : J:\ACQUDATA\AIR1\E Acq On : 14 Nov 2008 20:02 Sample : 5.0 PPB Misc : PI=0 PF=0 MS Integration Params: RTEINT. Quant Time: Nov 15 9:08 2008 Quant Method : J:\ACQUDATA\A Title : TO-15 Last Update : Sat Nov 15 08:2 Response via : Initial Calibra DataAcq Meth : 111408A Internal Standards 	ATA\1114	08\A6	078.D Oj II M	Vial: 4 perator: T.WALT nst : GC/MS	$\frac{1}{1} \frac{1}{1} \frac{1}{5} \frac{1}{5} \frac{1}{1} \frac{1}{8} \frac{1}{1}$
MS Integration Params: RTEINT. Quant Time: Nov 15 9:08 2008	P		Quant Resul	lts File: 11140	BA.RES Jotu phis
Quant Method : J:\ACQUDATA\A Title : TO-15	.\111408	A.M (RTE_Integrat	cor)	by walnut .
Last Update : Sat Nov 15 08:2 Response via : Initial Calibra DataAcq Meth : 111408A	7:05 200 tion	8			t Gtu
Internal Standards	R.T	. QIO	n Response	Conc Units De	v(Min)
 bromochloromethane 1,4-difluorobenzene 	12.24	4 13(200909	2.5000 ppbv	0.00
28) 1,4-diriuorobenzene	13.90	U 114	£ //3231	∠.5000 ppbv	-0.01
48) chlorobenzene-d5	18.90	8 117	641830	2.5000 ppbv	-0.02
System Monitoring Compounds 55) surr 1, bromofluorobenzer Spiked Amount 2.500 F					
Target Compounds				Qv	value
 2) propylene 3) dichlorodifluoromethane 	5.06		594738	4.0894 ppbv 4.9698 ppbv	97
4) freon-114	5.49	85	1550755	5.0922 ppbv	97
5) chloromethane	5.63	50	573624	5.0922 ppbv 5.0068 ppbv 5.2232 ppbv	100
5) chloromethane 6) vinyl chloride	5.92	62	625259	5.2232 ppbv	100
7) 1,3-butadiene					
8) bromomethane	6.74	94 64	469373	4.8448 ppbv	100
9) chloroethane10) trichlorofluoromethane	7.56	101	1424162	5.1328 ppbv 5.0771 ppbv	100
11) ethanol	7.96	45	106924	3.0773 ppbv	99
12) freon-113	8.64	101	1083790	5.4506 ppbv	99
13) 1,1-dichloroethene	8.64	61	976881	5.6990 ppbv	90
 13) 1,1-dichloroethene 14) acetone 15) isopropanol 16) carbon disulfide 17) methylene chloride 	9.01	43	450647	3.5565 ppbv 3.6707 pbv	94 94
16) carbon disulfide	9.11	76	1599797	5.2762 ppbv	100
17) methylene chloride	9.55	84	488194	5.3396 ppbv	88
18) trans-1,2-dichloroethene	10.08	61	911230	5.4700 ppbv	91
19) methyl tert butyl ether 20) hexane	$10.11 \\ 10.58$	73 57	1681571 1058129	5.6429 ppbv 5.8277 ppbv	100 98
21) 1,1-diclethane	10.82		1109296	5.4489 ppbv	100
22) vinyl acetate	10.87		1774315	5.4448 ppbv	98
23) 2-butanone	11.83	43			97
24) cis-1,2-dichloroethene	11.83	96 43	571634	5.3184 ppbv	99
25) ethyl acetate 26) chloroform	11.92 12.34	83	1758070 1137536	5.3062 ppbv 5.3582 ppbv	98 99
27) tetrahydrofuran	12.38	72	313111	6.0328 ppbv	97
29) 1,1,1-trichloroethane	12.72	97	1179093	5.5006 ppbv	97
30) cyclohexane	12.85		1114350		96
 31) carbon tetrachloride 32) 1,2-dichloroethane 	13.02 13.33		1182620 813431	5.6298 ppbv 5.5297 ppbv	100 99
33) benzene	13.34		1863727		99
34) heptane	13.72	71	704793	5.9699 ppbv	96
35) trichloroethene	14.40		740148		97
36) 1,2-diclpropane	14.77 15.00		726175 177852m	5.5180 ppbv 5.5567 ppbv	(m) 72011-15-08
37) 1,4-dioxane 38) bromodichloromethane	15.00		1226024		100
39) cis-1,3-dichloropropene	15.95		1009657		99
40) 4-methyl-2-pentanone	16.19	43	1811408	5.5420 ppbv	96
41) toluene		91	2169827	5.7926 ppbv	99
42) trans-1,3-dichloropropene 43) 1,1,2-trichloroethane	16.86	/5 07	1050232 697185	6.0869 ppbv 5.3274 ppbv	97 92
43) 1,1,2-trichioroethane 44) tetrachloroethene			959438		92
(#) = qualifier out of range (m) A6078.D 111408A.M Sat Nov				FLINE	Page 1


guanescaeson nepere Yes survey Data File : J:\ACQUDATA\AIR1\DATA\111408\A6078.D Vial: 4 Acq On : 14 Nov 2008 20:02 Sample : 5.0 PPB Operator: T.WALTON Inst : GC/MS Ins Misc : PI=0 PF=0Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Results File: 111408A.RES Ouant Time: Nov 15 9:08 2008 Quant Method : J:\ACQUDATA\A...\111408A.M (RTE Integrator) Title : TO-15 Last Update : Sat Nov 15 08:27:05 2008 Response via : Initial Calibration DataAcq Meth : 111408A R.T. QION Response Conc Unit Qvalue Compound CompoundR.1. QionResponseConc onitQValue45)2-hexanone17.604317733965.6728 ppbv9346)dibromochloromethane17.9312911603965.7866 ppbv9947)1,2-dibromoethane18.1810710167575.4717 ppbv10049)chlorobenzene19.0311216383095.5158 ppbv10050)ethylbenzene19.199128247895.7412 ppbv9851)M+P xylene19.3991437171711.2207 ppbv9652)0 xylene20.129123608895.8338 ppbv9653)styrene20.1310418003695.9935 ppbv9454)bromoform20.5117311603766.1436 ppbv9956)1,1,2,2-tetrachloroethane21.268316388335.3121 ppbv10057)4-ethyltoluene21.7310531388125.6608 ppbv9758)1,3,5-trimethylbenzene22.5410526344015.8982 ppbv9660)1,3-dclbenz23.1214616621895.7000 ppbv9861)1,4-dclbenz23.2814616699005.7913 ppbv9862)benzylchloride23.509123495436.2154 ppbv9663)1,2,4-trichlorobenzene27.0118010479085.4137 ppbv9864)1,2,4-trichlorobenzene27.31<td _____

(#) = qualifier out of range (m) = manual integration A6078.D 111408A.M Sat Nov 15 09:09:20 2008 OFFLINE


Sat Nov 15 09:08:48 2008

OFFLINE


- 0.00 0.00 0.00
- 0.00 0.00 0.00

VOLATILE ORGANICS

RAW QC DATA

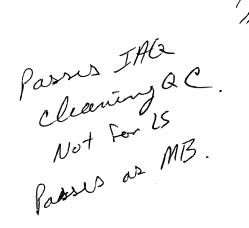
Data File : J:\ACQUDATA\AIR1\DATA\111408\A6069.D Vial: 1 : 14 Nov 2008 12:40 Operator: T.WALTON Acq On Inst : GC/MS Ins : TUNE Sample TU-14-08. : PI=0 PF=0 Multiplr: 1.00 Misc MS Integration Params: RTEINT.P : J:\ACQUDATA\AIR1\METHODS\111408A.M (RTE Integrator) Method : TO-15 Title

AutoFind: Scans 2649, 2650, 2651; Background Corrected with Scan 2637

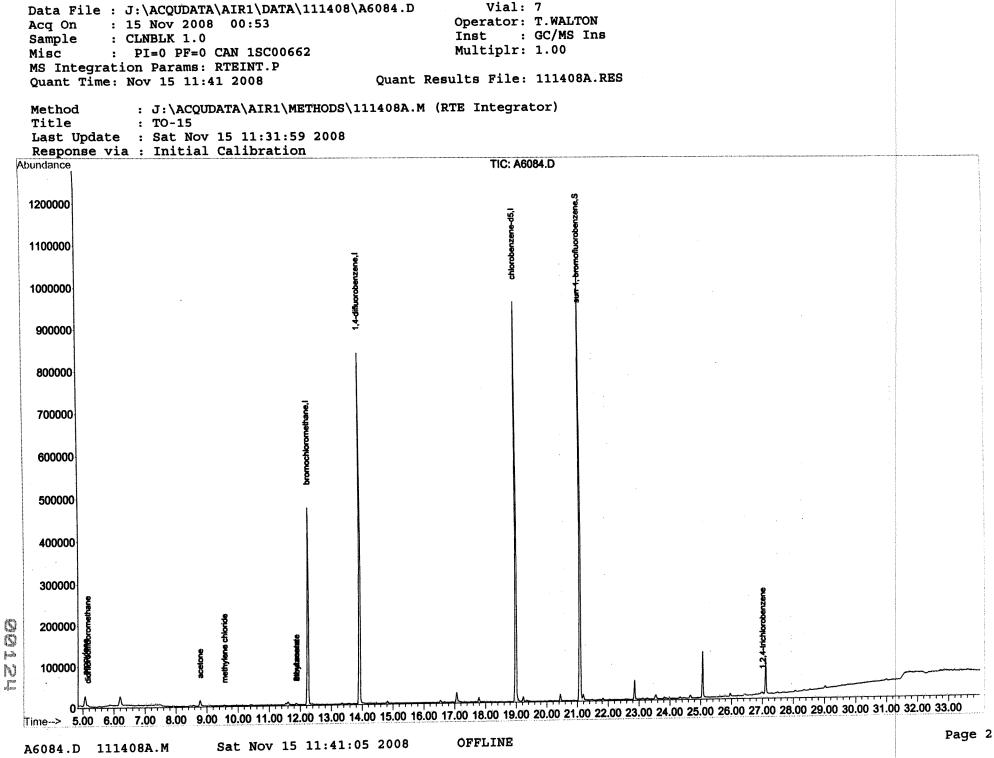
Target Mass	Rel. to Mass	Lower Limit%	Upper Limit%	Rel. Abn%	Raw Abn	Result Pass/Fail
1 50	95	8	40	19.2	41519	PASS
75	95	30	66	49.3	106797	PASS
95	95	100	100	100.0	216683	PASS
96	95	5	9	6.8	14675	PASS
173	174	0.00	2	0.5	852	PASS
174	95	50	120	75.7	163989	PASS
175	174	4	9	7.2	11771	PASS
176	174	93	101	97.3	159531	PASS
177	176	5	9	6.7	10693	PASS

A6069.D 111408A.M

M Fri Nov 14 13:02:09 2008 OFFLINE


BFB

VOLATILE ORGANICS METHOD TO-15 Reported: 12/01/08


Project Reference:												
Client Sample ID : ME	Client Sample ID : METHOD BLANK											
Date Sampled : Date Received:	Orden Submission	: #: 1155254 1 #:	Sample Matrix: AIR Analytical Run 170221									
DATE ANALYZED : 1 ANALYTICAL DILUTION: CAN DILUTION :	1/15/08 1.00 1.00	Pi= 0	Pf= 0									
		MRL	RESULT	MRL	RESULT							
ANALYTE		UG/M3	UG/M3	PPBv	PPBv							
BENZENE 1,1-DICHLOROETHENE TRANS-1,2-DICHLOROETHEN CIS-1,2-DICHLOROETHENE	E	0.35 0.44 0.44 0.44	0.35 U 0.44 U 0.44 U 0.44 U	0.11 0.11 0.11 0.11	0.11 U 0.11 U 0.11 U 0.11 U							
ETHYLENE CHLORIDE		0.95	0.95 U 0.042 J	0.22 0.11	0.22 U 0.012 J							
TETRACHLOROETHENE TOLUENE		0.15 0.41 0.60	0.15 U 0.41 U 0.60 U	0.022 0.11 0.11	0.022 U 0.11 U 0.11 U							
1,1,1-TRICHLOROETHANE TRICHLOROETHENE VINYL CHLORIDE		0.12	0.12 U 0.28 U	0.022 0.11 0.22	0.022 U 0.11 U 0.22 U							
O-XYLENE M+P-XYLENE		0.95 1.9	0.95 U 1.9 U	0.22	0.44 U							
SURROGATE RECOVERIES	QC	LIMITS										
BROMOFLUOROBENZENE	(70	- 130 %)	100	0 0								

Quant	itatio	n Repo	rt (Not	Reviewed)						
Data File : J:\ACQUDATA\AIR1\DATA\111408\A6084.D Vial: 7 Acq On : 15 Nov 2008 00:53 Sample : CLNBLK 1.0 netwood Blank, 1155254 Inst : GC/MS Ins Misc : PI=0 PF=0 CAN 1SC00662 Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Time: Nov 15 11:41 2008 Quant Results File: 111408A.RES										
Quant Method : J:\ACQUDATA\A\1 Title : TO-15 Last Update : Sat Nov 15 11:31:55 Response via : Initial Calibration DataAcq Meth : 111408A	9 2008 n				(, ,					
Internal Standards	R.T.	QIon	Response	Conc Units Dev	(Min)					
 bromochloromethane 1,4-difluorobenzene chlorobenzene-d5 System Monitoring Compounds surr 1, bromofluorobenzene Spiked Amount 2.500 	18.98	114 117 174	680797 385102	-	0.00 0.00					
Target Compounds				Qv 	alue #					
<pre>2) propylene 3) dichlorodifluoromethane 14) acetone 17) methylene chloride 23) 2-butanone 25) ethyl acetate 64) 1,2,4-trichlorobenzene</pre>	5.07 5.16 8.77 9.56 11.87 11.87 27.01	41 85 43 84 43 43 180	14659 5352 31420 1054 7129 7074 2053	0.0187 ppbv 0.1621 ppbv 0.0120 ppbv 0.0275 ppbv 0.0222 ppbv 0.0100 ppbv	$ \begin{array}{c} 98 \\ 96 \\ 96 \\ 96 \\ 75 \\ 1 \\ 92 \\ 77 \\ 77 \\ 77 \\ 77 \\ 77 \\ 77 \\ 77 \\ 7$					
					11-18.					

ASPB returne albride 5B returne 0.1280 to 10× to 10× 10× 10× 10×

(#) = qualifier out of range (m) = manual integration Sat Nov 15 11:41:04 2008 OFFLINE A6084.D 111408A.M

VOLATILE ORGANICS METHOD TO-15 Reported: 12/01/08

Date Sampled : Date Received:	Orde: Submission	: #: 1155255 1 #:	Sample M Analytic		
DATE ANALYZED : 1	1/14/08				
ANALYTICAL DILUTION:	1.00				
CAN DILUTION :	1.00	Pi= 0	Pf= 0		
		MRL	RESULT	MRL	RESULT
ANALYTE		UG/M3	UG/M3	PPBv	PPBv
BENZENE		0.35	8.5	0.11	2.7
1,1-DICHLOROETHENE		0.44	11	0.11	2.8
TRANS-1,2-DICHLOROETHEN	E	0.44	10	0.11	2.6
CIS-1,2-DICHLOROETHENE		0.44	11	0.11	2.8
ETHYLBENZENE		0.95	12	0.22	2.7
METHYLENE CHLORIDE		0.38	9.4	0.11	2.7
TETRACHLOROETHENE		0.15	17	0.022	2.5
TOLUENE		0.41	10	0.11	2.8
1,1,1-TRICHLOROETHANE		0.60	14	0.11	2.6
TRICHLOROETHENE		0.12	13	0.022	2.5
VINYL CHLORIDE		0.28	6.4	0.11	2.5
O-XYLENE		0.95	11	0.22	2.6
M+P-XYLENE		1.9	23	0.44	5.3
SURROGATE RECOVERIES	QC	LIMITS			
BROMOFLUOROBENZENE	(70	- 130 %)	102	8	

Quan	titation	Repo	ort (Not	Reviewed)	5
ata File : J:\ACQUDATA\AIR1\DATA cq On : 14 Nov 2008 23:12 ample : LCS 1.0 lisc : PI=0 PF=0	\111408\ <i> 155</i> 0		Oper Inst	Vial: 5 ator: T.WALTON : GC/MS In iplr: 1.00	5 TW 5-08
IS Integration Params: RTEINT.P Quant Time: Nov 15 11:40 2008		-		File: 111408A	RES
<pre>Juant Method : J:\ACQUDATA\A\1 Fitle : TO-15 Last Update : Sat Nov 15 11:31:5 Response via : Initial Calibratio</pre>	9 2008	I (RTI	Integrator		
DataAcq Meth : 111408A			-	and Units Dev	Min
Internal Standards	R.T. Q	lon		Conc Units Dev(
	12.24	130		2.5000 ppbv 2.5000 ppbv	0.00 0.00
28) 1.4-difluorobenzene	13.90 18.98	114	833045 701447	2.5000 ppbv 2.5000 ppbv	0.00
48) chlorobenzene-d5	18.98	11/	/0144/	213000 PP	
System Monitoring Compounds				2.55 ppbv	0.00
55) surr 1, bromofluorobenzene	21.08 1ge 70 -	174	405712 Recovery		0.00
Spiked Amount 2.500 Ran	ige /0 -	- 130	Recovery		
Target Compounds					alue
2) propylene	5.05	41		2.4472 ppbv 2.4682 ppbv	98 100
3) dichlorodifluoromethane	5.15	85 85			97
4) freon-114	5.49 5.62			2.4670 ppbv	100
5) chloromethane	5.02			2.5043 ppbv	
6) vinyl chloride	6.03			2.6927 ppbv	98
7) 1,3-butadiene	6.73			2.4598 ppbv	99
8) bromomethane 9) chloroethane		64		2.4694 ppbv	99
10) trichlorofluoromethane	7.56	101	706116 47189	2.4639 ppbv	
11) ethanol				1.5934 ppbv	98
12 from -113	8.64				100 93
13) 1,1-dichloroethene	8.64			2.7563 ppbv 2.4921 ppbv	
14) acetone	8.74		492404	1.4890 ppbv	97
15) isopropanol	9.03	45 76		2.4438 ppbv	100
16) carbon disulfide	9.11 9.55	84	242330	2.6980 ppbv	89
17) methylene chioride	10.08	61	445198	2.6159 ppbv	92
18) trans-1,2-dichloroethene	10.12	73	835896	2.7550 ppbv	100
19) methyl tert butyl ether	10.57	57	520315	2.7610 ppbv	100
20) hexane 21) 1,1-diclethane	10.82	63	567240	2.7280 ppbv	100
22) vinyl acetate	10.87	43	979889	2.9577 ppbv	98
23) 2-butanone	11.84	43	705489	2.6672 ppbv 2.7469 ppbv	98 99
24) cis-1,2-dichloroethene	11.83	96	283440	2.4502 ppbv	98
25) ethyl acetate	11.92	43	794435 574984	2.6842 ppbv	99
26) chloroform	12.34 12.39	83 72	146836	2.7704 ppbv	99
27) tetrahydrofuran	12.72	97	594593	2.5762 ppbv	97
29) 1,1,1-trichloroethane	12.84	56	554620	2.6419 ppbv	97
30) cyclohexane 31) carbon tetrachloride	13.02	117	594859	2.6284 ppbv	100
32) 1,2-dichloroethane	13.33	62	415071	2.6194 ppbv	99
33) benzene	13.34	78	944718	2.6524 ppbv	
34) heptane	13.72	71	345731	2.6685 ppbv 2.4689 ppbv	
35) trichloroethene	14.39	130	365678	2.4009 ppbv 2.6972 ppbv	
36) 1,2-diclpropane	14.77	63 88	371250 77558	1.7689 ppbv	
37) 1.4-dioxane	15.01 15.20	88	615093	2.5694 ppbv	
38) bromodichloromethane	15.20	75	504974	2.5881 ppbv	
39) cis-1,3-dichloropropene	16.19	43	868925	2.5742 ppbv	97
40) 4-methyl-2-pentanone	16.56	91		2.7816 ppbv	
<pre>41) toluene 42) trans-1,3-dichloropropene</pre>	16.86	75	521777	2.8814 ppbv	
42) trans-1, 5-dichies of a factor of a fa	17.20	97		2.5629 ppbv	
43) 1,1,2 clication 44) tetrachloroethene	17.54	166	465911	2.4735 ppbv	77
(#) = qualifier out of range (m A6082.D 111408A.M Sat Nov) = manu 15 11:4	ai 11 0:56	2008 (OFFLINE	00126

Data File : J:\ACQUDATA\AIR1\DATA\111408\A6082.D Vial: 5 Operator: T.WALTON Acq On : 14 Nov 2008 23:12 Inst : GC/MS Ins Sample : LCS 1.0 Misc : PI=0 PF=0 Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Results File: 111408A.RES Quant Time: Nov 15 11:40 2008 Quant Method : J:\ACQUDATA\A...\111408A.M (RTE Integrator) Title : TO-15 Last Update : Sat Nov 15 11:31:59 2008 Response via : Initial Calibration DataAcg Meth : 111408A R.T. QIon Response Conc Unit Qvalue CompoundR.T. QionResponseConc onitQvalue45)2-hexanone17.61438085812.4804 ppbv9546)dibromochloromethane17.931295566402.5769ppbv10047)1,2-dibromoethane18.171075046912.5194ppbv10049)chlorobenzene19.031128099562.6049ppbv9950)ethylbenzene19.189114131112.6804ppbv9951)M+P xylene19.399122183735.3079ppbv9852)0 xylene20.129111502602.6208ppbv9753)styrene20.131048572432.5889ppbv9454)bromoform20.511735130052.4839ppbv9956)1,1,2,2-tetrachloroethane21.26837581842.2490ppbv10057)4-ethyltoluene21.7210515231742.5113ppbv9958)1,3,5-trimethylbenzene23.121467726112.4221ppbv9860)1,3-dclbenz23.509110086092.3294ppbv9861)1,4-dclbenz23.509110086092.3294ppbv9863)1,2,4-trichlorobenzene27.011805173162.4466ppbv9965)hexachlorobutadiene27.31225557787 Compound

------(#) = qualifier out of range (m) = manual integration A6082.D 111408A.M Sat Nov 15 11:40:56 2008 OFFLINE

Acc San Mis MS	q On mple sc Int		14 Nov LCS 1 PI=0 1 on Pa:	v 2008 .0 PF=0 rams:	23:12 RTEINT.P	TA\111408		Opera Inst	: iplr:	T.WALTON GC/MS Ins 1.00	3		
Ti La: Re:	spor	Update	: TO : Sa	-15 t Nov		.:59 2008		M (RTE In					
Abunda 3000	ance 0000								TIC: A60	82.D			
2800	0000												
2600	0000								sylene	ů R		diene	
2400	0000								*		. 	hexachiorobula	
	0000									il filtenzen	hylbenzen	hexa	
	0000								ene	e.S 1.3 5.00000 2ene	2.4-trimett	ę	
	0000			e.e		ane		there	ethylbenzene	srobenzen elhane	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	2.4-trichlorobenzene	
	00000			idttö roeth		sne diahloroett	6. 1. 1.	anone Mene Me ne frachloroe	908 dfadn	aur 1 bronofluorobenzene.S		1,2,4-trict	
	00000			t tick	ř.	in the second	orobenzei ethene rethane	propene ithyt-2-pent - tolt. Moroprope chloroetha brie te korometha	hlorob en il	1, 1,2224	benzyl chloride		
	00000		thane		d iele loropi ⁶ exane	Tatate Esteutandooti (40000 ethane.) 1.1.1-trich(900 ethan) 1.1.1-trich(900 ethan) Carbon fettachlond	1,4-diftuor trichloroel 1,2-dic[propane bromodichlorom	cis-1,3-dichloroproj 4-methyl- trans-1,3-dichlor 1,1,2-trichlor 2-trichlor dibromochloro		bromoform			
80	00000	10	ofluorome	ş	chloride transmitiðy hetter h		pror 12		15500-7				
	00000	Chlorodiftu ne Stradiene	hane trichlon	ne ton disulf	methylene 1,1-dialait								
69 69 40 1	00000	- propyla korometha nyt chlogiq	bromomet	Kopenol a			Adioxane						
p. %	00000		Ť	ethanol Isop			1.1						
Time	> (∫ل <i> \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \</i>	7.00 8	- <u></u> [][[] 8.00 9.0	, <u>, </u> ,, <u>,</u> 0 10.00 11.00) 12.00 13.00	14.00 15.00	16.00 17.00 18.0)0 19.00	20.00 21.00 2	2.00 23.00 24.0	0 25.00 26.00 27.00 28.00 29.00	30.00 31.00 32.00 33.00 Page

A6082.D 111408A.M

0-553 170221 1/14/08 28310-15 Tom Welton lents check 16-71.6 in 1240 sic Pressures He = 23.0 IS = 28.9 ATM=14.5 Volume IS = 250 Nominal Saugh = 1000 ml Methods Tune = BFB CC/MS = 111408A Entrek = TOIS Pi/Pf Lite or Comments. AS Sangle 0-515-72E A6069 112:40 Tune IS = 0 uz air direct Blank 1.0 A6070 Y 1000 us an direct A6071 Y Met Blank 10 1 1000 A6072 Y 0-515-73A 0.02 ppb el. 2 100 Exp 0-515-7313 Exp #43 A6073 Y 95 0.095 ppb 3 0.20 ppb A6074 Y 200 3 0.50 ppb A6075 Y 570 3 ted fune 1.0 ppb 16076 V 0-515-73C Exp #43 4 100 to at A6077 Y 2.5 Ч 250 ppb ppb 50% 500 5.0 A6078 Y 4 7.5 ppb A6079 Y 750 10.0 ppb A6080 4 1000 Exp 12/10 A6081 4 A6082 Y ine as COU ICV 500 0-515-721) 1155255 250 5 Blk cary over check A6083 Y 0/0 1000 1155254 0/0 A6084 Y Report as mB 7 CINBER 10 Can 15000662 1000 0/0 10085 Y 8 CLN BUCK 1.0 can SLC00054 1000 0/0 116086 . 1 CEN BLK 1.0 9 1000 5600044 TOIS TAQ -3.6/7.5 A6087 Y 1000 1146273 1.0 10 MAR R46926 -6.5/7.5 A6088 Y 1000 1150201 1.0 11 TOIS. IMP -8.7/8.4 A6089 Y 1150195 5.0 12 200 ASPB -8.1/7.5 A6090 V 13 1150196 20.0 50 -6.5/7.6 1609/ Y 14 100 1150197 10.0 -7.7/7.4 A6092 V 1150198 10.0 15 100 -3.4/28.4 HE093 (7)-E 1146939 10.0 16 100 TOIS. THE -3.4/28 4 HOOG4 D-E R 46698 16 1146939 100 Dup 100 Alogs Bet TW 11-15 Punge + Bake prior to V -+ -3.4/204 A6095 Y DL 1146939 44.0 (25/1100) SyR 1 Valid calibration saved, up lated RT from 5ppb. NT- Isopropanal fiels ICV. Roum Fresh ICV prior to any samples requiring Isopropanal as target. 00129

Notebook No. 0-515 PROJECT_TO:15 Stundards Continued From Page BP=29.32 106 T= 23°C 11-10-08 Dilution air = 0-515-68F @ 30 prig + 31/min detuted 2.4 ml of 0-515-660 Exp 9/4/09 0-515-72A. 0.2 ppb 1° into canister B134 + Press to +29.3 1/4. = 2.4/12.000 Expires 12-10-08. tiluted 12ml of 0-515-66D Exp 9/4/09 0-515-72B 10 ppb 10 auto constra 8132 + Press to +29.3"/4 = 12/12,000 Expires 12-10-08 diluted 120ml of 0-515-66D 0-515-720 into canistor 8133+ Press to +29.3 19pb 1° 120/12.000 Expires 12-10-08. detuted 120 ml of 0-515-53A up 2/25/09. 0-515-72 D 10ppb 2° into constis 2337 + Press to +29.3 = 120/12,000 Expires 12-10-08. filler Blanks Cun 1500739 + 1500662 11/12/08 3P = 29.60 Lab T = 23°C Delition Hir = 0-515-68F C 30 prig + 31/min - 515-72E detuted 1.2 ml of 0-515-53 C Exp3/1/09 into conister K1590 + Pressurined to 29.6" He 10ppb IS = 1.2 / 30,000 Substan Exp 12/12/08. Prepared same T into can KIS91 exp 12/12/05 0-515-72F flid Blacks can 15C 00739+ 18C 00662 Popb IS - 11-12-08 JU T 413-08 **Continued on Page** ě, Read and Understood By Signed Signed Date 1 00130

Notebook No. 0-575 PROJECT TO-15 Standards 73 **Continued From Page** 11-13-08 BP = 29.20/abT = 23°C Dilution Br = 0-515-68F C 30pig + 34min deluted 7.4 ml of 0-515-660 mp 9/4/09 -515-73A - carriestor 8134 + Press to + 29.2"/kg 0.2 pb 1 = 2.41 12.000 expires 12-13-08 diluted 12ml of 0-515-66D 1-515-73B to canistor \$132 + Press to + 29.2" 149 1.0 Apb 1° 12/12,000 repires 12-13-08. deluted 120 ml of 0-515-66D 0-515-73 C into Canister 8133 + Puss to +2902"Hy 10 ppb = 120/12.000 expires 12-13-08, delated 120ml of 0-515-660 0-515-73 N to Causta 2338 + Press to + 29.2" Hg _10pb_10 20/12,000 Expires 12-13-08. TW 11-17-08 Continued on Page Read and Understood By

Signed

Date

001 Dale