2021 Hazardous Waste Scanning ProjectFile Form Naming Convention.

(File_Type).(Program).(Site_Number).(YYYY-MM-DD).(File_Name).pdf

Note 1: Each category is separated by a period "."

Note 2: Each word within category is separated by an underscore "_"

Specific File Naming Convention Label:

Report. BCP, C915231. 2010-12-23, FER

_.pdf

Buffalo Color Site – Area C ERIE COUNTY, NEW YORK

Final Engineering Report

NYSDEC Site Number: C915231

Prepared for:

South Buffalo Development, LLC
333 Ganson Street
Buffalo, NY

Prepared by:

Mactec Engineering and Consulting, Inc. 800 North Bell Avenue, Suite 200 Pittsburgh, PA (412) 279-6661

engineering and constructing a better tomorrow

December 3, 2010

Mr. Eugene Melnyk, P.E. New York State Department of Environmental Conservation Division of Environmental Remediation, Region 9 270 Michigan Avenue Buffalo, New York 14203-2999 NYSDEC - REGION 9

DEC 0 6 2010

FOIL UNREL

RECEIVED

Subject:

Final Engineering Report

Former Buffalo Color Corporation Site - Area C

NYSDEC BCP Site #C915231 Buffalo, New York (Erie County) MACTEC Project: 3410100796

Dear Mr. Melnyk:

MACTEC Engineering and Consulting, Inc. (MACTEC) has prepared the referenced Final Engineering Report (FER) for Area C of the former Buffalo Color Corporation Site on behalf of South Buffalo Development LLC (SBD). Enclosed please find three (3) copies of the FER. An electronic copy of the FER has been posted on our FTP site for your use; instructions regarding how to access the FTP site were issued to you via email. The FER has been prepared in accordance with the current NYSDEC FER template and documents the completion of the remedial activities at the Site.

Upon NYSDEC approval of the FER, it is understood that a Certificate of Completion will be issued for the Site in accordance to the Brownfield Cleanup Agreement between SBD and NYSDEC.

Please contact me at (412) 279-6661 or Mr. John Yensan of SBD at (716) 856-3333 ext. 302 should you have any questions regarding this submittal or require additional information.

Sincerely,

MACTEC Engineering and Consulting, Inc.

John M. Scrabis

Senior Principal Engineer

JMS:llg

cc:

J. Yensan (SBD) - electronic copy

R. Galloway (Honeywell) – electronic copy

P:\PROJECTS\South Buffalo Development\3410100796 -2010 Remedial Construction Suport Area C and E\FINAL DELIVERABLES\Final Engineering Reports\Final Area C FER\Transmittal Letter - Area C Final Engineering Report (12.3.2010) doc

Flanigan Square 547 River Street Troy, New York 12180-2216

Richard F. Daines, M.D. Commissioner

James W. Clyne, Jr.

Executive Deputy Commissioner

December 16, 2010

Mr. Eugene Melnyk, P.E. New York State Department of Environmental Conservation Division of Environmental Remediation Region 9 Office 270 Michigan Ave. Buffalo, New York 14203

Re: Final Engineering Report

Buffalo Color Corporation Site - Area C

Site #C915231

Buffalo(C), Erie County

Dear Mr. Melnyk:

I reviewed the December 2010 Final Engineering Report for the Buffalo Color Corporation Site - Area C located in the City of Buffalo, Erie County. I understand that the report details the completion of the components of the remedy, including limited excavation of volatile organic compound impacted soils and disposal, the addition of a biostimulant to the excavations during backfill, abandonment/plugging of storm sewers, construction of a site-wide soil cover system with underlying demarcation layer, execution and recording of an environmental easement and development of a site management plan and a plan for periodic certification of the remedy. As a result of the actions undertaken, no significant health threat is present at the site.

If you have any questions, please contact me at (518) 402-7860.

Sincerely,

Richard J. Fedigan, Section Chief

Northern Section

Bureau of Environmental Exposure Investigation

CC:

Ms. A. Salame-Alfie, Ph.D.

Mr. S. Bates

Mr. M. Doster, DEC Region 9

RECEIVED

NYSDEC - REGION 9

DEC 2 3 2010

Buffalo Color Site – Area C ERIE COUNTY, NEW YORK

FOILU	INREL
-------	-------

Final Engineering Report

NYSDEC Site Number: C915231

Prepared for:

South Buffalo Development, LLC 333 Ganson Street Buffalo, NY

Prepared by:

Mactec Engineering and Consulting, Inc. 800 North Bell Avenue, Suite 200 Pittsburgh, PA (412) 279-6661

CERTIFICATIONS

I, Mark Stelmack, am currently a registered professional engineer licensed by the State of New York. I had primary direct responsibility for implementation of the remedial program activities, and I certify that the Remedial Design was implemented and that all construction activities were completed in substantial conformance with the Department-approved Remedial Design.

I certify that the data submitted to the Department with this Final Engineering Report demonstrates that the remediation requirements set forth in the Remedial Design have been achieved.

I certify that all use restrictions, Institutional Controls, Engineering Controls, and/or any operation and maintenance requirements applicable to the Site are contained in an environmental easement created and recorded pursuant ECL 71-3605 and that all affected local governments, as defined in ECL 71-3603, have been notified that such easement has been recorded.

I certify that a Site Management Plan has been submitted for the continual and proper operation, maintenance, and monitoring of all Engineering Controls employed at the Site, including the proper maintenance of all remaining groundwater monitoring wells, and that such plan has been approved by Department.

I certify that all information and statements in this certification form are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law. I, Mark Stelmack, of Mactec Engineering and Consulting, Inc., 511 Congress Street, Portland, Maine, am certifying as Owner's Designated Site Representative for the site.

080317

Dec. 2,2010

NYS Professional Engineer #

Date

Signature

TABLE OF CONTENTS

CERTIFICATIONS	
LIST OF TABLES	IV
LIST OF FIGURES	v
LIST OF APPENDICES	VI
FINAL ENGINEERING REPORT	1
1.0 BACKGROUND AND SITE DESCRIPTION	1
2.0 SUMMARY OF SITE REMEDY	2
2.1 REMEDIAL ACTION OBJECTIVES	2
2.1.1 Groundwater RAOs	2
2.1.2 Soil RAOs	2
2.2 DESCRIPTION OF SELECTED REMEDY	3
3.0 INTERIM REMEDIAL MEASURES, OPERABLE UNITS AND REMEDIAL CONTRACTS	6
4.0 DESCRIPTION OF REMEDIAL ACTIONS PERFORMED	7
4.1 GOVERNING DOCUMENTS	7
4.1.1 SITE Specific Health & Safety PlanS (HASPS)	
4.1.2 QUALITY Assurance (QA)	<i>7</i>
4.1.3 CONSTRUCTION Quality Assurance (CQA)	
4.1.4 SOIL/Materials Management	8
4.1.5 STORM-Water Pollution Prevention Plan (SWPPP)	8
4.1.6 COMMUNITY Air Monitoring Plan (CAMP)	9
4.1.7 CONTRACTORS Site Operations Plans (SOPs)	10
4.1.8 Community Participation Plan	
4.2 REMEDIAL PROGRAM ELEMENTS	10
4.2.1 Contractors and Consultants	10
4.2.2 Site Preparation	
4.2.3 GENERAL Site Controls	
4.2.4 NUISANCE controls	
4.2.5 CAMP results	
4.2.6 REPORTING	
4.3 CONTAMINATED MATERIALS REMOVAL AND DISPOSAL	
4.4 REMEDIAL PERFORMANCE/DOCUMENTATION SAMPLING	
4.5 BACKFILL	
4.6 CONTAMINATION REMAINING AT THE SITE	
4.7 SOIL COVER SYSTEM	
4.8 SITE SEWERS	
4.8.1 Storm Sewers	
4.8.2 Process Sewers	
4.9 OTHER ENGINEERING CONTROLS	
4.10 Institutional Controls	
4.11 DEVIATIONS FROM THE REMEDIAL ACTION WORK PLAN	23

LIST OF TABLES

- Table 1 Area C Remedial Excavation Disposal Summary
- Table 2 Remedial Performance/Documentation Sampling Results
- Table 3 Imported Backfill Sources and Quantities
- Table 4 Soils Exceeding Applicable SCOs after Remedial Action (Pre-Remedial Samples)
- Table 5 Groundwater Exceeding NY Class GA Standards after Remedial Action

LIST OF FIGURES

- Figure 1 Site Plan
- Figure 2 Record Drawing Area C Remedial Excavations
- Figure 3 Area C Soil Exceeding Commercial SCOs After Remediation
- Figure 4 Area C Groundwater Exceeding NY Class GA Standards After Remediation
- Figure 5 Record Drawing Area C Final Cover
- Figure 6 Record Drawing Area C Sewer Plan

LIST OF APPENDICES

Appendix A – Survey Map, Metes and Bounds

Appendix B – Digital Copy of FER (CD)

Appendix C – NYSDEC Approvals

Appendix D – Asbestos Abatement and Facility Demolition Disposal Summaries

Appendix E – Construction Records/Reports

Appendix F – Project Photo Log

Appendix G – Disposal Facility Records – Remedial Excavation (CD)

Appendix H – Area C Soil/Waste Characterization Documentation

Appendix I – Raw Analytical Laboratory Data and DUSRs for Record Samples (CD)

Appendix J – Imported Materials Documentation

Appendix K – Environmental Easement

Appendix L – Cover System Transition Zones

LIST OF ACRONYMS

Acronym	Definition
AAR	Alternatives Analysis Report
ACM	Asbestos containing material
BCA	Brownfield Cleanup Agreement
CAMP	Community Air Monitoring Plan
CQA	Construction Quality Assurance
DUSR	Data Usability Summary Report
EC	Engineering Controls
FER	Final Engineering Report
HASP	Health and Safety Plan
IC	Industrial Control
Mactec	Mactec Engineering and Consulting, Inc.
mg	Milligram
NYSDEC	New York State Department of Environmental Conservation
NYSDOH	New York State Department of Health
OSC	Ontario Specialty Contracting, Inc.
PCB	Poly chlorinated biphenyls
ppe	Personal protective equipment
ppm	Parts per million
QA	Quality Assurance
RD	Remedial Design
RAO	Remedial Action Objectives
SBD	South Buffalo Development LCC
SCOs	Soil Cleanup Objectives
SMP	Site Management Plan
SOP	Site Operation Plans
SVOCs	Semi-volatile organic compounds
SWPPP	Storm Water Pollution Prevention Plan
TCLP	toxicity characteristic leaching procedure
VI	Vapor intrusion
VOCs	Volatile organic compounds

FINAL ENGINEERING REPORT

1.0 BACKGROUND AND SITE DESCRIPTION

South Buffalo Development LLC (SBD) entered into a Brownfield Cleanup Agreement (BCA) with the New York State Department of Environmental Conservation (NYSDEC) in April, 2009, to investigate and remediate a 6.03-acre property located in the City of Buffalo, Erie County, New York. The property was remediated to restricted commercial or industrial use and will be used for environmentally sustainable commercial/industrial buildings, open space and public access to the Buffalo River.

SBD teamed with Honeywell to facilitate the demolition of the former BCC dye plant and remediate the property. The remediation and redevelopment approach for the Site utilized the Track 4 cleanup category in accordance with the New York BCP regulations.

The site is located in the County of Erie, New York and is identified as being all of tax parcel SBL#122.12-1-36, part of tax parcel SBL#122.12-1-35, and parte of tax parcel SBL #122.12-1-30, all as shown on the tax maps of the County of Erie. The site is situated on a 6.03-acre area bounded by Elk Street to the north, a rail spur and associated right-of-way to the south, Lee Street to the east, and railroad tracks to the west (see Figure 1). The boundaries of the site are fully described in Appendix A: Survey Map, Metes and Bounds.

An electronic copy of this Final Engineering Report (FER) with all supporting documentation is included as Appendix B.

2.0 SUMMARY OF SITE REMEDY

2.1 REMEDIAL ACTION OBJECTIVES

Based on the results of the 2007 Remedial Investigation, the following Remedial Action Objectives (RAOs) were identified for this site.

2.1.1 GROUNDWATER RAOS

RAOs for groundwater:

- Protect construction workers, Site workers, visitors and terrestrial biota from inhalation of vapors associated with contaminants in the shallow aquifer exceeding the NY Class GA standards.
- Protect construction workers, Site workers, and visitors from dermal contact with contaminants in the shallow aquifer exceeding the Class GA standards.
- Protect construction workers, Site workers, visitors, and terrestrial and
 aquatic biota from direct contact with groundwater from the shallow aquifer
 leaving the site at concentrations that exceed the applicable water quality
 based standards of the receiving water.

2.1.2 SOIL RAOS

RAOs for Surface Soil:

- Protect potential current and future construction workers, Site workers, trespassers, and terrestrial biota at the Site from unacceptable risk resulting from direct-contact (via dermal contact or ingestion) with Site surface soils containing contaminants at concentrations exceeding the Site-specific background, or Commercial Soil Cleanup Objectives (SCOs), as applicable.
- Reduce the potential leaching of contaminants from Site surface soils at concentrations exceeding the Protection of Groundwater SCOs.

- Prevent potential inhalation by current or future construction workers, site
 workers, and trespassers, as well as terrestrial biota, of particulates due to
 dispersion of contaminants in Site surface soils exceeding Site-specific
 background or the Commercial SCOs, as applicable.
- Reduce the potential for overland transport of contaminated soil to the Buffalo River via erosion and stormwater runoff.

RAOs for Subsurface Soil:

- Protect potential current and future construction workers, site workers, trespassers, and terrestrial biota at the Site from unacceptable risk resulting from direct-contact (via dermal contact, ingestion, or inhalation of vapors) with Site subsurface soils containing contaminants at concentrations exceeding the Commercial SCOs, as applicable.
- Reduce the potential leaching of contaminants from Site subsurface soils at concentrations exceeding the Protection of Groundwater SCOs.
- Prevent potential inhalation by current or future construction workers to particulates due to dispersion of contaminants in Site subsurface soils at concentrations exceeding the Commercial SCOs, as applicable.

2.2 DESCRIPTION OF SELECTED REMEDY

The Site was remediated in accordance with the NYSDEC-approved Remedial Action Work Plan, specifically the remedial alternatives presented in Section 9.0 of the Alternatives Analysis Report (AAR) (February 11, 2009), as well as the NYSDEC-approved remedial design documents. Prior to implementation of the remedy for the Site, asbestos abatement, removal of equipment and regulated substances, and demolition of certain structures associated with the former Buffalo Color facility was conducted on the Site in support of future redevelopment as presented in Section 9.0 of the AAR.

The factors considered during the selection of the remedy are those listed in 6NYCRR 375-1.8. The following are the components of the selected remedy:

- 1. Limited excavation of volatile organic compound (VOC)-contaminated soil below the fill layer/top of shallow groundwater through the upper till unit to the top of the soft, gray glacial clay unit encountered at an approximate depth of 13 feet below existing grade. The excavations targeted deeper soils where total VOCs or semi-volatile organic (SVOC) compound concentrations were greater than 10 parts per million in saturated soil or groundwater.
- Addition of a biostimulant to the excavation backfill material for residual cleanup of groundwater. VOC-contaminated groundwater located on the southwestern side of Area C was remediated by a combination of source removal by excavation of contaminated soils and in-situ biological treatment by addition of a biostimulant.
- 3. Abandonment/plugging of unused process and storm sewers as part of the site remediation.
- 4. Construction and maintenance of a site-wide soil cover system consisting of a combination of 12 inches of clean soil seeded with native grasses, 12 inches of clean gravel, existing or new pavement (asphalt or concrete), and Site buildings to prevent human exposure to remaining contaminated soil/fill remaining at the site.
- 5. Execution and recording of an Environmental Easement in favor of NYSDEC to restrict land use and limit future exposure to remaining contamination at the site. Elements of the Environmental Easement include prohibiting groundwater use, providing protocols for disturbance of Site soils and/or groundwater, limiting future land use to commercial or industrial use, and requiring that occupied structures associated with future development at the Site address the vapor intrusion (VI) pathway (either through construction methods or through additional characterization to ensure that the area over which the structure will reside does not present a potential VI concern).
- 6. Development and implementation of a Site Management Plan for long term management of remaining contamination as required by the Environmental

Easement, which includes plans for: (1) institutional and engineering controls, (2) monitoring, (3) operation and maintenance and (4) reporting;

7. Periodic certification of the institutional and engineering controls listed above.

3.0 INTERIM REMEDIAL MEASURES, OPERABLE UNITS AND REMEDIAL CONTRACTS

The remedy for this Site was performed as a single project, and no interim remedial measures, operable units or separate remedial contracts were performed.

4.0 DESCRIPTION OF REMEDIAL ACTIONS PERFORMED

Remedial activities completed at the Site were conducted in accordance with the NYSDEC-approved Remedial Design (RD) documents for the Buffalo Color - Area C site (November, 2010). Deviations from the RD are noted below.

4.1 GOVERNING DOCUMENTS

The following subsections present the documents that, in addition to the RD, governed the remedial actions.

4.1.1 SITE SPECIFIC HEALTH & SAFETY PLANS (HASPS)

The remedial work performed under this Remedial Action was in compliance with governmental requirements, including Site and worker safety requirements mandated by Federal OSHA.

The work was completed in accordance with site-specific HASPs prepared for each remedial task.

4.1.2 QUALITY ASSURANCE (QA)

Quality assurance requirements are specified in the RD documents approved by the NYSDEC. The RD describes the specific policies, objectives, organization, functional activities and quality assurance/ quality control activities designed to achieve the project data quality objectives.

4.1.3 CONSTRUCTION QUALITY ASSURANCE (CQA)

Construction Quality Assurance (CQA) requirements are specified in the RD documents and managed performance of the Remedial Action tasks through designed and documented QA/QC methodologies applied in the field and in the lab. The RD documents provide a detailed description of the observation and testing activities that were used to monitor construction quality and confirm that remedial construction was in conformance with the remediation objectives and specifications.

Remedial construction activities were inspected by Mactec Engineering and Consulting, Inc. (Mactec) and the Honeywell site representative. Completion of the work was documented via field log books, forms, and/or daily construction reports; land surveyor data; photographs of the work; instrument calibration records and equipment logs; shipping manifests, disposal facility receipts, and other waste disposal records; laboratory analytical reports for waste characterization and confirmation/record samples; field sketches and construction drawing markups; and/or other records as appropriate.

4.1.4 SOIL/MATERIALS MANAGEMENT

Soil/Materials Management was conducted as specified in the RD. General Site control measures for managing soils and materials disturbed at the Site included providing fences and contracting security personnel for site security, erosion and sedimentation controls to reduce storm water runoff and erosion in accordance with the Storm-Water Pollution Prevention Plan (Mactec, March 2010), equipment and vehicle decontamination, soil screening for proper storage, transport and fate of excavated soils, and appropriate stockpile management practices including stockpile segregation and runoff prevention. Residual wastes, including contaminated liquids generated during construction, were properly containerized and disposed of. Nuisance control measures to reduce congestion on-Site included site traffic management. Nuisance control measures to reduce dust generation included watering of soils and stockpiles, sweeping/cleaning of paved surface and site egress routes, and lining and cleaning of vehicles. Nuisance control measures to reduce odor on site included applying odor control agents when necessary to remedial excavations and stockpiles.

4.1.5 STORM-WATER POLLUTION PREVENTION PLAN (SWPPP)

The erosion and sediment controls for remedial construction were implemented in conformance with requirements presented in the New York State Guidelines for Urban Erosion and Sediment Control and the Site-specific Storm Water Pollution Prevention Plan (Mactec, March 2010).

4.1.6 COMMUNITY AIR MONITORING PLAN (CAMP)

Particulate monitoring was performed throughout the project along the downwind occupied perimeter of the Site during demolition and remedial construction work, including during excavation, backfilling, grading, and material handling activities, in accordance with the procedures specified in the Mactec perimeter air monitoring plan, consistent with the requirements of the New York State Department of Health's Community Air Monitoring Plan (CAMP) program. This information was loaded to an electronic data base and is available to the public via the project web site (http://www.buffalocolorredevelopment.com).

During construction, there were no exceedances of the particulate (dust) action levels specified in the perimeter air monitoring plan associated with work occurring on Area C. On occasions when dust levels were recorded that approached the action levels, steps were taken by the Contractor to control and reduce particulate levels. These steps included the following:

- Use of water trucks to spray down the Site and adjacent streets,
- Sweeping and cleaning of pavement surfaces with the work area, egress routs, and adjacent streets daily and at the end of construction,
- Periodically watering down exposed soil stockpiles, and
- Covering inactive soil stockpiles with weighted tarps.

The Contractor and Mactec periodically monitored for VOCs at each active work area during remedial work, including excavation and backfilling activities, in accordance with HASP requirements. The air monitoring results were used to determine requirements for worker personal protective equipment (PPE) levels, and to determine when odor and vapor controls were implemented.

4.1.7 CONTRACTORS SITE OPERATIONS PLANS (SOPS)

The Remediation Engineer reviewed all plans and submittals for this remedial project (i.e. those listed above plus contractor and subcontractor submittals) and confirmed that they were in compliance with the RD. Remedial documents (except Contractor and Subcontractor submittals) were submitted to NYSDEC and, where appropriate, to the New York State Department of Health (NYSDOH), in a timely manner and prior to the start of work.

4.1.8 COMMUNITY PARTICIPATION PLAN

A community participation plan (CPP) was issued by the Applicant on October 1, 2009. Details of the scheduled citizen participation activities are detailed in the CPP. Since the execution of the BCAs, the SBD/Honeywell team has continued to inform the community about the project through additional stakeholder meetings, the project web site (http://www.buffalocolorredevelopment.com), a direct mailing to residents, distribution of an updated fact sheet, and media events at the Site attended by community leaders, residents, and local media outlets.

4.2 REMEDIAL PROGRAM ELEMENTS

4.2.1 CONTRACTORS AND CONSULTANTS

Ontario Specialty Contracting, Inc. (OSC) was responsible for the implementation of the remedial actions, including the excavation, backfill, and soil cover system construction tasks. OSC retained subcontractors for completion of laboratory testing, surveying, and other specialty tasks.

Mactec was the Engineer of Record responsible for inspection of the work, collection of environmental samples, and preparation of the FER.

4.2.2 SITE PREPARATION

OSC staff and equipment had previously mobilized to the site as part of the asbestos abatement and facility demolition program. Additional equipment and personnel were mobilized as necessary to complete the remedial construction tasks described herein.

Access to Area C is restricted by fencing and gates, and the Site was monitored during remedial construction on a full-time basis by a security contractor.

Erosion and sediment controls were maintained throughout the progression of work and were modified, as necessary, to accommodate each phase of the remedial activities, in accordance with the Area C SWPPP (Mactec, March 2010).

Utility clearance was conducted as needed prior to initiating each phase of the work.

Necessary permits and approvals were obtained prior to initiating the affected phase of remediation. Permits/approvals obtained by the Contractor specifically for the remediation work included the following:

- A permit issued by NYSDEC for the mining of clay at an off-site property for use as final soil cover (copy included in Appendix C);
- A permit issued by the City of Buffalo for on-site crushing of concrete/brick associated with the demolition activities; and
- A NYSDEC Air Facility Registration for the crushing operation.

Monthly meetings were held between NYSDEC, SBD, Honeywell and Mactec beginning in February 2010 and continued through the completion of the remedial work at the Site. NYSDEC representatives routinely visited and inspected the site, and participated in weekly jobsite meetings with OSC and Mactec.

Documentation of agency approvals required by the RD is included in Appendix C.

The substantive compliance requirements for attainment of applicable permits (described above) were achieved during this Remedial Action.

A NYSDEC-approved project sign was erected at the project entrance and remained in place during all phases of the Remedial Action.

Mactec completed a pre-demolition asbestos inspection of Area C to supplement prior asbestos surveys. The asbestos survey data was used by OSC to obtain the necessary permits from the New York State Department of Labor (NYSDOL). Asbestos

abatement included the removal of friable asbestos, including pipe insulation, boiler insulation, and other insulating materials; removal of non-friable asbestos, including floor tile, roofing materials, and transite; implementation of a final cleaning and visual inspection program; and off-site disposal of asbestos containing materials (ACM) at licensed disposal facilities. The asbestos abatement activities were conducted in accordance with OSC's HASP, applicable laws and regulations, and site-specific licenses, permits, and approvals. Preparation and maintenance of submittals and reports, as necessary, to document the asbestos abatement program were the responsibility of OSC. Mactec subcontracted Stohl Environmental, LLC to provide third-party air monitoring used to verify final clearance of abated areas.

OSC also completed the following work as part its demolition activities:

- Removal and proper disposal of residual chemicals remaining in piping, tanks, pits/sumps and process vessels;
- Cleaning/rinsing of piping, tanks, pits/sumps and process vessels and proper disposal of collected rinseate;
- Removal and proper disposal of regulated materials, including polychlorinated biphenyls (PCBs) in electrical equipment, Universal wastes, and mercury-containing equipment;
- Soils containing elevated levels of PCBs were removed from Building 223.
- Capping/plugging of drains and sewer lines exposed during demolition;
- Demolition/removal of certain buildings, tanks, piping, and ancillary structures;
- Backfilling to grade (after cleaning) pits and sumps; and cleaning of structural floor slabs that will remain in place.

• Removal of the concrete dike and oil-saturated soils associated with the demolition of a former large No. 6 fuel oil above ground storage tank on the western side of Area C.

The facility demolition activities were conducted in accordance with the demolition health and safety plan, applicable laws and regulations, and Site-specific licenses, permits, and approvals, and included meetings and coordination with the City of Buffalo. Preparation and maintenance of submittals and reports, as necessary, to document the demolition program were the responsibility of OSC. Subsequent to undergoing asbestos abatement and removal of chemicals, regulated materials, and equipment, the majority of Area C buildings, remain on site for use during redevelopment of the property.

Tables summarizing the various types of wastes, recyclables, and other materials associated with asbestos abatement and the facility demolition program that were transported off-site for disposal or reclamation are provided in Appendix D, with complete records maintained by and available from OSC upon request.

4.2.3 GENERAL SITE CONTROLS

General Site controls are listed and described below:

- Site security was provided by fencing, locked gates, and monitoring by a facility security contractor.
- Job site records were kept and maintained at an on-site office.
- Erosion and sedimentation controls were provided by the contractor to control storm runoff/surface water and prevent accelerated erosion and sedimentation.
 Controls included, as necessary, minimizing land disturbances, diverting surface water, establishing sediment barriers, installing silt fences, and protecting soil stockpiles with temporary sheeting.
- Equipment decontamination and residual waste management were performed by the contractor. All work related solid wastes, including materials generated by final Site cleanup activities and the dismantling of the temporary facilities and

- controls, were transported off site for disposal at approved disposal facilities. Contaminated liquids were also collected and transported off site.
- When direct load-out of excavated material was not possible, stockpiling was conducted as follows. Stockpiles were located within the work area sufficiently far from the excavations to prevent loading of the slope and slope instability. Designated storage/stockpile areas were established for excavated contaminated soils, imported soils and aggregates as required. Excavated material that was shown through laboratory testing to meet the on-Site reuse criteria was reused as backfill. Stockpiles were placed, graded, shaped and covered with plastic sheeting to provide for proper drainage and incorporated appropriate erosion and sedimentation controls.

4.2.4 NUISANCE CONTROLS

Nuisance controls are listed and described below:

- All trucks, transported containers, etc. that were used for the transport of contaminated soil were covered prior to departure.
- Work methods minimized the generation of dust and odors and maintained air
 quality on Site in compliance with applicable OSHA regulations. Methods
 included watering down the Site as needed, sweeping and cleaning pavement
 surfaces within the work area and egress routes daily and at the end of
 construction, periodically watering down exposed stockpiles during active use,
 covering inactive stockpiles with weighted tarps, and applying odor control agents
 as needed to control nuisance odors.
- Transporters arriving at the Site for loading were directed by the contractor to not cause undue congestion to local streets, to not traverse the site before 7:00 AM and after 5:00 PM unless approved, and all trucks were staged either within the perimeter of the Site or at an approved off-site staging area. Transporters proceeded directly from the Site to the designated receiving facility along traffic routes established by the Contractor and approved by the local municipality.

4.2.5 CAMP RESULTS

Throughout the work, daily perimeter dust monitoring results were updated to the project website (buffalocolorredevelopment.com) for public access. Action was taken when necessary to control dust levels at the jobsite. Methods included watering down the

Site as needed, sweeping and cleaning pavement surfaces within the work area and egress routes daily and at the end of construction, periodically watering down exposed stockpiles during active use, and covering inactive stockpiles with weighted tarps. No sustained exceedances of the perimeter dust action levels occurred during the remedial construction work on Area C.

In addition to the daily dust monitoring results posted on the project website, weekly dust monitoring reports were prepared that summarized the perimeter dust monitoring activities. Copies of the weekly perimeter dust monitoring reports are maintained by Mactec and available upon request.

4.2.6 REPORTING

Copies of daily and weekly construction reports are included in electronic format in Appendix E.

A photo log with representative photographs of the remedial construction is included in Appendix F.

4.3 CONTAMINATED MATERIALS REMOVAL AND DISPOSAL

The SCOs for Area C include the criteria specified in the Remedial Action Work Plan (Chapter 9 of the AAR). The final remedy includes the use of institutional and engineering controls that prevent future exposure to remaining contaminant levels in soil that exceed Commercial and Protection of Groundwater SCOs.

Remedial activities associated with Area C included the targeted excavation of saturated zone soil within areas of site-related VOC and/or SVOC groundwater concentrations greater than 10 parts per million. Design requirements for the Area C source removal work were presented in the Area C Pre-Design Investigation and Remedial Design Report (Mactec, November 2010).

VOC-contaminated soils at designated Areas C1 and C2 were excavated for offsite disposal in accordance with the design documents. The horizontal and vertical limits of the VOC source area excavations are indicated on the record drawing provided as Figure 2. The excavations were advance in depth until the soft, gray glaciolacustrine clay layer (the indicator that the target remedial depth had been achieved) was observed in the bottom of each hole. During completion of the remedial excavations, Mactec personnel used a photoionization detector (PID) to identify materials that required removal, as well as during selection of record samples to bias the samples locations to areas that exhibited elevated PID readings. During these activities, conditions were periodically encountered during the excavation work where sustained PID readings were above 10 ppm (with instantaneous readings that would occasionally reach 100s and 1000s of ppm). Specific examples that they cited include the following:

- While completing the C2 excavation around a sewer manhole/catch basin located along the southern boundary, sustained PID readings of >10 ppm (with maximum instantaneous readings above 1000 ppm) were recorded; therefore the excavation was expanded to remove the catch basin and adjacent soils.
- During sidewall and base sampling in Area C2, specifically the southern sidewall samples, elevated PID readings were obtained, with sustained readings above 10 ppm.

This demonstrates that use of a PID will be effective for identification of grossly-contaminated areas during future excavation activities that may occur as part of site development, as specified in Section B-7.1 of the Excavation Work Plan (Appendix B) of the Area C Site Management Plan (Mactec, December 2010).

Remedial excavation work on Area C was completed between October 14 and November 15, 2010. NYSDEC representatives were periodically on site to observe the remedial excavation progress.

Following are the disposal summary details for the two remedial excavation areas:

- As part of excavation, remnant concrete slabs and foundations were removed as necessary from within the footprint of the excavations. The concrete was segregated, crushed, tested, and was taken offsite for disposal.
- The total quantity of material removed (as calculated from the excavation dimensions shown on Figure 2): Approximately 1,925 cubic yards (CY) from excavation C1 and approximately 12,325 CY from excavation C2. The excavated material was primarily soil but included concrete associated with remnant

- concrete slabs and foundations, clay tile sewer pipes, masonry/brick sewer structures, and other miscellaneous debris. The excavated material was either placed in temporary lined/covered stockpiles in approximate 1,000-CY segments prior to off-site disposal, or direct-loaded for off-site disposal, depending on characterization testing and availability of trucks.
- Amount of material disposed off-site: Table 1 provides a summary of the individual loads of material from the Area C excavations that were shipped off-Site for disposal. As shown on Table 1, approximately 19,370 tons were disposed off-Site. The shipments were not tracked separately for each excavation. By proportioning based on excavation size, it is estimated that 2,616 tons were associated with excavation C1 and 16,754 were associated with excavation C2. The excavated material was disposed as non-hazardous waste, as deteremined through waste characterization testing.
- Transporter names and license numbers: Various transporters were utilized by
 OSC to deliver the excavated materials to the selected disposal facilities.
 Individual transporter names are provided on Table 1. The full names and
 addresses of the transporters, along with their license numbers, are shown on the
 disposal manifests provided in Appendix G.
- Disposal facility name(s) and acceptance verification: Disposal facility acceptance verification and copies of shipping manifests, which include the disposal facility information, are provided as Appendix G.
- Waste characterization sampling: samples were collected from test pits completed during pre-design studies and from the stockpiled soil resulting from the remedial excavations. The stockpile samples were collected by Mactec or OSC representatives. Stockpile samples were typically composited from multiple locations within the stockpile, and a photoionization detector (PID) was used by Mactect to bias the sample locations to locations within the pile the exhibited evidence of VOC contamination. The samples were submitted to Paradigm Environmental Services, Inc. (Paradigm) of Rochester, New York under chain-of-custody, where they were analyzed for waste disposal parameters, including Toxicity Characteristic Leaching Procedure (TCLP) testing, for metals, VOCs and SVOCs. Copies of the Paradigm laboratory reports for the waste disposal testing are provided in Appendix H.

- Two underground storage tanks (USTs) were encountered along the western side of excavation C2. The tanks were of steel construction and measured approximately 5 feet in diameter by 10 feet in length. The top of the tanks were located immediately below a remnant concrete floor slab located near the ground surface. The tanks were empty except for a small amount of water. According to an old facility plan reviewed by Mactec, the tanks were most likely used for storage of fuel oil several decades ago when structures were present on the northern half of Area C. Minor staining of soil was observed around the USTs; this soil was removed as part of the remedial excavation process. The USTs were removed with NYSDEC approval and taken offsite for disposal as scrap material.
- Numerous abandoned underground sewer pipes associated with the former BCC facility were encountered within the excavation areas and removed for disposal along with the excavated soil. The pipes were generally of clay tile construction and varied in size and depth. Several brick or masonary structures (manholes) associated with the sewer pipes were also encountered within the excavations and removed. Open pipe ends remaining along the excavation sidewalls were plugged by OSC with concrete mortar. See Section 4.8.2 for additional information regarding the Site sewer system.
- As part of the excavation process, shallow monitoring wells MW-C02 and MW-C03 were removed from the C2 excavation. These wells will not be replaced; other monitoring wells at the Site will be used for completion of groundwater monitoring as specified in the Area C Site Management Plan.

4.4 REMEDIAL PERFORMANCE/DOCUMENTATION SAMPLING

Post-excavation soil sampling was conducted prior to backfilling for record purposes in accordance with the NYSDEC-approved design documents. Soil samples were collected by a Mactec representative from the sidewalls and floor of each excavation for laboratory testing. The record samples were either collected from the excavator bucket or, when conditions allowed safe entry of the excavation, by hand. The excavator bucket was steam-cleaned by OSC prior to each sampling event. Sidewall samples were collected at a frequency of one sample for approximately every 50 lineal feet of sidewall. The sidewall sample locations were selected by Mactec and were biased to areas that displayed evidence of contamination based on PID readings and visual indicators of

contamination. The locations of the bottom samples were consistent with the spacing of the sidewall samples (i.e., spaced on approximate 50-foot centers.

The record soil samples were submitted to Paradigm for analysis for Target Compound List (TCL) VOCs and SVOCs (including aniline), as specified in the design documents. Five samples were collected from excavation C1 (four sidewall samples and one bottom sample) and fifteen samples were collected from excavation C2 (eleven sidewall samples and four bottom samples). The sample identification numbers used for the record samples include "RS" (for record sidewall samples) and "RB" (for record bottom samples), along with the depth interval of the sample. The analytical results for the Area C record samples are summarized in Table 2. Table 2 includes the applicable SCOs for comparison. The complete analytical reports for the record samples are provided on a CD in Appendix I.

Mactec validated the record sample data and prepared Data Usability Summary Reports (DUSRs) as specified in the design documents. Copies of the DUSRs are provided in Appendix I. The DUSRs confirm that the record sample data is reliable, and no significant quality control issues were identified for the record sample analytical results.

4.5 BACKFILL

Backfilling of the Area C remedial excavations was completed upon reaching the design limits of each excavation. Backfill was placed in approximate 1-foot lifts and compacted by a roller until the original ground surface was reached. Figure 2 includes cross section views of the backfill materials placed in each excavation. A bottom layer of recycled crushed demolition concrete/brick (verified through analytical testing as meeting Site reuse criteria) was placed in each excavation. The thickness of this bottom layer was approximately 8 feet in excavation C1 and 1.5 feet in the C2 excavation. The remainder of the C1 excavation was backfilled with a combination of recycled overburden materials (shown through analytical testing to meet Site reuse criteria) and approved borrow material, as shown on Figure 2. The remainder of the C2 excavation was backfilled with approved borrow material obtained from the Mercy Hospital construction site in downtown Buffalo. Table 3 summarizes the loads/quantities of borrow material used to backfill the Area C remedial excavations.

As specified in the design documents, ORC-A (and fertilizer) were applied to each of the first nine one-foot lifts of backfill (i.e., from the bottom to the first zone of

saturation to approximately 4 feet below ground surface). The ORC-A (and fertilizer) were applied at the rates and quantities specified in the design specifications. The dry material was evenly spread by hand or with a broadcast spreader across the surface of each backfill lift.

The analytical reports for each backfill source are provided in Appendix J.

4.6 CONTAMINATION REMAINING AT THE SITE

As described in Section 4.7, a cover system is in place on Area C to prevent contact with contaminants present in the underlying soils. As specified in the NYSDEC-approved design documents, the integrated cover system consists 12 inches or more of clean soil or gravel with a base demarcation layer of geotextile fabris, pavement (concrete or asphalt), and existing buildings. Future excavation below the demarcation layer, pavement or buildings on Area C, regardless of location, must be completed in accordance with the procedures presented in the Excavation Work Plan provided as Appendix B in the Area C Site Management Plan (SMP) (Mactec, December 2010).

Table 4 and Figure 3 summarize the results of samples that represent soil containing exceedances of the applicable SCOs remaining at the site after completion of Remedial Action. Table 5 and Figure 4 summarize the results of samples that represent groundwater containing exceedances of the NY Class GA standards remaining at the site after completion of the Remedial Action.

Because contaminated soil and groundwater remain beneath the site after completion of the Remedial Action, Institutional and Engineering Controls are required to protect human health and the environment. These Engineering and Institutional Controls (ECs/ICs) are described in the following sections. Long-term management of these EC/ICs and residual contamination will be performed under the NYSDEC-approved Area C SMP.

4.7 SOIL COVER SYSTEM

Exposure to remaining contamination in soil/fill at the site is prevented by an integrated cover system. This cover system is comprised of a minimum of 12 inches of clean soil or gravel with underlying geotextile fabric demarcation layer, asphalt pavement, concrete-covered sidewalks, and site buildings. Existing monitoring wells were protected/preserved during the cover system placement. A record drawing for the

Area C cover system is provided as Figure 5. An Excavation Work Plan, which outlines the procedures required in the event the cover system and/or underlying residual contamination are disturbed, is provided in Appendix B of the SMP.

4.8 SITE SEWERS

The following subsections describe the remedial work and final condition of the Area C process and storm sewer systems.

4.8.1 STORM SEWERS

The Area C storm sewer system was abandoned in place. Presently, no discharge of storm water occurs via the remaining underground storm sewer piping. The outlet pipe associated with the former storm water collection pit/lift station located beneath former BCC Building 222 has been cut and sealed. A new storm water collection system, to include new catch basins and underground piping, will be installed to facilitate redevelopment of the property. The new system will be installed in accordance with applicable NYSDEC regulations and best management practices (BMPs). A record drawing that shows the post-remedial condition of the Area C storm sewer system is provided as Figure 6.

4.8.2 PROCESS SEWERS

As noted in Section 4.3, portions of storm sewer piping and several manholes/structures were removed as part of the Area C remedial excavation process. Exposed pipe ends along the excavation sidewalls were plugged by OSC with concrete. The remaining process sewer lines are shown on Figure 6. These lines will be evaluated and rehabilitated or replaced in the future, as necessary, to facilitate redevelopment of the property. Future rehabilitation or replacement of process or sanitary sewers will be completed in accordance with applicable laws and regulations, specifically those of the City of Buffalo and the Buffalo Sewer Authority.

Data collected during Remedial Investigation and subsequent Pre-Design Investigation work indicate that the process sewer bedding materials were not preferential pathways for offsite migration of contaminated groundwater (there are no exit points for sewer lines located on the northern half of Area C, within the area of groundwater contamination). As noted previously, segments of abandoned process sewers and associated manholes/structures were removed as part of the remedial excavation work

that occurred on the northern half of Area C. Thus, no sewer lines remain within the remedial excavation areas.

4.9 OTHER ENGINEERING CONTROLS

Because remaining contaminated soil and groundwater exist beneath the site, engineering controls (ECs) are required to protect human health and the environment. In addition to the Site cover system, the following EC, as specified in the Area C SMP and Environmental Easement, vapor intrusion mitigation is required for all existing or future occupied structures.

Because soil and groundwater containing VOCs above applicable NY criteria remain on portions of the Site, a VI pathway is potentially present for existing and future occupied structures on Area C. To address the potential for soil vapor intrusion into occupied structures, soil vapor intrusion mitigation measures may be required unless future studies demonstrate, to the satisfaction of NYSDEC and NYSDOH, that the VI pathway is not complete. For the structures that will be rehabilitated and used as part of future site development, or for new structures, soil vapor mitigation measures will be evaluated and implemented as described in the SMP.

Procedures for monitoring, operating and maintaining vapor intrusion mitigation system are provided in the Operation and Maintenance Plan in Section 4 of the Site Management Plan (SMP). The Monitoring Plan also addresses inspection procedures that must occur after severe weather condition has taken place that may affect on-site ECs.

4.10 INSTITUTIONAL CONTROLS

The site remedy requires that an environmental easement be placed on the property to (1) implement, maintain and monitor the Engineering Controls; (2) prevent future exposure to remaining contamination by controlling disturbances of the subsurface contamination; and, (3) limit the use and development of the site to commercial or industrial uses only.

The environmental easement for the site was executed by the Department on October 28, 2010 and filed with the Erie County Clerk on November 3, 2010. The County Recording Identifier number for this filing is 2010199446. A copy of the easement and proof of filing is provided in Appendix K.

4.11 DEVIATIONS FROM THE REMEDIAL ACTION WORK PLAN

The remedial work was completed in accordance with the Remedial Action Work Plan (Chapter 9 of the Alternatives Analysis Report, Mactec, February 2009), with the following exception (as excerpted from a letter from Mactec to NYSDEC dated November 2, 2010):

"Originally, as described in the AAR, remediation of VOC-contaminated shallow groundwater on Area C was to be accomplished "in-situ" with a bio-attenuation enhancement product with groundwater monitoring. No significant VOC contamination was found in shallow soils and no "source" material was identified in the vadose zone; therefore, no soil removal was specified in the AAR.

To expedite the groundwater remediation process, the decision was made by the Applicant (South Buffalo Development), in conjunction with Honeywell, to implement a more aggressive approach that involves remediation of shallow groundwater via the excavation of locations proximate to the areas with highest concentrations of groundwater contaminants. For the purposes of the design, areas proposed for excavation were delineated as those that contain saturated soil and dissolved groundwater VOC or SVOC levels that exceeded 10 ppm. The limits of this excavation were fixed, based on interpretation of the groundwater monitoring and pre-design investigation boring data.

The excavation is to be followed by an application of ORC-A to the backfill, in quantities designed specifically for each excavation based on contaminant concentration data, to enhance the long-term biodegradation of residual contamination within the shallow saturated portion of the upper till layer.

The 10 ppm threshold, first used to identify the areas that would receive in-situ treatment, establishes the fixed, pre-determined limits of deep excavation. The 10 ppm threshold is not intended for use as a cleanup goal that would drive additional excavation of material below the water table. This approach targets the "hot spots" found in the shallow groundwater in two portions of Area C, as shown in the design drawings. Soil will be removed within the horizontal limits shown on the design drawings, with some

modifications made as necessary to protect adjacent buildings and the Elk Street ramp/bridge, to the top of the soft glacial clay layer.

The shallow groundwater contamination is confined above the soft glacial clay. This clay layer is continuous across the site and found on Area C at an approximate depth of 13 feet below ground surface. Sidewall and bottom samples will be collected for record purposes only at approximate intervals of 50 feet, as described in the design documents. Property limits, adjacent structures and roads, and other conditions limit the extent of excavation in certain areas."

By completing the Area C excavations in this way, approximately 40,600 pounds of VOCs will be removed from the environment. Degradation of residual contamination will be accomplished via the addition of ORC-A to the backfill. Groundwater monitoring consistent with the requirements specified in the Area C SMP will be used to evaluate the effectiveness of the remediation over time."

TABLES

ONTARIO SPECIALTY CONTRACTING, INC.

Project: Buffalo Color Location: Buffalo, NY OSC Job No: 0913 SOURCE AREA C

Load No.	Date	OSC Ticket No.	Recycling / Disposal Company	Destination	Truck Number	Tonnage	Notes
1	9/28/10	42873	Modern/Price	Model City	N/A	23.01	
2	10/8/10	43131	Modern/Price	Model City	N/A	21.03	1
3	10/25/10	43502	Modern/Pariso	Model City	102	19.26	1
4	10/25/10	43502	Modern/Pariso	Model City	223	19.51	
5	10/25/10	43502		Model City	208	20.54	
		43502	Modern/Pariso		107	19.63	
6	10/25/10		Modern/Pariso	Model City			
7	10/25/10	43502	Modern/Pariso	Model City	107	19.45	
8	10/25/10	43502	Modern/Pariso	Model City	102	22.18	
9	10/25/10	43504	Modern/Pariso	Model City	223	22.38	
10	10/25/10	43504	Modern/Pariso	Model City	208	21.84	
11	10/25/10	43504	Modern/Pariso	Model City	107	22.64	
12	10/25/10	43504	Modern/Pariso	Model City	107	21.21	
13	10/25/10	43504	Modern/Pariso	Model City	102	22.67	
14	10/25/10	43504	Modern/Pariso	Model City	223	22.5	Weight not Received
15	10/25/10	43504	Modern/Pariso	Model City	208	22.91	
16	10/25/10	43504	Modern/Pariso	Model City	107	22.78	
17	10/25/10	43504	Modern/Pariso	Model City	223	22.5	
18	10/25/10	43504	Modern/Pariso	Model City	208	20.68	
19	10/25/10	43503	Mallare	Chaffee	55	20.31	
20	10/25/10	43503	Mallare	Chaffee	64	21.15	
21	10/25/10	43503	Mallare	Chaffee	67	19.79	
22	10/25/10	43503	Mallare	Chaffee	39	18.18	
23	10/25/10	43503	Mallare	Chaffee	34	21.92	
24	10/25/10	43503	Mallare	Chaffee	5	20.8	
25	10/25/10	43503	Mallare	Chaffee	55	23.18	
26	10/25/10	43503	Mallare	Chaffee	67	21.12	1
27	10/25/10	43503	Mallare	Chaffee	64	22.6	
28	10/25/10	43505	Mallare	Chaffee	39	21.53	ì
29	10/25/10	43505	Mallare	Chaffee	5	23.35	
30	10/25/10	43505	Mallare	Chaffee	34	22.04	
31	10/25/10	43505	Mallare	Chaffee	55	25.32	
32	10/25/10	43505	Mallare	Chaffee	67	21.96	
33	10/25/10	43505	Mallare	Chaffee	64	23.9	-
34	10/25/10	43505	Mallare	Chaffee	39	23.43	
35	10/25/10	43505		Chaffee	5	23.36	
			Mallare		34		
36	10/25/10	43505	Mallare	Chaffee		23.14	
37	10/25/10	43505	Mallare	Chaffee	67	21.51	
38	10/25/10	43506	Mallare	Chaffee	55	24.47	
39	10/25/10	43506	Mallare	Chaffee	39	23.78	
40	10/25/10	43506	Mallare	Chaffee	64	25.43	
41	10/25/10	43506	Mallare	Chaffee	5	27.53	
42	10/25/10	43506	Mallare	Chaffee	34	24.05	ļ
43	10/26/10	43507	Modern/Pariso	Model City	29	24.82	
44	10/26/10	43507	Modern/Pariso	Model City	223	23.53	
45	10/26/10		Modern/Pariso	Model City	208	23.05	
46	10/26/10		Modern/Pariso	Model City	22	25.58	
47	10/26/10		Modern/Pariso	Model City	21	24.41	
48	10/26/10	43507	Modern/Pariso	Model City	223	20.08	·
49	10/26/10	43507	Modern/Pariso	Model City	29	18.46	
50	10/26/10		Modern/Pariso	Model City	208	21.61	
51	10/26/10		Modern/Pariso	Model City	21	21.42	
52	10/26/10	43510	Mallare	Chaffee	55	24.58	
53	10/26/10	43510	Mallare	Chaffee	64	24.4	
54	10/26/10		Mallare	Chaffee	34	24.68	
55	10/26/10	43510	Mallare	Chaffee	43	24.66	
56	10/26/10		Mallare	Chaffee	57	25.52	†
57	10/26/10		Mallare	Chaffee	67	22.46	
UI.	10/20/10	70010	Manaic	Ondirec	· · · · ·		L

Table 1 Area C Remedial Excavation Disposal Summary Area C - Final Engineering Report

Load No.	Date	OSC Ticket No.	Recycling / Disposal Company	Destination	Truck Number	Tonnage	Notes
58	10/26/10	43510	Mallare	Chaffee	55	21.44	
59	10/26/10	43510	Mallare	Chaffee	64	19.96	
60	10/26/10	43510	Mallare	Chaffee	34	20.79	· · · · · · · · · · · · · · · · · · ·
61	10/26/10	43510	Mallare	Chaffee	67	20.55	
62	10/26/10	43511	Mallare	Chaffee	43	21.92	
63	10/26/10	43511	Mallare	Chaffee	5	22.67	
64	10/26/10	43511	Mallare	Chaffee	64	21.93	
65	10/26/10	43511	Mallare	Chaffee	34	22	
66	10/26/10	43511	Mallare	Chaffee	55	21.88	
67	10/26/10	43511	Mallare	Chaffee	43	23	
68	10/26/10	43511	Mallare	Chaffee	67	22.09	
69	10/28/10	43562	Modern/Pariso	Model City	29	20.69	
70	10/28/10	43562	Modern/Pariso	Model City	213	23.58	
71	10/28/10	43562	Modern/Pariso	Model City	21	22.01	
72	10/28/10	43562	Modern/Pariso	Model City	22	22.1	
73	10/28/10	43562	Modern/Pariso	Model City	29	21.56	
74	10/28/10	43562	Modern/Pariso	Model City	21	20.47	
75	10/28/10	43562	Modern/Pariso	Model City	22	23.15	
76	10/28/10	43562	Modern/Pariso	Model City	29	24.11	<u> </u>
77	10/28/10	43562	Modern/Pariso	Model City	21	22.33	
78	10/28/10	43562	Modern/Pariso	Model City	22	22.07	
79	10/28/10	43562	Mallare	Chaffee	43	22.87	
80	10/28/10	43561	Mallare	Chaffee	60	22.8	
81	10/28/10	43561	Mallare	Chaffee	64	22.05	
82	10/28/10	43561	Mallare	Chaffee	34	23.38	
83	10/28/10	43561		Chaffee	5	21.75	
84			Mallare		55		
	10/28/10	43561	Mallare	Chaffee		22.54	
85	10/28/10	43561	Mallare	Chaffee	43	23.74	
86	10/28/10 10/28/10	43561	Mallare	Chaffee	60 64	22.43	
87		43561	Mallare	Chaffee		21.44	
88	10/28/10	43561	Mallare	Chaffee	5	23.27	
89	10/28/10	43563	Mallare	Chaffee	5	24.01	
90	10/28/10	43563	Mallare	Chaffee	55	23.41	
91	10/28/10	43563	Mallare	Chaffee	43	22.42	, '
92	10/28/10	43563	Mallare	Chaffee	60	24.31	
93	10/28/10	43563	Mallare	Chaffee	64	23.08	
94	10/28/10	43563	Mallare	Chaffee	5	22.68	
95	10/28/10	43563	Mallare	Chaffee	34	22.85	
96	10/28/10	43563	Mallare	Chaffee	55	22.54	
97	10/28/10	43563	Mallare	Chaffee	43	21.77	
98	10/28/10	43563	Mallare	Chaffee	64	21.48	
99	10/28/10	43563	Mallare	Chaffee	34	24.41	
100	10/28/10	43563	Mallare	Chaffee	55	22.06	
101	10/28/10	43563	Mallare	Chaffee	43	21.45	
102	11/2/10	43582	Modern/Pariso	Model City	N/A	22.5	Weight not Received
103	11/2/10	43582	Modern/Pariso	Model City	N/A	23.17	
104	11/2/10	43582	Modern/Pariso	Model City	N/A	21.32	
105	11/2/10	43582	Modern/Pariso	Model City	N/A	23.94	
106	11/2/10	43582	Modern/Pariso	Model City	N/A	22.25	
107	11/2/10	43582	Modern/Pariso	Model City	N/A	23.34	
108	11/2/10	43582	Modern/Pariso	Model City	N/A	23.09	
109	11/2/10	43582	Modern/Pariso	Model City	N/A	23.83	
110	·11/2/10	43582	Modern/Pariso	Model City	N/A	25.26	
111	11/2/10	43582	Modern/Pariso	Model City	29	26.25	
112	11/2/10	43582	Modern/Pariso	Model City	22	22.28	
113	11/2/10	43582	Modern/Pariso	Model City	N/A	24.12	
114	11/2/10	43582	Modern/Pariso	Model City	N/A	21.69	
115	11/2/10	43596	Mallare	Chaffee	5	22.5	Weight not Received
116	11/2/10	43596	Mallare	Chaffee	21	19.61	
117	11/2/10	43596	Mallare	Chaffee	20	19.8	
118	11/2/10	43596	Mallare	Chaffee	5	22.5	Weight not Received
119	11/2/10	43596	Mallare	Chaffee	67	22.5	Weight not Received
120	11/2/10	43596	Mallare	Chaffee	64	22.5	Weight not Received
121	11/2/10	43596	Mallare	Chaffee	21	21.63	
122	11/2/10	43596	Mallare	Chaffee	20	20.29	
123	11/2/10	43596	Mallare	Chaffee	64	22.5	Weight not Received
124	11/3/10	43869	Mallare	Chaffee	21	23.46	
125	11/3/10	43869	Mallare	Chaffee	20	20.97	
, 20	, 0, 10	.0000	.nunui 6	- Silvinee	20	20.07	

Table 1 Area C Remedial Excavation Disposal Summary Area C - Final Engineering Report

Load No.	Date	OSC Ticket No.	Recycling / Disposal Company	Destination	Truck Number	Tonnage	Notes
126	11/3/10	43869	Mallare	Chaffee	67	22.5	Weight not Received
127	11/3/10	43869	Mallare	Chaffee	5	22.5	Weight not Received
128	11/3/10	43869	Mallare	Chaffee	60	22.25	
129	11/3/10	43869	Mallare	Chaffee	67	22.5	Weight not Received
130	11/3/10	43869	Mallare	Chaffee	5	22.5	Weight not Received
131	11/3/10	43869	Mallare	Chaffee	21	20.47	
132	11/3/10	43869	Mallare	Chaffee	20	18.34	
133	11/3/10	43869	Mallare	Chaffee	64	22.48	
134	11/3/10	43869	Mallare	Chaffee	67	21.82	
135	11/3/10	43869	Mallare	Chaffee	5	22.5	Weight not Received
136	11/3/10	43869	Mallare	Chaffee	N/A	22.5	Weight not Received
137	11/3/10	43869	Mallare	Chaffee	64 64	22.5	Weight not Received
138 139	11/3/10 11/3/10	43869 43869	Mallare	Chaffee Chaffee	67	17.13 16.54	
140	11/3/10	43869	Mallare Mallare	Chaffee	21	22.26	
141	11/3/10	43869	Mallare	Chaffee	20	19.97	
142	11/3/10	43869	Mallare	Chaffee	5	21.95	
143	11/3/10	43869	Mallare	Chaffee	64	22.05	
144	11/3/10	43869	Mallare	Chaffee	67	20.74	1
145	11/3/10	43869	Mallare	Chaffee	21	19.95	
146	11/3/10	43869	Mallare	Chaffee	20	22.08	
147	11/3/10	43869	Mallare	Chaffee	5	20.38	
148	11/3/10	43869	Mallare	Chaffee	67	21.85	
149	11/3/10	43869	Mallare	Chaffee	21	24.47	
150	11/3/10	43869	Mallare	Chaffee	64	23.02	
151	11/3/10	43869	Mallare	Chaffee	20	18.75	
152	11/3/10	43869	Mallare	Chaffee	5	21.63	
153	11/3/10	43869	Mallare	Chaffee	67	20.65	
154	11/3/10	43869	Mallare	Chaffee	20	22	
155	11/3/10	43869	Mallare	Chaffee	64	22.89	
156	11/3/10	43869	Mallare	Chaffee	21	21.03	
157	11/3/10 11/3/10	43869	Mallare Madean/Design	Chaffee	67 197	24.04	
158 159	11/3/10	43628 43628	Modern/Pariso Modern/Pariso	Model City Model City	223	21.09 23.18	
160	11/3/10	43628	Modern/Pariso	Model City	233	24.11	
161	11/3/10	43628	Modern/Pariso	Model City	238	22.88	
162	11/3/10	43628	Modern/Pariso	Model City	34	23.07	
163	11/3/10	43628	Modern/Pariso	Model City	21	23.77	
164	11/3/10	43628	Modern/Pariso	Model City	246	23.95	
165	11/3/10	43628	Modern/Pariso	Model City	. 218	24.04	
166	11/3/10	43628	Modern/Pariso	Model City	33	19.38	
167	11/3/10	43628	Modern/Pariso	Model City	22	20.18	
168	11/3/10	43628	Modern/Pariso	Model City	223	20.22	
169	11/3/10	43628	Modern/Pariso	Model City	N/A	20.88	
170	11/3/10	43628	Modern/Pariso	Model City	N/A	21.16	
171	11/3/10	43628	Modern/Pariso	Model City		20.81	
172	11/3/10	43628	Modern/Pariso	Model City	223	21.96	
173	11/3/10	43628	Modern/Pariso	Model City	233	22.81	
174	11/3/10 11/3/10	43628	Modern/Pariso	Model City	238	19.92	1
175	11/3/10	43628 43628	Modern/Pariso Modern/Pariso	Model City Model City	218 218	20.02	
176 177	11/3/10	43628	Modern/Pariso Modern/Pariso	Model City	34	19.38	
178	11/3/10	43628	Modern/Pariso	Model City	21	19.36	
179	11/3/10	43628	Modern/Pariso	Model City	246	16.64	
180	11/3/10	43628	Modern/Pariso	Model City	238	22.41	
181	11/3/10	43628	Modern/Pariso	Model City	34	19.06	
182	11/3/10		Modern/Pariso	Model City	N/A	23.51	Missing Ticket
183	11/3/10	43628	Modern/Pariso	Model City	238	21.4	
184	11/3/10	43628	Modern/Pariso	Model City	246	21.33	
185	11/3/10	43628	Modern/Pariso	Model City	209	20.06	
186	11/3/10	43628	Modern/Pariso	Model City	101	25.07	
187	11/3/10	43628	Modern/Pariso	Model City	223	22.05	
188	11/3/10	43628	Modern/Pariso	Model City	197	21.2	ļ
189	11/3/10	43628	Modern/Pariso	Model City	218	22.5	Weight not Received
190	11/3/10	43628	Modern/Pariso	Model City	233	21.01	
191	11/4/10	43628	Modern/Pariso	Model City	34	22.5	Weight not Received
192	11/4/10	43628	Modern/Pariso	Model City	23	22.5	Weight not Received
193	11/4/10	43629	Modern/Pariso	Model City	N/A	21.49	<u> </u>

Table 1
Area C Remedial Excavation Disposal Summary
Area C - Final Engineering Report

Load No.	Date	OSC Ticket No.	Recycling / Disposal Company	Destination	Truck Number	Tonnage	Notes
194	11/4/10	43629	Modern/Pariso	Model City	N/A	23.87	
195	11/4/10	43629	Modern/Pariso	Model City	N/A	22.97	
196	11/4/10	43629	Modern/Pariso	Model City	N/A	21.17	
197 198	11/4/10 11/4/10	43629 43629	Modern/Pariso Modern/Pariso	Model City Model City	N/A N/A	20.08 19.94	
199	11/4/10	43629	Modern/Pariso	Model City	N/A	22.27	
200	11/4/10	43629	Modern/Pariso	Model City	N/A	20.21	
201	11/4/10	43629	Modern/Pariso	Model City	N/A	19.32	
202	11/4/10	43629_	Modern/Pariso	Model City	N/A	23.11	
203	11/4/10	43629	Modern/Pariso	Model City	N/A	21.99	
204	11/4/10	43629	Modern/Pariso	Model City	N/A	21.64	
205 206	11/4/10 11/4/10	43629 43629	Modern/Pariso Modern/Pariso	Model City Model City	N/A N/A	21.24 18.15	
207	11/4/10	43629	Modern/Pariso	Model City	N/A	23.11	
208	11/4/10	43629	Modern/Pariso	Model City	N/A	22.11	
209	11/4/10	43629	Modern/Pariso	Model City	N/A	19.79	
210	11/4/10	43629	Modern/Pariso	Model City	N/A	24.2	
211	11/4/10	43629	Modern/Pariso	Model City	N/A	25.47	
212	11/4/10	43629	Modern/Pariso	Model City	N/A	20.99	ļ
213 214	11/4/10 11/4/10	43629 43629	Modern/Pariso	Model City Model City	N/A N/A	23.04	
214	11/4/10	43629	Modern/Pariso Modern/Pariso	Model City Model City	N/A N/A	21.57	
216	11/4/10	43629	Modern/Pariso	Model City	N/A	19.81	
217	11/4/10	43629	Modern/Pariso	Model City	N/A	22.93	
218	11/4/10	43629	Modern/Pariso	Model City	N/A	21.03	
219	11/4/10	43629	Modern/Pariso	Model City	N/A	22.88	
220	11/4/10	43629	Modern/Pariso	Model City	N/A	20.14	
221	11/4/10	43629	Modern/Pariso	Model City	N/A	25.1	
222 223	11/4/10 11/4/10	43629 43629	Modern/Pariso Modern/Pariso	Model City Model City	N/A N/A	20.4 21.44	
224	11/4/10	43629	Modern/Pariso	Model City	N/A	20.54	
225	11/4/10	43629	Modern/Pariso	Model City	N/A	21.91	
226	11/4/10	43629	Modern/Pariso	Model City	N/A	24.53	
227	11/4/10	43629	Modern/Pariso	Model City	N/A	21	,
228	11/4/10	43629	Modern/Pariso	Model City	N/A	28.98	
229	11/4/10	43629	Modern/Pariso	Model City	N/A	25.79	
230 231	11/4/10 11/4/10	43629 43629	Modern/Pariso Modern/Pariso	Model City Model City	N/A N/A	22.93 24.28	
232	11/4/10	43629	Modern/Pariso	Model City	N/A	24.22	
233	11/4/10	43629	Modern/Pariso	Model City	N/A	25.66	
234	11/4/10	43629	Modern/Pariso	Model City	N/A	26.97	
235	11/4/10	43629	Modern/Pariso	Model City	N/A	23.19	
236	11/4/10	43629	Modern/Pariso	Model City	N/A	23.39	
237	11/4/10	43629	Modern/Pariso	Model City	N/A	16.19	
238 239	11/4/10 11/4/10	43629 43629	Modern/Pariso Modern/Pariso	Model City Model City	N/A N/A	21.76 22.61	
240	11/4/10	43629	Modern/Pariso	Model City	N/A	22.16	
241	11/4/10	43629	Modern/Pariso	Model City	N/A	20.66	
242	11/4/10	43629	Modern/Pariso	Model City	N/A	20.46	
243	11/4/10	43629	Modern/Pariso	Model City	N/A	21.99	
244	11/4/10	43629	Modern/Pariso	Model City	N/A	22.48	<u> </u>
245	11/4/10	43629	Modern/Pariso	Model City	N/A	25.41	
246 247	11/4/10 11/4/10	43629 43629	Modern/Pariso Modern/Pariso	Model City Model City	N/A N/A	25.08 24.68	
248	11/4/10	43629	Modern/Pariso	Model City	N/A	23.04	
249	11/4/10	43629	Modern/Pariso	Model City	N/A	22.55	
250	11/4/10	43629	Modern/Pariso	Model City	N/A	23.44	
251	11/4/10	43629	Modern/Pariso	Model City	N/A	22.38	
252	11/4/10	43629	Modern/Pariso	Model City	N/A	23.24	
253	11/4/10	43629	Modern/Pariso	Model City	N/A	17.39	
254 255	11/4/10 11/4/10	43629 43629	Modern/Pariso	Model City Model City	N/A N/A	23.12 23.57	
256	11/4/10	43629	Modern/Pariso Modern/Pariso	Model City	N/A N/A	23.57	
257	11/4/10	43029	Mallare	Chaffee	64	22.96	
258	11/4/10	43870	Mallare	Chaffee	67	22.68	
259	11/4/10	43870	Mallare	Chaffee	39	22.19	
260	11/4/10	43870	Mallare	Chaffee	34	24.44	
261	11/4/10	43870	Mallare	Chaffee	57	26.17	

Table 1 Area C Remedial Excavation Disposal Summary Area C - Final Engineering Report

Load No.	Date	OSC Ticket No.	Recycling / Disposal Company	Destination	Truck Number	Tonnage	Notes
262	11/4/10	43870	Mallare	Chaffee	55	23.06	
263	11/4/10	43870	Mallare	Chaffee	64	21.47	
264	11/4/10	43870	Mallare	Chaffee	60	23.93	
265	11/4/10	43870	Mallare	Chaffee	67	23.21	
266	11/4/10	43870	Mallare	Chaffee	39	20.34	
267	11/4/10	43870	Mallare	Chaffee	34	24.88	
268	11/4/10	43870	Mallare	Chaffee	57	23.19	
269	11/4/10	43870	Mallare	Chaffee	5	18.95	
270	11/4/10	43870	Mallare	Chaffee	55 55	22.17	
271 272	11/4/10 11/4/10	43870 43870	Mallare	Chaffee Chaffee	60	21.3 23.62	
273	11/4/10	43870	Mallare Mallare	Chaffee	67	21.97	
274	11/4/10	43870	Mallare	Chaffee	39	19.66	
275	11/4/10	43870	Mallare	Chaffee	34	22.67	
276	11/4/10	43870	Mallare	Chaffee	57	27.1	
277	11/4/10	43870	Mallare	Chaffee	N/A	24.88	
278	11/4/10	43870	Mallare	Chaffee	85	20.49	
279	11/4/10	43870	Mallare	Chaffee	64	20.3	
280	11/4/10	43870	Mallare	Chaffee	60	20.29	
281	11/4/10	43870	Mallare	Chaffee	67	21.1	
282	11/4/10	43870	Mallare	Chaffee	39	20.93	
283	11/4/10	43870	Mallare	Chaffee	34	20.94	
284	11/4/10	43870	Mallare	Chaffee	57	19.61	
285	11/4/10	43870	Mallare	Chaffee	5	22.98	
286	11/4/10	43870	Mallare	Chaffee	64	20.41 24.48	,
287 288	11/4/10 11/5/10	43870 43629	Mallare Modern/Pariso	Chaffee Madel City	60 N/A	22.5	Weight not Beggived
289	11/5/10	43629	Modern/Pariso	Model City Model City	N/A	20.66	Weight not Received
290	11/5/10	43629	Modern/Pariso	Model City	N/A	26.28	
291	11/5/10	43629	Modern/Pariso	Model City	N/A	29.61	
292	11/5/10	43630	Modern/Pariso	Model City	N/A	21.07	
293	11/5/10	43630	Modern/Pariso	Model City	N/A	22.28	
294	11/5/10	43630	Modern/Pariso	Model City	N/A	21.3	
295	11/5/10	43630	Modern/Pariso	Model City	N/A	25.46	
296	11/5/10	43630	Modern/Pariso	Model City	N/A	21.07	
297	11/5/10	43630	Modern/Pariso	Model City	N/A	25.14	
298	11/5/10	43630	Modern/Pariso	Model City	N/A	22.54	
299	11/5/10	43630	Modern/Pariso	Model City	N/A	21.9	
300	11/5/10	43630	Modern/Pariso	Model City	N/A	23.27	ļ
301	11/5/10	43630	Modern/Pariso	Model City	N/A	21.91	
302	11/5/10	43630	Modern/Pariso	Model City	N/A N/A	23.39	
303 304	11/5/10 11/5/10	43630 43630	Modern/Pariso Modern/Pariso	Model City Model City	N/A N/A	23.79 20.92	
305	11/5/10	43630	Modern/Pariso	Model City	N/A	23.31	<u> </u>
306	11/5/10	43630	Modern/Pariso	Model City	N/A	23.53	
307	11/5/10	43630	Modern/Pariso	Model City	N/A	25.28	
308	11/5/10	43630	Modern/Pariso	Model City	N/A	22.68	
309	11/5/10	43630	Modern/Pariso	Model City	N/A	21.72	
310	11/5/10	43630	Modern/Pariso	Model City	N/A	26.21	
311	11/5/10	43630	Modern/Pariso	Model City	N/A	20.53	
312	11/5/10	43630	Modern/Pariso	Model City	N/A	25	
313	11/5/10	43630	Modern/Pariso	Model City	N/A	28.98	
314	11/5/10	43630	Modern/Pariso	Model City	N/A	23.58	
315	11/5/10	43630	Modern/Pariso	Model City	N/A	22.45	
316	11/5/10	43630	Modern/Pariso	Model City	N/A	22.73	
317 318	11/5/10 11/5/10	43630 43630	Modern/Pariso	Model City	N/A N/A	22.69	
318	11/5/10	43630	Modern/Pariso Modern/Pariso	Model City Model City	N/A N/A	20.12	
320	11/5/10	43630	Modern/Pariso	Model City	N/A N/A	24.08	
321	11/5/10	43630	Modern/Pariso	Model City	N/A N/A	23.74	
322	11/5/10	43630	Modern/Pariso	Model City	N/A	22.64	
323	11/5/10	43630	Modern/Pariso	Model City	N/A	27.01	
324	11/5/10	43630	Modern/Pariso	Model City	N/A	21.82	
325	11/5/10	43630	Modern/Pariso	Model City	N/A	18.34	
326	11/5/10	43630	Modern/Pariso	Model City	N/A	23.59	
327	11/5/10	43630	Modern/Pariso	Model City	N/A	25.26	
328	11/5/10	43630	Modern/Pariso	Model City	N/A	23.93	
329	11/5/10	43630	Modern/Pariso	Model City	N/A	23.73	1

Table 1
Area C Remedial Excavation Disposal Summary
Area C - Final Engineering Report

Load No.	Date	OSC Ticket No.	Recycling / Disposal Company	Destination	Truck Number	Tonnage	Notes
330	11/5/10	43630	Modern/Pariso	Model City	N/A	20.84	
331	11/5/10	43630	Modern/Pariso	Model City	N/A	21.72	
332	11/5/10	43630	Modern/Pariso	Model City	N/A	24.53	
333	11/5/10	43630	Modern/Pariso	Model City	N/A	20.26	
334	11/5/10	43630	Modern/Pariso	Model City	N/A	20.77	
335	11/5/10	43630	Modern/Pariso	Model City	N/A	27.39	
336	11/5/10	43630	Modern/Pariso	Model City	N/A	23.17	
337	11/5/10	43630	Modern/Pariso	Model City	N/A	22.09	
338	11/5/10	43630	Modern/Pariso	Model City	N/A	25.48	
339	11/5/10	43630	Modern/Pariso	Model City	N/A	21.07	
340 341	11/5/10 11/5/10	43630 43630	Modern/Pariso	Model City Model City	N/A N/A	19.35	
342	11/5/10	43630	Modern/Pariso Modern/Pariso	Model City	N/A	23.57 18.61	
343	11/5/10	43630	Modern/Pariso	Model City	N/A	21.24	·
344	11/5/10	43630	Modern/Pariso	Model City	N/A	23.04	
345	11/5/10	43630	Modern/Pariso	Model City	N/A	21.12	
346	11/5/10	43630	Modern/Pariso	Model City	N/A	25.8	
347	11/5/10	43630	Modern/Pariso	Model City	N/A	28.17	
348	11/5/10	43630	Modern/Pariso	Model City	N/A	24.91	
349	11/5/10	43630	Modern/Pariso	Model City	N/A	20.46	
350	11/5/10	43630	Modern/Pariso	Model City	N/A	20.9	
351	11/5/10	43630	Modern/Pariso	Model City	N/A	22.68	
352	11/5/10	43630	Modern/Pariso	Model City	N/A	20.61	
353	11/5/10	43630	Modern/Pariso	Model City	N/A	23	
354	11/5/10	43630	Modern/Pariso	Model City	N/A	20.85	
355	11/5/10	43630	Modern/Pariso	Model City	N/A	24.44	
356	11/5/10	43630	Modern/Pariso	Model City	N/A	23.86	
357	11/5/10	43630	Modern/Pariso	Model City	N/A	19.5	
358 359	11/5/10 11/5/10	43630 43630	Modern/Pariso	Model City	N/A N/A	25.09 22.96	
360	11/5/10	43630	Modern/Pariso Modern/Pariso	Model City Model City	N/A	23.64	
361	11/5/10	43630	Modern/Pariso	Model City	N/A	24.58	
362	11/5/10	43630	Modern/Pariso	Model City	N/A	22.34	
363	11/5/10	43630	Modern/Pariso	Model City	N/A	22.36	
364	11/5/10	43630	Modern/Pariso	Model City	N/A	21.73	
365	11/5/10	43630	Modern/Pariso	Model City	N/A	24.58	
366	11/5/10	43630	Modern/Pariso	Model City	N/A	26.38	
367	11/5/10	43630	Modern/Pariso	Model City	N/A	27.89	
368	11/5/10	43630	Modern/Pariso	Model City	N/A	22.43	
369	11/5/10	43630	Modern/Pariso	Model City	N/A	24.54	
370	11/5/10	43630	. Modern/Pariso	Model City	N/A	22.99	
371	11/5/10	43630	Modern/Pariso	Model City	N/A	23.56	
372	11/5/10	43630	Modern/Pariso	Model City	N/A	23.47	
373	11/5/10	43630	Modern/Pariso	Model City	N/A	22.51	
374	11/5/10	43630	Modern/Pariso	Model City	N/A	23.48	ļ
375	11/5/10	43630	Modern/Pariso	Model City	N/A	24.55	
376 377	11/5/10	43630	Modern/Pariso	Model City	N/A	22.78	
377	11/5/10 11/5/10	43630 43630	Modern/Pariso Modern/Pariso	Model City Model City	N/A N/A	23.46 22.06	
378	11/5/10	43630	Modern/Pariso	Model City	N/A	22.06	
380	11/5/10	43630	Modern/Pariso	Model City	N/A	23.48	
381	11/5/10	43630	Modern/Pariso	Model City	N/A	23.8	····
382	11/5/10	43630	Modern/Pariso	Model City	N/A	19.67	
383	11/5/10	43630	Modern/Pariso	Model City	N/A	20.03	
384	11/5/10	43630	Modern/Pariso	Model City	N/A	22.5	Weight not Received
385	11/5/10	43630	Modern/Pariso	Model City	N/A	28.6	
386	11/5/10	43630	Modern/Pariso	Model City	N/A	22.5	Weight not Received
387	11/5/10	43630	Modern/Pariso	Model City	N/A	22.12	
388	11/5/10	43630	Modern/Pariso	Model City	N/A	19.97	
389	11/5/10	43630	Modern/Pariso	Model City	N/A	20.9	
390	11/5/10	43630	Modern/Pariso	Model City	N/A	24.24	
391	11/5/10	43630	Modern/Pariso	Model City	N/A	22.5	Weight not Received
392	11/5/10	43630	Modern/Pariso	Model City	N/A	20.31	
393	11/5/10	43630	Modern/Pariso	Model City	N/A	23.87	-
394	11/5/10	43630	Modern/Pariso	Model City	N/A	22.99	
395	11/5/10	43630	Modern/Pariso	Model City	N/A	22.3	
396	11/5/10	43630	Modern/Pariso	Model City	N/A	23.41	ļ
397	11/5/10	43630	Modern/Pariso	Model City	N/A	20.77	I

Table 1 Area C Remedial Excavation Disposal Summary Area C - Final Engineering Report

Load No.	Date	OSC Ticket No.	Recycling / Disposal Company	Destination	Truck Number	Tonnage	Notes
398	11/5/10	43630	Modern/Pariso	Model City	N/A	23.7	•
399	11/5/10	43871	Mallare	Chaffee	20	20.54	
400	11/5/10	43871	Mallare	Chaffee	21	21.09	
401	11/5/10	43871	Mallare	Chaffee	64	20.1	1
402	11/5/10	43871	Mallare	Chaffee	N/A	23.61	
403	11/5/10	43871	Mallare	Chaffee_	N/A	24.44	
404	11/5/10	43871	Mallare	Chaffee Chaffee	N/A 46	20.93	
405 406	11/5/10 11/5/10	43871 43871	Mallare Mallare	Chaffee	55	19.89 19.57	
407	11/5/10	43871	Mallare	Chaffee	60	24.99	
408	11/5/10	43871	Mallare	Chaffee	39	21.67	
409	11/5/10	43871	Mallare	Chaffee	43	22.97	
410	11/5/10	43871	Mallare	Chaffee	5	19	
411	11/5/10	43871	Mallare	Chaffee	34	18.99	
412	11/5/10	43871	Mallare	Chaffee	102	16.84	
413	11/5/10	43871	Mallare	Chaffee	67	21.92	
414	11/5/10	43871	Mallare	Chaffee	57	21.88	
415	11/5/10	43871	Mallare	Chaffee	64	20.12	
416 417	11/5/10	43871	Mallare Mallare	Chaffee_	20 80	18.17 20.5	
417	11/5/10 11/5/10	43871 43871	Mallare Mallare	Chaffee Chaffee	43	21.58	
419	11/5/10	43871	Mallare	Chaffee	N/A	20.78	
420	11/5/10	43871	Mallare	Chaffee	5	23.23	
421	11/5/10	43871	Mallare	Chaffee	34	24.21	
422	11/5/10	43871	Mallare	Chaffee	102	18.28	
423	11/5/10	43871	Mallare	Chaffee	60	24.84	
424	11/5/10	43871	Mallare	Chaffee	46	21.24	
425	11/5/10	43871	Mallare	Chaffee	55	22.84	
426	11/5/10	43871	Mallare	Chaffee	20	23.75	
427	11/5/10	43871	Mallare	Chaffee	N/A	24.79	
428	11/5/10	43871	Mallare	Chaffee	N/A	26.59	
429 430	11/5/10	43871 43871	Mallare	Chaffee	N/A 102	24.69	
431	11/5/10 11/5/10	43871	Mallare Mallare	Chaffee Chaffee	55	19.16 25.71	
432	11/5/10	43871	Mallare	Chaffee	39	21.38	
433	11/5/10	43871	Mallare	Chaffee	N/A	21	
434	11/5/10	43871	Mallare	Chaffee	57	22.5	Weight not Received
435	11/5/10	43871	Mallare	Chaffee	43	23.58	
436	11/5/10	43871	Mallare	Chaffee	46	22.49	
437	11/5/10	43871	Mallare	Chaffee	67	22.53	
438	11/5/10	43871	Mallare	Chaffee	21	20.84	
439	11/5/10	43871	Mallare	Chaffee	34	23.8	
440	11/5/10	43871	Mallare	Chaffee	5	22.25	
441 442	11/5/10	43871	Mallare Mallare	Chaffee Chaffee	46 60	20.52 27.42	
442	11/5/10 11/5/10	43871 43871	Mallare	Chaffee	55	22.97	
444	11/5/10	43871	Mallare	Chaffee	67	19.49	
445	11/5/10	43871 ·	Mallare	Chaffee	46	28.71	
446	11/5/10	43871	Mallare	Chaffee	39	25.93	
447	11/5/10	43871	Mallare	Chaffee	79	21.85	
448	11/5/10	43871	Mallare	Chaffee	67	24.17	
449	11/5/10	43871	Mallare	Chaffee	57	25.77	
450	11/5/10	43871	Mallare	Chaffee	64	22.36	
451	11/5/10	43871	Mallare	Chaffee	43	22.44	
452	11/8/10	43872	Mallare	Chaffee	34	23.39	
453	11/8/10	43872	Mallare	Chaffee	39	23.37	
454 455	11/8/10 11/8/10	43872 43872	Mallare Mallare	Chaffee Chaffee	46 55	23.08 24.1	
455	11/8/10	43872	Mallare	Chaffee	43	22.79	,
457	11/8/10	43872	Mallare	Chaffee	34	24.88	·
458	11/8/10	43872	Mallare	Chaffee	39	23.16	
459	11/8/10	43872	Mallare	Chaffee	46	26.18	
460	11/8/10	43872	Mallare	Chaffee	55	24.68	
461	11/8/10	43872	Mallare	Chaffee	43	23.74	
465	11/8/10	43872	Mallare	Chaffee	55	23.82	
462							
463	11/8/10	43872	Mallare	Chaffee	39	20.51	
$\overline{}$		43872 43872 43872	Mallare Mallare Mallare	Chaffee Chaffee Chaffee	39 34 43	20.51 24.01 26.17	

Table 1 Area C Remedial Excavation Disposal Summary Area C - Final Engineering Report

Load No.	Date	OSC Ticket No.	Recycling / Disposal Company	Destination	Truck Number	Tonnage	Notes
466	11/8/10	43872	Mallare	Chaffee	46	25.32	
467	11/8/10	43872	Mallare	Chaffee	55	24.76	
468	11/8/10	43872	Mallare	Chaffee	39	27.74	
469	11/8/10	43872	Mallare	Chaffee	34	29.14	
470	11/8/10	43872	Mallare	Chaffee	43	23.67	
471	11/8/10	43872	Mallare	Chaffee	46	26.68	
472	11/8/10	43872	Mallare	Chaffee	N/A	22.68	
473	11/9/10	43631	Modern/Pariso	Model City	N/A	22.46	
474	11/9/10	43631	Modern/Pariso	Model City	N/A	22.41	
475 476	11/9/10	43631	Modern/Pariso	Model City	N/A N/A	20.85	
477	11/9/10 11/9/10	43631 43631	Modern/Pariso Modern/Pariso	Model City Model City	N/A	23.11	
478	11/9/10	43631	Modern/Pariso	Model City	N/A	24.21	
479	11/9/10	43631	Modern/Pariso	Model City	N/A	20.22	
480	11/9/10	43631	Modern/Pariso	Model City	N/A	22.36	
481	11/9/10	43631	Modern/Pariso	Model City	N/A	23.32	
482	11/9/10	43631	Modern/Pariso	Model City	N/A	22.37	
483	11/9/10	43631	Modern/Pariso	Model City	N/A	21.31	
484	11/9/10	43631	Modern/Pariso	Model City	N/A	20.36	
485	11/9/10	43631	Modern/Pariso	Model City	N/A	21.17	
486	11/9/10	43631	Modern/Pariso	Model City	N/A	21.6	
487	11/9/10	43631	Modern/Pariso	Model City	N/A	18.65	
488	11/9/10	43631	Modern/Pariso	Model City	N/A	21.43	
489	11/9/10	43631	Modern/Pariso	Model City	N/A	20.63	
490	11/9/10	43631	Modern/Pariso	Model City	N/A	22.38	
491	11/9/10	43631	Modern/Pariso	Model City	N/A	19.22	
492	11/9/10	43631	Modern/Pariso	Model City	N/A	19.71	
493	11/9/10	43631	Modern/Pariso	Model City	N/A	21.75	
494	11/9/10	43873	Mallare	Chaffee	46	26.48	
495	11/9/10	43873	Mallare	Chaffee	55	25.21	
496	11/9/10	43873	Mallare	Chaffee	39	27.16	
497 498	11/9/10 11/9/10	43873 43873	Mallare	Chaffee Chaffee	43 39	22.99 21.61	
499	11/9/10	43873	Mallare Mallare	Chaffee	55	22.26	
500	11/9/10	43873	Mallare	Chaffee	· 57	23.34	
501	11/9/10	43873	Mallare	Chaffee	46	22.71	
502	11/9/10	43873	Mallare	Chaffee	34	21.03	J-10.1 U-10.1
503	11/9/10	43873	Mallare	Chaffee	34	22.05	
504	11/9/10	43873	Mallare	Chaffee	46	22.96	
505	11/9/10	43873	Mallare	Chaffee	55	24.5	
506	11/9/10	43873	Mallare	Chaffee	43	25.7	
507	11/9/10	43873	Mallare	Chaffee	34	28.84	
508	11/9/10	43873	Mallare	Chaffee	39	25.28	
509	11/9/10	43873	Mallare	Chaffee	57	24.6	
510	11/9/10	43873	Mallare	Chaffee	46	24.03	
511	11/9/10	43873	Mallare	Chaffee	34	22.63	
512	11/9/10	43873	Mallare	Chaffee	46 55	22.51	
513 514	11/9/10 11/9/10	43873	Mallare Mallare	Chaffee	55	21.73	
514	11/9/10	43873 43873	Mallare	Chaffee Chaffee	43 67	21.16 21.52	-
516	11/9/10	43873	Mallare Mallare	Chaffee Chaffee	43	22.88	
517	11/9/10	43873	Mallare	Chaffee	28	21.42	
518	11/10/10	43632	Modern/Pariso	Model City	N/A	22.5	Weight not Received
519	11/10/10	43632	Modern/Pariso	Model City	N/A	23.63	T. Olgin Hot Neceived
520	11/10/10	43632	Modern/Pariso	Model City	N/A	22.5	Weight not Received
521	11/10/10	43632	Modern/Pariso	Model City	N/A	22.5	Weight not Received
522	11/10/10	43632	Modern/Pariso	Model City	N/A	16.03	
523	11/10/10	43632	Modern/Pariso	Model City	N/A	21.29	1
524	11/10/10	43632	Modern/Pariso	Model City	N/A	20.6	
525	11/10/10	43632	Modern/Pariso	Model City	N/A	22.5	Weight not Received
526	11/10/10	43632	Modern/Pariso	Model City	N/A_	22.5	Weight not Received
527	11/10/10	43632	Modern/Pariso	Model City	N/A	19.95	
528	11/10/10		Modern/Pariso	Model City	N/A	20.52	
529	11/10/10	43632	Modern/Pariso	Model City	N/A	18.81	ļ
530	11/10/10	43632	Modern/Pariso	Model City	N/A	22.9	
531_	11/10/10	43632	Modern/Pariso	Model City	N/A	21.6	
532	11/10/10	43632	Modern/Pariso	Model City	N/A	21.62	ļ
533	11/10/10	43632	Modern/Pariso	Model City	N/A	22.46	

Table 1 Area C Remedial Excavation Disposal Summary Area C - Final Engineering Report

Load No.	Date	OSC Ticket No.	Recycling / Disposal Company	Destination	Truck Number	Tonnage	Notes
534	11/10/10	43632	Modern/Pariso	Model City	N/A	21.65	
535	11/10/10	43632	Modern/Pariso	Model City	N/A	24.51	
536	11/10/10		Modern/Pariso	Model City	N/A	25.49	
537	11/10/10	43632	Modern/Pariso	Model City	N/A	22.21	
538 539	11/10/10 11/10/10	43632	Modern/Pariso Modern/Pariso	Model City Model City	N/A N/A	19.46 22.69	Missing Ticket
540	11/10/10	43632	Modern/Pariso	Model City	N/A	21.36	Missing Ticket
541	11/10/10	43632	Modern/Pariso	Model City	N/A	23.1	
542	11/10/10	43632	Modern/Pariso	Model City	N/A	23.05	
543	11/10/10	43632	Modern/Pariso	Model City	N/A	24.48	
544	11/10/10	43632	Modern/Pariso	Model City	N/A	27.44	
545	11/10/10	43632	Modern/Pariso	Model City	N/A	21.93	
546	11/10/10	43632	Modern/Pariso	Model City	N/A	20.54	
547	11/10/10	43632	Modern/Pariso	Model City	N/A	23.45	
548	11/10/10	43632	Modern/Pariso	Model City	N/A	19.86	
549	11/10/10	43632	Modern/Pariso	Model City	N/A	20.01	
550 551	11/10/10 11/10/10	43632 43632	Modern/Pariso Modern/Pariso	Model City Model City	N/A N/A	21.93 22.97	-
552	11/10/10	43632	Modern/Pariso	Model City	N/A	18.68	
553	11/10/10	43632	Modern/Pariso	Model City	N/A	25.75	
554	11/10/10	43632	Modern/Pariso	Model City	N/A	18.8	
555	11/10/10	43632	Modern/Pariso	Model City	N/A	22.39	<u> </u>
556	11/10/10	43632	Modern/Pariso	Model City	N/A	22.43	
557	11/10/10	43632	Modern/Pariso	Model City	N/A	23.05	
558	11/10/10	43632	Modern/Pariso	Model City	N/A	25.03	
559	11/10/10	43632	Modern/Pariso	Model City	N/A.	25.84	
560	11/10/10	43632	Modern/Pariso	Model City	N/A	21.54	<u> </u>
561	11/10/10	43632	Modern/Pariso	Model City	N/A	26.67	
562	11/10/10	43632	Modern/Pariso	Model City	N/A	23.8	
563 564	11/10/10	43632 43632	Modern/Pariso Modern/Pariso	Model City Model City	N/A N/A	29.99 27.81	
565	11/10/10	43632	Modern/Pariso	Model City	N/A	24.15	
566	11/10/10	43632	Modern/Pariso	Model City	N/A	24.41	
567	11/10/10	43632	Modern/Pariso	Model City	N/A	24.65	
568	11/10/10	43632	Modern/Pariso	Model City	N/A	20.43	
569	11/10/10	43632	Modern/Pariso	Model City	N/A	24.22	
570	11/10/10	43632	Modern/Pariso	Model City	N/A	22.19	
571	11/10/10	43632	Modern/Pariso	Model City	N/A	23.27	
572	11/10/10	43632	Modern/Pariso	Model City	N/A	26.01	
573	11/10/10	43632	Modern/Pariso	Model City	N/A	20.76	
574	11/10/10	43632	Modern/Pariso	Model City	N/A	20.58	
575	11/10/10	43632	Modern/Pariso	Model City	N/A	22.41	
576 577	11/10/10	43632	Modern/Pariso	Model City	N/A	20.85	
578	11/10/10 11/10/10	43632 43632	Modern/Pariso Modern/Pariso	Model City Model City	N/A N/A	23.42	
579	11/10/10		Modern/Pariso	Model City	N/A	22.69	
580	11/10/10		Modern/Pariso	Model City	N/A	19.28	
581	11/10/10	43632	Modern/Pariso	Model City	N/A	20.97	
582	11/10/10	43632	Modern/Pariso	Model City	N/A	22.5	Weight not Received
583	11/10/10	43874	Mallare	Chaffee	N/A	17	
584	11/10/10		Mallare	Chaffee	43	23.11	
585	11/10/10		Mallare	Chaffee	N/A	23.46	
586	11/10/10		Mallare	Chaffee	N/A	24.81	
587	11/10/10		Mallare	Chaffee	N/A	21.82	ļ
588 589	11/10/10		Mallare Mallare	Chaffee	57	20.53	
589 590	11/10/10 11/10/10		Mallare Mallare	Chaffee Chaffee	13 21	22.25 24.45	
591	11/10/10		Mallare	Chaffee	63	21.75	
592	11/10/10		Mallare	Chaffee	34	24.35	
593	11/10/10	43874	Mallare	Chaffee	67	21.06	1
594	11/10/10	43874	Mallare	Chaffee	43	17.62	1
595	11/10/10	43874	Mallare	Chaffee	46	21.29	1
596	11/10/10	43874	Mallare	Chaffee	39	19.55	
597	11/10/10	43874	Mallare	Chaffee	57	19.16	
598	11/10/10	43874	Mallare	Chaffee	34	21.48	
599	11/10/10	43874	Mallare	Chaffee	67	20.87	1
600	11/10/10	43874	Mallare	Chaffee	5	16.76	1

Table 1 Area C Remedial Excavation Disposal Summary Area C - Final Engineering Report

Load No.	Date	OSC Ticket No.	Recycling / Disposal Company	Destination	Truck Number	Tonnage	Notes
602	11/10/10	43874	Mallare	Chaffee	63	23.19	
603	11/10/10	43874	Mallare	Chaffee	13	23.79	
604	11/10/10	43874	Mallare	Chaffee	39	21.83	
605	11/10/10	43874	Mallare	Chaffee	39	19.8	
606	11/10/10	43874	Mallare	Chaffee	55	22.11	
607	11/10/10	43874	Mallare	Chaffee	N/A	22.44	
608	11/10/10	43874	Mallare	Chaffee	N/A	20.29	
609	11/10/10	43874	Mallare	Chaffee	5	22.1	
610	11/10/10	43874	Mallare	Chaffee	43	23.27	
611	11/10/10	43874	Mallare	Chaffee	34	19.01	
612	11/10/10	43874	Mallare	Chaffee	57	24.39	
613	11/10/10	43874	Mallare	Chaffee	13	25.52	
614	11/10/10	43874	Mallare	Chaffee	5	25.52	
615	11/10/10	43874	Mallare	Chaffee	67	17.17	
616	11/10/10	43874	Mallare	Chaffee	21	22.8	
617	11/10/10	43874	Mallare	Chaffee	67	21.81	
618	11/10/10	43874	Mallare	Chaffee	63	25.34	
619	11/10/10	43874	Mallare	Chaffee	57	26.76	
620	11/10/10	43874	Mallare	Chaffee	46	27.49	
621	11/10/10	43874	Mallare	Chaffee Madel City	39	25.59	
622	11/11/10	43633	Modern/Pariso	Model City	N/A	22.97	
623	11/11/10	43633	Modern/Pariso	Model City	N/A	21.88	
624 625	11/11/10	43633 43633	Modern/Pariso Modern/Pariso	Model City Model City	N/A N/A	21.38 22.85	
626		43633		Model City	N/A N/A	21.31	
627	11/11/10 11/11/10	43633	Modern/Pariso Modern/Pariso	Model City	N/A N/A	21.8	
628	11/11/10	43633			N/A N/A	22.04	
629	11/11/10		Modern/Pariso	Model City	N/A	20.9	
630		43633 43633	Modern/Pariso	Model City	N/A N/A	19.97	
631	11/11/10 11/11/10	43633	Modern/Pariso Modern/Pariso	Model City Model City	N/A N/A	20.1	<u> </u>
632	11/11/10	43633	Modern/Pariso	Model City	N/A	22.86	
633	11/11/10	43633	Modern/Pariso	Model City	N/A	22.52	
634	11/11/10	43633	Modern/Pariso	Model City	N/A	21.44	
635	11/11/10	43633	Modern/Pariso	Model City	N/A	22.17	
636	11/11/10	43633	Modern/Pariso	Model City	N/A	22.43	
637	11/11/10	43633	Modern/Pariso	Model City	N/A	23.15	
638	11/11/10	43633	Modern/Pariso	Model City	N/A	23.4	
639	11/11/10	43633	Modern/Pariso	Model City	N/A	21.94	
640	11/11/10	43633	Modern/Pariso	Model City	N/A	22.37	
641	11/11/10	43633	Modern/Pariso	Model City	N/A	24.9	
642	11/11/10	43633	Modern/Pariso	Model City	N/A	20.42	
643	11/11/10	43633	Modern/Pariso	Model City	N/A	22.41	
644	11/11/10	43633	Modern/Pariso	Model City	N/A	20.52	
645	11/11/10	43633	Modern/Pariso	Model City	N/A	20.35	
646	11/11/10	43633	Modern/Pariso	Model City	N/A	20.77	
647	11/11/10	43633	Modern/Pariso	Model City	N/A	22.09	
648	11/11/10	43633	Modern/Pariso	Model City	N/A	21.04	
649	11/11/10	43633	Modern/Pariso	Model City	N/A	21.33	
650	11/11/10	43633	Modern/Pariso	Model City	N/A	23.85	
651	11/11/10	43633	Modern/Pariso	Model City	N/A	22.26	
652	11/11/10	43633	Modern/Pariso	Model City	N/A	23.51	
653	11/11/10	43633	Modern/Pariso	Model City	N/A	22.92	
654	11/11/10	43633	Modern/Pariso	Model City	N/A	23.31	
655	11/11/10	43633	Modern/Pariso	Model City	N/A	22.09	
656	11/11/10	43633	Modern/Pariso	Model City	N/A	23.46	
657	11/11/10	43633	Modern/Pariso	Model City	N/A	19.23	ļ
658	11/11/10	43633	Modern/Pariso	Model City	N/A	22.5	
659	11/11/10	43633	Modern/Pariso	Model City	N/A	22.58	
660	11/11/10	43633	Modern/Pariso	Model City	N/A	22.78	
661	11/11/10	43633	Modern/Pariso	Model City	N/A	23.36	·
662	11/11/10	43633	Modern/Pariso	Model City	N/A	21.27	
663	11/11/10	43633	Modern/Pariso	Model City	N/A	19.43	ļ
664	11/11/10	43633	Modern/Pariso	Model City	N/A	22.13	
665	11/11/10	43633	Modern/Pariso	Model City	N/A	20.87	
666	11/11/10	43633	Modern/Pariso	Model City	N/A	23.51	
667	11/11/10	43633	Modern/Pariso	Model City	N/A	22.48	
668	11/11/10	43633	Modern/Pariso	Model City	N/A	22.25	
669	11/11/10	43633	Modern/Pariso	Model City	N/A	26.63	

Table 1
Area C Remedial Excavation Disposal Summary
Area C - Final Engineering Report

Load No.	Date	OSC Ticket No.	Recycling / Disposal Company	Destination	Truck Number	Tonnage	Notes
670	11/11/10	43633	Modern/Pariso	Model City	N/A	23.41	
671	11/11/10		Modern/Pariso	Model City	N/A	24.04	
672	11/11/10	43633	Modern/Pariso	Model City	N/A	21.17	
673	11/11/10	43633	Modern/Pariso	Model City	N/A N/A	24.04	
674 675	11/11/10 11/11/10	43633 43876	Modern/Pariso Mallare	Model City Chaffee	57	21.17 24.33	
676	11/11/10	43876	Mallare	Chaffee	60	21.82	<u> </u>
677	11/11/10	43876	Mallare	Chaffee	57	22	
678	11/11/10	43876	Mallare	Chaffee	43	25.07	
679	11/11/10	43876	Mallare	Chaffee	60	24.29	
680	11/12/10	43642	Modern/Pariso	Model City	N/A	23.79	
681	11/12/10	43642	Modern/Pariso	Model City	N/A	22.3	
682 683	11/12/10 11/12/10	43642 43642	Modern/Pariso	Model City	N/A N/A	25.13 21.38	<u>-</u>
684	11/12/10	43642	Modern/Pariso Modern/Pariso	Model City Model City	N/A	21.36	
685	11/12/10	43642	Modern/Pariso	Model City	N/A	19.84	
686	11/12/10	43642	Modern/Pariso	Model City	N/A	23.76	
687	11/12/10	43642	Modern/Pariso	Model City	N/A	19.23	
688	11/12/10	43642	Modern/Pariso	Model City	N/A	21.44	
689	11/12/10	43642	Modern/Pariso	Model City	N/A	24.75	ļ
690	11/12/10	43642	Modern/Pariso	Model City	N/A	22.27	
691 692	11/12/10 11/12/10	43642 43642	Modern/Pariso Modern/Pariso	Model City Model City	N/A N/A	18.03 21.17	
693	11/12/10	43642	Modern/Pariso	Model City	N/A	22.66	
694	11/12/10	43642	Modern/Pariso	Model City	N/A	24.36	
695	11/12/10	43642	Modern/Pariso	Model City	N/A	22.16	
696	11/12/10	43642	Modern/Pariso	Model City	N/A	21.86	
697	11/12/10	43642	Modern/Pariso	Model City	N/A	23.05	
698	11/12/10	43642	Modern/Pariso	Model City	N/A	21.47	
699 700	11/12/10 11/12/10	43642 43642	Modern/Pariso Modern/Pariso	Model City Model City	N/A N/A	24.71 20.08	
700	11/12/10	43642	Modern/Pariso	Model City	N/A	21.9	
702	11/12/10	43642	Modern/Pariso	Model City	N/A	23.22	
703	11/12/10	43642	Modern/Pariso	Model City	N/A	22.99	
704	11/12/10	43642	Modern/Pariso	Model City	N/A	21.9	
705	11/12/10	43642	Modern/Pariso	Model City	N/A	23.97	
706 707	11/12/10 11/12/10	43642 43642	Modern/Pariso	Model City Model City	N/A N/A	23.91 20.21	
707	11/12/10	43642	Modern/Pariso Modern/Pariso	Model City	N/A N/A	23.8	
709	11/12/10	43642	Modern/Pariso	Model City	N/A	22.87	
710	11/12/10	43642	Modern/Pariso	Model City	N/A	21.87	
711	11/12/10	43642	Modern/Pariso	Model City	N/A	21.91	
712	11/12/10	43642	Modern/Pariso	Model City	N/A	19.92	
713	11/12/10	43642	Modern/Pariso	Model City	N/A	21.48	
714	11/12/10		Modern/Pariso	Model City	N/A	23.23	
715 716	11/12/10 11/12/10	43642 43642	Modern/Pariso Modern/Pariso	Model City Model City	N/A N/A	21.32 18.85	
717	11/12/10	43642	Modern/Pariso	Model City	N/A	20.33	
718	11/12/10	43642	Modern/Pariso	Model City	N/A	21.62	
719	11/12/10	43642	Modern/Pariso	Model City	N/A	21.04	
720	11/12/10	43642	Modern/Pariso	Model City	N/A	23.47	
721	11/12/10	43642	Modern/Pariso	Model City	N/A	19.98	
722	11/12/10	43642 43642	Modern/Pariso	Model City	N/A	20.64	
723 724	11/12/10 11/12/10	43642	Modern/Pariso Modern/Pariso	Model City Model City	N/A N/A	25.31 19.87	
725	11/12/10	43642	Modern/Pariso	Model City	N/A	21.22	
726	11/12/10	43642	Modern/Pariso	Model City	N/A	21.94	
727	11/12/10	43642	Modern/Pariso	Model City	N/A	22.61	
728	11/12/10	43642	Modern/Pariso	Model City	N/A	24.65	
729	11/12/10	43642	Modern/Pariso	Model City	N/A	25.17	
730	11/12/10	43642	Modern/Pariso	Model City	N/A	22.95	ļ
731	11/12/10	43642	Modern/Pariso	Model City	N/A	23.82	
732 733	11/12/10 11/12/10	43878 43878	Mallare Mallare	Chaffee Chaffee	63 55	21.35 23.42	
734	11/12/10	43878	Mallare	Chaffee	60	22.93	
735	11/12/10	43878	Mallare	Chaffee	46	20.79	
736	11/12/10	43878	Mallare	Chaffee	33	20.4	
737	11/12/10	43878	Mallare	Chaffee	21	24.25	

Table 1
Area C Remedial Excavation Disposal Summary
Area C - Final Engineering Report

1738 11/12/10 43878 Mallare Chaffee 34 21.8 739 11/12/10 43878 Mallare Chaffee 5 23.5 740 11/12/10 43878 Mallare Chaffee 5 23.5 741 11/12/10 43878 Mallare Chaffee 39 21.41 742 11/12/10 43878 Mallare Chaffee 39 21.41 743 11/12/10 43878 Mallare Chaffee 39 21.41 744 11/12/10 43878 Mallare Chaffee 34 20.37 744 11/12/10 43878 Mallare Chaffee 34 20.37 745 11/12/10 43878 Mallare Chaffee 55 21.25 746 11/12/10 43878 Mallare Chaffee 43 22.43 746 11/12/10 43878 Mallare Chaffee 100 19.41 747 11/12/10 43878 Mallare Chaffee 21 23.27 748 11/12/10 43878 Mallare Chaffee 21 23.27 749 11/12/10 43878 Mallare Chaffee 33 20.06 747 11/12/10 43878 Mallare Chaffee 33 20.06 750 11/12/10 43878 Mallare Chaffee MA 20.86 751 11/12/10 43878 Mallare Chaffee NIA 20.86 752 11/12/10 43878 Mallare Chaffee NIA 20.86 753 11/12/10 43878 Mallare Chaffee NIA 20.86 754 11/12/10 43878 Mallare Chaffee NIA 20.86 755 11/12/10 43878 Mallare Chaffee 5 21.78 751 11/12/10 43878 Mallare Chaffee 5 21.78 753 11/12/10 43878 Mallare Chaffee 5 21.78 754 11/12/10 43878 Mallare Chaffee 5 21.78 755 11/12/10 43878 Mallare Chaffee 63 22.18 758 11/12/10 43878 Mallare Chaffee 85 20.46 751 11/12/10 43878 Mallare Chaffee 85 20.46 753 11/12/10 43878 Mallare Chaffee 63 22.16 754 11/12/10 43878 Mallare Chaffee 63 22.16 756 11/12/10 43878 Mallare Chaffee 63 22.46 757 11/12/10 43878 Mallare Chaffee 63 22.46 758 11/12/10 43878 Mallare Chaffee 63 22.47 757 11/12/10 43878 Mallare Chaffee 64 22.24 757 11/12/10 43878 Mallare Chaffee 63 22.46 757 1	Load No.	Date	OSC Ticket No.	Recycling / Disposal Company	Destination	Truck Number	Tonnage	Notes
111/21/10	738	11/12/10	43878	Mallare	Chaffee	34	21.8	
		11/12/10	43878	Mallare	Chaffee	100	21.2	
1412/10 43378 Mallare Chaffee 39 21.41 143 111/2/10 43378 Mallare Chaffee 34 20.37 144 111/2/10 43378 Mallare Chaffee 43 23.43 145 111/2/10 43378 Mallare Chaffee 43 23.43 146 111/2/10 43378 Mallare Chaffee 43 23.43 147 111/2/10 43378 Mallare Chaffee 100 19.41 147 111/2/10 43378 Mallare Chaffee 21 23.27 148 111/2/10 43378 Mallare Chaffee 33 20.06 149 111/2/10 43378 Mallare Chaffee 33 20.06 149 111/2/10 43378 Mallare Chaffee 43 21.22 150 111/2/10 43378 Mallare Chaffee 43 21.22 151 111/2/10 43378 Mallare Chaffee 43 21.22 151 111/2/10 43378 Mallare Chaffee N/A 20.86 152 111/2/10 43378 Mallare Chaffee N/A 42.86 153 111/2/10 43378 Mallare Chaffee S/A 44.86 157 111/2/10 43378 Mallare Chaffee 5 21.78 111/2/10 43378 Mallare Chaffee 5 21.78 111/2/10 43378 Mallare Chaffee 34 20.63 155 111/2/10 43378 Mallare Chaffee 34 20.63 157 111/2/10 43378 Mallare Chaffee 39 24.64 157 111/2/10 43378 Mallare Chaffee 40 25.25 158 111/2/10 43378 Mallare Chaffee 40 25.25 158 111/2/10 4337								
11/12/10 43878 Mallare Chaffee 54 20.37 744 11/12/10 43878 Mallare Chaffee 55 21.25 745 11/12/10 43878 Mallare Chaffee 43 23.43 747 11/12/10 43878 Mallare Chaffee 100 19.41 747 11/12/10 43878 Mallare Chaffee 21 23.27 748 11/12/10 43878 Mallare Chaffee 33 20.06 749 11/12/10 43878 Mallare Chaffee 33 20.06 750 11/12/10 43878 Mallare Chaffee N/A 20.86 751 11/12/10 43878 Mallare Chaffee N/A 14.86 752 11/12/10 43878 Mallare Chaffee N/A 14.86 753 11/12/10 43878 Mallare Chaffee 5 21.76 754 11/12/10 43878 Mallare Chaffee 5 21.76 755 11/12/10 43878 Mallare Chaffee 34 20.63 755 11/12/10 43878 Mallare Chaffee 34 20.63 756 11/12/10 43878 Mallare Chaffee 34 20.63 757 11/12/10 43878 Mallare Chaffee 35 23.18 758 11/12/10 43878 Mallare Chaffee 39 24.64 757 11/12/10 43878 Mallare Chaffee 35 19.05 758 11/12/10 43878 Mallare Chaffee 35 19.05 759 11/12/10 43878 Mallare Chaffee 45 25.25 759 11/12/10 43878 Mallare Chaffee 46 25.25 759 11/12/10 43878 Mallare Chaffee 46 27.16 760 11/12/10 43878 Mallare Chaffee 46 27.16 761 11/12/10 43878 Mallare Chaffee 46 27.16 762 11/12/10 43878 Mallare Chaffee 46 27.16 763 11/12/10 43878 Mallare Chaffee 46 27.16 764 11/12/10 43878 Mallare Chaffee 46 27.17 766 11/12/10 43878 Mallare Chaffee 47 27.16 767 11/12/10 43878 Mallare Chaffee 48 27.9 768 11/12/10 43878 Mallare Chaffee 49 27.9 769 11/12/10 43878 Mallare Chaffee 40 27.14 761 11/12/10 43878 Mallare Chaffee 40 27.14 761 11/12/10 43878 Mallare Chaffee 40 27.14 762 11/12/10 43878 Mallare Chaffee 40 27.14 763 11/1								
11/12/10 43878 Mallare Chaffee 43 23.43								
11/12/10 43878 Mallare Chaffee 43 23.43								
746								
			43878					
148								
		11/12/10						· · · · · · · · · · · · · · · · · · ·
750 11/12/10 43878 Mallare Chaffee N/A 14.86 752 11/12/10 43878 Mallare Chaffee 21 19.26 753 11/12/10 43878 Mallare Chaffee 21 19.26 754 11/12/10 43878 Mallare Chaffee 34 20.83 755 11/12/10 43878 Mallare Chaffee 34 20.83 755 11/12/10 43878 Mallare Chaffee 39 24.64 756 11/12/10 43878 Mallare Chaffee 39 24.64 757 11/12/10 43878 Mallare Chaffee 85 19.05 758 11/12/10 43878 Mallare Chaffee 46 25.25 759 11/12/10 43878 Mallare Chaffee 46 25.25 759 11/12/10 43878 Mallare Chaffee 46 25.25 759 11/12/10 43878 Mallare Chaffee 43 20.41 761 11/12/10 43878 Mallare Chaffee 43 20.41 761 11/12/10 43878 Mallare Chaffee 43 20.41 762 11/12/10 43878 Mallare Chaffee 43 20.41 763 11/12/10 43878 Mallare Chaffee 46 22.11 763 11/12/10 43878 Mallare Chaffee 46 22.11 764 11/12/10 43878 Mallare Chaffee 63 22.46 765 11/12/10 43878 Mallare Chaffee 63 22.46 766 11/12/10 43878 Mallare Chaffee 63 22.46 767 11/12/10 43878 Mallare Chaffee 63 22.46 768 11/12/10 43878 Mallare Chaffee 34 22.49 769 11/12/10 43878 Mallare Chaffee 37 22.46 769 11/12/10 43878 Mallare Chaffee 37 22.46 770 11/12/10 43878 Mallare Chaffee 37 22.46 771 11/12/10 43878 Mallare Chaffee 39 21.87 772 11/12/10 43878 Mallare Chaffee 39 21.87 773 11/12/10 43878 Mallare Chaffee 40 22.23 770 11/12/10 43878 Mallare Chaffee 5 16.07 771 11/12/10 43878 Mallare Chaffee 5 16.07 772 11/12/10 43878 Mallare Chaffee 5 16.07 773 11/12/10 43878 Mallare Chaffee 5 16.07 774 11/12/10 43878 Mallare Chaffee 5 16.07 775 11/13/10 43643 Modern/Pariso Model City N/A 22.5	749		43878			43		
Total				Mallare				
753 11/12/10 43878 Mallare Chaffee 5 21.78 754 11/12/10 43878 Mallare Chaffee 63 23.18 755 11/12/10 43878 Mallare Chaffee 63 23.18 756 11/12/10 43878 Mallare Chaffee 85 19.05 757 11/12/10 43878 Mallare Chaffee 85 19.05 758 11/12/10 43878 Mallare Chaffee 46 25.25 759 11/12/10 43878 Mallare Chaffee 43 20.41 761 11/12/10 43878 Mallare Chaffee 43 20.41 761 11/12/10 43878 Mallare Chaffee 46 22.11 762 11/12/10 43878 Mallare Chaffee 46 22.19 763 11/12/10 43878 Mallare Chaffee 55 21.64 761 1								
755 11/12/10 43878 Mallare Chaffee 63 22.18 757 11/12/10 43878 Mallare Chaffee 39 24.64 757 11/12/10 43878 Mallare Chaffee 85 19.05 758 11/12/10 43878 Mallare Chaffee 46 25.25 759 11/12/10 43878 Mallare Chaffee 46 25.25 750 11/12/10 43878 Mallare Chaffee 43 20.41 761 11/12/10 43878 Mallare Chaffee 43 20.41 761 11/12/10 43878 Mallare Chaffee 43 20.41 761 11/12/10 43878 Mallare Chaffee 46 22.11 762 11/12/10 43878 Mallare Chaffee 46 22.11 763 11/12/10 43878 Mallare Chaffee 46 22.11 764 11/12/10 43878 Mallare Chaffee 55 21.64 765 11/12/10 43878 Mallare Chaffee 55 22.46 766 11/12/10 43878 Mallare Chaffee 63 22.49 767 11/12/10 43878 Mallare Chaffee 34 22.49 768 11/12/10 43878 Mallare Chaffee 31 22.49 769 11/12/10 43878 Mallare Chaffee 31 22.49 769 11/12/10 43878 Mallare Chaffee 31 22.23 770 11/12/10 43878 Mallare Chaffee 31 22.23 771 11/12/10 43878 Mallare Chaffee 30 22.23 772 11/12/10 43878 Mallare Chaffee 30 22.23 773 11/12/10 43878 Mallare Chaffee 43 22.47 771 11/12/10 43878 Mallare Chaffee 43 22.47 771 11/12/10 43878 Mallare Chaffee 63 22.74 772 11/12/10 43878 Mallare Chaffee 63 22.74 773 11/12/10 43878 Mallare Chaffee 63 22.74 774 11/13/10 43643 Modern/Pariso Model City NIA 22.5 Weight not Received 775 11/13/10 43643 Modern/Pariso Model City NIA 22.5 780 11/13/10 43643 Modern/Pariso Model City NIA 22.5 781 11/13/10 43643 Modern/Pariso Model City NIA 22.5 Weight not Received 781 11/13/10 43643 Modern/Pariso Model City NIA 22.5 Weight not Received 782 11/13/10 43643 Modern/Pariso Model City NIA 22.5 Weigh								
756								
758								
7598 111/210 43878 Mallare Chaffee 46 25.25 759 111/210 43878 Mallare Chaffee 5 21.16 760 11/12/10 43878 Mallare Chaffee 39 23.06 761 11/12/10 43878 Mallare Chaffee 39 23.06 762 111/210 43878 Mallare Chaffee 46 22.11 763 111/210 43878 Mallare Chaffee 46 21.9 764 111/210 43878 Mallare Chaffee 46 21.9 765 111/210 43878 Mallare Chaffee 46 21.9 765 111/210 43878 Mallare Chaffee 63 22.46 765 111/210 43878 Mallare Chaffee 63 22.46 766 111/210 43878 Mallare Chaffee 34 22.49 767 111/210 43878 Mallare Chaffee 33 16.09 768 111/210 43878 Mallare Chaffee 33 18.09 769 111/210 43878 Mallare Chaffee 33 18.09 769 111/210 43878 Mallare Chaffee 39 21.87 771 111/210 43878 Mallare Chaffee 39 21.87 771 111/210 43878 Mallare Chaffee 43 22.47 772 111/210 43878 Mallare Chaffee 43 22.47 773 111/210 43878 Mallare Chaffee 5 16.07 773 111/210 43878 Mallare Chaffee 63 22.74 774 111/310 43643 Modern/Pariso Model City N/A 22.5 Weight not Received 775 111/310 43643 Modern/Pariso Model City N/A 24.53 776 111/310 43643 Modern/Pariso Model City N/A 22.29 781 111/310 43643 Modern/Pariso Model City N/A 22.29 781 111/310 43643 Modern/Pariso Model City N/A 22.29 782 111/310 43643 Modern/Pariso Model City N/A 22.29 781 111/310 43643 Modern/Pariso Model City N/A 22.29 782 111/310 43643 Modern/Pariso Model City N/A 22.29 783 111/310 43643 Modern/Pariso Model City N/A 22.25 Weight not Received 788 111/310 43643 Modern/Pariso Model City N/A 22.5 Weight not Received 789 111/310 43643 Modern/Pariso Model City N/A 22.5 Weight not Received 789 111/310 43643								
759 11/12/10 43878 Mallare Chaffee 5 21.16 760 11/12/10 43878 Mallare Chaffee 39 23.06 761 11/12/10 43878 Mallare Chaffee 46 22.11 763 11/12/10 43878 Mallare Chaffee 46 22.11 763 11/12/10 43878 Mallare Chaffee 55 21.64 765 11/12/10 43878 Mallare Chaffee 63 22.46 765 11/12/10 43878 Mallare Chaffee 34 22.49 766 11/12/10 43878 Mallare Chaffee 33 18.09 768 11/12/10 43878 Mallare Chaffee 33 18.09 770 11/12/10 43878 Mallare Chaffee 43 22.47 771 11/12/10 43878 Mallare Chaffee 43 22.47 771 1								
Total		11/12/10	43878					
761 11/12/10 43878 Mallare Chaffee 39 23.06 762 11/12/10 43878 Mallare Chaffee 46 22.11 763 11/12/10 43878 Mallare Chaffee 46 21.9 764 11/12/10 43878 Mallare Chaffee 55 21.64 765 11/12/10 43878 Mallare Chaffee 63 22.46 766 11/12/10 43878 Mallare Chaffee 34 22.49 767 11/12/10 43878 Mallare Chaffee 21 24.62 768 11/12/10 43878 Mallare Chaffee 33 18.09 769 11/12/10 43878 Mallare Chaffee 32 2.18 771 11/12/10 43878 Mallare Chaffee 43 2.2.47 771 11/12/10 43878 Mallare Chaffee 53 2.2.74 772	760	11/12/10	43878		Chaffee	43	20.41	
763 11/1/2/10 43878 Mallare Chaffee 46 21.9 764 11/12/10 43878 Mallare Chaffee 55 21.64 765 11/12/10 43878 Mallare Chaffee 34 22.49 766 11/12/10 43878 Mallare Chaffee 21 24.62 768 11/12/10 43878 Mallare Chaffee 21 24.62 768 11/12/10 43878 Mallare Chaffee 100 22.23 770 11/12/10 43878 Mallare Chaffee 39 21.87 771 11/12/10 43878 Mallare Chaffee 43 22.47 771 11/12/10 43878 Mallare Chaffee 43 22.74 771 11/13/10 43643 Modern/Pariso Model City N/A 22.5 Weight not Received 774 11/13/10 43643 Modern/Pariso Model City N/A 22.5 </td <td></td> <td>11/12/10</td> <td></td> <td></td> <td></td> <td></td> <td>23.06</td> <td></td>		11/12/10					23.06	
Test								
765 11/1/2/10 43878 Mallare Chaffee 34 22.46 766 11/12/10 43878 Mallare Chaffee 34 22.49 767 11/12/10 43878 Mallare Chaffee 33 18.09 769 11/12/10 43878 Mallare Chaffee 30 18.09 770 11/12/10 43878 Mallare Chaffee 39 21.87 770 11/12/10 43878 Mallare Chaffee 43 22.47 771 11/12/10 43878 Mallare Chaffee 43 22.47 772 11/12/10 43878 Mallare Chaffee 63 22.74 773 11/12/10 43843 Modern/Pariso Model City N/A 22.5 Weight not Received 774 11/13/10 43643 Modern/Pariso Model City N/A 22.5 Weight not Received 775 11/13/10 43643 Modern/Pariso Model Cit								
Total								
Test								
768 11/1/2/10 43878 Mallare Chaffee 33 18.09 769 11/12/10 43878 Mallare Chaffee 100 22.23 770 11/12/10 43878 Mallare Chaffee 39 21.87 771 11/12/10 43878 Mallare Chaffee 43 22.47 772 11/12/10 43878 Mallare Chaffee 63 22.74 773 11/13/10 43848 Mallare Chaffee 63 22.74 774 11/13/10 43643 Modern/Pariso Model City N/A 24.53 775 11/13/10 43643 Modern/Pariso Model City N/A 20.03 777 11/13/10 43643 Modern/Pariso Model City N/A 20.03 777 11/13/10 43643 Modern/Pariso Model City N/A 22.29 780 11/13/10 43643 Modern/Pariso Model City N/A 22.27								
769								
770 11/12/10 43878 Mallare Chaffee 39 21.87 771 11/12/10 43878 Mallare Chaffee 43 22.47 772 11/12/10 43878 Mallare Chaffee 5 16.07 773 11/12/10 43878 Mallare Chaffee 63 22.74 774 11/13/10 43643 Modern/Pariso Model City N/A 22.53 Weight not Received 775 11/13/10 43643 Modern/Pariso Model City N/A 20.03 776 11/13/10 43643 Modern/Pariso Model City N/A 20.03 777 11/13/10 43643 Modern/Pariso Model City N/A 21.84 778 11/13/10 43643 Modern/Pariso Model City N/A 22.19 780 11/13/10 43643 Modern/Pariso Model City N/A 22.72 782 11/13/10 43643 Modern/Pariso Model								
771 11/12/10 43878 Mallare Chaffee 5 16.07 772 11/12/10 43878 Mallare Chaffee 5 16.07 773 11/12/10 43878 Mallare Chaffee 6 3 22.74 774 11/13/10 43643 Modern/Pariso Model City N/A 24.53 775 11/13/10 43643 Modern/Pariso Model City N/A 24.53 776 11/13/10 43643 Modern/Pariso Model City N/A 20.03 777 11/13/10 43643 Modern/Pariso Model City N/A 21.84 778 11/13/10 43643 Modern/Pariso Model City N/A 23.13 780 11/13/10 43643 Modern/Pariso Model City N/A 22.72 781 11/13/10 43643 Modern/Pariso Model City N/A 22.72 781 11/13/10 43643 Modern/Pariso Model City								
773 11/12/10 43878 Mallare Chaffee 63 22.74 774 11/13/10 43643 Modern/Pariso Model City N/A 22.5 Weight not Received 775 11/13/10 43643 Modern/Pariso Model City N/A 20.03 777 11/13/10 43643 Modern/Pariso Model City N/A 21.84 778 11/13/10 43643 Modern/Pariso Model City N/A 21.84 779 11/13/10 43643 Modern/Pariso Model City N/A 22.29 780 11/13/10 43643 Modern/Pariso Model City N/A 22.29 781 11/13/10 43643 Modern/Pariso Model City N/A 22.29 781 11/13/10 43643 Modern/Pariso Model City N/A 22.72 782 11/13/10 43643 Modern/Pariso Model City N/A 25.74 784 11/13/10 43643 Modern/	771			Mallare		43		
774 11/13/10 43643 Modern/Pariso Model City N/A 22.5 Weight not Received 775 11/13/10 43643 Modern/Pariso Model City N/A 24.53 776 11/13/10 43643 Modern/Pariso Model City N/A 21.84 777 11/13/10 43643 Modern/Pariso Model City N/A 23.13 779 11/13/10 43643 Modern/Pariso Model City N/A 23.13 779 11/13/10 43643 Modern/Pariso Model City N/A 22.29 780 11/13/10 43643 Modern/Pariso Model City N/A 22.29 781 11/13/10 43643 Modern/Pariso Model City N/A 22.72 782 11/13/10 43643 Modern/Pariso Model City N/A 23.73 783 11/13/10 43643 Modern/Pariso Model City N/A 25.74 784 11/13/10 43643 <				Mallare				
776 11/13/10 43643 Modern/Pariso Model City N/A 24.53 776 11/13/10 43643 Modern/Pariso Model City N/A 20.03 777 11/13/10 43643 Modern/Pariso Model City N/A 23.13 778 11/13/10 43643 Modern/Pariso Model City N/A 23.13 779 11/13/10 43643 Modern/Pariso Model City N/A 22.29 780 11/13/10 43643 Modern/Pariso Model City N/A 22.72 782 11/13/10 43643 Modern/Pariso Model City N/A 22.72 783 11/13/10 43643 Modern/Pariso Model City N/A 23.73 784 11/13/10 43643 Modern/Pariso Model City N/A 24.1 785 11/13/10 43643 Modern/Pariso Model City N/A 22.5 Weight not Received 786 11/13/10 43643 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>								
776 11/13/10 43643 Modern/Pariso Model City N/A 20.03 777 11/13/10 43643 Modern/Pariso Model City N/A 21.84 778 11/13/10 43643 Modern/Pariso Model City N/A 22.13 779 11/13/10 43643 Modern/Pariso Model City N/A 22.29 780 11/13/10 43643 Modern/Pariso Model City N/A 22.29 781 11/13/10 43643 Modern/Pariso Model City N/A 22.72 782 11/13/10 43643 Modern/Pariso Model City N/A 23.73 783 11/13/10 43643 Modern/Pariso Model City N/A 25.74 784 11/13/10 43643 Modern/Pariso Model City N/A 22.5 Weight not Received 785 11/13/10 43643 Modern/Pariso Model City N/A 22.5 Weight not Received 786 11/13/10 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Weight not Received</td>								Weight not Received
777 11/13/10 43643 Modern/Pariso Model City N/A 21.84 778 11/13/10 43643 Modern/Pariso Model City N/A 23.13 779 11/13/10 43643 Modern/Pariso Model City N/A 22.29 780 11/13/10 43643 Modern/Pariso Model City N/A 22.49 781 11/13/10 43643 Modern/Pariso Model City N/A 22.72 782 11/13/10 43643 Modern/Pariso Model City N/A 23.73 783 11/13/10 43643 Modern/Pariso Model City N/A 25.74 784 11/13/10 43643 Modern/Pariso Model City N/A 22.5 Weight not Received 785 11/13/10 43643 Modern/Pariso Model City N/A 22.5 Weight not Received 786 11/13/10 43643 Modern/Pariso Model City N/A 22.5 Weight not Received								
778 11/13/10 43643 Modern/Pariso Model City N/A 23.13 779 11/13/10 43643 Modern/Pariso Model City N/A 22.29 780 11/13/10 43643 Modern/Pariso Model City N/A 22.49 781 11/13/10 43643 Modern/Pariso Model City N/A 22.72 782 11/13/10 43643 Modern/Pariso Model City N/A 23.73 783 11/13/10 43643 Modern/Pariso Model City N/A 25.74 784 11/13/10 43643 Modern/Pariso Model City N/A 25.74 785 11/13/10 43643 Modern/Pariso Model City N/A 22.5 Weight not Received 786 11/13/10 43643 Modern/Pariso Model City N/A 22.5 Weight not Received 787 11/13/10 43643 Modern/Pariso Model City N/A 22.5 Weight not Received								
779 11/13/10 43643 Modern/Pariso Model City N/A 22.29 780 11/13/10 43643 Modern/Pariso Model City N/A 22.49 781 11/13/10 43643 Modern/Pariso Model City N/A 22.72 782 11/13/10 43643 Modern/Pariso Model City N/A 23.73 783 11/13/10 43643 Modern/Pariso Model City N/A 25.74 784 11/13/10 43643 Modern/Pariso Model City N/A 25.74 785 11/13/10 43643 Modern/Pariso Model City N/A 22.5 Weight not Received 786 11/13/10 43643 Modern/Pariso Model City N/A 22.5 Weight not Received 787 11/13/10 43643 Modern/Pariso Model City N/A 22.5 Weight not Received 788 11/13/10 43643 Modern/Pariso Model City N/A 22.5 Weight not Rece								
780 11/13/10 43643 Modern/Pariso Model City N/A 22.49 781 11/13/10 43643 Modern/Pariso Model City N/A 22.72 782 11/13/10 43643 Modern/Pariso Model City N/A 23.73 783 11/13/10 43643 Modern/Pariso Model City N/A 25.74 784 11/13/10 43643 Modern/Pariso Model City N/A 24.1 785 11/13/10 43643 Modern/Pariso Model City N/A 22.5 Weight not Received 786 11/13/10 43643 Modern/Pariso Model City N/A 22.5 Weight not Received 787 11/13/10 43643 Modern/Pariso Model City N/A 22.5 Weight not Received 788 11/13/10 43643 Modern/Pariso Model City N/A 22.5 Weight not Received 789 11/13/10 43643 Modern/Pariso Model City N/A 22								
781 11/13/10 43643 Modern/Pariso Model City N/A 22.72 782 11/13/10 43643 Modern/Pariso Model City N/A 23.73 783 11/13/10 43643 Modern/Pariso Model City N/A 25.74 784 11/13/10 43643 Modern/Pariso Model City N/A 24.1 785 11/13/10 43643 Modern/Pariso Model City N/A 22.5 Weight not Received 786 11/13/10 43643 Modern/Pariso Model City N/A 22.5 Weight not Received 787 11/13/10 43643 Modern/Pariso Model City N/A 22.5 Weight not Received 788 11/13/10 43643 Modern/Pariso Model City N/A 22.5 Weight not Received 789 11/13/10 43643 Modern/Pariso Model City N/A 22.5 Weight not Received 790 11/13/10 43643 Modern/Pariso Model City			43643					
783 11/13/10 43643 Modern/Pariso Model City N/A 25.74 784 11/13/10 43643 Modern/Pariso Model City N/A 24.1 785 11/13/10 43643 Modern/Pariso Model City N/A 22.5 Weight not Received 786 11/13/10 43643 Modern/Pariso Model City N/A 22.5 Weight not Received 787 11/13/10 43643 Modern/Pariso Model City N/A 22.5 Weight not Received 788 11/13/10 43643 Modern/Pariso Model City N/A 22.5 Weight not Received 789 11/13/10 43643 Modern/Pariso Model City N/A 22.5 Weight not Received 790 11/13/10 43643 Modern/Pariso Model City N/A 22.5 Weight not Received 791 11/13/10 43643 Modern/Pariso Model City N/A 22.5 Weight not Received 792 11/13/10 <	781					N/A		
784 11/13/10 43643 Modern/Pariso Model City N/A 24.1 785 11/13/10 43643 Modern/Pariso Model City N/A 22.5 Weight not Received 786 11/13/10 43643 Modern/Pariso Model City N/A 22.5 Weight not Received 787 11/13/10 43643 Modern/Pariso Model City N/A 22.5 Weight not Received 788 11/13/10 43643 Modern/Pariso Model City N/A 22.5 Weight not Received 789 11/13/10 43643 Modern/Pariso Model City N/A 22.5 Weight not Received 790 11/13/10 43643 Modern/Pariso Model City N/A 18.35 791 11/13/10 43643 Modern/Pariso Model City N/A 22.5 Weight not Received 792 11/13/10 43643 Modern/Pariso Model City N/A 22.5 Weight not Received 793 11/13/10 <	782	11/13/10	43643	Modern/Pariso	Model City	N/A	23.73	
785 11/13/10 43643 Modern/Pariso Model City N/A 22.5 Weight not Received 786 11/13/10 43643 Modern/Pariso Model City N/A 22.5 Weight not Received 787 11/13/10 43643 Modern/Pariso Model City N/A 22.5 Weight not Received 788 11/13/10 43643 Modern/Pariso Model City N/A 22.5 Weight not Received 789 11/13/10 43643 Modern/Pariso Model City N/A 22.5 Weight not Received 790 11/13/10 43643 Modern/Pariso Model City N/A 18.35 791 11/13/10 43643 Modern/Pariso Model City N/A 22.5 Weight not Received 792 11/13/10 43643 Modern/Pariso Model City N/A 22.5 Weight not Received 793 11/13/10 43643 Modern/Pariso Model City N/A 22.5 Weight not Received 794 <td>783</td> <td>11/13/10</td> <td></td> <td>Modern/Pariso</td> <td>Model City</td> <td>N/A</td> <td>25.74</td> <td></td>	783	11/13/10		Modern/Pariso	Model City	N/A	25.74	
786 11/13/10 43643 Modern/Pariso Model City N/A 22.5 Weight not Received 787 11/13/10 43643 Modern/Pariso Model City N/A 22.5 Weight not Received 788 11/13/10 43643 Modern/Pariso Model City N/A 22.5 Weight not Received 789 11/13/10 43643 Modern/Pariso Model City N/A 22.5 Weight not Received 790 11/13/10 43643 Modern/Pariso Model City N/A 18.35 791 11/13/10 43643 Modern/Pariso Model City N/A 22.5 Weight not Received 792 11/13/10 43643 Modern/Pariso Model City N/A 22.5 Weight not Received 793 11/13/10 43643 Modern/Pariso Model City N/A 22.5 Weight not Received 794 11/15/10 43644 Modern/Pariso Model City N/A 21.12 795 11/15/10								
787 11/13/10 43643 Modern/Pariso Model City N/A 22.5 Weight not Received 788 11/13/10 43643 Modern/Pariso Model City N/A 22.5 Weight not Received 789 11/13/10 43643 Modern/Pariso Model City N/A 22.5 Weight not Received 790 11/13/10 43643 Modern/Pariso Model City N/A 18.35 791 11/13/10 43643 Modern/Pariso Model City N/A 22.5 Weight not Received 792 11/13/10 43643 Modern/Pariso Model City N/A 22.5 Weight not Received 793 11/13/10 43643 Modern/Pariso Model City N/A 22.5 Weight not Received 794 11/15/10 43644 Modern/Pariso Model City N/A 22.5 Weight not Received 795 11/15/10 43644 Modern/Pariso Model City N/A 22.28 796 11/15/10								
788 11/13/10 43643 Modern/Pariso Model City N/A 22.5 Weight not Received 789 11/13/10 43643 Modern/Pariso Model City N/A 22.5 Weight not Received 790 11/13/10 43643 Modern/Pariso Model City N/A 18.35 791 11/13/10 43643 Modern/Pariso Model City N/A 22.5 Weight not Received 792 11/13/10 43643 Modern/Pariso Model City N/A 22.5 Weight not Received 793 11/13/10 43643 Modern/Pariso Model City N/A 22.5 Weight not Received 794 11/15/10 43644 Modern/Pariso Model City N/A 22.5 Weight not Received 795 11/15/10 43644 Modern/Pariso Model City N/A 22.28 796 11/15/10 43644 Modern/Pariso Model City N/A 24.87 798 11/15/10 43644 Modern/Pa								
789 11/13/10 43643 Modern/Pariso Model City N/A 22.5 Weight not Received 790 11/13/10 43643 Modern/Pariso Model City N/A 18.35 791 11/13/10 43643 Modern/Pariso Model City N/A 22.5 Weight not Received 792 11/13/10 43643 Modern/Pariso Model City N/A 22.5 Weight not Received 793 11/13/10 43643 Modern/Pariso Model City N/A 22.5 Weight not Received 794 11/15/10 43644 Modern/Pariso Model City N/A 21.12 795 11/15/10 43644 Modern/Pariso Model City N/A 23.73 796 11/15/10 43644 Modern/Pariso Model City N/A 24.87 798 11/15/10 43644 Modern/Pariso Model City N/A 25.04 799 11/15/10 43644 Modern/Pariso Model City N/A 2								
790 11/13/10 43643 Modern/Pariso Model City N/A 18.35 791 11/13/10 43643 Modern/Pariso Model City N/A 22.5 Weight not Received 792 11/13/10 43643 Modern/Pariso Model City N/A 22.5 Weight not Received 793 11/13/10 43643 Modern/Pariso Model City N/A 22.5 Weight not Received 794 11/15/10 43644 Modern/Pariso Model City N/A 21.12 795 11/15/10 43644 Modern/Pariso Model City N/A 22.28 796 11/15/10 43644 Modern/Pariso Model City N/A 23.73 797 11/15/10 43644 Modern/Pariso Model City N/A 25.04 799 11/15/10 43644 Modern/Pariso Model City N/A 22.6 800 11/15/10 43644 Modern/Pariso Model City N/A 22.87								
791 11/13/10 43643 Modern/Pariso Model City N/A 22.5 Weight not Received 792 11/13/10 43643 Modern/Pariso Model City N/A 22.5 Weight not Received 793 11/13/10 43643 Modern/Pariso Model City N/A 22.5 Weight not Received 794 11/15/10 43644 Modern/Pariso Model City N/A 21.12 795 11/15/10 43644 Modern/Pariso Model City N/A 22.28 796 11/15/10 43644 Modern/Pariso Model City N/A 23.73 797 11/15/10 43644 Modern/Pariso Model City N/A 24.87 798 11/15/10 43644 Modern/Pariso Model City N/A 25.04 799 11/15/10 43644 Modern/Pariso Model City N/A 22.6 800 11/15/10 43644 Modern/Pariso Model City N/A 22.87								Signit not received
792 11/13/10 43643 Modern/Pariso Model City N/A 22.5 Weight not Received 793 11/13/10 43643 Modern/Pariso Model City N/A 22.5 Weight not Received 794 11/15/10 43644 Modern/Pariso Model City N/A 21.12 795 11/15/10 43644 Modern/Pariso Model City N/A 22.28 796 11/15/10 43644 Modern/Pariso Model City N/A 23.73 797 11/15/10 43644 Modern/Pariso Model City N/A 24.87 798 11/15/10 43644 Modern/Pariso Model City N/A 25.04 799 11/15/10 43644 Modern/Pariso Model City N/A 22.6 800 11/15/10 43644 Modern/Pariso Model City N/A 22.87 801 11/15/10 43644 Modern/Pariso Model City N/A 23.58 802 11/15/10 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Weight not Received</td>								Weight not Received
793 11/13/10 43643 Modern/Pariso Model City N/A 22.5 Weight not Received 794 11/15/10 43644 Modern/Pariso Model City N/A 21.12 795 11/15/10 43644 Modern/Pariso Model City N/A 22.28 796 11/15/10 43644 Modern/Pariso Model City N/A 23.73 797 11/15/10 43644 Modern/Pariso Model City N/A 24.87 798 11/15/10 43644 Modern/Pariso Model City N/A 25.04 799 11/15/10 43644 Modern/Pariso Model City N/A 22.6 800 11/15/10 43644 Modern/Pariso Model City N/A 22.87 801 11/15/10 43644 Modern/Pariso Model City N/A 23.58 802 11/15/10 43644 Modern/Pariso Model City N/A 22.5 Weight not Received 803 11/15/10 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
795 11/15/10 43644 Modern/Pariso Model City N/A 22.28 796 11/15/10 43644 Modern/Pariso Model City N/A 23.73 797 11/15/10 43644 Modern/Pariso Model City N/A 24.87 798 11/15/10 43644 Modern/Pariso Model City N/A 25.04 799 11/15/10 43644 Modern/Pariso Model City N/A 22.6 800 11/15/10 43644 Modern/Pariso Model City N/A 22.87 801 11/15/10 43644 Modern/Pariso Model City N/A 23.58 802 11/15/10 43644 Modern/Pariso Model City N/A 22.5 Weight not Received 803 11/15/10 43644 Modern/Pariso Model City N/A 24.43 804 11/15/10 43644 Modern/Pariso Model City N/A 24.43	793	11/13/10	43643		Model City			
796 11/15/10 43644 Modern/Pariso Model City N/A 23.73 797 11/15/10 43644 Modern/Pariso Model City N/A 24.87 798 11/15/10 43644 Modern/Pariso Model City N/A 25.04 799 11/15/10 43644 Modern/Pariso Model City N/A 22.6 800 11/15/10 43644 Modern/Pariso Model City N/A 22.87 801 11/15/10 43644 Modern/Pariso Model City N/A 23.58 802 11/15/10 43644 Modern/Pariso Model City N/A 22.5 Weight not Received 803 11/15/10 43644 Modern/Pariso Model City N/A 24.43 804 11/15/10 43644 Modern/Pariso Model City N/A 24.95								
797 11/15/10 43644 Modern/Pariso Model City N/A 24.87 798 11/15/10 43644 Modern/Pariso Model City N/A 25.04 799 11/15/10 43644 Modern/Pariso Model City N/A 22.6 800 11/15/10 43644 Modern/Pariso Model City N/A 22.87 801 11/15/10 43644 Modern/Pariso Model City N/A 23.58 802 11/15/10 43644 Modern/Pariso Model City N/A 22.5 Weight not Received 803 11/15/10 43644 Modern/Pariso Model City N/A 24.43 804 11/15/10 43644 Modern/Pariso Model City N/A 24.43								
798 11/15/10 43644 Modern/Pariso Model City N/A 25.04 799 11/15/10 43644 Modern/Pariso Model City N/A 22.6 800 11/15/10 43644 Modern/Pariso Model City N/A 22.87 801 11/15/10 43644 Modern/Pariso Model City N/A 23.58 802 11/15/10 43644 Modern/Pariso Model City N/A 22.5 Weight not Received 803 11/15/10 43644 Modern/Pariso Model City N/A 24.43 804 11/15/10 43644 Modern/Pariso Model City N/A 24.95								
799 11/15/10 43644 Modern/Pariso Model City N/A 22.6 800 11/15/10 43644 Modern/Pariso Model City N/A 22.87 801 11/15/10 43644 Modern/Pariso Model City N/A 23.58 802 11/15/10 43644 Modern/Pariso Model City N/A 22.5 Weight not Received 803 11/15/10 43644 Modern/Pariso Model City N/A 24.43 804 11/15/10 43644 Modern/Pariso Model City N/A 24.95								
800 11/15/10 43644 Modern/Pariso Model City N/A 22.87 801 11/15/10 43644 Modern/Pariso Model City N/A 23.58 802 11/15/10 43644 Modern/Pariso Model City N/A 22.5 Weight not Received 803 11/15/10 43644 Modern/Pariso Model City N/A 24.43 804 11/15/10 43644 Modern/Pariso Model City N/A 24.95								
801 11/15/10 43644 Modern/Pariso Model City N/A 23.58 802 11/15/10 43644 Modern/Pariso Model City N/A 22.5 Weight not Received 803 11/15/10 43644 Modern/Pariso Model City N/A 24.43 804 11/15/10 43644 Modern/Pariso Model City N/A 24.95								-
802 11/15/10 43644 Modern/Pariso Model City N/A 22.5 Weight not Received 803 11/15/10 43644 Modern/Pariso Model City N/A 24.43 804 11/15/10 43644 Modern/Pariso Model City N/A 24.95								
803 11/15/10 43644 Modern/Pariso Model City N/A 24.43 804 11/15/10 43644 Modern/Pariso Model City N/A 24.95								Weight not Received
804 11/15/10 43644 Modern/Pariso Model City N/A 24.95								
	804	11/15/10	43644					
	805	11/15/10	43644	Modern/Pariso	Model City	N/A		

Table 1 Area C Remedial Excavation Disposal Summary Area C - Final Engineering Report

Load No.	Date	OSC Ticket No.	Recycling / Disposal Company	Destination	Truck Number	Tonnage	Notes
806	11/15/10	43644	Modern/Pariso	Model City	N/A	24.02	
807	11/15/10	43644	Modern/Pariso	Model City	N/A	27.8	
808	11/15/10	43644	Modern/Pariso	Model City	N/A	21.79	
809	11/15/10	43644	Modern/Pariso	Model City	N/A	29.13	
810	11/15/10	43644	Modern/Pariso	Model City	N/A	23.88	
811	11/15/10	43644	Modern/Pariso	Model City	N/A	21.82	
812	11/15/10	43644	Modern/Pariso	Model City	N/A	23.74	
813	11/15/10	43644	Modern/Pariso	Model City	N/A	22.79	
814	11/15/10	43644	Modern/Pariso	Model City	N/A	23.54	
815	11/15/10	43644	Modern/Pariso	Model City	N/A	23.1	
816	11/15/10	43644	Modern/Pariso	Model City	N/A	24.02	
817	11/15/10	43644	Modern/Pariso	Model City	N/A	22.74	
818	11/15/10	43644	Modern/Pariso	Model City	N/A	26.12	
819	11/15/10	43644	Modern/Pariso	Model City	N/A	24.9	
820	11/15/10	43644	Modern/Pariso	Model City	N/A	23.11	
821	11/15/10	43644	Modern/Pariso	Model City	N/A	22.36	
822	11/15/10	43644	Modern/Pariso	Model City	N/A	25.06	
823	11/15/10	43644	Modern/Pariso	Model City	N/A	22.25	
824	11/15/10	43644	Modern/Pariso	Model City	N/A	25.84	
825	11/17/10	43858	Modern/Pariso	Model City	N/A	24.09	
826	11/17/10	43858	Modern/Pariso	Model City	N/A	25.3	
827	11/17/10	43858	Modern/Pariso	Model City	N/A	25.23	
828	11/17/10	43858	Modern/Pariso	Model City	N/A	25.03	
829	11/17/10	43858	Modern/Pariso	Model City	N/A	26.92	
830	11/17/10	43858	Modern/Pariso	Model City	N/A	25.07	
831	11/17/10	43858	Modern/Pariso	Model City	N/A	24.54	
832	11/17/10	43858	Modern/Pariso	Model City	N/A	26.66	
833	11/17/10	43858	Modern/Pariso	Model City	N/A	21.73	
834	11/17/10	43858	Modern/Pariso	Model City	N/A	22.95	
835_	11/17/10	43858	Modern/Pariso	Model City	N/A	22.71	
836	11/17/10	43858	Modern/Pariso	Model City	N/A	26.49	
837	11/17/10	43859	Modern/Pariso	Model City	N/A	22.13	
838	11/17/10	43859	Modern/Pariso	Model City	N/A	18.75	
839	11/17/10	43859	Modern/Pariso	Model City	N/A	24	
840	11/17/10	43859	Modern/Pariso	Model City	N/A	26.34	
841	11/17/10	43859	Modern/Pariso	Model City	N/A	27.54	
842	11/17/10	43859	Modern/Pariso	Model City	N/A	27.4	
843	11/17/10	43859	Modern/Pariso	Model City	N/A	22.85	
844	11/17/10	43859	Modern/Pariso	Model City	N/A	26.72	
845	11/17/10	43859	Modern/Pariso	Model City	N/A	28.04	
846	11/17/10	43859	Modern/Pariso	Model City	N/A	24.88	
847	11/17/10	43859	Modern/Pariso	Model City	N/A	23.25	
848	11/17/10	43859	Modern/Pariso	Model City	N/A	22.43	
849	11/17/10	43859	Modern/Pariso	Model City	N/A	22.99	
850	11/17/10	43859	Modern/Pariso	Model City	N/A	23.22	
851	11/18/10	43857	Modern/Pariso	Model City	N/A	20.87	
852	11/18/10	43857	Modern/Pariso	Model City	N/A	22.63	
853	11/18/10	43857	Modern/Pariso	Model City	N/A	22.91	
854	11/18/10	43857	Modern/Pariso	Model City	N/A	24.52	
855	11/18/10	43857	Modern/Pariso	Model City	N/A	22.8	
856	11/18/10	43857	Modern/Pariso	Model City	N/A	24.54	
857	11/18/10	43857	Modern/Pariso	Model City	N/A	19.51	
858	11/18/10	43857	Modern/Pariso	Model City	N/A	23.6	
859	11/18/10	43857	Modern/Pariso	Model City	N/A	23.02	
860	11/18/10	43857	Modern/Pariso	Model City	N/A	20.67	
					Total	19368.61	

Notes:

Weight not Received indicates that the truck weight was approximated based upon a load average because the scale weight was not received by OSC from the disposal facility.

Table 2
Remedial Performance/Documentation Sampling Results
Area C - Final Engineering Report

		Area	Area C	Area C	Area C	Area C	Area C	Area C	Area C	Area C	Area C	Area C	Area C	Area C								
		Location Sample Date	C1-RB-1 10/20/10	C1-RS-1 10/20/10	C1-RS-2 10/20/10	C1-RS-3 10/20/10	C1-RS-4 10/20/10	C2-R8-1 11/01/10	C2-RB-2 11/03/10	C2-RB-3 11/11/10	C2-R8-4 11/12/10	C2-RS-1 11/01/10	C2-RS-2 11/01/10	C2-RS-3 11/01/10	C2-RS-4 11/09/10	C2-RS-5 11/09/10		C2-RS-7		C2-RS-9 11/11/10	C2-RS-10 11/12/10	C2-RS-11 11/13/10
Parameter	Units	Sample ID Commercial	C1-RB1-1213	3 C1-RS1-0709	C1-R\$2-0811	C1-RS3-0912	C1-RS4-050	7 C2-RB1-1314	C2-RB2-1213	C2-RB3-1213	C2-RB4-1213	C2-RS1-0911	C2-RS2-1012	C2-RS3-0911	C2-RS4-0607	C2-RS5-0911	C2-RS6-0810 C2-	RS7-0911	C2-RS8-0911 C	2-RS9-0608	C2-RS10-0911	C2-RS11-081
METALS																						
CYANIDE ALUMINUM	MG/KG MG/KG	27	15700	14600	16900	17800	17500	14600	16400	16300	13600	17100	19400	15800	15800	19000	16700	NA 16900	15500	NA 16700	16100	11900
ANTIMONY ARSENIC	MG/KG MG/KG	46	4.78 UJ 7.18	J 5.05 UJ 9.62	5,32 UJ	5.53 UJ 5.23	6.95 U	J 4.38 U 5.25	4.51 U 7.35	4.01 U 5.75	4.09 U	4,37 U 8.19	7.13 U 6.78	7.13 U 10.2	5.06 U 5.88	6.26 U 9.16	7.04 U 9.49	6.28 U 10.1	4,01 U 5.3	5.08 U 8.65	5.59 Ü	6.85 U 7.51
BARIUM	MG/KG	400	71.1	62.3	83.1	74.8	86.8	83.2	71,7	83.7	5.6 59.4	97.2	114	74.1	98.2	91.4	68.5	89.3	75.1	82.4	80.3	63.2
BERYLLIUM CADMIUM	MG/KG MG/KG	590 9.3	0.735 0.398 U	0.618 0.421 U	0.919 0.444 U	0.781 0.462 U	0.887 0.579 U	0.676 0.365 U	0.765 0.376 U	0.747 0.335 U	0.634 0.341 U	0.775 0.365 U	0.893 0.595 U	0.735 0.595 U	0.671	0.863 0.521 U	0.818 0.587 U	0.822 0.524 U	0.707 0.333 U	0.756 0.423 U	0.773 0.466 U	0,628 2.35
CALCIUM	MG/KG		47900	38700	37800	28300	26100	34800	12700	14700	32200	42900	33000	37700	82300	37800	37100	37200	42500	38800	37100	29600
CHROMIUM COBALT	MG/KG MG/KG	1,500	20,9 12.8	19 15.6	21.6 13.4	22.8	22.7 14.4	18.9 12.7	14.4	21.3 13.9	18.2	21.1 13.7	24.4 14.6	20.4	18	23.1	10.9	21.7	19.8	20.6 12.6	20.9 13.3	14.4 32.9
COPPER	MG/KG	270	30	20,9	37.3	26.2	40.1	27.8	28,9	30	28.4	30,4	28.2	29.2	25.5	29.9	27.8	33.3 29900	26.6	28.4	31.6 28600	67.6 32600
IRON LEAD	MG/KG MG/KG	1000	27700 12	9.71	31800 23.3	25600 11,9	31900 16.9	24900 13.2	27900 13.3	27600 12.5	23900	28300 10.6	29200 11.3	28300 10.8	22900 11	28900 11.5	28300 12.3	12.4	22400 11.4	28300 13.1	14	9.81
MAGNESIUM MANGANESE	MG/KG MG/KG	10000	14400 514	13200 398	12100 449	12500 423	12400 444	13600	10900 386	11100 427	12600 475	12600 576	12300 525	13500 424	12200 547	13500 538	13200 404	11600 440	12800 404	12600 418	12300 466	11200
MERCURY	MG/KG	2,8	0.0191 J	0.0206 J	0.625 J	0.0319 J	0.0362 J	0.0332	0.0144	0.0157	0.0166	0,0209	0.0296	0.0227	0.033	0.323	0.0323	0.014	0.0195	0.0224	0.0237	0.0166
NICKEL POTASSIUM	MG/KG MG/KG	310	33.2 3360	32.4 3210	36.4 3050	2890	38.1 3040	32 2840	35 3070	34.8 3040	30.9 2630	37.1 3390	37.5 4290	32.9 3190	29.2	38.4 3700	2970	36.6 3040	31,7 2620	33.8	35.8 2920	57.8 1790
SELENIUM	MG/KG	1500 1500	0.398 U 0.798 U	0.421 U	0.444 Ü 0.886 U	0.462 U	0.579 U	0.365 U	0.376 U 0.753 U	0,335 U 0,669 U	0,341 U 0,681 U	0.365 U 0.729 U	0.595 U 1.19 U	0.595 U 1.19 U	0.422 U 0.842 U	0,521 U 1,04 U	0.587 U 1.17 U	0.517 U 1.05 U	0,333 U 0,668 U	0.423 U 0.845 U	0,466 U 0,932 U	0.57 U 1.14 U
SILVER	MG/KG MG/KG	1500	838	1870	2270	0.922 U 1410	406	382	307	214	244	1470	2070	1190	438 J	562 J	511 J	669	266	368	482	409
THALLIUM VANADIUM	MG/KG MG/KG		0.478 U 29.4	0,505 U	0.532 U 36.9	0.553 U 31.1	0,695 U 35.6	0,438 U 28	0.451 U 31.6	0,401 U	0.409 U 26,2	0.437 U_ 30.9	0.713 U	0.713 U 30.5	0.506 U 27.6	0.626 U	0.704 U 31.7	0.628 U 31.9	0.401 U 27.3	0.507 U 29.8	0.559 Ú 30,4	0,685 U
ZINC	MG/KG	10000		95.7 J	81.8 J	78.1 J	103 J		81.1	81.9	70.8	75.9	86.8	77.3	64.2	84.7	79.4	81.7	79.2	77.1	84.5	523
SVOCS 1-METHYL-2,4-DINITROBENZENE	MG/KG	<u> </u>	NA	NA	NA NA	NA	NA	NA NA	NA NA	NA NA	NA	NA	NA NA	NA	NA	NA NA	NA NA	NA	NA	NĀ]	NA	NA NA
2,2'-DICHLORODIISOPROPYLETHER 2,4,5-TRICHLOROPHENOL	MG/KG MG/KG		0.371 U 0.927 U	36.4 U 90.9 U	0.351 U 0.878 U	0.354 U 0.884 U	0.361 U	0,375 U 0,937 U	0,38 U 0,95 U	0.376 U 0.939 U	0,371 UJ 0,926 UJ	1.75 U 4.37 U	7.05 U 17.6 U	0.35 U 0.875 U	0.353 U 0.883 U	3.52 U 8.79 U	0.358 U 0.894 U	0.35 U 0.874 U	0.371 U 0.928 U	0.354 U 0.886 U	3,53 UJ 8,83 UJ	
2,4,6-TRICHOLORPHENOL	MG/KG		0.371 U	36.4 U	0.351 U	0.354 U	0.361 U	0.375 U	0.38 U	0.376 U	0.371 UJ	1.75 U	7.05 U	0.35 U	0.353 U	3.52 U	0.358 U	0.35 U	0.371 U	0.354 U	3.53 UJ	0.345 U
2,4-DICHLOROPHENOL 2,4-DIMETHYLPHENOL	MG/KG MG/KG		0,371 U 0,371 U	36,4 U	0,351 U 0,351 U	0.354 U 0.354 U	0,361 U	0.375 U	0.38 U	0.376 U 0.376 U	0.371 UJ 0.371 UJ	1,75 U 1,75 U	7.05 U	0.35 U	0,353 U 0,353 U	3.52 U 3.52 U	0.358 U 0.358 U	0.35 U	0.371 U 0.371 U	0.354 U	3.53 UJ 3.53 UJ	
2,4-DINITROPHENOL	MG/KG		0.927 U	90.9 U	0.878 U	0.884 U	0.903 U	0.937 U	0.95 U	0.939 U	0.926 UJ	4.37 U	17.6 U	0.875 U	0.883 U	8.79 U	0.894 U	0.874 U	0.928 U	0.886 U	8.83 UJ	0.862 U
2,4-DINITROTOLUENE 2,6-DINITROPHENOL	MG/KG MG/KG		0.371 U 0.371 U	36.4 U	0.351 U 0.351 U	0.354 U 0.354 U	0.361 U		0.38 U 0.38 U	0.376 U 0.376 U	0.371 UJ 0.371 UJ	1.75 U 1.75 U	7.05 U	0.35 U 0.35 U	0.353 U 0.353 U	3.52 U 3.52 U	0,358 U 0,358 U	0.35 U	0.371 U 0.371 U	0.354 U 0.354 U	29.1 J 3.53 UJ	0.345 U 0.345 U
2,6-DINITROTOLUENE 2-CHLORONAPHTHALENE	MG/KG MG/KG		0.371 U 0.371 U		0.351 U 0,351 U	0.354 U 0.354 U	0.361 U		0.38 U 0.38 U	0.376 U 0.376 U	0.371 UJ 0.371 UJ	1.75 U 1.75 U	7.05 U 7.05 U	0.35 U 0.35 U		3.52 U 3.52 U	0.358 U 0.358 U	0.35 U	0,371 U 0,371 U	0.354 U 0.354 U	11.5 J 3.53 UJ	0.345 U
2-CHLOROPHENOL	MG/KG		0.371 U	36.4 U	0.351 U	0.354 U	0.361 U	0.375 U	0.38 U	0.376 U	0.371 UJ	1.75 U	7.05 U	0.35 U	0.353 U	3.52 U	0.358 U	0.35 U	0.371 U	0.354 U	3.53 UJ	0.345 U
2-METHYLNAPHTHALENE 2-METHYLPHENOL	MG/KG MG/KG	500	0.371 U 0.371 U			0.354 U 0.354 U	0.361 U		0.38 U 0.38 U	0.376 U 0.376 U	0.371 UJ 0.371 UJ	1.75 U 1.75 U	7.05 U	0.35 U		3.52 U	0.358 U 0.358 U	0.35 U	0.371 U 0.371 U	0.354 U 0.354 U	3,53 UJ 3,53 UJ	0.345 U 0.345 U
2-NITROANILINE	MG/KG		0.927 U	90.9 U	0.878 U	0.884 U	0.903 U	0.937 U	0.95 U	0.939 U	0.926 UJ	4.37 U	17.6 U	0.875 U	0.883 U	8.79 U	0.894 U	0.874 U	0.928 U	0.886 U 0.354 U	8.83 UJ	0.862 U 0.345 U
2-NITROPHENOL 3,3'-DICHLOROBENZIDINE	MG/KG MG/KG		0.371 U 0.371 U	36.4 U	0,351 U 0,351 U	0.354 U 0.354 U	0.361 U		0.38 U 0.38 U	0.376 U 0.376 U	0.371 UJ 0.371 UJ	1.75 U 1.75 U	7.05 U 7.05 U	0.35 U 0.35 U	0.353 U	3.52 U 3.52 U	0.358 U 0.358 U	0.35 U 0.35 U	0.371 U 0.371 U	0.354 U	3.53 UJ 3.53 UJ	0.345 U
3-METHYLPHENOL 3-NITROANILINE	MG/KG MG/KG		0.371 U 0.927 U	36.4 U 90.9 U	0.351 U 0.878 U	0.354 U 0.884 U	0.361 U		0.38 U 0.95 U		0.371 UJ 0.926 UJ	1.75 U 4.37 U	7.05 U	0.35 U 0.875 U		3.52 U 8.79 U	0.358 U 0.894 U	0.35 U 0.874 U	0.371 U 0.928 U	0.354 U 0.886 U	3.53 UJ 8.83 UJ	0.345 U 0.862 U
4,6-DINITRO-2-METHLYPHENOL	MG/KG		0.927 U	90.9 U	0.878 U	0.884 U	0.903	0.937 U	0.95 U	0.939 U	0.926 UJ	4.37 U	17.6 U	0.875 U	0.883 U	8.79 U	0.894 U	0.874 U	0.928 U	0.886 U	8.83 UJ	0.862 U
4-CHLORO-3-METHYLPHENOL	MG/KG MG/KG		0.371 U 0.371 U	36.4 U	0.351 U	0.354 U 0.354 U	0.361 U		0.38 U	0.376 U	0.371 UJ 0.371 UJ	1.75 U	7.05 U 7.05 U	0.35 U		3.52 U 3.52 U	0.358 U	0.35 U 0.35 U	0.371 U 0.371 U	0.354 U 0.354 U	3.53 UJ 3.53 UJ	
4-CHLOROANILINE 4-CHLOROPHENYL PHENYL ETHER	MG/KG MG/KG		0.371 U 0.371 U	36.4 U 36.4 U	0.351 U 0.351 U	0.354 U 0.354 U	0.361 U	0.375 U 0.375 U	0.38 U 0.38 U	0.376 U 0.376 U	0.371 UJ 0.371 UJ	1.75 U 1.75 U	7.05 U 7.05 U	0.35 U 0.35 U		3.52 U 3.52 U	0.358 U 0.358 U	0.35 U 0.35 U	0.371 U 0.371 U	0.354 U 0.354 U	3.53 UJ 3.53 UJ	0.345 U
4-METHYLPHENOL	MG/KG	500	NA NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
4-NIRTOANILINE 4-NITROPHENOL	MG/KG MG/KG		0.927 U 0.927 U	90.9 U 90.9 U	0.878 U	0.884 U	0.903 U	0.937 U 0.937 U	0.95 U 0.95 U	0.939 U 0.939 U	0.926 UJ 0.926 UJ	4.37 U 4.37 U	17.6 U	0.875 U		8.79 U 8.79 U	0.894 U	0.874 U 0.874 U	0.928 U	0.886 U 0.886 U	8.83 UJ	0.862 U 0.862 U
ACENAPHTHENE	MG/KG	500	0,371 U	36,4 U	0,351 U	0,354 U	0,361	0.375 U	0.38 U	0.376 U	0.371 UJ	1.75 U	7.05 U	0.35 U	0.353 U	3.52 U	0.358 U	0.35 U 0.35 U	0.371 U	0.354 U	3.53 UJ 3.53 UJ	0.345 U
ACENAPHTHYLENE ACETOPHENONE	MG/KG MG/KG	500	0.371 Ü NA	36.4 U NA	0.351 U NA	0.354 U NA	0.361 U NA	0,375 U NA	0.38 U NA	0.376 U NA	0.371 UJ NA	1.75 U NA	7.05 U NA	0,35 U NA	0.353 U NA	3.52 U NA	0.358 U NA	NA	0.371 U NA	0.354 U NA	NA	NA
ANILINE ANTHRACENE	MG/KG MG/KG	500	0.371 U 0.371 U	36.4 U	0.351 U 0.351 U	0.354 U 0.354 U	0.182 J 0.361 U		0.38 U	0.376 U 0.376 U	0.371 UJ 0.371 UJ	1.75 U 1.75 U	7.05 U 7.05 U	0.35 U	0.353 U	3.52 U 3.52 U	0.358 U 0.358 U	0.35 U	0.371 U	0.354 U 0.354 U	3.53 UJ 3.53 UJ	
BENZIDINE	MG/KG		0.927 U	90.9 U	0,878 U	0,884 U	0,903 U	0.937 UJ	0.95 U	0.939 U	0.926 UJ	4.37 UJ	17.6 UJ	0.875 UJ	0.883 U	8.79 U	0.894 U	0.874 U	0.928 U	0.886 U	8,83 UJ	0.862 U
BENZO(A)ANTHRACENE BENZO(A)PYRENE	MG/KG MG/KG	5.6	0.371 U 0.371 U		0.351 U 0.351 U	0.354 U 0.354 U	0.361 U		0.38 U	0.376 U 0.376 U	0.371 UJ	1.75 U 1.75 U	7.05 U	0.35 U 0.35 U		3.52 U 3.52 U	0.358 U	0.35 U	0.371 U 0.371 U	0.354 U 0.354 U	3.53 UJ 3.53 UJ	
BENZO(B)FLUORANTHENE BENZO(G,H,I)PERYLENE	MG/KG MG/KG	5.6 500	0.371 U 0.371 U		0.351 U 0.351 U	0.354 U 0.354 U	0.361 U		0.38 U 0.38 U	0,376 U 0,376 U	0.371 UJ 0.371 UJ	1.75 U 1.75 U	7.05 U 7.05 U	0.35 U 0.35 U		3,52 U 3,52 U	0.358 U 0.358 U	0.35 U 0.35 U	0.371 U 0.371 U	0.354 U 0.354 U	3.53 UJ 3.53 UJ	
BENZO(K)FLUORANTHENE	MG/KG	56	0.371 U	36.4 U	0,351 U	0.354 U	0.361 ป	0.375 U	0.38 U	0.376 U	0.371 UJ	1.75 U	7.05 U	0.35 U	0.353 U	3.52 U	0.358 U	0.35 U	0.371 U	0.354 U	3.53 UJ	0.345 U
BENZOIC ACID BENZYL ALCOHOL	MG/KG MG/KG		0.927 U 0.927 U	90.9 U	0.878 U	0.884 U 0.884 U	0.903 U		0.95 U 0.95 U	0.939 U 0.939 U	0.926 UJ 0.926 UJ	4.37 UJ 4.37 U	17.6 UJ 17.6 U	0.875 UJ		8.79 U 8.79 U	0.894 U 0.894 U	0.874 U 0.874 U	0,928 U	0.886 U 0.886 U	8.83 UJ 8.83 UJ	
BIPHENYL BIS(2-CHLOROETHOXY)METHANE	MG/KG MG/KG		NA 0.371 U	NA 36.4 U	NA 0,351 U	NA 0.354 U	0.361 U	NA	0.38 U	NA 0.376 U	0.371 UJ	NA 1.75 U	7.05 U	NA 0.35 U	NA	NA 3.52 U	0.358 U	0.35 U	NA 0.371 U	NA 0.354 U	NA 3.53 UJ	NA
BIS(2-CHLOROETHYL)ETHER	MG/KG		0.371 U	36.4 U	0.351 U	0.354 U	0.361 U	0.375 U	0.38 U	0.376 U	0.371 UJ	1.75 U	7.05 U	0.35 U	0.353 U	3.52 U	0.358 U	0.35 U	0.371 U	0.354 U	3.53 UJ	0.345 U
BIS(2-ETHYLHEXYL)PHTHALATE BUTYLBENZYL PHTHALATE	MG/KG MG/KG		0.371 U 0.371 U		0.351 U 0.351 U	0.354 U 0.354 U	0.361 U		0,38 U 0,38 U	0.376 U 0.376 U	0.371 UJ 0.371 UJ	1.75 U 1.75 U	7.05 U	0.35 U 0.35 U			0.358 U 0.358 U	0.35 U 0.35 U	0.371 U 0.371 U	0,354 U 0.354 U	3.53 UJ 3.53 UJ	
CAPROLACTAM CARBAZOLE	MG/KG MG/KG		NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
CHRYSENE	MG/KG	56	0.371 U	36.4 U	0.351 U	0.354 U	0.361 U	0.375 U	0.38 U	0.376 U	0.371 UJ	1.75 U	7.05 U	0.35 U	0.353 U	3.52 U	0.358 U	0.35 U	0.371 ∪	0.354 U	3.53 UJ	0.345 U
DI-N-BUTYL PHTHALATE DI-N-OCTYL PHTHALATE	MG/KG MG/KG		0,371 U 0,371 U			0.354 U 0.354 U	0.361 U		0.38 U 0.38 U	0,376 U 0,376 U	0,371 UJ 0,371 UJ	1,75 U 1,75 UJ	7.05 U 7.05 UJ	0,35 U 0,35 UJ		3.52 U 3.52 U	0.358 U	0.35 U	0.371 U	0.354 U	3,53 UJ 3,53 UJ	
DIBENZO(A,H)ANTHRACENE	MG/KG	0.56	0.371 U	36.4 U	0.351 U	0.354 U	0.361 U	0.375 U	0.38 U	0.376 U	0.371 UJ	1.75 U	7.05 U	0.35 U	0.353 U	3.52 U	0.358 U	0.35 U	0.371 U	0.354 U	3.53 UJ	0.345 U
DIBENZOFURAN DIETHYL PHTHALATE	MG/KG MG/KG	350	0.371 U 0.371 U	36.4 U		0.354 U 0.354 U	0.361 U	0.375 Ú	0.38 U 0.38 U	0.376 U 0.376 U	0.371 UJ 0.371 UJ	1.75 U 1.75 U	7.05 U	0.35 U	0.353 U	3.52 U	0.358 U 0.358 U	0,35 U 0,35 U	0.371 U 0.371 U	0.354 U 0.354 U	3,53 UJ 3,53 UJ	0.345 U
DIMETHYL PHTHALATE FLUORANTHENE	MG/KG MG/KG	500	0.927 U 0.371 U	90.9 U	0.878 U 0.351 U	0.884 U 0.354 U	0.903 U	0.937 U	0.95 U 0.38 U	0.939 U 0.376 U	0.926 UJ 0.371 UJ	4.37 U 1.75 U		0.875 U 0.35 U			0.894 U 0.358 U	0.874 U 0.35 U	0.928 U 0.371 U	0.886 U 0.354 U	8.83 UJ 3.53 UJ	
FLUORENE	MG/KG	500	0.371 U	36.4 U	0.351 U	0.354 U	0.361 U	0.375 U	0.38]U	0.376 U	0.371 UJ	1.75 U	7.05 U	0.35 U	0.353 U	3.52 U	0.358 U	0,35 Ú	0.371 U	0.354 U	3.53 UJ	0.345 U
HEXACHLOROBENZENE HEXACHLOROBUTADIENE	MG/KG MG/KG	6	0.371 U 0.371 U		0,351 U 0,351 U	0.354 U 0.354 U	0.361 U		0,38 U	0,376 U	0.371 UJ 0.371 UJ	1.75 U 1.75 U	7,05 U 7,05 U	0.35 U 0.35 U			0.358 U 0.358 U	0.35 U 0.35 U	0,371 U 0,371 U	0.354 U 0.354 U	3.53 UJ 3.53 UJ	
HEXACHLOROCYCLOPENTADIENE	MG/KG		0.371 U	36.4 U	0.351 U	0.354 U	0.361 U	0.375 U	0.38 U	0.376 U	0.371 UJ	1.75 U	7.05 U	0.35 U	0.353 U	3.52 U	0.358 U	0.35 U 0.35 U	0.371 U	0.354 U 0.354 U	3.53 UJ	0.345 U
HEXACHLOROETHANE INDENO(1,2,3-CD)PYRENE	MG/KG MG/KG	5.6		36.4 U	0.351 U 0.351 U	0.354 U 0.354 U	0,361 U	0.375 U	0,38 U 0,38 U	0.376 U 0.376 U	0.371 UJ 0.371 UJ	1.75 U 1.75 U	7.05 U 7.05 U	0.35 U 0.35 U	0.353 U	3.52 U	0.358 U	0.35 U	0.371 U	0.354 U	3.53 UJ 3.53 UJ	0,345 U
ISOPHORONE N-NITROSOI-N-PROPYLAMINE	MG/KG MG/KG		0.371 U 0.371 U	36.4 U	0.351 U 0.351 U	0.354 U 0,354 U	0.361 U	0.375 U	0.38 U 0.38 U	0.376 U 0.376 U	0.371 UJ 0.371 UJ	1.75 U 1.75 U	7.05 U 7.05 U	0.35 U		3.52 U 3.52 U	0.358 U	0.35 U 0.35 U		0.354 U 0.354 U	3.53 UJ 3,53 UJ	
N-NITROSODIMETHYLAMINE	MG/KG		0.371 U	36.4 U_	0.351 U	0.354 U	0.361 U	0.375 U	0.38 U	0.376 U	0.371 UJ	1.75 U	7.05 U	0.35 U	0.353 U	3.52 U	0.358 U	0.35 U	0.371 U	0.354 U	3.53 UJ	0.345 U
N-NITROSODIPHENYLAMINE NAPHTHALENE	MG/KG MG/KG	500	0.371 U 0.371 U		0.351 U 0.351 U	0.354 U 0.354 U	0.361 U		0.38 U	0.376 U 0.376 U	0.371 UJ 0.371 UJ	1.75 U	7.05 U 7.05 U	0.35 U 0.35 U			0.358 U	0.35 U 0.35 U	0.371 U	0.354 U 0.354 U	3.53 UJ 3.53 UJ	
NITROBENZENE	MG/KG	500	0.371 U	36.4 U	0.351 U	0.354 U	0.361 U	0.375 U	0.38 U	0.376 U	0.371 UJ	1.75 U	7.05 U	0.35 U	0.353 U	3.52 U	0.358 U	0.35 U	0.371 U	0.354 U	3.53 UJ	0.345 U
O-NITROANANILINE PENTACHLOROPHENOL	MG/KG MG/KG		0.927 U	90.9 U	0.878 U	0.884 U	0.903 U	0.937 U	0,95 U	0.939 U	0.926 UJ	4.37 U	17.6 U	0.875 U	0.883 U	8.79 Ü	0.894 U	0.874 U	0.928 U	NA 0.886 U	8.83 UJ	
PHENANTHRENE	MG/KG	500	0.371 U	36.4 U	0.351 U	0.354 U	0.361 U	0.375 U	0.38 U	0.376 U	0.371 UJ	1.75 U	7.05 U 7.05 U	0.35 U	0.353 U	3.52 U	0.358 U 0.358 U	0.35 U 0.35 U	0.371 U 0.371 U	0.354 U 0.354 U	3.53 UJ 3.53 UJ	0.345 U
PHENOL PYRENE	MG/KG MG/KG	500 500	0.371 U 0.371 U			0,354 U 0.354 U	0.361 U		0.38 U 0.38 U	0.376 U	0.371 UJ 0.371 UJ	1.75 U 1.75 U	7.05 U	0.35 U 0.35 U		3.52 U	0.358 U	0.35 U	0.371 U	0.354 U	3,53 UJ	
																					i	

Table 2 Remedial Performance/Documentation Sampling Results Area C - Final Engineering Report

																					_'	
"		Area	Area C	· Area C	Area C	Area C	Area C	Area C	Area C	; Area C	Area C											
		Location	C1-RB-1	C1-RS-1	C1-RS-2	C1-RS-3	C1-RS-4	C2-RB-1	C2-RB-2	C2-RB-3	C2-RB-4	C2-RS-1	C2-RS-2	C2-RS-3	C2-RS-4	C2-RS-5	C2-RS-6	C2-RS-7	C2-RS-8	C2-RS-9	C2-RS-10	C2-RS-11
		Sample Date	10/20/10	10/20/10	10/20/10	10/20/10	10/20/10	11/01/10	11/03/10	11/11/10	11/12/10	11/01/10	11/01/10	11/01/10	11/09/10	11/09/10	11/09/10	11/10/10	11/10/10	11/11/10	i 11/12/10	11/13/10
•		Sample ID	C1-RB1-1213	C1-RS1-0709	C1-RS2-0811	C1-RS3-0912	C1-RS4-0507	C2-RB1-1314	C2-RB2-1213	C2-RB3-1213	C2-RB4-1213	C2-RS1-0911	C2-RS2-1012	C2-RS3-0911	C2-RS4-0607	C2-RS5-0911	C2-RS6-0810	C2-RS7-0911	C2-RS8-0911	C2-RS9-0608	C2-RS10-0911	C2-RS11-0810
Parameter	Units	Commercial																				
vocs																						
1,1,1-TRICHLOROETHANE	MG/KG	500	4.66 UJ	0.971 U	0.00475 U	0.00447 U	2.98 UJ	0.888 U	0.25 U	0.00495 U	0.00729 UJ	2.07 U	4.47 U	1.1 U	1.81 U	1.98 U	0.00492 U	1.49 U	2.37 U	0.936 U	0.0342 UJ	0.00466 U
1,1,2,2-TETRALCHLOROETHANE	MG/KG		4.66 U	0.971 U	0.00475 U	0.00447 UJ	2.98 U	0.888 U	0.25 U	0.00495 U_	0.00729 UJ	2.07 U	4.47 U	1.1 Ū	1.81 U	1.98 U	0.00492 U	1.49 U	2.37 U	0.936 U	0.0342 UJ	0.00466 U
1,1,2-TRICHLOROETHANE	MG/KG		4.66]U	0.971 U	0.00475 U	0.00447 U	2.98 U	0.888 U	0.25 U	0.00495 U	0.00729 UJ	2.07 U	4.47 U	1.1 U	1.81 U	1.98 U	0.00492 U	1.49 U	2,37 U	0.936 U	0.0342 UJ	0.00466 U
1,1,2-TRICHLOROTRIFLUOROETHANE	MG/KG		NA.	NA	NA	NA	NA	NA	NA NA	NA	NA NA	NA NA	NA	NA	NA	NA	NA	NA	NA]	NA	NA NA	NA
1,1-DICHOLROETHANE	MG/KG		4.66]U	0.971 U	0.00475 U	0.00532 J	2.98 U	0.888 U	0.25 U	0,00495 U	0.00729 UJ	2.07 U	4.47 U	1.1 U	1.81 U	1,98 U	0.00492 U	1.49 U	2.37 U	0.936 U	0.0342 UJ	0.00466 U
1,1-DICHLOROETHENE	MG/KG		4.66 U	0.971 U	0.00475 U	0.00447 U	2,98 U	0.888 U	0,25 U	0,00495 U	0.00729 UJ	2.07 U	4.47 U	1.1 Ü	1.81 U	1.98 U	0.00492[U	1.49 U	2.37 U	0.936 U	. 0.0342 UJ	0.00466 U
1,2,4-TRICHLOROBENZENE	MG/KG		0.319 J	447	0.351 U	0.354 U	0.361 U	0.375 U	0.38 U	0.376 U	0.371 UJ	7.9	79.9	1.23	0.353 U	33	0.358 U	0.35 U	0.371 U	0,354 U	3.53 UJ	0.345 U
1,2-DICHLOROBENZENE	MG/KG	500	17.2	0.971 U	0.00475 U	0.00447 UJ	2.98 Ü	22,3	0.34	0.00495 U	0.00729 UJ	193	451	24.6	6.09	94.6	0.00492 U	1.49 U	2.37 U	0.936 U	0.175 J	0,00665
1,2-DICHLOROETHANE	MG/KG	30	4,66 U	0,971 U	0,00475 U	0.00447 U	2.98 U	0.888 U	0.25 U	0.00495 U	0,00729 UJ	2.07 U	4.47 U	1.1 U	1.81 U	1.98 U	0.00492 U	1.49 U	2.37 U	0.936 U	0.0342 UJ	0.00466 U
1,2-DICHLOROPROPANE	MG/KG		4.66 U	0.971 U	0.00475 U	0.00447 U	2.98 U	0.888 U	0.25 U	0.00495 U	0.00729 UJ	2.07 U	4.47 U	1.1 U	1.81 U	1.98 U	0.00492 U	1.49 U	2.37 U	0.936 Ú	0.0342 UJ	0.00466 U
1,3-DICHLOROBENZENE	MG/KG	280	4.66 U	0.611 J	0.00475 Ü	0.00447 UJ	2,98 U	0.888 U	0.25 U	0.00495 U	0.00729 UJ	1.54 J	3,82 J	1,1 U	1.81 U	1,98 U	0.00492 U	1,49 U	2.37 U	0.936 U	0.0342 UJ	0.00466 U
1,4-DICHLOROBENZENE	MG/KG	130	4.66 U	0.835 J	0.00475 U	0.00447 UJ	2.98 U	6.88	0.25 U	0.00495 U	0.00729 UJ	50	127	8.21	2.96	22	0.00492 U	1,49 U	2.37 U	0.936 U	0.0412 J	0.00466 U
2-BUTANONE	MG/KG	500	23.3 UJ	4.86 UJ	0.0237 UJ	0.0224 UJ	14.9 ÚJ	4.44 UJ	1.25 U	0.0248 U	0.0364 UJ	10.3 ŪJ	22.4 UJ	5.48 UJ	9.07 U	9.88 U	0.0246 U	7.44 U	11.9 U	4.68 U	0.171 UJ	0.0233 U
2-CHLOROETHYL VINYL ETHER	MG/KG	i	23.3 UJ	4.86 U	0.0237 U	0.0224 U	14.9 UJ	4.44 U	1.25 U	0.0248 U	0.0364 UJ	10.3 U	22.4 U	5.48 U	9,07 U	9.88 U	0.0246 U	7.44 U	11.9 U	4,68 U	0.171 UJ	0.0233 Ü
2-HEXANON	MG/KG		11.7 UJ	2.43 U	0.0119 U	0.0112 UJ	7,46 UJ	2.22 U	0,626 U	0.0124 U	0.0182 UJ	5.17 U	11.2 Ü	2.74 U	4.53 U	4.94 U	0.0123 U	3.72 U	5.93 U	2.34 U	0.0856 UJ	0.0117 U
4-METHYL-2-PENTANONE	MG/KG		11.7 UJ	2,43 U	0,0119 U	0.0112 UJ	7,46 UJ	2.22 U	0,626 U	0.0124 U	0,0182 UJ	5.17 U	11.2 U	2.74 U	4.53 U	4.94 U	0.0123 U	3,72 U	5.93 U	2.34 U	0.0856 UJ	0,0117 U
ACETONE	MG/KG	500	23.3 UJ	4,86 UJ	0,0137 J	0.0164 J	14.9 UJ	4,44 UJ	1,25 U	0.0459	0,0364 UJ	10.3 UJ	22.4 UJ	5.48 UJ	9.07 U	9.88 U	0.0278	7,44 U	11.9 U	4.68 U	. 0.171 UJ	0.0669
BENZENE	MG/KG	44	4.66 UJ	0.971 U	0.00475 U	0.00447 U	2.98 UJ	0.888 U	0.25 U	0.0442	0.00908 J	2.07 U	4.47 U	1.1 U	1.81 U	1.98 U	0.00492 U	1.49 U	2.37 U	0.936 U	1.69 J	0.00466 U
BROMODICHLOROMETHANE	MG/KG		4.66 U	0.971 U	0.00475 U	0,00447 U	2.98 U	0.888 U	0.25 U	0.00495 U	0.00729 UJ	2,07 U	4,47 U	1.1 U	1.81 U	1,98 U	0.00492 Ú	1,49 U	2.37 U	0.936 U	0.0342 UJ	0.00466 U
BROMOFORM	MG/KG		11.7 UJ	2.43 Ü	0.0119 U	0.0112 UJ	7.46 UJ	2.22 UJ	0.626 U	0.0124 U	0.0182 UJ	5;17 UJ	11,2 UJ	2.74 UJ	4.53 U	4,94 U	0,0123 U	3,72 U	5.93 U	2,34 U	0.0856 UJ	0.0117 U
BROMOMETHANE	MG/KG		4.66 U	0.971 U	0.00475 U	0.00447 U	2,98 U	0.888 U	0.25 U	0.00495U	0.00729 UJ	2.07 U	4,47 U	1,1 U	1.81 U	1.98 U	0.00492 U	1,49 U	2.37 U	0.936 U	0.0342 UJ	0.00466 U
CARBON DISULFIDE	MG/KG		4.66 UJ	0.971 U	0.00926	0.00447 U	2,98 UJ	0.888 U	0.25 U	0.00495 U	0.00729 UJ	2,07 U	4,47 U	1.1 Ü	1.81 U	1.98 U	0.00492 U	1.49 U	2.37 U	0.936 U	0.0342 UJ	0.00466 U
CARBON TETRACHLORIDE	MG/KG	22	4.66 UJ	0.971 U	0.00475 U	0.00447 U	2,98 UJ	0.888 U	0.25 U	0.00495 U	0.00729 UJ	2.07 U	4.47 U	1.1 U	1.81 U	1.98 U	0.00492 U	1.49 U	2.37 U	0.936 ป	0.0342 UJ	0.00466 U
CHLOROBENZENE	MG/KG	500	5.88	3.23	0.00475 U	0.00574 J	5.27	45.9	10.1	0.00495 U	0.345 J	59	98.9	14.9	10.2	28.8	0.00492 U	15.3	3.49	6.91	. 2.78 J	0.00466 U
CHLORODIBROMOMETHANE	MG/KG		4.66 UJ	0.971 U	0.00475 U	0.00447 UJ	2.98 UJ	0.888 UJ	0,25 U	0.00495U	0.00729 UJ	2.07 UJ	4,47 UJ	1,1 UJ	1.81 U	1,98 U	0,00492 U	1,49 U	2,37 U	0,936 U	0.0342 UJ	0,00466 U
CHLOROETHANE	MG/KG		4.66 U	0.971 U	0.00475 U	0.00447 U	2.98 U	0.888U	0,25 U	0.00495U	0.00729 UJ	2.07 U	4.47 U	1.1 U	1.81 U	1.98 U	0.00492 U	1.49 U	2.37 U	0.936 U	0.0342 UJ	0.00466 U
CHLOROFORM	MG/KG	350	4.66 U	0.971 U	0.00475 U	0.00447 U	2.98 U	0.888 U	0.25 U	0.00495 U	0.00729 UJ	2.07 U	4,47 U	1,1 U	1.81 U	1,98 U	0.00492 U	1,49 U	2.37 U	0.936 U	0.0342 UJ	0,00466 U
CHLOROMETHANE	MG/KG		4.66 U	0.971 U	0,00475 U	0,00447 U	2.98 U	0,888 UJ	0.25 U	0.00495 U	0.00729 UJ	2.07 UJ	4,47 UJ	1,1 UJ	1,81 U	1,98 U	0.00492 U	1,49 U	2.37 U	0.936 U	i 0.0342 UJ	0.00466 U
CIS-1.2-DICHLOROETHENE	MG/KG	500	4.66 U	0.971 U	0.00475 U	0.00447 U	2.98 U	0.888 U	0.25 U	0.00495 U	0.00729 UJ	2.07 U	4,47 U	1.1 U	1,81 U	1,98 U	0.00492 U	1,49 U	2.37 U	0.936 U	0.0342 UJ	0.00466 U
CIS-1,3-DICHLOROPROPENE	MG/KG		4.66 UJ	0.971 U	0.00475 U	0.00447 U	2,98 UJ	0.888 U	0,25 U	0.00495 U	0,00729 UJ	2.07 U	4,47 U	1,1 U	1,81 U	1,98 U	0.00492 U	1,49 U	2.37 U	0,936 U	0.0342 UJ	0,00466 U
CYCLOHEXANE	MG/KG		NA	NA	NA NA	NA.	NA NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA
ETHYLBENZENE	MG/KG	390	4.66 U	0.971 U	0.00475 U	0.00447 U	2.98 U	0.888 U	0.25 U	0.00495 U	0.00729 UJ	2.07 U	4.47 U	1.1 U	1.81 U	1.98 U	0.00492 U	1.49 U	2.37 U	0.936 U	0.456 J	0.00466 U
ISOPROPYLBENZENE	MG/KG		NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	. NA	NA NA							
METHYL ACETATE	MG/KG		NA NA	NA	NA NA	NA NA	NA NA	NA	NA	NA NA	NA NA	NA	NA	NA	NA NA	NA	NA	NA	NA NA	NA	NA	NA
METHYLCYCLOHEXANE	MG/KG		NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA	NA	NA NA	NA	NA	NA NA	NA NA	NA	. NA	NA
METHYLENE CHLORIDE	MG/KG	500		2,43 UJ	0.0119 UJ	0.0112 UJ	7,46 UJ	2,22 UJ	0,626 U	0,0124 U	0,0182 UJ	5,17 UJ	11.2 UJ	2.74 UJ	4.53 U	4.94 U	0.0123 U	3.72 U	5.93 U	2,34 U	0.0856 UJ	0.0117 U
STYRENE	MG/KG		11.7 U	2.43 U	0.0119 U	0.0112 UJ	7.46 U	2.22 U	0.626 U	0.0124 U	0.0182 UJ	5,17 U	11.2 U	2.74 U	4,53 U	4.94 U	0.0123 U	3.72 U	5.93 U	2.34 U	0.0856 UJ	0.0117 U
TETRACHLOROETHENE	MG/KG	150		0.971 U	0.00475 U	0,00447 U	2.98 U	0.888 UJ	0.25 U	0.00495 U	0,00729 UJ	2.07 UJ	4,47 UJ	1.1 UJ		1,98 U	0.00492 U	1.49 U	2.37 U	0.936 U	0,0342 UJ	0,00466 U
TOLUENE	MG/KG	500		0.971 U	0.00475 U	0.00233 J	2,98 U	0.888 U	0.25 U	0.00495 U	0.00729 UJ	2.07 U	4,47 U	1,1 U	1,81 U	1,98 U	0.00492 U	1.49 U	2.37 Ü	0.936 U	0.41 J	0.00466 U
TRANS-1,2-DICHLOROETHENE	MG/KG		4,66 U	0.971 U	0.00475 U	0.00447 U	2,98 U	0.888 U	0.25 U	0.00495 U	0.00729 UJ	2.07 U	4.47 U	1.1 U	1.81 U	1,98 U	0.00492 U	1.49 U	2.37 U	0.936 U	0.0342 UJ	0.00466 U
TRANS-1,3-DICHLOROPROPENE	MG/KG		4,66 UJ	0,971 U	0.00475 U	0.00447 U	2,98 UJ	U 888,0	0,25 U	0,00495 U	0,00729 UJ	2,07 U	4.47 U	1.1 U	1.81 U	1.98 U	0.00492 U	1.49 U	2.37 U	0.936 U	0.0342 UJ	0.00466 U
TRICHLOROETHENE	MG/KG	200	.,	0.971 U	0.00475 U	0.00447 U	2.98 U	0.888 U	0.25 U	0.00495 U	0.00729 UJ	2,07 U	4.47 U	1,1 U	1.81 U	1,98 U	0.00492 U	1,49 U	2,37 U	0,936 U	0.0342 UJ	0.00466 U
TRICHLOROFLUOROMETHANE	MG/KG		4.66 U	0.971 U	0.00475 U	0.00447 U	2.98 U	0.888 U	0.25 U	0.00495 U	0.00729 UJ	2.07 U	4.47 U	1.1 U	1.81 U	1.98 U	0.00492 U	1,49 U	2.37 U	0.936 U	0.0342 UJ	0.00466 U
VINYL ACETATE	MG/KG		11.7 U	2.43 U	0.0119U	0.0112 R	7.46 U	2.22 UJ	0.626 U	0.0124 U	0.0182 UJ	5.17 UJ	11.2 UJ	2.74 UJ	4.53 U	4,94 U	0.0123 U	3.72 U	5.93 U	2.34 U	0,0856 UJ	0,0117 U
VINYL CHLORIDE	MG/KG	13	4.66 U	0.97110	0.00475 U	0.00447 U	2.98 U	0.888 U	0.25 U	0.00495 U	0.00729 UJ	2.07 U	4.47 U	1.1 U	1,81 U	1.98 U	0.00492 U	1.49 U	2.37 U	0.936 U	0.0342 UJ	0.00466 U
XYLENES, TOTAL	MG/KG	500		0.971 U	0.00475 U	0.00447 U	2.98 U	0.888 U	0.25 U	0.00495 U	0.00729 UJ	2.07 U	4.47 U	1.10	1.81 U	1.98 U	0.00492 U	1.49 U	2.37 U	0.936 U	8.64 J	0.00466 U
	INOMG	300	1 7.0010	0.571	1 0.0047510	3,0044, 0	1	0.000	0.2010	0.00755	J.00, 20,00	2.0, 0	7,7,10		1.0.0	, ,,,,,,	, 5.00 102 0	, ,,,,,,		0.000,0	, 0.0.10	7,00.00

Notes:

*BTV = Background Threshold Value as calculated from background sample data (See Section 5.6 of RI report)

J - Estimated

N - Uncertain Identification

R - Rejected Value Based on Data Validation Process

U - Undetected at listed detection limit

NA - Compound Not Analyzed During this Sampling Event

ONTARIO SPECIALTY CONTRACTING, INC.

Project: Buffalo Color Location: Buffalo, NY OSC Job No: 0913 R Source Area C Backfill

	S	ource Are	ea C Backfill					
Load No.	Data	OSC Ticket	Source /	Truck Number /	Tare	Cross	Not	Ton
Load No.	Date	No.	Transporter	Ticket	Weight	Gross	Net	Ton
1	11/2/10	43592	Pinto/Pariso	N/A	27020	69060	42040	21.02
2	11/2/10	43583	Pinto/Pariso	29	28100	65740	37640	18.82
3	11/2/10	43583	Pinto/Pariso	29	28100	72060	43960	21.98
4	11/2/10	43583	Pinto/Pariso	29	28100	68520	40420	20.21
5	11/2/10	43583	Pinto/Pariso	29	28100	70420	42320	21.16
6	11/2/10	43583	Pinto/Pariso	29	28100	69940	41840	20.92
7	11/2/10	43583	Pinto/Pariso	29	28100	69060	40960	20.48
88	11/2/10	43583	Pinto/Pariso	29	28100	71700	43600	21.80
9	11/2/10	43583	Pinto/Pariso	29	28100	72840	44740	22.37
10	11/2/10	43586	Pinto/Pariso	105	28160	73040	44880	22.44
11	11/2/10	43586	Pinto/Pariso	105	28160	69780	41620	20.81
12	11/2/10	43586	Pinto/Pariso	105	28160	73820	45660	22.83
13	11/2/10	43586	Pinto/Pariso	105	28160	72260	44100	22.05
14	11/2/10	43586	Pinto/Pariso	105	28160	76040	47880	23.94
15	11/2/10	43586	Pinto/Pariso	105	28160	72900	44740	22.37
16	11/2/10	43586	Pinto/Pariso	105	28160	76960	48800	24.40
17	11/2/10	43586	Pinto/Pariso	105	28160	70760	42600	21.30
18	11/2/10	43587	Pinto/Pariso	17	26160	65320	39160	19.58
19	11/2/10	43587	Pinto/Pariso	17	26160	71840	45680	22.84
20	11/2/10	43587	Pinto/Pariso	17	26160	77220	51060	25.53
21	11/2/10	43587	Pinto/Pariso	17	26160	71860	45700	22.85
22	11/2/10	43587	Pinto/Pariso	17	26160	75540	49380	24.69
23	11/2/10	43587	Pinto/Pariso	17	26160	66400	40240	20.12
24	11/2/10	43587	Pinto/Pariso	17	26160	72100	45940	22.97
25	11/2/10	43587	Pinto/Pariso	17	26160	67780	41620	20.81
26	11/2/10	43587	Pinto/Pariso	17	26160	66760	40600	20.30
27	11/2/10	43591	Pinto/Pariso	18	26480	71740	45260	22.63
28	11/2/10	43591	Pinto/Pariso	18	26480	77960	51480	25.74
29	11/2/10	43591	Pinto/Pariso	18	26480	69340	42860	21.43
30	11/2/10	43591	Pinto/Pariso	18	26480	73280	46800	23.40
31	11/2/10	43591	Pinto/Pariso	18	26480	73520	47040	23.52
32	11/2/10	43591	Pinto/Pariso	18	26480	74240	47760	23.88
33	11/2/10	43591	Pinto/Pariso	18	26480	70400	43920	21.96
34	11/2/10	43591	Pinto/Pariso	18	26480	68200	41720	20.86
35	11/2/10	43591	Pinto/Pariso	18	26480	72240	45760	22.88
36	11/2/10	43590	Pinto/Pariso	1	28760	76260	47500	23.75
37	11/2/10	43590	Pinto/Pariso	1	28760	72860	44100	22.05
38	11/2/10	43590	Pinto/Pariso	1	28760	70140	41380	20.69
39	11/2/10	43590	Pinto/Pariso	1	28760	78460	49700	24.85.
40	11/2/10	43590	Pinto/Pariso	1	28760	73620	44860	22.43
41	11/2/10	43590	Pinto/Pariso	11	28760	72220	43460	21.73
42	11/2/10	43590	Pinto/Pariso	1	28760	73180	44420	22.21
43	11/2/10	43590	Pinto/Pariso	1	28760	72200	43440	21.72
44	11/2/10	43590	Pinto/Pariso	1	28760	71360	42600	21.30
45	11/2/10	43589	Pinto/Pariso	24	25760	70040	44280	22.14
46	11/2/10	43589	Pinto/Pariso	24	25760	66660	40900	20.45
47	11/2/10	43589	Pinto/Pariso	24	25760	69100	43340	21.67
48	11/2/10	43589	Pinto/Pariso	24	25760	65560	39800	19.90
49	11/2/10	43589	Pinto/Pariso	24	25760	66560	40800	20.40
50	11/2/10	43589	Pinto/Pariso	24	25760	67120	41360	20.68
51	11/2/10	43589	Pinto/Pariso	24	25760	64800	39040	19.52
52	11/2/10	43589	Pinto/Pariso	24	25760	68480	42720	21.36
53	11/2/10	43589	Pinto/Pariso	24	25760	66620	40860	20.43
54	11/2/10	43588	Pinto/Pariso	28	27500	69220	41720	20.86
55	11/2/10	43588	Pinto/Pariso	28	27500	65660	38160	19.08
56	11/2/10	43588	Pinto/Pariso	28	27500	71860	44360	22.18
57	11/2/10	43588	Pinto/Pariso	28	27500	68900	41400	20.70

Table 3 Imported Backfill Sources and Quantities Area C - Final Engineering Report

See	1 4 NI -	D-4-	OSC Ticket	Source /	Truck Number /	Tare	0	N1-4	T
Section	Load No.	Date	No.		Ticket	Weight	Gross	Net	Ton
60 11/2/10 43588 Printo/Parso 28 27500 74140 46640 23.32 61 11/2/10 43588 Printo/Parso 28 27500 77260 49760 24.88 63 11/2/10 43588 Printo/Parso 3 26640 77260 49760 24.88 63 11/2/10 43584 Printo/Parso 3 26640 73840 47200 23.60 65 11/2/10 43584 Printo/Parso 3 26640 73840 47200 23.60 65 11/2/10 43584 Printo/Parso 3 26640 73840 47200 23.60 66 11/2/10 43584 Printo/Parso 3 26640 72720 46080 23.04 67 11/2/10 43584 Printo/Parso 3 26640 72720 46080 23.04 67 11/2/10 43584 Printo/Parso 3 26640 72720 46080 23.04 67 11/2/10 43584 Printo/Parso 3 26640 72720 46080 23.04 67 11/2/10 43584 Printo/Parso 3 26640 74100 47460 23.73 68 11/2/10 43584 Printo/Parso 3 26640 74100 47460 23.23 70 11/2/10 43584 Printo/Parso 3 26640 79000 42460 21.33 70 11/2/10 43584 Printo/Parso 3 26640 79000 42460 22.13 71 11/2/10 43585 Printo/Parso 3 26640 79000 42600 22.13 71 11/2/10 43585 Printo/Parso 3 26640 70900 42600 22.13 71 11/2/10 43585 Printo/Parso 3 26640 70900 42600 22.13 71 11/2/10 43585 Printo/Parso 3 26640 70900 42600 22.02 72 11/2/10 43585 Printo/Parso 32 28200 76240 48040 20.22 73 11/2/10 43585 Printo/Parso 32 28200 76400 48200 23.2 75 11/2/10 43585 Printo/Parso 32 28200 76400 48200 23.2 75 11/2/10 43585 Printo/Parso 32 28200 76400 48200 23.2 75 11/2/10 43585 Printo/Parso 32 28200 76400 48200 23.2 77 11/2/10 43585 Printo/Parso 32 28200 76400 48200 22.10 77 11/2/10 43585 Printo/Parso 32 28200 76400 48200 22.10 77 11/2/10 43585 Printo/Parso 32 28200 76400 48200 22.10 77 11/2/10 43585 Printo/Parso 32 28200 76400 48200 22.10 77 11/2/10 43585 Printo/Parso 32 28200 76400 48200 22.10 77 11/2/10 43585 Printo/Parso 32 28200 76400 48200 22.10 77 11/2/10 43585 Printo/Parso 32 28200 76400 48200 22.10 77 11/2/10 43589 Printo/Parso 32 28200 76400 48200 22.10 77 11/2/10 43589 Printo/Parso 29 25300 67020 41720 20.86 81 11/2/10 43599 Printo/Parso 29 25300 67020 41720 20.86 81 11/2/10 43599 Printo/Parso 29 25300 67020 41720 20.86 81 11/2/10 43599 Printo/Parso 29 25300 67020 41720 20.86 81 11/2/10 43599 Printo/Parso 29 25300 67020 41/20 20.20 41/20 20.20 41									
61 11/2/10 43588 Pinto/Pariso 28 27500 78680 51180 25.59 62 11/2/10 43584 Pinto/Pariso 28 27500 77260 43760 24.86 63 11/2/10 43584 Pinto/Pariso 3 26840 71120 44460 22.24 64 11/2/10 43584 Pinto/Pariso 3 26840 73840 47200 23.06 65 11/2/10 43584 Pinto/Pariso 3 26840 73840 47200 23.06 65 11/2/10 43584 Pinto/Pariso 3 26840 68200 41560 20.78 66 11/2/10 43584 Pinto/Pariso 3 26840 68200 41560 20.78 66 11/2/10 43584 Pinto/Pariso 3 26840 72720 46080 23.07 67 11/2/10 43584 Pinto/Pariso 3 26840 72720 47600 23.73 68 11/2/10 43584 Pinto/Pariso 3 26840 74100 47460 23.73 68 11/2/10 43584 Pinto/Pariso 3 26840 74100 47460 23.73 68 11/2/10 43584 Pinto/Pariso 3 26840 74100 44780 22.39 77 11/2/10 43584 Pinto/Pariso 3 26840 77400 44780 22.39 77 11/2/10 43584 Pinto/Pariso 3 26840 77400 44780 22.39 77 11/2/10 43584 Pinto/Pariso 3 26840 77400 44780 22.39 77 11/2/10 43585 Pinto/Pariso 3 26840 77400 44780 22.39 77 11/2/10 43585 Pinto/Pariso 3 26840 77400 44780 22.30 77 11/2/10 43585 Pinto/Pariso 3 26840 77400 44780 22.30 77 11/2/10 43585 Pinto/Pariso 3 22 26200 76440 44290 21.12 74 11/2/10 43585 Pinto/Pariso 3 22 26200 76440 42240 21.12 75 11/2/10 43585 Pinto/Pariso 32 26200 76400 42040 21.12 77 11/2/10 43585 Pinto/Pariso 32 26200 76400 42040 21.12 77 11/2/10 43585 Pinto/Pariso 32 26200 76400 42040 21.18 77 11/2/10 43585 Pinto/Pariso 32 26200 76400 4200 21.68 78 11/2/10 43585 Pinto/Pariso 32 26200 76400 4300 21.68 78 11/2/10 43585 Pinto/Pariso 32 26200 76400 4300 21.68 78 11/2/10 43585 Pinto/Pariso 32 26200 76400 4300 21.68 78 11/2/10 43585 Pinto/Pariso 32 26200 76400 4300 21.68 78 11/2/10 43585 Pinto/Pariso 32 26200 76400 4300 21.68 78 11/2/10 43585 Pinto/Pariso 32 26200 76400 4300 21.68 78 11/2/10 43585 Pinto/Pariso 32 26200 76400 4300 21.68 78 11/2/10 43585 Pinto/Pariso 32 26200 76400 4300 21.68 78 11/2/10 43585 Pinto/Pariso 32 26200 76400 4300 21.68 78 11/2/10 43585 Pinto/Pariso 32 26200 76400 4300 21.68 78 11/2/10 43585 Pinto/Pariso 32 26200 76400 4300 21.68 78 11/2/10 43585 Pinto/Pariso 32 26200 76400 4300 21.68 78 11/2/10 43585 Pi									
62 11/2/10 43598 Pinto/Pariso 28 27500 77260 49760 24.88 63 11/2/10 43594 Pinto/Pariso 3 26640 73130 44480 22.36 64 11/2/10 43594 Pinto/Pariso 3 26640 73340 47200 23.90 65 11/2/10 43594 Pinto/Pariso 3 26640 73340 47200 23.90 66 11/2/10 43594 Pinto/Pariso 3 26640 73240 46080 23.04 67 11/2/10 43594 Pinto/Pariso 3 26640 74100 47480 23.04 68 11/2/10 43594 Pinto/Pariso 3 26640 74100 47480 23.04 68 11/2/10 43594 Pinto/Pariso 3 26640 74100 42480 21.33 68 11/2/10 43594 Pinto/Pariso 3 26640 19100 42480 21.33 68 11/2/10 43594 Pinto/Pariso 3 26640 19100 42480 21.33 70 11/2/10 43594 Pinto/Pariso 3 26640 71420 44780 22.37 71 11/2/10 43594 Pinto/Pariso 3 26640 77420 44780 22.37 72 11/2/10 43594 Pinto/Pariso 3 26640 77420 44780 22.37 73 11/2/10 43595 Pinto/Pariso 3 26640 77240 46800 22.30 74 11/2/10 43595 Pinto/Pariso 3 26640 77240 46800 22.30 75 11/2/10 43595 Pinto/Pariso 3 26640 77240 46800 22.37 75 11/2/10 43595 Pinto/Pariso 32 26200 76240 48040 24.02 75 11/2/10 43595 Pinto/Pariso 32 26200 76240 48040 24.02 76 11/2/10 43595 Pinto/Pariso 32 26200 76440 42240 21.12 77 11/2/10 43595 Pinto/Pariso 32 26200 76400 44260 21.32 78 11/2/10 43595 Pinto/Pariso 32 26200 76400 44200 21.02 78 11/2/10 43595 Pinto/Pariso 32 26200 76400 44200 21.02 78 11/2/10 43595 Pinto/Pariso 32 26200 76400 44200 21.02 79 11/2/10 43595 Pinto/Pariso 32 26200 76400 44300 22.00 79 11/2/10 43595 Pinto/Pariso 32 26200 76400 44500 22.00 79 11/2/10 43595 Pinto/Pariso 32 26200 76400 44500 22.36 81 11/2/10 43598 Pinto/Pariso 32 26200 774120 43500 23.06 81 11/2/10 43598 Pinto/Pariso 32 26200 774120 43500 23.06 81 11/2/10 43598 Pinto/Pariso 32 26200 774120 43500 23.06 81 11/2/10 43598 Pinto/Pariso 32 26200 774120 43500 23.06 81 11/2/10 43598 Pinto/Pariso 32 26200 77400 44500 22.52 81 11/2/10 43598 Pinto/Pariso 29 25300 77400 44500 22.52 82 11/2/10 43598 Pinto/Pariso 29 25300 77400 45920 22.60 83 11/2/10 43598 Pinto/Pariso 29 25300 77400 4500 22.52 84 11/2/10 43598 Pinto/Pariso 29 25300 77400 44900 20.00 85 11/2/10 43598 Pinto/Pariso 29 25300 77400 44900 20.00 86 11/									
63 11/2/10 43584 Pinto/Pariso 3 26840 71120 44480 22.24 64 117/10 43584 Pinto/Pariso 3 26840 8200 41560 20.78 66 11/2/10 43584 Pinto/Pariso 3 26840 8200 41560 20.78 66 11/2/10 43584 Pinto/Pariso 3 26840 8200 41560 20.78 67 11/2/10 43584 Pinto/Pariso 3 26640 72720 46080 23.73 68 11/2/10 43584 Pinto/Pariso 3 26640 72720 47680 23.73 68 11/2/10 43584 Pinto/Pariso 3 26640 74100 47480 23.73 68 11/2/10 43584 Pinto/Pariso 3 26640 74100 47480 22.39 75 75 75 75 75 75 75 75 75 75 75 75 75									
64 11/2/10 43584 Pinto/Pariso 3 26840 73840 47200 23.60 65 11/2/10 43584 Pinto/Pariso 3 26840 72720 46080 23.04 66 11/2/10 43584 Pinto/Pariso 3 26840 72720 46080 23.04 67 11/2/10 43584 Pinto/Pariso 3 26840 72720 46080 23.04 68 11/2/10 43584 Pinto/Pariso 3 26840 69100 42460 21.23 68 11/2/10 43584 Pinto/Pariso 3 26840 69100 42460 21.23 70 11/2/10 43584 Pinto/Pariso 3 26840 71420 44780 22.37 71 11/2/10 43584 Pinto/Pariso 3 26840 77400 44780 22.37 72 11/2/10 43584 Pinto/Pariso 3 26840 77400 44780 22.37 73 11/2/10 43585 Pinto/Pariso 3 26840 72240 44590 22.37 74 11/2/10 43585 Pinto/Pariso 3 26840 72240 48040 24.02 75 11/2/10 43585 Pinto/Pariso 3 26840 72240 48040 24.02 76 11/2/10 43585 Pinto/Pariso 32 28200 76440 42240 21.07 77 11/2/10 43585 Pinto/Pariso 32 28200 76440 42240 21.07 78 11/2/10 43585 Pinto/Pariso 32 28200 76400 42240 21.07 78 11/2/10 43585 Pinto/Pariso 32 28200 77550 43800 21.68 78 11/2/10 43585 Pinto/Pariso 32 28200 77550 48390 21.58 78 11/2/10 43585 Pinto/Pariso 32 28200 77500 48390 21.68 78 11/2/10 43585 Pinto/Pariso 32 28200 77500 48390 21.68 78 11/2/10 43585 Pinto/Pariso 32 28200 77400 48200 24.10 79 11/2/10 43585 Pinto/Pariso 32 28200 77400 48200 22.96 79 11/2/10 43588 Pinto/Pariso 32 28200 77400 48200 22.96 79 11/2/10 43588 Pinto/Pariso 32 28200 77400 48200 22.96 80 11/2/10 43588 Pinto/Pariso 32 28200 77400 4920 22.96 81 11/2/10 43588 Pinto/Pariso 32 28200 77400 48200 22.96 83 11/2/10 43588 Pinto/Pariso 32 28200 77400 48200 22.96 84 11/2/10 43588 Pinto/Pariso 32 28200 77400 48200 22.96 85 11/2/10 43588 Pinto/Pariso 32 28300 77400 48200 22.96 86 11/2/10 43588 Pinto/Pariso 32 28300 77400 48200 22.96 87 11/2/10 43588 Pinto/Pariso 29 28300 78000 77400 48200 22.92 88 11/2/10 43588 Pinto/Pariso 29 28300 78000 77400 48000 22.82 89 11/2/10 43588 Pinto/Pariso 29 28300 78000 77400 48000 22.82 89 11/2/10 43588 Pinto/Pariso 29 28300 7800									
65 11/2/10 43584 Pinto/Pariso 3 26840 68200 41580 20.78 66 11/2/10 43584 Pinto/Pariso 3 26840 774100 47460 23.73 68 11/2/10 43584 Pinto/Pariso 3 26840 774100 47480 22.31 69 11/2/10 43584 Pinto/Pariso 3 26640 77420 44780 22.39 70 11/2/10 43584 Pinto/Pariso 3 26640 77240 44780 22.31 71 11/2/10 43585 Pinto/Pariso 3 26640 77240 45800 22.80 73 11/2/10 43585 Pinto/Pariso 32 28200 76440 42240 21.12 74 11/2/10 43585 Pinto/Pariso 32 28200 76400 42240 21.12 75 11/2/10 43585 Pinto/Pariso 32 28200 77640 43580 21.80 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
66 11/2/10 43584 Pinto/Pariso 3 26840 72/20 46080 23.04 67 11/2/10 43584 Pinto/Pariso 3 26840 69100 42460 22.13 68 11/2/10 43584 Pinto/Pariso 3 26640 69100 42460 22.13 70 11/2/10 43584 Pinto/Pariso 3 26640 70900 44280 22.31 71 11/2/10 43584 Pinto/Pariso 3 26640 70900 44280 22.13 72 11/2/10 43585 Pinto/Pariso 3 26800 76404 42040 21.12 73 11/2/10 43585 Pinto/Pariso 32 28200 76404 42240 21.12 74 11/2/10 43585 Pinto/Pariso 32 28200 76404 4220 21.12 75 11/2/10 43585 Pinto/Pariso 32 28200 76404 44204 21.58									
68 11/2/10 43584 Pinto/Pariso 3 26640 71420 44780 22.39 70 11/2/10 43584 Pinto/Pariso 3 26640 77420 44780 22.39 70 11/2/10 43584 Pinto/Pariso 3 26640 77200 4260 22.10 72 11/2/10 43585 Pinto/Pariso 32 28200 76240 48040 22.02 73 11/2/10 43585 Pinto/Pariso 32 28200 76240 48040 22.02 74 11/2/10 43585 Pinto/Pariso 32 28200 76400 4202 2.12 75 11/2/10 43585 Pinto/Pariso 32 28200 76400 48200 24.10 76 11/2/10 43585 Pinto/Pariso 32 28200 77450 43500 26.10 77 11/2/10 43585 Pinto/Pariso 32 28200 77150 43500 22.60	66		43584	Pinto/Pariso	3	26640		46080	23.04
Fig. 11/2/10 43584 Pinto/Pariso 3 26640 77990 44260 22.39 70 11/2/10 43584 Pinto/Pariso 3 26640 77990 44260 22.13 71 11/2/10 43585 Pinto/Pariso 3 26640 779240 45600 22.80 72 11/2/10 43585 Pinto/Pariso 32 28200 76240 48040 24.02				Pinto/Pariso					
To 11/2/10 43584 Pinto/Pariso 3 26640 72240 45600 22.10									
71 11/2/10 43585 Pinto/Pariso 32 28200 7620 48600 22.80 73 11/2/10 43585 Pinto/Pariso 32 28200 70440 42240 21.12 74 11/2/10 43585 Pinto/Pariso 32 28200 70440 42240 21.12 75 11/2/10 43585 Pinto/Pariso 32 28200 70440 42240 20.32 75 11/2/10 43585 Pinto/Pariso 32 28200 70440 42240 20.32 76 11/2/10 43585 Pinto/Pariso 32 28200 71560 43360 20.32 77 11/2/10 43585 Pinto/Pariso 32 28200 76400 48200 24.10 77 11/2/10 43585 Pinto/Pariso 32 28200 71560 43360 21.68 78 11/2/10 43585 Pinto/Pariso 32 28200 7550 4350 21.68 78 11/2/10 43585 Pinto/Pariso 32 28200 750 4350 21.68 78 11/2/10 43585 Pinto/Pariso 32 28200 774120 45920 22.96 80 11/2/10 43598 Pinto/Pariso 29 25300 67020 41720 23.76 81 11/2/10 43598 Pinto/Pariso 29 25300 67020 41720 22.52 82 11/2/10 43598 Pinto/Pariso 29 25300 67020 41720 22.52 83 11/2/10 43598 Pinto/Pariso 29 25300 67020 41720 22.52 84 11/2/10 43598 Pinto/Pariso 29 25300 67020 41720 22.86 85 11/2/10 43598 Pinto/Pariso 29 25300 72020 47620 22.98 84 11/2/10 43598 Pinto/Pariso 29 25300 72020 47620 23.81 85 11/2/10 43598 Pinto/Pariso 29 25300 72020 47620 23.81 86 11/2/10 43598 Pinto/Pariso 29 25300 72020 47620 23.81 86 11/2/10 43598 Pinto/Pariso 29 25300 72020 47620 23.81 86 11/2/10 43598 Pinto/Pariso 29 25300 75920 50620 22.98 87 11/2/10 43598 Pinto/Pariso 29 25300 75920 47620 23.81 88 11/2/10 43598 Pinto/Pariso 29 25300 75920 47620 23.81 89 11/2/10 43598 Pinto/Pariso 29 25300 75920 47620 23.81 91 11/9/10 43645 Pinto/Pariso 29 25300 75920 47620 23.81 91 11/9/10 43645 Pinto/Pariso 29 25300 75920 47620 23.81 91 11/9/10 43645 Pinto/Pariso 29 25300 75920 47620 23.81 91 11/9/10 43645 Pinto/Pariso 29 25300 75920 47620 23.81 91 11/9/10 43645 Pinto/Pariso 29 25300 75920 47620 23.81 91 11/9/10 43645 Pinto/Pariso 29 25300 75920 47620 23.81 91 11/9/10 43645 Pinto/Pariso 29 25300 75920 47620 23.81 91 11/9/10 43645 Pinto/Pariso 28 27600 75240 47440 23.72 92 11/9/10 43645 Pinto/Pariso 75 25860 66500 47600 24.23 93 11/9/10 43645 Pinto/Pariso 75 25860 66500 47600 23.81 100 11/9/10 43645 Pinto/Pariso 75 25860 66500 37640 18.7									
72 11/2/10 43585 Pinto/Pariso 32 28200 76240 48040 24.02 73 11/2/10 43585 Pinto/Pariso 32 28200 70440 4220 21.12 74 11/2/10 43585 Pinto/Pariso 32 28200 71560 4360 20.32 75 11/2/10 43585 Pinto/Pariso 32 28200 71560 4360 20.32 76 11/2/10 43585 Pinto/Pariso 32 28200 71560 4360 22.12 77 11/2/10 43585 Pinto/Pariso 32 28200 71560 43360 21.68 78 11/2/10 43585 Pinto/Pariso 32 28200 71560 43360 21.68 78 11/2/10 43585 Pinto/Pariso 32 28200 71560 43360 21.68 80 11/2/10 43585 Pinto/Pariso 32 28200 74120 45920 22.96 80 11/2/10 43588 Pinto/Pariso 32 28200 74120 45920 22.96 81 11/2/10 43598 Pinto/Pariso 29 25300 67020 41720 20.86 81 11/2/10 43598 Pinto/Pariso 29 25300 70340 45040 22.52 82 11/2/10 43598 Pinto/Pariso 29 25300 70340 45040 22.52 83 11/2/10 43598 Pinto/Pariso 29 25300 70340 45040 22.52 84 11/2/10 43598 Pinto/Pariso 29 25300 70340 45040 22.52 85 11/2/10 43598 Pinto/Pariso 29 25300 70340 45040 22.52 86 11/2/10 43598 Pinto/Pariso 29 25300 70340 45040 22.52 86 11/2/10 43598 Pinto/Pariso 29 25300 70340 45040 22.52 87 11/2/10 43598 Pinto/Pariso 29 25300 70340 45040 22.52 88 11/2/10 43598 Pinto/Pariso 29 25300 70340 45040 22.52 88 11/2/10 43598 Pinto/Pariso 29 25300 70340 45040 22.52 88 11/2/10 43598 Pinto/Pariso 29 25300 70340 45040 22.52 88 11/2/10 43598 Pinto/Pariso 29 25300 70340 45040 22.52 88 11/2/10 43598 Pinto/Pariso 29 25300 70340 45040 22.01 89 11/2/10 43598 Pinto/Pariso 29 25300 70340 45040 22.01 89 11/2/10 43598 Pinto/Pariso 29 25300 70340 45040 20.01 89 11/2/10 43598 Pinto/Pariso 29 25300 70340 45040 20.01 89 11/2/10 43598 Pinto/Pariso 29 25300 70340 4040 20.01 89 11/2/10 43598 Pinto/Pariso 29 25300 70340 4040 20.02 90 11/2/10 43645 Pinto/Pariso 29 25300 70340 4040 22.92 91 11/2/10 43645 Pinto/Pariso 29 25300 70340 4040 22.92 91 11/2/10 43645 Pinto/Pariso 28 27800 75800 4040 22.92 92 11/2/10 43645 Pinto/Pariso 28 27800 75800 4040 22.92 91 11/2/10 43645 Pinto/Pariso 75 25860 6600 3040 37540 18.77 102 11/2/10 43645 Pinto/Pariso 75 25860 6600 3040 37540 18.77 102 11/2/10 43645 Pinto/Pariso 75 25860 6600 3040 30									
73 11/2/10 43585 Pinto/Pariso 32 28200 70440 42240 21.12 75 11/2/10 43585 Pinto/Pariso 32 28200 71560 43360 21.68 76 11/2/10 43585 Pinto/Pariso 32 28200 71560 43360 21.68 77 11/2/10 43585 Pinto/Pariso 32 28200 71560 43360 21.68 78 11/2/10 43585 Pinto/Pariso 32 28200 77120 45500 23.76 80 11/2/10 43598 Pinto/Pariso 29 25300 67020 41720 20.52 81 11/2/10 43598 Pinto/Pariso 29 25300 67020 41720 20.52 82 11/2/10 43598 Pinto/Pariso 29 25300 70340 4504 22.52 83 11/2/10 43598 Pinto/Pariso 29 25300 7720 4752 22.81 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
74 11/2/10 43585 Pinto/Pariso 32 28200 68840 40640 2032 75 11/2/10 43585 Pinto/Pariso 32 28200 71560 4380 21.88 76 11/2/10 43585 Pinto/Pariso 32 28200 71560 4380 24.10 77 11/2/10 43585 Pinto/Pariso 32 28200 71560 43360 21.68 79 11/2/10 43585 Pinto/Pariso 32 28200 75720 47520 22.96 80 11/2/10 43588 Pinto/Pariso 29 25300 70340 45040 22.52 82 11/2/10 43598 Pinto/Pariso 29 25300 70340 45040 22.52 84 11/2/10 43598 Pinto/Pariso 29 25300 70340 45060 22.98 84 11/2/10 43598 Pinto/Pariso 29 25300 7520 45060 22.98 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
75 11/2/10 43585 Pinto/Pariso 32 28200 71560 43360 21,68 76 11/2/10 43585 Pinto/Pariso 32 28200 71600 48200 24,10 77 11/2/10 43585 Pinto/Pariso 32 28200 71560 43360 21,88 78 11/2/10 43585 Pinto/Pariso 32 28200 7150 45820 22,86 80 11/2/10 43585 Pinto/Pariso 29 25300 67020 41720 23,56 81 11/2/10 43598 Pinto/Pariso 29 25300 67020 41720 22,68 82 11/2/10 43598 Pinto/Pariso 29 25300 67400 42100 22,92 84 11/2/10 43598 Pinto/Pariso 29 25300 72920 47620 23,81 85 11/2/10 43598 Pinto/Pariso 29 25300 77920 47620 23,81									
76 11/2/10 43585 Pinto/Pariso 32 28200 76400 48200 24.10 77 11/2/10 43585 Pinto/Pariso 32 28200 74120 45920 22.96 78 11/2/10 43585 Pinto/Pariso 32 28200 74120 45920 22.96 80 11/2/10 43585 Pinto/Pariso 32 28200 75720 47520 23.76 81 11/2/10 43598 Pinto/Pariso 29 25300 70340 45040 22.52 82 11/2/10 43598 Pinto/Pariso 29 25300 77600 45060 22.98 84 11/2/10 43598 Pinto/Pariso 29 25300 772920 47620 23.81 85 11/2/10 43598 Pinto/Pariso 29 25300 772920 47620 22.81 86 11/2/10 43598 Pinto/Pariso 29 25300 N/A 20.62 26.3									
77 11/2/10 43585 Pinto/Pariso 32 28200 71560 43360 21.68 78 11/2/10 43585 Pinto/Pariso 32 28200 75720 47520 23.76 80 11/2/10 43585 Pinto/Pariso 29 25300 67020 41720 20.86 81 11/2/10 43598 Pinto/Pariso 29 25300 67020 41720 20.86 82 11/2/10 43598 Pinto/Pariso 29 25300 67400 42100 21.05 83 11/2/10 43598 Pinto/Pariso 29 25300 67400 42100 21.05 84 11/2/10 43598 Pinto/Pariso 29 25300 7520 47620 23.81 85 11/2/10 43598 Pinto/Pariso 29 25300 75920 47620 23.81 86 11/2/10 43598 Pinto/Pariso 29 25300 75920 50620 25.31									
78 11/2/10 43585 Pinto/Pariso 32 28200 74120 45920 22.96 79 11/2/10 43585 Pinto/Pariso 32 28200 75720 47520 23.76 80 11/2/10 43598 Pinto/Pariso 29 25300 67020 41720 20.86 81 11/2/10 43598 Pinto/Pariso 29 25300 770340 45040 22.52 83 11/2/10 43598 Pinto/Pariso 29 25300 77260 45960 22.98 85 11/2/10 43598 Pinto/Pariso 29 25300 772920 47620 23.81 85 11/2/10 43598 Pinto/Pariso 29 25300 65560 40260 20.13 86 11/2/10 43598 Pinto/Pariso 29 25300 7860 48460 22.63 87 11/2/10 43598 Pinto/Pariso 29 25300 7360 48460 26.6		11/2/10	43585		32	28200	71560	43360	21.68
80 11/2/10 43598 Pinto/Pariso 29 25300 67020 41720 20.86 81 11/2/10 43598 Pinto/Pariso 29 25300 67400 42100 21.05 82 11/2/10 43598 Pinto/Pariso 29 25300 67200 45960 22.98 84 11/2/10 43598 Pinto/Pariso 29 25300 72920 47620 23.81 85 11/2/10 43598 Pinto/Pariso 29 25300 75820 40260 20.13 86 11/2/10 43598 Pinto/Pariso 29 25300 75820 56620 25.31 88 11/2/10 43598 Pinto/Pariso 29 25300 75760 48460 24.23 89 11/2/10 43645 Pinto/Pariso 29 25300 75760 48460 24.23 90 11/9/10 43645 Pinto/Pariso 28 27800 76260 48460 24.2		11/2/10	43585	Pinto/Pariso			74120	45920	22.96
81 11/2/10 43598 Pinto/Pariso 29 25300 70340 45040 22.52 82 11/2/10 43598 Pinto/Pariso 29 25300 77260 45960 22.98 84 11/2/10 43598 Pinto/Pariso 29 25300 72920 47620 23.81 85 11/2/10 43598 Pinto/Pariso 29 25300 N/A 20.64 86 11/2/10 43598 Pinto/Pariso 29 25300 N/A 20.64 87 11/2/10 43598 Pinto/Pariso 29 25300 N/A 20.64 88 11/2/10 43598 Pinto/Pariso 29 25300 66560 41260 20.63 89 11/2/10 43545 Pinto/Pariso 28 27800 73600 48460 24.23 89 11/2/10 43645 Pinto/Pariso 28 27800 73600 48400 22.92 91 11/9/10									
82 11/2/10 43598 Pinto/Pariso 29 25300 67400 42100 21.05 83 11/2/10 43598 Pinto/Pariso 29 25300 71260 45960 22.98 84 11/2/10 43598 Pinto/Pariso 29 25300 75260 47620 23.81 85 11/2/10 43598 Pinto/Pariso 29 25300 75920 50620 20.13 86 11/2/10 43598 Pinto/Pariso 29 25300 75920 50620 25.31 88 11/2/10 43598 Pinto/Pariso 29 25300 75920 50620 25.31 89 11/2/10 43598 Pinto/Pariso 29 25300 75760 48460 24.23 90 11/9/10 43645 Pinto/Pariso 28 27800 76260 48460 22.93 92 11/9/10 43645 Pinto/Pariso 28 27800 77120 49320 24.6									
83 11/2/10 43598 Pinto/Pariso 29 25300 71260 45960 22.88 84 11/2/10 43598 Pinto/Pariso 29 25300 72920 47620 23.81 85 11/2/10 43598 Pinto/Pariso 29 25300 N/A 20.64 86 11/2/10 43598 Pinto/Pariso 29 25300 75920 50620 25.31 88 11/2/10 43598 Pinto/Pariso 29 25300 73760 48460 24.23 89 11/2/10 43598 Pinto/Pariso 29 25300 76560 41260 20.63 89 11/2/10 43545 Pinto/Pariso 28 27800 76560 44860 24.23 89 11/2/10 43645 Pinto/Pariso 28 27800 73640 4840 22.92 292 11/9/10 43645 Pinto/Pariso 28 27800 73640 4364 24.23									
84 11/2/10 43598 Pinto/Pariso 29 25300 72920 47620 23.81 85 11/2/10 43598 Pinto/Pariso 29 25300 N/A 20.64 87 11/2/10 43598 Pinto/Pariso 29 25300 73760 50620 25.31 88 11/2/10 43598 Pinto/Pariso 29 25300 7360 8460 24.23 89 11/2/10 43589 Pinto/Pariso 29 25300 76560 48460 24.23 90 11/9/10 43645 Pinto/Pariso 28 27800 76260 48460 24.23 91 11/9/10 43645 Pinto/Pariso 28 27800 77120 49320 24.66 93 11/9/10 43645 Pinto/Pariso 28 27800 77980 48.60 24.23 93 11/9/10 43645 Pinto/Pariso 28 27800 75960 4440 23.72									
85 11/2/10 43598 Pinto/Pariso 29 25300 65560 40260 20.13 86 11/2/10 43598 Pinto/Pariso 29 25300 N/A 20.64 87 11/2/10 43598 Pinto/Pariso 29 25300 73760 48460 22.53 88 11/2/10 43598 Pinto/Pariso 29 25300 66560 41260 20.63 90 11/9/10 43545 Pinto/Pariso 28 27800 76260 48460 24.23 91 11/9/10 43645 Pinto/Pariso 28 27800 77120 49320 24.66 93 11/9/10 43645 Pinto/Pariso 28 27800 7540 49320 24.66 93 11/9/10 43645 Pinto/Pariso 28 27800 75980 48180 24.09 94 11/9/10 43645 Pinto/Pariso 28 27800 75980 48180 24.09									
86 11/2/10 43598 Pinto/Pariso 29 25300 N/A 20.64 87 11/2/10 43598 Pinto/Pariso 29 25300 73760 48460 24.23 89 11/2/10 43598 Pinto/Pariso 29 25300 66560 41260 20.63 90 11/9/10 43645 Pinto/Pariso 28 27800 76260 48460 24.23 91 11/9/10 43645 Pinto/Pariso 28 27800 773640 48540 22.92 92 11/9/10 43645 Pinto/Pariso 28 27800 773640 4840 22.92 92 11/9/10 43645 Pinto/Pariso 28 27800 77120 49320 24.66 93 11/9/10 43645 Pinto/Pariso 28 27800 75800 48180 22.93 95 11/9/10 43645 Pinto/Pariso 28 27800 75980 48180 24.99 <tr< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr<>									
87 11/2/10 43598 Pinto/Pariso 29 25300 75920 50620 25.31 88 11/2/10 43598 Pinto/Pariso 29 25300 66560 41260 20.63 90 11/9/10 43645 Pinto/Pariso 28 27800 76260 48460 24.23 91 11/9/10 43645 Pinto/Pariso 28 27800 77360 48460 24.23 92 11/9/10 43645 Pinto/Pariso 28 27800 77120 49320 24.66 93 11/9/10 43645 Pinto/Pariso 28 27800 77120 49320 24.66 93 11/9/10 43645 Pinto/Pariso 28 27800 75800 48180 24.09 95 11/9/10 43645 Pinto/Pariso 28 27800 75800 51760 25.88 97 11/9/10 43645 Pinto/Pariso 28 27800 79560 51760 25.8								40200	
88 11/2/10 43598 Pinto/Pariso 29 25300 73760 48460 24.23 89 11/2/10 43598 Pinto/Pariso 29 25300 76260 48460 22.03 91 11/9/10 43645 Pinto/Pariso 28 27800 76260 48460 24.23 91 11/9/10 43645 Pinto/Pariso 28 27800 77340 45840 22.92 92 11/9/10 43645 Pinto/Pariso 28 27800 67480 49320 24.64 93 11/9/10 43645 Pinto/Pariso 28 27800 7580 48180 24.09 95 11/9/10 43645 Pinto/Pariso 28 27800 75980 48180 24.09 95 11/9/10 43645 Pinto/Pariso 28 27800 75980 48180 24.09 95 11/9/10 43645 Pinto/Pariso 75 25860 67300 41440 20.72								50620	
88 11/2/10 43598 Pinto/Pariso 29 25300 66560 41260 20.63 90 11/9/10 43645 Pinto/Pariso 28 27800 76260 48460 24.23 91 11/9/10 43645 Pinto/Pariso 28 27800 77120 49320 24.66 93 11/9/10 43645 Pinto/Pariso 28 27800 77120 49320 24.66 93 11/9/10 43645 Pinto/Pariso 28 27800 75980 48180 24.09 95 11/9/10 43645 Pinto/Pariso 28 27800 75980 48180 24.09 95 11/9/10 43645 Pinto/Pariso 28 27800 75940 47440 23.72 96 11/9/10 43645 Pinto/Pariso 25 25860 7300 41440 20.72 98 11/9/10 43645 Pinto/Pariso 75 25860 6620 40760 22.31<									
91 11/9/10 43645 Pinto/Pariso 28 27800 73640 45840 22.92 92 11/9/10 43645 Pinto/Pariso 28 27800 77120 49320 24.66 93 11/9/10 43645 Pinto/Pariso 28 27800 75980 48180 24.09 94 11/9/10 43645 Pinto/Pariso 28 27800 75980 48180 24.09 95 11/9/10 43645 Pinto/Pariso 28 27800 75980 48180 24.09 95 11/9/10 43645 Pinto/Pariso 28 27800 75980 48180 24.09 96 11/9/10 43645 Pinto/Pariso 28 27800 75240 47440 23.72 96 11/9/10 43645 Pinto/Pariso 75 25860 67300 41440 20.72 98 11/9/10 43645 Pinto/Pariso 75 25860 67300 41440 20.72 98 11/9/10 43645 Pinto/Pariso 75 25860 6620 40760 20.38 100 11/9/10 43645 Pinto/Pariso 75 25860 66620 40760 20.38 100 11/9/10 43645 Pinto/Pariso 75 25860 66420 38560 19.28 101 11/9/10 43645 Pinto/Pariso 75 25860 63400 37540 18.77 102 11/9/10 43645 Pinto/Pariso 75 25860 69680 43820 21.91 103 11/9/10 43645 Pinto/Pariso 75 25860 69680 43820 21.91 103 11/9/10 43645 Pinto/Pariso 75 25860 69680 43820 22.91 104 11/9/10 43645 Pinto/Pariso 75 25860 67000 40840 20.42 105 11/9/10 43645 Pinto/Pariso 75 25860 6700 40840 20.42 105 11/9/10 43645 Pinto/Pariso 75 25860 6700 40840 20.42 105 11/9/10 43645 Pinto/Pariso 75 25860 6700 40840 20.42 105 11/9/10 43645 Pinto/Pariso 75 25860 6700 40840 20.42 105 11/9/10 43645 Pinto/Pariso 80 28760 6700 47240 23.62 107 11/9/10 43645 Pinto/Pariso 80 28760 66500 37440 18.77 109 11/9/10 43645 Pinto/Pariso 80 28760 66500 37440 18.72 110 11/9/10 43645 Pinto/Pariso 80 28760 66500 37440 18.72 110 11/9/10 43645 Pinto/Pariso 80 28760 66900 40320 20.16 111 11/9/10 43645 Pinto/Pariso 80 28760 66800 38100 19.05 111 11/9/10 43645 Pinto/Pariso 80 28760 66000 37440 18.72 110 11/9/10 43645 Pinto/Pariso 80 28760 66000 38300 19.05 111 11/9/10 43645 Pinto/Pariso 80 28760 66000 38300 19.05 111 11/9/10 43645 Pinto/Pariso 80 28760 66000 38300 19.09 112 11/9/10 43645 Pinto/Pariso 22 25700 61060 33300 16.90 115 11/9/10 43645 Pinto/Pariso 22 25700 61060 33800 17.68 118 11/9/10 43645 Pinto/Pariso 22 25700 61060 33800 17.94 121 11/9/10 43645 Pinto/Pariso 22 25700 64060 38300 19.91 121 11/9/10 43645 Pinto/Pariso 2									
92 11/9/10 43645 Pinto/Pariso 28 27800 77120 49320 24.66 93 11/9/10 43645 Pinto/Pariso 28 27800 64480 36680 18.34 94 11/9/10 43645 Pinto/Pariso 28 27800 75980 48180 24.09 95 11/9/10 43645 Pinto/Pariso 28 27800 75240 47440 23.72 96 11/9/10 43645 Pinto/Pariso 28 27800 79560 51760 25.88 97 11/9/10 43645 Pinto/Pariso 75 25860 67300 41440 20.72 98 11/9/10 43645 Pinto/Pariso 75 25860 66620 40760 20.38 100 11/9/10 43645 Pinto/Pariso 75 25860 66620 40760 20.38 101 11/9/10 43645 Pinto/Pariso 75 25860 66420 38560 19		11/9/10	43645			27800	76260		
93 11/9/10 43645 Pinto/Pariso 28 27800 64480 36680 18.34 94 11/9/10 43645 Pinto/Pariso 28 27800 75980 48180 24.09 95 11/9/10 43645 Pinto/Pariso 28 27800 75960 51760 25.82 96 11/9/10 43645 Pinto/Pariso 28 27800 79560 51760 25.88 97 11/9/10 43645 Pinto/Pariso 75 25860 67300 41440 20.72 98 11/9/10 43645 Pinto/Pariso 75 25860 66620 40760 20.38 100 11/9/10 43645 Pinto/Pariso 75 25860 66420 38560 19.28 101 11/9/10 43645 Pinto/Pariso 75 25860 66440 38560 19.28 101 11/9/10 43645 Pinto/Pariso 75 25860 66800 37540 1				Pinto/Pariso					
94 11/9/10 43645 Pinto/Pariso 28 27800 75980 48180 24.09 95 11/9/10 43645 Pinto/Pariso 28 27800 75240 47440 23.72 96 11/9/10 43645 Pinto/Pariso 75 25860 67300 41440 20.72 98 11/9/10 43645 Pinto/Pariso 75 25860 67300 41440 22.21 99 11/9/10 43645 Pinto/Pariso 75 25860 66620 40760 20.38 100 11/9/10 43645 Pinto/Pariso 75 25860 66420 38560 19.28 101 11/9/10 43645 Pinto/Pariso 75 25860 63400 37540 18.77 102 11/9/10 43645 Pinto/Pariso 75 25860 69680 43820 21.91 103 11/9/10 43645 Pinto/Pariso 75 25860 66680 40820			43645						
95 11/9/10 43645 Pinto/Pariso 28 27800 75240 47440 23.72 96 11/9/10 43645 Pinto/Pariso 28 27800 79560 51760 25.88 97 11/9/10 43645 Pinto/Pariso 75 25860 67300 41440 20.72 98 11/9/10 43645 Pinto/Pariso 75 25860 70280 44420 22.21 99 11/9/10 43645 Pinto/Pariso 75 25860 66620 40760 20.38 100 11/9/10 43645 Pinto/Pariso 75 25860 66420 38560 19.28 101 11/9/10 43645 Pinto/Pariso 75 25860 69400 37540 18.77 102 11/9/10 43645 Pinto/Pariso 75 25860 69680 43820 21.91 103 11/9/10 43645 Pinto/Pariso 75 25860 66700 40840			43645						
96 11/9/10 43645 Pinto/Pariso 28 27800 79560 51760 25.88 97 11/9/10 43645 Pinto/Pariso 75 25860 67300 41440 20.72 98 11/9/10 43645 Pinto/Pariso 75 25860 66620 40760 20.38 100 11/9/10 43645 Pinto/Pariso 75 25860 66620 40760 20.38 101 11/9/10 43645 Pinto/Pariso 75 25860 66420 38560 19.28 101 11/9/10 43645 Pinto/Pariso 75 25860 63400 37540 18.77 102 11/9/10 43645 Pinto/Pariso 75 25860 69680 43820 21.91 103 11/9/10 43645 Pinto/Pariso 75 25860 66700 40840 20.42 105 11/9/10 43645 Pinto/Pariso 17 25700 73380 47680 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>									
97 11/9/10 43645 Pinto/Pariso 75 25860 67300 41440 20.72 98 11/9/10 43645 Pinto/Pariso 75 25860 70280 44420 22.21 99 11/9/10 43645 Pinto/Pariso 75 25860 66620 40760 20.38 100 11/9/10 43645 Pinto/Pariso 75 25860 66620 40760 20.38 101 11/9/10 43645 Pinto/Pariso 75 25860 64420 38560 19.28 101 11/9/10 43645 Pinto/Pariso 75 25860 63400 37540 18.77 102 11/9/10 43645 Pinto/Pariso 75 25860 63400 37540 18.77 103 11/9/10 43645 Pinto/Pariso 75 25860 69680 43820 21.91 103 11/9/10 43645 Pinto/Pariso 75 25860 69680 43820 21.91 104 11/9/10 43645 Pinto/Pariso 75 25860 66700 40840 20.42 105 11/9/10 43645 Pinto/Pariso 17 25700 73380 47680 23.84 106 11/9/10 43645 Pinto/Pariso 80 28760 76000 47240 23.62 107 11/9/10 43645 Pinto/Pariso 80 28760 76000 47240 23.62 107 11/9/10 43645 Pinto/Pariso 80 28760 66500 37740 18.87 109 11/9/10 43645 Pinto/Pariso 80 28760 66200 37440 18.72 110 11/9/10 43645 Pinto/Pariso 80 28760 66200 37440 18.72 110 11/9/10 43645 Pinto/Pariso 80 28760 66200 37440 18.72 110 11/9/10 43645 Pinto/Pariso 80 28760 66200 37440 18.72 110 11/9/10 43645 Pinto/Pariso 80 28760 66200 37400 18.72 110 11/9/10 43645 Pinto/Pariso 80 28760 66200 37400 18.72 111 11/9/10 43645 Pinto/Pariso 80 28760 66860 38100 19.05 111 11/9/10 43645 Pinto/Pariso 80 28760 60740 31980 15.99 112 11/9/10 43645 Pinto/Pariso 80 28760 69800 40320 20.16 113 11/9/10 43645 Pinto/Pariso 80 28760 69800 40320 20.16 114 11/9/10 43645 Pinto/Pariso 80 28760 69800 40320 20.16 114 11/9/10 43645 Pinto/Pariso 22 25700 58100 32400 16.20 116 11/9/10 43645 Pinto/Pariso 22 25700 6000 35360 17.68 118 11/9/10 43645 Pinto/Pariso 22 25700 6580 39580 19.79 120 11/9/10 43645 Pinto/Pariso 22 25700 64680 38800 19.49 121 11/9/10 43645 Pinto/Pariso 22 25700 64680 38800 19.49 121 11/9/10 43645 Pinto/Pariso 22 25700 64680 38800 19.49 121 11/9/10 43645 Pinto/Pariso 22 25700 64680 38800 19.49									
98 11/9/10 43645 Pinto/Pariso 75 25860 70280 44420 22.21 99 11/9/10 43645 Pinto/Pariso 75 25860 66620 40760 20.38 100 11/9/10 43645 Pinto/Pariso 75 25860 63400 37540 18.77 102 11/9/10 43645 Pinto/Pariso 75 25860 63400 37540 18.77 102 11/9/10 43645 Pinto/Pariso 75 25860 69680 43820 21.91 103 11/9/10 43645 Pinto/Pariso 75 25860 69680 43820 22.79 104 11/9/10 43645 Pinto/Pariso 75 25860 66700 40840 20.22 105 11/9/10 43645 Pinto/Pariso 17 25700 73380 47680 23.84 106 11/9/10 43645 Pinto/Pariso 80 28760 61920 33160 <									
99 11/9/10 43645 Pinto/Pariso 75 25860 6620 40760 20.38 100 11/9/10 43645 Pinto/Pariso 75 25860 64420 38560 19.28 101 11/9/10 43645 Pinto/Pariso 75 25860 63400 37540 18.77 102 11/9/10 43645 Pinto/Pariso 75 25860 69680 43820 21.91 103 11/9/10 43645 Pinto/Pariso 75 25860 69680 43820 21.91 104 11/9/10 43645 Pinto/Pariso 75 25860 66700 40840 20.42 105 11/9/10 43645 Pinto/Pariso 17 25700 73380 47680 23.84 106 11/9/10 43645 Pinto/Pariso 80 28760 76000 47240 23.62 107 11/9/10 43645 Pinto/Pariso 80 28760 66500 37740 18.87 109 11/9/10 43645 Pinto/Pariso 80 28760 66500 37440 18.72 110 11/9/10 43645 Pinto/Pariso 80 28760 66500 37440 18.72 110 11/9/10 43645 Pinto/Pariso 80 28760 66200 37440 18.72 110 11/9/10 43645 Pinto/Pariso 80 28760 66500 37040 18.87 111 11/9/10 43645 Pinto/Pariso 80 28760 66860 38100 19.05 111 11/9/10 43645 Pinto/Pariso 80 28760 6740 31980 15.99 112 11/9/10 43645 Pinto/Pariso 80 28760 67080 38320 19.16 113 11/9/10 43645 Pinto/Pariso 80 28760 67080 38320 19.16 113 11/9/10 43645 Pinto/Pariso 80 28760 67080 38320 19.16 113 11/9/10 43645 Pinto/Pariso 80 28760 67080 38320 19.16 113 11/9/10 43645 Pinto/Pariso 80 28760 67080 38320 19.16 113 11/9/10 43645 Pinto/Pariso 80 28760 67080 38320 19.16 113 11/9/10 43645 Pinto/Pariso 80 28760 67080 38320 19.16 113 11/9/10 43645 Pinto/Pariso 80 28760 67080 38320 19.16 113 11/9/10 43645 Pinto/Pariso 22 25700 58100 32400 16.20 116 11/9/10 43645 Pinto/Pariso 22 25700 68020 36320 18.16 117 11/9/10 43645 Pinto/Pariso 22 25700 69080 40320 20.16 118 11/9/10 43645 Pinto/Pariso 22 25700 69080 39580 19.79 120 11/9/10 43645 Pinto/Pariso 22 25700 61080 35860 17.68 118 11/9/10 43645 Pinto/Pariso 22 25700 66280 39580 19.79 120 11/9/10 43645 Pinto/Pariso 22 25700 64680 38980 19.49 121 11/9/10 43645 Pinto/Pariso 22 25700 64860 38980 19.49 122 11/9/10 43645 Pinto/Pariso 22 25700 64860 38980 19.49 123 11/9/10 43645 Pinto/Pariso 22 25700 64860 38980 19.49			43645						
100 11/9/10 43645 Pinto/Pariso 75 25860 64420 38560 19.28 101 11/9/10 43645 Pinto/Pariso 75 25860 63400 37540 18.77 102 11/9/10 43645 Pinto/Pariso 75 25860 69680 43820 21.91 103 11/9/10 43645 Pinto/Pariso 75 25860 71440 45580 22.79 104 11/9/10 43645 Pinto/Pariso 75 25860 66700 40840 20.42 105 11/9/10 43645 Pinto/Pariso 17 25700 73380 47680 23.84 106 11/9/10 43645 Pinto/Pariso 80 28760 76000 47240 23.62 107 11/9/10 43645 Pinto/Pariso 80 28760 66500 37740 18.87 109 11/9/10 43645 Pinto/Pariso 80 28760 66200 37440									
101 11/9/10 43645 Pinto/Pariso 75 25860 63400 37540 18.77 102 11/9/10 43645 Pinto/Pariso 75 25860 69680 43820 21.91 103 11/9/10 43645 Pinto/Pariso 75 25860 71440 45580 22.79 104 11/9/10 43645 Pinto/Pariso 75 25860 66700 40840 20.42 105 11/9/10 43645 Pinto/Pariso 80 28760 76000 47240 23.62 107 11/9/10 43645 Pinto/Pariso 80 28760 61920 33160 16.58 108 11/9/10 43645 Pinto/Pariso 80 28760 66500 37740 18.87 109 11/9/10 43645 Pinto/Pariso 80 28760 66200 37440 18.72 110 11/9/10 43645 Pinto/Pariso 80 28760 66860 38100									
102 11/9/10 43645 Pinto/Pariso 75 25860 69680 43820 21.91 103 11/9/10 43645 Pinto/Pariso 75 25860 71440 45580 22.79 104 11/9/10 43645 Pinto/Pariso 75 25860 66700 40840 20.42 105 11/9/10 43645 Pinto/Pariso 17 25700 73380 47680 23.84 106 11/9/10 43645 Pinto/Pariso 80 28760 76000 47240 23.62 107 11/9/10 43645 Pinto/Pariso 80 28760 61920 33160 16.58 108 11/9/10 43645 Pinto/Pariso 80 28760 66500 37740 18.87 109 11/9/10 43645 Pinto/Pariso 80 28760 66200 37440 18.72 110 11/9/10 43645 Pinto/Pariso 80 28760 66880 38100	101		43645	Pinto/Pariso	75				
104 11/9/10 43645 Pinto/Pariso 75 25860 66700 40840 20.42 105 11/9/10 43645 Pinto/Pariso 17 25700 73380 47680 23.84 106 11/9/10 43645 Pinto/Pariso 80 28760 76000 47240 23.62 107 11/9/10 43645 Pinto/Pariso 80 28760 66900 33160 16.58 108 11/9/10 43645 Pinto/Pariso 80 28760 66500 37740 18.87 109 11/9/10 43645 Pinto/Pariso 80 28760 66200 37440 18.72 110 11/9/10 43645 Pinto/Pariso 80 28760 66860 38100 19.05 111 11/9/10 43645 Pinto/Pariso 80 28760 66860 38100 19.05 111 11/9/10 43645 Pinto/Pariso 80 28760 67080 38320	102	11/9/10	43645	Pinto/Pariso	75	25860	69680	43820	21.91
105 11/9/10 43645 Pinto/Pariso 17 25700 73380 47680 23.84 106 11/9/10 43645 Pinto/Pariso 80 28760 76000 47240 23.62 107 11/9/10 43645 Pinto/Pariso 80 28760 61920 33160 16.58 108 11/9/10 43645 Pinto/Pariso 80 28760 66500 37740 18.87 109 11/9/10 43645 Pinto/Pariso 80 28760 66200 37440 18.72 110 11/9/10 43645 Pinto/Pariso 80 28760 66860 38100 19.05 111 11/9/10 43645 Pinto/Pariso 80 28760 66700 31980 15.99 112 11/9/10 43645 Pinto/Pariso 80 28760 67080 38320 19.16 113 11/9/10 43645 Pinto/Pariso 80 28760 69080 40320	103		43645		75	25860		45580	
106 11/9/10 43645 Pinto/Pariso 80 28760 76000 47240 23.62 107 11/9/10 43645 Pinto/Pariso 80 28760 61920 33160 16.58 108 11/9/10 43645 Pinto/Pariso 80 28760 66500 37740 18.87 109 11/9/10 43645 Pinto/Pariso 80 28760 66200 37440 18.72 110 11/9/10 43645 Pinto/Pariso 80 28760 66360 38100 19.05 111 11/9/10 43645 Pinto/Pariso 80 28760 66360 38100 19.05 112 11/9/10 43645 Pinto/Pariso 80 28760 67080 38320 19.16 113 11/9/10 43645 Pinto/Pariso 80 28760 69080 40320 20.16 114 11/9/10 43645 Pinto/Pariso 80 28760 69080 40320									
107 11/9/10 43645 Pinto/Pariso 80 28760 61920 33160 16.58 108 11/9/10 43645 Pinto/Pariso 80 28760 66500 37740 18.87 109 11/9/10 43645 Pinto/Pariso 80 28760 66200 37440 18.72 110 11/9/10 43645 Pinto/Pariso 80 28760 66860 38100 19.05 111 11/9/10 43645 Pinto/Pariso 80 28760 66740 31980 15.99 112 11/9/10 43645 Pinto/Pariso 80 28760 67080 38320 19.16 113 11/9/10 43645 Pinto/Pariso 80 28760 69080 40320 20.16 114 11/9/10 43645 Pinto/Pariso 80 28760 69080 40320 20.16 115 11/9/10 43645 Pinto/Pariso 22 25700 58100 32400		11/9/10							
108 11/9/10 43645 Pinto/Pariso 80 28760 66500 37740 18.87 109 11/9/10 43645 Pinto/Pariso 80 28760 66200 37440 18.72 110 11/9/10 43645 Pinto/Pariso 80 28760 66860 38100 19.05 111 11/9/10 43645 Pinto/Pariso 80 28760 60740 31980 15.99 112 11/9/10 43645 Pinto/Pariso 80 28760 67080 38320 19.16 113 11/9/10 43645 Pinto/Pariso 80 28760 69080 40320 20.16 114 11/9/10 43645 Pinto/Pariso 80 28760 70700 41940 20.97 115 11/9/10 43645 Pinto/Pariso 22 25700 58100 32400 16.20 116 11/9/10 43645 Pinto/Pariso 22 25700 62020 36320									
109 11/9/10 43645 Pinto/Pariso 80 28760 66200 37440 18.72 110 11/9/10 43645 Pinto/Pariso 80 28760 66860 38100 19.05 111 11/9/10 43645 Pinto/Pariso 80 28760 60740 31980 15.99 112 11/9/10 43645 Pinto/Pariso 80 28760 67080 38320 19.16 113 11/9/10 43645 Pinto/Pariso 80 28760 69080 40320 20.16 114 11/9/10 43645 Pinto/Pariso 80 28760 70700 41940 20.97 115 11/9/10 43645 Pinto/Pariso 22 25700 58100 32400 16.20 116 11/9/10 43645 Pinto/Pariso 22 25700 62020 36320 18.16 117 11/9/10 43645 Pinto/Pariso 22 25700 61060 35360					-				
110 11/9/10 43645 Pinto/Pariso 80 28760 66860 38100 19.05 111 11/9/10 43645 Pinto/Pariso 80 28760 60740 31980 15.99 112 11/9/10 43645 Pinto/Pariso 80 28760 67080 38320 19.16 113 11/9/10 43645 Pinto/Pariso 80 28760 69080 40320 20.16 114 11/9/10 43645 Pinto/Pariso 80 28760 70700 41940 20.97 115 11/9/10 43645 Pinto/Pariso 22 25700 58100 32400 16.20 116 11/9/10 43645 Pinto/Pariso 22 25700 62020 36320 18.16 117 11/9/10 43645 Pinto/Pariso 22 25700 61060 35360 17.68 118 11/9/10 43645 Pinto/Pariso 22 25700 65280 39580									
111 11/9/10 43645 Pinto/Pariso 80 28760 60740 31980 15.99 112 11/9/10 43645 Pinto/Pariso 80 28760 67080 38320 19.16 113 11/9/10 43645 Pinto/Pariso 80 28760 69080 40320 20.16 114 11/9/10 43645 Pinto/Pariso 80 28760 70700 41940 20.97 115 11/9/10 43645 Pinto/Pariso 22 25700 58100 32400 16.20 116 11/9/10 43645 Pinto/Pariso 22 25700 62020 36320 18.16 117 11/9/10 43645 Pinto/Pariso 22 25700 61060 35360 17.68 118 11/9/10 43645 Pinto/Pariso 22 25700 59500 33800 16.90 119 11/9/10 43645 Pinto/Pariso 22 25700 65280 39580									
112 11/9/10 43645 Pinto/Pariso 80 28760 67080 38320 19.16 113 11/9/10 43645 Pinto/Pariso 80 28760 69080 40320 20.16 114 11/9/10 43645 Pinto/Pariso 80 28760 70700 41940 20.97 115 11/9/10 43645 Pinto/Pariso 22 25700 58100 32400 16.20 116 11/9/10 43645 Pinto/Pariso 22 25700 62020 36320 18.16 117 11/9/10 43645 Pinto/Pariso 22 25700 61060 35360 17.68 118 11/9/10 43645 Pinto/Pariso 22 25700 59500 33800 16.90 119 11/9/10 43645 Pinto/Pariso 22 25700 65280 39580 19.79 120 11/9/10 43645 Pinto/Pariso 22 25700 61580 35880									
113 11/9/10 43645 Pinto/Pariso 80 28760 69080 40320 20.16 114 11/9/10 43645 Pinto/Pariso 80 28760 70700 41940 20.97 115 11/9/10 43645 Pinto/Pariso 22 25700 58100 32400 16.20 116 11/9/10 43645 Pinto/Pariso 22 25700 62020 36320 18.16 117 11/9/10 43645 Pinto/Pariso 22 25700 61060 35360 17.68 118 11/9/10 43645 Pinto/Pariso 22 25700 59500 33800 16.90 119 11/9/10 43645 Pinto/Pariso 22 25700 65280 39580 19.79 120 11/9/10 43645 Pinto/Pariso 22 25700 61580 35880 17.94 121 11/9/10 43645 Pinto/Pariso 22 25700 64060 38360		11/9/10					67080		
114 11/9/10 43645 Pinto/Pariso 80 28760 70700 41940 20.97 115 11/9/10 43645 Pinto/Pariso 22 25700 58100 32400 16.20 116 11/9/10 43645 Pinto/Pariso 22 25700 62020 36320 18.16 117 11/9/10 43645 Pinto/Pariso 22 25700 61060 35360 17.68 118 11/9/10 43645 Pinto/Pariso 22 25700 59500 33800 16.90 119 11/9/10 43645 Pinto/Pariso 22 25700 65280 39580 19.79 120 11/9/10 43645 Pinto/Pariso 22 25700 61580 35880 17.94 121 11/9/10 43645 Pinto/Pariso 22 25700 64060 38360 19.18 122 11/9/10 43645 Pinto/Pariso 22 25700 64680 38980		11/9/10	43645			28760	69080	40320	
116 11/9/10 43645 Pinto/Pariso 22 25700 62020 36320 18.16 117 11/9/10 43645 Pinto/Pariso 22 25700 61060 35360 17.68 118 11/9/10 43645 Pinto/Pariso 22 25700 59500 33800 16.90 119 11/9/10 43645 Pinto/Pariso 22 25700 65280 39580 19.79 120 11/9/10 43645 Pinto/Pariso 22 25700 61580 35880 17.94 121 11/9/10 43645 Pinto/Pariso 22 25700 64060 38360 19.18 122 11/9/10 43645 Pinto/Pariso 22 25700 64680 38980 19.49 123 11/9/10 43645 Pinto/Pariso 22 25700 64840 39140 19.57		11/9/10							
117 11/9/10 43645 Pinto/Pariso 22 25700 61060 35360 17.68 118 11/9/10 43645 Pinto/Pariso 22 25700 59500 33800 16.90 119 11/9/10 43645 Pinto/Pariso 22 25700 65280 39580 19.79 120 11/9/10 43645 Pinto/Pariso 22 25700 61580 35880 17.94 121 11/9/10 43645 Pinto/Pariso 22 25700 64060 38360 19.18 122 11/9/10 43645 Pinto/Pariso 22 25700 64680 38980 19.49 123 11/9/10 43645 Pinto/Pariso 22 25700 64840 39140 19.57									
118 11/9/10 43645 Pinto/Pariso 22 25700 59500 33800 16.90 119 11/9/10 43645 Pinto/Pariso 22 25700 65280 39580 19.79 120 11/9/10 43645 Pinto/Pariso 22 25700 61580 35880 17.94 121 11/9/10 43645 Pinto/Pariso 22 25700 64060 38360 19.18 122 11/9/10 43645 Pinto/Pariso 22 25700 64680 38980 19.49 123 11/9/10 43645 Pinto/Pariso 22 25700 64840 39140 19.57									
119 11/9/10 43645 Pinto/Pariso 22 25700 65280 39580 19.79 120 11/9/10 43645 Pinto/Pariso 22 25700 61580 35880 17.94 121 11/9/10 43645 Pinto/Pariso 22 25700 64060 38360 19.18 122 11/9/10 43645 Pinto/Pariso 22 25700 64680 38980 19.49 123 11/9/10 43645 Pinto/Pariso 22 25700 64840 39140 19.57									
120 11/9/10 43645 Pinto/Pariso 22 25700 61580 35880 17.94 121 11/9/10 43645 Pinto/Pariso 22 25700 64060 38360 19.18 122 11/9/10 43645 Pinto/Pariso 22 25700 64680 38980 19.49 123 11/9/10 43645 Pinto/Pariso 22 25700 64840 39140 19.57									
121 11/9/10 43645 Pinto/Pariso 22 25700 64060 38360 19.18 122 11/9/10 43645 Pinto/Pariso 22 25700 64680 38980 19.49 123 11/9/10 43645 Pinto/Pariso 22 25700 64840 39140 19.57									
122 11/9/10 43645 Pinto/Pariso 22 25700 64680 38980 19.49 123 11/9/10 43645 Pinto/Pariso 22 25700 64840 39140 19.57									
123 11/9/10 43645 Pinto/Pariso 22 25700 64840 39140 19.57									
. 127	124	11/9/10	43645	Pinto/Pariso	24	24400	63560	39160	19.58

Table 3 Imported Backfill Sources and Quantities Area C - Final Engineering Report

Load No.	Date	OSC Ticket	Source /	Truck Number /	Tare	Gross	Net	Ton
		No.	Transporter	Ticket	Weight			
125	11/9/10	43645	Pinto/Pariso	24	24400	67100	42700	21.35
126	11/9/10	43645	Pinto/Pariso	24	24400 24400	59000	34600	17.30
127 128	11/9/10 11/9/10	43645 43645	Pinto/Pariso Pinto/Pariso	24	24400	65180 60380	40780 35980	20.39 17.99
129	11/9/10	43645	Pinto/Pariso	24	24400	61060	36660	18.33
130	11/9/10	43645	Pinto/Pariso	24	24400	62120	37720	18.86
131	11/9/10	43645	Pinto/Pariso	24	24400	61100	36700	18.35
132	11/9/10	43645	Pinto/Pariso	24	24400	61500	37100	18.55
133	11/9/10	43645	Pinto/Pariso	27	26000	61380	35380	17.69
134	11/9/10	43645	Pinto/Pariso	27	26000	61840	35840	17.92
135	11/9/10	43645	Pinto/Pariso	27	26000	58880	32880	16.44
136	11/9/10	43645	Pinto/Pariso	27	26000	59780	33780	16.89
137	11/9/10	43645	Pinto/Pariso	27	26000	59200	33200	16.60
138 139	11/9/10 11/9/10	43645 43645	Pinto/Pariso Pinto/Pariso	27 27	26000 26000	61200 63920	35200 37920	17.60 18.96
140	11/9/10	43645	Pinto/Pariso	27	26000	61000	35000	17.50
141	11/9/10	43645	Pinto/Pariso	27	26000	65320	39320	19.66
142	11/9/10	43645	Pinto/Pariso	27	26000	65600	39600	19.80
143	11/9/10	43645	Pinto/Pariso	18	26000	56360	30360	15.18
144	11/9/10	43645	Pinto/Pariso	18	26000	61420	35420	17.71
145	11/9/10	43645	Pinto/Pariso	18	26000	60560	34560	17.28
146	11/9/10	43645	Pinto/Pariso	18	26000	61780	35780	17.89
147	11/9/10	43645	Pinto/Pariso	18	26000	60360	34360	17.18
148	11/9/10	43645	Pinto/Pariso	18	26000	61060	35060	17.53
149	11/9/10	43645	Pinto/Pariso	18	26000	60300	34300	17.15
150	11/9/10	43645	Pinto/Pariso	18	26000	57940	31940	15.97
151	11/9/10	43645	Pinto/Pariso	18	26000	67120	41120	20.56
152 153	11/9/10 11/9/10	43645 43645	Pinto/Pariso Pinto/Pariso	18 90	26000 29180	61580 72020	35580 42840	17.79 21.42
154	11/9/10	43645 `	Pinto/Pariso	90	29180	73300	44120	22.06
155	11/9/10	43645	Pinto/Pariso	90	29180	66820	37640	18.82
156	11/9/10	43645	Pinto/Pariso	90	29180	63920	34740	17.37
157	11/9/10	43645	Pinto/Pariso	90	29180	71140	41960	20.98
158	11/9/10	43645	Pinto/Pariso	90	29180	73440	44260	22.13
159	11/9/10	43645	Pinto/Pariso	90	29180	71620	42440	21.22
160	11/9/10	43645	Pinto/Pariso	90	29180	74420	45240	22.62
161	11/9/10	43645	Pinto/Pariso	90	29180	70860	41680	20.84
162	11/9/10	43645	Pinto/Pariso	90	29180	68900	39720	19.86
163	11/9/10	43645	Pinto/Pariso	15	26500	77000	50500	25.25
164	11/9/10	43645	Pinto/Pariso	15	26500	77080	50580	25.29
165 166	11/9/10	43645	Pinto/Pariso	6	26940	63820	36880	18.44
167	11/9/10 11/9/10	43645 43645	Pinto/Pariso Pinto/Pariso	6	26940 26940	72520 63320	45580 36380	22.79 18.19
168	11/9/10	43645	Pinto/Pariso	6	26940	68160	41220	20.61
169	11/9/10	43645	Pinto/Pariso	6	26940	66360	39420	19.71
170	11/9/10	43645	Pinto/Pariso	6	26940	74720	47780	23.89
171	11/9/10	43645	Pinto/Pariso	6	26940	68000	41060	20.53
172	11/9/10	43645	Pinto/Pariso	44	26280	73900	47620	23.81
173	11/9/10	43645	Pinto/Pariso	44	26280	64400	38120	19.06
174	11/9/10	43645	Pinto/Pariso	44	26280	73100	46820	23.41
175	11/9/10	43645	Pinto/Pariso	44	26280	74460	48180	24.09
176	11/9/10	43645	Pinto/Pariso	44	26280	73980	47700	23.85
177	11/9/10	43645	Pinto/Pariso	1	28600	73280	44680	22.34
178 179	11/9/10 11/9/10	43645	Pinto/Pariso Pinto/Pariso	1 1	28600 28600	66820 74900	38220 46300	19.11 23.15
180	11/9/10	43645 43645	Pinto/Pariso	1	28600	63580	34980	17.49
181	11/9/10	43645	Pinto/Pariso	1	28600	74100	45500	22.75
182	11/9/10	43645	Pinto/Pariso	1	28600	70780	42180	21.09
183	11/9/10	43645	Pinto/Pariso	1	28600	73860	45260	22.63
184	11/9/10	43645	Pinto/Pariso	1	28600	77700	49100	24.55
185	11/9/10	43645	Pinto/Pariso	1	28600	72340	43740	21.87
186	11/9/10	43645	Pinto/Pariso	18	27000	72800	45800	22.90
187	11/9/10	43645	Pinto/Pariso	18	27000	73640	46640	23.32
188	11/9/10	43645	Pinto/Pariso	43	26800	70760	43960	21.98
189	11/9/10	43645	Pinto/Pariso	43	26800	67160	40360	20.18
190	11/9/10	43645	Pinto/Pariso	43	26800	71540	44740	22.37
191	11/9/10	43645	Pinto/Pariso	43	26800	75680	48880	24.44

Table 3 Imported Backfill Sources and Quantities Area C - Final Engineering Report

	- I	OSC Ticket	Source /	Truck Number /	Tare	· · · · · · · · · · · · · · · · · · ·	1	
Load No.	Date	No.	Transporter	Ticket	Weight	Gross	Net	Ton
192	11/9/10	43645	Pinto/Pariso	43	26800	67820	41020	20.51
193	11/9/10	43645	Pinto/Pariso	85	25820	54780	28960	14.48
194	11/9/10	43645	Pinto/Pariso	85	25820	58640	32820	16.41
195	11/9/10	43645	Pinto/Pariso	85	25820	55640	29820	14.91
196	11/9/10	43645	Pinto/Pariso	85	25820	57620	31800	15.90
197	11/9/10	43645	Pinto/Pariso	85	25820	59840	34020	17.01
198	11/9/10	43645	Pinto/Pariso	85	25820	60380	34560	17.28
199	11/9/10	43645	Pinto/Pariso	85	25820	59800	33980	16.99
200	11/9/10	43645	Pinto/Pariso	85	25820	62140	36320	18.16
201	11/9/10	43645	Pinto/Pariso	85	25820	61400	35580	17.79
202	11/9/10	43645	Pinto/Pariso	223	26600	71040	44440	22.22
203	11/10/10	43646	Pinto/Pariso	27	26000	54980	28980	14.49
204	11/10/10	43646	Pinto/Pariso	27	26000	59660	33660	16.83
205	11/10/10	43646	Pinto/Pariso	27	22600	58020	35420	17.71
206	11/10/10	43646	Pinto/Pariso	27	26000	56280	30280	15.14
207	11/10/10	43646	Pinto/Pariso	27	26000	56880	30880	15.44
208	11/10/10	43646	Pinto/Pariso	27	26000	58500	32500	16.25
209	11/10/10	43646	Pinto/Pariso	27	26000	58380	32380	16.19
210	11/10/10	43646	Pinto/Pariso	27	26000	59680	33680	16.84
211	11/10/10	43646	Pinto/Pariso	27	26000	58020	32020	16.01
212	11/10/10	43646	Pinto/Pariso	27	26000	58280	32280	16.14
213	11/10/10	43646	Pinto/Pariso	22	25700	60880	35180	17.59
214	11/10/10	43646	Pinto/Pariso	22	25700	63320	37620	18.81
215	11/10/10	43646	Pinto/Pariso	22	25700	59380	33680	16.84
216	11/10/10	43646	Pinto/Pariso	22	25700	60260	34560	17.28
217	11/10/10	43646	Pinto/Pariso	22	25700_	59120	33420	16.71
218	11/10/10	43646	Pinto/Pariso	22	25700	60380	34680	17.34
219	11/10/10	43646	Pinto/Pariso	22	25700	56240	30540	15.27
220	11/10/10	43646	Pinto/Pariso	22	25700	59820	34120	17.06
221	11/10/10	43646	Pinto/Pariso	22	25700	60900	35200	17.60
222	11/10/10	43646	Pinto/Pariso	22	25700	60860	35160	17.58
223	11/10/10	43646	Pinto/Pariso	44	26380	67800	41420	20.71
224	11/10/10	43646	Pinto/Pariso	44	26380	70740	44360	22.18
225	11/10/10	43646	Pinto/Pariso	44	26380	67800	41420	20.71
226	11/10/10	43646	Pinto/Pariso	44	26380	67360	40980	20.49
227	11/10/10	43646	Pinto/Pariso	44	26380	69160	42780	21.39
228	11/10/10	43646	Pinto/Pariso	44	26380	72140	45760	22.88
229	11/10/10	43646	Pinto/Pariso	44	26380			20.58
230	11/10/10	43646	Pinto/Pariso	44	26380	66300	39920	19.96
231	11/10/10	43646	Pinto/Pariso	44	26380	72760	46380	23.19
232	11/10/10	43646	Pinto/Pariso	43	26800	70340	43540	21.77
233	11/10/10	43646	Pinto/Pariso	43	26800	74220	47420	23.71
234	11/10/10	43646	Pinto/Pariso	43	26800	69140	42340	21.17
235	11/10/10	43646	Pinto/Pariso	43	26800	69180	42380	21.19
236	11/10/10	43646	Pinto/Pariso	43	26800	70980	44180	22.09
237	11/10/10		Pinto/Pariso	43	26800	73720	46920	23.46
238	11/10/10	43646	Pinto/Pariso	43	26800	68100	41300	20.65
239	11/10/10		Pinto/Pariso	43	26800	66500	39700	19.85
240	11/10/10	43646	Pinto/Pariso	43	26800	77660	50860	25.43
241	11/10/10	43646	Pinto/Pariso	86	25500	70080	44580	22.29
242	11/10/10	43646	Pinto/Pariso	86	25500	71500	46000	23.00
243	11/10/10	43646	Pinto/Pariso	86	25500	66800	41300	20.65
244	11/10/10	43646	Pinto/Pariso	86	25500	67080	41580	20.79
245	11/10/10	43646	Pinto/Pariso	86	25500	69220	43720	21.86
246	11/10/10		Pinto/Pariso	86	25500	70200	44700	22.35
247	11/10/10	43646	Pinto/Pariso	86	25500	73160	47660	23.83
248	11/10/10	43646	Pinto/Pariso	86	25500	70640	45140	22.57
249	11/10/10	43646	Pinto/Pariso	86	25500	71220	45720	22.86
250	11/10/10	43646	Pinto/Pariso	18	26000	55480	29480	14.74
251 252	11/10/10	43646	Pinto/Pariso	18 18	26000	55840	29840	14.92
	11/10/10	43646	Pinto/Pariso		26000	55960	29960	14.98
253	11/10/10	43646	Pinto/Pariso	18	26000	55420	29420	14.71
254	11/10/10	43646	Pinto/Pariso	18	26000	59360	33360	16.68
255	11/10/10	43646	Pinto/Pariso	18	26000	55840	29840	14.92
256	11/10/10	43646	Pinto/Pariso	18	26000	57220	31220	15.61
257	11/10/10	43646	Pinto/Pariso	18	26000	58320	32320	16.16
258	11/10/10	43646	Pinto/Pariso	18	26000	57860	31860	15.93

Table 3 Imported Backfill Sources and Quantities Area C - Final Engineering Report

	a. Engin	comig report		T=				
Load No.	Date	OSC Ticket	Source /	Truck Number /	Tare	Gross	Net	Ton
	l	No.	Transporter	Ticket	Weight			
259	11/10/10	43646	Pinto/Pariso	18	26000	61520	35520	17.76
260	11/10/10	43646	Pinto/Pariso	24	26000	60760	34760	17.38
261	11/10/10	43646	Pinto/Pariso	24	26080	62460	36380	18.19
262	11/10/10	43646	Pinto/Pariso_	24	24400	57940	33540	16.77
263	11/10/10	43646	Pinto/Pariso	24	26080	55040	28960	14.48
264	11/10/10	43646	Pinto/Pariso	24 24	24400	57700	33300	16.65 17.14
265 266	11/10/10 11/10/10	43646 43646	Pinto/Pariso	24	26080 24400	60360 58020	34280 33620	16.81
267	11/10/10	43646	Pinto/Pariso Pinto/Pariso	24	24400	58640	34240	17.12
268	11/10/10	43646	Pinto/Pariso	24	26080	60920	34840	17.12
269	11/10/10	43646	Pinto/Pariso	24	24400	59340	34940	17.47
270	11/10/10	43646	Pinto/Pariso	85	25840	58240	32400	16.20
271	11/10/10	43646	Pinto/Pariso	85	25840	59320	33480	16.74
272	11/10/10	43646	Pinto/Pariso	85	25840	56860	31020	15.51
273	11/10/10	43646	Pinto/Pariso	85	25840	59240	33400	16.70
274	11/10/10	43646	Pinto/Pariso	85	25840	61060	35220	17.61
275	11/10/10	43646	Pinto/Pariso	85	25840	58900	33060	16.53
276	11/10/10	43646	Pinto/Pariso	85	25840	62400	36560	18.28
277	11/10/10	43646	Pinto/Pariso	85	25840	62180	36340	18.17
278	11/10/10	43646	Pinto/Pariso	85	25840	61020	35180	17.59
279	11/10/10	43646	Pinto/Pariso	85	25840	61200	35360	17.68
280	11/10/10	43646	Pinto/Pariso	29	25500			23.94
281	11/10/10	43646	Pinto/Pariso	29	25500	76540	51040	25.52
282	11/10/10	43646	Pinto/Pariso	29	25500	67500	42000	21.00
283	11/10/10	43646	Pinto/Pariso	29	25500	64100	38600	19.30
284	11/10/10	43646	Pinto/Pariso	29	25500	74200	48700	24.35
285	11/10/10	43646	Pinto/Pariso	29	25500	70880	45380	22.69
286	11/10/10	43646	Pinto/Pariso	29	25500	72340	46840	23.42
287	11/10/10	43646	Pinto/Pariso	29	25500	67180	41680	20.84
288	11/10/10	43646	Pinto/Pariso	29	25500	69940	44440	22.22
289	11/10/10	43646	Pinto/Pariso	29	25500	71820	46320	23.16
290	11/10/10	43646	Pinto/Pariso	24	26080	67540	41460	20.73
291	11/10/10	43646	Pinto/Pariso	24	26080	68600	42520	21.26
292	11/10/10	43646	Pinto/Pariso	24	26080	68700	42620	21.31
293	11/10/10	43646	Pinto/Pariso	24	26080	70560	44480	22.24
294	11/10/10	43646	Pinto/Pariso	24	26080	68120	42040	21.02
295	11/10/10	43646	Pinto/Pariso	24	26080	70380	44300	22.15
296	11/10/10	43646	Pinto/Pariso	24	26080	68862	42782	21.39
297	11/10/10	43646	Pinto/Pariso	24	26080	69880	43800	21.90
298	11/10/10	43646	Pinto/Pariso	24	26080	69500	43420	21.71
299	11/10/10	43646	Pinto/Pariso	24	26080	66960	40880	20.44
300	11/10/10	43646	Pinto/Pariso	24	26080	69540	43460	21.73 20.53
301 302	11/10/10 11/10/10	43646 43646	Pinto/Pariso	90 90	28520 28520	69580 70400	41060 41880	20.53
302	11/10/10	43646	Pinto/Pariso Pinto/Pariso	90	28520	70400	43300	20.94
303	11/10/10		Pinto/Pariso Pinto/Pariso	90	28520	71660	43300	21.57
305	11/10/10	43646	Pinto/Pariso	90	28520	67800	39280	.19.64
306	11/10/10	43646	Pinto/Pariso	90	28520	71300	42780	21.39
307	11/10/10	43646	Pinto/Pariso	90	28520	72020	43500	21.75
308	11/10/10	43646	Pinto/Pariso	90	28520	67400	38880	19.44
309	11/10/10	43646	Pinto/Pariso	90	28520	66380	37860	18.93
310	11/10/10	43646	Pinto/Pariso	80	28840	72040	43200	21.60
311	11/10/10	43646	Pinto/Pariso	80	28840	70240	41400	20.70
312	11/10/10		Pinto/Pariso	80	28520	72020	43500	21.75
313	11/10/10	43646	Pinto/Pariso	80	28840	71240	42400	21.20
314	11/10/10	43646	Pinto/Pariso	80	28840	71020	42180	21.09
315	11/10/10	43646	Pinto/Pariso	80	28840	71720	42880	21.44
316	11/10/10		Pinto/Pariso	80	28840	71960	43120	21.56
317	11/10/10	43646	Pinto/Pariso	80	28840	71640	42800	21.40
318	11/10/10	43646	Pinto/Pariso	80	28840	70680	41840	20.92
319	11/10/10	43646	Pinto/Pariso	75	25920	69680	43760	21.88
320	11/10/10	43646	Pinto/Pariso	75	25920	73560	47640	23.82
321	11/10/10	43646	Pinto/Pariso	75	25920	68560	42640	21.32
322	11/10/10	43646	Pinto/Pariso	75	25920	67520	41600	20.8
323	11/10/10		Pinto/Pariso	75	25920	70260	44340	22.17
324	11/10/10	43646	Pinto/Pariso	75	25920	68420	42500	21.25
325	11/10/10	43646	Pinto/Pariso	75	25920	69880	43960	21.98

Table 3 Imported Backfill Sources and Quantities Area C - Final Engineering Report

			OSC Ticket	Source /	Truck Number /	Tare			
1710/10 49846 PrintipPariso 75 25920 67860 41940 20.97	Load No.	Date	B .				Gross	Net	Ton
	326	11/10/10					67860	41940	20.97
339 11/10/10 43646 Pinto/Pariso N/A N/A A/A 49240 27.45					75	25920	66760	40840	20.42
331 11/10/10 45846 Pinto/Pariso N/A N/A N/A 48400 22.1		11/10/10	43646	Pinto/Pariso	N/A	N/A	N/A	34240	17.12
333 11/10/10 43946 Pinto/Pariso N/A N/A N/A 49400 21.82 334 11/10/10 43946 Pinto/Pariso N/A N/A N/A 49640 21.82 335 11/10/10 43946 Pinto/Pariso N/A N/A N/A N/A 49640 21.82 336 11/10/10 43946 Pinto/Pariso N/A N/A N/A N/A 39700 19.83 336 11/10/10 43946 Pinto/Pariso N/A N/A N/A N/A 39700 19.86 336 11/10/10 43946 Pinto/Pariso N/A N/A N/A N/A 39300 19.86 337 11/10/10 43946 Pinto/Pariso N/A N/A N/A N/A 39300 19.86 338 11/10/10 43946 Pinto/Pariso N/A N/A N/A N/A 39300 19.86 339 11/10/10 43946 Pinto/Pariso N/A N/A N/A N/A 39400 17.96 338 11/10/10 43946 Pinto/Pariso N/A N/A N/A N/A 39400 17.96 339 11/10/10 43946 Pinto/Pariso N/A N/A N/A N/A 39400 17.96 330 11/10/10 43946 Pinto/Pariso N/A N/A N/A N/A 39400 17.96 331 11/11/10 43949 Pinto/Pariso N/A N/A N/A N/A 49660 21.83 342 11/11/10 43949 Pinto/Pariso N/A N/A N/A N/A 49660 21.83 343 11/11/10 43949 Pinto/Pariso N/A N/A N/A N/A 49600 21.83 344 11/11/10 43949 Pinto/Pariso 17 28800 61820 40080 20.03 345 11/11/10 43949 Pinto/Pariso 17 28800 61120 34320 17.16 345 11/11/10 43949 Pinto/Pariso 17 28800 61120 34320 17.16 346 11/11/10 43949 Pinto/Pariso 17 28800 61120 34320 17.19 347 11/11/10 43949 Pinto/Pariso 17 28800 61120 34320 17.19 348 11/11/10 43949 Pinto/Pariso 17 28800 61120 34320 17.19 349 11/11/10 43949 Pinto/Pariso 17 28800 6120 34320 17.19 349 11/11/10 43949 Pinto/Pariso 17 28800 6120 33340 16.67 349 11/11/10 43949 Pinto/Pariso 17 28800 6120 33340 16.67 349 11/11/10 43949 Pinto/Pariso 17 28800 6040 33340 16.67 349 11/11/10 43949 Pinto/Pariso 17 28800 6060 6020 33020 16.97 350 11/11/10 43949 Pinto/Pariso 17 28800 6060 6020 33020 16.97 351 11/11/10 43949 Pinto/Pariso 17 28800 6060 6020 33020 16.97 351 11/11/10 43949 Pinto/Pariso 17 28800 6060 6020 33020 16.97 352 11/11/10 43949 Pinto/Pariso 24 24890 6060 6020 33020 16.97 351 11/11/10 43949 Pinto/Pariso 24 24890 6060 6020 33020 16.97 353 11/11/10 43949 Pinto/Pariso 24 24890 6060 6020 33020 16.80 353 11/11/10 43949 Pinto/Pariso 24 24890 6060 6020 33000 17.83 353 11/11/10 43949 Pinto/Pariso 24 24890 6060 6020 33000 17.83 3				Pinto/Pariso	N/A	N/A	N/A	40920	20.46
333 11/10/10 43646 Pinto/Pariso N/A N/A N/A 41060 20.52	331	11/10/10	43646		N/A	N/A	N/A	38200	
334 11/10/10 43646 PintoPariso NA NA NA NA 39700 19.85 336 11/10/10 43646 PintoPariso NA NA NA NA 39700 19.85 336 11/10/10 43646 PintoPariso NA NA NA NA 39300 19.85 337 11/10/10 43646 PintoPariso NA NA NA NA 39300 19.85 338 11/10/10 43646 PintoPariso NA NA NA NA 35524 17.762 338 11/10/10 43646 PintoPariso NA NA NA NA 35820 17.796 339 11/10/10 43646 PintoPariso NA NA NA NA 3660 19.23 339 11/10/10 43646 PintoPariso NA NA NA NA 43660 19.23 340 11/10/10 43646 PintoPariso NA NA NA NA 43660 19.23 341 11/11/10 43649 PintoPariso NA NA NA NA 43660 21.83 341 11/11/10 43649 PintoPariso NA NA NA NA 43660 21.83 343 11/11/10 43649 PintoPariso NA NA NA NA 43660 21.83 343 11/11/10 43649 PintoPariso NA NA NA NA 43660 21.83 344 11/11/10 43649 PintoPariso 17 26800 60780 33980 16.99 343 11/11/10 43649 PintoPariso 17 26800 61120 34320 17.16 345 11/11/10 43649 PintoPariso 17 26800 61120 34320 17.16 346 11/11/10 43649 PintoPariso 17 26800 61140 34340 17.33 347 11/11/10 43649 PintoPariso 17 26800 61140 34800 17.33 347 11/11/10 43649 PintoPariso 17 26800 61400 34800 17.33 348 11/11/10 43649 PintoPariso 17 26800 6120 34320 17.21 349 11/11/10 43649 PintoPariso 17 26800 6020 33820 16.91 349 11/11/10 43649 PintoPariso 17 26800 6020 33820 16.91 350 11/11/10 43649 PintoPariso 17 26800 6020 33820 16.91 351 11/11/10 43649 PintoPariso 17 26800 6020 33820 16.91 353 11/11/10 43649 PintoPariso 17 26800 6020 33820 16.91 353 11/11/10 43649 PintoPariso 17 26800 6020 33820 16.91 353 11/11/10 43649 PintoPariso 24 24890 58900 6020 35800 17.85 351 11/11/10 43649 PintoPariso 24 24890 58900 6020 35800 17.85 353 11/11/10 43649 PintoPariso 24 24890 58900 6020 35800 17.85 353 11/11/10 43649 PintoPariso 24 24890 58900 38900 38900 17.85 356 11/11/10 43649 PintoPariso 24 24890 58900 38900 38900 17.85 356 11/11/10 43649 PintoPariso 24 24890 58900 3890	332	11/10/10	43646	Pinto/Pariso	N/A	N/A			
336		11/10/10	43646	Pinto/Pariso					
336 11/10/10 34364 Pinto/Pariso N/A N/A N/A 35920 17.762									
338 11/10/10 43646 PintoPariso N/A N/A N/A 35520 17.96 339 11/10/10 43646 PintoPariso N/A N/A N/A N/A 35520 17.96 339 11/10/10 43646 PintoPariso N/A N/A N/A N/A 35520 17.96 339 11/10/10 43646 PintoPariso N/A N/A N/A N/A 43660 19.23 340 11/10/10 43649 PintoPariso N/A N/A N/A 43660 19.23 341 11/11/10 43649 PintoPariso N/A N/A N/A 43660 21.83 341 11/11/10 43649 PintoPariso 17 26800 60780 33880 16.99 343 11/11/10 43649 PintoPariso 17 26800 66860 40060 20.03 344 11/11/10 43649 PintoPariso 17 26800 61120 34320 17.16 345 11/11/10 43649 PintoPariso 17 26800 61120 34320 17.16 346 11/11/10 43649 PintoPariso 17 26800 61120 34320 17.19 346 11/11/10 43649 PintoPariso 17 26800 61140 34860 17.33 347 11/11/10 43649 PintoPariso 17 26800 61140 34860 17.33 348 11/11/10 43649 PintoPariso 17 26800 61400 34860 17.33 349 11/11/10 43649 PintoPariso 17 26800 6120 3420 17.21 350 11/11/10 43649 PintoPariso 17 26800 6020 33820 16.91 350 11/11/10 43649 PintoPariso 17 26800 6020 33820 16.91 350 11/11/10 43649 PintoPariso 17 26800 6020 33820 17.69 350 11/11/10 43649 PintoPariso 17 26800 6020 33820 17.69 351 11/11/10 43649 PintoPariso 17 26800 6020 33820 17.69 352 11/11/10 43649 PintoPariso 17 26800 6020 33820 17.69 353 11/11/10 43649 PintoPariso 17 26800 6040 35660 17.83 351 11/11/10 43649 PintoPariso 24 24980 55800 30200 15.41 353 11/11/10 43649 PintoPariso 24 24980 55800 30200 15.41 353 11/11/10 43649 PintoPariso 24 24980 5980 5980 34600 17.25 355 11/11/10 43649 PintoPariso 24 24980 5980 34600 17.25 355 11/11/10 43649 PintoPariso 24 24980 5990 34800 17.25 356 11/11/10 43649 PintoPariso 24 24980 5990 34800 17.25 357 11/11/10 43649 PintoPariso 24 24980 5990 34800 17.25 358 11/11/10 43649 PintoPariso 24 24980 5990 34800 17.25 361 11/11/10 43649 PintoPariso 24 24980 5990 34800 37.28 356 11/11/10 43649 PintoPariso 24 24980 5990 34800 37.28 357 11/11/10 43649 PintoPariso 80 28900 71900 40000 30000 18.01 358 11/11/10 43649 PintoPariso 80 28900 71900 40000 30000 18.01 358 11/11/10 43649 PintoPariso 80 28900 71900 40000 30000 17.86 371 11/11/10 436									
338 11/10/10 33646 Pinto/Pariso N/A N/A N/A 38460 19.23 339 11/10/10 33646 Pinto/Pariso N/A N/A N/A 38460 21.83 341 11/11/10 43646 Pinto/Pariso N/A N/A N/A 43660 21.83 341 11/11/10 43649 Pinto/Pariso N/A N/A N/A 43640 24.87 342 11/11/10 43649 Pinto/Pariso 17 26800 60780 33880 61.99 343 11/11/10 43649 Pinto/Pariso 17 26800 60780 33880 61.99 343 11/11/10 43649 Pinto/Pariso 17 26800 61120 34320 17.16 345 11/11/10 43649 Pinto/Pariso 17 26800 61120 34320 17.16 345 11/11/10 43649 Pinto/Pariso 17 26800 61180 34380 17.19 345 11/11/10 43649 Pinto/Pariso 17 26800 61180 34600 3460 17.33 347 11/11/10 43649 Pinto/Pariso 17 26800 60140 33640 3460 17.33 347 11/11/10 43649 Pinto/Pariso 17 26800 60120 34220 17.21 349 11/11/10 43649 Pinto/Pariso 17 26800 60120 34220 17.21 349 11/11/10 43649 Pinto/Pariso 17 26800 60120 34320 16.91 350 11/11/10 43649 Pinto/Pariso 17 26800 60220 33820 16.91 351 11/11/10 43649 Pinto/Pariso 17 26800 60220 33820 16.91 352 11/11/10 43649 Pinto/Pariso 17 26800 60220 35320 17.66 352 11/11/10 43649 Pinto/Pariso 17 26800 60220 35320 17.66 352 11/11/10 43649 Pinto/Pariso 17 26800 60220 35320 17.66 352 11/11/10 43649 Pinto/Pariso 24 24980 60600 35800 30820 15.41 353 11/11/10 43649 Pinto/Pariso 24 24980 60600 35800 36020 15.41 353 11/11/10 43649 Pinto/Pariso 24 24980 60600 35800 3580 3580 3580 37.79 356 11/11/10 43649 Pinto/Pariso 24 24980 60600 35800 3580 3580 37.79 356 11/11/10 43649 Pinto/Pariso 24 24980 60600 35900 3580 3580 37.79 356 11/11/10 43649 Pinto/Pariso 24 24980 60000 35900 35900 3580 37.79 37.70 37.70 37.70 37.70 37.70									
339 11/10/10 43646 Pinto/Pariso NA NA NA NA 38460 19.23 340 11/10/10 43648 Pinto/Pariso NA NA NA 43660 19.23 341 11/11/10 43649 Pinto/Pariso 181 24700 74440 49740 24.87 342 11/11/10 43649 Pinto/Pariso 17 26800 60780 33980 6.99 343 11/11/10 43649 Pinto/Pariso 17 26800 66886 40060 20.03 344 11/11/10 43649 Pinto/Pariso 17 26800 61120 34320 17.16 345 11/11/10 43649 Pinto/Pariso 17 26800 61180 34380 17.19 346 11/11/10 43649 Pinto/Pariso 17 26800 61180 34380 17.19 346 11/11/10 43649 Pinto/Pariso 17 26800 61180 34380 17.19 346 11/11/10 43649 Pinto/Pariso 17 26800 61180 34380 17.19 348 11/11/10 43649 Pinto/Pariso 17 26800 61180 34380 16.67 348 11/11/10 43649 Pinto/Pariso 17 26800 61180 34380 16.67 348 11/11/10 43649 Pinto/Pariso 17 26800 6120 34420 17.21 350 11/11/10 43649 Pinto/Pariso 17 26800 6020 3320 17.69 350 11/11/10 43649 Pinto/Pariso 17 26800 6020 3320 17.69 351 11/11/10 43649 Pinto/Pariso 17 26800 6020 3320 17.69 352 11/11/10 43649 Pinto/Pariso 17 26800 6020 3320 17.69 352 11/11/10 43649 Pinto/Pariso 17 26800 6020 3320 17.69 353 11/11/10 43649 Pinto/Pariso 24 24980 58600 30820 15.41 353 11/11/10 43649 Pinto/Pariso 24 24980 58600 30820 17.83 353 11/11/10 43649 Pinto/Pariso 24 24980 58600 38620 17.83 353 11/11/10 43649 Pinto/Pariso 24 24980 5860 3860 17.23 355 11/11/10 43649 Pinto/Pariso 24 24980 5860 3860 17.23 356 11/11/10 43649 Pinto/Pariso 24 24980 5860 3860 17.23 357 11/11/10 43649 Pinto/Pariso 24 24980 5860 3860 17.23 358 11/11/10 43649 Pinto/Pariso 24 24980 5860 3860 17.23 358 11/11/10 43649 Pinto/Pariso 24 24980 5860 3860 17.38 359 11/11/10 43649 Pinto/Pariso 24 24980 5860 3860 17.23 350 11/11/10 43649 Pinto/Pariso 24 24980 5860 3860 17.38 358 11/11/10 43649 Pinto/Pariso 24 24980 5860 3860 3860 17.38 358 11/11/10 43649 Pinto/Pariso 24 24980 5860 3860 3860 17.38 358 11/11/10 43649 Pinto/Pariso 24 24980 5860 3860 3860 17.88 364 11/11/10 43649 Pinto/Pariso 80 28900 77800 4860 22.79 365 11/11/10 43649 Pinto/Pariso 80 28900 77800 4800 22.79 365 11/11/10 43649 Pinto/Pariso 80 28900 77800 4800 22.79 377 11/11/1									
340 11/10/10 43649 Pinto/Pariso 181 24700 74440 49740 24 87 342 11/11/10 43649 Pinto/Pariso 17 26800 60780 33980 16.99 343 11/11/10 43649 Pinto/Pariso 17 26800 61800 40060 20.03 344 11/11/10 43649 Pinto/Pariso 17 26800 61120 34320 17.16 345 11/11/10 43649 Pinto/Pariso 17 26800 61120 34320 17.16 345 11/11/10 43649 Pinto/Pariso 17 26800 61180 34380 17.19 345 11/11/10 43649 Pinto/Pariso 17 26800 61180 34380 17.19 346 11/11/10 43649 Pinto/Pariso 17 26800 61460 34660 17.33 347 11/11/10 43649 Pinto/Pariso 17 26800 61460 34660 17.33 347 11/11/10 43649 Pinto/Pariso 17 26800 6140 33340 16.93 348 11/11/10 43649 Pinto/Pariso 17 26800 6120 34420 17.21 349 11/11/10 43649 Pinto/Pariso 17 26800 6120 34420 17.21 350 11/11/10 43649 Pinto/Pariso 17 26800 60620 33820 16.91 350 11/11/10 43649 Pinto/Pariso 17 26800 60620 33820 16.91 350 11/11/10 43649 Pinto/Pariso 17 26800 60620 33820 16.93 351 11/11/10 43649 Pinto/Pariso 17 26800 60620 33620 17.66 351 11/11/10 43649 Pinto/Pariso 17 26800 60640 33660 16.82 352 11/11/10 43649 Pinto/Pariso 24 24980 60640 33660 17.83 353 11/11/10 43649 Pinto/Pariso 24 24980 60640 33660 17.83 354 11/11/10 43649 Pinto/Pariso 24 24980 60640 33660 17.83 354 11/11/10 43649 Pinto/Pariso 24 24980 60640 33660 17.83 355 11/11/10 43649 Pinto/Pariso 24 24980 60640 33660 17.83 355 11/11/10 43649 Pinto/Pariso 24 24980 60640 33660 17.83 355 11/11/10 43649 Pinto/Pariso 24 24980 60640 33660 17.83 358 11/11/10 43649 Pinto/Pariso 24 24980 60640 33660 17.79 356 11/11/10 43649 Pinto/Pariso 24 24980 60600 33620 15.79 356 11/11/10 43649 Pinto/Pariso 24 24980 60600 33620 17.79 356 11/11/10 43649 Pinto/Pariso 24 24980 60600 33620 17.79 356 11/11/10 43649 Pinto/Pariso 24 24980 60900 35920 17.79 356 11/11/10 43649 Pinto/Pariso 24 24980 60900 35920 17.79 356 11/11/10 43649 Pinto/Pariso 80 26900 74480 45580 22.79 360 11/11/10 43649 Pinto/Pariso 80 26900 74600 30280 17.28 360 11/11/10 43649 Pinto/Pariso 80 26900 74600 30280 30280 19.64 366 11/11/10 43649 Pinto/Pariso 80 26900 74600 43600 22.53 372 11/11/10 43649 Pinto/Pariso 80 2									
341 11/11/10 43649 Pinto/Pariso 17 26800 60780 33830 16.99 343 11/11/10 43649 Pinto/Pariso 17 26800 61120 34320 17.16 344 11/11/10 43649 Pinto/Pariso 17 26800 61120 34320 17.16 345 11/11/10 43649 Pinto/Pariso 17 26800 61120 34320 17.16 346 11/11/10 43649 Pinto/Pariso 17 26800 61120 34320 17.19 346 11/11/10 43649 Pinto/Pariso 17 26800 61180 34380 17.19 346 11/11/10 43649 Pinto/Pariso 17 26800 61180 34380 17.19 348 11/11/10 43649 Pinto/Pariso 17 26800 61140 3340 16.67 348 11/11/10 43649 Pinto/Pariso 17 26800 61120 34420 17.21 348 11/11/10 43649 Pinto/Pariso 17 26800 61220 34420 17.21 349 11/11/10 43649 Pinto/Pariso 17 26800 6020 33820 16.91 350 11/11/10 43649 Pinto/Pariso 17 26800 6020 33820 16.91 351 11/11/10 43649 Pinto/Pariso 17 26800 6020 33820 16.91 352 11/11/10 43649 Pinto/Pariso 17 26800 6020 33820 16.82 351 11/11/10 43649 Pinto/Pariso 17 26800 60240 33640 16.82 353 11/11/10 43649 Pinto/Pariso 24 24980 55800 30820 15.41 353 11/11/10 43649 Pinto/Pariso 24 24980 55800 30820 15.41 353 11/11/10 43649 Pinto/Pariso 24 24980 55800 30820 15.41 353 11/11/10 43649 Pinto/Pariso 24 24980 55800 30820 17.25 355 11/11/10 43649 Pinto/Pariso 24 24980 55800 30820 15.41 353 11/11/10 43649 Pinto/Pariso 24 24980 55800 30820 15.41 353 11/11/10 43649 Pinto/Pariso 24 24980 55800 30820 17.25 355 11/11/10 43649 Pinto/Pariso 24 24980 55800 35880 17.25 355 11/11/10 43649 Pinto/Pariso 24 24980 5580 35800 17.25 356 11/11/10 43649 Pinto/Pariso 24 24980 59800 35920 17.96 359 11/11/10 43649 Pinto/Pariso 24 24980 59800 35920 17.96 359 11/11/10 43649 Pinto/Pariso 24 24980 59800 35920 17.96 350 11/11/10 43649 Pinto/Pariso 24 24980 59800 35920 17.96 350 11/11/10 43649 Pinto/Pariso 24 24980 59800 35920 17.96 350 11/11/10 43649 Pinto/Pariso 24 24980 59800 39800 39800 17.38 360 11/11/10 43649 Pinto/Pariso 80 28900 74800 34580 22.79 360 11/11/10 43649 Pinto/Pariso 80 28900 74800 32900 3280 19.44 361 11/11/10 43649 Pinto/Pariso 80 28900 74800 32800 3280 19.44 371 11/11/10 43649 Pinto/Pariso 80 28900 77000 43100 22.53 372 11/11/10 43649 Pinto/Paris									
342 11/11/10 43649 Pinto/Pariso 17 26800 60780 33980 16.99 343 11/11/10 43649 Pinto/Pariso 17 26800 61120 34320 17.16 345 11/11/10 43649 Pinto/Pariso 17 26800 61120 34320 17.16 345 11/11/10 43649 Pinto/Pariso 17 26800 61180 34380 17.16 346 11/11/10 43649 Pinto/Pariso 17 26800 61180 34380 17.13 347 11/11/10 43649 Pinto/Pariso 17 26800 61180 34380 17.13 347 11/11/10 43649 Pinto/Pariso 17 26800 61180 33340 16.69 348 11/11/10 43649 Pinto/Pariso 17 26800 61180 33340 16.69 348 11/11/10 43649 Pinto/Pariso 17 26800 6122 3422 17.21 349 11/11/10 43649 Pinto/Pariso 17 26800 60120 33320 16.91 350 11/11/10 43649 Pinto/Pariso 17 26800 6020 33820 16.91 351 11/11/10 43649 Pinto/Pariso 17 26800 6020 33820 16.91 352 11/11/10 43649 Pinto/Pariso 17 26800 60440 33640 16.62 352 11/11/10 43649 Pinto/Pariso 24 24980 60640 35660 17.83 353 11/11/10 43649 Pinto/Pariso 24 24980 60640 35660 17.83 354 11/11/10 43649 Pinto/Pariso 24 24980 60640 35660 17.83 355 11/11/10 43649 Pinto/Pariso 24 24980 60640 35660 17.83 355 11/11/10 43649 Pinto/Pariso 24 24980 60640 35660 17.83 355 11/11/10 43649 Pinto/Pariso 24 24980 60640 35660 17.83 356 11/11/10 43649 Pinto/Pariso 24 24980 60640 35660 17.83 356 11/11/10 43649 Pinto/Pariso 24 24980 60640 35660 17.79 356 11/11/10 43649 Pinto/Pariso 24 24980 60600 3600 17.79 358 11/11/10 43649 Pinto/Pariso 24 24980 60600 35920 17.79 358 11/11/10 43649 Pinto/Pariso 24 24980 60600 3600 17.79 358 11/11/10 43649 Pinto/Pariso 24 24980 60600 3600 17.79 358 11/11/10 43649 Pinto/Pariso 24 24980 60600 35920 17.56 359 11/11/10 43649 Pinto/Pariso 24 24980 60600 35920 17.56 359 11/11/10 43649 Pinto/Pariso 24 24980 60600 35920 17.56 360 11/11/10 43649 Pinto/Pariso 24 24980 60600 35920 17.56 361 11/11/10 43649 Pinto/Pariso 80 28900 71600 48660 22.79 363 11/11/10 43649 Pinto/Pariso 80 28900 71600 48660 22.79 363 11/11/10 43649 Pinto/Pariso 80 28900 71600 48660 22.79 363 11/11/10 43649 Pinto/Pariso 80 28900 71600 48660 22.33 364 11/11/10 43649 Pinto/Pariso 80 28900 77600 43000 21.51 377 11/11/10 43649 Pinto/Pariso 2 26640 70200 4									
333 11/11/10 43649 Pinto/Pariso 17 26800 61120 33230 17.16 345 11/11/10 43649 Pinto/Pariso 17 26800 61120 34320 17.16 346 11/11/10 43649 Pinto/Pariso 17 26800 61180 34880 17.19 346 11/11/10 43649 Pinto/Pariso 17 26800 61180 34680 17.39 347 11/11/10 43649 Pinto/Pariso 17 26800 61140 33480 17.19 348 11/11/10 43649 Pinto/Pariso 17 26800 61140 33480 17.39 348 11/11/10 43649 Pinto/Pariso 17 26800 60140 33440 17.66 348 11/11/10 43649 Pinto/Pariso 17 26800 60140 33440 17.21 330 11/11/10 43649 Pinto/Pariso 17 26800 6022 33820 17.61 330 11/11/10 43649 Pinto/Pariso 17 26800 6022 33820 17.61 331 11/11/10 43649 Pinto/Pariso 17 26800 6022 33820 17.62 352 11/11/10 43649 Pinto/Pariso 17 26800 6024 3352 17.66 353 11/11/10 43649 Pinto/Pariso 17 26800 6024 3352 17.66 353 11/11/10 43649 Pinto/Pariso 24 24980 55800 30820 15.41 353 11/11/10 43649 Pinto/Pariso 24 24980 55800 30820 17.25 355 11/11/10 43649 Pinto/Pariso 24 24980 59840 34500 17.25 355 11/11/10 43649 Pinto/Pariso 24 24980 59840 34500 17.25 355 11/11/10 43649 Pinto/Pariso 24 24980 59840 34500 17.25 355 11/11/10 43649 Pinto/Pariso 24 24980 59840 34500 17.25 355 11/11/10 43649 Pinto/Pariso 24 24980 59840 34500 17.25 355 11/11/10 43649 Pinto/Pariso 24 24980 59840 34500 17.18 357 11/11/10 43649 Pinto/Pariso 24 24980 599340 34360 17.18 358 11/11/10 43649 Pinto/Pariso 24 24980 60900 35920 17.96 359 11/11/10 43649 Pinto/Pariso 24 24980 60900 35920 17.80 350 11/11/10 43649 Pinto/Pariso 24 24980 60900 35920 17.96 360 11/11/10 43649 Pinto/Pariso 24 24980 60900 35920 17.96 361 11/11/10 43649 Pinto/Pariso 24 24980 69900 35920 17.96 362 11/11/10 43649 Pinto/Pariso 24 24980 69900 35920 17.96 363 11/11/10 43649 Pinto/Pariso 80 26900 74600 48560 22.79 364 11/11/10 43649 Pinto/Pariso 80 26900 74600 48560 22.79 365 11/11/10 43649 Pinto/Pariso 80 26900 74600 48560 22.79 366 11/11/10 43649 Pinto/Pariso 80 26900 74600 48560 22.73 367 11/11/10 43649 Pinto/Pariso 80 26900 77000 43100 21.55 368 11/11/10 43649 Pinto/Pariso 80 26900 73000 43100 21.55 369 11/11/10 43649 Pinto/Pariso 80 26900 73000									
344 11/11/10 43649 Pinto/Pariso 17 26800 61120 34320 17.16 345 11/11/10 43649 Pinto/Pariso 17 26800 61180 3330 17.19 346 11/11/10 43649 Pinto/Pariso 17 26800 61460 3460 17.33 347 11/11/10 43649 Pinto/Pariso 17 26800 60140 33340 116.67 349 11/11/10 43649 Pinto/Pariso 17 26800 60220 33820 16.91 351 11/11/10 43649 Pinto/Pariso 17 26800 602120 35320 17.66 351 11/11/10 43649 Pinto/Pariso 17 26800 60440 33640 16.82 352 11/11/10 43649 Pinto/Pariso 24 24980 55800 3080 15.41 353 11/11/10 43649 Pinto/Pariso 24 24980 59480 34500									
345 11/11/10 43649 Pinto/Pariso 17 26800 61180 34380 17.19 346 11/11/10 43649 Pinto/Pariso 17 26800 60140 33340 16.67 348 11/11/10 43649 Pinto/Pariso 17 26800 60140 33340 16.67 348 11/11/10 43649 Pinto/Pariso 17 26800 6020 33820 16.91 350 11/11/10 43649 Pinto/Pariso 17 26800 6020 33820 16.91 350 11/11/10 43649 Pinto/Pariso 17 26800 6020 33820 16.91 351 11/11/10 43649 Pinto/Pariso 17 26800 6020 33820 17.66 352 11/11/10 43649 Pinto/Pariso 17 26800 6020 33820 17.66 353 11/11/10 43649 Pinto/Pariso 17 26800 6020 33820 17.66 353 11/11/10 43649 Pinto/Pariso 24 24980 55800 30820 15.41 353 11/11/10 43649 Pinto/Pariso 24 24980 55800 30820 17.33 354 11/11/10 43649 Pinto/Pariso 24 24980 60640 35660 17.23 355 11/11/10 43649 Pinto/Pariso 24 24980 60560 35580 17.29 355 11/11/10 43649 Pinto/Pariso 24 24980 60560 35580 17.79 355 11/11/10 43649 Pinto/Pariso 24 24980 60560 35580 17.79 356 11/11/10 43649 Pinto/Pariso 24 24980 60560 35580 17.79 357 11/11/10 43649 Pinto/Pariso 24 24980 60560 35580 17.79 358 11/11/10 43649 Pinto/Pariso 24 24980 60500 35920 17.98 359 11/11/10 43649 Pinto/Pariso 24 24980 60000 35020 18.01 358 11/11/10 43649 Pinto/Pariso 24 24980 60000 35020 18.01 358 11/11/10 43649 Pinto/Pariso 24 24980 60000 35020 18.01 358 11/11/10 43649 Pinto/Pariso 24 24980 60000 35020 18.01 358 11/11/10 43649 Pinto/Pariso 24 24980 60000 35020 18.01 358 11/11/10 43649 Pinto/Pariso 24 24980 60000 35020 18.01 360 11/11/10 43649 Pinto/Pariso 24 24980 60000 35020 17.98 360 11/11/10 43649 Pinto/Pariso 80 28000 74480 45500 22.79 360 11/11/10 43649 Pinto/Pariso 80 28000 74480 45500 22.79 361 11/11/10 43649 Pinto/Pariso 80 28000 74480 45500 22.79 362 11/11/10 43649 Pinto/Pariso 80 28000 74480 45500 22.73 363 11/11/10 43649 Pinto/Pariso 80 28000 7000 43100 21.55 363 11/11/10 43649 Pinto/Pariso 80 28000 7000 43100 21.55 372 11/11/10 43649 Pinto/Pariso 80 28000 7000 43100 21.55 373 11/11/10 43649 Pinto/Pariso 80 28000 7000 43000 22.51 373 11/11/10 43649 Pinto/Pariso 80 28000 7000 43000 22.61 374 11/11/10 43649 Pinto/Pariso 2 26640 7000 43000									
346 11/11/10 43649 Pinto/Pariso 17 26800 61460 34660 17.33 347 11/11/10 43649 Pinto/Pariso 17 26800 60140 33340 16.67 348 11/11/10 43649 Pinto/Pariso 17 26800 60220 34420 17.21 349 11/11/10 43649 Pinto/Pariso 17 26800 60220 33820 16.91 350 11/11/10 43649 Pinto/Pariso 17 26800 60440 33640 16.91 351 11/11/10 43649 Pinto/Pariso 24 2480 60640 33640 16.82 352 11/11/10 43649 Pinto/Pariso 24 2480 60640 3560 17.83 353 11/11/10 43649 Pinto/Pariso 24 2480 60640 3560 17.25 355 11/11/10 43649 Pinto/Pariso 24 2480 60560 35580									
347 11/11/10 43649 Pinto/Pariso 17 26800 60140 33340 16.67 348 11/11/10 43649 Pinto/Pariso 17 26800 6020 33820 16.91 349 11/11/10 43649 Pinto/Pariso 17 26800 6020 33820 16.91 350 11/11/10 43649 Pinto/Pariso 17 26800 6020 33820 16.91 351 11/11/10 43649 Pinto/Pariso 17 26800 60440 33640 16.62 352 11/11/10 43649 Pinto/Pariso 17 26800 60440 33640 16.62 352 11/11/10 43649 Pinto/Pariso 24 24980 55800 30820 15.41 353 11/11/10 43649 Pinto/Pariso 24 24980 55800 30820 15.41 353 11/11/10 43649 Pinto/Pariso 24 24980 59800 30820 15.41 353 11/11/10 43649 Pinto/Pariso 24 24980 5980 34500 17.25 355 11/11/10 43649 Pinto/Pariso 24 24980 59480 34500 17.25 355 11/11/10 43649 Pinto/Pariso 24 24980 59340 34500 17.25 355 11/11/10 43649 Pinto/Pariso 24 24980 60560 35580 17.79 357 11/11/10 43649 Pinto/Pariso 24 24980 60500 35580 17.79 357 11/11/10 43649 Pinto/Pariso 24 24980 60000 36020 18.01 358 11/11/10 43649 Pinto/Pariso 24 24980 60900 35020 17.96 359 11/11/10 43649 Pinto/Pariso 24 24980 59560 34580 17.29 360 11/11/10 43649 Pinto/Pariso 24 24980 59560 34580 17.29 360 11/11/10 43649 Pinto/Pariso 24 24980 59560 34580 17.29 360 11/11/10 43649 Pinto/Pariso 24 24980 59340 34360 17.18 361 11/11/10 43649 Pinto/Pariso 24 24980 59340 34360 17.18 362 11/11/10 43649 Pinto/Pariso 24 24980 59340 34360 17.18 363 11/11/10 43649 Pinto/Pariso 80 28900 74480 45580 22.79 364 11/11/10 43649 Pinto/Pariso 80 28900 77920 43020 21.51 364 11/11/10 43649 Pinto/Pariso 80 28900 69760 40860 20.43 365 11/11/10 43649 Pinto/Pariso 80 28900 69760 40860 20.43 365 11/11/10 43649 Pinto/Pariso 80 28900 77920 43020 21.51 369 11/11/10 43649 Pinto/Pariso 80 28900 77920 43020 21.51 369 11/11/10 43649 Pinto/Pariso 80 28900 77920 43020 21.51 369 11/11/10 43649 Pinto/Pariso 80 28900 77000 43020 21.51 369 11/11/10 43649 Pinto/Pariso 80 28900 73520 44620 22.31 370 11/11/10 43649 Pinto/Pariso 80 28900 73520 44620 22.31 371 11/11/10 43649 Pinto/Pariso 80 28900 73520 44620 22.31 373 11/11/10 43649 Pinto/Pariso 80 28900 73520 44620 22.31 373 11/11/10 43649 Pinto/Pariso 2 28640 7072			43649						
348 11/11/10 43649 Pinto/Pariso 17 26800 61220 34420 17.21 349 11/11/10 43649 Pinto/Pariso 17 26800 60620 33820 16.91 350 11/11/10 43649 Pinto/Pariso 17 26800 602120 33520 17.66 351 11/11/10 43649 Pinto/Pariso 17 26800 6040 33640 16.82 352 11/11/10 43649 Pinto/Pariso 17 26800 6040 33640 16.82 352 11/11/10 43649 Pinto/Pariso 24 24980 55800 30820 15.41 353 11/11/10 43649 Pinto/Pariso 24 24980 60640 35660 17.83 353 11/11/10 43649 Pinto/Pariso 24 24980 60640 35660 17.83 353 11/11/10 43649 Pinto/Pariso 24 24980 60560 35580 17.29 355 11/11/10 43649 Pinto/Pariso 24 24980 60560 35580 17.79 356 11/11/10 43649 Pinto/Pariso 24 24980 60560 35580 17.79 356 11/11/10 43649 Pinto/Pariso 24 24980 60560 35580 17.79 357 11/11/10 43649 Pinto/Pariso 24 24980 60560 35580 17.79 358 11/11/10 43649 Pinto/Pariso 24 24980 60000 36020 18.01 358 11/11/10 43649 Pinto/Pariso 24 24980 60900 36020 18.01 358 11/11/10 43649 Pinto/Pariso 24 24980 60900 35920 17.96 360 11/11/10 43649 Pinto/Pariso 24 24980 60900 35920 17.96 361 11/11/10 43649 Pinto/Pariso 24 24980 59340 34300 17.38 361 11/11/10 43649 Pinto/Pariso 24 24980 59340 34500 17.39 362 11/11/10 43649 Pinto/Pariso 24 24980 59340 34500 17.39 362 11/11/10 43649 Pinto/Pariso 24 24980 59340 34500 17.38 362 11/11/10 43649 Pinto/Pariso 24 24980 59340 34500 17.38 363 11/11/10 43649 Pinto/Pariso 80 28900 71920 43020 21.51 364 11/11/10 43649 Pinto/Pariso 80 28900 71920 43020 21.51 365 11/11/10 43649 Pinto/Pariso 80 28900 71920 43020 21.51 366 11/11/10 43649 Pinto/Pariso 80 28900 71920 43020 21.53 367 11/11/10 43649 Pinto/Pariso 80 28900 71920 43020 21.53 369 11/11/10 43649 Pinto/Pariso 80 28900 73200 43180 21.59 369 11/11/10 43649 Pinto/Pariso 80 28900 73200 43800 21.33 361 11/11/10 43649 Pinto/Pariso 80 28900 73200 43800 21.33 361 11/11/10 43649 Pinto/Pariso 80 28900 73200 4300 22.04 372 11/11/10 43649 Pinto/Pariso 80 28900 73200 4300 22.04 373 11/11/10 43649 Pinto/Pariso 80 28900 7300 4300 22.04 375 11/11/10 43649 Pinto/Pariso 2 2664									
349 11/11/10 43649 Pinto/Pariso 17 26800 66220 33820 16.91 350 11/11/10 43649 Pinto/Pariso 17 26800 662120 35320 17.66 351 11/11/10 43649 Pinto/Pariso 17 26800 60440 33640 16.82 352 11/11/10 43649 Pinto/Pariso 24 24980 55800 30820 15.41 353 11/11/10 43649 Pinto/Pariso 24 24980 59800 34500 17.25 355 11/11/10 43649 Pinto/Pariso 24 24980 60560 3580 17.79 355 11/11/10 43649 Pinto/Pariso 24 24980 60000 35920 17.18 357 11/11/10 43649 Pinto/Pariso 24 24980 60000 35920 17.92 360 11/11/10 43649 Pinto/Pariso 24 24980 60000 35920 <td>~~~</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	~~~								
350									
351 11/11/10 43649 Pinto/Pariso 17 22800 60440 33640 16.82 352 11/11/10 43649 Pinto/Pariso 24 24980 55800 30820 15.41 353 11/11/10 43649 Pinto/Pariso 24 24980 60640 35660 17.83 354 11/11/10 43649 Pinto/Pariso 24 24980 60640 35660 17.83 355 11/11/10 43649 Pinto/Pariso 24 24980 60560 35580 17.79 356 11/11/10 43649 Pinto/Pariso 24 24980 60560 35580 17.79 356 11/11/10 43649 Pinto/Pariso 24 24980 60560 35580 17.79 357 11/11/10 43649 Pinto/Pariso 24 24980 61000 36020 18.01 358 11/11/10 43649 Pinto/Pariso 24 24980 61000 35920 17.96 359 11/11/10 43649 Pinto/Pariso 24 24980 69900 35920 17.96 359 11/11/10 43649 Pinto/Pariso 24 24980 69900 34580 17.29 360 11/11/10 43649 Pinto/Pariso 24 24980 69900 34580 17.29 360 11/11/10 43649 Pinto/Pariso 24 24980 69560 34580 17.28 362 11/11/10 43649 Pinto/Pariso 24 24980 59340 34360 17.18 362 11/11/10 43649 Pinto/Pariso 80 28900 7480 45580 22.79 363 11/11/10 43649 Pinto/Pariso 80 28900 7480 45680 22.43 365 11/11/10 43649 Pinto/Pariso 80 28900 7760 40860 20.43 365 11/11/10 43649 Pinto/Pariso 80 28900 7760 42860 21.43 365 11/11/10 43649 Pinto/Pariso 80 28900 7760 42860 21.43 365 11/11/10 43649 Pinto/Pariso 80 28900 7760 4360 21.43 366 11/11/10 43649 Pinto/Pariso 80 28900 72000 43180 21.59 368 11/11/10 43649 Pinto/Pariso 80 28900 72000 43100 21.55 368 11/11/10 43649 Pinto/Pariso 80 28900 72000 43100 21.55 3730 11/11/10 43649 Pinto/Pariso 80 28900 72000 43100 21.55 3730 11/11/10 43649 Pinto/Pariso 80 28900 72000 43100 21.55 3730 11/11/10 43649 Pinto/Pariso 20 26640 77200 43560 21.43 3731 11/11/10 43649 Pinto/Pariso 20									
352 11/11/10 43649 Pinto/Pariso 24 24980 55800 30820 15.41 353 11/11/10 43649 Pinto/Pariso 24 24980 60640 35660 17.83 354 11/11/10 43649 Pinto/Pariso 24 24980 60660 35680 17.25 355 11/11/10 43649 Pinto/Pariso 24 24980 60660 35580 17.79 356 11/11/10 43649 Pinto/Pariso 24 24980 60660 35580 17.79 357 11/11/10 43649 Pinto/Pariso 24 24980 61000 36020 18.01 358 11/11/10 43649 Pinto/Pariso 24 24980 61000 36020 18.01 358 11/11/10 43649 Pinto/Pariso 24 24980 60000 35920 17.96 359 11/11/10 43649 Pinto/Pariso 24 24980 60000 35920 17.96 360 11/11/10 43649 Pinto/Pariso 24 24980 60900 35920 17.96 361 11/11/10 43649 Pinto/Pariso 24 24980 64260 39280 19.64 361 11/11/10 43649 Pinto/Pariso 24 24980 69000 35920 27.96 363 11/11/10 43649 Pinto/Pariso 24 24980 69300 7480 22.79 363 11/11/10 43649 Pinto/Pariso 80 28900 7480 45580 22.79 363 11/11/10 43649 Pinto/Pariso 80 28900 77120 43020 21.51 364 11/11/10 43649 Pinto/Pariso 80 28900 69760 40860 20.43 365 11/11/10 43649 Pinto/Pariso 80 28900 71760 40860 21.43 366 11/11/10 43649 Pinto/Pariso 80 28900 71760 40860 21.43 366 11/11/10 43649 Pinto/Pariso 80 28900 71640 42740 21.37 367 11/11/10 43649 Pinto/Pariso 80 28900 71640 42740 21.37 367 11/11/10 43649 Pinto/Pariso 80 28900 72000 43100 21.55 369 11/11/10 43649 Pinto/Pariso 80 28900 7300 43100 21.53 368 11/11/10 43649 Pinto/Pariso 80 28900 72000 43100 21.55 369 11/11/10 43649 Pinto/Pariso 80 28900 7300 44600 22.31 370 11/11/10 43649 Pinto/Pariso 80 28900 7300 43100 21.55 369 11/11/10 43649 Pinto/Pariso 80 28900 7300 43100 21.55 372 11/11/10 43649 Pinto/Pariso 80 28900 7300 44800 22.31 373 11/11/10 43649 Pinto/Pariso 80 28900 7300 43100 21.55 373 11/11/10 43649 Pinto/Pariso 80 28900 7300 4300 12.55 373 11/11/10 43649 Pinto/Pariso 80 28900 7300 4300 22.54 374 11/11/10 43649 Pinto/Pariso 80 28900 7300 4300 22.54 375 11/11/10 43649 Pinto/Pariso 80 28900 7300 4300 22.54 376 11/11/10 43649 Pinto/Pariso 2 26640 7000 43560 22.33 376 11/11/10 43649 Pinto/Pariso 2 26640 7000 43560 22.33 377 11/11/10 43649 Pinto/Pariso 75 25900 6820 4000 22.53 388									16.82
353 11/11/10 43649 Pinto/Pariso 24 24980 59480 34500 17.25 355 11/11/10 43649 Pinto/Pariso 24 24980 59480 34500 17.25 355 11/11/10 43649 Pinto/Pariso 24 24980 69560 35580 17.79 356 11/11/10 43649 Pinto/Pariso 24 24980 6930 34580 17.79 356 11/11/10 43649 Pinto/Pariso 24 24980 6930 36020 18.01 357 11/11/10 43649 Pinto/Pariso 24 24980 6900 36020 18.01 358 11/11/10 43649 Pinto/Pariso 24 24980 6900 35920 17.96 359 11/11/10 43649 Pinto/Pariso 24 24980 6920 35920 17.96 359 11/11/10 43649 Pinto/Pariso 24 24980 6920 35920 17.96 360 11/11/10 43649 Pinto/Pariso 24 24980 6920 34580 17.29 361 11/11/10 43649 Pinto/Pariso 24 24980 59560 34580 17.29 362 11/11/10 43649 Pinto/Pariso 24 24980 59340 34360 17.18 362 11/11/10 43649 Pinto/Pariso 80 28900 74800 45260 22.79 363 11/11/10 43649 Pinto/Pariso 80 28900 74800 45260 22.79 365 11/11/10 43649 Pinto/Pariso 80 28900 74920 43020 21.51 364 11/11/10 43649 Pinto/Pariso 80 28900 69760 40860 20.43 365 11/11/10 43649 Pinto/Pariso 80 28900 7920 40020 21.51 366 11/11/10 43649 Pinto/Pariso 80 28900 7920 40020 21.51 367 11/11/10 43649 Pinto/Pariso 80 28900 79200 40020 21.37 367 11/11/10 43649 Pinto/Pariso 80 28900 72000 40040 21.37 367 11/11/10 43649 Pinto/Pariso 80 28900 72000 40040 22.37 368 11/11/10 43649 Pinto/Pariso 80 28900 72080 43180 21.59 368 11/11/10 43649 Pinto/Pariso 80 28900 72080 43180 21.59 369 11/11/10 43649 Pinto/Pariso 80 28900 72080 43180 21.59 370 11/11/10 43649 Pinto/Pariso 80 28900 72080 43180 21.59 371 11/11/10 43649 Pinto/Pariso 80 28900 6820 39380 19.69 372 11/11/10 43649 Pinto/Pariso 80 28900 6820 39380 19.69 373 11/11/10 43649 Pinto/Pariso 80 28900 6820 39380 19.69 374 11/11/10 43649 Pinto/Pariso 80 28900 6820 39380 19.69 375 11/11/10 43649 Pinto/Pariso 80 28900 6820 39380 19.69 376 11/11/10 43649 Pinto/Pariso 80 28900 6820 39380 19.69 377 11/11/10 43649 Pinto/Pariso 80 28900 6820 39380 19.69 378 11/11/10 43649 Pinto/Pariso 2 26640 70720 44080 22.04 378 11/11/10 43649 Pinto/Pariso 2 26640 70720 44080 22.04 378 11/11/10 43649 Pinto/Pariso 2 26640 70720 44080 22.04			43649						
355 11/11/10 43649 Pinto/Pariso 24 24980 60560 35580 17.79 356 11/11/10 43649 Pinto/Pariso 24 24980 61000 36020 18.01 357 11/11/10 43649 Pinto/Pariso 24 24980 61000 36020 18.01 358 11/11/10 43649 Pinto/Pariso 24 24980 60900 35920 17.96 359 11/11/10 43649 Pinto/Pariso 24 24980 6900 35920 17.96 359 11/11/10 43649 Pinto/Pariso 24 24980 6900 35920 17.96 360 11/11/10 43649 Pinto/Pariso 24 24980 64260 39280 19.64 361 11/11/10 43649 Pinto/Pariso 24 24980 59560 34560 17.29 362 11/11/10 43649 Pinto/Pariso 24 24980 59340 34360 17.18 362 11/11/10 43649 Pinto/Pariso 80 28900 74480 45580 22.79 363 11/11/10 43649 Pinto/Pariso 80 28900 74920 43020 27.51 364 11/11/10 43649 Pinto/Pariso 80 28900 77920 43020 21.51 365 11/11/10 43649 Pinto/Pariso 80 28900 69760 40860 20.43 365 11/11/10 43649 Pinto/Pariso 80 28900 77760 42860 21.43 366 11/11/10 43649 Pinto/Pariso 80 28900 77600 40860 20.43 365 11/11/10 43649 Pinto/Pariso 80 28900 77060 4360 21.53 367 11/11/10 43649 Pinto/Pariso 80 28900 77060 43180 21.59 368 11/11/10 43649 Pinto/Pariso 80 28900 72000 43100 21.55 368 11/11/10 43649 Pinto/Pariso 80 28900 72000 43100 21.55 369 11/11/10 43649 Pinto/Pariso 80 28900 73000 43100 21.55 370 11/11/10 43649 Pinto/Pariso 80 28900 73000 43100 21.55 371 11/11/10 43649 Pinto/Pariso 80 28900 73000 43100 21.55 372 11/11/10 43649 Pinto/Pariso 80 28900 73000 43100 21.55 373 11/11/10 43649 Pinto/Pariso 80 28900 73000 43100 21.55 374 11/11/10 43649 Pinto/Pariso 80 28900 73340 47840 22.31 375 11/11/10 43649 Pinto/Pariso 80 28900 73340 47840 22.31 375 11/11/10 43649 Pinto/Pariso 80 28900 73340 47840 22.33 374 11/11/10 43649 Pinto/Pariso 80 28900 73600 43600 22.64 375 11/11/10 43649 Pinto/Pariso 2 26640 70720 44080 22.64 377 11/11/10 43649 Pinto/Pariso 2 26640 70720 45080 22.54 377 11/11/10 43649 Pinto/Pariso 2 26640 70720 45080 22.54 378 11/11/10 43649 Pinto/Pariso 2 26640 70720 45080 22.64 382 11/11/10 43649 Pinto/Pariso 75 25900 68400 3300 21.53 388 11/11/10 43649 Pinto/Pariso 75 25900 68600 41420 20.71 389 11/11/10 43649 Pinto/Pariso 75 25900 68600 2					24			35660	17.83
355 11/11/10 43649 Pinto/Pariso 24 24980 60560 35580 17.79 356 11/11/10 43649 Pinto/Pariso 24 24980 61000 34360 17.18 357 11/11/10 43649 Pinto/Pariso 24 24980 61000 36020 18.01 358 11/11/10 43649 Pinto/Pariso 24 24980 60900 35920 17.96 359 11/11/10 43649 Pinto/Pariso 24 24980 60900 35920 17.96 359 11/11/10 43649 Pinto/Pariso 24 24980 64260 39280 19.64 361 11/11/10 43649 Pinto/Pariso 24 24980 64260 39280 19.64 361 11/11/10 43649 Pinto/Pariso 24 24980 59340 34380 17.29 362 11/11/10 43649 Pinto/Pariso 24 24980 59340 34380 17.18 362 11/11/10 43649 Pinto/Pariso 80 28900 74480 45580 22.79 363 11/11/10 43649 Pinto/Pariso 80 28900 74920 43020 21.51 364 11/11/10 43649 Pinto/Pariso 80 28900 69760 40860 20.43 365 11/11/10 43649 Pinto/Pariso 80 28900 69760 40860 20.43 365 11/11/10 43649 Pinto/Pariso 80 28900 71760 42860 21.43 366 11/11/10 43649 Pinto/Pariso 80 28900 71600 40860 20.43 366 11/11/10 43649 Pinto/Pariso 80 28900 71600 42860 21.43 367 11/11/10 43649 Pinto/Pariso 80 28900 72000 43180 21.59 368 11/11/10 43649 Pinto/Pariso 80 28900 72000 43100 21.55 368 11/11/10 43649 Pinto/Pariso 80 28900 72000 43100 21.55 369 11/11/10 43649 Pinto/Pariso 80 28900 73520 44620 22.31 370 11/11/10 43649 Pinto/Pariso 80 28900 73000 43100 21.55 371 11/11/10 43649 Pinto/Pariso 80 28900 73000 43100 21.55 372 11/11/10 43649 Pinto/Pariso 80 28900 73040 4860 22.31 373 11/11/10 43649 Pinto/Pariso 80 28900 73040 4860 22.31 374 11/11/10 43649 Pinto/Pariso 80 28900 73040 4860 22.31 375 11/11/10 43649 Pinto/Pariso 80 28900 73040 4860 22.31 375 11/11/10 43649 Pinto/Pariso 80 28900 73040 4860 22.33 374 11/11/10 43649 Pinto/Pariso 80 28900 73040 4860 22.33 375 11/11/10 43649 Pinto/Pariso 22 26640 70720 44080 22.54 377 11/11/10 43649 Pinto/Pariso 22 26640 70720 45080 22.54 377 11/11/10 43649 Pinto/Pariso 22 26640 70720 45080 22.54 378 11/11/10 43649 Pinto/Pariso 22 26640 70720 45080 22.54 378 11/11/10 43649 Pinto/Pariso 22 26640 70720 44080 22.54 388 11/11/10 43649 Pinto/Pariso 75 25900 6800 41420 20.71 380 11/11/10 43649 Pinto/Pariso 75 25900 6800 4	354	11/11/10	43649	Pinto/Pariso	24	24980	59480	34500	
357 11/11/10 43649 Pinto/Pariso 24 24980 61000 36020 18.01	355		43649	Pinto/Pariso	24	24980	60560	35580	
358 11/11/10 43649 Pinto/Pariso 24 24980 60900 35920 17.96 359 11/11/10 43649 Pinto/Pariso 24 24980 59560 34580 17.29 360 11/11/10 43649 Pinto/Pariso 24 24980 59340 34360 17.18 361 11/11/10 43649 Pinto/Pariso 24 24980 59340 34360 17.18 362 11/11/10 43649 Pinto/Pariso 80 28900 74480 45580 22.79 363 11/11/10 43649 Pinto/Pariso 80 28900 74920 43020 21.51 364 11/11/10 43649 Pinto/Pariso 80 28900 69760 40860 20.43 365 11/11/10 43649 Pinto/Pariso 80 28900 71760 42860 21.43 365 11/11/10 43649 Pinto/Pariso 80 28900 71760 42860 21.43 366 11/11/10 43649 Pinto/Pariso 80 28900 71640 42740 21.37 367 11/11/10 43649 Pinto/Pariso 80 28900 72080 43180 21.59 368 11/11/10 43649 Pinto/Pariso 80 28900 72080 43180 21.59 368 11/11/10 43649 Pinto/Pariso 80 28900 72000 43100 21.55 369 11/11/10 43649 Pinto/Pariso 80 28900 73520 44620 22.31 370 11/11/10 43649 Pinto/Pariso 80 28900 65940 37040 18.52 372 11/11/10 43649 Pinto/Pariso 80 28900 65940 37040 18.52 372 11/11/10 43649 Pinto/Pariso 86 25500 68240 42740 21.37 373 11/11/10 43649 Pinto/Pariso 86 25500 73340 47840 23.92 375 11/11/10 43649 Pinto/Pariso 86 25500 73340 47840 23.92 375 11/11/10 43649 Pinto/Pariso 86 25500 73340 47840 23.92 375 11/11/10 43649 Pinto/Pariso 2 26640 70200 43560 21.78 376 11/11/10 43649 Pinto/Pariso 2 26640 70200 43560 21.78 376 11/11/10 43649 Pinto/Pariso 2 26640 70200 43560 21.78 376 11/11/10 43649 Pinto/Pariso 2 26640 70200 43560 22.54 377 11/11/10 43649 Pinto/Pariso 2 26640 70200 43560 21.78 381 11/11/10 43649 Pinto/Pariso 2 26640 70200 43560 21.78 381 11/11/10 43649 Pinto/Pariso 2 2664		11/11/10		Pinto/Pariso	24		59340	34360	17.18
359 11/11/10 43649 Pinto/Pariso 24 24980 59560 34580 17.29 360 11/11/10 43649 Pinto/Pariso 24 24980 64260 39280 19.64 361 11/11/10 43649 Pinto/Pariso 80 28900 74480 45580 22.79 362 11/11/10 43649 Pinto/Pariso 80 28900 71920 43020 21.51 363 11/11/10 43649 Pinto/Pariso 80 28900 71760 42860 21.43 365 11/11/10 43649 Pinto/Pariso 80 28900 71760 42860 21.43 366 11/11/10 43649 Pinto/Pariso 80 28900 7760 42860 21.43 366 11/11/10 43649 Pinto/Pariso 80 28900 72080 43180 21.59 368 11/11/10 43649 Pinto/Pariso 80 28900 73520 44620			43649						
360 11/11/10 43649 Pinto/Pariso 24 24980 64260 39280 19.64 361 11/11/10 43649 Pinto/Pariso 24 24980 59340 34360 17.18 362 11/11/10 43649 Pinto/Pariso 80 28900 71920 43020 21.51 363 11/11/10 43649 Pinto/Pariso 80 28900 69760 40860 20.43 365 11/11/10 43649 Pinto/Pariso 80 28900 71760 42860 21.43 365 11/11/10 43649 Pinto/Pariso 80 28900 71760 42860 21.43 366 11/11/10 43649 Pinto/Pariso 80 28900 72080 43180 21.59 368 11/11/10 43649 Pinto/Pariso 80 28900 72080 43100 21.55 369 11/11/10 43649 Pinto/Pariso 80 28900 68280 39380 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
361 11/11/10 43649 Pinto/Pariso 24 24980 59340 34360 17.18 362 11/11/10 43649 Pinto/Pariso 80 28900 74480 45580 22.79 363 11/11/10 43649 Pinto/Pariso 80 28900 69760 40860 20.43 365 11/11/10 43649 Pinto/Pariso 80 28900 71760 42860 21.43 366 11/11/10 43649 Pinto/Pariso 80 28900 7160 42860 21.43 366 11/11/10 43649 Pinto/Pariso 80 28900 7160 42740 21.37 367 11/11/10 43649 Pinto/Pariso 80 28900 72000 43100 21.55 369 11/11/10 43649 Pinto/Pariso 80 28900 73520 44620 22.31 370 11/11/10 43649 Pinto/Pariso 80 28900 65940 37040			43649						
362 11/11/10 43649 Pinto/Pariso 80 28900 74480 45580 22.79 363 11/11/10 43649 Pinto/Pariso 80 28900 71920 43020 21.51 364 11/11/10 43649 Pinto/Pariso 80 28900 69760 40860 20.43 365 11/11/10 43649 Pinto/Pariso 80 28900 7160 42860 21.43 366 11/11/10 43649 Pinto/Pariso 80 28900 72080 43180 21.59 368 11/11/10 43649 Pinto/Pariso 80 28900 72080 43180 21.59 369 11/11/10 43649 Pinto/Pariso 80 28900 73520 44620 22.31 370 11/11/10 43649 Pinto/Pariso 80 28900 68280 39380 19.69 371 11/11/10 43649 Pinto/Pariso 80 28900 68240 2374									
363 11/11/10 43649 Pinto/Pariso 80 28900 71920 43020 21.51 364 11/11/10 43649 Pinto/Pariso 80 28900 69760 40860 20.43 365 11/11/10 43649 Pinto/Pariso 80 28900 71640 42740 21.37 366 11/11/10 43649 Pinto/Pariso 80 28900 71640 42740 21.37 367 11/11/10 43649 Pinto/Pariso 80 28900 72080 43180 21.59 368 11/11/10 43649 Pinto/Pariso 80 28900 72000 43100 21.55 369 11/11/10 43649 Pinto/Pariso 80 28900 68280 39380 19.69 371 11/11/10 43649 Pinto/Pariso 80 28900 65940 37040 18.52 372 11/11/10 43649 Pinto/Pariso 86 25500 68240 42740 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
364 11/11/10 43649 Pinto/Pariso 80 28900 69760 40860 20.43 365 11/11/10 43649 Pinto/Pariso 80 28900 71760 42860 21.43 366 11/11/10 43649 Pinto/Pariso 80 28900 71640 42740 21.37 367 11/11/10 43649 Pinto/Pariso 80 28900 72080 43180 21.59 368 11/11/10 43649 Pinto/Pariso 80 28900 72000 43100 21.55 369 11/11/10 43649 Pinto/Pariso 80 28900 73520 44620 22.31 370 11/11/10 43649 Pinto/Pariso 80 28900 68280 39380 19.69 371 11/11/10 43649 Pinto/Pariso 86 25500 68240 42740 21.37 373 11/11/10 43649 Pinto/Pariso 86 25500 73340 47840 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
365 11/11/10 43649 Pinto/Pariso 80 28900 71760 42860 21.43 366 11/11/10 43649 Pinto/Pariso 80 28900 71640 42740 21.37 367 11/11/10 43649 Pinto/Pariso 80 28900 72000 43100 21.59 368 11/11/10 43649 Pinto/Pariso 80 28900 72000 43100 21.55 369 11/11/10 43649 Pinto/Pariso 80 28900 68280 39380 19.69 371 11/11/10 43649 Pinto/Pariso 80 28900 68280 39380 19.69 371 11/11/10 43649 Pinto/Pariso 86 25500 68240 42740 21.37 372 11/11/10 43649 Pinto/Pariso 86 25500 68240 42740 21.37 373 11/11/10 43649 Pinto/Pariso 86 25500 70160 4460									
366 11/11/10 43649 Pinto/Pariso 80 28900 71640 42740 21.37 367 11/11/10 43649 Pinto/Pariso 80 28900 72080 43180 21.59 368 11/11/10 43649 Pinto/Pariso 80 28900 73520 44620 22.31 370 11/11/10 43649 Pinto/Pariso 80 28900 68280 39380 19.69 371 11/11/10 43649 Pinto/Pariso 80 28900 65280 39380 19.69 371 11/11/10 43649 Pinto/Pariso 80 28900 65280 39380 19.69 372 11/11/10 43649 Pinto/Pariso 86 25500 68240 42740 21.37 373 11/11/10 43649 Pinto/Pariso 86 25500 73340 47840 22.33 374 11/11/10 43649 Pinto/Pariso 2 26640 70200 43560									
367 11/11/10 43649 Pinto/Pariso 80 28900 72080 43180 21.59 368 11/11/10 43649 Pinto/Pariso 80 28900 72000 43100 21.55 369 11/11/10 43649 Pinto/Pariso 80 28900 73520 44620 22.31 370 11/11/10 43649 Pinto/Pariso 80 28900 65280 39380 19.69 371 11/11/10 43649 Pinto/Pariso 80 28900 65940 37040 18.52 372 11/11/10 43649 Pinto/Pariso 86 25500 68240 42740 21.37 373 11/11/10 43649 Pinto/Pariso 86 25500 70160 44660 22.33 374 11/11/10 43649 Pinto/Pariso 2 26640 70200 43560 21.78 375 11/11/10 43649 Pinto/Pariso 2 26640 70700 44080									
368 11/11/10 43649 Pinto/Pariso 80 28900 72000 43100 21.55 369 11/11/10 43649 Pinto/Pariso 80 28900 73520 44620 22.31 370 11/11/10 43649 Pinto/Pariso 80 28900 65280 39380 19.69 371 11/11/10 43649 Pinto/Pariso 80 28900 65240 37040 18.52 372 11/11/10 43649 Pinto/Pariso 86 25500 68240 42740 21.37 373 11/11/10 43649 Pinto/Pariso 86 25500 70160 44660 22.33 374 11/11/10 43649 Pinto/Pariso 2 26640 70200 43560 21.78 375 11/11/10 43649 Pinto/Pariso 2 26640 70200 43560 21.78 376 11/11/10 43649 Pinto/Pariso 2 26640 70720 44080									
369 11/11/10 43649 Pinto/Pariso 80 28900 73520 44620 22.31 370 11/11/10 43649 Pinto/Pariso 80 28900 68280 39380 19.69 371 11/11/10 43649 Pinto/Pariso 80 28900 65940 37040 18.52 372 11/11/10 43649 Pinto/Pariso 86 25500 68240 42740 21.37 373 11/11/10 43649 Pinto/Pariso 86 25500 70160 44660 22.33 374 11/11/10 43649 Pinto/Pariso 86 25500 70340 47840 23.92 375 11/11/10 43649 Pinto/Pariso 2 26640 70200 43560 21.78 376 11/11/10 43649 Pinto/Pariso 2 26640 70720 44080 22.04 378 11/11/10 43649 Pinto/Pariso 2 26640 72760 46120									
370 11/11/10 43649 Pinto/Pariso 80 28900 68280 39380 19.69 371 11/11/10 43649 Pinto/Pariso 80 28900 65940 37040 18.52 372 11/11/10 43649 Pinto/Pariso 86 25500 68240 42740 21.37 373 11/11/10 43649 Pinto/Pariso 86 25500 70160 44660 22.33 374 11/11/10 43649 Pinto/Pariso 86 25500 73340 47840 23.92 375 11/11/10 43649 Pinto/Pariso 2 26640 70200 43560 21.78 376 11/11/10 43649 Pinto/Pariso 2 26640 70720 44080 22.04 377 11/11/10 43649 Pinto/Pariso 2 26640 70720 44080 22.04 378 11/11/10 43649 Pinto/Pariso 2 26640 72760 46120									
371 11/11/10 43649 Pinto/Pariso 80 28900 65940 37040 18.52 372 11/11/10 43649 Pinto/Pariso 86 25500 68240 42740 21.37 373 11/11/10 43649 Pinto/Pariso 86 25500 70160 44660 22.33 374 11/11/10 43649 Pinto/Pariso 2 26640 70200 43560 21.78 375 11/11/10 43649 Pinto/Pariso 2 26640 70200 43560 21.78 376 11/11/10 43649 Pinto/Pariso 2 26640 70720 45080 22.54 377 11/11/10 43649 Pinto/Pariso 2 26640 70720 44080 22.04 378 11/11/10 43649 Pinto/Pariso 2 26640 72760 46120 23.06 379 11/11/10 43649 Pinto/Pariso 2 26640 68060 41420									
372 11/11/10 43649 Pinto/Pariso 86 25500 68240 42740 21.37 373 11/11/10 43649 Pinto/Pariso 86 25500 70160 44660 22.33 374 11/11/10 43649 Pinto/Pariso 86 25500 73340 47840 23.92 375 11/11/10 43649 Pinto/Pariso 2 26640 70200 43560 21.78 376 11/11/10 43649 Pinto/Pariso 2 26640 70720 45080 22.54 377 11/11/10 43649 Pinto/Pariso 2 26640 70720 44080 22.04 378 11/11/10 43649 Pinto/Pariso 2 26640 72760 46120 23.06 379 11/11/10 43649 Pinto/Pariso 2 26640 68060 41420 20.71 380 11/11/10 43649 Pinto/Pariso 2 26640 62400 35760					.				
373 11/11/10 43649 Pinto/Pariso 86 25500 70160 44660 22.33 374 11/11/10 43649 Pinto/Pariso 86 25500 73340 47840 23.92 375 11/11/10 43649 Pinto/Pariso 2 26640 70200 43560 21.78 376 11/11/10 43649 Pinto/Pariso 2 26640 70720 44080 22.54 377 11/11/10 43649 Pinto/Pariso 2 26640 70720 44080 22.04 378 11/11/10 43649 Pinto/Pariso 2 26640 72760 46120 23.06 379 11/11/10 43649 Pinto/Pariso 2 26640 68060 41420 20.71 380 11/11/10 43649 Pinto/Pariso 2 26640 62400 35760 17.88 381 11/11/10 43649 Pinto/Pariso 2 26640 75740 49100									
374 11/11/10 43649 Pinto/Pariso 86 25500 73340 47840 23.92 375 11/11/10 43649 Pinto/Pariso 2 26640 70200 43560 21.78 376 11/11/10 43649 Pinto/Pariso 2 26640 71720 45080 22.54 377 11/11/10 43649 Pinto/Pariso 2 26640 70720 44080 22.04 378 11/11/10 43649 Pinto/Pariso 2 26640 72760 46120 23.06 379 11/11/10 43649 Pinto/Pariso 2 26640 68060 41420 20.71 380 11/11/10 43649 Pinto/Pariso 2 26640 62400 35760 17.88 381 11/11/10 43649 Pinto/Pariso 2 26640 7540 49100 24.55 382 11/11/10 43649 Pinto/Pariso 2 26640 75740 49100									
375 11/11/10 43649 Pinto/Pariso 2 26640 70200 43560 21.78 376 11/11/10 43649 Pinto/Pariso 2 26640 71720 45080 22.54 377 11/11/10 43649 Pinto/Pariso 2 26640 70720 44080 22.04 378 11/11/10 43649 Pinto/Pariso 2 26640 72760 46120 23.06 379 11/11/10 43649 Pinto/Pariso 2 26640 68060 41420 20.71 380 11/11/10 43649 Pinto/Pariso 2 26640 62400 35760 17.88 381 11/11/10 43649 Pinto/Pariso 2 26640 71840 45200 22.6 382 11/11/10 43649 Pinto/Pariso 2 26640 75740 49100 24.55 383 11/11/10 43649 Pinto/Pariso 210 25860 74380 48520									
376 11/11/10 43649 Pinto/Pariso 2 26640 71720 45080 22.54 377 11/11/10 43649 Pinto/Pariso 2 26640 70720 44080 22.04 378 11/11/10 43649 Pinto/Pariso 2 26640 72760 46120 23.06 379 11/11/10 43649 Pinto/Pariso 2 26640 68060 41420 20.71 380 11/11/10 43649 Pinto/Pariso 2 26640 62400 35760 17.88 381 11/11/10 43649 Pinto/Pariso 2 26640 71840 45200 22.6 382 11/11/10 43649 Pinto/Pariso 2 26640 75740 49100 24.55 383 11/11/10 43649 Pinto/Pariso 210 25860 74380 48520 24.26 384 11/11/10 43649 Pinto/Pariso 75 25900 64940 39040	375	11/11/10				26640		43560	
378 11/11/10 43649 Pinto/Pariso 2 26640 72760 46120 23.06 379 11/11/10 43649 Pinto/Pariso 2 26640 68060 41420 20.71 380 11/11/10 43649 Pinto/Pariso 2 26640 62400 35760 17.88 381 11/11/10 43649 Pinto/Pariso 2 26640 71840 45200 22.6 382 11/11/10 43649 Pinto/Pariso 2 26640 75740 49100 24.55 383 11/11/10 43649 Pinto/Pariso 210 25860 74380 48520 24.26 384 11/11/10 43649 Pinto/Pariso 75 25900 64940 39040 19.52 385 11/11/10 43649 Pinto/Pariso 75 25900 70140 44240 22.12 387 11/11/10 43649 Pinto/Pariso 75 25900 68400 42500	376			Pinto/Pariso	2	26640		45080	22.54
379 11/11/10 43649 Pinto/Pariso 2 26640 68060 41420 20.71 380 11/11/10 43649 Pinto/Pariso 2 26640 62400 35760 17.88 381 11/11/10 43649 Pinto/Pariso 2 26640 71840 45200 22.6 382 11/11/10 43649 Pinto/Pariso 2 26640 75740 49100 24.55 383 11/11/10 43649 Pinto/Pariso 210 25860 74380 48520 24.26 384 11/11/10 43649 Pinto/Pariso 75 25900 64940 39040 19.52 385 11/11/10 43649 Pinto/Pariso 75 25900 71900 46000 23 386 11/11/10 43649 Pinto/Pariso 75 25900 70140 44240 22.12 387 11/11/10 43649 Pinto/Pariso 75 25900 68400 42500	377	11/11/10	43649	Pinto/Pariso					
380 11/11/10 43649 Pinto/Pariso 2 26640 62400 35760 17.88 381 11/11/10 43649 Pinto/Pariso 2 26640 71840 45200 22.6 382 11/11/10 43649 Pinto/Pariso 2 26640 75740 49100 24.55 383 11/11/10 43649 Pinto/Pariso 210 25860 74380 48520 24.26 384 11/11/10 43649 Pinto/Pariso 75 25900 64940 39040 19.52 385 11/11/10 43649 Pinto/Pariso 75 25900 71900 46000 23 386 11/11/10 43649 Pinto/Pariso 75 25900 70140 44240 22.12 387 11/11/10 43649 Pinto/Pariso 75 25900 68400 42500 21.8 389 11/11/10 43649 Pinto/Pariso 75 25900 69500 43600									
381 11/11/10 43649 Pinto/Pariso 2 26640 71840 45200 22.6 382 11/11/10 43649 Pinto/Pariso 2 26640 75740 49100 24.55 383 11/11/10 43649 Pinto/Pariso 210 25860 74380 48520 24.26 384 11/11/10 43649 Pinto/Pariso 75 25900 64940 39040 19.52 385 11/11/10 43649 Pinto/Pariso 75 25900 71900 46000 23 386 11/11/10 43649 Pinto/Pariso 75 25900 70140 44240 22.12 387 11/11/10 43649 Pinto/Pariso 75 25900 68400 42500 21.25 388 11/11/10 43649 Pinto/Pariso 75 25900 69500 43600 21.8 389 11/11/10 43649 Pinto/Pariso 75 25900 68760 42860									
382 11/11/10 43649 Pinto/Pariso 2 26640 75740 49100 24.55 383 11/11/10 43649 Pinto/Pariso 210 25860 74380 48520 24.26 384 11/11/10 43649 Pinto/Pariso 75 25900 64940 39040 19.52 385 11/11/10 43649 Pinto/Pariso 75 25900 71900 46000 23 386 11/11/10 43649 Pinto/Pariso 75 25900 70140 44240 22.12 387 11/11/10 43649 Pinto/Pariso 75 25900 68400 42500 21.25 388 11/11/10 43649 Pinto/Pariso 75 25900 69500 43600 21.8 389 11/11/10 43649 Pinto/Pariso 75 25900 68760 42860 21.43 390 11/11/10 43649 Pinto/Pariso 75 25900 69620 43720									
383 11/11/10 43649 Pinto/Pariso 210 25860 74380 48520 24.26 384 11/11/10 43649 Pinto/Pariso 75 25900 64940 39040 19.52 385 11/11/10 43649 Pinto/Pariso 75 25900 71900 46000 23 386 11/11/10 43649 Pinto/Pariso 75 25900 70140 44240 22.12 387 11/11/10 43649 Pinto/Pariso 75 25900 68400 42500 21.25 388 11/11/10 43649 Pinto/Pariso 75 25900 69500 43600 21.8 389 11/11/10 43649 Pinto/Pariso 75 25900 68760 42860 21.43 390 11/11/10 43649 Pinto/Pariso 75 25900 69620 43720 21.86 391 11/11/10 43649 Pinto/Pariso 75 25900 69620 43720									
384 11/11/10 43649 Pinto/Pariso 75 25900 64940 39040 19.52 385 11/11/10 43649 Pinto/Pariso 75 25900 71900 46000 23 386 11/11/10 43649 Pinto/Pariso 75 25900 70140 44240 22.12 387 11/11/10 43649 Pinto/Pariso 75 25900 68400 42500 21.25 388 11/11/10 43649 Pinto/Pariso 75 25900 69500 43600 21.8 389 11/11/10 43649 Pinto/Pariso 75 25900 68760 42860 21.43 390 11/11/10 43649 Pinto/Pariso 75 25900 72060 46160 23.08 391 11/11/10 43649 Pinto/Pariso 75 25900 69620 43720 21.86									
385 11/11/10 43649 Pinto/Pariso 75 25900 71900 46000 23 386 11/11/10 43649 Pinto/Pariso 75 25900 70140 44240 22.12 387 11/11/10 43649 Pinto/Pariso 75 25900 68400 42500 21.25 388 11/11/10 43649 Pinto/Pariso 75 25900 69500 43600 21.8 389 11/11/10 43649 Pinto/Pariso 75 25900 68760 42860 21.43 390 11/11/10 43649 Pinto/Pariso 75 25900 72060 46160 23.08 391 11/11/10 43649 Pinto/Pariso 75 25900 69620 43720 21.86									
386 11/11/10 43649 Pinto/Pariso 75 25900 70140 44240 22.12 387 11/11/10 43649 Pinto/Pariso 75 25900 68400 42500 21.25 388 11/11/10 43649 Pinto/Pariso 75 25900 69500 43600 21.8 389 11/11/10 43649 Pinto/Pariso 75 25900 68760 42860 21.43 390 11/11/10 43649 Pinto/Pariso 75 25900 72060 46160 23.08 391 11/11/10 43649 Pinto/Pariso 75 25900 69620 43720 21.86									
387 11/11/10 43649 Pinto/Pariso 75 25900 68400 42500 21.25 388 11/11/10 43649 Pinto/Pariso 75 25900 69500 43600 21.8 389 11/11/10 43649 Pinto/Pariso 75 25900 68760 42860 21.43 390 11/11/10 43649 Pinto/Pariso 75 25900 72060 46160 23.08 391 11/11/10 43649 Pinto/Pariso 75 25900 69620 43720 21.86									
388 11/11/10 43649 Pinto/Pariso 75 25900 69500 43600 21.8 389 11/11/10 43649 Pinto/Pariso 75 25900 68760 42860 21.43 390 11/11/10 43649 Pinto/Pariso 75 25900 72060 46160 23.08 391 11/11/10 43649 Pinto/Pariso 75 25900 69620 43720 21.86									
389 11/11/10 43649 Pinto/Pariso 75 25900 68760 42860 21.43 390 11/11/10 43649 Pinto/Pariso 75 25900 72060 46160 23.08 391 11/11/10 43649 Pinto/Pariso 75 25900 69620 43720 21.86		11/11/10	43049						
390 11/11/10 43649 Pinto/Pariso 75 25900 72060 46160 23.08 391 11/11/10 43649 Pinto/Pariso 75 25900 69620 43720 21.86									
391 11/11/10 43649 Pinto/Pariso 75 25900 69620 43720 21.86									
									
	392	11/11/10		Pinto/Pariso	75	25900	67240	41340	20.67

Table 3 Imported Backfill Sources and Quantities Area C - Final Engineering Report

Land No.	Data	OSC Ticket	Source /	Truck Number /	Tare	Canan	Net	Ton
Load No.	Date	No.	Transporter	Ticket	Weight	Gross	Net	Ton
393	11/11/10	43649	Pinto/Pariso	75	25900	62300	36400	18.2
394	11/11/10	43649	Pinto/Pariso	1	28600	71100	42500	21.25
395	11/11/10	43649	Pinto/Pariso	1	28600	66000 76620	37400	18.7
396 397	11/11/10 11/11/10	43649 43649	Pinto/Pariso Pinto/Pariso	1	28600 28600	74660	48020 46060	24.01 23.03
398	11/11/10	43649	Pinto/Pariso	1	28600	74100	45500	22.75
399	11/11/10	43649	Pinto/Pariso	1 1	28600	73860	45260	22.63
400	11/11/10	43649	Pinto/Pariso	1	28600	74940	46340	23.17
401	11/11/10	43649	Pinto/Pariso	1	28600	72240	43640	21.82
402	11/11/10	43649	Pinto/Pariso	1	28600	69980	41380	20.69
403	11/11/10	43649	Pinto/Pariso	1	28600	74120	45520	22.76
404	11/11/10	43649	Pinto/Pariso	85	25960	59300	33340	16.67
405	11/11/10	43649	Pinto/Pariso	85	25960	60560	34600	17.3
406	11/11/10	43649	Pinto/Pariso	85	25960	63640	37680	18.84
407	11/11/10	43649	Pinto/Pariso	85	25960	58540	32580	16.29
408	11/11/10 11/11/10	43649 43649	Pinto/Pariso Pinto/Pariso	85 85	25960 25960	61280 66280	35320 40320	17.66 20.16
410	11/11/10	43649	Pinto/Pariso	85	25960	67140	41180	20.59
411	11/11/10	43649	Pinto/Pariso	85	25960	63400	37440	18.72
412	11/11/10	43649	Pinto/Pariso	85	25960	62280	36320	18.16
413	11/11/10	43649	Pinto/Pariso	85	25960	64160	38200	19.1
414	11/11/10	43649	Pinto/Pariso	85	25960	61740	35780	17.89
415	11/11/10	43649	Pinto/Pariso	90	28820	68020	39200	19.6
416	11/11/10	43649	Pinto/Pariso	90	28820	68800	39980	19.99
417	11/11/10	43649	Pinto/Pariso	90 .	28820	71080	42260	21.13
418	11/11/10	43649	Pinto/Pariso	90	28820	71380	42560	21.28
419	11/11/10	43649	Pinto/Pariso	90	28820	72200	43380	21.69
420	11/11/10	43649	Pinto/Pariso	90	28820	62760	33940	16.97
421	11/11/10	43649	Pinto/Pariso	90	28820	72660	43840	21.92
422 423	11/11/10 11/11/10	43649 43649	Pinto/Pariso Pinto/Pariso	90	28820 28820	74400 76240	45580 47420	22.79 23.71
424	11/11/10	43649	Pinto/Pariso	90	28820	70400	41580	20.79
425	11/11/10	43649	Pinto/Pariso	24	28900	74480	45580	22.79
426	11/11/10	43649	Pinto/Pariso	24	28900	64580	35680	17.84
427	11/11/10	43649	Pinto/Pariso	24	28900	67900	39000	19.5
428	11/11/10	43649	Pinto/Pariso	24	28900	65160	36260	18.13
429	11/11/10	43649	Pinto/Pariso	24	28900	70580	41680	20.84
430	11/11/10	43649	Pinto/Pariso	24	28900	67500	38600	19.3
431	11/11/10	43649	Pinto/Pariso	24	28900	66960	38060	19.03
432	11/11/10	43649	Pinto/Pariso	24	28900	67220	38320	19.16
433	11/11/10	43649	Pinto/Pariso	24	28900	71260	42360	21.18
434 435	11/11/10 11/11/10	43649 43649	Pinto/Pariso Pinto/Pariso	24	28900 28900	71400 70480	42500 41580	21.25 20.79
436	11/11/10	43649	Pinto/Pariso	24	28900	61580	32680	16.34
437	11/12/10	43547	Pinto/Pariso	2	26640	69260	42620	21.32
438	11/12/10	43547	Pinto/Pariso	2	26640	68740	42100	21.06
439	11/12/10	43547	Pinto/Pariso	2	26640	73440	46800	23.4
440	11/12/10	43547	Pinto/Pariso	2	26640	75080	48440	24.22
441	11/12/10	43547	Pinto/Pariso	2	26640	76280	49640	24.82
442	11/12/10	43547	Pinto/Pariso	2	26640	81580	54940	27.46
443	11/12/10	43547	Pinto/Pariso	2	26640	77140	50500	25.24
444	11/12/10	43547	Pinto/Pariso	2	26640	77000	50360	25.18
445	11/12/10	43547	Pinto/Pariso	2	26640	75740	49100	24.56
446	11/12/10 11/12/10	43547	Pinto/Pariso	2	26640 28600	80120 70920	53480 42320	26.74 21.16
447 448	11/12/10	43547 43547	Pinto/Pariso Pinto/Pariso	1 1	28600	69800	41200	20.6
449	11/12/10	43547	Pinto/Pariso	1	28600	72120	43520	21.76
450	11/12/10	43547	Pinto/Pariso	 	28600	75600	47000	23.5
451	11/12/10	43547	Pinto/Pariso	1	28600	77240	48640	24.32
452	11/12/10	43547	Pinto/Pariso	1	28600	81040	52440	26.22
453	11/12/10	43547	Pinto/Pariso	1	28600	76740	48140	24.08
454	11/12/10	43547	Pinto/Pariso	1	28600	79060	50460	25.24
455	11/12/10	43547	Pinto/Pariso	1	28600	76560	47960	23.98
456	11/12/10	43547	Pinto/Pariso	22	28640	68140	39500	19.76
457	11/12/10	43547	Pinto/Pariso	22	28640	67200	38560	19.28
458	11/12/10	43547	Pinto/Pariso	22	28640	63500	34860	17.44
459	11/12/10	43547	Pinto/Pariso	22	28640	70280	41640	20.82

Table 3 Imported Backfill Sources and Quantities Area C - Final Engineering Report

		OSC Ticket	Source /	Truck Number /	Tare	1		
Load No.	Date	No.	Transporter	Ticket	Weight	Gross	Net	Ton
460	11/12/10	43547		22	28640	73600	44960	22.48
			Pinto/Pariso					
461	11/12/10		Pinto/Pariso	22	28640	67540	38900	19.44
462	11/12/10		Pinto/Pariso	22	28640	70980	42340	21.28
463	11/12/10		Pinto/Pariso	22	28640	68220	39580	19.8
464	11/12/10		Pinto/Pariso	22	28640	74280	45640	22.82
465	11/12/10		Pinto/Pariso	21	27320	66080	38760	19.38
466	11/12/10		Pinto/Pariso	21	27320	67060	39740	19.87
467	11/12/10	43547	Pinto/Pariso	21	27320	69280	41960	20.98
468	11/12/10		Pinto/Pariso	21	27320	70980	43660	21.84
469	11/12/10	43547	Pinto/Pariso	21	27320	69180	41860	20.94
470	11/12/10	43547	Pinto/Pariso	21	27320	71580	44260	22.12
471	11/12/10		Pinto/Pariso	21	27320	69640	42320	21.16
472								
	11/12/10		Pinto/Pariso	21	27320	66440	37820	18.92
473	11/12/10		Pinto/Pariso	21	27320	63580	36260	18.12
474	11/12/10		Pinto/Pariso	90	28820	70180	41360	20.68
475	11/12/10	43547	Pinto/Pariso	90	28820	68680	39860	19.92
476	11/12/10	43547	Pinto/Pariso	90	28820	68240	39420	19.72
477	11/12/10	43547	Pinto/Pariso	90	28820	69800	40980	20.5
478	11/12/10	43547	Pinto/Pariso	90	28820	71040	42220	21.12
479	11/12/10		Pinto/Pariso	90	28820	70800	41980	20.978
480	11/12/10	43547	Pinto/Pariso	90	28820	73580	44760	22.38
481	11/12/10	43547	Pinto/Pariso	90	28820	71960	43140	21.58
482	11/12/10	43547	Pinto/Pariso	90	28820	69460	40640	20.32
483	11/12/10	43547	Pinto/Pariso	90	28820	72940	44120	22.06
484	11/12/10	43547	Pinto/Pariso_	186	25600	65540	39940	19.96
485	11/12/10		Pinto/Pariso	186	25600	64320	38720	19.36
486	11/12/10		Pinto/Pariso	186	25600	67400	41800	20.9
487	11/12/10		Pinto/Pariso	186	25600	68460	42860	21.44
488	11/12/10	43547	Pinto/Pariso	18	28540	66920	38380	19.2
489	11/12/10	43547	Pinto/Pariso	18	28540	68400	39860	19.92
490	11/12/10	43547	Pinto/Pariso	18	28540	71180	42640	21.32
491	11/12/10	43547	Pinto/Pariso	18	28540	70680	42140	21.06
492	11/12/10	43547	Pinto/Pariso	18	28540	68620	40080	20.04
493	11/12/10		Pinto/Pariso	18	28540	69380	40840	20.42
				18		73920	45380	22.68
494	11/12/10	43547	Pinto/Pariso		28540			
495	11/12/10	43547	Pinto/Pariso	18	28540	69480	40600	20.48
496	11/12/10	43547	Pinto/Pariso	6	27740	77940	50200	25.1
497	11/12/10	43547	Pinto/Pariso	6	27740	74680	46940	23.46
498	11/12/10	43547	Pinto/Pariso	6	27740	68360	40620	20.3
499	11/12/10	43547	Pinto/Pariso	6	27740	74180	46440	23.22
500	11/12/10	43547	Pinto/Pariso	6	27740	76460	48720	24.36
501	11/12/10	43547	Pinto/Pariso	6	27740	78140	50400	25.2
502	11/12/10		Pinto/Pariso	6	27740	79380	51640	25.82
503	11/12/10	43547	Pinto/Pariso	6	27740	80060	53230	26.16
504	11/12/10	43547	Pinto/Pariso	6	27740	71320	34580	21.78
-					27740	70760	43020	
505	11/12/10		Pinto/Pariso	6	28940			21.52
506	11/12/10		Pinto/Pariso	80		66760	37820	18.92
507	11/12/10		Pinto/Pariso	80	28940	68460	39520	19.76
508	11/12/10		Pinto/Pariso	80	28940	67860	38920	19.46
509	11/12/10		Pinto/Pariso	80	28940	68380	39440	19.72
510	11/12/10		Pinto/Pariso	80	28940	70180	41240	20.62
511	11/12/10	43547	Pinto/Pariso	80	28940	78180	49240	24.62
512	11/12/10		Pinto/Pariso	80	28940	78420	49480	24.74
513	11/12/10		Pinto/Pariso	80	28940	66840	37540	18.78
514	11/12/10		Pinto/Pariso	80	28640	70020	41380	20.7
515	11/12/10		Pinto/Pariso	20	28620	61940	33320	16.66
516	11/12/10		Pinto/Pariso	20	28620	69660	41040	20.52
517	11/12/10		Pinto/Pariso	20	28620	69340	40720	20.36
	11/12/10			20		68620	40000	20.30
518			Pinto/Pariso		28620			
519	11/12/10		Pinto/Pariso	20	28620	72820	44200	22.1
520	11/12/10		Pinto/Pariso	20	28620	66680	38060	19.04
521	11/12/10		Pinto/Pariso	20	28620	73080	44464	22.24
522	11/12/10	43547	Pinto/Pariso	20	28620	68200	39580	19.8
523	11/12/10		Pinto/Pariso	20	28620	71260	42640	21.32
524	11/12/10		Pinto/Pariso	75	25980	65160	39180	19.58
525	11/12/10		Pinto/Pariso	75	25980	68000	42020	21.02
526	11/12/10		Pinto/Pariso	75	25980	64700	38720	19.36
<u> </u>		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				. 54,50	10,50	, 0.00

Table 3 Imported Backfill Sources and Quantities Area C - Final Engineering Report

Load No.	Date	OSC Ticket	Source /	Truck Number /		Gross	Net	Ton
		No.	Transporter	Ticket	Weight	71260		22.64
527 528	11/12/10 11/12/10	43547 43547	Pinto/Pariso Pinto/Pariso	75 75	25980 25980	75280	45280 49300	24.66
529	11/12/10	43547	Pinto/Pariso	75	25980	63920	37940	18.96
530	11/12/10	43547	Pinto/Pariso	75	25980	73100	47120	23.56
531	11/12/10	43547	Pinto/Pariso	75	25680	72440	46760	23.38
532	11/12/10	43547	Pinto/Pariso	75	25980	63780	37800	18.9
533	11/12/10	43547	Pinto/Pariso	85	25800	59920	34120	17.06
534	11/12/10	43547	Pinto/Pariso	85	25800	54980	29180	14.6
535	11/12/10	43547	Pinto/Pariso	85	25800	61060	35260	17.62
536 537	11/12/10 11/12/10	43547 43547	Pinto/Pariso	85 85	25800 25800	66780 64900	40980 39100	20.5 19.56
538	11/12/10	43547	Pinto/Pariso Pinto/Pariso	85	25800	61120	35320	17.66
539	11/12/10	43547	Pinto/Pariso	85	25800	55740	29940	14.98
540	11/12/10	43547	Pinto/Pariso	85	25800	65180	39380	19.7
541	11/12/10	43547	Pinto/Pariso	85	25800	64220	38420	19.22
542	11/12/10	43547	Pinto/Pariso	21	N/A	N/A	N/A	19.26
543	11/12/10	43547	Pinto/Pariso	21	N/A	N/A	N/A	23.27
544	11/12/10	43547	Pinto/Pariso	21	N/A	N/A	N/A	24.25
545	11/12/10	43547	Pinto/Pariso	107	25640	75120	49480	24.76
546 547	11/12/10 11/12/10	43547 43547	Pinto/Pariso	107 107	25640 25640	71520 73360	45880 47720	22.94 23.86
547	11/12/10	43547	Pinto/Pariso Pinto/Pariso	107	25640	73360 78860	53220	26.62
549	11/12/10	43547	Pinto/Pariso	107	25640	75280	49640	24.82
550	11/12/10	43547	Pinto/Pariso	107	25640	76020	50380	25.2
551	11/13/10		Pinto/Pariso	15	26500	82920	56420	28.22
552	11/13/10		Pinto/Pariso	15	26500	68300	41800	20.9
553	11/13/10		Pinto/Pariso	15	26500	81420	54920	27.46
554	11/13/10		Pinto/Pariso	15	26500	83320	56820	28.4
555	11/13/10		Pinto/Pariso	15	26500	78700	52200	26.1
556 557	11/13/10		Pinto/Pariso	15 15	26500	77560 77640	51060	25.52
558	11/13/10 11/13/10		Pinto/Pariso Pinto/Pariso	102 1	26500 25800	64800	51140 39000	25.56 19.5
559	11/13/10		Pinto/Pariso	102	25800	64540	38740	19.36
560	11/13/10		Pinto/Pariso	102	25800	73680	47880	23.96
561	11/13/10		Pinto/Pariso	102	25800	79640	53840	26.94
562	11/13/10		Pinto/Pariso	102	25800	76160	50360	25.18
563	11/13/10		Pinto/Pariso	102	25800	71240	45440	22.72
564	11/13/10		Pinto/Pariso	102	25800	74540	48740	24.38
565	11/13/10		Pinto/Pariso	60	26400	75760	49360	24.68
566	11/13/10		Pinto/Pariso	60	26400 26400	74640	48240	24.12
567 568	11/13/10 11/13/10		Pinto/Pariso Pinto/Pariso	60 60	26400	84320 75940	57920 49540	28.96 24.78
569	11/13/10		Pinto/Pariso	60	26400	75500	49100	24.76
570	11/13/10		Pinto/Pariso	60	26400	78060	51660	25.82
571	11/13/10		Pinto/Pariso	60	26400	76180	49780	24.88
572	11/13/10		Pinto/Pariso	56	26800	72940	46140	23.08
573	11/13/10		Pinto/Pariso	56	26800	68720	41920	20.96
574	11/13/10		Pinto/Pariso	56	26800	82540	55740	27.86
575	11/13/10		Pinto/Pariso	56	26800	79060	52260	26.12
576	11/13/10		Pinto/Pariso	56 56	26800	69140	42340	21.16
577 578	11/13/10 11/13/10		Pinto/Pariso Pinto/Pariso	56 56	26800 26800	72280 72880	45480 46080	22.74 23.04
579	11/13/10		Pinto/Pariso	14	26100	76020	49920	24.96
580	11/13/10		Pinto/Pariso	14	26100	80260	54160	27.08
581	11/13/10		Pinto/Pariso	14	26100	81860	55760	27.88
582	11/13/10		Pinto/Pariso	14	26100	85240	59140	29.58
583	11/13/10		Pinto/Pariso	14	26100	81640	55540	27.78
584	11/13/10		Pinto/Pariso	14	26100	76940	50840	25.42
585	11/13/10		Pinto/Pariso	14	26100	78840	52740	26.36
586	11/13/10		Pinto/Pariso	14	26100	77660	51560	25.78
587	11/13/10		Pinto/Pariso	1	27300	68500	41200	20.6
588 589	11/13/10 11/13/10		Pinto/Pariso Pinto/Pariso	1 1	27300 27300	84180 75400	56880 48100	28.44 24.04
590	11/13/10		Pinto/Pariso	1	27300	80280	52980	26.5
				1	27300	77080	49780	24.88
591	11/13/10		PINTO/Pariso		2/300			
591 592	11/13/10 11/13/10		Pinto/Pariso Pinto/Pariso	1	27300	76340	49040	24.52

Table 3 Imported Backfill Sources and Quantities Area C - Final Engineering Report

		OSC Ticket	Source /	Truck Number /	Tare			
Load No.	Date	No.	Transporter	Ticket	Weight	Gross	Net	Ton
594	11/13/10		Pinto/Pariso	9	26920	64580	37660	18.82
595	11/13/10		Pinto/Pariso	9	26920	81740	45820	27.4
596	11/13/10		Pinto/Pariso	9	26920	75940	49020	24.52
597	11/13/10		Pinto/Pariso	9	26920	75540	48620	24.32
598 599	11/13/10 11/13/10		Pinto/Pariso	9	26920 26920	75920 72600	49000 45680	24.5
600	11/13/10		Pinto/Pariso Pinto/Pariso	9	26920	88500	61580	22.84 30.8
601	11/13/10		Pinto/Pariso	13	26700	66500	39200	19.9
602	11/13/10		Pinto/Pariso	13	26700	80460	55540	27.7
603	11/13/10		Pinto/Pariso	13	26700	83460	56760	28.38
604	11/13/10		Pinto/Pariso	13	26700	79300	52600	26.3
605	11/13/10		Pinto/Pariso	13	26700	74880	48180	24.1
606	11/13/10		Pinto/Pariso	13	26700	75640	48940	24.48
607	11/13/10		Pinto/Pariso	13	26700	80380	53680	26.84
608	11/13/10		Pinto/Pariso	13	25400	74180	48780	24.38
609	11/13/10		Pinto/Pariso	13	25400	72480	47080	23.54
610	11/13/10		Pinto/Pariso	13	25400	74660	49260	24.64
611	11/13/10		Pinto/Pariso	13	25400	76340	50940	25.48
612 613	11/13/10 11/13/10		Pinto/Pariso Pinto/Pariso	13 13	25400 25400	70400 73020	45000 47620	22.5
614	11/13/10		Pinto/Pariso Pinto/Pariso	13	25400	73020	48080	23.82 24.84
615	11/13/10		Pinto/Pariso	32	28100	69480	41480	20.74
616	11/13/10		Pinto/Pariso	32	28100	75500	47500	23.76
617	11/13/10		Pinto/Pariso	32	28100	74520	46420	23.22
618	11/13/10		Pinto/Pariso	32	28100	73720	45620	22.8
619	11/13/10		Pinto/Pariso	32	28100	72780	44680	22.34
620	11/13/10		Pinto/Pariso	32	28100	77760	49660	24.84
621	11/13/10		Pinto/Pariso	32	28100	80620	52520	26.26
622	11/13/10		Pinto/Pariso	2	26640	66480	39840	19.92
623	11/13/10		Pinto/Pariso	2	26640	72840	46200	23.1
624	11/13/10		Pinto/Pariso	2	26640	76500	49860	24.94
625	11/13/10		Pinto/Pariso	2	26640	75540	48900	24.44
626	11/13/10		Pinto/Pariso	2	26640	73180	46540	23.26
627 628	11/13/10 11/13/10		Pinto/Pariso Pinto/Pariso	2	26640 26640	75040 74060	48400 47420	24.2 23.72
629	11/13/10		Pinto/Pariso	1	28600	65860	37260	18.62
630	11/13/10		Pinto/Pariso	1	28600	73480	44880	22.44
631	11/13/10		Pinto/Pariso	1	28600	74400	45800	22.9
632	11/13/10		Pinto/Pariso	1	28600	72500	43900	21.94
633	11/13/10		Pinto/Pariso	1	28600	71700	43100	21.54
634	11/13/10		Pinto/Pariso	1	28600	76560	47960	23.98
635	11/13/10		Pinto/Pariso	1	28600	76260	47660	23.82
636	11/15/10	42845	Pinto/Pariso	85	25520	59660	34140	17.07
637	11/15/10	42846	Pinto/Pariso	A-40	23660	67920	44260	22.13
638	11/15/10		Pinto/Pariso	90	28820	73640	44820	22.41
639	11/15/10	42848	Pinto/Pariso	200	24800	72900	48100	24.05
640	11/15/10	42849 42850	Pinto/Pariso	13	25400	67860	42460	21.23 20.41
641 642	11/15/10 11/15/10		Pinto/Pariso Pinto/Pariso	9 200	26000 24800	66820 64720	40820 39920	19.96
643	11/15/10		Pinto/Pariso Pinto/Pariso	13	25400	65540	40140	20.07
644	11/15/10		Pinto/Pariso	21	25500	65560	40060	20.07
645	11/15/10		Pinto/Pariso	16	25500	66520	41020	20.51
646	11/15/10		Pinto/Pariso	200	24800	66200	41400	20.7
647	11/15/10		Pinto/Pariso	10	28000	69960	41960	20.98
648	11/15/10	42885	Pinto/Pariso	A-40	23660	58840	35180	17.59
649	11/15/10	42886	Pinto/Pariso	13	25400	49720	24320	12.16
650	11/15/10		Pinto/Pariso	9	26000	65720	39720	19.86
651	11/15/10		Pinto/Pariso	21	25500	71660	46160	23.08
652	11/15/10	42889	Pinto/Pariso	16	25500	74720	49220	24.61
653	11/15/10	42890	Pinto/Pariso	10	28000	71540	43540	21.77
654	11/15/10	42891	Pinto/Pariso	A-40	25660	68160	42500	21.25
655	11/15/10	42892	Pinto/Pariso	90	28820	71760	42940	21.47
656	11/15/10		Pinto/Pariso	200	24800	76700	51900	25.95
657	11/15/10	42894	Pinto/Pariso	13	28400	73780	45380	22.69
658 659	11/15/10		Pinto/Pariso	9	26000	69020	43020	21.51
660	11/15/10	42896 42897	Pinto/Pariso	21 16	25500	77820 78860	52320 53360	26.16
UOU	11/15/10	42897	Pinto/Pariso	16	25500	78860	53360	26.68

Table 3 Imported Backfill Sources and Quantities Area C - Final Engineering Report

		OCO Tistist	0	IT- al. Ni ash as /	T		, 	
Load No.	Date	OSC Ticket	Source /	Truck Number /		Gross	Net	Ton
	44/45/40	No.	Transporter	Ticket	Weight	07440	504.40	
661	11/15/10	42898	Pinto/Pariso	10	28000	87140	59140	29.57
662	11/15/10	42899	Pinto/Pariso	75	25980	78040	52060	26.03
663	11/15/10	42900	Pinto/Pariso	80	28900	73360	44460	22.23
664	11/15/10	43051	Pinto/Pariso	21	25500	84520	59020	29.51
665	11/15/10	43052	Pinto/Pariso	16	25500	84980	59480	29.74
666	11/15/10	43053	Pinto/Pariso	10	28800	83970	55170	27.585
667	11/15/10	43054	Pinto/Pariso	80	28900	69360	40460	20.23
668	11/15/10	43055	Pinto/Pariso	85	25520	59720	34200	17.1
669	11/15/10	43056	Pinto/Pariso	A-40	23660	69480	45820	22.91
670	11/15/10	43057	Pinto/Pariso	90	28820	72680	43860	21.93
671	11/15/10	43058	Pinto/Pariso	75	25980	78020	52040	26.02
672	11/15/10	43059	Pinto/Pariso	200	24800	70760	45960	22.98
673	11/15/10	43060	Pinto/Pariso	13	25400	72540	47140	23.57
674	11/15/10	43061	Pinto/Pariso	9	26000	67440	41440	20.72
675	11/15/10	43062	Pinto/Pariso	80	28900	71560	42660	21.33
676	11/15/10	43063	Pinto/Pariso	85	25520	60820	35300	17.65
677	11/15/10	43064	Pinto/Pariso	A-40	23660	66400	42740	21.37
678	11/15/10	43065	Pinto/Pariso	90	28820	72420	43600	21.8
679	11/15/10	43066		75	25980			
		43066	Pinto/Pariso			78300	52320	26.16
680	11/15/10		Pinto/Pariso	200	24800	72640	47840	23.92
681	11/15/10	43068	Pinto/Pariso	13	25400	71700	46300	23.15
682	11/15/10	43069	Pinto/Pariso	9	26000	71720	45720	22.86
683	11/15/10	43070	Pinto/Pariso	80	28900	72920	44020	22.01
684	11/15/10	43071	Pinto/Pariso	85	25520	59360	33840	16.92
685	11/15/10	43072	Pinto/Pariso	A-40	23660	70300	46640	23.32
686	11/15/10	43073	Pinto/Pariso	90	28820	76060	47240	23.62
687	11/15/10	43074	Pinto/Pariso	75	25980	76900	50920	25.46
688	11/15/10	43075	Pinto/Pariso	200	24800	74940	50140	25.07
689	11/15/10	43076	Pinto/Pariso	13	25400	75640	50240	25.12
690	11/15/10	43077	Pinto/Pariso	9	26000	68860	42860	21.43
691	11/15/10	43078	Pinto/Pariso	80	28900	76140	47240	23.62
692	11/15/10	43079	Pinto/Pariso	85	25520	62060	36540	18.27
693	11/15/10	43080	Pinto/Pariso	A-40	23660	73060	49400	24.7
694	11/15/10	43081	Pinto/Pariso	90	28820	76020	47200	23.6
695	11/15/10	43082	Pinto/Pariso	75	25980	81100	55120	27.56
696	11/15/10	43083	Pinto/Pariso	200	24800	72160	47360	23.68
697	11/15/10	43084	Pinto/Pariso	13	25400	70140	44740	22.37
698	11/15/10	43085	Pinto/Pariso	9	26000	69020	43020	21.51
699	11/15/10	43086	Pinto/Pariso	80	28900	76000	47100	23.55
700	11/15/10	43087	Pinto/Pariso	85	25520	62760	37240	18.62
701	11/15/10	43088	Pinto/Pariso	A-40	23660	74540	50880	25.44
702	11/15/10	43089	Pinto/Pariso	90	28820	72320	43500	21.75
702	11/15/10	43099		75	25980			
	11/15/10		Pinto/Pariso			80720	54740	27.37
704		43091	Pinto/Pariso	200	24800	74480	49680	24.84
705	11/15/10	43092	Pinto/Pariso	13	25400	69800	44400	22.2
706	11/15/10	43093	Pinto/Pariso	9	26000	69860	43860	21.93
707	11/15/10	43094	Pinto/Pariso	80	28900	75520	46620	23.31
708	11/15/10	43095	Pinto/Pariso	85	25520	62340	36820	18.41
709	11/15/10	43096	Pinto/Pariso	90	28820	75840	47020	23.51
710	11/15/10	43097	Pinto/Pariso	A-40	23660	70920.	47260	23.63
711	11/15/10	43098	Pinto/Pariso	75	25980	79400	53420	26.71
712	11/15/10	43099	Pinto/Pariso	200	24800	73060	48260	24.13
713	11/15/10	43100	Pinto/Pariso	13	25400	70260	44860	22.43
714	11/15/10	43101	Pinto/Pariso	9	26000	69720	43720	21.86
715	11/15/10	43102	Pinto/Pariso	80	28900	73900	45000	22.5
716	11/15/10	43103	Pinto/Pariso	85	25520	61220	35700	17.85
717	11/15/10	43104	Pinto/Pariso	A-40	23660	72260	48600	24.3
718	11/15/10	43105	Pinto/Pariso	75	25980	79620	53640	26.82
719	11/15/10	43106	Pinto/Pariso	200	24800	67420	42620	21.31
720	11/15/10	43107	Pinto/Pariso	90	28820	76000	47180	23.59
721	11/15/10	43108	Pinto/Pariso	13	25400	73080	47680	23.84
722	11/15/10	43109	Pinto/Pariso	9	26000	68880	42880	21.44
723	11/15/10	43110	Pinto/Pariso	80	28900	75380	46480	23.24
724	11/15/10	43111	Pinto/Pariso	85	25520	61480	35960	17.98
725	11/15/10	43112	Pinto/Pariso	A-40	23660	72000	48340	24.17
726	11/15/10	43113		75				
			Pinto/Pariso		25980	81300	55320	27.66
727	11/15/10	43114	Pinto/Pariso	200	24800	71180	46380	23.19

Table 3 Imported Backfill Sources and Quantities Area C - Final Engineering Report

Load No.	Date	OSC Ticket	Source /	Truck Number /	Tare	Gross	Net	Ton
LOAU NO.		No.	Transporter	Ticket	Weight	Gioss	Net	1011
728	11/15/10	43115	Pinto/Pariso	90	28820	75280	46460	23.23
729	11/15/10	43116	Pinto/Pariso	13	25400	68080	42680	21.34
730	11/15/10	43117	Pinto/Pariso	9	26000	68840	42840	21.42
731	11/15/10	43118	Pinto/Pariso	80	28900	80000	51100	25.55
732	11/15/10	43119	Pinto/Pariso	85	25520	60600	35080	17.54
733	11/15/10	43120	Pinto/Pariso	A-40	23660	74780	51120	25.56
734	11/15/10	43121	Pinto/Pariso	200 .	24800	71640	46840	23.42
735	11/15/10	43122	Pinto/Pariso	75	25980	76060	50080	25.04
736	11/15/10	43123	Pinto/Pariso	90	28820	76880	48060	24.03
737	11/15/10	43124	Pinto/Pariso	13	25400	72140	46740	23.37
738	11/15/10	43125	Pinto/Pariso	9	26000	71300	45300	22.65
739	11/15/10	43126	Pinto/Pariso	80	28900	77860	48960	24.48
740	11/15/10	43127	Pinto/Pariso	85	25520	62300	36780	18.39
741	11/15/10	43128	Pinto/Pariso	A-40	23660	75300	51640	25.82
742	11/15/10	43129	Pinto/Pariso	200	24800	70440	45640	22.82
743	11/15/10	43130	Pinto/Pariso	75	25980	77440	51460	25.73
744	11/15/10	43131	Pinto/Pariso	90	28820	79780	50960	25.48
745	11/15/10	43132	Pinto/Pariso	13	25400	73210	47810	23.905
746	11/15/10	43133	Pinto/Pariso	9	26000	69880	43880	21.94
747	11/15/10	43134	Pinto/Pariso	80	28900	75840	46940	23.47
748	11/15/10	43135	Pinto/Pariso	85	25520	62480	36960	18.48
749	11/15/10	43136	 Pinto/Pariso 	A-40	23660	73700	50040	25.02
750	11/15/10	43137	Pinto/Pariso	200	24800	70700	45900	22.95
751	11/15/10	43138	Pinto/Pariso	75	25980	77920	51940	25.97
752	11/15/10	43139	Pinto/Pariso	90	28820	68200	39380	19.69
753	11/15/10	43140	Pinto/Pariso	13	25400	72460	47060	23.53
754	11/15/10	43141	Pinto/Pariso	9	26000	71920	45920	22.96
755	11/15/10	43142	Pinto/Pariso	80	28900	* 73740	44840	22.42
756	11/15/10	43143	Pinto/Pariso	85	25520	60400	34880	17.44
757	11/15/10	43144	Pinto/Pariso	A-40	23660	68480	44820	22.41
758	11/15/10	43145	Pinto/Pariso	200	24800	61540	36740	18.37
759	11/15/10	43146	Pinto/Pariso	75	25980	75420	49440	24.72

Total Tonnage 16221.77

Parameter	Lo Sa Sa	rea ocation ample Date ample ID ommercial	Area C TB-C01 01/08/07 TB-C01-0304	Area C TB-C01 01/08/07 TB-C01-SURFACE	Area C TB-C02 01/08/07 TB-C02-0304	Area C TB-C02 01/08/07 TB-C02-SURFACE	Area C TB-C03 01/08/07 TB-C03-0304	Area C TB-C03 01/08/07 TB-C03-SURFACE	Area C TB-C04 01/08/07 TB-C04-SURFACE	Area C TB-C04 01/09/07 TB-C04-0304	Area C TB-C05 01/09/07 TB-C05-0102	Area C TB-C05 01/09/07 TB-C05-SURFACE	Area C TB-C06 01/09/07 TB-C06-0304	Area C TB-C06 01/09/07 TB-C06-SURFACE	Area C TB-C08 01/11/07 TB-C08-0506	Area C TB-C08 01/11/07 TB-C08-SURFACE	Area C TB-C09 01/09/07 TB-C09-0304	Area C TB-C09 01/09/07 TB-C09-SURFACE
METALS		ommerciai																
CYANIDE	MG/KG MG/KG	27	1.1 UJ 6840	1 W 4910	1 UJ 1960	1.1 UJ 6240	0.94 UJ 1630	0.68 UJ 4370	2.8 J 2370	1.2 (J) 1430 J	1.3 UJ 4710 J	1 UJ 4170 J	1.2 UJ 4030 J	1 UJ 4440 J	1.1 U 12900	0.81 U 5250	1.1 UJ 4110 J	1 UJ 5800 J
NTIMONY RSENIC	MG/KG		18.9 R	16.7 R	16.9 R	17.6 R	17.8 R	15.5 R	16.1 R	20.4 UJ	18.5 UJ	17.8 UJ	18.6 UJ 4.6	16 UJ	19.2 R	15.3 R	19,6 UJ 57,3j	16.9 UJ
ARIUM	MG/KG MG/KG	400	75.3 J	25,2 100 J	15.3 21.5 J	6.7 25.2 J	9.3 35.7 J	79.1 J	5.7 18.9 J	50.2 50.5	12.5 2320	5.4 20.9	57.1	5.6 22	10.7 J 80.6 J	94.4 J	98.6	8.9 56.9
ERYLLIUM	MG/KG	590 9.3		0.78 J	0.34 J	0.4 J	0.4 J	0.71 J	0.33 J	0,27 U	0.57	0.26	0.5 0.25 U	0.28 0.25	0.64 0.89 J	0,27 0.23 J	0,57 2.8	0.31 0.46
ALCIUM	MG/KG MG/KG	9.3	0.25 UJ 3740	0.59 J 164000	0.22 UJ 4580	0.68 J 29900	0.28 J 7460	0.7 J 82100	0.31 J 265000	0.27 U 1440	0.25 U 14400	0.31 36600	8810	27800	39300	87500	10200	86600
HROMIUM (TRIVALENT)	MG/KG MG/KG	1,500	217 6.8	5 4.2	12,1	2.5	67 1.7	8.7 4.4	2,8 1,6	8.5 5.3	9.4 3.4	8.2	7.5 5.4	25.9 5.4	13 J 9.8 J	16 4,7 J	8,7 9,2	16,2 4,2
OPPER	MG/KG MG/KG	270	121	38.7	4.2 13.3	38,2	10.2	69.3	14.6	306	19.4	24.7	50.6	28	53,4 J	30,8 J	54.2	62.4
RON	MG/KG MG/KG	1000	23500 300 J	38000 72,7 J	11200 12.7 J	17000 17,6 J	3960 25 J	25600 188 J	6680 27,8 J	79000 156	10200 32,8	11700	13300 35.9	12700 14,9	27800 J 447 J	17500 J 327 J	19100 113	9590 11.9
AGNESIUM	MG/KG		1880	11400	1210	6570	436	9440	6960	285 J	1100 J	4780 J	1010 J	4750 J	13100	7900	1360 J	4820 J
ANGANESE ERCURY	MG/KG MG/KG	10000	113 4.31	5370 0.63	123 0,34	303 0.06	47.3 0,29	980	190 0.62	38.4 0.38	70.6 0.84	245 0.2	185	275 0.28	380 6.2 J	503 7.2 J	257 8.5i	444 0,17
CKEL	MG/KG	310	18.1	40.7	13.4	30.5	5.8	24.7	6.5	26.1	9.9	21.9	11	19.4	30.3 J	12.5 J	17.9	20.1
DTASSIUM ELENIUM	MG/KG MG/KG	1500	694 5 U	794 4.5 U	496 4.5 U	967 4.7 U	260 4.7 U	730 4.1 U	384 4.3 U	735 5.4 U	518 4.9 U	799 4,7 U	368 5 U	782 4.3 U	2170 J 5.1 U	1290 J 4.1 U	435 5.2 U	363 4.5 U
LVER	MG/KG	1500	0.63 U	0,56 U	0.56 U	0.59 U	0.59 U	0.52 U	0.54 U	0.91	0,62 U	0.59 U	0.62 U	0.53 U	0,64 U	0.51 U	0,65 U	0,56 U
ODIUM HALLIUM	MG/KG MG/KG		489 J 7.6 UJ	673 J 6.7 UJ	202 J 6.7 UJ	165 UJ 7.1 UJ	166 UJ 7.1 UJ	354 J 6.2 UJ	209 J 6.4 UJ	235 8.1 U	172 U 7.4 U	166 U 7.1 U	174 U 7.4 U	149 U 6,4 U	3010 J 7,7 UJ	1840 J 6.1 UJ	335 7.8 U	199 6.7 U
NADIUM	MG/KG		14,6	148	8.7	14.8	6,3	43	7.9	3.6	12.3	18,6	11.4	13.2	22.8 J	15.3 J	13.3	16.2
NC /OCS	MG/KG	10000	150 R	121 R	40.6 R	125 R	72.8 R	183 R	71 R	156	61.4	75.2	143	84.3	237 J	82.5 J	147	45.2
METHYL-2,4-DINITROBENZENE	MG/KG		2 U	7.3 U	0.38 U	0.38 U	3.8 U	7.4 U	3.5 U	0.45 U	2.1 U	0.38 U	4.1 U	0.35 U	0.4 U	34 U 84 U	0.42 U 1 U	0.37 U 0.89 U
1,5-TRICHLOROPHENOL 1-DICHLOROPHENOL	MG/KG MG/KG		4.9 U 2 U	18 U 7.3 U	0.92 U 0.38 U	0.91 U 0.38 U	9.1 U 3.8 U	18 U 7.4 U	8.4 U 3.5 U	1.1 U 0.45 U	5.1 U 2,1 U	0.92 U 0.38 U	10 U 4.1 U	0.84 U 0.35 U	0.96 U 0.4 U	34 U	0.42 U	0.37 U
4-DIMETHYLPHENOL	MG/KG		2 U	7.3 U	0.38 U	0.38 U	3.8 U	7.4 U	3.5 U	0.45 U	2.1 U 10 U	0.38 U	4.1 U	0.35 U 1.7 U	0.4 U 1.9 U	34 U 170 U	0.42 U 2 U	0.37 U
H-DINITROPHENOL S-DINITROTOLUENE	MG/KG MG/KG		9.8 UJ 2 U	36 UJ 7.3 U	1.8 U 0.38 U	1.8 UJ 0.38 U	18 UJ 3.8 U	36 UJ 7.4 U	17 UJ 3.5 U	2.2 U 0.45 U	2.1 U	1.8 U 0.38 U	20 U 4.1 U	0.35 U	0.4 U	34 U	0.42 U	0.37 U
CHLOROPHENOL METHYLNAPHTHALENE	MG/KG MG/KG		2 U 0.14 J	7.3 U 0.81 J	0.38 U	0.38 U 0.38 U	3,8 U 0,36 J	7.4 U 0.67 J	3.5 U 3.5 U	0.45 U 0.11 J	2.1 U 0.17 J	0.38 U 0.38 U	4,1 U 4,1 U	0.35 U 0.028 J	0.4 U 0.4 U	34 U 34 U	0,42 U 0,35 J	0,37 U 0,37 U
METHYLPHENOL	MG/KG	500	2 U	7.3 U	1.1 0.38 U	0.38 U	3.8 U	7.4 U	3.5 U	0.45 U	2.1 U	0.38 U	4.1 U	0.35 U	0.4 U	34 U	0.42 U	0,37 ↓
S'-DICHLOROBENZIDINE	MG/KG MG/KG		9.8 U 9.8 U	36 U 36 U	1,8 U 1.8 U	1.8 U	18 U 18 U	36 U 36 U	17 U 17 U	2.2 U 2.2 U	10 Ü 10 U	1.8 U 1.8 U	20 U 20 U	1.7 U 1.7 U	1,9 U 1,9 U	170 U 170 U	2 U 2 U	1.8 U
HLORO-3-METHYLPHENOL	MG/KG		2 U	7,3 Ü	0.38 U	0,38 U	3,8 U	7.4 U	3,5 U	0.45 U	2.1 U	0.38 U	4.1 U	0.35 U	0.4 U	34 U	0.42 U	0.37 U
CHLOROANILINE METHYLPHENOL	MG/KG MG/KG	500	2 U	7.3 U 7.3 U	0.38 U 0,38 U	0.38 U 0.38 U	3.8 U 3.8 U	7.4 U 7.4 U	3.5 U 3.5 U	0.45 U 0.45 U	2.1 U 2.1 U	0.38 U 0.38 U	4,1 U 4,1 U	0.35 U 0.35 U	0.4 U 0.4 U	34 U	0.42 U 0.42 U	0.37 U 0.37 U
ENAPHTHENE	MG/KG	500	0.54 J	0.51 J	0.38 U	0.38 U	3.8 U	7.4 U	3.5 U	0,021 J	0.046 J	0.013 J	4.1 U	0.02 J	0,4 U	34 U	0.037 J	0.37 U
ENAPHTHYLENE ETOPHENONE	MG/KG MG/KG	500	2 U	2.3 J 7.3 U	0.38 U 0.38 U	0.38 U 0.38 U	3.8 U 3.8 U	7.4 U 7.4 U	3.5 U 3.5 U	0.022 J 0.45 U	2.1 U 2.1 U	0.012 J 0.38 U	4.1 U 4.1 U	0.008 J 0.35 U	0.4 U 0.4 U	34 U 34 U	0.36 J 0,42 U	0.37 U 0.37 U
ILINE	MG/KG		2 U	7.3 U	0.38 U	0.38 U	3.8 U	7.4 U	3.5 U	0.16 J	2.1 U	0.38 U	4.1 U	0.81	0.4 U	34 U	0.42 U	0.37 U
THRACENE NZO(A)ANTHRACENE	MG/KG MG/KG	500	1.4 J 3.1	3.2 J ~ 10]	0,38 U 0,075 J	0.041 J 0.24 J	3.8 U 3.8 U	0.48 J 2.5 J	0,47 J 2.5 J	0.21 J 1.4	0.11 J 0.55 J	0.028 J 0.12 J	4.1 U 4.1 U	0.032 J 0.14 J	0.02 J 0.11 J	34 U 1.9 J	0.32 J 0.7	0.009 J 0.067 J
NZO(A)PYRENE	MG/KG	1	2.6]	8.4	0.035 J	0,25 J	3,8 U	2.2 J	2.2 J	1.12	0.59 J	0.13 J	4.1 U	0.14 J	0,12 J	34 U	0.73	0.08 J
NZO(B)FLUORANTHENE NZO(G,H,I)PERYLENE	MG/KG MG/KG	5,6	3.4 1.4 J	11) 4.8 J	0.098 J 0.04 J	0.54 0.18 J	3.8 U 3.8 U	4.3 J 1.2 J	3.1 J 1.2 J	1.5 0.88	0.7 J 0.45 J	0.19 J 0.12 J	4.1 U 4.1 U	0.21 J 0.12 J	0.19 J 0.055 J	34 U 34 U	0,92 0,65	0.13 J 0.11 J
NZO(K)FLUORANTHENE	MG/KG	56	1 J	3.7 J	0.38 U	0.38 U	3.8 U	7.4 U	1 J	0.63	0.33 J	0.073 J	4.1 U	0.056 J	0.061 J 0.4 U	34 U	0.36 J 0.053 J	0,052 J 0.37 U
PHENYL S(2-ETHYLHEXYL)PHTHALATE	MG/KG MG/KG		2 U 2 U	7.3 U 7,3 U	0.12 J 0.26 J	0.38 U 0,32 J	3.8 U 3.8 U	7.4 U 7.4 U	3.5 U	0.45 U 0.45 U	2.1 U 2.1 U	0.38 U 0.18 J	4.1 U 4.1 U	0.35 U 0.41	0.4 U	34 U 34 U	0.053 J 0.14 J	0.073 J
JTYLBENZYL PHTHALATE	MG/KG MG/KG		2 U	7.3 U	0.38 U	0.38 U	3.8 U	7.4 U	3.5 U	0.45 U 0.45 U	2.1 U	0.38 U 0.38 U	4.1 U 4.1 U	0.35 U 0.35 U	0.4 U 0.4 UJ	34 U -	0.42 U 0.42 U	0.37 U 0.37 U
APROLACTAM ARBAZOLE	MG/KG		2 UJ 0.47 J	7.3 UJ 0.7 J	0.38 UJ 0.031 J	0.038 UJ	3.8 U	7.4 UJ 7.4 U	3,5 UJ 0,21 J	0.45 U 0.062 J	2.1 U 2.1 U	0.02 J	4,1 U	0.026 J	0.4 U	34 U	0,099 J	0.011 J
RYSENE N-BUTYL PHTHALATE	MG/KG MG/KG	56	3 2 U	8.4 7.3 U	0.14 J 0.38 U	0.29 J 0.38 U	3.8 U 3.8 U	2.5 J 7.4 U	2.4 J	1.1 0,45 U	0.5 J 2,1 U	0.12 J 0.38 U	4.1 U 4.1 U	0.14 J 0.35 U	0.11 J 0.4 U	34 U 34 U	0.68 0.42 U	0.084 J 0.37 U
N-OCTYL PHTHALATE	MG/KG		2 U	7.3 U	0.38 U	0.38 U	3.8 U	7.4 U	3.5 U 3.5 U	0.011 J	2.1 U	0.38 U	4.1 U	0.35 U	0.4 U	34 U	0.01 J	0.37 U
BENZO(A,H)ANTHRACENE BENZOFURAN	MG/KG MG/KG	0.56 350	0.36 J 0.36 J	1.3[J 0.65 J	0.02 J 0.24 J	0.038 J 0.38 U	3.8 U 3.8 U	0.39 J 7.4 U	0.38 J 3.5 U	0.22 J 0.052 J	0.14 J 0.054 J	0.031 J 0.008 J	4,1 U 4,1 U	0.03 J 0.017 J	0.4 U 0.4 U	34 U 34 U	0.19 J 0.18 J	0.023 J 0.37 U
THYL PHTHALATE	MG/KG	330	2 U	7,3 U	0.38 U	0,38 U	3.8 U	7.4 U	3.5 U	0.45 U	2.1 U	0.38 U	4.1 U	0,35 U	0,4 U	34 U	0.42 U	0.37 U
METHYL PHTHALATE UORANTHENE	MG/KG MG/KG	500	7.6	7,3 U	0.38 U 0.11 J	0.38 U 0.54	3,8 U 3,8 U	7.4 U 4.5 J	3.5 U 4.9	0.45 U 2.5	2.1 U 0.97 J	0.38 U 0.27 J	4.1 U 4.1 U	0.35 U 0.3 J	0,4 U 0,16 J	34 U 3.6 J	0.42 U 1.2	0.37 U 0.15 J
UORENE	MG/KG	500	0.58 J	1.1 J	0.38 U	0.38 U	3.8 U	7.4 U	3.5 U	0.033 J	2.1 U	0.019 J	4.1 U	0.02 J	0.4 U	34 U	0,24 J	0,37 U
XACHLOROBENZENE XACHLOROBUTADIENE	MG/KG MG/KG	6	2 U	7.3 U 7.3 U	0.38 U 0.38 U	0.38 U 0.38 U	3.8 U 3.8 U	7.4 U 7.4 U	3.5 U 3.5 U	0.45 U 0.45 U	2,1 U 2,1 U	0.38 U 0.38 U	4.1 U 4.1 U	0.35 U 0.35 U	0.4 U 0.4 U	34 U 34 U	0.42 U 0.42 U	0.37 U 0.37 U
DENO(1,2,3-CD)PYRENE	MG/KG	5.6	1.3 J	4.3 J	0.02 J	0.15 J	3.8 U	1,1 J	1.1 J	0.83	0.41 J	0.11 J	4.1 U	0.11 J	0.053 J	34 U	0.59	0.09 J
NITROSODIPHENYLAMINE	MG/KG MG/KG	500	2 U 0.45 J	7,3 U 1,1 J	0.38 U 12	0.38 U 0.076 J	3.8 U 21	7.4 U 1.8 J	3.5 U 3.5 U	0.45 U 0,12 J	2.1 U 0,26 J	0.38 U 0.032 J	4.1 U 0.14 J	0.35 U 0.32 J	0.4 U 0.4 U	34 U 4.8 J	0.42 U 0.4 J	0.37 U 0.009 J
TROBENZENE	MG/KG		2 U	7.3 U	0.38 U	0.38 U	3.8 U	7.4 U	3.5 U	0.45 U	2.1 U	0.38 U	4.1 U	0.35 U	0.4 U	34 U 170 U	0.42 U	0.37 U
NITROANANILINE ENANTHRENE	MG/KG MG/KG	500	9.8 U 6.6	36 U 12	1.8 U 0.57	1.8 U 0.23 J	18 U 0.3 J	36 U 2.4 J	17 U	2.2 U	10 U 0.48 J	1.8 U 0.14 J	20 U 4.1 U	1.7 U 0.19 J	1.9 U 0.067 J	5.8 J	2 U	1.8 U 0.055 J
ENOL RENE	MG/KG MG/KG	500 500	2 U 5.6	7.3 U 17	0,38 U 0,097 J	0.38 U 0.36 J	3.8 U 3,8 U	7.4 U 3.3 J	3.5 U 3.6	0.45 U	2.1 U 0.78 J	0.38 U 0.19 J	4.1 U 4.1 U	0.35 U 0.23 J	0.4 U 0.12 J	34 U 2.3 J	0.42 U 0.92	0.37 U 0.11 J
CS		500				1				-								
,1-TRICHLOROETHANE ,2-TRICHLOROTRIFLUOROETHANE	MG/KG MG/KG	500	0.006 U 0.006 U	0.006 U 0.006 U	0.004 J 0.007 U	0.004 U 0.004 U	0.008 U 0.008 U	0.006 U 0.006 U	0.005 U 0.005 U	0,005 U 0,005 U	U 800.0	0.004 U 0.004 U	0.006 U	0.004 U 0.004 U	0.005 U 0.005 U	0.005 U 0.005 U	0.008 U 0.008 U	0,006 U 0,006 U
,4-TRICHLOROBENZENE	MG/KG		0,006 U	0.006 U	0.007 U	0.004 U	U 800,0	0.006 U	0.005 U	0.003 J	0.005 J	0.002 J	0,005 J	0.006	0.005 U	0.005 U	0.008 U	0.006 U
DICHLOROBENZENE DICHLOROETHANE	MG/KG MG/KG	500 30	0.006 U 0.006 U	0.006 U 0,006 U	0.007 U 0.007 U	0.004 U 0.004 U	0.008 U 0.008 U	0.006 U 0.006 U	0.005 U 0.005 U	0.005 U 0,005 U	0.008 U 0.000 U	0.004 U 0,004 U	0.006 U 0.006 U	0.004 U 0.004 U	0.005 U 0,005 U	0.005 U 0,005 U	0.008 U 0.008 U	0.006 U
-DICHLOROBENZENE	MG/KG	280	0.006 U	0.006 U	0.007 U	0.004 U	0.008 U	0.006 U	0.005 U	0.005 U	0,008 U	0.004 U	0.006 U	0.004 U	0.005 U	0,005 U	0.008 U	0.006 U
DICHLOROBENZENE UTANONE	MG/KG MG/KG		0.006 U 0.028 U	0.006 U 0,03 U	0.007 U 0.037 U	0.004 U 0,023 U	0.008 U 0.04 U	0.006 U 0.032 U	0.005 U 0.023 U	0.005 U 0.026 U	0.008 U 0.04 U	0.004 U 0.022 U	0.006 U 0.03 U	0.002 J 0.021 U	0.005 U 0.025 U	0.005 U 0.009 J	0.008 U 0.038 U	0.006 U 0.03 U
ETONE	MG/KG	500	0.028 U	0.03 U	0.022 J	0.023 U	0.04 U	0.032 U	0.023 U	0.026 U	0.04 U	0.022 U	0.03 U	0.021 U	0.025 U	0.05 U	0.022 J	0.03 U
NZENE RBON DISULFIDE	MG/KG MG/KG	44	0.005 J 0.006 U	0.004 J 0.006 U	0,003 J 0,007 U	0,004 U 0,004 U	0.008 U 0.008 U	0.006 U 0.006 U	0,005 U 0.005 U	0.005 U 0.005 U	0.008 U 0.008 U	0.004 U 0.004 U	0,006 U 0,003 J	0.004 U 0.004 U	0.005 U 0.005 U	0.005 0.002 J	0,008 U 0.008 U	0.006 U 0,006 U
RBON TETRACHLORIDE	MG/KG	22	0,006 U	0.006 U	0.007 U	0.004 U	U 800,0	0,006 U	0.005 U	0.005 U	0.008 U	0.004 U	0.006 U	0.004 U	0.005 U	0.005 U	0.008 U	0.006 U
LOROBENZENE LOROFORM	MG/KG MG/KG	500 350	0.006 U 0.006 U	0.006 U 0.006 U	0.007 U 0.007 U	0.004 U	0.008 U 0.008 U	0,006 U 0,006 U	0.005 U 0.005 U	0.016 0.005 U	0.008 U 0.008 U	0.004 U 0.004 U	0,006 U 0,006 U	0.063 0.004 U	0.005 U 0.005 U	0.005 U 0.005 U	0.008 U 0.008 U	0.006 U
LOROMETHANE	MG/KG		0,011 U	0.012 U	0.015 U	0.009 U	0.016 U	0,013 U	0.009 U	0.01 Ü	0.016 U	0,009 U	0.012 U	0.008 U	0,01 U	0.01 U	0.015 U	0.012 U
-1,2-DICHLOROETHENE CLOHEXANE	MG/KG MG/KG	500	0.006 U 0.006 U	0.006 U 0.006 U	0.007 U 0.005 J	0.004 U 0.004 U	0.008 U 0.008 U	0.006 U 0.006 U	0.005 U	0.005 U 0.005 U	0.008 U 0.008 U	0.004 U 0.004 U	0.006 U 0.006 U	0.004 U 0,004 U	0.005 U 0.005 U	0.005 U 0.002 J	0.008 U 0.008 U	0.006 U
YLBENZENE	MG/KG	390	0.006 U	0.006 U	0.007 U	0.004 U	0.008 U	0,006 U	0.005 U	0.005 U	0.008 U	0.004 U	0.006 U	0.004 U	0.005 U	0.002 J	0.008 U	0.006 U
PROPYLBENZENE THYL ACETATE	MG/KG MG/KG		0.006 UJ 0.006 U	0.006 UJ 0.006 U	0,007 UJ 0,007 U	0,004 UJ 0,004 U	0.008 UJ 0.008 U	0,006 UJ	0.005 UJ 0.005 U	0,005 U 0,005 U	0,008 U 0,008 U	0.004 U 0.004 U	0,006 U 0,006 U	0.004 U 0.004 U	0.005 U 0.005 U	0.005 U 0.005 U	0.008 U 0.008 U	0.006 U 0.006 U
THYLCYCLOHEXANE	MG/KG		0.006 U	0.006 U	0.006 J	0.004 U	0.008 U	0.006 U	0.005 U	0.005 U	0.008 U	0,004 U	0.006 U	0.004 U	0.005 U	0.002 J	0.008 U	0.006 U
THYLENE CHLORIDE YRENE	MG/KG MG/KG	500	0.007 UJ 0.006 U	0.006 UJ 0.006 U	0.007 UJ 0.007 U	0.005 UJ 0.004 U	0.008 UJ 0.008 U	0.006 UJ	0.006 UJ 0.005 U	0,008 U	0.013 U 0.008 U	0.008 U 0.004 U	0.01 U 0.006 U	0,008 U 0,004 U	0.006 UJ 0.005 U	0.006 UJ 0.005 U	0.012 U 0.008 U	0.01 U 0.006 U
TRACHLOROETHENE	MG/KG		0.006 U	0,006 U	0.007 U	0.004 U	0.008 U	0,006 U	0.005 U	0.005 U	0,008 U	0.004 U	0,006 U	0.004 U	0,005 U	0.005 U	0.008 U	0.006 U
LUENE ICHLOROETHENE	MG/KG MG/KG		0.006 U 0.006 U	0.006 U 0.006 U	0.004 J 0.007 U	0,004 U 0,004 U	0.008 U 0.008 U	0.006 U 0.006 U	0.005 U 0.005 U	0.005 U	0.008 U 0.008 U	0.004 U 0.004 U	0.006 U 0.006 U	0.004 U 0.004 U	0.005 U 0.005 U	0.009 0.005 U	0.008 U 0.008 U	0.006 U
IYL CHLORIDE	MG/KG	13	0.011 U	0.012 U	0.015 U	0.009 U	0.016 U	0.013 U	0,009 U	0.01 U	0,016 U	0.009 U	0.012 U	0,008 U	0,01 U	0,01 U	0.015 U	0.012 U
LENES, TOTAL	MG/KG	500	0.016 U	0.018 U	0.022 U	0.014 U	0.024 U	0.019 U	0.014 U	0.016 U	0.024 U	0.013 U	0.018 U	0.013 U	0.015 Ü	0.012 J	0.023 U	0.018 U

Table 4
Soils Exceeding Applicable SCOs After Remedial Action
Area C - Final Engineering Report

		Area Location	Area C TB-C10	Area C TB-C10	Area C TB-C12	Area C TB-C12	Area C TB-C13	Area C TB-C13
		Sample Date	01/11/07	01/11/07	01/08/07	01/08/07	01/08/07	01/08/07
Parameter	Units	Sample ID Commercial	TB-C10-0304	TB-C10-SURFACE	TB-C12-0304	TB-C12-SURFACE	TB-C13-0304	TB-C13-SURFACE
METALS								
CYANIDE	MG/KG MG/KG	27	0.89 UJ 3100 J	0.91 U 4610	1 U 6310	10.7 J 4260	0.71 UJ 436	0.84 UJ 3370
ANTIMONY	MG/KG		19.5 UJ	16.1 R	18 R	32.7 J	16.6 R	15.6 R
ARSENIC	MG/KG	16	18.5 J	15.3 J	35.6)	16.51	21.2	7.9
BERYLLIUM	MG/KG MG/KG	400 590	51.3 J 0.38	60.5 J 0,34	152 J 0,63 J	88.3 J 0.56 J	21.3 J 0.36 J	0.32 J
CADMIUM	MG/KG	9.3	1.6 J	0.39 J	1.8 J	0.91 J	0.22 UJ	0.29 J
CALCIUM	MG/KG	4.500	22200 J	116000	14200	48000	515	111000
CHROMIUM (TRIVALENT)	MG/KG MG/KG	1,500	21.6 J 4.8	3420 4.1 J	94.1 6.6	208 6.5	3.1 0.55 U	31.1 4.3
COPPER	MG/KG	270	66,6 J	75.8 J	299]	149	7.9	29,4
IRON LEAD	MG/KG	1000	14000	12400 J 187 J	30700 	45600 262 J	24000	14900 74.5 J
MAGNESIUM	MG/KG MG/KG	1000	180 1580 J	6250	2000	6270	8.3 J 59.4	48300
MANGANESE	MG/KG	10000	115 J	364	379	663	2.6	859
MERCURY	MG/KG	2.8	6,3]	2.1 J 13.3 J	60,8	10.4	0.19 1.6	3.1 <u>i</u> 40.1
POTASSIUM	MG/KG MG/KG	310	456 J	914 J	25.4 468	59.2 691	460	755
SELENIUM	MG/KG	1500	5.2 UJ	4.3 U	4.8 U	5.2 U	4.4 U	4.2 U
SODIUM	MG/KG MG/KG	1500	0.65 U 197	0.54 U 519 J	5.2 179 J	0,65 U 181 UJ	0.55 U 1150 J	0.52 U 192 J
THALLIUM	MG/KG		7.8 UJ	6.5 UJ	7.2 UJ	7.7 UJ	6.6 UJ	6.2 UJ
VANADIUM	MG/KG		13.2 J	15,5 J	261	47.9	15.6	110
SVOCS	MG/KG	10000	151	147 J	994 R	250 R	3.2 R	73.8 R
1-METHYL-2,4-DINITROBENZENE	MG/KG		0.42 U	3.6 U	1.9 U	8.4 U	0.37 U	1.8 U
2,4,5-TRICHLOROPHENOL	MG/KG		1 U	8.6 U	4,7 U	20 U	0.91 U	4.2 U
2,4-DICHLOROPHENOL 2,4-DIMETHYLPHENOL	MG/KG MG/KG	<u> </u>	0.42 U 0.42 U	3.6 U	1.9 U 1.9 U	8,4 U 8,4 U	0.37 U 0.37 U	1.8 U 1.8 U
2,4-DINITROPHENOL	MG/KG		2.1 U	17 U	9.4 U	41 U	1,8 UJ	8,5 UJ
2,6-DINITROTOLUENE	MG/KG		0.42 U	3.6 U	1,9 U	8.4 U	0.37 U	1.8 U
2-CHLOROPHENOL 2-METHYLNAPHTHALENE	MG/KG MG/KG		0.42 U 0.039 J	3.6 U 3.6 U	1,9 U 0,11 J	8.4 U 8.4 U	0.37 U 2.8	1.8 U 0.12 J
2-METHYLPHENOL	MG/KG	500	0.42 U	3.6 U	1.9 U	8.4 U	0.37 U	1.8 U
3,3'-DICHLOROBENZIDINE 3-NITROANILINE	MG/KG		2.1 U	17 U	9.4 U	41 U	1.8 U	8.5 U
4-CHLORO-3-METHYLPHENOL	MG/KG MG/KG		2.1 U 0.42 U	17 U 3.6 U	9.4 U 1.9 U	41 U 8.4 U	1.8 U 0.37 U	8.5 U 1.8 U
4-CHLOROANILINE	MG/KG		0.42 U	3.6 U	1.9 U	8.4 U	0.37 U	1.8 U
4-METHYLPHENOL	MG/KG	500 500	0,42 U	3.6 U	1,9 U	8.4 U	0.37 U	1.8 U
ACENAPHTHENE ACENAPHTHYLENE	MG/KG MG/KG	500	0.42 U 0.17 J	3.6 U 3.6 U	1,9 U 1.9 U	8.4 U 8.4 U	0.37 U 0.058 J	1.8 U 1.8 U
ACETOPHENONE	MG/KG		0.42 U	3,6 U	1.9 U	8,4 U	0.37 U	1.8 U
ANILINE ANTHRACENE	MG/KG MG/KG	500	0.42 U 0.1 J	3.6 U 0,44 J	1.9 U 1.9 U	8.4 U	0.37 U 0.052 J	1.8 U 0,19 J
BENZO(A)ANTHRACENE	MG/KG	5.6	0.43	1.9 J	0.37 J	7.71	0.24 J	0.79 J
BENZO(A)PYRENE	MG/KG	1	0.58	2.2jJ	0.49 J	5.8J	0.11 J	0.75 J
BENZO(B)FLÜORÄNTHENE BENZO(G,H,I)PERYLENE	MG/KG MG/KG	5.6 500	1.1 0.41 J	3.8 1.3 J	1 J 0.54 J	6.2 J	0.29 J 0.073 J	1 J 0.48 J
BENZO(K)FLUORANTHENE	MG/KG	56	0.41 J	1.3 J	1.9 U	4.6 J	0.37 U	0.34 J
BIPHENYL	MG/KG	,	0.42 U	3.6 U	1.9 U	8.4 U	0.41	1.8 U
BIS(2-ETHYLHEXYL)PHTHALATE BUTYLBENZYL PHTHALATE	MG/KG MG/KG	-	0.16 J 0.42 U	3.6 U 3.6 U	0.33 J 1.9 U	8.4 U 8.4 U	0.32 J 0.37 U	0.46 J 1.8 U
CAPROLACTAM	MG/KG		0.42 UJ	3,6 UJ	1.9 UJ	8.4 UJ	0.37 UJ	1.8 UJ
CARBAZOLE CHRYSENE	MG/KG	56	0.042 J 0.46	0,32 J	1.9 U 0.37 J	1.1 J 8.3 J	0.37 U 0.4	0.11 J 0.78 J
DI-N-BUTYL PHTHALATE	MG/KG MG/KG	30	0.46 0.42 U	2.1 J 3.6 U	1,9 U	8.4 U	0.4 0.37 U	1.8 U
DI-N-OCTYL PHTHALATE	MG/KG		0.42 U	3.6 U	1.9 U	8.4 U	0.37 U	1.8 U
DIBENZO(A,H)ANTHRACENE DIBENZOFURAN	MG/KG MG/KG	0,56 350	0.12 J 0.022 J	0.34 J 3.6 U	0.14 J 1.9 U	1.6 J 8.4 U	0.028 J	0,13 J 1,8 U
DIETHYL PHTHALATE	MG/KG	330	0.42 U	3.6 U	0.76 J	8.4 U	0.37 U	1.8 U
DIMETHYL PHTHALATE	MG/KG		0.42 U	3.6 U	1.9 U	8,4 U	0.37 U	1.8 U
FLUORANTHENE FLUORENE	MG/KG MG/KG	500 500	0.64 0.42 U	5.1 3.6 U	0.54 J 1.9 U	20 8.4 U	0.46 0.37 U	1.7 J 1.8 U
HEXACHLOROBENZENE	MG/KG	6	0.42 U	3.6 U	1.9 U	8.4 U	0.37 U	1.8 U
HEXACHLOROBUTADIENE	MG/KG		0.42 U	3.6 U	1.9 U	8,4 U	0.37 U	1.8 U
INDENO(1,2,3-CD)PYRENE N-NITROSODIPHENYLAMINE	MG/KG MG/KG	5.6	0.35 J 0.42 U	1.1 J 3.6 U	0.45 J 1.9 U	5.2 J 8.4 U	0.055 J 0.37 U	0.42 J 1.8 U
NAPHTHALENE	MG/KG	500	0.07 J	3.6 U	1 J	8,4 U	2.1	1.8 U
NITROBENZENE O-NITROANANILINE	MG/KG MG/KG		0.42 U 2.1 U	3.6 U	1,9 U 9,4 U	8,4 U 41 U	0.37 U 1,8 U	1.8 U 8.5 U
PHENANTHRENE	MG/KG	500	0.26 J	2.4 J	0.25 J	7.5 J	2.1	1 J
PHENOL	MG/KG	500	0.026 J	3.6 U	1,9 U	8.4 U	0.37 U	1.8 U
PYRENE VOCS	MG/KG	500	0.48	2.8 J	0.48 J	15	0.35 J	1.3 J
1,1,1-TRICHLOROETHANE	MG/KG	500	0.007 U	0.005 U	0.005 U	0.005 U	0.008 ∪	0.004 U
1,1,2-TRICHLOROTRIFLUOROETHANE	MG/KG		0.007 U	0.005 U	0.005 U	0.005 U	0.008 U	0.004 U
1,2,4-TRICHLOROBENZENE 1,2-DICHLOROBENZENE	MG/KG MG/KG	500	0.007 U 0.007 U	0,005 U 0.005 U	0.12 0.002 J	0,005 U 0,002 J	0.008 U 0.008 U	0.004 U 0.004 U
1,2-DICHLOROETHANE	MG/KG	30	0.007 U	0.005 U	0.005 U	0,005 U	0,008 U	0.004 U
1,3-DICHLOROBENZENE	MG/KG	280	0.007 U	0.005 U	0.005 U	0.005 U	0,008 U	0.004 U 0.004 U
1,4-DICHLOROBENZENE 2-BUTANONE	MG/KG MG/KG	130 500	0.007 U 0.036 U	0.005 U 0.01 J	0.005 U 0.027 U	0.005 U 0,027 U	0.008 U 0.038 U	0.004 U
ACETONE	MG/KG	500	0.03 J	0.089	0.018 J	0.027 U	0.038 U	0.02 U
BENZENE CARBON DISULFIDE	MG/KG MG/KG	44	0.026 0.005 J	0.025	0.005 U 0.005 U	0.005 U 0.005 U	0.008 U 0.008 U	0.004 U 0.004 U
CARBON DISOLFIDE	MG/KG MG/KG	22	0.005 J 0.007 U	0.002 J 0.005 U	0.005 U	0.005 U	0.008 U	0.004 U
CHLOROBENZENE	MG/KG	500	0.007 U	0.005 U	0.002 J	0.008	0.008 U	0.004 U
CHLOROFORM CHLOROMETHANE	MG/KG MG/KG	350	0.007 U 0.015 U	0.005 U 0.01 U	0.005 U 0.011 U	0.005 U 0,011 U	0.008 U 0.015 U	0.004 U 0.008 U
CIS-1,2-DICHLOROETHENE	MG/KG	500	0.007 U	0.005 U	0.005 U	0.005 U	0.015 U	0.008 U
CYCLOHEXANE	MG/KG		0.007 U	0.005 U	0.005 U	0.005 U	0.003 J	0.004 U
ETHYLBENZENE ISOPROPYLBENZENE	MG/KG MG/KG	390	0.007 U 0.007 U	0.005 U 0.005 U	0.005 U 0,005 UJ	0.005 U 0.005 UJ	U 800.0	0.004 U 0.004 UJ
METHYL ACETATE	MG/KG		0.007 U	0.005 U	0,005 U	0,005 U	0.008 U	0.004 U
METHYLCYCLOHEXANE	MG/KG		0.001 J	0.001 J	0.005 U	0.005 U	0.004 J	0.004 U
METHYLENE CHLORIDE STYRENE	MG/KG MG/KG	500	0,013 U 0.007 U	0.006 UJ 0.005 U	0.006 UJ 0.005 U	0.006 UJ 0.005 U	0.008 UJ 0.800.0	0.006 UJ 0.004 U
TETRACHLOROETHENE	MG/KG	150	0.007 U	0.005 U	0.005 U	0.005 U	0,008 U	0.004 U
TOLUENE	MG/KG	500	0.007 U	0.001 J	0.005 U	0.005 U	0.008 U	0.004 U
TRICHLOROETHENE VINYL CHLORIDE	MG/KG MG/KG	200	0.007 U 0.015 U	0.005 U 0.01 U	0.005 U 0.011 U	0.005 U 0.011 U	0.008 U 0.015 U	0.004 U 0.008 U
XYLENES, TOTAL	MG/KG	500	0.022 U	0.003 J	0.011 J	0.016 U	0.013 U	0.012 U

^{*}BTV=Background Threshold Value as calculated from background sample data J=Estimated N=Uncertain identification R=Rejected value based on data validation process U=Undetected at listed detection limit

Table 5 Groundwater Exceeding NY Class GA Standards Area C - Final Engineering Report

Country Coun		,									. no. con con	PDI-C04-0909	201		I ani ana anna I	DD: 000 0000	DD: 010 0000		nn: n:n aasa"			DDI CIE DOGO	PDI-C16-0909
Parameter Color																							PDI-C16-0909
Parameter Para																							
December West Wes	·			11/19/2009	11/1//2009	11/1//2009	11/19/2009	11/19/2009	11/18/2009	09/08/09	09/06/09	09/14/09	09/14/09	09/09/09	09/15/09	09/11/09	09/08/09	09/08/09	09/08/09	09/08/09	09/15/09	03/14/09	09/14/09
No. No.	B	(4)	l I			•																	i
11-12-12-12-12-12-12-12-12-12-12-12-12-1		Units	Values																				ļ
BALE-PITTERMONDERMANN Mark S			 																			4.11	
11.2 10.2 10.2 10.2 10.2 10.3			5																				15)
Inconsideration																							1 U
1.000000000000000000000000000000000000																	_					_	
1.000000000000000000000000000000000000			5																				1 U
1.24-TROCHORDEREZERE			1 - 5 1																				2.1
1.2000000000000000000000000000000000000																							0.66 J
1.20BROMOTHANE																							1 U
1.2000.00000000000000000000000000000000																							10
1.2000000000000000000000000000000000000			0.0006																				68
1,200-0000000000000000000000000000000000			3																				1 U
1				1.0	10	10	10	20 0	3.0	 	.10	1.0		30	10	10	10	10		10	40		10
12-DICHOROPREZERE			 	111	111	111	1.11	20.11	5 11	111	111	111	111	511	111	1 11	111	1 11	1.11	1.0	- 411	1.0	10
1.4-DICHOROGRENZENE			 - 																				1.8
REMAINDE WELL SO SU SU SU SU SU SU SU			3																				9.4
PHERAMONE			-																				5 U
EMETHYL-PENTANONE																							5 U
RETORN			1 30																				5 U
SEASTER SUPA 1			- 50																				3.9 J
BROMODICH BROM																							A 13
SROMORFORM			· · · · · · · · · · · · · · · · · · ·																				1 U
RROMOMETHANE																							10
CARBON DISULFIDE			- 50																				1 U
CARBON TETRACHLORIDE			60																				10
CHIOROBERZENE																					4 U	1 U	1 U
CHIORODIBROMOMETHANE			5									2.3	- 6.5	5 U	- 5.8	19	1 U	1 U	1 U	1 U	93	7.6	99
CHIOROFITAME Ug/L S			50		1 U	10	1 U	20 U	5 Ü														
CHIOROFERM							1 U			1 U	1 U	1 U	1 U	5 U	1 ÜJ	1 U	1 U	1 U	1 U	1 U	4 UJ	1 U	- 10
CIS-1,2-DICHLOROFTHENE			7	1 U	1 U	1 U	10	20 U	5 U	1 U	1 U	1 U	1 U	5 U	10	1 U	1 U	1 0	1 U	1 U	4 U	1 U	1 U
CIS-1,3-DICHLOROPROPENE ⁽¹⁾	CHLOROMETHANE		5	1 U	1 U	1 U	1 U	20 U	5 U	1 υ	1 U	10	1 U	5 U	1 U	1 U	1 U	1 U	10	1 U	4 U	1 U	1 U
CYCLOHEXANE Ug/L 1 U 1	CIS-1,2-DICHLOROETHENE	ug/L	5	1 U	1 U	1 U	1 U	20 U	5 U	1 U	1 U	10	1 U	5 U	1 U	1 U	1 U	1 U	10	1 U	4 U	1 U	1 U
CYCLOHEXANE Ug/L 1 U 1	CIS-1.3-DICHLOROPROPENE ⁽¹⁾	ug/L	0.4	1 U	1 U	1 11	1 U	20 U	5 U	1 U	1 U	1 U	1 U	5 U	1 U	1 U	1 U	1 U	10	1 U	4 U	1 U	1 U
DIBROMOCHLOROMETHANE ug/L 50 1U 1U 1U 1U 1U 1U 1U 1			1												10					1 U	4 U	1 U	1 U
DICHORODIFILUDROMETHANE Ug/L 5 1U 1U 1U 2U 5U 1U 1U 1U 1U 1U 1U 1			50								1 U				1 U	1 U		1 U	1 U	1 U	4 U	10	10
ETHYLBENZENE Ug/L 5 1U 1U 1U 20U 5U 1U				1 U	1 U	1 U	1 U	20 U	5 U														1 U
METHYLACETATE Ug/L 1UJ 1U 1U 1U 20 UJ 5 UJ 1UJ 1U	ETHYLBENZENE		5	1 U	10	1 U	1 U	20 U	_ 5 U	10	1 0	10	10	5 U	0.69 J	1 U	1 U	1 U	10	1 U	4 U	1 U	1 U
METHYLTERT-BUTYLETHER Ug/L 10 1U 1U 0.52J 1U 20U 5U 1U	SOPROPYLBENZENE	ug/L	5	1 U	1 0	1 U	1 U	20 U	5 U	1 U	1 U	1 U	1 U	5 U	10	1 U	1 U	1 U	10	1 U	4 U	1 U	10
METHYLCYCLOHEXANE Ug/L 1U 1U 1U 1U 20U 5U 1U	METHYL ACETATE	ug/L		1 UJ	1 U	1 U	1 U)	20 UJ	5 UJ	1 UJ	1 UJ	1 U	1 U	5 U	1 U	1 UJ	1 UJ	1 UJ	1 ()	1 UJ	4 U	1 U	1 U
	METHYL TERT-BUTYL ETHER	ug/L	10	1 U	1 U	0.52 J	1 U	20 U	5 U	1 U	10	1 0	1 U	5 U	1 U	1 U	1 U	1 U	10	1 U	4 U	1 U	1 U
	METHYLCYCLOHEXANE	ug/L		1 U	1 U	1 U	1 U	20 U	5 U	1 U	1 U	1 U	1 U	5 U	1 U	1 U	1 U	1 U	1 U	1 U	4 U	1 U	10
	METHYLENE CHLORIDE	ug/L	5	1 U	1 U	1 U	1 U	20 U	5 U	1 U	1 U	1 U	1 U	. 5.U	1 U	1 U	1 U	1 U	1 U	1 U	4 U	1 U	1 U
STYRENE Ug/L 5 1U 1U 1U 1U 20U 5U 1U 1U 1U 1U 5U 1U		ug/L	5	1 U	1 U	1 U	1 U	20 U	5 U	1 U	1 U	1 U	1 U		10	1 U							1 U
TETRACHLOROETHENE Ug/ 5 1U 1U 1U 1U 20U 5U 1U			5																				1 U .
TOLUENE Ug/L 5 1U 1U 1U 1U 20U 5U 0.631 1U 1.2 4.7 2.81 1.5 1U 1U 1U 1U 1U 4.6 A 8.4		ug/L	5		1 U	1 U																	0.96 J
TRANS-1,2-DICHLOROETHENE Ug/L 5 1U 1U 1U 1U 20U 5U 1U	TRANS-1,2-DICHLOROETHENE	ug/L	5	1 U	1 U	10	1 0	20 U	5 U	10	1 U	10	1 U	5 U	10	1 U	1 U	1 U	10	1 0	4 U	1 U	1 U
TRANS-1,3-DICHLOROPROPENE ⁽¹⁾	FRANS-1,3-DICHLOROPROPENE (1)	ug/L	0.4	1 U	1 U	10	1 U	20 U	5 U	1 U	1 U	1 U	1 U	5 U	10	1 U	1 U	1 U	1 U	1 U	4 U	1 U	1 U
TRICHLOROETHENE Ug/L 5 1U 1U 1U 1U 20U 5U 1U	TRICHLOROETHENE		5	1 U	1 U	1 0	1 U		5 U	10	1 U	1 U	1 U	5 U	1 U	1 U	1 U	1 U	1 0	1 U	4 U	1 U	1 U
TRICHLOROFLUOROMETHANE Ug/L 5 1U 1U 1U 1U 20U 5U 1UJ 1UJ 1U 1U 5U 1U 1UJ 1UJ 1UJ 1UJ 4U 1U	TRICHLOROFLUOROMETHANE	ug/L	5	1 U	1 U	1 U	1 U	20 ∪	5 U	1 0)	1 UJ	1 0	1 U	5 U	1 U	1 UJ	1 UJ	1 ())	1 UJ	1 UJ	4 U	1 U	1 U
VINYLACETATE Ug/L 5.U 20.U	VINYL ACETATE		1												5 U						20 U		
VINYLCHLORIDE	VINYL CHLORIDE	ug/L	2	1 U	1 U	1 U	1 U	20 U	5 U	10	1 0	1 V	1 Ü	5 U	10	1 U	1 U	1 U	10	1 U	4 U	1 U	10
XYLENES, TOTAL Ug/L 5 2U 2U 2U 2U 40U 10U 2U 2U 2U 2U 10U 1.9J 2U 2U 2U 2U 2U 2U 2U 3U 2U	AYLENES, TOTAL	ug/L	5	2 U	2 U	2 U	2 U	40 U	10 U	2 U	2 U	2 U	2 U	10 U	1.9 J	2 U	2 U	2 U	2 U	2 U	8 U	2 U	2 U

Table 5 Groundwater Exceeding NY Class GA Standards Area C - Final Engineering Report

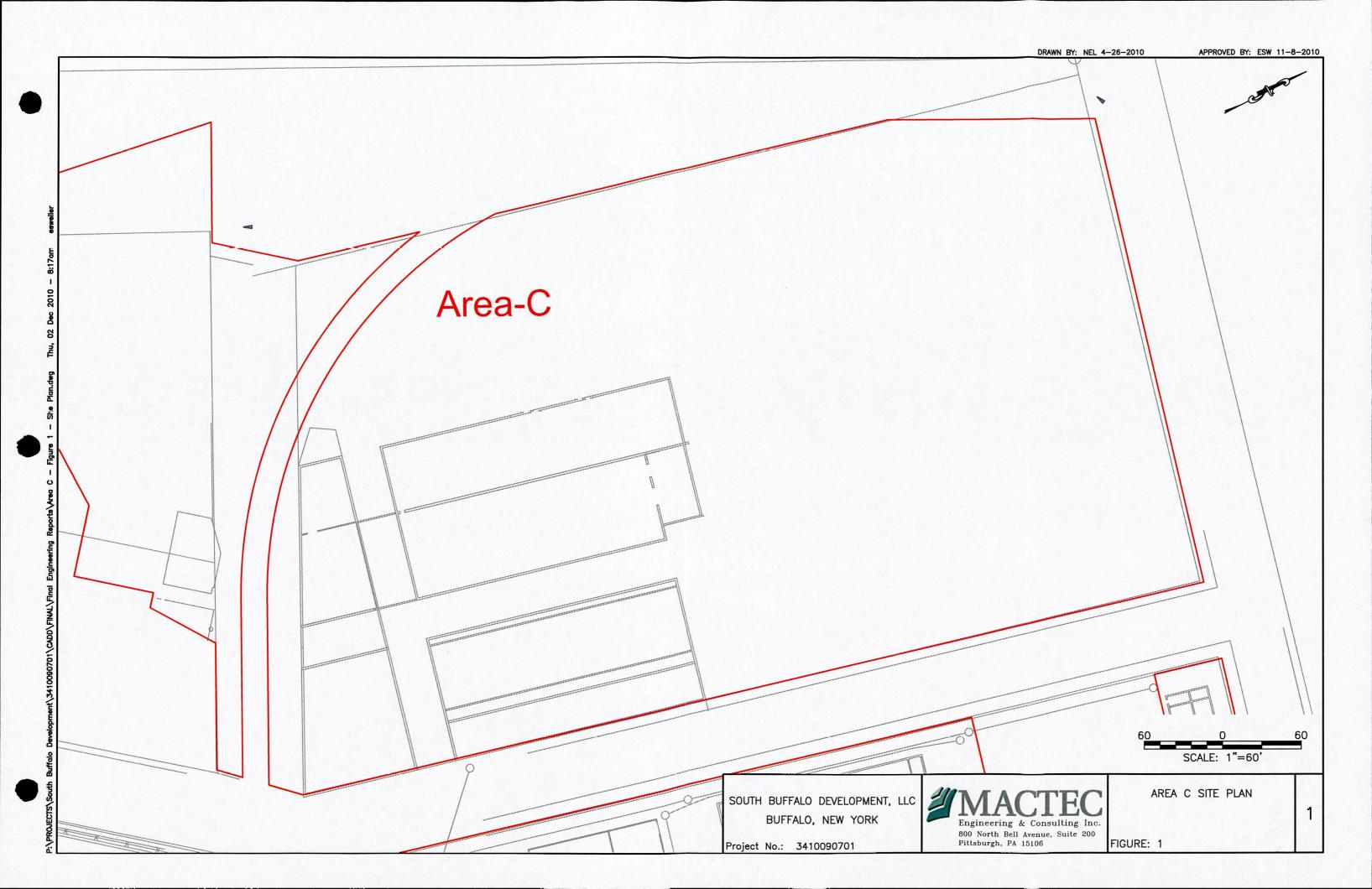
	1	Sample ID:	PS-04-1109	PS-05-1109	PS-06-1109	RFI-20-1109	RFI-31-1109	MW-C01-1109	PDI-C02-0909	PDI-C03-0909	PDI-C04-0909	PDI-C05-0909	PDI-C07-0909	PDI-C08-0909	PDI-C09-0909	PDI-C10-0909	PDI-C11-0909	PDI-C12-0909	PDI-C13-0909	PDI-C14-0909	PDI-C15-0909	PDI-C16-0909
		Location:	PS-04	PS-05	PS-06	RFI-20	RFI-31	MW-C01	PDI-C02	PDI-C03	PDI-C04	PDI-C05	PDI-C07	PDI-C08	PDI-C09	PDI-C10	PDI-C11	PDI-C12	PDI-C13	PDI-C14	PDI-C15	PDI-C16
		Date:	11/19/2009	11/17/2009	11/17/2009	11/19/2009	11/19/2009	11/18/2009	09/08/09	09/08/09	09/14/09	09/14/09	09/09/09	09/15/09	09/11/09	09/08/09	09/08/09	09/08/09	09/08/09	09/15/09	09/14/09	09/14/09
Parameter	Units (4)	Values (S)												1				1				
SVOCs	- Onnes	Values		-									1		 			 				
1,1'-BIPHENYL	ug/L	5	6.2 U	4.9 U	25 U	5 U	5.5 U	5 U					L	İ								
2,2'-OXYBIS(1-CHLOROPROPANE)	ug/L	5	5 U	3.9 U	20 U	4 U	4.4 U	4 U	21 U	4.2 U	4 UJ	4 UJ	21 U	3.9 UJ	4.2 U	4.2 U	4 U	4.4 U	6.6 U	44 UI	13 UJ	21 UJ
2,4,5-TRICHLOROPHENOL 2,4,6-TRICHLOROPHENOL	ug/L		6.2 U	4.9 UJ	25 U 25 U	5 U	1.5 J 5.5 U	5 U	26 U	5.3 U 5.3 U	5.1 U	5.1 U 5.1 U	26 U	4.9 U	5.3 U 5.3 U	5.3 U	5.1 U 5.1 U	5.5 U 5.5 U	8.2 U 8.2 U	56 U	16 U	26 U
2,4-DICHLOROPHENOL	ug/L ug/L	-	6.2 U	4.9 UJ	25 U	5 U	7.9	5 U	26 U	5.3 U	5.1 U	5.1 U	26 U	4.9 U	5.3 U	5.3 U	5.1 U	5.5 U	8.2 U	56 U	16 U	26 U
2,4-DIMETHYLPHENOL	ug/L	1	6.2 U	4.9 UJ	25 U	5 U	5.5 U	5 U	26 U	5.3 Ú	5.1 U	5.1 U	26 U	4.9 U	5.3 U	5.3 U	5.1 U	5.5 U	8.2 U	56 U	16 U	26 U
2,4-DINITROPHENOL	ug/L	1	12 U	9.8 UJ	50 U	9.9 U	11 U	10 U	52 U	11 U	10 U	10 U	53 U	9.8 U	11 U	11 U	10 U	11 U	16 U	110 U	32 U	52 U
2,4-DINITROTOLUENE 2.6-DINITROTOLUENE	ug/L	5	6.2 U	4.9 U	25 U 25 U	5 U	5.5 U 5.5 U	5 U	26 U	5.3 U	5.1 U	5.1 U 5.1 U	26 U	4.9 U 4.9 U	5.3 U	5.3 U 5.3 U	5.1 U 5.1 U	5.5 U	8.2 U 8.2 U	56 U 56 U	16 U	26 U
2-CHLORONAPHTHALENE	ug/L ug/L	5 10	6.2 U	4.9 U	25 U	5 U	5.5 U	5 U	26 U 26 U	5.3 U	5.1 U	0.21 J	26 U	4.9 U	5.3 U	5.3 U	5.1 U	5.5 U 5.5 U	8.2 U	56 U	16 U	26 U
2-CHLOROPHENOL	ug/L	10	6.2 U	2.9 J	25 U	5.4	1.6 J	5 0	26 U	5.3 U	5.1 U	5.1 Ü	26 U	4.9 U	5.3 U	5.3 U	5.1 U	5.5 U	8.2 U	56 U	16 U	26 U
2-METHYLNAPHTHALENE	ug/L		6.2 U	4.9 U	25 U	5 U	5.5 U	5 U	1.1 J	5.3 U	5.1 U	5.1 U	_ 26 U	4.9 U	0.45 J	5.3 U	5.1 U	5.5 U	8.2 U	56 U	16 U	26 U
2-METHYLPHENOL	ug/L		6.2 U	4.9 UJ	25 U	5 U	5.5 U	5 U	26 U	5.3 U	0.77 J	5.1 U	26 U	4.9 U	0.48 J	5.3 U	5.1 U	5.5 U	8.2 U	56 U	16 U	26 U
2-NITROANILINE 2-NITROPHENOL	ug/L	5	12 U 6.2 U	9.8 U 4.9 UJ	50 U 25 U	9.9 U	11 U 5.5 U	10 U	52 U 26 U	11 U 5.3 U	10 U 5.1 U	10 U 5.1 U	53 U 26 U	9.8 U 4.9 U	11 U 5.3 U	11 U 5.3 U	10 U 5.1 U	11 U 5.5 U	16 U 8.2 U	110 U 56 U	32 U 16 U	52 U 26 U
3.3'-DICHLOROBENZIDINE	ug/L ug/L	5	6.2 UJ	4.9 U	25 U	5 U	5.5 U	5 U	26 U	5.3 U	5.1 U	5.1 U	26 U	4.9 U	5.3 U	5.3 U	5.1 U	5.5 U	8.2 U	56 U	16 U	26 U
3-NITROANILINE	ug/L	5	12 U	9.8 U	50 U	9.9 U	11 U	10 U	52 U	11 U	10 U	10 U	53 U	9.8 U	11 U	11 U	10 U	11 U	16 U	110 U	· 32 U	52 U
4,6-DINITRO-2-METHYLPHENOL	ug/L		12 U	9.8 UJ	50 U	1U 9.9	11 UJ	10 UJ	52 U	11 U	10 U	10 U	53 U	9.8 U	11 U	11 U	10 U	11 U	16 U	110 U	32 U	52 U
4-BROMOPHENYL PHENYL ETHER	ug/t		6.2 U	4.9 U	25 U	5 U	5.5 U 5.5 U	5 U	26 U	5.3 U	5.1 U	5.1 U	26 U	4.9 U 4.9 U	5.3 U	5.3 U	5.1 U 5.1 U	5.5 U	8.2 U 8.2 U	56 U	16 U	26 U 26 U
4-CHLORO-3-METHYLPHENOL 4-CHLOROANILINE	ug/L ug/L	5	6.2 U	4.9 U	25 U 25 U	5 U	5.5 U	5 U	26 U 26 U	5.3 U	5.1 U 5.1 U	5.1 U	26 U	4.9 U	5.3 U 5.3 U	5.3 U	5.1 U	5.5 U	8.2 U	56 U	16 U	26 U
4-CHLOROPHENYL PHENYL ETHER	ug/L		6.2 U	4.9 U	25 U	5 U	5.5 U	5 U	26 U	5.3 U	5.1 U	5.1 U	26 U	4.9 U	5.3 U	5.3 U	5.1 U	5.5 U	8.2 U	56 U	16 U	26 U
4-METHYLPHENOL	ug/L		12 UJ	9.8 UJ	50 U	9.9 UJ	11 UJ	10 UJ	52 U	11 U	10 U	10 U	53 U	9.8 U	11 U	11 U	10 U	11 U	16 U	110 U	32 U	52 U
4-NITROANILINE	ug/L	5	12 U	9.8 U	50 U	9.9 U	11 U	10 U	52 U	11 U	10 U	10 U	53 U	9.8 U	11 U	11 U	10 U	11 U	16 U	110 U	32 U	52 U
4-NITROPHENOL ACENAPHTHENE	ug/L ug/L	20	12 UJ 6.2 U	9.8 UJ 4.9 U	50 UJ 25 U	9.9 UJ 5 U	11 UJ 5.5 U	10 UJ 5 U	52 U 26 U	11 U 5.3 U	10 U 5.1 U	10 U	53 U 26 U	9.8 UJ	11 UJ 0.75 J	11 U 5.3 U	10 U 5.1 U	11 U 5.5 U	16 U 8.2 U	110 UJ 56 U	32 U 16 U	52 U 26 U
ACENAPHTHENE	ug/L		6.2 U	4.9 U	25 U	5 U	5.5 U	5 U	26 U	5.3 U	5.1 U	5.1 U	26 U	4.9 U	5.3 U	5.3 U	5.1 U	5.5 U	8.2 U	56 U	16 U	26 U
ACETOPHENONE	ug/L		6.2 U	4.9 U	25 U	5 U	5.5 U	5 U	26 U	5.3 U	5.1 U	5.1 U	26 U	4.9 U	5.3 U	5.3 U	5.1 U	5.5 U	8.2 U	56 U	16 U	26 U
ANILINE	ug/L	5	12 U	9.8 U	50 U	9.9 U	11 U	10 U	52 U	11 U	39	10 U	53 U	61	11 U	11 U	10 U	11 U	16 U	110 U	32 U	52 U
ANTHRACENE ATRAZINE	ug/L ug/L	50 7.5	6.2 U	4.9 U 4.9 U	25 U 25 U	5 U	5.5 U 5.5 U	5 U	26 U 26 UJ	5.3 U 5.3 UJ	5.1 U 5.1 UJ	5.1 U 5.1 UJ	26 U 26 UJ	4.9 U 4.9 UJ	0.41 J 5.3 UJ	5.3 U 5.3 UJ	5.1 U 5.1 UJ	5.5 U 5.5 UJ	8.2 U 8.2 UJ	56 U 56 UJ	16 U 16 UJ	26 U 26 UJ
BENZALDEHYDE	ug/L	- ".5	0.2 0	7.50	250	- ,,,	3.5 0		26 U	5.3 U	0.69 J	5.1 U	26 U	4.9 U	5.3 U	0.32 J	5.1 U	1.2 J	0.67 J	56 U	2.3 J	26 U
BENZO(A)ANTHRACENE	ug/L	0.002	6.2 UJ	4.9 U	25 U	5 U	5.5 U	S U	1.8	5.3 U	~0.39]J	5.1 U	26 U	4.9 U	0.45 J	5.3 U	5.1 U	5.5 U	- 0.56 J	3.2 J	16 U	26 U
BENZO(A)PYRENE (2)	ug/L	0	6.2 UJ	4.9 U	25 U	5 U	5.5 U	S U	i. 1.6 J	. 0.32 J	0.46 J	5.1 U	26 U	4.9 U	5.3 U	0.31 J	0.34 1	- 0.51 J	~ 0.95¦J	56 U	16 U	26 U
BENZO(B)FLUORANTHENE BENZO(G,H,I)PERYLENE	ug/L ug/L	0.002	6.2 UJ	4.9 U 4.9 U	25 U 25 U	5 U	5.5 U 5.5 U	5 U	1.3 J 2.3 J	5.3 U	0.51 J 0.48 J	5.1 U	26 U	4.9 U 4.9 U	7 0.38 J 0.48 J	5.3 U 0.47 J	5.1 U 0.56 J	0.41 J 0.69 J	0.52 J	56 U	16 U	26 U
BENZO(K)FLUORANTHENE	ug/L	0.002	6.2 UJ	4.9 U	25 U	5 U	5.5 U	5 U	1.41	5.3 U	0.48 J	5.1 U	26 U	4.9 U	€ 0.31 J	0.26}J	5.1 U	0.42 J	. 0.89 J	56 U	16 U	26 U
BIPHENYL	ug/L	5							26 U	5.3 U	5.1 U	5.1 U	26 U	4.9 U	5.3 U	5.3 U	5.1 U	5.5 U	8.2 U	56 U	16 U	26 U
BIS(2-CHLOROETHOXY)METHANE	ug/L	5	6.2 U	4.9 U	25 U	5 U	5.5 U	5 U	26 U	5.3 U	5.1 U	5.1 U	26 U	4.9 U	5.3 U	5.3 U	5.1 U	5.5 U	8.2 U	56 U	16 U	26 U
BIS(2-CHLOROETHYL)ETHER BIS(2-ETHYLHEXYL)PHTHALATE	ug/L ug/L	1 1	6.2 UJ	4.9 U	25 U 25 U	5 U	5.5 U	5 U	26 U 26 U	5.3 U	5.1 U 5.1 U	5.1 U 5.1 U	26 U	4.9 U	5.3 U 5.3 U	5.3 U	5.1 U 5.1 U	5.5 U 5.5 U	8.2 U	56 U	16 U	26 U 26 U
BUTYLBENZYL PHTHALATE	ug/t	so	6.2 UJ	4.9 U	25 U	5 U	5.5 U	5 U	26 U	5.3 U	5.1 U	5.1 U	26 U	4.9 U	5.3 U	5.3 U	5.1 U	5.5 U	8.2 U	56 U	16 U	26 U
CAPROLACTAM	ug/L		6.2 UJ	4.9 UJ	25 UJ	5 UJ	5.5 บม	5 UJ	26 UJ	10 J	5.1 UJ	5.1 UJ	26_UJ	4.9 UJ	5.3 UJ	40 J	5.1 UJ	5.5 UJ	8.2 UJ	56 UJ	23 J	26 UJ
CARBAZOLE	ug/L	1	6.2 U	4.9 U	25 U	5 U	5.5 U	5 U	26 U	5.3 U	5.1 U	5.1 U	26 U	4.9 U	5.3 U	5.3 U 5.3 U	5.1 U	5.5 U	8.2 U	56 U 56 U	16 U	26 U
CHRYSENE DI-N-BUTYL PHTHALATE	ug/L ug/L	0.002	6.2 UJ	4.9 U	25 U 25 U	5 U	5.5 U 5.5 U	5 U	26 U 26 U	5.3 U 5.3 U	7 - 0.32 J 5.1 U	5.1 U 5.1 U	26 U 26 U	4.9 U	0.47J 0.34 J	5.3 U	5.1 U 5.1 U	5.5 U	8.2 U 8.2 U	56 U	16 U	26 U
DI-N-OCTYL PHTHALATE	ug/L	50	6.2 UJ	4.9 U	25 U	5 U	5.5 U	5 U	26 U	1.2 J	5.1 U	5.1 U	26 U	4.9 U	5.3 U	5.3 U	5.1 U	5.5 U	8.2 U	56 U	16 U	26 U
DIBENZO(A,H)ANTHRACENE	ug/L		6.2 UJ	4.9 U	25 U	5 U	5.5 U	5 U	2.3 J	0.58 J	0.31 J	5.1 U	26 U	4.9 U	0.45 J	0.71 J	0.65 J	0.98 J	1.7 J	56 U	16 U	26 U
DIBENZOFURAN	ug/L	<u> </u>	12 U	9.8 U	50 U	9.9 U	11 U	10 U	52 U	11 U	10 U	10 U	53 U	9.8 U	11 U	11 U	10 U	11 U	16 U	110 U	32 U	52 U
DIETHYL PHTHALATE	ug/L	50	6.2 U	4.9 U 4.9 U	25 U 25 U	5 U	4 J 5.5 U	5 U	5 J 26 U	5.3 U 5.3 U	2.8 U 0.51 J	1.3 U 0.37 J	11 J 2.4 J	0.67 U 4.9 U	1.4 J 5.3 U	1 J 5.3 U	3 J 0.67 J	7.8 1.4 J	7.7 J 2.1 J	23 U 56 U	3 U 16 U	26 U 26 U
ENDRIN ALDEHYDE	ug/L	5	6.2 U	4.9 U	25 U	5 U	5.5 U	3 U	1 10 0		5.517	3.37.7	1	1			3.07 3					
FLUORANTHENE	ug/L	50	6.2 U	4.9 U	25 U	5 U	5.5 U	5 U	3 J	5.3 U	5.1 U	5.1 U	26 U	4.9 U	0.82 J	5.3 U	5.1 U	5.5 U	8.2 U	3 J	16 U	26 U
FLUORENE	ug/L	50	6.2 U	4.9 U	25 U	5 U	5.5 U	5 U	26 U	5.3 U	5.1 U	5.1 U	26 U	4.9 U	5.3 U	5.3 U	5.1 U	5.5 U	8.2 U	56 U	16 U	26 U
HEXACHLOROBENZENE HEXACHLOROBUTADIENE	ug/L ug/L	0.04	6.2 U	4.9 U 4.9 UJ	25 U 25 UJ	5 U	5.5 U 5.5 U	5 U	26 U 26 U	5.3 U 5.3 U	5.1 U 5.1 U	5.1 U 5.1 U	26 U 26 U	4.9 U	5.3 U 5.3 U	5.3 U	5.1 U 5.1 U	5.5 U	8.2 U 8.2 U	56 U	16 U	26 U 26 U
HEXACHLOROCYCLOPENTADIENE	ug/L	5	6.2 U	4.9 UJ	25 UJ	5 U	5.5 U	5 U	26 U	5.3 U	5.1 U	5.1 U	26 U	4.9 UJ	5.3 U	5.3 U	5.1 U	5.5 U	8.2 U	56 UJ	16 U	26 U
HEXACHLOROETHANE	ug/L	5	6.2 U	4.9 UJ	25 UJ	5 U	5.S U	5 U	26 U	5.3 U	5.1 U	5.1 U	26 U	4.9 U	5.3 U	5.3 U	5.1 U	5.5 U	8.2 U	56 U	16 U	26 U
INDENO(1,2,3-CD)PYRENE	ug/L	0.002	6.2 UJ	4.9 U	25 U	5 0	5.5 U	5 U	· 2.2 J	0.51/J	0.41	5.1 U	26 U	4.9 U	0.48 J	0.64,1	0.64 1	0.96 ¹ J	1.6'J	56 U	16 U	26 U
ISOPHORONE N-NITROSO-DI-N-PROPYLAMINE	ug/L ug/L	50	6.2 U	4.9 U 4.9 U	25 U 25 U	5 U	5.5 U	5 U	26 U	5.3 U	5.1 U 5.1 U	5.1 U	26 U	4.9 U 4.9 U	5.3 U	5.3 U 5.3 U	5.1 U 5.1 U	5.5 U	8.2 U 8.2 U	56 U	16 U	26 U
N-NITROSODIPHENYLAMINE	ug/L	50	6.2 U	4.9 U	25 U	5 0	5.5 U	5 0	26 U	5.3 U	5.1 U	5.1 U	26 U	1.2	5.3 U	5.3 U	5.1 U	5.5 U	8.2 U	56 U	16 U	26 U
NAPHTHALENE	ug/L	10	6.2 U	2 J	25 U	5	1.5 J	5 U	4.9 J	5.3 U	2.1 J	0.22 J	26 U	1.1 J	4.9 J	5.3 U	3.8 J	0.48 J	8.2 U	56 U	1 J	26 U
NITROBENZENE	ug/L	0.4	6.2 U	4.9 U	25 U	5 U	5.5 U	5 U	26 U	5.3 U	5.1 U	5.1 U	26 U	4.9 U	5.3 U	5.3 U	5.1 U	5.5 U	8.2 U	56 U	16 U	26 U
PENTACHLOROPHENOL ¹³ PHENANTHRENE	ug/L ug/L	50	12 U 6.2 U	9.8 UJ 4.9 U	50 U 25 U	9.9 U 5 U	11 U 5.5 U	10 U 5 U	52 U 2.5 J	11 U 5.3 U	10 U 0.51 J	10 U 5.1 U	53 U 26 U	9.8 U 4.9 U	11 U 0.32 J	11 U 5.3 U	10 U 5.1 U	11 U 5.5 U	16 U 8.2 U	110 U 56 U	32 U 16 U	52 U 26 U
PHENOL 13)	ug/L ug/L	1	6.2 UJ	4.9 UJ	25 UJ	5 UJ	0.47 J	5 UJ	2.5 J 26 U	5.3 U	5.1 U	5.1 U	26 U	4.9 U	5.3 UJ	5.3 U	5.1 U	5.5 U	8.2 U	56 U	16 U	26 U
PYRENE	ug/L	50	6.2 UJ	4.9 U	25 U	5 U	5.5 U	5 U	2.8 J	5.3 U	0.43 J	5.1 U	26 U	4.9 U	0.82 J	5.3 U	5.1 U	5.5 U	8.2 U	56 U	16 U	26 U
See notes at end of table																						

Table 5 Groundwater Exceeding NY Class GA Standards Area C - Final Engineering Report

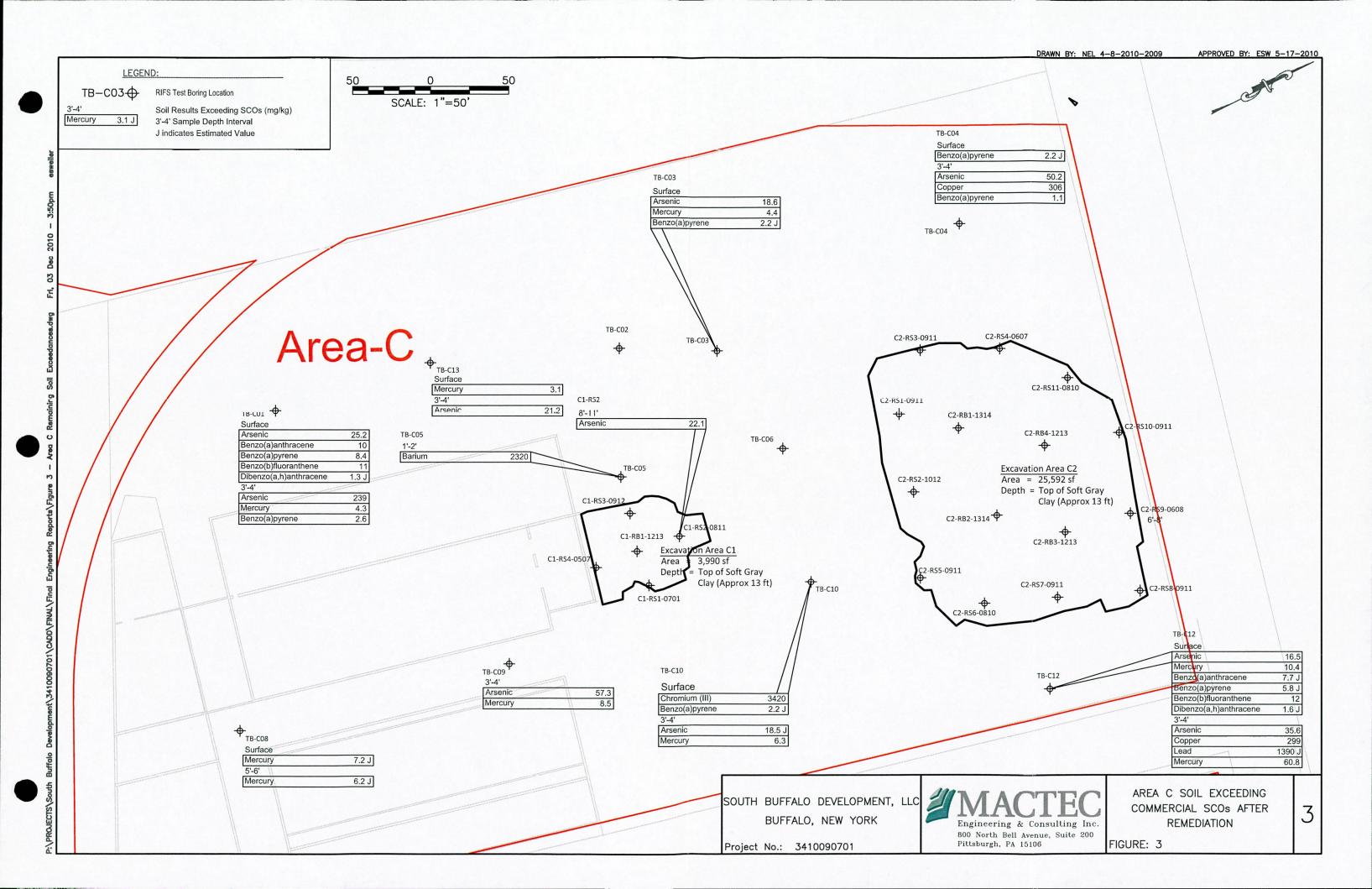
		Sample ID:	PS-04-1109	PS-05-1109	PS-06-1109	RFF-20-1109	RFI-31-1109	MW-C01-1109	PDI-C02-0909	PDI-C03-0909	PDI-C04-0909	PDI-C05-0909	PDI-C07-0909	PDI-C08-0909	PDI-C09-0909	PDI-C10-0909	PDI-C11-0909	PDI-C12-0909	PDI-C13-0909	PDI-C14-0909	PDI-C15-0909	PDI-C16-0909
		Location:	PS-04-1105	PS-05	PS-06	RFI-20	RFI-31	MW-C01	PDI-CO2	PDI-C03	PDI-C04	PDI-C05	PDI-C07	PDI-C08	PDI-CO9	PDI-C10	PDI-C11	PDI-C12	PDI-C13	PDI-C14	PDI-C15	PDI-C16
		Date:	11/19/2009	11/17/2009	11/17/2009	11/19/2009	11/19/2009	11/18/2009	09/08/09	09/08/09	09/14/09	09/14/09	09/09/09	09/15/09	09/11/09	09/08/09	09/08/09	09/08/09	09/08/09	09/15/09	09/14/09	09/14/09
i		NYSDEC .	11/19/2009	11/1//2003	11/1//2003	11/15/2005	11/15/2005	11,18,2009	05/00/05	03,00,03	05,2.,05	05/14/05	05,05,05	05,15,05	05/12/05	03,00,03	05,00,05	05,00,05	05,00,05	03/13/03	30,24,00	1 55,21,65
Parameter	Units (4)	Values (5)																				L
Total Metals		1							, and the second				Γ				ŀ					Í
ARSENIC	ug/L	25	14	10 U	983	10 U	10 U	10 U														
BARIUM	ug/i	1000	24.8	75.1	927	16.7	28.3	123														
CADMIUM	ug/L	5	10	1 U	30.8]	1 U	1 U	1 U														
CHROMIUM	ug/L	50	4 U	4 U	262	4 U	5.4	4.8									I					
LEAD	ug/L	25	5 U	5 U	848	5 U	5 U	5 U														
MERCURY	ug/l	0.7	0.4	0.2 U	9.4	0.2 U	0.2 U	0.2 U														<u> </u>
SELENIUM	· ug/l	10	15 U	15 U	35.3	15 U	15 U	15 U														İ
SILVER	ug/l	50	3 U	3 U	3 U	3 U	3 U	3 U														
Dissolved Metals																						
ARSENIC	ug/L		13.1		106																	
BARIUM	ug/l		23.6		19.2																	Ĺ
CADMIUM	ug/L		1 U		1 U																	
CHROMIUM	ug/L		4 U		4 U																	
LEAD	ug/L		5 U		5 Ü																	
MERCURY	ug/l		0.2 U		0.2 U																	
SELENIUM	ug/i		15 U		15 U																	Ĺ
SILVER	ug/l		3 U		3 U																	
Additional Analyses																						
AMMONIA (AS N)	mg/L	2	0.199			0.241	1.24	2.32														<u> </u>
DISSOLVED OXYGEN	mg/L		2.71 J			2.37 J	4.08 J	6.97 J														<u> </u>
NITRATE-NITRITE	mg/L	10	0.102			0.05 U	0.05 U	1.43														
NITROGEN, KJELDAHL, TOTAL	mg/L		0.57			0.79	3.1	2.7														
pH	S.U.		7.09 J			7.36 J	7.36 J	7.93 J							,							
PHOSPHORUS	mg/t		0.0255			0.01 U	0.01 U	0.01 U														
TOTAL ALKALINITY	mg/L		170 J			484 J	540 J	183 J									I					
CHEMICAL OXYGEN DEMAND	mg/L																	42.4 J				90.4
BIOCHEMICAL OXYGEN DEMAND	mg/L																	19				29.6
DIESEL RANGE ORGANICS	mg/L																	0.51 UJ				0.54
OIL RANGE ORGANICS	mg/L																	0.51 UJ				0.52 U
GASOLINE RANGE ORGANICS	mg/L																	4.3 J				210

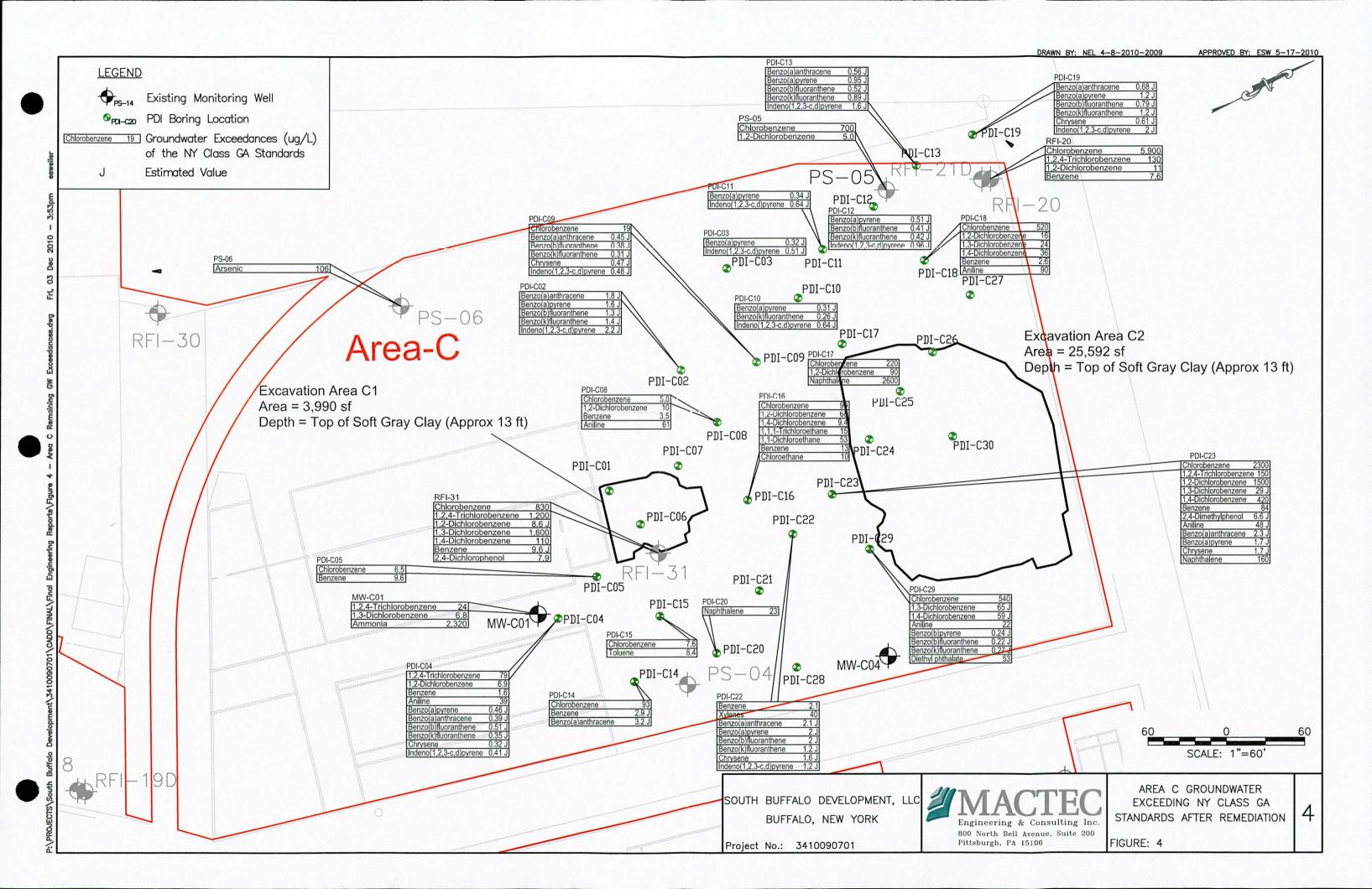
Table 5 Groundwater Exceeding NY Class GA Standards Area C - Final Engineering Report

	1	Sample ID:	PDI-C17-0909	PDI-C18-0909	PDI-C19-0909	PDI-C20-0909	PDI-C21-0909	PDI-C22-0909	PDI-C23-0909	PDI-C27-0909	PDI-C28-0909	PDI-C29-0909
	i	Location	PDI-C17	PDI-C18	PDI-C19	PDI-C20	PDI-C21	PDI-C22	PDI-C23	PDI-C27	PDI-C28	PDI-C29
	1	Date	09/15/09	09/11/09	09/08/09	09/15/09	09/14/09	09/14/09	09/15/09	09/11/09	09/14/09	09/15/09
	-	NYSDEC .	03/13/03	03/11/03	03/00/03	05/15/05	05/14/05	03/14/03	05/15/05	03/11/03	05,14,05	03/15/03
_					l			l				l
Parameter	Units (4)	Values (5)						ļ				
VOCs												<u> </u>
1,1,1-TRICHLOROETHANE	ug/L	5	20 U	10	1 U	1 U	5 U	1 U	40 U	1 U	. 1U_	100 U
1,1,2,2-TETRACHLOROETHANE	ug/L	5	20 U	1 ()	1 UJ	1 U	5 U	1 U	40 U ·	10	1 U	100 U
1,1,2-TRICHLOROETHANE	ug/L	1	20 U	1 U	1 U	1 U	5 U	10	40 U	10	1 0	100 U
1,1,2-TRICHLOROTRIFLUOROETHANE	ug/L	5	20 U	1 U	1 U	1 U	5 U	10	40 U	1 U	1 U	100 U
1,1-DICHLOROETHANE	ug/L	5	20 U	1 Ü	1 U	1 U	5 U	0.67 J	40 U	1 U	1 U	100 U
1,1-DICHLOROETHENE	ug/L	5	20 U	10	1 U	1 U	5 U	1 U	40 U	1 U	1 U	100 U
1.2.4-TRICHLOROBENZENE	ug/L	5	20 U	2.2	1 U	1 U	5 U	0.75 J	150	10	1 U	100 U
1,2-DIBROMO-3-CHLOROPROPANE	ug/L	0.04	20 U	1 U	1 U	10	5 U	10	40 U	10	1 U	100 U
1,2-DIBROMOETHANE	ug/L	0.0006	20 U	1 U	1 U	1 U	5 U	10	40 U	10	10	100 U
1.2-DICHLOROBENZENE	ug/L	3	. 90	1. 16	10	10	5 U	1.7	1500	1 U	10	100 U
1.2-DICHLOROETHANE	ug/L	0.6	20 U	1 U	10	10	5 U	10	40 U	10	10	100 U
1,2-DICHOLORETHENE, TOTAL	ug/L	5	40 U	10	_ 10	10			700	- 1		1000
1,2-DICHOLORETHENE, TOTAL 1,2-DICHLOROPROPANE			20 U	10	1 U	1 U	5 U	10	40 U	10	10	100 U
	ug/L	1	20 U	10			5 U	10	7. 29 !J	1 U	1 U	65 J
1,3-DICHLOROBENZENE	ug/L	3			10	10						
1,4-DICHLOROBENZENE	ug/L	3	20 U	36	10	10	5 U	1 U	420	1 0	1 U	59]1
2-BUTANONE	ug/L	50	100 U	5 U	5 U	5 U	25 U	5 U	200 U	5 U	5 U	500 U
2-HEXANONE	ug/L	50	100 U	5 U	5 U	5 U	25 U	5 U	200 U	5 U	5 U	500 U
4-METHYL-2-PENTANONE	ug/L		100 U	5 U	5 U	5 U	25 U	5 U	200 U	5 U	5 U	500 U
ACETONE	ug/L	50	100 U	4.8 J	3 J	8.4	13 J	7.8	200 U	5 U	27	500 U
BENZENE	ug/L	1	20 U	: 2.6!	1 U	10	5 U	v. 2.1	841	1 U	0.87 J	100 U
BROMODICHLOROMETHANE	ug/L	50	20 U	1 U	1 U	10	5 U	1 U	40 U	10	1 U	100 U
BROMOFORM	ug/L	50	20 U	10	10	1 U	5 U	1 U	40 U	1 UJ	1 UJ	100 U
BROMOMETHANE	ug/L	5	20 UJ	10	10	1 UJ	5 U	1 U	40 U	1 U	1 0	100 U
CARBON DISULFIDE	ug/L	60	20 U	1 U	0.61 J	0.56 J	5 U	1 U	40 U	0.67 J	2.1	100 U
CARBON TETRACHLORIDE	ug/L	5	20 U	1 U	10	1 U	5 U	1 U	40 U	10	1 U	100 U
CHLOROBENZENE	ug/L	5	220]	- 520	1 U	0.51 J	5 U	0.63 J	2300	1.6	10	540
CHLORODIBROMOMETHANE	ug/L	50										
CHLOROETHANE	ug/L	5	20 UJ	10	10	1 UJ	5 U	1 U	40 U	1 U	0.63 J	100 U
CHLOROFORM	ug/L	7	20 U	1 U	10	1 U	5 U	1 U	40 U	10	1 U	100 U
CHLOROMETHANE	ug/L	5	20 U	1 U	10	1 U	5 U	1 U	40 U	10	0.64 J	100 U
CIS-1,2-DICHLOROETHENE	ug/L	5	20 U	1 U	10	10	5 U	10	40 U	10	1 U	100 U
					10	1 U	5 U	10	40 U	10	1 U	100 U
CIS-1,3-DICHLOROPROPENE ⁽¹⁾	ug/L	0.4	20 U	1 U		10	5 U	10	40 U	10	10	100 U
CYCLOHEXANE	ug/L			1 U	10							
DIBROMOCHLOROMETHANE	ug/L	50	20 U	1 U	1 U	1 U	5 U	1 U	40 U	1 U	1 U	100 U
DICHLORODIFLUOROMETHANE	ug/L	5	20 U	1 U	1 U	1 U	5 U	10	40 U	1 UJ	1 UJ	100 U
ETHYLBENZENE	ug/L	5	20 U	1 U	1 U	1 U	5 U	0.56 J	40 U	1 U	10	100 U
ISOPROPYLBENZENE	ug/L	5	20 U	1 U	1 U	1 U	5 U	3	40 U	10	1 U	100 U
METHYL ACETATE	ug/L		20 U	1 UJ	1 Ui	1 U	5 U	1 U	40 U	10	1 U	100 U
METHYL TERT-BUTYL ETHER	ug/L	10	20 U	1 U	1 U	1 U	5 U	1 U	40 U	1 U	10	100 U
METHYLCYCLOHEXANE	ug/L	LI	20 U	1 U	1 U	1 U	5 U	10	40 U	10	1 U	100 U
METHYLENE CHLORIDE	ug/L	5	20 U	1 U	10	1 U	2.4 J	1 U	40 U	10	1 U	100 U
STYRENE	ug/L	5	20 U	1 U	1 U	1 U	5 U	1 U	40 U	1 U	1 U	100 U
TETRACHLOROETHENE	ug/l	5	20 U	1 U	1 U	1 U	5 U	1 0	40 U .	10	1 U	100 U
TOLUENE	ug/L	5	20 U	1 U	1 U	0.58 J	5 U	1.1	40 U	10	0.83 J	100 U
TRANS-1,2-DICHLOROETHENE	ug/L	5	20 U	1 U	1 U	1 U	5 U	1 U	40 U	1 U	1 U	100 U
TRANS-1,3-DICHLOROPROPENE (1)	ug/L	0.4	20 U	1 U	1 U	1 U	5 U	1 U	40 U	10	1 U	100 U
TRICHLOROETHENE	ug/L	5 5	20 U	10	10	10	5 U	10	40 U	10	10	100 U
TRICHLOROFLUOROMETHANE		5	20 U	1 UJ	1 UJ	10	5 U	1 U	40 U	10	10	100 U
	ug/L	 		101	1 100		3 0	10		10	10	100 0
VINYL ACETATE	ug/L	l	100 U			5 U			200 U			
VINYL CHLORIDE	ug/L	2	20 U	1 U	10	1 U	5 U	10	40 U	10	1 U	100 U
XYLENES, TOTAL	ug/L	5	40 U	2 U	2 U	2 U	10 U	40	80 U	2 U	2 U	200 U


Table 5
Groundwater Exceeding NY Class GA Standards
Area C - Final Engineering Report

		Sample ID:		PDI-C18-0909	PDI-C19-0909	PDI-C20-0909	PDI-C21-0909	PDI-C22-0909	PDI-C23-0909	PDI-C27-0909	PDI-C28-0909	PDI-C29-0909
1	1	Location:	PDI-C17	PDI-C18	PDI-C19	PDI-C20	PDI-C21	PDI-C22	PDI-C23	PDI-C27 09/11/09	PDI-C28 09/14/09	PDI-C29
		Date:	09/15/09	09/11/09	09/08/09	09/15/09	09/14/09	09/14/09	09/15/09	09/11/09	09/14/09	09/15/09
l			1									l
Parameter	Units (4)	Values (5)								ļ		
1.1'-BIPHENYL		5	ļ									
2,2'-OXYBIS(1-CHLOROPROPANE)	ug/L ug/L	5	200 UJ	4.1 U	4 U	3.9 UJ	4.1 UJ	21 UJ	22 UJ	39 U	-	3.8 ŪJ
2.4.5-TRICHLOROPHENOL	ug/L	-	250 UJ	5.1 U	5 U	4.9 U	5.2 U	26 U	27 U	49 U		4.8 U
2,4,6-TRICHLOROPHENOL	ug/L		250 UJ	5.1 U	5 0	4.9 U	5.2 U	26 U	27 U	49 U		4.8 U
2,4-DICHLOROPHENOL	ug/L	5	250 UJ	5.1 U	5 U	4.9 U	5.2 U	26 U	27 U	49 U		4.8 U
2,4-DIMETHYLPHENOL	ug/L	1	250 UJ	5.1 U	5 U	4.9 U	5.2 U	26 U	6.6] J	49 U		4.8 U
2,4-DINITROPHENOL	ug/L	1	500 UJ	10 U	10 U	9.8 U	10 U ·	52 U	55 U	98 U		9.5 U
2,4-DINITROTOLUENE	ug/L	5	250 U	5.1 U	5 U	4.9 U	5.2 U	26 U	27 U	49 U		4.8 U
2,6-DINITROTOLUENE	ug/L	5	250 U	5.1 U	5 U	4.9 U	5.2 U	26 U	27 U	49 U		4.8 U
2-CHLORONAPHTHALENE	ug/L	10	250 U	5.1 U	5 U	4.9 U	5.2 U	26 U	27 U	49 U		4.8 U
2-CHLOROPHENOL	ug/L		250 UJ	1.1 J	5 U	4.9 U	5.2 U	26 U	27 U	49 U		4.8 U
2-METHYLNAPHTHALENE	ug/L		250 U	5.1 U	5 U	2.2 J	5.2 U	26 U	15 J	49 U		4.8 U
2-METHYLPHENOL	ug/L		250 UJ	5.1 U	5 U	1 J	5.2 U	26 U	7.1	49 U		4.8 U
2-NITROANILINE	ug/L	5	500 U	10 U	10 U	9.8 U	10 U	52 U	55 U	98 U		9.5 U
2-NITROPHENOL	ug/L	ļ <u>.</u>	250 UJ	5.1 U	5 U	4.9 U	5.2 U	26 U	27 U	49 U		4.8 U
3,3'-DICHLOROBENZIDINE	ug/L	5	250 U	5.1 U	5 U	4.9 U	5.2 U	26 U	27 U	49 U	─ ─	4.8 U
3-NITROANILINE	ug/L	5	500 U	10 U	10 U	9.8 U	10 U	52 U	55 U	98 U		9.5 Ü
4,6-DINITRO-2-METHYLPHENOL	ug/L	 	500 UJ	10 U	10 U	9.8 U	10 U	52 U	55 U	98 U		9.5 U
4-BROMOPHENYL PHENYL ETHER	ug/L		250 U 250 UJ	5.1 U 5.1 U	5 U	4.9 U 4.9 U	5.2 U	26 U	27 U 27 U	49 U 49 U		4.8 U
4-CHLORO-3-METHYLPHENOL	ug/L	5	250 U)	5.1 U	5 U	4.9 U	5.2 U 5.2 U	26 U 26 U	27 U	49 U 49 U		4.8 U 4.8 U
4-CHLOROPHENYL PHENYL ETHER	ug/L ug/L		250 U	5.1 U	5 U	4.9 U	5.2 U	26 U	27 U	49 U		4.8 U
4-METHYLPHENOL	ug/L		500 UJ	10 U	10 U	9.8 U	3.2 U	52 U	55 U	98 U		9.5.U
4-NITROANILINE	ug/L	5	500 U	10 U	10 U	9.8 U	10 U	52 U	55 U	98 U		9.5 U
4-NITROPHENOL	ug/L		500 UJ	10 U	10 U	9.8 UJ	10 U	52 UJ	55 UJ	98 U	-	9.5 UJ
ACENAPHTHENE	ug/L	20	250 U	5.1 U	5 U	3.3 J	5.2 U	26 U	19 J	49 U		4.8 U
ACENAPHTHYLENE	ug/L		250 U	5.1 U	5 U	4.9 U	5.2 U	26 U	27 U	49 U		4.8 U
ACETOPHENONE	ug/L		250 U	5.1 U	5 U	4.9 U	5.2 U	26 U	27 U -	49 U		4.8 U
ANILINE	ug/L	5	500 U	⟨ . 90	10 U	9.8 U	10 U	52 U	48 J	98 U		- 22
ANTHRACENE	ug/L	50	250 U	5.1 U	5 U	4.9 U	5.2 U	26 U	1.9 J	49 U		4.8 U
ATRAZINE	ug/L	7.5	250 UJ	5.1 UJ	5 UI	4.9 UJ	5.2 UJ	26 UJ	27 UJ	49 UJ		4.8 UJ
BENZALDEHYDE	ug/L		250 ป	5.1 U	5 U	4.9 U	5.2 J	26 U	27 U	49 U		0.81 J
BENZO(A)ANTHRACENE	ug/L	0.002	250 U	5.1 U	∵ 0.68 ≀	4.9 U	5.2 U	2.1] J	2.3 J	49 U		4.8 U
BENZO(A)PYRENE ⁽²⁾	ug/L	0	250 U	5.1 U	1.2	4.9 U	5.2 U	12	C 1:7J	49 U		0.24]
BENZO(B)FLUORANTHENE	ug/L	0.002	250 U	5.1 U	0.79] J	4.9 U	5.2 U	· 2iJ	27 U	49 U	\vdash	0.22 J
BENZO(G,H,I)PERYLENE	ug/L		250 U	5.1 U	1.6 J	4.9 U	5.2 U	1.3 J	27 U	49 U		4.8 U
BENZO(K)FLUORANTHENE BIPHENYL	ug/L	0.002 S	250 U 250 U	5.1 U	1.2 J 5 U	4.9 U 4.9 U	5.2 U 5.2 U	1.2 J 26 U	27 U 27 U	49 U		0.27 J 4.8 U
BIS(2-CHLOROETHOXY)METHANE	ug/L	5	250 U	5.1 U 5.1 U	5 U	4.9 U	5.2 U	26 U	27 U	49 U		4.8 U
BIS(2-CHLOROETHYL)ETHER	ug/L ug/L	1	250 U	5.1 U	5 U	4.9 U	5.2 U	26 U	27 U	49 U		4.8 U
BIS(2-ETHYLHEXYL)PHTHALATE	ug/L	5	250 U	5.1 U	5 U	4.9 U	5.2 U	26 U	27 U	49 U	 	4.8 U
BUTYLBENZYL PHTHALATE	ug/L	50	250 U	5.1 U	5 U	4.9 U	5.2 U	26 U	27 U	49 U		4.8 U
CAPROLACTAM	ug/L		250 UJ	5.1 UJ	5 UJ	4.9 UJ	5.2 UJ	26 UJ	27 UJ	49 UJ		4.8 UJ
CARBAZOLE	ug/L		250 U	5.1 U	5 U	3.1 J	5.2 U	26 U	20 J	49 U	<u> </u>	4.8 U
CHRYSENE	ug/L	0.002	250 U	5.1 U	.0.61 J	4.9 U	5.2 U	1.6,J	1.7J	49 U		4.8 U
DI-N-BUTYL PHTHALATE	ug/L	50	250 U	0.34 J	0.31 J	4.9 U	5.2 U	26 U	27 U	49 U		0.44 J
DI-N-OCTYL PHTHALATE	ug/L	50	250 U	5.1 U	5 U	4.9 U	5.2 U	26 U	27 U	49 U		4.8 U
DIBENZO(A,H)ANTHRACENE	ug/L		250 U	5.1 U	2.1 J	4.9 U	5.2 U	26 U	27 U	49 U		4.8 U
DIBENZOFURAN	ug/L	<u>. </u>	500 U	10 U	10 U	9.8 U	10 U	52 U	55 U	98 U	Ļ	9.5 U
DIETHYL PHTHALATE	ug/L	50	250 U	0.89 J	5.9	12 U	5.2 U	10 U	3.4 U	49 U		53
DIMETHYL PHTHALATE	ug/L	50	250 U	5.1 U	1.2 J	2.1 J	5.2 U	26 U	27.U	49 U		4.8 U
ENDRIN ALDEHYDE	ug/L	5	250	F	<u></u>	0.20 :		12:	30:	40	 	46
FLUORANTHENE	ug/L	50	250 U	5.1 U	5 U	0.39 J	5.2 U	1.7 J	3.9 J	49 U		4.8 U
FLUORENE HEYACHI OROBENZENE	ug/L	50 0.04	250 U 250 U	5.1 U 5.1 U	5 U	1.3 J 4.9 U	5.2 U 5.2 U	26 U 26 U	8.4 J 27 U	49 U 49 U		4.8 U 4.8 U
HEXACHLOROBENZENE HEXACHLOROBUTADIENE	ug/L	0.04	250 U	5.1 U	5 U	4.9 U	5.2 U	26 U	27 U	49 U		4.8 U
HEXACHLOROCYCLOPENTADIENE	ug/L ug/L	5	250 UJ	5.1 U	5 U	4.9 UJ	5.2 U	26 U	27 UJ	49 U	 	4.8 U
HEXACHLOROETHANE	ug/L	5	250 U	5.1 U	5 U	4.9 U	5.2 U	26 U	27 U	49 U		4.8 U
INDENO(1,2,3-CD)PYRENE	ug/L	0.002	250 U	5.1 U	2 1	4.9 U	5.2 U	1.2	27 U	49 U		4.8 U
ISOPHORONE	ug/L	50	250 U	5.1 U	5 U	4.9 U	5.2 U	26 U	27 U	49 U		4.8 U
N-NITROSO-DI-N-PROPYLAMINE	ug/L		250 U	5.1 U	5 U	4.9 U	5.2 U	26 U	27 U	49 U		4.8 U
N-NITROSODIPHENYLAMINE	ug/L	50	250 U	5.1 U	5 Ü	4.9 U	5.2 U	26 U	27 U	49 U		4.8 U
NAPHTHALENE	ug/L	10	2600	5.1 U	5 U	23]	5.2 U	26 U	160	49 U		0.27 J
NITROBENZENE	ug/L	0.4	250 U	5.1 U	5 U	4.9 U	5.2 U	26 U	27 U	49 U		4.8 U
[5]	ug/L	1	500 UJ	10 U	10 U	9.8 U	10 U	52 U	55 U	98 Ü		9.5 U
PENTACHLOROPHENOL [3]	UB/ L											4.8 U
PHENANTHRENE	ug/L	50	250 U	5.1 U	5 U	0.76 J	5.2 U	2.2 J	6 J	49 U		
PHENANTHRENE PHENOL ¹³⁾	ug/L ug/L	S0 1	250 UJ	5.1 U	5 U	4.9 U	5.2 Ư	26 U	27 U	49 U		4.8 U
PHENANTHRENE	ug/L	50										


		Sample ID:	PDI-C17-0909	PDI-C18-0909	PDI-C19-0909	PDI-C20-0909	PDI-C21-0909	PDI-C22-0909	PDI-C23-0909	PDI-C27-0909	PDI-C28-0909	PDI-C29-0909
		Location:	PDI-C17	PDI-C18	PDI-C19	PDI-C20	PDI-C21	PDI-C22	PDI-C23	PDI-C27	PDI-C28	PDI-C29
		Date:	09/15/09	09/11/09	09/08/09	09/15/09	09/14/09	09/14/09	09/15/09	09/11/09	09/14/09	09/15/09
		NYSDEC		' '			i ' '	' '	' '			
Parameter	Units (4)	Values (5)										
Total Metals									_			
ARSENIC	ug/L	25										
BARIUM	ug/l	1000										
CADMIUM	ug/L	5		i .						_		
CHROMIUM	UR/L	50										
LEAD	ug/L	25			1							
MERCURY	ug/l	0.7										
SELENIUM	ug/l	10			-							
SILVER	ug/l	50										
Dissolved Metals												
ARSENIC	ug/L											
BARIUM	ug/l							ĺ				
CADMIUM	ug/L							Î				
CHROMIUM	ug/L					T		1				_
LEAD	ug/L											
MERCURY	ug/i											
SELENIUM	ug/l											
SILVER	ug/l											
Additional Analyses								ľ				
AMMONIA (AS N)	mg/L	2										
DISSOLVED OXYGEN	mg/L											
NITRATE-NITRITE	mg/L	10										
NITROGEN, KIELDAHL, TOTAL	mg/L							l'				
рН	S.U.								-			
PHOSPHORUS	mg/L											
TOTAL ALKALINITY	mg/L								_			
CHEMICAL OXYGEN DEMAND	mg/L		62.8		i			48.2				
BIOCHEMICAL OXYGEN DEMAND	mg/L		2 UJ					7.7				
DIESEL RANGE ORGANICS	mg/L		3.6					1.4				
OIL RANGE ORGANICS	mg/L		0.52 U					0.52 U				
GASOLINE RANGE ORGANICS	mg/L		5000 U					90				


Produced by: KJC 02/15/10 Checked by: NCF 05/05/10

FIGURES

- Use of groundwater in the entire Easement Area is restricted without water quality treatment as may be required by the New York State Department of Health.
- Future Intrusive activities must adhere to the Site Management Plan and associated Site Excavation Plan.
- Evaluation for potential vapor intrusion of any buildings is required.
- Agricultural use in the entire Easement Area is prohibited.

The limits of Integrated Cover System engineering control are approximate and are subject to change pending final construction documentation.

The Integrated Cover System engineering control are subject to change pending future redevelopment of the site. A current as—built survey should be referenced for the documented limits of the Integrated Cover System.

The engineering and institutional controls for this Easement are set forth in the Site Management Plan (SMP). A copy of the SMP must be obtained by any party with an interest in the property. The SMP can be obtained from NYS Department of Environmental Conservation, Division of Environmental Remediation, Site Control Section, 625 Broadway, Albany, NY 12233." or at derweb@gw.dec.state.ny.us

This property is subject to an Environmental Easement held by the New York State Department of Environmental Conservation pursuant to Title 36 of Article 71 of the New York Environmental Conservation Law.

REF.: NIAGARA BOUNDARY, 6941 ENG CONTROLS, 9-30-2010.

COVER SYSTEM DETAILS SHOWING TRANSITIONS ARE SHOWN IN

Approximate Limits of Engineering / Institutional Controls

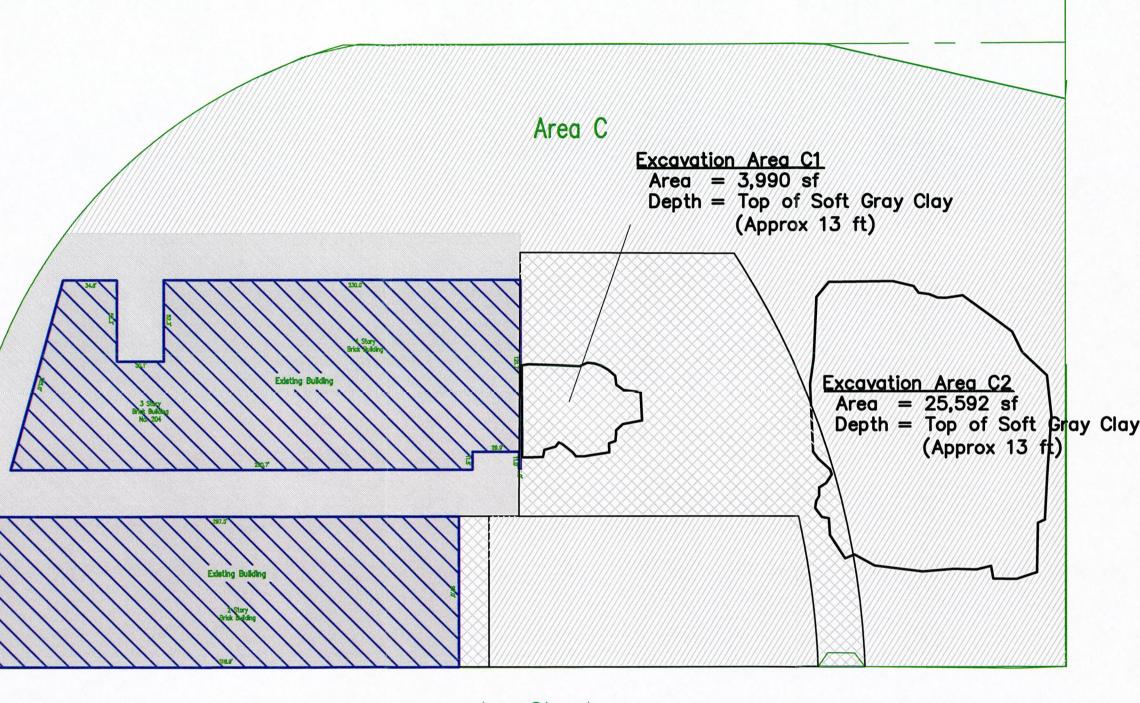
Soil Cover With Grass

Asphalt or Concrete Driveway

Gravel Cover

Concrete Pad

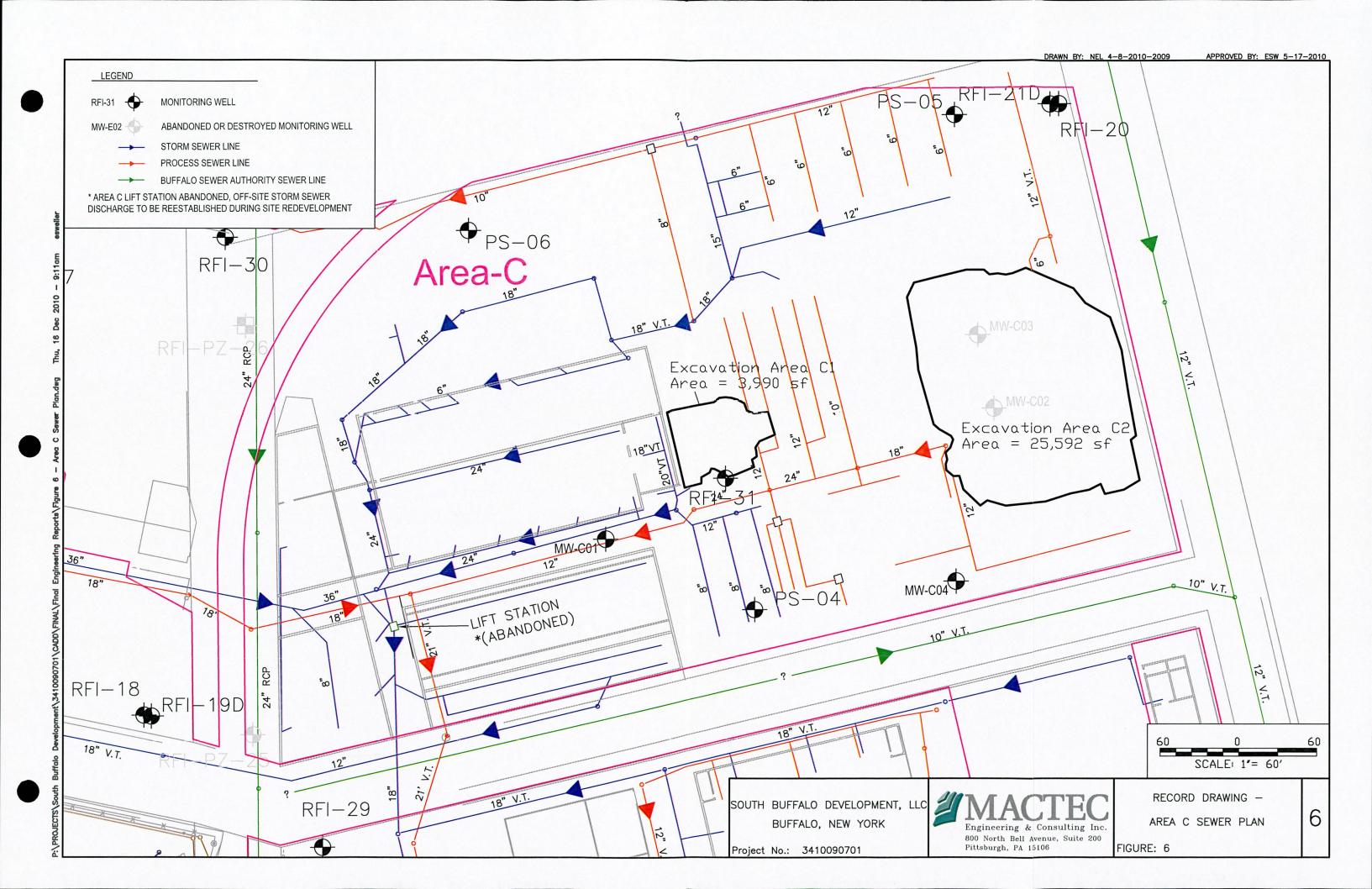
Existing Building


SOUTH BUFFALO DEVELOPMENT, LLC BUFFALO, NEW YORK

Project No.: 3410090701

Engineering & Consulting Inc. 800 North Bell Avenue, Suite 200 Pittsburgh, PA 15106

RECORD DRAWING -


AREA C FINAL COVER

Lee Street

FIGURE: 5

APPENDIX A

SURVEY MAP, METES AND BOUNDS

SCHEDULE "A" AND ENVIRONMENTAL EASEMENT DESCRIPTION

229 Elk Street, 145 Prenatt Street, 5 Babcock Street City of Buffalo, Erie County, NY Section 122.12 Block 1 Lot(s) 30, 35 & 36

Area C

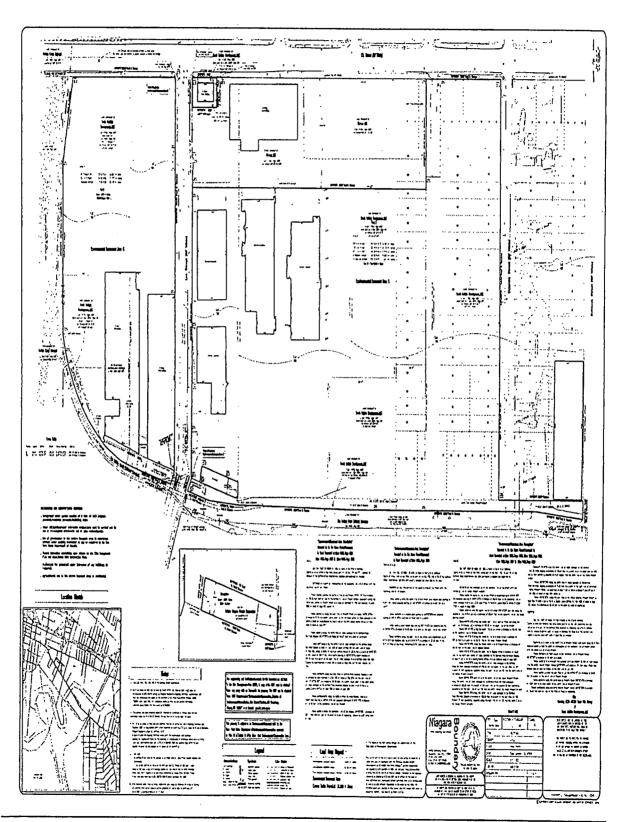
ALL THAT TRACT OR PARCEL OF LAND, situate in the City of Buffalo, County of Erie, State of New York, being part of Lot Nos. 134 and 137, Township 10, Range 8 of the Buffalo Creek Reservation, bounded and described as follows:

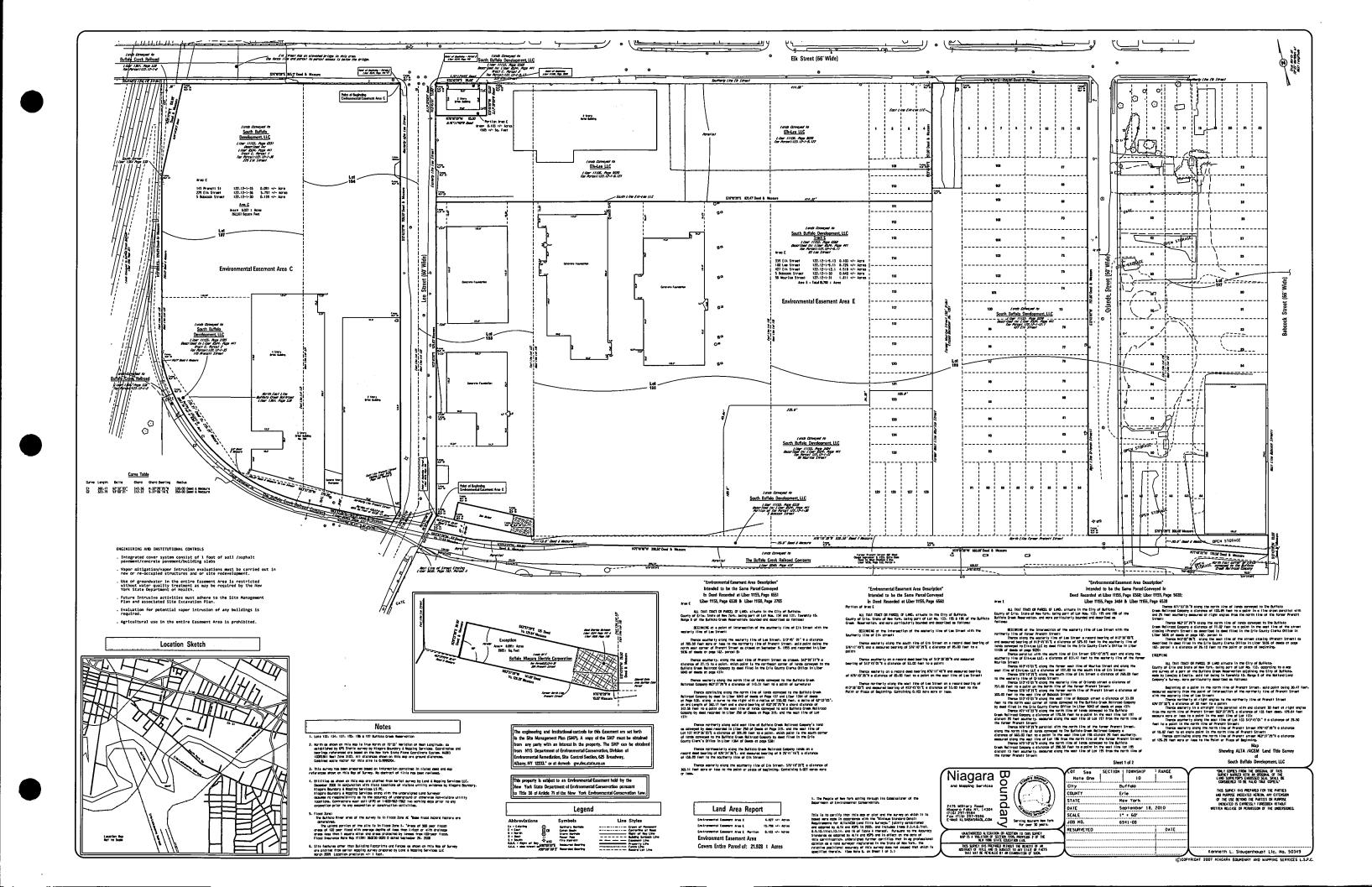
BEGINNING at a point of intersection of the southerly line of Elk Street with the westerly line of Lee Street;

Thence southerly along the westerly line of Lee Street, S13°45'01"W a distance of 709.59 feet more or less to the northerly line of Prenatt Street, said point being the north east corner of Prenatt Street as closed on September 9, 1955 and recorded in Liber 5836 of deeds at page 182, parcel B;

Thence southerly, along the east line of Prenatt Street as closed, S42°59'37"W a distance of 27.15 to a point, which point is the northeast corner of lands conveyed to the Buffalo Creek Railroad Company by deed filed in the Erie County Clerks Office in Liber 6040 of deeds at page 437;

Thence westerly along the north line of lands conveyed to the Buffalo Creek Railroad Company N63°37'29"W a distance of 143.31 feet to a point of curvature;


Thence continuing along the north line of lands conveyed to the Buffalo Creek Railroad Company by deed in Liber 6040 of deeds at Page 437 and Liber 1364 of deeds at Page 538, along a curve to the right with a radius of 330.00 feet, a delta of 62°32'03", an Arc Length of 360.17 feet and a chord bearing of N32°20'25"W a chord distance of 342.56 feet to a point on the east line of lands conveyed to said Buffalo Creek Railroad Company by deed recorded in Liber 250 of Deeds at Page 319, and the west line of Lot 137;


Thence northerly along said east line of Buffalo Creek Railroad Company's land as conveyed by deed recorded in Liber 250 of Deeds at Page 319, and the west line of Lot 137 N13°36'03"E a distance of 309.89 feet to a point, which point is the south corner of lands conveyed to the Buffalo Creek Railroad Company by deed filed in the Erie County Clerk's Office in Liber 1364 of Deeds at page 538;

Thence northeasterly along the Buffalo Creek Railroad Company lands on a record deed bearing of N26° 34' 36"E, and measured bearing of N 26°41'16"E a distance of 158.99 feet to the southerly line of Elk Street;

Thence easterly along the southerly line of Elk Street, S76°10'39"E a distance of 365.11 feet more or less to the point or place of beginning, Containing 6.027 acres more or less.

SURVEY

APPENDIX B

DIGITAL COPY OF THE FER (CD)

APPENDIX C

NYSDEC APPROVALS

APPENDIX C

NYSDEC APPROVALS

New York State Department of Environmental Conservation Division of Environmental Remediation, Region 9

270 Michigan Avenue, Buffalo, New York 14203-2915

Phone: (716) 851-7220; Fax (716) 851-7226

Website: www.dec.ny.gov

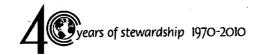
December 15, 2010

Mr. John Scrabis, PE MACTEC Engineering and Consulting, Inc. 800 North Bell Avenue Suite 200 Pittsburgh, PA 15106

Dear Mr. Scrabis:

Buffalo Color Corp. Brownfield Project – Area C C915231 Area C Pre-Design Investigation and Final Design Report Approval

The New York State Department of Environmental Conservation (NYSDEC) has reviewed the revised South Buffalo Development (SBD) and MACTEC Engineering and Consulting, Inc. (MACTEC) Area C Pre-Design Investigation and Final Design Report (PDI-FDR) dated December 2010. The PDI-FDR summarizes the investigation results and remediation plan for the section of the former Buffalo Color Corp. (BCC) Area C site. The revised document addresses NYSDEC comments contained in the June 11, 2010 comment letter and subsequent email correspondence. Based upon these revisions and proposed measures provided in the revised PDI-FDR, the revised PDI-FDR is hereby approved.


Please advise the NYSDEC concerning the scheduling and completion of the field tasks. In accordance with the overall project documentation, a summary of the remediation measures, survey data and confirmation/documentation sample data shall be incorporated into the Final Engineering Report (FER).

If you have any questions regarding the above, please feel free to contact me at 716-851-7220 or by email at ewmelnyk@gw.dec.state.ny.us.

Sincerely,

Eugene Melnyk

Eugene W. Melnyk, PE Project Manager Division of Environmental Remediation

Mr. John Scrabis, MACTEC Inc. December 15, 2010 Page 2 of 2

> EWM:dcg Melnyk\Scrabis Area C PDI-FDR approval

ec:

Mr. Nathan Freeman - NYSDOH

Mr. John Yensan - South Buffalo Development

Mr. Thomas Perkins - DeMaximus

Mr. Richard Galloway - Honeywell

Re Area C-2 Excavation Stability.txt

Eugene Melnyk [ewmelnyk@gw.dec.state.ny.us] Wednesday, October 27, 2010 3:55 PM From:

Sent:

Scrabis, John To:

TomPerkins; Martin Doster; Rich Galloway; Weiler, Eric; Tracy, Lyle; Cc: Pontoriero, Pat; Cóndie, Sean; Pearson, Stuart; Carpenter, Travis; Jóhn

Yensan; Ryan McCann

Subject: Re: Area C-2 Excavation Stability

John:

Thanks for the completing the additional evaluations. Based upon the results of the additional evaluation and as recommended below, proceed with the C2 excavation as per the tech memo. Possibly some placement of additional oxidizer in the excavation backfill could be used to mitigate the higher levels of contamination that may be likely be left behind in this area. Gene

Eugene Melnyk, PE NYŠDEC Region 9 Division of Environmental Remediation 270 Michigan Avenue Buffalo, NY 14203 716-851-7220 email: ewmelnyk@gw.dec.state.ny.us

>>> "Scrabis, John" <JMSCRABIS@mactec.com> 10/27/2010 11:16 AM >>> Gene,

See the message below from Travis Carpenter, along with the attached model output. We recommend that the sideslopes and excavation control methods specified by Mactec in our previous emails and Oct. 22 technical memo be used for completion of the C-2 excavation work in order to safely conduct the work.

Please let me know if you have any questions or would like to discuss further.

Thanks. John

----Original Message----

From: Carpenter, Travis

Sent: Wednesday, October 27, 2010 11:01 AM

To: Scrabis, John Cc: Pearson, Stuart

Subject: Area C-2 Excavation Stability

John,

As requested, I have evaluated the global stability along the northern end of Area C2 based on a sketch provided by Gene Melnyk of NYSDEC. Two options were Two options were modeled consistent with the suggested approach (see e-mail below). Output from the Slope/W stability model is attached. The results indicate a factor of safety (FOS) of about 1.1 relative to global stability for both options (actually, the critical/slip surface is the same for both options). This FOS does not fall within acceptable limits. I do not recommend that either of these options be implemented. We should proceed based upon the guidelines previously presented in the slope stability evaluation memorandum.

Give me a call with any questions.

Regards, Travis

Re Area C-2 Excavation Stability.txt Travis C. Carpenter, P.E. | Geotechnical Engineer MACTEC Engineering and Consulting, Inc. | Portland, Maine Office (207) 775-5401 | Fax (207) 772-4762 Email tccarpenter@mactec.com | Web www.mactec.com

----Original Message---

From: Eugene Melnyk [mailto:ewmelnyk@gw.dec.state.ny.us]

Sent: Tuesday, October 26, 2010 2:26 PM

To: Scrabis, John

Cc: TomPerkins; Martin Doster; Rich Galloway; Weiler, Eric; Tracy, Lyle;

Pearson, Stuart; Carpenter, Travis; John Yensan; Ryan McCann Subject: Re: Excavation Stability Memo

John:

Pursuant to our discussion this morning, I revised the cross section sketch depicting 2 options to try to excavate as much as possible the contaminated soil near the Elk Street ramp retailing wall as practical. Please have Travis Carpenter evaluate the global stability along the NE section of the excavation using the following conditions (model only one slice only for each described below):

Option 1: excavate the stiff clay-till layer to a vertical slope from the fill/stiff clay-till layer inflection point; and Option 2: excavate the area in sections of defined width and length, backfilling with the crushed concrete to top of the stiff clay-till layer, and then excavating the remaining stiff clay-till layer wedge to a vertical slope presented in option 1. Once completed, lets see the resultant FS against global failure. If the analysis suggests that the FS is within acceptable limits, maybe one or both of these options could be pursued if determined feasible/practical by OSC and if field conditions allow. Otherwise, we continue based upon the guidance presented in the geotech memo, collect the documentation samples, and backfill/seed the backfill with long term oxidizer.

In the interim, efforts to obtain the design details for the Elk Street ramp should continue, so as to have this information available for reference.

If you have any questions on the above or need clarification, please contact me. Gene

Eugene Melnyk, PE NYSDEC Region 9 Division of Environmental Remediation 270 Michigan Avenue Buffalo, NY 14203 716-851-7220 email: ewmelnyk@gw.dec.state.ny.us

>>> "Scrabis, John" <JMSCRABIS@mactec.com> 10/25/2010 1:35 PM >>>

I posted on our FTP site a complete PDF of the memo and supporting calculations/attachments for our evaluation of the open-cut excavation stability for the Area C and E remedial excavations. This includes the evaluation for the Area C excavation near the Elk Street ramp (Scenario 2) which established the currently-proposed sideslopes, setback from the ramp, and segmented excavation approach.

We have asked Mr. Ron Chapin of OSC to contact the City to determine if foundation construction records are available for the Elk St. ramp. In the absence of any new or different information, the driving concern is failure of the excavation caused by the ramp surcharge loading through the underlying soft clay unit after removal of the 13 feet of overlying materials.

Re Area C-2 Excavation Stability.txt After your review of the memo, please let me know if you would like to have a call with our geotechnical engineer to discuss.

Thanks, John

John M. Scrabis, P.E. | Senior Principal Engineer MACTEC Engineering and Consulting, Inc. | 800 N. Bell Ave., Carnegie, PA 15106 Office 412.279.6661 | Fax 412.279.8567 Email jmscrabis@mactec.com

jmscrabis@mactec.com

www.mactec.com

http://www.mactec.com/>

Confidentiality Note: This e-mail message and any attachments to it are intended only for the named recipients and may contain legally privileged and/or confidential information. If you are not one of the intended recipients, please do not duplicate or forward this e-mail message and immediately delete it from your computer.

RE Area E Soil Cover Transitions.txt

Eugene Melnyk [ewmelnyk@gw.dec.state.ny.us] Friday, April 09, 2010 8:33 AM From:

Sent: To: Scrabis, John; John Yensan

'Tom Perkins'; Kevin Glaser; Martin Doster; 'Rich Galloway';

rmccann@ontariospecialty.com

RE: Area E Soil Cover Transitions Subject:

John/John:

The cover soil transition detail is acceptable, and should be followed when completing cover soil work at the site. For the existing areas where the soil was already placed, and subsequently pulled back to excavate the transition wedge, it WILL NOT be necessary install a flap strip to extend the demarcation fabric along the vertical face of the wedge cut. The record drawing for the FER should reflect this minor variation in the placement of the cover soil transition.

If you have any questions regarding the above, please feel free to contact me.

Eugene Melnyk, PE NYSDEC Region 9 Division of Environmental Remediation 270 Michigan Avenue Buffalo, NY 14203 716-851-7220 email: ewmelnyk@gw.dec.state.ny.us

>>> "Scrabis, John" <JMSCRABIS@mactec.com> 4/8/2010 8:32 AM >>> Gene, here are the details regarding the edges and transition areas for the cover system. The 12-inch cover we be brought carried to the edges, as requested in your recent letter. Let me know if you have any questions or concerns.

Thanks, John

----Original Message----

From: Eugene Melnyk [mailto:ewmelnyk@gw.dec.state.ny.us] Sent: Thursday, April 08, 2010 7:50 AM

To: Scrabis, John; John Yensan Cc: 'Tom Perkins'; Kevin Glaser; Martin Doster; 'Rich Galloway'

Subject: RE: Area E Soil Cover Transitions

Thanks. I understand the intent of the work, I need some details and documentation for the record.

>>> "John Yensan" <jyensan@ontariospecialty.com> 4/7/2010 8:26 PM >>>

Wanting to take advantage of the good weather, we began constructing the transition of the soil cover system along the property boundaries on the east side of Area E. John Scrabis will be forwarding a detail of the transition tomorrow morning. The extents of the transition zone will also be surveyed prior to cover placement, and the spoils will be spread in low areas or excavations beneath the cover system.

Please feel free to contact John S. or myself with any questions or concerns.

Thanks. John

RE Area E Soil Cover Transitions.txt

----Original Message----

From: Eugene Melnyk [mailto:ewmelnyk@gw.dec.state.ny.us] Sent: Tuesday, April 06, 2010 1:08 PM

To: John Scrabis; John Yensan Cc: Tom Perkins; Kevin Glaser; Martin Doster; Rich Galloway Subject: Area E Soil Cover Transitions

John/John:

While at the BCC site yesterday, I noticed in Area E some construction activity that involves the pulling back of the previously placed cover soil placed near the fence line. It appears that preparations are being made to transition the 12" cover system into the surrounding soil along the fence. Could you provide me with some information and details regarding this activity, especially as it relates the construction of the cover system. As the transition details have not been provide to date, it would be to everyone's benefit to understand the scope of the work, and that it will meet the intent of the BCP agreement, and does not hinder the issuance of the COC.

Thanks Gene

Eugene Melnyk, PE NYSDEC Region 9 Division of Environmental Remediation 270 Michigan Avenue Buffalo, NY 14203 716-851-7220 email: ewmelnyk@gw.dec.state.ny.us

Re SBD - Area C and E VOC Excavation Plans for Contruction.txt

From: Eugene Melnyk [ewmelnyk@gw.dec.state.ny.us]

Sent: Friday, September 17, 2010 4:01 PM

To: Scrabis, John; John Yensan; Ryan McCann

Cc: Tom Perkins; Kevin Glaser; Martin Doster; Rich Galloway; Pontoriero, Pat;

Condie. Sean

Subject: Re: SBD - Area C and E VOC Excavation Plans - Issued for Contruction

John:

I reviewed the final VOC excavation plans for Area E and C. Based upon the known site information, known limits of contaminants exceeding the site specific trigger limits and the associated technical specifications, the excavations are accepted. Please plan on executing the work according the these plans. As with any excavation plan to remove source material, the final limits may vary based upon field conditions, field screening and confirmation test results. A formal acceptance will be issued with the satisfactory completion of the respective 100% PDI RWP documents for both Area C and Area F.

Based on latest communications, the VOC excavation for Area E is scheduled to begin Monday September 20, 2010. Area C is anticipated to begin around early October.

If you have any questions regarding the above, please contact me. Gene

Eugene Melnyk, PE NYSDEC Region 9 Division of Environmental Remediation 270 Michigan Avenue Buffalo, NY 14203 716-851-7220 email: ewmelnyk@gw.dec.state.ny.us

>>> "Scrabis, John" <JMSCRABIS@mactec.com> 9/16/2010 2:04 PM >>> Attached are the revised drawings for the Area C and E excavations. These are issued for construction.

Changes made to the drawings include:

- * Used colors to depict excavation limits and sewer lines
- * Moved southern limit of E-1 excavation north to avoid rail spur currently used by PVS

Please contact Eric Weiler to obtain CAD files (if you need them) or if you have any questions/comments before I return from vacation on 9/24.

-John

Re Buffalo Color - DEC Comments.txt

From: Eugene Melnyk [ewmelnyk@gw.dec.state.ny.us]

Sent: Tuesday, November 23, 2010 1:26 PM

To: tom.perkins@demaximis.com; Scrabis, John; John Yensan; Ryan McCann

Cc: Martin Doster; Condie, Sean

Subject: Re: Buffalo Color - DEC Comments

Ryan:

Your summary of our discussion is correct. The only thing I have to add is that any of the asphalt areas in Area C that are to remain can be patched with cold patch (hot asphalt is preferred, but cold patch will suffice) to fill in/cover compromised areas. Following the installation of the storm sewer system in 2011, any sections of pipe in existing asphalt or concrete paved areas will be restored with hot asphalt, at a minimum. Any adjoining areas containing asphalt that is compromised can be more permanently repaired with hot asphalt. The fracturing of the asphalt that will be covered with the cover soil is to satisfy the City of Buffalo's demolition requirements.

I will discuss with Marty on acceptable cover in the strip adjacent to the Area C rails. Gene

Eugene Melnyk, PE NYSDEC Region 9 Division of Environmental Remediation 270 Michigan Avenue Buffalo, NY 14203 716-851-7220 email: ewmelnyk@gw.dec.state.ny.us

>>> Ryan McCann <rmccann@oscinc.com> 11/23/2010 12:45 PM >>>
Gentlemen,

Gene and I discussed a few items today related to the ongoing work and attaining the COC.

Gene please correct me if I misinterpreted anything and provide comment.

Area C

For purposes of the COC, the DEC would be satisfied with cold patching damaged asphalt adjacent to the building and in the breeze way. Any areas where asphalt is totally gone we can use stone or cold patch depending on the location.

Gene requested that any asphalt to remain below the cover be fractured, this can be accomplished with the teeth of bucket excavator. Raised concrete will be broken up in-place with the wrecking ball or pulveriser.

The stone access road from the rear of the building to the gate is acceptable (2" crushed stone, compacted).

The "feathering" out of the cover material just beyond the property boundary underneath the bridge is acceptable to the DEC (as not to consume additional time cutting the transition trench).

Gene needs to review the rail spur entering the property at Lee Street; currently the stone adjacent to the track looks in good condition / the DEC may be ok with leaving that area as is. Other areas we will have to transition at the rail with clay or utilize stone depending on the area.

Area E

DEC is requesting that we pull out the remaining sections of rail as close to Lee Street as possible and installing the stone cover as designed. Currently we left approximately 75' of rail in place coming off Lee Street, as the WNY Page 1

Re Buffalo Color - DEC Comments.txt Rail stated they would re-set during development; but in an effort to attain the COC we need to address it now.

Area E Excavation Sample Area RS1; Gene requested that half of the triangle of material
remaining be removed (sample result - 37 ppm Aniline). Additionally that area
had a groundwater sample that exceeded the site criteria; the DEC would be
satisfied if we excavate the "hot" sample point, then excavate around the
remaining material, just below the ground water table, possibly 1 foot below
the excavation design depth. The material would be cast to the side and a
"heavy" application of ORC would be placed in the cut. Excavated material
would be placed back into the cut following the ORC application.

Gene authorized the backfilling of the open excavation adjacent to the tracks. Only one sample point was above the site criteria (RS3 - 57 ppm Chlorobenzene); during backfilling we will blend in ORC at that location, in an effort to knock down the contamination.

Gene let me know if I forgot anything; we can discuss these considerations further during the meeting tomorrow.

Guys, please provide comment or questions if I didn't express myself clearly

Ryan McCann Project Manager

[cid:image001.png@01CB8B06.89E8EF80]
Ontario Specialty Contracting, Inc.
333 Ganson Street, Buffalo, New York 14203
0-716-856-3333 F-716-842-1630 C-716-200-9555
www.ontariospecialty.comhttp://www.ontariospecialty.com/>

PLEASE NOTE MY NEW EMAIL ADDRESS IS RMCCANN@OSCINC.COM

New York State Department of Environmental Conservation Division of Environmental Permits, Region 9

270 Michigan Avenue, Buffalo, New York, 14203-2915

Phone: (716) 851-7165 · Fax: (716) 851-7168

Website: www.dec.ny.gov

Commissioner

January 22, 2010

Mr. John Yensan 333 Ganson Street Buffalo, New York 14203

Dear Mr. Yensan:

PERMIT NO. 9-1446-00643/00001 MLR NO. 91013

Enclosed is your permit which was issued in accordance with applicable provisions of the Environmental Conservation Law. The permit is valid for only that project, activity or operation expressly authorized. If modifications are desired after permit issuance, you must submit the proposed revisions and receive written approval from the Permit Administrator prior to initiating any change. If the Department determines that the modification represents a material change in the scope of the authorized project, activity, operation or permit conditions, you will be required to submit a new application for permit.

PLEASE REVIEW ALL PERMIT CONDITIONS CAREFULLY. IN PARTICULAR, IDENTIFY YOUR INITIAL RESPONSIBILITIES UNDER THIS PERMIT IN ORDER TO ASSURE TIMELY ACTION IF REQUIRED. SINCE FAILURE TO COMPLY PRECISELY WITH PERMIT CONDITIONS MAY BE TREATED AS A VIOLATION OF THE ENVIRONMENTAL CONSERVATION LAW, YOU ARE REQUESTED TO PROVIDE A COPY OF THE PERMIT TO THE PROJECT CONTRACTOR, FACILITY OPERATOR, AND OTHER PERSONS DIRECTLY RESPONSIBLE FOR PERMIT IMPLEMENTATION (IF ANY).

If you have any questions regarding the administrative processing of this permit or request for modification, please contact this office at the above address. Technical questions relating to the specific conditions should be directed to Mr. Michael Meyers of the Region 9 Minerals Unit at 716/372-0645.

> Respectfully, Steven J. Doleski Regional Permit Administrator

BAD:irf

Enclosure(s)

Captain David Bennett, NYSDEC Division of Law Enforcement CC:

Mr. Michael Meyers, NYSDEC Division of Mineral Resources, Allegany Sub-office

Honorable Peter McMahon, Supervisor, Town of Grand Island

Ms. Kristin Savard, Advanced Design Group

Mr. Carl Dimmig, Erie County Highway Department

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Facility DEC ID 9-1446-00643

PERMIT

Under the Environmental Conservation Law (ECL)

Permittee and Facility Information

Permit Issued To: JOHN YENSAN 333 GANSON ST BUFFALO, NY 14203 (716) 856-3333 Facility:

FIRST AVE @ SIXTH ST GRAND ISLAND, NY 14072

Facility Location: in GRAND ISLAND in ERIE COUNTY

Facility Principal Reference Point: NYTM-E: 174.338 NYTM-N: 4771.388

Latitude: 43°01'31.3" Longitude: 79°59'48.7"

Project Location: First & Sixth Street

Authorized Activity: The proposed action is the mining of clay, on approximately 6 acres of land within 33 acres owned by the applicant at the project location. The clay material is to be sold and trucked off-site. Mining, as planned, will create a pond 2.7 acres in size. The pond excavation will be 14 feet deep and will be reclaimed, with side slopes 3:1 (horizontal on vertical). The pond will have an approximate water depth of 12 feet. The stated reclamation objective is a recreational pond and the estimated life of the mining operation is 2 years.

Permit Authorizations

Mined Land Reclamation - Under Article 23, Title 27

Permit ID 9-1446-00643/00001

New Permit

Effective Date: 1/21/2010

Expiration Date: 1/19/2015

NYSDEC Approval

By acceptance of this permit, the permittee agrees that the permit is contingent upon strict compliance with the ECL, all applicable regulations, and all conditions included as part of this permit.

Permit Administrator: STEVEN J DOLESKI, Regional Permit Administrator

Address:

NYSDEC REGION 9 HEADQUARTERS

270 MICHIGAN AVE

BUFFALO, NY 14203 -2915

Authorized Signature:

Steven J. Doleski.

Date / / 22/20/0

Distribution List

Law Enforcement
MICHAEL MEYERS
Hon. Peter McMahon, Town of Grand Island
Kristin Savard, Advanced Design Group
Carl Dimming, Erie Co. Highway Dept.

Permit Components

MINED LAND RECLAMATION PERMIT CONDITIONS

GENERAL CONDITIONS, APPLY TO ALL AUTHORIZED PERMITS

NOTIFICATION OF OTHER PERMITTEE OBLIGATIONS

MINED LAND RECLAMATION PERMIT CONDITIONS

- 1. Conformance With Plans All activities authorized by this permit must be in strict conformance with the approved plans submitted by the applicant or applicant's agent as part of the permit application. Such plans were approved by the Department on January 21, 2010 and consist of the following items:
- a) Mined Land Use Plan and Reclamation Plan, by Advanced Design Group, Revised August 14, 2009.
- b) Site Layout Map, Revised 8/27/09 by KLG.
- 2. Conditions Prevail Over Plans If any of this permit conflicts with the approved plans noted in Special Condition Number 1, the permit conditions shall prevail over the plans unless specific written approval for such a change is obtained from this Department prior to implementation.
- 3. SPDES Multi-Sector Stormwater General Permit Prior to any mining operations at the mine site, the permittee must obtain coverage under the NYSDEC SPDES Multi-Sector General Permit for Storm Water Discharges Associated with Industrial Activity by filing a Notice of Intent and Termination (NOIT) form with the Department and complying with all provisions and conditions of the permit. This form and other information on this General Permit are available from the Bureau of Water Permits and from the Department's website (http://www.dec.ny.gov/chemical/9009.html).
- 4. Fueling of Equipment and Reporting of Spills Fueling of equipment shall be controlled to prevent spillage. Any spillage of fuels, waste oils, other petroleum products or hazardous materials shall be reported to the Department's Spill Hotline number (1-800-457-7362) within 2 hours. The permittee shall retain the Department's Spill Response number for immediate access in the permittee's office and at the mine site.
- 5. Bond, Surety to Remain in Force Any required reclamation bond or other surety, in an amount determined by the Department, shall be maintained in full force and effect. Such a bond or other surety shall not be terminated until the reclamation of the mined area is approved by the department in writing.

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Facility DEC ID 9-1446-00643

- 6. Strip and Stockpile Soils for Reclamation Prior to the excavation of previously undisturbed areas, topsoil and overburden shall be stripped, stockpiled separately, and used for reclamation of mined areas. These stockpiles shall be seeded to establish a vegetative cover within 30 days, or as soon as practicable following their construction. The permittee shall locate all overburden stockpiles within the permitted area of the approved Life of Mine. Sufficient quantities of topsoil must be retained on the site for use in reclamation, unless prior approval is granted by the Department.
- 7. No Unpermitted Discharge Outside Limits of Mine There shall be no natural swales or channels or constructed features such as ditches, pipes, etc., that are capable of discharging waters to any offsite areas or to any areas outside the limits of the Life of Mine except those explicitly described and shown in the narrative and graphic portions of the approved Mined Land Use Plan. All silt laden water and storm water generated on, or running across, the site shall be retained within the approved project area. The permittee must comply with all applicable State Pollutant Discharge Elimination System (SPDES) permit requirements and provide necessary notifications for off-site point source discharges.
- 8. Maintain Area Markers for Permit Term The permittee shall provide permanent markers such as stakes, posts or other devices acceptable to the Department to identify and delineate the permit area, as outlined on the approved Mining Plan Map. These markers are to be installed prior to the start of mining and shall be maintained for the duration of the permit term.
- 9. Dust Control Water or other approved dust palliatives must be applied to haulageways and other parts of the mine, as often as necessary, to prevent visible dust from leaving the mine property.
- 10. Application Renewal The Department, in its sole discretion, may waive the requirements for timely submission of renewal applications (General Condition Number 5) when deemed appropriate by the Regional Permit Administrator.

GENERAL CONDITIONS - Apply to ALL Authorized Permits:

1. Facility Inspection by The Department The permitted site or facility, including relevant records, is subject to inspection at reasonable hours and intervals by an authorized representative of the Department of Environmental Conservation (the Department) to determine whether the permittee is complying with this permit and the ECL. Such representative may order the work suspended pursuant to ECL 71-0301 and SAPA 401(3).

The permittee shall provide a person to accompany the Department's representative during an inspection to the permit area when requested by the Department.

A copy of this permit, including all referenced maps, drawings and special conditions, must be available for inspection by the Department at all times at the project site or facility. Failure to produce a copy of the permit upon request by a Department representative is a violation of this permit.

2. Relationship of this Permit to Other Department Orders and Determinations Unless expressly provided for by the Department, issuance of this permit does not modify, supersede or rescind any order or determination previously issued by the Department or any of the terms, conditions or requirements contained in such order or determination.

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Facility DEC ID 9-1446-00643

3. Applications For Permit Renewals, Modifications or Transfers The permittee must submit a separate written application to the Department for permit renewal, modification or transfer of this permit. Such application must include any forms or supplemental information the Department requires. Any renewal, modification or transfer granted by the Department must be in writing. Submission of applications for permit renewal, modification or transfer are to be submitted to:

Regional Permit Administrator NYSDEC REGION 9 HEADQUARTERS 270 MICHIGAN AVE BUFFALO, NY14203 -2915

- 4. Submission of Renewal Application The permittee must submit a renewal application at least 30 days before permit expiration for the following permit authorizations: Mined Land Reclamation.
- 5. Permit Modifications, Suspensions and Revocations by the Department The Department reserves the right to modify, suspend or revoke this permit. The grounds for modification, suspension or revocation include:
 - a. materially false or inaccurate statements in the permit application or supporting papers;
 - b. failure by the permittee to comply with any terms or conditions of the permit;
 - c. exceeding the scope of the project as described in the permit application;
 - d. newly discovered material information or a material change in environmental conditions, relevant technology or applicable law or regulations since the issuance of the existing permit;
 - e. noncompliance with previously issued permit conditions, orders of the commissioner, any provisions of the Environmental Conservation Law or regulations of the Department related to the permitted activity.
- 6. Permit Transfer Permits are transferrable unless specifically prohibited by statute, regulation or another permit condition. Applications for permit transfer should be submitted prior to actual transfer of ownership.

NOTIFICATION OF OTHER PERMITTEE OBLIGATIONS

Item A: Permittee Accepts Legal Responsibility and Agrees to Indemnification

The permittee, excepting state or federal agencies, expressly agrees to indemnify and hold harmless the Department of Environmental Conservation of the State of New York, its representatives, employees, and agents ("DEC") for all claims, suits, actions, and damages, to the extent attributable to the permittee's acts or omissions in connection with the permittee's undertaking of activities in connection with, or operation and maintenance of, the facility or facilities authorized by the permit whether in compliance or not in compliance with the terms and conditions of the permit. This indemnification does not extend to any claims, suits, actions, or damages to the extent attributable to DEC's own negligent or intentional acts or omissions, or to any claims, suits, or actions naming the DEC and arising under Article 78 of the New York Civil Practice Laws and Rules or any citizen suit or civil rights provision under federal or state laws.

Item B: Permittee's Contractors to Comply with Permit

The permittee is responsible for informing its independent contractors, employees, agents and assigns of their responsibility to comply with this permit, including all special conditions while acting as the permittee's agent with respect to the permitted activities, and such persons shall be subject to the same sanctions for violations of the Environmental Conservation Law as those prescribed for the permittee.

Item C: Permittee Responsible for Obtaining Other Required Permits

The permittee is responsible for obtaining any other permits, approvals, lands, easements and rights-of-way that may be required to carry out the activities that are authorized by this permit.

Item D: No Right to Trespass or Interfere with Riparian Rights

This permit does not convey to the permittee any right to trespass upon the lands or interfere with the riparian rights of others in order to perform the permitted work nor does it authorize the impairment of any rights, title, or interest in real or personal property held or vested in a person not a party to the permit.

The New York State Department of Environmental Conservation has issued a

pursuant to the Environmental Conservation Law for the mining operation being conducted on this site. For more information regarding the nature and extent of work approved, contact the Mined Land Reclamation Specialist shown below. Please refer to the mine file number shown when contacting the DEC.

Mine File Number 9/0/3 Permit Expiration Date 9/0/3/4

DEC Contact 9/0/3/2

Phone Number 2/6-372-0545 NOTE: THIS IS NOT A PERMIT

BAR -1

APPENDIX D

ASBESTOS ABATEMENT AND FACILITY DEMOLITION DISPOSAL SUMMARIES

Project: Buffalo Color Location: Buffalo, NY OSC Job No: 0913

Non-Hazardous "Grossly" Contaminated Material (No. 6 oil) - VT 3 Containment Area C

Load No.	Date	Modern Ticket No.	Recycling / Disposal Company	Destination	Approval Number	Tonnage
1	6/4/10	4906375	Modern Disposal	, Model City, NY	M09-2321	24.27
2	6/4/10	4906376	Modern Disposal	Model City, NY	M09-2321	25.3
3	6/4/10	4906377	Modern Disposal	Model City, NY	M09-2321	26.15
4	6/4/10	4906378	Modern Disposal	Model City, NY	M09-2321	32.7
5	6/4/10	4906379	Modern Disposal	Model City, NY	M09-2321	25.15
6	6/4/10	4906380	Modern Disposal	Model City, NY	M09-2321	22.6
7	6/4/10	4906381	Modern Disposal	Model City, NY	M09-2321	22.94
8	6/4/10	4906382	Modern Disposal	Model City, NY	M09-2321	28.8
9	6/7/10	4907736	Modern Disposal	Model City, NY	M09-2321	21.54
10	6/7/10	4907738	Modern Disposal	Model City, NY	M09-2321	23.06
11	6/7/10	4907746	Modern Disposal	Model City, NY	M09-2321	24.58
12	6/7/10	4907750	Modern Disposal	Model City, NY	M09-2321	24.03
13	6/7/10	4907751	Modern Disposal	Model City, NY	M09-2321 -	23.14
14	6/7/10	4907753	Modern Disposal .	Model City, NY	M09-2321	22.62
15	6/7/10	4907756	Modern Disposal	Model City, NY	M09-2321	20.3
16	6/7/10	4907758	Modern Disposal	Model City, NY	M09-2321	24:18
17	6/7/10	4907761	Modern Disposal	Model City, NY	M09-2321	22.18
18	6/10/10	4653608	Modern Disposal	Model City, NY	M09-2321	6.51
19	6/11/10	4913229	Modern Disposal	Model City, NY	M09-2321	23.32
20	6/11/10	4913231	Modern Disposal	Model City, NY	M09-2321	21.94
21	6/11/10	4913233	Modern Disposal	Model City, NY	M09-2321	23.73
22	6/11/10	4913234	Modern Disposal	Model City, NY	M09-2321	26
23	6/11/10	4913235	Modern Disposal	Model City, NY	M09-2321	25.62
. 24	6/11/10	4913236	Modern Disposal	Model City, NY	M09-2321	19.18
25	6/11/10	4913237	Modern Disposal	Model City, NY	M09-2321	25.35
26	6/11/10	4913238	Modern Disposal	Model City, NY	M09-2321	22.17
27	6/11/10	4913239	Modern Disposal	Model City, NY	M09-2321	24.82
28	6/11/10	4913240	Modern Disposal	Model City, NY	M09-2321	21.97
29	6/11/10	4913242	Modern Disposal	Model City, NY	M09-2321	24:27
30	6/11/10	4913243	Modern Disposal	Model City, NY	M09-2321	28.79
31	6/17/10	4913244	Modern Disposal	Model City, NY	M09-2321 .	23.92
32	6/17/10	4913245	Modern Disposal	Model City, NY	M09-2321	24.54
33	6/17/10	4913246	Modern Disposal	Model City, NY	M09-2321	22.7
			Modern Disposal	Model City, NY	M09-2321	22.67
34	6/17/10	4913247				
35	6/18/10	4921929	Modern Disposal	Model City, NY	M09-2321	22.91
36	6/18/10	4921930	Modern Disposal	Model City, NY	M09-2321	21.07
37 38	6/18/10 6/18/10	4921932 4921933	Modern Disposal Modern Disposal	Model City, NY Model City, NY	M09-2321 M09-2321	22.79

Project: Buffalo Color Location: Buffalo, NY OSC Job No: 0913

Non-Hazardous "Grossly" Contaminated Material (No. 6 oil) - VT 3 Containment Area C

Load No.	Date	Modern Ticket No.	Recycling / Disposal Company	Destination	Approval Number	Tonnage	
39	6/18/10	4921935	Modern Disposal	Model City, NY	M09-2321	21.06	
40	6/18/10	4921936	Modern Disposal	Model City, NY	M09-2321	22.59	
41	6/18/10	4921937	Modern Disposal	Model City, NY	M09-2321	20.84	
42	6/18/10	4921938	Modern Disposal	Model City, NY	M09-2321	21	
43	6/18/10	4921939	Modern Disposal	Model City, NY	M09-2321	.24.12	
44	6/18/10	4921941	Modern Disposal	Model City, NY	M09-2321	22.05	
45	6/18/10 -	4921942	Modern Disposal	Model City, NY	M09-2321	21.88	
46	6/18/10	4921945	Modern Disposal	Model City, NY	М09-2321	20.84	
47	6/18/10	4921946	Modern Disposal	Model City, NY	M09-2321	22.5	
48	6/18/10	4921947	Modern Disposal	Model City, NY	M09-2321	22.64	
49	6/18/10	4921948	Modern Disposal	Model City, NY	M09-2321	24.38	
50	6/18/10	4921951	Modern Disposal	Model City, NY	M09-2321	22.55	
51	6/18/10	4922876	Modern Disposal	Model City, NY	M09-2321	21.47.	
52	6/18/10	4922877	Modern Disposal	Model City, NY	M09-2321	24:17	
53	6/18/10	4922879	Modern Disposal	Model City, NY	M09-2321	22.59	
54 .	6/18/10	4922882	Modern Disposal	Model City, NY	M09-2321	23.75	
55	6/18/10	4923034	Modern Disposal	Model City, NY	M09-2321	17.1	
56	6/21/10	4923208	Modern Disposal	Model City, NY	M09-2321	24.41	
					Total Tons =	1289.73	

Project: Buffalo Color Location: Buffalo, NY OSC Job No: 0913

oad No.	Date	Contractor	Manifest	Disposal Site	Destination	Contents	Tons	Bldg
63	11/30/09	Fibertech	986976	Waste Management	Chaffee, NY	Friable Asbestos	7.17	223
72	12/11/10	Fibertech	992389	Waste Management	Chaffee, NY	Friable Asbestos	4.50	221/220
73	12/14/10	Fibertech	993094	Waste Management	Chaffee, NY	Friable Asbestos	6.79	222/223
74	12/15/10	Fibertech	993794	Waste Management	Chaffee, NY	Friable Asbestos	9.29	222/223
77	12/21/10	Fibertech	996463	Waste Management	Chaffee, NY	Friable Asbestos	5.13	207
78	12/21/10	Fibertech	996464	Waste Management	Chaffee, NY	Friable Asbestos	6.46	207
86	1/8/10	Fibertech	3100	Waste Management	Chaffee, NY	Friable Asbestos	8.49	207
91	1/15/10	Fibertech	5084	Waste Management	Chaffee, NY	Friable Asbestos	13.86	207
92	1/15/10	Fibertech	5799	Waste Management	Chaffee, NY	Friable Asbestos	9.15	222/223
97	1/18/10	Fibertech	6212	Waste Management	Chaffee, NY	Friable Asbestos	4.74	207
99	1/21/10	Fibertech	8012	Waste Management	Chaffee, NY	Friable Asbestos	4.77	207
100	1/22/10	Fibertech	8705	Waste Management	Chaffee, NY	Friable Asbestos	4.51	207
101	1/26/10	Fibertech	9782	Waste Management	Chaffee, NY	Friable Asbestos	3.2	207
102	2/1/10	Fibertech	11865	Waste Management	Chaffee, NY	Friable Asbestos	4.6	207
103	2/1/10	Fibertech	11864	Waste Management	Chaffee, NY	Friable Asbestos	3.54	205
108	2/3/10	Fibertech	13455	Waste Management	Chaffee, NY	Friable Asbestos	2.64	207
109	2/4/10	Fibertech	13461	Waste Management	Chaffee, NY	Friable Asbestos	6.59	207
111	2/10/10	Fibertech	15659	Waste Management	Chaffee, NY	Friable Asbestos	7.05	207
112	2/15/10	Fibertech	16982	Waste Management	Chaffee, NY	Friable Asbestos	5.13	207
114	2/18/10	Fibertech	18633	Waste Management	Chaffee, NY	Friable Asbestos	5.63	207
115	2/23/10	Fibertech	20299	Waste Management	Chaffee, NY	Friable Asbestos	_ 9.54	207
117	2/25/10	Fibertech	21251	Waste Management	Chaffee, NY	Friable Asbestos	9.01	207
		Fibertech		Waste Management	Chaffee, NY	Friable Asbestos	11.53	207
118	2/26/10		21763					207/208/223
120	3/5/10	Fibertech	24330	Waste Management	Chaffee, NY	Friable Asbestos	7.07	
121	3/8/10	Fibertech	24449	Waste Management	Chaffee, NY	Friable Asbestos	7.97	207/208/223
122	3/10/10	Fibertech	26152	Waste Management	Chaffee, NY	Friable Asbestos	8.21	207/208/223
123	3/11/10	Fibertech	26726	Waste Management	Chaffee, NY	Friable Asbestos	4.84	207/208/223
124	3/12/10	Fibertech	27349	Waste Management	Chaffee, NY	Friable Asbestos	6.93	207/208/223
125	3/17/10	Fibertech	28940	Waste Management	Chaffee, NY	Friable Asbestos	3.84	207/208/223
126	3/18/10	Fibertech	30068	Waste Management	Chaffee, NY	Friable Asbestos	4.07	207/208/223
127	3/18/10	Fibertech	30153	Waste Management	Chaffee, NY	Friable Asbestos	5.25	207/208/223
128	3/18/10	Fibertech	30154	Waste Management	Chaffee, NY	Friable Asbestos	5.12	207/208/223
129	3/19/10	Fibertech	30189	Waste Management	Chaffee, NY	Friable Asbestos	4.07	207/208/223
130	3/19/10	Fibertech	30190	Waste Management	Chaffee, NY	Friable Asbestos	6.37	207/208/223
131	3/22/10	Fibertech	30755	Waste Management	Chaffee, NY	Friable Asbestos	- 5.05	207/208/223
132	3/23/10	Fibertech	31001	Waste Management	Chaffee, NY_	Friable Asbestos	- 5.77	207/208/223
134	3/24/10	Fibertech	31810	Waste Management	Chaffee, NY	Friable Asbestos	4.96	207/208/223
135	3/24/10	Fibertech	31844	Waste Management	Chaffee, NY	Friable Asbestos	4.18	207/208/223
136	3/30/10	Fibertech	33736	Waste Management	Chaffee, NY	Friable Asbestos	5.36	207/208/223
137	3/30/10	Fibertech	33737	Waste Management	Chaffee, NY	Friable Asbestos	8.29	207/208/223
138	4/5/10	Fibertech	36002	Waste Management	Chaffee, NY	Friable Asbestos	.10.8	207/208
139	4/8/10	Fibertech	38132	Waste Management	Chaffee, NY	Friable Asbestos	5.88	207/208
140	4/8/10	Fibertech	38133	Waste Management	Chaffee, NY	Friable Asbestos	. 10.19	207/208
141	4/9/10	Fibertech	38134	Waste Management	Chaffee, NY	Friable Asbestos	5.9	207/208
142	4/16/10	Fibertech	41914	Waste Management	Chaffee, NY	Friable Asbestos	19.68	207/208
143	4/20/10	Fibertech	43023	Waste Management	Chaffee, NY	Friable Asbestos	6.82	207/208
144	4/21/10	Fibertech	44442	Waste Management	Chaffee, NY	Non-Friable Asbestos	14.96	223
145	4/26/10	Fibertech	46153	Waste Management	Chaffee, NY	Non-Friable Asbestos	. 6.	223
146	4/29/10	Fibertech	47028	Waste Management	Chaffee, NY	Friable Asbestos	6.94	207/208
147	4/29/10	Fibertech	47030	Waste Management	Chaffee, NY	Friable Asbestos	4.97	207/208

Project: Buffalo Color Location: Buffalo, NY OSC Job No: 0913

l .								
Load No.	Date	Contractor	Manifest	Disposal Site	Destination	Contents	Tons	Bldg
148	4/30/10	Fibertech	47703	Waste Management	Chaffee, NY	Non-Friable Asbestos	11.46	223
149	4/30/10	Fibertech	47702	Waste Management	Chaffee, NY	Friable Asbestos	6.141	207/208
150	5/12/10	Fibertech	52841	Waste Management *	Chaffee, NY	Friable Asbestos	3.56	Area C
151	5/12/10	Fibertech	52843	Waste Management	Chaffee, NY	Friable Asbestos	_ 12.14	Area C
152	5/19/10	Fibertech	56693	Waste Management	Chaffee, NY	Non-Friable Asbestos	6.31	Area C
153	5/25/10	Fibertech	58008	Waste Management	Chaffee, NY	Friable Asbestos	4.5	Area C
154	5/27/10	Fibertech	59605	Waste Management	Chaffee, NY	Non-Friable Asbestos	3.63	Area C
155	5/27/10	Fibertech	59606	Waste Management	Chaffee, NY	Non-Friable Asbestos	8.35	Area C

Load No.	Date	Modern Ticket No.	Landfill Company	Destination	Contents	Net Wt Tons	Bldg
21	9/11/09	4456904-10	Modem Disposal	Model City, NY	Construction Debris	12.03	Area C
31	12/7/09	4665351-1	Modern Disposal	Model City, NY	Construction Debris	9.62	207
32	12/15/09	4455158-11	Modern Disposal	Model City, NY	Construction Debris	4.47.	207
85	6/25/10	41491	Modern Disposal	Model City, NY	Construction Debris	8.27	Area C
86	6/30/10	41135	Modern Disposal	Model City, NY	Construction Debris	10.11	Area C
87	6/30/10	41136	Modern Disposal	Model City, NY	Construction Debris	14.54	Area C
88	7/15/10	42256	Modern Disposal	Model City, NY	Construction Debris	4.19	Area C
89	7/15/10	42256	Modern Disposal	Model City, NY	Construction Debris	5.34	Area C
90	7/21/10	42301	Modem Disposal	Model City, NY	Construction Debris	11.06	Area C
91	7/21/10	42301	Modern Disposal	Model City, NY	Construction Debris	16.66	Area C
92	7/21/10	42301	Modern Disposal	Model City, NY	Construction Debris	8.44	Area C
93	7/22/10	42302	Modern Disposal	Model City, NY	Construction Debris	5.83	Area C
94	7/22/10	42302	Modern Disposal	Model City, NY	Construction Debris	4.58	Area C
95	7/26/10	42303	Modern Disposal	Model City, NY	Construction Debris	5.1	Area C
96	7/26/10		Modern Disposal	Model City, NY	Construction Debris	5.1	Area C
97	7/27/10	42308	Modern Disposal	Model City, NY	Construction Debris	5.71	Area C
98	7/28/10	42312	· Modern Disposal	Model City, NY	Construction Debris	11.39	Area C
99	7/28/10	42313	Modern Disposal	Model City, NY	Construction Debris	9.42	Area C
100	7/29/10	42316	Modem Disposal	Model City, NY	Construction Debris	12.7.	Area C
101	7/29/10	42316	Modern Disposal	Model City, NY	Construction Debris	5.16 \	Area C
102	7/29/10	42316	Modem Disposal	Model City, NY	Construction Debris	7.09	Area C
103	7.30/10	42321	Modern Disposal	Model City, NY	Construction Debris	5.19	Area C
104	7/30/10	42321	Modem Disposal	Model City, NY	Construction Debris	6.12	Area C
105	7/30/10	42321	Modem Disposal	Model City, NY	Construction Debris	6.87	Area C
106	8/3/10	42322	Modern Disposal	Model City, NY	Construction Debris	10.52	Area C
107	8/3/10	42322	Modern Disposal	Model City, NY	Construction Debris	8.1	Area C
108	8/3/10	42322	Modern Disposal	Model City, NY	Construction Debris	13.29	Area C
109	8/4/10	42326	Modem Disposal	Model City, NY	Construction Debris	7.5	Area C
110	8/4/10	42326	Modern Disposal	Model City, NY	Construction Debris	4.76	Area C
111	8/5/10	42270	Modem Disposal	Model City, NY	Construction Debris	7.73	Area C
112	8/5/10	42270	Modern Disposal	Model City, NY	Construction Debris	4.28	Area C
113	8/12/10	39416	Modern Disposal	Model City, NY	Construction Debris	11.72	Area C
114	8/12/10	39416	Modem Disposal	Model City, NY	Construction Debris	11.9	Area C
115	8/12/12	39416	Modem Disposal	Model City, NY	Construction Debris	7.62	Area C

Load No.	Date	Modern Ticket No.	Landfill Company	Destination	Contents	Net Wt Tons	Bldg
116	8/12/10	30420	Modern Disposal	Model City, NY	Construction Debris	12.95	Area C
117	8/19/10	39443	Modern Disposal	Model City, NY	Construction Debris	13.72	Area C
118	8/20/10	42281	Modern Disposal	Model City, NY	Construction Debris	13.08	Area C
119	8/23/10	42286 ·	Modern Disposal	Model City, NY	Construction Debris	6.52	Area C
120	8/23/10	42288	Modern Disposal	Model City, NY	Construction Debris	11.53	Area C
121	8/26/10	42299	Modern Disposal	Model City, NY	Construction Debris	9.45	Area C
122	8/26/10	42299	Modern Disposal	Model City, NY	Construction Debris	11.52	Area C
123	8/26/10	42333	Modern Disposal	Model City, NY	Construction Debris	13.11	Area C
124	8/26/10	42333	Modern Disposal	Model City, NY	Construction Debris	17.84	Area C
125	9/9/10	42850	Modern Disposal	Model City, NY	Construction Debris	1	AreaC
126	9/21/10	42860	Modern Disposal	Model City, NY	Construction Debris		Area C
127	10/6/10	43012	Modern Disposal	Model City, NY	Construction Debris		Area C
128	10/22/10	43047	Modem Disposal	Model City, NY	Construction Debris	20 m	Area C
129	10/22/10	43047	Modern Disposal	Model City, NY	Construction Debris		Area C

							•		
Load No.	Date	Bill of Lading No.	Recycling / Disposal Company		Approval Number	Container ID	Contents	Weight (Tons) /	Bldg
3	7/17/09	6295	Environmental Svc.	Covanta Niagara LP - Niagara Falls, NY	G-4896R	(4) 55 gal Drums	Fuel Oil	4	203
20	1/11/10	4665351	Modern Disposal	Model City, NY	Amended C&D Profile	Roll-off	No. 6 Oil Tank Bottom (Sawdust)	16.17	Area C
21	1/11/10	4700419	Modern Disposal	Model City, NY	Amended C&D Profile	Roll-off	No. 6 Oil Tank Bottom (Sawdust)	6.98	Area C
36	5/25/10	41793	Modern Disposal	Model City, NY	Amended C&D Profile	(40) Yd Roll Offs	No. 6 Oil Pipe/Debris	4.63	Area C
37	5/25/10	41794	Modern Disposal	Model City, NY	Amended C&D Profile	(40) Td Roll Offs	205 Tank Media	11.59	Area C
38	5/25/10	41795	Modern Disposal	Model City, NY	Amended C&D Profile	(40) Td Roll Offs	205 Tank Media	7.43	Area C
44	6/14/10		Modern Disposal	Model City, NY	Amended C&D Profile	(40) Td Roll Offs	205 Tank Media	1 4, 4.	Area C
45	6/14/10		Modern Disposal	Model City, NY	_Amended C&D Profile	(40) Td Roll Offs	205 Tank Media		Area C
48	10/6/10	43011	Modern Disposal	Model City, NY		30 Yard	205 Tank Media	13.43	Area C
49	10/6/10	43011	Modern Disposal	Model City, NY		30 Yard	205 Tank Media	21.64	Area C

		T			1			
Load No.	Date	OSC Ticket No.	Recycling Company	Destination	Driver / Truck ID	Contents	Net Wt	Bldg
1	6/3/09	39256	Metalico	Buffalo, NY	886 MT1	Unprepared HMS	10080	203
2	6/8/09	39257	Metalico	Buffalo, NY	885 MT1	Unprepared HMS	8320	203
32	7/16/09	39289	Metalico	Buffalo, NY	887 MT1	Unprepared P&S	15800	203
131	8/27/09	40963	Metalico	Buffalo, NY	884 MT1	HMS	_ 22340	C - Pipe Rack
132	8/27/09	40964	Metalico	Buffalo, NY	884 MT1	Unprepared HMS	11580	C - Pipe Rack
133	8/27/09	40965	Metalico	Buffalo, NY	884 MT1	Prepared P&S	19280	C - Pipe Rack
134	8/31/09	40966	Metalico	Buffalo, NY	884 MT1	Prepared P&S / Shearing	26700	C - Pipe Rack
135	8/31/09	40967	Metalico	Buffalo, NY	884 MT1	Prepared P&S	31700	C - Pipe Rack
136	8/31/09	40968	Metalico	. Buffalo, NY	884 MT1	P&S Shearing	12860	C - Pipe Rack
137	8/31/09	40969	Metalico	Buffalo, NY	884 MT1	HMS/P&S Shearing	12480	C - Pipe Rack
139_	9/10/09	40974	Metalico	Buffalo, NY	A111	Unprepared HMS	19640	C - Pipe Rack
140	9/10/09	40975	Metalico	Buffalo, NY	A111	Loose Light Iron	9200	222
141	9/14/09	40977	Metalico	Buffalo, NY	884 MT1	Loose Light Iron	9280	222
171	9/22/09	41058	Metalico	Buffalo, NY	884 MT1	Unprepared HMS	4700	208
427	2/10/10	41820	Metalico/Posner	Buffalo, NY	886 MT1	Unprepared P&S	16280	No. 6 Oil Tank
429	2/10/10	41822	Metalico/Posner	Buffalo, NY	886 MT1	Unprepared P&S	12540	No. 6 Oil Tank
430	2/10/10	41823	Metalico/Posner	Buffalo, NY	886 MT1	Unprepared P&S	16160	No. 6 Oil Tank
431	2/11/10	41824	Metalico/Posner	Buffalo, NY	886 MT1	Unprepared P&S	11500	No. 6 Oil Tank
432	2/11/10	41825	Metalico/Posner	Buffalo, NY	886 MT1	Unprepared P&S	14740	No. 6 Oil Tank
433	2/11/10	41826	Metalico/Posner	Buffalo, NY	886 MT1	Unprerared P&S	22620	No. 6 Oil Tank
438	2/15/10	41831	Metalico/Posner	Buffalo, NY	886 MT1	Unprepared P&S	15180	No. 6 Oil Tank
442	2/17/10	41835	Metalico/Posner	Buffalo, NY	886 MT1	5' P&S	27720	207
444	2/17/10	41837	Metalico/Posner	Buffalo, NY	886 MT1	Loose Light Iron	13360	207
445	2/17/10	41838	Metalico/Posner	Buffalo, NY	886 MT1	Unprepared HMS	12880	207
455	2/25/10	41848	Metalico/Posner	Buffalo, NY	886 MT1	Unprepared HMS .	17920	207
598	6/15/10	41934	Metalico/Posner	Buffalo, NY	477 MT1	Unprepared P&S Shearing	21660	No. 6 Oil
599	6/15/10	41935	Metalico/Posner	Buffalo, NY	477 MT1	5' P&S	60380	No. 6 Oil
600	6/15/10	41939	Metalico/Posner	Buffalo, NY	886 MT1	Unprepared P&S Shearing	15860	No. 6 Oil
604	6/22/10	41942	Metalico/Posner	Buffalo, NY	886 MT1	5' P&S	27440	No. 6 Oil
605	6/22/10	41943	Metalico/Posner	Buffalo, NY	886 MT1	5' P&S	12440	No. 6 Oil
606	6/22/10	41944	Metalico/Posner	Buffalo, NY	886 MT1	Unprepared P&S Shearing	33040	No. 6 Oil
607	6/22/10	41945	Metalico/Posner	Buffalo, NY	886 MT1	Unprepared P&S Shearing	11960	No. 6 Oil
608	6/22/10	41948	Metalico/Posner	Buffalo, NY	886 MT1	5' P&S	29880	No. 6 Oil
610	6/22/10	41738	Metalico/Posner	Buffalo, NY	886 MT1	Unprepared P&S Shearing	. 22360	No. 6 Oil
612	6/23/10	39406	Metalico/Posner	Buffalo, NY	886 MT1	5' P&S	28280	No. 6 Oil
623	7/6/10	41748	Metalico/Posner	Buffalo, NY	886 MT1	Rebar	20260	No. 6 Oil

Load No.	Date	OSC Ticket No.	Recycling Company	Destination	Driver / Truck ID	Contents	Not Wt	Bldg
1	7/21/10	42083	Metalico	Buffalo, NY	884 MT1	Unprepared P&S	18660	223
2	7/21/10	42084	Metalico	Buffalo, NY	884 MT1	Unprepared P&S	26100	223
3	7/21/10	42085	Metalico	Buffalo, NY	884 MT1	Unprepared HMS	14240	223
4	7/23/10	42088	Metalico	Buffato, NY	889 MT1	Unprepared HMS	9380	223
5	7/23/10	42087	Metalico	Buffalo, NY	889 MT1	Unprepared P&S	19520	223
7	7/23/10	42088	Metalico	Buffalo, NY	889 MT1	Unprepared HMS	9160	223
8	7/26/10	42302	Metalico	Buffelo, NY	886 MT1	Loose Lite	10260	223
9	7/26/10	42304	Metalico	Buffalo, NY	886 MT1	Loose Lite	9740	223
10	7/26/10	42305	Metalico	Buffalo, NY	886 MT1	Unprepared HMS	. 14680	223
11	7/26/10	42306	Metalico	Buffalo, NY	886 MT1	Unprepared HMS	12960	223
12	7/26/10	42307	Metalico	Buffalo, NY	887 MTI	Unprepared HMS	15600	223
13	7/27/10	42309	Metalico	Buffalo, NY	887 MTI	Unprepared HMS	20840	223
14	7/27/10	42310	Metalico	Buffalo, NY	887 MTI	Unprepared HMS	18840	223
15	7/27/10	42311	Metalico	Buffalo, NY	887 MTI	Unprepared HMS	14320	223
16	7/28/10	42314	Metalico	Buffalo, NY	887 MTI	Unprepared HMS	10520	220 Series
17	7/29/10	42315	Metalico	Buffalo, NY	98 MTI	Sheet iron &HMS #2	. 14300	220 Series
18	7/29/10	42317	Metalico	Buffalo, NY	1TM 88	Unprepared HMS	15340	220 Series
19	7/29/10	42318	Metalico	Buffalo, NY	98 MTI	unprepared HMS	13420	220 Series
20	7/29/10	42319	Metalico	Buffalo, NY	98 MT1	Unprepared HMS	16060	220 Series
21	8/2/10	42280	Metalico	Buffalo, NY	889 MTI	Unprepared HMS	14160	220 Series
22	8/2/10	42261	Metalico	Buffalo, NY	889 MTI	Unprepared HMS	12700	220 Series
23	8/2/10	42262	Metalico	Buffalo, NY	889 MTI	Unprepared HMS	23320	220 Series
24	8/3/10	42263	Metalico	Buffato, NY	889 MTI	Unprepared HMS	15280	220 Series
25	8/3/10	42264	Metalico	Buffalo, NY	889 MTI	Unprepared HMS	- 21640 -	220 Series
26	8/4/10	42265	Metalico	Buffalo, NY	883 MTI	Unprepared HMS	16600 -	220 Series
27	8/4/10	42266	Metalico	Buffalo, NY	883 MTI	Unprepared HMS	15260	220 Series
28	8/4/10	42267	Metalico	Buffato, NY	883 MTI	Unprepared HMS	10500	220 Series
29	8/4/10	42324	Metalico	Buffalo, NY	883 MTI	Unprepared HMS	17440	220 Series
30	8/9/10	42275	Metalico	Buffalo, NY	TM068	Unprepared HMS	12820	220 Series
31	8/9/10	42274	Metalico	Buffato, NY	TM068	Unprepared HMS	13860	220 Series
32	8/9/10	42273	Metalico	Buffalo, NY	890 MTI	Unprepared HMS	14240	220 Series_
33	8/9/10	42272	Metalico	Buffalo, NY	890 MTI	Unprepared HMS	14460	220 Series
34	8/9/10	42271	Metalico	Buffalo, NY	890 MTI	Unprepared HMS	12700	220 Series
35	8/12/10	39419	Metalico	Buffalo, NY	884 MTI	Unprepares HMS	16920	220 Series
36	8/12/10	39418	Metalico	Buffalo, NY	884 MTI	Unprepares HMS	15780	220 Series
37	8/12/10	39417	Metalico	Buffalo, NY	884MTI	Unprepared HMS	13060	220 Series
38	8/12/10	39421	Metalico	Buffalo, NY	884 MTI	Unprepared HMS	20280	220 Series
39	8/12/10	39422	Metalico	Buffalo, NY	884 MTI	Tank Plate Steel	18060	220 Series
40	8/12/10	39423	Metalico	Buffalo, NY	884 MTI	Unprepared HMS	8040	220 Series
41	8/16/10	39424	Metalico	Buffalo, NY	886MTI	Tank Plate Steel	10580	220 Series
42	8/16/10	39425	Metalico	Buffalo, NY	886 MTI	Heat Exchanger	21240	220 Series
44	8/17/10	39426	Metalico	Buffalo, NY	883MTI	Unprepared HMS	17100	220 Series
45	8/17/10	39427	Metalico	Buffalo, NY	883 MTI	Unprepared HMS	8080	220 Series
48	8/17/10	39428	Metalico	Buffalo, NY	883 MTI	Unprepared HMS	10880	220 Series
47	8/17/10	39429	Metalico	Buffelo, NY	883 MTI	Unprepared HMS	12760	220 Series
48	8/17/10	39430	Metalico	Buffalo, NY	883 MTI	Unprepared HMS	20780	220 Series
49	8/13/10	42328	Metalico	Buffelo, NY	884 MTI	Unprepared HMS	13920	220 Series
50	8/18/10	39434	Metalico	Buffelo, NY	884 MTI	Unprepared HMS	19840	220 Series 220 Series
51	8/18/10	39435	Metalico	Buffalo, NY	889 MTI	Unprepared HMS	10240	
52	8/18/10	39438	Metalico	Buffalo, NY	889MTI	Unprepared HMS	18360	220 Series
53	8/18/10	39431	Metalico	Buffalo, NY	889 MTI	Unprepared HMS	10860	220 Series
54	8/18/10	39432	Metalico	Buffato, NY	889 MTI	Unprepared HMS	20320 11480	220 Series
55	8/18/10	39433	Metalico	Buffato, NY	889 MTI	Unprepared HMS		220 Series
56	8/19/10	39440	Metalico	Buffalo, NY	884 MTI 884 MTI	Unprepared HMS	6260	220 Series 220 Series
57	8/19/10	39441	Metalico	Buffalo, NY	884 MTI	Unprepared HMS		220 Series 220 Series
58	8/19/10	39442	Metalico Metalico	Buffalo, NY	884 MTI	Unprepared HMS	14300 -	220 Series
59	8/19/10	39444		Buffalo, NY	1	Unprepared HMS	11760	1
80	8/19/10	39437	Metalico	Buffalo, NY	884 MTI	Unprepared HMS	22360	220 Series
61	8/19/10	39438	Metalico	Buffalo, NY	884 MTI	Unprepared HMS	17560	220 Series
62	8/19/10	39439	Metalico	Buffalo, NY	884 MTI	Unprepared HMS	8060	220 Series
63	8/20/10	42329	Metalico	Buffalo, NY	84 mti	Unprepared HMS	18820	220 Series
85	8/20/10	42278	Metalico	Buffalo, NY	884 MTI	Unprepared HMS	19580	220Series
66	8/20/10	42280	Metalico	Buffalo, NY	884 MTI	Unprepared HMS	17320 .	220 Series

		-						
Load No.	Date	OSC Ticket No.	Recycling Company	Destination	Driver / Truck ID	Contents	Not Wt	Bldg
87	8/20/10	39445	Metalico	Buffalo, NY	884 MTI	Unprepared HMS	14780	220 Series
68	8/23/10	42282	Metalico	Buffalo, NY	884 MTI	Unprepared HMS	15240 -	220 Series
69	8/23/10	42283	Metalico	Buffalo, NY	884 Mti	Unprepared HMS	22460	220 Series
70	8/23/10	42284	Metalico	Buffalo, NY	884 MTI	Unprepared HMS	22980	220 Series
71	8/23/10	42285	Metalico	Buffalo, NY	884 MTI	Unprepared HMS	13600	220 Series
72	8/24/10	42330	Metalico	Buffalo, NY	884MTI	Unprepared HMS	22140	220 Series
73 74	8/24/10 8/24/10	42331 42332	Metalico	Buffalo, NY	889MTI 886MTI	Unprepared HMS	20640 10760	220 Series 220 Series
75	8/25/10	42332	Metalico Metalico	Buffelo, NY Buffelo, NY	884MTI	Unprepared HMS Unprepared HMS	7640	220 Series
76	8/25/10	42291	Metalico	Buffalo, NY	884MTI	Unprepared HMS	8020	220 HMS
77	8/25/10	42292	Metalico	Buffalo, NY	884MT1	Unprepared HMS	11660 -	220 Series
78	8/25/10	42294	Metalico	Buffalo, NY	452MT1	Unprepared HMS	31000	220 Series
79	8/25/10	42295	Metalico	Buffalo, NY	884MTI	Unprepared HMS	11460	220 Series
80	8/25/10	42298	Metalico	Buffalo, NY	884MTI	Unprepared HMS	- 8940	220 Series
81	8/25/10	42297	Metalico	Buffalo, NY	884MTI	Unprepared HMS	12380	220 Series
82	8/25/10	42293	Metalico	Buffalo, NY	ITM988	Unprepared HMS	28860	220 Series
83	8/25/10	42298	Metalico	Buffalo, NY	884MTI	Unprepared HMS	12140	220 Series
84	8/26/10	42300	Metalico	Buffalo, NY	884MTI	Unprepared HMS	17200	220 Series
85	8/26/10	42334	Metalico	Buffalo, NY	884MTI	Unprepared HMS	7040	220 Series
86	8/26/10	42335	Metalico	Buffalo, NY	884MTI	Unprepared HMS	17260	220 Series 220 Series
87	8/26/10	42338	Metalico	Buffalo, NY	884MTI	Unprepared HMS	11880	
88 89	8/27/10 8/27/10	42337 42338	Metalico Metalico	Buffalo, NY Buffalo, NY	884 MTI 884MTI	Unprepared HMS Unprepader HMS	15140 22260	220 Series 220 Series
90	8/27/10	42339	Metalico	Buffalo, NY	884MTI	Unprepared HMS	14920	220 Series
91	8/27/10	42340	Metalico	Buffalo, NY	884MTI	Unprepared HMS	21300	220 Series
92	8/30/10	42342	Metalico	Buffalo, NY	884MTI	Unprepared HMS	13280	207/208
93	8/30/10	42343	Metalico	Buffalo, NY	884MTI	Unprepared HMS	15780	207/208
94	8/30/10	42344	Metalico	Buffalo, NY	884MTI	Electric Motor	24580	207/208
95	8/30/10	42341	Metalico	Buffalo, NY	884MTI	UnpreparedHms	- 14600 ·	207/208
96	8/30/10	42345	Metalico	Buffalo, NY	884MTI	Unprepared HMS	- 12260	207/208
97	8/30/10	42347	Metalico	Buffalo, NY	884MTI	Unprepared HMS	13200	207/208
98	8/30/10	42348	Metalico	Buffalo, NY	884MTI	Unprepared HMS	20240	207/208
99	8/30/10	42349	Metalico	Buffalo, NY	884MTI	Unprepared HMS	13200	207/208
100	8/31/10	42346	Metalico	Buffalo, NY	884MTI	Unprepared HMS	13500	207/208
101	8/31/10	42350	Metalico	Buffalo, NY Buffalo, NY	884MTI 884MTI	5'P&S P&S	34460 34900	207/208
102	8/31/10 8/31/10	42701 42702	Metalico Metalico	Buffalo, NY	884MTI	P&S	26520	207/208
100	8/31/10	42703	Metalico	Buffalo, NY	884Mti	Unprepared HMS	12560	208
104	9/1/10	42704	Metalico	Buffalo, NY	884MTI	U/P Steel Plate	22340	207/208
105	9/1/10	42705	Metalico	Buffalo, NY	884MTI	Unprepared HMS	14140	207/208
106_	9/2/10	42706	Metalico	Buffalo, NY	884MTI	Loose Lite	23060	207/208
107	9/2/10	42707	Metalico	Buffalo, NY	884MTI *	Unprepared HMS	. 11020 i	207/208
108	9/2/10	42708	Metalico	Buffalo, NY	884MTI	Unprepared HMS	- 15840	207/208
109	9/2/10	42709	Metalico	Buffalo, NY	884MT1	Unprepared HMS	13100	207/208
110	9/3/10	42710	Metalico	Buffalo, NY	884MTI	Unprepared HMS	23460	207/208
111	9/7/10	42712	Metalico	Buffalo, NY	884MTI	Unprepared HMS	8220	207/208
112	9/7/10	42713	Metalico	Buffalo, NY	884MTI	Unprepared HMS	17060	207/208
113	9/8/10	42711	Metalico	Buffalo, NY	884MTI 884MTI	Uprepared HMS	14980 \ 20680	207/208
114	9/13/10	42715 42718	Metalico Metalico	Buffalo, NY Buffalo, NY	884MTI	Unprepared HMS Unprepared HMS	20500	207/208
116	9/13/10	42717	Metalico	Buffalo, NY	884MTI	Unprepared HMS	13560	207/208
117	9/13/10	42718	Metalico	Buffalo, NY	884MTI	Unprepared HMS	21240	207/208
118	9/13/10	42719	Metalico	Buffalo, NY	884MTI	Unprepared HMS	12400 -	207/208
119	9/14/10	42720	Metalico	Buffalo, NY	884MTI	Unprepared HMS	28820	207/208
120	9/15/10	42721	Metalico	Buffalo, NY	884MTI	Unprepared HMS	24720	207/208
121	9/15/10	42722	Metalico	Buffalo, NY	884MTI	Unprepared HMS	27880	207/208
122	9/18/10	42723	Metalico	Buffalo, NY	884MTI	Unprepared HMS	26980	207/208
123	9/16/10	42724	Metalico	Buffalo, NY	884MTI	YARD CAST	22860	207/208
124	9/16/10	42725	Metalico	Buffalo, NY	884MTI	Unprepared HMS	15960 -	207/208
125	9/20/10	42726	Metalico	Buffalo, NY	884MTI	YARD CAST	33260	207/208
126	9/20/10	42727	Metalico	Buffalo, NY	884MTI	YARD CAST	27580	207/208
127	9/20/10	42728	Metalico	Buffalo, NY	884MTI	5'P&S	22700	204
128	9/20/10	42729	Metalico	Buffalo, NY	884MTI	Unprepared HMS	18540	208

		l · ·			1		l.	
Load No.	Date	OSC Ticket No.	Recycling Company	Destination	Driver / Truck ID	Contents	Not Wt	Bldg
129	9/20/10	42730	Metalico	Buffalo, NY	884MTI	Unprepared HMS	26180	208
130	9/21/10	42731	Metalico	Buffalo, NY	884MTI	5'P&S	- 25340	204
131	9/21/10	42732	Metalico	Buffalo, NY	884MTI	Unprepared MHS	28080	208
132	9/21/10	42733	Metalico	Buffalo, NY	884MTI	Unprepared HMS	16040	208
133	9/22/10	42734	Metalico	Buffalo, NY	884MTI	Unprepared HMS	26400	208
134	9/23/10	42735	Metalico	Buffalo, NY	84MTI	U/PP&S	ن	208
135	9/23/10	42736	Metalico	Buffalo, NY	884MT1	Unprepared HMS	17560	208
136	9/23/10	42737	Metalico	Buffalo, NY	884MT1	Unprepared HMS	25640	208
137	9/23/10	42738	Metalico	Buffalo, NY	884MT1	Unprepared HMS	21060	208
139	9/24/10	42739	Metalico	Buffalo, NY	884MT1	Unprepared HMS	16980	208
140	9/27/10	42740	Metalico	Buffalo, NY	884MTI	YARD CAST	42420	208
141	9/27/10	42741	Metalico	Buffalo, NY	884MTI	YARD CAST	41760 "	208
142	9/27/10	42742	Metalico	Buffalo, NY	884MTI	Unprepared HMS	15700	208
143	9/27/10	42743	Metalico	Buffalo, NY	884MTI	U/PP&S	19480	208
144	9/29/10	42745	Metalico	Buffalo, NY	98MTI	YARD CAST	24100 -	208
145	9/29/10	42746	Metalico	Buffalo, NY	98MTI	YARD CAST	46220	208
148	9/29/10	42747	Metalico	Buffalo, NY	ITM88	Unprepared HMS	18580	208
147	9/29/10	42748	Metalico	Buffalo, NY	98MTI	YARD CAST	25560	208
148	10/1/10	42749	Metalico	Buffalo, NY	884MTI	YARD CAST	11880	208
149	10/1/10	42750	Metalico	Buffalo, NY	884MTI	Unprepared HMS	10040	208
150	10/11/10	42802	Metalico	Buffalo, NY	884MTI	Unprepared HMS	- 10840	204
151	10/11/10	42801	Metalico	Buffalo, NY	884MTI	Unprepared HMS	20660	223
152	10/11/10	42803	Metalico	Buffalo, NY	884MTI	Unprepared HMS	16620	208
152	10/11/10	42804	Metalico	Buffalo, NY	884MTI	Unprepared HMS	30580	208
154	10/11/10	42805	Metalico	Buffalo, NY	884MTI	Unprepared HMS	20960	217
155	10/13/10	42883	Metalico	Buffalo, NY	884MTI	Unprepared HMS	12520	207
156	10/13/10	42884	Metalico	Buffalo, NY	884MTI	5'P&S	23100	207
	10/15/10	43030	Metalico	Buffalo, NY	884MTI	Re-bar	5260	AreaC
158	10/15/10	42825	Metalico	Buffalo, NY	884MT!	5'P&S	20400	AreaC
159	10/15/10	42840	Metalico	Buffalo, NY	884MTi	Uprepared HMS	9520 ~	208
160	10/15/10	42885	Metalico	Buffalo, NY	884MT1	Unprepared HMS	11460	AreaC
181	10/18/10	42866	Metálico	Buffalo, NY	884MT1	5'P&S	8320	AreaC
162	10/18/10	42867	Metalico	Buffalo, NY	884MTI	5'P&S	19420	AreaC
163	10/18/10	42868	Metalico	Buffalo, NY	884MTi	5'P&S	16360	AreaC
184	10/25/10	42889	Metalico	Buffalo, NY	884MTI	Unprepared HMS	/12300 ×	AreaC
165	10/25/10	42870	Metalico	Buffalo, NY	884MTI	Unprepared HMS	8720	AreaC
166	10/25/10	42870	Metalico	Buffalo, NY	884MTI	YARD CAST	23200	AreaC
187	10/25/10	42871	Metalico	Buffalo, NY	884MTI	HMS	19420 -	AreaC
168	10/26/10	42872	Metalico	Buffalo, NY	884MTI	YARD CAST	20200	AreaC
169	10/26/10	42872	Metalico	Buffalo, NY	884MTI	YARD CAST	29380	AreaC
170	11/8/10	42842	Metalico	Buffalo, NY	884MTI	Prepared Steel	28860	AreaC
171	11/8/10	42843	Metalico	Buffalo, NY	884 MTI11	Prepared Steel	11780	AreaC
172	11/9/10	42844	Metalico	Buffato, NY	884MTI	Prepared Steel	32880 Ti	AreaC
173	11/9/10	42873	Metalico	Buffato, NY	884MTI	Prepared Steel	18160	AreaC
174	11/9/10	42874	Metalico	Buffalo, NY	884MTI	Prepared Steel	27300	AreaC
175	11/9/10	42875	Metalico	Buffalo, NY	884MTI	Misc Steel	14060	AreaC
176	11/11/10	42876	Metalico	Buffalo, NY	884MTI	Misc Steel	, ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	· AreaC
177	11/11/10	42877	Metalico	Buffalo, NY	884MTI	Unprepared HMS	2 4 (a.d.)	AreaC
178	11/11/10	42878	Metalico	Buffalo, NY	884MTI		100	AreaC

Load No.	Date	OSC Ticket No.	Modern Ticket No.	Recycling / Disposal Company	Destination	Approval Number	Tonnage
1	8/10/10	39415	4994143	Modern/Pariso Dump Truck	Model City	(M09-2321)	20.81
2	8/10/10	39415	4994144	Modem/Pariso Dump Truck	Model City	(M09-2321)	21.30
3	8/10/10	39415	4994145	Modem/Pariso Dump Truck	Model City	(M09-2321)	19.35
4	8/10/10	39415	4994146	Modem/Pariso Dump Truck	Model City	(M09-2321)	24.19
5	8/10/10	39415	4994150	Modern/Pariso Dump Truck	Model City	(M09-2321)	26.64
6	8/10/10	39415	4494151	Modern/Pariso Dump Truck	Model City	(M09-2321)	18.58
7	8/10/10	39415	4994154	Modern/Pariso Dump Truck	Model City	(M09-2321)	23.37
8	8/10/10	39415	4994155	Modern/Pariso Dump Truck	Model City	(M09-2321)	23.41
9	8/10/10	39415	4494158	Modern/Pariso Dump Truck	Model City	(M09-2321)	24.67
10	8/10/10	39415	4494159	Modem/Pariso Dump Truck	Model City	(M09-2321)	22.41
11	8/10/10	39415	4494160	Modem/Pariso Dump Truck	Model City	(M09-2321)	25.84
12	8/10/10	39415	4494162	Modern/Pariso Dump Truck	Model City	(M09-2321)	23.22
13	8/11/10	42276	4494165	Modern/Pariso Dump Truck	Model City	(M09-2321)	21.50
14	8/11/10	42276	4994166	Modern/Pariso Dump Truck	Model City	(M09-2321)	23.51
15	8/11/10	42276	4994167	Modern/Pariso Dump Truck	Model City	(M09-2321)	17.69
16	8/11/10	42276	4994170	Modern/Pariso Dump Truck	Model City	(M09-2321)	24.41
17	8/11/10	42276	4994171	Modern/Pariso Dump Truck	Model City	(M09-2321)	17.10
18	8/11/10	42276	4994174	Modern/Pariso Dump Truck	Model City	(M09-2321)	18.54
19	8/11/10	42276	4494175	Modern/Pariso Dump Truck	Model City	(M09-2321)	24.30
20	8/11/10	42276	4494176	Modern/Pariso Dump Truck	Model City	(M09-2321)	24.96
21	8/11/10	42276	4945494	Modern/Pariso Dump Truck	Model City	(M09-2321)	19.10
22	8/13/10	42277	5001468	Modem/Pariso Dump Truck	Model City	(M09-2321)	11.25
23	8/13/10	42277	5001471	Modern/Pariso Dump Truck	Model City	(M09-2321)	12.67
24	8/13/10	42277	5001474	Modern/Pariso Dump Truck	Model City	(M09-2321)	21.33
25	8/13/10	42277	5001476	Modem/Pariso Dump Truck	Model City	(M09-2321)	20.00
27	8/13/10	42277	5001477	Modern/Pariso Dump Truck	Model City	(M09-2321)	22.66
28	8/13/10	42277	5001478	Modern/Pariso Dump Truck	Model City	(M09-2321)	23.07
29	8/13/10	42277	5001481	Modem/Pariso Dump Truck	Model City	(M09-2321)	13.63
30	8/13/10	42277	5001484	Modern/Pariso Dump Truck	Model City	(M09-2321)	11.62
31	8/13/10	42277	5001485	Modern/Pariso Dump Truck	Model City	(M09-2321)	17.32
32	8/13/10	42277	5001488	Modern/Pariso Dump Truck	Model City	(M09-2321)	18.64
33 _	8/13/10	42277	5001489	Modem/Pariso Dump Truck	Model City	(M09-2321)	20.28
34	8/13/10	42277	5001490	Modem/Pariso Dump Truck	Model City	(M09-2321)	17,41
35	8/13/10	42277	5001492	Modern/Pariso Dump Truck	Model City	(M09-2321)	. 12.95
36	8/13/10	42277	5001493	Modem/Pariso Dump Truck	Model City	(M09-2321)	6.71
				•		Total Tons =	694.44

APPENDIX E

CONSTRUCTION RECORDS/REPORTS

From:

Condie, Sean.

Sent:

Friday, October 15, 2010 6:50 AM

To:

Tom Perkins

Cc:

Weiler, Eric; Scrabis, John

Subject:

10-14-10 Report

10-14-10

Backfilling east of the process sewer line continued today; 4 foot-lifts were completed. Fill material was provided from offsite; the final lift of stone still needs to be completed. Backfilling was also initiated in area E-2; 4 foot lifts were completed; however, the area excavated on 10-13-10 was left open; backfilling is pending on sidewall sample results. Three OSC employees were involved: 1 running the 700J dozer moving the dirt and two laborers filling in the remaining pipes with concrete as well as running the vibrating drum compactor. The 644H was also used for compaction as rain progressed (~1100) and the drum compactor was unable to run through the soft soils. Approximately 60-80 trucks were seen hauling fill to the site. Preparation for excavation in area C began today as well. Surface soils atop concrete were removed in the C-2 excavation area as well as some of the concrete. Removed material was kept in a stockpile for possible reuse pending sample results. Debris from buildings 204/205 in area C was also removed from the C-1 excavation area in preparation for that dig as well. Two OSC employees were involved: 1 running the zaxis 350 and 1 operating the cat 725 dump truck. Other miscellaneous activities occurring were street sweeping (2 machines running) and use of the water truck to minimize dust in area E before rain set in. See field notes for additional details.

E-2 TOTALS:

Samples Collected: 5--1 base sample and 4 side wall samples.

Volume Excavated: 583 cubic yards (35'x45'x10')+33 cubic yards (6'x6'x25')=616 cubic yards

Backfilled ~6 foot lift (10.5 bags ORC; 1 bag of fertilizer)

Stockpile 3: ~583 cubic yards

Stockpile 4: ~271 cubic yards (E-2 and E-3 soils)

E-3 TOTALS:

Samples Collected: 27--12 base samples and 15 sidewall samples.

Dimensions Excavated: 303'x35'x5' (1,963 cubic yards)+303'x3'x2'(67 cubic yards)+3'x26'x5' (14 cubic yards)+9'x26'x4'

(35 cubic yards) = 2,079 cubic yards

Stockpile 1: ~926 cubic yards Stockpile 2: ~915 cubic yards

From:

Condie, Sean

Sent:

Monday, October 18, 2010 6:42 AM

To:

Tom Perkins

Cc:

Weiler, Eric; Scrabis, John

Subject:

10-15-10 Report

10-15-10

Area C-2 was prepped for excavation today. Surface soils (to concrete) continued to be removed and stock piled for possible reuse; concrete was also broken up and stockpiled for possible reuse. All of the surface soils have been removed; and concrete south of the access road has been removed as of 10-15-10. The access road in the center of the excavation has not been prepped yet due to truck traffic. Three OSC employees were involved: 1 digging (zaxis 350), 1 hauling (cat 725), and one crushing concrete (hitachi 750). No work was done in Area E today. See field notes for additional details.

E-2 TOTALS:

Samples Collected: 5--1 base sample and 4 side wall samples.

Volume Excavated: 583 cubic yards (35'x45'x10')+33 cubic yards (6'x6'x25')=616 cubic yards

Backfilled ~6 foot lift (10.5 bags ORC; 1 bag of fertilizer)

Stockpile 3: ~583 cubic yards

Stockpile 4: ~271 cubic yards (E-2 and E-3 soils)

E-3 TOTALS:

Samples Collected: 27--12 base samples and 15 sidewall samples.

Dimensions Excavated: 303'x35'x5' (1,963 cubic yards)+303'x3'x2'(67 cubic yards)+3'x26'x5' (14 cubic yards)+9'x26'x4'

(35 cubic yards) = 2,079 cubic yards

Stockpile 1: ~926 cubic yards Stockpile 2: ~915 cubic yards

From:

Condie, Sean

Sent:

Tuesday, October 19, 2010 6:50 AM

To:

Tom Perkins

Cc:

Weiler, Eric; Scrabis, John

Subject:

10-18-10 Report

10-18-10

Shipment of stockpile 4 began and was completed today. Approximately 20-30 trucks were seen hauling material offsite. Excess concrete was also shipped from Area E. Approximately 10 trucks were seen hauling concrete off site. Three OSC employees were involved; one running the 460 loading the trucks, one running the water truck and street sweeper (dust control), and one doing paperwork. Excavation began on area C-1 today as well. Surface soils (above concrete) were stockpiled for future reuse (pending sample results); concrete was stockpiled with material removed from the C-1 area. Material removed was contained in stockpile 5. Approximately 305 cubic yards were removed today (17'x21'x6'+17'x30'x12'). Excavation has not been taken to depth in the southeastern corner due to excess water encountered during initial digging. Five OSC employees were involved in C-1 activities today; 1 digging (zaxis 350), 1 hauling/dumping (cat 725); 1 crushing concrete (hitachi 750); 2 laborers setting up/covering stock pile 5 (aided with 644 H). The water filtration system was also set up today; however, no water was removed from C-1. Water was pumped from E-3 with the Godwin pump today and several laborers. See field notes for additional details.

C-1 TOTALS:

Volume Excavated: 305 cubic yards (17'x21'x6'+17'x30'x12')

Stockpile 5: ~305 cubic yards

E-2 TOTALS:

Samples Collected: 5--1 base sample and 4 side wall samples.

Volume Excavated: 583 cubic yards (35'x45'x10')+33 cubic yards (6'x6'x25')=616 cubic yards

Backfilled ~6 foot lift (10.5 bags ORC; 1 bag of fertilizer)

Stockpile 3: ~583 cubic yards

Stockpile 4: ~271 cubic yards (E-2 and E-3 soils)

E-3 TOTALS:

Samples Collected: 27--12 base samples and 15 sidewall samples.

Dimensions Excavated: 303'x35'x5' (1,963 cubic yards)+303'x3'x2'(67 cubic yards)+3'x26'x5' (14 cubic

yards)+9'x26'x4' (35 cubic yards) =2,079 cubic yards

Stockpile 1: ~926 cubic yards Stockpile 2: ~915 cubic yards

From: Condie, Sean

Sent: Wednesday, October 20, 2010 6:56 AM

To: Tom Perkins

Cc: Weiler, Eric; Scrabis, John

Subject: 10-19-10 Report

10-19-10

Excavation continued in area C-1 today. An additional 825 cubic yards were removed today; brining the total dimensions to approximately 48'x55'x12.5'(depth) minus a volume with the dimensions of 22'x9'x12.5'(depth) remaining in the northwestern corner. Stockpile number 6 was also started today; stock pile number 5 contains approximately 1000 cubic yards. After a depth of 5 feet was reached, the southern wall adjacent to the building is being sloped at ~ 60 degrees to target depth to avoid damaging the footer/wall. Water was pumped from the pit with a Godwin pump and the stockpile was sprayed with smell suppressant foam at the end of the day with the sulair-185. Seven OSC employees were involved in excavation activities: 1 digging (zaxis 350), 1 hauling (cat 725), 1 crushing concrete (hitachi-750/460), 2 laborers operating the Godwin Pump/filtration system, and 2 employees conducting oversight (setting up filtration system/spraying pile with sulair-185). The tank farm area to the west of area E-2 was also scraped today. A depth of 1 foot was achieved; which equates to a total volume of approximately 175 cubic yards (74'x64'x1'). Material was live loaded off site; a portion of the material still remains for shipment off site. Three employees were involved: 1 digging and loading (zaxis 350), 1 wetting the road/street sweeping (water truck/street sweeper), and 1 doing paper work. See field notes for additional details.

C-1 TOTALS:

Volume Excavated: 1,130 cubic yards [48'x55'x12.5'(removed)-22'x9'x12.5'(remaining)]

Stockpile 5: ~1,000 cubic yards Stockpile 6:~130 cubic yards

E-2 TOTALS:

Samples Collected: 5--1 base sample and 4 side wall samples.

Volume Excavated: 583 cubic yards (35'x45'x10')+33 cubic yards (6'x6'x25')=616 cubic yards

Backfilled ~6 foot lift (10.5 bags ORC; 1 bag of fertilizer)

Stockpile 3: ~583 cubic yards

Stockpile 4: ~271 cubic yards (E-2 and E-3 soils)

E-3 TOTALS:

Samples Collected: 27--12 base samples and 15 sidewall samples.

Dimensions Excavated: 303'x35'x5' (1,963 cubic yards)+303'x3'x2'(67 cubic yards)+3'x26'x5' (14 cubic yards)+9'x26'x4'

(35 cubic yards) = 2,079 cubic yards

Stockpile 1: ~926 cubic yards Stockpile 2: ~915 cubic yards

From: Condie, Sean

Sent: Wednesday, October 20, 2010 8:14 PM

To: Tom Perkins

Cc: Weiler, Eric; Scrabis, John

Subject: 10-20-10 Report

10-20-10

Initial excavation was completed in area C-1 today. Approximately 147 cubic yards were removed today. The final dimensions are 60'x46'x12.5' (1277 cubic yards). Five samples were collected; 4 side wall samples and 1 base sample. Two OSC employees were involved in excavation activities: 1 digging (zaxis 350) and 1 hauling/dumping (cat 725). Also, 1 laborer was involved in cleaning the bucket with a pressure washer. Backfilling was initiated following excavation activities; 5 foot-lifts were completed. Approximately 25 bags of ORC and 1.5 bags of fertilizer were used. Fill material was supplied from the crushed demolition pile located in area-E and was hauled to area C with 2 Mallare trucks running back and forth throughout the day. Six employees were involved: 1 loading trucks (zaxis 350), 1 spreading/compacting the fill (700) dozer and vibrating drum compactor), 3 laborers operating pump to remove water from the pit (Godwin pump), applying ORC and fertilizer, and sealing up pipes with concrete (hand tools), and 1 oversight (also applied ORC with kubata LA 854). Material removed to create a ramp into the excavation area was stockpiled for reuse pending sample results. Other activities occurring in area C: 3 conducting concrete crushing during off time (460 with wrecking ball, hitachi 750, and hitachi 350) and 1 employee operating water truck to control dust. See field notes for additional details.

C-1 TOTALS:

Volume Excavated: 1,277 cubic yards (60'x46'x12.5')

Stockpile 5: ~1,000 cubic yards Stockpile 6:~277cubic yards

Samples collected: 5--4 sidewall samples and 1 base sample Backfilled 5 foot lifts (25 bags of ORC and 1.5 bags of fertilizer)

E-2 TOTALS:

Samples Collected: 5--1 base sample and 4 side wall samples.

Volume Excavated: 583 cubic yards (35'x45'x10')+33 cubic yards (6'x6'x25')=616 cubic yards

Backfilled ~6 foot lift (10.5 bags ORC; 1 bag of fertilizer)

Stockpile 3: ~583 cubic yards

Stockpile 4: ~271 cubic yards (E-2 and E-3 soils)

E-3 TOTALS:

Samples Collected: 27--12 base samples and 15 sidewall samples.

Dimensions Excavated: 303'x35'x5' (1,963 cubic yards)+303'x3'x2'(67 cubic yards)+3'x26'x5' (14 cubic yards)+9'x26'x4'

(35 cubic yards) = 2,079 cubic yards

Stockpile 1: ~926 cubic yards Stockpile 2: ~915 cubic yards

From:

Weiler, Eric

Sent:

Friday, October 22, 2010 7:44 AM

To:

Scrabis, John; tperkins@demaximis.com

Cc:

Condie, Sean; Weiler, Eric

Subject:

10-21-10 Report

10-21-10

Deep backfill of soils (crushed concrete and brick) was completed in excavation C1. Total of 9 lifts with 4.2 bags of ORC-A and .25 bags of fertilizer per lift. Surveyor onsite and surveyed in excavation C1. Subsurface concrete was crushed from excavation C2. Begin excavation of C2 soils in the southwest corner of the excavation working to the East. Size of excavation 30' wide north to south by 22' long east to west by 13 feet deep. Equipement used: Excavators (750 and 2 350s), Bulldozer, Drum Compactor, Off road hauler, street sweeper, and 2 dump trucks. 6 OCS personnel. One stockple sample collected by OSC from northern most stockpile. No samples collected from excavaiton. For additional information refer to field notes.

Eric

From:

Weiler, Eric

Sent: Monday, October 25, 2010 6:21 PM tperkins@demaximis.com; Scrabis, John To:

Condie, Sean; Weiler, Eric Cc: Subject: 10-22-10 Daily Report

Contine excavation of soils from Area C-2, size of excavation 66' by 30' by 13'. Haul concrete debris offsite for disposal. 4 OSC employees working at excavation. Equipement used: Excavators (450 and 350), Off Road Hauler, Front End Loader, and Godwin pump. Collect sample of completed Stockpile C-3 (approx. 100 cy excavated from C-3 so far).

From:

Weiler, Eric

Sent:

Tuesday, October 26, 2010 7:23 AM

To:

tperkins@demaximis.com; Scrabis, John; Condie, Sean; Weiler, Eric

Subject:

10-26-10 Daily Report

OSC excavates soil from along eastern edge of Area E3 to remove storm sewer. Install northern catch basin and 107' of pipe. Attach northern pipe to existing clay pipe with 3 metal bands. Stockpile soil in Area E cell. Load soil for off-site disposal from stockpiles in area C (Southside Pile). OSC employees - 6. Equipement used - Backhoe (Deere 310SG), Excavators (350 and 450), Front End Loader, Lull, Off-Road Haul Truck, Bobcat, and Godwin Pump. 11 trucks per cycle of trucks loading soil for disposal. OSC worked to 6 pm. OSC excavates approximately 85' by 10' by 5' section of soil

From:

Weiler, Eric

Sent:

Wednesday, October 27, 2010 7:25 AM

To:

tperkins@demaximis.com; Scrabis, John; Condie, Sean

Cc:

Weiler, Eric

Subject:

10-26-10 Daily Report

OSC Continues pipe installation of Area E Storm Sewer. Complete laying of pipe and catch basins, connect downgradient pipe to existing clay pipe. Concrete plug all laterals into E3 from west. Surveyor onsite to survey in pipe installation, additional sidewall sample locations, and pipe laterals. Collect confirmatory sidewall samples at two location in northwestern portion of E3 excavation. Collect stockpile sample from soils generated from Storm sewer pipe installation (approx. 1000 cy). Complete stockpile load out of north side Area C soils. OSC employees - 7. Equipment - Excavators (350 x2, 450), Front End Loader, Off-road Haul truck, Godwin Pump, Lull, and Backhoe.

From: Weiler, Eric

Sent: Friday, October 29, 2010 12:36 PM

To: tperkins@demaximis.com; Scrabis, John; Condie, Sean

Cc: Weiler, Eric

Subject: 10-28-10 Daily Report

OSC continues excavation of soils from Area C2, approximately 1000 cy of soil removed today. Place soils into stockpile C5 and C6. Complete stockpile C5, collect sample and send to lab. OSC encounters process sewer pipe full of water that emptied into excavation area. Set up Godwin pump, frac tank, and treatment system and beginning water removal from excavation area C2. OSC employees - 7. Equipment - Excavators (350 and 450), Godwin pump, Off-road Hauler, and backhoe.

From: Weiler, Eric

Sent: Monday, November 01, 2010 7:18 AM

To: tperkins@demaximis.com; Scrabis, John; Condie, Sean

Cc: Weiler, Eric

Subject: 10-29-10 Daily Report

OSC places ORC and fertilizer in excavation E3 and then places second 1foot lift of stone and crushed brick. OSC continues excavation of Area C2, western side of excavation area directly south of the 75' line. OSC moves Godwin pump to second location to try to collect water pooled in the eastern side of the excavation. OSC encountered an 5 foot diameter by 10 foot long UST along the western sidewall of the excavation near the 75' form retaining wall line; UST appears to be full of water. OSC closes hole in Armor Electric fenceline. Number of OSC employees - 8. Equipment used includes: Excavators (350 x2, and 460), Bulldozer, Backhoe, Vibratory Roller, Off-road Haul Truck, and Godwin Pump.

From:

Condie, Sean

Sent:

Saturday, October 30, 2010 11:43 AM

To:

Tom Perkins

Cc:

Weiler, Eric; Scrabis, John

Subject:

10-30-10 Report

10-30-10

A small portion of C-2 was removed today to create a ramp for access for ORC application, backfilling, etc. The ramp location is contained within the limits of C-2. Approximately 35 cubic yards were removed and stockpiled. Seven OSC employees were involved. Equipment used: Water truck, 350 excavator, 460 excavator, 725 dump truck, 644 h, 7003 dozer, and the drum roller.

From:

Weiler, Eric

Sent:

Tuesday, November 02, 2010 8:05 AM

To:

tperkins@demaximis.com; Scrabis, John; Condie, Sean

Cc:

Weiler, Eric

Subject:

11-1-10 Daily Report

OSC backfills to existing grade Area E3 with soils from off-site soils. OSC breaks up concrete for offsite disposal. Slope southern sidewalls of C2 excavation and then sidewall and base samples are collected, 2 sidewall samples from southern wall (RS1 and RS2) and 1 sidewall sample from western sidewall (RS3). Base sample (RB1) collected in southwest corner of excavation. Collect Stockpile C7 sample along with Overburden 2 consisting of slope stability soils. Begin backfill open portion of C2 excavation in the southwest corner of excavation, applying ORC and fertilizer between lifts (apply twice the quantity in first lift), total of 3 lifts placed in excavation. OSC employees - 7. Equipment used: Bulldozer, Vibratory Roller, Excavators (350 x2, 460, and 750), Off Road Haul truck, Godwin Pump, and Mini Tractor with seeder attachment.

From:

Condie, Sean

Sent:

Thursday, November 04, 2010 7:19 PM

To:

Tom Perkins

Cc:

Weiler, Eric; Scrabis, John

Subject:

11-2-10 Report

11-2-10

Excavation continued in area C-2 today. Approximately 385 cubic yards were removed today and stockpiled in C8. Backfilling continued in area C-2 as well. The final 6 lifts were placed onto the area started on 11-1-10 and 9 lifts were placed onto an additional area. A total of 39 bags of ORC and 2.5 bags of fertilizer were applied. Soil from the stockpiles located in area C were also shipped off site. The tank farm area located adjacent to area E-1 was prepped from excavation by crushing concrete. Equipment used by OSC: excavation (350, 725), shipment (460), backfilling (700J, drum compactor, 644h), concrete removal/crushing (750). Approximately 8 OSC employees were involved in activities today. See field notes for additional details.

Eric-let me know if I left anything out.

From:

Condie, Sean

Sent:

Thursday, November 04, 2010 10:55 AM

To:

Tom Perkins

Cc: Subject: Weiler, Eric; Scrabis, John Correction to 11-3-10 Report

Correction is in **bold**, the area removed was overestimated.

11-3-10

Excavation continued in area C-2 today. The area south of the 75' from Elk street is now complete aside from a 15'x50' area left for ramp access and a 15'x90' area located just south of the 75' line in the northeastern corner of C-2. A total of ~850 cubic yards were removed today. Material removed was live loaded during excavation today; approximately 40 trucks were loaded; during non-live loading times, material removed was stockpiled in stock pile C 10. A portion of C-2 was backfilled (3 lifts) today as well; 8 bags of ORC were used and 1 bag of fertilizer was used. Shipment of C stockpiles was also conducted today; approximately 15 trucks were loaded. Area E-1 was prepped from excavation today as well; concrete was broken up and railroad ties were removed. One base sample was collected within C-2 today; the current limits of C-2 were also surveyed today. 12 OSC employees were involved in operations today. OSC equipment used: excavators (350, 460, 760), 700J and Drum roller (backfilling), water truck and street sweeper (dust control), Godwin pump(water removal), Lull forklift and 644h (misc), TB-135 (railroad tie removal), and sulair 185 (smell suppressant foam spray). See field notes for additional details.

From:

Condie, Sean

Sent:

Thursday, November 04, 2010 7:34 PM

To:

Tom Perkins

Cc:

Weiler, Eric; Scrabis, John

Subject:

11-4-10 Report

11-4-10

Excavation continued in area C-2 today. Approximately 505 cubic yards were removed. Removed soils were directly loaded into trucks for shipment offsite. Approximately 35 trucks were loaded. An estimated volume of 10 cubic yards of concrete were removed and stockpiled. Back filling of the area within C-2 initiated on 11-3-10 continued today. Four additional lifts were placed. A total of 8 bags of fertilizer and 1 bag of fertilizer were applied to the area. The C-1 excavation area continued to be backfilled today; approximately 2 foot-lifts were applied to the areas not yet backfilled (1 foot lift remains). Shipment of stockpiles located in both area E and area C occurred today. A total of ~8 trucks were loaded in area E and ~50 trucks were loaded in area C. Three stock piles remain in area C and 1 pile remains in area E. Other miscellaneous activities occurring on site: street sweeping, sealing pipes with concrete, and pumping water from the C-2 pit. OSC equipment used: excavation (350, 725), loading trucks (750, 460), backfilling (7003, drum compactor, 644h), water removal (godwin pump), and dust control (street sweepers (2)). A total of 10 OSC employees were involved in activities today. See field notes for additional details.

From:

Condie, Sean

Sent:

Sunday, November 07, 2010 9:12 PM

To:

Tom Perkins

Cc:

Weiler, Eric; Scrabis, John

Subject:

11-5-10 Report

11-5-10

Excavation continued in area C-2 today. Approximately 145 cubic yards were removed today and directly loaded into trucks for shipment off site. Approximately 15 trucks were loaded with area C-2 material. Excavation of C-2 south of the 75' line from Elk St. is now complete minus a 15'x50' area left for ramp access. OSC also shipped out all stockpiles in both area C and area E; 4 stock piles were shipped from the site today (3 from area C and 1 from area E). Over 100 trucks were loaded with area C soils and approximately 40 trucks were loaded with area E materials. A small amount of area C-1 was backfilled today as well; approximately half of the area still needs the final foot-lift. Equipment used by OSC: Loading trucks/excavation (460, 350, 750); backfilling (7003, 644h, drum roller); excavation (350); dust control (street sweeper). Approximately 9 OSC employees were involved in activities today. See field notes for additional details.

Also, no activities related to excavation occurred on Saturday, 11-6-10.

From:

Condie, Sean

Sent:

Monday, November 08, 2010 6:38 PM

To:

Tom Perkins

Cc:

Weiler, Eric; Scrabis, John

Subject:

11-8-10 Report

11-8-10

Excavation continued in area C-2 today. The last of the material south of the 75' line from elk street was removed(15'x50'x13'). Also, an area 5'x5'x100' was removed along the 75' line for sloping requirements. Approximately 453 cubic yards were removed. A new ramp along the southern wall of C-2 was also started today (~50% complete). Trucks were loaded with the last of the stockpile materials left in area C (soils directly above underlying tarp) and with soils removed from C-2 today as well. Approximately 20 trucks were loaded. Other activities occurring related to excavation activities: water pumped from C-2 and street sweeping. Equipment used by OSC: Excavation (350, 725), loading (460), ramp construction (700J, 644h), water removal (submersible pump, generator, godwin pump, carbon filtration system), and dust control (street sweeper). Approximately 9 OSC employees were involved in activities. See field notes for additional details.

From:

Weiler, Eric

Sent:

Wednesday, November 10, 2010 7:15 AM

To:

tperkins@demaximis.com; Scrabis, John; Condie, Sean

Cc:

Weiler, Eric

Subject:

11-9-10 Daily Report

11-9-10

OSC continued excavating soils in the south east corner of the C2 excavation, until completion of all soils south of the 75 foot from retaining wall line. Remove some additional soils to the south during removal of process sewer manhole. OSC continue to backfill behind excavation, placing soil in 1 foot lifts. Collect 3 sidewalls samples. Haul trucks remove stockpiled soil for off-site disposal. Separate haul trucks delivering off-site backfill soils. Number of OSC employees - 9. Equipment used: Excavators (350, 450), Off-road Hauler, Bulldozer, Vibratory roller, Water truck, Bobcat with sweeper brush, and Sweeper.

From:

Condie, Sean

Sent:

Thursday, November 11, 2010 7:22 PM

To:

Tom Perkins

Cc: Subject: Weiler, Eric; Scrabis, John 11-10-10 Daily Report

11-9-10

Excavation and backfilling continued in Area C-2 today. All of the area south of the 75' line was backfilled with 9 foot lifts aside from a small area; only brought up to 8 foot lifts. 50.5 bags of ORC and 6.25 bags of fertilizer were used in this area. Excavation then continued above the 75' line with the first 30' cell along the northern wall, starting from the east excavating to the west. Approximately 870 cubic yards were removed. This cell was completed and back filled with 6 foot lifts. This area used ~14 bags of ORC and ~1 bag of fertilizer. Also 2 side wall samples were collected. 9 OSC employees were involved in activities today. Equipment used: 460, 350 (2), 7003, 644h, 725, volvo A25E, street sweeper, water truck, godwin pump. Also, trucks were directly loaded with C-2 soils (stockpiled when trucks were not onsite) and off site soils were hauled in for backfilling. See field notes for additional details.

From:

Condie, Sean

Sent:

Thursday, November 11, 2010 7:39 PM

To:

Tom Perkins

Cc: Subject: Weiler, Eric; Scrabis, John

11-11-10 Daily Report

Excavation and backfilling continued in Area C-2 today. The final 3 foot-lifts were added to the first 30' cell above the 75' line. 6 bags of ORC and ~1/2 bag of fertilizer were used. Also, the final foot lift was added to the small area not brought up to 9 lifts on 11-10-10. 3.5 bags of ORC and 0.5 bags of fertilizer were used in this area. Excavation of 2 additional cells north of the 75' line were completed, approximately 1325 cubic yards were removed (30'x55' cell and 20'x55' cell). Trucks were direct loaded when possible; when trucks were not onsite, soils were stockpiled. The 30' cell was backfilled with 9 foot lifts; 17.5 bags of ORC and 1 bag of fertilizer were used. Also, the 20' cell was backfilled with 7 foot lifts; 10 bags of ORC and 0.5 bags of fertilizer were used. Trucks brought in off site soils for backfilling. 1 base sample and 1 side wall sample were collected. C-1 was filled back to ground surface as well today (small area needed ~1 foot lift). 8 OSC employees were involved in activities today. Equipment used: Excavation (350, Volvo A25E), Backfilling (7003, 644h, 725, drum roller), Dust control (street sweeper, water truck), water removal (small submersible pump and generator). See field notes for additional details.

From:

Condie, Sean

Sent:

Friday, November 12, 2010 6:38 PM

To:

Tom Perkins

Cc: Subject: Scrabis, John; Weiler, Eric 11-12-10 Report

11-12-10

Excavation and backfilling continued today in area C-2. An area of 40'x55' was taken out for a total of ~1060 cubic yards. Soils removed were directly loaded into trucks for shipment off site; when trucks were not on site, soils were stockpiled in area C. One side wall sample and one base sample were collected. Backfilling of the 3rd cell along the bridge was completed with 2 additional one-foot lifts; 2.5 bags of ORC and ~1/7 bag of fertilizer were applied. Backfilling of the area excavated today was also completed; 9 one-foot lifts were applied. 25 bags of ORC and 1.5 bags of fertilizer were used. Backfilling soils were provided from offsite. The stockpile in area C was also loaded into trucks for shipment offsite. 8 OSC employees were involved in activities today. Equipment used: excavation (350, A25E), backfilling (700J, 644H, drum roller, 725), truck loading (460), water removal (godwin pump), dust control (street sweeper, water truck). See field notes for additional details.

From:

Condie, Sean

Sent: Sunday, November 14, 2010 8:35 PM

To: Tom Perkins

Cc: Weiler, Eric; Scrabis, John

Subject: 11-13-10 Report

11-13-10

Excavation was completed in Area C-2 today. The final ~650 cubic yards were removed. Soils were direct loaded into trucks for shipment off site; soils were also stockpiled in between trucks. One side wall sample was collected. The area excavated today was also back filled with 9 one-foot lifts. 15 bags of ORC and 1 bag of fertilizer were used. Soils used for backfilling activities were provided from offsite. Also concrete was broken up in area E in preparation for the area E-1 dig and a small amount of the stockpile in area C was shipped off site as well. 8 OSC employees were involved in activities today. Equipment used: excavation (350, A25E), backfilling (644h, 700J, drum roller), concrete removal (750), dust control (water truck), tuck loading (460). See field notes for additional details.

From:

Condie, Sean

Sent:

Monday, November 15, 2010 5:58 PM

To:

Tom Perkins

Cc:

Weiler, Eric; Scrabis, John

Subject:

11-15-10 Report

11-15-10

Backfilling to initial ground surface elevation was completed today in area C-2. Soils used for backfilling were provided from offsite. Trucks were loaded with materials from the stockpiles in area E and area C and shipped off site; both stockpiles were completely removed. Concrete was also removed from the E-1 excavation area in preparation for digging. An area of approximately 150'x35' was removed and stockpiled for crushing. Approximately half of the stockpile was crushed for shipment off site; a few truck loads of concrete were also shipped off site. The E-1 area was also sprayed with smell suppressant foam due to mild odor issues. 8 OSC employees were involved in activities today. Equipment used: backfilling (7003, drum roller, 644h) concrete removal/crushing (750, 350), loading (460), dust control (street sweeper, water truck), smell control (sulair 185). See field notes for additional details.

From:

Condie, Sean

Sent:

Tuesday, November 16, 2010 6:28 PM

To:

Tom Perkins

Cc:

Scrabis, John: Weiler, Eric

Subject:

11-16-10 Report

11-16-10

Mobilization to area E from area C took place during the morning. Excavation was initiated in area E-1 in the afternoon. An area of approximately 30'x60' was excavated in the shallow portion of the excavation plan (depth of 4'). 270 cubic yards were removed and stockpiled. Three side wall samples were collected. A ~100 ft section of the fence along the southern boundary of area E was removed to accommodate for the E-1 planned area. Soils from offsite were also hauled in with trucks to area E and stockpiled. In addition, final passes with a dozer and drum roller were completed in the C-2 area. Conrete was crushed in both areas E and C. 9 OSC employees were involved in activities today. Equipment used: excavation (350, A25E), C-2 compression (700J, drum roller), off site soils stock pile (644h, 460), dust control (street sweeper, water truck), concrete crushing (750), smell control (sulair-185), mobilization from C to E (lull fork lift), fence removal (hand saw). See field notes for additional details.

From:

Condie, Sean

Sent:

Wednesday, November 17, 2010 6:56 PM

To:

Tom Perkins

Cc:

Weiler, Eric; Scrabis, John

Subject:

11-17-10 Report

11-17-10

Excavation continued today in area E-1. An area of approximately 3545 square feet was removed to a depth of 4 feet for a total of 525 cubic yards removed. Soils were stored in a stockpile in area E. 1 base sample and 1 side wall sample were collected. A small area of ~80ft x 15ft was backfilled with one 1-foot lift of crushed stone (from area E) in an effort to stabilize the area removed adjacent to the train tracks along the southern wall of E-1. Part of the concrete stockpile in area E was shipped off site today; approximately 25 trucks were seen hauling material off site. Also, work in area E was impeded by strong winds and rain which lasted most of the day. A small amount of concrete in area C was crushed as well. 9 OSC employees were involved in activities today. Equipment used: excavation (350, A25E), backfilling (7003, 644H), truck loading (460), dust control (street sweeper), smell control (sulair-185), concrete crushing (750). See field notes for additional details.

From:

Condie, Sean

Sent:

Thursday, November 18, 2010 6:07 PM

To:

Tom Perkins

Cc:

Weiler, Eric; Scrabis, John

Subject:

11-18-10 Report

11-18-10

Excavation continued today in area E-1. 315 square yards were removed for a total of approximately 590 cubic yards (308 cubic yards in shallow soils and 281 cubic yards in deep soils). Soils were stockpiled as E-1 stockpiles 2 and 3. 1 base sample was collected and one 1 stock pile sample was collected. Geoprobing was also conducted today to investigate under the slab directly to the east of area E-3; 10 confirmatory samples were collected. Concrete was shipped offsite today as well from area E; 10 trucks were loaded. The concrete stockpile in area C was crushed in preparation for shipment off site. 8 OSC employees were involved in activities today. Equipment used: excavation (350, A25E), concrete crushing (750), loading concrete (same 350 as excavation), dust control (street sweepers (2) and water truck), smell suppressant (sulair 185), hauling equipment from area C to area E (lull forklift and 644H). See field notes for additional details.

From:

Condie, Sean

Sent:

Sunday, November 21, 2010 8:30 PM

To:

Tom Perkins

Cc:

Weiler, Eric; Scrabis, John

Subject:

11-19-10 Report

11-19-10

Excavation continued in area E-1 today. Approximately 480 cubic yards were removed from the deep portion of the area. 1 side wall sample was collected. The third E-1 stock pile was completed at approximately 1030; due to lack of room for additional excavated soils, digging was suspended to load E-1 stock piles off site. Approximately 10 trucks were loaded. Geoprobe sampling at building 320 was completed today as well. 8 confirmatory samples were collected. A portion of the Area E cover plan was started today; area 3 (adjacent to the railroad tracks in area E) was initiated by digging out the area in between the two sets of tracks to 1 foot depth. Concrete was crushed in area C as well. 8 OSC employees were involved in activities today. Equipment used: excavation (350, 310 SG), loading trucks (460), hauling (A25E), concrete crushing (750), dust control (street sweeper), misc actions (644H). See field notes for additional details.

Also, no activities related to excavation occurred on Saturday 11-20-10. However, a portion of the E-1 stock piles were loaded and shipped off site according to Ryan M. with OSC.

From:

Condie, Sean

Sent:

Monday, November 22, 2010 5:31 PM

To:

Tom Perkins

Cc: Subject: Weiler, Eric; Scrabis, John

11-22-10 Report

11-22-10

Soils from the E-1 stockpile area and concrete from the area C stockpile were shipped off site today. E-1 stockpiles 1 and 2 were shipped from the site and the entire area C concrete stockpile was shipped. Crushed stone was brought onto the site and stockpiled for cover material. The area adjacent to the train tracks dug out on 11-19-10 (portion of Area 3 within the final cover plan) was covered with geotextile and backfilled to original grade with crushed stone from offsite. Also, a portion (~50'x50') of the eastern E-1 excavation area was removed of concrete. The concrete was stockpiled in area E. Heavy rain occurred throughout most of the day. 8 OSC employees were involved in activities today. Equipment used: 460, 750 (loading); A25E, 350 (concrete removal); 644H, drum roller (backfilling); street sweeper (dust control); bobcat (misc. activities). See field notes for additional details.

From:

Condie, Sean

Sent:

Tuesday, November 23, 2010 6:20 PM

To:

Tom Perkins

Cc:

Weiler, Eric; Scrabis, John

Subject:

11-23-10 Report

11-23-10 Report

Excavation continued in area E-1 today. Approximately 760 cubic yards were removed from the deep portion of the excavation. The fourth E-1 stockpile was completed and a composite sample was collected. 1 side wall sample was also collected inside the excavation. Water was also removed from the E-1 pit with the Godwin pump and sent to the holding tank on site. Also, grading of area C was also initiated in preparation for the final cover. 5 OSC employees were involved in activities today. Equipment used: 350, 460, A25E (excavation/hauling to stockpile/shaping stockpile); Godwin pump (water removal); street sweeper (mud control); 700J (grading); 644H (misc activities). See field notes for additional details.

From:

Condie, Sean

Sent:

Sunday, November 28, 2010 12:09 PM

To:

Tom Perkins

Cc:

Weiler, Eric; Scrabis, John

Subject:

11-24-10 Report

11-24-10

Excavation continued in area E-1. Approximately 742 cubic yards were removed from the deep portion of the excavation. Direct loading of trucks also began today; however, due to wet, soft soils along the perimeter of the areas excavated today, soils were brought to the staging area and then loaded into trucks for shipment offsite. E-1 stockpile number three was also loaded offsite today; approximately 30% of the original stockpile remains. Bringing area C to final grade was also done today; the eastern side is complete. 10 OSC employees were involved in activities today. Equipment used: 350, A25E (excavation); 460 (loading); street sweeper, water truck, bobcat w/ street sweeper attachment (dust control); 700J, 2nd A25E, 644H (grading Area C). See field notes for additional details.

11-25-10: no work was completed (thanksgiving). 11-26-10 and 11-27-10: Ryan McCann with OSC reports that the remaining area E-1 stock piles will be shipped from the site and possibly some light backfilling in Area E-1 will occur. MACTEC was not onsite to observe this work.

From:

Condie, Sean

Sent:

Monday, November 29, 2010 5:54 PM

To:

Tom Perkins

Cc:

Weiler, Eric; Scrabis, John

Subject:

11-29-10 Report

11-29-10

Excavation continued in area E-1 today. Approximately 539 cubic yards were removed from the excavation (~84 cubic yards from the shallow portion of the excavation; ~455 cubic yards from the deep portion). An additional 133 cubic yards of shallow soils were removed and stockpiled in area E for potential reuse pending sample results. Soils removed were stockpiled in area E. Three side wall samples and one base sample were collected. Water was also removed from the pit with the Godwin pump. The majority of the open E-1 area was backfilled today with 1-1 foot lift of crushed stone (the western portion was left open, pending sample results). An area of approximately 450 square yards within the deep portion of the excavation was backfilled with 2 one foot lifts. 10.5 bags of ORC and 0.5 bags of fertilizer were used. Bringing area C to final grade also continued today. 9 OSC employees were involved in activities today. Equipment used: 350, A25E (excavation); 850C dozer, 2nd A25E, 644h (backfilling); 700J, drum roller (Area C grading); godwin pump (water removal); Sulair 185 (smell control). See field notes for additional details.

From:

Condie, Sean

Sent:

Tuesday, November 30, 2010 6:14 PM

To:

Tom Perkins

Cc:

Weiler, Eric; Scrabis, John

Subject:

11-30-10 Report

11-30-10

Excavation continued in area E-1 today. Approximately 708 cubic yards were removed from the excavation. Removed soils were direct loaded and shipped offsite; soils were also stockpiled in area E when trucks were not onsite. One side wall sample was collected. Brining area C to final grade also continued today; remnants of the area C stockpiles were brought over to area E and added to the staging area. Steady rain occurred throughout the day as well (slowed down activities). 8 OSC employees were involved in activities today. Equipment used: 460 (loading/managing stockpile); 644h (misc activities); 350, A25E (2) (excavation); 700J, drum roller (area C grading); street sweeper (mud control). See field notes for additional details.

From:

Condie, Sean

Sent: Wednesday, December 01, 2010 6:01 PM

To: Tom Perkins

Scrabis, John; Weiler, Eric Cc:

Subject: 12-1-10 Report

12-1-10

Excavation continued in area E-1 Today. Approximately 530 cubic yards were removed. Soils removed were sent to the staging area, dumped, and then loaded into trucks for shipment offsite. Trucks were not directly loaded due to soft, wet soils around the perimeter of the area being excavated today; dump trucks would not have been able to drive through. Water was pumped from the E-1 area all day; a considerable amount of water entered the pit in the last few days. The water filtration system was set up today as well. Grading of area C also continued today; an area in the western side still needs rough grading. Rain/snow slowed down activities throughout most of the day. 10 OSC employees were involved in work today. Equipment used: 350, A25E (excavation); 460 (loading), 700J, drum roller (grading area C); water removal (Godwin pump); street sweeper (mud control); 644H (misc activities). See field notes for additional details.

From:

Condie, Sean

Sent:

Thursday, December 02, 2010 6:07 PM

To:

Tom Perkins

Cc:

Scrabis, John; Weiler, Eric

Subject:

12-2-10 Report

12-2-10

Excavation activities were cancelled today due to heavy snow fall today and the night before. Excavation was attempted during the morning; however, activities were shut down due to lightning and heavy snowfall. Approximately 30-50 cubic yards were removed. Area E stockpile soils were shipped offsite today as well. However, due to road closures around the site; many trucks failed to return after ~1000. A few trucks returned throughout the day. After excavation activities were haulted, the work was concentrated on removing snow from the site. 10 OSC employees were involved in activities today (including snow removal). Equipment used: 350, A25E (excavation); 460 (loading); 644H, street sweeper, bobcat (2) (snow removal). See field notes for additional details.

From:

Condie, Sean

Sent:

Sunday, December 05, 2010 7:07 PM

To:

Tom Perkins

Cc:

Scrabis, John; Weiler, Eric

Subject:

12-3-10 Report

12-3-10

Excavation continued in area E-1; approximately 650 cubic yards of soil were removed. Soils were direct loaded into trucks for a portion of the day; however, the majority of the day, soils were placed into the off road hauler and brought to the stockpile area and then loaded off site. 5 side wall samples were collected. Initial digging south of the access road within area E was completed today; excavation of soils underneath the access road is progressing from the eastern side. Initiation of snow removal from area C in preparation of installation of the final cover system also occurred today. 8 OSC employees were involved in activities today. Equipment used: excavation (350, A25E), loading (460); snow removal (644H, 700J, 2 bobcats). See field notes for additional details.

No work relating to excavation/cover system activities was completed on 12-4-10 according to Ryan McCann with OSC; the site was cleared of snow.

From:

Condie, Sean

Sent:

Monday, December 06, 2010 5:37 PM

To:

Tom Perkins

Cc:

Weiler, Eric; Scrabis, John

Subject:

12-6-10 Report

12-6-10

Excavation continued in Area E-1. Approximately 625 cubic yards were removed. Soils removed were direct loaded and stockpiled when trucks were not onsite. 1 side wall sample was collected. Soils from the stockpile in area E were shipped off site as well. Excavation activities were slowed down due to maintenance required by the off road hauler at ~1345; only direct loading occurred following initiation of maintenance. Snow removal and grading of area C also continued today. Material (soils/snow) removed to achieve grade were stockpiled in area A. 9 OSC employees were involved in activities today. Equipment used: 350, A25E (excavation); 460 (loading); 700J, 644H, 2nd A25E (snow removal/grading). See field notes for additional details.

From:

Condie, Sean

Sent:

Tuesday, December 07, 2010 5:00 PM

To:

Tom Perkins

Cc:

Weiler, Eric; Scrabis, John

Subject:

12-7-10 Report

12-7-10

Excavation continued in area E-1 today. Approximately 440 cubic yards were removed. Soils removed were direct loaded for shipment off site. The stock pile in area E was also partially shipped off site today as well. Excavation activities were slowed down today due to both off road haulers being used in area C for placement of the final cover system. As just stated, initiation of the final cover placement occurred in area C today. An area of approximately 215'x100'(width of the eastern most building) was covered with geotextile and brought up to final grade with off site soils from the stockpile in the western portion of area C; the area still needs the final 12" of cover material to be completed. Snow removal in the northern portion of area C was initiated today in preparation for installation of the final cover system. Snow was loaded out and stockpiled in area A. 9 OSC employees were involved in activities today. Equipment used: 350 (excavation); 460 (loading); two A25E's, 2nd 460, 700J, 644H, super-pac drum roller (snow removal/cover placement). See field notes for additional details.

From:

Condie, Sean

Sent:

Wednesday, December 08, 2010 4:52 PM

To:

Tom Perkins

Cc:

Scrabis, John; Weiler, Eric

Subject:

12-8-10 Report

12-8-10

Snow removal occurred today in area C and E. The northern area of area C (north of the buildings) was removed of snow. Snow was dumped in area A. Once snow was removed, the area was rough graded again due to aggravation of soils from snow removal. The area around E1-RB2 was removed of snow today as well; however, no excavation was completed due to lack of equipment/manpower, all of which were being used in Area C. The water treatment system was also moved to the Area C buildings in an effort to set up with out freezing. 9 OSC employees were involved in activities today. Equipment used: 2 A25E's, 700J, 644H, 460 (snow removal in C); 850C, 350 (snow removal area E); lull fork lift (mobilization of water treatment system); drum roller (grading of area C). See field notes for additional details.

From:

Condie, Sean

Sent:

Thursday, December 09, 2010 5:21 PM

To:

Tom Perkins

Cc:

Scrabis, John; Weiler, Eric

Subject:

12-9-10 Report

12-9-10

Application of the final cover system in area C continued today. An area of approximately 6,200 square yards was covered with a geotextile sheet and 1 foot of clay from the stockpile located in area C. Activities followed the work plan; the geotextile tarp was laid down with overlap and the soils were evenly graded throughout an area marked with steaks every 50 feet for quality control. The area completed today still needs drum compacted. 7 OSC employees were involved in activities today. Equipment used: 460, 700J, 2 A25E's (all for cover system placement).

No work related to excavation E-1 was completed today (suspended due to Area C urgency).

Also, the area discussed on 12-7-10 as being brought to final grade without the 12" cover system was incorrectly reported. After discussion with OSC and visual inspection, the area (\sim 2,300 square yards) was actually completed with final cover on 12-7-10.

From: Condie, Sean

Sent: Sunday, December 12, 2010 5:28 PM

To: Tom Perkins

Cc: Scrabis, John; Weiler, Eric

Subject: 12-10-10

12-10-10 Report

Installation of the final cover system in area C continued today. Approximately 3,250 square yards were completed in the north western corner of area C. The work was done according to plan; the geotextile was laid down by hand with overlap and covered with 12" of clay from the stock pile located in area C. The area covered today was set up with a 50' grid system to ensure an even grade; as such, the grade was approximately even. The area was also drum compacted. Seven OSC employees were involved in activities today. Equipment used: 2 A25E's (hauling); 460 (loading); 700J (spreading); superpac drum roller (compaction); and the 644H (miscellaneous). See field notes for additional details.

From:

Condie, Sean

Sent:

Monday, December 13, 2010 5:54 PM

To:

Tom Perkins

Cc:

Weiler, Eric; Scrabis, John

Subject:

12-13-10 Report

12-13-10

Area E

Excavation continued in area E-1 today. An additional 1.5' feet of depth was removed around the area in which E1-RB2 was collected (~140 cubic yards). Removed soils were stockpiled in area E. A new ramp was also constructed for entry into E1; the base of E1 was then covered with crushed stone from the demo-pile located in area E. Approximately 60% of the base is now covered with the stone. Water was also pumped from the excavation and sent to the containment tank in area E. 5 OSC employees were involved in activities in area E. Equipment used: 350 (excavation, loading); 2 A25E's (hauling); 850C (spreading stone); Godwin pump (water removal).

Area C

Installation of the final cover system continued today. Approximately 2,130 square yards were covered with stone provided from off site. The area covered today was the access road located at the northwestern entrance to area C and the area directly north of the boiler house. The geotextile was placed by hand with overlap onto a 50' grid system to ensure even grade; as such, the area covered today was approximately even with at least 12" of cover. The stone was compacted with a drum roller as well. 4 OSC employees were involved in activities today. Equipment used: 644H (placing stone); 700J (spreading stone), drum roller (compaction). See field notes for additional details.

From:

Condie, Sean

Sent:

Tuesday, December 14, 2010 5:23 PM

To:

Tom Perkins

Cc:

Scrabis, John; Weiler, Eric

Subject:

12-14-10 Report

12-14-10

Area E

Backfilling in area E continued today. One base sample was collected prior to backfilling. The two areas removed due to unfavorable analytical results (E1-RS1 and E1-RB2) were covered with ORC and backfilled with crushed stone from area E to original intended depth of shallow excavation (~4' below ground surface). 3.5 bags of ORC and ~1/10 bag of fertilizer were applied. A portion of the E-1 shallow excavation was then back filled with offsite soils (stockpiled in area E in November). A small portion of water was removed from the E1 pit as well; however, due to freezing temperatures pumping was stopped. Work was stopped early (~1400) due to weather. Also, work was slowed due to both the 460 and 350 excavators experiencing mechanical problems throughout the day; an OSC mechanic was onsite attempting to remedy the problem. 6 OSC employees were involved in area E activities today. Equipment used: 350, 460 (loading); 2 A25E's (hauling); 850C (backfilling); godwin pump (water removal).

Area C

Application of the Area C cover system continued today. Approximately 1,000 square yards were covered with crushed stone from offsite. Stone was directly applied to the area being covered by offsite trucks. The demarcation layer (geotextile) was applied by hand with overlap onto a 50' grid system to ensure even grade. As such, the grade of the area covered today was approximately even with a cover of at least 12". The area was also compacted with a drum roller. Snow removal also occurred today as well; only the portion covered with stone today was removed of snow. 3 OSC employees were involved in activities today. Equipment used: 644H (snow removal); 700J (spreading stone). See field notes for additional details.

From:

Condie, Sean

Sent:

Wednesday, December 15, 2010 5:48 PM

To:

Tom Perkins

Cc:

Scrabis, John; Weiler, Eric

Subject:

12-15-10 Report

12-15-10

Area C

Placement of the Area C cover system continued today. The area completed today was the southwestern corner of area C north of the buildings. Approximately 2,330 square yards were covered with at least 12" of offsite clays. The clay was provided by the stockpile located in the north western portion of area B. Clays were placed onto a geotextile demarcation layer (placed by hand) with overlap and onto a 50' grid system to ensure even grade. As such, the grade of the area covered today was approximately even. The area covered was compacted with a drum roller as well. In addition, snow was removed as needed and stockpiled in area A. Also, 4 composite samples were collected from the backfill/cover material used on site (2 from clays used for cover and 2 from River Rd/Pinto backfill soils). 9 OSC employees were involved in activities today. Equipment used: 7003 (spreading); 2 460's (loading); 2 A25E's (hauling); drum roller (compaction); 644H (misc). See field notes for additional details.

Area E

The 2 E-1 overburden stockpiles were re-sampled as two separate piles for reuse (pending results).

From:

Condie, Sean

Sent:

Friday, December 17, 2010 9:15 AM

To:

Tom Perkins

Cc:

Weiler, Eric; Scrabis, John

Subject:

12-16-10 Report

12-16-10

Area E

Backfilling continued today in the shallow portion of area E-1 south of the access road. The area was backfilled (uncompacted) to ~2ft below original grade with offsite soils (River Rd/Pinto source). Water was also removed from the deep portion of the excavation and sent to the onsite containment tank. 4 OSC employees were involved in activities today. Equipment used: 700J (spreading); 460 (loading); A25E (hauling); 644H (misc); Godwin pump (water removal).

Area C

The area west of the boiler house was prepped for installation of the final cover system. The area was removed of remaining material from the clay stock pile used for cover material as well as snow and construction/demolition debris removed during the gut out of the Area C buildings. Clay removed was dumped into another clay stock pile intended for cover material. 3 OSC employees were involved in activities today. Equipment used: 850C (clearing); 2nd A25E; hauling; 2nd 460 (hauling). See field notes for additional details.

From:

Condie, Sean

Sent:

Monday, December 20, 2010 7:52 AM

To:

Tom Perkins

Cc:

Weiler, Eric; Scrabis, John

Subject:

12-17-10 Report

12-17-10

Information on 12-17-10 reported by Andrew Madden with OSC; MACTEC was not on site.

Area E

Backfilling continued in the shallow portion of area E-1 today. The area was brought up to original grade with offsite soils (River Rd./Pinto Source). Water was also pumped from the deep portion of the excavation. 6 OSC employees were involved in activities today. Equipment used: 850C (spreading); 2 A25E's (hauling); 460 (loading); Godwin pump (water removal).

Area C

The area west of the boiler house continued to be removed of debris and was also rough graded and compacted today in preparation for installation of the final cover system. The area was also topographically surveyed after rough grading was completed for quality control after placement of the cover material. 4 OSC employees were involved in activities today. Equipment used: 700J (rough grading); drum roller (compaction); 644H (misc).

Also, 2 OSC employees were onsite on 12-18-10 and 12-19-10 removing water with the Godwin pump from the E-1 excavation.

From:

Condie, Sean

Sent:

Monday, December 20, 2010 4:43 PM

To:

Tom Perkins

Cc:

Weiler, Eric; Scrabis, John

Subject:

12-20-10 Report

12-20-10

Area E

Water was removed from the E-1 excavation area. 2 OSC employees were involved. Equipment used: Godwin Pump (water removal).

Area C

Placement of the final cover system continued today. A portion of the area west of the boiler house was completed. Approximately 1,650 square yards were covered with offsite clays from the stockpile located in area C. Clays were placed onto hand laid overlapping demarcation sheets. The area was also laid out with check points every 50' to ensure even placement of at least 12" of material. As such, the grade of the area covered today is approximately even. The clays were compacted as well. In addition, the remaining material within the area C clay pile was moved to the area B clay pile following cover system activities. Four OSC employees were involved today. Equipment used: 700J (spreading); A25E (hauling); 460 (loading); drum roller (compaction). See field notes for additional details.

APPENDIX F

PROJECT PHOTO LOG

PHOTO DOCUMENTATION

No.6 oil pump house demolition

No.6 oil secondary containment remediation

No.6 oil secondary containment remediation

No.6 oil secondary containment demolition

No.6 oil secondary containment demolition

No.6 oil secondary containment final grade

Continued interior demolition of Boiler House

Continued interior demolition of Boiler House

ORC - A and fertilizer bags

Start of C1 excavation

Area C-1 excavation

Area C-1 excavation

Area C-1 excavation backfill first lift

Area C-1 excavation compaction

Area C-2 concrete removal and processing

Area C-2 north excavation limits

C1 excavation in progress

Pumping water from C1

Clearing trackhoe bucket

Applying ORC – A to C1

Removal of overburden at C2

Start of C2 excavation

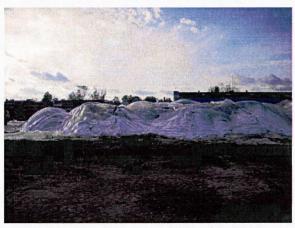
Continued gut out of Bldg 223 in Area C

Continued gut out of Bldg 223 in Area C

Continued dirt removal out of Bldg 223

Continued dirt removal out of Bldg 223

Processed concrete from C-2 excavation


Area C soil staging area

Backfill compaction at C1

C2 excavation in progress

Area C soil stockpile

UST removal from C2

Excavation and backfilling C2

Applying ORC – A to C2

Area C exterior pipe removal

Area C exterior pipe removal

Area C Bldg.223 gut out complete Roof top equipment to be removed by crane

Area C continued boiler removal

Final backfilling and compaction of C-2 excavation

C-2 excavation backfill and compaction complete

Prepping for stack removal

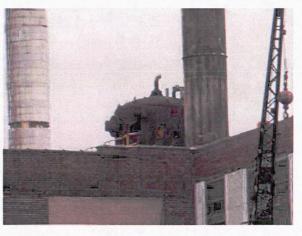
Prepping for stack removal

Prepping for stack removal

Prepping for stack removal

First stack removed

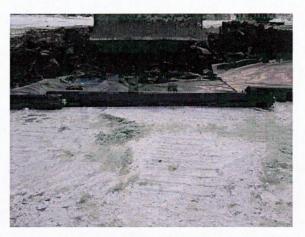
Second stack removed


Heat exchangers removed from Area C roof

Exchanger tube bundles cut for recycling

Crane set for Area C picks

Roof equipment prepped for removal


Items removed for recycling

Items removed for recycling

Area C final grading

Overlap of demarcation layer

Compaction with drum roller

Area removed of debris in preparation for installation of cover system

APPENDIX G

DISPOSAL FACILITY RECORDS – REMEDIAL EXCAVATION (CD)

APPENDIX G

DISPOSAL FACILITY RECORDS – REMEDIAL EXCAVATION (CD)

June 19 2008

Mr. Mike Gullo Modern Landfill, Inc. P.O. Box 209 Model City, New York 14107

Dear Mr. Gullo:

South Buffalo Development, LLC 224 Elk Street Buffalo, New York 14210 Application No. M09-2321 Non Hazardous Debris From Former Buffalo Color Site and Buildings

Department has reviewed your application requesting permission to dispose of the above waste. Based on the information supplied and discussions with NYSDEC's Kevin Glaser and Linda Ross this waste minus the filter bags is acceptable for disposal in your landfill as a one time occurrence.: Variable non hazardous components of this waste will be documented using a on-site approval log book to be kept for review at the scale house Other waste will be reviewed under separate applications.

In the event that significant changes in the information presented in this application occurs, you will immediately notify the Department in writing.

Enclosed is a copy of the approved application. If you have any question, please contact me at (716) - 851-7220/(716)-754-8226 ext. 233.

Sincerely,

Diana K. Hare HW Monitor II

ee: Mr. Mark Hans, Regional Solid Materials Engineer Mr. Kevin Hintz, Env Engineer II

Opic	1		t Augus
A7-19-7 (10)861 128 12 NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION DIVISION OF SOLID AND HAZARDOUS WASTE * BUREAU OF HAZARDOUS WASTE OFERATIONS		FOR STATE USE ONLY	
		SITE NO. APPLICATION (32.N.3C) MO9-3	
20 JAOCH KOVN" VERVUI! USA E	OUV 19932-A11	32N30 MOY-3	DAYE
· APPLICATION FOR TREATM	ENT OR DISPOSAL	Approved Dolrapp	1. ~ ()
OF AN INDUSTRIAL WA		the state of the s	3 0 0 0 0 0
SEE APPLICATION INSTRUCTION	S ON REVERSE SIDE	DE LOSSICIA	3. SITE HUMBER
1, NAME OF PROJECT/FACILITY	2. COUNTY NIAGARA		32N30
HODERN LANDFILL INC		S. ADDRESS (Street, City, State, Zip Code)	
4. NAME OF OWNER	5. ADDRESS (Street City, Since F.	4746 MODEL CITY RD. MODEL CITY. NY	
MODERN LANDFILL INC .	a ADDRESS (Street, City, State, Zip Code)		9. TELEPHONE NO.
7, NAME OF OPERATOR	PLETCHER & HAROLD RD, MODEL CLTY, NY 17/16		(716)754-8226
RICHARD WASHUTA 10. METHOD OF TREATMENT OR DISPOSAL		1410	7,
10. MEINOD OF INENIMENT ON DISTORT	•		•
SANITARY LANDFILL - D90			
PULL ALIEN STATES TO STATE			•
		pal al c	. . .
	formarky Bu	Afalo Color Cay	(est. City, State, Zip Code)
11, COMPANY GENERATING WASTE	12. ADDRESS OF FA	ST. BUFFALO, NY	LEEC Cut's SITILET DIV CALLET
SOUTH RUFFALO DEVELOPMENTS L	LC. 12.24 ELK.	ST. 9 BEHAMINE IN	15. TELEPHONE NO.
1). REPRESENTATIVE OF WASTE CENERATOR 14.	MAILING ADDRESS OF REPRESENTATIVE 3 GANGON ST. BUFFALL, N	Y 14203	THE 856 3333
16. DESCRIPTION OF PROCESS PRODUCING WASTE	TING OF FORMER MANUFAC	survice facility	FURMBRLY
DISMANTUNG, DEMOLITION AND GUT BUFFALO COLOR CORP. (ARI	EA E)		
17. EXPECTED ANNUAL WASTE PRODUCTION	18. WASTE HAULED IN	Rollall Conssiner 20ther	TRACIOR TRAILER
3000 Fontifes Callonuffes	Drume Bulk Yank	KOllegit courtain mecanis.	
	/		
19, WASTE COMPOSITION ON 196 Physic	cal State	19c pt	f Range
19. WASTE COMPOSITION 19a. Average Parcent Salids 207.	ical State	1 Contained Gas	to
19. WASTE COMPOSITION 19a. Average Parcent Salids 207. COMPONENTS	ical State	19c pt 1 Contained Gas ICENTRATION [Dry Weight]	LINIT (Check one) West PIM
19. WASTE COMPOSITION 19a. Average Parcent Salids COMPONENTS COMPONENTS COMPONENTS COMPONENTS	cal State quid Slumy Sludge ØSolic CON Upper	19c pt 1 Contained Gas ICENTRATION [Dry Weight]	UNIT (Check one) We's PPM
19. WASTE COMPOSITION 19a. Average Parcent Salids COMPONENTS COMPONENTS COMPONENTS COMPONENTS	cal State quid Slumy Sludge ØSolic CON Upper	19c pt 1 Contained Gas ICENTRATION [Dry Weight]	UNIT (Check one) We's P?M
19. WASTE COMPOSITION 19a. Average Parcent Salids COMPONENTS COMPONENTS COMPONENTS COMPONENTS	cal State quid Slumy Sludge Asolic CON	19c pt 1 Contained Gas ICENTRATION [Dry Weight]	UNIT (Check one) Wt.% P?M
19. WASTE COMPOSITION 19a. Average Parcent Salids 2070 Dute 19d General Plt. trash 11 DEBES CHOOD, PLASTIC, METAL 21 PACKAGING DEBES - See to	cal State quid	19c pt 1 Contained Gas ICENTRATION [Dry Weight]	UNIT (Check one) We's P?M
19. WASTE COMPOSITION 19a. Average Parcent Salids 2070 Dute 19d General Plt. trash 11 DEBUS CHOOD, PLACTIC, METAL) 21 PACKAGING DEBUS - SEE TO 11 KEVIN GRAGER OUGHSEGING	cal State quid	19c pt	UNIT (Check one) WE% PPM
19. WASTE COMPOSITION 19a. Average Parcent Salids 2070 Dute 19d General Plt. to 25 COMPONENTS 11 DEBBY CHOOD, PLACTIC, METAL) 21 PACKRAING DEBBS - SEC TO 1) KEVIN GRAGER OUGHSEGING 22. IS AN ANALYSIS OF WASTE ATTACHED! 21. W	CAT SEATO QUID STURY STUDEN ASSOLUTION CON Upper LITTLE AND AN EP TOXICITY TEST CONDUCTED ON	19c pt 1 Contained Gas ICENTRATION (Dry Weight) Lower Typical 1 THE WASTE! 22, MATERIA	UNIT (Check one) WEN PPM COCOLOGY
19. WASTE COMPOSITION 19a. Average Parcent Salids 2070 Dute 19d General Plt. trash 11 DEBELS CHOOD, PLASTIC, METAL) 21 PACKARING DEBES - See to 11 KEVIN GRAGER OVERSEGING 22 IS AN ANALYSIS OF WASTE ATTACHED! 21. W	Cal State quid	I THE WASTE! 22. MATERIA	UNIT (Check one) We % P?M
19. WASTE COMPOSITION 19a. Average Parcent Salids 207. 19d Common Plt. Trash 11 DEBRIS (WOOD, PLAGTIC, METAL) 21 PACKAGING DEBRIS - SER SE 11 KEVIN GRAGER OVERSEGING 220. IS AN ANALYSIS OF WASTE ATTACHED! 23. IS AN ANALYSIS OF WASTE ATTACHED! 24. METAL ALL MAZARD AND NUISANCE PROBLEMS A	CAI SEATE QUID STUMP STUDEN ASSOCIATED WITH THE WASTES. List areas	I THE WASTET 22. MATERIA TO STATE TO S	UNIT (Check one) We % P?M UNIT (Check one) We % P?M UNIT (Check one) We % P?M UNIT (Check one) We % P?M UNIT (Check one) We % P?M UNIT (Check one) We % P?M UNIT (Check one) We % P?M UNIT (Check one) We % P?M UNIT (Check one) We % P?M UNIT (Check one) We % P?M UNIT (Check one) We % P?M UNIT (Check one) We % P?M UNIT (Check one) We % P?M UNIT (Check one) We % P?M UNIT (Check one) We % P?M UNIT (Check one) UNIT (Che
19. WASTE COMPOSITION 19a. Average Parcent Salids 207. 19d Common Plt. Trash 11 DEBRIS (WOOD, PLAGTIC, METAL) 21 PACKAGING DEBRIS - SER SE 11 KEVIN GRAGER OVERSEGING 220. IS AN ANALYSIS OF WASTE ATTACHED! 23. IS AN ANALYSIS OF WASTE ATTACHED! 24. METAL ALL MAZARD AND NUISANCE PROBLEMS A	CAI SEATE QUID STUMP STUDEN ASSOCIATED WITH THE WASTES. List areas	I THE WASTET 22. MATERIA TO STATE TO S	UNIT (Check one) We % P?M UNIT (Check one) We % P?M UNIT (Check one) We % P?M UNIT (Check one) We % P?M UNIT (Check one) We % P?M UNIT (Check one) We % P?M UNIT (Check one) We % P?M UNIT (Check one) We % P?M UNIT (Check one) We % P?M UNIT (Check one) We % P?M UNIT (Check one) We % P?M UNIT (Check one) We % P?M UNIT (Check one) We % P?M UNIT (Check one) We % P?M UNIT (Check one) We % P?M UNIT (Check one) UNIT (Che
19. WASTE COMPOSITION 19a. AVERAGE PARTERI SAIIds 2070 Duta 19d General Plt. to 25 11 DEBBY CHOOD, PLASTIC, METAL) 21 PACKARING DEBBS - SER TO 11 KEVIN GRAGER OVERSEGING 22. IS AN ANALYSIS OF WASTE ATTACHEDI 21. M 13. DETAIL AUL HAZARD AND NUISANCE PROBLEMS A	Cal State quid	THE WASTET THE WASTET TO STATE THE WASTET TO STATE THE WASTET THE WASTET THE WASTET THE WASTET THE WASTET THE WASTET THE WASTET THE WASTET SELD by HER SELE	UNIT (Check one) We % P?M UNIT (Check one) We % P?M UNIT (Check one) We % P?M UNIT (Check one) We % P?M UNIT (Check one) We % P?M UNIT (Check one) We % P?M UNIT (Check one) We % P?M UNIT (Check one) We % P?M UNIT (Check one) We % P?M UNIT (Check one) We % P?M UNIT (Check one) We % P?M UNIT (Check one) We % P?M UNIT (Check one) We % P?M UNIT (Check one) We % P?M UNIT (Check one) We % P?M UNIT (Check one) UNIT (Che
19. WASTE COMPOSITION 19a. AVERAGE PARCENT SAILES 207. DUTE 19d General PH. trash 11 DARRIS (WOOD, PLAGME, METAL) 21 PACKAGING DERMS - SER SO 31 KEVEN GRAGER OVERSEGING 220, 15 AH AHALYSIS OF WASTE ATTACHEDI 27. M 18. DETAIL ALL HAZARD AND NUISANCE PROBLEMS A Additional averas from A	Cal State quid	I Contained Gas ICENTRATION Dry Weight Lower Typical I THE WASTE! Any safety, handling treatment, and Submitted Sep These Submits	UNIT (Check one) We % P?M UNIT (Check one) UNIT (Check one)
19. WASTE COMPOSITION 19a. AVERAGE PARCENT SAILES 207. DUTE 19d General PH. trash 11 DARRIS (WOOD, PLAGME, METAL) 21 PACKAGING DERMS - SER SO 31 KEVEN GRAGER OVERSEGING 220, 15 AH AHALYSIS OF WASTE ATTACHEDI 27. M 18. DETAIL ALL HAZARD AND NUISANCE PROBLEMS A Additional averas from A	Cal State quid	I Contained Gas ICENTRATION Dry Weight Lower Typical I THE WASTE! Any safety, handling treatment, and Submitted Sep These Submits	UNIT (Check one) We % P?M UNIT (Check one) UNIT (Check one)
19. WASTE COMPOSITION 19a. AVERAGE PARCENT SAILLS 207. DUTE 19d General Plt. trash 11 DEBRIS CHOOD, PLAGTIC, METAL) 21 PACKAGING DEBRIS - SEP TO 11 KEVIN GRAGER OVERSEGING 20. 15 AN ANALYSIS OF WASTE ATTACHEDI 21. W 13. DETAIL ALL HAZARD AND NUISANCE PROBLEMS A Additional averas from the NYSDEC on-site master 14 NYSDEC on-site masters.	Cal State Guid	I Contained Gas ICENTRATION ID Weight Lower Typical I THE WASTET ATTEM WASTET THE WAST	UNIT (Check one) We % P?M UNIT (Check one) UNIT (Check one)
19. WASTE COMPOSITION 19a. AVERAGE PARCENT SAILLS 207. DUTE 19d General Plt. trash 11 DEBRIS CHOOD, PLAGTIC, METAL) 21 PACKAGING DEBRIS - SEP TO 11 KEVIN GRAGER OVERSEGING 20. 15 AN ANALYSIS OF WASTE ATTACHEDI 21. W 13. DETAIL ALL HAZARD AND NUISANCE PROBLEMS A Additional averas from the NYSDEC on-site master 14 NYSDEC on-site masters.	Cal State Guid	I Contained Gas ICENTRATION ID Weight Lower Typical I THE WASTET ATTEM WASTET THE WAST	UNIT (Check one) We % P?M UNIT (Check one) UNIT (Check one)
19. WASTE COMPOSITION 19a. AVERAGE PARCENT SAILES 207. DUTE 19d General PH. trash 11 DARRIS (WOOD, PLAGME, METAL) 21 PACKAGING DERMS - SER SO 31 KEVEN GRAGER OVERSEGING 220, 15 AH AHALYSIS OF WASTE ATTACHEDI 27. M 18. DETAIL ALL HAZARD AND NUISANCE PROBLEMS A Additional averas from A	Cal State Guid	I Contained Gas ICENTRATION ID Weight Lower Typical I THE WASTET ATTEM WASTET THE WAST	UNIT (Check one) We % P?M UNIT (Check one) UNIT (Check one)
19. WASTE COMPOSITION 19a. Average Parcent Sallds 207. Dute 19d General Plt. trash 11 DEBETS CHOOD, PLASTIC, METAL. 21 PACKAGING DEBETS - SEC TO 31 KEVEN GRAGER OVERSEGING 220. IS AN ANALYSIS OF WASTE ATTACHED! 21. W 13. DETAIL ALL HAZARD AND HUISANCE PROBLEMS A Additional areas from the NYSDEC on-site mas Includes date, project, and Includes date, project, and	Cal State quid Slumy Sludge Application of Application of Application of Approvals Later of the control of th	I Contained Gas ICENTRATION ID Weight Lower Typical I THE WASTET ATTEM WASTET THE WAST	UNIT (Check one) We % P?M UNIT (Check one) UNIT (Check one)
19. WASTE COMPOSITION 19a. AVERAGE PRICERI SOLIDS 19d General Plt. trash 11 DEBEN CHOOD, PLAGRIC, METAL) 21 PACKAGING DEBENS - SER TO 13 KEVIN GRAGER OVERSEGING 22 IS AN ANALYSIS OF WASTE ATTACHEDI 23 IS AN ANALYSIS OF WASTE ATTACHEDI 24 WHERE WAS MATERIAL DISPOSED OF PREVIOUSI 24 WHERE WAS MATERIAL DISPOSED OF PREVIOUSI 24 WHERE WAS MATERIAL DISPOSED OF PREVIOUSI	Cal State Quild Slumy Sludge Applications, and approvals Application of application of approvals Application of application of approvals Application of ap	I Consider Gas ICENTRATION Dry Weight Lower Typical I THE WASTET 22. MATERIA THE WASTET 22. MATERIA Any safety, handling, treatment, and Submitted Sep These submits Imp a file following of the following safety.	UNIT (Check one) We's PPM UNIT (Check one) We's PPM UNIT (Check one) We's PPM UNIT (Check one) We's PPM UNIT (Check one) We's PPM UNIT (Check one) We's PPM UNIT (Check one) We's PPM UNIT (Check one) We's PPM UNIT (Check one) We's PPM UNIT (Check one) We's PPM UNIT (Check one) We's PPM UNIT (Check one) We's PPM UNIT (Check one) We's PPM UNIT (Check one) We's PPM UNIT (Check one) UNIT (Check one) We's PPM UNIT (Check one) UNIT (
19. WASTE COMPOSITION 19a. AVERAGE PRICERI SOLIDS 19d General Plt. trash 11 DEBENS CHOOD, PLAGRIC, MERAL 21 PACKAGING DEBENS - SER TO 41 KEVIN GRAGER OVERSEGING 22. IS AN ANALYSIS OF WASTE ATTACHEDI 23. IS AN ANALYSIS OF WASTE ATTACHEDI 24. DETAIL ALL HAZARD AND HUISANCE PROBLEMS A Additional areas from the NYSDEC on-site into includes date, project, and 24. WHERE WAS MATERIAL DISPOSED OF PREVIOUSI NA	Cal State quid Slumy Sludge Application of Application of Application of Approvals Later of the control of th	I Contained Gas ICENTRATION Dry Weight Lower Typical I THE WASTER THE WA	UNIT (Check one) We's PPM UNIT (Check one) We's PPM UNIT (Check one) We's PPM UNIT (Check one) We's PPM UNIT (Check one) We's PPM UNIT (Check one) We's PPM UNIT (Check one) We's PPM UNIT (Check one) We's PPM UNIT (Check one) We's PPM UNIT (Check one) We's PPM UNIT (Check one) We's PPM UNIT (Check one) We's PPM UNIT (Check one) We's PPM UNIT (Check one) We's PPM UNIT (Check one) UNIT (Check one) We's PPM UNIT (Check one) UNIT (

I hereby affirm under penalty of perjuny that information provided on this form and attached statements and exhibits is true to the best of my knowledge and belief. False statements made herein are punishable as a Class A misdameanor pursuant to Senion 210.45 of the Penal Law. DATE a. SICHATURE AND TITLE OF REPRESENTATIVE OF WASTE GENERATOR ALCHT FOR DATE esentative of treatment or disposal, facility L SICHATURE AND

4746 MODEL CITY RS. MOREL CITY, NY

15. NAME OF WASTE TRANSPORTER.
MOINERN DISPOSAL SERVICES

MOIXEN DISPOSAL

29. CERTIFICATION

July 6, 2010

Mr. Mike Gullo Modern Landfill, Inc. P.O. Box 209 Model City, New York 14107

Dear Mr. Gullo:

South Buffalo Development
100 Lee Street
Buffalo,, New York 14210
Application No. M10-2392
E Area Soils, Some with #2 Oil
Contamination, from Former Buffalo Color Site

The Department has reviewed your application requesting permission to dispose of the above waste. Based on the information provided, E-mail from NYSDEC's Gene Melnyk and verification by NYSDEC construction Observer Kevin Glaser, this waste is acceptable for disposal at Modern Landfill as a one time occurrence. Other waste streams will be reviewed under separate application.

In the event that significant changes in the information presented in this application occurs, you must immediately notify the Department in writing.

Enclosed is a copy of the approved application. If you have any question, please contact me at (716) -851-7220/(716) - 754-8226 ext.233.

Sincerely,

Diana K. Hare HW Monitor II

cc: Mr. Mark Hans, Regional Solid Materials Engineer

47-18-7 (10/86) - Text 12
NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION
DIVISION OF SOLID AND HAZARDSOU WASTE • BUREAU OF HAZARDOUS WASTE
OPERATIONS

50 WOLF ROAD, ALBANY, NEW YORK 12233-4017

APPLICATION FOR TREATMENT OR DISPOSAL OF AN INDUSTRIAL WASTE STREAM SEE APPLICATION INSTRUCTIONS ON REVERSE SIDE

FOR STATE USE ONLY					
SITE NO. 32 N 30	APPLICATION NO. MIO-2392	1 .			
DEPARTMEN Approved	T ACTION Disapproved	DATE 7-6-10			

	one line or	344
NAME OF PROJECT/FACILITY	T 2. COUNTY	3. SITE NUMBER
MODERN LANDFILL, INC.	NIAGARA	32N30
4. NAME OF OWNER RICHARD WASHUTA	5. ADDRESS (Street, City, State, Zip Code) 47.46 Model City Road, Model City, NY 14107	6. TELEPHONE NO. (716) 754-8226
6. NAME OF OPERATOR	8. ADDRESS (Street, City; State, Zip Code)	9. TELEPHONE NO.
RICHARD WASHUTA	Pletcher & Harold Road, Model City, NY 14107	(716) 754-8226
10. METHOD OF TREATMENT OR DISPOSAL		
SANITARY LANDFILL - 090	2 6 6 6 6 6	٠ <u>٠</u>
	y former Buffels Color S	rre.
SOUTH BUTFALL Developmen	12. ADDRESS OF FACILITY GENERATING WASTE (S	
	GADDRESS OF REPRESENTATIVE	15. TELEPHONE NO.
Scot McGarland / Rym McConn 16. DESCRIPTION OF PROCESS PRODUCING WASTE		200 - 9555
Formula him of Coll for	m Former Buffalo Color Site E" + "LNAPL" (Former 301)	')
	WASTE HAULED IN	ng tout
19. WASTE COMPOSITION 19b. Physical State	ry Słudge Solid Contained Gas	7_to
19d. COMPONENTS	CONDENTRATION (Dry Weight) Upper Lower Typical	UNIT (Check One) Wt. % ppm
5 st 4	90	
D. Gara	3	
C C C	7	
3)		
4) waste pet-leun grobus	2000 0	
20. IS AN ANALYSIS OF WASTE ATTACHED? 21. WAS A TO	CLP TEST CONDUCTED ON THE WASTE? 22. MATERIAL 15:	·53-10 CAH.
		2 Hon-Hazardous
23. DETAIL ALL HAZARD AND NUISANCE PROBLEMS ASSOCIATED V	WITH THE WASTES. List necessary sefety, handling, treatment and disposal p	recautions.
Waste No NOII	•	•
24. WHERE WAS MATERIAL DISPOSED OF PREVIOUSLY?		
One time	ve Brent	
25. NAME OF WASTE TRANSPORTER 26. ADDRESS (S	Street, City, State, Zip Code) model Cuty 27. NYSDEC PERMIT N	D. 28. TELEPHONE NO>
modern Disposal Jennies 4746 m	Street, City, State, Zto Code) model fity 27. NYSDEC PERMIT N Odel City/4 ny 9A-073	754-8226
1 29. CERTIFICATION	n provided on this form and attached statements and exhibits is t	i
knowledge and belief. False statements made herein a	are punishable as a Class A misdemeanor pursuant to Section 2	10.45 of the Penal Law.
a. SIGNATUNE AND TITLE OF REPRESENTATIVE OF WASTE GENER		DATE /
- MUVILLAND AGENT	FOR SBD	4/29/10
b. SIGNATURE AND TITLE OF REPRESENTATIVE OF TREATMENT OF	R DISPOSAL FACILITY	DATE
Weinhard Marlo - Vaste A	groval Coordinater	04/30/10

June 19 2008

Mr. Mike Gullo Modern Landfill, Inc. P.O. Box 209 Model City, New York 14107

Dear Mr. Gullo:

South Buffalo Development, LLC 224 Elk Street Buffalo, New York 14210 Application No. M09-2321 Non Hazardous Debris From Former Buffalo Color Site and Buildings

Department has reviewed your application requesting permission to dispose of the above waste. Bused on the information supplied and discussions with NYSDEC's Kevin Glaser and Linda Ross this waste minus the filter bags is acceptable for disposal in your landfill as a one time occurrence.: Variable non hazardous components of this waste will be documented using a on-site approval log book to be kept for review at the scale house Other waste will be reviewed under separate applications.

In the event that significant changes in the information presented in this application occurs, you will immediately notify the Department in writing.

Enclosed is a copy of the approved application. If you have any question, please contact me at (716) - 851-7220/(716)-754-8226 ext. 233.

Sincerely,

Diana K. Hare HW Monitor II

cc: Mr. Mark Hans, Regional Solid Materials Engineer Mr. Kevin Hintz, Env Engineer II 453 - 47-19-7 (10/86)-Ten 12

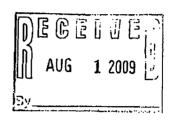
NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION DIVISION OF SOLIO AND HAZARDOUS WASTE . BUREAU OF HAZARDOUS WASTE OPERATIONS SO WOLF ROAD, ALBANY, NEW YORK 12233-4017

TOR STATE USE ONLY SITE NO. APPLICATION NO. DATE RECEIVED M09-23211 3z*N.30* 10-17-617 DEPARTMENT ACTION DATE Disapproved

APPLICATION FOR TREATMENT OR DISPOSAL OF AN INDUSTRIAL WASTE STREAM

SEE APPLICATION INSTRUCTIONS ON REVERSE SIDE 1. NAME OF PROJECT/FACILITY NIAGARA 32N30 MODERN LANDFILL INC & TELEPHONE NO. 5. ADDRESS (Street, City, Siste, Zip Code) 4. NAME OF OWNER 4746 MODEL CITY RD. MODEL CITY. (716)754-8226 MODERN LANDFILL INC . S. TELEPHONE NO. 8. ADDRESS (Street, City, Suis, Zip Code) 7, NAME OF OPERATOR PLETCHER & HAROLD RD, MODEL CIT (716)754~8226 RICHARD WASHUTA 14107 10. METHOD OF TREATMENT OR DISPOSAL SANITARY LANDFILL - D90 11, COMPANY GENERATING WASTE South Ruffald Development 14 MAILING ADDRESS OF REPRESENTATIVE 15. TELEPHONE NO. 1). REPRESENTATIVE OF WASTE CENERATOR TH 856 4333 BUFFALU. NY 333 GANGEN ST. DISMANSLING, DEMOLITION AND QUITING OF FORMER MANUFACTURING FACILITY, FORMERLY BUFFALO COLOR CORE (AREA E) 16. DESCRIPTION OF PROCESS PRODUCING WASTE 18. WASTE HAULED IN 17. EXPECTED ANNUAL WASTE PRODUCTION Mother TRACTOR TRAILER Roll-off Container Bulk Tank Drums 3000 Fontyer GallonsYear 196 Physical State 19. WASTE COMPOSITION (Zisona Contained Car Studge Liquid UNIT (Chack one) CONCENTRATION (Dry Welshi) Typical PIM WL% □. П KEVIN GRAGER OVERSEGING SITE 21. WAS AN EP TOXICITY TEST CONDUCTED ON THE WASTED 12 MATERIALIS 20, IS AH ANALYSIS OF WASTE ATTACHED! Hazardovs If "Yes", attach mults. . Die Beo ☐Yes 23. DETAIL ALL HAZARD AND NUISANCE PROBLEMS ASSOCIATED WITH THE WASTES. LLEE ARCHIENT SELECT, handling treatment and disposal preceditions. Additional areas from this facility will be submitted separately to the NYSDEC on-site monitor for approval. These submisses will be managed under this waste application, logged in a file folder that includes date, project, andysis, and approvalsign-off. 24. WHERE WAS MAYERIAL DISPOSED OF PREVIOUSLY 28. TELEPHONE NO. IT. MYSDEC PERMIT HO. 26, ADDRESS (Sweet City, State, Zip Cods) 15. NAME OF WASTE TRANSPORTER 9A-U73 4746 MODEL CINKS, MERCE CIN, NY 114 754 8224 MUDERN DISPOSAL SERVICES I hereby affirm under penalty of perjuty that information provided on this form and attached statements and exhibits is true to the best of my knowledge and 29. CERTIFICATION bellef. False statements made herein are punishable at a Class A misdamestner pursuant to Section 210.45 of the Penal Law. a. SIGNATURE AND TITLE OF REPRESENTATIVE OF WASTE CEMERATOR AGENT FOR SBD REPRESENTATIVE OF TREATMENT OR DISPOSAL PACILITY

New York State Department of Environmental Conservation


Division of Solid & Hazardous Materials, Region 9

270 Michigan Avenue, Buffalo, New York, 14203-2915 Phone: (716) 851-7220 • FAX: (716) 851-7226

Website: www.dec.ny.gov

July 30, 2009

Mr. Brian R. Hanaka Modern Disposal Services, Inc. 4746 Model City Road P.O. Box 209 Model City, New York 14107-0209

Dear Mr. Hanaka:

East Side Transfer Station, # 15T04
South Ogden Street, Buffalo
Waste Approval; South Buffalo Development

This is in response to your submittal dated July 23, 2009 requesting approval to accept waste generated from the South Buffalo Development property (former Buffalo Color facility) at the City of Buffalo's East Side Transfer Station (ESTS). Your application indicates that approximately 3,000 tons per year of waste will be delivered to the transfer station.

The application form (47-19-7) indicates that only general plant trash and debris are to be handled at the ESTS and you have specifically noted that sludge or other special waste streams generated at the plant will <u>not</u> be accepted that the ESTS.

The application is hereby approved. The waste must be handled in accordance with all of the requirements of the transfer station's permit to operate. Specifically, it must be insured that all waste is tipped and loaded into trailers within the confines of the transfer building.

Also, please be advised that this approval is based upon the East Side facility demonstrating that acceptance of this additional waste stream will not have an adverse impact upon the facility's operations. Should the Department determine that this is not the case, we reserve the right to immediately revoke this approval at our discretion.

Mr. Brian Hanaka S. Ogden Street, Buffalo July 30, 2009 Page 2

Thank you for your attention to this matter and if you have any questions regarding this, please call me at 851-7220.

Sincerely,

Dennis Weiss, P.E.

Environmental Engineer II

DRW:dcg weiss\hanaka-jul1.ltr

cc: Mr. Mark J. Hans, Regional Solid Materials Engineer

47-19-7 (10/85) - Text 12
NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION
DIVISION OF SOLID AND HAZARDSOU WASTE . BUREAU OF HAZARDOUS WASTE
OPERATIONS.
50 WOLF ROAD, ALBANY, NEW YORK. 12233-4017

FOR STATE USE ONLY						
	APPLICATION NO					
32N30	M10-2422	9-16-10				
DEPARTMEN	TACTION .	DATE				
Approved Disapproved 9-16-10						
TILL metric and						


APPLICATION FOR TREATMENT OR DISPOSAL OF AN INDUSTRIAL WASTE STREAM SEE APPLICATION INSTRUCTIONS ON REVERSE SIDE

NAME OF PROJECTIFACRUTY MODERN LANDFILL, INC.	2. COUNTY	3. SITE NUMBER
4. NAME OF OWNER	NIAGARA	32N30
RICHARD WASHUTA	5. ADDRESS (Street, City, Strine, Zp Code) 4746 Model City Road, Model City, NY 1	6. TELEPHONE NO.
8. NAME OF OPERATOR	8. ADDRESS (Street, City, State, Zip Code)	4107 (716) 754-8226 8. TELEPHONE NO.
RICHARD WASHUTA	Pletcher & Harold Road, Model City, NY	
10. METHOD OF TREATMENT OR DISPOSAL	T Telester & Flatons Abab, Model Oily, 141	14/07 11/07/07/02/20
SANITARY LANDFILL - [190 Former Buffal - Co	lar Site
11. COMPANY GENERATING WASTE	12. ADDRESS OF FACILITY GENERATING	WASTE (Street, City, State, Zip Code)
South Buffalo DEVELO	PM HUT 100 LEE STREAMING ADDRESS OF REPRESENTATIVE	T BUFFALL NY 1424
Ryan Me Cana	3 Gazzon S+ BrAAL NY 14	LO> 200- 9555
Excuption of Soil Re	m Former Buffalo Color Si	
10,000 Tonnyear Gattonnyear	18. WASTE HAULED IN	DVm p'Tryel
19: WASTE COMPOSITION 19b. Physical Si	ale 18c. pl	Range
19A. Average Percent Solids	Sturry Studge Solid Contained Gas	
19d. COMPONENTS	CONDENTRATION (Dry Weight)	UNIT (Check One)
	Upper Lower Typica	Wt % ppm
1)5016	9	<i>1</i> 🔊 🗆
2) Debris (industrial)		44
2)		_ 12 🖸
3)		_ пп
4)		
		_ 🛛 🖸
20. IS AN ANALYSIS OF WASTE ATTACHED? 121. WAS	A TCLP TEST CONDUCTED ON THE WASTE? 22. MATERIA	
	SATCLP TEST CONDUCTED ON THE WASTE? 22. MATERIA Yes \[\int No if "yes", which results \] Haze	·- ;
	TED WITH THE WASTES LIST necessary safety, handling, treatment one	
	TO THE WAS ICO CONTROCESSED SPIETS, INDINGRIMENT WE	ensboard bidestrationer
Waste No NOII		
V 37 C 10 5.		
		•
MANGE WILL THE STATE OF STATE		
24. WHERE WAS MATERIAL DISPOSED OF PREVIOUSLY?		
25. NAME OF WASTE TRANSPORTER 28. ADDRE	SS (Street City State 7m Code)	DEBMIT No. 1 00 YELEGUALE NA.
10.	MOUE! (tea)	PERMIT NO. 29. TELEPHONE NO
WYDYYN WISKUSEL NEYVILLA 14786	Model Chy Rd NY 9A-	073 7548226
29. CERTIFICATION		
knowledge and belief. False statements made her	ation provided on this form and attached statements and ex ein are punishable as a Class A misdemeanor pursuant to	hibits is true to the best of my Section 210.45 of the Penal Law.
knowledge and belief. False statements made her SIGNATURE AND TITLE OF REPRESENTATIVE OF WASTE CE	ein are punishable as a Class A misdemeanor pursuant to	hibits is true to the best of my Section 210 45 of the Penal Law.
knowledge and belief. False statements made her	ein ere punishable as a Class A miedemeanor pursuant to MERATOR	Section 210.45 of the Penal Law. DATE
knowledge and belief. False statements made her	ein ere punishable as a Class A miedemeanor pursuant to NERATOR	Section 210.45 of the Penal Law.

NON-HAZARDOUS WAM APPROVAL FORM

Requested Disposal Facility Chaffee Lan	ıdfill						
Profile Number 106113NY Waste Approval Expiration Date 03/01/2011							
	APPROVA	AL DETAILS					
Approval Decision:	Not Approved		Profile	Renewal:	☐ Yes	☑	No
Management Method: Alternate Daily Co	ver (ADC)				, ,		
Management Facility Precautions, Special F	landling Procedures or L	imitation on approval:					
- Shall not contain free liquid							
 Shipment must be scheduled int 	to disposal facility						
- Approval Number must accompa	any each shipment						
 Waste Manifest must accompan 	y load				•		
- Shall not pose a dust nuisance							
- Shall not pose a odor nuisance							
- Shall comply with applicable DC	T and OSHA labeling	g, packaging and manifesting	g requirem	ents			
- Shall notify WM disposal locatio	n of changes associa	ted with original waste gener	rating pro	cess prior t	to shipme	nt	
						•	
			·				
Additional Conditions:							
					·		
***************************************					<u></u>		
			•				
						** **	
WM Authorization Name: Andrew Argona	a		Title	Waste Ap	nroval Ma	nage	>r
-	•		1166.	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	provar ivia	ug	<u> </u>
WM Authorization Signature:	Dagona	····	Date:	09/14/201	0		
Anney Authorization (15 Descript)			N-+				
Agency Authorization (if Required):			vale:				

.

APPENDIX H

AREA C SOIL/WASTE CHARACTERIZATION DOCUMENTATION

Analytical Report Cover Page

SBD

For Lab Project # 10-4346 Issued November 8, 2010 This report contains a total of 12 pages

The reported results relate only to the samples as they have been received by the laboratory.

Any noncompliant QC parameters having impact on the data are flagged or documented on the final report.

All soil/sludge samples have been reported on a dry weight basis, unless qualified "reported as received". Other solids are reported as received.

Each page of this document is part of a multipage report. This document may not be reproduced except in its entirety, without the prior consent of Paradigm Environmental Services, Inc.

The Chain of Custody provides additional information, including compliance with sample condition requirements upon receipt. Sample condition requirements are defined under the 2003 NELAC Standard, sections 5.5.8.3.1 and 5.5.8.3.2.

NYSDOH ELAP does not certify for all parameters. Paradigm Environmental Services or the indicated subcontracted laboratory does hold certification for all analytes where certification is offered by ELAP unless otherwise specified.

Data qualifiers are used, when necessary, to provide additional information about the data. This information may be communicated as a flag or as text at the bottom of the report. Please refer to the following list of frequently used data flags and their meaning:

[&]quot;<" = analyzed for but not detected at or above the reporting limit.

[&]quot;E" = Result has been estimated, calibration limit exceeded.

[&]quot;Z" = See case narrative.

[&]quot;D" = Duplicate results outside QC limits. May indicate a non-homogenous matrix.

[&]quot;M" = Matrix spike recoveries outside QC limits. Matrix bias indicated.

[&]quot;B" = Method blank contained trace levels of analyte. Refer to included method blank report.

LAB REPORT FOR TCLP RCRA METALS ANALYSIS

Client:

SBD

Lab Project No.:

10-4346

13891

Client Job Site:

Buffalo Color

Lab Sample No.:

TCLP Extract

Client Job No.:

N/A

Date Sampled:

10/21/2010

Field Location:

C1-Stockpile #1

Date Received:

Sample Type:

10/22/2010

Field ID No.:

N/A

Parameter	Date Analyzed	Analytical Method	Result (mg/L)	Regulatory Limit (mg/L)
Arsenic	10/26/2010	SW846 6010	<0.100	5.0
Barium	10/26/2010	SW846 6010	1.46	· 100
Cadmium	10/26/2010	SW846 6010	0.028	1.0
Chromium	10/26/2010	SW846 6010	<0.050	5.0
Lead	10/26/2010	SW846 6010	0.168	5.0
Mercury	10/26/2010	SW846 7470	<0.0020	0.2
Selenium	10/26/2010	SW846 6010	<0.100	1.0
Silver	10/26/2010	SW846 6010	<0.050	5.0
	·			
				·

ELAP ID No.:10958

Comments:

Approved By:

Bruce Hoogesteger, Technical Director

Semi-Volatile Analysis Report for TCLP Extract

Client: SBD

Client Job Site:

Buffalo Color

Lab Project Number:

10-4346

Lab Sample Number:

13891

Client Job Number:

N/A

Date Sampled:

10/21/2010

Field Location: Field ID Number: C1 - Stockpile #1

Date Received:

10/22/2010

N/A

Sample Type:

TCLP Extract

Date Analyzed:

10/25/2010

Base / Neutrals	Results in ug / L	Regulatory Limits in ug / L
1,4-Dichlorobenzene	< 40.0	7,500
2.4-Dinitrotoluene	< 40.0	130
Hexachlorobenzene	< 40.0	130
Hexachlorobutadiene	< 40.0	500
Hexachloroethane	< 40.0	3000
Nitrobenzene	< 40.0	2000
Pyridine	< 40.0	5000

Acids	Results in ug / L	Regulatory Limits in ug / L
Cresols (as m,p,o-Cresol)	< 40.0	200,000
Pentachlorophenol	< 100	100,000
2,4,5-Trichlorophenol	< 100	400,000
2,4,6-Trichlorophenol	< 40.0	2000

ELAP Number 10958

Method: EPA 8270C

Data File: S53657.D

Comments: ug / L = microgram per Liter

Signature:

Bruce Hoogesteger: Technical Director
This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition 104346S1.XLS requirements upon receipt.

Volatile Analysis Report for TCLP Extract

Client: SBD

Client Job Site:

Buffalo Color

Lab Project Number: 10-4346

Lab Sample Number: 13891

Client Job Number: N/A C1 - Stockpile #1 Field Location:

Date Sampled:

10/21/2010

Field ID Number:

Date Received:

10/22/2010

N/A

Sample Type:

TCLP Extract

Date Analyzed:

10/25/2010

Compound	Results in ug / L	Regulatory Limits in ug / L
Benzene	< 20.0	500
2-Butanone	< 100	200,000
Carbon Tetrachloride	< 20.0	500
Chlorobenzene	< 20.0	100,000
Chloroform	< 20.0	6,000
1.2-Dichloroethane	< 20.0	500
1,1-Dichloroethene	< 20.0	700
Tetrachloroethene	< 20.0	700
Trichloroethene	< 20.0	500
Vinyl chloride	< 20.0	200
ELAP Number 10958	Method: EPA 8260B	Data File: V79468.D

Comments: ug / L = microgram per Liter

Signature:

Bruce Hoogesteger. Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition 104346V1.XLS requirements upon receipt.

Client:

<u>SBD</u>

Client Job Site:

Buffalo Color

Client Job No.:

N/A

Lab Project No.: Lab Sample No.:

10-4346

ICP LCS 10/25 w

HG LCS 10/26 w

Sample Type:

Water

Date Sampled:

Date Received:

N/A N/A

LAB REPORT FOR METALS ANALYSIS IN WATER

Analyte	Date Analyzed	Method Blank	LCS Added	LCS Recovered	LCS Recovery	LCS Dup Added	LCS Dup Recovered	LCS Dup Recovery	LCS Dup Percent Difference	Percent Difference Limits	% Recovery Limits
		mg/L	mg/L	mg/L	%	mg/L	mg/L	%	%	%	
Arsenic	10/26/2010	<0.005	2.50	2.41	96.4	2.50	2.43	97.2	0.826	5.75%	90.60% - 107%
Barium	10/26/2010	<0.020	2.50	2.60	104	2.50	2.50	104	0	6.24%	95.40% - 114%
Cadmium	10/26/2010	< 0.005	1.00	1.01	101	1.00	1.01	101	0	5.18%	93.60% - 109%
Chromium	10/26/2010	<0.010	2.50	2.32	92.8	2.50	2.32	92.8	0	5.27%	82.40% - 107%
Lead	10/26/2010	<0.005	2.50	2.48	99.2	2.50	2.51	100	1.20	13.70%	93.30% - 109%
Mercury	10/26/2010	<0.0002	0.0020	0.00196	98.2	0.0020	0.00201	100	2.12	8.00%	94.20% - 116%
Selenium	10/26/2010	<0.005	2.50	2.39	95.6	2.50	2.37	94.8	0.840	5.10%	88.20% - 105%
Silver	10/26/2010	<0.010	0.250	0.257	103	0.250	0.256	102	0.390	5.89%	95.00% - 112%
				,							
				1							
					-						
			-								
	1	·									-
							1	· ·		•	
				<u> </u>							·
	1			Ì	i	i ·					
***************************************	1		İ	†		1	1				
			1	†	· ·						
				T		i	1	i			
			1	f		1	1				
			·	<u> </u>	 				•		ELAB ID No. 400E9

ELAP ID No.:10958

Comments:

Approved By:

Bruce Hoogesteger, Technical Director

Semi-Volatile Analysis Report for TCLP Extract

Client: SBD

Client Job Site:

Buffalo Color

Lab Project Number:

10-4346

Client Job Number:

N/A

Lab Sample Number:

TCLP PB 10/25

Field Location:

N/A

Date Sampled:

N/A

Field ID Number:

N/A

Date Received:

N/A

Sample Type:

TCLP Extract

Date Analyzed:

10/25/2010

Base / Neutrals	Results in ug / L	Regulatory Limits in ug / L
1.4-Dichlorobenzene	< 40.0	7,500
2,4-Dinitrotoluene	< 40.0	130
Hexachlorobenzene	< 40.0	130
Hexachlorobutadiene	< 40.0	500
Hexachloroethane	< 40.0	3000
Nitrobenzene	< 40.0	2000
Pyridine	< 40.0	5000

Acids	Results in ug / L	Regulatory Limits in ug / L
Cresols (as m,p,o-Cresol)	< 40.0	200,000
Pentachlorophenol	< 100	100,000
2.4.5-Trichlorophenol	< 100	400,000
2,4,6-Trichlorophenol	< 40.0	2000

ELAP Number 10958

Method: EPA 8270C

Data File: S53655.D

Comments: ug / L = microgram per Liter

Signature:

Bruce Hoogesteger: Technical Director

Semi-Volatile Analysis Report for TCLP Extract

Client: SBD

Client Job Site: Bu

Buffalo Color

Lab Project Number: 10-4346

Lab Sample Number: TCLP LCS 10/25

SDG#: N/A

Client Job Number:

N/A

Date Sampled:

N/A

Field Location: Field ID Number:

N/A N/A

Date Received:

N/A

Sample Type:

TCLP Extract

Date Analyzed:

10/25/2010

Spiked Compound	Sample Results	LCS Spiked	LCS Results	LCS Percent	MSD Spiked	MSD Results	MSD Percent	MS / MSD
	in ug / L	in ug / L	in ug / L	Recovery	in ug / L	in ug / L	Recovery	% RPD
2-Chlorophenol	< 10.0	75.0	58.5	78.0	N/A	· N/A	N/A	N/A
1,4-Dichlorobenzene	< 10.0	50.0	30.5	61.0	N/A	N/A	N/A	N/A
N-Nitroso-di-n-propylamine	< 10.0	50.0	38.3	76.6	N/A	N/A	N/A	N/A
Phenol	< 10.0	75.0	50.0	66.7	N/A	N/A	N/A	N/A
4-Chloro-3-methylphenol	< 10.0	75.0	65.1	86.8	N/A	N/A	N/A	N/A
1,2,4-Trichlorobenzene	< 10.0	50.0	31.7	63.4	N/A	N/A	N/A	N/A
Acenaphthene	< 10.0	50.0	40.5	81.0	N/A	N/A	N/A	N/A
2,4-Dinitrotoluene	< 10.0	50.0	43.8	87.6	N/A	N/A	N/A	N/A
4-Nitrophenol	< 25.0	75.0	50.6	67.5	N/A	N/A	N/A	N/A
Pentachlorophenol	< 25.0	75.0	68.0	90.7	N/A	N/A	N/A	N/A
Pyrene ·	< 10.0	50.0	43.9	87.8	N/A	N/A	N/A	N/A
	`							
			}			1	,	}
						1		
•			}		ŀ			
].					
		· .				1		
					Į			
		ŀ		1	1	1		
	†							
						İ		
		Ì	}					1
					İ			
		1.						
					1	,		Ì

ELAP Number 10958

Data File: S53655.D

Data File: S53656.D

Method: EPA 8270C

Semi-Volatile Analysis QC Limits

Limits effective:

Through:

Oct 01,2010 Dec 31,2010

Spiked Compound	Soil Spi	ke Limits	Soil %	RPD Limits	Water Sp	ike Limits	Water % RI	PD Limits
	Lower %	Upper %	· Lower %	Upper %	Lower %	Upper %	Lower %	Upper %
2-Chlorophenol	36.9	122	0	52.2	43.7	90.6	0	45.8
1,4-Dichlorobenzene	36.3	116	0	50.5	28.5	74.6	0	65.1
N-Nitroso-di-n-propylamine	36.3	120	0	47.0	54.5	88.7	0	23.6
Phenol	36.6	122	0	52.4	-18.3	104	0	178
4-Chloro-3-methylphenol	39.4	128	0	46.3	51.7	96.2	0	39.7
1,2,4-Trichlorobenzene	36.8	117	0	50.3	31.2	77.7	0	63.0
Acenaphthene	39.6	125	0 1	46.2 ~	55.9	87.4	0	30.1
2,4-Dinitrophenol	-26.5	125	0	158	-25.3	99.7	0	225
4-Nitrophenol	31.7	128	0	53.1	-30.1	109	0	242
Pentachlorophenol	33.3	147	0	·· 56.5	0.0	148	0	161
Pyrene	42.5	136	0	45.7	63.2	104	0	28.0
,								

ELAP Number 10958

Method: EPA 8270C

Volatile STARS Analysis Report for Non-potable Water

Client: SBD

Client Job Site:

Buffalo Color

Lab Project Number: 10-4346

Client Job Number: N/A

N/A

Field Location: Field ID Number:

N/A

Date Sampled: Date Received: N/A N/A

Lab Sample Number: Water LRB 10/25

Sample Type:

Water

Date Analyzed:

10/25/2010

Compound	Results in ug / L	Regulatory Limits in ug / L
Benzene	< 2.00	500
2-Butanone	< 10.0	200,000
Carbon Tetrachloride	< 2.00	500
Chlorobenzene	< 2.00	100,000
Chloroform	· < 2.00	6,000
1,2-Dichloroethane	< 2.00	500
1,1-Dichloroethene	< 2.00	700
Tetrachloroethene	< 2.00	700
Trichloroethene	< 2.00	500
Vinyl chloride	< 2.00	200

ELAP Number 10958

Method: EPA 8260B

Data File: V79467.D

Comments: ug / L = microgram per Liter

Signature:

Volatile Analysis Report for Non-potable Water

Client: SBD

Client Job Site:

Buffalo Color

Lab Project Number: 10-4346 Lab Sample Number: Water LCS 10/25 SDG#: N/A

Client Job Number:

N/A

N/A

Date Sampled:

N/A

Field Location: Field ID Number: Sample Type:

N/A Water

Date Received: Date Analyzed: N/A 10/25/2010

Spiked Compound	Blank Results	LCS Spiked	LCS Results	LCS Percent	MSD Spiked	MSD Results	MSD Percent	MS / MSD
	in ug / L	in ug / L	in ug./ L	Recovery	in ug / L	in ug / L	Recovery	% RPD
1,1-Dichloroethene	< 2.00	50.0	52.1	104	N/A	N/A	N/A	N/A
Benzene	< 0.700	50.0	47.0	94.0	N/A	N/A	N/A	N/A
Trichloroethene	< 2.00	50.0	54.3	109	N/A	N/A	N/A	N/A
Toluene	< 2.00	50.0	55.2	110	N/A	N/A	N/A	N/A
Chlorobenzene	< 2.00	50.0	44.5	89.0	N/A	N/A	N/A	N/A
					1	1	•	
•								
		1			ł			
			1					İ
	•					1		
						1		
					į			
					į	}		
-						Į į	•	
								ľ
·						İ		
		1			į]		
		1						
•		-			}	1		
	1			'	.]			1

ELAP Number 10958

Data File: V79467.D

Data File: V79466.D

Method: EPA 8260B

Volatile Analysis QC Limits

Limits effective: Through:

Oct 01,2010 Dec 31,2010

Spiked Compound	Soil Spi	ke Limits	Soil %	RPD Limits	Water Sp	ike Limits	Water % RF	D Limits
	Lower %	Upper %	Lower %	Upper %	Lower %	Upper %	Lower %	Upper %
1,1-Dichloroethene	63.5	124	0	28.3	67.7	121	0	. 29.7
Benzene	78.5	116	0	22.3	79.7	115	0	23.4
Trichloroethene	81.1	119	0	21.7	81.3	118	0	25.2
Toluene	76.2	119	0	20.0	75.2	118	0	25.6
Chlorobenzene	81.0	115	0	22.8	83.4	108	0	16.3
					1			
				=	1			
	·		· .					
			1					1
		•						
•			Ì			Ì	·	
•								
	1			·	1	1	1	1

ELAP Number 10958 Method: EPA 8260B

179 Lake Avenue, Rochester, 14608 Office (585) 647-2530 Fax (585) 647-3311

CHAIN OF CUSTODY

P/	ARADIO	2 M	ialaa a		REPORT	то:				Nasa		IN۱	/Ole	E TO:		latirá dá	Ariel Land		sa sal		eğıl.	all de	14. sept. 1	เล้าซื้อเลชบ	e e e e e e e e e e e e e e e e e e e	:
	RONHENTAL SERVICE		COMPAN	"SRI	<u> </u>	4.	eggorphiese terban	C	OMPAN	Y :	Sa	ame	or I small to ruce	*50000000000000000000000000000000000000	pear innounce	STANCTON STANCTON	energenty are	LAB PF	ROJECT	r #:	CLIEN	IT PR	OJECT	#:	3000 F	
		الر مخودي	ADDRESS	Gan	~>^	~ }		-	DDRESS	S:								10	-43	146	Ì					
			CITY:	BAHLO	ST.	ATE: N	ZIP: 146	203	ITY:					STA	TE:		ZIP:	TURNA	ROUNI	TIME: (V	VORKIN	G DAY	rs)			
	The property of the second		PHONE:	200 11 3	FAX:		, , ,	F	HONE:				F	AX:				1	N		5	STD	,	OTI	HER	
ROJECT NAME/S	SITE NAME:		ATTN:				*	7	TTN:									╆	ļĄ	1 ₂ Г	٦₃ آ	٦.	, ($\overline{\Box}$	\overline{Z}	1)
Buffal	o Color	_	COMMEN	TS:																-	<u> </u>	`		4	Ì	/
	-3.5 A.A.	AH IOJąz						194 2		P	-611 1	EQT	ED A	NAI	VCIC		Education	Quo	tatio	n# 7	സ	Voc	ad	uc	10	2.
DATE	TIME	C O M P O S I T E	G R A B		PLE LOCATION	N/FIELD ID		M A T R I X	C O N T A I N E R R S	TLY MC	12 N							RE	1/	end TCLP LY lab DIBA S EA					- 1	20 20
10/21/10	4000	V		C1-5	tocko.b	41	24	al	2	X	X X											1.	3 8	9	1	
				-											П								\top			
															П							\top	\top	1		
											Ť	T		+	\vdash		†			· · · ·		十	1	+	$\vdash \vdash$	
.			 							\vdash	\dashv	+-	 	_	+		+					\dashv	+	+	\vdash	
) 			-					\dashv		\vdash	╬	╁—		+	\vdash	+	-				<u></u>	+	+	+	\vdash	
j			ļ					_		\sqcup	\perp	-			\sqcup	+						4	+	╄	닏	-
·			<u> </u>												\sqcup							_		1_		
}																										
)																					I	П			\Box	
0												\top							-			寸	丁	1	\Box	
LABIUSE	ONLY BEL	OWITHIS	NE#															N Hais								
ample Cond	ition: Per NEL Receipt Pa	AC/ELAP 210/	241/242/		^!:		Б																			
					Compliance	•						_	10	-7.			4 ,				r					,
omments:	Container	i ype.		Ϋ́	м 🔛	<u>4</u>	Sampled B	<u> </u>						ア <u>ン</u> Da	<u> - ု ပ</u> te/Tin	ne		<u> </u>		Total (Cost:					
omments:	Preserva	tion:	VIA	Y 🗀	N	.≱ F	Relingvish	eu B		7)				حاد		٠.	4:	107	0.4 0.4							
omments:	Holding T	ïme:		Y 🔼	N	. C	Received	SV.	ZE	7					기 te/fin		_#	1/2	Y "\ —	P.I.F.	ſ	<u>.</u>	\neg			
omments:	Tempera	ture: 10°CiC	ودا	·	N 🔯	F	Clisa Received (<u>()</u> (2) Lab	th.	<u>a</u>	40	nc	<u>ih</u>	/ <i>Q</i>	az te/Tin	<u>//0</u> ne	130	15	_			<u>_</u>]			

Analytical Report Cover Page

South Buffalo Dev

For Lab Project #10-4309
Issued November 9, 2010
This report contains a total of 13 pages

The reported results relate only to the samples as they have been received by the laboratory.

Any noncompliant QC parameters having impact on the data are flagged or documented on the final report.

All soil/sludge samples have been reported on a dry weight basis, unless qualified "reported as received". Other solids are reported as received.

Each page of this document is part of a multipage report. This document may not be reproduced except in its entirety, without the prior consent of Paradigm Environmental Services, Inc.

The Chain of Custody provides additional information, including compliance with sample condition requirements upon receipt. Sample condition requirements are defined under the 2003 NELAC Standard, sections 5.5.8.3.1 and 5.5.8.3.2.

NYSDOH ELAP does not certify for all parameters. Paradigm Environmental Services or the indicated subcontracted laboratory does hold certification for all analytes where certification is offered by ELAP unless otherwise specified.

Data qualifiers are used, when necessary, to provide additional information about the data. This information may be communicated as a flag or as text at the bottom of the report. Please refer to the following list of frequently used data flags and their meaning:

[&]quot;<" = analyzed for but not detected at or above the reporting limit.

[&]quot;E" = Result has been estimated, calibration limit exceeded.

[&]quot;Z" = See case narrative.

[&]quot;D" = Duplicate results outside QC limits. May indicate a non-homogenous matrix.

[&]quot;M" = Matrix spike recoveries outside QC limits. Matrix bias indicated.

[&]quot;B" = Method blank contained trace levels of analyte. Refer to included method blank report.

179 Lake Avenue, Rochester, NY 14608 Office: (585) 647-2530 Fax: (585) 647-3311

LAB REPORT FOR TCLP RCRA METALS ANALYSIS

Client:

South Buffalo Dev

Lab Project No.:

10-4309 13783

Client Job Site:

Buffalo Color

Lab Sample No.:

TCLP Extract

Client Job No.:

N/A

Sample Type:

Field Location:

Stockpile Southside 1

10/20/2010

Field ID No.:

N/A

Date Sampled: Date Received:

10/20/2010

Parameter	Date Analyzed	Analytical Method	Result (mg/L)	Regulatory Limit (mg/L)
Arsenic	10/22/2010	SW846 6010	<0.100	5.0
Barium	10/22/2010	SW846 6010	1.47	100
Cadmium	10/22/2010	SW846 6010	<0.025	1.0
Chromium	10/22/2010	SW846 6010	<0.050	5.0
Lead	10/22/2010	SW846 6010	<0.100	5.0
Mercury	10/22/2010	SW846 7470	<0.0020	0.2
Selenium	10/22/2010	SW846 6010	<0.100	1.0
Silver	10/22/2010	SW846 6010	<0.050	5.0

ELAP ID No.:10958

Comments:

Approved By:

Bruce Hoogesteger, Technical Director

Semi-Volatile Analysis Report for TCLP Extract

Client: South Buffalo Dev

Client Job Site:

Buffalo Color

Lab Project Number:

10-4309

Lab Sample Number:

13783

Client Job Number: N/A

Field Location:

Date Sampled:

10/20/2010

Field ID Number:

Stockpile Southside 1 N/A

Date Received:

10/20/2010

Sample Type:

TCLP Extract

Date Analyzed:

10/22/2010

Base / Neutrals	Results in ug / L	Regulatory Limits in ug / L
1,4-Dichlorobenzene	< 40.0	7,500
2,4-Dinitrotoluene	< 40.0	130
Hexachlorobenzene	< 40.0	130
Hexachlorobutadiene	< 40.0	500
Hexachloroethane	< 40.0	3000
Nitrobenzene	< 40.0	2000
Pyridine	< 40.0	5000

Acids	Results in ug / L	Regulatory Limits in ug / L
Cresols (as m.p.o-Cresol)	< 40.0	200,000
Pentachlorophenol	< 100	100,000
2,4,5-Trichlorophenol	< 100	400,000
2,4,6-Trichlorophenol	< 40.0	2000

ELAP Number 10958

Method: EPA 8270C

Data File: S53629.D

Comments: ug / L = microgram per Liter

Signature:

Bruce Hoogesteger: Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition requirements upon receipt.

Volatile STARS Analysis Report for TCLP Extract

Client: South Buffalo Dev

Client Job Site: Buffalo Color

Lab Project Number: 10-4309

Lab Sample Number: 13783

Client Job Number: N/A

Field Location: St

Stockpile Southside 1

Date Sampled:

10/20/2010

Field ID Number:

N/A

Date Received:

10/20/2010

Sample Type:

TCLP Extract

Date Analyzed:

10/21/2010

Compound	Results in ug / L	Regulatory Limits in ug / L
Benzene	< 7.00	500
2-Butanone	< 100	200,000
Carbon Tetrachloride	< 20.0	500
Chlorobenzene	< 20.0	100,000
Chloroform	< 20.0	6,000
1,2-Dichloroethane	< 20.0	500
1,1-Dichloroethene	< 20.0	700
Tetrachloroethene	< 20.0	700
Trichloroethene	< 20.0	500
Vinyl chloride	< 20.0	200

ELAP Number 10958

Method: EPA 8260B

Data File: V79428.D

Comments: ug / L = microgram per Liter

Signature

Bruce Hoogesteger: Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional Information, including compliance with sample condition requirements upon receipt.

104309V1.XLS

Client

South Buffalo Development

Client Job Site:

Buffalo Color

Client Job No.:

N/A

Lab Project No.:

Lab Sample No.:

10-4309 ICP LCS 10/21 W

HG LCS 10/22 W

Sample Type:

Water

Date Sampled: Date Received: N/A N/A

LAB REPORT FOR METALS ANALYSIS IN WATER

Analyte	Date Analyzed	Method Blank	LCS Added	LCS Recovered	LCS Recovery	LCS Dup Added	LCS Dup Recovered	LCS Dup Recovery	LCS Dup Percent Difference	Percent Difference Limits		ecov	
	1	mg/L	mg/L	mg/L	%	mg/L	mg/L	%	%	%			
Arsenic	10/22/2010	<0.005	2.50	2.50	100	2.50	2.46	98.4	1.61	5.75	90.6	•	107
Barium	10/22/2010	<0.020	2.50	2.56	102	2.50	2.55	102	0.391	6.24	95.4		114
Cadmium	10/22/2010	<0.005	1.00	1.00	100	1.00	0.998	99.8	0.200	5.18	93.6	-	109
Chromium	10/22/2010	<0.010	2.50	2.29	91.6	2.50	2.28	91.2	0.438	5.27	82.4	-	107
Lead	10/22/2010	<0.005	2.50	2.53	101	2.50	2.49	99.6	1.59	13.7	93.3	-	109
Mercury	10/22/2010	<0.0002	0.0020	0.00189	94.3	0.0020	0.00190	95.0	0.793	8.00	94.2	-	116
Selenium	10/22/2010	<0.005	2.50	2.42	96.8	2.50	2.37	94.8	2.09	5.10	88.2	-	105
Silver	10/22/2010	<0.010	0.250	0.254	102	0.250	0.254	102	0	5.89	95.0	-	112

ELAP ID No.:10958

Comments:

Approved By:

Bruce Hoogesteger, Technical Director

Semi-Volatile Analysis Report for TCLP Extract

Client: South Buffalo Dev

Client Job Site:

Buffalo Color

Lab Project Number: Lab Sample Number:

10-4309

Client Job Number: N/A

Field Location:

Date Sampled:

TCLP PB 10/21

N/A

N/A N/A

Field ID Number:

N/A

Date Received:

Sample Type:

TCLP Extract

Date Analyzed:

10/22/2010

Base / Neutrals	Results in ug / L	Regulatory Limits in ug / L
1,4-Dichlorobenzene	< 40.0	7,500
2,4-Dinitrotoluene	< 40.0	130
Hexachlorobenzene	< 40.0	130
Hexachlorobutadiene	< 40.0	500
Hexachloroethane	< 40.0	3000
Nitrobenzene	< 40.0	2000
Pyridine	< 40.0	5000

Acids	Results in ug / L	Regulatory Limits in ug / L
Cresols (as m,p,o-Cresol)	< 40.0	200,000
Pentachiorophenol	< 100	100,000
2,4,5-Trichlorophenol	< 100	400,000
2,4,6-Trichlorophenol	< 40.0	2000

ELAP Number 10958

Method: EPA 8270C

Data File: S53627.D

Comments: ug / L = microgram per Liter

Signature:

Bruce Hoogesteger: Technical Director

Semi-Volatile Analysis Report for TCLP Extract

Client: South Buffalo Dev

Client Job Site: Buffalo Color

Lab Project Number: 10-4309

Lab Sample Number: TCLP LCS 10/21

SDG#: N/A

Client Job Number: N/A

Field Location: N/A

Date Sampled:

NVA

Field ID Number:

N/A

Date Received:

N/A 10/22/2010

Sample Type:	ICLP Extract	Date Analyzed:	10/22/2010

Spiked Compound	Sample Results	LCS Spiked	LCS Results	LCS Percent	MSD Spiked	MSD Results	MSD Percent	MS / MSD
	in ug / L	in ug / L	in ug / L	Recovery	in ug / L	in ug / L	Recovery	% RPD
2-Chlorophenol	< 10.0	75.0	69.1	92.1	N/A	N/A	N/A	N/A
1,4-Dichlorobenzene	< 10.0	50.0	27.1	54.2	N/A	N/A	N/A	N/A
N-Nitroso-di-n-propylamine	< 10.0	50.0	42.9	85.8	N/A	N/A	N/A	N/A
Phenol	< 10.0	75.0	58.4	77.9	N/A	N/A	N/A	N/A
4-Chloro-3-methylphenol	< 10.0	75.0	73.3	97.7	N/A	N/A	N/A	N/A
1,2,4-Trichlorobenzene	< 10.0	50.0	28.6	57.2	N/A	N/A	N/A	N/A
Acenaphthene	< 10.0	50.0	41.6	83.2	N/A	N/A	N/A	N/A
2,4-Dinitrotoluene	< 10.0	50.0	47.1	94.2	N/A	N/A	N/A	N/A
4-Nitrophenol	< 25.0	75.0	57.3	76.4	N/A	N/A	N/A	N/A
Pentachlorophenol	< 25.0	75.0	71.1	94.8	N/A	N/A	N/A	N/A
Pyrene	< 10.0	50.0	46.9	93.8	N/A	N/A	N/A	N/A
	:							
1								
1								
				•				
						İ		
						İ		
ĺ								
1								
			ĺ				ĺ	
							ļ	
			į					
· · · · · · · · · · · · · · · · · · ·							<u>-</u>	

ELAP Number 10958

Data File: S53627.D

Data File: S53628.D

Method: EPA 8270C

Semi-Volatile Analysis QC Limits

Limits effective:

Oct 01,2010

Through:

Dec 31,2010

Spiked Compound	Soil Spi	ke Limits	Soil %	RPD Limits	Water Sp	ike Limits	Water % R	D Limits
	Lower %	Upper %	Lower %	Upper %	Lower %	Upper %	Lower %	Upper %
2-Chlorophenol	36.9	122	0	52.2	43.7	90.6	0	45.8
1,4-Dichlorobenzene	36.3	116	0	50.5	28.5	74.6	0	65.1
N-Nitroso-di-n-propylamine	36.3	120	0	47.0	54.5	88.7	· 0	23.6
Phenol	36.6	· 122	0	52.4	-18.3	104	0	178
4-Chloro-3-methylphenol	39.4	128	0	46.3	51.7	96.2	0	39.7
1,2,4-Trichlorobenzene	36.8	117	0	50.3	31.2	77.7	0	63.0
Acenaphthene	39.6	125	0	46.2	55.9	87.4	0	30.1
2,4-Dinitrophenol	-26.5	125	0	158	-25.3	99.7	0	225
4-Nitrophenol	31.7	128	0	53.1	-30.1	109	0	242
Pentachlorophenol	33.3	147	0	56.5	0.0	148	0	161
Pyrene	42.5	136	0	45.7	63.2	104	0	28.0
	1							
								-
					1			
]							

ELAP Number 10958 . Method: EPA 8270C

Volatile STARS Analysis Report for Non-potable Water

Client: South Buffalo Dev

Client Job Site:

Buffalo Color

Lab Project Number: 10-4309

Client Job Number:

N/A N/A Lab Sample Number: Water LRB 10/21

Field Location: Field ID Number:

Date Sampled: **Date Received:** N/A N/A

Sample Type:

N/A Water

Date Analyzed:

10/21/2010

Compound	Results in ug / L	Regulatory Limits in ug / L
Benzene	< 0.700	500
2-Butanone	< 10.0	200,000
Carbon Tetrachloride	< 2.00	500
Chlorobenzene	< 2.00	100,000
Chloroform	< 2.00	6,000
1,2-Dichloroethane	< 2.00	500
1,1-Dichloroethene	< 2.00	700
Tetrachloroethene	< 2.00	700
Trichloroethene	< 2.00	500
Vinyl chloride	< 2.00	200

ELAP Number 10958

Method: EPA 8260B

Data File: V79426.D

Comments: ug / L = microgram per Liter

Signature:

Bruce Hoogesteger: Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition requirements upon receipt. 104309B1.XLS

Volatile Analysis Report for Non-potable Water

Client: South Buffalo Dev

Client Job Site:

Buffalo Color

Lab Project Number: 10-4309

Lab Sample Number: Water LCS 10/21

SDG#: N/A

Client Job Number: N/A

N/A N/A

Date Sampled:

N/A

Field Location: Field ID Number:

N/A

Date Received:

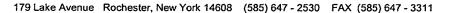
N/A

Sample Type: Water

Date Analyzed:

10/21/2010

Spiked Compound	Sample Results	LCS Spiked	LCS Results	LCS Percent	MSD Spiked	MSD Results	MSD Percent	MS / MSD
	in ug / L	in ug / L	in ug / L	Recovery	in ug / L	in ug / L	Recovery	% RPD
Chloromethane	< 4.00	100	104	104	N/A	N/A	N/A	N/A
Vinyl chloride	< 4.00	100	99.9	99.9	N/A	N/A	N/A	N/A
Bromomethane	< 4.00	100	93.4	93.4	N/A	N/A	N/A	N/A
Chloroethane	< 4.00	100	96.7	96.7	N/A	N/A	N/A	N/A
Trichlorofluoromethane	< 4.00	100	90.9	90.9	N/A	N/A	N/A	N/A
1,1-Dichloroethene	< 4.00	100	97.9	97.9	N/A	N/A	N/A	N/A
Acetone	< 40.0	100	39.4	39.4	N/A	N/A	N/A	N/A
Carbon disulfide	< 4.00	100	111	111	N/A	N/A	N/A	N/A
Methylene chloride	< 4.00	100	94.3	94.3	N/A	N/A	N/A	N/A
trans-1,2-Dichloroethene	< 4.00	100	111	111	N/A	N/A	N/A	N/A
1,1-Dichloroethane	< 4.00	100	95.9	95.9	N/A	N/A	N/A	N/A
Vinyl acetate	< 4.00	100	84.2	84.2	N/A	N/A	N/A	N/A
2-Butanone	< 4.00	100	65.8	65.8	N/A	N/A	N/A	N/A
cis-1,2-Dichloroethene	< 4.00	100	103	103	N/A	N/A	N/A	N/A
Chloroform	< 4.00	100	95.1	95.1	N/A	N/A	N/A	N/A
1,1,1-Trichloroethane	< 4.00	100	97.7	97.7	N/A	N/A	N/A	N/A
Carbon Tetrachloride	< 4.00	100	98.3	98.3	N/A	N/A	N/A	N/A
Benzene	< 1.40	100	104	104	N/A	N/A	N/A	N/A
1,2-Dichloroethane	< 4.00	100	97.6	97.6	ŅΑ	N/A	N/A	N/A
Trichloroethene	< 4.00	100	103	103	N/A	N/A	N/A	N/A
1,2-Dichloropropane	< 4.00	100	98.5	98.5	N/A	N/A	N/A	N/A
Bromodichloromethane	< 4.00	100	100	100	N/A	N/A	N/A	N/A
2-Chloroethyl vinyl Ether	< 4.00	100	134	134	N/A	N/A	N/A	N/A
cis-1,3-Dichloropropene	< 4.00	100	102	102	N/A	N/A	N/A	N/A
4-Methyl-2-pentanone	< 4.00	100	89.5	89.5	N/A	N/A	N/A	N/A
Toluene	< 4.00	100	104	104	N/A	N/A	N/A	N/A


ELAP Number 10958

Data File: V79426.D

Data File: V79427.D

Method: EPA 8260B

Volatile Analysis Report for Soils/Solids/Sludges

Client: South Buffalo Dev

Client Job Site:

Buffalo Color

Lab Project Number: 10-4309

Lab Sample Number: Water LCS 10/21

SDG#: N/A

Client Job Number: N/A

N/A

Date Sampled:

N/A

Field Location: Field ID Number: Sample Type:

N/A Water **Date Received:**

N/A

Date Analyzed:

10/21/2010

Spiked Compound	Sample Results	LCS Spiked	LCS Results	LCS Percent	MSD Spiked	MSD Results	MSD Percent	MS / MSD
	in ug / L	in ug / L	in ug / L	Recovery	in ug / L	in ug / L	Recovery	% RPD
trans-1,3-Dichloropropene	< 4.00	100	92.0	92.0	N/A	N/A	N/A	N/A
1,1,2-Trichloroethane	< 4.00	100	96.3	96.3	N/A	N/A	N/A	N/A
Tetrachloroethene	< 4.00	100	121	121	N/A	N/A	N/A	N/A
2-Hexanone	< 4.00	100	75.8	75.8	N/A	N/A	N/A	N/A
Dibromochloromethane	< 4.00	100	97.9	97.9	N/A	N/A	N/A	N/A
Chlorobenzene	< 4.00	100	102	102	N/A	N/A	N/A	N/A
Ethylbenzene	< 4.00	100	103	103	N/A	N/A	N/A	N/A
m,p-Xylene	< 4.00	200	195	97.5	N/A	N/A	N/A	N/A
o-Xylene	< 4.00	100	105	105	N/A	N/A	N/A	N/A
Styrene	< 4.00	100	111	111	N/A	N/A	N/A	N/A
Bromoform	< 4.00	100	97.7	97.7	N/A	N/A	N/A	N/A
1,1,2,2-Tetrachloroethane	< 4.00	100	103	103	N/A	N/A	N/A	N/A
1,4-Dichlorobenzene	< 4.00	100	98.1	196	N/A	N/A	N/A	N/A
1,3-Dichlorobenzene	< 4.00	100	98.1	196	N/A	N/A	N/A	N/A
1,2-Dichlorobenzene	< 4.00	100	98.4	197	N/A	N/A	N/A	N/A

ELAP Number 10958

Data File: V79426.D

Data File: V79427.D

Method: EPA 8260B

Comment ug / L = microgram per Liter

Volatile Analysis QC Limits

Limits effective:

Oct 01,2010

Through:

Dec 31,2010

Spiked Compound	Soil Spi	ke Limits	Soil %	RPD Limits	Water Sp	ike Limits	Water % R	D Limits
	Lower %	Upper %	Lower %	Upper %	Lower %	Upper %	Lower %	Upper %
1,1-Dichloroethene	63.5	124	0	28.3	67.7	121	0	29.7
Benzene	78.5	116	· 0	22.3	79.7	115	0	23.4
Trichloroethene	81.1	[′] 119	0	21.7	81.3	118	0	25.2
Toluene	76.2	119	0 .	20.0	75.2	118	0	25.6
Chlorobenzene	81.0	115	0	22.8	83.4	108	0	16.3

ELAP Number 10958 Method: EPA 8260B

CHAIN OF CUSTODY PO# 113137

76						<u> </u>	## X##		<u>. </u>				<u>'</u>	1	J 11	431	52				
`\ D^	RADIO	2 M			REPORT TO:						INVOI	CETO	5								
CHVI	SHACATAC SERVIC		COMPAN	South	Buffal		j	COMPAN	IY:	San	- 114 10 11 11624	N 81814 A44 73	transfer dans	11.2 to 10.4 to 10.4	Contraction of the State of the	LAB PROJ	ECT #:	CLIENT	PROJECT	#:	$\overline{}$
				333 6		5+		ADDRES	S:							10-9	1309				
			CITY:	3wffer lo	STATE:	1 Y ZIP	1-1304	CITY:				Sī	TATE:		ZIP:	TURNARO	UND TIME: (M	ORKING I	AYS)	in l	
.448			PHONE &	56 - 33.	₹ FAX:	<u> </u>		PHONE:				FAX:				Res	130	/V/ork	day D	OTH	LER
PROJECT NAME/SI			ATTN:		in Yen.	(4 10		ATTN:								│ ┐, ſ	7, 1/2	7 3 Ŭ	7 5	<u> </u>	
/	2 // /	o Color	COMMENT	TS:	(PC 7 CP).	347		J	-) 								7° I		<u> </u>	-
Languaga esta esta esta esta esta esta esta est	10-77-6-5 Marian (Marian)		VISARIJAN SATI	naratara	arkon Periodoren eta eta eta eta eta eta eta eta eta eta	ikessiteteetiinten oo	Tara Manahir Sa	OREAL PROPERTY			To an alternative			un producti		Quota	tion#		INSPERIO	en en en en en en en en en en en en en e	ASSEMBLE A
and the second		C	250,780						KE	QUE:	מפווכ	ANA	eysi T) 	1		Hallaherss			39419	
•		0					м	0 ·		3	1/8	13									
		P M	G R				. A	UT	10 2	Re	2 2	1/2							PARADIO	GM LAE	,
DATE	TIME	o s	A	SAN	IPLE LOCATION/FIE	LD ID	R	B I	12/2		80,	0		1		REMA	RKS		SAMPLE		
		1 T	В				×	. RE	6.6	12	6 6										
		Ε						s	1/1		N	12									
1 10/20			X	C1-R	53 091	2	2	. 1	XX	'火	7							ŀ			
2 /			X		54 050		ک ا	1	XX	X	7										
3			X		91-121		3	1	XX	X	1	hac	ار م	1/6	105	San	~ : C +	e_			П
4	-		X		52-08		کہ	 	ÍXÍX	1	. (,	12	3	- 11-			10-				
5 /	 	A	文		25/ 070		5	1	ĺΫχ	\very	1	+++	+-1	_	1300	<u>Jee</u>					П
- \/		X	^-				5	2	1/1/	\ 	U X	10		-	1.77	2	Resul	(1 T	2 -	20	2
<u> </u>		<u> </u>		->TOCK	spile Sou	Priside 1	 	~		++	4	[/ 	+4		10 t		1. 1.	TS 312		10	
7	- 	<u> </u>					 			+-+		 		\dashv	1	0/22	<i>fro</i>		+	+	\vdash
3	ļ						<u></u>				_					· · ·			 	4	\vdash
9								ļ <u>.</u>		1_	\perp	<u> </u>					 		$\bot \bot$		_
10																. •					
		OWATHISKLI					(SLASA)														
sample Condi	Receipt Pa	AC/ELAP 210/	241/242/2		Compliance	٦ ۾			1												
	Container :			Y [\(\sigma\)	N 🗍	Sean	(cas	ل مي	Jeen	Com	ile	10	クーマン ate/Tin	101	140						\neg
Comments:				\mathcal{T}		1			1								Total C	ost:			· }
	Preservat	tion:	مادر	Y	N		r Cerrl		Jen (auli	.		-20-10		0		•	· L_			
Comments:			NA	•		Reling	ished E	^{3y} /∫	01			, D	ate/Tin	^{1е} ./	•						
	Holding Ti	ime:		ΥŒ	N	14	en	_8109	4			10	120	10	14	40	5.5	··			
Comments:				/		Receive	ed By					D	ate/Tin	pte 1			P.I.F.				
	Temperal	ure:		Y 💯	N	Zin	ML	1 3		LD	re	Δ			10 1	<u>800</u>		L			
comments:	4°C 100			/		Keceiv	ed @ La	J _{BV}				וט	ate/Tin	ie							

Analytical Report Cover Page

SBD

For Lab Project #10-4366 Issued November 9, 2010 This report contains a total of 13 pages

The reported results relate only to the samples as they have been received by the laboratory.

Any noncompliant QC parameters having impact on the data are flagged or documented on the final report.

All soil/sludge samples have been reported on a dry weight basis, unless qualified "reported as received". Other solids are reported as received.

Each page of this document is part of a multipage report. This document may not be reproduced except in its entirety, without the prior consent of Paradigm Environmental Services, Inc.

The Chain of Custody provides additional information, including compliance with sample condition requirements upon receipt. Sample condition requirements are defined under the 2003 NELAC Standard, sections 5.5.8.3.1 and 5.5.8.3.2.

NYSDOH ELAP does not certify for all parameters. Paradigm Environmental Services or the indicated subcontracted laboratory does hold certification for all analytes where certification is offered by ELAP unless otherwise specified.

Data qualifiers are used, when necessary, to provide additional information about the data. This information may be communicated as a flag or as text at the bottom of the report. Please refer to the following list of frequently used data flags and their meaning:

[&]quot;<" = analyzed for but not detected at or above the reporting limit.

[&]quot;E" = Result has been estimated, calibration limit exceeded.

[&]quot;Z" = See case narrative.

[&]quot;D" = Duplicate results outside QC limits. May indicate a non-homogenous matrix.

[&]quot;M" = Matrix spike recoveries outside QC limits. Matrix bias indicated.

[&]quot;B" = Method blank contained trace levels of analyte. Refer to included method blank report.

179 Lake Avenue, Rochester, NY 14608 Office: (585) 647-2530 Fax: (585) 647-3311

LAB REPORT FOR TCLP RCRA METALS ANALYSIS

Client:

SBD

Lab Project No.:

10-4366

Client Job Site:

Buffalo Color

Lab Sample No.:

13947

Client Job No.:

Sample Type:

TCLP Extract

N/A

Date Sampled:

10/22/2010

Field Location: Field ID No.:

Stockpile C-3 N/A

Date Received:

10/25/2010

Parameter	Date Analyzed	Analytical Method	Result (mg/L)	Regulatory Limit (mg/L)
Arsenic	10/27/2010	SW846 6010	<0.100	5.0
Barium	10/27/2010	SW846 6010	0.403	100
Cadmium	10/27/2010	SW846 6010	<0.025	1.0
Chromium	10/27/2010	SW846 6010	<0.050	5.0
Lead	10/27/2010	SW846 6010	0.117	5.0
Mercury	10/26/2010	SW846 7470	<0.0020	0.2
Selenium	10/27/2010	SW846 6010	<0.100	1.0
Silver	10/27/2010	SW846 6010	<0.050	5.0

ELAP ID No.:10958

Comments:

Approved By:

Bruce Hoogesteger, Technical Director

Client: SBD

Client Job Site:

Buffalo Color

Lab Project Number: Lab Sample Number: 10-4366

Client Job Number:

N/A

Date Sampled:

13947

Field Location: Field ID Number: Stockpile C-3

Date Received:

10/22/2010

N/A

10/25/2010

Sample Type:

TCLP Extract

Date Analyzed:

10/27/2010

Base / Neutrals	Results in ug / L	Regulatory Limits in ug / L
1,4-Dichlorobenzene	635	7,500
2,4-Dinitrotoluene	< 40.0	130
Hexachlorobenzene	< 40.0	130
Hexachlorobutadiene	< 40.0	. 500
Hexachloroethane	< 40.0	3000
Nitrobenzene	158	2000
Pyridine	< 40.0	5000

Acids	Results in ug / L	Regulatory Limits in ug / L
Cresols (as m,p,o-Cresol)	< 40.0	200,000
Pentachlorophenol	< 100	100,000
2,4,5-Trichlorophenol	< 100	400,000
2,4,6-Trichlorophenol	< 40.0	2000
ELAP Number 10958	Method: EPA 8270C	Data File: S53692.D

Comments: ug / L = microgram per Liter

Signature:

Bruce Hoogesteger Technical Director
This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition 104366S1.XLS requirements upon receipt.

Volatile STARS Analysis Report for TCLP Extract

Client: SBD

Client Job Site:

Buffalo Color

Lab Project Number: 10-4366

Client Job Number: N/A

Lab Sample Number: 13947

10/22/2010

Field Location:

Stockpile C-3

Date Sampled: **Date Received:**

10/25/2010

Field ID Number:

N/A

Date Analyzed:

10/27/2010

Sample Type:

TCLP Extract

Compound	Results in ug / L	Regulatory Limits in ug / L
Benzene	< 35.0	500
2-Butanone	< 500	200,000
Carbon Tetrachloride	< 100	500
Chlorobenzene	5,620	100,000
Chloroform	< 100	6,000
1,2-Dichloroethane	< 100	500
1,1-Dichloroethene	< 100	700
Tetrachloroethene	< 100	700
Trichloroethene	< 100	500
Vinyl chloride	< 100	200

ELAP Number 10958

Method: EPA 8260B

Data File: V79549.D

Comments: ug / L = microgram per Liter

Signature:

Bruce Hoogesteder: Technical Director
This report is part of a multipage document and should only be evaluated in its entirety. Chaln of Custody provides additional information, Including compliance with sample condition requirements upon receipt. 104366V1.XLS

179 Lake Avenue, Rochester, NY 14608 (585) 647-2530 FAX (585) 647-3311

Client:

South Buffalo Development

Buffalo Color

Client Job Site: Client Job No.:

N/A

Lab Project No.:

10-4366

Lab Sample No.:

ICP LCS 10/26 W HG LCS 10/26 W

Sample Type:

Water

Date Sampled: Date Received:

N/A N/A

LAB REPORT FOR METALS ANALYSIS IN WATER

Analyte	Date Analyzed	Method Blank	LCS Added	LCS Recovered	LCS Recovery	LCS Dup Added	LCS Dup Recovered	LCS Dup Recovery	LCS Dup Percent Difference	Percent Difference Limits	% Reco	very !	Limits
		mg/L	mg/L	mg/L	%	mg/L	mg/L	%	%	%			
Arsenic	10/27/2010	<0.005	2.50	2.44	97.6	2.50	2.40	96.0	1.65	5.75	90.6	-	107
Barium	10/27/2010	<0.020	2.50	2.61	104	2.50	2.59	104	0.769	6.24	95.4		114
Cadmium	10/27/2010	<0.005	1.00	1.01	101	1.00	1.02	102	0.985	5.18	93.6		109
Chromium	10/27/2010	<0.010	2.50	2.32	92.8	2.50	2.31	92.4	0.432	5.27	82.4	. •	107
Lead	10/27/2010	<0.005	2.50	2.44	97.6	2.50	2.38	95.2	2.49	13.7	93.3		109
Mercury	10/26/2010	<0.200	0.0020	0.00196	98.2	0.0020	0.00201	100	2.12	8.00	94.2		116
Selenium	10/27/2010	<0.005	2.50	2.42	96.8	2.50	2.38	95.2	1.67	5.10	88.2		105
Silver	10/27/2010	< 0.010	0.250	0.261	104	0.250	0.257	103	1.54	5.89	95.0	-	112
	1			l		<u> </u>	L	l	L	L	EL AD ID I		

ELAP ID No.:10958

Comments:

Approved By:

Bruce Hoogesteger, Technical Director

Client: SBD

Client Job Site:

Buffalo Color

Lab Project Number: Lab Sample Number: 10-4366

TCLP PB 10/26

Client Job Number: N/A

Field Location:

N/A

Date Sampled:

N/A

Field ID Number:

Date Received:

N/A

Sample Type:

N/A **TCLP Extract**

Date Analyzed:

10/27/2010

Base / Neutrals	Results in ug / L	Regulatory Limits in ug / L
1,4-Dichlorobenzene	< 40.0	7,500
2,4-Dinitrotoluene	< 40.0	130
Hexachlorobenzene	< 40.0	130
Hexachlorobutadiene	< 40.0	500
Hexachloroethane	< 40.0	3000
Nitrobenzene	< 40.0	2000
Pyridine	< 40.0	5000

Acids	Results in ug / L	Regulatory Limits in ug / L
Cresols (as m,p,o-Cresol)	< 40.0	200,000
Pentachlorophenol	< 100	100,000
2,4,5-Trichlorophenol	< 100	400,000
2,4,6-Trichlorophenol	< 40.0	2000

ELAP Number 10958 Method: EPA 8270C Data File: S53690.D

Comments: ug / L = microgram per Liter

Signature:

Bruce Hoogesteger: Technical Director

179 Lake Avenue Rochester, New York 14608 (585) 647 - 2530 FAX (585) 647 - 3311

Semi-Volatile Analysis Report for TCLP Extract

Client: SBD

Client Job Site:

Buffalo Color

Lab Project Number: 10-4366
Lab Sample Number: TCLP LCS 10/26

SDG#: N/A

Client Job Number: N/A

Field Location:

N/A

Date Sampled:

N/A

Field ID Number:

N/A

Date Received:

N/A

Sample Type: TCLP Extract

Date Analyzed:

10/27/2010

Spiked Compound	Sample Results	LCS Spiked	LCS Results	LCS Percent	MSD Spiked	MSD Results	MSD Percent	MS / MSD
	in ug / L	in ug / L	in ug / L	Recovery	in ug / L	in ug / L	Recovery	% RPD
2-Chlorophenol	< 40.0	300	219	73.0	N/A	N/A	N/A	N/A
1,4-Dichlorobenzene	< 40.0	200	119	59.5	N/A	N/A	N/A	N/A
N-Nitroso-di-n-propylamine	< 40.0	200	156	78.0	N/A	N/A	N/A	N/A
Phenol	< 40.0	300	195	65.0	N/A	N/A	N/A	N/A
4-Chloro-3-methylphenol	< 40.0	300	248	82.7	N/A	N/A	N/A	N/A
1,2,4-Trichlorobenzene	< 40.0	200	122	61.0	N/A	N/A	N/A	N/A
Acenaphthene	< 40.0	200	152	76.0	N/A	N/A	N/A	N/A
2,4-Dinitrotoluene	< 40.0	200	161	80.5	N/A	N/A	N/A	N/A
4-Nitrophenol	< 100	300	211	70.3	N/A	N/A	N/A	N/A
Pentachlorophenol	< 100	300	279	93.0	N/A	N/A	N/A	N/A
Pyrene	< 40.0	200	169	84.5	N/A	N/A	N/A	N/A

ELAP Number 10958

Data File: S53690.D

Data File: S53691.D

Method: EPA 8270C

179 Lake Avenue Rochester, New York 14608 (585) 647 - 2530 FAX (585) 647 - 3311

Semi-Volatile Analysis QC Limits

Limits effective:

Oct 01,2010

Through:

Dec 31,2010

Spiked Compound	Soil Spi	ke Limits	Soil %	RPD Limits	Water Sp	ike Limits	Water % RP	D Limits
	Lower %	Upper %	Lower %	Upper %	Lower %	Upper %	Lower %	Upper %
2-Chlorophenol	36.9	122	0	52.2	43.7	90.6	0	45.8
1,4-Dichlorobenzene	36.3	116	0	50.5	28.5	74.6	0	65.1
N-Nitroso-di-n-propylamine	36.3	120	0	47.0	54.5	88.7	0	23.6
Phenol	36.6	122	0	52.4	-18.3	104	0	178
4-Chloro-3-methylphenol	39.4	128	0	46.3	51.7	96.2	0	39.7
1,2,4-Trichlorobenzene	36.8	117	0	50.3	31.2	77.7	0	63.0
Acenaphthene	39.6	125	0	46.2	55.9	87.4	0	30.1
2,4-Dinitrophenol	-26.5	125	0 ·	158	-25.3	99.7	0	225
4-Nitrophenol	31.7	128	0	53.1	-30.1	109	0	242
Pentachiorophenol	33.3	147	0	56.5	0.0	148	. 0	161
Pyrene	42.5	136	0	45.7	63.2	104	0	28.0
				ī				

ELAP Number 10958 Mejhod: EPA 8270C

Volatile STARS Analysis Report for Non-potable Water

Client: SBD

Client Job Site: **Buffalo Color** Lab Project Number: 10-4366

Lab Sample Number: Water LRB 10/26

Client Job Number: N/A

Field Location: N/A Date Sampled:

N/A

Field ID Number: Sample Type:

N/A Water **Date Received:**

N/A

Date Analyzed:

10/27/2010

Compound	Results in ug / L	Regulatory Limits in ug / L
Benzene	< 0.700	500
2-Butanone	< 10.0	200,000
Carbon Tetrachloride	< 2.00	500
Chlorobenzene	< 2.00	100,000
Chloroform	< 2.00	6,000
1,2-Dichloroethane	< 2.00	500
1,1-Dichloroethene	< 2.00	700
Tetrachloroethene	< 2.00	700
Trichloroethene	< 2.00	500
Vinyl chloride	< 2.00	200
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	

ELAP Number 10958 Method: EPA 8260B Data File: V79545.D

Comments: ug / L = microgram per Liter

Signature:

Volatile Analysis Report for Non-potable Water

Client: SBD

Client Job Site:

Buffalo Color

Lab Project Number: 10-4366

SDG#: N/A

Client Job Number: N/A

N/A

Lab Sample Number: Water LCS 10/26

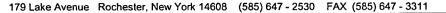
Field Location: Field ID Number: Sample Type:

N/A Water Date Sampled: Date Received: N/A N/A

Date Analyzed:

10/27/2010

Spiked Compound	Sample Results	LCS Spiked	LCS Results	LCS Percent	MSD Spiked	MSD Results	MSD Percent	MS / MSD
	in ug / L	in ug / L	in ug / L	Recovery	in ug / L	in ug / L	Recovery	. % RPD
Chloromethane	< 2.00	50.0	46.9	93.8	N/A	N/A	N/A	N/A
Vinyl chloride	< 2.00	50.0	48.6	97.2	N/A	N/A	N/A	N/A
Bromomethane	< 2.00	50.0	41.7	83.4	N/A	N/A	N/A	N/A
Chloroethane	< 2.00	50.0	45.7	91.4	N/A	N/A	N/A	N/A
Trichlorofluoromethane	< 2.00	50.0	47.3	94.6	N/A	N/A	N/A	N/A
1,1-Dichloroethene	< 2.00	50.0	50.7	101	N/A	N/A	N/A	N/A
Acetone	< 20.0	50.0	31.8	63.6	N/A	N/A	N/A	N/A
Carbon disulfide	< 2.00	50.0	52.1	104	N/A	N/A	N/A	N/A
Methylene chloride	< 2.00	50.0	49.6	99.2	N/A	N/A	N/A	N/A
trans-1,2-Dichloroethene	< 2.00	50.0	57.0	114	N/A	N/A	N/A	N/A
1,1-Dichloroethane	< 2.00	50.0	46.9	93.8	N/A	N/A	N/A	N/A
Vinyl acetate	< 2.00	50.0	32.5	65.0	N/A	N/A	N/A	N/A
2-Butanone	< 2.00	50.0	34.6	69.2	N/A	N/A	N/A	N/A
cis-1,2-Dichloroethene	< 2.00	50.0	45.4	90.8	N/A	N/A	N/A	N/A
Chloroform	< 2.00	50.0	50.1	100	N/A	N/A	N/A	N/A
1,1,1-Trichloroethane	< 2.00	50.0	49.0	98.0	N/A	N/A	N/A	N/A
Carbon Tetrachloride	< 2.00	50.0	51.1	102	N/A	N/A	N/A	· N/A
Benzene	< 0.700	50.0	47.7	95.4	N/A	N/A	. N/A	N/A
1,2-Dichloroethane	< 2.00	50.0	53.4	107	N/A	N/A	N/A	N/A
Trichloroethene	< 2.00	50.0	53.8	108	N/A	N/A	N/A	N/A
1,2-Dichloropropane	< 2.00	50.0	47.3	94.6	N/A	N/A	N/A	N/A
Bromodichloromethane	< 2.00	50.0	56.7	113	N/A	N/A	N/A	N/A
2-Chloroethyl vinyl Ether	< 2.00	50.0	36.1	72.2	N/A	N/A	N/A	N/A
cis-1,3-Dichloropropene	< 2.00	50.0	48.8	97.6	N/A	N/A	N/A	· N/A
4-Methyl-2-pentanone	< 2.00	50.0	55.4	111	N/A	N/A	N/A	N/A
Toluene	< 2.00	50.0	51.5	103	N/A	N/A	N/A	N/A


ELAP Number 10958

Data File: V79545.D

Data File: V79544.D

104366Q2.XLS

Method: EPA 8260B

Volatile Analysis Report for Soils/Solids/Sludges

Client: SBD

Client Job Site:

Buffalo Color

Lab Project Number: 10-4366

SDG#: N/A

Client Job Number:

N/A

Water

Field Location: Field ID Number: N/A N/A Date Sampled: **Date Received:** N/A N/A

Lab Sample Number: Water LCS 10/26

Sample Type:

Date Analyzed:

10/27/2010

Spiked Compound	Sample Results	LCS Spiked	LCS Results	LCS Percent	MSD Spiked	MSD Results	MSD Percent	MS / MSD
	in ug / L	in ug / L	in ug / L	Recovery	in ug / L	in ug / L	Recovery	% RPD
trans-1,3-Dichloropropene	< 2.00	50.0	47.3	94.6	N/A	N/A	N/A	N/A
1,1,2-Trichloroethane	< 2.00	50.0	48.7	97.4	N/A	N/A	N/A	N/A
Tetrachloroethene	< 2.00	50.0	78.1	156	N/A	N/A	N/A	N/A
2-Hexanone	< 2.00	50.0	42.8	85.6	N/A	N/A	N/A	N/A
Dibromochloromethane	< 2.00	50.0	53.6	107	N/A	N/A	N/A	N/A
Chlorobenzene	< 2.00	50.0	44.3	88.6	N/A	N/A	N/A	N/A
Ethylbenzene	< 2.00	50.0	51.3	103	N/A	N/A	N/A	N/A
m,p-Xylene	< 2.00	100	104	104	N/A	N/A	N/A	N/A `
o-Xylene	< 2.00	50.0	51.6	103	N/A	N/A	N/A	N/A
Styrene	< 2.00	50.0	57.2	114	N/A	N/A	N/A	N/A
Bromoform	< 2.00	50.0	53.1	106	N/A	N/A	N/A	N/A
1,1,2,2-Tetrachloroethane	< 2.00	50.0	50.6	101	N/A	N/A	N/A	N/A
1,4-Dichlorobenzene	< 2.00	50.0	41.4	82.8	N/A	N/A	N/A	N/A
1,3-Dichlorobenzene	< 2.00	50.0	45.9	91.8	N/A	N/A	N/A	N/A
1,2-Dichlorobenzene	< 2.00	50.0	48.6	97.2	N/A	N/A	N/A	N/A
ELAP Number 10958	Data File: V79545.D	Da	ata File: V79544.D				Me	thod: EPA 8260

Comment ug / L = microgram per Liter

179 Lake Avenue Rochester, New York 14608 (585) 647 - 2530 FAX (585) 647 - 3311

Volatile Analysis QC Limits

Limits effective:

Oct 01,2010

Through:

Dec 31,2010

Spiked Compound	Soil Spi	ike Limits	Soil %	RPD Limits	Water Sp	ike Limits	Water % R	PD Limits
	Lower %	Upper %	Lower %	Upper %	Lower %	Upper %	Lower %	Upper %
1,1-Dichloroethene	63.5	124	0 .	28.3	67.7	121	0 .	29.7
Benzene	78.5	116	. 0	22.3	79.7	115	0	23.4
Trichloroethene	81.1	119	0	21.7	81.3	118	0	25.2
Toluene	76.2	119	0	20.0	75.2	118	0	25.6
Chlorobenzene	81.0	115	0	22.8	83.4	108	0	16.3
			1	•				1
			1					-
								1
			1					
								ł
								1
			. 1					
				-				
			1					
			1		1			

ELAP Number 10958 Method: EPA 8260B

179 Lake Avenue, Rochester, 4608 Office (585) 647-2530 Fax (585) 647-3311

						<u>C</u>	HAII	<u> </u>	FC	US	TO	DY	•			اک/	42					
· PΔ	RADIO	S Mal	COMPAN		REPORTITO			COMPAN				CE TO				L AR PRO	DJECT #:	i Ici	1120	OJECT	也有由人思	Descrip
			ADDRESS	<u>etc</u>	<u>S</u>			ADDRESS		Sam	ie						436(ŀ		OULUI		
			CITY:	333 G	STATI	E A 1 2 ZIP	:	CITY:				STA	TE:		ZIP:	·			NG DA	YS)		-
			PHONE;	6-856-3) 	/		PHONE:				FAX:				\ \ \	ESC	-145	10	\sqrt{Z}	$^{2}Z_{i}$	150
PROJECT NAME/SI	TE NAME:		ATTN:	2-306-3	hu ye	easan		ATTN:	-		-						\Box_2	X 3		/ 5	917	
But	Fala 1	Color	COMMEN		700 70	·												1/21 -	<u> </u>	•	—	ᅱ
and the second		— Land Eadhraid				awayayaya Salabayaya		942 8 1	RF	QÚES	JED:	ΔΝΔΙ	YSIS	esii.			ation #			Žaviki		a234
DATE	TIME	C O M P O S	G R A B	SAI	MPLE LOCATION/FI	ELD ID	M A T R I X	C O N N U T M A B I R E R R	11 8260	U Metals		Tagazania Salahahan			esteratur in state i		ARKS	erraculari et ez el		ARADIG		
		Ē	ļ					s	1	12	\bot											
10/22/11	3:00	\sim	<u> </u>	Stocky	oite C	<u>3</u>	5011	2	MX	<u> </u>	-			\perp					1	<u> 3</u> 9	4	Z
2			ļ				<u> </u>				\bot		$\sqcup \bot$	44						\bot	\sqcup	Ш
3							ļ		igsquare		\perp			44						_	1	
<u> </u>	<u> </u>										1			\bot						4	\perp	Ш
5							1				\perp									\bot	\sqcup	Ш
3						_	1					_		1						\bot	$\perp \perp$	
7							ļ			1										\bot	$oxed{oxed}$	Ш
3 .														$\perp \perp$								
)																					Ш	
10						avin us see that seems to be an one of	To be Well agency and a 100	and the bank of the little of							STORENSON FRIE			er most vistori (400		252 No. 1125 E 241		
N. inches v. or M. berry Sant State of State of	meral desirementarion publication and	OWITHIS IL AC/ELAP 210/	Coding technical fortests	paper paper in annual page - season																W.		
	Receipt Pa				Compliance	\neg \prec	7.1	17				,	1									
Comments:	Container	Туре:		Y 💢	N	Sampl	<i>U</i> ed By	<u>کر ر</u> ا				₹6/ , Da	22/10 te/Time	6 e	1300	<u> </u>	- To	tal Cost:				
omments:	Preservat	tion:	NIA	Υ 🗀	N	Reijha	uished B) (#/ //	<u>ہ</u>			io/ Da	<u>z z/) e</u> te/Time	e ,	150		-					
omments:	Holding T	ime:	•	YX	N	Receiv	•	4					re/Time		15	60	- P.I	.F .		7		
omments:	Temperat	ture:	o el	ΥX	N	Receiv	300	eth.	a	Hor	ck	. 101 Dat	25/	10	//3	<u>35</u>	-					

Analytical Report Cover Page

SB<u>D</u>

For Lab Project # 10-4425 Issued November 10, 2010 This report contains a total of 13 pages

The reported results relate only to the samples as they have been received by the laboratory.

Any noncompliant QC parameters having impact on the data are flagged or documented on the final report.

All soil/sludge samples have been reported on a dry weight basis, unless qualified "reported as received". Other solids are reported as received.

Each page of this document is part of a multipage report. This document may not be reproduced except in its entirety, without the prior consent of Paradigm Environmental Services, Inc.

The Chain of Custody provides additional information, including compliance with sample condition requirements upon receipt. Sample condition requirements are defined under the 2003 NELAC Standard, sections 5.5.8.3.1 and 5.5.8.3.2.

NYSDOH ELAP does not certify for all parameters. Paradigm Environmental Services or the indicated subcontracted laboratory does hold certification for all analytes where certification is offered by ELAP unless otherwise specified.

Data qualifiers are used, when necessary, to provide additional information about the data. This information may be communicated as a flag or as text at the bottom of the report. Please refer to the following list of frequently used data flags and their meaning:

[&]quot;<" = analyzed for but not detected at or above the reporting limit.

[&]quot;E" = Result has been estimated, calibration limit exceeded.

[&]quot;Z" = See case narrative.

[&]quot;D" = Duplicate results outside QC limits. May indicate a non-homogenous matrix.

[&]quot;M" = Matrix spike recoveries outside QC limits. Matrix bias indicated.

[&]quot;B" = Method blank contained trace levels of analyte. Refer to included method blank report.

179 Lake Avenue, Rochester, NY 14608 Office: (585) 647-2530 Fax: (585) 647-3311

LAB REPORT FOR TCLP RCRA METALS ANALYSIS

Client:

SBD

Lab Project No.:

10-4425

Client Job Site:

Buffalo Color

Lab Sample No.: 14

14106

Client Job No.:

N/A

Sample Type:

TCLP Extract

Field Location:

Stockpile - E4

Date Sampled: Date Received: 10/27/2010

Field ID No.:

N/A

Date Received: 10/28/2010

Parameter	Date Analyzed	Analytical Method	Result (mg/L)	Regulatory Limit (mg/L)
Arsenic	11/01/2010	SW846 6010	<0.100	5.0
Barium	11/01/2010	SW846 6010	1.51	100
Cadmium	11/01/2010	SW846 6010	<0.025	1.0
Chromium	11/01/2010	SW846 6010	<0.050	5.0
Lead	11/01/2010	SW846 6010	<0.100	5.0
Mercury	11/02/2010	SW846 7470	<0.0020	0.2
Selenium	11/01/2010	SW846 6010	<0.100	1.0
Silver	11/01/2010	SW846 6010	<0.050	5.0

ELAP ID No.:10958

Comments:

The LCS was outside QC limits for mercury.

Approved By:

Bruce Hoogesteger, Technical Director

Client: SBD

Client Job Site:

Buffalo Color

Lab Project Number:

10-4425

Client Job Number:

N/A

Lab Sample Number:

14106

Field Location: Field ID Number: Stockpile-E4 N/A

Date Sampled: **Date Received:** 10/27/2010 10/28/2010

Sample Type:

TCLP Extract

Date Analyzed:

11/01/2010

Base / Neutrals	Results in ug / L	Regulatory Limits in ug / L
1,4-Dichlorobenzene	1,750	7,500
2,4-Dinitrotoluene	< 160	130
Hexachlorobenzene	< 160	. 130
Hexachlorobutadiene	< 160	500
Hexachloroethane	< 160	3000
Nitrobenzene	596	2000
Pyridine	< 160	5000

Acids	Results in ug / L	Regulatory Limits in ug / L
Cresols (as m,p,o-Cresol)	< 160	200,000
Pentachlorophenol	< 400	100,000
2,4,5-Trichlorophenol	< 400	. 400,000
2,4,6-Trichlorophenol	228	2000

ELAP Number 10958 Method: EPA 8270C Data File: S53749.D

Comments: ug / L = microgram per Liter

Signature:

Bruce Hoogesteget/Technical Director
This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition requirements upon receipt. 104425S1.XLS

Client: SBD

Client Job Site:

Buffalo Color

Lab Project Number: 10-4425

Lab Sample Number: 14106

Client Job Number: N/A

Date Sampled:

10/27/2010

Field Location: Field ID Number:

Stockpile - E4 N/A

Date Received:

10/28/2010

Sample Type:

TCLP Extract

Date Analyzed:

11/01/2010

Compound	Results in ug / L	Regulatory Limits in ug / L
Benzene	< 100	500
2-Butanone	< 500	200,000
Carbon Tetrachloride	< 100	500
Chlorobenzene	5,280	100,000
Chloroform	< 100	6,000
1,2-Dichloroethane	< 100	500
1,1-Dichloroethene	< 100	700
Tetrachloroethene	< 100	700
Trichloroethene	< 100	500
Vinyl chloride	< 100	200

ELAP Number 10958 Method: EPA 8260B Data File: V79707.D

Comments: ug / L = microgram per Liter

Signature:

Bruce Hoogesteger: Technical Director

179 Lake Avenue, Rochester, NY 14608 (585) 647-2530 FAX (585) 647-3311

Client:

SBD

Client Job Site:

Buffalo Color

Client Job No.:

N/A

Lab Project No.:

10-4425

Lab Sample No.:

ICP LCS 10/29 W

HG LCS 11/2 W

Sample Type:

Water

Date Sampled: Date Received: N/A N/A

LAB REPORT FOR METALS ANALYSIS IN WATER

Analyte	Date Analyzed	Method Blank	LCS Added	LCS Recovered	LCS Recovery	LCS Dup Added	LCS Dup Recovered	LCS Dup Recovery	LCS Dup Percent Difference	Percent Difference Limits		ecov	
	1	mg/L	mg/L	mg/L	%	mg/L	mg/L	%	%	%			
Arsenic	11/01/2010	<0.005	2.50	2.39	95.6	2.50	2.41	96.4	0.833	5.75	90.6	-	107
Barium	11/01/2010	<0.020	2.50	2.60	104	2.50	2.59	104	0.385	6.24	95.4	-	114
Cadmium	11/01/2010	<0.005	1.00	1.00	100	1.00	1.00	100	0	5.18	93.6	-	109
Chromium	11/01/2010	<0.010	2.50	2.32	92.8	2.50	2.32	92.8	0	5.27	82.4		107
Lead	11/01/2010	<0.005	2.50	2.52	101	2.50	2.52	101	0	13.7	93.3	-	109
Mercury	11/02/2010	<0.0020	0.0020	0.00188	94.1 *	0.0020	0.00199	99.4	5.48	8.00	94.2	-	116
Selenium	11/01/2010	<0.005	2.50	2.33	93.2	2.50	2.35	94.0	0.855	5.10	88.2	-	105
Silver	11/01/2010	<0.010	0.250	0.254	102	0.250	0.255	102	0.393	5.89	95.0	-	112
											,		
	1												

ELAP ID No.:10958

Comments: * - Outside QC limits.

Approved By:

Brude Hoogesteger, Technical Director

Client: SBD

Client Job Site:

Buffalo Color

Lab Project Number:

10-4425

Client Job Number: N/A

Lab Sample Number:

TCLP PB 10/28

Field Location:

N/A

Date Sampled:

N/A

Field ID Number:

N/A

Date Received:

N/A

Sample Type:

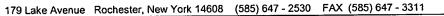
TCLP Extract

Date Analyzed:

10/29/2010

Base / Neutrals	Results in ug / L	Regulatory Limits in ug / L
1,4-Dichlorobenzene	< 40.0	7,500
2,4-Dinitrotoluene	< 40.0	130
Hexachlorobenzene	< 40.0	130
Hexachlorobutadiene	< 40.0	500
Hexachloroethane	< 40.0	3000
Nitrobenzene	< 40.0	2000
Pyridine	< 40.0	5000

Acids	Results in ug / L	Regulatory Limits in ug / L
Cresols (as m,p,o-Cresol)	< 40.0	200,000
Pentachlorophenol	< 100	100,000
2,4,5-Trichlorophenol	< 100	400,000
2,4,6-Trichlorophenol	< 40.0	2000


ELAP Number 10958 Method: EPA 8270C Data File: S53728.D

Comments: ug / L = microgram per Liter

Signature:

Bruce Hoogesteger: Technical Director
This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition requirements upon receipt.

1044255 104425SB.XLS

Client: SBD

Client Job Site:

Buffalo Color

Lab Project Number: 10-4425 Lab Sample Number: TCLP LCS 10/28

SDG#: N/A

Client Job Number:

Field Location:

N/A N/A N/A

Date Sampled: **Date Received:** N/A N/A

Field ID Number: Sample Type:

TCLP Extract

Date Analyzed:

10/29/2010

Spiked Compound	Sample Results	LCS Spiked	LCS Results	LCS Percent	1	MSD Results		MS / MSD
•	in ug / L	in ug / L	in ug / L	Recovery	in ug / L	in ug / L	Recovery	% RPD
2-Chlorophenol	< 40.0	300	225	75.0	N/A	N/A	N/A	N/A
1,4-Dichlorobenzene	< 40.0	200	118	59.0	N/A	N/A	N/A	N/A
N-Nitroso-di-n-propylamine	< 40.0	200	156	78.0	N/A	N/A	N/A	N/A
Phenol	< 40.0	300	204	68.0	N/A	N/A	N/A	N/A
4-Chloro-3-methylphenol	< 40.0	300	253	84.3	N/A	N/A	N/A	N/A
1,2,4-Trichlorobenzene	< 40.0	200	123	61.5	N/A	N/A	N/A	N/A
Acenaphthene	< 40.0	200	160	80.0	N/A	N/A	N/A	N/A .
2,4-Dinitrotoluene	< 40.0	200	159	79.5	N/A	N/A	N/A	N/A
4-Nitropheno!	< 100	300	209	69.7	N/A	N/A	N/A	N/A
Pentachlorophenol	< 100	300	239	79.7	N/A	N/A	N/A	N/A
Pyrene	< 40.0	200	170	85.0	N/A	N/A	N/A	N/A
				·				

ELAP Number 10958

Data File: S53728.D

Data File: S53729.D

Method: EPA 8270C

179 Lake Avenue Rochester, New York 14608 (585) 647 - 2530 FAX (585) 647 - 3311

Semi-Volatile Analysis QC Limits

Limits effective:

Oct 01,2010

Through:

Dec 31,2010

Spiked Compound	Soil Sp	ike Limits	Soil %	RPD Limits	Water Sp	ike Limits	Water % RPD Limits		
·	Lower %	Upper %	Lower %	Upper %	Lower %	Upper %	Lower %	Upper %	
2-Chlorophenol	36.9	122	0.	52.2	43.7	90.6	0	45.8	
1,4-Dichlorobenzene	36.3	116	0	50.5	28.5	74.6	0	65.1	
N-Nitroso-di-n-propylamine	36.3	120	0	47.0	54.5	88.7	0	23.6	
Phenol	36.6	122	0	52.4	-18.3	104	0	178	
4-Chloro-3-methylphenol	39.4	128	0	46.3	51.7	96.2	0	39.7	
1,2,4-Trichlorobenzene	36.8	117	0	50.3	31.2	77.7	0	63.0	
Acenaphthene	39.6	125	0	46.2	55.9	87.4	. 0	30.1	
2,4-Dinitrophenol	-26.5	125	0	158	-25.3	99.7	0	225	
4-Nitrophenol	31.7	128	0	53.1	-30.1	109	. 0	242	
Pentachlorophenol	33.3	147	0	56.5	0.0	148	0	161	
Pyrene .	42.5	136	0	45.7	63.2	104	0	28.0	

ELAP Number 10958 Method: EPA 8270C

Volatile STARS Analysis Report for Non-potable Water

Client: SBD

Client Job Site:

Buffalo Color

Lab Project Number: 10-4425

Lab Sample Number: Water LRB 11/1

Client Job Number:

N/A N/A

Date Sampled:

N/A

Field Location: Field ID Number:

N/A

Date Received:

N/A

Sample Type:

Water

Date Analyzed:

11/01/2010

Compound	Results in ug / L	Regulatory Limits in ug / L
Benzene	< 7.00	500
2-Butanone	< 100	200,000
Carbon Tetrachloride	< 20.0	500
Chlorobenzene	< 20.0	100,000
Chloroform	< 20.0	6,000
1,2-Dichloroethane	< 20.0	500
1,1-Dichloroethene	< 20.0	700
Tetrachloroethene	< 20.0	700
Trichloroethene	< 20.0	500
Vinyl chloride	< 20.0	200

ELAP Number 10958 Method: EPA 8260B Data File: V79688.D

Comments: ug / L = microgram per Liter

Signature:

Bruce Hoogesteger: Tectrofical Director
This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional Information, including compliance with sample condition 104425b1.xls requirements upon receipt.

Volatile Analysis Report for Non-potable Water

Client: SBD

Client Job Site:

Buffalo Color

Lab Project Number: 10-4425 Lab Sample Number: Water LCS 11/1 SDG#: N/A

Client Job Number: N/A

Field Location: Field ID Number:

Sample Type:

N/A

N/A Water Date Sampled:

N/A N/A

Date Received: Date Analyzed:

11/01/2010

Spiked Compound	Sample Results	LCS Spiked	LCS Results	LCS Percent	MSD Spiked	MSD Results	MSD Percent	MS / MSD
Chines compound	in ug / L	in ug / L	in ug / L	Recovery	in ug / L	in ug / L	Recovery	% RPD
Chloromethane	< 2.00	50.0	47.4	94.8	N/A	N/A	N/A	N/A
Vinyl chloride	< 2.00	50.0	47.6	95.2	N/A	N/A	N/A	N/A
Bromomethane	< 2.00	50.0	55.2	110	N/A	N/A	N/A	N/A
Chloroethane	< 2.00	50.0	49.2	98.4	N/A	N/A	N/A	N/A
Trichlorofluoromethane	< 2.00	50.0	48.4	96.8	N/A	N/A	N/A	N/A
1,1-Dichloroethene	< 2.00	50.0	53.5	107	N/A	N/A	N/A	N/A
Acetone	< 20.0	50.0	42.5	85.0	N/A	N/A	N/A	N/A
Carbon disulfide	< 2.00	50.0	56.2	112	N/A	N/A	N/A	N/A
Methylene chloride	< 2.00	50.0	52.8	106	N/A	N/A	N/A	N/A
trans-1,2-Dichloroethene	< 2.00	50.0	56.7	113	N/A	N/A	N/A	N/A
1.1-Dichloroethane	< 2.00	50.0	49.0	98.0	N/A	N/A	N/A	N/A
Vinyl acetate	< 2.00	50.0	47.7	95.4	N/A	N/A	N/A	N/A
2-Butanone	< 2.00	50.0	50.4	101	N/A	N/A	N/A	N/A
cis-1.2-Dichloroethene	< 2.00	50.0	46.2	92.4	N/A	N/A	N/A	N/A
Chloroform	< 2.00	50.0	47.8	95.6	N/A	N/A	N/A	N/A
1.1.1-Trichloroethane	< 2.00	50.0	49.9	99.8	N/A	N/A	N/A	N/A
Carbon Tetrachloride	< 2.00	50.0	51.9	104	N/A	N/A	N/A	N/A
Benzene	< 0.700	50.0	50.5	101	N/A	N/A	N/A	N/A
1,2-Dichloroethane	< 2.00	50.0	49.9	99.8	. N/A	N/A	N/A	N/A
Trichloroethene	< 2.00	50.0	51.8	104	N/A	. N/A	N/A	N/A
1.2-Dichloropropane	< 2.00	50.0	51.1	102	N/A	N/A	N/A	N/A
Bromodichloromethane	< 2.00	50.0	52.8	106	N/A	N/A	N/A	N/A
2-Chloroethyl vinyl Ether	< 2.00	50.0	156	312	N/A	N/A	N/A	N/A
cis-1,3-Dichloropropene	< 2.00	50.0	54.7	109	N/A	N/A	N/A	N/A
4-Methyl-2-pentanone	< 2.00	50.0	51.4	103	N/A	N/A	N/A	N/A
Toluene	< 2.00	50.0	50.4	101	N/A	N/A	N/A .	N/A

ELAP Number 10958

Data File: V79688.D

Data File: V79687.D

Method: EPA 8260B

Volatile Analysis Report for Soils/Solids/Sludges

Client: SBD

Client Job Site:

Buffalo Color

Lab Project Number: 10-4425 Lab Sample Number: Water LCS 11/1 SDG#: N/A

Client Job Number:

Field Location:

N/A N/A

Date Sampled:

N/A

Field ID Number:

N/A

Date Received:

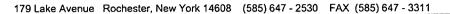
N/A

Sample Type: Water

Date Analyzed:

11/01/2010

Spiked Compound	Sample Results	LCS Spiked	LCS Results	LCS Percent	MSD Spiked	MSD Results	MSD Percent	MS / MSD
Spiked Compound	in ug / L	in ug / L	in ug/L	Recovery	in ug / L	in ug / L	Recovery	% RPD
trans-1,3-Dichloropropene	< 2.00	50.0	56.5	113	N/A	N/A	N/A	N/A
1.1,2-Trichloroethane	< 2.00	50.0	49.2	98.4	N/A	N/A	N/A	N/A
Tetrachloroethene	< 2.00	50.0	57.9	116	N/A	N/A	N/A	N/A
2-Hexanone	< 2.00	50.0	49.2	98.4	N/A	N/A	N/A	N/A
Dibromochloromethane	< 2.00	50.0	56.9	114	N/A	N/A	N/A	N/A
Chlorobenzene	< 2.00	50.0	49.2	98.4	N/A	N/A	N/A	N/A
Ethylbenzene	< 2.00	50.0	52.6	· 105	N/A	N/A	N/A	N/A
m,p-Xylene	< 2.00	100	102	102	N/A	N/A	N/A	N/A
o-Xylene	< 2.00	50.0	51.9	104	N/A	N/A	N/A	N/A
Styrene	< 2.00	50.0	54.3	109	N/A	N/A	N/A	N/A
Bromoform	< 2.00	50.0	57.3	115	N/A	N/A	N/A	N/A
1.1.2.2-Tetrachloroethane	< 2.00	50.0	51.9	104	N/A	N/A	N/A	N/A
1	< 2.00	50.0	49.0	98.0	N/A	N/A	N/A	N/A
1,4-Dichlorobenzene	< 2.00	50.0	50.0	100	N/A	N/A	N/A	N/A
1,3-Dichlorobenzene		50.0	49.9	99.8	N/A	N/A	N/A	N/A
1,2-Dichlorobenzene	< 2.00	30.0	49.9	39.0	1.477	1	<u></u>	thad EDA 9260B


ELAP Number 10958

Data File: V79688.D

Data File: V79687.D

Method: EPA 8260B

Comment ug / L = microgram per Liter

Volatile Analysis QC Limits

Limits effective:

Oct 01,2010

Through:

Dec 31,2010

Spiked Compound	Soil Spi	Soil Spike Limits		RPD Limits	Water Sp	ike Limits	Water % RI	PD Limits
	Lower %	Upper %	Lower %	Upper %	Lower %	Upper %	Lower %	Upper %
1,1-Dichloroethene	63.5	124	0	28.3	67.7	121	0	29.7
Benzene	78.5	116	. 0	22.3	79.7	115	0	23.4
Trichloroethene	81.1	119	0	21.7	81.3	118	0	25.2
Toluene	76.2	119	0	20.0	75.2	118	0	25.6
Chlorobenzene	81.0	115	0	22.8	83.4	108	0	16.3
		•						
						•		
			1					
			1					

ELAP Number 10958 Method: EPA 8260B

179 Lake Avenue, Rochester, NY 14608 Office (585) 647-2530 Fax (585) 647-3311

CHAIN OF CUSTODY

43149

							Part I	86-186	annersans				Sol L	Michael Control					٠			•			
ievīvi:	?/AVDG				REPORT TO	o, y	A		A 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					TO:	<u> </u>		7		9 3 (w/y/						 —
			COMPAN	Y: 57					COMPAN			Same						AB PROJE			IENT F	ROJEC	71 #:		
			ADDRESS	3:	Cocas	ت			ADORES	S:								10.4							
			CITY	chilo	STAT	ヘノシ	ZIP.	14/20	CITY:					STAT	E;	ZI	P: 1	URNAROI	UND TIM	E: (WORI	KING D	AYS)			
		ia.	PHONE	56 553	FAX:St	7 -1 6	50°		PHONE:				FA	ax:						\mathcal{A}	ST	כ	o	THE	R
PROJECT NAME/SITE	NAME:		ATTN:	$\subset J$.	5	L- 1/2			ATTN:						·····		Ť	7, [2	XI:	3	5			
Buffalo	Color	_	COMMEN	TS: Y (*/~-	<u> </u>												<u>.</u>				ev.	a	To:	05	
-			ayılığı k	455 KY 56% r	ng paganan ay kalang sa		·*	"		. ca	EA	ii=en	ED W	ALA-F.	ve lè	4		Quota	tion #	di	الفا	1/L	TC	عد	Med
	Mar will he	1H 10[28]	77,828,63 	<u> </u>	730(AL) - 515	e lighted print	· · · · · · · · · · · · · · · · · · ·	• • •			. <u>=</u> 020	.	LU M	UNAL.	1,513.	TT	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	<u> </u>	du	<u>e</u> 11	12.	<u> 5</u> 1	; +	old:
	ļ	ő						M	0 0	ايرا	\y\	3			.					10/:	28.	EI	Э Н 1	101	28
		M P	G R					A T	UT	3	3								210				DIGM L		
DATE	TIME	0 S	A	SAP	MPLE LOCATION/F	FIELD ID		R	BI	9	्री	~						REMA	ikks		1	3AMPL	E NUM	BER	
		l T	В					x	RE	10	-	>													
		E							s ·	-					·										_
1 [0/27/10	1550	×		Stocky	sile = E	=4		Sc; L	2-	x	×	X.									1	4	10	20	<u>0</u>
2													1 1												
3													TT												
J			-									\top	11	1								\prod			
			 	<u> </u>						\top			TT			11						\Box		\top	
5	-	<u> </u>	+						-	+			++	1		++					+	+		1	7
6								<u></u>	 	+		_	+-+	╁		++						+	+	+	-
7			-	 					 	+			+-+	+	\vdash	++					\dashv	╁┼		+	\dashv
8			-	ļ	·		 		ļ	-		_	╂╌┼			+-+					+-	+-		+	-
9				ļ					<u> </u>				4-4								-	$\dashv \dashv$	_	- -	_
10								<u> </u>			Щ				ــــــــــــــــــــــــــــــــــــــ				190 - 20			ليل			
LAB USE O	NLY BEL	OW THIS L	INE	13434341			k		<u>. 2009</u>	<u> </u>	1/ /4			33 B			<u>Marinal</u>	Yr.Ad	367.43	110	<i>W</i> . 1	MAK.		ننتثث	<u> 22</u>
Sample Condition	Receipt Pa		124112421	NELAC	Compliance		الن	رسم او	2	.()	}				<i>.</i>										
	Container			Y 🔯	N		<u>Li</u>	<u> </u>	<u>رل ۲</u>	<u>X</u>	<u> کـ</u>	-,		10	e/Time	<u> </u>	155	<u> </u>		~	. [
Comments:				-			Sample	ed By	/	/)				,	- 1				10	tal Cos	t:				
	Presėrva	tion:	NIA	Y	N		<u></u>	-6	لمسائل	<u>K</u>				(0/3	2/10me	o.	155	0			_]
Comments:				_			Reling	ished	34//	;				(Dat	e/Tame	ž	1,00	58							
	Holding T	īme:		Y	N			2	D	<u> </u>				10/	27/2)	155	» نر ــــــــــــــــــــــــــــــــــــ	. b:	i.F.	<u></u>		1		
Comments:				-			Receiv	ed-BV		Y	. /	1-	/	Dai	e/Time	/			r'.;	1.F.	,				
	Tempera	lure: 8°Cic	ad	Υ	и 💢		<u>Cliz</u>	<u>alr</u>	th.	α	. Y	100	ch	_ / (0/2	8/11	0 /	400	\mathcal{O}		L				
Comments:		0 010	<u>. eu</u>	-			Receiv	ed @ La	в Ву					Dat	e/IIme	9								•	

Analytical Report Cover Page

SBD -

For Lab Project # 10-4442 Issued November 10, 2010 This report contains a total of 13 pages

The reported results relate only to the samples as they have been received by the laboratory.

Any noncompliant QC parameters having impact on the data are flagged or documented on the final report.

All soil/sludge samples have been reported on a dry weight basis, unless qualified "reported as received". Other solids are reported as received.

Each page of this document is part of a multipage report. This document may not be reproduced except in its entirety, without the prior consent of Paradigm Environmental Services, Inc.

The Chain of Custody provides additional information, including compliance with sample condition requirements upon receipt. Sample condition requirements are defined under the 2003 NELAC Standard, sections 5.5.8.3.1 and 5.5.8.3.2.

NYSDOH ELAP does not certify for all parameters. Paradigm Environmental Services or the indicated subcontracted laboratory does hold certification for all analytes where certification is offered by ELAP unless otherwise specified.

Data qualifiers are used, when necessary, to provide additional information about the data. This information may be communicated as a flag or as text at the bottom of the report. Please refer to the following list of frequently used data flags and their meaning:

[&]quot;<" = analyzed for but not detected at or above the reporting limit.

[&]quot;E" = Result has been estimated, calibration limit exceeded.

[&]quot;Z" = See case narrative.

[&]quot;D" = Duplicate results outside QC limits. May indicate a non-homogenous matrix.

[&]quot;M" = Matrix spike recoveries outside QC limits. Matrix bias indicated.

[&]quot;B" = Method blank contained trace levels of analyte. Refer to included method blank report.

179 Lake Avenue, Rochester, NY 14608 Office: (585) 647-2530 Fax: (585) 647-3311

LAB REPORT FOR TCLP RCRA METALS ANALYSIS

Client:

SBD

Lab Project No.:

10-4442

Client Job Site:

Buffalo Color

Lab Sample No.:

14147

Client Job No.:

N/A

Sample Type:

TCLP Extract

Field Location:

Stockpile - C5

10/28/2010

Field ID No.:

N/A

Date Sampled: **Date Received:** 10/29/2010

Parameter	Date Analyzed	Analytical Method	Result (mg/L)	Regulatory Limit (mg/L)
Arsenic	11/02/2010	SW846 6010	<0.100	5.0
Barium	11/02/2010	SW846 6010	1.21	100
Cadmium	11/02/2010	SW846 6010	<0.025	1.0
Chromium	11/02/2010	SW846 6010	<0.050	5.0
Lead	11/02/2010	SW846 6010	<0.100	5.0
Mercury	11/02/2010	SW846 7470	<0.0020	0.2
Selenium	11/02/2010	SW846 6010	<0.100	1.0
Silver	11/02/2010	SW846 6010	<0.050	5.0

ELAP ID No.:10958

Comments: The laboratory control spike was outside QC limits for Hg.

Approved By:

Bruce Hoogestegev, Technical Director

Client: SBD

Client Job Site: Buffalo Color Lab Project Number: 10-4442

Lab Sample Number:

14147

Client Job Number:

N/A

Date Sampled:

10/28/2010

Field Location: Field ID Number: Stockpile-C5 N/A

Date Received:

10/29/2010

Sample Type:

TCLP Extract

Date Analyzed:

11/01/2010

Base / Neutrals	Results in ug / L	Regulatory Limits in ug / L
1,4-Dichlorobenzene	672	7,500
2,4-Dinitrotoluene	< 40.0	130
Hexachlorobenzene	< 40.0	130
Hexachlorobutadiene	< 40.0	500
Hexachloroethane	< 40.0	3000
Nitrobenzene	49.3	2000
Pyridine	< 40.0	5000

Acids	Results in ug / L	Regulatory Limits in ug / L
Cresols (as m,p,o-Cresol)	< 40.0	200,000
Pentachlorophenol	< 100	100,000
2,4,5-Trichlorophenol	< 100	400,000
2,4,6-Trichlorophenol	83.7	2000

ELAP Number 10958 Method: EPA 8270C Data File: S53752.D

Comments: ug / L = microgram per Liter

Signature:

Bruce Hoogesteder: Jechnical Director
This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional Information, including compliance with sample condition requirements upon receipt. 104442S1.XLS

Volatile STARS Analysis Report for TCLP Extract

Client: SBD

Client Job Site:

Buffalo Color

Lab Project Number: 10-4442

Lab Sample Number: 14147

Client Job Number:

N/A Stockpile-C5

Date Sampled:

10/28/2010

Field Location: Field ID Number:

N/A

Date Received:

10/29/2010

Sample Type:

TCLP Extract

Date Analyzed:

11/01/2010

Compound	Results in ug / L	Regulatory Limits in ug / L
Benzene	14.1	500
2-Butanone	< 100	200,000
Carbon Tetrachloride	< 20.0	500
Chlorobenzene	1,970	100,000
Chloroform	< 20.0	6,000
1,2-Dichloroethane	< 20.0	500
1,1-Dichloroethene	< 20.0	700
Tetrachloroethene	< 20.0	700
Trichloroethene	< 20.0	500
Vinyl chloride	< 20.0	200

ELAP Number 10958

Method: EPA 8260B

Data File: V79690.D

Comments: ug / L = microgram per Liter

Signature:

179 Lake Avenue, Rochester, NY 14608 (585) 647-2530 FAX (585) 647-3311

Client:

SBD

Client Job Site:

Buffalo Color

Client Job No.:

N/A

Lab Project No.: Lab Sample No.:

10-4442

ICP LCS 11/1 W HG LCS 11/2 W

Sample Type:

Water

Date Sampled:

N/A

Date Received:

N/A

LAB REPORT FOR METALS ANALYSIS IN WATER

Analyte	Date Analyzed	Method Blank	LCS Added	LCS Recovered	LCS Recovery	LCS Dup Added	LCS Dup Recovered	LCS Dup Recovery	LCS Dup Percent Difference	Percent Difference Limits		ecov	
		mg/L	mg/L	mg/L	%	mg/L	mg/L_	%	%	%			
Arsenic	11/02/2010	<0.005	2.50	2.52	101	2.50	2.48	99.2	1.60	5.75	90.6	-	107
Barium	11/02/2010	<0.020	2.50	2.58	103	2.50	2.54	102	1.56	6.24	95.4		114
Cadmium	11/02/2010	<0.005	1.00	1.01	101	1.00	1.00	100	1.00	5.18	93.6	-	109
Chromium	11/02/2010	<0.010	2.50	2.33	93.2	2.50	2.30	92.0	1.30	5.27	82.4	-	107
Lead	11/02/2010	<0.005	2.50	2.58	103	2.50	2.53	101	1.96	13.7	93.3	-	109
Mercury	11/02/2010	<0.0020	0.0020	0.00188	94.1 *	0.0020	0.00199	99.4	5.48	8.00	94.2	-	116
Selenium	11/02/2010	0.00558	2.50	2.42	96.8	2.50	2.39	95.6	1.25	5.10	88.2	-	105
Silver	11/02/2010	<0.010	0.250	0.257	103	0,250	0.254	102	1.17	5.89	95.0	•	112_
									1				
	1												
·	1												
						¥							
	<u> </u>												
							-						
						·							
	 		-										

ELAP ID No.:10958

Comments:

* - Outside QC limits

Approved By:

Bruce Hoogesteger, Technical Director

Client: SBD

Client Job Site:

Buffalo Color

Lab Project Number:

10-4442

Client Job Number:

N/A

Lab Sample Number:

TCLP PB 11/1

Field Location:

N/A

Date Sampled:

N/A

Field ID Number:

N/A

Date Received:

N/A

Sample Type:

TCLP Extract

Date Analyzed:

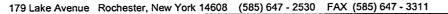
11/01/2010

Base / Neutrals	Results in ug / L	Regulatory Limits in ug / L
1,4-Dichlorobenzene	< 40.0	7,500
2,4-Dinitrotoluene	< 40.0	130
Hexachlorobenzene	< 40.0	130
Hexachlorobutadiene	< 40.0	500
Hexachloroethane	< 40.0	3000
Nitrobenzene	< 40.0	2000
Pyridine	< 40.0	5000

Acids	Results in ug / L	Regulatory Limits in ug / L
Cresols (as m,p,o-Cresol)	< 40.0	200,000
Pentachlorophenol	< 100	100,000
2,4,5-Trichlorophenol	< 100	400,000
2,4,6-Trichlorophenol	< 40.0	2000

ELAP Number 10958

Method: EPA 8270C


Data File: S53750.D

Comments: ug / L = microgram per Liter

Signature:

Bruce Hoogesteger: Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional Information, including compliance with sample condition 104442B1.XLS requirements upon receipt.

Client: SBD

Client Job Site:

Buffalo Color

Lab Project Number: 10-4442

SDG#: N/A

Client Job Number: N/A Field Location:

N/A

Date Sampled:

N/A

Lab Sample Number: TCLP LCS 11/1

Field ID Number:

N/A

Date Received:

N/A

Sample Type:

TCLP Extract

Date Analyzed:

11/01/2010

Spiked Compound	Sample Results	LCS Spiked	LCS Results	LCS Percent	MSD Spiked	MSD Results	MSD Percent	MS / MSD
	in ug / L	in ug / L	in ug / L	Recovery	in ug / L	in ug / Ŀ	Recovery	% RPD
2-Chlorophenol	< 40.0	300	259	86.3	N/A	N/A	N/A	N/A
1,4-Dichlorobenzene	< 40.0	200	123	61.5	N/A	N/A	N/A	N/A
N-Nitroso-di-n-propylamine	< 40.0	200	177	88.5 ·	N/A	N/A	N/A	N/A
Phenol	< 40.0	300	234	78.0	N/A	N/A	N/A	N/A
4-Chloro-3-methylphenol	< 40.0	300	291	97.0	N/A	N/A	N/A	N/A
1,2,4-Trichlorobenzene	< 40.0	200	130	65.0	N/A	N/A	N/A	N/A
Acenaphthene	< 40.0	200	175	87.5	N/A	N/A	N/A	N/A
2,4-Dinitrotoluene	< 40.0	200	182	91.0	N/A	N/A	N/A	N/A
4-Nitrophenol	< 100	300	239	79.7	N/A	N/A	N/A	N/A
Pentachlorophenol	< 100	300	269	89.7	N/A	N/A	N/A	N/A
Pyrene	< 40.0	200	193	96.5	N/A	N/A	N/A	N/A

ELAP Number 10958

Data File: S53750.D

Data File: S53751.D

Method: EPA 8270C

179 Lake Avenue Rochester, New York 14608 (585) 647 - 2530 FAX (585) 647 - 3311

Semi-Volatile Analysis QC Limits

Limits effective:

Oct 01,2010

Through:

Dec 31,2010

Spiked Compound	Soil Spike Limits		Soil % RPD Limits		Water Spike Limits		Water % RPD Limits	
	Lower %	Upper %	Lower %	Upper %	Lower %	Upper %	Lower %	Upper %
2-Chlorophenol	36.9	· 122	0	52.2	43.7	90.6	. 0	45.8
1,4-Dichlorobenzene	36.3	116	0	50.5	28.5	74.6	0	65.1
N-Nitroso-di-n-propylamine	36.3	120	0	47.0	54.5	88.7	0	23.6
Phenol	36.6	122	0	52.4	-18.3	104	0	178
4-Chloro-3-methylphenol	39.4	128	0	46.3	51.7	96.2	0	39.7
1,2,4-Trichlorobenzene	36.8	117	0	50.3	31.2	77.7	0	63.0
Acenaphthene	39.6	125	0	46.2	55.9	87.4	0	30.1
2,4-Dinitrophenol	-26.5	125	0	158	-25.3	99.7	0	225
4-Nitrophenol	31.7	128	0	53.1	-30.1	109	0	242
Pentachlorophenol	33.3	147	0	56.5	0.0	148	0	161
Pyrene	42.5	136	0	45.7	63.2	. 104	0	28.0
							٠	j
								1

ELAP Number 10958 Method: EPA 8270C

Volatile STARS Analysis Report for Non-potable Water

Client: SBD

Client Job Site:

Buffalo Color

Lab Project Number: 10-4442

Lab Sample Number: Water LRB 11/1

Client Job Number:

N/A N/A

Date Sampled:

N/A

Field Location: Field ID Number:

N/A

Date Received:

N/A

Sample Type:

Water

Date Analyzed:

11/01/2010

Compound	Results in ug / L	Regulatory Limits in ug / L
Benzene	< 7.00	500
2-Butanone	< 100	200,000
Carbon Tetrachloride	< 20.0	500
Chlorobenzene	< 20.0	100,000
Chloroform	< 20.0	6,000
1,2-Dichloroethane	< 20.0	500
1,1-Dichloroethene	< 20.0	700
Tetrachloroethene	< 20.0	700
Trichloroethene	< 20.0	500
Vinyl chloride	< 20.0	200

ELAP Number 10958 Method: EPA 82608

Data File: V79688.D

Comments: ug / L = microgram per Liter

Signature:

Bruce Hoogesteger: Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition requirements upon receipt.

104442VB.XLS

Volatile Analysis Report for Non-potable Water

Client: SBD

Client Job Site:

Buffalo Color

Lab Project Number: 10-4442

Lab Sample Number: Water LCS 11/1

SDG#: N/A

Client Job Number:

Field Location:

N/A N/A

Date Sampled:

N/A

Field ID Number: Sample Type:

N/A Water **Date Received:**

N/A

Date Analyzed:

11/01/2010

Spiked Compound	Sample Results	LCS Spiked	LCS Results	LCS Percent	MSD Spiked	MSD Results	MSD Percent	MS / MSD
	in ug / L	in ug / L	in ug / L	Recovery	in ug / L	in ug / L	Recovery	% RPD
Chloromethane	< 2.00	50.0	47.4	94.8	N/A	N/A	N/A	N/A
Vinyl chloride	< 2.00	50.0	47.6	95.2	N/A	N/A	N/A	N/A
Bromomethane	< 2.00	50.0	55:2	110	N/A	N/A	N/A	N/A
Chloroethane	< 2.00	50.0	49.2	98.4	N/A	N/A	N/A	N/A
Trichlorofluoromethane	< 2.00	50.0	48.4	96.8	N/A	N/A	N/A	N/A
1,1-Dichloroethene	< 2.00	50.0	53.5	107	N/A	Ņ/A	N/A	N/A
Acetone	< 20.0	50.0	42.5	85.0	N/A	N/A	N/A	N/A
Carbon disulfide	< 2.00	50.0	56.2	112	N/A	N/A	N/A	N/A
Methylene chloride	< 2.00	50.0	52.8	106	N/A	N/A	N/A	N/A
trans-1,2-Dichloroethene	< 2.00	50.0	56.7	113	N/A	N/A	N/A	N/A
1,1-Dichloroethane	< 2.00	50.0	49.0	98.0	N/A	N/A	N/A	N/A
Vinyl acetate	< 2.00	50.0	47.7	95.4	N/A	N/A	N/A	N/A
2-Butanone	< 2.00	50.0	50.4	101	N/A	N/A	N/A	N/A
cis-1,2-Dichloroethene	< 2.00	50.0	46.2	92.4	N/A	N/A	N/A	N/A
Chloroform	< 2.00	50.0	47.8	95.6	N/A	N/A	N/A	N/A
1,1,1-Trichloroethane	< 2.00	50.0	49.9	99.8	N/A	N/A	N/A	N/A
Carbon Tetrachloride	< 2.00	50.0	51.9	104	N/A	N/A	N/A	N/A
Benzene	< 0.700	50.0	50.5	101	N/A	N/A	N/A	N/A
1,2-Dichloroethane	< 2.00	50.0	49.9	99.8	N/A	N/A	N/A	N/A
Trichloroethene	< 2.00	50.0	51.8	104	N/A	N/A	N/A	N/A
1,2-Dichloropropane	< 2.00	50.0	51.1	102	N/A	N/A	N/A	N/A
Bromodichloromethane	< 2.00	50.0	52.8	106	N/A	N/A	N/A	N/A
2-Chloroethyl vinyl Ether	< 2.00	50.0	156	312	N/A	N/A	N/A	N/A
cis-1,3-Dichloropropene	< 2.00	50.0	54.7	109	N/A	N/A	N/A	N/A
4-Methyl-2-pentanone	< 2.00	50.0	51.4	103	N/A	N/A	N/A	N/A
Toluene	< 2.00	50.0	50.4	101	N/A	N/A	N/A	N/A

ELAP Number 10958

Data File: V79688.D

Data File: V79687.D

Method: EPA 8260B

Volatile Analysis Report for Soils/Solids/Sludges

Client: SBD

Client Job Site:

Buffalo Color

Lab Project Number: 10-4442

Lab Sample Number: Water LCS 11/1

SDG#: N/A

Client Job Number: Field Location:

r: N/A N/A

Date Sampled:

N/A

Field ID Number:

N/A

Date Received:

N/A

Sample Type: Water

Date Analyzed: 11/01/2010

Spiked Compound	Sample Results	LCS Spiked	LCS Results	LCS Percent	MSD Spiked	MSD Results	MSD Percent	MS / MSD
	in ug / L	in ug/L	in ug / L	Recovery	in ug / L	in ug / L	Recovery	% RPD
trans-1,3-Dichloropropene	< 2.00	50.0	56.5	113	N/A	N/A	N/A	N/A
1.1.2-Trichloroethane	< 2.00	50.0	49.2	98.4	N/A	N/A	N/A	N/A
Tetrachloroethene	< 2.00	50.0	57.9	116	N/A	N/A	N/A	N/A
2-Hexanone	< 2.00	50.0	49.2	98.4	N/A	N/A	N/A	N/A
Dibromochloromethane	< 2.00	50.0	56.9	114	N/A	N/A	N/A	N/A
Chlorobenzene	< 2.00	50.0	49.2	98.4	N/A	N/A	N/A	N/A
Ethylbenzene	< 2.00	50.0	52.6	105	N/A	N/A	N/A	N/A
m,p-Xylene	< 2.00	100	102	102	N/A	N/A	N/A	N/A
o-Xylene	< 2.00	50.0	51.9	104	N/A	N/A	N/A	N/A
Styrene	< 2.00	50.0	54.3	109	N/A	N/A	N/A	N/A
Bromoform	< 2.00	50.0	57.3	115	N/A	N/A	N/A	-N/A
1,1,2,2-Tetrachloroethane	< 2.00	50.0	51.9	104	N/A	N/A	N/A	N/A
1.4-Dichlorobenzene	< 2.00	50.0	49.0	98.0	N/A	N/A	N/A	N/A
1.3-Dichlorobenzene	< 2.00	50.0	50.0	100	N/A	N/A	N/A	N/A
1,2-Dichlorobenzene	< 2.00	50.0	49.9	99.8	N/A	N/A	N/A	N/A

ELAP Number 10958

Data File: V79688.D

Data File: V79687.D

Method: EPA 8260B

Comment ug / L = microgram per Liter

179 Lake Avenue Rochester, New York 14608 (585) 647 - 2530 FAX (585) 647 - 3311

Volatile Analysis QC Limits

Limits effective:

Oct 01,2010

Through:

Dec 31,2010

Spiked Compound	Soil Spike Limits		Soil % RPD Limits		Water Spike Limits		Water % RPD Limits	
	Lower %	Upper %	Lower %	Upper %	Lower %	Upper %	Lower %	Upper %
1,1-Dichloroethene	63.5	124	0	28.3	67.7	121	0	29.7
Benzene	78.5	116	0	22.3	79.7	115	0	23.4
Trichloroethene	81.1	119	0	21.7	81.3	118	0	25.2
Toluene	76.2	119	0	20.0	75.2	118	0	25.6
Chlorobenzene	81.0	115	0 [22.8	83.4	108	0	16.3
								1
								1
			.	•				1
]
								1
•			1					
								1
						,		1
	1				l			1
					İ			1
					.]			1
			}					
			+				:	-

ELAP Number 10958 Method: EPA 8260B

179 Lake Avenue, Rochester,

						<u>C</u>	<u>HAI</u>	N O	F	<u>CL</u>	<u>IS</u>	ΓO.	<u>DY</u>	-			1			1 –		` \	ن ا	>
PA	RADIO	GM		tenth by Applica Control Control College	REPORT TO				<i>a</i>	i de	in'	VOIC	E _E TO		Negar	a de la composição de l	4. St. A			i diki	kā:			in.
	HUENTAL SERVIC		COMPAN	<u> </u>				COMPA			Same	<u>:</u>					- 1	PROJEC		- 1	ENT PI	ROJE	CT #:	
			ADDRES	* 3 <u>33</u>	Gans	<u>m St</u>		ADDRES									1	0-4		- 1				
			CITY:	Buffa	(1)	₩ ₩Y ZIF	14203	CITY:						ATE:		ZIP:	TUF	RNAROUN	ND TIME	: (WORKI	NG DA	AYS)		
	A STATE OF THE PARTY OF THE PAR		PHONE:	16-846-	777.7 FAX:			PHONE:				F	AX:							_	STD)	9	отні
PROJECT NAME/SIT	ename: juffalo C.	olor	T:NTTA	ohn)	Yansen	,		ATTN:										1	2	X 3	Ш	5	[
5	utaio C.	Olor	COMMEN	ITS:	•												Q	uotati	on#	Du	e. 1	1/2	Jic	o pe
Alexander of the second	J. J. J. J. C.	94 lól29				S. Here			R	EQL	JEST	ED/	NAL	YSI	S					lab.				
		CO						C O	,												Ē	AH	110	/æ§
		M	G				M A	N N U T	Voc	20	à													
DATE	TIME	0	R	SA	MPLE LOCATION/FII	ELD ID	T R	M A B I	~	01/2	6		_					REMAR	(S				DIGM E NU	
		1	В				l X	E N R E	1 P	٦.	ξ			1										
		E						R S	Tel	+	>							•						
1/0/28/10	1615	×		Stocks	11e-65		5016	a	M	X >	4	П									\Box	4	/	4
2																								十
3			-				 			_			_	 	\Box	_		••			\Box		7	\dashv
4							<u> </u>		\Box	1	-		\top	†							\Box		\dashv	十
5																							十	十
6	 		 				1		+		+-	\vdash	+	+							$\vdash \vdash$	\neg	十	+
7			+						+	_	-		\dashv	+	$\vdash \uparrow$	+			-		H	\dashv	+	+
8			 	 				ļ	+		+-	$\vdash \vdash$	-	\vdash		-				•	\vdash	_	\dashv	+
	 						 		+	-	_	-		+-	-		·····				$\vdash \vdash$		-	+
9							-		╁	+	-		-	-	\vdash						\vdash	\dashv	\dashv	-
10 XLAB USE ©	NIWBEL	 OWATHISHE	INE**								25,000							nen er						
Sample Condition	on: Per NEL	AC/ELAP 210/		243/244		ACCOUNT OF THE MESSAGE FOR STATE		TERRITOR TORRESTOR	AN DISTRIBUTE	2015/1920/2020	ANT SUMMARIA		Aliabat tellis?		PERSONAL PROPERTY.	NA PARTIE SANS		NUMBER OF BUT			had here	BEGGERALINE	inermo.	359C4(276
	Receipt Pa				Compliance	∃	7, 7)	V				. /		1.	i	e-							
Comments:	Container ¹	Туре:		ΥX	N	Sampl	ed By	\sim		_			<i>i o/ 3</i>	2 <u>/8/</u> ite/Yii	<u>(උ</u> me	16	<u>30</u>		Tota	l Cost:				
	Preservat	lion:		Y []	и	M	. 7		$^{\cdot}$ ()			•		/	1	1.	٠				ĺ			
Comments:			NIA	' Ш	''	Reling	uished E	3y	<u></u>				Da	<u>で名/</u> te/Tii	1(2_ me		· · · · -							
ļ	Holding Ti	ime:		ΥX	N 🔲	1	25		th				'o/ ¿	78	ر/ در/		6:2	-5						
Comments:	·			بدستا.		Recei	ed B		- ∀				Da	te//ir					P.I.F	₹.				
	Temperat	ure:	. 1	Υ 🔲	и 🔀	<u>Eli</u>	abe	th C	2 7	400	n ch	1	0/2	9/1	0	16	120				<u> </u>			
Comments:		10°Cia	cecl		-	Receiv	ed @ La	b By					Da	te/Tir	ne									

Analytical Report Cover Page

SBD

For Lab Project #10-4458 Issued November 10, 2010 This report contains a total of 13 pages

The reported results relate only to the samples as they have been received by the laboratory.

Any noncompliant QC parameters having impact on the data are flagged or documented on the final report.

All soil/sludge samples have been reported on a dry weight basis, unless qualified "reported as received". Other solids are reported as received.

Each page of this document is part of a multipage report. This document may not be reproduced except in its entirety, without the prior consent of Paradigm Environmental Services, Inc.

The Chain of Custody provides additional information, including compliance with sample condition requirements upon receipt. Sample condition requirements are defined under the 2003 NELAC Standard, sections 5.5.8.3.1 and 5.5.8.3.2.

NYSDOH ELAP does not certify for all parameters. Paradigm Environmental Services or the indicated subcontracted laboratory does hold certification for all analytes where certification is offered by ELAP unless otherwise specified.

Data qualifiers are used, when necessary, to provide additional information about the data. This information may be communicated as a flag or as text at the bottom of the report. Please refer to the following list of frequently used data flags and their meaning:

[&]quot;<" = analyzed for but not detected at or above the reporting limit.

[&]quot;E" = Result has been estimated, calibration limit exceeded.

[&]quot;Z" = See case narrative.

[&]quot;D" = Duplicate results outside QC limits. May indicate a non-homogenous matrix.

[&]quot;M" = Matrix spike recoveries outside QC limits. Matrix bias indicated.

[&]quot;B" = Method blank contained trace levels of analyte. Refer to included method blank report.

17.9 Lake Avenue, Rochester, NY 14608 Office: (585) 647-2530 Fax: (585) 647-3311

LAB REPORT FOR TCLP RCRA METALS ANALYSIS

Client:

SBD

Lab Project No.:

10-4458

Client Job Site:

N/A

Lab Sample No.:

14180

Sample Type:

TCLP Extract

Client Job No.:

N/A

Date Sampled:

10/29/2010

Field Location: Field ID No.:

Stockpile C-6 N/A

Date Received:

11/01/2010

Parameter	Date Analyzed	Analytical Method	Result (mg/L)	Regulatory Limit (mg/L)
Arsenic	11/03/2010	SW846 6010	<0.100	5.0
Barium	11/03/2010	SW846 6010	2.14	100
Cadmium	11/03/2010	SW846 6010	<0.025	1.0
Chromium	11/03/2010	SW846 6010	<0.050	5.0
Lead	11/03/2010	SW846 6010	<0.100	5.0
Mercury	11/02/2010	SW846 7470	<0.0020	0.2
Selenium	11/03/2010	SW846 6010	<0.100	1.0
Silver	11/03/2010	SW846 6010	<0.050	5.0
			•	

ELAP ID No.:10958

Comments: The laboratory control spike was outside QC limits for Hg.

Approved By:

Bruce Hoogesteger, Technical Director

Semi-Volatile Analysis Report for TCLP Extract

Client: SBD

Client Job Site:

N/A

Lab Project Number:

10-4458

Client Job Number: N/A

Lab Sample Number:

14180

Field Location:

Stockpile C-6

Date Sampled:

10/29/2010

Field ID Number:

N/A

Date Received:

11/01/2010

Sample Type:

TCLP Extract

Date Analyzed:

11/02/2010

Base / Neutrals	Results in ug / L	Regulatory Limits in ug / L
1,4-Dichlorobenzene	355	7,500
2,4-Dinitrotoluene	< 40.0	130
Hexachlorobenzene	< 40.0	130
Hexachlorobutadiene	< 40.0	500
Hexachloroethane	< 40.0	3000
Nitrobenzene	< 40.0	2000
Pyridine	< 40.0	5000

Acids	Results in ug / L	Regulatory Limits in ug / L
Cresols (as m,p,o-Cresol)	< 40.0	200,000
Pentachlorophenol	< 100	100,000
2,4,5-Trichlorophenol	< 100	400,000
2,4,6-Trichlorophenol	< 40.0	2000

ELAP Number 10958

Method: EPA 8270C

Data File: S53768.D

Comments: ug / L = microgram per Liter

Signature:

Bruce Hoogesteger: Technical Director
This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition 104458S1.XLS requirements upon receipt.

Volatile STARS Analysis Report for TCLP Extract

Client: SBD

Client Job Site: N/A

Lab Project Number: 10-4458

Lab Sample Number: 14180

Client Job Number: N/A

Field Location: Stockpile C-6

Date Sampled:

10/29/2010

Field ID Number:

N/A

Date Received:

11/01/2010

Sample Type:

TCLP Extract

Date Analyzed:

11/02/2010

Compound	Results in ug / L	Regulatory Limits in ug / L
Benzene	< 7.00	500
2-Butanone	< 100	200,000
Carbon Tetrachloride	< 20.0	500
Chlorobenzene	1,090	100,000
Chloroform	< 20.0	6,000
1,2-Dichloroethane	< 20.0	500
1,1-Dichloroethene	< 20.0	700
Tetrachloroethene	< 20.0	700
Trichloroethene	< 20.0	500
Vinyl chloride	< 20.0	200

ELAP Number 10958

Method: EPA 8260B

Data File: V79729.D

Comments: ug / L = microgram per Liter

Signature:

Bruce Hoogesteger Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition requirements upon receipt.

179 Lake Avenue, Rochester, NY 14608 (585) 647-2530 FAX (585) 647-3311

Client:

SBD

Client Job Site:

N/A

Client Job No.: N/A

Lab Project No.:

10-4458

Lab Sample No.:

ICP LCS 11/2 w HG LCS 11/2 w

Sample Type:

Water

-Date Sampled: Date Received: N/A N/A

LAB REPORT FOR METALS ANALYSIS IN WATER

Analyte	Date Analyzed	Method Blank	LCS Added	LCS Recovered	LCS Recovery	LCS Dup Added	LCS Dup Recovered	LCS Dup Recovery	LCS Dup Percent Difference	Percent Difference Limits	% Recovery Limits
	1	mg/L	mg/L	mg/L	%	mg/L	mg/L	%	%	%	
Arsenic	11/03/2010	<0.005	2.50	2.53	101	2.50	2.50	100	1.19	5.75%	90.6% - 107%
Barium	11/03/2010	<0.020	2.50	2.58	103	2.50	2.55	102	1.17	6.24%	95.4% - 114%
Cadmium	11/03/2010	< 0.005	1.00	1.02	102	1.00	1.01	101	0.985	5.18%	93.6% - 109%
Chromium	11/03/2010	<0.010	2.50	2.32	92.8	2.50	2.30	92.0	0.866	5.27%	82.4% - 107%
Lead	11/03/2010	<0.005	2.50	2.57	103	2.50	2.55	102	0.781	13.7%	93.3% - 109%
Mercury	11/02/2010	<0.0002	0.0020	0.00188	94.1 *	0.0020	0.00199	99.4	5.48	8.00%	94.2% - 116%
Selenium	11/03/2010	<0.005	2.50	2.45	98.0	2.50	2.44	97.6	0.409	5.10%	88.2% - 105%
Silver	11/03/2010	<0.010	0.250	0.258	103	0.250	0.255	102	1.17	5.89%	95.0% - 112%
					,						
"	†										
	<u> </u>		· · · ·								
				·		L			·	•	FLAP ID No :10958

ELAP ID No.:10958

Comments:

- Outside QG/imits

Approved By:

Bruce Hoogasteger, Technical Director

Semi-Volatile Analysis Report for TCLP Extract

Client: SBD

Client Job Site: N/A Lab Project Number:

10-4458

Client Job Number:

N/A

Lab Sample Number:

TCLP PB 11/2

Field Location:

N/A

Date Sampled:

N/A

Field ID Number:

N/A

Date Received:

N/A

Sample Type:

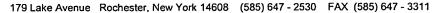
TCLP Extract

Date Analyzed:

11/02/2010

Base / Néutrals	Results in ug / L	Regulatory Limits in ug / L
1,4-Dichlorobenzene	< 40.0	7,500
2,4-Dinitrotoluene	< 40.0	130
Hexachlorobenzene	< 40.0	130
Hexachlorobutadiene	< 40.0	500
Hexachloroethane	< 40.0	3000
Nitrobenzene	< 40.0	2000
Pyridine	< 40.0	5000

Acids	Results in ug / L	Regulatory Limits in ug / L
Cresols (as m,p,o-Cresol)	< 40.0	200,000
Pentachlorophenol	< 100	100,000
2,4,5-Trichlorophenol	< 100	400,000
2,4,6-Trichlorophenol	< 40.0	2000


ELAP Number 10958 Method: EPA 8270C Data File: S53766.D

Comments: ug / L = microgram per Liter

Signature:

Bruce Hoogesteger: Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition 104458B2.XLS requirements upon receipt.

Semi-Volatile Analysis Report for TCLP Extract

Client: SBD

Client Job Site:

N/A

Lab Project Number: 10-4458

SDG#: N/A

Lab Sample Number: Water LCS 11/2

Client Job Number: N/A

Field Location:

N/A N/A Date Sampled: Date Received:

N/A N/A

Field ID Number: Sample Type:

TCLP Extract

Date Analyzed:

11/02/2010

Spiked Compound	Sample Results	LCS Spiked	LCS Results	LCS Percent	MSD Spiked	MSD Results		MS / MSD
	in ug / L	in ug / L	in ug / L	Recovery	in ug / L	in ug / L	Recovery	% RPD
2-Chlorophenol	< 40.0	300	243	81.0	N/A	N/A	N/A	N/A
1,4-Dichlorobenzene	< 40.0	200	119	59.5	N/A	N/A	N/A	N/A
N-Nitroso-di-n-propylamine	< 40.0	200	172	86.0	N/A	N/A	N/A	N/A
Phenol	< 40.0	300	220	73.3	N/A	N/A	N/A	N/A
4-Chloro-3-methylphenol	< 40.0	300	302	101	N/A	N/A	N/A	· N/A
1,2,4-Trichlorobenzene	< 40.0	200	129	64.5	N/A	N/A	N/A	N/A
Acenaphthene	< 40.0	200	178	89.0	N/A	N/A	N/A	N/A
2,4-Dinitrotoluene	< 40.0	200	189	94.5	N/A	N/A	N/A	N/A
4-Nitrophenol	< 100	300	251	83.7	N/A	N/A	N/A	N/A
Pentachiorophenol	< 100	300	294	98.0	N/A	N/A	· N/A	N/A
Pyrene	< 40.0	200	195	97.5	N/A	N/A	N/A	N/A
			·	•				
į								

ELAP Number 10958

Data File: S53766.D

Data File: S53767.D

Method: EPA 8270C

179 Lake Avenue Rochester, New York 14608 (585) 647 - 2530 FAX (585) 647 - 3311

Semi-Volatile Analysis QC Limits

Limits effective:

Oct 01,2010 Dec 31,2010

Through:

Spiked Compound	Soil Spi	ke Limits	Soil %	RPD Limits	Water Sp	ike Limits	Water % RPD Limits		
	Lower %	Upper %	Lower %	Upper %	Lower %	Upper %	Lower %	Upper %	
2-Chlorophenol	36.9	122	0	52.2	43.7	90.6	0	45.8	
1,4-Dichlorobenzene	36.3	116	0	50.5	28.5	74.6	0	65.1	
N-Nitroso-di-n-propylamine	36.3	120	0	47.0	54.5	88.7	0	23.6	
Phenol	36.6	122	0	52.4	-18.3	104	0	178	
4-Chioro-3-methylphenol	39.4	128	0	46.3	51.7	96.2	0	39.7	
1,2,4-Trichlorobenzene	36.8	117	0	50.3	31.2	77.7	0	63.0	
Acenaphthene	39.6	125	0	46.2	55.9	87.4	0	30.1	
2,4-Dinitrophenol	-26.5	125	0	158	-25.3	99.7	0	225	
4-Nitrophenol	31.7	128	0	53.1	-30.1	109	0	242	
Pentachlorophenol	33.3	147	0	56.5	0.0	148	0	161	
Pyrene	42.5	136	0	45.7	63.2	104	0	28.0	
;									
:					.				
					1				
					1				
:			1 1						
:			'						
								1	

ELAP Number 10958 Method: EPA 8270C

Volatile Analysis Report for Non-potable Water

Client: SBD

Client Job Site:

Lab Project Number: 10-4458

N/A

N/A

Lab Sample Number: Water LRB 11/2

Client Job Number: Field Location:

N/A

Date Sampled:

N/A

Field ID Number:

N/A

Date Received:

N/A

Sample Type: Water

Date Analyzed:

11/02/2010

Compound	Results in ug / L	Regulatory Limits in ug / l
Benzene	< 0.700	500
2-Butanone	< 10.0	200,000
Carbon Tetrachloride	< 2.00	500
Chlorobenzene	< 2.00	100,000
Chloroform	< 2.00	6,000
1,2-Dichloroethane	< 2.00	500
1,1-Dichloroethene	< 2.00	700
Tetrachloroethene	< 2.00	700
Trichloroethene	< 2.00	500
Vinyl chloride	< 2.00	200

ELAP Number 10958

Method: EPA 8260B

Data File: V79727.D

Comments: ug / L = microgram per Liter

Signature:

Bruce Hoogesteger: Technical Director
This report is part of a multipage document and should only be evaluated in its entirely. Chain of Custody provides additional information, including compliance with sample condition 104458B1.XLS requirements upon receipt.

Volatile Analysis Report for Non-potable Water

Client: SBD

Client Job Site:

N/A

Lab Project Number: 10-4458

SDG#: N/A

N/A Client Job Number:

Field Location: Field ID Number: N/A

Date Sampled:

N/A

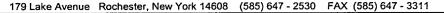
Date Received:

N/A

Sample Type:

N/A Water

11/02/2010 Date Analyzed:


Lab Sample Number: Water LCS 11/2

Spiked Compound	Sample Results	LCS Spiked	LCS Results	LCS Percent	MSD Spiked	MSD Results	MSD Percent	MS / MSD
	in ug / L	in ug / L	in ug/L	Recovery	in ug / L	in ug / L	Recovery	% RPD
Chloromethane	< 2.00	50.0	44.8	89.6	N/A	N/A	N/A	N/A
Vinyl chloride	< 2.00	50.0	49.6	99.2	N/A	N/A	N/A	N/A
Bromomethane	< 2.00	50.0	59.4	119	N/A	N/A	N/A	N/A
Chloroethane	< 2.00	50.0	48.4	96.8	N/A	N/A	N/A	N/A
Trichlorofluoromethane	< 2.00	50.0	57.9	116	N/A	N/A	N/A	N/A
1,1-Dichloroethene	< 2.00	50.0	56.2	112	N/A	N/A	N/A	N/A
Acetone	< 10.0	50.0	36.3	72.6	N/A	N/A	N/A	N/A
Carbon disulfide	< 2.00	50.0	55.9	112	N/A	N/A	N/A	N/A
Methylene chloride	< 5.00	50.0	50.7	101	N/A	N/A	N/A	N/A
trans-1,2-Dichloroethene	< 2.00	50.0	57.3	115	N/A	N/A	N/A	N/A
1,1-Dichloroethane	< 2.00	50.0	47.7	95.4	N/A	N/A	N/A	N/A
Vinyl acetate	< 5.00	50.0	44.2	88.4	N/A	N/A	N/A	N/A
2-Butanone	< 10.0	50.0	40.2	80.4	N/A	N/A	N/A	N/A
cis-1,2-Dichloroethene	< 2.00	50.0	40.4	80.8	N/A	. N/A	N/A	· N/A
Chloroform	< 2.00	50.0	48.4	96.8	N/A	N/A	N/A	N/A
1,1,1-Trichloroethane	< 2.00	50.0	56.0	112	N/A	N/A	N/A	N/A
Carbon Tetrachloride	< 2.00	50.0	59.1	118	N/A	N/A	N/A	N/A
Benzene	< 0.700	50.0	47.3	94.6	N/A	N/A	N/A	N/A
1,2-Dichloroethane	< 2.00	50.0	51.9	104	N/A	N/A	N/A	N/A
Trichloroethene	< 2.00	50.0	50.1	100	N/A	N/A	N/A	N/A
1,2-Dichloropropane	< 2.00	50.0	43.8	87.6	N/A	N/A	N/A	N/A
Bromodichloromethane	< 2.00	50.0	51.6	103	N/A	N/A	N/A	N/A
2-Chloroethyl vinyl Ether	< 10.0	50.0	129	258	N/A	N/A	N/A	N/A
cis-1,3-Dichloropropene	< 2.00	50.0	50.3	101	N/A	N/A	N/A	N/A
4-Methyl-2-pentanone	< 5.00	50.0	41.5	83.0	N/A	N/A	N/A	N/A
Toluene	< 2.00	50.0	47.2	94.4	N/A	N/A	N/A	N/A

ELAP Number 10958

Data File: V79727.D

Data File: V79726.D

Volatile Analysis Report for Soils/Solids/Sludges

Client: SBD

Client Job Site:

N/A

Lab Project Number: 10-4458

Lab Sample Number: Water LCS 11/2

SDG#: N/A

N/A

N/A

N/A

Client Job Number:

Field Location:

N/A N/A

Date Sampled:

N/A N/A

Field ID Number: Sample Type:

N/A Water **Date Received:** Date Analyzed:

11/02/2010

92.4

LCS Spiked LCS Results LCS Percent MSD Spiked | MSD Results MSD Percent MS / MSD Spiked Compound Sample Results % RPD Recovery in ug / L in ug/L Recovery in ug/L in ug/L in uq/L 105 N/A N/A N/A N/A trans-1,3-Dichloropropene < 2.00 50.0 52.4 89.6 < 2.00 50.0 44.8 N/A N/A N/A N/A 1.1.2-Trichloroethane Tetrachloroethene < 2.00 50.0 51.1 102 N/A N/A N/A N/A 79.4 N/A N/A N/A N/A 2-Hexanone < 5.00 50.0 39.7 < 2.00 54.7 109 N/A N/A N/A N/A Dibromochloromethane 50.0 N/A N/A N/A N/A Chlorobenzene < 2.00 50.0 47.2 94.4 < 2.00 50.0 52.0 104 N/A N/A N/A N/A Ethylbenzene 100 N/A N/A N/A N/A m.p-Xylene < 2.00 100 100 < 2.00 50.0 50.0 100 N/A N/A N/A N/A o-Xvlene N/A N/A N/A N/A Styrene < 5.00 50.0 52.0 104 N/A N/A N/A N/A Bromoform < 5.00 50.0 55.3 111 N/A N/A N/A N/A < 2.00 50.0 46.6 93.2 1.1.2.2-Tetrachloroethane 1,4-Dichlorobenzene < 2.00 50.0 46.0 92.0 N/A N/A N/A N/A < 2.00 50.0 47.1 94.2 N/A N/A N/A N/A

1,2-Dichlorobenzene ELAP Number 10958

1.3-Dichlorobenzene

Data File: V79727.D

< 2.00

Data File: V79726.D

46.2

Method: EPA 8260B

N/A

50.0

179 Lake Avenue Rochester, New York 14608 (585) 647 - 2530 FAX (585) 647 - 3311

Volatile Analysis QC Limits

Limits effective: Through:

Oct 01,2010

Dec 31,2010

Soil Spi	ke Limits	Soil %	RPD Limits	Water Sp	ike Limits	Water % RI	PD Limits
Lower %	Upper %	Lower %	Upper %	Lower %	Upper %	Lower %	Upper %
63.5	124	0	28.3	67.7	121	0	29.7
78.5	116	0	22.3	79.7	115	0	23.4
81.1	119	0	21.7	81.3	118	0	25.2
76.2	119	0	20.0	75.2	118	0	25.6
81.0	115	0	22.8	83.4	108	0	16.3
							l l
							•
							1
		1					
					,		Į.
		[
		1					
		1 1					
		1					
							İ
							1
	63.5 78.5 81.1 76.2	63.5 124 78.5 116 81.1 119 76.2 119	Lower % Upper % Lower % 63.5 124 0 78.5 116 0 81.1 119 0 76.2 119 0	Lower % Upper % Lower % Upper % 63.5 124 0 28.3 78.5 116 0 22.3 81.1 119 0 21.7 76.2 119 0 20.0	Lower % Upper % Lower % Upper % Lower % 63.5 124 0 28.3 67.7 78.5 116 0 22.3 79.7 81.1 119 0 21.7 81.3 76.2 119 0 20.0 75.2	Lower % Upper % Lower % Upper % Lower % Upper % 63.5 124 0 28.3 67.7 121 78.5 116 0 22.3 79.7 115 81.1 119 0 21.7 81.3 118 76.2 119 0 20.0 75.2 118	Lower % Upper % Lower % Upper % Lower % Upper % Lower % 63.5 124 0 28.3 67.7 121 0 78.5 116 0 22.3 79.7 115 0 81.1 119 0 21.7 81.3 118 0 76.2 119 0 20.0 75.2 118 0

ELAP Number 10958

CHAIN OF CUSTODY

100					REPORT TO	an Elektrika. An Elektrika	111. 004.5 111. 004.5 110. 004.5		Se Se	. Sin i	H.A.	VOICE		esi wat i	a Arria	on Ga	/ رساونون	ر داهاده داده		ا ماداندانداند	on startie	san ilika	Jest	
PΑ	RADIO	FIVE	COMPAN	P L. D. O. T. C. L	KEPORDIO:			COMPAN	Y:	(H) (Same	minimal de la maria	i,Q;			SAM20 L	AB PRO.	JECT#	c	LIENT F	•ROJE	CT #:	di Ca	
			ADDRESS	<u> </u>	60. 100	5+		ADDRES	S:		<u> </u>						ا-د/	145	58					
			CITY: B	<u> </u>	Ganson STATE:		203	CITY:					STATE	:	ZIP:				IME: (WOR	KING D	AYS)			-
			PHONE:	MITON	5 FAX: 72737	17 / 14	205	PHONE:				FA	X:						•	CTI	_	_	THE	
PROJECT NAME/SIT	E NAME:		ATTN: -	116-851				ATTN:									7, 1	П,		STI	1 ₅	Γ	THE	
			COMMENT	John 18:	Yans	<u> </u>													K	<u> </u>	<u>1-</u>			_
manasan arawan aya sa maga aray 23 - Yang Santa ay	20 T. N. S. L. 199		v Historia		na ter	erako Walasa	Cata Sa	#190 4 K A	്ളി	EAL	icer	ED A	ii a ii v	cic) 	Quota	ition	# Berena	e Zarom	3 299 55		i de la compansión de l	i.
kris ir Constituti		residence de la companya de la compa						C C	П		7	ED W	VALTA 	313 			1904-1914						ARRE	
		Ö					м	0 0	70	8	Metal													
DATE	TIME	P	G R	541	MPLE LOCATION/FIE	. D.ID	A T	U T M A	>	\$	2						REMA	ADIZO			PARA	DIGM I	LAB	
DATE	LIMIE	s	В	SAI	MPLE LOCATION/FIE	נט וט	R 1	B I E N R E	4	Υ).	쉬						KEMA	AKNO		1	SAMPL	E NUN	/BER	
		T T].				×	R	10	+	>													
, , , , , , , , , , , , , , , , , , , 	<u> </u>	E					 	s				-		44							т		-	
1 10/28/10	1415	×	1 1	Stock	pile (-1	<u>(</u>	5017	2	121	*	*	-		\perp	_		-			1/	4	1 8	3 (\mathcal{Q}
2			1 -				ļ		Ш				11	Ш						_	Ш	\dashv	\bot	_
3 .,																					$oxed{oxed}$	\perp		
1					-																		\perp	
5					•																			
 }					- "	,																	\top	
7									П												П		\top	
3		-				;			\Box		Ì		1	11						1	П		\top	_
)	<u> </u>				· · · · · · · · · · · · · · · · · · ·				П	\dashv	1									1	П		\top	_
10			1						\Box	\dashv	1			1						<u> </u>	Н	\top	_	
LAB USE	NLY BEL	OWITHIS L	INEX																					蘊
Sample Conditi	on: Per NEL Receipt Pa		241/242/2		Compliance					Λ														
	Container			Y 💢	N	/	γι,	(7, 1)	لا (/	bali	a					_				<u> </u>
Comments:	Container	. ypc.		، بکڑا	" 🗀	Sample	ed By	\sim	1		<u> </u>		Date/	Time				Т	otal Cos	::				
	Preservat	ion:	NIA	Y 🦳	Ν		:- Z	しこ	L_	_			(0/	29/1	0									
comments:						Reling	uished E	y //					Date	Time	,	, ,	, 5	.				***		
	Holding Ti	me:		ΥX	N			(t)	1			l	"0/0	79/	10	1.4	?	_	_			ı		
omments:						Receiv	e β iBγ		\sim			,	Ďate/			•		P	.l.F.			ı		
ommente:	Temperat	ure:8°Cice	d	Υ 🔲	и 💢		300	eth.	Ц.	14	<u>011</u>	<u>Ch</u>	#3/	11/1	110	13.	<u>55</u>							
omments:		0 0,00				Kecei	ed @ La	D RÀ				(/Date מאש ש פ	ime										

Analytical Report Cover Page

South Buffalo Dev.

For Lab Project #10-4471 Issued November 11, 2010 This report contains a total of 20 pages

The reported results relate only to the samples as they have been received by the laboratory.

Any noncompliant QC parameters having impact on the data are flagged or documented on the final report.

All soil/sludge samples have been reported on a dry weight basis, unless qualified "reported as received". Other solids are reported as received.

Each page of this document is part of a multipage report. This document may not be reproduced except in its entirety, without the prior consent of Paradigm Environmental Services, Inc.

The Chain of Custody provides additional information, including compliance with sample condition requirements upon receipt. Sample condition requirements are defined under the 2003 NELAC Standard, sections 5.5.8.3.1 and 5.5.8.3.2.

NYSDOH ELAP does not certify for all parameters. Paradigm Environmental Services or the indicated subcontracted laboratory does hold certification for all analytes where certification is offered by ELAP unless otherwise specified.

Data qualifiers are used, when necessary, to provide additional information about the data. This information may be communicated as a flag or as text at the bottom of the report. Please refer to the following list of frequently used data flags and their meaning:

[&]quot;<" = analyzed for but not detected at or above the reporting limit.

[&]quot;E" = Result has been estimated, calibration limit exceeded.

[&]quot;Z" = See case narrative.

[&]quot;D" = Duplicate results outside QC limits. May indicate a non-homogenous matrix.

[&]quot;M" = Matrix spike recoveries outside QC limits. Matrix bias indicated.

[&]quot;B" = Method blank contained trace levels of analyte. Refer to included method blank report.

179 Lake Avenue, Rochester, NY 14608 Office: (585) 647-2530 Fax: (585) 647-3311

LAB REPORT FOR TCLP RCRA METALS ANALYSIS

Client:

South Buffalo Dev.

Lab Project No.:

10-4471 14232

Client Job Site:

Buffalo Color

Lab Sample No.:

TCLP Extract

Client Job No.:

N/A

Sample Type:

11/01/2010

Field Location: Field ID No.: Stockpile C7

N/A

Date Sampled: 11
Date Received: 11

11/02/2010

Parameter	Date Analyzed	Analytical Method	Result (mg/L)	Regulatory Limit (mg/L)
Arsenic	11/03/2010	SW846 6010	<0.100	5.0
Barium	11/03/2010	SW846 6010	1.37	100
Cadmium	11/03/2010	SW846 6010	<0.025	1.0
Chromium	11/03/2010	SW846 6010	<0.050	5.0
Lead	11/03/2010	SW846 6010	<0.100	5.0
Mercury	11/02/2010	SW846 7470	<0.0020	0.2
Selenium	11/03/2010	SW846 6010	<0.100	1.0
Silver	11/03/2010	SW846 6010	<0.050	5.0

ELAP ID No.:10958

Comments: The laboratory control spike was outside QC limits for Hg.

Approved By:

Bruce Hoogesteger, Technical prector

179 Lake Avenue, Rochester, NY 14608 (585) 647-2530 FAX (585) 647-3311

Client:

South Buffalo Dev.

Client Job Site:

Buffalo Color

Client Job No.:

N/A

Lab Project No.: Lab Sample No.:

10-4471

ICP LCS 11/2 w HG LCS 11/2 w

Sample Type:

Water

Date Sampled: Date Received:

N/A N/A

LAB REPORT FOR METALS ANALYSIS IN WATER

Analyte	Date Analyzed	Method Blank	LCS Added	LCS Recovered	LCS Recovery	LCS Dup Added	LCS Dup Recovered	LCS Dup Recovery	LCS Dup Percent Difference	Percent Difference Limits	% Recovery Limits
ļ		mg/L	mg/L	mg/L	%	mg/L	mg/L	%	%	%	
Arsenic	11/03/2010	<0.005	2.50	2.53	101	2.50	2.50	100	1.19	5.75%	90.6% - 107%
Barium	11/03/2010	<0.020	2.50	2.58	103	2.50	2.55	102	1.17	6.24%	95.4% - 114%
Cadmium	11/03/2010	<0.005	1.00	1.02	102	1.00	1.01	101	0.985	5.18%	93.6% - 109%
Chromium	11/03/2010	<0.010	2.50	2.32	92.8	2.50	2.30	92.0	0.866	5.27%	82.4% - 107%
Lead	11/03/2010	<0.005	2.50	2.57	103	2.50	2.55	102	0.781	13.7%	93.3% - 109%
Mercury	11/02/2010	<0.0002	0.0020	0.00188	94.1 *	0.0020	0.00199	99.4	5.48	8.00%	94.2% - 116%
Selenium	11/03/2010	<0.005	2.50	2.45	98.0	2.50	2.44	97.6	0.409	5.10%	88.2% - 105%
Silver	11/03/2010	<0.010	0.250	0.258	103	0.250	0.255	102	1.17	5.89%	95.0% - 112%

								-			
										·	
	1										
	1										
	1 1										
	1								L		
									l		SI 40 10 11 40050

ELAP ID No.:10958

Comments:

Approved By:

Bruce Hoogesteger, Technical Director

Semi-Volatile Analysis Report for Soils/Solids/Sludges

Client: South Buffalo Dev.

Client Job Site: **Buffalo Color** Lab Project Number: 10-4471

Lab Sample Number:

14231

Client Job Number: Field Location:

N/A

Date Sampled:

11/01/2010

Field ID Number:

Overburden C2 N/A

Date Received:

11/02/2010

Data File: S53799.D

Sample Type:

Soil

Date Analyzed:

11/04/2010

Base / Neutrals	Results in ug / Kg	Base / Neutrals	Results in ug / Kg
Acenaphthene	< 36,700	Dibenz (a,h) anthracene	< 36,700
Anthracene	< 36,700	Fluoranthene	< 36,700
Benzo (a) anthracene	< 36,700	Fluorene	< 36,700
Benzo (a) pyrene	< 36,700	Indeno (1,2,3-cd) pyrene	< 36,700
Benzo (b) fluoranthene	< 36,700	Naphthalene	< 36,700
Benzo (g,h,i) perylene	< 36,700	Phenanthrene	< 36,700
Benzo (k) fluoranthene	< 36,700	Pyrene	< 36,700
Chrysene	< 36,700	Acenaphthylene	< 36,700
Diethyl phthalate	< 36,700	1,2-Dichlorobenzene	421,000
Dimethyl phthalate	< 91,700	1,3-Dichlorobenzene	< 36,700
Butylbenzylphthalate	< 36,700	1,4-Dichlorobenzene	71,600
Di-n-butyl phthalate	< 36,700	1,2,4-Trichlorobenzene	587,000
Di-n-octylphthalate	< 36,700	Nitrobenzene	< 36,700
Bis (2-ethylhexyl) phthalate	< 36,700	2,4-Dinitrotoluene	< 36,700
2-Chloronaphthalene	< 36,700	2,6-Dinitrotoluene	< 36,700
Hexachlorobenzene	< 36,700	Bis (2-chloroethyl) ether	< 36,700
Hexachloroethane	< 36,700	Bis (2-chloroisopropyl) ether	< 36,700
Hexachlorocyclopentadiene	< 36,700	Bis (2-chloroethoxy) methane	< 36,700
Hexachlorobutadiene	< 36,700	4-Bromophenyl phenyl ether	< 36,700
N-Nitroso-di-n-propylamine	< 36,700	4-Chlorophenyl phenyl ether	< 36,700
N-Nitrosodiphenylamine	< 36,700	Benzidine	< 91,700
N-Nitrosodimethylamine	< 36,700	3,3'-Dichlorobenzidine	< 36,700
Isophorone	< 36,700	4-Chloroaniline	< 36,700
Benzyl alcohol	< 91,700	2-Nitroaniline	< 91,700
Dibenzofuran	< 36,700	3-Nitroaniline	< 91,700
2-Methylnapthalene	< 36,700	4-Nitroaniline	< 91,700
Aniline	< 36,700		

Acids	Results in ug / Kg	Acids	Results in ug / Kg
Phenol	< 36,700	2-Methylphenol	< 36,700
2-Chlorophenol	< 36,700	3&4-Methylphenol	< 36,700
2,4-Dichlorophenol	< 36,700	2,4-Dimethylphenol	< 36,700
2,6-Dichlorophenol	< 36,700	2-Nitrophenol	< 36,700
2,4,5-Trichlorophenol	< 91,700	4-Nitrophenol	< 91,700
2,4,6-Trichlorophenol	< 36,700	2,4-Dinitrophenol	< 91,700
Pentachlorophenol	< 91,700	4,6-Dinitro-2-methylphenol	< 91,700
4-Chloro-3-methylphenol	< 36,700	Benzoic acid	< 91,700

Method: EPA 8270C

Comments: ug / Kg = mlcrogram per Kilogram

ELAP Number 10958

Signature:

Bruce Hoogesteger: Technical Director/
This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition 104471S1.XLS requirements upon receipt.

Semi-Volatile Analysis Report for TCLP Extract

Client: South Buffalo Dev.

Client Job Site:

Buffalo Color

Lab Project Number:

10-4471 14232

Client Job Number:

N/A

Lab Sample Number:

Field Location:

Stockpile C7

Date Sampled: **Date Received:** 11/01/2010 11/02/2010

Field ID Number:

N/A

Sample Type:

TCLP Extract

Date Analyzed:

11/02/2010

Base / Neutrals	Results in ug / L	Regulatory Limits in ug / L
1,4-Dichlorobenzene	443	7,500
2,4-Dinitrotoluene	< 40.0	130
Hexachlorobenzene	< 40.0	130
Hexachlorobutadiene	< 40.0	500
Hexachloroethane	< 40.0	3000
Nitrobenzene	61.8	2000
Pyridine	< 40.0	5000

_ Acids	Results in ug / L	Regulatory Limits in ug / L
Cresols (as m,p,o-Cresol)	< 40.0	200,000
Pentachlorophenol	< 100	100,000
2,4,5-Trichlorophenol	< 100	400,000
2,4,6-Trichlorophenol	< 40.0	2000

ELAP Number 10958

Method: EPA 8270C

Data File: S53769.D

Comments: ug / L = microgram per Liter

Surrogate outliers indicate probable matrix interference

Signature:

Bruce Hoogesteger: Technical Directo

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition 104471S2.XLS requirements upon receipt.

Semi-Volatile Analysis Report for TCLP Extract

Client: South Buffalo Dev.

Client Job Site:

Buffalo Color

Lab Project Number:

10-4471

N/A

Lab Sample Number:

TCLP PB 11/2

Client Job Number: Field Location:

N/A

Date Sampled:

N/A

Field ID Number:

N/A

Date Received:

N/A

Sample Type:

TCLP Extract

Date Analyzed:

11/02/2010

Base / Neutrals	Results in ug / L	Regulatory Limits in ug / L
1,4-Dichlorobenzene	< 40.0	7,500
2,4-Dinitrotoluene	< 40.0	130
Hexachlorobenzene	< 40.0	130
Hexachlorobutadiene	< 40.0	500
Hexachloroethane	< 40.0	3000
Nitrobenzene	< 40.0	2000
Pyridine	< 40.0	5000

Acids	Results in ug / L	Regulatory Limits in ug / L
Cresols (as m,p,o-Cresol)	< 40.0	200,000
Pentachlorophenol	< 100	100,000
2,4,5-Trichlorophenol	< 100	400,000
2,4,6-Trichlorophenol	< 40.0	2000

ELAP Number 10958 Method: EPA 8270C Data File: S53766.D

Comments: ug / L = microgram per Liter

Surrogate outliers indicate probable matrix interference

Signature:

Bruce Hoogesteger A echnical Director
This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition
104471ST.XLS

Semi-Volatile Analysis Report for Soils/Solids/Sludges

Client: South Buffalo Dev.

Client Job Site: **Buffalo Color** Lab Project Number: 10-4471

Lab Sample Number:

Soil PB 11/3

Client Job Number:

N/A N/A

Date Sampled:

N/A

Field Location: Field ID Number: Sample Type:

N/A Soil **Date Received:**

N/A

Date Analyzed:

11/03/2010

Data File: S53774.D

Base / Neutrals	Results in ug / Kg	Base / Neutrals	Results in ug / Kg
Acenaphthene	< 286	Dibenz (a,h) anthracene	< 286
Anthracene	< 286	Fluoranthene	< 286
Benzo (a) anthracene	< 286	Fluorene	< 286
Benzo (a) pyrene	< 286	Indeno (1,2,3-cd) pyrene	< 286
Benzo (b) fluoranthene	< 286	Naphthalene	< 286
Benzo (g,h,i) perylene	< 286	Phenanthrene	< 286
Benzo (k) fluoranthene	< 286	Pyrene	< 286
Chrysene	< 286	Acenaphthylene	< 286
Diethyl phthalate	< 286	1,2-Dichlorobenzene	< 286
Dimethyl phthalate	< 714	1,3-Dichlorobenzene	< 286
Butylbenzylphthalate	< 286	1,4-Dichlorobenzene	< 286
Di-n-butyl phthalate	< 286	1,2,4-Trichlorobenzene	< 286
Di-n-octylphthalate	< 286	Nitrobenzene	< 286
Bis (2-ethylhexyl) phthalate	< 286	2,4-Dinitrotoluene	< 286
2-Chloronaphthalene	< 286	2,6-Dinitrotoluene	< 286
Hexachlorobenzene	< 286	Bis (2-chloroethyl) ether	< 286
Hexachloroethane	< 286	Bis (2-chloroisopropyl) ether	< 286
Hexachlorocyclopentadiene	< 286	Bis (2-chloroethoxy) methane	< 286
Hexachlorobutadiene	< 286	4-Bromophenyl phenyl ether	< 286
N-Nitroso-di-n-propylamine	< 286°	4-Chlorophenyl phenyl ether	< 286
N-Nitrosodiphenylamine	< 286	Benzidine	< 714
N-Nitrosodimethylamine	< 286	3,3'-Dichlorobenzidine	< 286
Isophorone	< 286	4-Chloroaniline	< 286
Benzyl alcohol	< 714	2-Nitroaniline	< 714
Dibenzofuran	< 286	3-Nitroaniline	< 714
2-Methylnapthalene	< 286	4-Nitroaniline	< 714
Aniline	< 286		

Acids	Results in ug / Kg	Acids	Results in ug / Kg
Phenol	< 286	2-Methylphenol	< 286
2-Chlorophenol	< 286	3&4-Methylphenol	. < 286
2,4-Dichlorophenol	< 286	2,4-Dimethylphenol	< 286
2,6-Dichlorophenol	< 286	2-Nitrophenol	< 286
2,4,5-Trichlorophenol	< 714	4-Nitrophenol	< 714
2,4,6-Trichlorophenol	< 286	2,4-Dinitrophenol	< 714
Pentachlorophenol	< 714	4,6-Dinitro-2-methylphenol	< 714
4-Chloro-3-methylphenol	< 286	Benzoic acid	< 714

Method: EPA 8270C

Comments: ug / Kg = microgram per Kilogram

ELAP Number 10958

Signature:

Bruce Hoogesteger: Technical Director
This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition requirements upon receipt. 104471SB.XLS

Semi-Volatile Analysis Report for TCLP Extract

Client: South Buffalo Dev.

Client Job Site:

Buffalo Color

Lab Project Number: 10-4471

Lab Sample Number: TCLP LCS 11/2

SDG#: N/A

Client Job Number: N/A

N/A

Date Sampled:

N/Α

Field Location: Field ID Number:

N/A

Date Received:

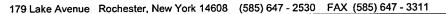
N/A

Sample Type:

TCLP Extract

Date Analyzed:

11/02/2010


Spiked Compound	Sample Results	LCS Spiked	LCS Results	LCS Percent	MSD Spiked	MSD Results	MSD Percent	MS / MSD
	in ug / L	in ug / L	in ug / L	Recovery	in ug/L	in ug / L	Recovery	% RPD
2-Chlorophenol	< 40.0	300	243	81.0	N/A	N/A	N/A	N/A
1,4-Dichlorobenzene	< 40.0	200	119	59.5	N/A	N/A	N/A	N/A
N-Nitroso-di-n-propylamine	< 40.0	200	172	86.0	N/A	N/A	N/A	N/A
Phenol	< 40.0	300	220	73.3	N/A	N/A	N/A	N/A
4-Chloro-3-methylphenol	< 40.0	300	302	101	N/A	N/A	N/A	N/A
1,2,4-Trichlorobenzene	< 40.0	200	129	64.5	N/A	N/A	N/A	N/A
Acenaphthene	< 40.0	200	178	89.0	N/A	N/A	N/A ·	N/A
2,4-Dinitrotoluene	< 40.0	200	189	94.5	N/A	N/A	N/A	N/A
4-Nitrophenol	< 100	300	251	83.7	N/A	N/A	N/A	N/A
Pentachlorophenol	< 100	300	294	98.0	N/A	N/A	N/A	N/A
Pyrene	< 40.0	200	195	97.5	N/A	N/A	N/A	N/A
·							·	

ELAP Number 10958

Data File: S53766.D

Data File: S53767.D

Method: EPA 8270C

Semi-Volatile Analysis Report for Soils/Solids/Sludges

Client: South Buffalo Dev.

Client Job Site:

Buffalo Color

Lab Project Number: 10-4471 Lab Sample Number: Soil LCS 11/3 SDG#: N/A

Client Job Number: N/A

Field Location:

N/A

Date Sampled:

N/A

Field ID Number: Sample Type: N/A Soil Date Received: Date Analyzed: N/A 11/03/2010

2-Chlorophenol	Spiked Compound	Sample Results	LCS Spiked	LCS Results	LCS Percent		MSD Results	MSD Percent	MS / MSD
1,4-Dichlorobenzene < 286 1,430 1,250 87.4 N/A N/A N/A N-Nitroso-di-n-propylamine < 286 1,430 1,280 89.5 N/A N/A N/A Phenol < 286 2,140 1,840 86.0 N/A N/A N/A 4-Chloro-3-methylphenol < 286 2,140 1,910 89.3 N/A N/A N/A 1,2,4-Trichlorobenzene < 286 1,430 1,270 88.8 N/A N/A N/A Acenaphthene < 286 1,430 1,350 94.4 N/A N/A N/A 2,4-Dinitrotoluene < 286 1,430 1,300 90.9 N/A N/A N/A 4-Nitrophenol < 714 2,140 1,780 83.2 N/A N/A N/A Pentachlorophenol < 714 2,140 1,630 76.2 N/A N/A N/A Pyrene < 286 1,430 1,370 95.8 N/A N/A N/A		in ug / Kg	in ug / Kg	in ug / Kg	Recovery	in ug / Kg	in ug / Kg	Recovery	% RPD
N-Nitroso-di-n-propylamine	2-Chlorophenol	< 286	2,140	1,800	84.1	N/A	N/A	N/A	N/A
Phenol	1,4-Dichlorobenzene	< 286	1,430	1,250	87.4	N/A	N/A	N/A	N/A
Phenol < 286 2,140 1,840 86.0 N/A N/A N/A 4-Chloro-3-methylphenol < 286	N-Nitroso-di-n-propylamine	< 286	1,430	1,280	89.5	N/A	N/A		N/A
1,2,4-Trichlorobenzene < 286		< 286	2,140	1,840	86.0	N/A	N/A		N/A
Acenaphthene	4-Chloro-3-methylphenol	< 286	2,140	1,910	89.3	N/A	N/A	N/A	N/A
2,4-Dinitrotoluene < 286	1,2,4-Trichlorobenzene	< 286	1,430	1,270	88.8	N/A	N/A		N/A
4-Nitrophenol < 714 2,140 1,780 83.2 N/A N/A N/A N/A Pentachlorophenol < 714 2,140 1,630 76.2 N/A N/A N/A N/A Pyrene < 286 1,430 1,370 95.8 N/A N/A N/A N/A	Acenaphthene	< 286	1,430	1,350	94.4	N/A	N/A	N/A	N/A
Pentachlorophenol < 714 2,140 1,630 76.2 N/A N/A N/A Pyrene < 286	2,4-Dinitrotoluene	< 286	1,430	1,300	90.9	N/A	N/A	N/A	N/A
Pyrene < 286 1,430 1,370 95.8 N/A N/A N/A	4-Nitrophenol	< 714	2,140	1,780	83.2	N/A	N/A		N/A
p yiono	Pentachlorophenol	< 714	2,140	1,630	76.2	N/A	N/A	N/A	N/A
Aniline < 286 1,430 1,190 83.2 N/A N/A N/A	Pyrene	< 286	1,430	1,370	95.8	N/A	N/A		N/A
	Aniline	< 286	1,430	1,190	83.2	N/A	N/A	N/A	N/A

ELAP Number 10958

Data File: S53774.D

Data File: S53775.D

Method: EPA 8270C

179 Lake Avenue Rochester, New York 14608 (585) 647 - 2530 FAX (585) 647 - 3311

Semi-Volatile Analysis QC Limits

Limits effective:

Through:

Oct 01,2010 Dec 31,2010

Spiked Compound	Soil Spi	ke Limits	Soil %	RPD Limits	Water Sp	ike Limits	Water % RP	D Limits
	Lower %	Upper %	Lower %	Upper %	Lower %	Upper %	Lower %	Uррег %
2-Chlorophenol	36.9	122	0	52.2	43.7	90.6	0	45.8
1,4-Dichlorobenzene	36.3	116	0	50.5	28.5	74.6	0	65.1
N-Nitroso-di-n-propylamine	36.3	120	0	47.0	54.5	88.7	0	23.6
Phenol	36.6	122	0	52.4	-18.3	104	0	178
4-Chloro-3-methylphenol	39.4	128	0	46.3	51.7	96.2	0	39.7
1,2,4-Trichlorobenzene	36.8	117	0	50.3	31.2	77.7	0	63.0
Acenaphthene	39.6	125	0	46.2	55.9	87.4	0	30.1
2,4-Dinitrophenol	-26.5	125	0	158	-25.3	99.7	0	225
4-Nitrophenol	31.7	128	0	53.1	-30.1	109	0	242
Pentachiorophenol	33.3	147	0	56.5	0.0	148	0 .	161
Pyrene	42.5	136	0	45.7	63.2	104	0	28.0
•								1
								1
<u> </u>								1
	1							1
:	1							1
:								
					}			

ELAP Number 10958 Method: EPA 8270C

Volatile Analysis Report for Soils/Solids/Sludges

Client: South Buffalo Dev.

Client Job Site:

Buffalo Color

Lab Project Number: 10-4471 Lab Sample Number: 14231

Client Job Number:

N/A

Date Sampled:

11/01/2010

Field Location: Field ID Number:

Overburden C2 N/A

Date Received:

11/02/2010

Sample Type:

N/A Soil

Date Analyzed:

11/04/2010

	Halocarbons	Results in ug / Kg
١	Bromodichloromethane	< 25,000
	Bromomethane	< 25,000
	Bromoform	< 62,600
	Carbon Tetrachloride	< 25,000
	Chloroethane	< 25,000
	Bromoform Carbon Tetrachloride	< 62,600 < 25,000

Chloromethane < 25,000

2-Chloroethyl vinyl Ether < 125,000

Chloroform < 25,000
Dibromochloromethane < 25,000
1,1-Dichloroethane < 25,000

 1,1-Diction definite
 \$25,000

 1,2-Dichloroethane
 \$25,000

 1,1-Dichloroethene
 \$25,000

 cis-1,2-Dichloroethene
 \$25,000

 trans-1,2-Dichloroethene
 \$25,000

trans-1,2-Dichloroethene < 25,000 1,2-Dichloropropane < 25,000 cis-1,3-Dichloropropene < 25,000 trans-1,3-Dichloropropene < 25,000

Methylene chloride < 62,600

1,1,2,2-Tetrachloroethane < 25,000

Tetrachloroethene < 25,000

1,1,1-Trichloroethane < 25,000

1,1,2-Trichloroethane< 25,000</td>Trichloroethene< 25,000</td>Trichlorofluoromethane< 25,000</td>Vinyl chloride< 25,000</td>

ELAP Number 10958

Aromatics	Results in ug / Kg
Benzene	< 25,000
Chlorobenzene	327,000
Ethylbenzene	< 25,000
Toluene	< 25,000
m,p-Xylene	< 25,000
o-Xylene	< 25,000
Styrene	< 62,600
1,2-Dichlorobenzene	934,000
1,3-Dichlorobenzene	< 25,000
1,4-Dichlorobenzene	149,000

Ketones	Results in ug / Kg
Acetone	< 125,000
2-Butanone	< 125,000
2-Hexanone	< 62,600
4-Methyl-2-pentanone	< 62,600

Miscellaneous	Results in ug / Kg
Carbon disulfide	< 25,000
Vinyl acetate	< 62,600
,	
	•

Method: EPA 8260B Data File: V79826.D

Comments: ug / Kg = microgram per Kilogram

Surrogate outliers indicate probable matrix interference

Signature:

Bruce Hoogesteger: Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition requirements upon receipt.

104471V1.XLS

Volatile STARS Analysis Report for TCLP Extract

Client: South Buffalo Dev.

Client Job Site: Buffalo Color

Lab Project Number: 10-4471

Lab Sample Number: 14232

Client Job Number: N/A

Field Location: Stockpile C7

Date Sampled: 11

11/01/2010

Field ID Number:

N/A

Date Received:

11/02/2010

Sample Type:

TCLP Extract

Date Analyzed:

11/03/2010

Compound	Results in ug / L	Regulatory Limits in ug / L
Benzene	< 17.5	500
2-Butanone	< 250	200,000
Carbon Tetrachloride	< 50.0	500
Chlorobenzene	2,440	100,000
Chloroform	< 50.0	6,000
1,2-Dichloroethane	< 50.0	500
1,1-Dichloroethene	< 50.0	700
Tetrachloroethene	< 50.0	700
Trichloroethene	< 50.0	500
Vinvl chloride	< 50.0	200

ELAP Number 10958 Method: EPA 8260B

Data File: V79787.D

Comments: ug / L = microgram per Liter

Signature:

Bruce Hoogesteger: Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition requirements upon receipt.

104471V2.XLS

Volatile Analysis Report for Non-potable Water

Client: South Buffalo Dev.

Client Job Site: Buffalo Color Lab Project Number: 10-4471

Lab Sample Number: Water LRB 11/3

Client Job Number: N/A

Field Location: N/A Date Sampled:

N/A

Field ID Number:

N/A

Date Received:

N/A

Sample Type: Water Date Analyzed:

11/03/2010

Compound	Results in ug / L	Regulatory Limits in ug / L
Benzene	< 0.700	500
2-Butanone	< 10.0	200,000
Carbon Tetrachloride	< 2.00	500
Chlorobenzene	< 2.00	100,000
Chloroform	< 2.00	6,000
1,2-Dichloroethane	< 2.00	500
1,1-Dichloroethene	< 2.00	700
Tetrachloroethene	< 2.00	700
Trichloroethene	< 2.00	500
Vinyl chloride	< 2.00	200

Data File: V79786.D ELAP Number 10958 Method: EPA 8260B

Comments: ug / L = microgram per Liter

Signature:

Bruce Hoogesteger: Technical Director
This report is part of a multipage doctorent and should only be evaluated in its entirety. Chain of Custody provides additional Information, including compliance with sample condition
104471VW.XLS requirements upon receipt.

Volatile Analysis Report for Soils/Solids/Sludges

Client: South Buffalo Dev.

Client Job Site: **Buffalo Color** Lab Project Number: 10-4471

Lab Sample Number: Soil M/L PB 11/3

Client Job Number: N/A Field Location: N/A

Date Sampled:

N/A

Field ID Number:

N/A

Date Received: N/A

Sample Type: Soil Date Analyzed:

11/04/2010

Halocarbons	Results in ug / Kg
Bromodichloromethane	< 1,000
Bromomethane	< 1,000
Bromoform	< 2,500
Carbon Tetrachloride	< 1,000
Chloroethane	< 1,000
Chloromethane	< 1,000
2-Chloroethyl vinyl Ether	< 5,000
Chloroform	< 1,000
Dibromochloromethane	< 1,000
1,1-Dichloroethane	< 1,000
1,2-Dichloroethane	< 1,000
1,1-Dichloroethene	< 1,000
cis-1,2-Dichloroethene	< 1,000
trans-1,2-Dichloroethene	< 1,000
1,2-Dichloropropane	< 1,000
cis-1,3-Dichloropropene	< 1,000
trans-1,3-Dichloropropene	< 1,000
Methylene chloride	< 2,500
1,1,2,2-Tetrachloroethane	< 1,000
Tetrachloroethene	< 1,000
1,1,1-Trichloroethane	< 1,000
1,1,2-Trichloroethane	< 1,000
Trichloroethene	< 1,000
Trichlorofluoromethane	< 1,000
Vinyl chloride	< 1,000

Results in ug / Kg
< 1,000
< 1,000
< 1,000
< 1,000
< 1,000
< 1,000
< 2,500
< 1,000
< 1,000
< 1,000

Ketones	Results in ug / Kg
Acetone	< 5,000
2-Butanone	< 5,000
2-Hexanone	< 2,500
4-Methyl-2-pentanone	< 2,500

Miscellaneous	Results in ug / Kg
Carbon disulfide	< 1,000
Vinyl acetate	< 2,500
	·

ELAP Number 10958

Method: EPA 8260B

Data File: V79818.D

Comments: ug / Kg = microgram per Kilogram

Signature:

Volatile Analysis Report for Non-potable Water

Client: South Buffalo Dev.

Client Job Site:

Buffalo Color

Lab Project Number: 10-4471 Lab Sample Number: Water LCS 11/3 SDG#: N/A

Client Job Number:

Field Location:

N/A N/A

Date Sampled:

N/A

Field ID Number:

N/A

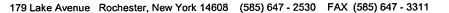
Date Received:

N/A

Sample Type:

Water

Date Analyzed:


11/03/2010

Spiked Compound	Sample Results	LCS Spiked	LCS Results	LCS Percent	MSD Spiked	MSD Results	MSD Percent	MS/MSD
	in ug / L	in ug / L	in ug / L	Recovery	in ug / L	in ug / L	Recovery	% RPD
Chloromethane	< 2.00	50.0	35.4	70.8	N/A	N/A	N/A	N/A
Vinyl chloride	< 2.00	50.0	39.8	79.6	N/A	N/A	N/A	N/A
Bromomethane	< 2.00	50.0	49.2	98.4	N/A	N/A	N/A	N/A
Chloroethane	< 2.00	50.0	38.9	77.8	N/A	N/A	N/A	N/A
Trichlorofluoromethane	< 2.00	50.0	48.0	96.0	N/A	N/A	N/A	N/A
1,1-Dichloroethene	< 2.00	50.0	46.0	92.0	N/A	N/A	N/A	N/A
Acetone	< 10.0	50.0	27.1	54.2	N/A	N/A	N/A	N/A
Carbon disulfide	< 2.00	50.0	47.2	94.4	N/A	N/A	N/A	N/A
Methylene chloride	< 5.00	50.0	46.1	92.2	N/A	N/A	N/A	N/A
trans-1,2-Dichloroethene	< 2.00	50.0	47.9	95.8	N/A	N/A	N/A	N/A
1,1-Dichloroethane	< 2.00	50.0	41.1	82.2	N/A	N/A	N/A	N/A
Vinyl acetate	< 5.00	50.0	37.8	75.6	N/A	N/A	N/A	N/A
2-Butanone	< 10.0	50.0	38.0	76.0	N/A	N/A	N/A	N/A
cis-1,2-Dichloroethene	< 2.00	50.0	37.9	75.8	N/A	N/A	N/A	N/A
Chloroform	< 2.00	50.0	43.9	87.8	N/A	N/A	N/A	N/A
1,1,1-Trichloroethane	< 2.00	50.0	47.8	95.6	N/A	N/A	N/A	N/A
Carbon Tetrachloride	< 2.00	50.0	51.1	102	N/A	N/A	N/A	N/A
Benzene	< 0.700	50.0	40.5	81.0	N/A	N/A	N/A	N/A
1,2-Dichloroethane	< 2.00	50.0	44.8	89.6	N/A	N/A	N/A	N/A
Trichloroethene	< 2.00	50.0	46.7	93.4	N/A	N/A	N/A	N/A
1,2-Dichloropropane	< 2.00	50.0	39.0	78.0	N/A	N/A	N/A	N/A
Bromodichloromethane	< 2.00	50.0	46.3	92.6	N/A	N/A	N/A	N/A
2-Chloroethyl vinyl Ether	< 10.0	50.0	122	244	N/A	N/A	N/A	N/A
cis-1,3-Dichloropropene	< 2.00	50.0	46.0	92.0	N/A	N/A	N/A	N/A
4-Methyl-2-pentanone	< 5.00	50.0	36.0	72.0	N/A	N/A	N/A	N/A
Toluene	< 2.00	50.0	43.8	87.6	N/A	N/A	N/A	N/A

ELAP Number 10958

Data File: V79786.D

Data File: V79785.D

Volatile Analysis Report for Non-potable Water

Client: South Buffalo Dev.

Client Job Site: Buffalo Color

Lab Project Number: 10-4471

Lab Sample Number: Water LCS 11/3

SDG#: N/A

Client Job Number: N/A

Field Location: N/A

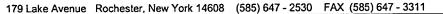
Date Sampled:

N/A

Field ID Number:

N/A Water Date Received:

N/A 11/03/2010


Sample Type: Date Analyzed: 11/03/2010

Spiked Compound	Sample Results	LCS Spiked	LCS Results	LCS Percent	MSD Spiked	MSD Results	MSD Percent	MS / MSD
	in ug / L	in ug / L	in ug / L	Recovery	in ug / L	in ug / L	Recovery	% RPD
trans-1,3-Dichloropropene	< 2.00	50.0	48.6	97.2	N/A	N/A	N/A	N/A
1,1,2-Trichloroethane	< 2.00	50.0	41.9	83.8	N/A	N/A	N/A	N/A
Tetrachloroethene	< 2.00	50.0	46.5	93.0	N/A	N/A	N/A	N/A
2-Hexanone	< 5.00	50.0	34.3	68.6	N/A	N/A	N/A	N/A
Dibromochloromethane	< 2.00	50.0	52.2	104	N/A	N/A	N/A	N/A
Chlorobenzene	< 2.00	50.0	40.1	80.2	N/A	N/A	N/A	N/A
Ethylbenzene	< 2.00	50.0	43.1	86.2	N/A	N/A	N/A	N/A
m,p-Xylene	< 2.00	100	86.7	86.7	N/A	N/A	N/A	N/A
o-Xylene	< 2.00	50.0	42.4	84.8	N/A	N/A	N/A	N/A
Styrene	< 5.00	50.0	44.0	88.0	N/A	N/A	N/A	N/A
Bromoform	< 5.00	50.0	49.0	98.0	N/A	N/A	N/A	N/A
1,1,2,2-Tetrachloroethane	< 2.00	50.0	39.2	78.4	N/A	N/A	N/A	N/A
1,4-Dichlorobenzene	< 2.00	50.0	39.3	78.6	N/A	N/A	N/A	N/A
1,3-Dichlorobenzene	< 2.00	50.0	39.8	79.6	N/A	N/A	N/A	N/A
1,2-Dichlorobenzene	< 2.00	50.0	39.6	79.2	N/A	N/A	N/A	N/A

ELAP Number 10958

Data File: V79786.D

Data File: V79785.D

Volatile Analysis Report for Soils/Solids/Sludges

Client: South Buffalo Dev.

Client Job Site:

Buffalo Color

Lab Project Number: 10-4471

SDG#: N/A

Lab Sample Number: Soil LCS 11/3

Client Job Number:

N/A Field Location:

N/A N/A Date Sampled: **Date Received:** N/A N/A

Field ID Number: Sample Type:

Soil

Date Analyzed:

11/04/2010

Spiked Compound	Sample Results	LCS Spiked	LCS Results	LCS Percent	MSD Spiked	MSD Results	MSD Percent	MS / MSD
	in ug / Kg	in ug / Kg	in ug / Kg	Recovery	in ug / Kg	in ug / Kg	Recovery	% RPD
Chloromethane	< 4.00	100	76.1	76.1	N/A	N/A	N/A	N/A
Vinyl chloride	< 4.00	100	87.1	87.1	N/A	N/A	N/A	N/A
Bromomethane	.< 4.00	100	111	111	N/A	N/A	N/A	N/A
Chloroethane	< 4.00	100	88.4	88.4	N/A	N/A	N/A	N/A
Trichlorofluoromethane	< 4.00	100	112	112	N/A	N/A	N/A	N/A
1,1-Dichloroethene	< 4.00	100	105	105	N/A	N/A	N/A	N/A
Acetone	< 20.0	100	66.5	66.5	N/A	N/A	N/A	N/A
Carbon disulfide	< 4.00	100	106	106	N/A	N/A	N/A	N/A
Methylene chloride	< 10.0	100	106	106	N/A	N/A	N/A	N/A
trans-1,2-Dichloroethene	< 4.00	100	110	110	N/A	N/A	N/A	N/A
1,1-Dichloroethane	< 4.00	100	94.1	94.1	N/A	N/A	N/A	N/A
Vinyl acetate	< 10.0	100	69.4	69.4	N/A	N/A	N/A	N/A
2-Butanone	< 20.0	100	86.7	86.7	N/A	N/A	N/A	N/A
cis-1,2-Dichloroethene	< 4.00	100	84.7	84.7	N/A	N/A	N/A	N/A
Chloroform	< 4.00	100	102	102	N/A	N/A	N/A	N/A
1,1,1-Trichloroethane	< 4.00	100	111	111	N/A	N/A	N/A	N/A
Carbon Tetrachloride	< 4.00	100	117	117	N/A	N/A	N/A	N/A
Benzene	< 4.00	100	93.3	93.3	N/A	N/A	. N/A	N/A
1,2-Dichloroethane	< 4.00	100	- 106	106	N/A	N/A	N/A	N/A
Trichloroethene	< 4.00	100	107	107	N/A	N/A	N/A	N/A
1,2-Dichloropropane	< 4.00	100	84.5	84.5	N/A	N/A	N/A	, N/A
Bromodichloromethane	< 4.00	100	107	107	N/A	N/A	N/A	N/A
2-Chloroethyl vinyl Ether	< 20.0	100	267	267	N/A	N/A	N/A	N/A
cis-1,3-Dichloropropene	< 4.00	100	98.7	98.7	N/A	N/A	N/A	N/A
4-Methyl-2-pentanone	< 10.0	100	78.3	78.3	N/A	N/A	N/A	N/A
Toluene	< 4.00	100	96.8	96.8	N/A	N/A	N/A	N/A

ELAP Number 10958

Data File: V79818.D

Data File: V79817.D

179 Lake Avenue Rochester, New York 14608 (585) 647 - 2530 FAX (585) 647 - 3311

Volatile Analysis Report for Soils/Solids/Sludges

Client: South Buffalo Dev.

Client Job Site: Buffalo Color

Soil

Lab Project Number: 10-4471

Lab Sample Number: Soil LCS 11/3

SDG#: N/A

Client Job Number: N/A

Field Location: N/A Field ID Number: N/A Date Sampled: Date Received:

N/A N/A

Field ID Number: Sample Type:

Date Analyzed:

11/04/2010

MS / MSD LCS Percent MSD Spiked | MSD Results MSD Percent LCS Spiked LCS Results Spiked Compound Sample Results % RPD in ug / Kg Recovery in ug / Kg in ug / Kg Recovery in ug / Kg in ug / Kg 103 N/A N/A N/A N/A < 4.00 100 103 trans-1,3-Dichloropropene 96.1 96.1 N/A N/A N/A N/A < 4.00 100 1.1.2-Trichloroethane N/A N/A N/A N/A Tetrachloroethene < 4.00 100 135 135 N/A N/A N/A < 10.0 100 74.6 74.6 N/A 2-Hexanone 123 N/A N/A N/A N/A 100 123 Dibromochloromethane < 4.00 N/A N/A N/A 94.2 94.2 N/A < 4.00 100 Chlorobenzene 99.4 99.4 N/A N/A N/A N/A Ethylbenzene < 4.00 100 N/A N/A N/A < 4.00 200 193 96.5 N/A m,p-Xylene N/A N/A N/A 96.3 N/A o-Xylene < 4.00 100 96.3 N/A N/A N/A 102 102 N/A < 10.0 100 Styrene N/A N/A < 10.0 100 119 119 N/A N/A Bromoform 88.0 88.0 N/A N/A N/A N/A < 4.00 100 1,1,2,2-Tetrachloroethane N/A N/A < 4.00 100 88.2 176 N/A N/A 1.4-Dichlorobenzene N/A N/A N/A N/A 89.3 179 1,3-Dichlorobenzene < 4.00 100 N/A N/A 93.7 187 N/A N/A < 4.00 100 1,2-Dichlorobenzene

ELAP Number 10958

Data File: V79818.D

Data File: V79817.D

179 Lake Avenue Rochester, New York 14608 (585) 647 - 2530 FAX (585) 647 - 3311

Volatile Analysis QC Limits

Limits effective:

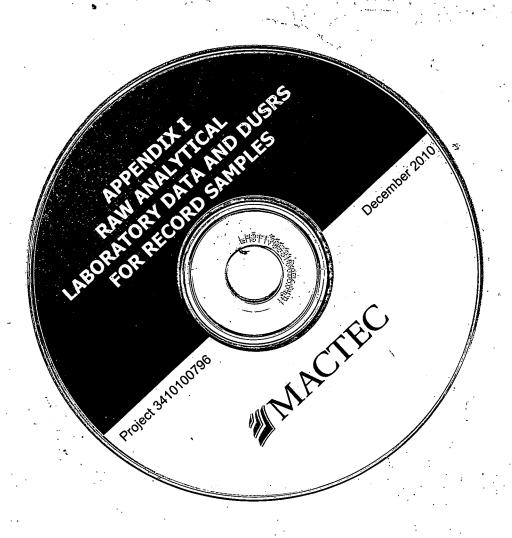
Oct 01,2010

Through:

Dec 31,2010

Spiked Compound	Soil Spi	ike Limits	Soil %	RPD Limits	Water Sp	ike Limits	Water % RPD Limits			
	Lower %	Upper %	Lower %	Upper %	Lower %	Upper %	Lower %	Upper %		
1,1-Dichloroethene	63.5	124	0	28.3	67.7	121	0	29.7		
Benzene	78.5	116	0	22.3	79.7	115	0	23.4		
Trichloroethene	81.1	119	0	21.7	81.3	118	0	25.2		
Toluene	76.2	119	0	20.0	75.2	118	0	25.6		
Chlorobenzene	81.0	115	0	22.8	83.4	108	0	16.3		
;										
			}		1			1		
								1		
								1		
								1		
			1							
			1				·			
:								1		
:								1		
1					1		l			
;						[1	1		
. :						<u>[</u>	l			

ELAP Number 10958


CHAIN OF CUSTODY PD #UZS 70

	DADIO		180000		REPORT	то:					inv	DICET	_ റ		در مراجع المراجع					2000	
E/A	RADIO	5 IV	COMPAN	South	Bus	44	Pev,	COMPANY: \ Same								LAB PROJECT #: CLIENT PROJECT #:					
			ADDRESS	s: 333	Ganso	_		ADDRESS	S:	90	,					10.0	1471				
			CITY:	CITY: Buffalo STATE: NY ZIP: 302 C			CITY:	STATE: ZIP:						ZIP:	TURNAROUND TIME: (WORKING DAYS) See below STD OTHER						
75.5	ALC: NO.		PHONE:					PHONE:	PHONE: H FAX:							•	See E	AD E	√ STD	OTHE	≣R
			ATTN: John YPHSan A						ATTN: 8 STORES CONTRACTOR							1	2] 3 [5		
Buffalo Color COMM				COMMENTS:												Quota	ation #				
								ergani ang	1R	EQU	ESTÉ	D ANA	ALYSIS								Clurc
DATE	TIME	C O M P O S I T E	G R A B	SAI	MPLE LOCATIO	N/FIELD ID	M A T R I	C O N N T M A I B N R E R S	8260 Tec	8270 166	TCLP 8270	TAL Mekk			Over Asp	burde per c REM	en CZ, s lient as arks EAH	iper 1 11/2	LPIC J. 7 PARA SAMPI	CZar loffma DIGM LAB LE NUMBER	znn.
11/1		X		Overb	urden	C2	soil	2	X	X		11	11	+++	30	ar	11/4/	10	14	23	7
1//		X	_		rile C		1	1		X					3 D	dy	11/4	10	14	23	2
11/1			X		RBI-1		'		又	V		X			A	av	11/8	110	51.		
11/1			X	12 -	_	0911			X	X		X			, ,		11/8	10	5 60	ggedif	as:
5 11/1			X	CQ -1	esa-				X	$\vec{\mathbf{y}}$		X			/1		11/8	10	Vic	b. See	
11/1	† 		义		RS3-				X	Ĺ		X			11		11/8	110	10	 T	24.
,														\Box			-1-1				
3			-			:						\top	717								
)		 			·	· · · · · · · · · · · · · · · · · · ·	- 	-								,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					
0	 		<u> </u>			· .			П			$\dashv \dashv$. 1			_
		OWATHIS EL AC/ELAP 210/2 trameter	min net my market		Compliance		. 1	\ \ \	1				i i								
omments:	Container [*]	Type:	, ,	Y 🔯	N	Samp	led By					ا با.	1/10 Date/Tim		4 to_	•	Total	Cost:			
omments:	Preservat	tion:	JIA	Υ 🔲	N	Religi	quighed E)			·	-{ \(\sigma \)	oate/Tip		440			L			
omments:	Holding Ti			Y 🖾	N	Redei	gerd By	H	 -	_		//	atel im	<u>9</u> e	144	<u>0</u>	P.I.F.	Γ			
omments:	Tempera		ud o.	~ Z	N		ved @ La	b By	<u>ر</u>			<u> </u>	Date/Tim	<i>)</i> / e ,			-	. [•	
		11/1@1	<u>800.</u>	Pres. b	<u>egun ir</u>		iz alu	th (2.7	40	nch	· //	12/16	0 /3	030	J					

APPENDIX I

RAW ANALYTICAL LABORATORY DATA (INCL. CD)

AND DUSRS FOR RECORD SAMPLES (INCL. CD)

APPENDIX J

IMPORTED MATERIALS DOCUMENTATION

APPENDIX J

IMPORTED MATERIALS DOCUMENTATION

Analytical Report Cover Page

South Buffalo Dev.

For Lab Project # 10-3977 Issued October 6, 2010 This report contains a total of 9 pages

The reported results relate only to the samples as they have been received by the laboratory.

Any noncompliant QC parameters having impact on the data are flagged or documented on the final report.

All soil/sludge samples have been reported on a dry weight basis, unless qualified "reported as received". Other solids are reported as received.

Each page of this document is part of a multipage report. This document may not be reproduced except in its entirety, without the prior consent of Paradigm Environmental Services, Inc.

The Chain of Custody provides additional information, including compliance with sample condition requirements upon receipt. Sample condition requirements are defined under the 2003 NELAC Standard, sections 5.5.8.3.1 and 5.5.8.3.2.

NYSDOH ELAP does not certify for all parameters. Paradigm Environmental Services or the indicated subcontracted laboratory does hold certification for all analytes where certification is offered by ELAP unless otherwise specified.

Data qualifiers are used, when necessary, to provide additional information about the data. This information may be communicated as a flag or as text at the bottom of the report. Please refer to the following list of frequently used data flags and their meaning:

[&]quot;<" = analyzed for but not detected at or above the reporting limit.

[&]quot;E" = Result has been estimated, calibration limit exceeded.

[&]quot;Z" = See case narrative.

[&]quot;D" = Duplicate results outside QC limits. May indicate a non-homogenous matrix.

[&]quot;M" = Matrix spike recoveries outside OC limits. Matrix bias indicated.

[&]quot;B" = Method blank contained trace levels of analyte. Refer to included method blank report.

pH Analysis Report

Client: South Buffalo Dev

Client Job Site:

Sample Type:

Location:

Buffalo Color

Lab Project Number:

10-3977

Client Job Number:

N/A

Soil

Date Sampled:

9/28/2010

Time Sampled: Date Received:

N/A

Time Received:

9/29/2010 2:58 PM

Date Analyzed:

9/30/2010

Time Analyzed:

10:40 AM

•	

Laboratory

Field Number	Field Location	Result (pH)
N/A	Pinto 2	7.36

ELAP Number 10958 Method: EPA 9045C

Comments:

Signature:

Bruce Hoogesteger: Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition requirements upon receipt.

LABORATORY REPORT FOR TOTAL CYANIDE

Client:

South Buffalo Dev.

Lab Project No.:

10-3977

Client Job Site:

Buffalo Color

Sample Type:

Soil

Client Job No.:

Analytical Method:

N/A

Date Sampled:

9/28/2010

SW 9012

Date Received: Date Analyzed:

9/29/2010 9/30/2010

Lab Sample ID	Sample Location/Field ID	TCN (mg/kg)
12867	Pinto 2	<0.56
-		
		. North .

ELAP ID.No.: 10709

Comments:

Approved By:

Bruce Hoogesteger, Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt

File ID: South Buffalo 10-3977

LAB REPORT FOR TAL METALS ANALYSIS IN SOLIDS

Client:

South Buffalo Dev

Lab Project No.:

10-3977

Client Job Site:

Buffalo Color

Lab Sample No.:

12867

Client Job No.:

N/A

Sample Type:

Soil

_. . . .

Pinto 2

Date Sampled: Date Received: 09/28/2010 09/29/2010

Field Location: Field ID No.:

N/A

Analytical Result (mg/kg) **Parameter Date Analyzed** Method 7320 10/06/2010 SW846 6010 Aluminum <5.46 10/06/2010 SW846 6010 Antimony SW846 6010 3.90 10/06/2010 Arsenic 49.8 Barium 10/06/2010 SW846 6010 SW846 6010 < 0.455 Beryllium 10/06/2010 < 0.455 10/06/2010 SW846 6010 Cadmium 76300 SW846 6010 Calcium 10/06/2010 10/06/2010 SW846 6010 10.1 Chromium 5.89 Cobalt 10/06/2010 SW846 6010 SW846 6010 14.1 10/06/2010 Copper 12400 Iron 10/06/2010 SW846 6010 46.1 Lead 10/06/2010 SW846 6010 15200 SW846 6010 10/06/2010 Magnesium 369 10/06/2010 SW846 6010 Manganese 0.0774 Mercury 10/01/2010 SW846 7471 14.4 SW846 6010 10/06/2010 Nickel 10/06/2010 1880 SW846 6010 **Potassium** <0.455 Selenium 10/06/2010 SW846 6010

SW846 6010

SW846 6010

SW846 6010

SW846 6010

SW846 6010

ELAP ID No.:10958

< 0.910

722

<0.546 18.6

79.2

Comments: The ICASB was outside Of limits for Na.

Approved By:

Bruce Hoogesteger, Technical Director

Silver

Sodium Thallium

Vanadium

Zinc

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition requirements upon receipt.

10/06/2010

10/06/2010

10/06/2010

10/06/2010

10/06/2010

Client: South Buffalo Dev

Client Job Site:

Buffalo Color

Lab Project Number:

10-3977

Lab Sample Number:

12867

Client Job Number: N/A Field Location:

Pinto 2

Date Sampled:

09/28/2010

Field ID Number:

N/A

Date Received:

09/29/2010

Sample Type:

Soil

Date Analyzed:

09/30/2010

PCB Identification	Results in mg / Kg
Aroclor 1016	< 0.352
Aroclor 1221	< 0.352
Aroclor 1232	< 0.352
Aroclor 1242	< 0.352
Aroclor 1248	< 0.352
Aroclor 1254	< 0.352
Aroclor 1260	< 0.352

ELAP Number 10958

Method: EPA 8082

Comments: mg / Kg = milligram per Kilogram

Signature:

Pesticide Analysis Report for Soils/Solids/Sludges

Client: South Buffalo Dev

Client Job Site:

Lab Project Number: **Buffalo Color**

10-3977

Client Job Number:

N/A

Lab Sample Number:

12867

Field Location: Field ID Number:

Sample Type:

Pinto 2 N/A Soil

Date Sampled: Date Received: 09/28/2010 09/29/2010

Date Analyzed:

10/06/2010

Pesticide Identification	Results in ug / Kg
Aldrin	< 3.37
alpha-BHC	< 3.37
beta-BHC	< 3.37
delta-BHC	< 3.37
gamma-BHC	< 3.37
gamma-Chlordane	< 3.37
alpha-Chlordane	< 3.37
4,4'-DDD	C 5.55
4,4'-DDE	5.74
4,4'-DDE 4,4'-DDT	< 3.37
Dieldrin	< 3.37
	< 3.37
Endosulfan I	< 3.37
Endosulfan II	< 3.37
Endosulfan Sulfate	< 3.37
Endrin	< 3.37
Endrin Aldehyde	
Endrin Ketone	< 3.37
Heptachlor	< 3.37
Heptachlor Epoxide	< 3.37
Methoxychlor	C 27.0
Toxaphene	< 16.8

ELAP Number 10958

Method: EPA 8081

Comments: ug / Kg = microgram per Kilogram

C = Concentration differs by more then 40% between primary and secondary columns

Signature:

Bruce Hoogesteger:

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional Information, including compliance with sample condition 103977C1.XLS requirements upon receipt.

Client: South Buffalo Dev.

Client Job Site: Buffalo Color Lab Project Number: Lab Sample Number: 10-3977

12867

N/A

Client Job Number: Field Location: Pinto 2

Date Sampled:

09/28/2010

Field ID Number:

Sample Type:

N/A Soil Date Received:

09/29/2010

Date Analyzed:

10/05/2010

Base / Neutrals	Results in ug / Kg	Base / Neutrals	Results in ug / Kg
Acenaphthene	< 337	Dibenz (a,h) anthracene	< 337
Anthracene	< 337	Fluoranthene	618
Benzo (a) anthracene	< 337	Fluorene	< 337
Benzo (a) pyrene	< 337	Indeno (1,2,3-cd) pyrene	< 337
Benzo (b) fluoranthene	< 337	Naphthalene	< 337
Benzo (g,h,i) perylene	< 337	Phenanthrene	344
Benzo (k) fluoranthene	< 337	Pyrene	497
Chrysene	< 337	Acenaphthylene	< 337
Diethyl phthalate	< 337	1,2-Dichlorobenzene	< 337
Dimethyl phthalate	< 842	1,3-Dichlorobenzene	< 337
Butylbenzylphthalate	< 337.	1,4-Dichlorobenzene	< 337
Di-n-butyl phthalate	< 337	1,2,4-Trichlorobenzene	< 337
Di-n-octylphthalate	< 337	Nitrobenzene	< 337
Bis (2-ethylhexyl) phthalate	< 337	2,4-Dinitrotoluene	< 337
2-Chloronaphthalene	< 337	2,6-Dinitrotoluene	< 337
Hexachlorobenzene	< 337	Bis (2-chloroethyl) ether	< 337
Hexachloroethane	< 337	Bis (2-chloroisopropyl) ether	< 337
Hexachlorocyclopentadiene	< 337	Bis (2-chloroethoxy) methane	< 337
Hexachlorobutadiene	< 337	4-Bromophenyl phenyl ether	< 337
N-Nitroso-di-n-propylamine	< 337	4-Chiorophenyl phenyl ether	< 337
N-Nitrosodiphenylamine	< 337	Benzidine	< 842
N-Nitrosodimethylamine	< 337	3,3'-Dichlorobenzidine	< 337
Isophorone	< 337	4-Chloroaniline	< 337
Benzyl alcohol	< 842	2-Nitroaniline	< 842
Dibenzofuran	< 337	3-Nitroaniline	< 842
2-Methylnapthalene	< 337	4-Nitroaniline	< 842
Aniline	< 337		

Acids	Results in ug / Kg	Acids	Results in ug / Kg
Phenol	< 337	2-Methylphenol	< 337
2-Chlorophenol	< 337	3&4-Methylphenol	< 337
2,4-Dichlorophenol	< 337	2,4-Dimethylphenol	< 337
2,6-Dichlorophenol	< 337	2-Nitrophenol	< 337
2,4,5-Trichlorophenol	< 842	4-Nitrophenol	< 842
2,4,6-Trichlorophenol	. < 337	2.4-Dinitrophenol	< 842
Pentachlorophenol	< 842	4,6-Dinitro-2-methylphenol	< 842
4-Chloro-3-methylphenol	< 337	Benzoic acid	< 842

ELAP Number 10958

Method: EPA 8270C

Data File: S53234.D

Comments: ug / Kg = microgram per Kilogram

Signature:

Bruce Hoogesteger: Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition 103977S1.XLS requirements upon receipt.

Client: South Buffalo Dev

Buffalo Color Client Job Site:

Lab Project Number: 10-3977

Client Job Number:

N/A

Lab Sample Number: 12867

Field Location:

Pinto 2

Field ID Number:

Date Sampled: Date Received: 09/28/2010 09/29/2010

Sample Type:

N/A Soil

Date	Analyzed:

10/05/2010

Halocarbons Results in ug / Kg Bromodichloromethane < 6.68 Bromomethane < 6.68 Bromoform < 16.7 Carbon Tetrachloride < 6.68 Chloroethane < 6.68 Chloromethane < 6.68
Bromomethane < 6.68 Bromoform < 16.7 Carbon Tetrachloride < 6.68 Chloroethane < 6.68
Bromoform < 16.7 Carbon Tetrachloride < 6.68 Chloroethane < 6.68
Carbon Tetrachloride < 6.68 Chloroethane < 6.68
Chloroethane < 6.68
onio o o o o o o o o o o o o o o o o o o
Chloromethane < 6.68
2-Chloroethyl vinyl Ether < 33.4
Chloroform < 6.68
Dibromochloromethane < 6.68
1,1-Dichloroethane < 6.68
1,2-Dichloroethane < 6.68
1,1-Dichloroethene < 6.68
cis-1,2-Dichloroethene < 6.68
trans-1,2-Dichloroethene < 6.68
1,2-Dichloropropane < 6.68
cis-1,3-Dichloropropene < 6.68
trans-1,3-Dichloropropene < 6.68
Methylene chloride < 16.7
1,1,2,2-Tetrachloroethane < 6.68
Tetrachloroethene < 6.68
1,1,1-Trichloroethane < 6.68
1,1,2-Trichloroethane < 6.68
Trichloroethene < 6.68
Trichlorofluoromethane < 6.68
Vinyl chloride < 6.68

Aromatics	Results in ug / Kg
Benzene	< 6.68
Chlorobenzene	105
Ethylbenzene	< 6.68
Toluene	29.5
m,p-Xylene	< 6.68
o-Xylene	< 6.68
Styrene	< 16.7
1,2-Dichlorobenzene	< 6.68
1,3-Dichlorobenzene	< 6.68
1,4-Dichlorobenzene	< 6.68

Ketones	Results in ug / Kg
Acetone	< 33.4
2-Butanone	< 33.4
2-Hexanone	< 16.7
4-Methyl-2-pentanone	< 16.7

Miscellaneous	Results in ug / Kg
Carbon disulfide	< 6.68
Vinyl acetate	< 16.7
•	

ELAP Number 10958

Method: EPA 8260B

Data File: V78883.D

Comments: ug / Kg = microgram per Kilogram

Surrogate outliers indicate probable matrix interference

Signature:

Bruce Hoogesteger: Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition 103977V1.XLS requirements upon receipt.

			3 . %	ON WILLE TO AL		-	<u>TAII'</u> ≋ D :-							<i>.</i> "	PO# 424	//	da ra.	- 3-				
PA	RADIO	3 M	COMPANY		ORT TO:	ev	MANAGEMENT AND LOSS	COMPAN		Same		ENO		Section 1	LAB PROJECT #:	CLIEN	IT PROJ	ECT#	:			
ADDRESS						<u>ev</u>		ADDRESS		Jann					10.3977							
	den Herrit		CITY:	A/ 1	STATE	J ZIP:		CITY:				STA	TE:		ZIP: TURNAROUND TIME: (1.	G DAYS	,		\dashv		
- in the last	The second second		PHONE:	WHA/0	FAX:	·· 7		PHONE:				FAX:	•				·TD		OTU			
ROJECT NAME/SIT	TE NAME:		ATTN:	56-3333	11-11			ATTN:					· · · · · ·		— Н. П. Г		STD 5	ľ	ОТН	=		
Ruff	alo C	plan	COMMENT	John	Yens												73	_	<u> </u>	-		
	ali e un statumenten				a manara a	a sa seri		. 75 %	5			A-100 A. 4	V010		Quotation #			73. ne				
	<u> </u>			S	122	5.5	6 1 3		⊗KE	JUES:	IEU/	ANAL	YSIS:					3 (4)	MARK	<u></u>		
DATE	TIME .	C O M P O S I T E	G R A B	R SAMPLE LOCATION/FIELD ID			A T R I	THE METASON THE BACO THE BACO FLE BATO PCB PCB PCB PCB PCB PCB PCB PCB PCB PCB							REMARKS		PARADIGM LAB SAMPLE NUMBER					
9/28	1	X		23	Pinto	2	30	73	X y			\forall	1 1	\top	8270 ABN+anii	ioa	12	, 8	6			
		/		200	,,,,,,		20,			77	Υ	Y 		+	per Client his to		1	+	H	\dashv		
7100			-					 			++	+	EAH9/Z	•	+	+-		一				
<u> </u>									\vdash	+	+	-		+			+	+	\vdash	\dashv		
1			<u> </u>		•.				-	╁┼	+	-	++	╬			-	+	\vdash	-		
5			ļ		·					++	-						+	┦┦	$\vdash\vdash$	\dashv		
3											1.1			4				+	Ш	\square		
7		,							<u> </u>									$\perp \! \! \perp \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$	Ш			
3				·						<u> </u> .									Ш	Ш		
9 ·													1 1				.					
10																İ						
LAB USE				Translature et	are estate	74.808					F	34-21										
Sample Condi	tion: Per NEL Receipt Pa	AC/ELAP 210/	241/242/	243/244 NELAC Comp	liance		0.	,				í										
Comments:	Container			Y 💢 N		Santp	ed Bx		_			<u>ک آ</u>	S/U) ie	Z-OO pm Total	Cost:						
Comments:	Preservation:			Y									3:00 PM									
Comments:	Holding T	Γime:		Y 💢 N	N Date/Time P.I.F.									٦								
Comments:	Tempera	iture: 12° Ci c	ed	Y . N	\boxtimes	Receiv	ed @ La		24	40n	<u>Ch</u>		/29/. ate/Tim		1458							

Analytical Report Cover Page

South Buffalo Dev.

For Lab Project # 10-3976
Issued October 6, 2010
This report contains a total of 9 pages

The reported results relate only to the samples as they have been received by the laboratory.

Any noncompliant QC parameters having impact on the data are flagged or documented on the final report.

All soil/sludge samples have been reported on a dry weight basis, unless qualified "reported as received". Other solids are reported as received.

Each page of this document is part of a multipage report. This document may not be reproduced except in its entirety, without the prior consent of Paradigm Environmental Services, Inc.

The Chain of Custody provides additional information, including compliance with sample condition requirements upon receipt. Sample condition requirements are defined under the 2003 NELAC Standard, sections 5.5.8.3.1 and 5.5.8.3.2.

NYSDOH ELAP does not certify for all parameters. Paradigm Environmental Services or the indicated subcontracted laboratory does hold certification for all analytes where certification is offered by ELAP unless otherwise specified.

Data qualifiers are used, when necessary, to provide additional information about the data. This information may be communicated as a flag or as text at the bottom of the report. Please refer to the following list of frequently used data flags and their meaning:

- "<" = analyzed for but not detected at or above the reporting limit.
- "E" = Result has been estimated, calibration limit exceeded.
- "Z" = See case narrative.
- "D" = Duplicate results outside QC limits. May indicate a non-homogenous matrix.
- "M" = Matrix spike recoveries outside QC limits. Matrix bias indicated.
- "B" = Method blank contained trace levels of analyte. Refer to included method blank report.

pH Analysis Report

Client: South Buffalo Dev

Sample Type:

Location:

Client Job Site:

Buffalo Color

Lab Project Number:

10-3976

Client Job Number:

Soil

Laboratory

Date Sampled:

9/28/2010

Time Sampled:

N/A

Date Received:

9/29/2010 2:55 PM

Time Received: Date Analyzed:

9/30/2010

Time Analyzed:

10:40 AM

)

Lab Sample Number	Field Number	Field Location	Result (pH)
12866	N/A	River Road 2	8.06

ELAP Number 10958

Method: EPA 9045C

Comments:

Signature:

Bruce Hoogesteger: Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition 103976PH.XLS requirements upon receipt.

LABORATORY REPORT FOR TOTAL CYANIDE

Client:

South Buffalo Dev.

Lab Project No.:

10-3976

Client Job Site:

Buffalo Color

Sample Type:

Soil

Client Job No.:

N/A

Date Sampled:

9/28/2010

SW 9012

Date Received: Date Analyzed: 9/29/2010 9/30/2010

Analytical Method:

Lab Sample ID	Sample Location/Field ID	TCN (mg/kg)
12866	River Road 2	<0.56

ELAP ID.No.: 10709

Comments:

Approved By:

Bruce Hoogesteger, Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt

LAB REPORT FOR TAL METALS ANALYSIS IN SOLIDS

Client:

South Buffalo Dev

Lab Project No.:

10-3976

Client Job Site:

Buffalo Color

Lab Sample No.:

12866

Client Job No.:

N/A

Sample Type:

Soil

River Road 2

Date Sampled: **Date Received:** 09/28/2010 09/29/2010

Field Location: Field ID No.:

N/A

Analytical Parameter Result (mg/kg) Date Analyzed Method SW846 6010 7120 10/06/2010 Aluminum <5.82 Antimony SW846 6010 10/06/2010 10/06/2010 2.86 SW846 6010 Arsenic SW846 6010 44.6 10/06/2010 Barium <0.485 SW846 6010 Beryllium 10/06/2010 <0.485 10/06/2010 SW846 6010 Cadmium 42300 SW846 6010 Calcium 10/06/2010 9.84 SW846 6010 Chromium 10/06/2010 5.52 Cobalt 10/06/2010 SW846 6010 12.0 SW846 6010 10/06/2010 Copper 12400 SW846 6010 Iron 10/06/2010 29.8 10/06/2010 SW846 6010 Lead 14800 Magnesium 10/06/2010 SW846 6010 344 SW846 6010 10/06/2010 Manganese SW846 7471 0.0690 Mercury 10/01/2010 11.1 Nickel 10/06/2010 SW846 6010 10/06/2010 SW846 6010 1680 Potassium <0.485 SW846 6010 10/06/2010 Selenium < 0.970 10/06/2010 SW846 6010 Silver 623 Sodium 10/06/2010 SW846 6010 <0.582 Thallium 10/06/2010 SW846 6010 17.6 SW846 6010 Vanadium 10/06/2010 75.8 Zinc 10/06/2010 SW846 6010

ELAP ID No.:10958

Comments: The ICASB was outside QC limits for Na.

Approved By:

Bruce Hoogesteger, Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information File ID:103976.xls including compliance with sample condition requirements upon receipt.

Client: South Buffalo Dev

Client Job Site: Buffalo Color Lab Project Number:

10-3976

Field Location:

Client Job Number: N/A River Road 2 Lab Sample Number:

12866

Date Sampled:

09/28/2010

Field ID Number: Sample Type:

N/A Soil **Date Received:**

09/29/2010

Date Analyzed:

09/30/2010

PCB Identification	Results in mg / Kg
Aroclor 1016	· < 0.320
Aroclor 1221	< 0.320
Aroclor 1232	< 0.320
Aroclor 1242	< 0.320
Aroclor 1248	< 0.320
Aroclor 1254	< 0.320
Aroclor 1260	< 0.320
· ·	.1

ELAP Number 10958

Method: EPA 8082

Comments: mg / Kg = milligram per Kilogram

Signature:

Pesticide Analysis Report for Soils/Solids/Sludges

Client: South Buffalo Dev

Client Job Site:

Client Job Number:

Buffalo Color

Lab Project Number: Lab Sample Number: 10-3976 12866

N/A

Date Sampled:

Field Location: Field ID Number: River Road 2

09/28/2010

N/A

Date Received:

09/29/2010

Date Analyzed:

10/06/2010

Sample Type: Soil

Pesticide Identification	Results in ug / Kg
Aldrin	< 3.14
alpha-BHC	< 3.14
beta-BHC	< 3.14
delta-BHC	< 3.14
gamma-BHC	< 3.14
gamma-Chlordane	< 3.14
alpha-Chlordane	< 3.14
4,4'-DDD	< 3.14
4,4'-DDE	5.16
4,4'-DDT	3.28
Dieldrin	< 3.14
Endosulfan I	< 3.14
Endosulfan II	< 3.14
Endosulfan Sulfate	C 3.18
Endrin	< 3.14
Endrin Aldehyde	€ < 3.14
Endrin Ketone	< 3.14
Heptachlor	< 3.14
Heptachlor Epoxide	< 3.14
Methoxychlor	C 30.7
Toxaphene	< 15.7

ELAP Number 10958

Method: EPA 8081

Comments: ug / Kg = microgram per Kilogram

C = Concentration differs by more then 40% between primary and secondary columns

Signature:

Bruce Hoogesteger: Technical Director
This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition 103976C1.XLS requirements upon receipt.

Client: South Buffalo Dev.

Client Job Site: **Buffalo Color** Lab Project Number:

10-3976

Client Job Number:

N/A

Lab Sample Number:

12866

Field Location:

River Road 2

Date Sampled:

09/28/2010

Field ID Number:

Date Received:

09/29/2010

Sample Type:

N/A Soil

Date Analyzed:

10/05/2010

Base / Neutrals	Results in ug / Kg	Base / Neutrals	Results in ug / Kg
Acenaphthene	< 317	Dibenz (a,h) anthracene	< 317
Anthracene	< 317	Fluoranthene	665
Benzo (a) anthracene	398	Fluorene	< 317 🗼
Benzo (a) pyrene	334	Indeno (1,2,3-cd) pyrene	< 317 3
Benzo (b) fluoranthene	358	Naphthalene	< 317
Benzo (g,h,i) perylene	< 317 .	Phenanthrene	< 317
Benzo (k) fluoranthene	< 317	Pyrene	538
Chrysene	400	Acenaphthylene	< 317
Diethyl phthalate	< 317	1,2-Dichlorobenzene	< 317
Dimethyl phthalate	< 793	1,3-Dichlorobenzene	< 317
Butylbenzylphthalate	< 317	1,4-Dichlorobenzene	· < 317
Di-n-butyl phthalate	< 317	1,2,4-Trichlorobenzene	< 317
Di-n-octylphthalate	< 317	Nitrobenzene	< 317
Bis (2-ethylhexyl) phthalate	< 317	2,4-Dinitrotoluene	< 317
2-Chloronaphthalene	< 317	2,6-Dinitrotoluene	< 317
Hexachlorobenzene	< 317	Bis (2-chloroethyl) ether	< 317
Hexachloroethane	< 317	Bis (2-chloroisopropyl) ether	< 317
Hexachlorocyclopentadiene	< 317	Bis (2-chloroethoxy) methane	< 317
Hexachlorobutadiene	< 317	4-Bromophenyl phenyl ether	< 317
N-Nitroso-di-n-propylamine	< 317	4-Chlorophenyl phenyl ether	< 317
N-Nitrosodiphenylamine	< 317	Benzidine	< 793
N-Nitrosodimethylamine	< 317	3,3'-Dichlorobenzidine	< 317
Isophorone	< 317	4-Chloroaniline	< 317
Benzyl alcohol	< 793	2-Nitroaniline	< 793
Dibenzofuran	< 317	3-Nitroaniline	< 793
2-Methylnapthalene	< 317	4-Nitroaniline	< 793
Aniline	< 317		

Acids	Results in ug / Kg	Acids	Results in ug / Kg
Phenol	< 317	2-Methylphenol	< 317
2-Chlorophenol	< 317	3&4-Methylphenol	< 317
2,4-Dichlorophenol	< 317	2,4-Dimethylphenol	< 317
2,6-Dichlorophenol	< 317	2-Nitrophenol	< 317
2,4,5-Trichlorophenol	< 793	4-Nitrophenol	< 793
2,4,6-Trichlorophenol	< 317	2,4-Dinitrophenol	< 793
Pentachlorophenol	< 793	4,6-Dinitro-2-methylphenol	< 793
4-Chloro-3-methylphenol	< 317	Benzoic acid	< 793

ELAP Number 10958

Method: EPA 8270C

Data File: S53233.D

Comments: ug / Kg = microgram per Kilogram

Signature:

Bruce Hoogesteger: Technical Director
This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition 103976S1.XLS requirements upon receipt.

Client: South Buffalo Dev

Client Job Site: **Buffalo Color** Lab Project Number: 10-3976

Lab Sample Number: 12866

Client Job Number: Field Location:

N/A River Road 2

Date Sampled:

09/28/2010

Field ID Number:

Date Received:

09/29/2010

Sample Type:

N/A Soil

Date Analyzed:

10/05/2010

Halocarbons	Results in ug / Kg
Bromodichloromethane	< 6.13
Bromomethane	< 6.13
Bromoform	< 15.3
Carbon Tetrachloride	< 6.13
Chloroethane	< 6.13
Chloromethane	< 6.13
2-Chloroethyl vinyl Ether	< 30.7
Chloroform	< 6.13
Dibromochloromethane	< 6.13
1,1-Dichloroethane	< 6.13
1,2-Dichloroethane	< 6.13
1,1-Dichloroethene	< 6.13
cis-1,2-Dichloroethene	< 6.13
trans-1,2-Dichloroethene	< 6.13
1,2-Dichloropropane	< 6.13
cis-1,3-Dichloropropene	< 6.13
trans-1,3-Dichloropropene	< 6.13
Methylene chloride	< 15.3
1,1,2,2-Tetrachloroethane	< 6.13
Tetrachloroethene	< 6.13
1,1,1-Trichloroethane	< 6.13
1,1,2-Trichloroethane	< 6.13
Trichloroethene	< 6.13
Trichlorofluoromethane	< 6.13
Vinyl chloride	< 6.13

	,
Aromatics	Results in ug / Kg
Benzene	< 6.13
Chlorobenzene	185
Ethylbenzene	< 6.13
Toluene	36.8
m,p-Xylene	< 6.13
o-Xylene	< 6.13
Styrene	< 15.3
1,2-Dichlorobenzene	9.78
1,3-Dichlorobenzene	< 6.13
1,4-Dichlorobenzene	< 6.13

Ketones	Results in ug / Kg
Acetone	< 30.7
2-Butanone	< 30.7
2-Hexanone	< 15.3
4-Methyl-2-pentanone	< 15.3

Miscellaneous	Results in ug / Kg
Carbon disulfide	< 6.13
Vinyl acetate	< 15.3

ELAP Number 10958

Method: EPA 8260B

Data File: V78882.D

Comments: ug / Kg = microgram per Kilogram

Matrix Spike outliers indicate probable matrix interference

Signature:

Bruce Hoogesteger: Technical Director
This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition 103976V1.XLS requirements upon receipt.

			21. 93	CHAIN OF COSTODY PO# U2978 REPORT TO: 4 5 5 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1																					
PARADIGM				. 21	SINVOIGETO										LAB PROJECT #: CLIENT PROJEC										
				SOWN DWTC-10 DEV					§:		anne	•					l	1.39	- 1						
	Marine Sand		CITY:	<u> </u>	L STATE	- Jy ZIP:		CITY:					STAT	E:	;	ZIP:	Į.		IME: (WO	RKING	DAYS)				
The state of the s			PHONE:	SUFFAI		<i>7</i> 0 9		PHONE:				FAX	C:								_	_			
PROJECT NAME/SIT	TE NAME:	·····	ATTN:	336-33 	33 ^{5AX:}			ATTN:		-							1 2 3 5TD OTH								
But	6/	Color	COMMEN		hu Yer							<u> </u>					ינע	2	<u>'</u>	3 X	<u>]</u> 5	L			
Dav v		-	COMMEN			py usu	a! #	+	R	SZ EQU	abi ESTE	S (C) D Al)ma VAL)	zte. (SIS)	د . د	Com	Quo	tation	#			ij a s	i de la companya de la companya de la companya de la companya de la companya de la companya de la companya de La companya de la companya de la companya de la companya de la companya de la companya de la companya de la co		
DATE	TIME	C O M P O S I T E	G R A B	G R SAMPLE LOCATION/FIELD ID			M A T R I	CONTAINER S	TAL Metils	7668260	2	Pesticides	PH					MARKS			PARA SAMPL				
1 9/28		×		Rive	r Road	22	Soil	3: '	X	X)	44	XX	X			827	"O A	BN	+	1,	12	8	66		
2																anil	ine	per	clier	74					
3												7				nis	tor	y. E	AH 9	129					
4									П		\top		П						-, -, . , ,	1	\top				
5	<u> </u>						†	<u> </u>	\Box		†††			.	\Box	<u> </u>				\top	† †				
 6	<u> </u>				•				П		+ +	\top	\Box								+-				
7	ļ								Ħ	+	1 1	7	+		H				· · ·	\dashv	+	\vdash	\top		
<u>.</u> 8					•				\vdash	_	++	1		<u> </u>						+	+	\vdash	_		
9	-						 		\Box	+	11				$\dagger \dagger$					+	†	\Box			
10	1		 	<u> </u>			 	 	H		++		$\dagger \dagger$							+	+	\Box	+		
	ONLYBE	I Owithisiei	NECK					l Symilor																	
	ion: Per NEL	AC/ELAP 210/2		243/244		- ^	A				5117.1V1065553							estate to see			**************************************	34-30-21			
Commants:	Receipt Pa Container			Y 💢	N		<u>() </u>	<u>K</u>		<u></u>	•	<u>1/2</u>	8/	10	Z	<u>ه ده د</u>	رم	_ ح	Total Co						
Comments:	Preservation: N/A				Y N Date/Time Relinquished By Date/Time							Total Cost:													
Comments:	Holding T	ime:		Y 🔀	N	Receiv	<u>~</u>	9/28/10 320										P.I.F.							
Comments:	Tempera	ture:		Y 🗀	N 🔀	Receiv	liga ved @ La	Left ab By	h (Q.7	400	nch	<u>ں</u> Dat	<i>9/∝</i> e/Time	29/1	01	45	155							

LABORATORY REPORT FOR TOTAL CYANIDE

Client:

SBD

Lab Project No.:

10-5090

Client Job Site:

Buffalo Color

Sample Type:

Soil

Client Job No.:

N/A

Date Sampled:

12/15/2010

Analytical Method:

SW 9012

Date Received: Date Analyzed:

12/16/2010 12/20/2010

Lab Sample ID	Sample Location/Field ID	TCN (mg/kg)
15930	River Road / Pinto Backfill 1	<0.54
15931	River Road / Pinto Backfill 2	<0.55
15932	Area C Coversoil 1	<0.65
15933	Area C Coversoil 2	<0.64

ELAP ID.No.: 10709

Comments:

Approved By

Bruge Hoogesteger, Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt

LAB REPORT FOR TAL METALS ANALYSIS IN SOLIDS

Client:

SBD

Lab Project No.:

10-5090

Client Job Site:

Buffalo Color

Lab Sample No.:

15930

Client Job No.:

N/A

Sample Type:

Soil

directic job tton

.., --

River Road/Pinto Backfill 1

Date Sampled:

12/15/2010

Field Location: Field ID No.:

N/A

Date Received:

12/16/2010

Parameter	Date Analyzed	Analytical	Result (mg/kg)
	<u> </u>	Method	
Aluminum	12/20/2010	SW846 6010	6700
Antimony	12/20/2010	SW846 6010	<5.34
Arsenic	12/20/2010	SW846 6010	3.42
Barium	12/20/2010	SW846 6010	49.6
Beryllium	12/20/2010	SW846 6010	<0.445
Cadmium	12/20/2010	SW846 6010	<0.445
Calcium	12/20/2010	SW846 6010	57800
Chromium	12/20/2010	SW846 6010	11.5
Cobalt	12/20/2010	SW846 6010	5.12
Copper	12/20/2010	SW846 6010	14.0
Iron	12/20/2010	SW846 6010	13300
Lead	12/20/2010	SW846 6010	40.7
Magnesium	12/20/2010	SW846 6010	16200
Manganese	12/20/2010	SW846 6010	369
Mercury	12/17/2010	SW846 7471	0.514
Nickel	12/20/2010	SW846 6010	11.0
Potassium	12/20/2010	SW846 6010	1440
Selenium	12/20/2010	SW846 6010	<0.445
Silver	12/20/2010	SW846 6010	<0.890
Sodium	12/20/2010	SW846 6010	514
Thallium	12/20/2010	SW846 6010	<0.534
Vanadium	12/20/2010	SW846 6010	17.2
Zinc	12/20/2010	SW846 6010	94.5
	-		ELAP ID No.:10958

ELAP ID No.:10958

Comments:

Approved By:

Bruce Hoogesteger, Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional sample information, including compliance with sample condition requirements upon receipt.

File ID:105090.xls

LAB REPORT FOR TAL METALS ANALYSIS IN SOLIDS

Client:

SBD

Lab Project No.:

10-5090

Client Job Site:

Buffalo Color

Lab Sample No.:

15931

Client Job No.:

N/A

Sample Type:

Soil

Field Location:

River Road/Pinto Backfill 2

Date Sampled: Date Received: 12/15/2010 12/16/2010

Field ID No.:

N/A

Parameter	Date Analyzed	Analytical	Result (mg/kg)
		Method	
Aluminum	12/20/2010	SW846 6010	9120
Antimony	12/20/2010	SW846 6010	17.2
Arsenic	12/20/2010	SW846 6010	5.69
Barium	12/20/2010	SW846 6010	90.8
Beryllium	12/20/2010	SW846 6010	<0.516
Cadmium	12/20/2010	SW846 6010	0.578
Calcium	12/20/2010	SW846 6010	64600
Chromium	12/20/2010	SW846 6010	22.7
Cobalt	12/20/2010	SW846 6010	5.55
Copper	12/20/2010	SW846 6010	36.3
Iron	12/20/2010	SW846 6010	25600
Lead	12/20/2010	SW846 6010	134
Magnesium	12/20/2010	SW846 6010	14200
Manganese	12/20/2010	SW846 6010	368
Mercury	12/17/2010	SW846 7471	11.3
Nickel	12/20/2010	SW846 6010	19.2
Potassium	12/20/2010	SW846 6010	1620 .
Selenium	12/20/2010	SW846 6010	<0.516
Silver	12/20/2010	SW846 6010	<1.03
Sodium	12/20/2010	SW846 6010	537
Thallium	12/20/2010	SW846 6010	<0.619
Vanadium	12/20/2010	SW846 6010	17.4
Zinc	12/20/2010	SW846 6010	154

ELAP ID No.:10958

Comments:

Approved By:

Bruce Hoogesteger, Technical Director

LAB REPORT FOR TAL METALS ANALYSIS IN SOLIDS

Client:

<u>SBD</u>

Lab Project No.: Lab Sample No.: 10-5090 15932

Client Job Site:

Buffalo Color

Sample Type:

Soil

Client Job No.:

N/A

Date Sampled: Date Received: 12/15/2010 12/16/2010

Field Location:

Area C Coversoil 1

Field ID No.:

N/A

Parameter	Date Analyzed	Analytical	Result (mg/kg)
		Method	
Aluminum	12/20/2010	SW846 6010	16600
Antimony	12/20/2010	SW846 6010	<4.65
Arsenic	12/20/2010	SW846 6010	3.58
Barium	12/20/2010	SW846 6010	102
Beryllium	12/20/2010	SW846 6010	0.730
Cadmium	12/20/2010	SW846 6010	<0.386
Calcium	12/20/2010	SW846 6010	54200
Chromium	12/20/2010	SW846 6010	21.1
Cobalt	12/20/2010	SW846 6010	11.6
Copper	12/20/2010	SW846 6010	19.9
Iron	12/20/2010	SW846 6010	23700
Lead	12/20/2010	SW846 6010	8.76
Magnesium	12/20/2010	SW846 6010	14500
Manganese	12/20/2010	SW846 6010	481
Mercury	12/17/2010	SW846 7471	0.0122
Nickel	12/20/2010	SW846 6010	25.2
Potassium	12/20/2010	SW846 6010	40400
Selenium	12/20/2010	SW846 6010	<0.386
Silver	12/20/2010	SW846 6010	<0.774
Sodium	12/20/2010	SW846 6010	271
Thallium	12/20/2010	SW846 6010	<0.465
Vanadium	12/20/2010	SW846 6010	31.7
Zinc	12/20/2010	SW846 6010	62.7

ELAP ID No.:10958

Comments:

Approved By:

Bruce Hoogesteger, Technical Director

LAB REPORT FOR TAL METALS ANALYSIS IN SOLIDS

Client:

<u>SBD</u>

Lab Project No.: Lab Sample No.: 10-5090 15933

Client Job Site:

Buffalo Color

Sample Type:

Soil

Client Job No.:

N/A

Date Sampled:

12/15/2010

Field Location:

Area C Cover Soil 2

Date Received:

12/16/2010

Field ID No.:

N/A

Parameter	Date Analyzed	Analytical	Result (mg/kg)
		Method	
Aluminum	12/20/2010	SW846 6010	21500
Antimony	12/20/2010	SW846 6010	<6.13
Arsenic	12/20/2010	SW846 6010	3.37
Barium	12/20/2010	SW846 6010	122
Beryllium	12/20/2010	SW846 6010	0.927
Cadmium	12/20/2010	SW846 6010	<0.510
Calcium	12/20/2010	SW846 6010	49500
Chromium	12/20/2010	SW846 6010	27.1
Cobalt	12/20/2010	SW846 6010	15.0
Copper	12/20/2010	SW846 6010	22.7
lron	12/20/2010	SW846 6010	28900
Lead	12/20/2010	SW846 6010	10.2
Magnesium	12/20/2010	SW846 6010	15500
Manganese	12/20/2010	SW846 6010	560
Mercury	12/17/2010	SW846 7471	0.0121
Nickel	12/20/2010	SW846 6010	29.4
Potassium	12/20/2010	SW846 6010	5480
Selenium	12/20/2010	SW846 6010	<0.510
Silver	12/20/2010	SW846 6010	<1.02
Sodium	12/20/2010	SW846 6010	335
Thallium	12/20/2010	SW846 6010	<0.613
Vanadium	12/20/2010	SW846 6010	40.2
Zinc	12/20/2010	SW846 6010	69.8

ELAP ID No.:10958

Comments:

Approved By:

Bruce Hoogesteger, Technical Director

Client: SBD

Client Job Site:

Buffalo Color

Lab Project Number:

10-5090

Client Job Number: N/A

Lab Sample Number:

15930

Field Location:

River Road/Pinto Backfill 1

Date Sampled:

12/15/2010

Field ID Number:

N/A

Date Received:

12/16/2010

Sample Type:

Soil

Date Analyzed:

12/17/2010

PCB Identification	Results in mg / Kg
Aroclor 1016	< 0.326
Aroclor 1221	< 0.326
Aroclor 1232	< 0.326
Aroclor 1242	< 0.326
Aroclor 1248	< 0.326
Aroclor 1254	< 0.326
Aroclor 1260	< 0.326

ELAP Number 10958

Method: EPA 8082

Comments: mg / Kg = milligram per Kilogram

Signature:

Bruce Hoogesteger: Technical Director
This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition 105090P1.XLS requirements upon receipt.

Client: SBD

Client Job Site:

Buffalo Color

Lab Project Number:

10-5090

Client Job Number:

N/A

Lab Sample Number:

15931

Field Location:

River Road/Pinto Backfill 2

Date Sampled:

12/15/2010

Field ID Number:

N/A

Date Received:

12/16/2010

Sample Type:

Soil

Date Analyzed:

12/17/2010

PCB Identification	Results in mg / Kg
Aroclor 1016	< 0.322
Aroclor 1221	< 0.322
Aroclor 1232	< 0.322
Aroclor 1242	< 0.322
Aroclor 1248	< 0.322
Aroclor 1254	< 0.322
Aroclor 1260	< 0.322

ELAP Number 10958

Method: EPA 8082

Comments: mg / Kg = milligram per Kilogram

Signature:

Bruce Hoogesteger: Technical Director
This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition requirements upon receipt. 105090P2.XLS

Client: SBD

Client Job Site:

Buffalo Color

Lab Project Number: Lab Sample Number: 10-5090 15932

Client Job Number: N/A

Field Location:

Area C Coversoil 1

Date Sampled:

12/15/2010

Field ID Number:

N/A

Date Received:

12/16/2010

Sample Type:

Soil

Date Analyzed:

12/17/2010

PCB Identification	Results in mg / Kg
Aroclor 1016	< 0.370
Aroclor 1221	< 0.370
Aroclor 1232	< 0.370
Aroclor 1242	< 0.370
Aroclor 1248	< 0.370
Aroclor 1254	< 0.370
Aroclor 1260	< 0.370

ELAP Number 10958

Method: EPA 8082

Comments: mg / Kg = milligram per Kilogram

Signature:

Bruce Hoogesteger: Technical Director
This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition 105090P3.XLS

Client: SBD

Client Job Site:

Buffalo Color

Lab Project Number: Lab Sample Number: 10-5090 15933

Client Job Number:

N/A

Area C Coversoil 2

Date Sampled:

12/15/2010

Field Location: Field ID Number:

N/A

Date Received:

12/16/2010

Sample Type:

Soil

Date Analyzed:

12/17/2010

PCB Identification	Results in mg / Kg
Aroclor 1016	< 0.382
Aroclor 1221	< 0.382
Aroclor 1232	< 0.382
Aroclor 1242	< 0.382
Aroclor 1248	< 0.382
Aroclor 1254	< 0.382
Aroclor 1260	< 0.382

ELAP Number 10958

Method: EPA 8082

Comments: mg / Kg = milligram per Kilogram

Signature:

Bruce Hoogesteger: Technical Director
This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition 105090P4.XLS requirements upon receipt.

Client: SBD

Buffalo Color Client Job Site:

Lab Project Number:

10-5090

Client Job Number:

N/A

Lab Sample Number:

15932

Field Location:

Area C Coversoil 1

Date Sampled:

12/15/2010

Field ID Number:

N/A

Date Received:

12/16/2010

Sample Type: Soil

12/16/2010

Date Analyzed:

Base / Neutrals	Results in ug / Kg	Base / Neutrals	Results in ug / Kg
Acenaphthene	< 357	Dibenz (a,h) anthracene	< 357
Anthracene	< 357	Fluoranthene	< 357
Benzo (a) anthracene	< 357	Fluorene	< 357
Benzo (a) pyrene	< 357	Indeno (1,2,3-cd) pyrene	< 357
Benzo (b) fluoranthene	< 357	Naphthalene	< 357
Benzo (g,h,i) perylene	< 357	Phenanthrene	< 357
Benzo (k) fluoranthene	< 357	Pyrene	< 357
Chrysene	< 357	Acenaphthylene	< 357
Diethyl phthalate	< 357	1,2-Dichlorobenzene	< 357
Dimethyl phthalate	< 892	1,3-Dichlorobenzene	< 357
Butylbenzylphthalate	< 357	1,4-Dichlorobenzene	< 357
Di-n-butyl phthalate	< 357	1,2,4-Trichlorobenzene	< 357
Di-n-octylphthalate	< 357	Nitrobenzene	< 357
Bis (2-ethylhexyl) phthalate	< 357	2,4-Dinitrotoluene	< 357
2-Chloronaphthalene	< 357	2,6-Dinitrotoluene	< 357
Hexachlorobenzene	< 357	Bis (2-chloroethyl) ether	< 357
Hexachloroethane	< 357	Bis (2-chloroisopropyl) ether	< 357
Hexachlorocyclopentadiene	< 357	Bis (2-chloroethoxy) methane	< 357
Hexachlorobutadiene	< 357	4-Bromophenyl phenyl ether	< 357
N-Nitroso-di-n-propylamine	< 357	4-Chlorophenyl phenyl ether	< 357
N-Nitrosodiphenylamine	< 357	Benzidine	< 892
N-Nitrosodimethylamine	< 357	3,3'-Dichlorobenzidine	< 357
Isophorone	< 357	4-Chloroaniline	< 357
Benzyl alcohol	< 892	2-Nitroaniline	< 892
Dibenzofuran	< 357	3-Nitroaniline	< 892
2-Methylnapthalene	< 357	4-Nitroaniline	< 892
Aniline	< 357		

Acids	Results in ug / Kg	Acids	Results in ug / Kg
Phenol	< 357	2-Methylphenol	< 357
2-Chlorophenol	< 357	3&4-Methylphenol	< 357
2,4-Dichlorophenol	< 357	2,4-Dimethylphenol	< 357
2,6-Dichlorophenol	< 357	2-Nitrophenol	< 357
2,4,5-Trichlorophenol	< 892	4-Nitrophenol	< 892
2,4,6-Trichlorophenol	< 357	2,4-Dinitrophenol	< 892
Pentachlorophenol	< 892	4,6-Dinitro-2-methylphenol	< 892
4-Chloro-3-methylphenol	< 357	Benzoic acid	< 892

ELAP Number 10958

Method: EPA 8270C

Data File: S54413.D

Comments: ug / Kg = microgram per Kilogram

Signature:

Bruce Hoogesteger: Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition 105090S3.XLS requirements upon receipt.

Client: SBD

Client Job Site:

Buffalo Color

Lab Project Number: Lab Sample Number: 10-5090 15933

Client Job Number: N/A

Field Location:

Area C Coversoil 2

Date Sampled:

12/15/2010

Field ID Number:

N/A

Date Received:

12/16/2010

Sample Type: Soil

Date Analyzed:

12/16/2010

Base / Neutrals	Results in ug / Kg	Base / Neutrals	Results in ug / Kg
Acenaphthene	< 369	Dibenz (a,h) anthracene	< 369
Anthracene	< 369	Fluoranthene	< 369
Benzo (a) anthracene	< 369	Fluorene	< 369
Benzo (a) pyrene	< 369	Indeno (1,2,3-cd) pyrene	< 36 9
Benzo (b) fluoranthene	< 369	Naphthalene	< 369
Benzo (g,h,i) perylene	< 369	Phenanthrene	< 369
Benzo (k) fluoranthene	< 369	Pyrene	< 369
Chrysene	< 369	Acenaphthylene	< 369
Diethyl phthalate	< 369	1,2-Dichlorobenzene	< 369
Dimethyl phthalate	< 922	1,3-Dichlorobenzene	< 369
Butylbenzylphthalate	< 369	1,4-Dichlorobenzene	< 369
Di-n-butyl phthalate	< 369	1,2,4-Trichlorobenzene	< 369
Di-n-octylphthalate	< 369	Nitrobenzene	< 369
Bis (2-ethylhexyl) phthalate	< 369	2,4-Dinitrotoluene	< 369
2-Chloronaphthalene	< 369	2,6-Dinitrotoluene	< 369
Hexachlorobenzene	< 369	Bis (2-chloroethyl) ether	< 369
Hexachloroethane	< 369	Bis (2-chloroisopropyl) ether	< 369
Hexachlorocyclopentadiene	< 369	Bis (2-chloroethoxy) methane	< 369
Hexachlorobutadiene	< 369	4-Bromophenyl phenyl ether	< 369
N-Nitroso-di-n-propylamine	< 369	4-Chlorophenyl phenyl ether	< 369
N-Nitrosodiphenylamine	< 369	Benzidine	< 922
N-Nitrosodimethylamine	< 369	3,3'-Dichlorobenzidine	< 369
Isophorone	< 369	4-Chloroaniline	< 369
Benzyl alcohol	< 922	2-Nitroaniline	< 922
Dibenzofuran	< 369	3-Nitroaniline	< 922
2-Methylnapthalene	< 369	4-Nitroaniline	< 922

Acids	Results in ug / Kg	Acids	Results in ug / Kg
Phenol	< 369	2-Methylphenol	< 369
2-Chlorophenol	< 369	3&4-Methylphenol	< 369
2,4-Dichlorophenol	< 369	2,4-Dimethylphenol	< 369
2,6-Dichlorophenol	< 369	2-Nitrophenol	< 369
2,4,5-Trichlorophenol	< 922	4-Nitrophenol	< 922
2,4,6-Trichlorophenol	< 369	2,4-Dinitrophenol	< 922
Pentachlorophenol	< 922	4,6-Dinitro-2-methylphenol	< 922
4-Chloro-3-methylphenol	< 369	Benzoic acid	< 922

< 369

Data File: S54414.D ELAP Number 10958 Method: EPA 8270C

Comments: ug / Kg = microgram per Kilogram

Signature:

Aniline

Bruce Hoogesteger: Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition requirements upon receipt.

Client: SBD

Client Job Site:

Buffalo Color

Lab Project Number: 10-5090

Client Job Number:

N/A

Lab Sample Number: 15930

Field Location:

River Road/Pinto Backfill 1

Date Sampled:

12/15/2010

Field ID Number:

N/A

Date Received:

12/16/2010

Sample Type:

Soil

Date Analyzed:

12/17/2010

Halocarbons	Results in ug / Kg
Bromodichloromethane	< 4.28
	< 4.28
Bromomethane	
Bromoform	< 10.7
Carbon Tetrachloride	< 4.28
Chloroethane	< 4.28
Chloromethane	< 4.28
2-Chloroethyl vinyl Ether	< 21.4
Chloroform	< 4.28
Dibromochloromethane	< 4.28
1,1-Dichloroethane	< 4.28
1,2-Dichloroethane	< 4.28
1,1-Dichloroethene	< 4.28
cis-1,2-Dichloroethene	< 4.28
trans-1,2-Dichloroethene	< 4.28
1,2-Dichloropropane	< 4.28
cis-1,3-Dichloropropene	< 4.28
trans-1,3-Dichloropropene	< 4.28
Methylene chloride	< 10.7
1,1,2,2-Tetrachloroethane	< 4.28
Tetrachloroethene	< 4.28
1,1,1-Trichloroethane	< 4.28
1,1,2-Trichloroethane	< 4.28
Trichloroethene	< 4.28
Trichlorofluoromethane	< 4.28
Vinyl chloride	< 4.28

Aromatics	Results in ug / Kg
Benzene	< 4.28
Chlorobenzene	< 4.28
Ethylbenzene	< 4.28
Toluene	< 4.28
m,p-Xylene	< 4.28
o-Xylene	< 4.28
Styrene	< 10.7
1,2-Dichlorobenzene	15.4
1,3-Dichlorobenzene	< 4.28
1,4-Dichlorobenzene	< 4.28

Ketones	Results in ug / Kg
Acetone	34.5
2-Butanone	< 21.4
2-Hexanone	< 10.7
4-Methyl-2-pentanone	< 10.7

Miscellaneous	Results in ug / Kg
Carbon disulfide	< 4.28
Vinyl acetate	< 10.7
•	

ELAP Number 10958

Method: EPA 8260B

Data File: V81052.D

Comments: ug / Kg = microgram per Kilogram Surrogate outliers indicate probable matrix interference

Signature:

Bruce Hoogesteger, / echnical Director
This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition 105090W1.XLS requirements upon receipt.

Client: SBD

Client Job Site: Buffalo Color Lab Project Number: 10-5090 Lab Sample Number: 15931

Client Job Number: N/A

Date Sampled:

12/15/2010

Field Location: Field ID Number: River Road/Pinto Backfill 2

Date Received:

12/16/2010

N/A

Sample Type:

Soil

Date Analyzed:

12/17/2010

Halocarbons	Results in ug / Kg
Bromodichloromethane	< 4.00
Bromomethane	< 4.00
Bromoform	< 9.99
Carbon Tetrachloride	< 4.00
Chloroethane	< 4.00
Chloromethane	< 4.00
2-Chloroethyl vinyl Ether	< 20.0
Chloroform	< 4.00
Dibromochloromethane	< 4.00
1,1-Dichloroethane	< 4.00
1,2-Dichloroethane	< 4.00
1,1-Dichloroethene	< 4.00
cis-1,2-Dichloroethene	< 4.00
trans-1,2-Dichloroethene	< 4.00
1,2-Dichloropropane	< 4.00
cis-1,3-Dichloropropene	< 4.00
trans-1,3-Dichloropropene	< 4.00
Methylene chloride	< 9.99
1,1,2,2-Tetrachloroethane	< 4.00
Tetrachloroethene	< 4.00
1,1,1-Trichloroethane	< 4.00
1,1,2-Trichloroethane	< 4.00
Trichloroethene	< 4.00
Trichlorofluoromethane	< 4.00

Aromatics	Results in ug / Kg
Benzene	< 4.00
Chlorobenzene	< 4.00
Ethylbenzene	< 4.00
Toluene	< 4.00
m,p-Xylene	18.1
o-Xylene	4.87
Styrene	< 9.99
1,2-Dichlorobenzene	10.0
1,3-Dichlorobenzene	< 4.00
1,4-Dichlorobenzene	< 4.00

Ketones	Results in ug / Kg
Acetone	26.8
2-Butanone	< 20.0
2-Hexanone	< 9.99
4-Methyl-2-pentanone	< 9.99

Miscellaneous	Results in ug / Kg
Carbon disulfide	< 4.00
Vinyl acetate	< 9.99

Vinyl chloride ELAP Number 10958

Method: EPA 8260B

Data File: V81053.D

Comments: ug / Kg = microgram per Kilogram

Surrogate and internal standard outliers indicate probable matrix interference

< 4.00

Signature:

Bruce Hoogesteger: Xechnical Director
This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition 105090W2.XLS requirements upon receipt.

Client: SBD

Client Job Site: Buffalo Color Lab Project Number: 10-5090

Client Job Number:

N/A

Lab Sample Number: 15932

Field Location:

Area C Coversoil 1

Date Sampled:

12/15/2010

Field ID Number:

Bromodichloromethane

N/A

Date Received:

12/16/2010

Sample Type:

Soil

Date Analyzed:

12/17/2010

Halocarbons	Results in ug / Kg

D. 01110 0101110 1110 1110	116
Bromomethane	< 4.27
Bromoform	< 10.7
Carbon Tetrachloride	< 4.27
Chloroethane	< 4.27
Chloromethane	< 4.27
2-Chloroethyl vinyl Ether	< 21.3
Chloroform	< 4.27
Dibromochloromethane	< 4.27
1,1-Dichloroethane	< 4.27
1,2-Dichloroethane	< 4.27
1,1-Dichloroethene	< 4.27
cis-1,2-Dichloroethene	< 4.27
trans-1,2-Dichloroethene	< 4.27
1,2-Dichloropropane	< 4.27
cis-1,3-Dichloropropene	< 4.27
trans-1,3-Dichloropropene	< 4.27
Methylene chloride	< 10.7
	Bromomethane Bromoform Carbon Tetrachloride Chloroethane Chloroethyl vinyl Ether Chloroform Dibromochloromethane 1,1-Dichloroethane 1,2-Dichloroethene cis-1,2-Dichloroethene trans-1,2-Dichloropropane cis-1,3-Dichloropropene trans-1,3-Dichloropropene

Aromatics	Results in ug / Kg
Benzene	< 4.27
Chlorobenzene	< 4.27
Ethylbenzene	< 4.27
Toluene	< 4.27
m,p-Xylene	< 4.27
o-Xylene	< 4.27
Styrene	< 10.7
1,2-Dichlorobenzene	< 4.27
1,3-Dichlorobenzene	< 4.27
1,4-Dichlorobenzene	< 4.27

Ketones	Results in ug / Kg
Acetone	< 21.3
2-Butanone	< 21.3
2-Hexanone	< 10.7
4-Methyl-2-pentanone	< 10.7

Miscellaneous	Results in ug / Kg
Carbon disulfide	< 4.27
Vinyl acetate	< 10.7

ELAP Number 10958

Tetrachloroethene

Trichloroethene

Vinyl chloride

1,1,1-Trichloroethane

1,1,2-Trichloroethane

Trichlorofluoromethane

1,1,2,2-Tetrachloroethane

Method: EPA 8260B

< 4.27

< 4.27

< 4.27

< 4.27

< 4.27

< 4.27

< 4.27

Data File: V81054.D

Comments: ug / Kg = microgram per Kilogram

Surrogate outliers indicate probable matrix interference

Signature:

Bruce Hoogesteger: Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition

Client: SBD

Client Job Site: Buffalo Color Lab Project Number: 10-5090 Lab Sample Number: 15933

Client Job Number:

N/A

Field Location: Field ID Number: Area C Coversoil 2

Date Sampled: Date Received: 12/15/2010 12/16/2010

Sample Type:

N/A

Soil

Date Analyzed:

12/17/2010

Halocarbons	Results in ug / Kg
Bromodichloromethane	< 4.75
Bromomethane	< 4.75
Bromoform	< 11.9
Carbon Tetrachloride	< 4.75

Bromoform	< 11.9
Carbon Tetrachloride	< 4.75
Chloroethane	< 4.75
Chloromethane	< 4.75
2-Chloroethyl vinyl Ether	< 23.8
Chloroform	< 4.75
Dibromochloromethane	< 4.75
1,1-Dichloroethane	< 4.75
1,2-Dichloroethane	< 4.75
A A PState to a settle a second	4 4 75

Chloroethane	< 4.75	
Chloromethane	< 4.75	
2-Chloroethyl vinyl Ether	< 23.8	
Chloroform	< 4.75	
Dibromochloromethane	< 4.75	
1,1-Dichloroethane	< 4.75	
1,2-Dichloroethane	< 4.75	
1,1-Dichloroethene	< 4.75	
cis-1,2-Dichloroethene	< 4.75	
trans-1,2-Dichloroethene	< 4.75	
1,2-Dichloropropane	< 4.75	
cis-1,3-Dichloropropene	< 4.75	
trans-1,3-Dichloropropene	< 4.75	

Aromatics	Results in ug / Kg
Benzene	< 4.75
Chlorobenzene	< 4.75
Ethylbenzene	< 4.75
Toluene	< 4.75
m,p-Xylene	< 4.75
o-Xylene	< 4.75
Styrene	< 11.9
1,2-Dichlorobenzene	< 4.75
1,3-Dichlorobenzene	< 4.75
1,4-Dichlorobenzene	< 4.75

Ketones	Results in ug / Kg
Acetone	< 23.8
2-Butanone	< 23.8
2-Hexanone	< 11.9
4-Methyl-2-pentanone	< 11.9

Miscellaneous	Results in ug / Kg
Carbon disulfide	< 4.75
Vinyl acetate	< 11.9
•	·
•	

ELAP Number 10958

Methylene chloride

Tetrachloroethene

Trichloroethene

Vinyl chloride

1,1,1-Trichloroethane

1,1,2-Trichloroethane

Trichlorofluoromethane

1,1,2,2-Tetrachloroethane

Method: EPA 8260B

< 11.9

< 4.75

< 4.75

< 4.75

< 4.75

< 4.75

< 4.75

< 4.75

Data File: V81055.D

Comments: ug / Kg = microgram per Kilogram

Surrogate outliers indicate probable matrix interference

Signature:

Bruce Hoogesteger: Techpical Director
This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition 105090W4.XLS requirements upon receipt.

Client: SBD

Client Job Site:

Buffalo Color Lab Project Number: 10-5090

Client Job Number:

N/A

Lab Sample Number: 15934

Field Location:

E1-Overburden Pile 1

Date Sampled:

12/15/2010

Field ID Number:

N/A

Date Received:

12/16/2010

Sample Type:

Soil

Date Analyzed:

12/16/2010

Halocarbons	Results in ug / Kg
Bromodichloromethane	< 204
Bromomethane	< 204
1	

Bromoform < 509 Carbon Tetrachloride < 204 Chloroethane < 204 Chloromethane < 204 < 1.020

2-Chloroethyl vinyl Ether Chloroform Dibromochloromethane

< 204 < 204 1,1-Dichloroethane < 204 1,2-Dichloroethane

1,1-Dichloroethene < 204 < 204 cis-1,2-Dichloroethene trans-1,2-Dichloroethene < 204

< 204

< 204

< 204

< 204 1,2-Dichloropropane cis-1,3-Dichloropropene < 204 trans-1,3-Dichloropropene < 204 < 509 Methylene chloride < 204 1,1,2,2-Tetrachloroethane

< 204 1,1,1-Trichloroethane 1,1,2-Trichloroethane < 204 < 204 Trichloroethene Trichlorofluoromethane < 204

Vinyl chloride ELAP Number 10958

Tetrachloroethene

Aromatics	Results in ug / Kg
Benzene	< 204
Chlorobenzene	4,920
Ethylbenzene	< 204
Toluene	< 204
m,p-Xylene	< 204
o-Xylene	< 204
Styrene	< 509
1,2-Dichlorobenzene	3,450
1,3-Dichlorobenzene	< 204
1.4-Dichlorobenzene	645

Ketones	Results in ug / Kg
Acetone	< 1,020
2-Butanone	< 1,020
2-Hexanone	< 509
4-Methyl-2-pentanone	< 509

Miscellaneous	Results in ug / Kg
Carbon disulfide	< 204
Vinyl acetate	< 509
	İ

Data File: V81033.D Method: EPA 8260B

Comments: ug / Kg = microgram per Kilogram

Internal standard outliers indicate probable matrix interference

Signature:

Bruce Hoogesteger: Technical Director

Client: SBD

Client Job Site:

Buffalo Color

Lab Project Number: 10-5090

Lab Sample Number: 15935

Client Job Number:

N/A

E1-Overburden Pile 2

Date Sampled:

12/15/2010

Field Location: Field ID Number:

N/A

Date Received:

12/16/2010

Sample Type:

Soil

Date Analyzed:

12/16/2010

Halocarbons	Results in ug / Ko

- 1	Bromodichioromethane	< 1,570
ı	Bromomethane	< 1,570
	Bromoform	< 3,910
١	Carbon Tetrachloride	< 1,570
	Chloroethane	< 1,570
١	Chloromethane	< 1,570
-	2-Chloroethyl vinyl Ether	< 7.830

7 1,070
< 7,830
< 1,570
< 1,570
< 1,570

< 1,570 1,2-Dichloroethane < 1,570 1,1-Dichloroethene cis-1,2-Dichloroethene < 1.570

< 1,570 trans-1,2-Dichloroethene < 1,570 1,2-Dichloropropane < 1,570

cis-1,3-Dichloropropene < 1,570 trans-1,3-Dichloropropene Methylene chloride < 3,910 1,1,2,2-Tetrachloroethane < 1,570 < 1,570 Tetrachloroethene

< 1,570 1.1.1-Trichloroethane 1,1,2-Trichloroethane < 1,570 Trichloroethene < 1,570 Trichlorofluoromethane < 1,570 < 1,570 Vinyl chloride

ELAP Number 10958

Aromatics	Results in ug / Kg
Benzene	< 1,570
Chlorobenzene	16,400
Ethylbenzene	1,710
Toluene	< 1,570
m,p-Xylene	< 1,570
o-Xylene	< 1,570
Styrene	< 3,910
1,2-Dichlorobenzene	3,260
1,3-Dichlorobenzene	< 1,570
1,4-Dichlorobenzene	< 1,570

Ketones	Results in ug / Kg
Acetone	< 7,830
2-Butanone	< 7,830
2-Hexanone	< 3,910
4-Methyl-2-pentanone	< 3,910

Miscellaneous	Results in ug / Kg
Carbon disulfide	< 1,570
Vinyl acetate	< 3,910
	1

Method: EPA 8260B Data File: V81034.D

Comments: ug / Kg = microgram per Kilogram

Signature:

Bruce Hoogesteger: Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition 105090V6.XLS requirements upon receipt.

43987

CHAIN OF CUSTODY

PARADIGM	

			i a masz	Maratina (Starita)	ent of the Market of Co.	<u>Ci</u> Sura entre de cara			Car Piki	*	1.787		a attracted a	ر رئارتان در سائم باز	4 1.91 480		دے الاہماری			7 Tak (5		
PAF	RADIO	6 M	COMPANY		REPORT TO		2344	COMPAN'	Y:	Sar	INVO	ICET	O::::			LAB PROJI	ECT #:	CLIENT F	ROJECT	#:	<u> </u>	
			ADDRESS	5BD	. 1			ADDRESS		Jai	ne					io-50	\ 0^					
	in a section		CITY:	Gunson S	r∔. State	: ZIP:		CITY:					TATE:		ZIP:		UND TIME: (\	VORKING D	AYS)			
		P. P.	B.j.[4] PHÔNE:	alo NY	FAX:	1460		PHONE:			•	FAX:							_			
ROJECT NAME/SITE	NAME:	·· · · · ·	ATTN:	. \/				ATTN:								\[\]₁ [¬. г	STI) 1. /	OTH C	ER()	
0 50		(~	COMMENT	ohn Yens	an	······		<u> </u>								\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	2	13	12 /		Piet	ł
Buffe	110 Cel		COMMEN	John S	crahis J	in Scrahi	56 V	nacte	ی ک	(Y)	magazara yasa	un areast, etc	in madestrand	este todas est	TOTAL DILAGOZA	Quotat	tion#	8	ee E		mra.	1
							STATES		RE	QUE) AN	ALYSI	S					Ho	ماه	<u> </u>	
		0					м	0 		يا ا	+cyanide							۵,	مأساء	20 12 21	12/14	
		M. P	G R				A	N N U T M A		SuctAniline	ξ ζ		İ					""	PARADI	S Z C	iab	
DATE	TIME	o s	A	SAM	PLE LOCATION/FI	ELD ID	R	BI		 	<u>\$</u>			,		REMA	RKS		SAMPLE			
		l T	5				x	R E R	וכר מש	\I 001	Inc	1 1			1			İ				
		· E						s	3	2 2	ᅔ	\perp			ļ							.:.
12-15-10	12 00	X		River Roa	1/Pinto Bac	Kfill 1	50:1	a	X.	<u>X X</u>	<u> </u>				Plea	se Ru	SN	i	50	13		
2	1200	Ж		River Roc	d/ Pinto B	ackfill 2	Soil	2	1	· /	X	Ш						1	5 °	13		
3	1130	X	:	Area C	Coversoil	1	Soil	2	X	$X \mid X$	X					\perp		1	50	13	2	
, ↓	1130	X		Area (Cover Soil	2	Soil	2	x.	xX	X					d			5	13	3	
5 12-15-16	1245	X		E1-OVE	rburden Pil	e 2	Soil	а	X	××	X		1	V	Bono	t Rush;	Donat R	uncui	59	13	4	
6 12-15-10	1330	Χ			er burden		Soil	3	ノ	x X	Х		71.	7	Do no	+ Rush	Do not R	mcM	50	13	5	
7					7 RM				Ħ			\overline{Z}	7			•	anide	クト				
3				eun "on	hold" po	om a lor	1	1					7			1		3		i	\square .	
3				EI Pile	2 donot	ell norma	1						1		> P	ひへ	101		HO!	ER/	12	~
10					ests Di		350 N	VII.							1	<u>il</u>		P e s:	11/1			
LAB USE O	NLY BEU	OWTHIS LI	NET H							別組						nd va	A BU					
Sample Condition	on: Per NEL Receipt Pa		241/242/2	243/244 NELAC	Compliance			'		_						J	Aper	OALO	~ .	256	12/14	?
	Container			Y 🔀	N	- 5	Sean	Condie	ید ے	eurl	هلاية		17-1	5-10	1330	E	=1 Pile	1,000	1 E.	iks p Etrit	E 2 1	,
Comments:	Container	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		, ()	``	Samp	led By			4			Date/Ti	me			Total	Cost: Hz	SEV	oas	01/14	,
	Preservat	tion:	l.a	Υ	N 🔲	S	tan G	andre		Jew	Coul	Lei	12-1	5-10	1500			day	,			
Comments:		<u> </u>	SIA			Relino	uished I	By A					Date/Ti	ime	1330 1500		OH	1er c		,		
	Holding T	ime:		Y 🔀	N			H.				_/c) / Date/Ti	4-			5 .5	_		EA		
Comments:						Recen	vee/Bv	;	0	_							P.I.F.			lik	116	
Comments:	Temperat	ture: 3°C iG	ad	ΥØ	N	Recei	ا کال ۱۸ ved @ La	ah By	Ca	LI	<u> </u>	Δ	し入 Date/Ti	<u> </u>	10	1700		L				
	·			•		1,000		~-J~~					_u.c. [•						

1012 17027 179 Lake Avenue, Rochester, NY 14608 Office (585) 647-2530 Fax (585) 647-3311

CHAIN OF CUSTODY

Additional as a loft

ĐΜ	RADI(alve.			REPORT TO:	Maturio estra	en en en en en en en en en en en en en e	art (d.)		1981 - 1944	INVC	ICE T	o:		al Varioni I	HASSES	cara di bac		i Votelo Monta i	yaya Makaza		
			COMPAN	raia	digm Environ	mental		COMPAN	Y:	Sar							OJECT#;	CLIE	NT PRO	JECT	#:	
\			ADDRESS	S:				ADDRES	S:													
		A	CITY:		STATE:	ZIP-		CITY:				Sī	ATE:		ZIP:	i i	OUND TIME:	(WORKI	IG DAY	S)		
2000		~	PHONE:		FAX:			PHONE:				FAX:				-	RUS H		STD		OTHE	R
PROJECT NAME/SIT	E NAME:		ATTN:	Jane	Daloia			ATTN:	V	/leridit	h Dillr	nan				Χı	2	3	5			٦
			COMMEN		se email results		en@pa	radigm			-	_	•	-		Date	Due: D	رزو	12/	20/	10	
Sterreseath.		Silverial (nove)	<u>,2029</u> T	<u> </u>		•	τ	· ·	I T	QUE	SIED	ANA	LYSIS	3.50 p.	<u> Paser.</u>	tariff e	<u>- 11404 (%)</u>			1.00		-:
DATE	TIME	O M P O S I T E	G R A B	SAN	IPLE LOCATION/FIELD	O ID	M A T R I	CONTAINER NUMBER	157							REMJ	ARKS				M LAÐ JUMBER	
1 12/15/10	१२००			10.500	10-15930	ا ا	Soil	١	X										06	2/		
2	iaco				1593		1	1	X			1							ی ای	5 5		
3	1130				1593)	λ	11										7 3	1	_
4	1130				1593		1	1	X	17		1-1-	\top		<u> </u>				$\frac{\mathcal{O}}{\mathcal{O}}$			_
5	1:50				10 (····	 	+-+	\dashv	†	+-		<u></u>				۲	47	++	-
3			 						+	++	_	+-+	+	+	 					+	+	\dashv
7				 					\vdash	\dashv		┼┼	+		 	·				+	++	4
· · · · · · · · · · · · · · · · · · ·			 							++		┼	+	_	┼				-	┿	++	_
)										+	-			_	 -				+	4_	₩.	4
)			<u> </u>			·				+									\dashv		$\bot \bot$	4
10 *IABIISE	NIMERIO	DAMEETI SHAIN	i=**	omnoran A Cittabase					L_ <u>l</u> _						1					Щ.		╝
Sample Condition	n: Per NEL/	C/ELAP 210/24	1/242/24	43/244	(48)(74-72); (2-4-74) -	<u> </u>	<u> </u>	·		· , 6 🐺			<u> </u>	1 (4-4)	<u> 18 m., 17 % (17</u>	<u> </u>			80.3°		20 (20) 2 - (20) 2- (20)	
	Receipt Pa	rameter		NELAC C	ompliance																	
Comments:	Container	Туре:		Y	и 🗀	Sample	•						ate/Tin			·		Cost:				
Comments:	Preservat	lion:		Y 🗀	N	<u>Sin 1</u> Relinqu	ished E	<u> 40</u>	لث	nU	n	1,2	Leate/Tim	<u> </u>	1/2	000	をになし					
Comments:	Holding Ti	ime:		Y 🗀	N	Receive							ate/Tin				- P.I.F.	. 1		7		
Comments:	Temperat	ure:		Y	и	0	d @ Lat	By	10	in h	2	_ (6		7/1	0 1	2:14	(Pm					

Client: SBD

Client Job Site:

N/A

Lab Project Number:

10-5151

N/A

Lab Sample Number:

16099

Client Job Number: Field Location:

River Road / Pinto-SV 1

Date Sampled:

12/20/2010

Field ID Number: Sample Type:

N/A Soil Date Received:

12/20/2010

Date Analyzed:

12/20/2010

Base / Neutrals	Results in ug / Kg	Base / Neutrals	Results in ug / Kg
Acenaphthene	< 601	Dibenz (a,h) anthracene	< 601
Anthracene	< 601	Fluoranthene	< 601
Benzo (a) anthracene	< 601	Fluorene	< 601
Benzo (a) pyrene	< 601	Indeno (1,2,3-cd) pyrene	< 601
Benzo (b) fluoranthene	< 601	Naphthalene	< 601
Benzo (g,h,i) perylene	< 601	Phenanthrene	< 601
Benzo (k) fluoranthene	< 601	Pyrene	< 601
Chrysene	< 601	Acenaphthylene	< 601
Diethyl phthalate	< 601	1,2-Dichlorobenzene	< 601
Dimethyl phthalate	< 1,500	1,3-Dichlorobenzene	< 601
Butylbenzylphthalate	< 601	1,4-Dichlorobenzene	< 601
Di-n-butyl phthalate	< 601	1,2,4-Trichlorobenzene	< 601
Di-n-octylphthalate	< 601	Nitrobenzene	< 601
Bis (2-ethylhexyl) phthalate	< 601	2,4-Dinitrotoluene	< 601
2-Chloronaphthalene	< 601	2,6-Dinitrotoluene	< 601
Hexachlorobenzene	< 601	Bis (2-chloroethyl) ether	< 601
Hexachloroethane	< 601	Bis (2-chloroisopropyl) ether	< 601
Hexachlorocyclopentadiene	< 601	Bis (2-chloroethoxy) methane	< 601
Hexachlorobutadiene	< 601	4-Bromophenyl phenyl ether	< 601
N-Nitroso-di-n-propylamine	< 601	4-Chlorophenyl phenyl ether	< 601
N-Nitrosodiphenylamine	< 601	Benzidine	< 1,500
N-Nitrosodimethylamine	< 601	3,3'-Dichlorobenzidine	< 601
Isophorone	< 601	4-Chloroaniline	< 601
Benzyl alcohol	< 1,500	2-Nitroaniline	< 1,500
Dibenzofuran	< 601	3-Nitroaniline	< 1,500
2-Methylnapthalene	< 601	4-Nitroaniline	< 1,500
Aniline	< 601		

Acids	Results in ug / Kg	Acids	Results in ug / Kg
Phenol	< 601	2-Methylphenol	< 601
2-Chlorophenol	< 601	3&4-Methylphenol	< 601
2,4-Dichlorophenol	< 601	2,4-Dimethylphenol	< 601
2,6-Dichlorophenol	< 601	2-Nitrophenol	< 601
2,4,5-Trichlorophenol	< 1,500	4-Nitrophenol	< 1,500
2,4,6-Trichlorophenol	< 601	2,4-Dinitrophenol	< 1,500
Pentachlorophenol	< 1,500	4,6-Dinitro-2-methylphenol	< 1,500
4-Chloro-3-methylphenol	< 601	Benzoic acid	< 1,500

ELAP Number 10958 Method: EPA 8270C Data File: S54447.D

Comments: ug / Kg = microgram per Kilogram

Signature:

Bruce Hoogesteger: Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition requirements upon receipt. 105151S1.XLS

Client: SBD

Client Job Site:

N/A

Lab Project Number: Lab Sample Number: 10-5151 16100

N/A

Client Job Number: Field Location:

River Road / Pinto-SV 2

Field ID Number:

N/A

Date Sampled: **Date Received:** 12/20/2010 12/20/2010

Sample Type: Soil Date Analyzed:

12/20/2010

Base / Neutrals	Results in ug / Kg	Base / Neutrals	Results in ug / Kg
Acenaphthene	< 597	Dibenz (a,h) anthracene	< 597
Anthracene	< 597	Fluoranthene	< 597
Benzo (a) anthracene	< 597	Fluorene	< 597
Benzo (a) pyrene	< 597	Indeno (1,2,3-cd) pyrene	< 597
Benzo (b) fluoranthene	< 597	Naphthalene	< 597
Benzo (g,h,i) perylene	< 597	Phenanthrene	< 597
Benzo (k) fluoranthene	< 597	Pyrene	< 597
Chrysene	< 597	Acenaphthylene	< 597
Diethyl phthalate	< 597	1,2-Dichlorobenzene	< 597
Dimethyl phthalate	< 1,490	1,3-Dichlorobenzene	< 597
Butylbenzylphthalate	< 597	1,4-Dichlorobenzene	< 597
Di-n-butyl phthalate	< 597	1,2,4-Trichlorobenzene	< 597 ,
Di-n-octylphthalate	< 597	Nitrobenzene	< 597
Bis (2-ethylhexyl) phthalate	< 597	2,4-Dinitrotoluene	< 597
2-Chloronaphthalene	< 597	2,6-Dinitrotoluene	< 597
Hexachlorobenzene	< 597	Bis (2-chloroethyl) ether	< 597
Hexachloroethane	< 597	Bis (2-chloroisopropyl) ether	< 597
Hexachlorocyclopentadiene	< 597	Bis (2-chloroethoxy) methane	< 597
Hexachlorobutadiene	< 597	4-Bromophenyl phenyl ether	< 597
N-Nitroso-di-n-propylamine	< 597	4-Chlorophenyl phenyl ether	< 597
N-Nitrosodiphenylamine	< 597	Benzidine	< 1,490
N-Nitrosodimethylamine	< 597	3,3'-Dichlorobenzidine	< 597
Isophorone	< 597	4-Chloroaniline	< 597
Benzyl alcohol	< 1,490	2-Nitroaniline	< 1,490
Dibenzofuran	< 597	3-Nitroaniline	< 1,490
2-Methylnapthalene	< 597	4-Nitroaniline	< 1,490
Aniline	< 597	•	

Acids	Results in ug / Kg	Acids	Results in ug / Kg
Phenol	< 597	2-Methylphenol	< 597
2-Chlorophenol	< 597	3&4-Methylphenol	< 597
2.4-Dichlorophenol	< 597	2,4-Dimethylphenol	< 597
2,6-Dichlorophenol	< 597	2-Nitrophenol	< 597
2,4,5-Trichlorophenol	< 1,490	4-Nitrophenol	< 1,490
2,4,6-Trichlorophenol	< 597	2,4-Dinitrophenol	< 1,490
Pentachlorophenol	< 1,490	4,6-Dinitro-2-methylphenol	< 1,490
4-Chloro-3-methylphenol	< 597	Benzoic acid	< 1,490

ELAP Number 10958

Method: EPA 8270C

Data File: S54448.D

Comments: ug / Kg = microgram per Kilogram

Signature:

Bruce Hoogesteger: Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition 105151S2.XLS requirements upon receipt.

							<u>C</u>	HAII	<u> </u>	F C	<u>US</u>	TO	<u>DY</u>	,		_	7	5	18	7			
РΔ	RADIO	3 M			REPORT	то:					a l	VOIC	E TO:										śń
\ \	RHENTAL SCAVICE		COMPANY	$-\infty$	1>				COMPAN		Sam	е					LAB PRO		l l	NT PRO	JECT /	#:	\Box
	Source to the second		ADDRESS	**************************************	. Ge	ngt)m 7	st	ADDRESS	S:			•					5151		•			
			CITY	Alo	STA	ATE:	ZIP	1003	CITY:				STA	TE:		ZIP:	TURNAR	MIT DNUC	E: (WORKIN	G DAY	5)		
	The state of the s		PHONE:		FAX:				PHONE:	1 .		F	AX:			_ \	\mathcal{L}			STD		ОТН	ER
ROJECT NAME/SIT	E NAME:		ATTN:	5 . Ve	1201-		Jyp.	Col	ATTAN:	1			_				\mathbf{X}_{1}	2	3	5		L	
			COMMEN.	тs: 📝			/'			Ņ							Quota	ation #	ł				
run dasidar e r ist			ah Ass							REC	QES	TED /	ŊĄĹ	YSIS			2848			Å.		in the same	
		C O	į			•			C O	ہ ایا ہ													İ
		M ·	G					M A	N N U T	💆 🕺													
DATE	TIME	0	R	SAN	MPLE LOCATION	N/FIELD ID		T R	M A B I	10)	1						REM	ARKS				M LAB	
		i i	В					X .	E N R E	1		:											- 1
		Ē			4			1	J s	F +													
12/20	هم ا	λ (River	Road /	Pinto	-5V	12	Soil	XX										10	00	9	9
12/70	いいこ	X		Pige	Rose	Divid	-5V	ラレ	1	XX						•				14	, /	0	0
3					7	/		-												Ť	T	\Box	
													1							\top	+	1	一
;												11			+					\top	\dagger	\forall	H
			 						· · · · ·	 		11	- 		+					$\neg \uparrow$	+	\vdash	\Box
,								 			H	++	+-		+					+	+	+	\dashv
	<u> </u>			<u> </u>				 			╁╼╌╁┈	╅	╅	\vdash	+	•				\dashv	+	+	\vdash
) 										+-	┢┈┟.	╌┼╌┼	_	 	+					+	+	+-	
,			-									++		\vdash	+					+	+	H	\dashv
0 MARIUSE	 	i Owithisiei	NEXX										1000 6000										359£14
		AC/ELAP 210/			THE WASHINGTON TO THE PARTY OF			COLUMN PARTIES ALEXA					I STREET AND A STREET			erienis et 1864		BG051085W151A		K.PANA	Property.	TANKS	APROXICE.
-	Receipt Pa				Compliance			\cap			_	. 7)	ſ.	_	_							
omments:	Container [*]	Туре:		ΥX	N		Samply	AI BU	<u>ب</u>	—		12) Zo Da	te/Time		112	20	- то	tal Cost:				
	Preserval	tion:			N [J 71_	~/(_											
omments:	rieseivai	uon. /	UIA.	· Y 🗀	N		Reling	uished [3v	0		- γ ζ	Da	te/Time) ~	113	<u></u>	-					
	Holding T	ime:		ΥX	N 🔲			1		ti		Į,	Эla	10/	ن /	1	6,7						
omments:				ىخىن -			Receiv	ed By	- N	<i>b</i>	. ,		Da	te/Vime	•			P.I	l.F.		\neg		
	Temperat	ture: 2°Ciced	_; _	, Y 🔯	N		<u>Cli</u>	al	eth	a. 7	40	nce	<u>ر ا</u>	2/2	0/1	016	<i>25</i>	· 			_]		
omments:	le	<u> arciced</u>	-pre	S.	. –		Receiv	ed @ La	ab By				Da	te/Time	•				•				

Analytical Report Cover Page

Ontario Specialty Contracting, Inc.

For Lab Project # 09-3508 Issued October 2, 2009 This report contains a total of 24 pages

The reported results relate only to the samples as they have been received by the laboratory.

Any noncompliant QC parameters having impact on the data are flagged or documented on the final report.

All soil/sludge samples have been reported on a dry weight basis, unless qualified "reported as received". Other solids are reported as received.

Each page of this document is part of a multipage report. This document may not be reproduced except in its entirety, without the prior consent of Paradigm Environmental Services, Inc.

The Chain of Custody provides additional information, including compliance with sample condition requirements upon receipt. Sample condition requirements are defined under the 2003 NELAC Standard, sections 5.5.8.3.1 and 5.5.8.3.2.

NYSDOH ELAP does not certify for all parameters. Paradigm Environmental Services or the indicated subcontracted laboratory does hold certification for all analytes where certification is offered by ELAP unless otherwise specified.

Data qualifiers are used, when necessary, to provide additional information about the data. This information may be communicated as a flag or as text at the bottom of the report. Please refer to the following list of frequently used data flags and their meaning:

[&]quot;ND" = analyzed for but not detected.

[&]quot;E" = Result has been estimated, calibration limit exceeded.

[&]quot;D" = Duplicate results outside QC limits. May indicate a non-homogenous matrix.

[&]quot;M" = Matrix spike recoveries outside QC limits. Matrix bias indicated.

[&]quot;B" = Method blank contained trace levels of analyte. Refer to included method blank report.

pH Analysis Report

Client: Ontario Specialty Contracting, Inc

Client Job Site:

HKJJ Clay Source

Grand Island

Lab Project Number:

09-3508

Client Job Number:

N/A

Date Sampled:

9/25/2009

Time Sampled:

N/A

Date Received:

9/25/2009

Soil

4:25 PM

Sample Type: Location:

Laboratory

Time Received: Date Analyzed:

9/28/2009

Time Analyzed:

1:20 PM

Lab Sample Number	Field Number	Field Location	Result (pH)
10808	N/A	TP-1	8.08
10809	N/A	TP-2	8.25
10810	N/A	TP-3	7.91
10811	N/A	TP-4	7.94
		·	

ELAP Number 10958

Method: EPA 9045C

Comments:

Signature:

Client:

Ontario Specialty Contracting, Inc.

Lab Project No.:

09-3508

Client Job Site:

HKJJ Clay Source Grand Island, NY Sample Type:

Soil

Client Job No.:

N/A

Date Sampled:

9/25/2009

. •,,, •

Date Received:

9/25/2009

Analytical Method:

SW 9012

Date Analyzed:

10/1/2009

Laboratory Report for Total Cyanide

Lab Sample ID	Sample Location/Field ID	TCN (ug/g)
10808	TP-1	ND<0.57
10809	TP-2	ND<0.59
10810	TP-3	ND<0.59
10811	TP-4	ND<0.60

ELAP ID.No.: 10709

Comments:

ND denotes Non Detect.

Approved By Technical Director:

Bruce Hoogesteger

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt

File ID: Ontario Specialty 09-3508

Client:

Ontario Specialty Contracting, Inc.

Lab Project No.: Lab Sample No.:

09-3508

Client Job Site:

HKJJ Clay Source

Sample Type:

10808 Soil

Client Job No.:

Grand Island, NY N/A

09/25/2009

Field Location:

Date Sampled: **Date Received:**

09/25/2009

TP-1 Field ID No.: N/A

Laboratory Report for TAL Metals Analysis in Solid

Parameter	Date Analyzed	Analytical	Result (mg/kg)
		Method	
Aluminum	10/02/2009	SW846 6010	16300
Antimony	10/02/2009	SW846 6010	<4.38
Arsenic	10/02/2009	SW846 6010	2.92
Barium	10/02/2009	SW846 6010	55.4
Beryllium	10/02/2009	SW846 6010	0.810
Cadmium	10/02/2009	SW846 6010	0.377
Calcium	10/02/2009	SW846 6010	61900
Chromium	10/02/2009	SW846 6010	22.1
Cobalt	10/02/2009	SW846 6010	10.6
Copper	10/02/2009	SW846 6010	22.1
Iron	10/02/2009	SW846 6010	23900
Lead	10/02/2009	SW846 6010	9.79
Magnesium	10/02/2009	SW846 6010	14000
Manganese	10/02/2009	SW846 6010	587
Mercury	09/28/2009	SW846 7471	0.0068
Nickel	10/02/2009	SW846 6010	23.9
Potassium	01/00/1900	SW846 6010	4600
Selenium	10/02/2009	SW846 6010	<0.364
Silver	10/02/2009	SW846 6010	<0.730
Sodium	10/02/2009	SW846 6010	258
Thallium	10/02/2009	SW846 6010	<0.438
Vanadium	10/02/2009	SW846 6010	31.6
Zinc	10/02/2009	SW846 6010	69.9

ELAP ID No.:10958

Comments:

Approved By:

Bruce Hoogesteger, Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional sample File ID:093508.xls information, including compliance with sample condition requirements upon receipt.

Client:

Ontario Specialty Contracting, Inc.

Lab Project No.:

09-3508

Client Job Site:

HKJJ Clay Source

Lab Sample No.:

10809

Client Job No.:

Grand Island, NY N/A

Sample Type:

Soil

Field Location:

. .,, .

Date Sampled:

09/25/2009

Field ID No.:

TP-2 N/A Date Received: 0

09/25/2009

Laboratory Report for TAL Metals Analysis in Solid

Parameter	Date Analyzed	Analytical	Result (mg/kg)
		Method	
Aluminum	10/02/2009	SW846 6010	19100
Antimony	10/02/2009	SW846 6010	<4.75
Arsenic	10/02/2009	SW846 6010	3.51
Barium	10/02/2009	SW846 6010	127
Berylllum	10/02/2009	SW846 6010	0.936
Cadmium	10/02/2009	SW846 6010	<0.396
Calcium	10/02/2009	SW846 6010	57000
Chromium	10/02/2009	SW846 6010	25.4
Cobalt	10/02/2009	SW846 6010	13.0
Copper	10/02/2009	SW846 6010	23.5
Iron	10/02/2009	SW846 6010	27300
Lead	10/02/2009	SW846 6010	10.9
Magnesium	10/02/2009	SW846 6010	14900
Manganese	10/02/2009	SW846 6010	526
Mercury	09/28/2009	SW846 7471	0.0139
Nickel	10/02/2009	SW846 6010	26.8
Potassium	01/00/1900	SW846 6010	5170
Selenium	10/02/2009	SW846 6010	<0.396
Silver	10/02/2009	SW846 6010	<0.791
Sodium	10/02/2009	SW846 6010	299
Thallium	10/02/2009	SW846 6010	<0.475
Vanadium	10/02/2009	SW846 6010	37.2
Zinc	10/02/2009	SW846 6010	73.2

ELAP ID No.:10958

Comments:

Approved By:

Client:

Ontario Specialty Contracting, Inc.

Lab Project No.:

09-3508

Client Job Site:

HKJJ Clay Source

Lab Sample No.:

10810

Client Job No.:

Grand Island, NY N/A

Sample Type:

Soil

Field Location:

TP-3

Date Sampled: Date Received:

09/25/2009 09/25/2009

Field ID No.:

N/A

Laboratory Report for TAL Metals Analysis in Solid

Parameter	Date Analyzed	Analytical Method	Result (mg/kg)
Aluminum	10/02/2009	SW846 6010	16000
Antimony	10/02/2009	SW846 6010	<5.50
Arsenic	10/02/2009	SW846 6010	3.28
Barium	10/02/2009	SW846 6010	133
Beryllium	10/02/2009	SW846 6010	0.809
Cadmium	10/02/2009	SW846 6010	<0.459
Calcium	10/02/2009	SW846 6010	67900
Chromium	10/02/2009	SW846 6010	21.3
Cobalt	10/02/2009	SW846 6010	12.1
Copper	10/02/2009	SW846 6010	21.7
Iron	10/02/2009	SW846 6010	24400
Lead	10/02/2009	SW846 6010	10.1
Magnesium	10/02/2009	SW846 6010	15400
Manganese	10/02/2009	SW846 6010	592
Mercury	09/28/2009	SW846 7471	0.0273
Nickel	10/02/2009	SW846 6010	23.5
Potassium	01/00/1900	SW846 6010	4270
Selenium	10/02/2009	SW846 6010	<0.459
Silver	10/02/2009	SW846 6010	<0.917
Sodium	10/02/2009	SW846 6010	241
Thállium	10/02/2009	SW846 6010	<0.550
Vanadium	10/02/2009	SW846 6010	32.5
Zinc	10/02/2009	SW846 6010	62.9

ELAP ID No.:10958

Comments:

Approved By:

Bruce Hoogesteger, Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional sample information, including compliance with sample condition requirements upon receipt.

Client:

Ontario Specialty Contracting, Inc.

Lab Project No.: Lab Sample No.: 09-3508

Client Job Site:

HKJJ Clay Source Grand Island, NY

Sample Type:

10811 Soil

Client Job No.:

N/A

Date Sampled:

09/25/2009

Field Location:

TP-4

Date Received:

09/25/2009

N/A Field ID No.:

Laboratory Report for TAL Metals Analysis in Solid

Parameter	Date Analyzed	Analytical	Result (mg/kg)
		Method	
Aluminum	10/02/2009	SW846 6010	18100
Antimony	10/02/2009	SW846 6010	<5.31
Arsenic	10/02/2009	SW846 6010	3.60
Barium	10/02/2009	SW846 6010	90.9
Beryllium	10/02/2009	SW846 6010	0.890
Cadmium	10/02/2009	SW846 6010	<0.443
Calcium	10/02/2009	SW846 6010	57800
Chromium	10/02/2009	SW846 6010	25.5
Cobalt	10/02/2009	SW846 6010	15.0
Copper	10/02/2009	SW846 6010	23.7
Iron	10/02/2009	SW846 6010	28200
Lead	10/02/2009	SW846 6010	10.1
Magnesium	10/02/2009	SW846 6010	13500
Manganese	10/02/2009	SW846 6010	623
Mercury	09/28/2009	SW846 7471	0.0143 D
Nickel	10/02/2009	SW846 6010	30.5
Potassium	01/00/1900	SW846 6010	4250
Selenium	10/02/2009	SW846 6010	<0.442
Silver	10/02/2009	SW846 6010	<0.885
Sodium	10/02/2009	SW846 6010	267
Thallium	10/02/2009	SW846 6010	<0.531
Vanadium	10/02/2009	SW846 6010	36.0
Zinc	10/02/2009	SW846 6010	69.5
			FLAP ID No.:10958

ELAP ID No.:10958

Comments:

Approved By:

Client: Ontario Specialty Contracting, Inc

Client Job Site:

HKJJ Clay Source

Grand Island, NY

Lab Project Number: 09-3508 Lab Sample Number: 10808

Client Job Number:

N/A

Date Sampled:

09/25/2009

Field Location: Field ID Number: TP-1 N/A

Date Received:

09/25/2009

Sample Type:

Soil

Date Analyzed:

09/28/2009

PCB Identification	Results in mg / Kg
Aroclor 1016	ND< 0.339
· Aroclor 1221	ND< 0.339
Aroclor 1232	ND< 0.339
Aroclor 1242	ND< 0.339
Aroclor 1248	ND< 0.339
Aroclor 1254	ND< 0.339
Aroclor 1260	ND< 0.339
Aroclor 1242 Aroclor 1248 Aroclor 1254	ND< 0.339 ND< 0.339 ND< 0.339

ELAP Number 10958

Method: EPA 8082

Comments: ND denotes Non Detect mg / Kg = milligram per Kilogram

Signature:

Client: Ontario Specialty Contracting, Inc

Client Job Site:

HKJJ Clay Source

Grand Island, NY

Lab Project Number: 09-3508 Lab Sample Number: 10809

Client Job Number:

N/A

Field Location:

TP-2

Date Sampled:

09/25/2009

Field ID Number: Sample Type:

N/A

Date Received:

Soil

Date Analyzed:

09/25/2009

09/28/2009

PCB Identification	Results in mg / Kg
Aroclor 1016	ND< 0.346
Aroclor 1221	ND< 0.346
Aroclor 1232	ND< 0.346
Aroclor 1242	ND< 0.346
Aroclor 1248	ND< 0.346
Aroclor 1254	ND< 0.346

ELAP Number 10958

Aroclor 1260

Method: EPA 8082

ND< 0.346

Comments: ND denotes Non Detect mg / Kg = milligram per Kilogram

Signature:

Client: Ontario Specialty Contracting, Inc

Client Job Site:

HKJJ Clay Source

Grand Island, NY

Lab Project Number: 09-3508 Lab Sample Number: 10810

Client Job Number:

N/A

Date Sampled:

09/25/2009

Field Location: Field ID Number: **TP-3**

Date Received:

Sample Type:

N/A Soil

09/25/2009

Date Analyzed:

09/28/2009

PCB Identification	Results in mg / Kg
Aroclor 1016	ND< 0.355
Aroclor 1221	ND< 0.355
Aroclor 1232	ND< 0.355
Aroclor 1242	ND< 0.355
Aroclor 1248	ND< 0.355
Aroclor 1254	ND< 0.355
Aroclor 1260	ND< 0.355

ELAP Number 10958

Method: EPA 8082

Comments: ND denotes Non Detect mg / Kg = milligram per Kilogram

Signature:

Client: Ontario Specialty Contracting, Inc

Client Job Site:

HKJJ Clay Source

Grand Island, NY

Lab Project Number: 09-3508 Lab Sample Number: 10811

Client Job Number:

Field Location:

N/A TP-4

Date Sampled:

09/25/2009

Field ID Number: Sample Type:

N/A Soil Date Received:

09/25/2009

Date Analyzed:

09/28/2009

PCB Identification	Results in mg / Kg
Aroclor 1016	ND< 0.353
Aroclor 1221	ND< 0.353
Aroclor 1232	ND< 0.353
Aroclor 1242	ND< 0.353
Aroclor 1248	ND< 0.353

ELAP Number 10958

Aroclor 1254

Aroclor 1260

Method: EPA 8082

ND< 0.353

ND< 0.353

Comments: ND denotes Non Detect mg / Kg = milligram per Kilogram

Signature:

Client: Ontario Specialty Contracting, Inc.

Client Job Site:

HKJJ Clay Source Grand Island, NY

Lab Project Number: 09-3508 Lab Sample Number: 10808

Client Job Number:

N/A

Date Sampled:

09/25/2009

Field Location: Field ID Number:

TP-1 N/A

Date Received:

Sample Type:

Soil

09/25/2009

Date Analyzed:

09/29/2009

Pesticide Identification	Results in ug / Kg
Aldrin	ND< 4.00
alpha-BHC	ND< 4.00
beta-BHC	ND< 4.00
delta-BHC	ND< 4.00
gamma-BHC	ND< 4.00
alpha-Chlordane	ND< 4.00
gamma-Chlordane	ND< 4.00
4,4'-DDD	ND< 4.00
4,4'-DDE	ND< 4.00
4,4'-DDT	ND< 4.00
Dieldrin	ND< 4.00
Endosulfan I	ND< 4.00
Endosulfan II	ND< 4.00
Endosulfan Sulfate	ND< 4.00
Endrin	ND< 4.00
Endrin Aldehyde	ND< 4.00
Heptachlor	ND< 4.00
Heptachlor Epoxide	ND< 4.00
Methoxychlor	ND< 4.00
Toxaphene	ND< 200

ELAP Number 10709

Method: EPA 8081

Comments: ND denotes Non Detect

ug / Kg = microgram per Kilogram

Signature:

Client: Ontario Specialty Contracting, Inc

Client Job Site:

HKJJ Clay Source

Grand Island, NY

Lab Project Number: 09-3508 Lab Sample Number: 10809

Client Job Number:

N/A

Date Sampled:

09/25/2009

Field Location:

TP-2

Field ID Number:

N/A

Date Received:

09/25/2009

Sample Type:

Soil

Date Analyzed:

09/29/2009

Pesticide Identification	Results in ug / Kg
Aldrin	ND< 4.00
alpha-BHC	ND< 4.00
beta-BHC	ND< 4.00
delta-BHC	ND< 4.00
gamma-BHC	ND< 4.00
alpha-Chlordane	ND< 4.00
gamma-Chlordane	ND< 4.00
4,4'-DDD	ND< 4.00
4,4'-DDE	ND< 4.00
4,4'-DDT	ND< 4.00
Dieldrin	ND< 4.00
Endosulfan I	ND< 4.00
Endosulfan II	ND< 4.00
Endosulfan Sulfate	ND< 4.00
Endrin	ND< 4.00
Endrin Aldehyde	ND< 4.00
Heptachlor	ND< 4.00
Heptachlor Epoxide	ND< 4.00
Methoxychlor	ND< 4.00
Toxaphene	ND< 200

ELAP Number 10709

Method: EPA 8081

Comments: ND denotes Non Detect

ug / Kg = microgram per Kilogram

Signature:

Client: Ontario Specialty Contracting, Inc

Client Job Site:

HKJJ Clay Source

Grand Island, NY

Lab Project Number: 09-3508 Lab Sample Number: 10810

Client Job Number:

N/A

Date Sampled:

09/25/2009

Field Location: Field ID Number: TP-3

Date Received:

Sample Type:

N/A Soil

09/25/2009

Date Analyzed:

09/29/2009

Pesticide Identification	Results in ug / Kg
Aldrin	ND< 4.00
alpha-BHC	ND< 4.00
beta-BHC	ND< 4.00
delta-BHC	ND< 4.00
gamma-BHC	ND< 4.00
alpha-Chiordane	ND< 4.00
gamma-Chlordane	ND< 4.00
4,4'-DDD	ND< 4.00
4,4'-DDE	ND< 4.00
4,4'-DDT	ND< 4.00
Dieldrin	ND< 4.00
Endosulfan I	ND< 4.00
Endosulfan II	ND< 4.00
Endosulfan Sulfate	ND< 4.00
Endrin	ND< 4.00
Endrin Aldehyde	ND< 4.00
Heptachlor	ND< 4.00
Heptachlor Epoxide	ND< 4.00
Methoxychlor	ND< 4.00
Toxaphene	ND< 200

ELAP Number 10709

Method: EPA 8081

Comments: ND denotes Non Detect

ug / Kg = microgram per Kilogram

Signature:

Client: Ontario Specialty Contracting, Inc

Client Job Site:

HKJJ Clay Source

Grand Island, NY

Lab Project Number: 09-3508

Lab Sample Number: 10811

Client Job Number:

N/A TP-4

Date Sampled:

09/25/2009

Field Location: Field ID Number:

N/A

Date Received:

09/25/2009

Sample Type: Soil

Date Analyzed:

09/29/2009

Pesticide Identification	Results in ug / Kg
Aldrin	ND< 4.00
alpha-BHC	ND< 4.00
beta-BHC	ND< 4.00
delta-BHC	ND< 4.00
gamma-BHC	ND< 4.00
alpha-Chlordane	ND< 4.00
gamma-Chlordane	ND< 4.00
4,4'-DDD	ND< 4.00
4,4'-DDE	ND< 4.00
4,4'-DDT	ND< 4.00
Dieldrin	ND< 4.00
Endosulfan I	ND< 4.00
Endosulfan II	ND< 4.00
Endosulfan Sulfate	ND< 4.00
Endrin	ND< 4.00
Endrin Aldehyde	ND< 4.00
Heptachlor	ND< 4.00
Heptachlor Epoxide	ND< 4.00
Methoxychlor	ND< 4.00
Toxaphene	ND< 200

ELAP Number 10709

Method: EPA 8081

Comments: ND denotes Non Detect ug / Kg = microgram per Kilogram

Signature:

Client: Ontario Specialty Contracting

Client Job Site:

HKJJ Clay Source

Grand Island, NY

Lab Project Number: 09-3508

Lab Sample Number: 10808

Client Job Number: Field Location:

N/A TP-1

Date Sampled:

09/25/2009

Field ID Number: Sample Type:

N/A Soil

Date Received:

09/25/2009

Date Analyzed:

09/29/2009

Base / Neutrals	Results in ug / Kg	Base / Neutrals	Results in ug / Kg
Acenaphthene	ND< 330	Dibenz (a,h) anthracene	ND< 330
Anthracene	ND< 330	Fluoranthene	ND< 330
Benzo (a) anthracene	ND< 330	Fluorene	ND< 330
Benzo (a) pyrene	ND< 330	Indeno (1,2,3-cd) pyrene	ND< 330
Benzo (b) fluoranthene	ND< 330	Naphthalene	ND< 330
Benzo (g,h,i) perylene	ND< 330	Phenanthrene	ND< 330
Benzo (k) fluoranthene	ND< 330	Pyrene	ND< 330
Chrysene	ND< 330	Acenaphthylene	ND< 330
Diethyl phthalate	ND< 330	1,2-Dichlorobenzene	ND< 330
Dimethyl phthalate	ND< 824	1,3-Dichlorobenzene	ND< 330
Butylbenzylphthalate	ND< 330	1,4-Dichlorobenzene	ND< 330
Di-n-butyl phthalate	ND< 330	1,2,4-Trichlorobenzene	ND< 330
Di-n-octylphthalate	· ND< 330	Nitrobenzene	ND< 330
Bis (2-ethylhexyl) phthalate	ND< 330	2,4-Dinitrotoluene	ND< 330
2-Chloronaphthalene	ND< 330	2,6-Dinitrotoluene	ND< 330
Hexachlorobenzene	ND< 330	Bis (2-chloroethyl) ether	ND< 330
Hexachloroethane	ND< 330	Bis (2-chloroisopropyl) ether	ND< 330
Hexachlorocyclopentadiene	ND< 330	Bis (2-chloroethoxy) methan	ND< 330
Hexachlorobutadiene	ND< 330	4-Bromophenyl phenyl ether	ND< 330
N-Nitroso-di-n-propylamine	ND< 330	4-Chlorophenyl phenyl ether	ND< 330
N-Nitrosodiphenylamine	ND< 330	Benzidine	ND< 824
N-Nitrosodimethylamine	ND< 330	3,3'-Dichlorobenzidine	ND< 330
Isophorone	ND< 330	4-Chloroaniline	ND< 330
Benzyl alcohol	ND< 824	2-Nitroaniline	ND< 824
Dibenzofuran	ND< 330	3-Nitroaniline	ND< 824
2-Methylnapthalene	ND< 330	4-Nitroaniline	ND< 824

Acids	Results in ug / Kg	Acids	Results in ug / Kg
Phenol	ND< 330	2-Methylphenol	ND< 330
2-Chlorophenol	ND< 330	3&4-Methylphenol	ND< 330
2,4-Dichlorophenol	ND< 330	2,4-Dimethylphenol	ND< 330
2,6-Dichlorophenol	ND< 330	2-Nitrophenol	ND< 330
2,4,5-Trichlorophenol	ND< 824	4-Nitrophenol	ND< 824
2,4,6-Trichlorophenol	ND< 330	2,4-Dinitrophenol	ND< 824
Pentachlorophenol	ND< 824	4,6-Dinitro-2-methylphenol	ND< 824
4-Chloro-3-methylphenol	ND< 330	Benzoic acid	ND< 824
ELAP Number 10958	Method: EPA 8270C		Data File: S47069.D

Comments: ND denotes Non Detect

ug / Kg = microgram per Kilogram

Signature:

Bruce Hoogesteger: Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition requirements upon receipt. 093508S1.XLS

Client: Ontario Specialty Contracting

Client Job Site:

HKJJ Clay Source

Grand Island, NY

Lab Project Number: 09-3508

Lab Sample Number: 10809

Client Job Number: Field Location:

N/A TP-2

Date Sampled:

09/25/2009

Field ID Number:

N/A

Date Received:

09/25/2009

Sample Type: Soil Date Analyzed:

09/29/2009

Base / Neutrals	Results in ug / Kg	Base / Neutrals	Results in ug / Kg
Acenaphthene	ND< 333	Dibenz (a,h) anthracene	ND< 333
Anthracene	ND< 333	Fluoranthene	ND< 333
Benzo (a) anthracene	ND< 333	Fluorene	ND< 333
Benzo (a) pyrene	ND< 333	indeno (1,2,3-cd) pyrene	ND< 333
Benzo (b) fluoranthene	ND< 333	Naphthalene	ND< 333
Benzo (g,h,i) perylene	ND< 333	Phenanthrene	ND< 333
Benzo (k) fluoranthene	ND< 333	Pyrene	ND< 333
Chrysene	ND< 333	Acenaphthylene	ND< 333
Diethyl phthalate	ND< 333	1,2-Dichlorobenzene	ND< 333
Dimethyl phthalate	ND< 833	1,3-Dichlorobenzene	ND< 333
Butylbenzylphthalate	ND< 333	1,4-Dichlorobenzene	ND< 333
Di-n-butyl phthalate	ND< 333	1,2,4-Trichlorobenzene	ND< 333
Di-n-octylphthalate	ND< 333	Nitrobenzene	ND< 333
Bis (2-ethylhexyl) phthalate	ND< 333	2,4-Dinitrotoluene	ND< 333
2-Chloronaphthalene	ND< 333	2,6-Dinitrotoluene	ND< 333
Hexachlorobenzene	ND< 333	Bis (2-chloroethyl) ether	ND< 333
Hexachloroethane	ND< 333	Bis (2-chloroisopropyl) ether	ND< 333
Hexachlorocyclopentadiene	ND< 333	Bis (2-chloroethoxy) methan	ND< 333
Hexachlorobutadiene	ND< 333	4-Bromophenyl phenyl ether	ND< 333
N-Nitroso-di-n-propylamine	ND< 333	4-Chlorophenyl phenyl ether	ND< 333
N-Nitrosodiphenylamine	ND< 333	Benzidine	ND< 833
N-Nitrosodimethylamine	ND< 333	3,3'-Dichlorobenzidine	ND< 333
Isophorone	ND< 333	4-Chloroaniline	ND< 333
Benzyl alcohol	ND< 833	2-Nitroaniline	ND< 833
Dibenzofuran	ND< 333	3-Nitroaniline	ND< 833
2-Methylnapthalene	ND< 333	4-Nitroaniline	ND< 833

Results in ug / Kg	Acids	Results in ug / Kg
ND< 333	2-Methylphenol	ND< 333
ND< 333	3&4-Methylphenol	ND< 333
ND< 333	2,4-Dimethylphenol	ND< 333
ND< 333	2-Nitrophenol	ND< 333
ND< 833	4-Nitrophenol	ND< 833
ND< 333	2,4-Dinitrophenol	ND< 833
ND< 833	4,6-Dinitro-2-methylphenol	ND< 833
ND< 333	Benzoic acid	ND< 833
	ND< 333 ND< 333 ND< 333 ND< 333 ND< 833 ND< 333 ND< 833	ND 333 2-Methylphenol ND 333 3&4-Methylphenol ND 333 2,4-Dimethylphenol ND 333 2-Nitrophenol ND 833 4-Nitrophenol ND 333 2,4-Dinitrophenol ND 833 4,6-Dinitro-2-methylphenol

ELAP Number 10958 Method: EPA 8270C Data File: S47070.D

Comments: ND denotes Non Detect

ug / Kg = microgram per Kilogram

Signature:

Client: Ontario Specialty Contracting

Client Job Site:

HKJJ Clay Source

Grand Island, NY

Lab Project Number: 09-3508 Lab Sample Number: 10810

Client Job Number:

N/A

Date Sampled:

09/25/2009

Field Location: Field ID Number:

TP-3 N/A

Date Received:

09/25/2009

Sample Type:

Soil

Date Analyzed:

09/29/2009

Base / Neutrals	Results in ug / Kg	Base / Neutrals	Results in ug / Kg
Acenaphthene	ND< 339	Dibenz (a,h) anthracene	ND< 339
Anthracene	ND< 339	Fluoranthene	ND< 339
Benzo (a) anthracene	ND< 339	Fluorene	ND< 339
Benzo (a) pyrene	ND< 339	Indeno (1,2,3-cd) pyrene	ND< 339
Benzo (b) fluoranthene	ND< 339	Naphthalene	ND< 339
Benzo (g,h,i) perylene	ND< 339	Phenanthrene	ND< 339
Benzo (k) fluoranthene	ND< 339	Pyrene	ND< 339
Chrysene	ND< 339	Acenaphthylene	ND< 339
Diethyl phthalate	ND< 339	1,2-Dichlorobenzene	ND< 339
Dimethyl phthalate	ND< 846	1,3-Dichlorobenzene	ND< 339
Butylbenzylphthalate	ND< 339	1,4-Dichlorobenzene	ND< 339
Di-n-butyl phthalate	ND< 339	1,2,4-Trichlorobenzene	ND< 339
Di-n-octylphthalate	ND< 339	Nitrobenzene	ND< 339
Bis (2-ethylhexyl) phthalate	ND< 339	2,4-Dinitrotoluene	ND< 339
2-Chloronaphthalene	ND< 339	2,6-Dinitrotoluene	ND< 339
Hexachlorobenzene	ND< 339	Bis (2-chloroethyl) ether	ND< 339
Hexachloroethane	ND< 339	Bis (2-chloroisopropyl) ether	ND< 339
Hexachlorocyclopentadiene	ND< 339	Bis (2-chloroethoxy) methan	ND< 339
Hexachlorobutadiene	ND< 339	4-Bromophenyl phenyl ether	ND< 339
N-Nitroso-di-n-propylamine	ND< 339	4-Chlorophenyl phenyl ether	ND< 339
N-Nitrosodiphenylamine	ND< 339	Benzidine	ND< 846
N-Nitrosodimethylamine	ND< 339	3,3'-Dichlorobenzidine	ND< 339
Isophorone	ND< 339	4-Chloroaniline	ND< 339
Benzyl alcohol	ND< 846	2-Nitroaniline	ND< 846
Dibenzofuran	ND< 339	3-Nitroaniline	ND< 846
2-Methylnapthalene	ND< 339	4-Nitroaniline	ND< 846

Acids	Results in ug / Kg	Acids	Results in ug / Kg
Phenol	ND< 339	2-Methylphenol	ND< 339
2-Chlorophenol	ND< 339	3&4-Methylphenol	ND< 339
2,4-Dichlorophenol	ND< 339	2,4-Dimethylphenol	ND< 339
2,6-Dichlorophenol	ND< 339	2-Nitrophenol	ND< 339
2,4,5-Trichlorophenol	ND< 846	4-Nitrophenol	ND< 846
2,4,6-Trichlorophenol	ND< 339	2,4-Dinitrophenol	ND< 846
Pentachlorophenol	ND< 846	4,6-Dinitro-2-methylphenol	ND< 846
4-Chloro-3-methylphenol	ND< 339	Benzoic acid	ND< 846
ELAP Number 10958	Method: EPA 8270C		Data File: S47071.D

Comments: ND denotes Non Detect

ug / Kg = microgram per Kilogram

Signature:

Bruce Hoogesteger: Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition requirements upon receipt. 093508S3.XLS

Client: Ontario Specialty Contracting

Client Job Site:

HKJJ Clay Source

Grand Island, NY

Lab Project Number: 09-3508 Lab Sample Number: 10811

Client Job Number:

N/A TP-4

Date Sampled:

09/25/2009

Field Location: Field ID Number: Sample Type:

N/A Soil

Date Received:

09/25/2009

Date Analyzed:

09/29/2009

Base / Neutrals	Results in ug / Kg	Base / Neutrals	Results in ug / Kg
Acenaphthene	ND< 337	Dibenz (a,h) anthracene	ND< 337
Anthracene	ND< 337	Fluoranthene	ND< 337
Benzo (a) anthracene	ND< 337	Fluorene	ND< 337
Benzo (a) pyrene	ND< 337	Indeno (1,2,3-cd) pyrene	ND< 337
Benzo (b) fluoranthene	ND< 337	Naphthalene	ND< 337
Benzo (g,h,i) perylene	ND< 337	Phenanthrene	ND< 337
Benzo (k) fluoranthene	ND< 337	Pyrene	ND< 337
Chrysene	ND< 337	Acenaphthylene	ND< 337
Diethyl phthalate	ND< 337	1,2-Dichlorobenzene	ND< 337
Dimethyl phthalate	ND< 843	1,3-Dichlorobenzene	ND< 337
Butylbenzylphthalate	ND< 337	1,4-Dichlorobenzene	ND< 337
Di-n-butyl phthalate	ND< 337	1,2,4-Trichlorobenzene	ND< 337
Di-n-octylphthalate	ND< 337	Nitrobenzene	ND< 337
Bis (2-ethylhexyl) phthalate	ND< 337	2,4-Dinitrotoluene	ND< 337
2-Chloronaphthalene	ND< 337	2,6-Dinitrotoluene	ND< 337
Hexachlorobenzene	ND< 337	Bis (2-chloroethyl) ether	ND< 337
Hexachloroethane	ND< 337	Bis (2-chloroisopropyl) ether	ND< 337
Hexachlorocyclopentadiene	ND< 337	Bis (2-chloroethoxy) methan	ND< 337
Hexachlorobutadiene	ND< 337	4-Bromophenyl phenyl ether	ND< 337
N-Nitroso-di-n-propylamine	ND< 337	4-Chlorophenyl phenyl ether	ND< 337
N-Nitrosodiphenylamine	ND< 337	Benzidine	ND< 843
N-Nitrosodimethylamine	ND< 337	3,3'-Dichlorobenzidine	ND< 337
Isophorone	ND< 337	4-Chloroaniline	ND< 337
Benzyl alcohol	ND< 843	2-Nitroaniline	ND< 843
Dibenzofuran	ND< 337	3-Nitroaniline	ND< 843
2-Methylnapthalene	ND< 337	4-Nitroaniline	ND< 843

Acids	Results in ug / Kg	Acids	Results in ug / Kg
Phenol	ND< 337	2-Methylphenol	ND< 337
2-Chlorophenol	ND< 337.	3&4-Methylphenol	ND< 337
2,4-Dichlorophenol	ND< 337	2,4-Dimethylphenol	ND< 337
2,6-Dichlorophenol	ND< 337	2-Nitrophenol	ND< 337
2,4,5-Trichlorophenol	ND< 843	4-Nitrophenol	ND< 843
2,4,6-Trichlorophenol	ND< 337	2,4-Dinitrophenol	ND< 843
Pentachlorophenol	ND< 843	4,6-Dinitro-2-methylphenol	ND< 843
4-Chloro-3-methylphenol	ND< 337	Benzoic acid	ND< 843

ELAP Number 10958

Method: EPA 8270C

Data File: S47072.D

Comments: ND denotes Non Detect

ug / Kg = microgram per Kilogram

Signature:

Bruce Hoogesteger: Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition requirements upon receipt. 093508S4.XLS

Client: Ontario Specialty Contracting, Inc.

Client Job Site:

HKJJ Clay Source Grand Island

ND< 9.30

ND< 9.30

ND< 9.30

ND< 23.3

ND< 9.30

ND< 9.30

ND< 9.30

ND< 9.30

ND< 9.30

ND< 9.30

ND< 9.30

Lab Sample Number: 10808

Lab Project Number: 09-3508

Client Job Number:

N/A

Field Location:

TP-1

Field ID Number: Sample Type:

N/A Soil Date Sampled: **Date Received:** 09/25/2009 09/25/2009

Date Analyzed:

09/30/2009

Halocarbons	Results in ug / Kg
Bromodichloromethane	ND< 9.30
Bromomethane	ND< 9.30
Bromoform	ND< 23.3
Carbon Tetrachloride	ND< 23.3
Chloroethane	ND< 9.30
Chloromethane	ND< 9.30
2-Chloroethyl vinyl Ether	ND< 46.5
Chloroform	ND< 9.30
Dibromochloromethane	ND< 9.30
1,1-Dichloroethane	ND< 9.30
1,2-Dichloroethane	ND< 9.30
1,1-Dichloroethene	ND< 9.30
cis-1,2-Dichloroethene	ND< 9.30
trans-1.2-Dichloroethene	ND< 9.30

Aromatics	Results in ug / Kg
Benzene	ND< 9.30
Chlorobenzene	ND< 9.30
Ethylbenzene	ND< 9.30
Toluene	ND< 9.30
m,p-Xylene	11.3
o-Xylene	ND< 9.30
Styrene	ND< 23.3
1,2-Dichlorobenzene	ND< 23.3
1,3-Dichlorobenzene	ND< 23.3
1,4-Dichlorobenzene	ND< 9.30

Ketones	Results in ug / Kg
Acetone	ND< 46.5
2-Butanone	ND< 46.5
2-Hexanone	ND< 23.3
4-Methyl-2-pentanone	ND< 23.3

Miscellaneous	Results in ug / Kg
Carbon disulfide	ND< 9.30
Vinyl acetate	ND< 23.3

ELAP Number 10958

Trichloroethene

Vinyl chloride

1,2-Dichloropropane

Methylene chloride

Tetrachloroethene

1.1.1-Trichloroethane

1.1.2-Trichloroethane

Trichlorofluoromethane

cis-1,3-Dichloropropene

trans-1,3-Dichloropropene

1,1,2,2-Tetrachloroethane

Method: EPA 8260B

Data File: V68992.D

Comments: ND denotes Non Detect

ug / Kg = microgram per Kilogram

Surrogate outliers indicate probable matrix interference

Signature:

Client: Ontario Specialty Contracting, Inc

Client Job Site:

HKJJ Clay Source

Grand Island

Client Job Number: N/A

Field Location: Field ID Number: TP-2

Sample Type:

N/A Soil

Lab Project Number: 09-3508

Lab Sample Number: 10809

Date Sampled:

09/25/2009

Date Received:

09/25/2009

Date Analyzed:

09/30/2009

Halocarbons	Results in ug / Kg
Bromodichloromethane	ND< 7.73
Bromomethane	ND< 7.73
Bromoform	ND< 19.3
Carbon Tetrachloride	ND< 19.3
Chloroethane	ND< 7.73
Chloromethane	ND< 7.73
2-Chloroethyl vinyl Ether	ND< 38.6
Chloroform	ND< 7.73
Dibromochloromethane	ND< 7.73
1,1-Dichloroethane	ND< 7.73
1,2-Dichloroethane	ND< 7.73
1,1-Dichloroethene	ND< 7.73
cis-1,2-Dichloroethene	ND< 7.73
trans-1,2-Dichloroethene	ND< 7.73
1,2-Dichloropropane	ND< 7.73
cis-1,3-Dichloropropene	ND< 7.73
trans-1,3-Dichloropropene	ND< 7.73
Methylene chloride	ND< 19.3
1,1,2,2-Tetrachloroethane	ND< 7.73
Tetrachloroethene	ND< 7.73
1,1,1-Trichloroethane	ND< 7.73
1,1,2-Trichloroethane	ND< 7.73
Trichloroethene	ND< 7.73
Trichlorofluoromethane	ND< 7.73
Vinyl chloride	ND< 7.73

Aromatics	Results in ug / Kg
Benzene	ND< 7.73
Chlorobenzene	ND< 7.73
Ethylbenzene	ND< 7.73
Toluene	ND< 7.73
m,p-Xylene	ND< 7.73
o-Xylene	ND< 7.73
Styrene	ND< 19.3
1,2-Dichlorobenzene	ND< 19.3
1,3-Dichlorobenzene	ND< 19.3
1,4-Dichlorobenzene	ND< 7.73

Ketones	Results in ug / Kg
Acetone	ND< 38.6
2-Butanone	ND< 38.6
2-Hexanone	ND< 19.3
4-Methyl-2-pentanone	ND< 19.3

Miscellaneous	Results in ug / Kg
Carbon disulfide	ND< 7.73
Vinyl acetate	ND< 19.3
•	
•	

ELAP Number 10958

Method: EPA 8260B

Data File: V68993.D

Comments: ND denotes Non Detect

ug / Kg = microgram per Kilogram

Signature:

Client: Ontario Specialty Contracting, Inc

Client Job Site:

HKJJ Clay Source

Grand Island

Client Job Number: N/A

Field Location:

TP-3

Field ID Number: Sample Type:

N/A Soil Lab Project Number: 09-3508

Lab Sample Number: 10810

Date Sampled:

09/25/2009

Date Received:

09/25/2009

Date Analyzed:

09/30/2009

Halocarbons	Results in ug / Kg
Bromodichloromethane	ND< 6.73
Bromomethane	ND< 6.73
Bromoform	ND< 16.8
Carbon Tetrachloride	ND< 16.8
Chloroethane .	ND< 6.73
Chloromethane	ND< 6.73
2-Chloroethyl vinyl Ether	ND< 33.7
Chloroform	ND< 6.73
Dibromochloromethane	ND< 6.73
1,1-Dichloroethane	ND< 6.73
1,2-Dichloroethane	ND< 6.73
1,1-Dichloroethene	ND< 6.73
cis-1,2-Dichloroethene	ND< 6.73
trans-1,2-Dichloroethene	ND< 6.73
1,2-Dichloropropane	ND< 6.73
cis-1,3-Dichloropropene	ND< 6.73
trans-1,3-Dichloropropene	ND< 6.73
Methylene chloride	ND< 16.8
1,1,2,2-Tetrachloroethane	ND< 6.73
Tetrachloroethene	ND< 6.73
1,1,1-Trichloroethane	ND< 6.73
1,1,2-Trichloroethane	ND< 6.73
Trichloroethene	ND< 6.73
Trichlorofluoromethane	ND< 6.73
Vinyl chloride	ND< 6.73

Aromatics	Results in ug / Kg
Benzene	ND< 6.73
Chlorobenzene	ND< 6.73
Ethylbenzene	ND< 6.73
Toluene	ND< 6.73
m,p-Xylene	ND< 6.73
o-Xylene	ND< 6.73
Styrene	ND< 16.8
1,2-Dichlorobenzene	ND< 16.8
1,3-Dichlorobenzene	ND< 16.8
1,4-Dichlorobenzene	ND< 6.73

Ketones	Results in ug / Kg
Acetone	ND< 33.7
2-Butanone	ND< 33.7
2-Hexanone	ND< 16.8
4-Methyl-2-pentanone	ND< 16.8

ND< 6.73 ND< 16.8
ND< 16.8

ELAP Number 10958

Method: EPA 8260B

Data File: V68994.D

Comments: ND denotes Non Detect

ug / Kg = microgram per Kilogram

Signature:

Client: Ontario Specialty Contracting, Inc

Client Job Site:

HKJJ Clay Source

Grand Island

Client Job Number:

N/A TP-4

Field Location: Field ID Number: Sample Type:

N/A Soil Lab Project Number: 09-3508

Lab Sample Number: 10811

Date Sampled:

09/25/2009

Date Received:

09/25/2009

Date Analyzed:

09/30/2009

Halocarbons	Results in ug / Kg
Bromodichloromethane	ND< 8.94
Bromomethane	ND< 8.94
Bromoform	ND< 22.4
Carbon Tetrachloride	ND< 22.4
Chloroethane	ND< 8.94
Chloromethane	ND< 8.94
2-Chloroethyl vinyl Ether	ND< 44.7
Chloroform	ND< 8.94
Dibromochloromethane	ND< 8.94
1,1-Dichloroethane	ND< 8.94
1,2-Dichloroethane	ND< 8.94
1,1-Dichloroethene	ND< 8.94
cis-1,2-Dichloroethene	ND< 8.94
trans-1,2-Dichloroethene	ND< 8.94
1,2-Dichloropropane	ND< 8.94
cis-1,3-Dichloropropene	ND< 8.94
trans-1,3-Dichloropropene	ND< 8.94
Methylene chloride	ND< 22.4
1,1,2,2-Tetrachloroethane	ND< 8.94
Tetrachloroethene	ND< 8.94
1,1,1-Trichloroethane	ND< 8.94
1,1,2-Trichloroethane	ND< 8.94
Trichloroethene	ND< 8.94
Trichlorofluoromethane	ND< 8.94
Vinyl chloride	ND< 8.94

Aromatics	Results in ug / Kg
Benzene	ND< 8.94
Chlorobenzene	ND< 8.94
Ethylbenzene	ND< 8.94
Toluene	ND< 8.94
m,p-Xylene	ND< 8.94
o-Xylene	ND< 8.94
Styrene	ND< 22.4
1,2-Dichlorobenzene	ND< 22.4
1,3-Dichlorobenzene	ND< 22.4
1,4-Dichlorobenzene	ND< 8.94

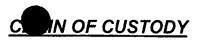
Ketones	Results in ug / Kg
Acetone	ND< 44.7
2-Butanone	ND< 44.7
2-Hexanone	ND< 22.4
4-Methyl-2-pentanone	ND< 22.4

Miscellaneous	Results in ug / Kg
Carbon disulfide	ND< 8.94
Vinyl acetate	ND< 22.4
•	

ELAP Number 10958

Method: EPA 8260B

Data File: V68997.D


Comments: ND denotes Non Detect

ug / Kg = microgram per Kilogram

Surrogate outliers indicate probable matrix interference

Signature:

•	
•	

ENVIRONMENTAL		REPORT TO:		• • • • • • • • • • • • • • • • • • •				rak a Jirk	INVO	ICE	TO:										٠.
SERVICES, INC.	COMPAN	Y: Ontario Specialty Co	ntracting, Inc	Э.	COMPAN	Y :	Sar	ne						i	AB PRO			ENT P	ROJECT	#:	
179 Lake Avenue	ADDRESS	333 Ganson Street		ADDRESS:						09.3508											
Rochester, NY 14608	CITY:	Buffalo STATE:	NY ZIP: 14	4203	CITY:						STA	re:	ZII	Р: Т	URNARO	OUND TIME:	(WORK	NG DA	YS)		
(710) 047-2530 * (800) 724-1997	PHONE:	716-856-3333 FAX: 71	16-842-1630		PHONE:					FAX	C:							STD		ОТІ	HER
PROJECT NAME/SITE NAME:	ATTN:	John Yensan			ATTN:										7 ₁	2	3	X		Г	
HKJJ Clay Source Grand Island, NY	COMMEN																			<u> </u>	
Orania Islania, NT		Please e-mail resul	its to jyensan	@on	tariosp				SŤFÏ	ΔΝ	JÁI N	'SIS									l
DATE TIME OSSI	G R A B	SAMPLE LOCATION/FIELD	םו כ	M A T R I	CONNTABINERS	Metals	tcl	s TCL	PCB's Pesticides						REMA	arks			PARADIO		
1 9/25/09 X		TP-1		Soi	1 3	X	х	x	ХX	(x	X							1	0 8	0	8
2 9/25/09 X		TP-2		SI	3	x	Х	х	хx	(x	Х								08	7	
3 9/25/09 X		TP-3		s	3	x	х	x	ХX	(x	X			-					08		0
4 9/25/09 X		TP-4		s√	3	x	х	х	хх	ίx	X							\Box	08		7
5								T					1	fuoc	5					 	\Box
6										1				*8a	5 04	25				1	П
7								\top		\top				am	de	74		П			П
8							7	十		1				9-7	50	200			\top	1	\Box
9							\dashv	\top	+	†						- Y		\Box	_	+	\Box
10							7	1	+	+	\Box		1-1-					\Box			Н
LAB USE ONLY																				<u>.l</u>	
SAMPLE CONDITION: Check box if acceptable or note deviation:	cc	ONTAINER TYPE:	PRESERVATIONS:	,		•	ŀ	IOLDI	NG TIM	IE:		X			RATURE	iced	_ρr ìn	es.	bec 21d	zur	2
Sampled By: ユAson リモルファル Selinguished By:		Date/Time: 75 9/25/09 10:45	Relinquish	ed B	y:								Da	ate/Time	e:		otal C				
Relinquished By:		Date/Time:	Received I											ate/Time				·			
the top		Date/Time:	Received (e Lat	th a	<u> </u> 4-	10	n	ch	9,	125	5/0	9 10	ate/Time 025		F	P.I.F.			······	

Analytical Report Cover Page

South Buffalo Dev.

For Lab Project # 10-3664 Issued September 17, 2010 This report contains a total of 14 pages

The reported results relate only to the samples as they have been received by the laboratory.

Any noncompliant QC parameters having impact on the data are flagged or documented on the final report.

All soil/sludge samples have been reported on a dry weight basis, unless qualified "reported as received". Other solids are reported as received.

Each page of this document is part of a multipage report. This document may not be reproduced except in its entirety, without the prior consent of Paradigm Environmental Services, Inc.

The Chain of Custody provides additional information, including compliance with sample condition requirements upon receipt. Sample condition requirements are defined under the 2003 NELAC Standard, sections 5.5.8.3.1 and 5.5.8.3.2.

NYSDOH ELAP does not certify for all parameters. Paradigm Environmental Services or the indicated subcontracted laboratory does hold certification for all analytes where certification is offered by ELAP unless otherwise specified.

Data qualifiers are used, when necessary, to provide additional information about the data. This information may be communicated as a flag or as text at the bottom of the report. Please refer to the following list of frequently used data flags and their meaning:

[&]quot;<" = analyzed for but not detected at or above the reporting limit.

[&]quot;E" = Result has been estimated, calibration limit exceeded.

[&]quot;Z" = See case narrative.

[&]quot;D" = Duplicate results outside QC limits. May indicate a non-homogenous matrix.

[&]quot;M" = Matrix spike recoveries outside QC limits. Matrix bias indicated.

[&]quot;B" = Method blank contained trace levels of analyte. Refer to included method blank report.

pH Analysis Report

Client: South Buffalo Dev.

Client Job Site:

Buffalo Color

Lab Project Number:

10-3664

Client Job Number:

N/A

Date Sampled:

9/8/2010

Time Sampled:

1:30 PM

Date Received:

9/9/2010

Sample Type:

Soil

Time Received:

1:55 PM

Location:

Laboratory

Date Analyzed: Time Analyzed: 9/9/2010 4:30 PM

Lab Sample Number	Field Number	Field Location	Result (pH)
11896	N/A	Pinto 1 Backfill	8.78
11897	N/A	River Road Backfill	9.21
		•	

ELAP Number 10958

Method: EPA 9045C

Comments:

Signature:

LABORATORY REPORT FOR TOTAL CYANIDE

Client:

South Buffalo Dev.

Lab Project No.:

10-3664

Client Job Site:

Buffalo Color

Sample Type:

Soil

Client Job No.:

N/A

Date Sampled:

9/8/2010

Analytical Method:

SW 9014

Date Received: Date Analyzed: 9/9/2010 9/14/2010

Sample Location/Field ID	TCN (mg/kg)
Pint 1 Backfill	<0.55
River Road Backfill	<0.55
	·
	Pint 1 Backfill

ELAP ID.No.: 10478

Comments:

Approved By:

Bruce Hoogesteger, Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt

LAB REPORT FOR TAL METALS ANALYSIS IN SOLIDS

Client:

South Buffalo Dev.

Lab Project No.:

10-3664 11896

Client Job Site:

Buffalo Color

Lab Sample No.:

Soil

Client Job No.:

N/A

Date Sampled:

Sample Type:

09/08/2010

Field Location:

Pinto 1 Backfill

Date Received:

09/09/2010

Field ID No.:

N/A

Parameter	Date Analyzed	Analytical Method	Result (mg/kg)
Aluminum	09/14/2010	SW846 6010	7290
Antimony	09/14/2010	SW846 6010	<6.39
Arsenic	09/14/2010	SW846 6010	2.32
Barium	09/14/2010	SW846 6010	38.7
Beryllium	09/14/2010	SW846 6010	<0.532
Cadmium	09/14/2010	SW846 6010	<0.8532
Calcium	09/14/2010	SW846 6010	39200
Chromium	09/14/2010	SW846 6010	8.97
Cobalt	09/14/2010	SW846 6010	4.88
Copper	09/14/2010	SW846 6010	10.0
Iron	09/14/2010	SW846 6010	11700
Lead	09/14/2010	SW846 6010	24.3
Magnesium	09/14/2010	SW846 6010	14100
Manganese	09/14/2010	SW846 6010	336
Mercury	09/13/2010	SW846 7471	0.0689
Nickel	09/14/2010	SW846 6010	9.03
Potassium	09/16/2010	SW846 6010	1650
Selenium	09/14/2010	SW846 6010	<0.532
Silver	09/14/2010	SW846 6010	<1.07
Sodium	09/16/2010	SW846 6010	655
Thallium	09/14/2010	SW846 6010	<0.639
Vanadium	09/14/2010	SW846 6010	17.5
Zinc	09/14/2010	SW846 6010	70.5

ELAP ID No.:10958

Comments:

Approved By:

Bruce Hoogesteger, Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition requirements upon receipt.

LAB REPORT FOR TAL METALS ANALYSIS IN SOLIDS

Client:

South Buffalo Dev.

Lab Project No.: Lab Sample No.: 10-3664 11897

Client Job Site:

Buffalo Color

Sample Type:

Soil

Client Job No.:

N/A

Date Sampled:

09/08/2010

Field Location:

River Road Backfill

Date Received:

09/09/2010

Field ID No.:

N/A

Parameter	Date Analyzed	Analytical Method	Result (mg/kg)
Aluminum	09/14/2010	SW846 6010	7390
Antimony	09/14/2010	SW846 6010	<3.71
Arsenic	09/14/2010	SW846 6010	1.98
Barium .	09/14/2010	SW846 6010	45.8
Beryllium	09/14/2010	SW846 6010	0.528
Cadmium	09/14/2010	SW846 6010	0.311
Calcium	09/16/2010	SW846 6010	49800
Chromium	09/14/2010	SW846 6010	10.2
Cobalt	09/14/2010	SW846 6010	4.14
Copper	09/14/2010	SW846 6010	8.88
Iron	09/14/2010	SW846 6010	11500
Lead	09/14/2010	SW846 6010	22.4
Magnesium	09/14/2010	SW846 6010	14500
Manganese	09/16/2010	SW846 6010	796
Mercury	09/13/2010	SW846 7471	0.186 M
Nickel	09/14/2010	SW846 6010	7.18
Potassium	09/16/2010	SW846 6010	1430
Selenium	09/14/2010	SW846 6010	<0.309
Silver	09/14/2010	SW846 6010	<0.617
Sodium	09/16/2010	SW846 6010	781
Thallium	09/14/2010	SW846 6010	<0.371
Vanadium	09/14/2010	SW846 6010	16.1
Zinc	09/14/2010	SW846 6010	67.6

ELAP ID No.:10958

Comments:

Approved By:

Bruce Hoogesteger, Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition requirements upon receipt.

Client: South Buffalo Dev.

Client Job Site:

Buffalo Color

Lab Project Number:

10-3664

Client Job Number:

N/A

Lab Sample Number:

11896

Field Location:

Pinto 1 Backfill

Date Sampled:

09/08/2010

Field ID Number: Sample Type:

N/A Soil **Date Received:**

09/09/2010

Date Analyzed:

09/15/2010

PCB Identification	Results in mg / Kg
Aroclor 1016	< 0.318
Aroclor 1221	< 0.318
Aroclor 1232	< 0.318
Aroclor 1242	< 0.318
Aroclor 1248	< 0.318
Aroclor 1254	< 0.318
Aroclor 1260	< 0.318

ELAP Number 10958

Method: EPA 8082

Comments: mg / Kg = milligram per Kilogram

Signature:

PCB Analysis Report for Soils/Solids/Sludges

Client: South Buffalo Dev.

Client Job Site:

Buffalo Color

Lab Project Number:

10-3664

Client Job Number:

N/A

Lab Sample Number:

11897

Field Location:

River Road Backfill

Date Sampled:

09/08/2010

Field ID Number:

N/A

Date Received:

09/09/2010

Sample Type:

Soil

Date Analyzed:

09/15/2010

PCB Identification	Results in mg / Kg
Aroclor 1016	< 0.324
· Aroclor 1221	< 0.324
Aroclor 1232	< 0.324
Aroclor 1242	< 0.324
Aroclor 1248	< 0.324
Aroclor 1254	< 0.324
Aroclor 1260	< 0.324

ELAP Number 10958

Method: EPA 8082

Comments: mg / Kg = milligram per Kilogram

Signature:

Bruce Hoogesteger: Technical Director
This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition
103664P2

Pesticide Analysis Report for Soils/Solids/Sludges

Client: South Buffalo Dev.

Client Job Site:

Buffalo Color

Lab Project Number: 10-3664

Lab Sample Number: 11896

Client Job Number:

N/A Pinto 1 Backfill

Date Sampled:

09/08/2010

Field Location: Field ID Number: Sample Type:

N/A

Date Received:

09/09/2010

Soil

Date Analyzed:

09/14/2010

. Jpc.		00	
	. ,,,	. , , , , ,	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Pesticide Identification	Results in ug / Kg
Aldrin	ND< 3.15
alpha-BHC	ND< 3.15
beta-BHC	ND< 3.15
delta-BHC	ND< 3.15
gamma-BHC	ND< 3.15
alpha-Chlordane	ND< 3.15
gamma-Chlordane	ND< 3.15
4,4'-DDD	ND< 3.15
4,4'-DDE	5.11
4,4'-DDT	ND< 3.15
Dieldrin	ND< 3.15
Endosulfan I	ND< 3.15
Endosulfan II	ND< 3.15
Endosulfan Sulfate	ND< 3.15
Endrin	ND< 3.15
Endrin Aldehyde	ND< 3.15
Endrin Ketone	ND< 3.15
Heptachlor	ND< 3.15
Heptachlor Epoxide	ND< 3.15
Methoxychlor	15.3*
Toxaphene	ND< 157

ELAP Number 10958

Method: EPA 8081

Comments: ND denotes Non Detect

ug / Kg = microgram per Kilogram

* = Concentration differs by more then 40% between primary and secondary columns

Signature:

Bruce Hoogesteger: Technical Director

Pesticide Analysis Report for Soils/Solids/Sludges

Client: South Buffalo Dev.

Client Job Site:

Buffalo Color

Lab Project Number: 10-3664

Lab Sample Number: 11897

Client Job Number:

N/A

Date Sampled:

09/08/2010

Field Location: Field ID Number: River Road Backfill

Date Received:

09/09/2010

Sample Type:

N/A Soil

Date Analyzed:

09/14/2010

Pesticide Identification	Results in ug / Kg
Aldrin	ND< 3.52
alpha-BHC	ND< 3.52
beta-BHC	ND< 3.52
delta-BHC	ND< 3.52
gamma-BHC	ND< 3.52
alpha-Chiordane	ND< 3.52
gamma-Chlordane	ND< 3.52
4,4'-DDD	ND< 3.52
4,4'-DDE	ND< 3.52
4,4'-DDT	ND< 3.52
Dieldrin	ND< 3.52
Endosulfan I	ND< 3.52
Endosulfan II	ND< 3.52
Endosulfan Sulfate	ND< 3.52
Endrin	ND< 3.52
Endrin Aldehyde	ND< 3.52
Endrin Ketone	ND< 3.52
Heptachlor	ND< 3.52
Heptachlor Epoxide	ND< 3.52
Methoxychlor	ND< 3.52
Toxaphene	ND< 176

ELAP Number 10958

Method: EPA 8081

Comments: ND denotes Non Detect

ug / Kg = microgram per Kilogram

Signature:

Bruce Hoogesteger: Technical Director

Semi-Volatile Analysis Report for Soils/Solids/Sludges

Client: South Buffalo Dev.

Client Job Site: **Buffalo Color** Lab Project Number: Lab Sample Number: 10-3664 11896

Client Job Number: Field Location:

N/A Pinto 1 Backfill

Date Sampled:

09/08/2010

Field ID Number:

Date Received:

09/09/2010

N/A

Sample Type: Soil

Date Analyzed:

09/16/2010

Base / Neutrals	Results in ug / Kg	Base / Neutrals	Results in ug / Kg
Acenaphthene	< 314	Dibenz (a,h) anthracene	< 314
Anthracene	< 314	Fluoranthene	560
Benzo (a) anthracene	< 314	Fluorene	< 314
Benzo (a) pyrene	< 314	Indeno (1,2,3-cd) pyrene	< 314
Benzo (b) fluoranthene	< 314	Naphthalene	< 314
Benzo (g,h,i) perylene	< 314	Phenanthrene	417
Benzo (k) fluoranthene	< 314	Pyrene	446
Chrysene	< 314	Acenaphthylene	< 314
Diethyl phthalate	< 314	1,2-Dichlorobenzene	< 314
Dimethyl phthalate	< 785	1,3-Dichlorobenzene	< 314
Butylbenzylphthalate	< 314	1,4-Dichlorobenzene	< 314
Di-n-butyl phthalate	< 314	1,2,4-Trichlorobenzene	< 314
Di-n-octylphthalate	< 314	Nitrobenzene	< 314
Bis (2-ethylhexyl) phthalate	< 314	2,4-Dinitrotoluene	< 314
2-Chloronaphthalene	< 314	2,6-Dinitrotoluene	< 314
Hexachlorobenzene	< 314	Bis (2-chloroethyl) ether	< 314
Hexachloroethane	< 314	Bis (2-chloroisopropyl) ether	< 314
Hexachlorocyclopentadiene	< 314	Bis (2-chloroethoxy) methane	< 314
Hexachlorobutadiene	< 314	4-Bromophenyl phenyl ether	< 314
N-Nitroso-di-n-propylamine	< 314	4-Chlorophenyl phenyl ether	< 314
N-Nitrosodiphenylamine	< 314	Benzidine	< 785
N-Nitrosodimethylamine	< 314	3,3'-Dichlorobenzidine	< 314
Isophorone	< 314	4-Chloroaniline	< 314
Benzyl alcohol	< 785	2-Nitroaniline	< 785
Dibenzofuran	< 314	3-Nitroaniline	< 785
2-Methylnapthalene	< 314	4-Nitroaniline	< 785
Aniline	< 314		

	Results in ug / Kg	Acids	Results in ug / Kg
Acids			
Phenol	< 314	2-Methylphenol	< 314
2-Chlorophenol	< 314	3&4-Methylphenol	< 314
2,4-Dichlorophenol	< 314	2,4-Dimethylphenol	< 314
2,6-Dichlorophenol	< 314	2-Nitrophenol	< 314
2,4,5-Trichlorophenol	< 785	4-Nitrophenol	< 785
2,4,6-Trichlorophenol	< 314	2,4-Dinitrophenol	< 785
Pentachlorophenol	< 785	4,6-Dinitro-2-methylphenol	< 785
4-Chloro-3-methylphenol	< 314	Benzoic acid	< 785

ELAP Number 10958

Method: EPA 8270C

Data File: S52936.D

Comments: ug / Kg = microgram per Kilogram

Surrogate outliers indicate probable matrix interference

Signature:

Bruce Hoogesteger: Technical Director
This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional Information, including compliance with sample condition 103664S1.XLS requirements upon receipt.

Semi-Volatile Analysis Report for Soils/Solids/Sludges

Client: South Buffalo Dev.

Client Job Site:

Buffalo Color

Lab Project Number:

10-3664

Lab Sample Number:

11897

Client Job Number:

N/A River Road Backfill

Date Sampled:

09/08/2010

Field Location: Field ID Number:

N/A

Date Received:

09/09/2010

Sample Type:

Soil

Date Analyzed:

09/16/2010

Base / Neutrals	Results in ug / Kg	Base / Neutrals	Results in ug / Kg
Acenaphthene	< 309	Dibenz (a,h) anthracene	< 309
Anthracene	< 309	Fluoranthene	< 309
Benzo (a) anthracene	< 309	Fluorene	< 309
Benzo (a) pyrene	< 309	Indeno (1,2,3-cd) pyrene	< 309
Benzo (b) fluoranthene	< 309	Naphthalene	< 309
Benzo (g,h,i) perylene	< 309	Phenanthrene	< 309
Benzo (k) fluoranthene	< 309	Pyrene	< 309
Chrysene	< 309	Acenaphthylene	< 309
Diethyl phthalate	< 309	1,2-Dichlorobenzene	< 309
Dimethyl phthalate	< 772	1,3-Dichlorobenzene	< 309
Butylbenzylphthalate	< 309	1,4-Dichlorobenzene	< 309
Di-n-butyl phthalate	< 309	1,2,4-Trichlorobenzene	< 309
Di-n-octylphthalate	< 309	Nitrobenzene	< 309
Bis (2-ethylhexyl) phthalate	< 309	2,4-Dinitrotoluene	< 309
2-Chloronaphthalene	< 309	2,6-Dinitrotoluene	< 309
Hexachlorobenzene	< 309	Bis (2-chloroethyl) ether	< 309
Hexachloroethane	< 309	Bis (2-chloroisopropyl) ether	< 309
Hexachlorocyclopentadiene	< 309	Bis (2-chloroethoxy) methane	< 309
Hexachlorobutadiene	< 309	4-Bromophenyl phenyl ether	< 309
N-Nitroso-di-n-propylamine	< 309	4-Chlorophenyl phenyl ether	< 309
N-Nitrosodiphenylamine	< 309	Benzidine	< 772
N-Nitrosodimethylamine	< 309	3,3'-Dichlorobenzidine	< 309
Isophorone	< 309	4-Chloroaniline	< 309
Benzyl alcohol	< 772	2-Nitroaniline	< 772
Dibenzofuran	< 309	3-Nitroaniline	< 772
2-Methylnapthalene	< 309	4-Nitroaniline	< 772
Aniline	< 309		

Acids	Results in ug / Kg	Acids	Results in ug / Kg
Phenol	< 309	2-Methylphenol	< 309
2-Chlorophenol	< 309	3&4-Methylphenol	< 309
2.4-Dichlorophenol	< 309	2,4-Dimethylphenol	< 309
2,6-Dichlorophenol	< 309	2-Nitrophenol	< 309
2,4,5-Trichlorophenol	< 772	4-Nitrophenol	< 772
2,4,6-Trichlorophenol	< 309	2,4-Dinitrophenol	< 772
Pentachlorophenol	< 772	4,6-Dinitro-2-methylphenol	< 772
4-Chloro-3-methylphenol	< 309	Benzoic acid	< 772

ELAP Number 10958

Method: EPA 8270C

Data File: S52937.D

Comments: ug / Kg = microgram per Kilogram

Surrogate outliers indicate probable matrix interference Matrix Spike outliers indicate probable matrix interference

Signature:

Bruce Hoogesteger: Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition 103664S2.XLS requirements upon receipt.

Volatile Analysis Report for Soils/Solids/Sludges

Client: South Buffalo Dev.

Client Job Site:

Buffalo Color

Lab Project Number: 10-3664 Lab Sample Number: 11896

Client Job Number:

N/A

Field Location:

Pinto 1 Backfill

Date Sampled: **Date Received:** 09/08/2010 09/09/2010

Field ID Number:

N/A

09/14/2010

Sample Type:

Soil

Date Analyzed:

1	Halocarbons	Results in ug / Kg
	Bromodichloromethane	ND< 7.48
	Bromomethane	ND< 7.48
	Bromoform	ND< 18.7
	Carbon Tetrachloride	ND< 18.7
	Chloroethane	ND< 7.48
	Chloromethane	ND< 7.48
	2-Chloroethyl vinyl Ether	ND< 37.4
	Chloroform	ND< 7.48
	Dibromochloromethane	ND< 7.48
	1,1-Dichloroethane	ND< 7.48
	1,2-Dichloroethane	ND< 7.48
	1,1-Dichloroethene	ND< 7.48
	cis-1,2-Dichloroethene	ND< 7.48
	trans-1,2-Dichloroethene	ND< 7.48
	1,2-Dichloropropane	ND< 7.48
	cis-1,3-Dichloropropene	ND< 7.48
	trans-1,3-Dichloropropene	ND< 7.48
	Methylene chloride	ND< 18.7
	1,1,2,2-Tetrachloroethane	ND< 7.48
	Tetrachloroethene	ND< 7.48
	1,1,1-Trichloroethane	ND< 7.48
	1,1,2-Trichloroethane	ND< 7.48
	Trichloroethene	ND< 7.48
	Trichlorofluoromethane	ND< 7.48
	Vinyl chloride	ND< 7.48

Aromatics	Results in ug / Kg
Benzene	ND< 7.48
Chlorobenzene	ND< 7.48
Ethylbenzene	ND< 7.48
Toluene	ND< 7.48
m,p-Xylene	ND< 7.48
o-Xylene	ND< 7.48
Styrene	ND< 18.7
1,2-Dichlorobenzene	ND< 18.7
1.3-Dichlorobenzene	ND< 18.7
1,4-Dichlorobenzene	ND< 7.48

Ketones	Results in ug / Kg
Acetone	ND< 37.4
2-Butanone	ND< 37.4
2-Hexanone	ND< 18.7
4-Methyl-2-pentanone	ND< 18.7

Miscellaneous	Results in ug / Kg
Carbon disulfide	ND< 7.48
Vinyl acetate	. ND< 18.7
	:
,	

Vinyl chloride ELAP Number 10958

Method: EPA 8260B

Data File: V78263.D

Comments: ND denotes Non Detect

ug / Kg = microgram per Kilogram

Signature:

Bruce Hoogesteger: Technical Director

Volatile Analysis Report for Soils/Solids/Sludges

Client: South Buffalo Dev.

Client Job Site:

Buffalo Color

Lab Project Number: 10-3664

Client Job Number:

N/A

Lab Sample Number: 11897

Field Location:

River Road Backfill

Date Sampled:

09/08/2010

Field ID Number:

N/A

Date Received:

09/09/2010

Sample Type:

Soil

Date Analyzed:

09/14/2010

			_
Halocarbo	าร	Results in ug / Kg	_
Bromodichle		ND< 8.30	_
Bromometh		ND< 8.30	
Bromoform		ND< 20.7	
Carbon Tot	rachlarida	ND< 20.7	

Carbon Tetrachloride ND< 8.30 Chloroethane ND< 8.30 Chloromethane ND< 41.5 2-Chloroethyl vinyl Ether ND< 8.30 Chloroform

Dibromochloromethane 1,1-Dichloroethane

ND< 8.30 ND< 8.30 1,2-Dichloroethane ND< 8.30 1,1-Dichloroethene cis-1,2-Dichloroethene ND< 8.30

ND< 8.30 trans-1,2-Dichloroethene ND< 8.30 1,2-Dichloropropane ND< 8.30 cis-1,3-Dichloropropene ND< 8.30 trans-1,3-Dichloropropene

ND< 8.30

ND< 20.7 Methylene chloride ND< 8.30 1,1,2,2-Tetrachloroethane ND< 8.30 Tetrachloroethene ND< 8.30 1,1,1-Trichloroethane

ND< 8.30 1,1,2-Trichloroethane ND< 8.30 Trichloroethene ND< 8.30 Trichlorofluoromethane ND< 8.30

ELAP Number 10958

Vinyl chloride

Aromatics	Results in ug / Kg
Benzene	ND< 8.30
Chlorobenzene	ND< 8.30
Ethylbenzene	ND< 8.30
Toluene	ND< 8.30
m,p-Xylene	ND< 8.30
o-Xylene	ND< 8.30
Styrene	ND< 20.7
1,2-Dichlorobenzene	ND< 20.7
1.3-Dichlorobenzene	ND< 20.7
1.4-Dichlorobenzene	ND< 8.30

1/-4	Results in ug / Kg
Ketones Acetone	ND< 41.5
	ND< 41.5
2-Butanone	ND< 41.3
2-Hexanone	
4-Methyl-2-pentanone	ND< 20.7

Miscellaneous	Results in ug / Kg
Carbon disulfide	ND< 8.30
Vinyl acetate	ND< 20.7
ļ	

Method: EPA 8260B

Data File: V78264.D

Comments: ND denotes Non Detect

ug / Kg = microgram per Kilogram

Signature:

Bruce Hoogesteger: Technical Director

CHAIN OF CUSTODY

РДР	RADIO	M	3.20	2 2 5 1	REPORT TO): 14 3 6 E		2 E	en - en en en en en en en en en en en en en	2. 6.	INVO	ICE:T	ງ : ຼຸ		an.				(stoner.	£ .	1	1. A. C.	j
CHVIRON	HENTAL TOPPICE	5. 14.	COMPANY	171 9341 - 40011111111111111111111111111111111	7	Talo 1	•	COMPAN			me					LAB PR	OJECT#:	C	LIENT PI	ROJE	T#:	- 4.16	Í
			ADDRESS	33 Ga	nsa-	54		ADDRESS	S:							10	.366	4					
	The state of the s	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	CITY:	Buffelo	STATI	E NYZ	1P/4Z03	CITY:				s	TATE:		ZIP:	TURNAF	ROUND TI	ME: (WOR	KING DA	(YS)			1
	M I THE REAL PROPERTY.	3	PHONE	56-333	3 FAX:			PHONE:				FAX:				1			STD)	O 1	THER	į
PROJECT NAME/SITE			ATTN:		r Yen	sam		ATTN:		•••••						\prod_1			$\mathbf{x} \mathbf{x}$	5			1
Buffe	do Co	lor	COMMENT					<u> </u>								Quot	ation	#					1
Contract Contract Contract		A Miles	। क्रिकें	8 8 3	T. E	- 2.8.Z	a di	KALLE.	RE	QUE	STE	ANA	LYSIS	S		Dr. Danie		9.24 MAIL AND	ser die	And.	lin es	i nakiri	î.
DATE	TIME	C M P O S I T E	G R A B	1	PLE LOCATION/FI		M A T R I	C O N T A I N B I N E R E R S	etals	166 8200	100	Cyanide	pH		827	10 Al nt h	3N+0 71s+0 Marks E	anili	nes.	PARAI		.АВ	
1 9/8/10	1:30	, K		Pinto I	Bac	Efill		2	K	<u> </u>	XX				7	0	#1	L	/	/	8 9	76	,
2 9/8/10	113000	~ K		Riverk	Road	Backfi	// \(\(\)	12	X		XX	421	4		2	\mathcal{Q}	#	Z	1	1	8 9	7 7	,
3	1																						
4					· · · · · · · · · · · · · · · · · · ·													·		П			
5										Τ										П	T	T	
6													\Box										•
7								<u> </u>	1 1											П	\top	\top	-
8								1														\top	-
9																					\top		
10									1	1							•				\top	T	-
LAB USE O					ra ve			W. T. M.	on top			************************************		ten alle					A Charles		77.7	4	4
Sample Condition	on: Per NEL Receipt Pa		241/242/2	243/244 NELAC C	Compliance	¬ /	^		1														
Comments:	Container			Y 💢	N 🔲	Sam	P) By	·N	<u>\(\) </u>			٥	Sate/Ti	ne	1:	30 ₁	∑. ~~ ⊤	otal Cos	st:				
Comments:	Preservat	tion:	UIA	Y 🔲	N	Relia	nafished	-// By	<u> </u>				Sate/Ti		<u> </u>	00 f	π.~			:			_
Comments:	Holding T			Y 🔀	N		() eived By						Date/Ti			-é.	_ P	.l.F.					
Comments:	Temperat	ture: <u>8°C i c e</u>	d	·	N 🔀	Rec	ijali eived @ L	th (2.4	or	ch	9/	9//C Date/Ti) / <u>3</u> me	<u>55</u>		_			·			
						— .	•																

APPENDIX K

ENVIRONMENTAL EASEMENT

ENVIRONMENTAL EASEMENT GRANTED PURSUANT TO ARTICLE 71, TITLE 36 OF THE NEW YORK STATE ENVIRONMENTAL CONSERVATION LAW

THIS INDENTURE made this day of day of 20/0, between Owner(s) South Buffalo Development LLC, having an office at 333 Ganson, Buffalo, New York 14203, (the "Grantor"), and The People of the State of New York (the "Grantee."), acting through their Commissioner of the Department of Environmental Conservation (the "Commissioner", or "NYSDEC" or "Department" as the context requires) with its headquarters located at 625 Broadway, Albany, New York 12233,

WHEREAS, the Legislature of the State of New York has declared that it is in the public interest to encourage the remediation of abandoned and likely contaminated properties ("sites") that threaten the health and vitality of the communities they burden while at the same time ensuring the protection of public health and the environment; and

WHEREAS, the Legislature of the State of New York has declared that it is in the public interest to establish within the Department a statutory environmental remediation program that includes the use of Environmental Easements as an enforceable means of ensuring the performance of operation, maintenance, and/or monitoring requirements and the restriction of future uses of the land, when an environmental remediation project leaves residual contamination at levels that have been determined to be safe for a specific use, but not all uses, or which includes engineered structures that must be maintained or protected against damage to perform properly and be effective, or which requires groundwater use or soil management restrictions; and

WHEREAS, the Legislature of the State of New York has declared that Environmental Easement shall mean an interest in real property, created under and subject to the provisions of Article 71, Title 36 of the New York State Environmental Conservation Law ("ECL") which contains a use restriction and/or a prohibition on the use of land in a manner inconsistent with engineering controls which are intended to ensure the long term effectiveness of a site remedial program or eliminate potential exposure pathways to hazardous waste or petroleum; and

WHEREAS, Grantor, is the owner of real property located at the address of 229 Elk, 145 Prenatt and 5 Babcock in the City of Buffalo, Erie County and State of New York, known and designated on the tax map of the County Clerk of Erie as tax map parcel numbers: Section 122.12 Block 1 Lot's 30, 35 and 36, being the same as that property conveyed to Grantor by deed dated February 5, 2009 and recorded on February 17, 2009 in the Erie County Clerk's Office in Book 11155 Page 6551 [229 Elk] and by deed dated January 29, 2009 and recorded on February 9, 2009 in the Erie County Clerk's Office in Book 11155 Page 2785 [145 Prenatt] and by deed dated February 5, 2009 and recorded February 17, 2009 in the Erie County Clerk's Office in Book 11155 Page 6538 [5 Babcock], comprising approximately 6.027 ± acres, and hereinafter more fully described in the Land Title Survey dated September 18, 2010 prepared by Niagara Boundary and Mapping Services LS PC, which will be attached to the Site Management Plan. The property description and survey (the "Controlled Property") is set forth in and attached hereto as Schedule A; and

FILED

MAY 03 2010

ERIE COUNTY CLERK'S OFFICE WHEREAS, the Department accepts this Environmental Easement in order to ensure the protection of human health and the environment and to achieve the requirements for remediation established for the Controlled Property until such time as this Environmental Easement is extinguished pursuant to ECL Article 71, Title 36; and

NOW THEREFORE, in consideration of the mutual covenants contained herein and the terms and conditions of Brownfield Cleanup Agreement Index Number: B9-0784-08-06, Grantor conveys to Grantee a permanent Environmental Easement pursuant to ECL Article 71, Title 36 in, on, over, under, and upon the Controlled Property as more fully described herein ("Environmental Easement")

- I. <u>Purposes</u>. Grantor and Grantee acknowledge that the Purposes of this Environmental Easement are: to convey to Grantee real property rights and interests that will run with the land in perpetuity in order to provide an effective and enforceable means of encouraging the reuse and redevelopment of this Controlled Property at a level that has been determined to be safe for a specific use while ensuring the performance of operation, maintenance, and/or monitoring requirements; and to ensure the restriction of future uses of the land that are inconsistent with the above-stated purpose.
- 2. <u>Institutional and Engineering Controls</u>. The controls and requirements listed in the Department approved Site Management Plan ("SMP") including any and all Department approved amendments to the SMP are incorporated into and made part of this Environmental Easement. These controls and requirements apply to the use of the Controlled Property, run with the land, are binding on the Grantor and the Grantor's successors and assigns, and are enforceable in law or equity against any owner of the Controlled Property, any lessees and any person using the Controlled Property.
 - A. (1) The Controlled Property may be used for:

Commercial as described in 6 NYCRR Part 375-1.8(g)(2)(iii) and Industrial as described in 6 NYCRR Part 375-1.8(g)(2)(iv)

- (2) All Engineering Controls must be operated and maintained as specified in the Site Management Plan (SMP);
- (3) All Engineering Controls must be inspected at a frequency and in a manner defined in the SMP.
- (4) Groundwater and other environmental or public health monitoring must be performed as defined in the SMP;
- (5) Data and information pertinent to Site Management of the Controlled Property must be reported at the frequency and in a manner defined in the SMP;
- (6) All future activities on the property that will disturb remaining contaminated material must be conducted in accordance with the SMP;

- (7) Monitoring to assess the performance and effectiveness of the remedy must be performed as defined in the SMP.
- (8) Operation, maintenance, monitoring, inspection, and reporting of any mechanical or physical components of the remedy shall be performed as defined in the SMP.
- (9) Access to the site must be provided to agents, employees or other representatives of the State of New York with reasonable prior notice to the property owner to assure compliance with the restrictions identified by this Environmental Easement.
- B. The Controlled Property shall not be used for Residential or Restricted Residential purposes, and the above-stated engineering controls may not be discontinued without an amendment or extinguishment of this Environmental Easement.
- C. The SMP describes obligations that the Grantor assumes on behalf of Grantor, its successors and assigns. The Grantor's assumption of the obligations contained in the SMP which may include sampling, monitoring, and/or operating a treatment system, and providing certified reports to the NYSDEC, is and remains a fundamental element of the Department's determination that the Controlled Property is safe for a specific use, but not all uses. The SMP may be modified in accordance with the Department's statutory and regulatory authority. The Grantor and all successors and assigns, assume the burden of complying with the SMP and obtaining an up-to-date version of the SMP from:

Regional Remediation Engineer NYSDEC – Region 9 Division of Environmental Remediation 270 Michigan Avenue Buffalo, NY 14203-2915, Phone: (716) 851 - 7220

or

Site Control Section
Division of Environmental Remediation
NYSDEC
625 Broadway
Albany, New York 12233
Phone: (518) 402-9553

- D. Grantor must provide all persons who acquire any interest in the Controlled Property a true and complete copy of the SMP that the Department approves for the Controlled Property and all Department-approved amendments to that SMP.
- E. Grantor covenants and agrees that until such time as the Environmental Easement is extinguished in accordance with the requirements of ECL Article 71, Title 36 of the ECL, the property deed and all subsequent instruments of conveyance relating to the Controlled Property shall state in at least fifteen-point bold-faced type:

BCA Index No: B9-0784-08-06 Site No: C 915231

County: Erie

This property is subject to an Environmental Easement held by the New York State Department of Environmental Conservation pursuant to Title 36 of Article 71 of the **Environmental Conservation Law.**

- Grantor covenants and agrees that this Environmental Easement shall be incorporated in full or by reference in any leases, licenses, or other instruments granting a right to use the Controlled Property.
- G. Grantor covenants and agrees that it shall annually, or such time as NYSDEC may allow, submit to NYSDEC a written statement by an expert the NYSDEC may find acceptable certifying under penalty of perjury, in such form and manner as the Department may require, that:
- the inspection of the site to confirm the effectiveness of the institutional (1)and engineering controls required by the remedial program was performed under the direction of the individual set forth at 6 NYCRR Part 375-1.8(h)(3).
 - the institutional controls and/or engineering controls employed at such site:
 - (i) are in-place;
- (ii) are unchanged from the previous certification, or that any identified changes to the controls employed were approved b the NYSDEC and that all controls are in the Department-approved format; and
- (iii) that nothing has occurred that would impair the ability of such control to protect the public health and environment;
- the owner will continue to allow access to such real property to evaluate the continued maintenance of such controls;
- nothing has occurred that would constitute a violation or failure to comply with any site management plan for such controls;
- the report and all attachments were prepared under the direction of, and reviewed by, the party making the certification;
- to the best of his/her knowledge and belief, the work and conclusions described in this certification are in accordance with the requirements of the site remedial program, and generally accepted engineering practices; and
 - the information presented is accurate and complete.
- Right to Enter and Inspect. Grantee, its agents, employees, or other representatives of the State may enter and inspect the Controlled Property in a reasonable manner and at reasonable times to assure compliance with the above-stated restrictions.
- Reserved Grantor's Rights. Grantor reserves for itself, its assigns, representatives, and successors in interest with respect to the Property, all rights as fee owner of the Property, including:
- Use of the Controlled Property for all purposes not inconsistent with, or limited by the terms of this Environmental Easement;
 - В. The right to give, sell, assign, or otherwise transfer part or all of the underlying

fee interest to the Controlled Property, subject and subordinate to this Environmental Easement;
5. Enforcement

A. This Environmental Easement is enforceable in law or equity in perpetuity by Grantor, Grantee, or any affected local government, as defined in ECL Section 71-3603, against the owner of the Property, any lessees, and any person using the land. Enforcement shall not be defeated because of any subsequent adverse possession, laches, estoppel, or waiver. It is not a defense in any action to enforce this Environmental Easement that: it is not appurtenant to an interest in real property; it is not of a character that has been recognized traditionally at common law; it imposes a negative burden; it imposes affirmative obligations upon the owner of any interest in the burdened property; the benefit does not touch or concern real property; there is no privity of estate or of contract; or it imposes an unreasonable restraint on alienation.

- B. If any person violates this Environmental Easement, the Grantee may revoke the Certificate of Completion with respect to the Controlled Property.
- C. Grantee shall notify Grantor of a breach or suspected breach of any of the terms of this Environmental Easement. Such notice shall set forth how Grantor can cure such breach or suspected breach and give Grantor a reasonable amount of time from the date of receipt of notice in which to cure. At the expiration of such period of time to cure, or any extensions granted by Grantee, the Grantee shall notify Grantor of any failure to adequately cure the breach or suspected breach, and Grantee may take any other appropriate action reasonably necessary to remedy any breach of this Environmental Easement, including the commencement of any proceedings in accordance with applicable law.
- D. The failure of Grantee to enforce any of the terms contained herein shall not be deemed a waiver of any such term nor bar any enforcement rights.
- 6. <u>Notice</u>. Whenever notice to the Grantee (other than the annual certification) or approval from the Grantee is required, the Party providing such notice or seeking such approval shall identify the Controlled Property by referencing the following information:

County, NYSDEC Site Number, NYSDEC Brownfield Cleanup Agreement, State Assistance Contract or Order Number, and the County tax map number or the Liber and Page or computerized system identification number.

Parties shall address correspondence to:

Site Number: C 915231

Office of General Counsel

NYSDEC 625 Broadway

Albany New York 12233-5500

With a copy to:

Site Control Section

Division of Environmental Remediation

NYSDEC 625 Broadway Albany, NY 12233 All notices and correspondence shall be delivered by hand, by registered mail or by Certified mail and return receipt requested. The Parties may provide for other means of receiving and communicating notices and responses to requests for approval.

- 7. Recordation. Grantor shall record this instrument, within thirty (30) days of execution of this instrument by the Commissioner or her/his authorized representative in the office of the recording officer for the county or counties where the Property is situated in the manner prescribed by Article 9 of the Real Property Law.
- 8. <u>Amendment</u>. Any amendment to this Environmental Easement may only be executed by the Commissioner of the New York State Department of Environmental Conservation or the Commissioner's Designee, and filed with the office of the recording officer for the county or counties where the Property is situated in the manner prescribed by Article 9 of the Real Property Law.
- 9. <u>Extinguishment.</u> This Environmental Easement may be extinguished only by a release by the Commissioner of the New York State Department of Environmental Conservation, or the Commissioner's Designee, and filed with the office of the recording officer for the county or counties where the Property is situated in the manner prescribed by Article 9 of the Real Property Law.
- 10. <u>Joint Obligation</u>. If there are two or more parties identified as Grantor herein, the obligations imposed by this instrument upon them shall be joint and several.

IN WITNESS WHEREOF, Grantor has caused this instrument to be signed in its name.

South Buffalo Development, LLC

By: SBD Holdings I, Inc. – Manager and Member of South Buffalo Development, DLC:

By:

Print Name: Jon M. Williams,

Title: President of SBD Holdings I, Inc. Date:

Grantor's Acknowledgment

OTT LTD OF NEW YORK
STATE OF NEW YORK)
COUNTY OF FAIR) ss:
On the of day of coinger, in the year 20 m, before me, the undersigned personally appeared 100 me on the basis of satisfactory evidence to be the individual(s) whose name is (are) subscribed to the withir instrument and acknowledged to me that he/she/they executed the same in his/her/their capacity(ies), and that by his/her/their signature(s) on the instrument, the individual(s), or the person upon behalf of which the individual(s) acted, executed the instrument. Notary Paplic - State of New York
Notary Public - State of New York
NANCY L. MAZUR Notary Public, State of New York Ouglified in Erio County No. 1765930 My Commission Expires 30, 30

THIS ENVIRONMENTAL EASEMENT IS HEREBY ACCEPTED BY THE PEOPLE OF THE STATE OF NEW YORK, Acting By and Through the Department of Environmental Conservation as Designee of the Commissioner,

By:

Dale A. Desnoyers, Director Division of Remediation

Grantee's Acknowledgment

On the day of da

Notary Public - State of New York

David J. Chiusano
Notary Public, State of New York
No. 01CH5032146
Qualified in Schenectady County
Commission Expires August 22, 20 11

SCHEDULE "A" AND ENVIRONMENTAL EASEMENT DESCRIPTION

229 Elk Street, 145 Prenatt Street, 5 Babcock Street City of Buffalo, Eric County, NY Section 122.12 Block 1 Lot(s) 30, 35 & 36

Area C

ALL THAT TRACT OR PARCEL OF LAND, situate in the City of Buffalo, County of Erie, State of New York, being part of Lot Nos. 134 and 137, Township 10, Range 8 of the Buffalo Creek Reservation, bounded and described as follows:

BEGINNING at a point of intersection of the southerly line of Elk Street with the westerly line of Lee Street;

Thence southerly along the westerly line of Lee Street, \$13°45'01"W a distance of 709.59 feet more or less to the northerly line of Prenatt Street, said point being the north east corner of Prenatt Street as closed on September 9, 1955 and recorded in Liber 5836 of deeds at page 182, parcel B;

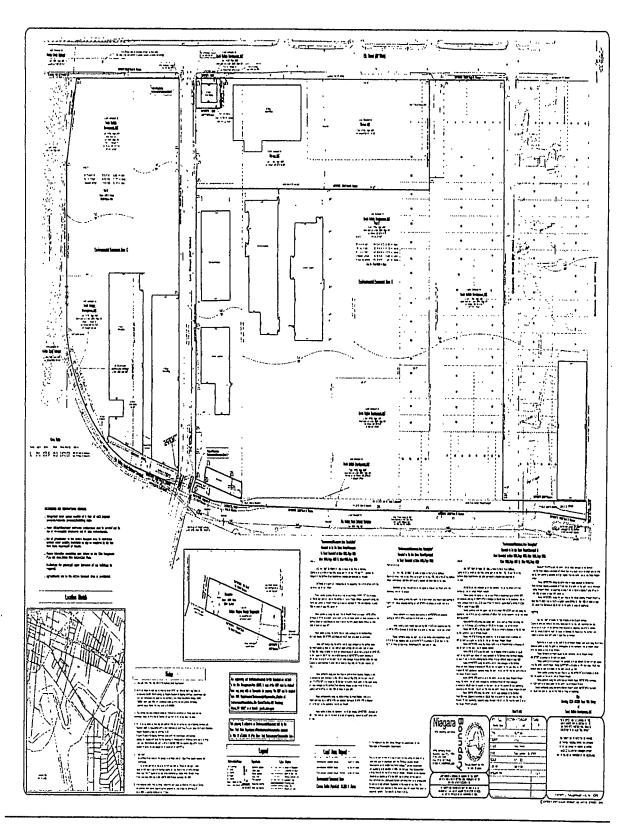
Thence southerly, along the east line of Prenatt Street as closed, S42°59'37"W a distance of 27.15 to a point, which point is the northeast corner of lands conveyed to the Buffalo Creek Railroad Company by deed filed in the Erie County Clerks Office in Liber 6040 of deeds at page 437;

Thence westerly along the north line of lands conveyed to the Buffalo Creek Railroad Company N63°37'29"W a distance of 143.31 feet to a point of curvature;

Thence continuing along the north line of lands conveyed to the Buffalo Creek Railroad Company by deed in Liber 6040 of deeds at Page 437 and Liber 1364 of deeds at Page 538, along a curve to the right with a radius of 330.00 feet, a delta of 62°32'03", an Arc Length of 360.17 feet and a chord bearing of N32°20'25"W a chord distance of 342.56 feet to a point on the east line of lands conveyed to said Buffalo Creek Railroad Company by deed recorded in Liber 250 of Deeds at Page 319, and the west line of Lot 137;

Thence northerly along said east line of Buffalo Creek Railroad Company's land as conveyed by deed recorded in Liber 250 of Deeds at Page 319, and the west line of Lot 137 N13°36'03"E a distance of 309.89 feet to a point, which point is the south corner of lands conveyed to the Buffalo Creek Railroad Company by deed filed in the Erie County Clerk's Office in Liber 1364 of Deeds at page 538;

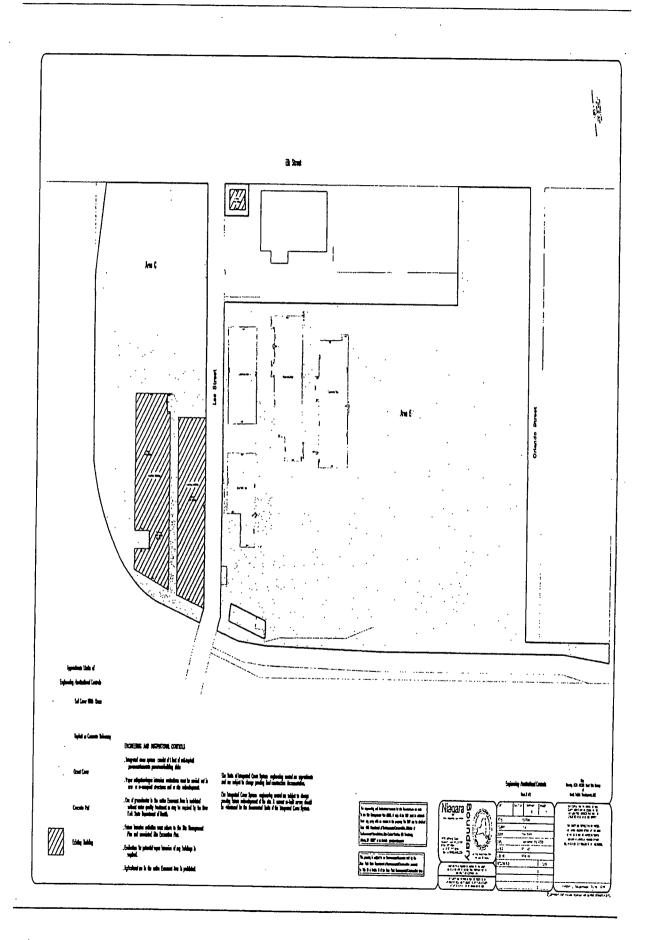
Thence northeasterly along the Buffalo Creek Railroad Company lands on a record deed bearing of N26° 34' 36"E, and measured bearing of N 26°41'16"E a distance of 158.99 feet to the southerly line of Elk Street;

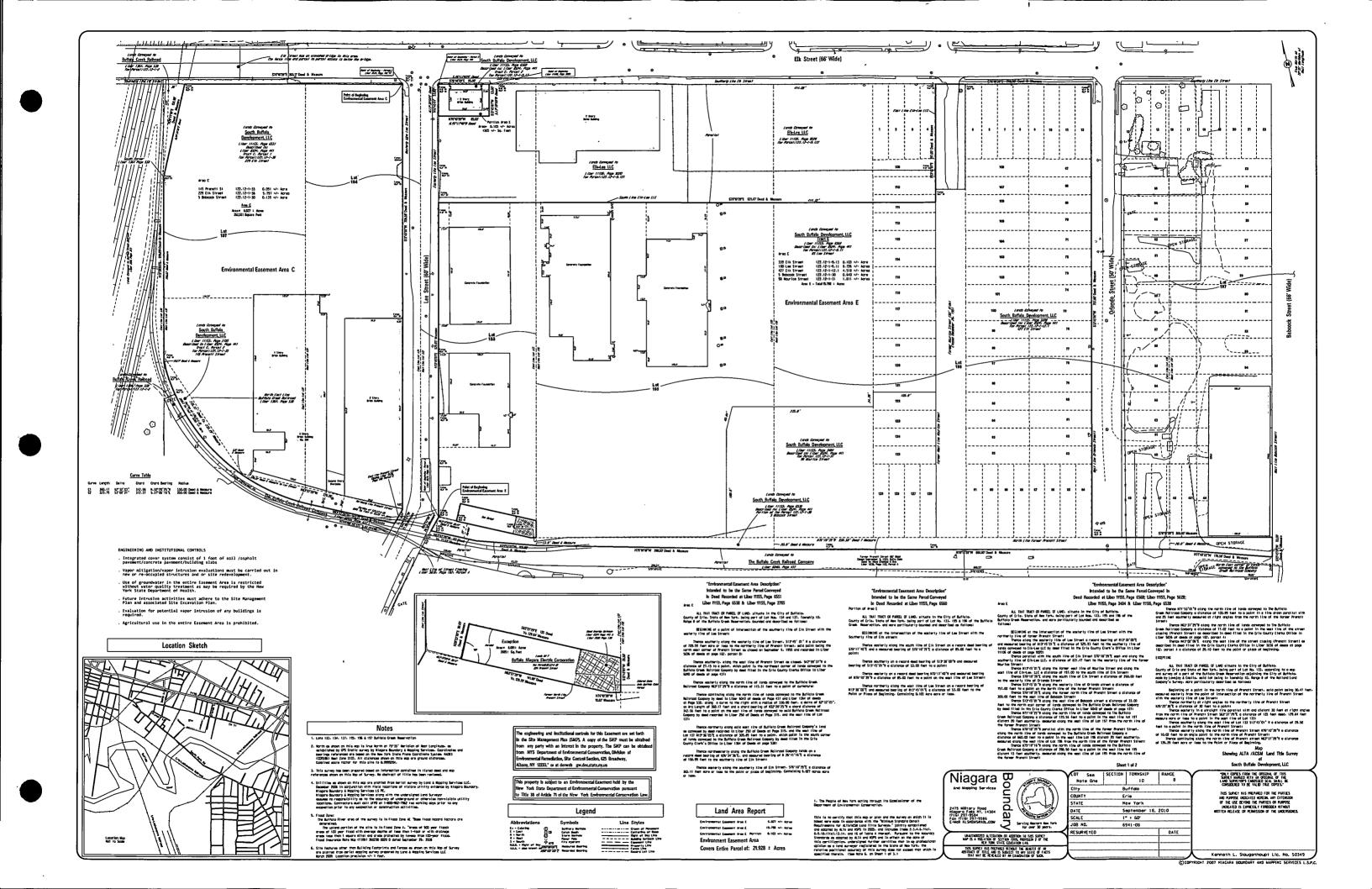

Thence easterly along the southerly line of Elk Street, S76°10'39"E a distance of 365.11 feet more or less to the point or place of beginning, Containing 6.027 acres more or less.

County: Erie

Site No: C 915231

BCA Index No: B9-0784-08-06

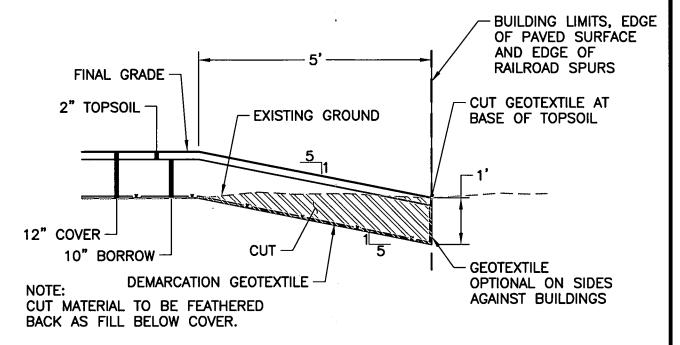

SURVEY



County: Erie

Site No: C 915231

BCA Index No: B9-0784-08-06



APPENDIX L

COVER SYSTEM TRANSITION ZONES

COVER DETAIL @ SITE/PROPERTY LIMITS
SCALE: 1" = 2'

COVER DETAIL @ BUILDING,
PAVEMENT, AND RAILROAD LIMITS
SCALE: 1" = 2'

Prepared/Date: MRS 04/06/10 Checked/Date: LNT 04/06/10

Area 1

- 1)All soils inside of property boundary shall be excavated to a depth of one (1) foot below existing grade.
- 2)Existing chain link fence within excavation area shall be removed as necessary to accomplish work. removed sections of fence shall be reinstalled at conclusion of work.
- 3)Backfill shall be placed and compacted to meet existing grade.

Area 2

- 1)Soils between curb and existing fence on either side of Maurice Street shall be excavated to a depth of one (1) foot below existing grade.
- 2)Backfill shall be placed and compacted to meet existing grade.

Area 3

- 1)Railroad (RR) tracks and ties for Spurs 1 and 2 shall be removed. Spur 3 shall not be disturbed.
- 2)Soils beneath spurs 1 and 2 shall be excavated to a depth of one (1) foot below existing grade. The lateral extents of the excavation shall extend laterally four (4) feet from ends of rail tie.
- 3)Limits of excavation shall be pre—marked prior to excavating soils or removing rail spurs.
- 4)In areas where RR tracks are to remain in place (western portions of Spurs 1 and 2 and all of Spur 3) the excavation shall extend from edge of rail tie to a horizontal distance of four (4) feet outside of rail tie or to the property boundary, whichever is closest.
- 5)All soils between Spurs 1 and 2 shall be removed to

AREA 1 SECTION

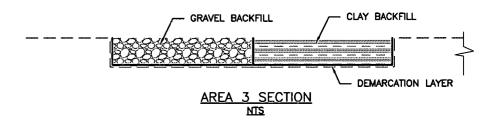
DEMARCATION LAYER

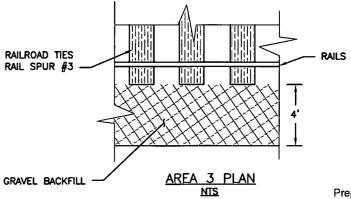
- one (1) foot below existing grade. The existing chain link fence shall be removed as shown on drawings.
- 6)Chain link fence between Spurs 2 and 3 shall be reinstalled along the centerline between the spurs to a distance of ten (10) feet east of the Spur 3 termination. The fence line shall then extend to the property boundary along the southern border of the site. The fence line shall be extended along the southern property boundary until it intersects the existing fence.
- 7)Caution shall be used while excavating around Buffalo Sewer Authority (BSA) manholes and former utilities lines.

Detail Notes

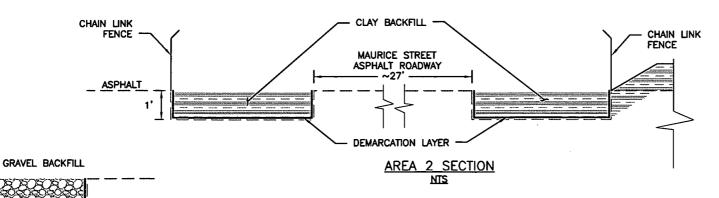
Area 1

- 1)A woven geotextile demarcation layer shall be placed within the excavation envelope, along excavation bottom and sidewalls.
- 2)Gravel backfill shall be placed within the excavation envelope above the demarcation layer.
- 3)Gravel backfill shall be compacted by a minimum of three passes of a vibratory roller.
- 4)A post compacted backfill thickness of one (1) foot shall be achieved.


Area 2

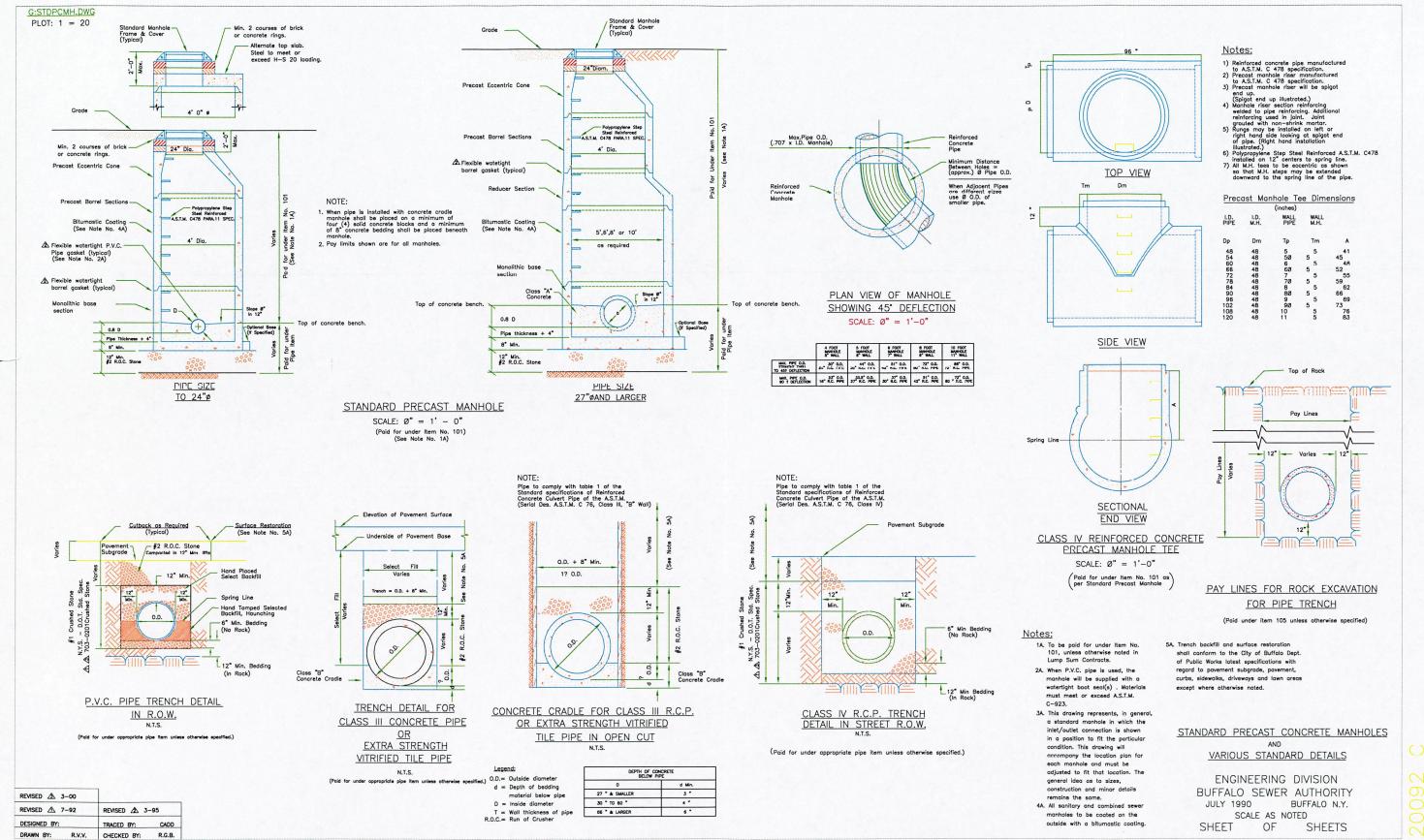

- 1)A woven geotextile demarcation layer shall be placed within the excavation envelope, along excavation bottom and sidewalls.
- 2)Clay borrow shall be placed within the excavation envelope above the demarcation layer.
- 3)Clay backfill shall be compacted by a minimum of three passes of the tracks/tires of a bulldozer or frontend loader.

- 4)A post compacted thickness of clay backfill of ten (10) inches shall be achieved.
- 5)A minimum of two (2) inches of topsoil shall be placed and compacted by a minimum of one pass of a bulldozer or frontend loader over the clay backfill.


Area 3

- 1)A woven geotextile demarcation layer shall be placed within the excavation envelope, along excavation bottom and sidewalls. At the interface between the clay and gravel backfills the demarcation layer installed beneath the clay shall be rolled up to provide filtration between the clay and gravel backfills.
- 2)For gravel backfill areas, gravel shall be placed within the excavation envelope above the demarcation layer and compacted by a minimum of three passes of a vibratory roller.
- 3)For clay borrow backfill areas clay borrow shall be placed within the excavation envelope above the demarcation layer and compacted a minimum of three passes of tracks/tires of a bulldozer or frontend loader.

Prepared/Date: RJR 09/07/10 Checked/Date: RSE 09/07/10



AREA E COVER FORMER BUFFALO COLOR CORP SITE BUFFALO, NEW YORK

Project 3410-09-0701 Figure 2

