

Phase II Environmental Site Assessment

1146 Seneca Street Buffalo, NY 14240

July 2008

Report Prepared By:

Malcolm Pirnie, Inc.

50 Fountain Plaza Suite 600 Buffalo, NY 14202 716-667-0900

Contents

1. Intro	oduction	1-1
1.1.	Project Purpose and Scope	1-1
	Site Description and Location	
2. Des	scription of Field Activities	2-1
2.1.	General	2-1
2.2.	Soil Boring Program	2-1
2.3	Environmental Sampling Program	2-2
	2.3.1 Subsurface Soil Sampling	2-2
3. Inve	estigation Results	3-1
3.1.	Subsurface Conditions	3-1
	3.1.1. Site Geology	
	3.1.2. Site Groundwater	3-1
3.2.	Analytical Results	3-2
	3.2.1. Subsurface Soil/Fill Results	3-2
<u>4. Con</u>	nclusions	4-1
4.1.	Subsurface Soil/Fill	4-1

List of Figures

<u>Figure</u>	Figure No. Description							
1-1	Site Location Map	1-1						
1-2	Borehole Sample Location Map							

List of Tables

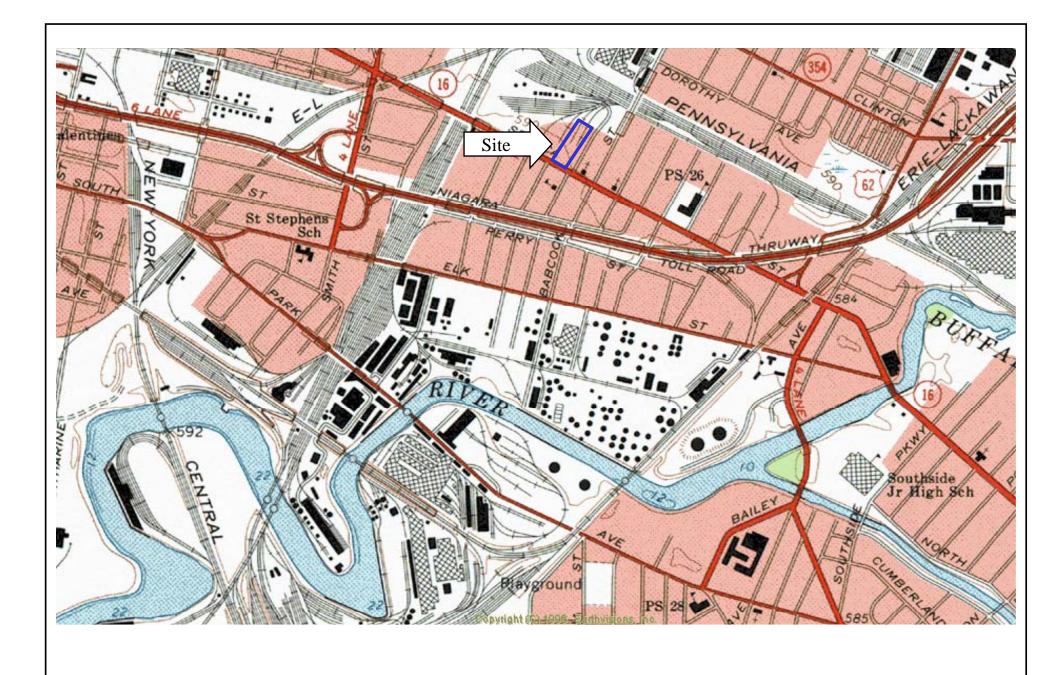
Table No.	Description	Follows Page
2-1	Summary of Samples Collected	2-1
2-2	Borehole Summary	2-2
3-1	Summary of Subsurface Soil Analytical Results - Organics	3-2
3-2	Summary of Subsurface Soil Analytical Results - Inorganics	3-2

Appendices

- A. Stratigraphic Borehole Logs
- B. Historic Sampling Location Map
- C. Analytical Report Laboratory Data

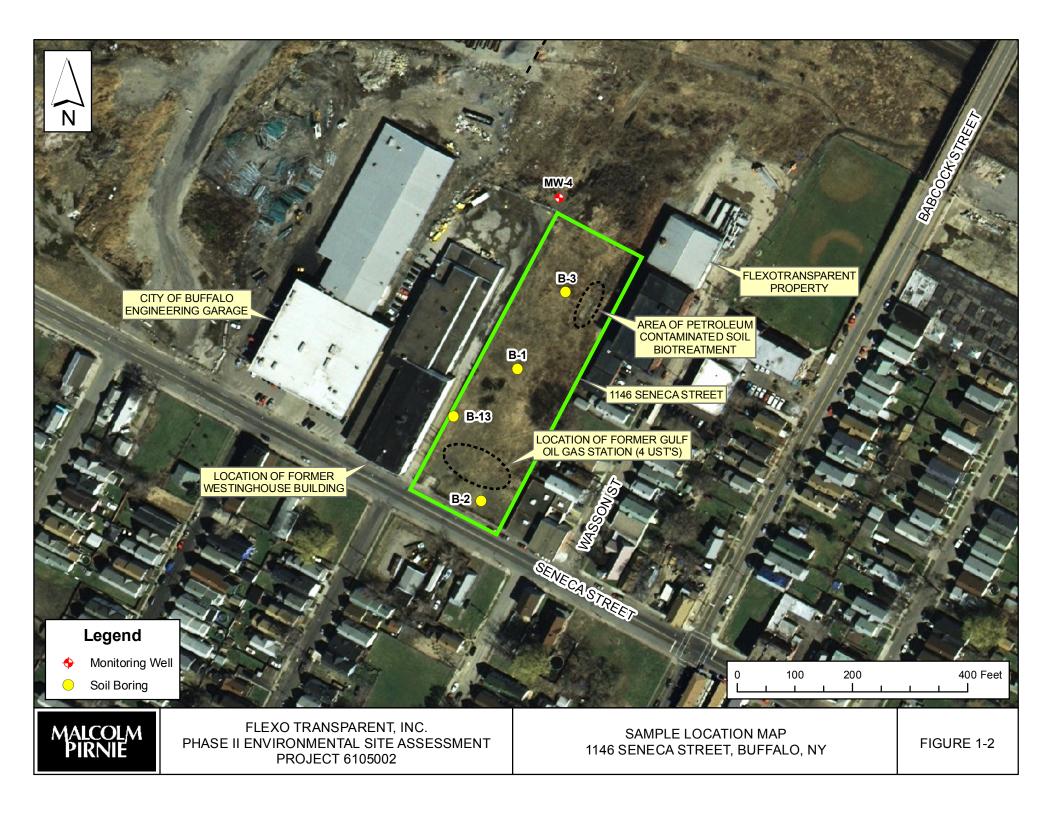
1.1. Project Purpose and Scope

This report documents the findings of a Phase II Environmental Site Assessment (ESA) conducted at 1146 Seneca Street, Buffalo, NY to supplement data collected previously during a Phase I ESA (Malcolm Pirnie, 2008). The purpose of this Phase II ESA was to better characterize subsurface environmental conditions as an element of a due diligence effort prior to the possible sale and transfer of the property to Flexo Transparent, Inc. (Flexo) This report summarizes the field activities and results of subsurface investigation(s) completed during the time period of March 13-18, 2008 as well as a previous investigation completed during August 2001.


The 2008 investigation included the completion of four shallow soil borings and the collection of soil/fill materials for chemical analysis. A description of program methodologies and results of the investigation are summarized in sections 2.0 and 3.0.

1.2. Site Description and Location

As shown on Figure 1-1, the Site located at 1146 Seneca Street in Buffalo, New York consists of one parcel identified by Erie County's GIS website as Parcel 83422. The property which is approximately 2 acres in size is zoned "Vacant Industrial" and is overgrown with vegetation and tall shrubs. A rectangular concrete pad that measures approx. 125' x 20' is located on the property. Although the intended use of the pad is unknown, information obtained during the Phase I file review indicated that a bioremediation pad was formerly located on the 1146 Seneca Street property and was used for remediation of petroleum impacted soils excavated from an adjacent property.


Historic working operations at 1146 Seneca Street reportedly included use as a lumber yard, railroad yard, clay products manufacturing, and a gasoline filling station. A portion of the property may also have been used by Westinghouse and Eastern Electric for manufacture of transformers and machines. Existing conditions at the Site include a surrounding chain link fence and a locked access gate located along the southern portion of 1146 Seneca Street. An abandoned playground associated with the adjacent Seneca-Babcock Community Center is located in the southeastern portion of the property adjacent to foundation remnants of the former gas filling station. Flexo's manufacturing building is located adjacent to the northeastern portion of the 1146 Seneca Street property.

MALCOLM PIRNIE **SITE Location Map** 1146 SENECA STREET

FIGURE 1-1 PROJECT# 6105004 For purposes of this investigation, field activities were conducted to address potential environmental impacts stemming from historic work practices and activities that may have occurred on the 2 acre site. The area of investigation is shown on the Sample Location Map Figure 1-2.

2. Description of Field Activities

2.1. General

The field activities discussed within this section consists of those tasks performed during the March 2008, Phase II ESA. Tasks were conducted in accordance with an approved Scope of Work Task Order authorized December 10, 2007.

The investigation included a soil boring and sampling program that required completion of the following field tasks:

- Advancement of four soil borings
- Collection and analysis of four surface/subsurface soil/fill samples

Locations of all borehole and sampling points are illustrated on Figure 1-2. Detailed discussions of the purpose, methodologies, and results of each of the investigative activities are presented below. Analytical results are presented and discussed in Sections 3.0 and 4.0.

2.2. Soil Boring Program

A soil boring program was conducted at the Site from March 13 to 17, 2008. The drilling program was conducted to supplement previous investigation data collected to characterize the physical and chemical composition of the Site overburden soil/fill. The 2008 program facilitated the collection of soil samples for chemical analysis and included the advancement of four soil borings.

To facilitate the collection of requisite sample volumes, soil/fill borings were advanced from the ground surface and extended through the fill unit into the underlying native soil material at each boring location. Sample collection was based on screening criteria that included visual, olfactory and photo—ionization detector (PID) measurements. Subsequent to sample submittal for chemical analyses, the soil/fill analytical results were compared to the 6 NYCRR SubPart 375-6 Soil Cleanup Objectives (SCOs) for restricted commercial and restricted industrial land use.

A total of four soil borings were advanced at locations designed to characterize a previously recognized environmental condition or spatially located within the Site perimeter. The borehole locations designated B-1, B-2, B-3 and B-13 are shown on Figure 1-2. All borings were advanced through unconsolidated fill/overburden deposits using Geoprobe direct push macro core sampling techniques. Continuous macro core

soil samples were collected at four foot intervals during direct push advancement at each borehole location. Each soil core was screened for volatile organic vapors and described on stratigraphic borehole logs. Soil samples were collected from the ground surface through the soil/fill unit to a depth within the underlying native soil material. Accordingly, the boreholes were typically advanced to a depth of approximately 4 to 8 feet below ground surface (bgs). The stratigraphic borehole logs with overburden descriptions are provided in Appendix A.

The total volatile organic vapors detected in the soil samples were measured using a Mini-Rae photo-ionization detector (PID) and recorded on the stratigraphic borehole logs. As shown on the borehole logs, PID measurements were not generally detected above background levels in either the soil/fill or native soil materials.

A tabulated summary of the total depth of each soil boring, depth to water, if/when encountered, PID measurements, and intervals selected for sample analyses are presented in Table 2-1. A description of the geologic conditions encountered during the drilling program is provided in Section 3. Subsequent to advancement of the borehole to total depth, all soil borings were backfilled with soil materials collected during borehole advancement and/or a granular bentonite powder from the bottom of the boring to the ground surface.

2.3 Environmental Sampling Program

The environmental sampling program included the collection and analysis of surface/subsurface soil/fill material from soil borings. Soil samples collected during the investigation were sent to Test America, Inc. in Amherst, New York for analyses. Analytical results for the sampled media are discussed in the Investigation Results Section 3.

2.3.1 Subsurface Soil Sampling

The purpose of the soil boring program was to characterize the physical and chemical conditions of the subsurface soil/fill materials at the Site. One representative soil sample was submitted for chemical analysis from each borehole advanced during the investigation. As described above, soil materials were collected during borehole advancement using a two-inch diameter macro-core sampler. The macro-core barrel and cutting shoe were decontaminated prior to use at each borehole location using a solution of Alconox and potable water. Upon retrieval, each macro-core soil sample was screened with a photo ionization detector (PID) and described on boring logs by a Malcolm Pirnie geologist. Subsequent to recording PID measurements, a representative soil sample was collected from:

- The interval with the highest PID readings,
- Any interval with visual or olfactory evidence of contamination,

Table 2-1 Summary of Samples Collected 1146 Seneca Street Site Buffalo, NY

Sample ID	Date Collected	Sample Type	Sample Depth (FT)	Analysis
B-1	3/13/2008	Subsurface Soil/Fill	0.0 - 1.0'	VOCs, SVOCs, PCBs,
D-1	3/13/2000	Substitute Soli/Fili	0.0 - 1.0	TAL metals w/ cyanide
B-2	3/13/2008	Subsurface Soil/Fill	0.0 - 2.0'	VOCs, SVOCs, PCBs,
D-Z	3/13/2000	Subsurface Soli/Fill	0.0 - 2.0	TAL metals w/ cyanide
B-3	3/13/2008	Cubourfoos Coil/Cill	0.0 - 2.0'	VOCs, SVOCs, PCBs,
D-3	3/13/2006	Subsurface Soil/Fill	0.0 - 2.0	TAL metals w/ cyanide
B-13	3/17/2008	Cubourfoos Coil/Cill	0.0 - 1.5'	VOCs, SVOCs, PCBs,
D-13	3/11/2008	Subsurface Soil/Fill	0.0 - 1.5	TAL metals w/ cyanide

Notes:

B-1 = Soil Boring #1

VOCs = Volatile Organic Compounds SVOCs = Semi Volatile Organic Compounds

TAL = Target Analyte List
PCBs = Polychlorinated Biphenols
Dupl. #1 collected from soil boring B - 14

Prepared By jph Date: 6/23/08 Checked by jjr Date: 6/25/08 ■ The fill interval identified directly above the underlying native soil unit.

All samples were collected in laboratory supplied sample jars, placed on ice and submitted under chain of custody to Test America Laboratory for analysis of Target Compound List (TCL) Volatile Organic Compounds (VOCS), TCL Semi Volatile Organic Compounds (SVOCs), PCBs, TAL Metals and Total Cyanide.

A soil boring summary is presented on Table 2-2. Analytical results for the soil samples are discussed in detail in Section 3.0, Investigation Results.

Table 2-2 Phase II ESA Borehole Summary 1146 Seneca Street Site Buffalo, NY

Borehole/Test Pit Number	Date Drilled	Fill Thickness	Total Depth	Depth to Groundwater	Maximum PID Measurement / Comments
B-1	3/13/2008	0.6'	4'	NA	PID = 0.0 ppm
B-2	3/13/2008	1.0'	4'	NA	PID = 0.3 ppm
B-3	3/13/2008	2.3'	8'	NA	PID = 0.0 ppm
B-13	3/17/2008	0.6	8'	NA	PID = 0.0 ppm

Notes:

B-1 = Soil Boring #1

Dupl. #1 collected from soil boring B - 14

3. Investigation Results

The geology and hydrogeology of the Site is described using data collected from soil borings completed during this investigation and a previous investigation conducted in July/August 2001 (Evergreen letter report, Sept. 2001).

3.1. Subsurface Conditions

Subsurface conditions at the Site consist of fill materials underlain by an undifferentiated dark gray-brown silt and fine grained sand unit that transitions to a stiff clay unit with trace to little silt-sand laminae. Bedrock was not encountered during the investigation.

3.1.1. Site Geology

Fill Materials - Fill materials generally consisted of black-gray, fine to coarse grain sand with silt and trace clay admixed with Construction and Demolition (C&D) debris comprised of slag, concrete, brick and crushed stone/gravel. Fill thicknesses documented during the 2008 investigation ranged from 0.6' at borings B-1 and B-13 to a maximum of 2.3' at location B-3. A maximum fill thickness of 2.0' was measured at one borehole location (PH-25) advanced in the gas station/playground area during the 2001 investigation. Locations of the boreholes advanced during the 2001 investigation are shown on the Sample Location map included in Appendix B.

Native Soils –Dark gray-brown/black sand and silt with trace clay and fine gravel was identified immediately below the fill materials. When penetrated at depth, a stiff, dense olive to yellow-brown clay unit with stratified silt was encountered below the interbedded sand and is generally correlative across the Site. The clay unit has weak plasticity and contains trace amounts of silt and fine sand laminae that typify local glacio-lacustrine deposits.

3.1.2. Site Groundwater

Depth to groundwater was measured in temporary monitoring wells located adjacent to the Site during the March 2008 sampling event. With the exception of the temporary monitoring well MW-4 located immediately adjacent to the northwest corner of the Site, all borings were observed to be dry. Groundwater was observed at the ground surface at the MW-4 location.

Groundwater Flow - The depth to saturated water table conditions could not be determined because of the lack of groundwater identified at all but two off site drilling locations.

Based on the topography of the area and general character of the Site stratigraphy, shallow groundwater flow is assumed to have a general west to southwest flow component through the Site overburden material. Shallow groundwater flow could not be determined during this investigation and discharge was not observed on Site but is assumed to flow/discharge toward the Buffalo River located approximately 3,500 feet south-southwest of the Site.

3.2. Analytical Results

The nature and extent of contamination at the 1146 Seneca Street Site was characterized in part through collection and analysis of soil/fill samples collected during the 2001/2008 investigations. Analytical results discussed in this section are attached in Appendix B and summarized in Tables 3-1 and 3-2.

Analytical results for soil/fill samples were compared to the NYS Soil Cleanup Objectives (Restricted Commercial and Industrial Standards), December 2006.

3.2.1. Subsurface Soil/Fill Results

Chemical analyses of four subsurface soil samples collected at the Site during the March 2008 investigation identified only two metals at concentrations that exceed Restricted Industrial and/or Commercial NYSDEC SCO concentrations.

VOCs

As shown on Table 3-1, VOCs were not detected in subsurface soil/fill samples at concentrations in excess of applicable NYSDEC SCOs. However, methylene chloride commonly inferred to be a laboratory artifact, was detected at each sampling location.

It should be noted that the composited soil sample collected at PH-23 in the 4.0 to 8.0' bgs interval during the August, 2001 investigation identified low levels of petroleum related compounds. The detected VOC concentrations were below Restricted Industrial and/or Commercial SCO criteria.

SVOCs

Low SVOC concentrations were detected in soil samples collected at each of the borings except B-13. There were no detected concentrations that exceeded the SCOs for Restricted Industrial and/or Commercial use.

Poly-Chlorinated Biphenyl's (PCBs)

One PCB analyte, Aroclor 1260 was detected at boring location B-3 at a concentration (600 ug/kg) below the Restricted Commercial SCO of 1,000 ug/kg.

TABLE 3-1 Phase II ESA Analytical Results-Soil / Organics 1146 Seneca Street Buffalo, NY Flexo Transparent

Sample ID	Restricted Use Soi	I Cleanup Objectives					1	
Sample Depths (ft. bgs) Sample Date	Commercial	Industrial	B-1 (0.0-1.0') 3/13/2008	B-2 (0.0-2.0') 3/13/2008	B-3 (0.0-2.0') 3/13/2008	B-13 (0.0-1.5') 3/17/2008	PH-23 (4.0-8.0') 8/21/2001	TRIP BLANK 3/17/2008
Volatiles Organic Compounds (μg/kg)								•
Ethylbenzene	390,000	780,000					1200	
o-xylene	500,000 ^b	1,000,000 ^c					550	
n-propylbenzene	500,000 ^b	1,000,000 ^c					320	
n-butylbenzene	500,000 ^b	1,000,000 ^c					570	
Methylene chloride	500,000 ^b	1,000,000 ^c	6 J	4 J	7 J	10		
Semi-Volatiles Organic Compounds (μ	g/kg)							
2-Methylnaphthalene					24 J			-
Acenaphthene	500,000 ^b	1,000,000 ^c			18 J			-
Acenaphthylene	500,000 ^b	1,000,000 ^c			17 J			-
Anthracene	500,000 ^b	1,000,000 ^c	ND	18 J	55 J			-
Benzo(a)anthracene	5,600	11,000	310J	87 J	210 J			-
Benzo(a)pyrene	1,000 ^r	1,100	560 J	65 J	200 J			-
Benzo(b)fluoranthene	5,600	11,000	340 J	82 J	250 J			-
Benzo(ghi)perylene	500,000 ^b	1,000,000°	470 J	47 J	170 J			-
Benzo(k)fluoranthene	56,000	110,000	120 J	22 J	81 J			-
Carbazole					30 J			-
Chrysene	56,000	110,000	500 J	73 J	200 J			-
Dibenzo(a,h)anthracene	560	1,100	120 J	ND	38 J			-
Fluoranthene	500,000 ^b	1,000,000 ^c	290 J	150 J	420			-
Fluorene	500,000	1,000,000 ^c	ND	ND	19 J			-
Indeno(1,2,3-cd)pyrene	5,600	11,000	170 J	43 J	140 J			-
Naphthalene	500,000	1,000,000	ND	ND	18 J			-
Phenanthrene	500,000 ^b	1,000,000	140 J	78 J	260 J			-
Pyrene	500,000	1,000,000	500 J	120 J	340 J			-
PCB (μg/kg)			•				•	
Aroclor 1260	1,000	25,000	ND	ND	600	ND		-

Notes:

Blank -Indicates compound was analyzed for, but not detected above method detection limit.

- dash -Indicates analyte was not tested.
- J- Indicates an estimated value.
- -Bold value indicates exceedance of Industrial SCO
- -Shaded value indicates exceedance of Commercial SCO

Restricted Use Footnotes

- b The SCOs for commercial use were capped at a maximum value of 500 ppm.

c - The SCOs for industrial use and the protection of groundwater were capped at a maximum value of 1000 ppm. Department of Health rural soil survey, the rural soil back ground concentration is used as the Track 2 SCO value for this site.

TABLE 3-2 Phase II ESA Analytical Results-Soil / Inorganics 1146 Seneca Street Buffalo, NY Flexo Transparent

Sample ID	Restricted Use Soil	Cleanup Objectives				
Sample Depths (ft. bgs) Sample Date	Commercial	Industrial	B-1 (0.0-1.0') 3/13/2008	B-2 (0.0-2.0') 3/13/2008	B-3 (0.0-2.0') 3/13/2008	B-13 (0.0-1.5') 3/17/2008
		Metals (mg/k	g)			
Aluminum			5,940 *	7,750 *	14,000 *	17,700 N*
Arsenic	16 ^r	16 ^r	24.0 N	3.8 N	22.9 N	ND
Barium	400	10,000°	704 N*	59.6 N*	100 N*	73.1 N
Beryllium	590	2,700	0.77	0.27	1.9	0.44
Cadmium	9.3	60	0.75	0.36	0.81	ND
Calcium			8,050 *	8,620 *	32,600 *	2,820 N*
Chromium	400	800	19.3	6.7	5.3	13.1
Cobalt			4.5	3.5	3.4	5.4
Copper	270	10,000 ^a	105 N*	8.2 N*	66.4 N*	4.0 N
Iron			14,900	8,990	39,000	8,940 *
Lead	1,000	3,900	865 E	45.4 E	49.4 E	9.2 N
Magnesium			1,020 E	871 E	1,830 E	1,690 N
Manganese	10,000 °	10,000 °	178	185	336	42.5 N*
Mercury	2.8 ^J	5.7 ^j	0.412 N	0.132 N	0.226 N	0.078 N
Nickel	310	10,000°	11.8 E	6.3 E	8.9 E	10.6
Potassium			924	409	603	721
Selenium	1500	6,800			20	
Sodium					271	
Vanadium			19.2 E	14.6 E	20.5 E	18.5
Zinc	10,000 ^a	10,000 ^a	499 E	39.9 E	34.6 E	42.0 N

Notes:

Blank -Indicates compound was analyzed for, but not detected above method detection limit.

dash - -Indicates analyte was not tested.

N- Indicates spike sample recovery is not within the quality control limits.

- *- Indicates the spike or duplicate analysis is not within quality control limits.
- -Bold value indicates exceedance of Industrial SCO.
- -Shaded value indicates exceedance of Commercial SCO.

Restricted Use Footnotes

- d The SCOs for the metals were at a maximum value of 10,000 ppm.
- f For constituents where the calculated SCO was lower than the rural soil background concentration as determined by the or mercury (inorganic salts).

Checked by: jjr 6/25/08 6105002 Page 2 of 2

Metals

Select metals were detected at concentrations that exceeded the NYSDEC SCOs for restricted industrial and/or commercial use. A comparison of analytical data with SCO criteria is presented in Table 3-2. Based on concentrations of two metals that exceed regulatory SCO criteria, the following observations were made.

- Elevated concentrations of arsenic that exceed the NYSDEC Restricted Commercial and Industrial SCOs (16 mg/kg) were identified at sample locations B-1 and B-3. The exceedences ranged from 22.9 mg/kg detected at borehole location B-3 (0.0-2.0' bgs) to a maximum 24.0 mg/kg at location B-1 (0.0-1.0' bgs).
- An elevated concentration of barium that exceeds the NYSDEC Restricted Commercial SCO (400 mg/kg) was identified at soil boring B-1 (704 mg/kg at 0.0-1.0' bgs).

4. Conclusions

The Phase II investigation of the 1146 Seneca Street property provided for the physical and chemical characterization of subsurface soil/fill. The Site is covered with soil/fill material that varies in composition and thickness. Generally the soil/fill consisted of disturbed soil, and other natural materials admixed with varying percentages of slag, concrete, ash, and crushed stone. This fill unit was encountered at all four soil boring locations. The thickness of the soil/fill ranged from less than 1 foot to a maximum thickness of approximately 2.5 feet. The soil/fill unit is underlain by a stiff low permeability clay aquitard that limits the downward percolation of groundwater and contaminant transport.

4.1. Subsurface Soil/Fill

Arsenic was present at concentrations above the restricted industrial SCO at two of the four sampled locations. Barium was detected at a concentration exceeding the restricted commercial SCO at one location.

Flexo Transparent, Inc.

Phase II Environmental Site Assessment / 1146 Seneca Street

Appendix A Stratigraphic Borehole Logs

OVERBURDEN BOREHOLE LOG

MALCO PIRNII	M					Borehole No.:	B-1		
Pr	oject :	;	Flexo	Phase	e II Inv	estigation Surface Elev.: Date Started: 3/13/2008			
						Ref. Elev.: Date Finished: 3/13/2008			
_	ct No.:		6105			Contractor: SJB Services, Inc. Drilling Method: Direct push			
	Client:				sparen				
Loc	cation:		Buffa	lo, N	<u>Y</u>	Rig Type: Geoprobe Logged By: JPH			
Depth (BGS)	Sample ID	Sample Type	Blows / 6 inches	Recovery / Length (ft.)	Soil Classification / Symbol (Include	Lithology Description and Remarks Density/Consistency, Color, Plasticity, Soil Types, Texture, Fabric, Bedding, Moisture, PID measurments	Moisture (dry, moist, wet, saturated)	PID Scan (ppm)	PID Headspace (ppm)
0,				4.0/	1	0.6 Fill as Sand and Silt, black, fine grain, gradational to:	W	0.0	
		ļ				1.2 NATIVE Silt and sand dark brown-yellow, mottled with oxidized rootlet zonation	M	0.0	
		_		4.0		2.2 Silt med olive brown, w/ little interbedded Clay < 2" thick	M	0.0	
4'					1			0.0	
				/					
6				/					
8'		+		/					
-	 	 		/	8				
10				/					
101				/					
12'	ļ	ļ		/	1				
14	 	\vdash		//					
				/					
16'					1				
		├		/					
	-			/					
	\vdash						_		
				/					
	ļ	ļ		/					
	 			/					
	\vdash			/					
				/					
				<u>/</u>					
Notes:	Analy	ected se yzed fo	or VO	nple @ Cs, SV	0 10 : /OCs,	30, 0.0 - 1.0' interval. PCBs, TAL metals and cyanide	Page I of	16 abrel	

OVERBURDEN BOREHOLE LOG

MALCOL PIRNIE	M					Вс	orehole No.:	B-2		
Pro	oject:		Flexe	o Phas	e II In	vestigation Surface Elev.: Date Started:	3/13/2008			
	•					Ref. Elev.: Date Finished:	3/13/2008			1
Project	_		6105-				Direct push			
	Client:				nsparent					'
Loc	cation:		Buffa	alo, NY			JPH			
Depth (BGS)	Sample ID	Sample Type	Blows / 6 inches	Recovery / Length (ft.)	Soil Classification / Symbol (Include	Lithology Description and Remarks Density/Consistency, Color, Plasticity, Soil Types, Texture, Fabric, Bedding, Moisture, PID measurments		Moisture (dry, moist, wet, saturated)	PID Scan (ppm)	PID Headspace (ppm)
0,				3.8/		1.0 Fill as Slag, gray, vesicular, sharp contact w/		W	0.0	
] /	1	1.6 NATIVE Sand dark gray-brown, fine grain, gradational color change at 2.1' to		W	0.3	
2	\Box	 '	<u> </u>	4.0	1	1.2 Silt med.brown, w/ little fine Sand, trace Clay		M	0.0	
4'		/ '	 '	/4.0	4 /				0.0	igspace
-	\vdash	 '		1 /	1			\longrightarrow	\vdash	
6	,			1/	1 1			$\overline{}$	\vdash	
				V'	1 1	l			$\overline{}$	
8'					1 1					
] / ˈ	1					
10	1	 '	 '	1/ '	1			igcup	لــــا	
12'	\vdash		 	/	4 /			\vdash		igwdapprox igwedge
	\longrightarrow			1 /	J	ſ		$\overline{}$	$\overline{}$	
14				1/ '	1				$\overline{}$	
				<u>/</u>						
16'		<u> </u>		_ _/	4 J					
	igspace	 '	 '	1 / '	1			igcup	igspace	<u> </u>
	\vdash	 '	 '	1/ '	1			\vdash	\vdash	\vdash
	\longrightarrow	H	\vdash	/ /	<i>t</i>				\longrightarrow	
				1 /	1 7			$\overline{}$	$\overline{}$	
				1/	1					
		\Box	\Box	<u></u>	1					
	\longrightarrow	 '	↓ —'	- /	1 /					
	\vdash	 '	 '	{ / '	1 /			\vdash	\vdash	
				1/ '				\longrightarrow		
Notes:	Coller Analy	cted so	oil san or VO	nple @	<u> </u>	200, 0.0 - 2.0' interval. PCBs, TAL metals and cyanide		Page 2 of		

OVERBURDEN BOREHOLE LOG

MALCOL/ PIRNIE	M					Borehole No.:	B-3		
Pro	oject :		Flexo	Phase	: II Inv	estigation Surface Elev.: Date Started: 3/13/2008			
						Ref. Elev.: Date Finished: 3/13/2008			
Project	_		6105-			Contractor: SJB Services, Inc. Drilling Method: Direct push			
	lient:				sparent				
Loca	ation: _		Butta	lo, NY	<u>r</u>	Rig Type: Geoprobe Logged By: JPH			
Depth (BGS)	Sample ID	Sample Type	Blows / 6 inches	Recovery / Length (ft.)	Soil Classification / Symbol (Include denths)	Lithology Description and Remarks Density/Consistency, Color, Plasticity, Soil Types, Texture, Fabric, Bedding, Moisture	Moisture (dry, moist, wet, saturated)		PID Headspace (ppm)
0'				3.2/		2.3 Fill as Sand and Clay, black-brown, fine-coarse grain, w/ trace-little Slag and fine Gravel, trace Clay	W	0.0	
2				/		0.9 NATIVE Silt and Sand dark gray-black, fine grain	W	0.0	
				4.0			IVI	0.0	-
4'				3.6/	1	0.4 Sand and Silt, gray-green, fine grain, trace Silt	М	0.0	
				/		0.5 Silt, olive gray-brown	M	0.0	
6				//		2.7 Clay, olive-brown, stiff, moist, w/ Silt-Sand laminae	M	0.0	
8'			-	/ 4.0			<u> </u>	0.0	
-			\vdash	/			-		
10									
12'				<u>/</u>					
12			\vdash	/				 	
14				//					
				<u>/</u>					
16'				/]		-		
				/					-
								 	
				/					
				/					
			 				1		
								\vdash	
				1/					
Vata				<u> </u>					
		zed fo	or VO			00, 0.0 - 2.0' interval. PCBs, TAL metals and cyanide	Page 3 o	f 16	

MALCOL PIRNIE	M		- -			Borehole No.:	B-13		
Pro	ject:		Flexo	Phase	e II Inv	estigation Surface Elev.: Date Started: 3/17/2008			
						Ref. Elev.: Date Finished: 3/17/2008			
Project			6105-			Contractor: SJB Services, Inc. Drilling Method: Direct push			
	lient:				sparent				
Loca	ation: _		Buffa	lo, N	<u> </u>	Rig Type: Geoprobe Logged By: JPH			
Depth (BGS)	Sample ID	Sample Type	Blows / 6 inches	Recovery / Length (ft.)	Soil Classification / Symbol (Include	Lithology Description and Remarks Density/Consistency, Color, Plasticity, Soil Types, Texture, Fabric, Bedding, Moisture	Moisture (dry, moist, wet, saturated)	PID Scan (ppm)	PID Headspace (ppm)
0,				3.8/	1	0.6 Fill as Sand and Gravel, black-brown, fine grain, w/ fine sub-rnd Gravel to 1/4" dia., some Silt	W	0.0	
				/		1.8 NATIVE Silt Lt. yellow-brown, mottled, w/some fine interbedded Sand	M	0.0	
2				4.0		1.4 Silt and Clay, med. Brown-yellow, stiff, weak plasticity	M M	0.0	
4'						3.2 Clay and Silt, med. Brown-yellow, stiff, weak plasticity w/ thin Silt laminae throughout, trace fine Sand	M	0.0	
4				3.2/		3.2 Clay and Sit, fied. Brown-yellow, stiff, weak plasticity within Sit failing the displacet, trace fine stand	M	0.0	-
6				1/			M	0.0	
				4.0					
8'					1				
] /					
10				/					ļ
12'				<u>/</u>	,				1
12				/					
14				1/					
-				/					
16'					1				
] /			ļ		
				1/					
l —				/	,				
				/	1		 		
				1/					† — —
			ļ	1/					
					7				
				1 /					
				1/					
N. T.				V	<u> </u>		<u></u>		<u> </u>
Notes:	Colle Analy	cted so	oil sar or VO	nple (Cs, S	08: VOCs,	30, 0.0 - 1.5' interval. PCBs, TAL metals and cyanide	Pave 13	of 16	

BORING LOG DATA

PROJECT NAME: Fibreright Mft. Inc.	PROJECT NO.: ETE-01-98
LOCATION: 1132 Seneca St., Buffalo, NY	BOREHOLE NO.: PH-22
DRILLING METHOD: Geoprobe	DATE: 8-31-01
SAMPLING METHOD: Macro Core Sampler	TIME: 0830
TOTAL BORING DEPTH: 8.0'	DEPTH OF WATER: None
LOGGED BY: D. Abrams	BACKFILL: Borehole Spoil

Depth Interval (Feet)	PID Reading (ppm)	Description
0' - 4'	BG	1.5' Topsoil (Fill) Gravel, Brick, Brown Silt & Clay
4' - 7'	BG	Brown Silt & Clay, Mottled Layered at 6.5'
122		
	8	

REMARKS:

Adjacent Property

No Chemical / Petroleum Like Odors and / or Staining

594 Broadway Waterviiet, NY 12189 Voice 518-266-0310 Fax 518-266-9238

BORING LOG DATA

PROJECT NAME: Fibreright Mft. Inc.	PROJECT NO.: ETE-01-98
LOCATION: 1132 Seneca St., Buffalo, NY	BOREHOLE NO.: PH-23
DRILLING METHOD: Geoprobe	DATE: 8-31-01
SAMPLING METHOD: Macro Core Sampler	TIME: 0845
TOTAL BORING DEPTH: 8.0'	DEPTH OF WATER: None
LOGGED BY: D. Abrams	BACKFILL: Borehole Spoil

Depth Interval (Feet)	PID Reading (ppm)	Description
0' - 4'	BG	Fill to 1.5' - Brick, Cinders. Brown Clay & Silt Mottled
4' - 7'	5-8	.Brown - Gray Silt & Clay Layered at 6.5'
		* - Gray Layer about 4.5' to 5.5'
		Slight Petroleum Like Odor

REMARKS: Adjacent Property	
ÿ.	

594 Broadway Watervillet, NY 12189 Voice 518-266-0310 Fax 518-266-9238

evergreen

TESTING & ENVIRONMENTAL SERVICES

BORING LOG DATA

PROJECT NAME: Fibreright Mft. Inc.	PROJECT NO.: ETE-01-98
LOCATION: 1132 Seneca St., Buffalo, NY	BOREHOLE NO.: PH-25
DRILLING METHOD: Geoprobe	DATE: 8-31-01
SAMPLING METHOD: Macro Core Sampler	TIME: 0915
TOTAL BORING DEPTH: 7.0'	DEPTH OF WATER: None
LOGGED BY: D. Abrams	BACKFILL: Borehole Spoil

Depth Interval (Feet)	PID Reading (ppm)	Description
0' - 4'	BG	Fill - 2' Between Clay & Silt
4' - 7'	BG	Gray Brown Clay Layered - 6.5'
	u.	985
2		9

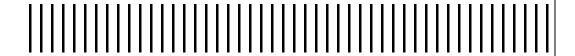
REMARKS:		
Adjacent property		
	¥	
ė.		

594 Broadway Watervliet, NY 12189 Voice 518-266-0310 Fax 518-266-9238

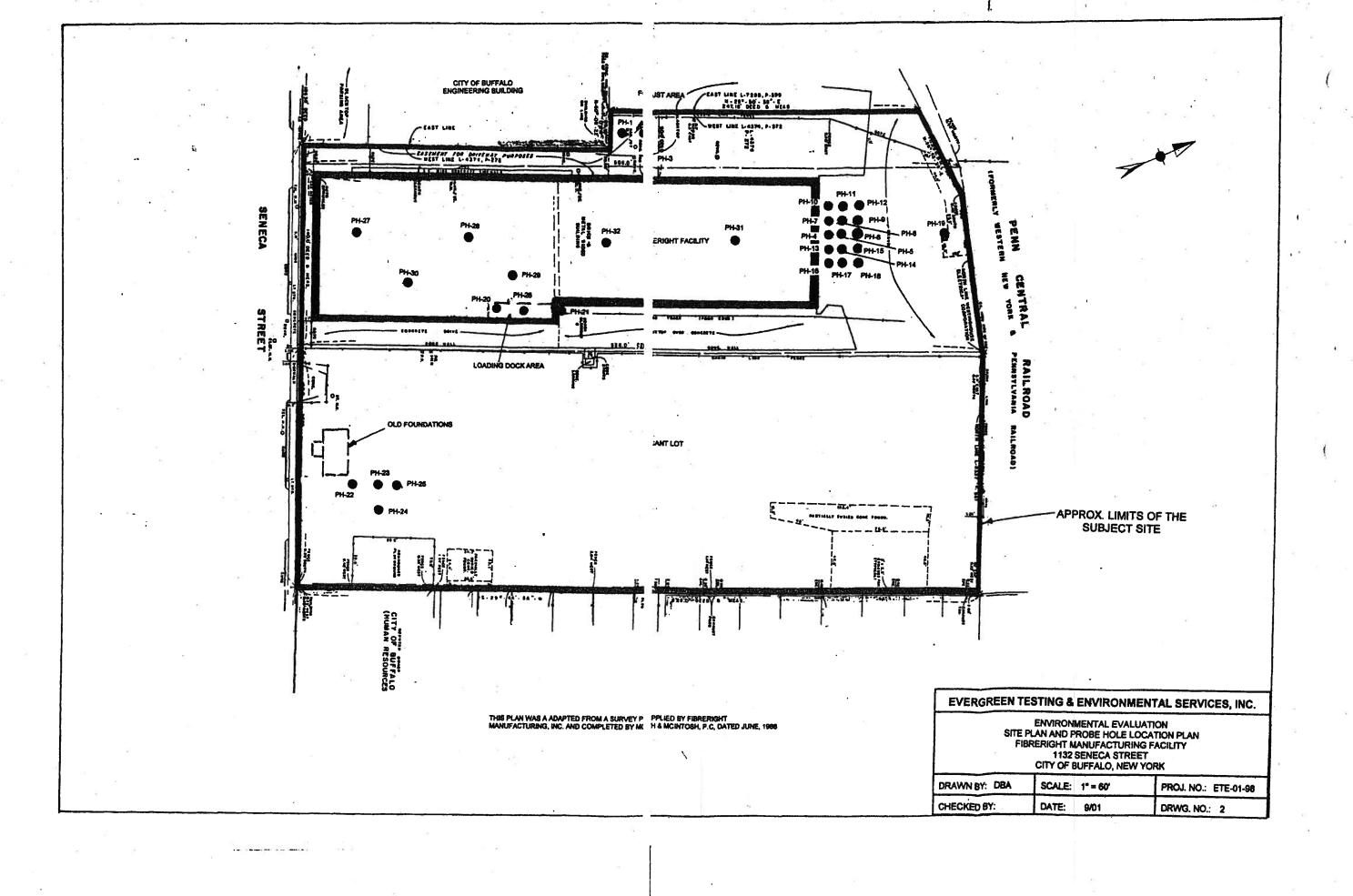
BORING LOG DATA

PROJECT NAME: Fibreright Mft. Inc.	PROJECT NO.: ETE-01-98
LOCATION: 1132 Seneca St., Buffalo, NY	BOREHOLE NO.: PH-24
DRILLING METHOD: Geoprobe	DATE: 8-31-01
SAMPLING METHOD: Macro Core Sampler	TIME: 0900
TOTAL BORING DEPTH: 8.0'	DEPTH OF WATER: None
LOGGED BY: D. Abrams	BACKFILL: Borehole Spoil

Depth Interval (Feet)	PID Reading (ppm)	Description
0' - 4'	BG	Fill to 1.5' - Brown Silt & Clay
- 4' - 7'	4-5	Gray / Brown Clay & Silt. Very Slight Petroleum Odor.
1		
8		19-1

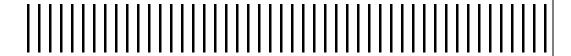

REMARKS:			
Adjacent Property			
	R		
		e	

594 Broadway Watervillet, NY 12189 Voice 518-266-0310 Fax 518-266-9238


Flexo Transparent, Inc.

Phase II Environmental Site Assessment / 1146 Seneca Street

Appendix B Historic Sampling Location Map



Flexo Transparent, Inc.

Phase II Environmental Site Assessment / 1146 Seneca Street

Appendix C Analytical Report - Laboratory Data

Page: 1 Rept: AN1178

Sample ID: B-1(0.0-1.0)
Lab Sample ID: A8258601

Date Collected: 03/13/2008 Time Collected: 10:30 Date Received: 03/14/2008 Project No: NY4A919723 Client No: 102461

Site No:

			Detection			Date/Time	,
<u> Parameter </u>	Result	<u>Flag</u>	Limit	Units	Method	Analyzed	Analyst
SOIL-SW8463 8260 - TCL VOLATILES							
1,1,1-Trichloroethane	ND		7	UG/KG	8260	03/15/2008 16:42	
1,1,2,2-Tetrachloroethane	ND		7	UG/KG	8260	03/15/2008 16:42	TRB
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		7	UG/KG	8260	03/15/2008 16:42	TRB
1,1,2-Trichloroethane	ND		7	UG/KG	8260	03/15/2008 16:42	TRB
1,1-Dichloroethane	ND		7	UG/KG	8260	03/15/2008 16:42	TRB
1,1-Dichloroethene	ND		7	UG/KG	8260	03/15/2008 16:42	TRB
1,2,4-Trichlorobenzene	ND		7	UG/KG	8260	03/15/2008 16:42	TRB
1,2-Dibromo-3-chloropropane	ND		7	UG/KG	8260	03/15/2008 16:42	TRB
1,2-Dibromoethane	ND		7	UG/KG	8260	03/15/2008 16:42	TRB
1,2-Dichlorobenzene	ND		7	UG/KG	8260	03/15/2008 16:42	TRB
1,2-Dichloroethane	ND		7	UG/KG	8260	03/15/2008 16:42	TRB
1,2-Dichloropropane	ND		7	UG/KG	8260	03/15/2008 16:42	TRB
1,3-Dichlorobenzene	ND		7	UG/KG	8260	03/15/2008 16:42	TRB
1,4-Dichlorobenzene	ND		7	UG/KG	8260	03/15/2008 16:42	TRB
2-Butanone	ND		34	UG/KG	8260	03/15/2008 16:42	TRB
2-Hexanone	ND		34	UG/KG	8260	03/15/2008 16:42	TRB
4-Methyl-2-pentanone	ND		34	UG/KG	8260	03/15/2008 16:42	TRB
Acetone	ND	(0	34	UG/KG	8260	03/15/2008 16:42	TRB
Benzene	ND		7	UG/KG	8260	03/15/2008 16:42	TRB
Bromodichloromethane	ND		7	UG/KG	8260	03/15/2008 16:42	TRB
Bromoform	ND		7	UG/KG	8260	03/15/2008 16:42	TRB
Bromomethane	ND		7	UG/KG	8260	03/15/2008 16:42	TRB
Carbon Disulfide	ND		7	UG/KG	8260	03/15/2008 16:42	TRB
Carbon Tetrachloride	ND		7	UG/KG	8260	03/15/2008 16:42	TRB
Chlorobenzene	ND		7	UG/KG	8260	03/15/2008 16:42	TRB
Chloroethane	ND		7	UG/KG	8260	03/15/2008 16:42	TRB
Chloroform	ND		7	UG/KG	8260	03/15/2008 16:42	TRB
Chloromethane	ND		7	UG/KG	8260	03/15/2008 16:42	TRB
cis-1,2-Dichloroethene	ND		7	UG/KG	8260	03/15/2008 16:42	TRB
cis-1,3-Dichloropropene	ND		7	UG/KG	8260	03/15/2008 16:42	TRB
Cyclohexane	ND		7	UG/KG	8260	03/15/2008 16:42	TRB
Dibromochloromethane	ND		7	UG/KG	8260	03/15/2008 16:42	TRB
Dichlorodifluoromethane	ND		7	UG/KG	8260	03/15/2008 16:42	TRB
Ethylbenzene	ND		7	UG/KG	8260	03/15/2008 16:42	
Isopropylbenzene	ND		7	UG/KG	8260	03/15/2008 16:42	
Methyl acetate	ND		7	UG/KG	8260	03/15/2008 16:42	TRB
Methyl-t-Butyl Ether (MTBE)	ND		7	UG/KG	8260	03/15/2008 16:42	
Methylcyclohexane	ND		7	UG/KG	8260	03/15/2008 16:42	
Methylene chloride	6	J	7	UG/KG	8260	03/15/2008 16:42	
Styrene	ND		7	UG/KG	8260	03/15/2008 16:42	
Tetrachloroethene	ND		7	NG/KG	8260	03/15/2008 16:42	
Toluene	ND		7	UG/KG	8260	03/15/2008 16:42	
Total Xylenes	ND		20	UG/KG	8260	03/15/2008 16:42	
trans-1,2-Dichloroethene	ND		7	UG/KG	8260	03/15/2008 16:42	
trans-1,3-Dichloropropene	ND		7	UG/KG	8260	03/15/2008 16:42	
Trichloroethene	ND		7	UG/KG	8260	03/15/2008 16:42	
Trichlorofluoromethane	ND		7	UG/KG	8260	03/15/2008 16:42	
Vinyl chloride	ND		14	UG/KG	8260	03/15/2008 16:42	

Page: 2 Rept: AN1178

Sample ID: B-1(0.0-1.0)
Lab Sample ID: A8258601
Date Collected: 03/13/2008

Client No: 102461

Date Received: 03/14/2008

Project No: NY4A919723

Site No:

Time Collected: 10:30

			Detection			Date/Time	
Parameter	Result	Flag	Limit	Units	Method	Analyzed	Analys
SOIL-SW8463 8270 - TCL SVOA ORGANICS							
2,2'-Oxybis(1-Chloropropane)	ND		1300	UG/KG	8270	03/20/2008 23:33	RM
2,4,5-Trichlorophenol	ND		1300	UG/KG	8270	03/20/2008 23:33	RM
2,4,6-Trichlorophenol	ND		1300	UG/KG	8270	03/20/2008 23:33	RM
2,4-Dichlorophenol	ND		1300	UG/KG	8270	03/20/2008 23:33	RM
2,4-Dimethylphenol	ND		1300	UG/KG	8270	03/20/2008 23:33	RM
2,4-Dinitrophenol	ND		2500	UG/KG	8270	03/20/2008 23:33	RM
2,4-Dinitrotoluene	ND		1300	UG/KG	8270	03/20/2008 23:33	RM
2,6-Dinitrotoluene	ND		1300	UG/KG	8270	03/20/2008 23:33	RM
2-Chloronaphthalene	ND		1300	UG/KG	8270	03/20/2008 23:33	RM
2-Chlorophenol	ND		1300	UG/KG	8270	03/20/2008 23:33	RM
2-Methylnaphthalene	ND		1300	UG/KG	8270	03/20/2008 23:33	RM
2-Methylphenol	ND		1300	UG/KG	8270	03/20/2008 23:33	RM
2-Nitroaniline	ND	13	2500	UG/KG	8270	03/20/2008 23:33	RM
2-Nitrophenol	ND		1300	UG/KG	8270	03/20/2008 23:33	RM
3,31-Dichlorobenzidine	ND		1300	UG/KG	8270	03/20/2008 23:33	RM
3-Nitroaniline	ND		2500	UG/KG	8270	03/20/2008 23:33	RM
4,6-Dinitro-2-methylphenol	ND		2500	UG/KG	8270	03/20/2008 23:33	RM
4-Bromophenyl phenyl ether	ND		1300	UG/KG	8270	03/20/2008 23:33	RM
4-Chloro-3-methylphenol	ND		1300	UG/KG	8270	03/20/2008 23:33	
4-Chloroaniline	ND		1300	UG/KG	8270	03/20/2008 23:33	RM
4-Chlorophenyl phenyl ether	ND		1300	UG/KG	8270	03/20/2008 23:33	
4-Methylphenol	ND		1300	UG/KG	8270	03/20/2008 23:33	RM
4-Nitroaniline	ND		2500	UG/KG	8270	03/20/2008 23:33	RM
4-Nitrophenol	ND		2500	UG/KG	8270	03/20/2008 23:33	RM
Acenaphthene	ND		1300	UG/KG	8270	03/20/2008 23:33	RM
Acenaph thy lene	ND		1300	UG/KG	8270	03/20/2008 23:33	RM
Acetophenone	ND		1300	UG/KG	8270	03/20/2008 23:33	RM
Anthracene	ND		1300	UG/KG	8270	03/20/2008 23:33	RM
Atrazine	ND		1300	UG/KG	8270	03/20/2008 23:33	RM
Benza l dehyde	ND		1300	UG/KG	8270	03/20/2008 23:33	RM
Benzo(a)anthracene	310	J	1300	UG/KG	8270	03/20/2008 23:33	RM
Benzo(a)pyrene	560	J	1300	UG/KG	8270	03/20/2008 23:33	RM
Benzo(b)fluoranthene	340	J	1300	UG/KG	8270	03/20/2008 23:33	RM
Benzo(ghi)perylene	470	J	1300	UG/KG	8270	03/20/2008 23:33	RM
Benzo(k)fluoranthene	120	J	1300	UG/KG	8270	03/20/2008 23:33	RM
Biphenyl	ND		1300	UG/KG	8270	03/20/2008 23:33	RM
Bis(2-chloroethoxy) methane	ND		1300	UG/KG	8270	03/20/2008 23:33	
Bis(2-chloroethyl) ether	ND		1300	UG/KG	8270	03/20/2008 23:33	
Bis(2-ethylhexyl) phthalate	ND		1300	UG/KG	8270	03/20/2008 23:33	
Butyl benzyl phthalate	ND		1300	UG/KG	8270	03/20/2008 23:33	
Caprolactam	ND		1300	UG/KG	8270	03/20/2008 23:33	
Carbazole	ND		1300	UG/KG	8270	03/20/2008 23:33	
Chrysene	500	J	1300	UG/KG	8270	03/20/2008 23:33	
Di-n-butyl phthalate	ND	-	1300	UG/KG	8270	03/20/2008 23:33	RM
Di-n-octyl phthalate	ND		1300	UG/KG	8270	03/20/2008 23:33	RM
Dibenzo(a,h)anthracene	120	J	1300	UG/KG	8270 8270	03/20/2008 23:33	
Dibenzofuran	ND	U	1300	UG/KG	8270 8270		RM DM
	ND		1300	UG/KG	8270 8270	03/20/2008 23:33	RM
Diethyl phthalate Dimethyl phthalate	ND		1300	UG/KG UG/KG	8270 8270	03/20/2008 23:33 03/20/2008 23:33	RM RM

Page: 3 Rept: AN1178

Sample ID: B-1(0.0-1.0)
Lab Sample ID: A8258601
Date Collected: 03/13/2008
Time Collected: 10:30

Date Received: 03/14/2008 Project No: NY4A919723 Client No: 102461

Site No:

	Detect					——Date/Time		
Parameter	Result	<u>Flag</u>	Limit	Units_	Method	Analyzed	Analys	
SOIL-SW8463 8270 - TCL SVOA ORGANICS					•			
Fluoranthene	290	J	1300	UG/KG	8270	03/20/2008 23:33	RM	
Fluorene	ND		1300	UG/KG	8270	03/20/2008 23:33	RM	
Hexach Lorobenzene	ND		1300	UG/KG	8270	03/20/2008 23:33	RM	
Hexach Lorobutadi ene	ND		1300	UG/KG	8270	03/20/2008 23:33	RM	
Hexachlorocyclopentadiene	ND		1300	UG/KG	8270	03/20/2008 23:33	RM	
Hexachloroethane	ND		1300	UG/KG	8270	03/20/2008 23:33	RM	
Indeno(1,2,3-cd)pyrene	170	J	1300	UG/KG	8270	03/20/2008 23:33	RM	
Isophorone	ND		1300	UG/KG	8270	03/20/2008 23:33	RM	
N-Nitroso-Di-n-propylamine	ND		1300	UG/KG	8270	03/20/2008 23:33	RM	
N-nitrosodiphenylamine	ND		1300	UG/KG	8270	03/20/2008 23:33	RM	
Naphthalene	ND		1300	UG/KG	8270	03/20/2008 23:33	RM	
Nitrobenzene	ND		1300	UG/KG	8270	03/20/2008 23:33	RM	
Pentachlorophenol	ND		2500	UG/KG	8270	03/20/2008 23:33	RM	
Phenanthrene	140	J	1300	UG/KG	8270	03/20/2008 23:33	RM	
Phenol	ND		1300	UG/KG	8270	03/20/2008 23:33	RM	
Pyrene	500	J	1300	UG/KG	8270	03/20/2008 23:33	RM	
SOIL-SW8463 8082 - PCBS								
Aroctor 1016	ND		26	UG/KG	8082	03/18/2008 12:14	TCH	
Aroclor 1221	ND		26	UG/KG	8082	03/18/2008 12:14	TCH	
Aroclor 1232	ND		26	UG/KG	8082	03/18/2008 12:14	TCH	
Aroctor 1242	ND		26	UG/KG	8082	03/18/2008 12:14	TCH	
Aroclor 1248	ND		26	UG/KG	8082	03/18/2008 12:14	TCH	
Aroclor 1254	ND		26	UG/KG	8082	03/18/2008 12:14	TCH	
Aroclor 1260	ND		26	UG/KG	8082	03/18/2008 12:14	TCH	
Metals Analysis								
Aluminum - Total	5940	*	17.0	MG/KG	6010	03/19/2008 14:48	i	
Antimony - Total	ND	N	25.5	MG/KG	6010	03/19/2008 14:48	i	
Arsenic - Total	24.0	N	3.4	MG/KG	6010	03/19/2008 14:48	ı	
Barium - Total	704	N*	0.85	MG/KG	6010	03/19/2008 14:48	i	
Beryllium - Total	0.77		0.34	MG/KG	6010	03/19/2008 14:48		
Cadmium - Total	0.75		0.34	MG/KG	6010	03/19/2008 14:48		
Calcium - Total	8050	*	85.0	MG/KG	6010	03/19/2008 14:48	ŀ	
Chromium - Total	19.3		0.85	MG/KG	6010	03/19/2008 14:48		
Cobalt - Total	4.5		0.85	MG/KG	6010	03/19/2008 14:48		
Copper - Total	105	N*	1.7	MG/KG	6010	03/19/2008 14:48		
Iron - Total	14900		17.0	MG/KG	6010	03/19/2008 14:48		
Lead - Total	865	E	1.7	MG/KG	6010	03/19/2008 14:48		
Magnesium - Total	1020	E	34.0	MG/KG	6010	03/19/2008 14:48		
Manganese - Total	178		0.34	MG/KG	6010	03/19/2008 14:48		
Mercury - Total	0.412	N	0.024	MG/KG	7471	03/18/2008 17:19		
Nickel - Total	11.8	E	0.85	MG/KG	6010	03/19/2008 14:48		
Potassium - Total	924		51.0	MG/KG	6010	03/19/2008 14:48		
Selenium - Total	ND	N	6.8	MG/KG	6010	03/19/2008 14:48		
Silver - Total	ND		0.85	MG/KG	6010	03/19/2008 14:48		
Sodium - Total	ND		238	MG/KG	6010	03/19/2008 14:48		
Thallium - Total	ND		10.2	MG/KG	6010	03/19/2008 14:48		
Vanadium - Total	19.2	E	0.85	MG/KG	6010	03/19/2008 14:48		

Date: 03/26/2008 Time: 15:31:57

Malcolm Pirnie - Flexo Transparent Seneca Street Phase II ESA - 6105-001 Page: 4 Rept: AN1178

Sample ID: B-1(0.0-1.0)
Lab Sample ID: A8258601
Date Collected: 03/13/2008

Time Collected: 10:30

Date Received: 03/14/2008 Project No: NY4A919723

Client No: 102461

Site No:

Parameter	Result	Detection Flag Limit Units			Date/Time Method Analyzed Analyse		
Metals Analysis				-			
Zinc - Total	499	E	3.4	MG/KG	6010	03/19/2008 14:48	
Wet Chemistry Analysis							
Cyanide - Total	ND		1.5	UG/G	9012	03/20/2008 11:48	ERK

Date: 03/26/2008 Time: 15:31:57

Malcolm Pirnie - Flexo Transparent Seneca Street Phase II ESA - 6105-001

Page: 17 Rept: AN1178

Sample ID: 8-2(0.0-2.0)
Lab Sample ID: A8258602
Date Collected: 03/13/2008
Time Collected: 11:00

Date Received: 03/14/2008 Project No: NY4A919723 Client No: 102461 Site No:

	Detection				Date/Time		
Parameter	Result	Flag	Limit	Units	Method	Analyzed	Analys
SOIL-SW8463 8260 - TCL VOLATILES							
1,1,1-Trichloroethane	ND		6	. UG/KG	8260	03/15/2008 17:08	TRB
1,1,2,2-Tetrachloroethane	ND		6	UG/KG	8260	03/15/2008 17:08	TRB
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		6	UG/KG	8260	03/15/2008 17:08	TRB
1,1,2-Trichloroethane	ND		6	UG/KG	8260	03/15/2008 17:08	TRB
1,1-Dichloroethane	ND		6	UG/KG	8260	03/15/2008 17:08	TRB
1,1-Dichloroethene	ND		6	UG/KG	8260	03/15/2008 17:08	TRB
1,2,4-Trichtorobenzene	ND		6	UG/KG	8260	03/15/2008 17:08	TRB
1,2-Dibromo-3-chloropropane	ND		6	UG/KG	8260	03/15/2008 17:08	TRB
1,2-Dibromoethane	ND		6	UG/KG	8260	03/15/2008 17:08	TRB
1,2-Dichlorobenzene	ND		6	UG/KG	8260	03/15/2008 17:08	TRB
1,2-Dichloroethane	ND		6	UG/KG	8260	03/15/2008 17:08	TRB
1,2-Dichloropropane	ND		6	UG/KG	8260	03/15/2008 17:08	
1.3-Dichlorobenzene	ND	• (4)	6	UG/KG	8260	03/15/2008 17:08	
1,4-Dichlorobenzene	ND		6	UG/KG	8260	03/15/2008 17:08	
2-Butanone	ND		30	UG/KG	8260	03/15/2008 17:08	
2-Hexanone	ND		30	UG/KG	8260	03/15/2008 17:08	
4-Methyl-2-pentanone	ND		30	UG/KG	8260	03/15/2008 17:08	
Acetone	ND		30	UG/KG	8260	03/15/2008 17:08	
Benzene	ND		6	UG/KG	8260	03/15/2008 17:08	
Bromodichloromethane	ND		6	UG/KG	8260	03/15/2008 17:08	
Bromoform	ND		6	UG/KG	8260	03/15/2008 17:08	
Bromomethane	ND		6	UG/KG	8260	03/15/2008 17:08	
Carbon Disulfide	ND		6	UG/KG	8260	03/15/2008 17:08	
Carbon Tetrachloride	ND		6	UG/KG	8260	03/15/2008 17:08	
Chlorobenzene	ND		6	UG/KG	8260	03/15/2008 17:08	
Chloroethane	ND		6	UG/KG	8260	03/15/2008 17:08	
Chloroform	ND		6	UG/KG	8260	03/15/2008 17:08	
Chloromethane	ND		6	UG/KG	8260	03/15/2008 17:08	
	ND		6	UG/KG	8260	03/15/2008 17:08	
cis-1,2-Dichloroethene cis-1,3-Dichloropropene	ND		6	UG/KG	8260	03/15/2008 17:08	
• •	ND		6		8260		
Cyclohexane			6	UG/KG		03/15/2008 17:08	
Dibromochloromethane	ND			UG/KG	8260	03/15/2008 17:08	
Dichlorodifluoromethane	ND		6	UG/KG	8260	03/15/2008 17:08	TRB
Ethylbenzene	ND		6	UG/KG	8260	03/15/2008 17:08	
Isopropytbenzene	ND		6	UG/KG	8260	03/15/2008 17:08	• • • • • • • • • • • • • • • • • • • •
Methyl acetate	ND		6	UG/KG	8260	03/15/2008 17:08	TRB
Methyl-t-Butyl Ether (MTBE)	ND		6	UG/KG	8260	03/15/2008 17:08	
Methylcyclohexane	ND		6	UG/KG	8260	03/15/2008 17:08	
Methylene chloride	4	j	6	UG/KG	8260	03/15/2008 17:08	
Styrene	: ND		6	UG/KG	8260	03/15/2008 17:08	
Tetrachi oroethene	ND		6	UG/KG	8260	03/15/2008 17:08	
Toluene	ND		6	UG/KG	8260	03/15/2008 17:08	TRB
Total Xylenes	ND		18	UG/KG	8260	03/15/2008 17:08	TRB
trans-1,2-Dichloroethene	ND		6	UG/KG	8260	03/15/2008 17:08	TRB
trans-1,3-Dichloropropene	ND		6	UG/KG	8260	03/15/2008 17:08	TRB
Trichloroethene	ND		6	UG/KG	8260	03/15/2008 17:08	TRB
Trichlorofluoromethane	ND		6	UG/KG	8260	03/15/2008 17:08	TRB
Vinyl chloride	ND		12	UG/KG	8260	03/15/2008 17:08	TRB

Page: 18 Rept: AN1178

Date Received: 03/14/2008 Project No: NY4A919723 Client No: 102461

Site No:

Sample ID: B-2(0.0-2.0)
Lab Sample ID: A8258602
Date Collected: 03/13/2008
Time Collected: 11:00

*			Detection		Date/Time		
Parameter	Result	<u>Flag</u>	Limit	Units	Method	Analyzed	Analys
SOIL-SW8463 8270 - TCL SVOA ORGANICS				8			
2,21-Oxybis(1-Chloropropane)	ND		420	UG/KG	8270	03/20/2008 23:56	RM
2,4,5-Trichlorophenol	ND		420	UG/KG	8270	03/20/2008 23:56	RM
2,4,6-Trichlorophenol	ND		420	UG/KG	8270	03/20/2008 23:56	RM
2.4-Dichlorophenol	ND		420	UG/KG	8270	03/20/2008 23:56	RM
2,4-Dimethylphenol	ND		420	UG/KG	8270	03/20/2008 23:56	RM
2,4-Dinitrophenol	ND		820	UG/KG	8270	03/20/2008 23:56	RM
2,4-Dinitrotoluene	ND		420	UG/KG	8270	03/20/2008 23:56	RM
2,6-Dinitrotoluene	ND		420	UG/KG	8270	03/20/2008 23:56	RM
2-Chloronaphthalene	ND		420	UG/KG	8270	03/20/2008 23:56	RM
2-Chlorophenol	ND		420	UG/KG	8270	03/20/2008 23:56	RM
2-Methylnaphthalene	ND		420	UG/KG	8270	03/20/2008 23:56	RM
2-Methylphenol	ND		420	UG/KG	8270	03/20/2008 23:56	RM
2-Nitroaniline	ND		820	UG/KG	8270	03/20/2008 23:56	RM
2-Nitrophenol	ND		420	UG/KG	8270	03/20/2008 23:56	RM
3,3'-Dichlorobenzidine	ND		420	UG/KG	8270	03/20/2008 23:56	RM
3-Nitroaniline	ND		820	UG/KG	8270	03/20/2008 23:56	RM
4,6-Dinitro-2-methylphenol	ND		820	UG/KG	8270	03/20/2008 23:56	RM
4-Bromophenyl phenyl ether	ND and		420	UG/KG	8270	03/20/2008 23:56	RM
4-Chloro-3-methylphenol	ND		420	UG/KG	8270	03/20/2008 23:56	RM
4-Chloroaniline	ND		420	UG/KG	8270	03/20/2008 23:56	RM
4-Chlorophenyl phenyl ether	ND		420	UG/KG	8270	03/20/2008 23:56	RM
4-Methylphenol	ND		420	UG/KG	8270	03/20/2008 23:56	RM
4-Nitroaniline	ND		820	UG/KG	8270	03/20/2008 23:56	RM
4-Nitrophenol	ND		820	UG/KG	8270	03/20/2008 23:56	RM
Acenaphthene	ND		420	UG/KG	8270	03/20/2008 23:56	RM
Acenaphthylene	ND		420	UG/KG	8270	03/20/2008 23:56	RM
Acetophenone	ND		420	UG/KG	8270	03/20/2008 23:56	RM
Anthracene	18	J	420	UG/KG	8270	03/20/2008 23:56	RM
Atrazine	ND		420	UG/KG	8270	03/20/2008 23:56	RM
Benzaldehyde	ND		420	UG/KG	8270	03/20/2008 23:56	RM
Benzo(a)anthracene	87	J	420	UG/KG	8270	03/20/2008 23:56	RM
Benzo(a)pyrene	65	J	420	UG/KG	8270	03/20/2008 23:56	RM
Benzo(b)fluoranthene	82	J	420	UG/KG	8270	03/20/2008 23:56	RM
Benzo(ghi)perylene	47	J	420	UG/KG	8270	03/20/2008 23:56	RM
Benzo(k)fluoranthene	22	J	420	UG/KG	8270	03/20/2008 23:56	RM
Biphenyl	GN		420	UG/KG	8270	03/20/2008 23:56	RM
Bis(2-chloroethoxy) methane	ND		420	UG/KG	8270	03/20/2008 23:56	RM
Bis(2-chloroethyl) ether	ND		420	UG/KG	8270	03/20/2008 23:56	RM
Bis(2-ethylhexyl) phthalate	ND		420	UG/KG	8270	03/20/2008 23:56	RM
Butyl benzyl phthalate	ND		420	UG/KG	8270	03/20/2008 23:56	RM
Caprolactam	ND		420	UG/KG	8270	03/20/2008 23:56	RM
Carbazole	ND		420	UG/KG	8270	03/20/2008 23:56	RM
Chrysene	73	ı	420	UG/KG	8270	03/20/2008 23:56	RM
Di-n-butyl phthalate	ND		420	UG/KG	8270	03/20/2008 23:56	RM
Di-n-octyl phthalate	ND		420	UG/KG	8270	03/20/2008 23:56	RM
Dibenzo(a,h)anthracene	ND		420	UG/KG	8270	03/20/2008 23:56	RM
Dibenzofuran	ND		420	UG/KG	8270	03/20/2008 23:56	RM
Diethyl phthalate	ND		420	UG/KG	8270	03/20/2008 23:56	
Dimethyl phthalate	ND		420	UG/KG	8270	03/20/2008 23:56	

Page:

19 Rept: AN1178

Sample ID: B-2(0.0-2.0) Lab Sample ID: A8258602 Date Collected: 03/13/2008 Time Collected: 11:00

Date Received: 03/14/2008 Project No: NY4A919723 Client No: 102461

			Detection			Date/Time	•
Parameter	Result	Flag	Limit	Units	Method	Analyzed	Analys
SOIL-SW8463 8270 - TCL SVOA ORGANICS							
Fluoranthene	² 150	J	420	UG/KG	8270	03/20/2008 23:56	RM
Fluorene	ND		420	UG/KG	8270	03/20/2008 23:56	RM
Hexachlorobenzene	ND		420	UG/KG	8270	03/20/2008 23:56	RM
Hexachlorobutadiene	ND		420	UG/KG	8270	03/20/2008 23:56	RM
Hexachlorocyclopentadiene	ND		420	UG/KG	8270	03/20/2008 23:56	RM
Hexachloroethane	ND .		420	UG/KG	8270	03/20/2008 23:56	RM
Indeno(1,2,3-cd)pyrene	43	J	420	UG/KG	8270	03/20/2008 23:56	RM
Isophorone	ND		420	UG/KG	8270	03/20/2008 23:56	RM
N-Nitroso-Di-n-propylamine	ND		420	UG/KG	8270	03/20/2008 23:56	RM
N-nitrosodiphenylamine	ND		420	UG/KG	827 0	03/20/2008 23:56	RM
Naphthalene	ND		420	UG/KG	8270	03/20/2008 23:56	RM
Nitrobenzene	ND		420	UG/KG	8270	03/20/2008 23:56	RM
Pentachlorophenol	w ND		820	UG/KG	8270	03/20/2008 23:56	RM .
Phenanthrene	78	J	420	UG/KG	8270	03/20/2008 23:56	RM
Phenol	ND		420	UG/KG	8270	03/20/2008 23:56	RM
Pyrene	120	J	420	UG/KG	8270	03/20/2008 23:56	RM
SOIL-SW8463-8082 - PCBS			Di .				
Aroclor 1016	ND		20	UG/KG	8082	03/18/2008 12:28	TCH
Aroclor 1221	ND		20	UG/KG	8082	03/18/2008 12:28	
Aroclor 1232	ND		20	UG/KG	8082	03/18/2008 12:28	
Aroclor 1242	ND		20	UG/KG	8082	03/18/2008 12:28	
Aroclor 1248	ND		20	UG/KG	8082	03/18/2008 12:28	
Aroclor 1254	ND		20	UG/KG	8082	03/18/2008 12:28	
Aroctor 1260	ND		20	UG/KG	8082	03/18/2008 12:28	
tetals Analysis							
Aluminum - Total	7750	*	12.4	MG/KG	6010	03/19/2008 14:53	
Antimony - Total	ND	N	18.6	MG/KG	6010	03/19/2008 14:53	
Arsenic - Total	3.8	N	2.5	MG/KG	6010	03/19/2008 14:53	
Barium - Total	59.6	N*	0.62	MG/KG	6010	03/19/2008 14:53	
Beryllium - Total	0.27		0.25	MG/KG	6010	03/19/2008 14:53	
Cadmium - Total	0.36		0.25	MG/KG	6010	03/19/2008 14:53	
Calcium - Total	8620	*	62.1	MG/KG	6010	03/19/2008 14:53	
Chromium - Total	6.7		0.62	MG/KG	6010	03/19/2008 14:53	
Cobalt - Total	3.5		0.62	MG/KG	6010	03/19/2008 14:53	
Copper - Total	8.2	N*	1.2	MG/KG	6010	03/19/2008 14:53	
Iron - Total	8990		12.4	MG/KG	6010	03/19/2008 14:53	
Lead - Total	45.4	E	1.2	MG/KG	6010	03/19/2008 14:53	
Magnesium - Total	871	E	24.8	MG/KG	6010	03/19/2008 14:53	
Manganese - Total	185	-	0.25	MG/KG	6010	03/19/2008 14:53	
Mercury - Total	0.132	N	0.022	MG/KG	7471	03/18/2008 17:21	
Nickel - Total	6.3	E	0.62	MG/KG	6010	03/19/2008 14:53	
Potassium - Total	409	-	37.3	MG/KG	6010	03/19/2008 14:53	
Selenium - Total	ND	N	5.0	MG/KG	6010		
Silver - Total	ND	N	0.62			03/19/2008 14:53	
	ND			MG/KG	6010 6010	03/19/2008 14:53	
Sodium - Total			174	MG/KG	6010	03/19/2008 14:53	
Thallium - Total	ND		7.5	MG/KG	6010	03/19/2008 14:53	

Malcolm Pirnie - Flexo Transparent Seneca Street Phase II ESA - 6105-001 Page:

20 Rept: AN1178

Sample ID: B-2(0.0-2.0) Lab Sample ID: A8258602

. . .

Date Collected: 03/13/2008 Time Collected: 11:00

Date Received: 03/14/2008 Project No: NY4A919723

Client No: 102461

Parameter	Result	Flag	Detection Limit	Units	Method	Date/Time	Analyst
Metals Analysis Zinc - Total	39.9	E	2.5	MG/KG	6010	03/19/2008 14:53	
Wet Chemistry Analysis Cyanide ~ Total	ND		1.1	UG/G	9012	03/20/2008 11:48	ERK

Malcolm Pirnie - Flexo Transparent Seneca Street Phase II ESA - 6105-001 Page: 21 Rept: AN1178

Project No: NY4A919723 Client No: 102461

Date Received: 03/14/2008

Site No:

Sample ID: B-3(0.0-2.0)
Lab Sample ID: A8258603
Date Collected: 03/13/2008
Time Collected: 12:00

		Detection				_	
Parameter	Result	Flag	Limit	Units	Method	Analyzed	Analys
SOIL-SW8463 8260 - TCL VOLATILES							
1,1,1-Trichloroethane	ND		8	UG/KG	8260	03/15/2008 17:33	TRB
1,1,2,2-Tetrachloroethane	ND		8	UG/KG	8260	03/15/2008 17:33	TRB
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		8	UG/KG	8260	03/15/2008 17:33	TRB
1,1,2-Trichloroethane	ND		8 ·	UG/KG	8260	03/15/2008 17:33	TRB
1,1-Dichloroethane	ND		8	UG/KG	8260	03/15/2008 17:33	TRB
1,1-Dichloroethene	ND		8	UG/KG	8260	03/15/2008 17:33	TRB
1,2,4-Trichlorobenzene	ND		8	UG/KG	8260	03/15/2008 17:33	TRB
1,2-Dibromo-3-chloropropane	ND		8	UG/KG	8260	03/15/2008 17:33	TRB
1,2-Dibromoethane	ND		8	UG/KG	8260	03/15/2008 17:33	TRB
1,2-Dichlorobenzene	ND		8	UG/KG	8260	03/15/2008 17:33	TRB
1.2-Dichloroethane	ND		8	UG/KG	8260	03/15/2008 17:33	TRB
1,2-Dichloropropane	ND		8	UG/KG	8260	03/15/2008 17:33	TRB
1,3-Dichlorobenzene	ND		8	UG/KG	8260	03/15/2008 17:33	TRB
1,4-Dichlorobenzene	ND		8	UG/KG	8260	03/15/2008 17:33	TRB
2-Butanone	ND		41	UG/KG	8260	03/15/2008 17:33	TRB
2-Hexanone	ND		41	UG/KG	8260	03/15/2008 17:33	TRB
4-Methyl-2-pentanone	DK		41	UG/KG	8260	03/15/2008 17:33	TRB
Acetone	ND		41	UG/KG	8260	03/15/2008 17:33	TRB
Benzene	ND		8	UG/KG	8260	03/15/2008 17:33	TRB
Bromodichloromethane	ND		8	UG/KG	8260	03/15/2008 17:33	TRB
Bromoform	ND		8	UG/KG	8260	03/15/2008 17:33	TRB
Bromomethane	ND		8	UG/KG	8260	03/15/2008 17:33	TRB
Carbon Disulfide	ND		8	UG/KG	8260	03/15/2008 17:33	TRB
Carbon Tetrachloride	ND		8	UG/KG	8260	03/15/2008 17:33	TRB
Chlorobenzene	ND		8	UG/KG	8260	03/15/2008 17:33	TRB
Chloroethane	ND		8	UG/KG	8260	03/15/2008 17:33	S TRB
Chloroform	ND		8	UG/KG	8260	03/15/2008 17:33	TRB
Chloromethane	ND		8	UG/KG	8260	03/15/2008 17:33	S TRB
cis-1,2-Dichloroethene	ND		8	UG/KG	8260	03/15/2008 17:33	5 TRB
cis-1,3-Dichloropropene	ND		8	UG/KG	8260	03/15/2008 17:33	5 TRB
Cyclohexane	ND		8	UG/KG	8260	03/15/2008 17:33	TRB
Dibromochloromethane	ND		8	UG/KG	8260	03/15/2008 17:33	TRB
Dichlorodifluoromethane	ND		8	UG/KG	8260	03/15/2008 17:33	TRB
Ethylbenzene	ND		8	UG/KG	8260	03/15/2008 17:33	TRB
Isopropylbenzene	ND		8	UG/KG	8260	03/15/2008 17:33	S TRB
Methyl acetate	ND		8	UG/KG	8260	03/15/2008 17:33	3 TRB
Methyl-t-Butyl Ether (MTBE)	ND		8	UG/KG	8260	03/15/2008 17:33	5 TRB
Methylcyclohexane	ND		8	UG/KG	8260	03/15/2008 17:33	TRB
Methylene chloride	7	J	8	UG/KG	8260	03/15/2008 17:33	TRB
Styrene	ND		8	UG/KG	8260	03/15/2008 17:33	5 TRB
Tetrachloroethene	ND		8	UG/KG	8260	03/15/2008 17:33	3 TRB
Toluene	ND		8	UG/KG	8260	03/15/2008 17:33	5 TRB
Total Xylenes	ND		25	UG/KG	8260	03/15/2008 17:33	3 TRB
trans-1,2-Dichloroethene	ND		8	UG/KG	8260	03/15/2008 17:33	3 TRB
trans-1,3-Dichloropropene	ND		8	UG/KG	8260	03/15/2008 17:3	
Trichloroethene	ND		8	UG/KG	8260	03/15/2008 17:33	
Trichlorofluoromethane	ND		8	UG/KG	8260	03/15/2008 17:3	
Vinyl chloride	ND		16	UG/KG	8260	03/15/2008 17:3	

Malcolm Pirnie - Flexo Transparent Seneca Street Phase II ESA - 6105-001 Page: 22 Rept: AN1178

Date Received: 03/14/2008 Project No: NY4A919723 Client No: 102461

Site No:

Sample ID: B-3(0.0-2.0)
Lab Sample ID: A8258603
Date Collected: 03/13/2008
Time Collected: 12:00

			Detection			Date/Time	
Parameter	Result	Flag	Limit	Units	Method	Analyzed	Analys
SOIL-SW8463 8270 - TCL SVOA ORGANICS							
2,2'-0xybis(1-Chioropropane)	ND		420	UG/KG	8270	03/21/2008 00:19	
2,4,5-Trichlorophenol	ND		420	UG/KG	8270	03/21/2008 00:19	RM
2,4,6-Trichlorophenol	ND		420	UG/KG	8270	03/21/2008 00:19	RM
2,4-Dichlorophenol	ND		420	UG/KG	8270	03/21/2008 00:19	RM
2,4-Dimethylphenol	ND		420	UG/KG	8270	03/21/2008 00:19	RM
2,4-Dinitrophenol	ND		820	UG/KG	8270	03/21/2008 00:19	RM
2,4-Dinitrotoluene	ND		420	UG/KG	8270	03/21/2008 00:19	RM
2,6-Dinitrotoluene	ND		420	UG/KG	8270	03/21/2008 00:19	RM
2-Chloronaphthalene	ND		420	UG/KG	8270	03/21/2008 00:19	RM
2-Chlorophenol	ND		420	UG/KG	8270	03/21/2008 00:19	RM
2-Methylnaphthalene	24	J	420	UG/KG	8270	03/21/2008 00:19	RM
2-Methylphenol	ND		420	UG/KG	8270	03/21/2008 00:19	RM
2-Nitroaniline	ND		820	UG/KG	8270	03/21/2008 00:19	RM
2-Nitrophenol	ND		420	UG/KG	8270	03/21/2008 00:19	RM
3,3'-Dichlorobenzidine	ND		420	UG/KG	8270	03/21/2008 00:19	RM
3-Nitroaniline	ND		820	UG/KG	8270	03/21/2008 00:19	RM
4.6-Dinitro-2-methylphenol	ND		820	UG/KG	8270	03/21/2008 00:19	RM
4-Bromophenyl phenyl ether	··· ND		420	UG/KG	8270	03/21/2008 00:19	RM
4-Chloro-3-methylphenol	ND		420	UG/KG	8270	03/21/2008 00:19	RM
4-Chloroaniline	ND		420	UG/KG	8270	03/21/2008 00:19	RM
4-Chlorophenyl phenyl ether	ND		420	UG/KG	8270	03/21/2008 00:19	RM
4-Methylphenol	ND		420	UG/KG	8270	03/21/2008 00:19	RM
4-Nitroaniline	ND		820	UG/KG	8270	03/21/2008 00:19	RM
4-Nitrophenol	ND		820	UG/KG	8270	03/21/2008 00:19	
Acenaphthene	18	J	420	UG/KG	8270	03/21/2008 00:19	
Acenaphthylene	17	J	420	UG/KG	8270	03/21/2008 00:19	
Acetophenone	ND	_	420	UG/KG	8270	03/21/2008 00:19	
Anthracene	55	J	420	UG/KG	8270	03/21/2008 00:19	
Atrazine	ND	•	420	UG/KG	8270	03/21/2008 00:19	
Benzal dehyde	ND		420	UG/KG	8270	03/21/2008 00:19	
Benzo(a)anthracene	210	J	420	UG/KG	8270	03/21/2008 00:19	
	200	J	420	UG/KG	8270	03/21/2008 00:19	
Benzo(a)pyrene	250	7	420	UG/KG	8270	03/21/2008 00:19	
Benzo(b)fluoranthene Benzo(ghi)perylene	170	J	420	UG/KG	8270	03/21/2008 00:19	
	81	J	420	UG/KG	8270	03/21/2008 00:19	
Benzo(k)fluoranthene	ND	•	420	UG/KG	8270	03/21/2008 00:19	
Biphenyl	ND		420	UG/KG	8270	03/21/2008 00:19	
Bis(2-chloroethoxy) methane	ND		420	UG/KG	8270	03/21/2008 00:19	
Bis(2-chloroethyl) ether	ND		420	UG/KG	8270	03/21/2008 00:19	
Bis(2-ethylhexyl) phthalate	ND		420	UG/KG	8270	03/21/2008 00:19	**
Butyl benzyl phthalate			420	UG/KG	8270	03/21/2008 00:19	
Caprolactam	ND			-			
Carbazole	30 300	J	420 420	UG/KG	8270 8270	03/21/2008 00:19	
Chrysene	200	J	420 430	UG/KG		03/21/2008 00:19	
Di-n-butyl phthalate	ND		420 430	UG/KG	8270	03/21/2008 00:19	
Di-n-octyl phthalate	ND		420	UG/KG	8270	03/21/2008 00:19	
Dibenzo(a,h)anthracens	38	J	420	UG/KG	8270	03/21/2008 00:19	
Dibenzofuran	ND		420	UG/KG	8270	03/21/2008 00:19	
Diethyl phthalate	ND		420	UG/KG	8270	03/21/2008 00:19	
Dimethyl phthalate	ND		420	UG/KG	8270	03/21/2008 00:19	RM

Malcolm Pirnie - Flexo Transparent Seneca Street Phase II ESA - 6105-001 Page: 23 Rept: AN1178

Sample ID: B-3(0.0-2.0) Lab Sample ID: A8258603 Date Collected: 03/13/2008

Client No: 102461 Time Collected: 12:00

Site No:

Date Received: 03/14/2008

Project No: NY4A919723

			Detection			Date/Time	
Parameter	Result	Flag	Limit	<u>Units</u>	Method	Analyzed	Analyst
SOIL-SW8463 8270 - TCL SVOA ORGANICS							
Fluoranthene	420		420	UG/KG	8270	03/21/2008 00:19	RM
Fluorene	19	J	420	UG/KG	8270	03/21/2008 00:19	RM
Hexachlorobenzene	ND		420	UG/KG	8270	03/21/2008 00:19	RM
Hexach Lorobut adi ene	ND		420	UG/KG	8270	03/21/2008 00:19	RM
Hexachlorocyclopentadiene	ND		420	UG/KG	8270	03/21/2008 00:19	RM
Hexachloroethane	ND		420	UG/KG	8270	03/21/2008 00:19	RM
Indeno(1,2,3-cd)pyrene	140	J	420	UG/KG	8270	03/21/2008 00:19	RM
Isophorone	ND		420	UG/KG	8270	03/21/2008 00:19	RM
N-Nitroso-Di-n-propylamine	ND		420	UG/KG	8270	03/21/2008 00:19	RM
N-nitrosodiphenylamine	ND		420	UG/KG	8270	03/21/2008 00:19	RM
Naphthalene	18	J	420	UG/KG	8270	03/21/2008 00:19	RM
N i trobenzene	ND		420	UG/KG	8270	03/21/2008 00:19	RM
Pentachil orophenol	ND		820	UG/KG	8270	03/21/2008 00:19	RM
Phenanthrene	260	J	420	UG/KG	8270	03/21/2008 00:19	RM
Phenol	ND_		420	UG/KG	8270	03/21/2008 00:19	RM
Pyrene	340	J	420	UG/KG	8270	03/21/2008 00:19	P RM
SOIL-SW8463 8082 - PCBS							79
Aroclor 1016	ND		41	UG/KG	8082	03/18/2008 12:43	TCH
Aroclor 1221	ND		41	UG/KG	8082	03/18/2008 12:43	TCH
Aroclor 1232	ND		41	UG/KG	8082	03/18/2008 12:43	TCH
Aroclor 1242	ND		41	UG/KG	8082	03/18/2008 12:43	TCH
Aroclor 1248	ND		41	UG/KG	8082	03/18/2008 12:43	TCH
Aroclor 1254	ND		41	UG/KG	8082	03/18/2008 12:43	TCH
Aroclor 1260	600		41	UG/KG	8082	03/18/2008 12:43	3 ТСН
Metals Analysis							
Aluminum - Total	14000	*	12.3	MG/KG	6010	03/19/2008 14:58	
Antimony - Total	ND	N	18.5	MG/KG	6010	03/19/2008 14:58	3
Arsenic - Total	22.9	N	2.5	MG/KG	6010	03/19/2008 14:58	3
Barium - Total	100	N*	0.62	MG/KG	6010	03/19/2008 14:58	3
Beryllium - Total	1.9		0.25	MG/KG	6010	03/19/2008 14:58	3
Cadmium - Total	0.81		0.25	MG/KG	6010	03/19/2008 14:58	3
Calcium - Total	32600	*	61.5	MG/KG	6010	03/19/2008 14:58	3
Chromium - Total	5.3		0.62	MG/KG	6010	03/19/2008 14:58	3
Cobalt - Total	3.4		0.62	MG/KG	6010	03/19/2008 14:58	3
Copper - Total	66.4	N*	1.2	MG/KG	6010	03/19/2008 14:58	3
Iron - Total	39000		12.3	MG/KG	6010	03/19/2008 14:58	В
Lead - Total	49.4	E	1.2	MG/KG	6010	03/19/2008 14:58	В
Magnesium - Total	1830	E	24.6	MG/KG	6010	03/19/2008 14:58	В
Manganese - Total	336		0.25	MG/KG	6010	03/19/2008 14:58	8
Mercury - Total	0.226	N	0.020	MG/KG	7471	03/18/2008 17:2	2
Nickel - Total	8.9	E	0.62	MG/KG	6010	03/19/2008 14:58	В
Potassium - Total	603		36.9	MG/KG	6010	03/19/2008 14:58	В
Selenium - Total	19.7	N	4.9	MG/KG	6010	03/19/2008 14:58	8
Silver - Total	ND		0.62	MG/KG	6010	03/19/2008 14:58	В
Sodium - Total	271		172	MG/KG	6010	03/19/2008 14:58	В
Thallium - Total	ND		7.4	MG/KG	6010	03/19/2008 14:5	
Vanadium - Total	20.5	E	0.62	MG/KG	6010	03/19/2008 14:5	

Malcolm Pirnie - Flexo Transparent Seneca Street Phase II ESA - 6105-001 Page:

24 Rept: AN1178

Sample ID: B-3(0.0-2.0) Lab Sample 10: A8258603

Date Collected: 03/13/2008 Time Collected: 12:00

Date Received: 03/14/2008 Project No: NY4A919723

Client No: 102461

Parameter	Result	<u>Flag</u>	Detection Limit	Units	Method	— Date/Time Analyst
Metals Analysis Zinc - Total	34.6	E	2.5	MG/KG	6010	. 03/19/2008 14:58
Wet Chemistry Analysis Cyanide - Total	ND		1.2	UG/G	9012	03/20/2008 11:48 ERK

Malcolm Pirnie - Flexo Transparent Seneca Street Phase II ESA - 6105-001 Page: 1 Rept: AN1178

Sample ID: B-13 0.0-1.5 Lab Sample ID: A8266501 Date Collected: 03/17/2008 Time Collected: 08:30 Date Received: 03/18/2008 Project No: NY4A919723 Client No: 102461

			Detection		Date/Time				
Parameter	Result	Flag	Limit	Units	Method	Analyzed	<u>Analys</u> 1		
SOIL-SW8463 8260 - TCL VOLATILES									
1,1,1-Trichloroethane	ND		7	UG/KG	82 60	03/19/2008 12:47	JLG		
1,1,2,2-Tetrachloroethane	ND		7	UG/KG	8260	03/19/2008 12:47	JLG		
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		7	UG/KG	8260	03/19/2008 12:47	JLG		
1,1,2-Trichloroethane	ND		7	UG/KG	8260	03/19/2008 12:47	' JEG		
1.1-Dichloroethane	ND		7	UG/KG	8260	03/19/2008 12:47	JLG		
1,1-Dichloroethene	ND		7	UG/KG	8260	03/19/2008 12:47	JLG		
1,2,4-Trichlorobenzene	ND		7	UG/KG	8260	03/19/2008 12:47	' JLG		
1,2-Dibromo-3-chloropropane	ND		7	UG/KG	8260	03/19/2008 12:47	' JLG		
1,2-Dibromoethane	ND		7	UG/KG	8260	03/19/2008 12:47	' JLG		
1,2-Dichlorobenzene	ND		7	UG/KG	8260	03/19/2008 12:47	' JLG		
1,2-Dichloroethane	ND		7	UG/KG	8260	03/19/2008 12:47	' JLG		
1,2-Dichloropropane	ND		7	UG/KG	8260	03/19/2008 12:47	' JLG		
1,3-Dichlorobenzene	ND		7	UG/KG	8260	03/19/2008 12:47	JLG		
1,4-Dichlorobenzene	ND		7	UG/KG	8260	03/19/2008 12:47	' JLG		
•	ND		33	UG/KG	8260	03/19/2008 12:47	7 JLG		
2-Butanone	ND		33	UG/KG	8260	03/19/2008 12:47	7 JLG		
2-Hexanone	ND		33	UG/KG	8260	03/19/2008 12:47	7 JLG		
4-Methyl-2-pentanone	ND		33	UG/KG	8260	03/19/2008 12:47	7 JLG		
Acetone	ND		7	UG/KG	8260	03/19/2008 12:47	7 JLG		
Benzene	ND		7	UG/KG	8260	03/19/2008 12:47	7 JLG		
Bromodichloromethane	ND		7	UG/KG	8260	03/19/2008 12:47			
Bromoform	ND		7	UG/KG	8260	03/19/2008 12:47			
Bromomethane	ND	8"	7	UG/KG	8260	03/19/2008 12:47			
Carbon Disulfide	ND		7	UG/KG	8260	03/19/2008 12:47			
Carbon Tetrachloride	ND		7	UG/KG	8260	03/19/2008 12:47			
Chlorobenzene	ND		7	UG/KG	8260	03/19/2008 12:4			
Chloroethane			7	UG/KG	8260	03/19/2008 12:4			
Chloroform	ND		7	UG/KG	8260	03/19/2008 12:4			
Chloromethane	ND		7	UG/KG	8260	03/19/2008 12:4			
cis-1,2-Dichloroethene	ND		7	UG/KG	8260	03/19/2008 12:4			
cis-1,3-Dichloropropene	ND		7	UG/KG	8260	03/19/2008 12:4			
Cyclohexane	ND		7	UG/KG	8260	03/19/2008 12:4			
Dibromochloromethane	ND			_	8260	03/19/2008 12:4			
Dichlorodifluoromethane	ND		7	UG/KG	8260	03/19/2008 12:4			
Ethylbenzene	ND		7	UG/KG	8260	03/19/2008 12:4			
Isopropy lbenzene	ND		7	UG/KG	8260	03/19/2008 12:4			
Methyl acetate	ND		7	UG/KG		03/19/2008 12:4			
Methyl-t-Butyl Ether (MTBE)	ND		7	UG/KG	8260				
Methylcyclohexane	ND		7	UG/KG	8260	03/19/2008 12:4			
Methylene chloride	10		7	UG/KG	8260	03/19/2008 12:4			
Styrene	ND		7	UG/KG	8260	03/19/2008 12:4			
Tetrachloroethene	ND		7	UG/KG	8260	03/19/2008 12:4			
Toluene	ND		7	UG/KG	8260	03/19/2008 12:4			
Total Xylenes	ND		20	UG/KG	8260	03/19/2008 12:4			
trans-1,2-Dichloroethene	ND		7	UG/KG	8260	03/19/2008 12:4			
trans-1,3-Dichloropropene	ND		7	UG/KG	8260	03/19/2008 12:4			
Trichloroethene	ND		7	UG/KG	8260	03/19/2008 12:4			
Trichlorofluoromethane	ND		7	UG/KG	8260	03/19/2008 12:4			
Vinyl chloride	ND		13	UG/KG	8260	03/19/2008 12:4	7 JLG		

Date: 04/04/2008 Time: 07:59:48

Malcolm Pirnie - Flexo Transparent Seneca Street Phase II ESA - 6105-001 Page: 2 Rept: AN1178

TestAmerica

Sample ID: B-13 0.0-1.5 Lab Sample ID: A8266501 Date Collected: 03/17/2008

Time Collected: 08:30

Date Received: 03/18/2008 Project No: NY4A919723 Client No: 102461

Site No:

Site No.

			Detection			Date/Time	
Parameter	<u>Resul t</u>	<u>Flag</u>	Limit	Units	Method	Analyzed	Analys
SOIL-SW8463 8270 - TCL SVOA ORGANICS							
2,2'-0xybis(1-Chloropropane)	ND		210	UG/KG	8270	03/20/2008 20:05	RM
2,4,5-Trichlorophenol	ND		210	UG/KG	8270	03/20/2008 20:05	RM
2,4,6-Trichlorophenol	ND		210	UG/KG	8270	03/20/2008 20:05	RM
2.4-Dichlorophenol	ND		210	UG/KG	8270	03/20/2008 20:05	RM
2,4-Dimethylphenol	ND		210	UG/KG	8270	03/20/2008 20:05	RM
2,4-Dinitrophenol	ND		410	UG/KG	8270	03/20/2008 20:05	RM
2,4-Dinitrotoluene	ND		210	UG/KG	8270	03/20/2008 20:05	RM
2,6-Dinitrotoluene	ND		210	ng/kg	8270	03/20/2008 20:05	RM
2-Chloronaphthalene	ND		210	UG/KG	8270	03/20/2008 20:05	RM
2-Chlorophenol	ND		210	UG/KG	8270	03/20/2008 20:05	RM
2-Methyl naphthalene	ND		210	UG/KG	8270	03/20/2008 20:05	RM
2-Methylphenol	ND		210	UG/KG	8270	03/20/2008 20:05	RM
2-Nitroaniline	ND		410	UG/KG	8270	03/20/2008 20:05	RM
2-Nitrophenol	ND		210	UG/KG	8270	03/20/2008 20:05	RM
3,3'-Dichlorobenzidine	ND		210	UG/KG	8270	03/20/2008 20:05	RM
3-Nitroaniline	ND		410	UG/KG	8270	03/20/2008 20:05	RM
4,6-Dinitro-2-methylphenol	ND		410	UG/KG	8270	03/20/2008 20:05	RM
4-Bromophenyl phenyl ether	ND		210	UG/KG	8270	03/20/2008 20:05	RM
4-Chloro-3-methylphenol	ND		210	UG/KG	8270	03/20/2008 20:05	RM
4-Chloroaniline	ND		210	UG/KG	8270	03/20/2008 20:05	RM
4-Chlorophenyl phenyl ether	ND		210	UG/KG	8270	03/20/2008 20:05	RM
4-Methylphenol	ND		210	UG/KG	8270	03/20/2008 20:05	RM
4-Nitroaniline	ND		410	UG/KG	8270	03/20/2008 20:05	RM
4-Nitrophenol	ND		410	UG/KG	8270	03/20/2008 20:05	RM
Acenaphthene	ND		210	UG/KG	8270	03/20/2008 20:05	RM
Acenaphthylene	ND		210	UG/KG	8270	03/20/2008 20:05	RM
Acetophenone	ND		210	UG/KG	8270	03/20/2008 20:05	RM
Anthracene	ND		210	UG/KG	8270	03/20/2008 20:05	RM.
Atrazine	ND		210	UG/KG	8270	03/20/2008 20:05	RM
Benzaldehyde	ND		210	UG/KG	8270	03/20/2008 20:05	RM
Benzo(a)anthracene	ND		210	UG/KG	8270	03/20/2008 20:05	RM
Benzo(a)pyrene	ND		210	UG/KG	8270	03/20/2008 20:05	RM
Benzo(b)fluoranthene	ND		210	UG/KG	8270	03/20/2008 20:05	RM
Benzo(ghi)perylene	ND		210	UG/KG	8270	03/20/2008 20:05	RM
Benzo(k)fluoranthene	ND		210	UG/KG	8270	03/20/2008 20:05	RM
Biphenyl	ND		210	UG/KG	8270	03/20/2008 20:05	RM
Bis(2-chloroethoxy) methane	ND		210	UG/KG	8270	03/20/2008 20:05	
Bis(2-chloroethyl) ether	ND		210	UG/KG	8270	03/20/2008 20:05	
•	ND		210	UG/KG	8270	03/20/2008 20:05	
Bis(2-ethylhexyl) phthalate Butyl benzyl phthalate	ND		210	UG/KG	8270	03/20/2008 20:05	
	ND		210	UG/KG	8270	03/20/2008 20:05	
Caprolactam	ND		210	UG/KG	8270	03/20/2008 20:05	
Carbazole	ND		210	UG/KG	8270	03/20/2008 20:05	
Chrysene			210	UG/KG	8270	03/20/2008 20:05	
Di-n-butyl phthalate	ND 13	вЈ	210	UG/KG	8270	03/20/2008 20:05	
Di-n-octyl phthalate		DJ	210	UG/KG	8270	03/20/2008 20:05	
Dibenzo(a,h)anthracene	ND		210	UG/KG	8270	03/20/2008 20:05	
Dibenzofuran	ND		210	UG/KG	8270	03/20/2008 20:0	
Diethyl phthalate	ND		£ IU		ULIV	03, L0, 2000 £0:0.	- 1717

Date: 04/04/2008 Time: 07:59:48

Malcolm Pirnie - Flexo Transparent Seneca Street Phase II ESA - 6105-001 Page: 3 Rept: AN1178

Sample ID: B-13 0.0-1.5 Lab Sample ID: A8266501 Date Collected: 03/17/2008 Date Received: 03/18/2008 Project No: NY4A919723 Client No: 102461

Site No:

Time Collected: 08:30

Detection

			Detection			Date/Time	
Parameter	Result	Flag	Limit	<u>Units</u>	Method	Analyzed	Analys
SOIL-SW8463 8270 - TCL SVOA ORGANICS							
Fluoranthene	ND		210	UG/KG	8270	03/20/2008 20:05	RM
Fluorene	ND		210	UG/KG	8270	03/20/2008 20:05	RM
Hexachlorobenzene	ND		210	UG/KG	8270	03/20/2008 20:05	RM
Hexachlorobutadiene	ND		210	UG/KG	8270	03/20/2008 20:05	RM
Hexachlorocyclopentadiene	ND		210	UG/KG	8270	03/20/2008 20:05	RM
Hexachloroethane	ND		210	UG/KG	8270	03/20/2008 20:05	RM
Indeno(1,2,3-cd)pyrene	ND		210	UG/KG	8270	03/20/2008 20:05	RM
Isophorone	ND		210	UG/KG	8270	03/20/2008 20:05	RM
N-Nitroso-Di-n-propylamine	ND		210	UG/KG	8270	03/20/2008 20:05	RM.
N-nitrosodiphenylamine	ND		210	UG/KG	8270	03/20/2008 20:05	RM
Naphthalene	ND		210	UG/KG	8270	03/20/2008 20:05	RM
Nitrobenzene	ND		210	UG/KG	8270	03/20/2008 20:05	RM
Pentachlorophenol	ND		410	UG/KG	8270	03/20/2008 20:05	RM
Phenanthrene	ND		210	UG/KG	8270	03/20/2008 20:05	RM
Phenol	ND		210	UG/KG	8270	03/20/2008 20:05	RM
Pyrene	ND		210	UG/KG	8270	03/20/2008 20:05	S RM
SOIL-SW8463 8082 - PCBS							
Aroclor 1016	ND		21	UG/KG	8082	03/21/2008 09:40	DW C
Aroclor 1221	ND		21	UG/KG	8082	03/21/2008 09:40	D DW
Aroclor 1232	ND		21	UG/KG	8082	03/21/2008 09:40	D₩
Aroclor 1242	ND		21	UG/KG	8082	03/21/2008 09:40	DW C
Aroclor 1248	ND		21	UG/KG	8082	03/21/2008 09:40	D₩
Aroclor 1254	ND		21	UG/KG	8082	03/21/2008 09:40) DW
Aroclor 1260	ND		21	UG/KG	8082	03/21/2008 09:40	D DW
Metals Analysis							
Aluminum - Total	17700	N*	13.1	MG/KG	6010	03/20/2008 00:34	4
Antimony - Total	ND		19.7	MG/KG	6010	03/20/2008 00:34	4
Arsenic - Total	ND		2.6	MG/KG	6010	03/20/2008 00:34	4
Barium - Total	73.1	N	0.66	MG/KG	6010	03/20/2008 00:3	4
Beryllium - Total	0.44		0.26	MG/KG	6010	03/20/2008 00:3	4
Cadmium - Total	ND		0.26	MG/KG	6010	03/20/2008 00:34	4
Calcium - Total	2820	N _{at}	65.6	MG/KG	6010	03/20/2008 00:3	4
Chromium - Total	13.1		0.66	MG/KG	6010	03/20/2008 00:3	4
Cobalt - Total	5.4		0.66	MG/KG	6010	03/20/2008 00:3	4
Copper - Total	4.0	N	1.3	MG/KG	6010	03/20/2008 00:3	4
Iron - Total	8940	*	13.1	MG/KG	6010	03/20/2008 00:3	4
Lead - Total	9.2	N	1.3	MG/KG	6010	03/20/2008 14:1	0
Magnesium - Total	1690	N	26.2	MG/KG	6010	03/20/2008 00:3	4
Manganese - Total	42.5	N*	0.26	MG/KG	6010	03/20/2008 00:3	4
Mercury - Total	0.078	N	0.022	MG/KG	7471	03/20/2008 15:5	7
Nickel - Total	10.6		0.66	MG/KG	6010	03/20/2008 00:3	4
Nicket - Iotal Potassium - Total	721		39.3	MG/KG	6010	03/20/2008 00:3	4
Selenium - Total	ND		5.2	MG/KG	6010	03/20/2008 00:3	4
	ND		0.66	MG/KG	6010	03/20/2008 00:3	
Silver - Total	ND		184	MG/KG	6010	03/20/2008 00:3	
Sodium - Total	ND		7.9	MG/KG	6010	03/20/2008 00:3	
Thallium - Total	18.5		0.66	MG/KG	6010	03/20/2008 00:3	

Date: 04/04/2008 Time: 07:59:48

Malcolm Pirnie - Flexo Transparent Seneca Street Phase II ESA - 6105-001 Page:

Rept: AN1178

Sample ID: 8-13 0.0-1.5 Lab Sample ID: A8266501 Date Collected: 03/17/2008

Time Collected: 08:30

Date Received: 03/18/2008 Project No: NY4A919723

Client No: 102461

Parameter	Result	Flag	Detection Limit	Units	Method	—Date/Time Analyzed	Analyst
Metals Analysis Zinc - Total	42.0	N*	2.6	MG/KG	6010	03/20/2008 00:34	
Wet Chemistry Analysis Cyanide - Total	ND		1.1	UG/G	9012	03/20/2008 11:48	ERK

Upstate Laboratories, Inc. APPRQVAL:_ Analysis Regulto - Lab I.D.: 10170 Report Number: 24801066 Client I.D.: EVERGREEN TESTING & ENV. SYCS. Sampled by: Client ID.24801100 Nat : Boll FIBERIGHT 20 0-4 1600H 08/30701 G - - -PARAMETERS RESULTS __ DATE ANAL. KEY -------------ID:24801101 Mat:Soil Fiberight 20 4-6 1500H D8/30701 @ PARAMETERS RESULTS DATE ANAL. KEY PILES Percent Solids B1% 09/12/01 WD6255 PCB (Aroclors) by EPA Method 6082 Aroclor 1016 <0.lmg/kg dw 09/21/01 GA0986 Aroclor 1221 <0.lng/kg dw 09/21/01 GA0986 Aroclor 1232 <0.lmg/kg dw 09/21/01 GA0986 Arcolor 1242 <0.1mg/kg dw 09/21/01 GA0986 Aroclor 1248 5.9mg/kg dw 09/21/01 GA0986 Arcolor 1254 <0.1mg/kg dw 09/21/01 GA0986 Aroclor 1260 2.5mg/kg dw 8.4mg/kg dw 09/21/01 G10986 Total PCB 09/21/01 GA0986 ID.24801102 MAE.GOIL FIBERIGHT 21 4-6 1630H 08/30701 G PARAMETERS RESULTS DATE ANAL. KEY FILRS ----Percent Solids 82% 09/12/01 WD6255 PCB (Aroclors) by EPA Method 8082 Aroclor 1016 <0.1mg/kg dw 09/21/01 GA0986 Aroclor 1321 <0.1mg/kg dw 09/21/01 GA0986 Aroclor 1232 <0.lmg/kg dw 09/21/01 GA0986 Aroclor 1242 <0.1mg/kg dw 09/21/01 GA0986 Arocler 1248 <0.1mg/kg dw 09/21/01 GA0986 Arcelor 1254 <0.lmg/kg dw 05/21/01 GA0986 Aroclor 1260 0.66mg/kg dw 09/21/01 GA0986 Total PCB 0.66mg/kg dw 09/21/01 GA0986 ID:26801103 Mat. Soil FIBERIGHT 23 4-6 0915H 08/31/01 G PARAMETERS RESULTS DATE ANAL. KEY FILR# Percent Solids 76% 09/12/01 WD6255 Petroleum, EPA Method 8021 Benzene <110ug/kg dw 09/11/01 VA5918 Ethylbenzene 1200ug/kg dw 09/11/01 VA5918 Toluens <110ug/kg dw 09/11/01 VA5918

<110ug/kg dw

09/11/01

0.5

VA5918

iw - Dry weight

m,p-xylene

Upstate Laboratories, Inc. Analysis Results Report Number: 24501066 Client I.D.: EVERGREEN TESTING & ENV. SVCs.

being and and all days to the transfer of the	ID724801103 Mat. 8041	PIBERIGHT	2374-8 0915H 08/31701 @
---	-----------------------	-----------	-------------------------

tolyforing watiber: Alaskiest	23 4-8 0915H 08/31/0	16		
Parameters	RESULTS	DATE ANAL.	KRY	FILE#
***************************************	****			*
o-Xylene	550ug/kg dw	09/11/01		VA5918
IsobrobAjpsusero	<110ug/kg dw	09/11/01	05	VA5918
n-Propylbensone	320ug/kg dw	09/11/01		VA5918
p-Isopropyltoluene	<110ug/kg dw	09/11/01	05	VA5918
1,2,4-Trimethylbensens	<110ug/kg dw	09/11/01	05	VA3918
1,3,5-Trimethylbenzene	<110ug/kg dw	09/11/01	05	VA5918
n-Butylbenzene	570ug/kg dw	09/11/01	8	VA5918
sec-Butylbensene	<110ug/kg dw	09/11/01	0.5	VA5918
t-Butylbenzene	<110ug/kg dw	09/11/01		VA5918
Naphthalene	<110ug/kg dw	09/11/01	05	VA3918
NTBE	<2200ug/kg dw	09/11/01	05	VA5918
Petroleum, EPA Method 8270	791		39.5	

Anthracena	<440ug/kg dw	09/25/01		883027
Fluorens	<440ug/kg dw	09/25/01	- 2	SA3027
Phenanthreno	<440ug/kg dw	09/25/01		SA3027
Pyrene	<440ug/kg dw	09/25/01	•	SA3027
Acenaphthene	<440ug/kg dw	09/25/01		SA3027
Benzo [a] anthracene	<440ug/kg dw	09/25/01	ŷ.	SA3027
Fluorenthene	<440ug/kg dw	09/25/01		8A3027
Benzo [b] fluorenthens	<440ug/kg dw	09/25/01		8A3027
Benzo (k) fluoranthene	<440ug/kg dw	09/25/01		
Chrysene	<440ug/kg dw	09/25/01		9A3027
Benzo (a) pyrene	<440ug/kg dw	09/25/01		BA3027
Bengo [ghi] perylene	<440ug/kg dw	09/25/01		5 3 3027
Indeno[1,2,3-cd]pyrane	<440ug/kg dw	09/25/01		8A3027
Dibens [s, h] anthracene	<440ug/kg dw	09/25/01		8 A 3027 8 A 3027
id:24801104 Mat.soil Fibericat	30 0-4 1130H 08/31/01	ā		
PARAMETERS	RESULTS	DATE ANAL.	KEY	FILES
**************************************		*******		2 +4/2#
Percent Solids	81%	09/12/01		WD6255
PCB (Arcclors) by EPA Method 8082				
Aroclor 1016	16.1-11	8		
Aroclor 1221	<0.1mg/kg dw	09/21/01		GA0986
Aroclor 1232	<0.1mg/kg dw	09/21/01		GA0986
Arcolor 1242	<0.1mg/kg dw	09/21/01		38 COAD
Aroclor 1248	<0.1mg/kg dw	09/21/01		GA0986
Aroclor 1254	<0.1mg/kg dw	09/21/01		GA0986
Aroclor 1260	<0.1mg/kg dw	09/21/01		GA0986
Total PCB	<0.1mg/kg dw	09/21/01		GA0986
	<0.1mg/kg dw	09/21/01		GA0986
qm = Drh moidur				