

Periodic Review Report (April 9, 2021 through April 14, 2022)

Former Scott Aviation Facility, Area 1 BCP Lancaster, New York

Project reference: NYSDEC Site Code: C915233

June 27, 2022

Quality information

Prepared by	Checked by	Verified by	Approved by
Dino Zack. PG, STS	 Timothy Renn, PE	 James Kaczor, PG	 Dino Zack, PG, STS

Prepared for:

Scott Technologies, Inc. Aka Scott Figgie LLC Frankford, DE

Prepared by:

AECOM One John James Audubon Parkway Amherst, NY 14228

Table of Contents

1.	Introduction	1
	1.1 Report Organization	1
2.	Site Overview	3
	2.1 Site Location	3
	2.2 Physical Setting	3
	2.2.1 Land Use	3
	2.2.2 Site Geology/Hydrogeology	3
	2.2.3 Site Investigation and Remedial History	4
	2.2.3.1 Phase I	4
	2.2.3.2 Phase II	4
	2.2.3.3 Interim Remedial Measure - Soil Excavation	5
	2.2.3.4 Preliminary Groundwater Assessment	5
	2.2.3.5 Remedial Investigation	5
	2.2.3.6 Soil Vapor Intrusion Evaluation	6
	2.2.3.7 Interim Remedial Measures – 2014	7
	2.2.3.8 Supplemental Groundwater Injection	9
	2.2.3.9 Storm Sewer Pipe Replacement	
	2.2.3.10 Bioaugmentation Injection Program	11
	2.3 Remedial Action Objectives	11
	2.3.1 Groundwater	11
	2.3.2 Soil	12
	2.3.3 Soil Vapor	12
	2.4 Contaminants of Concern	12
3.	Groundwater Monitoring Program Summary	13
	3.1 Groundwater Monitoring Activities	13
	3.2 April 2022 Groundwater Elevation and Flow Direction	14
	3.3 October 2021 and April 2022 Groundwater Analytical Data	14
	3.4 October 2021 and April 2022 Storm Sewer Catch Basin and Storm Sewer Pipe Bedding Analytical Data	15
	3.5 Comparison of April 2022 COCs in Groundwater with Pre-IRM Groundwater Analytica	
	Data	
	3.6 Monitored Natural Attenuation	16
	3.7 Total Organic Carbon	16
	3.8 Dechlorinating Bacteria Analysis	17
	3.8.1 Volatile Fatty Acids	17
	3.8.2 Gene-Trac [®]	18
	3.9 Dechlorinating Chemical Analysis	19
4.	Site Inspection	20
	4.1 Boiler Room	20
	4.2 Monitoring Wells	20
5.	Conclusions and Recommendations	21
	5.1 Conclusions	21
	5.2 Recommendations	21
	5.3 Proposed Monitoring and Compliance Sampling Schedule	21
6.	Evaluate Remedy Performance, Effectiveness, and Protectiveness	23

6.1

7.	References
Figu	ıres
	Cita Lacation Man
1	Site Location Map
2	Site Layout Map
3	Monitoring Well, Piezometer and Catch Basin Locations
4	Geologic Cross-Section
5	Pre-Injection Shallow Overburden Groundwater Total VOC Contaminant Plume
6	Pre-Injection Deep Overburden Groundwater Total VOC Contaminant Plume
7	Pre-Injection Shallow Overburden Groundwater TCE Contaminant Plume
8	Pre-Injection Deep Overburden Groundwater TCE Contaminant Plume
9	2015 IRM Injection Zone Details
10	2019 Supplemental Groundwater Injection Area
11	2021 Bioaugmentation Injection Area
12	Shallow Overburden Groundwater Surface Contour Elevations – April 2022
13	Deep Overburden Groundwater Surface Contour Elevations – April 2022

Shallow Overburden Groundwater 1,1-Dichloroethane Plume – April 2022

Shallow Overburden Groundwater Vinyl Chloride Plume – April 2022

Shallow Overburden Groundwater Total VOCs Plume – April 2022

Deep Overburden Groundwater Total VOCs Plume – April 2022

Shallow Overburden Groundwater TOC Plume – April 2022 Deep Overburden Groundwater TOC Plume – April 2022

Shallow Overburden Groundwater 1,1,1-Trichloroethane Plume - April 2022

Shallow Overburden Groundwater cis-1,2-Dichloroethene Plume – April 2022

Tables

14

15

16

17 18

19

20

21

1	Groundwater Monitoring Program
---	--------------------------------

- 2 Monitoring Well and Piezometer Specifications
- 3 Groundwater Elevation Data April 2022
- 4 Summary of Monitoring Well Analytical Data October 2021
- 5 Summary of Monitoring Well Analytical Data April 2022
- 6 Summary of Catch Basin and Temporary Piezometer Analytical Data April 2020 through April 2022
- 7 Bioattenuation Screening Summary April 2022
- 8 Pre- and Post-Bioaugmentation Injection VFA Data Comparison
- 9 Pre- and Post-Bioaugmentation Injection Gene-Trac Data Comparison

List of Appendices

Appendix A Pre-Injection and Post-Injection Groundwater Quality Data

Appendix B Current and Historical Summary of VOCs in Groundwater

Appendix C Purge Logs (October 2021 and April 2022)

Appendix D Analytical Laboratory Data Packages (Provided on CD)

Appendix E Institutional Controls and Engineering Controls Certification Form

List of Acronyms

1,1-DCA1,1-dichloroethane1,1-DCE1,1-dichloroethene1,2-DCA1,2-dichloroethane1,1,1-TCA1,1,1-trichloroethane1,1,2-TCA1,1,2-trichloroethane

AAR Alternatives Analysis Report

ABC® Anaerobic Biochem

ABC+® Anaerobic Biochem with Zero Valence Iron

AECOM Technical Services, Inc.

AMSL above mean sea level AVOX AVOX Systems Inc

BCP Brownfield Cleanup Program

bgs below ground surface

CCR Construction Completion Report

cis-1,2 DCE cis-1,2-dichloroethene cm/sec centimeters per second contaminants of concern

COPC constituents of potential concern

CVOC chlorinated volatile organic compound

DHC Dehalococcoides (bacteria)
DPT Direct Push Technology

ERD Enhanced Reductive Dechlorination
ESA Environmental Site Assessment

ft feet

HPT hydraulic profiling tool

IC/EC Institutional Controls/Engineering Controls

IRM interim remedial measure K hydraulic conductivity

Matrix Environmental Technologies, Inc.

mg/L milligrams per liter

MIP membrane interface probe
MNA monitored natural attenuation

NYCRR New York Codes, Rules and Regulations

NYSDEC New York State Department of Environmental Conservation

NYSDOH New York State Department of Health

O&M operation and maintenance PCB polychlorinated biphenyl

PCE Tetrachloroethene (Perchloroethene)
PGA Preliminary Groundwater Assessment

PID photoionization detector PRR Periodic Review Report

QA/QC quality assurance / quality control

RAO remedial action objective
RAWP Remedial Action Work Plan
RI remedial investigation

SCO soil cleanup objective
SMP Site Management Plan

SRI Supplemental Remedial Investigation

SVI soil vapor intrusion

sq square

SVOC semi volatile organic compound

TCE trichloroethene
TOC total organic carbon

TOGS Technical and Operational Guidance Series

TVOC total volatile organic compounds

μg/L micrograms per liter

USEPA United States Environmental Protection Agency

UST underground storage tank

VC vinyl chloride

VOC volatile organic compound

wt. % weight percent

XSD halogen specific detector

ZVI zero valence iron

Executive Summary

On September 1, 2004, the former Scott Aviation Facility (three plant facility) was sold by Scott Technologies, Inc. to the current facility owner/operator, AVOX Systems Inc (AVOX). On September 11, 2008, Scott Technologies, Inc. submitted an application for the area located adjacent to the southwest corner of the Plant 1 property (the "Site", also known as Area 1) to enter the New York State Department of Environmental Conservation (NYSDEC) Brownfield Cleanup Program (BCP), per Title 6 New York Codes, Rules, and Regulations Part 375-3.4 (Applications), effective December 14, 2006. Scott Technologies, Inc. applied for entry into NYSDEC BCP as a participant to investigate and remediate, as appropriate, potential areas of environmental concern associated with the Site. On July 8, 2009, NYSDEC approved the application and Scott Technologies was accepted into the BCP as a participant (NYSDEC Site Code No. C915233). Scott Technologies, a successor to Figgie International, is now known as Scott Figgie LLC. In December 2015, AVOX was added to the Brownfield Cleanup Agreement as a Volunteer.

Soil, groundwater, surface water, and soil vapor impacts at the Site were outlined in reports submitted to the NYSDEC that describe the results of a series of investigations which took place over several years. Impacts identified during these investigations were addressed via interim remedial measures (IRMs) prior to the issuance in December 2015 of a final Decision Document and Certificate of Completion for the Site.

Based on the implementation of the IRMs and a groundwater injection program conducted in March 2019, findings from the investigation of the Site indicate that the Site no longer poses a threat to human health or the environment; therefore, No Further Action is the selected remedy by NYSDEC. The No Further Action remedy currently includes semi-annual groundwater monitoring, and quarterly inspections of the boiler room repairs to the floor cracks and joints and sealing of the annulus around each floor drain to mitigate the potential for subslab volatile organic compound (VOC) vapors to enter the building.

Periodic groundwater monitoring has shown a notable decrease in the concentrations of contaminants of concern (COC) and no off-Site migration of COCs in groundwater. Additionally, microbial analysis of shallow and deep overburden groundwater has indicated that the necessary microbes, such as Dehalococcoides, and degradation enzymes are present in subsurface groundwater.

A continuation of semi-annual groundwater monitoring for VOCs and monitored natural attenuation parameters at select Site wells, quarterly inspections of the boiler room floor, and annual reporting per the NYSDEC-approved Site Management Plan (SMP) is recommended for the next reporting period. No change is recommended to the existing SMP.

1. Introduction

On behalf of Scott Figgie LLC (successor to Scott Technologies, Inc.), and pursuant to the requirements of New York State Department of Environmental Conservation (NYSDEC), Decision Document (NYSDEC, December 2015) and Site Management Plan (SMP) (AECOM, December 2015), AECOM Technical Services, Inc. (AECOM) has prepared this Periodic Review Report (PRR) to summarize the groundwater monitoring activities for the former Scott Aviation facility (the "Site", also known as Area 1), NYSDEC Site Code No. C915233, located within two parcels at 215 and 221 Erie Street, Village of Lancaster, County of Erie, State of New York (**Figure 1**). The reporting period discussed herein encompasses the period from April 9, 2021 through April 14, 2022. During the reporting period, the Site has been owned and operated by AVOX Systems Inc (AVOX).

1.1 Report Organization

The purpose of this PRR is to provide a summary of the controls implemented for the Site as required by Section 7.2 of the SMP and to provide recommendations for future controls at the Site.

This PRR was developed to adhere to NYSDEC site investigation and remediation requirements (NYSDEC DER-10, May 2010). More specifically, this report provides the following information:

- An Executive Summary including a brief summary of the Site, nature and extent of contamination, remedial history, the effectiveness of the remedial program, and recommendations for changes to the SMP;
- A brief summary of the Site and PRR organizational details (Section 1);
- A Site overview, describing the Site location, significant features, surrounding areas, and the extent
 of environmental impacts prior to Site remediation. A description of the chronology of the main
 features of the remedial program for the Site, the components of the selected remedy, cleanup goals,
 site closure criteria, and any significant changes to the selected remedy that have been made since
 remedy selection (Section 2);
- A groundwater monitoring program summary including a description of the requirements of the
 monitoring, a summary of the groundwater monitoring activities completed during the PRR reporting
 period, a comparison of the most recent (April 2022) groundwater results to the Remedial Action
 Objectives (RAOs) of the Site, and conclusions regarding the monitoring completed and the resulting
 evaluations regarding remedial performance, effectiveness, and protectiveness (Section 3);
- A description of the Site inspections, associated operations and maintenance (O&M) tasks completed and recommendations for improvements (Section 4);
- A summary of overall conclusions and recommendations regarding compliance with the SMP, performance and effectiveness of the remedy, a description of upcoming Site-related activities, and a proposed monitoring and compliance sampling and reporting schedule (Section 5);
- A review of the Institutional Controls/Engineering Controls (IC/EC) for the Site (Section 6); and,
- References used in the preparation of this report (Section 7).

Supporting information used in the preparation of this PRR is included in five appendices:

- Appendix A provides a summary of VOCs in groundwater;
- Appendix B provides a current and historical summary of the volatile organic compounds (VOCs)
 detected in the Site monitoring wells sampled in October 2021 and April 2022;
- Appendix C provides the groundwater sampling logs for the Site monitoring wells sampled in October 2021 and April 2022;

- Appendix D provides all October 2021 and April 2022 analytical data packages on compact disc; and
- Appendix E includes the completed IC/EC certification.

2. Site Overview

The following subsections present a description of the Site location, significant features, surrounding areas, and the extent of contamination prior to the Site remediation. A description of the chronology of the main features of the remedial program for the Site, the components of the selected remedy, cleanup goals, site closure criteria, and any significant changes to the selected remedy that have been made since remedy selection are also presented.

2.1 Site Location

The Site is located in Lancaster, Erie County, New York and is identified as Section 104 Block 5 and Lots 8 and 9 on the Erie County Tax Map; refer to **Figure 1** for the Site Location Map. The Site is approximately 1.25 acres in area and is bounded by non-impacted AVOX land and then Erie Street to the north, railroad tracks to the south, AVOX Plant 1 (currently vacant) to the east, and residential zoned property (with a house) to the west; refer to **Figure 2** for the Site Layout Map).

2.2 Physical Setting

2.2.1 Land Use

The Site consists of the following: outbuildings that support Plant 1 (which is not part of the Site), asphalt driveways and parking areas, and lawn and brush-covered areas. Site occupants include only occasional maintenance and shipping/receiving personal, as manufacturing activities have been moved to the two plants located on the north side of Erie Street.

The land adjoining the Site and in the neighborhood surrounding the Site includes both commercial and residential properties. The property immediately south of the Site includes railroad tracks; the properties immediately north of the Site include additional AVOX land and commercial properties; the properties immediately east of the Site include AVOX Plant 1 and its parking lot, and then residential properties (including vacant land); and the properties to the west of the Site include residential parcels.

2.2.2 Site Geology/Hydrogeology

The native soils underlying the Site generally consist of interbedded silts and clays, with discontinuous sporadic fine sand lenses (shallow overburden). A thin coarse-grained layer of weathered shale is located above the bedrock (deep overburden). Overburden thickness ranges from 20 feet (ft) in the southern portion of the Site to 26 ft in the northern portion of the Site.

The average depth to bedrock is approximately 21 feet. Bedrock was observed to consist of black shale of the Marcellus Formation (Hamilton Group).

A transect for a geologic cross section with monitoring well and piezometer locations is shown on **Figure 3**, and the geologic cross-section is shown on **Figure 4**.

Groundwater monitoring wells were installed at three intervals: shallow overburden, deep overburden, and bedrock; the one bedrock well was decommissioned in October 2017. Overburden groundwater is first encountered at the Site in the shallow overburden, and then again just above the bedrock. An observation of the groundwater within the deep overburden, which is present on top of bedrock, indicates a semi-confined state.

Results of the in-situ hydraulic conductivity (K) tests performed in the monitoring wells at the Site during the BCP Remedial Investigation (RI) showed that K values range from 1.49E-03 centimeters per second (cm/sec) to 3.13E-05 cm/sec in the shallow overburden and range from 4.72E-03 cm/sec to 8.96E-05 cm/sec in the deep overburden. Hydraulic conductivity testing was not performed in the bedrock monitoring well.

The natural flow of groundwater at the Site in both the shallow and deep overburden is to the northwest. The flow direction is most pronounced in the deep overburden, as the flow of shallow overburden groundwater within the Site is significantly influenced by seasonal standing water to the southwest, a storm sewer network cutting through the Site, large asphalt areas to the north and east, and Plant 1 to the east. Depth to groundwater across the Site in both the shallow and deep overburden was measured in April 2022 and is discussed in detail in Section 3 of this report.

2.2.3 Site Investigation and Remedial History

The following narrative provides a remedial history timeline and a brief summary of the available project records to document key investigative and remedial milestones for the Site. Full titles for each of the reports referenced below are provided in Section 7.

The general historical operations that existed in the Plant 1 building adjacent to the Site were primarily manufacturing, development, testing, and distribution for aircraft and military supplied-air systems. The oldest portion of Plant 1 dates to the early 1950s. That original building was expanded several times, with most of it in place by 1975 except for a small warehouse addition in 1996. Plant 1 historical activities included the chemical cleaning and repainting of oxygen cylinders, the chemical cleaning (with inorganic acid solutions) and chromium plating (in a non-electrolytic "soak bath") of metallic components of oxygen supply systems, and the fabrication of oxygen-regulating assemblies. Plant 1 also supported a Class 10,000 clean room and a Class 100,000 clean room. The office area contained management, administrative, engineering, training, and other support activities, and a cafeteria.

Since 2010, Plant 1 has no longer been used for production (i.e., painting and plating activities have terminated). The BCP boundary for the Site is located immediately west/southwest of Plant 1. In general, the pre-remediated areas as described below consisted of low-level metals in the top of the shallow overburden soil immediately south of Plant 1, volatile organic chemicals (VOCs) in shallow overburden soil at the fence gate southwest of Plant 2, and VOCs in shallow and deep overburden groundwater west/southwest of Plant 1. Note: the BCP boundary, or VOC-impacted groundwater plume, does not extend off the AVOX property.

2.2.3.1 Phase I

In 2004, a Phase I Environmental Site Assessment (ESA) was performed at the Site by Earth Tech, Inc. (now AECOM) on behalf of then owner, Scott Technologies, Inc. The entire facility was sold to the current owner, AVOX, in September 2004. Historical aerial photographs included in the Phase I ESA Report indicated an area of potentially disturbed soil on the west side of Plant 1, south of the existing visitor parking area, and just outside the Plant 1 western perimeter fence line on the adjacent vacant parcel (Earth Tech, April 2004). The Phase I ESA also identified two former underground storage tanks (USTs) that had contained gasoline starting in the early 1970s that were removed from the southeastern portion of the Plant 1 Area in November of 1987; however, no records were found to indicate that any post-excavation sampling was done to demonstrate that the soil and groundwater in their vicinity had not been impacted.

Another former UST that had contained gasoline from an unknown date until the early 1970s was reportedly cleaned and closed in place at that time by filling it with sand. It is believed to be located beneath the current hazardous materials storage shed. No records were found to indicate exactly where that tank is located, when closure occurred, or that any post-closure sampling was done to demonstrate that soil and ground water in the vicinity had not been impacted. From the early 1950s to about 1973, used sand from a steel-casting foundry operation, located in the western portion of Plant 1, was disposed behind (south of) Plant 1.

2.2.3.2 Phase II

A Phase II Environmental Site Investigation was completed in 2004 for the entire Scott Aviation facility, to address environmental concerns described in the Phase I ESA Report, including the area of potentially disturbed soil on the west side of Plant I. During the Phase II ESI, seven test pits were excavated. Residual paint sludge of unknown origin was observed in two of the test pits. The paint sludge area was approximately 150 square feet (sq ft) in size and located just west and south of the vehicle gate located in

the western perimeter fence, immediately north of the water tower. Elevated levels of VOCs and semi-volatile organic compounds (SVOCs) present in the soil immediately below the waste indicated that some leaching of the waste had occurred (Earth Tech, June 2004).

2.2.3.3 Interim Remedial Measure - Soil Excavation

On June 28, 2005, Earth Tech, in accordance with a NYSDEC-approved Interim Remedial Measures (IRM) / Supplemental Site Investigation Work Plan, performed an initial excavation of the buried paint sludge material located to the west of Plant 1. A total of 60 cubic yards of soil was excavated to the west of Plant 1, down to the level at which groundwater was encountered - about 6 feet below ground surface (ft bgs). Further excavation was not completed during the IRM, as the scope of work only addressed vadose zone soil.

2.2.3.4 Preliminary Groundwater Assessment

The above investigations identified the general areas of concern at the Site. As a result of the elevated VOC and SVOC soil concentrations detected in the excavation bottom at Area 1 during the 2005 IRM, a Preliminary Groundwater Assessment (PGA) was performed in 2006 and 2007. The purpose of the PGA was to assess the nature and extent of VOCs in groundwater in the vicinity of Area 1. A series of groundwater wells was installed, and samples were collected and analyzed as a part of the PGA (Earth Tech, January 2008). Eighteen temporary piezometers were installed during the PGA to monitor shallow overburden groundwater. Groundwater samples collected from these piezometers contained VOCs, with 18 of these compounds detected at concentrations that exceeded the NYSDEC Technical and Operational Guidance Series (TOGS) 1.1.1 (NYSDEC, June 1998, January 1999 errata sheet, April 2000 addendum, June 2004 addendum) protection for source of drinking water (groundwater) standards (i.e., water class GA); herein referred to as TOGS 1.1.1 groundwater standards. Samples of deep overburden groundwater also contained VOCs but to a lesser degree than the shallow overburden groundwater.

2.2.3.5 Remedial Investigation

The BCP RI began in December 2010 with the completion of soil borings, the installation of monitoring wells, and the collection of soil, groundwater, and vapor samples for chemical analysis. This initial work was completed during the summer of 2010 following the approval of the Remedial Investigation / Alternatives Analysis Work Plan (AECOM, February 2010) and addendum to the Remedial Investigation / Alternatives Analysis Work Plan (AECOM, May 2010). A Supplemental RI (SRI) (Supplemental Remedial Investigation Report, AECOM, April 2012), describing work completed in June 2011, included the installation of additional monitoring wells, groundwater sampling, and an evaluation of a storm sewer system that was located throughout the BCP Site. The RI and SRI were performed to gather the data necessary to complete the characterization of chemical presence in on-site groundwater, soil, and soil vapor, in order to identify and evaluate necessary and appropriate remedial alternatives as presented in the Remedial Investigation Report (AECOM, September 2011). The proposed remedial alternatives were presented in an Alternatives Analysis Report (AAR) (AECOM, September 2015). That AAR was completed in accordance with the NYSDEC DER Draft BCP Guide (NYSDEC, May 2004), 6 New York Codes, Rules and Regulations (NYCRR) Part 375 Environmental Remediation Programs (NYSDEC, December 14, 2006), and NYSDEC DER-10 (NYSDEC, May 3, 2010).

These studies investigated Area 1 for contamination in surface soil, subsurface soil, groundwater, and impacts to on-site storm sewers. Constituents of potential concern (COPCs) were identified for soil by comparison of maximum detected concentrations for VOCs to 6 NYCRR Part 375 Unrestricted Use soil cleanup objectives (SCOs), and for SVOCs, metals, pesticides, and polychlorinated biphenyls (PCBs) by comparison to 6 NYCRR Part 375 Commercial Use SCOs. COPCs were identified for groundwater by comparison of maximum detected concentrations for VOCs, SVOCs, metals, pesticides, and PCBs to TOGS 1.1.1 groundwater standards. The results of this comparison to applicable standards are detailed below:

 Surface Soil - VOC concentrations for surface soil (i.e., 0 to 2 inches bgs) were below the NYSDEC Subpart 375-6 SCOs for Unrestricted Use at the borings sampled. SVOC, metal, PCB, and pesticide concentrations were below the SCOs for Commercial Use, with the exceptions of benzo(a)pyrene (potentially resulting from asphalt paving and/or the adjacent active rail line) and the metals cadmium and nickel.

- Subsurface Soil VOC concentrations from subsurface soil samples collected from borings during the RI and SRI were below the SCO for Unrestricted Use, with the exception of acetone and methylene chloride (common laboratory contaminants) at two borings: DPT8 2A and DPT8-2B, both located south of Plant 1. VOC concentrations from one confirmation sample collected from the bottom of the historic IRM (B-1A) had seven compounds exceeding Unrestricted Use SCOs (all seven compounds were below Commercial Use SCOs). SVOC, pesticide and PCB concentrations from subsurface soil samples were all below Unrestricted Use SCOs. Regarding metals, only mercury, copper, and cadmium exceeded SCOs for Commercial Use. These exceedances occurred at two borings: DPT8-1A and DPT8-2A.
- Groundwater Analytical data for groundwater samples collected from the shallow and deep overburden wells during the RI and SRI identified the presence of VOCs exceeding TOGS 1.1.1 groundwater standards. Refer to Figure 5 and Figure 6 for the RI/SRI total VOC (TVOC) contaminant concentration contours for shallow and deep overburden, respectively. There were no exceedances of TOGS 1.1.1 groundwater standards in the bedrock groundwater. The most frequently detected VOCs were trichloroethene (TCE) and its decomposition product cis-1,2dichloroethene (cis-1,2 DCE). Refer to Figure 7 and Figure 8 for the RI/SRI TCE contaminant concentration contours for shallow and deep overburden respectively. The greatest VOC concentrations were detected in the area of the previously-excavated source area during the 2005 IRM. At perimeter wells, VOCs were either not detected or were detected at concentrations below or slightly above TOGS 1.1.1 groundwater standards for TCE. See Appendix A for a summary of groundwater VOC data collected during the RI, SRI, and subsequent quarterly and semi-annual monitoring, and Appendix B for trend plots illustrating concentrations of contaminants of concern (COCs) over time which include 1,1,1-trichloroethane (1,1,1-TCA), 1,1,2-trichloroethane (1,1,2-TCA), 1,1-dichloroethane (1,1-DCA), 1,1-dichloroethene (1,1-DCE), 1,2-dichloroethane (1,2-DCA), tetrachloroethene (PCE), TCE, cis-1,2-DCE, and vinyl chloride (VC). Per a NYSDEC comment letter dated August 23, 2019, cis-1,2- DCE was added as a Site COC. SVOCs in groundwater were below TOGS 1.1.1 groundwater standards. Three naturally occurring metals (iron, magnesium, and sodium) were detected in groundwater above TOGS 1.1.1 groundwater standards. No PCBs were detected, and only one pesticide was tentatively detected in one groundwater sample at a concentration greater than TOGS 1.1.1 groundwater standards. Refer to the AAR (AECOM, April 2015) for groundwater VOC, SVOC, metal, and PCB/pesticide data.
- Storm Sewer Catch Basins A storm sewer with several catch basins is present in Area 1; refer to Figure 3 for the location of the storm sewer system. VOCs were detected within storm sewer catch basins located on the Site and from water within the storm sewer pipe bedding. Groundwater is present above the storm sewer piping; refer to Appendix A for a summary of storm sewer VOC data and for temporary piezometer water sample data that was collected from within the storm sewer pipe bedding gravel near catch basin CB-1 at temporary piezometer TP-5 and approximately 130 feet to the north at TP-6.
- Soil Vapor Based on the evaluation of the data against the decision matrices, a vapor intrusion condition is not present at the Site, and indoor air quality has not been adversely impacted by the presence of the adjacent groundwater plume. However, per a June 1, 2012 letter from the NYSDEC to Scott Figgie LLC, the New York State Department of Health (NYSDOH) considered this Site to be a significant threat due to elevated concentrations of VOCs in sub-slab soil vapor, and the potential for this vapor to impact indoor air. Refer to the AAR (AECOM, September 2015) for air sampling data, for vapor data compared to 2006 NYSDOH guidance values, and for the United States Environmental Protection Agency (USEPA) 2001 Building Assessment and Survey Evaluation database indoor air values, respectively.

2.2.3.6 Soil Vapor Intrusion Evaluation

Based on NYSDEC comments on the draft AAR (AECOM, April 2013), AECOM completed a targeted soil vapor intrusion (SVI) investigation for the Site in July 2013. The purpose of that SVI investigation was to

assess whether soil vapor on the Site in the vicinity of a nearby residence at 205 Erie Street contained chlorinated VOCs (CVOCs), and if so, were they detected at concentrations sufficiently elevated to represent a potential indoor air quality issue for the nearby buildings (AECOM, August 2013). A second investigation and report were completed in September 2013 to follow up on one TCE detection in soil vapor above the method detection limit. Both groundwater and soil samples were collected hydraulically downgradient of Area 1, between the facility and the 205 Erie Street residence, and focused on seven CVOCs that, per NYSDOH guidance values, should be considered as part of an SVI analysis for the residence: 1,1,1-TCA; cis-1,2-DCE; VC; 1,1-DCE; carbon tetrachloride, PCE, and TCE.

No CVOC listed above was reported in any of the soil or groundwater samples. Acetone was reported in one soil sample at 12 micrograms per kilogram (µg/kg). Acetone was also reported in five of the six groundwater samples and in the trip blank. The only other VOC reported was 2 butanone (methyl ethyl ketone) at 4.1 micrograms per liter (µg/L). AECOM reviewed historical soil, groundwater, soil vapor, and stormwater data from the northern portion of the Area 1 Site to assess the potential relationship between the low level TCE concentration reported in SV-1 in July 2013 and the Area 1 contamination. The collective data did not identify a clear relationship between the two that would warrant further SVI sampling at the residential property. Multiple media were evaluated. The property boundary between AVOX (which includes the Site) and 205 Erie Street does not appear to be impacted by the BCP Site (AECOM, October 2013).

2.2.3.7 Interim Remedial Measures – 2014

During a conference call between NYSDEC, Scott Figgie LLC, AECOM, and AVOX representatives on February 28, 2014, the NYSDEC recommended moving forward with the BCP cleanup in advance of an approved Final AAR by completing four IRMs to address soil and selected groundwater impacts at the Site. They included:

- Excavation and off-site disposal of shallow soils impacted by metals (cadmium, copper and nickel);
- Excavation and off-site disposal of subsurface soils impacted by VOCs in some locations;
- Grout sealing on-site storm sewer joints to prevent groundwater infiltration, and installation of impermeable plugs across the pipe bedding to prevent migration of groundwater; and
- Mitigation of SVI concerns at the AVOX boiler room (the only structure within Area 1 that is occasionally occupied).

Those four IRMs were described in an IRM Remedial Action Work Plan (RAWP) dated June 4, 2014 (AECOM). On August 14, 2014, NYSDEC provided approval to begin the described work per the 2014 IRM RAWP.

Soil Excavation and Storm Sewer Interim Remedial Measures

The 2014 IRM activities were initiated on September 8, 2014. The soil excavation and storm sewer IRMs were completed during October 2014. Metals-impacted soil was excavated to 1 ft bgs in the vicinity of MW-41B, with all confirmatory samples passing metal Commercial Use SCOs for the target parameters. Confirmation soil samples were collected from the excavation sidewalls and bottoms. Soil was excavated to 2 ft bgs in the vicinity of DPT8-1 and DPT8-2. Following the initial excavation, an additional 2 ft wide by 2 ft deep excavation occurred on the south side wall of DPT8 1 and on the north side wall of DPT8-2, until sample results were below Commercial Use SCOs. Following receipt of passing sample confirmation data, and with concurrence from the NYSDEC, the excavated areas were backfilled with imported soil that met NYSDEC Unrestricted Use SCOs and restored to pre-excavation conditions. Each excavation remained open until receipt of soil analytical results determined that confirmation soil samples were below respective SCOs, and the NYSDEC issued approval to discontinue excavation.

VOC concentrations from soil confirmation bottom samples collected in 2005 following an IRM soil excavation were found to be in exceedance of the Unrestricted Use SCO. These samples were collected at or below typical shallow overburden groundwater depths. The concentrations of 1,1 DCE, cis-1,2-DCE, ethylbenzene, toluene, 1,1,1-TCA, TCE, and total xylenes exceeded NYSDEC Subpart 375-6 Unrestricted Use SCOs. An initial horizontal excavation limit was established following the same footprint

of the previously excavated area (approximately 14 ft by 18 ft, by 6 ft deep). The 2014 IRM scope was to remove the top 0 to 6 ft of previous clean fill and excavate material from 6 to 8 ft bgs. Elevated Photoionization Detector (PID) headspace readings on side wall and bottom samples were observed following excavation of the 6 to 8 ft bgs interval and reported to NYSDEC. Due to the depth of observed elevated PID readings and below-average shallow groundwater elevations, an additional 2 ft of soil was removed from the side walls (where physical constraints allowed) and from the bottom of the excavation. Characterization samples from the side walls and bottom of the excavation were collected and resulted in VOC detections exceeding Unrestricted Use SCOs. Refer to the 2014 IRM Construction Completion Report (CCR) for characterization sample results and for the location of the VOC IRM. With approval from the NYSDEC, no further excavation of soil took place; impacts were left in place to be addressed as part of the groundwater IRM, since all impacted material was below the water table. Prior to backfilling, and with approval from the NYSDEC, 270 pounds of Klozur® CR engineered calcium peroxide was placed on the bottom of the excavation area and mixed with the small amount of groundwater that had accumulated in the excavation. Fill from the 2005 IRM and imported fill in compliance with NYSDEC DER-10 was used to backfill the excavation areas created for this IRM.

Following the completion of the IRMs in October 2014, AECOM submitted a draft IRM CCR on February 15, 2015 describing those 2014 IRMs. The 2014 IRM CCR was written in compliance with DER-10 Section 5.8, Construction Completion Report and Final Engineering Report, and summarized these IRM activities. The Final 2014 IRM CCR was approved by NYSDEC on March 27, 2015 (AECOM, March 2015).

Sub-slab Soil Vapor Interim Remedial Measure

On November 4, 2014, AECOM and NYSDEC inspected the concrete floor of the boiler room, and AECOM sealed visible floor cracks with concrete caulking. In addition, the annulus between a drain line effluent and the associated floor penetration and foundation perforations were sealed with expanding foam. Two other foundation perforations (drains) were observed and temporarily plugged with modelling clay just prior to a sampling event. The floor drains appeared to discharge to the bedding gravel beneath the concrete floor slab. On December 24, 2014 one sub-slab vapor sample, one indoor vapor sample, one ambient (outdoor) air sample, and an associated quality assurance / quality control (QA/QC) sample were collected from the boiler room building at AVOX Plant 1, to determine if CVOCs were currently at indoor concentrations sufficiently elevated to trigger a need for mitigation activities. The December 2014 indoor air sample did not detect any CVOCs listed in the NYSDOH Guidance document. The 2014 subslab vapor sample detected 1,1,1-TCA, cis-1,2-DCE, 1,1-DCE, PCE, and TCE. According to the NYSDOH decision matrices, PCE and TCE concentrations triggered an action of 'monitor' only, while the 1,1,1-TCA, cis 1,2-DCE, and 1,1-DCE concentrations were below an action level. Low concentrations of 1,1,1-TCA, cis-1,2-DCE, and TCE were detected in the ambient (outdoor) air sample. The sealing of floor cracks and foundation perforations decreased the concentrations in the indoor air samples and lowered the action level from 'mitigation' to 'monitoring' (AECOM, January 2015).

Groundwater Interim Remedial Measure

In 2014, an IRM pre-design investigation utilizing a combined membrane interface probe (MIP) and hydraulic profiling tool (HPT) was performed in Area 1; refer to **Figure 9** for MIP locations. That pre-design investigation was performed in accordance with the NYSDEC-approved MIP/HPT and Baseline Sampling Work Plan (AECOM, October 2014).

On November 24-25, 2014, 11 borings were completed throughout the groundwater plume in Area 1 to a depth of 20 ft bgs, with the objective of verifying the distribution of VOC COPCs within that area. The MIP/HPT was used to capture data at continuous depths at each boring.

The 3D Imaging Summary, MIP/HPT Boring Summary, and MIP Data Cross Section figures summarized the field activities and results of the MIP/HPT analysis. Halogen specific detector (XSD) data were used as the prime indicator of CVOC impacts, as they are highly sensitive to CVOCs compared to the other data collection methods. Within the investigated zones, target treatment depths were identified using K data provided by the HPT analysis. The MIP/HPT results were generally consistent with the RI groundwater data collected from June 2010 through June 2011. The data indicated that there were lower

VOC concentrations present in the northern portion of the Site and that, where present, they were limited to the upper 14 ft of the overburden. In the southern portion of the Site, VOC concentrations were greater and also present in significant concentrations throughout the entire depth of the soil borings, with the 5-15 ft bgs region exhibiting the highest XSD response. In addition to MIP-8 located in the center of the groundwater plume, the easternmost and westernmost boring locations, MIP-1 and MIP-11, showed the highest VOC concentrations.

Remedial activities for the groundwater IRM were described in the Final Remedial Action Work Plan - 2015 Interim Remedial Measures - Groundwater Treatment (2015 IRM RAWP) (AECOM, March 25, 2015). On April 10, 2015 the NYSDEC provided approval to begin the described work per the 2015 IRM RAWP; the groundwater injections commenced in April 2015 and were completed in May 2015. In accordance with the AAR and the 2015 IRM RAWP, the remedial approach to address VOCs in Site groundwater was in-situ enhanced reductive dechlorination (ERD) via direct-push injections of Anaerobic Biochem (ABC®) with zero valent iron (ZVI), i.e., ABC+®. Per the 2015 IRM RAWP, the treatment area was divided into two target depths zones: a 12,600 sq ft shallow injection zone and a 20,025 sq ft deep injection zone. In general, the shallow zone was defined as groundwater from 5 to 15 ft bgs, and the deep zone as groundwater from 15 to 25 ft bgs.

A total of 41 of the 47 planned injection point locations were successfully completed in the "shallow only" zone. Six of the 47 planned injection locations were not completed to avoid interference with utilities or as a result of observed breakthrough along the south and west sections of the injection grid. Approximately 23,370 pounds of ABC+® were injected to treat the shallow (only) zone at approximately 570 pounds of ABC+® per point. Mixed at approximately a 15 weight percent (wt. %) solution, this resulted in approximately 16,000 gallons of solution. Each injection point received approximately 390 gallons, divided up among intervals that had the highest permeability.

A total of 79 of the 89 planned injection points were successfully completed in the combined "shallow and deep" zone. Ten of the 89 planned injection locations were not completed to avoid interference with utilities or as a result of observed breakthrough along the south and west sections of the injection grid. Approximately 59,800 pounds of ABC+® was required to treat the shallow and deep zone at 757 pounds of ABC+® per point. Mixed at approximately a 15 wt. % solution, this resulted in approximately 40,300 gallons of solution. Each injection point received approximately 510 gallons, divided up among intervals that had the highest permeability.

Additional injection points were completed adjacent to the storm sewer system to reduce VOCs in the vicinity of the sewer pipe and to apply treatment into the storm sewer pipe bedding. Injection points were performed approximately five to six feet offset (upgradient) from the storm sewer line to establish a biobarrier that groundwater must flow through before entering the storm sewer bedding. Injection locations within the footprint of the TVOC plume that were adjacent to the storm sewer also addressed the storm sewer bedding. Injections associated with the storm sewer bedding were completed between 4 and 6 ft bgs. To protect the existing subsurface utility, injections immediately adjacent to the storm sewer consisted of only ABC® (without ZVI). One location received the planned 390 gallons of injectate; two other locations received only 50 gallons each to limit the volume of injectate breaking through to the ground surface.

The final 2015 IRM CCR describes work completed to remediate VOCs in Site groundwater (AECOM, August 12, 2015). Refer to **Figure 9** for the 2015 IRM injection zone details.

2.2.3.8 Supplemental Groundwater Injection

On May 15, 2019, NYSDEC approved the 2019 Supplemental Injection Work Plan (AECOM, May 10, 2020). Between May 20, 2019 and May 22, 2019, AECOM and subcontractor Matrix Environmental Technologies, Inc. (Matrix) and their teaming partner Redox completed the supplemental groundwater injection event using ABC-Ole[®] and ZVI.

ABC-Ole® is an emulsified fatty acid product designed to address anaerobic bioremediation sites. It is a modified blend of ABC®, which contains a high fatty acid content ranging from 50-85% ABC®. The addition of ZVI to the ABC-Ole® immediately provides a large drop in oxidative reduction potential in the

surrounding groundwater which is conducive to biotic reductive dechlorination. The ZVI also promotes an abiotic reductive dechlorination process where the degradation of the targeted groundwater VOCs occurs via the β -elimination pathway. This pathway does not create the degradation intermediates cis-1,2-DCE and vinyl chloride which are produced via the biotic reductive dechlorination pathway, and it also does not rely on the presence of Dehalococcoides (DHC) to achieve complete VOC destruction.

The combined ABC-Ole® and ZVI mixture was specifically designed to remediate impacted groundwater in an approximate 6,750 sq ft area within the approximate 1,000 μ g/L TVOC shallow overburden zone contour (which also overlies the 1,000 μ g/L TVOC deep overburden zone contour). The area of injection encompasses the area around the most TVOC-impacted monitoring wells located on the Site: A1-GP02-S, A1-GP06-S, A1-GP10-S, MW-42S, MW-38D, and MW-40D. **Figure 10** depicts the 2019 supplemental injection area.

The injectate ABC-Ole®, mixed with ZVI, was injected at 30 locations using a DPT drill rig. Each injection point received approximately 240 gallons of injectate. The injectate was distributed at depth intervals 11, 14, 17, and 20 feet bgs, targeting the shallow and deep water bearing units, and was performed from a bottom to top sequence.

Approximately 7,500 pounds of ABC Ole[®] and 7,500 pounds of ZVI were injected to treat the approximately 10 foot thick zone at approximately 500 pounds of ABC-Ole[®] and ZVI per point. Mixed at approximately a 20 wt. % solution, this resulted in approximately 7,200 gallons of solution. Each injection point received approximately 240 gallons, divided up among intervals that had the highest permeability.

2.2.3.9 Storm Sewer Pipe Replacement

Per the NYSDEC-approved Storm Sewer Replacement Work Plan dated June 12, 2020, approximately 200 linear feet of storm sewer piping was replaced by Matrix in June of 2020 between CB-4 and CB-E, CB-E and CB-3, and CB-3 and CB-2 (refer to **Figure 3** for the location of catch basins). This work was performed based on the ongoing detections of VOCs in quarterly Site stormwater grab samples collected since the 2014 IRM was completed. This section of storm sewer piping was replaced with a new 12-inch diameter SDR35 solid PVC pipe with watertight joints. It was presumed that over time, shallow groundwater entered the storm sewer pipes through pipe joints that may not have been sealed or through previously sealed pipe joints and at catch basins that were no longer watertight.

The impermeable "plugs" along the sections of pipe that were removed during replacement of the storm sewer pipe were re-installed with a grout slurry prior to backfilling activities, to continue to potentially prevent VOC-impacted groundwater from migrating off-Site through the pipe bedding material. In addition, a non-shrinking concrete/grout was used at four catch basins (CB-2, CB-3, CB E, and CB-4) to seal the connections where the stormwater pipes enter and exit the catch basins.

During excavation activities, soils were scanned with a PID. Soils excavated between CB-E and CB-3 were observed to have elevated PID readings and were segregated and sampled for VOC and metals analysis. Per the analytical data and associated historic soil characterization data from the Site, the impacted soil was characterized as non-hazardous. Approximately 18.76 tons of soil was sent to Waste Management's landfill in Chaffee, NY for disposal.

During backfilling of the pipe section between CB-E and CB-3 (where the impacted soil was observed), coarse zero valent iron (ZVI; 80 percent between 150 and 600 microns) was scratch mixed using an excavator with the backfill material placed from the bottom of the excavation to approximately 2 ft bgs (i.e., within the saturated groundwater zone). Due to the concentration of VOCs in groundwater in this area and the size of the excavation required to replace the storm water pipe in this section (approximately 4 feet wide by 5 feet deep by 85 feet long), approximately 1,100 pounds or approximately 1.1 percent by weight of ZVI was used. The depth of soil to be treated by ZVI was approximately 3 feet since the top 2 feet of soil was above the water table, and vadose zone soil is not effectively treated by ZVI.

The removed sections of storm sewer pipe were decontaminated (i.e., soil was brushed and/or washed from pipe), cut to size, and placed in a roll-off box for disposal as municipal waste.

Following backfilling activities, the disturbed areas were restored in kind (i.e., crushed stone, asphalt, and grass seed depending on the pre-excavation conditions).

2.2.3.10 Bioaugmentation Injection Program

On September 20 and 21, 2021, AECOM and subcontractor Matrix completed bioaugmentation injections using microbial culture KB-1® Plus and the KB-1® Primer supplied by SiREM. The bioaugmentation solution was injected in to the subsurface via direct push technology injections, targeting either three or four discrete intervals ranging between 5 and 20 ft bgs depending on the location. Each injection point around locations A1-GP10-S/MW-40D received approximately 200 gallons of KB-1® Plus/Primer (i.e., injectate) which was distributed at 5-foot depth intervals (5, 10, 15, and 20 ft bgs), targeting either the shallow or shallow and deep overburden groundwater zones. Each injection point around locations A1-GP06S and MW-42S received approximately 150 gallons of injectate and was distributed at three depth intervals (8, 13, and 18 ft bgs), targeting the shallow overburden groundwater zone. Refer to **Figure 11** for injection locations.

The KB-1® Primer came in pouches suitable for mixing with approximately 250 gallons of potable water. An appropriate amount of the KB-1® Primer was weighed with a scale provided by SiREM and mixed with the amount of water required for each injection location (i.e., 60% of a KB-1® Primer pouch for 150 gallons or 80% of a pouch for 200 gallons). The KB-1® Primer water mix was ready to inject when fully dissolved and upon pH and oxygen reduction potential (ORP) readings meeting the specifications designated by SiREM (i.e., 6 to 8.3 standard units for pH, and < -75 milliVolts for ORP).

Injection flow rates for the injections ranged from approximately 3 to 12.5 gallons per minute. The target volume of injections for each discrete interval regardless of location was 50 gallons (to minimize short circuiting or breakthrough). This is the minimum amount of KB-1® Primer water recommended by SiREM to support the KB-1® Plus. At each interval, approximately half the injection amount of KB-1® Primer water (25 gallons) was injected. A target amount of KB-1® Plus (approximately 0.6 liters) was then injected using nitrogen gas to push the anaerobic microbial injectate into the targeted interval. The remaining half of the primer water was subsequently injected. Injections were conducted using a bottom-up approach, starting at the lowest designated interval, and raising the rods up the next interval following completion of the lower interval injection.

2.3 Remedial Action Objectives

The objectives for the remedial program have been established through the remedy selection process stated in 6 NYCRR Part 375. The goal for the remedial program is to restore the Site to pre-disposal conditions to the extent feasible. At a minimum, the remedy must eliminate or mitigate all significant threats to the public health and the environment presented by the CVOCs and metals identified at the Site through the proper application of scientific and engineering principles.

The RAOs for the Site as listed in the Decision Document (NYSDEC, December 2015) are as follows:

2.3.1 Groundwater

- RAOs for Public Health Protection
- Prevent ingestion of groundwater with contaminant levels exceeding drinking water standards.
- Prevent contact with, or inhalation of, VOCs from impacted groundwater.
- RAOs for Environmental Protection
- Restore the ground water aquifer to pre-disposal/pre-release conditions, to the extent practicable.
- Prevent the discharge of COCs to surface water.
- Remove the source of ground or surface water constituents of concern.

2.3.2 Soil

- RAOs for Public Health Protection
 - Prevent ingestion/direct contact with impacted soil.
 - Prevent inhalation of or exposure from contaminants volatilizing from soil.
- RAOs for Environmental Protection
 - Prevent migration of constituents that would result in groundwater or surface water contamination.

2.3.3 Soil Vapor

- RAOs for Public Health Protection
 - Mitigate impacts to public health resulting from existing, or the potential for, SVI into buildings at a site.

2.4 Contaminants of Concern

Eight COCs in groundwater have been determined through sampling associated with the RI and SRI. Per the Decision Document (NYSDEC, December 2015), Section 6.1.2 (NYSDEC, December 2015), a "contaminant of concern" is a contaminant that is sufficiently present in frequency and concentration in the environment to require evaluation for remedial action. Not all constituents identified on the Site are COCs. The groundwater COCs identified at the Site and their associated RAOs (Guidance or Standard Values) from TOGS 1.1.1 groundwater standards are listed below:

- 1,1,1-TCA 5 μg/L
- 1,1,2-TCA 5 µg/L
- 1,1-DCA 5 μg/L
- 1,1-DCE 5 μg/L
- 1,2-DCA 0.6 μg/L
- *cis-1,2-DCE 5 μg/L
- PCE 5 μg/L
- TCE 5 μg/L
- VC 2 μg/L

^{*}Per NYSDEC comment letter dated August 23, 2019, cis-1,2-DCE was added as a Site COC.

3. Groundwater Monitoring Program Summary

The following sections provide a summary of the groundwater monitoring program completed during the reporting period (April 9, 2021 through April 14, 2022); a comparison of the groundwater data collected from the October 2021 and April 2022 monitoring events to the COCs and historical groundwater analytical data; and conclusions regarding the monitoring completed and the resulting evaluations regarding remedial performance, effectiveness, and protectiveness.

3.1 Groundwater Monitoring Activities

In accordance with the SMP and NYSDEC February 28, 2020 approval to change the groundwater monitoring frequency from quarterly to semi-annually, the groundwater monitoring program during the reporting period consisted of two comprehensive semi-annual monitoring events (October 2021 and April 2022). These sampling events, following the IRMs and the supplemental groundwater injections described in Sections 2.2.3.7 through Section 2.2.3.10, were conducted to determine the effectiveness of the groundwater remedy.

Semi-annual sampling was performed at 20 wells, two temporary piezometers screened in the storm sewer pipe bedding, and five on-site storm water catch basins. Refer to **Figure 3** for the location of the sampling points.

Groundwater samples from the monitoring wells were analyzed for VOCs and total organic carbon (TOC). Seven monitoring wells (four shallow overburden and three deep overburden) were also sampled for monitored natural attenuation (MNA) parameters. The two temporary piezometers screened in the storm sewer pipe bedding, and five on-Site storm water catch basin, were analyzed for VOCs only. Groundwater analyses for VOCs, TOC, and MNA were performed by Eurofins Testing Northeast, LLC (Eurofins) located in Amherst, New York. Two monitoring wells (MW-42S and A1-GP10-S) were sampled for volatile fatty acids analysis in December 2021 and April 2022 as part of the post-bioaugmentation injection program. In addition, one monitoring well (MW-42S) was sampled in December 2021 and April 2022 to determine concentrations of dechlorinating bacteria (DHC and DHB) and reductive enzymes. Analysis was performed by SiREM located in Knoxville, Tennessee. The groundwater monitoring program is summarized in **Table 1**.

Monitoring of groundwater conditions at this Site includes both groundwater level measurements and groundwater sampling and analysis. All monitoring and laboratory data, including QA/QC samples, have been uploaded to the NYSDEC EQuIS database. In addition, groundwater purge data, water levels, and VOC, TOC, MNA, and microbial data from these two semi-annual events, as well as groundwater data collected prior to the IRMs, are summarized in **Appendix A**.

Groundwater samples were divided into three different groups based on historical analytical concentrations from individual wells: plume wells, downgradient wells, and upgradient wells (refer to **Table 2** for monitoring well, piezometer, and catch basin specifications). To the extent practical, wells were sampled from lowest to highest historical VOC concentrations. QA/QC samples including field duplicates, rinse blanks, and trip blanks were collected at the recommended rates stated in the SMP.

In accordance with the SMP, standard low-flow sampling procedures were followed. Each well was purged using a peristaltic pump with dedicated/disposable polyethylene and silicone tubing. During purging, field parameters (pH, dissolved oxygen, oxidation-reduction potential, specific conductance, turbidity, and temperature) were measured and recorded. Refer to **Appendix A** for the final field parameter readings that were recorded prior to sample collection from each well and to **Appendix C** for purge logs from the October 2021 and April 2022 monitoring events. Purging continued until field parameters had stabilized and/or between three and five well volumes had been purged. After purging was complete, groundwater samples were collected from the wells, with VOC samples being collected first.

Grab samples were collected from the catch basin and temporary piezometers screened in the storm sewer pipe bedding.

A discussion of the groundwater analytical results for the two semi-annual sampling events as well as a detailed discussion of the most recent monitoring event (April 2022) are presented below.

3.2 April 2022 Groundwater Elevation and Flow Direction

A comprehensive round of groundwater levels was measured from all 20 Site wells and piezometers during the April 2022 sampling event. **Table 3** provides a summary of groundwater elevations measured on April 8, 2022.

Two groundwater surface contour maps for April 2022 are provided. Shallow overburden groundwater surface contour elevations are presented in **Figure 12**, and deep overburden groundwater surface contour elevations are presented in **Figure 13**; note that the groundwater elevation from MW-30 was not included in the groundwater surface contour figures as this well is screened through both the shallow and deep groundwater overburden units. Groundwater elevations measured on April 8, 2022 from the shallow overburden ranged from 685.77 ft above mean sea level (AMSL) at A1-GP06-S to 688.96 ft AMSL at MW-44S. Groundwater elevations measured on April 8, 2022 from the deep overburden ranged from 684.69 ft AMSL at MW-35D to 687.52 ft AMSL at MW-38D. Based on these water level measurements, the groundwater beneath the Site indicates a northwesterly flow direction. This flow direction is most pronounced in the deep overburden, as the shallow overburden groundwater flow within Area 1 is significantly influenced by Site features such as the on-site stormwater system as described in Section 2.2.2.

3.3 October 2021 and April 2022 Groundwater Analytical Data

The October 2021 and April 2022 groundwater sampling event were the eighteenth and nineteenth comprehensive sampling event conducted at the Site since completion of the groundwater injection IRM in May 2015. VOCs detected in groundwater during the October 2021 and April 2022 sampling events are presented in **Table 4** and **Table 5**, respectively. The analytical results are compared to the Site RAOs or groundwater criteria presented in TOGS 1.1.1 groundwater standards. The following table summarizes the VOCs detected, their respective concentration ranges, the number of detections, and the number of those detections that exceeded Site-specific groundwater RAOs or TOGS 1.1.1 groundwater standards from the most recent sampling event (April 2022).

Groundwater Contaminants of Concern Summary of Results, April 2022

VOCs Detected in Groundwater	Concentration Range (μg/L)	Number of Detections	RAO/TOGS 1.1.1 Exceedances
Chloroethane	3.1 – 21,000	5	4
1,1-Dichloroethane*	0.43 – 2,000	4	3
Acetone	3.1 – 6.8	4	0
1,1,2-Trichloro-1,2,2-trifluoroethane	200 – 2,500	2	2
Vinyl chloride*	290 – 1,800	2	2
1,1,1-Trichloroethane*	240 – 290	2	2
cis-1,2-Dichloroethene*	1.5 – 1,700	2	1
2-Butanone (MEK)	4.2 – 9.5	2	0
Toluene	910	1	1
Ethylbenzene	40	1	1
Xylenes, Total	35	1	1
2-Hexanone	33	1	0
Benzene	1.2	1	0

Note: VOCs in the table above followed by an asterisk (*) are Site COCs.

Thirteen VOCs were detected in groundwater from the monitoring wells (not including the five on-Site stormwater catch basins and two temporary piezometers screened in the storm sewer pipe bedding) during the April 2022 sampling event. Nine of the 13 VOCs detected exceeded either the Site-specific RAOs or the TOGS 1.1.1 groundwater standards at one or more wells. Only four of the nine Site COCs were detected, all of which reflect a marked decrease in concentration of the parent VOCs (1,1,1-TCA, PCE, and TCE) following the IRMs. **Figures 14 through 17** illustrate April 2022 contours for individual COCs which were detected in shallow and/or deep overburden groundwater. **Figures 18** and **19** illustrate April 2022 contours for TVOCs in shallow and deep overburden groundwater respectively.

The highest concentrations of VOCs in shallow overburden groundwater were detected at A1-GP-10-S and MW-42S; 1,1,2-Trichloro-1,2,2-trifluoroethane was observed at A1-GP10-S (200 μ g/L) and MW-42S (2,500 μ g/L). The highest concentrations of VOCs in deep overburden groundwater were detected at MW-40D. With the exception of 1,1,2-Trichloro-1,2,2-trifluoroethane as mentioned above, Chloroethane, 1,1-DCA, VC, and cis-1,2-DCE exhibited the highest overall concentrations in groundwater, all of which are degradation products of 1,1,1-TCA, PCE, and/or TCE.

Historical trend plots for the wells sampled in October 2021 and April 2022 for concentrations of 1,1,1-TCA, 1,1,2-TCA, 1,1-DCA, 1,1-DCE, 1,2-DCA, cis-1,2-DCE, PCE, TCE, and VC are provided in **Appendix B**. As stated above, the VOC concentrations in groundwater continue to show a degradation trend both as a result of naturally occurring reductive dechlorination processes and as a result of the 2015 injection IRM, the 2019 supplemental groundwater injection program, and the 2021 bioaugmentation injection program.

Based on the October 2021 and April 2022 groundwater monitoring well data, there was one detection of TCE which was observed in October 2021 (A1-GP15-S). The concentration at A1-GP15-S (1.1 μ g/L) was below the site-specific RAO for groundwater and TOGS 1.1.1 groundwater standards; no TCE was detected in monitoring wells in April 2022. Overall, decreases in TCE concentrations observed since the 2015 injection IRM continue to show reductions of VOC concentrations in overburden groundwater. This is most clearly demonstrated on the TCE trend plots for monitoring wells MW-42S and MW-39D, and piezometers A1-GP02-S, A1-GP06-S and A1-GP10-S (refer to **Appendix B**).

An electronic copy of the analytical laboratory data package for the April 2022 sampling event is provided in **Appendix D** on a compact disc (CD).

3.4 October 2021 and April 2022 Storm Sewer Catch Basin and Storm Sewer Pipe Bedding Analytical Data

VOC data collected from on-site catch basins CB-1, CB-2, CB-3, and CB-4 exhibited a decrease in TVOCs since the June 2020 storm sewer pipe replacement activity as well as the IRMs, the 2019 supplemental groundwater injection program, and the 2021 bioaugmentation injection program. TVOC concentrations have decreased in all locations between April 2020 (pre-bioaugmentation injection) and the most recent April 2022 sampling event. Refer to **Table 6** for a summary of the VOC data collected between April 2020 and April 2022.

Two temporary piezometers screened in the storm sewer pipe bedding (TP-5 and TP-6) were sampled for VOCs. TP-5 is located adjacent to CB-1 and TP-6 is located approximately 110 feet north (down-gradient) of CB-1. Between the October 2021 and April 2022 sampling events, only one COC (cis-1,2-DCE at 5.1 µg/L) was detected above the site-specific RAOs in TP-5; TP-6 was non-detect for VOCs during both events. Refer to **Table 6** for a summary analytical data collected at the two temporary piezometers between April 2020 and April 2022.

3.5 Comparison of April 2022 COCs in Groundwater with Pre-IRM Groundwater Analytical Data

Trend plots illustrating concentrations of COCs (1,1,1-TCA, 1,1,2-TCA, 1,1-DCA, 1,1-DCE, 1,2-DCA, PCE, TCE, and VC) in monitoring wells over time are provided in **Appendix B**. Because concentrations of TCE were historically the highest of the COCs detected at the Site, a discussion of historical and current TCE concentrations in groundwater at Site monitoring wells and piezometers is provided below.

In April 2022, TCE was not detected at any of the monitoring wells. TCE was detected at on-site catch basins CB-1 (9.3 μ g/L), CB-2 (15 μ g/L), CB-3 (0.71 μ g/L) and CB-E (1.1 μ g/L), and at temporary piezometer TP-5 (2.0 μ g/L). Based on the substantial decreases in concentrations of TCE at locations with historical detections of TCE, the 2015 IRM injection of ABC+®, the 2019 supplemental groundwater injection of ABC-Ole® with ZVI, and the 2021 bioaugmentation injection program appears to be promoting the continual degradation TCE. This decrease is most clearly demonstrated on the trend plots in **Appendix B** for monitoring wells A1 GP02-S (20,000 μ g/L to below the detection limit), MW 42S (13,000 μ g/L to below the detection limit), and MW-38D (11,000 μ g/L to below the detection limit).

3.6 Monitored Natural Attenuation

To monitor the effectiveness of the injections over time, MNA parameters were collected from A1-GP06-S, A1-GP10-S, A1-GP18-S, MW-42S, MW-35D, MW-38D, and MW-40D. Results of the April 2022 MNA samples are summarized in **Table 7**. Per **Table 7**, all source area wells sampled for MNA parameters show strong to adequate evidence for anerobic biodegradation of chlorinated organics to occur; wells outside the contaminant plume show adequate to inadequate evidence for anerobic biodegradation of chlorinated organics. It should be noted that during the April 2022 groundwater sampling event, sidegradient/background well A1-GP18-S had a TVOC concentration of 7.3 μ g/L, and downgradient wells MW-35D and MW-38D had TVOC concentrations of 0 μ g/L.

The use of the enhanced reductive dechlorination (ERD) amendments ABC+® and ABC-Ole® with ZVI were designed to provide needed nutrients, such as a soluble lactic acid carbon source, a phosphate buffer to control pH for optimum microbial growth, and ZVI which accelerates abiotic dechlorination of chlorinated ethenes and ethanes. In September of 2021, AECOM completed bioaugmentation injections using microbial culture KB-1® Plus and KB-1® Primer. The microbial analyses indicates that the necessary concentrations of bacteria such as DHC species producing the enzymes VC Reductase, BAV1 VC, Reductase and TCE Reductase remain present in the subsurface. Further discussion of these results is presented in Section 3.8.2.

The stimulation of the native bacteria by the injection of ABC+® and extra nutrients in the presence of chlorinated solvents in Site groundwater as well as by bioaugmentation have dramatically reduced the concentrations of the original parent chlorinated VOCs, TCE and 1,1,1-TCA, over time. The initial concentrations of known TCA degradation products (1,1-DCA and chloroethane), as well as of TCE degradation products (1,2-DCE isomers and VC), suggest that reductive dechlorination of the chlorinated organic compounds present in Site groundwater is occurring as a result of the amendment injection events. Induction of reducing conditions by the injection of ABC+® accelerates the reductive dechlorination of parent chlorinated VOCs and increases the relative accumulation of degradation intermediates such as cis-1,2-DCE and VC before complete mineralization occurs. As the naturally more aerobic aquifer conditions return after treatment using ERD, VC oxidizing bacteria should increase and complete the dechlorination process to ethene followed by complete mineralization.

3.7 Total Organic Carbon

Samples were collected for TOC analysis to monitor the concentration of available carbon sources for the optimum microbial growth. Although TOC concentrations have decreased over time in the areas outside of the 2019 supplemental groundwater injection area (refer to **Figure 10**), locations within the 2019 supplemental groundwater injection area continue to exhibit elevated TOC concentrations as compared to background. A TOC concentration of 20 milligrams per liter (mg/L) is commonly considered the minimum concentration of carbon necessary for effective reductive dechlorination to occur. The bioaugmentation

event conducted at the site in September 2021 would not be expected to increase the concentration of TOC in the area targeted by the injections. The TOC detected is the result of natural organic carbon present in site groundwater and also from previous injections of an organic carbon substrate. The most recent organic carbon injection event conducted at the site was performed between 20 and 22 May 2019 as described in Section 2.2.3.8. Refer to **Appendix A** for a summary of TOC concentrations for October 2021 and April 2022. Refer to **Figure 20** and **Figure 21** for shallow and deep overburden groundwater TOC plume figures respectively.

3.8 Dechlorinating Bacteria Analysis

During the April 2022 groundwater sampling event, AECOM collected groundwater samples at MW-42S and A1-GP10-S, and submitted the samples to SiREM in Knoxville, Tennessee for analysis for volatile fatty acids (VFA) (MW-42S and A1-GP10-S) and Gene-Trac® analysis (MW-42S). The following sections summarize the VFA and Gene-Trac® analyses. An electronic copy of the analytical laboratory data package for the April 2022 sampling event is provided in **Appendix D** on CD.

3.8.1 Volatile Fatty Acids

In addition to a TOC concentration greater than 20 mg/L, the quantification of VFAs is useful to assess the form of TOC present and its availability to promote the reductive dechlorination process. VFAs are fermented by a variety of pathways to produce the hydrogen necessary for complete reductive dechlorination to occur. In general, VFAs should be in excess of 10 to 20 mg/L. Pre- and post-injection VFA data is summarized in **Table 8**; the associated laboratory data reports are included in **Appendix D**.

Six VFAs were analyzed for by SiREM during pre-bioaugmentation injection activities conducted in August 2021, and subsequent post-injection bioaugmentation monitoring events have been conducted in December 2021 and April 2022; the following compares the pre-bioaugmentation injection concentrations with the most recent post-bioaugmentation injection sampling event in performed in April 2022.

Lactate is a component of the ABC-Ole' that was previously injected at the Site. Lactate ferments to the VFAs acetate and propionate. Lactate can be used as a measure of the remaining unused reducing potential of the previously injected ABC-Ole'. For monitoring well MW-42S, lactate increased from <0.39 mg/L to <7.8 mg/L between August 2021 and April 2022; however, the sample dilution factor increased from 50 to 1,000 so there likely is little lactate left in the vicinity of this well. For monitoring well A1-GP10-S, lactate increased from <0.39 mg/L to 7.9 mg/L between August 2021 and April 2022, indicating there is a limited quantity of lactate remaining in the vicinity of this well.

Acetate is fermented from lactate, ABC-Ole', and sugars. Dhb can use acetate as a low energy source while Dhc cannot use acetate as an energy source. Dhb is implicated in the biodegradation of chlorinated ethenes such as PCE and TCE to cis-1,2-dichloroethene and in the biodegradation of the chlorinated ethane 1,1,1-trichloroethane to 1,1-dichloroethane and subsequently to chloroethane. As a result, the presence of acetate indicates that partial reductive dechlorination can occur. However, complete reductive dechlorination to ethene and ethane will not occur without the presence of other VFAs and Dhc. Between August 2021 and April 2022, Acetate increased in monitoring well MW-42S (574 mg/L to 813 mg/L) and decreased in monitoring well A1-GP10-S (471 mg/L to 147 mg/L).

Propionate is fermented from lactate, ABC-Ole', and alcohols. Propionate subsequently ferments to produce hydrogen and formate. Hydrogen is the preferred electron acceptor for reductive dechlorination because of the high energy yield. Dhc can only use hydrogen as an energy source. Slow fermentation of propionate results in efficient reductive dechlorination (less methanogenesis) and optimal Dhc growth. Propionate was detected in MW-42S in August 2021 and April 2022 but decreased slightly in concentration from 148 mg/L to 124 mg/L. Propionate was also detected in monitoring well A1-GP10-S but also decreased in concentration from 68 mg/L to 35 mg/L.

Formate is created from the fermentation of propionate. Formate is fermented to produce hydrogen and bicarbonate. Formate increased in monitoring wells MW-42S and A1-GP10-S between August 2021 and April 2022 from <0.22 mg/L to 7.2 mg/L and from <0.22 mg/L to 0.43 mg/L respectively.

Pyruvate is created from the fermentation of sugars. Pyruvate is subsequently fermented to propionate and acetate with some hydrogen production. Pyruvate was detected in monitoring well MW-42S and A1-GP10-S during both August 2021 and April 2022 sampling events but decreased from 26 mg/L to 18 mg/L at MW-42S and decreased from 5.3 mg/L to 4.7 mg/L at A1-GP10-S, respectively.

Butyrate is created from the fermentation of ABC-Ole' and alcohols. Butyrate ferments to produce hydrogen and acetate. Slow fermentation of butyrate results in efficient reductive dechlorination (less methanogenesis) and optimal Dhc growth. Butyrate was detected in monitoring well MW-42S and A1-GP10-S during both August 2021 and April 2022 sampling events but decreased from 108 mg/L to 81 mg/L at MW-42S and decreased from 46 mg/L to 18 mg/L at A1-GP10-S.

Overall, the April 2022 VFA results for monitoring well MW-42S and A1-GP10-S indicate that the remaining TOC (349 mg/L and 111 mg/l, respectively) in the vicinity of these wells is sufficient to promote complete reductive dechlorination. All six VFAs were detected in MW-42S, and five of six VFAs (no lactate) were detected in A1-GP10-S. Most importantly, both propionate and butyrate continue to be detected in both wells. Both of these VFAs produce hydrogen when they are fermented, which is essential for complete reductive dechlorination to occur. These results indicate that complete reductive dechlorination to ethene can occur in the vicinity of both wells if Dhc is present in sufficient quantity. Also, the presence of Dhb in sufficient quantity in the vicinity of both wells may help to promote the degradation of 1,1,1-TCA and 1,1-DCA to chloroethane. A discussion of Dhc, Dhb, and reductase results is provided in the next subsection.

3.8.2 Gene-Trac[®]

Gene-Trac® Dhc is used to detect Dhc in a groundwater sample. The detection of Dhc is significant as Dhc contain the greatest number of reductive dehalogenase genes of any microbial group. Dhc is capable of the reductive dechlorination of PCE, TCE, cis-1,2-DCE, 1,1-dichloroethene, trans-1,2-dichloroethene, and VC. Pre- and post-injection Gene-Trac® data is summarized in **Table 9**; the associated laboratory data reports are included in **Appendix D**.

Gene-Trac[®] samples from MW-42S were analyzed by SiREM during the pre-bioaugmentation injection in August 2021 and subsequent post-injection monitoring events in December 2021 and April 2022; the following compares the pre-bioaugmentation injection concentrations with the most recent post-bioaugmentation injection sampling event performed in April 2022.

The post-injection Gene-Trac[®] Dhc results increased slightly from 5-13~% to 5-14% Dhc (both were $2~x~10^8$ enumerations per liter). Per the technical notes from SiREM regarding interpretation of data, when the density of Dhc gene copies per liter is $1~x~10^8$ or higher, this concentration is generally associated with significant rates of dechlorination.

Gene-Trac® vinyl chloride reductases (*vcrA* and *bvcA*) and TCE reductase (*tceA*) quantify genes that code for reductase enzymes that dechlorinate chlorinated ethenes and other compounds. The *vcrA*, *bvcA*, and *tceA* genes play specific roles in reductive dechlorination. Specifically, the Gene-Trac® *vcrA* and *bvcA* test quantifies VC-reductase genes that produce enzymes that convert VC to ethene. The *vcrA* reductase gene is reported to be the most commonly identified VC reductase gene in the environment, whereas *bvcA* is generally less common but can predominate in more oxidizing groundwater and possibly where DCE is dominant. The Gene-Trac® *tceA* test quantifies the TCE reductase gene that produces an enzyme that primarily converts TCE to cis-1,2-DCE and VC.

The *vcrA* reductase gene was detected in monitoring well MW-42S at 3 x 10⁸ gene copies per liter in the pre-injection sample and decreased slightly to 2 x 10⁸ gene copies per liter in the post-injection sample collected. The *bvcA* reductase gene was detected in monitoring well MW-42S at 2 x 10⁵ gene copies per

liter in August 2021 and increased to 4 x 10^5 gene copies per liter in April 2022. The *tceA* reductase gene was detected in monitoring well MW-42S at 2 x 10^7 gene copies per liter in August 2021 and decreased slightly to 1 x 10^7 gene copies per liter in April 2022. Per the technical notes from SiREM, the potential for complete dechlorination is very high when Dhc, *vcrA*, *bvcA*, and *tceA* are present at concentrations greater than or equal to 1 x 10^7 . Additionally, VC stall is unlikely when *vcrA* greater than 1 x 10^7 gene copies per liter, and ethene is detectable. At monitoring well MW-42S, ethene was detected at 11,000 µg/L and 43,000 µg/L in April 2021 and April 2022, respectively.

Gene-Trac[®] Dhb is used to detect Dhb in a groundwater sample. Dhb are implicated in the biodegradation of PCE and TCE to cis-1,2-DCE. The detection of Dhb indicates that dechlorination activities attributed to Dhb may be active. Increasing concentrations of Dhb are indicative of increased potential for degradation. Dhb was detected at 6 x 10⁶ gene copies per liter in August 2021 and at 5 x 10⁶ gene copies per liter in April 2022.

In summary, Dhc, *vcrA*, *bvcA*, and *tceA* are present at monitoring well MW-42S at concentrations that indicate the significant potential for complete dechlorination to occur. Additional time is needed to evaluate the overall impact of the bioaugmentation event in the vicinity of this well.

3.9 Dechlorinating Chemical Analysis

In addition to the dechlorinating bacteria and degradative enzyme results, the presence and distribution of TCE degradation products (cis-1,2-DCE and VC) and 1,1,1-TCA degradation products (1,1-DCA and chloroethane) provide supportive evidence that the attenuation of TCE and 1,1,1-TCA and their degradation products via reductive dechlorination continues to occur in-situ at the Site. The occurrence and concentrations of these degradation products are directly related to the historic distribution of TCE and 1,1,1-TCA in the subsurface. During the October 2021 and April 2022 sampling events, the degradation products of TCE and 1,1,1-TCA were detected at their highest concentrations within the suspected source area near A1-GP02-S, A1-GP06-S, A1-GP10-S, MW-42S, and MW-40D, with most of these detections in groundwater located at wells A1-GP02-S, A1-GP06-S, A1-GP10-S, MW 42S, and MW-40D; refer to **Table 4** and **Table 5**.

4. Site Inspection

This section describes the Site inspections, O&M tasks completed, and recommendations for improvements.

4.1 Boiler Room

Inspections of the boiler room floor were performed concurrently during the October 2021 and April 2022 semi-annual groundwater sampling events as well as in July 2021 and January 2022. All previous repairs that were completed in November 2014 and November 2017 remain intact, and no additional cracks or perforations were observed. Note, as stated in the SMP, if the boiler room becomes occupied or its usage changes, additional treatment and/or control measures will need to be evaluated.

4.2 Monitoring Wells

As per the SMP, Site monitoring wells were inspected during each of the semi-annual groundwater sampling events; no issues were observed regarding the condition of the wells. No O&M activities at the wells were needed.

5. Conclusions and Recommendations

Based on results of the groundwater analytical data collected during the reporting period, conclusions, upcoming Site-related activities, recommendations, and a proposed monitoring and reporting schedule are presented below.

5.1 Conclusions

- 1. Groundwater elevations measured on April 8, 2022 from the shallow overburden ranged from 685.77 ft above mean sea level (AMSL) at A1-GP06-S to 688.96 ft AMSL at MW-44S. Groundwater elevations measured on April 8, 2022 from the deep overburden ranged from 684.69 ft AMSL at MW-35D to 687.52 ft AMSL at MW-38D. Based on these water level measurements, the groundwater beneath the Site exhibits a northwesterly flow direction. This flow direction is most pronounced in the deep overburden, as the shallow overburden groundwater is significantly influenced by Site features (e.g., the stormwater sewer system and adjacent paved areas).
- 2. The groundwater analytical data indicate that the IRMs, the 2019 supplemental groundwater injection, and 2021 bioaugmentation injection were, and continue to be, successful in the continued attenuation of Site-related CVOCs.
- 3. The groundwater microbial analyses indicate that the necessary microbes, such as DHC, DHB, and degradative enzymes are present in the shallow overburden at sufficient concentrations to promote reductive dechlorination.
- 4. VOC data collected from the on-site catch basins in April 2022 exhibited low detections of some COCs but continued to show a general decreasing trend in concentration of COCs.
- 5. Concentrations of VOCs in samples collected in April 2022 from the temporary piezometers screened in the storm sewer bedding exhibited detections above the screening criteria of some COCs at TP-5 (located adjacent to CB-1) but below the Site-specific RAOs or TOGS 1.1.1 groundwater standards. There were no detections of VOCs above the reporting limit at TP-6 (downgradient of TP-5).
- Semi-annual monitoring data collected during the reporting period demonstrate that TOC
 concentrations in the areas targeted for injections remain above pre-injection levels, maintaining
 conditions that promote microbial growth.
- 7. The boiler room floor crack caulking and drainpipe annulus seals (i.e., sub-slab mitigation controls) were inspected semi-annually and did not need repair. No additional floor cracks or perforations in the floor were noted during the reporting period.

5.2 Recommendations

Based on information gathered during the current reporting period, the following recommendations are proposed for the Site:

- 1. Continue quarterly inspections of the boiler room sub-slab mitigation controls.
- 2. Continue semi-annual inspections of the monitoring well network.
- Perform semi-annual comprehensive groundwater sampling events (October 2022 and April 2023); refer to Table 1 for a list of locations to be sampled and associated analyses.
- 4. Review and update the Site health and safety plan as necessary.

5.3 Proposed Monitoring and Compliance Sampling Schedule

The proposed schedule for groundwater sampling at the Site during the next reporting period includes semi-annual sampling of 20 wells, five on-site catch basins, and two temporary piezometers screened in

the storm sewer pipe bedding; refer to **Table 1** for a list of locations to be sampled and associated analyses.

It is anticipated that the next PRR will be prepared following receipt of laboratory analytical results for the April 2023 comprehensive groundwater sampling event and will include the results from groundwater sampling events scheduled for October 2022 and April 2023.

6. Evaluate Remedy Performance, Effectiveness, and Protectiveness

6.1 Institutional Controls and Engineering Controls Certification

As a component of the PRR requirement, included in **Appendix E** is the completed IC/EC certification form. Note an IC/EC certification form was not distributed by NYSDEC for this reporting period; NYSDEC directed AECOM to update the February 19, 2021 IC/EC certification form for the current reporting period. AECOM verified that the institutional and engineering controls listed below are being implemented and are in compliance with the February 19, 2021 IC/EC certification form.

Institutional controls include:

- 1. Groundwater Use Restrictions
- 2. Land Use Restrictions
- 3. Site Management Plan
- 4. Soils Monitoring Plan
- 5. Groundwater Monitoring Plan
- 6. IC/EC Plan

Engineering controls include:

None listed.

7. References

AECOM. August 2021. "Bioaugmentation Injection Work Plan, Former Scott Aviation Facility Area 1 BCP Site", NYSDEC Site Code No. C915233, Lancaster, New York".

AECOM. May 2021. "2021 Periodic Review Report, April 17, 2020 through April 9, 2021, Former Scott Aviation Facility Area 1 BCP Site", NYSDEC Site Code No. C915233, Lancaster, New York".

AECOM. June 2020. "Storm Sewer Replacement Work Plan - Former Scott Aviation Facility Area 1 BCP Site", NYSDEC Site Code No. C915233, Lancaster, New York"

AECOM. May 2019. "2019 Supplemental Injection Work Plan - Former Scott Aviation Facility Area 1 BCP Site", NYSDEC Site Code No. C915233, Lancaster, New York"

AECOM. December 2015. "Site Management Plan", Former Scott Aviation Facility Area 1 BCP Site, Lancaster, New York, Erie County.

AECOM. December 2015. "Final Alternatives Analysis Report - Former Scott Aviation Facility Area 1 BCP Site, NYSDEC Site Code No. C915233, Lancaster, New York".

AECOM. March 2015. "Interim Remedial Measures Construction Completion Report - Former Scott Aviation Facility Area 1 BCP Site, NYSDEC Site Code No. C915233, Lancaster, New York".

AECOM. January 2015. "Sub-Slab Vapor Evaluation - Former Scott Aviation Facility Area 1 BCP Site, NYSDEC Site Code No. C915233, Lancaster, New York".

AECOM. October 2014. "MIP/HPT and Baseline Sampling Work Plan – Former Scott Aviation Facility Area 1 BCP Site No. C915233, Lancaster, New York".

AECOM, June 2014. "2014 Interim Remedial Measures Remedial Action Work Plan, Former Scott Aviation Facility Area 1, Lancaster New York".

AECOM. March 2015. "2014 Interim Remedial Measures Construction Completion Report - Former Scott Aviation Facility Area 1 BCP Site, NYSDEC Site Code No. C915233, Lancaster, New York".

AECOM. October 2013. "Soil Vapor Intrusion Evaluation: Supplemental Soil and Groundwater Data Report - Former Scott Aviation Facility Area 1 BCP Site, NYSDEC Site Code No. C915233, Lancaster, New York".

AECOM. August 2013. "Soil Vapor Intrusion Evaluation - Former Scott Aviation Facility Area 1 BCP Site, NYSDEC Site Code No. C915233, Lancaster, New York".

AECOM. April 2013. "Draft Alternatives Analysis Report - Former Scott Aviation Facility Area 1 BCP Site, NYSDEC Site Code No. C915233, Lancaster, New York".

AECOM. April 2012. "Supplemental Remedial Investigation Report - Former Scott Aviation Facility Area 1 BCP Site, NYSDEC Site Code No. C915233, Lancaster, New York".

AECOM. September 2011. "Remedial Investigation Report - Former Scott Aviation Facility Area 1 BCP Site, NYSDEC Site Code No. C915233, Lancaster, New York".

AECOM. May 2010. "Addendum to the Remedial Investigation / Alternatives Analysis Work Plan - Former Scott Aviation Facility Area 1 BCP Site, NYSDEC Site Code No. C915233, Lancaster, New York".

AECOM. February 2010. "Remedial Investigation / Alternatives Analysis Work Plan - Former Scott Aviation Facility Area 1 BCP Site, NYSDEC Site Code No. C915233, Lancaster, New York".

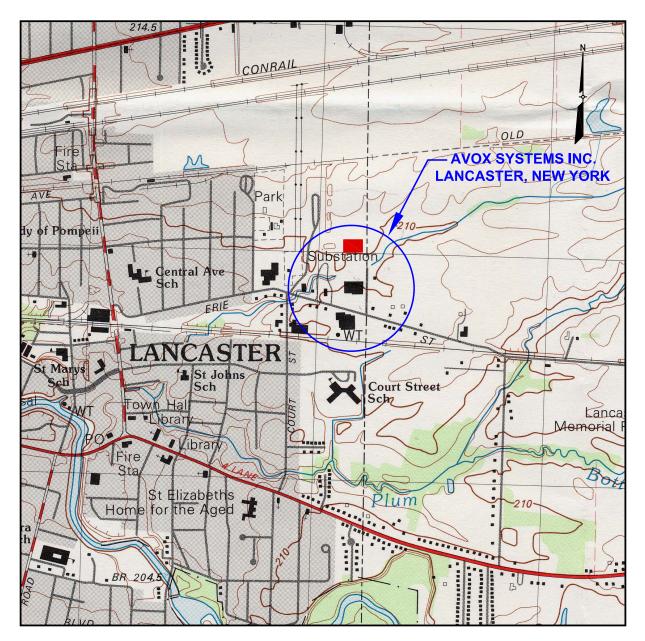
Earth Tech. January 2008. "Preliminary Groundwater Assessment Report", Former Scott Aviation Facility, Lancaster, New York.

Earth Tech. June 2004. "Phase II Environmental Site Investigation", Tyco/Scott Aviation Facility, Lancaster, New York.

Earth Tech. April 2004. "Phase I Environmental Site Assessment and Modified Compliance Assessment", Tyco/Scott Aviation Facility, Lancaster, New York.

Lu, X., J.T. Wilson, and D.H. Kampbell. 2006. "Relationship Between Dehalococcoides DNA in Ground Water and Rates of Reductive Dechlorination at Field Scale". Water Research 40:3131-3140.

NYSDEC. December 2015. "Decision Document", Former Scott Aviation Facility (Area 1) Brownfield Cleanup Program, Lancaster, Erie County, Site No. C915233.


NYSDEC. May 2010. Program Policy DER-10, Technical Guidance for Site Investigation and Remediation.

NYSDEC. May 2004. "Draft Brownfield Cleanup Program Guide."

NYSDEC, 1998. Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations Division of Water Technical and Operational Guidance Series (TOGS) 1.1.1. June 1998 (June 2004 addendum).

NYSDEC, June 1998. "Division of Water Quality New York Codes, Rules and Regulations (NYCRR), Title 6, Parts 702.15(a)(2) and 703.5".

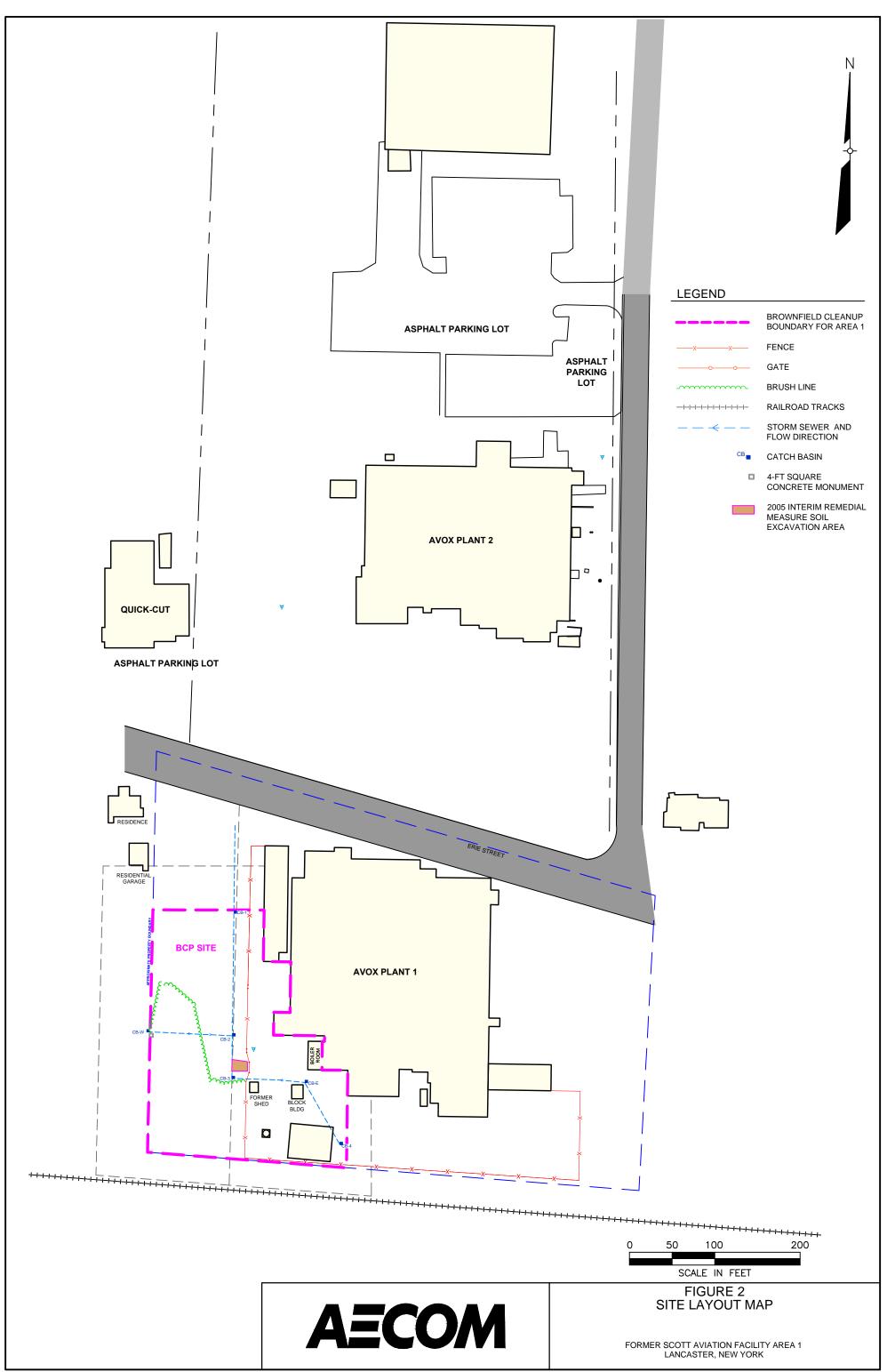
Figures

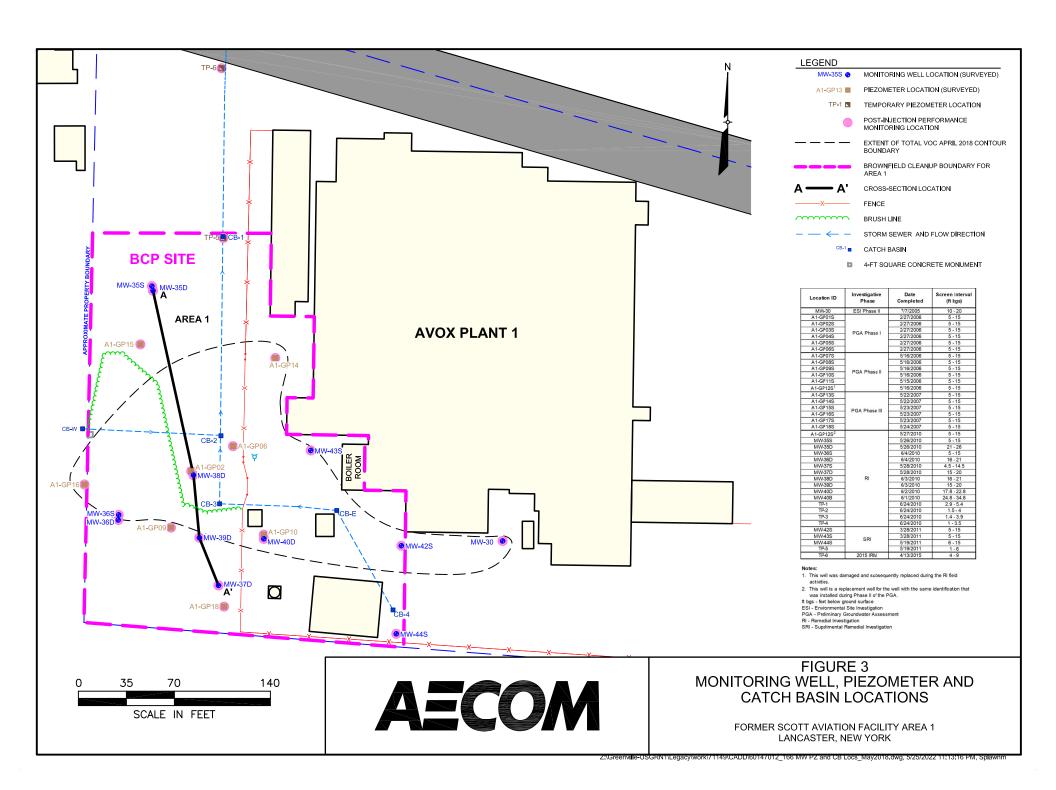


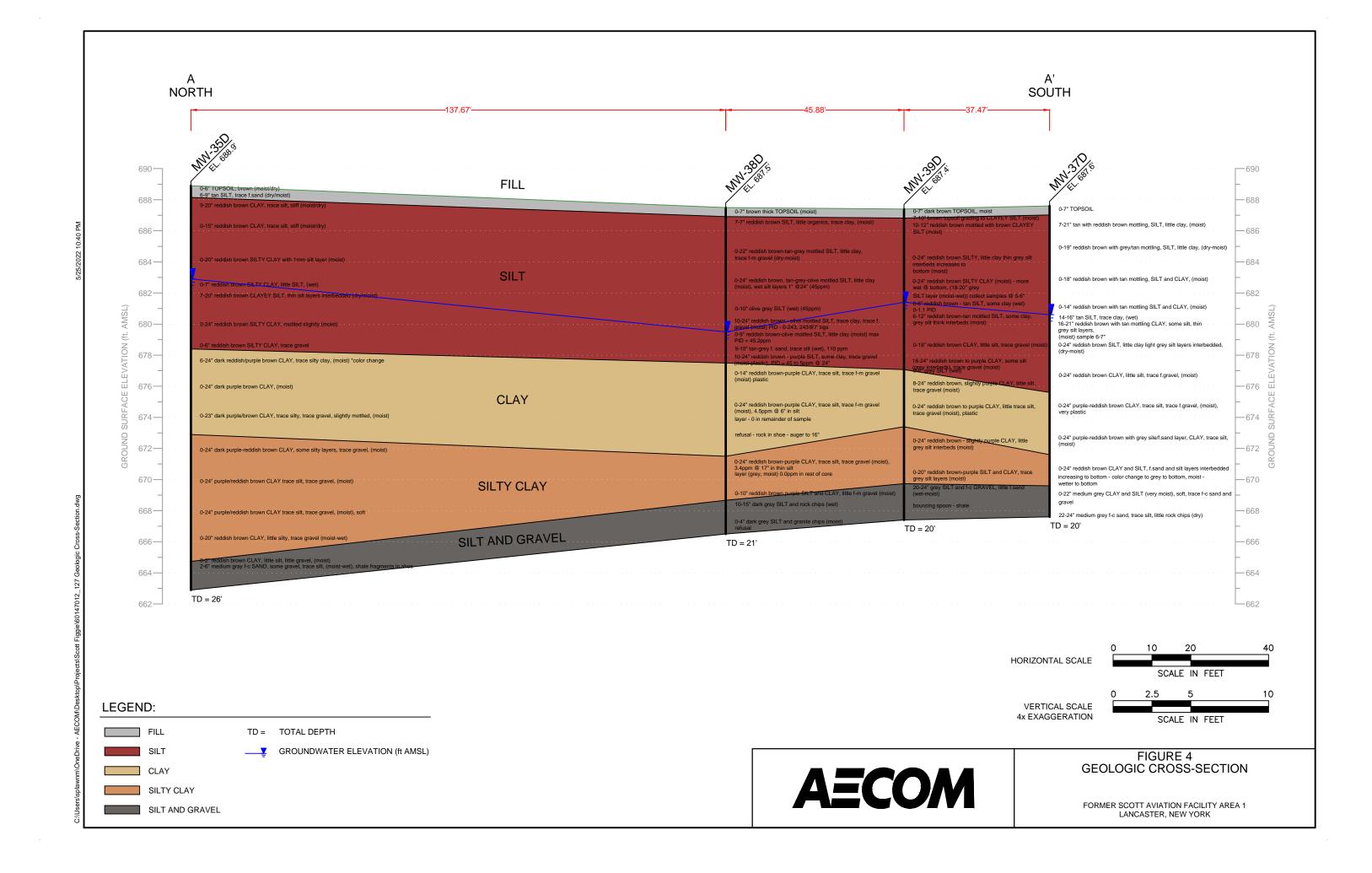
SOURCE:

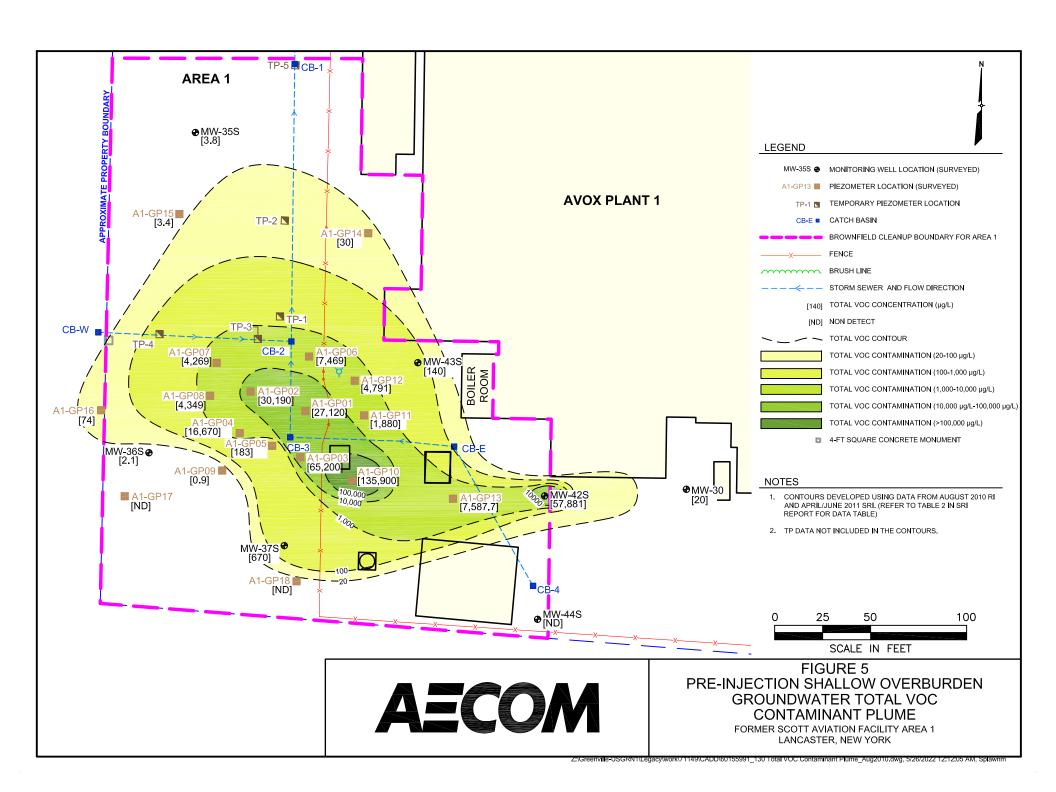
1982 U.S. GEOLOGIC SURVEY 7.5 X 15 MINUTE TOPOGRAPHIC QUADRANGLE LANCASTER, NEW YORK

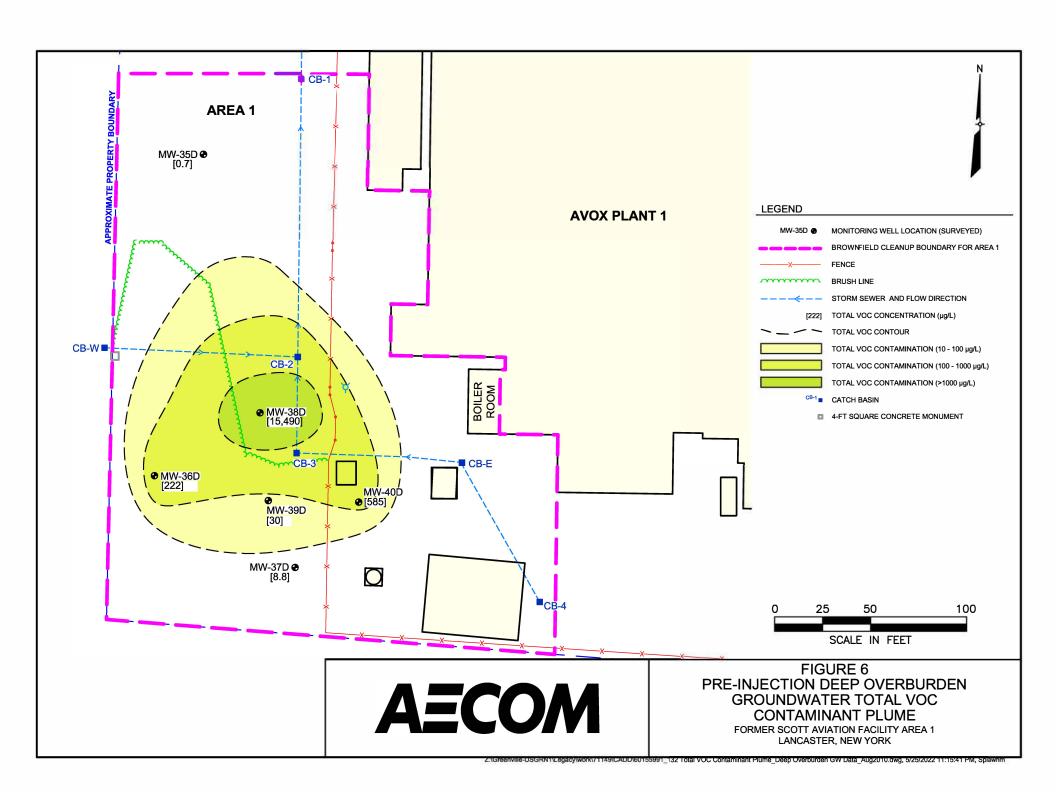
LEGEND

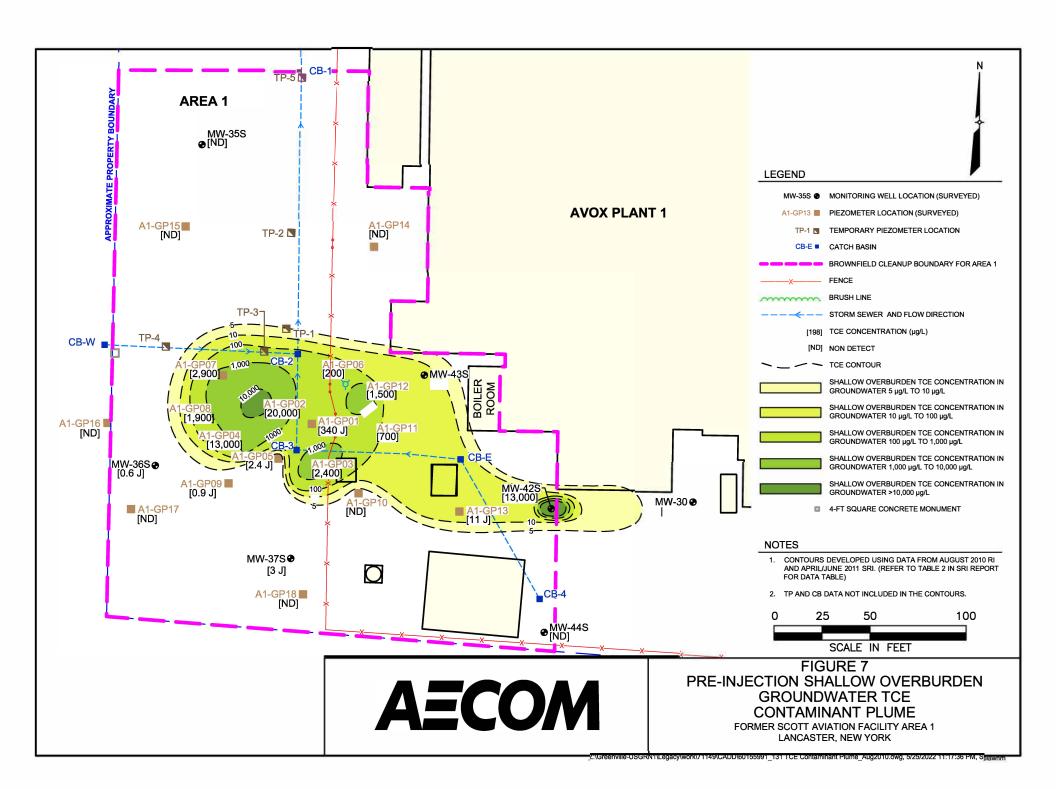

AVOX PLANT 3 ADDED AFTER PUBLICATION OF LANCASTER, NEW YORK TOPOGRAPHIC QUADRANGLE.

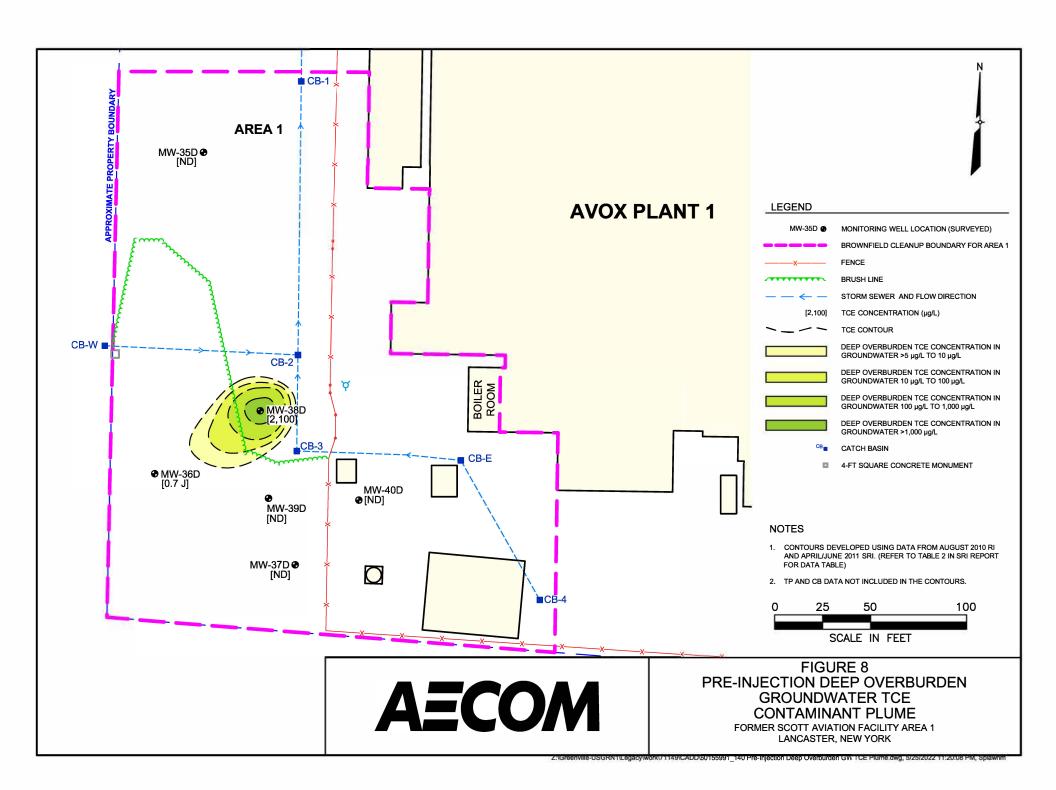


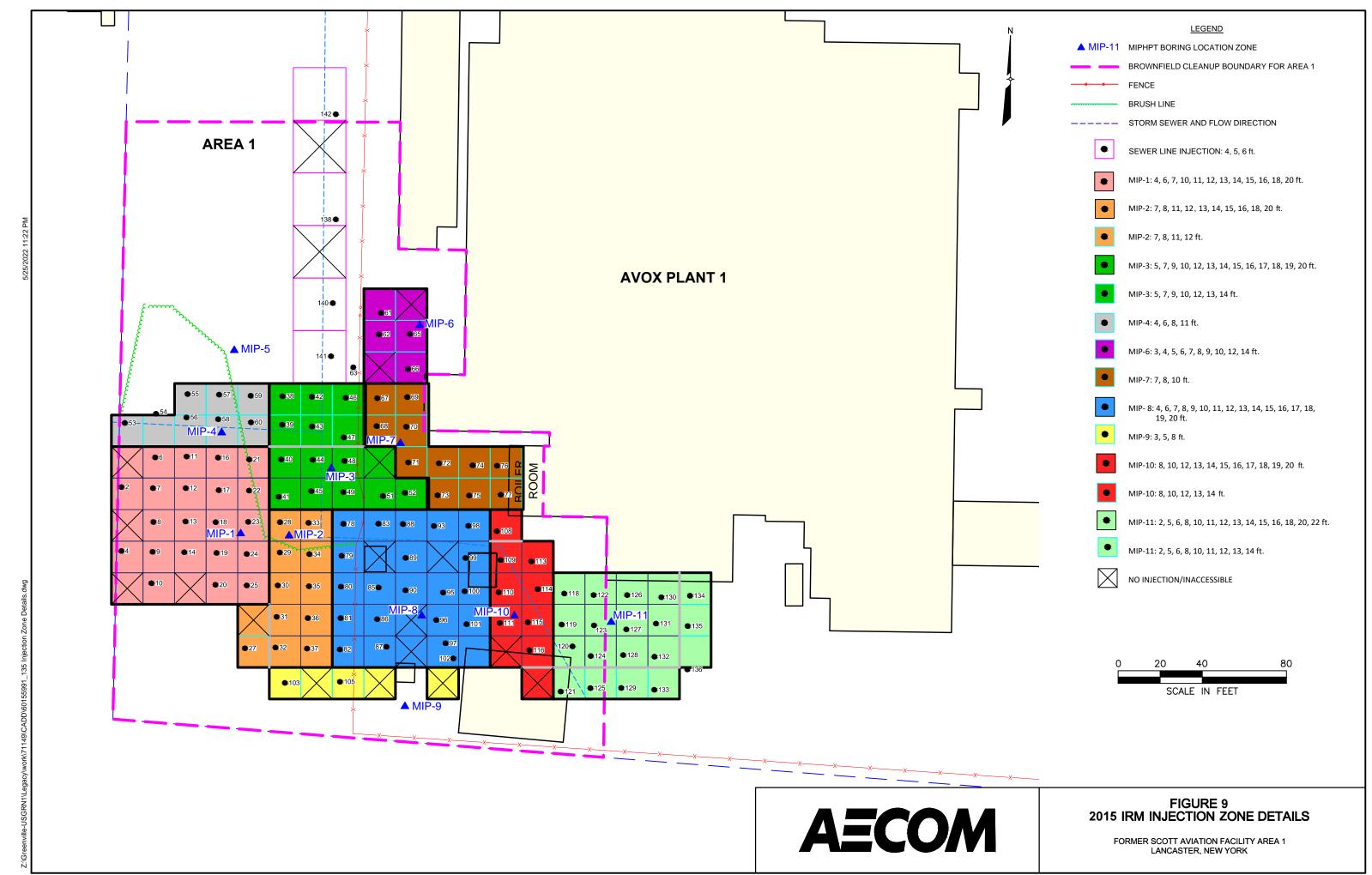

AECOM

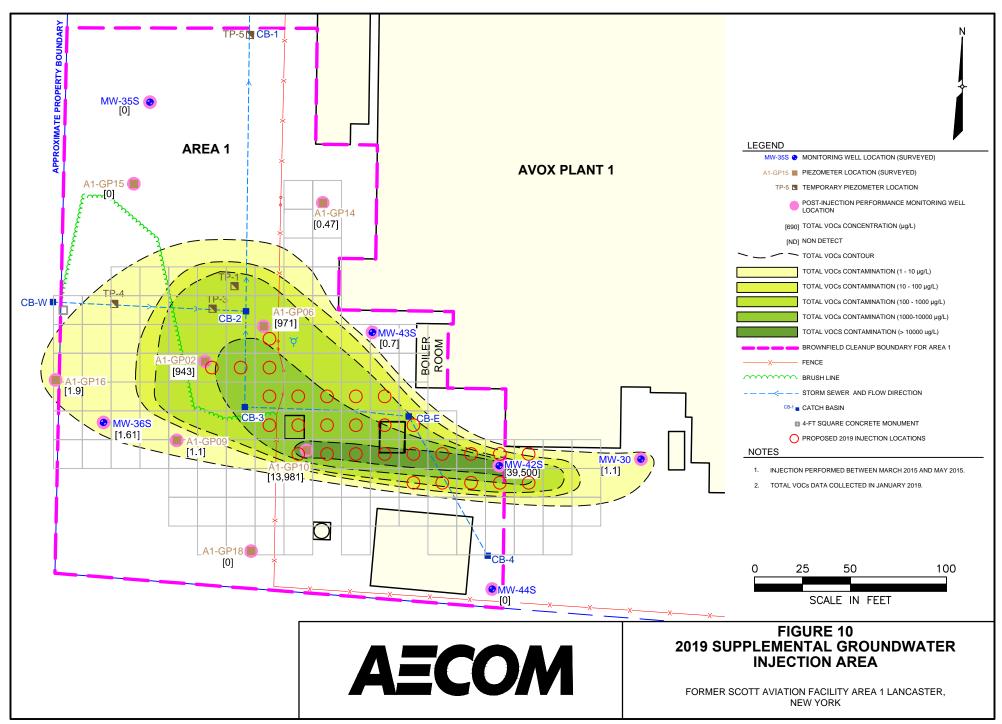

FIGURE 1 SITE LOCATION MAP

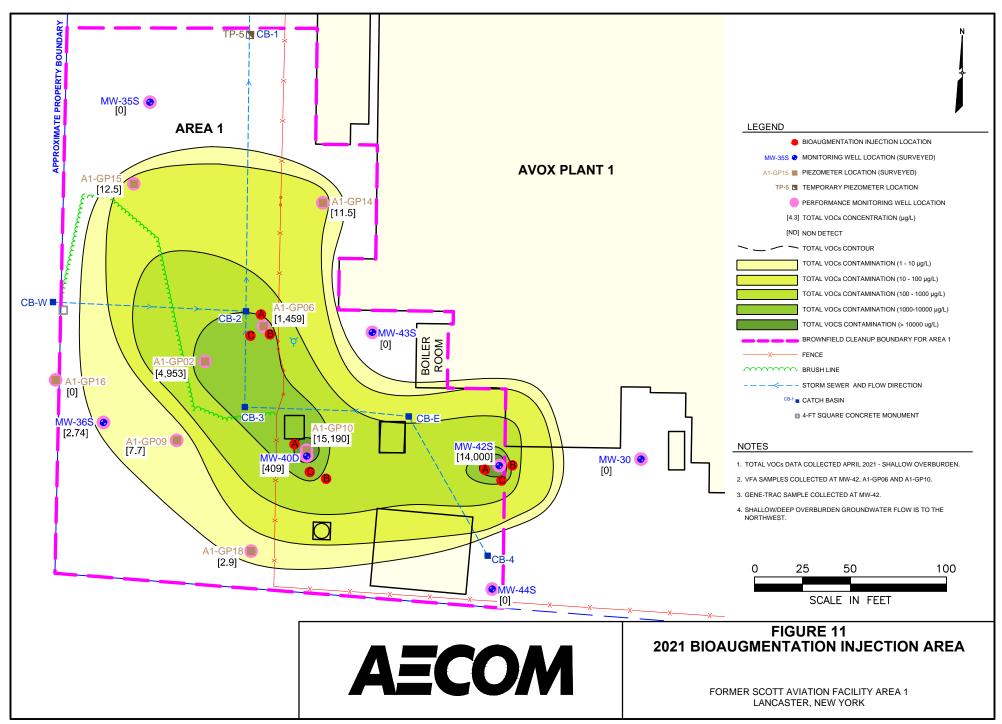

FORMER SCOTT AVIATION FACILITY AREA 1 LANCASTER, NEW YORK

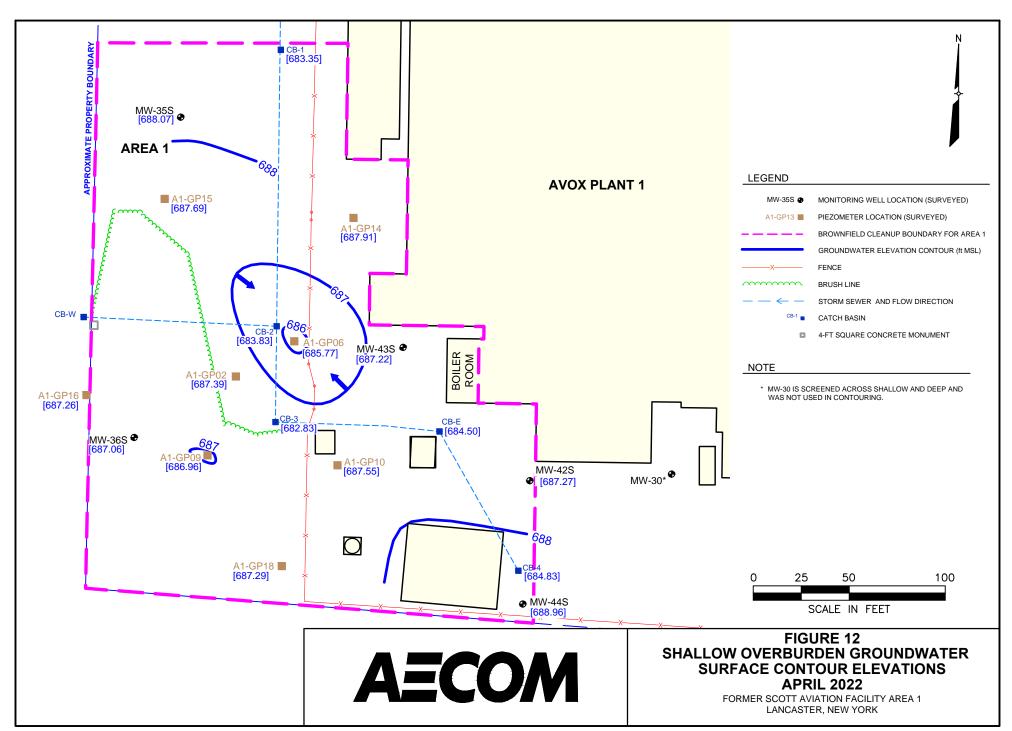


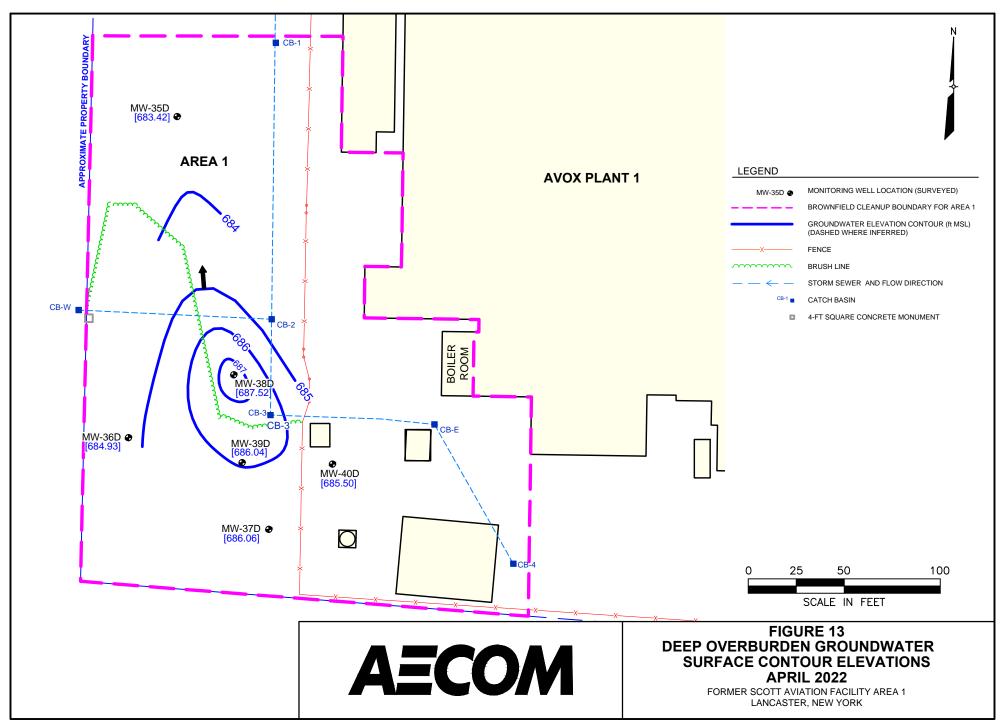


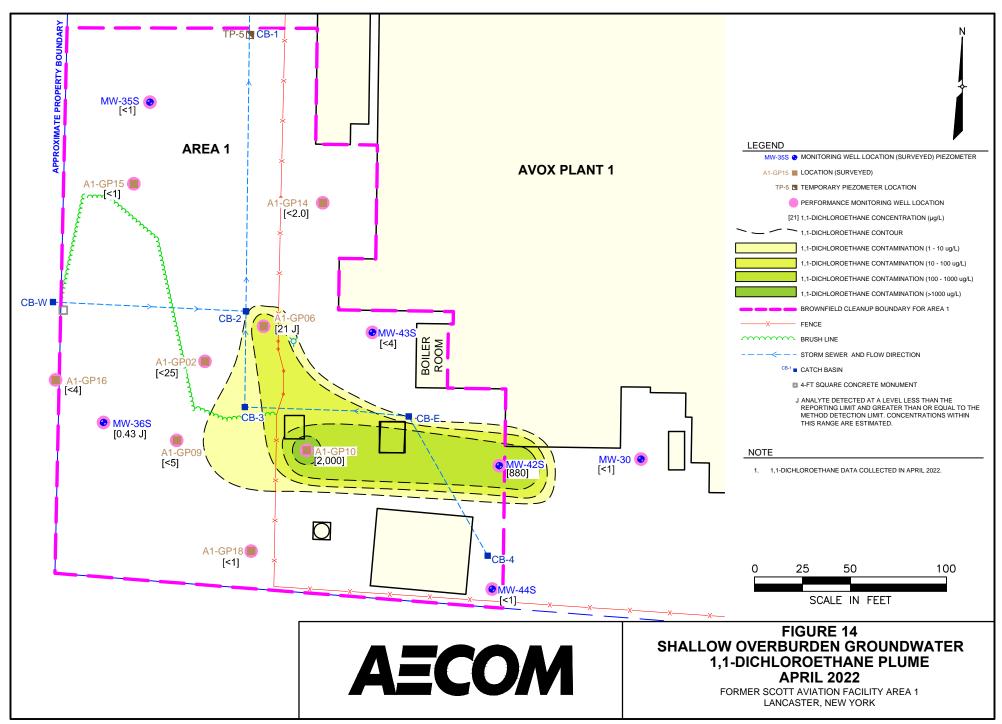


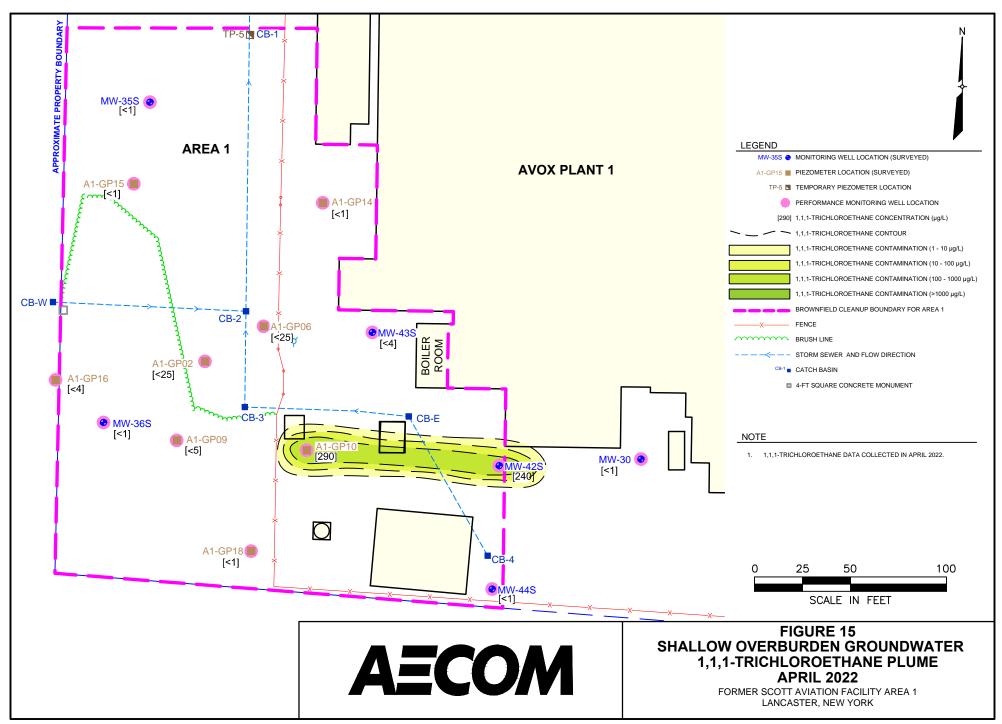


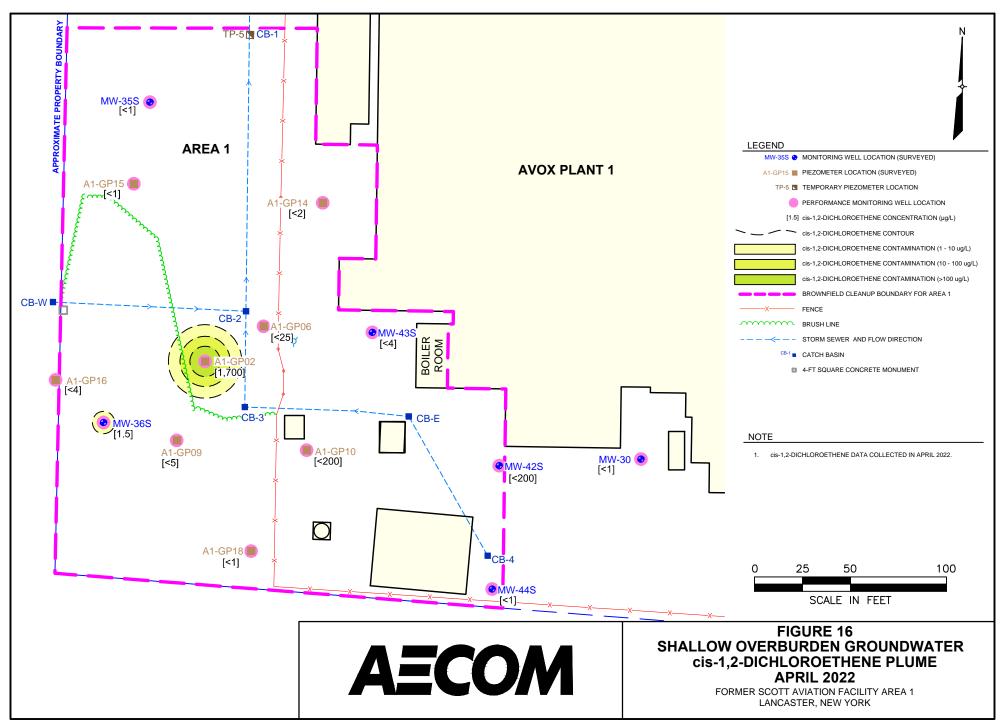


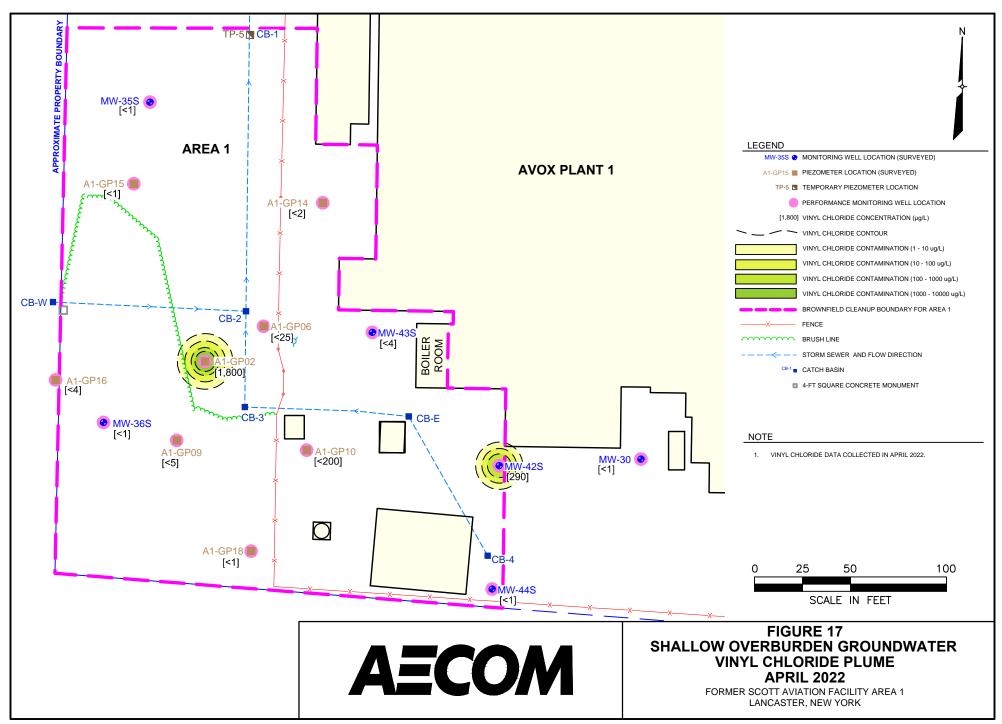


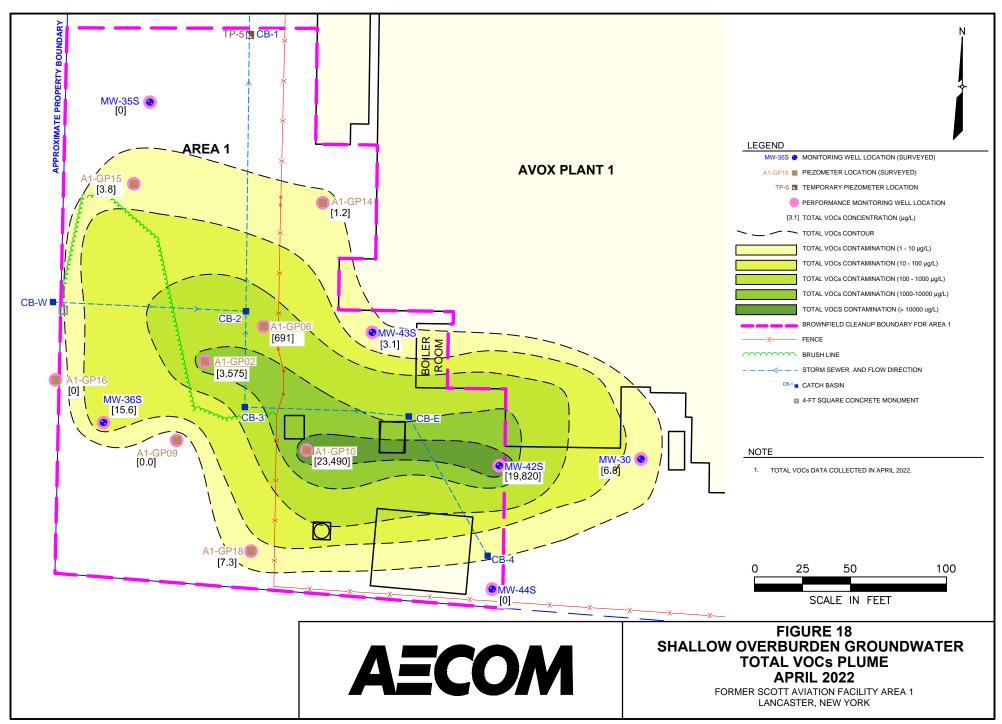


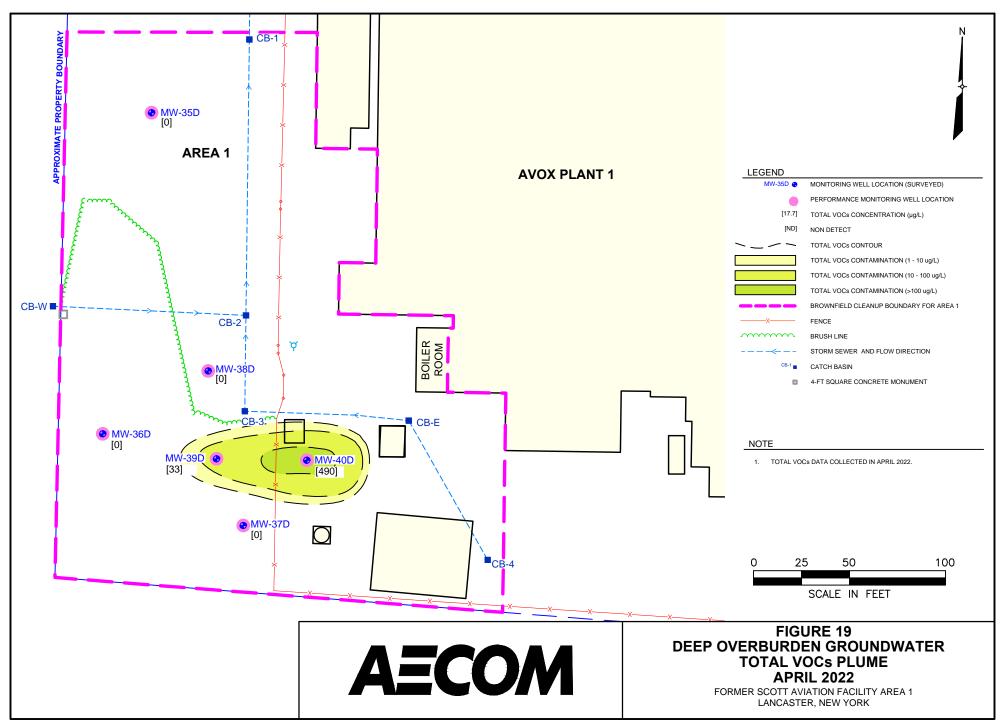


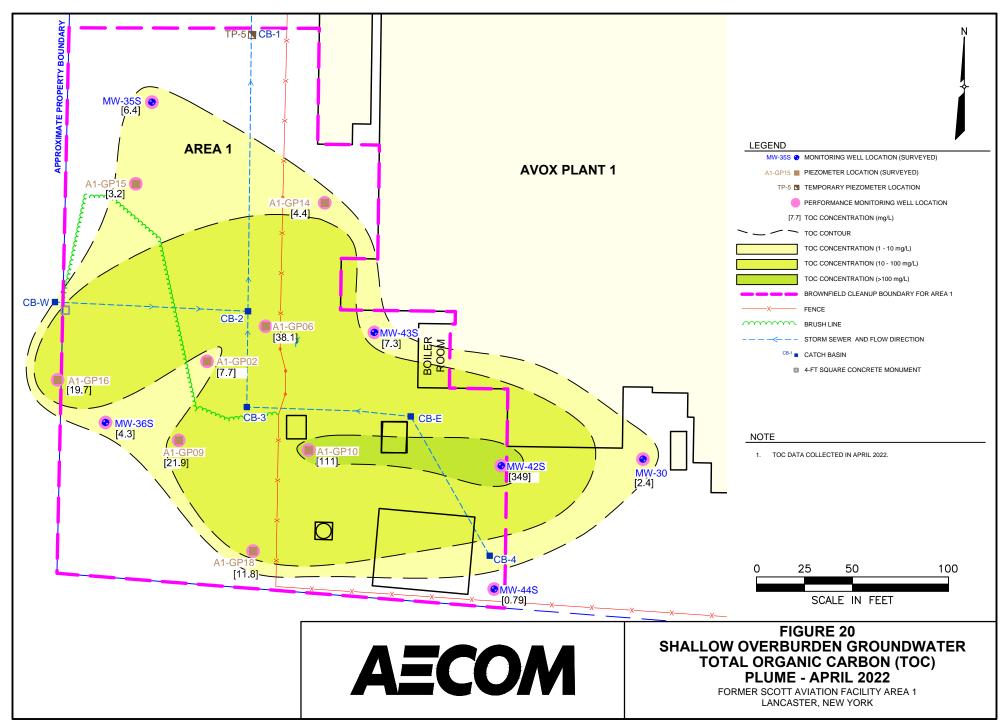


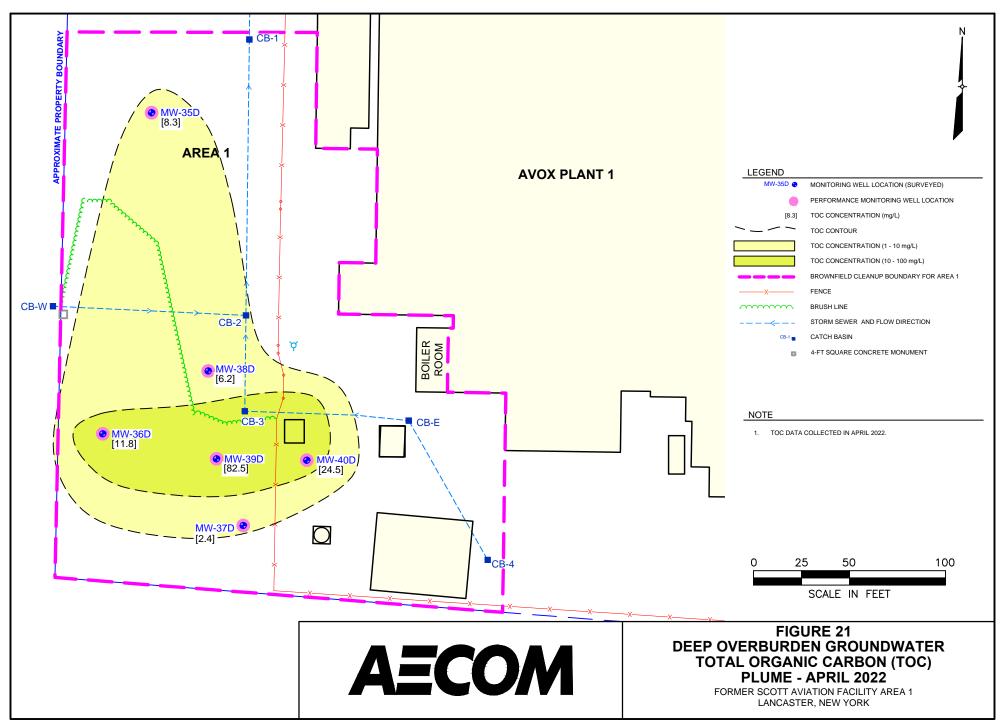












Tables

Project reference: NYSDEC Site Code: C915233

Table 1 Groundwater Monitoring Program Former Scott Aviation Facility NYSDEC Site Code No. C915233 Lancaster, New York

	Field						Nitrate as					Dissolved		
	Parameters	VOCs	TOC	Ferrous Iron	Ferric Iron	Nitrite as Nitrogen	Nitrogen	Sulfate	Sulfide	Total Alkalinity	Iron	Gases	Gene-Trac	VFA
Location		(SW846 8260C)	(SW846 9060A)	(SM 3500 FE D)	(SM 3500)	(MCAWW 353.2)	(EPA 353.2)	(MCAWW 300.0)	(SM 4500 S2 F)	(MCAWW 310.2)	(EPA 200.7 Rev 4.4)	(RSK-175)		
					Mon	itoring Well and T	emporary Pic	zometer Groundw	ater Sampling					
MW-30	✓	✓	✓											
MW-35S	✓	✓	✓											
MW-35D	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓		
MW-36S	✓	✓	✓											
MW-36D	✓	✓	✓											
MW-37D	✓	✓	✓											
MW-38D	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓		
MW-39D	✓	✓	✓											
MW-40D	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓		
MW-42S	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
MW-43S	✓	✓	✓											
MW-44S	✓	✓	✓											
A1-GP02-S	✓	✓	✓											
A1-GP06-S	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓		
A1-GP09-S	✓	✓	✓											
A1-GP10-S		✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓		✓
A1-GP14-S		✓	✓											
A1-GP15-S		✓	✓											
A1-GP16-S	✓	✓	✓											
A1-GP18-S	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓		
						Storm Sewe	r and Pipe Be	dding Water Sam	pling					
CB-1	✓	✓												
CB-2	✓	✓												
CB-3	✓	✓												
CB-4	✓	✓												
CB-E	✓	✓												
TP-5	✓	✓												
TP-6	✓	✓												

Notes:

QA/QC samples to be collected per QAPP.

Field Parameters include pH, temperature, turbidity, oxidation-reduction potential (ORP), dissolved oxygen (DO), and specific conductivity.

VOC - Volatile Organic Compound

TOC - Total Organic Carbon

VFA - Volatile Fatty Acids

Dissolved gases analyzed under RSK-175 included Methane, Ethane, Ethene, and Carbon dioxide.

Table 2
Monitoring Well and Piezometer Specifications
Former Scott Aviation Facility
NYSDEC Site Code No. C915233
Lancaster, New York

			Well Diameter	Ele	evation (fe	et above mea	n sea level)	Feet from Casing
Well ID	Well Location	Coordinates (longitude/latitude)	(inches)	Casing	Surface	Screen Top	Screen Bottom	Mid-Screen
A1-GP02-S	Plume	42.9047° N, 78.6593° W	0.75	689.82	687.3	682.3	672.3	12.5
A1-GP06-S	Plume	42.9047° N, 78.6592° W	0.75	687.71	687.8	682.8	672.8	9.9
A1-GP09-S	Downgradient	42.9045° N, 78.6594° W	0.75	689.36	686.8	681.8	671.8	12.6
A1-GP10-S	Plume	42.9045° N, 78.6591° W	0.75	689.10	689.2	684.2	674.2	9.9
A1-GP14-S	Downgradient	42.9049° N, 78.6591° W	0.75	689.43	689.7	684.7	674.7	9.7
A1-GP15-S	Downgradient	42.9049° N, 78.6595° W	0.75	687.69	688.0	683.0	673.0	9.7
A1-GP16-S	Downgradient	42.9046° N, 78.6596° W	0.75	689.86	686.6	681.6	671.6	13.3
A1-GP18-S	Upgradient	42.9044° N, 78.6592° W	0.75	690.37	687.5	682.5	672.5	12.9
MW-30	Upgradient	42.9045° N, 78.6585° W	2.0	689.69	689.8	679.8	669.8	14.9
MW-35D	Downgradient	42.9050° N, 78.6594° W	2.0	688.40	688.9	667.9	662.9	23.0
MW-35S	Downgradient	42.9050° N, 78.6594° W	2.0	688.56	689.1	684.1	674.1	9.5
MW-36D	Plume	42.9046° N, 78.6595° W	2.0	689.66	687.1	671.1	666.1	21.1
MW-36S	Upgradient	42.9046° N, 78.6595° W	2.0	689.82	687.1	683.1	672.1	12.2
MW-37D	Upgradient	42.9044° N, 78.6593° W	2.0	690.05	687.6	672.6	667.6	19.9
MW-38D	Plume	42.9047° N, 78.6593° W	2.0	689.66	687.5	671.5	666.5	20.7
MW-39D	Plume	42.9045° N, 78.6593° W	2.0	689.72	687.4	672.4	667.4	19.8
MW-40D	Plume	42.9045° N, 78.6591° W	2.0	689.19	689.5	671.7	666.7	20.0
MW-42S	Plume	42.9045° N, 78.6588° W	2.0	689.08	689.7	684.7	674.7	9.4
MW-43S	Plume	42.9047° N, 78.6590° W	2.0	689.14	689.6	684.6	674.6	9.5
MW-44S	Upgradient	42.9043° N, 78.6588° W	2.0	688.98	689.4	684.4	674.4	9.6
TP-5	Storm Sewer Bedding	42.9051° N, 78.6592° W	0.75	690.53	689.53	685.53	682.53	5.50
TP-6	Storm Sewer Bedding	42.9051° N, 78.6592° W	0.75	690.25	690.45	686.45	681.45	4.30

Table 3 Groundwater Elevation Data Former Scott Aviation Facility NYSDEC Site Code No. C915233 Lancaster, New York

		April 8	3, 2022
Monitoring Point Identification	Top of Casing Elevation	Depth to Groundwater (feet from TOC)	Groundwater Elevation (feet AMSL)
Monitoring	Wells		
MW-30 ¹	689.69	2.73	686.96
MW-35S	688.56	0.49	688.07
MW-35D	688.40	4.98	683.42
MW-36S	689.82	2.76	687.06
MW-36D	689.66	4.73	684.93
MW-37D	690.05	3.99	686.06
MW-38D	689.66	2.14	687.52
MW-39D	689.72	3.68	686.04
MW-40D	689.19	3.69	685.50
MW-42S	689.08	1.81	687.27
MW-43S	689.13	1.91	687.22
MW-44S	688.96	0.00	688.96
Piezome	eters		
A1-GP02-S	689.82	2.43	687.39
A1-GP06-S	687.71	1.94	685.77
A1-GP09-S	689.36	2.40	686.96
A1-GP10-S	689.10	1.55	687.55
A1-GP14-S	689.43	1.52	687.91
A1-GP15-S	687.69	0.00	687.69
A1-GP16-S	689.86	2.60	687.26
A1-GP18-S	690.37	3.08	687.29
Storm S			
TP-5	690.53	7.67	682.86
TP-6	690.25	7.40	682.85
CB-1	689.53	6.18	683.35
CB-2	687.40	3.57	683.83
CB-3	687.55	4.72	682.83
CB-4	689.00	4.17	684.83
CB-E	689.35	4.85	684.50

Notes:

1 - Well is screened across both shallow and deep overburden units.

TOC - Top of Casing

AMSL - Above Mean Sea Level

S - well is screened in shallow overburden

D - well is screened in deep overburden

Table 4 Summary of Monitoring Well Analytical Data - October 2021 Former Scott Aviation Facility NYSDEC Site Code No. C915233 Lancaster, New York

Sample ID	Groundwater	F	1-GP02-	S	P	1-GP06-	S	Α	1-GP09	-S	-	A1-GP10-9	S	A ²	1-GP14	-S	Α	1-GP15	-S	Α	1-GP16	-S
Date Collected	RAO/TOGS 1.1.1		10/22/21			10/22/21			10/21/2	1		10/27/21		,	10/25/2 ⁻	1		10/20/2	1		10/25/2	1
Lab Sample ID	Objective	48	30-191326	6-4	48	80-191326	6-5	480	0-19126	1-5	48	30-191541	-1	480)-19154	1-2	480)-19118	36-2	480	0-19154	11-3
Volatile Organic Compounds by Metho	od 8260 (µg/L)																					
1,1-Dichloroethane*	5	<	40	U		54		<	5.0	U		1,000		'	2.0	U	<	1.0	U	<	4.0	U
1,1,2-Trichloro-1,2,2-trifluoroethane	5	<	40	U	<	25	U	<	5.0	U	<	200	U	<	2.0	U	<	1.0	U	<	4.0	U
2-Butanone (MIBK)	50	<	400	U	<	130	U	<	50	U	<	1,000	U	<	10	U	<	10	U	<	40	U
2-Hexanone	50	<	200	U	<	130	U	<	25	U	<	1,000	U	<	10	U	<	5.0	U	<	20	U
Acetone	50	<	400	U	<	250	U		57		<	2,000	U	٧	20	U	<	10	U	<	40	U
Benzene	5	<	40	U	<	25	U	<	5.0	U	<	200	U		5.1		<	1.0	U	<	4.0	U
Chloroethane	5	<	40	U		880	F1	<	5.0	U		15,000		<	2.0	U	<	1.0	U	<	4.0	U
cis-1,2-Dichloroethene*	5		970		<	25	U	<	5.0	U	<	200	U	<	2.0	U	<	1.0	U		4.0	
Ethylbenzene	5		7		<	25	U	<	5.0	U	<	200	U	<	2.0	U	<	1.0	U	<	4.0	U
Toluene	5	<	40	U	<	25	U	<	5.0	U	<	200	U	<	2.0	U	<	1.0	U	<	4.0	U
Trichloroethene*	5	<	40	U	<	25	U	<	5.0	U	<	200	U	<	2.0	U		1.1		<	4.0	U
Vinyl chloride*	2		2,800		<	25	U	<	5.0	U	<	200	U	<	2.0	U		2.4		<	4.0	U
Xylenes, Total	5		42	J	٧	50	U	<	10	U	<	400	U	٧	4.0	U	٧	2.0	U	<	8.0	U
Total Volatile Organic Compounds	NL		3,819			934			57			16,000			5.1			3.5			4.0	
Total Organic Carbon	NL		10.9			84.3	•		40.4			41.6			7.6			3.0	,		23.4	

Table 4 Summary of Monitoring Well Analytical Data - October 2021 Former Scott Aviation Facility NYSDEC Site Code No. C915233 Lancaster, New York

Sample ID	Groundwater	A	1-GP18	-S		MW-30)		MW-35	S	[Duplicate	Э	N	MW-369	S		MW-42S		1	иW-43	S
Date Collected	RAO/TOGS 1.1.1	,	10/21/2	1		10/25/2	1		10/20/2	1		10/20/21		1	10/22/2	1		10/27/21			10/25/2	1
Lab Sample ID	Objective	480)-19126	1-1	480	0-19154	1-5	480	0-19118	6-1	480	0-19118	6-4	480)-19132	26-3	48	30-191541	-7	480)-19154	1-8
Volatile Organic Compounds by Metho	od 8260 (µg/L)																					
1,1-Dichloroethane*	5	<	1.0	U	٧	1.0	U	<	1.0	U	<	1.0	U		0.40	J		550		'	4.0	U
1,1,2-Trichloro-1,2,2-trifluoroethane	5	<	1.0	U	<	1.0	U	<	1.0	U	<	1.0	U	<	1.0	U		430		<	4.0	U
2-Butanone (MIBK)	50	<	10	U	<	10	U	<	10	U	<	10	U	<	10	U	<	2,000	U	<	40	U
2-Hexanone	50	<	5.0	U	<	5.0	U	<	5.0	U	<	5.0	U	<	5.0	U	<	1,000	U	<	20	U
Acetone	50	<	10	U		26		<	10	U	<	10	U	<	10	U	<	2,000	U	<	40	U
Benzene	5	<	1.0	U	<	1.0	U	<	1.0	U	<	1.0	U	<	1.0	U	<	200	U	<	4.0	U
Chloroethane	5	<	1.0	U		0.75	J	<	1.0	U	<	1.0	U	<	1.0	U		10,000		<	4.0	U
cis-1,2-Dichloroethene*	5	<	1.0	U	<	1.0	U	<	1.0	U	<	1.0	U		1.5		<	200	U	<	4.0	U
Ethylbenzene	5	<	1.0	U	<	1.0	U	<	1.0	U	<	1.0	U	<	1.0	U	٧	200	U	<	4.0	U
Toluene	5	<	1.0	U	<	1.0	U	<	1.0	U	<	1.0	U	<	1.0	U		570		<	4.0	U
Trichloroethene*	5	<	1.0	U	<	1.0	U	<	1.0	U	<	1.0	U	<	1.0	U	<	200	U	<	4.0	U
Vinyl chloride*	2	<	1.0	U	<	1.0	U	<	1.0	U	<	1.0	U	<	1.0	U	<	200	U	<	4.0	U
Xylenes, Total	5	٧	2.0	U	٧	2.0	U	٧	2.0	U	٧	2.0	U	٧	2.0	U	٧	400	U	٧	8.0	U
Total Volatile Organic Compounds	NL		0			27			0			0			1.9			11,550			0	
Total Organic Carbon	NL		10.8			3.3			3.6	Ť		NS			5.2			333	Ť		11.9	

Table 4

Summary of Monitoring Well Analytical Data - October 2021 Former Scott Aviation Facility NYSDEC Site Code No. C915233 Lancaster, New York

Sample ID	Groundwater	N	/W-44	S	I	MW-35E)		MW-361)		MW-37D)	I	MW-38[)		MW-39	D	ı	MW-40[D
Date Collected	RAO/TOGS 1.1.1	•	0/25/2	1		10/21/21			10/22/2	1		10/21/21			10/22/2	1		10/21/2	1		10/27/2	1
Lab Sample ID	Objective	480)-19154	11-9	480	0-19126	1-2	48	0-19132	26-2	48	0-19126	1-3	480	0-19132	26-1	48	0-19126	31-4	480)-19154	1-6
Volatile Organic Compounds by Metho	od 8260 (µg/L)																					
1,1-Dichloroethane*	5	<	1.0	U	٧	1.0	U	<	4.0	U	<	1.0	U	<	10	U	٧	8.0	U	<	8.0	U
1,1,2-Trichloro-1,2,2-trifluoroethane	5	<	1.0	U	<	1.0	U	<	4.0	U	<	1.0	U	<	10	U	<	8.0	U	<	8.0	U
2-Butanone (MIBK)	50	<	10	U	<	10	U	<	40	U	<	10	U	<	100	U		14	J	<	80	U
2-Hexanone	50	<	5.0	U	<	5.0	U	<	20	U	<	5.0	U	<	50	U		57		<	40	U
Acetone	50	<	10	U	<	10	U	<	40	U	<	10	U	<	100	U	<	80	U	<	80	U
Benzene	5	<	1.0	U	<	1.0	U	<	4.0	U	<	1.0	U	<	10	U	<	8.0	U	<	8.0	U
Chloroethane	5	<	1.0	U	<	1.0	U	<	4.0	U	<	1.0	U	<	10	U	<	8.0	U		230	
cis-1,2-Dichloroethene*	5	<	1.0	U	<	1.0	U	<	4.0	U	<	1.0	U	<	10	U	<	8.0	U	<	8.0	U
Ethylbenzene	5	<	1.0	U	<	1.0	U	<	4.0	U	<	1.0	U	<	10	U	<	8.0	U	<	8.0	U
Toluene	5	<	1.0	U	<	1.0	U	<	4.0	U	<	1.0	U	<	10	U	<	8.0	U	<	8.0	U
Trichloroethene*	5	<	1.0	U	<	1.0	U	<	4.0	U	<	1.0	U	<	10	U	<	8.0	U	<	8.0	U
Vinyl chloride*	2	<	1.0	U	<	1.0	U	<	4.0	U	<	1.0	U	<	10	U	<	8.0	U	<	8.0	U
Xylenes, Total	5	<	2.0	U	<	2.0	U	<	8.0	U	<	2.0	U	<	20	U	<	16	U	<	16	U
Total Volatile Organic Compounds	NL		0			0			0			0			0			71			230	
Total Organic Carbon	NL		1.7			5.3			13.0			2.5			24.8			244			57.4	

Notes:

Bold font indicates the analyte was detected.

Bold font and bold outline indicates the screening criteria was exceeded.

Duplicate collected at MW-35S.

- J Analyte detected at a level less than the reporting limit and greater than or equal to the method detection limit. Concentrations within this range are estimated.
- U Not detected at or above reporting limit.
- F1 MS and/or MSD recovery exceeds control limits.
- NL Not listed

^{*} Site-specific Contaminants of Concern per Decision Document (December 2015). Per NYSDEC comment letter dated August 29, 2019, cis-1,2-DCE was added as a Site-specific Contaminants of Concern.

Table 5 Summary of Monitoring Well Analytical Data - April 2022 Former Scott Aviation Facility NYSDEC Site Code No. C915233 Lancaster, New York

Sample ID	Groundwater	P	1-GP02-	S	Α	1-GP06-	S	Α	1-GP09	-S	,	A1-GP10-	3	A ²	1-GP14	-S	Α	1-GP15	i-S	Α	1-GP16	-S
Date Collected	RAO/TOGS 1.1.1		04/12/22			04/11/22		(04/13/2	2		04/08/22		(04/12/22	2	(04/11/2	2	(04/11/2	2
Lab Sample ID	Objective	48	30-19670 ⁻	1-3	48	0-196658	3-1	480)-19676	002	48	80-196617	-3	480	0-19670	1-4	480)-19665	58-4	480)-19665	i8-5
Volatile Organic Compounds by Metho	od 8260 (µg/L)																					
1,1,1-Trichloroethane*	5	<	25	U	<	25	U	<	5.0	U		290		'	2.0	U	<	1.0	U	<	4.0	U
1,1,2-Trichloro-1,2,2-trifluoroethane	5	<	25	U	<	25	U	<	5.0	U		200		<	2.0	U	<	1.0	U	<	4.0	U
1,1-Dichloroethane*	5	<	25	U		21	J	<	5.0	U		2,000		<	2.0	U	<	1.0	U	<	4.0	U
2-Butanone (MIBK)	50	<	250	U	<	250	U	<	50	U	<	1,000	U	<	20	U	<	10	U	<	40	U
2-Hexanone	50	<	130	U	<	130	U	<	25	U	<	1,000	U	<	10	U	<	5.0	U	<	20	U
Acetone	50	<	250	U	<	250	U	<	50	U	<	2,000	U	<	20	U		3.8	J	<	40	U
Benzene	5	<	25	U	<	25	U	<	5.0	U	<	200	U		1.2	J	<	1.0	U	<	4.0	U
Chloroethane	5	<	25	U		670	F1	<	5.0	U		21,000		<	2.0	U	<	1.0	U	<	4.0	U
cis-1,2-Dichloroethene*	5		1,700	F1	<	25	U	<	5.0	U	<	200	U	<	2.0	U	<	1.0	U	<	4.0	U
Ethylbenzene	5		40		<	25	U	<	5.0	U	<	200	U	<	2.0	U	<	1.0	U	<	4.0	U
Toluene	5	<	25	U	<	25	U	<	5.0	U	<	200	U	<	2.0	U	<	1.0	U	<	4.0	U
Vinyl chloride*	2		1,800	F1	<	25	U	<	5.0	U	<	200	U	<	2.0	U	<	1.0	U	<	4.0	U
Xylenes, Total	5		35	J	<	50	U	<	10	U	<	400	U	<	4.0	U	<	2.0	U	<	8.0	U
Total Volatile Organic Compounds	NL		3,575			691			0			23,490			1.2			3.8			0	
Total Organic Carbon	NL		7.7			38.1			21.9	,		111			4.4			3.2			19.7	

Table 5 Summary of Monitoring Well Analytical Data - April 2022 Former Scott Aviation Facility NYSDEC Site Code No. C915233 Lancaster, New York

Sample ID	Groundwater	A	1-GP18	-S		MW-30)		MW-35	3	ľ	иW-365	3		MW-42S		ı	MW-43	S
Date Collected	RAO/TOGS 1.1.1	()4/13/22	2	()4/14/2	2		04/07/2	2	()4/11/22	2		04/08/22		(04/14/2	2
Lab Sample ID	Objective	480)-19676	0-3	480)-19680)1-1	48	0-19654	7-1	480)-19665	8-2	48	0-19661	7-2	480)-19680)1-1
Volatile Organic Compounds by Metho	od 8260 (µg/L)																		
1,1,1-Trichloroethane*	5	<	1.0	U	٧	1.0	U	٧	1.0	U	<	1.0	U		240		٧	4.0	U
1,1,2-Trichloro-1,2,2-trifluoroethane	5	<	1.0	U	<	1.0	U	<	1.0	U	<	1.0	U		2,500		<	4.0	U
1,1-Dichloroethane*	5	<	1.0	U	<	1.0	U	<	1.0	U		0.43	J		880		<	4.0	U
2-Butanone (MIBK)	50		4.2	J	<	10	U	<	10	U		9.5	J	<	2,000	U	<	40	U
2-Hexanone	50	<	5.0	U	<	5.0	U	<	5.0	U	<	5.0	U	<	1,000	U	<	20	U
Acetone	50		3.1	J		6.8	J	<	10	U		4.2	J	<	2,000	U	<	40	U
Benzene	5	<	1.0	U	<	1.0	U	<	1.0	U	<	1.0	U	<	200	U	<	4.0	U
Chloroethane	5	<	1.0	U	<	1.0	U	<	1.0	U	<	1.0	U		15,000			3.1	J
cis-1,2-Dichloroethene*	5	<	1.0	U	<	1.0	U	<	1.0	U		1.5		<	200	U	<	4.0	U
Ethylbenzene	5	<	1.0	U	<	1.0	U	<	1.0	U	<	1.0	U	<	200	U	<	4.0	U
Toluene	5	<	1.0	U	<	1.0	U	<	1.0	U	<	1.0	U		910		<	4.0	U
Vinyl chloride*	2	<	1.0	U	<	1.0	U	<	1.0	U	<	1.0	U		290		<	4.0	U
Xylenes, Total	5	<	2.0	U	<	2.0	U	<	2.0	U	<	2.0	U	<	400	U	<	8.0	U
Total Volatile Organic Compounds	NL		7.3			6.8			0			15.6			19,820			3.1	
Total Organic Carbon	NL		11.8		·	2.4			6.4	•		4.3		,	349	•	·	7.3	

Table 5 Summary of Monitoring Well Analytical Data - April 2022 Former Scott Aviation Facility NYSDEC Site Code No. C915233 Lancaster, New York

Sample ID	Groundwater	N	лW-445	3	1	MW-35D)	I	MW-36E)	ı	MW-37E)	N	MW-38[D	ľ	MW-39[)	ı	лW-40[)
Date Collected	RAO/TOGS 1.1.1	()4/12/2	2	(04/07/22	2	(04/11/22	2	(04/13/22	2	(04/12/2	2	(04/13/22	2	(04/08/22	2
Lab Sample ID	Objective	480)-19670	1-2	480)-19654	7-3	480	0-19665	8-3	480	0-19676	0-4	480)-19670)1-1	480)-19676	0-1	480)-19661	7-1
Volatile Organic Compounds by Metho	od 8260 (µg/L)																					
1,1,1-Trichloroethane*	5	<	1.0	U	<	1.0	U	٧	4.0	U	<	1.0	U	<	2.0	U	<	8.0	U	<	8.0	U
1,1,2-Trichloro-1,2,2-trifluoroethane	5	<	1.0	U	<	1.0	U	<	4.0	U	<	1.0	U	<	2.0	U	<	8.0	U	<	8.0	U
1,1-Dichloroethane*	5	<	1.0	U	<	1.0	U	<	4.0	U	<	1.0	U	<	2.0	U	<	8.0	U	<	8.0	U
2-Butanone (MIBK)	50	<	10	U	<	10	U	<	40	U	<	10	U	<	20	U	٧	80	U	<	80	U
2-Hexanone	50	<	5.0	U	<	5.0	U	<	20	U	<	5.0	U	<	10	U		33	J	<	40	U
Acetone	50	<	10	U	<	10	U	<	40	U	<	10	U	<	20	U	<	80	С	<	80	U
Benzene	5	<	1.0	U	<	1.0	U	<	4.0	U	<	1.0	U	<	2.0	U	<	8.0	U	<	8.0	U
Chloroethane	5	<	1.0	U	<	1.0	U	<	4.0	U	<	1.0	U	<	2.0	U	<	8.0	U		490	
cis-1,2-Dichloroethene*	5	<	1.0	U	<	1.0	U	<	4.0	U	<	1.0	U	<	2.0	U	<	8.0	U	<	8.0	U
Ethylbenzene	5	<	1.0	U	<	1.0	U	<	4.0	U	<	1.0	U	<	2.0	U	<	8.0	U	<	8.0	U
Toluene	5	<	1.0	U	<	1.0	U	<	4.0	U	<	1.0	U	<	2.0	U	<	8.0	U	<	8.0	U
Vinyl chloride*	2	<	1.0	U	<	1.0	U	<	4.0	U	<	1.0	U	<	2.0	U	<	8.0	U	<	8.0	U
Xylenes, Total	5	<	2.0	U	<	2.0	U	<	8.0	U	<	2.0	U	<	4.0	U	<	16	U	<	16	U
Total Volatile Organic Compounds	NL		0			0			0			0			0			33			490	
Total Organic Carbon	NL		0.79			8.3			11.8			2.4			6.2			82.5			24.5	

Notes:

Bold font indicates the analyte was detected.

Bold font and bold outline indicates the screening criteria was exceeded.

- * Site-specific Contaminants of Concern per Decision Document (December 2015). Per NYSDEC comment letter dated August 29, 2019, cis-1,2-DCE was added as a Site-Specific Contaminant of Concern.
- J Analyte detected at a level less than the reporting limit and greater than or equal to the method detection limit. Concentrations within this range are estimated.
- U Not detected at or above reporting limit.
- F1- MS and/or MSD recovery exceeds control limits.
- NL Not listed

Table 6 Summary of Catch Basin and Temporary Piezometers Analytical Data - April 2020 through April 2022 Former Scott Aviation Facility NYSDEC Site Code No. C915233 Lancaster, New York

Sample ID	Groundwater	CB-1	CB-1	CB-1	CB-1	CB-1	CB-1	CB-2	CB-2	CB-2	CB-2	CB-2	CB-2
Date Collected	RAO/NYCRR	04/09/20	07/23/20	10/05/20	04/01/21	10/22/21	04/12/22	04/09/20	07/23/20	10/05/20	04/01/20	10/22/21	04/12/22
Lab Sample ID	Objective	480-16849-1	480-172828-1	480-176049-1	480-182787-13	480-191327-1	480-196702-1	480-16849-2	480-172828-2	480-176049-2	480-182787-14	480-191327-2	480-196702-2
Volatile Organic Compounds by Metho	od 8260 (µg/L)												
1,1,1-Trichloroethane*	5	40	ND	ND	2.5	ND	2.2	35	ND	ND	3.2	ND	1.2
1,1,2-Trichloro-1,2,2-trifluoroethane	5	37	4.4	7.1	27	3.7	29	19	ND	1.6	7.7	ND	8.4
1,1-Dichloroethane*	5	15	0.94 J	1.3	5.4	ND	5.4	13	1 J	6.7	9.1	ND	5.8
1,1-Dichloroethene*	5	4.2	ND	ND	0.64 J	ND	ND	3.9	ND	ND	0.70 J	ND	ND
Acetone	50	ND	ND	3.3 J	ND	ND	ND	ND	ND	6.0 J	ND	ND	ND
Chloroethane	5	17	ND	1.6	2.5	ND	3.8	6.3	2.3	18	6.2	ND	5.2
Chloromethane	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethene*	5	94	4.2	1.2	24	1.7 J	19	90	ND	13	48	1.9 J	30
Ethylbenzene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methylcyclohexane	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.30 J	ND	ND
Methylene chloride	5	ND	0.89 J	ND	ND	ND	ND	ND	1.6 J	ND	ND	ND	ND
Tetrachloroethene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Toluene	5	3.4	ND	ND	0.59 J	ND	ND	3.8	ND	ND	2.0	ND	ND
trans-1,2-Dichloroethene	5	2.5	ND	ND	1.0	ND	1.3	ND	ND	1.2	2.4	ND	1.9
Trichloroethene*	5	5.3	2.1	0.50 J	9.9	ND	9.3	7.6	ND	3.8	20	ND	15
Vinyl chloride*	2	12	ND	ND	3.1	ND	3.1	12	ND	4.4	8.3	ND	4.2
Xylenes, Total	5	5.6	ND	ND	2.0	ND	ND	6.6	9.3	ND	6.0	ND	1.0 J
TVOC	NL	230	13	15	79	5.4	73	197	14	55	114	1.9	73

Table 7 Summary of Catch Basin and Temporary Piezometers Analytical Data - April 2020 through April 2022 Former Scott Aviation Facility NYSDEC Site Code No. C915233 Lancaster, New York

Sample ID	Groundwater	CB-3	CB-3	CB-3	CB-3	CB-3	CB-3	CB-E	CB-E	CB-E	CB-E	CB-E	CB-E
Date Collected	RAO/NYCRR	04/09/20	07/23/20	10/05/20	04/01/21	10/22/21	04/12/22	04/09/20	07/23/20	10/05/20	04/01/21	10/22/21	04/12/22
Lab Sample ID	Objective	480-16849-3	480-172828-3	480-176049-3	480-182787-15	480-191327-3	480-196702-3	480-16849-4	480-172828-5	480-176049-5	480-182787-16	480-191327-5	480-196702-5
Volatile Organic Compounds by Methor	od 8260 (µg/L)												
1,1,1-Trichloroethane*	5	2,700	ND	ND	ND	ND	ND	11	ND	ND	1.4	ND	ND
1,1,2-Trichloro-1,2,2-trifluoroethane	5	710	ND	0.60 J	1.8	ND	1.5	15	0.49 J	ND	3.7	ND	2.3
1,1-Dichloroethane*	5	750	1.8	2.6	7.4	1.4	5.4	11	3.3	2.5	17	2.4	9.1
1,1-Dichloroethene*	5	240	ND	ND	0.58 J	ND	ND	4.1	ND	ND	1.5	ND	0.50 J
Acetone	50	ND	9.0 J	6.1 J	ND	ND	ND	ND	5.6 J	4.3 J	ND	ND	ND
Chloroethane	5	250	3.6	7.8	9.4	3.3	6.0	7.0	6.2	9.8	23	6.8	11
Chloromethane	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethene*	5	3,500	ND	ND	5.0	ND	1.9	33	0.99 J	ND	12	ND	3.0
Ethylbenzene	5	55	1.3	ND	3.3	ND	0.85 J	2.6	2.6	2.1	2.1	1.5	1.9
Methylcyclohexane	5	ND	ND	ND	1.7	0.31 J	0.53 J	0.54	0.45 J	0.27 J	3.9	0.45 J	0.79 J
Methylene chloride	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.58 J	ND	ND
Toluene	5	260	1.7	ND	11	ND	0.90 J	5.8	3.4	1.4	37	ND	2.0
trans-1,2-Dichloroethene	5	56	ND	ND	ND	ND	ND	ND	ND	ND	1.1	ND	ND
Trichloroethene*	5	28	ND	ND	ND	ND	0.71 J	ND	ND	ND	0.99 J	ND	1.1
Vinyl chloride*	2	600	ND	ND	2.7	ND	1.2	6	ND	ND	8.3	ND	2.8
Xylenes, Total	5	270	17	3.8	35	2.1	6.0	36	41	30	120	4.3	12
TVOC	NL	9,419	34	21	78	7.1	25	132	64	50	233	15.5	45

Table 6 Summary of Catch Basin and Temporary Piezometers Analytical Data - April 2020 through April 2022 Former Scott Aviation Facility NYSDEC Site Code No. C915233 Lancaster, New York

Sample ID	Groundwater	CB-4	CB-4	CB-4	CB-4	CB-4	CB-4	TP-5	TP-5	TP-5	TP-5	TP-5	TP-5
Date Collected	RAO/NYCRR	04/09/20	07/23/20	10/05/20	04/01/21	10/22/21	04/12/22	04/09/20	07/23/20	10/05/20	04/01/21	10/22/21	04/12/22
	Objective	480-16849-5	480-172828-4	480-176049-4	480-182787-17	480-191327-4	480-196702-5	480-16849-6	480-172828-6	480-176049-6	480-182787-18	480-191327-6	480-196702-6
Volatile Organic Compounds by Metho	od 8260 (µg/L)												
1,1,1-Trichloroethane*	5	59	ND	ND	ND	ND	ND	25	ND	ND	ND	ND	ND
1,1,2-Trichloro-1,2,2-trifluoroethane	5	59	ND	1.9	ND	ND	ND	25	2.7	3.2	2.6	1.0	4.7
1,1-Dichloroethane*	5	53	ND	2.6	ND	ND	ND	10	1.4	1.0	ND	ND	1.5
1,1-Dichloroethene*	5	28	ND	ND	ND	ND	ND	2.9	ND	ND	ND	ND	ND
Acetone	50	ND	3.7 J	ND	3.7 J	ND	ND	ND	ND	ND	ND	ND	ND
Chloroethane	5	29	0.40 J	2.7	ND	ND	ND	ND	ND	ND	ND	ND	1.1
Chloromethane	5	ND	ND	ND	ND	ND	ND	4.4	0.61 J	ND	ND	ND	ND
cis-1,2-Dichloroethene*	5	200	ND	ND	ND	ND	ND	58	3.4	1.7	1.9	ND	5.1
Ethylbenzene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methylcyclohexane	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methylene chloride	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Toluene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,2-Dichloroethene	5	ND	ND	ND	ND	ND	ND	1.4	ND	ND	ND	ND	ND
Trichloroethene*	5	ND	ND	ND	ND	ND	ND	2.6	0.81 J	0.88 J	0.87 J	0.76 J	2.0
Vinyl chloride*	2	27	ND	ND	ND	ND	ND	4.9	ND	ND	ND	ND	ND
Xylenes, Total	5	ND	ND	0.79 J	ND	ND	ND	ND	ND	ND	ND	ND	ND
TVOC	NL	455	4.1	8.0	3.7	0	0	134	8.9	6.8	5.4	1.8	14.4

Table 6

Summary of Catch Basin and Temporary Piezometers Analytical Data - April 2020 through April 2022 Former Scott Aviation Facility NYSDEC Site Code No. C915233 Lancaster, New York

CI- ID	C	TD C	TD C	TD C	TD C	TD C	TD C
Sample ID	Groundwater	TP-6	TP-6	TP-6	TP-6	TP-6	TP-6
Date Collected	RAO/NYCRR		07/23/20	10/05/20	04/01/21	10/22/21	04/12/22
Lab Sample ID	Objective	480-16849-7	480-172828-7	480-176049-7	480-182787-19	480-191327-7	480-196702-7
Volatile Organic Compounds by Method 83							
1,1,1-Trichloroethane*	5	ND	ND	ND	ND	ND	ND
1,1,2-Trichloro-1,2,2-trifluoroethane	5	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane*	5	ND	ND	ND	ND	ND	ND
1,1-Dichloroethene*	5	ND	ND	ND	ND	ND	ND
Acetone	50	ND	ND	ND	ND	ND	ND
Chloroethane	5	ND	ND	ND	ND	ND	ND
Chloromethane	5	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethene*	5	1.3	ND	ND	ND	ND	ND
Ethylbenzene	5	ND	ND	ND	ND	ND	ND
Methylcyclohexane	5	ND	ND	ND	ND	ND	ND
Methylene chloride	5	0.50	ND	ND	ND	ND	ND
Tetrachloroethene	5	ND	ND	ND	ND	ND	ND
Toluene	5	ND	ND	ND	ND	ND	ND
trans-1,2-Dichloroethene	5	ND	ND	ND	ND	ND	ND
Trichloroethene*	5	ND	ND	ND	ND	ND	ND
Vinyl chloride*	2	ND	ND	ND	ND	ND	ND
Xylenes, Total	5	ND	ND	ND	ND	ND	ND
TVOC	NL	1.8	0	0	0	0	0

Notes:

Storm sewer piping replaced in June 2020.

Bold font indicates the analyte was detected.

Bold font and bold outline indicates the screening criteria was exceeded.

ND - Not detected at or above reporting limit.

J - Result is less than the reporting limit but greater than or equal to the method detection limit; the concentration is an approximate value.

NL - Not listed.

^{*} Site-specific Contaminants of Concern.

Table 7 Bioattenuation Screening Summary - April 2022 Former Scott Aviation Facility NYSDEC Site Code No. C915233 Lancaster, New York

										Мо	nitoring We	II Identificat	tion					
Parameter	Units	Criteria			A1-GP18-S (side-gradient/ background)		A1-GP10-S (source area)		MW-42S (source area)		A1-GP06-S (source area)		MW-40D (source area)		MW-38D (downgradient)		MW-35D (far downgradient)	
					4/13/22	Score	4/8/22	Score	4/8/22	Score	4/11/22	Score	4/8/22	Score	4/12/22	Score	4/7/22	Score
Dissolved	mg/L	< 0.5 mg/L	Tolerated, suppresses the reductive pathway at higher concentrations	3	0.32	3	3.3	0	0.29	3	0.46	3	0.14	3	0.13	3		
Oxygen		> 5 mg/L	Not tolerated; however, VC may be oxidized aerobically	-3													7.75	-3
Nitrate	mg/L	< 1 mg/L	At higher concentrations may compete with reductive pathway	2	ND	2	ND	2	0.10	2	0.037J	2	ND	2	0.030J	2	0.17	2
Ferrous Iron	mg/L	> 1 mg/L	Reductive pathway possible	3	ND	0	1.8	3	3.9	3	ND	0	0.81	0	ND	0	1.6	3
Sulfate	mg/L	< 20 mg/L	At higher concentrations may compete with reductive pathway	2	7.2	2	1.9J	2	ND	2	ND	2	ND	2	10.7	2	4.6	2
Sulfide	mg/L	> 1 mg/L	Reductive pathway possible	3	ND	0	1.6	3	ND	0	0.80J	0	ND	0	ND	0	ND	0
Methane	μg/L	< 500 µg/L	VC oxidizes	0													260	0
		> 500 µg/L	Ultimate reductive daughter product, VC accumulates	3	4,400	3	1,300	3	13,000	3	17,000	3	15,000	3	16,000	3		
Ethene	μg/L	> 10 µg/L	Daughter product of VC	2	ND	0	ND	0	4,300	2	ND	0	ND	0	ND	0	ND	0
Ethane	μg/L	> 100 µg/L	Daughter product of Ethene	3	ND	0	ND	0	790	3	ND	0	ND	0	ND	0	ND	0
ORP	mV	< 50 mV	Reductive pathway possible	1	-89.6	1									2.6	1	32.5	1
		< -100 mV	Reductive pathway likely	2			-101.2	2	-108.7	2	-138.8	2	-182.9	2				
pН	s.u.	5 < pH < 9	Optimal range for reductive pathway	0	6.91	0	6.72	0	6.82	0	7.13	0	7.41	0	6.95	0	7.03	0
		5 > pH > 9	Outside optimal range for reductive pathway	-2														
Temperature	°C	> 20°C	At temperature > 20°C, biochemical process is accelerated	1	10.60	0	9.60	0	8.60	0	8.60	0	11.00	0	10.70	0	10.90	0
TOC	mg/L	> 20 mg/L	Carbon and energy source, drives dechlorination (natural or anthropogenic)	2	11.8	0	111	2	349	2	38.1	2	24.5	2	6.2	0	8.3	0
Carbon Dioxide	μg/L	> 2x background	Ultimate oxidative product	1	90,000	0	84,000	0	89,000	0	77,000	0	70,000	0	69,000	0	41,000	0
Alkalinity	mg/L	> 2x background	Results from interaction of between CO ₂ and aquifer minerals	1	459	0	659	0	759	0	512	0	432	0	402	0	237	0
PCE ¹	μg/L		N/A	0	ND	0	ND	0	ND	0	ND	0	ND	0	ND	0	ND	0
TCE ²	μg/L		Material Released	0	ND	0	ND	0	ND	0	ND	0	ND	0	ND	0	ND	0
DCE ³	μg/L		Daughter product of TCE (score if cis-1,2-DCE is 80% of total DCE)	2	ND	0	ND	0	ND	0	ND	0	ND	0	ND	0	ND	0
VC ⁴	μg/L		Daughter product of DCE	2	ND	0	ND	0	290	2	ND	0	ND	0	ND	0	ND	0
1,1,1-TCA ⁵	μg/L		Material Released	0	ND	0	290	0	240	0	ND	0	ND	0	ND	0	ND	0
1,1-DCA ⁶	μg/L		Daughter product of 1,1,1-TCA under reducing conditions	2	ND	0	2,000	2	880	2	21J	2	ND	0	ND	0	ND	0
CA ⁷	μg/L		Daughter product of 1,1-DCA or VC under reducing conditions	2	ND	0	21,000	2	15,000	2	670	2	490	2	ND	2	ND	0
			TOTAL SCOR	E		11		21		28		18		16		13		5

Notes:

DCE = dichloroethene TOC = total organic carbon

°C = degrees Celsius VC = vinyl chloride

 μ g/L = micrograms per liter 1,1,1-TCA = 1,1,1-trichloroethane mg/L = milligrams per liter 1,1-DCA = 1,1-dichloroethane

mV = millivolts CA = chloroethane

ORP = oxidation-reduction potential

s.u. = standard unit ND - Non-Detect

PCE = tetrachloroethene NS - Not Sampled

TCE = trichloroethene J - Estimated Concentration

Monitoring wells outside the contaminant plume.

* MNA parameters **not** collected so <u>cannot</u> adequately evaluate and score

0 to 5 points: There is inadequate evidence for anaerobic biodegradation of chlorinated organics.

6 to 14 points: There is <u>limited</u> evidence for anaerobic biodegradation of chlorinated organics.

15 to 20 points: There is <u>adequate</u> evidence for anaerobic biodegradation of chlorinated organics.

>20 points: There is strong evidence for anaerobic biodegradation of chlorinated organics.

AECOM

April 2022

^{1 =} Material Released

² = Daughter product of PCE

³ = Daughter product of TCE (score if cis-1,2-DCE is 80% of total DCE)

⁴ = Daughter product of DCE

⁵ = Material Released

⁶ = Daughter product of 1,1,1-TCA under reducing conditions

⁷ = Daughter product of 1,1-DCA or VC under reducing conditions

Table 8 Pre- and Post-Bioaugmentation Injection VFA Data Comparison Former Scott Aviation Facility - Area 1 BCP Site NYSDEC Site Code No. C915233 Lancaster, New York

Sample ID	Sample Date	Sample Dilution	Lactate Acetate		Propionate	Formate	Butyrate	Pyruvate	
		Factor	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	
MW-42S	8/26/2021	50	<0.39	574	148	<0.22	108	26	
MW-42S	12/9/2021	50	<0.39	476	118	<0.22	75	18	
MW-42S	4/8/2022	1,000	<7.8	813	124	7.2	81	18	
A1-GP10-S	8/26/2021	50	<0.39	471	68	<0.22	46	5.3	
A1-GP10-S	12/9/2021	50	<0.39	494	151	6.3	55	15	
A1-GP10-S	4/8/2022	50	7.9	147	35	0.43	18	4.7	

Notes:

VFA - Volatile Fatty Acids

mg/L - milligrams per liter

Table 9

Pre- and Post-Bioaugmentation Injection Gene-Trac Data Comparison Former Scott Aviation Facility - Area 1 BCP Site NYSDEC Site Code No. C915233 Lancaster, New York

Sample ID	Sample Date	Dehalococcoides (Dhc)		<i>Dehalobacter</i> (Dhb)		_	eductase vcrA)	BAV1 VC Re (bvc)		TCE Reductase (<i>tceA</i>)		
		Percent Dhc	Enumeration/Liter		Gene Copies/Liter	Percent vcrA	Gene Copies/Liter	Percent bvcA	Gene Copies/Liter	Percent tceA	Gene Copies/Liter	
MW-42S	8/26/2021	5 - 13 %	2 x 10 ⁸	0.2 - 0.5 %	6 x 10 ⁶	8 - 21 %	3 x 10 ⁸	0.007 - 0.02 %	2 x 10 ⁵	0.6 - 2 %	2 x 10 ⁷	
MW-42S	12/9/2021	2 - 5 %	2 x 10 ⁸	0.1 - 0.3 %	1 x 10 ⁷	2 - 6 %	2 x 10 ⁸	0.001 - 0.004 %	1 x 10 ⁵	0.08 - 0.2 %	8 x 10 ⁶	
MW-42S	4/8/2022	5 - 14 %	2 x 10 ⁸	0.1 - 0.4 %	5 x 10 ⁶	5 - 15 %	2 x 10 ⁸	0.01 - 0.03 %	4 x 10 ⁵	0.3 - 0.8 %	1 x 10 ⁷	

Appendix A Pre-Injection and Post-Injection Groundwater Quality Data

				Well		Field Parameters		VOCs		Dissolved Gasses	Wet Chemistry	Q Potential (DNA)
Well ID	Event / Description	Date	Elapsed Time (Days)	Total Depth Water Level Measurement Top of Casing Elevation) Head Elevation	pH Dissolved Ox Oxidation Re Specific Conc Turbidity Temperature	Carbon, Total Organic 1,1,1-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 2-Hexanone 2-Butanone (MEK) 4-Methyl-2-pentanone	Acetone Benzene Carbon Disulfide Chloroethane Chloromethane Chloromethane cis-1,2-Dichloroethene Dichlorodiffuoromethane Ethylbenzene Methylcyclohexane Methylene chloride	Methyl Acetate Tetrachloroethene Toluene trans-1,2-Dichloroethene Trichloroethene Vinyl chloride Xylenes, Total	Carbon Dioxide Ethane Ethene Methane	Manganese Ferric iron Sulfate Sulfate Sulfide Nitrite Phosphorous Ammonia COD BOD Total Alkalinity Ferrous Iron Iron Acetic Acid Formic Acid Lactic Acid In-Butyric Acid Chloride Pyruvic Acid	Dehalococcoides spp (1) TCE R-Dase (1) BAV1 VC R-Dase (1) VC R-Dase
				(feet) (ft. ATOC) (ft. AMSL)	(ft. AMSL)	(mg/L) (mV) (mS/cm) (NTUs)	(mg/L)	(ug/L)		(ug/L)	(mg/L)	(cells / mL)
	Monitoring event BL1	6/1/2011	-1434	6.34 NA 689.5			NS	0 N D N D N D N D N D N D N D N D N D N	0.5 J 1.9 1.8 59 59 1 J			
	Monitoring event BL2	6/16/2011	-1419	6.34 NA 689.5				390 J ON	ON ON D 2:1.5 4:1 N ON ON D ON D ON D ON D ON D ON D ON			
	Monitoring event BL3	10/7/2011	-1306	6.34 NA 689.5	A A							
	Monitoring event P1	6/12/2015	38	6.34 NA 689.5		NA (Grab Sample)	NS 27 27 19 ND	340 ND 0.46 J ND 0.55 D ND ND N	ND ND 0 3.2 1.5 1.6			
	Monitoring event P2	1/6/2016	246	6.34 NA 689.5	₹		NS 140 0.29 J 42 8.2 0.28 J ND ND ND	73 ND ND ND ND ND ND ND ND ND ND ND ND ND	ND ND 6.2 2.2 13 13			
	Monitoring event P3	4/8/2016	339	6.34 7.64 689.5	681.9		NS 32 32 32 32 32 32 32 32 32 32 32 32 32	110 ON ON O	A A B C <td></td> <td></td> <td></td>			
	Monitoring event P4	7/11/2016	433	6.34 6.31 689.5	683.2		N	L 2.4				
	Monitoring event P5	10/13/2016	527	6.34 6.25 689.5	683.3	8.04 7.62 122 0.296 5.98		N	ON O			
CB-1	Monitoring event P6	1/20/2017	626	6.34 NA 689.5	A A	NA (Grab Sample)	ND N	D D D D D D D D D D D D D D D D D D D	ND ND 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4		Not Sampled For These Parameters	
CB-1	Monitoring event P7	4/7/2017	703	6.34 6.19 689.5	683.3	NA 25.9 0.305 NA NA NA NA	SN 12 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8	D D D D D D D D D D D D D D D D D D D	ON ON 1.6 ON		Not Sampled For These Parameters	
	Monitoring event P8	7/10/2017	797	6.34 6.3	684.2	7.82 0.63 6.7 0.630 4.95	SN DN S. SN DN	3.4 D D D D D D D D D D D D D D D D D D D	222222			
	Monitoring event P9	10/18/2017	897	6.34 6.25 689.5	683.3	7.97 5.79 212 0.770 12.9 16.9	NS 45 45 23 0.31 28 3.0 ND ND ND ND ND	ND N	ND ND 0.42 1.0 0.67 6.0 ND ND			
	Monitoring event P10		973	6.34 NA 689.5	A A	NS (Grab Sample)	83 83 83 6.8 6.8 ND ND ND ND ND ND	B B B B B B B B B <td>8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8</td> <td></td> <td></td> <td></td>	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8			
	Monitoring event P11		1070	6.34 6.28 689.5	683.3	7.48 14.9 14.9 0.379 NA 3.85	N N N N N N N N N N N N N N N N N N N	S S S S S S S S S S S S S S S S S S S	ND ND 111 111 171 171 171 171 171 171 171 17			
	Monitoring event P12		1163	6.34 6.32 689.5	683.2	7.47 1.72 -72.5 0.656 11.1	8.5 8.5 8.5 8.5 8.5 0.44, V N N N N N N N N N N N N N N N N N N N	21 ND	DN DN D.1.1			
	Monitoring event P13	10/23/2018	1267	6.34 6.32 689.5	683.2	7.21 1.24 67.7 0.599 9.6 13.6	NS 58 82 82 0.41, 41 41 41 5.1 0.23, ND ND ND	M M D	ND ND 0.75, 1.6 1.2 9.7 0.75 ND			
	Monitoring event P14	1/8/2019	1344	6.34 NA 689.5	¥	7.83 0.63 -129 0.289 29.0 6.3	2.7 2.2 0.66 J ND ND ND ND ND ND	8.6 0	D D D D D D D D D D D D D D D D D D D			
	Monitoring event P15	4/12/2019	1071	6.34 NA 689.5				Q Q Q 8 Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q				

				Well	Field Parameters		VOCs	Dissolved Gasso	es Wet Chemistry	Q Potential (DNA)
Well ID	Event / Description	Date	Elapsed Time (Days)	(ft. ATOC) Water Level Measurement (ft. AMSL) Top of Casing Elevation (ft. AMSL) Head Elevation	pH Dissolved Ox; Oxidation Rec Specific Cond Turbidity Temperature	(mg/L) Carbon, Total Organic 1,1,1-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 2-Hexanone 2-Hexanone 2-Butanone (MEK) 4-Methyl-2-pentanone Acetone	Benzene Carbon Disulfide Chloroethane Chloroform Chloromethane cis-1,2-Dichloroethene Dichlorodifluoromethane Ethylbenzene Methylcyclohexane Methylcyclohexane Methylcyclohexane Tetrachloroethene Tetrachloroethene Toluene trans-1,2-Dichloroethene	(ug/L) Triciloroetine Vinyl chloride Xylenes, Total Carbon Dioxide Ethane (ug/L)	(mg/L) Total Alkalinity Ferric Acid Formic Acid Formic Acid Cob Bob Total Alkalinity Ferrous Iron Iron Iron Ferrous Acid Formic Acid Lactic Acid In-Butyric Acid Propionic Acid Chloride Proprocessor	Decilorinating Bacteria Dechalococcoides spp (1) Dehalococcoides spp (1) TCE R-Dase (1) BAV1 VC R-Dase (1) VC R-Das
	Monitoring event P16	7/22/2019	1539	6.34 NA (1) NA (1)						
	Monitoring event P17	10/14/2019	1623	6.34 NS 689.5 NA	NS (Grab Sample)	S	D D	ON O		
	Monitoring event P18	1/9/2020	1710	6.34 NA NA NA	7.26 7.88 64.4 0.726 9.8 2.8	88 89 ND	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	29 ND ND		
	Monitoring event P19	4/9/2020	1072	6.34 6.08 689.5 683.4	NA (Grab Sample)	8	ND ND 17 17 17 17 18 18 18 18 18 18 18 18 18 18 18 18 18	5.6		
CB-1	Monitoring event P20	7/23/2020	1906	6.34 NA 689.5 NA	NS (Grab Sample)	N	DN D	Z Q Q	Not Sampled For These Parameters	
	Monitoring event P21	10/5/2020	1980	6.34 NA 689.5 NA	NS (Grab Sample)	N	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ON O		
	Monitoring event P22	4/1/2021	2158	6.34 6.24 689.5 NA	NS (Grab Sample)	2.5 2.5 2.7 2.5 2.7 2.5 3.5 4.0 6.6 4.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8	ND ND S 2.5 C ND	2.00		
	Monitoring event P23	10/22/2021	2362	6.34 NA 689.5 NA	NS (Grab Sample)	8	DN DN<			
	Monitoring event P24	4/12/2022	2534	6.34 6.18 689.5 NA	NS (Grab Sample)	2.2 2.2 2.2 2.2 2.2 2.3 2.4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	A A B	8. 3. 1. ON		

				Well	Field Parameters			VOCs		Dissolved Gasses	Wet Chemistry	Q Potential (DNA)
Well ID	Event / Description	Date	Elapsed Time (Days)	Total Depth Water Level Measurement Top of Casing Elevation Head Elevation	pH Dissolve Oxidatio Specific Turbidit	Carbon, Total Organic 1,1,1-Trichloroethane 1,1,2-Trichloro-1,2,2-trifluoroethane 1,1,2-Trichloroethane	1,1-Dichloroethane 1,1-Dichloroethane 1,2-Dichloroethane 2-Hexanone 2-Butanone (MEK) 4-Methyl-2-pentanone Acetone Benzene	Carbon Disulfide Chloroethane Chloroform Chloromethane cis-1,2-Dichloroethene	Dichlorodifluoromethane Ethylbenzene Methylcyclohexane Methylcyclohexane Methylene chloride Methyl Acetate Tetrachloroethene Toluene trans-1,2-Dichloroethene Trichloroethene Vinyl chloride Vinyl chloride Xylenes, Total	Carbon Dioxide Ethane Ethene Methane Nitrate Manganese Ferric iron	Sulfate Sulfide Nitrite Phosphorous Ammonia COD BOD Total Alkalinity Ferrous Iron Iron Acetic Acid Formic Acid Lactic Acid Propionic Acid Chloride	Dehalococcoides spp (1) TCE R-Dase (1) BAV1 VC R-Dase VC R-Dase
				(ff. ATOC) (ff. AMSL) (ff. AMSL)	(MV) (mS/cm) (NTUs) (°C)	(mg/L)		(ug/L)		(ug/L)	(mg/L)	(cells / mL)
	Monitoring BL1	6/1/2011	-1434	7.0 NA 690.5	NA (Grab Sample)	83 83 80 0 0 0 0 0 0	2 2 2 Q Q Q Q Q Q	23 P P P P	Q Q Q Q Q Q Q 8.8 9.1 Q			
	Monitoring event P1	7/28/2015	84	7.0 7.75 690.5 6	7.07 3.62 -66.7 1.153 9.43		N	2.3 ND ND 17	O O O O O O O O O O O O O O O O O O O			
	Monitoring event P2	1/6/2016	246	7.0 NA 690.5 NA					O O O O O O O O O O O O O O O O O O O			
	Monitoring event P3	4/8/2016	339	7.0 7.64 690.5 682.9	NA (Grab Sample)	8 8 8 8	2 2 2 2 2 2 2	22222				
	Monitoring event P4	7/11/2016	433	7.0 7.79 690.5 682.7		ND ND S.7	ND N	ON D O.49 J ND	2			
	Monitoring event P5	10/13/2016	527	7.0 7.56 690.5 683.0	7.48 5.94 116 0.549 11.4	NS 0.82 J ON	25. 20 00 00 00 00 00 00 00 00 00 00 00 00 0	ND 0.92 J ND ND ND	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			
	Monitoring event P6	1/20/2017	626	7.0 NA 690.5 NA	NA (Grab Sample)	ND ND 0.54 J ND		99999				
	Monitoring event P7	4/7/2017	703	7.0 7.63 690.5 682.9	7.3 NA 26.6 1.197 70.1 NA	8 8 8 8	2 2 2 2 2 2 2	99999				
	Monitoring event P8	7/10/2017	797	7.0 7.8 690.5 682.7	7.14 4.06 26.5 0.670 40.3	ND S.5	0.5 8 8 8 8 8 8	ON O	888888888888888888888888888888888888888			
	Monitoring event P9	10/18/2017	897	7.0 7.64 690.5 682.9	3.92 221 0.740 122 17.1	8.6 8.6 3.7 ND ND	6.5 4.5 0.64 0.	20.0 ND ND 20.0	A B			
TP-05	Monitoring event P10	1/2/2018	973	7.0 NA NA NA	NA (Grab Sample)	ND O.52 V		99999	A A B		Not Sampled For These Parameters	
	Monitoring event P11	4/9/2018	1070	7.0 7.76 690.5 682.7	7.42 14.1 71.3 0.689 NA 7.37	8	2 2 2 2 2 2 2 2	ON ON ON ON 8:5	999999999999			
	Monitoring event P12	7/11/2018	1163		7.04 2.99 -7.0 0.883 43 19.42	N	0.75. 0.75. 0.00 0.00 0.00 0.00 0.00 0.0	S S S S S S S S S S S S S S S S S S S				
	Monitoring event P13	10/23/2018	1267	7.0 6.9 690.5 683.6	7.56 5.57 45.9 0.578 4.0	NS 42 58 0.32	48 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			
	Monitoring event P14	1/8/2019	1344	7.0 7.49 690.5 683.0	7.54 5.42 -125.8 1.330 121 6.2	84.6 A.6 ON	6.2 6.2 0 ND	D S S S S S S S S S S S S S S S S S S S	N N N N N N N N N N N N N N N N N N N			
	Monitoring event P15	4/12/2019	1438	7.0 7.64 690.5 682.9		NS 80 80 80 80 80 80 80 80 80 80 80 80 80		ND ND 18	N			
	Monitoring event P16	7/22/2019	1539	7.0 NA NA NA	NA (Grab Sample)	8 8 8 8		99999				
	Monitoring event P13	10/14/2019	1623	7.0 7.71 690.5 682.8					99999999999			
	Monitoring event P14	1/8/2020	1709	7.0 7.65 690.5 682.9	7.31 5.42 -125.8 1.330 121 6.2	32 A3	3.5.J ND ND N	00 N D N D N D N D N D N D N D N D N D N	M			
	Monitoring event P15	4/9/2020	1801	7.0 7.56 690.5 682.9	NA (Grab Sample)				M M M M M M M M M M M M M M M M M M M			
	Monitoring event P16	7/23/2020	1906	7.0 NA 690.5	NA (Grab Sample)	ND ND ND ND	4. S S S S S S S	O.61J O.0 O.0 O.0 A.5 A.5 A.5 A.5 A.5 A.5 A.5 A.5 A.5 A.5	A B			

				Well		Field Parameters				VOCs		Dissolved Gasse	3	Wet Chemistry		Q Pote	ential (DNA)
																Dechlorinating Bacteria	Functional Genes
Well ID	Event / Description	Date	Elapsed Time (Days)	Total Depth Water Level Measurement Top of Casing Elevation	Head Elevation	pH Dissolved Oxygen Oxidation Reduction Potential Specific Conductance Turbidity Temperature	Carbon, Total Organic	1,1,1-Trichloroethane 1,1,2-Trichloro-1,2,2-trifluoroethane	octhane bethane bethane bethane (MEK)	Carbon Disulfide Chloroethane Chloroform Chloromethane cis-1,2-Dichloroethene Dichlorodifluoromethane Ethylbenzene Methylcyclohexane Methylorochokane	Methyl Acetate Tetrachloroethene Toluene trans-1,2-Dichloroethene	Vinyl chloride Xylenes, Total Carbon Dioxide Ethane Ethene Methane	Nitrate Manganese Ferric iron Sulfate Sulfide Nitrite	Phosphorous Ammonia COD BOD Total Alkalinity Ferrous Iron Iron Formic Acid Comic Acid	n-Butyric Acid Propionic Acid Chloride Pyruvic Acid	Dehalococcoides spp (1)	TCE R-Dase (1) BAV1 VC R-Dase (1) VC R-Dase
				(feet) (ft. ATOC)		(mg/L) (mg/L) (mV) (mS/cm) (NTUs)	(mg/L)			(ng/L)		(ng/L)		(mg/L)			(cells / mL)
	Monitoring event P17	10/5/2020	1980	7.0 NA	N AN	NA (Grab Sample)	NS	3.2	5 9 - 9 9 9 9 9 9		G G G G G G G G G G G G G G G G G G G	2 2					
TP-05	Monitoring event P18	4/1/2021	2158	7.0		NA (Grab Sample)	NS	ND 2.6		2 2 2 2 6 2 2 2 2	DN D	2 2		Not Sampled For These Paran	motors		
	Monitoring event P19			7.0 NA 690.5		NA (Grab Sample)	NS	ND -			DN D	2 2		Not Sampled For These Paran	IIGIGI S		
	Monitoring event P20	4/12/2022	2534	7.0	682.7	NA (Grab Sample)	NS	ND 4.7	2	S - S S S S S S S S S S S S S S S S S S	ND ND ND 2.0 0.87J	2 2					

				Well Field Parameters		VOCs	Dissolved Gasses	Wet Chemistry	Q Potential (DNA)
Well ID	Event / Description	Date	Elapsed Time (Days)	Total Depth Water Level Measurement Top of Casing Elevation Head Elevation pH Dissolved Oxygen Oxidation Reduction Potential Specific Conductance Turbidity Temperature	Carbon, Total Organic 1,1,1-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 2-Hexanone 2-Butanone (MEK)	4-Methyl-2-pentanone Acetone Benzene Carbon Disulfide Chloroethane Chloromethane Cis-1,2-Dichloroethene Dichlorodiffuoromethane Ethylbenzene Methylcyclohexane Methyl Acetate Tetrachloroethene Tetrachloroethene	trans-1,2-Dichloroethene Trichloroethene Vinyl chloride Xylenes, Total Carbon Dioxide Ethane Ethene Methane Nitrate Manganese Ferric iron Sulfate Sulfate Sulfide	Nitrite Phosphorous Ammonia COD BOD Total Alkalinity Ferrous Iron Iron Acetic Acid Formic Acid Lactic Acid Autyric Acid Chloride Pyruvic Acid Chloride	Dehalococcoides spp (1) TCE R-Dase (1) BAV1 VC R-Dase (1) VC R-Dase
				(ft. ATOC) (ft. AMSL) (mg/L) (ms/cm) (mTUs)	(mg/L)	(ng/L)	(ug/L)	(mg/L)	(cells / mL)
	Monitoring event P1 6/	12/2015	38	O S S S NA (Grab Sample)	8.1 0.3 1 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
	Monitoring P2 7/2	28/2015	84	9.0 7.75 690.3 682.5 7.13 1.54 54.5 3.082 2.82 19.4	8 8 8 8 8 8 8 8 8	B B	0.83 0.83 0.83 0.83		
	Monitoring event P3 1/	/6/2016	246	NA N S S S S S S S S S S S S S S S S S S	S S S S S S S S S S				
	Monitoring event P4 4/	/8/2016	339	0.6 6.0 8.0 NA (Grap Samble)	8 9 9 9 9 9 9 9				
	Monitoring event P5 7/	/11/2016	433	9.0 7.52 690.3 682.7					
	Monitoring P6 10/	/13/2016	527	8.6 7.43 690.3 682.8 7.34 4.61 175.9 2.302 2.302 24.2	8 8 8 8 8 8 8 8 8				
	Monitoring P7 1/2	20/2017	626	0. 8 8 8 NA (Grab Sample)		N			
	Monitoring P8 4/	/7/2017	703	9.0 7.33 690.3 682.9 9.51 NA 18.4 15.25 1.525 150 NA					
	Monitoring event P9 7/	10/2017	797	9.0 8.5 690.3 681.8 7.27 1.10 19.6 3.16 52.1	8 8 8 8 8 8 8 8 8		0.67 0.67 0.00 0.00 0.00 0.00 0.00		
	event	/18/2017	897	9.0 7.45 690.3 682.9 7.71 5.21 5.21 2.44 27	8 2 2 2 2 2 2 2 2	0.42	0 9 N Q Q		
TP-06	Monitoring event P11 1/	/2/2018	973	0. $4 \times 6 \times $	8 8 8 8 8 8 8 8 8 8			Not Sampled For These Parameters	
	event	19/2018	1080	9.0 7.48 690.3 682.8 7.09 14.63 61.13 61.13 8.478 8					
	Monitoring event P13 7/	/11/2018	1163	9.0 7.48 690.3 682.8 682.8 7.20 1.53 3.410 48.1		A B			
	event	/23/2018		9.0 7.4 690.3 682.9 7.07 7.07 2.71 96.1 1.340	SN DN				
	Monitoring event P15 1/	/8/2019	1344	9.0 690.3 683.1 7.02 7.4 7.4 3.930 39.5					
	Monitoring event P16 4/	/12/2019	1438	9.0 7.44 690.3 682.86 7.3 6.57 -0.3 4.865 -518.4	8 8 8 8 8 8 8 8				
	Monitoring event P17 7/2	/22/2019	1539	0. 4 0. 4 NA (Grab Sample)	8 8 8 8 8 8 8 8 8				
	Monitoring event P18 10/	/14/2019	1623	0.6	8 8 8 8 8 8 8 8 8		2222		
	Monitoring event P19 1/	/8/2020			8 0 0 0 0 0 0 0 0 0				
	Monitoring	/9/2020	1801	0.6 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		M M M M M M M M M M M M M M M M M M M			

				Well	Field Parameters		VOCs	Dissolved Gasses	Wet Chemistry	Q Poten	itial (DNA)
										Dechlorinating Bacteria	Functional Genes
Well ID	Event / Description	Date	Elapsed Time (Days)	Total Depth Water Level Measurement Top of Casing Elevation	pH Disso Oxida Speci Turbid	bon, Total Orga	1.1,1-Trichloroethane 1.1,2-Trichloroethane 1.1,2-Trichloroethane 1.1-Dichloroethane 1.1-Dichloroethane 1.2-Dichloroethane 1.2-Dichloroethane 1.2-Dichloroethane 2-Hexanone 2-Hexanone 2-Butanone (MEK) 4-Methyl-2-pentanone Carbon Disulfide Carbon Disulfide Carbon Disulfide Chloroethane Tetrachloroethene Tetrachloroethene Tetrachloroethene Tetrachloroethene Trichloroethene Trichloroethene	Vinyl chloride Xylenes, Total Carbon Dioxide Ethane Ethene Methane	Mitrate Manganese Ferric iron Sulfate Sulfide Nitrite Phosphorous Ammonia COD BOD Total Alkalinity Ferrous Iron Iron Acetic Acid Cormic Acid Lactic Acid In-Butyric Acid Propionic Acid Chloride Pyruvic Acid	Dehalococcoides spp (1)	TCE R-Dase (1) BAV1 VC R-Dase (1) VC R-Dase
				(ft. ATOC)	(m.V) (mS/cm) (mS/cm) (mTUs) (°C)	(mg/L)	(ng/L)	(ug/L)	(mg/L)	_	mL)
	Monitoring event P21	7/23/2020	1906	9.0 7.48 690.3	NA (Grab Sample)	NS ON		Q Q			
	Monitoring event P21	10/5/2020	1980	9.0 7.48 690.3	NA (Grab Sample)	SN GN					
TP-06	Monitoring event P22	4/1/2021	2158	9.0 7.45 690.3	NA (Grab Sample)	NS QN	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	2 2	Not Sampled For These Parameters		
	Monitoring event P23	10/22/2021	2362	9.0 NA 690.3	NA (Grab Sample)	NS					
	Monitoring event P24	4/12/2022	2534	9.0 7.40 690.3	NA (Grab Sample)	NS ON		Q Q			

				Well	Field Par	rameters					VOCs			Dissolved Gasses	Wet Chemistry	Q Potential (DNA)
Well ID	Event / Description	Date	Elapsed Time (Days)	Total Depth Water Level Measurement Top of Casing Elevation Head Elevation	Dissolved Oxygen Oxidation Reduction Potential	Specific Conductance Turbidity Temperature	Carbon, Total Organic 1,1,1-Trichloroethane 1,1,2-Trichloro-1,2,2-trifluoroethane	1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethene	1,2-Dichloroethane 2-Hexanone 2-Butanone (MEK)	4-Methyl-z-pentanone Acetone Benzene	Carbon Disulfide Chloroethane Chloroform Chloromethane cis-1.2-Dichloroethene	Dichlorodifluoromethane Ethylbenzene Methylcyclohexane Methylene chloride Methyl Acetate	Toluene Trans-1,2-Dichloroethene Trichloroethene Vinyl chloride Xylenes, Total	Carbon Dioxide Ethane Ethene Methane Mitrate Manganese Ferric iron Suiffate	Nitrite Phosphorous Ammonia COD BOD Total Alkalinity Ferrous Iron Acetic Acid Formic Acid Lactic Acid n-Butyric Acid Propionic Acid Chloride	Dehalococcoides spp (1) TCE R-Dase (1) BAV1 VC R-Dase VC R-Dase
				(feet) (ft. ATOC) (ft. AMSL) (ft. AMSL)	(mg/L)						(ng/L)			(ng/L)	(mg/L)	mL)
	Monitoring event BL1	6/22/2010	-1778	4.12 689.8 685.7		1.117	SN ON ON	999	999	2 2 2	ND N		94 J 11,000 ND ON			
	Monitoring event BL2	8/4/2010	-1735	4.9 689.8 684.9	4.37	1.170	SN ON ON	222	2 2 2	2 2 2	ON O		20,000 20,000 ND			
	Monitoring event BL3	3/10/2015	-56	3.95 3.95 689.8 685.9	6.95	0.850 52.7	3.3 ND ND	999	2 2 2	N ON	ND ND ND ND		5,400 ND S,400			
	Monitoring event P1	7/28/2015	84		0.89	5.212		8 B B	222	360 J ND	ND N	S N N N N N N N N N N N N N N N N N N N	ND 120 8,000 140			
	Monitoring event P2	1/7/2016	247					999	9999				0 1			
	Monitoring event P3	4/8/2016	339			7 69.3 6 85			222		ON O	D D D D D D D D D D D D D D D D D D D	ND ND 2,400			
	Monitoring event P4 Monitoring P5	7/11/2016	433		59 3.9 .4 -40.7	04 4.406 .5 43.7 42 18.39			9999		č:		ON O			
	event P3	10/10/2016	524 629			284 3.404 0.3 43.5 27 18.42										
A1-GP02-S	Monitoring event P7	4/11/2017	707		6.52 4.88 6.44.7							8999999			Not Sampled For These Parameters	
	Monitoring event P8	7/6/2017	793					999	222	120 N						
	Monitoring event P9	10/17/2017	896	15 4.4 689.8 685.4	2.44 -235.4	36.200	407 ND	999	999	S 6 8	Q Q Q Q	2 2 8 9 9 9	ON O			
	Monitoring event P10	1/5/2018	976		1 1							884888				
	Monitoring event P11	4/12/2018	1073			35 1.109 .1 NA			-			0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				
	Monitoring event P23		1161		7.75 3.01 -74.8 -100							0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				
	event P23 Monitoring event P13		2534 1262			864 37.3 ⁴ 107						25 U U U U U U U U U U U U U U U U U U U				
	Monitoring event P14		1338		3.45	`						23 D D D D D D D D D D D D D D D D D D D				

				Well	Fi	ield Paran	neters							VOCs	5						Dis	ssolved	Gasses				V	Vet Chem	istry				Q	Potential	(DNA)	
Well ID	Event / Description	Date	Elapsed Time (Days)	Total Dept Water Lev Top of Cas	(ft. AMSL) Head Elevation (Su) pH (mg/L) Dissolved Oxygen	(mV) Oxidation Reduction Potential	Turbidity	(mg/L) Carbon, Total Organic 1,1,1-Trichloroethane	1,1,2-Trichloro-1,2,2-trifluoroethane 1,1,2-Trichloroethane	1,1-Dichloroethane 1,1-Dichloroethene	1,2-Dichloroethane 2-Hexanone	2-Butanone (MEK) 4-Methyl-2-pentanone	Acetone Benzene Carbon Disulfide	Chloroethane (ug/L) Chloroform	Chloromethane cis-1,2-Dichloroethene	Dichlorodifluoromethane Ethylbenzene Methylcyclohexane	Methylene chloride Methyl Acetate	Tetrachloroethene	trans-1,2-Dichloroethene	Vinyl chloride	Xylenes, Total Carbon Dioxide	Ethane (ug/L)	Methane	Nitrate Manganese	Ferric iron Sulfate	Sulfide Nitrite	Phosphorous Ammonia	COD BOD Total Alkalinity	Ferrous Iron	Acetic Acid Formic Acid	Lactic Acid n-Butyric Acid Pronionir Acid		Dechloring Bacteri Bacteri Department (1)	(cells / mL) TCE R-Dase (1)		VC R-Dase
	Monitoring event P15	4/18/2019	1444		686.9 (ft 7.11 4.68 (13.9	23.5	8 0	99	99	999	999	222		ND 450	222	7 6: Q	9 9	299	008,	2															
	Monitoring event P16	7/25/2019	1542		684.4 6 7.48 7 2.3 4	' '	1.363 1 646.4 11			99			GS ON ON			2 2 2	-			7																
	Monitoring event P17	10/14/2019	1623	4.00 689.8	6.4 6.4 1.8		73.59	37.2 ND	9 9	99	22:	999	2 2 2	QN QN	QN 44	27 SD	2 2 2	Q S	2 2 2	390	26 J															
A1-GP02-S	Monitoring event P18	1/7/2020	1708	3.19 689.8	686.6 7.02 2.42	-59.5	1.230	21.8 ND	9 9	9 9	9 9 9	999	2 2 2	QN QN	ND 64	222	99	2 2	2 2 2	450	2						Not Sa	ampled	For Th	nese Pa	ramete	ere.				
A1-01-02-0	Monitoring event P19	4/13/2020	1805	15 2.61 689.8	687.2 7.02 2.53	-27	1.199	15.8 ND	9 9	99	99	999	2 2 2	Q Q	ND 420	2 2 2	99	2 2	2 2 2	1,500	21)						1101 00	ппріса	1 01 111	1000 T u	ramoto					
	Monitoring event P20	10/12/2020	1987	3.6 689.8	6.47	-67.7	58.4	15.6 ND	Q Q	Q Q	2 2 5	2 2	2 2 2	QN QN	390	37 ND	190 N	QN CN	2 2	2,300	331															
	Monitoring event P19	4/13/2020	1805	15 2.61 689.8	687.2 7.02 2.53	-27	1.199	15.8 ND	Q Q	Q Q		2 2	Q Q	ND QN	ND 420	21 ND	2 2	QN CN	2 2	1,500	21)															
	Monitoring event P22	10/22/2021	2362	15 2.56 689.8	687.2 7.19 1.29	-103.9	1.020	10.9 ND	Q Q	Q Q	2 2 :	22	A A A	QN QN	026	A7	2 2	Q S	2 2 2	2,800	45 J															

					Well	Field	d Parameters						VOCs		Dissolve	d Gasses			Wet Chem	nistry			Q Po	tential (DNA)
Well ID	Event / Description	Date	Elapsed Time (Days)	Total Depth Total Depth Water Level Measurement			Oxidation Reduction Potential Specific Conductance Turbidity	Temperature	1,1,1-Trichlord	1,1,2-Trichloro-1,2,2-trifluoroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane	2-Hexanone 2-Butanone (MEK) 4-Methyl-2-pentanone	Benzene Carbon Disuffde	Chloroethane Chloroform Chloromethane cis-1,2-Dichloroethene Dichlorodifluoromethane Ethylbenzene Methylene chloride Methylene chloride	Tetrachloroethene Tolluene trans-1,2-Dichloroethene Trichloroethene Virlor Chloride		ΨŽ	Nitrate Manganese Ferric iron Sulfate	Sulfide Nitrite Phosphorous	COD BOD Total Alkalinity	Ferrous Iron Iron	Acetic Acid Formic Acid Lactic Acid	n-Butyric Acid Propionic Acid Chloride Pvruvic Acid	Dechlorinating Bacteria Dehalococcoides sbb (1)	TCE R-Dase (1) BAV1 VC R-Dase (1) VC R-Dase
				(feet)			(mV) (mS/cm) (NTUs)	(0°)	(mg/L				(ug/L)			(ug/L)			(mg/L					(cells
	Monitoring event BL1	6/21/2010	-1779	15		6.88 3.45	83.7 0.752 64.1		SN ON	2 2 2 2 2	9999		ON O					Not	Sampled I	For The	ese Parar	neters		
	Monitoring event BL2	8/4/2010	-1735	15		7.1	0.793	1	1,700	1,900 16 J 3,200 270 ND	9999	2 2 2	2 2 2 3 1 3 1 S S S S S S S S S S S S S S S S	20 N N N N N N N N N N N N N N N N N N N										
	Monitoring event BL3	11/5/2014	-181	15		7.19 1.0	-57.4 0.759 NS	~	NS		Not Sa	mpled F	or These Parameters		9,500 NS	NS 44	0.047 0.27 22	SN S	19.6 ND 376	ND 0.27	S S S	S S S S	Not S These	ampled For Parameters
	Monitoring event BL4	3/11/2015	-55	15	687.7	5.8	257 0.616 8.54			21 0.89 J			S S S S S S S S S S S S S S S S S S S					Not	Sampled l	For The	ese Parar	neters		
	Monitoring event P1	7/27/2015	83	15	687.7	6.8 0.63	-106.2 3.365 11.8	15.83	1,420	300 4.1 3,300 60 3.1	140 ND ND	0.34 J	36 0.68 J ND 270 190 ND ND N	ND 15 3.2 3.2 16 16 16 16 16 16 16 16 16 16 16 16 16	10,000 ND	ON 660	1.6 B 45.5 ND	NS ND 0.42				137 836 NS		
	Monitoring event P2	1/7/2016	247	15	687.7	7.18	-115.7 2.024 17.0	10.28	415 ND	ND 340 ND	95 J ND 14 J		310 ND ND ND ND ND ND ND ND ND ND ND ND ND	G	4,000 ND	ND 2,900	9 10	ND ND 0.54	942 942 787 B	ND 21	NS NS NS	S S S		
	Monitoring event P3	4/8/2016	339	15	687.7	7.11		6.42	219	63 ND 450 7.8 J	ND 28 J	2 2 2	08	0N	000°9	ND 2,200	0.46 15.8 9.2	660	1 p 3 c	- 0 8	(0 (0 (0	S S S S		
A1-GP06-S	Monitoring event P4	7/12/2016	434	15	687.7	7.22	-137.2 1.964 47.9	17.81	588	ND N	00 J 00 J 00 J	ON ON	00	O O O O O 4 O	49,000 ND	ND 410	0.25 B 7.4 ND	ND ND 0.16	2030 B >1295.73 H b 1360	1.2 H F 8.6	SN SN SN	S S S S		
	Monitoring event P5	10/10/2016	524	15	687.7	7.28 7.28 1.92	-83.5 2.066 11.4	17.64	398 ND	26 ND 270 ND ND	9999	2 2 2			36,000 ND	ND 2,600	0.23 B 4.9 ND	0.80 J 0.020 J 0.14	1,750 ND 1,080	ND 4.9	222		!	
	Monitoring event P6	1/24/2017	630	15			1.177	10.65	47.7	31 ND 300 ND ND	9999		00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	28		ND 1,800	0.024 J 0.23 13.6 33.9	ND ND 0.060 F1	211 744 H b 456	0.080 J 13.7	ON ON ON	ON ON ON	Not S These	ampled For Parameters
	Monitoring event P7	4/11/2017	707	15	687.7	7.17	-90.7 0.945 33	11.6	34	52 ND 210 6.2 J ND	ND 32 J	2 2 2			23,000 ND	ND 2,500	0.12 2.9 12	ND ND 0.05	574 118 Hb 697		222			
	Monitoring event P7	7/6/2017	793	15					210	68 490 13 ND ND	9999	2 2 2	04,7 0		000,88 000 ON		0.26 9.1 7.3							
	Monitoring event P8	10/18/2017	897	3 95										ON 4.	32,000 3 ND		0.048 0.13 8.6 62.1							
	Monitoring event P9	1/5/2018	976	15				11.22	4.6	1.6 J 84 400 3.7 J 2.1 J	0N 16 J	222	222222222		0	ND 2,600	0.33 15.6	0.25 0.25	261 83 H b 515	10.3	999			
	Monitoring event P10	4/10/2018	1071	15			-108.3 - 0.553 (040 ON ON O		38,000 4 ND	16,000	0.59 18.0 3.1 J	NS NS 0.24	110 274 H b 28 565 B	18.0	SN SN SN	S S S S		

				We	·II	F	Field Par	ramete	rs								VOCs	3							Dissolv	ed Gass	ses				Wet 0	Chemist	try				Q Potential (DN	IA)
Well ID	Event / Description	Date	Elapsed Time (Days)	feet) Total Depth ATOC) Water Level I	AMSL) 1 op AMSL) Head	(SU) PH Discoluded Oxygen		(mS/cm) Specific Conductance	Temperature	(mg/L) Carbon, Total Organic	1,1,2-Trichloro-1,2,2-trifluoroethane	1,1,2-Inchloroethane 1,1-Dichloroethane	1,1-Dichloroethene 1,2-Dichloroethane	2-Hexanone 2-Butanone (MEK)	4-Methyl-2-pentanone Acetone	Benzene Carbon Disulfide	Chloroethane (ug/L) Chloroform	Chloromethane cis-1,2-Dichloroethene	Dichlorodifluoromethane Ethylbenzene	Methylcyclohexane Methylene chloride	Methyl Acetate Tetrachloroethene	Toluene	Trichloroethene	Xylenes, Total	Ј Ш	(ug/L) Ethene	Methane Nitrate	Manganese Ferric iron	Sulfate Sulfide	Nitrite Phosphorous	COD	(mg/L) Total Alkalinity	rerrous iron Iron Acetic Acid	Formic Acid	Lactic Acid n-Butyric Acid Propionic Acid Chloride	Dechlor Bac	leria	BAV1 VC R-Dase (1) VC R-Dase
	Monitoring _{P11}				E E						0,		7 7			0 0	0 0	0.0		0 0					8 0		0 0	<u>а</u> _	¬		ဂ္ က :		O # (0		(0 (0 (0 (0			
	event	7/9/2018	1161	15 2.55				-		215 B							2,600 ND								25,000 ND		17,000 ND								8 8 8 8 8			
	Monitoring event P12	10/19/2018	1263	3.62	687.7	7.34	45.8	0.997	26.9	159.0	3.5 J	210 F	3.3 J	ND 46 J	9 9	9 9	1,500 ND	9 9	99	UD 6.3 J	9 9	5.1		ON ON	MD ND	8	13,000 ND	0.12 E 3.0	9 9	0.099 E	533	>189.8	3.0 NS	S S	S S S S S	2		
	Monitoring event P13	1/4/2019	1340	15	686.8	7.46	0.3b -133.6	0.950	9.9	58.8	2 2	170 170	Q Q	Q Q	Q Q	Q Q	780 ND	N N	2 2	ND ND	Q S	2 2 2	2 2 2	N Q	26,000 F	Q.	19,000 ND	0.98	14.9 ND	ND ND	172	417 B			S S S S S			
	Monitoring event P14	4/15/2019	1441	1.55	686.2	6.94	108.5	0.673	7.4	70.5	12	150	Q Q	QN QN	Q Q	Q Q	Q Q	560 ND	Q Q	ND ND	QN CN	2 2	ON S	ND	44,000 ND	QN	Q Q	ND	QN QN	QN QN	QN S			Q Q	ON ON ON ON			
	Monitoring event P15	7/22/2019	1539	15 2.73	687.7	6.36	-11.8	1.732	14.1	519.0	13	ND 230	99	99	140 J	9 9	820 ND	99	99	9 9	9 9	2 2	2 2 2	2 2	1E+05	9	4,000 ND	0.75 B 38.6	9 9	N N	0.023 ND	848	38.6 ND	2 2	ON ON 08.2	2		
	Monitoring event P16	10/14/2019	1623	15		6.99	-73.8	1.236	24.45		2 2	08 89		Q Q	Q Q	Q Q	510 ND	Q Q	Q Q	ND ND	QN CN				87,000 ND			0.52 B 49.9	Q Q	0.059 NS	NS NS	806 806	50.0 NS	NS S	NS NS 73.7	2		
A1-GP06-S	Monitoring event P17	1/7/2020	1708	15	687.7	6.85	1.5.1 -79.8	1.490	94.1 7.4	168.0 ND	9 9	98 86	99	99	99	99	760 ND	99	9 9	N N	2 2	2 2 2	2 2 2		57,000 1.9 J		20,000 ND	0.34	9 9	ND NS	NS	265 565	NS NS	NS S	NS NS 76.5	Not	Sampled For Parameters	
	Monitoring event P18	4/13/2020	1805	15 2.35	687.7	6.89	90.1	1.427	8.33	155.0	145	200 200	99	99	99	9 9	1,100 ND	N N	9 9	QN QN	Q S	2 2 2			57,000 ND		20,000	0.46	3.1J ND	NS	0.030 NS	732	26.1 NS	NS	NS N	2		
	Monitoring event P19	10/8/2020	1983	15 2.87	687.7	7.58	1.27	0.742	14.5	9.67 CIN	2 2	8 8	99	99	99	99	099 ND	99	99	9 Q	9 9	2 2 2	222				13,000 ND	33.0	17.3 ND	NS NS	NS NS	497	33.3 NS	SN SN	NS N	2		
	monitoring event P20	4/2/2021	2159	15																							0								NS NS SS S			
	monitoring event P21	10/22/2021	2362	2.14																				2 2			15,000	NS 65.2	2.2 J 1.6	0.040 JB NS	S S	573 B	65.2 NS	S S	S S S S S	2		
	monitoring event P22	2 4/11/2022	2533	15	686.5	7.13	-138.8	1.447	8.6	38.1 ND	2 2	21 J	Q Q	Q Q	Q Q	S S	670 ND	ON ON	P P	QN QN	N S	2 2 2		N Q	77,000 ND	N	17,000 0.037 J	NS 7.4	O.80 J	NS NS	S S S	512	7.4 NS	SN	8 8 8 8	2		

				Well	ı	Field Para	meters				V	VOCs					Dissolved	l Gasses				Wet Chemi	istry			Q	Potential (DNA)	
Well ID	Event / Description	Date	Elapsed Time (Days)	Total Depth C) Water Level Measurement L) Top of Casing Elevation 1) Head Elevation	pH Discolused Overson		_		1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2-Dichloroethane 2-Hexanone	2-Butanone (MEK) 4-Methyl-2-pentanone Acetone	Benzene Carbon Disulfide Chloroethane	Chlorof Chloror cis-1,2-	Uciniorogrimorometriane Ethylbenzene Methylcyclohexane Methylene chloride	Methyl Acetate Tetrachloroethene	Toluene trans-1,2-Dichloroethene Trichloroethene	Vinyl chloride Xylenes, Total		Ethene Methane	Nitrate Manganese	Ferric iron Sulfate Sulfide	Nitrite Phosphorous Ammonia	ОШЕ	Ferrous Iron Iron	Acetic Acid Formic Acid Lactic Acid	n-Butyric Acid Propionic Acid Chloride	Dechlorinate Bacteria	TCE R-Dase (1) BAV1 VC R-Dase (1) VC R-Dase	
				(ft. ATOC) (ft. AMSL)	(ns)	(mg/L)	(mS/cm) (NTUs)	(°C)				(ug/L)					(ng/L)					(mg/L)					(cells mL)	
	Monitoring event BL1	6/22/2010	-1778	15 4.10 689.4	6.53 6.53	0.5/ -46.2	0.593	NS	99999	999	999	9999	2995	2 2 2		99												
	Monitoring event BL2	8/3/2010	-1736	15 5.35 689.4	6.95		_		22222						ON ON 0.88 J													
	Monitoring event P1	10/18/2017	897	8.13 689.4 681.2	6.78	-232	1.040	12.9 9.6 B ND ND	2222	999	999		222	2 2 2	999													
	Monitoring event P2	1/2/2018	973	15 NA 689.4				N	ot Sampled (we	ell had ice	frozen i	n stick up)																
	Monitoring event P3	4/12/2018	1073	15 NA 689.4				• •				9999			999													
	Monitoring event P4	7/11/2018	1163	7.18 689.4			- . @		99999			9999			999													
	Monitoring event P5	10/19/2018	1263	15.5 10.19 689.4 679.2	7.65	1.68	0.625		22222																			
	Monitoring event P6	1/3/2019	1339	15 NA 689.4					S - S S S																			
A1-GP09-S	Monitoring event P7	4/17/2019	1443	15.5 2.40 689.4 687.0			0 0	7.1 25.6 ND ND	2.0 J N N N N N N N N N N N N N N N N N N N	999	999	9999	2999	222	999	98					Not S	Sampled I	For Th	nese Para	ameters			
	Monitoring event P8	7/22/2019	1539	6.49 689.4	7	1.9	,		S S S S S																			
	Monitoring event P9	10/15/2019	1624	3.30 689.4 686.1		1.35	38.06	11.3 35.2 ND ND	ND N	ON C 41	999	9999	2222		9 9 9	ND ND												
	Monitoring event P10		1708	2.88 4 689.4 686.5		-94.2	36.1	7.7 20.0 ND ND	88888	ND ND	N N S 28	8 9 9 9	2995	2 2 2	999	99												
	Monitoring event P11		1805	15 9 2.46 4 689.4 0 686.0		3.55	7 1.37. NA	8 6.71 ND ND ND		ND ND 32J	2 2 2				2 2 2	N N												
	Monitoring event P12		1984	15 11.19 7.4 689.4 678.2	7.38	7 -68.4	<u> </u>	13.8 14.0 N		B S €	999																	
	Monitoring event P13 Monitoring P14		2158	15 15 14 2.25 1.4 689.4 1.0 687.2	69 6.7	.4 -74.	10 0.65 4 55.3	6.6 6.0 ND		N 0.						N N												
	event P14 Monitoring P15		2361	2.15 2.54 689.4 689.4 687.3 686.0		3.3 -81	1.073 0.910 20.7 44.4	4. 6. 0 D		D NC						Z Z												
	event P15	4/13/2022	2535	2.14	9 0	-96.3	1.0			ZZZZ				zZZ		zz												

					Well	Fi	eld Param	neters						vo	OCs .	Di	ssolved Gas	ses	Wet Ch	emistry		Q Pot	ential (DNA)
Well ID	Event / Description	Date	Elapsed Time (Days)	feet) Total Depth Total Depth ATOC) Water Level Measurement		·	o xi			1,1,2-Trichloro-1,2,2-trifluoroethane 1,1,2-Trichloroethane	1,1-Dichloroethane 1,1-Dichloroethane 1,2-Dichloroethane	2-Hexanone 2-Butanone (MEK)	4-Methyl-2-pentanone Acetone Benzene Carbon Disulfide	1 - 1	Chloromethane Chloromethane cis-1,2-Dichloroethene Dichlorodifluoromethane Ethylbenzene Methylcyclohexane Methyl Acetate Tetrachloroethene Toluene trans-1,2-Dichloroethene Trichloroethene	Vinyl chloride Xylenes, Total Carbon Dioxide		Methane Nitrate Manganese Ferric iron Sulfate	Suffide Nitrite Phosphorous Ammonia COD BOD	<u>.</u> 	Propionic Acid Chloride Pyruvic Acid	Dechlorinating Bacteria (1) Coccooccooccooccooccooccooccooccooccoo	(cells / TCE R-Dase (1) BAV1 VC R-Dase (1) VC R-Dase
				(feet)	(F)	(ff. AMSL (SU) (mg/L)	E)	(N)	(mg/L)						50		(ng/L)						(Ce)
	Monitoring event BL1	6/21/2010	-1779	15	689.1	6.57	1.9	473	NS	33,000 1400 J 84	4 (-)	96	2.6 J ND ND ND 0.87 J	Q :	0.46 J ND ND 1.2 J 2 J 2 J 1.2 J ND ND 1.2 J 1.3 J 8 8	16							
	Monitoring event BL2	8/3/2010	-1736	15	689.1	6.64 6.64 2.61	-58.6	115.7	NS	1,900 J ND	000	9 9			9999999999999				Not Sample	ed For These Param	eters		
	Monitoring event BL3	11/5/2014	-181	15		6.9	-68.2	NA 12.65	SN	<u> </u>	4 (4)		ot Sampled	For	These Parameters	08.6	S S S	91 ND 0.042 0.63 8.3	NS ND ND 0.033 3	388 0.17 NS NS NS NS NS			ampled For Parameters
	Monitoring event BL4	3/11/2015	-55	15		6.87			2.7	85 1.2 J	440 65 1.6 J	9 9	9999	က <u>!</u>	0								
	Monitoring event P1	6/12/2015	38			(Grab Sa			SN	790 ND	15,000 1,000 40 J	99	9999	Q :		99			Not Sample	ed For These Param	eters		
	Monitoring event P2	7/27/2015	83	15	689.1	6.33 6.33 4.31	13.4	22.6 15.9		30	2,900 1 1600 .	380	ND 950 ND ND	QN :	16 J ND ND N	39.000		91 ND 22 2.3 ND ND	ND ND 0.044 0.039 4400 >3,531.33	2650 2.3 4.6 1270 15.2 ND	1510 NS ND		
	Monitoring event P3	1/7/2016	247	15	689.1	7.12	-50.8	22.1 9.97	37.7 B	290 ND	4,300 470 ND	99	9999	520	9 9 9 9 9 9 9 9 9	ON OD 09.9		2,000 ND 2.4 6.6 5.2 J	ND 0.14 0.082 258 154	734 B ND NS NS NS NS	S S S S		
A1-GP10-S	Monitoring event P4	4/8/2016	339	3 65	689.1	6.75 6.75 7.22	-33.6	22.6 19.36		140 ND	29,000 500 72	99	9999	6,700	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	ND ND 180.000	9 9	150 ND 1.6 B 4.1 0.66 J	ND NS NS	1040 0.35 HF A.4 NS NS NS	S S S S		
	Monitoring event P5	7/11/2016	433	3.65	689.1	6.75	-33.6	22.6 19.36						_	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0								
	Monitoring event P6	10/7/2016	521	3.65	689.1	6.75 6.75 7.22	-33.6	22.6	303	0,800 140 ND	29,000 500 72	98	Q	6,700	2	ND N	Q Q	150 ND 1.6 B 4.1 0.66 J	ND ND 0.034 ND	1040 0.35 HF 4.4 NS NS NS	S S S S	Not S	ampled For Parameters
	Monitoring event P7	1/23/2017	629	15	689.1	7.82	-62.2	10 11.09	39.9	ON ON	ND ND	9 Q	Q Q Q	4,100		ND ND 74.000		ND 0.044 J 1.5 2.6 11.5	ND ND 0.036 ND 252 111 H b	468 ND 2.6 NS NS N	S S S S	555	
	Monitoring event P8	4/10/2017	706	15	689.1	6.75 6.75 7.22	-33.6								2		Q Q	150 ND 1.6 B 4.1 0.66 J	0.034 ND ND N	1040 0.35 HF 4.4 NS NS	S S S S		
	Monitoring event P9	7/6/2017	793	15	689.1	6.66	-79	11.3												676 N			
	Monitoring event P10	10/17/2017	896	15	689.1	685.5 6.75 7.22	-33.6								0			150 ND 1.6 B 4.1 0.66 J	ND ND 0.034 ND	1040 0.35 HF 4.4 NS NS NS	S S S S		
	Monitoring event P11	1/4/2018	975	15	689.1	9.6	-124.5	NA 9.75	16.5	30 J ND	000 11 J	9	9999	3,300	99999999999999	85 ND 52.000		2,300 ND 0.60 3.3 12.7	ND 0.39 0.62 275 13.6	432 ND 3.3 25.0 NS NS	15.3 NS NS		

					Well	F	ield Para	meters								V	VOCs							Disso	lved G	asses					Wet Ch	nemistr	ry					Q Pote	ential (DN	NA)	
Well ID	Event / Description	Date	Elapsed Time (Days)	(feet) Total Depth (ft. ATOC) Water Level Measurement	(ft. AMSL) Top of Casing Elevation (ft. AMSL) Head Elevation	(SU) pH Selved Oxygen	ŏ	(mS/cm) Specific Conductance (NTUs) Turbidity Temperature	(mg/L) Carbon, Total Organic	1,1,1-Trichloroethane	1,1,2-Trichloro-1,2,2-trifluoroethane 1,1,2-Trichloroethane	1,1-Dichloroethane 1,1-Dichloroethene	1,2-Dichloroethane 2-Hexanone	2-Butanone (MEK) 4-Methyl-2-pentanone	Acetone Benzene	Carbon Disulfide Chloroethane	(ug/L) Chloroform	cis-1,2-Dichloroethene	Ethylbenzene Methylcyclohexane	Methylene chloride Methyl Acetate	Tetrachloroethene	trans-1,2-Dichloroethene	Vinyl chloride Xvienes. Total	Carbon Dioxide	(ug/L) Ethene	Methane	N itrate Manganese	Ferric iron Sulfate	Sulfide	Phosphorous Ammonia	:	<u> </u>	Iron	Acetic Acid Formic Acid Lactic Acid	n-Butyric Acid	Propionic Acid Chloride			(cells / mL) TCE R-Dase (1)	: R-Dase (1)	es es
				(fr. A									1												ž	_)BE)							<u>ğ</u> =		
	Monitoring event P12	4/10/2018	1071	1.64	689.1	6.8	-53.6	0.808 NA	7.30 5.9 B	140		w .				S	,	2 2 2		2 2 2		2 2 2	260 Z	ω ω	2 2	4,900	O.88							S S S							
	Monitoring event P13	7/9/2018	1161	15	689.1	6.76	-49.5	1.178 40.3	87.3	530	S S	8,100 51 J	ZY J	9 9	222	30,000		9 9 9	2 2 2	2 2 2	2 2 2	9 9 9	320	00	2 2		O.96	7: Q	2 2	0.0098 CIN	304 B	642 B	1.8	S S S	S S	SN SN S	S S				
	Monitoring event P14	10/19/2018	1263	15	689.1	3.08	3.08	8.02	18.9	640	ND QN				999								2 2 2		2 2	520	OND 0.80 B	5.6		.0073 JB	115	417 CIN	5.6	S S S	S S	SN S	n Z				
	Monitoring event P15	1/4/2019	1340	15	689.1	9.6	3.4 <i>z</i> -124.5	17.7	9.75	200	130 ND	91 J	99	2 2	999	008'8	QN CN	2 2 2	2 2 2	2 2 2	2 2 2	2 2 2	260 CN	120,000	9 9	4,800	ND 0.71	5	2 2	0.42	48.2 34.2 Hb	397 B	5 5		S S	SN SN	Σ Σ				
	Monitoring event P16	4/15/2019	1441	1.83	689.1	6.29	154.8	0.712				_			2 2	ND 9,300 F	ON CN	2 2 2	288				2 2 2	72,000	2 2	5300	ND 0.51 B	1.7	Q Q	SN	SN SN	334 CIN	1.7 B	S N S	SNS	SN SN	Z)				
	Monitoring event P17	7/22/2019	1539	15	689.1	6.12	3.17	2.030 774.86	350	006	Q Q	14,000 130 J	78 J ND	2 2	99	ND 26,000	ON CN	2 2 2	2 2 2	2 2 2	2 2 2	2 2 2	2 2 2	310,000	2 2	740	0.020 J 1.7 B	13.6 ND	2 2 2	2 2	2 2	895 CIN	13.6	S S S	S S	SN SN	Z Z				
A1-GP10-S	Monitoring event P18	10/14/2019	1623	1.68	689.1	6.02		1.648 20.17	529	780	N Q	310 J	9 9	2 2	999	ND 47000 E		2 2 2	222	ND F1*	2 2	2 2 2	2 2 2	340,000	9 9	2,600	0.026 J 1.6 B	34.3 ND	ND 0.049 J	NS 0.041 F1	SN SN	749 0 096 J HF	34.4	S S S	SS	149.0			ımpled Parame		
	Monitoring event P19	1/7/2020	1708	1.09	689.1	3.42	-13.5	1.770	307	730 J	ON ON	20,000 480 J	9 9	Q Q	99	ND 24,000	Q N	2 2 2	2 2 2	2 2 2	2 2 2	2 2 2	2 2 2	240,000	2 2	5,000	ND 2.90							S S S							
	Monitoring event P20	4/13/2020	1805	1.25	689.1	6.92		748	180	5,100	250 ND	400	44) ND	QN QN	999	19,000	QN CN	2 2 2						120,000	2 2									S S S							
	Monitoring event P21	10/13/2020	1988	3.38	_	6.27	232.2	1.220 25.3																	9 9									ν ν ν Σ ν ν ν							
	Monitoring event P22	4/1/2021	2158	1.51	689.1	6.65	-36.9	0.846	71.1	2,200	490 ND	3,700	9 9	2 2	999	ND 8,600	2 2	2 2	2 2 2	2 2 2	2 2 2	2 2 2	2 2 2	93,000	2 2	009'2	0.12 2.4B	4.9 ON	2 2	NS 0.045	SN SN	600 RD HF	4.9	S S S	SN S	165.0	Z Z				
	Monitoring event P23	10/27/2021	2367	15	689.1	6.85	-100.1	60.9	41.6	Q	S S	1,000 DN	99	Q Q	999	ND 15,000	Q Q	2 2 2	2 2 2	2 2 2	2 2 2	2 2 2	2 2 2	120,000	9 9	0						ш	12.7	S S S							
	Monitoring event P24	4/8/2022	2530	15	689.1	6.72	5.3	1.905	111	290	200 ND	2,000 ND	9 9	Q Q	2 2 2	ND 21,000		2 2 2	288	2 2 2	2 2 2	2 2 2	2 2 2	84,000	2 2	1,300	NS NS	51.2	1.6 ON	SN SN	S S S	659 1 8 HF	53	S S S	SN	SN SN	n Z				

				Well		ield Parar	neters					VOCs					Dissolve	d Gasses			Wet Chemist	try		QI	Potential (DNA)
Well ID	Event / Description	Date	Elapsed Time (Days)	Total Depth Water Level Measurement Top of Casing Elevation Head Elevation	pH Dissahual Ovygan			Temperature Carbon, Total Organic 1,1,1-Trichloroethane 1,1,2-Trichloro-1,2,2-trifluoroethane	1,1-Dichloroethane 1,1-Dichloroethane 1,2-Dichloroethane	z-nexanone 2-Butanone (MEK) 4-Methyl-2-pentanone		Chloroethane Chloroform Chloromethane cis-1.2-Dichloroethane	Dichlorodifluoromethane Ethylbenzene Methylcyclohexane	Methylene chloride Methyl Acetate	Tetrachloroethene Toluene trans-1,2-Dichloroethene	Trichloroethene Vinyl chloride Xylenes, Total	Carbon Dioxide Ethane	Ethene Methane	Nifrate Manganese Ferric iron Sulfate	Sulfide Nitrite Phosphorous Ammonia	COD BOD Total Alkalinity	rerrous iron Iron Acetic Acid Formir Acid	rornic Acid Lactic Acid n-Butyric Acid Propionic Acid Chloride	Dechlorinat Bacteria Dehalococcoides sbb (1)	
				(ft. ATOC) (ft. AMSL)	(SU)	(myc)	(MS/cm)	(mg/L)				(ug/L)					į	(ng/L)			(mg/L)				(cells / mL)
	Monitoring event BL1	6/21/2010	-1779	15 2.56 689.4 686.9	5.59	-59.5	24	NS	2222	2 2 2	0N 1.3 J	9999	222	2 2 2	0N 0N 1.3 J	Q 7 Q									
	Monitoring event BL2	8/3/2010	-1736	3.08 689.4 686.4		-125	91.1	NS ND ND	2 2 9 9 9	2 2 2	5.2 J 5.5 ND	0.62 J ND 0.74 J	2222	2 2 2 !	0 ND 8.5	9 T Q									
	Monitoring event P1	10/17/2017	896	2.61 689.4 686.8		-229	_	16.4 6.3 B ND ND	8 + 8 8 8	2 2 2	0.1.0 0.1.0	ND (ND (S) 3.2 (S) 53.1		999	UD 1.87 J	7.9 ND									
	Monitoring event P2	1/4/2018	975	2.95 689.4 (686.5 (6					22222																
	Monitoring event P3	4/10/2018	1071	0.82 689.4 688.6						2 2 2		9999			222										
	Monitoring event P4	7/9/2018	1161	3.3 689.4 686.1		-106	24.4	19.99 ND ND	0.46 J	2 7 2 Q	12 0.69 J ND	7 08.0 QN QN	222	2 2 2	222	1.3 ND									
	Monitoring event P5	10/23/2018	1267	1.00 689.4 688.4		2.8			DN D							0.92 J ND									
	Monitoring event P6	1/2/2019	1338	0.9 689.4 688.5	7.84	47.4	ກ	9.3 DN DN			999		2 2 2 2			999									
A1-GP14-S	Monitoring event P7	4/15/2019	1441	15 1.63 689.4 687.8		217.9	28.21	2.7 ND ND	0.54 J DN DN DN			222		2 2 2	222	1.1 ND				Not	Sampled Fo	or These I	Parameters		
	Monitoring event P8	7/23/2019	1540	15 2.83 689.4 686.6	8.54	129.8	827.4		4.1 ON ON ON																
	Monitoring P9	10/15/2019	1624	2.7 689.4 686.7	7.25	-65.1	27.69	13.90 ND ND	0.96.0 D DN	2 2 2	6.7 J 0.84 J ND	222	2 2 2 2	2 2 2 !	222	3.4 ND									
	Monitoring event P10	1/7/2020	1708	2.3 689.4 687.1	7.4	49.1	14.6	7.8 4.9 ND ND	8-88	2 2 2	3.6 J 0.99J ND	0.91 J ON ON CN	2 2 2	2 2 2	222	5.3 ND									
	Monitoring event P11	4/13/2020	1805	15 1.77 689.4 687.6	7.31	6.6	39.9	6.1 ND ND			2.1 ND ND	9999				Q Q Q									
	Monitoring event P12	10/8/2020	1983	15 2.68 689.4 686.7	7.77	-71.1	20.2	17.2 6.3 ND ND	2222	2 2 2	6.4J ND	ND ND				1.8J ND									
	Monitoring event P13	4/1/2021	2158	15 1.81 689.4 687.6		י אי מ	_		2222	2 2 2	6.4J ND ND			2.7 ND		2.4 ND ND									
	Monitoring event P14	10/25/2021	2365	15 1.70 689.4 687.7				_	2222																
	Monitoring event P15	4/12/2022	2534	15 1.32 689.4 688.1	7.43	7.99-	104	11.80 ND ND	9999	2 2 2	ND ND ND	9999	2 2 2	2 2 2	222	999									

				Well	F	ield Para	ameters	VOCs Dissolved Gasses Wet Chemistry	QI	Potential (DNA)
Well ID	Event / Description	Date	Elapsed Time (Days)	Total Depth Water Level Measurement Top of Casing Elevation Head Elevation	pH Dissolved Oxvgen		Specific Conductance Turbidity	Carbon, Total Organic 1,1,1-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Dichloroethane 1,1,2-Dichloroethane 1,2-Dichloroethane 1,2-Di	Pyruvic Acid Pyruvic Acid Dehalococcoides spp (1)	
				(ft. ATOC) (ft. AMSL)	(II. AMSL) (SU)	(mV)	(mS/cm) (NTUs)	(ug/L) (mg/L)		(cells / mL)
	Monitoring BL1 6	6/17/2010	-1783	0.54	6.88 3.04	1.1	0.657	N D		
	Monitoring event BL3	8/2/2010	-1737		6.97		0.725	8		
	Monitoring event BL4	3/11/2015	-55	15 1.2 687.7	6.85	42	0.801	Not Sampled For These Parameters		
	Monitoring event P1 7	7/29/2015	85	3.2 687.7	7.61	y 4	0.725	8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8		
	Monitoring event P2	4/8/2016	339		7.14 6.13	3.5	0.647			
	event	7/11/2016	433		7.3		0.730	4.8. 9.00 0.00		
	event	10/7/2016	521		7.52		7.0.675 86.7	2 2		
	event	1/23/2017	629	9	6.66 6.66		50			
	event	4/12/2017	708	15 0.35 7 687.7	7.48		0.494			
A1-GP15-S	event	7/6/2017	793	15 4.35 7 687.7	7.64		0 0.660	Not Sampled For These Parameter		
	event	10/17/2017	896	6.4 7 687.7	7.5	-220	0.710	Not Sampled For These Parameter		
	Monitoring	1/2/2018		15 NA 7 687.7	Ž	n m	ω ,	Not Sampled (well could not be located under snow)		
	event 1 10 5	4/10/2018	1071		5 7.2 15.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14	8 51.8	8 NA	2 0		
	Monitoring	7/9/2018	1161		2 7.15		.572 0.702 .8.2 12.8			
	Monitoring	10/22/2018	1266	5 15 6 8.66 7.7 687.7	0	۱ , ا د	0 6			
	Monitoring	1/2/2019	1338	5 15 7 0.6 7.7 687.7	32 7.13	2. 7-	361 0.43 .2 9.1	2. 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		
	Manitoring	4/15/2019	1441	0.7		0	0.5			
	event	7/25/2019	1542		ء ا ۲ ا ق	,	3 854			
	event	10/14/2019	1623	15 5 687	5 7.06 5 7.06	7 36.8	32 0.495 70.3			
	Monitoring event P17	1/7/2020	1708	1.19	7.5	50.7	0.682	7-4 8		

				Well		Field P	arameters								VOCs							Dissolv	ed Gas	sses				Wet Ch	hemistry	1				Q Potent	ial (DNA)	
																																	Dechlor Bact		unctional G	enes
Well ID	Event / Description	Date	Elapsed Time (Days)	Total Depth Water Level Measurement Top of Casing Elevation	Head Elevation pH	Dissolved Oxygen Oxidation Reduction Potential	Specific Conductance Turbidity	Temperature	Carbon, Total Organic	1,1,1-Trichloroethane 1,1,2-Trichloro-1,2,2-trifluoroethane 1,1,2-Trichloroethane	1,1-Dichloroethane 1,1-Dichloroethene	1,4-Didnovernane 2-Hexanone 2-Butanone (MEK)	4-Methyl-2-pentanone Acetone	Benzene Carbon Disulfide	Chloroetnane Chloroform Chloromethane	cis-1,2-Dichloroethene Dichlorodifluoromethane	Ethylbenzene Methylcyclohexane	Methylene chloride Methyl Acetate	Tetrachloroethene Toluene	7,2 0 1,2	Vinyl chloride Xylenes, Total	Carbon Dioxide Ethane	Ethene	Methane	Manganese Ferric iron	Sulfate Sulfide	Nitrite Phosphorous	Ammonia COD BOD	Total Alkalinity Ferrous Iron	Iron Acetic Acid	mic Actic Ac	n-Butyric Acid Propionic Acid Chloride	Pyruvic Acid Debalococcoides snn (1)		TCE R-Dase (1) BAV1 VC R-Dase (1)	VC R-Dase
				(feet) (ft. ATOC) (ft. AMSL)	(ft. AMSL)	(mg/L)	(mS/cm)	(00)	(mg/L)						(ng/L)					- 12			(ng/L)					:	(mg/L)					_	mL)	_
	Monitoring event P18	4/13/2020	1805	15 0.67 687.7	687.0 6.89	2.51	0		3.6																											
	Monitoring event P19		1983	15. 11.3 87.	676.4	5.37	0.568	13.9	3.2	999		2 2 2		9 9 9	2 2 2	ND ND	N N	N N			2 2															
A1-GP15-S	Monitoring event P20	4/1/2021	2158	0.2 687.7 6	687.5 7.44	5.4	0.328 (4.94	3.0	999	0.52J	2 2 2	ND 12	999	2 2 2	99	99	98		999	99						Not	Sample	ed For	These	Paran	neters				
	Monitoring event P21	10/20/2021	2360	15 0.98 687.7	686.7 7.17	2.3	0.0	15.2	3.0	9 9 9		2 2 2	98	999	2 2 2	Q Q	28	N O	Q Q		2.4 ND															
	Monitoring event P22	4/11/2022	2533	15 0.52 687.7	687.2 7.16	0.35		9.5	3.2	9 9 9		9 9	3.8 J	99	2 2 2	N ON	N ON	98																		

				Well		Field	l Parame	ters					vo)Cs					Dissolve	d Gasses			W	et Chemistry			Q	Potential (DNA)
Well ID	Event / Description	Date	Elapsed Time (Days)	(feet) Total Depth . ATOC) Water Level Measurement	AMSL) Head Elev	(SU) PH (mg/L) Dissolved Oxygen	(mV) Oxidation Reduction Potential (mS/cm) Specific Conductance	Turbidity Temperature		1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethane	1,2-Dichloroethane 2-Hexanone 2-Butanone (MEK)	4-Methyl-2-pentanone Acetone Benzene	0 0 0	(ug/L) Chloromethane Chloromethane cis-1,2-Dichloroethene	Dichlorodifluoromethane Ethylbenzene Methylcyclohexane	Methylene chloride Methyl Acetate	I etrachloroethene Toluene trans-1,2-Dichloroethene	Trichloroethene Vinyl chloride Xylenes, Total		Ethene Methane	Nitrate Manganese Forris iron	Sulfate Sulfide	Phosphorous Ammonia	(mg/L) BOD Total Alkalinity Ferrous Iron	Iron Acetic Acid Formic Acid	Lactic Acid n-Butyric Acid Propionic Acid Chloride	Dechloring Bacteria Dehalococcoides spb (1)	
	Monitoring event BL1	6/17/2010	-1783		3 5		-39.4	125		2 2 2	999	999	2 2 2	ON CO	222	222	2 2 2	999										
	Monitoring event BL2	8/2/2010	-1737	5.55	684.3	69.9	-52.2 1.159	28.2	SN ON ON ST	2 2 2	999	999	222	2 2 8	222	999	222	S J										
	Monitoring P1	10/17/2017	896	4.17		7.11	-301.5	14.3	11.7 B ND ND	0.27 J ND	999	999	2 2 2	999	222	999	0.64 J	Q 7. Q										
	Monitoring event P2	1/2/2018	973	15 NA NA							ed (well h	nad ice fr	ozen in	stick up)														
	Monitoring event P3	4/9/2018	1070	15 NA NA		₹ Z	A Z	A Z	ND ND ND	2 2 2	999	999	2 2 2	222	999	999	222	999										
	Monitoring event P4	7/10/2018	1162	6.35		7.25	1.101	48.2	8.6 G G	0.38 J	999	8 = 8	2 2 2	2 P E	222	999	222	3.0 ND										
	Monitoring event P5	10/2/2018	1246				-5.6				999	U1 L L	2 2 2 5	28 =		2.5 ND	222											
	Monitoring event P6	1/3/2019	1339	2.8		7.22	-28.2		15.7 ND ND	2 2 2	999	999	2 2 2 5	ON 0.5		999	222											
A1-GP16-S	Monitoring event P7	4/17/2019	1443	14.28			-42.8 0.818		8.61 ND	2 2 2	999	999	2 2 2 5	ON 0.1.	222	999	222						Not Sa	mpled For T	These Pa	arameters		
	Monitoring event P8	7/26/2019	1543	6.04					9999	2 2 2	999	999	2 2 2	999	999	999	222	999										
	Monitoring P9	10/15/2019	1624						26.3 ND ND	2 2 2	999	999	999	222	222		222	999										
	Monitoring event P10		1708	2.74	387.1	96.9	42.9	9.11	24.3 ND ND	2 2 2	999	999	999	999	999	999	222											
	Monitoring event P11		1807	2.79	387.1	6.72	75	28.4	28.8 ND ND	2 2 2	222	999	2 2 2 5	222	999	999	2.2J ND 2.2J											
	Monitoring event P12		1983	15	684.9	0.88	-66.7	13.1	21.3 10.9 ND	2 2 2	999	999	2 2 2	2 P P	999	999	222	999										
	Monitoring event P13		2158	15 2.7	3 687.1	2.1 2.8 2.1 2.8	6 36.5 30 0.476	5.21	N D N D	2 2 2	999	999	2 2 2	222	222	999	2 2 2	999										
	Monitoring event P14		2365	3 2.65	687.8	2.1	1.08	3.62	23.4 ND ND	9 9 9	999	988		DN A.0	999	999												
	Monitoring event P15	4/11/2022	2533	2.73	289	0.1	-62. 1.13	17.2	19.7 ON ON		岁岁岁	7 7		빌빌빌	빌빌	岁岁		岁岁										

					Well	Fie	eld Param	eters							VOCs				Di	issolved C	Gasses			Wet C	Chemistry	у			Q Po	tential (DN	A)
Well ID	Event / Description	Date	Elapsed Time (Days)	(feet) Total Depth (ft. ATOC) Water Level Measurement	(ft. AMSL) Top of Casing Elevation	(Su) pH (mg/L) Dissolved Oxygen	S S S	(NTUs) Turbidity (°C) Temperature	(mg/L) Carbon, Total Organic	1,1,1-Trichloroethane 1,1,2-Trichloro-1,2,2-trifluoroethane	1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethene	1,2-Dichloroethane 2-Hexanone	2-Butanone (MEK) 4-Methyl-2-pentanone Acetone	Benzene Carbon Disulfide	Chloroethane (ug/L) Chloroform Chloromethane	cis-1,2-Dichloroethene Dichlorodifluoromethane Ethylbenzene	Methylcyclohexane Methylene chloride Methyl Acetate Tetrachloroethene	Toluene trans-1,2-Dichloroethene Trichloroethene	Vinyl chloride Xylenes, Total Carbon Dioxide	Ethane (ug/L) Ethene	Methane	Nitrate Manganese Ferric iron	Sulfate Sulfide Nitrite	Phosphorous Ammonia COD	BOD Total Alkalinity Ferrous Iron	Iron Acetic Acid	Formic Acid Lactic Acid n-Butyric Acid		Dechlorinatin Bacteria (1) Openior (1) Deprior (1) Openior (1) Op		BAV1 VC R-Dase (1) VC R-Dase
	Monitoring event BL1	6/18/2010	-1782	18		6.95			SN	99		99	222	999		999	9999		9 9					Not Samp	olod For	Those	Doromot	toro			
	Monitoring event BL2	8/2/2010	-1737	15	690.4	7.12	-66.8	5.1	SN S	9 9	999	99	2 2 2	999	999	999	9999	2 2 2	Q Q					·							
	Monitoring event BL3	11/5/2014	-181	18	690.4	7.3	7.69-	NS 12.36	NS				Not Sam	pled Fo	or These	e Parame	eters		8.200		ND 260	2.3 121	NS ND	0.65 0.18 B ND	359 B ND HF	121 NS	NS NS NS	NS NS NS	Not S These	Sampled F Paramet	
	Monitoring event BL4	3/11/2015	-55	18	690.4	7.38	50	11 8.35	1.0	9 9	999	99	222	999	2 2 2	999	9999		99					Not Samp							
	Monitoring event P1	7/27/2015	83	18	690.4	6.08 0.89	40.5	22.9	829 B	Q Q			130 140 140	2 2		S O O			ND ND 17.000		ND 520	0.83 17.8	S S	1.2 0.24 2440	1140	19.9	NS NS 111	446 NS NS			
	Monitoring event P2	1/7/2016	247	18	690.4	7.01 NA	-48.2	NA 8.24	178	9 9	999	99	16 J	999	2 2 2	2.4 ND ND	222		ND ND 6.100		1,800	0.23	999	0.5 0.16 596	ND 775 B ND	SNS	S S S	SN SN SN			
	Monitoring event P3	4/8/2016	339	3.2	690.4	6.94 1.41	-94.3	893	89.1	9 9	999		36 18 J	999		999	222		ON ON 6.700		1,100	0.76 34	999	0.41 ND 147	101 H 660 ND	34 NS	SN SN SN	NS NS NS			
A1-GP18-S	Monitoring event P4	7/8/2016	430	18	690.4	NA 1.47	-5.2	>1000	20.5	9 9	999	998	20 11	999	222	222	222	2 2 2 2	QN QN 69.000		910	0.39 B 19.3	999	2.0 B 0.05 41.7 B	14.2 b 489 0.12 H F	19.4 NS	S S S	SN SN SN			
	Monitoring event P5	10/7/2016	521	18	690.4	7.05	46.1	69	8.9	9 9	999		ND ND 5.3 J	999	222	999	222		ON O		ND 2,400	0.73 B 32.7		0.1							
	Monitoring event P6	1/23/2017	629	18 AA	690.4	7.14	-117.3	50 10.38	5.1	9 9	999	99	222	999	222	999	0.16 J ON ON ON)	,				0.72 0.015 J 6.5 JF1	7 H b 415 ND					Sampled F Paramet	
	Monitoring event P7	4/10/2017	706	18	690.4	7.04 NA	-70.1	333												,	UN 1,900	0.65 8.1	16.4 UN UN	0.5 DN DN 1		8.1 NS	SN SN SN	SN SN SN			
	Monitoring P8	7/6/2017	793	18		7.21		3308			999								0		350	0.42 7.5	N S S	0.45	5.7 451 ND	7.5 NS	S S S	SN SN SN			
	Monitoring event P9	10/16/2017	895	81 69	4 4	7.09	_	474	3.5	9 g	988	9 9		999		Q Q Q				ON C				0.14 0.073 ND							
	Monitoring event P10	1/5/2018	976	81 AN	690.4	A 5.	-149.9	72.6	72.4	84	1.6 J 400 3.7 J	2.1 J ND	16 J ND 22 J	2 2 2	ND ND 1,300	8.2 ND ND	2 2 2	3.2 J ND 2.4 J	22 ND 52.000					3.2 0.1 F1 5.7 JB							
	Monitoring event P11	4/9/2018	1070	3.5	690.4	7.16	-80.4	NA 8.12	3.8	Q Q	S S	2 2					222		ON ON 59.000		3,600	0.54 7.9	34.7 ND	0.18 ND 20.2	377 ND	7.9 NS	SN SN SN	SN SN SN			

				1	Well	F	ield Para	meters							vo)Cs						Dissolv	ed Gass	ses				Wet	Chemis	try				Q Po	tential (DNA	N)
Well ID	Event / Description	Date	Elapsed Time (Days)	(feet) Total Depth (ft. ATOC) Water Level Measurement	(ft. AMSL) Top of Casing Elevation (ft. AMSL) Head Elevation	(SU) PH Seolved Oxygen	ŏ	(MTUs) Specific Conductance (NTUs) Turbidity (CC) Temperature	(mg/L) Carbon, Total Organic	1,1,1-Trichloroethane 1,1,2-Trichloro-1,2,2-trifluoroethane	1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethene	1,2-Dichloroethane 2-Hexanone	2-Butanone (MEK) 4-Methyl-2-pentanone	Acetone Benzene Carbon Disulfide		(ug/L) Chloroform Chloromethane	cis-1,2-Dichloroethene Dichlorodifluoromethane E-th-ulbarzana	Etriyiberizerre Methylcyclohexane Methylene chloride	Methyl Acetate Tetrachloroethene	Toluene trans-1,2-Dichloroethene	Trinitorement Vinyl chloride Xylenes, Total		(ug/L) Ethene	Methane Nitrate	Manganese Ferric iron	Sulfate Sulfide	Nitrite Phosphorous	Ammonia COD	(mg/L) Total Alkalinity	Ferrous Iron Iron	Acetic Acid Formic Acid	Lactic Acid n-Butyric Acid	Propionic Acid Chloride Pvriivic Acid	Dechlorinatin Bacteria Oehalococcoides sbb (1)	Function	BAVT VC R-Dase (1) But a part of the part
	Monitoring event P12	7/9/2018	1161	18	690.4	6.92	-191.7	1230	4.8 B	9 9	2 2 2 2	2 2	99	L GN ON	2 5	99	999	2 2 2	Q Q	222	2 2 2	12,000 ND	Q	11,000 ND	0.38 B 3.6	1.8 J ND	ND 0.16	0.15 28.3 B	3.6 b 450 B	3.6	S S S	2 S :				
	Monitoring event P13	10/19/2018	1263	18	690.4	7.25	-35.2	0.661 NA	2.5	9 9	2 2 2 2	2 2	9 9	2 2 2	9 5	99	2 2 2	ND ND 0.55 J	Q Q		2 2 2	47,000 ND	QN	000,7 ON	2.8 B 120	23.6 ND	ND 4.4	0.16	415	120	S S S	SN S	S S S	2		
	Monitoring event P14	1/4/2019	1340	18	690.4	7.26	-82.4	0.750 101.4 8.5	2.8	QN QN		QN QN	QN QN	QN QN	QN C	Q Q	ON ON	N N	QN ND		N N	48,000 B ND	ND	4,100 ND	0.55	29.4 ND	ND 0.15	0.018 J 23.1	3.6 310 B	13.1	NS NS					
	Monitoring event P15	4/15/2019	1441	18	690.4	7.76	115.6	0.701	4.2	9 9	2 2 2	2	2 2	6.5 J	2	99!	222	0.65 J 0.55 J		0.58 J ND	222	00	9	_	0.52 B 11.5	32.5 ND	NS	0.014 J NS	282	0.075 J 11.6 B	SN SN	SN S	S S S			
	Monitoring event P16	7/22/2019	1539	18	690.4	7.36	-10.2	0.0	1.8	2 2		QN QN	2 2	999	9 5	22		2 2 2	QN Q			53,000 ND	Q	6,200 0.027 JH		22.4 ND	QN QN	0.14 ND		7.0 ND	SN SN S	SN S	24.4 NS	2		
A1-GP18-S	Monitoring event P17	10/14/2019	1623	18	690.4	6.88	-13.9	0.936	4.2	9 9		QN QN	2 2	CON ON	9 5	Q Q :		2 2 2	QN QN	222	N N	81,000 ND	QN	000'9	0.41 B 4.6	54.3 ND	ND	0.049 NS	409 B	ND HF 4.6	S S S	SN S	S Q S	Not S	Sampled F	
	Monitoring event P18	1/7/2020	1708	3.33	690.4	6.99	48.2	0.760	6.2	9 9	2 2 2	Q Q	2 2	999	2 5	99	999	2 2 2	Q Q	999	2 2 2	110,000 ND		``	0.71	18.1 ND	NS NS	0.037 NS	386	ND H	S S S	S S :	NS 44.3	2	e Paramete	ers
	Monitoring event P19	4/13/2020	1805	3.15	690.4	6.61	131.3	0.761	7.2	9 9	999	9 9	2 2	999	2 5	99	999	2 2 2	99	2 2 2	222	71,000 ND	2	5,800	0.87	17.8 ND	NS	0.053 NS	450	0.37 HF 8.8	S S S	SN S	16.6 NS			
	Monitoring event P20	10/8/2020	1983	18	690.4	6.64	-94.6	0.638			2 2 2 2											_	9	9,100 ND	0.27	23.7 ND	NS N	0.15B NS	495	NS H	1.7 SN 2	S S S	22.5 NS			
	Monitoring event P21	4/1/2021	2158	18 4.15				90.0			2 2 2 2											_	9	20,000	0.84B 15.7	62.1 ND	B ND	0.081 NS	454	= 0.33 HF 16.0	SN SN SN	S S S	33.3 NS	2		
	Monitoring event P22	10/21/2021	2361	18 2.81						2 2	2 2 2 2	2 2	2 2	222	2	22	999	222	22	222	222	98,000 ON		, 0			0	S S		0						
	Monitoring event P23	4/13/2022	2535	18	690.4	6.91	-89.6	38.6	11.8	9 9	999	2 2	4.2 J	3.1 J	2	99	999	2 2 2	9 9	999	2 2 2	90,000 ON	9	4,400 ND	NS 5.7	7.2 ND	NS NS	S S	459	ND H	S S S	S S S	S S S			

				Well	Field Pa	arameters					VOCs		Dissolved Gass	ses	Wet Chemistry		Q Po	tential (DNA)
Well ID	Event / Description	Date	Elapsed Time (Days)	Total Depth) Water Level Measurement) Top of Casing Elevation) Head Elevation	pH Dissolved Oxygen Oxidation Reduction Potential	Specific Conductance Turbidity Temperature	Carbon, Total Organic 1,1,1-Trichloroethane 1,1,2-Trichloro-1,2,2-trifluoroethane	1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethene	1,2-Dichloroethane 2-Hexanone 2-Butanone (MEK) 4-Methvl-2-pentanone	Acetone Benzene	Carbon Disulfide Chloroethane Chloroform Chloromethane cis-1,2-Dichloroethene	Dichlorodifluoromethane Ethylbenzene Methylcyclohexane Methylene chloride Methyl Acetate Tetrachloroethene Toluene trans-1,2-Dichloroethene Trichloroethene Trichloroethene	Xylenes, lotal Carbon Dioxide Ethane Ethene	Methane Nitrate Manganese Ferric iron Sulfate Sulfide	Nitrite Phosphorous Ammonia COD BOD Total Alkalinity Ferrous Iron Iron Acetic Acid	id	Dechlorinating Bacteria Department Bacteria	TCE R-Dase (1) BAV1 VC R-Dase (1) VC R-Dase
				<u> </u>	(mg/L)	(mS/cm) (NTUs)	(mg/L)				(ng/L)		(ng/L)		(mg/L)			(cells / mL)
	Monitoring BL1 6	6/18/2010	-1782	18.9 3.09 689.7 686.6	3.16	0.922		0 2.1.2 0 N	9999		M M M M A	M M	2					
	Monitoring BL2 8	8/3/2010	-1736	18.85 3.9 689.7 685.8	1.0	2.22	N ON ON	ND 2.4 J	9999			QN QN QN <	2					
	Monitoring event P1 7	7/29/2015	85	3.95 689.7 685.7	0.39			DN 4.1	9999		ND N	M M						
	Monitoring event P2	4/8/2016	339	18.9 2.95 689.7 686.7	7.47	9 -		Q 8. Q	9999	999	ON O	S S <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>						
	Monitoring event P3 7	7/14/2016	436	3.95 689.7 (685.	0.09	5.59	3.4 ND ND ND					0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2					
	Monitoring P4 10	0/11/2016	525	18.85 2.95 689.7 686.7	7.50 0.56 -112	5.34	3.3 DN D	8 2.1 N	9999	2 2 2	0 N N H	ON O	2					
	Monitoring event P5 1	1/25/2017	631	3.95 689.7 685.7	0.45			8 1. 8	9999		ON O	A A A A A A A A A A B	2					
	Monitoring P6 4	1/12/2017	708	18.85 2.95 689.7 686.7	7.43		2.9 ND ON	9 ⁻ 2 8	9999	2 2 2	0 N N S	0 0 0 0 0 0 0 0 0 0 1.2 2. 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2					
	Monitoring P7	7/7/2017	794	3.95 689.7 685.7	0.18	0.730	9.1 ON ON ON	0.54 ND	9999	2 2 2	99999	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2					
MW-30	Monitoring P8 10	0/19/2017	898	18.85 2.95 689.7 686.7	7.45 0.26 -310		3. 1. S	9 1.2 S	9999	999	ON O	S; S D D D D D D D S; S	2		Not Sampled For These I	Parameters		
	Monitoring	1/2/2018	973		1.96	NA 7.6	2.2 ND ND	0 + 0 0 - 1	2222				2					
	Monitoring	1/11/2018	1072	18.9 2.95 689.7 (6	7.32 0.3 -98	0.187 (NA						A A A A A A A A A A A B <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>						
	Monitoring event P11 7	7/11/2018	1163	3.95 689.7 685.7	0.3	289	2.9 B ND ND	ND 0.68 J ND	9999	7.1 J			2					
	Monitoring event P12 10	0/23/2018	1267	18.9 2.95 689.7 686.7	7.09	0						A A						
	Monitoring event P13	1/8/2019	1344	18.85 3.95 689.7 685.7	0.31	0.720	8: 0											
	Monitoring event P14 4	1/18/2019	1444	18.85 2.95 689.7 686.7	7.68 2.10 -123	0.679	2.8 DN D	999	9999	2.6 J ND	99999	9999999999	2					
	Monitoring P15 7	7/26/2019	1543	3.95 689.7 685.7	.37	626 271	- 000	ND 42 J ND				0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0						
	Monitoring	0/17/2019	1626	18.9 1 2.95 3 689.7 6 686.7 6	7.40 7 3.19 (5.4 -1	297 (1.94		O O O										
	Monitoring	1/8/2020	1709	3.95 2 689.7 6 685.7 6	7.25 7 0.32 3 40.8													

					Well		Field	Param	eters								VOCs	3							Dissolv	ved Gas	sses				W	et Che	mistry					Q	Potentia	I (DNA)	
											0																										De	echlorina Bacteria	ing Fu	nctional	Genes
Well ID	Event / Description	Date	Elapsed Time (Days)	Fotal Depth Nater Level Measurement	Top of Casing Elevation	Head Elevation pH	Dissolved Oxygen	ation reduction	rbidity	l emperature Carbon, Total Organic	l,1,1-Trichloroethane I,1,2-Trichloro-1,2,2-trifluoroethan	I,1,2-Trichloroethane	,1-Dichloroethene ,2-Dichloroethane	2-Hexanone 2-Butanone (MEK)	4-Methyl-2-pentanone Acetone	Benzene Carbon Disulfide	Chloroethane Chloroform	Chloromethane cis-1,2-Dichloroethene	Dichlorodifluoromethane Ethylbenzene	Methylcyclohexane Methylene chloride	Methyl Acetate Fetrachloroethene	Foluene rans-1.2-Dichloroethene	Frichloroethene Vinyl chloride	Xylenes, Total	Carbon Dioxide Ethane	Ethene	Wethane	Nitrate Manganese	erric iron Sulfate	Sulfide Vitrite	Phosphorous Ammonia	30D	Foral Alkalinity Ferrous Iron	ron Acetic Acid Formic Acid	June Acid -actic Acid -Butvric Acid	Propionic Acid Chloride	yruvic Acid	Dehalococcoides spp (1)	ICE R-Dase (1)	VC R-	VC R-Dase
				(feet) 1		(ft. AMSL)		(mS/cm)		(°C) (mg/L)	<u> </u>	10 10	16 16	IN IN	4 14	<u> </u>	(ng/L)		<u> </u>			· F •	, - -		, <u></u>	(ng/L)		Z Z	<u> </u>	w Z	<u> </u>	(mg/L)	<u>- </u>	_ < =	- - -	. 12 10			(cells /		
	Monitoring event P18	4/15/2020	1807	18.9	689.7	686.7	1.06	57.5	13.1	10.4	9 9	9 9	99	99	Q Q	99	99	9 9	2 2	2 2 2	2 2	2 2 2	2 2 2	2 2																	
	Monitoring event P19	10/7/2020	1982	18.9	_ _	685.7		-130	9 4	3.2	9 9	2 2	28	9 9	3.6J	9 9	0.91J ND	9 9	2 2	2 2 2	2 2	2 2	S 0.	2																	
MW-30	Monitoring event P20	4/5/2021	2162	18.9	689.7	686.7	1.18	-36.3	7.17	12.2	N O	QN QN	9 9	QN QN	ND ND	QN QN	QN QN	N N	2 2	2 2 2			2 2 2	2							Not Sa	mpled	d For T	These F	Param	eters					
	Monitoring event P21	10/25/2021	2365	18.85	5.95	685.7 7.46	0.11	-141	3.45	3.3	9 9	2 2	9 9	9 9	ND 26	9 9	0.75 J ND	9 9	2 2	2 2 2	2 2	2 2	2 2 2	2																	
	Monitoring event P22	4/14/2022	2536	18.9		686.7	0.28	-121	18.6	12.5	N N	QN QN	N N	QN QN	ND 6.8 J	Q Q	Q Q	N N	2 2	2 2 2		2 2	2 2 2	2																	

			Well	Field Parameters	VOCs	Dissolved Gasses	Wet Chemistry	Q Potential (DNA)
Well ID	Event / Description Date	Elapsed Time (Days) 1 total Debth	(ft. ATOC) Water Level Measurement (ft. AMSL) Top of Casing Elevation (ft. AMSL) Head Elevation (gt. AMSL) PH (SU) PH	Oxidation Red Specific Cond Turbidity Temperature	(mg/L) Garbon, Total Organic 1,1,1-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 2-Hexanone 2-Hexanone Benzene Garbon Disulfide Chloroethane Chloroethane Chloromethane Chloromethane Chloroethane Chloroethane Chloroethane Chloroethane Chloroethane Chloroethane Chloroethane Trichloroethene Methylcyclohexane Methylcyclohexane Methylcyclohexane Methylchoroethene Tetrachloroethene Toluene Trichloroethene Trichloroethene Trichloroethene Trichloroethene Trichloroethene Vinyl chloride Vinyl chloride Xylenes, Total			Cells / TCE R-Dase (1) BAV1 VC R-Dase VC R-Dase
	Monitoring BL1 6/17/2010	-1783 4-		72 446 355 3.2	8 9			
	Monitoring event BL2 8/2/2010	-1737 (2	5.71 688.6 682.9 6.33	1.38 -3.9 0.955 0.89 17.6	%			
	Monitoring event BL3 3/11/2015		9 9 1		2. 2.<			
	Monitoring event P1 7/28/2015	84 42	4 9 9 7					
	Monitoring P2 4/8/2016 Monitoring P3 7/13/2016	339 4	0. 68 68 7	0 0 0	2 3 4 5 6 7 8 8 8 9 9 10 10 10 10			
	event 13 7713/2010		3.2 7.95 8.6 688.6 5.4 680.6 24 7.07		7. 0			
	event F4 10/11/2010		11, 67		~ Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q			
	event F3 1/23/2017	629 4	7 9 9 1	65 6.73 19 32.2 815 0.825 21 2.96 0.7 8.79	7. 0			
	event P6 4/10/2017 Monitoring P7 7/7/2017	706 42	0 6 68 6 8 6 8 9 9 9 9 9 9 9 9 9 9 9 9 9		2 2	Not S	ampled For These Parameters	
MW-35S	Monitoring P8 10/17/2017		9 - 10 1		6. 0. <td< th=""><th></th><th></th><th></th></td<>			
	Monitoring P9 1/4/2018		e 9 L	.8 0. 57 -3 585 1.0 63 14	4. 5			
	Monitoring P10 4/9/2018			37.1 37.1 37.1 NA N N N N N N N N N N N N N N N N N N	2			
	Monitoring P11 7/11/2018		6.3 688.6 68 682.3 68 7.1 7.	.65 4. 7.6 3. 890 0.4 .01 N	2.			
	Monitoring event P12 10/19/2018		11.6 688.6 68 677.0 68 7.1 7.1	300 29 3.9 3.9	27			
	Monitoring event P13 1/7/2019		0.7	9.7	%; Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q			
	Monitoring event P14 4/17/2019		0.55 688.6 6 688.0 6	5.9 0.948 C 11.9 8	22			
	Monitoring event P15 7/25/2019		5.69 688.6 (682.9 (7.26	3.13 143.8 0.936 (0.937.7 14.1	4. 8			
	Monitoring event P16 10/17/2019		9.35 688.6 679.2 6.99		2- 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0.052 0.053 0.053 0.053 0.053 0.053 0.053 0.053 0.053 0.053 0.053 0.053 0.053 0.053 0.053 0.053 0.053 0.053	NS 348 348 ND 0.0024 JUN NS	Not Sampled For These Parameters

				Well		Field P	arameters							VOCs					Dis	solved G	asses			V	Wet Chen	mistry			Q Pot	ential (DNA)	
																													Dechlorinating Bacteria	Functional Ge	enes
Well ID	Event / Description	Date	Elapsed Time (Days)	Total Water	Head Elevation pH	Dissolved Oxygen Oxidation Reduction Potential	Specific Conductance Turbidity	Temperature	1,1,1-Trichloroethane 1,1,2-Trichloro-1,2,2-trifluoroethane	1,1,2-Trichloroethane 1,1-Dichloroethane	1,1-Dichloroethene 1,2-Dichloroethane 2-Hexanone	2-Butanone (MEK) 4-Methyl-2-pentanone	Acetone Benzene Carbon Disulfide	Chloroethane Chloroform Chloromethane	cis-1,2-Dichloroethene Dichlorodifluoromethane	Eurynbenzene Methylcyclohexane Methylene chloride	Methyl Acetate Tetrachloroethene	Toluene trans-1,2-Dichloroethene Trichloroethene	Vinyl chloride Xylenes, Total Carbon Dioxide	Ethane Ethene	Methane	Nitrate Manganese Ferric iron	Sulfate Sulfide Nitrite	Phosphorous Ammonia	COD BOD Total Alkalinitu	l otal Alkalinity Ferrous Iron Iron	Acetic Acid Formic Acid Lactic Acid	-Buty ropio hloric	Dehalococcoides spp (1)	TCE R-Dase (1) BAV1 VC R-Dase (1)	VC R-Dase
				(ft. ATOC)	(ft. AMSL)	(mg/L)	(mS/cm) (NTUs)	(00)	(mg/L)					(ng/L)						(ng/L)					(mg/L)					(cells / mL)	
	Monitoring event P17	1/8/2020	1709	15 0.52 688.6	688.0	4.88	0.716	7	ND ND	9 9	999	2 2 2	999	999	999	2 2 2	99	9	ND ND 43,000	S S	S S	0.096	58.6 ON	SN ON	NS NS	325 ND 0.31	SN SN SN	N N N N N N N N N N N N N N N N N N N	Not Sa These	ampled For Parameters	
	Monitoring event P18	4/14/2020	1806	15 0.18 688.6		4.87	0 0	7.16	S. O. O.	99	999	9 9	ND ND 0.75J	999	999	2 2 2	9 9	999	9 9												
MW-35S	Monitoring event P19	10/6/2020	1981	15 9.58 688.6	679.0	0.6		13.9	V.4 ON ON	9 9	999	2 2 2	999	999	999	2 2 2	9 9	999	99												
	Monitoring event P20	4/5/2021	2162	15 0.65 688.6	_	10.5	0.279	8.73	ND dN	2 2	2 2 2	2 2 2	2 2 2	N N	2 2	2 2 2	N N	999	2 2					Not Sa	ampled	For The	ese Para	ameters			
	Monitoring event P21	10/20/2021	2360	15 1.36 688.6	687.2	. 2.9	0.900	15.5	S. O	9 9	999	999	999	999	999	2 2 2	9 9	999	99												
	Monitoring event P22	4/7/2022	2529	15 0.49 688.6	688.1	2.59			S S	9 9	999	999	999	999	999	2 2 2	9 9	999	9 9												

				Well	Field Parameters			VOCs	Dissolved Gasses	Wet Chemistry	Q Potential (DNA)
Well ID	Event / Description	Date	Elapsed Time (Days)	ATOC) Water Level Measurement AMSL) Top of Casing Elevation AMSL) Head Elevation	L) Dissolved Oxygen Oxidation Reduction Potential m) Specific Conductance is) Turbidity Tennerature	Carbon, Total Organic 1,1,1-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethane	1,2-Dichloroethane 2-Hexanone 2-Butanone (MEK) 4-Methyl-2-pentanone Acetone Benzene	Carbon Disulfide Chloroethane Chloromethane cis-1,2-Dichloroethene	Carbon Dioxide Ethane Methane Nitrate Manganese Ferric iron Sulfate	Sulfide Nitrite Phosphorous Ammonia COD BOD Total Alkalinity Ferrous Iron Iron Acetic Acid Comic Acid Lactic Acid Dubber Acid Comic Acid	Dehalococcoides spp (1) TCE R-Dase (1) BAV1 VC R-Dase VC R-Dase
				#; #; #;	5 5	=		(ug/L)	(ng/L)	(mg/L)	(cells, mL)
	Monitoring event BL1	6/17/2010	-1783	2.98 689.8 686.8				US: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			
	Monitoring event BL2	8/3/2010	-1736		1.6 -85.7 1.139 2.7	S S S S S S S S S S S S S S S S S S S	2 2 2 2 2 2 2	ON ON CA.			
	Monitoring event BL3	3/10/2015	-56	3.21 689.8 686.6	2.87 2.87 2.15 1.064 2.43			2222			
	Monitoring event P1	7/29/2015	85	3.85 689.8 686.0	0.18 0.18 -142.1 2.958 3.81	ND N	ND 400 ND	2.1 N ON D 4.1			
	Monitoring event P2	4/8/2016	339		0.83		S S S S S S S				
	Monitoring event P3	7/11/2016	433	15 7.54 689.8 682.2 6 86.2	0.45 -72 -72 1.613	21.5 CN ON	N 2 N 8 N 8 N 8 N 8 N 8 N 8 N 8 N 8 N 8	8885:			
	Monitoring event P4	10/12/2016	526		0.3 -145.2 10.070 19.7		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ON ON ON S.F. 12			
	Monitoring event P5	1/24/2017	630		0.2 0.2 -241 -241 7.44	6. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.		0.20 J ND ND 1.6			
	Monitoring P6	4/12/2017	708	15 5.15 689.8 684.6	0 1 7 4	6. 4.5 ON		¬			
MW-36S	Monitoring event P7	7/6/2017	793		0.07 -74 1.240 4.35			ON ON C. 1.		Not Sampled For These Parameters	
	Monitoring event P8	10/17/2017	896		0.16 -329 1.360 3.82			S S S S S S S S S S S S S S S S S S S			
	Monitoring event P9	1/4/2018	975	3.06 689.8 686.7	1.17 -34 0.812 NA	2. 4. ON		8 8 8 8 E			
	Monitoring event P10	4/9/2018	1070	2.81 689.8 687.0	1.16 -67 0.781 NA		2 2 2 2 2 2 2	Q Q Q C:-			
	event	7/10/2018	1162	68 68	0.57 -106 1.370 2.95		3.5 U U U U U U U U U U U U U U U U U U U	O O O O O O			
	Monitoring event P12	10/18/2018	1262	15 5.74 689.8 684.0	0.2 0.2 -77 1.176 11.2	4. T	0				
	Monitoring event P13	1/7/2019	1343		0.21 0.21 -114 1.169 10.9	3.4 S ON		0			
	Monitoring event P14	4/16/2019	1442		3.01 -89.2 1.307 16.3						
	Monitoring event P15	7/25/2019	1542	6.23 689.8 683.6 7.10	1.89 -79.5 1.151 330.5	3.6 N N N N N N N N N N N N N N N N N N N		3.5 ND ND ND 1.3			
	Monitoring event P16	10/18/2019	1627	2.91 689.8 686.9	0.29 -26.5 1.144 23.2	MD ND CN		0			

				Well		Field Par	ameters							VC)Cs						Dissolv	ved Gass	ses			We	et Chemi	istry			Q Pot	ential (DNA)	.)
																															Dechlorinating Bacteria	Functiona	al Genes
Well ID	Event / Description	Date	Elapsed Time (Days)	Total Depth Water Level Measurement Top of Casing Elevation		Dissolved Oxygen Oxidation Reduction Potential	Specific Conductance Turbidity	Temperature Carbon, Total Organic	1,1,1-Trichloroethane 1,1,2-Trichloro-1,2,2-trifluoroethane	1,1,2-Trichloroethane 1,1-Dichloroethane	1,1-Dichloroethene 1,2-Dichloroethane	z-nexanone 2-Butanone (MEK) 4-Methyl-2-nentanone	4-wetnyr-z-pentanone Acetone Benzene	Carbon Disulfide Chloroethane	Chloroform Chloromethane cis-1.2-Dichloroethene	Dichlorodifluoromethane Ethylbenzene	Methylcyclohexane Methylene chloride	Metnyl Acetate Tetrachloroethene	Toluene trans-1,2-Dichloroethene	Vinyl chloride Xylenes, Total	Carbon Dioxide Ethane	Ethene	Methane Nitrate	Manganese Ferric iron	Sulfide Nifrite	Phosphorous Ammonia COD	BOD Total Alkalinity	Ferrous Iron Iron	Formic Acid	n-Butyric Acid Propionic Acid Chloride Pyruvic Acid	Dehalococcoides spp (1)		
				(ft. ATOC) (ft. AMSL)	(ft. AMSL)	(mg/L)	Ē ;	("C)							(ng/L)							(ng/L)			- 1 - 2 -		(mg/L)			, = , = , = , =		mL)	
	Monitoring event P17	1/8/2020	1709	2.83	7.04	0.33	1.290	7.4		0			2 2 2																				
	Monitoring event P18	4/16/2020	1808		686.9 6.93	1.53	1.2	7.41	ND ON	ND 0.40J	9 9 9		N N	QN ND	ND A L	S S	2 2 2		999	S S S													
MW-36S	Monitoring event P19	10/9/2020	1984		9	0.55	. o	14	Q Q	ND 10.53J	999	2 2 2		N ON	8 8 2	99	999		999							Not Sar	mpled F	or Thes	se Para	meters			
335	Monitoring event P20	4/16/2021	2173	15 2.87 689.8	686	2.9	3.25	7.24		ND 10.54 、	999	2 2 2	2 2 2	N N	9 8 °	99	999	2 2 !	999	2 2 2						not our	npiou i	01 11100	Jo i aic				
	Monitoring event P21	10/22/2021	2362	15 2.67 689.8	7.5	-91	1.300	13.4	N ON	ND .40			N P P	N O	S S 5			28	999	2 2 2													
	Monitoring event P22	4/11/2022	2533	15 2.59 689.8	7.2	0.14	1.280 1 8.34 (s	8.5	QN QN	ND 0.43	999	9.5 J	4.2 J ND	9 9	S S S		999	2 2 !	999	2 2 2													

				Well	Field Parameters		VOCs		Dissolved Gasses Wet Chemistry	Q Potential (DNA)
Well ID	Event / Description	Date	Elapsed Time (Days)	(feet) Total Depth (ft. ATOC) Water Level Measurement (ft. AMSL) Top of Casing Elevation (ft. AMSL) Head Elevation	- E G	(mg/L) Carbon, Total Organic (mg/L) Carbon, Total Organic 1,1,1-Trichloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane	2-Hexanone 2-Butanone (MEK) 4-Methyl-2-pentanone Acetone Benzene Carbon Disulfide Chloroethane Chloromethane cis-1,2-Dichloroethene Dichlorodifluoromethane Ethylbenzene Methylene chloride Methylene chloride Methylene chloride Acetase	Toluene Trichloroethene Trichloroethene Vinyl chloride Xvlenes, Total	Ethane (ug/L) Ethene Methane Nitrate Manganese Ferric iron Sulfate Sulfate Sulfate Sulfate COD Morphorous Ammonia COD BOD Ferrous Iron Ferrous Iron Iron Iron Lectic Acid Fomic Acid Lactic Acid	n-Butyric Acid Propionic Acid Chloride Pyruvic Acid Chloride Pyruvic Acid Chloride Pyruvic Acid Chalococcoides spp (1) EAV1 VC R-Dase (1) CR-Dase (1) CR-Dase (1) CR-Dase (1) CR-Dase CR-Dase (1) CR-Dase CR-Dase
				(ff. A)	(NT	SÜ SÜ			δη)	(cells
	Monitoring event BL1	4/7/2011	-1489	14.3 10.9 689.1 678.2	6.92 1.89 70.8 1.692 2.3		11 11 12 13 15 10 10 10 10 10 10 10 10 10 10	31 13000 27 ND		
	Monitoring event BL2	3/12/2015	-54	14.3 1.8 689.1 687.3	6.94 0.91 -101.3 1.855 8.04		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1,200 ND 12,000 ND	Not Sampled For These Parar	neters
	Monitoring P1	6/12/2015	38		Grab Sample)					
	Monitoring event P2	7/27/2015	83	14.3 2.7 689.1 686.4	6.28 0.3 -92.7 2.521 2.85	19.35 1,700 660 71 J 9,700 2,400	M	280 ND ND ND ND ND	Not Sampled For These Parameters	<2.5E+01 <2.5E+01 <2.5E+01
	Monitoring event P3	4/8/2016	339	14.3 3 689.1 686.1	6.67 0.36 -111.7 1.960 7.48	9.49 620 3,600 5,000 7,100 7,100 100 100	ND N	ON DN ON		
	Monitoring event P4	7/14/2016	436	14.3 5.38 689.1 683.7		796 796 12,000 8,300 120 J 11,000 7,800		2,100 ND 100 J 530		
	Monitoring event P5	10/13/2016	527	2.3 689.1 686.8	6.83 0.21 -86.4 1.358 3.76			N N N N N N N N N N N N N N N N N N N	Not Sampled For These Parar	neters
MW-42S	Monitoring P6	1/25/2017	631	3.06 689.1 686.0	6.84 0.78 -95.7 1.643 3.12	238 238 1,200 1,600 ND 2,900 790 130,1	ND N	1,000 ND ND 2,400		
	Monitoring event P7	4/12/2017	708	14.3 1.68 689.1 687.4	7.02 0.12 -115.3 1.094 4.89		N N N N N N N N N N N N N N N N N N N			3.98E+04 1.28E+04 <2.50E+01
	Monitoring event P8	7/10/2017	797	2.1 689.1 687.0	6.8 0.21 -67.8 1.390 4.68	238 238 UD 1,200 1,800 150	N N N N N N N N N N N N N N N N N N N	3,600 3,600 3,600 CN		
	Monitoring event P9	10/19/2017	898	6.35 6.35 689.1 682.7	6.56 0.14 -344.2 2.660 3.77	18.8 395 4,100 7,500 48 8,900 1,700	ND N	1,900 280 54 54 12,000	Not Sampled For These Parar	neters
	Monitoring event P10	1/2/2018	973	14.3 3.6 689.1 685.5		5.34 162 740 850 ND ND 2,500 ND	M N N N N N N N N N N N N N N N N N N N	950 ND ND ND ND ND ND ND ND ND ND ND ND ND		
	Monitoring event P11	4/11/2018	1072	2.57 689.1 686.5	6.91 0.72 -78.4 1.011 NA		M N N N N N N N N N N N N N N N N N N N			4.04E+04 4.29E+04 3.33E+01 3.56E+03
	Monitoring event P12	7/12/2018	1164	2.95 689.1 686.1	7.13 0.17 -98.8 1.409 1.48	14.18 ND ND ND ND ND ND ND	ND N	000 000 ND 1,400 ND	Not Sampled For These Parar	

						Well		Fi	eld Par	ameter	s								voc	s						Dissolv	ved Gas	ses				Wet CI	hemistry	,			QI	Potentia	al (DNA)	
Well ID	Event Descript		Date	Elapsed Time (Days)	(feet) Total Depth	(ft. AMSL) Top of Casing Elevation	(ft. AMSL) Head Elevation	(SU) PH (mg/L) Dissolved Oxygen	ŏ	(mS/cm) Specific Conductance	(*C) Temperature	(mg/L) Carbon, Total Organic	1,1,1-Trichloroethane	1,1,2-Trichloroethane	1,1-Dichloroethene	1,2-Dichloroethane 2-Hexanone	2-Butanone (MEK) 4-Methyl-2-pentanone	Acetone Benzene	Carbon Disulfide Chloroethane (ug/L) Chloroform	Chloromethane cis-1.2-Dichloroethene	Dichlorodifluoromethane	Ethylbenzene Methylcyclohexane Methylene chloride	Methyl Acetate Tetrachloroethene Tolinora	trans-1,2-Dichloroethene Trichloroethene	Vinyl chloride Xylenes, Total	Carbon Dioxide Ethane	(ug/L) Ethene	Methane Nitrate	Manganese Ferric iron	Sulfate Sulfide	Ntrite Phosphorous	V 0 B	(mg/L) Total Alkalinity Ferrous Iron	Iron Acetic Acid	Formic Acid Lactic Acid	Propionic Acid	Dechlorinat Bacteria Dehalococcoides sbb (1)			VC R-Dase
	Monitoring event	P13	10/23/2018	1267	14.3		т т	6.37		0	+	_	I I	N 0 2	130 J	110 J ND	9 9	99	16,000 ND	2 2 2	2 :	Q Q 000		00 N	910 ND															
	Monitoring event	P14	1/8/2019	1344	14.3			6.71			12.9						2 2				QN	Q Q Q	N N O C		6,700 ND															
	Monitoring event	P15	4/18/2019	1444	14.3	1.14	6.789	7.47	-125.2													ND ND 210 J									Not	t Sampl	ed For	These	Param	eters				
	Monitoring event	P16	7/26/2019	1543	14.3	1.68	687.4	6.06		2.195	-30.66 19.5							99							_						1101	Campi	04 1 01	771000	raram	0.0.0				
	Monitoring event	P17	10/18/2019	1627	14.3	1.25	687.8	6.22	-118.5	2.242	38.7b 16	895	ND	ND	2,000 190 J	ND	Q Q	Q Q	16,000 150 J	3 000	QN :		ND ND	ON ON	6,000 ND															
	Monitoring event	P18	1/10/2020	1711	14.3	0.61	688.5	5.52	34.3	1.250	9.5	341	160	ND N	150	43 J ND	230 J ND	99	7,700 ON	N 019	2	999	N 0 5		1200 ND															
MW-42S	Monitoring event	P19	4/16/2020	1808	14.3	2.01	687.1	6.34	118.2	1.532	10.17 8.14	368	200	S Q ,	130	58J ND	140J		11,000 ND	N 6	9	222	ON ON O		1,100 ND	92,000	2 2	2 2	ND 67.5	Q Q		0.18 ND	659 2.8HF	70.3 NS	S N S	NS 283	7.73E+01	7.0 FOT 10.4	<2.50E+01	7.00E+00
	Monitoring event	P20	10/12/2020	1987	14.3	1.55	687.6	6.55	-111.5	1.302	18.3	392	160J	N OS	99J	76J ND	9 9	2 2	17,000 ND	ND 490	Q :	ND 130J	988	200	2,500 ND	370	2600	13,000	0.42	99	NS NS	0.093 NS NS	999 1.3 HF	43.9 NS	SN SN	366 366	Not The		pled For rameters	
	Monitoring event	P21	4/2/2021	2159	14.3	0.0	688.5	NA 2.33	-103.1	1.221	2.56	427	ND 280	ND 22	ND	QN QN	9 9	2 2 2	12,000 ND	2 2 2	Q :	UND 100J	ON ON 00	OZO QN QN	190J ND	47,000	3,400	15,000 ND	0.30B 42.8	99	0.078B NS	0.11 NS NS	798 2.0HF	44.8 NS	S S S	NS 317	NS 4.22E+04	1 055+03	1.95E+03 <2.50E+01	4.77E+03
	Monitoring event	P22	10/27/2021	2367	14.3	0.0	688.5	6.6	-93.2	1.590	17.4	333	ND 430	ND ND	OSC	QN QN	Q Q	QN QN	10,000 ND	2 2 2	Q.	ON ON	ON ON OZ	ON ON	ON ON	65,000	3500	11,000	NS 37.8	QN QN	SN S	S S S	497 6.1 HF	37.9 NS	S S S	S S S	NS. 2-5%	%C U 8U U	0.001-0.004%	2-6%
	Monitoring event	P23	4/8/2022	2530	14.3	1.41	687.7	6.82	-108.7	1.990	8.6	349	240	ND 099	OOO ND	Q Q	99	A A A	15,000 ND	999	9	999	S S S	2 2 2	230 ND	89,000	4,300	13,000	NS 32.4		ON S	S S S	759 3.9 HF	36.3 NS	S S S	S S S	5-14%	%8080	0.01-0.03%	5-15%

				,	Well	Fie	eld Paran	neters							VO	Cs			Dis	solved Gasse	es		Wet Ch	nemistry			QP	otential (I	DNA)
Well ID	Event / Description	Date	Elapsed Time (Days)	(feet) Total Depth (ft. ATOC) Water Level Measurement	(ft. AMSL) Top of Casing Elevation (ft. AMSL) Head Elevation		(mV) Oxidation Reduction Potential	(NTUs) Turbidity (°C) Temperature	_	1,1,1-Trichloroethane 1,1,2-Trichloro-1,2,2-trifluoroethane	1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethene	1,2-Dichloroethane 2-Hexanone	2-Butanone (MEK) 4-Methyl-2-pentanone	Benzene Carbon Disulfide	Chloroethane	Chloromethane Cis-1,2-Dichloroethene Dichlorodifluoromethane Ethylbenzene	Methylcyclohexane Methylene chloride Methyl Acetate Tetrachloroethene	Toluene trans-1,2-Dichloroethene Trichloroethene Vinvi chloride	Xylenes, Total Carbon Dioxide	(ug/L) Ethene Methane	Nitrate Manganese Ferric iron	Suffide Nitrite Phosphorous	. 4 O <u>B</u>	(mg/L) Total Alkalinity Ferrous Iron Iron Acetic Acid	Formic Acid Lactic Acid	n-butyric Acid Propionic Acid Chloride Pyruvic Acid	Dechlorinating Bacteria Dehalococcoides sbb (1)	(cells / mL) TCE R-Dase (1)	BAV1 VC R-Dase (1) VC R-Dase
	Monitoring event BL1	4/7/2011	-1489	14.5		_		3.62	SN I	1.4	13 3.5 J	99	3.3 J	S S L.	12	8888	0.69 0	1.5 ND 15 19	1.7 J										
	Monitoring event BL2	3/12/2015	-54	14.5	689.1	7.45	-140	2.58		9 9	S 1.8	99	999	2 2 2	QN S	S S S S S	0.82 J N N O N O N	8887	0.73			Na	at Campl	ad Far Thad	aa Daram	atoro			
	Monitoring event P1	7/29/2015	85	14.5	689.1	5.63	-23.2	10.82	2,060 B	99	S S	3.1 J	250 ND	1.3 ND	13	S S S S		USO.0 1	1.7 J			INC	ot Sampl	ed For Thes	se raiaiii	ieters			
	Monitoring event P2	4/8/2016	339	14.5	689.1	6.82	-102	23.4	8: 0		999	99	57 ND	S ON ON	9.8		5.4 ON ON ON	222	2 2										
	Monitoring event P3	7/13/2016	435	14.5				23.4		Q Q		QN QN		2	7.5				28		Not Sai	npled For	These P	arameters			1.77E+02	1.58E+01	<2.5E+01
	Monitoring event P4	10/13/2016	527	14.5				54.5	22.2		999	99	999	222	10	2222	9999	99988	ON ON									·	
	Monitoring event P5	1/25/2017	631	14.5		6.81		11.9		99	999	9 9	999	222		2222	(6)	9999	2 2										
	Monitoring event P6	4/11/2017	707	14.5		6.77	-94	21.5			999			2 2 2		2222		2222											
MW-43S	Monitoring event P7	7/10/2017	797	14.5			- (13.6						222				9999											
	Monitoring P8 Monitoring P0	10/19/2017	898	5 14.5			`' -	9.91								0.64 ND ND 0.64													
	wontoring event P10	1/2/2018	973	.5 14.5 34 3.35	. - 0	_ 10	4 -84	A NA 1 6.65																					
	event P10 Monitoring P11	4/11/2018 7/12/2018	1072 1164	14.5 14.5 2.95 1.84	, - 0		-86 -84	4.13 NA 18.7 11														No	ot Sample	ed For Thes	se Param	eters			
	event F11 Monitoring P12	10/19/2018	1263	14.5 14 3.52 2.9				δ 4 0	7 5.8	ZZ		z z	2 Z Z		N 2			2222											
	Monitoring P13	1/8/2019	1344	14.5 1 ⁴ 2.43 3.				3.1																					
	Monitoring P14	4/17/2019	1443	14.5 1.89 2				2.2																					
	Monitoring event P15	7/26/2019	1543	14.5				593.1 2 19.5 1																					
	Monitoring event P16	10/18/2019	1627	14.5	<u></u> - π			8.27 5								2222													

				Well		Field Para	meters							VO)Cs						Disso	lved Gas	sses				Wet Che	emistry				Q Pot	ential (DI	NA)
																																Dechlorinating Bacteria	Function	onal Genes
Well ID	Event / Description	Date	Elapsed Time (Days)	Total Depth Water Level Measurement Top of Casing Elevation		Dissolved Oxygen Oxidation Reduction Potential	Specific Conductance Turbidity	Carbon, Total Organic	1,1,1-Trichloroethane 1,1,2-Trichloro-1,2,2-trifluoroethane	1,1,2-Trichloroethane 1,1-Dichloroethane	1,1-Dichloroethene 1,2-Dichloroethane	2-Butanone (MEK)	Acetone Benzene	Carbon Disulfide Chloroethane	Chloroform Chloromethane cis-1.2-Dichloroethene	Dichlorodifluoromethane Ethylbenzene	Methylcyclohexane Methylene chloride	Methyl Acetate Tetrachloroethene	Toluene trans-1,2-Dichloroethene	Inchloroethene Vinyl chloride Xylenes, Total	Carbon Dioxide Ethane		Methane	Manganese Ferric iron	Sulfate Sulfide	Phosphorous Ammonia	COD	Total Alkalinity Ferrous Iron	Iron Acetic Acid Formic Acid	Lactic Acid n-Butyric Acid	Propionic Acid Chloride Pyruvic Acid	Dehalococcoides spp (1)	TCE R-Dase (1)	BAV1 VC R-Dase (1) VC R-Dase
				(ft. ATOC) (ft. AMSL)			ē ;	(mg/L) (, , , ,	· · · · ·				(ng/L)			_ ,.				(ng/L)			107 07 2) (1)				_	(cells / mL)	
	Monitoring event P17	1/8/2020	1709	2.03	6.84	0.26	1.410	19.8	S S	99	999	2 2 2	2 2 2	ND 5.4	999	99	9 9	99	999	2 2 2														
	Monitoring event P18	4/14/2020	1806	14.5 2.12 689.1	687.0 <mark>6.77</mark>	0.83	1.337	12.8	ND ON	N O	2 2 2		2 2 2	ND 4.3	999	99	N N	9 9	999	2 2 2														
MW-43S	Monitoring event P19	10/7/2020	1982	14.5 2.45 689.1	89	0.64	1.185	14.1	N N	N N			2 2 2	2 2	5.5 CN			9 9	999	2 2 2						Not 9	Sample	d For T	These P) 2 rame	tore			
WVV-455	Monitoring event P20	4/2/2021	2159	2.1	89 2	3.32	0.695	8.9	ND ND																	NOC	Oample	iu i oi	1116361	aranic	iers			
	Monitoring event P21	10/25/2021	2365	2.1	6.8	0.11	000.	11.9	QN QN	9 9		2 2 2	2 2 2	99	999	99	98	9 9	999	2 2 2														
	Monitoring event P22	4/14/2022	2536	14.5	687.2 6.82	0.14	1.130	7.3	QN QN	QN QN			2 2 2	3.1 J	2 2 2	2 2	N ON	N N	2 2	2 2 2														

				Well	Field Pa	rameters			V	/OCs		Dissolved Gasses	s Wet Chemistry		Q Potential (DNA)										
Well ID	Event / Description	Date	Elapsed Time (Days)	Total Depth Water Level Measurement Top of Casing Elevation Head Elevation	pH Dissolved Oxygen Oxidation Reduction Potential	Specific Conductance Turbidity Temperature	Carbon, Total Organic 1,1,1-Trichloroethane 1,1,2-Trichloro-1,2,2-trifluoroethane	1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2-Dichloroethane 2-Hexanone 2-Butanone (MEK) 4-Methyl-2-pentanone	Acetone Benzene Carbon Disulfide Chloroethane	Chloroform Chloromethane cis-1,2-Dichloroethene	Ethylbenzene Methylcyclohexane Methylcyclohexane Methyl Acetate Tetrachloroethene Trichloroethene Trichloroethene Trichloroethene Vinyl chloride Xylenes, Total	Carbon Dioxide Ethane Ethene Methane	Nitrate Manganese Ferric iron Sulfate Sulfide Nitrite Phosphorous Ammonia COD BOD Total Alkalinity Ferrous iron Iron	id	Dehalococcoides spp (1) TCE R-Dase (1) BAV1 VC R-Dase (1) VC R-Dase										
				(feet) (ft. ATOC) (ft. AMSL)	(SU) (mg/L) (mV)	(mS/cm) (NTUs)	(mg/L)			(ug/L)		(ng/L)	(T/6w)		(cells / mL)										
	Monitoring event BL	6/1/2011	-1434	8.55 689.0	7.45	0.660	S S S		9999	2 2 2															
	Monitoring event P1	7/29/2015	85	1.6 689.0 6	. 8 - 0	3.04	31.6 B ND ON				9999999999														
	Monitoring P2	4/8/2016	339	1.55 1.55 689.0	. e e –	0.897 ' 4.1 8.56	7 9 9	2222222				!													
	Monitoring event P3	7/14/2016	436	4 689.0		0.954 (3.99 15.5		222222	9999	999															
	Monitoring event P4	10/11/2016	525	15 2.55 689.0	7.21 1.28 -93	6.9 15.3																			
	Monitoring event P5	1/25/2017	631	1.09		7.86 8.32																			
	Monitoring event P6	4/7/2017	703	0.89	7.12 0.32 -94	10.1		999999	9999																
	Monitoring event P7	7/10/2017	797	15 2.45 689.0	7.32 0.43 -67	0.880 4.62 15	1.5 ON ON	9999999	9999	999															
	Monitoring event P8	10/16/2017	895	2.15	7.29	0.930 2.36 13.8	8.1 S S	9999999	9999	2 2 2 2															
M/M/ 440	Monitoring event P9	1/2/2018	973	15 1.32 689.0	0 -	0.588 NA 7.5	1.5 ND 0.64 J	9999999	9999	222															
MW-44S	Monitoring event P10	4/11/2018	1072	0.88		0.580 NA 6.75	2.4 ND ND	999999	9999	999															
	Monitoring event P11	7/12/2018	1164	6 5 7	7.2 0.64 -84	1.51	1.2 B		9999	222			Not Sampled For These	Parameters											
	Monitoring event P12	10/23/2018	1267	15 2.29 689.0	6.77 0.18 -67	7.3	0.1 ON ON		9999																
	Monitoring event P13		1344	15 5.52 689.0	7.25 0.45 -79	1.020 20.6 9.9	8. 8. 8. 8.		9999	999															
	Monitoring event P14	4/18/2019	1444	1.94 689.0	3.73 -32	0.987 13.2 9.1	9.1 ON ON		9999																
	Monitoring event P15	7/26/2019	1543	15 5.09 689.0	7.37 4.24 23.2		0.77 ON ON	9999999	9999	999															
	Monitoring event P16	10/17/2019	1626	15 1.29 689.0		0.973 4.88 12.8		9999999	9999	999															
	Monitoring event P17	1/8/2020	1709	15 1.00 689.0		0.990 2.39 7.0	6. 5 S	9999999	9999	999															
	Monitoring event P18	4/14/2020	1806	0.67	7.13	7.94																			
	Monitoring event P19	10/7/2020	1982	2.00	3.01	0 , , , ,	4. U S																		
	Monitoring event P20	4/2/2021	2159	0.4		0.506	4.1 d d																		
	Monitoring event P21	10/25/2021	2365	0.6	3.0%	1.060 4.30					22222222222														
	Monitoring event P22	4/12/2022	2534	6.85 689.0	7.15 0.35 -71.4	1.006	0.79 CN CN	999999	2222	999															

				Well	I	F	ield Para	meters							V	/OCs							Dissol	ved Gas	ses				We	et Chen	nistry				Q Potential (DNA)
Well ID	Event / Description	Date	Elapsed Time (Days)	(feet) Total Depth ATOC) Water Level Measurement	Hear	(SU) PH (mg/L) Dissolved Oxygen		(mS/cm) Specific Conductance (NTUs) Turbidity	(°C) Temperature	(mg/L) varions, total organic 1,1,1-Trichloroethane 1,1,2-Trichloro-1,2,2-trifluoroethane	1,1,2-Trichloroethane 1,1-Dichloroethane	1,1-Dichloroethene 1,2-Dichloroethane 2-Hexanone	2-Butanone (MEK) 4-Methyl-2-pentanone	Acetone Benzene	Carbon Disulfide Chloroethane	(ug/L) Chloroform Chloromethane	Cis-1,2-Dichloroethene Dichlorodifluoromethane	Methylcyclohexane Methylcyclohexane	Methyl Acetate	I etrach loroethene Toluene	trans-1,2-Dichloroethene Trichloroethene	Vinyl chloride Xylenes, Total	Carbon Dioxide Ethane	(ug/L) Ethene	Methane	Manganese Ferrir iron	Sulfate	Nitrite Phosphorous	Ammonia	(BOD Total Alkalinity	Ferrous Iron	Acetic Acid Formic Acid	Lactic Acid n-Butyric Acid Propionic Acid	_	(cells / mL) TCE R-Dase (1) BAV1 VC R-Dase (1) VC R-Dase
					ŧ ŧ	# E				Ē.						3									\perp					E.					0)
	Monitoring event BL	.1 6/17/2010	-1783		690.5	8.32	1 0	0.492	11.6		9 9	999	999	F.1-4	0	99	999	222	2 2 !	2 2	99							N	ot Sar	mnled	For The	ese P	arameters		
	Monitoring event BL:	.2 8/2/2010	-1737	26 7.83	698.7	7.06	58.7	0.499	18.5	2 2 2	9 9	999	2 2 2	222	0.69 J	9 9	222		2 2 5	2 2	9 9							14	ot our	прос	101111	0001	aramotore		
	Monitoring event BL	.3 11/5/2014	-181	NS 8	698.7 690.7	7.47	-56.6	0.399 NS	m	S S	·					r These							3,200	SN SN	3,900	0.05	9.1 NS	QN 0000	0.37	5.2	0.12	NS	SN SN SN	NS NS	Not Sampled For These Parameters
	Monitoring event BL	.4 3/12/2015	-54		698.7 692.0	7.23		0.511		7.4 ON ON		999	999	22	9 9	99	999	2 2 2	2 2 !	2 2	99									' '			arameters		
	Monitoring event P1	1 7/28/2015	84		698.7	7.71		0.454 (ND ON	9 9	999	2 2 2	99	99	99	222	2 2 2	2 2 !	2 2	22	99	1,600	QN QN	2,900	0.021	4.4 8.8	2 2 2	0.32 UN	5.6 25.6	4.8	SN SN	SN SN SN	NS NS	
	Monitoring event P2	2 1/8/2016	248	26 7.6	698.7	7.73	-91.9	0.494	10.2	ND ND	9 9	999	2 2 2	222	9 N	99		2 2 2	2 2 5	2 2	99	Q Q	610 J	9	1,200	0.03	5. 72 E	Q 0	0.31 CN	6.3 b	1.3 ND 1.3	SN SN	8 8 8	SN SN	
	Monitoring event	3 4/8/2016	339		698.7	7.76				e. CN	9 Q	9 S	2 2 2	Q Q	N ON	QN S		2 2 2	Q Q	N N	Q Q			2 2	1,600	0.12	c 8.9 CN	ND 0.056	0.23	2.4	0.094 J HF F1 5.2	SN SN	S S S	NS NS	
MW-35D	Monitoring event P4	4 7/12/2016	434	26 7.42	698.7 691.2	7.58	-98.6	0.466	15.93	dN DN	99	999	2 2 2	99	98	99	222	222			22	99	10,000	2 2	099	0.051 B	3.4 J B	ND 0.034	0.26 ND	2.8 b	0.10 H F 2.7	SN SN	SN SN SN	SN	
	Monitoring event P5	5 10/11/2016	525	26 8.65	698.7	7.76	-115	0.455	14.3	ON ON	S S	S S	2 2 2	99	N ON	QN S	2 2 2	2 2 2		N ON		Q Q	11,000	S Q	1,300		3.3	OND 0.66	12.2 UN	5 257	0.12	SN SN	NS NS NS	NS NS	Not Sampled For
	Monitoring event P6	6 1/24/2017	630	26 8.07	9.069	7.61	-117.8	0.294	10.28	3.6.B DN DN	98	999	2 2 2	99	99	99	999	222		2 2		99	8,900	2 2	1,400	0.083 B	5.6 OIA	S S S	0.13 F1 10 1	3.3 b	3.7	SN SN	SN SN SN	NS	These Parameters
	Monitoring event P7	7 4/10/2017	706	7.44	698.7	7.81	-153.8	0.390	13.4	8.9 ON ON	9 9	999	2 2 2	5.4 J	9 9	22	999	222		2 2	99	98	9,200	2 2	2,500	0.073	2.7 CIN	ON 059	0.26 O.26	3.7	2.2 ND 2.2	NS NS	SN SN SN	NS	
	Monitoring event P8	8 7/7/2017	794	26 8.25	698.7	7.81	-77.2	0.438		1.6 ON ON																							NS NS NS		
	Monitoring event	9 10/17/2017	896	8.9	698.7	7.87	-321.4	0.491	13.4	N ON ON	B B	2 2 2	2 2 2	2 2	8 8	2 2	2 2 2	2 2 2	2 2 !	2 2	22	Q Q	10,000	S S	5,300	0.027	2.7	ND 0.033	0.29 CIN	2.7	ND 1.3	SN SN	SN SN SN	NS NS	
	Monitoring event P1	0 1/3/2018	974	26 7.29	698.7	9.9	-145.2	0.319 NA	9.88	2.6 D D	9 9	999	2 2 2	P 42	9 9	99	222	222	2 2 !	2 2	22	99	12,000	2 2	9,800	0.049	2.0	S S 5	0.29	4.6	2.4 ND 2.4	SN SN	S S S	NS NS	
	Monitoring event P1	1 4/10/2018	1071	26 6.54	698.7	7.46	-108.8	0.311 NA	9.77	S. O. O.	9 9	999	2 2 2	2 2	9 9	9 9 !	999	2 2 2	2 2 !	2 2	2 2	22	19,000	2 2	8100	0.60	2.4 J	N 0.042	0.070 ON	10.3 b	ND 5.7	SN SN	NS NS NS	NS	

				Well	I	F	ield Para	ameters							VOCs							Disso	olved Ga	sses				Wet CI	hemistry	/			Q	Potential (DNA)
Well ID	Event / Description	Date	Elapsed Time (Days)	(feet) Total Depth ATOC) Water Level Measurement	AMSL) Fer	(SU) pH (SU) Dissolved Oxygen	0	(mS/cm) Specific Conductance (NTUs) Turbidity	(°C) Temperature	(mg/L) carbon, rotal Organic 1,1,1-Trichloroethane 1,1,2-Trichloro-1,2,2-trifluoroethane	1,1,2-Trichloroethane 1,1-Dichloroethane	1,1-Dichloroethene 1,2-Dichloroethane 2-Hexanone	2-Butanone (MEK) 4-Methyl-2-pentanone	Acetone Benzene Codecon Discussida	Carbon Disuffide Chloroethane (ug/L) Chloroform	Chloromethane cis-1,2-Dichloroethene	Ethylbenzene Methylcvclohexane	Methylene chloride Methyl Acetate	Tetrachloroethene	trans-1,2-Dichloroethene Trichloroethene	Vinyl chloride Xylenes, Total	Carbon Dioxide	(ug/L) Ethene	Methane	Nitrate Manganese Everir iron	Sulfate Sulfide	Nitrite Phosphorous Ammonia	COD	mg/L) Total Alkalinity Ferrous Iron	Iron Acetic Acid	Formic Acid Lactic Acid	n-Butyric Acid Propionic Acid Chloride Pyruvic Acid	Dechlorinat Bacteria (1) Department of the control	
				E 4	5 E		1-							_						<u> </u>	T				<u> </u>	1 1		lml						
	Monitoring event P12	7/9/2018	1161	7.6	698.7 691.1	7.51	-145.	0.502	14.5	ND ND	P P	9 8 8 8				999	2 2 2				99	63,00	9 9	6,200	0.75	2.5 ND			248 ND			S S S S		
	Monitoring event P13	10/22/2018	1266	29 23.42	675.2	7.28	-94.9	0.429	11.9	ND ND	Q Q	Q Q Q	99	2 2 2	222	999	2 2 2	0.55 J	2 2 2	999	99	9,200	9 9	0009								SN S		
	Monitoring event P14	1/4/2019	1340	26 23.32	675.3	7.88	176.4	0.492	10.7	2.6 ND ND	ND ND	QN QN	28		ON ON	2 2 2	288	2 2	2 2 2	2 2 2	2 2	11,000 B	1.6 J	10,000	2.1	98.8 0.71 J	2.5	16.1 F1	190 B ND	98.8 NS	NS NS	SN S		
	Monitoring event P15	4/18/2019	1444	7.18	698.7	7.31	19.9	0.429	11.4	ND ND	Q Q	QN QN		ON G	2 2 2	999	2 2 2	2 2	2 2 2	2 2 2	2 2 2	15,000 B	2 2	009'6				SN SN				S S S S		
	Monitoring event P16	7/22/2019	1539	7.42	698.7	7.51	2.10 -70.8	0.429	13.7	1.8 ND ND	ND ND	QN QN	2 2		Q Q Q	2 2 2	288	2 2	2 2 2	2 2 2	2 2 2		3.2 J ND	10,000	0.020 J 0.066 B	N ON	ND ND	S O S	227 ND	1.7 NS	NS NS	NS NS 7.5 NS		
MW-35D	Monitoring event P17	10/17/2019	1626	6.65	698.7	7.66	-105.6	0.456	10.9	ND ND	Q Q	QN QN			S S S	999	2 2 2	2 2	2 2 2	2 2 2	2 2 2			<u> </u>	Not	Sample	ed For Th	nese P	Parame	ters			Not	Sampled For
	Monitoring event P18	1/8/2020	1709	6.75	698.7 691.9	7.6	33.7	0.480	8.5	2.5 ND ND	ND ON	ON ON ON		UC.S		999	2 2 2		2 2		99				Not	Sample	ed For Th	nese P	Parame	ters			The	se Parameters
	Monitoring event P19	4/14/2020	1806	29 6.52	692.2	7.11		0.539	U,				999			0	2 2 2			2 2 2		-	9 9	11,000	0.035J	4.1 N	N N	NS NS			SN SN	NSN 8.4		
	Monitoring event P20	10/6/2020	1981	8.4	690.3	8.21	-146.1	0.506	6 4	1.8 ND ND	P P		999	2 2 2		999			2 2	2 2 2	2 2	13,000	9 9	11,000	0.035J 1.9B	5 7.1 S	NS NS	SN SN	270 0.27HF	106 NS	NS	8 S 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		
	Monitoring event P21	4/5/2021	2162	6.56																			2 2	230	0.20 B	9.5 DN	0.029 JB NS	NS NS NS	227 0.094JHF	4.7 NS	NS	SN OL SN SN		
	Monitoring event P22	10/21/2021	2361	6.58	698.7	6.96	-543	0.198	13.1	S.3 ND ND	QN QN	QN QN	225			2 2 2	2 2 2	2 2	2 2 2	2 2 2	2 2 2	13,000										S S S S		
	Monitoring event P23	4/7/2022	2529	4.98	698.7	7.03	32.5	0.432	10.9	8.3 ND ND	QN QN	QN QN	2 2		222	999	288	2 2	2 8 8	2 2 2	2 2 2	41,000										SN SN SN		

				Well		Field F	Parameter	rs							VOCs				Diss	solved Gasse	s		Wet C	hemistry			Q P	otential (DN	IA)			
Well ID	Event / Description	Date	Elapsed Time (Days)	(ft. ATOC) Water Level Measurement (ft. AMSL) Top of Casing Elevation	Head Elevati pH	(mg/L) Dissolved Oxygen (mg/L) Oxidation Reduction Potential	(mS/cm) Specific Conductance	- P ((mg/L) Caribon, Total Organic 1,1,1-Trichloroethane 1,1,2-Trichloro-1,2,24rffluoroethane	1,1,2-Trichloroethane	1,1-Dichloroethene 1,1-Dichloroethene 1,2-Dichloroethane	2-Hexanone 2-Butanone (MEK) 4-Merhvl-2-nenfanone	Acetone	Carbon Disulfide	(ug/L) Chloroform Chloromethane cis-1.2-Dichloroethene	Dichlorodifluoromethane Ethylbenzene	Methylcyclohexane Methylene chloride Methyl Acetate	Toluene Trichloroethene Trichloroethene Vinyl chloride	Xylenes, Total Carbon Dioxide	Ethane (ug/L) Ethene Methane	Nitrate Manganese Foorie iron	Sulfate Sulfide	Phosphorous Ammonia COD	(mg/L) Total Alkalinity Ferrous Iron	Acetic Acid Formic Acid	Lactic Acid n-Butyric Acid Propionic Acid Chloride	Decolorinating Bacteria Dehalococcoides spb (1)	Function	BAV1 VC R-Dase (1) VC R-Dase			
	Monitoring event BL1	6/17/2010	-1783	5.4		7 70 4	0	11.4		2 2 2		999	2 2 2	2 2 2	2 2 2 2		9999	S S S S S	Q.													
	Monitoring event BL2	8/2/2010	-1737	6.3	683.4	1.41	0.711	13.2	S Q	2 2 2	2 2 2	S00 N	21 J	0.93 J	2222	2 2 2	9999	ON O	QN													
	Monitoring event BL3	3/10/2015	-56	5.9	683.8	2.84	0.647	. ω		2 2 2	222	222	2 2 2	288	2222	222	9999															
	Monitoring event P1	7/29/2015	85	6.25	683.4	0.3	5.357	15	4,880 B	2 9 5	ON ON ON	S 5 5	2 2 2	2 2 2	2222		O.67 J															
	Monitoring event P2	4/8/2016	339	5.4	684.3	0.49	4.533	9.03	ND CIN	9 9 9	2 2 2	009 CN	580	2 2 2	2 2 2 2	2 2 2	222															
	Monitoring event P3	7/11/2016	433	23.5	682.1	1.38			012,4 ON	2 2 2	2 2 2	910 P	330	2 2 2	2 2 2 2	222	222	22222														
	Monitoring event P4	10/12/2016	526	9.1	680.6	0.3	10.070	19.7	086,c	9 9	2 2 2	ON 1,100	650	2 2 2	2 2 2 2	2 2 2	9999															
MW-36D	Monitoring event P5	1/24/2017	630	5.88		0.31	4.677		08c,1 QN			ON 099	260	0.96 J	2 2 2 2	2 2 2	O.9 O.9	22222	Q				Not Samp	led For T	hese Par	rameters						
	Monitoring event P6	4/12/2017	708	5.15		0.12		9.3	OND OND	2 2 2		930 ON	480		2222	2 2 2	9999		ND													
	Monitoring event P7	7/6/2017	793	23.5 6.95		` 0				_								29999														
	Monitoring event P8	10/18/2017	897	23.5 7.5		0.22	2.520											2 2 2 2 2														
	Monitoring event P9	1/4/2018	975	5.12			- 8- - 44- - 44- 											288.0 088.0 08 08 08 08														
	Monitoring event P10	4/9/2018	1070	5.21		0.75			ND ON	2 2 2		ND ND	2 2 2	2 2 2	2222	2 2 2	9999	2 2 2 2 2	ND													
	Monitoring event P11	7/10/2018	1162	53.5 6.35		0.39		15.7										29999														
	Monitoring event P12	10/18/2018	1262	23.5		0.22	— ·											22222														
	Monitoring event P13	1/8/2019	1344	23.5		0.2	. —											29999														
	Monitoring event P14	4/16/2019	1442	23.5 5.35	684.4	2.87	1.786	8.3	4.4T ON CN	2 2	2 2 2	999	2 2	2 2 2	2 2 2 2	222	9999	29999	ND													

				Well		Field	Paramete	ers							VOCs					Dis	ssolved	Gasses				Wet Ch	emistry			Q Pot	ential (DNA)
																														Dechlorinating Bacteria	Functional Genes
Well ID	Event / Description	Date	Elapsed Time (Days)	Total Depth Water Level Measurement Top of Casing Elevation	Head Elevation	Dissolved Oxygen	Conductano	Turbidity Temperature	Carbon, Total Organic	1,1,1-Trichloro-traine 1,1,2-Trichloro-1,2,2-trifluoro-ethane 1,1,2-Trichloro-ethane	1,1-Dichloroethane 1,1-Dichloroethene	1,2-Dichloroethane 2-Hexanone	Z-Butanone (MEK) 4-Methyl-2-pentanone Acetone	Benzene Carbon Disulfide	Chloroethane Chloroform Chloromethane	cis-1,2-Dichloroethene Dichlorodifluoromethane	Methylcyclohexane Methylene chloride	Methyl Acetate Tetrachloroethene	l oluene trans-1,2-Dichloroethene Trichloroethene	Vinyl chloride Xylenes, Total Carbon Dioxide	Ethane	Methane	Nitrate Manganese Ferric iron	Sulfide	Nitrite Phosphorous Ammonia	COD BOD	Total Alkalinity Ferrous Iron	Iron Acetic Acid Formic Acid	Lactic Acid n-Butyric Acid Propionic Acid Chloride Pyruvic Acid	Dehalococcoides spp (1)	TCE R-Dase (1) BAV1 VC R-Dase (1) VC R-Dase
				(feet)	(ft. AMSL)	(SU) (mg/L)	(mV)								(ng/L)						(ug/L)					(1)544)	(mg/L)				(cells / mL)
	Monitoring event P15	7/25/2019	1542	23.5 6.21	683.5	7.52	1.579	350.2	11.2	2 2 2	99	2 2 2	2 2 2	99	999	999	2 2 2	999	2 2 2	99											
	Monitoring event P16	10/18/2019	1627		684.2	7.2		∞ ←	20.8	2 2 2			2 2 2	2 2 2		999	2 2 2	2 2 2	222	99											
	Monitoring event P17	1/8/2020	1709	23.5 4.96	584.7	6.99	-20 1.570	11.1 14 8.48 8.7	17.9				2 2 2	99		999	3.6J	2 2 2	222	9 9											
MW-36D	Monitoring event P18	4/15/2020	1807	23.5 4.75	685.0	6.97	28.7	11.1	13.6	2 2 2	99	9 9 9	2 2 2	99	999	999	999	999	2 2 2	99					Not	Sample	ed For	These Pa	rameters		
MIN GGS	Monitoring event P19	10/9/2020	1984	23.5	681.8	7.46	1.090	18.6	6.6	2 2 2	2 2		2 2 2	99	999	999	3.6J	2 2 2	222	99					1101	Campio	, u i oi	11100011	idiffetors		
	Monitoring event P20	4/6/2021	2163	5.25	684.5			13.0	12.9	2 2 2	9 9	9 9	2 2 2	2 2 2	999	999	2 2 2	9 9 9	2 2 2	99											
	Monitoring event P21	10/22/2021	2362	23.5 5.17	684.5	7.76	-169 1.550	4.1	13	2 2 2	99	999	2 2 2	99	999	999	3.6J	999	2 2 2	99											
	Monitoring event P22	4/11/2022	2533				-159	9.8	11.8	2 2 2	99	999	2 2 2	99	999	999	2 2 2	9 9 9	2 2 2	99											

				Well	Field Pa	arameters				V	OCs			Dissolved Ga	isses		Wet Chemistry	1	C	Q Potential (D	NA)						
Well ID	Event / Description	Date	Elapsed Time (Days)	(feet) Total Depth ATOC) Water Level Measurement AMSL) Top of Casing Elevation AMSL) Head Elevation	SU) pH g/L) Dissolved Oxygen Oxidation Reduction Potential	Specific Conductance 1s) Turbidity Temperature	(L) Carbon, Total Organic 1,1,1-Trichloroethane 1,1,2-Trichloro-1,2,2-trifluoroethane	1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethene 1,2-Dichloroethane	2-Hexanone 2-Butanone (MEK) 4-Methyl-2-pentanone Acetone	Benzene Carbon Disulfide Chloroethane	L) Chloroform Chloromethane cis-1,2-Dichloroethene	cane ride	trans-1,2-Dichloroethene Trichloroethene Vinyl chloride Xylenes, Total		Methane Nitrate Manganese	Ferric iron Sulfate Sulfide	Phosphorous Ammonia COD BOD Total Alkalinity Ferrous Iron	Iron Acetic Acid Formic Acid Lactic Acid n-Butyric Acid	Chloride Pyruvic Acid Bactet Dehalococcoides spp (1)	TCE R-Dase (1)	BAV1 VC R-Dase (1) VC R-Dase						
				(ft. AMSL)	(SU) (mg/L)	(mS/cm) (NTUs)	(mg/L)				(ng/L)			(ng/L)			/gm)			(cells mL)							
	Monitoring BL1	6/18/2010	-1782	20 4.35 690.1 685.7	5.14 -79	0.802	S S S	9999	9999	999	999	9999999	2222														
	Monitoring event BL2	8/3/2010	-1736	5.30 690.1 (684.8 (6	7.15		SN SN SN	9999	9 9 9 2 	8 1 8	Q Q Q	222222	2222														
	Monitoring event BL3	3/10/2015	-56	22.5 4.98 690.1 685.1	8 0.59 -80.3		7		9999		ON ON ON	9999999															
	Monitoring event P1	7/29/2015	85	5.4 690.1 684.7		29.6	1,060 B ON ON	9999	S S S	8 9 9 9	999	9999999															
	Monitoring event P2	4/8/2016	339	22.5 4.28 690.1 685.8	6.89	1.999			390 J																		
	Monitoring event P3	7/12/2016	434	22.5 7.00 690.1 683.1						2 2 2	Q Q Q		2222														
	Monitoring event P4	10/12/2016	526	8.35 690.1 681.7	6.98 0.35 -90	0		9999	0 0 0 4 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0		N N N																
	Monitoring event P5	1/24/2017	630	22.5 4.86 690.1 685.2	6.93 0.25 -88	m -							2222														
	Monitoring event P6	4/11/2017	707	4.12 690.1 (685.9)		0.1		9999	9999				9999														
MW-37D	Monitoring event P7	7/10/2017	797	5.95 5.95 690.1 684.1	7.08	0	4.4 QN QN	9999	9999	2 2 2	999		2222				Not Sampled For	These Parameters	s								
	Monitoring event P8	10/18/2017	897	22.5 6.55 690.1 683.5	0.1	0.940 6.8	5.3 ND ND	2 2 2 2 2 2 2 2	2 2 2 2	2 2 2 2	N N N	9999999	2														
	Monitoring event P9	1/5/2018	976	22.5 4.72 690.1 685.3	0 0	4	5.2 B ND ND	9999	2222		9 9 9	999999	2222														
	Monitoring event P10	4/11/2018	1072	90.1 85.8	.86	.639 NA	4 등 등 등	9999	9999	2 2 2	N ON ON	222222	9999														
	Monitoring event P11	7/11/2018	1163	52.5 6.83 690.1 683.2	6	0.868 8.27	1.6 B ON ON	9999	9999	999	999	9999999	2222														
	Monitoring event P12	10/18/2018	1262	7.23 690.1 682.8	6.98 0.22 -55	0.809	8. L O O	-			-																
	Monitoring event P13	1/19/2019	1355	22.5 4.72 690.1 685.3		1.060	3.4 ON ON					999999	9999														
	Monitoring event P14	4/17/2019	1443	5.34 690.1 684.7		ω.	2.9 ND ND ND	9999	9999	2 2 2 2		9999999	9999														
	Monitoring event P15	7/24/2019	1541	5.52 690.1 684.5	0 0 6																						
	Monitoring event P16	10/18/2019	1627	5.02 690.1 685.0			8. UN ON ON																				

				w	/ell	Fie	ld Paran	eters							VO	Cs						Di	ssolved	l Gasses				We	et Chem	istry				Q Pot	ential (DI	NA)
																																	ı	Dechlorinating Bacteria	Functi	onal Genes
Well ID	Event / Description	Date	Elapsed Time (Days)	Total Depth Water Level Measurement	Top of Casing Elevation Head Elevation	pH Dissolved Oxygen	Oxidation Reduction Potential	Turbidity	l emperature Carbon, Total Organic	1,1,1-Trichloroethane 1,1,2-Trichloro-1,2,2-trifluoroethane	1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane	1,2-Dichloroethane	2-Butanone (MEK) 4-Methyl-2-pentanone	Acetone Benzene	Carbon Disuifide Chloroethane Chloroform	Chloromethane	cis-1,z-Dicnioroetnene Dichlorodifluoromethane	Ethylbenzene Methylcyclohexane	Methylene chloride Methyl Acetate Tetrachloroethene	Toluene Trans-1 2-Dichloroethene	Trichloroethene Vinyl chloride	Xylenes, Total Carbon Dioxide	Ethane	Ethene Methane	Nitrate	Manganese Ferric iron Sulfate	Suffide Nitrite	Phosphorous Ammonia COD	BOD Total Alkalinity	Ferrous Iron Iron Acetic Acid	Formic Acid	n-Butyric Acid Propionic Acid	cnioriae Pyruvic Acid	Dehalococcoides spp (1)	TCE R-Dase (1)	BAV1 VC R-Dase (1) VC R-Dase
				(feet) (ft. ATOC)	(ft. AMSL)	(SU) (mg/L)		(NTUs)	(°C) (mg/L) (1. 1.			(na/L)					, , , ,			(na/L)						(mg/L)					_	(cells / mL)	_ , ,
	Monitoring event P17	17072020	1709	22.5		7	-46	3.55	9	9 9	999	2 2 2	99	99	ON 6.1	2 2 2	2 2 2	99	999	2 2 2	999	Q														
	Monitoring event P18	4/15/2020	1807	3.98	690.1 686.1	6.9	. 1		1.8	9 9	999	2 2 2	9 9	9 9	2 2 2	2 2 2	2 2 2	99	999	288	2 2 2	QN Q														
MW-37D	Monitoring event P19		1982	22.5	690.1 683.6	7.16	113	6.01	12.6	9 9	999	2 2 2	99		222	2 2 2	2 2 2	99	222	2 2 2	2 2 2	Q.						Not Com	mplad l	Ear Than	o Don	rameters				
IMAA-21D	Monitoring event P20		2162	22.5		7.32	-53.5	3.75	·,	2 2	999	2 2 2	2 2 2	99	2 2 2	2 2 2	2 2 2	99!	2 2 2	2 2 2	2 2 2	ND ND						NOL SAF	iipied i	For Thes	e Par	ameters				
	Monitoring event P21		1996	22.5	690.1 685.7	7.13	-100	4.08	13.1	N ON	2 2	2 2 2	N N	Q Q :		2 2 2	2 2	28	2 2	2 2 2	2 2 2	ND														
	Monitoring event P22	4/13/2022	2535	3.75		7.21	-112	21.9	2.4	9 9	999	2 2 2	99	99	2 2 2	9 9	2 2 2	99	999	2 2 2	2 2 2	Q.														

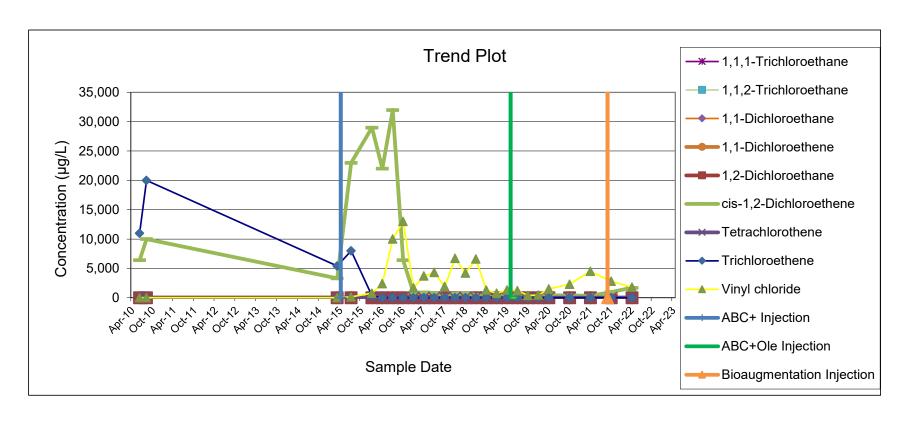
				1	Well	Field	Parameters						voc	s		Dissolved	l Gasses	3		Wet Chemis	stry			Q Potential (D	•
Well ID	Event / Description	Date	Elapsed Time (Days)	(feet) Total Depth (ft. ATOC) Water Level Measurement	Top o Head	(SU) PH (mg/L) Dissolved Oxygen	2 2	/L) Carbon, Total Organic	1,1,1-Trichloroethane 1,1,2-Trichloro-1,2,2-trifluoroethane	1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethene 1,2-Dichloroethane	2-Hexanone 2-Butanone (MEK)	4-Methyl-2-pentanone Acetone Benzene Carbon Disulfide	Chloroethane (ug/L) Chloroform	Chloromethane cis-1,2-Dichloroethene Dichlorodifluoromethane Ethylbenzene Methylcyclohexane Methylcyclohexane Methyl Acetate Tetrachloroethene Toluene Toluene	Trichloroethene Vinyl chloride Xylenes, Total		Ethene Methane	Nitrate Manganese Ferric iron Sulfate Sulfide	Nitrite Phosphorous		Ferrous Iron Iron	Acetic Acid Formic Acid Lactic Acid n-Butyric Acid		Dehalococcoides spp (1) Bacteria Lincia Repair (1) Dehalococcoides spp (1) LCE R-Dase (1)	BAV1 VC R-Dase (1) VC R-Dase
				(ff. A:	(f)	(SU)	m) (NT	("C) (mg/L)					бŋ)			(na/L)	?			/Bm)				(cells, mL)	
	Monitoring event BL	6/22/2010	-1778	21	689.7	7.05	20.5 0.716 2.1	NS	9 9	9999		2222	9 9	ND ND 270 ND	11,000 ND 730 J							_			
	Monitoring event BL2	8/4/2010	-1735	21	689.7	6.92	0.718	NS NS	9 9	9999	2 2	2 2 2 2 2	9 9	ON 5,100 ON	2,100 ND 260 J				N	ot Sampled F	or The	se Parame	eters		
	Monitoring event BL3	11/5/2014	-181	24			-114.6 0.658 NS	SN SN			N	lot Sampled I		nese Parameters		5,500 NS	NS 1,200	0.025 0.08 0.98 4.8 NS	ND 0.27	0.14 229 68.2 489	0.98	S S S S	S S S	Not Sampled These Param	d For neters
	Monitoring event BL4	3/10/2015	-56	24			-2.3 -2.7 0.778 0.25.7			222				0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1.9 260 ND										
	Monitoring event P1	6/12/2015	38			Grab Sam				9999	2 2 2	22222	9 9		18 J 50 ND				N	ot Sampled F	or The	se Parame	eters		
	Monitoring event P2	7/27/2015	83	24	689.7	5.67	57.6	7,240	99	9999	99		2 2	ON O	6.8 60 4.8 J	79,000 ND	ON 00'9	397 ND ND ND	N S	0.49 33600 18900 5150	105	2420 693 746 1860	996 SN SN	8.41E+02 <2.50E+01	1.20E+02 1.47E+01J
	Monitoring event P3	1/7/2016	247	24	689.7	5.39	22.2 6.189 27.7	4,650	Q Q	2222	ND 610	088 080 080 080 080			N 4 N N	20,000 ND	ND 570	8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	ND 4.8	0.57 14,300 ND 5860	64 HF 477	S S S S	SN SN SN		,
MW-38D	Monitoring event P4	4/8/2016	339	24						3.8 J	6.9 J	021 DN	22	850 ND ND ND 9.1 ND ND ND ND ND ND ND ND ND ND ND ND ND			UD 1,300		9 1	4.4 8,670 >1499.20 H 4220	347 HF 449	S S S S		Not Sampled These Param	
	Monitoring event P5	7/12/2016	434	24	689.7	6.89	5.553	2,270	Q Q		ND 1100	0N UN	9 9	Q 8 Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q	ON S9 ON ON	140,000 ND	ND 5,400	1.0 B 1.0 B 108 ND 0.064 J	S S	3.5 37600 >1477.73 H 3910	119 HF 227		SN S	4.00E+04 1.78E+02	2.22E+04 6.96E+02
	Monitoring event P6	10/12/2016	526	24	689.7	7.33	3.317	14.3 1,310 B	Q Q	ND 5.1 J ND	ND 088	ND 110 ND	15 ND	DN D	ND 58 8.2 J	100,000 ND	ND 1,900	0.042 B 32.8 ND	9 8	.52 860 9.20B 020	3.2	S S S S	S S S		d C an
	Monitoring event P7	1/23/2017	629	5.22	689.7	7.33	2.997	650	ON ON	9999	ND 520	ND N	16 ON	DN D	ND 14 9.3 J	000'9	ND 200	ND 7 0.022 0.07 18.2 3 20.9 J 1 ND	QN 69.0	0.87 2,050 2,040 H b 2,290	15.3 HF 33.5	S S S S S	SN SN SN	Not Sampled These Param	neters
	Monitoring event P8	4/12/2017	708	24	689.7	7.32	2.526	8.4 459 B	99	ON CN CN CN	Q 09	88 Q Q	17 ON	ND N	ND 8.7	120,000 ND	ND 4,300	0.017 24 24 ON ON	ND 0.59	ND 1300 667 Hb 2,290 B	0.096 JHF 24.1	S S S S		1.09E+04 1.60E+02	<2.50E+01 1.08E+03
	Monitoring event P9	7/7/2017	794	24	689.7	7.61	2.590	370	Q Q	2222	ON 027	ND 74 ND	19 QN	ON O	5.1	92,000 ND	ND 5,300	0.008 11.2 ND	ND 0.43			S S S S S	SN SN SN	Not Sample	d For
	Monitoring event P10	10/18/2017	897	24	689.7	8.1	2.060	13.6	99	19 J	Q 110	33 1.7 ND	75 ND	27 27 8.6 9.6 ND ND ND ND ND ND ND ND ND ND ND ND ND	30 30	40,000 ND	ND 15,000	0.0062 1.3 ND	ND 0.85	0.4 323 133 Hb 1,300 B	1.0 JHF 2.3	SN SN SN SN	SN SN SN	These Param	neters

				Well		Fiel	ld Param	eters							VOCs						Dissolv	ed Gas	sses				Wet Che	emistry				Q Potential (DNA)
Well ID	Event / Description	Date	Elapsed Time (Days)	Total Depth Water Level Measurement Top of Casing Elevation	Head Elevati	pH Dissolved Oxygen	Oxidation Reduction Potential Specific Conductance	Turbidity	Carbon, Total Organic	1,1,2-Trichloro-1,2,2-trifluoroethane	1,1,2-Inchloroethane 1,1-Dichloroethene	1,z-Dicnioroetnane 2-Hexanone	z-butanone (wer.) 4-Methyl-2-pentanone Acetone Benzene	Carbon Disulfide	Chloroform Chloromethane cis-1.2-Dichloroethene	Dichlorodifluoromethane Ethylbenzene Methylcyclohexane	Methylene chloride Methyl Acetate	Tetrachloroethene Toluene	trans-1,2-Dichloroethene Trichloroethene	Vinyl chloride Xylenes, Total	Carbon Dioxide Ethane	Ethene	Methane	Manganese Ferric iron	Sulfate Sulfide	Phosphorous Ammonia	COD	Total Alkalinity Ferrous Iron Iron	Acetic Acid Formic Acid	Lactic Acid n-Butyric Acid	Propionic Acid Chloride Pyruvic Acid	Dechlorinating Bacteria Funce CE R-Dase (1)	BAV1 VC R-Dase (1) leu loin loin loin loin loin loin loin loin
				(feet)	(ft. AMSL)	(SU) (mg/L)	(mV)	(NTUS)	(mg/L)						(ug/L)							(ng/L)					(ma/L)					(cells / mL)	
	Monitoring event P11	1/4/2018	975	24 NA	NA NA	NA NA	AN AN	A Z	17.7	2 2	2 2 2	S S	ND 45 ND	0.81 J	S Q Q Q	1.4 ND	Q Q	UD 14	ON C	5.1	81,000	2 2	22,000 ND	0.0059		0.095 F1	245 147 H b	1,680 ND	SN S	S S S	NS NS	Not Sample These Paran	d For neters
	Monitoring event P12	4/10/2018	1071	4.21	NA NA	7.51	-51.3	NA 0	19.2	2 2 5	2 2 2	2 2 5	2 2 2 2	S 5	4	3.1.5 N	2 2	ND 2.2 J	2 5	S Q 2	84,000 UN	2 2	20,000 ND	0.0067	2 2 2	0.45	79.8 25.7 b	1440 B ND 3.6	SN S	S S S	SN SN SN	1.81E+02	1.25E+01 5.16E+01
	Monitoring event P13	7/11/2018	1163	6.83	682.8	7.64	-180.6	20.7	29.9	2 2 5	N 4.3	S S ;	ND 12 J	N S	2	0.0 0.0 0.0	2 2	ND 12	S S	8 8 8	97,000 CIN	2 2	18,000 ND	0.014 B 5.3		0.88	220 B 125	1520 B 2.5 HF 7.8	SN S	S S S	SN SN SN	Not Sample These Paran	d For
	Monitoring event P14	10/17/2018	1261	6.4	683.3	7.76	-124.7	20.1	32.5	2 2 5	20 QV		ON ON ON	1.2 J B	CC QN QN CC	ND 7.2	99	ND 28	2 2	11 22	71,000	2 2	12,000 ND	0.0078	2 2 2	0.78 B	96.7	1,280 ND 2.8	S S	S S S	SN SN	Not Sample These Paran	
	Monitoring event P15	1/4/2019	1340	5.06	684.6	7.63	-138.9	14.8	11.5	2 2 5			ON ON ON	ND 72	N ON ON	999	Q Q	ND 2.9	ON CN	2 2 2	73,000 B	S Q	16,000 ND	0.0044		0.59	73 3.8 Hb	1370 B ND HF 1.9	SN SN	S S S	SN SN	Not Sample These Paran	
	Monitoring event P16	4/16/2019	1442	4.56				49.17					ON ON ON										13,000 ND	0.0068 B		S S L	S S S	1,210 ND 2.1 B	SN SN	S S S	SN SN SN	Not Sample These Paran	
MW-38D	Monitoring event P17	7/24/2019	1541	5.01	684.7	6.47		123.11	641	2 2 5	2 2 2	12 J	021 020 000 ND	ND 8.7	ND ND 4 1		98	ND 2.9 J	QN CN	4.5	290,000										52.3 NS	Not Sample These Paran	
	Monitoring event P18	10/17/2019	1626	4.64	685.0	7.05	-148.2	39.45	148	2 2 5	222	288	25 J ND ND	N S		5.8 DN DN DN	99	ND 5.1	98	9 P	180,000	Q Q	12,000 ND	0.1	S S S	NS 0.08	SN SN	1,330 0.12 HF 56	888	S S S	21.6 NS	Not Sample These Paran	
	Monitoring event P19	1/7/2020	1708	4.2	685.5	7.06	-121.6	13.8					24 J ND ND									2 2	12,000 ND	0.082		SN SN	SN SN	1,000 0.31 HF 34.9	SN S	S N S	19.4 NS	Not Sample These Paran	
	Monitoring event P20	4/14/2020	1806	4.82	684.9	7.09	1.736	27.2					2 2 2 2										16 0								15.9 NS	Not Sample	
	Monitoring event P21	10/12/2020	1987	6.31	683.4	7.13	-98.3	22.3	170	2 2 5	2 2 2 2		00 35 00 00 00 00 00	9 2	2222	999	4.2 ND	9 9	98	US.4	48,000	2 2	14,000 ND	0.021	2 2 2	S S S	SN SN	1,040 ND HF 4.2	S S	SN SN	NS NS	These Paran	
	Monitoring event P22	4/5/2021	2162	3.2	686.5	7.43	-87.4	9.04	25.3	2 2 5	2999	29		9 9		222	99	99	Q S	2 2 2	98,000	2 2	20,000 ND	0.40B 10.3	0. DN	NS 0.12	SN SN	640 ND HF 10.3	SN SN	S S S	13.3 NS	2.18E+02 3.63E+01	<2.50E+01
	Monitoring event P23	10/22/2021	2362	3.91	685.8	7.67	176.1	16.2	24.8	2 2				2 2	2 2 2 2		Q Q	N ON	2 2	2 2 2	51,000	2 2	15,000	NS 8.5		S S S	SN SN	803 B ND HF 8.5	SN SN	S S S	NS NS	Not Sample	d For
	Monitoring event P24	4/12/2022	2534	2.21	687.5	6.95	2.6	38.82	6.2	2 2	2 2 2	2 2 2		2 2	2 2 2	999	Q Q	N N	ON C	2 2	000,69	_									S S S	These Paran	

			We	ell	Field P	arameters		VOCs		Dissolved Gasses		Wet Chemistry	Q Potential (DNA)
Well ID	Event / Description	Date	Total [Top of Casing Elevation Head Elevation pH	Dissolved Oxygen Oxidation Reduction Potential	Specific Conductance Turbidity	Temperature Carbon, Total Organic 1,1,1-Trichloroethane 1,1,2-Trichloroethane 1,1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 2-Hexanone 2-Butanone (MEK) 4-Methyl-2-pentanone Acetone	Benzene Carbon Disulfide Chloroethane Chloromethane Cis-1,2-Dichloroethene Dichlorodiffuoromethane Ethylbenzene Methylcyclohexane Methylene chloride	Methyl Acetate Tetrachloroethene Toluene trans-1,2-Dichloroethene Trichloroethene Vinyl chloride Xylenes, Total	Carbon Dioxide Ethane Ethene Methane	Nitrate Manganese Ferric iron Sulfate Sulfiide Nitrite	Ammonia COD BOD Total Alkalinity Ferrous Iron Iron Acetic Acid Formic Acid Lactic Acid n-Butyric Acid Propionic Acid Chloride Pyruvic Acid	Dehalococcoides spp (1) TCE R-Dase (1) BAV1 VC R-Dase (1) VC R-Dase
				(ft. AMSL)	(mg/L)	(mS/cm)	(mg/L)	(ng/L)		(ug/L)		(mg/L)	(cells / mL)
	Monitoring BL1 6/18	8/2010	-1782 8 4	689.7	4.93	0.724	NS ND		9999999				
	Monitoring BI 2 8/3	3/2010		689.7 6 684.7 6 7.1	1.57	724	N N N N N N N N N N N N N N N N N N N						
	event BL3 3/10	0/2015			0.77 1			222222222222222222222222222222222222222		-			
	Monitoring	9/2015			0.4 0	m	ND N						
	Monitoring					75 17	71						
	event F2 4/0	3/2016		89 89	0 7	ω, ,							
	event 10 7/12	2/2016		89 89) 0 '	2 4	2 14.8						
	event F4 10/1	13/2016		39	0 1		9.12 12.2 67.4 12.7 ND ND N						
	event 13 1/2-	4/2017		39	0.29								
	event	1/2017		88 88	0.03			9999999999					
MW-39D	event	6/2017	793 27.5			1.250	13.2 N N N N N N N N N N N N N N N N N N N		O O O O O		N	lot Sampled For These Parameters	
	event	18/2017	897 22.5	689.7			25. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.						
	event	9/2018	3.7 3.7	89 89 6			48.8 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0						
	event	2/2018	1073 25.25	7 689. 1 685.8 7 15	0.77		8.75 11.7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0						
	event	1/2018	1163 22.5 69.2	689.7	0.29	10.07	1.185 N D D D D D D D D D D D D D D D D D D D	999999999	9999999				
	event	17/2018	1261 22.5			1.073							
	event	7/2019			0.38	1.340	9.6 C C C C C C C C C C C C C C C C C C C	9999999999					
	event	5/2019	1441 25.55	689.7 685.9 7.25	2.94	_ '	8.3 8.7 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0						
	Monitoring event P15 7/24	4/2019	1241 22.5	689.7 683.1 5.47	13.2	2.049	8.3 1610 ND ND N	9999999999	999999				
	Monitoring event P16 10/1	18/2019	1627 5.5 8.9	689.7	0.07		10.8 ND ND N						

				Well	Fiel	d Parameters					VO	Cs				Dis	solved Gasses			Wet (Chemistry			Q Pote	ential (DNA)
																								Dechlorinating Bacteria	Functional Genes
Well ID	Event / Description	Date	Elapsed Time (Days)	Total Depth Water Level Measurement Top of Casing Elevation	olved Oxygen	Oxidation Reduction Potential Specific Conductance Turbidity	Temperature Carbon, Total Organic	hlord	1,1-Dichloroethane 1,1-Dichloroethane 1,2-Dichloroethane 2-Hexanone	2-Butanone (MEK) 4-Methyl-2-pentanone Acetone	Benzene Carbon Disulfide Chloroethane	Chloroform Chloromethane cis-1,2-Dichloroethene	Uchorodinuoromentane Ethylbenzene Methylcyclohexane Methylene chloride	Methyl Acetate Tetrachloroethene	Foluene irans-1,2-Dichloroethene Trichloroethene	Vinyl chloride Xylenes, Total Carbon Dioxide	Ethane Ethene Wethane	N itrate Manganese	Ferric iron Sulfate Sulfide Nitrite	Phosphorous Ammonia COD	BOD Total Alkalinity Ferrous Iron	Iron Acetic Acid Formic Acid	Lactic Acid n-Butyric Acid Propionic Acid Chloride Pyruvic Acid	Dehalococcoides spp (1)	TCE R-Dase (1) BAV1 VC R-Dase (1) VC R-Dase
				(feet) (ft. ATOC) (ft. AMSL)		(mX) (mS/cm) (MTIIs)											(ng/L)				(mg/L)			_	mL)
	Monitoring event P17	1/10/2020	1711	22.5 6.44 689.7	5.11 0.38			,	S S S S S S S S S S S S S S S S S S S		0.40 J	2 2 2	2222	99	999	2 2									
	Monitoring event P18	4/16/2020	1808	22.5 3.61 689.7	686.1 5.77 1.45	132			ND ND S22	57 ND 29	S S 5		2 2 2 2			Q Q									
MW-39D	Monitoring event P19	10/9/2020	1984		683.0 6.32 0.54	-83	12.3	N DN CN	22222	30 ND 28	2.2 R	222	2 2 2 2	99	999	99				Not Samp	oled For I	These Pa	rameters		
11111-035	Monitoring event P20	4/5/2021	2162	22.5 4.04 689.7	685.7 6.95 1.8	-45.3 0.539	10.3		ON O	5.4J ND 6.4J	ON 01.6		2 2 2 2			2 2				Not Gamp	ica i oi	THOSE T a	rameters		
	Monitoring event P21	10/21/2021	2361	22.5 3.95 689.7	685.8 5.67 0.16	-106 1.270	14.4	2 2 2	S	C41 CM CM CM	222		2 2 2 2			N N									
	Monitoring event P22	4/13/2022	2535	22.5 3.69 689.7	686.0 6.91 0.06	1.461	12	C.28	33 2 33 2	999	222		2222	222	999	2 2									

				Well		Field	l Parame	eters							VOCs						ı	Dissolve	d Gass	es			,	Wet Che	emistry					Q Potential (DNA)
Well ID	Event / Description	Date	Elapsed Time (Days)	Total Depth Co Water Level Measurement St.) Top of Casing Elevation	Hea T		Oxidation Reduction Specific Conductar	Turbidity Temperature			1,1-Dichloroethane	1,2-Dichloroethane 2-Hexanone 2 Diversion MEEX	z-Butanone (werk) 4-Methyl-2-pentanone Acetone	Benzene Carbon Disulfide	8 5 5 5	cis-1,2-Dichloroethene Dichlorodifluoromethane	Ethylbenzene Methylcyclohexane	Methylene chloride Methyl Acetate	Tetrach loroethene Toluene	trans-1,2-Dichloroethene Trichloroethene Vinyl chloride	Xylenes, Total		Ethene Mathana	Nitrate	Manganese Ferric iron	Sulfate Sulfide Nifrite	Phosphorous Ammonia	COD	Total Alkalinity Ferrous Iron	Iron Acetic Acid	Formic Acid Lactic Acid n-Butvric Acid	Propionic Acid	Pyruvic Acid	Dehalococcoides spp (1) TCE R-Dase (1) BAV1 VC R-Dase (1) VC R-Dase
				(feet)		(mg/L)	(mV) (mS/cm	(NTUs)	(mg/L)						(ug/L)							7	(1) (1)					l/bu/)	, ,					(cells.mL)
	Monitoring event BL1	6/21/2010	-1779	3.53	685.7	1.01	69	3.74	NS	23 Q Q	260		ON P		2 4 9 5	1.2 J N N		99		2.8 J	1.1 L													
	Monitoring event BL2	2 8/3/2010	-1736	4.3			-202			25 ND ND					2 N N N												Not S	ample	d For 1	These	Param	eters		
	Monitoring event BL3	3 11/6/2014	-180	A A A			-14		NS NS		1 1				I For The							1,400 NS	SN	1,400 ND	0.24	SN SN	ND 0.61	12.9	291 ND	0.24 NS	S S S	SN	SN	Not Sampled For These Parameters
	Monitoring event BL4	3/11/2015	-55	3.95			-15.1			2,800 110 ND	5,400		2 2 2		2 1,00 Z			22	2 2	ON DO 79		·												
	Monitoring event P1	6/12/2015	38		NS (Gr		I		S.		1,800 CIN		2 2 2	2 2 2	2 88 0 2		99	99	2 2	999	2						Not S	ample	d For 1	These	Param	eters		
	Monitoring event P2	7/27/2015	83	22.5 4.25	684.9	0.56	2.820	21.6	1260	999	2,000				S 1,100	N N N	22	99	2 Q	222	2	7,600 ND	QN .	1,800 ND	0.44 59.7	S S	0.92	4220 2890	1900	104	ND AS	672	Q.	
	Monitoring event P3	1/7/2016	247	3.25			-163.4		313						2	2 9 9						3,300 ND	9			2.1 J 0.090 J ND		2600 B 738 H	996 ON	NS NS	S S S	SS	NS	
	Monitoring event P4	4/8/2016	339	22.5	686.3	0.12	1.092	18.2	202	2 2 2	220 CIN	2 2 2	2 2 2			N N	P P	46 J		222	2 2	3,100 ND	QN			0.13			누		S S S		NS	
MW-40D	Monitoring event P5	7/11/2016	433	22.5 4.95 689.2	684.2	7.12	-135	19	614	ON ON ON	12 J	ON ON S	380 ND ND		950 F1 ND	ON ON ON	Q Q	Q Q !	N N	999	ON S	46,000 ND	QN	ND ND	0.064 B 17.1	222	0.29	2080 B 1374.27 H b		17.9 NS	S S S	SN	SN	
	Monitoring event P6	10/11/2016	525	5.77	683.4	1.64	-94.9	18.8	267	222	12 S	5.2 J ND	<u> </u>	2 2	08,1 08,0 08,1	2 2 2	99	99	22	999	2 2	81,000 ND	QN	1,500 ND	16.6	2 2 2	0.35	817 254 HE	9,066 0.21 H	£ 8.8 € 8.8	2 2 2	2 2	Q.	Not Sampled For These Parameters
	Monitoring event P7	1/25/2017	631	3.64	685.6	0.37	-118.3	13.9		2 2 2													QN	1,100 ND	0.011	2 2 2	0.24	466 222 b	697 0.13 HF	6.5 ND	2 2 2	2 2	ND	
	Monitoring event P8	4/10/2017	706	22.5 2.88 689.2	686.3	0.17	-136.3	15	172	84 D N	9 9	999	2 2 2	2 2		2 2 2	28	39 J	2 2	999	2 2	43,000 ND	QN	3,200 ND	0.0052	222	0.2	649 331	620 ND	4 S	2 2 2	2 2	Q	
	Monitoring event P9	7/10/2017	797	4.1	685.1	0.35	-145	22.5	NS S	999	150 CIN	9 9 9	2 2 2	2 2	S S O S	S S S	99	99	2 2	999	9	6 QN	QN	2,600 ND	0.011	6. S	0.099	713 978	0ND	9.6 DN	2 2 2	2 2	9	
	Monitoring event P10	10/16/2017	895	4.55	684.6	0.41	-329.9	10.17	131	999	51 CN	E. 5	N D	2 2	S 4 9	N N	9 9	99	0.69	Q Q o	Q S	39 ND	ND	11,000 ND	0.013 5.7	0.029 OND	0.18	393 175	518 ND	5.7 ND	2 2 2	20	2	
	Monitoring event P11	1/4/2018	975	3.39	685.8	Z Z	₹ ₹	A S	168 B	2 2 2	32		2 2	2 2	380 N S		99	99!	2 2	999		27,000 ND	QN	0.086	19.1	ND ND	0.050	78 ND	579 ND	282	2 2 2	117	QN	

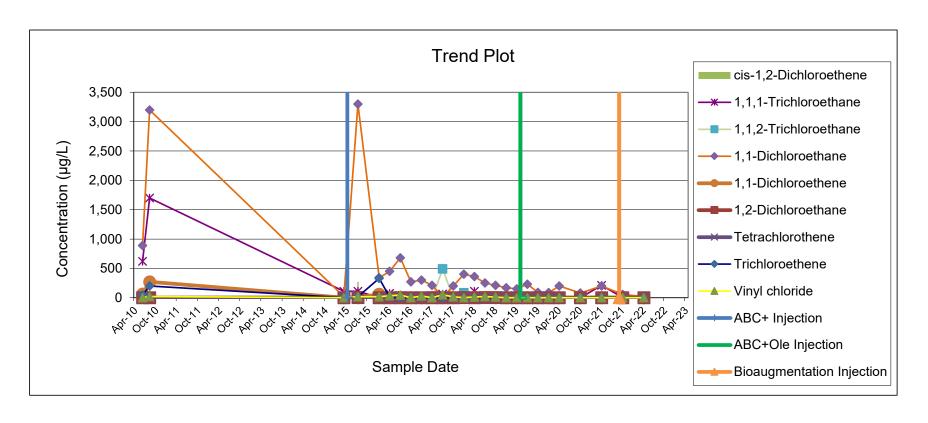

				We	ell	F	ield Para	ameters								VOCs							Diss	olved G	asses				We	et Chemis	stry				Q Potential (DNA)
Well ID	Event / Description	Date	Elapsed Time (Days)	Total Depth Water Level I	Тор	pH Dissolved Oxygen	Oxidation Reduction Potential	Specific Conductance Turbidity	Temperature	1,1,1-Trichloro-thane	1,1,2-Trichloroethane	1,1-Dichloroethene	2-Butanone (MEK)	4-Methyl-2-pentanone Acetone	Benzene Carbon Disulfide	Chloroethane Chloroform Chloromethane	cis-1,2-Dichloroethene Dichlorodifluoromethane	Ethylbenzene Methylcyclohexane	Methylene chloride Methyl Acetate	Tetrachloroethene	trans-1,2-Dichloroethene	Vinyl chloride Xylenes. Total	Carbon Dioxide	Ethane Ethene	Methane	Nitrate Manganese	Ferric iron Sulfate	Surrice Nitrite Phosphorous	Ammonia	BOD Total Alkalinity	Ferrous Iron Iron	Acetic Acid	Lactic Acid n-Butyric Acid Propionic Acid Chloride	Dechloring Bacte (1)	
				(feet) (ft. ATOC)	(ft. AMSL) (ft. AMSL)	(SU)	(mV)	(mS/cm) (NTUs)	(°C)	(mg/L)						(ng/L)								(ng/L)						(mg/L)					(cells / mL)
	Monitoring event P12	4/10/2018	1071	22.5	689.2	7.96	-105.1	0.470 NA	10.13	20 P	ON S		2 2 2	2 2	9 9	026 Q Q	99	9 9	98	9 9	2 2	2 2 2	32,000	9 9	~	O.007	3.1 ND	N D C	0.33 F1	95.1 b			SN SN S	2	
	Monitoring event P13	7/10/2018	1162	3.81	689.2	7.11	-130.5	0.999	13.85	ON CN	ND A			2 2		0, 100 N					2 2		0	9 9	16,000	ND 0.017	12.6 ND	S S 5	0.31 0.37	247 b 480 B	0.49 HF 13.1	S S	S S S S S	2	
	Monitoring event P14	10/18/2018	1262	22.5	689.2	7.48	-125.4	0.980	12.7	- S S	2 2	2 2	ND ND	2 2	Q Q	1,100 890 F1	99	9 9	98	98	99	2 2 2	0	9 9	11,000	ND 0.016	13.5 ND	N ON C	0.0 0.12	183.42 419 B	13.5	S S	8 8 8 8	2	
	Monitoring event P15	1/7/2019	1343	22.5	689.2	7.34	-126.2	1.340	9.6	GN CN	8 8	2 2	2 2 2	Q Q	Q Q	1,100 F1 ND ND	Q Q	Q Q	Q Q	8 8	2 2	2 2 2	41,000	2 S	13,000	0:030	8.3 ND	ND ND	0.97	34.3 Hb 355 B	0.084 J HF 8.4	S S S	S S S S S	2	
	Monitoring event P16	4/16/2019	1442	3.2	689.2	8.41	-230.9	0.892	9.5	8.4 S. S. S. S.	ND 82	2 9 9	2 2 2	99	99	1,100 DN	99	99	99	22	2 2	2 2 2	9,700	9 9	21,000	ON 0.0059	2 2 :	2 2 2	0.24	ND 345		S S		2	
	Monitoring event P17	7/22/2019	1539	22.5	689.2	5.89	-80.7	3.058		_	ND 7		' '	2 2		00,1 QN QN						999	0)	9 9	16,000	0.05 0.33 B	18.0 9.8 J	0.19 B	2 2 2	ND 78	380 HF 398	S S	NS NS 159	2	
MW-40D	Monitoring event P18	10/18/2019	1627	1.7	689.2	5.75	-95.6	1.681	12.3	<u>8</u> 9	9 9	2 2	36 J	ND 480	9 9	QN QN 299	99	99	99	9 9	99	9 9	120,000	9 9	0	ND 0.28 B	254 ND	8.0 J H 0.36 B	0.2	NS 1380	13.0 HF 267	S S	NS NS NS 157	P TI	ot Sampled For nese Parameters
	Monitoring event P19	1/8/2020	1709	22.5	689.2 686.3	6.13	-74.8	1.720	8.8	2 2	ON C		110 J	2 2	Q Q	980 ON ON	S S	9 9	Q Q	2 2	2 2	2 2 2	110,000	8 8	15,000	ND 0.120	136 ND	0.072 NS	0.043	NS 630	2.9 HF 139	S S	NS NS 108	2	
	Monitoring event P20	4/16/2020	1808	3.0	689.2	6.36	123.5	0.961								S10 ND ND								9 9		ND 0.056B	31	2 2 2	2 2 2	398	2.5HF 33.5	S S	NS NS 95.6	2	
	Monitoring event P21	10/12/2020	1987	22.5	689.2	7.05	-197.9	0.926	14.4		9 8		ND ND 233	9 9	2 2	270 ON ON	22	28	28	2 2	2 2		61,000	9 9		0.027J	ND		0.052 NS	SN SN	0.62 HF 49.9	S S	NS NS 128	2	
	Monitoring event P22	4/2/2021	2159	3.2	689.2	7.65	-186.4	0.581	9.5	2 2	ND 8	25 02 25	2 2 2	22	2 2	04 d d	99	9 9	22	9 9	2 2	2 2 2	42,000	9 9	21,000	0.035J 0.057B				NS NS	31.2		NS NS 2.19		
	Monitoring event P23	10/27/2021	2367	22.5	689.2	7.21	7	1.010	13.3	dN CN	S S	2 2	2 2 2	2 2	Q Q	230 ND ND	99	9 Q	Q Q	88	2 2	2 2 2	64,000	9 8	7,400	NS NS	23.9 ND	N SN SN	S S S	NS NS	74.074 HF 24.6	S S	S S S S S	2	
	Monitoring event P22	4/8/2022	2530	3.7	689.2	7.41	-182.9	1.182								08 A D D								S S	15,000	NS NS	33.3 ND			SN SN	34.1	S S	S S S S	2	

Appendix B Current and Historical Summary of VOCs in Groundwater

MONITORING WELL A1-GP02S SUMMARY OF VOCs IN GROUNDWATER

				Analytic	al Resul	ts (µg/L)			
Sample Date	1,1,1-Trichloroethane	1,1,2-Trichloroethane	1,1-Dichloroethane	1,1-Dichloroethene	1,2-Dichloroethane	cis-1,2-Dichloroethene	Tetrachlorothene	Trichloroethene	Vinyl chloride
6/22/2010	ND	ND	ND	ND	ND	6,400	ND	11,000	ND
8/4/2010	ND	ND	ND	ND	ND	10,000	ND	20,000	ND
3/10/2015	ND	ND	ND	ND	ND	3,300	ND	5,400	ND
7/28/2015	ND	ND	ND	34	ND	23,000	ND	8,000	140
1/7/2016	ND	ND	ND	ND	ND	29,000	ND	330	770
4/8/2016	ND	ND	ND	ND	ND	22,000	ND	ND	2,400
7/11/2016	ND	ND	ND	ND	ND	32,000	ND	ND	10,000
10/10/2016	ND	ND	ND	ND	ND	6,400	ND	ND	13,000
1/23/2017	ND	ND	ND	ND	ND	810	ND	ND	1,700
4/11/2017	ND	ND	ND	ND	ND	900	ND	ND	3,700
7/6/2017	ND	ND	ND	ND	ND	790	ND	ND	4,300
10/17/2017	ND	ND	ND	ND	ND	230	ND	ND	1,900
1/5/2018	ND	ND	ND	ND	ND	680	ND	ND	6,700
4/12/2018	ND	ND	ND	ND	ND	730	ND	ND	4,200
7/9/2018	ND	ND	ND	ND	ND	460	ND	ND	6,600
10/18/2018	ND	ND	ND	ND	ND	74	ND	ND	1,300
1/2/2019	ND	ND	ND	ND	ND	150	ND	ND	750
4/18/2019	ND	ND	ND	ND	ND	450	ND	ND	1,300
7/25/2019	ND	ND	ND	ND	ND	46	ND	ND	1,200
10/14/2019	ND	ND	ND	ND	ND	44	ND	ND	390
1/7/2020	ND	ND	ND	ND	ND	64	ND	ND	450
4/13/2020	ND	ND	ND	ND	ND	420	ND	ND	1,500
10/12/2020	ND	ND	ND	ND	ND	390	ND	ND	2,300
4/1/2021	ND	ND	ND	ND	ND	340	ND	ND	4,500
10/22/2021	ND	ND	ND	ND	ND	970	ND	ND	2,800
4/12/2022	ND	ND	ND	ND	ND	1,700	ND	ND	1,800

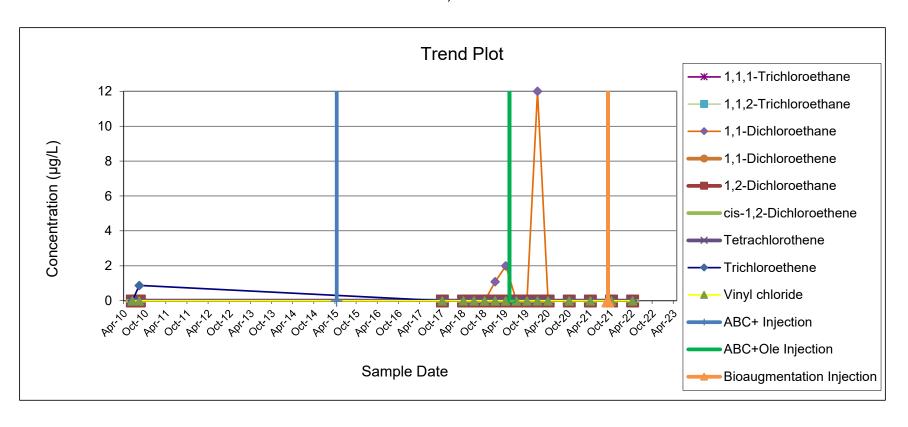
MONITORING WELL A1-GP02S SUMMARY OF VOCs IN GROUNDWATER



MONITORING WELL A1-GP06S SUMMARY OF VOCs IN GROUNDWATER

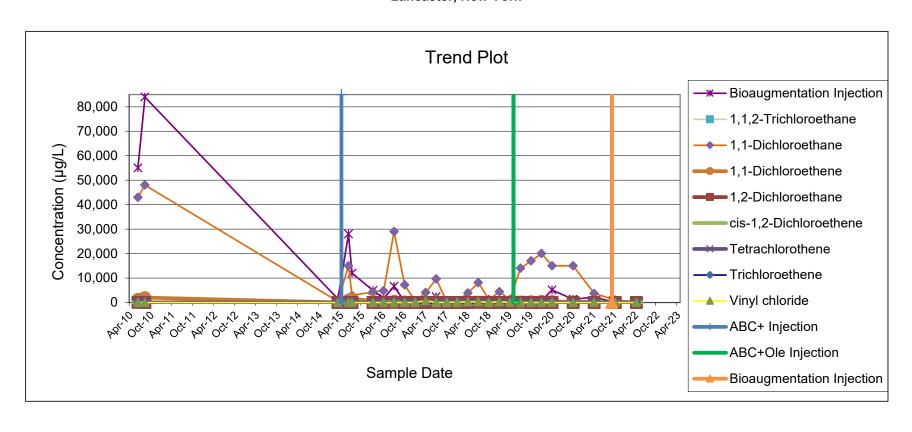
				Analytic	al Resul	ts (µg/L)			
Sample Date	1,1,1-Trichloroethane	1,1,2-Trichloroethane	1,1-Dichloroethane	1,1-Dichloroethene	1,2-Dichloroethane	cis-1,2-Dichloroethene	Tetrachlorothene	Trichloroethene	Vinyl chloride
6/21/2010	620	ND	890	63	ND	32	ND	46	ND
8/4/2010	1,700	16	3,200	270	ND	130	ND	200	20
3/11/2015	110	ND	21	ND	ND	ND	ND	0.81	ND
7/27/2015	110	4.1	3,300	0.89	3.1	270	ND	18	16
1/7/2016	ND	ND	340	60	ND	25	ND	330	16
4/8/2016	73	ND	450	ND	ND	ND	ND	5.4	33
7/12/2016	35	ND	680	7.8	ND	ND	ND	ND	44
10/10/2016	ND	ND	270	ND	ND	ND	ND	ND	ND
1/24/2017	24	ND	300	ND	ND	ND	ND	ND	29
4/11/2017	34	ND	210	6.2	ND	ND	ND	ND	ND
7/6/2017	63	490	13	ND	ND	16	ND	ND	50
10/18/2017	ND	ND	200	ND	ND	ND	ND	ND	14
1/5/2018	44	84	400	3.7	2.1	ND	ND	ND	ND
4/10/2018	110	ND	360	6.8	ND	8	ND	7.2	11
7/9/2018	18	ND	250	4.1	2.6	ND	ND	ND	20
10/19/2018	15	ND	210	ND	3.3	ND	ND	ND	9.9
1/4/2019	21	ND	170	ND	ND	ND	ND	ND	ND
4/10/2019	23	ND	150	ND	ND	ND	ND	ND	ND
7/22/2019	22	ND	230	ND	ND	ND	ND	ND	ND
10/14/2019	ND	ND	89	ND	ND	ND	ND	ND	ND
1/7/2020	ND	ND	86	ND	ND	ND	ND	ND	ND
4/13/2020	ND	ND	200	ND	ND	ND	ND	ND	ND
10/8/2020	ND	ND	80	ND	ND	ND	ND	ND	ND
4/1/2021	210	ND	200	ND	ND	ND	ND	ND	ND
10/22/2021	ND	ND	54	ND	ND	ND	ND	ND	ND
4/11/2022	ND	ND	21	ND	ND	ND	ND	ND	ND

MONITORING WELL A1-GP06S SUMMARY OF VOCs IN GROUNDWATER Former Scott Aviation Site


Lancaster, New York

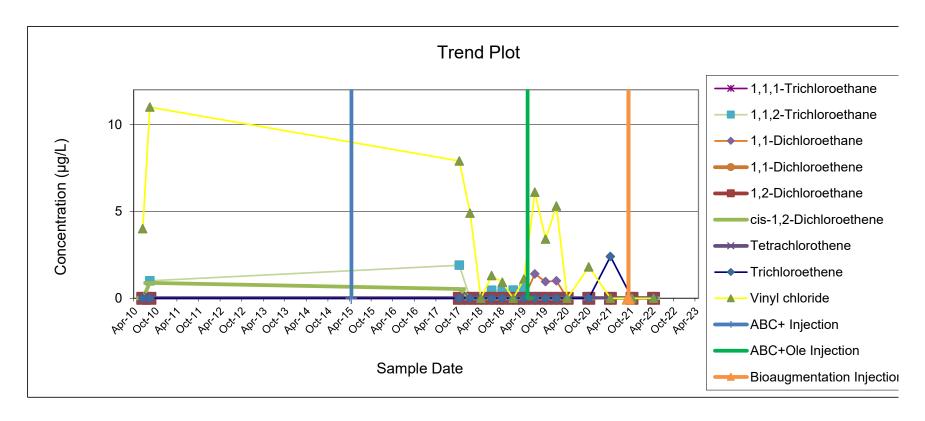
MONITORING WELL A1-GP09S SUMMARY OF VOCs IN GROUNDWATER

				Analytic	al Resul	ts (µg/L)			
Sample Date	1,1,1-Trichloroethane	1,1,2-Trichloroethane	1,1-Dichloroethane	1,1-Dichloroethene	1,2-Dichloroethane	cis-1,2-Dichloroethene	Tetrachlorothene	Trichloroethene	Vinyl chloride
6/22/2010	ND	ND	ND	ND	ND	ND	ND	ND	ND
8/3/2010	ND	ND	ND	ND	ND	ND	ND	0.88	ND
10/18/2017	ND	ND	ND	ND	ND	ND	ND	ND	ND
4/12/2018	ND	ND	ND	ND	ND	ND	ND	ND	ND
7/11/2018	ND	ND	ND	ND	ND	ND	ND	ND	ND
10/19/2018	ND	ND	ND	ND	ND	ND	ND	ND	ND
1/3/2019	ND	ND	1.1	ND	ND	ND	ND	ND	ND
4/17/2019	ND	ND	2.0	ND	ND	ND	ND	ND	ND
7/25/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND
10/15/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND
1/7/2020	ND	ND	12	ND	ND	ND	ND	ND	ND
4/13/2020	ND	ND	ND	ND	ND	ND	ND	ND	ND
10/9/2020	ND	ND	ND	ND	ND	ND	ND	ND	ND
4/1/2021	ND	ND	ND	ND	ND	ND	ND	ND	ND
10/21/2021	ND	ND	ND	ND	ND	ND	ND	ND	ND
4/13/2022	ND	ND	ND	ND	ND	ND	ND	ND	ND


MONITORING WELL A1-GP09S SUMMARY OF VOCs IN GROUNDWATER

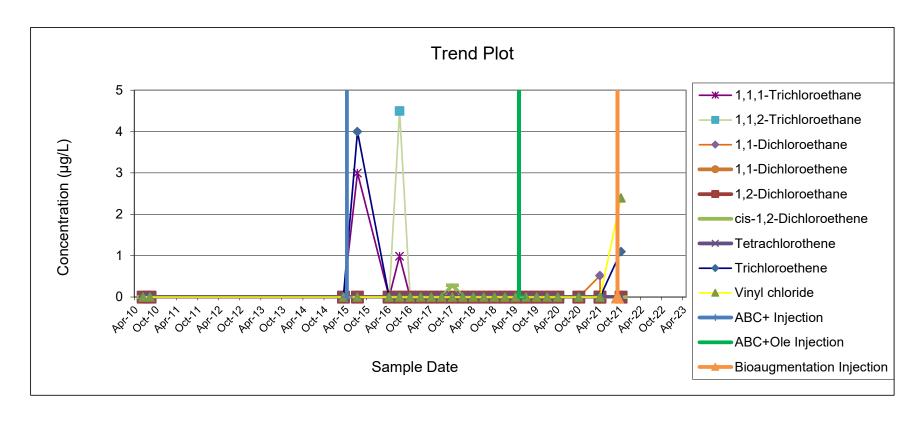
MONITORING WELL A1-GP10S SUMMARY OF VOCs IN GROUNDWATER

				Analytic	al Resul	ts (µg/L)			
Sample Date	1,1,1-Trichloroethane	1,1,2-Trichloroethane	1,1-Dichloroethane	1,1-Dichloroethene	1,2-Dichloroethane	cis-1,2-Dichloroethene	Tetrachlorothene	Trichloroethene	Vinyl chloride
6/21/2010	55,000	84	43,000	1,300	77	ND	1.2	92	41
8/3/2010	84,000	ND	48,000	2,000	ND	ND	ND	ND	ND
3/11/2015	1,500	1.2	440	65	1.6	7.4	ND	6.6	ND
6/12/2015	28,000	ND	15,000	1,000	40	190	ND	ND	ND
7/27/2015	12,000	ND	2,900	1,600	9.6	45	ND	36	ND
1/7/2016	4,900	ND	4,300	470	ND	51	ND	ND	ND
4/8/2016	1,700	ND	4,800	220	ND	ND	ND	ND	ND
7/11/2016	6,600	ND	29,000	500	72	270	ND	ND	ND
10/7/2016	360	ND	7,200	190	47	ND	ND	ND	ND
1/23/2017	ND	ND	580	ND	ND	ND	ND	ND	ND
4/10/2017	240	ND	4,100	45	ND	ND	ND	ND	690
7/6/2017	2,400	ND	9,600	380	ND	ND	ND	ND	ND
10/17/2017	23	ND	240	4	1.4	0.5	ND	0.47	45
1/4/2018	44	ND	600	ND	11	ND	ND	ND	85
4/10/2018	140	ND	3,900	19	18	ND	ND	ND	260
7/9/2018	530	ND	8,100	51	77	ND	ND	ND	320
10/19/2018	640	ND	1,200	ND	ND	ND	ND	ND	ND
1/4/2019	200	ND	4,400	91	ND	ND	ND	ND	260
4/15/2019	ND	ND	1,200	ND	ND	ND	ND	ND	ND
7/22/2019	690	ND	14,000	130	78	ND	ND	ND	ND
10/14/2019	780	ND	17,000	310	ND	ND	ND	ND	ND
1/7/2020	730	ND	20,000	480	ND	ND	ND	ND	ND
4/13/2020	5,100	ND	15,000	400	44	ND	ND	ND	ND
10/8/2020	1,300	ND	15,000	270	ND	170	ND	ND	ND
4/1/2021	2,200	ND	3,700	200	ND	ND	ND	ND	ND
10/27/2021	ND	ND	1,000	ND	ND	ND	ND	ND	ND
4/8/2022	290	ND	290	ND	ND	ND	ND	ND	ND


MONITORING WELL A1-GP10S SUMMARY OF VOCs IN GROUNDWATER

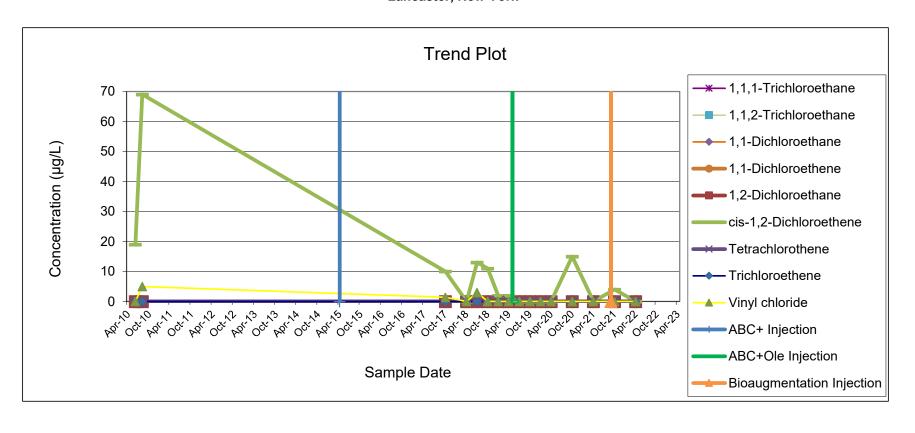
MONITORING WELL A1-GP14S SUMMARY OF VOCs IN GROUNDWATER

				Analytic	al Resul	ts (µg/L)			
Sample Date	1,1,1-Trichloroethane	1,1,2-Trichloroethane	1,1-Dichloroethane	1,1-Dichloroethene	1,2-Dichloroethane	cis-1,2-Dichloroethene	Tetrachlorothene	Trichloroethene	Vinyl chloride
6/21/2010	ND	ND	ND	ND	ND	ND	ND	ND	4.0
8/3/2010	ND	1.0	ND	ND	ND	0.88	ND	ND	11.0
10/17/2017	ND	1.9	ND	ND	ND	0.53	ND	ND	7.9
1/4/2018	ND	ND	ND	ND	ND	ND	ND	ND	4.9
4/10/2018	ND	ND	ND	ND	ND	ND	ND	ND	ND
7/9/2018	ND	0.46	ND	ND	ND	ND	ND	ND	1.3
10/23/2018	ND	0.44	ND	ND	ND	ND	ND	ND	0.9
1/2/2019	ND	0.47	ND	ND	ND	ND	ND	ND	ND
4/15/2019	ND	0.54	ND	ND	ND	ND	ND	ND	1.1
7/23/2019	ND	ND	1.4	ND	ND	ND	ND	ND	6.1
10/15/2019	ND	ND	1.0	ND	ND	ND	ND	ND	3.4
1/7/2020	ND	ND	1.0	ND	ND	ND	ND	ND	5.3
4/13/2020	ND	ND	ND	ND	ND	ND	ND	ND	ND
10/8/2020	ND	ND	ND	ND	ND	ND	ND	ND	1.8
4/1/2021	ND	ND	ND	ND	ND	ND	ND	2.4	ND
10/25/2021	ND	ND	ND	ND	ND	ND	ND	ND	ND
4/12/2022	ND	ND	ND	ND	ND	ND	ND	ND	ND


MONITORING WELL A1-GP14S SUMMARY OF VOCs IN GROUNDWATER

MONITORING WELL A1-GP15S SUMMARY OF VOCs IN GROUNDWATER

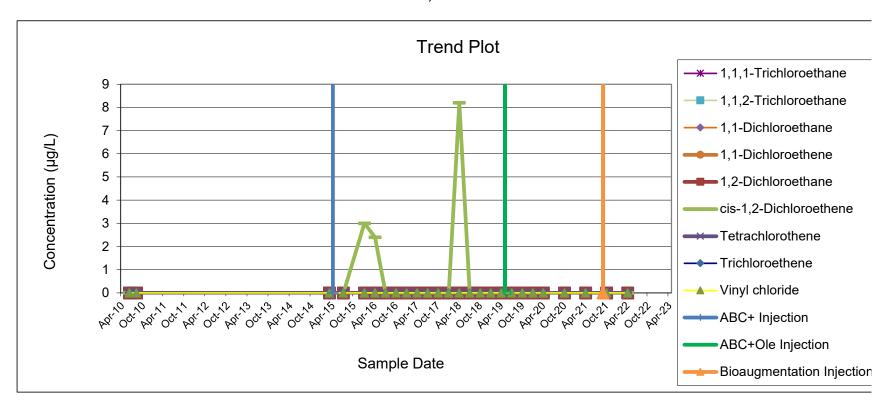
				Analytic	al Resul	ts (µg/L)			
Sample Date	1,1,1-Trichloroethane	1,1,2-Trichloroethane	1,1-Dichloroethane	1,1-Dichloroethene	1,2-Dichloroethane	cis-1,2-Dichloroethene	Tetrachlorothene	Trichloroethene	Vinyl chloride
6/17/2010	ND	ND	ND	ND	ND	ND	ND	ND	ND
8/2/2010	ND	ND	ND	ND	ND	ND	ND	ND	ND
3/11/2015	ND	ND	ND	ND	ND	ND	ND	ND	ND
7/29/2015	3.0	ND	ND	ND	ND	ND	ND	4.0	ND
4/8/2016	ND	ND	ND	ND	ND	ND	ND	ND	ND
7/11/2016	0.99	4.5	ND	ND	ND	ND	ND	ND	ND
10/7/2016	ND	ND	ND	ND	ND	ND	ND	ND	ND
1/23/2017	ND	ND	ND	ND	ND	ND	ND	ND	ND
4/12/2017	ND	ND	ND	ND	ND	ND	ND	ND	ND
7/6/2017	ND	ND	ND	ND	ND	ND	ND	ND	ND
10/17/2017	ND	ND	ND	ND	ND	0.29	ND	ND	ND
1/2/2018	NS	NS	NS	NS	NS	NS	NS	NS	NS
4/10/2018	ND	ND	ND	ND	ND	ND	ND	ND	ND
7/9/2018	ND	ND	ND	ND	ND	ND	ND	ND	ND
10/22/2018	ND	ND	ND	ND	ND	ND	ND	ND	ND
1/2/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND
4/10/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND
7/25/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND
10/14/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND
1/7/2020	ND	ND	ND	ND	ND	ND	ND	ND	ND
4/13/2020	ND	ND	ND	ND	ND	ND	ND	ND	ND
10/8/2020	ND	ND	ND	ND	ND	ND	ND	ND	ND
4/1/2021	ND	ND	0.52	ND	ND	ND	ND	ND	ND
10/20/2021	ND	ND	ND	ND	ND	ND	ND	1.1	2.4
4/1/2021	ND	ND	ND	ND	ND	ND	ND	ND	ND


MONITORING WELL A1-GP15S SUMMARY OF VOCs IN GROUNDWATER

MONITORING WELL A1-GP16S SUMMARY OF VOCs IN GROUNDWATER

				Analytic	al Resul	ts (µg/L)			
Sample Date	1,1,1-Trichloroethane	1,1,2-Trichloroethane	1,1-Dichloroethane	1,1-Dichloroethene	1,2-Dichloroethane	Tetrachlorothene	cis-1,2-Dichloroethene	Trichloroethene	Vinyl chloride
6/17/2010	ND	ND	ND	ND	ND	ND	19	ND	ND
8/2/2010	ND	ND	ND	ND	ND	ND	69	ND	5.0
10/17/2017	ND	ND	0.27	ND	ND	ND	10	ND	1.4
4/9/2018	ND	ND	ND	ND	ND	ND	ND	ND	ND
7/10/2018	ND	ND	0.38	ND	ND	ND	13	ND	3.0
10/2/2018	ND	ND	ND	ND	ND	ND	11	ND	ND
1/3/2019	ND	ND	ND	ND	ND	ND	1.9	ND	ND
4/17/2019	ND	ND	ND	ND	ND	ND	1.9	ND	ND
7/26/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND
10/15/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND
1/7/2020	ND	ND	ND	ND	ND	ND	ND	ND	ND
4/15/2020	ND	ND	ND	ND	ND	ND	ND	ND	ND
10/8/2020	ND	ND	ND	ND	ND	ND	15	ND	ND
4/1/2021	ND	ND	ND	ND	ND	ND	ND	ND	ND
10/25/2021	ND	ND	ND	ND	ND	ND	4	ND	ND
4/11/2022	ND	ND	ND	ND	ND	ND	ND	ND	ND

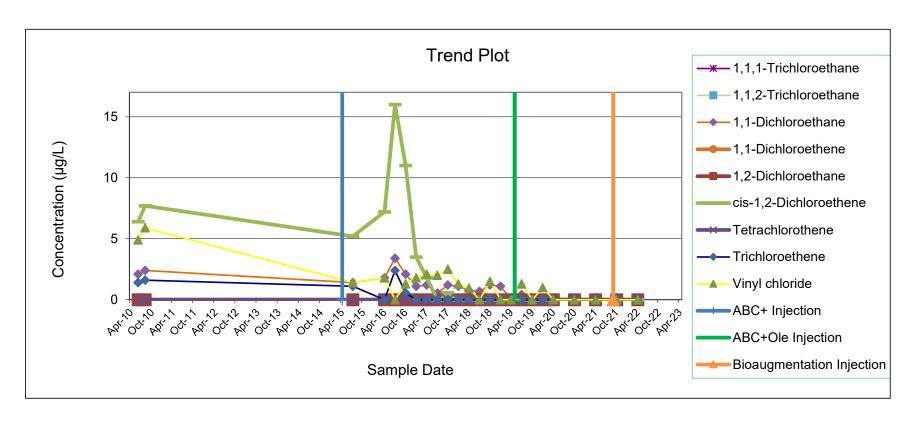
MONITORING WELL A1-GP16S SUMMARY OF VOCs IN GROUNDWATER


MONITORING WELL A1-GP18S SUMMARY OF VOCs IN GROUNDWATER

Former Scott Aviation Site Lancaster, New York

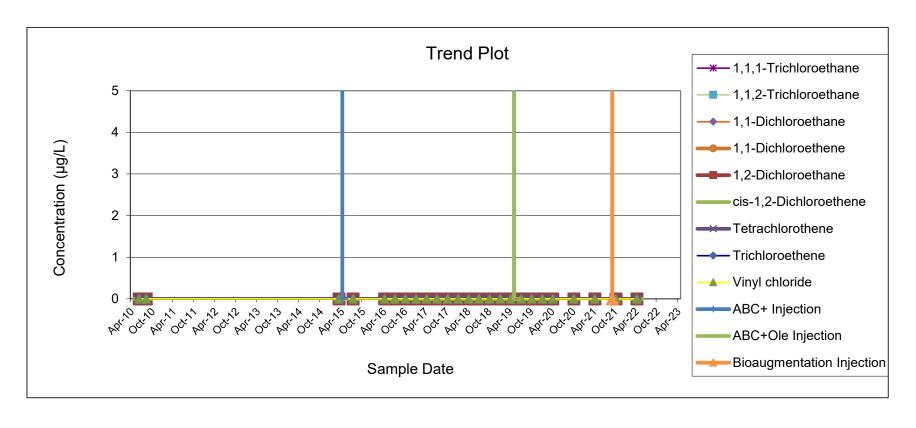
				Analytic	al Resul	ts (µg/L)			
Sample Date	1,1,1-Trichloroethane	1,1,2-Trichloroethane	1,1-Dichloroethane	1,1-Dichloroethene	1,2-Dichloroethane	Tetrachlorothene	cis-1,2-Dichloroethene	Trichloroethene	Vinyl chloride
6/18/2010	ND	ND	ND	ND	ND	ND	ND	ND	ŃD
8/2/2010	ND	ND	ND	ND	ND	ND	ND	ND	ND
3/11/2015	ND	ND	ND	ND	ND	ND	ND	ND	ND
7/27/2015	ND	ND	ND	ND	ND	ND	ND	ND	ND
1/7/2016	ND	ND	ND	ND	ND	ND	3.0	ND	ND
4/8/2016	ND	ND	ND	ND	ND	ND	2.4	ND	ND
7/8/2016	ND	ND	ND	ND	ND	ND	ND	ND	ND
10/7/2016	ND	ND	ND	ND	ND	ND	ND	ND	ND
1/23/2017	ND	ND	ND	ND	ND	ND	ND	ND	ND
4/10/2017	ND	ND	ND	ND	ND	ND	ND	ND	ND
7/6/2017	ND	ND	ND	ND	ND	ND	ND	ND	ND
10/16/2017	ND	ND	ND	ND	ND	ND	ND	ND	ND
1/5/2018	NA	NA	NA	NA	NA	NA	ND	NA	NA
4/9/2018	ND	ND	ND	ND	ND	ND	8.2	ND	ND
7/9/2018	ND	ND	ND	ND	ND	ND	ND	ND	ND
10/19/2018	ND	ND	ND	ND	ND	ND	ND	ND	ND
1/4/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND
4/9/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND
7/22/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND
10/14/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND
1/7/2020	ND	ND	ND	ND	ND	ND	ND	ND	ND
4/13/2020	ND	ND	ND	ND	ND	ND	ND	ND	ND
10/8/2020	ND	ND	ND	ND	ND	ND	ND	ND	ND
4/1/2021	ND	ND	ND	ND	ND	ND	ND	ND	ND
10/21/2021	ND	ND	ND	ND	ND	ND	ND	ND	ND
4/13/2022	ND	ND	ND	ND	ND	ND	ND	ND	ND

NA - Not available


MONITORING WELL A1-GP18S SUMMARY OF VOCs IN GROUNDWATER

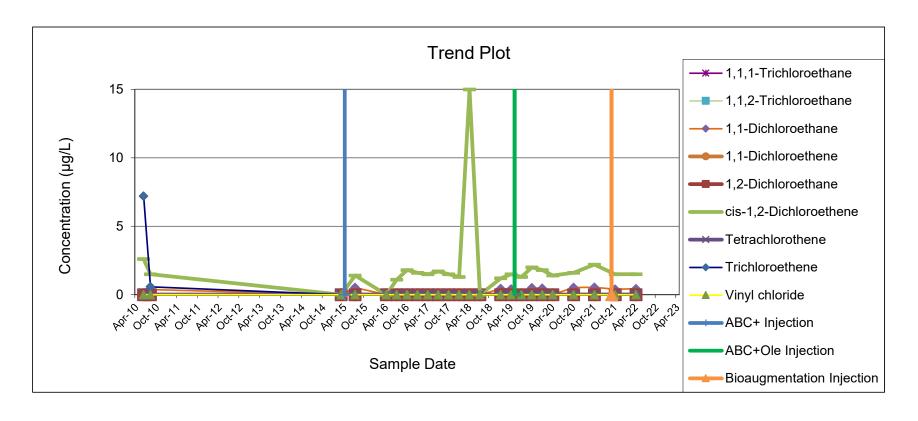
MONITORING WELL MW-30 SUMMARY OF VOCs IN GROUNDWATER

				Analytic	al Resul	ts (µg/L)			
Sample Date	1,1,1-Trichloroethane	1,1,2-Trichloroethane	1,1-Dichloroethane	1,1-Dichloroethene	1,2-Dichloroethane	cis-1,2-Dichloroethene	Tetrachlorothene	Trichloroethene	Vinyl chloride
6/18/2010	ND	ND	2.1	ND	ND	6.4	ND	1.4	4.9
8/3/2010	ND	ND	2.4	ND	ND	7.7	ND	1.6	5.9
7/29/2015	ND	ND	1.4	ND	ND	5.2	ND	1.1	1.4
4/8/2016	ND	ND	1.8	ND	ND	7.2	ND	ND	1.8
7/14/2016	ND	ND	3.4	ND	ND	16	ND	2.4	ND
10/11/2016	ND	ND	2.1	ND	ND	11	ND	0.56	1.3
1/25/2017	ND	ND	1.1	ND	ND	3.5	ND	ND	1.8
4/12/2017	ND	ND	1.2	ND	ND	1.8	ND	ND	2.1
7/7/2017	ND	ND	0.54	ND	ND	ND	ND	ND	2.0
10/19/2017	ND	ND	1.2	ND	ND	0.6	ND	ND	2.5
1/2/2018	ND	ND	1.1	ND	ND	ND	ND	ND	1.3
4/11/2018	ND	ND	0.75	ND	ND	ND	ND	ND	0.95
7/11/2018	ND	ND	0.68	ND	ND	ND	ND	ND	ND
10/23/2018	ND	ND	1.20	ND	ND	ND	ND	ND	1.50
1/8/2019	ND	ND	1.10	ND	ND	ND	ND	ND	ND
4/11/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND
7/26/2019	ND	ND	0.42	ND	ND	ND	ND	ND	1.30
10/17/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND
1/8/2020	ND	ND	ND	ND	ND	ND	ND	ND	1.00
4/15/2020	ND	ND	ND	ND	ND	ND	ND	ND	ND
10/7/2020	ND	ND	ND	ND	ND	ND	ND	ND	ND
4/5/2021	ND	ND	ND	ND	ND	ND	ND	ND	ND
10/25/2021	ND	ND	ND	ND	ND	ND	ND	ND	ND
4/14/2022	ND	ND	ND	ND	ND	ND	ND	ND	ND


MONITORING WELL MW-30 SUMMARY OF VOCs IN GROUNDWATER

MONITORING WELL MW-35S SUMMARY OF VOCs IN GROUNDWATER

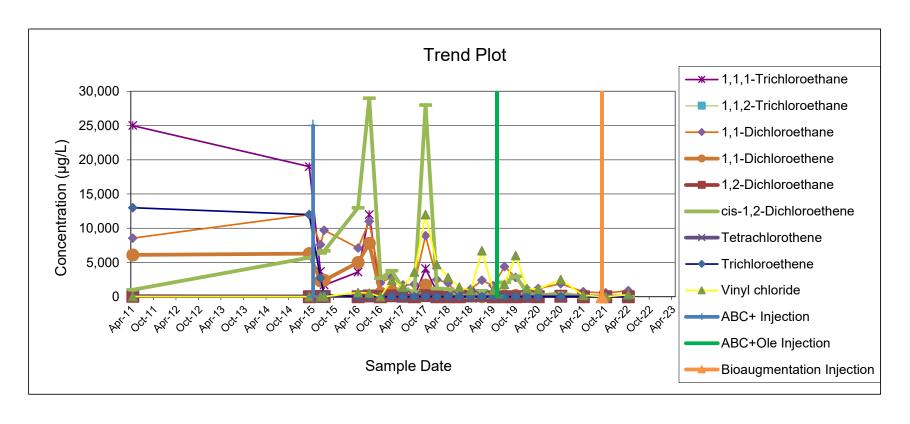
				Analytic	al Resul	ts (µg/L)			
Sample Date	1,1,1-Trichloroethane	1,1,2-Trichloroethane	1,1-Dichloroethane	1,1-Dichloroethene	1,2-Dichloroethane	Tetrachlorothene	cis-1,2-Dichloroethene	Trichloroethene	Vinyl chloride
6/17/2010	ND	ND	ND	ND	ND	ND	ND	ND	ND
8/2/2010	ND	ND	ND	ND	ND	ND	ND	ND	ND
3/11/2015	ND	ND	ND	ND	ND	ND	ND	ND	ND
7/28/2015	ND	ND	ND	ND	ND	ND	ND	ND	ND
4/8/2016	ND	ND	ND	ND	ND	ND	ND	ND	ND
7/13/2016	ND	ND	ND	ND	ND	ND	ND	ND	ND
10/11/2016	ND	ND	ND	ND	ND	ND	ND	ND	ND
1/23/2017	ND	ND	ND	ND	ND	ND	ND	ND	ND
4/10/2017	ND	ND	ND	ND	ND	ND	ND	ND	ND
7/7/2017	ND	ND	ND	ND	ND	ND	ND	ND	ND
10/17/2017	ND	ND	ND	ND	ND	ND	ND	ND	ND
1/4/2018	ND	ND	ND	ND	ND	ND	ND	ND	ND
4/9/2018	ND	ND	ND	ND	ND	ND	ND	ND	ND
7/11/2018	ND	ND	ND	ND	ND	ND	ND	ND	ND
10/19/2018	ND	ND	ND	ND	ND	ND	ND	ND	ND
1/7/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND
4/17/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND
7/25/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND
10/17/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND
1/8/2020	ND	ND	ND	ND	ND	ND	ND	ND	ND
4/14/2020	ND	ND	ND	ND	ND	ND	ND	ND	ND
10/6/2020	ND	ND	ND	ND	ND	ND	ND	ND	ND
4/5/2021	ND	ND	ND	ND	ND	ND	ND	ND	ND
10/20/2021	ND	ND	ND	ND	ND	ND	ND	ND	ND
4/7/2022	ND	ND	ND	ND	ND	ND	ND	ND	ND


MONITORING WELL MW-35S SUMMARY OF VOCs IN GROUNDWATER

MONITORING WELL MW-36S SUMMARY OF VOCs IN GROUNDWATER

				Analytic	al Resul	ts (µg/L)			
Sample Date	1,1,1-Trichloroethane	1,1,2-Trichloroethane	1,1-Dichloroethane	1,1-Dichloroethene	1,2-Dichloroethane	cis-1,2-Dichloroethene	Tetrachlorothene	Trichloroethene	Z Vinyl chloride
6/17/2010	ND	ND	ND	ND	ND	2.6	ND	7.2	ND
8/3/2010	ND	ND	0.38	ND	ND	1.5	ND	0.58	ND
3/10/2015	ND	ND	ND	ND	ND	ND	ND	ND	ND
7/29/2015	ND	ND	0.52	ND	ND	1.4	ND	ND	ND
4/8/2016	ND	ND	ND	ND	ND	ND	ND	ND	ND
7/11/2016	ND	ND	ND	ND	ND	1.1	ND	ND	ND
10/12/2016	ND	ND	ND	ND	ND	1.8	ND	ND	ND
1/24/2017	ND	ND	ND	ND	ND	1.6	ND	ND	ND
4/12/2017	ND	ND	ND	ND	ND	1.5	ND	ND	ND
7/6/2017	ND	ND	ND	ND	ND	1.7	ND	ND	ND
10/17/2017	ND	ND	ND	ND	ND	1.5	ND	ND	ND
1/4/2018	ND	ND	ND	ND	ND	1.3	ND	ND	ND
4/9/2018	ND	ND	ND	ND	ND	15	ND	ND	ND
7/10/2018	ND	ND	ND	ND	ND	ND	ND	ND	ND
1/7/2019	ND	ND	0.44	ND	ND	1.2	ND	ND	ND
4/16/2019	ND	ND	0.41	ND	ND	1.5	ND	ND	ND
7/25/2019	ND	ND	ND	ND	ND	1.3	ND	ND	ND
10/18/2019	ND	ND	0.50	ND	ND	2.0	ND	ND	ND
1/8/2020	ND	ND	0.47	ND	ND	1.8	ND	ND	ND
4/16/2020	ND	ND	0.40J	ND	ND	1.4	ND	ND	ND
10/9/2020	ND	ND	0.53	ND	ND	1.6	ND	ND	ND
4/6/2021	ND	ND	0.54	ND	ND	2.2	ND	ND	ND
10/22/2021	ND	ND	0.40	ND	ND	1.5	ND	ND	ND
4/11/2022	ND	ND	0.43	ND	ND	1.5	ND	ND	ND

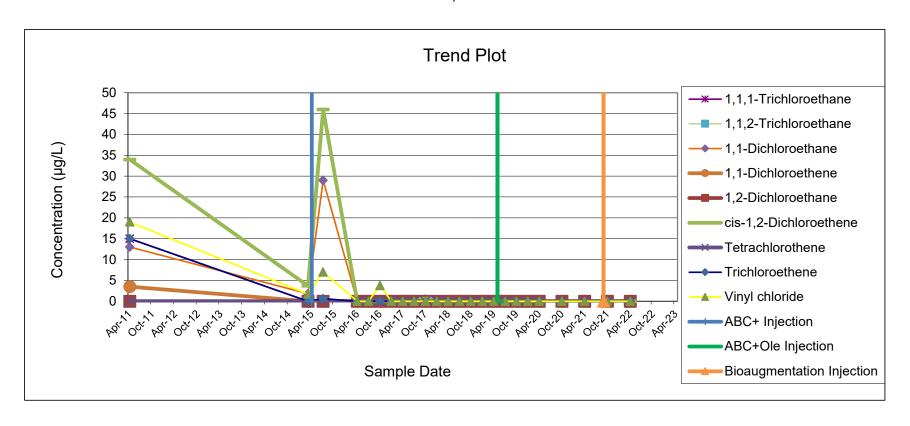
MONITORING WELL MW-36S SUMMARY OF VOCs IN GROUNDWATER



MONITORING WELL MW-42S SUMMARY OF VOCs IN GROUNDWATER

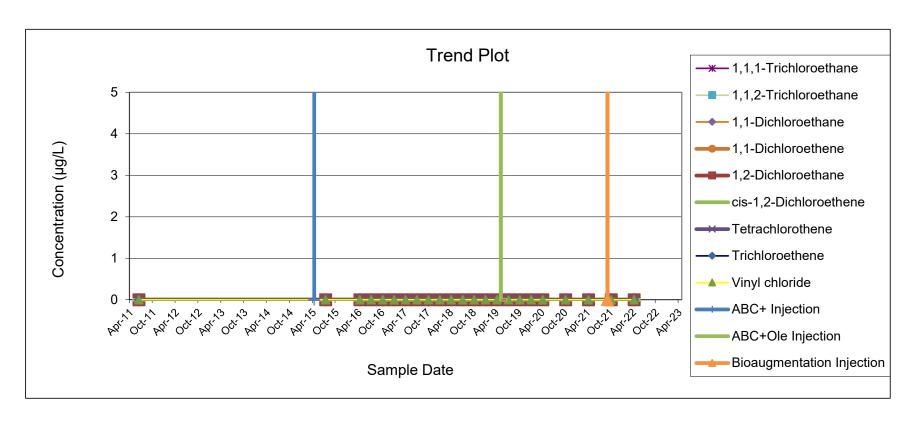
				Analytic	al Resul	ts (µg/L)			
Sample Date	1,1,1-Trichloroethane	1,1,2-Trichloroethane	1,1-Dichloroethane	1,1-Dichloroethene	1,2-Dichloroethane	cis-1,2-Dichloroethene	Tetrachlorothene	Trichloroethene	었 Vinyl chloride
4/7/2011	25,000	240	8,550	6,100	76	1,000	6	13,000	27
3/12/2015	19,000	240	12,000	6,300	ND	5,700	ND	12,000	ND
6/12/2015	3,700	100	7,600	2,300	44	6,400	ND	2,700	ND
7/27/2015	1,700	71	9,700	2,400	44	6,700	ND	280	ND
4/8/2016	3,600	ND	7,100	5,000	ND	13,000	ND	ND	610
7/14/2016	12,000	120	11,000	7,800	110	29,000	ND	100	530
10/13/2016	440	ND	2,000	520	ND	2,700	ND	ND	ND
1/25/2017	1,200	ND	2,900	790	130	3,800	ND	ND	2,400
4/12/2017	230	ND	1,700	220	74	1,100	ND	ND	1,400
7/10/2017	ND	ND	1,800	150	ND	690	ND	ND	3,600
10/19/2017	4,100	48	8,900	1,700	170	28,000	ND	54	12,000
1/2/2018	740	ND	2,500	ND	ND	1,200	ND	ND	4,700
4/11/2018	390	ND	2,000	120	ND	1,100	ND	ND	2,800
7/12/2018	ND	ND	ND	ND	ND	210	ND	ND	1,400
10/23/2018	ND	ND	1,100	130	110	ND	ND	ND	910
1/8/2019	490	ND	2,400	ND	160	850	ND	ND	6,700
4/18/2019	ND	ND	1,600	ND	ND	ND	ND	ND	940
7/26/2019	ND	ND	4,400	140	ND	2,100	ND	ND	1,800
10/18/2019	ND	ND	2,800	190	ND	3,000	ND	ND	6,000
1/10/2020	160	390	1,100	150	43	610	ND	ND	1,200
4/16/2020	200	ND	1,200	130	58J	160	ND	ND	1,100
10/12/2020	160	ND	1,900	99	76	490	ND	ND	2,500
4/1/2021	ND	ND	710	ND	ND	ND	ND	ND	190
10/27/2021	ND	ND	550	ND	ND	ND	ND	ND	ND
4/8/2022	240	ND	880	ND	ND	ND	ND	ND	290

MONITORING WELL MW-42S SUMMARY OF VOCs IN GROUNDWATER Former Scott Aviation Site


Lancaster, New York

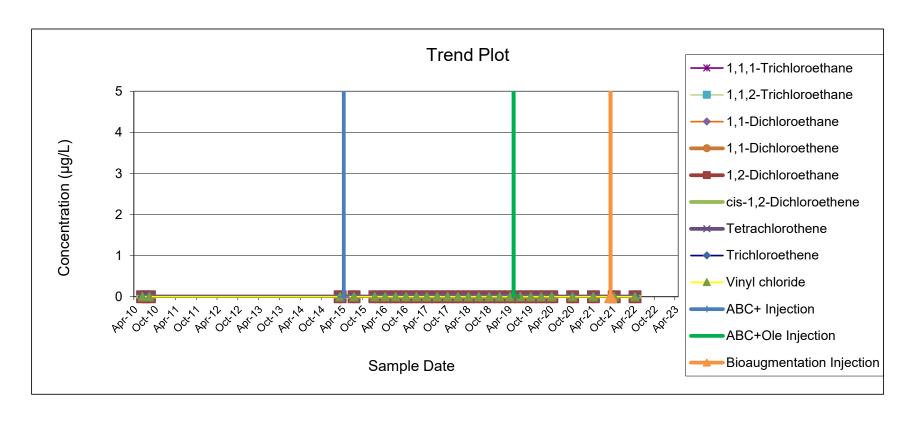
MONITORING WELL MW-43S SUMMARY OF VOCs IN GROUNDWATER

				Analytic	al Resul	ts (µg/L)			
Sample Date	1,1,1-Trichloroethane	1,1,2-Trichloroethane	1,1-Dichloroethane	1,1-Dichloroethene	1,2-Dichloroethane	cis-1,2-Dichloroethene	Tetrachlorothene	Trichloroethene	ക് Vinyl chloride
4/7/2011	15	ND	13	3.5	ND	34	ND	15	19
3/12/2015	ND	ND	1.8	ND	ND	3.7	ND	ND	1.7
7/29/2015	ND	ND	29	ND	ND	46	ND	0.60	7
4/8/2016	ND	ND	ND	ND	ND	ND	ND	ND	ND
7/13/2016	ND	ND	ND	ND	ND	ND	ND	ND	ND
10/13/2016	ND	ND	ND	ND	ND	ND	ND	ND	3.8
1/25/2017	ND	ND	ND	ND	ND	ND	ND	ND	ND
4/11/2017	ND	ND	ND	ND	ND	ND	ND	ND	ND
7/10/2017	ND	ND	ND	ND	ND	ND	ND	ND	ND
10/19/2017	ND	ND	0.48	ND	ND	0.6	ND	ND	ND
1/2/2018	ND	ND	ND	ND	ND	ND	ND	ND	ND
4/11/2018	ND	ND	ND	ND	ND	ND	ND	ND	ND
7/12/2018	ND	ND	ND	ND	ND	ND	ND	ND	ND
10/19/2018	ND	ND	ND	ND	ND	ND	ND	ND	ND
1/8/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND
4/17/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND
7/26/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND
10/18/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND
1/8/2020	ND	ND	ND	ND	ND	ND	ND	ND	ND
4/14/2020	ND	ND	ND	ND	ND	ND	ND	ND	ND
10/7/2020	ND	ND	ND	ND	ND	ND	ND	ND	ND
4/1/2021	ND	ND	ND	ND	ND	ND	ND	ND	ND
10/25/2021	ND	ND	ND	ND	ND	ND	ND	ND	ND
4/14/2022	ND	ND	ND	ND	ND	ND	ND	ND	ND


MONITORING WELL MW-43S SUMMARY OF VOCs IN GROUNDWATER

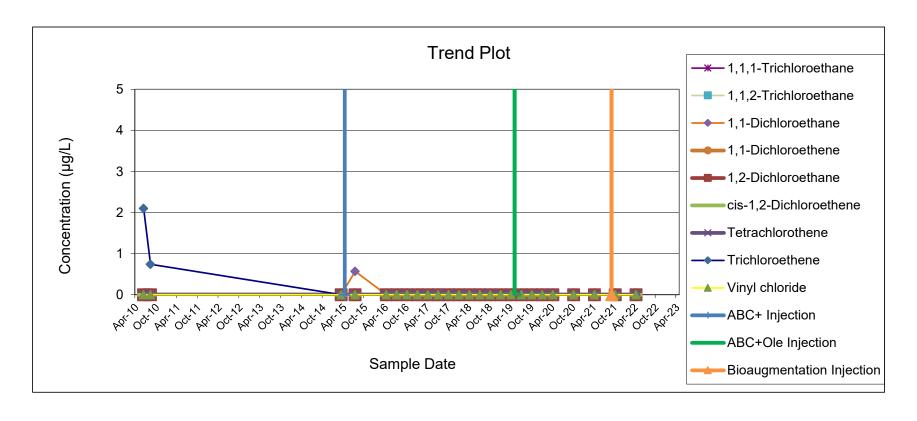
MONITORING WELL MW-44S SUMMARY OF VOCs IN GROUNDWATER

				Analytic	al Resul	ts (µg/L)			
Sample Date	1,1,1-Trichloroethane	1,1,2-Trichloroethane	1,1-Dichloroethane	1,1-Dichloroethene	1,2-Dichloroethane	cis-1,2-Dichloroethene	Tetrachlorothene	Trichloroethene	Vinyl chloride
6/1/2011	ND	ND	ND	ND	ND	ND	ND	ND	ND
7/29/2015	ND	ND	ND	ND	ND	ND	ND	ND	ND
4/8/2016	ND	ND	ND	ND	ND	ND	ND	ND	ND
7/14/2016	ND	ND	ND	ND	ND	ND	ND	ND	ND
10/11/2016	ND	ND	ND	ND	ND	ND	ND	ND	ND
1/25/2017	ND	ND	ND	ND	ND	ND	ND	ND	ND
4/7/2017	ND	ND	ND	ND	ND	ND	ND	ND	ND
7/10/2017	ND	ND	ND	ND	ND	ND	ND	ND	ND
10/16/2017	ND	ND	ND	ND	ND	ND	ND	ND	ND
1/2/2018	ND	ND	ND	ND	ND	ND	ND	ND	ND
4/11/2018	ND	ND	ND	ND	ND	ND	ND	ND	ND
7/12/2018	ND	ND	ND	ND	ND	ND	ND	ND	ND
10/23/2018	ND	ND	ND	ND	ND	ND	ND	ND	ND
1/8/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND
4/18/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND
7/26/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND
10/17/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND
1/8/2020	ND	ND	ND	ND	ND	ND	ND	ND	ND
4/14/2020	ND	ND	ND	ND	ND	ND	ND	ND	ND
10/7/2020	ND	ND	ND	ND	ND	ND	ND	ND	ND
4/1/2021	ND	ND	ND	ND	ND	ND	ND	ND	ND
10/25/2021	ND	ND	ND	ND	ND	ND	ND	ND	ND
4/12/2022	ND	ND	ND	ND	ND	ND	ND	ND	ND


MONITORING WELL MW-44S SUMMARY OF VOCs IN GROUNDWATER

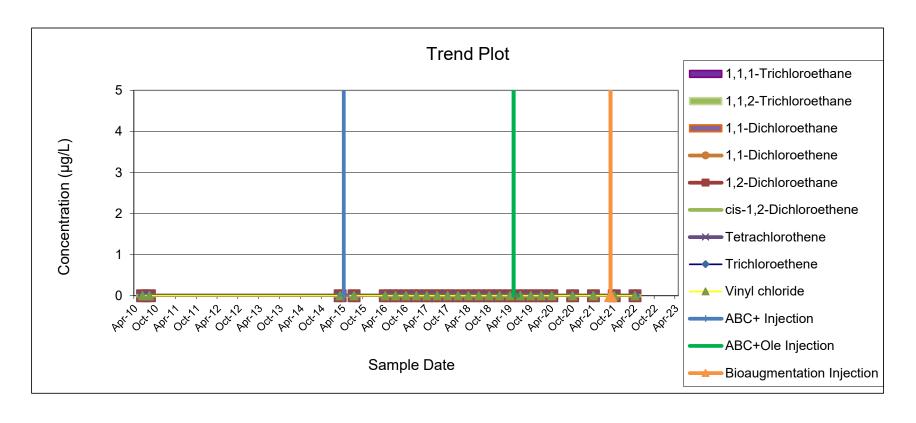
MONITORING WELL MW-35D SUMMARY OF VOCs IN GROUNDWATER

				Analytic	al Resul	ts (µg/L)			
Sample Date	1,1,1-Trichloroethane	1,1,2-Trichloroethane	1,1-Dichloroethane	1,1-Dichloroethene	1,2-Dichloroethane	cis-1,2-Dichloroethene	Tetrachlorothene	Trichloroethene	Vinyl chloride
6/17/2010	ND	ND	ND	ND	ND	ND	ND	ND	ŃD
8/2/2010	ND	ND	ND	ND	ND	ND	ND	ND	ND
3/12/2015	ND	ND	ND	ND	ND	ND	ND	ND	ND
7/28/2015	ND	ND	ND	ND	ND	ND	ND	ND	ND
1/8/2016	ND	ND	ND	ND	ND	ND	ND	ND	ND
4/8/2016	ND	ND	ND	ND	ND	ND	ND	ND	ND
7/12/2016	ND	ND	ND	ND	ND	ND	ND	ND	ND
10/11/2016	ND	ND	ND	ND	ND	ND	ND	ND	ND
1/24/2017	ND	ND	ND	ND	ND	ND	ND	ND	ND
4/10/2017	ND	ND	ND	ND	ND	ND	ND	ND	ND
7/7/2017	ND	ND	ND	ND	ND	ND	ND	ND	ND
10/17/2017	ND	ND	ND	ND	ND	ND	ND	ND	ND
1/3/2018	ND	ND	ND	ND	ND	ND	ND	ND	ND
4/10/2018	ND	ND	ND	ND	ND	ND	ND	ND	ND
7/9/2018	ND	ND	ND	ND	ND	ND	ND	ND	ND
10/22/2018	ND	ND	ND	ND	ND	ND	ND	ND	ND
1/4/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND
4/18/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND
7/22/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND
10/17/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND
1/8/2020	ND	ND	ND	ND	ND	ND	ND	ND	ND
4/14/2020	ND	ND	ND	ND	ND	ND	ND	ND	ND
10/6/2020	ND	ND	ND	ND	ND	ND	ND	ND	ND
4/5/2021	ND	ND	ND	ND	ND	ND	ND	ND	ND
10/21/2021	ND	ND	ND	ND	ND	ND	ND	ND	ND
4/7/2022	ND	ND	ND	ND	ND	ND	ND	ND	ND


MONITORING WELL MW-35D SUMMARY OF VOCs IN GROUNDWATER

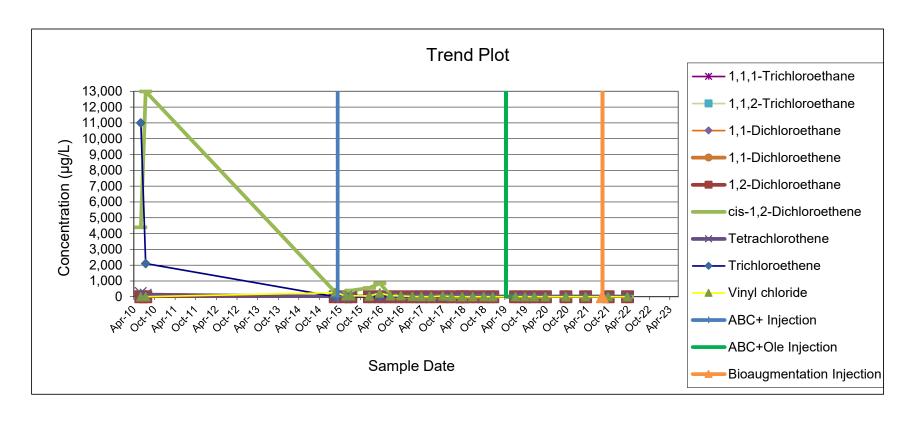
MONITORING WELL MW-36D SUMMARY OF VOCs IN GROUNDWATER

	Analytical Results (μg/L)											
				Anaiyuc	ui Nesul							
Sample Date	1,1,1-Trichloroethane	1,1,2-Trichloroethane	1,1-Dichloroethane	1,1-Dichloroethene	1,2-Dichloroethane	cis-1,2-Dichloroethene	Tetrachlorothene	Trichloroethene	Vinyl chloride			
6/17/2010	ND	ND	ND	ND	ND	ND	ND	2.1	ŃD			
8/2/2010	ND	ND	ND	ND	ND	ND	ND	0.74	ND			
3/10/2015	ND	ND	ND	ND	ND	ND	ND	ND	ND			
7/29/2015	ND	ND	0.57	ND	ND	ND	ND	ND	ND			
4/8/2016	ND	ND	ND	ND	ND	ND	ND	ND	ND			
7/11/2016	ND	ND	ND	ND	ND	ND	ND	ND	ND			
10/12/2016	ND	ND	ND	ND	ND	ND	ND	ND	ND			
1/24/2017	ND	ND	ND	ND	ND	ND	ND	ND	ND			
4/12/2017	ND	ND	ND	ND	ND	ND	ND	ND	ND			
7/6/2017	ND	ND	ND	ND	ND	ND	ND	ND	ND			
10/18/2017	ND	ND	ND	ND	ND	ND	ND	ND	ND			
1/4/2018	ND	ND	ND	ND	ND	ND	ND	ND	ND			
4/9/2018	ND	ND	ND	ND	ND	ND	ND	ND	ND			
7/10/2018	ND	ND	ND	ND	ND	ND	ND	ND	ND			
10/18/2018	ND	ND	ND	ND	ND	ND	ND	ND	ND			
1/8/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND			
4/16/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND			
7/25/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND			
10/18/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND			
1/8/2020	ND	ND	ND	ND	ND	ND	ND	ND	ND			
4/15/2020	ND	ND	ND	ND	ND	ND	ND	ND	ND			
10/9/2020	ND	ND	ND	ND	ND	ND	ND	ND	ND			
4/6/2021	ND	ND	ND	ND	ND	ND	ND	ND	ND			
10/22/2021	ND	ND	ND	ND	ND	ND	ND	ND	ND			
4/11/2022	ND	ND	ND	ND	ND	ND	ND	ND	ND			


MONITORING WELL MW-36D SUMMARY OF VOCs IN GROUNDWATER

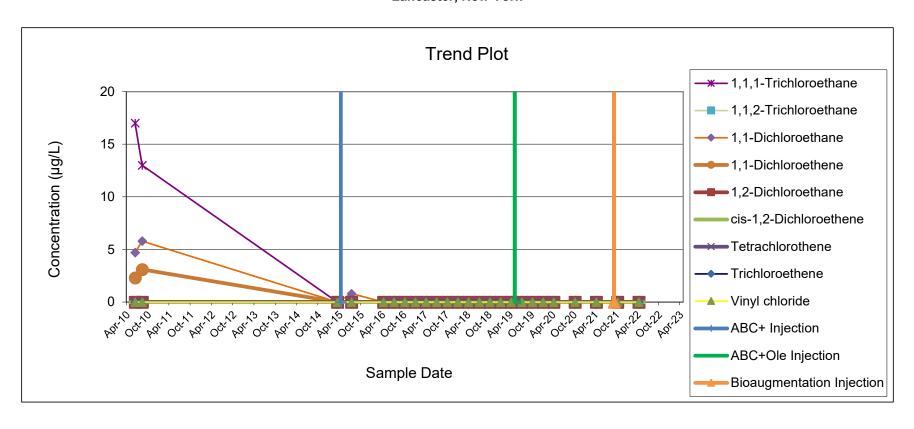
MONITORING WELL MW-37D SUMMARY OF VOCs IN GROUNDWATER

				Analytic	al Resul	ts (ua/L)			
				Analytic	a. Rosul				
Sample Date	1,1,1-Trichloroethane	1,1,2-Trichloroethane	1,1-Dichloroethane	1,1-Dichloroethene	1,2-Dichloroethane	cis-1,2-Dichloroethene	Tetrachlorothene	Trichloroethene	Vinyl chloride
6/18/2010	ND	ND	ND	ND	ND	ND	ND	ND	ND
8/3/2010	ND	ND	ND	ND	ND	ND	ND	ND	ND
3/10/2015	ND	ND	ND	ND	ND	ND	ND	ND	ND
7/29/2015	ND	ND	ND	ND	ND	ND	ND	ND	ND
4/8/2016	ND	ND	ND	ND	ND	ND	ND	ND	ND
7/12/2016	ND	ND	ND	ND	ND	ND	ND	ND	ND
10/12/2016	ND	ND	ND	ND	ND	ND	ND	ND	ND
1/24/2017	ND	ND	ND	ND	ND	ND	ND	ND	ND
4/11/2017	ND	ND	ND	ND	ND	ND	ND	ND	ND
7/10/2017	ND	ND	ND	ND	ND	ND	ND	ND	ND
10/18/2017	ND	ND	ND	ND	ND	ND	ND	ND	ND
1/5/2018	ND	ND	ND	ND	ND	ND	ND	ND	ND
4/11/2018	ND	ND	ND	ND	ND	ND	ND	ND	ND
7/11/2018	ND	ND	ND	ND	ND	ND	ND	ND	ND
10/18/2018	ND	ND	ND	ND	ND	ND	ND	ND	ND
1/19/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND
4/17/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND
7/24/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND
10/18/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND
1/8/2020	ND	ND	ND	ND	ND	ND	ND	ND	ND
4/15/2020	ND	ND	ND	ND	ND	ND	ND	ND	ND
10/7/2020	ND	ND	ND	ND	ND	ND	ND	ND	ND
4/5/2021	ND	ND	ND	ND	ND	ND	ND	ND	ND
10/21/2021	ND	ND	ND	ND	ND	ND	ND	ND	ND
4/13/2022	ND	ND	ND	ND	ND	ND	ND	ND	ND


MONITORING WELL MW-37D SUMMARY OF VOCs IN GROUNDWATER

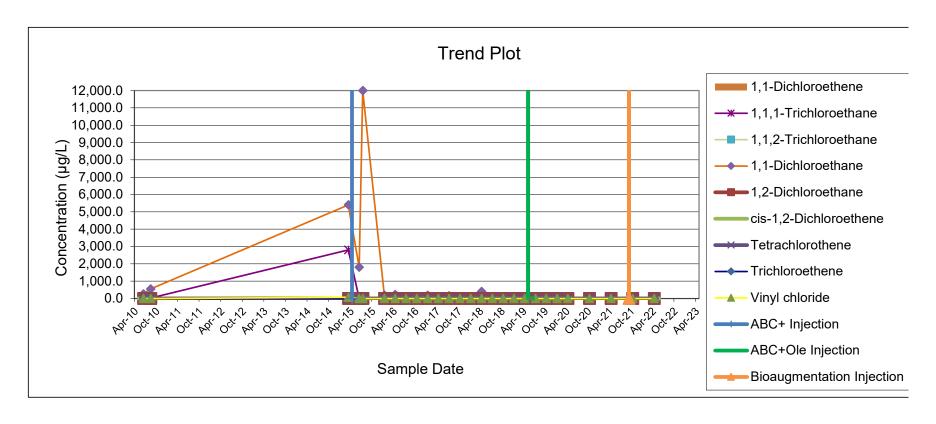
MONITORING WELL MW-38D SUMMARY OF VOCs IN GROUNDWATER

	Analytical Results (μg/L)									
Sample Date	1,1,1-Trichloroethane	1,1,2-Trichloroethane	1,1-Dichloroethane	1,1-Dichloroethene	1,2-Dichloroethane	cis-1,2-Dichloroethene	Tetrachlorothene	Trichloroethene	Z Vinyl chloride	
6/22/2010	ND	ND	ND	ND	ND	4,400	230	11,000	ND	
8/4/2010	ND	ND	ND	ND	ND	13,000	130	2,100	ND	
3/10/2015	ND	ND	ND	ND	ND	290	ND	1.9	260	
6/12/2015	ND	ND	ND	ND	ND	190	ND	18	50	
7/27/2015	ND	ND	ND	ND	ND	390	ND	6.8	60	
1/7/2016	ND	ND	ND	ND	ND	560	ND	ND	44	
4/8/2016	ND	ND	3.8	1.3	ND	850	ND	ND	240	
7/12/2016	ND	ND	ND	ND	ND	80	ND	ND	59	
10/12/2016	ND	ND	5.1	ND	ND	ND	ND	ND	58	
1/23/2017	ND	ND	ND	ND	ND	ND	ND	ND	14	
4/12/2017	ND	ND	2.1	ND	ND	ND	ND	ND	6.7	
7/7/2017	ND	ND	ND	ND	ND	ND	ND	ND	5.1	
10/18/2017	ND	ND	19	1.1	ND	27	ND	ND	47	
1/4/2018	ND	ND	ND	ND	ND	ND	ND	ND	5.1	
4/10/2018	ND	ND	ND	ND	ND	ND	ND	ND	ND	
7/11/2018	ND	ND	4.3	ND	ND	ND	ND	ND	ND	
10/17/2018	ND	ND	20	ND	ND	20	ND	ND	11	
1/4/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND	
4/10/2018	ND	ND	ND	ND	ND	ND	ND	ND	ND	
7/24/2019	ND	ND	ND	ND	ND	4	ND	ND	4.0	
10/17/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND	
1/7/2020	ND	ND	ND	ND	ND	ND	ND	ND	ND	
4/14/2020	ND	ND	ND	ND	ND	ND	ND	ND	ND	
10/12/2020	ND	ND	ND	ND	ND	ND	ND	ND	ND	
4/5/2021	ND	ND	ND	ND	ND	ND	ND	ND	ND	
10/22/2021	ND	ND	ND	ND	ND	ND	ND	ND	ND	
4/12/2022	ND	ND	ND	ND	ND	ND	ND	ND	ND	


MONITORING WELL MW-38D SUMMARY OF VOCs IN GROUNDWATER

MONITORING WELL MW-39D SUMMARY OF VOCs IN GROUNDWATER

				Analytic	al Resul	ts (µg/L)			
Sample Date	그 1,1,1-Trichloroethane	1,1,2-Trichloroethane	1,1-Dichloroethane	1,1-Dichloroethene	1,2-Dichloroethane	cis-1,2-Dichloroethene	Tetrachlorothene	Trichloroethene	Z Vinyl chloride
6/18/2010	17	ND	4.7	2.3	ND	ND	ND	ND	ND
8/3/2010	13	ND	5.8	3.1	ND	ND	ND	ND	ND
3/10/2015	ND	ND	ND	ND	ND	ND	ND	ND	ND
7/29/2015	ND	ND	0.80	ND	ND	ND	ND	ND	ND
4/8/2016	ND	ND	ND	ND	ND	ND	ND	ND	ND
7/12/2016	ND	ND	ND	ND	ND	ND	ND	ND	ND
10/13/2016	ND	ND	ND	ND	ND	ND	ND	ND	ND
1/24/2017	ND	ND	ND	ND	ND	ND	ND	ND	ND
4/11/2017	ND	ND	ND	ND	ND	ND	ND	ND	ND
7/6/2017	ND	ND	ND	ND	ND	ND	ND	ND	ND
10/18/2017	ND	ND	ND	ND	ND	ND	ND	ND	ND
1/9/2018	ND	ND	ND	ND	ND	ND	ND	ND	ND
4/12/2018	ND	ND	ND	ND	ND	ND	ND	ND	ND
7/11/2018	ND	ND	ND	ND	ND	ND	ND	ND	ND
10/17/2018	ND	ND	ND	ND	ND	ND	ND	ND	ND
1/7/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND
4/15/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND
7/29/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND
10/18/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND
1/10/2020	ND	ND	ND	ND	ND	ND	ND	ND	ND
4/16/2020	ND	ND	ND	ND	ND	ND	ND	ND	ND
10/9/2020	ND	ND	ND	ND	ND	ND	ND	ND	ND
4/5/2021	ND	ND	ND	ND	ND	ND	ND	ND	ND
10/21/2021	ND	ND	ND	ND	ND	ND	ND	ND	ND
4/13/2022	ND	ND	ND	ND	ND	ND	ND	ND	ND


MONITORING WELL MW-39D SUMMARY OF VOCs IN GROUNDWATER

MONITORING WELL MW-40D SUMMARY OF VOCs IN GROUNDWATER Former Scott Aviation Site Lancaster, New York

				Analytic	al Resul	ts (µg/L)			
Sample Date	1,1,1-Trichloroethane	1,1,2-Trichloroethane	1,1-Dichloroethane	1,1-Dichloroethene	1,2-Dichloroethane	cis-1,2-Dichloroethene	Tetrachlorothene	Trichloroethene	Z Vinyl chloride
6/21/2010	23	ND	260	1.8	ND	1.2	ND	2.8	ND
8/3/2010	25	ND	550	6	ND	ND	ND	ND	ND
3/11/2015	2,800	ND	5,400	200	ND	ND	ND	ND	67
6/12/2015	ND	ND	1,800	ND	ND	ND	ND	ND	ND
7/27/2015	ND	ND	12,000	64	ND	ND	ND	ND	ND
1/7/2016	ND	ND	190	ND	ND	ND	ND	ND	ND
4/8/2016	ND	ND	220	ND	ND	ND	ND	ND	ND
7/11/2016	ND	ND	12	ND	ND	ND	ND	ND	ND
10/11/2016	ND	ND	71	ND	5.2	ND	ND	ND	ND
1/25/2017	ND	ND	180	ND	4.8	ND	ND	ND	ND
4/10/2017	43	ND	ND	ND	ND	ND	ND	ND	ND
7/10/2017	ND	ND	150	ND	ND	ND	ND	ND	ND
10/16/2017	ND	ND	51	ND	1.3	ND	ND	ND	0.9
1/4/2018	ND	ND	32	ND	ND	ND	ND	ND	ND
4/10/2018	20	ND	400	ND	ND	ND	ND	ND	ND
7/10/2018	ND	ND	4.6	ND	ND	ND	ND	ND	ND
10/18/2018	ND	ND	ND	ND	ND	ND	ND	ND	ND
1/7/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND
4/16/2019	20	ND	78	ND	ND	ND	ND	ND	ND
7/29/2019	ND	ND	15	ND	ND	ND	ND	ND	ND
10/18/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND
1/8/2020	ND	ND	ND	ND	ND	ND	ND	ND	ND
4/16/2020	ND	ND	ND	ND	ND	ND	ND	ND	ND
10/12/2020	ND	ND	ND	ND	ND	ND	ND	ND	ND
4/1/2021	ND	ND	8.6	ND	ND	ND	ND	ND	ND
10/27/2021	ND	ND	ND	ND	ND	ND	ND	ND	ND
4/8/2022	ND	ND	ND	ND	ND	ND	ND	ND	ND

MONITORING WELL MW-40D SUMMARY OF VOCs IN GROUNDWATER

Appendix C Purge Logs (October 2021 and April 2022)

Page	1	of	1	

Date (mo/day/yr		10/22/	2021		Casing Diameter			1		inches
Field Personnel		Ann Marie k	Kropovitch		Casing Material			PVC		<u>.</u>
Site Name	Former S	Scott Aviation S	ite - Lancaster, N	Y	Measuring Point Elev	ation		689.82		1/100 ft
AECOM Job #		605	36398		Height of Riser (abov			2.	52	1/100 ft
Well ID#		GP-2S			Land Surface Elevation					1/100 ft
	Upgradient	t	Downgradient	_	Screened Interval (be				15	1/100 ft
Weather Conditions			oudy							
Air Temperature				°F	Container	Analysis (Method)	# Bottles	Preservative	Dup - MS/MSD
Total Depth (TWD) Be	low Top of Ca	sing	15	1/100 ft	VOA 40 mL glass	TCL VOCs	(8260B)	3	HCL, 4°C	
Depth to Groundwater	(DGW) Below	Top of Casing =	2.56	1/100 ft	VOA 40 mL glass	TO	С	2	HCL, 4°C	
Length of Water Column (LWC) = TWD - DGW = 12.44 1			1/100 ft							
1 Casing Volume (OC)	V) = LWC x	0.0408 =	0.51	gal						
3 Casing Volumes =		1.5	2	gal						
Method of Well Evacua	ation	Pei	ristaltic Pump							
Method of Sample Collectio Peristaltic Pump/Poly Tubing				g						
Total Volume of Water Remover 0.39626										
					FIELD ANALYSES					
Flour Data (mal/main)		150	150		FIELD ANALYSES					
Flow Rate (ml/min)		150		150						
Time (Military) Depth to Groundwater		10:20	10:25	10:30						
Below Top of Casing (2.56	7.52	8.78						
Drawdown (ft)		0.00	4.96	6.22						
pH (S.U.)		7.20	7.23	7.19						
Sp. Cond. (mS/cm)		1.35	1.30	1.02						
Turbidity (NTUs)		46.3	831	950						
Dissolved Oxygen (mg	J/L)	2.09	0.92	1.29						
Water Temperature (°0	C)	14.7	15.0	14.9						
ORP (mV)		-83.7	-104.7	-103.9						
		Physical appeara	nce at start Co	olor Clear	Phy	sical appearance a	it sampling (Color	Clear	
			Od	for None	_		(Odor	None	
		Sheen/Free Prod	uct	None	Sheen/Fr	ee Product		None		
COMMENTS/OBSER\	/ATIONS <u>Sam</u>	nple time 10:50 h	rs.							
	YSI	Pro SS meter (ID	# 043167/18G102	410) used to colle	ct field parameters.					

Date (mo/day/yr	10/22	/2022		Casing Diameter			1			inches
Field Personnel		Kropovitch		Casing Material			PVC			
Site Name Fo	ormer Scott Aviation S	Site - Lancaster, NY	,	Measuring Point Eleva	ation		687.7	1		1/100 ft
AECOM Job#	609	536398		Height of Riser (above	e land surface)		-(0.09		1/100 ft
Well ID#	GP-68	3		Land Surface Elevation	on		687.8			1/100 ft
Upg	radient	Downgradient		Screened Interval (below land surface						1/100 ft
Weather Conditions	Cloud	dy/Windy								
	46			Container	Analysis (I	Method)	# Bottle	s Preservat	ive [Dup - MS/MSD
Total Depth (TWD) Below Top	of Casing =	15.0	1/100 ft	VOA 40 mL glass	TCL VOCs	(8260B)	3	HCL, 4°	С	
Depth to Groundwater (DGW)	Below Top of Casing =	2.14	1/100 ft	VOA 40 mL glass	TO	2	2	HCL, 4°	С	
Length of Water Column (LWC	Water Column (LWC) = TWD - DGW = 12.9 1/100 ft			Various	MNA An	alyses	15	Varies		
1 Casing Volume (OCV) = LW	C x 0.0408 =	0.52	gal							
3 Casing Volumes =	1.9	57	gal							
Method of Well Evacuation	Pe	eristaltic Pump								
Method of Sample Collectior	Peristalti	ic Pump/Poly Tubing	<u> </u>							
Total Volume of Water Remov	ec	0.40	gal							
			_							
		T		FIELD ANALYSES		<u> </u>	<u> </u>		1	
Flow Rate (ml/min)	150	150	150							
Time (Military) Depth to Groundwater	9:20	9:25	9:30							
Below Top of Casing (ft)	2.14	10.21	12.34							
Drawdown (ft)	0.00	8.07	10.20							
pH (S.U.)	7.03	7.12	7.26							
Sp. Cond. (mS/cm)	1.19	1.53	1.53							
Turbidity (NTUs)	44.1	38.0	50.0							
Dissolved Oxygen (mg/L)	2.78	0.68	0.38							
Water Temperature (°C)	14.2	14.1	13.3							
ORP (mV)	-97.2	-109.6	-131.8							
	Physical appeara	ance at start Co	lor <u>Clear</u>	Phy	sical appearance a	t sampling	Color	Clear		
		Od	or Slight	<u> </u>			Odor	Slight		
	Sheen/Free Prod	ductI	None	Sheen/Fre	ee Product		None			
COMMENTS/OBSERVATION	S Sample time 09:45 h	rs. (start of sampling	g) Well went dry. S	Samples were collected	as able when well r	echarged - 3	x during day	١.		
	YSI Pro SS meter (II	D# 043167/18G1024	10) used to collect	t field parameters.						
	-									

Date (mo/day/yr	10/21/2	2021		Casing Diameter		1			inches
Field Personnel	Ann Marie K	ropovitch		Casing Material		PV	С		
Site Name Form	er Scott Aviation Si	te - Lancaster, NY	<u>, </u>	Measuring Point Eleva	ation				1/100 ft
AECOM Job #	6053	86398		Height of Riser (above					1/100 ft
Well ID#	GP-9S			Land Surface Elevatio					
Upgrad	lient	Downgradient		Screened Interval (bel				5	
Weather Conditions	Clo	oudy		-					
Air Temperature	61		°F	Container	Analysis (M	ethod)	# Bottles	Preservative	Dup - MS/MSD
Total Depth (TWD) Below Top of	Casing	17.3	1/100 ft	VOA 40 mL glass	TCL VOCs (8260B)	3	HCL, 4°C	
Depth to Groundwater (DGW) Be	ter (DGW) Below Top of Casing = <u>2.54</u> 1/100 ft			VOA 40 mL glass	TOC		2	HCL, 4°C	
Length of Water Column (LWC) =	er Column (LWC) = TWD - DGW = 14.76 1/100 ft								
1 Casing Volume (OCV) = LWC	x 0.0 =	0.60	gal						
3 Casing Volumes =	1.8	1	gal						
Method of Well Evacuation	Per	istaltic Pump							
Method of Sample Collectio	Peristaltic	Pump/Poly Tubing	1						
Total Volume of Water Remove	gal								
				FIELD ANALYSES					
Flow Rate (ml/min)	150	150	150	150					
Time (Military)	10:25	10:40	10:45	10:50					
Depth to Groundwater Below Top of Casing (ft)	2.54	7.86	8.51	10.28					
Drawdown (ft)	0.00	5.32	5.97	7.74					
pH (S.U.)	6.72	6.76	6.71	6.69					
Sp. Cond. (mS/cm)	1.03	0.96	0.94	0.91					
Turbidity (NTUs)	59.0	64.5	39.0	44.4					
Dissolved Oxygen (mg/L)	2.20	2.59	1.88	1.48					
Water Temperature (°C)	14.7	15.0	14.6	14.6					
ORP (mV)	-100.3	-93.1	-87.0	-81.4					
	Physical appeara	nce at start Co	lor Clear	Phys	sical appearance at	sampling Cold	or	Clear	
		Od	or Slight-Swamp)		Odo	or Slight	-Swampy	
	Sheen/Free Produ	uct!	None	Shee	en/Free Product		None		
COMMENTS/OBSERVATIONS									_
<u>-</u>	YSI Pro SS meter (ID	# 043167/18G1024	410) used to collect	t field parameters.					

Date (mo/day/yr	10/2	7/2021		Casing Diameter			1		inches
Field Personnel		e Kropovitch		Casing Material			VC		
Site Name I	Former Scott Aviation	Site - Lancaster, NY		Measuring Point Elevat	ion		689.10		1/100 ft
AECOM Job#	60)536398		Height of Riser (above	·			0	1/100 ft
Well ID#		0S		Land Surface Elevation	<u> </u>		689.2	1/100 ft	
·	gradient	Downgradient		Screened Interval (belo	w land surface		5-1	5	1/100 ft
Weather Conditions	:	 Sunny							
Air Temperature	50)		Container	Analysis (M	ethod)	# Bottles	Preservative	Dup - MS/MSD
Total Depth (TWD) Below To	p of Casing =	15	1/100 ft	VOA 40 mL glass	TCL VOCs (8260B)	3	HCL, 4°C	
Depth to Groundwater (DGW) Below Top of Casing	= 0.91	1/100 ft	VOA 40 mL glass	TOC		2	HCL, 4°C	
Length of Water Column (LW	n of Water Column (LWC) = TWD - DGW = 14.09 1/100 ft			Various	MNA Anal	lyses	15	Varies	
1 Casing Volume (OCV) = L\	VC x 0.0408 =	0.57	gal						
3 Casing Volumes =	1	.72	gal						
Method of Well Evacuation	P	Peristaltic Pump							
Method of Sample Collection	Peristal	tic Pump/Poly Tubing							
Total Volume of Water Remo	vec	gal							
		FIELD ANA	ALYSES			7/10/17 pd	ost sample		
Flow Rate (ml/min)	150	150				.,,,,,,,,			
Time (Military)	9:40	9:50							
Depth to Groundwater Below Top of Casing (ft)	0.91	10.68							
Drawdown (ft)	0.00	9.77							
pH (S.U.)	6.63	6.85							
Sp. Cond. (mS/cm)	0.002	0.001							
Turbidity (NTUs)	56.0	60.9							
Dissolved Oxygen (mg/L)	6.45	5.00							
Water Temperature (°C)	14.5	14.2							
ORP (mV)	-204.5	-98.1							
	Physical appea	rance at start Color	Muddy	Physi	cal appearance at	sampling Co	olor	Clear	
		Odor	None	<u> </u>		0	dor	None	
	Sheen/Free Pro	oduct No	ne	Sheen/Free	Product		None		
COMMENTS/OBSERVATIO	NS Sample time 13:30	hrs. Went dry after 09:	50 hrs.						
	YSI Pro SS meter (ID# 043167/18G102410)) used to collec	t field parameters.					

Date (mo/day/yr	10/25/2	2021		Casing Diameter			1		inches
Field Personnel			-	Casing Material			PVC		
Site Name For				Measuring Point Elev			687.69)	1/100 ft
AECOM Job #		36398		Height of Riser (abov				.74	1/100 ft
Well ID #		3		Land Surface Elevation					1/100 ft
Upgra	adient	Downgradient	_	Screened Interval (be				-15	1/100 ft
Weather Conditions	Clo	oudy							
Air Temperature	48			Container	Analysis (Method)	# Bottles	s Preservative	Dup - MS/MSD
Total Depth (TWD) Below Top	of Casing	15	1/100 ft	VOA 40 mL glass	TCL VOCs	s (8260B)	3	HCL, 4°C	
Depth to Groundwater (DGW) E	th to Groundwater (DGW) Below Top of Casing 1.7 1/100			VOA 40 mL glass	ТО	С	2	HCL, 4°C	
Length of Water Column (LWC) = TWD - DGW = 13.3 1/100 ft									
1 Casing Volume (OCV) = LWC	0.0408 =	0.54	gal						
3 Casing Volumes =	1.6	3	gal						
Method of Well Evacuation		istaltic Pump							
Method of Sample Collection		Pump/Poly Tubin	g						
Total Volume of Water Remove	ec	0.3	gal						
				EIEL D	ANAL VOEC				
Flow Rate (ml/min)	250	250	Ī	FIELD	ANALYSES				
Time (Military)	9:55	10:00							
Depth to Groundwater	3.00	10.00							
Below Top of Casing (ft)	1.70	13.85							
Drawdown (ft)	0.00	12.15							
pH (S.U.)	7.45	7.42							
Sp. Cond. (mS/cm)	0.75	0.79							
Turbidity (NTUs)	27.0	44.0							
Dissolved Oxygen (mg/L)	1.65	6.75							
Water Temperature (°C)	17.2	16.4							
ORP (mV)	-110.0	-114.5							
	Physical appeara	ance at start Co	lor Clear	Phy	sical appearance a	at sampling	Color	Clear	
		Od	or Yes, gas	_			Odor	None	
	Sheen/Free Prod		None	_	ee Product		None		
COMMENTS/OBSERVATIONS									
	YSI Pro SS meter (II	0# 043167/18G102	2410) used to colle	ect field parameters.					

Date (mo/day/yr	10/20/	2021		Casing Diameter			1		inches
Field Personnel				Casing Material			PVC		
	mer Scott Aviation S		Y	Measuring Point Elev			687.69		1/100 ft
AECOM Job #	605	36398		Height of Riser (above				.31	1/100 ft
Well ID #		3		Land Surface Elevation					1/100 ft
Upgra	adient	Downgradient	_	Screened Interval (be				1/100 ft	
Weather Conditions	Cloudy/Da	ark Sky/Rain							
Air Temperature	63			Container	Analysis (Method)	# Bottles	Preservative	Dup - MS/MSD
Total Depth (TWD) Below Top of	of Casing	14.82	1/100 ft	VOA 40 mL glass	TCL VOCs	(8260B)	3	HCL, 4°C	
Depth to Groundwater (DGW) E	Groundwater (DGW) Below Top of Casing 0.98 1/10			VOA 40 mL glass	ТО	С	2	HCL, 4°C	
Length of Water Column (LWC)) = TWD - DGW =	13.84	1/100 ft						
1 Casing Volume (OCV) = LWC	2 x <u>0.0408</u> =	0.56	gal						
3 Casing Volumes =	1.6	9	gal						
Method of Well Evacuation	Pe	ristaltic Pump							
Method of Sample Collection	Peristaltion	Pump/Poly Tubin	g						
Total Volume of Water Remove		0.5	gal						
				FIFI D A	ANALYSES				
Flow Rate (ml/min)	200	200	200	TIELS A	NAL I OLO				
Time (Military)	12:50	12:55	13:00						
Depth to Groundwater Below Top of Casing (ft)	0.98	12.52	12.70						
Drawdown (ft)	0.00	11.54	11.72						
pH (S.U.)	7.15	7.09	7.17						
Sp. Cond. (mS/cm)	0.84	0.84	0.81						
Turbidity (NTUs)	9.42	10.28	9.45						
Dissolved Oxygen (mg/L)	17.0	9.5	2.3						
Water Temperature (°C)	16.1	16.2	15.2						
ORP (mV)	-2.4	10.4	-12.0						
	Physical appeara	ance at start Co	lor Clear	Phy	sical appearance a	at sampling	Color	Clear	
		Od	lor None	_			Odor	None	
	Sheen/Free Prod	duc	None	Sheen/Fr	ee Product		None		
COMMENTS/OBSERVATIONS	Sample time 13:15 h	rs.							
	YSI Pro SS meter (II	O# 043167/18G102	2410) used to colle	ect field parameters.					

Date (mo/day/yr	10/25/2	2021		Casing Diameter			1		inches
Field Personnel	Ann Marie Kropovito	ch/Lindsey Hunka		Casing Material			PVC		
Site Name Form	ner Scott Aviation Si	te - Lancaster, NY	,	Measuring Point Eleva			687.69		1/100 ft
AECOM Job #	6053	36398		Height of Riser (above land surface)					1/100 ft
Well ID #	GP-16S	}		Land Surface Elevation			688.0		1/100 ft
Upgra	adient	Downgradient		Screened Interval (bel	ow land surface		5-1	5	1/100 ft
Weather Conditions	Cloud	y/Rain							
Air Temperature	48			Container	Analysis (Method)	# Bottles	Preservative	Dup - MS/MSD
Total Depth (TWD) Below Top of			1/100 ft	VOA 40 mL glass	TCL VOCs	(8260B)	3	HCL, 4°C	
Depth to Groundwater (DGW) B	Below Top of Casing _	2.65	1/100 ft	VOA 40 mL glass	TO	С	2	HCL, 4°C	
Length of Water Column (LWC)	= TWD - DGW =	14.87	1/100 ft						
1 Casing Volume (OCV) = LWC	x 0.0408 =	0.61	gal						
3 Casing Volumes =	1.82	2	gal						
Method of Well Evacuation	Per	istaltic Pump							
Method of Sample Collection	Peristaltic	Pump/Poly Tubing	1						
Total Volume of Water Remove	(0.9	gal						
			-	IELD ANALYSES					
Flow Rate (ml/min)	325	225	200	ILLU ANAL I SLS					
Time (Military)	8:48	8:54	9:00						
Depth to Groundwater Below Top of Casing (ft)	2.65	6.48	6.21						
Drawdown (ft)	0.00	3.83	3.56						
pH (S.U.)	6.88	6.88	6.83						
Sp. Cond. (mS/cm)	1.030	1.070	1.080						
Turbidity (NTUs)	36.70	10.32	3.62						
Dissolved Oxygen (mg/L)	3.48	3.40	2.10						
Water Temperature (°C)	13.4	13.1	13.1						
ORP (mV)	-51.5	-57.5	-50.6						
	Physical appeara	ince at start Col	or Muddy	Phys	sical appearance a	t sampling	Color	Clear	
		Odo	or None				Odor	None	
	Sheen/Free Produc None			Sheen/Free Product None					
COMMENTS/OBSERVATIONS	Sample time 09:15 h	rs.							
	ect field parameters.								

Date (mo/day/yr	10/21	/21		Casing Diameter			0.75			inches
Field Personnel	Ann Marie k	Cropovitch		Casing Material			PVC			
Site Name F	ormer Scott Aviation S	te - Lancaster, N	1	Measuring Point Elev			690.3	37		1/100 ft
AECOM Job #	605	36398		Height of Riser (above			2.87			1/100 ft
Well ID #	GP-188	3		Land Surface Elevation			687.5			1/100 ft
Up	gradient	Downgradient		Screened Interval (be	low land surface		ļ	5-15		1/100 ft
Weather Conditions	Cle	oudy								
Air Temperature	64			Container	Analysis	(Method)	# Bottle	es Prese	ervative	Dup - MS/MSD
Total Depth (TWD) Below To	Below Top of Casing 18 1/100 ft			VOA 40 mL glass	TCL VOC	s (8260B)	3	HCI	., 4°C	
Depth to Groundwater (DGW	h to Groundwater (DGW) Below Top of Casing 2.81 1/100 ft			VOA 40 mL glass	TC	C	2	HCI	., 4°C	
Length of Water Column (LW	/C) = TWD - DGW =	15.19	1/100 ft	Various	MNA A	nalyses	15	Va	ıries	
1 Casing Volume (OCV) = LV	VC x 0.0408 =	0.62	gal							
3 Casing Volumes =	1.8	6	gal							
Method of Well Evacuation	Pei	istaltic Pump								
Method of Sample Collection										
Total Volume of Water Remo	ovec	0.99065	gal							
				=======================================						
FL D (/ 1/2 :)	450	450		FIELD ANALYSES	450					
Flow Rate (ml/min)	150	150	150	150	150					
Time (Military) Depth to Groundwater	11:50	11:55	12:00	12:05	12:15					
Below Top of Casing (ft)	2.81	8.41	8.58	9.19	10.52					
Drawdown (ft)	0.00	5.60	5.77	6.38	7.71					
pH (S.U.)	7.07	7.02	6.98	6.99	6.98					
Sp. Cond. (mS/cm)	1.01	0.94	0.91	0.91	0.70					
Turbidity (NTUs)	94.4	1314	82.0	63.8	62.0					
Dissolved Oxygen (mg/L)	1.51	0.38	0.41	0.34	0.32					
Water Temperature (°C)	14.5	14.1	13.9	13.9	13.9					
ORP (mV)	-81.3	-83.1	-82.3	-81.9	-73.9					
	Physical appeara	ance at start Col	or <u>Clear</u>	Phy	sical appearance	at sampling	Color	Clear	_	
		Ode	or <u>None</u>	_			Odor	None	_	
	Sheen/Free Produc None			Sheen/Fre	ee Product		None		_	
COMMENTS/OBSERVATION	NS Sample time 12:30 h	rs.								
YSI Pro SS meter (ID# 043167/18G102410) used to collect				ect field parameters.						

Page	1	of	1	

Date (mo/day/yr	10/2	5/2021		Casing Diameter		2		inches
Field Personnel	Ann Marie Kropo	vitch/Linsey Hunka		Casing Material		PVC		<u>.</u>
Site Name Form	er Scott Aviation	Site - Lancaster, NY	•	Measuring Point Elev	ation			1/100 ft
AECOM Job #	60	536398		Height of Riser (above	e land surface)	(0.00	1/100 ft
Well ID #	MW-	30		Land Surface Elevation				
Upgrad	ient	Downgradient	_		low land surfac		0-20	1/100 ft
	eather Conditions Cloudy/Windy							
	rature 52			Container	Analysis (Metho	od) # Bottle	es Preservative	Dup - MS/MSD
Total Depth (TWD) Below Top of	Casing	20	1/100 ft	VOA 40 mL glass	TCL VOCs (826)	0B) 3	HCL, 4°C	
Depth to Groundwater (DGW) Be	low Top of Casing	= 3.03	1/100 ft	VOA 40 mL glass	TOC	2	HCL, 4°C	
Length of Water Column (LWC) =	TWD - DGW =	16.97	1/100 ft					
1 Casing Volume (OCV) = LWC	0.163 =	2.77	gal					
3 Casing Volumes =	8	.30	gal					
Method of Well Evacuation	Р	eristaltic Pump						
Method of Sample Collectio		tic Pump/Poly Tubing	1					
Total Volume of Water Remove		1.3869	gal					
				TIELD ANALYOES				
Flanc Bata (mal/main)	050	050		FIELD ANALYSES				
Flow Rate (ml/min)	250	250	250	250				
Time (Military) Depth to Groundwater	11:33	11:40	11:48	11:54				
Below Top of Casing (ft)	3.03	6.25	9.50	9.93				
Drawdown (ft)	0.00	3.22	6.47	6.90				
pH (S.U.)	7.51	7.46	7.46	7.46				
Sp. Cond. (mS/cm)	0.72	0.72	0.61	0.61				
Turbidity (NTUs)	6.19	3.64	2.77	3.45				
Dissolved Oxygen (mg/L)	0.61	0.19	0.11	0.11				
Water Temperature (°C)	16.2	16.7	17.1	17.0				
ORP (mV)	-156.4	-139.2	-140.5	-140.7				
	Physical appea	rance at start Col	or Clear	Phys	sical appearance at sam	npling Color	Clear	_
		Ode	or None			Odor	None	
Sheen/Free Product None			Sheen/Free Product None					
COMMENTS/OBSERVATIONS 5	Sample time 12:05	hrs.						
	/SI Pro SS meter (ID# 043167/18G1024	110) used to colle	ct field parameters.				

Date (mo/day/yr	10/20/2	2021		Casing Diameter			2		inches
Field Personnel			_	Casing Material			PVC		
	er Scott Aviation Si		7	Measuring Point Elev			688.56		1/100 ft
AECOM Job #	605	36398		Height of Riser (above				.54	1/100 ft
Well ID #		3		Land Surface Elevation			689.1		1/100 ft
Upgrad	dient	Downgradient		Screened Interval (be				-15	1/100 ft
Weather Conditions	Cloudy/Windy								
Air Temperature	64		° F	Container	Analysis (Method)	# Bottles	Preservative	Dup - MS/MSD
Total Depth (TWD) Below Top of	Casing	14.01	1/100 ft	VOA 40 mL glass	TCL VOCs	(8260B)	3	HCL, 4°C	Dup
Depth to Groundwater (DGW) Be	elow Top of Casing _	1.36	1/100 ft	VOA 40 mL glass	ТО	С	2	HCL, 4°C	
Length of Water Column (LWC)	= TWD - DGW =	12.65	1/100 ft						
1 Casing Volume (OCV) = LWC	x 0.163 =	2.06	gal						
3 Casing Volumes =	6.1	9	gal						
Method of Well Evacuation	Per	istaltic Pump							
Method of Sample Collection	le Collectior Peristaltic Pump/Poly Tubing								
Total Volume of Water Removed		1.05669	gal						
FL D . ((()	000	000		FIELD ANALYSES	200				
Flow Rate (ml/min)	200	200	200	200	200				
Time (Military) Depth to Groundwater	14:40	14:05	14:50	14:55	15:00				
Below Top of Casing (ft)	1.36	4.29	4.91	5.53	6.05				
Drawdown (ft)	0.00	2.93	3.55	4.17	4.69				
pH (S.U.)	7.17	7.17	7.12	7.10	7.1				
Sp. Cond. (mS/cm)	0.91	0.91	0.91	0.91	0.90				
Turbidity (NTUs)	11.88	5.72	4.67	5.32	4.47				
Dissolved Oxygen (mg/L)	2.80	2.69	2.69	2.73	2.93				
Water Temperature (°C)	14.8	14.9	15.1	15.4	15.5				
ORP (mV)	69.2	75.9	81.4	88.5	92.6				
	Physical appeara	ance at start Col	or <u>Clear</u>	Phy	sical appearance a	at sampling	Color	Clear	
		Odd	or None	_			Odor	None	
	Sheen/Free Produc None				ee Product		None		
COMMENTS/OBSERVATIONS	Sample time 15:10 h	rs. Dup on this we	ell (VOCs)						
	YSI Pro SS meter (ID	0# 043167/18G102	410) used to colle	ect field parameters.					

Date (mo/day/yr	10/	/21/2021		Casing Diameter		2			inches
Field Personnel		rie Kropovitch		Casing Material			С		
Site Name	Former Scott Aviatio		Y	Measuring Point Elev			698.66		1/100 ft
AECOM Job #	(60536398		Height of Riser (abov			2.83		1/100 ft
Well ID #	MW	-35D		Land Surface Elevation	Land Surface Elevation 687.1				1/100 ft
	Upgradient	Downgradient		Screened Interval (be	elow land surface		21-26	3	1/100 ft
Weather Conditions		Cloudy							
Air Temperature	ţ	55		Container	Analysis (Method)	# Bottles	Preservative	Dup - MS/MSD
Total Depth (TWD) Below	Below Top of Casing 25.22 1/100 ft			VOA 40 mL glass	TCL VOCs	s (8260B)	3	HCL, 4°C	
Depth to Groundwater (DC	pth to Groundwater (DGW) Below Top of Casing 6.58 1/100 ft			VOA 40 mL glass	ТО	С	2	HCL, 4°C	
Length of Water Column (LWC) = TWD - DGW =_	18.64	1/100 ft	Various	MNA Ar	nalyses	15	Varies	
1 Casing Volume (OCV) =	LWC x 0.163	= 3.04	gal						
3 Casing Volumes =		9.11	gal						
Method of Well Evacuation	າ	Peristaltic Pump							
Method of Sample Collect		altic Pump/Poly Tubin	g						
Total Volume of Water Re	movec	1.58503	gal						
				FIELD ANALYSES					
Flour Data (mil/min)	200	200		FIELD ANALYSES	200	200			
Flow Rate (ml/min)	8:45		200	200					
Time (Military) Depth to Groundwater	6.45	8:50	8:55	9:00	9:05	9:15			
Below Top of Casing (ft)	6.58	9.77	10.62	12.00	12.21	12.87			
Drawdown (ft)	0.00	3.19	4.04	5.42	5.63	6.29			
pH (S.U.)	6.78	6.79	6.83	6.86	6.9	6.96			
Sp. Cond. (mS/cm)	0.169	0.170	0.175	0.140	0.186	0.198			
Turbidity (NTUs)	18.2	16.5	12.5	16.7	24.0	25.5			
Dissolved Oxygen (mg/L)	1.22	0.24	0.17	0.18	0.19	0.17			
Water Temperature (°C)	13.0	13.0	13.0	13.2	13.2	13.1			
ORP (mV)	-21.9	-21.0	-26.0	-31.3	-41.7	-54.3			
	Physical app	earance at start Col	lor Clear	Phy	sical appearance a	at sampling Cold	or <u>C</u>	Clear	
		Ode	or None	_		Odo	or N	lone	
	Sheen/Free I	ProducN	None	Sheen/Fr	ee Product	No	one		
COMMENTS/OBSERVAT	IONS Sample time 09:2	20 hrs. The well c	over only has 1 bo	olt (missing one).					
	YSI Pro SS mete	r (ID# 043167/18G102	2410) used to colle	ect field parameters.					

Date (mo/day/yr	10/22/	2021		Casing Diameter			2		inches
Field Personnel				Casing Material			PVC		
	mer Scott Aviation S		<u> </u>	Measuring Point Elev			689.82	2	1/100 ft
AECOM Job #	605	36398		Height of Riser (abov				.72	1/100 ft
Well ID #	MW-36	3		Land Surface Elevation 687.1				1/100 ft	
Upgr	adient	Downgradient		Screened Interval (be				-15	1/100 ft
Weather Conditions	Cl								
Air Temperature	48			Container	Analysis (Method)	# Bottles	Preservative	Dup - MS/MSD
Total Depth (TWD) Below Top	elow Top of Casing 17.7 1/100 ft			VOA 40 mL glass	TCL VOC	s (8260B)	3	HCL, 4°C	
Depth to Groundwater (DGW)	Below Top of Casing _	2.67	1/100 ft	VOA 40 mL glass	ТО	С	2	HCL, 4°C	
Length of Water Column (LWC	s) = TWD - DGW =	15.03	1/100 ft						
1 Casing Volume (OCV) = LW0	C x <u>0.163</u> =	2.45	gal_						
3 Casing Volumes =	7.3	5	gal						
Method of Well Evacuation	Per	ristaltic Pump							
Method of Sample Collectior	Peristaltio	Pump/Poly Tubin	g						
Total Volume of Water Remove	ec	1.32086	gal						
				FIELD ANALYSES					
Flow Rate (ml/min)	200	200	200	200	200				1
Time (Military)	13:30	13:40	13:45	13:50	13:55				
Depth to Groundwater	13.30	13.40	13.43	13.30	15.55				
Below Top of Casing (ft)	2.67	5.56	6.88	7.76	8.35				
Drawdown (ft)	0.00	2.89	4.21	5.09	5.68				
pH (S.U.)	7.62	7.47	7.44	7.42	7.53				
Sp. Cond. (mS/cm)	1.33	1.32	1.32	1.02	1.30				
Turbidity (NTUs)	6.34	2.75	2.83	3.92	9.21				
Dissolved Oxygen (mg/L)	1.88	0.31	0.20	0.17	0.13				
Water Temperature (°C)	14.0	12.8	13.1	13.3	13.4				
ORP (mV)	-91.3	-86.6	-88.7	-90.2	-91.0				
	Physical appeara	ance at start Col	or Clear	Phy	sical appearance a	at sampling	Color	Clear	
		Od	or None	_			Odor	None	
	Sheen/Free Prod	duc1	None	Sheen/Fr	ee Product		None		
COMMENTS/OBSERVATIONS	Sample time 14:00 h	rs.							
	YSI Pro SS meter (II	0# 043167/18G102	2410) used to colle	ect field parameters.					

Date (mo/day/yr	10/22/	2021		Casing Diameter			2		inches
Field Personnel	Ann Marie	Kropovitch		Casing Material			PVC		
Site Name Fo	ormer Scott Aviation S	ite - Lancaster, N	Υ	Measuring Point Eleva			689.66	3	1/100 ft
AECOM Job #	605	36398		Height of Riser (above				1/100 ft	
Well ID #	MW-36)		Land Surface Elevation			687.1		1/100 ft
Up	gradient	Downgradient		Screened Interval (be	low land surface		10	6-21	1/100 ft
Weather Conditions	Cloudy								
Air Temperature	48			Container	Analysis ((Method)	# Bottle	s Preservativ	e Dup - MS/MSD
Total Depth (TWD) Below To	elow Top of Casing 23.5 1/100 ft			VOA 40 mL glass	TCL VOC	s (8260B)	3	HCL, 4°C	
Depth to Groundwater (DGW) Below Top of Casing _	5.17	1/100 ft	VOA 40 mL glass	ТО	C	2	HCL, 4°C	
Length of Water Column (LW	/C) = TWD - DGW =	18.33	1/100 ft						
1 Casing Volume (OCV) = LV	VC x 0.163 =	2.99	gal						
3 Casing Volumes =	8.9	6	gal						
Method of Well Evacuation	Pe	ristaltic Pump							
Method of Sample Collection									
Total Volume of Water Remo	vec	1.45295	gal						
				FIELD ANALYSES					
Flow Rate (ml/min)	250	250	200	200	200				
Time (Military)	14:20	14:25	14:30	14:35	14:45				
Depth to Groundwater									
Below Top of Casing (ft)	5.17 0.00	10.42	11.76	12.92	14.31				
Drawdown (ft)		5.25	6.59 7.80	7.75 7.80	9.14				
pH (S.U.)	7.82	7.86			7.76				
Sp. Cond. (mS/cm)	1.54 4.81	1.54 3.90	1.19 5.41	1.55 3.80	1.55 4.12				
Turbidity (NTUs)									
Dissolved Oxygen (mg/L)	2.42	0.21	0.15	0.15	0.11				
Water Temperature (°C)	13.0	12.9	12.8	12.8	12.7				
ORP (mV)	-178.6	-185.1	-179.9	-174.3	-169.3	nt commisses	Calar	Class	
	Physical appeara			<u> </u>	sical appearance a	at sampling	Color	Clear	
	Sheen/Free Prod	Od	lor <u>None</u> None	— Sheen/Fre	ee Product		Odor None	None	
COMMENTS/OBSERVATION			-						
55.mmert 6,050ertv/triol	YSI Pro SS meter (II		2410) used to colle	ect field parameters					
		0.0.017100102	,	pa.amotoro.					

Date (mo/day/yr	10/21/	2021		Casing Diameter			2		inches
Field Personnel	Ann Marie h	Cropovitch		Casing Material			PVC		
Site Name For	rmer Scott Aviation S	ite - Lancaster, N	′	Measuring Point Elev			690.05		1/100 ft
AECOM Job #	605	36398		Height of Riser (above				1/100 ft	
Well ID #	MW-37I)		Land Surface Elevation			687.6		1/100 ft
Upgr	adient	Downgradient		Screened Interval (be	low land surface		15	-20	1/100 ft
Weather Conditions	Cloudy/Da	rk Sky/Windy							
Air Temperature	64			Container	Analysis ((Method)	# Bottles	Preservative	Dup - MS/MSD
Total Depth (TWD) Below Top	of Casing	22.5	1/100 ft	VOA 40 mL glass	TCL VOC	s (8260B)	3	HCL, 4°C	
Depth to Groundwater (DGW)	Below Top of Casing _	4.38	1/100 ft	VOA 40 mL glass	TO	C	2	HCL, 4°C	
Length of Water Column (LWC	;) = TWD - DGW =	18.12	1/100 ft						
1 Casing Volume (OCV) = LW	C x 0.163 =	2.95	gal						
3 Casing Volumes =	8.8	6	gal						
Method of Well Evacuation		ristaltic Pump							
Method of Sample Collection									
Total Volume of Water Remove	ec	1.6841	gal						
				FIELD ANALYOFO					
Flow Rate (ml/min)	275	250	250	250	250	1			
Time (Military)	13:00	13:05	13:10	13:15	13:25				
Depth to Groundwater	13.00	13.03	13.10	13.13	13.23				
Below Top of Casing (ft)	4.38	7.18	7.64	7.22	9.06				
Drawdown (ft)	0.00	2.80	3.26	2.84	4.68				
pH (S.U.)	7.18	7.19	7.08	7.07	7.13				
Sp. Cond. (mS/cm)	1.07	1.04	1.08	1.08	1.02				
Turbidity (NTUs)	3.93	6.47	6.23	6.36	4.08				
Dissolved Oxygen (mg/L)	0.39	0.21	0.18	0.34	0.19				
Water Temperature (°C)	13.4	13.0	13.2	13.2	13.1				
ORP (mV)	-109.7	-106.8	-97.1	-96.5	-100.2				
	Physical appeara	ance at start Col	or <u>Clear</u>	Phy	sical appearance a	at sampling	Color	Clear	
		Ode	or None	_			Odor	None	
	Sheen/Free Produc None				ee Product		None		
COMMENTS/OBSERVATIONS	S Sample time 13:30 h	rs.							
	ect field parameters.								

Date (mo/day/yr	10/22/	2021		Casing Diameter		2			inches
Field Personnel	Ann Marie l	Kropovitch		Casing Material		PV	С		<u>.</u>
Site Name Forme	r Scott Aviation S	ite - Lancaster, NY	,	Measuring Point Elev	ation		689.66		1/100 ft
AECOM Job#	605	36398		Height of Riser (abov	e land surface)		2.72)	1/100 ft
Well ID #	MW-38	D		Land Surface Elevation 687.5					1/100 ft
Upgradie	ent	Downgradient	_	Screened Interval (be			16-2°	1	1/100 ft
Weather Conditions		oudy							
Air Temperature			°F	Container	Analysis (Method)	# Bottles	Preservative	Dup - MS/MSD
Total Depth (TWD) Below Top of C	Casing	20.9	1/100 ft	VOA 40 mL glass	TCL VOCs	s (8260B)	3	HCL, 4°C	
			1/100 ft	VOA 40 mL glass	ТО	С	2	HCL, 4°C	
Length of Water Column (LWC) =	TWD - DGW =	16.99	1/100 ft	Various	MNA An	alyses	15	Varies	
1 Casing Volume (OCV) = LWC x	0.163 =	2.77	gal						
3 Casing Volumes =	8.3	31	gal						
Method of Well Evacuation	Pe	ristaltic Pump							
Method of Sample Collectio	Peristalti	c Pump/Poly Tubing							
Total Volume of Water Remover 1.51899 gal			gal						
				FIELD ANALYSES					
Flour Data (millionin)	250	200		FIELD ANALYSES	200	200			
Flow Rate (ml/min)	350	200	200	200	200	200			
Time (Military) Depth to Groundwater	11:05	11:10	11:15	11:20	11:25	11:30			
Below Top of Casing (ft)	3.91	6.76	8.94	10.20	10.95	11.78			
Drawdown (ft)	0.00	2.85	5.03	6.29	7.04	7.87			
pH (S.U.)	7.67	7.67	7.67	7.67	7.67	7.67			
Sp. Cond. (mS/cm)	1.45	1.44	1.44	1.43	1.44	1.44			
Turbidity (NTUs)	96.0	46.0	73.5	50.3	22.3	16.2			
Dissolved Oxygen (mg/L)	0.28	0.27	0.19	0.15	0.15	0.13			
Water Temperature (°C)	13.6	14.0	14.2	14.2	14.3	14.2			
ORP (mV)	-166.8	-170.6	-167.7	-173.4	-177.0	-176.1			
	Physical appeara	ance at start Col	or <u>Clear</u>	Phy	sical appearance a	at sampling Cold	or C	Clear	
		Ode	or <u>None</u>	<u>_</u>		Odo	or <u>N</u>	lone	
	Sheen/Free Prod	ductN	lone	Sheen/Fr	ee Product	No	one		
COMMENTS/OBSERVATIONS Sa	ample time 11:40 h	rs.							
<u>Y</u> 5	SI Pro SS meter (II	D# 043167/18G1024	110) used to colle	ct field parameters.					

Page	1	of	1	

Date (mo/day/yr	10/2	21/2021		Casing Diameter			2		inches
Field Personnel	Ann Mari	e Kropovitch		Casing Material			PVC		
Site Name	ormer Scott Aviation	Site - Lancaster, N	Υ	Measuring Point Elev	ation		689.72		1/100 ft
AECOM Job#	6	0536398		Height of Riser (abov	e land surface)		2.5	57	1/100 ft
Well ID #		39D			Land Surface Elevation 687.4				1/100 ft
Up	ogradient	Downgradient		Screened Interval (be	elow land surfac		15-	20	1/100 ft
Weather Conditions	Cloud	y/Slight Wind							
Air Temperature	60			Container	Analysis ((Method)	# Bottles	Preservative	Dup - MS/MSD
Total Depth (TWD) Below T	op of Casing	22.5	1/100 ft	VOA 40 mL glass	TCL VOC	s (8260B)	3	4°C	
Depth to Groundwater (DGV	V) Below Top of Casing	g = 4.0	1/100 ft	VOA 40 mL glass	TC	C	2	HCL, 4°C	
Length of Water Column (LV	VC) = TWD - DGW =_	18.6	1/100 ft						
1 Casing Volume (OCV) = L	WC x 0.163	= 3.02	gal						
3 Casing Volumes =	!	9.07	gal						
Method of Well Evacuation		Peristaltic Pump							
Method of Sample Collection	thod of Sample Collectio Peristaltic Pump/Poly Tubing								
Total Volume of Water Rem	ove ₁	1.58503	gal						
			F	FIELD ANALYSES					
Flow Rate (ml/min)	200	200	200	200	200				
Time (Military)	14:00	14:15	14:20	14:25	14:30				
Depth to Groundwater Below Top of Casing (ft)	3.95	8.40	9.28	10.21	11.29				
Drawdown (ft)	0.00	4.45	5.33	6.26	7.34				
pH (S.U.)	6.71	6.64	6.65	6.67	5.67				
Sp. Cond. (mS/cm)	1.24	0.29	0.98	1.25	1.27				
Turbidity (NTUs)	44.6	46.6	50.9	51.4	63.9				
Dissolved Oxygen (mg/L)	0.67	0.29	0.45	0.28	0.16				
Water Temperature (°C)	13.7	13.6	13.6	11.6	14.1				
ORP (mV)	-93.9	-94.9	-101.4	-104.7	-106.1				
	Physical appe	arance at start C	olor <u>Clear</u>	Phy	sical appearance	at sampling	Color	Clear	
		0	dor None	<u></u>			Odor	None	
Sheen/Free Product None				Sheen/Free Product None					
COMMENTS/OBSERVATION	NS Sample time 14:45	hrs.							
	YSI Pro SS meter	(ID# 043167/18G102	2410) used to collec	ct field parameters.					

Page	1	of	1	
i agc		OI.		

Date (mo/day/yr	10/2	7/2021		Casing Diameter			2		inches
Field Personnel	Ann Mari	e Kropovitch		Casing Material			PVC		<u>.</u>
Site Name	Former Scott Aviation	Site - Lancaster, N	′	Measuring Point Elev	vation		689.19)	1/100 ft
AECOM Job #	6	536398		Height of Riser (above land surface) -0.3					1/100 ft
Well ID#	MW-4	10D		Land Surface Elevation	on		689.5		1/100 ft
	Upgradient	Downgradient		Screened Interval (be	elow land surfac		17.8	3-22.8	1/100 ft
Weather Conditions	Sunny/	Some Clouds							
Air Temperature	52	2		Container	Analysis (Method)	# Bottles	s Preservative	Dup - MS/MSD
Total Depth (TWD) Below	Top of Casing	22.5	1/100 ft	VOA 40 mL glass	TCL VOCs	(8260B)	3	HCL, 4°C	
Depth to Groundwater (De	th to Groundwater (DGW) Below Top of Casing = 18.01 1			VOA 40 mL glass	TO	С	2	HCL, 4°C	
Length of Water Column (ngth of Water Column (LWC) = TWD - DGW = 4.49				MNA An	alyses	15	Varies	
1 Casing Volume (OCV) =	= LWC x <u>0.163</u> =	2.77	gal						
3 Casing Volumes =	8	.31	gal						
Method of Well Evacuation	n <u>F</u>	Peristaltic Pump							
Method of Sample Collect	tioı Perista	tic Pump/Poly Tubino)						
Total Volume of Water Re	emovec	1.58503	gal						
				FIELD ANALYSES					
Flow Rate (ml/min)	200	200	200	200	200				
Time (Military)	10:00	10:15	10:20	10:30	10:35				
Depth to Groundwater Below Top of Casing (ft)	18.01	19.53	20.12	20.45	20.87				
Drawdown (ft)	0.00	1.52	2.11	2.44	2.86				
pH (S.U.)	7.29	7.22	7.21	7.21	7.21				
Sp. Cond. (mS/cm)	1.02	1.01	1.01	1.01	1.01				
Turbidity (NTUs)	3685	2565	1779	1583	1455				
Dissolved Oxygen (mg/L)	2.76	1.06	0.91	0.83	0.45				
Water Temperature (°C)	13.2	13.3	13.4	13.3	13.2				
ORP (mV)	-137.7	-144.6	-150.1	-149.6	-152.6				
	Physical appea	rance at start Co	lor Cloudy/Gray	<u>/ </u>	rsical appearance a	t sampling	Color	Cloudy	
		Od	lor None	_			Odor	None	
	Sheen/Free Pr	oduct	None	Sheen/Fr	ree Product		None		
COMMENTS/OBSERVAT	FIONS Sample time 10:50	hrs. Well ran dry afte	er VOC/TOC. Res	st of paramaters collecte	ed 13:00 hrs. J-plu	g popped into	air violently	/ - under pressure.	
	YSI Pro SS meter	ID# 043167/18G1024	410) used to collec	t field parameters.					

Date (mo/day/yr		10/27	7/2021		Casing Diameter		2			inches
Field Personnel		Ann Marie	Kropovitch		Casing Material		PV	0		<u>.</u>
Site Name	Former S	Scott Aviation	Site - Lancaster, I	NY	Measuring Point Elev	ation		689.08		1/100 ft
AECOM Job #		60	536398		Height of Riser (above land surface) -0.58					1/100 ft
Well ID#		MW-42	2S		Land Surface Elevation689.			89.66		1/100 ft
	Upgradient	<u> </u>	Downgradient	_	Screened Interval (be			5-15		1/100 ft
Weather Conditions		·		Ι						
Air Temperature		54			Container	Analysis (Method)	# Bottles	Preservative	Dup - MS/MSD
Total Depth (TWD) Be	otal Depth (TWD) Below Top of Casing14.3			1/100 ft	VOA 40 mL glass	TCL VOCs	s (8260B)	3	HCL, 4°C	
Depth to Groundwater (DGW) Below Top of Casing = 0.6				1/100 ft	VOA 40 mL glass	ТО	С	2	HCL, 4°C	
Length of Water Column (LWC) = TWD - DGW = 13.7				1/100 ft						
1 Casing Volume (OC)	V) = LWC x	0.163 =	2.2	gal						
3 Casing Volumes =		6.	70	gal						
Method of Well Evacua	ation	Pe	eristaltic Pump							
Method of Sample Col	lectio	Peristalt	ic Pump/Poly Tubi	ng						
Total Volume of Water	Remove		2.24546	gal						
					FIELD ANALYSES					
Flow Rate (ml/min)		350	250	250	250	250	250			
Time (Military)		11:30	11:40	11:45	11:50	11:55	12:00			
Depth to Groundwater					11100		.2.00			
Below Top of Casing (ft)	0.60	3.71	4.96	5.72	5.29	5.71			
Drawdown (ft)		0.00	3.11	4.36	5.12	4.69	5.11			
pH (S.U.)		6.76	6.61	6.60	6.59	6.59	6.60			
Sp. Cond. (mS/cm)		2.94	1.82	1.75	1.65	1.56	1.59			
Turbidity (NTUs)		51.60	7.96	6.63	7.66	7.21	7.42			
Dissolved Oxygen (mg	/L)	1.39	0.27	0.23	0.16	0.15	0.15			
Water Temperature (°0	C)	17.3	17.5	17.5	17.5	17.5	17.4			
ORP (mV)		-108.0	-90.8	-91.0	-91.1	-91.7	-93.2			
		Physical appear	rance at start (Color Clear	Phy	sical appearance a	at sampling Colo	or <u>C</u>	lear	
			(Odor None	_		Odo	r <u>N</u>	one	
		Sheen/Free Pro	duct	None	Sheen/Fr	ee Product	No	ne		
COMMENTS/OBSER\	/ATIONS <u>Sam</u>	ple time 12:15 l	hrs.							
	YSI	Pro SS meter (I	D# 043167/18G10	2410) used to collect	ct field parameters.					

Page	1	of	1	

Date (mo/day/yr	10/2	5/2021		Casing Diameter			2		inches
Field Personnel	Ann Mari	e Kropovitch		Casing Material			PVC		<u>.</u>
Site Name Fo	rmer Scott Aviation	Site - Lancaster, N	Υ	Measuring Point Elev	Measuring Point Elevation 689.14				
AECOM Job #	60	0536398		Height of Riser (above land surface) -0.46					1/100 ft
Well ID #		138		Land Surface Elevation	on		689.6		1/100 ft
Upg	radient	Downgradient		Screened Interval (be	elow land surfac		5-1	5	1/100 ft
Weather Conditions	C	Overcast							
Air Temperature				Container	Analysis (I	Method)	# Bottles	Preservative	Dup - MS/MSD
Total Depth (TWD) Below Top	n (TWD) Below Top of Casing 14.5 1/100			VOA 40 mL glass	TCL VOCs	(8260B)	3	HCL, 4°C	
Depth to Groundwater (DGW)	Below Top of Casing] =2.1	1/100 ft	VOA 40 mL glass	TO)	2	HCL, 4°C	
Length of Water Column (LW	C) = TWD - DGW =	12.4	1/100 ft						
1 Casing Volume (OCV) = LW	C x 0.163	2.02	gal						
3 Casing Volumes =	6	3.06	gal						
Method of Well Evacuation	F	Peristaltic Pump							
Method of Sample Collectio	Perista	ltic Pump/Poly Tubin	g						
Total Volume of Water Remove	/eɪ	1.8877	gal						
				FIELD ANALYSES					
Flow Rate (ml/min)	300	300	300	300					
Time (Military)	10:15	10:20	10:25	10:30					
Depth to Groundwater Below Top of Casing (ft)	2.10	4.70	5.10	5.80					
Drawdown (ft)	0.00	2.60	3.00	3.70					
pH (S.U.)	7.08	6.91	6.93	6.80					
Sp. Cond. (mS/cm)	1.140	1.26	1.25	1.00					
Turbidity (NTUs)	8.13	3.15	3.41	6.06					
Dissolved Oxygen (mg/L)	1.40	0.18	0.11	0.11					
Water Temperature (°C)	16.4	17.4	17.8	17.7					
ORP (mV)	-91.0	-105.1	-114.0	-106.1					
	Physical appea	arance at start Co	olor Clear	Phy	sical appearance a	t sampling (Color	Clear	
		Oc	dor Slight			(Odor	None	
	Sheen/Free Pr	oduct	None	Sheen/Free Product None					
COMMENTS/OBSERVATION	S Sample time 10:45	hrs.							
	YSI Pro SS meter	(ID# 043167/18G102	410) used to collect	ct field parameters.					

Page	1	of	1	

Date (mo/day/yr		10/2	25/2021		Casing Diameter			2			inches
Field Personnel	An	n Marie Kropo	vitch/Lindsey Hur	nka	Casing Material			PVC			<u> </u>
Site Name	Former S	Scott Aviation	n Site - Lancaster	, NY	Measuring Point Elev	ation					1/100 ft
AECOM Job #		6	0536398		Height of Riser (above land surface) 0.00					1/100 ft	
Well ID#		MW-	44S			Land Surface Elevation					1/100 ft
	Upgradient		Downgradie	nt		Screened Interval (below land surfac 5-15			5-15		1/100 ft
Weather Conditions			oudy/Windy								
Air Temperature			4		Container	Analysis (l	Method)	# Bottle	s Prese	rvative	Dup - MS/MSD
Total Depth (TWD) Bel	otal Depth (TWD) Below Top of Casing15			1/100 ft	VOA 40 mL glass	TCL VOCs	(8260B)	3	HCL	, 4°C	
Depth to Groundwater (DGW) Below Top of Casing = 0.6			1/100 ft	VOA 40 mL glass	TO	С	2	HCL	, 4°C		
Length of Water Colum	nn (LWC) = TV	VD - DGW =_	14.4	1/100 ft							
1 Casing Volume (OCV	/) = LWC x	0.163	=2	.35 gal							
3 Casing Volumes =			7.04	gal							
Method of Well Evacua	ation		Peristaltic Pump								
Method of Sample Coll	ectio	Perista	altic Pump/Poly Tu	ıbing							
Total Volume of Water	Remove		1.71712	gal							
					FIELD ANALYSES						
Flow Rate (ml/min)		325	325	325	325						
Time (Military)		12:28	12:33	12:43	12:48						
Depth to Groundwater		12.20	12.00	12.40	12.70						
Below Top of Casing (f	t)	0.60	3.68	5.89	6.60						
Drawdown (ft)		0.00	3.08	5.29	6.00						
pH (S.U.)		7.37	7.20	7.19	7.17						
Sp. Cond. (mS/cm)		0.84	1.08	1.06	1.06						
Turbidity (NTUs)		3.55	4.22	7.50	4.30						
Dissolved Oxygen (mg	/L)	1.74	0.26	3.10	3.02						
Water Temperature (°C	C)	13.6	14.2	14.5	14.5						
ORP (mV)		-112.5	-100.7	-55.8	-39.2						
	I	Physical appe	arance at start	Color Clear	Phy	sical appearance a	it sampling	Color	Clear		
				Odor None	_			Odor	None	i	
	;	Sheen/Free P	roduct	None	Sheen/Fi	ee Product		None		i	
COMMENTS/OBSERV	ATIONS <u>Sam</u>	ple time 13:0) hrs.								
	YSI	Pro SS meter	(ID# 043167/18G	102410) used to colle	ect field parameters.						

Date (mo/day/yr	4/12/2	2022		Casing Diameter 1					
Field Personnel	Ann Marie l	Kropovitch		Casing Material		PV	С		<u>.</u>
Site Name F	ormer Scott Aviation S	ite - Lancaster, NY	,	Measuring Point El	levation		689.82		1/100 ft
AECOM Job #	605	36398		Height of Riser (ab	ove land surface)		2.52		1/100 ft
Well ID#	A1-GP02	2-S		Land Surface Eleva	ation		687.3		1/100 ft
Upç	gradient	Downgradient		Screened Interval	(below land surfac		5-15	i	1/100 ft
Weather Conditions	S	unny		<u> </u>					
Air Temperature	54		° F	Container	Analysis ((Method)	# Bottles	Preservative	Dup - MS/MSD
Total Depth (TWD) Below To	o of Casing	15	1/100 ft	VOA 40 mL glass	TCL VOC	TCL VOCs (8260B) 3 HCL, 4°C			
Depth to Groundwater (DGW	epth to Groundwater (DGW) Below Top of Casing = 2.34			VOA 40 mL glass	s TC	OC .	2	HCL, 4°C	
Length of Water Column (LW	C) = TWD - DGW =	12.66	1/100 ft						
1 Casing Volume (OCV) = LV	/C x <u>0.0408</u> =	0.52	gal						
3 Casing Volumes =	1.5	55	gal						
Method of Well Evacuation	Pe	ristaltic Pump							
Method of Sample Collection	Peristalti	Pump/Poly Tubing	1						
Total Volume of Water Remo	vec	1.85	gal						
			_						
EL D. (// '.)	000	200		FIELD ANALYSES	000	1 000			200
Flow Rate (ml/min)	200	200	200	200	200	200		200	200
Time (Military) Depth to Groundwater	11:20	11:25	11:30	11:35	11:40	11:45		11:50	11:55
Below Top of Casing (ft)	6.20	7.73	7.48	7.98	7.71	7.5		7.52	7.48
Drawdown (ft)	-3.86	-1.53	0.25	-0.50	0.27	0.21		-0.02	0.04
pH (S.U.)	7.06	7.01	7.06	7.05	7.05	7.03		7.02	7.02
Sp. Cond. (mS/cm)	1.134	1.098	1.139	1.127	1.118	1.106		1.098	1.099
Turbidity (NTUs)	220.40	103.70	100.90	110.70	120.30	87.28		55.25	37.34
Dissolved Oxygen (mg/L)	0.48	0.26	1.34	5.51	6.23	6.97		7.41	7.75
Water Temperature (°C)	9.40	9.10	9.20	10.20	10.40	10.80		10.70	10.70
ORP (mV)	-104.10	-103.40	-100.60	-88.70	-85.00	-80.10		-76.70	-74.80
	Physical appeara	ance at start Co	lor <u>ar/Slightly clo</u>	<u>u</u> P	hysical appearance	at sampling Cold	or C	Clear	
		Od	or None	_		Odo	r <u> </u>	lone	
	None	Sheen	/Free Product	No	one				
COMMENTS/OBSERVATIONS Sample time 12:05 hrs. Purge start 11:05 (Battery die				ad to switch batteries)				
	YSI Pro SS meter (ID	0# 21D103486) use	d to collect field pa	rameters.					

Date (mo/day/yr		4/11/20	22		Casing Diameter		inches			
Field Personnel			opovitch		Casing Material			PVC		<u></u>
Site Name	Form	er Scott Aviation Site	e - Lancaster, NY		Measuring Point Elev	ation		687.71		1/100 ft
AECOM Job#		60530	3398		Height of Riser (abov	e land surface)		-0.0	9	1/100 ft
Well ID#		A1-GP06-S	3		Land Surface Elevation	on		687.8		1/100 ft
	Upgradi	ent	Downgradient		Screened Interval (below land surface 5-15					1/100 ft
Weather Conditions _		Cle	ar							
Air Temperature		39			Container	Analysis (I	Method)	# Bottles	Preservative	Dup - MS/MSD
Total Depth (TWD) Be	elow Top of C	Casing =	15.0	1/100 ft	VOA 40 mL glass	TCL VOCs	TCL VOCs (8260B) 3 HCL, 4°C			
Depth to Groundwate	r (DGW) Beld	ow Top of Casing =	1.22	1/100 ft	VOA 40 mL glass	TO	0	2	HCL, 4°C	
Length of Water Colu	mn (LWC) =	TWD - DGW =	13.8	1/100 ft	Various	MNA An	alyses	15	Varies	
1 Casing Volume (OC	CV) = LWC x	0.0408 =	0.56	gal						
3 Casing Volumes =		1.69		gal						
Method of Well Evacu	uation	Peris	staltic Pump							
Method of Sample Co	ollection	Peristaltic I	Pump/Poly Tubing							
Total Volume of Wate	r Removed_		0.50	gal						
	Г		1		FIELD ANALYSES				ı	
Flow Rate (ml/min)	-	125	125	125	125					
Time (Military)	_	9:00	9:05	9:10	9:15					
Depth to Groundwate Below Top of Casing		6.77	10.87	12.95	14.05					
Drawdown (ft)		-5.55	-4.10	-2.08	-1.10					
pH (S.U.)		6.88	6.91	7.03	7.13					
Sp. Cond. (mS/cm)		1.49	1.49	1.48	1.447					
Turbidity (NTUs)		19.0	30.2	36.3	42.89					
Dissolved Oxygen (m	g/L)	2.15	0.88	0.63	0.46					
Water Temperature (°	°C)	8.2	8.1	8.4	8.60					
ORP (mV)		-116.8	-116.9	-127.2	-138.80					
		Physical appearance	ce at start Cold	or <u>Clear</u>	Phy	sical appearance a	t sampling	Color	Clear	
			Odo	r <u>No</u>	<u>_</u>			Odor	No	
		Sheen/Free Produc	et N	one	Sheen/Fr	ee Product		None		
COMMENTS/OBSER	VATIONS S	Sample time 09:45 hrs.	(start of sampling)	Well went dry aff	ter 09:15. Samples wer	e collected as well r	echarged.			
	<u>Y</u>	'SI Pro SS meter (ID#	21D103486) used	to collect field pa	rameters.					

Date (mo/day/yr	4	4/13/2022		Casing Diameter			1		inches	
Field Personnel	Ann M	arie Kropovitch		Casing Material			/C			
Site Name	Former Scott Aviat	ion Site - Lancaster, NY	•	Measuring Point Eleva					1/100 ft	
AECOM Job #		60536398		Height of Riser (above land surface)						
Well ID#	A1-	GP09-S		Land Surface Elevation	1/100 ft					
	Upgradient	Downgradient		Screened Interval (bel	ow land surface		5-1	5	1/100 ft	
Weather Conditions	Clo	oudy/slight wind								
Air Temperature		72	°F	Container	Analysis (M	ethod)	# Bottles	Preservative	Dup - MS/MSD	
Total Depth (TWD) Below	V Top of Casing :	17.3	1/100 ft	VOA 40 mL glass	TCL VOCs (8260B)	3	HCL, 4°C		
Depth to Groundwater (D	GW) Below Top of Cas	ing = 2.40	1/100 ft	VOA 40 mL glass	TOC		2	HCL, 4°C		
Length of Water Column	(LWC) = TWD - DGW =	14.9	1/100 ft							
1 Casing Volume (OCV)	= LWC x0.0	= 0.61	gal							
3 Casing Volumes =		1.82	gal							
Method of Well Evacuation	on	Peristaltic Pump								
Method of Sample Collec	tiorPeri	staltic Pump/Poly Tubing	1							
Total Volume of Water Re	emovec	1.85	gal							
				FIELD ANALYSES						
Flow Rate (ml/min)	200	200	200	200	200	200		200	200	
Time (Military)	14:15	14:20	14:25	14:30	14:35	14:40		14:45	14:50	
Depth to Groundwater Below Top of Casing (ft)	4.11	6.78	7.25	7.02	7.17	7.24		7.33	7.4	
Drawdown (ft)	-1.71	-2.67	-0.47	0.23	-0.15	-0.07		-0.09	-0.07	
pH (S.U.)	7.00	6.92	6.88	6.80	6.75	6.72		6.71	6.7	
Sp. Cond. (mS/cm)	1.166	1.148	1.095	1.116	1.114	1.099		1.086	1.073	
Turbidity (NTUs)	56.5	57.5	57.6	39.3	25.54	21.28		19.05	20.67	
Dissolved Oxygen (mg/L)	1.49	0.59	0.41	0.35	0.26	0.22		0.21	0.19	
Water Temperature (°C)	11.4	11.4	11.3	10.6	10.7	10.6		10.4	10.4	
ORP (mV)	-102.3	-102.7	-102.3	-99.4	-98.1	97.2		-96.7	-96.3	
	Physical ap	pearance at start Co	lor Clear	Phys	ical appearance at	sampling Co	lor	Clear		
		Od	or None	<u></u>		Oc	or	None		
	Sheen/Free	Product	None	Shee	en/Free Product		None			
COMMENTS/OBSERVA	TIONS Sample time 15	:00 hrs.								
	YSI Pro SS met	er (ID# 21D103486) use	d to collect field pa	arameters.						

Date (mo/day/yr	4/8/20)22		Casing Diameter			1		inches
Field Personnel		ropovitch		Casing Material			PVC		<u>.</u>
Site Name For	mer Scott Aviation Si	te - Lancaster, NY		Measuring Point Elevat	ion		689.10		1/100 ft
AECOM Job #	6053	36398		Height of Riser (above l	Height of Riser (above land surface)			1	1/100 ft
Well ID #	A1-GP10	-S		Land Surface Elevation 689.2			689.2		1/100 ft
Upgra	dient	Downgradient		Screened Interval (belo	w land surface		5-15		1/100 ft
Weather Conditions	Sun/some clo	uds/slight wind							
Air Temperature	45			Container	Analysis (M	lethod)	# Bottles	Preservative	Dup - MS/MSD
Total Depth (TWD) Below Top o	of Casing =	15	1/100 ft	VOA 40 mL glass	TCL VOCs (8260B)	3	HCL, 4°C	
Depth to Groundwater (DGW) B	elow Top of Casing = _	1.55	1/100 ft	VOA 40 mL glass	TOC		2	HCL, 4°C	
Length of Water Column (LWC)	= TWD - DGW =	13.45	1/100 ft	Various	MNA Ana	lyses	15	Varies	
1 Casing Volume (OCV) = LWC	x <u>0.0408</u> =	0.55	gal						
3 Casing Volumes =	1.69	5	gal						
Method of Well Evacuation	Per	istaltic Pump							
Method of Sample Collectior	Peristaltic	Pump/Poly Tubing							
Total Volume of Water Removed	<u> </u>		gal						
			NALYSES			7/10/17 p	ost sample	<u> </u>	
Flow Rate (ml/min)	225	225	225	220					
Time (Military)	11:45	11:50	11:55	12:00					
Depth to Groundwater Below Top of Casing (ft)	6.66	13.02	14.52	14.99					
Drawdown (ft)	-5.11	-6.36	-1.50	-0.47					
pH (S.U.)	6.61	6.61	6.72	6.68					
Sp. Cond. (mS/cm)	1.381	1.147	1.905	1.991					
Turbidity (NTUs)	40.3	39.0	50.02	40.20					
Dissolved Oxygen (mg/L)	6.91	4.37	3.30	3.11					
Water Temperature (°C)	8.4	8.5	9.60	9.72					
ORP (mV)	-43.4	-43.2	-60.70	-101.20					
	Physical appearar	nce at start Cold	or Clear	Physic	cal appearance at	sampling C	Color C	lear	
		Odo	or None	<u>_</u>		C	Odor N	lone	
	Sheen/Free Produ	uct N	lone	Sheen/Free	Product		None		
COMMENTS/OBSERVATIONS	Sample time 13:00 hrs	s. Went dry after 12	2:00 hrs.						
	YSI Pro SS meter (ID:	# 21D103486) used	to collect field pa	rameters.					

Date (mo/day/yr	4/12/	2022		Casing Diameter				1			inches
Field Personnel	Ann Marie			Casing Material				PVC			
Site Name Fo				Measuring Point Elevat					7.69		1/100 ft
AECOM Job #		536398		Height of Riser (above					-1.74		1/100 ft
Well ID#	A1-GP1			Land Surface Elevation				689.			1/100 ft
	gradient			Screened Interval (belo					5-15		1/100 ft
Weather Conditions		ny/Clear		,							
Air Temperature	48	•		Container	Analysis (I	Method)	# Bottles		Preservati	ve	Dup - MS/MSD
Total Depth (TWD) Below Top	o of Casing	15	1/100 ft	VOA 40 mL glass	TCL VOCs	(8260B)	3		HCL, 4°C		·
Depth to Groundwater (DGW)			1/100 ft	VOA 40 mL glass	TO	2	2 HCL, 4°C				
Length of Water Column (LW	C) = TWD - DGW =	13.48	1/100 ft								
1 Casing Volume (OCV) = LW	/C x 0.0408 =	0.55	gal								
3 Casing Volumes =	1.6	65	gal								
Method of Well Evacuation	Pe	eristaltic Pump									
Method of Sample Collection											
Total Volume of Water Remov											
					FIELD) ANALYSES					
Flow Rate (ml/min)	200	200	200	200	200	200		200	200	200	200
Time (Military)	9:30	9:35	9:40	9:45	9:50	9:55		10:00	10:05	10:10	10:15
Depth to Groundwater Below Top of Casing (ft)	3.11	5.32	6.81	7.58	7.63	7.62		7.63	7.63	7.63	7.63
Drawdown (ft)	-1.59	-2.21	-1.49	-0.77	-0.05	0.01		-0.01	0.00	0.00	6.11
pH (S.U.)	7.43	7.36	7.20	7.15	7.25	7.26		7.32	7.38	7.4	7.43
Sp. Cond. (mS/cm)	0.528	0.448	0.440	0.453	0.472	0.521		0.532	0.528	0.525	0.524
Turbidity (NTUs)	21.55	52.49	64.28	107.20	38.24	87.42		100.50	103.20	103.50	103.90
Dissolved Oxygen (mg/L)	1.18	0.66	1.40	1.34	5.69	4.09		5.66	6.77	7.00	7.05
Water Temperature (°C)	10.3	9.7	9.7	9.7	10.1	10.5		11.0	11.3	11.5	11.8
ORP (mV)	-108.6	-110.2	-93.2	-87.3	-79.6	-82.0		-81.6	-73.7	-68.0	-66.7
	Physical appear	ance at start Co	lor Clear	Physi	cal appearance at	sampling Co	lor	Clear			
		Od	or None	<u> </u>		Od	lor	None			
	Sheen/Free Pro	ducI	None	Sheen/Free	Product	١	None				
COMMENTS/OBSERVATIONS Sample time 10:20 hrs.											
	YSI Pro SS meter (I	ed to collect field pa	arameters.								

Date (mo/day/yr	4/11/2	2022		Casing Diameter 1					inches
Field Personnel	Ann Marie l	Kropovitch		Casing Material		PV	0		
Site Name For	mer Scott Aviation S	ite - Lancaster, NY	•	Measuring Point Eleva	ation		687.69		1/100 ft
AECOM Job #	605	36398		Height of Riser (above	e land surface)		-0.31		1/100 ft
Well ID #	A1-GP1	5-S		Land Surface Elevatio	n		688.0		1/100 ft
Upgra	adient	Downgradient		Screened Interval (bel	ow land surface		5-15		1/100 ft
Weather Conditions	Partly	y Cloudy							
Air Temperature	46			Container	Analysis (I	Method)	# Bottles Pr	eservative	Dup - MS/MSD
Total Depth (TWD) Below Top of	of Casing	14.82	1/100 ft	VOA 40 mL glass	TCL VOCs	(8260B)	3 I	HCL, 4°C	
Depth to Groundwater (DGW) E	Below Top of Casing =	0.00	1/100 ft	VOA 40 mL glass	TO	С	2 l	HCL, 4°C	
Length of Water Column (LWC)	= TWD - DGW =	14.82	1/100 ft						
1 Casing Volume (OCV) = LWC	x 0.0408 =	0.60	gal						
3 Casing Volumes =	1.8	31	gal						
Method of Well Evacuation	Pe	ristaltic Pump							
Method of Sample Collectior	ample Collectior Peristaltic Pump/Poly Tubing								
Total Volume of Water Remove	Removec 1.0 ga								
				FIELD A	NALYSES				
Flow Rate (ml/min)	125	125	125	125	125	125	125		
Time (Military)	10:00	10:05	10:10	10:15	10:20	10:25	10:30)	
Depth to Groundwater Below Top of Casing (ft)	2.52	4.59	8.78	10.98	12.58	13.74	14.72	!	
Drawdown (ft)	-2.52	-2.07	-4.19	-2.20	-1.60	-1.16	-0.98		
pH (S.U.)	7.13	7.11	7.00	7.04	7.15	7.18	7.16		
Sp. Cond. (mS/cm)	0.755	0.752	0.741	0.760	0.743	0.723	0.727	·	
Turbidity (NTUs)	104.80	65.70	22.10	26.88	22.62	19.26	15.35	;	
Dissolved Oxygen (mg/L)	1.24	0.95	0.59	0.51	0.45	0.39	0.35		
Water Temperature (°C)	9.0	8.8	8.8	9.0	9.3	9.5	9.5		
ORP (mV)	-23.20	-16.90	3.80	5.40	2.50	2.60	-6.90		
	Physical appear	ance at start Cold	or <u>Light Gray</u>	Phys	sical appearance a	t sampling Colo	r Clear		
		Odo	or None	<u> </u>		Odo	r None		
Sheen/Free Produc None				Sheen/Fre	ee Product	No	ne		
COMMENTS/OBSERVATIONS	COMMENTS/OBSERVATIONS Sample time 10:40 hrs. Well dry after 10:30 reading.								
	YSI Pro SS meter (ID# 21D103486) used to collect field								_

Date (mo/day/yr	4/11/	2022		Casing Diameter		1			inches
Field Personnel	Ann Marie	Kropovitch		Casing Material			С		<u>.</u>
Site Name Fo	rmer Scott Aviation S	Site - Lancaster, NY	,	Measuring Point Eleva	tion		687.69		1/100 ft
AECOM Job #	609	536398		Height of Riser (above	land surface)		-0.3	1	1/100 ft
Well ID #	A1-GP1	6-S		Land Surface Elevation	n		688.0		1/100 ft
	radient			Screened Interval (bel	ow land surface		5-1	5	1/100 ft
Weather Conditions	Sun/pa	artly cloudy							
Air Temperature	52			Container	Analysis (Method)	# Bottles	Preservative	Dup - MS/MSD
Total Depth (TWD) Below Top	of Casing	17.52	1/100 ft	VOA 40 mL glass	TCL VOCs	s (8260B)	3	HCL, 4°C	
Depth to Groundwater (DGW)	Below Top of Casing =	2.60	1/100 ft	VOA 40 mL glass	TO	С	2	HCL, 4°C	
Length of Water Column (LWC	c) = TWD - DGW =	14.92	1/100 ft						
1 Casing Volume (OCV) = LW	C x 0.0408 =	0.61	gal						
3 Casing Volumes =	1.8	83	gal						
Method of Well Evacuation	Pe	eristaltic Pump							
	Collectior Peristaltic Pump/Poly Tubing								
Total Volume of Water Remov	ater Removec 1.9								
			F	IELD ANALYSES		_			
Flow Rate (ml/min)	200	200	200	200	200	200		200	200
Time (Military)	11:50	11:55	12:00	12:05	12:10	12:15		12:20	12:25
Depth to Groundwater Below Top of Casing (ft)	2.73	3.48	4.64	5.45	5.33	4.91		5.06	4.82
Drawdown (ft)	-0.13	-0.75	-1.16	-0.81	0.12	0.42		-0.15	0.24
pH (S.U.)	7.24	7.15	7.05	6.99	6.95	6.89		6.89	6.9
Sp. Cond. (mS/cm)	1.144	0.938	0.017	1.153	1.144	1.134		1.136	1.130
Turbidity (NTUs)	26.23	50.74	109.50	12.32	14.03	19.52		14.16	17.20
Dissolved Oxygen (mg/L)	1.62	0.89	0.40	1.46	0.49	0.27		0.22	0.18
Water Temperature (°C)	9.3	9.5	9.7	9.0	9.2	9.6		9.6	9.5
ORP (mV)	-98.3	-84.2	-79.5	-60.7	-64.4	-60.2		-61.6	-62.9
	Physical appear	ance at start Col	or <u>Clear</u>	Phys	sical appearance a	t sampling Colo	or	Clear	
		Odd	or None	_		Odo	r	None	
Sheen/Free Produc None				Sheen/Free Product None					
COMMENTS/OBSERVATIONS Sample time 12:30 hrs.									
	YSI Pro SS meter (I	D# 21D103486) use	d to collect field p	arameters.					

Date (mo/day/yr	04/1	3/22		Casing Diameter 0.75					inches
Field Personnel	Ann Marie	Kropovitch		Casing Material		PV	′C		<u>.</u>
Site Name Fo	rmer Scott Aviation S	Site - Lancaster, NY	•	Measuring Point Eleva	ation		690.37		1/100 ft
AECOM Job #	608	536398		Height of Riser (above	e land surface)		2.8	7	1/100 ft
Well ID #	A1GP-1	8-S		Land Surface Elevation	on		687.5		1/100 ft
Upgi	radient	Downgradient		Screened Interval (be	low land surface		5-1	5	1/100 ft
Weather Conditions	С	loudy							
Air Temperature	61			Container	Analysis (I	Method)	# Bottles	Preservative	Dup - MS/MSD
Total Depth (TWD) Below Top	of Casing	18	1/100 ft	VOA 40 mL glass	TCL VOCs	(8260B)	3	HCL, 4°C	
Depth to Groundwater (DGW)	Below Top of Casing =	2.91	1/100 ft	VOA 40 mL glass	TO	C	2	HCL, 4°C	
Length of Water Column (LWC	c) = TWD - DGW =	15.09	1/100 ft	Various	MNA An	alyses	15	Varies	
1 Casing Volume (OCV) = LW	C x <u>0.0408</u> =	0.62	gal						
3 Casing Volumes =	1.8	35	gal						
Method of Well Evacuation	Pe	eristaltic Pump							
Method of Sample Collectior_	of Sample Collectior Peristaltic Pump/Poly Tubing								
Total Volume of Water Removec 1.39									
				FIELD ANALYSES		1			
Flow Rate (ml/min)	150	150	150	150	150	150		150	150
Time (Military)	8:50	8:55	9:00	9:05	9:10	9:15		9:20	9:25
Depth to Groundwater Below Top of Casing (ft)	2.91	5.82	6.30	6.82	6.92	7.05		7.14	7.67
Drawdown (ft)	0.00	2.91	3.39	3.91	4.01	4.14		4.23	4.76
pH (S.U.)	7.16	7.00	6.96	6.91	6.9	6.9		6.91	6.91
Sp. Cond. (mS/cm)	0.96	0.94	0.86	0.81	0.80	0.792		0.788	0.789
Turbidity (NTUs)	11.5	10	82.1	50.0	30.5	40		39.85	38.58
Dissolved Oxygen (mg/L)	1.70	0.72	0.47	0.39	0.36	0.34		0.33	0.32
Water Temperature (°C)	9.8	10.6	10.0	10.1	10.0	10.2		10.4	10.6
ORP (mV)	-90.1	-81.3	-84.3	-82.5	-84.0	-86		-88	-89.6
	Physical appear	ance at start Col	or <u>Clear</u>	Phy	sical appearance a	t sampling Col	or	Clear	
		Odd		_		Odd		None	
		en/Free Product	None	Sheen/Fr	ee Product	N	one		
COMMENTS/OBSERVATIONS Sample time 10:00 hrs.									
	YSI Pro SS meter (ID# 21D103486) used to collect field								

Date (mo/day/yr	4/14/2	2022		Casing Diameter		2)		inches
Field Personnel	Ann Marie ł	Kropovitch		Casing Material			′C		
Site Name Forn	ner Scott Aviation S	ite - Lancaster, N	Υ	Measuring Point Eleva	tion				1/100 ft
AECOM Job#	605	36398		Height of Riser (above	land surface)		0.0	0	1/100 ft
Well ID #	MW-30)		Land Surface Elevation	n				1/100 ft
Upgrad	dient	Downgradient		Screened Interval (belo	ow land surfaci		10-2	20	1/100 ft
Weather Conditions	Cloudy/F	Rain Drops							
Air Temperature	66			Container	Analysis (I	Method)	# Bottles	Preservative	Dup - MS/MSD
Total Depth (TWD) Below Top of	Casing :	20	1/100 ft	VOA 40 mL glass	TCL VOCs	(8260B)	3	HCL, 4°C	
Depth to Groundwater (DGW) Be	elow Top of Casing =	2.73	1/100 ft	VOA 40 mL glass	TO	С	2	HCL, 4°C	
Length of Water Column (LWC)	= TWD - DGW =	17.27	1/100 ft						
1 Casing Volume (OCV) = LWC	x <u>0.163</u> =	2.82	gal						
3 Casing Volumes =	8.4	5	gal						
Method of Well Evacuation	Per	ristaltic Pump							
Method of Sample Collection	Peristaltio	Pump/Poly Tubin	g						
Total Volume of Water Removec 2.31 g									
r			F	IELD ANALYSES			•		7
Flow Rate (ml/min)	250	250	250	250	250	250		250	250
Time (Military)	8:50	8:55	9:00	9:05	9:10	9:15		9:20	9:25
Depth to Groundwater Below Top of Casing (ft)	2.50	6.41	7.28	8.29	8.71	9.42		9.74	10.56
Drawdown (ft)	-0.23	-3.91	-0.87	-1.01	-0.42	-0.71		-0.32	-0.82
pH (S.U.)	7.56	7.34	7.33	7.33	7.33	7.33		7.33	7.33
Sp. Cond. (mS/cm)	0.45	0.45	0.45	0.46	0.461	0.467		0.473	0.47
Turbidity (NTUs)	11.46	26.65	17.72	11.80	12.28	13.45		14.93	18.62
Dissolved Oxygen (mg/L)	0.88	0.35	0.30	0.23	0.23	0.24		0.31	0.28
Water Temperature (°C)	12.50	12.30	12.40	12.30	12.40	12.40		12.40	12.50
ORP (mV)	-123.9	-122.5	-123.1	-124.6	-124.5	-124.4		-122.2	-121.4
	Physical appeara	ince at start Co	olor <u>Clear</u>	Phys	ical appearance a	it sampling Col	or	Clear	
		O	dor None	<u>_</u>		Odd	or	None	
	Sheen/Free Prod	uct	None	Sheen/Fre	e Product	N	one		
COMMENTS/OBSERVATIONS	Sample time 09:30 hi	rs.							
-	ed to collect field pa	rameters.							
-									

Date (mo/day/yr	4/7/	2022		Casing Diameter 2					inches
Field Personnel	Ann Marie	Kropovitch		Casing Material		PV	С		
Site Name Form	mer Scott Aviation	Site - Lancaster, NY	<u>, </u>	Measuring Point Eleva			688.56		1/100 ft
AECOM Job #	60	536398		Height of Riser (above	land surface)		-0.5	i4	1/100 ft
Well ID #	MW-3	5S		Land Surface Elevation	ı		689.1		1/100 ft
Upgra	ndient	Downgradient		Screened Interval (belo	ow land surface		5-1	5	1/100 ft
Weather Conditions	Clou	dy/Drizzle		-					
Air Temperature	54		°F	Container	Analysis (Method)	# Bottles	Preservative	Dup - MS/MSD
Total Depth (TWD) Below Top o	of Casing	14.01	1/100 ft	VOA 40 mL glass	TCL VOCs	s (8260B)	3	HCL, 4°C	Dup
Depth to Groundwater (DGW) B	elow Top of Casing :	0.49	1/100 ft	VOA 40 mL glass	ТО	С	2	HCL, 4°C	
Length of Water Column (LWC)	= TWD - DGW =	13.52	1/100 ft						
1 Casing Volume (OCV) = LWC	x <u>0.163</u> =	2.20	gal						
3 Casing Volumes =	6.	61	gal						
Method of Well Evacuation	P	eristaltic Pump							
Method of Sample Collectior	Peristalt	tic Pump/Poly Tubing]						
Total Volume of Water Removec 2.31 ga									
	1	ı		FIELD ANALYSES		T		<u> </u>	
Flow Rate (ml/min)	250	250	250	250	250	250		250	250
Time (Military)	14:30	14:35	14:40	14:45	14:50	14:55		15:00	15:05
Depth to Groundwater Below Top of Casing (ft)	2.11	3.11	4.69	4.98	5.41	6.01		6.49	6.75
Drawdown (ft)	-1.62	-1.00	-1.58	-0.29	-0.43	-0.60		-0.48	-0.26
pH (S.U.)	7.03	6.97	6.98	6.99	7	6.99		6.99	6.99
Sp. Cond. (mS/cm)	0.64	0.64	0.64	0.64	0.64	0.653		0.645	0.641
Turbidity (NTUs)	22.43	27.27	31.40	26.52	26.7	15.83		16.29	14.72
Dissolved Oxygen (mg/L)	4.18	3.76	3.82	3.80	3.47	2.88		2.74	2.59
Water Temperature (°C)	8.7	8.0	8.3	8.2	8.3	8.2		8.2	8.2
ORP (mV)	44.9	560.0	57.1	56.3	53.3	54.7		55.6	56.1
	Physical appea	rance at start Col	or Clear	Phys	ical appearance a	t sampling Colo	or	Clear	
		Odd	or None	<u> </u>		Odo	r	None	
	Sheen/Free Pro	oducN	lone	Sheen/Fre	e Product	No	ne		
COMMENTS/OBSERVATIONS									
	YSI Pro SS meter (ID# 043167/18G102410) used to co								

Date (mo/day/yr	4/7/	2022		Casing Diameter 2					inches
Field Personnel	Ann Marie	Kropovitch		Casing Material		P\	/C		<u>.</u>
Site Name Fo	rmer Scott Aviation	Site - Lancaster, NY	<u> </u>	Measuring Point Eleva	ation		698.66		1/100 ft
AECOM Job #	60	536398		Height of Riser (above	e land surface)		2.8	3	1/100 ft
Well ID #	MW-3	5D		Land Surface Elevatio	n		687.1		1/100 ft
Upgr	adient	Downgradient		Screened Interval (bel	ow land surface		21-2	26	1/100 ft
Weather Conditions	Clou	dy/Drizzle		-					
Air Temperature	54			Container	Analysis (Method)	# Bottles	Preservative	Dup - MS/MSD
Total Depth (TWD) Below Top	of Casing	25.22	1/100 ft	VOA 40 mL glass	TCL VOCs	s (8260B)	3	HCL, 4°C	
Depth to Groundwater (DGW)	Below Top of Casing	4.98	1/100 ft	VOA 40 mL glass	ТО	С	2	HCL, 4°C	
Length of Water Column (LWC) = TWD - DGW =	20.24	1/100 ft	Various	MNA An	alyses	15	Varies	
1 Casing Volume (OCV) = LW0	C x <u>0.163</u> =	3.30	gal						
3 Casing Volumes =	olumes = 9.90 g								
Method of Well Evacuation	d of Well Evacuation Peristaltic Pump								
Method of Sample Collectior									
Total Volume of Water Remove	ec	gal							
			ı	FIELD ANALYSES					
Flow Rate (ml/min)	250	250	250	250	250	250		250	250
Time (Military)	15:35	15:40	15:45	15:50	15:55	16:00		16:05	16:10
Depth to Groundwater Below Top of Casing (ft)	6.98	8.96	10.37	11.27	12.11	13.57		14.12	14.45
Drawdown (ft)	-2.00	-1.98	-1.41	-0.90	-0.84	-1.46		-0.55	-0.33
pH (S.U.)	7.20	7.06	7.05	7.01	7.01	7.02		7.03	7.03
Sp. Cond. (mS/cm)	0.422	0.418	0.419	0.420	0.421	0.424		0.43	0.432
Turbidity (NTUs)	72.13	65.93	40.92	13.06	76.44	69.63		60.53	50.25
Dissolved Oxygen (mg/L)	7.95	9.04	9.00	8.77	8.57	8.25		7.9	7.75
Water Temperature (°C)	10.6	10.7	10.6	10.7	10.7	10.7		10.8	10.9
ORP (mV)	-57.9	-4.4	9.0	20.7	26.1	28.3		31.7	32.5
	Physical appea	rance at start Col	or <u>Cloudy/Gray</u>	Phys	sical appearance a	t sampling Col	or	Clear	
		Ode	or None	_		Ode	or	None	
	Sheen/Free Pro	oducN	None	Sheen/Fre	ee Product	N	one		
COMMENTS/OBSERVATIONS Sample time 16:15 hrs. Purge start 15:30									
	YSI Pro SS meter (ID# 21D103486) used to collect fie								

Date (mo/day/yr	4/22/20)22		Casing Diameter		2			inches
Field Personnel	Ann Marie Kı	opovitch		Casing Material		PVC	;		
Site Name For	mer Scott Aviation Sit	e - Lancaster, NY	,	Measuring Point Eleva	ation		689.82		1/100 ft
AECOM Job#	6053	6398		Height of Riser (above	e land surface)		2.72	2	1/100 ft
Well ID #	MW-36S			Land Surface Elevation	on	6	87.1		1/100 ft
Upgra		Downgradient		Screened Interval (be	low land surface		5-1	5	1/100 ft
Weather Conditions	Sui	nny							
Air Temperature	63			Container	Analysis (l	Method) #	Bottles	Preservativ	e Dup - MS/MSD
Total Depth (TWD) Below Top of	of Casing	17.7	1/100 ft	VOA 40 mL glass	TCL VOCs	(8260B)	3	HCL, 4°C	
Depth to Groundwater (DGW) B	Below Top of Casing =	4.73	1/100 ft	VOA 40 mL glass	TO	C	2	HCL, 4°C	
Length of Water Column (LWC)	= TWD - DGW =	12.97	1/100 ft						
1 Casing Volume (OCV) = LWC	x <u>0.163</u> =	2.11	gal						
3 Casing Volumes =	6.34		gal						
Method of Well Evacuation	Peri	staltic Pump							
Method of Sample Collectior	Peristaltic	Pump/Poly Tubing	1						
otal Volume of Water Removec 2.31									
		1		FIELD ANALYSES		1			
Flow Rate (ml/min)	250	250	250	250	250	250		250	250
Time (Military)	14:00	14:05	14:10	14:15	14:20	14:25		14:30	14:35
Depth to Groundwater Below Top of Casing (ft)	4.99	5.19	6.74	7.43	8.27	8.30		8.28	8.20
Drawdown (ft)	-0.26	-0.20	-1.55	-0.69	-0.84	-0.03		0.02	0.08
pH (S.U.)	7.30	7.20	7.18	7.17	7.15	7.15		7.14	7.13
Sp. Cond. (mS/cm)	1.27	1.26	1.26	1.27	1.27	1.274		1.274	1.28
Turbidity (NTUs)	9.70	9.76	10.21	9.16	9.98	10.46		8.94	8.34
Dissolved Oxygen (mg/L)	1.72	0.40	0.24	0.18	0.16	0.18		0.19	0.14
Water Temperature (°C)	9.6	9.1	9.0	8.9	8.8	8.9		8.7	8.5
ORP (mV)	-99.4	-105.0	-107.6	-108.7	-109.1	-109.0		-108.1	-106.5
	Physical appearar	nce at start Col	or <u>Clear</u>	_ Phy	sical appearance a	t sampling Color		Clear	
		Odd	or None	_		Odor		None	
	Sheen/Free Produ	ıc <u> </u>	lone	Sheen/Fre	ee Product	Nor	ne		
COMMENTS/OBSERVATIONS Sample time 14:45 hrs. Purge start 13:55									
	YSI Pro SS meter (ID# 21D103486) used to collect field								

Date (mo/day/yr	4/11/	2022		Casing Diameter		2			inches
Field Personnel	Ann Marie	Kropovitch		Casing Material		PV	С		<u>.</u>
Site Name Form	ner Scott Aviation S	Site - Lancaster, N	Υ	Measuring Point Eleva	tion		689.66		1/100 ft
AECOM Job #	605	536398		Height of Riser (above	land surface)		2.50	6	1/100 ft
Well ID #	MW-36	SD.		Land Surface Elevation	· · · · · · · · · · · · · · · · · · ·		687.1		1/100 ft
Upgrad	dient	Downgradient		Screened Interval (belo	ow land surface		16-2	.1	1/100 ft
Weather Conditions	С	loudy							
Air Temperature	66			Container	Analysis (Method)	# Bottles	Preservative	Dup - MS/MSD
Total Depth (TWD) Below Top of	Casing	23.5	1/100 ft	VOA 40 mL glass	TCL VOCs	s (8260B)	3	HCL, 4°C	
Depth to Groundwater (DGW) Be	elow Top of Casing =	4.73	1/100 ft	VOA 40 mL glass	ТО	С	2	HCL, 4°C	
Length of Water Column (LWC)	= TWD - DGW =	18.77	1/100 ft						
1 Casing Volume (OCV) = LWC	x 0.163 =	3.06	gal						
3 Casing Volumes =	9.	18	gal						
Method of Well Evacuation	Pe	eristaltic Pump							
Method of Sample Collectior	Peristalti	ic Pump/Poly Tubin	g						
Total Volume of Water Removed	olume of Water Removec 2.31 g								
-				FIELD ANALYSES		_			
Flow Rate (ml/min)	250	250	250	250	250	250		250	250
Time (Military)	15:05	15:10	15:15	15:20	15:25	15:30		15:35	15:40
Depth to Groundwater Below Top of Casing (ft)	4.90	6.52	7.27	8.44	9.25	10.33		11.67	12.43
Drawdown (ft)	-0.17	-1.62	-0.75	-1.17	-0.81	-1.08		-1.34	-0.76
pH (S.U.)	7.60	7.58	7.57	7.53	7.5	7.47		7.43	7.39
Sp. Cond. (mS/cm)	1.446	1.444	1.443	1.444	1.442	1.441		1.445	1.444
Turbidity (NTUs)	12.80	8.06	8.54	9.01	9.72	10.03		9.8	9.8
Dissolved Oxygen (mg/L)	1.66	0.58	0.38	0.27	0.23	0.17		0.15	0.15
Water Temperature (°C)	10.2	10.4	10.9	11.1	11.1	11		11	11.4
ORP (mV)	-142.4	-165.2	-171.5	-171.6	-169.0	-167.2		-162	-158.6
	Physical appear	ance at start Co	lor Clear	Phys	ical appearance a	it sampling Cold	or	Clear	
		Oc	lor None	_		Odo	r	None	
	Sheen/Fre	e Product	No	ne					
•	COMMENTS/OBSERVATIONS Sample time 15:50 hrs. Purge start 15:03								
	YSI Pro SS meter (ID# 21D103486) used to collect field								

Date (mo/day/yr	4/13/	2022		Casing Diameter 2					inches
Field Personnel	Ann Marie	Kropovitch		Casing Material		PV	3		<u> </u>
Site Name Forme	r Scott Aviation S	Site - Lancaster, NY		Measuring Point Eleva	ation		690.05		1/100 ft
AECOM Job #	605	36398		Height of Riser (above	e land surface)		2.4	5	1/100 ft
Well ID #	MW-37	D		Land Surface Elevatio	n	ı	687.6		1/100 ft
Upgradie	ent	Downgradient		Screened Interval (bel	ow land surface		15-2	20	1/100 ft
Weather Conditions	С	loudy							
Air Temperature				Container	Analysis (I	Method)	# Bottles	Preservative	Dup - MS/MSD
Total Depth (TWD) Below Top of C	asing	22.5	1/100 ft	VOA 40 mL glass	TCL VOCs	(8260B)	3	HCL, 4°C	
Depth to Groundwater (DGW) Belo	ow Top of Casing =	3.99	1/100 ft	VOA 40 mL glass	TO	С	2	HCL, 4°C	
Length of Water Column (LWC) =	TWD - DGW =	18.51	1/100 ft						
1 Casing Volume (OCV) = LWC x	0.163 =	3.02	gal						
3 Casing Volumes =	9.0	05	gal						
Method of Well Evacuation	Pe	eristaltic Pump							
Method of Sample Collectior	Peristalti	c Pump/Poly Tubing							
Total Volume of Water Removec_	al Volume of Water Removec 2.31								
_		T-		FIELD ANALYSES		T			
Flow Rate (ml/min)	250	250	250	250	250	250		250	250
Time (Military)	11:00	11:05	11:10	11:15	11:20	11:25		11:30	11:35
Depth to Groundwater Below Top of Casing (ft)	6.12	7.12	7.53	8.00	7.98	7.67		7.23	6.94
Drawdown (ft)	-2.13	-1.00	-0.41	-0.47	0.02	0.31		0.44	0.29
pH (S.U.)	8.00	7.34	7.17	7.22	7.23	7.22		7.20	7.21
Sp. Cond. (mS/cm)	0.89	0.95	0.97	0.93	0.90	0.896		0.889	0.878
Turbidity (NTUs)	19.71	11.68	14.30	22.12	16.85	18.32		17.62	21.94
Dissolved Oxygen (mg/L)	1.37	0.22	0.17	0.13	0.12	0.12		0.11	0.11
Water Temperature (°C)	10.60	10.40	10.60	10.60	11.10	11.30		11.50	11.50
ORP (mV)	-5.4	-86.2	-88.0	-97.3	-103.6	-106.5		-107.8	-111.7
	Physical appear	ance at start Color	Clear	Phys	sical appearance a	t sampling Colo	r	Clear	
		Odor	None	<u> </u>		Odoi	r	None	
	one	Sheen/Fre	ee Product	No	ne				
COMMENTS/OBSERVATIONS Sample time 11:45 hrs. Purge start 10:54 hrs.									
Y	YSI Pro SS meter (ID# 21D103486) used to collect field								

Date (mo/day/yr	4/12/	2022		Casing Diameter		2			inches
Field Personnel		Kropovitch		Casing Material		PV	С		<u>.</u>
Site Name For	rmer Scott Aviation S	Site - Lancaster, NY	<u>, </u>	Measuring Point Eleva	ation		689.66		1/100 ft
AECOM Job #	609	536398		Height of Riser (above	land surface)		2.72	2	1/100 ft
Well ID #	MW-38	BD		Land Surface Elevatio	n		687.5		1/100 ft
Upgr	adient	Downgradient		Screened Interval (bel	ow land surfac		16-2	1	1/100 ft
Weather Conditions	S	unny							
Air Temperature	57		° F	Container	Analysis (Method)	# Bottles	Preservative	Dup - MS/MSD
Total Depth (TWD) Below Top	of Casing :	20.9	1/100 ft	VOA 40 mL glass	TCL VOCs	(8260B)	3	HCL, 4°C	
Depth to Groundwater (DGW) I	Below Top of Casing =	2.14	1/100 ft	VOA 40 mL glass	TO	С	2	HCL, 4°C	
Length of Water Column (LWC) = TWD - DGW =	18.76	1/100 ft	Various	MNA An	alyses	15	Varies	
1 Casing Volume (OCV) = LW0	C x <u>0.163</u> =	3.06	gal						
3 Casing Volumes =	9.	17	gal						
Method of Well Evacuation	Pe	eristaltic Pump							
Method of Sample Collection	od of Sample Collection Peristaltic Pump/Poly Tubing								
Total Volume of Water Remove	otal Volume of Water Remover 2.31 ga								
			F	IELD ANALYSES					
Flow Rate (ml/min)	250	250	250	250	250	250		250	250
Time (Military)	12:50	12:55	13:00	13:05	13:10	13:15		13:20	13:25
Depth to Groundwater Below Top of Casing (ft)	4.21	6.32	8.09	9.68	11.31	12.98		14.27	15.75
Drawdown (ft)	-2.07	-2.11	-1.77	-1.59	-1.63	-1.67		-1.29	-1.48
pH (S.U.)	7.06	6.97	6.96	6.95	6.95	6.95		6.95	6.95
Sp. Cond. (mS/cm)	0.680	0.681	0.682	0.680	0.679	0.679		0.676	0.675
Turbidity (NTUs)	30.4	28.7	24.3	32.5	48.6	50.2		37.7	38.82
Dissolved Oxygen (mg/L)	1.05	0.35	0.25	0.20	0.14	0.13		0.12	0.13
Water Temperature (°C)	10.5	10.3	10.1	10.1	10.2	10.3		10.5	10.7
ORP (mV)	-39.0	-28.8	-29.6	-25.8	-21.0	-13.9		-6.4	2.6
	Physical appear	ance at start Co	lor Light Brown	Phys	sical appearance a	t sampling Colo	or <u> </u>	Clear	
		Od	or None	_		Odo	r	None	
			None	Sheen/Fre	e Product	No	ne		
COMMENTS/OBSERVATIONS									
	YSI Pro SS meter (ID# 21D103486) used to collect field								

Date (mo/day/yr	4/13	/2022		Casing Diameter		2			inches
Field Personnel	Ann Marie	Kropovitch		Casing Material		PV	С		<u>.</u>
Site Name For	mer Scott Aviation	Site - Lancaster, NY		Measuring Point Eleva	ition		689.72		1/100 ft
AECOM Job #	60	536398		Height of Riser (above	land surface)		2.5	7	1/100 ft
Well ID #	MW-3	9D		Land Surface Elevatio	n		687.4		1/100 ft
Upgra	adient	Downgradient		Screened Interval (bel	ow land surfac		15-2	20	1/100 ft
Weather Conditions	Dark o	clouds/Rain							
Air Temperature	73			Container	Analysis (I	Method)	# Bottles	Preservative	Dup - MS/MSD
Total Depth (TWD) Below Top of	of Casing :	22.5	1/100 ft	VOA 40 mL glass	TCL VOCs	(8260B)	3	4°C	
Depth to Groundwater (DGW) B	Below Top of Casing	3.68	1/100 ft	VOA 40 mL glass	TO	C	2	HCL, 4°C	
Length of Water Column (LWC)	= TWD - DGW =	18.8	1/100 ft						
1 Casing Volume (OCV) = LWC	x <u>0.163</u> =	3.07	gal						
3 Casing Volumes =	9	20	gal						
Method of Well Evacuation	Р	eristaltic Pump							
Method of Sample Collection	Peristal	ic Pump/Poly Tubing							
Total Volume of Water Remove	(2.31	gal						
			_						
Flow Data (millionin)	250	050		FIELD ANALYSES	050	050		250	050
Flow Rate (ml/min)	250	250	250	250	250	250		250	250
Time (Military) Depth to Groundwater	12:55	13:00	13:05	13:10	13:15	13:20		13:25	13:30
Below Top of Casing (ft)	4.69	6.34	6.91	8.10	8.82	9.33		9.95	10.90
Drawdown (ft)	-1.01	-1.65	-0.57	-1.19	-0.72	-0.51		-0.62	-0.95
pH (S.U.)	6.90	6.85	6.87	6.90	6.91	6.91		6.91	6.91
Sp. Cond. (mS/cm)	1.474	1.467	1.471	1.474	1.478	1.473		1.471	1.461
Turbidity (NTUs)	59.7	58.3	40.8	41.6	46.8	42.24		45.31	47.83
Dissolved Oxygen (mg/L)	1.62	0.33	0.23	0.15	0.12	0.11		0.08	0.06
Water Temperature (°C)	12.1	13.0	13.2	13.2	13.4	13.6		12.4	12.0
ORP (mV)	-225.3	-150.7	-144.1	-144.1	-145.0	-144.9		-143.9	-142.3
	Physical appear	rance at start Cold	r <u>Clear</u>	Phys	ical appearance a	t sampling Cold	or	Clear	
		Odo	r <u>None</u>	<u>_</u>		Odo	or	None	
			one	Sheen/Fre	e Product N	None *slight shee	n on purge	water from this we	II
COMMENTS/OBSERVATIONS	Sample time 13:40	hrs. Purge start 12:51	hrs.						
	to collect field pa	arameters.							

Date (mo/day/yr	4/8/2	022		Casing Diameter		2			inches
Field Personnel	d Personnel Ann Marie Kropovitch				Casing Material PVC				
Site Name For	Site Name Former Scott Aviation Site - Lancaster, NY				Measuring Point Elevation 689.19				
AECOM Job#	605	36398		Height of Riser (above land surface)0.3					1/100 ft
Well ID#	MW-40	D		Land Surface Elevation	n	1	689.5		1/100 ft
Upgra	idient	Downgradient		Screened Interval (be	ow land surfac		17.8-2	22.8	1/100 ft
Weather Conditions	Sunny/So	ome Clouds							
Air Temperature	52			Container	Analysis (Method)	# Bottles	Preservative	Dup - MS/MSD
Total Depth (TWD) Below Top o	of Casing :	22.5	1/100 ft	VOA 40 mL glass	TCL VOCs	(8260B)	3	HCL, 4°C	
Depth to Groundwater (DGW) B	selow Top of Casing =	3.69	1/100 ft	VOA 40 mL glass	TO	С	2	HCL, 4°C	
Length of Water Column (LWC)	= TWD - DGW =	18.81	1/100 ft	Various	MNA An	alyses	15	Varies	
1 Casing Volume (OCV) = LWC	x 0.163 =	2.77	gal						
3 Casing Volumes =	8.3	1	gal						
Method of Well Evacuation	Pe	ristaltic Pump							
Method of Sample Collection	Peristaltion	։ Pump/Poly Tubing	9						
Total Volume of Water Remove	(1.85	gal						
				FIELD ANALYSES					
Flow Rate (ml/min)	200	200	200	200	200	200		200	200
Time (Military)	13:15	13:20	13:25	13:30	13:35	13:40		13:45	13:40
Depth to Groundwater									
Below Top of Casing (ft)	4.69	6.07	6.91	7.83	8.58	9.52		10.28	12.02
Drawdown (ft)	-1.00	-1.38	-0.84	-0.92	-0.75	-0.94		-0.76	-1.74
pH (S.U.)	7.41	7.41	7.41	7.40	7.39	7.41		7.41	7.41
Sp. Cond. (mS/cm)	1.19	1.19	1.19	1.18	1.187	1.184		1.13	1.182
Turbidity (NTUs)	35	38	40	41	39.54	40.36		38.56	40.7
Dissolved Oxygen (mg/L)	0.82	0.39	0.29	0.23	0.2	0.18		0.16	0.14
Water Temperature (°C)	11.0	11.1	10.4	10.4	10.5	10.3		10.4	11
ORP (mV)	-162.3	-168.3	-170.5	-173.8	-175.5	-177.6		-179.2	-182.9
	Physical appeara	nce at start Co	lor Clear	Phys	sical appearance a	it sampling Colo	r	Clear	
		Od	lor None	<u> </u>		Odo	r	None	
	Sheen/Free Prod	luct	None	Sheen/Fre	ee Product	No	ne		
COMMENTS/OBSERVATIONS Sample time 14:10 hrs. Purge start 13:10									
	YSI Pro SS meter (ID)# 21D103486) use	d to collect field pa	arameters.					

Date (mo/day/yr	ay/yr4/8/2022					2			inches
Field Personnel									
Site Name F	te Name Former Scott Aviation Site - Lancaster, NY				Measuring Point Elevation 689.08				
AECOM Job #	6	0536398		Height of Riser (above	e land surface)		-0.58		1/100 ft
Well ID #	MW-	42S		Land Surface Elevation	n	68	39.66		1/100 ft
Up	gradient	Downgradient		Screened Interval (bel	low land surfac		5-15		1/100 ft
Weather Conditions		Cloudy							
Air Temperature		3		Container	Analysis (Method) #	Bottles Pr	reservative	Dup - MS/MSD
Total Depth (TWD) Below To	p of Casing :	14.3	1/100 ft	VOA 40 mL glass	TCL VOCs	(8260B)	3 1	HCL, 4°C	
Depth to Groundwater (DGW) Below Top of Casing	=1.81	1/100 ft	Various	MNA	As	2	Various	
Length of Water Column (LW	(C) = TWD - DGW =	12.49	1/100 ft						
1 Casing Volume (OCV) = LV	VC x 0.163	2.04	gal						
3 Casing Volumes =	6	3.11	gal						
Method of Well Evacuation	F	Peristaltic Pump							
Method of Sample Collection	Perista	ltic Pump/Poly Tubing]						
Total Volume of Water Remo	vec	2.31	gal						
				FIELD ANALYSES					
Flow Rate (ml/min)	350	250	250	250	250	250	250		250
Time (Military)	10:15	10:20	10:25	10:30	10:35	10:40	10:4	5	10:50
Depth to Groundwater Below Top of Casing (ft)	3.41	4.54	5.55	5.99	6.45	7.04	7.46	i	7.88
Drawdown (ft)	-1.60	-1.13	-1.01	-0.44	-0.46	-0.59	-0.42	2	-0.42
pH (S.U.)	6.83	6.83	6.84	6.86	6.87	6.87	6.86	i	6.82
Sp. Cond. (mS/cm)	2.225	2.210	2.010	1.826	1.771	1.840	1.89	7	1.990
Turbidity (NTUs)	26.05	23.75	27.12	31.26	31.82	30.4	22.72	2	20.27
Dissolved Oxygen (mg/L)	0.40	0.31	0.24	0.30	0.45	0.43	0.37		0.29
Water Temperature (°C)	8.9	8.6	8.6	8.4	8.4	8.5	8.4		8.6
ORP (mV)	-116.4	-117.2	-118.6	-117.2	-114.5	-113.4	-112	!	-108.7
	Physical appea	arance at start Co	lor Clear	Phys	sical appearance a	nt sampling Color	Clear		
		Od	lor None	_		Odor	None		
	Sheen/Free Pr	oduct	None	Sheen/Fre	ee Product	Nor	е		
COMMENTS/OBSERVATION	NS Sample time 11:10	hrs. Purge start 10:	10						
	YSI Pro SS meter	(ID# 043167/18G1024	410) used to collec	et field parameters.					

Date (mo/day/yr	4/14.	2022		Casing Diameter		2			inches
Field Personnel	Ann Marie Kropovitch				PVC				<u> </u>
Site Name For					Measuring Point Elevation 689.14				
AECOM Job #	60	536398		Height of Riser (above land surface) -0.46					1/100 ft
Well ID #	MW-4	3S		Land Surface Elevation	on	ı	689.6		1/100 ft
Upgra	adient	Downgradient		Screened Interval (be	low land surfac		5-15	5	1/100 ft
Weather Conditions	Cloudy	/Very windy							
Air Temperature	57			Container	Analysis (l	Method)	# Bottles	Preservative	Dup - MS/MSD
Total Depth (TWD) Below Top of	of Casing :	14.5	1/100 ft	VOA 40 mL glass	TCL VOCs	(8260B)	3	HCL, 4°C	
Depth to Groundwater (DGW) B	Below Top of Casing	1.89	1/100 ft	VOA 40 mL glass	TO	С	2	HCL, 4°C	
Length of Water Column (LWC)	= TWD - DGW =	12.61	1/100 ft						
1 Casing Volume (OCV) = LWC	x <u>0.163</u> 0	2.06	gal						
3 Casing Volumes =	6.	17	gal						
Method of Well Evacuation	P	eristaltic Pump							
Method of Sample Collection	Peristalt	ic Pump/Poly Tubing							
Total Volume of Water Remove	<u>(</u>	2.31	gal						
			_	TIELD ANALYOES					
Flow Data (millionia)	050	050		FIELD ANALYSES	050	050		050	050
Flow Rate (ml/min)	250	250	250	250	250	250		250	250
Time (Military) Depth to Groundwater	10:10	10:15	10:20	10:25	10:30	10:35		10:40	10:45
Below Top of Casing (ft)	1.99	2.35	3.78	4.35	5.12	5.76		6.34	6.91
Drawdown (ft)	-0.10	-0.36	-1.43	-0.57	-0.77	-0.64		-0.58	-0.57
pH (S.U.)	6.98	6.92	6.84	6.84	6.84	6.83		6.83	6.82
Sp. Cond. (mS/cm)	1.045	1.057	1.063	1.068	1.070	1.081		1.100	1.130
Turbidity (NTUs)	7.95	8.01	8.24	9.96	10.94	11.3		10.01	10.33
Dissolved Oxygen (mg/L)	2.33	1.37	0.39	0.19	0.14	0.15		0.15	0.14
Water Temperature (°C)	10.9	9.5	8.2	10.9	10.7	10.5		10.4	10.4
ORP (mV)	-73.1	-75.6	-78.8	-84.3	-87	-89.4		-90.8	-94.7
	Physical appear	ance at start Col	or <u>Clear</u>	Phy	sical appearance a	it sampling Colo	r (Clear	
		Odd	or Slight	_		Odo	r <u>I</u>	None	
	Sheen/Free Pro	duct N	lone	Sheen/Fre	ee Product	No	ne		
COMMENTS/OBSERVATIONS	COMMENTS/OBSERVATIONS Sample time 10:07 hrs. Purge start 10:07								
	YSI Pro SS meter (I	D# 21D103486) used	to collect field pa	arameters.					

Date (mo/day/yr	4/12/	2022		Casing Diameter		2			inches
Field Personnel	ield Personnel Ann Marie Kropovitch				Casing Material PVC				
Site Name For					Measuring Point Elevation				
AECOM Job #	605	536398		Height of Riser (above land surface) 0.00					1/100 ft
Well ID#	MW-44	IS		Land Surface Elevation	n				1/100 ft
Upgra	idient	Downgradient		Screened Interval (bel	ow land surfac		5-1	5	1/100 ft
Weather Conditions	Sun	ny/Clear							
Air Temperature	61			Container	Analysis (I	Method)	# Bottles	Preservativ	re Dup - MS/MSD
Total Depth (TWD) Below Top o	of Casing :	15	1/100 ft	VOA 40 mL glass	TCL VOCs	(8260B)	3	HCL, 4°C	
Depth to Groundwater (DGW) B	elow Top of Casing =	0.00	1/100 ft	VOA 40 mL glass	TO	C	2	HCL, 4°C	
Length of Water Column (LWC)	= TWD - DGW =	15	1/100 ft						
1 Casing Volume (OCV) = LWC	x <u>0.163</u> =	2.45	gal						
3 Casing Volumes =	7.3	34	gal						
Method of Well Evacuation	Pe	eristaltic Pump							
Method of Sample Collection	Peristalti	c Pump/Poly Tubing]						
Total Volume of Water Remove	<u> </u>	1.85	gal						
			_						
		T		FIELD ANALYSES		T	1	1	
Flow Rate (ml/min)	200	200	200	200	200	200	-	200	200
Time (Military) Depth to Groundwater	14:25	14:30	14:35	14:40	14:45	14:50		14:55	15:00
Below Top of Casing (ft)	6.85	7.60	8.03	8.29	8.64	9.35		9.67	10.25
Drawdown (ft)	-6.85	-0.75	-0.43	-0.26	-0.35	-0.71		-0.32	-0.58
pH (S.U.)	7.39	7.21	7.19	7.18	7.17	7.15		7.15	7.15
Sp. Cond. (mS/cm)	0.998	0.990	0.990	0.994	0.998	1.005		1.004	1.006
Turbidity (NTUs)	29.22	39.52	77.11	84.10	77.96	52.76		52.41	44.62
Dissolved Oxygen (mg/L)	3.54	1.42	1.24	1.10	0.81	0.44		0.41	0.35
Water Temperature (°C)	10.7	10.1	10.0	9.7	9.80	10.00		9.90	10.00
ORP (mV)	30.1	-31.9	-36.5	-41.9	-53.1	-67.3		-68.5	-71.4
	Physical appear	ance at start Co	lor Clear	Phys	sical appearance a	t sampling Colo	r	Clear	
		Od	or None	_		Odo	r	None	
	Sheen/Free Pro	ductl	None	Sheen/Fre	ee Product	No	ne		
COMMENTS/OBSERVATIONS Sample time 15:10 hrs. Purge start 14:20									
	YSI Pro SS meter (II	D# 21D103486) use	d to collect field pa	arameters.					_

Appendix D Analytical Laboratory Data Packages (Provided on CD)

Appendix E Institutional Controls and Engineering Controls Certification Form

Enclosure 2 NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form

Site Details Site No. C915233	Box 1	
Site Name Former Scott Aviation Facility (Area 1)		
Site Address: 215 and 221 Erie Street Zip Code: 14086 City/Town: Lancaster County: Erie Site Acreage: 1.250		
-Reporting-Period:April-01,-2020 to April-01,-2021		
Reporting Period: April 09, 2021 to April 14, 2022		
	YES	NO
Is the information above correct?		X
If NO, include handwritten above or on a separate sheet.		
2. Has some or all of the site property been sold, subdivided, merged, or undergone a tax map amendment during this Reporting Period?		X
3. Has there been any change of use at the site during this Reporting Period (see 6NYCRR 375-1.11(d))?		X
4. Have any federal, state, and/or local permits (e.g., building, discharge) been issued for or at the property during this Reporting Period?	d	X
If you answered YES to questions 2 thru 4, include documentation or evidence that documentation has been previously submitted with this certification for		
5. Is the site currently undergoing development?		X
	Box 2	
	YES	NO
 Is the current site use consistent with the use(s) listed below? Commercial and Industrial 	X	
7. Are all ICs in place and functioning as designed?	X	
IF THE ANSWER TO EITHER QUESTION 6 OR 7 IS NO, sign and date below DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.		
A Corrective Measures Work Plan must be submitted along with this form to address	these iss	sues.
Signature of Owner, Remedial Party or Designated Representative Date		

		Box 2	A
		YES	NO
8.	Has any new information revealed that assumptions made in the Qualitative Exposure Assessment regarding offsite contamination are no longer valid?		X
	If you answered YES to question 8, include documentation or evidence that documentation has been previously submitted with this certification form.		
9.	Are the assumptions in the Qualitative Exposure Assessment still valid? (The Qualitative Exposure Assessment must be certified every five years)	X	
	If you answered NO to question 9, the Periodic Review Report must include an updated Qualitative Exposure Assessment based on the new assumptions.		

SITE NO. C915233 Box 3

Description of Institutional Controls

<u>Parcel</u> <u>Owner</u> <u>Institutional Control</u>

104.16-5-8 AVOX Systems, Inc.

Ground Water Use Restriction
Landuse Restriction
Site Management Plan
Soil Management Plan
Monitoring Plan
IC/EC Plan

An Environmental Easement was filed with the Erie County Clerk's Office on November 19, 2015. The Controlled Property may be used for commercial and industrial use as long as the following long-term institutional controls are employed: (1) restrict the use of site groundwater as a source of potable or process water without necessary water quality treatment as determined by the NYSDOH or Erie County Department of Health; (2) all future activities on the property that will disturb remaining contaminated material must be conducted in accordance with the Site Management Plan; and (3) monitoring to assess the performance and effectiveness of the remedy must be conducted as defined in the Site management Plan.

104.16-5-9 AVOX Systems, Inc.

Soil Management Plan Monitoring Plan IC/EC Plan Ground Water Use Restriction Landuse Restriction Site Management Plan

An Environmental Easement was filed with the Erie County Clerk's Office on November 19, 2015. The Controlled Property may be used for commercial and industrial use as long as the following long-term institutional controls are employed: (1) restrict the use of site groundwater as a source of potable or process water without necessary water quality treatment as determined by the NYSDOH or Erie County Department of Health; (2) all future activities on the property that will disturb remaining contaminated material must be conducted in accordance with the Site Management Plan; and (3) monitoring to assess the performance and effectiveness of the remedy must be conducted as defined in the Site management Plan.

Box 4

Description of Engineering Controls

None Required

Not Applicable/No EC's

Box	5
-----	---

	Periodic Review Report (PRR) Certification Statements
1.	I certify by checking "YES" below that:
	a) the Periodic Review report and all attachments were prepared under the direction of, and reviewed by, the party making the Engineering Control certification;
	b) to the best of my knowledge and belief, the work and conclusions described in this certification are in accordance with the requirements of the site remedial program, and generally accepted engineering practices; and the information presented is accurate and compete.
	YES NO
	\mathbf{X}
2.	For each Engineering control listed in Box 4, I certify by checking "YES" below that all of the following statements are true:
	(a) The Engineering Control(s) employed at this site is unchanged since the date that the Control was put in-place, or was last approved by the Department;
	(b) nothing has occurred that would impair the ability of such Control, to protect public health and the environment;
	(c) access to the site will continue to be provided to the Department, to evaluate the remedy, including access to evaluate the continued maintenance of this Control;
	(d) nothing has occurred that would constitute a violation or failure to comply with the Site Management Plan for this Control; and
	(e) if a financial assurance mechanism is required by the oversight document for the site, the mechanism remains valid and sufficient for its intended purpose established in the document.
	YES NO
	\mathbf{X}
	IF THE ANSWER TO QUESTION 2 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.
	A Corrective Measures Work Plan must be submitted along with this form to address these issues.
	Signature of Owner, Remedial Party or Designated Representative Date

IC CERTIFICATIONS SITE NO. C915233

Box 6

SITE OWNER OR DESIGNATED REPRESENTATIVE SIGNATURE

I certify that all information and statements in Boxes 1,2, and 3 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

I <u>Dino Zack, PG, STS</u> at <u>AECOM, One John James Audubon Pkwy, Suite 210, Amherst, NY 14228, print name print business address am certifying on behalf of Scott Figgie LLC (Owner or <u>Remedial Party</u>)</u>

for the Site named in the Site Details Section of this form.

Dino J. Jack

on behalf of Scott Figgie LLC

June 24, 2022

Signature of Owner, Remedial Party, or Designated Representative Rendering Certification

Date

