

Flexo Transparent, Inc. 28 Wasson Street • Buffalo, NY 14240-0128

Phase II Environmental Site Assessment

1132 Seneca Street Buffalo, NY 14240

July 2008

Report Prepared By:

Malcolm Pirnie, Inc.

50 Fountain Plaza Suite 600 Buffalo, NY 14202 716-667-0900

6105002

Contents

<u>1. Intro</u>	oduction	1-1
1.1.	Project Purpose and Scope	1-1
1.2	Site Description and Location	1-1
<u>2. Des</u>	cription of Field Activities	2-1
2.1	General	2-1
2.2	Soil Boring Program	2-1
2.3	Environmental Sampling Program 2.3.1 Subsurface Soil Sampling	2-2 2-2
<u>3. Inve</u>	estigation Results	3-1
<u>3. Inve</u> 3.1	estigation Results Subsurface Conditions	3-1
<u>3. Inve</u> 3.1	Subsurface Conditions	3-1
<u>3. Inve</u> 3.1	Subsurface Conditions	3-1 3-1 3-1 .3-1 .3-1
<u>3. Inve</u> 3.1 3.2.	Subsurface Conditions	3-1 3-1 3-1 3-1 3-2 3-2
3. Inve 3.1 3.2. 4. Con	Subsurface Conditions	3-1 3-1 3-1 3-1 3-2 3-2 4-1
3.1 3.1 3.2. 4. Con 4.1.	Subsurface Conditions	3-1 3-1 3-1 3-1 3-2 3-2 3-2 4-1

List of Figures

Figure No	Description	Follows Page
1_1	Site Location Man	1_1
1-1	Borehole Sample Location Map	

List of Tables

<u>Table No.</u>	Description	Follows Page
2-1	Summary of Samples Collected	
2-2	Borehole Summary	
3-1	Summary of Subsurface Soil Analytical Results - Organics	
3-2	Summary of Subsurface Soil Analytical Results - Inorganics	

Appendices

- B. Historic Sampling Location Map
- C. Analytical Report Laboratory Data

1.1. Project Purpose and Scope

This report documents the findings of a Phase II Environmental Site Assessment (ESA) conducted at 1132 Seneca Street, Buffalo, NY to supplement data collected during a previous subsurface investigation and a more recent Phase I ESA (Malcolm Pirnie, 2008). The purpose of this Phase II ESA was to better characterize subsurface environmental conditions as an element of a due diligence effort prior to the possible sale and transfer of the property to Flexo Transparent, Inc. (Flexo) This report summarizes the field activities and results of subsurface investigation(s) completed during the time period of March 13-18, 2008 and the previous investigation completed during August 2001.

The 2008 investigation included the completion of five shallow soil borings and the collection of soil materials for chemical analysis. A description of program methodologies and results of the investigation are summarized in sections 2.0 and 3.0.

1.2 Site Description and Location

As shown on Figure 1-1, the Site located at 1132 Seneca Street in Buffalo, New York consists of one parcel identified by Erie County's GIS website as Parcel 83423. The property which has been developed is approximately 1.7 acres in size and is zoned for "Manufacturing and Processing". The property improvements include a now vacant manufacturing building that once housed office, warehouse, and manufacturing areas. The building occupies the majority of the property. The construction date of the Site building is estimated to be 1920.

Site operations included a lumber yard, railroad yard, manufacture of fiberglass railroad transfer platforms (Fiberright) and transformers and machines (Westinghouse and Eastern Electric). The northern, eastern, and western portions of the Site are enclosed within a chain link fence. Paved access roads that lead to an unpaved dirt/gravel area on the north side of the building are located along the western and eastern property boundaries. The northern area is a vacant crushed stone and grass covered staging area where fiberglass platforms, an abandoned car, a dumpster, and plastic and metal refuse are located. The southern boundary of the Site is Seneca Street, where two large garage doors provide access to the manufacturing building. Overgrown shrubs located along the chain link fenced perimeter of the 1146 Seneca Street property are located east of the 1132 building.

For purposes of this investigation, field activities were conducted to address potential environmental impacts stemming from historic work practices and activities that have occurred on the 1.7 acre site. The area of investigation is shown on the Sample Location Map Figure 1-2.

2.1 General

The field activities discussed within this section consists of those tasks performed during the March 2008, Phase II ESA. Tasks were conducted in accordance with an approved Scope of Work Task Order authorized December 10, 2007.

The investigation included a soil boring and sampling program that required the advancement of five soil borings and collection and analysis of five subsurface soil/fill samples. Locations of all borehole and sampling points are illustrated on Figure 1-2. Detailed discussions of the purpose, methodologies, and results of each of the investigative activities are presented below. Analytical results are presented and discussed in Sections 3.0 and 4.0.

2.2 Soil Boring Program

A soil boring program was conducted at the Site from March 13 to 17, 2008. The drilling program was conducted to supplement previous investigation data collected to characterize the physical and chemical composition of the Site overburden soil/fill. To facilitate the collection of requisite sample volumes, soil/fill borings were advanced from the ground surface and extended through the fill unit to a depth sufficient to penetrate the underlying native soil material at each boring location. Sample collection was based on screening criteria that included visual, olfactory and photo–ionization detector (PID) measurements.

A total of five soil borings were advanced at locations designed to characterize recognized environmental conditions addressed in the 2007 Phase I ESA, or spatially located within the building complex or Site perimeter. The boreholes designated as B-5, B-6, B-10, B-11 and B-12 are shown on Figure 1-2. Prior to drilling, the concrete slab at proposed interior drilling locations B-10, B-11 and B-12 was cored to facilitate the collection of representative soil/fill samples from beneath the building's concrete slab foundation. All borings were advanced through unconsolidated fill/overburden deposits using Geoprobe[®] direct push macro core sampling techniques. Continuous macro core soil samples were collected at four foot intervals during direct push advancement at each borehole location. Each soil core was screened for volatile organic vapors and described on stratigraphic borehole logs. Soil samples were collected from the ground surface through the soil/fill unit to a depth within the underlying native soil material. Accordingly, the boreholes within the building interior were advanced to a depth of

approximately 4 feet below ground surface (bgs). The boring B-6 was advanced through fill material to a total depth of 12 feet bgs. The stratigraphic borehole logs with overburden descriptions are presented in Appendix A.

The total volatile organic vapors detected in the soil samples were measured using a Mini-Rae photo-ionization detector (PID) and measurements recorded on the stratigraphic borehole logs. As shown on the borehole logs, elevated PID measurements were detected at the B-5 borehole location advanced on the north side of the building, and at boring B-11 that was advanced adjacent to the railroad loading dock area within the building's interior.

A tabulated summary of borehole depth, PID measurements, and intervals selected for sample analyses are presented on Table 2-1. A description of the geologic conditions encountered during the drilling program is provided in Section 3. Subsequent to advancement of the boreholes to total depth, all soil borings were backfilled with soil materials collected during borehole advancement and/or a granular bentonite powder from the bottom of the boring to the ground surface. A cement-bentonite grout was used to backfill the uppermost one foot interval at borings advanced within the warehouse.

2.3 Environmental Sampling Program

The environmental sampling program included the collection and analysis of soil/fill material from soil borings. Soil samples collected during the investigation were sent to Test America, Inc. in Amherst, New York for analyses. Analytical results for the sampled media are discussed in the Investigation Results Section 3.

2.3.1 Subsurface Soil Sampling

The purpose of the soil boring program was to characterize the physical and chemical conditions of the subsurface soil/fill materials at the Site. One representative soil sample was submitted for chemical analysis from each borehole advanced during the investigation. As described above, soil materials were collected during borehole advancement using a two-inch diameter macro-core sampler. The macro-core barrel and cutting shoe were decontaminated prior to use at each borehole location using a solution of Alconox and potable water. Upon retrieval, each macro-core soil sample was screened with a photo ionization detector (PID) and described on boring logs by a Malcolm Pirnie geologist. Subsequent to recording PID measurements, a representative soil sample was collected from:

- The interval with the highest PID reading,
- Any interval with visual or olfactory evidence of contamination,
- The fill interval identified directly above the underlying native soil unit.

Table 2-1 Phase II ESA Borehole Summary 1132 Seneca Street Site Buffalo, NY

Borehole Number	Date Drilled	Fill Thickness	Total Depth	Depth to Groundwater	Maximum PID Measurement / Comments
			1		
B-5	3/13/2008	1.6	4'	NA	PID - 2.7 ppm @ 1.0 - 1.6 bgs
B-6	3/13/2008	10.6'	12'	NA	PID = 0.0 ppm
B-10	3/14/2008	1.3	4'	NA	PID = 0.0 ppm
B-11	3/14/2008	1.5	4'	NA	PID reading 21.7 ppm @ 0.7 - 1.5' bgs
B-12	3/14/2008	1.6	4'	NA	PID = 0.0 ppm
PH-1	8/30/2001	11.0	11'	NA	PID = 0.0 ppm
PH-3	8/30/2001	> 3'	4'	NA	PID = 0.0 ppm
PH-4	8/30/2001	6.0	8'	NA	PID = 0.0 ppm
PH-5	8/30/2001	5.5	8'	NA	PID = 0.0 ppm
PH-6	8/30/2001	4.5	8'	NA	PID = 0.0 ppm
PH-7	8/30/2001	5.0	8'	NA	PID = 0.0 ppm
PH-8	8/30/2001	5.0	8'	NA	PID = 0.0 ppm
PH-9	8/30/2001	4.0	8'	NA	PID = 0.0 ppm
PH-10	8/30/2001	4.0	8'	NA	PID = 0.0 ppm
PH-11	8/30/2001	4.5	6'	NA	PID = 0.0 ppm
PH-12	8/30/2001	4.0	6'	NA	PID = 0.0 ppm
PH-13	8/30/2001	5.5	6'	NA	PID = 0.0 ppm
PH-15	8/30/2001	4.5	6'	NA	PID = 0.0 ppm
PH-16	8/30/2001	4.0	6'	NA	PID = 0.0 ppm
PH-17	8/30/2001	4.0	6'	NA	PID = 0.0 ppm
PH-18	8/30/2001	4.0	6'	NA	PID = 0.0 ppm
PH-19	8/30/2001	4.5	6'	NA	PID = 0.0 ppm
PH-26	8/31/2001	2.5	7'	NA	PID = 20 - 25 ppm
PH-27	8/31/2001	4.0	7'	NA	PID = 0.0 ppm
PH-28	8/31/2001	< 3'	7'	NA	PID = 0.0 ppm
PH-29	8/31/2001	4.0	7'	NA	PID = 0.0 ppm
PH-30	8/31/2001	< 4'	7'	NA	PID = 0.0 ppm
PH-31	8/31/2001	<4'	7'	NA	PID = 0.0 ppm
PH-32	8/31/2001	<4'	4'	NA	PID = 0.0 ppm

Notes:

B-1 = Soil Boring # 1

PH-1 = Probe Hole # 1

NA = Not Applicable

PID = Photo ionization detector

PPM = Part per million

Dupl. #1 collected from soil boring B - 14

All samples were collected in laboratory supplied sample jars, placed on ice and submitted under chain of custody to Test America Laboratory for analysis of Target Compound List (TCL) Volatile Organic Compounds (VOCS), TCL Semi Volatile Organic Compounds (SVOCs), PCBs, Target Analyte List (TAL) Metals and Total Cyanide.

A soil boring summary is presented on Table 2-2. Analytical results for the soil samples are discussed in detail in Section 3.0, Investigation Results.

Table 2-2 Summary of Samples Collected 1132 Seneca Street Site Buffalo, NY

Sample ID	Date Collected	Sample Type	Sample Depth (FT)	Analysis
R 6	2/12/2008	Soil/Fill	0.0 1.6	VOCs, SVOCs, PCBs,
D-0	3/13/2000	301/11	0.0 - 1.0	TAL metals w/ cyanide
R 6	2/12/2009	Soil/Fill	10.0 11.4	VOCs, SVOCs, PCBs,
D-0	3/13/2000	SOI/FIII	10.0 - 11.4	TAL metals w/ cyanide
P 10	2/11/2009	Soil/Fill	05 12	VOCs, SVOCs, PCBs,
B-10	3/14/2008	SOI/FIII	0.5 - 1.5	TAL metals w/ cyanide
D 11	2/11/2009	Soil/Fill	07 20	VOCs, SVOCs, PCBs,
D-11	3/14/2000	SOII/FIII	0.7 - 2.0	TAL metals w/ cyanide
P 12	2/14/2009	Soil/Eill	05 15	VOCs, SVOCs, PCBs,
D-12	3/14/2008	3011/F111	0.5 - 1.5	TAL metals w/ cyanide

Notes:

B-1 = Soil Boring #1

VOCs = Volatile Organic Compounds

SVOCs = Semi Volatile Organic Compounds

TAL = Target Analyte List

PCBs = Polychlorinated Biphenols

The geology and hydrogeology of the Site was described using data collected from soil borings completed during this investigation and a previous investigation conducted in July/August 2001 (Evergreen letter report, Sept. 2001).

3.1 Subsurface Conditions

Subsurface conditions at the Site consist of fill materials underlain by an undifferentiated dark gray-brown silt and fine grained sand unit that transitions to a stiff clay unit with trace to little silt-sand laminae. Bedrock was not encountered during the investigation.

3.1.1. Site Geology

Fill Materials - Fill materials generally consisted of black-gray, fine to coarse grain sand with silt and trace clay admixed with Construction and Demolition (C&D) debris comprised of wood, concrete, brick and gravel. The measured fill thickness beneath the warehouse building is approximately 1.5 feet whereas a maximum thickness of 10.6 feet was documented at borehole location B-6. The B-6 boring was advanced on the west side of the 1132 building in a former underground storage tank (UST) area that had been the focus of previous investigation. A maximum fill thickness of 11.0 feet was measured at one borehole location (PH-1) advanced in former UST area during the 2001 investigation are shown on the Sample Location map included in Appendix B.

Native Soils – Gray-brown/black sand and silt with trace clay and fine gravel was identified immediately below the fill materials. When penetrated at depth, a stiff, dense red to light-brown clay unit was encountered below the thin sand/silt lens and is generally correlative across the Site. The clay unit is characterized with weak to moderate plasticity and contains trace amounts of silt and fine sand that are typical of local glacio-lacustrine deposits.

3.1.2. Site Groundwater

Depth to groundwater was measured in temporary monitoring wells located adjacent to the Site during the March 2008 sampling event. With the exception of the temporary monitoring well MW-4 located immediately adjacent to the northeast corner of the Site, all borings were observed to be dry. Groundwater was observed at the ground surface at the MW-4 location.

Groundwater Flow - The depth to saturated water table conditions could not be determined because of the lack of groundwater identified at all but two off site drilling locations.

Based on the topography of the area and general character of the Site stratigraphy, shallow groundwater flow is assumed to have a general west to southwest flow component through the Site overburden material. Shallow groundwater flow could not be determined during this investigation and discharge was not observed on Site but is assumed to flow/discharge toward the Buffalo River located approximately 3,500 feet south-southwest of the Site.

3.2. Analytical Results

The nature and extent of contamination at the 1146 Seneca Street Site was characterized in part through collection and analysis of soil/fill samples collected during the 2001 and 2008 investigations. Analytical results discussed in this section are attached in Appendix C and summarized in Tables 3-1 and 3-2.

Analytical results for soil/fill samples were compared to the NYS Soil Cleanup Objectives (Restricted Commercial and Industrial Standards), December 2006.

3.2.1. Soil/Fill Results

Chemical analyses of soil/fill samples collected at the Site during the August 2001 and March 2008 investigations identified only two metals and select PCB Aroclors at concentrations that exceed Restricted Industrial and/or Commercial NYSDEC SCO concentrations.

VOCs

As shown in Table 3-1, VOCs were not detected in soil/fill samples at concentrations in excess of applicable NYSDEC SCOs. However, methylene chloride commonly inferred to be a laboratory artifact, was detected at each sampling location.

It should be noted that soil samples collected adjacent to the interior railroad loading area at locations PH-20 and B-11 identified low levels of petroleum derivatives. The detected VOC concentrations were below Restricted Industrial and/or Commercial SCO criteria.

SVOCs

Low SVOC concentrations were detected in selected soil samples submitted for SVOC analyses during the 2001 investigation and at each of the borings advanced during the 2008 investigation. There were no detected concentrations that exceeded the SCOs for Restricted Industrial and/or Commercial use.

Polychlorinated Biphenyl's (PCBs)

Examination of summary Table 3-1 identified elevated concentrations of the PCB analytes Aroclor 1248 and 1260 detected in a majority of the samples collected during the

									. 11050 11	1132 Sene Buffal Flexo Tra	ca Street o, NY nsparent												
				2001 Sampling Investigation											2008 Sampling Investigation								
Sample ID	Restricted Use Soil	Cleanup Objectives	PH-1&2																				
Sample Date Sample Depths (ft. bgs)	Commercial	Industrial	(composite) 8/30/2001	PH-4 (4.0 - 8.0) 8/30/2001	PH-5 (4.0 - 8.0) 8/30/2001	PH-6 (4.0 - 8.0) 8/30/2001	PH-7 (0.0-4.0) 8/30/2001	PH-8 (0.0-4.0) 8/30/2001	PH-8(4.0-8.0) 8/30/2001	PH-9 (4.0-8.0) 8/30/2001	PH-12 (0.0-4.0) 8/30/2001	PH-13 (0.0-4.0) 8/30/2001	PH-13 (4.0-6.0) 8/30/2001	PH-18 (4.0-6.0) 8/30/2001	PH-19 (0.0-4.0) 8/30/2001	PH-20 (0.0-4.0) 8/30/2001	PH-20 (4.0-6.0) 8/30/2001	PH-21 (4.0-6.0) 8/30/2001	B-5 (0.0-1.6') 3/13/2008	B-6 (10.0-11.4 ⁻) 3/13/2008	B-10 (0.5-1.3 ⁻) 3/14/2008	B-11 (0.7-2.0') 3/14/2008	B-12 (0.5-1.5 3/14/2008
olatiles Organic Compounds (mg/kg)							1	1						1								
-Propylbenzene	500,000 ^b	1,000,000 ^c														900							1
,3,5-Trimethylbenzene	190,000	380,000														590							1
I-Butylbenzene	500,000 ^b	1,000,000 ^c														980							1
ec-Butylbenzene	500,000 ^b	1,000,000 ^c														1100							1
Butylbenzene	500,000 ^b	1,000,000 ^c														130							1
cetone	500,000 ^b	1,000,000 ^c					130												32 J	29 J	8 J	42	36
enzene	44,000	89,000																				3 J	1
Chlorobenzene	500,000 ^b	1,000,000 ^c																				240	
sopropyl benzene																						6 J	
lethylcyclohexane																				8		2 J	
lethylene chloride	500,000 ^b	1,000,000 ^c																	4 J	7	7	9	5 J
oluene	500,000 ^b	1,000,000 ^c																		2 J			Í
Semi-Volatiles Organic Compounds (μg/kg)												-										
,2,4-Trichlorobenzene																						2 J	í
,3-Dichlorobenzene	280,000																					34	Í
1,4-Dichlorobenzene	130,000																					58	Í
2-Methylnaphthalene																			47 J		460		Í
2-Butanone							55																1
Acenaphthene	500,000 ^b	1,000,000 ^c																	56 J				í
Acenaphthylene	500,000 ^b	1,000,000 ^c																			16 J		1
Anthracene	500,000 ^b	1,000,000 ^c																	230 J	57 J	23 J		1
Benzo(a)anthracene	5600	11,000					700												760 J	120 J	97 J	57 J	í
Benzo(a)pyrene	1,000 ^f	1,100					570												740 J	81 J	58 J	39 J	49 J
Benzo(b)fluoranthene	5,600	11,000					860												790 J	83 J	82 J	68 J	í
Benzo(ghi)perylene	500,000 ^b	1,000,000 ^c																	720 J	52 J	68 J	33 J	í
Benzo(k)fluoranthene	56,000	110,000																	390 J	41 J	39 J		1
Biphenyl																					50 J		í –
bis(2-Ethylhexyl) phthalate																						78 J	(
Chrysene	56,000	110,000					750												670 J	97 J	100 J	63 J	1
Dibenzo(a,h)anthracene	360	1,100																	170 J			9 J	(
Ethylbenzene		,																					
Dibenzofuran																					120 J		[
Fluoranthene	500,000 ^b	1,000,000 ^c	630																1500	250 J	120 J	120 J	[
Fluorene	500,000	1,000,000 ^c						1	1							İ	1		71 J	20 J	23J		[
Indeno(1,2,3-cd)pyrene	5,600	11,000																	590 J	46 J	45 J	28 J	[
Naphthalene	500.000	1.000.000	4			1	1	1	1	1				1		320					290 J		
Phenanthrene	500,000 ^b	1,000.000	650	İ			940	1	1		1								L 008	190 J	340 J		
Pyrene	500.000	1,000.000	410				1,200			1				1					1,200	210 J	120 J	95 J	
PCB (ug/kg)		.,		•			.,200				<u> </u>					•	•		.,200		.200		
Aroclor 1242	1,000	25,000																		17 J			
Aroclor 1248	1,000	25,000	İ		1	1	1	1	1	1			-	1	3,700	2,500.000	5,900		2,600		12	4,900	
Aroclor 1260	1.000	25,000	İ	1,200	360	140	13.000	7,600	200	130	880	380	340	17.000	420	1,000,000	2,500	660	18.000	120	37	12,000	
<u>Notes:</u> Blank_indicates the analyte was tested f	or but not detected above	e the method detection I	imit	•					•		•				•					•			

J- Indicates an estimated value.

-Bold value indicates exceedance of Industrial SCO

-Bold value indicates exceedance or industrial SCO
-Shaded value indicates exceedance of Commercial SCO
Restricted Use Footnotes
b - The SCOs for commercial use were capped at a maximum value of 500 ppm.
c - The SCOs for industrial use and the protection of groundwater were capped at a maximum value of 1000 ppm.

2001 investigation and in four of the five samples collected during the 2008 Phase II investigation.

As depicted on the historic sample location map in Appendix B, borings advanced during the focused 2001 investigation were located north of the warehouse in a grid pattern to delineate the areal extent and depth of PCB impacted soil materials. Further, as shown on Table 3-1, PCB concentrations that exceeded the restricted commercial SCO were identified in soil/fill material collected at the surface but notably at depths of up to a maximum of 6.0 feet bgs (17,000 ug/kg at 4.0 -6.0', PH-18).

PCB concentrations that exceeded both restricted commercial and industrial SCOs (1,000 ug/kg and 25,000, respectively) were identified in soil/fill materials sampled in the interior railroad loading dock area of the warehouse building. As shown on Table 3-1, Aroclor 1248 was detected at a maximum concentration of 2,500,000 ug/kg at the boring PH-20 (see Sample Location Map in Appendix B) located at the southern extent of the railroad loading platform. A maximum PCB concentration of 12,000 ug/kg was detected at a depth of 0.7 - 2.0' bgs in the soil sample collected at the adjacent boring designated B-11.

Metals

Two metals were detected at concentrations that exceeded the NYSDEC SCOs for restricted industrial and/or commercial use. A comparison of analytical data with SCO criteria is presented in Table 3-2.

- A slightly elevated concentration of arsenic that exceeded the NYSDEC Restricted Commercial and Industrial SCOs was identified in the soil sample B-10 located in the southwest corner of the warehouse structure. The detected concentration 28.8 mg/kg (0.5-1.3' bgs) exceeded the SCO of 16 mg/kg.
- An elevated concentration of copper that exceeds the NYSDEC Restricted Commercial SCO (270 mg/kg) was identified at soil boring B-10 (777 mg/kg at 0.5-1.3' bgs).

TABLE 3-2 Phase II ESA Analytical Results - Soil / Inorganics 1132 Seneca Street Buffalo, NY Flexo Transparent

Sample ID	Restricted Use Soi	Cleanup Objectives					
Sample Date	Commercial	Industrial	B-5 (0.0-1.6')	B-6 (10.0-11.4')	B-10 (0.5-1.3')	B-11 (0.7-2.0')	B-12 (0.5-1.5')
Sample Depths (ft. bgs)	oonninereidi	industrial	3/13/2008	3/13/2008	3/14/2008	3/14/2008	3/14/2008
		M	etals (mg/kg)				
Aluminum			9,090 *	8,040 *	6,520 *	12,700 *	7,840 *
Arsenic	16'	16'	14.0 N	4.8 N	28.8 N	12.1 N	4.8 N
Barium	400	10,000 ^ª	156 N*	68.4 N*	125 N*	83.6 N*	103 N*
Beryllium	590	2700	0.92	0.36	0.74	0.47	0.33
Cadmium	9.3	60	0.81	0.42	1.1	0.89	0.55
Calcium			12,000 *	23,500 *	5,730 *	37,700 *	3830 *
Chromium			11.5	12.5	11.6	23.1	9.9
Cobalt			6.1	7.0	6.8	13.1	6.6
Copper	270	10,000 [°]	13.9 N*	19.1 N*	777 N*	35.2 N*	14.4 N*
Iron			23400	15700	16900	38,300	16,500
Lead	1,000	3,900	123 E	20.7 E	575 E	18.6 E	23.5 E
Magnesium			3,530 E	7620 E	1,950 E	12,500 E	1,630 E
Manganese	10,000 ^a	10,000 °	225	343	448	635	234
Mercury	2.8	5.7 ⁱ	0.228 N	0.062 N	0.280 N	ND N	0.049 N
Nickel	310	10,000 ^a	15. 6 E	17.6 E	12.5 E	36.7 E	9.9 E
Potassium			1,220	1,470	830	2,210	560
Sodium			227	225	ND	276	383
Vanadium			20.9 E	15.4 E	16.7 E	26.9 E	17.2 E
Zinc	10,000 °	10,000 ^u	115 E	53.8 E	494 E	106 E	52.5 E
		General Che	mistry (units as r	oted)	-	-	-
Cyanide, Total (µg/kg)	27,000	1,000,000 °	62.1	ND	ND	ND	ND
Notos:	-	•			•	•	•

Notes:

Blank indicates the analyte was tested for but not detected above the method detection limit

N- Indicates spike sample recovery is not within the quality control limits.

E-Indicates a value estimated or not reported die to the presence of interferences.

*- Indicates the spike or duplicate analysis is not within quality control limits.

-Bold value indicates exceedance of Industrial SCO.

-Shaded value indicates exceedance of Commercial SCO.

Restricted Use Footnotes

d - The SCOs for the metals were at a maximum value of 10,000 ppm.

- For constituents where the calculated SCO was lower than the rural soil background concentration as determined by the Department of or mercury (inorganic salts). The Phase II investigation of the 1132 Seneca Street property provided for the physical and chemical characterization of soil/fill.

4.1. Soil/Fill – Physical Characterization

The unconsolidated soil material identified below the building slab and north of the warehouse varies in composition and thickness. Generally the soil/fill consisted of disturbed soil, and other natural materials admixed with varying percentages of brick, concrete, ash with cinders, and crushed stone. This fill unit was encountered at all boring locations. Dependent upon location within the site boundary, the thickness of the soil/fill ranged from 1.5 feet measured beneath the warehouse, to a maximum thickness of approximately 6.0 feet north of the building, and 11 feet in the former UST area located west of the building. The soil/fill unit is underlain by a stiff low permeability clay aquitard that limits the downward percolation of groundwater and contaminant transport.

4.2. Soil/Fill – Chemical Characterization

Elevated concentrations of PCB analytes that exceeded the NYS restricted commercial SCO were identified in soil samples collected in an area located immediately north of the warehouse building. Of particular note, PCB impacted soil/fill material exceeding the NYS restricted industrial SCO by two orders of magnitude was identified in soil material collected along the railroad loading dock located within the warehouse building.

Arsenic was detected at a concentration above the restricted industrial SCO at the B-10 sampling location advanced within the building complex. Barium was detected at a concentration exceeding the restricted commercial SCO the same location.

Flexo Transparent, Inc. Phase II Environmental Assessment / 1132 Seneca Street

Appendix A Stratigraphic Borehole Logs

6105002 / BUF

MALCOL PIRNIE	M										Borehole No.:	B-5		
Pro	ject :		Flexo	Phase	e II Inv	restigation	Surface Elev.:			Date Started:	3/13/2008			
						-	Ref. Elev.:			Date Finished:	3/13/2008	-		
Project	t No.:		6105	-001			Contractor:	SJB Services, In	nc.	Drilling Method:	Direct push			
	lient:		Flexo	Tran	sparent	, Inc.	Driller:	~		Water Depth (bgs):				
Loc	ation:		Buffa	llo, N	Y		Rig Type:	Geoprobe		Logged By:	JPH			
Depth (BGS)	Sample ID	Sample Type	Blows / 6 inches	Recovery / Length (ft.)	Soil Classification / Symbol (Include denths)	Density/Consistency, Color, Plasticity, Soil Types, Texture, Fabric, Bedding, Moisture								PID Headspace (ppm)
0'				3.1/	1	1.6 Fill as Sa	and, black, fine-me	d.grain, w/ little Slag a	as fine Gravel, trace	e Silt, wood debris		S	2.7	
						1.5 NATIV	E Silt and Clay, oliv	ve-gray, mottled			· · · · · · · · · · · · · · · · · · ·	М	0.4	
2				4.0							·····		0.2	
4'					1		· · · · · ·	······						
				1 /										
6				//										
01				<u> </u>										
0				/								-		
10				1/				· · · · · · · · · · · · · · · · · · ·						
				<u>V</u>						()				
12'				/	1									
14				//										
				V										
16'				/	1						10 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
								· · · · · · · · · · · · · · · · · · ·						
				//								-		
									-					
				/						······				
]/										
				<u> </u>										
				/								-		
				1/										
				<u> </u>										
Notes:	Votes: Collected soil sample @ 14:15, 0.0 - 1.6' interval. Analyzed for VOCs, SVOCs, PCBs, TAL metals and cyanide													
Fiel	GW (@ 5.16 d Flexo.xl)' sB-5						<u></u>			Page 5 of	f 16	

PIRNIE	M					Borehole No.:	B-6		
Pro	oiect :		Flex	o Phas	e II In [,]	vestigation Surface Elev.: Date Started: 3/13/2008			
	-			<u> </u>		Ref. Elev.: Date Finished: 3/13/2008			-
Projec	t No.:		6105	-001		Contractor: SJB Services, Inc. Drilling Method: Direct push		<u></u>	
C	Client:		Flexc	י Tran	sparen	t, Inc. Driller: Water Depth (bgs):			
Loc	ation:		Buff	ılo, N	<u>Y</u>	Rig Type: Geoprobe Logged By: JPH			
Depth (BGS)	Sample ID	Sample Type	Blows / 6 inches	Recovery / Length (ft.)	Soil Classification / Symbol (Include	Lithology Description and Remarks Density/Consistency, Color, Plasticity, Soil Types, Texture, Fabric, Bedding, Moisture	Moisture (dry, moist, wet, saturated)	PID Scan (ppm)	PID Headspace (ppm)
0'	↓]	⊢′	 '	2.7/	1 /	2.7 Fill as Silt and Clay, dark gray, soft, plastic w/ cement grout debris	W	0.0	
	┟───┦	←′	 '	1/	1 1		-	0.0	
<u> </u>	├	⊢ −′	<u>+</u> '	/4.0	1 1			0.0	
4'	├──┥		\vdash	2.2/	1 1	2.2 Fill. Silt and Clay as above w/ occasional brick debris	W	0.0	
· · · · ·	├ ── †			177	1 !			0.0	
6		\Box		1/	1 1			0.0	
		\square'		/4.0	1 1				
8'		<u> </u>	ſ'	3.2/	1 /	2.6 Fill as above	Μ	0.0	
	\vdash	←'	 '	-/	1 !	0.6 NATIVE Clay, red-brown, soft, plastic	M	0.0	
10	┣──┦	←′	 '	4.0					
12'	┢━━┩	$ \longrightarrow $	<u> </u>		1 1		+		<u> </u>
	├──┦		t'	1 /	1 1				
14			\square	1/					
		\square'		V	1 /				
16'		\Box		\Box	1 1				
		\square'			1 /				
		←'	 '						
	$\vdash \!$	\vdash	{ '	<u> </u>					
	\vdash	\vdash	├ ─'	- /					
	\vdash	—	<u>+</u> '	$\frac{1}{2}$			-		
	\vdash		t'	1/					
				17	1 !		4		
		\Box		1 /	1 /		1		
		\Box']/]	1 1				
		<u> </u>	<u> </u>	<u> </u>					
Notes:	Collec Analy	cted so yzed fo	oil sar or VO	nple @ /Cs, S\	∮ 15 : √OCs,	30, 10.0 - 11.4' interval. PCBs, TAL metals and cyanide	Page 6 oj	f 16	

PIRNIE	M			<u>.</u>						Borehole No.:	B-10		
Pro	oject :		Flexo) Phase	e II Inv	estigation	Surface Elev.:		Date Started:	3/14/2008			
							Ref. Elev.:		Date Finished:	3/14/2008			
Projec	t No.:		6105	-001			Contractor:	SJB Services, Inc.	Drilling Method:	Direct push			
	lient:		Flexe	Trans	sparent	t, Inc.	Driller:	Coorrela	Water Depth (bgs):				
LUC	ation:		Bulla	110, IN 2	1		Kig Type:	Geoprobe	Logged By:	JPH			—
Depth (BGS)	Sample ID	Sample Type	Blows / 6 inches	Recovery / Length (ft.)	Soil Classification / Symbol (Include denthe)			Lithology Descripti Density/Consistency, Color, Plasticity, Soil Ty	on and Remarks pes, Texture, Fabric, Bedding, Moisture		Moisture (dry. moist, wet. saturated)	PID Scan (ppm)	PID Headspace (ppm)
0'				3.0/	1	0.5 Concret	e, cored through bu	ilding slab				0.0	
				/		0.8 Fill as S	and and Gravel, bla	ack, fine grain, sub-angular fine	e gravel, coal, trace-little Silt		M	0.0	
2				4.0		1.5 NAIIV	E Sand and Sill, Li	Lorown, fine grain, trace Clay	and line Gravel to 1/2 dia.		M	0.0	
4'				7		0.9 Silt, Lt.	gray, w/ little fine S	Sand, carbonaceous debris			М	0.0	
				1 /									
6			ļ	1/							_		
8'				\vdash						·····			
<u> </u>				1 /				······································			-		
10				1/									
10				<u> </u>									
12				/									
14				1/				· · · · · · · · · · · · · · · · · · ·					
				V_{-}									
16'					1								
				/					······				
				/									
				7	1 1								
				1 /									
				//			<u>.</u>	······································			_		
				$ \longrightarrow$				· · · · ·					
				1 /									
				1/									
				/									
Notes:	Collec Analy	cted so zed fo	oil san or VO	nple @ Cs, SV	0 11 : ∕OCs, ∶	30 , 0.5 - 1.3 PCBs, TAL mo	interval. etals and cyanide				Page 10 a	of 16	

MALCOL PIRNIE	M									Borehole No.:	B-11		
Pro	viect ·		Flexo	Phase	e II Inv	estigation	Surface Elev.:		Date Started:	3/14/2008			
			1 IOAO				Ref. Elev.:		Date Finished:	3/14/2008			—
Projec	t No.:		6105-	001			Contractor:	SJB Services, Inc.	Drilling Method:	Direct push	· · ·		
(lient:		Flexo	Trans	sparent	, Inc.	Driller:	·····	Water Depth (bgs):				
Loc	ation:		Buffa	lo, NY	í.	·	Rig Type:	Geoprobe	Logged By:	JPH			
				_			· · · · · · · · · · · · · · · · · · ·				1 . 1		
Depth (BGS)	Sample ID	Sample Type	Blows / 6 inches	Recovery / Length (ft.)	Soil Classification / Symbol (Include denths)			Lithology Descriptio Density/Consistency, Color, Plasticity, Soil Type	on and Remarks es, Texture, Fabric, Bedding, Moisture		Moisture (dry, moist, wet, saturated)	PID Scan (ppm)	PID Headspace (ppm)
0'				3.1/		0.7 Concret	e, cored through bui	ilding slab, significant petroleur	m odor @ at slab - soil interface			01.5	
						0.8 Fill as S	Sand, black, fine grai	in, trace Silt, petroleum sheen			W	21.7	
2				40		0.9 NATIV	E Sand and Silt, bl	ack-gray, fine grain			M	11.2	
				74.0	4	0.7 Clay, L	L. DIOWII, SIIII, Weak	plasticity			111	ч.5	
											+		I
6													
				\mathbf{V}									
8'				7	1 1								
					[····				
10													
101				<u> </u>									
<u> </u>	ļ										-		
14													
											1		
16				7	1		<u></u>						
				/	[
				V						· · · · · · · · · · · · · · · · · · ·	<u> </u>		
				/	1								
				//									
				/									
				1/									
				V									
Notes:													

Collected soil sample @ 12:00, 0.7 - 2.0' interval. Analyzed for VOCs, SVOCs, PCBs, TAL metals and cyanide

Ð.

MALCOL PIRNIE	M									Borehole No.:	B-12		
Pro	oiect ·		Flexo	Phase	II Inv	estigation	Surface Elev.:		Date Started:	3/14/2008			
110jeet.		Tievo i nase il investigation		Ref. Elev.:	<u> </u>	Date Finished:	3/14/2008						
Projec	t No.:		6105-	001			Contractor:	SJB Services, Inc.	Drilling Method:	Direct push			
Č.	Client:		Flexo	Trans	parent	, Inc.	Driller:		Water Depth (bgs):				
Loc	ation:		Buffa	lo, NY	[Rig Type:	Geoprobe	Logged By:	JPH			
					<u> </u>			····					е К
			ches	Lengt	cation (Includ						we t	(mq	adspa
BGS	A	Туре	6 inc	י עי	assifi						re moist ed)	an (p	Не
pth (mple	mple	/ swc	cove:	il Cla mbol			Lithology Descrip	otion and Remarks		oistu ry. turat	D Sc	⊆ û
Ճ	Sau	Sai	Ble	(fr.	e S S			Density/Consistency, Color, Plasticity, Sol	il Types, Texture, Fabric, Beaaing, Moisture		M Sa	ΡI	а ф
0'				3.3/		0.5 Concret	te, cored through bu	uilding slab			S	0.0	
						0.6 Fill as S	Sand and Gravel, bl	ack, fine grain, sub-angular f	fine gravel		M	0.0	
2				40		0.5 Sand ar	d Gravel, dark gray	, fine sub-angular Gravel to	3/4" dia		M	0.0	
	<u> </u>			/4.0		2.2 NATIV	E Sill, olive-gray,	w/ trace Clay, the Sanu					
4													
6													
				\boldsymbol{V}									
8'				\Box							_		
											-		
10	1												
12'									· · · · · · · · · · · · · · · · · · ·				
				1 /									
14				1/									
				<u> </u>							_		
16'	Ļ									<u> </u>			
				/							-		
	-			/									
				7	1								
				1 /									
				//									
	_	ļ		<u> </u>									
				/									
Notes:	Colle	cted s	oil san	nple @	13	45, 0.5 - 1.5	5' interval.						
1	Anal	yzed fo	or VO	Ċs, SV	/OCs,	PCBs, TAL n	netals and cyanide						

I

PROJECT NAME: Fibreright Mft. Inc.	PROJECT NO.: ETE-01-98
LOCATION: 1132 Seneca St., Buffalo, NY	BOREHOLE NO.: PH-1
DRILLING METHOD: Geoprobe	DATE: 8-31-01
SAMPLING METHOD: Macro Core Sampler	TIME: 0830
TOTAL BORING DEPTH: 11.0'	DEPTH OF WATER: None
LOGGED BY: D. Abrams	BACKFILL: Borehole Spoil

Depth Interval (Feet)	PID Reading (ppm)	Description	
* 0 - 4	BG	Gravel & Sand, Brick Backfill	······································
* 4 - 8	BG	Gray Silt & Clay Fill	
8 - 12	BG	Gray Silt & Clay Fill	
		Refusal @ 11.0'	1

REMARKS:

Former UST Area

* - No Chemical / Petroleum Like Odors

594 Broadway Watervliet, NY 12189 Voice 518-266-0310 Fax 518-266-9238

PROJECT NAME: Fibreright Mft. Inc.	PROJECT NO.: ETE-01-98
LOCATION: 1132 Seneca St., Buffalo, NY	BOREHOLE NO.: PH-3
DRILLING METHOD: Geoprobe	DATE: 8-30-01
SAMPLING METHOD: Macro Core Sampler	TIME: 0930
TOTAL BORING DEPTH: 4.0'	DEPTH OF WATER: 8"
LOGGED BY: D. Abrams	BACKFILL: Borehole Spoil

Depth Interval (Feet)	PID Reading (ppm)	Description	2 - 2 - 2
0' - 4'	BG	Fill, Gravel & Sand, Silt & Clay at 3.0'	2
	*** 12	9 S	5
0		1 - 12 - M	

REMARKS:

Former Utility Trench from Former UST To Building

594 Broadway Watervliet, NY 12189 Voice 518-266-0310 Fax 518-266-9238

PROJECT NAME: Fibreright Mft. Inc.	PROJECT NO.: ETE-01-98	2.
LOCATION: 1132 Seneca St., Buffalo, NY	BOREHOLE NO.: PH-4	1210
DRILLING METHOD: Geoprobe	DATE: 8-30-01	
SAMPLING METHOD: Macro Core Sampler	TIME: 1000	е. Х.
TOTAL BORING DEPTH: 8.0'	DEPTH OF WATER: 3'	· ² .
LOGGED BY: D. Abrams	BACKFILL: Borehole Spoil	90 až

Depth Interval (Feet)	PID Reading (ppm)	s s T	Description		
0' - 4'	BG	Black Cinders, Fill, Wet			1.82
4' - 8'	BG	Clay @ 6.0'		ð	
		9 E	0		
	8 D		4		

REMARKS:

594 Broadway Watervliet, NY 12189 Voice 518-266-0310 Fax 518-266-9238

PROJECT NAME: Fibreright Mft. Inc.	PROJECT NO.: ETE-01-98	
LOCATION: 1132 Seneca St., Buffalo, NY	BOREHOLE NO.: PH-5	
DRILLING METHOD: Geoprobe	DATE: 8-30-01	
SAMPLING METHOD: Macro Core Sampler	TIME: 1030	
TOTAL BORING DEPTH: 8.0'	DEPTH OF WATER: 4'	
LOGGED BY: D. Abrams	BACKFILL: Borehole Spoil	

Depth Interval (Feet)	PID Reading (ppm)	Description	10 10
- 0' - 4'	BG	Black Cinders, Fill, Wet	· · · · · · · · · · · · · · · · · · ·
4' - 8'	BG	Gray / Brown Clay 5.5'	
	20. ja		197
7	10		

REMARKS:

594 Broadway Watervliet, NY 12189 Voice 518-

Voice 518-266-0310 Fax 518-266-9238

PROJECT NAME: Fibreright Mft. Inc.	PROJECT NO.: ETE-01-98
LOCATION: 1132 Seneca St., Buffalo, NY	BOREHOLE NO.: PH-6
DRILLING METHOD: Geoprobe	DATE: 8-30-01
SAMPLING METHOD: Macro Core Sampler	TIME: 1045
TOTAL BORING DEPTH: 8.0'	DEPTH OF WATER: None
LOGGED BY: D. Abrams	BACKFILL: Borehole Spoil

Depth Interval (Feet)	PID Reading (ppm)	Description	
0' - 4'	BG	Black Cinders, Fill	
4' - 8'	BG	Gray / Brown Clay 4.5'	2
а. ₁₀			(a)

REMARKS:

594 Broadway Watervliet, NY 12189 Voice 518-266-0310 Fax 518-266-9238

PROJECT NAME: Fibreright Mft. Inc.	PROJECT NO.: ETE-01-98
LOCATION: 1132 Seneca St., Buffalo, NY	BOREHOLE NO.: PH-7
DRILLING METHOD: Geoprobe	DATE: 8-30-01
SAMPLING METHOD: Macro Core Sampler	TIME: 1100
TOTAL BORING DEPTH: 8.0'	DEPTH OF WATER: None
LOGGED BY: D. Abrams	BACKFILL: Borehole Spoil

Depth Interval (Feet)	PID Reading (ppm)	Description	-
0' - 4'	BG	Black Cinders, Fill	0
4' - 8'	BG	Gray / Brown Clay & Silt at 5.0'	2
		· (2) ⁽¹⁾ 2	<u> </u>
	8	8) S S	

REMARKS:

594 Broadway Watervliet, NY 12189 Voice 518-266-0310 Fax 518-266-9238

PROJECT NAME: Fibreright Mft. Inc.	PROJECT NO.: ETE-01-98
LOCATION: 1132 Seneca St., Buffalo, NY	BOREHOLE NO.: PH-8
DRILLING METHOD: Geoprobe	DATE: 8-30-01
SAMPLING METHOD: Macro Core Sampler	TIME: 1115
TOTAL BORING DEPTH: 8.0'	DEPTH OF WATER: None
LOGGED BY: D. Abrams	BACKFILL: Borehole Spoil

Depth Interval (Feet)	PID Reading (ppm)	Description	Þ
0' - 4'	BG	Black Cinders, Brick, Concrete, Fill	
4' - 8'	BG	Gray / Brown Clay & Silt Mottled at 5.0'	
2			
			.es

REMARKS:

594 Broadway Watervliet, NY 12189 Voice 518-266-0

Voice 518-266-0310 Fax 518-266-9238

PROJECT NAME: Fibreright Mft. Inc.	PROJECT NO.: ETE-01-98
LOCATION: 1132 Seneca St., Buffalo, NY	BOREHOLE NO.: PH-9
DRILLING METHOD: Geoprobe	DATE: 8-30-01
SAMPLING METHOD: Macro Core Sampler	TIME: 1130
TOTAL BORING DEPTH: 8.0'	DEPTH OF WATER: None
LOGGED BY: D. Abrams	BACKFILL: Borehole Spoil

Depth Interval (Feet)	PID Reading (ppm)	Description
0' - 4'	BG	Brick, Concrete, Cinders, Fill
4' - 6'	BG	Brown / Gray Mottled & Layered Clay

REMARKS:

594 Broadway Watervilet, NY 12189 Voice 518-266-0310 Fax 518-266-9238

PROJECT NAME: Fibreright Mft. Inc.	PROJECT NO.: ETE-01-98
LOCATION: 1132 Seneca St., Buffalo, NY	BOREHOLE NO.: PH-10
DRILLING METHOD: Geoprobe	DATE: 8-30-01
SAMPLING METHOD: Macro Core Sampler	TIME: 1145
TOTAL BORING DEPTH: 8.0'	DEPTH OF WATER: None
LOGGED BY: D. Abrams	BACKFILL: Borehole Spoil

Depth Interval (Feet)	PID Reading (ppm)	Description
0' - 4'	BG	Black Cinders, Brick, Clay, Fill
4' - 6'	BG ^{at th}	Gray / Brown Silt & Clay, Mottled - Layered
	A A	

REMARKS:		151 1	ų	
				46
			20 20	
		20 ₂₀₁₀		л ж
2	-	8		08 X
				-

594 Broadway Watervliet, NY 12189 Voice 518-266-0310 Fax 518-266-9238

PROJECT NAME: Fibreright Mft. Inc.	PROJECT NO.: ETE-01-98
LOCATION: 1132 Seneca St., Buffalo, NY	BOREHOLE NO.: PH-11
DRILLING METHOD: Geoprobe	DATE: 8-30-01
SAMPLING METHOD: Macro Core Sampler	TIME: 1300
TOTAL BORING DEPTH: 6.0'	DEPTH OF WATER: None
LOGGED BY: D. Abrams	BACKFILL: Borehole Spoil

Depth Interval (Feet)	PID Reading (ppm)	Description
= 0 ⁱ - 4 ⁱ	BG	Black Cinders, Brick, Fill
4' - 6'	BG	Brown / Gray Clay at 4.5'
		<u>.</u>

REMARKS:

594 Broadway Watervliet, NY 12189 Voice 518-266

Voice 518-266-0310 Fax 518-266-9238

PROJECT NAME: Fibreright Mft. Inc.	PROJECT NO.: ETE-01-98
LOCATION: 1132 Seneca St., Buffalo, NY	BOREHOLE NO.: PH-12
DRILLING METHOD: Geoprobe	DATE: 8-30-01
SAMPLING METHOD: Macro Core Sampler	TIME: 1315
TOTAL BORING DEPTH: 6.0	DEPTH OF WATER: None
LOGGED BY: D. Abrams	BACKFILL: Borehole Spoil

Depth Interval (Feet)	PID Reading (ppm)	Description	.35
0' - 4'	BG	Black Cinders, Wood, Brick, Fill	
4' - 6'	BG	Gray / Brown Silt & Clay	
12 			
<u>i</u>	1995 - 17 17		25

REMARKS:

594 Broadway Watervliet, NY 12189 Voice 518-266-0310 Fax 518-266-9238

PROJECT NAME: Fibreright Mft. Inc.	PROJECT NO.: ETE-01-98
LOCATION: 1132 Seneca St., Buffalo, NY	BOREHOLE NO.: PH-13
DRILLING METHOD: Geoprobe	DATE: 8-30-01
SAMPLING METHOD: Macro Core Sampler	TIME: 1330
TOTAL BORING DEPTH: 6.0'	DEPTH OF WATER: None
LOGGED BY: D. Abrams	BACKFILL: Borehole Spoil

Depth Interval (Feet)	PID Reading (ppm)	Description	- 14 Q 6 - 7
0' - 4'	BG	Black Cinders, Brick, Fill	6
4' - 6'	BG	Brown / Gray Clay at 5.5'	
		и из ^н и	
	57		······

REMARKS:

594 Broadway Watervliet, NY 12189 Voice 518-266-0310 Fax 518-266-9238

PROJECT NAME: Fibreright Mft. Inc.	PROJECT NO.: ETE-01-98
LOCATION: 1132 Seneca St., Buffalo, NY	BOREHOLE NO.: PH-15
DRILLING METHOD: Geoprobe	DATE: 8-30-01
SAMPLING METHOD: Macro Core Sampler	TIME: 1400
TOTAL BORING DEPTH: 6.0'	DEPTH OF WATER: None
LOGGED BY: D. Abrams	BACKFILL: Borehole Spoil

Depth Interval (Feet)	PID Reading (ppm)	Description
0' - 4'	BG	Black Cinders, Brick, Fill
4' - 6'	BG	Brown / Gray Clay at 4.5'
		100 ° 11
y c		

REMARKS:

594 Broadway Watervliet, NY 12189

Voice 518-266-0310 Fax 518-266-9238

PROJECT NAME: Fibreright Mft. Inc.	PROJECT NO.: ETE-01-98
LOCATION: 1132 Seneca St., Buffalo, NY	BOREHOLE NO.: PH-16
DRILLING METHOD: Geoprobe	DATE: 8-30-01
SAMPLING METHOD: Macro Core Sampler	TIME: 1430
TOTAL BORING DEPTH: 6.0'	DEPTH OF WATER: None
LOGGED BY: D. Abrams	BACKFILL: Borehole Spoil

Depth Interval (Feet)	PID Reading (ppm)	Description	
0' - 4'	BG	Black Cinders, Brick, Fill to 4.0'	
4' - 6'	BG	Brown / Gray Silt & Clay	G II
		* **	

REMARKS:

594 Broadway Watervliet, NY 12189 Voice 518-266-0310 Fax 518-266-9238

PROJECT NAME: Fibreright Mft. Inc.	PROJECT NO.: ETE-01-98
LOCATION: 1132 Seneca St., Buffalo, NY	BOREHOLE NO.: PH-17
DRILLING METHOD: Geoprobe	DATE: 8-30-01
SAMPLING METHOD: Macro Core Sampler	TIME: 1445
TOTAL BORING DEPTH: 6.0'	DEPTH OF WATER: None
LOGGED BY: D. Abrams	BACKFILL: Borehole Spoil

Depth Interval (Feet)	PID Reading (ppm)	Description
0' - 4'	BG	Black Cinders, Backfill
4' - 6'	BG	Brown / Gray Silt & Clay
а —		
12 12		2

REMARKS:

594 Broadway Watervliet, NY 12189 Voice 518-266-0310 Fax 518-266-9238

PROJECT NAME: Fibreright Mft. Inc.	PROJECT NO.: ETE-01-98
LOCATION: 1132 Seneca St., Buffalo, NY	BOREHOLE NO.: PH-18
DRILLING METHOD: Geoprobe	DATE: 8-30-01
SAMPLING METHOD: Macro Core Sampler	TIME: 1500
TOTAL BORING DEPTH: 6.0'	DEPTH OF WATER: None
LOGGED BY: D. Abrams	BACKFILL: Borehole Spoil

Depth Interval (Feet)	PID Reading (ppm)	Description
0' - 4'	BG	Brick, Black Cinders, Fill
4' - 6'	BG	Brown / Gray Silt & Clay at 4.0'
35. 		ф.
	25	70 ~~

REMARKS:

٠,

594 Broadway Watervliet, NY 12189 Voice 518-266-0310 Fax 518-266-9238

PROJECT NAME: Fibreright Mft. Inc.	PROJECT NO.: ETE-01-98
LOCATION: 1132 Seneca St., Buffalo, NY	BOREHOLE NO.: PH-19
DRILLING METHOD: Geoprobe	DATE: 8-30-01
SAMPLING METHOD: Macro Core Sampler	TIME: 1530
TOTAL BORING DEPTH: 6.0'	DEPTH OF WATER: None
LOGGED BY: D. Abrams	BACKFILL: Borehole Spoil

Depth Interval (Feet)	PID Reading (ppm)	De	scription	1838
0' - 4'	BG	Black Cinders, Brick Fill		8
4' - 6' BG		Brown / Gray Silt & Clay at	4.5'	
		8 - 2	Э	
			8	

REMARKS:

Adjacent to concrete slab and concrete drive in the rear of the property.

594 Broadway Watervliet, NY 12189 Voice 518-266-0310 Fax 518-266-9238

PO Box 482 Orchard Park, NY 14127 Voice 716-649-9474 Fax 716-648-3521

*

PROJECT NAME: Fibreright Mft. Inc.	PROJECT NO.: ETE-01-98	×.,
LOCATION: 1132 Seneca St., Buffalo, NY	BOREHOLE NO.: PH-26	
DRILLING METHOD: Geoprobe	DATE: 8-31-01	(6) 8
SAMPLING METHOD: Macro Core Sampler	TIME: 1000	
TOTAL BORING DEPTH: 7.0'	DEPTH OF WATER: None	
LOGGED BY: D. Abrams	BACKFILL: Borehole Spoil	18

Depth Interval (Feet)	PID Reading (ppm)	Description
0' - 4'	20-25	Concrete 0.3 [!] , Gravel, Petroleum Odor Gray / Brown Clay & silt Layered at 2.5 ['] - *
4' - 7'	BG	Brown / Gray Silt & Clay

REMARKS:

Inside Loading Dock Area

* - 0.8 to 1.0' Layer of Petroleum impacted coarse sand and gravel

594 Broadway Watervliet, NY 12189 Volce 518-266-0310 Fax 518-266-9238

PROJECT NAME: Fibreright Mft. Inc.	PROJECT NO.: ETE-01-98
LOCATION: 1132 Seneca St., Buffalo, NY	BOREHOLE NO.: PH-27
DRILLING METHOD: Geoprobe	DATE: 8-31-01
SAMPLING METHOD: Macro Core Sampler	TIME: 1045
TOTAL BORING DEPTH: 7.0'	DEPTH OF WATER: None
LOGGED BY: D. Abrams	BACKFILL: Borehole Spoil

Depth Interval (Feet)	PID Reading (ppm)	 	Description	5 8 8
0' - 4'	BG	3" Concrete, Gray	Silt & Clay Fill	
4' - 7'	BG	Brown / Gray Silt & Clay Layered at 5.0'		C /4
11		а., а		2
ž			. N	

REMARKS:

Inside Warehouse Building

594 Broadway Watervliet, NY 12189 Voice 518-266-0310 Fax 518-266-9238

PROJECT NAME: Fibreright Mft. Inc.	PROJECT NO.: ETE-01-98
LOCATION: 1132 Seneca St., Buffalo, NY	BOREHOLE NO.: PH-28
DRILLING METHOD: Geoprobe	DATE: 8-31-01
SAMPLING METHOD: Macro Core Sampler	TIME: 1100
TOTAL BORING DEPTH: 7.0'	DEPTH OF WATER: None
LOGGED BY: D. Abrams	BACKFILL: Borehole Spoil

Depth Interval (Feet)	PID Reading (ppm)	Description
0' - 4'	BG	3" Concrete, Brown Sand & Gravel Fill, Fine Sand at 3.0'
4' - 7'	BG	Brown Silt & Clay Layered at 4.5'
	5 ×	- 11 -
÷.		

REMARKS:

Inside Warehouse Building

594 Broadway Watervliet, NY 12189 Voice 518

Voice 518-266-0310 Fax 518-266-9238

2

BORING LOG DATA

PROJECT NAME: Fibreright Mft. Inc.	PROJECT NO.: ETE-01-98
LOCATION: 1132 Seneca St., Buffalo, NY	BOREHOLE NO.: PH-29
DRILLING METHOD: Geoprobe	DATE: 8-31-01
SAMPLING METHOD: Macro Core Sampler	TIME: 1120
TOTAL BORING DEPTH: 7.0'	DEPTH OF WATER: None
LOGGED BY: D. Abrams	BACKFILL: Borehole Spoil

Depth Interval (Feet)	PID Reading (ppm)	Description	
0' - 4'	BG	4" Concrete, Brown Sand & Gravel Fill to 4.0'. Grades to Brown Silt & Clay	<u></u>
4' - 7'	BG	Brown / Gray Silt & Clay Layered at 5.0'	2
10 V	-2 T	2	0
640-	#1	10	

REMARKS:

Inside Warehouse Building

594 Broadway Watervliet, NY 12189 Voice 518-266-0310 Fax 518-266-9238

PROJECT NAME: Fibreright Mft. Inc.	PROJECT NO.: ETE-01-98
LOCATION: 1132 Seneca St., Buffalo, NY	BOREHOLE NO.: PH-30
DRILLING METHOD: Geoprobe	DATE: 8-31-01
SAMPLING METHOD: Macro Core Sampler	TIME: 1130
TOTAL BORING DEPTH: 7.0'	DEPTH OF WATER: None
LOGGED BY: D. Abrams	BACKFILL: Borehole Spoil

Depth Interval (Feet)	PID Reading (ppm)	Description
0' - 4'	BG	5" Concrete, Black Cinders Layers Beneath Concrete, Brown & Sand & Silt
4' - 7'	BG	Gray Brown Mottled Clay & Silt
		2,

REMARKS:

Inside Warehouse Building

594 Broadway Watervliet, NY 12189 Voice 518-266-03

Voice 518-266-0310 Fax 518-266-9238

PROJECT NAME: Fibreright Mft. Inc.	PROJECT NO.: ETE-01-98
LOCATION: 1132 Seneca St., Buffalo, NY	BOREHOLE NO.: PH-31
DRILLING METHOD: Geoprobe	DATE: 8-31-01
SAMPLING METHOD: Macro Core Sampler	TIME: 1300
TOTAL BORING DEPTH: 7.0'	DEPTH OF WATER: None
LOGGED BY: D. Abrams	BACKFILL: Borehole Spoil

Depth Interval (Feet)	PID Reading (ppm)	Description
0' - 4'	BG	6" Concrete, Dark Brown Fill, Brown Silt & Clay Mottled
4' - 7'	BG	Gray Brown Silt & Clay Layered
		a getta a
	6	

REMARKS:

Inside Warehouse Building

594 Broadway Watervliet, NY 12189 Voice 51

Voice 518-266-0310 Fax 518-266-9238

TESTING & ENVIRONMENTAL SERVICES

BORING LÖG DATA

PROJECT NAME: Fibreright Mft. Inc.	PROJECT NO.: ETE-01-98
LOCATION: 1132 Seneca St., Buffalo, NY	BOREHOLE NO.: PH-32
DRILLING METHOD: Geoprobe	DATE: 8-31-01
SAMPLING METHOD: Macro Core Sampler	TIME: 1345
TOTAL BORING DEPTH: 4.0'	DEPTH OF WATER: None
LOGGED BY: D. Abrams	BACKFILL: Borehole Spoil

Depth Interval (Feet)	PID Reading (ppm)	Description	* (#)
0 - 4	BG	4" Concrete, Brown Silt & Clay	
		Layered of Clay at 4'	
	¥		

REMARKS:

Inside Warehouse Building

594 Broadway Watervliet, NY 12189

Voice 518-266-0310 Fax 518-266-9238

Flexo Transparent, Inc. Phase II Environmental Assessment / 1132 Seneca Street

Appendix B Historic Sampling Location Maps

6105002 / BUF

APPROX. LIMITS OF THE SUBJECT SITE

3 & ENVIRONMENTAL SERVICES, INC.								
RONMENTAL EVALUATI ND PROBE HOLE LOCA HT MANUFACTURING F, 1132 SENECA STREET OF BUFFALO, NEW YOF	ON TION PLAN ACILITY RK							
ALE: 1" = 60'	PROJ. NO .: ETE-01-98							
TE: 9/01	DRWG. NO.: 2							

Flexo Transparent, Inc. Phase II Environmental Assessment / 1132 Seneca Street

Appendix C Analytical Report - Laboratory Data

6105002 / BUF

Date Received: 03/14/2008 Project No: NY4A919723 Client No: 102461 Site No:

			Detection			Date/Time	
Parameter	Result	<u>Flag</u>	Limit	Units	Method	Analyzed	<u>Analyst</u>
SOIL-SW8463 8260 - TCL VOLATILES	_						
1.1.1-Trichloroethane	ND		7	UG/KG	8260	03/15/2008 18:24	TRB
1.1.2.2-Tetrachloroethane	ND		7	UG/KG	8260	03/15/2008 18:24	TRB
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		7	UG/KG	8260	03/15/2008 18:24	TRB
1.1.2-Trichloroethane	ND		7	UG/KG	8260	03/15/2008 18:24	TRB
1.1-Dichloroethane	ND		7	UG/KG	8260	03/15/2008 18:24	TRB
1,1-Dichloroethene	ND		7	UG/KG	8260	03/15/2008 18:24	TRB
1,2,4-Trichlorobenzene	ND		7	UG/KG	8260	03/15/2008 18:24	TRB
1.2-Dibromo-3-chloropropane	ND		7	UG/KG	8260	03/15/2008 18:24	TRB
1,2-Dibromoethane	ND		7	UG/KG	8260	03/15/2008 18:24	TRB
1.2-Dichlorobenzene	ND		7	UG/KG	8260	03/15/2008 18:24	TRB
1,2-Dichloroethane	ND		7	UG/KG	8260	03/15/2008 18:24	TRB
1,2-Dichloropropane	ND		7	UG/KG	8260	03/15/2008 18:24	TRB
1.3-Dichlorobenzene	ND		7	UG/KG	8260	03/15/2008 18:24	TRB
1.4-Dichlorobenzene	ND		7	UG/KG	8260	03/15/2008 18:24	TRB
2-Butanone	ND		34	UG/KG	8260	03/15/2008 18:24	TRB
2-Hexanone	ND		34	ŲG/KG	8260	03/15/2008 18:24	TRB
4-Methyl-2-pentanone	ND		34	UG/KG	8260	03/15/2008 18:24	+ TRB
Acetone	32	J	34	UG/KG	8260	03/15/2008 18:24	TRB
Benzene	ND		7	UG/KG	8260	03/15/2008 18:24	4 TRB
Bromodichloromethane	ND		7	UG/KG	8260	03/15/2008 18:24	4 TRB
Bromoform	ND		7	UG/KG	8260	03/15/2008 18:24	4 TRB
Bromomethane	ND		7	UG/KG	8260	03/15/2008 18:20	4 TRB
Carbon Disulfide	ND		7	UG/KG	8260	03/15/2008 18:24	4 TRB
Carbon Tetrachloride	ND		7	UG/KG	8260	03/15/2008 18:2	4 IRB
Chlorobenzene	ND		7	UG/KG	8260	03/15/2008 18:2	4 IRB
Chloroethane	ND		7	UG/KG	8260	03/15/2008 18:2	4 IKB
Chloroform	ND		7	UG/KG	8260	03/15/2008 18:2	4 IKB
Chloromethane	ND		7	UG/KG	8260	03/15/2008 18:2	4 IKB
cis-1,2-Dichloroethene	ND		7	UG/KG	8260	03/15/2008 18:2	4 IKB
cis-1,3-Dichloropropene	ND		7	UG/KG	8260	03/15/2008 18:2	4 IKB
Cyclohexane	ND		7	UG/KG	8260	03/15/2008 18:2	4 IKB / TDD
Dibromochloromethane	ND		7	UG/KG	8260	03/15/2008 18:2	4 IKD
Dichlorodifluoromethane	ND		7	UG/KG	8260	03/13/2000 10:2	4 IKD
Ethylbenzene	ND		<i>′</i>	UG/KG	8200	03/13/2000 10:2	4 IKD
Isopropylbenzene	ND		7	UG/KG	8200	03/15/2000 10:2	4 IRD
Methyl acetate	ND		<u>′</u>	UG/KG	8200	03/13/2000 10:2	4 1KD
Methyl-t-Butyl Ether (MTBE)	ND		<i>′</i>	UG/KG	8260	03/15/2008 18:2	4 IKD
Methylcyclohexane	ND		7	UG/KG	8260	03/15/2000 10:2	4 IKD
Methylene chloride	4	7	<u> </u>	UG/KG	8200	03/15/2008 18:2	14 IKD
Styrene	ND		7	UG/KG	8260	03/13/2000 10:2	4 IKD
Tetrachloroethene	ND		7	UG/KG	8260	03/15/2000 10:2	4 ΙΚΡ)/ ΤΒΡ
Toluene	ND			UG/KG	8200	03/15/2000 10:2	(4 IKD
Total Xylenes	ND		20	UG/KG	8260	03/15/2000 10:2	14 IRD
trans-1,2-Dichloroethene	ND		<u>/</u>	UG/KG	8200	03/13/2000 101/	
trans-1,3-Dichloropropene	ND		7	UG/KG	8260	07/15/2000 1010	-+ 1KD
Trichloroethene	ND		7	UG/KG	8260	03/15/2008 18:4	14 IKD 2∕ тор
Trichlorofluoromethane	ND		7	UG/KG	8260	03/15/2000 10:4	L++ IКО́ 2/. тор
Vinyl chloride	ND		14	UG/KG	8200	03/15/2000 1014	

Malcolm Pirnie - Flexo Transparent Seneca Street Phase II ESA - 6105-001

Date Received: 03/14/2008 Project No: NY4A919723 Client No: 102461 Site No:

		Detection				—Date/Tim e 	
Parameter	Result	Flag	Limit	<u>Units</u>	Method	Analyzed	<u>Analyst</u>
SOIL-SW8463 8270 - TCL SVOA ORGANICS							
2,2'-Oxybis(1-Chloropropane)	ND		1100	UG/KG	8270	03/21/2008 01:05	RM
2.4.5-Trichlorophenol	ND		1100	UG/KG	8270	03/21/2008 01:05	RM
2.4.6-Trichlorophenol	ND		1100	UG/KG	8270	03/21/2008 01:05	RM
2.4-Dichlorophenol	ND		1100	UG/KG	8270	03/21/2008 01:05	RM
2.4-Dimethylphenol	ND		1100	UG/KG	8270	03/21/2008 01:05	RM
2.4-Dinitrophenol	ND		2100	UG/KG	8270	03/21/2008 01:05	RM
2.4-Dinitrotoluene	ND		1100	UG/KG	8270	03/21/2008 01:05	RM
2.6-Dinitrotoluene	ND		1100	UG/KG	8270	03/21/2008 01:05	RM
2-Chloronaphthalene	ND		1100	UG/KG	8270	03/21/2008 01:05	RM
2-Chlorophenol	ND		1100	UG/KG	8270	03/21/2008 01:05	RM
2-Methvinaphthalene	47	J	1100	UG/KG	8270	03/21/2008 01:05	RM
2-Methylphenol	ND		1100	UG/KG	8270	03/21/2008 01:05	RM
2-Nitroaniline	ND		2100	UG/KG	8270	03/21/2008 01:05	RM
2-Nitrophenol	ND		1100	UG/KG	8270	03/21/2008 01:05	RM
3.31-Dichlorobenzidine	ND		1100	UG/KG	8270	03/21/2008 01:05	RM
3-Nitroaniline	ND		2100	UG/KG	8270	03/21/2008 01:05	RM
4 6-Dinitro-2-methylphenol	ND		2100	UG/KG	8270	03/21/2008 01:05	RM
A-Bromophenyl phenyl ether	ND		1100	UG/KG	8270	03/21/2008 01:05	RM
4-Chloro-3-methylphenol	ND		1100	UG/KG	8270	03/21/2008 01:05	RM
4-Chloroaniline	ND		1100	UG/KG	8270	03/21/2008 01:05	RM
4-Chlorophenyl phenyl ether	ND		1100	UG/KG	8270	03/21/2008 01:05	RM
4-Methylphenol	ND		1100	UG/KG	8270	03/21/2008 01:05	i RM
4-Nitroaniline	ND		2100	UG/KG	8270	03/21/2008 01:05	5 RM
4-Nitrophenol	ND		2100	UG/KG	8270	03/21/2008 01:05	5 RM
Acenanhthene	56	J	1100	UG/KG	8270	03/21/2008 01:05	5 RM
Acenaphthylene	ND		1100	UG/KG	8270	03/21/2008 01:05	5 RM
Acetophenope	ND		1100	UG/KG	8270	03/21/2008 01:05	s RM
Anthracene	230	j	1100	UG/KG	8270	03/21/2008 01:05	5 RM
Atrazine	ND		1100	UG/KG	8270	03/21/2008 01:05	5 RM
Benzal debyde	ND		1100	UG/KG	8270	03/21/2008 01:05	5 RM
Benzo(a)anthracene	760	J	1100	UG/KG	8270	03/21/2008 01:05	5 RM
Benzo(a)pyrene	740	J	1 100	UG/KG	8270	03/21/2008 01:0	5 RM
Benzo(b)fluoranthene	790	J.	1100	UG/KG	8270	03/21/2008 01:0	5 RM
Benzo(ghi)pervlene	720	J	1100	UG/KG	8270	03/21/2008 01:0	5 RM
Benzo(k)fluoranthene	390	J	1100	UG/KG	8270	03/21/2008 01:0	5 RM
Binhenvl	ND		1100	UG/KG	8270	03/21/2008 01:0	5 RM
Bis(2-chloroethoxy) methane	ND		1100	UG/KG	8270	03/21/2008 01:0	5 RM
Bis(2-chloroethyl) ether	ND		1100	UG/KG	8270	03/21/2008 01:0	5 RM
Bis(2-ethylhexyl) phthalate	ND		1100	UG/KG	8270	03/21/2008 01:0	5 RM
Butyl benzyl phthalate	ND		1100	UG/KG	8270	03/21/2008 01:0	5 RM
Caprolactam	ND		1100	UG/KG	8270	03/21/2008 01:0	5 RM
	ND		1100	UG/KG	8270	03/21/2008 01:0	5 RM
	670	J	1100	UG/KG	8270	03/21/2008 01:0	5 RM
Di-p-butyl phthalata	ND		1100	UG/KG	8270	03/21/2008 01:0	5 RM
Di-D-octvi ohthalata	ND		1100	UG/KG	8270	03/21/2008 01:0	5 RM
pilonzola hlanthracana	170	J	1100	UG/KG	8270	03/21/2008 01:0	5 RM
Dibenzofuran	ND		1100	UG/KG	8270	03/21/2008 01:0	5 RM
District of the state	ND		1100	UG/KG	8270	03/21/2008 01:0	15 RM
pirothyl phthalaté	ND		1100	UG/KG	8270	03/21/2008 01:0	15 RM
Dimethyt bithatate							

Malcolm Pirnie - Flexo Transparent Seneca Street Phase II ESA - 6105-001

Date Received: 03/14/2008 Project No: NY4A919723 Client No: 102461 Site No:

	Detection					Date/Time	
Parameter	Result	Flag	Limit	<u> Units</u>	Method	Analyzed	<u>Analyst</u>
SOIL-SW8463 8270 - TCL SVOA ORGANICS							
Fluoranthene	1500		1100	UG/KG	8270	03/21/2008 01:05	RM
Fluorene	71	J	1100	UG/KG	8270	03/21/2008 01:05	RM
Hexachlorobenzene	ND		1100	UG/KG	8270	03/21/2008 01:05	RM
Hexachlorobutadiene	ND		1100	UG/KG	8270	03/21/2008 01:05	RM
Hexachlorocyclopentadiene	ND		1100	UG/KG	8270	03/21/2008 01:05	RM
Hexachloroethane	ND		1100	UG/KG	8270	03/21/2008 01:05	RM
Indeno(1,2,3-cd)pyrene	590	J	1100	UG/KG	8270	03/21/2008 01:05	RM
Isophorone	ND		1100	UG/KG	8270	03/21/2008 01:05	RM
N-Nitroso-Di-n-propylamine	ND		1100	UG/KG	8270	03/21/2008 01:05	RM
N-nitrosodiphenylamine	ND		1100	UG/KG	8270	03/21/2008 01:05	RM
Naphthalene	ND		1100	UG/KG	8270	03/21/2008 01:05	RM
Nitrobenzene	ND		1100	UG/KG	8270	03/21/2008 01:05	RM
Pentachlorophenol	ND		2100	UG/KG	8270	03/21/2008 01:05	RM
Phenanthrene	800	J	1100	UG/KG	8270	03/21/2008 01:05	RM
Phenol	ND		1100	UG/KG	8270	03/21/2008 01:05	RM
Pyrene	1200		1100	UG/KG	8270	03/21/2008 01:05	RM
• • •							
SOIL-SW8463 8082 - PCBS							
Aroclor 1016	ND		420	UG/KG	8082	03/18/2008 13:12	TCH
Aroclor 1221	ND		420	UG/KG	8082	03/18/2008 13:12	TCH
Aroclor 1232	ND		420	UG/KG	8082	03/18/2008 13:12	TCH
Aroclor 1242	ND		420	UG/KG	8082	03/18/2008 13:12	TCH
Aroclor 1248	2600		420	UG/KG	8082	03/18/2008 13:12	TCH
Aroclor 1254	ND		420	UG/KG	8082	03/18/2008 13:12	2 TCH
Aroclor 1260	18000		420	UG/KG	8082	03/18/2008 13:12	2 TCH
Metals Analysis							
Aluminum - Total	9090	*	13.0	MG/KG	6010	03/19/2008 15:43	5
Antimony - Total	ND	N	19.6	MG/KG	6010	03/19/2008 15:43	5
Arsenic - Total	14.0	N	2.6	MG/KG	6010	03/19/2008 15:43	5
Barium - Total	156	N*	0.65	MG/KG	6010	03/19/2008 15:4	5
Beryllium - Total	0.92		0.26	MG/KG	6010	03/19/2008 15:4	5
Cadmium - Total	0.81		0.26	MG/KG	6010	03/19/2008 15:4	5
Calcium - Total	12000	*	65.2	MG/KG	6010	03/19/2008 15:4	3
Chromium - Total	11.5		0.65	MG/KG	6010	03/19/2008 15:4	3
Cobalt - Total	6.1		0.65	MG/KG	6010	03/19/2008 15:4	3
Copper - Total	13.9	N*	1.3	MG/KG	6010	03/19/2008 15:4	3
Iron - Total	23400		13.0	MG/KG	6010	03/19/2008 15:4	3
Lead - Total	123	E	1.3	MG/KG	6010	03/19/2008 15:4	3
Magnesium - Total	3530	Е	26.1	MG/KG	6010	03/19/2008 15:4	3
Manganese - Total	225		0.26	MG/KG	6010	03/19/2008 15:4	3
Mercury - Total	0.228	N	0.022	MG/KG	7471	03/18/2008 17:3	2
Nickel - Total	15.6	Ε	0.65	MG/KG	6010	03/19/2008 15:4	3
Potassium - Total	1220		39.1	MG/KG	6010	03/19/2008 15:4	3
Selenium - Total	ND	N	5.2	MG/KG	6010	03/19/2008 15:4	3
Silver - Total	ND		0.65	MG/KG	6010	03/19/2008 15:4	3
Sodium - Total	227		182	MG/KG	6010	03/19/2008 15:4	3
Thallium - Total	ND		7.8	MG/KG	6010	03/19/2008 15:4	3
Vanadium - Total	20.9	E	0.65	MG/KG	6010	03/19/2008 15:4	3
•							

,

Date Received: 03/14/2008 Project No: NY4A919723 Client No: 102461 Site No:

Parameter	Result	<u>Flag</u>	Detection Limit	<u>Units</u>	Method	—Date/Time—— Analyzed	Analyst
Metals Analysis Zinc - Total	115	E	2.6	MG/KG	6010	03/19/2008 15:43	
Wet Chemistry Analysis Cyanide - Total	62.1		2.4	UG/G	9 012	03/20/2008 11:48	ERK

÷

...

-

Date Received: 03/14/2008 Project No: NY4A919723 Client No: 102461 Site No:

		Detection		Date/Time			
Parameter	Result	Flag	Limit	Units	Method	Analyzed	Analyst
SOIL-SW8463 8260 - TCL VOLATILES							
1,1,1-Trichloroethane	ND		6	UG/KG	8260	03/15/2008 18:50	TRB
1,1,2,2-Tetrachloroethane	ND		6	UG/KG	8260	03/15/2008 18:50	TRB
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		6	UG/KG	8260	03/15/2008 18:50	TRB
1,1,2-Trichloroethane	ND		6	UG/KG	8260	03/15/2008 18:50	TRB
1,1-Dichloroethane	ND		6	UG/KG	8260	03/15/2008 18:50	TRB
1,1-Dichloroethene	ND		6	UG/KG	8260	03/15/2008 18:50	TRB
1.2.4-Trichlorobenzene	ND		6	UG/KG	8260	03/15/2008 18:50	TRB
1,2-Dibromo-3-chloropropane	ND		6	UG/KG	8260	03/15/2008 18:50	TRB
1.2-Dibromoethane	ND		6	UG/KG	8260	03/15/2008 18:50	TRB
1.2-Dichlorobenzene	ND		6	UG/KG	8260	03/15/2008 18:50	TRB
1.2-Dichloroethane	ND		6	UG/KG	8260	03/15/2008 18:50	TRB
1.2-Dichloropropane	ND		6	UG/KG	8260	03/15/2008 18:50	TRB
1.3-Dichlorobenzene	ND		6	UG/KG	8260	03/15/2008 18:50	TRB
1.4-Dichlorobenzene	ND		6	UG/KG	8260	03/15/2008 18:50	TRB
2-Butanone	ND		32	UG/KG	8260	03/15/2008 18:50	TRB
2-Hexanone	ND		32	UG/KG	8260	03/15/2008 18:50	TRB
4-Methyl-2-pentanone	ND		32	UG/KG	8260	03/15/2008 18:50	TRB
Acetone	29	J	32	UG/KG	8260	03/15/2008 18:50	TRB
Benzene	ND		6	UG/KG	8260	03/15/2008 18:50	TRB
Bromodichloromethane	ND		6	UG/KG	8260	03/15/2008 18:50	TRB
Bromoform	ND		6	UG/KG	8260	03/15/2008 18:50	TRB
Bromomethane	ND		6	UG/KG	8260	03/15/2008 18:50	TRB
Carbon Disulfide	ND		6	UG/KG	8260	03/15/2008 18:50) TRB
Carbon Tetrachloride	ND		6	UG/KG	8260	03/15/2008 18:50	TRB
Chlorobenzene	ND		6	UG/KG	8260	03/15/2008 18:50) TRB
Chloroethane	ND		6	UG/KG	8260	03/15/2008 18:50) TRB
Chloroform	ND		6	UG/KG	8260	03/15/2008 18:50) TRB
Chloromethane	ND		6	UG/KG	8260	03/15/2008 18:50) TRB
cis-1,2-Dichloroethene	ND		6	UG/KG	8260	03/15/2008 18:50) TRB
cis-1,3-Dichloropropene	ND		6	UG/KG	8260	03/15/2008 18:50) TRB
Cyclohexane	ND		6	UG/KG	8260	03/15/2008 18:50) TRB
Dibromochloromethane	ND		6	UG/KG	8260	03/15/2008 18:50) TRB
Dichlorodifluoromethane	ND		6	UG/KG	8260	03/15/2008 18:50) TRB
Ethylbenzene	ND		6	UG/KG	8260	03/15/2008 18:50) TRB
Isopropylbenzene	ND		6	UG/KG	8260	03/15/2008 18:50) TRB
Methyl acetate	ND		6	UG/KG	8260	03/15/2008 18:5) TRB
Methyl-t-Butyl Ether (MTBE)	ND		6	UG/KG	8260	03/15/2008 18:5) TRB
Methylcyclohexane	8		6	UG/KG	8260	03/15/2008 18:5	D TRB
Methylene chloride	7		6	UG/KG	8260	03/15/2008 18:5) TRB
Styrene	ND		6	UG/KG	8260	03/15/2008 18:5	D TRB
Tetrachloroethene	ND		6	UG/KG	8260	03/15/2008 18:5	O TRB
Toluene	2	J	6	UG/KG	8260	03/15/2008 18:5	D TRB
Total Xvlenes	ND		19	UG/KG	8260	03/15/2008 18:5	O TRB
trans-1.2-Dichloroethene	ND		6	UG/KG	8260	03/15/2008 18:5	O TRB
trans-1.3-Dichloropropene	ND		6	UG/KG	8260	03/15/2008 18:5	O TRB
Trichloroethene	ND		6	UG/KG	8260	03/15/2008 18:5	O TRB
Trichlorofluoromethane	ND		6	UG/KG	8260	03/15/2008 18:5	O TRB
Vinyl chloride	ND		13	UG/KG	8260	03/15/2008 18:5	O TRB

F

Date Received: 03/14/2008 Project No: NY4A919723 Client No: 102461 Site No:

	Detect						
Parameter	Result	Flag	Limit	Units	Method	Analyzed	<u>Analyst</u>
SOIL-SW8463 8270 - TCL SVOA ORGANICS							
2,2'-Oxybis(1-Chloropropane)	ND		440	UG/KG	8270	03/21/2008 01:28	RM
2,4,5-Trichlorophenol	ND		440	UG/KG	8270	03/21/2008 01:28	RM
2,4,6-Trichlorophenol	ND		440	UG/KG	8270	03/21/2008 01:28	RM
2,4-Dichlorophenol	ND		440	UG/KG	8270	03/21/2008 01:28	RM
2,4-Dimethylphenol	ND		440	UG/KG	8270	03/21/2008 01:28	RM
2,4-Dinitrophenol	ND		860	UG/KG	8270	03/21/2008 01:28	RM
2,4-Dinitrotoluene	ND		440	UG/KG	8270	03/21/2008 01:28	RM
2.6-Dinitrotoluene	ND		440	UG/KG	8270	03/21/2008 01:28	RM
2-Chloronaphthalene	ND		440	UG/KG	8270	03/21/2008 01:28	RM
2-Chlorophenol	ND		440	UG/KG	8270	03/21/2008 01:28	RM
2-Methylnaphthalene	ND		440	UG/KG	8270	03/21/2008 01:28	RM
2-Methylphenol	ND		440	UG/KG	8270	03/21/2008 01:28	RM
2-Nitroaniline	ND		860	UG/KG	8270	03/21/2008 01:28	RM
2-Nitrophenol	ND		440	UG/KG	8270	03/21/2008 01:28	RM
3.3'-Dichlorobenzidine	ND		440	UG/KG	8270	03/21/2008 01:28	RM
3-Nitroaniline	ND		860	UG/KG	8270	03/21/2008 01:28	RM
4.6-Dinitro-2-methylphenol	ND		860	UG/KG	8270	03/21/2008 01:28	RM
4-Bromophenyl phenyl ether	ND		440	UG/KG	8270	03/21/2008 01:28	RM
4-Chloro-3-methylphenol	ND		440	UG/KG	8270	03/21/2008 01:28	RM
4-Chloroaniline	ND		440	UG/KG	8270	03/21/2008 01:28	RM
4-Chlorophenyl phenyl ether	ND		440	UG/KG	8270	03/21/2008 01:28	RM
4-Methylphenol	ND		440	UG/KG	8270	03/21/2008 01:28	RM
4-Nitroaniline	ND		860	UG/KG	8270	03/21/2008 01:28	RM
4-Nîtrophenol	ND		860	UG/KG	8270	03/21/2008 01:28	RM
Acenaphthene	ND		440	UG/KG	8270	03/21/2008 01:28	RM
Acenaphthylene	ND		440	UG/KG	8270	03/21/2008 01:28	RM
Acetophenone	ND		440	UG/KG	8270	03/21/2008 01:28	RM
Anthracene	57	J	440	UG/KG	8270	03/21/2008 01:28	RM
Atrazine	ND		440	UG/KG	8270	03/21/2008 01:28	RM
Benzaldehyde	ND		440	UG/KG	8270	03/21/2008 01:28	RM
Benzo(a)anthracene	120	J	440	UG/KG	8270	03/21/2008 01:28	RM
Benzo(a)pyrene	81	J	440	UG/KG	8270	03/21/2008 01:28	RM
Benzo(b)fluoranthene	83	J	440	UG/KG	8270	03/21/2008 01:28	RM
Benzo(ghi)perylene	52	J	440	UG/KG	8270	03/21/2008 01:28	RM
Benzo(k)fluoranthene	41	J	440	UG/KG	8270	03/21/2008 01:28	RM
Biphenyl	ND		440	UG/KG	8270	03/21/2008 01:28	RM
Bis(2-chloroethoxy) methane	ND		440	UG/KG	8270	03/21/2008 01:28	RM
Bis(2-chloroethyl) ether	ND		440	UG/KG	8270	03/21/2008 01:28	RM
Bis(2-ethylhexyl) phthalate	ND		440	UG/KG	8270	03/21/2008 01:28	RM
Butyl benzyi phthalate	ND		440	UG/KG	8270	03/21/2008 01:28	RM
Caprolactam	ND		440	UG/KG	8270	03/21/2008 01:28	RM
Carbazole	ND		440	UG/KG	8270	03/21/2008 01:28	RM
Chrysene	97	J	440	UG/KG	8270	03/21/2008 01:28	i RM
Di-n-butyl phthalate	ND		440	UG/KG	8270	03/21/2008 01:28	S RM
Di-n-octyl phthalate	ND		440	UG/KG	8270	03/21/2008 01:28	B RM
Dibenzo(a,h)anthracene	ND		440	UG/KG	8270	03/21/2008 01:28	S RM
Dibenzofuran	ND		440	UG/KG	8270	03/21/2008 01:28	RM
Diethyl phthalate	ND		440	UG/KG	8270	03/21/2008 01:28	S RM
Dimethyl phthalate	ND		440	UG/KG	8270	03/21/2008 01:28	S RM

•

 Malcolm Pirnie - Flexo Transparent Seneca Street Phase II ESA - 6105-001

Sample ID: B-6(10.0-11.4) Lab Sample ID: A8258606 Date Collected: 03/13/2008 Time Collected: 15:30 Date Received: 03/14/2008 Project No: NY4A919723 Client No: 102461 Site No:

		A distribution	Detection			Date/Time	
	Decult	Elan	limit	Units	Method	Analyzed	Analyst
Parameter	Result	Flag					
SOIL-SW8463 8270 - TCL SVOA ORGANICS	250	1	440	UG/KG	8270	03/21/2008 01:28	RM
Fluoranthene	200		440	UG/KG	8270	03/21/2008 01:28	RM
Fluorene	20	5	440	UG/KG	8270	03/21/2008 01:28	RM
Hexachlorobenzene	ND		440	UG/KG	8270	03/21/2008 01:28	RM
Hexachlorobutadiene	ND		440	UG/KG	8270	03/21/2008 01:28	RM
Hexachlorocyclopentadiene	ND		440	UG/KG	8270	03/21/2008 01:28	RM RM
Hexachloroethane	NU 14		440	UG/KG	8270	03/21/2008 01:28	S RM
Indeno(1,2,3-cd)pyrene	40	J	440	UG/KG	8270	03/21/2008 01:28	B RM
Isophorone	ND		440	UG/KG	8270	03/21/2008 01:28	3 RM
N-Nitroso-Di-n-propylamine	UN		440	UG/KG	8270	03/21/2008 01:28	3 RM
N-nitrosodiphenylamine	ND		440	UG/KG	8270	03/21/2008 01:20	B RM
Naphthalene	NU		440	UG/KG	8270	03/21/2008 01:20	B RM
Nitrobenzene	ND		860	UG/KG	8270	03/21/2008 01:2	B RM
Pentachlorophenol	NU		440	UG/KG	8270	03/21/2008 01:2	B RM
Phenanthrene	190	J	440	UG/KG	8270	03/21/2008 01:2	8 RM
Phenol	NU		440	UG/KG	8270	03/21/2008 01:2	8 RM
Pyrene	210	L	440	00,10			
SOIL-SW8463 8082 - PCBS			22		8082	03/18/2008 13:2	6 TCH
Aroclor 1016	ND		22	HC/KG	8082	03/18/2008 13:2	6 TCH
Aroclor 1221	ND		22	116/KG	8082	03/18/2008 13:2	6 TCH
Aroclor 1232	ND		23	UG/KG	8082	03/18/2008 13:2	6 TCH
Aroclor 1242	ND		22		8082	03/18/2008 13:2	6 TCH
Aroclor 1248	17	J	22		8082	03/18/2008 13:2	6 TCH
Aroclor 1254	ND		22	HC/KC	8082	03/18/2008 13:2	C TCH
Aroclor 1260	120		22	007 KG	UUUL		
Metals Analysis			A		6010	03/19/2008 15:4	48
Aluminum - Total	8040		14.4	MC (KC	6010	03/19/2008 15:/	48
Antimony - Total	ND	N	21.7		6010	03/19/2008 15:	48
Arsenic - Total	4.8	N	2.9	MC/KC	6010	03/19/2008 15:	48
Barium - Total	68.4	N#	0.72	MC/KC	6010	03/19/2008 15:	48
Beryllium - Total	0.36		0.29	MG/KG	6010	03/19/2008 15:	48
Cadmium - Total	0.42		0.29	MC/KG	6010	03/19/2008 15:	48
Calcium - Total	23500	*	(2.2	MG/KG	4010	03/10/2008 15:	48
Chromium - Total	12.5		0.72		4010	03/19/2008 15:	48
Cobalt - Total	7.0		0.72	Mu/Ku	4010	03/19/2008 15:	48
Copper - Total	19.1	N*	1.4		6010	03/19/2008 15:	48
Iron - Total	15700		14.4		6010	03/19/2008 15-	48
Lead - Total	20.7	E	1.4	MG/KG	6010	03/19/2008 15:	48
Magnesium - Total	7620	E	28.9	MG/KG	6010	03/19/2000 15:	40
Manganese - Total	343		0.29	MG/KG	7/71	03/19/2008 13.	340
Mercury - Total	0.062	N	0.021	MG/KG	(4/)	03/10/2008 15:	. J.A.
Nickel - Total	17.6	E	0.72	MG/KG	6010	03/19/2008 15	
Potassium - Total	1470		43.3	MG/KG	0100	03/17/2000 13:	-48
Selenium - Total	ND	N	5.8	MG/KG	0010	02/10/2000 12	. 48
Silver - Total	ND		0.72	MG/KG	6010	03/19/2000 15:	. 40
Sodium - Total	225		202	MG/KG	6010	02/19/2000 10	. / 8
Thallium - Total	ND		8.7	MG/KG	6010	07/19/2000 10	.40 ./9
Vanadium - Total	15.4	E	0.72	MG/KG	6010	UD/ 17/2000 10	. 40

Date Received: 03/14/2008 Project No: NY4A919723 Client No: 102461 Site No:

			Detection			Date/Time	
Parameter	Result	Flag	Limit	Units	Method	Analyzed	<u>Analyst</u>
Metals Analysis Zinc - Total	53.8	E	2.9	MG/KG	6010	03/19/2008 15:48	
Wet Chemistry Analysis Cyanide - Total	ND		1.2	UG/G	9012	03/20/2008 11:48	ERK

.

Date Received: 03/14/2008 Project No: NY4A919723 Client No: 102461 Site No:

	Detection					Date/Time	
Parameter	Result	Flag	Limit	Units	Method	Analyzed	Analyst
SOIL-SW8463 8260 - TCL VOLATILES							
1,1,1-Trichloroethane	ND		6	UG/KG	8260	03/15/2008 20:33	TRB
1,1,2,2-Tetrachloroethane	ND		6	UG/KG	8260	03/15/2008 20:33	TRB
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		6	UG/KG	8260	03/15/2008 20:33	TRB
1,1,2-Trichloroethane	ND		6	UG/KG	8260	03/15/2008 20:33	TRB
1.1-Dichloroethane	ND		6	UG/KG	8260	03/15/2008 20:33	TRB
1.1-Dichloroethene	ND		6	UG/KG	8260	03/15/2008 20:33	TRB
1.2.4-Trichlorobenzene	ND		6	UG/KG	8260	03/15/2008 20:33	TRB
1.2-Dibromo-3-chloropropane	ND		6	UG/KG	8260	03/15/2008 20:33	TRB
1,2-Dibromoethane	ND		6	UG/KG	8260	03/15/2008 20:33	TRB
1.2-Dichlorobenzene	ND		6	UG/KG	8260	03/15/2008 20:33	TRB
1.2-Dichloroethane	ND		6	UG/KG	8260	03/15/2008 20:33	TRB
1.2-Dichloropropane	ND		6	UG/KG	8260	03/15/2008 20:33	TRB
1.3-Dichlorobenzene	ND		6	UG/KG	8260	03/15/2008 20:33	TRB
1.4-Dichlorobenzene	ND		6	UG/KG	8260	03/15/2008 20:33	TRB
2-Butanone	ND		31	UG/KG	8260	03/15/2008 20:33	TRB
2-Hexanone	ND		31	UG/KG	8260	03/15/2008 20:33	TRB
4-Methyl-2-pentanone	ND		31	UG/KG	8260	03/15/2008 20:33	TRB
Acetone	8	J	31	UG/KG	8260	03/15/2008 20:33	TRB
Benzene	ND		6	UG/KG	8260	03/15/2008 20:33	TRB
Bromodichloromethane	ND		6	UG/KG	8260	03/15/2008 20:33	TRB
Bromoform	ND		6	UG/KG	8260	03/15/2008 20:33	TRB
Bromomethane	ND		6	UG/KG	8260	03/15/2008 20:33	TRB
Carbon Disulfide	ND		6	UG/KG	8260	03/15/2008 20:33	TRB
Carbon Tetrachloride	ND		6	UG/KG	8260	03/15/2008 20:33	TRB
Chlorobenzene	ND		6	UG/KG	8260	03/15/2008 20:33	TRB
Chloroethane	ND		6	UG/KG	8260	03/15/2008 20:33	TRB
Chloroform	ND .		6	UG/KG	8260	03/15/2008 20:33	TRB
Chloromethane	ND		6	UG/KG	8260	03/15/2008 20:33	TRB
cis-1.2-Dichloroethene	ND		6	UG/KG	8260	03/15/2008 20:33	TRB
cis-1.3-Dichloropropene	ND		6	UG/KG	8260	03/15/2008 20:33	TRB
Cyclohexane	ND		6	UG/KG	8260	03/15/2008 20:33	TRB
Dibromochloromethane	ND		6	UG/KG	8260	03/15/2008 20:33	TRB
Dichlorodifluoromethane	ND		6	UG/KG	8260	03/15/2008 20:33	TRB
Ethylbenzene	ND		6	UG/KG	8260	03/15/2008 20:33	TRB
Isopropylbenzene	ND		6	UG/KG	8260	03/15/2008 20:33	TRB
Methyl acetate	ND		6	UG/KG	8260	03/15/2008 20:33	TRB
Methyl-t-Butyl Ether (MTBE)	ND		6	UG/KG	8260	03/15/2008 20:33	TRB
Methyl cyclohexane	ND		6	UG/KG	8260	03/15/2008 20:33	TRB
Methylene chloride	7		6	UG/KG	8260	03/15/2008 20:33	TRB
Styrene	ND		6	UG/KG	8260	03/15/2008 20:33	TRB
Tetrachloroethene	ND		6	UG/KG	8260	03/15/2008 20:33	TRB
Toluene	ND		6	UG/KG	8260	03/15/2008 20:33	TRB
Total Yvienes	ND		18	UG/KG	8260	03/15/2008 20:33	TRB
trans-1.2-Dichloroethene	ND		6	UG/KG	8260	03/15/2008 20:33	TRB
trans 1,2 Dichloronronene	ND		6	UG/KG	8260	03/15/2008 20:33	TRB
trichlonoethene	ND		6	UG/KG	8260	03/15/2008 20-33	TRR
Trichlorofluoromethane	ND		~		8260	03/15/2008 20.33	TRR
Vinyl chloride	ND		12	UCIKG	8260	03/15/2008 20.33	TPR
VIIIYE CITEDI IGE	10		8 K				* n#

Date Received: 03/14/2008 Project No: NY4A919723 Client No: 102461 Site No:

			Detection			Date/Time	
Parameter	Result	Flag	Limit	Units	Method	Analyzed	Analyst
SOIL-SW8463 8270 - TCL SVOA ORGANICS							
2,21-Oxybis(1-Chloropropane)	ND		400	UG/KG	8270	03/21/2008 03:01	RM
2,4,5-Trichlorophenol	ND		400	UG/KG	8270	03/21/2008 03:01	RM
2,4,6-Trichlorophenol	ND		400	UG/KG	8270	03/21/2008 03:01	RM
2,4-Dichlorophenol	ND		400	UG/KG	8270	03/21/2008 03:01	RM
2,4-Dimethylphenol	ND		400	UG/KG	8270	03/21/2008 03:01	RM
2,4-Dinitrophenol	ND		780	UG/KG	8270	03/21/2008 03:01	RM
2.4-Dinitrotoluene	ND		400	UG/KG	8270	03/21/2008 03:01	RM
2,6-Dinitrotoluene	ND		400	UG/KG	8270	03/21/2008 03:01	RM
2-Chloronaphthalene	ND		400	UG/KG	8270	03/21/2008 03:01	RM
2-Chlorophenol	ND		400	UG/KG	8270	03/21/2008 03:01	RM
2-Methylnaphthalene	460		400	UG/KG	8270	03/21/2008 03:01	RM
2-Methylphenol	ND		400	UG/KG	8270	03/21/2008 03:01	RM
2-Nitroaniline	ND		780	UG/KG	8270	03/21/2008 03:01	RM
2-Nitrophenol	ND		400	UG/KG	8270	03/21/2008 03:01	RM
3.3 ¹ -Dichlorobenzidine	ND		400	UG/KG	8270	03/21/2008 03:01	RM
3-Nitroaniline	ND		780	UG/KG	8270	03/21/2008 03:01	RM
4.6-Dinitro-2-methylphenol	ND		780	UG/KG	8270	03/21/2008 03:01	RM
4-Bromophenyl phenyl ether	ND		400	UG/KG	8270	03/21/2008 03:01	RM
4-Chloro-3-methylphenol	ND		400	UG/KG	8270	03/21/2008 03:01	RM
4-Chloroaniline	ND		400	UG/KG	8270	03/21/2008 03:01	RM
4-Chiorophenyl phenyl ether	ND		400	UG/KG	8270	03/21/2008 03:01	RM
4-Methyl phenol	ND		400	UG/KG	8270	03/21/2008 03:01	RM
4-Nitroaniline	ND		780	UG/KG	8270	03/21/2008 03:01	RM
4-Nitrophenol	ND		780	UG/KG	8270	03/21/2008 03:01	RM
Acenaphthene	ND		400	UG/KG	8270	03/21/2008 03:01	RM
Acenaphthylene	16	Ŀ	400	UG/KG	8270	03/21/2008 03:01	RM
Acetophenone	ND		400	UG/KG	8270	03/21/2008 03:01	RM
Anthracene	23	J	400	UG/KG	8270	03/21/2008 03:01	RM
Atrazine	ND		400	UG/KG	8270	03/21/2008 03:01	RM
Benzal dehyde	ND		400	UG/KG	8270	03/21/2008 03:01	RM
Benzo(a)anthracene	97	J	400	UG/KG	8270	03/21/2008 03:01	RM
Benzo(a)pyrene	58	J	400	UG/KG	8270	03/21/2008 03:01	RM
Benzo(b)fluoranthene	82	J	400	UG/KG	8270	03/21/2008 03:01	RM
Benzo(ahi)perviene	68	J	400	UG/KG	8270	03/21/2008 03:01	RM
Benzo(k)fluoranthene	39	j	400	UG/KG	8270	03/21/2008 03:01	RM
Binhenvl	50	J	400	UG/KG	8270	03/21/2008 03:01	RM
Bis(2-chloroethoxy) methane	ND	-	400	UG/KG	8270	03/21/2008 03:01	RM
Bis(2-ch oroethyl) ether	ND		400	UG/KG	8270	03/21/2008 03:01	RM
Bis(2-ethylberyl) phthalate	ND		400	UG/KG	8270	03/21/2008 03:01	RM
Butyl benzyl obthalate	ND		400	UG/KG	8270	03/21/2008 03:01	RM
	ND		400		8270	03/21/2008 03:01	RM
Carbazola	ND		400	UG/KG	8270	03/21/2008 03:01	RM
	100	.1	400	UG/KG	8270	03/21/2008 03:01	RM
un yache Diensbutyl obthaiata	100	•	400	HG/KG	8270	03/21/2008 03:01	RM
Di-n-octyl phthalate	ND		400	UG/KG	8270	03/21/2008 03-01	RM
Dibenzo(a h)anthracene	טע		400	UG/KG	8270	03/21/2008 03.01	RM
	120	J	400	UG/KG	8270	03/21/2008 03-01	RM
Diathy) ohthelete	, ND		400	UG/KG	8270	03/21/2008 03.01	RM
Dimethyl obthalate	ND ND		400	LIGIKG	8270	03/21/2008 03-01	RM
wanerije birngrare	nv			way itu	when I W		

TestAmeríca

Date Received: 03/14/2008 Project No: NY4A919723 Client No: 102461 Site No:

	Detection					Date/Time	,
Parameter	Result	Flag	Limit	Units	Method	Analyzed	Analyst
SOIL-SW8463 8270 - TCL SVOA ORGANICS							
Fluoranthene	120	Ŀ	400	UG/KG	8270	03/21/2008 03:01	RM
Fluorene	23	J	400	UG/KG	8270	03/21/2008 03:01	RM
Hexachlorobenzene	ND		400	UG/KG	8270	03/21/2008 03:01	RM
Hexachlorobutadiene	ND		400	UG/KG	8270	03/21/2008 03:01	RM
Hexachlorocyclopentadiene	ND		400	UG/KG	8270	03/21/2008 03:01	RM
Hexachloroethane	ND		400	UG/KG	8270	03/21/2008 03:01	RM
Indeno(1,2,3-cd)pyrene	45	J	400	UG/KG	8270	03/21/2008 03:01	RM
Isophorone	ND		400	UG/KG	8270	03/21/2008 03:01	RM
N-Nitroso-Di-n-propylamine	ND		400	UG/KG	8270	03/21/2008 03:01	RM
N-nitrosodiphenylamine	ND		400	UG/KG	8270	03/21/2008 03:01	RM
Naphthalene	290	J	400	UG/KG	8270	03/21/2008 03:01	RM
Nitrobenzene	ND		400	UG/KG	8270	03/21/2008 03:01	RM
Pentachlorophenol	ND		780	UG/KG	8270	03/21/2008 03:01	RM
Phenanthrene	340	J	400	UG/KG	8270	03/21/2008 03:01	RM
Phenol	ND		400	UG/KG	8270	03/21/2008 03:01	RM
Pyrene	120	J	400	UG/KG	8270	03/21/2008 03:01	RM
5011 - 5U8/63 8082 - DCRS							
Arcolor 1016	ND		20	UG/KG	8082	03/18/2008 14:53	тсн
Aroclor 1221	ND		20	UG/KG	8082	03/18/2008 14:53	TCH
Araclar 1232	ND		20	UG/KG	8082	03/18/2008 14:53	TCH
Apoplor 1242	ND		20	UG/KG	8082	03/18/2008 14:53	ТСН
Aroclor 1248	12	J	20	UG/KG	8082	03/18/2008 14:53	TCH
Araclar 1254	ND		20	UG/KG	8082	03/18/2008 14:53	ТСН
Aroclor 1260	37		20	UG/KG	8082	03/18/2008 14:53	TCH
Matale Analysis							
Aluminum - Total	6520	*	13.4	MG/KG	6010	03/19/2008 16:08	
Antimony - Total	ND	N	20.1	MG/KG	6010	03/19/2008 16:08	
Arsenic - Total	28.8	N	2.7	MG/KG	6010	03/19/2008 16:08	i
Barium - Total	125	N*	0.67	MG/KG	6010	03/19/2008 16:08	
Bervlium - Total	0.74		0.27	MG/KG	6010	03/19/2008 16:08	
Cadmium - Total	1.1		0,27	MG/KG	6010	03/19/2008 16:08	;
Calcium - Total	5730	*	67.0	MG/KG	6010	03/19/2008 16:08	5
Chromium - Total	11.6		0.67	MG/KG	6010	03/19/2008 16:08	•
Cobalt - Total	6.8		0.67	MG/KG	6010	03/19/2008 16:08	1
Copper - Total	777	N*	1.3	MG/KG	6010	03/19/2008 16:08	6
Iron - Total	16900		13.4	MG/KG	6010	03/19/2008 16:08	1
lead - Total	575	Ε	1.3	MG/KG	6010	03/19/2008 16:08	1
Magnesium - Total	1950	E	26.8	MG/KG	6010	03/19/2008 16:08	1
Manganese - Total	448		0.27	MG/KG	6010	03/19/2008 16:08	1
Mercury - Total	0.280	N	0.021	MG/KG	7471	03/18/2008 17:40)
Nickel - Total	12.5	E	0.67	MG/KG	6010	03/19/2008 16:08	1
Potassium - Total	830		40.2	MG/KG	6010	03/19/2008 16:08	5
Selenium - Total	ND	N	5.4	MG/KG	6010	03/19/2008 16:08	3
Silver - Total	ND		0.67	MG/KG	6010	03/19/2008 16:08	5
Sodium - Total	ND		188	MG/KG	6010	03/19/2008 16:08	5
Thallium - Total	ND		8.0	MG/KG	6010	03/19/2008 16:08	6
Vanadium - Total	16.7	E	0.67	MG/KG	6010	03/19/2008 16:08	6

.....

Date: 03/26/2008 Time: 15:31:57

Sample ID: B-10(0.5-1.3) Lab Sample ID: A8258610 Date Collected: 03/14/2008 Time Collected: 11:30 Date Received: 03/14/2008 Project No: NY4A919723 Client No: 102461 Site No:

Parameter	Result	Flag	Detection Limit	Units	Method	— Date/Time—— Analyzed	Analyst
Metals Analysis Zinc - Total	494	E	2.7	MG/KG	6010	03/19/2008 16:08	
Wet Chemistry Analysis Cyanide - Total	ND		1.1	UG/G	9012	03/20/2008 11:48	ERK

-

Date Received: 03/14/2008 Project No: NY4A919723 Client No: 102461 Site No:

Parameter			Detection			Date/Time	
	Result	Flag	Limit	Units	Method	Analyzed	Analyst
SOIL-SW8463 8260 - TCL VOLATILES							
1,1,1-Trichloroethane	ND		7	UG/KG	8260	03/15/2008 20:58	TRB
1,1,2,2-Tetrachloroethane	ND		7	UG/KG	8260	03/15/2008 20:58	TRB
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		7	UG/KG	8260	03/15/2008 20:58	TRB
1,1,2-Trichloroethane	ND		7	UG/KG	8260	03/15/2008 20:58	TRB
1,1-Dichloroethane	ND		7	UG/KG	8260	03/15/2008 20:58	TRB
1,1-Dichloroethene	ND		7	UG/KG	8260	03/15/2008 20:58	TRB
1,2,4-Trichlorobenzene	2	J	7	UG/KG	8260	03/15/2008 20:58	TRB
1,2-Dibromo-3-chloropropane	ND		7	UG/KG	8260	03/15/2008 20:58	TRB
1,2-Dibromoethane	ND		7	UG/KG	8260	03/15/2008 20:58	TRB
1,2-Dichlorobenzene	ND		7	UG/KG	8260	03/15/2008 20:58	TRB
1,2-Dichloroethane	ND		7	UG/KG	8260	03/15/2008 20:58	TRB
1,2-Dichloropropane	ND		7	UG/KG	8260	03/15/2008 20:58	TRB
1,3-Dichlorobenzene	34		7	UG/KG	8260	03/15/2008 20:58	TRB
1,4-Dichlorobenzene	58		7	UG/KG	8260	03/15/2008 20:58	TRB
2-Butanone	ND		35	UG/KG	8260	03/15/2008 20:58	TRB
2-Hexanone	ND		35	UG/KG	8260	03/15/2008 20:58	TRB
4-Methyl-2-pentanone	ND		35	UG/KG	8260	03/15/2008 20:58	TRB
Acetone	42		35	UG/KG	8260	03/15/2008 20:58	TRB
Benzene	3	J	7	UG/KG	8260	03/15/2008 20:58	TRB
Bromodichloromethane	ND		7	UG/KG	8260	03/15/2008 20:58	TRB
Bromoform	ND		7	UG/KG	8260	03/15/2008 20:58	TRB
Bromomethane	ND		7	UG/KG	8260	03/15/2008 20:58	TRB
Carbon Disulfide	ND		7	UG/KG	8260	03/15/2008 20:58	TRB
Carbon Tetrachloride	ND		7	UG/KG	8260	03/15/2008 20:58	TRB
Chlorobenzene	240		7	UG/KG	8260	03/15/2008 20:58	TRB
Chloroethane	ND		7	UG/KG	8260	03/15/2008 20:58	TRB
Chloroform	ND		7	UG/KG	8260	03/15/2008 20:58	TRB
Chloromethane	ND		7	UG/KG	8260	03/15/2008 20:58	TRB
cis-1,2-Dichloroethene	ND		7	UG/KG	8260	03/15/2008 20:58	TRB
cīs-1,3-Dichloropropene	ND		7	UG/KG	8260	03/15/2008 20:58	TRB
Cyclohexane	ND		7	UG/KG	8260	03/15/2008 20:58	TRB
Dibromochloromethane	ND		7	UG/KG	8260	03/15/2008 20:58	TRB
Dichlorodifluoromethane	ND		7	UG/KG	8260	03/15/2008 20:58	TRB
Ethylbenzene	ND		7	UG/KG	8260	03/15/2008 20:58	TRB
Isopropylbenzene	6	J	7	UG/KG	8260	03/15/2008 20:58	TRB
Methyl acetate	ND		7	UG/KG	8260	03/15/2008 20:58	TRB
Methyl-t-Butyl Ether (MTBE)	ND		7	UG/KG	8260	03/15/2008 20:58	TRB
Methylcyclohexane	2	J	7	UG/KG	8260	03/15/2008 20:58	TRB
Methylene chloride	9		7	UG/KG	8260	03/15/2008 20:58	TRB
Styrene	ND		7	UG/KG	8260	03/15/2008 20:58	TRB
Tetrachloroethene	ND		7	UG/KG	8260	03/15/2008 20:58	TRB
Toluene	ND		7	UG/KG	8260	03/15/2008 20:58	TRB
Total XVIenes	ND		21	UG/KG	8260	03/15/2008 20:58	TRB
trans-1 2-Dichloroethene	ND		7	UG/KG	8260	03/15/2008 20:58	TRB
trans-1 3-Dichioropropene	ND		7	UG/KG	8260	03/15/2008 20:58	TRB
Trichloroethene	ND		7	UG/KG	8260	03/15/2008 20-58	TRB
Trichlorofluoromethare	ND		7	UG/KG	8260	03/15/2008 20-58	TRR
Vinvl chlaride	ND		14	UG/KG	8260	03/15/2008 20-58	TRR
TTTTT COTLOI ING							

-

Date Received: 03/14/2008 Project No: NY4A919723 Client No: 102461 Site No:

Parameter	Detection					Date/Time	
	Result	<u>Flag</u>	Límit	<u>Units</u>	Method	Analyzed	<u>Analyst</u>
SOIL-SW8463 8270 - TCL SVOA ORGANICS							
2,2'-Oxybis(1-Chloropropane)	ND		220	UG/KG	8270	03/21/2008 03:24	RM
2,4,5-Trichlorophenol	ND		220	UG/KG	8270	03/21/2008 03:24	RM
2,4,6-Trichlorophenol	ND		220	UG/KG	8270	03/21/2008 03:24	RM
2,4-Dichlorophenol	ND		220	UG/KG	8270	03/21/2008 03:24	RM
2,4-Dimethylphenol	ND		220	UG/KG	8270	03/21/2008 03:24	RM
2,4-Dinitrophenol	ND		420	UG/KG	8270	03/21/2008 03:24	RM
2,4-Dinitrotoluene	ND		220	UG/KG	8270	03/21/2008 03:24	RM
2,6-Dinitrotoluene	ND		220	UG/KG	8270	03/21/2008 03:24	RM
2-Chloronaphthalene	ND		220	UG/KG	8270	03/21/2008 03:24	RM
2-Chlorophenol	ND		220	UG/KG	8270	03/21/2008 03:24	RM
2-Methylnaphthalene	ND		220	UG/KG	8270	03/21/2008 03:24	RM
2-Methylphenol	ND		220	UG/KG	8270	03/21/2008 03:24	RM
2-Nitroaniline	ND		420	UG/KG	8270	03/21/2008 03:24	RM
2-Nitrophenol	ND		220	UG/KG	8270	03/21/2008 03:24	RM
3.3'-Dichlorobenzidine	ND		220	UG/KG	8270	03/21/2008 03:24	RM
3-Nitroaniline	ND		420	UG/KG	8270	03/21/2008 03:24	RM
4.6-Dinitro-2-methylphenol	ND		420	UG/KG	8270	03/21/2008 03:24	RM
4-Bromophenyl phenyl ether	ND		220	UG/KG	8270	03/21/2008 03:24	RM
4-Chioro-3-methylphenol	ND		220	UG/KG	8270	03/21/2008 03:24	RM
4-Chloroaniline	ND		220	UG/KG	8270	03/21/2008 03:24	RM
4-Chlorophenyl phenyl ether	ND		220	UG/KG	8270	03/21/2008 03:24	RM
4-Methylphenol	ND		220	UG/KG	8270	03/21/2008 03:24	RM
4-Nitroaniline	ND		420	UG/KG	8270	03/21/2008 03:24	RM
4-Nitrophenol	ND		420	UG/KG	8270	03/21/2008 03:24	RM
Acenaphthene	ND		220	UG/KG	8270	03/21/2008 03:24	RM
Acenaphthylene	ND		220	UG/KG	8270	03/21/2008 03:24	RM
Acetophenone	ND		220	UG/KG	8270	03/21/2008 03:24	RM
Apthracene	ND		220	UG/KG	8270	03/21/2008 03:24	RM
Atrazine	ND		220	UG/KG	8270	03/21/2008 03:24	RM
Benzal dehyde	ND		220	UG/KG	8270	03/21/2008 03:24	RM
Benzofalanthracene	57	L	220	UG/KG	8270	03/21/2008 03:24	RM
Benzo(a)pyrepe	39	J	220	UG/KG	8270	03/21/2008 03:24	RM
Benzo(b)fluoranthene	68	J	220	UG/KG	8270	03/21/2008 03:24	RM
Benzo(chi)perviepe	33	J	220	UG/KG	8270	03/21/2008 03:24	RM
Benzo(k)fluoranthene	ND		220	UG/KG	8270	03/21/2008 03:24	RM
Biphenyl	ND		220	UG/KG	8270	03/21/2008 03:24	RM
Bis(2-chloroethoxy) methane	ND		220	UG/KG	8270	03/21/2008 03:24	RM
Bis(2-chlorgethyl) ether	ND		220	UG/KG	8270	03/21/2008 03:24	RM
Bis(2-othylboxyl) phthalate	78	Ъ	220	UG/KG	8270	03/21/2008 03:24	RM
Butyi henzyi nathalate	ND	-	220	UG/KG	8270	03/21/2008 03:24	RM
Capital actam	ND		220	UG/KG	8270	03/21/2008 03:24	RM
	ND		220	UG/KG	8270	03/21/2008 03:24	RM
	63	.i	220	UG/KG	8270	03/21/2008 03:24	RM
Di-n-butyl obthalata	ND	•	220	UG/KG	8270	03/21/2008 03:24	RM
Dispersive phinalate	ND		220	UG/KG	8270	03/21/2008 03-24	RM
Dibenzola hlanthracena	0	đ	220	UG/KG	8270	03/21/2008 03-24	RM
Dibonzofuran	7		220		8270	03/21/2008 03.24 03/21/2008 03.24	RM
			220	IIG/KG	8270	03/21/2008 03-24	RM.
Dimothyl phthalata			220		8270	13/21/2008 03-24	2M
onmethyt phinarate	ND		LLV	00/10		JJ/LI/LUUD UJ.24	1.17

.....

Date Received: 03/14/2008 Project No: NY4A919723 Client No: 102461 Site No:

			Detection			Date/Time	
Parameter	Result	Flag	Limit	<u>Units</u>	Method	Analyzed	Analyst
SOIL-SW8463 8270 - TCL SVOA ORGANICS							
Fluoranthene	120	J	220	UG/KG	8270	03/21/2008 03:24	RM
Fluorene	ND		220	UG/KG	8270	03/21/2008 03:24	RM
Hexachlorobenzene	ND		220	UG/KG	8270	03/21/2008 03:24	RM
Hexachlorobutadiene	ND		220	UG/KG	8270	03/21/2008 03:24	RM
Hexachlorocyclopentadiene	ND		220	UG/KG	8270	03/21/2008 03:24	RM
Hexachloroethane	ND		220	UG/KG	8270	03/21/2008 03:24	RM
Indeno(1,2,3-cd)pyrene	28	J	220	UG/KG	8270	03/21/2008 03:24	RM
Isophorone	ND		220	UG/KG	8270	03/21/2008 03:24	RM
N-Nitroso-Di-n-propylamine	ND		220	UG/KG	8270	03/21/2008 03:24	RM
N-nitrosodiphenylamine	ND		220	UG/KG	8270	03/21/2008 03:24	RM
Naphthalene	ND		220	UG/KG	8270	03/21/2008 03:24	RM
Nitrobenzene	ND		220	UG/KG	8270	03/21/2008 03:24	RM
Pentachlorophenol	ND		420	UG/KG	8270	03/21/2008 03:24	RM
Phenanthrene	ND		220	UG/KG	8270	03/21/2008 03:24	RM
Phenol	ND		220	UG/KG	8270	03/21/2008 03:24	RM
Pyrene	95	J	220	UG/KG	8270	03/21/2008 03:24	RM
SOIL-SW8463 8082 - PCBS							
Aroclor 1016	ND		1100	UG/KG	8082	03/18/2008 15:08	TCH
Aroclor 1221	ND		1100	UG/KG	8082	03/18/2008 15:08	тсн
Aroclor 1232	ND		1100	UG/KG	8082	03/18/2008 15:08	ТСН
Aroclor 1242	ND		1100	UG/KG	8082	03/18/2008 15:08	ТСН
Aroclor 1248	4900		1100	UG/KG	8082	03/18/2008 15:08	TCH
Aroclor 1254	ND		1100	UG/KG	8082	03/18/2008 15:08	TCH
Aroclor 1260	12000		1100	UG/KG	8082	03/18/2008 15:08	TCH
Metals Analysis							
Aluminum - Total	12700	*	12.1	MG/KG	6010	03/19/2008 16:26	,
Antimony - Total	ND	N	18.1	MG/KG	6010	03/19/2008 16:26	•
Arsenic - Total	12.1	N	2.4	MG/KG	6010	03/19/2008 16:26	,
Barium - Total	83.6	N*	0.60	MG/KG	6010	03/19/2008 16:26	•
Beryllium - Total	0.47		0.24	MG/KG	6010	03/19/2008 16:26	•
Cadmium - Total	0.89		0.24	MG/KG	6010	03/19/2008 16:26	
Calcium - Total	37700	*	60.3	MG/KG	6010	03/19/2008 16:26	
Chromium - Total	23.1		0.60	MG/KG	6010	03/19/2008 16:26	ı
Cobalt - Total	13.1		0.60	MG/KG	6010	03/19/2008 16:26	,
Copper - Total	35.2	N*	1.2	MG/KG	6010	03/19/2008 16:26	I
Iron - Total	38300		12.1	MG/KG	6010	03/19/2008 16:26	•
Lead - Total	18.6	E	1.2	MG/KG	6010	03/19/2008 16:26	•
Magnesium - Total	12500	E	24.1	MG/KG	6010	03/19/2008 16:26	•
Manganese - Total	635		0.24	MG/KG	6010	03/19/2008 16:26	,
Mercury - Total	ND	N	0.021	MG/KG	7471	03/18/2008 17:42	
Nickel - Total	36.7	E	0.60	MG/KG	6010	03/19/2008 16:26	,
Potassium - Total	2210		36.2	MG/KG	6010	03/19/2008 16:26	•
Selenium - Total	ND	N	4.8	MG/KG	6010	03/19/2008 16:26	,
Silver - Total	ND		0.60	MG/KG	6010	03/19/2008 16:26	1
Sodium - Total	276		169	MG/KG	6010	03/19/2008 16:26	ı
Thallium - Total	ND		7.2	MG/KG	6010	03/19/2008 16:26	I
Vanadium - Total	26.9	E	0.60	MG/KG	6010	03/19/2008 16:26	1

, . . .

Date Received: 03/14/2008 Project No: NY4A919723 Client No: 102461 Site No:

			Detection		Date/Time			
Parameter	Result	<u>Flag</u>	<u>Límit</u>	<u>Units</u>	Method	Analyzed	<u>Analyst</u>	
Metals Analysis Zinc - Total	106	E	2.4	MG/KG	6010	03/19/2008 16:26		
Wet Chemistry Analysis Cyanide - Total	ND		1.2	UG/G	9012	03/20/2008 11:48	ERK	

-

Malcolm Pirnie - Flexo Transparent Seneca Street Phase II ESA - 6105-001

Sample ID: B-12(0.5-1.5) Lab Sample ID: A8258612 Date Collected: 03/14/2008 Time Collected: 13:45 Date Received: 03/14/2008 Project No: NY4A919723 Client No: 102461 Site No:

			Detection			Date/Time	
Parameter	Result	Flag	Limit	Units	Method	Analyzed	Analyst
SOIL-SW8463 8260 - TCL VOLATILES							
1,1,1-Trichloroethane	ND		6	UG/KG	8260	03/15/2008 21:24	TRB
1,1,2,2-Tetrachloroethane	ND		6	UG/KG	8260	03/15/2008 21:24	TRB
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		6	UG/KG	8260	03/15/2008 21:24	TRB
1,1,2-Trichloroethane	ND		6	UG/KG	8260	03/15/2008 21:24	TRB
1,1-Dichloroethane	ND		6	UG/KG	8260	03/15/2008 21:24	TRB
1,1-Dichloroethene	ND		6	UG/KG	8260	03/15/2008 21:24	TRB
1,2,4-Trichlorobenzene	ND		6	UG/KG	8260	03/15/2008 21:24	TRB
1.2-Dibromo-3-chloropropane	ND		6	UG/KG	8260	03/15/2008 21:24	TRB
1,2-Dibromoethane	ND		6	UG/KG	8260	03/15/2008 21:24	TRB
1.2-Dichlorobenzene	ND		6	UG/KG	8260	03/15/2008 21:24	TRB
1.2-Dichloroethane	ND		6	UG/KG	8260	03/15/2008 21:24	TRB
1.2-Dichloropropane	ND		6	UG/KG	8260	03/15/2008 21:24	TRB
1.3-Dichlorobenzene	ND		6	UG/KG	8260	03/15/2008 21:24	TRB
1.4-Dichlorobenzene	ND		6	UG/KG	8260	03/15/2008 21:24	TRB
2-Butanone	ND		30	UG/KG	8260	03/15/2008 21:24	TRB
2-Hexanone	ND		30	UG/KG	8260	03/15/2008 21:24	TRB
4-Methyl-2-pentanone	ND		30	UG/KG	8260	03/15/2008 21:24	TRB
Acetone	36		30	UG/KG	8260	03/15/2008 21:24	TRB
Benzene	ND		6	UG/KG	8260	03/15/2008 21:24	TRB
Bromodichloromethane	ND		6	UG/KG	8260	03/15/2008 21:24	TRB
Bromoform	ND		6	UG/KG	8260	03/15/2008 21:24	TRB
Bromomethane	ND		6	UG/KG	8260	03/15/2008 21:24	TRB
Carbon Disulfide	ND		6	UG/KG	8260	03/15/2008 21:24	TRB
Carbon Tetrachloride	ND		6	UG/KG	8260	03/15/2008 21:24	TRB
Chlorobenzene	ND		6	UG/KG	8260	03/15/2008 21:24	TRB
Chloroethane	ND		6	UG/KG	8260	03/15/2008 21:24	TRB
Chloroform	ND		6	UG/KG	8260	03/15/2008 21:24	TRB
Chloromethane	ND		6	UG/KG	8260	03/15/2008 21:24	TRB
cis-1,2-Dichloroethene	ND		6	UG/KG	8260	03/15/2008 21:24	TRB
cis-1,3-Dichloropropene	ND		6	UG/KG	8260	03/15/2008 21:24	TRB
Cyclohexane	ND		6	UG/KG	8260	03/15/2008 21:24	TRB
Dibromochloromethane	ND		6	UG/KG	8260	03/15/2008 21:24	TRB
Dichlorodifluoromethane	ND		6	UG/KG	8260	03/15/2008 21:24	TRB
Ethylbenzene	ND		6	UG/KG	8260	03/15/2008 21:24	TRB
Isopropylbenzene	ND		6	UG/KG	8260	03/15/2008 21:24	TRB
Methyl acetate	ND		6	UG/KG	8260	03/15/2008 21:24	TRB
Methyl-t-Butyl Ether (MTBE)	ND		6	UG/KG	8260	03/15/2008 21:24	TRB
Methylcyclohexane	ND		6	UG/KG	8260	03/15/2008 21:24	TRB
Methylene chloride	5	J	6	UG/KG	8260	03/15/2008 21:24	TRB
Styrene	ND		6	UG/KG	8260	03/15/2008 21:24	TRB
Tetrachloroethene	ND		6	UG/KG	8260	03/15/2008 21:24	TRB
Toluene	ND		6	UG/KG	8260	03/15/2008 21:24	TRB
Total Xylenes	ND		18	UG/KG	8260	03/15/2008 21:24	TRB
trans-1,2-Dichloroethene	ND		6	UG/KG	8260	03/15/2008 21:24	TRB
trans-1,3-Dichloropropene	ND		6	UG/KG	8260	03/15/2008 21:24	TRB
Trichloroethene	ND		6	UG/KG	8260	03/15/2008 21:24	TRB
Trichlorofluoromethane	ND		6	UG/KG	8260	03/15/2008 21:24	TRB
Vinyl chloride	ND		12	UG/KG	8260	03/15/2008 21:24	TRB

m

Date Received: 03/14/2008 Project No: NY4A919723 Client No: 102461 Site No:

			Detection			Date/Time	
Parameter	Result	Flag	Limit	<u>Units</u>	Method	Analyzed	Analyst
SOIL-SW8463 8270 - TCL SVOA ORGANICS							
2.2'-Oxybis(1-Chloropropane)	ND		200	UG/KG	8270	03/21/2008 03:47	RM
2.4.5-Trichlorophenol	ND		200	UG/KG	8270	03/21/2008 03:47	RM
2.4.6-Trichlorophenol	ND		200	UG/KG	8270	03/21/2008 03:47	RM
2.4-Dichlorophenol	ND		200	UG/KG	8270	03/21/2008 03:47	RM
2.4-Dimethylphenol	ND		200	UG/KG	8270	03/21/2008 03:47	RM
2.4-Dinitrophenol	ND		400	UG/KG	8270	03/21/2008 03:47	RM
2.4-Dinitrotoluene	ND		200	UG/KG	8270	03/21/2008 03:47	RM
2.6-Dinitrotoluene	ND		200	UG/KG	8270	03/21/2008 03:47	RM
2-Chloronaphthalene	ND		200	UG/KG	8270	03/21/2008 03:47	RM
2-Chlorophenol	ND		200	UG/KG	8270	03/21/2008 03:47	RM
2-Methyl naphthalene	ND		200	UG/KG	8270	03/21/2008 03:47	RM
2-Methylphenol	ND		200	UG/KG	8270	03/21/2008 03:47	RM
2-Nitroaniline	ND		400	UG/KG	8270	03/21/2008 03:47	RM
2-Nitrophenol	ND		200	UG/KG	8270	03/21/2008 03:47	RM
3 31-Dichlorobenzidine	ND		200	UG/KG	8270	03/21/2008 03:47	RM
3-Nitroaniline	ND		400	UG/KG	8270	03/21/2008 03:47	RM
4 6-Dinitro-2-methylphenol	ND		400	UG/KG	8270	03/21/2008 03:47	RM
4-Bromonbenyl nhenyl ether	ND		200	UG/KG	8270	03/21/2008 03:47	RM
4-Chloro-3-methylphenol	ND		200	UG/KG	8270	03/21/2008 03:47	RM
4-Chloroaniline	ND		200	UG/KG	8270	03/21/2008 03:47	RM
4 Chilorophenyl phenyl ether	ND		200	UG/KG	8270	03/21/2008 03:47	RM
4-Mothylphenol	ND		200	UG/KG	8270	03/21/2008 03:47	RM
4-Nitrophiling	ND		400	UG/KG	8270	03/21/2008 03:47	RM
4-Nitrophenol	ND		400	UG/KG	8270	03/21/2008 03:47	RM
Acepanthene	ND		200	UG/KG	8270	03/21/2008 03:47	RM
Acenaphthylene	ND		200	UG/KG	8270	03/21/2008 03:47	RM
Acetophenone	ND		200	UG/KG	8270	03/21/2008 03:47	RM
	ND		200	UG/KG	8270	03/21/2008 03:47	RM
Atrazine	ND		200	UG/KG	8270	03/21/2008 03:47	RM
Renzaldehyde	ND		200	UG/KG	8270	03/21/2008 03:47	RM
Benzo(a)anthracene	ND		200	UG/KG	8270	03/21/2008 03:47	RM
	49	J	200	UG/KG	8270	03/21/2008 03:47	RM
Benzo(b)fluoranthene	ND	-	200	UG/KG	8270	03/21/2008 03:47	RM
Benzo(chi)nerviene	ND		200	UG/KG	8270	03/21/2008 03:47	RM
Benzolkifiueranthene	ND		200	UG/KG	8270	03/21/2008 03:47	RM
Binhonyl	ND		200	UG/KG	8270	03/21/2008 03:47	RM
Pis(2-chloroethoxy) methane	ND		200	UG/KG	8270	03/21/2008 03:47	RM
Pic/2-chloroethyl) ether	ND		200	UG/KG	8270	03/21/2008 03:47	r RM
Bis(2-othylberyl) othalate	ND		200	UG/KG	8270	03/21/2008 03:47	RM
Butyl bonzyl obthalate	ND		200	UG/KG	8270	03/21/2008 03:47	RM
	ND		200	UG/KG	8270	03/21/2008 03:47	* RM
Caphotal	ND		200		8270	03/21/2008 03:47	7 RM
	ND		200	UG/KG	8270	03/21/2008 03:47	7 RM
	ND		200	UG/KG	8270	03/21/2008 03:47	7 RM
	ND		200	UG/KG	8270	03/21/2008 03:47	7 RM
Dipersole hierthrace	עה		200	UG/KG	8270	03/21/2008 03+47	7 RM
Dibenzoiunen Dibenzoiunen	ND.		200	UG/KG	8270	03/21/2008 03-47	7 RM
Dipenzoturan Diathul phtholota	עה מע		200	HG/KC	8270	03/21/2008 03-47	7 RM
Directly phthalate	ND ND		200	IIG/KG	8270	03/21/2008 03-47	7 IDM
Dimetnyi phinalate	ND		200	o ay ka	OL / U		1917

, . . .

Malcolm Pirnie - Flexo Transparent Seneca Street Phase II ESA - 6105-001

Sample ID: B-12(0.5-1.5) Lab Sample ID: A8258612 Date Collected: 03/14/2008 Time Collected: 13:45 Date Received: 03/14/2008 Project No: NY4A919723 Client No: 102461 Site No:

		Detection			Date/Time		
Parameter	Result	Flag	Limit	<u>Units</u>	Method	Analyzed	<u>Analyst</u>
SOIL-SW8463 8270 - TCL SVOA ORGANICS							
Fluoranthene	ND		200	UG/KG	8270	03/21/2008 03:47	RM
Fluorene	ND		200	UG/KG	8270	03/21/2008 03:47	RM
Hexachlorobenzene	ND		200	UG/KG	8270	03/21/2008 03:47	RM
Hexachlorobutadiene	ND		200	UG/KG	8270	03/21/2008 03:47	RM
Hexachlorocyclopentadiene	ND		200	UG/KG	8270	03/21/2008 03:47	RM
Hexachloroethane	ND		200	UG/KG	8270	03/21/2008 03:47	RM
Indeno(1,2,3-cd)pyrene	ND		200	UG/KG	8270	03/21/2008 03:47	RM
Isophorone	ND		200	UG/KG	8270	03/21/2008 03:47	RM
N-Nitroso-Di-n-propylamine	ND		200	UG/KG	8270	03/21/2008 03:47	RM
N-nitrosodiphenylamine	ND		200	UG/KG	8270	03/21/2008 03:47	RM
Naphthalene	ND		200	UG/KG	8270	03/21/2008 03:47	RM
Nitrobenzene	ND		200	UG/KG	8270	03/21/2008 03:47	RM
Pentachlorophenol	ND	·· .	400	UG/KG	8270	03/21/2008 03:47	RM
Phenanthrene	ND		200	UG /KG	8270	03/21/2008 03:47	RM
Phenol	ND		200	UG/KG	8270	03/21/2008 03:47	RM
Pyrene	ND		200	UG/KG	8270	03/21/2008 03:47	RM
SOIL-SW8463 8082 - PCBS			•				
Aroclor 1016	ND		20	UG/KG	8082	03/18/2008 15:22	TCH
Aroclor 1221	ND		20	UG/KG	8082	03/18/2008 15:22	ТСН
Aroclor 1232	ND		20	UG/KG	8082	03/18/2008 15:22	TCH
Aroclor 1242	ND		20	UG/KG	8082	03/18/2008 15:22	TCH
Aroclor 1248	ND		20	UG/KG	8082	03/18/2008 15:22	TCH
Aroclor 1254	ND		20	UG/KG	8082	03/18/2008 15:22	ТСН
Aroclor 1260	ND		20	UG/KG	8082	03/18/2008 15:22	TCH
Metals Analysis							
Aluminum - Total	7840	*	11.2	MG/KG	6010	03/19/2008 16:31	
Antimony - Total	ND	N	16.9	MG/KG	6010	03/19/2008 16:31	
Arsenic - Total	4.8	N	2.2	MG/KG	6010	03/19/2008 16:31	
Barium - Total	103	N*	0.56	MG/KG	6010	03/19/2008 16:31	
Beryllium - Total	0.33		0.22	MG/KG	6010	03/19/2008 16:31	
Cadmium - Total	0.55		0.22	MG/KG	6010	03/19/2008 16:31	
Calcium - Total	3830	*	56.2	MG/KG	6010	03/19/2008 16:31	
Chromium - Total	9.9		0.56	MG/KG	6010	03/19/2008 16:31	
Cobalt - Total	6.6		0.56	MG/KG	6010	03/19/2008 16:31	
Copper - Total	14.4	N*	1.1	MG/KG	6010	03/19/2008 16:31	l
Iron - Total	16500		11.2	MG/KG	6010	03/19/2008 16:31	l
Lead - Total	23.5	E	1.1	MG/KG	6010	03/19/2008 16:31	
Magnesium - Total	1630	E	22.5	MG/KG	6010	03/19/2008 16:31	
Manganese - Total	234		0.22	MG/KG	6010	03/19/2008 16:31	
Mercury - Total	0.049	N	0.020	MG/KG	7471	03/18/2008 17:43	5
Nickel - Total	9.9	E	0.56	MG/KG	6010	03/19/2008 16:31	l
Potassium - Total	560		33.7	MG/KG	6010	03/19/2008 16:31	l
Selenium - Total	ND	N	4.5	MG/KG	6010	03/19/2008 16:31	l
Silver - Total	ND		0.56	MG/KG	6010	03/19/2008 16:31	l
Sodium - Total	383		157	MG/KG	6010	03/19/2008 16:31	l
Thallium - Total	ND		6.7	MG/KG	6010	03/19/2008 16:31	I
Vanadium - Total	17.2	E	0.56	MG/KG	6010	03/19/2008 16:31	l

ŗ

Date Received: 03/14/2008 Project No: NY4A919723 Client No: 102461 Site No:

Parameter	Result	Flag	Detection Limit	Units	Method	— Date/Time Analyzed A	nalyst
Metals Analysis Zinc - Total	52.5	E	2.2	MG/KG	6010	03/19/2008 16:31	
Wet Chemistry Analysis Cyanide - Total	ND		1.1	UG/G	9012	03/20/2008 11:48	ERK

r:

DEL EU EUGI IUE IU-U- INI OLDINILE ELEMINICA

DATE: 1 1

Upstate Laboratories, Inc. Analysis Results Report Number: 24801056 Client I.D. : EVERGREEN TESTING & ENV. SVCS.

APPRQYAL:____ QC: <u>N</u> <u>Lab</u> I.D.: 10170

Sampled by: Client

TD:24801066 Mat.Soll FIBERIGHT PH-122 0900H 08/30/01 C RESULTS DATE ANAL. KEY PARAMETERS FILE# _ _ _ _ _ _ _ _ ----------- - -89% 09/11/01 Percent Solida WD6229 Petroleum, EPA Method 8021 <3ug/kg dw 09/12/01 01 VA5921 Benzene 09/12/01 <3ug/kg dw Ethylbenzene 01 VA5921 01 Toluens <3ug/kg dw 09/12/01 VA5921 <3ug/kg dw 09/12/01 01 VA5921 m,p-xylene <3ug/kg dw 09/12/01 o-Xylene 01 VA5921 <3ug/kg dw 09/12/01 VA5921 Isopropylbanzena 01 <3ug/kg dw 09/12/01 n-Fropylbensene 01 VA5921 <3ug/kg dw 09/12/01 p-Isopropyltoluene 01 VA5921 1,2,4-Trimethylbenzene <3ug/kg dw 09/12/01 01 VA5921 <3ug/kg dw 1,3,5-Trimethylbenzene 09/12/01 **Ö**1 VA5921 <3ug/kg dw n-Butylbenzene 09/12/01 01 VA5921 sec-Butylbonzens <3ug/kg dw 09/12/01 01 VA5921 <3ug/kg dw t-Butylbenzene 09/12/01 01 VA5921 Naphthalene 4ug/kg dw 09/12/01 VA5921 MTBB <57ug/kg dw 09/12/01 01 VA5921

> Petroleum, MFA Method \$270 -----Anthracene Fluorene Phenanthrane Pyrene Acenaphthene

> > Dibenz [a, h] anthracene

Petroleum, EPA Method 8021

PARAMETERS

Benzo [a] anthracene Fluoranthens Benzo [b] fluoranthene Benze [k] fluoranthene Chrysens Benzo [a] pyrene Benzo [ghi]perylene Indeno [1, 2, 3-cd] pyrene

09/25/01 <370ug/kg dw SA3027 <370ug/kg dw 09/25/01 SA3027 09/25/01 550ug/kg dw SA3027 410ug/kg dw 09/25/01 SA3027 <370ug/kg dw 09/25/01 SA3027 <370ug/kg dw 09/25/01 SA3027 630ug/kg dw · 09/25/01 SA3027 <370ug/kg dw 09/25/01 SA3027 <370ug/kg dw 09/25/01 SA3027 <370ug/kg dw 09/25/01 SA3027 <370ug/kg dw 09/25/01 SA3027 09/25/01 <370ug/kg dw SA3027 <370ug/kg dw 09/25/01 SA3027 <370ug/kg dw 09/25/01 SA3027 ID:24801067 Mat:Water FIBERICHT FH-2 0900H 08/30/DI C RESULTS DATE ANAL. KEY FILE# ----.... ----

.......... Benzone 0.6ug/1 09/11/01 VA5921 Ethylbonzene <0.5ug/1 09/11/01 VA5921 Toluane 0.8ug/1 09/11/01 VA5921
DATE: / /

Upstate Laboratories, Inc. Analysis Results Report Number: 24801056 Client I.D.: EVERGREEN TESTING & ENV. SVCS.

ID:24801067 Mat.Water FIBERIGHT

	PARAMETERS	RESULTS	DATE ANAL.	REY	FILE#
	m,p-xylens	lug/l	09/11/01		VA5921
	o-Xylene	0.7ug/l	09/11/01		VA5921
	Isopropylbenzene	<0,5ug/1	09/11/01		VA5921
	n-Propylbenzene	<0,5ug/l	09/11/01		VA5921
	p-Isopropyltoluene	<0.5ug/1	09/11/01		VA5921
	1,2,4-Trimethylbenzone	<0.5ug/1	09/11/01		VA5921
	1,3,5-Trimethylbenzone	<0.5ug/1	09/11/01		VA5921
	n-Butylbenzene	<0.5ug/1	09/11/01		VA5921
	sec-Butylbanzeno	<0.5ug/1	09/11/01		VA5921
	t-Butylbenzene	<0.5ug/1	09/11/01		VA5921
	Naphthalene	4ug/1	09/11/01		VA5921
	MTBE	<10ug/1	09/11/01		VA5921
	Petroleum, EPA Method 8270	1			
	Anthracene	<5ug/1	09/18/01		SA3019
	Fluorene	<5ug/1	09/18/01		SA3019
	Phenanthrane	<5ug/1	09/18/01		SA3019
	Pyrane	<5ug/l	09/18/01	•	SA3019
	Aconaphthene	<5ug/1	09/18/01		SA3019
	Benzo (a) anthracene	<5ug/1	09/18/01		5 A 3019
	Fluorenthene	<5ug/1	09/18/01		SA3019
	Benzo (b) fluoranthene	<5ug/1	09/18/01		SA3019
~	Benzo [k] fluoranthene	<5ug/1	09/18/01		SA3019
	Chrysene	<5ug/1	09/18/01		SA3019
	Benzo [a] pyrene	<5ug/1	09/18/01		SA3019
	Benzo [ghi] perylene	<5ug/1	09/18/01		9A3019
	Indeno [1,2,3-cd] pyrene	<5ug/1	09/18/01		SA3019
	Dibens [a, h] anthracene	<5ug/1	09/18/01		SA3019
ID: 2480	1068 Mat. Soll FIBERICHT	- 4 0-4 1000H 08730/0	51°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°		
	PARAMETERS	RESULTS	DATE ANAL	KEY	PT7.72#
	*****				Nonah-
	Porcent Solids	77%	09/11/01		WD6229
	PCB (Aroclors) by EPA Method 808	12			

Aroclor 1016 <0.1mg/kg dw

Aroclor 1016	<0.1mg/kg dw	09/20/01	GA0985
Aroolor 1221	<0.1mg/kg dw	09/20/01	GA0983
Aroclor 1232	<0.1mg/kg dw	09/20/01	GA0985
Aroclor 1242	<0.1mg/kg dw	09/20/01	GA0985
Aroclor 1248	<0.1mg/kg dw	09/20/01	GA0985
Aroclor 1254	<0.lmg/kg dw	09/20/01	GA0985
Aroclor 1260	<0.1mg/kg dw	09/20/01	GADSES
Total PCB	<0.1mg/kg dw	09/20/01	GA0985

DATET 1 1 APPRQYAL:____ Upstate Laboratorics, Inc. Analysia Results QC: - Lab I.D. : 10170 ¥ Report Number: 24801066 client 1.D.: EVERGREEN TESTING & ENV. SVCS. Sampled by: Client ID:24801068 Mat: Soil FIBERIGHT 4 0-4 1000H 08730/01 G PARAMETERS RESULTS DATE ANAL. KEY FILE# -----........... -----ID:24801069 Mat: Soil FIBERICHT PARAMETERS. RESULTS DATE ANAL. KEY FILE# -----------------Porcent Solids 83% 09/11/01 WD6229 PCB (Aroclorg) by EFA Method 8082 ----Aroclor 1015 <0.1mg/kg dw 09/20/01 GA0985 Aroclor 1221 <0.lmg/kg dw 09/20/01 GA0985 Aroclor 1232 <0.1mg/kg dw 09/20/01 GA0985 Aroclor 1242 <0.1mg/kg dw 09/20/01 GA0985 Arcolor 1248 <0.lmg/kg dw 09/20/01 GA0985 Aroclor 1254 <0.1mg/kg dw 09/20/01 GA0985 Aroclor 1260 1,200 ng 1.2mg/kg dw 09/20/01 GY0382 Total PCB 1.2mg/kg dw 0 09/20/01 GA0985 ID.24801070 Mat, Soil FIBERIGHT 5 0-4 1030H 08730/01 g -----PARAMETERS RESULTS DATE ANAL. Key FILE# ----------Parcent Solida 84% 09/11/01 WD6229 PCB (Arcolors) by EPA Method 8082 -----Aroslor 1016 <0.lmg/kg dw 09/20/01 GA0985 Aroclor 1221 <0.lmg/kg dw 09/20/01 GA0985 Aroclor 1232 <0.1mg/kg dw 09/20/01 GA0985 Aroclor 1242 <0.1mg/kg dw 09/20/01 GY0882 Aroclor 1248 <0, 1mg/kg dw 09/20/01 GA0985 Aroclor 1254 <0.lmg/kg dw 09/20/01 GA0985 Arcelor 1260 0.36mg/kg dw 09/20/01 GA0985 Total PCB 0.36mg/kg dw 09/20/01 GA0985 ID.24801071 Mat: Soil FIBERIGHT 5 4-8 1030H 08730/01 g - - - - --PARAMETERS RESULTS DATE ANAL. KEY **PILE#** ----------------Percent Solids 84% 09/11/01 WD6229 PCB (Aroclors) by EPA Method 8082 Aroclor 1016 <0.lmg/kg dw 09/20/01 GA0985 Aroclor 1221 <0.1mg/kg dw 09/20/01 GA0985 Aroclor 1232 <0.lmg/kg dw 09/20/01 GA0985 Aroclor 1242 <0.1mg/kg dw 09/20/01 GA0985 dw - Dry weight

.....

DEFTED EDUI IUE IU-OU HI DIDIHIE ENDIALUM

11 DATE: APPRONALI____ Upstate Laboratories, Inc. 001- t Lab I.D.: 10170 Analysis Results Report Number: 24801066 Sampled by: Client Client I.D.: EVERGREEN TESTING & ENV. SVC5. ID:24801071 Mat.Soll FIBERIGHT 5 4-8 1030H 08730/01 g RESULTS PARAMETERS DATE ANAL. XEY FILE# ---------------------<0.lmg/kg dw 09/20/01 Arcolor 1248 GA0985 09/20/01 Arcolor 1254 <0.lmg/kg dw GA0985 <0.1mg/kg dw GA0985 Arcelor 1260 09/20/01 <0.1mg/kg dw Total PCB 09/20/01 GA0985 ID.24801072 Mat: Soil FIBERIGHT 6 0-4 1045H 08730/01 G RESULTS PARAMETERS DATE ANAL. KRY FILE# ******** ***** ----****** 728 Percent Solids 09/11/01 WD6251 PCB (Aroclors) by EPA Method 8082 Aroclor 1016 <0.1mg/kg dw 09/20/01 GA0985 Aroclor 1221 <0.1mg/kg dw 09/20/01 GA0985 Aroclor 1233 <0.1mg/kg dw 09/20/01 GA0985 Aroclor 1242 <0.1mg/kg dw 09/20/01 GA0985 Aroclor 1248 <0.1mg/kg dw 09/20/01 GA0985 Aroclor 1254 <0.1mg/kg dw 09/20/01 GA0985 Arcolor 1260 <0.1mg/kg dw 09/20/01 GA0985 Total PCB <0.1mg/kg dw 09/20/01 GA0985 ID:24801073 Matisoil FIBERIGHT 6 4-8 1045H 08/30/01 G PARAMETERS RESULTS DATE ANAL. Key FILE# -----...... -----------Percent Solids 83% 09/11/01 WD6251 PCB (Aroclors) by EFA Method 8082 _______ Aroclor 1016 <0.1mg/kg dw 09/20/01 GAD985 Aroclor 1221 <0.1mg/kg dw 09/20/01 GA0985 Aroclor 1232 <0.lmg/kg dw 09/20/01 GA0985 Aroclor 1242 <0.1mg/kg dw 09/20/01 GA0985 Aroclor 1248 <0.1mg/kg dw 09/20/01 GA0985 Aroclor 1254 <0.lmg/kg dw 09/20/01 GA0985 Aroclor 1360 C.14mg/kg dw 09/20/01 GA0985 Total PCB 0.14mg/kg dw 09/20/01 GA0985 ID:24801074 Mat.Scil FIBERIGHT 7 0-4 1100H 08730/01 G ------_ __ __ _ PARAMETERS RESULTS DATE ANAL. KEY PILE# ----...... --------Percent Solids 83% 09/11/01 WD6251 TCL Volatiles by EPA Method 8260 ----dw = Dry weight

ULI EV EVVI IVE IV'VV INI VIDINIE ENDIALISI.

DATE; / /

Upstate Laboratories, Inc. Analysis Results Report Number: 24801056 Client I.D.; EVERGREEN TESTING & ENV. SVCS.

Approval: QC: Lab I.D.: 10170 Sampled by: Client

ID. 24801074 MAE, Soil FIBERIGHT 7 0-4 1100H 08730/01 G

Parameters	RESULTS	date anal,	KEY	FILE#
Percent Solids	83%	09/11/01	148 AU Sa.	WD6251
TCL Volatiles by BPA Method \$2	60			
Chloromethane	<7ug/kg dw	09/12/01	01	VM3618
Bromomethane	<7ug/kg dw	09/12/01	01	VM3618
Vinyl Chloride	<5ug/kg dw	09/12/01	01	VM3618
Chlorgethane	<7ug/kg dw	09/12/01	01	VM3618
Methylene Chloride	<7ug/kg dw	09/12/01	01	VM3618
Acetone	130ug/kg dw	09/12/01	44	VX3618
Carbon Disulfide	<7ug/kg dw	09/12/01	01	VM3618
1,1-Dichloroethene	<7ug/kg dw	09/12/01	01	VM3618
1,1-Dichloroethane	<7ug/kg dw	09/12/01	01	VM3618
trans-1,2-Dichloroethene	<7ug/kg dw	09/12/01	01	VM3618
cis-1,2-Dichloroethene	<7ug/kg dw	09/12/01	01	VM361B
Chloroform	<7ug/kg dw	09/12/01	01	VN3618
1,2-Dichloroethane	<7ug/kg dw	09/12/01	01	VM3618
2-Butanone	55ug/kg dw	09/12/01	44	VN3618
1,1,1-Trichloroethane	<70g/kg dw	09/12/01	01	VM3618
Carbon Tetrachloride	<7ug/kg dw	09/12/01	01	VM3618
Bromodichloromethane	<7ug/kg dw	09/12/01	01	VX3618
1,2-Dichloropropane	<7ug/kg dw	09/12/01	01	VM3 618
cig-1,3-Dichloropropens	<7ug/kg dw	09/12/01	01	VM3 618
Trichloroethene	<7ug/kg dw	09/12/01	01	VM3618
Dibromochloromethane	<7ug/kg dw	09/12/01	01	YM3618
1,1,2-Trichloroethene	<7ug/kg dw	09/12/01	01	VM3618
Benzone	<7ug/kg dw	09/12/01	01	VM3618
trans-1,3-Dichloropropene	<7ug/kg dw	09/12/01	01	VM3618
Bronoform	<7ug/kg dw	09/12/01	01	VX3618
4-Methyl-2-pentanone	<24ug/kg dw	09/12/01	01	VM3618
2-Hexanone	<24ug/kg dw	09/12/01	01	VM3618
Tetrachloroethene	<7ug/kg dw	09/12/01	01	VM3618
1,1,2,2-Tetrachloroethans	<7ug/kg dw	09/12/01	01	VM3618
Toluena	<7ug/kg dw	09/12/01	01	VM3618
Chlorobenzene	<7ug/kg dw	09/12/01	01	VM3618
Ethylbenzene	<7ug/kg dw	09/12/01	01	VM3518
Styrene	<7ug/kg dw	09/12/01	01	VM3618
m, p-xylene	<7ug/kg dw	09/12/01	01	VM3618
o-Xylane	<7ug/kg dw	09/12/01	01	VM3518
TCL Somivolatiles by EPA Method	8270			

Phenol	<400ug/kg dw	09/25/01		SA3027
bis (2-Chloroethyl) ether	<400ug/kg dw	09/25/01		SA3027
2 Chlorophenol	<400ug/kg dw	09/25/01		SA3027
1,3-Dichlorobenzene	<400ug/kg dw	09/25/01		SA3027
				· · · · · · ·

DATE 1 1

Upstate Laboratories, Inc. Analysis Results Report Number: 24801056 Client I.D.: EVERGREEN TESTING & ENV. SVCS.

APPROVAL :_ 2° - F Lab I.D.: 10170 Sampled by: Client

7 0-4 1100H 08/30/01 G ID: 24801074 Mat: Soil FIBERIGHT

PARAMETERS RESULTS DATE ANAL, KEY FILE# ----_ _ _ _ _ _ _ _ --------1,4-Dichlorobenzene <400ug/kg dw 09/25/01 SA3027 <400ug/kg dw 1,2-Dichlorobenzene 09/25/01 523027 2-Methylphenol <400ug/kg dw 09/25/01 SA3027 <400ug/kg dw 2,2'-Oxybis(1-Chloropropane) 09/25/01 SA3027 4-Methylphenol <400ug/kg dw 09/25/01 SA3027 <400ug/kg dw n-Nitrosodinpropylamine 09/25/01 SA3027 Hexachloroethane <400ug/kg dw 09/25/01 SA3027 <400ug/kg dw 09/25/01 Nitrobenzene SA3027 <400ug/kg dw Isophorone 09/25/01 SA3027 . <400ug/kg dw 2-Nitrophenol 09/25/01 SA3027 2,4-Dimethylphenol <400ug/kg dw 09/25/01 SA3027 bis (2-Chloroethoxy) methane <400ug/kg dw 09/25/01 SA3027 2,4-Dichlorophenol <400ug/kg dw 09/25/01 SA3027 1,2,4-Trichlorobenzene <400ug/kg dw 09/25/01 SA3027 Naphthalene <400ug/kg dw 09/25/01 973027 4-Chloroaniline <400ug/kg dw 09/25/01 SA3027 Hexachlorobutadiene <400ug/kg dw 09/25/01 BA3027 09/25/01 4-Chloro-3-methylphenol <400ug/kg dw SA3027 <400ug/kg dw 2-Methylnaphthalene 09/25/01 SA3027 Hexachlorocyclopentadiene <400ug/kg dw 09/25/01 SA3027 <400ug/kg dw 2,4,6-Trichlorophenol 09/25/01 EA3027 2,4,5-Trichlorophenol <400ug/kg dw 09/25/01 SA3027 <400ug/kg dw 2-Chloronaphthalens 09/25/01 SA3027 2-Nitroaniline <4000ug/kg dw 09/25/01 SA3027 Dimethylphthalate <400ug/kg dw 09/25/01 SA3027 Aconaphthylene <400ug/kg dw 09/25/01 SA3027 2,6-Dinitrotoluens <400ug/kg dw 09/25/01 SA3027 3-Nitroaniline <4000ug/kg dw 09/25/01 SA3027 Acenaphthene <400ug/kg dw 09/25/01 5A3027 2,4-Dinitrophenol <400ug/kg dw 09/25/01 BA3027 4-Nitrophenol <400ug/kg dw 09/25/01 SA3027 <400ug/kg dw Dibenzofuran 09/25/01 9A3027 2,4-Dinitrotoluene <400ug/kg dw 09/25/01 SA3027 Diethylphthalate <400ug/kg dw 09/25/01 SA3027 4-Chlorophonylphenylether <400ug/kg dw 09/25/01 SA3027 <400ug/kg dw Fluorene 09/25/01 SA3027 4-Nitroaniline <4000ug/kg dw 09/25/01 SA3027 2-Methyl-4,6-dinitrophonol <4000ug/kg dw 09/25/01 SA3027 n-Nitrosodiphenylamine <400ug/kg dw 09/25/01 SA3027 4-Bromophenylphenylether <400ug/kg dw 09/25/01 SA3027 Nexachlorobanzene <400ug/kg dw 09/25/01 5A3027 Pentachlorophencl <800ug/kg dw 09/25/01 SA3027 Phenanthrene 940ug/kg dw 09/25/01 SA3027 Anthracene <400ug/kg dw 09/25/01 SA3027

DEL EN ENGLINE TO-AN THE DEPTHIC MINIMUM

DATE 11

Upstate Laboratorias, Inc.	
Analysis Results	
Report Number: 24801065	
Client I.D.: EVERGREEN TESTING & ENV. SVC	S ,

```
APPROVALI
        Lab T.D.: 10170
Sampled by: Client
```

GA0985

GA0985

.

7 0-4 1100B 08730/01 G ------ID:24801074 Mat:Soil FIBERIGHT ------RESULTS **PARAMETERS** DATE ANAL. REY FILE#

Pyrene	1200ug/kg dw	09/25/01		SA3027
Butylbenzylphthalate	<400ug/kg dw	09/25/01		SA3027
3.3'-Dichlorobenzidine	<400ug/kg dw	09/25/01		8A3027
Benzo (a) anthracene	700ug/kg dw	09/25/01		SA3027
Chrygene	750ug/kg dw	09/25/01		SA3027
bis (2-Ethylhexyl) phthalate	<400ug/kg dw	09/25/01		SA3027
di-n-octylphthalate	<400ug/kg dw	09/25/01		SA3027
Benzo (b) fluoranthene	860ug/kg dw	09/25/01		BA3027
Benzo (k) fluoranthens	<400ug/kg dw	09/25/01		5 A3 02 7
Benzo (a) pyrene	570ug/kg dw	09/25/01		SA3027
Indeno (1, 2, 3-cd) pyrene	<400ug/kg dw	09/25/01		5A3027
Dibenzo (a, h) anthracene	<400ug/kg dw	09/25/01		SA3027
Benzo(ghi)parylene	<400ug/kg dw	09/25/01		SA3027
FCB (Aroclors) by EFA Method 8082		· · ·		
•••••••••••••••••				
Arcelor 1015	<0.lmg/kg dw	09/20/01	•	GA0985
Arcclor 1221	<0.1mg/kg dw	09/20/01		GA0985
Aroclor 1232	<0.1mg/kg dw	09/20/01		GA0985
Aroclor 1242	<0.1mg/kg dw	09/20/01		GA0985
Aroclor 1248	<0.1mg/kg dw	09/20/01		GA0985
Arodlor 1254	<0.1mg/kg dw	09/20/01		GA0985
Aroclor 1260	13mg/kg dw	09/20/01		GA0985
 Total PCB 	13mg/kg dw	09/20/01		GA0985
ID124801075 MAE: Soil FIBERIGHT	7 4-8 1100# 08730/01	<u> </u>		·
PARAMETERS	RESULTS	DATE ANAL.	KEY	FILE#
Percent Solids	824	09/11/01		WD6251
PCB (Aroclors) by EPA Method 8082				

Aroclor Luib	<0.lmg/kg	09/21/01		GA0985
Arcoldr 1221	<u. img="" kg<="" td=""><td>09/21/01</td><td></td><td>GA0985</td></u.>	09/21/01		GA0985
Aroclor 1232	<u.img kg<="" td=""><td>09/21/01</td><td></td><td>GA0985</td></u.img>	09/21/01		GA0985
Argeler 1383	<0.1mg/kg	09/21/01		GA0985
VICTOL 1748	<0.1mg/kg	09/21/01		GA0985
Aroclor 1254	<0.lmg/kg	09/21/01		GA0985

<0.lmg/kg

<0.1mg/kg

09/21/01

09/21/01

dw = Dry weight

Aroclor 1260

Total PCB

DATE: //	,			
Upstate Laboratories, Inc.	APPROVALI_			
Analysis Results	801-V			,
Report Number: 24801066	La	b I,D.: 10170		
Client I.D. : EVERGREEN TESTING & ENV. SVCS.	Sampled by:	Client		
ID.24801076 Mat.Soil FIBERIGHT	8 0-4 1115H 08730/01	G		
5 5 5 4 U 0 0 0 0	RESULTS	DATE ANAL.	Key	FILE#
CARADEL AND	******			
Percent Solids	70%	09/11/01		WD6251
PCB (Arodiors) by EPA Method sust				۰.
twosters 1816	<0.lmg/kg dw	09/21/01		GA0985
ALOGIDE AVIO	<0.1mg/kg dw	09/21/01		GA0985
ALUCIUS 4424	<0.1mg/kg dw	09/21/01		GA0985
ALOCIOI 4444	<0.1mg/kg dw	09/21/01		GA0985
Argolor 124P	<0.lmg/kg.dw	09/21/01		GAOGES
ALOCIOL 1440	<0.1mg/kg dw	09/21/01		GAGGAS
AT00107 1234	7 fmg/kg dw	09/21/01		CANDER
Aroclor 1260	7. Smalle Au	09/21/01		G10000
TOTAT ACR		<i>v<i>yiziyvz</i></i>		
ID:24801077 Mut:Soll FIBERIGHT	B 4-B 1115H 08730/01	G		
Parameters	RESULTS	DATE ANAL,	Key	FILE#
	and the set but has an an			
Percent Solida	84%	09/11/01		WD6251
DOR (Incolors) by EPA Method 8082				
FCE (REDICED) Dy DEM MOUNTE COUP		•		
Arnalon 1016	<0.1mg/kg dw	09/21/01		620985
hrodion 1991	<0.1mg/kg dw	09/21/01		GA0985
ALUCIUL LELL	<0.1mg/kg dw	09/21/01		GANGAS
Aroglor 1242	c0.lmg/kg dw	09/21/01		GAOSAS
ALUCIUS SANA	<0.1mg/kg dw	09/21/01		GLOGRE
ALUCIUL LAID	<0.1mg/kg dw	09/21/01		CANGES
Aroclos 1260	0.20mg/kg dw	09/21/01		GNOOSE
TOTAL PCB	0.20mg/kg dw	09/21/01		GAOSES
ID,24801078 Mat:Soll FIBERIGHT	9 0-4 1130H 08/30/01	Ģ		
PARAMETERS	RESULTS	DATE ANAL.	Key	FILE#
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~				
Percent Solids	48%	09/11/01		WD6251
PCB (Aroclors) by EPA Method 8082				
Aroclor 1015	20.2ma/ka du	10/21/01		03.000F
groupor 1301 Viociot TARA	20 200/ba de	00/21/01 07/41/01		GAU985
Troctot 1925	-V.ZAUY/XY QW -A Smalle J	UJ/41/UL 00/27/01		GAUSES
Provide 1949	<0 2mm/km	03/44/UL 05/54/01		GAUSOS
Vicejon 1010 Vicejon 1010	KV.ABG/KG CW	00/01/01		GAU985
AFOGLOF 1468	SV.209/Kg QW	09/21/01		GAUSSS
Aroglor 1254	KU ZMG/KG dW	09/21/01		GA0985
Aroclor 1260	<u.2mg dw<="" kg="" td=""><td>09/21/01</td><td></td><td>CA0985</td></u.2mg>	09/21/01		CA0985
TOTAL PCB	<0.2mg/kg dw	09/21/01		GA0985

dw m Dry weight

•

DATE: / /

Upstate Laboratories, Inc.	APPROVAL ;			
Analysis Repults	201-10	·		
Report Number: 24801066	I.	ab I.D.: 10170)	
Client I.D.: EVERGREEN TESTING & ENV. SVCS.	sampred by	I CLIENE		
ID:24801079 Mat:Soil FIBERIGHT	- 9 4-8 1130H 08730/01	G		
Parameters	RESULTS	DATE ANAL.	KEY	FILE#
4 4 4 8 8 8 4 4 4 4 4 5 1 9 . Mar		*********		
Percent Solids	823	09/11/01		WD6251
PCB (Arcclors) by EPA Method 808	2			
Arcelor 1016	<0.1mg/kg dw	09/21/01		GA0985
Aroclor 1221	<0.lmg/kg dw	09/21/01		GA0985
Arcelor 1232	<0.1mg/kg dw	09/21/01		GA0985
Aroclor 1242	<0.lmg/kg dw	09/21/01		GA0985
Aroclor 1248	<0.lmg/kg dw	09/21/01		GA0985
Aroclor 1254	<0.1mg/kg dw	09/21/01		GA0985
Aroclor 1250	0.13mg/kg dw	09/21/01		GA0985
Total PCB	0.13mg/kg dw	09/21/01		GA0985
ID:24801000 Mat.Soil FIBERIGHT	10-0-4-1145H-08/3070	[]]		یے ہو یہ آپ ہ
PARAMETERS	RESULTS	DATE ANAT.	¥ 9 V	
· · · · · · · · · · · · · · · · · · ·				5 TT 24
Parcent Bolids	69%	09/11/01		WD6251
PCB (Aroglors) by EPA Method 808	2			
Aroclos 1016	an Imalian des	An Ins Ins		
aronior 1221		V9/21/01		GAQ985
Aroslov 1939	<v.ing dw<="" kg="" td=""><td>09/21/01</td><td></td><td>GA0985</td></v.ing>	09/21/01		GA0985
Arodor 1243	<0.1mg/kg dw	09/21/01		GA0985
ALOGICI 1242	<u.img dw<="" kg="" td=""><td>09/21/01</td><td></td><td>GA0985</td></u.img>	09/21/01		GA0985
WIDGTOL 7340	umg/kg dw	09/21/01		GA0985
ATOCIOT 1254	<0, img/kg dw	09/21/01		GA0985
ATOCLOF 1260	<0.lmg/kg dw	09/21/01		GA0985
TOCAL PCB	<0.1mg/kg dw	09/21/01		GA0985
ID.24801081 Mat.Soll FIBERIGHT	10 4-8 1145H 08/30701	Ğ	••••••••••••••••••••••••••••••••••••••	
PARAMETERS	RESULTS	DATE ANAL.	KEY	871.R.B

Percent Solids	81%	09/11/01		WD6251
PCB (Aroclers) by EPA Method 8082				
Arcelor 1016	el. 9ma/ka Ar	06/25/05		
Arcelor 1221	<0.9mg/kg dw	09/21/01		GA0985
Aroclor 1232	COMMINE IN	00/05/07 V7/41/41		GAO985
Aroclor 1242	~~.>	09/21/01		GA0985
Areclor 1248	svizing/kg GW	09/21/01		GA0985
Aroclor 1254	an same /	09/21/01		GA0985
Aroclor 1950	en sudika am	09/21/01		GA0985
Total PCR	<pre>cuismg/kg dw</pre>	09/21/01		GA0985
	KO'AWZ\KZ GM	09/21/01		GA0985
dw = Dry weight				

1 DATE : APPROVAL Upstate Laboratories, Inc. M Iab I.D.: 10170 QC:___ Analysis Results Report Number: 24801066 Sampled by: Client Client I.D.: EVERGREEN TESTING & ENV. SVCS. TD.24801082 MAE: Soll FIBERIGHT 110-4 1300H 08/30/01 G RESULTS PARAMETERS DATE ANAL, KEY FILE# ---------****** 83% Percent Solids 09/11/01 WD6251 PCE (Aroclors) by EPA Method 8082 Aroclor 1016 <0.1mg/kg dw 09/21/01 GA0985 Aroclor 1221 <0.1mg/kg dw 09/21/01 GA0985 Aroolor 1232 <0.lmg/kg dw 09/21/01 GA0985 Aroclor 1242 Aroclor 1248 <0.1mg/kg dw <0.1mg/kg dw 09/21/01 GA0985 09/21/01 GA0985 <0.1mg/kg dw <0.1mg/kg dw Aroclor 1254 09/21/01 GA0985 Argelor 1260 09/21/01 GA0985 Total PCB <0.1mg/kg dw 09/21/01 GA0985 ID:24801083 Mat:Soil FIBERIGHT 11 4-6 1300H 08/30/01 G PARAMETERS RESULTS DATE ANAL. KEY FILR# _ _ _ _ _ _ _ _ -------------..... Percent Solids 84% 09/11/01 WD6251 PCB (Aroclors) by EPA Method 8082 Aroclor 1016 <0.lmg/kg dw 09/21/01 GA0985 <0.1mg/kg dw <0.1mg/kg dw Aroclor 1221 09/21/01 GA0985 09/21/01 Aroclor 1232 GA0985 Aroclor 1242 <0.lmg/kg dw 09/21/01 GA0985 Aroclor 1248 <0.1mg/kg dw 09/21/01 GA0985 Aroclor 1254 09/21/01 <0.1mg/kg dw GA0985 Arcelor 1260 <0.1mg/kg dw 09/21/01 GA0985 Total PCB <0.1mg/kg dw 09/21/01 GAOS85 ID:24801084 MAE:Soil FIBERIGHT - - - - 12 0-4 1315H 08/30701 G ------PARAMETERS RESULTS DATE ANAL. Key FILE# --------.... -----Percent Solids 85% 09/11/01 WD6251 FCB (Aroclors) by EPA Method 8082 Aroclor 1016 <0.lmg/kg dw 09/21/01 GA0985 Aroclor 1221 <0.lmg/kg dw 09/21/01 QA0985 Arcelor 1232 Arcelor 1242 <0.1mg/kg dw 09/21/01 GA0985 <0.1mg/kg dw 09/21/01 GA0985 Aroclor 1248 <0.1mg/kg dw 09/21/01 GA0985 <0.1mg/kg dw Aroclor 1254 09/21/01 GA0985 Aroclor 1260 0.88mg/kg dw 09/21/01 GA0985 Total PCB 0.88mg/kg dw 09/21/01 GA0985

and the second state and the same warman and

NET CO COUL TOL TOTAL THE OF STATE CONTRACTOR

DATTER /

DATE: / /				
Upstate Laboratories, Inc.	APPROVAL:			-
Report Number: 24801056 Client I.D.: EVERGREEN TESTING & ENV. SVC5.	Sampled by	Sab I.D.: 10176 71 Client)	
ID. 24801085 Mat. Soll FIBERIGHT	124-6-1315H 08/3070	ī ē		
Parameters	RESULTS	DATE ANAL.	KEY	FILE#
Persent Solids	84%	09/11/01		WD6251
PCB (Aroclors) by EPA Method 608	2			·.
3mod of 1075	-0 Imm/liter des	00/21/01		
Aroc107 1221		09/21/01		GAUSSS
Arocler 1232	<0.1mg/kg dw	Dg/21/01		GAUSSS
hroni 0r 1242	<0.1mg/kg dw	09/21/01		GAO985
Arod OT 1248	<0.1mg/kg dw	03/21/01		GAUSS
Augelow 1254	c0 1mg/kg dw	00/31/01		GAUSSS
Arocator 1260	<0 1mg/kg GH	09/21/01		GAUSS
Total PCB	<0.lmg/kg dw	09/21/01		GA0985 GA0985
ID;24801086 Mat: Boll FIBERICHT	13 0-4 1330H 08/3070	īg		
Parameters	RESULTS	DATE ANAL.	KEY	FILE#
aussepses 19 Marsan Maild da				
bercent potida	011	09/11/0 <u>1</u>		WD6251
PCB (Aroclors) by FPA Method 808;	2.			
· · · · · · · · · · · · · · · · · · ·				
Arodior 1016	<0.lmg/kg dw	09/20/01		GA0986
Aroclor 1221	<0, img/kg dw	09/20/01		GA0986
Arcolor 1232	<0, img/kg dw	09/20/01		GA0986
Aroclor 1242	<0.lmg/kg dw	09/20/01		GY0382
Aroclor 1248	<0, img/kg dw	09/20/01		GA0986
Aroclor 1254	<0.lmg/kg dw	09/20/01		GA0986
Aroclor 1260	0.38mg/kg dw	09/20/01		GA0986
Total PCB	0.38mg/kg dw	09/20/01		GA0986
ID:24801057 Mat.Boil FIBERIGHT	13 4-6 1330H 08/30/01			
Farameters	RESULTS	DATE ANAL.	Key	FILE#
Percent Solids	76%	09/11/01		
PCB (Arodlers) by RPA Method 8082		,,		WD0231
Aroclor 1016	<0.1mg/kg dw	09/20/01		GAUSSE
Aroclor 1221	<0.lmg/kg dw	09/20/01		GAOSAS
Aroclor 1232	<0.1mg/kg dw	09/20/01		GAOSA
Aroclor 1242	<0.1mg/kg dw	09/20/01		GADASE
Aroclor 1248	<0.1mg/kg dw	09/20/01		GADGES
Aroclor 1254	<0.1mg/kg dw	09/20/01		GAOSSE
Aroclor 1260	3.4mg/kg dw	09/20/01		G10500
Total PCB	3.4mg/kg dw	09/20/01		GA0986

DEFTCOTOUL IUE IU:44 DI DIDITIL ENDINISTIC

DATE: / /

Upstate Laboratories, Inc.	APPROVAL:				
ADALYSIN KONULUS Demonia Numbers 64863655	$\overline{\sigma_{G_1}} - \overline{f_2} - \overline{f_2}$	· · · · · · · · · · · · · · · · · · ·		·	
Client I.D.: EVERGREEN TESTING & ENV. SVC:	5. Sampled by	Lab I.D.; 10170 Sampled by: Client			
ID:24801091 Mat.Soll FIBERIGHT	15 4-6 1400H 08/30/0				
PARAMETERS	RESULTS	DATE ANAL.	KRY	FILE#	
****		********			
Percent Solids	86%	09/11/01		WD6251	
PCB (Aroclorg) by EPA Method 8	082			~	
1015					
100101 1015	<o indication<="" td=""><td>09/21/01</td><td></td><td>GA0986</td></o>	09/21/01		GA0986	
Brealow 1933	<v.img dw<="" kg="" td=""><td>09/21/01</td><td></td><td>GAD986</td></v.img>	09/21/01		GAD986	
trolog 1347	<v.img dw<="" kg="" td=""><td>09/21/01</td><td></td><td>GA0986</td></v.img>	09/21/01		GA0986	
Arealar 1949	<u.ing dw<="" kg="" td=""><td>09/21/01</td><td></td><td>GA0986</td></u.ing>	09/21/01		GA0986	
5 manifest 1220	<v:img dw<="" kg="" td=""><td>09/21/01</td><td></td><td>GA0986</td></v:img>	09/21/01		GA0986	
VIDCTOL 1224	<0.lmg/kg dw	09/21/01		GA0986	
ALCOLOT 1360	<0,lmg/kg dw	09/21/01		GA0986	
Total PCB	<0.lmg/kg dw	09/21/01		GA0986	
ID:24501092 Mat:Soil FIBERIGHT	16 0-4 1415H 08/3070	18			
Parameters	RESULTS	DATE ANAL.	XEY	FILE#	
Percent Solids	6 8 4	09/12/01		WD6255	
PCB (Aroclors) by EPA Method 8	082				
Aroclor 1015	<0.lmg/kg dw	09/21/01		020000	
Aroclor 1221	<0.1mg/kg dw	09/21/01		GLUSOG	
Aroclor 1232	<0.1mg/kg.dw	09/21/01	·	GAUSSS	
Aroclor 1242	<0.lmg/kg dw	09/21/01		040986	
Aroclor 1248	<0.1mg/kg dw	00/21/01		GAUSSE	
Aroclor 1254	c0. 1mg/kg dw	09/01/01		GY0382	
Aroclar 1260	c0.1mg/kg dw	09/21/01		GA0986	
Total PCB	an Imalia da	09/21/01		GA0986	
	<0.1mg/kg dw	09/21/01		GA0986	
ID:24801093 Mat:Scil FIBERIGHT	16 4-6 1415H 08/30/01				
PARAMBTERS	RESULTS	DATE ANAL.	KEY	FILE#	
		*******		******	
Furdent Solids	88£	09/12/01		WD6255	
PCB (Aroclors) by EPA Method 80	82	. •			
· · · · · · · · · · · · · · · · · · ·					
Aroclor 1016	c0.09mm/km due	00/01/01			
Aroclor 1221	<0.09mg/kg dw	42/AL/V2 78/94 /A4		GA0986	
Arcelor 1232	c0.09mm/ba 2	V9/21/01		GAD986	
Aroclor 1242	co.comy/ng dw	03/37/07		GA0986	
Aroclor 1248		09/21/01		GA0986	
Aroclor 1254		09/21/01		Ga0986	
Arcolor 1260		09/21/01		GA0986	
Total PCB		09/21/01		GA0986	
	 /ul>	09/21/01		GA0986	
dw = Dry weight					

1 1 APPROVAL: Upstate Laboratories, Inc. 0C, N - Lab I.D.: 10170 Analysis Results Report Number: 24801065 Client I.D., EVERGREEN TESTING & ENV. SVCS. Sampled by: Client ID.24801054 Mat. E011 FIBERIGHT 170-4 1430H 08/30/01 G RESULTS PARAMETERS DATE ANAL. KEY FILE# -------------------..... Percent Solida 59% 09/12/01 WD6255 FCE (Aroclorg) by EFA Method 8082 Aroclor 1015 <0.1mg/kg dw 09/21/01 GA0986 Aroclor 1221 <0.1mg/kg dw 09/21/01 GAOARE Aroclor 1232 <0.1mg/kg dw 09/21/01 GA0986 <0.1mg/kg dw Aroclor 1242 09/21/01 GA0986 Aroclor 1248 <0.1mg/kg dw 09/21/01 GY0986 Aroclor 1254 <0.1mg/kg dw 09/21/01 GAOSAS Aroclor 1260 0.69mg/kg dw 09/21/01 GA0986 Total PCB 0.69mg/kg dw 09/21/01 GA0985 ID:24601095 Mat: Soil FIBERIGHT 174-51430H 08/30/01 G ----PARAMETERS RESULTS DATE ANAL. KEY FILE# ---..... Parcent Solids 86% 09/12/01 WD6255 PCB (Arcelors) by EPA Method 8082 Arodlor 1016 <0.lmg/kg dw 09/21/01 GA0986 Aroclor 1221 <0.1mg/kg dw 09/21/01 GAUSSE Arcolor 1232 <0.1mg/kg dw 09/21/01 GA0986 Aroclor 1242 <0.1mg/kg dw 09/21/01 GA0986 Aroclor 1248 <0.1mg/kg dw 09/21/01 GA0986 Aroclor 1254 <0.1mg/kg dw 09/21/01 GA0985 Aroclor 1260 <0.lmg/kg dw 09/21/01 GADGRE Total PCB <0.1mg/kg dw 09/21/01 GA0986 ID:24601096 Mat.Soll FIBERIGHT 18 0-4 1445H 08/30/01 G PARAMETERS RESULTS DATE ANAL. KEY FILE# ------------Percent Solids 84% 09/12/01 WD6255 FCB (Aroclors) by EFA Method 8082 -----Aroclor 1016 <0.1mg/kg dw 09/21/01 GA0986 Aroclor 1221 <0.1mg/kg dw 09/21/01 GA0986 Aroclor 1232 <0.1mg/kg dw 09/21/01 GA0986 Aroclor 1242 <0.1mg/kg dw 09/21/01 GA0986 Aroclor 1248 <0.1mg/kg dw 09/21/01 GA0986 Aroclor 1254 <0.1mg/kg dw 09/21/01 GAOSSE Arcelor 1260 <0.1mg/kg dw 09/21/01 GA0986 Total PCB <0.1mg/kg dw 09/21/01 GA0986

dw . Dry weight

DATE:

DATE Upstate Laboratories, Inc. AFFRQVAL : QC:_Y' - IND I.D.: 10170 Analysia Results Report Number: 24801065 Client I.D.: EVERGREEN TESTING & ENV. SVCS. Sampled by: Client 18 4-6 1445H 08/30701 G ID:24801097 Mat.Soll FIBERIGHT PARAMETERS RESULTS DATE ANAL. KEY FILE# --------------***** Percent Solids 83% 09/12/01 WD6255 PCB (Aroclors) by EPA Method 8082 Arcelor 1016 <0.1mg/kg dw 09/21/01 GA0986 Aroclor 1221 <0.1mg/kg dw 09/21/01 GA0986 Arodlor 1232 <0.1mg/kg dw 09/21/01 GA0986 Aroolor 1242 <0.lmg/kg dw 09/21/01 GA0986 Aroclor 1248 <0.1mg/kg dw 09/21/01 GA0986 Aroclor 1254 <0,1mg/kg dw 09/21/01 GA0986 Aroclor 1260 17mg/kg dw 09/21/01 GA0986 Total PCB 17mg/kg dw 09/21/01 GA0985 ID/24801098 MaE:Soil FIBERIGHT 19 0-4 1520H 08/30701 G PARAMETERS RESULTS DATE ANAL. Key FILE# ----------... Percent Solids 83% 09/12/01 WD6255 TCL Volatiles by EPA Method 8260 ----Chloromethane <7ug/kg dw 09/12/01 01 VM3618 Bromomethane 09/12/01 01 <7ug/kg dw VM3618 Vinyl Chloride <5ug/kg dw 09/12/01 01 VM3518 Chloroethane <7ug/kg dw 09/12/01 01 VM3618 Mathylene Chloride <7ug/kg dw 09/12/01 01 VM3618 Adetono <24ug/kg dw 09/12/01 01 VM3618 Carbon Disulfide <7ug/kg dw 09/12/01 01 VM3618 1,1-Dichloroethene <7ug/kg dw 08/12/01 01 VM3618 1,1-Dichloroethane <7ug/kg dw 09/12/01 01 VM3618 trans-1,2-Dichloroethene <7ug/kg dw 09/12/01 01 VM3618 cis-1,2-Dichloroethene <7ug/kg dw 09/12/01 01 VM3518 Chloroform <7ug/kg dw 09/12/01 01 VM3616 1,2-Dichloroethane <7ug/kg dw 09/12/01 01 VM3618 2-Butanone <24ug/kg dw 09/12/01 01 VM3618 1,1,1-Trichloroethane <7ug/kg dw 09/12/01 01 VX3618 Carbon Tetrachlorida <7ug/kg dw 09/12/01 -01 VM3518 Bromodichloromethane <7ug/kg dw 09/12/01 01. VM3618 1,2-Dichloropropane <7ug/kg dw 09/12/01 01 VM3618 cig-1,3-Dichloropropene <7ug/kg dw 09/12/01 01 VM3618 Trichloroethene <7ug/kg dw 09/12/01 01 VM3618 Dibromochloromethane <7ug/kg dw 09/12/01 01 VM3618 1,1,2-Trichloroethane

<7ug/kg dw

<7ug/kg dw

<7ug/kg dw

<7ug/kg dw

09/12/01

09/12/01

09/12/01

09/12/01

OI

01

01

01

VM3618

VM3618

VM3618

VN3618

dw = Dry weight

Bonzene

Bromoform

trang-1,3-Dichloropropane

DATE: 1 1

Upntate Laboratories, Inc.	APPROVAL: QC:Lab I.D.: 10170 Sampled by: Client				
Report Number: 24801066 Client I.D.: EVERGREEN TESTING & ENV. SVCS.					
ID:24801098 Mat:Soll _ FIBERIGHT	19 0-4 1520H 08/3070	īg	••• ••• ••		
PARAMETERS	RESULTS	DATE ANAL.	rey	PILE#	
· · · · · · · · · · · · · · · · · · ·					
4-Methyl-2-pentanone	<24ug/kg dw	09/12/01	01	V243618	
2-Hexanone	<24ug/kg dw	09/12/01	01	VX361.8	
Tetrachloroethene	<7ug/kg dw	09/12/01	01	V243618	
1,1,2,2-Tetrachlorosthans	<7ug/kg dw	09/12/01	01	VX3618	
Toluene	<7ug/kg dw	09/12/01	01	VM3618	
Chlorobenzene	<7ug/kg dw	09/12/01	01	VM3618	
Ethylbenzene	<7ug/kg dw	09/12/01	01	V243618	
Styrene	<7ug/kg dw	09/12/01	01	V M361 8	
m,p-xylane	<7ug/kg dw	09/12/01	01	VM3618	
o-Xylene	<7ug/kg dw	09/12/01	01	VM3618	
TCL Semivolatiles by EPA Method 827	0				

Phenol	<100ug/kg dw	09/25/01		SA3027	
bis(2-Chloroethyl)ether	<400ug/kg dw	09/25/01		SA3027	
2-Chlorophenol	<400ug/kg dw	09/25/01		8 A 3027	
1,3-Dichlorobensené	<400ug/kg dw	09/25/01	· · · · •	8A3027	
1,4-Dichlorobenzene	<100ug/kg dw	09/25/01		SA3027	
1,2-Dichlorobenzene	<400ug/kg dw	09/25/01		SA3027	
2-Methylphenol	<subug dw<="" kg="" td=""><td>09/25/01</td><td></td><td>SA3027</td></subug>	09/25/01		SA3027	
2,2'-DXyD15(1-Chloropropane)	<400ug/kg dw	09/25/01		SX3027	
4-Machylphendi		09/25/01		SA3027	
n-witrosodinpropylamine		09/25/01		SA3027	
HEXACALDROBINANC		09/25/01		SA3027	
Nicrobenzene		09/25/01		EA3027	
Teoporone		09/25/01		SA3027	
2-Nitrophenol	K400ug/kg cw	09/25/01		SA3027	
2,4-Dimethylphenol	<400ug/kg dw	09/25/01		SA3027	
Dis(2-Chiorosthoxy)methane		09/25/01		SA3027	
2,4-Didniorophenoi	<400ug/kg tw	09/25/01		SA3027	
1, 2, 4-ITICALOFODEnzene		09/25/01		SA3027	
Vabding Custome		09/25/01		SA3027	
4 - Chididenijine Novrski snakukađi svo		09/25/01		513027	
		09/25/01		EA3027	
2 Average and the 2 - as	<*************************************	09/25/01		SA3027	
2-Methyinaphchalene	< UUUg/kg dw	09/25/01		SA3027	
Ackachtorocyclopentadiene	<pre><pre>veroug/kg dw</pre></pre>	09/25/01		SA3027	
2 / 2 mmi - Linne		09/25/01		SA3027	
2,7,3-171CRLOFORMOL	<pre><pre><pre>studies dw</pre></pre></pre>	09/25/01		SA3027	
2 - Chioronaphinaighe	<fulleying dw<="" td=""><td>09/25/01</td><td></td><td>8A3027</td></fulleying>	09/25/01		8 A 3027	
2-NICEOGNILING	<1000ug/kg dw	09/25/01		SA3027	
y a an a b p prijer - ntme cult ductg 1968	<400ug/kg dw	09/25/01		SA3027	
ACCHIPTINATE A		09/25/01		SA3027	
2.0-DINICIOLUENE A.Vitananilian		09/25/01		SA3027	
- ALCIGENILING	Kannnnälkä qm	09/25/01		SA3027	

DATE: / /

Opstate Laboratories, Inc. Analysia Recults Report Number: 24801066 Client I.D., EVERGREEN TESTING & ENV. SVCS.

APPROVAL : QC: Lab I.D.: 10170 Sampled by: Client

ID.24801098 Mat, Soil FIBERIGHT

- 19 0-4 1520H 08/30/01 G

PARAMETERS	RESULTS	DATE ANAL.	Key	file#
	per an ter any particular ter			
Acenaphthene	<400ug/kg dw	09/25/01		5A3027
2.4-Dinitrophenol	<4000ug/kg dw	09/25/01		S N 3027
4-Nitrophenol	<4000ug/kg dw	09/25/01		EA3027
Dibenzofuran	<400ug/kg dw	09/25/01		SA3027
2.4-Dinitrotoluene	<400ug/kg dw	09/25/01		SA3027
Diethylphthalate	<400ug/kg dw	09/25/01		SA3027
4. Chlorophenylphenylether	<400ug/kg dw	09/25/01		SA3027
Fluorene	<400ug/kg dw	09/25/01		SA3027
e-Nitroaniline	<4000ug/kg dw	09/25/01		EA3027
2-Methyl-4,6-dinitrophenol	<4000ug/kg dw	09/25/01		SA3027
n-Nitrosodiphenylamine	<400ug/kg dw	09/25/01		SA3027
4-Bromophanylphenylather	<400ug/kg dw	09/25/01		6 A 3027
Hexachlorobenzene	<400ug/kg dw	09/25/01		SA3027
Pentachlorophenol	<800ug/kg dw	09/25/01		SA3027
Phonanthrane	<400ug/kg dw	09/25/01		SA3027
Anthracene	<400ug/kg dw	09/25/01		SA3027
Carbazolo	<400ug/kg dw	09/25/01		SA3027
di-n-butylphthalato	<400ug/kg dw	09/25/01		SA3027
Fluoranthene	<400ug/kg dw	09/25/01		SA3027
Pyrone	<400ug/kg dw	09/25/01		5A3027
nutvibenzviphthalate	<400ug/kg dw	09/25/01		SA3027
3.3'-Dichlorobenzidine	<400ug/kg dw	09/25/01	•	BA3027
Benzo (a) anthracene	<400ug/kg dw	09/25/01	•	6A3027
Chrysena	<400ug/kg dw	09/25/01		SA3027
hig (2-Ethylhexyl) phthalate	<400ug/kg dw	09/25/01		SA3027
di-n-octylphthalate	<400ug/kg dw	09/25/01		8A3027
Benzo (b) fluoranthene	<400ug/kg dw	09/25/01		SA3027
Benzo (k) fluoranthene	<400ug/kg dw	09/25/01		SA3027
Bonzo (a) pyrene	<400ug/kg dw	09/25/01		SA3027
Indeno(1,2,3-cd)pyrene	<400ug/kg dw	09/25/01		SA3027
Dibenzo (a, h) anthracene	<400ug/kg dw	09/25/01		SA3027
Benzo (ghi) porylene	<400ug/kg dw	09/25/01	10	SA3027
PCB (Aroclors) by EPA Method 8082				
Aroclor 1016	<0.lmg/kg dw	09/21/01		GA0986
Aroclor 1221	<0.lmg/kg dw	09/21/01		GA0986
Aroclor 1232	<0.lmg/kg dw	09/21/01		GA0986
Aroclor 1242	<0.lmg/kg dw	09/21/01		GA0986
Aroclor 1248	3.7mg/kg dw	09/21/01		GA0986
Aroclor 1254	<0.lmg/kg dw	09/21/01		GAOSSE
Aroclor 1260	0.42mg/kg dw	09/21/01		GA0985
Total FCB	4.lmg/kg dw	09/21/01		GA0986

DEL-CO-CONT TOR TOTAL UN OFDITTE LI MINI I

UATEL					
Whetate Laboratories. Inc.		Approval:			
Analysi	Le Rogults	8c1			
Report	Number, 24801066	E	ab I.D.: 10170)	
Client	I.D.: EVERGREEN TESTING & ENV. SVCS.	Sampled by	: Client		
ÏD72480	DIOSS MAL:SoIL FIBERICHT	19 4-6 1520H 08/3070] <u>a</u>		
	PARAMETERS	results	DATE ANAL.	Key	PILE#
	Percent Solids	86%	09/12/01		WD6255
	PCB (Aroclors) by EPA Method 5082				т
	aroniot 1016	<0.1mg/kg dw	09/21/01		GLOBE
	Arodier 1221	c0.1mg/kg dw	09/21/01		G10966
	hunging 1999	-0.1mg/kg dw	09/21/01		\$3 ABBE
	had of 1242	-0.1mg/kg dw	09/21/01		010380 01000c
	Arociam 1249		10/91/01		960300 (1000c
	ALOUTOT 1924		09/21/01		G10360
	AFOCLOF 1495		08/21/01		GAUSSS
	Total PCB	<0,1mg/kg dw	09/21/01		GAUSES
ID:3480	1100 Mat.Foil FIBERIGHT	20 0-4 1600H 08/3070	ī ā ·		
	DADAMETERS	RESULTS	DATE ANAL.	KRY	\$77. 2 #
		****			******
	Parcent Solids	84%	09/12/01		WD6255
	Petroleum, BPA Method 8021				
	· · · · · · · · · · · · · · · · · · ·				1997 - 19
	Benzene	<99ug/kg dw	09/10/01	05	VA5918
	Ethylbenzene	<99ug/kg dw	09/10/01	05	VA5918
~	Toluene	<99ug/kg dw	09/10/01	05	VA5918
	m,p-xyleno	150ug/kg dw	09/10/01		VA5918
	o-Xylene	<99ug/kg dw	09/10/01	05	VA5918
	Isopropylbenzene	<99ug/kg dw	09/10/01 ^	05	VA5918
	n-Propylbønzene	900ug/kg dw	09/10/01		VA5918
	p-Isopropyltoluene	<99ug/kg dw	09/10/01	05	VA5918
	1,2,4-Trimethylbenzene	<99ug/kg dw	09/10/01	05	VA5918
	1,3,5-Trimethylbenzene	590ug/kg dw	09/10/01		VA5918
	n-Butylbenzene	980ug/kg dw	09/10/01		VAS918
	sec-Butylbenzene	1100ug/kg dw	09/10/01		VASGIA
	t-Butylbenzene	130ug/kg dw	09/10/01		VAS918
	Naphthalene	320ug/kg dw	09/10/01		VASQIR
	MTBE	<2000ug/kg dw	09/10/01	05	VA5918
	PCB (Aroclors) by EPA Method 8082				
	Aroclor 1016	<28mg/kg dw	09/21/01	01	GA0986
	Aroclor 1221	<28mg/kg dw	09/21/01	01	GA0986
	Arcolor 1232	<28mg/kg dw	09/21/01	01	GA0985
	Aroclor 1242	<28mg/kg dw	09/21/01	01	GAOSSE
	Aroclor 1248	2500mg/kg dw	09/21/01	01	GANGOL
	Aroclor 1254	<28mg/kg dw	09/21/01	01	G20202
	Aroclor 1260	1000mg/kg dw	09/21/01	01	G10200
	Total PCB	3500mg/kg dw	09/21/01	01	GA0986
		-	•		

DATE: 11 Upstate Laboratories, Inc. APPRQVAL:____ QG:_¥ -Analysis Resulto Lab I.D.: 10170 Report Number: 24801066 Client I,D,: EVERGREEN TESTING & ENV. SVC6. Sampled by: Client ID. 24801100 Mat. Soll FIBERIGHT 20 0-4 1600H 08/30/01 G - -PARAMETERS RESULTS DATE ANAL, **KRY** FILE# ---------------. ID:24801101 Mat:Soil FIBERIGHT 20 4-6 1600H 08/30701 G PARAMETERS RESULTS DATE ANAL. KEY FILE# -------------****** Percent Solids 81% 09/12/01 WD6255 PCB (Aroclors) by EPA Method 8082 -----Aroclor 1016 <0.lmg/kg dw 09/21/01 GA0986 <0.lmg/kg dw Aroclor 1221 09/21/01 GA0986 Aroclor 1232 <0.1mg/kg dw 09/21/01 GA0986 Arcelor 1242 <0.1mg/kg dw 09/21/01 GA0986 Aroclor 1248 5.9mg/kg dw 09/21/01 GA0986 Arcelor 1254 <0.1mg/kg dw 09/21/01 GA0986 Aroclor 1260 2.5mg/kg dw 09/21/01 G20986 Total PCB 8.4mg/kg dw 09/21/01 GY0389 ID.24801102 Mat. Boil FIBERIGHT 214-61630H 08/30/01 G -----PARAMETERS RESULTS DATE ANAL. KEY FILR# ---------------Porcent Solids 82% 09/12/01 WD6255 PCB (Aroclors) by EPA Method 8082 Aroclor 1016 <0.lmg/kg dw 09/21/01 GA0986 Aroclor 1321 <0.lmg/kg dw 09/21/01 GA0986 Aroclor 1232 <0.lmg/kg dw 09/21/01 GA0986 Aroclor 1242 <0.lmg/kg dw 09/21/01 GA0986 Arocler 1248 <0.1mg/kg dw 09/21/01 GA0986 Arcelor 1254 <0.1mg/kg dw 05/21/01 GAOSRE Aroclor 1260 0.66mg/kg dw 09/21/01 GA0986 Total FCB 0.66mg/kg dw 09/21/01 GA0986 ID:24801103 Mat.Soil FIBERIGHT - 23 4-8 0915H 08/31701 G - - - -PARAMETERS RESULTS DATE ANAL. Key FILE# -----~~** Percent Solida 76% 09/12/01 WD6255 Petroleum, EPA Method 6021 ----Benzene <110ug/kg dw 09/11/01 05 VA5918 Ethylbenzene 1200ug/kg dw 09/11/01 **VA5918** Toluena <110ug/kg dw 09/11/01 05 VA5918 m,p-xylane <110ug/kg dw 09/11/01 05 VA5918

WHE HAVE LODE IN THE SHE OF DESIGN MEMORY OFFICE

iw . Dry weight